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Abstract

This thesis consists of three individual models on technology adoption, contracts and 

protection. 1'he first model is motivated by the inconsistency between empirical results 

and theoretical models regarding the firm size effects upon the timing of adoption. By 

proposing a two-stage, endogenous learning, Stackelberg model, we conclude that in a 

pure strategy equilibrium, the large firm may or may not tacitly delay its adoption to 

capture the information advantage, depending on cost and belief parameters. The welfare 

analysis provides a justification for government interventions in firms’ adoption 

decisions.

The second model is motivated by the fact that although more and more resources 

have been devoted to R&D activities, there is little theoretical discussion regarding R&D 

funding issues. Chapter 3 derives the optimal funding contract, which happens to be a 

cost-plus-fixed-fee contract in the literature. After considering the adverse selection 

problem, the optimal contract induces no efficiency loss under both discrete and 

continuous settings and the principal will be more conservative in funding. The optimal 

auction maintains both allocation and production efficiency, and bidding the principal’s 

reservation price will be a dominant strategy in a second price auction. Neither the 

revenue equivalence nor the separation property will hold. With symmetric beliefs, the 

optimal funding length is shorter than that of contractible effort. Under some 

assumptions, the lock-in effect persists and the principal will prefer short-term contracts 

to long-term contracts.

The third model decides the optimal protection forms, protection rates and protection 

lengths under various cost and revenue circumstances. Since the incentive scheme will be 

affected by the target firm’s future profits, we show that in the context of incomplete 

information, screening protection schemes can sometimes coincide with the efficient 

schemes. In R&D area, our result suggests that optimal patent length need not necessarily 

be increasing in firm’s investment efficiency.
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1. Introduction

l . I Motivation and Methodology 
l .2 Outline of the Thesis

1.1 Motivation and Methodology

Technological change has played an important role in economic growth. The most cited 

evidence is “Solow’s (1957) discovery that only a small fraction of per capita growth (10 

percent for the US non-farm sector over the period of 1909-49) was associated with an 

increase in the ratio of capital to labour”1. The significant role of technical progress has 

led economists to study firms’ incentives to create and adopt new technologies. 

Therefore, apart from competition in prices and quantities, firms’ research and 

development (R&D) activities have been an essential topic in Industrial Economics.

There are usually three stages in R&D activities2: The first stage is the invention 

process, encompassing the generation of new ideas. The basic research or fundamental 

technological breakthroughs are mainly carried out by universities and government 

agencies. For example, more than 58% of all Department of Defence basic research 

funding is spent on university research centres (Becker (1996)). The second stage is the 

innovation process, encompassing the development of new ideas into marketable 

products and processes. The third stage is the diffusion stage, in which the new products 

and processes spread across the potential markets. This thesis consists of three individual 

models addressing players’ behaviour for these three stages in reverse order. That is, we

' Tirole(l988, p. 389).
2 The classification of three stages follows Sloncman (1995).
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first talk about firms’ adoption decisions in Chapter 2, then the design of R&D funding 

contracts in Chapter 3, and finally the design of protection scheme in Chapter 4.

Chapter 2 analyses firms’ adoption decisions under an asymmetric market structure, 

and it aims to solve a missing point in the existing literature, which is shown as follows. 

The main theme of the adoption literature has been the “timing of adoption”, which is 

basically guided by the empirical observation that firms adopt a certain new technology 

at different times. More specifically, the path of the diffusion process is frequently 

depicted by an S-shaped (or sigmoid) curve. Following Stoneman (1986), we can classify 

the theoretical diffusion literature as “probit” and “game-theoretic” models, where the 

latter takes into account the interactions among firms. Of the various issues, the effect of 

current monopoly power upon firms’ adoption decisions is of primary interest. Empirical 

studies of technology adoption show inconsistent results regarding the firm size impact 

upon firms’ adoption time, but theoretical models seldom conclude that small firms can 

possibly lead in adoption. This inconsistency between empirical results and theoretical 

models is hence the motivation for the first model of this thesis.

To be more specific, although the majority of the empirical literature reports large 

firms’ leadership in adoption, there are some cases where small firms adopt earlier. For 

example, Mansfield (1967) examines 14 innovations and concludes that larger firms tend 

to adopt sooner than smaller firms. On the contrary, in his study of intra-firm diffusion of 

diesel locomotive usage, Mansfield shows that smaller railroad companies replaced their 

machines more rapidly than larger ones. Another example can be found in Nabseth and 

Ray (1974) who conclude from a study covering ten innovations in six European 

countries that no evidence supports large firms’ leadership in adoption. In the studies of
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the basic oxygen furnace among steel companies, Adams and Birlam (1966), Oster 

(1982) and Sumrall (1982) all conclude that large firms tend to delay diffusion.

Unlike the empirical controversy, theoretically, the "probit" (or rank) models (where 

firms’ adoption strategy present the “simple reservation property”) all assert that large 

firms lead in adoption. Examples can be found in David (1969, 1975), Davies (1979) and 

Nooteboom (1993). After introducing imperfect information, Jesen (1982, 1988) and 

McCardle (1985) assume heterogeneity of firms’ beliefs about the innovation’s 

profitability and conclude a similar “critical belief’ in adoption decisions. Another 

branch of theoretical models - the game theoretic approach, seldom addresses the impact 

of current monopoly power on firms’ adoption decisions (e.g., Reinganum (1981, 1983), 

Fudenberg and Tirole (1985), Hendricks (1992)). An exception can be found in Sadanand 

(1989), who analyses the firm size effect by assuming one large firm facing a nonatomic 

continuum of small firms. He concludes that the large firm will adopt first as a 

Stackelberg leader and all the small firms will adopt in the second stage as followers. 

Overall, the small firm’s possible leadership in adoption seems to be a missing point in 

the existing literature. Hence, the first model of this thesis is trying to build a model to 

explain this point. The main result supports two possible outcomes, that is, the large firm 

may or may not adopt earlier than the small firm, depending on the levels of the prior 

belief and current production cost.

Chapter 3 discusses the optimal contracts for funding R&D projects. Each year, 

there are more and more resources (including money and researchers) devoted to the 

creation of innovation. For example, “Japanese government spending on science and 

technology has increased about 5% annually over the last decade”3. Freemantle (1997)

1 From Fast Asian Fxecutivc Reports ( 1996).



reports that "between 1981 and 1992, the total funding of R&D in Germany climbed 

steadily from about $24 billion to over $48 billion a year”. Yet, there is little theoretical 

literature4 specifically addressing R&D funding issues. The aim of the second model is 

therefore to design the optimal funding contracts for long-term R&D projects confronted 

with opportunism problems.

R&D projects are different from others, such as construction projects, in that the 

performance of the contractor’s effort is difficult to observe or monitor. The monitoring 

or progress-checking devices that we usually find in other contracts are not really 

applicable to R&D projects, and hence the moral hazard problems in R&D projects are 

more severe than in other contracts. In addition, as the invention processing is time 

consuming, for example, the search for AIDS remedy, most R&D contracts take the form 

of long-term contracts. These two features of R&D contracts make them to be an 

interesting topic to study. Corresponding to two settings about the timing of innovation in 

the R&D literature: the deterministic and stochastic settings (see Reinganum (1989) for 

discussion of the literature), Chapter 3 discusses the optimal funding contracts for these 

two different settings of innovation time. But essentially, the discussion of optimal 

contracts belongs to the subject of information economics.

Information economics is a broad subject with many variations. There are mainly 

two types of problems: the first is the moral hazard (hidden action or opportunism) 

problem, where “one party to a transaction may undertake certain actions that affect the 

other party’s valuation of the transaction, but that the second party cannot 

monitor/enforce perfectly”5. The second is the adverse selection (hidden information)

* The only exception is Aghion and Tirolc (1994), which will be explained in chapter 3 to be dif ferent from
our setting.
'  The definitions of moral hazard and adverse selection follow Kreps (1990).
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problem, where “one party to a transaetion knows things pertaining to the transaction that 

are relevant to but unknown by the second party”.

Most discussion of moral hazard and adverse selection problems uses the principal 

and agent framework. Our derivation of optimal funding contracts in Chapter 3 adopts 

this framework, and assumes that there is a self-interested principal who wishes to assign 

an agent to undertake a time-consuming R&D project. The assumption of a “self- 

interested” principal is in contrast to the assumption of a “benevolent” principal, who 

makes her decision to maximise the sum of all players’ expected utilities. The latter 

setting will be applied in Chapter 4, where a government agency wishes to design a 

protection scheme for the protected firm to undertake a welfare improving investment. 

Apart from this, there is another structure difference between Chapter 3 and Chapter 4 

concerning the agent’s valuation from the mechanisms. That is, in Chapter 3, it is 

assumed that the project value is irrelevant to the agent, for example, one can think of the 

case of employed researchers whose research outcomes belong to their employers. 

However, in Chapter 4, the agent’s (protected firms) future profits will be affected by 

whether protection succeeds in motivating the investment. The different assumptions 

about the agent’s valuation will affect the determination of compensation scheme, as we 

will discuss in details later.

Chapter 3 starts with a deterministic setting for the timing of innovation, and 

discusses firstly the case with only a moral hazard problem as a benchmark of 

comparison. Later, by assuming the agent has private information about the innovation 

time, we discuss both the moral hazard and adverse selection problems in the contexts of 

discrete and continuous settings. The terms “discrete” and “continuous” refer to the 

principal’s anticipation about how the information that is better known by the agent is
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distributed. The discussion of the optimal contract with an adverse selection problem 

mainly relies on applying the revelation principle (Ciibbard (1973), Green and Laffont 

(1977), Dasgupta et al. (1979) and Myerson (1979)).

When there is incomplete information, the contract (mechanism) design is typically 

studied as a three-step game. “In step 1, the principal designs a mechanism, or contract, 

or incentive scheme. A mechanism is a game in which the agents send costless messages, 

and an allocation that depends on the realised messages.... In step 2, the agents 

simultaneously accept or reject the mechanism.... In step 3, the agents who accept the 

mechanism play the game specified by the mechanism”6. The revelation principle says 

that “to obtain her highest expected payoff, the principal can restrict attention to 

mechanisms that are accepted by all agents at step 2 and in which at step 3 all agents 

simultaneously and truthfully reveal their types”. Since this principle plays a major role 

in the discussion of the optimal funding contract in Chapter 3 and the optimal protection 

scheme in Chapter 4, we present the formal statement7 of the revelation principle as 

follows.

The revelation principle says that any efficient outcome of any Bayesian game can 

be represented by a truth-telling direct mechanism. The following will describe the forms 

of a general mechanism, equilibrium and a truth-telling direct mechanism, then explain 

the principle. Suppose there is a principal and i agents (/=/,.../) with types 

A = ( A1, . . . , A ' )  from set D. The object of the mechanism is to determine an 

allocation c = {x , r }, where the vector x e X  c  1)1 " is the decision of the principal 

and r = ( r 1.......r ' )  is a vector of money transfers from the principal to each agent. A

6 Definitions of mechanism design and the revelation principle are quoted from Fudenberg and Tirole
(1991).
7 I hc formal statement of the principle is again adopted from Fudenberg and Tirole, however, in order to 
use notations consistent with the remaining chapters, the notation has been changed.
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mechanism m defines a message space U  ' for each agent a game form to announce

the messages, and p = (p  1.... p ')  to be the vector of all messages sent by the

agents in the game form. The allocation depends on the agents’ messages: 

c m : p -» C = X  x ill ' . Assume that there is a pure strategy equilibrium p ' * ( A ') . 

Now consider a new message space D' (type space) for each i, so that each agent 

announces a type A ‘ . Denote A = ( A1, . . . , A ' )  and the new location rule as c :D —>C 

by c“( A ) = c m( p  * ( A ) ) ,  where p * (A) is the vector of the equilibrium strategies.

Theorem (the revelation principle)8

Suppose that a mechanism with message spaces U‘ and allocation function cm has a 
Bayesian equilibrium p * ( ) = { p ' * ( A ' ) (  i . Then there exists a direct-
revelation mechanism ( c ) such that the message spaces are the type spaces 
( U ' = D ' ), and such that there exists a Bayesian equilibrium in which all agents 
accept the mechanism and announce their true types.

Another interesting issue in Chapter 3 is the design of the optimal auctioning 

contract, since in most cases an agent will be selected from several other competitors. 

There are some interesting results in auction theory, including the revenue equivalence 

theorem (Vickrey (1961)) and the separation property (Laffont and Tirole (1993)). By 

comparing the results from the optimal auction and a second-price auction, we can see 

how the opportunism problem in R&D contracts changes these commonly agreed 

conclusions. The last section of Chapter 3 talks about the stochastic setting of innovation 

time (see Lee and Wilde (1980), Reinganum (1982), Harris and Vickers (1987)). With 

both incomplete and imperfect information, the design of the optimal contract becomes

“ When applying this theorem, chapter 3 and chapter 4 concentrate on a truth telling direct mechanism and 
refer to the allocation function in this theorem as the “contract" itself, and the decision x as the “allocation 
rule". The notational changes, although a bit confusing, are to cope specifically with the topic of contract
design and the discussion of auction.
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more interesting. The choice between long term and short term contracts is also discussed 

here.

Finally, the third model is motivated by the observation that government 

interventions (protection) of various forms are still used by many developed and 

developing countries, and the empirical results do not always support the positive effect 

o f protection. Chapter 4 builds up a general protection model, where “protection” is a 

general term for government interventions and could take the form of, for example, an 

export or import tax or subsidy, a voluntary export restraint, or a patent. When the public 

good property of innovation causes some difficulty in the appropriability of R&D 

activities. Patents are the most commonly used instruments to adjust this market failure. 

However, there are other government interventions with the names of regulation and 

protection; for example, the protection or subsidies granted due to the infant industry 

argument in developing countries (e.g., Krugman and Smith (1994)), or due to the injured 

industry argument in developed countries (e.g., Miyagiwa and Ohno (1995)), and the 

preparation allowance periods before the launch of severe environmental laws. A 

common feature of the various interventions is: protection is granted on the grounds that 

the protected firms can undertake a welfare-improving investment in order to adopt new 

equipment for international competition, to update machinery, to install anti-pollution 

equipment, or to invest in creating a new product or production process. The difference is 

that the preparation allowance period and the infant or injured industry protection put 

emphasis on protection during the investment, but patents are granted after the success of 

the investment. This observation of these two different forms of protection gives the 

motivation for the discussion of optimal protection schemes in Chapter 4.
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We derive the optimal protection scheme through mechanism design. As noted 

earlier, in this chapter, the principal will maximise the social surplus, and the investment 

outcome will also affect the agent’s future profits. Taking into account the agent’s future 

profits makes the discussion more complicated, as different future profits indicate 

different incentive compensations. The main result shows that only a few cases justify 

protection, and the optimal protection form could involve no protection, one-part or two- 

part protection. One-part protection refers to the use of only during- or post- investment 

protection, and two-part protection means using both protection forms. There are many 

empirical studies testing the protection effects, some of which agree with the positive 

effects (e.g., Baldwin and Krugman (1988)) and some disagree (e.g., Krueger and Tuncer 

(1982), Luzio and Greenstein (1995)). Chapter 4 says that not all cases fit into the same 

protection form, and the protection scheme will be in vain if a wrong form has been used. 

The second part of Chapter 4 discuss the setting of protection scheme in the context of 

incomplete information, and we gain some implications regarding the patent policy.

1.2 Outline of the Thesis

Since the existing literature cannot explain small firms’ leadership in adoption. Chapter 2 

builds a two stage, endogenous learning, Stackelberg model in order to explain this 

missing point. After considering each firm’s reaction, it is not easy to discuss the market 

structure effect. Therefore, we follow the reasoning by Varian (1987) and use a 

Stackelberg setting to depict the market structure with different firm sizes. We have 

noted that the leader and follower structure alone cannot solve our problem. Furthermore, 

when raising funds, due to higher profits the dominant firms have relatively more internal

9



funding resources. Even with external funding, the dominant firms are seen as more 

reliable by banks and generally can raise funds at lower interest costs. The positive 

relation between discount rate and interest rate suggests that the dominant firms will put 

higher weights on their future profits than small firms. Considering the two effects from 

internal and external funding, we assume in this two stage game that the follower is more 

myopic than the leader, and to make this extreme, that the follower lives only for one 

stage*. To exclude other heterogeneous factors, we assume that both the leading and 

following firms have identical initial beliefs about the cost uncertainty and the same 

current production cost. This cost uncertainty can be resolved through learning from the 

experience of earlier adoption.

The main issue of this model is: Which firm will adopt first: the LR1" firm or the SR 

firm ? Our result supports two possibilities, that is, the large firm may or may not adopt 

earlier than the small firm, depending on the levels of the prior belief and the current 

production cost (both o f which are common to the two firms). The intuition is as follows: 

with the assumptions o f different life spans and uncertain profitability, the leading firm 

may delay its adoption in order to grasp the information benefit of learning from earlier 

adopters, but the short-lived firm can only react myopically. In making adoption 

decisions, both players will adopt cut-off strategies, and there will be a gap between two 

players’ cut-off points. This gap explains the possibility that the small firm might adopt 

earlier than the large firm. Section 2.2 also provides the comparative statics about the 

equilibrium. Section 2.3 discusses the welfare effect by assuming a benevolent central 

planner. The result justifies the situation when government intervention is needed to

As will be shown later, an asymmetric setting with the same life span will not explain the missing aspect. 
I.R refers to the large firm which lives for two stage; SR refers to the small firm which lives for one

stage. Refer to Chapter 2 for details.
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encourage firms to adopt a new technology. 1'his central planner adopts a cut-off strategy 

similar to those of the firms, and the gap between the leading firm’s critical point and the 

central planner’s cut-off point provides the justification for government intervention.

The second model is motivated by the fact that although more and more resources 

(personnel and money) have been devoted to R&D activities, there is little theoretical 

discussion regarding R&D funding issues. Chapter 3 provides a guideline to a rich class 

of funding contracts, especially for time-consuming projects confronted with moral 

hazard problems. To emphasise the opportunism problem and to set a benchmark of 

efficiency, the basic model in Chapter 3 firstly supposes that the total time needed to 

complete a project is deterministic and known by both the principal and the agent. With a 

further assumption of no initial wealth for the agent (so penalty is impossible and there is 

a moral hazard problem), Section 3.2 derives the optimal contract form from a general 

compensation scheme, which implements the agent’s full effort in the context of 

complete information. The optimal contract describes a funding period and an end-of- 

contract reward, which happens to be a multi-stage version of the “Cost-Plus-Fixed-Fee” 

(CPFF) contract in the literature.

Next, we consider the case where the agent has better information about the time 

needed for completion (due to experience or expertise). Following the literature, we 

denote the value that is better known by the agent as a “type”. Sections 3.3 and 3.4 hence 

determine the optimal contracts with both moral hazard and adverse selection problems 

for cases when the principal thinks the agent’s type is discretely distributed and when it is 

continuously distributed. The discussion of both discrete and continuous settings serves 

two aims: (1) to see if the optimal contract will vary with the setting of type; (2) to 

provide a basic structure for the discussion of optimal auction design. The solution says

II



that when there are only two types (a simplified discrete type setting), the optimal 

contract will not induce efficiency loss to either type, but instead pays an extra 

information rent to the efficient type. The intuition is: any shortage in funding will result 

in the failure of R&D, hence the principal would rather pay more rent than lose the whole 

project value. When the type is continuously distributed, the principal will adopt a cut-off 

strategy in funding, that is, to stop funding for types greater than some critical value. It is 

concluded that the agent's production efficiency remains for efficient types (types smaller 

than the cut-off point), and the principal will take a more conservative attitude in funding, 

since the inefficient types will definitely take the contract and shirk.

Section 3.5 derives the optimal auctioning contract in a discrete type setting, as it 

provides a clearer idea about how an auction works in our model. In the optimal auction, 

both allocation and production efficiency persist, that is, the project will be assigned to 

the bidder with the lowest cost and the winner(s) always finishes the project efficiently. 

The principal can benefit from the agents’ competition in two ways. First, the project is 

more likely to be completed by an efficient type under an auction. Second, competition 

reduces the incentive rent for the efficient type as he is less likely to mimic the inefficient 

type who might have less chance to win. However, this rent reduction varies with the 

difference between the two types, that is, when the inefficient type is not sufficiently 

greater than the efficient type, the former might be better off shirking under the efficient 

type’s contract (which gives him a higher winning probability). Hence, to motivate the 

inefficient type (and therefore the efficient type) to choose his own contract, the principal 

has to reward more than when there is a big difference between the two types.

Finally, we relax the assumption of private information in Section 3.6, and assume 

that both parties have identical beliefs about the time needed for completion. This setting
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corresponds to the stochastic nature in the R&D literature. Section 3.6 firstly discusses 

how opportunism affects the agent’s shirking decisions under symmetric beliefs. The 

optimal contract is derived and we show that the principal’s optimal funding length with 

an opportunism problem is no longer than the contract without an opportunism problem. 

Later, we introduce the possibility of contract renewal and show that under some 

constraints, the lock-in effect persists and the principal will prefer a sequence of short­

term contracts to a long-term contract. The intuition is because the former provides both 

parties opportunities to update their beliefs in this symmetric setting.

The third model is motivated by the observation that various government 

interventions (protection) are still used by many developed and developing countries, but 

the empirical results do not always support the positive effect of protection. The purpose 

of Chapter 4 is to provide a positive guideline to various government interventions, and 

especially to address two important but usually ignored dimensions: the protection form 

and the protection length. The basic model of Chapter 4 firstly analyses the case with 

complete information but confronted with a moral hazard problem. Since the investment 

outcome will also affect the target firm’s future profits, the incentive scheme has to 

consider different cost and revenue environments in order to give the target firm right 

motivation. Various cases are classified according to the target firm’s investment ability 

and investment willingness. The investment ability refers to whether the target firm can 

afford the investment cost under its current profit, and the investment willingness refers 

to the target firm’s future profits after the completion of the investment. Hence depending 

on parameters, the optimal protection could involve no protection, one-part protection or 

two-part protection. One-part protection refers to using only during- or post-investment 

protection, and two-part protection involves both during- and post-investment protection.
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This result gives a significant policy implication, that is, as empirical evidences show 

different conclusions about protection effects: some are positive (e.g., Baldwin and 

Krugman (1988)) and some are negative (e.g.. Krueger and Tuncer (1982), Luzio and 

Greenstein (1995)), our result suggests that using a correct protection form will be critical 

for the success of investment and not all cases fit in the same protection form.

Furthermore, we conclude that whether the during-investment protection rate is 

increasing, decreasing or constant will not affect the investment efficiency, which is in 

contrast to the prevalent argument that decreasing protection rates can mitigate the 

protected firms’ pain when adjusting towards liberalisation. Finally, after considering the 

target firm’s private information about the time needed to complete the investment, our 

results show that: (1) The screening protection scheme could possibly coincide with the 

efficient scheme when only the inefficient type is lacking in investment willingness, or 

when there are only liquidity problems; (2) The screening scheme is strictly better than 

the pooled scheme of the efficient type; however, whether it is better than the pooled 

scheme of the inefficient type is dependent on parameter values; (3) Whenever there is a 

liquidity problem, the efficient type’s post-investment protection will be longer than that 

of the inefficient type; otherwise, the reverse result applies. In terms of patents, this 

means that a more efficient firm does not necessarily need a longer patent life span to 

keep incentive compatibility. The intuition is: when the target firm’s future profits are 

also connected to the success of the investment, the incentive rent (patent life) will vary 

with the cost and revenue environments.
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2.1 Introduction

We all believe that in reality market structure is seldom symmetric. For example, “A 

commonly observed pattern of behaviour is for smaller firms in the computer industry to 

wait for IBM’s announcement of new products, and then adjust their own product 

decisions accordingly” (Varian (1987), p. 458). For this kind o f asymmetric 

circumstance, the literature uses the Stackelberg model to describe industries in which 

there is a dominant firm or a natural leader. Hence, although assuming symmetry among 

firms can provide very useful (sometimes easier to manage) benchmarks for analysis, it 

cannot cover every aspect in reality. We present a “missing aspect” from the existing 

technology adoption models, and propose an asymmetric model in the hope that it can 

provide more comprehensive interpretation for this case.

The “missing aspect” is about the relation between firm size and the timing of 

technology adoption. This issue has been examined by extensive empirical studies, but 

their results do not always support the same answer. That is, large firms may or may not 

adopt earlier than small firms. For example12, Mansfield (1967) examines 14 innovations

12 Examples arc mainly cited from Baldwin and Scott (1987, Ch 4). Also see Reinganum (1989) and 
Stoneman (1995) for further surveys of technology diffusion studies.
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and concludes that larger firms tend to adopt sooner than smaller firms, but the result 

from his logistic model does not entirely support this conclusion. On the contrary, in the 

study of intra-firm diffusion o f diesel locomotive usage, Mansfield shows that smaller 

railroad companies replaced their machine more rapidly than the larger ones. In Nabseth 

(1973)’s study on the adoption of six process innovations in Sweden, only two cases have 

significant size effects. Nabseth and Ray (1974) conclude from a study covering ten 

innovations in six European countries that no evidence supports large firms’ leadership in 

adoption. In the studies of the basic oxygen furnace among steel companies, Adams and 

Dirlam (1966), Oster (1982) and Sumrall (1982) all conclude that large firms tend to 

delay diffusion. More recent work, for example Daugherty, Germain and Dorge (1995), 

show by their logistic regression results that firm size has positive impact on the adoption 

of electronic data interchange (EDI).

Two characteristics are common in the evidence: first, using the term from the 

adoption literature, “diffusion” occurs, meaning that firms adopt a certain technology at 

different times. Second, it is ambiguous whether firm size has a positive or negative 

effect on the timing of adoption. There have been substantial theoretical models13 

examining this evidence. The pioneering work is David (1969, 1975), who uses a “probit 

approach”14 where each firm with a size bigger than the critical firm size will adopt the 

innovation, and this critical value is determined by the equality of adoption benefit from 

labour saving and adoption cost. However, as noted by Davies (1979), this critical firm 

size will disappear if both return and cost functions are proportional to firm size. Davies 

proposes a model where both the expected and critical payoff periods are functions of 

firm size, and he concludes that a firm will adopt a new technology if its expected payoff

13 Refer to Nooteboom (1993) for early adoption theories.
14 Stoncman (1983) refers the "critical firm size” models as probit approach.
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period is less than the critical one. Nooteboom (1993) assumes the expected return to be 

proportional to firm size and the risk of failed implantation to be independent of firm 

size. He concludes that large firms adopt earlier than small firms. Although this “critical 

firm size approach” supports large firms’ leadership in adoption, it fails to explain the 

other possibility, that is, small firms may adopt earlier as well. Moreover, the interaction 

among firms has not been considered in the above literature.

Another strand of diffusion models assumes imperfect information about the new 

technology. The intuition is to assume that there is uncertainty regarding the profitability 

(revenue or cost) of an innovation. We can further distinguish the literature according to 

whether the uncertainty is to be resolved through time (e.g., Reinganum (1981,1989), 

Fudenberg and Tirole (1985), Hendricks (1992), Sadanand (1989)), or to be gained by 

external searching (e.g., Jesen (1982, 1988), McCardle (1985), Toivanen et al. (1995)), or 

by learning from experience (e.g., Kapur (1992)). Except for Jesen and McCardle, all the 

other examples fit into another classification: the game-theoretic approach, in which the 

interaction among firms has been considered.

In Jensen’s (1982) model, the uncertainty decreases as the external information 

about profitability accumulates. Each firm’s adoption decision is therefore characterised 

by an optimal stopping rule. By assuming heterogeneous prior beliefs across firms, his 

model depicts the traditional S-shaped diffusion curve. Jesen (1988) extends this model 

by considering firms’ information capacity and shows an ambiguous result, that is, 

greater information capacity will increase learning and hence shorten the expected delay 

before adoption, but on the other hand, it will also induce a more stringent adoption 

criterion and thus lengthen the expected delay. McCardle (1985) presents a more general 

case by considering the information cost. All these models assume the information to be
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external, for example front “industry trade journals" (Jesen (1982)). Following the same 

line and adding the interaction among firms, Toivanen et al. (1995) examine firms’ 

adoption decisions when they can defer adoption and invest in a search for external 

information. They first derive the conditions for which a monopolist will adopt 

immediately, search or not adopt at all. Then, in a two-stage symmetric duopoly, they 

derive the conditions for a diffusion equilibrium where one firm adopts the innovation 

and the other searches for external information. This kind of diffusion equilibrium is 

firstly shown by Reinganum (1981 ) by using what is called the game-theoretic approach.

Assuming the adoption cost to be decreasing through time, Reinganum (1981) 

shows that neither imperfect information about profitability nor heterogeneity across 

firms is necessary for the diffusion outcome. By letting firms commit to their adoption 

dates, Reinganum shows that the interaction between firms alone can cause them to adopt 

at different times. However, as pointed out by Fudenberg and Tirole (1985), 

’’precommitment strategies are equivalent to infinite information lags”, that is, these 

strategies ignore any subsequent information regarding the rival’s decision. Alternatively, 

they assume that firms can respond immediately and show in a duopoly case that the 

threat of pre-emption makes equalised the rents from adoption, but if the pre-emption 

gain is sufficiently small, both firms delay and simultaneously adopt the innovation. 

Hendricks (1992) cites this model and further assumes that there is private information 

about the rival firm’s innovation capacity. He shows that the reputation effect will delay 

the early adoption and hence rent dissipation will not occur. In another paper, Reinganum 

(1983) uses a static model incorporating both imperfect profitability and the rival’s 

reaction, and shows that “if initial costs are sufficiently dissimilar, then it is the high cost 

firm which adopts the new technology, while the low cost firm eschews the adoption”.
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Sadanand (1989) also derives the conditions for diffusion to occur, by using a two-stage 

symmetric duopoly model and assuming the uncertainty to be resolved at the end of the 

first stage. More relevant to the present model, he also analyses the firm size effect by 

assuming one large firm facing a nonatomic continuum of small firms. He concludes that 

the large firm will adopt first as a Stackelberg leader and all the small firms adopt in the 

second stage as followers. As mentioned earlier, these results support only one of the 

observed outcomes.

Finally, Kapur (1992) models an endogenous learning process in which firms can 

only learn from the experience of other adopting firms. Learning is through observing the 

signals sent by previous adopters. Those non-adopting firms can observe these signals 

and update their priors according to some subjective beliefs on these signals. He 

concludes that diffusion is the result of a sequential waiting game and the path of a mixed 

strategy equilibrium depicts the S-shaped diffusion curve.

The present model characterises the asymmetry among firms by assuming an ex- 

ante15 Stackelberg framework. To cope with the firm size issue, we adopt the reasoning 

mentioned by Varian, that is, the Stackelberg model is often used to describe industries in 

which there is a dominant firm or a natural leader, and further assume that the large firm 

is the leading firm and the small firm is the following firm. An interesting question to ask 

is whether this leader-follower setting alone can explain the missing aspect of the 

adoption literature. To check, for example, in Reinganum, Fudenberg and Tirole type 

models where both firms have infinite life spans, if we replace the symmetric assumption 

by a Stackelberg setting, it can be seen that since the leader has the priority in decision 

making, there will be a pure strategy equilibrium where the leader pre-empts the

15 That is, before the adoption of the new technology.
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adoption. Likewise, in Kapur's model, there will be no pure strategy equilibrium that 

supports diffusion. In other words, the leader-follower structure or endogenous learning 

alone can not explain the puzzle mentioned earlier.

The present paper proposes a two-stage, endogenous learning, Stackelberg model to 

analyse firms’ adoption decisions for an uncertain profitability innovation. We have 

noted that the leader and follower structure alone cannot solve our problem. Furthermore, 

when raising funds, due to higher profits the dominant firms have relatively more internal 

funding resources. Even with external funding, the dominant firms are seen as more 

reliable by banks and generally can raise funds at lower interest costs. The positive 

relation between discount rate and interest rate suggests that the dominant firms will put 

higher weights on their future profits than small firms. Considering the two effects from 

internal and external funding, we assume in this two stage game that the follower is more 

myopic than the leader, and to make this extreme, that the follower lives only for one 

stage. To exclude other heterogeneous factors, we assume that both the leading and 

following firms have an identical initial belief about the cost uncertainty and the same 

current production cost. This cost uncertainty can be resolved through learning from the 

experience of earlier adoption. The main issue of this model is: Which firm will adopt 

first: the LR firm or the SR firm '6? Our result supports two possible outcomes, that is, the 

large firm may or may not adopt earlier than the small firm, depending on the levels of 

the prior belief and the current production cost (both of which are common to the two 

firms). The intuition is as follows: with the assumptions of different life spans and 

uncertain profitability, the leading firm may delay its adoption in order to grasp the 

intertemporal benefit of learning from earlier adopters, but the short-lived firm can only

16 In the following, LR denotes the large firm who lives for two stages and SR denotes the small firm who 
lives for only one stage.
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react myopically. In making adoption decisions, both players will adopt cut-off strategies, 

and there will be a gap between the two players’ cut-off points. This gap explains the 

possibility that small firm might adopt earlier than large firm.

In the comparative statics of the equilibrium, we show that the realised market 

concentration for LR adopting earlier is very likely to fall below the pre-adoption level. 

This is in contrast to some other studies, for example Hannan and McDowell (1990). One 

reason for the disadvantage from early adoption is because of the perfect learning 

assumption, which indicates the high spillover or imitation effect. Later in the welfare 

analysis, a central planner is assumed to decide which firm should adopt earlier from the 

welfare point of view. Similar to firms’ decisions, this central planner also adopts a cut­

off strategy, and the gap between the leading firm’s critical point and the central 

planner’s cut-off point provides the justification for government intervention (e.g., Green 

et al. (1996)).

In the rest of this chapter, section 2.2 presents the model, the main result and the 

comparative statics. Section 2.3 is the welfare analysis. Section 2.4 concludes this model 

and discusses further research. All proofs are put in Appendices 2.1 and 2.2.

