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ABSTRACT

The technique of electron yield-EXAFS has been used to derive 

information about the different structures of amorphous films, formed 

anodically on pure aluminium when various electrolyte solutions are 

used. It has been found that the uniform non-porous (barrier-type) 

oxide films which are formed in neutralised sodium tartrate or sodium 

borate electrolyte are amorphous and have an average Al-0 bond length 

of 0.190 nm. The amorphous oxide produced in neutralised sodium 

oxalate gives an average Al-0 separation of 0.185 nm, while the porous 

oxides formed in strong aggressive electrolytes, chromic acid and 

phosphoric acid, have an average Al-0 bond length of 0.183 nm and

0.180 nm respectively. Both the non-porous and the porous types of 

films have also been examined by high resolution scanning electron 

microscopy. The films formed in neutralised electrolytes show a 

structureless morphology, while the films prepared in strong acid are 

shown to have a porous morphology. All these oxide films become 

hydrated when exposed to hot water at 85°C. The time for complete 

hydration varies according to whether the film is porous or not. 

Electron yield-EXAFS analysis of these hydrated films yields two well 

defined Al-0 distances, 0.205 nm and 0.280 nm, which appear to be 

associated with the formation of an oxy-hydroxide similar in structure 

to boehmite. The SEM observation of these hydrated films shows a 

narked change in the micromorphology during hydration. A "cornflake" 

structure is developed which is related to the oxy-hydroxide structure 

(boehmite-like phase).

These measured Al—O bond lengths derived from the EXAFS differ,

A



depending on the nature of the anodising treatment, which suggests 

different states of aluminium-oxygen coordination. A possible model 

for the structure of amorphous alumina, based on this information, is 

proposed. Ihese results are also discussed in relation to the 

structural chemistry of the hydration process.
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2.1 Schematic representation of EXAFS observation 
in the absorption as a function of photon 
energy, above the edge. The first 30-30 eV 
above the edge are the X-ray absorption near 
edge structure (XANES) and the oscillation 
modulation above that is the extended X-ray 
absorption fine structure (EXAFS).

2.6.2 Schematic decay processes for core holes leading 
to X-ray fluorescence or Auger electron emission.

2.6.3 Schematic photoemission spectrum of electron 
emitted from a surface as a function of photon 
energy.

3.2.1 Shows a schematic presentation of some of the 
possible applications of synchrotron radiation 
(after Forty, 1979).

3.3.1 The experimental arrangement for recording 
electron yield EXAFS.

3.3.2 A photograph showing the monochromator and the 
sample chamber arrangement.

3.3.3 A photograph showing the sample holder (un­
polished brass surface), with the actual size 
of samples mounted and a 25 mm aperture to use 
for transmission EXAFS measurement.

3.4.1 A block diagram of the electronic system used 
in the electron yield counting.

3.4.2 The experimental arrangement for recording the 
transmission EXAFS.
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3.5.1 51The electron yield spectra from the "dirty" 
brass target versus photon energy for angles 
of incidence 40°, 65° and 90°. The 
smooth curves are best fit polynomials 
(Chebyshev series) to be used to normalise 
the electron yield spectra.

3.5.2 Illustrates the procedure followed to norma- 51
lise the EXAFS spectrum. Curve 1 is the 
recorded electron-yield spectrum for a 50 nm 
tartrate formed oxide film; curve 2 is the 
polynomial described in figure 3.5.1 adjusted
to fit the electron-yield spectrum prior to 
the A1 K-edge.

3.5.3 Shows the normalised EXAFS spectrum, obtained 51
by subtracting curve 2 from curve 1 and 
dividing by curve 2 in figure 5.3.2.

3.6.1 The electron yield EXAFS spectra for a series 53
of sodium tartrate formed alumina films with 
thicknesses, 50, 100, 300, 400, 500 A (left-hand 
side). The calculated spectra shown on the 
right-hand side have been constructed from
the A1 transmission EXAFS (curve 1) and the 
EXAFS for 500 A alumina film (curve 2) with 
the percentage of oxide contributions shown 
to give a fit of the experimental spectra.

3.6.2 The electron yield EXAFS spectra for a series 54
of sodium tartrate formed alumina films after 
hydration at 85 C for 15 minutes with thicknesses 
50, 100, 400 and 500 A (left-hand side). The 
calculated spectra shown on the right-hand
side have been constructed from the pure A1 
transmission EXAFS (curve 1) and the EXAFS 
for the 500 A hydrated alumina (curve 2) with 
the percentage of hydrated oxide contributions 
shewn to give a fit of the experimental spectra.



3.6.3

4.3.1a

4.3.1b

4.3.2

4.3.3

4.3.4

Hie percentage contribution from the total EXAFS 5 4 
spectrum for various thicknesses of film as 
deduced from figures 3.6.1 and 3.6.2 and that 
of Jones and Woodruff (1982). 0  denotes results 
obtained by Jones and Woodruff for borate formed 
films, O are the results obtained in this work 
for as-formed tartrate films (figure 3.6.1) ; □  
are the results obtained for sodium tartrate 
formed films, after hydration in hot water at 85C 
for 15 minutes (figure 3.6.2). Hie curve is the 
theoretical relationship based on calculated by 
Jones and Woodruff.

Hie normalised electron-yield for the sodium 65
tartrate formed oxide showing the polynomial 
used for extracting the EXAFS function x(E).

A plot of the fine structure function, x(E)» 65
against the photon energy (eV) obtained from 
figure 4.3.1a.

The EXAFS function x(k) weighted by k^ for the 66
sodium tartrate-formed oxide. Hie crosses 
represent individual data points; the continuous 
line is the cubic spline fit used for the 
Fourier transform.

The Fourier transform of the EXAFS function shown 66 

in figure 4.3.2. Hie dashed line represents the 
window function, the dotted line shows the back- 
Fourier transform.

The EXAFS function x(*0 weighted by k^ for the 69
model compound (01-AI2O 3 , "Sapphire specimen").
The crosses individual data points; the continuous 
line is the cubic spline fit used for the Fourier 
transform.



694.3.5

4.3.6i

4.3.6ii

4.3.7i

4.3.7ii

4.3.8i

4.3.8ii

4.3.9i

The Fourier transform of the EXAFS functions 
shewn in figure 4.3.4. The dashed line represent 
the window function placed around the first 
nearest neighbour.

The EXAFS function x(k) weighted by k3 for the 72
sodium oxalate-formed oxide. The crosses 
represent individual data points; the continuous 
line is the cubic spline fit used for the 
Fourier transform.

The Fourier transform of the EXAFS function 72
shown in figure 4.3.6i.

The EXAFS function x(k) weighted by k3 for the 73
sodium borate-formed oxide. The crosses represent 
individual data points; the continuous line is 
the cubic spline fit used for the Fourier 
transform.

The Fourier transform of the EXAFS function 73
shewn in figure 4.3.7i.

The EXAFS function x (k) weighted by k3 for 73
the chromic acid-formed oxide. The crosses 
represent individual data points; the continuous 
line is the cubic spline fit used for the 
Fourier transform.

The Fourier transform of the EXAFS function shown 73 
in figure 4.3.8i.

The EXAFS function x (k) weighted by k3 for the 73
phosphoric acid-formed oxide. The crosses 
represent individual data points; the continuous 
line is the cubic spline fit used for the 
Fourier transform.



4.3.9Ü The Fourier transform of the EXAFS function 
shown in figure 4.3.9Í.

4.3.10Í The EXAFS function x(k) weighted by k3 for the 
sodium tartrate-formed oxide after inmersión in 
water at 85°C for 30 minutes. The crosses 
represent individual data points; the continuous 
line is the cubic spline fit used for the Fourier 
transform of the EXAFS function.

4.3.10Ü The Fourier transform of the EXAFS function shown 
in figure 4.3.10Í.

4.3.lli The EXAFS function x(k) weighted by k3 for the 
sodium oxalate-formed oxide after immersion in 
water at 85C for 30 minutes. The crosses 
represent individual data points; the continuous 
line is the cubic spline fit used for the Fourier 
transform.

4.3.11Ü The Fourier transform of the EXAFS function shown 
in figure 4.3.lli.

4.3.121 The EXAFS function x(k) weighted by k3 for the 
sodium borate-formed oxide film after immersion in 
water at 85C for 30 minutes. The crosses 
represent the individual data points; the 
continuous line is the cubic spline fit used 
for the Fourier transform.

4.3.12Ü The Fourier transform of the EXAFS function 
shown in figure 4.3.12Í.

4.3.13Í The EXAFS function x(k) weighted by k3 for the 
chromic acid-formed oxide after inmersión in water 
at 85C for 4 hours. The crosses represent 
individual data points; the continuous line is 
the cubic spline fit used for the Fourier 
transform.



4.3.13U The Fourier transform of the EXAFs function 
shown in figure 4.3.13Í.

4.3.14Í The EXAFS function x(k) weighted by for the 
phosphoric acid formed oxide after inmersión in 
water at 85°C for 4 hours. The crosses 
represent individual data points; the continuous 
line is the cubic spline fit used for the 
Fourier transform.

4.3.14Ü The Fourier transform of the EXAFS function 
shown in figure 4.3.14Í.

5.3.1a SEM image of a 50 ran uniform non-porous (barrier 
type) oxide formed anodically on pure aluminium 
in sodium tartrate, coated with 3 nm of platinum.

5.3.1b SEM image and EDAX spectra for an oxide formed in 
sodium tartrate electrolyte. Note the occurrence 
of a silicon peak in the EDAX spectrum of the 
particle.

5.3.1c SEM image of the same sodium tartrate-formed oxide 
(figure 5.3.1a) after hydration at 85°C for 30 
minutes. The "Cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.

5.3.Id Schematic representation of the oxy-hydroxide 
morphology (after Venables et. al. 1980).

5.3.2a SEM image of a 50 nm uniform non-porous type oxide 
formed anodically on pure aluminium in sodium 
oxalate, coated with 3 nm of platinum.

5.3.2b SEM image of the same sodium oxalate-formed oxide 
(figure 5.3.2a) after hydration at 85°C for 30 
minutes. The "Cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.



855.3.3a

5.3.3b

5.3.4a

5.3.4b

5.3.5a

5.3.5b

6.2 .1a

6.2 . 1b

SEW image of a 50 nm uniform non-porous type oxide 
formed anodically on pure aluminium in sodium 
borate, coated with 3 nm of platinum.

SEW image of the same sodium borate-formed oxide 85
(figure 5.3.3a), after hydration at 85°C for 
30 minutes. The "Cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.

SEW image of 100 nm layer anodically formed on 85
pure aluminium in phosphoric acid. The cellular, 
porous structure has been revealed by a thin (3 nm) 
coating of platinum.

SEW image of the same phosphoric acid-formed oxide 85 
(Figure 5.3.4a) after hydration at 85°C for 4 
hours. The "Cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.

SEW image of oxide layers anodically formed on pure 86 
aluminium in chromic acid. The porous structure 
has been revealed by a thin (3 nm) coating of 
platinum. The hillocks of oxide have been re­
vealed by tilting the specimen 40° away from 
normal incidence. Note the occurrence of silceous 
inpurity particles on many of the hillocks.

SEW image of the same chromic acid formed oxide 86

(Figure 5.3.5a) after hydration at 85°C for 4 
hours. The "Cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.

Plot of the average number of oxygen neighbours 93
of aluminium versus the average Al-O bondlength 
for aluminium oxide, assuming ionic bonding.

The expected relationship between the distribution 93 
states of octahedral (AlOg) and tetrahedral 
(AIO4) bond configurations and average Al-O bond- 
length, for aluminium oxide, assuming ionic bonding.



6.2.2 99The proposed model for amorphous alumina:-
(a) the AI4O6 dimer suggested by Wilsdorf 
(1951). The large circles represent O2- ions 
and smaller circles are Al3+ ions (the relative 
sizes of the 02- ions and Al3+ ions are such 
that the O2- ions are in close contact but they 
are separated in the diagram for clarity of 
presentation);

(b) part of a three-dimensional sheet of edge­
sharing AI4O6 octahedra;

(c) the three-dimensional structure conposed of 
stacked sheets of octahedra. The Roman letters 
indicate the close packing of layers of O2- ions 
and the Greek letters indicate Al3+ in tetra­
hedral (B) and octahedral (y) interstitial sites.
Note the occurrence of four O2- ions bonded to 
each B-type Al3+ ion and six 02- ions around 
each Y-type Al3+ ion.

6.2.3 Shows a three dimensional representation in several 99 
different persepctives using a more realistic ratio 
of O2- and Al3+ ionic radii for the proposed 
model for amorphous alumina. On the left-hand side 
the AI4O6 dimer suggested by Wilsdorf (1951) and 
on the right hand side a "unit cell", conposed of 
parts of three edge-sharing octahedra; note the 
omission of two-thirds of the Al3+ ions from 
"octahedral" sites to achieve stoichiometry.

Basal phase projections of the proposed sheet 
structure. Large circles represent O2- ions 
and small circles are Al3+ ions> ^  solid lines 
represent Al-O bonds. Al3+ ion vacancies are 
introduced to achieve the stoichiometric conposition 
of AI2O3 S-

6.2.4 100



(a) the Wilsdorf octahedron AI4O5 ;
(b) a "unit cell", denoted by the dotted lines, 
composed of parts of three edge-sharing octahedra; 
note the omission of two-thirds of the Al3+ ions 
from "octhaedra" sites to achieve stoichiometry;

(c) a sheet of three "unit cells" with the omission 
of 5/9 of the Al3+ from "octhaedral" sites and 1/9 
of Al3+ from "tetrahedral" sites to achieve 
stoichiometry.

(d) a sheet of five "unit cells" with the omission of 
9/15 of the Al3+ ions from "octahedral" sites and 
1/15 from "tetrahedral" sites; this structure is 
stoichiometric and the tetrahedral sites are occupied 
in the ratio 7:3.

6.3.1 (a) The electron yield EXAFS spectrum for the oxide 
film prepared in phosphoric acid appears to have a 
second peak at 2149 eV, corresponding to the phos­
phorus K-absorption edge;
(b) The electron yield EXAFS spectrum for the same 
oxide film formed in phosphoric acid after hydration 
for 4 hours at 85°C.

6.5.1 (a) The electron yield EXAFS spectrum for a 50 nm 
sodium tartrate-formed oxide on pure aluminium, 
appears to have a second peak at 1840 eV, corres­
ponding to the silicon K-absorption edge;

(b) the electron yield EXAFS spectrum for the same 
film after hydration for 15 minutes at 85°C.
Noting the disappearance of the silicon K-absorption 
edge.

104

106
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CHAPTER 1
CTMERAL DttRCDOCTION

1.1. Introduction

Aluminium oxide (AI2O3 ) films formed by anodic oxidation of pure 

aluminium in aqueous electrolytes are of great interest in many 

technological applications. For example, adhesive bonding of 

structural components fabricated from aluminium alloys is now used 

extensively in the aerospace industry (see for example Venables et al, 

1979) . Aluminium is also used in the construction of chemical 

reactors and water desalination plants, in the fabrication of 

integrated circuits, and in the construction of mirrors for solar 

collectors. In all these applications the structure of the oxide 

layer and its reaction with water are critical .for reliable 

performance.

When aluminium is anodized in certain electrolytes, an oxide 

film, consisting mainly of amorphous alumina, is formed on the 

surface. The nature of the film depends on several factors, the most 

important of which are the nature of the electrolyte used in forming 

the film, the applied voltage, the current density, and the time of 

anodizing. When aluminium is anodized in neutral electrolytes, such 

as neutralised tartrates, carbonates and phosphates, a thin film is 

formed, the thickness of which is proportional to the forming voltage. 

This is generally referred to as a barrier layer. The relation 

between the film thickness and the applied voltage has been 

investigated by many research workers, and is generally accepted as

1.4 nm V“l, (see for example, Hunter and Fowle, 1954).



When aluminium is anodized in more aggressive electrolytes, such 

as 5-20% phosphoric or sulphuric acid, the resulting anodic oxide has 

a porous structure; also the film grows to a much greater thickness, 

depending on current density and time of anodizing. This anodic oxide 

film consists of two distinct regions; the inner region is a thin, 

dense barrier layer located at the oxide/metal interface, with a 

thickness of about 5-15nm, the outer region is a much thicker layer, 

which is very porous and is super-imposed on top of the barrier layer. 

The structure of the outer oxide region varies with the electrolyte 

used and the anodizing voltage, see for example, Thompson and Wood, 

1981. Our interest in the structure of these types of oxide films 

arises from its importance in the epoxy-resin bonding of aluminium 

engineering structures. The strength and chemical stability of these 

oxides, which depend on the surface preparation, are of prime 

importance in determing the strength of the bond. Hydration of the 

aluminium oxide to an oxy-hydroxide, by exposure to water, is a major 

cause of engineering failure, because the oxy-hydroxide is 

mechanically weaker. A knowledge of the molecular structure of such 

films should be an inportant step in reaching an understanding of the 

structural chemistry of the anodic oxide. This should lead to a 

better understanding of the effect of hydration and crystallisation on 

mechanical stability.

1.2. Structure and Gonpcwitinn nf anodic aluminium oxide
1.2.1. Review of earlier work

The extensive earlier studies of the structure and composition of

aluminium oxide formed during the anodic oxidation of aluminium are
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When aluminium is anodized in more aggressive electrolytes, such 

as 5-20% phosphoric or sulphuric acid, the resulting anodic oxide has 

a porous structure; also the film grows to a much greater thickness, 

depending on current density and time of anodizing. This anodic oxide 

film consists of two distinct regions; the inner region is a thin, 

dense barrier layer located at the oxide/metal interface, with a 

thickness of about 5-15nm, the outer region is a much thicker layer, 

which is very porous and is super-imposed on top of the barrier layer. 

The structure of the outer oxide region varies with the electrolyte 

used and the anodizing voltage, see for example, Thompson and Wood, 

1981. CXir interest in the structure of these types of oxide films 

arises from its importance in the epoxy-resin bonding of aluminium 

engineering structures. The strength and chemical stability of these 

oxides, which depend on the surface preparation, are of prime 

importance in determing the strength of the bond. Hydration of the 

aluminium oxide to an oxy-hydroxide, by exposure to water, is a major 

cause of engineering failure, because the oxy-hydroxide is 

mechanically weaker. A knowledge of the molecular structure of such 

films should be an important step in reaching an understanding of the 

structural chemistry of the anodic oxide. This should lead to a 

better understanding of the effect of hydration and crystallisation on 

mechanical stability.

1.2. Structure and COnposition of anodic aluminium oxide
1.2.1. Review of earlier work

The extensive earlier studies of the structure and composition of

aluminium oxide formed during the anodic oxidation of aluminium are
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reviewed in this section. These studies have been carried out using 

the different techniques of electron diffraction, electron microscopy, 

optical microscopy, X-ray diffraction, infra-red spectroscopy, X-ray 

photoelectron spectroscopy, radio-active tracer techniques, extended 

X-ray absorption fine structure spectroscopy (EXAFS) and many other 

analytical methods. Notwithstanding the very large amount of such 

work, there is still no precise agreement about the structure or 

composition of the oxide films. One of the earliest studies, by 

Burgers, Claasson and Zernicke (1932), was on aluminium oxide layers 

formed anodically on aluminium in a boiling solution of borate and 

boric acid at 400-500 V and low current density. Such films showed 

sharp X-ray diffraction patterns. These patterns were related to the 

characteristic crystalline structure of y-alumina. In 1936, Belwe 

reported an investigation into the structure of a barrier oxide layer 

on aluminium using the technique of electron diffraction. He observed 

two sharp diffraction rings. Using a reflection electron diffraction 

technique he found a pattern of diffuse rings for thicker oxide films. 

Harrington and Nelson (1940), also using electron diffraction, 

examined thinner oxide films than those studied by Burgers et.al 

(1932) with X-ray diffraction. They observed only diffuse rings in 

the electron diffraction patterns. Hass and Kehler (1941), used an 

electron microscope to examine thin oxide films (20-40 nm thick), 

prepared on aluminium in an aqueous solution of an organic acid at 

25°C. After- it was detached from the substrate these films showed a 

structureless image. Also the electron diffraction pattern of the 

films showed broad rings which were interpreted as being related to 

y-alumina. Taylor, Tucker and Edwards (1943) studied the structure of 

aluminium oxides produced by anodic oxidation in boric, oxalic,
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phosphoric, chromic and sulphuric acid electrolyte solutions, using 

X-ray diffraction. They reported that these films had the structure 

of y'-alumina. Brandenberger and Hafel (1948) investigated the 

structure of oxide layers formed anodically at low voltage (20 V), 

using X-ray diffraction. The X-ray diffraction pattern showed the 

characteristic structure of boehmite. This suggests that these very 

thin films are hydrated to some degree. The same authors studied 

thicker films prepared by anodizing treatments at higher voltages (- 

600 volts). These showed a structure which appeared to be a mixture 

of y— and y*- alumina. They suggested that the mixture consisted of 

large developed crystals of y and y' AI2O3 . They also studied oxide 

films formed at a range of voltages between 50 and 200 volts. The 

structure of these films was shown to be a mixture of hydrated and 

crystalline Y-AI2O3 . Later, in 1949, Hass examined the structure of 

the film on aluminium anodized at constant voltages in the range 10-15 

V in a tartaric acid electrolyte having a pH value equal to 5.5. Using 

electron microscopy he found that the film was structureless. The 

same films were also studied by electron diffraction, and showed 

diffuse rings which were related to an amorphous structure.

