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Abstract 
Lithium-ion battery packs are increasingly being used for high power and energy 

applications such as electric vehicles and grid storage. These battery packs 

consist of many individual cells connected in series and/or parallel. Manufacturing 

tolerances and varied operating conditions mean that each cell will be different 

one from another, being able to store different amounts of energy and deliver 

different amounts of power. This also means some cells will finish charging or 

discharging before others, resulting in unutilised energy in the remaining cells. 

 

Passive balancing systems are often used in multi-cell battery packs to ensure 

that all of the cells can be fully charged. However, this does not account for 

differences in cell capacity, meaning that not all cells will be fully discharged. 

Active balancing systems have been developed to transfer energy between the 

cells, in theory allowing for stronger cells to compensate for weaker ones. 

However, their perceived cost and complexity have prevented them from being 

widely adopted in commercial applications. 

 

In this work, an innovative control strategy was developed to determine how and 

when to energy balance a set of battery cells, with the aim of maximising battery 

pack energy utilisation. A model-based control system was designed, using state 

of charge to evaluate the level of energy imbalance between cells. Real-time 

implementation using second-hand electric vehicle cells and commercial 

balancing hardware demonstrated that the control strategy can decrease the 

amount of unused charge in the battery pack from 8% with passive balancing to 

1% with active balancing, which has significant impact for battery pack energy 

throughput, physical size, mass, and long-term health.  
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1 Introduction 
Lithium-ion cells are increasingly being used for a variety of technologies, ranging 

from smartphones through to electric vehicles (EVs) and grid storage for 

renewable energy sources [1]. They offer around twice the energy and power 

density than nickel metal-hydride cells, and about four times that of lead-acid 

cells, opening up battery power to applications which were not feasible until 

recently. Lithium-ion cells can be comprised of a variety of different chemistries 

depending on requirements such as energy, power, lifetime and cost [2]. The 

main thing these cells all have in common is that the voltage is quite low. 

Generally when a cell is fully charged it will be circa 4V, and when it’s fully 

discharged it will be slightly under 3V. For some chemistries, the operating range 

is even lower. This is insufficient for an EV whose powertrain requires 300V or 

above [3, 4], and closer to 1000V for Formula E racing cars [5]. To reach these 

sorts of voltages, hundreds of cells need to be connected in series. Furthermore, 

cells connected in parallel may be required in order to store more energy or 

increase the power capability of the battery system. For example the 2016 Tesla 

Model S 100KWh battery pack contains 8256 cells [6]. This introduces a number 

of problems: 

• All of the cells need to be packaged, electrically connected, monitored, 

thermally regulated and controlled. The more cells there are, the greater 

the cost, complexity and weight. 

• Manufacturing tolerances and varying operating conditions mean that 

each of these cells will be slightly different. The amount of energy each 

one can store will differ, as will the amount of heat generated internally 

and the amount of charge lost over time through self-discharge. 

 

Multi-cell battery packs can become quite complex and require a battery 

management system (BMS) to control them. This uses sensor information such 

as cell voltages, currents and temperatures to ensure the battery pack is in a safe 

state, as well as predict the cells’ energy and degradation levels.  

 

For cells connected in series, each cell is charged or discharged with the same 

current, meaning that a lower capacity cell will complete charging or discharging 
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before a higher capacity one. Conventionally there is no control over how 

individual cells are loaded which means when one cell is fully charged or 

discharged, the entire pack has to cease operation. Different combinations of 

capacities, and variations in energy levels, means that most cells will not be fully 

charged or fully discharged, resulting in unused areas of energy as shown in grey 

in Figure 1.  The height of the cell represents how much energy it can store, and 

the alignment shows the differences in energy levels: at the point in time where 

one cell has 100Wh remaining, another cell may only have 80Wh remaining and 

as such is closer to the end of discharge (EOD). In other words, the battery pack 

is not storing as much energy as it could, and the energy it does store is not being 

completely used. If this battery pack could fully utilise its energy, it could be made 

smaller without compromising EV performance.  

 

 
Figure 1: Unavailable energy owing to imbalance in series connected cells 

 

Cells at different energy levels are described as “imbalanced”, and balancing 

systems have been developed to address this issue. Prior to li-ion technology this 

was straightforward, as the cells could be overcharged: the current was applied 

until the last cell reached the maximum voltage, and the other cells would settle 

at this maximum. However, it is dangerous to over-charge li-ion cells and so 

another means of balancing must be sought. The simplest way is to apply passive 

balancing: connecting a resistor over the cell. This will gradually discharge the 

cell according to Ohm’s law. Cells at higher energy levels can be discharged 

down to the same level as the cell with the lowest energy, and then charging can 

be completed. This simplicity comes with a number of drawbacks: 

• The energy from passive balancing is wasted as heat dissipated by the 

resistor. This heat also has to be removed from the battery pack. 

Cell 1 Cell 2 Cell 3 Cell N 
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• The balancing current is generally low in order to limit the heat generation. 

This means that balancing can take a long time, increasing the overall 

charging time of the battery pack. 

• Even if the cells are all completely balanced by end of charge (EOC), the 

differences in capacity mean that some cells will reach EOD before others. 

The best case for passive balancing is that all of the energy of the weakest 

cell is utilised. 

 

Active balancing is an alternative strategy which could address the downsides to 

passive balancing by using power electronics to move energy between cells. If 

one cell is going to reach EOD before another, it can be charged up by the other 

cells and similarly if one cell is going to reach EOC before the others, it can 

discharge into them. The energy is utilised by other cells rather than being 

dissipated as heat. While this can potentially offer significant performance 

benefits, there are some downsides. The cost is higher, and the electronics takes 

up extra space and adds new failure modes to the battery pack [7].  

 

For these reasons, active balancing systems (ABSs) have not, to date, been 

adopted for any mass-production vehicle applications. However, Jaguar Land 

Rover (JLR), with whom this EngD is in partnership with, has not looked in-depth 

at the current state of active balancing systems, and more generally there is a 

lack analysis of active balancing systems within the context of a complete battery 

pack. The Research Problem that this EngD addresses is: while active cell 
balancing technology is available, there is little understanding of, or 

agreement on, how it should be used, what specific problems it is 

addressing, and how much benefit it can provide within a future EV 
application. 
 
This research problem is broken down further into Research Questions and 

Research Objectives in the next section. 
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1.1 Research Questions and Objectives 
Several open research topics in the area of imbalance were identified after a 

preliminary analysis of the literature, including: 

• What are the fundamental causes of cell-to-cell variation, and how can 

they be reduced? 

• Using large datasets from aged EV battery packs, can statistical models 

be generated which accurately predict the spread of imbalance over time 

for different applications and operating conditions? 

• How can balancing hardware be further improved, particularly regarding 
scaling up to a high voltage battery packs containing hundreds or 

thousands of cells? 

• Can cost and size reductions be made to make load-regulating smart cells 
feasible for near-future battery pack integration?  

While these questions are apposite, the major observation from the literature 

review was that there does not appear to have been a thoroughly designed 

balancing control system, which factors in a high-level strategy, a low-level 

energy management scheme and adaptability to the many types of balancing 

hardware. The lack of a comprehensive active balancing strategy means that the 

potential benefits, such as increased energy output, have not been fully realised 

and so active balancing appears less cost effective than it could otherwise be. 

This EngD therefore aims to address the following Research Questions: 

1. In what context can active balancing provide the greatest benefit? 

2. What kind of gains in energy utilisation can be achieved using active 
balancing, compared to passive balancing? 

 
Question 1 considers the higher-level aspects of active balancing, such as if it is 

only suited to certain applications and whether parallel cells also require 

balancing. Question 2 uses the information from Question 1 to formulate a control 

strategy to maximise energy utilisation, which can be verified experimentally to 

quantify its performance. To achieve this, the following objectives were defined: 

1. Define the sources of imbalance within a battery pack and the affect 
each of these has on overall battery pack performance. 
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2. Understand the current status of active balancing hardware and 
evaluate their suitability for different applications.  

3. Create a modelling framework to analyse imbalance and aid in 
designing a control system. 

4. Develop a generic balancing control system with the specific goal of 

maximising the energy utilisation of the battery pack. 
5. Implement the control system in real-time with specific balancing 

hardware and evaluate its performance, including the gain in energy 
utilisation. 

 

Figure 2 presents the relationship between the two Research Questions and the 

Research Objectives. In addition, Figure 2 highlights the relationship between 

each Research Question and the corresponding Portfolio Submission and 

Chapter within this Innovation Report. The structure of the Portfolio and 

Innovation Report are further explained in sections 1.2 and 1.3 respectively.   

 
Figure 2: Structure of the EngD Portfolio and Innovation Report 

 

1.2 Structure of the Portfolio 
As well as the personal profile and Innovation Report, there are 5 main 

Submissions in the portfolio, plus a Submission covering the international 

placement. Submission 1 contains literature reviews of cell-to-cell variation and 
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balancing systems, and some initial modelling of balancing systems. An IFAC 

conference paper was produced from this work, concerning high-level modelling 

and control of balancing systems [8]. Submission 2 documented the modelling 

and experimental work on cells connected in parallel. From this, a journal paper 

and conference paper were published [9, 10]. This work was also combined with 

some further modelling work related to [8], to publish another journal paper on 

multi-cell BMS applications [11]  Submission 3 introduced the control model and 

used this to design and critically assess various options for feedback design. In 

Submission 4, the cells and balancing hardware used for experimental work was 

detailed, including the various iterations of the test set-up. The commissioning 

tests performed to analyse the system were documented. In Submission 5, 

experimental balancing tests were performed. Two of the controllers from 

Submission 3 were developed further, and state of charge (SOC) estimators were 

also designed to use as part of the control system. The controllers were run in 

real-time and their performance evaluated. The research Submissions should be 

read in their order of writing, as they follow a simplified systems “V” diagram as 

shown in Figure 3. The literature review in Submission 1 helped outline the 

performance criteria which would ultimately be validated via the experimental 

work in Submission 5. 

 

 
Figure 3: Portfolio Submissions as a systems "V" diagram 

 

1.3 Structure of the Innovation Report 
The Innovation Report is comprised of five main Chapters. Chapter 2 contains 

two literature reviews. The first is on cell-to-cell variations and the implications 
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this has on battery pack performance. The second is a critical survey of the active 

balancing systems proposed within the literature, along with discussion on future 

trends on cell and balancing technology. Chapter 3 introduces cell models, 

including the various types of model and the data required to parameterise and 

validate the models. These are then applied in Chapter 4 to show how models 

were used in three main areas: the implications of connecting cells in parallel, 

connecting cells in series as a basis for running simulations of ABSs, and finally 

SOC estimation. Chapter 5 describes the control of ABSs. This covers higher-

level aspects such as a strategy for when to balance, and specifics of control 

algorithms. A control model is introduced and used to design two control systems, 

which are simulated for a generic ABS. The balancing hardware used for 

experimental work is detailed in Chapter 6. The theoretical operation is described 

along with the practicalities of instrumenting and operating the equipment. The 

control systems introduced in Chapter 5 are implemented in real-time, using the 

SOC estimators from Chapter 4, and analysed. Finally, conclusions are drawn in 

Chapter 7, including areas of future work emerging from the results of this 

Innovation Report. 
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2 A Review of Imbalance and Balancing 
Two distinct literature reviews were conducted to understand the many aspects 

and research areas covered by energy imbalance. The first literature review, in 

section 2.1, addresses the first Research Objective of understanding which 

aspects of cell performance a balancing system can address, and what the 

benefits will be for the overall battery pack. It covers how cell-to-cell variations 

arise and what this means for battery pack performance, followed by an analysis 

of the impact each of these variations has on imbalance, and how imbalance 

should be defined. A second review was conducted in section 2.2 on the various 

means of transferring energy between cells, and existing control strategies for 

managing this energy transfer. This directly meets the second Research 

Objective of surveying the current status of balancing hardware. Conclusions are 

drawn in section 2.3.  

  

2.1 Cell-to-Cell Variation 
Each cell within a battery pack will have different properties to one another. These 

can be caused by intrinsic factors, for example limitations in the manufacturing 

process, or extrinsic factors such differences in operating conditions [12].  

 

Fabricating cells is a complex, multi-step process [13, 14], and variations in 

properties arise from tolerances in these steps. Improving this process will reduce 

the size of the variations, which could reduce the amount of balancing required. 

However, it is not possible to remove variations completely, especially when there 

are often conflicting objectives such as the need to reduce the cost of 

manufacturing [14, 15]. In addition, new cell chemistries require different 

manufacturing techniques, and so there would likely be an increase in variation 

before these new processes are refined. 

 

Screening the cells prior to battery pack assembly can ensure that the pack is 

comprised only of cells with similar impedances and capacities [16–18]. This is 
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beneficial for excluding particularly weak cells but, ageing is open loop1 so even 

a very small initial imbalance will increase over time. There is also the growing 

second-life sector, in which aged cells are repurposed for other applications. For 

example, a cell which no longer has sufficient performance for its automotive 

application is still capable of delivering energy, and can be used as part of a grid 

storage system [19]. Nissan [20] and Renault [21] are both trialling energy 

storage units comprised of used automotive cells for homes with solar panels. 

This is essentially the opposite of screening: as the purpose is to make use of old 

cells, there will inherently be large variations in cell properties, and possibly even 

the types of cell.  

 

Factors such as electrode thickness and porosity, and the amount of active 

material will affect cell properties [19, 22, 23]. There is generally a positive 

correlation between cell mass and cell capacity, as heavier cells should contain 

more active material [12, 24], but there is evidence that some variations in 

manufacturing affect mass but not capacity [25]. There is a lack of data on cell-

to-cell variability, especially for automotive grade cells, but figures for the initial 

spread in capacity for cells from established manufacturers include 2-6% [26], 

4% [25], 4.5% [19], 8% [27] down to about 1% after screening [28]. 

 

2.1.1 Cell Ageing 

One of the key drivers of cell-to-cell variation over time is how the cells degrade 

(also known as ageing). Understanding and reducing cell degradation is one of 

the key challenges to overcome in the lithium-ion battery field. There are many 

causes of degradation, which are often complex and nonlinear in [29, 30]. Figure 

4, reproduced from [30], shows how system-level inputs such as current and 

temperature cause a variety of chemical interactions which ultimately affect the 

two main systems-level metrics of cell degradation: capacity fade and power 

fade. 

                                            
1 There is some control over how cells age, such as the charging regime, specification of power 
limits and thermal management. However, there is typically not the ability to manage individual 
cells, for example to increase the cooling on a specific cell if it is weaker than the others. 



 10 

 
Figure 4: Lithium-ion cell ageing mechanisms- from [30] 

Capacity fade reduces the energy availability of the cell and is caused by a 

reduction in the amount of lithium available for cycling and a reduction in the 

space in the electrodes to store it. Power fade is caused by an increase in 

impedance: more of the power generated by the cell will be dissipated as heat, 

meaning that the efficiency drops and the cell cannot deliver as much power to 

the wider system. This leads to two common definitions of state of health (SOH): 

a 0-100% of cell degradation relative to when the cells were new. The energy 

SOH is defined by (1), and the power SOC defined by (2). Qcap is the cell capacity 

in ampere-hours, Rint is the internal resistance of the cell in ohms, and tf is the 

present time. Capacity and resistance are defined and discussed further in 

Chapter 3. 

 𝑆𝑂𝐻[ = 100
𝑞`ab
cdce

𝑞`abcdf  (1) 

 

 𝑆𝑂𝐻g = 100
𝑅ijc
cdce

𝑅ijccdf
 (2) 

 
For automotive applications, a cell’s end of life (EOL) criteria are typically defined 

as when SOHE drops below 80% [31–34] or when SOHP rises above 200% [33, 

34]. For Hybrid Electric Vehicles (HEVs), the battery pack provides an additional 
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source of power alongside an internal combustion engine system. The latter 

ensures that range requirements are met, and the battery helps deliver sufficient 

power, as well as absorbing power through regenerative braking [35]. The battery 

pack must therefore be capable of high power, rather than delivering a large 

amount of energy. Conversely, for battery electric vehicles (BEVs) the battery 

pack is the only power source, and the dominant requirement is being able to 

delivery large amounts of energy (driving range), while the large pack size means 

the power demand is relatively low. Plug-in-hybrid electric vehicles (PHEVs) lie 

between the two, where there is still an engine, but unlike a HEV, the vehicle can 

be driven using battery power alone, and recharged from the grid as well as the 

engine. For HEVs, the SOHP criterion is more likely to be reached first, whereas 

SOHE is the dominant factor for BEVs [33, 34]. Experimental results such as in 

[36, 37] demonstrate a correlation between SOHE and SOHP due to the overlap 

and interaction between the various ageing mechanisms. However, other studies 

show little correlation between resistance and capacity fade [38] which 

emphasises the complex nature of ageing, and the importance of analysing both 

SOHP and SOHE and using the appropriate metric depending on the application.   

 

Generally, higher temperatures increase ageing [39], with a general relationship 

that the rate of ageing doubles every increase of 10°C [34]. When the cells are 

being cycled, cold temperatures also increase ageing via different mechanisms. 

Experimental results from [31] show that for cells under load, the primary cause 

of ageing below 25°C is lithium plating during charging, whereas degradation 

reactions and solid electrolyte interphase (SEI) growth occur above 25°C. High 

currents rates also increase ageing [40], with particularly high magnitudes 

inducing electrode fatigue and fracturing as the electrode expands and contracts 

during lithium insertion and removal [29]. High currents will also increase the cell 

temperature, potentially driving additional ageing as discussed above.  

 

Depth of Discharge (DOD) is also a factor in ageing. A large DOD (wide SOC 

window) is generally considered to accelerate the ageing process. Therefore a 

BEV pack will most likely age quicker than a HEV pack even for the same energy 

throughput [41], although this is dependent on other factors such as current 
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magnitude and temperature, so the BMS strategy may work to limit ageing in 

other ways (e.g. more conservative power limits). However, grid charging of 

BEVs offers more opportunity for cell balancing rather than a HEV, so cycle life 

may be improved. This DOD relationship is disputed by Peterson et al. [42] and 

Choi et al. [43] The latter compared different DODs but all started at 100% SOC 

rather than being centred about 50% SOC, so the tendency for a high SOC to 

accelerate ageing may factor into their results. The former results are based on 

vehicle drive cycles rather than typical laboratory cycling so the effects of the 

current profile on ageing may be tied to DOD ageing. This suggests that results 

from laboratory testing do not necessarily extrapolate to real-world vehicle usage. 

A higher mean SOC also tends to accelerate ageing due to the increased 

difference in potential between the electrodes and electrolyte [34, 39].  

 

2.1.2 Battery pack ageing 
While the causes of cell degradation are useful to understand, it is the cell-to-cell 

variation which is most relevant to balancing: even if the values are all poor from 

a performance point of view (e.g. a very high self-discharge rate), if all cells have 

the same value then the cells will still be balanced. One of the lesser studied 

areas of particular relevance for balancing high-voltage battery packs is a 

statistical analysis of how large numbers of cells age. 

 

Baumhofer et al cycle-aged 48 pre-screened commercial Li-ion cells under the 

same operating conditions (current profile and ambient temperature) and 

measured cell capacity periodically [28]. Not only did capacity difference amongst 

the cells increase from 1% to 8%, there was no correlation between the initial and 

aged capacities: one of the lowest capacity cells when new ended up as one of 

the highest capacity cells after ageing, and vice versa (a result also observed in 

[44]). This means that screening is not a reliable indicator of cell performance 

long-term. The authors also found there was little correlation between relative 

resistance and capacity when new [45], which means that screening for capacity 

might result in a wide variation in impedance, and vice versa.  

 

Schuster et al. [19] performed capacity and impedance tests on a large number 

of 1.95Ah automotive cylindrical cells. 484 new cells were used as a baseline to 
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compare to 1908 aged cells from BEVs, taken from two different vehicles both 

driven regularly for three years. One important finding, reproduced in Figure 5, 

shows how the distribution of cell capacity changes with ageing. The distribution 

of the aged cells is noticeably skewed compared to the approximately normal 

distribution of the new cells. This means that outliers are much more likely to have 

a lower SOH than the mean (their results applied for both resistance and 

capacity). As battery pack performance is limited by the weakest cell, there 

will be a greater percentage of unused energy remaining in an aged pack 
than a new one. The distributions between the two sets of aged cells is also 

different. The cells from BEV 1 appear to have a bimodal distribution, with two 

peaks in the histogram, whereas BEV 2 has a more defined single peak. The 

authors note that BEV 2 was driven further and more aggressively, covering 

26,745 km and consuming 19.0kWh/100km, compared 21397km and 

16.9kWh/100km for BEV 1. This emphasises that long-term battery pack 

performance needs to be understood from a statistical point of view, as well as 

the physical basis behind the variation.  

 
Figure 5: Capacity variation within battery packs - from [19] 

An analysis of 20000 LFP cells [27] showed the new cell capacities had a 

standard deviation of 1.3%. A 96-cell module was then aged using a HEV drive 

cycle derived from customer driving data, which maintained the cells in a 

relatively narrow SOC window of 30-50%, with the cooling system active. After 

the ageing test, there was a mean of 18% capacity degradation, with maximum 

and minimum of 25% and 14% respectively. This suggests agreement with the 

skewed results in Figure 5: the least-aged cell was only 4% above the mean, but 

most-aged cell was 7% below. 
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A Weibull distribution for cell capacity was also observed in [38], in which the 

authors disassembled a battery pack from a vehicle driven for 32500km over 3 

years in a city in southern China. The 95s5p (ninety-five units in series, each unit 

comprising five cells connected in parallel) battery pack had a nominal cell 

capacity of 12Ah, though the authors considered each parallel stack of series as 

a single cell with a 60Ah nominal capacity. The mean SOHE was 82.4%, with the 

maximum 4.4% above the mean and the minimum 8.7% below. In [46], an EV 

battery pack comprised of 50Ah pouch cell was disassembled after 30000km of 

driving. The authors found that the SOHE varied from 91 to 98% and, as Figure 6 

shows, there was significant variation within each 10-cell module, as well as 

between each module. This shows that cell balancing just within modules is 

insufficient: reducing imbalance within module 13 has no impact on total driving 

range since module 11 would still limit battery pack operation.   

 
Figure 6: Variations in cell ageing within EV battery modules – from [46] 

In contrast, Campestrini et al. [47] found little variation within modules after 

ageing. Two 8s14p modules were built using commercial Panasonic cells, with a 

nominal capacity of 2.8Ah. The cells were screened by a capacity measurement 

prior to assembly, and passive balancing was employed. The modules were then 

cycled for 12 months using a standard US06 highway profile, which the authors 

claim equates to 120000km of real-world driving. Both modules were contained 

in thermal chambers, one with an ambient temperature of 25°C, the other at 40°C. 

After the cycle ageing, there was less than 1% difference in capacity within each 
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module. However, there are several caveats to these results. Work co-authored 

by the author [37] demonstrated that the SOHs of cells connected in parallel will 

converge over time (and as such, not diverge if they were similar to begin with). 

As such, each module can be considered to contain 8 units with potentially 

different SOHs. This is a low number from a statistical point of view, especially 

considering the importance of outliers on overall performance, as discussed 

above. The same repeated drive cycle is not representative of real-world 

operation, and compressing ageing into 12 months does not account for how cells 

degrade with time. There is no information on the thermal design of the pack, 

such as any cooling system or ventilation. Ultimately, the statistical data from [27] 

and [46] give a better indication of the imbalance expected from EV operation, as 

they are obtained from actual EV modules. However, the results in [47] are still 

significantly different to other laboratory testing such as in [28], which may 

suggest that manufacturing standards are improving. 

 

There is a consensus within the literature above that differences in cell 

temperature is a key driver of imbalance. As well as changing the rates of self-

discharge between cells, it also causes greater variations in cell ageing, setting 

up a larger amount of imbalance in the future. 

 

2.1.3 Drivers of Imbalance 

Section 2.1 discussed the ways in which variations between cells arise. These 

variations can be considered within the context of imbalance specifically. There 

are three main properties which vary between cells: self-discharge rate, 

impedance and capacity [17, 48]. These variations are best considered at the 

different time-scales in which they create imbalance. 

 

2.1.3.1 Long Term: Self-discharge 

Self-discharge is a reduction in stored charge in the cell owing to internal 

chemical side reactions [49]. Unlike cell ageing, self-discharge is a reversible 

process: re-charging the cell recovers this lost energy [50]. As well as from 

manufacturing tolerances, difference in self-discharge can arise through 

temperature gradients across the pack, with higher temperatures increasing the 
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rate of self-discharge [51–54] owing to the Arrhenius relationship [54]. 

Additionally, self-discharge is known to be a function of SOC [49]. 

 

Self-discharge can be modelled as a small current perpetually discharging the 

cell [55]. However, a physical current is not actually generated external to the cell 

and so is not measured by a BMS. Depending on battery pack hardware design, 

some of the electronics powered by the cells themselves (such as monitoring and 

safety circuitry) may draw different amounts of current, thus acting in a similar 

manner to self-discharge when the battery pack is active [51]. 
 

Differences in self-discharge rates between cells mean that over time the SOCs 

of cells will diverge even if they were previously balanced. One of the advantages 

of Li-ion cells over other chemistries such as nickel-metal-hydride is the low self-

discharge [1, 56]. Figures quoted include 1-10% SOC per month [49], 0.5-8% 

SOC per month [48], 6-10% SOC per month at 40°C, and 3-5% per month [57]. 

There is very little data concerning the spread of self-discharge between cells, 

but the consensus is that it will only induce significant imbalance over many days, 

meaning that cell balancing to counter this only has to be performed every few 

weeks [48]. 

 

2.1.3.2 Short Term: Capacity 

Cells which were balanced at the end of charging may well be imbalanced by the 

time the battery pack has finished discharging. This is because of variations in 

cell capacity. When the balancing system is not operating, all of the cells in a 

series string undergo the same current, meaning at any point in time the same 

amount of charge has been removed from each cell. The cell which can store the 

least amount of charge will therefore reach EOD first. At this point it is unsafe to 

continue discharging this cell, so the entire series string must cease operating. 

Because of this, the battery pack capacity is determined by the lowest cell 

capacity in the series string [48]. The energy available from the battery pack will 

depend on the voltage levels of the other cells [23], which is why it is beneficial 

to balance at EOC rather than EOD [7]: the average cell voltage will be higher, 

increasing the amount of energy available.  
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Differences in capacity can arise through manufacturing variations, and the 

spread increases with ageing [27, 28] The imbalance induced through capacity 

differences is reversible, in that once the cells are recharged they will return to 

approximately the same state of balance as when discharging began. If balancing 

was performed during discharging, it would then have to be performed again 

during charging, which wastes energy and potentially increases the time to 

complete charging if balancing is slow. 

 

The impact of capacity on overall performance is dependent on the application. 

For example, a HEV typically maintains the cells within a narrow SOC range, e.g. 

40-60% SOC [41, 58, 59]. Differences in capacity will not affect battery pack 

performance significantly, because there is scope to widen the DOD window 

slightly if necessary. However, a BEV application might require using almost the 

entire SOC window. The Tesla Model S reportedly utilises 96% of the total 

available energy [60]. In this event, a relatively small divergence in cell capacities 

could reduce the energy availability of the battery pack to less than is required. 

This also increases the chances of the driver running out of range: SOC estimates 

are subject to some uncertainty, and that becomes more apparent when there is 

only a few percent SOC remaining. 

 

2.1.3.3 Instantaneous: Impedance 

The voltage across a cell’s terminals changes with the applied current. The 

greater the cell’s impedance, the more the voltage will change for a given current 

magnitude. For example, two cells at rest with the same voltage appear to be 

balanced. But once a load is applied differences in impedance mean that they 

appear imbalanced. Removing this load and letting the voltages settle will make 

the cells appear balanced again (assuming only a small change in SOC has 

occurred or the cells have the same capacity). This makes voltage a difficult 

metric for assessing imbalance. However, it can be useful when considering 

operation near EOC and EOD. Cells have upper and lower voltage limits which 

must not be exceeded for safety reasons [58]. Near EOD, a cell with a higher 

impedance may hit the lower voltage limit even though it is not at the lowest SOC. 
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In this sense, the weakest cell (from a capacity point of view) is not currently 

limiting pack performance. Derating strategies are often required to limit currents 

in low and high SOC regions to avoid cells undergoing loads which cause them 

to exceed these voltage [7, 61]. 

 

As well as increasing with ageing, a cell’s impedance is a function of temperature 

and SOC [58, 62]. A higher temperature reduces the impedance, improving 

efficiency at the expense of increasing ageing [63, 64]. Impedance also tends to 

increase at SOCs above 80-90%, and in particular at SOCs below 20-30% [64, 

65]. An application which requires a wide DOD, such as a BEV, is likely to enter 

these regions. This reduces efficiency as more energy is dissipated as heat. 

 

Cell voltage and impedance are at the core of imbalance within parallel 

connected cells. It is commonly assumed that energy balancing is only required 

for cells in series [17, 66] as the cells in a parallel unit are inherently balanced 

through being at the same terminal voltage [58, 67]. However, until recently there 

was little experimental data to explore this further. Following the work published 

by the researcher [10, 37], detailed in section 4.1, there has been more research 

into parallel connected cells, generally looking at the impact of temperature 

variations on parallel currents, the implications for the BMS, and better 

understanding the underlying cell properties which cause different currents [68–

71]. 

 

2.1.4 Quantifying imbalance 

The literature review above has made clear that cell-to-cell variations have 

implications for overall battery pack performance, and a balancing system can 

mitigate against several aspects. In order to do this, imbalance must be quantified 

as a useable metric. The BMS can then analyse the imbalance status of each cell 

and decide on the nature of the corrective action to be taken.    

2.1.4.1 Imbalance Metric 

From a review of battery system operation, there are five potential measures 

which can form the basis of imbalance quantification: 

• Voltage 
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• Charge 

• Energy 

• SOC 

• State Of Energy (SOE) 
Charge level is perhaps the most logical reference point to evaluate imbalance. 

As discussed in section 2.1.3.2, imbalance arises during operation because cells 

in series can store different amounts of charge, but all undergo the same current. 

However, there are some issues with using charge. Firstly, it is an estimate, 

although this is true for all measures apart from voltage. A poor estimate means 

that the perceived imbalance is incorrect, and implementing the balancing 

strategy could lead to more imbalance. Secondly, as it is an absolute value, there 

is only one reference point. When all cells are fully discharged, they will all be at 

0Ah charge, which means they are balanced. However, if all cells are fully 

charged, they will be at varying Ah levels owing to their different capacities. This 

implies a large amount of imbalance, but is actually desirable, so the imbalance 

metric needs to be recalculated depending on the direction of charge.  

 

To work around this, SOC can be used instead. As this is a 0-100% metric which 

factors in the different capacities, it provides a consistent quantification of 

imbalance. Removing imbalance means bringing all cells to the same SOC, 

whether that is 0%, 100% or anywhere in between. However, a relative metric 

like SOC can potentially result in over-balancing (balancing when not necessary). 

Figure 7 shows two cells with different capacities but containing the same amount 

of charge. Cell B’s lower capacity means that it is at a higher SOC than cell A, 

but this also means its SOC will decrease faster than cell A’s. The cells will be 

balanced at 0% SOC, but their SOCs indicates they are presently out of balance 

which would result in (unnecessary) balancing. While SOC is also an estimate, it 

is a more reliable estimate than absolute charge level, as to estimate charge, the 

SOC estimate is combined with an estimate of the cell capacity, compounding 

two sources of uncertainty. There is a large body of literature around the topic of 

SOC estimation, with a wide range of proposed solutions. This is discussed 

further in section 2.2. 
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Figure 7: Comparison of SOC imbalance and charge imbalance 

While charge and current are often the focus of discussions about cell 

performance, energy and power are ultimately what are required of a battery 

system. To achieve a certain power value, equation (3) shows that a higher 

current is required to compensate for a lower open circuit voltage (OCV). This 

means that for a BEV driver following a certain route, the battery pack SOC will 

decrease slower when the pack is fully charged compared to if it is only partially 

charged, even though the amount of energy used is the same2. The SOE would 

change the same amount both times. 

 𝑃 = 𝑣m`𝑖 (3) 

 

From this perspective, state of energy (SOE) is a more representative metric for 

describing imbalance. However, SOE adds further complexity compared to SOC. 

The equation for SOC is linear, as it is simply accumulating current over time, 

and scaling by cell capacity (see Chapter 3 for a thorough derivation of cell state 

equations). SOE calculation must factor in how the OCV changes with the energy 

level, which is a nonlinear relationship. This nonlinearity makes control design 

more complex, while still ultimately being a similar imbalance metric to SOC. 

