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A bstract

Directional Compton profiles o f zinc and Feo.j5-Vio.75 have been measured with 

60 keV and 412 keV gamma-rays, and the results compared with the self consis­

tent Korringe-Kohn-Rostoker Coherent-Potential Approximation (KKR-CPA) for 

the iron nickel alloy. The other investigations reported all involve the use o f the syn­

chrotron radiation; the polarisation of synchrotron radiation has been established for 

the SRS W9.4 line, for energies of the order o f 50-65 keV, and good agreements with 

the theoretical calculations were obtained. The isotropic spin dependent Compton 

profile of gadolinium and directional spin dependent Compton profile of nickel have 

been measured for the first time using the inclined view method o f extracting cir­

cular polarisation o f synchrotron radiation. The existence of the spin dependent 

photoabsorption terms in the absorption coefficient have been established experi­

mentally for iron and nickel, and compared with the first principles spin polarised

band calculation.
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Chapter 1

COMPTON SCATTERING AND 
PHOTON SCATTERING THEORY

1.1 C om p ton  Profile

The ground-state linear momentum distribution of electrons in solids can be inves­

tigated, under the fundamental assumption called the impulse approximation (IA ), 

by determining the Compton profile.

The Compton profile, J(pz), is defined by integrating the three-dimensional elec­

tron momentum density, n (p ), over a plane perpendicular to the scattering vector 

(K  =  k -  k') chosen as the z-axis, i.e.

J(pz) *  JfJ  n(v)dpxdpy (1 1 )

where k and k' are respectively the incoming and the outgoing photon wavevectors 

and px, pv and p, are the momentum components. For isotropic systems (gases, 

liquids, glasses, powders etc...), i.e. for a spherically symmetric momentum density, 

the Compton profile formula may be written as,

1

( 1.2 )
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where / ( p ) =  4*-p2x2(p ) and x (p ) *s the electron wavefunctiou in the momentum 

representation.

1.2 M om entum  space representation  and m om entum  den-

It is well known that the Schroedinger equation in position space can be solved 

to give the wave function, t/»(r), and hence the charge density, p(r). In principle 

the same equation is solvable in the momentum space to yield electron momentum 

wavefunction, \(p), and hence the electron momentum density, n (p) =  lx>(p)|a>

Because the potential energy term present in the momentum space equation is 

an integral, it is not possible to obtain the electron momentum wavefunction by 

solving the Schroedinger equation in momentum space,

where n is the total number o f electrons in the atom.

Apart from simple systems such as the hydrogen atom (solved by Fock 1935), 

helium and the hydrogen molecular ions solved by McWeeny and Coulson (1949), it 

is practically impossible to solve complex integral equations. Dirac (1926) pointed 

out the Fourier transform relationship between t/>(r) and * (p ) and suggested that it 

could be used to obtain the latter from the former,

sity

( | i - - 2 £ h ( p >  +  r ( p )x (p )= 0 . (1.3)

(1.4)

(1.5)
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The wavefunction in position space may be separated into Rni and Yim respec­

tively the radial and the angular parts: 1 )m is unchanged by Fourier transformation, 

i.e. only the radial part needs to be transformed. Dirac transforms were calculated 

for hydrogenic and Slater type orbitals by Podolsky and Pauling (1929).

1.3 H istorical developm ents o f  C o m p to n  sca ttering

In 1923 the inelastic photon scattering by a stationary electron, subsequently known 

as the Compton effect, was discovered by Compton (1923). The broader inelastic 

line recorded in the spectrum was a mystery at that time and for the next six years 

until DuMond (1929) pointed out that the scattered photon is Doppler shifted by 

the momentum of the scattering electron. DuMond and Kirkpatrick (1937) built 

a focusing multi-crystal spectrometer aud measured the momentum distribution of 

many light elements. Apart from a few subsequent attempts to study Compton scat­

tering (Ross et al 1934 and Happier 1936) and the theoretical work of Coulson and 

Duncanson (1941,1942) who showed how the Compton profile could be calculated 

from the LCAO wavefunctions in C-H. C-C. C = C  and C=C bonds, there followed a 

long period of inactivity when inelastic scattering was largely overshadowed by the 

attractions o f X-ray diffraction.

The next phase of the Compton scattering era dates from the mid 60’s into the 

1980s. Cooper et al (1965) were the first to try to analyse the scattered radiation 

using an X-ray tube and crystal spectrometer. The results of those early days were 

statistically very poor especially in the tails of the profile mainly because of the high 

background radiation and low count rates.
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As the time went on the technique of Compton scattering was markedly improved 

by using high energy sources and solid state detectors (see Eisenberger and Reed 

1972). The change from the use of low energy X-ray sources (E x  <  20keV) to high 

energy gamma rays, such as ,9M u  and 241.4m isotopes which provide respectively 

monochromatic radiation of 412 keV and 59.54 keV, had an important impact on 

the significant improvement of the statistical accuracy of the data. Furthermore, 

high energies also overcame the problem o f large photo-electric absorption usually 

obtained even for solids of low atomic number. In the early 1970s the use of gamma 

rays was made possible in conjunction with high resolution solid state detectors, al­

beit at the better resolution of the crystal monochromators. Such a technique lead, 

in short measuring times, to a high statistical precision of the data. A better un­

derstanding of the different corrections such as multiple scattering also contributed 

significantly to a more accurate result.

In the last couple of decades a comprehensive study of the theoretical aspect 

of this spectroscopy has been well established. As far as the magnetic scattering 

is concerned (discussed in detail later). Platzman and Tzoar (1965,1970) were the 

first to point out the way of separating the charge scattering from the magnetic 

scattering in ferromagnets. Blume (1985). then Lovesey (1988) provided detailed 

theoretical work investigating the photon scattering cross section involving charge, 

spin and orbital magnetic contributions.

A well established method for the study of spin dependent Compton scattering 

was introduced in the late 70s, initially by Cooper et al (1976) and Holt et al (1978), 

using Circularly Polarised synchrotron radiation (CPSR). The main objective of 

using circularly polarised radiation is to study the spin density as well as the orbital
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contributions to the Compton profile.

1.4 Im pu lse approxim ation

The method of obtaining the Compton profile by means of the photon scattering 

cross section in the relativistic limit is very complex due to the restrictions o f the 

impulse approximation. The impulse approximation is governed by the fact that the 

probe (i.e. photon) interacts with an individual electron at a time. In other words 

the remaining electrons do not react completely to the interaction until the scattered 

photon has escaped completely from the system. Therefore, the potential o f the 

system before and after the scattering process is the same. Principally this condition 

may be satisfied only when the energy transfer greatly exceeds the electron binding 

energy. Clearly, this restrictive condition implies that large backscattering angles 

(i.e. angles close to 180°) and high photon energies are necessary. Furthermore, the 

impulse approximation is complementary valid when the binding forces between the 

ejected electron and the other electrons in the system remain constant within the 

interaction time (~  ^ ) ,  i.e. the energy of the recoil electron must largely exceed 

its energy before the collision.

Although the failure of the impulse approximation mainly occurs at energies 

which correspond to core states, particularly when high energy gamma rays are 

used, the study of the electron momentum density distribution may still be possible 

with the Compton technique since the Compton profile is a sensitive probe of valence

electrons.
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1.5 T h e  interaction  betw een  photons and m atter

The interaction of photon with matter is a basic process for probing important 

information about the microscopic behaviour of materials. The photon-electron in­

teraction is characterised by two important physical quantities (u>) and (ftK) defined 

respectively as the energy transfer and the momentum transfer, and can result in 

absorption and emission processes, pair production, and X-ray elastic and inelastic 

scattering. A schematic diagram of the photon scattering process is illustrated in 

figure 1.1.

The most common inelastic scattering process is Compton scattering which pro­

vides information on the momentum distribution of electrons in the ground state. 

Raman scattering is another common inelastic process which provides information 

on the behaviour of collective such as relatively high energy excitations like plas- 

mons and individual excitations of inner core electrons. Raman scattering is a very 

small effect which gets important only when the energy of the incident radiation 

approaches the energy of the absorption threshold (see Eisenberger et al 1976). In 

other words, the incident energy is of the same order as the absorbed energy during 

the transition of the electron from its initial state to an intermediate state which 

correspond to those where a K-electron is excited virtually above the Fermi level 

(see Manninen et al 1986).

1.5.1 Elastic scattering and the T hom son  mechanism

The elastic scattering between photons and electrons, which gives rise to the well 

known Bragg reflection in solids, is basically used to study crystal structure and



Figure 1.1 Schematic diagram of the Compton scattering interaction between a pho­

ton and a free electron of a momentum pi and an energy E\. The incoming photon 

is characterized by the energy hu!\. the wavevector k and the unit polarisation e. The 

scattered photon is featured by the energy ftu>2, the wavevector k' and the unit polari­

sation The recoil electron has a momentum p2 and an energy E2-
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electron density. It is distinguished by a cross section which is a function only of 

the momentum transfer. It is well described by the classical Thomson cross section,

the incident and the scattered beam respectively. In the case of unpolarised photons, 

equation 1.6 becomes,

where is the scattering angle (see figure 1.1).

1.5.2 T h e C om p ton  effect

The inelastic scattering effect is well established and well described by the familiar 

equation,

This formula is much more useful, as far as the Compton scattering studies 

reported in this thesis are concerned, when it is written in terms of incident and 

scattered energies ui\ and ui-i,

It is obvious that the Compton effect formula is very sensitive to the scattering 

angle which determines the energy transfer to the recoil electron.

1.5.3 C om p ton  scattering from  a free electron

The derivation o f the inelastic scattering cross section from free stationary electrons 

was derived by Klein and Nishina (1929) using quantum electrodynamics. For un-

( 1.6 )

where ( —i )  is the classical electron radius and e and e' are the polarisation vectors of

(1.7)

( 1.8)
me

"> _w i 1 + 3 (1 -cos*> (1.9)
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polarised photon scattering from free electrons without net spin, the cross section is 

given by,

where u>i and u>2 are the incident and the scattered energies related to the Compton 

shift formula (see equation 1.9). For a low incident energy photon (u>i < <  moc2), 

where the energy transfer is very small (—i ~  u>]), the Klein-Nishina cross section 

reduces to the Thomson cross section (equation 1.7).

1.5.4 C om p ton  scattering from  a b ou n d  electron

In the early section (1.5.3) the scattering from a free non-relativistic electron was 

discussed. However, those assumptions are not valid as far as the condensed matter 

is concerned. It is well known that inner electrons in atoms may be tightly bound and 

most electrons move with relativistic velocities. Moreover, the outer-most electrons 

in outer shells may reach speeds approaching relativistic values. The motion of 

bound electrons in condensed matter with such high velocities contributes markedly 

in the expansion of Doppler broadening of the Compton scattered beam, i.e. the 

scattered photon energy is shifted from the usual value obtained from equation 

1.9. This is due to the fact that photons are scattered off relativistically moving 

electrons. A schematic diagram of the interaction process between a photon and a 

non-relativistically moving free electron is shown in figure 1.2.

For a non-relativistic target electron with momentum p, the energy transfer is 

given by

3
( 1.10)

U>t —U>2



Figure 1.2 Schematic diagram o f the kinematics of a photon with an energy fiw and 

a wavevector k' interacting with a free electron with an initial momentum pi and an 

energy E\. The electron momentum p, is aligned with the scattering vector K  =  k — k'.



B  =  V  X A , (1.14)
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and B ' is the magnetic field created by the moving electron in the electric field of 

the electromagnetic radiation E(r^),

Since the system is treated in the non-relativistic approximation, the Coulomb 

interaction of the nucleus with each electron existing in the system and the Hamil­

tonian describing the nucleus in the presence of the electromagnetic radiation are 

not considered (Grotch et al 1983). This approximation is based on the assumption 

that the nucleus is treated as infinitely heavy.

T he vector potential A (r,) is a linear combination of photon creation and photon 

annihilation operators respectively A) and C(k\),

where V  is the quantized volume principally used for the normalisation. The index 

a — (1 ,2 ) labels the two polarisations of each wave q, i.e. k and k'.

T he electric field in the spin-orbit term is not derived from a static potential, 

hence it is given by,

where 4> is the Coulomb potential.

Since the scattering occurs in second order for terms linear in A  and in first order

is going to be simplified in such a way that the linear terms in A , which become 

negligible, will be omitted. The quadratic terms as well as those independent of A

1
[pi -  |A (r,)j X E(r))- (1.15)

me

(1.17)

for terms quadratic in A , hence, the spin-orbit term, which is of the order of ~  (t>/c)3
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were kept in the Hamiltonian (Blume 1985).

E - . ' W h - H  (>•>*)

=> -  2(mc)i *  P;> +  [A(rj) x A (r>)] j  (1.19)

H, Hi
where the first part, H\, is the ordinary spin-orbit coupling term for electrons, 

while the second one, Hi, represents the spin dependent scattering. The resulting 

expression of the Hamiltonian may be written «is.

H =  H0 +  H' (1.20)

where Ho is the Hamiltonian for the uncoupled photon,

+  £ lW » [c+ (lA )C < * A ) +  i ]

and H' is the Hamiltonian for the electron-photon interaction,

( 1.21)

- - E ^ K A I r , )

- ^ ¿ Z > [ A < r , ) x A ( r , ) ] ( 1.22)

The scattering events originating from the first two terms, i.e. A 2 and A .p, are

schematically shown in figure 1.3.
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1 .6 .2  T he Relativistic photon scattering cross section

The derivation of the Compton scattering cross section is governed by the transition

describes the photon scattering process as a transition from one state to another,

where the initial state |a >  consists of a bound polarised electron and a single photon 

characterised by its wavevector k and a polarisation e. The scattered photon which 

governed the final state \0 >  is described by a wavevector k' and a polarisation

Clearly from equation 1.22, only H[ and H'4 will contribute to first order terms 

in the Golden rule because of their quadratic vector potential dependence. On the 

other hand H'2 and H$, which are linearly dependent on A  will only contribute to 

second order terms.

Assuming that only the low lying excitations are considered (which means u ~  

uJic') and neglecting the relativistic corrections in the denominators, hence, after 

substituting the expressions of H[ and H\ in the first order term in equation 1.23, 

one m ay obtain,

rate known otherwise as Fermi’s golden rule (equation 5.12) to second order, which

W  =  ^ | < 0 | f f '| a > + £
<  f f l t f 'b  > <  i\H'\a >  |a 

-  £ ,  I
x < ( £ „ - £ » ) ,  (1.23)

(1.24)

where e =  <(kA), e' =  t*(k'A') and K  =  k — k'.

T he first term in equation 1.24 originates from the A 2 term and it is commonly 

known as the Thomson term for non relativistic electrons. The general expression 

o f photon scattering including all terms up to second order may be obtained by
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substituting terms linearly dependent on A  in the second part of equation 1.23 

as well (this additional contribution is particularly important at high energy). In 

doing so, one may obtain the total differential cross section up to second order by 

multiplying the transition probability. W , by the density o f the final states and 

dividing by the incident flux (see Bhatt et al 1983),

- S j -  -  H > (^ /)/ /o , (1.25)

where p(uf ) =  and I0 =  p.

ÌL  = ( ¿ )  |< « I < /»l E ^EE
( <  fllinP1 -  * f ,)-s.]e~k' r,h  > <  +  «'(k X <).8>]e,kr2|q >
^ £ 0 — £-, +  h«:k -  iT^/2

<  /? |p jp  +  i ( k  x  > <  ->][*&■ ~  i ( k '  x  Q . s , ] e - k' r - |a  > \  I*
+  Ea -  E ^ -h u *  )\

6(Ea — E0 +  huik — huik')- (1.26)

This resulting expression of the double differential cross section accounts for 

most X-ray scattering phenomena up to second order (■£%s)2- The term —*r->/2 

which appears in the denominator is included in order to take into consideration the 

level width which is markedly important very close to resonance {huik ~  £ 0 — £-,) 

where anomalous dispersion effects occur. The derivation of the cross section which 

is going to be assumed here, applies only to the condition ~  . Hence,

using the closure relation £-»|7 > <  7l =  1« the final expression of the scattering 

cross section may be reduced to,

<P(T
dilduj
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+» c  ,(k' * H  *** [t 2+,<k * *H e‘k" 1“>
S (E a — Eg  +  hu/f — hu>k')- ( 1.

Finally the photon scattering cross section may be deduced after evaluating the 

commutators in the last two terms o f equation 1.27,

&  -

(< /S|̂ e'K" [,ns^ic+,>Bi]|Q >)|
S(Ea — Eg +  hu>k — ft .v ). (1.28)

where,

1 0 

0 k.k'

0 k 

- k '  k 'x k

(1.29)

(1.30)

(1.31)

and

B i =  e' x e +  (k '.f)(k ' x e') — (k ' x «)(k.e') — (k ' x <)') x (k  x e) 

k x it' —2k' sin2 o /2  

2ic sin* <f>/2 k x k' .

By summing all final states, the differential cross section equation may be written 

explicitly in terms of the three quantities n (K ). S (K ) and L (K ) respectively known 

as the Fourier transform of the charge density, the spin density and the atomic 

orbital magnetisation density (Blumeet al 1988),

<P(T
diicLj

X (K )A i +  S (K ).B i (1.32)
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where,

n ( K ) = < o | £ e 'K ’ <|o> (1.33)
>

S ( K ) = < o | £ e 'Kr’ S> > ,  (1.34)

i iC  X (L (K  x it )  = <  a | 5 > * '<  ( ' K ^ .P ) )  1« > . (1-35)

and A i is a 2 x  2 matrix given as:

A i 2(1 -  kk')(e' x  ê) — (k x  <)(k.<') +  (k ' x c ')(k '« )
e f  \o - ( fc  + 1')

9Ì-2 .  .
k +  k ' 2k x k' ^

(1.36)

For further detailed derivation about the atomic orbital magnetisation, the reader 

is referred to Trammel (1953) and Steinsvoll et al (1967).

Clearly, from equation 1.32 the ratio of the cross section for pure magnetic photon 

scattering to the charge density scattering is reduced by a factor of (^ ^ )J, i.e. for 

60 keV photon energy, the ratio is reduced by a factor of the order o f 10~2 regardless 

of the reduction due to the very small magnetic effect usually obtained in magnetic 

substances. On the other hand the interference scattering cross section is of the order 

of ( ^ ) i.e. for conventional X-rays the magnetic effect may be experimentally 

obtained to be around 1% in ferromagnet transition metals. More precisely this 

effect may only be investigated when circularly polarised radiation is used (complex 

polarisation vectors).

1.6.3 P olarisa tion  states and th e  density m atrix

The polarisation states for partially polarised photon radiation may be described 

by the density matrix formalism. For polarised photon beams such as synchrotron
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radiation, the polarisation is described by two polarisation states known as the right 

-hand and the left-hand circular polarisation, t* (see section 3.2.4). In the incident 

beam coordinates (£ ij Ç) shown in figure 1.4, with the C axis represents the direction 

of the wavevector k ,  we have,

e± =  V 3 (<' ± i , t ) '
(1.37)

The polarisation, P, of the incident beam may be described by Stokes parameters 

Pt , Pv, P( respectively referred to as the 45° linear polarisation, the circular polari­

sation and finally the linear polarisation (see Blume et al 1988, Lovesey 1988). The 

expression for the density matrix may be expressed in terms of the unit matrix and

the Pauli matrices.

p =  (I +  P.«r) =
1 +  PC P t~  iPv 

Pt +  iPv 1 -  P(
(1.38)

where. f
0 1 0 - i 1 0=

°> . ' 0 ,
,<7C =

t 0 - 1 ,

(1.39)

Hence, the photon scattering cross section may be emphasized by means of the 

density matrix as follow,

* > ' < * > * >  (1'40)

where < Mi >  is the matrix element which represents the amplitude o f the photon 

scattering cross section, and the i indicates the type of the amplitude, i.e. c for 

charge and m for magnetic.



r<

F igure 1.4 Arbitrary Incident polarisation P  =  (PX,P V,P () in the Poincarré represen­

tation.
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1.6.4 T he charge sca tter in g  cross section

As it has been discussed earlier the charge scattering cross section is simply obtained 

from equation 1.32 by assuming S(K ) and L (K ) to be zero, the same result may 

be obtained straightforwardly from equation 1.40. i.e.

Clearly the charge scattering cross section is dependent only on the linear compo­

nent o f the incident polarisation. The dominance of the cross section is characterised 

by photons which are polarised perpendicular to the scattering plane (P< =  1 ). 

Whereas for photons polarised in the scattering plane (P () — — 1, the cross section 

is less significant. Ultimately, the Thomson cross section is obtained for unpolarised 

incident photons (i.e. P = 0 ).

1.6.5 T he in terference scattering cross section

The existence of magnetic terms in the general expression of the scattering cross sec­

tion (equation 1.32) is well established. As far as Compton scattering is concerned, 

the interference term is significantly larger than the purely magnetic term for con­

ventional photon energies (see equation 1.32). The isolation of the interference term 

is achieved with circularly polarised radiation (i.e the radiation polarisation vectors 

are of the form given in equation 1.37).

Assuming that only circular polarisation is present in the incident radiation (i.e. 

P( =  Pi =  0 in the density matrix). Hence, the interference cross section may be
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obtained as

dildu)
cP<7j

(S (K )[k ' +  k  COS <J>] +  L (K )[k  +  k ']cos! ^ /2) (1.42)

Substituting for (1 — cos<£), one may obtain,

(S (K )[k ' +  kc' +  k cos o] +

/," (| - c o ,* )

o] +  L (K )[k  +  k') cos3 ^ /2 ) (1.43)

It is clearly possible to arrange the scattering geometry in order to isolate the atomic 

and spin magnetisation densities. Recently the first measurements o f this kind have 

been reported by Collins et al (1989). The method consists of predicting the ratio 

of the spin and orbital magnetisation components in iron and cobalt.

1.7 T he th e o ry  o f  ch arge C o m p to n  scattering

The cross section (equation 1.32) describing weakly scattered photons within the 

Born approximation was clearly derived in section 1.6.2. The cross section is a 

product of two terms; (^ jf ) 2 describes the nature of the scattering and a much 

more complicated term yields information about the target (i.e. charge density, spin 

and orbital of electron). For unpolarised photons the cross section is taken into 

consideration up to first order only, i.e.

