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Grandad tell me how far shall I go? 
As far as you can.
But this is easy.
Then, go as far as you cannot.

Nikos Kazantzakis.



ABSTRACT

The research in this thesis is focused around the control of 
rapid automotive product specification changes which are due to 
multiple and unexpected factors ie. legal requirements, 
technological improvements, climate conditions.
Automotive companies use the Product Specification Concept which 
consists of a multidisciplinary theory using Boolean logic as the 
applications environment and a team of auditors - people who 
check the validity of such a theory - to control the complexity 
of the changes in its products.
Although the specifications data are stored electronically in 
data bases, the core of such business is dependent on the 
knowledge and experience of people within the automotive 
companies and still generally operates manually. Thus, human 
characteristics have an affect upon the business (ie. the 
inability of people to work with codes and many different data at 
once, people tend to forget or they lack proper training and 
skills, etc.) which makes it less efficient and consequently 
more costly.
In this thesis possible ways of computerising such an environment 
(specifically, Rover's Auditing function and Product 
Specification Concept) are investigated. The characteristics of 
the problem domain indicate the need to use knowledge based 
reasoning and Object Oriented Programming.
A system, ROOVESP (Rover's Object Oriented VEhicle Specification) 
was developed as the "vehicle" to explore the area and it proved 
that knowledge and experience can be automatically acquired from 
the existing data and procedures. When these are coded into 
rules, computer intelligence can contribute to this traditionally 
human oriented environment and automate fully both the Auditing 
area and the Product Specification Concept in Rover.
The techniques adopted were proved applicable to other similar 
areas.
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1,__ INTROPOCTION__£Q_ THE__PROBLEM

The prime objective of any automotive company is to build 
vehicles from elementary manufactured parts and/or products 
assembled either in house or by outside suppliers, in the 
easiest, fastest and most cost effective way.

Each vehicle is assembled from at least 5,000 different parts 
[87], from the elementary components such as screws up to the 
more complicated assemblies such as engine, dashboard, suspension 
etc. All these parts are linked logically to each other with 
specific quantitative and engineering rules, creating an 
extremely dynamic environment. This means that a change in the 
specification of a part affects not only the assembly design, 
sourcing data and future implementations of the part itself, but 
also the overall specification of the particular area of the 
vehicle in which this part is fitted.

Part specifications do indeed change rapidly, both through the 
practical implementation of the vehicle from its conceptual phase 
through to the final production line and due to the pressures of 
the competitive market. Especially for the latter, the continuing 
expansion of more cost effective technological solutions have 
resulted in the increase of the vehicle luxuries which customers 
can get with the same amount of money. This gradually has led the 
automotive industry to loose the full share of decision making 
in the specification of the new vehicles as the customers can now 
decide on what characteristic of the vehicle to spend their money
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dependent on their own taste. In other words, the part of 
decision making lost by the automotive industry has actually been 
gained by the customers themselves. As stated in [10] "the need 
for greater profitability or indeed survival has led volume motor 
manufacturers over the last quarter of the century, to pay 
greater attention to what the customer wants".

1.1 HISTORICAL DEVELOPMENT/ INCREASE IN VEHICLE COMPLEXITY

Up until the 1960's the only options available with a vehicle 
were a limited choice of engine specifications and/or body 
colours. For example, in the late 1960's Chevrolet produced 
approximately three quarters of a million Impalas in a year and 
the customer was happy with a single choice of exterior colour 
[10] . Today, in order for a manufacturer to achieve half this 
volume, a significant level of product complexity and consequent 
sophisticated product control is required.

Tables 1 and 2 show the historical development of factory fitted 
options for both the British Leyland (nowdays Rover) models and 
the top of the range European built Fords. Table 1 depicts the 
availability of variants according to the date whereas table 2 
details the existent British Leyland models from 1964 to 1986.

Looking at a specific point in time, the year 1969, there were 
two British Leyland top of the line models, the P5 3.5 litre and
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P6, they could be split to six base derivatives ie. the coupe

No. of variants available excluding Paint/Trim options

YEAR 1960’S 1970’S 19 80 ’s

Rover 29 136 280

Ford 49 335 544

TA B LE  2. Historical development from reference [10].

