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Abstract

Source Location Privacy (SLP) is becoming important for wireless sensor net-

works where the source of messages is kept hidden from an attacker. In this paper,

we conjecture that similar traffic perturbation to altering the routing protocol

can be achieved at the link layer through assignment of time slots to nodes.

This paper presents a multi-objective optimisation problem where SLP, schedule

latency and final attacker distance are criteria. We employ genetic algorithms

to generate Pareto-optimal schedules using two fitness criteria, examining the

Pareto efficiency of selecting either and confirming the efficiency by performing

simulations which show a near optimal capture ratio.

Keywords: Genetic algorithm, Wireless Sensor Networks, TDMA, Data

aggregation schedule, Source Location Privacy

1. Introduction

Wireless sensor networks (WSNs) have enabled novel classes of applications

such as monitoring and tracking. Asset monitoring is a task performed by some

WSNs, where some node(s) detects the presence of an asset and transmits data

about the asset back through the network to a base station node known as the
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sink. Even though sensitive data may be encrypted, the process of sending the

message back to the sink, called convergecast, implicitly reveals the location of

such an asset, as a potential attacker can trace back over the network traffic to

the source of traffic, to ultimately capture the asset. Source location privacy

(SLP) is the property of keeping the source’s location within the network secret

so as to prevent the capture of the asset.

The idea motivating this area of research was originally developed in [1, 2]

as the panda hunter game. The panda hunter game is based upon the premise

of using WSNs to monitor the population of endangered animals (in this case

pandas) over a large area of their natural habitat, such as in [3, 4]. One of the

typical problems facing endangered animals are poachers. While the data being

transmitted through the network is encrypted (providing content-based privacy),

the context in which the data is broadcast must also be protected. Context

can be defined as a collection of attributes derived from the environmental and

temporal situation in which the data was broadcast. This means that typical

content-based privacy solutions (such as encryption) are not sufficient to solve

context-based privacy issues. Hence, there is a need for context-specific privacy

solutions.

The majority of existing work on SLP is focused on providing a solution at

the routing layer of the network stack. In these works, the primary objective is

to perturb the original (convergecast) routing protocol such that the resulting

protocol (i) still routes data to the sink and (ii) the attacker cannot capture

the source while backtracking on the network traffic. Based on the notion that

traffic can be engineered to provide for SLP, we focus on achieving a similar

objective while focusing at the link layer. Using the link layer as opposed to the

routing layer has the advantage of typically sending less control messages [5] and

as such reducing network energy consumption. Specifically, in WSNs, TDMA-
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based MAC protocols are often used in cases where timeliness is required. A

TDMA-based MAC protocol works by splitting the timeline into slots and then

allocating slots to nodes in such a way that message transmissions do not result

in collision. Thus, it becomes possible to impose a given traffic pattern on the

network based on slot allocation, providing a basis for traffic engineering at

the link layer level. Specifically, each valid slot assignment for the network will

provide a different pattern of traffic during operation. The principle then is that

the slot assignment can be performed in such a way as to provide SLP within

a class of convergecast protocol known as data aggregation scheduling (DAS).

DAS works by constructing an aggregation tree rooted at the sink and the slot

allocated to a parent is strictly greater than the slot of any of its children. Thus,

a parent node will propagate aggregated information after collecting messages

from all of its children.

Developing an optimal and valid TDMA schedule is known to be NP-

complete [6]. However, we propose to add SLP as another optimization criterion

in the design of optimal TDMA schedules. Our aim is thus to generate SLP-aware

slot assignments utilising an evolutionary method in order to produce schedules

that are valid for the network and also provide SLP.

We thus make the following contributions:

1. We map the SLP problem onto a GA problem.

2. We present suitable crossover, mutation and selection operators to expedite

the generation of optimised schedules.

3. We use the notion of Pareto optimality to compare the various generated

schedules and we use two different fitness functions for analysis.

4. We perform simulations in both ideal and realistic environments, showing

metrics about the generated solutions such as near optimal capture ratio

and high packet delivery ratio.
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5. We examine those solutions that lie on the Pareto frontier and determine

the optimal solution of those generated for a specific network configuration.

The remainder of the paper is organised into eight sections. Section 2 explores

other works performed in this area. Section 3 provides models used during this

work. Section 4 outlines the specification for DAS. The genetic algorithm

and operators are detailed in Section 5. Section 6 defines Pareto efficiency

and explains its utility. Section 7 explains the experiments that shall be run

and the results are analysed in Section 8. Finally, Section 9 summarises our

contributions.

2. Related Work

2.1. Source Location Privacy

Phantom routing was first introduced in [1, 2], alongside the the panda hunter

game. Phantom routing is a two stage protocol, firstly transmitting the message

from the source along a directed random walk to a phantom node and secondly

using the routing protocol to continue the transmission to the sink. Two variants

were proposed for altering the routing protocol in stage two; PRS [2] used

flooding and PSRS [1] used single-path routing. There has been much work on

providing SLP since [7].

Since the introduction of the phantom routing concept, more work has been

created to improve the first stage of the protocol (i.e. the directed random

walk). Two solutions that attempt to prevent the random walk from turning

back on itself are GROW [8], which stores previously visited nodes in a bloom

filter, and [9], which uses location angles. While some phantom routing work

has focused on improving the selection of nodes that take part in the random

walk [10], others have used delay to prevent the attacker making positive moves

towards a source [11].
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Several issues with Phantom Routing have been investigated. One such issue

is the performance degradation associated with the use of multiple sources [12].

Another issue is that traffic-analysis of phantom routes that collide with the

network boundary can allow prediction of the source’s location [13].