2.2 The Model17

Consider an industry where both the leader and follower are producing a homogeneous 

good. The production lasts for two stages. Due to the effects from internal and external 

funding, it is assumed that the leader has a discount rate of 1 and the follower’s discount 

rate is 0. That is, the leader (denoted by LR) lives for two stages, and shares the market

17 We consider “inter-firm” rather than "intra-firm” adoption.
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with different short run followers (denoted by SR) in each stage. The market demand is 

described by a linear inverse demand function with a constant term A and slope 1. 

Linearity is assumed to get unambiguous implications and more general demand 

functions would not change the nature of the analysis. Furthermore, it is assumed that 

both LR and SR are using the same production technology before adopting the 

innovation and have the same current production cost c , where A > c .

Suppose that both firms simultaneously confront a non-drastic process18 innovation. 

It is assumed that there is no adoption cost and the adoption decision is irreversibleIM, 

however, the adoption effect is uncertain: it is publicly known211 that both LR and SR 

have the initial assessment /?e[0,l] that this innovation will decrease the production 

cost to c, and (1 -  p) that the production cost will increase to c2, where c,<c<c2 and 

A > c2. If any firm adopts earlier, the rival firm can observe the performance21 of the 

adopting firm and update its prior. To avoid complication, perfect learning is assumed, 

that is, when each firm observes a successful adoption from the other firm, it will update 

its prior to p = 1; similarly, if failure is observed, the prior will be adjusted to 0. An

There is usually a classification between product and process innovations. The former refers to new 
goods or new services, and the latter means better ways of producing the existing products. However, the 
line between these two types is vague in reality, as a product innovation might become the input for 
another product. Following most of the adoption literature, we discusses firms’ decisions towards a process 
innovation.

The alternative assumption of irreversibility is to assume an adoption cost.
20 We did not assume common knowledge in belief in order to allow the central planner having an variant 
belief in the analysis of welfare effect.
21 The term ’performance' refers to the realised cost change from the adoption. It is assumed that the 
observation of the performance is through an informal information approach, for example, word of mouth 
from the manager or labours of the adopting firm, rather than from observing output or price. This reason 
is because the output of an early adopter is actually set ex-ante before the realisation of market price (see 
the output decisions below), and hence reveals no information about the uncertainty. However, during the 
production process, the involved individuals can somehow tell whether the innovation is really saving cost. 
Lquivalently, it is assumed that separating equilibrium of the signalling game exists, and there is no 
concealing. Hence, before the realisation of the market price, the rival firm can obtain information about 
the adoption.
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interpretation for this perfect learning setting is the presence of a highly spillover or 

imitation effect.

Since the leader-follower setting is basically a sequential game, the whole model 

consists of four stages. The timing of the firms’ adoption and production decisions is 

described as follows.

l = 1 t = 2
---------- 1---------- ------------ 1

4 4 4 4
(A) (B) (C) (D)

(A) At I = 1, LR makes the decision whether to adopt now or to wait for SR to adopt 

first, and then sets its optimal output according to its adoption decision. (B) Two cases 

are considered according to LR’s adoption decision at t = 1: (i) if LR has decided to 

adopt first, SR can observe the performance from LR's adoption, update its belief (to 1 if 

the adoption is successful and to 0 otherwise), and make its adoption decision 

accordingly; (ii) if LR has decided to wait at t = 1, SR now has to decide whether to 

adopt under uncertainty and sets its optimal output accordingly. (C) At t = 2 , there are 

three cases: (i) if LR has decided to adopt at / = 1, it now has to set the optimal output 

according to the result from its own adoption at t = 1, since the adoption is irreversible; 

(ii) if LR has decided to wait for SR and SR actually adopts at I = 1, it now has to 

observe the performance from SR's adoption, update its belief and set the optimal output 

accordingly; (iii) if LR has decided to wait for SR but SR does not adopt at / = 1, then 

again it has to decide whether to adopt the innovation and sets its output accordingly. (D) 

The decision for SR at t = 2 is the same as SR at t = 1.
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The whole process is solved backwards through time. We firstly describe SR’s

output and adoption decisions, then LR’s decisions.

2.2.1 S R ’s decision

Since both SR firms at t = I and t = 2 react static optimally to LR’s action, the following 

decision rule will apply to both SR firms. Denote qSR and q IJt as SR and LR’s outputs. 

Each SR makes its output decision by taking LR’s output as given. For a given belief p 

(could be prior or posterior), SR’s expected profit for deciding to adopt the technology is:

Jt“„ = max{/>(( A -  qIJt -  qSR )qSR ~ c,qSR) + (l -  />)(( A -  qIJt -  qSR )qSR -  c2qSR)}. (2.1)
</.v*r

The superscript “a” denotes “adopting”. To generalise SRs’ decisions in both stages, we 

keep the notation of the prior p22, and note that SRs’ expected profit is the maximisation 

over the weighted values, instead of a weighted sum of maximised values. The reason is: 

since SR’s output decision is made given the prior belief” , SR needs to set an optimal 

output to minimise the possible loss from this uncertainty. The same situation will apply 

to LR’s adoption if it decides to adopt the innovation under uncertainty. Denote SR’s 

optimal output and profit by q“SR(q tJ<, p) and Tt,’RR(q IM, p ) , where denotes the optimal 

value.

<tsKUl,j"P) = ! ( *  “  <lu, ~ (P<-\ + (' -  />>c2»

and

22 If LR adopts curlier, p could be I or 0 depending on the observation.
21 Note that the innovation is a process innovation. Before it is actually put into the production process, the 
adopting firm has to invest in other production capacity or order components, etc. Hence the output 
decision has to he made before the adopting firm knows whether the adoption is successful.
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The superscript “/in” means “not adopting”, in which case, its production cost remains 

the current production cost c. Denote the optimal output and profit as: q™R{qlJt) and

rc™ (</«). wherc

llsR ̂  « ) —A ~ Vui ~ C

and

« * ( « « )  =
' ‘I  I K ~  C

Notice that SRs’ optimal variables are functions of LR’s output. To see SRs’

adoption rules, we need to compare the expected utility from adopting with not adopting.

That is, SR will adopt the technology if n j*(<?,*,£) Srcj* (</,;,) • In other words, SR will

_ __ £ —  ^
adopt if p> p](c ,,c ,c2) , and not adopt if p< p 2 (c/,c ,c2), where p ‘2(c, ,c,c2) = —̂2——

C2 Cl

is the critical belief that the SR firm is indifferent between adopting and not adopting.

Two points are worth noticing: firstly, SR’s belief will affect both its adoption and 

production decisions. The intuition is: since we assume a process innovation, if SR 

decides to adopt the innovation, the output decision has to be made before knowing the 

true state of the innovation and hence the belief will affect the output. Secondly, SR’s
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adoption decision is irrelevant to LR’s output. Its decision follows a rule of thumb: if the 

proportion of the possible cost increase over the dispersion of total cost change is higher, 

SR will be more cautious towards adoption. An explanation of the irrelevance comes 

from the assumption of linear demand: SR's profits are negatively related to LR’s output 

with or without adoption. Since the extent that LR’s output affects SR’s profits is 

dependent on SR's adoption decision, SR needs only takes into account the cost effect 

from adoption. Although a non-linear demand function will cause the profits comparison 

to depend on LR’s output, it is suspected that in equilibrium we can have more useful 

insights24.

For further use, we summarise SR’s adoption and output decisions as follows:

For pe (0,1), SR will adopt if p > p'2; otherwise it will not adopt.

The optimal respective outputs for adopting and not adopting are: 

fsMu<d>)=\(A-<lu' - ( /« ’, + ( l-p )c 2)) if p > p 2(c„ c ,c2),

<?sk(<7/.#) = ~ ‘Ilk ~ c) if  P < P\ (f, ,c ,c2). (2.2)

2.2.2 LR’s decision

LR’s adoption decision occurs in three cases: (i) at t = 1, it has to decide either to lead the 

adoption or to wait; (ii) if it decides to wait and SR decides to adopt at t = 1, then at 

t = 2 LR has to make its adoption decision according to its posterior belief; (iii) if it 

decides to wait but SR does not adopt at t = I , LR faces a static adoption decision with 

its belief remaining the prior. As noted earlier, SR’s decisions are affected by the cost

2,1 For example, we might need more assumptions to present the difference of LR and SR firms’ adoption 
decisions in this paper.
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uncertainly, and hence in LR’s expected profit functions, both the anticipated cost and 

demand are related to this uncertainty.

At / = I if LR decides to adopt, its intertemporal expected profit is :

71 ;j? = niax{/J(( A — q u, — qSK(q iJt ,1))<7 ¡jt ~ t'iq ijt) + (I — p)((A — if,K — qSR (c] IJt ))cf IJt —•a*
+ p max {(A — (¡¡A — ■I))'/;.* — L\q  ut }

<Ilk

+ (1 ~ p) max{( A —tfu f— i j j  (<1 ijt ))q ijt ~ c2ci ijt} • (2.3)

Again, the superscript “a” denotes “adopting”. The first maximising term is LR’s 

expected profit for the first stage and the second and third terms denote its second stage 

expected profits for possible adoption success ( c ,) or failure (c2) with probability p and 

(l -  p) respectively. Note that LR’s optimal outputs in these terms are different. The first 

term is the maximisation over the weighted profits, instead of a weighted sum of 

maximised profits. The argument is similar to SR’s decision: since the output is set 

before it knows the true state of the innovation, LR needs to set an output to minimise the 

possible loss from this uncertainty. The difference now is: LR has to take into account 

SR’s reaction function in the anticipated demand. Recall the definitions of q“SK(q u f 1) anc* 

q Z (qLR) from equation (2.2). (A -q ,j ,  - q '^iq ,j,, 1)) means that if LR’s adoption is 

successful (cost decreases to c, ), SR will observe the success and update its belief to 

p = 1. From SR’s adoption decision rule, we know that SR will adopt and set an optimal 

output q‘iK(q,.„,!). Similarly, ( A - q - q ' ^ q „ ) )  means that if LR’s adoption is 

unsuccessful (cost increases to c2), SR will update its belief to p = 0 and set an optimal 

output q?„(q,j,).
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The meaning of the second and third terms are similar. If LR's adoption at / = 1 is 

successful, it’s production cost decreases to c , . The SR firm at 1 = 2 also observes LR’s 

success and hence updates its belief to p = 1, adopts the innovation and produces 

,1). Therefore, LR’s anticipated demand for a successful adoption is 

( A —q IJt -q ^ iq ,*  ,1)) ■ Likewise with probability (1 — p ) , LR’s adoption is expected to 

be unsuccessful, and its cost and anticipated demand will be c, and ( A - q ,R -q™R(qtR)) 

respectively. LR’s expected profit in the second stage is the weighted sum of two 

maximising terms, because the uncertainty has been resolved through its own adoption at 

/ = I , and hence LR knows its product cost for sure and sets its output optimally.

If the LR firm decides to wait, its expected profit function will depend on whether 

SR adopts at r = l .  Therefore, two cases will be discussed : p< p2(cn c,c2) and 

p> p 2(c ,,c ,c2).

I. p< p'2(c ,,c ,c2)

LR’s intertemporal expected profit from waiting will be:

The superscript “w” in jt^„(l) denotes “waiting” and “ 1" in the argument denotes the 

first case: p < p 2(c ,,c ,c2) . In this case, SR will not adopt and hence LR’s expected 

profits will be the same for both stages. To sec this, since in the first stage LR decides to 

wait, its production cost will be c and the anticipated demand will be 

(/f - q IR -q™ (q ,R)) . In the second stage, as learning is endogenous and neither SR nor

(2.4)
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LR adopts in the lirst stage, the belief remains the prior as in the first stage. Again, LR 

faces the choice between adopting and not adopting, but now the decision is static. We 

need to compare LR’s single stage expected profits from both of its choices. If LR adopts 

now, its anticipated demand will be p(A — q,K — q'Z(qut^))

+ (1 -  p ) ( A - q IJ( -</."«(</,.*)). or in short, + (PC i + 0  -  P)c)) ■ This value is

less than the anticipated demand for not adopting which is ( A - q IJt — <7 (<?«)) > or 'n 

short, y( A — q ,H +c) (since pc, + (1 — p)c < c). Moreover, LR’s expected cost from 

adopting is pc, + ( 1 - / j)c2, which is higher than the expected cost for not adopting c

(since p < p\ = C2 ~ C ). Further, for a given q,k , the marginal profit for not adopting is
C 2 i-1

higher than from adopting, indicating that LR’s optimal output for adopting will be less 

than not adopting as well. Therefore, we can conclude that LR will have a higher 

expected profit from not adopting the innovation in this case. The intuition for the 

disadvantage from adoption is: since LR’s intertemporal benefit from successful adoption 

disappears in the static decision, if it is not worthwhile for LR to adopt the innovation in 

the first stage, it is not worthwhile to adopt in the second stage either. Hence its expected 

profit for the two stages are the same.

II. />> p \(c ,,c ,c2)

LR’s intertemporal expected profit from waiting for this case is:

7t* (2) = max{(A — q tA - q as„(.Qu,^P))^ui - ° ? m }‘//A 1 3
+ />max{(<4 -q,j, - q“SK(Qu,.0)9ut ~c\<?,*}‘//A 1
+(l —/*) roaxf(A — qijf — lr (2*5)

a. u *■
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The superscript in 7t “K (2) denotes “waiting” and "2” in the argument denotes the 

second case: p > ). In this case, the SR firm will adopt. The first term denotes

the expected profit from waiting for SR to take the risk from early adoption. Anticipating 

that SR will produce an optimal output q ^ lq ^ .p )  • LR has an anticipated demand

(A — q IJt — <i“sR(<iut<p)) and the current cost c. This is different from equation (2.3), 

where LR instead of SR bears the risk of early adoption. The second and third 

maximising terms have similar meanings to those in equation (2.3). The difference is: in 

this case, the information comes from SR instead of LR, hence in the third term LR is 

able to avoid the cost increase by observing SR’s performance and not adopting the 

technology. In our notation, rather than producing with cost c2 in k “k , LR will produce 

with cost c .

LR’s decision rule is to lead the adoption in the first stage if 7t’,^ > 7t ’,^( 1)

( k '¡‘j, > K (2)) in the case of /> < p j ( p > p \ ), and to wait in the first stage otherwise. 

Lemma 2.1 firstly shows the existence of a unique critical belief p*ly(ct,c ,c2, A) e [0,1]25 

such that Jt (/) = 7t '/j,, i = l ,  2, and some properties of p*n(c,,c,c2. A) when 

characterised in (p,c) space.

Lemma 2.1

(1) Define d, = 71^(1)-n " j, and d2 = 7 t^ (2 )-7 t“s to be the differences of LR’s 
expected profits from wait inf; and adopting in the cases of p < p'2(c ,,c ,c 2) and 
p> p \(c /,c ,c 2) respectively. There exists a unique p\{' \ c x,c,c2. A) e  [0,1] such that 
i/, =0. Similarly, there exists a unique pi'2\ c t,c,c2,A ) e  [0,1] such that d2 =0.

25 Since cli and d> (defined in Lemma 2.1) are polynomials of more than one degree, it is necessary to know 
whether there are solutions lying in the interval of [0,11.



(2) When presented in (p,c) space with c e [ c ; ,c2], i f  market demand is sufficiently high
2c2 . -  , -

(i.e., A > —— ----t- c, ), p , ’(c,,c,c2,A) > p2(c ,,c ,c2) for all c e (c , ,c 2] and with
3t-2 -c ,

equality at c = c ,.

The proof is in Appendix 2.1. This lemma says that LR adopts a cut-off strategy in 

its adoption decision, and the cut-off value is proved to be higher than SR’s cut-off point 

except when c = c , . Notice that /ji‘" i(c, ,c,c2,A) > p 2(c,,c,c2) actually means that when 

SR does not want to adopt, it is also optimal for LR not to adopt. The more interesting 

case is when p ‘l(2\ c l,c,c2,A )2f' also lies to the right of p'2(c,,c ,c2) . Hence in the 

following, we concentrate on this case. To illustrate this theoretical result, a numerical 

case (c,,c2,A) = (1,10,50) is presented as Fig. 1.

As shown in Lemma 2.1 that except for c = c , , p\{2) > p\ for every c , we can 

divide the rectangle [0 J]x [c ,,c2] into three areas: A, B and C. The main result of this 

model is summarised as Proposition 2.1.

Proposition 2.1

A pure strategy equilibrium says that when the prior and current production cost pair 
(p,c) is located in area A, LR will adopt first; when it is in B, SR will adopt first; and 
when it is in C, no adoption will happen. In other words, depending on parameters, the 
LR firm may or may not adopt earlier than the SR firm, or both firms will not adopt at 
all. 26

26 The explicit function form of p[ is,
p\ = {-2c, A + 5Ac 2 +c ,C j  + c ,c  + 4 r2c -  iAc -  5cj -  c 1 - | 4 c J  -  20Ac] + 9 A 2c 3 - 4 / 4 ? ’  + c f c 2

44c,c, 4- c 2c, + 4 ? ’ c, 4-I2c ,3? ! -  !6c,c ’ - 2 ( M ! c ,c ,  + { 2 A 2c , c  -  A A c f i ,  -  44c,2? 4-1 (Me, c , - 2 2 4 c , ? 2

- 3 0 4 2c , ?  4- 16/4c,?2 4- 2c , c 2?  -  24c,c ,?  4 Kc,c ,?2 4 2K 4c,c ,?  4  4/42c 2 4 25/42cf 4 4 c 411/2}

/(c, - ? ) ( 2 c ,  4 ? -  3 c , ).
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The existence of area B is the most interesting result of this model. The possibility of 

waiting gives LR an information advantage from delaying adoption, meaning that if SR 

ever adopts at t= l, LR can benefit by making production decisions under certainty. 

Hence compared to SR, the LR firm tends to be more conservative towards adoption, 

which can be seen from p ‘<2) > p \ . Areas A and C coincide with Rcinganum (1983) in 

the sense that if the current costs are sufficiently high (low), both (neither) of the firms 

will adopt. Moreover, we know from Lemma 2.1 that when both firms adopt in the first 

stage, LR will adopt first. Area B indicates the case when current cost is at an 

intermediate level. As LR’s cost benefit form early adoption is less that the information 

advantage, so LR forgoes its priority in adoption.

The comparative statics about the equilibrium is presented in Proposition 2.2.

Proposition 2.2

(!) />,*<2) (t'| ,c,c2, A) is increasing with c ,,c 2.and A, hut decreasing with c.
(2) p ‘2{c ¡,c,c2) is increasing with ct ,c2, hut decreasing with c.

32



The proof is in Appendix 2.1. Moreover, we can derive some implications regarding the 

possibility of each result in Corollaries 1-3.

Corollary 1. The possibility that LR adopts earlier increases with the current cost.

The possibility that LR will adopt earlier is described by 1 - p\i7) (cx,c,c2,A ) , which 

is area A in Fig 1. Combining the fact that p\ is decreasing with c , we know that this 

possibility is increasing with the current cost. A higher current cost means that LR has 

higher cost benefit from adoption than in a lower cost case.

Corollary 2. The possibility that neither firm adopts decreases with the current cost.

The possibility that neither firm will adopt is described by />j(c,,c,c2) , which is 

area C. Again this is simply shown by the effect that p ’2 is decreasing in c. A further 

implication is about the market concentration after adoption:

Corollary 3 For a given current production cost and prior, if  LR adopts a successful 
innovation earlier, the second stage market concentration21 will remain at the pre­
adoption level and the first stage market concentration will decrease.

The second stage’s market concentration following LR’s successful adoption will 

remain at the pre-adoption level28: ^ . The intuition is because: if the cost decreases after 

adoption, the SR firms will follow suit immediately. As both LR and SR will produce

27 Market concentration is defined as the ratio of LR’s realised profit to SR’s profit. Since the assumption of 
oligopoly, the alternative definition in terms of firm number does not suit our model.

1 LR's second stage profit for successful adoption is:
. (A-c, )2------------; SR s profit is: -------------16 . Hence the

concentration rate is 2

3 '
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with a lower cost, the market concentration will remain the same. However, for the first 

stage, since LR’s ex-ante output'* will be lower than the optimal output for c, , together 

with the fact that SR will produce the optimal output with cost c, (hence having a higher 

profit), we know that the concentration ratio will be lower than the current level. An 

interpretation for this disadvantage from adoption is the existence of high spillover effect 

(perfect learning). Hence, despite some empirical studies concluding that large firms 

adopting earlier will increase the market concentration (e.g., Hannan and McDowell 

(1990)'°), our result says that the reverse will happen if the spillover or imitation effect is 

very strong.

The impact of increasing c, and c2 is equivalent to decreasing the proportion of the 

cost reduction from a successful adoption over the cost increase from a unsuccessful

adoption (i.e., -— ^4). Hence, the impact from increasing c, and c2 is the opposite of
c2 — c

the effect of increasing c . Finally, increasing the market demand raises the cut-off value 

p i(c ,,c ,c ,,A ), and hence also decreases the possibility that LR adopts earlier. We can 

see the intuition for LR’s conservative attitude from its expected profit functions: 

comparing n “IR and 7t (2) shows that the comparative advantage from adopting rather 

than waiting mainly comes front the cost benefit in the first stage. When market demand 

increases, the relative importance of the cost benefit decreases and hence LR is more 

likely to wait. * 111

29 LR’s exuntc output for adopting in the first stage is: — pc{ -2(1 -  />)c2 +(l -  p)c) ; LR’s

optimal output for cost C, is r/,^  = \ ( A  — c*,).
111 Hannan and McDowell (1990) give this conclusion from investigating bank adoptions of automated teller 
machines.
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2.3 Welfare Analysis

In this section, the welfare effect is analysed by supposing a central planner, who wishes

This planner is also uncertain about the profitability of the innovation. To avoid 

confusion, let p t be the planner’s belief that the innovation will decrease the production

cost to c, . Each firm’s belief and cost parameters are known by the planner. To see 

which firm should adopt first from the welfare point of view, we need to calculate the 

welfare effect for each decision. Let W/’k denote the realised welfare for each stage 

i = 1,2, each of LR’s decision j= a, w (a for adopting and w for waiting), and each 

possible result of the adoption k= g, b (g for success and b for failure). Define 

W{J t =CSl' t + , which is the sum of consumer surplus CSf k and the firms’

realised profits With linear demand, we can easily calculate consumer’s surplus

(= |(fo /« / output)1), and LR and SR’s realised profits can be derived similarly to the 

analysis of each firm’s adoption decision. The definition of W," * is explained in detail 

here and we leave the others for Appendix 2.2. W,“'* is stage l ’s welfare level when LR 

decides to adopt first («) and the planner thinks the adoption is going to be successful (g), 

which is:

11 The welfare effect is restricted to a single industry and the assumption that the income effect is zero, that 
is, we are not using a general equilibrium approach.

to decide which firm should adopt first if it is to be better for the whole economy ' 1.

>1 = Ut.SR

W’“" —"2 [</”.*+<7.v#(i/jt>1)] + {(^ <//j( ciQut}

(2.6)
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(/‘¡jt is LR's first stage optimal output if it decides to adopt first (see footnote 26 for the 

explicit form of ), and <7s»(9«,l) is SR’s reaction function for p = 1. Remember that 

in this case, the central planner thinks the adoption will be successful, so after LR’s 

adoption the planner will expect SR to update its prior to p = 1, adopt the technology and

set its output as qaSR(qaLK, 1). Hence the consumer surplus will be j[ q a,j, + <7™ (<7^,1)] , 

which is half of the squared total output in the industry. The second term 

{( A -  q“iJt -  qsK(q1J,A))q‘!j, -  } is LR’s realised profit for this case, where the central

planner anticipates LR’s production cost to be c,q“,j , . The definition for SR’s realised 

profit { ( A - q ^ - q l R(qlKA))qsR(qautA ) - c xqaSK(q“lJ,A )\ can be explained in the same way. 

For this central planner, LR adopting earlier will be better for the whole economy if:

P„(w r  + W"*) + (1 -  p , )(w ;h + W2“h)> P '(W f*  + ) + (1 - P ')(Wf* + W2wh) (2.7)

By setting pK = p , we can calculate the planner’s cut-off belief p*, when there is no

welfare difference for LR to adopt or to wait in the first stage. Unfortunately, due to the 

complication of function form52, it is not easy to derive any general implication from this 

cut-off belief. However, with the same numerical example (c,,c2, A) =(1,10,50) as Fig 1, 

we have Fig 2.

12 The explicit form of /<’ is:
/>,* = (- lO c./t + ISAcj -  5Ac -  I3c,c2 + I Icjc + 3(ic2c + 6 c2 -  I9c| - 2 1 c 2 - | I 9 6 cJ - 4 2 (M c J  

+25/tJc 4 -  12()4c ' + GOIc'jC2 -  156c2c? -  364cjc, - 7 1 c Jc 2 +I32cc,5 -  504c5c, + 4 2 0 c jc 2 -  l(X)8c3r 5 

-3(KI/t!< l C; + l(X)/t2c ,c  -  l60/tc?c2 +320A c ,2c  + 7704c ,c | -  1 10 4 c ,c2 -  I5 0 4 2c ,c  + 404C jC  

4420/tCjC2 -  574« ¡t f c  -8K O cj2c ,c + I764c2c , c ! -  6 20 4 c ,c2c + l(X )42cp -  I204cj’  + 22542c|

+36c,4 + 4 ( is r111' 21 / |-26<, c2 -  14c, c + 36c2c + 20c,2 -  5c22 -  1 I c 2).
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W''4 p

(jv lit3̂  CO
When a (p,c) pair is located above p*, the central planner will think it optimal for 

LR to adopt first, and for SR to react to LR’s adoption result afterwards; when a (p,c) 

pair is below p* , the central planner will think it optimal for LR to wait, and respond 

optimally after observing SR’s adoption at stage one. Notice that in Fig 2, p’g lies

between p ’ and p ’ , indicating a gap between the planner’s desired equilibrium and the 

actual equilibrium. When (p,c) is in area A or C, the actual equilibrium coincides with 

the planner’s desired equilibrium.

Interesting implications come from areas B, and B2. Area B2 is the case when both 

the actual and desired equilibria are characterised by LR waiting and SR adopting in the 

first stage. In other words, there is no conflict between LR’s decision and welfare. Area 

B, is the situation when the actual equilibrium describes LR to wait and SR to adopt in 

the first stage, but the desired equilibrium says LR should adopt earlier. In other words, 

area B, denotes a situation when LR’s optimal decision will cause welfare inefficiency. 

The intuition for the relatively optimistic attitude of the central planner is because the



expected cost increase from an unsuccessful adoption for the whole society is less than 

that for the LR firm alone. Hence, the area /¿, illustrates a need for policy intervention in 

firms’ adoption decisions about this cost uncertain innovation. An example of 

government interventions in technology adoption is in the water industry, where water 

price reforms are increasingly used to encourage improvements in irrigation efficiency 

(Green et al. (1996)).

2.4. Conclusion and Further Research

Although most of the evidence shows large firms’ leadership in adopting new 

technologies, there are some cases when small firms do adopt earlier. The existing 

literature can only explain one possible outcome which asserts that large firms always 

adopt earlier. To interpret the missing aspect, the present paper proposes a two-stage, 

endogenous learning, Stackelberg model to analyse firms’ adoption decisions towards an 

innovation with uncertain profitability. By assuming identical prior and cost for each 

firm, our model derives a pure strategy equilibrium in which the LR firm may adopt first, 

the SR firm may adopt first, or neither of them may adopt. More specifically, it is 

concluded that when current cost or the belief is sufficiently high, the LR firm is more 

likely to adopt first. The SR firm will adopt first for intermediate levels of initial cost and 

belief, and no adoption will happen if initial cost or belief is sufficiently low. This result 

explains the missing aspect in the adoption literature. The comparative statics shows that 

the possibility of LR adopting earlier is negatively related to market demand and 

positively related to the ratio of possible cost reduction over possible cost increase. It also 

says that the realised market concentration for LR adopting early is very likely to fall

38

\



below the pre-adoption level. The welfare analysis provides a justification for policy

intervention with firms' adoption decisions. An interesting extension of the model is to 

assume that there are more than one following firms. By forming an adoption coalition, 

there could he an equilibrium where one small firm takes the lead in adoption under co­

ordination. Moreover, since adoption is basically an irreversible investment, the model 

can be applied to various investment cases, such as the launch of McDonald into the 

Chinese market. The uncertainly associated with the investment may come from 

consumers' preferences, and natural or bureaucratic environments. We leave the detail 

for future discussion.

Appendix 2.1

Proof fo r  Lemma 2.1: (1) Recall the definitions of , 71^(1) and n wIJt(2) from 

equation (2.3), (2.4) and (2.5). Calculate the optimal outputs and substitute into the 

respective profit functions. In order to tell the sign of the derivative, the envelope 

theorem is applied to the first term of equations (2.3) and (2.5):

- c . - c )  + {(2c2 — c —c,)(2a -2 c , - c  + 2c2)]< 0 .

= (A — Cj)(Cj - c )  > 0 , 

d \p =i = i (<•' -  t'i)(c2 -  2A + c) < 0.
and

- i ^ - i ( A - c - 2 c 2)2] < 0 ,

i/2|/Cn = j ( t 2 -  c)( 10A -  7c2 -  3c) > 0 , 

d 21P-1 = -j U'i -c )(A  - c )  < 0 .
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= 4(/4 -p c ,  -2(1 -  p)c2 + (I -  />)c) is the optimal output for the first maximising 

term of 7t'„,, and </J“ (2) = + pc, + (1 -  p)c2 -  2c) is the optimal output for the first

maximising term of it',v„(2). Since both functions are negatively related to p and the 

function values at p = 0 and p = 1 have different signs, we can conclude that there exists 

a unique p ‘,0)(c,,c,c2, A) e  [0,1] such that c/ l=0 and a unique p ’li2\ c l,c ,c2. A) e [0,1] 

such that </2 = 0 .

(2) The proof of the second part of the proposition is less intuitive, because the explicit 

forms of />,'•" and p ‘,2) are complicated. However, several properties can be examined to 

obtain general implications regarding p '° ’ and p2 in (p,c) space. Firstly, when c = c, , 

both p f ’and ¡>\a) will be one. When c = c2, these values are not defined, because the 

denominators of p[u) are 0. However, by applying L’Hospital’s rule, it can still be 

checked that both p^ 'an d  p\a) approach 0 when c approaches c2. Secondly, it can be 

calculated that both p,"*and p*<2) intersect with p2 only once at the corner

d //121and * < 0 , where
dc

dpi0’ _ r)</, / dc U - j d  + i c ) - i ( i - p ) q j JI+ i O - p ) ( i A  + j c - c 2)} 
dc/, / dp

< 0 ,
dc dc/, / dp 

and
dp',t2) _ del, / dc 

dc dcl2 / dp
U - q Z - H l -  P M A - t c ) ) - W ~  PXW u, + A + c - 2 c2))

dcl2 / dp

Moreover at the point (p.c) = (l.c ,) , the slopes of p',°' and p,'<2) are bigger than p\ for

sufficiently high market demand, i.e.,
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and

Hence, we can conclude that if market demand is sufficiently high, then

Proof for Proposition 2.2: (1) Lemma 2.1 shows that p\a) decreases with respect to c . 

The rest is proved by applying the implicit function theorem and the envelope theorem:

q J" (2) and q)aM are defined in the proof of Lemma 2.1.

Appendix 2.2

The following optimal outputs are from LR and SR’s maximisation problems, and will be 

applied to the calculation of W/'k = CS/’k + y.7t /.'* .

qa,j, = 9 «  = \ ( A - p c ,  -  2(1 — p)c2 +(1 - p ) c ) ,  
</,*(2) = </,* (2) = *(A + pc, +(1 - p ) c 2 - 2 c ) .  
</u,( l) = 4(A-c,),
9ut(0) = i ( A - c 2),
q“s»(.<iij<<p) = H A - ‘ii* -(P ci +( \ - p ) c2)), 
<7.w(9/.*) = 4 (A -  q, R -  c ) .

p* '\c ,,c ,c2,A) > p2(c,,c,c2) for all ce ( c , , c 2] and with equality at c = c , . Q.E.D.

dp',k2) dd2 / dc,
dc, dd2 / dp

9/?*<2> _ del2 / dc2 
dc2 dil 2 I dp

and

dd2 I dp
It (1 -P )< ? ;I (2 ) - [ (P -1 )9 ^ + 1 (P -1 )(A  + c - 2 c2)]1 

dd2 / dp
> 0 ,

dp',{2) dd2 / dA
d A dd 2 / dp

(2) It can be checked from the definition. Q.E.D.
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( 2.6)

^ 1  —  2 [*/ IR  9.V* ( 9  IJt • O  ]  +  { (  ^  ll l R  *i Sr Í Q  IR  «O )* /  (J? C i * h j t }

■*■{( ^  — y  IR ~  (I.SR (ll IR <l))(lsR (y IR *1) ~ C\ y  SR (y IR >1)}

=  ^  [v /jt "*■ is« (^ /J»  )] ■*■ { ( ^  — Q u t  ~  Q s r Î Q i r  LR ~  C l <! u t  }

+ {( ''l — <llR ~  UsR ( y  IR ( y  IR ) -  °?»  ( y  IR )} (2.6-1)

^ 1  * =  2" \{ l  IR  *  Q  SR ( y  IR  '  p ) \  +  { (  ^  ~  y  IR  ~  t / s R ^ I R  ’ IR  ~  C(i  IR  }

+{M -</,"* -  ‘ísrÍVÍr , p W sr((/7r . P) -  c,(isRUhR. P)} (2.6-2)

W, = 'i \‘l ir Qsr (<//.«> /O] {(A — q ir — qSR(q ,r , p))q ir — t(j ¡r ^

■*"{( 4 — y ir  ~ 9 » (9  ut * P))9»(9 u» » P) — Cjt/sR^ lr > P)} (2.6-3)

w2“-x = wç •« =i[<//J,(D + ^ (< ? iJ,0 ).i)]2 + { (A -9iJ,(i)-<5rS,(<?ü,( i ) . i ) ) 9 „ 0 ) - c l9iJ,(i)}

+{( ^  -  <ÎLR ( ■) -  9.W (</,* ( D .D )í¿ (<7;jî (0.1) -  (<7¿j, (0.1)} (2.6-4)

W2U* = 4[</(J((0) + 9™(^uî(0))]2 + {(¿ -  </,*(0) -  < i ? R ( c j i R m ) < i , R ( 0 )  - < ^ „ ( 0 ) }

+{( A ~ V , r (O) -« 5 (< /«  (0)))</£ (9« (0 )) -  ce ,- (qu , (0))} (2.6-5)

K *  = *[</£ + 9 2 (9 5 )]*  + {m - î ï  - « S t o Z ï t o Z

+ { M " 9 S  - 9 Ï ( 9 S ) ) 9 5 ( « S ) - ^ S ( 9 S ) }  (2.6-6)
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3. Optimal Contract Design for Long-term Projects 
With Moral Hazard and Adverse Selection

3.1 Introduction
3.2 The Model
3.3 A Uncertain to the Principal (Discrete Type)
3.4 A Uncertain to the Principal (Continuous Type)
3.5 Auction
3.6 Symmetric Beliefs
3.7 Conclusion and Further Research

3.1 Introduction

Most R&D funding contracts take the form of “long-term contracts”. The reason is not 

only because a long-term contract is an optimal way to implement efficient investments 

(if possible), but also, most importantly, because R&D activities are actually time 

consuming and the results of R&D are either successful or not (binary). One can think of 

the research for AIDS medicine for example: although AIDS was first identified in 1981, 

there is still no effective remedy today. Due to the fact that researchers usually possess 

better knowledge about the research object and their effort is not easy to verify, the 

monitoring or progress-checking devices that we usually find in, say, construction 

contracts are not really applicable to R&D projects. The purpose of this paper is therefore 

to design an optimal funding contract for activities that are time consuming and 

confronted with opportunism’1 problems.