  

Often, differences in cell voltage between cells is used to gauge imbalance [52, 

72–74]. Voltage is a direct measurement, avoid issues with estimates. However, 

as mentioned in section 2.1.3.3, cells at the same charge or energy level can be 

at different voltages, because of their impedance differences. If the current 

direction changes, the cell at the highest voltage would become the cell at the 

lowest voltage, which from an imbalance perspective is confusing as it also 

reverses the state of imbalance. This also hints at another problem with voltage: 

                                            
2 In practice there will be slight differences in energy usage because the efficiency of the battery 
pack is a function of SOC and current rate. 

Cell 
A 

Cell 
B 
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unlike the others metrics discussed here, it is not a state and changes 

instantaneously with current. This again complicates the control strategy. 

Consider some cells at rest, where one cell is at a slightly higher voltage than the 

others. The balancing controller sets it to discharge, to bring its voltage down to 

the same as the other cells. However, the application of the balancing current 

drops the cell voltage to approximately the same voltage as the other cells. This 

would imply it no longer needs to be balanced, but removing the balancing current 

would return the cell voltage to close to its original voltage, higher than the others.  

 

Often balancing, especially passive balancing, takes place at or near EOC [7], 

where the current magnitude is relatively low and will not change direction. This 

can be considered a coarse approximation of OCV and so SOC (the relationship 

between OCV and SOC is discussed further in Chapter 3). However it is clear 

that under a dynamic load, voltage is an unusable metric for gauging imbalance, 

and unsuitable for control purposes. One relatively simple means of improving 

the voltage metric is to subtract the resistive voltage from the measured voltage 

vt to obtain a more stable value vs using (4). This removes the most dynamic 

fluctuations in cell voltage. However, this has some drawbacks. The internal 

resistance estimate Rcell does not account for the full cell impedance and so some 

voltage dynamics are still present. Rcell is also an estimate, and as noted above 

varies significantly with SOC, temperature and ageing. This is similar to a 

common method of SOC estimation in which the impedance is modelled to 

predict vt [75, 76], but with a very simple impedance model and no corrective 

feedback to improve performance. As the BMS requires a SOC estimate for other 

purposes, it would be logical to use that SOC estimate rather than produce what 

is essentially a poorer version specifically for the balancing system. 

 𝑣o = 𝑣c − 𝑅`qrr𝑖`qrr  (4) 

 

The authors of [57] used voltage as a reference of imbalance, stating that using 

SOC is unreliable, although they do not provide evidence for this claim or quantify 

the impact. As such, their balancing control system requires hysteresis (upper 

and lower voltage limits) to start and stop balancing, leaving a dead zone in the 

middle to account for voltages changing dynamically under load. This means 

there will always be some level of imbalance: narrower threshold limits reduce 
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this imbalance, but could mean the balancing system repeatedly being switched 

on and off without having an impact on imbalance. SOC offers a suitable 

compromise, with minor drawbacks being outweighed by its simplicity and 

estimation reliability compared to other metrics. 

 

2.1.4.2 Relative imbalance  

Whatever metric is used, its value has to be assessed relative to the other cells. 

There are two main options for doing this. The global difference for an SOC vector 

s (5) can be used, which gives a good indication of overall imbalance, but does 

not give any indication of the state of imbalance amongst the cells, which then 

raises the question of how each cell should be controlled. Secondly, the distance 

from the mean m can be calculated, with the ith mean given by (6). This is useful 

when trying to determine a path for how all cells should be balanced, and the 

mean is a convenient reference. Alternatively, the distance of each cell from the 

maximum/ minimum cell could also be used. This would limit the balancing speed, 

as it would only occur in one direction, but may be applicable when the module 

of cells is near EOC/ EOD. For example, if the cells are being charged and are 

approaching EOC, then charging the strongest cells is not required: the priority is 

to bring all the cells up to the same level as the strongest. Taking the mean of the 

SOCs can be achieved with a constant matrix, whereas comparing to the 

maximum or minimum would require a change in function as different cells 

become the minimum/ maximum, causing discontinuities in the control process. 

Using this imbalance vector, the total imbalance can also be defined using the 

sum of squares (7). However, this is less relevant than (5) for describing total 

imbalance as it is the maximum and minimum that govern the overall pack 

performance.  

 

 imbalance = max(𝒔) − min	(𝐬)	 (5) 

 𝑚i =
1
N�𝒔�

�

jd�

− s�	 (6) 

 imbalance = �[𝑚]�
id�

	 (7) 
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Consider the three cell SOC vector in (8). The ΔSOC vector based on the mean, 

maximum and minimum are shown in Figure 8. Table 1 shows these different 

measures for the example 3-cell SOC vector, s. The sum of squares is different 

depending on the measure, so is not as effective as an overview of total 

imbalance and would have to be recalibrated based on operating conditions. 

 𝒔 = [26 33 31]	 (8) 

 
Table 1: Summary of total imbalance measures for example cells 

Imbalance 

Reference 

Max-Min Sum of Squares 

(relative to 
mean) 

Sum of Squares 

(relative to 
maximum) 

Sum of Squares 

(relative to 
minimum) 

Value 7 26 53 74 

 

 
Figure 8: ΔSOC metrics based on the mean, maximum and minimum SOC 

Based on the above discussion, the distance from the mean is best suited to an 

imbalance controller, and max-min imbalance used in the higher-level balancing 

control strategy, to assess the total state of imbalance. 

2.1.5 SOC Estimation 
For the SOC-based analysis in 2.1.4, an accurate SOC estimate is required. As 

discussed within [7, 58, 77], an SOC estimate is also critical for several aspects 

of battery pack operation. It identifies how much charge is remaining (which can 

be extrapolated to other metrics such as time remaining or driving range). It may 

also be part of the vehicle’s energy management strategy, for example HEVs 

typically maintain the battery pack SOC inside a narrow window. SOC cannot be 

measured directly. If the cell is fully relaxed, then the terminal voltage is equal to 

the OCV, and so SOC can be directly obtained from a lookup table using data as 
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in section 3.3.1. However, even this can be subject to error if the OCV-SOC data 

is incorrect or simplified owing to interpolation or averaging the charge and 

discharge OCV-SOC curves. SOC can be calculated using (17), also known as 

coulomb counting, but there are several sources of error in this equation as 

summarised in Table 2Error! Reference source not found..  
Table 2: Sources of error from coulomb counting 

Source Errors 

Initial SOC s SOC is an integrator and so accumulates charge 
relative to a starting point. If the initial SOC is incorrect, 

the future values will also be incorrect. 

Current icell Errors in current can arise from incorrect calibration and 
quantisation. Additionally, discrete sampling means 

that the sample taken is assumed constant for the 
following time-step, when in practice it may differ. 

Cell capacity Qcap The cell capacities well generally be an estimate and 
as such subject to some uncertainty. Incorrect 

estimates will incorrectly scale conversion from charge 

to SOC. 

 

The above methods can be combined, by coulomb counting until the cells come 

to (or close to) a relaxed state, at which time the cell voltage is used to look-up 

SOC. However, this is not a viable solution unless the cells reach a near-relaxed 

state frequently, which is not guaranteed with an EV, particularly a BEV which is 

designed to cover a wide DOD. These methods can more tightly integrated using 

an estimation algorithm. There have been many methods proposed for cell SOC 

estimation, ranging from data-driven methods such as neural networks [78] and 

support vector machines [79] to model-based methods such as the Kalman Filter 

(KF) [75, 80, 81]. They all have the same premise, which is to continually use 

voltage measured to improve (correct) the SOC estimate, even when the cell is 

not relaxed. The KF was chosen because data-driven methods require a large 

amount of training data, which is time-consuming to generate and must be 

carefully chosen such that it represents the final application, whereas the KF 

integrates well with standard Catapult characterisation tests mentioned in section 

3.4. Additionally, data-driven methods are more complex to develop and more 
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computationally expensive to execute. The literature suggests there is little 

difference in accuracy between the KF and data-driven methods. 

 

2.1.5.1 Kalman Filter Framework 

The KF is a commonly used algorithm for estimating states in physical systems 

and has been proven over time to be efficient and robust for a wide variety of 

applications [82–84]. The general data fusion method for a KF is outlined below. 

The ^ accent denotes that the variable is an estimate not a measurement, the - 

superscript indicates that the estimate is prior to correction, and the + superscript 

indicates the estimate is post correction. The k subscript denotes the relative 

point in time. The input vector u, state vector x, and process noise vector w are 

passed into the state update function to obtain the uncorrected state estimate at 

the next step using (9)Error! Reference source not found.. This is stored and 

used at the next time step. The uncorrected state vector, input vector, and output 

noise vector v are passed through the output function (10) to obtain an estimate 

of the measured output. The Kalman gain matrix Lk provides a systematic way of 

correcting the state estimates using the measurement data (11)Error! Reference 

source not found..  

 

 𝒙�𝒌�𝟏� = 𝑓(𝒙���, 𝒖�, 𝒘��) 

 
(9) 

 
𝒚��� = 𝑔(𝒙���, 𝒖�, 𝒗��) 

 
(10) 

 
𝒙��� = 𝒙��� + 𝐿�(𝒚� − 𝒚���) 

 
(11) 

The specific calculation of L depends on the type of filter used. It is calculated 

according to two matrices: the state process noise matrix and output noise matrix. 

The process noise matrix indicates the accuracy of the model: small matrix values 

imply confidence in the model, meaning that the states will not be corrected much 

for a given measurement error, whereas larger values acknowledge that there 

are a number of model errors or unmodelled effects in Error! Reference source 
not found. [82]. Similarly, the output noise matrix indicates noise on the output 

measurements. In theory, these matrices are the covariance of w and v 
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respectively, but in practice often become tuning factors whose values are 

adjusted until the desired performance characteristics are reached. One of the 

difficulties of the KF is that the v and w values are generally unknown and can 

vary with time, and often may not be Gaussian white noise as the filter assumes 

[82]. Implementation of a nonlinear KF for real-time SOC estimation is detailed in 

section 4.3. 

 

2.2 Balancing Methods 
A literature review was conducted on balancing hardware to understand the state 

of the art as well as future directions. There have been many proposed methods 

for active balancing, reviewed in section 2.2.1. Research into control of balancing 

systems is covered in section 2.2.2. The majority of the review focused on ABSs 

as there is little research to be done on passive balancing. Passive balancing 

involves discharging a cell by connecting a resistive load across its terminals. 

This is commonly used for commercial applications because of its low cost and 

[7, 73, 85].  However, there are several drawbacks: 

• The discharging process wastes the energy – it is dissipated as heat. 

• Balancing currents are typically low to avoid generating too much heat. 

Daowd et al. [73] suggest a maximum passive balancing current of C/100. 

Andrea [7] suggests 10-100mA for passive balancing depending on 

battery pack size. This means that balancing can take a long period of 

time. Even so, passive balancing may be limited owing to excessive heat 

generation [86]. Often the resistive loads for several cells are in a small, 

poorly ventilated box within the battery system where temperature rises 

can be significant. Moore and Schneider [74] deem the heat power 

generated by passive balancing large enough to cause costly thermal 

management requirements, even for a C/100 current rate. 

• As discussed in section 2.1.3, passive balancing can only account for 
energy difference caused by self-discharge, not capacity differences 

between cells. This means that while passive balancing can ensure that 

cells are fully balanced at EOC, they will be out of balance by EOD, with 

the weakest cell still limiting the entire pack. 

 



 27 

Despite these drawbacks, there does not appear to be much use of active 

balancing at a production level. The Toyota Prius and McLaren P1 both use some 

form of active balancing, though few details are available [87]. Both vehicles are 

HEVs, and it may be that the battery packs are small enough to make integrating 

an active balancing system easy enough compared to a larger BEV pack. Linear 

Technology Corporation have developed a production-ready active balancing 

chip, the LTC 3300-1 [88], which can be used on battery packs over 1000V. This 

chip was used for experimental work in Chapter 6. General Motors patented an 

active balancing method which uses a DC-DC converter using the strongest cell 

to the weakest cell [89], though it is not clear if it has been used on a production 

vehicle. 

2.2.1 Active balancing methods 
One alternative method is to bypass the cell completely, using transistors to 

switch the cell(s) out of the series string [17]. For example, during discharging, a 

cell at a lower SOC could be regularly disconnected from the series string so that 

over time not as much current is drawn from it as other cells. This has a low 

component count as no energy is stored or transferred. However, regularly 

switching during high loads is a challenging problem, and ensuring this switching 

can be achieved over the lifetime of a battery pack may be difficult. Temporarily 

removing some cells from the series string also reduces the power and energy 

density of the battery pack, and increases the load on the remaining cells [72], 

although a secondary benefit of such a system is that in the event of cell failure 

the cell could be switched out, allowing the pack to remain functional. Using 

transistors to bypass current has been theorised [57, 90], effectively using them 

as a variable resistor to regulate the proportion of current flowing through the cell, 

relative to the total applied load. This has the benefit of being able to have control 

over cell currents, particularly useful when cells are approach EOC and some 

cells will be closer to the maximum cell voltage than others, but still suffers from 

dissipating the current as heat, and not being able apply current in both directions. 

Andrea [7] concluded that ABSs which do not distribute charge (i.e. those which 

use a similar algorithm to passive balancing to balance during charging) are 

generally not worth adopting unless particularly high energy efficiency or a large 

balancing current is required, presumably for a BEV where the larger battery pack 

will require a higher balancing current and makes use of a wide SOC window. 
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One of the simplest methods of energy redistribution is using capacitive systems. 

A capacitor can act as a temporary energy storage medium between two cells: 

charged up by a higher voltage cell, and then discharged into the lower voltage 

cell. In [91], the authors recommend using ultracapacitors, whose low resistance 

can speed up balancing times. Despite this, the experimental results still show 

balancing taking 4 hours to remove 15% imbalance, which is relatively slow 

compared to other systems covered in this review. Sheng et al. [92] used cell-to-

cell balancing using supercapacitors. As well as being used for equalization, the 

supercapacitors are also employed to absorb charge during a high-power event. 

By being in parallel with a cell, the total current is distributed between the cell and 

supercapacitor, reducing the load through the cell, which will help limit ageing. It 

is not clear from the paper how this is regulated; specifically, if the 

supercapacitors are maintained in a partially charged state such that they can 

accept and deliver large currents. An inductor can be used for cell-to-cell 

balancing in a similar way to capacitive systems, but the energy is stored in a 

magnetic field rather than an electric field [17]. The inductor size and switching 

frequency dictates how much charge is stored and the transfer rate between the 

cells.  

 

This cell-to-cell connection is less effective in a large battery pack. Preindl et al. 

[93] showed how equalization time varies as a function of cell count, for different 

hardware topologies. Some schemes such as a dissipative system easily scale 

with the number of cells, whereas systems that use neighbouring cell connections 

will take proportionally longer to balance. As the number of cells increases, the 

likelihood that a low SOC cell is near to a high SOC cell reduces and so the 

imbalance reduction must ‘filter’ through the cells. Figure 9 shows a schematic of 

two cases of imbalance distribution. On the left-hand plot, there is a gradual 

increase in SOC from left to right.  
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Figure 9: Schematic of two cell imbalance distributions 

A cell-to-cell balancing system would have to perform a series of balancing 

operations to pass the excess charge from the right-hand cells along to the 

weaker left hand cells. Each balancing operation between neighbouring cells will 

not reduce pack imbalance by much, and increases energy inefficiency. 

However, on the right-hand plot the imbalance distribution is random. In this case, 

there are generally high SOC cells next to low SOC cells and so there can be a 

significant reduction in imbalance through a single balancing operation between 

two neighbouring cells. Kim et al. [94] proposed adding additional switches and/ 

or capacitors to speed up the process, but this still lacks flexibility with regard to 

where energy can be moved to and from, and the amount of charge transferred 

is dependent on the relative cell voltages. 

 

A more flexible system involves using a cell-module connection, for example 

using transformers as in Figure 10, proposed by Bonfiglio and Roessler [95]. This 

bi-directional flyback converter system can either be charged by the module and 

discharged to individual cells (boosting the charge level of weaker cells), or utilise 

the energy of an above-average cell to energise the transformer. The left-hand 

diagram of the figure shows the module driving the primary winding of the 

transformer, which creates a magnetic flux in the transformer core. One of the 

switches (“sec2” in the right-hand diagram) is then closed, creating a circuit for 
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the secondary current to be established. In the paper only equalization of single 

cells is discussed, which could result in a slow balancing time. 

 
Figure 10: A transformer-based pack-cell system - from [95] 

A time-shared system is proposed in [96] in which a group of cells share a single 

cell-module flyback converter. Multiplexing is used to connect each cell to the 

converter for a short period of time. The authors emphasise that the system is 

made up of fewer components than most other ABSs. Despite this, it  is was able 

to remove a 33% SOC difference between four 2.65Ah cells in 90 minutes. The 

main issue is how this is scaled up to a battery pack. As the converter is shared, 

the balancing speed will generally decrease as the number of cells increases, 

unless the power is increased. 

 

Kim et al. [97] developed a balancing system which uses a DC-DC converter to 

create a voltage source equal to the mean cell voltage, powered by the pack. 

This is used to charge or discharge individual cells until they are all at this mean 

voltage. The proposed benefits are primarily speed of balancing and low cost. A 

prototype was developed and tested using eight 7Ah cells and the results show 

a 13% absolute decrease in SOC in 30 minutes. However, these results are for 

a prototype with 8 cells in series. Since the balancing works sequentially on each 
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cell, the balancing time will increase in proportion with the number of cells, making 

it much slower for an EV battery pack which can use over 100 cells in series. 

 

Dual balancing systems have also been proposed, which separates imbalance at 

the cell and module level. Liye et al. [98] employ an inductive system to balance 

modules, and cell-to-cell capacitor system between the cells in each module. The 

schematic show in Figure 11 shows the modules E1 to En which can each be 

switched into the transformer circuit which in turn will charge the pack. The 

authors see it as being particularly suitable for a HEV drive cycle due to its ability 

to work during charge and discharge and not requiring a long period of time to 

balance, although there is no further justification of why it suits an HEV as 

opposed to other EVs. The results are not described in terms of balancing time 

or current so comparison with other systems is difficult. 

 

Lin et al. [99] uses an inductive system to actively balance neighbouring modules, 

followed by dissipative balancing of the cells within each module. In [95], an 

extension is proposed to balance between modules in a similar way that cells 

within each module are balanced. None of the papers contains analysis on how 

much each system contributes to reducing the amount of imbalance or how much 

energy each system wastes through heat dissipation or inefficiency. Furthermore, 

analysis of the effectiveness of the dual balancing system as a function of pack 

and module size would offer greater insight into the benefits and limitations of 

such a system. 

 
Figure 11: Dual balancing system – from [98] 
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A similar two-layer approach is used in [100], where cell-to-cell balancing takes 

place within modules, and then the modules are balanced. As discussed above, 

cell-to-cell balancing becomes slower as the number of cells increases, so the 

performance depends on how the battery pack is subdivided into modules. In 

[101], the authors avoid having to split the system into modules. They use a DC-

DC converter on each cell which all link to a common output bus for the low 

voltage system of an EV. The total applied load current can be distributed 

amongst the cells, with weakest cells undergoing less of the load. The hardware 

appears promising from a control perspective as it offers variable current 

allocation of each cell, but the problem of scaling the system up from the 3 cell 

demonstration to a full battery pack remains open. 

 

Gallardo et al. [17] summarised 24 balancing configurations, covering passive 

(dissipative) and active systems. Active systems are categorised into shunting 

(changing the current path), shuttling (moving energy form one cell to another) 

and energy conversion (using a DC-DC converter to transfer energy). The 

configurations were given a score of 1-3 (poor, average, good) on factors such 

as efficiency and balancing speed. Complete cell shunting was deemed the best 

method, primarily due to its relative simplicity. Transformer based systems 

tended to rank poorly due to their complexity. The primary exception is for a full 

bridge converter, which is considered by the authors and Omar et al. [73] to be 

an effective system, especially with regard to efficiency and balancing speed. 

This comes at the expense of control complexity and cost. Cell bypassing scores 

well, despite the issues raised above. Reliability of active balancing systems has 

not been explored in the literature, likely because of the difficulty in setting up 

realistic, long-term experiments. However, this is a critical future area of research 

for assessing the potential of ABS for applications such as EVs, where several 

years of operation is expected. The authors note that the scores are subjective 

and may be weighted depending on system requirements. For example, when 

considering a balancing system for a production vehicle, the scoring may be 

changed to emphasise low cost and reliability, or for a BEV the system will need 

to cope with higher currents than for a HEV. Both analyses are hardware focused, 

not considering system-level factors such as how much control there is over the 

amount of charge transferred and what the requirements (such as power and 
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balancing time) should be for a given application. The focus tends to be on 

simplicity rather than considering the ultimate performance benefits such as 

increased energy utilisation. Cao et al. suggest that of the configurations 

assessed within [52], only a capacitor-based system is appropriate for use during 

discharge. This is largely in agreement with Gallardo et al., who add that certain 

inductive methods are effective during discharge. It is not clear from the papers 

what makes a bi-directional system effective rather than merely functional.  

 

2.2.2 Balancing System Control 
Until recently there was little work on how ABSs should be controlled: the majority 

of the work emphasised proof of concept for novel hardware. References [98, 99, 

102–105] use simple rule-based logic to determine what cells to balance. Often, 

open-loop control, or occasional feedback is applied [106, 107] and the cell 

capacities are used to predict how much charge each cell requires. This does not 

account for the fact that cell capacities are estimates and the charge delivered by 

the balancing hardware may be different to what is expected owing to set-point 

error and unquantified losses in the electronic hardware. The balancing system 

in [100] is promising from a control point of view because of its flexibility in 

controlling the cells. The authors use SOC distance from the mean, as proposed 

in section 2.1.4.2, but their experimental results only involve one demonstration 

where the system is activated for a period of time to demonstrate imbalance 

reduction, rather than exploring the control strategy further. The balancing system 

in [101] uses SOC as a metric, but the authors have designed it to operate 

autonomously (without a dedicated control system), with it balancing perpetually. 

This could reduce the overall efficiency substantially, since there are many times 

at which balancing is not required (see section 5.1). 

 

There has been some research focussing on balancing control, but these have 

generally not been validated experimentally. Danielson et al. [108] developed a 

model predictive control algorithm which aims to maximize pack capacity (where 

pack capacity is tied to the weakest cell) and reduce SOC imbalance with a 

capacitor based system. The system is considered as a network whereby the 

cells are ‘nodes’ and the interconnections (capacitors) between them are ‘edges’. 

Additional constraints, such as the maximum current and absolute limits on SOC 
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are applied. An example of SOC convergence for 16 cells with variations in 

capacity and initial SOC is shown in Figure 12. The y axis is SOC, scaled from 0 

to 1, and the x axis is time (the units are not given). The SOCs converge to a 

common value, although trajectory of the SOCs is not ideal: two cells (green and 

teal lines) diverge significantly before they converge. There are several 

assumptions made, including a linear cell model with no impedance, and the pack 

topology and cell interconnections are unlikely to be similar to what is found in an 

EV. However, the paper shows the potential for a more advanced control system 

which uses predictive control to maximise energy utilisation.  

 
Figure 12: SOC balancing using model predictive control - from [108] 

Quinn and Hartley [109] also treat the battery pack as a network, where each cell 

is a ‘node’, and balancing connections (in this case cell-to-cell transformers) are 

‘edges’. The pack arrangement is two series strings of four cells, connected in 

parallel. Different amounts of interconnects were applied, and as would be 

expected, a pack with a greater number of cell-to-cell interconnects can balance 

more quickly and settle on a lower level of imbalance. They also note that the 

increased number of interconnects improves the reliability as the system 

performance is less affected by an interconnect failure. However, more 

interconnects also equates to higher system complexity, size and cost and a 

greater chance of a failure. The type of analysis in [108] and [109] could be used 

in order to evaluate possible options for cell interconnects as part of the battery 

pack design process, for example comparing the cost of components against 

balance time for different configurations. 
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Lee and Cheng [110] applied fuzzy logic to reduce the balancing time for a 

modified Ćuk converter, which uses a capacitor to link neighbouring cells and 

inductors over each cell to control current flow. Imbalance between cells is 

grouped based on the voltage difference between each cell and the pack 

average. A duty cycle is created based on the amount of imbalance, with the aim 

of all cells reaching the maximum SOC simultaneously during charging. Results 

show the fuzzy logic scheme reduces balancing time by 32% compared to 

conventional methods, though the conventional method is not defined; it may 

refer to a simple rule-based approach. Nonlinear model predictive control (MPC) 

has also been applied for a Ćuk converter system [111]. While potentially offering 

benefits for speed and overall imbalance reduction, it is computationally 

expensive and so unsuitable for a control system on board a vehicle, and has not 

been validated experimentally.  Nonlinear MPC has also been applied for a multi-

level converter, which uses a DC-DC converter per cell to regulate individual cell 

currents. The authors propose a scheme which aims to balance cell temperature 

as well as charge level, which has the potential to reduce the capacity spread 

from ageing. However, the addition of a temperature model adds complexity. This 

control system has not been validated experimentally, although the simulation 

studies do at least consider the battery pack under load from a standardised 

vehicle drive cycle.  

 

Recently McCurlie et al. [112] proposed a model-predictive control scheme which 

uses SOC as a metric of imbalance. It was evaluated with a 6s3p battery pack 

and a Linear Technology Corporation balancing development board, which 

utilises their LTC3300-1 flyback converter balancing chip. The control system 

aimed to minimise the time to remove imbalance by solving a quadratic 

optimisation. The optimisation finds the ideal balancing currents along with the 

balancing time, factoring in the constraints on the amount of current the system 

can develop. The control strategy proved effective in a real-time environment: a 

27% SOC different was reduced to 2% in approximately 20 minutes. The authors 

compared it to a simple rule-based controller, which sets a cell to charge if it is 

below a certain SOC threshold and discharge if it above a threshold. The rule-

based controller reduced imbalance in a similar amount of time, but resulted in 
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twice as much power loss through inefficiency, as the cells are always balancing 

at full power rather than being regulated by a control system. The hardware was 

based on the same chips as for this research (see Chapter 6), and the control 

strategy is also related, although derived in a different manner (see Chapter 5). 

However, there are some limitations. Firstly, there was no SOC estimate 

(coulomb counting was used which was assumed sufficiently accurate 

considering the laboratory conditions) and no applied load. This means the 

balancing controller was not subject to the noise and uncertainty expected during 

more realistic operation. As with much of the above discussion, the system was 

proven to be able to balance, but the wider question of when to balance, and 

what it ultimately aims to achieve is not covered. 

 

Moura et al. [113] considered using switches to alter the current through cells with 

the aim of minimising film growth (which leads to impedance rise) in cells. An 

equation for SEI layer thickness was presented, based on electrochemical 

properties, and this was then turned into a cost function for an optimal control 

problem. For the study only parallel cells were considered, but this leads to the 

concept of utilising the balancing system to combine balancing and charging to 

reduce ageing. 

 

2.2.3 Cost-Benefit Analysis of ABS 

Much of the above discussion, and work in this Innovation Report demonstrates 

the potential performance benefits of ABS, there are other factors, notably cost, 

reliability and manufacturing. While these are outside of the scope of the project, 

it is important to consider these issues as they will affect the viability of ABS 

regardless of performance. The primary benefit has been identified as energy 

utilisation, so a metric such as battery pack cost relative to the available energy 

of the pack ($/kWh) is a suitable starting point. A further analysis considering the 

lifetime of the pack would also be beneficial, considering the potential benefits for 

ageing and long-term performance.  

The primary benefits of ABS over passive balancing are as follows: 

• The energy output from the same specification battery pack will be 

increased 
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• The SOC operating window of the pack can be narrowed to reduce ageing 

• The same energy output can be maintained while reducing the battery 

pack size (volume and weight), and number of cells (each cell being a 

potential source of pack failure) 

• There is less chance of one poor-performing cell causing the entire pack 

to lose performance and require replacing 

 

There are several drawbacks which generally come about through the increased 

complexity compared to passive balancing: 

• Increased design, development and testing resources are required 

• The direct cost of hardware will increase 

• There are more wires and interconnections, which add weight and design 

challenges, as well are more failure modes. 

The specifics of the cost-benefit analysis will be heavily dependent upon the 

application, such as driving performance, the expected lifetime and cost 

constraints.  

 
2.3 Summary 
The literature review in section 2.1 clearly shows that energy imbalance is 

inevitable. Even if a large batch of cells is screened to ensure consistent 

properties within a new battery pack, significant differences will emerge with time 

and usage. This variation is difficult to predict, with stronger cells becoming 

weaker cells with ageing, and vice versa. Analyses of used cells from EV battery 

packs shows that the outliers which are inevitable in a large battery pack are 

much more likely to be low capacity rather than high capacity, increasing the 

proportion of unused energy in the battery pack unless active balancing is 

employed. A greater than 10% difference between maximum and minimum cell 

capacity can be expected after several years of operation. 

 

This information was used to address Research Question 1. The context in 
which active balancing can provide the greatest benefit is applications 

where large variations in cell capacity can be expected, and the majority of 
battery pack energy is required. The main example of this is BEVs, where cells 

are subject to several years of operation under demanding conditions, and almost 



 38 

the entire SOC window is required to meet range requirements. For applications 

such as HEVs, losing some battery capacity because of some weaker cells may 

not be critical to operation, as their full capacity is not utilised. 

 

Research Objective 2 was addressed through the literature review in section 2.2 

This showed the variety of options for active balancing and suggested that there 

is no single best solution, and there is little analysis of what systems is best suited 

to what application. It can be difficult to compare similar systems given the 

nuances in design and different test set-ups (for example, power capability of the 

hardware, the number of cells and cell specifications).  

 

The focus of active balancing research to date has largely been on demonstrating 

proof of concept for the hardware, with the control system generally an 

afterthought. Some more advanced control strategies have been proposed, but 

even these often do not consider how the ABS is best utilised, such as balancing 

while discharging. Also, most of the control systems considered are generally tied 

to a specific hardware type, limiting their applicability as new hardware is 

developed.  

 

There has been little work to date which covers both areas of the literature 

reviews. ABSs are typically designed in isolation, and evaluation of cell variation 

and ageing focuses is on analysing the degradation modes and root causes 

rather than evaluating how active balancing could have impacted the results. 

Existing analyses of ABS often lacks the context of how it will be used in the 

application. Several systems in the literature only allow a single cell to be set to 

balance within the pack, and many are unidirectional. The remaining Research 

Objectives aim to address this gap. A balancing control system has yet to be 

developed which fully considers the wider BMS and maximization of energy 

utilisation. More generally, there has been a lack of analysis of balancing control 

systems. For the second Research Question, a model-based design approach 

was used, including using cell models to evaluate battery pack performance and 

for simulations as part of control system development. These cell models are 

introduced in the next section.  
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3 Cell Modelling 
The lack of holistic analysis of ABSs can be addressed through mathematically 

modelling each area of the complete system. Research Objective 3 was chosen 

specifically to close this knowledge gap.  To better understand how a balancing 

system interacts with the battery pack and BMS, a model is required. A series of 

modelling studies was performed throughout this research, at the core of which 

is a cell model. This is first introduced in this Chapter, before being used for 

several applications in Chapter 4. 

 

Consider the generic balancing system in Figure 13. The cells in the plant model 

can be simulated without a balancing system to understand cell behaviour, such 

as how imbalance is generated under various conditions and drive cycles. They 

can also be used with a balancing system model as part of the controller design 

and development process. Cell models can also be further integrated together to 

explore whether cells connected in parallel are inherently balanced, as the 

literature suggests. This can then feed into the selection of balancing hardware. 

A cell model can be used to estimate SOC, a value which cannot be directly 

measured but is important for several BMS functions, including determining the 

amount of imbalance within the battery pack.  

 
Figure 13: High-level summary of balancing control system components 

These applications are implemented in Chapter 4, but before this an appropriate 

cell model must be clearly defined. In section 3.1, the type of model is selected, 

and the equations derived. In order to use these equations, the parameters must 

be assigned specific values, which depend on the properties of the particular cell 

being modelled. Section 3.4 describes what cell data are required and how this 

can be used to parameterise the generic cell model.  
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3.1 Model Selection and Derivation 
For most applications, in line with its causality, a cell model accepts current as 

an input, and outputs the cell voltage. Depending on requirements, there may be 

other inputs and outputs such as temperature. Within the context of battery 

performance simulation, there are two main categories of cell models: equivalent 

circuit models (ECMs) and physics-based models (PBMs). The latter aims to 

capture the electrochemical processes using partial differential equations [55]. 

ECMs use a combination of electrical components which aim to match the 

impedance response of the cell. In this sense ECMs lack a physical basis, 

although certain components can be related to physical phenomena. 