(1.44)
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M j is the matrix element of a scattered single electron at a position r, with a 

momentum p.

Within the framework of the impulse approximation, the system is treated as if 

all electrons are completely unbound. The Fourier transform of the matrix element 

defined earlier (equation 1.5) gives,

Clearly the final electron state \& >  has been considered as a plane wave, i.e. 

in the position space representation we have \0  > =  e+p* r' ,  and the initial electron 

state is |q  > =  /  V’i(r>)dri . p 2 is the final electron momentum given as p 2 =  K  — p ,. 

After substituting p2 by its new expression, the matrix element may be reduced to,

The final expression of the matrix element is obtained using equation 1.5. Using 

the principle o f conservation of momentum, the summation over all final states in 

the plane perpendicular to the scattering vector gives,

’ - ¥ ) * * .  ( I -48) 

The double integral is commonly referred to as the momentum density distribution 

or the Compton profile.

(1.45)

I2 |2

(1.46)

|2

=  " (P ) (1.47)
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1.8 S pin  dependent C om p ton  sca ttering

It is well known that the study of the Compton scattering within the framework of 

the impulse approximation is restricted by backscattering, i.e. the orbital moment 

contribution which is insignificant for such arrangement may be neglected from the 

magnetic part o f the total photon cross section. Hence, the interference cross section 

becomes,

O a t  ~  l " (K ) ( = ? )  —  ° ,S (K ) [ t ' +  t e W ] .  0-49)

Choosing k  to lie in the z direction (same as r/), hence the leading term in s* 

becomes,

S (K )[k ' +  kcoso] =  2s-cosd>. (1.50)

In reality, if we take into consideration the spin dependent effect, the momentum 

density distribution, np, becomes (n ’ +  >»*). where n* and «* are the momentum 

density of the electrons for spin up and spin down respectively. By developing the 

matrix sz along the vector polarisation (equation 1.37), and after adopting the same 

derivation used in the previous section, the differential spin dependent cross section 

obtained for opposite circular vector polarisation becomes,

(sSb) = 4n(K) (II) (Ó) w(cos4i~1)
^  ^  (1.51)

where the integrated part is commonly referred to as the spin dependent Compton 

profile,

-  n lp)dprdpv. (1.52)
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1.9 B an d  structure theories

Current band structure theories in condensed systems employ generally a single par­

ticle approximation. The solution of the Schroedinger equation for a many electron 

system is not a practical proposition, hence a many particle wave function may be 

represented as a product of single particle wave functions as stated in the Hartree 

and the Hartree-Fock approximations. In recent years, density functional theory 

has been introduced and provided an other variety of effective single particle the­

ory. This method gives correct total energy and charge density of the ground state. 

This theory which is based on the Local Density Approximation (LDA) is simple 

to use since exchange and correlation effect are included within the single particle 

Hamiltonian. The LDA has been very successful in band structure calculations.

In recent years the band structures of transition metal have been treated us­

ing a few different theories namely; the Linear Combination of Atomic Orbitals 

(LCAO), the Combined Interpolation Scheme (CIS), the linear combination of Gaus­

sian type orbitals (LCGTO), the Augmented Plane Wave (APW ), the Korringa- 

Kohn-Rostoker (KKR), and recently the Full Linearised Augmented Plane Wave 

(FLAPW ). A significant disagreement was usually obtained between these theories 

particularly in describing the majority and minority spin bands below the Fermi 

level.

The LCAO has not been satisfactory particularly outside core states where the 

potential is nearly flat and therefore cannot describe accurately the newly free elec­

tron waves in this region. In a solid where orbitals from different atoms overlap, 

the LCAO consists of treating combined orbitals centred on different atoms. The
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degeneracy is split into a band of states governed by the wave function

Mr) = £  '**&**.(r - 1), (1.53)
H

where V’i i r  — 1 ) is one of a set of different atomic orbitals on the atom at position 1 

and (ij are the normalisation coefficients.

Four decades ago Slater and Koster (1954) introduced a new method o f studying 

d-bands in metals. This method consists of an interpolation scheme which is based 

on the tight-binding approximation. In a solid the orbitals obtained from different 

atoms overlap into a single band o f states. For instance, in transition metals, the 

d-states of the atom are compact with each core. The combination of those indi­

vidual d-states are well defined in the d-band and they are usually represented by 

a wavefunction which is a LCAO. As a consequence the CIS method consists of an 

interpolation scheme for the d-bands in metals and a description of the s-p compo­

nents of the band structure is based on a few plane waves. The basis set for the CIS 

contains five LCAO wavefunctions and four orthogonalised plane waves (see Hodges 

et al 1966).

In the case o f the tight binding method, the wavefunction for a given state of 

wavevector k  is given as,

r - l ) ,  (1.54)

where uj(r — I) is a localised function. The wavefunction is constructed of 38 func­

tions u,. The functions for states other than 3d are linear combination of Gaussian 

type orbitals (LCGTO). The d-state is described by five radial Gaussian type orbital 

wavefunctions (G TO ) (see TawiI and Callaway 1973).
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The APW  approximation based on the LDA is the first calculation which gave 

a reasonably satisfactory picture of transition metal band structure (see Wakoh at 

al 1977). In a muffin-tin potential which is assumed to be spherically symmetrical 

about each site and constant in the interstitial regions, the plane waves describe the 

system correctly within each sphere as well as the region between the spheres. The 

wavefunctions are given as

* k (r )-e * * * k (r -l)  (1.55)

This wavefunction does however describe the whole potential o f the lattice, hence 

the final wavefunction is constructed by the Bloch theorem. In principle the KKR 

is similar to the A P W  method although they look different. The KKR method is 

treated by means o f Green’s function (see Appendix A).

The APW  method has been extended to the FLAPW method which is capable 

of treating the extreme limits of the isolated molecule (see Wimmer at al 1981). 

This method consists of solving Poisson's equation for the general potential and by 

including the Hamiltonian matrix elements due to the nonspherical terms of the 

potential operator inside the muffin-tin spheres. In order to treat the region inside 

the muffin-tin spheres correctly, the potential outside the muffin-tin spheres was 

approximated in such a way to that it does not depend on the the actual shape of 

the charge density inside the spheres but depends upon the multipole moments of 

this charge density.



Chapter 2

GAMMA-RAY COMPTON PROFILE 
OF ZINC AND IRON-NICKEL ALLOY

2.1 In trod u ction

The study o f gamma-ray Compton profile is a well established method which reveals 

important information about the ground states of electron momentum density. This 

technique is very sensitive to valence electrons which are responsible for bonding in 

solids. Hence, it is very effective for the study of the electronic structure of solids 

(see Williams 1977 and Cooper 1985).

2.1.1 M om entum  den sity  distributions in free atom s

The Compton profile of a given free atom is simply obtained from the summation 

of distributions for electrons in the different shells of the free atom. Figure 2.1 

illustrates the momentum distribution of zinc (la 22s22p#3ai3p*4.s23d10) calculated 

numerically, within the framework of the non-relativistic Hartree-Fock approxima­

tion, from a basis set o f independent wavefunctions by Biggs et al (1975). Clearly 

from the figure, the contribution from the most inner shells (i.e. core electrons),

24
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gives a flatter profile, whereas most outer electrons (i.e the valence electrons), give 

a localised contribution featured by a peaked profile centred around the origin; this 

is simply related to the velocity of electrons. Apart from inert gases (Eiseuberger 

et al 1972), the free atom m odel is far from being valid because of the significance 

of the different effects arising from Coulomb interactions as well as the electron cor­

relations and the exchange energy. These effects affect mainly conduction electrons 

which are responsible for bonds between atoms in solids. However, this model is 

accurate enough for the core electron and therefore, it is good for normalisation.

2.1.2 M om entum  den sity  d istribution  in sim ple m etals

There exist some simple metals for which the theoretical treatment of their band 

structures is very simple. The simplest of all metals are those whose conduction 

electrons behave as in a non-interacting homogeneous free-electron gas, i.e. the 

electron correlation has a negligible influence on the core electron distribution. For 

such metals, the ground states of the conduction electrons in momentum space are 

included in a Fermi sphere o f  radius, pr =  hkp, known as the Fermi momentum. 

States outside the Fermi sphere are completely unoccupied and the Compton profile 

is an inverted parabola,

where n is the total number o f conduction electrons existing within the Fermi sphere.

This simple model was applied successfully to alkali metals (Li and Na) as well as 

light metals such as Al and Mg, (see Phillips et al 1968 and Cooper et al 1974). The 

lineshape of the aluminum Compton profile obtained from that simple model is illus­

( 2. 1)
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trated in figure 2.2. The Compton profile obtained from such a model overestimates 

the real contribution below the Fermi momentum, mainly because the Coulomb 

interactions within the conduction gas are neglected (see figure 2.3). Those inter­

actions promote some electrons to the momentum states above the Fermi level and 

consequently increase the core distribution and decrease the peak height.

In real metals the conduction electrons must be affected by the periodic potential 

of the ion core lattice. Due to the periodic nature of the crystal potential, the valence 

electron wavefunctions obtained from the solution of the Schroedinger equation have 

the following form,

<Mr) = r k(r)eikt (2.2)

where ¿/^(r) are Bloch functions,

£W r) =  I > o ( k K G'r (2.3)
G

where « c (k )  are the expansion coefficients in the reciprocal lattice, G  is a reciprocal 

lattice vector.

Under Dirac transformations (see section 1.2), the momentum density distribu­

tion may be obtained as,

2 > c ( k )  / V « 2*“ ' ' ' . « - * '* -
G J

(2.4)

X > o < k ) « ( p - k - G ) . (2.5)
G

The momentum density distribution o f an electron in state k is therefore deduced

as,

-k (p ) =  E l«G lk )| , i ( p - k - G )
G

(2.6)
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F igure  2.3 The effect o f electron-electron correlation (solid line) on (a) the momentum 

density and (b) The Compton profile in a Homogeneous gas. The effect is determined 

by the Wigner radius r3. The dashed curve represents the free electron limit.
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The band momentum density, n (p ). may be obtained by summing «k (p ) over 

all occupied states,

" (P ) =  S > ( k ) £  l«G(k)|26 (p  -  k -  G ) (2.7)
k  G

where n(k) is the occupation function.

Figure 2.4 illustrates the two dimensional band construction for a nearly free- 

electron system. The Compton profile consists mainly of a central parabola centred 

at the origin of the reciprocal lattice ( i.e. the centre of the first Brillouin zone), 

plus a series of decreasingly weaker parabolas centred at the origin of the second, 

third, etc... Brillouin zones.

2 .2  E xperim ental system s

2.2.1  Gam m a ray Spectrom eters

The schematic diagrams of the low and high energy spectrometers are illustrated in 

figure 2.5. The spectrometers were designed and built about a decade ago (see Holt 

et al 1979) and have been used extensively and exclusively for the determination of 

momentum density distributions (see Holt 1978, Rollason 1984, Cardwell 1986 and 

Timms 1989). The spectrometers are quite similar in terms of constituency though 

the small differences were mainly depending upon the type of the source used. The 

higher energy source used is the xmAu isotope obtained from an irradiated gold foil 

by thermal neutron flux. The source decaying process is governed by the following 

reaction,

197,4u(n, 7 ) — . ' " A u  —  '” Hg +  7(412k tV )  +  ,9“  (2.8)



F igure 2.4 The Seitz model for nearly free electron gas in a square lattice. The effect 

o f  band structure is to promote electrons from a state k to a state k + G . The main 

contribution comes from the first Brillouin zone. Less significant contributions are ob­

tained at high momenta.



OUTLINE OF 412KEV GAMMA-RAY COMPTON SPECTROMETER

F ig u re  2.5 Schematic diagrams o f the Compton scattering spectrometers; (a) the low 

energy (60keV) spectrometer and (b ) the high energy (412keV) spectrometer.
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The two sources have advantages and disadvantages, however, in most cases 

the disadvantages are minimised by the appropriate design of the spectrometer. For 

instance the low activity of the 241 Am source and its very high self absorption (40%), 

presented a big handicap in the early days to obtain a reasonable and adequate 

statistical accuracy over the whole region of the Compton profile in a reasonable 

length of time. The source half life is 458 years which is long enough to be able to 

run the experiment for a sufficiently long period in order to obtain enough integrated 

counts under the Compton peak. On the other hand, the longer the experiment is 

run, the higher is the risk of the data deteriorating due to electronic gain changes 

caused by temperature fluctuations (17 days are required to accumulate 10 s counts 

at the origin of the Compton peak). Such an effect may be minimised whenever 

an air conditioning system in the experimental area is available. The drift in the 

electronics may be assessed by monitoring frequently the position and the width 

(F W H M )  of the elastic peak.

As stated earlier, the Compton scattering is well established to be valid only 

for scattering angles close to 180° (see section 1.4). Moreover, the backscattering is 

essential in order to reduce the contribution of the angular divergence to the overall 

momentum resolution. The possibility of achieving such an arrangement may be 

realised when the source is placed as close as possible to the detector considering 

enough shielding between the source and the detector. However, with high en­

ergy sources, it is practically impossible to achieve such an arrangement due to the 

amount of shielding (mainly lead and heavy alloys) needed to stop unwanted radia­

tion. Alternatively, it has been suggested that the backscattering arrangement could 

b e  achieved to some extent by using annular source geometry for which the detector
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is positioned in such a way to look at the sample through the annular source along 

its axis (see figure 2.6) (see Weyrich 1975). This particular arrangement was very 

successful for obtaining scattering angles very close to 180°. Accordingly, Holt et al 

(1978) built the so-called low energy spectrometer located at Warwick University. 

T he spectrometer was built around a 60 keV 241 Am source. The scattering angle 

was measured at 170° ±  1°. The source inner and outer diameters are respectively 

2.6cm  and 3.4cm. The beam is collimated along the surface of a cone through a 

block of lead. The scattering vector cannot be uniquely defined in such a scattering 

design. On the other hand, the scattering vectors could be found symmetrically 

distributed on the surface of a cone with a single component pointing towards the 

detector. Generally, this arrangement is very favourable for the study of polycrys­

talline samples where the scattering vector is randomly oriented with respect to 

the structure. Further considerations such as narrow incident collimation and long 

beam  paths may be considered as a good approximation for the study of directional 

Com pton profiles. The direction of the scattering vector may be averaged to be 

pointing towards the SSD and perpendicular to the sample face.

The high energy Compton spectrometer which is located at the Rutherford Ap­

pleton Laboratory (RAL) was designed by Holt et al (1979). In contrast with the 

low energy spectrometer, the high energy spectrometer was built around a block 

o f tungsten material which encompasses the Gold source ( ,98-4u). Principally the 

rectangular foil source is contained within a removable block of tungsten alloy in 

order to be able to be transported easily to be reactivated because of its very short 

half life ~  2.7 days.

T he background for such high energy sources may unfortunately be reduced at



F ig u re  2 .6  Schematic arrangement o f the Compton scattering experiments; (a) the low 

energy (60keV) system and (b ) the high energy (412keV) system.
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the expense of the possible large scattering angle, principally because o f the size 

of the blocks of lead and heavy alloys separating the source from the detector. As 

illustrated in figure 2.6, the scattering angle for the high energy system is 167°. 

The source-sample and the sample-detector distances are, respectively, 476mm and 

594mm. T h e radiated area at the sample position is equivalent to 18mm.

2.2.2 S o lid  State D etectors

Many different types of detectors may routinely be used in the detection of X-ray 

scattering. However at the present time semi-conductor detectors, known as solid 

state detectors, are considered as the most suitable for conducting Compton scat­

tering experiments. The semi-conductor devices consist of high purity material with 

high carrier mobility such as germanium and silicon. The solid state detectors com­

monly used are either high purity germanium H-p-Ge or lithium drifted germanium 

Ge(Li).

The detectors must be operated at liquid nitrogen temperature, principally to 

reduce the noise in the amplifier, and furthermore, to prevent the lithium (Li) dif­

fusing out as in the case of Ge(Li). As a result, the Ge(Li) must be maintained 

permanently running at liquid Ni temperature in order to avoid its destruction, 

whereas the H-p-Ge cannot be damaged when they are left at warm temperatures 

for some tim e. However, it is essential to cool the system down again for 24 hours 

before operation. The detector resolution may be affected by the presence of crys­

tal imperfections as well as impurities inhomogeneously distributed throughout the 

crystal. T he carriers in the semi-conductors may be trapped by these imperfections 

for a period exceeding the pulse-shaping time. The absorption o f a photon in the
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active region of the semi conductor by a photo-electric process may create a number 

of electron-hole pairs proportional to the energy o f the absorbed photon. An applied 

electric field sweeps the electrons and holes to the electrodes. Consequently, the size 

of the current pulse created may be detected according to a charge-sensitive ampli­

fier. The charge pulses collected are converted to voltage pulses in the pre-amplifier, 

then the output pulses are fed to the main amplifier where they are reshaped and 

transmitted to the Analogue to Digital Converter (ADC). The recorded counts of 

every photon energy are stored in a Multi-Channel Analyzer (M CA) which has a 

maximum scale of 4096 channels.

2.3 D ata  R eduction

2.3 .1  T h e C om pton  scattering cross section in the relativistic lim it

The inelastic scattering cross section obtained by Platzman and Tzoar (1970) within 

the framework of the impulse approximation for relativistically moving electrons 

must be rigorously modified in order to account for the initial relativistic scattered 

electrons. According to Jauch and Rohrlich (1955), the Compton scattering cross 

section for relativistic electrons may be dependent upon the momentum of the elec­

tron, p i , before the scattering occurs. Hence, the Compton profile cannot adequately 

be related to the cross section as it has been illustrated in equation 1.48. Jauch and 

Rohrlich (1955) obtained a similar relationship dependent upon pi,

S C  -  2u*i i f l K l T f t A .  /  )* (P , )
(2.9)
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where -V (pi) is known as the flux vector.

1
P i k:) +m‘ (

1
P i k

( 2.10)

The extraction of the Compton profile from the cross section might be resolved 

by considering the initial electron as non-relativistic. Accordingly, Eisenberger and 

Reed (1974) simplified the cross section for scattering angles o f  the order of 180° 

which is close to that commonly obtained for Compton scattering experiments. Rib- 

berfors (1975a) extended the same analysis by integrating by parts the cross section 

(equation 2.9) to obtain a rapidly converging series of terms each containing the 

Compton profile, J(pt ), and a complicated factor X ' (for detailed derivation see 

Ribberfors 1975b). Taking into account only significant terms (i.e. neglecting terms 

which are insignificant compared to Jy). the corrected double differential cross sec­

tion becomes,
<P<r
d ilu ì

(2.11)

2.4 C o m p to n  profile analysis

The Compton profile J(pt ) can be related to the double differential cross section 

D(o>2) by the following equation,

D(l̂ )  =  C(u>7 ).J(pt ) (2.12)

where u>2 is the scattered photon energy. C(u^) is the Ribberfors cross section (see 

Ribberfors 1975b) and D(u^) is the double differential cross section which may 

be obtained from the data after being corrected from the systematic effects such 

as the background and the detector efficiency. Further reductions such as beam
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attenuation, geometrical broadening and multiple scattering are also necessary (see 

figure 2.7), i.e.

D M  =  * G~l * E - '.R - '  * [ M M  -  B M \  (2-13)

where * represents a convolution. B(o>2) is the background noise, A/(u>2 ) is the 

measured energy spectrum, /?(u>2) is the detector resolution function, E ( M  is the 

detector efficiency <j (wj) is the geometrical broadening function, is the source

broadening function and A(u>2) is the absorption function. After such corrections, 

the Compton profile may now be effectively extracted after being normalised to the 

total number of electrons per atom and corrected for the multiple scattering. The 

Compton profile obtained from single scattering may be deduced according to the 

following formula,

J,,n9l'{p i)  =  cx jtotaliP; ) ~  Jmultipi'iPz)

where o  is a factor which conserves the data normalisation,

_  J J.,ngl'(P z)dP: ~  f  Jmult,pl'{Pz)dp, 
f  J.in3lt(P :)dp;

2.4.1 B ackgrou n d  correction

In principle, the background to the Compton scattering may be separated from the 

Compton signal simply by joining a straight line between two points situated at the 

right and the left hand side of the peak. However, this simple method does not truly 

and effectively reduce the effect of the background because of the complexity of the 

problem. The background consists o f two parts; a random part originating from a 

natural radioactivity such as cosmic rays etc..., and a second part which may be

(2.14)

(2.15)
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E M
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I -
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r
ABSORPTION CORRECTION i4(wj)

NORMALISATION C(u/2)

MULTIPLE SCATTERING CORRECTION JmmUipì*(Pm)
-----------------------------------

CORRECTED COMPTON PROFILE
__________ 1____________

A r . )

Figure 2.7 Outline of the procedure o f the data reduction.
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attributed to the radiation detected from the source, either through the shielding or 

scattered from the chamber walls, sample holder and molecules in the environment.

The second part of the background which is independent of the sample signal may 

be measured in a separate experiment, then must be scaled to match the background 

in the data before being subtracted. The scaling factor which is related to the source 

decay must be of the order of ~  1 , so that the statistical accuracy of the data may 

not be affected after the background subtraction (i.e. the background measurements 

must not be taken with a dying source). The time scaling factor (i.e. the period 

needed for the background measurements) may be estimated simply by measuring 

the source initial activity as well as the period of the data measurements. This 

principle is easily adopted, for the measurements of the Compton profile o f many 

samples as well as the background for long half life sources such as 341 Am. However, 

for short half life sources such as 198Au. the measurements of two samples and a 

background spectra are restricted by the short time of the activity of the source (~  

4 half lives).

The measurement o f the random part (known elsewhere as the static background, 

Timms 1989) for the gold source revealed no significant effect (i.e. the random part is 

negligible). The insignificance of this part of the background is due to the relatively 

high activity of the gold source with respect to the cosmic rays. In addition, it is 

particularly important to know that the random background must only be measured 

when the source is completely removed from the spectrometer, rather than being 

measured with the source shut off, principally because some of the detected radiation 

may be obtained from the source through the shielding.
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2.4.2 A bsorption  correction

Absorption is an important factor in the data correction especially for thick samples 

investigated with low energy sources. Figure 2.8 illustrates a clear description of the 

absorption process in the sample. A primary beam enters a sample of thickness (t) 

and making an angle (a ) with the face o f the sample. The scattered beam  leaves 

the specimen with different angle 0  and an intensity,

P2 are respectively the absorption coefficients of the sample for the incident and the 

scattered beam energies.