An alternative technique utilises fake sources to misdirect the attacker. A

fake source sends encrypted and padded messages that appear identical to those

produced by a real source. The idea is to attract the attacker to one of the fake

sources rather than the real one. A fake source technique was proposed in [1]

but was deemed to have a poor performance and said that it was not worth

investigating this class of solutions further. This was contested by [14], which

implemented an alternative technique that provides high levels of SLP. This

class of solution was further expanded in [15, 16] to make it applicable to a wider

variety of areas and to determine parameters online. A drawback to utilising

fake sources is that they often demand considerably higher energy usage than

routing-based techniques.

Solutions exist that combine the use of both phantom routing and fake

sources. [17] generates a routing tree where leaf nodes would be fake sources

that send messages up the tree. A further example is fog routing [18] where

the network is split into fogs, which creates routing loops that trap the attacker

indefinitely. Within the fogs, fake sources are also used. PEM [19] generates

fake sources that perform a walk about during execution.

The solutions presented thus far focused on the local (distributed) eavesdrop-

per [20] where, at any point in time, the attacker only gathers information about

its current neighbourhood and then moves to gain further information. A global

attacker is a stronger attacker with a view of the entire sensor network. The

attacker could either operate their own sensor network deployed over the target

network [21] or use long range radios to eavesdrop on all traffic. Two solutions
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that provide perfect privacy against global attackers are Periodic Collection [22],

where every node broadcasts periodically, and ProbRate/FitProbRate [23], where

nodes broadcast periodically but the rate at which they do so is based on an

exponential distribution.

Cross-layer techniques are those that employ more than one layer of the

network stack to provide SLP. Typically, only the routing layer is used, as is

the case for phantom routing, where a cross-layer solution would additionally

employ another layer, typically the MAC/link layer. Cross-layer techniques are

far less common than the others. In [24] beacon frames at the MAC layer are

modified to carry data to aid in moving messages away from the source, in a

similar fashion to phantom routing. After the message has been propagated far

enough, a standard routing method is used to deliver the message to the sink. A

second method was proposed whereby the message would first be routed to a

pivot node on the first round of beaconing, sending the message further away

on the second round before finally flooding to the sink. Another technique [5]

employs SLP for TDMA DAS networks, where slot allocations are altered at the

MAC protocol level in order to attract the attacker along a diversionary route.

Our solution can be considered a hybrid between the techniques that provide

privacy against a global attacker and local attacker. The solution will have all

nodes periodically broadcasting, but the pattern of broadcasts is done in such a

way that a route is created for a local attacker to follow.

2.2. Genetic Algorithms

Genetic algorithms have been used for a wide variety of purposes in the sensor

networks field. They have been used to find optimal parameters for routing

protocols, such as LEACH [25], where it was used to determine weightings for

combining multiple heuristics to determine which node became the next cluster

head. The goal of this was to increase network lifetime by balancing energy loss
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between nodes more effectively. In [26], they went so far as to produce a new

routing protocol created by a GA that is comparable to LEACH in order to

use the least energy possible for those networks that harvest energy from the

environment rather than batteries.

Genetic algorithms have also been used in the deployment of WSNs. The

maximum coverage sensor deployment problem (MCSDP) is the problem of

finding the minimum number of nodes required to cover a certain area [27].

Additionally, further work has been performed such that the deployment is

augmented to find a solution that maximises the network lifetime by reducing

energy requirements [28].

The allocation of TDMA time slots using genetic algorithm-related methods

has previously been investigated [6, 29, 30] and finding an optimal TDMA

schedule has been shown to be NP-complete [6]. So generating a TDMA schedule

is a suitable problem for obtaining a near optimal result with GAs [31]. As the

problem exists in NP, a benefit is that there exists a polynomial-time method of

checking a solution’s validity which is necessary as an efficient method is required

for use as a fitness function.

A downside of GAs is that they typically run offline making it unsuitable

for WSNs that determine a route online in response to changing conditions.

Techniques such as network reprogramming can be used to update the TDMA

schedule, but tend to be expensive in terms of energy. While some online GA

implementations exist, due to a sensor node’s limited resources, it is not feasible

to employ these methods on this type of hardware.
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3. Models

3.1. Network Model

A wireless sensor node (or node) is a device with a unique identifier that has

limited computational capabilities. It has a wireless network interface that

enables it to communicate directly with other nodes within its communication

range. The set of nodes with which a given node n can directly communicate

with is called the neighbours of n. We assume that all nodes in the network

have the same communication range. There exists a distinguished node in the

network called a sink, which is responsible for collecting data and which acts as

a link between the WSN and the external world. Other nodes sense the presence

of an asset and then route the data via normal messages along a computed route

to the sink. We assume that any node can be a data source and only a single

node is a data source at any time. We assume that the network is time-triggered,

i.e., all node will periodically send a message to the sink, irrespective of whether

it has sensed an asset.

We assume that nodes send 〈Normal〉 messages which are encrypted. The

source node includes its ID in the encrypted message so that the sink can infer

an asset’s location; as we assume the network administrators will record where

they put nodes. We do not assume that WSN nodes have access to GPS due to

the resulting increase in energy cost.

3.2. Attacker Model

The authors of [20] presented a taxonomy attacker strength for WSNs and show

that it could be factored along two dimensions, namely presence and actions.

Presence captures the network coverage of the attacker, while actions capture the

attacks the attacker can launch. For example, presence could be local, distributed

or global, while actions could be eavesdropping or reprogramming among others.
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In this taxonomy, the attacker we assume is a (mobile) distributed eavesdropper

based on the patient adversary, introduced in [1]. Such an attacker is reactive in

nature and executes the following steps:

1. Start: The attacker initially starts at the sink.

2. Update: When the attacker is co-located at a node n and receives (i.e.,

overhears) a message that it has not been received before1, from a neighbour

node m, the attacker will move to m. Thus, in a normal setting, the attacker

is geared to moving closer to the source as he only follows unique messages.