 

PBMs can potentially offer more insight into cell behaviour as well as better 

accuracy [114]. However, they are much harder to parameterise, with a full model 

containing typically 88 parameters, not all of which are identifiable [115] and a 

reduced model still containing 35 [55], many of which being difficult to measure 

or estimate. This makes finding the parameters for a particular cell challenging 

and time-consuming. Additionally, the equations are complex and 

computationally expensive, making them generally unsuitable for real-time 

applications [55, 114]. ECMs are proven to be effective for the applications 

considered here, such as offline performance modelling and state estimation. For 

this reason, ECMs have been used for the modelling work throughout this 

research. However, in the future as computing power increases, battery system 

development could be improved by using PBMs, either for control and state 

estimation, or as an accurate plant model to test ECM-based systems against. 

References such as [116–118] show various ways of reducing the model order 

of these equations for control and estimation purposes.  

 

3.2 ECM Variants 
Parameterisation of an ECM is a curve-fitting problem: finding a combination of 

components which accurately matches some experimental data whereby a 

current signal was applied to the cell and the resultant change in terminal voltage 

was measured. Because there is a lack of physical basis, there is no ‘true’ model 

structure of values, and the best structure and values will depend on the 
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application and the data collected. There are two types of dataset for generating 

ECMs: frequency domain and time domain. The majority of the work here 

considers time domain models only. Details of how frequency domain data was 

collected and processed is in Appendix A.  

 

3.3 Time-domain ECM Derivation 
Sample rates of 1-100Hz are common for cell systems, meaning that some high-

frequency phenomena such as charge transfer, and induction will not be resolved 

using this data. A typical vehicle drive cycle current is primarily a low frequency 

(less than 1Hz) signal [119], and so modelling high frequency phenomena would 

add complexity without much performance benefit. Time domain data will typically 

offer less insight into cell behaviour than frequency domain data because of the 

reduced bandwidth, but is more effective at determining a model which predicts 

the cell voltage during current excitation. A wider array of input signals can be 

used, such as representative vehicle drive cycles, and the lower bandwidth 

reduces the number of elements in the model.  

 

There are a range of ECMs proposed for time-domain solutions [114]. A typical 

ECM takes the form of Figure 14. Throughout this document, the sign convention 

is that a positive current means the cell is being charged, and a negative current 

indicates discharging. The ECM can be used alongside the OCV voc, to find the 

cell terminal voltage vt from cell current icell using (12). This incorporates an 

internal resistance R0, connected in series with a resistor-capacitor (RC) pair with 

component values Rp and Cp respectively. Several RC pairs can improve model 

accuracy by increasing the bandwidth, with each RC pair having a different time 

constant. 

 
Figure 14: ECM with 1 RC pair 
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 𝑣c = 𝑣m` +�𝑣b�

���

jd�

+ 𝑅f𝑖`qrr (12) 

There is no limit on how many RC pairs can be added in theory, but it becomes 

challenging to parameterise owing to a lack of structural identifiability [120], and 

there may be more time constants than are required for a good fit, causing several 

RC pairs to have the same time constant. The internal resistance in this model is 

not strictly the direct current (DC) resistance of the cell as shown in Appendix A. 

This is because the sample rate of the data is generally not high enough to 

capture the DC response. Instead, this resistance encapsulates the impedance 

above the sample rate employed to measure cell data. 

 

The governing equation for the RC pair state voltage vp is given in continuous 

and discrete forms by (13) and (14) respectively. The time constant used in these 

equations is calculated from the resistance and capacitance using (15). 

 𝑣̇b(𝑡) = −
1
𝜏b
𝑣�`(𝑡) +

1
𝐶b
𝑖`qrr(𝑡) (13) 

 𝑣b��� = 𝑣b�𝑒
��c  + 𝑖�𝑅b ¡1 − 𝑒

��c  ¢ (14) 

 𝜏b = 𝑅b𝐶b (15) 

 

OCV is also a state, although generally it is obtained from SOC, s. The continuous 

and discrete SOC state equations are given by (16) and (17) respectively, where 

Qcap is the measured cell capacity in Ampere-hours. The 36 is required to scale 

the numerator in As and denominator in Ah to a percentage. SOC is a linear 

integrator, which has implications for control, discussed in Chapter 5. 

 𝑠̇(𝑡) =
1

36𝑄`ab
𝑖(𝑡) (16) 

 𝑠��� = 𝑠� +
𝑖`qrr,�𝛥𝑡
36𝑄`ab

 (17) 

 𝑣m` = 𝑓(𝑠) (18) 

 

The OCV can be obtained from a typically nonlinear function (18). Often a look-

up table is combined with interpolation is used. Alternatively, a nonlinear function 

can be parameterised, such as the variants in [121]. This will generally reduce 
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the accuracy of the data as, unlike with interpolation, the curve will not pass 

exactly through the measured data points, but it means that less data have to be 

stored in the memory of the control system, which can be useful for low-cost 

online applications. Additionally, if the function is differentiable it can simplify 

certain SOC estimation algorithms where a gradient is required, such as the 

Extended Kalman Filter approach, discussed further in section 4.3.  

 

Variations on this basic structure of the model have been proposed and 

implemented. Using different values depending on the current direction can help 

improve accuracy, at the expense of increasing the number of parameters. For 

some cell chemistries such as Lithium Iron Phosphate (LFP), there can be a 

significant difference in the OCV curves depending on if the cell is charged and 

discharged. In this case, adding a hysteresis function to link the two curves can 

substantially improve modelling accuracy compared to using a single curve [84, 

114, 122]. As discussed in Submission 5 and section 7.2.2, a key area of research 

on improving the ECMs is on improving their low frequency performance, as RC 

pairs fundamentally do not capture the diffusive aspect of cell dynamics [63, 123].   

 

The resultant ECM can be considered as a state-space system, with current as 

an input, terminal voltage as output, and SOC and RC pair voltages as states. 

The state equation are linear (but potentially parameter-varying), and the output 

nonlinear because of the OCV-SOC relationship. For a 1RC pair continuous-time 

ECM, the state-space equations are given by (19). 
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[𝑣c] = [𝑓o²(𝑠) 1] ª
𝑠
𝑣b« + [𝑅f]𝑖`qrr 

(19) 

 

As noted in Submission 2, the OCV can be used as a state instead of SOC, as 

the two are equivalent. This moves the nonlinearity from the output equation to 

the state equations. SOC is used as a state in almost all of the literature, because 

it is more intuitive, and of more interest than OCV. 
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Controllability and observability are two important characteristics of a system. 

The former determines whether all of the states can be guided to a given target 

state through the control inputs, and the latter determines whether the initial state 

can be obtained from the time history of the inputs and outputs [124]. For a 

generic linear state space system of the form in (20), the two concepts are related 

and quantified using the same method for a linear system: 

• Obtain the controllability and observability matrices 𝒞 and 𝒪 according to 
(22) and (23) respectively, where Ns is the number of states.  

• Calculate the rank of the matrices; 

• The difference between the total number of states and the rank equals the 

number of uncontrollable/ unobservable states. 

As noted above, the cell model output equation is not linear, but can be linearised 

about a given SOC slin, with the resultant output matrix calculated using (21).  

 
𝒙̇(𝑡) = 𝐴𝒙(𝑡) + 𝐵𝒖(𝑡) 
𝒚(𝑡) = 𝐶𝒙(𝑡) + 𝐷𝒖(𝑡) 

(20) 
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 𝒪 = [𝐶 𝐶𝐴 ⋯ 𝐶𝐴�º��]» = ¨
𝑔o² 1

0
−1
𝜏b
© (23) 

 

The states are completely controllable, and generally observable. The system 

becomes unobservable if the OCV-SOC gradient gsv (21) is zero, that is if the 

OCV-SOC is completely flat. In this case, a number of different SOCs can result 

in the same voltage, so it is not possible to obtain a specific SOC from voltage. 

The impact of OCV-SOC curve gradient on SOC is discussed further in [125], in 

which the authors evaluate performance bounds of SOC estimators based on the 
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curve, and also note the importance of voltage measurement resolution on the 

estimation accuracy. The system remains controllable and observable if more RC 

pairs are added, as long as each time constant is distinct.  

 

3.3.1 SOC-OCV Data 
To calculate the terminal voltage using equation (12), the OCV is also required. 

As mentioned in section 3.3 experimental data are necessary, and often used 

directly in the model. There are two main methods for obtaining OCV Data: 

galvanostatic intermittent titration technique (GITT) and slow discharge, and 

procedures for both are presented in Appendix B. GITT increments the SOC by 

a certain amount (typically 3%) then rest for 3 hours so that the cell is relaxed, 

and a measurement of OCV is made. This is repeated, starting from fully charged, 

until the cell is fully discharged, and then charged with the same increment. This 

produces different OCV-SOC curves for charge and discharge, which is expected 

based on theoretical knowledge of cell behaviour [126]. The difference between 

the two curves depends on material and chemical properties. LFP cells are known 

to exhibit significant hysteresis [63, 114], but the nickel-cobalt-aluminium cell in 

Figure 15 shows little hysteresis, with a maximum of 9mV. 

 

Figure 15: Example OCV-SOC curves obtained using GITT for a nickel-cobalt-aluminium cell 
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An example SOC-OCV curve can be obtained by discharging the cell at a low 

constant current, such as C/25. This low current aims to minimise the impact of 

the cell’s impedance making the terminal voltage close to the OCV, hence 

sometimes being referred to as a pseudo-OCV-SOC curve [127]. This curve 

takes less time to produce, and can be useful for other purposes such as 

incremental capacity analysis [128], but is generally less accurate because only 

discharge data are collected, and there is still an impedance contribution, 

especially towards low SOC as more charge is built up and impedance increases. 

 

3.4 Parameterisation and validation 
Pulse power tests are often used to generate data to fit an ECM. This consists of 

a 10 second pulse of constant current followed by a 30-minute rest, shown in 

Figure 16, taken from the cylindrical cell data discussed in section 4.1. The rest 

period ensures that the cell has fully relaxed before the next pulse begins. 

Typically, five different magnitudes of current are applied, before moving to 

another SOC level to repeat the test. These are determined such that the highest 

magnitude equals the maximum safe current according to the manufacturer’s 

specifications. The bandwidth of this signal is not representative of a typical load 

profile: improvements have recently been proposed [119, 129] to address this. 

 

As mentioned above, finding ECM parameters is a curve-fitting exercise3. Non-

linear least squares (NLLS) algorithms are commonly used for this purpose as it 

is relatively straightforward to implement and a variety of constraints can be 

applied [130]. For much of the offline parameterisation, as discussed within 

Submssions 2 and 5, the MATLAB function lsqcurvefit was used. However, 

an alternate NLLS algorithm was written for real-time use, as the MATLAB 

implementation was not compatible with Simulink or C-code generation to 

improve its speed. To solve this, a MATLAB class was written to solve a 

constrained NLLS function, which was shown to perform to a similar level of 

                                            
3 It is also possible to fit an ECM recursively rather than to a batch of data. This is particularly 
useful for online applications, and is discussed in section 4.3. However, it will generally be less 
accurate because there is less data available. The higher computational expense and memory 
requirements of batch-fitting are not a concern for offline data processing, but can inhibit their 
use online. 
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accuracy as the MATLAB algorithm. This algorithm is based on a quadratic 

optimisation, and is derived and explained fully in Submission 4. 

 
Figure 16: Example pulse power test current and voltage 

For time domain data, a capacitor C0 is introduced in series with the ECM. This 

capacitor is used to account for the small change in OCV which occurs during the 

test. Since the change in SOC should only be small, typically a fraction of a 

percent, this linear approximation of OCV-SOC is appropriate.  

 

The NLLS algorithm is based around minimising the error between a series of 

measurements y and a nonlinear function f, which is dependent on the parameter 

vector Θ. Other known parameters can be passed to f, such as the input current. 

For each measurement, an error e is defined according to (24). The NLLS 

problem, defined by (25), aims to find Θ such that the sum-of-squares error of e 

is minimised. An Nth order RC pair ECM has the parameter vector defined in (26); 

this can be generalised to any model.  

 𝑒i = 𝑦i − 𝑓(𝛉)i (24) 
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 𝜽 = Â𝐶f 𝑅m 𝑅b� 𝐶b� ⋯ 𝑅b� 𝐶b�Ã
» (26) 

 

For time domain data, the cell terminal voltage is used as the output equation 

(27). If the cell is not in a relaxed state when the time-domain fit begins, a NLLS 

fit can still be applied. This parameter vector must also include an OCV parameter 

and initial RC pair state voltages (these are not required when the cell starts at 

rest as the OCV is known from the terminal voltage, and the RC pairs are at zero 

volts). This will typically reduce the accuracy of the fit because there are more 

unknowns, but is useful for identifying model parameters while the cell is under 

load, and this method is used in section 4.3.  

 𝑦i = 𝑣cÄ (27) 

 

3.4.1 Example Parameterisation Results 
Example results are shown in Figure 17 for a 3C discharge pulse. This was taken 

from a 3Ah cylindrical cell discussed further in section 4.1. Not all 30 minutes of 

the pulse data were used for the fit. For the majority of the test, the voltage is 

approximately at its OCV, and at this point only C0 affects the voltage within the 

model. As a result, the NLLS algorithm will see a small error as long as it finds 

an accurate C0 value, as poor parameters for other ECM components only create 

errors for a few data points. By restricting the parameterisation data to 1 minute 

after the current pulse ends, the dynamic region is given more weight, and better 

parameter estimates are obtained. The model parameters and associated 

simulation errors are given in Table 3. In this case the 2RC model performs 

similarly to the 1RC model, but captures the fast dynamics better, as can be seen 

when the current is applied and stopped (at 0 and 10s respectively). The 1RC 

model has a 4.4mV root mean square (RMS) error and 51mV peak error, whereas 

the 2RC model has a 3.0mV RMS error and 18mV peak error. The peak error 

occurs when the current stops and fast dynamics occur, which is why there is a 

substantial reduction in error with the 2RC pair model. The 2RC model has a 

slightly lower internal resistance, because the faster dynamics capture some of 
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the charge transfer region, meaning the ohmic resistance is closer to the DC 

resistance. Accordingly, R0 in the 1RC model is approximately equal to the sum 

of R0 and R1 in the 2RC model. The bandwidth requirements differ for parallel 

connected cells, as discussed in section 4.1. 

 
Figure 17: Example pulse power fit results for 1 and 2 RC ECMs 

Table 3: Summary of ECM parameterisation results 

Model 

Order 

RMS Error 

(mV) 

Peak Error 

(mV) 

C0 (F) R0 

(mΩ) 

Rp1 

(mΩ) 

τp1  
(s) 

Rp2 

(mΩ) 

τp2  
(s) 

1 4.34 51.2 5340.3 53.9 19.0 24.2 - - 

2 3.02 17.8 6660.1 49.9 4.1 0.48 22.3 30.6 

 

3.4.2 Example Validation Results 
The standard Catapult4 validation profile is used to evaluate the performance of 

the ECMs, shown in Figure 18. This is a dynamic drive cycle over a narrow SOC 

window, which is derived from EV driving data and as such is representative of 

how cells are used within a battery pack. The ECM is used to simulate the cell 

                                            
4 Catapult referring to the WMG centre HVM Catapult, a joint agreement between 
WMG, JLR and TMETC 
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voltage using the current profile, and voltages compared. Example results are 

shown in Figure 19.  

 
Figure 18: Catapult Validation Current Profile 
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Figure 19: Measured and simulated cell voltage during validation profile 

One observation from this data is that a constant between measured and 

simulated voltage is apparent: the orange simulated line is generally about 20mV 

above the blue measured line, when the dynamics are filtered out. This appears 

to be an error with the OCV-SOC data, and is discussed further in Submission 5. 

The simulation was initialised by using the OCV-SOC curve and relaxed cell 

voltage prior to the test to initialise the SOC. It appears that the OCV values 

interpolated during simulation are higher than the actual cell’s OCV. An averaged 

OCV-SOC curve was used for the simulation, but factoring in separate OCV-SOC 

curves only removes a small amount of the error. It suggests that further work is 

required on improving SOC-OCV methodology and verifying the data. 

  

3.5 Summary 
This section has shown the ways in which ECMs can be created. The 

parameterisation method is flexible: arbitrary current and voltage signals can be 

used to fit a model. This is well-suited to on-vehicle applications, where the 

parameters can be updated during operation without causing any disruption. 

However, ECMs also have some flaws. They fundamentally do not capture the 

cell response in the low frequency region of operation, resulting in poor accuracy 

over wide DOD operation. There also appears to be some errors generated 

during the OCV-SOC curve procedure. This only became apparent when running 

the SOC estimators in real-time for analysing imbalance, where requirements of 

the model are different to much of the work within Catapult to date. This is an 

important area of further work, and should be quantified experimentally as well 

as using the data as part of SOC estimators to evaluate the impact the data has 

on estimator performance. Nevertheless, ECMs have proved useful for a number 

of applications throughout this research, as discussed in the next section.   
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4 System Modelling 
The ECM variants in section 3.2 are well established within the literature. 

However, there are few studies simulating several cells in series or parallel to 

better evaluate imbalance, which Research Objective 3 addresses by building a 

modelling and simulation framework around the balancing system. Models of 

balancing systems in the literature tend to be at a very high level [108] or, 

conversely, are in-depth models of specific high-frequency components to study 

particular hardware elements such as converters [91, 94, 105, 131]. The 

derivation and use of control-orientated models has received significantly less 

attention.  

 

As noted in Chapter 3, there are three main application areas considered for this 

research where ECMs are central to wider system modelling. In section 4.1, the 

question of imbalance within parallel-connected cells is addressed through a 

combination of experimental and simulation work. Evaluating whether parallel-

connected cells require a balancing system closes off Research Objective 1. 

Section 4.2 shows how a battery pack can be modelled, enabling closed loop 

balancing simulations which are essential to meeting Research Objective 4. A 

means of estimating SOC is introduced in section 4.3. Unlike for simulations, an 

exact SOC measurement is not available during real-time experimental work. An 

accurate SOC estimate is critical for meeting Research Objective 5 and so 

answering Research Question 2.  

 

4.1 Imbalance within Parallel-Connected Cells 
Cells in a battery pack may be electrically connected in parallel to increase the 

pack capacity and meet requirements on power and energy [132, 133]. For 

example, the Tesla Model S 85kWh battery pack uses 74 3.1Ah cylindrical cells 

to create a parallel unit, and 96 of these units in series. The Nissan Leaf 24kWh 

battery pack consists of 33Ah cells, with 2 in parallel and 96 in series [134]. The 

nature of a parallel connection means each cell terminal voltage is the same, and 

the applied current equals the sum of the individual cell currents.  
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One of the open questions from the literature review in Chapter 2 is whether cells 

connected in parallel are balanced. There was very little research into this at the 

time, with the consensus being that energy balancing is only required for cells in 

series [17, 66] since the cells in a parallel unit are inherently balanced due to the 

common voltage [58, 67]. However, while the voltage over each cell is the same, 

there can be differences in the OCV, which equates to differences in SOC. The 

same variations which cause imbalance between cells in series (such as 

impedance and capacity) also have an effect on battery pack performance when 

cells are connected in parallel.  

 

Gogoana et al. [135] cycle-aged two cylindrical LFP cells connected in parallel. 

They found that a 20% difference in internal resistance resulted in a 40% 

reduction in the useful life of the pair of cells compared to if the cells had 

approximately equal internal resistances. The authors attribute this due to the 

uneven current distribution between the cells: each cell will go through periods 

where it sees high currents which age the cell more quickly. Gong et al. [132] 

drew similar conclusions from their experimental work with 32Ah cells. When two 

cells with a 20% impedance difference were connected in parallel, the peak 

current seen was 40% higher than the nominal current (which would be seen if 

the cells were identical). The authors also performed some simulation studies, 

using the Simscape toolbox in Simulink to connect two ECMs in parallel. This is 

one of the few examples of parallel cell modelling in the literature. Typically a 

parallel unit ‘lumped’ model is created, where the parameters of a single cell 

model are scaled to create an effective parallel unit [16]. While this allows for 

high-level simulation of a battery pack, it assumes the cells within a parallel unit 

are identical and as such undergo the same current. It is argued that this 

approach is not sufficient given the cell-to-cell variations which can be expected 

through ageing and temperature differences discussed in section 2.1.2). 

 

4.1.1 Parallel Equivalent Circuit Model 
An ECM can be expanded to incorporate any number of cells in parallel using 

mesh analysis. For this derivation, four cells with one RC pair each is used, but 

the solution can be extended to any number of cells or RC pairs. Figure 20 is a 

schematic of four cells in parallel with an interconnection resistance (Rconn) 
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between each terminal. Currents i1 to i4 are the currents around each loop; i1 is 

known since it is the applied current and so an input to the model.  

 
Figure 20: Schematic of four cells connected in parallel 

In addition to the state equation for the single cell from Chapter 3, there are 

algebraic constraints on the parallel cell system, based on Kirchoff’s laws for 

current and voltage. The currents at a junction must sum to zero, which for the 

parallel cell system occurs at the cell connections, as shown in the left-hand 

diagram of Figure 21. For N cells, the cell current is given by (28). The two cases 

arise due to there being no in+1 for the final cell. Similarly, the voltages around a 

loop must sum to zero. A typical loop is shown in the right-hand diagram of Figure 

21; there are N-1 loops to solve for, as the first loop incorporates the current 

source and is therefore trivial.  

 
Figure 21: Current junction (left-hand) and voltage loop (right-hand) in the parallel cell model 
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The voltage loop equation is given by (29), and is expanded to (30) by 

decomposing the cell voltage into its components using (28). The right-hand side 

of (30) consists only of unknown currents, and the left side is comprised of state 

voltages (whose value at any given time-step does not depend on the current 

values at that step, avoiding an algebraic loop). With one equation per unknown 

current, (30) can be arranged into a system of equations and solved using matrix 

algebra.  

 

 𝑖`qrr	j = Ç
𝑖rmmb,j − 𝑖rmmb,j��, 𝑛 < 𝑁

𝑖rmmb,j, 𝑛 ≡ 𝑁  (28) 

 𝑣c	j − 𝑣c	j�� + 2𝑅`mjj𝑖rmmb,j = 0 (29) 

 
𝑣ÌÍ	j − 𝑣ÌÍ	j�� + 𝑣b	j − 𝑣b	j��
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−𝑅m	j𝑖rmmb,j + 𝑅m	j��Ï𝑖rmmb,j�� − 𝑖rmmb,jÐ − 2𝑅`mjj𝑖rmmb,j, 𝑛 ≡ 𝑁
 

(30) 

 

A state vector x is defined in equation (31), containing all the cell voltage states. 

Equation (32) uses this vector to rewrite (30) in matrix form. This requires three 

more coefficients to be defined. The Rps matrix contains the resistances from the 

right-hand side of (30), the Eps matrix collates the left-hand elements of (30), and 

the fps vector factors the input current to the loop current calculation. 

 𝒙 = [𝑣m`� 𝑣bÑ 𝑣m`� 𝑣bÑ ⋯ 𝑣bÒ]» (31) 

 

𝑅bo Ó

𝑖�
𝑖�
⋮
𝑖�

Õ = 𝐸bo𝒙 + 𝒇𝒑𝒔𝑖� 

 

𝑅bo =

⎣
⎢
⎢
⎢
⎡
1 0 0 0
0 −Ï𝑅mÑ + 𝑅m× + 2𝑅`mjjÐ 𝑅m× 0
0 𝑅m× ⋱ 𝑅mÒÙÑ
0 0 𝑅mÒÙÑ −Ï𝑅mÒÙÑ + 𝑅mÒ + 2𝑅`mjjÐ⎦

⎥
⎥
⎥
⎤
 

 

𝐸bo = Ó
0 0 ⋯ ⋯ 0
−1 −1 1 1 0 ⋯ 0
0 ⋯ −1 −1 1 1 0 0
0 ⋯ 0 −1 −1 1 1

Õ 

 

(32) 



 56 

𝒇𝒑𝒔 =

⎣
⎢
⎢
⎢
⎡

1
−Ï𝑅mÑ + 2𝑅`Ð

0
⋮
0 ⎦

⎥
⎥
⎥
⎤

 

Equation (33) introduces another matrix Gps, which applies (28) in matrix form. 

This is combined with (32) to produce (34).  

 

Ó

𝑖`qrr	�
𝑖`qrr	�
⋮

𝑖`qrr	�

Õ = 𝐺bo𝒊𝒍𝒐𝒐𝒑  

𝐺bo = Ó
1 −1 0 0
0 1 −1 0
0 ⋱ 1 −1
0 ⋯ 0 1

Õ 

(33) 

 

 𝒊𝒄𝒆𝒍𝒍 = 𝐺bo𝑅bo��Ï𝐸bo𝒙 + 𝒇𝒑𝒔𝑖rmmb,�Ð (34) 

This demonstrates that each cell current can be calculated using only the 

measured current input and the cell states. The cells are now effectively 

decoupled from one another: each current can now be used an input to an 

individual ECM, rather than solving for all cell states in one system.  The current 

and voltage constraints have already been enforced, meaning that any cell model 

within the parallel stack can be used to calculate terminal voltage as they are all 

equal. This means parallel cells can easily be integrated into existing models 

which consider a single cell, or cells in series. The cells can be combined into 

one complete state-space system, which can be useful for analysing system 

dynamics and stability. A full derivation of this model is provided within 

Submission 2 and forms the foundation of the author’s publication [10]. 

 

4.1.2 Experimental Data 
The purpose of this experimental work was to evaluate the behaviour of cells with 

different properties when connected in parallel, and validate the model in section 

4.1.1. For this, four new 3Ah commercial lithium-ion cells were employed. There 

were three stages to this work. Firstly, the differences in properties had to be 

created by ageing the cells. Secondly, characterisation tests were performed so 

that the model could be parameterised. Finally, test data of the cells connected 

in parallel was collected to validate the model and for additional insight into cell 
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behaviour. A full description and analysis of the tests is contained with 

Submission 2 and the research paper [10]. 

 

To create differences in cell properties, each of the four cells was aged by a 

different amount. Each ageing cycle consists of a 1C (3A) discharge to 2.5V 

followed by a CC-CV charge at C/2 (1.5A) and 4.2V. The four cells were each 

aged by different amounts in order to ensure that each cell would have 

significantly different impedance and capacity values. After every 50 cycles, a 1C 

capacity check and electrochemical impedance spectroscopy (EIS, explained 

further in Appendix A) tests at 20%, 50% and 90% SOC were performed. 

Additionally, pulse power tests were performed on the new and aged cells at 20%, 

50%, 80% and 95% SOC and are summarised in Table 4. Full ECMs and their 

component values are discussed in section 4.1.3. The cell capacity decreases 

linearly with the number of ageing cycles, and the resistance increases linearly, 

which are both expected from the ageing process. This demonstrates that the 

cells have substantially different characteristics and so when connected in 

parallel will not behave in a homogenous manner. 
Table 4: Parallel Cell Ageing Results 

Cell Ageing 
Cycles 

1C Discharge 
Capacity (Ah) 

Resistance 
(mΩ) 

Nominal - 3.07 48.1 
1 0 2.94 46.3 
2 50 2.86 51.2 
3 100 2.77 58.2 
4 150 2.65 63.1 

 

4.1.3 Model Validation 

Several different ECMs were parameterised, as discussed later in this section, 

with the aim of analysing the impact of model order on overall accuracy. For all 

parallel cell models, the resistance was not a function of current direction. This is 

because resistance is used to calculate current (and so its direction), creating an 

algebraic loop. 

 

As with single cell ECMs in Chapter 3, the simulated voltage was compared to 

the measured data to evaluate performance. However, the model’s cell current 
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prediction also required evaluation. To do this, the validation test was performed 

on all four cells connected in parallel, with the individual cell currents measured. 

To measure the cell currents, a 10mΩ shunt resistor was connected in series with 

each cell, and its voltage logged using a dSPACE MicroAutobox5, which can 

sample at 100Hz. The cell voltage was also logged, since it would be 

synchronised with the currents, rather than having to combine the dSPACE and 

cell cycler datasets. The shunt resistors were calibrated by passing a series of 

known currents through them using a bench power supply, and measuring the 

corresponding voltages over the resistors. An example voltage trace for various 

currents is shown in Figure 22.  

 
Figure 22: Example profile used to calibrate shunt resistors 

 

                                            
5The dSPACE data acquisition accepts a 0-5V input voltage, whereas the resistor 
produces a ±250mV voltage. This voltage had to be offset and amplified for it to be 
measured, the details of which are in Submission 2. 
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Table 5: Validation of current shunt measurements 

Applied 

Current (A) 

6 12 24 0 -24 -12 -6 

Estimated 

current (A) 

5.9981 11.998 24.011 4.2E-4 -24.005 -12.007 -6.0053 

Error (%) -0.03 -0.02 0.05 - 0.02 0.06 0.09 

 

A linear last squares fit was performed for each current shunt, and validated by 

applying currents to all four cells, and comparing the measured current to the 

sum of each current estimated from the fit.  The validation results, in Table 5 show 

the shunt measurements were accurate to a worst case of 0.1%. 

 

The standard ECM discussed in section 3.3 was used, with different numbers of 

RC pairs used as discussed in the remainder of this section. The cells were 

parameterised according to the method described in section 3.4, and the 

standard Catapult validation drive cycle from Figure 18 was used. Originally, the 

individual cell pulse power obtained from the Bitrode MCV16-100-5 cell cycler 

[136] was used. The simulation results with 2 RC pairs showed that while the 

RMS voltage error of 25mV was in line with typical Catapult data [137], the current 

estimation was inaccurate. Figure 23 shows a snapshot of the measured and 

simulated currents during the validation drive cycle. The current for cells 3 and 4 

(the green and grey lines) are significantly different from the measured values.  

 

 
Figure 23: Experimental and simulated current for four cells in parallel using 10Hz parameterisation data 
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Section 4.1.1 shows that the current calculated by the model is strongly linked to 

the ohmic resistance value. As discussed in Appendix A, the lower the frequency, 

the further the ohmic resistance is from the DC resistance. A higher sample rate 

should result in a more accurate ohmic resistance estimates and so a more 

accurate current calculation. 

 

Limited availability of test equipment at this point meant that a full re-

characterisation could not be performed. Instead, Two pulse power tests were 

performed on the parallel unit of cells, at 10% SOC and 30% SOC6 and used to 

fit the models. While this is a limited dataset with missing high SOC data, it still 

performed well as discussed below. It is believed that this is because the ECM 

parameters are largely consistent at mid-high SOCs, but do change considerably 

at lower SOCs, e.g. 20% and below. This limited dataset essentially captures the 

two main regions of impedance of the cell and as such was prove to be adequate 

for the tests performed here. 

 

Re-parameterisation from pulse power tests at 100Hz performed much better. 

The Bitrode cell cycling equipment, used to collect the original test data, can only 

sample at up to 10Hz, To sample at 100Hz, a dSPACE Autobox was used to log 

cell voltage and current, and the Bitrode used only to control the applied load. 

Figure 24 is a repeat of Figure 23  but using a 3 RC model. The higher bandwidth 

allowed for more time constants: it was found that fitting a 3RC model to 10Hz 

data did not significantly improve performance.  

                                            
6 In Submission 2, it was erroneously stated that EIS data was used as a basis to 
extrapolate the new pulse power data across the 20%, 50% and 90%. This was used for 
a period of time but it was difficult to reliably extrapolate as an ECM from EIS data is not 
equivalent to an ECM from pulse power data because of the differences in bandwidth 
and signal. 
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Figure 24: Experimental and simulated current for four cells in parallel using 100Hz parameterisation data 

A complete summary of model performance for different sample rates and RC 

pairs is given in Table 6. The 2RC model using the 10Hz data is less accurate 

than a 1RC model using the 100Hz data, so the sampling rate of the 

parameterisation data is important as well as model fidelity. For current, the RMS 

and peak error both decrease as the number of RC pairs increases. The third RC 

pair does not reduce RMS error much, but does considerably reduce peak error. 