Despite the fact that R&D expenditures have been increasing year by year, for 

example, “Japanese government spending on science and technology has increased about 

5% annually over the last decade”* 14, there is little theoretical literature specifically

"  Throughout this chapter, the terms “opportunism” and “moral hazard" will be interchangeably used.
14 From Hast Asian Executive Reports (1996).
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addressing die issues of R&D funding'*’. One exception is Aghion and Tiróle ( 1994), who 

mention the funding issue in their discussion of property right allocation and innovation 

efficiency. Funding is interpreted as a specific investment from the financier. Their basic 

argument is similar to Grossman and Hart (1986), that is, the choice of property right 

should best protect two parties’ (the research unit and the financier) specific investments 

in the relationship. Since the agent’s effort and the financier’s investment are 

substitutable for the success of the innovation, it is possible that the financier alone can 

undertake R&D if she owns the right for the innovation. In the present model, we 

suppose that both the agent’s effort and principal’s financing are indispensable in the 

relationship. More specifically, we assume that the completion of R&D depends only on 

the agent’s effort, but the agent has no initial wealth and hence is unable to put in effort 

without the principal’s funding. Our setting is closer to reality for both the employee- 

inventors and independent research units cases. In addition, our discussion of the long­

term compensation scheme, the adverse selection problem, auctions, and the choice of 

long-term and short-term contracts is not addressed in their paper.

There has been an extensive literature on optimal contract design with moral hazard 

and adverse selection problems. Hart and Holmstrom (1987) provide a comprehensive 

review of contract theory. Most of the literature addresses implications on financial36, 

labour37 and procurement™ issues, but the topic of funding a long-term activity is seldom 

mentioned. Hence, the present model can provide a guideline to a broad context of 

funding contracts, especially for time consuming projects. Moreover, the present model

”  There arc several discussions on agents' pre-auclion R&IJ investments, for example, Piccione and Tan 
(1996). However, this is not the issue addressed in tile present paper.

For example, Chemmanur and John (1996), and Singh (1997).
"  For example, Baily (1974), Gorden (1974), Addison and Chilton (1997).
’* For example. Cox el al. (1996), Piccione and Tan (1996).
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contributes to the determination of contract length (duration), optimal auctioning 

contract, and the choice between long-term and short-term contracts.

Firstly, there is only a small literature examining the determination of contract 

length. Under the assumption that new information is resolved over time. Dye (1985) 

emphasises the incompleteness of contracting under uncertainty and shows that it is 

efficient to recontract in response to the arrival of new information. In a labour market 

model, Cantor (1987) also argues that a contract needs to be expired to revise wages to 

adjust to the new information. Cantor stresses the deterministic rather than the stochastic 

(Dye) property of the expiry date. By assuming costly observation of the information, 

Harris and Holmstrom (1987) determine the contract length as the period between costly 

observations. Bodman and Devereux (1993) argue that the optimal contract duration 

depends on a trade-off between the benefit of wage rigidity and the cost of lacking 

flexibility. In the present model, the optimal contract length stands for the funding 

periods during which the agent puts in full effort in a time consuming project.

Secondly, when there is more than one candidate for a project, an auction is usually 

held to select the agent to undertake the project. Section 3.5 derives the optimal auction 

form via mechanism design. This approach is pioneered by the work of Harris and Raviv 

(1982), Myerson (1981), Riley and Samuelson (1981), Milgrom and Weber (1982), 

Matthews (1983), and Maskin and Riley (1984). Moreover, Milgrom (1987) and McAfee 

and McMillan (1987) provide excellent reviews of early auction literature. Laffont and 

Tirole (1987) bridge the connection between auctions and incentive contracts. In the first 

part of this section, we follow Laffont and Tirole’s approach and solve the optimal 

auctioning contract. Later, the result from the optimal auction is compared to another 

auction form: the second-price auction (SPA). An interesting result arises from the 

comparison: when agents are bidding for the project’s total expenditure, neither the
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revenue equivalence theorem nor the separation property will hold when there is a moral 

hazard problem in the long term contract. We also derive some notes on “built-in cost- 

overruns”, mentioned by Scherer (1964) in research on US weapon procurements. The 

connection between selection bias and cost overrun has been mentioned by Quirk and 

Terasawa (1984), and Gaspar and Leite (1989/1990) in common value and single stage 

models. Since their selection rule is to assign the project to the lowest cost bidder, neither 

an actual auction form nor the opportunism problem is discussed in their papers.

Finally, in the context of symmetric beliefs19 where both parties have identical 

beliefs about the time needed for completion, our model draws implications on the choice 

of long-term and short-term contracts. There have been many debates on this topic, for 

example, Barcena-Ruiz and Espinosa (1996) stress the strategic role of the intertemporal 

dimension of contracts in a duopoly market, and since in the linear case there is strategic 

substitution in the product market, the incentive variables (contract lengths) are also 

strategic substitutes. Hence a long-term contract makes a firm a leader in incentive, while 

a short-term contract makes it a follower. Under Bertrand competition, the equilibrium 

has one firm sign a long-term contract and the other firm sign a short-term incentive 

contract; however, under Cournot competition, both firms’ dominant strategies are to sign 

a long-term incentive contract. Another important issue in the literature is whether long­

term efficiency can be implemented by a series of short-term contracts. For instance, 

Chiappori et al. (1994) show that two conditions are necessary for the optimal long-term 

contract to be implemented by spot contracts: (1) the long-term optimum should be 

renegotiation-proof; (2) spot contracts should provide efficient consumption smoothing. 

As pointed out by Rey and Salanie (1996), this approach ignores the discussion about

w This is corresponding to (lie stochastic setting in the RAI) literature (e.g., Lee and Wilde (19X0), 
keinganum (1982), Harris and Vickers (1987)).
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both moral hazard and adverse selection problems at the contracting date. They instead 

analyse a multi-period agency model with adverse selection, and conclude that 

renegotiable short-term contracts can be as efficient as long-term renegotiation-proof 

contracts. However, some limited commitments are both necessary and sufficient to 

achieve the long-term efficiency. The present model shows that when contract renewal is 

not anticipated by the involved parties, a sequence of short-term contracts is better than 

one single long-term contract from the principal’s point of view. Intuitively, since short­

term contracts provide the involved parties opportunities to update their beliefs, the 

principal can pay less incentive rent to induce the same amount of effort in the presence 

of a moral hazard problem.

To emphasise the opportunism problem and to set a benchmark of efficiency, the 

basic model in Chapter 3 first supposes that the total time (expense) needed to complete 

the project is deterministic and known by both the principal and the agent. With a further 

assumption of no initial wealth for the agent (so a penalty is impossible and there is a 

moral hazard problem), Section 3.2 derives the optimal contract form from a general 

compensation scheme, which implements the agent’s full effort in the context of 

complete information. The optimal contract describes a funding period and an end-of- 

contract reward, which happens to be a multi-stage version of the “Cost-Plus-Fixed-Fee” 

(CPFF) contract in the literature.

Next, we consider the case where the agent has better information about the time 

needed for completion (due to experience or expertise). Following the literature, we 

denote the value that is better known by the agent as a “type40”. Sections 3.3 and 3.4 

hence determine the optimal contracts with both moral hazard and adverse selection 

problems for cases when the principal thinks the agent’s type is discretely distributed and

40
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when it is continuously distributed. The discussion of both discrete and continuous 

settings serves two aims: (1) to see if the optimal contract will vary with the setting of 

type; (2) to provide a basic structure for the discussion of optimal auction design. The 

solution says that when there are only two types (a simplified discrete type setting), the 

optimal contract will not induce efficiency loss to either type, but instead pays an extra 

information rent to the efficient type'11. The intuition is: any shortage in funding will 

result in the failure of R&D, hence the principal would rather pay more rent than lose the 

whole project value. When the type is continuously distributed, the principal will adopt a 

cut-off strategy in funding, that is, to stop funding for types greater than some critical 

value. It is concluded that the agent’s production efficiency remains for efficient types 

(types smaller than the cut-off point), and the principal will take a more conservative 

attitude in funding, since the inefficient types will definitely take the contract and shirk.

Section 3.5 derives the optimal auctioning41 42 contract in a discrete type setting, as it 

provides a clearer idea about how an auction works in our model. In the optimal auction, 

both allocation and production efficiency persist, that is, the project will be assigned to 

the bidder with the lowest cost and the winner(s) always finishes the project. The 

principal can benefit from the agents’ competition in two ways. First, the project is more 

likely to be completed by an efficient type under an auction. Second, competition reduces 

the incentive rent for the efficient type as he is less likely to mimic the inefficient type 

who might have less chance to win. However, this rent reduction varies with the 

difference between the two types, that is, when the inefficient type is not sufficiently 

greater than the efficient type, the former might be better off shirking under the efficient 

type’s contract (which gives him a higher winning probability). Hence, to motivate the

41 The observation of types comes from the direct mechanism (to be discussed later).
42 The agents’ beliefs are assumed independent to avoid the complication from correlated beliefs.
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inefficient type (and the efficient type) to choose his own contract, the principal has to 

reward more than when there is a big difference between the two types.

Finally, we relax the assumption of private information in Section 3.6, and assume 

that both parties have identical beliefs about the time needed for completion. This setting 

corresponds to the stochastic4’ nature in the R&D literature. Section 3.6 firstly discusses 

how opportunism affects the agent’s shirking decisions under symmetric beliefs. The 

optimal contract is derived and we show that the principal’s optimal funding length with 

an opportunism problem is no longer than the contract without an opportunism problem. 

Later, we introduce the possibility of contract renewal and show that under some 

constraints, the lock-in effect persists and the principal will prefer a sequence of short­

term contracts to a long-term contract. The intuition is because the former provides both 

parties opportunities to update their beliefs in this symmetric setting.

The rest of the chapter is organised as follows. With unverifiable effort, Section 3.2 

derives the optimal contract form from a general compensation scheme, which consists of 

a funding deadline and an end-of-contract reward. Sections 3.3 and 3.4 discuss both 

moral hazard and adverse selection problems in discrete and continuous type settings. 

Section 3.5 derives the optimal auctioning contract, the result of which is later compared 

to another auction form: SPA. Section 3.6 relaxes the assumption of private information 

and considers the case with symmetric beliefs about the time needed for completion. 

Section 3.7 contains conclusions and suggestions for further research.

3.2 The Model 41

41 Most R&D models adopt the exponential distribution function (e.g. Lee and Wilde (1980)),which will be
imposed in the following sections.
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This section describes the basic structure of our model, including the involved parties, 

information structure, actions, payoff functions and the equilibrium. Our purpose is to 

find the optimal contract for a self-interested principal to assign an agent to undertake a 

time-consuming project. As we can see, most R&D projects are time-consuming, for 

example, the research for AIDS medicine. Although AIDS was first identified in 1981, 

there is still no effective remedy today. The assumption of a “self-interested” principal is 

in contrast to the assumption of a “benevolent” principal, which could be a government 

agency who wishes to find a regulation scheme for the benefit of the whole society. The 

case of multiple principals is not considered in this model; but the case where the 

principal selects among several candidates will be discussed in Section 3.5. It is assumed 

that the agent has limited liability and no initial wealth, and moreover he cannot maintain 

the residual profit, which implies that self-funding and financial penalty are impossible. It 

is further assumed that no non-pecuniary penalty is feasible. As this assumption could be 

too restrictive for most construction contracts, we probably need to concentrate on R&D 

contracts, where the “no penalty” assumption applies to most cases.

To emphasise the opportunism problem and to set a benchmark of efficiency, we 

first assume the innovation to be deterministic. More specifically, it is assumed that the 

project takes the agent A periods of effort under full capacity (i.e., no shirking). In each 

period, £1 will be needed to cover the agent’s effort and rental costs, such as the labour 

wage, the rental cost for machine or lab equipment and the cost of inputs. A could be 

associated with the agent’s cost structure or production technology. In this section, A is 

assumed to be known by the principal so that wc can concentrate on the effect of
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opportunism problem. The cases with incomplete information will be discussed in the 

following sections. Finally, it is assumed that there is no discounting across time* 44.

The design starts with the principal offering the agent a contract, including the 

funding of £1 each period till the deadline and a reward scheme. The agent responds by 

taking the offer or rejecting it45. If the agent rejects the offer, the project will not be 

undertaken and both parties have the reservation profits (normalised to zero); if the agent 

accepts the offer, he needs to make a sequence of working and shirking decisions which 

are unobservable or too expensive for the principal to observe or monitor. In other words, 

there is a moral hazard problem in the design of the optimal contract. This is again a fair 

assumption for R&D projects. However, whether there is ultimately an innovation or not 

will be publicly known. Concealing the innovation is excluded in our model. As this 

game features a leader (principal) and follower (agent) structure, we need to know the 

follower’s best response to derive the optimal contract. The following first discusses the 

agent’s response to an arbitrary contract and then derives the optimal contract form.

Consider an arbitrary contract which specifies a funding length of T periods, and a 

contingent reward scheme for the agent’s effort. The funding is to give the agent £1 at the 

beginning of each period so that the agent is able to put in effort. Since the principal does 

not observe the agent’s effort, the reward scheme can only depend on the observable 

variable; the completion date. For a committed completion date x , denote r,(x) as the 

reward paid at the end of each period i from the moment that the contract is accepted. The 

whole reward scheme hence has the form /?(x):= {r,(x),r2 (x),...rt (x), rt<.,(x),...}. A

44 The no discounting assumption is to simplify the analysis, as the profit value is irrelevant to the agent. In 
Chapter 4. the discount factor is introduced to discuss the protection scheme when the success of 
investment will affect the agent's future profits.
44 This excludes the possibility that the final contract is settled by a sequence of bargains.
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contract c  is defined as c {r,{W(T)) | J<’. This general contract form considers

the reward scheme for every possible finishing date t e  .

Given a contract c, the agent has to make a sequence of effort decisions at each time 

I. Since the funding stops after the deadline, an index /, is introduced to distinguish 

funding periods from non-funding periods, i.e..

With funding, if the agent puts in effort, £1 will be used up as effort and rental costs; if 

the agent decides to shirk, he can only divert an exogenous fraction a  , 0 < a  < I , of £1 

into his pocket. The sunk cost (1 -  a ) comes from the rental or input cost which can not 

be avoided even if the agent shirks. Without funding (for t > T ), the agent still spends 

£147 if he puts in effort, and since no funding is available, there will be no shirking 

benefit. Let e, =1 if the agent’s choice at time t is to put in effort, and e, =0 if the agent 

chooses to shirk. Define n, as the accumulated effort level up to time / - l ,  i.e.

n,: = y  e, . We can write the agent’s value function at time I as W,‘ (n, ) , where the
i=i

superscript denotes the contract c and the subscript is the time index starting from the 

moment that the offer is accepted by the agent.

J" The renegotiation of the contract is excluded for the moment to simplify the discussion. However, later in 
Section 3.3, there will be some implications about the renegotiation issue.
41 Since the agent can not fund himself, his choice must be shirking. However, we need to take into account 
this case to describe the decision function.

/, =£1 for t< T

= 0 for t > T .

(3.1)
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it is clear that uj] > f t — 1 . The terms in the brackets denote the values from shirking and

putting in effort respectively. Equation (3.1) says that shirking gives the agent a higher 

current profit q/ ,,  a reward r,(x) and a next period value with accumulated effort level 

n, ; however, putting in effort gives him a lower current profit /, — 1, the same reward 

rt (x) but higher accumulated effort n, + 1 next period.

Given the agent’s decision in equation (3.1), we next show that a single end-of- 

contract reward can implement the same effort vector as the reward scheme R(x ). The 

argument proceeds in several steps. Firstly, since no effort will be needed after the 

completion of the project, there is no loss to squeeze the compensations after time t  to a 

sum of rewards which is paid at the end of period x, that is, the compensation scheme 

becomes:

Secondly, the optimal rewards for time before the completion of the project should 

be independent of the completion date, that is, for x * x ' , r,(x) = ri(x') for 

i < min{x,x'}. To see the reason, suppose r, (x) < r{(x') for an arbitrary i < min{x,x'} 

and the others remain unchanged. We know from equation (3.1) that the agent’s effort 

decisions with both rf(X) and r,(x') are the same. That is, if

a/, + r , ( x ) + > / , - l  + r,(x)+W,‘tl(«, +1), then we still have 

of] + r,(x ')+  W;+l(/i,) > f, -  1 + r,(x')+ VV,'+I(«, +1), where by supposition r,(x) < r,(x ') .



However, by replacing r (t ') with r ( x ), the principal will be better off as the reward is 

costly to the principal. Therefore, we can rewrite the compensation scheme as:

(3.2)

where rT(x) := ^  t;(x) from the general form. The intuition is: the principal will not

compensate the agent in such a way that the agent would rather choose the contract with 

x' (instead of x) for higher pre-completion rewards.

Finally, the following lemma shows that any effort vector implemented by the 

reward scheme in equation (3.2) can also be implemented by a single end-of-contract 

reward. An effort vector e describes the agent’s decision at each time t, i.e. 

e = (e, ,e1...e, ...) ,e e. E , where £  is a set of infinite binary sequences.

Lemma 3.1

Any effort vector e which is implemented by the compensation scheme 
/?(x) = {rl ,r2,...rt (x),0,0,...} can be implemented by a single end-of-contract reward

scheme, i.e., R \x )  = {0,0,...rt (x),0,0....}.

Proof: Firstly, suppose /?(x) = {rl,r2,...rt (x),0,0,...} implements a given effort vector e . 

At any time t, since r: is given whenever the agent shirks or works, we know that if

> f, -  \ + W'fx(n, + \ ) , where we replace R(t ) with £'(x). Similarly, if e, =1, i.e.,

£ /, -  1 + W,'t\ (;t, + 1), if we replace R(X) with R'(x) ■ Q.E.D.
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Thus, abusing the notation to some extent, 1 denote K (t )  as a single end-of-contract

reward for the finishing date t .

Up to now, the finishing date T has not been defined properly as a function of the 

agent’s effort. The following will define this function and discuss a standard issue in 

moral hazard problems, that is, to look for the cheapest way to motivate the agent to 

complete the project at an arbitrary date. Firstly, the finishing date is defined as the 

earliest date that the accumulated effort level exceeds A , i.e..

X(e) is a function of effort and it is possible that two different effort vectors e'and e" 

( e ' * e " )  finish the project at the same date, i.e., T(e') = T(e"). The multiplicity is 

because, under the assumption of no discounting, the agent has no preference over the 

order of efforts. For distinction, I denote the cases where e' and e" induce different 

finishing dates as x'(e') and i" (e"). Fortunately, the project value (to be defined later) 

will be realised as long as the project is completed, so we can concentrate on the set of 

the effort vectors that finish the project at an arbitrary date s. Define E ‘ as this set:

E ' : = {«? e £|x(ii) = s and e{ - 0V< > ,vj.

Since funding is indispensable for the innovation, unlike the standard moral hazard 

problem, the setting of the cheapest rent will also be related to the contract length, 

beyond which there will be no funding to the agent. Considering this limitation, for a 

given T, we can separate the discussion about the cheapest reward into two cases:

where x(e) could be °°.
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T(t') > T and He) < T . Recall that the “cheapest” way means the smallest end-of-projeet 

reward, as the whole compensation scheme can be replaced by an end-of-project reward.

Firstly, for any committed finishing date T(e) > T (or any effort vector e e  Es for 

S > T ), the cheapest compensation is to pay nothing, i.e.,

R(l(e)) = 0,  for x(e)>T.  (3.3)

Given /?(T(t')) = () for X(e )>T , we have the following lemma regarding the agent’s 

effort decisions:

Lemma 3.2

For either A > T  or A < T  hut with a committed completion date x(e) > T , shirking 
right through the funding period is the dominant strategy.

We can see the reason from the agent’s decision (3.1) and equation (3.3). Since for both 

A > T or A < T but with a committed completion date x(e) > T , the project will not be 

finished on T. Equation (3.3) implies that the agent would be better off shirking 

throughout the funding period in his effort decisions (3.1).

Secondly, to derive the cheapest reward for x(e)<T,  we need to have more 

information about the agent’s choice over different contracts. For this end, we firstly 

describe the involved parties’ utility functions. For a given contract c, the agent’s utility 

for completing the project414 is

a(x(e)-A)+R(x(e))4v. * 41

4K The principal prefers the agent finishing the project to shirking all throughout, for which case the agent 
will have the shirking benefit (to he discussed later).
41 The principal and agent's intertemporal commitments do not have the “false dynamics" problem 
mentioned by Laffont and Tirolc (1993, p. 103). As the innovation process is time consuming and the
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The meaning of this function is: as the outcome is ex-post observable, there is no need to 

provide funding after 1(c)- Hence for x (e )< T , the agent can get £1 funding for Tfe) 

periods. Since he only needs A to finish the project, he will shirk for (x(e) —A) periods 

and divert shirking benefit a(x(e) — A) from the funding. Once the project is finished, the 

principal will give him an end-of-contract reward: R(x(e)).

The principal’s utility is:

V(T(c)) -  «(Tie)) - T  + ( T -  x(e)).

V is a constant project value, implying that any delay in the completion date does not 

directly affect the project value, provided there is no discounting. However, the agent’s 

effort does matter with the value in the sense that it will never be realised if the project is 

not completed. Therefore, in this basic model with only the moral hazard problem, we 

can rewrite the value as V(T(e))50, where

V(x(e)) = V if T(<?)<7\

= 0 if x(e) > T .

In order to get the project value, the principal has to spend £1 funding for at least x(e) 

periods, plus an end-of-contract reward R(x(e)). As the contract assigns a funding for T 

periods, if the agent finishes the project earlier, the principal can save funding for 

(T-X{e))  periods.

agent's effort is unobservable, the principal can not actually learn from the performance of the agent's 
efforts in previous perirxls.
,n X(e) will be omitted in later sections after we solve this basic opportunism model.
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Now, we are back to the search for the cheapest compensation to implement a 

completion date x(i') < T . For a given funding period T, the reward must be designed in 

such a way that, firstly the agent has at least the reservation utility as from not taking the 

contract (Individual Rationality constraint, 1R). Secondly, finishing the project at x(e) 

will give the agent at least the same utility as finishing at some other time x'(e’) 

(Incentive Compatibility constraint, IC), or shirking right through the funding periods 

(Moral Hazard constraint, MH). In notation, IR is:

a(T(e) -  A) + /f(T(e)) > 0 . (IR)

Since the agent has no initial wealth and hence self-funding is impossible, the agent will 

have the reservation of zero if he does not participate. Note that the assumption of weak 

inequality is “to assume that ties are broken in a fashion that favours the first mover” in 

order to ensure the existence of an equilibrium (Kreps (1990), p. 604). IC requires that for 

X(e), x'(e') < T and x(e) * x ' (e') ,

a(x(e) -  A) + R(x(e)) > a(x V )  -  A) + R(x \e ’)) , e’ e Es and S < T . (IC)

IC constraints say that if X(e) < x'(e’), R(X(e)) > R{x\e’) ) . In other words, the end-of- 

contract reward must be decreasing in the finishing date to satisfy the IC constraint. 

Finally, due to the unobservable effort assumption, the agent is able to shirk all 

throughout T (as penalty is infeasible) and has the shirking benefit: a T . The reward must 

ensure that finishing the project at time x(e) will bring him at least the same benefit, i.e.,

a(x(e) -  A) + R(x(e)) > a T . (MH)
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Since Mil implies IK, the 1R constraint can he ignored in what follows.

Put in terms of equilibrium, we are looking for an equilibrium where the agent 

completes the project in an efficient way and the principal maximises her utility. To solve 

the optimal contract, we need to maximise the principal’s utility subject to capacity, IC 

and MH constraints (denoted as P). The capacity constraint is because: if T<  A, the 

project will never be finished before or at the deadline. As the principal would prefer the 

agent finishing the project, the funding period has to be at least A . In the following, we 

first solve the cheapest reward for implementing an arbitrary finishing date x(e) and later 

show that it is optimal to implement X(e) = T .

To determine the cheapest reward, firstly, since the reward is costly to the principal 

and 1C says that the end-of-contract reward has to be decreasing in the completion date, 

let us firstly guess that only MH is binding, i.e.,

R(x(e)) ~ cl(T + A) — otx(if). (3.4)

This setting says that the reward is decreasing in x(e) and hence IC is binding. 

Substituting R(x(e)) by the definition in equation (3.4), we can rewrite the principal’s 

problem51 (P) as:

max{V(T(e)) - a(T  + A) + ax(e) -  T  + (T -Tic))},
r.t(c-)

St. T — A > 0.

Since T has a negative coefficient, meaning funding is costly to the principal, the 

deadline should be set as short as possible. However, the capacity constraint says that any 

shortage in funding will fail to complete the project, therefore we set the deadline at its

' 1 The solution proceeds without setting up multipliers, because the utility is linear in each variable.
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lowest possible value: 7' = A. Finally from the objective function we know that except 

for V(T(i')), 1(e) also has a negative coefficient, implying that although finishing the 

project earlier or later does not affect the project value, longer funding periods will cost 

the principal more. There is no explicit restriction to x(c) as the capacity constraint to T, 

but we know that the project value will become zero at time T if 1 (e) > T . The smallest 

possible value that satisfies all these requirements is hence 1 (e) = T -  A . By equation 

(3.4), the agent has the optimal reward R(T) = clA . The principal’s optimal utility is 

therefore V —(l + oc)A.

The derivation of 1 (e) indicates that when there is only a moral hazard problem, the 

principal can concentrate on a contract which induces a completion date exactly on the 

funding deadline T  and rewards the agent for R(T). In other words, the optimal contract 

form is a multi-stage version of Cost-Plus-Fixed-Fee (CPFF) contracts in the literature. 

The following proposition summarises the optimal contract for implementing a 

successful project.

Proposition 3.1

Consider a time-consuming investment that lasts for  A periods under the agent's full 
capacity. The optimal contract for complete information with an opportunism problem is 
to assign a funding period A and an end-of-contract reward proportional to the contract 
length.

Finally, it is interesting to compare the optimal contract with the one without a moral 

hazard problem. In the latter, the principal solves the following problem:

max{V(T(e)) — T}

St. T - A > 0 .
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Since the ellort is observable and hence contractible, there is no need to pay an extra 

reward. The agent will have the reservation utility (0), and the optimal contract

implements an effort vector e e  E& (i.e., the full capacity effort vector )

with funding periods T = A. The presence of the moral hazard problem costs the 

principal an extra incentive rent ctA to extract the same effort vector r e  £ 4.

This section is closed by the comparative analysis of the equilibrium. Firstly, since 

the project will only be undertaken if V > ( l+ a )A , a higher project value will increase 

the possibility that the project is taken. V may represent the profitability of a R&D 

project, or the return for a long-term loan for developing countries. Since the principal in 

this model is assumed to be self-interested, V is very likely to be under-evaluated by 

private investors. Policies such as patents are often used by the welfare-maximising 

government to improve this kind of under-evaluation. The bias could be worse if there is 

a serious moral hazard problem, measured by the size of a  . A bigger a  means that the 

agent has to give up more in order to put in full effort, and hence as a  increases, the 

principal needs to give a higher incentive rent to keep incentive compatibility. Moreover, 

a  may vary across industries. In industries where the force of work morale prevails, the 

compensation can be lower. But as pointed out by Frey (1993) who summarises the 

literature about the impact the other way around, “regulations may crowd out the agents’ 

work morale, and negatively affect their behaviour”. This effect will be ignored in the 

present model. Finally the longer the project actually takes (bigger A ), the more 

compensation the principal has to pay to implement the efficient effort.



3.3. A Uncertain to the Principal (Discrete Type)

This section extends the basic model by considering the case when the agent has private 

information about the lime for completion: A . The superiority of information comes 

from the agent’s expertise or past experience. Following the literature, we denote the 

value that is better known by the agent as a “type52”. In this section, we discuss the case 

when the principal thinks that the agent’s type is discretely distributed. The purpose for 

discussing this case is: from the last section we know that even when A is known by the 

principal, there is a moral hazard problem in the contract design. By assuming incomplete 

information about A , there will be both moral hazard and adverse selection problems. 

This is of course a standard discussion in mechanism design, and it helps us to 

understand the way that asymmetric information together with the agent’s opportunism 

affect the design of long-term contracts. By assuming that there are only two types, we 

can gain some interesting implications for production efficiency, which will be shown to 

sustain for continuous types. The derivation of the optimal contract relies on applying the 

revelation principle, proposed by Gibbard (1973), Green and Laffont (1977), Dasgupta et 

al. (1979) and Myerson (1979), which says that any efficient outcome of any Bayesian 

game can be represented by a truth-telling incentive compatible direct mechanism. In this 

incomplete information setting, it is even difficult to characterise the set of feasible 

contracts, which may involve very complicated forms. The significance of the revelation 

principle is that we can restrict our attention to a direct mechanism which requests the 

privately informed agent to report its type to the uninformed principal. The allocation of 

resources then depends on what is reported. Of course, the agent could mis-report in its

The underlying assumption is consistent beliefs, in the sense that they can be regarded as conditional 
probability distributions derived from a certain “basic probability distribution" over the parameters 
unknown to the various players (Harsanyi (1967)).
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own interest. An inecntive compatible direct mechanism requires that the allocation 

among resources is designed in such a way that the informed agent’s best response will 

be to report truthfully. Denote the optimal screening" contract as the “incentive 

contract”. We then compare this incentive contract to the pooled contract of the efficient 

type and the pooled contract of the inefficient type to find out a better contract from the 

principal’s point of view. A remark regarding efficiency and renegotiation concludes this 

section.

Keeping the assumption of a single self-interested principal and a single agent, we 

now assume that the agent has better information about the time for completion. 

Specifically, it is assumed that the agent knows A for sure, but the principal thinks that 

A could take two possible values: A, with probability t> and A2 with ( 1 - u ) ,  where 

A, <A2. Refer to A, as the efficient type and A2 as the inefficient type. Given that the 

agent accepts the offer of contract, he has to decide on a sequence of effort level, which 

are not observable by the principal. As shown in the basic model, the principal can use an 

end-of-contract reward to provide enough incentive for the agent to finish the project. 

With asymmetric information, the revelation principle says that the principal can provide 

a menu of contracts (including the funding length and rewards), and let the agent self- 

identify (i.e., to report his type A>). The menu of contracts needs to be designed in such a 

way that in equilibrium A, = A, and the project will be completed. Let 

C2:=  {{7j, R(7j)},{T2,R(T2)}} denote the menu of contracts offered to the agent54. Since 

we arc looking for a truth-telling equilibrium, by taking the contract that is meant for him

"  The optimal screening (separating) contract assigns different contracts to different types in equilibrium. 
"  The following is meant to find out the screening contract, however, it is not excluded that 
(7], K( 1])} could be the same as [T2, N(T, )} .



(i.e., {7j, R(T,)}), type A: will have utility a(7j -  A ,) + R(Tt ) for completing the project. 

The principal’s expected utility is then:

u{V -  R(Tt) -  Tx}+ (1 -  u){V -  R(T2) -  7, }.

For the following discussion to make sense, we restrict to the case where the 

principal will find it worthwhile to finance the project for both types, i.e..

Assumption 3.1: V > max{(l + a )A 2,(Ti + /?(7])),=l 2}.

Assumption 3.1 says that, the project’s value will be at least as great as the sum of 

funding and reward in both the complete55 and incomplete information case.