3. End: Once the source has been found, the attacker will no longer move.

Most often, the attacker will execute the Update step. Repeating this action for

a number of times may enable the attacker to capture the asset as the attacker

performs a traceback on the traffic flow to the asset. We assume that the attacker

has the capability to perfectly detect which direction a message arrived from,

that it has the same radio range as the nodes in the network, and also has a

large amount of memory to keep track of information such as messages that have

been heard. This is commensurate with the attacker model used in [5].

3.3. Safety Period Model

The overall objective of any WSN-based SLP solution is to ensure that the asset

(at a specific location) is never captured through the WSN and the attacker is

instead required to perform an exhaustive search. However, two issues arise: (i)

if the asset is not mobile, then the attacker can take as long as it requires to

perform an exhaustive search of the network, which makes providing SLP in this

case irrelevant. (ii) On the other hand, if the asset is mobile, then performing

an exhaustive search of the network is unsuitable as the attacker may approach

1Previous work [1] has assumed that the attacker has the ability to identify whether a
message has been previously responded to and we also make this assumption
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a given location after some considerable time only to find out that the asset has

moved. If the asset is mobile, which we assume, but spends a long time in a

single location, then we do not consider the asset to be mobile. Thus, the SLP

problem can only be considered when it is time-bounded, i.e, when the asset has

to be captured within a given time window.

This notion of time bound has been termed as safety period in the literature.

The aim of SLP techniques is to either to maximise the safety period, i.e., the

higher the time to capture, the higher the SLP level provided [1]. Or to reduce

capture within this time window.

3.4. Routing Protocol

In WSNs, a routing protocol is required to transfer data from a source node to

the sink node. The routing protocol is considered to be a set of paths that end

at the sink. A message will travel along at least one of the paths to the sink. A

message may follow the same path as previous messages to the sink or it may

follow a different path. The routing protocol we assume in this paper is flooding

where every message will follow all the possible paths to the sink.

4. DAS Problem Specification

Data aggregation scheduling (DAS) is a type of convergecast protocol where each

parent node receives information from all of its children before broadcasting an

aggregated message. DAS is defined as a series of conditions [5], as follows:

1. A node can only be allocated one time slot in which to broadcast.

2. All nodes, excluding the sink, will be allocated at least one time slot. With

condition 1, this means that each node will receive exactly one time slot

to broadcast in.
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3. Whenever a node broadcasts a message, at least one of its neighbours

closer to the sink will transmit in a later slot. One of the neighbour nodes

that broadcast later will be this node’s parent.

4. The schedule will be collision-free. This requires that nodes within the

same collision group (i.e. two-hop neighbourhood) must have unique time

slots.

5. Genetic Algorithm

5.1. Algorithm

The algorithm selected for this work is the generic and standard genetic algorithm

using non-standard and optimised genetic operators for the problem domain.

One reason for this selection is so that we can build a genetic algorithm to our

own required specification and optimise for the SLP problem. Another reason

is that [32] finds that using a scalar combination of fitness scores speeds up

computation over using a multi-objective algorithm, at the disadvantage of being

unable to discover concave Pareto fronts. We do not expect the Pareto front to

be concave in this instance and as such do not suffer from this disadvantage.

However, we also examine the usage of a more advanced, true multi-objective

GA, NSGA-II [33], as a comparison.

5.2. Genome Representation

For this problem, the representation must contain a graph G = (V,E), where

E is the set of edges between nodes in V who are within communication range.

Each node in V is also labelled with a slot value, the number of hops from the

sink, a parent node and a set of child nodes.

The reason that this representation differs from that used by [6] is that it

is incapable of portraying the additional constraints required by DAS, so a full

graph representation must be used instead.
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5.3. Genetic Operators

As described in [6], providing operators with a context of the problem domain

and forcing the creation of valid solutions after each operator’s function can aid

in providing better solutions using less generations at a performance cost at each

step. The operators described below each produce genomes that are valid DAS

solutions.

5.3.1. Initialisation

The initialisation function is required to create an individual to be included in

the initial population.

Algorithm 1 performs the network initialisation. Within the algorithm, the

first stage is to initialise all attributes of each node with sensible defaults. The

parameter maxSlots is used to provide a number of pseudo slots for the genetic

algorithm to assign during operation. Providing a number too large will result

in more slot values being different (thus more slots used in the final solution)

where providing too few will result in the genetic algorithm struggling to find

a solution. In the final solutions, all pseudo slot values are normalised to their

minimum range. The next stage creates a DAS parent-child tree from the nodes,

changing slot values to ensure the genome conforms to the DAS specification.

The function, SetParent, sets a node’s parent and also adds the node to the

parent’s children set.

5.3.2. Crossover

The crossover operator is used to combine two parent individuals together to

create two children which incorporate features from both parents.

The crossover operation is contained within three functions in Algorithm 2:

Crossover, OneCrossover and CheckCrossover. Crossover is a wrapper

function that simply selects the node which will be the head of the crossover
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Algorithm 1 Algorithm for initialising a genome

. g: genome, sink: sink node, maxSlots: number of pseudo slots
1: function Initialise(g, sink,maxSlots)

. First initialise all nodes with some values
2: for all node ∈ g do
3: if node = sink then node.slot := maxSlots
4: else node.slot := RandomInteger(1,maxSlots− 1)

5: node.hop := ShortestPathLength(g, node, sink)
6: node.parent := ⊥
7: node.children := ∅
8: repeat := 1
9: while repeat do

10: repeat := 0
. Assign a parent to each node without one

11: for all node ∈ {n | n ∈ g \ {sink} ∧ n.parent = ⊥} do
12: slotChanged := 0
13: parentChoice := GetPotentialParents(g, node)
14: SetParent(g, node,Choose(parentChoice))
15: if node.slot ≥ node.parent.slot then
16: node.slot := node.parent.slot− 1
17: slotChanged := 1

. Resolve collisions
18: nhs := GetTwoHopNeighbourhoodSlots(g, node)
19: while node.slot ∈ nhs do
20: node.slot := node.slot− 1
21: slotChanged := 1

22: if slotChanged then
23: for all c ∈ node.children do
24: SetParent(g, node,⊥)
25: repeat := 1

26: return g

and returns the product of performing crossover for each child. OneCrossover

gets the subnetwork that is being introduced to the child and overwrites those

elements in the new child genome. CheckCrossover is where any issues

pertaining to the validity of DAS get resolved, by starting at the crossover node

and recursing through all descendents.