The integrated intensity over the sample thickness yields the absorption correc­

tion term.

2.4.3 D etector Efficiency

The probability of a photon being absorbed through a material of a thickness t is 

given as,

where p(*>) is the energy dependent photo-electron attenuation coefficient. The

efficiency of such solid state detectors may be defined as,

. Number o f  absorbed photonsF. f  f t n e n r t ,  =  -------------------------------------- ' ------------------- £--------------------------------  Î9  1QÏ

(2.16)

where dv =  (S is the beam cross section area), x  =  y =  ¡̂£¡3 , and fij and

Ptcostca  - f  p i cosecfi
(2.17)

(2.18)

E ffic ien cy  =
Number o f  photons entering the crystal detector

The measurement of the detector efficiency may be carried out experimentally 

using Gamma-ray sources emitting several monochromatic radiations of well known
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relative intensities. Accordingly the i33Ba radio isotope was deemed to be the most 

reliable source for such investigation (see Lederer et al 1967). Although the source is 

characterised by insufficient data points obtained within the region of the Compton 

peak (140-180keV) for the high energy system, the measurements were in good 

agreement with a Monte Carlo simulation of the detector (Laundy, 1986, private 

communication, see figure 2.9). As a result this simulation has been used to correct 

Compton data obtained on the high energy spectrometer system.

Clearly, equation 2.18 fails to describe the detector efficiency, especially at high 

energies, where the scattering process is less overwhelmed by the photoabsorption. 

Again it is also clear from the figure that the detector efficiency for the low energy 

system is 100% efficient. Hence, no such correction is necessary for the americium 

system.

2.4.4 R esolution correction

The statistical accuracy of Compton profile experiments may be easily improved at 

the expense of the total resolution. This might be obtained by increasing signifi­

cantly the size of the sample, the crystal detector and the source (see figure 2 .6). 

Consequently, the Compton profile lineshape may be deteriorated due to  the large 

geometrical broadening function. In other words the Compton profile lineshape be­

comes broad as a result of the accumulation of different profiles, each originating 

from slightly different scattering angles. The total resolution may be approximated 

as,

R2 =  R2G,o +  Rbel (2.20)
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where Raeo and R-Det are respectively the geometrical broadening resolution and the 

detector resolution which are assumed to be Gaussian.

The detector resolution is usually measured only at the energy corresponding to 

the Compton profile centre and it is approximated to be energy independent over 

the whole range of the Compton profile. This approximation has been m ade due to 

the absence of a tunable monochromatic source to determine the detector response 

as a function of energy through the range of the Compton profile (-10 a.u. , +10 

a.u.), i.e. 13keV for the americium system and 23keV for the gold system. The 

measurement of the resolution function is effectively quoted as the full width at half 

maximum (FWHM) o f Gaussian at a particular energy. The detector resolution for 

the americium system was measured at the incident photon energy, i.e. at 60keV, 

due to the unavailability of a suitable source with energy close to 48keV. On the 

other hand, the measurement of the detector response function for the gold system 

at the Compton peak energy 159keV was carried out with a weak 191 Te calibration 

source. The total resolution function for the low and the high energy systems were 

determined to be respectively 0.57 a.u. and 0.40 a.u.

2.5 Z inc

2.5.1 Previous research

In recent years, very few experiments have been carried out on the momentum den­

sity distribution of zinc. The isotropic Compton profile of zinc was measured with 

a 241 Am  60ktV  source for the first time by Manninen et al (1974). The data  were 

later corrected for multiple scattering (see Pakkari et al 1975). The experimental
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results were in good agreement with LCAO calculations performed by Aikala (see 

Pakkari et al 1975). The experimental results were deconvoluted with the residual 

instrumentation function (RIF) in order to remove the effect of the finite experimen­

tal resolution (Paatero et al 1974). Rayleigh scattering of photons (i.e. coherent 

scattering) on polycrystalline zinc was measured using 100m pCi 241 Am source with 

photon energy of 59.54Are K (see Eichler et al 1984). The cross section was measured 

at scattering angles ranging from 20° to 90°. The results were in good agreement 

with the theory within the experimental error (4 — 10%). The only directional m ea­

surements were carried out using positron annihilation method (see Mogensen et al 

1969) and very small anisotropies were observed in the linear slit angular curves.

As far as directional Compton profile theory is concerned, the only attempted 

calculation was carried out by Aikala (1975). Unfortunately the theory failed to 

achieve an appropriate result mainly because the effect of the core orthogonalization 

was omitted. The uncertainties in the calculation were found to be very important in 

the directional profiles because of their higher sensitivity to the wavefunctions than 

what was revealed in the isotropic profile. Aikala (private communication) m ade 

another unsuccessful attempt to include the effect of the core orthogonalization. 

The failure is mainly due to the complicated calculation in hexagonal close-packed 

structures.

The study of the Fermi surface of zinc raised a disagreement until Stark et al 

(1967) performed an accurate pseudopotential calculation and obtained results which 

were later confirmed experimentally by Stenhaut et al (1967), who obtained detailed 

dimensions of the zinc Fermi surface using radio frequency size effect measurements. 

The agreement was found to be excellent (i.e. within 1% difference). As far as the
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hexagonal close packed structure is concerned, one of the major corrections applied 

to the Fermi surface calculation is governed by the modified ratio of the inter-atomic 

distances ( i.e. c/a =  1.8246), which exceeds the ideal value by about 10%, hence, 

causing a shrinking o f the Brillouin zone parallel to c  by about 10%.

2.5.2 E xperim ental details

The present experiments were performed at Warwick University and the Rutherford 

Appleton Laboratory (RAL) using, respectively, the low and the high energy sys­

tems. A schematic diagram of the experimental arrangements is illustrated in figure 

2.6. Clearly, the scattering is obtained by reflection. The three sample discs o f zinc 

single crystal were cut from a randomly oriented cylinder (50 x 12mm) purchased 

from Cambridge Metal Crystal Ltd. The orientation of the slices were verified using 

the Laue method. The technique was used to identify the orientation of the cylinder 

axis which was found to be lOlO. The other two major orientations (0001,1120) 

were obtained simply by rotation using a goniometer with two degrees of freedom. 

Hence, the crystal cylinder was cut and shaped, by means of a spark erosion method, 

into three similar discs (11.50 x 2.1mm) oriented along the major orientations.

Individual spectra were accumulated for each sample. Approximately 10s counts 

were accumulated at the Compton peak centre over a period of about 2 weeks for 

the low energy system and for (2-5 days) for the high energy system depending upon 

the source activity. Two gold sources were necessary for the measurements of the 

three directions with good statistical accuracy. This is mainly due to the short half 

life of the gold source (2.7 days).

The raw data were corrected and processed as outlined in the diagram 2.7. The
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data were corrected from the multiple scattering using a Monte Carlo simulation. 

The multiple scattering distribution obtained from an input of 18 x 10® photons 

(see figure 2.10) was cubic spline fitted so that the Compton data obtained from the 

processed single scattering might not need further corrections due the random sta­

tistical fluctuations. The normalisation factor a  was calculated over the momentum 

range (Oa.u., +5a.u.), to be 1.1065 and 1.1350 respectively for the low and the high 

energy systems (i.e. the multiple scattering contribution is evaluated as to  be 9.6% 

and 12.5% respectively for the two systems).

The processed high energy data were normalised to the free atom total number of 

electrons (12.03) included within the range (0a.u.,+5a.u.). However , the processed 

low energy data were normalised only to a fractional number of electrons responsible 

for the scattering which were accurately estimated to be 11.87. Those non-excited 

electrons are included in the K-shell. This is due to the energy transfer which 

is smaller than the binding energy of those electrons (K-edge threshold energy = 

9.656keV).

2.5.3 Results and D iscussion

The experimental directional Compton profiles of zinc are listed in table 2.1. Also 

tabulated are the isotropic LC'AO calculation and the Hartree Fock free atom profile 

taken from Biggs et al (1975). The theoretical data have been convoluted with a 

Gaussian of Full Width at Half Maximum (F W H M  =  0.40a.u.), corresponding to 

the system’s total resolution function.

The electron momentum density is a centro-symmetric function, therefore it was 

necessary to recover the inherent symmetry of the Compton profiles by reducing the



p . Exp-0001 Exp-1010 Exp-1120 • '-O ’.) (T h eo r y )IJO Free atom
0.0 5.55309 5.53864 5.52757 5.52821 5.50278 6.28490
0.1 5.52872 5.51719 5.51008 5.50806 5.47677 6.16458
0.2 5.45484 5.44870 5.43831 5.4375 5.39076 5.83976
0.3 5.32561 5.32500 5.31705 5.31423 5.25074 5.40022
0.4 5.15174 5.15994 5.15103 5.14773 5.05671 4.94676
0.5 4.94200 4.95262 4.92575 4.93267 4.80868 4.55263
0.6 4.69538 4.70042 4.67050 4.68031 4.52564 4.24844
0.7 4.42743 4.44066 4.41760 4.42268 4.23060 4.02994
0.8 4.16974 4.19489 4.18060 4.17931 3.98456 3.87520
0.9 3.95541 3.98052 3.97553 3.96923 3.82454 3.75941
1.0 3.78599 3.81013 3.80137 3.79760 3.72352 3.66274
1.2 3.53427 3.53243 3.52567 3.52485 3.54850 3.48023
1.4 3.28982 3.27784 3.28508 3.27805 3.34447 3.27983
1.6 3.05264 3.05621 3.05673 3.05165 3.11144 3.05609
1.8 2.81887 2.80924 2.81694 2.80998 2.86240 2.81981
2.0 2.57118 2.56710 2.55999 2.56105 2.60937 2.58163
2.5 2.00949 2.01391 2.00519 2.00673 2.02888 2.02127
3.0 1.55425 1.55889 1.56206 1.55740 1.56922 1.56697
3.5 1.20679 1.21574 1.20818 1.20952 1.22717 1.22928
4.0 0.96320 0.96670 0.96372 0.96357 0.98214 0.98469
4.5 0.77791 0.78238 0.77891 0.77916 0.80511 0.80582
5.0 0.64840 0.65741 0.65098 0.65245 0.67410 0.67382
5.5 0.54803 0.56128 0.55700 0.55677 0.57456 0.57427
6.0 0.46588 0.47432 0.46766 0.46960 0.49707 0.49679
6.5 0.39601 0.41281 0.40610 0.40696 0.43418 0.43375
7.0 0.34200 0.35051 0.34000 0.34431 0.38205 0.38149
7.5 0.29419 0.30513 0.29136 0.29725 0.33799 0.33770
8.0 0.25375 0.26796 0.25928 0.26184 0.30004 0.30025
8.5 0.21389 0.23460 0.21764 0.22406 0.26671 0.26739
9.0 0.19138 0.20513 0.18996 0.19639 0.23746 0.23836
9.5 0.16798 0.18810 0.17137 0.17781 0.21200 0.21256
10 0.16172 0.16172 0.16091 0.16115 0.19003 0.10908

T able 2.1 Experimental Compton profiles o f Zn for OOOÎ, 10Î0 a n d l l 2 0  directions, 

measured on the high energy spectrometer system. Also tabulated are the experimental 

isotropic profile obtained from equation 2.22, the isotropic theory (taken from Aikala 

et al 1975) and the relativistic free atom profile (taken from Biggs et al 1975). T he 

theories have been convoluted with the corresponding experimental resolution function

o f FWHM=0.4a.u.
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different effects outlined in figure 2.7. The 0001 profile asymmetry is shown in figure 

2 . 1 1  where clearly the difference between the low and the high euergy sides of the 

Compton profile are within 1%. The similarity between the low and the high energy 

side of the Compton enables the data to be averaged for anisotropy interpretations.

Since anisotropy effects contain more fine structure than isotropic profiles do, 

it is desirable to have the directional profiles compared with an accurate calcula­

tion. However, in the absence o f proper directional Compton profile calculation, the 

experimental data were averaged for isotropic system, i.e.

JitoiPs) =  j[3*/ioIo(Ps) +  3«/iijo(p«) +  </oooi(P:)]- (2.21)

The averaged isotropic profile is compared with the LCAO calculation (see Aikala 

et al 1975). Clearly from figure 2.12 the difference between the theory and the 

experiment exhibits over all good agreement, especially at high momenta. The small 

differences (2 — 3%) between theory aud experiment around the Fermi momentum 

are commonly obtained (i.e. theoretical profiles are usually too large below the 

Fermi momentum and too small immediately above it). This discrepancy indicates 

the underestimation of the electron correlation effects in the theory.

2 .5 .4  Anisotropy

Since the core electron contribution is of very small interest as far as the Compton 

scattering objective is concerned, therefore, to make progress in the analysis of 

valence electrons which are responsible for the band structure of solids, the Compton 

profile data are usually interpreted in terms o f differences between directional profiles
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i.e.

A J{pz) =  Jht,(p .)  -  J w M  (2-22)

where hkl denote crystallographical directions. This method is very effective since 

it eliminates the systematic error in the data as well as the core contribution. The 

oscillations obtained in anisotropies may clearly be understood by studying the 

Fermi surface, i.e. directional Compton profiles obtained by integration over the 

scattering plane intersect with the Fermi surface by varying amounts, which depend 

firstly upon the orientation of the plane and secondly on the location of the plane 

with respect to the valence bands.

The experimental directional Compton profile differences obtained from the low 

and high energy system are illustrated in figure 2.13. Clearly the data exhibits very 

small anisotropies which confirm the positron annihilation measurements. The dif­

ference at the Compton peak is estimated to about 1/2% J(0). The small magnitude 

of the oscillations observed in all anisotropies indicates a relatively spherical Fermi 

surface. The qualitative differences between the low and the high energy data may 

be related to some kind of deffeciency in the data collection (the remeasuments of 

the data were not possible due to the heavy scheduled spectrometer). Those dif­

ferences become very important, especially when small anisotropies are revealed. 

For instance, the high energy side of the Compton profile contribution is effectively 

reduced due to the K-absorption edge (9.656ieK) which lies around 2.4a.u. (i.e. 

K-shell electrons cannot be excited with photon energy of 59.54keV  due to small 

energy transfer).



Figure 2.13 Experimental anisotropies for zinc data measured on the high spectrom­

eter system ( o) and the low energy spectrometer (+).
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2.6 Iron -N ickel alloy

2.6.1 Introduction

The ultimate goal of the study of the directional Compton profiles of iron-nickel 

alloy (FeN is) was focused on obtaining accurate data to investigate the validity 

of a recent KKR-CPA calculation (see Staunton 1987). Recently, Timms (1989) 

carried out similar measurements on Fe rich FeNi alloy. Clear discrepancies were 

revealed with the KKR-CPA and the RB-APW calculations. The most frequently 

studied alloys are nickel or iron based substitutional systems. This is to reveal the 

changes which occur in those two transition metals such as the radius of the Fermi 

Surface along different orientations.

A substitutional alloy (A xB i-x ) usually falls into two kinds of solution (ordered 

or disordered). In a disordered substitutional alloy (i.e. a solid solution of two kind 

of metals), the distribution of atoms on a regular lattice is random. In transition 

metal where the d-baud is half filled, ordering is obtained since the filled bonding 

states of the ordered state are lower than those o f the clustring because of the 

level repulsion. An alloy of Fe and Ni metal adopts the FCC structure for a nickel 

concentration of less than 65 at Vi. In the case where the d-orbitals of Fe are similar 

in energy and wavefunction to those of nickel, the disorder of the alloy would be 

irrelevant (i.e. electrons occupying the d band would not differentiate between the 

two kind of atoms). On the other hand, if the d-bands of the two constituent atoms 

are different, the system would have two sets of d-bands associated with Fe and Ni 

sites respectively (i.e. the energy cannot be well defined with the lattice translation 

vector because the symmetry of the structure disappears).
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As far as magnetism is concerned, the averaged moment per site as well as the 

Curie temperature rise with increase of Fe concentration (the magnetic moment 

of an atom for a given iron-nickel alloy composition exists at a given composition 

associated with the two constituent atoms, i.e. ppe and /¿jvi)- F°r 'ron concentra­

tions near to 25 at %, the Curie temperature suddenly changes its slope and starts 

to decline whereas the magnetic moment continue to rise until a concentration of 

64 at % where it starts to decline in its turn. This behaviour is believed to be at­

tributed to the ferromagnetic exchange interactions between local magnetic moment 

at Fe sites; the ferromagnetic state may be perturbed for a large number o f nearest 

neighbour Fe pairs. Direct evidence of such features was predicted from a single 

spin-only model (see Eggarter et al 1977, Lawrence et 1986). Moreover, Pinski et al 

(1986) and Kakahashi (1983) and Hasegawa (1981) consolidated those features by 

predicting theoretically that iron in an FCC lattice would be anti-ferromagnet for a 

concentration near 25 at %.

2.6.2 Experim ental analysis

Three directional Compton profiles (100, 110, 111) of iron-nickel alloy, FeN is, were 

measured using both high and low energy systems. The three disc samples (15 x 

2.0mm) were cut and shaped in a similar way as for zinc. The Laue method was 

again used for directional orientations. Electron microscope analysis of Fe and Ni 

fluorescent lines revealed the exact composition of the FeNi alloy (i.e. 27 ±  0.4% Fe, 

and 73 ±  0.4% Ni).

Individual spectra were recorded for each sample using both systems. Due to 

statistical accuracy requirements, integrated counts of 1 0 ' were accumulated over
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the range —10«.u.fo +  10«.u. for each profile. Each spectrum was recorded over a 

period of time fractionally shorter than that for zinc due to the smaller rate of the 

photo-electric absorption in the iron-nickel alloy.

The data were processed as outlined in diagram 2.7. The correction from the 

multiple scattering revealed a normalisation factor of o  =  1.1587 over the region 

(Oa.u.,+5«.u.) for the high energy system, (i.e. the multiple scattering represents 

13.7% of the total profile). The data were normalised to a free atom profile obtained 

from Biggs et al (1975).

2 .6.3 Results and discussion

The experimental directional Compton profiles of iron-nickel alloy are listed in ta­

ble 2.2. The 100 directional Compton profile of FeNi is shown in figure 2.14 The 

asymmetry curves for the 10 0  processed profile for the two systems are shown in 

figure 2.15. Clearly from the curves the profile obtained from the high energy system 

is characterised by excellent centro-symmetry which is an important feature of the 

electron momentum density. The anisotropy profiles for FeNi are shown in figure 

2.16. Also illustrated are the theoretical anisotropies. The theoretical calculation 

was based on the KKR scheme. (Staunton, Private communication). The theoretical 

prediction of the oscillations in the anisotropy lineshape is in very good agreement 

with the experiment. Although a qualitative agreement is obtained between theory 

and experiment, quantitatively it was a complete disagreement. This discrepancy 

is possibly attributed to the overestimation of the normalisation of the core states. 

Significant differences in the scale of the anisotropies are revealed. A difference of 

2 % at J (0 ) between the directional profiles is obtained which is almost three times



Px Exp-100 Exp-110 Exp-111 Free atom
0.0 5.24445 5.28853 5.24166 6.39307
0.1 5.22434 5.27192 5.22241 6.25672
0.2 5.17379 5.21475 5.16539 5-89146
0.3 5.10268 5.11941 5.07702 5.40449
0.4 4.99280 4.98365 4.95530 4.91234
0.5 4.83687 4.82301 4.80270 4.49479
0.6 4.64909 4.64835 4.62373 4.17996
0.7 4.44031 4.44704 4.43078 3.95682
0.8 4.25077 4.24670 4.24012 3.79707
0.9 4.06194 4.06486 4.04815 3.67213
1.0 3.85846 3.88342 3.86729 3.56113
1.2 3.51396 3.55191 3.52805 3.33772
1.4 3.17091 3.21837 3.19112 3.08968
1.6 2.85968 2.89075 2.85976 2.82109
1.8 2.57024 2.55602 2.56762 2.54904
2.0 2.29563 2.26259 2.29623 2.28814
2.5 1.72432 1.73413 1.73337 1.73037
3.0 1.31825 1.31388 1.32948 1.31343
3.5 1.02693 1.01404 1.03197 1.02140
4.0 0.82891 0.82647 0.84381 0.82224
4.5 0.69322 0.67891 0.70171 0.68195
5.0 0.59045 0.57928 0.60046 0.57925
5.5 0.51560 0.50103 0.52178 0.49966
6.0 0.44896 0.43486 0.46094 0.43561
6.5 0.40395 0-38087 0.40482 0.38245
7.0 0.35187 0.33855 0.36207 0.33734
7.5 0.31159 0.29710 0.31519 0.29831
8.0 0.27016 0.25270 0.28267 0.26424
8.5 0.23351 0.21927 0.24349 0.23437
9.0 0.20829 0.19418 0.21778 0.20820
9.5 0.18896 0.17511 0.19794 0.18511
10 0.19118 0.18168 0.20301 0.09479

T ab le  2.2 Experimental Compton profiles of Feo.2sNio.1s for 100, 110 and 111 di­

rections, measured on the high energy spectrometer system. Also tabulated is the 

non-relativistic free atom Compton profile obtained from Biggs et al (1975). The the­

ory has been convoluted with the corresponding experimental resolution function of

FWHM=0.4a.u.
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F igure 2 .16 Experimental anisotropies for Feo.nNio.7s data measured on the high 

energy spectrometer system ( ♦) and the R B -K K R  theory (dashed line). Clear dis­

agreement is revealed in the scale o f the anisotropies.



Chapter 2: Gamma-ray Compton profile o f  zinc and iron-nickel alloy 46

as much that experimentally measured.

The difference between the theoretical and the experimental absolute profile 100 

(see figure 2.17) provides further evidence about the overestimation of the core 

normalisation which badly affects the correlation effects. Clear disagreement is 

obtained over the whole range of the Compton profile particularly at high momenta 

where the agreement is commonly predicted as it is the case for the free atom profiles 

(see figure 2.17). Hence, the theory needs further adequate corrections in order to 

be able to make any real progress in the data interpretation.