The optimal incentive contract is the solution to the principal’s maximisation 

problem subject to the constraints that each type will take the contract and finish the 

project, and each type will not be better off mis-reporting his value and taking the 

contract for the other type. That is, we have (P2):

max u{V -  R(T,) -  7]}+ (1 -  t)){V -  R(T2) -  T2 },

St. 7]-A , > 0 , 

r 2 - A 2 > 0 ,

a(7j -  A,) + 7?(7;) £ a7 ;, 

a(7'2 - A 2) + /?(7’2) > a r 2, 

a(7; -A ,)  + /?(7; ) > a ( J 2 -  A ,) + R(T2), 

a(T2 - A 2) + 7?(r2) > a ( r , - A 2)+R(Tt ) ,

(P2)

(capacity constraint)

(MH1)

(MH2)

(IC1)

if T, > A ,. (IC2)

''Complete information ease means the case with only a moral hazard problem. We need to assume the 
availability for the complete information case as well in order to compare the result with the pooled
efficient contracts.
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Assumption 3.1 says that V will he realised under each contract. The principal's expected 

utility is the weighted sum of utilities from offering {7],/i(7])} to each type i. The 

capacity constraints come from Lemma 3.2 which says that if 7̂  < A ,, the agent’s 

dominant strategy is shirking right through T: . Hence, in order to have the project 

completed, the funding periods for each type should at least cover the true value. The MH 

constraints say that, by taking {7̂ , /f(7j)}, type A, would prefer finishing the project to 

shirking all through . Since aT{ > 0 , the MH constraints also imply the requirements 

that each type will be better off finishing the project than not taking the contract at all (IR 

constraint). Moreover, for truth telling, 1C1 says that type A, will not be better off 

finishing the project under type A2’s contract {7'2,/?(7'2)}. IC2 describes a similar 

requirement for type A2 but is only true for 7j > A2. For Tt < A2, Lemma 3.2 has shown 

that if taking {7j, /f(7j)}, type A2 will shirk all through 7] and have the shirking benefit 

tx7j. But MH2 will have considered this case if 7j < T2, which is obvious since the 

capacity constraints together with 7j < A2 imply T2 > A2 > 7]. Therefore, IC2 will only 

apply for T, > A2.

In addition to the shirking possibilities restricted by MH1 and MH2, each type can 

also take the other type’s contract, and shirk throughout the funding periods rather than 

finish the project. Firstly, type A, may take the contract {7'2,7f(7'2)} and shirk through 

7 \, which gives shirking benefit a.T2. But we know from IC1 and MH2 that

oc(7] -A, )+R(T,  )> a (7 2 -A ,)+/f(7-2)

> a (T2 - A 2) + li(T2) >o.T2.
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That is, these two constraints have already restricted that type A, would rather complete 

the project under contract |7j,/f(7j)} than take type A ,’s contract and shirk. Secondly, 

type A2 may take {7j,/i(7j)} and shirk through 7j, which gives shirking benefit a7 j. 

MH2 should have included this case if Tt < T2. To proceed, suppose that 7] < T2, which 

will be justified by the solution later.

To find the solution, the first task is to look for the cheapest reward to motivate type 

i to finish the project at 7]. Replacing A, by A, in MH2 shows that if the principal gives 

each type the efficient contract in Proposition 3.1, type A, will be better off mimicking 

type A2. Next, ICI alone requires R(T2)< R(Tt ) if Tt ^ T 2. Since rewards are costly to 

the principal, R(T2) should be set at the minimal value, that is, MH2 has to be satisfied 

with equality:

To derive /?(7j), we need to check the 1C constraints. For Tt < A2, only 1C1 applies. 

Substituting the definition of R(T2) from equation (3.5) into IC1 gives:

As the same way of deriving R(T2), K(7j) should be set at the minimal value, that is, 

equation (3.6) is binding, which gives

R(T2 ) = -a(T2 - A 2) + ccT2 = clA 2 . (3.5)

R(Tt)> a(T2 -  7j) + aA2. (3.6)

7f(7j ) = a(7"2 -  7] ) + (xA 2 . (3.6)’
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Next, for 7j >A 2, IC2 will also apply. After substituting 7f(73) by aA ,, IC2 

requires:

R(T,)<a(T2- T , )  + a A 2. (3.7)

To simultaneously satisfy IC1 and IC2, both equations (3.6) and (3.7) will bind, that is, 

we have R(T,) = cl(T2 -7 j )  + aA ,. Hence 7?(7j) has the same setting for both T, < A, 

and T, > A2. Notice that this setting also implies MH1. where R(Tt ) > aA ,.

Substitute the settings of /?(7j) and R(T2) into the principal’s objective function. 

The principal’s maximisation problem becomes:

m ax u { V -(l-a )7 j - a T 2 - a A ^ + f l - u J I V - T ,  -a A ,} ,
T\ T2

St 7j > A ,,

T2 > A 2.

For a  < 1, both 7] and T2 are costly to the principal. Therefore, to maximise the 

principal’s expected utility and satisfy the capacity constraints, both capacity constraints 

should bind, i.e., T, =A, and T2 = A 2. In other words, in this mechanism, the agent 

reports his type truthfully (as required by MH and IC constraints) and the principal will 

provide the funding for as long as the actual time needed. Since A, < A2, the assumption 

that T^<T2 is justified. Furthermore, substituting T, = A, and T2 = A2 into equations 

(3.5) and (3.6)’ gives the optimal compensations: /?(7j) = a(2A2 -  A ,) and 

R(T2) = a A , . The principal’s expected utility is:

V -  \){2aA, -  aA, + A, } - ( l  -  u){aA2 + A2}. (3.8)
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The result says that apart from the incentive rent for the unobservable effort, the 

principal has to pay an information rent of ot(A, -  A, ) to the efficient type to induce 

truth-telling. Keeping other constraints constant, a bigger difference between the two 

types means a higher extra rent in the screening contract. The intuition for this rent is: by 

taking the inefficient type’s contract, type A, has (A, -  A,) more funding periods than 

taking his own contract. Hence, to motivate type A, to report truthfully, the screening 

contract has to compensate the efficient type for mimicking benefit in addition to the 

opportunism reward.

Finally, we can conclude a different view regarding the agent’s production 

efficiency. That is, due to the time consuming assumption (the capacity constraint needs 

to be satisfied), the equilibrium contract has both the efficient and inefficient types finish 

the project without delay. There is no distortion in type A ,’s production efficiency, 

which is in contrast to most contract literature in addressing the trade off between 

efficiency and rent extraction, in addition to "no distortion at the top (by IR constraint)” 

(e.g., Laffont and Tirole (1993)). The intuition is: as a result of assuming unobservable 

effort and binary outcome (success or failure), the principal’s fear that the whole project 

value will disappear in case of any shortage in funding has led the principal not to distort 

the production efficiency in the optimal contract. Furthermore, the principal’s belief 

affects only her expected utility, and has no influence on the production efficiency of the 

project. The main result of this section is summarised as Proposition 3.2.

Proposition 3.2

For a long-term project with both moral hazard and adverse selection problems, the 
incentive contract has both types complete the project, induces no ejjiciency loss to either 
type and pays an extra information rent to the efficient type.

68



In the following, we first present the principal’s expected utilities from the incentive 

and pooled contracts, and then discuss the principal’s choice among these contracts. First 

of all, the benchmark case is when there is only a moral hazard problem, that is, each type 

is offered the efficient contract described in Proposition 3.1. Denote the principal’s 

expected utility for this case as A :

A = V -\)(l+ a)A , - ( l - u ) ( l + a ) A 2.

The principal’s expected utility from the incentive contract is (equation (3.8)):

V -  u{a(A2 -  A ,) + rxA2 + A, } - ( l  -u ){aA 2 + A, }

= A-2om (A2 -A ,) .

The term 2au(A2 -  A,) is the incentive cost to prevent the efficient type from mimicking 

the inefficient type. For a positive belief of the efficient type, the incentive contract 

always costs more than if the principal knows the agent’s type for sure.

Secondly, offering the pooled contract {A,,aA,} to both types will cause the 

inefficient type to shirk all through Tt . Flence the principal’s expected utility with this 

contract is:

u { V - ( l + a ) A , } + ( l - u ) { - A , }

= A - ( l - u ) { V - ( l  +a)Aj  + A, ).

The last term (1 -  u)|V -  (1+cx)A2 +A,) is the probability of the inefficient type times 

the sum of expected cost saving (l+ot)A 2 and expected revenue loss V -A ,. Under 

Assumption 3.1, this pooled contract is worse than the first best by definition. For u
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close to zero, the incentive contract is better than this pooled contract, however, for u 

close to one, we have the opposite result. In other words, if the principal is fairly 

confident that the agent is an efficient type (for v> > p *, where

V -(1 + gc)A2 + A. ,7
U* = ---------------------------------  ), the expected cost saving makes the pooled contract

V -( l-o t)(A 2 -  A ,) - cxA,

of the efficient type better than the incentive contract.

Further, the pooled contract of the inefficient type {A2,aA ,} gives the principal:

V - o ( l  +a)A 2 — (1 — v>)(1 + a)A 2 

= A -  o(l + a)(A2 -  A,).

Given this contract, the efficient type will mimic the inefficient type, finish the project at 

time A ,, and get an extra benefit a(A 2 -  A,) from shirking. Comparing this contract 

with the incentive contract shows that for a  < 1 the principal is better off with the 

incentive contract, since the principal can avoid the rental cost for equipment (1 -  a )  per 

period for the extra funding periods (A2 —A,). When this cost is close to zero, the 

pooled contract for the inefficient type will be identical to the incentive contract.

Finally, since this equilibrium always keeps the production efficiency, a different 

conclusion can be drawn in contrast to Laffont and Tirole (1993). They show that a direct 

mechanism is not renegotiation proof, as the solution of the direct mechanism in their 

model is suboptimal ( the inefficient type will produce inefficiently), and hence “it would 

be optimal to renegotiate to ensure production at the efficient level (given the reported 

type), and share the gains from trade” (Laffont and Tirole (1993), Ch. 1). However, in the 

present model, the solution will be renegotiation proof for the reason that the production

' 7 It can be checked that u* < I . since A , > A , ■
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is always ctticienl and any decrease in payment from the principal will decrease the 

agent’s utility (and hence will not be accepted).

3.4 A Uncertain to the Principal (Continuous Type)

This section studies the case when the agent knows the value of A for sure and the 

principal thinks that types are continuously distributed. There are two reasons for 

discussing continuous types: First, it will be interesting to ask if the result from the 

discrete type setting will hold in the continuous case. Second, since it is assumed that A 

ranges from 0 to °° and the project value is constant, intuitively we can guess that the 

principal will stop funding for A greater than some critical point. The issues concerning 

this point are: Is this point unique? In other words, will the principal adopt a cut-off 

strategy? What determines this point? How will the unobservable effort affect the 

determination of this critical point? When there are both moral hazard and adverse 

selection problems, the effort and information rents paid by the principal will vary with 

the choice of this critical point. Most important of all, the principal cannot prevent those 

inefficient types™ from taking the contract and shirking throughout (which will be their 

dominant strategy). The determination of this critical point proceeds in several steps: 

firstly, by supposing an arbitrary critical point, we discuss the principal and the agent’s 

behaviour before and after this point. It can be seen that before this point the principal’s 

utility flow is decreasing in A and after this point the utility flow is a constant which is 

dependent on the size of this point. This hence justifies the existence of such point. 

Secondly, since the choice of such a critical point will also affect the compensations for

Inefficient types refer to those with A > A , and efficient types for otherwise. Among efficient types, 
those with smaller values of A will be denoted as more efficient types, and less efficient types refer to 
smaller value of A .

71



efficient types, the optimal critical point is determined at a value where the principal’s 

expected utility is maximised.

We keep the assumption of a single principal and a single agent. The agent knows 

the value of A for sure, but the principal thinks that A is drawn from (0,°°) according to 

a distribution function /•'(A), with density function /(A ). Suppose an arbitrary paint 

A e (0, °o) beyond which the principal stops funding the project. For those efficient types 

we know from Section 3.2 that the contract has to include an end-of-contract reward to 

provide enough incentive for the agent to complete the project. In addition, to consider 

asymmetric information, we need to apply the revelation principle, and restrict our 

attention to a truth-telling direct mechanism. Let A be the reported value from type A . In 

this equilibrium, A=A and the project will be finished. Let C3:= {7(A), /i(7(A))}A, or in 

short, C3: = {7(A), A)}a be the menu of contracts offered to the agent. Before solving 

the optimal contract, we need to change the notation slightly to express the connection 

between the agent’s effort and the completion date in the continuous version. First of all, 

in the same way of dealing with the continuous version of a multi-stage game, denote the

history of sequential effort decisions up to time t by an index h, = \e¡dj , which is

actually the accumulated effort level at time t. Note that, as in the discrete types case, 

there can be more than one path of sequential decisions that result in the same 

accumulated effort level. Since the principal can only observe the completion date, we 

can focus on the set of paths that accumulates the same level of effort It,. Denote l£h as 

such a set and r e £ ‘ to be an element of this set. The finishing date is defined as 

T(e) = min{fl/i, > A} for A e  (0,«»).
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For this truncated part ( A < A ), each type’s utility for completing the project under

Cj is:

(/(A, A) = a(7'(A) — A) + W(A), fo rA e((),A |. (3.9)

The first argument in (/(.,.) is the reported value and the second argument stands for the 

true value. The principal’s truncated expected utility is:

J,f{V -  /?(A) — r(A))/(A)</A .

A e (A,<*>) is not included, since for the moment we are not sure about whether there 

exists such a “single” critical point which then depends on both parties’ behaviour (to be 

discussed below). For truth-telling, the contract must be designed in such a way that for 

every A e (0, A |, putting in effort and completing the project are preferable to shirking 

throughout the funding period. As in the previous section, denote these requirements as 

the Moral Hazard (MH) constraints. Furthermore, we need to consider that under the 

optimal contract more efficient types will not take the contracts meant for less efficient 

types, and vice versa. These requirements are the Incentive Compatibility (IC) 

constraints.

But first of all, the capacity constraints are necessary for each type to complete the 

project, i.e., T(A) > A . Next, the MH constraints require that:

a(T(A) -  A) + (?(A) £ clT(A) , fo rA e(0 ,A |. (MH)

That is, each type would rather finish the project than take the contract but shirk all the 

time. As ’/’(A) > 0 (capacity constraint), MH implies that the agent’s utility will be
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higher than when not taking the eontraet. The ineentive compatibility constraints are: for 

any A, A' e (0, A | and suppose A < A ',

ct(7(A) -  A) + R(A) > <x(T(A') -  A) + R(A' ) , (IC1)

a(7(A ') -  A') + R(A') > a (7 (A )- A') + R(A) , if 7(A) > A '. (IC2)

As in the discrete case, due to the capacity constraints, the second line is only valid for 

7(A) > A '. For 7(A) < A ', type A' physically can not Finish the project. Lemma 3.2 

tells us that the agent will shirk all through 7(A) and have a utility «7(A ). The capacity 

constraint together with the supposition of 7(A) < A' imply that 7(A') > A' > 7( A ) . The 

MH constraint for type A ' has already included this case. Therefore, 1C2 is only valid 

when 7(A) > A '.

Note that these constraints also exclude other shirking possibilities that are not 

written explicitly. Firstly, the more efficient types might take the contracts for the less 

efficient types and shirk throughout the funding periods. For A < A' we know from MH 

and 1C1 that

a(7(A) -  A) + R(A) > a(7(A ') -  A) + R(A')

> a(7(A ') -  A') + R(A') > a7 (A ').

Hence, IC1 together with MH have already included this case. Next, it is also possible 

that the less efficient types would like to take the contracts for the more efficient types 

and shirk through the funding period. This case would have been included in the MH 

constraints, if 7(A) is increasing in A . To proceed, we need to temporarily assume that
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'/'(A) is increasing and differentiable'1* in A and the solution will justify this assumption 

later.

The principal maximises the truncated expected utility function subject to the 

capacity, MH and 1C constraints, i.e.,

max J,f{V -  R(A) -  T(A))f(A)clA , (P3)
K (& ).T I  A>  1

St. r(A )> A , VA e (0,A] and A < A ',

a ( n A ) - A ) + R ( A ) > a T ( A ) ,  (MH)

a(7(A) -  A) + R(A) > a(T(A') -  A) + R{ A ' ) , (IC1)

a(T( A') -  A') + R(A') > a(T( A) -  A') + R( A), if T(A) > A '. (IC2)

Notice that these constraints actually represent infinite numbers of constraints. Following 

the existing literature, we can replace the infinite numbers of IC constraints by the first 

order condition*’". Recall the definition of the agent’s utility function from equation (3.9), 

and for illustration, A is kept to distinguish the reported value from the true value.

U(A,A) = a(T (A) -A)+R(A) ,  Ae(0,A ] (3.9)’

It must be T(A) > A to satisfy the capacity constraints: if 7\A) = A , only IC 1 applies and 

it says that a(T(A' ) -T(A))  < R(A) —R(A'). Since we temporarily assume that T(.) is 

increasing and differentiable, R(.) has to be decreasing and differentiable to satisfy the 

1C1 constraint. Therefore, IC1 together with equation (3.9)’ imply that U2 (A ,A )< -a  

(abbreviated as ( / ( A )< -a ) ;  If 7 '(A)>A, both IC1 and IC2 will apply. IC2 says that

"*The differentiability is necessary to derive the agent's marginal utility.
1,11 Since in our model, the completion date is a linear function of effort, we can adopt this approach without 
further constraint (see Kreps (1990), Ch 16 for the constraints of using this approach).



a ( T ( A ' ) ~ 7(A)) > K(A)~K(A') , which is contrary to 1C I. Therefore, to simultaneously 

satisfy ICI and IC2, we need:

a(7(A ')~  7(A)) = K( A) -  R( A ' ) . (3.10)

Again, R(.) will be decreasing and differentiable if 7(.) is increasing and differentiable. 

From equations (3.9)’ and (3.10), we have U2'( A,A) = -oc (abbreviated as I f  (A) = —a  ).

We can combine the capacity and IC constraints, and rewrite the maximisation 

problem as (P3)'

max f V  -  (1 -  a)T(A)  -  aA -  U(A))f(A)dA , (.P3Y

St. 7(A )> A A 6 (0 ,A],

I f  (A) < - a  and (7(A) -  A)(lf  (A) + a ) = 0, (IC)

U(A) > a7 (A ). (MH)

Note that R(.) has been replaced with the definition of U(.) in equation (3.9), because 

K(A) +7(A) = (1-a )7 (A ) + aA + (/(A ). Since the agent’s utility is decreasing in A 

( I f  (A) < 0 ) and under the assumption that T(.) is increasing in A , MH will only apply to 

the most inefficient type, i.e., U(A) > a7 (A ). Since giving the agent any rent is costly 

(the coefficient of U(.) is -1), MH for type A should bind, that is, U(A) = a T (A ) . Note 

that if I f  (A) = - a  , the integration of the utility function gives:

U( A)= fotr/A +aT(A)J A

= a (A -A ) + aT(A). (3.11)
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Using equation (3.1 I ), we can rewrite the problem as (P3)":

max f lv  — ( I -a )7 (A )-a A -í/(A )lí/F (A ), (P3)"
i/<it.r<A> Jo

St. 7(A )>A , A e |0 ,A ),

(/(A) > a(A -  A) + a7(A) and

(7(A) -  A)(i/(A) -  a(A -  A) -  a7(A)) = 0.

To derive the optimal rent61, firstly, if we set 7(A) = A , the above constraints 

require that U(A) > ot( A -  A) + a7(A ). Since U(A) ’s coefficient is negative, it should be 

set at the lowest possible level, that is, a(A — A) + a7 (A ). However, if we set 7(A) > A, 

it must be i/(A) = a(A -  A) + a7(A) to satisfy all the constraints. Substitute the setting 

of U(A) into the objective function and after manipulation we can see that the coefficient 

of 7(A) and 7(A) are - ( 1 - a )  and -I respectively. In this case, there will be no 

equilibrium values of 7(A) and 7(A) to maximise the utility function, because for any 

7(A) > A , we can find a smaller 7'(A) that is greater than A , still satisfies all the 

constraints and is less costly to the principal. To conclude, setting 7(A) at the efficient 

level A will be the only equilibrium solution, which hence justifies the supposition that 

the funding period is increasing and differentiable in A. For every Ae((),Al, the 

equilibrium utility is (7(A) = a(A -  A) + a7 (A ). Finally, the principal’s utility flow for 

this truncated case A s (0,A| is:

V - ( l - a ) A - a A - a 7 ( A ) .  (3.12)

w The solution proceeds without setting up multipliers, because the utility (low is linear in each variable.

77



Before we go on to determine the optimal critical point A , two remarks should he 

noticed: First, like the discrete type case, the optimal contract for the continuous type 

setting induces no efficiency loss to any type before A (because the funding period is set 

at the efficient level A ) and extra rewards will be given to the more efficient types as 

information rents. Second, the existence of a single critical point can be seen from the 

fact that T'( A) = I and R'(A) = - a  , implying the principal’s profit flow to be decreasing 

in A . As the project value is constant, the existence of such a critical point can hence be 

justified. However, we need to consider the remaining part A > A to decide the optimal 

location of such critical point.

For a given A , the principal will stop funding those types with A > A . However, 

since effort is un-contractible, the principal can not prevent those inefficient types from 

mimicking and taking the contracts for types A SA . If the contracts for type A S A  all 

have 7( A) = A , it is infeasible for types A > A to finish the project and it will be better 

off for them to shirk throughout the funding period. To get the highest shirking benefit, 

they will choose the contract with 7(A) and have a utility cx7(A). In other words, the 

principal has to waste 7(A) for types A > A , as it is a dominant strategy for them to 

claim A . If the contracts for type ASA have 7(A) > A , then some types A' e [A, 7(A)] 

will find it feasible to finish the project. The problem with this case is that the principal 

will find it difficult to know exactly which type that A' is going to mimic, meaning that 

she can not tell when type A' is going to finish the project. Since the principal can not 

motivate any A 'e  [A,7(A)] to tell the truth (that is, to finish the project at A' if 

A' < 7(A )), it is assumed that types A' will all choose the contract with 7(A) and finish
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the project at 7(A)'’~. Therefore, instead of wasting 7(A) as in the ease of 7(A) = A . the 

principal’s utility How for this case is V -7 (A )-/? (A ) for A' e |  A, 7(A)] and -7(A) 

for A > 7(A). To cope with this situation, a complementary variable q is defined 

together with the capacity constraint, that is,

q = 0  if 7(A) = A , VA e [0,A],

= 1 if 7(A) > A and let |A| = 7 (A )-A .

The principal’s total expected utility function is:

max {i,f[T-(I -oc)T(A)-otA- (/(AJli/TXA)

+ J | ♦ «w [ V -  (1 -  a  )7( A) -  aA -  U(A)]dF(A) + £ ;|i| [-T(A)]i/F(A)}, ( « ) ’”

St. 7(A) > A for A e (0, A),

U(A) > a(A — A) + a7(A) and

(7(A) -  A)(i/(A) -  ot(A -  A) -  a7(A)) = 0.

In the objective function, the first term is the truncated utility for A e (0,A) as defined in 

(/',?)’. The second term denotes the expected utility if 7(A) > A , where some inefficient 

types could take the contract with 7(A) and finish the project. Notice that R(A) + 7(A) 

has been replaced by (1 -a )7 (A ) + aA + U(A) and this term exists only when 7(A) > A ; 

The last term is the principal’s utility for types A > A + q|A| who will find it infeasible to

finish the project and hence will take the contract for type A and shirk throughout.

The introduction of q does not really complicate the problem, since if 7(A) = A,

we have q = 0 and U (A) > a(A -  A) +a7(A ) = 2aA - a A . As giving rent is costly to

“  It is assumed (hat when the agent is indifferent between finishing and shirking, it will finish the project.
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the principal, she will set the utility at the lowest possible value, that is, 

U( A) = 2 a A —oA; If 7 '(A )>A , we have q > 0 and U(A)  = a(A  -  A) +a7'(A ), 

V A e|0 ,A |. Substitute U(A) into the first and second terms of the objective function, 

and collect terms. We can see that T( A) has a coefficient of —( I — ot) and T( A) has -1 in 

both the first and the second terms, and T(A) has a coefficient of -1 in the last term. As 

argued earlier, there will be no equilibrium setting of T(.). Hence, the only equilibrium 

contract length is set at the efficient level: T(A) = A , VAe[0,A]. The agent’s rent is 

U(A) = 2aA -  aA and the principal’s expected utility for a given A is:

[ V — (1 — a)A -  aA -  2aA + aA]</F( A) -  j£Ar/F( A)

= tv  -  (1 - a )A  -  2a A]</F(A) -  J£AJF(A). (3.13)

Integrating the first term by parts gives:

[V - ( l-a )A -2 a A ]F (A ) |i  + |o(l-a)F(A )c/A > (3.14)

Substitute (3.14) into equation (3.13) and integrate the last term. The principal’s total 

expected utility for a given A becomes:

[V — aA]F(A) -  A + |^ l  -a)F(A)c/A . (3.15)

Equation (3.15) has a neat explanation, that is, since mimicking is not punishable, the 

screening contract has to give the efficient types extra information rents which are 

decreasing in A and bounded below by type A ’s utility. The first and second terms of
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equation (3.15) summarise the principal’s project value less the sum of type A 's funding 

and effort rent, and the mimicking loss from the inefficient types A(1 -  F(A )). The last 

term is the sum of saving in funding and extra information rent for the efficient types. 

This utility is smaller than without the moral hazard problem where the principal’s value

is:

J(V — A)dF(A).

Integrating by parts gives:

[ V -  A]F(A) + jV(A)dA. (3.16)

Moreover, differentiating equations (3.15) and (3.16) with respect to A gives the 

principal’s marginal utility. We can hence check that the optimal A in equation (3.15) is 

less than in equation (3.16)62. In other words, due to the possibility that the agent can take 

the contract and shirk throughout, the principal turns to a conservative attitude in funding 

the long term project. Proposition 3.3 concludes the finding in this section:

Proposition 3.3

For a long term project with a moral hazard problem: (I) If A 6 [0, °°), the principal will 
adopt a cut-off strategy: she funds the project fo r  type A < A * and stops funding if 
A > A * ; (2) The agent’s production efficiency remains for the efficient type A < A *; (3) 
Compared to the contractible effort case, the principal will take a more conservative 
attitude in funding.

*’2 The second order conditions are satisfied if F(.) is concave.
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3.5. Auction

When there is more than one candidate for a project, an auction is usually held to select 

the agent to undertake the project. The most often cited examples are EU leasing R&D 

projects through tender process. Motivated hy its prevalence, we firstly discuss the design 

of the optimal auctioning contract, following the framework of Laffont and Tirole (1993). 

The outcome of this optimal auction is then compared to that of another auction form: the 

second-price auction. We obtain some interesting results concerning the revenue 

equivalence theorem and the separation property6\  Later, using this second-price 

auction, we discuss the existence of a built-in cost overrun which is caused by the mixed 

effects of bidding competition and the setting of a cost ceiling in case of overrun. The 

relevant literature is discussed at the end of this section.

3.5.1 Optimal Auction64

The derivation of the optimal auctioning contract is presented in a discrete type setting, as 

it provides a clearer idea about how an auction works in our model. To simplify the 

analysis, we keep the single principal assumption and further assume that there are two 

agents, whose types are independently drawn from the set {A,, A2) : with probability u to 63

63 Both of them are important results in auction theory. The revenue equivalence theorem (Vickrey, 1961) 
says that, under some assumptions (see Fudenberg and Tirole, 1991, p.253 for detailed discussion ot these 
assumptions), all of the traditional auctions give the principal the same expected revenue. However, as 
demonstrated in Fudenberg and Tirole, this theorem does not hold in a two-type framework. The separation 
property says that the winner’s effort is the same as if the winner faced no bidding competition. (Laffont 
and Tirole, 1993, p.328).
M Since the agent’s private information is due to a better understanding of its own cost structure, the auction 
we study here belongs to the class of “independent value model". The alternative settings are: the “common 
value model’’, where none of the bidders knows the cost (which is common to each agent) of the project 
although each agent may receive different information concerning this cost; the affiliated value model, 
where each bidder signals contain an idiosyncratic and private information (i.e., the observation of the 
common value) (see Milgrom (1987)).
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type A, and with probability (1 — u) to type A ,. Each agent knows his own type but not 

the rival's type, and the principal knows only each agent’s distribution. The assumptions 

of risk neutrality, no discounting, and a deterministic production technology still hold in 

this section. Furthermore, it is assumed that there is no collusion between two bidders. 

Denote the agents’ true values as A1 and A2 respectively (note the difference between 

superscript and subscript). The auction starts with each agent submitting its bid A'. The 

bid stands for the total duration equivalent to the total cost needed to complete the 

project, as we assume the cost per period to be £ 1. The bidding set is restricted to the type 

space (A,, A21, since the principal knows both agents’ distributions. The allocation of the

project, funding periods and rewards are hence dependent on the bidding vector (A1,A2). 

By the revelation principle, we can concentrate on a truth-telling direct mechanism. Let 

A = (A1, A2) and jc‘(A) be the probability that the project is assigned to agent /. Based on 

A, an auctioning contract specifies a probability jc'(A), a funding period 7j(A) and an 

end-of-contract reward R,(A) to each agent i. The truth-telling Bayesian implementation 

requires that the mechanism is designed in such a way that each agent bids its true value 

A' = A' and the project will be finished.

First of all, there are some constraints on the project allocation:

(A) S I.'*

x‘ (A) > 0 , for ( = 1,2.

M ^  i 1 (À) < I stands for the case where none of the agents wins the project. In other words, it is allowed to 

have allocation inefficiency.
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To sci a benchmark of allocation efficiency, wc need to check the allocation rules under 

complete information (i.e., when A is known):

a'(A,,Ai) + jc2(Ai,A ,)=  1, 

a'(A2,A2) + x2(A2,A2)= 1 , 

a'(A,,A2) = a2(A2,A ,)=1.

When each agent’s type is known by the principal, the project will surely be assigned to 

the low cost agent. Notice that the sum of x'(.) is one, meaning that there is no 

efficiency loss in allocation. Recall that it is always efficient for the project to proceed. 

By submitting A1, agent 1 ’s expected utility for completing the project is:

V (A1, A2 )t/(A1, A2) = Ea! {x' (A1, A2 )[a(Tx (A1, A2) -  A1) + R, (A1, A2)] |

= {t)Al(A',A,)[a(7;(Al,A ,) -A ')+ /il(Al,A1)]

+ ( l - u ) x l(A',A2)[a(7j(A',A2)-A ')+ tf,(A l,A2)]).

As the principal would prefer the agent to complete the project efficiently, she has to 

ensure that this utility is at least the same as if the agent commits to shirk throughout or 

finish the project inefficiently. Note that the agent’s utility term goes after the winning 

probabilities * '( .) , rather than being an isolated term, which setting is often found in the 

mechanism design literature. In order to generalise the analysis, the previous literature 

allows the principal to compensate the loser(s) of an auction if necessary. However, as 

argued in Section 3.2, any reward before the completion of the project has no effect in 

encouraging effort, hence it is optimal for the principal to use the end-of-contract reward. 

Since the agent can not get the reward unless he wins and finishes the project, wc should 

put the compensation terms after the winning probabilities.
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I'or truth-telling to form a Bayesian Implementation, several constraints need to be 

satisfied. Firstly, if given the project1''’, each type of agent I will prefer completing the

project to shirking throughout (Moral Hazard constraint: MM), that is.

a(7j( A,, A2) — A,) + /f, (A,, A2) > a7](A,, A2) for A2 = A ,,A 2, (3.17)

and

ot(7j(A,,A2) -  A2)+ /?,(A2, A2) > a7j(A2,A2) for A2 = A ,,A 2. (3.18)

These two equations are not in expectations, as shirking can only matter after the project

(3.17)’ and (3.18)’ say that even in expectations, committing to finish the project will 

give each type of agent 1 at least the expected value from shirking throughout.

Secondly, to have truth-telling, the principal needs to ensure that each type of agent 

1 would prefer bidding the true value and committing to finish the project to bidding the 

other value and committing to finish or shirk throughout. In notation, the incentive 

compatibility constraint for type A, is:

We discuss agent I's constraints here, and agent 2’s constraints can he derived in the same way. 
‘,7 Note that since other constraints are in expectation terms, it is not a type dominant strategy 
implementation.

is assigned to the agent67. For future reference, taking the expectation across A2 on both

sides of equations (3.17) and (3.18), we have:

and

* '(A,, A2 )[oc(7; (A,, A2) -  A,) + K, (A ,, A2)]

> E &,x '  (A2, A2 )[a(7j (A2,A2) -  A , ) + /?,(A2, A2)].
(3.19)
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Bidding A, gives type A, a different probability of winning the auction. Note that (3.19) 

also implies that A, will not be belter off bidding A, and shirking throughout, which can 

be seen from (3.18)' and (3.19):

E j x \ A,, A2 )|ot(7j (A,, A2) -  A ,) + (A,, A2)] (3.20)

> V (A,, A2 )[(X(7̂  (A2, A2) — A,) +/?, (A2, A2)]

> £ 4i-*l(A2,A2)[a(7](A2,A2) —A2)+ /f,(A2,A2)] > £ A,jc '(A 2,A2)a7'l (A2,A2).

The incentive compatibility constraint for type A2 is less straightforward, as whether 

type A, can finish the project is physically restricted by the capacity constraint. If 

7j(A,,A2) > A,, it is possible that A2 can finish the project by taking type A, 's contract 

and receive the rent from completing the project; if 7](A,, A2) < A ,, type A2's dominant 

strategy is to shirk throughout, as finishing the project is infeasible. For this case, type 

A, has the shirking benefit a7j(A,,A2). Since bidding will also affect type A2’s 

probability of winning the auction, MH2 will not cover this case as it does in the single 

agent case. Denote (his part as the Incentive Moral Hazard constraint for type A2 

(IMH2). Hence, the incentive compatibility constraint for type A, is:

V (A2, A2 )|cx(7j (A2, A2) — A2) + R{ (A2, A2)]

> £ A, jc'(A,,A2)• inax{[cx(7j(A, ,A2) -  A2) + /^(A ,, A2)],ix7j(A,, A2)}. (3.21)

The constraints for agent 2 can be derived in the same manner. The principal 

maximises her expected utility, which is the expected project value less the expected 

funding and reward cost, with respect to jc‘(A), 7̂ (A) and Kt(A). That is.
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t  {*'(A', A2 )| V -  K, (A1, A2) -  7j(A', A2)]

+*2(A', A2 )| V -  «-.(A1, A2) -  r2( A', A2)]}, (3.22)

subject to the capacity, moral hazard and incentive compatibility constraints.