Wilsdorf (1951) also studied the structure of aluminium oxide 

films using transmission electron diffraction. These oxide films were 

grown by annealing aluminium in air at 400°C for 75 hours. They were 

then stripped from the aluminium substrate by inmersión in a dilute 

mercuric chloride solution, washed, and mounted on a specimen holder 

and placed in a 40-60 kV electron beam diffraction camera. He found 

that the diffraction pattern consisted of two diffuse haloes. He 

attempted to explain this in terms of a possible model for the 

amorphous structure consisting of AI4O6 molecular units. Kerr
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(1956), examined anodic aluminium oxide films formed at 50 volts in an 

ammonium borate solution which were then stripped from the metal 

substrate in chlorine at 200°C again using transmission electron 

diffraction. The diffraction patterns of these films also contained 

diffuse haloes, which therefore appear to be typically associated with 

amorphous alumina. The diffraction pattern also showed sharper rings, 

which could be identified as arising from y-alumina. David and Walsh 

(1956), studying various anodic oxide films, found that the structure 

of these depended on whether the current used was a.c. or d.c. They 

showed that the process of formation of the oxide by the use of d.c. 

led to a crystalline y-alumina, while in the case of the a.c. process 

the film was an amorphous oxide. Franklin (1957) reported electron 

microscope observations on the structure of oxide formed by the 

anodising of aluminium in an electrolyte at high voltage (500 V) at 

20°C. He found that the film consisted of closely packed domes 

superposed on barrier oxide layer with a density of about 1.4 x 10^ 

domes cm-2. He suggested on the basis of his observations that 

although the barrier layer is uniform in thickness on a microscopic 

scale the thickness within the dome structure varies across the 

surface. Plumb (1958), examined thin barrier films formed by anodic 

oxidation in a phosphate electrolyte using a radioactive tracer 

technique based on P*-®; he showed that the oxide layer contained 

phosphate which was distributed uniformally through the film. He also 

reported the probable composition of the film to be 96.5% AI203 and 

3.5% P2O3 . Stirland and Bicknell (1959), studied the structure of 

non-porous anodic oxide films on aluminium formed in an aqueous 

mixture of boric acid and borax at room temperature, using a forming 

voltage of less them 100 volts for 5 minutes. They examined these 

films after they were stripped from the metal substrate, using
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electron diffraction and electron microscopy. They found that these 

films contained more than one region; some areas in the film were 

truly amorphous, while other areas consisted of a mixture of amorphous 

and y -alumina.

Bernard and Randall (1960) carried out spectrographic analysis of 

barrier layer films on aluminium, anodically oxidised in a borate 

electrolyte. They showed that the films contained a small amount 

(0.7%) of boron which had been incorporated in the film during the 

anodizing process. McMullen and Pryor (1961) studied the structure of 

an aluminium oxide anodically produced in neutralized ammonium 

tartrate of pH 7.2, using various voltages (40-100 V). The structure 

was studied by electron diffraction. They concluded that these oxide 

films gave diffraction patterns with characteristics related to 

Y-alumina when the films were examined at high electron acceleration 

voltage (100 kV). However, when the films were examined at lower 

accelerating voltage (50 kV) the diffraction pattern showed only two 

diffuse rings. Hoar and Yahalom (1963) used electron microscopy to 

study the development of pores in the oxide layer on aluminium 

substrates anodised at room temperature in 3% ammonium tartrate 

electrolyte at a forming voltage of 14.4 V, for short exposures (0.5 

sec) and longer (10 minutes). They found the film contained no pores 

after 0.5 sec, while distinct pores were visible after anodizing for 

10 minutes. Tajima, Baba and Mori (1964) studied the structure and 

composition of a thick anodic oxide film (> 20 urn) formed on aluminium 

in a non-aqueous system of boric acid/formamide. The chemical 

analysis of the film showed an appreciable amount of B2O3 to be 

present with an overall conposition of 81.2 W % AI2O3 and 18.7 W %
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B2O3 . The density of this film measured by a picnometric method was 

found to be 3.565 g cm-3, which may be compared with that of Y-AI2O3 

(3.99 g cm-3) and that of B2O3 (1.85 g cm-3).

Jones (1974) studied the local atomic arrangement of amorphous 

alumina formed by anodic oxidation in boric acid electrolyte, using 

electron diffraction. He obtained a reduced radial distribution and 

radial distribution curve which he interpreted in terms of a model for 

the structure consisting of 92% of the aluminium ions existing in a 

tetrahedral coordination state (AIO4), with an Al-O separation of 

0.175 nm; and the remaining 8% of the aluminium ions are in octahedral 

coordination states with Al-O separation of 0.185 nm. He also 

reported that the Al-Al separation distance was equal to 0.275 nm, and 

the 0-0 separation was 0.32 nm. Takahashi et.al. (1976) measured the 

X-ray diffraction radial distribution function for anodic amorphous 

alumina prepared using d.c. and pulsed voltages. They found that the 

films formed by both methods had a spinel-type structure, but the 

degree of octahedral coordination was greater in the coating obtained 

by pulse electrolysis. Popova (1979), using transmission electron 

diffraction, investigated the structure of thin films of amorphous 

alumina (- 50 nm thick), formed anodically in a borate electrolyte at 

40 V and then stripped from the metal substrate in a solution of 

bromine in methyl alcohol at room temperature. He found a radial 

distribution which gave a Al-O bond length of 0.182 nm, which 

corresponds to a 100% tetrahedral coordination. Oka et al (1979) also 

studied the structure of amorphous anodic oxide films formed on 

aluminium in a sulphuric acid electrolyte, using both a.c. and d.c. 

polarising voltages. Their study, based on an analysis of the X-ray 

radial distribution function, showed that the aluminium ions were
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coordinated with 4, 5 and 6 oxygen ions [AIO4 , AIO5 and AlOg], and the 

average coordination number was 4.64 and 4.81 for a.c. and d.c. 

respectively. These results indicate that the AIO5/AIO4 ratio is 

30/70 for the film formed in a.c. and 40/60 for the film prepared with 

d.c. They also reported that the chemical composition of both types 

of oxide was 86.1 wt% AI2O3 and 12.4 wt% SO3 , with a density of 3.05 g
cm~3.

Thompson, Furneaux, Wood and Hutchings (1978), studied in detail 

the structure and composition of the pore structure in anodic oxide 

films prepared on an electro-polished aluminium surface at a constant 

voltage (150 V) in a phosphoric acid electrolyte with an anodizing 

time of 10 minutes. These films were investigated by scanning 

transmission electron microscopy (STEM) and with x-ray energy 

dispersive analysis (EDAX). They showed that the cell boundaries in 

the porous structure are composed of nearly pure AI2O3 , while the 

material within the cells contain some phosphorus which is 

incorporated during the anodizing process. Later, in 1980, Alvey, 

Wood and Thompson, studying the mechanical properties of porous oxide 

films having a thickness of 15 ym, formed in various electrolyte 

solutions (sulphuric, phosphoric, oxalic and chromic acids), under a

wide range of anodizing conditions found that anions are incorporated
2-

in the oxide from the various electrolytes in amounts of 11.1 wt% SO4 

, 7.6 wt% PO2-, 2.4 wt% (COO)2- and < 0.1 wt% CrO2- respectively. 

Konno et al (1980a) investigated the composition of the barrier-typo 

anodic oxide films on aluminium in borate and phosphate solutions of 

pH 7.4 at 20°C at a constant voltage of 50 volts. These oxides were 

conpact and hard, with a thickness of about 76 nm. Using X-ray 

photoelectron spoctoscopiy (XPS) they were able to detect Al2+,
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O2 , B3+ and Al3+, O2 , p3+ ions in the films. Further, they reported 

that the film formed in neutral borate solution consisted of two 

parts: an outer part (depth 0-40 nm) having an average composition of 

AlOp.36 (°h )0.28 (b o2)0.14 ^  an inner part (depth 40-76 nm) with an 

average composition of AlOp.s (B2°3>0.027- Thus the outer part was 

slightly hydrated. Overall the film had an average content of 5.8% 

B2O3 . The film formed in neutral phosphate solution consisted of 

three parts: an outer part (~ dep>th 5-15 nm) having a composition of 

AlOp.0 9 (°H)0.74(po4)0.025î a middle part (~ depth 20-45 nm) with 

composition of AlQl.463(po4)0.025' and an inner part (~ depfch 60-75 

nm) showing only pure AI2O3 . Again, the outer part was hydrated. The 

film contained 11.7 wt% PO2- overall.

1.2.2. Sumnarv of the review
The main conclusions that can be drawn from this review are 

summarized as follows:

(i) There is some disagreement concerning the structure of 

the film. Some workers have reparted observations that 

show that the anodic oxide films are composed of amor­

phous alumina, while others have found a crystalline 

phase of either y-alumina or what has been described 

as y '-AI2O3 . From these various results it can be 

concluded that the structure of the oxide films depends 

on the forming conditions. There have been attenpts to 

interpret the structure of the amorphous alumina in terms 

a disordered spinel structure. The ratio of tetrahedral 

to octahedral coordination (AIO4/AIO6) within this 

structure also appears to be strongly dependent on the 

forming conditions.
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(ii) The morphology of the films is also dependent on both 

the electrolyte and the electrochemical conditions. A 

porous oxide is developed when aluminium is anodized in 

slightly acidic electrolytes, whilst more ccxnpact films 

(non-porous barrier layer oxides) are found with neutra­

lized or slightly alkaline electrolytes (pH Z. 7.2).

(iii) Analyses of the composition of the films have shown that 

anions from the electrolyte can be included in the oxide. 

The amount of included electrolyte ions depends on the 

electrolyte used and also on the electrolytic forming 

conditions. There is some uncertainty about the form in 

which the anions are incorporated.

1 . 3 .  T h e b e h a v io u r  o f  a n o d i c  a lum in ium  o x i d e  f i l m s  in  m t -p r

The anodic oxide, formed on aluminium by anodic polarization in 

an aqueous electrolyte, has a composition of primarily AI2O3 , with 

some electrolyte anions incorporated in it. Often the films have an 

amorphous structure. The XPS studies reported by Konno et. al. 

(1980a) showed a small amount of water incorporated in the outer 

layers. It is commonly found that the anodic oxide converts to an

oxy-hydroxide when it is immersed in hot water. This hydration has 

been studied by many research workers who have shown that the rate of 

hydration depends on the type of oxide layer (uniform non-porous or 

porous layer), and the electrolyte used to form the oxide.

Hart (1954) used electron diffraction to investigate the 

hydration of anodic films, which had been formed in amnonium borate 

solution on aluminium substrates (99.99% purity) which were then
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inmersed in boiling water. The diffraction pattern of these hydrated 

films showed sharp rings which could be related to the boehmite (Al-O- 

OH) structure. As a result of studying the rate of formation of the 

boehmite he concluded that the hydrated oxide grew as a result of the 

migration of Al3+ from the aluminium substrate through the oxide film 

and then reaction of these ions with the water, rather than the 

hydration of the pre-formed oxide. He also made an attempt to hydrate 

the oxide films after they had been stripped from the substrate by 

imrersing just these in boiling water but was unable to detect any 

structural change.

Spooner (1956) investigated the hydration of anodised surfaces 

during the process of steam sealing at 115°C for 30 minutes for the 

case of porous films formed anodically on aluminium in sulphuric acid, 

again using an electron diffraction technique. He found that the 

diffraction patterns of both the films formed in-situ on the aluminium 

substrate and films which had been stripped from the aluminium 

substrates, showed sharp rings after reaction with the steam and these 

could be identified as those corresponding to the structure of 

boehmite. This observation indicated that conversion of the aluminium 

oxide to the oxy-hydroxide (boehmite) had occured, which confirmed 

that, in this case, the process was the result of the hydration of the 

existing oxide and not a reaction of the water with the aluminium 

substrate.

Kerr (1956) studied the sealing of films formed in anroonium 

borate solution at a polarising voltage of 50 V (giving rise to a 

barrier layer of about 70 nm thick) in boiling water. By selected 

area electron diffraction, he showed that boehmite was formed only 

when aluminium was in contact with the film.
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Hunter et al (1959), in a comprehensive study of the hydration of 

oxide films formed in different electrolytes, showed that there is an 

incubation period of about 3 minutes before hydration of the 

barrier-type films occurred in boiling water; after this period the 

entire film became converted to boehmite in about 15 minutes. Films 

prepared in a phosphoric acid electrolyte which were porous and 

thicker required a longer incubation period, about 15 minutes, and 

thereafter hydrated more slowly than the other films. They found that 

only about one-third of this oxide formed in phosphoric acid had 

hydrated after about 25 minutes, and that more than 50 minutes were 

required to give complete hydration. They interpreted this reduced 

rate of hydration to be a result of the phosphorus ions from the 

forming electrolyte being incorporated into the oxide. They also 

found that the rate of hydration of both types of film was highly 

dependent on the tenperature of the water, being rapid in boiling 

water, and decreasing significantly as the water temperature 

decreased. Although the incorporation of phosphorus from the 

phosphoric acid electrolyte had a marked inhibiting effect on 

hydration, other anions such as those incorporated from sulphuric, 

chromic and oxalic acids had little effect.

Bernard and Randall (1961), also found an incubation period 

before hydration of barrier oxide films commenced, but this was lcwer 

than the period observed by Hunter et.al. For a borate-formed film 

immersed in boiling water the incubation time was 12 seconds, compared 

to 60 seconds for an oxide film formed in tartrate solution and 2 

minutes for oxides prepared in a phosphoric acid electrolyte. They 

also measured the times for conplete hydration of the various films 

and related these times to the initial film thickness. This resulted 

in an approximately logarithmic dependence of the rate of hydration on
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film thickness for the first 30 minutes of hydration.

Konno et.al. (1980b), using XPS chemical analysis, studied the 

hydration of barrier layer oxides (about 70 nm thick) on aluminium 

anodised in a borate solution of pH 7.4 at 20°C. The hydration was 

carried out by imnersion of the film for 3 days in distilled water. 

They found that after this period the OH- content in the outer layer 

of the oxide film had increased by a factor of about 3 times that 

originally present (reported previously, Konno et.al. (1980a)). These 

authors also reported that the hydration was strongly inhibited by 

chromate ions in the solution because CrO2- ions were detected on the 

oxide surface, possibly forming a monolayer which obstructed the 

penetration of the water into the oxide.

Venables et.al. (1980) have studied the effect of hot water on 

two types of aluminium oxide, one prepared by the immersion of 

aluminium in a commercially used electrolyte, the Forest Product 

Laboratory (FPL) and the other using the Boeing phosphoric acid 

process (PAA). Hie FPL electrolyte contained H2SO4 and

H2O in a ratio of 1:10:30 by weight. Hie aluminium surface to be 

anodised was immersed for 15 minutes in this solution at 60°C. Hiis 

process forms thin oxide films (—  8 nm thick) on the surface. Hie 

other process (PAA), in which the aluminium surface is first treated 

in FPL solution and then anodised at constant voltage (10 volts), 

produces very thick, porous oxide films (about 100 nm thick). The 

surfaces after immersion in hot water were monitored using a high 

resolution SEM technique and optical ellipsometry. The SEM 

observations showed a "Cornflake" morphology after hydration for both 

types of oxide, which could be related to the growth of the 

oxyhydroxide i.e. boehmite crystallites. Ellipsometry measurements on 

the FPL type oxide indicated that there is an incubation time of about 

2 m i n u t e s  b e f o r e  t h e  o x i d e  s t a r t s  t o  be



converted to oxy-hydroxide, but for the PAA-formed oxide that the 

incubation time was 15 minutes or greater.

El-Mashri, Forty, Freeman and Smith (1981), using a high-voltage 

high resolution electron microscope (HVREM), studied very thin barrier 

layer specimens of anodic alumina, approximately 6 nm thick, formed in 

neutralized sodium tartrate solution on high purity aluminium. The 

oxide film after stripping in mercuric chloride showed large areas 

which appeared to be truly amorphous with a few patches (50-100 nm in 

extent) in which "lattice fringes" could be observed. After hydration 

in water at 80°C for about 7 minutes the films showed significant 

structural changes which could be attributed to the early stages of 

hydration. The domains of "lattice fringes" had grown and a much 

greater proportion of the film had been apparently converted to an 

oxy-hydroxide. This work is described in greater detail in Appendix 

II.

Davis et.al (1982), using scanning electron microscopy, studied 

the morphological charges occuring in the porous oxide films, formed 

by anodising in phosphoric acid, and exposed to water vapour with 100% 

relative humidity at 50°C. They observed that it took 2 to 4 hours 

before the surface exhibited the distinctive "cornflake" structure, 

which as previously shown is related to the development of the 

boehmite structure.

1.4. The aim of the work reported in this thesis
From the previous review in sections 1.2 and 1.3 it is evident 

that the anodically formed oxides and the products of their hydration 

are often amorphous in character. The amorphous structure may well be
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related to the structure of y-alumina but there has been no serious 

attempt hitherto to study the amorphous structure in detail. The main 

objective of the work presented in this thesis is to study the 

possibility of using extended x-ray absorption fine structure (EXAFS) 

to examine the molecular structure of various types of oxide film, 

formed anodically on pure aluminium sheets in a wide range of 

anodizing treatments. Hie EXAFS yields information about interatomic 

distances and the coordination of atoms in a solid and therefore 

should throw considerable light on the structure of these oxide films. 

By using the electron yield from the oxidised surface to detect the 

EXAFS a degree of surface sensitivity can be achieved as will be 

discussed in the next chapter, and this makes the electron yield EXAFS 

particularly useful as a method of studying thin oxide films, and the 

work described in the following chapters is intended to demonstrate 

this.

Hie structural changes in the oxide films following their 

hydration in hot water are very important for a better understanding 

of the structural factors which affect the usefulness of anodising 

treatments in practical applications such as corrosion protection and 

adhesive bonding. Consequently, a further aim of the work is to 

attempt to follow the structural changes occurring as a result of 

hydration and to relate these to the initial structure of the oxide 

layers. In addition to the EXAFS measurements, a high resolution 

scanning electron microscopy technique is developed to observe the 

morphological changes of the films following their hydration. Hiis is 

expected to be particularly useful as a method of direct observation 

to confirm that hydration of the films has occurred. In this way, it 

should be possible to relate changes of internal atomic arrangements



in the anodic oxide films with the hydration process and hence obtain 

insight into the mechanism by which the transformation to boehmite 

occurs.

1 . 5 .  P la n  o f  t-.hPBiH

The thesis is divided into six chapters and three appendices: 

Chapter 2 - gives an account of the theory of EXAFS and the method by 

which accurate bond lengths can be obtained from the EXAFS data. This 

chapter also describes the modes in which the EXAFS data can be 

obtained and leads to the conclusion that the measurement of the yield 

of electrons emitted from the oxide films during X-ray absorption in 

the vicinity of the Al K-edge should be the most useful for the 

present purpose.

Chapter 3 - describes the experimental arrangement and the 

experimental procedure used for measuring the total electron yield 

EXAFS.

Chapter 4 - describes the method of preparation of various oxide films 

formed by anodic oxidation of pure aluminium, using different 

electrolytes. Also an account is given of the procedure by which the 

EXAFS spectra for the oxide are analysed and Al-O bond lengths 

representative of the structure can be obtained. This chapter also 

describes the hydration treatment of the various anodic oxide films 

and presents the EXAFS results for these.

Chapter 5 - gives a brief description of the use of a transmission 

electron microscope (TEW) with a scanning attachment (i.e TEW STEW) to 

provide high resolution scanning electron microscope (SEM) images and 

the use of this to examine the micromorphological structure of the



various oxides and the hydrated phases. A method of surface decoration 

with a thin deposit of platinum to ensure good contrast and to reduce 

the surface charging of the oxide is described and the usefulness of 

this is demonstrated by observations made on the various oxides. 

Chapter 6 - discusses the structure of the anodic oxide films and the 

hydrated films in the light of the EXAFS results and the SEM 

observations described in the preceding chapters. The kinetics of the 

hydration process as revealed by the EXAFS and SEM results are also 

discussed and this leads to important ideas concerning the role of 

impurities incorporated in the oxide films.

Appendix I - gives an account of the use of electron energy loss 

measurements to provide structural information similar to that 

obtained with EXAFS. The extended fine structure in the energy loss 

spectra (EXELES) in the vicinity of the oxygen K-absorption edge has 

been recorded for an anodic oxide film formed in sodium tartrate 

solution using a TEM microscope fitted with an electron energy loss 

spectrometer, and this has been used to obtain Al-0 bond lengths which 

conpare closely with those dervied from conventional EXAFS.

Appendix II - describes high resolution electron microscope 

observations of the structure of very thin amorphous alumina films 

formed by anodic oxidation in sodium tartrate and also of these films 

after hydration.

Appendix III - develops a mathematical model advanced by Jones and 

Woodruff (1981) by which the surface sensitivity of the total electron 

yield in the soft X-ray region (i.e. at the A1 K-edge) can be 

discussed.
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gUBFXE R  2

EXTaCÆP X-RAY ABSORPTION FINE STRUCTURE: THBORY AND MODES OF
nR.qHRVATTOJ

2.1 Introduction
Extended X-ray absorption fine structure (EXAFS) appears as 

oscillations of the absorption of X-rays on the high energy side of 

characteristic X-ray absorption edges, and is observed in nearly all 

forms of matter, (except monatomic gases). Hie fine structure can 

extend to several hundreds of electron volts above the edge, as 

illustrated schematically in figure 2.1. The EXAFS oscillations 

result from the interferences of the outgoing photoelectron wave, 

emitted during X-ray absorption, and those parts of the photoelectron 

wave which are backscattered from the neighbouring atoms surrounding 

the absorbing atom. This gives rise to a modulation of the X-ray 

absorption cross-section as a function of X-ray photon energy. As an 

interference effect the periodicities in the EXAFS are related to the 

distances between the absorbing atom and its neighbours. The

amplitude of the EXAFS oscillations is related to the number of 

neighbours and hence to the coordination of the atom whose absorption 

edge is being studied with the surrounding structure. EXAFS is 

therefore potentially a very useful probe for studying the structure 

of materials. In recent years this has become increasingly important 

in the study of amorphous solid materials where conventional 

diffraction methods are not applicable (Teo and Joy, 1980).

2.2. Theory of EXAFS
The oscillatory part of the X-ray absorption cross-section, x (k),



Figure 2.1: Schematic representation of EXAFS observed in the absorption 
as a function of photon energy, above the edge. The first 30-40 eV above 
the edge are the X-ray absorption near edge structure (XANES) and the 
oscillation modulation above that is the extended X-ray absorption fine 
structure (EXAFS) .
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is defined as:

xOO =
u(k)-u (k) ¿u(k)

irr^r (2.1)

where M (k) is the absorption coefficient arising primarily from core 

level atomic excitation and photoemission from atoms in the system 

under observation, and P Q (k) is the absorption which would be 

observed for free atoms and is therefore a single-valued function. 