Figure 2.17 (a) Thè difference between the theoretical (RB-KKR) and the experimen­

tal 100 directional Compton profile measured on the high energy system. Significant 

disagreement is obtained even at high momenta, (b) Experimental (100) - free atom 

profile of Feo.jtN io.7t • Good agreement is obtained at high momenta. The theories 

have been convoluted with a Gaussian of 0.40a.u. FWHM before comparison with the 

experiment data.



Chapter 3

SYNCHROTRON RADIATION
AND POLARISATION MEASUREMENTS

3.1 In trod u ction

A brief overview of the more important aspects of synchrotron radiation (SR) is given 

in this chapter as well as a comprehensive introduction to its major properties. In 

addition the measurements of the polarisation of synchrotron radiation by means of 

the technique of Compton scattering are described in detail.

Synchrotron radiation was first discovered in 1947 at the General Electric 70- 

MeV synchrotron (Elder et al 1947), although the consideration of radiation emit­

ted from the acceleration of charged particles (electrons, positrons) goes back to the 

end of the 19"1 century (Lienard 1898). In 1947 Elder studied the connection of 

the experimental results with the spectral distribution predicted earlier from accel­

erating charged particles. The results were in a good agreement with the spectral 

distribution derived from the passage o f a relativistic electron through a magnetic 

field. At that time many research scientists (Corson 1952, Tomboulian et al 1956,

47
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Codling and Madden 1964) showed a great interest in this discovery by investigat­

ing experimentally the different theoretical predictions reported for the properties 

of this particular radiation using the few synchrotron machines available. These 

were the 250 MeV synchrotron at Lebedev Institute in Moscow, the Cornell 300 

MeV synchrotron, the 180 MeV' synchrotron at the National Bureau of Standards 

(NBS) in Washington D.C. and the 6 GeV synchrotron in Hamburg. By the late 

1970s the impact of synchrotron radiation on scientific research was evident from 

the construction of storage rings in different parts of the world (table 3.1), dedicated 

to users of the radiation rather than the nuclear physicists studying the properties 

of the circulating particles.

The development o f synchrotron radiation especially in the last couple of decades 

has contributed significantly in a variety o f fields such as condensed matter physics, 

chemistry and protein crystallography. The unique quantitative and qualitative 

results were basically achieved with the introduction of multi-GeV storage rings 

which showed greater stability and higher stored beam currents than synchrotrons. 

In storage rings the electrons are injected from powerful accelerators at the operating 

energy, whereas in synchrotrons the electrons are repeatedly accelerated within the 

ring itself from low to high energy which results in the variation of the electron 

current as well ¿is the electron beam position from one cycle to another. As a result 

the existing storage rings are capable of producing higher and stable total radiation 

emitted within a very small opening angle of the order of ^ ( 7  =  ^ j ,  where E 

is the energy of the accelerated electron and moc2 =  SllfceV' is the electron rest 

energy). The total intensity emitted is several order of magnitude higher than any 

other sources over a broad bandwidth, from the infra red region 10 3A to the hard



1 Name Location E(GeV) I(ma)

I ACO ORSAY (FRANCE) 0.7 100

NSLS BROOKHAVEN(USA) 0.75 500
UVSOR OKAZAKI JAPAN 0.75 500
VEPP-2M NOVOSIBIRSK (USSR) O.SO 100

SPRL STANFORD (USA) 1 500
BESSY BERLIN (FRG) 0.8 500
ALADIN WISCONSIN (USA) 1.3 500
PAKHARA MOSCOW (USSR) 1.36 300

PCI ORSAY (FRANCE) 1.6 300
SRS DARESBURY (UK) 2.0 500
VEPP-3 NOVOSIBIRSK (USSR) 2.25 100

PHOTON FACTORY TSUKUBA (JAPAN) 2.5 500
NSLS BROOKHAVEN(USA) 2.5 500
SIBERIA II MOSCOW (USSR) 2.5 300
SPEAR STANFORD (USA) 4.0 100

VEPP-4 NOVOSIBIRSK (USSR) 7.0 10

CESR ITHACA (USA) 8.0 100

PETRA HAMBURG (FRG) 18.0 18
PEP STANFORD (USA) 18.0 10

T able 3 .1  Synchrotron radiation facilities dedicated to radiation users
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X-ray region 10- , A (range of photon energy from 10 eV to 100 keV).

3.2 Synchrotron  rad iation

3.2.1 Radiation em itted from  an electron  m oving in uniform  circular 

m otion

The radiation emitted from a centrepetally accelerated electron or positron has been 

well established since the first classical examination o f the model by Lienard (1898). 

The total power generated from a high energy electron, with a charge (e) and a 

rest mass (m) in uniform circular motion accelerated radially in a magnetic field 

was treated classically by Schwinger (1949) who based the calculation on Larmor's 

formula for an electron instantaneously at rest. The result is

P 2 (d p \ *
3 m*c* \dt )

(3.1)

where p is the the electron momentum.

However the relativistic form of the radiation power (equation 3.1) may be ob­

tained as,

where R is the radius of curvature of the orbit and 0  =  v/c

Clearly the radiation power, proportional to ( ^ t)4, is strongly dependent upon 

the energy of the accelerated particle. On the other hand it is also strongly depen­

dent upon the mass of the particle. Therefore , the synchrotron radiation produced 

from accelerated protons, compared to electrons, may be considered negligible.
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For a non-relativistic centrepetally accelerated electron i.e. 7  =  1, the

radiation is emitted in a dipole pattern, with its zero at 90° to the direction of 

motion (figure 3.1a). On the other hand the emission from ultra-relativistic electron 

( 7  »  1 ) is sharply and symmetrically peaked in a narrow cone towards the direction 

of the electron motion, with an opening angle of the order of ~   ̂ i.e. 0.025 mrad 

for the SRS (figure 3.1b).

The radiation emitted is concentrated near the electron beam orbit with an 

infinitesimal length o f the order of where R is the radius of the curvature of 

the electron beam orbit. The electromagnetic wave irradiated from the synchrotron 

radiation is characterised by its electric field which is lying in the orbital plane and 

perpendicular to the direction of the radiation travel, as well as the magnetic field 

which is perpendicular to the orbital plane (Kulipanov et al 1977).

The most complete treatment of the radiation in the relativistic limit is obtained 

by Lorentz transformation, where the power generated by a radially accelerated 

electron, as deduced from Larmor's formula, must be invariant. The total instan­

taneous intensity radiated per unit solid angle per second into a bandwidth ( ^ )  

may be obtained as a linear combination of the phase shifted (± ^ ) intensity com­

ponents, /|j and / x , which are respectively the intensities of the radiation polarised 

perpendicular and parallel to the median plane of the electron orbit (see Kim 1984 

and Kim 1986),

/  =  /„  +  / .  =  p ; y l V l ‘  +  X 1) [ * ’ , „ « )  +  / , ( ( ) ]  (3.3)

where a  is the fine structure constant and / '  the electron beam current, X  =  70
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F igure S.lSynchrotror radiation emitted by (a) a non-relativistic electron traveling on

a curved trajectory and (b ) a relativistic electron traveling on a curved trajectory. The 

magnetic field, B, is perpendicular to the electron and the electric field E is parallel 

to the orbital plane and perpendicular to the radiation travel. V =  1 /7  a natural 

opening angle in the vertical plane.
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where tp is the azimuthal angle of the beam, y — (^ f), Ae =  5.59R(m)/E3(GeV) 

being the critical wavelength of the radiation for which half the power is generated 

below this wavelength and half is generated above (Ac =  3.88^4° for the main dipole

1.2 Tesla bending magnets and Ac =  0.93/1° for the wiggler at the SRS, E=2 GeV) 

and and (  =  4 f(l +  X 2)3̂ 2/2. A'„ is the modified Bessel function of the second kind 

of order u.

The general behaviour of the angular distribution function is presented graphi­

cally, for the main dipole magnet as well as the high field (5.0 Tesla) wiggler at the 

SRS, in figure 3.2.

3 .2.2 Properties o f  synchrotron  radiation

The combination of a number o f special properties of synchrotron radiation emitted 

from such an X-ray source, lead to a wide variety of scientific research. Those 

properties arising from an extremely stable source are basically governed by the total 

intensity emitted (discussed in the previous section) within a very narrow opening 

angle of the order o f A. This feature results mainly in obtaining extremely high 

concentrated flux which therefore may be focused on small experimental samples 

even at large distances away from the source. For example, in the X-ray region a 

maximum of 10 13 photons/s/mrad (horizontal) in 0 . 1 % bandwidth) is achievable 

and it is possible to focus this on a few (mm3) o f the sample area at the SRS. 

Moreover, due to the high concentrated flux, the synchrotron radiation which leaves 

the vacuum enclosure to travel along a single tangential port may be split by means 

o f mirrors, perfect crystals and gratings to serve simultaneously more than one 

experimental station.
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The figure of merit for a number of experiments, which characterize the radiation 

is not the flux but the brightness or the brilliance which are defined respectively as:

Brightness
number o f  photons emitted/second 

(mrad)2 .(mm )2 into 0 . 1% bandwidth
(3.4)

„  .... number o f  photons emitted/second
Brilliance =  ------------- ^ ----- n , m T— , . -----. (3.5)( mrady into 0 . 1 % bandwidth

The source brightness which is defined as the emitted flux per unit source area 

per unit solid angle is directly dependent upon the electron beam emittance, in other 

words the size and the angular spread of the electron beam. The electron beam emit­

tance which is dictated largely by the betatron oscillations. Pellegreni (1972), and 

commonly described by means of the positions and the angular divergence param­

eters in the vertical and the horizontal plane, respectively The

knowledge of such parameters is very important for the calculation of the intensity 

of the flux and consequently the beam polarisation. Hence, for the SRS the average 

standard angular and position deviations for the bending magnets in the vertical 

plane were estimated at o t  =  0.16mm and <rx< =  0.04mrad, whereas the same pa­

rameters may be considered in the horizontal plane. Beyond high collimated flux, 

however, synchrotron radiation is characterised also by its high linear polarisation in 

the orbital plane and becomes increasingly circular polarised away from the electron 

median plane. The degree of circular polarisation is an important quantity in the 

study of magnetism and is our main concern in this chapter. It will be discussed 

in detail later. Further important properties of synchrotron radiation such as the 

pulsed time structure and the tunability of the radiation are described and discussed
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elsewhere (Tomboulian et al 1955, Jackson 1975 and Winick et al 1978).

3 .2 .3  Introduction  to synchrotron machines

As far as the SRS is concerned, the synchrotron radiation is a three stage electron 

accelerator as it is shown schematically in figure 3.3. Firstly, the electrons are 

accelerated in a 12 MeV linear accelerator (Linac) which feeds to a 600 MeV Booster 

synchrotron. Secondly, the electrons are injected continuously into the storage ring 

for several minutes until the accumulation of a current of about 300 mA. After that, 

electrons with 2 GeV energy may obtained by supplying radio frequency energy as 

well as increasing the field in the dipole magnets. The ring was improved in 1986 by 

the introduction of better focusing magnets to provide the Higher Brightness Source 

with a smaller divergence. The emittance of the beam was consequently reduced 

by a factor of 14. Accordingly the average position and angular deviations of the 

electron distribution with respect to the median plane were improved and therefore, 

reduced respectively to 0.16mm and 0.04 mrad.

A single machine consists of a closed high vacuum chamber converging the beam 

through the different essential parts such as; bending magnets, wigglers, undula- 

tors, vacuum pumps and an rf cavity which is capable of replenishing the energy 

lost by the electron through the creation of photons. The 16 similar 1.2 Tesla bend­

ing magnets existing at the SRS bend the electrons into closed orbits, therefore, 

producing X-ray radiation by centrepetally accelerating them. Besides the dipole 

bending magnets existing at the SRS storage ring, which produce high energy radi­

ation, a high field (5.0Tesla) wiggler is incorporated in a straight section of the ring 

with the object of producing high energy radiation (figure 3.4). The SRS wiggler is





/
I

Figure 3 .4  The layout of SRS machine straight 9, including the wiggler and the adja­

cent dipole magnets.
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a three pole magnet which imposes a beam inflection in the electron orbital plane 

during its passage through two half peak field magnets (2.5 Tesla) and a peak of 5.0 

Tesla in the centre magnet (see figure 3.5a). The trajectory of the electron as well 

as the variation in the vertical field through the wiggler are shown in figure 3.5b. At 

the X-ray topography wiggler line (W9.4) the radiation is emanating only from the 

central tangent point of the wiggler and therefore, the degree of circular polarisa­

tion was fortunately unaffected by the contamination of the emitted radiation from 

the up/downstream magnet radiation as well as the dipole magnets 8 and 9. The 

contributions to the power emitted from the central magnet is shown in figure 3.5c. 

Clearly the contributions are symmetrically distributed about the tangent point of 

the central magnet. The other insertion device which produce radiation is a so- 

called undulator which consists of a series of bending magnets mounted in a straight 

section along the electron path. The series of the magnets imposes an undulatory 

motion on the electron orbit, and therefore the total intensity emitted is almost 

equivalent to the sum of the intensities emitted by all the magnets constituting the 

undulator device.

3 .2.4 Introduction to  syn ch rotron  polarisation

Studies of magnetism by means of magnetic scattering as well as magnetic diffrac­

tion has been well established (Platzman and Tzoar 1970, 1985). These techniques 

require, in most cases, an accurate knowledge of the radiation polarisation state for 

data interpretation. During the last couple of decades, circularly polarised radiation 

has been used for measurements of the spin dependent Compton profile (Sakai et 

al 1984, Mills 1987, Cooper et al 1986. 1988). Circularly polarised radiation may



5.0 T

|
i
i* (b)

F igure 3 .5  (a) Schematic diagram o f  the SRS three pole wiggler, viewed from the top, 

(b) the SRS wiggler field (»olid line) and the electron beam trajectory (broken line) 

relative to the centre magnet (from Greaves et al 1983) and (c) Contributions to the

power emitted into W9 from the wiggler magnet and the adjacent dipole magnets, 8

and 9.
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be used also in the study of magnetic diffraction in magnetic substances. Recently, 

circularly polarised radiation was successfully introduced to measure spin dependent 

photoabsorption in ferromagnets (Schütz el al 1988, Collins et al 1989). In addition, 

linearly polarised radiation is also a m ajor factor for the study of the anomalous 

scattering of X-rays. The interference between magnetic Bragg scattering and the 

charge scattering may occur when the periodicity of the spin lattice coincides with 

that of the chemical one.

Though Lipps et al (1954) derived the cross section for photon and electron po­

larisation coupling, Wheatly et al (1955) were the first to suggest the possibility 

of measuring the degree of circular polarisation by means o f the spin dependent 

Compton scattering. Ten years later Bathow et al (1966) carried out the polarisa­

tion measurements by means of Compton scattering at photon energies from 15 to 

300 keV as a function o f electron energies at DESY in Hamburg. The technique was 

based on using two scintillation counters to detect separately the scattered photons 

polarised parallel to the orbital plane and the scattered photons polarised perpendic­

ular to the orbital plane. Templeton et al (1988) calculated the polarisation of the 

synchrotron radiation at the SSRL wiggler line. They pointed out that the accurate 

knowledge of the degree of linear polarisation was required for the interpretation 

of their measurement carried out on the anomalous X-ray scattering effects. The 

polarisation of electromagnetic plane waves is dictated by the orientation as well as 

the amplitude of the electric and magnetic fields, i.e. a state of polarisation may be 

given by a relation between the amplitude and the phase of the two fields. As far 

as synchrotron radiation is concerned, the electric field is lying in the orbital plane 

and it is perpendicular to the tangent drawn from the source point and pointing
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towards the radiation direction, whereas the magnetic field is perpendicular to the 

electron median plane (see figure 3.1). Hence, the radiation must be linearly po­

larised in the orbital plane and becomes increasingly elliptical away from the orbital 

plane. The radiation is symmetrically polarised below and above the orbital plane 

(i.e. left and right circular polarisation) because the direction of rotation of the ra­

diation field vector coincides with the electron radiation direction seen from a point 

of observation located in the orbital plane along a tangent drawn to the electron 

trajectory.

Ideally, the radiation emitted by accelerated electrons would be 100% plane po­

larised in the orbital plane for non-divergent point sources. However the synchrotron 

radiation beam is around 95% plane polarised mainly due to the finite source size 

(0.8mm2 for the SRS) as well as the betatron oscillations which are responsible 

for the polarisation smearing. This high polarisation in the median plane drops to 

about 75% of the total polarisation when it is integrated over all vertical angles. The 

degree of linear and circular polarisation can be expressed in terms of the intensity 

amplitudes of the beam in the two polarisation directions, which are parallel and 

perpendicular to the orbital plane.

where the positive and the negative signs correspond to the left-hand and right-hand 

circularly polarised radiation.

Pl = (3.6)

(3.7)

The total degree of polarisation of synchrotron radiation, Pt , is well defined by
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the general density matrix (equation 1.38) where the component of the total 

polarisation is zero for synchrotron radiation. The total degree of polarisation, 

therefore, may be related to the linear and circular polarisation by the relation.

3.3 P olarisation m easurem ents

3.3.1 Introduction

The motivation for measuring the degree of circular polarisation of synchrotron radi­

ation was the need to optimise the spin dependent Compton scattering experiments 

to be discussed in the next chapter. Principally, it is the intensity, not the magnetic 

Compton lineshape, that depends directly upon the degree of the circular polar­

isation. However, an accurate knowledge of the degree o f circular polarisation of 

synchrotron radiation is required to optimise the spin dependent Compton scatter­

ing experiment. Further explanations about the Compton scattering experiment 

optimisation are described later in section 4.3.

The method applied, for the determination of the degree of circular polarisa­

tion, Pc , is governed by the first order differential Com pton scattering cross section 

(equation 1.32). Clearly the equation consists of two terms: a charge scattering part 

and the spin dependent scattering part.

P r‘  =  Pc 1 + PL‘ (3.8)
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where Z is the total number of electrons involved in the scattering atom and p is 

the magnetic moment (Bohr magneton) of the ferromagnetic target, mounted in an 

applied magnetic field.

Clearly the cross section is a combination of two scattering cross section i.e. 

charge scattering cross section ( 3^) and spin dependent cross section ( 35̂ ) . On 

one hand the charge scattering cross section quoted in equation 1.41 includes a 

small term which depends upon the degree of linear polarisation of the incident 

beam which becomes insignificant for backscattering. On the other hand the spin 

dependent cross section is proportional to the degree o f the circular polarisation 

of the photon beam. Therefore. Pc may be calculated for the magnetic Compton 

backscattering arrangement where the uncertainties about the polarisation are less 

important than that of the charge scattering cross section.

Ideally the magnetic cross section (equation 3.9) is optimum when the applied 

field is chosen to be parallel anti-parallel to (kcos<£ +  k')- Under these circum­

stances the variation of the relative scattered intensity is given by,

i i . i r i
I /t +  V

Using equation 3.9 and 3.10 we may obtain,

A I  _  P c / '- i l  — cos ¿ ).S [(k cos< £ -f k'] 
/  Z [ 2  -  s in J <fi(l +  p i )]

(3.10)

(3.11)

The total polarisation of synchrotron radiation for a negligible emittance is very 

close to 100%, therefore the relation between the degree of circular and linear po­

larisation quoted in equation 3.S may be approximated to P c2 +  Pl2 — 1-

The contribution of the magnetic scattering to the total scattering is very weak
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(of the order of ~  where hoj is the photon energy, typically (see equation 

1.43). On the top of that the effect is even more reduced due to the relative small 

uumber o f electrons with a net spin to the total number of electron iuvolved in the 

charge scattering.

3.3.2 E xperim ental apparatus

All the spin dependent measurements were made at the Daresbury Laboratory SRS 

using a Compton scattering spectrometer described in detail elsewhere (Timms 

1989). Partially circular polarised radiation may be obtained by means o f the in­

clined view method. The apparatus assembly may be lowered and raised through 

the orbital plane by means of an adjustable baseplate. The spectrometer shown 

schematically in figure 3.6 was designed to satisfy the requirements o f the spin de­

pendent Compton scattering experiments. It consists mainly of three main parts. 

Firstly a monochromator plane single crystal mosaic Ge-'2*20 was chosen in pref­

erence to Si crystal mainly due to the higher reflectivity. On the other hand the 

Ge-2‘20 was chosen instead of the Ge-111, despite a higher reflectivity is obtained 

with the later monochromator, because of the wide range of the energy selection 

obtained from the 220 reflection. For instance an energy of 60 keV may be obtained 

with a Bragg angle of the order of 3.6° for the Ge-220, whereas the same energy is 

obtained only with a Bragg angle equivalent to 1.5° for the Ge-111. The monochro­

mator may be mounted on a finely adjustable motor drives a goniometer. Secondly, 

the sample: the ferromagnetic crystal may be mounted between the pole pieces of 

the electromagnet. The faces of the magnet pole pieces were ground flat to ensure 

good contact with the samples and therefore ensure that samples would be fully
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magnetised. Moreover an extra pieces of spring steel material were used to hold and 

maintain the stability of the sample. The pole pieces were shaped in such a way to 

allow large scattering angle in the scattering by transmission (see figure 3.7). Sets 

of adjustable tungsten slits were placed in front of both the monochromator and the 

sample in order to collimate the beam and stop any scattering from the air and the 

shielding.

Although the magnet was designed mainly for measuring Compton scattering 

by transmission, it was deemed necessary to adopt the reflection geometry for the 

polarisation experiment for the main reason to obtain high count rate particularly 

away from the orbital plane (a schematic diagram of the experimental arrangement 

is shown in figure 3.8). Finally, a solid state germanium crystal detector (SSD) was 

used and accurately positioned to make a maximum practicable scattering angle of 

the order of ~  145°, so that, the second term in Equation 3.9 is maximised.

3 .3 .3  Experim ental techniques and m easurem ents

The present experiments were performed at different positions above and below 

the orbital plane on the wiggler line (W9.4) at the Daresbury synchrotron radiation 

source (SRS). The station is situated at 37m from the source. According to equation 

1.32 the magnetic effect in the Compton scattering increases with the photon energy. 

Accordingly the two energies chosen for the measurements were as high as practicable 

from this device (wiggler critical energy is only 14.4 keV).