Figure 1 shows an example execution of this method. Starting with a father

and mother genome, the algorithm begins by selecting the crossover node, which

in this case is at the coordinates (4, 4). Then, the DAS parent-child tree structure

from the father is transplanted into a clone of the mother solution (the daughter)

and the same occurs for the mother to the father (creating the son). The slot

values and the DAS structure can then be altered to ensure DAS validity remains
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Algorithm 2 Crossover two genomes

. father: father genome, mother: mother genome, sink: sink node
1: function Crossover(father,mother, sink)
2: son, daughter := father, mother
3: crossoverNode := Choose(father \ {sink})
4: son := OneCrossover(son,mother, crossoverNode)
5: daughter := OneCrossover(daughter, father, crossoverNode)
6: return son, daughter

7: function OneCrossover(g1, g2, crossoverNode)
8: subnetwork := GetDescendents(g2, crossoverNode)
9: for all node ∈ subnetwork do

10: g1[node].slot := g2[node].slot
11: if g2[node].parent ∈ subnetwork then
12: SetParent(g1, node, g2[node].parent)
13: else . This occurs with the crossoverNode
14: SetParent(g1, node,⊥)

15: CheckCrossover(g1, crossoverNode)
16: return g1

17: function CheckCrossover(g, node)
18: if g[node].parent = ⊥ then
19: parentChoice := GetPotentialParents(genome, node)
20: SetParent(g, node,Choose(parentChoice))

21: if g[node].slot > g[node].parent.slot then
22: g[node].slot := g[node].parent.slot

23: nhs := GetTwoHopNeighbourhoodSlots(g, node)
24: while g[node].slot ∈ nhs do
25: g[node].slot := g[node].slot− 1

26: for all child ∈ g[node].children do
27: CheckCrossover(g, child)

in the child genomes.

5.3.3. Mutation

The mutation operator is an attempt to further introduce diversity into the

population to prevent stagnation.

Algorithm 3 begins by defining a range in which the new slot value should

be chosen. The maxDiff parameter denotes the maximum range in which a

slot value can be altered. Should the node have no children, the slot value is

reduced by one, which repeats should there be a slot collision in the two-hop

neighbourhood. The reason for this is to prevent a large variety of different slot

values at the edges of the network. Otherwise, the low end of the slot range is
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14 55 56 25 7 9 27

38 57 80 81 8 10 28

37 75 77 82 17 70 29

73 76 78 85 84 71 30

69 43 75 4 83 79 18

68 42 74 3 45 52 51

67 5 6 2 1 50 15

(a) Father genome

33 60 61 39 36 35 32

34 63 62 66 47 46 16

31 64 65 72 48 43 41

13 14 27 85 49 44 42

11 12 26 61 60 59 58

22 23 24 59 43 42 54

19 20 21 58 41 40 53

(b) Mother genome

14 55 56 25 7 9 27

38 57 80 81 8 10 28

37 75 77 82 17 70 29

73 76 78 85 84 71 30

69 43 75 4 60 59 58

68 42 74 3 43 42 54

67 5 6 2 41 40 53

(c) Son genome

33 60 61 39 36 35 32

34 63 62 66 47 46 16

31 64 65 72 48 43 41

13 14 27 85 49 44 42

11 12 26 61 60 59 18

22 23 24 59 45 52 51

19 20 21 58 41 50 15

(d) Daughter genome

Figure 1: An example of performing crossover at node (4, 4)

refined to be within the acceptable range that the children of the node set (i.e.

a parent node cannot have a lower slot value than its children). A new slot is

then attempted to be randomly selected (avoiding slot collisions) subject to the

parameter attempts which limits the number of times this is tried before exiting

with failure.

Figure 2 shows an example of the algorithm in operation. For the example,

the mutation rate is set to 10%, which is too high for normal operation but
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Algorithm 3 Randomly alter slot values within DAS constraints

. g: genome, node: node to mutate

. maxDiff : the maximum range of values to select new slot from

. attempts: the number of attempts to make at mutating the slot
1: function Mutate(g, node,maxDiff, attempts)
2: highest, lowest := node.parent.slot, highest−maxDiff
3: nhs := GetTwoHopNeighbourhoodSlots(g, node)
4: if node.children = ∅ then
5: node.slot := highest− 1
6: while node.slot ∈ nhs do
7: node.slot := node.slot− 1

8: else
9: for all child ∈ node.children do

10: if child.slot > lowest then
11: lowest := child.slot
12: while attempts > 0 do . If attempts reaches zero, mutation failed
13: newSlot := RandomInteger(lowest + 1, highest− 1)
14: if newSlot /∈ neighbourhoodSlots then
15: node.slot := newSlot
16: break
17: else
18: attempts := attempts− 1

useful to see the effect of the operator. All cases of the algorithm can be seen,

such as nodes with no children being reduced minimally, nodes with children

that have a range of slots to select from and finally nodes that have children but

failed to change slot.

5.3.4. Selection

The selection operator is used to select solutions from the new population to be

entered into the next generation.

In this work we shall use standard tournament selection where the number of

solutions in each tournament is 2. Algorithm 4 shows the tournament selection

method for a variable value of the number of solutions per tournament, t.