Terminal voltage error appears to be largely independent of the number of RC 

pairs. This may be because the limiting factor is to do with other aspects such as 

incorporating charge-discharge hysteresis and OCV-SOC data errors. The 

complete parameterisation datasets for all variants of the model are given in 

Table 7. Generally, for a given model order and similar SOC, the Bitrode data 

results in a similar R0 for each cell, with the RC pair values creating larger 

impedance differences, whereas the dSPACE data produces more distinct R0 

values for each cell. 
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Table 6 : Comparison of error between simulated and experimental data for various models 

Sample Rate 100Hz 10Hz 

RC Pairs 1 2 3 1 2 

RMS Error- Current (mA) 60.43 40.24 34.59 98.74 68.72 

Peak Error- Current (mA) 519.5 403.7 266.7 730.9 538.6 

RMS Error- Voltage (mV) 16.38 17.90 17.88 25.32 25.72 

Peak Error- Voltage (mV) 92.8 100.8 89.3 154.5 145.8 

 
Table 7: Parameterisation Dataset for parallel cell ECMs 

Source Cell SOC 
(%) 

RC 
Pairs 

R0   
(mΩ) 

Rp1 
(mΩ) 

τp1  
(s) 

Rp2 
(mΩ) 

τp2  
(s) 

Rp3 
(mΩ) 

τp3  
(s) 

dSPACE 1 10 1 81.7 42.2 8.9 - - - - 

dSPACE 1 10 2 71.8 92.0 1.8 21.1 19.6 - - 

dSPACE 1 10 3 71.8 132.5 2.4 0.3 18.7 37.1 36.1 

Bitrode 1 20 1 62.9 36.7 14.7 - - - - 

Bitrode 1 20 2 57.1 57.6 2.3 29.0 59.6 - - 

dSPACE 1 30 1 67.7 12.0 15.3 - - - - 

dSPACE 1 30 2 60.7 5.9 0.0 11.8 17.1 - - 

dSPACE 1 30 3 60.2 6.0 0.0 4.9 8.1 14.2 46.0 

Bitrode 1 50 1 47.0 16.2 26.1 - - - - 

Bitrode 1 50 2 46.3 8.4 12.3 10.3 73.1 - - 

Bitrode 1 90 1 53.6 27.4 33.4 - - - - 

Bitrode 1 90 2 52.0 7.7 7.4 23.9 68.2 - - 

dSPACE 2 10 1 66.6 165.7 5.7 - - - - 

dSPACE 2 10 2 59.6 23.8 0.4 16.5 12.5 - - 

dSPACE 2 10 3 61.6 20.9 0.6 26.3 20.5 43.0 222.8 

Bitrode 2 20 1 62.6 61.2 17.0 - - - - 

Bitrode 2 20 2 58.6 89.8 3.3 29.7 54.0 - - 

dSPACE 2 30 1 60.1 20.0 0.5 - - - - 

dSPACE 2 30 2 55.9 19.9 0.2 13.9 12.3 - - 

dSPACE 2 30 3 55.2 16.9 0.2 5.4 2.4 17.6 30.0 

Bitrode 2 50 1 55.0 22.1 27.2 - - - - 

Bitrode 2 50 2 52.7 7.9 5.5 20.9 67.9 - - 

Bitrode 2 90 1 66.8 44.2 33.4 - - - - 

Bitrode 2 90 2 47.8 13.4 3.0 42.4 68.1 - - 

dSPACE 3 10 1 79.9 210.7 6.1 - - - - 

dSPACE 3 10 2 68.2 27.9 0.4 30.1 21.7 - - 

dSPACE 3 10 3 67.1 27.8 0.4 28.8 13.2 1.7 24.2 
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Bitrode 3 20 1 61.4 44.9 13.0 - - - - 

Bitrode 3 20 2 55.9 76.7 2.8 31.9 66.9 - - 

dSPACE 3 30 1 73.4 11.4 6.6 - - - - 

dSPACE 3 30 2 62.2 12.9 0.1 14.0 13.0 - - 

dSPACE 3 30 3 61.5 11.8 0.1 4.5 3.3 17.7 35.4 

Bitrode 3 50 1 50.2 17.5 24.3 - - - - 

Bitrode 3 50 2 48.6 9.0 9.8 16.7 82.1 - - 

Bitrode 3 90 1 59.2 32.5 32.3 - - - - 

Bitrode 3 90 2 50.2 9.2 4.0 30.5 56.4 - - 

dSPACE 4 10 1 72.3 94.2 3.2 - - - - 

dSPACE 4 10 2 65.7 28.6 0.5 33.9 18.4 - - 

dSPACE 4 10 3 68.7 33.3 0.9 0.9 15.9 185.4 422.6 

Bitrode 4 20 1 62.3 66.4 15.2 - - - - 

Bitrode 4 20 2 58.0 99.5 3.6 35.2 57.8 - - 

dSPACE 4 30 1 67.5 30.5 0.7 - - - - 

dSPACE 4 30 2 61.8 28.2 0.3 15.4 8.6 - - 

dSPACE 4 30 3 60.7 22.6 0.2 15.4 7.8 20.3 33.0 

Bitrode 4 50 1 58.4 26.3 27.2 - - - - 

Bitrode 4 50 2 52.9 9.9 3.8 25.3 63.6 - - 

Bitrode 4 90 1 71.0 48.0 34.8 - - - - 

Bitrode 4 90 2 49.3 22.1 0.5 63.8 58.5 - - 

4.1.4 Analysis of Cells connected in Parallel 
This section uses the validated model to simulate various scenarios. These 

results, along with experimental data, are used to evaluate the implications for 

battery performance and design when using cells connected in parallel. 

 

4.1.4.1 Current Distribution 
Figure 25 shows the experimentally measured cell currents and temperatures 

during a 1C discharge from fully charged until the lower voltage cut off was 

reached. The discharge rate is calculated using the capacity of a new cell, making 

it over 1C for the aged cells, and as a result the discharge time is less than one 

hour. The temperatures were measured using a T-type thermocouple attached to 

cell exterior, midway along its length. There is a substantial change in current 

distribution after 2800s, as the cells enter the low SOC region. By the end of 

discharge, the most aged cell (cell 4) is undergoing the largest current, and the 

least aged cell (cell 1) is undergoing the smallest current.  
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Figure 25: Experimentally measured current and temperature during a 1C constant discharge 

 

This phenomenon has been previously reported in [135], where the authors 

attributed it to the increase in impedance that occurs at low SOCs. Less aged 

cells, which have previously undergone more current, will be at a lower SOC 

(although this in turn depends on their relative capacities) and so eventually their 

impedance will increase beyond the impedance of the more aged cells. This 

causes the more aged cells to see larger currents towards the end of the 

discharge.  In addition to this, the OCVs of some cell chemistries decrease more 

significantly at low SOCs. This means that during discharge the OCV of lower 

SOC cells will be significantly closer to the terminal voltage and so less current is 

able to flow. Equation (35) approximates the cell current by rearranging (12) with 

RC pair voltages removed for simplicity. This shows the resistance rise and lower 

OCV both work to reduce the current through low SOC cells.  

 𝑖`qrr =
𝑣c − 𝑣ÌÍ
𝑅f

 (35) 

Clearly, the current is quite dynamic and it is an oversimplification to assume that 

the distribution is fixed and that the most aged cell will always undergo the 



 65 

smallest current. These results highlight that this is application dependent and 

relative to the magnitude, duration and frequency content of the electrical load 

current. For example, a HEV battery pack is typically maintained within a narrow 

SOC window centred about 50% SOC, meaning it won’t undergo the same low-

SOC current switching as a BEV may do. 

 

The cell’s temperature change during discharge is known to be a function of 

impedance and current [138]. The lower plot of Figure 25 shows the measured 

cell surface temperature corresponding to the discharge profile in the upper plot. 

The ambient temperature was regulated at 25°C. At first, cell 1 undergoes the 

greatest temperature rise due to the larger cell current. However, after 1000s the 

temperature of cell 4 surpasses that of cell 1. By this point there is not as much 

difference in cell currents, and so the higher impedance of cell 4 causes greater 

heat generation despite the lower current. The temperature of cell 2 is 

consistently the lowest of all of the cells because it has a relatively low impedance 

without undergoing the large currents experienced by cell 1, which combine to 

produce relatively low heat generation. 

 

4.1.4.2 Drive Cycle Type 
As mentioned above, a typical of drive cycle will impact the current distribution. A 

simulation of the validation drive cycle, which is typical of HEV usage, is shown 

in Figure 26. A simulation of the ageing cycle from section 4.1.2 was performed, 

but with the current magnitude doubled. The drive cycle finishes at 1219s, but the 

simulation is continued with no applied load to observe the cell balancing. 
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Figure 26: Simulation results for the validation drive cycle 

A discharging-charging profile with the moderate current and wide DOD is 

representative of a BEV was also simulation, and the results are shown in Figure 

27.  
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Figure 27: Simulation results for the ageing drive cycle 

Comparing the two, the BEV application will result in greater SOC difference 

between the cells, with approximately 5% difference between the highest and 

lowest SOCs.  This will potentially reduce the energy utilisation of the pack as 

EOD will be reached with some cells within the parallel stack having energy 

remaining. The rest after the discharge in Figure 27 show the cells self-balance 

in an exponential nature when the applied current is zero (or relatively low). The 

time taken to self-balance will depend on the initial SOC difference, internal 
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resistance and slope of the OCV-SOC curve (a flat curve means more charge 

throughput is required to bring the cells to the same voltage). The mean cell 

current loading can be calculated using (36), which normalises the cell charge 

throughput against the net applied charge. Table 8 shows the results of applying 

(36) to both drive cycles. The results show that the BEV application results in a 

more even loading between cells because of the lower magnitude. The relative 

loadings of the most and least aged cells are further apart for the HEV cycle. This 

is likely to increase the ageing of the least aged cell, and reduce the ageing of 

the most-aged cells, bringing the SOHs closer together [37].  

 𝑖jm�Û = 100
∫|𝑖`qrr|
∫Þ𝑖abbÞ

 (36) 

 
Table 8: Summary of parallel cell current distribution simulation results 

Cell Number Ageing Cycles Normalised Current (BEV) Normalised Current (HEV) 

1 0 26.61 27.77 

2 50 25.64 25.09 

3 100 25.25 25.45 

4 150 23.47 22.5 

 

4.1.4.3 Imbalance Through Inter-cell Connections 
The experimental set-up of four cells in parallel consisted of each of the cells 

connected to two common terminals. However, in some battery packs, such as 

the Tesla Model S, parallel cells are connected in a “ladder” form, shown in Figure 

20, where only the first cell is connected to the terminals. The interconnection 

resistance Rconn gradually increase the effective resistance of the cells further 

away from the terminals. The resistances have a cumulative effect and so will be 

most noticeable in a highly parallelized battery pack. As such, this simulation uses 

70 cells in parallel, with a 10µΩ connection resistance between each cell. This is 

less than 1000th of the impedance of the cell and could represent the resistance 

of the bus bars connecting the cells or imperfect welds. The validation current 

profile was used, but the current magnitude was scaled up by a factor of 70:4 to 

account for the increase in capacity. The 30% SOC dSPACE parameters from 

Table 7 were used for all 70 cells, meaning without the interconnection 

resistance, all of the cell currents would be identical. The results showed that the 
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increased effective cell resistance of the further away cells means that they draw 

a lower magnitude current than the cells closer to the terminals. This is quantified 

in Figure 28, which shows the charge throughput of each cell over the drive cycle, 

scaled relative to what the cell current would be if there were no interconnection 

resistance. The plot shows that the cell closest to the terminals (with the lowest 

effective resistance) undergoes over 50% more charge throughput compared to 

the cell furthest from the terminals. This will increase the amount of energy 

imbalance, the rate of ageing and heat generation. 

 
Figure 28: Relative charge throughput for a 70p1s pack with interconnection resistance 

4.1.5 Conclusions 
The experimental and simulation work shows that cells with different impedances 

and capacities connected in parallel do not behave in a uniform manner and can 

see significantly different currents. As a BMS does not typically monitor current 

within parallel units, some cells may be taken above their intended operating 

current, or be aged more quickly due to increased charge throughput and ohmic 

heat generation, shortening the lifespan of the pack. Similarly, a cell losing 

electrical contact with the battery pack could result in poor SOC estimation, 

leading to the driver being misled about the available range of the vehicle. A 

typical HEV drive cycle does not appear to cause a significant amount of SOC 
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variation between cells in parallel due to its dynamic nature. However, steady 

currents and drive cycles which cover a large DOD, where cells can enter the 

region where impedance increases and the OCV-SOC curve gradient increases, 

can cause significant variation and give rise to cases where higher impedance 

cells can take larger currents. These effects, combined with the cumulative 

impact of cell connection resistance, may lead to premature ageing of some cells, 

weakening the pack as a whole. Variation in current can also cause uneven heat 

generation within a pack which may require a more advanced thermal 

management system. 

 

SOC imbalance within a parallel unit of cells is induced during a drive cycle. The 

cells do self-balance, but this occurs relatively slowly and so the rate at which 

imbalance is induced will often be greater than the rate at which the cells naturally 

self-balance (this effect will be more pronounced during more aggressive drive 

cycles). From this analysis balancing cells in series is the more pertinent issue. 

Additionally, hardware options for balancing are currently designed for cells in 

series [17, 48, 139], and designing for parallel-connected cells would shift the 

focus of this work from control algorithm design to hardware electronics and 

manufacture. As such, the decision was made to focus on series cells for the 

remainder of this research. 

 

4.2 Cell Connected in Series 
Connecting ECMs in series can scale up simulations from the cell level to the 

pack. This can be used to evaluate imbalance and form the basis of a software-

in-loop (SIL) plant model, which can be combined with a model of a balancing 

system and used to evaluate performance and design of a control system. 

 

Truchot et al. [140] connected three cells in series and compared individual cell 

models with a combined pack model, evaluating different ways of extrapolating 

from the single cell SOCs to the pack SOC, for example taking the average of 

each cell’s SOC. The authors found that no method of extrapolation accurately 

represented the pack SOC across the whole SOC range. However, the authors 

did not consider the impact of imbalance on usability. Even if the pack SOC is at 
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for example 5%, if one of the cells within that pack has reached 0% then the pack 

has to cease operation, and so the 5% is a misleading figure for the end user. In 

this case, the pack SOC could be seen as the minimum cell SOC during 

discharge, and maximum cell SOC during charging. In the case of active 

balancing, the actual usable SOC could approach the pack SOC if all the energy 

in each cell is utilised (they would not strictly be equal owing to the energy lost 

during balancing). Other approaches are often similar, with a nominal cell model 

created in [141] and statistical methods applied to model the strongest and 

weakest cells. This could reduce computational demand compared to having an 

estimator per cell, but the specifics of which cell is at which SOC is lost, which is 

required for improved balancing control. Similarly, a battery model is proposed in 

[142] lacks the individual cell level information required for balancing. 

 

Combining cells in series is straightforward, as (without balancing), all cells 

undergo the same current and are independent of one another. Some initial 

modelling utilising cells in series was published by the author [8], combining the 

cell models with high-level models of different balancing systems to perform 

closed-loop simulations. This type of modelling and simulation work is built upon 

here. From Chapter 2, the key properties which affect cell behaviour in the short-

term are capacity and internal resistance. To test the balancing system in Chapter 

6, seven 15Ah pouch cells were obtained from a second-hand electric vehicle 

which underwent four years of real-world driving. The cells were characterised as 

part of the standard Catapult procedure, using procedures A-C from Appendix B, 

and the resultant capacity and resistance measurements are shown in Table 9. 

As Table 9 shows, there is significant variation amongst the cells. The capacity 

shows a 0.67Ah standard deviation, which is 4.6% relative to the mean capacity. 

Similarly, the internal resistance has a 0.14mΩ standard deviation, which is 4.9% 

relative to the mean. This has the potential to create a significant amount of 

imbalance. 
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Table 9: Summary of ageing characteristics of automotive pouch cells 

Cell 
Number 

1C Discharge 
Capacity (Ah) 

Average resistance (mΩ) 

90% SOC 50% SOC 20% SOC 

1 13.44 1.89 3.02 3.73 

2 13.87 1.80 2.81 3.20 

3 15.16 1.76 2.71 2.87 

4 15.13 1.78 2.75 2.91 

5 14.90 1.76 2.64 2.72 

6 14.86 1.76 2.64 2.71 

7 14.78 1.77 2.66 2.72 

 

Example pulse power fit is shown in Figure 29, and a comparison of the fit results 

is given in Table 10. While a 1RC model gives acceptable results, a significant 

improvement can be made with 2RC model, and a further smaller improvement 

with a 3RC model.  

 

Figure 29: Example pulse power fit for an automotive pouch cell 

The OCV-SOC data, obtained using GITT, used are shown in Figure 30. Note 

that there is no charging data above 92%, and no discharging data below 8%, so 
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outside of these respective limits the yellow average line is equal to the respective 

remaining data source. For this test work there was not sufficient availability in 

the laboratory to run the standard Catapult validation profile. Instead, test data 

collected during the experimental work were used to validate the ECM. For 

example, Figure 31 shows a current for one cell profile used when setting the 

cells to balance in different combinations, which is explained further in section 

6.6. Note that in this case, only 4 cells were connected due to the issues 

mentioned in section 6.1. The parameterisation results are shown in Table 11. It 

is noteworthy that the voltage errors are lower compared to the Catapult 

validation profile because the currents are lower. 

 
Figure 30: OCV-SOC data for an automotive pouch cell 

 
Table 10: Pulse power ECM fit results for an automotive pouch cell 

Order RMS error (mV) Peak error (mV) 

1 1.77 21.52 

2 0.63 8.16 

3 0.37 3.11 
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Figure 31: Example model validation for an automotive pouch cell 

 
Table 11: Pouch Cell model validation results 

Cell RMS error (mV) Peak error (mV) 

1 0.80 2.09 

2 0.97 4.25 

3 3.91 5.31 

4 0.59 2.62 

 

Pulse power data were used to parameterise the cells at 20,50 and 90% SOC as 

described in section 3.4. Figure 32 shows the cell voltages and SOCs during a 

2C discharge pulse. The initial conditions were set such that the cells would be 

exactly balanced at the end of the test. The cell voltages at the end of the pulse 

were 12mV different owing to impedance differences. The difference is purely 

because of the impedance differences between the cells, and is an example of 

how voltage can be a misleading metric of imbalance. 
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Figure 32: Cell Voltages and SOCs during a 10 second pulse simulation 

 

Vehicle drive cycles can be used to simulate the battery pack during a variety of 

typical driving scenarios. Often the drive cycle is for vehicle speed, and can be 

translated to a load current using a 1D vehicle model, which requires some basic 

vehicle information such as drag coefficient, vehicle frontal area and vehicle mass 

[143]. Vehicle speed for the Artemis Combined drive cycle along with the battery 

pack current calculated using the Catapult 1D model [143] is shown in Figure 33. 

Figure 34 shows the SOCs of the cells when subject to the drive cycle in Figure 

33 with no balancing. As can be seen, the cells start balanced at 90% SOC, but 

by the end of discharge the cell SOCs have diverged, with an 8.4% difference 

between the highest and lowest SOCs. 

 

Battery pack simulations such as these help to assess performance and quantify 

imbalance for various scenarios. They are also used later in this research for 

closed loop simulations, where state estimators and controllers can be designed 

and developed offline.  
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Figure 33: Artemis Combined drive cycle vehicle speed and derived battery current 

 

 
Figure 34: Simulation of Artemis Combined drive cycle 
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4.3 SOC Estimation 
In section 2.1.5, the fundamentals for cell state estimation using a Kalman Filter 

were introduced. The basic premise is as follows: 

1. Use coulomb counting to predict the SOC at the next time step. 

2. Use an ECM to predict the cell’s terminal voltage. 

3. Compare this to the measured cell voltage. 

4. Use the difference between the two to update the states with the Kalman 

gain matrix. For example, if the estimated voltage is too high, it is likely 

that the OCV estimate, and so SOC estimate, is also too high. 

 

As the cell model is nonlinear, a nonlinear variant of the KF is required7. The 

Sigma Point Kalman Filter (SPKF) was chosen because of its balance between 

performance and complexity. It offers superior performance for highly nonlinear 

systems compared to an extended Kalman Filter (EKF) without much higher 

computational complexity [75]. There is no specific definition of ‘highly nonlinear’, 

but parameter estimation using a KF can cause large nonlinearities. For example, 

(37) shows the gradient for internal resistance (the partial derivative of (12)) is 

equal to the cell current, which can often be highly discontinuous and dynamic 

rather than a smooth profile.  

 
𝜕𝑣c
𝜕𝑅f

= 𝑖 (37) 

 

The EKF also requires Jacobians to be calculated for the state and output 

equations. The Jacobians contain the partial differentials of the state and output 

equations with respect to each state [82]. These Jacobians are not required with 

the SPKF, making it easier to implement and change between different models. 

For these reasons, the SPKF provides a suitable framework for this work and 

future developments. The specifics of the SPKF algorithm and its implementation 

are contained within Submission 5. The data and experimental results from this 

                                            
7 Another alternative is to linearise the model and use gain scheduling to switch between models 
when appropriate (for example at fixed SOC and temperature points). Linearisation was not 
pursued as it lacks the flexibility of nonlinear methods. Different models with differing degrees 
of nonlinearity were used in developing the estimator, and each one would require evaluation 
to determine whether linearization was feasible and how performance would be affected. 
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section use the automotive pouch cells from section 4.2 to help illustrate the 

application of KFs within this context. These were ultimately used as part of the 

closed-loop real-time system detailed in section 6.5. 

 

During development, it was found that tuning the estimator using SIL had limited 

applicability to when it was run online. This is because ECMs in the plant model 

are missing dynamics compared to the actual cell, particularly with regard to 

relaxation. The plant and estimator models are similar (both missing the same 

dynamics), meaning the estimators appear to perform much better in SIL than 

during testing. This is discussed further in Submission 5. While SIL simulations 

were used to get a functional solution, a considerable amount of online tuning 

was required. This typically involved utilising all test data: for example when 

loading the cells without balancing (for example in preparation for a balancing 

test), different configurations could be evaluated since poor estimator 

performance is not a concern for that particular test. As more test data were 

collected, offline tuning could be performed using previous test results. This has 

the downside of not having a reference SOC as a SIL model has, but it means 

that unmodelled cell affects could be better accounted for.  

 

4.3.1 Estimator Design 
A full discussion of the estimator structure is contained within Submission 5. It 

was found that estimating internal resistance online allowed for the estimator to 

be more robust to uncertainty in temperature, ageing and a wide SOC operating 

range. However, the other ECM parameters and cell capacity were harder to 

estimate using a KF and their values has less of an impact on SOC estimation 

performance, so the offline parameterisation values were used. For much of the 

experimental work in Chapter 6 , a 1RC ECM was used to simplify the estimator. 

It is generally recommended [137, 144] that a 1-2RC pairs provide a suitable 

balance between simplicity and performance. The internal resistance was also 

estimated. The estimator states are given by (38). 

 𝒙 = [𝑠 𝑣àÍ 𝑅m]á (38) 

This generally performed well, but there were two areas identified for 

improvement. Firstly, it was difficult to tune: a good resistance estimate could be 
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achieved, but sometimes this was at the expensive of SOC state accuracy or 

noise. Secondly, only having one time constant resulted in poor performance 

under wider DODs– particularly if the current was constant. A wide DOD means 

there is a significant low-frequency component to the drive cycle which requires 

a wider model bandwidth. An ECM with 3 RC pairs contains lower frequency time 

constants which can help improve on the first issue. However, the additional 

states made tuning the system even harder. This is especially the case for SIL, 

as now the cell and estimator models are largely identical. To simplify the 

estimator, resistance was removed as a state, so the SPKF states were defined 

by (39).  

 𝒙 = [𝑠 𝑣àÍÑ 𝑣àÍ× 𝑣àÍâ]á (39) 

To estimate resistance, the NLLS solver from section 3.4 was run every 1 second 

on the previous 20s of test data. Tests were run using experimental data to try 

and solve for a 3RC model, which could mean all of the SPKF parameters could 

be updated based on changes in operating conditions. However, there was a lack 

of consistency in the parameter estimates from one second to the next, apart 

from internal resistance. To capture slower dynamics, a longer time history would 

be necessary, increasing the execution time and memory requirements, making 

it difficult to run online in real-time8. A 1RC model was fitted instead, and only the 

resistance estimate from this NLLS fit used in the SPKF model.  

 

4.3.2 Performance 
The relative accuracy of estimators is difficult to ascertain as much of the error 

comes from dynamics not modelled by the reference model, and so only show 

up during experimental testing. The current sensors and cell capacity estimates 

used for this testing were not sufficiently accurate to be able to use coulomb 

counting as a reliable metric. As discussed further in Submission 5, it was found 

in practice that the 3RC estimator performed better than the 1RC version, but still 

suffered from many of the same issues, notably sensitivity under relaxation and 

a lack of excitation during constant current operation. SOC estimation accuracy 

                                            
8 A longer time frame could be fitted by downsampling the data. As the focus is on low frequency 
dynamics, downsampling should not affect the parameterisation too much, although it may 
impact the internal resistance estimate. More research is required to explore this further. 
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could be inferred from observing how much the estimate changes once a load 

profile has finished and the cell relaxes, as the voltage correction becomes much 

stronger (after complete relaxation, the filter will just act like an OCV-SOC lookup 

table). The estimators appeared to consistently operate with less than 2% error. 

 

4.4 Summary 
This section has demonstrated the various uses of ECMs throughout this work. 

Section 4.1 showed how cells in parallel can be modelled, and that contrary to 

popular belief, can become significantly imbalanced. Other effects such as 

differences in current and temperature were also discussed. These have 

implications for battery pack design as well as imbalance and there is a 

considerable amount of possible research around this area. Section 4.2 used 

ECMs in series to analyse imbalance and create a plant model, which is used 

further in chapters 5 and 6 for developing a balancing control system and perform 

closed-loop simulations. Cell state estimators were developed in section 4.3 to 

estimate SOC so that imbalance can be evaluated. These are used in Chapter  6  

as part of the real-time experimental set-up. With cell and battery modelling 

addressed, the next Chapter focuses on modelling and control of the balancing 

system itself.  
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5 Balancing System Control 
In Chapter 2, a number of conclusions were drawn regarding the requirements of 

a balancing control system: 

• The high-level control goal is to ensure that all of the cells are balanced by 

EOC and EOD. This allows for all of the energy within the battery pack to be 

utilised. 

• The low-level control goal is to bring all cells to the same SOC. This will 

generally be the mean SOC, but could also be the maximum or minimum; 

• A generic control framework is desirable, as it avoids limiting the control 

system to one type of hardware. 

• This generality means it must be easy to adapt to specific hardware, e.g. 

factoring in current limits and inter-cell connections. 

 

This Chapter addresses the fourth Research Objective of the EngD: to develop a 

generic balancing control system with the specific goal of maximising the energy 

utilisation of the battery pack. A control-oriented model of the cells with respect 

to the balancing system is derived and used to implement controllers to remove 

energy imbalance. At this point, a generic, idealised balancing system is 

considered in order to focus on the more fundamental aspects of the control 

problem. An implementation with specific hardware is detailed in Chapter 6. The 

generic system considered for development is shown in Figure 35. 

 

 
Figure 35: Overview of the battery system in the context of balancing 
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Details about each signal are presented in Table 12, and a description of each 

subsystem in Table 13. This encapsulates the balancing system itself, along with 

the other aspects of the battery pack and BMS that are required for balancing. 
Table 12: Battery subsystem descriptions 

Signal Range Accuracy Description 

Cell Voltage 0 to 5V 1mv The voltage values used by the BMS are 
assumed to be post filtering and processing. 

Higher accuracy voltage measurements can 
improve SOC estimation, especially for cells 

with flat regions in the OCV-SOC curve. 

Load Current ±2C 0.1% full 
scale 

The current values used by the BMS are 
assumed to be post filtering and processing. 

The specific range and resolution will be 
dependent on the application and performance 

specifications. HEVs typically operate at much 
higher C-rates than a BEV, but the cell capacity 

is smaller, so the measured current magnitude 
might be lower. 

SOC 0 to 

100% 

0.5% The SOC estimation accuracy depends on cell 

properties and algorithm performance, which in 
turn is determined by the requirements of the 

system. 

Balancing 

Current 

±0.2C 0.01A The specific range of current is dependent on 

the application and hardware capability.  

Time to 
EOD/EOC 

0-7200s 60s The remaining mileage/ time remaining is 
estimated by the energy management system, 

and sent to the BMS.  

Time-to-

balance 

0-7200s 60s The time-to-balance estimate is calculated by 

the balancing controller, and can be compared 
with the time to EOC/EOD to assess whether 

balancing should be activated. 

Balancing 
Signal 

0-1 0.01 Depending on the balancing system interface, 
cell current may be required to be translated 

into a normalised value (or some other abstract 
signal). It will also likely need to be quantised 
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and transmitted via a digital communications 

bus such as CAN or SPI. 

Balancing 
Management 

Signal 

Boolean - An overall signal to enable or disable balancing. 
If disabled, the balancing algorithm should still 

run in the background to give an up to date time-
to-balance. 

 
Table 13: Subsystems relating to cell balancing  

Subsystem Description 

Battery Pack This contains the cells, balancing hardware, battery management 

system microcontrollers, safety circuitry and thermal management. 

Cells Each series unit of cells requires a voltage measurement. For 

systems with passive balancing, typically only the applied current is 

measured but for ABSs, cell current measurements could improve 
SOC estimation accuracy, though may be inferred from the load and 

the balancing current calculation. 
Temperatures sensors are also positioned throughout the pack 

(typically less than one sensor per cell). As well as for safety and 
thermal management, these can also feed into the estimation 

algorithms for improved accuracy. 

State Estimators Estimates of SOC and SOH (cell impedance and capacity) are 

required by the BMS. A joint estimator may be used to estimate all 

signals simultaneously, or SOH may be decoupled from SOC owing 
to the different timescales.  

Balancing 
Manager 

This makes the decision whether balancing should take place, given 
the status of the cells and the load profile and history. See section 

5.1 for details.  

Imbalance 

regulator 

This is the core algorithm to determine what balancing current each 

cell requires based on the cell SOCs. The details of the proposed 

solutions are in section 5.4.  

Hardware 

Configuration 

This translates the balancing current request into a signal required 

by the balancing hardware. See “Balancing Signal” in Table 12. 

Range Estimator An estimate of the remaining driving time/distance of the vehicle is 
performed by the energy management system, and is outside of the 

scope of the balancing system. 
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The following assumptions are made regarding this generic architecture of the 

balancing system: 

• Every cell can be set to balance, and can be operated simultaneously. If this 

is not directly feasible (for example, the Texas Instruments EV1401EVM 

balancing development board [145] can only set one cell to balance per 

module), the hardware configuration layer could implement multiplexing, 

which cycles through each cell, setting it to balance for a short period of time. 

• There are limits on balancing current magnitude. These are considered here 

as inequality constraints, but other forms of constraints could also be applied. 

Each cell can have different current limits, and different values for charging 

and discharging (by setting one of these to zero, uni-directional balancing can 

be implemented). These constraints could be a function of operating 

conditions such as cell voltage, but are considered time-invariant here. 

• While SOC is fundamental to the balancing system, the cell state estimators 

are separate to the balancing controller. The cell SOC estimates are treated 

as measurements (with some uncertainty) by the balancing controller. The 

cell capacity estimates from the SOH estimator are also required by the 

controller. However, these will change slowly (for example, 20% over the 

course of 5-8 years [146]) and can be assumed as constant during any 

balancing operation, and periodically updated between balancing. 

 

The high-level strategy for deciding when to balance is proposed in section 5.1. 

The low-level controller structure is outlined in section 5.2, and the model used 

to design the controllers derived in section 5.3. The specific controllers for 

regulating imbalance are derived in section 5.4, based on this model. Simulations 

are presented in section 5.5, with conclusions drawn in section 5.6. The control 

system development is primarily covered in Submissions 3 and 5.  

 

5.1 Balancing Management 
Before addressing the specifics of how balancing currents should be determined, 

there is the wider question of when to balance. While active balancing aims to 

redistribute charge rather than dissipate it as heat, the system will not be 

completely efficient and some energy will still be wasted. Additionally, there will 
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be some power consumed by the electronics when active. The energy loss during 

balancing means that unless balancing explicitly contributes to additional energy 

utilisation, it could actually reduce the energy output of the battery pack.  

 

In Chapter 1, it was noted that when using SOC to quantify imbalance, there is a 

potential to balance when not necessary. Figure 7 showed that depending on the 

cell capacities and initial SOCs, it is possible that the two currently imbalanced 

cells would naturally reach a balanced state without any active balancing 

required. In this case, the fact that the cells are imbalanced in the central SOC 

region did not matter because they would be balanced by EOD. There are other 

situations when this also applies. Take for example, a BEV driver. Often, the car 

will be charged overnight, which gives a long time for the balancing system to 

ensure that all cells are fully charged. The next day, as the battery pack is 

discharged through driving, the cells will start to become imbalanced owing to 

capacity differences. However, it is quite likely that the driver will return the 

vehicle to charge before the SOC gets too low, e.g. when the cells are around 

30% SOC. When the cells are charged, they will naturally return to an 

approximately balanced state9, as all of the cells have undergone the same 

current and the amount of charge removed during driving and replenished during 

charging is the same. If balancing had been applied during driving to ensure the 

cells were continuously balanced, balancing would again be required during 

charging. And since the driver stopped driving at a moderate SOC, this balancing 

has not contributed to any extra energy utilisation: the battery pack was capable 

of supplying the required energy, despite the imbalance. 