'Hie theory of EXAFS, now well-established (Lee, Citrin, Eisenberger 

and Kincaid, 1981), is discussed in terms of the scattering of 

photoelectrons by atoms surrounding the absorbing atom. The 

surrounding atoms are treated as a system of weak point-scatterers, 

which allows the EXAFS to be described in terms of standard single­

scattering theory. The scattering formlism used by Sayers and Lytle, 

1970; Schoich, 1973; Lee and Pendry, 1975; Ashley and Doniach, 1975; 

Pettifer, 1978; Lee, Citrin, Eisenberger and Kincaid, 1981 gives an 

expression for the oscillatory part of the x-ray absorption, x (k):

xOO = = l exp(-2a?k2) |F.O,k) |exp(_2Rj^k)
J kRj

x sin[2kR. + i(i(k) ] ̂ (2.2) 
Where Nj is the number of atoms in the j*-*1 shell around the absorbing 

atom at a distance Rj. Hie summation in x (k) is over all shells of 

atoms. The term |Fj (it ,k) | is the amplitude of the back- scattered 

photoelectron wave from the j^ 1 atom. This has phase, <t> j (k) given in 

terms of

I f j ( ir , k )  | = F j(ir,k ) e " 1*.)0 0 (2.3)





where m is the mass of the electron, tl = h/2 n , is the Planck’s 

constant, E is the photon energy (hv); and E0 is the photon energy 

close to the characteristic absorption edge, from which the kinetic 

energy of the photoelectrons is measured. The value of Eq is not easy 

to identify in terms of photon energy precisely and it is usually 

taken to be an adjustable parameter within a few eV of the edge, Lee 

and Beni, 1977. Hie error in Eq results in an apparent phase shift, 

which decreases with the electron momentum as 1/k. In many 

applications Eq  is taken to be the energy at mid-step height, Babe, 

1978, but this can lead to considerable error in the determination of 

bond lengths.

2.3. The Analysis of EXAFS by the Fourier Transform Method

Although it is possible to obtain structural information by 

computing the fine structure for various models and then comparing the 

result with the experimental EXAFS data it is often more 

straightforward to analyse the data by considering the Fourier 

transform. The EXAFS function consists of a sum of daitped sine-waves 

originating from successive coordination shells. Hie atomic structure 

in the material is therefore contained in the EXAFS function so that 

interatomic distances can be revealed by the Fourier transform of 

X (k). Owing to the finite range of k over which the EXAFS can be 

observed due to the effect of both the Debye-Waller term and the 

decrease in the back scattering amplitude with k, the range over which 

the Fourier transform can be calculated is limited. Hiis has the 

effect of broadening the peaks in the Fourier transform. Hence it is 

desirable to measure the EXAFS over as wide a range of energies as 

possible. Furthermore, the truncation of the data can give rise to
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large termination effects which introduce unwanted structure in the 

Fourier transform. The truncation errors can be minimised by using a 

suitable window function (Gurman and Pendry, 1976). For this purpose a 

trigonometric Hanning window function is commonly used (equation 2.6). 

The form suggested by Lee and Beni (1977) is:

W(k) =

{1-cos (k-kminJ/DJ for k ^  > k > k ^  + D 

1 for kjĵ j, + D > k > + D

{1+cos [k-(km x -D) ]/D} for k ^ ^  — D > k > k ^ x

0 elsewhere (2 .6)

where D is chosen to be of the order (k^x - km^n)/10. k ^ n  is usually 

chosen to correspond to a photon energy 20-50 eV above the absorption 

edge, depending on the type of near-edge fine structure; km x  is 

determined by the limit of the available data. The window function 

should start and end at nodes of x(k), as suggested by Lee and Beni

(1977).

The EXAFS function x(k) must also be multiplied by a term kn 

which is a weighting factor included to compensate for the rapidly 

attenuating amplitude of the EXAFS components at larger k-values. The 

value of the exponent n depends on the atomic number of the back- 

scattering atoms. When the back-scattering is from the heavy 

elements, the amplitude is large and so only a small degree of 

weighting is needed, then n=l is used; for light elements in which the 

back- scattering amplitude is small a larger degree of weighting is 

required, n=3. Teo and Lee (1979) suggested the power of the 

weighting factor (kn) should be as follows:
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Z > 37

n = 2 Z > 19-36 (2.7)

n = 3 Z < 18

In practice the choice of the weighting factor to be used must also 

depend on the quality of the EXAFS spectrum, that is the ratio of 

signal-to-noise in the EXAFS data. Therefore the power of the 

weighting factor should be considered to be a variable parameter 

taking the value 1, 2 or 3, in such a way as to keep the total 

anplitude of the data to be transformed more uniform throughout the 

range in k-space. Thus the Fourier transform to be used takes the 

form.

The Fourier transform so obtained consists of a series of peaks 

with positions in R-space corresponding to interatomic distances but 

shifted towards the origin by an amount which is related to the phase 

shifts ipj in the EXAFS. By assuming that the phase shift ’/'j (k) is 

linear over the range of k-space being considered and of the form:

k• max
F(R) = 7n W(k) x(k) kn exp(-2ikR)dk (2.8)

k . min

(k) = ao + ap k (2.9)

then the argument of the sine term of equation (2 .2) would be

( 2 . 10)
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Thus the peaks in the Fourier transform in R-space are shifted by an 

amount ajy2* Although the phase shift can be calculated, and, indeed, 

values for many elements have been tabulated by Teo and Lee (1979), it 

is often preferable to determine the phase shift experimentally by 

comparing the EXAFS of the material under investigation with that 

obtained using a "model" compound, chosen to have the same chemical 

composition and whose structure is well known. This approach assumes 

that the phase shifts are transferable.

2.4. The Determination of Riase Shifts
As described previously, to determine the interatomic distance 

Rj, the phase shift ipj in the sine term in equation 2.2 must be 

determined or eliminated. The total phase shift for a pair of atoms 

(absorber and back-scatterer) can be calculated using the results of 

Teo and Lee (1979) or can be measured using a well characterised model 

compound. In this study we have chosen to determine the phase shift 

using a model compound in the form of crystalline a -alumina. This 

has the same backscattering pairs (Al-O) as the amorphous alumina 

films studied in this work. The structure of a-alumina is well known 

(WycCkoff, 1964). The Al3+ ions are octahedrally bonded to 

neighbouring C)2~ ions with an average separation of 0.1915 nm.

There are two ways of obtaining the phase shift by the use of a 

model conpound. In the first method the phase shift is determined 

directly by examining the Fourier transform of the EXAFS data from the 

model compound and comparing the peaks in this with the expected 

positions of the nearest neighbour shells. The difference determines 

ap/2 , which can then be used to correct the interatomic distances 

obtained from the Fourier transform of the EXAFS for the unknown

structure.
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A more reliable method is that described by Stohr et.al. (1980). 

This involves a comparison of the phases of individual sine terms (sin 

(2kRj + ij)j) for the model compound and the unknown. In order to make 

such a comparison the Fourier transform such as that described earlier 

(equation 2 .8) is back-transformed using a suitable narrow window 

placed over a specific peak in real space. Thus, the back- transform

where Rn,in and Rm x  define the window, gives the sine component 

present in the EXAFS in k-space associated with the chosen peak in 

R-space. x'(k) has a real and an imaginary part:

Rmax
F(R) W(R) exp(i2kR)dR ( 2 . 11)

R . m m

X ' (k) = X(k) + iY(k) = Aj(k) expi6j (k) (2 .12)

where Aj(k) is the amplitude

N.
(2.13)

and S j(k) is the phase

6 j (k) = 2KRj + <|/j(k) (2.14)

of the EXAFS due to the jth neighbour shell 

The amplitude can be computed by

Aj(k) = |/(X(k)) ̂  + (Y(k))z (2.15)
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Also the phase shift can be computed as:

S(k) = cos-1 (X/A) Y > 0 (2.16a)

6 (k) = -cos“l (VA) Y < O (2.16b)

6(k) = 0 X V 0 K 1 O (2.16c)

6(k) — IT X A O K II O (2.16d)

To determine the phase shift a comparison of a model compound and a 

material of unknown structure should be made.

Since the phases of the selected EXAFS components are given by

<5U (k) = (2kRu + (k) ) for the unknown structure (2.17)

and 6m (k) = (2kRm + %(k) ) for the model compound (2.18)

the difference in the phases is

5m (k)~ Su(k) — 2k (Rm—Ry) + ( i^ (k )  -  i(<u (k )) (2.19)

If the assumption of transferability of phase shifts is correct then 

^m (k) = ^u^) 30(5 hence

%  - Ru = AR ( 2 . 20 )

The plot of Rm(k) - Ry(k) versus k should therefore be a straight line 

passing through the origin of k. In practice this will not be the 

case because of uncertainty in the choice of E0, the position of the 

absorption edge, which therefore affects the zero in k-space for
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the momentum of the photoelectrons. The analysis requires an 

adjustable parameter AEq  so that

k' = (k2 - 0.263 aEo )V2 (2 . 21)

and therefore

0.263 AE (R -R )
6m(k')- 6u(k’) = 2k' (Rro-Ry) + -----?— m— %  (2 .22)

(kz + 0.263 A E ^ 1

AEq  Is then adjusted until the intercept of s m(K) - 5 ' u W  versus k' 

passes through the origin. If Eq is carefully chosen, A E0 should be 

within the range - 10 eV ^ a Eq  1  + 10 eV, corresponding to -1.6 ^

k'-k 4  1.6 Â-1. Under these conditions the gradient gives the 

difference between the interatomic distances in the model conpound and 

the unknown material structure.

2.5. The Derivation of Coordination Hunter from the EXAFS
The total amplitude function (Aj(k)) in the EXAFS data, given by

equations (2.12) and (2.13), contains information about the
2coordination number (Nj) and the relative disorder p  j). This 

information can be extracted by using the measurements on the model 

conpound and comparing the EXAFS from a single shell, after taking the 

Fourier transform and its back-transform, of the model in which Nj 

and a j are known, with the EXAFS from the same shell of the unknown 

material. This involves the use of the back Fourier transform, 

described in the previous section (equation 2.9), with a narrow window 

placed around a single peak in R-space. This gives the EXAFS 

contribution from a single shell of atoms for the model compound and 

t h e  u n k n o w n  s t r u c t u r e .  If b o t h
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materials have the same type of backscattering atoms and similar 

photoelectron mean free paths then the terms relating to these factors 

can be omitted in the ratio of the EXAFS amplitudes for the two 

materials (see Stohr et.al. 1980, and references therein). Therefore, 

the ratio of the amplitudes becomes:

intercept of this straight line at k=0 should be the log ratio of IVR2 

for the two materials, and the slope should give the difference in a. 

The accuracy of the amplitude measurement depends on the Gaussian 

shape of the peaks in the Fourier transform which, in turn, depends 

highly on the quality of the EXAFS data and also the range of the data 

in k-space. The absence of long range order in the material also 

causes broadening of the peaks in the Fourier transform. Furthermore 

the shape and position of the peaks in the Fourier transform are 

affected by the accuracy with which the smooth background ( p Q) is 

subtracted from the experimental EXAFS data. These factors all 

contribute to a large degree of uncertainty in the determination of 

the coordination number from the EXAFS. Thus, an alternative method 

for determining the coordination number, based on the theoretical 

ratio of the equilibrium inter ionic distances R^/Fq  = (Nu/Nm) •*-/n-l' 

has been used in this work on alumina. As will be discussed in detail 

in chapter 6 , this is permissible since the materials used are 

strongly ionic.

2

(2 .21)

and a plot of this versus k2 should yield a straight line. The

2.6. Cwipral considerations concerning the measurements of EXAFS
The technique of extended X-ray absorption fine structure (EXAFS)
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has been widely employed in structural studies of solid materials. The 

application of the technique to the study of amorphous solids has 

proved to be particularly useful (see for example, Pettifer and 

McMillan 1977). It enables the study of short range, local order in 

such solids, which is not readily obtainable by conventional methods 

such as X-ray and electron diffraction. There are various methods or 

modes by means of which EXAFS can be monitored. These are described 

briefly below in order to consider their relative usefulness for the 

study of surface films in the present work.

2.6.1. Transmission BtflFS
This involves the transmission of X-rays through a thin specimen. 

The intensity of the X-ray beam is attenuated in its passage through 

the absorbing material according to the relation

It = I0 exp(-yt) (2 .2 2)

or yt = In (Io^t) (2.23)

where y is the linear absorption coefficient and t is the thickness of 

the sample. Experimentally, the beam intensity, IQ and It, before and 

after the absorption, is measured by ionisation chambers, and 

lnd^Ij.) is plotted as a function of the incident X-ray energy. In 

early experiments of this kind (Lytle, 1966), a conventional X-ray 

generator was used as a source of X-rays, but nowadays the X-rays are 

usually provided by a synchrotron radiation source. This has the 

advantages of higher intensities over a continuum of energy.



The linear absorption coefficient (y) can be calculated from 

standard data in tables in order to determine the optimum thickness 

needed to get maximum EXAFS signal-to-noise ratio, using the criterion 

suggested by Kincaid (1976)

t = 1.2
u

(2.24)

where the absorption is measured close to the absorption edge under

investigation. The linear absorption coefficient for a component can

be determined using the additivity of the mass absorption coefficients

(-Ü-). , so that p i
(2.25)

where g^ is the mass fraction of atomic component i. The approximate 

values of  ̂ in the wavelength (X) range = 0.3 - 2.75 ?? can be 

found tabulated in International Tables for X-ray Crystallography, 

Vol. Ill, 1962. Outside the range X = 0.3 - 2.75 A the values of (y  ̂  

are not readily found in tabulated form and therefore they are best 

obtained by calculation using the relation given by Bragg (1933) and 

Agarwal (1979)
cX3Z4 for X = Xk

c ' x V  for x > \  (2.26)

where c = 1.92 x 10“2 cm and c' = 0.32 x 10-2 cm, Z is the atomic 

nunber of the element and X is the X-ray wavelength at the absorption 

edge. Therefore the mass absorption coefficient ( j)^ is equal to

(£)i = M7(A/N) (2.27)

where A is the atomic weight of the element and N is the Avogadro's

number. For X = 7.95 A just above the aluminium K-edge, the linear
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absorption coefficient of aluminium metal, obtained from the 

calculated mass absorption coefficient and the density of aluminium, 

is approximately (1025) cm2 gm_1. The optimum thickness is then found 

to be about 4.5 pm. Also, at the same value of X , the mass 

absorption coefficients ( of aluminium and oxygen are about 1025 

cm2 gm- 1  and 245 cm2 gm-1, respectively. The atomic weights of 

aluminium and oxygen are 27 and 16. Thus the mass absorption 

coefficient for AI2O3 (alumina) is obtained from

fH) . 2 - 1(1025) + 4  (245) = 557 an g (2.28)

Hence the linear absorption coefficient of AI2O3 is obtained by 

multiplying this by the density (p) of the alumina, which in the case 
of anodic alumina has been found to be between 1 . 1  and 2 .2 g cm-3 

(Simons et al., 1980). Therefore, the linear absorption coefficient 

at the A1 K-edge has a maximum value of (557 x 2.2) = 1225 cm-1. The 

optimum thickness of anodic alumina for transmission EXAFS is 

therefore about 10 um. If we assume the density of the anodic alumina 

to be nearly the same as in y-alumina, 3.5 gcm-^, then the optimum 

thickness is reduced to about 6 pm.

In the case of the oxides studied in this work, formed by anodic 

oxidation of aluminium, the film thickness varies from about 5 to 150 

nm (0.005 - 0.15 pm). This is extremely thin compared with the 

optimum thickness of transmission EXAFS and hence the signal-to-noise 

in such spectra for stripped oxide films will be very low (S/N = 

10~4) . Thus, the transmission method is unsuitable for the 

examination of very thin films, such as those formed by the 

anodisation of aluminium. There is a further problem in carrying out 

transmission EXAFS for such thin films arising from the damage caused 

by the intense X-ray beam. This will be less important in the case of



the X-ray fluorescence and electron yield inodes of recording the EXAFS 

because in these cases the films are retained on their metal substrate 

which can absorb energy.

2.2.6. Fluorescence EXAFS
Hie excitation of a photoelectron leaves the absorbing atom with 

an empty core level. A higher shell electron fills the core hole and 

this is accompanied by emission of energy in the form of an electron 

(Auger emission) or an X-ray photon (Fluorescence), as shown 

schematically in figure 2.2.6. In this way energy conservation is 

maintained. In either case, the flux of Auger electrons or the 

fluorescence intensity is a measure of the absorption of the incident 

X-rays.

In the fluorescence detection mode the fluorescence intensity is 

measured by an array of scintillation detectors places around the 

sample (see, for example, the arrangement described by Phillips 

(1981); Hasnain et al. (1984). As in the case of the transmission 

mode, the initial intensity of the X-ray beam is measured by an 

ionization chamber. The fluorescence intensity is then normalized 

relative to the incident X-ray intensity. Care is necessary in 

choosing a suitable geometrical configuration of the detectors in 

order to avoid interference between the fluorescence signal and the 

incident beam (Jacklevic et al. 1977; Lee et al. 1981).

In a theoretical calculation, originally made by Wentzel (1927) 

the fluorescence yield, w^, has been found to be

wfc(Z) = (1 + A/Z4)- 1  (2.29)

where Z is the atomic number of the fluorescent atom and A is a
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Figure 2.6.2: Schematic decay processes for core holes leading to 
X-ray fluorescence or Auger electron emission.



numerical constant. In a more detailed discussion of this result (see 

Dick and Lucas, 1970) for K-L shell transitions the appropriate values 
for A are A = 1.19 x 105 for Z < 10, A = 1.19 x 106 for 10 < Z < 18 
and A = 1.27 x 106 for Z > 18.

The fluorescence mode is useful for EXAFS studies of materials in 

which the absorbing species are dispersed at low concentration 

throughout the sample, and, because of the strong dependence of w^ on 

atomic number Z, it is useful for high atomic number materials (Z > 

20). The emission is considerably reduced for low atomic number 

materials and, furthermore, since the fluorescence detectors are 

normally positioned in air, the measured X-ray fluorescence yield, 

which will be in the soft X-ray region for such materials, is very 

small. There will also be strong absorption of the soft X-rays in the 

sample. These factors make the fluorescence mode unattractive for low 

Z materials, such as AI2O3 . In principle the fluorescence X-rays 

could be detected in a very high vacuum environment using a windowless 

detector. Even then the signal-to-noise ratio will be very small 

because of the low fluorescence yield and in practice long data 

accumulation times are needed to obtain high quality EXAFS spectra. 

This technique is therefore not ideal for the present work.

2.6.3. The electron yield BttgS
This technique has been developed to measure the extended X-ray 

absorption fine structure for surface atomic arrangements (SEXAFS) and 

for the study of surface films, such as oxides on metals. There are 

two types of measurements, one in which the Auger electron yield is 

used and the other in which the total electron yield is used. The 

total electron yield is particularly suitable for determining the



structure of very thin films, i.e. 10-50 nm thick, composed of light 

elements having Z less than 20 because the sampling depth of the total 

yield is comparable with the film thickness. This is the thickness 

range for which the other modes of EXAFS such as the transmission mode 

are not suitable. It has been used by Stohr et al. (1979), for the 

study of oxide films on aluminium and silicon where the EXAFS in the 

vicinity of the oxygen K-edge makes the technique extremely surface 

sensitive. It is also the technique used extensively in the EXAFS 

studies discussed in this work.

The general concept of photoelectron spectroscopy is summarised 

in fig. 2.6.3 which shows a schematic representation of the 

photoelectron spsectrum expected for a typical solid. There is a large 

secondary electron yield at low energies, arising from inelastic 

scattering of the characteristic photoelectron emission and the Auger 

electron emission. The photoelectrons and the Auger electrons occur at 

well-defined energies which depend on the electronic structure of the 

absorbing atoms in the solid. In the following sections the use of 

the Auger electrons in partial yield EXAFS and the larger flux of 

secondary electrons in total yield EXAFS will be discussed.

2.6.4. The Aimer electron yield EXAFS
In the Auger electron emission mode only the elastic Auger 

electrons from the sample are collected. The photo-ionisation of the 

absorbing atom leaves an empty core hole in the K-shell, as shown 

schematically in figure 2.6.2. This can be filled by an L-shell 

electron and the excess energy is accounted for by the emission of a 

second electron from a higher shell. This Auger electron is usually 

emitted from a nearby L-shell. In such cases the Auger emission
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Figure 2.6.3: Schematic photoemission spectrum of electrons emitted from 
a surface as a function of photon energy.
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process is designated KLL. The Auger electron is emitted into the 

vacuum with the remaining kinetic energy given by

Ekin ~ EK ~ ELl “ eL23 (2.30)

These three levels (K, Lp and L2 3 ) are characteristic of the 

particular atom undergoing photo-ionisation. This makes the Auger 

yield highly selective for a particular atomic species.

The collection of the Auger electrons is achieved by using an 

electron energy analyser with a window set at the particular Auger 

emission energy above the vacuum level. This separates the Auger 

electron emission from the dominant secondary electron yield (see for 

example, Stohr et al., 1980). The characteristic Auger emission 

originates from a small depsth below the surface (usually about 1 - 2  nm) 

because of the strong scattering cross-section for those low energy 

electrons. Thus the sampling depith of the Auger yield technique is 

dependent on the energy of the particular Auger emission being used 

and is not strongly dependent on the atomic number of the absorbing 

atom. However, the Auger emission cross-section is generally greater 

for lower atomic number elements and thus the Auger yield mode for 

EXAFS is more useful for such materials. The Auger technique is 

particularly useful for studies of surface or near-surface structures, 

the technique is limited in usefulness for studies of films thicker 

than about 2 nm because the Auger emission is relatively small and the 

measurements require a sophisticated electron analyser. For thicker 

films it is more advantageous to use the total electron yield.
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4.6.3ii. The total electron yield EXAFS
The total electron yield involves all electrons regardless of 

their kinetic energies emanating from the sample. All the elastically 

emitted Auger electrons, photo-electrons and inelastically scattered 

electrons are collected. However, as indicated in the previous 

section the inelastically scattered secondary electrons are dominant. 

The secondary ionisation by the more energetic Auger and 

photo-electrons can give rise to a cascade effect. This accounts for 

the very large broad peak in the low-energy part of the photoemission 

spectra shown in figure 2.6.3.

The technique of total electron yield was first used to measure 

X-ray absorption spectra by Lukirskii and Brylov (1964), then later by 

Gudate and Kunz (1972), who first used synchrotron radiation in such 

experiments. It was further developed by Stohr et al. (1980), who 

applied the total yield technique and also a partial yield method to 

study the oxidation of aluminium and silicon. Jones and Woodruff 

(1982), applied the total yield technique to detect the EXAFS for 

various anodised aluminium surfaces, using the Al K-edge, and obtained 

a measure of the surface sensitivity. They concluded that the method 

is useful for measurements of EXAFS for alumina films of thicknesses 

greater than about 50 ran. As shown in Appendix ill the sampling depth 

of the total yield is strongly dependent on the atomic number of the 

absorbing atom. Thus, it is very suitable for the present work on 

anodic alumina films. The total yield technique is less appropriate 

for thinner films and higher atomic number elements.