5.4. Fitness Functions

The fitness function is used to assign a numerical worth to each individual in

the population based upon its perceived quality. This score is then used by

the selection operator in order to choose the best individuals for crossover and

mutation.
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18 19 20 45 44 34 33

13 15 42 47 46 35 28

14 16 17 48 31 30 29

12 26 27 53 52 8 7

11 25 24 51 50 6 4

10 23 40 41 49 43 3

9 22 39 38 37 36 2

(a) Before mutation

18 19 20 45 44 34 33

13 15 42 47 46 35 28

14 16 21 48 31 30 29

12 26 27 53 52 32 7

11 25 22 51 50 5 4

10 23 40 41 49 43 3

9 22 39 38 37 36 1

(b) After mutation

Figure 2: An example mutation using Algorithm 3

Algorithm 4 Select an individual from the population using tournament selec-
tion

. pop: population, t: number of genomes to compete in each tournament
1: function Select(pop, t)
2: best := pop[RandomInteger(0, pop.size)]
3: if t = 1 then return best
4: for i := 2→ t do
5: next := pop[RandomInteger(0, pop.size)]
6: if Fitness(next) > Fitness(best) then best := next

7: return best

In this work we shall examine results from two different fitness functions.

Algorithm 5 shows the first fitness function, which simply provides a value in the

range [0, 1] depending on the total number of slots used to generate the solution,

where 0 would be given if each node had its own time slot (the worst case) and 1

if each node had the same slot, which is not possible due to the DAS constraints.

Therefore, the best achievable score for this function is unknown. Additionally,

the function returns 0 if the attacker path intersects the source, as the solution

does not provide SLP.

The second function (Algorithm 6) performs the same as the first with the

additional optimisation of making the attacker move as far away from the source
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Algorithm 5 Slot usage fitness

. g: genome, src: source node
1: function SlotUsageFitness(g, src)
2: if src ∈ AttackerPath(g) then return 0

3: uniqueSlots := {node.slot | node ∈ g}
4: return (|g| − |uniqueSlots|) / |g|

Algorithm 6 Distance from source and slot usage fitness

. g: genome, source: source node

. w: the weighting for attacker paths end points distance to the source
1: function DistAndSlotUsageFitness(g, src, w)
2: if src ∈ AttackerPath(g) then return 0

3: endNode := AttackerPathEnd(g)
4: dist := ShortestPathLength(g, src, endNode)
5: diameter := NetworkDiameter(g)
6: distScore := w × (dist / diameter)
7: slotScore := (1− w)× SlotUsageFitness(g, src)
8: return distScore + slotScore

as possible. With the first function, the attacker path can be liable to take the

attacker closer to the source. This is undesirable, as in the case of link failures

and node crashes along the path that we wish the attacker to take, the attacker

could leave the predicted path and travel to the source, thus capturing the asset.

In this work we shall only be examining the occurrence of link failures due to

noise on the wireless channel. This function also provides a value in the range

[0, 1], with 1 being scored if the path leads the attacker as far away as allowed

by the network. By using the parameter w we provide a weighting to the further

distance aspect over the regular total slot reduction. In this work, w = 0.25,

meaning that slot usage is weighted at 75% and the distance is weighted 25% of

the total fitness score returned.

The reason for comparing two fitness functions is that the second provides a

better solution in an unreliable network, but it is unknown how this will affect

the slot usage reduction process.
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6. Pareto Efficiency

After running the genetic algorithm, multiple competing solutions will be gener-

ated. Since we are concerned with maximising the level of source location privacy

while minimising the number of slots and maximising the path distance between

a source and the end point of an attacker, this search process is a multi-objective

optimisation process. As such, no universal definition of an optimum can be

given. One solution for an appropriate definition of optimality in multi-objective

optimization was given by Vilfredo Pareto in 1896. This definition expresses

that a solution is Pareto-optimal if there exists no other feasible solution which

would decrease some objective without causing a simultaneous increase in at

least one other objective [34].

More formally, consider a set of n solutions si . . . sn, with a solution si

being a vector of m attributes, i.e., si = 〈a1i . . . ami 〉, a
j
i ∈ R. A solution si

is Pareto-optimal if there is no other feasible solution sj where j 6= i such

that, for a given set of m utility functions U1 . . . Um, 〈U1(a1j), . . . , Um(amj )〉 ≥

〈U1(a1i ), . . . , Um(ami )〉 with at least one attribute akj such that Uk(akj ) > Uk(aki ).

On the other hand, if such a solution sj exists, then we say that sj is a Pareto

improvement on si.

Given a set of feasible solutions (and a way of valuing them), the Pareto

frontier is the set of choices that are Pareto efficient. Formally, given a solution

space S, the Pareto frontier of S, denoted by P (S) is P (S) = {s ∈ S|∀s′ ∈

S s.t s′ is not a Pareto improvement on s}.

Using Pareto dominance allows a comparison of many solutions, where one

can easily analyse the tradeoffs between selecting any one solution compared

with another.
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7. Experimental Setup

In this section we describe the environment and methods used to generate the

results in Section 8. This genetic algorithm2 was implemented using Python,

the Pyevolve genetic algorithm framework [35], and the graphing library Net-

workX [36]. We also attempted to utilise an implementation of the multi-objective

genetic algorithm NSGA-II [33].

7.1. Network Configuration

To test the genetic algorithm and subsequently use these solutions in simulations,

the simplest configuration for the network is an 11 × 11 square grid of nodes

(121 nodes). The separation distance between each node is such that nodes can

communicate vertically and horizontally but not diagonally. The source will be

placed in the top-left corner while the sink will be placed in the centre.