 

There are clearly many times when balancing is of no benefit. However, if the 

pack is brought down to a low SOC, it could be limited by a weaker cell (or that 

cell being at a very low SOC is undesirable for the vehicle strategy, worsening its 

efficiency and ageing). In this case, active balancing can offer quantifiable gains. 

The proposed active balancing management strategy for a BEV (or other wide 

DOD application) is shown in Figure 36 and detailed below. 

                                            
9 There will be differences which have emerged through self-discharge and electronics power 
consumption, but as discussed in 2 this will be small compared to the amount of imbalance 
which emerged during driving. 
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Figure 36: Balancing Decision Flowchart 

1. Ensure the cells are fully balanced by EOC (some balancing after charging 

has finished would be acceptable in some circumstances such as the car 

being charged and parked overnight, but other times the driver will want to 

continue driving as soon as charging is complete). 

2. Do not balance while the vehicle is being discharged. Having the active 

balancing hardware in a standby mode will ensure it drains a minimal 

amount of current. However, imbalance should be monitored and used to 

estimate the amount of time required to remove this imbalance. 

3. If it appears the driver will require the full energy of the battery pack, then 

activate the balancing system. 

a. The point at which this occurs will depend on how fast imbalance 

can be removed, and so is hardware dependent. 
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b. At a simple level, this could be when the cell with the lowest SOC 

goes below a threshold. A more effective strategy would be to use 

the vehicle’s energy management system. This should predict a 

remaining driving time (assuming that the cells are balanced). 

When the time-to-balance estimate starts to approach the time-to-

EOD, balancing should be activated. 

c. Further improvements could be made by employing wider vehicle 

data. For example, if the driver has programmed a charging point 

(such as their home address) into the navigation system, that 

journey may be achievable without balancing, even though the 

time-to-balance might be greater than the time-to-EOD. 

4. When the vehicle is charging, stop balancing, even if the cells are still 

imbalanced. When the cells are approaching EOC, return to step 1. 

 

An arbitrary SOC or voltage difference is often used in the literature. Values such 

as 2% [112] to 3% [48] are often used. However, this can still limit pack 

performance. In a BEV, where the cells may be charged to close to 100%, and 

discharged to near 0%, reducing imbalance by a further 2% could make a big 

difference and avoid the cells having to be discharged quite so far. The danger 

with trying to remove imbalance completely is that the cells will be over-balanced: 

some cells will be close to the mean before others. These cells may then be 

frequently set to charge/ discharge as they hover around the mean. A hysteresis 

value can be applied around the threshold, although this can mean that global 

imbalance becomes relatively large, as discussed in 5.5. This wastes energy 

without achieving any imbalance reduction. The control system should be able to 

minimise this effect while still reducing imbalance as much as possible. In section 

2.1.4, the absolute SOC difference (the maximum minus the minimum) was 

chosen to use as the high-level imbalance metric. A value of 0.05% is used in the 

simulation studies in this work to determine when balancing should finish. This is 

chosen as a small value, but greater than zero, which could cause balancing to 

continue indefinitely, wasting energy. No limit was applied for the experimental 

studies, in order to analyse close-to-balanced behaviour. 
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5.2 Imbalance regulation 
With the high-level strategy defined, the low-level controller can be designed. The 

low-level strategy deals with the specifics of moving energy between cells. A 

logical control goal is to bring all cells to the same SOC simultaneously. Having 

some cells finish balancing before others means that a higher than necessary 

balancing current has been used, resulting in more power loss [112], while the 

battery pack is still being limited by the other cells which are out of balance. 

Creating a trajectory for each cell in order for them to reach the mean 

simultaneously requires knowledge of the cells in order to predict forward in time, 

rather than just react to the current state. To do this, a model-based approach is 

used for the control system design. This uses information about the cells to 

understand how SOC will be affected by balancing currents, so that the ideal 

balancing currents can be determined. 

 

5.3 Derivation of control model 
As discussed within Chapter 2, SOC is used as the metric of imbalance. The SOC 

state equation (16) first introduced in section 3.3 forms the basis of the control 

system. However, with balancing, the cell current is comprised of two 

components. There is the balancing current, which is controllable, and the battery 

pack applied load current, a disturbance which the balancing system cannot 

control but may account for. Controlling the balancing system also adds an 

interaction between the cells, as all SOCs are required to determine the value of 

the balancing currents that should be applied. 

  

5.3.1 Cell SOC System 
The combined system for N cells is given by (40). The SOC vector s is calculated 

using the control input u (a vector of each cell’s balancing currents) and the scalar 

disturbance d (the battery pack load current). The Bc matrix and bd vector are 

both similar, containing the scaling factor which translates current into a 

percentage. At this point, the cells are still independent, as there is no control law 

linking the cells states to the input vector. 

 𝒔̇ = 𝐵`𝒖 + 𝒃𝒅𝑑 (40) 
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Even without this coupling, the balancing system may cause interactions. For 

example, a cell-module balancing system connected to N cells will load the 

module with approximately 1/Nth the balancing current of each cell (including 

itself), in the opposite direction. For example, if a 4-cell system set the first cell to 

charge-balance at 2A, each cell would undergo -0.5A, meaning the first cell 

current is 1.5A. This interaction can be incorporated into the control model using 

(41), which calculates the modified control input matrix Bc’. The F matrix for the 

above example is also shown, though this can change depending on the physical 

connections between each cell. It also assumes 100% system efficiency. In 

practice, more than 0.5A would be required from the cells to result in 2A at cell 1, 

and if the first cell was discharging instead, they would be charged at less than 

0.5A. However, an algebraic loop can occur within the control system if F is 

updated based on the balancing direction, as it is itself used to calculate 

balancing direction. The additional complexity of factoring in the efficiency is not 

worth the relatively low increase in cell current accuracy that the model provides. 

The change in current from factoring in efficiency will typically be in the region of 

milliamperes, a fraction of the total cell current. 

 

𝒔̇ = 𝐵`ä𝒖 + 𝒃𝒅𝑑 
𝐵`ä = 𝐵`(𝐼 + 𝐹) 
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(41) 
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5.3.2 State transformations 
As noted in section 5.1, the goal is to bring all cells to the same SOC. However, 

the SOCs will be continually changing because of both u and d, meaning the set-

point reference will also be moving. The distance from the mean of the SOC 

vector (∆SOC) was used as the target, as discussed in section 2.1.4. To achieve 

this, a linear state transform was applied to create the ∆SOC vector m, as shown 

in (42). M subtracts each cell’s SOC from the mean of all cells. 

 

𝒎 = 𝑀𝒔 

𝑀 = 𝐼 −
1
𝑁
Ó
1 1 ⋯ 1
1 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋮
1 ⋯ ⋯ 1

Õ 
(42) 

The Matrix M is idempotent [147], which also means it is singular and so cannot 

be inverted. As such, the transformation cannot be reversed: s cannot be 

obtained from m. This is because the mean is factored out, so there are an infinite 

amount of possible s vectors for any m vector. For example, if m is [-1 , 0 , 1], s 

could be [9 , 10 , 11], or [85 , 86 , 87] and so on. The transformed state model is 

given by (43), which is obtained by applying (42) to (41). In standard linear state-

space notation, the system is written as (44). Since the C state-space matrix is 

the identity matrix, there is full state feedback and no state estimation is 

required10. 

 𝒎̇(𝑡) = 𝑀𝐵`ä𝒖(𝑡) +𝑀𝑏è𝑑(𝑡) (43) 

 

 

𝒎̇(𝑡) = 𝐴𝒎(𝑡) + 𝐵�𝒖(𝑡) + 𝒃�𝑑(𝑡) 
𝒚(𝑡) = 𝐶𝒎(𝑡) 

 
𝐴 = 0 

𝐵� = 	𝑀𝐵`ä 
𝒃𝟐 = 	𝑀𝒃𝒅 
𝐶 = 𝐼 

(44) 

 

                                            
10 This vector is actually estimated by the cell state estimators, but this is assumed as a 
measurement to the control system. In this sense, no further estimates of any controller states 
is required. 
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The system poles are found by calculating the eigenvalues of the A matrix as per 

(45). As the A matrix is zero, the poles are all zeros, meaning the system is 

conditionally stable. The control system must therefore introduce negative 

eigenvalues to stabilise the system. In the complex frequency (jω) domain, the 

transfer function Gtf for a general state-space system is given by (46). The 

transfer function Gd which relates the disturbance to the output is calculated using 

(47). As frequency ω tends to zero, the magnitude of the transfer function 

becomes infinite.  This represents the divergence in SOCs driven by differences 

in capacity when a constant load current is applied. If the capacities are all 

identical, the transfer function has a zero magnitude with respect to the 

disturbance (i.e. the disturbance exactly maintains whatever ∆SOC state the 

system is currently at). This also emphasises that DC and low frequency 

disturbances are of most relevance for balancing, since high frequency inputs do 

not result in a large SOC change.  

 𝝀 = 𝑒𝑖𝑔(𝐴) (45) 

 𝐺cê(𝑗𝜔) = 𝐶(𝑗𝜔𝐼 − 𝐴)��𝐵 (46) 

 𝐺è(𝑗𝜔) =
𝐼
𝑗𝜔𝒃𝒅 (47) 

 

The controllability and observability matrices from equations (22) and (23) are 
straightforward to calculate because of the A matrix being equal to zero. They 
are given by (48) and (49) respectively. 

 𝒞 = 𝐵� (48) 

 𝒪 = 𝐼 (49) 

As the observability matrix is just the identity matrix, there are no unobservable 

states. However, there is one uncontrollable state, which arises because the M 

matrix which is part of B1 does not have full rank. The system can be reduced to 

a fully controllable N-1 state system by performing  another linear transformation. 

A new matrix T is the new transformation matrix to create the state vector z from 

m in (50). The bar accent denotes that the matrices are for the transformed 

system. T is an N-1xN matrix calculated such that the overall input-output transfer 

function (46) is not modified even though the states are different.  

 
𝒛(𝑡) = 𝑇𝒎(𝑡) 
𝐴̅ = 𝑇𝐴𝑇» 

(50) 
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𝐵ï� = 𝑇𝐵� 

𝒃(𝟐 = 𝑇𝒃𝟐 
𝐶̅ = 𝐶𝑇» = 𝑇» 

Further details on the transformation and its derivation are given in Submission 

3. The transformed system is given by (51), and the dynamics are in discrete form 

by (52). The state vector z lacks a physical meaning compared to m or s. 

 
𝒛̇(𝑡) = 𝐵ï�𝒖(𝑡) + 𝒃(𝟐𝑑(𝑡) 

𝒎(𝑡) = 𝐶̅𝒛(𝑡) 
(51) 

 

 𝒛��� = 𝒛� + 𝛥𝑡𝐵ï�𝒖� + 𝛥𝑡𝒃(�𝑑�  (52) 

With the uncontrollable state removed, there is now one more control input than 

there are states, meaning the system is over-actuated [148]. As a result there is 

more than one combination of inputs which can achieve the same control 

objective, including one solution whereby any one of the control inputs can be 

maintained at zero. A sub-problem can be developed to select the best option 

[149], for example by finding the current which results in the greatest imbalance 

reduction without exceeding the maximum balancing current. It also means that 

there is redundancy in the event of a failure. 

 

5.3.3 Summary 
A number of steps are required to take the conventional cell equations and 

formulate an appropriate system model, given by (51), for balancing controller 

design. These steps are summarised below: 

• The control input to the system is a vector of balancing currents, and the 

disturbance is the scalar load current applied to the pack. The output has 

been chosen as ΔSOC (the distance of each SOC from the mean). This 

means that ΔSOC is assumed to be a measured output, although in reality 

it is an estimate from the BMS. 

• The states have also been chosen as ΔSOC since this is what will dictate 

the magnitude of each balancing current. The target vector for the states 

is always zero and so does not have to be continually updated by the 

balancing control system as the cell SOCs change through pack operation. 
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• The formulation of this system model is not fully controllable and so 

feedback algorithms may not be able to drive the system to the appropriate 

state. A state transformation has been derived which results in a fully 

controllable and observable system with one fewer states.  

 

5.4 Proposed control systems 
The ultimate aim of the controller is to achieve some form of feedback with the 

module of cells. In generic form, this is defined by (53), where the balancing 

current vector u is a function of the transformed imbalance vector z, and time t. 

 𝒖 = 𝑓(𝒛, 𝑡)	 (53) 

In this section, three methods of achieving closed-loop feedback are presented, 

two of which were ultimately used in the experimental test work in Chapter 6. A 

variety of established control methods were explored in Submission 3, but most 

were not developed further and so are not considered here. A summary of the 

other methods from Submission 3 is given below: 

• Linear quadratic regulation (LQR). This creates a static feedback matrix K 

based on minimising the quadratic cost function (54) according to the 

control law (55). The cost function is dependent on the two weighting 

matrices Q and R, which change the contribution of x and u to the total 

cost, which changes K. This is a form of state feedback, discussed below, 

and the implementation is similar to pole placement, one of the selected 

control methods. However, one of the stated aims of the control system is 

to ensure all cells finish balancing at the same time, which requires their 

poles be equal. Unlike pole placement, LQR does not explicitly set specific 

pole values, making it less suitable for this particular problem11. 

 𝐽 = ñ 𝒙(𝑡)»𝑄𝒙(𝑡) + 𝒖(𝑡)»𝑅𝒖(𝑡)
ò

f
𝑑𝑡 (54) 

 𝒖(𝑡) = −𝐾𝒙(𝑡) (55) 

• Pole placement with disturbance gain. The standard state feedback 

approach does not account for a disturbance with a non-zero mean. Such 

                                            
11 In Submission 3, a method was derived for selecting the weighting matrices such that 
all poles are equal. This provides the same end result as pole placement, but the method 
is more involved and there is no reason to adopt it over conventional pole placement 
methods. 



 94 

a disturbance will prevent the states from reaching their target values, 

resulting in a steady-state error. An additional static gain matrix can be 

used to apply feedforward control based on the measured disturbance 

input [150]. In theory it can cancel out the disturbance’s contribution to 

imbalance. This is a suitable extension to pole placement to improve its 

performance if necessary. However, its performance is limited by the 

balancing current constraints, and assumes a perfect measurement rather 

than accounting for more general model uncertainty. 

• LQR with integral action. In general, Integral action can be used to avoid 
steady-state errors which arise through model uncertainty [151]. This 

method adds additional states to an LQR system as a means of tracking 

the error history, and removing the steady state error.  However, the 

additional model states increase complexity. Additionally, the integral 

poles have to be selected as well as the imbalance pole. These can be 

difficult to tune, and there will be a trade-off between speed and stability. 

• H-infinity output feedback [152]. H-infinity involves minimising the infinity-

norm of the transfer function between the disturbance and the output. 

Minimising for the 2-norm (such as in LQR) means minimising the transfer 

function gain across all frequencies (suitable for a white-noise input [153]), 

whereas for the infinity-norm, the peak gain is minimised. The formulation 

incorporates a matrix for the disturbance input as well as for the control 

input, removing the assumption that the noise is a zero-mean signal. This 

makes it possible to design a controller specifically to achieve the best 

reaction to the worst disturbance case. Simulation results from Submission 

3 suggest this should perform similarly to pole placement but with a faster 

initial imbalance reduction and lower steady state error. It is more difficult 

to implement, requiring more tuning, so is a suitable choice to consider if 

pole placement performs reasonably well but needs improvement. 

 

Additionally, including an estimator in the system was also considered. This could 

act to refine the SOC estimate from the BMS, and is inherent to some controllers, 

such as the standard H-infinity formulation [154]. However, the results presented 
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within Submission 3 show that it did not appear to improve performance, while 

still adding complexity to the system. 

 

5.4.1 Rule-based Method 

As a baseline, a non-model based system is considered, where the cells are 

simply switched on according to the logic in (56). The variable δ is a small 

tolerance to prevent indefinite switching, in this case 0.01. A larger δ will reduce 

the amount of additional switching but prevent the system converging to a low 

state of imbalance.  

 𝑢j = õ
𝑢Ûaö, 𝑚j > 𝛿
𝑢Ûij, 𝑚j < −𝛿

0, −𝛿 < 𝑚j < 𝛿
 (56) 

As the model is not required it is straightforward to implement. However, by only 

switching the system on or off, it means all cells balance at the same rate even if 

some are much further from the mean SOC than others. Some cells will reach 

the mean SOC prematurely, which has two disadvantages. Firstly, i2R power 

losses will be higher and secondly, the cells will undergo some additional 

switching as they are maintained at the mean, which also increases energy loss. 

 

5.4.2 Pole Placement Output Feedback 
State feedback is a commonly used approach for multiple-input-multiple-output 

systems due to its relative simplicity and inherent stabilising nature [153]. This 

uses the feedback law (57), where K is a constant matrix to be calculated. For 

this system, the output m is required to drive the control signal, not z. m can be 

factored into by using the transform relationship (50).  

 𝒖(𝒕) = −𝐾𝒛(𝒕)	 (57) 

 𝒖(𝒕) = −𝐾𝑇𝒎(𝒕)	 (58) 

The steady state error when a step disturbance is applied can be calculated by 

considering the point at which the derivative of z is zero, which is given by (59). 

The resultant steady state output error mss is given by (60)12. As is expected, 

there is no steady state error when there is no disturbance.  

                                            
12 K,	𝐵ï�and 𝐵ï� are all rectangular so do not strictly have an inverse. However, unlike with 
the pseudoinverse, the equations can be solved using similar methods as for square 
matrices, and so the superscript -1 is still used. 
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 𝟎 = −𝐵ï�𝐾𝒛𝒔𝒔 + 𝒃(𝟐𝑑	 (59) 

 𝒎𝒔𝒔 = 𝑇»𝐾��𝐵ï���𝒃(𝟐𝑑	 (60) 

Two common methods of designing a state feedback regulator are pole 

placement and LQR [124]. Both methods are considered in Submission 3, but 

pole placement was carried forward as the tuning parameters are more intuitive 

for this system than LQR and it is easier to ensure the cells reach EOB 

simultaneously. Pole placement is used to calculate a gain matrix such that a 

desired vector of poles is achieved for the closed loop system. The time constant 

of a pole is obtained using (61), so it is straightforward to select a pole based on 

the time available for balancing. In their standard form, both methods assume 

there is no disturbance (or that the disturbance has a mean of zero), which means 

there will be steady state error in the control solution. As noted above, three 

methods for accounting for the disturbance were considered in Submission 3: 

integral action, H-infinity output feedback, and a disturbance gain. These were 

not implemented experimentally and so are not discussed here. 

 𝜏 = −
1
𝜆 (61) 

Iterative algorithms are available [155] to find K such that each state has the 

desired pole. However, for this case, it can be simplified. Two important aspects 

of the balancing system model are that the A matrix is zero and the desired poles 

are the same for each cell (so they will all reach the mean SOC simultaneously). 

The closed loop dynamics are given by (62) and the poles are found by solving 

the eigenvalue problem in (63). The points above simplifies the problem 

considerably compared to many other linear state space systems, and (64) is the 

most straightforward solution to (63). In this case λ is a scalar and real, and 

should be negative to ensure stability. 

 𝒛̇(𝑡) = −𝐵ï�𝐾𝒛(𝑡) (62) 

 |−𝐵ï�𝐾 − 𝜆𝐼| = 0 (63) 

 𝐵ï�𝐾 = −	𝜆𝐼 (64) 

 

The steady state error can be calculated using (65), which substitutes (64) into 

(60). This shows that a slower balancing pole results in a larger steady state error. 

As such the fastest pole should be chosen that the balancing hardware is capable 

of. The same applies with the disturbance magnitude. 
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 𝒎𝒔𝒔 = −
1
𝜆 𝑇

»𝐼𝒃(𝟐𝑑 = −
1
𝜆𝑀𝒃𝒅𝑑 (65) 

The most direct way of obtaining K is to solve (64) by finding the inverse of 𝐵ï� to 

give (66). Since it is rectangular it does not have an inverse: there are essentially 

N unknowns but only N-1 equations, making it an under-determined system. As 

derived and discussed within Submission 3, there are two main ways of solving 

this: a least-squares solution, and singular value decomposition (SVD). The least-

squares solution results in the K matrix containing a row of zeros, making the 

balancing input corresponding to that row redundant. The SVD approach 

distributes the control action across all inputs. MATLAB’s pole-placement 

algorithm place [156], which calculates a robust solution resulting in a non-zero 

K matrix, calculates the same matrix as the SVD approach. 

 𝐾 = 𝐵ï���(−	𝜆𝐼) (66) 

For these solutions, the inverse of Bc and its associated matrices can be stored 

as a static matrix (and periodically updated if the elements of Bc change from the 

SOH estimation). K can then be simply calculated based on the desired pole 

value. This pole can be adjusted based on the estimated time until EOD or EOC, 

and updated regularly because of the simple calculation required to obtain the 

new K. These methods are generally reliable solutions to obtain since they are 

based around well-known and robust matrix techniques rather than more 

complex algorithms. It is also clear that the gain is proportional to the chosen 

pole, which means if the pole results in excessive balancing currents, it can easily 

be adjusted to bring the currents to within a feasible range. 

 

The two methods show how there can be multiple K matrices which produce the 

same poles. Using the least squares method means that one cell will also be at 

zero balancing current, which offers redundancy in the event of one balancing 

channel failing. The SVD solution distributes the control effort across all of the 

cells, which means that for a given pole, the maximum balancing current will be 

lower and there is less chance of saturating one of the control inputs. 

 

The pole can be chosen based on the estimate of time to EOD. Alternative, the 

fastest pole which does not saturate any inputs can be found. A simple bisection 
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algorithm can be used to search for the pole. This uses the current pole to 

calculate the state feedback matrix. This, along with the initial m vector, is used 

to calculate the initial balancing currents. If any of the currents are outside of the 

limits imposed by the hardware, the pole is decreased for the next iteration. If 

none of the currents are above 99% of the limit, then the pole could be faster and 

so is increased. If neither of these conditions are met, then a suitable pole has 

been found, for which at least one of the cells is set to balance at its maximum 

value. Example code to demonstrate the algorithm is given in Figure 37. 

 

 

lambdaMin = -1/10000; %less likely to cause 100%duty 
lambdaMax = -1/10; %more likely to cause 100% duty 
while nIter < nIterMax % avoid searching indefinitely 
    nIter = nIter + 1; % count number of iterations 
     
    lambda = (lambdaMax+lambdaMin)/2; %update lambda as 
halfway between max and min 
     
    % ... 
    %Here, K is solved for using lambda value 
    % ... 
    u0 = K*T*m0; %the initial current requested by controller 
    if any(u0 < uMin || u0 > uMax) 

%Input saturated: reduce the maximum to give a slower 
pole next iteration. 

      
        lambdaMax = lambda; 
    elseif (max(u0) < 0.99*uMax) || (min(u0) > 0.99*uMin) 
        %pole is too slow: no inputs are at the maximum. 
Increase the 
        %minimum so next iteration a faster pole is used. 
        lambdaMin = lambda; 
    else 
        break; %a suitable pole has been found. 
end 
 

 

Figure 37: Example code for bisection algorithm 

5.4.3 Model Predictive Control and Dynamic Steady-Input Control 
MPC is a framework which uses a plant model to calculate future control inputs 

over a finite time horizon, by minimising an objective function [157]. MPC also 

uses a similar quadratic cost function as LQR (54), but there are two main 

differences in their implementation: 

1. MPC optimises over a receding time-window, rather than the fixed (and 

infinite, for the LQR controller calculated in Submission 3) time-window. 

2. LQR uses the optimal solution for the entire implementation: a static gain 

matrix calculated offline. MPC re-calculates the solution dynamically 

during online operation. 
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Compared to a regulator such as state feedback, MPC has the potential to 

calculate more efficient and faster imbalance reduction as it can incorporate 

knowledge of disturbances and adapt to changes in operating conditions. It is 

also easier to account for constraints to states and inputs [157]. However, it is 

generally more complex, more computationally expensive to solve for and more 

sensitive to model errors if a long time horizon is considered [157]. Active cell 

balancing will typically take a long time, within the order of 30 minutes or more. 

For a one second time-step, this means calculating at least 1800 control vectors, 

which results in a large optimisation problem (compounded as the number of cells 

increases) not suited to online calculation.  

 

For the model in section 5.3 there are five sources of error when planning a 

trajectory, shown in Table 14. The combination of these errors means that solving 

a complete trajectory then applying the control input vectors is unlikely to result 

in an optimal or reliable solution. 
Table 14: Sources of error in control model 

Source Description 

Disturbance 

current d 

The future inputs are not known, adding uncertainty to any 

trajectories. For example, if a BEV was at rest when balancing started, 

but was then used for motorway driving, the impact of the disturbance 
has changed compared to when the trajectory was calculated 

Control 
currents u 

Set-point errors or variations in current mean that the requested 
currents may not actually be applied, meaning the calculated 

trajectory is not exactly applied. 

Cell 

capacities 

Qcap 

The cell capacities well generally be an estimate and as such subject 

to some uncertainty. The model calculates ΔSOC using coulomb 

counting, which is proportional to capacity. As such, incorrect capacity 
estimates will result in incorrect ΔSOC projections. 

Feedback 
matrix F 

This matrix models how the balancing currents impact the other cells. 
Inaccuracies in this matrix, for example ignoring the balancing 

efficiency, will result in incorrect trajectories. 

ΔSOC 

estimate m 

The ΔSOC estimates determine the initial conditions for the MPC 

scheme. If these initial conditions are incorrect then the control 

vectors calculated will not actually remove imbalance as intended. 
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Instead of solving for a time-varying solution, a single control vector can be solved 

for to apply until balancing is complete. This can then regularly be updated based 

on the latest SOC data. The objective function used for this controller is the sum-

of-squares quadratic cost function (67). Quadratic cost functions are often used 

for control systems because there are a variety of robust methods to solve them 

[157], and its value approaches zero as the state vector approaches zero (i.e. 

when there is no imbalance). The optimisation problem statement is given by (68) 

and aims to find the balancing current vector which minimises total cost J, subject 

to the lower and upper inequality constraints lb and ub that limit the balancing 

currents to what the hardware is capable of. While (67) does not explicitly contain 

the u vector, given the discrete system dynamics in (52), (67) can be rewritten as 

(69). This can be grouped to create a standard quadratic programming problem 

(70). This is broken into three components: the quadratic component by matrix 

H, the linear component from vector g and the constant term f.  

 𝐽 = 𝒎���
» 𝒎��� = 𝒛���» 𝒛��� (67) 

 arg	min
𝒖ú

𝐽(𝒖�) 							𝑠. 𝑡. 𝒍𝒃 ≤ 𝒖 ≤ 𝒖𝒃	 (68) 

 𝐽 = Ï𝒛� + 𝛥𝑡𝐵ï�𝒖� + 𝛥𝑡𝒃(𝟐𝑑�Ð
»Ï𝒛� + 𝛥𝑡𝐵ï�𝒖� + Δ𝑡𝒃(𝟐𝑑�Ð (69) 

 

 

𝐽 = 𝑓 + 𝒈»𝑢 + 𝒖»𝐻𝒖 

 

𝑓 = 𝒛�»𝒛� + 𝛥𝑡�𝑑�»𝒃(𝟐𝑻𝐵ï�𝑑� + 2𝛥𝑡𝑑�𝒃(𝟐𝑻𝒛� 

𝒈 = 2𝛥𝑡𝐵ï�»Ï𝒛� + 𝛥𝑡𝒃(𝟐𝑑�Ð 

𝐻 = 𝛥𝑡�𝐵ï�»𝐵ï� 

(70) 

 

The optimisation problem means that a balancing vector will be found which 

removes the largest amount of imbalance feasible from time step k to k+1. 

However, this period of time is only 1 second, meaning that it will be impossible 

to reach a completely balanced state unless there is only a very small amount of 

imbalance. It means that generally all cells will be saturated permanently, which 

is not the aim of the control system. Some cells will have been balanced faster 

than necessary, reducing efficiency through increased power loss from the higher 
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currents. The end result is that it is essentially the same as using a rule-based 

approach where all cells below the mean are set to charge, and all cells above 

the mean are set to discharge. For example, McCurlie et al. [112] found that using 

a rule-based scheme resulted in almost 50% higher energy loss through 

balancing compared to a similar MPC scheme to the one presented here. The 

exact amount of energy saved will depend on the initial SOCs and cell capacities. 

 

To avoid the saturation issue, the time-step itself is adjusted here to project 

further forward in time (extending the time in which the charge is delivered, 

thereby reducing the average current) . Changing ∆t in (52) changes the 

balancing window: a shorter time will result in faster balancing, with increased 

likelihood that the inputs are all saturated. A longer time will bring the cells to the 

mean SOC simultaneously, but can increase the balancing time. The time 

window can be maintained while continually recalculating the control vector 

based on new SOC and disturbance current. Alternatively, the time window can 

be rescaled based on current performance. Equation (71) shows the scheme 

employed to adjust the time-step. If any of balancing currents are at the 

maximum, and the average current is within 95% of the maximum, then the 

window is increased by 10%. Similarly, if no inputs are at the maximum it is 

possible to balance faster than at present, so the window can be reduced by 10%. 

This avoids all inputs being saturated while still allowing for saturation to occur, 

which is useful for if one cell is particularly far from the mean compared to the 

others. 

 𝛥𝑡��� = þ1.1𝛥𝑡�, ∃𝒖(𝒖 = 𝑢Ûaö) ∧ 	� 𝒖j
�

jd�
≥ 0.95𝑁𝑢Ûaö	

0.9𝛥𝑡�, ∀𝒖(𝒖 < 𝑢Ûaö)
 (71) 

The disturbance current is part of the control system, but is not known in advance, 

so an estimate of what the current will be is required. As this is a single-step 

solution, a detailed prediction of a time-varying current profile is not required, only 

the average current during the following time window. This could be obtained 

from the vehicle’s energy management system, which makes predictions of how 

the vehicle will be driven to give an estimate of how many miles can be driven 

before the battery pack reaches EOD [158]. Alternatively, the average current 

over a previous time window can be used for the following time step.  
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In summary, there are three key differences from this method compared to MPC: 

1. The quadratic cost function has been altered to maximise imbalance 

reduction. 

2. A single input vector is solved for, rather than a series of vectors over the 

time horizon. This significantly reduces the optimality of the solution, while 

being more feasible to solve online. This input vector is found on the basis 

that it would be applied for the rest of the time input. 

3. The solution is updated every time-step, not just when the time horizon of 

the current solution is reached. This ensures that any sudden changes in 

SOC estimate are accounted for as early as possible. 

 

While this control strategy was inspired by the principles of MPC, it is distinct and 

is referred to here as Dynamic Steady-Input Control (DSIC). Figure 38 shows an 

example process for DSIC. A change in SOC estimates means that imbalance 

can no longer be removed by the requested window. A longer window is 

calculated, and from then on the control vector is updated at each time-step to 

account for small changes in SOC estimation and model errors. 

 
Figure 38: DSIC imbalance removal 



 103 

5.4.4 Feed-forward Control 
There are some downsides to the DSIC scheme. It is relatively complex, requiring 

the solution to an optimisation problem every time-step. Similarly, the maximum 

imbalance removal is not always required. The overall balancing speed will 

always be limited by one cell, typically the cell whose SOC is furthest from the 

mean (though this is dependent on the relative cell capacities and the nature of 

the interconnections). Balancing will be fastest when setting this cell to balancing 

at maximum current for the duration of balancing. An efficient but quick balancing 

system would therefore aim to do this, while minimising the energy loss for the 

other cells. As long as these cells also reach EOB by the time the slowest cell 

does, then there is no overall reduction in battery pack performance. 

 

Feed-forward was first introduced within a conference paper published by the 

researcher on high-level balancing modelling, where it was used to show how 

passive balancing could be made more efficient [8]. It can be further developed 

using the control model, and also considering the time window from DSIC. Using 

the discrete state equation (52), a target can be formed such that there is no 

imbalance at the next step (72). There are two unknowns to solve for: ∆t and u. 

A direct solution can be found if the right-hand disturbance term is removed. This 

adds some inaccuracy as the disturbance is not accounted for, but this is difficult 

to account for anyway as the future trajectory is not known, and as the simulation 

results for DSIC in section Error! Reference source not found. showed, the 

disturbance contributes only a small amount to the balancing current calculation. 

The total balancing charge vector Qbal can then be calculated using the SVD 

inversion method (73). This charge needs to be decomposed into the balancing 

currents and the time-step. The time-step can be found using (74). This scales 

the charge against the lower and upper balancing current limits lb and ub to find 

the point at which one of the balancing currents is equal to the maximum charge 

or discharge amount permitted. This cell governs overall balancing speed. 