2.7. »mro»ry
In this study we have chosen to use the total electron yield 

detection technique because it provides a very convenient method for
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monitoring EXAFS spectra for thin oxide films on aluminium, and gives 

good quality data. The technique has been used to measure the EXAFS 

for a large number of anodic alumina films formed under a wide range 

of anodizing treatments of pure aluminium. The method has also been 

used to measure the EXAFS for a similar set of films after hydration 

treatment in hot water. Hie experimental procedures and the method of 

data collection will be discussed in detail in the next chapter.
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CHAPTER 3
THE HJXJBCH YXEXJ3 EXAFS PdED H EN gynO N  AM) MEASUREMENT

3 .1 . In tro d u c tio n
This chapter contains a description of the experimental 

arrangement at the CNRS Orsay Laboratory where the work on electron 

yield EXAFS was carried out using the ACO storage ring. This includes 

a discussion of the arrangement of the source and monochromator and 

the facility for the electron yield EXAFS data collection. The 

monochromator was designed to provide soft X-rays in the region of 

1000-2500 eV which embraces the aluminium K-edge. The procedure for 

normalization of the EXAFS data using the pre-edge background is also 

discussed. Finally, this chapter discusses the total electron yield 

sampling depth for aluminium films in terms of a mathematical model for 

the secondary electron emission. The sampling depth is also measured 

experimentally using a series of oxide films of various thicknesses.

3 .2 . S y n c h ro tro n  r a d ia t io n
Synchrotron radiation is used nowadays to provide ultra-violet and 

X-ray radiation for many experiments where high photon fluxes are 

required, and where a continuous spectrum of photon energies covering 

the spectral range of interest is needed. Synchrotron radiation 

sources are usually in the form of electron beam storage rings in which 

electrons are accelerated in a nearly circular orbit defined by high 

nagnetic fields, usually in ultra-high vacuum to minimize the decay of 

the stored electron current. The energy spectrum of the radiation

depends on the energy and the current of the circulating electrons 

stored in the ring.
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Electron energies range from several mega-electron volts (MeV) as 

for example, in the case of the AGO source at Or say (France), to 

several Giga-electron volts (GeV) in the SPEAR machine at Stanford 

University (USA) and the new SRS at the Daresbury Laboratory (UK). Such 

nachines produce a continuous spectrum of radiation with photon fluxes 

of 10^ - 1011 photons s“l eV“l mrad~l. Depending on the electron 

energy and the radius of the orbit the photon spectrum has a cut-off 

wavelength at the high energy end; for example at AGO Ac = 38 A and at 

the SRS Ac = 1.1 A. (for more details see the excellent review article 

on the properties of synchrotron radiation by Kunz, 1979).

During the last 20 years synchrotron radiation has become very 

useful in a great many fields of scientific research, using the entire 

spectral range from the far infra-red to soft and hard X-rays. The 

applications include studies in physics, chemistry, material science 

and biological science disciplines. Fig. 3.2.1 shows a schematic 

presentation of some of these applications of synchrotron radiation 

(see Forty 1979).

For EXAFS experiments, synchrotron radiation has many advantages 

over radiation from conventional X-ray tubes. The synchrotron radiation 

provides a more intense, continuous X-ray spectrum and is a stable 

source over the period of beam life-time. The life-time depends on the 

stability of the stored electron beam and the quality of the vacuum.

3 .3 . raws OTperimpnt-al arrangements

The experimental arrangement used for making the electron yield 

EXAFS measurements to be described in later chapters is shown 

schematically in figure 3.3.1. Because measurements at the A1 K-edge
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(/>

c r

Fig
ure

 3
.3.

1: 
Th

e e
xp

eri
me

nta
l a

rra
ng

em
en

t f
or

 re
co

rdi
ng

 e
lec

tro
n 

yi
eld

 E
XA

FS.



46

require soft X-rays the experiments were performed at the ACO storage 

ring at Laboratoire pour l'Utilisation du Rayonnement Electromagnetique 

(LURE), Orsay, France. In this machine the stored electron current is 

100 mA at 450 MeV in ultra high vacuum (10 ~ 10  torr). The soft X-rays 

leave the storage ring tangentially and are collected by a toroidal 

mirror which focusses the X-ray beam onto a horizontal exit slit, (for 

a more detailed description of the ACO storage ring, see Guyon et al, 

1976). The beam travels some 8 meters to pass through a beryllium 

window and thence into a double-crystal monochromator. The beryllium 

window acts as a filter for visible and UV light. In order to obtain 

sufficient dispersion of the soft X-rays the monochromator crystals 

must have large d-spacings. For the ACO soft X-ray monochromator 

organic KAP (potassium acid phthalide) crystals having a 2d-spacing of 

26.63 ft are used. The crystals are 1.0 cm wide, and are able to accept 

1 mrad of incident X-ray beam. Measurements made on the output of the 

monochromator indicate that typically 10 7 photons s- 1  eV- 1  mrad- 1  are 

transmitted. The storage ring and monochromator therefore provide a 

strong source of soft X-rays in the spectral range 1000-2500 eV (for 

more details about the LURE monochromator, see Lemonnier et al. 1978).

The angular position of the two crystals (which determines the 

wavelength selected by the monochromator) and the distance between them 

(which determines the height of the emergent X-ray beam) are controlled 

by a Tektronix 4051 computer (Fontaine, Lagarde, Raoux and Esteva, 

1979). The emergent monochronatic beam enters the sample chamber, which 

has six flanges arranged in a six-way cross. One of these carries the 

sample holder/manipulator, another carries the electron yield detector 

and the remaining flanges provide connections for vacuum pumping,



viewing window and an ionization chairber which can be used to measure 

the transmitted beam for the conventional mode of EXAFS. A photograph 

of this arrangement is shown in figure 3.3.2. Hie pressure in the 

monochromator and the sample chamber was about 10“? torr.

Hie sanple to be examined was mounted on a plate (see fig. 3.3.3) 

which could be rotated through a full 360° by means of a rotary drive. 

This plate was designed to carry a number of samples on each side so 

that measurements on various types of oxide film could be made under 

identical conditions. The individual samples could be selected by 

vertical movement and, as necessary, rotation through 180° using the 

rotary drive manipulator unit. The plate was also constructed so that 

transmission EXAFS measurements could be made on a thin aluminium foil 

mounted over a 25 nri aperture. The plate was fabricated from brass and 

it was possible to use the electron yield from the unpolished surface 

to obtain a measure of the background spectrum of radiation from the 

monochromator and storage ring. This was essential for the extraction 

of EXAFS data from the electron yield from the specimens.

The monochromator crystals become degraded as a result of long 

periods of exposure to the high fluxes of X-rays provided by the 

storage ring. In order to ensure sufficiently large outputs from the 

monochromator and also to retain the high energy resolution required 

for EXAFS measurements, the crystals were freshly cleaved to remove any 

contamination before the EXAFS experiments were carried out.

3.4. Data collection

To perform an EXAFS experiment in the total electron yield mode, 

all the electrons emitted from the surface of the sample are collected, 

including secondary electrons as well as primary Auger and

4 7







Figure 3.3.3. A photograph showing the sample holder (un-polished brass 
surface) , with the actual size of samples mounted and a 25 mm aperture to 
use for transmission EXAFS measurement.
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photoelectrons. This total emission was collected using a channel 

electron multiplier (Galileo type 4800 channeltron, open ended). The 

channeltron was operated in a pulse counting mode. The front of the 

channeltron was positioned about 7 cm from the sample, and the sample 

holder was rotated to obtain an optimum take-off angle. It was found 

by trial and error that an angle of incidence of 40° for the output 

beam of the monochromator gave the best signal-to-noise ratio for the 

total electron yield - EXAFS spectra. The front of the channeltron was 

set at + 250 volts to attract the secondary electrons emitted from the 

surface of the sample. The output of the channeltron was passed 

through a pre-amplifier to a pulse amplifier and discriminator (see 

figure 3.4.1) to inprove the signal-to-noise ratio. The noise level 

was further reduced by inserting a thin polypropylene film across the 

entrance to the specimen chamber in order to filter out stray radiation 

in the form of either secondary electrons or low energy ultra violet 

photons from the monochromator. The channeltron was capable of 

recording up to 10 ® counts sec--*-, but the counting rate was limited to 

about 10^ counts sec~l by the available photon flux.

EXAFS measurement in the transmission mode was made on a thin 

aluminium foil using an ionization chamber to record the incident and 

transmitted X-ray intensities. The ionization chamber was filled with 

air to a pressure of about 300 torr, and had a 3 yin thick mylar window, 

chosen because mylar does not absorb more than a few % of the incident 

X-ray beam in the soft X-ray range of 1000 eV to 2500 eV. The output 

of the ionization chamber was passed through a Keithley amplifier and 

then a voltage-to-frequency converter to produce a frequency which was 

proportional to that input voltage. This a.c. signal was converted to a 

digital input for the data acquisition by means of a scalar circuit.



F ig u re  3 .4 .1 .  A b lo c k  d iagram  o f  th e  e l e c t r o n ic  sy stem  u sed  in  th e  e le c t r o n  
y i e ld  c o u n tin g .
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Hie gate of the scaler could be set to any multiple of one second in 

order to achieve optimum signal-to-noise ratio. In the transmission 

experiment the counting rate was about 1 0 ^ counts sec- l. The 

experimental arrangement is shown schematically in figure 3.4.2.

In both the transmission and the total yield EXAFS measurements 

the data were collected by a Tektronix 4051 computer, which also 

controlled the monochromator and stored the EXAFS spectral data.

3.5. NormaliTatinn of the EXAFS data

The electron yield spectra from which the EXAFS oscillations have 

to be derived are incorporated in the measurements of the total 

electron yield together with other spectral variations which arise from

(a) absorption due to neighbouring characteristic absorption edges 

(e.g. the 0 K-shell edge in the case of AI2O3) and (b) the presence of 

impurity contamination in the sample and (c) the variation in the 

incident X-ray spectrum arising from the characteristics of the storage 

ring and the monochromator. Thus the measured data can be regarded as 

a total absorption spectrum which is composed of the A1 K-edge 

absorption and a general background absorption (jJ) i.e.

p()Oobs = m (I0 a 1 f M (k)
In order to obtain the Al K-edge absorption u (k)^, the background, 

plk), has to be removed from the total data. Generally this can be done 

by fitting a Victoreen polynomial representative of the pre-edge 

background. In this way it is possible to remove the non-K-shell 

absorption by extrapolating the pre-edge absorption and subtracting 

this Victoreen polynomial from the total absorption spectrum, (see for 

exanple, Lee et al. 1981). The accuracy of this method is limited 

because it does not take into account the variation of the X-ray flux 

incident on the specimen, over the whole experimental range.
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Rather than using the method of simply extrapolating the pre-edge 

background a new, empirical method has been used in the present work to 

normalise the EXAFS data. This involves using a standard target 

containing no edges in the absorption spectral region of interest (1500 

eV - 2500 eV) and counting the electron emission from its surface. For 

this purpose it was found convenient to use the "dirty" surface of the 

brass specimen holder described in section 3.3. Such a surface is 

expected to be covered with oxygen, nitrogen, carbon and hydrogen all 

of which have absorption edges at lower photon energy (0-532 eV, N-399 

eV, C-230 eV and H-14 eV). The copper and zinc in the brass have 

absorption edges at much higher energies and the electron yield is 

therefore a broad spectrum of secondary emission, effectively a 

continuum.

The yield spectrum from the standard surface is therefore 

re p resentative of the convolution of the various instrumental factors 

involved, including the synchrotron storage ring and the monochromator. 

This measured spectrum can therefore be used to normalize the electron 

yield spectra from the AI2O3 samples. In order to carry out the 

normalization procedure the measured background spectrum must firstly 

be represented by a smooth polynomial. For this purpose a Chebyshev 

series polynomial has been employed

f(E) = aoT0 (E) + aiT1 (E) + a2 T2 (E) + ... + ajTi (E) 

where T3 (E) is the Chebyshev parameter of the first degree and TjJE) is 

the 1th degree parameter (for more detail, see Cox and Hayes, 1973).

This polynomial was used to fit the whole range of data and 

adjusted to achieve the best fit for the experimental data obtained 

with an angle of incidence of 40° which was found to give the best



signal-to-noise (see section 3.4). The results so obtained are shown 

in figure 3.5.1. For comparison the results are also shown for angles 

of incidence of 65° and 90° using the same polynomial with suitable 

scaling factors. This demonstrates the very satisfactory fit that can 

be obtained using the Chebyshev series polynomial.

Figure 3.5.2. illustrates the procedure for using the polynomial 

derived from the measured background to obtain the normalised X-ray 

absorption spectra. The upper curve (1) is the total electron emission 

measured for an anodic oxide formed on aluminium in neutralized 

tartaric acid electrolyte, (the preparation of this oxide film will be 

discussed in the next section). The raw data contain the absorption 

above the A1 K-edge for the film superimposed on the general 

background. By fitting the Chebyshev polynomial function derived from 

the electron emission of the brass surface (Figure 3.5.1.) to the 

measured intensity below the aluminium K-edge with a suitable scaling 

factor curve (2), shown in figure 3.5.2., can be obtained. By 

subtracting curve (2 ) from curve (1 ) and dividing by (2), the true 

absorption spectrum due to the A1 K-edge can be derived as shown in 

figure 3.5.3.

3.6. The sampling depth of the total electron yield technique
The total electron yield from the sample consists of all electrons 

(photoelectrons, Auger electrons and secondary electrons produced by 

inelastic collisions) originating not only from the surface but also 

from material below the surface. This can be characterized by a 

sampling depth which is clearly related to the mean electron escape 

depth. It has been shown previously by Jones and Woodruff (1982) that 

the total electron yield spectrum for a sample consisting of an anodic 

oxide film on aluminium can be accounted for by a simple incoherent
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summation of the EXAFS due to the oxide and EXAFS arising from the 

underlying metal. By analysing measurements of the electron yield from 

a series of specimens with oxide films of various thicknesses (3-10 0  

nm) they were able to quantify the relative contributions from the 

oxide and the metal. They concluded that for a film of 50 nm thickness 

almost 100% of the electron yield spectrum was due to the oxide EXAFS. 

In their work Jones and Woodruff prepared the oxide films by an 

anodizing treatment using a borate solution.

In the present study this investigation of the surface 

sensitivity of the electron field technique has been extended to 

measurements on films of various thicknesses (5-100 nm) formed on pure 

aluminium by anodic oxidation in sodium tartrate electrolyte. In all 

cases the aluminium surface was initially polished mechanically and 

thoroughly washed in distilled water and methanol. A final surface 

preparation was carried out immediately before the anodising treatment 

by bombarding the surface with 5 keV argon ions, at an ion current 

density of 20 yA nm-2. This procedure provides a very smooth, clean 

surface, free from any contamination. It is possible that argon will 

be incorporated in the A1 surface and might eventually become 

incorporated in the oxide. However, the presence of argon is not 

likely to affect the structure and chemistry of the oxide, unlike the 

incorporation of the other ionic species, such as carbonate, phosphate 

and borate ions, from the anodising electrolytes. Finally, the clean 

aluminium surfaces were anodised in a neutral solution tartrate 

electrolyte, composed of 0.5 M tartaric acid (CHOH.COOH)2 neutralized 

to pH 2  7.2 with 0.5 M sodium hydroxide (NaOH). Throughout, an 

aluminium cathode was employed. This treatment yields a thin oxide 

layer of very uniform thickness, the so-called barrier layer. The



film thickness is dependent on the anodizing voltage, with a well 

defined relationship of about 1.4 nm V- 1  (Hunter and Fowle, 1954). A 

number of oxide films with increasing thickness were grown in this way. 

A similar set of oxide samples, prepared under the same condition, were 

hydrated for 15 minutes at 85°C and these were also used to study the 

surface sensitivity of the electron yield technique. EXAFS spectra of 

both the unhydrated and hydrated specimens were recorded by counting 

the electron yield as a function of photon energy at 2 eV intervals 

from 1500 eV (just below the A1 K-edge at 1560 eV) to 2000 eV. These 

spectra were normalized to allow for variation of the X-ray flux over 

the energy range, using the method described previously in section 3.5. 

The spectra from the two sets of measurements are shown in figures

3.6.1 and 3.6.2. Figures 3.6.1 and 3.6.2 also show on a similar scale 

the transmission EXAFS spectrum obtained for a pure A1 foil. On the 

right-hand side of figures 3.5.1 and 3.5.2 are simulated spectra 

obtained by a linear combination of the pure aluminium EXAFS spectrum 

and the 50 nm thick aluminium oxide spectra, in the case of unhydrated 

oxides, and the pure aluminium and the 50 nm thick hydrated aluminium 

oxide spectra for the hydrated oxides, with the proportions of oxide 

and aluminium contributions adjusted to match the corresponding 

measured spectra.

It can be seen from a comparison of the experimental and 

simulated spectra that the electron yield EXAFS truly represents the 

aluminium oxide only if the film thickness is greater than 50 nm. There 

is about 50% contribution to the EXAFS spectrum from an oxide film of 5 

nm and about 90% from a 40 nm thick oxide film.

Figure 3.6.3. shows the results of evaluating the proportions of 

the oxide EXAFS spectra required to simulate the total electron yield
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spectra for films of various thicknesses. The filled circles 

represents the results obtained by Jones and Woodruff (1982) for films 

prepared in sodium borate electrolyte whilst the open circles represent 

the results of the present experiments using sodium tartrate 

electrolyte. The squares represent the results for the same type of 

film but after hydration. The curve in figure 3.6.3. is the behaviour 

expected on the basis of a mathematical model for the secondary 

electron emission from the samples proposed by Jones and Woodruff 

(1982) and described in greater detail in Appendix III. It can be seen 

that, whilst there is good agreement between both sets of results for 

the unhydrated films and the model, there appears to be a significant 

departure in the case of the hydrated films. This departure might be 

accounted for by a change in the film morphology or film thickness as a 

result of the hydration treatment. As will be discussed in Chapter 6 

there is reason to believe that some dissolution of the oxide film 

occurs in the early stages of hydration and this might well account for 

a reduction in thickness in the 15 minutes exposure to water used in 

these experiments. However, there is a large degree of uncertainty in 

the measurements, and particularly in the way in which this kind of 

information is extracted from the data, and it is therefore reasonable 

to conclude that the behaviour is quite well described by the model for 

secondary electron emission.

3.7. »annary

The conclusion to be drawn from this evaluation of the technique 

is that measurement of electron yield in the soft X-ray energy range 

(1000-2500 eV), provides a means of monitoring the A1 K-edge EXAFS with 

a high degree of surface sensitivity and results in good quality
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spectra. It allows reliable sairpling of the oxide structure for alumina 

films having a thickness greater than 50 nm. Therefore the electron 

yield is ideally suitable for structural analysis of amorphous alumina 

and hydrated oxide films, the result of which are discussed in the next 

two chapters.
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CHAPTER 4

SAMPLE PREPARATION. EXAFS ANALYSIS PBOCffiORE AtP RESULTS FOR 
ANCPIC ALJCmiCM OXIDE FimS AM) HYCRATEP OXIDE FILMS

4.1. Introduction
From the historical review of work done on the oxide films 

formed on aluminium by anodic treatments in aqueous electrolytes, 

presented in Chapter 1, it is evident that a great deal is already 

known about the morphology and the chemical composition of such films. 

However, there is relatively little knowledge about the structure of 

the oxide from which the films are formed, particularly in the case of 

amorphous films. Because of the importance of the anodising treatment 

in technological applications it is clearly very desirable for 

structural determination to be made. The various attempts that have 

been made to use conventional X-ray and electron diffraction 

techniques have achieved only limited success. In contrast, the 

technique of extended X-ray absorption fine structure (EXAFS) analysis 

should have a much greater potential for this kind of study since it 

is a structural probe which does not depend on a regular ordering of 

the molecular structure and it has already proved to be a very useful 

technique for studying amorphous materials such as inorganic glasses, 

as described in Chapter 2. The method of electron yield EXAFS, having 

a high degree of surface sensitivity, should be particularly useful 

for the study of thin oxide films, 50 nm or greater in thickness.

Ttiis Chapter describes the application of total electron yield 

EXAFS to the study of several different aluminium oxides, 50-150 nm 

thick, formed in different electrolytes and subjected to various 

hydration treatments. In the following sections the procedures used
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for the preparation of the aluminium substrate and the method for 

carrying out the anodising in the various electrolytes are described. 

The procedure for hydrating the oxide films after anodising is also 

described. In the later sections the procedures for analysis of the 

EXAFS data and the measurements of structural details (such as Al-0 

bond length) are reported for all the oxides in both the as-formed 

condition and also after the hydration.

4.2. Sanple Preparation
4.2.1. General background

When aluminium is made the anode is an electrolytic cell, an 

oxide is formed on the surface. This oxide has a complex 

microstructure (see, for example Thompson and Wood, 1981) which 

depends on the electrolyte used. Oxide films, formed by anodising in 

an aggressive electrolyte solution, such as sulphuric acid, chromic 

acid or phosphoric acid, are generally porous and are partly 

crystalline (a mixture of amorphous and Y-alumina). The degree of

crystallinity increases as the film thickens. With neutral 

electrolyte solutions, such as sodium tartrate, or sodium borate, at 

room temperature, the films are thinner and more uniform (non-porous, 

barrier layer films). The thickness is proportional to the applied 

voltage with a relationship of about 1.4 nm per volt at room 

temperature (d = 1.226 + O.0O47t(nm), where t is the temperature of 

the electrolyte measured in °C (Hunter and Fowle, 1954). Very thin 

films of this type Cl 10  nm thick) are largely composed of amorphous 

alumina according to high resolution TEM studies (El-Mashri et al., 

1981). Again, for thicker films a greater degree of crystallinity is 

formed, according to electron and X-ray diffraction studies.



4.2.2. Surface Preparation of the Aluminium substrates prior to 

Anodisation

The oxide layers in all our experiments were prepared on high 

purity (99.999%) polycrystalline aluminium sheets. In all cases the 

specimen dimensions were 20 x 10 x 0.5 inn. The surfaces of these were 

carefully mechanically polished with a very fine paste of alumina 

powder (0 .0 1 pm) . This was followed by applying a liquid metal 

polish, such as "Brasso". The surface was then thoroughly washed in 

running de-ionized water and finally rinsed in methanol. The final 

surface preparation, carried out inmediately before the anodising 

treatment, consisted of boirbardment of the surface by 5 kV argon ions 

for 45 minutes, using an Ion Tech B21 gun. In order to avoid serious 

surface damage during this treatment, the ion gun was operated at an 

ion current of 20 yA, resulting in a low current density (0.2 A m-2). 