A total of 100 solutions per fitness function (for a total of 200) will be created

by the genetic algorithm. Each of these will have a unique slot assignment

compared with the others, providing a different operating scenario between each

solution. To gather results about the efficacy and efficiency of the solutions,

approximately 600 runs of each solution will be performed in the simulator each

for two different communication models, providing a total of 240, 000 simulation

runs.

7.2. Genetic Algorithm Parameters

The main parameters for a genetic algorithm are elitism, crossover rate, mutation

rate, population size and total generations.

Elitism is the number of copies of the best solution from the previous genera-

tion that should be entered into the next generation unaltered (i.e. no crossover

2The source code for the genetic algorithm can be found at https://bitbucket.org/jack-

kirton/slp-tdma-das-genetic
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or mutation). A value of 1 was chosen for this parameter as taking a single

copy of the best solution from the previous generation to the next allows for

the genetic algorithm terminating, ensuring that at least one solution that is

supposedly good is available to present at the end of the algorithm.

The values of crossover rate, mutation rate and population size are set

to the Pyevolve defaults of 90%, 2% and 80 respectively. The values chosen

for parameters are sensible defaults. Finding the most optimal parameter

configuration is left as an exercise for future work. Total generations for this

work is capped at 200, which was shown through testing to be a reasonable

compromise between time taken and quality of result. For results that optimise

each fitness score further, more generations can be used at the cost of time.

7.3. Simulation & Algorithm Parameters

The WSN simulation environment that is used in this work is TOSSIM, TinyOS’s

(version 2.1.2) own discrete event network simulator3. Two communication mod-

els are compared, the first being an ideal model which sets a fixed signal receive

strength when in range, making it almost 100% reliable. The second, named

low-asymmetry, is generated using the LinkLayerModel provided with TinyOS

and the parameters shown in Table 1. Low-asymmetry gives the simulation a

small probability of packet losses and links becoming unidirectional, more akin

to a real-world application. The noise model used is the first 2500 lines of the

casino-lab noise file provided with TinyOS.

Most parameters for the algorithm are provided by the generated genetic

algorithm solution (i.e. number of slots). Two that are not provided are the

dissemination and slot period lengths. These values were set to 0.5 seconds and

0.1 seconds respectively. During the simulation, no data will be transmitted

3The source code for the implementation using TinyOS is available at https://bitbucket.

org/jack-kirton/slp-algorithms-tinyos
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Table 1: Low-Asymmetry LinkLayerModel Parameters

Name Value

PATH LOSS EXPONENT 4.7

SHADOWING STD DEV 3.2

D0 1.0

PL D0 55.4

NOISE FLOOR −105

S [0.9 −0.7; −0.7 1.2]

WHITE GAUSSIAN NOISE 4

in the dissemination period as all nodes are aware of the data they require

at compile time. Time synchronisation would normally be used in this period

but this is not modelled by the simulator. Given the number of slots and the

dissemination/slot periods we can calculate the rate at which the source sends

messages (the source period) as we wish for the source to send a single message

per TDMA period.

A safety period (the length of time we believe we can protect the source from

capture) is also provided. We state that the time taken to reach the source in a

protectionless TDMA DAS environment is periodLength×(∆ (Sink − Source) + 1),

where ∆ (Sink − Source) is the number of hops between the sink and source,

as this is the time it would take for the attacker to travel one of the shortest

paths to the source. Therefore, we selected an upper bound of periodLength×

(∆ (Sink − Source) + 1) × 2. The reasoning behind this value is that if the

attacker has not reached the source within a factor of 2x that of the shortest

path then it is trapped somewhere in the network, unable to reach the source.

7.4. Experiments

We will examine four metrics from the TOSSIM simulations: messages sent,

capture ratio, message receive ratio and latency. A comparison will be made

between combinations of fitness function and communication model for each

solution produced by the GA.
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We expect the number messages sent to be similar across all solutions. There

will likely exist variation between solutions depending on the total number of

slots utilised, as this implicitly defines the length of a TDMA period. Better slot

utilisation will result in a quicker TDMA period, resulting in a higher message

send rate.

Capture ratio should be 0% for both fitness functions with the ideal commu-

nication model. This is because there should be no radio interference causing

the attacker to leave the predicted path. However, with the low-asymmetry

communication model, because of the noise and varying link qualities, both

fitness functions should show varying capture ratios. Between the two fitness

functions, it is expected that the slot usage fitness function will have more

solutions of a higher capture ratio than that of slot usage and path distance.

Message received ratio is the percentage of normal messages sent by the

source that were received by the sink. The message received ratio should be

close to 100% for the ideal communication model due to perfect link quality,

whereas low-asymmetry will provide slightly less.

Latency is the amount of time taken for normal messages sent by the source

to reach the sink. We expect that the messages will travel from source to sink in a

maximum time of the TDMA period (excluding the dissemination period). This

is due to the design of DAS, where messages should be able to travel from any

point in the network to the sink in a single period due to the path of increasing

slot assignments.

Those solutions selected from the Pareto frontier will be examined in further

detail, finally determining the optimal solution for the configuration.
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8. Results

8.1. Genetic Algorithm

Figure 3 shows two example solutions produced by the GA, each using a different

fitness function. Figure 3a shows a solution using the standard slot usage fitness

function and Figure 3b shows a solution using slot usage and optimising the

attacker path end’s distance from the source.

In both examples contained in Figure 3, blue circles are normal nodes with

the source node being labelled as a green square in the top left and the sink node

being placed in the centre as a black octagon. The yellow hexagons are the nodes

that the GA has predicted the attacker will follow through the network, known

as path nodes. The reason that the attacker will follow this path is that each

next node in the path has the lowest slot assignment in the surrounding one-hop

neighbourhood, which means the attacker will hear from that node before any

others. The connecting lines between the nodes show the DAS parent-child

hierarchy, which is a tree structure rooted at the sink node. As previously stated,

to ensure DAS-compliance, each node (bar the sink node) must have a parent

that has a higher slot than itself and the connecting lines show that DAS has

been preserved.