 0 = 𝒛𝒌 + 𝛥𝑡𝐵ï�𝒖𝒌 + 𝛥𝑡𝒃(𝟐𝑑� (72) 

 𝑸𝒃𝒂𝒍 = −𝐵ï���𝒛� + 𝐵ï� (73) 

 𝛥𝑡 = max ¦max ¡
𝑸'ar
𝒍𝒃 ¢ min ¡

𝑸'ar
𝒍𝒃 ¢§ (74) 
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 𝒖𝒌 	=
1
𝛥𝑡𝑸'ar 

(75) 

 

As with DSIC, while this is in theory the current to apply for the duration of 

balancing, it is regularly updated to account for uncertainty in the SOC estimates 

and applied load. One of the drivers behind both controllers is that the SOC 

estimation is a significant source of error and the main limiting factor in projecting 

forward in time. As can be seen, the feed-forward implementation is much simpler 

than DSIC. 

   

5.5 Simulation results 
To compare these control methods, the automotive pouch cells first introduced in 

section 4.2  are used within a simulation study. As these controllers are designed 

for a generic balancing system, there is no explicit modelling of any hardware. 

However, the following assumptions are made, based on typical balancing 

performance from the literature: 

• The balancing system can produce balancing currents of up to 2A charge 

or discharge per cell simultaneously. 

• The balancing system is an idealised cell-to-module system, with the same 

F matrix as in equation (41). 

One of the key issues identified in the literature review is that there has been very 

little consideration of balancing under load, which is necessary to account for 

capacity differences between cells. For the simulation studies, the US06 Highway 

drive cycle was used to generate a load current, which was chosen as it is more 

aggressive than many of the other standardised drive cycles, such as the New 

European Drive Cycle and Federal Test Procedure drive cycles, and so provides 

a more thorough test of the balancing controller. A battery current profile was 

derived from the speed profile using a vehicle model of a JLR BEV in pre-

production. The current from that model was rescaled to give the same C-rate for 

these cells as for the battery pack in the vehicle model. The speed profile and 

current are shown in Figure 39. The average C-rate is 0.13, which is low 

compared to many other applications, but is necessary to ensure the vehicle can 

be driven for several hours. The drive-cycle is looped several times to achieve 

the necessary length of simulation necessary and the required DOD. 
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Figure 39: US06 drive cycle speed and current 

The initial cell SOCs are chosen by assuming the cells were all fully balanced at 

100% SOC, and have then been discharged a certain DOD. This is expressed as 

a function of the weakest cell’s SOC, as this will govern the pack SOC. Each 

cell’s initial SOC is calculated using (76), and example SOC vectors at different 

DODs are shown in Table 15. 

 𝑠j(0) = 100 − 𝐷𝑂𝐷
min	(𝑸𝒄𝒂𝒑)
𝑄`ab�

 (76) 

 
Table 15: Initial SOC vectors at different DODs 

DOD (%) SOC Vector (%) Absolute SOC 
difference (%) 

40 [𝟔𝟎 61.2 64.5 64.5 63.9 63.8 63.6] 4.5% 

60 [𝟒𝟎 41.9 46.8 46.7 45.9 45.7 45.4] 6.8% 

80 [𝟐𝟎 22.5 29.0 28.9 27.8 27.6 27.3] 9.0% 

 

SOC estimators are not used as the aim of these simulations is to evaluate the 

potential of the controllers to remove imbalance and SOC estimation could result 

in an unequal comparison. The impact of SOC estimation on controller 
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performance is discussed further in Chapter 6. All of the simulations were 

performed with the 80% DOD vector from Table 15, again to ensure an equal 

comparison between controllers. 

 

5.5.1 Rule-based method 
The results for the rule-based approach are shown in Figure 40. Note that the 

simulation was halted at the point where the balancing currents would be set to 

zero. As expected, the other cells, particularly cells 5-7, reach the mean 

prematurely, and then undergo some additional switching as they are maintained 

at the mean. This particular set of conditions is fortuitous, as the two cells furthest 

from the mean are cells 1 and 2, which are also the only two cells below the 

mean. The remaining cells are all discharged, which significantly boosts the 

charging current of cells 1 and 2, reducing balancing time. Other imbalance 

distributions may not be as amenable to imbalance reduction as this. 

 

 
Figure 40: Rule-based logic while under a drive cycle load 

5.5.2 Comparison of Pole Placement Design Methods 
As noted in section 5.4.2, there are two ways of calculating the pole placement 

matrix: SVD and least squares. These are compared below, without the drive 

cycle in order to focus on how they reduce imbalance. To validate that they can 
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both reduce SOC in the same way, a pole with a time constant of 2400s was used 

to ensure that neither controller saturates the inputs. The results using SVD are 

shown in Figure 41, and the same test using least squares in Figure 42.  

 

As can be seen from the ΔSOC plots, the imbalance vector follows the same 

trajectory. However, the balancing current plots are quite different. The least 

squares method has set cell 3 (the cell with the largest capacity and so highest 

initial SOC) to zero current, and the result is that all balancing currents are 

positive. The different balancing current magnitudes combined with the cell-

module feedback ensures that the cell currents are a mix of positive and negative, 

despite all the balancing currents being positive, thus still bringing all cells to the 

mean SOC. The SVD method produces negative balancing currents for cells 3-

7, and the nature of the feedback means these will charge cells 1 and 2. As a 

result, these cells do not need as high a charging current as the least squares 

method. For least squares, cells 1 and 2 start at 1.9A and 1.4A respectively, as 

opposed to 1.3A and 0.8A for the SVD method.  

 
Figure 41: Pole placement using SVD under no load 
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Figure 42: Pole placement using least squares under no load 

Using the bisection method in 5.4.2, the maximum time constant achievable for 

this simulation is 1541s with SVD, but 2297s with least squares. Using SVD 

spreads the load more evenly across the cells and allows greater imbalance 

reduction per unit of time.  

 

5.5.3 Pole placement under load 
With SVD being chosen as the means of generating the feedback matrix, its 

performance under load is now evaluated. The time constant, found using 

bisection, was 1541s. The results in Figure 43 show that by 6800s, the imbalance 

has reached 0.83%. The weakest cell had an SOC of 1.6%, meaning that that it 

took a DOD of 18.4% to complete balancing. As (65) shows, this is proportional 

to the disturbance, meaning that the error would be greater in applications with a 

higher C-rate. 
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Figure 43: Pole placement while under a drive cycle load 

Methods for reducing or eliminating this steady state error are outlined in 

Submission 3 and section 5.4. However, these results show that while pole 

placement is straightforward to implement, it creates a smooth trajectory at the 

expense of balancing speed. Its exponential nature means that the speed of 

imbalance reduction will reduce as imbalance itself reduces. The speed could be 

increased by periodically rescaling the controller to finding the new fastest pole 

as imbalance reduces, but this is counter to the fundamental negative feedback 

behaviour of the controller. 

 

5.5.4 DSIC 
The MPC simulation was initialised with a window of 200s. The results are shown 

in Figure 44.  Note that the simulation was halted at the point where the balancing 

currents would be set to zero. The jagged changes in current, for example at 600s 

arise from the time window changing according to equation (71). The cells do not 

quite reach EOB simultaneously because of the simplifications that come with the 

method. However, the EOB difference is small compared to the balancing time. 

In this time, the minimum cell SOC has only decreased by 0.2%, while the total 

imbalance is at 0.07%, so effectively no steady state error. 
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Figure 44: DSIC while under a drive cycle load 

This scheme also used the load current directly as a source, rather than using an 

algorithm to predict the future current. It was found that an accurate disturbance 

current had little impact on controller performance, as it only contributes a small 

amount to the cost function. Removing the disturbance from the cost function 

resulted in a final imbalance of 0.08%. The g vector in (70) is the only term in the 

optimisation which contains the disturbance term. For these initial conditions, the 

disturbance only contributed to 0.5% of the total J value. Even when imbalance 

is very low, the disturbance component is still smaller than the ∆SOC term. 

 

5.5.5 Feed-forward Control 

The results for the feed-forward controller are given in Figure 45. Balancing takes 

longer than the rule based system. This is because feedback currents calculated 

by this scheme comes out as zero, meaning none of the balancing currents 

affects one another. For the rule-based scheme, the charging currents for cells 1 

and 2 are bolstered by the remaining cells discharging. This means that cell 1, 

which takes longest to balance, undergoes a larger charging current for the rule-

based system. This effect will vary depending on the distribution of cell currents 

and the connections between cells.  
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Figure 45: Feed-forward control while under a drive cycle load 

5.5.6 Comparison 

As noted, the balancing time for pole placement is slow, with the remaining three 

controllers all balancing in similar times. In reality, the amount of energy loss will 

be heavily dependent on the specific hardware used. For this generic system, it 

is assumed there are two components to the losses. There is a transformer 

efficiency which causes a power loss Pc, (77), and resistive losses Ps, given by 

(78). The transformer efficiency ηtf is assumed to be 95%, and the effective 

transformer resistance Rtf is set as 0.6Ω, which was chosen to give a total 

efficiency of 80% at maximum current. 

 𝑃 = Ï1 − 𝜂cêÐ𝑖'ar𝑣c (77) 

 𝑃o = 𝑖'ar� 𝑅cê (78) 

The energy usage for the four controllers implemented here are given by Table 

16. As expected, the rule based system has consumed the most energy, with the 

feed-forward control approach only dissipating 78% as much energy. Pole 

placement used more energy despite operating a low currents, because of the 

longer balancing time. The energy wasted by the rule-based system is 9.88% of 

the total energy remaining in the cells at the start of the simulation, compared to 
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7.78% for the feed-forward controller. This allows for over 2% greater energy 

extraction, while is the ultimate aim of the balancing controller, and important 

considering how important relatively small gains in energy utilisation can be when 

a battery pack is operating across its full SOC window. 

 
Table 16: Energy loss during balancing simulations 

 
Balancing Energy Loss (J) 

Cell Rule-based PP MPC Linear 
1 2187.1 3311.8 2301 2942.7 
2 1492.1 2082.6 1210.7 1849.5 
3 2212.5 1659.1 2100.4 1472 
4 2136.3 1571.3 2023 1394.2 
5 1542.9 898.76 1428.8 797.57 
6 1438.4 781.98 1325.7 693.97 
7 1230.7 548.68 1119.3 486.94 

Total 12240 10854 11509 9637 
 

5.6 Summary 
This section has outlined a means of controlling a generic balancing system 

based on cell SOC knowledge. The control model is linear and only dependent 

on one parameter (cell discharge capacity) per cell. Using cell capacity adds 

knowledge of whether the cell SOCs will naturally diverge or converge owing to 

the applied load. A large battery pack may not transfer energy from all cells, and 

instead by split into submodules of a few cells. The interaction matrix F was 

introduced to specify which cells connect to which. 

 

The model has been used to create three different controllers, in addition to a 

non-model based controller. The results presented in section 5.5 show that pole 

placement takes a long time to balance and results in a steady-state error. This 

is at odds with the requirements of an effective balancing system: to balance fast 

and minimise the final SOC difference. The DSIC was derived which has target 

of removing the most amount of imbalance, while ensuring better convergence of 

balancing times. This avoids bringing some cells to the mean before others, at 

which point there will be extra switching on those cells as they are maintained at 

the mean. The feed-forward controller has the express aim of ensuring the cells 

reach EOB simultaneously, and was shown to use the least energy. Furthermore, 
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it has a slightly longer balancing time than the rule-based and DSIC approaches, 

but the fastest possible balancing is not crucial to performance: there is a 

compromise between time and wasted energy. 

 

It is possible to refine the DSIC and feed-forward approaches to increase 

balancing time without significantly increasing energy usage. There are also more 

control methods which were not explored. For example, sliding mode control 

[159] could be effective, but was not considered here because of the considerable 

amount of design work required and implementation challenges with respect to 

“chattering” – continual oscillations about the target. 

 

The purpose of this Chapter was to meet Research Objective 4: the design of a 

generic balancing control system. Many controllers were considered, and three 

have been described in detail and simulated to compare performance. This leads 

into the experimental work defined by Research Objective 5. For these controllers 

to be validated, they need to be applied to a specific ABS. The hardware used to 

do this, and the experimental results, are detailed in the next Chapter. 

 

  



 114 

6 Hardware Implementation  
The control framework in Chapter 5 was designed considering a non-specific 

balancing system. As per Research Objective 4, this was to demonstrate how a 

common model can be applied to a wide variety of balancing hardware, rather 

than becoming obsolete when the hardware changes or is updated. However, to 

validate the proposed control solution it is essential to demonstrate that the 

control system can be implemented with specific hardware, which is why 

Research Objective 5 was proposed. As well as testing the controller, this was 

also an opportunity to evaluate third-party hardware in more detail and from this 

learning experience produce recommendations for future balancing equipment. 

Finally, it meant implementing the control system in real-time subject to imperfect 

measurements and SOC estimation errors. This brings the research back up the 

systems engineering “V” in Figure 3. Using these experimental results, Research 

Question 2 can be answered by using the experimental results to quantify the 

benefits of active balancing. 

 

Some issues with the experimental equipment are first highlighted in section 6.1. 

The balancing hardware used for this test work is described in section 6.2, 

followed by the instrumentation required to evaluate and monitor the system in 

section 6.3 and the load to apply a current to the series string of cells in section 

6.4. The control system implementation and interfacing with the hardware is 

discussed in section 6.5. The balancing system is evaluated in section 6.6, and 

then the closed loop balancing test results presented and discussed in 6.7. 

Simulation studies to complement these results are contained in section 6.8, and 

the total system performance is analysed in section 6.9. Based on this test work, 

recommendations for hardware design and specification are detailed in section  

6.10, followed by a summary of the Chapter in 6.11. 
 

6.1 Experimental Background and Context 
The balancing hardware was designed and built by an engineering consultancy 

which has previously worked JLR on Battery Management System (BMS) related 

development, and had previously developed a similar active balancing system for 

another automotive client. On using the equipment several issues were identified, 
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which were not all resolved before the company went into administration, which 

also meant that replacement parts were no longer available. When several cells 

were set to balance simultaneously, the firmware would go into an error state and 

prevent the balancing system from working. It was not possible to diagnose this 

fault condition given the level of documentation and support provided by the 

supplier. Only balancing 4 cells at a time avoided the issue apart from at low and 

high SOCs (typically lower than 20% and higher than 80%). In these regions, the 

cell voltages may have gone above or below limits imposed by the firmware. This 

limitation meant that it was not possible to test the high-level strategy described 

in Chapter 5, whereby cells are balanced towards the end of charging, and then 

only set to balance during discharge at low SOCs However, the system was 

suitable to demonstrate proof-of-concept for the active balancing system. Tests 

could still be run over a relatively wide SOC window (between 80 and 20% SOC), 

and there is no reason to suggest that if the control system can maintain a state 

of balance over this window, it could not achieve the same over a different SOC 

window, as long as the SOC estimator can maintain accuracy in these regions. 

 

As testing progressed, another one of the balancing channels ceased operation 

(the reason for which is not known), which required rewiring and recalibration of 

the equipment. Eventually the entire circuit board ceased to function. This meant 

it was not possible to perform as many tests as intended, but the author asserts 

that the tests which were performed demonstrate proof of concept of the 

balancing control system.  

 

6.2 Balancing Hardware 
While there have been many types of balancing hardware proposed in the 

literature, very few have been implemented commercially. As the focus of this 

work is on control strategy rather than hardware design, an off-the-shelf system 

was preferred as it should be more robust and be quicker to set-up. The main 

commercial balancing system is the LTC3300-1 [88] by Linear Technology 

Corporation (LTC). This is a chip which is designed to drive one flyback converter 

per cell, with between 3 and 6 cells per chip. All cells can be set to balance 

(charge or discharge) simultaneously, which makes it more flexible and better 

suited to the control framework in Chapter 5. 
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The specifics of how energy is transferred between cells are covered in section 

6.2.1. An implementation of this system was commissioned with JLR to an 

engineering consultancy with previous experience of the LTC3300-1 chip. This 

was designed with two chips, allowing for 6-12 cells to be connected. A 2A 

balancing current was specified, which is configurable by setting a resistor in the 

circuit. The intention was to be able to replace resistors with different values 

based on what cells are connected, but this proved unfeasible because the 

resistance required is in the region of a few milliohms, and as such is sensitive to 

any contact resistance and additional circuitry. This circuitry was complemented 

by a LTC6811 voltage measurement chip, designed for BMS applications. This 

measures up to 12 cell voltages as well having 7 analogue channels, which in 

this case were used to connect thermistors for temperature measurement. 

 

The principle of operation means that the cell is only set to charge or discharge: 

there is no ability to regulate current directly. To add some level of current control, 

a duty cycling scheme was implemented within the firmware. It is not possible to 

update the chip faster than 10ms [88], and so the scheme is based on a new 

balancing command being sent over Controller Area Network (CAN) every 1s, 

and each percentage point then equates to 10ms of balancing. After the time 

specified by the duty cycle has elapsed, balancing for that cell is switched off, 

and remains off until another balancing command is sent. The average current 

over the second can be calculated using (79) where d is the duty cycle and 𝚤̂'ar 

is the current while balancing is in progress. 

 𝑖'ar =
𝚤̂'ar
100 (79) 

 

The board was initially configured for 7 cells, which results in the layout in Figure 

46. Module A consists of one chip and cells 1-4, and module B consists of one 

chip and cells 5-7. The primary side of the transformer is connected across a cell, 

and the secondary side connects back to the module. The secondary side of 

module A is connected between ground and the top of the cell stack (i.e. the 

positive terminal of cell 7), whereas module B is connected between the bottom 

of module B (i.e. the positive terminal of cell 4/ negative terminal of cell 5) and 
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the top of the cell stack. This means that module A interacts with all 7 cells, 

whereas module B only interacts with cells 5-7. This connection is recommended 

by LTC [88] and avoids requiring a separate module-module balancing system, 

as discussed in section 2.2. 

 
Figure 46: Arrangement of balancing sub-modules 

6.2.1 Theory of operation 
A simplified circuit diagram of one converter is shown in Figure 47. This replaces 

the MOSFET with an ideal switch and removes the smoothing filters across the 

windings and shunt resistor. 

 

When a cell is set to discharge through balancing, the primary winding is first 

connected over the cell by closing the switch. This creates a first-order 

exponential rise in current, which can be approximated as a linear increase in 

current over time as the time constant of the system is much larger than the 

switching period. The current passes through the shunt resistor connected in 

series with the primary side windings of the transformer. The voltage over this 

shunt resistor (Rsense in Figure 47) is connected to a comparator in the LCT3300-

1 chip: when this voltage is over 50mV (this value is fixed and is the reference for 

comparator in the chip), the chip opens the primary side switch and closes the 

secondary side switch. The energy stored in the primary side windings is now 

released into the secondary side windings. When the voltage across the 

secondary side shunt drops to 0V the secondary side switch is opened and the 

primary side switch closed again, and the process is repeated. To charge a cell 

through balancing the process is similar, but instead the secondary side draws a 

discharging current from the stack of cells until the voltage over the secondary 
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shunt resistor reaches 50mV. Then, this energy is released into the primary side 

windings (and so the cell) until the primary side shunt resistor voltage drops below 

0V. 

 
Figure 47: Simplified circuit diagram of one transformer 

The switching period employed depends on the values of these circuit 

components as well as the cell properties, but is typically in the order of 

microseconds. Over longer periods of time (in the order of milliseconds-seconds), 

this produces a time-averaged current over the cell and module connections, 

which is also smoothed by the capacitors (C) on either side of the transfer 

winding. The value of the shunt resistors dictates the amount of charge 

transferred during balancing: a smaller resistor values means a larger current will 

be drawn by the windings before the energy is released to the other windings.  

 

In Submission 5, a detailed transformer model was derived from this circuit 

diagram, and validated against experimental data as being accurate to under 3%. 

Figure 48 shows an example simulation using this model, for the currents 

generated by one cell discharging into a module of seven cells. This could 

represent any of the cells in sub-module A of Figure 46. The balancing current is 

larger in magnitude than the cell current because the cell-to-module method of 

balancing means that the cell feeds back into itself. In this case, a steady-state 

balancing current of -2.5A results in around -2.2A through the cell because of the 

0.3A feedback current. The balancing current varies by over 1A peak-to-peak, 

and the feedback current by 0.8A. The cell current sees less variation – about 
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0.5A – because of the larger smoothing capacitors across the cell. The total 

switching period is approximately 5µs, which equates to 200kHz. The current 

averaged over each switching cycle is given by the dashed lines. The simulation 

results show what is likely to be measured by sensors sampling at relatively slow 

BMS frequencies (1-100Hz). The average current reaches a steady state by 

80µs. The shortest time the transformer will be active for is 10ms, meaning that 

the system reaches the steady state in less than 1% of the on-time and so the 

control system can ignore these dynamics. 

 
Figure 48: Simulation of the primary and secondary currents arising from converter switching 

To assess the consistency of current generation, a parameter sweep of the 

simulation was performed with the following vectors: 
𝒗𝒄𝒆𝒍𝒍 = [3.0 3.2 3.4 3.6 3.8 4.0]	𝑣 

𝒗𝒎𝒐𝒅 = 6 ∗ [3.0 3.2 3.4 3.6 3.8 4.0]	𝑣 
𝑹𝒄𝒆𝒍𝒍 = [5 15 25 35 45]	𝑚𝛺 

 

The results showed that all parameters have an impact on balancing current 

generated. A cell internal resistance of 45mΩ generated a 15mA higher 
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magnitude balancing current than at 5mΩ internal resistance, which is less than 

1% relative change. As such, the impact of the cells’ resistance changing with 

SOC and temperature can be ignored. The balancing current can also change as 

a function of the cells’ voltages. However, as Figure 49 shows, this change 

primarily occurs when the cell which is set to balance has a significantly different 

voltage to the remaining cells in the module. The black line represents the points 

where the cell and module voltages are the same, and the current across this line 

only varies by 17mA. In practice the maximum expected difference between the 

balancing cell voltage and the average module voltage is around 100mV. As 

such, the balancing current will be assumed constant with voltage for modelling 

and control purposes. 

 
Figure 49: Balancing current as a function of cell and module voltages 

The LTC3300-1 datasheet [88] provides the high-level equations for calculating 

cell and feedback balancing currents. If a cell is set to discharge then (80) and 

(81) give the balancing and feedback currents respectively. Rsp is the current 

sense resistor on the primary side (8mΩ nominally), Nm refers to the number of 
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cells on the series side (7 for submodule A and 3 for submodule B), Wr is the ratio 

of windings between the primary and secondary sides, (in this case, 2) and ηdch 

is the efficiency. This makes the assumption that the current through the inductor 

increases linearly. In reality, the increase is exponential, but as shown in 

Submission 5, the time constant of the exponential function is sufficiently large 

that the slope is approximately linear before the 50mV comparator limit is 

reached. As such, the average voltage over the on period is 25mV. 

 𝑖'ar =
0.025
𝑅ob

𝑁Û
𝑁Û +𝑊�

 (80) 

 𝑖ê' =
0.025
𝑅ob

1
𝑁Û +𝑊�

𝜂è`3 (81) 

 

Transformer efficiency can be calculated by combining (80) and (81) to produce 

equation (82). Similarly, equations (83)-(85) apply for when a cell is charged. The 

parameters Nm and Wr are the same as for charging, but the sense resistor Rss 

is 15mΩ nominally. Equation (85) is the inverse of (82). 

 𝜂è`3 = 𝑁Û
𝑖ê'
𝑖'ar

 (82) 

 𝑖'ar =
0.025
𝑅oo

𝑁Û𝑊�
𝑁Û +𝑊�

𝜂`34 (83) 

 𝑖ê' =
0.025
𝑅oo

𝑇
𝑁Û +𝑊�

 (84) 

 𝜂`34 =
𝑖'ar
𝑁Û𝑖ê'

 (85) 

 

These equations show that if a cell in module A is being charged, the cell 

balancing current will be much higher than if a cell in module B is being charged. 

This is because all cells have the same secondary sense resistor and so draw 

the same current from the stack. However, the energy into the windings will be 

much larger because there is the voltage of 7 cells being applied, rather than 3. 

Conversely, if a cell is set to discharge, the feedback current into the module will 

be higher for module B than module A because the same amount of energy is 

only distributed among 3 cells rather than 7. 
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6.2.2 Practical operation 
The Balancing PCB requires a 12V power supply, which supplies the balancing 

chips and microcontroller running the firmware. The voltage measurement board 

is connected to the cells and powered directly by them. During operation the 

board drew about 100mA, giving a total power consumption of 1.2W.  The high 

frequency switching is controlled by the LTC300-1 chip, and the lower frequency 

duty cycling managed by the firmware on the balancing PCB. The firmware 

requires information as to what these duty cycles should be. This information is 

provided via CAN messages. The full list of CAN messages sent and received by 

the balancing PCM is given in Submission 4. As well as the balancing information, 

other messages include cell voltages and temperatures, and status information 

about the LTC300-1 chips such as their temperature and errors detected in the 

transformers or transistors. A balancing command is sent over CAN bus which, 

as shown in Table 17, specifies a percentage duty cycle and the direction of 

balancing. There is one message per cell, and all messages are sent together. 

The firmware, upon receipt of a message, sends a signal over a serial peripheral 

interface (SPI) bus to the LTC3300-1 chip to enable balancing, and then disable 

it after the period of time specified by the duty cycle. 

 
Table 17: CAN message to specify balancing for one cell 

Signal Length Description 

Active Balancing 

Direction 

2 Integer to determine whether to charge, discharge, or 

not balance 

Active Balancing 
Duty Cycle 

8 Integer from 0-100 to specify the duty cycle to apply 
(switch balancing on from 10-1000ms) 

 

As mentioned earlier, the firmware would sometimes move into an error state and 

prevent balancing. The cause is not known but was mitigated to some extent by 

controlling four cells rather than all seven. However, this error state would still 

sometimes occur. The error state means that balancing is disabled and cannot 

be resumed until the board has been reset, by switching the power supply off and 

back on. While this is disruptive, if it is a one-off event and if detected quickly it 

only halts balancing for a short period of time and does not significantly affect the 

results. However, if the error state resumes then the test must be aborted. 
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6.3 Instrumentation 
Voltage, current and temperature measurements are required for each cell. 

Temperature was only used for safety monitoring, but voltage and current were 

also used for further processing within the control system, primarily for SOC 

estimation. While every cell voltage is commonly measured in a battery pack, 

often only the applied load current is measured. For passive balancing, the 

current magnitude is sufficiently low that all cell currents can be considered equal 

during balancing. Alternatively, the current drawn by passive balancing can be 

reliably calculated from the cell voltage and balancing resistance by using 

equation (86). Depending on the system, it may also be possible to accurately 

estimate the balancing currents and so avoid measuring current on each cell. 

However, measuring the current through each cell allows for more detailed 

analysis of the balancing system’s operation and performance. 

 𝑖'ar =
𝑣c
𝑅'ar

 (86) 

 

Voltage and current were sampled at 100Hz. This is at the higher limit of typical 

BMS sampling rates. For many applications, 1-10Hz would be adequate [75, 118, 

160]. However, in this case higher frequency measurements were useful for 

analysing the performance of the balancing system in operation. The duty cycling 

means that the cell currents are particularly dynamic, being switched at up to 

100Hz (ignoring the very high frequency switching performed by the chip itself). 

Temperature was sampled at 10Hz as it changes much slower than current and 

voltage. 

6.3.1 Voltage 
The cells connected in series have a small wire connecting the positive terminal 

of the lower cell to the negative cell of the upper cell, as shown in Figure 50 (the 

balancing system is omitted for clarity). The wire has a finite resistance, which 

ideally is as low as possible, but for this test setup was in the same magnitude as 

the cell, as discussed in section 6.3.2.In a production battery pack, careful design, 

materials selection and advanced welding techniques are used to minimise the 

resistance of connections between cells [161, 162]. Such design and 

manufacture was not feasible for a simple prototype such as this. Instead, a wire 
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with eyelets crimped on each end is bolted down to brass blocks, with one block 

bolted to each cell terminal.  

 

The cell voltage is the voltage across the cell’s terminals. However, many BMSs 

measure voltage using one wire per cell, which as the BMS voltage in Figure 50 

shows, means the connection resistance between cells will also be included. A 

more accurate cell voltage measurement can be obtained using two wires per 

cell, which excludes the wire voltage. If the connection resistance is much lower 

than the cell’s internal resistance, then both measurements will be approximately 

equal and the additional wiring has no benefit. Even if the connection resistance 

has the same magnitude as the cell, it would not impact SOC and SOH estimation 

as long as it is factored into the cell model. However, it would still result in the 

manufacturer specified upper and lower cell voltage limits being reached by the 

BMS voltage before the cell itself is at those voltages.  

 
Figure 50: Schematic of voltage measurements within series-connected cells 

 

The balancing system was designed to incorporate a Linear LTC6811 cell 

monitoring chip to measure cell voltage and temperature. The system was 

supplied with the voltage sense wires also acting as the electrical connection to 

the balancing system. This was also the case for the EM140EVM board [145]. In 

this configuration, each cell shares a common voltage sense wire. While the 

combined harness is convenient, it causes a noticeable voltage drop during 

balancing. Rather than using the combined harness for performing balancing and 

measuring voltage, another harness was assembled and added to the system, 

solely for voltage measurement. This replaced the original connection, which 
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used a jumper harness to link the connection wires from the balancing PCB to 

the voltage measurement PCB. A wiring schematic is shown in Figure 51, where 

b0-7 are the wires connecting each cell to the balancing system, and s0-7 are the 

wires connecting to the voltage measurement chip. Previously, b0-7 were linked 

directly to the voltage measurement chip. 

 
Figure 51: Balancing system wiring 

Figure 52 shows an overlay of the voltage and current measurements when using 

the combined and separate harnesses. The voltages are slightly different 

because the measurements were taken at different points in time, but they show 

a similar balancing event with the same current generated.  

 
Figure 52: Comparison of Cell 1 voltage and current for the combined and separate harnesses 
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In both cases cell 1 was set to discharge, for a duration of 400ms for the 

combined harness and 500ms for the separate harnesses. The voltage plot 

shows that the combined harness reads an additional 0.5V drop in voltage 

compared to the separate harnesses. A scope meter connected directly over the 

cell terminals confirmed that the separate harness was providing an accurate 

voltage reading. The specific cause of this voltage drop is not known, and is 

difficult to evaluate as it requires access to specific points on the PCB. It is 

unlikely that this is caused solely by the resistance of the balancing wires as this 

should not exceed a few milliohms. There is a 5A surface-mount fuse on each 

cell connection to the board. This has a resistance which contributes to the 

voltage drop, but its resistance could not be accurately measured to determine if 

this is the primary cause. There may also be some resistance in the connections 

from the cells to the PCB. These large voltage drops could regularly imply that a 

cell had gone outside of its safe operating voltage window when the cell itself was 

within the window. This also reduces the performance of an SOC/ SOH estimator 

which uses voltage feedback. 

 

Another issue caused by the combined harness is apparent changes in voltage 

when a neighbouring cell is set to balance. This is because the wires are 

positioned between cells. For example, there is a wire between the positive 

terminal of cell 4 and the negative terminal of cell 5. The upper plot of Figure 53 

confirms that when cell 5 is set to balance, there is no current through cell 4. 

Despite this the shared wire creates an apparent change in voltage for cell 4, as 

the lower plot shows. Using separate voltages removed the balancing system 

voltage drop and, so significantly reduces this neighbouring cell interaction, 

although a voltage drop from the cell connections remained. From this analysis it 

is clear that using a combined harness is not suitable for monitoring cell voltages: 

the reduction in wiring does not compensate for the significant reduction in 

accuracy that occurs.  

 

There is also some noise on the voltage measurements of the LTC6811. This 

was analysed by logging 60 seconds of cell voltages with no current excitation 

and analysing the resulting data. Histograms of these voltages are shown in 

Figure 54. Note that a logarithmic scale is used for the y axes so that the low 
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counts of outlier voltages can be seen, notably for cell 7. There is some additional 

noise on cell 7 in the form of occasional large spikes in the measured voltage. 

The reason for this is not known: it appears to only be present when the balancing 

system is connected, but occurs even when no balancing is taking place. There 

is no obvious pattern to the noise on each cell. 

 

 
Figure 53: Apparent change in a cell voltage caused by a neighbouring cell set to balance 

Private communication with a TATA Motors Senior Engineer suggested that this 

could be an artefact of the digital analogue converter being 16 bits in resolution. 