This proved to be sufficient to remove gross contamination and gave a 

smooth, clean surface.

4.2.3. Anodising Troatmpnt

Two types of electrolyte were used in this work. One type, 

consisting of neutral solutions, gave uniform non-porous layer type 

films, while the other solutions used were more strongly acidic and 

these formed porous oxide films. In all these treatments the cathode 

was in the form of a ring of aluminium surrounding the specimen.

Three neutral electrolyte solutions were used to form the 

barrier layer (non-porous) oxide. These were:-
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(i) fiodium tartrate solution
The sodium tartrate bath was composed of 0.5M tartaric acid 

(CHOH.COOH)2 which was neutralised to pH 2  7.2 with 0.5M sodium 

hydroxide (NaOH). Initially, the anodising treatment was 

carried out in a pyrex glass container, but this was found to 

lead to incorporation of Si in the oxide (see later sections of 

this chapter and also Chapters 5 and 6). Subsequently, the 

anodisation was carried out in an aluminium container to avoid 

this.

(ii) Sodium oxalate solution
The sodium oxalate bath consisted of 0.5M oxalic acid 

( (COOH)2 .2H2O). This was neutralised to pH 2  7.2 with 0.5M

sodium hydroxide. An aluminium container was used in this 

process.

(iii) Sodium borate solution
Hie sodium borate solution was composed of 0.5M boric acid 

(H3BO3 ), neutralised to pH 2  7.2 with 0.5M sodium hydroxide. An 

aluminium container was used in this process.

In each case the oxide films were prepared at a constant voltage 

(2 35 volts) to yield an oxide thickness of 50 run.

TWo acid electrolyte solutions were used to form the porous oxide 

films. These were:-

(iv) Phosphoric acid solution
The phosphoric acid bath consisted of an aqueous solution of 10% 

wt orthophosphoric acid (H3 PO4 ). In this case a pyrex



(i) sodium tartrate, solution
The sodium tartrate bath was coirposed of 0.5M tartaric acid 

(CHOH.COOH)2 which was neutralised to pH 2  7.2 with 0.5M sodium 

hydroxide (NaOH). Initially, the anodising treatment was 

carried out in a pyrex glass container, but this was found to 

lead to incorporation of Si in the oxide (see later sections of 

this chapter and also Chapters 5 and 6). Subsequently, the 

anodisation was carried out in an aluminium container to avoid 

this.

(ii) sodium oxalate ¡solution
The sodium oxalate bath consisted of 0.5M oxalic acid 

((COOH) 2 -2H20). This was neutralised to pH 1  7.2 with 0.5M 

sodium hydroxide. An aluminium container was used in this 

process.

(iii) Sodium borate solution
Hie sodium borate solution was composed of 0 .5M boric acid 

(H3BO3), neutralised to pH 1  7.2 with 0.5M sodium hydroxide. An 

aluminium container was used in this process.

In each case the oxide films were prepared at a constant voltage 

Cl 35 volts) to yield an oxide thickness of 50 nm.

Two acid electrolyte solutions were used to form the porous oxide 

films. These were:-

(iv) Hioschoric acid solution
The phosphoric acid bath consisted of an aqueous solution of 10% 

wt orthophosphoric acid (H3 PO4 ). In this case a pyrex



container was used. This did not lead to Si contamination of 

the oxide. Hie aluminium surface was first pre-oxidised using 

the Forest Product Laboratory (FPL) process. This is the 

standard treatment for the preparation of A1 surfaces for the 

preparation of good adherent porous oxide. The FPL solution 

contained Na2^ 2 0 3, H2SO4 and H2O in a ratio of 1:10:30 by 

weight. The aluminium surface was immersed for 15 minutes in 

the solution at 60°C. This formed a layer of oxide about 8 nm 

thick on the surface of the aluminium. I immediately after this 

treatment the sample was throughly washed in running de-ionized 

water and dried using an air blower. It was then anodised in 

the phosphoric acid bath at a constant voltage of 10 volts, and 

an initial current density of 1000 A m"2, for 15 minutes at room 

temperature. The oxide film thus formed was expected to have an 

average thickness of 100 nm according to work done previously on 

similar films (Ahearn et al, 1980).

(v) Chromic acid solution
The chromic acid bath was composed of an aqueous solution of 5% 

by weight of chromic trioxide (Cr2C>3 ). Since the leaching of Si 

from the glass was not expected in this case the anodising 

treatment was performed in a pyrex container. This was found to 

be convenient because it permitted visual observation of the 

surface. However, it was found that a certain amount of Si 

contamination actually occurred as will be described later and 

in chapters 5 and 6 . Again, the aluminium surface was 

pre-treated in FPL solution using an identical procedure to that 

described for the phosphoric acid process. The surface was then



anodised at a constant voltage of 49 volts and an initial 

current density of 1000 A m-2, for 40 minutes. The temperature 

of the bath was kept at 35°C during the anodising process. This 

process produced a very thick oxide estimated to be about 150 nm 

according to previous work using a similar method of preparation 

by Venables et al (1979).

The a—alumina specimen used as the model coraxxmd
In order to derive values for the Al-O bondlength from EXAFS 

measurements on all these films it is necessary to compare the EXAFS 

data with EXAFS from a suitable reference material (see Chapter 2). 

For this purpose a disc of a-alumina cut from a large single crystal 

of sapphire was used. This was mechanically polished using a diamond 

disc (with surface grade 30-40 p m) for 3 hours to produce a smooth 

surface, then throughly washed in running de-ionised water and finally 

rinsed in methanol. This surface was then bombarded with argon ions 

for 3 hours, as described previously in this chapter.

4.2.4. The Hydration of the Oxide Films
In this section the treatment used to hydrate the various types 

of anodized aluminium oxide is described.

Samples of the non-porous oxides, 50 nm thick were formed on 

pure aluminium in sodium tartrate, sodium oxalate and sodium borate 

electrolytes as described in Section 4.2.3Í, ii, iii. These were then 

hydrated by immersion in hot water at about 85°C, for 30 minutes. This 

period of inmersión was found to be sufficient for complete hydration 

of the film as estimated b y  the evolution of gas from the



metal substrate and the accompanying change in colour of the oxide 

surface from whitish to a pale brown. The hydrogen gas evolution 

indicates that the water has penetrated through the oxide surface, and 

has reached the underlying aluminium substrate. The time needed for 

complete oxide-to-oxyhydroxide conversion, revealed by these 

observations, was approximately 25 minutes, and therefore the oxide 

should be converted fully to oxy-hydroxide in 30 minutes. This is 

consistent with observations by other workers (Ahearn, 1983, private 

communication).

Samples of the porous oxides, 100-200 run thick were formed in 

10% wt phosphoric acid and 5% wt chromic acid, following the same 

procedures described in Section 4.2.3 iv and v. Oxides formed in both 

electrolytes have a duplex morphology: there is a thin barrier layer, 

10-15 nm thick, formed initially on the aluminium surface, followed by 

a thicker porous layer (Venables et al., 1979; Thompson and Wood, 

1981). These oxide films were hydrated by immersion of the oxidised 

metal in hot water at 85°C ±  5°C. The time for hydration as indicated 

by a colour change was considerably longer than was found for the 

non-porous oxides, requiring about 4 hours for complete hydration. 

This longer hydration period has been attributed to the time required 

for water to penetrate through the duplex oxide layer. It is also 

possible, as will be discussed in Chapter 6, that the incorporation of 

anion species from the electrolyte during the anodizing treatment 

might inhibit the hydration (Davis et al, 1982; El-Mashri et al, 1983, 

Alwitt, 1984, private communication).
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4.3. the Analysis o£ BtftFS Data to Obtain Structural Information (Al-O 
Bond Length) for the Anodic Oxide Films

This section describes the procedure used to obtain the extended 

X-ray absorption fine structure spectra from the raw data collected as 

described in Chapter 3. It also describes the data manipulation used 

to extract the structural information from the EXAFS spectrum.

The first step in the data analysis is to normalise the measured 

electron yield, allowing for the background intensity, to give the A1 

K-edge absorption spectrum for the sample. The second step is to 

separate the EXAFS oscillation function, x , from the smooth atom-like 

background. The resulting fine structure contains the structural 

information. The third step in the analysis is to convert the EXAFS 

oscillations from being a function of the photon energy, x (E) to a 

function of photoelectron wave vector, x(k). The Fourier transform of 

x(k) can then be used to give information about nearest-neighbour, 

next-nearest neigbour etc. separations. This requires a knowledge of 

the appropriate phase shift which can be determined from the EXAFS of 

the reference compound (a-AI2O3 in this case) or can be computed from 

tables published by Lee and Beni (1977).

In this section the analytical procedures for the oxide formed 

in the sodium tartrate electrolyte only will be described in detail. 

The same procedure has been followed to analyse the EXAFS for all the 

other oxides and hydrated samples but only the important features and 

results for these will be given.
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4.3.1. The EXAFS analysis of the oxide formed in sodium tartrate 
electrolyte

(i) Background aA>traction_aa<3 normalisation of the electron 
yield spectra
The EXAFS above the A1 K-edge must be normalised to allow for 

variation of the incident photon intensity in that part of the 

spectrum and the contribution to the absorption from other 

absorption edges (the background absorption) must be subtracted. 

This is done by fitting the polynomial derived from the electron 

yield from the brass test-sample to the pre-edge electron yield 

for the oxide. This procedure has already been described in 

detail in Chapter 3 and can be illustrated by reference to 

figures 3.5.2. and 3.5.3. The variation of background intensity 

is represented by curve (2) in figure 3.5.2 fitted to the 

pre-edge electron yield data. The EXAFS spectrum is then 

normalised by subtraction of curve (2 ) from curve (1 ) and 

division of this difference by c u rv e  ( 2 ) .

(ii) The extraction of the EXAFS oscillation function x (E)
The normalised electron yield is a direct measure of the X-ray 

absorption spectrum m(E) . The next step in the analysis is to 

isolate the EXAFS oscillations, x(E), in the normalised K-shell 

absorption spectrum p(E), by subtracting the free atom-like 

abs o r p t i o n  p0 (E). T h i s  is g e n e r a l l y  not p o ssible 

experimentally, and usually u0 is obtained by fitting a smooth 

polynomial through the oscillations in the normalised absorption 

coefficient, u(E). The EXAFS oscillation function x(E) per atom 

of aluminium in the sample is then obtained from the computation
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Figure 4.3.1a The normalised electron yield for the sodium tartrate formed 
oxide showing the polynomial used for extracting the EXAFS function x(E).

Figure 4.3.1b A plot of the fine structure function, x(E) . against the
photon energy (eV) obtained from figure 4.3.1a.



of (M(E)-Ug(E)/u0 (E)), as described in Chapter 2 (equation 2.1). 

In this study 4-,(E) was obtained as a Chebyshev series 

polynomial fitted through the EXAFS oscillations in the 

normalised EXAFS spectrum (figure 3.5.3), as shown in Figure 

4.3.1a. As reported earlier in this chapter (Section 4.2.3i) 

this particular oxide contains a larger amount of a siliceous 

impurity due to the leaching of the pyrex beaker by the sodium 

tartrate electrolyte and this appears in the EXAFS spectrum as a 

peak at 1839 eV as can be seen in figure 4.3.1a. The Si peak 

(Si K-shell absorption) is removed from the normalised EXAFS 

oscillation function (figure 4.3.1b) simply by terminating the 

spectrum at a point just below the Si K-edge.

(iii) The conversion of x(E), in photon energy space, to x(K)-. 
in photoelectron wavevector space
Since the theoretical expression for the EXAFS oscillations is 

usually given in terms of photoelectron wavevector it is more 

convenient to plot the EXAFS oscillation function in 

photoelectron k-space. The conversion of x(E) to x (k) is made 

using the relation

k = (2ir/h Vy(E-Eo) = 0.5123V(E-Eo) 

where E is the X-ray photon energy, measured in eV and Eg being 

the true position of̂  the A1 K-absorption edge. Great care is 

necessary in the choice of the value of Eg since this determines 

the k-scale, and this in turn affects the determination of the 

Al-0 bond length. In this present study two different methods 

of bond length determination were used; in both cases care was 

t a k e n  to a v o i d  t h i s  f o r m  o f  s y s t e m a t i c  e r r o r



Figure 4.3.2. The EXAFS function x(10 weighted by for the sodium 
tartrate-formed oxide. The crosses represent individual data points; 
the continuous line is the cubic spline fit used for the Fourier 
transform.

Figure 4.3.3. The Fourier transform of the EXAFS function shown in 
figure 4.3.2. The dashed line represents the window function, the 
dotted line shows the back-Fourier transform.
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as will be explained in Sections 4.3.1 (iv), and the best

choice of E0 has been taken to be the position of the half 

height of the absorption edge at 1558 eV for all spectra to be 

discussed below.

Next the x(k) is weighted by k3, as discussed in Chapter 2, to 

compensate for the decrease of the EXAFS amplitude at high 

k-values due to Debye-Waller factor, the backscattering 

amplitude, and the mean free path dependence on k. The result 

is shown in figure 4.3.2. At this stage the noise in the 

weighted x(k) data is filtered out by fitting a smoothing spline 

polynomial to represent the EXAFS oscillations. This is useful 

in removing unwanted high frequency oscillations which otherwise 

could influence the position of the Al-O peak in the Fourier 

transform. This is shown as a smooth curve in figure 4.3.2. 

The high quality of the data obtained in these experiments is 

evident from the very small noise level in the unsmoothed x(k) 

k3.

(iv) Fourier transformation of the EXAFS oscillation function 
X (k)
The observed absorption fine structure results from a sum of 

sine-waves, each with a frequency function which originates from 

the various shells surrounding the absorbing atom at the average 

distance Rj, as described in Chapter 2; the form of the EXAFS 

oscillation function is

N -i 7 7xOO = l  e x p ( - 2 a V )  iF .C ir.k) |e x p (-2 R ,/X ,k )  
j kRj J J J J

x Sin[2kRj+\(/j (k) ]
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It follows that information about interatomic distances, Rj, can 

be obtained from the Fourier transform of this expression. As 

was explained in Chapter 2, it is necessary to weight x(k) to 

allow for damping of the oscillations at high k value. In the 

case of AI2O3 the appropriate weighting factor is k3 and the 

smoothed weighted function x (k) k3 is shown in figure 4.3.2. for 

the case of the anodic oxide formed in sodium tartrate. The 

window used to truncate the EXAFS oscillation function in this 

case, and all other cases to be described was placed between 2 .8  

and 8.0 A-3-. The Fourier transform of this is shown in figure

4.3.4. The peak at R=0.148 nm should correspond to the Al-0 

nearest-neighbour separation, but shifted towards the origin by 

the linear part of the phase shift. In order to determine the 

true interatomic distances in an unknown material, the phase 

shift must be identified, which can be done using a model 

compound as described previously in Chapter 2. Care is needed in 

making a correct choice of the energy of the X-ray absorption 

edge (E0) otherwise errors in this can cause spurious phase 

shift due to the accompanying error in the k-scale. In the case 

of the reference material (sapphire) and all the anodic oxide 

films examined Eq was chosen to be the energy corresponding to 

the half-height of the absorption edge, 1558 eV. The 

correctness of this choice of Eg can be demonstrated by taking 

the back-Fourier transform of the Fourier transform of the EXAFS 

using a window to isolate the first nearest neighbour peak, to 

yield the sinusoidal contribution to the EXAFS in k-space due to 

the nearest neighbour shell of atoms, and then back-Fourier 

transforming this again to R-space. The result is shown in 

f i g u r e  4 . 3 . 3  w h e r e  it c a n  be s e e n  t h a t  t h e



peak of the double back-Fourier transform coincides with that in 

the original forward Fourier transform. This means that the 

k-scale is correct, as a consequence of the correct choice of

Eq -

(v) The determination of Al-O bond length for the anodic oxide 
formed in sodium tartrate
The model compound chosen in this study is an a-alumina sample 

(sapphire specimen, see section 4.2.3.vi) for which the crystal 

structure is well known. All the aluminium atoms are bonded 

octahedrally to oxygen atoms with two distinct Al-O bond 

lengths, 0.186 nm and 0.197 nm (Wyckoff, 1964). Since the EXAFS 

gives only an average bond length, this should correspond to the 

average of these two values, i.e. 0.1915 nm. Since this model 

compound has the same chemical composition (AI2O3 ) as the anodic 

films the phase shift obtained by comparing the position of the 

strong peak in the Fourier transform with this average 

bondlength of 0.1915 nm should be directly transferable to the 

EXAFS results from the unknown structure.

The EXAFS oscillations for the model, shown in Figure 4.3.4 

weighted by k^, were obtained from the normalised electron yield 

following the same procedure as that described already for the 

anodic oxide. The same window (2.8 - 8.0 A-l) as that used for 

the anodic film was applied to obtain the Fourier transform for 

the a-alumina, shown in figure 4.3.5. This shows a large peak 

at 0.150 nm which should correspond to a Al-O bondlength of

0.192nm. Thus the phase shift for AI2O3 produces a shift in 

peak position of 0.042 nm. This can now be used to correct the 

Al-O peak position for the anodic films.



Figure 4.3.4

Figure 4.3.5

Figure 4.3.4. The EXAFS function x00 weighted by for the model compound 
(oi-A^Oj "sapphire specimen") . The crosses represent individual data points; 
the continuous line is the cubic spline fit used for the Fourier transform. 
Figure 4.3.5. The Fourier transform of the EXAFS function shown in figure
4.3.4. The dashed line represents the window function placed around the first 
neares neighbour.



Thus for the film formed in sodium tartrate the Al-O separation, 

corresponding to an average nearest neighbour bond length, is 

0.190 nm (0.148 + 0.042 nm).

An alternative method for determination of bondlength, suggested 

by Teo and Lee (1977) has also been used in this study. In this 

approach the phase shift is taken into account by performing a 

back Fourier transform of a specific region of the first Fourier 

transform with a narrow window placed around a particular peak 

in R-space (see equation 2 .1 1 ) for both the unknown structure 

and the reference material (C1-AI2O3). The result for the anodic 

oxide formed in sodium tartrate is shown in figure 4.3.3, where 

the dashed line represents the window function and the dotted 

line shews the back-Fourier transform. Figure 4.3.5. shows a 

similar analysis of the data for the reference material (a 

-AI2O3). The back-Fourier transforms in K-space give the EXAFS 

contributions from corresponding single shells of neighbouring 

atoms, and by comparing the phases of these for the two 

materials the unknown phase shift can be eliminated as described 

in Chapter 2, section 4. By adjusting the value of E0 by small 

amounts, Eq  (usually less than ±  10 eV), the correct value is 

arrived at when the plots of the variation of the phases of the 

EXAFS sine term with k both pass through the origin of k-space. 

Under these conditions the difference in the slopes of the two 

plots gives the difference in the bond lengths of the two 

materials. Knowing the bond length of the model compound, then 

the actual bondlength of the anodic oxide can be obtained. 

Using this method the difference in Al-O bondlengths for the 

r e f e r e n c e  m a ter ia l (01- A I 2 O 3 ) a n d  the a nodic oxi de



formed in sodium tartrate was found to be A R  = -0.003 nm. 

Therefore the bondlength of the anodic oxide is 0.189 nm (0.192 

- 0.003 nm).

In conclusion therefore, it can be stated that allowing for 

errors in the analysis the two methods of bondlength 

determination result in nearly identical values (0.190 nm 

compared with 0.189 nm). In the next section the likely errors 

in these determinations will be evaluated.

(vi) Estimation of errors in. the EXAFS determination, of 
bondiength
The error in the measured Al-0 bondlength arises from random 

errors in the data and systematic errors arising from the 

processing of the data. The main contribution to the random 

errors is due to the counting of the electron yield. This was 

reduced by averaging 10 scans of EXAFS spectra which resulted in 

curves such as figure 3.5.2. (curve 1) in which the uncertainty 

in the data points is less than 1 per cent. There is a further 

error in the EXAFS oscillation function which results from any 

inperfect fitting of the polynomial representing yQ. An upper 

limit to the overall random error in the EXAFS oscillation 

function is 2 per cent. The quality of the data is clearly 

represented by the close relationship between the data points 

and the smooth fitted curve shown in figure 4.3.2. The 

determination of Al-0 bondlength is more strongly dependent on 

systematic errorsarising from the choice of E0 and the window 

limits used in the Fourier transforms. Hie influence of the 

choice of E0 was investigated by noting the shift in the



nearest neighbour peak position in the Fourier transform when a 

range of values of E0 (AE0 = + 1, ± 2,± 5eV) is used. It was 

found that for very small values of aEq the shift in the peak is 

negligible but can be as large as ±  0.004 nm when a Eg = ±  5 eV. 

Similarly the effect of the choice of window, within the range 

of 30 eV (lower limit) to between 200 and 250 eV (upper limit) 

was found to result in a spread of peak position of + 0.002 nm. 

The aggregate of these two errors is therefore ±0*0045 nm. 

Hcwever, the likely error will be considerably less than this 

because great care was taken to choose Eg correctly (and the 

success of this can be seen in figure 4.3.3. which has already 

been discussed in the previous section) and also to use wide 

limits for the Fourier window. A reasonable estimate of the 

overall uncertainty in the measured Al-0 bondlength is ±  0.0025 

nm. This degree of accuracy is expected for measurements on all 

the oxides and oxy-hydroxides.

4.3.2. The EXAFS results for the oxide formed in sodium oxalate
The weighted EXAFS oscillation function, x (k) k^, shown in 

figure 4.3.6i for the oxide formed in sodium oxalate was obtained from 

the electron yield spectra using the same procedure as that described 

in the previous section. The Fourier transform is given in figure 

4.3.6ii. The window for the Fourier transform was placed between 2.8 

A- 1  and 8 .5 A-1. The large peak in the Fourier transform at R = 0.143 

nm is the contribution from the Al-O nearest neighbour shell in the 

oxide. This is shifted towards the origin by 0.042 nm as a result of 

the phase shift. Therefore the average Al-0 nearest neighbour 

bondlength is 0.185 nm ±  0.0025 nm.
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overall uncertainty in the measured Al-0 bondlength is ±  0.0025 

nm. This degree of accuracy is expected for measurements on all 
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4.3.2. The EXAFS results for the oxide formed in sodium oxalate
The weighted EXAFS oscillation function, x (•<) ^3, shown in 

figure 4.3.6i for the oxide formed in sodium oxalate was obtained from 

the electron yield spectra using the same procedure as that described 

in the previous section. The Fourier transform is given in figure 

4.3.6ii. The window for the Fourier transform was placed between 2.8 

A- 1  and 8.5 A-1. The large peak in the Fourier transform at R = 0.143 

nm is the contribution from the Al-O nearest neighbour shell in the 

oxide. This is shifted towards the origin by 0.042 nm as a result of 

the phase shift. Therefore the average Al-0 nearest neighbour 

bondlength is 0.185 nm ±  0.0025 nm.