Rover Ford

Model Year Model Year

95/110 1964 Zephyr Mk III 1962-66

P5 3 litre 1958-67 Zephyr Mk IV 1967-72

P5 3.5 litre -  Coupe 
^Saloon

1968-75 Granada/Consul 1972-79

._ <D
o

 o
CM

 
CM

 
C

D
 

C
D

1
/

OooCM1/C
D

Q
- 1964-72 Granada 1979-85

3500 820i 
820e

1977-86

SD1 -  ^  . 2.3 
2.6 

^  3.5

TA B LE  2: Model range to date from reference [10].

and saloon versions of the P5 3.5 litre, the 820i or 820e of 2000 
litre version of P6 etc. - and each derivative had its own 
options, offered by Rover, giving more different variants. 
Excluding trim/paint colour options there were 80 off line
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/ariants available in 1969.

[n 1979 the British Leyland top of the line range model consisted 
Df three basic derivatives (ie. SD1 2.3, SD1 2.6, SD1 3.5) fewer 
:han in 1969, but with a much wider range of options on offer. In 
:otal there were over 400 off line variants (excluding trim/paint 
:olour) offered to the public.

The current Rover 800 Series offers 14 base derivatives (table 
1) and each of them has up to 8 different customer options. This 
jrovides over 2376 variants excluding the trim/paint colour 
options. If trim and paint choices are included the number of 
variants is over 54,000. Note that these calculations represent 
>nly the UK market. The number of variants increases even more 
?hen the world market is considered eg. there are 172 different 
base' derivatives for the Rover 800 alone sold to 34 countries
:io].

’he figures for the top of the European Ford range (table 1) show 
l similar trend - as the market has developed, the number of 
variants has tended to increase.

:t is also worth noting that a number of vehicle features which 
rere options in the 1960's and even some which were options in 
-he 1980's are now fitted as standard, eg. power steering, 
:entral locking. This results in an increase in the complexity of 
•he base vehicle. As a model range develops an increased range of 
iptions become available and a number of the original options 
>ecome standard, so automotive companies have to further increase 
-he offered options in order to maintain sales.
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It can be concluded then, that when a new model is introduced, 
the overall complexity is higher than the previous model launch 
as the customer now expects a number of items as standard which 
previously were considered luxuries (figure 1).

PRODUCT
COMPLEXITY

a  INTRODUCTION OF NEW MODEL 
Q  FACELIFT

F IG U R E  1: Increase of model complexity through time,
from reference [10].

1.2 THE NEED FOR FLEXIBILITY

Nowadays people see the products of the motor industry as goods 
with a variety of affordable options which they can bargain for, 
rather than the expensive standard product of the past. They also
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tend to purchase vehicles "tailored" to their personal taste or 
job requirements. For example in a discussion in a showroom 
today the following statements might be heard:

I want a Montego for Europe
I want an estate

- I want a 1600 engine with an automatic
gearbox

I want a stereo radio cassette player,
leather seats e.t.c.

It's actually the customer who "runs" the conversation and the 
motor manufacturers have to satisfy the majority of his
preferences in order to survive the competition. They must also 
meet the different requirements of the world market ie. local 
legislation, climatic conditions, etc. For this reason, motor 
manufactures are today moving towards the maximisation of the 
feature options that they could supply to a new vehicle, together 
with the highest flexibility in their design.

It can be seen from the sales forecast table 3 that there are 
several model variants for which there will be very low
requirement. Nevertheless, it is a marketing decision that all 
these options be offered to meet potential demand despite the 
complexity added to the product line. For example, Rover offers 
two different cassette players for all basic derivatives of 
Maestro and Montego models, although the average demand forecast 
is only 2% and for some derivatives there is not even that demand
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(0% ! ) .