The different parts o f the spectrometer were first of all pre-aligned and positioned 

at approximately the height of the orbital plane using the laser beam which is point­

ing at the synchrotron emitting source. A white beam of 1mm high and 3mm wide
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was collimated by horizontally and vertically adjustable slits positioned in front of 

the monochromator. The width of the monochromatic beam was virtually dictated 

by the length of the monochromator due to the small selected Bragg angles (~  3°). 

The incident monochromatic photon energies selected from the first order Bragg 

reflection of an 80mm long Ge-220 monochromator were 53.8keV and 63.9keV. The 

monochromated beam impinged upon a long saturated rectangular parallelepiped 

polycrystalline iron sample (30 x 10 x 2mm) mounted between the widely open pole 

pieces of the electromagnet, where the face of the sample was oriented to make a 

small angle of 15° with the incident beam in the horizontal plane to maximise the 

term S.(kcos<£ +  k'). The scattered radiation is detected by a solid state detector 

through a scattering angle of 140°. chosen as high as practicable for the apparatus in 

order to obtain high magnetic effect by maximising the factor (1 — cos 4>) in equation 

3.9. The detector was calibrated with a low activity source (10pC i 24M m ). The 

high dead time (~  20%) in the analogue to digital converter (ADC) resulting from 

the high count rate (close to the orbital plane) detected by the solid state detector 

was reduced firstly by an assembly of aluminum foils placed in front of the detector 

and secondly, by reducing the shaping time of the detector amplifier to 2 ps com­

pared to 6ps used for gamma ray Compton scattering. This degrades the spectral 

resolution, but that is unimportant for measurements o f total intensity.

A series of 12 measurements were made for each incident energy at different 

position above and below the orbital plane. Each of these measurements lasted until 

a sufficient number of integrated counts accumulated under the Compton profile. At 

positions close to the orbital plane, the measurements were taken for about 30min, 

whereas at positions far away from the median plane the measurements lasted for
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up to 120min due to the sharply decreased flux. The orbital plane position was 

checked after each machine refill because the median plane o f the electron orbit may 

be subjected to slight vertical movements. Between two refills, movements of up 

to ^  1.5mm were found (see figure 3.9). Moreover, the stability of the beam was 

continuously checked and readily assessed by monitoring the incident beam flux by 

means of an ion-chamber during each run. The intensity o f the incident beam was 

displayed graphically. The fluctuations in the intensity due to the beam movements 

were very significant off-axis because of the rapid intensity drop away from the 

median plane (see figure 3.10).

The energy spectra were recorded by a computer-based CANBERRA multi­

channel analyzer (MCA). The magnetic field direction in the sample was reversed 

every 5 seconds and spin up and spin down data stored in different memory loca­

tions. The short counting time ensured that the difference data were completely 

unaffected over a long period of time from the source decay and small fluctuations 

of the beam intensity. The magnetic field was switched and controlled accordingly 

by the same computer. The integrated counts over the Compton profile showed 

a residual fractional magnetic effect of the order of ~  1 % above the orbital plane 

which was in agreement with the estimation based on equation 3.9 for energy of 

the order of (60&eV'). The magnetic electrons preseut only 8% of the total atomic 

number of electrons in iron. The disappearance of the fluorescent lines, (K a,Kg) 

located at low energy, in the difference spectra emphasised the cancellation of the 

systematic errors in the data.



(S3 xun Ajvjijqxv) s^unoo p»3«:r693ui

pl
an

e 
fo

r d
iff

er
en

t 
re

fil
ls.



10

F igure 3 .10 The corresponding variations in the degree o f  circular polarisation Pc 

and the SR intensity with azimuthal angle for O.lA incident wavelength (from Holt and 

Cooper 1983).
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3.3.4 D ata processing

The degree of circular polarisation of synchrotron radiation may be accurately de­

duced from the relative variation of the flux Clearly an absorption correction is 

unnecessary: the effect in the ratio is self consoling (see equation 3.11). The data 

were therefore subject to correction for the energy variation of the charge and the 

magnetic scattering cross section. The magnetic electrons which originate predom­

inantly from the 3d orbitals are well included in the region of interest for which the 

data are considered, i.e. the profile due to the 3d electrons which lies on a peripheral 

orbits is peaked around the origin of the total Compton profile, whereas the profile 

which originates from the charge scattering is very broad, due to the highly Doppler 

shifted electrons which are lying deeply in the atom, hence not all 26 electrons were 

included in the region of interest. The fractional number of electrons responsible 

for the charge scattering were accurately estimated according to the well established 

prediction of the core electron o f free atom (Biggs et al 1975). Accordingly, only 

22.84 electrons out of the total number of (26) were found to be contributing in 

the charge scattering within the range (—8.0a.u., 8.0a.u..). Part of those omitted 

electrons (K-shell electrons) were included in the region of interest but not possibly 

exited due the energy transfer which is smaller than the binding energy of those 

electrons (K-edge threshold energy =  7.112keV).

The degree of circular polarisation was finally deduced after the data was subject 

to a multiple scattering correction. Sakai (1987) investigated in detail the effect 

of the multiple scattering for the magnetic Compton scattering and came to the 

conclusion that because the spin dependent scattering cross section changes its sign
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at scattering angles at <t> =  jt/ 2. the double magnetic Compton scattering is largely 

self-canceling. This is not true for the charge scattering when the multiple scattering 

is always additive. The ratio defining the difference spectrum to the sum spectrum 

for spin-up and spin-down may be given by,

A /
/

(single)mag +  (multip)mag 
l multip)eharge +  (single) charge ' 

(single)mat 
(single)eharge

(3.12)

where K is the rescaling factor which originates from the multiple scattering,

K  _  1 -  (multip)mag/(single)mag ^  ^
1 -  ( multip)chargt/(aingle)chaTgt

Sakai (1987) reported in his calculation that the integrated intensity ratio of the 

magnetic multiple scattering to the magnetic single scattering {multip)mag/(single)mag 

is of the order ~  3.8% for similar experimental conditions as those reported here. 

On the other hand the multiple scattering effect to the single scattering ratio 

(multip)char,,,/(single)charge has been computed here using a Monte Carlo simula­

tion and estimated to be 11.8%. According to those values the scaling factor K due 

the multiple scattering is therefore estimated to be 0.93, which shows that the effect 

of the multiple scattering over the region of interest (-8.0, 8.0 a.u.) was around 7%.

3 .3 .5  Results and D iscussion

A typical spectrum from the spin-up orientation as well as the difference spectra 

recorded respectively at the positions of 0mm (ip =  0rnrads) i.e. at the orbital 

plane and 8 mm (xl> =  0.21mrad.«) above the orbital plane are shown in figures 3.11
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F igure 3.11 Spectra obtained at azimuthal angle V* =  Omrad from (a) spin up distri­

bution and (b) the difference between spin up and spin down.
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Figure 3 .12  Spectra obtained at azimuthal angle V =  0.21mrad from (a) spin up dis­

tribution and (b) the difference between spin up and spin down.
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and 3.12. It is clear that the magnetic effect is absent in the orbital plane whereas 

a significant residual effect is apparent above the orbital plane. Again the difference 

spectra is clearly a sensitive test to the cancellation of the systematic errors. As it 

has been mentioned earlier the data were considered completely clear of such errors 

because of the disappearance o f the fluorescent lines (see Collins et al 1990).

The accompanying figures 3.13a and 3.13b show the good agreement of the data 

with the calculation performed recently by Laundy (1990). The theoretical predic­

tions for ideal electron orbits (Schwinger 1949) are strongly affected by different 

parameters mainly arising from the source emittance. However the polarisation 

may be reduced due to the linear and perpendicular distributions of the electron 

motion around the source point. Hence, the horizontal and the vertical intensity 

components of the beam polarisation (Kim 1986) must be modified accordingly.

Though the interpretation o f the Compton line shape does not depend directly 

upon the value of Pc. the complete understanding of the beam polarisation is still 

a major factor in optimising the performance of the experiment. In addition, other 

experiments such as magnetic diffraction and magnetic photoabsorption studies re­

quire knowledge of the degree o f circular polarisation for complete interpretation.

The measurements o f the degree of circular polarisation were performed at high 

energies, though the experiments depending directly on Pc (mentioned above) usu­

ally take place at low energies (5-10 keV), because the possibility of examining the 

Compton scattering peak obtained from low energy elastic line is virtually impossi­

ble. Since high energy is a critical test, therefore, the degree of circular polarisation 

which is well described at high energy (50-60 keV), will be better described at low 

energy (5-10 keV). As a consequence, the estimation of the degree o f circular polari-



D
eg

re
e 

o
f 

C
ir

c
u

la
r 

P
o

la
ri

s
a

ti
o

n

Degree of Cicular polrisation at 53keV

F igure 3 .13 Comparison between the variation of the measured and the calculated 

degree o f circular polarisation as a function o f azimuthal angle (a) at 53.8 keV and (b)

at 63.9 keV.



sation of synchrotron radiation obtained from dipole magnets may be deduced from 

the calculation performed by Laundy (1990).
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Chapter 4

MAGNETIC COMPTON PROFILE OF 
GADOLINIUM AND NICKEL

4.1 In troduction  to  m agnetic C om p ton  scattering

The existence of electron spin terms in the photon scattering cross section was 

established four decades ago when Lipps et al (1954) discussed theoretically the 

scattering cross section for polarised X-rays.

The second order magnetic term which was identified in equation 1.32 is real 

for real polarisation. It is commonly know as the pure magnetic scattering term; 

it contributes insignificantly to the charge scattering term, i.e. ~  ( ^ ^ ) 2 o f the 

charge term (see Brunei et al 1981, 1983). For magnetic transition metals where 

only 10 % or less of the atomic electrons give a net magnetic contribution, the pure 

magnetic scattering cross section is typically of the order of ~  10 - 3  comparative 

to the charge scattering cross section for conventional X-rays. De Bergevin and 

Brunei (1972) were the first to observe such an effect using unpolarised radiation 

from a 1 kw X-ray tube. The observed two superlattice X-ray diffraction peaks from
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anti-ferromagnetic NiO disappeared above the Neel point. The magnetic superlat­

tice reflections are completely distinguished from the ordinary charge peaks. The 

Compton scattering is not sensitive to anti-ferromagnetism (i.e. no information is 

provided with such a technique since coherent scattering sums the magnetisation). 

On the other hand, information may be obtained with the same technique but car­

ried out on ferromagnets (i.e. a net spin contribution to the Compton profile is 

obtained from the summed magnetisation).

As has been discussed in section 1.5, Platzman and Tzoar (1970) extended the 

theory of the Compton scattering (regardless of the pure magnetic scattering term), 

and established for the first time a method of isolating an unpaired spin distribu­

tion in ferromagnets from a spinless distribution, commonly known as the electron 

momentum density distribution within the Bom approximation and the framework 

o f the impulse approximation. The Compton scattering cross section for circularly 

polarised X-rays for a magnetic system with a spin (s) and negligible contribution 

from orbital moment may be obtained as,

where J,nai(pz) is commonly referred to as the spin dependent Compton profile, 

given as,

where n t and nt are the electron densities with spin up and spin down respectively.

+ P c——j-{ 1 -  CO.'*) S (K )(kco4* +  k').Jm.,(p ,) )  (4.1)me*

(4.2)
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4.1 .1  General introduction to  previous research

The first measurements of spin dependent Compton profiles were carried out on 

polycrystalline iron by Sakai et al (1976, 1977). The experiments were performed 

using 122keV circularly polarised gamma ray obtained from cryogenically oriented 

radioactive source of s7Co. The source was cooled down to about 40mK. The emitted 

radiation was characterised by a small degree of circular polarisation (Pc — 0.3) 

along the magnetisation field direction. Statistically, the experiment was very poor 

due to the self heating effect imposed by the radiation on the radioactive isotope. 

A similar experiment was later carried out using the same technique but a different 

radioactive source ( ,9, / r )  (see Sakai et al 1984). The energy provided was of the 

same order (129keV), whereas the degree of circular polarisation was significantly 

higher (Pc  =  0.8). Moreover, the source activity obtained was four times as high as 

that obtained from the i7Co  (i.e 0.40 mCi).

Holt et al (1983) suggested the use of a synchrotron radiation source for the 

study of the Compton scattering (partially circular polarised beam may be obtained 

fractionally below or above the orbital plane). Subsequently, the first measurement 

using the inclined view method was performed by Holt et al (1985) at the SRS. 

Despite the very poor statistical accuracy of the data, the quantitative agreement 

with the APW calculation (VV'akoh et al 1977) confirmed the feasibility of such a 

method for the study of the magnetic effects in magnetic substances. The method 

was later pioneered by Cooper et al (1986). A central dip at the origin was apparent 

in the data for the first time. The statistical accuracy was sufficient to establish 

the central dip and revealed a significant difference between the experiment and the
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APW  band theory (i.e. the s-p negative polarisation was underestimated by the 

calculation).

Mills (1987) adopted a different technique to produce circularly polarised radi­

ation. Circularly polarised radiation was obtained from a predominantly linearly 

polarised synchrotron radiation emitted from CHESS, using an X-ray phase plate. 

Polycrystalline Fe, Ni and Co were measured and a similar magnetic profiles to those 

reported earlier were reproduced. More measurements of a better statistical accu­

racy particularly on polycrystalline iron were repeatedly produced (Sakai et al 1987 

and Tim m s et al 1988). Recently Cooper et al (1988) measured for the first time the 

directional Compton profile o f iron using 60keV CPSR. Further measurements of an 

improved statistical accuracy (Collins et al 1989) enabled to confirm the discrepancy 

predicted at low momenta by the electron band theory (A PW ) particularly along 

the 100 direction. More recently Sakai et al (1989) adopted the same technique used 

by Cooper et al (1988) to measure the directional Compton profiles of iron using the 

newly installed wiggler at the 6.5GeV storage ring at TRISTAN complex in Japan. 

Similar profiles to those reported by Collins et al (1990) were reproduced.

4.2 S pin -orb it separation

The com plete study of the photon scattering cross section (see equation 1.32) has 

been well established for a long time. The first order contributions arise from the 

charge term and the interference magnetic term. The interference term consists 

of the electron spin scattering as well as the orbital scattering. The orbital term 

contributes negligibly in most magnetic substances to the spin dependent Compton
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scattering, particularly because of the common experimental arrangement usually 

adopted for such investigation (i.e. backscattering arrangement). In contrast with 

the neutron scattering, where spin and orbital terms are not separable because neu­

trons are only scattered by virtue of the magnetic moment, photon scattering permits 

the separation due to charge interactions, spin interactions and orbital interactions 

which arise from the electric and the magnetic fields o f the electromagnetic wave,

JK C  -  5 ( = ? )  *  ( = 0  [s (K ) ( k w  + k'> + i <K ><k + k')— V /2 ].
(4.3)

Clearly from equation 4.3, the observation of spin and orbital scattering terms 

may be distinguished separately in a Compton scattering experiment by choos­

ing the correct scattering geometry. Specifically, there is the case where spin and 

orbital densities are aligned together in the scattering plane (k, k') and oriented 

in such a way to make an angle (a ) with the incident wavevector k (see figure 

4.1). The orbital component may be eliminated for scattering angles close to 180° 

or by aligning the vector (k  +  k') to be perpendicular to the magnetisation direc­

tion. Clearly, the backscattering (i.e. scattering angles close to 180°) is the most 

favourable arrangement since the spin scattering term may be maximised at the 

same time (see equation 4.3). On the other hand the optimisation of the orbital 

term and the elimination of the spin scattering term combined together is a very 

complicated arrangement to achieve. Assuming the incident beam makes an angle a  

with the magnetisation direction as stated in figure 4.1, therefore, for elastic scatter­

ing obtained in the transmission arrangement, the spin scattering term is eliminated 

when (tan a  =  2 cot ¿ )  (see figure 4.2). However the orbital scattering term may be
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Figure 4.2 Figure o f  merit for optimization o f spin term and orbital term, deduced 

from the relationship between the scattering angle <t> and the angle between the incident 

beam and the magnetisation a.
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maximised accordingly when ( / ( a )  =  [cosa +  cos (a  +  4>)\ cos(^ /2 )2) is a maximum. 

For such considerations, the optimum scattering arrangement may be obtained for 

a  =  0°, hence 4» =  90° (see figure 4.2). In the case of inelastic scattering, the spin 

dependent term drops to zero and changes sign with respect to the charge scattering 

for angle a  given as,

Recently Collins et al (1989) measured the variation of the total magnetisation 

for scattering angle of 90°. as a function of the angle between the incident beam 

and sample magnetisation (a), (see figure 4.3). The flipping ratio in cobalt was also 

measured. The spin and the orbital moment are assumed to be collinear with the 

total moment.

4.3 C o m p to n  scattering optim isation

It is well established and clearly understood from the study of synchrotron radiation 

(chapter 3 ) that the degree of circular polarisation increases strongly on moving 

out of the orbital plane (i.e. by increasing the azimuthal angle xl> o f the beam), 

whereas at the same time the flux decreases rapidly from a maximum value at the 

orbital plane to almost zero fractionally off axis (see figure 3.10). Accordingly, the 

study of magnetism by means of Compton scattering using synchrotron radiation 

is a relatively slow process because of the difficulty of obtaining circular polarised 

radiation with sufficient intensity.

tan a (4.4)

Since fully circular polarised radiation is not necessary for the interpretation 

of the lineshape o f the Compton profile, therefore, an optimum point between the
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degree of circular polarisation and the rapidly decreasing flux is necessary to obtain 

the best possible quality data with limited beam time. The main objective for the 

Compton scattering optimisation is governed by the improvement of the statistical 

accuracy as well as optimising the magnetic effect at the same time. The magnetic 

effect in nickel ferromagnet is o f the order of 2% and 12% for gadolinium ferromagnet. 

Under those circumstances the important quantity which needs to be optimised is 

(magnetic signal/Compton n o ise). This figure of merit, which was first pointed 

out by Sakai, may be easily obtained according to equation 3.9 and is given as,

where I is the scattered intensity for one spin direction and Pc is the degree of 

circular polarisation,

Substituting 4.6 into 4.5 one may obtain,

m agnetic signal ^ 1\ — I\ ^
C om pton  noise y/J

The ratio increases critically with the increase of energy. Unfortunately synchrotron 

radiation intensity drops dramatically as the energy increases above Ec.

Preliminary investigations for optimising the ratio were simply performed by 

measuring the count rate over the region of interest at the Compton profile for 

different vertical positions above the orbital plane for energies ranging from 40 to 

80keV. The optimum position was found to be within the range of 0.10-0.24 mrad 

above or below the orbital plane. Principally, it was not possible to find precisely 

the exact position due to the size of the beam cross section (5 x 1mm2). The

m agnetic signal I Pc
Com pton noise y/J

(4.5)

(4.6)
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large vertical width of the beam was necessary to obtain enough counts under the 

Compton profile . However, a specific calculation carried out by Laundy (1989) 

for the SRS wiggler W9.4 line, taking into consideration the different parameters 

o f the finite electron source such as the electron beam emittance. The calculation 

predicted an optimum position at an azimuthal angle of 0.14 mrad below or above 

the electron median plane. The predictions are illustrated graphically in figure 4.4. 

Clearly the optimum energy required for the nickel experiment is within the range 

55-60 keV.

4.4 G eom etrica l b roa d en in g

It is well understood from gamma-ray Compton profile studies that the theory must 

be smeared out with the experimental resolution before being compared with the ex­

perimental data in order to allow for the effect of finite spectrometer resolution. The 

total resolution is well established to be a combination of the detector resolution and 

the geometrical broadening resolution due to the scattered beam divergence. The to­

tal experimental resolution in itself is a  delicate problem to solve accurately because 

of its complexity. Moreover because the resolution is so poor, various assumptions 

can confidently be made, i.e. the detector resolution and the beam divergence are 

assumed to be Gaussians, hence, the total resolution may be approximated as,

A P ,.,1 =  A P d„ 2 +  A  P „m 2 (4.8)

where A Pdet is the detector resolution function (FWHM) and A P)tm  is the geomet­

rical broadening effect.

The geometrical broadening was assumed to be significant only for the scattered
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d l s t  a n c e o f f  a x is  (mm)

F igure 4 .4  The figure of merit (fom =  F lu x  x Energy x Pc  x absorption) calculated 

by Laundy (private communication) for nickel sample.
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beam because the divergence of the incident monochromatic beam obtained from the 

crystal monochromator was assumed to be negligible. Therefore the differentiation 

of equation 1 . 1 2  with respect to the scattered photon energy and the scattering angle 

may be obtained as.

Therefore, expression 4.9 may be approximated for backscattering as follows,

where A^ ~  j  (d being the diameter of the detector and / sample-detector distance).

It is often desirable in the study of Compton scattering to have a higher exper­

imental resolution for the data interpretation. However, it is impracticable to have 

a high experimental resolution as well as improving the statistical accuracy mainly 

because of the limited beam time.

4.5 G adolinium

4.5.1 Introduction

Gadolinium was the fourth ferromagnetic element to be discovered in nature (see 

Urbain et al 1935). The element is distinguished from transition metals firstly by its 

Curie point of around room temperature (293.2K ) and secondly by its large number 

of 4f unpaired electrons (7). which give rise to  magnetism. Although gadolinium 

is considered to be relatively simple in terms o f  magnetic structure with respect to

A  F (4.9)

where Awj may be derived from equation 1.9 to be,

(4.10)

(4.11)
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ferromagnet transition metals, it differs from them  by virtue o f its strong spin-orbit 

coupling. In addition, the exchange field derived from the localised 4f electrons is 

very distinct from that of conduction electrons. M oon et al (1972) carried out a neu­

tron diffraction experiment on gadolinium in order to measure its magnetic moment 

distribution. According to their result, a good agreement between the form factor 

and the shape of the spin distribution was obtained at large scattering angles which 

explains the perfect description around that region from the 4f electrons. However, 

a significant disagreement at small scattering angles was observed between the data 

and the 4f form factor (i.e. total magnetic moment of 7.0ps)- The disagreement 

was featured by a change of slope at around Fermi level. They conclusively pointed 

out that the unpaired spin density sensed by the neutron diffraction consists of a 

localised 4f part and a diffuse part due to the polarisation density of the unpaired 

conduction electrons. The excess in the magnetic moment per gadolinium atom 

was experimentally deduced in polycrystalline sample to be 0.55/<s, (see Nigh et al 

1963). This excess is attributed to the polarisation of the conduction band electrons 

by the localised 4f electrons by means of the exchange interaction.