The LTC6811 has different conversion rates, and at higher rates there is a 

corresponding reduction in resolution. The full 16-bit voltage is still outputted, the 

final few bits of the voltage may just be noise from the conversion process and 

so redundant. Rounding the measured voltage to the nearest mV is more 

appropriate for this sample rate. This means that the voltage is less accurate than 

initially thought, and the unusual noise pattern means that averaging voltage over 

time does not necessarily result in the ‘true’ voltage, as it would with a Gaussian 

distribution and could therefore hinder state estimation.  
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Figure 54: Histograms of cell voltage measurement noise for the LTC6811 chip 

Through experimentation, it was found that there was some time-delay in the 

region of a few milliseconds on the voltage measurement from the LTC6811 

because it is read, sent over SPI to the balancing PCB, then packaged into CAN 

messages where it is received by the control system. The current measurements 

discussed in 6.3.2 were generally more direct and so had fewer delays, making 

synchronising the voltage and current challenging. This has important 

implications for SOC estimation. A significant portion of the voltage comes from 

direct feedthrough from the current. The schematic in Figure 55 shows how a 
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delayed voltage during a dynamic current profile might appear as though the 

voltage increases despite the current decreasing (the cell going from charging to 

discharging). This suggests to a parameter estimator that the cell internal 

resistance is negative which is clearly impossible. If the time-delay is consistent 

and precisely known, the current measurement can be delayed a fixed amount to 

align with the voltage. However this was not always reliable, and ideally the 

voltage and current would be sampled from the same source. The issue is not so 

much the communication delay, but the delays between when the two 

measurements are taken. The voltage measurements are packed into several 

CAN messages (three voltages per cell, with 12 total voltage measurements) 

which each had slightly different time-stamps, which made post-processing the 

data and diagnosing system behaviour more difficult. 

 
Figure 55: Schematic of delayed voltage measurements during a dynamic current profile 

In summary, using the LTC6811 had the following challenges when used as part 

of the control system: 

• The measured voltage includes the connection resistance, which in this 

case is not trivial, so the measured voltage is not equal to the cell voltage. 

• There is some evidence of non-Gaussian noise which can hinder accuracy 

and SOC estimation. 
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• It is difficult to synchronise the voltage and current measurements. 

An alternative means of measuring voltage was used instead: A National 

Instruments 9219 analogue-digital converter (ADC) card connected to a National 

Instruments cDAQ 9174 USB data acquisition chassis. Each card has four 

channels, a 100Hz sample rate and 24 bit resolution, which equates to 1.4µV 

[163] when using the ±15V voltage scale setting. It uses two wires per ADC 

channel, meaning that the cell voltage in Figure 50 can be measured, rather than 

the BMS voltage. Four cell voltages were measured in total, as by this point in 

time it was decided that only four of the seven cells would be controlled in order 

to maintain stable operation as noted in section 6.1. 

 

Analysis of the voltage measurements shows that it has superior noise 

characteristics compared to the LTC6811. Figure 56 shows histograms for the 

cell voltage measurements using NI 9219 modules.  

 
Figure 56: Histograms of cell voltage measurement noise for the NI 9219 module 

A t-test confirms that the distribution is Gaussian with 99.99% certainty. The 

standard deviation of voltage is approximately 0.25mV per cell, meaning that a 
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more accurate voltage and so SOC estimation can be achieved compared to the 

LTC6811 solution. The same ADC was ultimately used to measure cell current, 

as described in section 6.3.2, and since all channels on the 9129 card can sample 

voltage simultaneously, the voltage and current measurements are automatically 

time-synchronised. 

 

6.3.2 Current 
LEM CASR-6 current sensors [164] were initially used to measure each cell 

current, and their integration and calibration are documented in Submission 4. 

However, the sensors introduced a large resistance in series with each cell, 

contributed by the copper tracks on the PCB the sensors were mounted on, the 

connection from the board to the wires, and the connnection between the wires 

and the cells. The total resistance added was around 35mΩ. This is an order of 

magnitude larger than the ~3mΩ of the automotive pouch cells used for the 

testing and as such interfered with system performance. While another board 

could have been designed which used non-intrusive hall-effect sensors, these 

still require careful wiring and a stable power supply, filtering, and there was still 

the question of synchronising with voltage measurements. The 9129 ADC card 

has an option of scaling the input voltage to ±125mV, which equates to a 

resolution of 15nV and worst-case accuracy of 271µV [163]. The total connection 

wire resistance between cells was measured to be about 5mΩ, meaning that it is 

possible to directly mesure the wire voltage in Figure 50. This is simpler to 

implement than the hall-effect sensors, although is reliant on accurate calibration. 

 

The wires were calibrated by passing several known currents through the cells. 

Values of -15 to 15A were applied at 3A intervals to the series string using the 

load in section 6.4, and measured using a Fluke i30s current clamp. The wire 

voltages were sampled at 100Hz and averaged across each current value. A 

linear least squares fit was performed on these values to obtain the gain and 

offset required to translate wire voltage into cell current using (87). In the ideal 

case the offset O would be zero and the gain G the inverse of wire resistance. 

 𝑖`qrr = 𝐺𝑣5i�q + 𝑂	 (87) 

The calibration results for the four wires tested are given by Table 18 and Figure 

57. The gain is the inverse of the wire’s resistance, suggesting that wires 1 and 
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4 have a slightly poorer connection than wires 2-3. Theoretically the offset should 

be zero (as there is no voltage over a resistor if there is no current), but in reality 

there are small errors in measurement of both current and voltage which result in 

a non-zero offset. 
Table 18: Wire voltage calibration results 

Sensor Offset (O) Gain (G) Resistance 

(mΩ) 

1 0.02015 141.47 7.07 

2 0.01875 175.47 5.70 

3 0.01935 155.22 6.44 

4 0.01969 176.06 5.68 

 

 
Figure 57: Wire voltage calibration results 

6.4 Module cycler 
A lack availability of laboratory equipment meant that it was not possible to use a 

module cycler to charge and discharge the series string of cells. However, an 

important consideration for the active balancing control system is how well it 

performs with the cells under a current load. A Kepco BOP-MG 1KW bipolar load 
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was used to apply the current. This can deliver/ accept up to 20A (at up to 50V), 

which is 1.3C for the automotive pouch cells and is representative of the current 

magnitudes expected during operation in a BEV [41, 165].  

 

The load can be controlled externally using analogue voltage signals. These were 

generated using a National Instruments NI9263 module, which connected to the 

same National Instruments cDAQ chassis. The load current and voltage can be 

set dynamically using voltage signals, along with limits for current and voltage. 

An analogue signal of ±10V is used to set these values: a 10V control input 

corresponds to a 50V or 20A load output respectively. To achieve pseudo-current 

control, the load was set to voltage control mode, and the current limits were 

continually updated. If a charging current was required, the load voltage was set 

as 29.4V, or 18.9V for a discharging current. These values are based on there 

being 7 cells with a maximum and minimum voltage of 4.2V and 2.7V 

respectively. Unless the cells are at a very high or low SOC, it would require 

several hundred amps to force the module voltage to these values, which 

guarantees that the load will limit the current to the current limit set by the external 

signal. By continually setting the current limit to the current value which is actually 

desired as the output, a form of current control is achieved. For a given drive 

cycle current d, the control signal sent to the Kepco load to set the voltage is 

given by (88). N is the number of cells in series, and vmin and vmax are the minimum 

and maximum voltages defined by the cell manufacturer. The signal to set the 

load current is given by equation (89). The scaling factors of 0.2 and 0.5 come 

from 10V signals equating to the load being set to 50V and 20A respectively.  

 𝑣r² = Ç0.2𝑁𝑣Ûij, 𝑑 < 0
0.2𝑁𝑣Ûaö, 𝑑 ≥ 0	 (88) 

 

 𝑣r` = 0.5𝑑	 (89) 

The bipolar load must be initialised carefully to ensure safe operation. When 

switched off, it essentially acts as a resistive load which discharges the cells at a 

potentially damaging rate.  When switched on, it defaults to voltage control mode. 

If the value at which it is switched on at is even 100mV different to the total cell 

string voltage, it will cause a large current to flow which is undesirable. To ensure 

safe operation a cut-off switch was connected in series with the wire connecting 
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to the negative cell terminal, and the following initialisation procedure followed 

(assuming the switch is initially open and so the cells are disconnected): 

1. The bipolar load is switched on and the following settings are applied: 

a. The load is set to voltage control mode. 

b. The maximum and minimum voltage limits configured to the values 

in (88), and the maximum current magnitude is set to 20A. 

c. The load is set to respond to the analogue voltage control signals. 

2. A signal is sent by the cDAQ chassis to set the load current to zero. 

3. The cut-off switch is closed, and the bipolar load’s electronic display 

checked to ensure that the current is in fact zero. 

Similarly, to switch off the bipolar load after a test, a signal is sent to set the 

current to zero, and then the cut-off switch opened to ensure the cells do not 

discharge through the load once it is switched off. 

 

6.5 Control bench 
This section describes how the different data sources are managed and tests 

executed. The development of the software platform to execute the control 

software is discussed and the various elements of the software are detailed.  

 

A schematic of the configuration used for experimental work is shown in Figure 

5813. The cDAQ chassis is used to log the cell voltages and currents of the four 

cells being controlled, and output a signal to the bipolar load to generate the drive 

cycle. The CAN-USB adapter is used to read the voltage and temperature of all 

seven cells (used for safety purposes only), and send balancing requests. These 

both connect via USB to an HP EliteBook 850 laptop running Windows 10 and 

MATLAB R2016b. A software class was written to manage the experimental test 

set-up. A class was chosen as it allows for logical structuring of data, and makes 

it easy to control access (for example, making some data read-only to avoid 

accidentally overwriting or removing it). An object of the class is instantiated in 

the workspace, and the details of how the class is used are given in Appendix C. 

                                            
13 This set-up went through various iterations, notably with a Speedgoat real-time 
computer and Simulink. This is documented in Submission 5. 
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Figure 58: Schematic of final experimental configuration 

The entire control system was run within MATLAB. This had the disadvantage of 

not strictly operating in real-time. Functions were set to trigger when one second’s 

worth of data had been acquired, as described further below. In practice, these 

were triggered within 0.1% of this desired time, and this pseudo-real-time 

operation was not detrimental to operation of the closed loop system. This meant 

that the 100Hz measurement data was processed in batches every 1s, which 

reduced the computational overhead, especially when iterating through the state 

estimators. The majority of changes to the code did not require re-compilation, 

which sped up the development process, and meant that minor changes could 

be made while the code was executing (such as changing what was being plotted 

or printing variables to debug an issue). The SOC estimators were compiled to 

C-code as these were found to take up most of the execution time. After 

compilation, the execution was over 100 times quicker. The whole function 
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typically executed in around 100ms, comfortably less than the 1s window. The 

remaining components such as the balancing controller did not see the same 

performance gains (typically around a factor of 2 improvement) when compiled, 

and given the function as a whole was not close to requiring the full 1s to execute, 

compilation was not performed as it slows the development process. 

 

The various estimators and controllers used throughout the development and test 

work (described in chapters 4 and 5 respectively) were written as System objects. 

The many matrix operations and decision logic required for these were easier to 

write as MATLAB code rather than using Simulink blocks. System objects can be 

implemented in both MATLAB and Simulink, which meant that no additional work 

was required between developing the controllers in simulation, and running them 

during tests. They also support code generation, which made the process of 

compiling the estimators straightforward. 

 

The complete test set up in the laboratory is shown in Figure 59. The Kepco load 

is on the left-hand side, and the seven cells to its right. The red and black sense 

wires connect to the terminals so that the cell and wire voltages are measured by 

the cDAQ chassis in the foreground. The white wires connect the cells to the 

balancing PCB behind the cDAQ, in front of the power supply for the board. The 

CAN-USB adapter is on top of the power supply, and this along with the cDAQ 

chassis connect to the laptop on the right via USB.  

 
Figure 59: Equipment set-up in the laboratory 
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6.6 Hardware Analysis 
Before using the balancing system to develop and evaluate the control systems, 

its performance must be assessed. The focus of the analysis was on current 

generation. The control system from Chapter 5 calculates a desired balancing 

current for each cell. This needs to be generated by the balancing hardware, but 

as noted in section 6.2.2, a duty cycle value is sent to the balancing board. This 

is a relative value, and so the current generated by the circuitry when active 

needs to be known so that (79) can be applied reliably. If ibal is incorrect, there 

will be a set-point error where the current generated by the hardware is different 

that why is intended from the duty cycle value. There could be some uncertainty 

in ibal owing to variances in the electronic components, the LTC3300-1 operation, 

or the circuitry and operation of neighbouring cells. Tests were therefore 

performed to answer the following questions: 

• How consistent is ibal on repeated operation? 

• How much variation is there between cells? 

• How does ibal change when other cells are also set to balance? 
 

As well as the balancing current itself, there is also the feedback current applied 

to the submodules in Figure 46. These also need to be evaluated to determine 

the relationship between balancing and cell currents, and also used to calculate 

the efficiency of the system based on (82) and (85). Much of the test work was 

undertaken on four cells because of the issues raised earlier. In this case, four 

cells are labelled as cells 1-4 for convenience but are actually cells 2,3,5 and 6 

respectively in Figure 46. These four cells were used for all of the experimental 

work here unless otherwise stated. For the test work undertaken with all seven 

cells, the measurements were obtained using the hall-effect current sensors 

discussed in section 6.3.2. As noted, the current sensors were primarily replaced 

because they interfered with the cell voltage and state estimation, not because of 

the quality of the readings. 

 

A simple test was performed on all 7 cells, where one cell was set to balance for 

0.5s, every 1s. An example plot is shown in Figure 60, which shows that the 

balancing currents are consistent. 
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Figure 60: Repeated single-cell balancing 

To test how different each cell is from one another, one cell at a time was set to 

discharge, and then charge as shown in Figure 61 (Note these were the cell load 

currents, not the balancing currents). According to Kirchoff’s current law, the 

balancing current ibal, cell current icell, feedback current ifb and external load 

current id are related by (90). Equation (90) can be rearranged to (91) so that the 

balancing current can be calculated. In general, the feedback currents from 

balancing are not measured, but (90) was validated with no external load by using 

Fluke i30s current probes. When a cell is not set to balance and there is no 

external load, its cell current measurement is a direct reading of the total feedback 

current. If only one cell is set to balance within a sub-module, there will only be 

one feedback current which is now known.  

 𝑖`qrr = 𝑖'ar − 𝑖ê' + 𝑖è (90) 

 𝑖'ar = 𝑖`qrr − 𝑖ê' (91) 
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Figure 61: Single cell balancing experiment 

For each balancing event, the balancing and feedback currents are shown in 
Table 19. The corresponding efficiency is also shown, calculated using (82) and 

(85) depending on the balancing direction. It is clear that the discharging currents 

are much larger than the charging currents. This is because of the choice of a 

larger secondary side sense resistor (15mΩ as opposed to 8mΩ) and a 1:2 

transformer ratio. These design decisions were made by the consultancy, 

although there are limits defined by LTC. For example, the 1:2 ratio is deemed 

optimal for the LTC3300-1s chips, but other ratios can be used [88]. For charging, 

the balancing current is dictated by the secondary side winding. Each cell in 

submodule A draws about 0.3A, with a corresponding cell-side balancing current 

of 1.4-1.5A. At around 0.25A, the sub-module B feedback current is lower, which 

combined with there being only 3 cells to source energy from makes the 

balancing current around 0.6A.  The reason for the lower feedback currents for 

module B may be because performance is a function of the number of cells (6-

12 cells is considered an ideal number by LTC [88]). For discharging, the 

balancing current should be independent of the connections, with the feedback 

current changing instead. The feedback currents are higher for sub-module B, 
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which is expected because the energy generated from the balancing cell is only 

redistributed between three cells rather than seven. There is significant variation 

between the discharge balancing currents. This is likely to be because of the 

tolerance on the 8mΩ resistor which determines the balancing current. It 

demonstrates that each channel of the balancing hardware must be evaluated 

and calibrated: there will be large set-point errors during operating if the nominal 

values are assumed correct. The efficiency is higher during charge and 

discharge, at 82% and 73% respectively. There should be little difference 

between the two according to the datasheet [88]. The lower magnitude of the 

charging currents may mean there are fewer resistive losses, which are 

proportional to the square of current. This includes the large resistance 

responsible for the voltage drop observed in Figure 52. Both of these values are 

lower than the 90%+ efficiency claimed by LTC [88]. Further investigation is 

required to evaluate this, as there are many factors which could affect efficiency, 

including the type of cell used, design decisions and component selection. 
Table 19: Current and efficiency for single-cell balancing 

 
Cell Cell Current Balancing 

Current (A) 
Feedback 

Current (A) 
Efficiency (%) 

Ch
ar

gi
ng

 

1 1.39 1.69 -0.30 80.1 
2 1.51 1.82 -0.31 83.0 
3 1.47 1.79 -0.31 81.0 
4 1.39 1.69 -0.31 78.3 
5 0.39 0.63 -0.25 86.2 
6 0.35 0.59 -0.23 83.6 
7 0.34 0.57 -0.23 82.2 

Di
sc

ha
rg

in
g 

1 -2.30 -2.57 0.27 74.3 
2 -2.38 -2.66 0.28 72.4 
3 -2.36 -2.64 0.28 73.8 
4 -2.26 -2.54 0.28 76.2 
5 -2.60 -3.30 0.70 63.5 
6 -2.41 -3.16 0.75 71.2 
7 -1.75 -2.36 0.61 77.2 

 

To evaluate the currents through the four instrumented cells in more depth, all 

possible permutations for switching of balancing were applied. The total number 

of permutations is given by (92), where the 3 arises from there being three 

possible states: charging, discharging or not balancing. The duty cycle of each 
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cell was 100% when enabled, and each permutation was applied for 1 second, 

followed by a 2 second rest and the next permutation.  

 𝑝 = 3�7899º	 (92) 

The four cell currents during the 81 balancing events are shown in Figure 62. 

This test has been performed more than once and found to be very closely 

repeatable.  

 
Figure 62: Cell currents measured during the balancing permutation test 

There are several observations that can be made based on this dataset. The 

current magnitudes of cells 1 and 2 appear to be less stable when one is charging 

while the other is discharging, see for example permutations 40-43 on Figure 62. 

Cells 3 and 4 do not seem to have this problem and it is unclear what the cause 

is, but the variation in current is not sufficient to substantially affect performance. 

The balancing current of each cell is not fixed: it varies depending on the status 

of the other cells. This is not accounted for in equations (80)-(84), in which the 

balancing current only depends on the number of cells, transformer windings and 

sense resistance. The repeatability of the results suggests a specific interaction 

between transformers rather than some random fluctuations or unpredictability to 

the current. This has been confirmed by using a Fluke i30s current probe to 

directly measure the current through the balancing wires during operation. 
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To demonstrate this, consider the data in Table 20. The first row of data is for 

when only cell 3 is set to discharge, the second row for only cell 4 discharging, 

and the third row when both are set to discharge simultaneously. When one cell 

is set to discharge, the other cell current is the balancing feedback current. 

Observing the cell current measurements, when one cell is balancing the cell 4 

current is only 0.2A lower than for cell 3, and the feedback currents are very 

similar in both cases. However, when they are both set to discharge, the current 

through cell 4 is over 1A lower than cell 3. This strongly suggests that the 

balancing current generated by cell 4 is much lower when cell 3 is also balancing. 

 
Table 20: Discharge balancing results for cells 3 and 4 

Cell set to 
discharge 

Cell Current 
cell 3 cell 4 

3 -2.63 0.68 
4 0.72 -2.44 

3 and 4 -1.78 -0.72 
 

Using (91) this means balancing currents of -3.31A for cell 3, and -3.16A for cell 

414. If the balancing systems were consistent and independent of one another, 

the cell currents when both cells are discharging should be given by (93), which 

is obtained by rearranging  equation (91) and accounting for there now being two 

components to the feedback current. Using the values above, this would result in 

the cell currents in row 3 of Table 20 being -1.91A and -1.76A respectively. The 

measured value for cell 3 is relatively close at 0.13A difference, but cell 4 is 1.04A 

from the theoretical value. This variation in loading means that calculating a duty 

cycle for each cell becomes complex, as the same duty cycle value could result 

in a different current depending on the status of the other cells. 

 ¦
𝑖`qrrâ
𝑖`qrr:

§ = ¦
𝑖'arâ
𝑖'ar:

§ + ¦
𝑖ê'â + 𝑖ê':
𝑖ê'â + 𝑖ê':

§ (93) 

The next test was performed to assess operation under load. The permutation 

cycle from Figure 62 was run, then repeated with a 7.5A (C/2 based on the 

                                            
14 Note that these values are almost identical to the results from Table 19 (cells 5 and 6), despite 
the two tests being performed months apart and with different methods of current sensing. This 
emphasises both the repeatable operation of the balancing system and the robustness of both 
current sensing methods and the associated calibration procedure. 
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nominal cell capacity) current applied. The current trace from this experiment is 

shown in Figure 63. The currents from each permutation were compared, and 

are summarised in Table 21. There is only a minor change in current values, 

which could in part be due to noise or inaccuracy in the current sensors. This 

means the balancing controller does not have to account for an external load in 

the duty cycle calculation. 

 
Figure 63: Evaluation of balancing system under external load 

Table 21: Difference in balancing currents while under external load 

Average Current 
difference (mA) 

Cell 1 Cell 2 Cell 3 Cell 4 

-19.65 -24.99 2.81 6.46 

 

Two approaches were used for converting the controller’s current output into a 

duty cycle, which are fully derived in Submission 5. The first was to find average 

charge and discharge currents for each cell. To do this, an offline NLLS fit was 

performed on the permutation dataset. This gives a single reference for each 

balancing current at a 100% duty cycle, making it straightforward to calculate 

other duty cycles. However, the variations in balancing current meant that the 

duty cycle calculation could be inaccurate, with cell 4 showing errors of up to 
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almost 600mA. An improved method was found which also used NLLS, but as an 

online optimisation. The goal of the optimisation was to find the combination of 

duty cycles which most closely matches the charge transferred over the course 

of the following one second of balancing, explicitly factoring in the changes in 

current which occur as other cells are switched on and off. This method also has 

a secondary benefit when used with the DSIC controller from section 5.4.3. This 

technique also uses a similar optimisation to find balancing currents, given 

constraints on what currents the hardware can produce. The duty cycle 

optimisation also factors in these limits as the duty cycles are limited and cell data 

are directly used. As such, the unconstrained gradient from the DSIC objective 

function can be used directly as the target currents by the duty cycle optimisation, 

without performing its own optimisation. 

 

6.7 Control System Experimental Test Results 
The technical issues with, and eventual failure of, the balancing hardware meant 

that it was not possible to perform a single comprehensive set of tests with a 

completely consistent of experimental conditions. A summary of the tests 

performed is given in Table 22. The Artemis Combined drive cycle was chosen 

to act as a representative vehicle load, as it contains a wide range of vehicle 

operating modes and so varied current excitation. A standard vehicle model 

developed within Catapult [143] was used to convert the Artemis speed profile 

into a battery current profile. 
Table 22: Summary of experimental  test conditions 

Test Controller Drive 
Cycle 

Cells 
Used 

Estimator Duty Cycle 
Calculation 

Comments 

1 Pole 

Placement 

None 2,3,5,6 1RC 

CDKF 

Average - 

2 Pole 

placement 

Artemis 

(15A 

peak) 

2,3,5,6 1RC 

CDKF 

Optimisation The cell 6 current 

sensor saturated 

at 12A 

3 DSIC Artemis 

(20A 

peak) 

2,3,6,7 CDKF 

With 

NLLS 

Optimisation Balancing currents 

for cells 6 and 7 

were lower than 

usual because of a 

short circuit 
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6.7.1 Pole placement 
Figure 64 shows the cell SOCs and absolute (maximum minus minimum) SOC 

difference for the pole placement controller with no external load. The circles at 

the start and end of the SOC plot give the SOCs obtained from using the OCV-

SOC with the relaxed cell voltages. This is used to indicate if the estimators are 

performing poorly. The SOC estimation results are particularly accurate for this 

test for two reasons. Firstly, there is no external load, the cells are only subject to 

low currents which affect the cell terminal voltage by a few millivolts. Secondly, 

duty cycling means that some or all the cells will be undergoing no current (or 

very low feedback currents) for part of each one second window. This short 

excitation followed by a rest means the cells are at an almost relaxed state for 

part of the time – particularly towards the end of balancing when the duty cycles 

are small. Both of these factors result in strong voltage correction from the 

estimator. At the end of the test, the mean difference between the estimated and 

measured SOCs was 0.01% SOC. 

 
Figure 64: SOC and duty cycle results for pole placement under no load 

For this test the closed-loop pole obtained using bisection was -6.06e-4 which 

equates to a time constant of 1650 seconds. The results show that stable 
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imbalance removal was achieved in line with the exponential response of a state 

feedback controller. The absolute imbalance started at 4.1% and was reduced to 

0.14% by the end of the experiment. As expected with state feedback, the 

majority of the imbalance reduction takes place early on in the test. The lower 

plot shows that absolute imbalance which reduced to 1% after 1650 seconds. 

This means that the balancing system is on for a long time which, on board a 

vehicle, would increase the charge lost due to standby power draw, and is not as 

effective when imbalance has to be reduced in a short period of time. 

 

The same pole placement controller was then applied with a discharging Artemis 

Combined drive cycle. The drive cycle was repeated until the cell SOCs became 

relatively low, at which point the balancing system stopped functioning as 

discussed in section 6.1. The cell currents and resultant SOC estimates are 

shown in Figure 65.  

 
Figure 65: Cell currents and SOCs for pole placement under Artemis Combined drive cycle 

They show the periodic discharging profile as the cells discharge from around 

92% SOC to 14% SOC. Figure 66 shows the SOC imbalance results. The 

response is not exponential like the no load case, because of the SOC 
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uncertainty, the controller not factoring in the load current, and saturation of some 

of the duty cycles. Despite this, the imbalance is reduced significantly by 30 

minutes. After this point, the controller would ideally operate as a regulator 

reacting to the drive cycle disturbance. This is achieved to some extent, but there 

are several periods during which imbalance increases. This is typically during the 

high-current region of the input profile: the 60-75 minute, 100-115 minute and 

140-155 minute regions. This apparent increase in imbalance arises from SOC 

estimation error. The nature of the experiment means there is no baseline 

reference to observe how accurate the SOC estimation is apart from before and 

after the test. However, there are two observations on estimator performance. 

Firstly, after this part of the drive cycle there is a rest period, which should allow 

the estimator to converge on the ‘true’ SOC (from the OCV-SOC curve) as the 

cell relaxes. Secondly, the SOC estimates generally increase during this 

convergence period, implying that the estimates have been too low during the 

previous discharging phase.  

 

 
Figure 66: ΔSOC and absolute SOC difference for pole placement under Artemis Combined drive cycle 
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Pole placement can be slow to respond to these increases in imbalance. As 

mentioned above for the no load case, performance could be improved by 

retuning the controller. Given that there may be continual and unexpected 

changes to the SOC estimates, the controller should respond to them quickly 

because the uncertainty is not known in the future. A slow response increases 

the chances that the controller will not be able to reduce imbalance before the 

cells reach EOC/EOD. As discussed in Chapter 5, while the above pole 

placement algorithm could be improved to speed up this imbalance response, its 

fundamental operation is not well suited to fast imbalance removal. 

 

6.7.2 DSIC 
To validate the performance of the DSIC algorithm, the same Artemis profile was 

applied as for the pole placement tests, but starting from around 60% SOC with 

a larger initial imbalance. The current and SOC results are shown in Figure 67, 

and the relative and absolute SOC differences shown in Figure 68. The drive 

cycle is scaled to a higher maximum value (20A rather than 15A).  

 
Figure 67: Cell currents and SOCs for DSIC under Artemis Combined drive cycle 
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Figure 68: ΔSOC and absolute SOC difference for DSIC under Artemis Combined drive cycle 

The results show that the controller can quickly reduce the SOC difference, and 

maintain a low difference over the drive cycle. This quadratic controller is quicker 

to returned the system to a balanced state in the event of a disturbance such as 

SOC estimations correcting during cell relaxation. In this sense, the DSIC 

approach effectively acts as a better regulator than pole placement in the face of 

the various sources of uncertainty.  

 

6.8 Simulation Studies 
To complement the experimental results above, a number of SIL studies were 

undertaken to improve the breadth of the validation activity for both the DSIC and 

Pole Placement designs. Unlike in Chapter 5, these simulations include a model 

of the specific balancing hardware used for this work, the details of which are 

contained in Submission 5. These studies allow for a comparison of different 

controllers under the exact same conditions, which was difficult to achieve with 

the experimental set-up. The 3RC plant cell model from section 4.2 and 1RC 

estimator from section 4.3 were used for these studies. While the 3RC estimator 

showed superior performance, it also uses the same model parameters as the 
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model, making the estimator essentially redundant. Using the 1RC estimator 

induces some uncertainty, for a more thorough analysis of the control systems. 

 

The experimental work in this Chapter showed that balancing under load was 

more challenging than under no load, as the estimator performance was worse. 

These simulation studies use the same US06 Highway drive cycle in Figure 39. 

The current from that model was rescaled to give the same C-rate for these cells 

as for the battery pack in the vehicle model. The starting SOCs of the cells is the 

same in both cases, with the simulation using cells 2,3 5 and 6 and the SOCs in 

Table 15. As can be seen in Figure 69, pole placement does cause the cell SOCs 

to converge, but not fully, with it taking over 1 hour to reduce total imbalance to 

under 1%, and then converging to a steady state error of about 0.5%.  The results 

for DSIC shown in Figure 70 show it is able to remove imbalance almost 

completely within 15 minutes, and maintain this state of balance despite the 

presence of a drive cycle. 

 
Figure 69: Simulation results for pole placement under the US06 drive cycle 
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Figure 70:  Simulation results for DSIC under the US06 drive cycle 

6.9 Control System Analysis 
The DSIC controller was the best-performing of the controllers. It removed 

imbalance at a much faster rate, and was more effective at maintaining balance 

in the presence of uncertain SOC estimates. The proposed strategy from section 

5.1 is to only balance when it appears that the vehicle driver would otherwise 

completely discharge one of the cells. Active balancing during this phase 

increases the driving range by extending the time until one cell reaches end of 

discharge (ideally all cells reach end of discharge simultaneously). Being able to 

balance faster with the same hardware means that balancing can be left until later 

during discharge, which in turn increases the likelihood that it will not have to be 

used at all, improving energy efficiency. 

 

The experimental results shown in Figure 68 brought the cells to within 0.05% 

SOC of each other (measured from the relaxed cell voltage not from the SOC 

estimates), with a standard deviation of 0.02%. This emphasises that while there 

has been much discussion of SOC estimation error, this error is not statistical 

noise but follows the same trend between cells. For example, if one cell’s SOC 
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estimate is 2% above the true value, it is likely that all the other cells’ SOC 

estimates are about 2% above the true value, rather than some cells being up to 

2% above and others up to 2% below. The latter case would be problematic, as 

the spread of imbalance would be much higher.  

 

The battery utilisation factor, UF, is presented in (94) as a means of assessing 

what proportion of the pack’s charge has been utilised, where 100% implies that 

all cells have been fully discharged. Differences in final SOC sf will reduce the 

utilisation factor as it means there is charge remaining in some cells. Assuming 

that the cells started off fully charged and balanced, for the cells in Table 9, the 

UF for passive balancing is 92%, owing to the capacity differences.  

 𝑈𝐹 =
∑ ¡𝑄`ab,j

[100 − 𝑠j=]
100 ¢j

∑𝑄`ab,j
 (94) 

 

For active balancing, the charge lost from system inefficiency during balancing 

must be accounted for. This can be calculated using (95), where for this system 

efficiency is taken as 0.8. The amount of charge lost during balancing will depend 

on the amount of imbalance which is to be removed. For this study it is assumed 

that balancing starts when one cell reaches 20%, resulting in the SOC vector 

from Table 15. The UF for active balancing can then be calculated using (96). 

The uncertainty from SOC estimation error can also be incorporated by 

considering a set of normally distributed SOC values, whose minimum value is 

zero (i.e. one of the cells has been completely discharged). Using the 

experimental final imbalance standard deviation of 0.02%, a Monte-Carlo 

simulation was run to understand the impact of cells finishing at different SOCs 

based on the uncertainty in their estimate. Ten-thousand normally distributed final 

SOC vectors were generated, and (96) applied each time. 

 𝑄rmoo = (1 − 𝜂)ñ|𝑖'ar| 𝑑𝑡 (95) 

 𝑈𝐹 =
∑ ¡𝑄`ab,j

[100 − 𝑠j=]
100 − 𝑄rmoo¢j

∑𝑄`ab,j
 (96) 
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From these results, the mean utilisation factor for these cells was 99.19%, with a 

worst-case of 99.14%. This means that almost all the battery pack charge 

can be extracted, with a 7% improvement over the 92% offered by passive 
balancing. This has several potential benefits. The driving range of the vehicle 

could be increased, which is a key selling point for BEVs. Alternatively, the same 

range could be achieved with a smaller pack (saving cost, weight and complexity) 

or a narrowed DOD window (improving efficiency and reducing ageing). 