1.3 THE EFFECT OF FLEXIBILITY

Thus, the Product Derivative Complexity (as the increase in 
variety of the product from a common base vehicle is termed) to a 
large extent enables companies to maintain sales and control 
their success in the market. The game of gaining the maximum 
benefits depends upon the skill in all areas of the company in 
managing complex derivative programmes and large numbers of 
combinational variants. Today for example, for only a single 
model, the right hand drive ESCORT L, the Ford motor company 
offers 3000 different feature options to its customers. This can 
be translated literally to 2.3 BILLION Ford-Escort-L variants for 
all the possible combinations of the feature options! Although, 
this number of Escort-Ls are not actually built in the production 
plant, 200,000 of different Ford Escort L variants have been 
offered worldwide and 70% of all option-combinations are used 
per annum [27], In addition, almost 5000 different parts - 
assemblies and components - are required for the building of this 
car and nearly all of them are used for every variant,
implementing each time a hard Specification (or Product) Control 
exercise.
Table 4 compares the current option availability of Rover 800 
with two of its direct competitors, the Ford Granada and the BMW
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5 Series, as was mentioned earlier the number of Rover 800 
variants including colour and trim options is approximately
54,000 for the domestic British market. This compares to 2,371 
for the Granada and 5.07 x 1011 for the BMW 5 Series [10].

The large difference in figures is due to the various marketing 
policies followed by the companies. Although Ford offers as many 
as 3000 options for the Ford Escort, it only offers a few options 
for the higher range Granada model and maintains a large number 
of the remaining 3000 options fitted as standard to the vehicle. 
BMW offer two trim levels on each BMW 5 Series model (ie. 520i 
and 520iSE for the BMW 520 model) plus a top of the range sport 
model. It is then possible for many more features to be fitted in 
the vehicle because of the relatively high number of optional 
alternatives. Consequently, BMW follows the same marketing policy 
for its products irrespected of the model range.

Rover falls between the two policies. If the top of the model 
range there are few options but still more than Ford offers and 
more choices in the middle of the range though they are much less 
than 3000. There are 300 options offered for the Rover R8 model, 
the Rover equivalent of Ford Escort [95].

From these data can be seen the problem of complexity faced. It 
is the large number of options which leads to the large number of 
variants - only with 25 options available, there are over 30 
million variants available, provided the options are mutually 
exclusive.

1.4 ADDITIONAL PROBLEMS CREATED BY COMPLEXITY
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As the overall product complexity is increasing it applies an 
incremental workload and cost not only in Specification Services 
but to all associated support functions of the engineering design 
and development of the product itself. The situation becomes more 
difficult when one considers the additional 1980's automotive 
needs to integrate Specification/Bill Of Materials (BOM) data 
with the existing Computed Integrated Engineering (C.I.E.) 
and/or Computer Integrated Design (C.I.D) databases in order to 
control complexity.

Additional pressure for correct specification, so that Rover 
together with all the other European and North American 
Automobile companies are able to compete with the Japanese motor 
manufacturers, means that a high proportion of time of their 
Design Engineers is spent in Auditing instead of Design (Auditing 
in the contexts of this thesis means the validation of the 
various documents within Rover which specify the vehicles of the 
company).

DESIGN TIME - MONTHS

DESIGN EFFORT - MAN HOURS (millions)

MODELS IN PRODUCTION

AVERAGE REPLACEMENT PERIOD - YEARS

AVERAGE ANNUAL PRODUCTION OF EACH 
MODEL (000’s)

urope Japan USA

60 47 60

3.2 1.7 3.0

48 72 36

9.2 4.2 9.2

200 120 230

T AB LE 5: Design time and effort In Vehicle Design from reference [10].
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The Japanese follow the philosophy that Manufacturing should move 
upstream to have an input in Product Strategy instead of waiting 
until the product is practically engineered and in that way they 
have achieved a reduction in Design lead time (table 5).

In summary, flexible and efficient control in vehicle 
specification changes, thus more efficient control in product 
complexity, is the core concept and reality for any automobile 
company.