Figure 4.3.6Ì

Figure 4.3.6ii

Figure 4.3.6i. The EXAFS function x(k) weighted by for the sodium oxalate- 
formed oxide. The crosses represent individual data points; the continuous 
line is the cubic spline fit used for the Fourier transform.
Figure 4.3.6ii. The Fourier transform of the EXAFS function shown in figure
4.3.6Ì.



4.3.3. the EXAFS results for the oxide formed in sodium borate
The weighted EXAFS oscillation function, x (k) k3, derived from 

the electron yield - EXAFS of the oxide formed anodically in sodium 

borate electrolyte is shewn in figure 4.3.7i. Hie Fourier transforms 

of these is given in figure 4.3.7Ü. The window for the Fourier 

transform are again placed between 2.8 A- 1  and 8.5 Æ-3. Hie large 

peak in the Fourier transform, positioned at R = 0.147 nm is the 

contribution from the Al-O nearest neighbour shell in the oxide. This 

is shifted towards the origin by 0.042 nm as a result of the phase 

shift. Therefore the average Al-O nearest neighbour bondlength is 

0.190 ±  0.0025 nm.

4.3.4. Hie EXAFS results for the oxide formed in chromic acid
The weighted EXAFS oscillation function, x (k) k3, shown in

figure 4.3.8i, was derived from the electron yield spectra of the 

anodic oxide formed in chromic acid. The Fourier transform is given 

in figure 4.3.8Ü. The window for the Fourier transform was placed 

between 2.8 Æ- 1  and 8.5 Â-1. The large peak in the transform at R = 

0.140 nm is attributed to the Al-O nearest neighbour bondlength and 

needs to be corrected for the phase shift by the amount of 0.042 nm. 

Hie average Al-O nearest neigbour bondlength is therefore 0.1825 nm ± 

0.0025 nm.

4.3.5. Hie EXAFS results for the oxide formed in Phosphoric acid
The weighted EXAFS oscillation function, x (k) k3, shown in

figure 4 .3 .9i, derived from the electron yield spectra for the oxide 

formed anodically in phosphoric acid. Hie Fourier transform of this 

is given in figure 4.3.9Ü. The window for the Fourier transform was
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Figure 4.3.7i The EXAFS function X(k) weighted by k3 for the sodium 
borate-formed oxide. The crosses represent individual 
data-points; the continuous line is the cubic spline fit 
used for the Fourier transform.

Figure 4.3.7ii The Fourier transform of the EXAFS function shown in
Figure 4.3.7i.



the continuous line is the cubic spline fit used for the 
Fourier transform.

Figure 4.3.8ii The Fourier transform of the EXAFS function shown in
Figure 4.3.8i.
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Figure 4.3.9i The EXAFS function X(k) by k 3 for the phosphoric acid- 
formed oxide. The crosses represent individual data 
points; the continuous line is the cubic spline fit( 
used for the Fourier transform.

Figure 4.3.9ii The Fourier transform of the EXAFS function shown in
Figure 4.3.9i



placed between 2.8 A- 3  and 10.0 ¿“1. This is wider than those used 

previously because the silicon impurity is not present in this case. 

As a result of this the peak in the Fourier transform is significantly 

sharper than those obtained for the oxides formed in tartrate, borate, 

oxalate and chromic acid electrolytes. The main peak in the Fourier 

transform at R = 0.138 nm is the contribution from the Al-0 nearest 

neighbour shell in the oxide. This is shifted towards the origin by 

0.042 nm as a result of the phase shift. Therefore the average Al-O 

nearest neighbour bondlength is 0.180 nm ±  0.0025 nm.

4.3.6. The EXAFS results for the oxide film formed in sodium tartrate 
electrolyte after hydration

The weighted EXAFS oscillation function, x (k) k3 for the oxide 

film, formed in neutralized sodium tartrate and then hydrated as 

described in section 4.2.4, is shown in figure 4.3.10i. The Fourier 

transform of * (k) k3 is given in figure 4.3.10ii. The window for the 

Fourier transform was placed between 2.8 A- 3 and 10 i-3. This wider 

window is possible because the silicon impurity is removed by the 

hydration (this will be discussed later in Chapter 6). The Fourier 

transform yielded two main peaks at R=0.165 nm and 0.230 nm. The two 

peaks are attributed to the two Al-0 nearest neighbour bondlengths 

known to exist in boehmite and this gives a clear indication that the 

oxide has been hydrated to a pseudo-boehmite amorphous structure. 

Since the scattering of the photoelectrons again involves primarily A1 

and 0 it is reasonable to assume the same shift of the peaks of 0.042 

nm due to the phase shift. Therefore the average two Al-0 bondlengths 

are 0.210 ±  0.0025 nm and 0.27 nm ±  0.0025 nm.
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Figure 4.3.10i The EXAFS function XQc) weighted by k3 for the sodiug 
tartrate formed oxide after immersion in water at 85 C 
for 30 minutes. The crosses represent individual data 
points; the continuous line is the cubic spline fit used 
for the Fourier transform.

Figure 4.3.10ii The Fourier transform of the EXAFS function shown in
Figure 4.3.lOi
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Also, in the Fourier transform there is a possible third peak, which 

can be seen as a shoulder on the second peak which could result from 

the Al-Al second- nearest neighbour shell in the boehmite structure. 

The position of this peak at 0.25nm, cannot be corrected for the phase 

shift because a suitable model compound has not been studied.

4.3.7. The EXAFS results for the oxide film formed in sodium oxalate
electrolyte after: hydration

The weighted EXAFS oscillation, x(k)k3, for the hydrated oxide 

film, formed in sodium oxalate, is shown in figure 4.3.H i  and the 

Fourier transform is given in figure 4.3.11ii. The window for the 

Fourier transform was again placed between 2.8A- 1  and 10A-1. The

Fourier transform yielded two peaks at R=0.165 nm and 0.230 nm 

corresponding to the contribution from the two Al-O nearest neighbour 

bondlengths which might be expected for a boehmite-like structure. 

These can be again regarded as shifted towards the origin by 0.042 nm 

as a result of the phase shift. Thus the EXAFS results indicate Al-O 

nearest neighbour bondlength of 0.200 nm + 0.0025 nm and 0.280 nm ± 

0.0025 nm.

4.3.8. The EXAFS results for the oxide film formed in sodium borate 
electrolyte after hydration

Figure 4.3.12i shows the weighted EXAFS oscillation function, 

x(k) k^, derived from the electron yield spectrum for the hydrated 

oxide formed in neutralised sodium borate. The Fourier transform of 

this is given in figure 4.3.12ii. The window for the Fourier 

transform was placed between 2.8 and 9.5 ¿”1. The Fourier

transform of this exhibits two peak, at R=0.164 nm and 0.252 nm, again



Figure 4.3.H i  The EXAFS function X(k) weighted by k3 for the oxide Q 
formed in sodium oxalate after immersion in water at 85 C 
for 30 minutes. The crosses represent individual data 
points; the continuous line is the cubic spline fit used 
for the Fourier transform.

Figure 4.3.11ii The Fourier transform of the EXAFS function shown in
Figure 4.3.Hi.



for 30 minutes. The crosses represent the individual data 
points; the continuous line is the cubic spline fit for 
the Fourier transform.

Figure 4.3.12ii The Fourier transform of the EXAFS function shown in
in Figure 4.3.12i.



considered to be the contribution from the two Al-0 nearest neighbour 

in the hydrated oxide. These are again shifted towards the origin 

0.042 nm as a result of the phase shift. Therefore the Al-O nearest 

neighbour bondiengths are 0.200 nm + 0.0025 and 0.290 nm + 0.0025 nm.

4.3.9. The EXftFS results for the oxide film formed in chromic acid
after hydration

The weighted EXAFS oscillation function, x (k) k3, shown in 

figure 4.3.13i, was derived from the total electron yield spectrum for 

the hydrated oxide formed in chromic acid. The Fourier transform of 

this is given in figure 4.3.13Ü. The window for the Fourier transform 

was placed between 2.8 Â- 1  and 9.5 A-1. The two large peaks in the 

Fourier transform at R=0.163 nm and 0.237 nm are contributed from the 

two Al-0 nearest neighbour bondlengths in the hydrated oxide. After 

correction for the phase shift these results in Al-O nearest neighbour 

bondlengths of 0.205 nm ±  0.0025 nm and 0.280 nm ±  0.0025 nm.

4.3.10. The EXAFS results for the oxide film formed in phosphoric acid 
after hydration

The EXAFS oscillation function, x(k) k3, shown in figure 

4.3.14i, was obtained from the total electron yield spectra for the 

hydrated oxide formed in phosphoric acid. The Fourier transform is 

given in figure 4.3.14Ü. The window for the Fourier transform was 

placed between 2.8 Æ- 1  and 10.0 Â-1. The two peaks at R=0.168 nm and 

0.238 nm are the contribution from the Al-0 nearest neighbour 

bondlengths in the hydrated oxide. These are shifted towards the 

origin by 0.042 nm as a result of the phase shift. Therefore the
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in the hydrated oxide. These are again shifted towards the origin 
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neighbour bondlengths are 0.200 nm + 0.0025 and 0.290 ran ±  0.0025 nm.

4.3.9. The EXAFS results for the oxide film  formed in chromic acid
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The weighted EXAFS oscillation function, x (k) k^, shown in

figure 4.3.13i, was derived from the total electron yield spectrum for 

the hydrated oxide formed in chromic acid. The Fourier transform of 

this is given in figure 4.3.13ii. The window for the Fourier transform 

was placed between 2.8 and 9.5 The two large peaks in the

Fourier transform at R=0.163 nm and 0.237 nm are contributed from the 

two Al-O nearest neighbour bondlengths in the hydrated oxide. After 

correction for the phase shift these results in Al-O nearest neighbour 

bondlengths of 0.205 nm ±  0.0025 nm and 0.280 nm ±  0.0025 nm.

4.3.10. The EXAFS results for the oxide film formed in phosphoric acid 
after hydration

The EXAFS oscillation function, x(k) k3» shown in figure 

4.3.14i, was obtained from the total electron yield spectra for the 

hydrated oxide formed in phosphoric acid. The Fourier transform is 

given in figure 4.3.14ii. The window for the Fourier transform was 

placed between 2.8 and 10.0 A-1. The two peaks at R=0.168 nm and 

0.238 nm are the contribution from the Al-0 nearest neighbour 

bondlengths in the hydrated oxide. These are shifted towards the 

origin by 0.042 nm as a result of the phase shift. Therefore the
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Figure 4.3.13Í The EXAFS function X(k) weighted by k3 for the chromic 
acid-formed oxide after inmersión in water at 85 C for 
4 hours. The crosses represent individual data points; 
the continuous line is the cubic spline used for the 
Fourier transform.

Figure 4.3.13Ü The Fourier transform of the EXAFS function shown in
Figure 4.3.13Í.
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Figure 4.3.14i The EXAFS function X(k) weighted by k 3 for the phosphoric 
acid-formed oxide after immersion in water at 85 C for 4 
hours. The crosses represent individual data points; the 
continuous line is the cubic spline fit used for the 
Fourier transform.

Figure 4.3.14ii The Fourier transform of the EXAFS function shown in
Figure 4.3.14i.



average Al-O nearest neighbours bondi eng ths are 0.200 nm ±  0.0025 ran 

and 0.280 nm + 0.0025 ran.

4.4. Sunrnary of Results
Hie results derived from the analysis of the electron yield 

EXAFS for the anodic oxide films prepared in the various electrolytes, 

and the results for the hydrated oxides obtained from the same anodic 

oxide films after hydration by immersion in water at 85 °C, are 

summarised in Table 4.4. There is clearly a significant variation in 

the derived Al-O bondiength of the different oxides even when the 

uncertainty in the measured values of the Al-O bondlength is taken 

into account. This reflects the variation of the molecular structure 

when different methods of preparation are used. The bondlengths 

listed in Table 4.4 shows that the oxide films grown in neutralized 

electrolytes have a significantly greater Al-O nearest neighbour 

bondlength than those formed in more strongly acid electrolytes.

It is interesting to note that the different hydrated oxide 

films have the same Al-O bondlength within the estimated uncertainty 

in the measurements. These bondlengths are closely related to the 

values expected for a boehmite structure (Al-O bond lengths of 0.190 

nm and 0.250 nm have been reported from X-ray diffraction measurements 

for the mineral boehmite by Sasvari and Zalai, 1957). The results of 

the EXAFS measurements therefore provide a good confirmation that all 

the oxide film transform into a boehmite-like structure as a result of 

hydration.

The measured bondlength for as-formed oxides agree quite closely 

with some values reported by other workers and this will be discussed 

in greater detail in Chapter 6. The EXAFS results for the various



oxides will be discussed at that stage in terms of the known 

structures of a -  and y -alumina. It will be shown that this permits a 

useful description of the amorphous structure in terms of the two 

states of Al-O coordination (tetrahedrally and octahedrally bonded A1 

states) known to exist in the crystalline structure of AI2O3 . This 

approach will then be used to establish a possible model for amorphous 

alumina and to give an indication of the structure changes involved in 

hydration.



______________Measured Bond Length (nm)________

Electrolyte solution Oxide Hydrated Oxide

Sodium tartrate 0.190 ±  0.0025 0.210 ±  0.0025 0.270 ±  0.0025

Sodium borate 0.190 ±  0.0025 0.210 ±  0.0025 0.295 ±  0.0025

Sodium oxalate 0.185 ±  0.0025 0.205 ±  0.0025 0.280 ±  0.0025

Chromic Acid 0.1825 ±  0.0025 0.205 ±  0.0025 0.280 ±  0.0025

Phosphoric Acid 0.180 ±  0.0025 0.205 ±  0.0025 0.280 ±  0.0025

a -AI2O3 (corundum) * 

Boehmite**

0.1915

0.188 0.251

**
average Al-0 bond length reported by wyckoff (1964) 

Al-O bond length reported by Sas vari and Zalai (1957)
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CHAPITER 5
MIQOPRPIIJLOGICAL OBSERVATIONS OF THE ANQDIC-QKIDE AfP HYDRATED

QKiDE rims

5.1. Introduction

High resolution scanning transmission electron microscopy (STEM) 

has proved to be a great asset in studying and understanding 

micromorphology, and in following characteristic changes in materials. 

A JEX3L JEM 100 CX transmission electron microscope, equipped with STEM 

and operated at 30 kV in the SEM mode using the secondary electron 

emission, was used to study the morphology of the oxide film formed 

anodically on pure aluminium in the different electrolyte solutions 

described in the previous chapter. The electron microscope was also 

fitted with an energy-dispersive X-ray microanalyser (EDAX), which 

could be used to obtain a qualitative chemical analysis of certain 

features in the surface oxide films.

A major problem in using SEM to study non-conducting specimens 

such as oxide-coated metals is the loss of image quality due to 

electrical charging of the sample during observation. A technique 

devised to overcome this problem by applying a very thin surface 

coating of platinum will be discussed and the use of this in high 

resolution SEM studies of the oxides and hydrated oxides already 

studied in the EXAFS experiments will be presented. These 

observations have proved to be particularly useful in the 

interpretation of the EXAFS results in relation to the process of 

hydration.

5.2. The surface coating technique
High quality SEM images are generally difficult to obtain from



oxidised surfaces because of the problems of electrical charging 

referred to earlier. These can be overcome by decorating the surface 

with a very thin film of highly conducting material. Although a thin 

conducting coating can be produced by evaporation of metal from a 

heated filament such a method has several disadvantages when applied 

to high resolution microscopic studies. The most serious problem is 

the lack of control over the thickness of the coating. In order to 

retain the required high spatial resolution the coating should be as 

thin as possible whilst providing a conducting path to earth. It has 

been found in the course of this and other studies of anodised 

surfaces that a more satisfactory method of coating the surface can be 

obtained by using an ion-beam sputter deposition technique. This was 

first demonstrated by Venables et. al (1979) and later by El-Mashri, 

Forty and Jones (1983). The results described in this Chapter have 

been obtained by using a technique developed in our laboratory using a 

small ion-beam gun (supplied by Ion Tech) which directs a beam of 

platinum vapour from a platinum metal target. The ion gun is highly 

controllable and it has been found possible to deposit films of only a 

few nm thickness in this way. Various materials can be deposited in 

this m a n n e r ,  i n c l u d i n g  c a r b o n ,  gold, g o l d - p a l l a d i u m ,  

platinum-palladium but pure platinum has been found to be entirely 

satisfactory.

5.3. sa* Observations
TVo similar sets of samples of the non-porous oxide films, 

formed anodically in sodium tartrate, sodium oxalate and sodium 

borate, were prepared at 35 volts, using the surface treatment 

procedure described in Chapter 4. These films were 50 nm thick. Oie 

set of specimens was kept in the as-formed condition while the other



Two similar sets of porous oxide samples were prepared in 

phosphoric acid and chromic acid, again using the procedures described 

in Chapter 4. One set of specimens was kept in the as-prepared 

condition, and the other set hydrated by iimersion in hot water at 

85°C for 4 hours.

5.3.1. Hicromorpholoaical observations of the oxide and hydrated oxide 
formed in sodium tartrate solution

An SEM image of the thin non-porous oxide layer formed in sodium 

tartrate electrolyte, using a pyrex glass container (borosilicate 

beaker), is represented by the micrograph in figure 5.3.1a. The 

morphology of the film is characteristically structureless, apart from 

the occurrence of isolated large particles of more strongly electron- 

emitting material. The scanning electron micrograph in Figure 5.3.1b 

shows an enlarged image of such a particle, approximately 1 0 yU m in 

diameter, attached to the oxidized surface. Hie energy dispersive 

X-ray spectra (EDAX) accompanying the micrograph show that, whilst 

there is no detectable silicon in the oxide film itself, there is a 

significant accumulation within the volume of the particle. The A1 

K ct-line is also present in the EDAX spectrum from the particle, which 

probably arises from the oxide film beneath the particle. This is not 

surprising since the penetration depth for the 30 kV electron beam is 

quite large. Consequently the technique is not very surface 

sensitive. This siliceous inpurity is thought to originate from the 

pyrex glass container, silicon being leached from the pyrex during the 

anodizing treatment. The particles are thought to be the result of a 

colloid formation in the neutralised sodium tartrate solution. This 

will be discussed more fully in the next chapiter.

set was hydrated by immersion in hot water at 85°C for 30 minutes.



Figure 5.3.1a.
SEM image of a 50 ran uniform non-porous (barrier-type) oxide formed 
anodically on pure aluminium in sodium tartrate, coated with 3nm of 
platinum.



Figure 5.3.1a.
SEM image of a 50 nm uniform non-porous (barrier-type) oxide formed 
anodically on pure aluminium in sodium tartrate, coated with 3nm of 
platinum.



Figure 5.3.1b:
SEM image and EDAX spectra for an oxide formed in sodium tartrate electrolyte.
Note the occurrence of a silicon peak in the EDAX spectrum of the particle



Figure 5.3.1b:
SEW image and EDAX spectra for an oxide formed in sodium tartrate electrolyte.
Note the occurrence of a silicon peak in the EDAX spectrum of the particle



Figure S.3.1c
SEM image of the same sodium tartrate formed oxide (Fig. 5.3.1a) after 
hydration at 85°C for 30 minutes. The "cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.
Figure 5.3.Id
Schematic representation of the oxy-hydroxide morphology (after Venables 
et al. 1980).



Figure 5.3.1c
SEM image of the same sodium tartrate formed oxide (Fig. 5.3.1a) after 
hydration at 85°C for 30 minutes. The "cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.
Figure 5.3.Id
Schematic representation of the oxy-hydroxide morphology (after Venables 
et al. 1980).
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The morphology of the oxide film changes dramatically as a 

result of hydration, as can be seen from figure 5.3.1c. This shows 

what has been described by Venables et al (1979) as a "Cornflake" 

morphology consisting of discrete irregularly shaped platelets. The 

uniform, non-porous oxide film has been transformed to the hydrated 

phase with this new morphology. This confirms the results obtained 

from the EXAFS measurements described in Chapter 4, that the oxide is 

converted to a boehmite-like structure. It has been suggested 

previously by Venables et al (1980) that the new morphology consists 

of flakes of pseudo-boehmite, which is thought to be amorphous. A 

schematic of the new morphology is given in figure 5.3.Id (after 

Venables et al, 1980). It is noteworthy that the particles of 

siliceous impurity are absent from the hydrated oxide. This is 

consistent with the EXAFS observations for such films which show the 

complete removal of the Si absorption peak after hydration.

5.3.2. Micromorohological observations of the oxide and hvdrated- 
oxide formed in sodium oxalate solution

Figure 5.3.2a shows the SEM image of the thin non-porous oxide 

layer, formed on pure aluminium in sodium oxalate electrolyte. An 

extensive search by scanning electron microscopy and X-ray 

microanalysis, showed that the film is uniform and structureless, 

similar to the film formed in sodium tartrate. Since this type of 

film was formed using an aluminium container for the electrolyte there 

is no significant siliceous impurity. This is already evident from 

the EXAFS spectrum for the oxide formed in sodium oxalate. The 

morphology of this oxide layer again changes significantly during 

immersion in hot water as shown in figure 5.3.2b. The cornflake



Figure 5.3.2a.
SEM image of a 50 nm uniform non-porous type oxide formed anodically on 
pure aluminium in sodium oxalate, coated with 3 nm of platinum.



F ig u re  5 .3 .2 a .
SEM image of a 50 nm uniform non-porous type oxide formed anodically 
pure aluminium in sodium oxalate, coated with 3 nm of platinum.





Figure 5.3.2b
SEM image of the same sodium oxalate-formed oxide (Fig. 5.3.2a) after 
hydration at 85°C for 30 minutes. The "cornflake" structure has been 
revealed by a thin coating (3 run) of platinum.





Figure 5.3.2b
SEM image of the same sodium oxalate-formed oxide (Fig. 5.3.2a) after 
hydration at 85°C for 30 minutes. The "cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.
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morphology occurs on a slightly finer scale than in the case of the 

film formed in sodium tartrate and there is a suggestion that parts of 

the original oxide film have not been fully transformed during 

hydration.