Most spin dependent Compton scattering has been carried out on transition 

metals and particularly iron due to its simplicity (i.e iron is an easy material to 

magnetise and it is possible to measure the magnetic Compton profile of iron at 

room temperature. Moreover, it has a relatively high magnetic moment). The first 

attempt at measuring a rare earth gadolinium ferromagnet was done by Mills (1987) 

using circularly polarised X-ray produced from an X-ray phase plate at the Cornell 

High Energy Synchrotron Source (CHESS). Recently Itoh (private communication) 

performed a similar experiment using circularly polarised gamma-ray radiation ob-
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tamed from a cryogenically oriented radioactive source.

4 .5 .2  D escription o f  the experim ental system

A schematic diagram of the experimental arrangement for gadolinium Compton 

scattering is shown in figure 4.5. Since the Curie temperature for gadolinium is very 

close to room temperature, it was necessary to cool the sample as low as possible 

below Curie point in order to line spin up and the spin down states in the ferro­

magnetic phase. As a result a cooling system was incorporated into the Compton 

scattering spectrometer described earlier in the study o f  synchrotron polarisation. 

The method of cooling the sample consisted of blowing nitrogen gas, passed through 

liquid nitrogen stored in a large dewar, onto the sample and the magnet insulated 

in a polystyrene box.

4 .5 .3  The coo ling  system

In the cooling process many materials have been tested for their quality of insulating 

the sample and the magnet. Different investigations carried out, lead successfully 

to the construction of a small box made of polystyrene material. Preliminary inves­

tigations showed that the building up of ice on the sample and the surface o f the 

box was negligible.

The box was made as small as practicable in order to  minimise the volume of 

the cooled environment, i.e. for such arrangement, very low temperature may be 

achieved with small quantities of nitrogen gas. The thickness of the polystyrene 

box walls was 6mm. The beam attenuation through the polystyrene material was 

measured using a small radioactive calibration source o f  americium 341 Am. A neg-
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ligible absorption rate was measured to be 1% and 0.5% respectively for 26.36keV 

and 59.54keV

The warm nitrogen gas stored in the cylinder was firstly blown through a foamed 

plastic tube connected to a coiled cooper pipe immersed in liquid nitrogen stored in 

a large dewar. The idea of bubbling nitrogen gas by passage through liquid nitrogen 

held two objectives: both cooled nitrogen gas blown from the cylinder and evaporated 

nitrogen contributed to the cooling process. This method was effective enough to 

obtain temperatures of around — 100*C\ The boiling point of liquid nitrogen is at 

77.3K (i.e. -1 9 5 .8 * 0

4.5.4 M agnetisation o f  gadolinium

It is well established that the study of the spin dependent Compton profile is only 

possible when the target is fully magnetised. Accordingly, cooling the gadolinium 

foil below the Curie point was necessary to obtain ferromagnet material ( Curie 

point, Te is known as the temperature above which the spontaneous magnetisation 

vanishes and therefore separates the disordered paramagnetic phase (7* < Tc) from 

the ordered ferromagnetic phase (T  > Tc)). The magnetic dipoles are originally 

oriented randomly in the paramagnetic phase. The significance o f temperature in 

such a material is governed by the fact that the orienting effect due to magnetic 

interactions is highly opposed by thermal agitation. As a result, the spin order is 

destroyed when the temperature increases.

Nigh (1963) studied the magnetisation of gadolinium as a function of temper­

ature. It was shown that the easy direction of the magnetisation varies as the 

temperature increases: at 4.2* A" the easy direction is oriented about 30° from the
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0001 axis. As the temperature increases to around 160° A', the magnetisation vector 

tends to lay on the basal plane, whereas it becomes parallel to the 0 0 01 axis at 

270° A'.

The spontaneous magnetisation of gadolinium was studied by Nigh et al (1963) 

for zero external magnetic field at different temperatures. The magnetisation is 

estimated to be around 70% at 200° A'. It is conceivable from our point o f  view 

that the alignment of spins of the same character may be easily achievable with an 

external magnetic field produced from a highly saturated electromagnet (2500 turns 

of 0.5mm insulated copper around the core of the magnet). In addition, preliminary 

investigation dealing with the magnetisation saturation was carried out at different 

temperatures (room temperature. 0°C, —30°C and —70°C) using a small coil fitted 

around the gadolinium foil in order to measure the current induced in the coil as a 

function of the current in the ferromagnet coil. Clearly from the curves (figure 4.6), 

the saturation was achieved at — 70°c with an induced current I >  0.4 Ampere.

4.5.5 S pectrum  analysis and data reduction

The present experiment was carried out at the topography station using the wiggler 

beam line W9.4 (see Brahmia et al 1988). The same inclined view technique as 

that reported for the polarisation measurements was adopted here as well . The 

apparatus was elevated 6 mm above the orbital plane (i.e. an azimuthal angle of 

the order of 0.15 mrad), in order to obtain a circularly polarised radiation with 

Pc  =  0.6. A white beam was collimated with finely adjustable slits of a vertical 

gap of 4mm and a horizontal gap of 5mm. The same CJe-220 monochromator was 

used to select photon energy at 46.3 keV, i.e. the monochromator was tuned to a
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Figure 4 .6  Curves describing the magnetisation saturation in gadolinium at different 

temperatures (room temperature, 0*C — 30*c and — 70*C)-
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Bragg angle of 3.7®. It is clearly evident that the energy selected in this particular 

Compton experiment is well below the Compton scattering optimum energy at the 

SRS wiggler line W9.4 (55-60 keV). The main reason for that was to avoid the 

overlap o f the Compton scattering profile with the gadolinium fluorescent lines ( Kgl 

and Kfa) respectively located at 50.38keV and 49.97keV, and therefore may increase 

the uncertainty of the magnetic effect. The Ka\ and the located at 42.99kev 

and 42.31keV, respectively, do not present any kind of problem since it does not 

interfere with the profile at all.

Although the transmission arrangement is originally proposed only for the anisotropic 

studies of the Compton profile due to simplicity (i.e. the possibility of aligning the 

magnetisation and the scattering vector is easily achieved, see section 4.6.3). The 

experimental arrangement for the measurement of isotropic gadolinium was adopted 

by transmission also mainly because absorption was insignificant (i.e. negligible ab­

sorption in the thin foil ~  0.025mm). The scattering beam was detected through a 

149° scattering angle by a 10mm crystal germanium solid state detector. T he large 

scattering angle obtained for this experimental set up was due to the long gadolin­

ium foil which dictated the widely opened gap between the magnet pole pieces. The 

magnetic field was reversed at 10  and 20  seconds intervals in an asynchronous pe­

riod of 80 seconds controlled by a BBC microcomputer. The combination of the 

magnetic field provided by the electromagnet and the reasonable low temperature 

was effective enough to saturate the gadolinium foil. The sample temperature was 

measured continuously throughout the experiment by means of a calibrated nickel- 

chrome/ nickel-aluminum thermocouple connected to a voltmeter, which enabled 

the temperature to be calculated.
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The data were recorded for two spin directions in separate memories in the first 

and the second quarter o f an Ortec 4096-multichannel analyzer (Cooper et al 1986). 

The sum and the difference profile was computed and memorised in the third and 

the fourth quarters. Typical spectrum for the spin up orientation as well as the 

difference spectrum are shown in figure 4.7. Some 106 and 104 integrated counts 

were accumulated respectively under each magnetisation direction Compton profile 

and the difference Compton profile in a measurement period of 15 hours. Therefore 

an expected magnetic effect of the order of 1.2% was obtained (equation 4.1).

Though the degree of the circular polarisation of synchrotron radiation on the 

wiggler line at the SRS was accurately predicted, its knowledge is not particularly 

important in the data reduction because the area of the profile is normalised to 

the total moment. A simple calculation was initially used to reduce the low energy 

tail of the detector response function. The spin dependent data (i.e. the difference 

profile) were first of all corrected from the beam attenuation in the specimen despite 

the thin thickness of the foil (0.025mm) because the experiment was set up in such 

a way that the incident beam impinged onto the sample with a small angle (~  15°). 

Therefore, the beam may penetrate into the sample by up to ( j|jj2f ~  0.1mm) in the 

direction of the incident beam. The difference data were corrected for the energy 

variation of the magnetic cross section (equation 1.51) across the region of interest, 

then transformed into momentum scale according to equation 1.12. The data were 

averaged in momentum intervals and normalised in the region (-8 .0a.u., + 8 .0a.u.) 

to the number of Bohr magneton (7.55pa) and averaged left/right to yield the final 

spin dependent Compton profile. According to Sakai (1987) (see section 3.3.4), a 

multiple scattering correction was unnecessary for the magnetic data, especially with



Figure 4 .7  Compton profile spectra of gadolinium; (a) the total profile from spin up 

orientation and (b) the magnetic difference profile.
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such a thin sample.

4 .5.6 Results and discussion

The final processed spin dependent Compton profile of gadolinium is shown in figure 

4.8. The original data compared with the calculated profile obtained from the 4f 

electrons (see Biggs et al 1975) shows a significant disagreement at low momenta 

below Fermi level. This discrepancy explains that the experimental spin dependent 

Compton profile data may not be adequately described by the magnetic profile from  

the 4f electrons at low momentum. In the absence of any theoretical calculation o f 

the spin dependent Compton profile of gadolinium, the data were compared with 

a simple model based on equation 2.1. The model consists of a superposition o f  

the Compton profile originating from the seven highly bound unpaired 4f electrons 

with magnetic moment o f 7/ie, obtained from Biggs et al (1975), and a free electron 

component originating from the conduction electrons (6s25d) with a magnetic m o­

ment equivalent to 0.55h b - This 7.5% increase in the magnetic moment represents 

an increased estimate of the polarisation due to the diffused conductions electrons 

which are particularly important in the calculation of the energy bands.

Though the model is not efficient enough to describe accurately the data par­

ticularly around the Fermi momentum (i.e. electron-electron correlation effects are 

not taken into account), it still a very good approximation for the description o f the 

polarised conduction electrons. The reasonable accuracy of the model is governed 

by the fact that the magnetic 4f shell lies well inside the atom i.e. the 4f band 

is about 6 eV below the bottom of the conduction electrons band (Roeland 1975). 

Hence, the 4f electrons have a very small and negligible overlapping with the 4 f
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Magnetic Compton profile of Gadolinium

F igure 4 .8  Comparison o f the experimental spin dependent Compton profile o f gadolin­

ium ( • ) with the core 4- free free electron model (solid line) calculated numerically 

from Biggs et at (1975). The model has been convoluted with a Gaussian o f FW H M =0.7 

a.u. corresponding to the experimental resolution.
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shells of the neighbouring ions, therefore, the only significant exchange interaction 

occurs between the magnetic 4f electrons and the conduction electrons.

Finally, it is important to mention that the small peak obtained below Fermi 

momentum was not apparent in the earlier measurements by Mills (1986) and re­

cently Itoh (private communication) because o f the relatively poor statistical quality 

of data. Moreover, a qualitative agreement o f this simple model with the profile es­

pecially at low momenta must be statistically strengthen in the future.

4.6 N ickel

4.6.1 O rigin o f  m agnetism  in nickel

Metallic systems involving d- and f-orbitals in the conduction band such as transition 

metals and rare earths, present a problem of a different character than other simple 

metals. For instance, the s-p like electrons existing in those metals usually exhibit 

nearly free electron behaviour, featured by the hybridisation with d- and f-states. 

As far as transition metals are concerned, the ferromagnetism is predominantly 

generated by the spin exchange between the nearest magnetic atoms or ions, due 

to the overlapping orbits o f the magnetic 3d electrons. The lineshape of the spin 

dependent Compton profile may be very sensitive to the partial contributions to spin 

polarisation of the synchrotron radiation components as well as the mixed s/p  hybrid 

electrons (figure 4.9) especially below Fermi level where the hybridisation may occur. 

Accordingly the spin dependent Compton profile lineshape is significantly modified 

at low momenta (below Fermi level) producing a dip at the centre of the profile 

because o f the negative polarisation of the s-p-like electrons which are characterised
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by the excess of the minority spin electrons in that particular region. Principally, 

the negative magnetisation occurs at small energies because the majority spin band 

lies deeper than the minority spin band below the Fermi level.

The directional spin dependent Compton profiles of nickel were calculated by 

Rennert (1983) using the combined interpolation scheme (CIS). The number of 

electrons for the majority band and the minority spin band were estimated to be n ' =  

5.28 and n 1 =  4.72 respectively. Hence, the total polarisation of nickel metal, n 1 — r»*, 

which corresponds to the total magnetic moment is 0.56ps which is consistent with 

the measured value (see Danan et al 1968). The total negative polarisation for 

s-electrons and p-electrons was estimated from the calculated partial densities to 

be ( —0.021ps). The largest part was attributed to the p-like electrons (-0.018ps), 

whereas the s-like electrons represent only (—0.003/is).

Recently the band structure o f nickel was treated by the full potential linearized 

augmented plane wave method (see Kubo and Asano 1990). The exchange splitting 

from s and p states was estimated to about 0.02eV. The calculated magnetic moment 

(0.5Spg) is slightly higher than that predicted by the CIS method, the negative 

polarisation for the s-p electrons was estimated to about 0.047pa which is twice 

that predicted by the CIS calculation.

4.6.2 Sam ple preparation

The complete treatment of the Compton profile of any crystalline material is achieved 

by investigating the effect along as many crystallographic directions as possible. 

However, it is always possible to describe the magnetic Compton scattering effect 

along three major crystallographic orientations as ( 10 0 , 1 1 0 . I l l )  in the cubic sys-
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terns. One of the most important features of the measurements of the Compton 

profile of cubic systems by transmission is illustrated in the use of a single sample 

oriented along the 110 direction. It is clear from figure 4.10 that the three major 

orientations may be found in the same plane, parallel to the face ( 1 1 0 ).

The orientation of the randomly oriented cylinder was first of all determined by 

means of the Laue method, then oriented along the ( 1 1 0 ) direction by rotation using 

a goniometer with two degrees of freedom. The (110) nickel single crystal was cut 

carefully by a spark erosion method from a randomly oriented cylinder purchased 

from Cambridge Metal Crystal Ltd. The shape of the sample was not particularly 

important for this experiment, however, the thickness was dedicated by the optimum 

Compton scattering intensity.

are respectively the absorption coefficients of the sample material for the incident 

and the scattered beams, and p c is the Compton scattering absorption coefficient 

which is assumed to be constant and independent of the integral. The integrated 

Compton intensity may be obtained by integrating the intensity through the sample 

thickness,

1, =  I0 ¡ e - ^ p c e - ^ d v (4.12)

where dv — (S is the beam cross section), x  =  y =  and p\ and pi

IoSpcsin() (4.13)
p\sin3 — ursina

where a  and 0  are respectively the angles made by the sample face with the incident 

and the scattered beam as stated in figure 2.7. According to the previous equation,



001

100

F igure 4 .1 0  A diagram which shows that a single crystal wafer oriented with the 

sample face perpendicular to the 1 1 0  crystallographic axis, includes the three major 

crystallographic orientations in the same plane parallel to the face.
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the optimum thickness may be derived as,

topi - (
fii sin fi \ 
Hi s in a ) (4.14)

According to the previous equation, the nickel sample was cut then ground flat to 

a thickness of 0 .20mm.

4.6.3 Experim ental details

A schematic diagram of the experimental arrangement for directional magnetic 

Compton scattering is shown in figure 4.11. As with the synchrotron radiation po­

larisation measurement, this experiment was carried out in transmission. A white 

beam was collimated by adjustable tungsten slits 4.5mm wide and 4mm high. The 

same Ge-220 monochromator was used to select a beam of energy 55.3 keV; i.e the 

monochromator was tuned to 3.1° Bragg angle. The photons were scattered through 

a scattering angle of 145° in transmission through a 110 magnetised nickel single 

crystal slice 0.20mm thick. A backscattering transmission geometry was chosen for 

two reasons: firstly, an alignment of the scattered vector K  with the magnetisa­

tion direction is easily achieved with thin samples mounted adequately between the 

magnet poles. Secondly, it is possible for a cubic single crystal such as Fe and Ni, 

to find the three major crystallographic orientations i.e. ( 100 , 1 1 0 , 1 1 1 ) lying in 

the same plane when the sample face is oriented along 110 (see figure 4.10). The 

complete magnetisation of nickel was easily achieved with the ferromagnet due to 

its low magnetisation saturation (0.048lT.cm-1 ) compared to iron which is almost 

factor of four higher (0.17147’cm -1 ).

The energy spectra for spin-up and spin-down were recorded with a computer
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based Canberra MCA. The magnetic field was reversed every 5 seconds in order to 

ensure that the data were completely unaffected from the source decay. Approx­

imately 8 x 107 and 6 x 10 7 integrated counts were accumulated under each spin 

direction Compton profile and the difference profile over a period of 25 hours for 

each sample directions during the 6 days of measurements. The short beam time 

allocated for this measurements was not long enough to cover all three major ori­

entations ( 10 0 , 1 1 0 , 1 1 1 ) with sufficient statistical accuracy due to the very small 

magnetic effect governed by the small magnetic moment (0.58/iB)- As a result the 

spin dependent Compton profile was measured for only two crystallographic orien­

tations ( 1 1 1 , 10 0 ).

4.6.4 Results and Discussion

The directional Compton profiles of a single nickel crystal are tabulated in table

4.1 and shown in figure 4.12 (see Timms et al 1990). The data is compared to the 

APW calculation (Wakoh et al 1977) and the FLAPW calculation (Kubo and Asano 

1990). The statistical accuracy of the data is not as good as that of iron (Cooper et 

al 1988) because of the small magnetic moment of nickel (i.e. the measurement time 

needed to achieve the same quality data as iron is estimated to be 4 times greater). 

The profiles are characterised by a central dip as was the case for iron. The dip orig­

inates from the negative polarisation of the s-p conduction electron states i.e. the 

spin density of the minority band is larger than that of the majority band. The 100 

profile presents a larger dip than the 111 profile. Clearly the APW  theory fails to 

predict the 111 spin dependent Compton profile. The theory does not show the dip 

obtained by the experiment. Similar discrepancies were obtained with the iron data



I Pz 1 Exp 
100

FLAPW
100

APW
100

FLPAW
110

APW
110

Exp
111

FLAPW
111

APW || 

1 1 1
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4 
1.6 
1.8 
2.0 
2.2
2.4 
2.6 
2.8
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

0.049
0.066
0.056
0.065
0.077
0.093
0.091
0.104
0.098
0.110
0.091
0.090
0.085
0.079
0.068
0.051
0.035
0.014
0.012
0.011
0.009
0.012
0.008
0.008
0.004
0.004

0.06725
0.06958
0.07426
0.07891
0.08455
0.09152
0.09769
0.10182
0.10386
0.10162
0.ÜJ277
0.07999
0.06917
0.06276
0.05804
0.05192
0.03599
0.02767
0.01753
0.01301
0.00851
0.00618
0.00400
0.00270
0.00138
0.00059

0.0517
0.0561
0.0656
0.0752
0.0845
0.0939
0.1019
0.1079
0.1118
0.1106
0.1010
0.0862
0.0733
0.0655
0.0598
0.0522
0.0351
0.0257
0.0172
0.0122

0.05747
0.06360
0.07758
0.09010
0.09557
0.09605
0.09620
0.09756
0.09934
0.09976
0.09532
0.08432
0.07049
0.05900
0.05190
0.04872
0.03563
0.02284
0.01956
0.01367
0.00745
0.00744
0.00317
0.00256
0.00181
0.00048

0.0606
0.0684
0.0856
0.0999
0.1040
0.1006
0.0963
0.0950
0.0965
0.0977
0.0935
0.0819
0.0673
0.0556
0.0489
0.0463
0.0381
0.0219
0.0192
0.0145

0.066
0.690
0.062
0.081
0.078
0.087
0.097
0.102
0.101
0.095
0.085
0.079
0.071
0.059
0.059
0.064
0.031
0.037
0.014
0.014
0.007
0.006
0.005
0.002
0.006
0.003

0.08401
0.08224
0.07868
0.07734
0.08063
0.08778
0.09644
0.10313
0.10472
0.10065
0.09213
0.08146
0.07125
0.06253
0.05525
0.04898
0.03339
0.02541
0.01708
0.01347
0.00850
0.00615
0.00395
0.00288
0.00151
0.00068

0.1023
0.0992
0.0923
0.0869
0.0858
0.0891
0.0952
0.0999
0.1004
0.0957
0.0869
0.0762
0.0662
0.0581
0.0515
0.0461
0.0341
0.0247
0.0174
0.0119

T ab le  4 .1  Experimental spin dependent Compton profiles of Ni for 100 and 111 di­

rections. Also tabulated are the FLAPW  and the APW  calculations. The theo­

ries have been convoluted with the corresponding experimental resolution function of

FWHM=0.7a.u.



Momentum (a .u . )

Momentum (a .u .)

F igure 4.12 Comparison o f  the spin dependent Compton profile of nickel obtained 

experimentally (• )  with the A PW  calculation (dotted line) and the FLAPW (dashed 

line). The theories have been convoluted with the experimental resolution function

which had a FWHM=0.7 a.u.
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particularly with the 100 direction. The APW  calculation which was based on the 

state dependent potential in the band structure is not adequate to describe the mag­

netic Compton profile, particularly at low momenta (i.e. negative spin polarisation 

of p-like electrons is not well represented by the APW). The Combined Interpolation 

Scheme (CIS) calculation by Rennert et al (1983) presents similar discrepancies due 

to the underestimation of the s-p negative polarisation. This underestimation may 

be attributed to the insufficient number of both four orthogonalised plane waves and 

only 70 reciprocal lattice vectors are used in the calculation.