1.5 COMPLEXITY CONTROL METHODOLOGY

Automotive companies have implemented a methodology for 
controling and communicating the complexity of their products. A 
'language of discourse' of expressing and manipulating vehicle 
characteristics with its own semantics and syntax. This is 
called the Product Specification Concept (PSC or Product 
Definition). The term Product Specification Concept (PSC) is used 
by Rover and it will be used in here for any automobile company. 
PSC is discussed in more detail in the following chapter. The way 
of issuing information within the company on the principle of the 
Product Specification Concept is the release system. A release 
system is simply a method of communication. Basically. it says 
make or buy this part to this shape, in these colours, in this 
material. It represents a final statement from the engineer that

12



he has completed his part of the design. In small companies the 
release may be merely the handover of the drawing, together with 
some verbal information regarding timing, volumes, materials etc. 
As companies get bigger, the method of design transmittal becomes 
more and more complex. Responsibilities are fragmented, and the 
engineer becomes increasingly remote from the actual 
manufacturing process.

As product offerings expand as well, the complexity of product 
combinations impacts upon the design engineers's need to 
communicate their intent and further implementations, 
combinationally increasing the amount of data and the actual 
circulation of their release.

1.6 E.EQBLEMS ASSOCIATED WITH COMPLEXITY CONTROL

Figure 2 shows the percentage shares of changes introduced to 
the specification of a vehicle by each of Manufacturing, 
Administrative and Engineering department in Rover. These changes 
occur during its conceptual stage right through to the final 
production line, which can take from three to five years, as two 
statistical surveys revealed at May 1987 end June 1988 [16]. It 
is worth mentioning that many of these changes may be the result 
of human error.

From early times Rover and other motor manufacturers realised 
the impact that such mistakes could have on cost and time in the





company and launched a new department within the specification 
services in order to maximise the control upon such 
inconcinstencies; the Auditing department. Also, it is the 
extremely delicate and dynamic nature of Motor industry that 
makes the Product Specification control and/or auditing problem 
recurrent.

1.7 INCREASE IN COSTS DUE TO ERRORS

The values in figure 2 represent in reality the result after the 
application of a well experienced Auditing function in Rover. The 
guestion which arises is how such a function could be improved in 
order to pick up the human error at the earliest possible 
development stages of the vehicle rather than being discovered 
later in the production circle where they could cost the company 
dearly.

It has been recorded that 5,587 changes occurred during the 18 
months development of the Rover model R8, though there were 13 
circulations (build phases) and re-examinations of the model's 
release package and an auditing function was in operation for 
each circulation (table 6) [11] .

More precisely, a major number of the 3,521 changes before the 
Methods build phase could be avoided and save the company money 
and time as the prototype vehicles which are built in phases D01 
and D02 tend to be extremely expensive and time consuming. This 
is because all the parts and tools used to make the them were



Methods phase, ie. Purchasing the wrong tools and/or parts, 
updating the data base, liaising with the Design Engineers, etc. 
After the Methods build phase mistakes happen but it is 
questionable whether the Auditing function could prevent most of 
them. It has been estimated [11] that after the Methods phase 
the administrative cost associated with a single mistake is 
£15,000. This is for changes in purchasing, scheduling, 
engineering work, update of the data, parts and accessories, 
paper work, reissuing of the drawings, inventory and spacing, 
labour disposal of the old parts and palleting the new ones, 
publishing of new brochures etc. In the Rover R8 model example, 
the total cost of changes after the Methods build phase came up 
to many million pounds and people within the company believe that 
this cost could be reduced drastically with a more thorough audit 
appliance and control on the whole scope of the release system. 
Some of them could be picked up. However, there are examples of 
mistakes which were discovered by customers and the Auditing 
function was in the main responsible.

Land Rover, as well, though representing a less complex 
manufacturing environment by tradition, has faced similar 
problems in the past.

As it is expected, the major automobile companies - Rover, Ford, 
Honda, Peugeot etc. - have already implemented their own audit 
based release systems in one form or another based on their own 
particular Product Specification Concept. Also, the problem of 
overlooked human mistakes which always appear in motor industry, 
forces Management to investigate alternatives for a more

17



efficient Auditing process.