5.3.3. MicrcmorDholoqical observations of the oxide and hydrated-oxide 
formed in sodium borate solution

The morphology of the non-porous oxide layer grown anodically on 

aluminium in neutral sodium borate solution, observed by scanning 

electron microscopy is shown in figure 5.3.3a. The SEM image again 

shows the film to be a uniform oxide layer, covering the entire 

surface. The oxide morphology appears similar to that of the films 

prepared in sodium tartrate and sodium oxalate solutions.

When the specimen is iimersed in hot water for 30 minutes to 

cause hydration, the morphology of the film changes again to the 

characteristic cornflake appearance as can be seen from the SEM image 

shown in figure 5.3.3b. In this case the cornflake structure has an 

even finer scale and appears to be fully developed.

5.3.4. MicroraorEholoaical observations of the oxide and hydrated oxide 
formed in phosphoric acid solution

The oxide film formed on the aluminium substrate by anodizing in 

phosphoric acid electrolyte has interesting micromorphological 

features. The film appears generally porous as shown in figure 5.3.4a. 

This indicates that the oxide consists of a shallow cellular structure 

with a cell diameter of about 40 nm and the cell walls are 

approximately 8 nm thick. H u s  structure is less pronounced than that 

found by Venables at al (1979) which might be the result of different



Figure 5.3.3a. 
SEM image of a 
pure aluminium

50 run uniform non-porous type oxide formed anodically 
in sodium borate, coated with 3 nm of platinum.



Figure 5.3.3a.
SEM image of a 50 ran uniform non-porous type oxide formed anodically 
pure aluminium in sodium borate, coated with 3 ran of platinum.



Figure 5.3.3b.
SEM image of the same sodium borate-formed oxide (Fig. 5.3.3a), after 
hydration at 85°C for 30 minutes. The "cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.



Figure 5.3.3b.
SEM image of the same sodium borate—formed oxide (Fig. 5.3.3a), after 
hydration at 85°C for 30 minutes. The "cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.
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Figure 5.3.4a.
SEM image of 100 run layer anodically formed on pure aluminium in phosphoric 
acid. The cellular, porous structure has been revealed by a thin (3 nm) 
coating of platinum.
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Figure 5.3.4b.
SEM image of the same phosphoric acid-formed oxide (Fig. 5.3»4a) after 
hydration at 85°C for 4 hours. The "cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.



Figure 5.3.4b.
SEM image of the same phosphoric acid-formed oxide (Fig. 5.3r4a) after 
hydration at 85°C for 4 hours. The "cornflake" structure has been 
revealed by a thin coating (3 nm) of platinum.
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anodizing conditions or possibly because their work was done on an 

aluminium alloy rather than pure metal. It is interesting that there 

is no evidence for a silicon impurity in this type of films even 

though the anodising treatment was carried out in a pyrex beaker. As 

will be discussed in Chapter 6 this is to be expected because the 

leaching of the pyrex and the consequent formation of a siliceous 

colloid does not occur in strongly acid electrolyte.

The hydration of this oxide yields the characteristic cornflake 

morphology which is completely different from the original oxide, as 

shown in figure 5.3.4b.

5.3.5. Micromorphological observations of the oxide and hydrated oxide

formed in chromic acid solution
The oxide layer anodically produced on the surface cf a pure 

aluminium substrate in chromic acid electrolyte appears to have a well 

developed morphology, as shown in figure 5.3.5a, which is 

significantly different from that formed in phosphoric acid. The 

morphology consists of hillocks, about 0 . 1 p m  in diameter which have 

been clearly revealed in the morphology by tilting the specimen 40° 

away from normal incidence. It is interesting to note that large 

particles of an impurity phase, approximately 1 - 1 0  nm in diameter are 

attached to many of the hillocks. The EDAX spectra shown in figure 

5.3.5a reveal clearly that these particles contain a high 

concentration of silicon. As in the case of sodium tartrate this 

oxide was formed by anodizing in a pyrex beaker. The siliceous 

impurity is therefore thought to be incorporated in the film during 

the anodizing treatment.











The hydration of this oxide in hot water at 85°C again causes it 

to transform to the cornflake morphology as shown in the SEM image 

(figure 5.3.5b). It is clear from this image that the silicon 

particles originally incorporated in the surface have been removed 

from the oxide during the hydration process. The cornflake morphology 

derived from this oxide is more sharply defined.

6.6. Summary
These results provide important new information about the 

structure of the oxide and the transformation due to hydration of both 

the non-porous and porous aluminium oxide films. The SEM observations 

reported here and elsewhere (Venables et al, 1979; Davis et al, 1982; 

El-Mashri, 1984) show that major morphological changes occur as a 

result of the hydration.

Both uniform films and porous films are converted to a new phase 

which is related to the boehmite structure. There are two possible 

ways in which the hydroxide phase might be formed: (i) by solid state 

transformation or (ii) by dissolution of the original oxide and 

re-precipitation in the form of oxyhydroxide. Both these mechanisms 

will be discussed in detail in the next chapiter in the light of these 

observations and the EXAFS results.



88

References

Davies, G.D., Sun, T.S., Ahearn, J.S., Venables, J.D., (1982), 

J. Material Science, 17, 1807.

El-Mashri, S.M., Forty, A.J., Jones, R.G., (1983), Scanning

Electron Microscopy, II: 569.

El-Mashri, S.M., (1984), Scanning electron microscopy, 1985/11 

in press.

Venables, J.D., McNamara, D.K., Chen, J.M., Sun, T.S., Hopping, 

R.L., (1979), Appl. Surface Sci., 3, 88.

Venables, J.D., McNamara, D.K., Chen, J.M., Ditchek, B.M., 

Morgenthaler, J.I., Sun, T.S., Hopping, R.L., (1980),

Proceedings of the 12th National SAMPE Symposium, Seatle, 

Washington, 1980 (SAMPE, Azusa, California),909.



CHAPTER 6

DISCUSSICI OP STOUCTORE AM) STODCTORAL CPEMT57TRY OF IffERATION OF
THE QX3PB FIUHS

6.1. Introduction

This chapter is intended as a general discussion concerning the 

various results obtained using the technique of total electron yield 

EXAFS and scanning electron microscopy for the different aluminium 

oxides and hydrated oxides. It will also provide a discussion of the 

molecular structure of these amorphous films, and the structural 

chemistry of the hydration of the amorphous oxide.

Finally, the incorporation of various impurities (silicon and 

phosphorus) within the oxide films during the anodizing treatment and 

its influence on the hydration process will be dealt with.

6.2. The molecular structure of amorphous aluminium oxide

6.2.1. General background

The oxide layers formed by anodic polarization of aluminium in 

aqueous electrolytes are known to have a complex microstructure. The 

oxides produced by an anodization treatment in strong acids, such as 

phosphoric, chromic and sulphuric acid, have a p»rous morphology with 

both crystalline and amorphous phases present, as shown in this study 

and elsewhere, (see for example, Thompson and Wood, (1981); El-Mashri 

(1984)). The more uniform films formed in sodium tartrate and sodium 

borate solution are mainly amorphous when thin, but there is an 

increasing degree of crystallinity as the thickness increases.

Structural studies using electron diffraction and X-ray

1
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diffraction techniques are of only limited value for amorphous solids. 

Notwithstanding this, Wilsdorf (1951) found that he could relate the 

diffuse haloes observed in transmission electron diffraction patterns 

with a possible structure composed of an AI4O5 molecular unit in the 

form of an octahedron of O2- ions with Al3+ ions bonded to three 02- 

ions on four of the faces. Later, Kerr (1956) showed that the broad 

haloes in electron diffraction patterns of anodic films formed on 

aluminium could not be immediately related to any of the known 

crystalline phases of alumina, and he supported Wildsdorf's 

explanation.

Oka et al (1979) have attempted to account for the various peaks 

in X-ray scattering patterns in terms of a disordered structure 

derived from Y-alumina. There is support for such a structure from 

X-ray fluorescence spectra (Takahashi et al, 1970) which have been 

interpreted on the basis that the Al3+ ions occur in both tetrahedral 

(4-fold) and octahedral (6-fold) coordination with 02- ions, as in the 

case of crystalline Y-alumina, although the relative amount of Al3+ in 

these two states of coordination differs.

A more direct way of studying the structure has been used by 

El-Mashri et al (1981) . This uses high voltage, high resolution 

electron microscopy to study directly the structure in very thin films 

(< 10 nm thick) prepared in sodium tartrate solution, and stripped 

from the aluminium metal in dilute HgCl2 solution. This showed that, 

whilst the oxide is almost completely of a truly amorphous nature, 

there are small domains of quasi-crystalline structure. This HVREM 

study is discussed in detail in Appendix II.

A more direct understanding of the structure of amorphous 

alumina can be expected from the EXAFS measurements described in
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earlier chapters. In this chapter it will be shown how the 

measurements of Al-O bond lengths can be used to deduce information at 

the molecular level about the state of coordination of the Al3+ ions. 

In principle it should also be possible to deduce this information 

from the EXAFS itself by considering the amplitude of the nearest 

neighbour contribution to the EXAFS. However, this is only possible 

if a reliable model for the structure is available and this is not yet 

the position as regards amorphous alumina.

6.2.2. The relationship between bond length and state of coordination

The most important results to be achieved from the EXAFS 

measurements are those relating to the nearest neighbour Al-O bond 

length. The Fourier transform of the EXAFS function gives interionic 

separations. Where there is a distribution of ionic separations, as 

might be expected for an amorphous material, this gives an average of 

such bond lengths. These average bond lengths can be used to give 

information about the average state of coordination. In this study 

where it is intended to develop the relationship between the measured 

bond lengths and the coordination number for a series of crystalline 

and amorphous aluminium oxides, an approach similar to that first 

adopted by Norman et al (1981), and later by El-Mashri, Jones and 

Forty (1983a) is used. For solids with predominantly ionic bonding 

the crystal potential, according to Pauling (1960), can be expressed 

as:

e = -Ae2R-1 + B e2R_n ( 6 -D
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where A is the Madelung constant, e is the electronic charge, B is a 

repulsive coefficient, R is the nearest neighbour interionic distance 

and n is the Born exponent.

If we consider the crystal at absolute zero, the equilibrium 

condition requires e to be a minimum. Differentiation of equation

6.1, to find the condition for a minimum, de/dR = 0, results in

-Ae2(-1)R“ 2 + Be2(-n)R~n" 1 = 0

which leads to
Ro

■ _ 1_  
Bn n-i 
A (6.2)

For similar structures the Madelung constant (A) changes very little, 

Pauling (1960), whilst the repulsive coefficient (B) is proportional 

to coordination number, N; hence equation 6.2, may be written as:

]_
n - 1 (6.3)

For the two structures x and y, the ratio of interionic distances is 

therefore given by

Rxo n - 1
(6.4)

Since a -alumina was used as a model compound to calculate the phase in 

the EXAFS function of the various oxides, because its structure is 

well known and has approximately the same chemical composition as the 

amorphous solids, it can again be used here to obtain the coordination 

number for Al3+ in the amorphous oxide using equation 6.4, taking the
y

interionic bond length for »-alumina to be R = 0.1915 nm, and N = 6  

for reference (All Al3+ ions are octahedrally coordinated in 

a -alumina).
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In this study the Born exponent (n) has been chosen to take two 

values; n=9, according to the analysis used by Norman et al (1981), 

and n=8 which could be considered to be more appropriate for the 

electron configuration in AI2O3 (Dekker, 1971).

It is now possible to obtain a simple relation between the 

measured bond length and the corresponding coordination number. Since 

the EXAFS for an amorphous oxide gives an average bond length, the 

coordination number which is deduced in this way is an average 

representation of the structure. If it is assumed that the amorphous 

structure is simply a bimodal distribution of octahedral [AlOg] and 

tetrahedral [AIO4] bonding, as reported by Oka et al (1979), and 

Norman et al (1981), it is possible to derive the fractions, a and b, 

of these two coordination states from the average coordination number:

N* = 6a + 4b (6.5)

Using equations 6.4 and 6.5, a simple relation between the measured 

bond length of a particular oxide and the percentages of the 

octahedral and tetrahedral bonding can be derived, as well as the 

average nearest neighbour coordination. A graphical means of doing 

this directly from the measured bond length, based on equations 6.4 

and 6.5 is shown in figure 6.2.1. (a and b). As can be seen in this 

figure, the two values of the exponent used (n=9 and n=8) give quite 

close results for the coordination state; the values diverge more 

strongly at shorter bond length.

Because of the uncertainty concerning the appropriate value for 

the Born exponent (n=8 or 9), the coordination state deduced from 

figures 6.2 . 1  (a and b) is taken as the average value of the two 

curves. In addition to this systematic error there is an uncertainty 

in the coordination state arising from the error in determining the 

bond length from the EXAFS.



Figure 6.2.1

1. 72 1.76 I. 80 1. 84 1. 88 1.92
AL-----0 BOND LENGTH (Â)

Figure 6.2.1a. The average number of oxygen neighbours of Al versus the 
average Al-0 bondlength for aluminium oxide, assuming ionic bonding.

Figure 6.2.1b. The expected relationship between the distributions of 
octahedral (A104) and tetrahedral (A106) bond configuration and average 
bondlength for aluminium oxide, again assuming ionic bonding.
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Using this approach for the uniform oxide layers formed on 

aluminium in sodium tartrate and sodium borate electrolytes, where the 

EXAFS results give an Al-0 bond length of 0.190 + 0.0025 nm, it is 

found that about 90% of the aluminium ions are in octahedral sites and 

only about 10 % are in tetrahedral sites with an uncertainty of ±8%. 

From figure 6.2.1(a) it follows that the average oxygen coordination 

number for aluminium 5.66 ± 0.40. The film formed in oxalic acid, 

having an Al-0 bond length of 0.185 ±  0.0025 nm appears to have about 

30 + 8% of the aluminium ions in octahedral sites and about 70 ±  8% in 

tetrahedral sites, while the average coordination nuirber is 4.63 ±  

0.40.

The aluminium oxide formed in chromic acid having an Al-O bond 

length of 0.1825 ±  0.0025 nm, appears to have most of the aluminium in 

tetrahedrally bonded sites and only a small fraction in octahedral 

sites, with a ratio of 6-fold to 4-fold coordination in the range of 

(10/90) with an uncertainty of + 8%. The average oxygen coordination 

number for aluminium in this type of oxide is 4.10 ±  0.40. As the 

Al-0 bond length decreases the average coordination number also 

decreases, which means that more of the Al3+ ions are tetrahedrally 

bonded. In the extreme case of the oxide formed in phosphoric acid, 

where the measured bond length is 0.180 + 0.0025 nm, all the Al^+ are 

tetrahedrally coordinated, or even in a state of lower coordination.

There is clearly a wide variation in coordination in amorphous 

alumina, reflecting the variation of molecular structure when 

different methods of preparation are used. The average coordination 

number, and the ratio of AIO6/AIO4 for the various oxides are 

summarized in Table 6.2.
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TABLE 6.2

Electrolyte Al-O (nm) Calculated Oxygen 

neighbours to A1

[A106]/[A104]

Sodium Tartrate 0.190 ±  0.0025 5.66 ±  0.40 [90/10] ±  8

Sodium Borate 0.190 ±  0.0025 5.66 ±  0.40 [90/10] ±  8

Sodium Oxalate 0.185 ±  0.0025 4.63 ±  0.40 [30/70] ±  8

Chromic Acid 0.1825 ±  0.0025 4.10 + 0.40 [10/90] ±  8

Phosphoric Acid 0.180 ±  0.0025 4,00 + 0.40 [0/ 10 0 ] ±  8



6.2.3. CoiTKirison with other determinations of coordination state

In this section a comparison is made between the results 

obtained in this work and the results derived from other structural 

studies using electron diffraction, X-ray diffraction and X-ray 

fluorescence spectroscopy techniques.

Saitoh, Ikegaya and Takahashi (1977), using a radial 

distribution function, derived from X-ray diffraction for the oxides 

formed in oxalic acid and sulphuric acid, reported that the 

coordination nuirber of oxygen with aluminium ions is 5.9 for anodic 

oxide formed in oxalic acid, which corresponds to a AIO5/AIO4 ratio of 

95:5, while the coordination number in the case of oxide formed in 

sulphuric acid is 40:60. Takahashi et al (1971), measured the Al-O 

bond length in the oxide film prepared anodically in oxalic acid by 

means of a radial distribution analysis of X-ray diffraction patterns, 

and found the bond length to be 0.193 nm. It can be concluded from 

figure 6.2.1. and the Al-O separation of a-alumina, that this bond 

length corresponds to a 100% octahedral coordination. The only 

explanation for this is that the oxide film may have become partially 

hydrated to form boehmite with a consequent increase in the average 

Al-O bondlength.

Jones (1974) quotes a A 1 0 g/A10 4  ratio of 8:92 from the 

transmission electron diffraction pattern, using a radial distribution 

function, for a stripped oxide film formed in sodium borate at pH 7.0 

on pure aluminium. Oka et al (1979) reported a AIO5/AIO4 ratio of 

40:60 and 30:70, derived from X-ray fluorescence spectroscopy, for 

films formed in sulphuric acid using a.c. and d.c. polarizing voltages 

respectively. Hanada et al (1982), using X-ray fluorescence 

spectroscopy, find an average coordination number of about 4.8 from an 

amorphous alumina film formed by r.f. sputter depositioning. This 

value corresponds to a A10 g/AlC>4 ratio of 40:60. Popova (1979), using 

transmission electron diffraction found a bond length of 0.182nm



for an aluminium oxide film formed on aluminium by anodic oxidation in 

borate solution, which corresponds to completely tetrahedral 

coordination. Takahashi et al (1971), using radial distribution 

analysis from X-ray diffraction patterns, found bond lengths of 0.188 

nm and 0.193 nm for oxide films formed in pure and impure sulphuric 

acid respectively. These bond length values correspond to AIO5/AIO4 

ratios of 95%:5% and 100%:0% respectively according to figure 6.2.2. 

Norman et al (1981) reported a bond length of 0.185 nm from 

surface-EXAFS measurements for an anodized aluminium sample of unknown 

origin. This corresponds to a ratio of octahedral to tetrahedral 

sites of about 30:70.

The summary of the results in this study shows that a 

generalized model for the structure of amorphous alumina might consist 

of a mixture of [AlOg] and [AIO4 ] coordination with different 

proportions depending on the preparation method and on the electrolyte 

used? this ratio also depends on the purity of the aluminium substrate 

and purity of electrolyte, as well as the incorporation of electrolyte 

anions which can affect the structure. For example, the incorporation 

of an element of higher valency such as phosphorus or chromium should 

change the bonding in the oxide and therefore lead to a reduction of 

[AIO4] centres.

The significance of such a conclusion concerning the molecular 

composition of the amorphous aluminas clearly depends on the accuracy 

with which the average Al-0 bond length is determined. However the 

quality of the EXAFS spectra obtained in our experiments is good, as 

shown in Figure 3.5.2 giving an expectation of a high degree of 

accuracy in measurement of bond lengths (+ 0.0025 nm) . These results



have also been compared with the results obtained using the technique 

of TEM EXELFS (extended electron energy loss fine structure) for the 

oxygen K-edge at 535 eV. EXELFS spectra for the thin amorphous anodic 

alumina films formed in sodium tartrate have been obtained by 

Bourdillon, El-Mashri and Forty (1984). The O-Al separation obtained 

by such measurements is 0.189 nm compared with 0.190 nm obtained by A1 

K-edge EXAFS. There is, therefore, excellent agreement between the 

results obtained for the same material by these two techniques, which 

gives a good confirmation of the reliability of EXAFS as a means of 

measuring bond lengths. The TEM EXELFS study is presented in Appendix 

I.

6.2.4 A possible model for the local structure of amorphous alumina

Using all the information that has been obtained from the 

electron-yield EXAFS on the structure of amorphous alumina reported in 

this work and elsewhere (Norman et al (1981); El-Mashri, Jones and 

Forty (1983); Forty and El-Mashri (1985) to be published), a model for 

the local structure of amorphous aluminium oxide is constructed to be 

consistent with this information. The model is based on Wilsdorf's 

conclusion (1951) from electron diffraction that the structural unit 

in amorphous AI2O3 is the AI4O6 octahedron shown in figure 6.2.2a. A 

crystalline analogue for the amorphous structure can be composed from 

the individual octahedral units, arranged to give the mixture of 

tetrahedral (AIO4 ) and octahedral (A106 ) bonding and average 

coordination number found from the EXAFS results. This can be 

disordered to give the amorphous state by incorporating atomic defects 

and bond distortions in the regular structure.

Figure 6.2.2 illustrates the method of constructing the 

crystalline analogue. Figure 6.2.2a shows the AI4O 5 dimer
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suggested by Wilsdorf (1951). The large circles represent 02- ions 

and the smaller circles are Al3+ ions (the relative sizes of the 02- 

ions and Al3+ ions are such that the 02- ions are in close contact but 

they are separated in the diagram for clarity of presentation; a 

three-dimensional representation in several different perspectives 

using a more realistic ratio of 02- and Al3+ ionic radii is given in 

figure 6.2.3. Figure 6.2.2b, shows a sheet of ALjOg octahedra with 

three-fold sharing of Al-0 edges of individual octahedra. The 

three-dimensional structure is then composed by stacking the 

two-dimensional sheets on top of each other as shown in figure 6.2 .2c. 

The resulting structure is a distorted hexagonal close-packing 

sequence of layers of 02- ions interpenetrated by another hexagonal 

sequence of Al3+ ion layers. In the usual notation for close-packed 

structure, the arrangement can be represented by a sequence

(aBby)(aBby) ---

where the Roman letters represent close-packed O2- ion layers and 

Greek letters are the smaller Al3+ ions which occupy interstitial 

positions between 02- layers. It can readily be seen from figure 

6.2.2c that Al3+ ions in the B-positions are in tetrahedral (4-fold 

coordination) sites, between a and b O2- layers, whilst those in 

y -positions occupy octahedral (6-fold coordination) sites.

An inspection of figures 6.2.2b and c shows that the sheets of 

the octahedra do not have the correct chemical composition for AI2O3 . 