In order to remove the discrepancies in the negative polarisation of the s-p 

electrons for iron and nickel. Kubo et al (1989) reconsidered the previous theo­

ries (Wakoh et al 1977, Rennert et al 1983, Poulter et al 1988 and Genoud et al 

1989) using the full potential linearized augmented plane wave theory basing the 

calculation on the local spin density approximation (LSDA). The energy values and 

wavefunctions are calculated in ¿5 o f the Brillouin zone for each spin state. The 

spin dependent momentum density distributions were determined to be 893 recip­

rocal lattice vectors whereas the spin momentum density distributions contributed 

by the core states were determined from free atom wavefunctions. The predicted 

directional magnetic Compton profile are in an excellent agreement with the mea­

sured spin dependent Compton profile of iron (see figure 4.13). In the case of iron 

the calculation was based on lowering the centre of gravity of p-states in the third 

minority band in order to reproduce correctly the hole pocket at points N at the 

Brillouin zone. The band structure obtained by the FLAPW method revealed an 

exchange splitting of predominantly s and p states of around 0.‘2eV. The negative 

polarisation obtained at low momenta was attributed firstly to the negative polari-
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F igure 4 .13  Comparison of the theoretical 110 spin dependent Compton profile of 

nickel obtained with the APW  calculation (dotted line) and the FLAPW calculation 

(dashed line). Both theories have been convoluted with the experimental resolution 

function which had a FWHM=0.7 a.u.
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sation of s-like electrons and secondly to the negative polarisation of p-like electrons 

from the second to fourth band.

As far as nickel is concerned the FLAPW describes the experimental data much 

more accurately than the APW  theory particularly the 111 profile. A slight dif­

ference is noticeable in the 10 0  profile where the depth o f  the central dip is un­

derestimated. This failure may be attributed to the nonlocal potential due to the 

electron-electron correlation effects. Sunderarajan et al (1990) also failed to describe 

the spin dependent momentum density distribution in ferromagnetic nickel using the 

self consistent spin polarised linear combination of Gaussian orbitals.

More recently, the directional Compton profiles of nickel were measured by Sakai 

et al (1989). Due to the small magnetic moment of nickel (0.58/is), which caused 

major problems in the past in order to achieve data with sufficient statistical ac­

curacy, Sakai et al (1989) adopted a similar technique to that reported here but 

significantly increased the count rate by resorting to using a focusing monochroma­

tor and multi SSD system combining thirteen Ge crystals. In this case, thirteen 

different spectra can be accumulated using thirteen different apparatus. Simultane­

ously the assembly of all spectra provides an important count rate (see table 4.2). 

The magnetic Compton profiles obtained were similar to those reported here within 

the experimental error.

As a conclusion one may say that the FLAPW method gave a very satisfactory 

picture in describing the nickel band structure. However the effect of the nonlocal 

potential due to electron-electron correlations must thoroughly be investigated in 

the future in order to resolve completely the problem. On the other hand a better 

experimental resolution and higher statistical accuracy o f the data are necessary to



Reference Pc Ferromagnet Energy (keV) ( /T -  /|)/0.1a.u. Time (s)

Sakai et al (76) 0.3 Fe 122 0.6 x 103 139

Sakai et al (83) 0.8 Fe 129 1.3 x 10* 165

1 Holt et al (86) 0.5 Fe 33.7 3 x 103 8

Cooper et al (86) 0.6 Fe 46.4 5.0 xlO4 16

1 Sakai et al (87) 0.6 Fe 129 2.5 x 104 594

Cooper et al (88) 0.6 Fe 60 1.1 x 104 24

| Sakia et al (89) 0.6 Fe 60 6.2 x 103 11

Brahmia et al (88) 0.6 Gd 46.3 0.9 x 104 15

Present 0.6 Ni 55.3 1.2 x 104 25

Sakai et al (89) 0.6 Fe 60 2.2 x 10s 1

T ab le  4 .2  Comparison o f  count rates o f spin dependent Compton profile measurements 

on ferromagnets.





Chapter 5

THEORY OF MAGNETIC XANES

5.1 In trod u ction  to  X -ray  absorption

The electronic structure of atoms is well established according to quantum theory 

of solids (Faulkner 1982). The study of the behaviour of electrons gives detailed 

information about many different physical quantities carried by electrons such as the 

spin moment which gives rise to magnetism (Weiss 1907). Moreover, information 

about physical quantities related to electrons via existing interactions in solids such 

as forces which bind atoms together may also be obtained.

In studying X-ray absorption, practically all interest is concentrated in the inves­

tigation dealing with the behaviour of the excited electrons during the process. The 

core electron behaviour may be understood easily since these electrons behave as in 

free atoms. This is due to the fact that core electrons are very tightly bound to the 

nucleus, hence the potential created by the neighbouring electrons is weak to a point 

that it is considered negligible with respect to the nuclear potential. In addition to 

the core electrons, the low energy outer electrons, are considered as free electron like.

91
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As a result the crystal potential may be considered a fairly weak perturbation with 

respect to those electrons. Moreover, their states are approximated by plane waves, 

which are well known to be only weakly scattered by atoms. The crystal potential 

is strongly affected by valence electrons because of their capability of binding the 

whole system together and particularly determine its electronic structure (Grobman 

1975).

The process of X-ray absorption leads the absorption cross section having sharp 

steps as the energy increases through each shell threshold (Brown and Winick 1980). 

The resulting spectrum describing the absorption cross section against energy (see 

figure 5.1) falls into three m ajor parts as far as X-ray spectroscopy is concerned. 

Firstly, the pre-edge region or the threshold is the range lying just below the ab­

sorption edge which gives information about the binding energies as well as quanti­

tative information. Secondly, the region which extends to about 50 keV above the 

edge is known as the near edge region or the X-ray absorption near edge structure 

(XANES). Thirdly, the next region is called the extended X-ray absorption fine 

structure (EXAFS). It is well known to be an accurate investigative tool for the 

determination of the interatomic distances as well as the structural information of 

the nearby scattering atoms.

The advent of intense tunable X-ray sources such as synchrotron radiation have 

made extended photoabsorption studies into a variety o f fields namely; biological sys­

tems, condensed matter etc.... Greaves (1981), Munoz (1983) and Bianconi (1983). 

As far as condensed matter is concerned, the description o f X-ray spectra originating 

from the absorption of photons by electrons in atoms, particularly core electrons, is 

characterised by the eigenstates of electrons before and after being excited. These



PHOTON ENERGY

F igure 5.1 A schematic illustration of the x-ray absorption spectrum showing the 

threshold region (including pre-edge and edge regions) and the EXAFS region.
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eigenstates fall mainly into three different classes which are, in order of increasing 

energy, the core states, the valence states and finally the high energy excited states 

(figure 5.2). There are a number of effects and process occurring when a beam of 

X-rays impinges upon solid matter, resulting eventually in the attenuation of the 

beam intensity during its passage through the absorbing material. The absorption 

coefficient of the absorber, p. may be defined from the intensity reduction caused 

by a given thickness of the material,

I =  I0ex p (-p t)  (5.1)

where t is the thickness of the specimen and lo is the intensity at t =  0 .

The mechanism of the absorption of photons in solids occurs when the energy of 

the X-ray exceeds the binding energy of a core level. Under these circumstances the 

photon is absorbed, exciting in the process an electron to an outgoing photo-electron 

wave.

5.2 In troduction  to  P h oto -a bsorp tion

Photo-absorption is an excitation process characterised by the absorption of a high 

energy photon and consequently the excitation of an electron from its initial occupied 

state to a higher state. The generated photo-electron is governed by the energy of 

the absorbed photon. Accordingly, a core state electron whose wavefunction is very 

highly localized around the nucleus of a particular atom could be excited when high 

energy photons are used in X-ray photoemission spectroscopy (see figure 5.3a). On 

the other hand, a valence state electron is excited when lower energy photon is used 

in ultra-violet photoemission spectroscopy (figure 5.3b). The photo-electron ejected
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from the inner shells is governed by the energy conservation equation,

E =  hu0 -  hu. (5.2)

where hua is the binding energy of the (a) shell and hvo is the incident energy. 

Alternatively, in the photoabsorption process a high energy electron which lays in 

a high energy level may fill the hole left by the excited electron, emitting a photon 

as it does so (figure 5.3c). This process is known as fluorescence. The intensity 

of the emitted lines are hardly distinguished above the background of the X-ray 

photoemission spectroscopy. However, when a hole is left in the K-shell and then 

filled by an L-shell electron, the energy emitted in this transition may be lost to a 

nearby L-shell electron (figure 5.3d). This electron which is called an Auger electron, 

may lose its energy by collision or in a coulomb interaction process with an other 

electron, resulting in the creation of a second slow mono-energetic electron emission. 

As a consequence of this Auger process, the intensity of the X-ray emission lines are 

affected because of the transfer of the vacancy from one shell to another.

5.3 E X A F S  and X A N E S

X-ray absorption edges carry fine structure which contains a variety of information. 

The extended X-ray absorption fine structure, EXAFS, appears in the high energy 

side above the edge in all forms of matter except in mono-atomic gases (see Brown 

and Winick 1980). This region could extend from 50 keV to up 1000 eV above the 

edge. EXAFS is due to the scattering of internally excited photo-electron waves by 

the atoms surrounding the ionised one.

The observed series of gentle oscillations in the EXAFS region are interpreted in
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terms of the scattering o f the excited photo-electrons by the neighbouring atoms, 

(Lee et al 1981). The modulation of this series characterises the interference between 

excited photo-electron and photo-electrons scattered from neighboring atoms (see 

Durham et al 1983). Usual symbol for EXAFS

<5 -3 >Mo

where k is the wavevector characterising the ejected electron from an atom by means 

of the X-ray absorption (see Lee 1975 and Heald et al 1977) and y  and are re­

spectively, the absorption coefficients of an atom in the material and the absorption 

coefficient of the same atom in a free state, (Stern et al 1975, Ashley 1975). The 

study of EXAFS function may lead to important information about the material, 

(see Lee et al 1975). For instance, the distances between the absorber and the neigh­

bouring atom are well established from the modulation of the cross section , (see 

Eisenberger et al 1980). Moreover. EXAFS gives information about the atomic ar­

rangement of material as the X-ray diffraction does, (see De Crescenzi et al 1981). In 

some cases, the verification o f  postulated structure is also possible. This is achieved 

by changing the scatter identification to verify the proposed atomic type.

The X-ray absorption near edge structure (XANES) is defined to be covering the 

range from the edge up to 50 e\r above the edge. The near edge structure is mostly 

related to the lowest unoccupied states in materials populated by the excited core 

electrons during the absorption process. The XANES region is distinguished from 

the EXAFS region by its higher cross section, governed by the appearance of a series 

of fairly narrow resonant peaks just above the edge, due to the strong scattering from
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of fairly narrow resonant peaks just above the edge, due to the strong scattering from 

the neighbouring atoms (i.e. longer free paths of the photo-electrons are obtained), 

(see Lee et al 1975). Moreover, a stronger modulations are another feature of XANES 

(see figure 5.1). As a result, the interaction between the photo-electrons and the 

scattering atoms becomes weaker as the energy increases above the edge, therefore 

the theory o f the multiple scattering is very significant in X ANES, (see Durham et al 

1981 and Durham et al 1982), whereas in EXAFS, single scattering is predominant. 

The introduction of multiple scattering in XANES has recently yielded a lot of 

geometrical information in a variety of substances (see Durham 1983).

In contrast with EXAFS, one o f the rising interest in XANES is the possibility of 

extracting information about coordination geometry around the excited atom as well 

as bond angles which are not obtainable from EXAFS, (Bianconi 1980). Although 

these spectra are well known to be rich in chemical and structural information, it 

still very difficult to determine these features than would be from those rising from 

EXAFS.

5.4 T h eory  o f  m agnetic X A N E S

5.4.1 Introduction

In principal, the treatment o f the density of states may be applicable either by means 

of the electronic wavefunction as it has been the case for the momentum density, 

n(p), for the Compton scattering, or by means of the Green’s function. The two 

methods are equally applicable for disordered as well as ordered solids, however, in 

disordered alloys where the translational invariance is absent, it is believed that the
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computation of the elertronir wavefunrtions is extremely complicated for a given 

atom. This is mainly due to the inhomogeneous density of states distribution at 

• iiifeit-ni sites. Tiiis difficulty is overcome when Green’s functions are applied because 

o f  their nature, i.e. the density of states is related to the imaginary part of the energy 

dependent average Green’s function. As a result a comprehensive treatment of the 

theory is carried out by means of Green’s functions.

The aim of this section is to give a detailed description of the theory of XANES 

in condensed matter systems, established in terms of one electron approximation, 

(see Durham et al 1984 and Muller et al 1983). A rigorous theory would have tackled 

the problem in terms of many-electron systems, mainly because the transition rate 

is basically dependent of the initial and the final states of many-electron systems. 

However, because of the difficulties of resolving the problem, it is much simpler 

to  describe the system by means of one electron approximation, which represents 

the many-particle wavefunction as product o f single particle wavefunrtions. These 

wavefunctions are eigenfunctions of an effective one electron Hamiltonian. In brief, 

the system is described by the same Hamiltonian given in equation 1.13. which 

includes all the interacting terms occurring between photon and electron, relevant 

up to second order time dependent perturbation theory. However, since only terms 

linear in the vector potential A  are responsible for absorption hence, only HJ and 

/ / j  are considered in the treatment of X-ray absorption (terms quadratic in A  are 

responsible for high order scattering). In other words terms liner in A  do not destroy

97
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y  A (r,).P . y ,S j .V  X A (r ,).inc (5.4)

The interacting Hamiltonian. //.J.,, may he described differently elsewhere (see 

Durham et al 1984) in terms of current density of the ith electron at a position r

li.e. j,[ r>).

Ri being the position of the ilh electron and a, is the Dirac matrix which is linearly 

dependent upon the electron spin matrix (see Messiah 1981).

5.4.2 Transition rate

In order to  describe the electron absorption and emission process it is very important 

to examine the absorption rate in detail by means o f  the transition probability that 

a photon is absorbed and consequently an electron is excited from its initial state. 

The transition probability of an excitation of a core electron from an initial state 

is characterised by a quantum state |« > which is an eigenstate for the uncoupled 

Hamiltonian (H0) with energy E. to an unoccupied final state |,'i >  above the Fermi 

level. This transition probability is governed by the interacting Hamiltonian.

First o f  all. assume that at a time t =  0 the system is comprised of an electron 

in the ground state |ti»(f =  0) > . plus an uncoupled photon in the state |k, A > , with 

wavevector k. wavelength A and polarisation vector e£. At some much later time t,

where _/,(r) is the current density.

j,(r) =  « ¡¿ (R i -  r) (5.6)
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the (|iiautum system evolves to a state kdO >. according to the evolution operator. 

U(t,t=0), which is related to the non-interacting Hamiltonian. Hn (see appendix A). 

By postulating that the linear superposition of states is preserved in the course of 

time, therefore the correlation between the states |c(0 ) >  anil |i.'(f) >  is linear and 

defined as.

M <) > »  r ( M  =  0)|r(0) >  ( ’>.7)

where the evolution operator is given by,

/'(M>) =  exp[i7/o(/- /> ) ) .  (5.8)

Assuming that the interaction occurs at the same time t. Hence, at some much 

later time. /0. the system evolves to a state governed by,

|v((„) >= - i  J"MC(t„.t)H',:1C(t.0)\'H0) > . (5.9)

According to the final state, the probability that a photon is absorbed and there­

fore an electron is excited to a state |t'„ >  is given by.

/ » ( t o )  =  I <  t ’n K ’ ( fo )  >  I2- (-r>.10)

The states >  are obviously not observed, therefore, the summation over all 

those states is necessary.

e < » o )  =  2 1  ( 5 .M )

Finally, the transition rate is defined as the transition probability per unit time, 

which is given by the familiar "Golden Rule" Durham (1984).

W  =  -£ - {  lim P (/0)}(tto io—*>
(5.12)
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For our purpose the transition rate is going to be evaluated by means of Green's 

function. Economou (1979).

‘■Substituting equation 5.9. 5.10 and 5.11 into 5.12 and using equation A14 in 

Appendix, one may obtain after Fourier transforming.

where / / . ¿ 3 is given in 1.33.

5.4.3 A tom ic absorption  within the m ultiple sca tter in g  theory

So far. a general expression for the transition probability has been deduced. Clearly 

the ambiguous point o f this quantity consists of the calculation of the retarded 

Green's function. (7+ (r, r':E ), by means of multiple scattering theory. (Durham 

et al 1982 and Faulkner et al 1980). The retarded Green's function is due to be 

evaluated when r and r ' lavs within the muffin-tin potential. V*(r) i.e.

where R,„ is the muffin-tin radius which is chosen so that none o f the atomic spheres 

overlap.

The one-electron Hamiltonian potential is a sum over lattice sites, Rp

W =  - 2  dr f*°° dr‘  < i'(r l| //;j /m K *(r, r': O i/P liM r )  >  (5.13)

l ( r )  = X i ; ( r - R i> . (5.15)

Because of the complexcity of the derivation of the theory, only the important 

results are going to be given here. Accordingly the form of the retarded Green's
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function is given by,

C * ( r ,r ';E )=  £  Zim(Tl,E ) .T t J.m.Zim. l * i .B ) - 'L Z i m(r<,E ).J i .lr > ,E )
tm

(5.16)

Z(‘m(pj, E) and J/m(r, E) are real and known respectively as regular and irregular 

solutions of the radial Schroedinger equation, is Complex quantity known

as the scattering operator which describes the multiple scattering paths beginning 

in the state featured by the pair (l,m) of angular momentum quantum number at 

a site (i) and ending in different state (/', m ') at the same site, (see Gyorffy et al 

1973).

Since only the part describing the scattering path is complex,

/m G * (r ,r ; E )  =  £  Z ,V „m.(r, E).Im T^r „ . ( £ ) .  (5.17)

The local density of states for the atom at the origin is given by,

p°(E) «  - -  /  im G + (r ,r '; E)dr (5.18)
r  Jcell

where the integral involves the cell occupied by the atom at the origin.

Using equation 5.18, one may obtain the decomposition into angular momenta,

A E )  =  5 > ?m (£>
Im

=  E - |  J ^ r Z U ' . B I l m r L ^ E ) .  (5.19)

Finally substituting 5.17 and 5.19 into 5.13, one may write the transition rate 

formula as.

w  =  -tE I A W E J M . W .
Im

(5 .2 0 )
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Xfim(E ) being the matrix element which may be considered as an atomic quantity 

as well, varying smoothly and very slowly with energy. Thus all the effects o f the 

'iirrounding atom« ;<re « the «rattenne operator.

. ( / , „ (£ )  = f  At < u{r)\H"H'2j\v(r) >  . (5.21)

5.4.4 Spin dependent ph otoabsorption

The measurements of the energy dependent photoabsorption in XANES has recently 

been established to be a method o f probing the local density of empty states imme­

diately above the inner shell threshold. (Ebert et al 1988 and Suortti 1979). The 

unoccupied states which get populated in the absorption process are of a selected 

angular momentum due to the dipole selection rule. (Vanderlaan et al 1986),

IAj I < i

A / = ±1

A m  =  + 1 .

Recently the study of the spin dependent photoabsorption near edge structure, 

hence, the spin density of the unoccupied states, has been made possible with circu­

larly polarised radiation, (see Fano 1969). Therefore the majority and the minority 

bands may be separated in ferromagnets by reversing the direction of the magneti­

sation density in the absorber, (see Schütz et al 1988). The absorption coefficient 

which is proportional to the absorption transition rate (equation 5.20) may be writ­

ten as.

/< < x | .\ /| V (£ ). (5.22)



Chapter 5; Theory o f  magnetic XANES 103

Because the matrix elements M vary smoothly and slowly with energy, one may 

assume accordingly that the matrix element is not influenced by photon-spin inter­

action. This assumption is considered valid for energies less than 100 keV (Pauli 

et al 1975). Moreover, the matrix is not sensitive to the spin orbit splitting in the 

core state and the final state (see Fano 1969). Hence, the density of the final state , 

p(E). may be expressed as the sum o f the density of states with spin up. pK and the 

density of states with spin down. p[. which they describe respectively the majority 

and minority hands »if the empty states.

Moreover the total number of photo-electrons transferred (n) is comprised of 

electrons with spin up. «*. and electrons with spin down, »* (i.e. photo-electron 

with spin parallel and anti-parallel respectively to the photon spin).

Using equations 5.22. 5.23 and 5.24. the absorption coefficient may be expressed 

as the sum of two parts: spin independent term. //q. and spin dependent term which 

involves the spin of the photo-electron. P, and the density of states A p.

The spin polarisation of the photo-electron is due to the photon spin polarisation 

transfer by means of the spin-orbit interaction,

(5.23)

(5.24)

p oc |.4/|V +  |A/|aP,Ap (5.25)

where.

■V  =  p' -  pl . (5.26)

(5.27)
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Finally, the spin dependent absorption profile is possibly investigated in a differ­

ence experiment for which the ratio of the spin dependent photoabsorption coefficient

jj4 is expressed as.

A/i _  /<' ~
/i

(5.28)



Chapter 6

MAGNETIC XANES IN IRON AND NICKEL

6.1 In trod u ction  to  m agnetic X -ray  absorption

The existence of spin dependent photoabsorption in magnetic atoms immediately 

above the Fermi energy may originate from the promotion of polarised photo­

electrons from a lower unpolarised initial state to an empty final state characterised 

by its spin-split, immediately above the Fermi energy. Principally, the polarisa­

tion o f photo-electrons may be create«! by a transfer from a photon polarisation 

in the direction o f the incident photon wavevector. k .  due to the influence of the 

spin-orbit interactions on the dipole matrix (see Fano 1969). The polarisation of 

photo-electrons excited by a circularly polarised radiation may extend up to few 

tens of electron-Volts above the edge.

The method applied for the observation of the spin dependent K-photoabsorption 

is establishe«! when circularly polarised photon interacts with unpolarised Is elec­

trons. The Is electrons are promoted to higher unoccupied states, (P ^,P^), which 

are governed by their different spin orbit splitting.
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The estimation of the degree of circular polarisation was based upon the calcula­

tion of the degree of circular polarisation of the SRS synchrotron radiation emitted 

from line 7.6 which was accurately calculated by Laundy (1990). The calculation 

was based on the high brightness magnet lattice emittance.