What isn’t shown clearly by the examples is that the GA produces attacker

paths that cause the attacker to oscillate between the end two nodes of the path

indefinitely. This is because each of the two nodes at the end of the path has

the lowest slot in the one-hop neighbourhood surrounding the attacker.

Examining the attacker paths visually, the difference between the two fitness

functions can clearly be seen. As expected, including an optimisation to have

the attacker travel as far away from the source as possible has caused the genetic

algorithm to produce solutions that do just that, forcing the attacker into the

opposite corner of the network (or thereabouts).
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Figure 3: Example solutions produced by the GA using different fitness functions

Figure 4a shows the cost of the additional fitness constraint, where slot is the

original fitness function and dist is the function with the distance constraint. The

plot shows generations against the number of slots used by the best candidate of

that generation. The plot was produced using averages from 100 runs of each

fitness function. This plot shows that there is an increase in the number of

slots required to support the additional distance optimisation. However, the

difference in total slots used is still a small value, although this would rise on

more connected networks with larger numbers of nodes.

8.2. Pareto Efficiency

Figure 4b shows a plot of solutions comparing the slot usage and path distance

fitness functions. Each point on the plot shows solutions at various generations.

The Pareto frontier can be seen as the maximal boundary over all of the solutions.

The plot shows that solutions can easily maximise the path distance fitness

function, which is intentional as the path distance can only be as large as

the network allows, thus gaining the maximum score. The slot usage fitness

function does not allow for a maximum value to be obtained, causing an apparent
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Figure 4: Comparison of fitness functions

maximum of approximately 0.8, on which the Pareto frontier lies. Along the top

of the plot, the solutions have maximised the path distance score but slot fitness

increases as the solution is further to the right. This means every solution on

the path-dist = 1.0 line that has a solution to its right is completely dominated

by this solution. This means that along this line, the only solution that should

be selected is the farthest to the right. With this solution and the others on the

plotted line make up the pareto frontier. The two most promising solutions are

slot43 and dist67.

8.3. Simulations

The graphs in Figure 5 plots metrics from the output of the TOSSIM simulations,

with each column being an output from the GA.

Firstly, Figure 5a shows a plot of messages sent per node per second. Using

the rate of message sending rather than total messages sent is a better metric

as simulations may not last the full safety period if the attacker happens to

capture the source. The rate messages are sent appears similar across fitness
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functions and identical when changing communication model. This indicates

that the differences are caused by slot utilisation, as predicted.

Figure 5b plots the capture ratio of solutions. The plot shows that using

the ideal communication model, capture ratio is very low. With low-asymmetry,

the capture ratio dramatically increases for both fitness functions, however the

additional path distance constraint provides an improvement in both the number

of high capture ratio solutions and the level of capture ratio on these solutions.

Low-asymmetry causes these issues as the attacker leaves the path that the GA

predicts it will follow, due to failing links as well as additional links that the GA

did not expect (diagonal communication). This follows the predicted outcome.

Figure 5c plots the message receive ratio of messages sent from the source

that are received by the sink. The ideal communication model performs with

almost 100% receive ratio while low-asymmetry has a slightly lower rate due to

the probability of link failures.

Finally, Figure 5d plots the latency of normal messages sent by the source

to be received at the sink. The predicted outcome for all solutions is that the

latency is bounded by a single TDMA period, excluding dissemination period.

However, a handful of solutions of the low-asymmetry communication model do

not abide by this prediction, appearing to approximately double the length of

time taken for the message to travel from the source to the sink. A potential

reason for this is that the normal messages are generated by the application

layer, starting the latency timing, at a point after the transmission slot has

ended before the start of the next period. This could lead to a near doubled

latency for the message.

The two solutions making up the Pareto frontier are compared in Figure 6,

using the low-asymmetry communication model. Messages sent and normal

message latency differ between the two solutions due to the total number of slots
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Figure 5: Simulation results for 100 outputs from the GA for different GA fitness functions
and communication models

used in the network. dist67 is better in this regard, using less slots results in

messages traversing from the source to the sink faster than the slot43 solution.

The receive ratio is very consistent between the two solutions meaning either is a

good choice. Finally, capture ratio, while still very small values for both solutions,

shows a slight improvement of dist67 over slot43. With these metrics, we can

say that the optimal solution for this configuration of all generated solutions is

dist67 as solutions not creating the Pareto frontier where eliminated followed

by a metric analysis of those that remained.

8.4. Comparison with NSGA-II

In addition to utilising the Pyevolve framework, early tests were performed

using an implementation of NSGA-II [33]. NSGA-II is a multi-objective genetic

algorithm that is capable of producing a Pareto frontier by analysing solution
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Figure 6: Simulation results for the two solutions that lie on the Pareto frontier

domination over one another. The group of solutions that dominate all others

but not each other is the Pareto frontier.

Unfortunately, as Figure 7 shows, the Pareto frontier is comprised of a large

number of copies of exactly the same solution. It is unclear as to exactly what

causes this lack of diversity in the population, however the selection method is

the likely culprit, as the other genetic operators function well with the other

GA. NSGA-II uses random tournament selection and compares rank followed

by crowding distance to determine the better solution. The use of a crowding

distance is supposed to aid in the selection of more diverse solutions but this

does not appear to be the case for this specific usage.

Due to this selection issue, it also causes early stagnation of the popula-

tion. Inevitably, this causes NSGA-II to underperform compared with the

implementation of the other GA.

8.5. Comparison with other SLP solutions

To the best of our knowledge, this is the first GA-based TDMA scheduling

for SLP in WSNs, making comparisons against other such schedules difficult.