To solve the problem, we first need to find out the cheapest rent to implement an effort

level that finishes the project at time Tt . The analysis is similar to Section 3.2 but more

complicated as we need to take into account each agent’s winning probabilities*’8. So far,

for the efficient type, we have the moral hazard constraint (MH1(3.17)) and the incentive

compatibility constraint (IC1 (3.19)). Unlike the single agent case, the moral hazard

constraint for type A2 (MH2 (3.18)’) will not imply MH1, as different bidding values

will also affect the winning probability x‘(A). For the inefficient type, we have moral

hazard constraint (MH2 (3.18)’) and incentive compatibility constraint (1C2 (3.21)).

Again unlike the single agent case, 1MH2 will not be implied by MH2 constraint. The

following discussion helps to cut down the number of constraints. Firstly, MH1 cannot

bind, since if it is binding, IMH2 will be violated. That is, suppose MH1 is binding.

Therefore, for the cheapest rent for type A ,, IC1 will be binding. Secondly, if T, < A2, 

1C2 can be pinned down to only IMH2. To proceed, we guess that only IMH2 is valid, 

and leave it for justification later. Moreover, MH2 requires that for the winning agent to

wl The following discussion concentrates on agent I and the same reasoning applies to agent 2.

> (A2,A2)[a(7](A2,A2) — A,) + /?,(A2,A2)]

> (A2,A2)[a(7](A2,A2) -  A2) + /J,(A2,A2)].
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complete the project, type A ,'s utility must he bigger than a7j(A2,A2) for A2 = A,,A,. 

This will he violated if only IMH2 is binding, provided 7j( A,, A3) < 7j( A,, A’). Assume 

provisionally that /¡(A,, A’) < 7j(A2. A2) and hence we can have cither only MH2 

binding or both MH2 and IMII2 binding. In the following, we proceed with the analysis 

by assuming only MH2 is binding, and leave the checking of 1MH2 for the end of our 

discussion. Let (/'(.,.) denote agent f s  utility, and the principal’s objective function can 

be written as:

E&i &! {(x' (A1, A2)(V — [(1 — a)7J(A1, A2) + aA1 + U'(A1, A2)])

+ jc2(A',A2)(V-[(1 — a)7'2(A',A2) + otA2 + i /2(A‘, A2)])) .

For MH2 to be binding, we have type A2’s expected utility of agent 1 as:

£ A: jc' (A2,A2 )t/'(A ,,A 2) = E&!x ' (A2,A2 )a7](A2, A2), (3.18)”

which means that type A2 is rewarded the shirking benefit from taking the contract of his 

own type. For IC1 to be binding, we have

(A,, A2 )U' (A,, A2) = E&! x ' (A2, A2 )[aT, (A2, A2) — A,) + /?, (A2, A2)].

Likewise, we can derive the cheapest rents for agent 2. Substituting (/'(.,.) with the 

cheapest rents and collecting terms, we can rewrite the principal’s expected utility 

function as:

i '(A |,A 1)U2[V -( l  -tx)7j(A |,A |) —txA,]

+x2(A,, A, )\>2[ V — (1 -c O T ^ A ^ A ^ -aA ,]
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-*--v1 (A ,,A 2 )tj( 1 — \>)|V/ — (1 -a)7' l(A , ,A2) - « A l |

+-*2(A, , A 2 ){u(l — u)[V — (1 —cOT^A,, A 2 )-ocA2 )

-(1 -u)ua7'2( A l, A , ) - ' U 2|ajr:, (Al,A 2) - a A 1 + aA,]|

+jrl(A2,A) )|( l—u ) u t V - ( l  -a ) 7 ] ( A 2, A , ) - a A 2]

-(1 -\))ua7'|(A2,A, ) - \ ) 2[a7'2(A 2,A, ) - a A ,  +cxA2 ])

+x2(A2,A, )(1 -  \)>u[V- (1  -  a)72(A 2,A, ) - a A ,  ]

+*' (A2,A 2)((1 —b)2[V — (1 - a ) 7 ] ( A 2, A, ) - a A ,  ]

-(1 -  \))2a7',(A2,A 2) - u ( l  -u ) [a7’l( A 2, A 2) - a A ,  + a A 2]) 

+A:2(A2,A 2) { ( l - - u ) 2[ V - ( l - a ) 7 - 2(A2,A 2) - a A 2]

- ( l - - u ) 2a r 2(A 2,A 2) - u ( l - \ ) ) [ a r 2( A 2,A2) - a A 1 + a A 2] } .  (3.23)

It can be checked that all the coefficients of 7](.) in equation (3.23) are negative, 

meaning that funding is costly to the principal. Hence, the capacity constraints should be 

binding:

7](A,,A2) = 72(A 2, A, ) = A , ,

and

7](A2,A, )  = r2( A l,A2) = A 2.

In the solution, production efficiency will hold as each type finishes the project without 

delay (A,). As we will see later, production efficiency does not hold in a second-price 

auction. Next, we need to find out the allocation rule in this auction. First of all, since the 

terms after x'fA^A,) and jc2(A,,A,) arc identical, to maximise expected utility, the 

principal should set

jci(Ai,Ai) + jc2(Ai,A ,)=  1.

Likewise,
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jc' (A2,A,)  + .*2(A2,A2) = 1 .

Assuming symmetry, we have jc1 (A,, A ,) = ,r2(A., A .) = at'(A ,,A , ) = x 2(A,,A, ) = — .
2

Secondly, since the value after x'(A,,A2) is greater than the value after jc2(A,,A2), 

jc'(A ,,A 2) should be set as large as possible, i.e., jr'(A,,A2) = 1 . In the same manner, 

we set ar2(A2, A,) = 1 . Comparing this result with the complete information case, we can 

conclude that the optimal auction keeps both allocation and production efficiency as in 

the complete information case.

Finally, we need to check whether the solution satisfies all the constraints. IC2 will 

be pinned down to only 1MH2, as the funding period for the efficient type is A,.

Substituted with the settings of 7] and x ' , MH2 ((3.18)”) says that the optimal rent for 

type A2 is aA2. However, IMH2 requires the expected utility for type A2 to be at least 

as much as taking the contract for type A, and shirking throughout, i.e.,

VtO + ( l - u )  —(aAj) > u — (aA ,) + (l —u)(txA.), which will hold if A2 >A.(1 + —-—).
2 2 1 — U

From IC1, type A, ’s rent for this case is 1 -  -U
2 -  v

a(2A2 — A,), which is smaller than that in

the single agent case: a(2A2 -  A ,). The utility difference is because for this case type A, 

will be less likely to mimic A2 under competition, as mimicking type A2 will give him 

less chance to win the contract.

For A, < A,(1 + —!—), 1MH2 will be violated by the above solution. To have IMH2 
2 ' 1 -u

satisfied, we can either adjust the reward /?2(A) or the probability of winning jc'(A) .
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Since the agent will be indifferent adjusting K,( A) and .v'(A), and since adjusting 

.r'(A) will cause longer expected funding periods, it is optimal to adjust /f ,(A ).

Having IMH2 bind, the inefficient type's incentive rent will be: oA,(l H--- !—), which is
I - u

greater than (xA, by the assumption of parameters. From ICI, type A, ’s rent for this case

is: -——a(2A, — A.H---!—aA ., which is higher than the rent for A, >A,(1h---- !—).
2 - u  2 1 2 - u  ' 2 iv , _ u '

However, it is still smaller than the single agent case (as------ aA. < —!— a(2A, -  A ,)).
2 - o  1 2 - o  2 1

Intuitively, when there is a big difference between the two types, the inefficient type has a 

higher shirking benefit by taking his own contract although doing so will give him less 

chance to win the auction. As mimicking the inefficient type will give the efficient type 

less chance to win the auction, the incentive rent paid for his truth-telling can hence 

decrease. When there is a smaller difference between the two types, the inefficient type 

will mimic the efficient type in order to have a higher chance of winning. Hence, the 

principal has to give the inefficient type higher rent to choose its own type. Accordingly, 

to induce truth-telling from the efficient type, the principal has to increase the incentive 

rent for the efficient type. But still, this rent is less than the single agent case. Overall, the 

principal benefits from the competition between two firms, because the incentive rents 

can be decreased under competition and there is more chance to have the project 

completed by an efficient type.

3.5.2 Second-Price Auction
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An interesting question is “Can the optimal outcome be achieved by a traditional 

auction?” There are four auction forms1' ' in the traditional literature: ascending (English, 

oral), descending (Dutch, oral or outcry), first-price and second-price auctions (sealed- 

bid). Milgrom and Weber (1982) show that descending and first-price auctions arc 

strategically equivalent, and ascending and second-price auctions are equivalent in the 

context of private value models. The revenue equivalence theorem says that these four 

auctions give the auctioneer the same expected revenue, and the separation property says 

that the winner’s effort will be the same as no bidding competition. Apart from these two 

results, it is also well known in auction theory that a bidder’s weakly dominant strategy is 

to bid its true value in a second-price auction (e.g., Vickrey (1961)). In the following, we 

discuss a second-price auction which incorporates the opportunism problem in our 

model, and conclude that “bidding the principal’s reservation price” will be each agent’s 

dominant strategy and neither the revenue equivalence theorem nor the separation 

property holds in this auction.

In a second-price auction, two agents simultaneously submit their bids b' for the 

project’s total cost. Recall that agent i has private information about the total cost A . The 

bidding set is not restricted to |A ,,A ,|, however we assume the principal adopts a 

reservation policy in the auction. There are many papers discussing the settings of 

optimal reservation price (e.g., Milgrom (1987), Levin and Smith (1996)). To avoid 

complication70 and to make it comparable to the outcome from the optimal auction, it is 

assumed that the principal’s reservation price is A ,. Moreover, since there is a moral 

hazard problem, to avoid the agents bidding a low cost, winning the contract and then

The auction forms are not necessarily the optimal forms.
711 One of the issues on the reservation price policy concerns whether to announce the true value or a false 
value. However, this is not the issue addressed in this paper.
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shirking throughout afterwards, we need to put a constraint on each agent’s bid. 

Specifically, for each value b‘ , an end of contract reward ah' 71 is required as part of the 

total cost. The lowest cost bidder wins the project and will be assigned the contract 

associated with the second lowest bid. The loser is given nothing. If both agents bid the 

same total cost, the project is allocated randomly between them.

Firstly, it can be checked that bidding the principal’s reservation price is the 

dominant strategy. To see, suppose b‘ > A ,. If b‘ < b' and b 1 > A , then the project will 

be finished by agent i and its utility for this case is: a(b' -  A ') + a b ' . If b‘ < b‘ and 

b‘ < A , then the project is still given to i but will not be finished. Agent i has the 

shirking revenue ah1. If b‘ = b ' , then both agents share the project with funding 

associated with b‘ . However, if > b ‘ , then the project will be assigned to agent j  and 

agent /’s utility will be zero. Since bidding a lower value can guarantee at least a positive 

utility, to have the highest probability of winning the auction, it is dominant for each 

agent i to always bid A ,.

Secondly, given that each agent’s dominant strategy is to bid the principal’s 

reservation price, both agents will be assigned randomly (with probability in the

symmetric case) the contract associated with A ,. There will be only a probability 

u 2 + u(l -U ) = u  that the project can be finished at time A ,. For other cases, the agents 

will shirk right through A ,. Hence the principal’s expected utility will be:

u{V -A , -cxA, | + (1 — X>) {—A,) ,

71 This constraint is equivalent to the moral hazard constraint. (Equivalently, the hid could be interpreted as 
including the reward «/),).



which will be smaller than that from the optimal auction: \) (V  — A I | +

(1 — \j ) {V — ( I +  o O A ,- ( I  — tx)\)(A, -  A , )) for a sufficiently big project value and a 

sufficiently big difference between two types7’. Since for each winner there is only a 

probability u that full effort will be put in. the separation property does not hold either. 

We write this result as a proposition.

Proposition 3.5

In a second-price auction where the bidding object is the total cost for a long term 
project and there is a moral hazard problem, each agent will bid the principal’s 
reservation price and neither the revenue equivalence theorem nor the separation 
property will hold in this auction.

Next, we use this second-price auction to address an issue that is often confronted in 

long term contracts: the cost overruns problem. Cost overruns have already been noticed 

since early research, for example, Scherer (1964) concludes that “just as in weapons 

acquisition, cost overruns are quite common in advanced commercial product 

development efforts”. However, there is little theoretical discussion concerning this issue. 

In a single agent repeated contract game, Lewis ( 1986) concludes a Bayesian equilibrium 

where the reputation effect keeps the agent performing well in early stages of production, 

but as the principal learns more about the agent’s private information over time, the 

reputation effect decreases and hence production cost will be higher in later stages. Arran 

and Leite (1990) also show that the compensation scheme arises as the project nears its 

completion.

In addition to these compensation changes within the contracts, there is a different 

interpretation of cost overruns by Scherer (p. 155): “overrun refers only to increases in 12

12 The condition will be similar for u smaller difference between two types.
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cost above the negotiated target when there has been no change in the contract’s 

qualitative and quantitative requirements”. In his study of the weapon acquisition 

process, Scherer mentions a very interesting piece of evidence about cost overruns: 

“Secretary of Defence... claimed that cost estimates submitted by both Boeing and 

General Dynamics... were unrealistically optimistic (p. 176)”. In other words, there is a 

built-in cost overrun induced by the competition among potential contractors. To proceed 

with our analysis, I would like to quote another piece of evidence in the same report: 

“Usually a ceiling price (historically, from 115% to 135% of the target cost) is negotiated, 

setting a firm limit on the amount of cost plus profit the government will pay in the event 

of a large overrun”.

It is argued that this kind of built-in cost overrun does exist and is caused by the 

mixed effects of competition among agents and expectation of the price ceiling in case of 

overrun” . The intuition is as follows. The setting of a price ceiling actually extends the 

effective deadline to the extent of the ceiling. Imagine a contracted agent who knows in 

advance that there will be contingent extension of the funding period (and the reward). 

Since a longer funding period implies a higher utility, the agent will find it optimal to 

delay his effort (which is unobservable by the principal) and make the contingent 

extension realised. Hence in a single agent case, there will be an extra rent from 

extension. However, when there is more than one potential agent, each of them knows 

that its effective deadline is the target deadline plus the extended period. Given the other 

agents bid the lowest possible value and obtain this extra rent, agent t will find it optimal 

to forgo some of his extra rent and bid a lower value to have a higher chance of winning 

the contract. Therefore, in equilibrium, each agent will underbid their values to the extent

”  Quirk and Teresawa (1984), and Gaspar and Leite (1989/1990) address independently the relation 
between selection bias and cost overrun. The intuition they use is the “winner's curse phenomenon". As 
they use common value and single stage models, the present model is therefore different from theirs.
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the contract. Therefore, in equilibrium, each agent will underbid their values to the extent 

that the extra rent from extension is driven down to zero and hence there is a built-in cost 

overrun. The detail of this idea is left for further research.

3.6. Symmetric Beliefs

In this section, it is assumed that neither of the involved parties has private information 

about A , which corresponds to the stochastic setting in the R&D literature. Under 

symmetric74 * beliefs, we discuss how the opportunism problem affects the agent’s effort 

decisions and then look for the optimal funding contract. It is shown that the funding 

length is not longer than the contract without the opportunism problem. Later, we 

investigate the impact of contract renewal, the issues of lock-in effect and the choice 

between long-term and short-term contracts. To simplify the analysis, it is first assumed 

that both parties do not anticipate the renewal of the contract. We can justify this case by 

picturing that there is a sequence of principals and agents, and each match of them is 

allowed only one attempt at finishing the project (i.e., one contract). The result shows that 

the lock-in effect persists and a series of short-term contracts is preferable to a single 

long-term contract. A short-term contract refers to a contract that lasts for one unit of 

time (such as one execution period), and a long-term contract refers to the optimal 

contract. Finally, we discuss the case when both parties can anticipate the contract 

renewal, for which case our result shows that no transaction will ever happen.

3.6.1 Symmetric Beliefs W ithout Renewal

74 More specifically, the literature assumes the distribution to be an exponential function. See I.ucas (1971)
for an example of a monopoly firm, and Lee and Wilde (1980), Reinjtanum (1982), Harris and Vickers 
(1987) for examples with rival firms.
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Keeping the assumption of a single self-interested prineipal and single agent, we assume 

that neither of the involved parties has private information about A . Both parties have 

the same belief that A is drawn from (0,°°) by a distribution function F(A), with 

density function /(A )75 and /(A ) > 0 for VA . This setting corresponds to the stochastic 

nature in the R&D literature. One can think of “eureka” kind of projects, where the agent 

puts in effort without knowing how long more it will take before completion. It is 

assumed that once the innovation comes out76, it becomes publicly known. Concealing 

the innovation is excluded in this model. Further assumptions on the distribution form 

will be imposed as we proceed with the analysis.

The principal starts by offering the agent a contract77 {7\G), where she commits the 

funding for T period, and if the innovation comes out any time before or at T, the funding 

stops immediately and the agent is given G as reward; however, if the innovation never 

happens before or at T, the funding stops after T and the agent is not given any reward. 

The constant reward can be interpreted as the prize (a patent or monopoly profit) of R&D 

activities (e.g., Reinganum (1989)). The agent responds by accepting or rejecting this 

offer. If the agent takes the offer, he has to make a sequence of working and shirking 

decisions as described in Section 3.2. Keeping the no discounting assumption. Lemma

3.3 says that if the agent decides to put in effort, he will delay the effort till the last part of 

the funding periods (i.e., he will not put in effort and then shirk at any point). The proof 

of Lemma 3.3 is presented in a discrete version, as it provides a better picture of the

7' The setting of distribution is the same as section 3.4, but now even the agent does not know F(.). The 
assumption of continuity is for technical convenience, as the derivation of optimal contract will be very 
difficult in a discrete setting.
7,1 Only when the innovation comes out, the involved parties know the true value of A .
77 We restrict to this contract form as it is most used in the K&l) literature, (i can be seen as a patent.



agent's choice at eacli point. To do so, we need to re-deline the variables. Firstly, assume 

the index in discrete setting takes the form of natural numbers, that is, l= 1, 2, 3.... Hence, 

a number t refers to the value from t -1  till t in the continuous version. Next, denote

p(A = /):=]" | / ( A)r/A as the probability that the completion time needed is t. As it is

assumed that / ( A )> 0 , we know p (A )> 0 . Further, define p(A = t\A > k)

:= f /"(AlA > k)dA , where /'(AlA > k) is the conditional density function given A > k .Jt-\'

As / (A) > 0, it is also true that / ( A|A > k)>  0. Lemma 3.3 is proved using this adjusted 

setting.

Lemma 3.3

It is not optimal for the agent to put in effort first and shirk later.

P roof: At an arbitrary time t. t < T , assume that the agent has put in effort for k periods. 

Conditional on the project not being finished before t, denote p(A = k + l|A > k) as the 

conditional probability that the project will be completed if the agent puts in effort once 

again. Consider the following two strategies from t on, with the only difference in the 

order of actions at time / and t+1: strategy A specifies the agent to work at t and then 

shirk at t+I\ strategy B specifies the agent to shirk first at t and then work at t+l. The 

expected values for these two strategics arc denoted by W* and W" , where

W,A = p(A = A: + l|A > A:) • G +(1 -  p(A = <: + l|A > k))(a +W,+2 ) .
and

W," = a  + p( A = & + l|A>fc)'G  + (l — p( A = k + l|A >k))W ,+2 .
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where W‘+2, i = A, B is the agent’s value function at t + 2 given k+l ( A > k + \ ) periods 

of effort from Strategy A and Strategy B respectively. The explanation for W/ is: by 

putting in effort for the k + l'1' time, the agent has a probability p(A = k + 11A > k) to 

finish the project, and obtain the reward G from completion. If the project is not finished. 

Strategy A specifies the agent to shirk from t + 1 till t + 2 and get the shirking benefit a . 

W,+2 *s *he value at time t + 2 provided the project is not finished after k + I periods of 

effort. W," is explained in a similar manner. Note that, since the two strategies coincide 

from t + 2 on, we have W,+2 = W,+2 • Further, since /?(•)> 0 by assumption, W,H — W/ 

= a/)(A = k + l |A > k )> 0 . Hence, the agent can be better off using strategy B, and cannot 

be worse off. Since we can take t+J to be the last effort period before a period of 

shirking, we can conclude the lemma. Q.E.D.

Given Lemma 3.3, denote n as the agent’s committed shirking period before he puts 

in effort henceforth until T. In the following, we look for the optimal n for a given 

contract {7\G}, and note that we are back to the continuous setting. The agent’s utility 

for a given contract is:

an + ¡'g BF(A) .
Jo

The agent’s expected utility is the sum of shirking benefit an and the expected reward 

from completion G F (T -n ) .  To ensure the existence of the maximum and simplify 

analysis, we assume F "(A )< 0 , which can be supported by an exponential density
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function <■ " , as most assumed in the R&D literature. The agent maximises his expected 

utility with respect to n, that is.

max{cut + G ■ F(T — «)} (3.24)

St. n > 0 .

Denote n* as the optimal value of n, and the FOC is:

a  — G • f ( T  — n*) = 0 ,

or equivalently,

= (3.25)

The existence of n* is defined, since > 0 and /  is continuous. Two implications can

be drawn: firstly, n* is positively related to T with derivative 1, which means that when 

the agent is also uncertain about the time needed to complete the project, a longer funding 

period will only induce more shirking. Secondly, as we assume F"(A) < 0 , it is clear that 

n* is negatively related to G, implying that a higher reward can motivate the agent to put

in more effort. For notational simplification, denote / “'(—) as t(ot,G). Together with
G

the concavity assumption, we know that t(a ,G ) is increasing in a  and decreasing in G. 

Next, the principal’s expected utility for a given {T,G ) is:

-G)c/F(A) —[n Ai/F(A) + ( 1 - J j " n*r/F(A))(7' -«*)].
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As there is no diseounting, the prineipal will have to waste n* before the agent actually 

puts in effort (the second term). For the third term, note that since the agent will put in

r T - n *
effort from n* until T, the expected cost for this part will be J A <//•'( A), where the

funding stops once the project is completed. Simultaneously, the principal can obtain the 

project value V deducted by the reward G (the first term). Finally, if the project is never

fin ished w ith in  T, the probability o f which is (1 -  J < fF (A ) ) , then the principal has to

waste the funding T — n* in the end. To make the following analysis reasonable, we 

restrict to the case when V is sufficiently big so that the principal’s expected utility will 

be positive for any optimal values of T and G.

The principal’s problem is to maximise her expected utility with respect to the 

contract (7\G):

max fr ~n*(V — G)dF(A) — [n * + f? "* Ar/F( A) + (1 -  fr ""* dF( A))(T -  n*)] (3.26)
j  q  Jo  JO JO

St n*> 0.

The constraint comes from the requirement that any funding period inducing a negative 

n* will be infeasible. To solve the problem, firstly, since funding is costly to the 

principal, without violating the feasibility constraint, T should be set at the lowest 

possible value 7 '*=T(a,G ), implying that in equilibrium the principal will fund the 

project just long enough to avoid any shirking. Secondly, since when G —* 0 the 

expected utility approaches 0, the optimal G must be bigger than zero7*. G*7V is given by:

,H Recall that V is sufficiently big for a positive expected utility in the solution. 
n  1'he existence of G* is justified by the differentiability assumption of F(.).
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G* = argmax{(V- G)F(x(a,G ) ) - ( |  A</F(A) + (1 -  F(i(a,G)) x(a ,G )l|. (3.26)’

To sum up. when the agent’s effort is unobservable, the optimal contraet [T*,G* | 

describes a funding period which induces no shirking, and a positive reward for 

completion. A useful exercise is to compare this contract to the contract with observable 

(contractible) effort. If the effort is observable, the agent will not shirk. Hence G has no 

incentive effect for the agent. As G is costly to the principal, the optimal G for this case is 

therefore zero. To decide the contract length, the principal has to maximise her expected 

utility which is:

The expected utility consists of the expected project value and the expected funding cost.

funding stops once the project is completed, and hence the expected cost will be

Proposition 3.6 shows that the funding period with unobservable effort is no longer 

than the contract with observable effort.

Proposition 3.6

When neither the principal nor the agent has private information about the finishing 
time, the principal funds the project for a period no longer than the contract without a 
moral hazard problem.

Since the agent will put in full effort, the expected project value will be jV</F(A). The

. However, if the project is not finished within the funding period, the principal

will waste the funding T, the probability of which is (1 -  Jr/F(A)).
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Proof: Let 7, T < °o denote the optimal funding periods for the principal’s maximisation 

problems with observable and unobservable effort respectively, that is,

T = argmax{W(7’) - ( f  Ai/F(A) + (1 - /•'(7'))7'1},
T

and

f  = x(a,G*) = arg max{(K -  G*)F(T)~ | [ Ar/F(A) + (1 -  F(T))T] ),
r Jo

where G* is the optimal reward defined in (3.26)’ and T is the optimal funding period 

such that n*=0. Recall from equation (3.26) that shirking is costly, hence it is optimal to 

set F = X(a,G) which induces n*=0. As G* is the optimal reward, ceteris paribus,

F = X(a,G*) will be the optimal setting of T that maximises the principal’s expected 

utility. The proposition says that T > T , which is to be proved by contradiction. Suppose 

T < T . Then by definition of maximisation:

VF(T)-[j 'AdF(b) + ( l -F(T) )T]Z VF(T)-[\ '&lF(A) + ( \ - F ( f ) ) T ] ,  (3.27)

and

(V -  G*)F(T) -  [J W ( A )  + (1 -  F(f ) ) f ]  > ( V -  G*)F(T) -  [ J W (A )  + (1 -  F(T))T] ,

(3.28)

Equations (3.27) and (3.28) mean that,

V(F(T) -  F(T)) -  { - |W ( A )  + [(1 -  F(T))T -  (1 -  F(f))T] ( 2 0 ,  (3.27)’

(V -  G*)(F(T) -  F(T)) -  {J Ac/F(A) + [(I -  F(T))T -  (1 -  F(T))T] ) > 0 . (3.28)’

Let X:= (F(T) -  F(T)) > 0,
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Y:= - | W ( A )  + |(I -  R T ) } T - ( \  -  F(T))T].

Hence equations (3.27)' and (3.28)’ mean dial

- V X - Y >() =* - V X >Y ,

( V - G * ) X + Y >  0 => —(V — G*)X < Y ,

which is a contradiction. Thus it must be T >T . Q.E.D.

Intuitively, due to the unobservability of effort, the agent can possibly shirk without being 

detected. As putting in effort will not necessarily result in the success of R&D, for a 

given reward, the agent has to trade off the expected reward from innovation and the 

shirking benefit. Accordingly, for any given funding period, the agent will only work up 

to a certain period which is positively related to the size of reward. Anticipating the 

agent’s shirking, the principal would like to set a funding length such that the agent’s 

shirking period will be driven down to zero. Therefore, the presence of opportunism leads 

to a decrease in funding.

3.6.2  Th e  Renewal of the Contract

3.6.2.1 W hen the Aaent Can Not Anticipate the Renewal

Wc address this problem by assuming that the contract is not in a form of “redetermiahle 

fixed price contract"*0, hence wc need not worry about the renewing problem within the

*' Scherer (1964, pi 37) defines the redetermiable fixed price contract as "At the outset,... the buyer and 
the seller negotiate a tentative base price and a firm ceiling price ... Then, after the contractor has 
accumulated some experience in performing the contract (typically after 30% to 40% of expected costs has 
been increased, but sometimes also at the 1(X)% point), the parties negotiate a final firm fixed price, 
adjusting the original base price to reflect any changes in their cost expectation”.

104



funding period. The principal faces the contract renewal problem at the end of the 

funding period if the project has not been completed any time before. Provisionally, it is 

assumed that both parties do not anticipate this renewal from the outset, which is indeed a 

strong assumption and will be relaxed later. However with this assumption, we can 

imagine that there is a sequence of principals and agents, and each match of them is 

allowed only one attempt at finishing the project. Whenever the agent cannot finish the 

project within the funding period, the project will be delegated to another match of 

principal and agent111. The issues to be addressed are: How will both parties react in each 

renewed contract? and Will the principal necessarily renew the contract? In other words, 

will there be a lock-in effect?

First of all, to understand both parties’ behaviour, we need to check the posterior 

belief after the k ,h , k = 0,1,2..., round of renewal (if it exists). Denote Tk as the optimal 

funding period in each renewed contract. In equilibrium, both players know that the 

principal will set a funding period which induces no shirking. In other words, in each 

renewed contract, the funding period can induce the full effort of Tk . Define 

k
T(k) = X 7! ’ wtlich 's the accumulated effort that has been put into the project within

1=0

the past k contracts. At the end of time T(k) and provided the project is not finished, the 

posterior belief of A will be:

n * n k ) )  = T = F c m ) '  7<e(7’(*)’oo)’ (329)

*' It is assumed that the transferability of information to the next match of principal and agent is possible 
and free of charge (i.e., there is no intellectual property right problem).
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Given the distribution function, clearly f ( j \ T ( k ) ) > f ( j )  for j  e (T(k),°°). For the

k + I'* renewal, the new match of principal and agent face a similar maximisation 

problem as in the previous section, except that the belief function is now replaced by a 

posterior defined in equation (3.29). Instead of replicating the maximising process, we 

look at the FOC of the agent’s maximisation problem directly. Given T(k) , let it be the 

optimal shirking period such that

f ( T - n  + T(k)\T(k)) = ~ .  (3.30)
G

The accumulated effort T(k) has two effects112 on the agent’s shirking decision. 

Equation (3.29) says that the posterior assigns higher probabilities to time after T(k) 

than the original function. However, since F"( A) < 0 , the optimal it should be lower as it 

is T -  n + T(k)  rather than T — n in the argument of /(•|7'(A)) • These two effects make it 

difficult to measure the total impact of contract renewal on the agent’s willingness to 

work. However, rewrite equation (3.29):

/(A  + T(k)\T(k)) = /(A  + 7W )
1 -  F(T(k)) ’

and take the partial differentiation of this function with respect to T(k ) :

r)/(A + T(kjT(k))  f \A + T(A))(I -  F(T(k))) + /(A + T(k))f(T(k))  
dT(k)  (I -  F(T(k))2

whose sign depends on whether

Willi an exponential function, due to ihc “memoryless” properly, both effects will be cancelled out and 
hence the updated belief is the same as the original one.



f ' ( A  + n m i  -  F (T (k ))) + /(A + T(k))f(T(k))  > 0,

or equivalently,

- f \ A + n k ) ) c n n k n
f ( A  + T(k)) (1 — F(T(k)))

In words, the agent may or may not increase his willingness to work depending on the 

relative sizes of marginal probability rate and the hazard rate. Moreover, the sign of the 

second order differentiation of /(A  + T(k)\T(k)) with respect to T(k) is also ambiguous. 

However, it can be checked that when T(,k) —» °° , by twice using L’Hospital’s rule, the 

sign of equation (3.31) is positive81. The extreme case says that the agent will increase 

the willingness to work as the project approaches its later stages.

An interesting question is “ Will fc —» ?”, that is, Will the principal keep on

renewing the project if it is not finished any time before? or Will there be a lock-in effect

in funding the project? The answer is yes provided
df(A + nk) \T(k))  

dT(k)
> 0 84. To see why,

let us look at the principal’s expected utility when it comes to the k + l"* 1 renewal. Recall 

that in each renewal, it is assumed that the project will be delegated to a new match of 

principal and agent. The problem is similar to equation (3.26), with the difference being 

that the probability function is replaced by a posterior belief:

max) f ' (K — G)dF(A + T(k)\T(k))
/; .a Jo

-[/i + f ' ‘ " A i / F ( A  +  T ( k ) \ T ( k ) )  + (1 - (j^ '" J F ( A  + T ( k ) \ T ( k ) ) ) ( T ,  - m)]},

This is true under the additional assumptions that F'" < 0 and F""  close to zero.
I,'‘ litis condition will be violated by the exponential distribution.
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St it > 0  ,

or

m a x j '  11 V7 -  6" +  (7; -  ii) -  A] [<//•'(A +  T ( k ) \ T ( k ) ) ~  i]  (3 .3 2 )

St / / > ( ) .

By applying the envelope theorem, equation (3.32) shows that the principal will have a

higher expected utility if
df(A + T(k)\T(k)) 

dT(k)
> 0. Therefore, we can conclude that the

lock-in effect exists in this model when it comes to later stages of production. The 

intuition for this lock-in behaviour is because previous funding has become sunk cost, 

which has no influence to the contract renewal. Therefore as the probability of 

completing the project becomes higher, the principal will find it more valuable to fund 

the project.

Now, let us look at the choice between long-term and short-term contracts. Refer to 

the contract decided by equation (3.26) as the long-term contract, and the contract that 

lasts for only one unit of time as the short-term contract. As there is no clear definition 

about the short-term contract length, to simplify, I assume this “one unit of time” to be 

one in natural numbers, but other splits of time will not change the analysis. Recall that for 

the moment renewal is possible and both parties cannot anticipate this renewal. We need 

to compare the principals’ total expected utilities from a long-term contract and from a 

sequence of short-term contracts which are renewed up to the end of funding period in 

the long-term contract. Proposition 3.7 shows that from the principal’s point of view, a 

sequence of short-term contracts is better than a single long-term contract.

Proposition .1.7
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Willi symmetric beliefs and the possibility of contract renewal, if both parties do not 
anticipate the renewal, a sequence of short-term contracts is better than a long-term 
contract from the principal's point o f view.

First of all, recall T = x(a,G*) as the optimal funding period determined by equation 

(3.26). x(a,G*) can be either <1 or > 1. If x(a,G *) < 1, then our argument is not 

relevant. If x(a,G*) = l, the long-term and short-term contracts coincide. For 

x(a,G*) > 1 , note that the optimal funding period is dependent on the optimal G* which 

maximises the principal’s expected utility, and is defined in equation (3.26)’:

G* = arg max|(V -  G ) F ( x ( a , G ) ) ’Aí/F(A) + (1 -F ( t (a ,G )) x (a ,G )] |.