In contrast with the Compton scattering experiment, the evaluation of the degree 

of circular polarisation of the incident beam must be accurately known for the 

spin dependent photoabsorption experiment in order to be able to estimate the 

magnetic effect because there is no normalisation criterion. Accordingly, the degree 

of the circular polarisation in the monochromatic beam was corrected after being 

diminished due to the Bragg reflection. The polarisation obtained after two Bragg 

reflections may be approximated for a perfect crystal as.

where Pc is the polarisation of the collimated white beam and 6  is the Bragg angle 

(see Zachariasen 1967).

Since the stability of the beam was thoroughly controlled during each run. the 

only significant uncertainty associated with the value of the degree of circular po­

larisation results from the vertical width of the beam (0.5mm) and the crystal im­

perfections. The value of Pc was taken as the average value within the finite width 

of the beam and its uncertainty was estimated at 15%.

(6.1)
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6.2 P revious research

The measurement of the spin dependent photoabsorption was recently introduced 

as a new method of studying magnetism in ferromagnetic materials (see Schütz et 

al 1987). A series of measurements were carried out at the L-edge o f ferromagnetic 

(id and Tb metals (see Schütz et al 1988). Later on. Schütz et al ( 1989a) reported 

for the first time the measurement o f the spin dependent photoabsorption effect 

at the (id L-edge in gadolinium metal and GdiFe&Ou using circularly polarised 

radiation. Recently the spin dependent photo-absorption effect o f  the Fe /(-edge 

and Pt ¿ 2,3-edges in ferromagnetic alloy FemP t2o were measured. Large relative 

spin dependent absorption coefficient (fis/po) were obtained (i.e. 23% at the Pt 

¿ 2-edge and —12% at the Pt ¿ 3-edge) (see Schütz et al 1989b) The measurements 

were made using the inclined view method at the synchrotron radiation facilities 

HASYLAB in Hamburg (DORIS) which operates at an electron energy of 3.7 GeV 

with a maximum current of 100mA and a typical life time o f the order of 3 to 

4 hours. Two photon beams were symmetrically collimated with respect to the 

orbital plane of the synchrotron radiation in order to obtain simultaneously partially 

circular polarised beams with opposite signs. A degree of Pc = 0.8  for each beam 

was obtained. The beams were monochromated according to the double crystal 

monochromator (Si-311) which has an energy resolution of around leV  at the region 

immediately above the Gd-edge. The intensities of the beams were monitored by 

means of two identical double ionisation chambers mounted in front and behind the 

magnetised absorber. In addition, the magnetic field in the absorber was reversed 

every second in order to ensure that the data could not be affected by the source
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decay. The data obtained from the two beams were added together to improve the

statistical accuracy

The spin dependent photoabsorption effects in transition metals were also mea­

sured ( see Schütz 1989). The Fe K-edge profile was characterised by a positive 

effect immediately above the edge followed by a negative effect away from the edge. 

However, the effects in Ni and Co were found to be completely negative. A theo­

retical calculation based on the relativistic spin polarised multiple scattering theory 

described in the previous chapter, has been recently carried out by Ebert et al 

(1988), employing the self consistent potential, tabulated by Moruzzi et al (1978). 

The employment of a spin up and a spin down potential for the Is core states in 

transition metals was necessary for the evaluation of the core wave functions.

6.3 A pparatus

The experimental assembly adopted for the spin dependent photoabsorption is shown 

schematically in figure 6.1. Principally, the apparatus employed was designed for 

spin dependent Compton scattering experiments. The spectrometer was mounted 

on a vertically adjustable baseplate, principally required for the magnetic photo­

absorption experiment to select the beam polarisation above and below the orbital 

plane of the synchrotron radiation. A circularly polarised white beam may be colli­

mated using adjustable tungsten slits positioned immediately in front o f the crystal 

monochromator.

A tunable channel-cut monochromator was necessary to scan over a range of 

energy from lOeV up to 200eV immediately above the K-absorption edge in iron and



El
ec

tr
om

ag
ne

t



Chapter ti: Magnetic XA N ES it and nickel

nickel. One of the major advantages of this kind of monochromator is emphasised 

in obtaining monochromatic beam parallel to the original white beam, therefore 

no further arrangements for beam alignment are necessary during an energy scan. 

Moreover, it provides rapid tunability over a broad spectral range, high transmission, 

narrow bandwidth (A E/E  ~  10-4  with perfect Si crystals). Accordingly, a vertically 

dispersing Si-111 channel cut monochromator, which was principally designed to 

operate over photon energy range of around 3-12 keV. was chosen in preference to 

a Si-311 mainly because of the higher reflectivity obtained from the 111 reflection. 

Moreover, the choice was also made because polarisation reduction is dramatically 

affected by the 311 Bragg reflection. For instance, for Si-311. Pc =  0.90 ^  0.1 

becomes P'c  =  0.25 0.1 after two reflections as quoted by Schütz et al (1988).

whereas for Si-111. Pc =  0.60 T  0.1 becomes P? =  0.45 T 0 .1 after two reflections.

The monochromator was mounted separately on a gouiometer which formed 

part of an existing double crystal spectrometer in the experimental station. The 

monochromator height position had to be adjusted separately for the sample and 

detector which were both mounted on the same vertically .adjustable baseplate. 

Although the energy scan over the region of interest was easily controlled using the 

SRS computer system, the adjustment of the monochromator and the alignment of 

the beam at the right height above and below the orbital plane of the synchrotron 

radiation was awkwardly achieved.

A second set of tungsten slits positioned just behind the crystal was necessary 

to stop radiation from the different Bragg reflections as well as radiation escap­

ing straight through the gap in the crystal monochromator. The selected polarised 

monochromatic beam may be scattered from a fully magnetised foil through an an­
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gle approximately equivalent to -j in order to monitor the fluorescence and maximise 

the scattering. The same solid state detector described in section 2.2.2 was used 

here, and it was calibrated with a low activity 133Ba source. Moreover the trans­

mitted radiation may be monitored with an ionisation chamber positioned behind 

the absorber and facing the incident beam. The Fe data were recorded with the old 

computerised MCA. whereas the Ni data were recorded with a Canberra Packcard 

Multi-Channel analyser (M CA) used previously in the Compton scattering experi­

ments.

6.4 E xperim enta l details

A new technique for the study of magnetic photoabsorption in ferromagnetic mate­

rial was adopted for the first time. The method consists of measuring the difference 

in intensity of the fluorescence profile obtained from a magnetised ferromagnetic 

sample respectively for right- and left-hand circularly polarised radiation. The same 

investigation was carried out previously by means of the measurement of the m od­

ulation amplitude of the radiation transmitted through a magnetised ferromagnet 

using the inclined view method to extract circularly polarised synchrotron radiation.

The experimental measurements were similar to those reported for the spin de­

pendent Compton scattering. Two spectra corresponding to opposite electron spin 

polarisation were recorded separately and the difference spectrum was then obtained. 

The measurement technique reported earlier, (see Collins et al 1989) was performed 

at the Daresburv storage ring at the X-ray topography station using the inclined 

view method. The station is situated some 80m away from the 1.2 Tesla dipole



< 'hapter 6: Magnet it■ XANES in ii ind nickel 111

magnet tangent point. The maximum current for which the ring was operating was 

around 280mA with a typical life time of around 30 hours. The emitted radiation 

is characterised by its critical wavelength. 3.88A (i.e a corresponding energy of 3.2 

keV). Clearly from figure 3.2 the region including the K-absorption edge of transition 

metals is well within the energy spectrum of the synchrotron radiation.

The optimum magnetic signal measured for the Wiggler line (see chapter 3) 

is unfortunately not applicable for this particular line. However, as it has been 

mentioned in section 3.11. the prediction of the optimum magnetic signal for the 

dipole bending magnet at the 7.6 line may be accurately estimated according to 

the calculation performed by Laundv (1990). Accordingly the beam was selected 

with a minimum inclination of 0.125 mrads (i.e. 10mm above the orbital plane 

at the experimental station) to obtain a circularly polarised beam with Pc =  0.7. 

In contrast with the measurements reported by Schütz (1989). where two data sets 

could not be recorded simultaneously and symmetrically below and above the orbital 

plane of the synchrotron radiation but that was deemed to be unnecessary, mainly 

because the better positional stability of the beam is a routine operation of this 

storage ring. Typical synchrotron radiation beam movements were experienced in 

previous experiments (see figure 3.9)

The one 1 pm thick foil was mounted between the electromagnet pole pieces to 

make an angle of around 35° to the incident beam. This was chosen to maximise 

the ratio (signal/noise a cosOy/sinO. Similarly as in the Compton scattering ex­

periment. the magnetic field in the sample was reversed every 5 minutes in order to 

minimise the effect due to source decay. The spin-up and the spin-down data are 

accumulated and stored separately in different memory locations. Since this kind of



Chapter 6: Magnetic XANES in iron and nickel 112

experiment <leals with the measurement of the integrated counts over the region of 

interest (i.e. the resolution of the detector is not significant), the solid state detector 

was positioned as close as possible to the foil in order to enlarge significant I v the solid 

angle and therefore increasing the signal level. The resolution of the monochromator 

was assumed to be negligible. Despite this arrangement, the statistical accuracy of 

this scattering experiment was worse than that obtained from the transmission llux 

modulation performed by Schütz (1989): firstly because of a limited beam time and 

secondly because the integrated count rate obtained, immediately above the edge, 

from the transmitted radiation is almost twice as much as that obtained in the scat­

tering experiment (i.e. 104/s  integrated counts were obtained for the ion chamber 

compared to 5 x 103/*  obtained for the SSD)

A series of measurements were made for different energies immediately above 

the K-absorption edge of Fe and Ni. Tile measurements were made possible by 

tuning the monochromator marginally in order to increase the corresponding Bragg 

angle. Each of the measurements lasted one hour for energies above the edge, where 

the count rate is very high: typically 104/.*. However, in order to obtain the same 

statistical accuracy the measurements were recorded for as long as four hours at 

energies on the edge as well as immediately below the edge. The reason for such 

a low count rate at those energies is due to the high photoabsorption within that 

range. Magnetic effects of around 0.4% and 0.1% were obtained immediately above 

the edge for Fe and Ni respectively.

As usual the beam position was checked between machine refills in order to adjust 

the position of the spectrometer if the beam orbital plane had moved (see figure 3.9). 

Moreover, short energy scans were done between every two runs in order to check
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the energy calibration, i.e. the edge position obtained from the original set up must 

remain the same within 1 eV of the energy resolution of the eollimation and the 

monochromator arrangement (figure 6 .2 ).

As far as nickel is concerned, the data were re-measured twice due to discrepancies 

found in the spin dependent photoabsorption intensities. These were attributed 

to the effect of the magnetic Held produced by the electromagnet which affected 

the semi-conductor detector positioned very close to the magnet. The origin of 

this significant effect was confirmed when a measurement o f the spin dependent 

photoabsorption was carried out with no foil mounted between the magnet pole 

pieces (i.e. a magnetic effect was still obtained). This problem was later resolved 

by moving the detector about r>mm away from the magnet, and good data were 

obtained.

6.5 Data analysis

The spin dependent photoabsorption proHle in the XANES region is reflected by the 

spin density distribution of the final states populated in the absorption process. ^  

which may be obtained from equation 5.3.

=  l A  (6 .2 )

where /t„ is obtained in separate measurements of the scattered intensity detected 

respectively with and without foil mounted between the electromagnet pole pieces. 

The spin dependent modulation of the photoabsorption (p,/p) was obtained front 

the experimental and the calculated ( ^ )  using an iterative calculation method in 

order to include the sample absorption into consideration.
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The intensity of a beam scattered in reflection from a sample of thickness t is 

given as,

where p\ and pi are respectively the energy dependence absorption coefficients for 

the incident and the scattered beam, p x  is the absorption coeficient at the K edge, 

a  and 0  are the incident and the scattered angles described in figure 2.7.

The integrated intensity over the whole thickness of the absorber may be obtained 

as,

The final processed data were normalised to the correct value of Pq taking into 

consideration that the circular polarisation dependence is given as P'c cosa, where 

a  is the angle made between the incident and the scattered polarised beam and the 

photon spin direction.

6.6 R esu lts and Discussion

The spin density distribution for iron and nickel, obtained from equation 5.2, are 

illustrated in figure 6.3 and 6.4. Originally the spin dependent photoabsorption 

effect of iron measured here with the scattering method was found to be twice as 

much «is that measured by Schütz (1989) using the transmitted flux monitoring 

method. This discrepancy was later resolved after rescaling the transmission data 

using the correct value of the degree of circular polarisation ( P'c  =  0.25), previously

/  oc (6.3)

I  OC ¡0PK

oc

pi coseca +  p? cosec/3 ,
j  _  e —*<Ml COMCOT+MJ cotecO)

pi coseca +  p% cosec/3

g -M i* cottea _j. g-Mjl cottcû
(6.4)

(6.5)
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mis-calculated by Schütz et al (1987) (Pq =  0.42), using equation 6.1.

After rescaling the transmission data, the agreement between the transmission 

data and the fluorescence data reported here is very good within the statistical 

accuracy and the estimated error of P'c  ~  15%, which is mainly due to crystal 

imperfections and beam finite width. However, the good agreement between the 

theory and the experiment reported earlier by Ebert et al (1988) no longer exists 

due to the new correction.

Clearly from figure 6.3, there is a significant difference in the scale level o f the spin 

dependent photoabsorption o f iron between the theory and the fluorescent data. The 

peak obtained immediately above the edge in the spin dependent absorption data 

is twice as much as that predicted by the theory (i.e. the theory has underestimate 

the magnetic absorption rate in the calculation). Moreover, the second small broad 

positive peak predicted by the theory at around lOeV above the edge is not apparent 

either. It is clear from the figure that the spin dependent photoabsorption effect 

is concentrated immediately above the edge and extends to about 10 eV, with a 

maximum positive peak centred at around 2 eV (p,/fio ~  1%) (¡-e. majority spin 

states are obtained at the Fermi level followed by minority states). The distribution 

of the spin dependent density of states becomes negative at around 3.95 eV above 

the edge.

As far as nickel is concerned, the spin dependent photoabsorption behave quite 

differently from iron, i.e. the spin density profile features a broad negative distribu­

tion data from about -4eV below the edge to -f 4eV above the edge (only minority 

states are obtained). In contrast with the iron, the theory failed completely to pre­

dict the spin dependent photoabsorption in nickel. The theory reveals a positive
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peak immediately above the edge followed by a long tail to about 10 eV (Ebert 

1988, private communication).

The unsuccessful quantitative prediction of the theory may be attributed, as has 

been mentioned by Ebert et al (1988), firstly to the neglect of many-body effect, 

which could be significant, and secondly, the theory has not been averaged over the 

direction of the magnetisation because this could lead to a complete deterioration

of the structure.



Chapter 7

CONCLUSIONS

7.1 G am m a-ray  C o m p to n  sca tterin g

The better understanding of Gamma-ray Compton profiles has become a routine 

operation. This kind of experiment may possibly have come to an end o f an era 

unless higher energy sources such as 198.4u and 137Cs are exploited in the goal to 

study heavy metals and alloys.

The gamma-ray Compton profile data o f Fto.2$Nio.7$ which are obtained with 

the high energy source 198Au have highlighted deficiencies in the calculations o f the 

directional Compton profile. The discrepancies revealed at low momenta are directly 

related to the normalisation of core states. Hence, a rigorous calculation is needed 

particularly in the normalisation of core states in order to be able to make any real 

progress in the data interpretations. Furthermore, the data interpretation is also 

restricted by the relatively poor experimental resolution (i.e. 0.4 a.u. compared 

to 0.07 a.u. for the CuK„ X-ray focusing spectrometer (see Pattison et al 1981) 

and 0.08 a.u. for the S.R. (Photon Factory) focusing monochromator (see Itoh et

117
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al 1989)). The interpretation of the momentum density is severely restricted by the 

poor experimental resolution, i.e. the Fermi surface will not be described accurately 

for resolution which represents a sizable fraction of the Brillouin zone. In order to 

obtain high resolution Itoh at al (1988) employed a double crystal monochromator, 

a curved crystal monochromator and a position sensitive detector which consists of 

imaging plates.

7.2 M agnetic C om p ton  sca tterin g  and p h oto -a bsorp tion

The magnetic Compton scattering studies suffer similar problems as gamma-ray 

Compton scattering. In recent years the study of the total momentum density by 

means of the Gamma-ray Compton scattering technique has been overshadowed by 

the magnetic Compton scattering studies of the spin dependent momentum dis­

tribution with the synchrotron radiation. The radiation has made the study of 

magnetic X-ray experiments very successful and a critical test to band structure 

theories. The poor resolution obtained in the spin dependent Compton scattering 

(~  0.7a.u.) and the poor statistical accuracy of the data were a major obstacle in 

the data interpretations particularly at low momenta where most interesting fea­

tures are concentrated. Higher resolution data are really required in order to test 

the advanced FLAPW theory which has recently been introduced in the calculations 

of the spin dependent Compton profiles of ferromagnetic transition metals. Focusing 

monochromators may be very useful in the near future in the Compton scattering 

experiments. For such systems the count rate may be improved several times higher 

than what it is obtained in current experiments. Moreover the experimental reso­
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lution may consequently be improved to match the detector resolution. One of the 

major advantages which arise from such systems is the use of very small samples. 

The spin dependent Compton data o f gadolinium were very successful in describing 

the polarised conduction electrons. Recently Sakai el al (1990) measured the spin 

dependent Compton profile of gadolinium. A similar profile was reproduced with a 

better statistical accuracy.

Recently the magnetisation dependent electron momentum distribution raised a 

controversial point at the separation of spin and orbital contributions to the total 

magnetisation. It is well known that neutron scattering is sensitive to the total 

magnetisation density which can include contributions from both spin and orbital 

moments. However the separation of those two quantities is possible with photon 

scattering since they appear attached to different geometrical factors in the cross 

section. A close investigation of equation 1.32 confirms that the orbital term is 

always out o f phase with respect to the charge scattering term whereas the spin term 

changes sign at some particular value o f a  (see figure 4.1). Hence the ratio L /S  may 

be deduced by means of the Compton scattering technique. Recent experimental 

data carried out on Fe, Co and H oFe2 (see Cooper et al 1991) have not supported 

fully the new formulation of the scattering cross section (see Lovesey et al 1991) 

which predicted the preservation of the orbital term for inelastic scattering governed 

by ^  <  1 (i.e. when ( ^ j )2 <. 1)- This new formulation of the theory failed 

completely to predict the experiment particularly in the case of H oFej. Further 

clarifications regarding the theory are urgently required to solve this problem. For 

the same reason better quality data are also required in the near future.

As far as the spin dependent photoabsorption is concerned, the technique em-
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ployed here has been very successful although it was very limited by the poor count 

rate with respect to the transmission experiment. Both methods present advan­

tages and disadvantages, for instance the scattering method is not very accurate 

above the edge due to the Auger process; the intensity of the X-ray emission lines 

are affected because of the transfer of the vacancy created by the process from one 

shell to another. On the other hand the transmission method is not very accurate 

below the edge due to the different effects obtained in that particular region such 

as the Compton scattering and the anomalous scattering effects. Furthermore, in 

dilute systems the absorption obtained from the target atom is not very significant 

and therefore the signal-to-noise ratio is very low (i.e. the fluorescence method is a 

better experiment for investigating dilute systems).



Appendix A

The Green’s function, G (r,r ';z), is defined to be the solution o f the following equation, 

[ z -  I(r)]G (r,r\z) =  i ( r ' - r )  (A .l)

¿ (r )  being the linear, hermitian, time dependent operator and z a complex variable.

Assume that {\<t> > } is a complete set of eigenfunctions of the operator. L, correspond­

ing to a set of eigenvalues (An), i.e ¿|d„ >= An|V>„ > , then in the Dirac notation we 

have,

G(Z) =  £  !*> >< *•! (A 2)

Using the general relation valid for every function F, i.e.

/U )| * . > *  F(A,)|*. >  (A.3)

Green’s functions may be evaluated as,

(*•<>

Clearly from the equation A.4 that Green’s function, G(z), exhibits simple poles at 

the position of the eigenvalues of L and vise-versa. Hence, by assuming (z = A), where 

A belongs to the continuous of the spectrum of L, the Green’s functions becomes well 

defined in equation A.4. However, one may try to define i»(A) by a limiting procedure,



i.e.

< ? * ( A )  =  lim G(X ±  u )  (A .5 )
i-0 +

where < is positive and infinitesimal.

By substituting equation A.5 into equation A.4, it is straightforward to obtain the side 

limits,

G * '* >  -  M

-  ?!*■><*•!.“» j r t ± i :  (A-7)
Finally using Cauchy identity (Messiah (981),one may obtain.

g (a> -  E  hr. ><  ± ■'»+(•'- *»)> <*•«)

The first term in the right hand side of the last equation, which is known as the Cauchy 

identity (Messiah 1981). drops out in the difference expression,

6 ( A ) *  =  G*(X)  — G'“ (A )

= - t '2 ir £  |d>„ ><  <t>n\6X -  A„ (A.9)

To describe the quantum system by means of the evolution operator, C/(t,to)jt is nec­

essary to make the following assumption; the system is assumed to be in certain dynamical 

state at time to* then evolves to a different state at a later time t.

As a preliminary, the Fourier transform of 6 (A) which is 6 (r ) where r  =  f — fo may 

be written as,

<5<r) =  ^ / * ° % x p ( - A r ) < i ( A ) < i A .  (A .1 0 )

Substituting equation A.9 into A. 10 one may obtain,

6 ( r )  =  i f  5 Z ( e x p ( - A r ) i ( A  -  A„)dA}|v>„ > <  V»n | 
y-oe „

which means that the eigenstates associated with the continuous spectrum  are extended

( A . l l )



Taking into account that the quantity G(A) is different from zero only when A = An, 

therefore,

G(t ) =  i £ e x p ( -A nr)|V>„ ><  V’nl (A-12)

Using the general relation given in equation A.3, one may obtain,

f»(r) =  iexp(iLr) (A.13)

Finally, the evolution operator may be expressed in terms of Green’s function as.

V(t) = e x p (- ilr )

=  iG (r) (A.14)
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