However, for the sake of completeness, we compare the best solution from our

GA algorithm, with two other state-of-the-art algorithms that provide SLP
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Figure 7: The Pareto frontier output by a single run of NSGA-II

Table 2: The source and safety period combinations for DynamicSPR and ILPRouting in
seconds

Source Period Safety Period

0.125 2.54

0.25 4.57

0.5 8.64

1.0 16.85

2.0 33.76

at the routing level, namely DynamicSPR [37] and ILPRouting [11]. Those

two protocols are instances of two classes of SLP protocols: (i) spatially-aware

protocol and (ii) temporal-aware protocol [? ] respectively. Due to the nature

of these different protocols, different metrics will be applicable for comparison.

Specifically, for spatially-aware protocols, the overhead metric that is most

important will be message overhead, whereas latency is the most important for

temporally-aware protocols.

The same network size (11 × 11) and configuration (source in the top left

and sink in the centre) was used for both algorithms to compare with the results

gathered in this paper. Further, the same communication and noise models

where used for all experiments. The additional parameters for each algorithm

were provided to give the best performance for that algorithm. The parameters

used for these algorithms are shown in Table 2.
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Since DynamicSPR and ILPRouting target the routing level and the GA-

based solution targets the MAC level, we address the attacker models used

during the comparison: The attacker model for the GA solutions has knowledge

of the length of the TDMA period and moves upon hearing the first message

during a given period, whereas the other routing protocols use sequence numbers

to ensure that attackers are moving in a way as to not follow stale data, again

following the first message heard. These different implementations result in very

similar behaviour from the attacker models.

Capture ratio: The main metric that will be used for comparison is the capture

ratio. Figure 8 shows the capture ratios for the different source periods. The

plots show that DynamicSPR has a capture ratio consistently below 1% while

that of ILPRouting is slightly higher. Examining Figure 5 again, we can see that

under an ideal communication model, the GA solutions perform better than the

routing algorithms. This is so due to one main reason: message collisions do not

occur when using TDMA, which is not the case when using routing protocols.

However, an issue arises when a low-asymmetry communication model is used:

The problem that the GA faces is that it assumes vertical and horizontal links are

the only links between nodes. When using low-asymmetry, this is not the case as

diagonal links can form and links can be broken, which means the attacker can

leave, i.e., will not follow, the GA predicted path, potentially capturing the source.

This is one issue of a static slot assignment, which can cause more dynamic

algorithms to perform better under variable network conditions. Developing an

adaptive TDMA algorithm is part of our future work.

However, neither routing algorithm is better than the best produced by the

GA, dist67, which has a 0% capture ratio (shown in Figure 5b). Combined

with the fact that this capture is indefinitely prevented, unlike for the others

(which is bounded by a concept called safety period), the GA solution is better
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Figure 8: Capture ratios of different algorithms
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Figure 9: Various metrics from DynamicSPR and ILPRouting

than the routing protocols.

Num of messages sent: From Figure 9a, it can be observed that the number

of messages sent by the GA-based technique is much less than DynamicSPR.

Since DynamicSPR requires fake messages to be sent to be efficient, the number

of messages will increase. On the other hand, the only messages that are sent in

our GA-based schedule are application messaeges.

Latency: From Figure 9b, it can be observed that the latency induced by

the GA-based technique is less than that induced by ILPRouting. The only

delay induced for the GA-based technique is the slot assignment, which may be

sub-optimal. On the other hand, ILPRouting requires messages to be buffered

and aggregated together before being sent. This makes the delay in delivering a

message very high.
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8.6. Overview of Results

Firstly, we showed some output from the GA that showed the differences

between the two fitness functions. This clearly displayed the effectiveness of the

optimisation process as the distance fitness function created a path that lead the

attacker into the opposite area of the network. We performed simulations on 100

solutions for each fitness function using ideal and more realistic (low-asymmetry)

communication models. This showed that for an ideal scenario, the solutions

performed with an almost 0% capture ratio for every solution. Using the more

realistic model, we can see the effect of additional links and link failures in the

network as both fitness functions have increased capture ratio. However, the

distance fitness function outperformed the other on average.

We then examined the two solutions that lie on the Pareto frontier in further

detail. This allowed us to select the best solution from the 200 solutions (named

dist67).

We compared the GA generation process to that of a high-performance true

multi-objective GA known as NSGA-II but found that it caused early stagnation

in the population of solutions, providing inferior results.

Finally, we compared our method with two state-of-the-art algorithms, Dy-

namicSPR [37] and ILPRouting [11]. We show comparable capture ratios under

the ideal communication model, with the low-asymmetry communication model

being higher. However, the best solution selected outperformed both algorithms

in terms of capture ratio.

9. Conclusion

In this paper, the objective was to produce a genetic algorithm solution to

generate SLP-aware TDMA schedules. We made a number of contributions: We

have mapped the SLP problem to a GA problem that solves for a certain class of
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attacker (i.e., distributed eavesdropper), producing suitable crossover, mutation

and selection operators in the process. We use the concept of Pareto optimality

to compare resulting SLP-aware schedules. The optimization criteria were SLP,

schedule latency and attacker path. We thus provided two fitness functions,

one that reduces total slot usage and one that couples reduced slot usage with

directing the predicted attacker path away from the source. We then performed

simulations in TOSSIM under ideal and unreliable communication models to

show the viability of the optimal schedules, providing a very low capture ratio

and a high delivery ratio to the sink. The main advantage of our proposed

method is the near optimal capture ratio coupled with path creation that occurs

at no additional message overhead.

On the other hand, given that the slot assignment is static, it means that it

cannot adapt to the dynamism of the network such as asymmetric links or link

failures. This in turn causes attackers to move away from the main predicted

path the attacker should have followed, increasing the capture ratio. As such,

our current and future work is focused on developing fault-tolerant SLP-aware

TDMA schedules.
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