Moreover, let G„ be the reward such that x(a,G0) = l. For x(a,G*) > x( a ,G0) = 1, it 

must be that G < G * . From equation (3.32) we know that after i rounds of renewal, the

principal will set a funding period 7] which induces no shirking, that is, T: = /  '(—:| 0 .
G

where /(•]() is defined in (3.29). As we are concentrating on short-term contracts with 

duration 1, we need to define the reward such that 1 will be the optimal duration, that is,

G, = | g

As / (  |/)>  /( • ) ,  G, > G ,„. Further define |F| as the greatest integer for T, and let 

Ax - T - \ T \ .  At the very beginning of the project, each value of A is conceived to 

happen with density /(A ) , and therefore the principal’s total expected utility from a 

sequence of short-term contracts renewed up to time x(a,G*) is:

a
= /d |0 » = 1,2,...
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) — A]r/F( A)f'[(V  -  G „ ) -  A ]<//•’( A) + f  [(V -  G, ) -  A]</F(A)+...+ f <" ’i |( V -  G. „
Jo J l j|t(a.(7*)|-l 1

f|T(a.c;*)|+AT ~ |t(aX^)| I +| r |T(a.G*)| + At

+L . . „  K V' - G ir,.,«1() - A ] t/ / '( A ) - | | -  X  1 </F(A)- f t(„,;.y d F { A m a , G * ) ,

which is equivalent to

|t ( «  .<» * >| I ,

X J  ( V - C , W A ) + (V' - G |t(a.c„)^ (A) - { X  J ArfF(A)
i=() 1=0

i| t ( a  | U a / ^ ) j  I J H  t  ( a  ,(»•  H * A t

AdF(A) + [ 1 -  Y  f dF(A)-  f r/F(A)|r(a,G*)}.
“  Ji J|t(a.<;-)l

(3.33)

Since G0 is smaller than G* as shown above and G, > G(+| , by comparing equations 

(3.26)’ and (3.33), we can conclude that the principals’ total utility will be higher from a 

sequence of short-term contracts. The intuition for this result is: short-term contracts 

provide both involved parties opportunities to update their beliefs about the time needed 

to complete the project. Hence the principals in the later contracts can pay less 

compensation to induce the same level of effort from the agents. On the other hand, we 

can infer that the traditional R&D contract {T, G} may not be an optimal contract form 

for this case.

3 .6 .2 .2  When the Agent Can Anticipate the Renewal

When the agent can anticipate the renewal, no transaction will ever happens\  The 

intuition can be seen from the combination of the lock-in effect and the agent’s optimal 

behaviour described in Lemma 3.3. The lock-in effect says that the principal will keep on 

renewing the contract if the project has not been finished. Anticipating this, the agent will

In other words, the commitment to the contract tail to fulfil the intuition criterion.
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expect a total funding period that lasts for °» period provided that project is not finished. 

The maximising behaviour in Lemma 3.3 then suggests that the agent will only put in 

effort at the very end of period ~ . In the first round of contract (equation (3.26)), the 

principal will expect a working period T -«* = (). Hence, the principal will not fund the 

project in the first place and no transaction will ever happen. In this case, there is no 

difference between long-term and short-term contracts.

3.7. Conclusion and Further Research

Despite the fact that R&D expenditures have been increasing year by year, there is little 

theoretical literature specifically addressing the issues on R&D funding. Our model 

establishes a guideline for funding long-term contracts when confronted with moral 

hazard problems. As a benchmark of comparison, we first derive the optimal contract for 

a long-term project with only a moral hazard problem. The optimal contract form 

happens to be a multi-stage version of cost-plus-fixed-fee contracts, where the optimal 

fixed fee refers to the agent’s shirking benefit from the contract. After considering the 

agent’s private information, we derive the screening contracts for both discrete and 

continuous type settings. The screening contracts assign no efficiency loss to either type, 

which is in contrast to the usual conclusion in the literature. Moreover, within the 

continuous setting, we show that the principal will adopt a cut-off strategy in funding, 

and the cut-off point is affected by the fact that inefficient types (types greater than the 

cut-off point) will take the contract and shirk all through the funding period. Hence, the 

principal will fund the project for a shorter period in the presence of an opportunism



problem. Furthermore, the discussion of the optimal auctioning contract shows that the 

principal will benefit from the competition among agents in two ways: First, the project is 

more likely to be completed by an efficient type under an auction. Second, competition 

reduces the incentive rent for the efficient type as he is less likely to mimic the inefficient 

type who might have less chance to win the auction, however, this rent reduction will 

vary with the difference between the two types. Comparing the optimal auction with a 

second-price auction, we show that bidding the principal’s reservation price (rather than 

truth-bidding) will be the bidders’ dominant strategies, and neither the revenue 

equivalence theorem nor the separation property will hold. Finally, when neither of the 

players has private information about the time needed for completion, we show that a 

longer funding period will actually induce more shirking, and the optimal funding length 

is determined as the point where the agent’s shirking period is driven down to zero. With 

an additional assumption that neither of the involved parties can anticipate the contract 

renewal, we show that the lock-in effect persists under some constraints and a sequence 

of short-term contracts is preferable to a long-term contract.

The basic model can be extended in several ways. Firstly, in the stochastic setting, 

we can also discuss when the agent has private information about the distribution of 

completion time. The analysis will be similar to the deterministic setting but all in terms 

of expected values. Secondly, further research can consider the case of private 

information for both involved parties and discuss the optimal contract for this case. 

Thirdly, following the existing auction literature, we can further analyse the effects of 

risk aversion, correlated types and (when there is an auction) collusion among bidders. 

Finally, we can explore the cost-overruns issue in more detail.
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4.1 Introduction

Despite the recent liberalisation waves in international trade and service industries, we 

cannot deny that protection still has its popularity all around the world. In international 

trade, “since the launching of the Uruguay Round in 1986, over 60 developing nations 

have unilaterally lowered their barriers to imports” (Safadi and Laird (1996)), however 

the infant industry argument is still heavily applied in the hope that “with appropriate 

trade policies, the domestic government can alter the nature of market competition by 

raising the marginal cost of the foreign firm (via a tariff) or lowering the marginal cost of 

the domestic firm (via an export subsidy), shifting more of the rents towards the domestic 

producers” (Krugman and Smith (1994)). Likewise, in developed countries, protection is 

often requested by the injured industries to let them “buy time” to catch up (Miyagiwa 

and Ohno (1995)). The form of protection has changed from tariffs to non-tariff barriers 

(NTBs), which include quotas, voluntary export restraint agreements, various domestic 

price support schemes and other administrative measures. For example, as reported by 

Harrigan (1993), Japan has an overall weighted average NTB coverage of almost 40%



against ten major trailing partners, with France a distant second with an index of almost

2 7 % .

Protection is also an important issue in industrial economics, for example, patent 

protection plays a significant role in solving the un-appropriability problem in R&D 

activities, especially in highly imitating industries. Recently, intellectual property right 

protection has become a new issue in GATT negotiations, which “develop rules designed 

to extend the protection of intellectual property rights to all participating countries” 

(Safadi and Laird (1996)). Another example is in the area of environmental protection: 

before the authority launches a severe anti-pollution law, a preparation allowance period 

is usually granted for the affected firms to install anti-pollution equipment.

A common feature of the various examples is that protection is granted on the 

grounds that the protected firms can undertake a welfare-improving investment in order 

to adopt new equipment for international competition, to update machinery, to install 

anti-pollution equipment, or to invest in creating a new product or production process. 

The difference is that the preparation allowance period and infant or injured industry 

protection put emphasis on protection during the investment, but patents are usually 

granted after the success of the investment.

The literature of trade protection has focused on two issues: (1) the justification for 

protection (reasons for market failure), for example, the existence of externalities (e.g., 

Corden (1974)), informational barriers to entry (e.g., Grossman and Horn (1988)), and 

imperfect capital market (see Baldwin (1969) for critics); (2) the policy instruments to 

carry out the protection. The instruments include both price interventions (tariff, import 

tax or export subsidy) and quantity interventions (quota or voluntary export restraint) 

(Vousecn (1990)). Our model addresses another important but often ignored dimension,



that is, “How long should the protection last?” For this timing problem, most protection 

literature concentrates on comparing the welfare effects from temporary protection and 

permanent protection. For example, Miyagiwa and Ohno (1995) discuss whether 

temporary or permanent protection can speed up the protected Firm in adopting a new 

technology. There is little discussion in the literature on how to determine exactly the 

optimal protection length8'’. As concluded by Head (1994) in his study of the steel rail 

industry protection, “it seems that from an aggregate welfare perspective, the form of 

intervention matters less than duration”. The protection length is a critical factor for the 

success of protection and hence deserves more attention.

The patent length, on the contrary, has always been a main subject in its association 

with innovation efficiency. References can be found in Gilbert and Shapiro (1990), 

Klemperer (1990), Gallini (1992) and Cornelli and Schankerman (1995). Our model is 

related to Cornelli and Schankerman in making conclusions concerning patent policy in 

the context of incomplete information. In a different framework, they conclude: “to 

ensure that the optimal patent schedule is incentive compatible, the government must 

increase the patent life span” with firms’ innovation efficiency. Our results show that this 

is not always true when we take into account firms’ profits after the investment.

This paper uses a principal and agent model to discuss how, under various cost and 

revenue circumstances, a benevolent government should design the protection scheme so 

that the target firm with a moral hazard problem will undertake a time-consuming and 

welfare improving investment. Of course, the optimal scheme may involve not protecting 

at all. “Protection” is a general term for government interventions and can take the form

“  Matsuyama (1990) uses an infinite horizon and perfect information timing game to mixlel the threat of 
liberalisation as the incentive for the protected firm to invest, and concludes that only immediate 
liberalisation and successful fixed period protection are pure strategy Nash outcomes.



of, for example, an export or import tax and subsidy, a voluntary export restraint, or a 

patent. In other words, this is a general protection model87, which covers a rich class of 

both durinR-investment protection and post-investment protection. The assumption of a 

“time-consuming” rather than "one-shot” investment is to cope with the fact that most 

investments take time, and to avoid making counter-intuitive policy implication from the 

one-shot investment setting. For example, as written in a note of Miyagiwa and Ohno 

(1995): “the government can do better by imposing the permanent protection just before 

the date at which the protected firm would adopt new technology”. They apply Fudenberg 

and Tirole’s (1985) model to analyse the policy effect on the timing of technology 

adoption. As production cost is assumed to decrease over time, the firm has to trade off 

between early and late adoption. The optimal adoption date is determined as the moment 

when the marginal value of adoption is equal to the marginal cost of adoption. 

Government policy will affect a firm’s marginal value of adoption. Hence in the case of a 

quota, a permanent quota will increase the value of adoption and thus speed up the 

adoption, but at the same time it will create a negative welfare effect. Since their model 

has imposed the quota from the beginning of time, it is suggested that the government 

will be better off delaying the quota till the date just before the firm would adopt the 

technology (to reduce the welfare loss).

The basic model of this chapter firstly analyses the case with only a moral hazard 

problem. Since the investment outcome will also affect the target firm’s future profits, the 

incentive scheme has to consider different cost and revenue environments in order to give 

the target firm the right motivation. Various cases arc classified according to the target 

firm’s investment ability and investment willingness. The investment ability refers to

1,7 On the other hand, since we concentrate on the welfare effect of a single market, our model is a partial 
equilibrium model.



whether ihe target firm can afford the investment cost under its current profit, and the 

investment willingness refers to the target firm’s future expected profits after the 

completion of the investment. Hence depending on parameters, the optimal protection 

could involve no protection, one-part protection or two-part protection. One-part 

protection refers to using only during- or post-investment protection, and two-part 

protection involves both during- and post-investment protection. This result gives a 

significant policy implication, that is, as empirical evidence shows different conclusions 

about protection effects, some of which are positive (e.g., Baldwin and Krugman (1988)) 

and some are negative (e.g., Krueger and Tuncer (1982), Luzio and Greenstein (1995)), 

our result suggests that using a correct protection form will be critical for the success of 

investment and not all cases fit in the same protection form.

Furthermore, we conclude that whether the during-investment protection rate is 

increasing, decreasing or constant will not affect the investment efficiency, which is in 

contrast to the prevalent argument that decreasing protection rates can mitigate protected 

firms’ pain when adjusting towards liberalisation. Finally, after considering the target 

firm’s private information about the time needed to complete the investment, our results 

show that: (1) The screening protection scheme could possibly coincide with the efficient 

scheme when only the inefficient type is lacking in investment willingness, or when there 

are only liquidity problems; (2) The screening scheme is strictly better than the pooled 

scheme of the efficient type; however, whether it is better than the pooled scheme of the 

inefficient type is dependent on parameter values; (3) Whenever there is a liquidity 

problem, the efficient type’s post-investment protection will be no shorter than that of the 

inefficient type; otherwise, the reverse result applies. In terms of patents, this means that 

a more efficient firm does not necessarily need a longer patent life span to keep incentive



compatibility. The intuition is: when the target firm’s future profits are also connected to 

the success of the investment, the incentive rent (patent life) will vary with the cost and 

revenue environments.

The rest of Chapter 4 is organised as follows. Section 4.2 first derives the optimal 

protection form from a general protection scheme, including a deadline and a sequence of 

protection rates. Next by assuming only a moral hazard problem, we discuss the optimal 

protection schemes under various cost and revenue conditions. Section 4.3 derives the 

screening protection schemes in the context of incomplete information, and we make the 

comparison between the screening scheme and pooled schemes to find a better protection 

contract. Section 4.4 contains conclusions and suggestions for further research. 

Appendices 4.1 and 4.2 contain the proof for Lemma 4.2 and the welfare comparison 

among various protection schemes.

4.2 The Model8"

Consider the case where a monopoly (domestic) firm8'' is facing a time-consuming 

investment, for example, this investment could be to equip the basic technology 

(experience) in the case of an infant industry, or to update machinery to catch up rival 

firms in the case of an injured industry, or to help retraining employees to change their 

jobs in the case of a sunset industry, or to install anti-pollution equipment before the 

launch of an environmental law, or to research and develop a new product for the firm

“  The major difference between this model and Chapter 3 is that the investment outcome will affect the 
target firm’s future profits, but the success of the project in Ch 3 belongs to only the principal. The 
discounting is also new in this model.

This is a single principal and single agent framework. The cases with multiple agents or principals will 
not he discussed.



itself90. Indeed, these kinds of investments usually eannot he completed at once. Suppose 

further that this investment is welfare improving to the whole society. The main purpose 

of this paper is to answer the following questions in both complete and incomplete 

information contexts: “Linder what circumstances should a benevolent government 

provide protection to the target firm? How should the government design the protection 

scheme to achieve efficient investment?” The important issue is not how to implement 

the protection but how long and how much the protection should be. Finally, this is not a 

general equilibrium framework, as the protection effect is restricted to a single market.

The following cost and revenue structures are common knowledge. Firstly, let 8 be 

the discount factor, where 0 < 5  < I (i.e., we are using a discrete time setting). To use 

notation consistent with the previous chapter, let A be the investment time needed for 

completion41 under the target firm’s fu ll capacity (i.e., no shirking). The value of A is 

related to the target firm’s investment efficiency. For the basic model, A is now assumed 

to be common knowledge both parties, so that we can concentrate on the moral hazard 

problem first. The incomplete information case will be discussed in the next section.

To undertake the investment, it is assumed that whenever the target firm puts in 

effort, it will incur an opportunity cost of £k per period. The opportunity cost includes the 

direct investment cost and the indirect capital loss. For each I, the target firm’s profit and 

consumer surplus before and after the success of investment are denoted as:

7c(L) :firm's current profit92.

Emphasising “for itself is to distinguish from Chapter 3 where the benefit of project only goes to the 
principal.
" The deterministic setting is assumed throughout this chapter, as except for the R&D investment, the 
protected firms usually have better information about the investment time. For the R&D case, the literature 
for the deterministic setting can be traced to, for example. Katz and Shapiro (1985).
',2 Hie target firm's reservation profits are not normalised to zero, as it is easier to stress the problem with
the agent's investment ability.



S(L): current consumer surplus,

7t(H) Minn's profit after the completion of the investment,

S(H) x'onsumer surplus after the completion of the investment.

Finally, it is assumed that the target firm has limited credit, which is bounded above by 

its current profit 7t(L). This limit can be interpreted as a consequence of an imperfect 

capital market or the requirement of down payment or collateral on loans. This 

assumption is crucial, as when the credit is limitless, it will not be necessary to impose 

any government intervention, which would cause welfare distortion due to public 

funding.

For a welfare-improving investment, we need as a necessary condition Assumption 

4.1:

Assumption 4.1. [jc(L) + S(L)] < (7t(H) + S(H)]9’.

Assumption 4.1 gives the government an environment to consider protection. The 

derivation of the optimal protection scheme starts with the government offering a 

protection scheme to the target firm, and the target firm reacts by rejecting or accepting 

the offer. In other words, the government is acting as a first mover and the target firm is a 

follower. It is assumed that the government can commit to not change the scheme in the 

future94. If the target firm accepts the offer of scheme, it needs to make a sequence of 

effort decisions; if it rejects the offer, then it will stay in autarky which, depending on the 

environment, could be investing or not investing. We further assume that the target firm’s

There is no specification to the source of welfare improvement (which could come from producer or 
consumer).

The time inconsistency problem will he discussed briefly in the conclusion.
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effort is unobservable or cannot be monitored by the government, or equivalently, 

monitoring could be too costly to execute. The unobservability in the R&l) area scents 

justifiable. In the “employees retraining" case, for example, it is difficult to know how 

much the employees actually learn from a training course. However, we assume the 

outcome of the effort to be perfectly'1' observed, for example, the innovation of R&D 

activities will be publicly known.

Now, consider a general protection scheme which consists of a deadline and a 

sequence of incremental compensation. Since the target firm’s effort is not observable, 

the government can only relate the compensation scheme to the observable variable: the 

completion date. In the following, we first discuss a general compensation scheme 

without imposing a specific deadline, and turn back to the deadline issue later. Assume 

an arbitrary completion date T, where the target firm commits to finish the investment at 

the contracting date, and a sequence of contingent compensations of the following 

form96:

{r,(T),r2(-C)..... rt (x),rtt,(x),...}7=1, (4.1)

where 1,2,...°° is the time index starting from the moment the target firm accepts the 

offer, r (x) is the incremental profit added to the target firm’s profit at time t>7. Note that 

this setting docs not exclude the possibility of a non-contingent scheme, that is, 

r,(x) = r,(x') for x * x '.

In other words, we exclude the case with "imperfect" observation of the outcome.
%lt will be shown later that the government will not give the target firm a lump sum transfer at /= /  and 
nothing afterwards. The reason is because an excess protection during the investment has no effect in 
encouraging effort, and the maximal protection rate is bounded above by, say, a budget limit.
17 lliat is. the protection will give the target firm an extra benefit in addition to its current profits.
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Like most protection cases, we assume the government cannot punish the target firm 

if it does not finish the investment within the protection period, lienee, we have the first 

constraint on the general scheme:

Constraint 4.1. n(L) < k(L) + r:(T) < n .

Constraint 4.1 says that negative protection (punishment) is not allowed, and the maximal 

protection is bounded above by n . n can be interpreted as the government’s budget limit 

or the target firm’s monopoly profit (without competition from foreign rivals or new 

entrants).

Given the agent accepts the scheme, the effort decision at each time t is defined as 

follows. Let e, = 1 denote the case where the target firm puts in effort and e, = 0 for 

shirking. Define n, as the accumulated investment (effort) at the beginning of time t, that

i-1
is, n, = . Denote Vt(n,) as the target firm’s value at time t as a function of the

accumulated investment, i.e.,

V(n,) = max{7t(L) + /;(x) + ), tz(L) + r (x) — k + 8V^,(m + 1)). (4.2)

Equation (4.2) says that in each period, the protected firm trades off the values from 

shirking and putting in effort. Shirking gives the target firm a profit 7i(L) + r,(x) and a 

future value with accumulated investment remaining at n, . However, putting in effort 

gives it the same current profit n(L) + r,(x), an opportunity cost k and a next period 

value with accumulated effort n, + 1 . The completion date is defined as the earliest date 

that the accumulated effort level exceeds A , i.e..

122



X(<') where e = (e. ...) and x(<') could he <*>.

For simplification, denote x = x(e).

It is interesting to ask whether r,(x) should vary or he kept constant in the protection 

scheme (4.1). Since rt (x) appears on both sides of the effort decision, we know that 

whether the protection rate is increasing, decreasing or constant does not make any 

difference to the target firm’s choice between shirking and putting in effort in each 

period. Hence there is no loss to restrict them to be constant before the finishing date, i.e., 

r, (x) = r2(x) =...= rt (x) = r(x). The compensation pattern after X is not yet known, as no 

effort will be needed after the completion. Therefore we can rewrite the protection 

scheme in equation (4.1) as:

|r(T), r(X), r(x).....r(x), rttl (x), rt+2 (x)... )7=1. (4.3)

Now consider an arbitrary deadline T, where 1 < T < °° . The deadline does not 

necessarily mean the moment to terminate the protection, as the post-investment 

compensation is not restricted to zero. T is interpreted as a committed inspection date, 

after which the compensation will depend on whether the investment has been finished 

on that date91*.

As a leader (government) needs to take into account followers’ (firm) reaction to 

make her decision, we have to discuss the target firm’s effort decisions first and then 

determine the optimal protection form. First of all, we can classify several cases

ll means “¡it the end of lime 7” .
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according to the target firm’s investment ability and willingness. When k >n(L) ,  the 

target firm is constrained by eredit limit, and hence will not put in effort without 

protection. When k < 7t(L) but k > k* , where k * is defined as satisfying

£ 8 M7 i( L ) - £ 8 M** + j£ 8 " l7r(//) =
i =I 1=1 t'=A+l i=l

or equivalently,

¿ 8 M[7t(//)-7t(L)]
** = — -----*---------------. (4.4)

£ 8 -
1=1

then although the target firm’s current profit can cover the investment cost in each period, 

the cost is so high that the future benefit from the investment cannot cover the overall 

opportunity cost. As k* is the critical value where the target firm is indifferent between 

investing and not investing, when k < min{Jt(L),ifc* J , the target firm will invest in its 

own interest and hence there is no need to provide protection under complete 

information94. We can ignore this case in what follows (as the solution is trivial). When 

k > min{7t(Z.),it*), the targeted firm will not put in effort"10 without protection, and it is 

required that the first x elements of the protection scheme satisfy:

Constraint 4.2: r(T) + n(L) > k .

w for the incomplete information case ( A unknown), il is possible that a protection scheme is needed to 
screen the types.

The size of it will also affect the reservation utility of the individual rationality constraint: however, this 
issue will only matter when it comes to the incomplete information case in the next section.

124



One can imagine (hat ihe large! firm is able to borrow n(L) at the beginning of each 

period, as its credit is constrained by the current profit. Constraint 4.2 requires that this 

loan together with the incremental compensation must be big enough to cover the 

investment cost. The following lemma will simplify our discussion about the target firm’s 

effort decisions. The government would prefer the investment to be finished before the 

deadline, hence

l^emma 4.1

For t  > T  . the cheapest compensation is to give {rTtl (x), rTt2 (x)...) = {0,0,...).

Lemma 4.1 says that if the target firm cannot finish the investment at any time before the 

deadline (i.e., x > T ), then since any effort afterwards will not change the outcome on 

the inspection date, the cheapest compensation is to provide no protection after T. 

However, for the case of x < T , we cannot say anything about it yet, so we leave this part 

as general.

The next lemma describes the target firm’s effort decision in each period within T. 

The following discussion can simplify the proof for Lemma 4.2. First, by Lemma 4.1 we 

know that the government is better off providing no protection after T if the target firm 

can not finish before T. Hence, the firm’s present value at time T+l for not finishing the

investment is the discounted sum of future profits: VTt,(nTtl <A) = X 8 Mrt(L).
1=1

However, if the target firm finishes the investment, the government will still provide 

protection {rrtl(X),rr+2(x)...), whose form is still unknown, and the firm’s present value

at time T+l for this case will be Vr+l(nT+l > A) = ¿ 8 " ' [ r 7>((x) + 7C(//)]. To simplify
i = I
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the notation, denote ^ 5 '  1 k 7>j('t) + Jt(//)| = // ami 'it(/.)=£.. To motivate the
1=1 , i

target firm to put in effort, the protection scheme must satisfy1111:

/i . C , C4-l\
Constraint 4.3: ^ 5 '  1 rrtl(X) must be such that --------- ---------k < (H -  L ) l02.

i=i 8

The intuition for this constraint is to require the protection scheme to provide a 

sufficiently high post-investment profit. The exact structure of post-investment 

compensation (rr+, ('t),r7.+2(x)...) will be discussed after Lemma 4.2.

Lemma 4.2""

For a general protection scheme that satisfies Constraints 4.1-3, there is a unique 
decision path where: (i) I f T< A, the protected firm does not put in effort for each 
t < T ; (ii) If T > A , it will shirk from the beginning till period T — A and undertake the 
investment for the last A periods.

Proof in Appendix 4.1.

Two implications can be drawn from Lemma 4.2. First, as r f  x) appears on both 

alternatives of the target firm’s decision function, we can conclude that whether the 

during-investment protection rate is increasing, decreasing or constant will not affect the 

investment efficiency, which is in contrast to the prevalent argument that decreasing the 

protection rates can mitigate the protected firms’ pain when adjusting towards

"" 'Hie analysis of the protection scheme is available for either n(ll) > n(l.) or n(H) S it(L ). Instead of 
directly imposing an assumption on 7 t(//)  and 7t( L ) , which will greatly restrict this model, we put it as a 
requirement for the protection scheme.
1112 This constraint comes from the proof of Lemma 4.2 in the Appendix 4.1.
"" Recall that after the target firm accepts the scheme, the effort decision happens in every period within T. 
That is, it is not a static decision that happens only at the contracting date.
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liberalisation and that the government should provide excess protection to induce 

efficient investment (Slaigcr and Tabellini (1987)). Hence, we have the following 

proposition.

Proposition 4.1

Excessive protection before the completion date cannot induce higher investment 
efficiency.

Second, the proof of Lemma 4.2 says that when n(H) = n(L) or n(H) < n(L), no 

investment will be undertaken without government intervention, since unless H — L is 

sufficiently high, the target firm will lack incentive to put in effort. This is a problem 

often confronted in most R&D activities as the un-appropriability problem, which is 

prevailing in industries with high spillover or imitation. A cure to this market failure of 

R&D activities is to provide patent protection (see Nordhaus (1969), Klemperer (1991), 

Gilbert and Shapiro (1991) for discussion of patent length and patent width). In the 

present model, this is equivalent to the truncated part of the protection scheme: 

K +,(T),rt+j(X)...}.

So far we know that, after imposing the deadline T, Lemma 4.1 says that for x > T , 

the cheapest compensation is to give {r7.+l(x),r7.,.2(x)...| = {0,0,0,...). Lemma 4.2 says 

that for reasonably high post-investment protection rates (restricted by Constraint 4.3), 

the government can only implement a completion date at x > T , as each agent will find it 

as best response to delay its effort till the last A periods of protection and hence x < T is 

not implemcntablc. While x < T  is not implementable, x > T is not desirable (by the 

definition of the deadline) to the principal. Therefore, we can concentrate on 

implementing a completion date such that X = T . The structure of this “reasonably high”
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post-investment protection sequence to implement x — T is defined as follows. As 

Constraint 4.3 requires only the sum of this truncated part to be sufficiently high so that

(I + 5 + . . . 8 A 1 ) <
8 A

^ 5 '  '|r,*,(T) + k(H) -  7t( L ) \ , there is no further restriction on the

components of the sequence [rTtl(T),rT̂ 2(T). . .}. However, Constraint 4.1 says that each 

component cannot exceed an upper bound n . Therefore, let ft =n-n(H)  and there is no 

loss in assuming that the sequence after T takes the form {r7>l(T),rr+2(7')...)

= n (7 \ Af):= {tc,7X,...71,0,0,...}I04. The interpretation of this form is similar to the setting 

of a patent, which guarantees the target firm a particular level of profit (through for 

instance, licences) within the patent length. Together with equation (4.3) and the 

definition of W(T,M),  we can rewrite the protection scheme as:

\r(T),r(T)..... r(T), Yl(T,M)).  For simplification, define FI(r, T):= [r(T),.. .,r(Tj].

Hence the protection scheme becomes {n(r,7'),FI(7',M)}.  Furthermore, we can 

abbreviate the protection scheme as:

Thus, we have pinned down the derivation of the optimal protection scheme into the 

determination of three variables: r, T and M,  subject to Constraints 4.1-3 and other

constraints to be discussed below.

"u Any smaller r,(T) < ft will require a longer post investment protection As there is no other restriction, 
we follow the idea of most patent literature and set the unit protection rate to the highest possible profit 
(usually monopoly). Also remind that M iv not restricted to be an integer.

T T

{r,T,M}:= {n(r,T),n(r,Af)} (4.5)
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To sum up, when the investment opportunity cost is not too high (or equivalently, 

the future profits from a successful investment are sufficiently high), the optimal scheme 

is to provide no protection. When the opportunity cost is high (or the future profits are 

low), as described by k > min{7i(L),(fc*), the target firm will not invest in its own 

interest, and therefore it will be necessary to provide a protection scheme {r, T, M) whose 

optimal form is defined as in equation (4.5).

A benevolent government maximises social welfare, the discounted sum of the 

producer’s profit and consumers’ surplus, with respect to [r,T,M\.  First of all, it is 

assumed that protection will impose a shadow cost"15 to the society, that is, for each 

incremental profit r(T), there will be a shadow cost X r(x) .  Hence for t < T , define 

7t(r) as the sum of current profit and the incremental profit from protection, that is, 

71 ( r ) :  = 7t ( L) + r ( T ) , and let S(r) be the corresponding consumer surplus, i.e., 

S(r):= S(L) -  (l + X)r(T). For an easier expression of the solution, we rewrite the 

protection scheme in equation (4.5) as {7t(r),T, M) . For t > T , n is the post-investment 

compensation granted for a period of M and the consumer surplus is S(H) — (1 + X.)ft. It 

can be checked that,

d[7t(r) + .S'(_r)j  < o and n + s (//) _ (i + X)n < 7t(H) + S(H), (4.6)
dr

implying that a higher r and a higher M will cause more welfare loss.

For a given scheme \n(r) ,T,M\ , the principal’s discounted utility for a successful 

investment is:

The shadow cost may come from public internal funding which is assumed by l.affont and Tirole (1993).
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¿ 8 '  11k(/)  + ,V(r)| + ¿ 8 '  , [7t(//) + S ( / / ) l - ( l  + A.)8'p(A/),
1 = 1 1-7+1

where S 7 p (Ai) is (lie discounted sum of the components in II(7\/V/) (where p(Ai) is 

increasing in M) and XS'p(M) denotes the total shadow costs for the post-investment 

protection"17’. Since the target firm’s effort is not observable, there is a moral hazard 

problem with the design of the optimal scheme. Moreover, the following discussion 

concentrates on implementing a successful investment, and to make the following 

discussion reasonable, we assume the welfare gain from a successful investment to be 

sufficiently high to cover the cost of the protection scheme.

Given the target firm’s best response, the equilibrium requires that the protection 

scheme must be consistent with the agent itself acting rationally. In other words, in the 

principal’s programming problem, except for Constraints 4.1-3, we need the following 

constraints to ensure that the target firm will accept the offer of the protection scheme 

and finish the investment.

Given a scheme \ n( r ) ,T,M) , the target firm’s utility for a successful investment is: 

¿ 8 '  't t ( r ) -  ¿ 8 M* + 8 r P(M).
i = l i = 7 -A  + l

Recall the definition of p (M) from the principal’s utility function and

P(M):= ^ 8 '  'n(H) + p(M), which is also increasing in M.  The interpretation of this
( = 1

function is: for each time before the deadline T, a unit profit Ji(r) is granted, and after T, 

n is granted for a period of M. From T+M+l on, no protection will be granted and hence

"* (I + X)fi 1 pi Af ) is put as a separate term since M is not necessarily an integer.

130



Ihe target firm lias 7t(//) each period. Lemma 4.2 says that for a given T, it is optimal for 

the target firm to delay putting in effort till the last A periods. Hence, the opportunity

7
cost only happens in the last A periods of T: ^ 5 '  {k .

Im T -A *  i

The first constraint is the Individual Rationality (1R) constraint, which says that the 

whole protection scheme will give the target firm at least the same utility as rejecting the 

scheme, that is,

¿ 5 ' ' M r ) -  ¿ 5 m* + 8 '> (M )>  ,07.
i=l i= T- A+1 i=l

(IR)

The reservation utility is the autarky profit level 8,_l7t(Z,), as the investment will not
1=1

be undertaken. Recall that we are discussing only the cases with k > min(7t(L),k*}.

Secondly, the Protection Rationality (PR) constraint says that taking the whole 

scheme will give the target firm at least the same utility as taking the first part of the 

scheme and staying in autarky henceforth, that is,

-  ¿ 8 i*'A:+8rP(M)> ¿ 8 '- 'j t (L ) .  (PR)
t=r-A+i /=r+1

When A is known and k > min{7t(L),k* | , PR means that the target firm will not benefit 

by taking the protection program but shirking throughout T, which gives the profit

1117 It is noted in Kreps( 1492) that the assumption of weak inequality is “to assume that ties are broken in a 
fashion that favours the first mover" (the government), in order to ensure the existence of equilibrium (p. 
604).
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^ 8 '  'n</-) + ^ 8 '  'it(L). Clearly if it docs not pay to shirk from T -  A + 1 , it will not
,-i i i*i

pay to start shirking hitcr.