1.8 RESEARCH OBJECTIVES

The original objective of this research was to investigate the 
means of automating, as far as possible, Rovers's existing 
engineering audit function. However, during the initial phases of 
research, it became apparent that it is not feasible to merely 
automate the audit function, the whole Product Specification 
Concept needs to be considered. This lead to a revised objective 
of :

Investigate possible changes to the Product 
Specification Concept which would enable this 
and the Engineering Audit function to be 
automated.

This then involved the following sub-objectives:

1. Fully investigate the current Product Specification 
Concept and the associated Audit procedures.

2. Characterise the problem.

3. Determine alternative approaches which could be



adopted.

4. Build a working system to explore the feasibility 
of these alternatives.

1.9 STRUCTURE OF THESIS

In chapter 2, the PSC is introduced in more detail in the way it 
currently applies within Rover. The Rover paradigm represents the 
general way of the application of the PSC in the automotive 
industry. Chapter 3, investigates another 'variant' of the PSC, 
that of Land Rover.

Chapter 4 tackles, more specifically, the Rover's PSC - the 'sub­
concepts' on which the general PSC is built and its application 
tools used by Rover - and some of the reasons that such an 
existing manual process impacts on specification mistakes.

Chapter 5 introduces a typical manual audit example in the way it 
currently operates in Rover. The audit function is investigated 
first, in order to put the basis for the better understanding of 
the PSC in the company. Chapter 6 analyses the characteristics of 
the problem - both the audit function and the PSC - and why such 
a problem might be suitable for automation.

Chapter 7 investigates the computer literature, both system



analysis techniques and knowledge representation, which would be 
more appropriate to automate both the Audit function and the PSC, 
according to their characteristics.

Chapter 8 introduces the design of the ROOVESP system - standing 
for the Rover's Object Oriented VEhicle Specification - and its 
implementation in three successive phases. Chapter 8 is concerned 
mainly with the automation of the Audit function. Chapter 9 
completes ROOVESP by introducing the Intelligent Networks 
Prototype which tackles the PSC in the company as a whole. 
Chapter 10 suggests the further developments of the existing 
system, which could fully automate the Rover's PSC around 
ROOVESP. Chapter 11 discusses both software and design issues 
which were met during the implementation of ROOVESP. 
Additionally, the general knowledge that has been achieved from 
this research is pointed out which can help to solve problems of 
similar characteristics.

Finally, the chapter 12 summarises the state of the problem 
before this project started and the objectives achieved after 
this research, as well as the objectives which can be achieved by 
following the conceptualism of ROOVESP and further implement the 
system.

The appendices 1 and 2 introduce the FLAVORS and Statice 
environments which describe further the software tools used in 
ROOVESP. The rest of the appentices (appendix 3 to 11) list the 
program which implements ROOVESP and run samples of the system.
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2^__THE__PRODUCT__SPECIFICATION__CONCEPT

The literature of major automobile companies expresses concepts 
and attributes of existing specification systems in different 
ways, although the majority of terms which they use it reflects a 
similar, generally adopted "logic” for vehicle specification. 
For the consistency and clarity of the terminology that will be 
used, the terminology used at Rover has been adopted, except in 
the situation where the source of the terminology is clearly 
defined somewhere within the document.

The automobile literature shows that the Product Specification 
Concept (PSC) has been considered by many automobile companies to 
be the most efficient means by which they can tackle the product 
complexity problem.

The PSC in its general form was introduced by the American 
automobile companies early in 1960's [17]. It was the first time 
that vehicles started to be designed for longer marketing life in 
order to meet flexibly the newcoming expansion of the motor 
industry and the expected increase in customer requirements.

The automobile companies handled the increasing product 
complexity problem at first manually up to the time that the 
amount of data processing became overwhelming, at which point 
they switched to information technology solutions. However, 
although the engineering data are manipulated electronically
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nowdays, the automation of such a process is concerned only with 
their storage retrieval and maintenance. The general flow of 
information within the Product Specification has not been 
changed, especially the manual audit of the Product.

In order to introduce the Product Specification Concept, an 
example will be used to show how this concept can specify a 
product and reduce the workload in a company. The Product 
Specification Concept organises old information and uses it to 
set up a new model variant.