 

6.10 Balancing Hardware Requirements 
Several observations were noted during the commissioning and validation 

phases of this research using the energy balancing hardware based on the 

LTC300-1 system. The aim of this section is to reflect on this research, highlight 

the challenges faced and to make recommendations for future hardware designs 

to improve performance and integration with a real-world BMS solution.  

 

For simplicity and control robustness, balancing current generation would be 

independent of factors such as the number of cells and the cell voltages. This 

minimises the set-point error, ensuring that the requested current from the 

controller is reliably generated by the hardware. In practice this is unlikely to be 

feasible, but should be mitigated against as much as possible. The LTC3300-1 

chip comes relatively close to achieving this, as the theory of operation and 

simulation studies in section 6.2 showed the current only varies a small amount 

with cell voltage and internal resistance. The hardware design was such that the 

discharging current depended on primary side connections, whereas the  

charging current depended on secondary side connections. This means the 

charging current is dependent on the number of cells, whereas the discharging 

current is independent. The cell connections will most likely remain unchanged 

during operation, so this dependency can be resolved during the design process.  

 

If there is some dependency, it should be predictable and repeatable. That is, the 

factors causing the balancing current to change should be known, and so can be 

factored into the control system accurately calculates the balancing current with 

minimal set-point error. The LTC3300-1 system is sensitive to the sense resistor 
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values, meaning that each channel had to be individually tested and calibrated, 

but when setting a cell to balance, the current generated was consistent. A key 

issue with the LTC3300-1 system is the balancing current varying when other 

cells were also set to balance. The cause of this variation could not be found, and 

so an analytical set of equations describing it could not be derived and 

incorporated into the model. Despite this, it was repeatable and so accounted for. 

 

The cell-module connections influence the effectiveness of the balancing system. 

A series of isolated modules, each with its own balancing system, will more than 

likely result in not being able to globally reduce imbalance. As was first discussed 

in section 2.1.2, each module can have a very different SOC distribution, and if 

one module’s average SOC is much lower than the others, it will still limit the 

battery pack despite the presence of an ABS. The obvious solution would be to 

have one module: the entire battery pack. This is generally difficult to achieve 

because of the large ratio between pack and cell voltage (around 100:1 for a 

BEV). However, there is progress on this front. Module-module balancing has 

been proposed, as discussed in 2.2.1, though this adds a considerable number 

of components, and with it cost, complexity and new failure modes. The 

interleaving method recommended by LTC is it allows cells from one module to 

transfer energy to cells in a neighbouring module, without any additional circuitry. 

In this case, the number of modules should be kept to a minimum, as this will 

increase the amount of time to balancing modules (the logical extreme is having 

one cell per module, i.e. cell-to-cell balancing, where as noted in section 2.2.1 is 

ineffective at moving energy between areas of the pack). The control model from 

section 5.3 can adapt to these different cases. It contains knowledge of the cell 

connections and so will inherently balance neighbouring modules. 

 

6.11 Summary 
A number of integration issues became apparent while commissioning the 

balancing hardware. The ABS was delivered with a combined balancing and 

voltage measurement harness. This proved to be unsuitable for measuring cell 

voltage, with the voltage during balancing being hundreds of millivolts from the 

actual cell voltage. These types of compromise are common for cost and 

reliability reasons, but may have to be revised for more advanced active 
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balancing hardware and control strategies. Another issue raised is the additional 

higher-frequency dynamics induced by balancing. The impact of this will depend 

on the type of balancing system. In this case, it was induced by the duty cycling 

scheme which operated at 100Hz. This created sudden, rapid changes in voltage 

as balancing was switched on and off, and it was important to capture this voltage 

as well as ensuring the associated current measurement was synchronised as 

part of the state and parameter estimation process. 

  

The experimental results demonstrated that imbalance can be removed and 

largely maintained in the face of SOC estimation uncertainty, with charge 

utilisation increased from 92% to over 99% for the cells under test. One of the 

issues with pole placement, first noted in Chapter 5, is that the corrective action 

reduces with imbalance. The experimental results showed that the main issue 

with this in practice is that it is slow to adjust to SOC estimation errors. The 

balancing system can only work with the SOC estimates it has, and so there is a 

chance that it has apparently removed imbalance, only to discover later that there 

is actually still a significant amount of imbalance because the SOC estimate was 

incorrect. If this happens close to EOD then the pack may reach EOD in an 

imbalanced state and not all the energy was utilised. Clearly, the SOC estimate 

is crucial to balancing system performance, and it may be that if there is some 

trade-off (either in terms of computational limitations or development time) then 

a better SOC estimate combined with a simple rule-based strategy may result in 

better energy utilisation than the DSIC controller with a poorer estimate. 
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7 Conclusions 
A thorough analysis has been performed on energy imbalance within a multi-cell 

battery system, ranging from broad questions on the causes of imbalance 

through to specifics of how energy can be transferred between cells. The wider 

context of balancing was addressed first. An underpinning theme throughout this 

research is that active balancing is often not considered holistically. Many studies 

have focused only on hardware, and demonstrating functionality rather than 

showing how the technology can be used to improve overall system performance 

relative to passive balancing. From the literature review, there was an awareness 

within the sponsoring company that active balancing exists, but a lack of 

understanding of exactly how and when it should be used, and how to quantify 

its benefit and assess its commercial suitability. This challenge is further 

complicated by the various types of hardware and disparate claims often made 

by many manufacturers within the supply-chain.  

 

The first Research Question addressed many of the issues above. It was 

answered by critically reviewing the literature and addressing several flaws and 

missing or contentious areas with an active balancing control strategy. The first 

Research Objective led to the conclusion that a 10% difference between the 

highest and lowest cell capacities is a conservative expectation for automotive 

cells in use for several years. For the seven cells used to test the ABS for this 

work, only up to 92% of the total capacity could be utilised if passive balancing is 

implemented. The second Research Objective emphasised that there was a wide 

range of balancing hardware, but little research into how it should be controlled, 

and how much benefit could actually be achieved through its adoption within an 

EV application. The focus of existing research was often on the balancing speed, 

rather than energy utilisation. For this reason, balancing during discharging was 

almost entirely neglected within the literature, which is the only means by which 

active balancing can utilise energy where passive balancing cannot. 

 

The increased energy utilisation has several implications for long-term 

automotive applications. From a performance perspective, the reduction in the 

vehicle’s driving range several years after purchasing will be less significant, a 
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key selling point for potentially customers who expect many years of consistent 

performance, and an important metric for retaining existing customers. Another 

pertinent topic for EVs is warranty claims. Active balancing could prevent one 

weak cell causing the entire battery pack to be replaced under warranty, which 

as well as being costly to the manufacturer is a negative customer experience. 

Increased energy utilisation means that a smaller battery pack could be used to 

achieve the same performance. With the battery pack being one of the largest 

and most costly elements of an EV. 

 

These issues are the motivation behind the second Research Question. Given 

these statistics and high-level strategy, the increase in energy utilisation needs 

to be quantified, as this is the main benefit and justification for the use of active 

balancing. This was broken down into three stages. Research Objective 3 was to 

develop a modelling and simulation framework which could be used for balancing 

system design, and was essential for estimating SOC as part of the experimental 

process. This then allowed for Research Objective 4 to be met, whereby a 

number of controllers were designed and evaluated. A simple, non-model based 

scheme was found to be effective, but optimisation-based controllers were found 

to be up to 22% more energy efficient by employing lower average currents. This 

novel control framework was specifically designed to be generic, such that it can 

easily be tailored to any balancing system, maintaining its usefulness as 

balancing systems evolve over time and new technologies become available. To 

test these control systems, an ABS based on commercial hardware was 

commissioned, and connected to aged automotive cells. There were several 

learning points from the integration process, notably on obtaining accurate cell 

voltage measurements and minimising set-point error upon requesting balancing 

currents from the ABS. The experimental results showed a substantial increase 

in energy utilisation through active balancing. For the seven cells under test, over 

99% of the pack energy could be utilised compared to only 92% when using 

passive balancing. 
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7.1 Impact and Innovation 
The primary impact for the sponsoring company is that they now have the 

knowledge and capability to evaluate and integrate different active balancing 

systems. This capability is underpinned through the knowledge gained through 

the successful implementation of an ABS with production-intent hardware and 

automotive cells. The suitability of different applications has been assessed, with 

the conclusion that ABSs only offer a notable benefit when the application utilises 

close to the full pack DOD, such as for most BEV applications. A high-level 

strategy solves the problem of when to balance. This minimises ABS usage 

(which is beneficial for efficiency and reliability), while ensuring the entire battery 

pack capacity is available. SOC was shown to be the most suitable metric for 

quantifying imbalance, despite voltage being more commonly adopted, and 

experimental results showed that imbalance can reduced to within 0.1% SOC, 

even in the presence of SOC estimator uncertainty. Numerous physical 

integration challenges have been addressed which were not considered by the 

makers of balancing hardware, notably on accurate cell voltage measurement. 

The next time a supplier offers some evaluation hardware for a new balancing 

system, the sponsor company can now perform high-level calculations and 

specific, consistent tests to quantify its performance, and suitability for a specific 

vehicle platform. 

 

This work also feeds into the expanding second-life market, in which used cells, 

no longer capable of meeting performance targets for their original application, 

can be combined to form battery packs in less intensive environments such as 

grid storage for wind farms. There will inherently be a lot of cell-cell variation, 

which is where active balancing can offer a significant performance benefit. By 

prolonging the useful life of cells, manufacturers can extract more profit either by 

selling used battery packs to a second-life specialist, or by repurposing their own 

battery packs for other applications. This favourably shifts the cost-benefit ratio 

of ABSs when considering the total lifetime of the cells. 

 

The key innovation of this research is that a control strategy was developed for 

the first time with the explicit aim of maximising energy utilisation. This strategy 
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includes balancing while the battery pack is being discharged, which to the 

author’s knowledge has not been performed experimentally before, but is crucial 

to energy utilisation. A model-based design framework has been created which 

can be used to design a variety of controllers independent of the type of 

hardware. This model addresses issues such as controllability and over-

actuation, which to date have not been addressed within the literature for this 

domain problem. Similar MPC algorithms to those developed in this research 

have been recently published by other authors, but this framework has scope to 

underpin more control solutions. For example, the feed-forward controller has the 

potential to further reduce energy loss during balancing while being simpler than 

other proposed solutions, but was unable to be validated experimentally. As 

mentioned above, SOC estimators were successfully implemented as part of the 

real-time control loop. Concern over the reliability of SOC estimation has been 

raised within the literature on active balancing, but until now has not been 

addressed and quantified experimentally. These results demonstrate 

conclusively that the use of SOC estimation is suitable within the context of an 

overall active balancing control system.  

 

7.2 Further Work 
A number of research gaps were identified during this work which are yet to be 

addressed. Additionally, there are some specific aspects which arose during the 

experimental work. By exploring these further, improvements could be made to 

cell models and future BMS performance. 

  

7.2.1 Research Gaps 

One of the issues first noted in section 2.2 is that it is very difficult to compare the 

various types of hardware proposed. This is because they have been tested with 

different numbers of cell (and types of cell), are designed to operate at various 

power levels and are controlled in different ways. The fact that one ABS balances 

faster than another does not mean a great deal, as it is likely they could both 

operate at very different speeds if different component values are chosen. The 

balancing control framework proposed in this innovation report could be used as 

a basis of a more systematic and rigorous comparison of different topologies. Of 
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interest are 3 types of system: smart cells with a built-in converter, a cell-module 

system with simultaneous operation, such as the LTC3300-1 used in this work, 

and a cell-module system which uses a shared converter to reduce the 

component account. These three systems, highlighted by the initial literature 

review, should be designed such that they can balance at a similar rate according 

to the control system proposed here. They could then be evaluated to compare 

the cost, size, efficiency and complexity to give a much better idea of the 

suitability and feasibility of different ABSs for different applications. 

 

The other area of ABS research is how to scale up from a few cells to a large 

battery pack. This is not a topic addressed within the literature, because of the 

difficulty involved in building a complete battery pack within a university research 

environment. This would better indicate how global imbalance reduction is 

affected by having large numbers of cells and module-to-module balancing 

connections, and would likely raise many integration issues that are not currently 

apparent. The reliability of ABSs has also not been addressed, likely because of 

the lack of commercial or long term applications to date, but this is important in 

validating the feasibility of ABSs in such applications. 

 

There is also scope for further control system development. Issues with test 

equipment meant that it was not possible to continue to develop and refine the 

MPC controller or implement the feed-forward controller. It may be possible to 

adjust the cost function to reduce energy loss or improve balancing time. The rule 

for adjusting the time window is also quite simplified, and ideally it would be 

calculated as part of the optimisation routine. 

 

7.2.2 Model Performance 

While cell models were useful for several aspects of this work, they could not be 

used as effectively as was hoped. SOC estimator development was hindered by 

the limitations of ECM accuracy over wide DOD ranges, notably during cell 

relaxation. Accurately modelling relaxation would enhance convergence to the 

true SOC when the applied load has stopped even for a short period of time (such 

as a vehicle waiting at a junction). Using similar ECMs for the estimator and plant 
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model means that it is difficult to robustly tune the estimator. As such, the creation 

of an extended ECM to better capture these low frequency dynamics, or 

continuing research into making PBMs feasible for plant models, will further help 

to improve SOC estimator design and therefore balancing system performance. 

There were also some issues with the OCV-SOC data generated for this work. 

The procedure employed does not thoroughly validate the curves, and some 

errors were apparent in earlier Catapult OCV-SOC test data which was not 

identified as the focus was on ECM development. Developing a procedure for 

generating OCV-SOC curves and ECM parameterisation data specifically for 

SOC estimation purposes could help overcome these issues and further improve 

estimator performance. 

 

7.2.3 Robustness Analysis 
While the control system has been demonstrated on representative hardware, an 

important means of assessing its performance long term, and for different 

applications, is through robustness analysis. This quantifies how the control 

system performance is affected by various noise sources, and the properties of 

the noise. Of particular relevance to this control system is the impact of SOC 

estimation accuracy, and cell capacity estimation accuracy. The former is critical 

for assessing the state of imbalance, and so what the controller must do to 

remove this imbalance, and the latter is a key part of the model for projecting 

forward to calculate how much charge (and so current) must be added or 

removed to each cell. The robustness characteristics are also important for 

setting requirements for other subsystems, for example how accurate the SOC 

estimator needs to be, or the noise properties of the current sensors. 

 

7.2.4 Productionisation 
The test work here was based on prototype hardware. As mentioned in section 

2.2.3, there are a number of additional factors in when making the decision 

whether to include an ABS in a battery pack. Research into minimising the cost 

and component count of the power electronics, as well as reducing the amount 

of wiring and number of connections would all improve the business and 

engineering cases for active balancing. Similarly, research into reliability, failure 
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modes and safety considerations over the operating life-time would help inform 

design decisions and help identify suitable applications. 

 

7.3 Reflection 
One of the recurring themes throughout this research was some unexpected 

relationships between different topics. The parallel cell modelling involved 

thinking about how interconnections between cells can be modelled, and currents 

calculated. This indirectly led to the balancing control model. Despite appearing 

quite different, in both cases there is a dependency between each cell which 

dictates their currents. Similarly, the quadratic optimisation/ NLLS algorithm was 

originally written for the online DSIC implementation, but two other online 

applications emerged: parameter estimation and duty cycle calculation. This 

emphasises the benefit of systems thinking and writing code for efficient reuse.  

 

Much of the learning over the course of this research came from the experimental 

work and specifically adopting an iterative approach. The parallel cell model was 

only accurate because, after evaluating the results from the standard procedure, 

additional tests were performed with data collection at a higher bandwidth. 

Similarly, many of the requirements, performance evaluation and strategy 

elements of the balancing system only crystallised while testing the controllers, 

even though much of it now seems obvious in hindsight. It is unfortunate that 

many more iterations of the control systems could not be performed, as this would 

have allowed for a more thorough analysis and refinement of the controllers: the 

DSIC scheme and state estimators were largely designed and tested online due 

to time and resource constraints, and the feed-forward controller was only 

developed after the ABS had terminally failed. The most challenging part of the 

research was in having to respond to continued equipment failure and 

unavailability, which considerably reduced the time available for control system 

development. However, this is part of the research and development process, 

and was itself a valuable learning process, both for technical aspects (planning, 

continual improvement and debugging electronics) and personal development 

(communication, perseverance and resource management). 
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Appendix A: Cell Impedance Modelling 
 

Frequency domain data are generally obtained using electrochemical impedance 

spectroscopy (EIS) equipment. This generates a sinusoidal current signal15 and 

measures the amplitude and phase difference between the current and voltage 

to calculate the impedance at that frequency. Signals over a range of frequencies 

(10mHz to 100KHz is typical) are applied to build a thorough picture of the cell’s 

response. This wide frequency range enables several distinct electrochemical 

phenomena to be discerned. A cylindrical 3Ah lithium-ion cell was used for a 

variety of test work during this research, notably in Submission 2 and [10], and 

both time and frequency domain fits were performed. Figure A- 1 shows a Nyquist 

plot of the cell’s impedance. A Solartron ModuLab-XM was used to perform the 

EIS test within the laboratory. Frequencies from 10mHz to 100kHz were applied 

to a partially aged cylindrical battery, with 10 logarithmically spaced frequencies 

per decade. A C/20 current was applied at 90% SOC and a VC3 4060 thermal 

chamber used to maintain the ambient temperature at 25°C. 

 

The impedance can be broken down into four primary contributions [64, 123, 166] 

which are also annotated on Figure A- 1: 

1. Ohmic drop: the total DC resistance of the electrodes, electrolyte, 

separators and electrical connection of the cell to the external circuitry. 

There is no reactance so the effect is instantaneous. For the cell in Figure 

A- 1, this occurs at 600Hz. 

2. Charge transfer: due to the double layer capacitance between the 

electrode-electrolyte interfaces, ions are moved due to gradients in the 

electric field. The time constant for this is typically in the millisecond-

second region. For aged cells, this process can occur in a second region. 

A solid electrolyte interphase (SEI) layer develops on the carbon anode 

which increases in thickness as the cell ages. This adds an additional 

impedance which is distinct from the charge transfer process.  

                                            
15 A sinusoidal voltage (potentiostatic operation) can also be applied. However, a sinusoidal current 
(galvanostatic operation) is typically used for cells because it ensures the overall current into the cell 
is zero so the cell SOC does not change over the duration of the test. 
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3. Diffusion/ mass transfer: concentration gradients drive the diffusion of 

lithium ions from the inside of each electrode to the surface, and vice 

versa. The time constant for this is typically in the seconds-minutes region. 

This is the main response that an ECM running on a BMS aims to capture. 

4. Induction: the components of the cell, and wiring to the external circuit all 

have an inductance. This is general small and so can be neglected until 

the frequency is sufficiently high (generally over 1kHz). Since the 

bandwidth of current through cells, and the BMS sampling rate, do not 

typically reach close to such high frequencies, it is often ignored [167]. 

However, there are two sources of high frequencies in battery packs: noise 

from the motor inverter and switching from certain cell balancing systems. 

 

 
Figure A- 1: Example EIS data of a cylindrical lithium-ion cell 

This level of granularity makes EIS particularly useful for comparing a cell at 

various states, for example, how a new cell compared to one aged for two years, 

or how it performs at -25°C against 45°C. However, there are several drawbacks 

to EIS. A low-amplitude sinusoidal current is not representative of how cells are 

used in any application, particularly an EV. EIS requires specialist circuitry and 
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so is not suited to operation on board a vehicle. EIS using a motor controller was 

proposed in [168], but has a limited frequency range and requires accurate 

calibration, which may not be possible to maintain over the lifetime of a vehicle. 

In order to obtain the impedance data, the cells must be have been at rest for 

several hours, which limits when the tests can be performed. The test itself can 

become time consuming if low frequencies (below 10mHz) are excited, which is 

an area of interest for BMS applications. As measurements cannot occur while 

the cells are in use, it is not possible to measure the impedance at any instance 

in time, limiting its use for BMS applications. 

 

Equivalent circuits for EIS data typically preserve the four regions of operation 

described above. This enables changes in impedance from one test to another 

to be quantified and linked to a particular process (such an increase in DC 

resistance or a slow-down in diffusion). Figure A- 2 shows a commonly used ECM 

for EIS impedance data [118, 169, 170]. The Warburg element σ models the 

diffusion, and the constant phase element (CPEdl) is a capacitor-like component 

which captures the charge transfer reactance. This circuit is best considered in 

the complex frequency domain, where complex frequency s is defined by (97) 

from frequency f. The circuit has the impedance equation (98), where n and w 

are {0,1} values for the constant phase element and Warburg element 

respectively. An additional R-CPE pairs can be added in series with this model to 

factor in additional SEI growth which occurs with ageing. The equation for this 

pair is given by (99). 

 
Figure A- 2: ECM for EIS data 

 𝑠 = 2𝜋𝑓𝑗 (97) 

 

 𝑍(𝑠) = 𝐿𝑠 + 𝑅@Í +
𝑅`c𝑠j + 𝜎

𝑠j + 𝑠5𝐶𝑃𝐸èr(𝑅`c𝑠j + 𝜎)
 (98) 
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 𝑍oqi(𝑠) =
𝑅oqi𝑠jº8Ä

1 + 𝑅oqi𝐶oqi𝑠jº8Ä
 (99) 

 

These equations are problematic because they cannot easily be translated into 

the time domain: it results in a fractional-order system (100), which is more 

difficult to use for time domain simulation, as well as estimation and control. 

Methods have been proposed, such as [171, 172], but these add complexity. 

These fractional order components can be approximated using several 

conventional  resistor-capacitor (RC) pairs [173], which form the basis for most 

time-domain models. 

 𝑠j →
𝑑
𝑑𝑡j (100) 

 

In summary, EIS data can provide useful insight about the behaviour of cells but 

is less relevant to time-domain simulation and for on-vehicle applications. The 

time required for testing can be prohibitive, especially when the low frequency 

impedance is required. Another approach is to collect time-domain data directly. 

 

The NLLS parameterisation method discussed in section 3.4 can also be applied 

to EIS data. For frequency domain models, the measurement vector (and 

correspondingly what the function f should approximate) is defined by (101), and 

is the impedance measured using EIS equipment. The real and imaginary 

components of the impedance are separated to ensure both parts are accounted 

for equally in the fit (if a single value such as the absolute of the impedance is 

used, a poor fit could occur because several combinations of imaginary and real 

values can give the same absolute value). 

 𝑦i = [ℜ(𝑍i) ℑ(𝑍i)]» (101) 

 

The same cell data as in Figure A- 1 was used to fit the model from equation (98), 

including the SEI layer impedance from (99).The experimental data and 

impedance estimated from the model in  additional R-CPE pair) are shown in 

Figure A- 3.  As can be seen the model fits the data well, and has a mean error 

of 0.4mΩ. The resultant parameter vector is shown in Table A- 1. As expected, 
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the Warburg exponent is close to 0.5, but of note is the charge transfer exponent 

is less than 0.5, making it closer in behaviour to a resistor than a true capacitor. 

This can be seen in Figure A- 1 around the 10Hz region, where the impedance is 

a flattened arc rather than a semi-circle, as a true capacitor would create. The 

SEI exponent is 0.84 which is closer to a true capacitor. This demonstrates that 

the time-domain usage of true capacitors will does not represent the actual cell 

behaviour. Each of these exponents can be approximated using a series of RC 

pairs in series, but given that there are three CPEs in the impedance model, this 

would result in a large number of RC pairs which as discussed becomes difficult 

to parameterise in the time domain.  

 
Figure A- 3: Example EIS results and model fit 

Table A- 1: Parameter vector for EIS model fit 

Param
eter 

L 
(µH) 

RDC 

(mΩ) 

Rsei 

(mΩ) 

Csei 
(F) 

nsei R1 (m

Ω) 

C1 (F) w σ 
(mΩ) 

n 

Value 0.77 28.2 16.8 4.72 0.84 11.5 0.45 0.79 3.38 0.54 
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Appendix B: Test Procedures 
Several procedures were developed internally with the Catapult working group 

for cell testing. This appendix describes the relevant parts of these procedures 

so that they can be explained and replicated. 

 

A. Cell Capacity 
B. Place the cell in a thermal chamber set to 25°C, and leave for 8 hours to 

ensure the cell reaches the chamber temperature 
C. Fully discharge the cell by discharging at 1C until the minimum voltage 

specified by the manufacturer is reached. 
D. Let the cell relax for 3 hours, so the terminal voltage equals the OCV 
E. Charge the cell using a CC-CV scheme according the manufacturer’s 

specifications 
F. Let the cell relax for 3 hours 
G. Discharge at 1C until the minimum voltage specified by the manufacturer 

is reached 
 

The cell capacity is calculated by integrating the current measured during step 6 

over the time taken. 

 

B. Pulse Power 

1. Place the cell in a thermal chamber set to 25°C, and leave for 8 hours to 
ensure the cell reaches the chamber temperature 

2. Fully discharge the cell by discharging at 1C until the minimum voltage 
specified by the manufacturer is reached. 

3. Let the cell relax for 3 hours, so the terminal voltage equals the OCV 
4. Using the previously calculated cell capacity, set the cell cycler to 

discharge at 1C until 10% of the cell’s charge has been depleted (i.e. the 
cell is at 90% SOC) 

5. Let the cell relax for 3 hours 
6. Repeat the steps below for five current values, at 20%, 40%, 60%, 80% 

and 100% of the maximum specified by the manufacturer. 
a. Apply the current as a constant discharge for 10 seconds 
b. Let the cell relax for 30 minutes 
c. Apply the same current as a constant charge for 10 seconds 
d. Let the cell relax for 30 minutes 

7. Repeat steps 4-6, but adjusting the cell to 50% SOC 
8. Repeat steps 4-6, but adjusting the cell to 20% SOC 

 

For each set of pulse tests (a set being the currents in the charging or discharging 

direction), the voltage difference between the start and end of the pulse (Δvpp) is 

calculated for each current (ipp). These values can be applied to (102) to perform 
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a linear regression (essentially Ohm’s Law) to find an internal resistance value. 

In the ideal case Rpp. 

 𝚫𝒗𝒑𝒑 = 𝑅bb𝒊𝒑𝒑 + 𝑜bb (102) 

 

C. OCV-SOC (GITT) 

1. Place the cell in a thermal chamber set to 25°C, and leave for 8 hours to 
ensure the cell reaches the chamber temperature 

2. Fully discharge the cell by discharging at 1C until the minimum voltage 
specified by the manufacturer is reached. 

3. Let the cell relax for 3 hours, so the terminal voltage equals the OCV 
4. Discharge at 1C until 3% of the cell’s charge has been depleted (i.e. the 

cell is at 97% SOC), calculated using the cell’s capacity 
5. Let the cell relax for 3 hours 
6. Repeat steps 4-5, decreasing the SOC by 3% each time, down to 1% 

SOC. 
7. Discharge the cell at 1C until the minimum voltage has been reached. 
8. Let the cell relax for 3 hours 
9. Charge at 1C until 3% of the cell’s charge has been added (i.e. the cell is 

at 3% SOC), calculated using the cell’s capacity. 
10. Let the cell relax for 3 hours 
11. Repeat steps 9-10, increasing the SOC by 3% each time, up to 99% 

SOC 
 

This provides discrete data for separate charge an discharge curves. 

 

D. OCV-SOC (Slow Discharge) 

1. Place the cell in a thermal chamber set to 25°C, and leave for 8 hours to 
ensure the cell reaches the chamber temperature 

2. Fully discharge the cell by discharging at 1C until the minimum voltage 
specified by the manufacturer is reached. 

3. Let the cell relax for 3 hours, so the terminal voltage equals the OCV 
4. Discharge at C/25 until the minimum voltage is reached 

 

This provides continuous (within the sample rate of the data acquisition 

hardware) OCV-SOC data for discharge only. 
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Appendix C: Experimental System Management 
This appendix describes how the real-time management software class was used 

to manage test work. The process of using this class to manage a test is shown 

in Figure A- 4 and summarised below. The dashed lines represent where the 

process is asynchronous. 

 

As the object is directly in the MATLAB workspace, it can be interacted with 

during the test. The class contains methods to pause balancing and/or the drive 

cycle, prematurely end a test, send a custom balancing command rather than use 

the controller, take a voltage reading and find the corresponding SOC, and plot 

test results. 

 

 
Figure A- 4: Management of real-time closed loop system 

 

The initialisation routine performs the following steps: 
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1. Load in offline data required by the system. The calibration values for the 

current sensors are retrieved along with cell data for the estimators and 

controller, such as capacity, OCV-SOC data and ECM parameters, and 

data for the balancing system, such as the currents generated during 

balancing. The time and current data for the drive cycle to be applied is 

also loaded. 

2. Open a connection to CAN-USB adapter, and specify a function to be 

called every 1 second to process the incoming messages. The CAN 

database of message information is loaded and used to create CAN 

message templates (using the canMessage data type) for sending data. 

3. Open a connection to the cDAQ chassis and configure voltage inputs and 

outputs (the voltage range and sample frequency). The functions to be 

called every 1 second for the input data and output data are specified. 

4. The estimators are set up using previous data to initialise internal 

resistance estimates, and sampling relaxed cell voltage to obtain the initial 

SOC estimate. They are then compiled to C code and a Mex file for each 

is created to allow the compiled code to be called from MATLAB. 

5. An instance of the chosen controller class is created. This object is 

initialised, adding cell/ balancing data where necessary, and any 

coefficients are calculated. 

6. The drive cycle is converted into the relevant voltage signals to be 

outputted to the bipolar load using equations (88) and (89). 

7. Memory space is assigned to log data. A matrix containing 2 million rows 

is defined, which is sufficient to store over 5 hours of 100Hz data. Time, 

voltages, currents, SOCs, resistances and duty cycles are all logged. 

8. A figure and axes are created and formatted so they are ready to plot the 

test data. 

9. The CAN-USB device and cDAQ chassis are started so they begin 

receiving and transmitting data. Balancing is disabled and the drive cycle 

set to zero until the user specifies they are ready to begin. 

 

With the experiment underway, three functions are triggered every 1s. These are 

outlined below. When CAN messages are received: 
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1. The CAN messages are unpacked to extract the cell voltages, 

temperatures and balancing status information. 

2. If any of the temperatures are too high, the test is aborted.  

3. The cell voltages are checked and the de-rate strategy in Figure A- 5 is 

applied if necessary. 

4. If the status information shows that the PCB has stopped functioning, a 

message is displayed telling the user to reset the board’s power supply.  

 

When cDAQ input data are acquired: 

1. If any cells are outside of the voltage window, the de-rate strategy in Figure 

A- 5 is applied. 

2. The wire voltages are converted into cell currents using the calibration 

data. 

3. Each cell estimator is iterated across the 100 pairs of current and voltage 

data. 

4. Update the balancing controller using the most recent SOC estimate. This 

outputs a corresponding duty cycle for each cell. 

5. Pack the relevant CAN messages with the duty cycle information, and 

transmit to the balancing PCB. 

6. Plot the current, voltage and SOC data 

7. Add the voltages, currents, SOCs, resistances and duty cycles to the data 

storage matrix  

 

When cDAQ Output data are required: 

1. The current position in the drive cycle is retrieved. If the end of the drive 

cycle has been reached, then the drive cycle is repeated from the start. 

2. If the management class has requested to stop loading the cells (either 

because of a fault condition such as the cells being outside of their voltage 

window, the test has completed or the user has requested the drive cycle 

be paused). 

3. Send the next 100 samples (of the drive cycle, or a zero-load signal if step 

2 applies) to the cDAQ buffer for it to output over the next 1s.  

4. If the drive cycle has not been paused, update the position in the drive 

cycle. 
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When the test has finished: 

1. The applied load is set to zero and balancing is disabled. 

2. The cells are left to relax for a period of time (from 1-30 minutes depending 

on the test) so they cell voltage can be assumed equal to the OCV and the 

final SOC can be calculated. 

3. The logged data and final SOCs are saved in a .mat file 

 

The class also handles the de-rate strategy shown in Figure A- 5. This was 

designed to maintain safe operation while avoiding a test being aborted because 

of a brief spike in voltage. It uses two sets of voltage limits: the regular limits 

defined by the manufacturer (in this case, 4.2V and 2.7V respectively), and 

extended limits, 0.1V outside of the regular limits. The extended limits define 

when a test must be aborted immediately, because of safety concerns. However, 

if the cell voltage is outside of the regular limits but below the extended limits, the 

test will only be aborted if it stays in this range for five consecutive seconds. 

Within this time period, the drive cycle current is reduced by 20% each second, 

to reduce the current through the cell. This should bring the cell voltage inside of 

the regular limits unless the cell OCV is outside of the limits, in which case the 

test will be aborted.  
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Figure A- 5: Derate strategy for cell voltage 

 