Furthermore, Lemma 4.2 shows that the capacity constraint must be satisfied for a 

successful investment:

T> A.  (capacity constraint)

Rewriting Constraint 4.2 in terms of 7C(r), we have the Cost Limit (CL) constraint, i.e., 

it ( r ) > k . (CL)

Together with the non-negativity constraints: r,T, M > 0 , we have the programming 

problem (PI):

max
|lt( r ).T  .A# |

¿ 8 M[Jl (r) + S(r)] + ¿ 8 i-| [7t(//) + S (//)]-( l- t-^ )8 rp(Af)
i=I i=7+1

(PI)

St T> A,

i t ( r )  > k ,

¿ 8 Mi t ( r ) -  ' £ b ‘- ' k + 8 TP ( M ) z ' £ 8 ‘-'n(L),
1 = 1 < = 7 -A + l  t = l

-  ¿ 8 '  '<:+87>(M )>  ¿ 5 ' ' 'i i ( L ) .
i= 7 -A + 1  1=7+1

(capacity constraint) 

(CL)

(IR)

(PR)

In addition, we have to check that the solution of (PI) satisfies Constraints 4.1 and 4.3.

According to the relative sizes of k , i t ( L)  and k*. we can classify three cases: 

k* < k <n(L) , n(L) < k < k *, and k > max[n(L) ,k*) . Since different cases involve 

different constraints binding, we need to discuss each case separately to avoid confusion.
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4.2.1 k*  < k <71 ( L )

This is the case where the target firm can afford the investment cost each period (that is, 

there is no liquidity problem), hut the future profits of the investment are not high enough 

to cover the overall cost. To solve the problem, firstly, by the assumption of it < n(L) , 

the CL constraint is satisfied for any r > 0 .  Secondly, let us guess that the capacity 

constraint is biding, i.e., T = A (the lowest possible deadline that might induce efficient 

investment). Later we will check if this setting is optimal. Substituting T = A into the PR 

constraint, we have:

- £ 8 '  '* + 5 a/>(M)> ¿ S ' 1:!(L). (4.7)
i = l i=A +l

Equation (4.7) will be violated if we set M = 0 , since for k > k *,

- ^ 5 '~'k+ ¿ 8 Mn (//)<  ¿ 8 mjt(L), (4.8)
¿=1 i=A +l i=A+l

or equivalently,

5 A[-5  A ^ ^ - k  + —!— (n(H )~ n(L ))]< 0.
1—0 1—0

Keeping M = 0, we can check that the valuel<m of the PR constraint:

"* "Value" here refers in the value of I.US minus RHS of the equation.
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-  £ 8 '  ' k +  ¿ S ,_ l| 7 t ( / / ) - 7 t ( L ) ]
i * r - A  +1 I 7 > l

or equivalently,

5 7 [ -5  A Ac + —I- (7C ( / / )  -  7t(L))],
l —o I — o

is increasing in T (since 8 1 is decreasing in T). As equation (4.8) says that PR is not 

satisfied with the shortest possible deadline T = A, we could possibly solve the problem 

in two ways: one is to increase T, so that the value of PR will be increased up to zero to 

satisfy the constraint. However, this setting will still violate Constraint 4.3, and therefore 

we cannot solve the problem by increasing Tlm. The other solution is to increase M, 

which then implies that a single during-investment scheme cannot implement a 

successful investment for this case.

Let T = A and define M as the smallest M to satisfy PR2:

- £ S i‘lit + 8 4/>(A7) = ¿ 8 Mrt (L). (4.9)
i= l i=A +l

The existence of M  is defined, since n >n ( H) .  Moreover, since the post-investment 

protection is granted conditional on the observation of a successful investment at the end 

of time T, no more effort will be needed and therefore there is no moral hazard problem 

in the setting of M. Given this setting, we have to compare CL and IR to find out the 

optimal n( r ) . Given T, the only way to increase the target firm’s utility is to increase

This is shown in the proof for Lemma 4.2. The same argument will be applied to all the following cases, 
and hence will not he replicated.



K(r) or M , hut a higher Kir) or M will decrease the principal’s utility. To maximise 

utility, the government has to minimise the target firm’s utility. Therefore, given T = A 

and M = M , let us firstly guess that only IR is binding and define r as:

£ 8 ,~ln ( r ) - ]T ,8 , '* + 8aP(A7) = ¿ 8 '  'k(L). (4.10)
M /= I

Equation (4.10) implies K(r) = n(L) . As noted, the CL constraint will be satisfied for 

any r > 0 .

Furthermore, we need to check if Constraints 4.1 and 4.3 are Su’.’sfied with 

(7t(r), T, M) = (7i(L), A,M ) . Constraint 4.1 is obviously satisfied and by manipulating 

equation (4.9), we have

8 A P (M )-X 8 '- '7 i(L )
1 = 1

By using the notation from the proof for Lemma 4.2, we have H -  L > [1 + 8+...+8A~'], 
8A

and hence Constraint 4.3 is satisfied.

Finally, we need to check whether T = A is the optimal setting. Note that both T and 

M are costly to the government, since if we set T and M to be zero, the welfare would be 

maximal. Since T is set at the lowest possible value A and a higher T will still violate 

Constraint 4.3, we can conclude that T = A is the optimal setting. Therefore, the optimal 

protection scheme for this case is |Jt(L),A,M). This scheme says that the government 

will not provide any extra protection before the deadline A , since the target firm does not 

have a liquidity problem. However, if the target can complete the investment before or on
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the deadline, it will be granted the post-investment protection up to tt for a period of M . 

The setting of M is to provide enough incentive for the target firm to undertake the 

investment, and it corresponds to most patent designs, whose purposes are to create 

enough future profits for R&D activities. In other areas, for example, M could be 

interpreted as the tax-exempt period granted to an infant industry firm.

4.2.2 n{L)< k < k*

In this case, the target firm’s current profit cannot cover each period’s opportunity cost, 

but the investment can bring higher future profits than the current status. To solve the 

problem, first note that since n(L) < k , CL will be violated for some values of r. Second, 

let us guess that the capacity constraint is binding, that is, T = A, and hence the PR 

constraint has the form of equation (4.7). The difference from the previous case is that if 

we set M -  0, equation (4.7) will be satisfied, since k < k * .  Substitute T = A and 

M = 0 into the IR constraint, and let us first guess that IR is binding. Define K(r*) as 

the smallest value such that:

-  ¿ 8 M* + 8 AP(0) = ¿ S ' ' 1« (L).  (4.11)
¡=i i-i (=i

Since k < k * ,  equation (4.11) says that n(r*)<n(L),  which will violate the CL 

constraint. Alternatively, we can let CL bind, which gives n(r) -  k> n(L),  where 1R is 

satisfied with inequality. Finally, it can be checked in a similar way that Constraints 4.1 

and 4.3 are satisfied and the setting of T = A is optimal.
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To conclude, for this ease we have (jt(r), T, M ) = [k, A,0), which gives the target 

firm extra protection for the during-investment periods and stops the protection 

afterwards. This form corresponds to most infant or injured industry protection. In infant 

industries, the target firms suffer most from the shortage of funding, even though their 

prospects are promising.

4.2.3 k > max|7t(L),k*)

In this case, the target firm has no ability or willingness to invest. One can think of most 

basic industries such as steel and cement industries. Investment in these industries is 

capital consuming and future profits are not very high under foreign competition. To find 

the solution, firstly, as in the previous case, CL will be violated for some values of r, 

since ML) < k by assumption. In addition, if we set T = A and M = 0 , the PR constraint 

will be violated as shown in equation (4.8). Proceed as with case 4.2.1 in setting 

M — M , as defined in equation (4.9).

Given T = A and M = M , let us start by guessing IR to be binding which gives 

Mr*’):

X S ' - ' n i r * ' ) -  X s " '*  + S a /’ (A7) = ¿ 5 '  ' n ( L ) .
i= l i= A -A + 1 1 = 1

By equation (4.9), this means that n(r*') = n(L),  which again violates the CL constraint 

since ML)  < k . On the other hand, allowing CL to be binding gives 7t(r) = k > ML)  and 

1R will be satisfied with inequality. Finally, we can check that Constraints 4.1 and 4.3 are 

satisfied and the setting of T = A is optimal.
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To conclude, for this case we have [n(r),T, M) = {k,A, M \ . The optimal protection 

scheme solves the target firm’s liquidity problem during the investment period, and 

further rewards it with the profit ft for a period of M after the completion.

Notice that the during-investment protection basically has no beneficial incentive 

effect but is for the credit constraint problem. The main result of this section is 

summarised as Proposition 4.2.

Proposition 4.2

Depending on the cost and revenue environments, the optimal protection could involve 
no protection, one-part protection or two-part protection.

This proposition can provide an answer to the controversy in empirical results, some of 

which agree that protection has a positive effect, for example Baldwin and Krugman 

(1988) conclude that “Japanese import protection aided the growth of their 

semiconductor industry”; but some disagree, for example Krueger and Tuncer (1982) use 

data from Turkish manufacturing industries to show that “there is no systematic tendency 

for more protected firms or industries to have had higher growth of output per unit of 

input than less protected firms or industries”. Luzio and Greenstein (1995) report the 

result of the Brazilian government’s strong protection on the electronic goods: “most 

observers argue that Brazilian firms did not come close to reaching parity with their 

potential international competitors in most markets”. Our result suggests that not all cases 

fit into one protection form, and efficient protection should take into account the target 

firm's investment ability as well as investment willingness. If the wrong form is applied, 

the protection will probably fail to achieve its purpose in inducing the investment.

138



4.3 A  is unknown to the government

In ihis section, we discuss the ease where the target firm has private information about 

the time needed to complete the investment. The private information comes from, for 

example, business secrecy or expertise. The main issues of this section are: How will the 

protection scheme change after taking into account the agent’s private information? More 

specifically, will the principal give excess protection (in both during- and post­

investment periods) to ensure incentive compatibility? Will the principal be better off 

offering a non-screening protection scheme? Can the protection scheme maintain 

investment efficiency? To answer these questions, we need to find the optimal screening 

protection scheme in the presence of incomplete information.

Keeping the assumptions of profits and opportunity cost as in the previous section, 

this section further assumes that the target firm knows the value of A , and the 

principal110 anticipates that this value can take two possible levels A( and A2 with 

respective probabilities u and (1 -  u ) . The information structure is common knowledge.

Firstly, denote ki * as the critical investment cost where the target firm i is 

indifferent between investing and not investing under the current profit* 1", that is,

(L)]
b * _ , = A>+1_____________
K , ~  A,

1 5 -
i=l

1,0 The discrete (instead of continuous) setting is better for understanding the different subcases in this
section.

A ,  A , «  -

111 In other words, ki * is such that £ 8 '  ' t i i / , ) - 8'  '*, * + £ 8 '  ' ti( //)  = £ 8 '  'n (L ) .
i = 1 » = 1 / = a , + 1 i = i
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Since A, < A ,, we know that k2* < k, *. Together with the relative sizes of k, * and 

re(L ) , concerning the target firm’s ability and willingness to invest, we can classify six 

cases: k < min(7t(L),*2* | , k2 < k < min {it (/.),£ ,'), k [ < k < n ( L ) ,  T i (L)<k<k ’2,

ma\{n{L),k2 ) <k < k't and max{7t(L),fc‘ ) < k . As in the previous section, the case with 

k < min{n(L),k2) will be ignored because the solution is trivially not to provide 

protection. Recall that the following design is intended to look for a screening protection 

scheme and we will discuss later whether it is better than a non-screening scheme. 

Moreover, since the target firm has private information, the derivation of the optimal 

protection scheme mainly relies on applying the revelation principle, proposed by 

Gibbard (1973), Green and Laffont (1977), Dasgupta et al. (1979) and Myerson (1979), 

which says that any efficient outcome of any Bayesian game can be represented by a 

truth-telling incentive compatible direct mechanism. A mechanism is a method to 

allocate resources among players. For example, the optimal protection could be 

determined through a bargaining process. The revelation principle says that we can 

restrict our attention to a direct mechanism, which requests the privately informed player 

to report its type to the uninformed player. The allocation of resources is then dependent 

on what is reported. Of course, the informed player could mis-report in its own interest. 

An incentive compatible direct mechanism requires that the allocation among resources is 

designed in such a way that it will be a best response for the privately informed player to 

report truthfully. To make the following discussion reasonable, we restrict our attention 

to the case where the welfare improvement is sufficiently high to have both types finish 

the investment.
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Let A, and A, he the reported values from types A, and A, respectively. By the 

revelation principle, we can concentrate on looking for a truth-telling equilibrium, i.c., 

A,  = A,, / = 1,2 . Denote the respective protection schemes for A, and A 2 as 

)7t(/i ),7'I,A/,| and |7l(r,),r2,M2} .

Given (7t(q ),Tt , M,} and [n(r2),T2,M 2 \ , the government’s expected utility for a 

successful investment is:

T,

(n(r,) + S(r,)) + X  + S(H)] -  (1 + X)8"'p(M,)]
t=i i=r,+1

t2 oo
+(1 -  u ) [ £  5 " ' (n(r2) + S(r2)) + X 8 " ' W H )  + S ( H ) ] - (  1 + 705r’p( Ai2)]},

¡=1 i=7i+i

where each term has the same meaning as in the complete information case, and the total 

utility is the weighted sum over two types. For each type, the agent’s utility for 

completing the investment is:

¿ S ’-'tc(r,) -
i= l ¿»TJ-A.+I

The interpretation for every term is similar to the complete information case. For each 

type to finish the investment, the protection scheme must first satisfy:

7", ^ A ,.

T2 > A 2.

For those whose investment abilities arc limited (i.c., n(L)<k) ,  these are “capacity 

constraints", since if the during-investment protection length cannot cover A , , the best
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response oi type / is not to invest (Lemma 4.2). However, for those whose investment 

abilities are not limited (i.e., n(L)> k ), these constraints need to be satisfied as well. The 

reason is: T, is an inspection date and the compensation henceforth depends on the 

performance at 7̂ . If Tt < A ,, the investment will not be completed on the inspection 

date, hence by Lemma 4.1 the target firm will get zero protection after the deadline. If 

k < ki *, the firm will still invest, as it would in the first place. For this case, there is no 

loss to require T( > A : , because no protection rt = 0 is always feasible. If k > k: * , the 

target firm will be better off shirking throughout the funding period, and hence the 

investment will not be finished. Overall, the constraint of T- > A; is necessary even if 

n(L) > k .

Secondly, the cost limit constraints must be satisfied:

7t(r, )> k , (CL1)

n(r2 )> k . (CL2)

Thirdly, remember that each protection scheme actually consists of two parts. The 

Individual Rationality (IR) constraints say that by taking the whole scheme, each type 

will have at least the same utility as staying in autarky"1. Since the autarky profits vary 

with cases"2, to generalise the notation, an index is defined as:

X = 1 if 7t( L) < k

= 0 otherwise.

and

"'"Autarky" means the situation when there is no protection.
" 2ln some cases, the target firm will invest without protection, but mimicking the other type will give it at 
least the same utility.
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R' r ( X . A , )  = X £ 8 '  'k ( L)

A,

+(1 — X) max X 8' '* + S 5' X S '- 'jKL) .
1=1

Rir(X ,A ) denotes the target firm’s autarky payoff. The meaning of R ir(X,A,) is as 

follows: if n(L) < k , the target firm certainly will not put in effort without protection and 

hence it keeps the current profits; if k(L)> k , depending on whether k < k: * or k > ki *, 

the target firm will or will not undertake the investment, and therefore the reservation 

utility is the maximum over these two profits. The IR constraints are written as:

r, t,

£ 8 MJC(r,)- 5L5 '_,A: + S /»(A /,) > Rir(X,A, ) ,  (IR1)
1=1 i= r , - A ,+ i

T, T2

]£ 8 " 'ji(r2) -  ^ 8 , lit + 8 r!/>(M j)> R"i(X,A2). (IR2)
/= i i = r ; - A 2+i

Next, the Protection Rationality (PR) constraints require that by taking the whole 

scheme, each type will have at least the same utility as taking just the first part of the 

scheme and staying in autarky henceforth. For example, when n(L)< k , this means that 

the target firm will not take the scheme but shirk throughout T. Following the same 

procedure in defining IR, define R l’R(X,n(ri ),Ti,A i ) as:

/?w (X,Jt(rj),7;,A,) = X £ 8 '  'k(L)

(4.12)
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where PK(n(r ) .T ,A , )

A,

~ 2 5 ' 'k,+ ^ 8 ,-|Jt(L)+ ^ 8 '  ’7t(//), i fT,<A, ,
1 = 1

max 5' 'ti (H), i f T, > Ar

RIR(X,n(rl ),TI,AI) is the utility from taking just the first part of scheme and then 

staying in autarky. Note that the discounted utility from the first part of the scheme 

appears on both sides of the constraint and will be cancelled out. When n(L) < k , the 

autarky decision is not to invest and hence we have the first term in equation (4.12). The

second term is the maximum between PR(Kfr:),Ti,Al ) and 2 $ '  'n(L).  The latter

means the utility for k > k, * , where the autarky decision is not to invest. The former 

means the utility for k <<:, *, where the target firm will invest in autarky. But depending 

on the relative sizes of the during investment protection and n(H),  PRinir^.T^A,) has 

three possible values: when 7] < A ,, the target firm has higher profits (since n(r() > n(L) 

by Constraint 4.1) for the first T{ periods. However, since the time needed for completion 

is longer than T:, the investment will not be completed on the deadline but the firm will 

still continue its investment and finish at A ,. When 7] > A,, it is possible that the target 

firm will finish earlier than the deadline. For delaying till 7], the target firm’s utility is:

r 7,
2 § '  '^(7;)- 2 ,8 ' 'kt + 2 S' 17t(//), and the utility for finishing earlier at A( is
,= i ¡=a , o

1 ”  The case with 1, ■ A will he excluded by the capacity constraints, however, to exhaust each possibility 
of the target firm’s autarky decision, we need to write it down here.
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/, A, 7.

X.8' 'n(r>)~ X,8' 'k, + X 8 — n(rl))+ X 8’ 'nUI).  The reservation utility is
/ = ! / = |

hence the maximum of these two utilities. The PR constraints are:

/1

X 8‘ + 5 ,|/,(Ail) > R,’K(X,K(rl ),7], A,),
/;

(PR I)

i2
X 8 " *  + 5 ri P(Af2) > /f™(X,7t(r2), r2, A2).
7;

(PR2)

Similar to the 1R constraints, the right hand side of the PR constraints also vary with 

types.

Finally, we need further constraints to screen the types. First of all, the Incentive 

Compatibility (IC) constraints say that taking the whole scheme that is meant for each 

type gives him at least the same utility as taking the whole scheme that is meant for the 

other type, that is.

X 8 " 7 t ( r , ) -  X 8," *  + 8r,7,(A'I) * i 8M*(r2) -  X 8 ' + S T' P(M2), (IC1)

When 7̂  < A 2, type A2 will not finish the investment at T, and this case will be 

considered in the IPR constraints defined as follows. The IPR constraints say that the 

whole scheme for each type should give him at least the same utility as taking only the 

first part of the scheme for the other type and staying in autarky henceforth, i.e..

i=r,-4,+i

and

if 7] > A2. (IC2)
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(1 PR 1)

and
t2

£ S mJI(r2) -  £ 8 '  ' k+6 ' ' P(M2) > R l’R(X,n(r,),T„A2) + ^ 8 '  'K(rl). (IPR2)
1 = 1

Together with the non-negativity constraints: r(,Ti, Mi > 0 , we have the 

programming problem (P2):

+(1 -  u ) [ £  5' 1 (Jt(r2) + S(r2)) + X  8 " '[« (» ) + S(H)J -  (1 + \ ) S hp(M2)]}
¿=1 ¡=r2+i

subject to capacity constraints, CL1, CL2 IR1, IR2, PR1, PR2, IC1, IC2, IPR1 and IPR2.

Since the constraints are case contingent, we need to check each case separately to 

avoid confusion.

4.3.1 k2 < k < min{jt(Z.),A:l*}

Since ri,Ti,M i are costly"4 to the government, these variables should be set at the lowest 

possible values without violating any constraint. In this case, there is no liquidity problem 

for both types, but the investment cost is too high for the inefficient type to cover the 

overall cost. Hence the efficient type will invest and the inefficient type will not invest 

without protection, and both CL constraints will be satisfied for any feasible r > 0 . To

ll4The reason follows the complete information case.

f | oo

(o [£  8M (it(r,) + S(r,)) + X  5,_l [*(//) + S(//)] -  (1 + X)5r'p(M ,)]
T,

max
|i t ( r ,  )T | ,A1},|»l(r2 ).7'2 .A2 }

i=1

T2

Constraints 4.1 and 4.3 also need to be satisfied by the solution. (P2)
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find (he solution, suppose first that both capacity constraints arc binding: '/] = A, and 

T2 = A 2 (i.e., the lowest possible deadlines that induce produce efficient investment). 

Later we will check if it is the optimal setting. Substituting the settings of Tt , we can 

simplify the PR constraints as:

- ¿ S ' - ' / t  + 8 a'/>(A/,) > - ^ 5 " k  + ¿ 8 m ji( « ) ,
i'=l i=I t=A ,+ l

- j £ d ‘-'k+ 8*’P(M2)Z  ¿ 8 mjc(L). (4.13)
i= l i'=A j+ l

If only taking the first part of the scheme, the efficient type has a higher profit each 

period till Tt (= A ,). Afterwards, his autarky utility is the value from completing the

investment. As k ’2 < k , PR1 will be satisfied for any A/, > 0 , but PR2 will be violated if 

we set M2 = 0 . Define M2 as the smallest M2 to satisfy the PR2 constraint"5:

As 00
- £ S " '*  + 8A!/>(A72) = £ 8 MJt(L). (4.14)

i=1 i=A2 + 1

Since we only know that M , = 0 can satisfy PR1, we will leave the setting of M , as 

general. Temporarily, we have {ZJ, Af,} = {A,, A/,} and {7,,M2 ) = (A2,A/2}. Substituting 

this setting into the other constraints, we can further simplify first the IR constraints:

£ 5 " 7 t ( r l ) - £ 8 ' l<:+8A'P(M l) > £ 5 '  ' n ( L )  -  ¿ 8 ' “'* + ¿ 8 m tc ( H ) ,
i= l 1=1 i=I 1=1 /= A | + 1

£ 8 " 7 C (r2) - £ 8 ' - ' ^ + 8 A¡P(M2) s £ 8 , ' n ( L ) .  (4.15)
1=1 1=1 i=l

Recall from the complete information case where we argue that the increase of 7 'will not solve the 
problem.
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From the IR constraints, it is difficult to tell which type will mimic the other because 

the reservation utilities vary with types. However, we have the 1PR constraints:

£ 8 '  ,7t(rl ) - £ 8 '  'k + 8*-P(Mt)
i=1 i=l

> £ 8 ‘ 17t(r2) + m axi- £ 8 ‘~'k,
1=1 [ /=A2-A, + I

“ ¿ 8 ‘~'k+ £ 8 '  '(7 t(//)-Jt(r2))|
(=1 i=A| + l j i=A2 + l

(4.16)

£ S '"7 t(r2) - £ 8 " f c  + 8 AiP(A72) > £ 8 ' 17t(r,)+ £ 8 ' '7 1 ( 0 . (4.17)
' = 1 1=1 1=1 i= A |+ l

To satisfy Constraint 4. l " 6, it must be true that IPR2 (4.17) implies IR2 (4.15). 

Manipulating equation (4.17) by using the definition of M, yields:

A, A, A.

£ 8 ,_l7t(/-2)>  £ 8 ' ~ ,7i('',) + 2 ^ 8 “ l7t(L). (4.17)’
j=i i=i ¡=a,+i

Constraint 4.1 says that IR1 will be satisfied if IPR1 is satisfied. Overall, if Constraint 4.1 

is satisfied, then both IR constraints can be replaced by the IPR constraints. Finally since 

T, = A ,, IC2 is not valid and IC1 is simplified to:

¿ 8 i- |7 r ( r , ) - £ 8 ‘-,<:+84'P(A/l ) > ^ 8 ' “l7t(r2) -  £ 8 " *  + S A!P(M2). (4.18)
( = 1 1 = 1 1=1 (= A: -  A | + 1

The relationship between 1PR1 (4.16) and IC1 (4.18) is not yet clear. If n(r2) > n ( H ) , 

together with M7 > 0  we know that equation (4.18) will imply equation (4.16) because

"'That is. n(r, ) i  n(l.).
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it >7t(/V). However, if tr(r2) < 7 t(//), then whether (4.18) implies (4.16) will depend on 

the size of 7t(r,). To determine 7t(r2), we need to check the 1PR2 constraint (equation

(4.17)). By letting equation (4.17)’ bind, we can see that n(r2) and 7t(r,) are linearly 

dependent, i.e..

As rc(r2) and 7t(r,) will be cancelled from both sides of IC1, there is no further 

constraint on n(r, ) except for Constraint 4.1. Hence, let us firstly suppose that Constraint 

4.1 binds for 7t(r,), that is, 7t(r,) = n(L) , which further implies n{r2) = n(L) by equation

(4.17)”. By this setting, we can see that IC1 (4.18) implies IPR1 (4.16), since M2 >0 and 

n > n ( H ) . Finally, let M,° be the smallest Mt that satisfies IC1:

To compare the relative sizes of M,° and M2, rewrite the above equation by 

substituting the setting of 7t(z*):

It can be checked that M f  < M2. To prove this, suppose Af” = M2 and let 

/> ((< ). (4.18)’ implies (1- 5 Al' A')X = 2 lS MJt(L)

^ 8 '  '7t(r2) = ^ 5 ' ‘'7t(r,)+ ¿ 8 ,_l7t(L). (4.17)’
1 = 1 ( = 1
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a,

Now, suppose M" < M 2 and let ‘A: + 8 a,P(A/2) = X + e , where e is the utility
A,

i=l

difference from setting M" and M2 (since P(.) is increasing and M,° < M2, we have

depending on the size of e , will possibly satisfy the PR1 constraint. Hence, it must be 

that M" < M2. Furthermore, whether M,° > 0  is dependent on the relative sizes of

5 ‘-,K(L) - ' 2J8 i-'k+ X 5 Mn(W) (the RHS of IR1) and 5m* + £ 8 mtc(£) (the

RHS of IC1). If the former is bigger, then IR1 should be binding and hence we set 

M, = 0; If the latter is bigger, then we set Mt = > 0 , which simultaneously satisfies

PR1 and IC1. So far, we have {7t(r, ),7^, M , ) = (Jt(L),A,, M,°) or {jtfLJ.A^O} and 

{7C(r2), T2,M2) = {7t(L),A2,M2) . It can be checked that IR, IPR, IC, capacity and cost 

limit constraints are satisfied. Finally, since PR2 and Constraint 4.1 are binding, 

following the same argument as in Section 4.2, it can be checked that Constraint 4.3 is 

satisfied with the scheme for type 2. Constraint 4.3 is satisfied with type l ’s scheme by 

assumption. By the same argument in Section 4.2, we can argue that the setting of 

7] = A, is optimal to the government. The result says that if type A, mimics A2, it

stands to get a reward M, and the benefit from delaying the investment cost; but to get 

this mimicking benefit, the efficient type will have to delay completion until A2 which is 

costly (since it doesn’t get k (H)  until later). So there may or may not be an incentive to

117 PR I has a reservation utility higher than the current profits.

i=t
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mimic A ,; it there is, M" is needed to ensure incentive compatibility. It is assumed 

feasible1 ls to have M,° > 0 ,  which is interpreted as the information rent paid to the 

efficient type.

4.3.2 k[ < k <n(L)

In this case, the investment cost is too high for both types to cover the overall cost, hence 

neither of them will invest in autarky. However, as there is no liquidity problem, the CL 

constraints will be satisfied for any feasible r by assumption. Suppose first that both 

capacity constraints are binding, which gives T, = A, and T2 = A2. Together with the

assumptions of n( L ) >k  and k'  <k , we can shorten the PR1 constraint as:

and the PR2 constraint as in equation (4.13) from the previous case. If we set M, = 0 and 

M2 = 0 ,  both PR1 and PR2 will be violated. Hence, except for M2 defined in equation 

(4.14), we can define A/, to be the smallest A/, to satisfy PR 1:

Any M , > M , and M2 > M2 will satisfy the PR constraints. As in the previous case, we 

leave the setting of M, as general and hence we temporarily have {Tj, A/,) = {A,, Af,} and

1IR There is no other consideration, such as political pressure, on the setting of protection scheme.

A, CO

- £ 8 ' ^ +  5 *'/>(;)/,)> ^ S '- ' i c a ) ,
A,

(4.19)

A.
(4.20)
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\T2,M 2} = (A ,,M , ). Substituting this setting into the other constraints, we can further 

simplify first the IRI constraint as:

¿ 5 '  '7 t ( r , ) - ^ 5 ' 'k
1 = 1 1 = 1

+ 5 A,P(M,)> £ 8 '  'n(L),
i = l

(4.21)

and the IR2 constraint as equation (4.15). Moreover, we have IPR1:

¿ 8 '  l7t(rl ) - ^ 8 , l/ :+ 8 'l/>(Ai1) > ^ 8 '  ‘n(r2)+  ¿ 8 ’ 'k (L), (4.22)

and IPR2 as equation (4.17). By applying Constraint 4.1, we know that IPR constraints 

imply 1R constraints and hence we only need to consider IPR constraints. Since 7J = A ,, 

IC2 is not valid and we need only consider IC1, which is described in equation (4.18). 

Comparing IPR1 (4.22) and IC1 (4.18), we know that IC1 implies IPR1, which can be

checked by substituting the definition of M2 and the fact that — > — > ,8‘~'k .
i = A 2 - A , + l  i = l

Hence, the various constraints can be summarised by IC1 (which implies IPR1 and hence 

IRI), and IPR2 (which implies IR2).

To derive K(rt) and , we need to check IC1, IPR2 and Constraints 4.1 and 4.3. 

First of all, by the definition of M2, equation (4.17)’ (from IPR2) is valid with equality. 

By letting equation (4.17)’ bind, we can see that Jt(r2) and K(r,) are linearly dependent. 

As n(r2) and n(rt) will be cancelled out from both sides of IC1, there are no further 

constraints on ji(r,) except for Constraint 4.1. Hence let us suppose that Constraint 4.1

binds for n(r,), that is, 7t(r, ) = n(L) , which therefore implies n(r2) = n(L) by equation

(4.17)". Substituting these values into 1C1 gives:
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( 4 .1 8 ) ”- ¿ 5 '  '* + 5 A'P(Af,)> ¿ 8 " n ( L ) -  ^ 8 " A + 5 A;V(M2)
1 = 1 i= A |+ l  i = A 2- A |  + l

To find the optimal Af,, let A/, be the value of Af, such that equation (4.18)” is binding. 

We need to compare the relative sizes of Af, and Ms . Note that, if Af, = Af, , the left

hand side of equation (4,18)” will be ^ d '  'n(L) by the definition of M, . This value is
i=A,+1

A2- A ,  oo

smaller than the right hand side of (4.18)”, which is ^ 5 ‘“'/t + ^ 8 ‘~'k (L) by using the
/=! i=A |+l

definition of Af2 and the assumption of n(L)>k.  Hence it must be Af, > Af, . To 

simultaneously satisfy PR1 and IC1, we need to choose the bigger value, that is, 

Af, = Af, . The intuition is: Af, only gives the efficient type the reservation utility which 

is the same as that of the inefficient type, but mimicking can give him at least the benefit 

from delaying to put in the investment cost. To ensure incentive compatibility. A/, must 

be bigger than Af, to compensate this mimicking benefit. Furthermore, following the

argument in the pervious case, we can show that if Af, — Af2 , the value of

a, i
- V 8 '“'k + 8 A|P(Af,) will be 8 A|------ n(L)  (hence the expected utility will be

TV 1 - 8

^ 8 l_l7t(L)), but this will not satisfy the IC1 constraint, whose RHS is
i>i

~̂ l 00 ~ _
^ 6 MA: + ^ 5 ' “'7t(L). Hence it must be Af, < Af2 . Therefore, the optimal scheme is
i*l («1

{7C(r,),7], Af,) = (rt(L), A,, Af, ), and |7t(r2), T,, Af2) = {ji(Z,),A2, Af2}. Following the same
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checking process as in the previous case, this solution satisfies Constraints 4.1 and 4.3 

and the setting T] = A, is optimal to the government. This solution shows that even when

both types are liquidity constrained, it is still optimal to give the efficient type a shorter 

period of post-investment protection, as the efficient type has less incentive to mimic the 

inefficient type whose higher profits from a successful investment will not be realised 

until later.

4.3.3 n ( L ) < k < k ’2

In this case, both types have liquidity problems and hence neither of them will invest 

without protection, although both types’ future profits from a successful investment are 

sufficiently high. The cost limit constraints will be violated under the current profit for 

both types. By setting T, = A, and T2 = A2, we can simplify the respective PR 

constraints as equation (4.19) and equation (4.13). Unlike the previous cases, the PR 

constraints will be satisfied if Mi = 0 , and therefore any Ml > 0  will satisfy the PR 

constraints. Furthermore, we have IR1 and IR2 as equations (4.21) and (4.23):

f j 8 - ,K(rl ) - J j 8 l- ' k+8&' P(Ml) > Y 5 ' - ' n ( L ) ,  (4.21)
1=1 1=1 1=1

(4.23)

Similarly, we have IPRI and IPR2 constraints as:

(4.22)
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(4.24)
A , A , A, oo

^ 8 '  'u(r2) — ' 'k + 8 A; P(M2) > ^ S 1 'jt(r,) + ^ 8 '  'jt(Z.).
1 = 1 « = 1 1 = 1 i = A, + l

By applying Constraint 4.1, we know that IPR1 implies IR1 and IPR2 implies IR2. 