Trim Level Trim Level

th e  n ew  T rim  Level o n ly .

T a b le  7 : The "bulk” of re-specification is shown, from reference [5].
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The example assumes that an M.G Metro variant is already in 
existence, and Rover decides to introduce a Turbo version, the 
M.G. Metro Turbo.

METRO, Trim Level 5, 3 DOOR, M.G 1300 - OLD VARIANT 
METRO, Trim Level 5.1, 3 DOOR, M.G 1300 Turbo - NEW VARIANT

When the new model variant is introduced, a new trim level - ie. 
trim level 5.1 - is allocated by Rover to identify the small 
number of parts that differ from the old variant. Without the PSC 
the effect of creating the new trim level means, that all the 
existing parts of the variant must be re-specified to the trim 
level 5.1 (a major task).

However, PSC does not allocate all the existing parts to the new 
trim level, instead it specifies changes in the general 
definition of the original Metro derivative M.G 1300 and 
generates a new model variant. In that way only those parts which 
differ between the two model variants (modified and new) are 
specified. This saves considerable time and reduces potential 
sources of error as the 90% common parts continue their existence 
in the vehicle unchanged simply as 'carry-over' parts.

The PSC has to refer to some criteria to work with in order to 
perform the required design changes and consequently control the 
overall specification function. Such criteria/attributes 
developed from system analysis in Vehicle Design are known as 
product features. In reality they represent the 'semantics' of 
the PSC.
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"A feature is a characteristic of a vehicle that causes Parts to be fitted to 
that vehicle and which may cause other parts not to be fitted to the vehicle" 
(Rover definition).

The PSC in Rover recognises two categories of features:

a. BASE FEATURES representing the majority of parts on a vehicle 
(70-80 per cent) .

- marque
- model
- trim level
- body style
- engine

- drive
- transmission

- family
- capacity
- performance

b. ADDITIONAL FEATURES. These define the remaining feature 
content of the vehicle:

- features 
eg.

- features 
eg.

required to make a complete vehicle 
headlamps ,instrument packs, 
emission or legislative requirements, 

relating to options
alloy wheels, sunroof - glass

- steel
air-conditioning, etc.



The general idea is that by using the specification concept and 
especially using its features (its semantics) people within the 
company can identify any vehicle variant both unambiguously and 
yet flexibly through manufacturing codes. These are data strings 
(with the PSC's syntax eg. etc.) which contain the 
Engineering information about the product and are called the 
usage statements of the individual parts or the part usages in 
an assembly. So a manufacturing code would be something like 
"A10X+F47K" where each such code refers to the specification of 
an individual part which is going to be assembled together with 
other part to make up the car.

For example, for the following Rover 800 model variant, the 
sunroof part of this car is specified as sliding glass to be 
fitted:

Part in concern: 
sunroof

BASE FEATURES ADDITIONAL FEATURES

CODE: A10X + A20S + F47K
DESCRIPTION: Rover 800 Series Glass sliding sunroof
(a positive Usage Statement)
(A10X is translated to Rover, A20S means 800 series whereas F47K 
means Glass sliding sunroof)

For the following statement of a car heater, an air condition is 
not fitted to the Metro model variant:
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Part in concern:

heater

BASE FEATURES ADDITIONAL FEATURES

CODE: A10X + A2OF + A50A - C88A
DESCRIPTION: Rover Metro Right-Hand-Drive(RHD) Air cond.
(a negative Usage Statement)

The (-) minus sign denotes that the feature is not fitted,
whereas the (+) plus sign denotes that the feature should always 
fitted.

Appropriate management at the usage statements level of the parts 
of a vehicle, provides only the new feature options or their 
combinations which are required for the model variant and 
decreases rapidly the volume and cost of redundant re­
specification. Hence, 'thinking' with the Product Specification 
Concept, design engineers can refer to the usage statements of 
the part and not the part itself. This makes things ever easier
for the company as it not only responds flexibly to the various
phases at the conceptual design of the part but also helps
Manufacturing to avoid unnecessary changes at the assembly 
levels.