Furthermore, figure 6.2.4b shows a projection of a 2-dimensional sheet 

o f  A I 4 O 6 d i m e r s  d e f i n i n g  a u n i t  c e l l  o f  t h e



F i g . 6 . 2 . 2 Ttie proposed model for amorphous alumina :-
(a) the AI4O6 diner suggested by Wilsdorf 
(1951). Ttie large circles represent 02- ions 
and smaller circles are Al3+ ions (the relative 
sizes of the 02- ions and Al3+ ions are such 
that the O2- ions are in close contact but they 
are separated in the diagram for clarity of 
presentation);

(b) part of a three-dimensional sheet of edge­
sharing AI4O6 octahedra;

(c) the three-dimensional structure composed of 
stacked sheets of octahedra. The Roman letters 
indicate the close packing of layers of O2- ions 
and the Greek letters indicate Al3+ in tetra­
hedral (6) and octahedral (y) interstitial sites. 
Note the occurrence of four 02- ions bonded to 
each S-type Al3+ ion and six O2- ions around 
each y-type Al3+ ion.





Rotation angles: X=45°, Y=45°, 2=45°

Rotation angles: X=90°, Y=9(f, Z=Cf

Figure 6.2.3. Shows a three dimensional representation in several different 
perspectives using a more realistic ratio of 0  ̂ and Al^+ ionic radii for the 
proposed model for amorphous alumina. On the left-hand side the Al^O^ dimer 
suggested by Wilsdorf (1951) and on the right-hand side a "two unit cells on 
top of each other", composed of parts of three edge-sharing octahedra; note 
the omission of two-thirds of the Al^+ ions from "octahedral" sites to achieve 
stoichiometry.



crystalline analogue denoted by the dotted lines, composed of parts of 

three edge-sharing octahedra. This unit cell shows equal numbers of 

Al3+ in four-fold and six-fold coordination. Ihe stoichiometric 

balance can be restored simply by omitting two-thirdsof those Al3+ in 

the octahedral sites. However this leads to a ratio of AIO4/AIO6 in 

the new structure equal to 3:1. Other ratiosare obtained by removing 

Al3+ ions from tetrahedral sites as well as from octahedral sites. 

For example, by omitting 5/9 of those Al3+ in octahedral sites and 1/9 

of those in tetrahedral sites, as shown in figure 6.2.4c, a ratio of 

2:1 is obtained. The measured ratio of AIO4/AIO6 = 7:3 which is 

suggested by some of the EXAFS measurements (see table 6.2) requires 

the omission of 9/15 and 1/15 of the Al3+ in octahedral and 

tetrahedral sites, respectively, as shown in figure 6.2.4d. It should 

be noted that in all cases these defective structures (figure 

6.2.4a,b,c,d) have the stoichiometric composition of AI2O3 .

This model can be adapted to give the appropriate stoichiometric 

composition and the measured ratio of AIO4/AIO6 for any of the 

amorphous aluminas investigated by omitting the right amount of Al3+ 

from the octahedral and tetrahedral sites. Support for the proposed 

sheet model has been found by studying the structure of amorphous 

alumina by high resolution transmission electron microscopy (El-Mashri 

et al, 1981) . As already described, very thin amorphous films 

prepared on pure aluminium by anodizing in neutral sodium tartrate 

solution were found to contain, small domains, of order 100 K in 

diameter, where the normally amorphous structure is partially ordered 

into layers a few A apart. The measured spacing of these "lattice



Basal phase projections of the proposed sheet 
structure. Large circles represent O2- ions 
and small circles are Al3+ iong> ^  solid lines 
represent Al-0 bonds. Al3+ ion vacancies are 
introduced to achieve the stoichiometric composition 
of AI2O3

(a) the Wilsdorf octahedron Al^g;
(b) a "unit cell", denoted by the dotted lines, 
composed of parts of three edge-sharing octahedra; 
note the omission of two-thirds of the Al3+ ions 
from "octhaedra" sites to achieve stoichiometry;

(c) a sheet of three "unit cells" with the omission 
of 5/9 of the Al3+ from "octhaedral" sites and 1/9 
of Al3+ from "tetrahedral" sites to achieve 
stoichiometry.

(d) a sheet of five "unit cells" with the omission of 
9/15 of the Al3+ ions from "octahedral" sites and 
1/15 from "tetrahedral" sites; this structure is 
stoichiometric and the tetrahedral sites are occupied 
in the ratio 7:3.
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fringes" ranges from 1.20 A to 3.71 1?. Some of these, for example 

1.38 A and 1.98 A, appear also in larger, more extensively crystalline 

regions of the films and correspond to the conversion of the amorphous 

oxide to y-alumina. Others, for example, 3.71 K, 3.03 K, 2.62 K, 2.07 

A and 1.90 K, do not correspond to any known crystalline oxide but do 

occur as spacing of the Al3+ and C?~ planes in this model. They are 

interpreted as domains in which long range ordering of the sheet 

structure has been established.

Finally, an important feature of this model should be pointed 

out; that is, the systematic ocuurence of tetrahedrally bonded Al^+ 

ions in basal plane layers, accompanied by "open" channels along 

particular directions as shown in the three-dimensional representation 

(Figures 6.2.2). This is interesting because it suggests that ion 

transport, essential for the growth of the oxide film, can proceed at 

a significant rate even at room temperature. It might account for the 

interesting observation that, whereas the hydration of amorphous 

alumina appears to occur readily even at moderate temperatures, there 

is little or no hydration of the crystalline aluminas. It is possible 

to envisage a preferential reaction of water with the low coordination 

(AIO4 ) groups in this proposed structure. This conclusion will be 

used in later sections in order to understand the hydration process.

6.3. The incorporation of incurities in the oxide films

In practice, it is known that the oxide films, formed by anodic 

oxidation, appear to have some contamination caused by electrolyte 

anions being preferentially incorporated on the oxide/electrolyte 

interface. In this study, two types of impurity contamination were 

observed in the oxide, namely silicon and phosphorus and these are 

discussed below.
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6.3.1. The incorporation of silicon inpnrity in the oxide during the 

anodic oxidation process

Coring this study, an interesting phenomenon has been observed, 

namely the occurrence of large irregularly shaped particles which are 

strongly obsorbing in the TEM image of the amorphous alumina films. 

It is interesting to note that in some of the EXAFS spectra there 

appeared a second characteristic absorption edge (see for example, 

figure 3.5.2), which corresponds to the silicon K-edge. The silicon 

concentration in the alumina film can be estimated using the relative 

heights of the A1 and Si K-edges, since the K-edge photoelectron 

cross-sections of aluminium and silicon are similar (Storm and Israel, 

1970). The relative heights indicate an Al:Si ratio of about 10:1. 

The increase of the silicon K-edge absorption with film thickness 

evident in figure 3.6.1 indicates that the silicon impurity is 

contained within the body of the oxide film and is not simply a 

deposit on its surface.

Using scanning electron microscopy and EDAX analysis, it has 

been shown that the irregularly shaped particles are rich in silicon, 

whilst the surrounding oxide is silicon-free. This is illustrated by 

figure 5.3.1b.

It is known from an earlier study by Vedder and Vermilyea (1969) 

that an aluminium surface can be contaminated by a siliceous deposit 

during the anodic oxidation process. This silicon arises as a result 

of a leaching action on a pyrex container by the electrolyte, 

particularly neutralised electrolytes such as sodium tartrate. Pyrex 

is a borosilicate glass which contains silica (SiC>2) , boric acid 

(B2O3 ), soda (Na20) and alumina (AI2O3 ) with ratios of 80:14:4:2 

respectively.



The EXAFS and SEM results provide a direct confirmation of the 

presence of the siliceous impurity and, furthermore, show that the 

impurity is accommodated as large particles (1 - 1 0  pm in diameter), 

These particles are likely to be produced by a reaction between silica 

(SiC>2) and water, following the chemical processes reviewed by H e r  

(1963):
Initially the silica dissolves to form monosilicic acid Si(OH) 4 

Si02 (solid) + 2H2O -----►Si (OH) 4

Hie monosilicic acid then polymerises to form products ranging from 

polysilicic acid gel to colloidal silica sols, giving irregularly 

shaped particles varying in size from 0.01 to 1.0 nm in diameter. In 

the pH range 7-10, the particles adsorb hydroxyl ions on their surface 
and become negatively charged:

Si02 + 40H~-----►Si04-4  + 2H2O
The amount of charge depends on the salt concentration and controls 

the aggregation of the particles into sols, and, due to the charge, 

migration to the anode will occur, followed by deposition in the oxide 

surface.

In order to avoid this contamination by silicon a non-glass 

container should be used for the anodising treatment. This precaution 

was observed in preparing the anodic films after the initial 

experiments using sodium tartrate electrolyte. It was found that by 

using an aluminium container oxides could be obtained almost 

silicon-free.

6.3.2. The incorporation of phosphorus impurity in the oxide film
From the literature, it is known that oxide films produced 

anodically in phosphoric acid electrolyte appear to have a large



amount of phosphorus inpurity. The amount of impurity depends on the 

anodization conditions (see for example Hunter et al (1959)). Plumb 

(1958), who examined thin films formed by anodic oxidation in a 

phosphate electrolyte, reported that the oxide layer contained P2O3 

which was distributed uniformly through the film. Konno et al (1980) 

investigated the composition of similar thin anodic oxide films, again 

formed on aluminium in phosphate solution. Using X-ray photoelectron 

spectroscopy (XPS) they reported that the films contained phosphorus 

internally as deep as 75 nm.

In a more recent study, Davis et al (1982) used XPS to map the 

chemical elements in alumina films. XPS gives the chemical 

composition of the oxide film within the sampling depth of this 

technique, which in general is only a small number of atomic layers 

below the surface. The surface of the freshly formed oxide on an 

aluminium-copper alloy, using a phosphoric acid electrolyte, was shown 

to have a composition of AIPO4 . In the present study, the EXAFS 

spectrum (figure 6.3.1) of the oxide film prepared in 10%wt phosphoric 

acid appears to have a second peak at 2149 eV, correspending to the 

phosphorus K-absorphion edge. According to the relative heights of 

the absorption edges in the EXAFS spectrum, the P:A1 ratio is about 

1:10. Taking into account the thickness of the film and the large 

sampling depth of the electron yield EXAFS [Z. 50 nm), this ratio 

suggests that considerably more than a surface monolayer of AIPO4 is 

present. This finding is supported by the fact that, when the film is 

hydrated, it appears from the EXAFS spectrum that almost the same 

amount of phosphorus is retained (this will be discussed in the next 

section). Our results show, therefore, that the phosphorus impurity 

is distributed more extensively throughout the oxide, in agreement
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Figure 6.3.1. (a) The electron yield-EXAFS spectrum for the oxide film 
prepared in phosphoric acid appears to have a second peak at 2149 eV, 
corresponding to the phosphorus K-absorption edge;
(b) The electron yield-EXAFS spectrum for the same oxide film formed in 
phosphoric acid after hydration for 4 hours at 85°C.
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with the observation reported by Konno et al (1980), and this supports 

the idea that the phosphorus impurity might modify the internal 

structure.

6.4. The structure of hydrated alumina films

It is known that when amorphous aluminium oxide films are 

innersed in hot water they become hydrated. The occurrence of a 

hydration reaction is indicated by gas evolution arising from 

hydrolysis of the underlying metal through disruptions in the oxide 

films, Venables et al (1980).

In this present study, the hydration has been performed by 

immersing the various anodised specimens in hot water at 85°C, as 

described in earlier Chapters. The results of this hydration process 

on both types of oxide films (uniform layer and porous films) have 

been observed by scanning electron microscopy. As reported in Chapter 

5, it has been shown that hydration clearly occurs, resulting in an 

appearance of the "cornflake" morphology which is similar to that 

found by Venables et al (1980). The EXAFS spectrum and its Fourier 

transform showed a definite change of molecular structure for all the 

hydrated oxide films, producing a hydrated phase with two distinct 

values of nearest neighbour Al-O separation centred around 0.200 + 

0.0025 nm and 0.280 + 0.0025 nm, as listed in table 4.4. These 

results are consistent with observations reported in the literature, 

namely that hydration of amorphous alumina films leads to the 

formation of an oxy-hydroxide, which is usually described as 

pseudo-boehmite, referring to the fact that it is amorphous or 

quasi-crystalline in structure (see for example, Papee et al, 1958). 

Crystalline boehmite has a structure of a double layer of



aluminium-centred octahedra which are usually linked by O-H-O bonding 

to other double layers, Sasvari and Zalai (1957). The distortion of 

the octahedra gives two distinct Al-0 bond lengths of 0.190 nm and 

0.250 run. Allowing for the uncertainty in the determination of the 

bond lengths from the EXAFS data (0.200 ±  0.0025 nm and 0.280 ±  0.0025 

nm) (see table 4.4) the present results seem to give a reasonably good 

identification of the hydrated oxides as being pseudo-boehmite.

6.5. The structural mechanism of the hydration reaction
The new boehmite-like phase formed by the hydration of amorphous 

alumina is mechanically weaker than the amorphous material. Hydration 

therefore leads to a degradation of epoxy-resin/metal bonding, for 

example. A better understanding of the structural mechanism by which 

the hydration of amorphous aluminium oxide takes place is therefore 

highly desirable.

There are two possible ways in which the hydration reaction might 

occur: either by a solid state transformation of the oxide phase or by 

dissolution of the oxide and re-precipitation of the oxy-hydroxide 

phase. The results from the present work on the tartrate-formed films 

which are contaminated with siliceous particles provide some evidence 

for the dissolution and re-precipitation reaction. The significant 

change in the X-ray absorption spectrum after immersion in water at 

85°C for 30 minutes, (see, for example, fig. 6.3.1 where the spectrum 

of the hydrated film is compared with that for the original 

un-hydrated oxide) together with the SEM observation of the usual 

cornflake morphology, indicates that the film is transformed to 

boehmite by hydration. The absence of the siliceous particles in the 

SEM images of the hydrated film (figure 5.6.1c) and also the absence
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Figure 6.5.1 (a) The electron yield EXAFS spectrum for a 50 nm
sodium tartrate-formed oxide on pure aluminium, 
appears to have a second peak at 1840 eV, corres­
ponding to the silicon K-absorption edge;

(b) the electron yield EXAFS spectrum for the same 
film after hydration for 15 minutes at 85°C.
Noting the disappearance of the silicon K-absorption 
edge.
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of the silicon K absorption edge in the EXAFS spectrum (figure 6.5.1b) 

suggest that the particles are either dissolved or have become 

detacted during the hydration of the oxide. This was found to be the 

case also for similar siliceous particles incorporated in the oxide 

formed when aluminium was anodised in chromic acid electrolyte using 

the pyrex beaker. From such observations it can be concluded that 

during the hydration process the oxide is dissolved and the 

oxy-hydroxide is reprecipitated in the form of boehmite, rather than 

being formed by a process involving a solid-state transformation of 

the oxide; the latter process would not readily explain the 

dissolution or detachment of the siliceous particles.

Another possible way for the hydration reaction to occur, 

suggested by Hart (1954) , is that the boehmite is formed by the 

migration of Al3+ ions from the aluminium substrate through the oxide 

film to react with water. This interpretation was rejected by Spooner 

(1956), who showed that boiling water converts an oxide film to 

boehmite even after it has been stripped from the aluminium. This has 

been confirmed by El-Mashri et al (1981) (see appendix II), in high 

resolution electron microscopic studies of very thin stripped oxide 

films which showed that the character of the thin stripped film was 

changed by hydration in water at 85°C. At atomic resolution it was 

found that the small quasi-crystalline domains present in the 

non-hydrated films become greatly increased in size after exposure to 

water for only a few minutes.

The presence of a phosphorus peak in the EXAFS spectrum of the 

oxide formed in phosphoric acid even after the film was hydrated 

provides further evidence against Hart's suggestion. The hydrated 

films have the typical cornflake structure (Figure 5.5.4b) which has a



thickness in the region of 0.1 pm. The excitation depth for electron 

emission is much smaller than this thickness CL 50 nm). Consequently, 

if the oxy- hydroxide formation was due to migration of aluminium ions 

through the existing oxide film to form this typical thicker cornflake 

structure, as claimed by Hart, phosphorus would not be detected in the 

EXAFS measurements.

6.6 Suggestions for further work.

Although the conclusions concerning the molecular structure of 

the anodic aluminium oxides described in this thesis are useful they 

are strongly dependent on the relationship between measured bondlength 

and coordination number. The EXAFS measurements of bondlength are 

subjQ^ct to significant errors, both random and systematic, and this 

uncertainty is reflected in the conclusions drawn from them about 

coordination of the Al3+ and o2- ions. Clearly, attempts must be made 

to refine these measurements so as to increase the reliability of such 

conclusions about the structure of the oxide. The fractions of 

octahedral (AlOg) and tetrahedral (AIO4) coordination in a given oxide 

are strongly dependent on the average coordination number which, in 

turn, is dependent on the measured average bondlength. It is highly 

desirable to have a more direct probe for the state of coordination.

One possibility for such an improvement in work of this kind is 

to use the newly developed techniques of Magic-Angle Spinning (MAS) 

NMR. This gives very high resolution spectra for nuclei of certain 

atoms with characteristic peaks whose positions depend closely on the 

electric field due to surrounding atoms. An initial study of
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amorphous alumina films formed in sulphuric acid electrolyte using 

this technique by Dupree and Forty (1985 - to be published) has 

revealed octahedral (AlOg) and tetrahedral (AIO4) centres and also a 

new type of centre (AIO5). This 5 co-ordinated centre appears to be 

related to the incorporation of (SO4) a n i o n s  in the oxide.

It is suggested that hn application of MAS NMR together with 

EXAFS studies would lead to a much greater understanding of the 

structure of alumina films, and particularly the influence of anion 

and other inpurities on the structure.

These more refined structural studies should be accompanied by a 

detailed investigation of the effects of electrolyte, pH and 

temperature on the structure of anodic oxides. As a further 

development there should be an attempt to correlate a systematic study 

of the kinetics of film growth and the structure of the oxide. The 

great importance of hydration on the properties of the oxide justifies 

a more extensive study of the structural factors involved. A 

correlated investigation of the kinetics of hydration and the 

influence of impurities, and deliberate additions of inhibitors on 

the hydration process would be extremely valuable.
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APPENDIX III
A HMHEMftTICftL MODEL FOR THE SBOTHWHY KT.RQITON ESCAPE PROCESS

A simple theory of the secondary electron escape process from 

the surface of a solid applicable to the photon energy band 1500-2500 

eV, which gives the maximum kinetic energy of the electron cascade has 

been described by Jones and Woodruff, (1982). The total electron 

yield EXAFS spectrum arising from a thin oxide layer on a metal 

substrate has components from the two phases with proportions 

depending on the oxide film thickness.

The effective sampling depth of the total electron yield 

technique can be obtained from a mathematical model of the electron 

escape process. Consider a slab of thickness dz, a distance z below 

the surface, figure 1. A soft X-ray photon of intensity IQ is 

incident at an angle <t> to the surface. The photon travels a distance 

1 , through the slab dz. By assuming that: (i) the photon is not 

attenuated by passing through z or dz and (ii) the number of 

ionization events within dz is proportional to the path length of the 

photon £ , figure 2.

Figure 2
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then the electron flux generated within the slab dz is proportional to 

the photon intensity I0, the absorption coefficient (y), and the path 

length 1. With *• = dz/sin <t> , the total electron flux over the full 2t 

is proportional to ID p dz/sin <t> , and the total electron flux 

travelling upwards (i.e. in a direction out of the surface) is 

proportional to I0 v* dz/2sin 4>. Now, if we consider a narrow core of 

emission at an angle e , of width de, as shown in figure 3, the number 

of electrons emitted at an angle 6 is proportional to the solid angle 

defined by cB.

solid angle (dn)^ sinede

The path length of the electrons out the surface is £' at angle e , 

where t' = z/cose.

If the electrons are attenuated exponentially with a mean free
y

path X, the electron intensity is reduced by exp(-f/X), this is equal 

to exp(-z/Xcos0), where X is the mean free path, so the total electron 

yield at an angle 6 to the surface normal in an angular range d 0 is 

given by:

(Iou/2sin<tOexpOz/Xcose)sinedzde
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Putting u 1 = p/sinij, u being the X-ray absorption coefficient and <j> 

the angle of photon incidence, we obtain:

(IQp '/2)exp(-z/Xcos0)sinededZ

If we now integrate over a film thickness d (z = 0 to z = d) and over 

the whole angular range (6=0 to e =*/2), the total electron yield for a 

thin film (A) is obtained

where El(x) = Ei(x) = (exp(- %  ) dv and Ei(x) is the exponential

integral, calculated from standard handbook of mathematical tables 

(reference 3).

as shown in figure 4. The contribution to the total electron yield 

from A, Sft, has already been calculated, and we expect an additional 

contribution from the layer B. This contribution, Sg, is the 

emission due to the infinite layer B, after it has been attenuated by 

layer A. So the signal due to infinite layer B (by itself) is:

^  "

S1G = -

I o MBX
~1

i 1 £  (i^l l  = const

Jl-fi-^-j | jexp(-d/Xcos0)sin6de
-» <-

constant

Consider fl-̂ J = exp(-d/X)

attenuation due to layer A

2-,
-  4 (t i ) E1 (l) ^  SA and S ’
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Hie relative contributions from the film (A) and the substrate (B) is 

given by

< XA
^ B

1-f(d/XA)
f(d/XA)

where X^ and XB are an estimate of the mean free path of an electron 
in the surface oxide layer (A) and bulk aluminium layer (B). At high 

energies it has been found that the inelastic scattering mean free 

path in the surface of aluminium oxide is about twice that in the 

substrate metal (Norman and Woodruff, 1978):

XA = 2XB

The inelastic scattering mean free path in aluminium metal is X B = 65 
A (see Jones and Woodruff, 1982).

The signal due to the surface oxide layer (Spj relative to the 

total signal detected from the layers (Ŝ ) and the substrate (SB) is:
-1

SB
1 + mBXB 1

(TTafcr>-'

where u& and Mb are the appropriate X-ray absorption coefficients for

the different densities of absorber (A1 density = 2.702 g cm-3 and

AI2O3 = 2.20 g cm-3). The ratio of the absorption coefficients for

the same spectral range around the A1 K-edge are related to the

density of the aluminium atoms in the oxide and the metal substrateM'A120 3 f A l 20 3
and therefore M p/^ b = — TTr-—  = L".Z—  = 0.82. The proportional ofA1 f  A1
the contribution from the oxide film in the total electron yield 

(Sft/(S f t + S g ), a c c o r d i n g  t o  t h i s  s i m p l ea c c o r d i n g this
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mathematical model, is shown in figure 3.6.3. A comparison of the 

results from this model and the experimental data shows a good 

agreement, and confirms the conclusion that a reliable sampling of the 

oxide structure can be obtained for films with a thickness greater 

than 500 A.
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