Therefore, we only need to consider equations (4.22) and (4.24). However, it is difficult 

to tell from equations (4.22) and (4.24) which type will mimic the other. We go on to 

check the IC constraints. Since 7̂  = A ,, IC2 is not valid and only IC1 is valid:

£ 8 ' ' * + 5 A!P(Ai2). (4-25>
¡=i i= i i= i ¡ = * ¡ - * ,+ 1

It can be checked that IC1 implies IPR1: as any M2 > 0 will satisfy PR2 and 

— > - ^ d '  ' k , the RHS of IC1 is bigger than the RHS of IPR1. We now have
i =A j - A i +1 ¡=1

constraints IPR2 (4.24) and IC1 (4.25) to decide four variables: 7t(/;) and M ,, i= 1,2. 

We certainly need more information to find the solution. Recall that any M, > 0 will 

satisfy the PR constraints and the cost limit constraints will be violated for the current 

profit n(L).  Given 7] = A,, we know from the agent’s utility function that the only way 

to increase utility is to increase 7t(/-) or M, . However, a higher 7t(r,) or M( will 

decrease the principal’s utility, hence (4.24) and (4.25) should be set at the lowest 

possible values. Let us firstly guess (4.24) to be binding and let M2 = 0 . By manipulating 

equation (4.24) after assuming binding, we have:

X ,S, l7t(r2) = X 5 " 7 t ( r 1)+ ¿ 5 '  't t iZ A -l-X S ' '* + 8 A’P(0)]. (4.24)’
, = | 1 = 1 h  A, ♦ I i = l
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As there are no further restrictions on K(r:) except for the cost limit constraints, we can 

guess that type I's cost limit constraint is binding, that is, n(r,) = k . Denote 7t(r,*) as 

the value that satisfies equation (4.24)’, it must he 7t(r,*) < k (since

&2
- £ 8 '  'k +5 A; P(0) > ^8'~'7t(Z.) by assumption). Since the cost limit constraint will

1 = 1 / = A2 +1

be violated by 7t(r,*), we set instead n(r2) = k (CL2 binding). By this setting, IPR2 is 

satisfied with inequality. After substituting M2,K(rt) and 7T(r,) with 0, k and k, we can 

rewrite IC1:

A ,  A 2

S A‘ /»(A/,)) S: ^ 5 '- '* : -  £ S '- 'A :  + 8 4‘ P (0 ). (4.25)’
( =  1 i = A 2 - A ,  +1

Let be the value such that (4.25)’ is binding. Whether > 0 is dependent on the 

relative size of k " 9: if 8A'7t(//) > k , then the LHS of (4.25)’ is greater than the RHS. To 

have it binding, it must be that M '  < 0 ; if 8A| n(H) < k , it must be that M'  > 0 . For the 

case when > 0 , setting M, = M[  can satisfy both IC1 and PR1; if M[ < 0 ,  then set 

M, = 0 as required by the non-negative constraint. Following the same checking process 

as in the previous case, this solution satisfies Constraints 4.1 and 4.3, and the setting of 

7] = A, is optimal to the government.

To conclude, in this case both types have liquidity problems and will not invest 

without protection. The optimal scheme [K(r, ), 7j , M t} = [k. A,, M') or {(k, A, ,0} and 

{n(r2), T2, M21 ={A',A2,0) provides both types extra protection during the investment

-  -  A , - A  I

" 'L e t  = 0  and rearrange (4.25)’, we have 'it ( / / ) -  ^ 8 '  ' t i ( / / )2  ^¡Ts1 1 k , or in short,
i=A|+l  /= A 2 + I i -I

8 A' r t ( / / )  > k
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period so that they ean afford the opportunity eost. There is no protection to the 

inefficient type alter the completion, however, depending on the relative profits from 

finishing the investment earlier ( A ,) (which it has to forgo the extra protection k - n ( L )  

from taking the inefficient type's scheme) and finishing later (A ,), there will be no 

protection or protection up for a period of M{ to the efficient type after the completion.

4.3.4 max{7t(Z,),ifc2} < k <

Similar to the previous case, both types are liquidity constrained and will not invest in 

autarky. In addition, the inefficient type’s future profits from the investment in this case 

are not sufficiently high either. By assumption of parameters, the cost limit constraints 

will be violated under the current profit. After setting T, = A, and T, = A ,, we have PR I 

and PR2 constraints as equations (4.19) and (4.13). Different from the previous case is 

that if we set M2 = 0 , PR2 will be violated. Hence let us set M2 - M2 as defined in 

equation (4.14) and we know that M2 > 0 .

The other constraints are the same as in the previous case, that is, we have equations 

(4.21) and (4.23) for IR1 and 1R2, and equations (4.22) and (4.24) for 1PR1 and IPR2. By 

applying Constraint 4.1, we can replace both IR constraints by 1PR constraints. Since 

T, = A ,, we know that IC2 is not valid and IC1 is as equation (4.25). The only difference 

in this case is the first guess about M2. As argued, we can firstly set M 2 = M2 since M2 

must be at least M2 to satisfy PR2. Manipulating IPR2 (4.24) gives equation (4.17)’, 

which will be valid with equality. To satisfy the cost limit constraint, let 7t(r,) = k which 

by equation (4.17)” implies that 7i(r2) < k , but this will violate the cost limit constraint.
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Instead, ¡1 we set n(rt ) — n{r2) = k , (4.17)’ will be satisfied with inequality. Substitute 

K(r,) = k and M, = M,  into IC1 (4.25), and let * be the smallest value to satisfy IC1. 

Rearranging ICI. we have:

a 2  ~~ a  |

5 a'P (M ,*)- > 8 a'- i , [54|P(A72)]. (4.26)
i=I

From equation (4.26), we have M,*>M2. To prove, suppose M*=M., and let

is the utility difference for changing from Mt * to M2 (since F(.) is increasing and 

q > 0). Depending on q , the efficient type’s rent could possibly decrease and 

still satisfy ICI. Therefore, it must be that Since M2 > 0 , it must be that

M*>0.

To sum up, in this case we have {7t(r,),Zj, A/,} = and {7t(r2) ,r2,Af2)

= . We can check that this solution satisfies all the constraints and T, -  A, is

optimal to the government. Since, in this case both types are liquidity constrained, the 

optimal scheme provides the during-investment protection to both types to pay the 

investment cost. Moreover, since the inefficient type is lacking in willingness to invest, 

there will be post-investment protection for a period of M 2. For the efficient type to 

mimic, it can benefit from the extra during-investment protection k - tc(L) for A2 -  A,

Y:=d*'P(M,*). From (4.26), we have (1 - 8 A!' i| )T = 2_,d k ( = ------------k ), which
t f  1 - 8
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period and the post-investment protection M ,. Hence, the screening scheme has to give 

the efficient type longer post-investment protection to ensure incentive compatibility.

4.3.5 m a x { 7 C } < k

In this case, both types have liquidity problems and lack willingness to invest. By 

assumption, the cost limit constraints will be violated under the current profit. After 

setting Tt = A, and T2 = A ,, we have PR1 and PR2 as equations (4.19) and (4.13). The 

difference from the previous case is: both PR constraints will be violated if we set 

Mt = M2 = 0 . Therefore, in addition to setting M 2 = M2 as defined in equation (4.14), 

we define M, as described in equation (4.20). That is, and Af, are the values that 

cause the PR constraints to be binding. The other constraints are the same as in the 

previous case. Let us temporarily set M2 = M2. Substituting Tt,T2, M2 by A,,A2,Af2, 

we know that 1PR2 (equation (4.24)) and IC1 (equation (4.25)) will imply IR2 and IR1. 

We further guess equation (4.24) to be binding and set n(rt) = k .  As argued in the 

previous case, we know that n(r2) = k (the cost limit constraint is binding) will be higher 

than the value of 7t(r2) which makes equation (4.24) binding. Therefore, we set

7T(r,) = 7t(r2) = k . Substitute n(rt) into IC1 and denote Mi  as the smallest value to 

satisfy IC1, that is,

¿ 8 " k  -  ¿ 8 '  'k + 8 A| P(M, ) = X 8 '"'* -  ¿ 8 " '*  + 8 &1P(M2)
1=1 1 = 1 i=l  i = A 2 - A ,  + 1

or equivalently.
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(4.26)’
A 2 -  A,

8 A ' P ( M i ) -  £ S M Jfc = 8 A= A|[ S a'P(A/2)].

First of all, following the same argument as in the previous ease, we know that M, > M ,. 

Next, it must be that Mi > M, , since by the definition of M2, the right hand side of 1C1

is higher than ^TS' 'k(L) (as ^ S ‘~'k < ^ 8 '  'k ). It can also be checked that
i = l i = &2 - A |  + l 1 = 1

Mi = A/,’ . We can check that this solution satisfies all the constraints and 7] = A, is 

optimal to the government.

To conclude, in this case both types have liquidity problems and lack willingness to 

invest. The optimal scheme {Ji(r, ),7], M, ( = (A:, A ,, M i ) and (7t (r2),T2, M2\ 

= (At,A2, M ,) provides both types the during-investment protection to pay the investment 

cost. As in the previous case, by mimicking, the efficient type can have extra during- 

investment protection and the post-investment protection of period M2. Since M, < M2 

(by the assumption of A, < A 2), although the efficient type also lacks willingness to 

invest, the mimicking benefit is still higher than its autarky utility. Hence we have the 

same solution as in the previous case.

Having derived the screening protection scheme, we now turn to the addressed 

question: “Will the government be better off offering a non-screening protection 

scheme?” Proposition 4.3 provides the answer:

Proposition 4..1

(!) The screening protection scheme could possibly coincide with the efficient scheme 
when only the inefficient type is lacking in investment willingness, or when there are only
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liquidity problems; (2) The screening scheme is strictly better than the pooled scheme o f 
the efficient type; however, whether it is better than the pooled scheme o f the inefficient 
type is dependent on parameter values; (3) Whenever there is a liquidity problem, the 
efficient type’s post-investment protection will be longer than that o f the inefficient type; 
otherwise, the reverse result applies.

The welfare comparison for various schemes is routine and hence is presented in 

Appendix 4.2. The first part of the proposition can be seen from cases 4.3.1 and 4.3.3, 

where the screening schemes could possibly coincide with the efficient scheme. The 

intuition is: for both cases the efficient type has higher profits after completing the 

investment (if possible). Hence, depending on the size of future profits, the efficient type 

will not necessarily have the incentive to mimic the inefficient type, and hence we have 

the first result.

The argument for the second part of Proposition 4.3 is similar for each case, and 

hence we only explain case 4.3.1 here. From Appendix 4.2, we know that the welfare 

from the screening scheme is always higher than the pooled scheme of the efficient type, 

since there is a possibility (1 -u )  that the investment is not completed in the latter. 

Recall that it is assumed optimal that the investment proceeds for both types. Whether the 

screening scheme is better than the pooled scheme of the inefficient type is dependent on 

the mixed effects of belief (U) and the difference between types ( A2 -  A ,). That is, if

u[ ] ¿ 5 M(rc(«) + S(W ))-(l + ^)8a|p(M,,,)] is higher than ( l - u ) [  ¿ 8 m (tc(£,) + S(L))
i = A |+ l  i=A|+1

—(1 + A,)8A;p(Af2)], then the screening scheme is better. For a higher belief or a smaller 

difference between two types, the screening scheme is more likely to be better than the 

pooled scheme of the inefficient type.
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The intuition lor the last part ol the proposition is: whenever there is a liquidity 

problem, the efficient types mimicking incentive becomes higher, that is, type A, will 

have extra during-investment protection k-7t(L) for A , - A ,  more period by mimicking. 

If there is no post-investment protection for the inefficient type, the screening scheme 

could be the same as the efficient scheme; otherwise, the efficient type’s post-investment 

protection is always higher, as it is not optimal to provide excessive protection during the 

investment period. When there is no liquidity problem, the efficient type’s post- 

investment protection is always shorter, which is in contrast to most patent literature, for 

example Cornelli and Schankerman (1995), in asserting that a more efficient firm should 

be given a longer patent length to ensure incentive compatibility. Our model shows that 

this is true only when the target firm has a liquidity problem, otherwise, the efficient 

type’s patent length can be shorter and still keep the incentive to finish earlier.

4.4 Conclusion and Further Research

Since various government interventions are still heavily applied by many developed and 

developing countries, a positive attitude is to provide a comprehensive guide to the 

design of protection scheme. More specifically, our model addresses two important but 

usually ignored dimensions: the protection form and the protection length. In the context 

of complete information, our model concludes that depending on parameters, the optimal 

protection could involve no protection, one-part protection or two-part protection. This 

result provides an explanation for the controversial empirical conclusions on protection 

effects. When there is incomplete information, we show that for some cases the screening
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always better than the ponied scheme of the efficient type. However, whether it is better 

than the pooled scheme of the inefficient type is dependent on parameters. More 

interestingly, our result suggests that when there is no liquidity problem, the efficient 

type’s post-investment protection is shorter than the inefficient type. This is in contrast to 

the usual proposition in patent literature that a longer patent life should be given to the 

more efficient firm to ensure incentive compatibility.

As the model is simplified by considering only a monopoly firm, there is no 

discussion about the market structure effect. Further research can be extended to cover 

the interaction among firms. For example, granting the post-investment protection to a 

single firm, like a patent, could possibly save the incentive rent for the efficient type. 

Another important issue is the lime-inconsistency problem in most government policies. 

As noted by Tornell (1994), “temporary protection has had to be renewed repeatedly or 

been transferred to permanent protection, if the government grants the protection in the 

present, it is unlikely that they will not grant it in the future.” The present model can be 

extended by assuming an exogenous renewing rate, which may be determined by voting 

among parliament members from different interest groups110. As the producer’s lobby 

power is limited by the single market profit, there will be some neutral voters whose 

attitude will depend on past protection experience. Therefore when protection is first 

introduced, we can expect an exogenous renewal rate in the future, and hence we can 

design a time-consistent protection scheme. However, the result is possibly similar to 

Tornell, i.e. the time consistent protection scheme could be too expensive to put in 

practice.

Appendix 4.1

""This belongs to another stream of protection analysis: political economy analysis.
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Proof o f Lemma 4.2. Firstly, lor T < A . at any time I < T , the protected firm's decision

is to shirk, because any effort will not change the value at T+l. VTtl = y  S' 'n(L) = L.
i= I

Secondly, for T> A, the following is to decide at any t < T  how the target firm 

makes its decision between shirking and putting in effort, depending on history and the 

deadline. The proof is separated into two parts: for 1= T -A  + 1 to T and for t=l  to 

T - A.

1. For t= T -  A + l to T,  it is proved by strong induction that for an arbitrary number 

^ < A - 1 ,  at time t = T-%  , the protected firm will put in effort only when 

n  = A -  ^ - 1 .  In the following, n(L) and r(x) are abbreviated as n  and r for 

simplification . For \  = 0 , that is, t = T ,

if n = A —1, Vj (n) = max(jr + r + SV^iA -  l),7t + r - k  + 6V,T+1(A)} 

= max{7t + r + 8L,7t + r-A: + 8//)

= n + r - k  + &H if - < [ H - L ) .
8

■ < [H -  L] is satisfied by Constraint 4.

if n > A , V,.(n) = max{7t + r + 8V’7.+l(n),7i + r-A: + 8V7.tl(n+ 1))

= max{7t + r + 8//,7t + r  — k + bH)

= it + r  + 8 // .

if n < A -  2 , VT(n) = max{7t + r + 8V7>,(n),TC + r-lfc + 8Vr<.l(n+ 1)} 

= max(7t + r + 8L,7t + r — k + &L)

= 7t + r + 8L.

Therefore, for ^ = ()(i.e., t=T), the protected firm only puts in effort when n — A -  I .

Next, let 7. be an arbitrary integer smaller than A -  1. Suppose for every j  < z , the 

protected firm’s decision follows the rule
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This supposition says that for any time t = T - j ,  if the protected firm has already put in 

investment for A -  j  -  1 times, it will find it optimal to put in effort in investment time /; 

otherwise, it will be better off with shirking.

For t, = z , i.e. at time t = T - z ,  if w = A -  z -  1, the firm’s decision is :

Vr_j(A —z — 1) = max{7t + r  + 5VJ._J+1( A - z - l) ,7 t  + r- fc  + 5V7._J+l(A -z))

By supposition, this means:

V ^fA  -  z -  1) = max {7t + r + 8(tr + r+...b(n + r + bL)...),

n + r — k+  b(n + r -  k+  b(.. .+8(7t + r -  k + bH ...)) (

= max{(7t + /•)(! + S+...8' 2) + b!~'L,.(n + r)(l +8+ ...8z~2) - ( l  + 5+...S' 2)k + b z~'H)

Therefore, the protected firm will invest if (1 + 8+...8z' 2)
g,-' k < [H — L ] , which is satisfied

under Constraint 4.3.

If n > A -  z -  1, ( note that n + l > A - z - l  as well), by the supposition the

protected firm will shirk till time T - j  (when n = A - y ' - l ) ,  then start to put in effort 

and obtain the result of bH at T+l.  The difference between investing and shirking at the

165



moment is to choose to put in effort earlier or later. Since the former causes a higher 

discounted opportunity cost, shirking will be a better choice.

If n < A -  z -  I , if the protected firm chooses to work, causing opportunity cost of £k 

at the current stage, by supposition its next choices from T-z+l to T will be to shirk, and 

hence the effort status will remain A — z ■ This will result in a final value of bL at T+l.  

However, if the protected firm chooses to shirk, without spending the investment cost, its 

next choices described by the supposition is to shirk from T-z+l to T. This will result in a 

final value of 8Z, at time T+l as well. Thus, we can conclude that the best choice at 

t = T -  z is to shirk at this stage.

2. For t=l to T — A, since the above discussion shows that at time T -A  + l ,  the 

protected firm will put in effort only when n=0. It is argued that the protected firm will 

find it optimal to shirk from t=l till T — A . Suppose it deviates once at time s <T -  A , 

resulting in accumulated effort n = I at time T -  A + 1. The firm’s value at time s is:

JC + r -  k + 8( 31 + r+... 8( VV_4+1 (1))...)

= X 8" ' ^  + r ) - k  + 57 a[Vr_A+1(l)] (A4.1)
i—S

The expected value to stick on shirking till time T — A is then 

7t + r + 8(7t + r+...8(V'r_/UI(0))...)

= X 8 M(n + r) + 8r*-A[Vr Atl(0)l (A4.2)
i - s

The first part of the proof says that Vr _A+, (0) = 7t -  A: + SV'7-_A+2(1) and 

^r-A+t(1) = n + 8F7-A+2(1). Together with equation (A4.1) and (A4.2), we know that
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equation (A4.2) is greater than equation (A4.I), and therefore the protected firm will not 

deviate. QED

Appendix 4.2 Welfare effect comparison from different protection schem es

This appendix firstly summarises two different protection schemes: the efficient scheme 

(A) and the screening scheme (B). Next, the welfare effect (that is, the government’s 

expected utility) is presented for: (1) the efficient protection scheme; (2) the screening 

protection scheme; (3) the pooled scheme of the efficient type; (4) the pooled scheme of 

the inefficient type.

4.3.1 k [ < k <  min{jt(D,*i*}

A. The efficient protection scheme

(Jt(r,) ,T,, M , } = (7t(L),A,,0}, {7t(r2),T2, M2) = |n(L). A ,, M2}.

B. The screening protection scheme

{Jt(r,),7;,M , } = {rt(D. A ,,M,°) or {ti(L),A, ,0}, {7t(r2).T2, M2}= A2, M2}.

(1) . Welfare for the efficient protection scheme

M X  5 "  (tc(L )  + 5(L)) +  £  6 " '  O K « )  +  S(«))J
t=| /=A|+1

+(1 -  ^ [ ¿ S M (iKi.)  +  S ( L ) )  + ¿ 5 " '  («(//) + S ( H ) )  -  (1 + X)5a;p(A72) ] }
1=1 i = A j + I

(2) . Welfare for the screening protection scheme

( « [ ¿ 8 m («(L) + S(L))+ ¿ 8 , , (7t(//) + 5 ( / / ) ) - ( l  + X)84'p(yv710)]
i = l i=A| +1

+(1 -  u ) [ £  8'-' (Jt(D + S(L)) + £  8' 1 (n( H )  + S(H) ) - (  I + D 8Aip( M2)])
1 =  1 /= A 2 +1

,or the same as the efficient scheme.
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(3) . Welfare for the pooled scheme of the efficient type: |7t(L), A ,,0).

A , no M

M ^ 8 ' - ' ( n { L )  + S(L))+ X 5 'H(7t(tf) + S ( //) ) ]+ ( l-u ) |]T 5 ' '(7t(D + 5(D)]}
*~l i = A ,  + 1 ¡=1

(4) . Welfare for the pooled scheme of the inefficient type: {rt(L), A2,/W,).

| £ S ‘- \ n ( L )  + 5 (D )  + £  8 - ' ( n ( H )  + S ( H )) -  (1 + D S A’p(M2 ) i
[  >=1 l = A j + l  j

4.3.2 *,* <k <n(L)

A. The efficient protection scheme

(Tl(rl ),7;,Afl} = {7t(i,),Al,A7l }, i7t(r2) ,r2,A/2} ={7t(L),A2>Ai2}.

B. The screening protection scheme

{Tt(r,),7;,Ml } = {7t(L),Al , # l } ,  [n(r2) ,T 2, M 2) =  {ji( L ) ,A 2, a72) .

( 1) . Welfare for the efficient protection scheme

{ulXS-'fTC(D + S(D) + ^ 5 - ‘(7c(//) + S ( / / ) ) - ( l  + A.)5A'p(M, )]
t = l t= A | +1

A 2 OO

+(1 -  X))[]T 5M(7r(D + 5(L)) + H )  +  S ( H ) )  -  (1 + D 5 A’p(Af2)])
1=1 i = A 2 + l

(2) . Welfare for the screening protection scheme

{ « [¿ 8 m (ji(D  + 5(D )+  ¿ 5 ,-'(Jt(//) + 5 ( f /) ) - ( l  + D 5 A|p (# l )]
i = l  (= A |  +  I

+ ( l -u ) l£ 8 " (7 t (D  + 5(L))+ ¿ 8 ,-'(Jt(//) + 5(//))-(H -A .)8A!p(A72)])
i = l  i '= A j + l

(3) . Welfare for the pooled scheme of the efficient type: [k (L) ,A, ,M{ }

{v[ Y  8' ' (rc( D  + 5( D) + Y  8' '(7t(//) + S ( / / ) ) - ( l  t-D 6A'p(M, ))
1 = 1 i*Aj ♦!

+(1 - u ) i y 8 '  '(n(L ) + 5(L))l)
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(4). Welfare for the pooled scheme of the inefficient type: (ti( T), A,, M , j

'(7i(L) + S(L))+ £ 8 '  ' W H )  + S ( H ) ) - ( \ + \ ) 5 &‘p{M2)

4.3.3 k(L)< k < k\

A. The efficient protection scheme

{Tt(rl ),7;,A/1} = {A:,Al,0}, {rc(r2), T2, M2) = {*,A2,0}.

B. The screening protection scheme

= or |t ,A „ 0), {n(r2),T2,M2) ={ k , A2,0}.

(1) . Welfare for the efficient protection scheme

A, oo

( u [ £  S '"1 (* + £(*)) + £ S M (Jt(//) + $(«))]
i=l  i=A|  + l

+(1 -  4 ))ti 8M (* + sot)) + X  8 "  (k(H) + S(H)) ] )
i=l  i=A2+l

(2) . Welfare for the screening protection scheme

M X S " 1 (k + S m  + X 8 M(n(H) + S(H)) -  (1 + X.)8a'p(M,')]
1=1 i=A | + 1

+ (1--U )[^5 i-'(A: + .S(A:))+ ¿ 8 '  '(7t(//) + S(//))])
1 = 1 i =A2 + I

(3) . Welfare for the pooled scheme of the efficient type: {&,A,,0}

A,

(o [£ 8 '- 'O t+ « * ))+  X 8 ' ' (x(H) + S(H))]
i = I i A, ♦ I

A |

+ 0 - ' » [ ¿ S ' 1 (* + $(*)) + X 8 ' '0t(i<)+ $(£))!}
i=l  i = A , t l

(4) . Welfare for the pooled scheme of the inefficient type: (A:, A2,0|

U>«>



A ; oo

£ s *  \ k  + S ( k ) ) +  £ 8 ' '(n (H )  + S(H)) l
i= l  i= A 2 +  1

4.3.4 max{7t(D.D’ ) < k < k,'

A. The efficient protection scheme

(rc(r,),7;,M1| = {* ,A l ,0},  {Ti(r3),7;,A/2} = { * ,A 2,M 2).

B. The screening protection scheme

|it(r,),7;,A/,| =  {/t,A,, A/’ } , {7i(r2 ) ,T 2, M 2) = {* ,A 2, M 2).

(1) . Welfare for the efficient protection scheme

M X S - ' ( k  + S ( k ) ) +  ¿ 5 w (n ( H )  + S ( H ) ) ]
i=\ i'=A |+ l

Al oo
+(1 -  u ) [ £  8'-' (k + S ( k ) )  + £  8M (it( H )  + 5( H ) ) - (  1 + D S A; p( M 2)]}

i =  l i= A 2 +  l

(2) . Welfare for the screening protection scheme

{ u [£ 5 ‘-'(7t(D + 5(D ) + ¿ 8 i-'(7t(//) + 5(//)) -(1 + D S A'p(M,')]
1=1 i=A ,+ l

A2 oo

+(1 -  D ) l £  8m  ( n ( D  +  5 (D )  +  £  8M (n( //) +  S( / / ) ) - ( I + X)8Alp(A72)]}
i =  l i= A ,-H

(3) . Welfare for the pooled scheme of the efficient type: {Jt.A^OI

A
{ u [ £ 8 ' - ' ( *  + 5(*)) +  £ 8 w ( n ( « )  + 5(//))]

i= l  i= A ,+ l

A | oo

+ ( 1 - u ) | £ 8 ‘- '(*  + 5 (* ))+  £ 8 m (jc( D  +  5 ( D ) ] |
1 = 1 t=A | +1

(4) . Welfare for the pooled scheme of the inefficient type: {¿,A,,M2|

A , oo

£ S '  ' ( k  + S ( k ) ) +  £ 8 " ( n ( A / )  + 5(/V))-( l  +X.)8a' p (A7,)
i = A 2 + I
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4.3.5 max{7t(L),Jfc’ ) < k

A. The cllicicnt protection scheme

{n(r,),T„M,) = {<:,AI,/V7I| , {7t(r2) ,r2,A/_,( = {*, A2, M2) .

B. The screening protection scheme

{n(rl ),Tl,Ml} = {k,A, ,Ml) , [K(r2),T2, M2) = {A,A2, M2}.

(1) . Welfare for the efficient protection scheme

00
{ i ) [ £ 8 ,H(* + S(r,))+ £ 8 , l (7c(W) + S ( t f ) ) - ( l  + A.)84'p(A7, )]

l=l i=A,+1

+(1 -  *>)[]£8'-'(jt(jL) + S(L)) + £  + S(H)) -  (1 + \)8 4’p(A/2)]}
t = I t=A2 +1

(2) ~(4) are the same as in the previous case.
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5. Conclusion

In closing, (his chapter summarises the contributions of the thesis, including the findings 

for the addressed issues and some notes on mechanism design. Then we look at some 

applications of the three models.

This thesis consists of three individual models of research and development, 

addressing issues on technology adoption, funding contracts and protection schemes. The 

first model is motivated by the inconsistency of empirical results and theoretical models 

regarding the “firm size effects” upon the timing of adoption. To be specific, the 

empirical results show that large firms could adopt a certain technology earlier or later 

than small firms; however, previous theoretical models always assert that large firms will 

adopt earlier. Chapter 2 proposes a two-stage, endogenous learning, Stackelberg model to 

analyse firms’ adoption decisions towards an innovation with uncertain profitability. It is 

shown that in a pure strategy equilibrium, the large firm may or may not tacitly delay its 

adoption to capture the information advantage, depending on production cost and belief 

parameters. In the comparative statics, we have an interesting conclusion concerning the 

after-adoption market concentration, that is, even for a successful innovation, if the large 

firm adopts earlier, the market concentration will decrease in the first stage and then 

return to the pre-adoption level in the second stage. The welfare analysis provides a 

justification for government intervention in firms’ adoption decisions.

The second model is motivated by the fact that although more and more resources 

(personnel and money) have been devoted to R&D activities, there is little theoretical 

discussion regarding R&D funding issues. Chapter 3 provides a guideline to a rich class 

of funding contracts, especially for time-consuming projects confronted with moral
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hazard problems. As a benchmark of comparison, we first derive the optimal contract for 

a long-term project with only a moral hazard problem. The optimal contract form 

happens to be a multi-stage version of cost-plus-fixed-fee contracts, where the optimal 

fixed fee refers to the agent’s shirking benefit from the contract. After considering the 

agent’s private information, we derive the screening contracts for both discrete and 

continuous type settings. The screening contracts assign no efficiency loss to either type, 

which is in contrast to the usual conclusion in the literature. Moreover, within the 

continuous setting, we show that the principal will adopt a cut-off strategy in funding, 

and the cut-off point is affected by the fact that inefficient types (types greater than the 

cut-off point) will take the contract and shirk all through the funding period. Hence, the 

principal will fund the project for a shorter period in the presence of an opportunism 

problem. Furthermore, the discussion of the optimal auctioning contract shows that the 

principal will benefit from the competition among agents in two ways: First, the project is 

more likely to be completed by an efficient type under an auction. Second, competition 

reduces the incentive rent for the efficient type as he is less likely to mimic the inefficient 

type who might have less chance to win the auction, however, this rent reduction will 

vary with the difference between the two types. Comparing the optimal auction with a 

second-price auction, we show that bidding the principal’s reservation price (rather than 

truth-bidding) will be the bidders’ dominant strategies, and neither the revenue 

equivalence theorem nor the separation property will hold. Finally, when neither of the 

players has private information about the time needed for completion, we show that a 

longer funding period will actually induce more shirking, and the optimal funding length 

is determined as the point where the agent’s shirking period is driven down to zero. With 

an additional assumption that neither of the involved parties can anticipate the contract
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renewal, we show that the lock-in effect persists under some constraints and a sequence 

of short-term contracts is preferable to a long-term contract.

The third model is motivated by the observation that various government 

interventions (protection) are still used by many developed and developing countries, but 

the empirical results do not always support the positive effect of protection. Considering 

a time-consuming investment, Chapter 4 first derives the optimal protection form, which 

consists of two often seen types of protection: during-investment and post-investment 

protection. When there is only a moral hazard problem, we show that the optimal 

protection scheme varies with the target firm’s investment ability and willingness, and it 

hence could involve no protection, one-part protection or two-part protection according 

to the cost and revenue environments. This result suggests that not all cases fit into the 

same protection form, and the efficient protection should take into account the target 

firm’s investment ability as well as investment willingness. In the context of incomplete 

information, we show that (1) The screening protection scheme could possibly coincide 

with the efficient scheme when only the inefficient type is lacking in investment 

willingness, or when there are only liquidity problems; (2) The screening scheme is 

strictly better than the pooled scheme of the efficient type; however, whether it is better 

than the pooled scheme of the inefficient type is dependent on parameter values; (3) 

Whenever there is a liquidity problem, the efficient type’s post-investment protection will 

be longer than that of the inefficient type; otherwise, the reverse result applies.

Chapters 3 and 4 provide the following insights into mechanism design: Firstly, as a 

consequence of assuming unobservable effort and binary outcomes (success or failure), 

there will be no trade off between efficiency and rent extraction in the solution. In other 

words, the principal’s fear that the whole project value will disappear in case of any
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shortage in (uncling has led the principal not to distort the production efficiency in the 

optimal mechanism. Furthermore, since there is no efficiency loss to any type, the 

solution will also be renegotiation proof after the revelation of the true value. However, 

there is a limitation in this setting, that is, throughout the thesis we are contented with the 

assumption that the principal can commit to not extend the scheme in the future. The 

time inconsistency problem has been a major concern in policy design, and although we 

have seen some discussion of the time inconsistency problem at the end of Section 3.6 

and Chapter 4, this issue ought to be discussed in more detail. Secondly, the time- 

consuming (or equivalently limited liability) assumption draws our attention to long-term 

mechanism design, and to complete the object, the mechanism needs to make sure that 

the agent’s effort decisions are best responses at each point within the mechanism. In 

terms of timing, although the principal’s decision is to precommit to a mechanism (hence 

it does not belong to the dynamic context), the agent’s effort decision will be dynamic. 

Thirdly, in Chapter 4 we consider the target firm’s future profits after the completion of 

the investment, and as a result, the optimal compensation scheme is affected by this 

consideration. As we have seen the difference this makes in an example from the patent 

literature, we should be more cautious in providing incentive schemes when the agent’s 

future value is taken into account.

We now consider possible applications of the three models. Firstly in the adoption 

model, technology adoption is basically an irreversible investment, and hence the model 

can be applied to various investment cases, such as the launch of McDonald into the 

Chinese market. The uncertainty associated with the investment may come from 

consumers’ preferences, and natural or bureaucratic environments. Secondly, a natural 

and important application of the long-term mechanism design is to the area of regulatory
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economics. More specifically, instead of using a constant project value or constant 

welfare change, we can replace the value by a market demand function, and thus discuss 

issues of price or quality regulation. This is directly relevant to Chapter 4, as we can 

interpret different levels of protection rates in the forms of regulated prices. Moreover, 

the discussion of multiple agents will be more important as the regulated markets are 

usually oligopolies. Further research can also analyse the setting of two-sided private 

information, risk aversion, correlated types and (when there is an auction) collusion 

among bidders. Finally, we can extend the protection model to discuss the effects of 

interest groups. That is, since policies are usually decided by voting in the Parliament and 

the producer’s lobby power will be limited by the single market profit, there will be some 

neutral voters whose attitude will depend on past protection experience. Flence when 

protection is first introduced, we can expect an exogenous renewal rate in the future, and 

therefore we can design a time-consistent protection scheme. But as explained, the time 

consistent protection scheme could be too expensive to put in practice.
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