In summary, the Product Specification Concept has been adopted 
worldwide in automobile industry. Its well specified syntax and 
semantics, represent a common language of reference in use within 
the company which helps departments with different knowledge,
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skills and objectives to communicate without distortion of the 
original information; the customer's requirements. It enables 
people from Vehicle Directorate/Line to "compile" the 
documentation from Marketing as features and engineers to 
conceive and design the new requirements based on those features 
combination and supply Manufacturing with appropriate assembly 
structures. The PSC as a common language of reference needs a way 
of transmitting its information through the various departments 
of the company. This is the release system, discussed in the 
previous chapter, that every automobile company has adopted to 
support the concept.

It must become clear that the term PSC in the contexts of this 
thesis will mean both the common language of reference (the 
concept methodology) and the flow of its information within the 
company (the release system).
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X __HQH__ LAND ROVER TACKLES__XHE__P.S.C.

In order to proceed into the actual mechanics which drive the 
Product Specification Concept (and release system) within Rover 
and understand the major need for a thorough audit function to 
make the PSC valuable we will overview first the surrounding 
literature of some other automobile companies which face the same 
problem and more specifically for Rover we will discuss the 
basic concepts which supported such a theory and the tools which 
the company has implemented through time for its appliance.

The confidentiality that covers such a highly competitive 
environment as the motor industry , makes it extremely hard to 
perform a comparison of the way in which different companies 
approach the common Product Specification problem based on the 
existing automobile literature. Motor companies become even less 
informative when the interested party represents one of their 
competitors. Besides, the relevant academic literature in Change 
Control, M.R.P.1&2 (Material Resource Planning and Manufacturing 
Requirements Planning), C.I.M. (Computer Integrated 
Manufacturing), C.A.D. (Computer Aided Design) and B.O.M. (Bill 
of Materials), covers only the general domain of similar problems 
in Engineering and Manufacture.

For those reasons the scope of the investigation for other motor 
manufacturers is limited only to Land Rover.
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3.1 THE__ LAND -ROVER__ COMPANY

At this point, it must become clear that when reference to the 
Rover specification system has been made the author has been 
considering the specification system of the division previously 
known as Austin Rover.

The part of the Rover previously called Land Rover has 
implemented its own specification/release system to provide 
management and control in the specification complexity of its 
products. So, it makes use of the Product Definition concept as 
it is known within Land Rover.

SP&ontCroV0nS

Base, Core. Sales
Specification. _______
Module Rationalisa«).
Product Definition System

COPICS 
Data Base

F ig u re  11: Land Rover's PSC.

The Vehicle Directorate within Land Rover originates the Product 
Development and Product Policy Letters which establish the



design intent of the new Vehicle. Those documents are passed to 
all departments concerned with the new product information ie. 
Manufacturing, Purchasing, Engineering, Finance etc. When all 
feedback of the new product is collected by Vehicle Directorate 
then Component Engineering is authorized to create the design and 
documentation of the product. The source document of the vehicle 
is compiled and audited from the Specification Control department 
and loaded to COPICS (Computer Oriented Product Information and 
Control System), the IBM mainframe data base product used by Land 
Rover. The Specification control department makes use of the 
Product Definition concept in order to specify and audit the 
vehicle.

The Product Definition Concept defines a basic
vehicle framework independent of product changes. The approach 
that the concept follows is termed as modular approach and is 
achieved by dividing every product into 53 groups and working out 
the right 53 groups to be fitted into the original framework. 
Each group is called the Module Family and represents a section 
of the vehicle framework (figure 12). Some examples of module 
family are:

WT = Wheels & Tyres
GL = Glazing
DR « Doors
EN = Engines.

Within each module Family there are a number of specific Modules.
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SPECIFICATION
(U\ND ROVERS INTERNAL PROCESSING)

IN IT IA L L Y  W E  D IV ID E  T H E  P R O D U C T  IN T O  
5 3  S E C T IO N S  C A L L E D  "M O D U L E  F A M IL IE S '

EACH MODULE FAMIUY REPRESENTS A 
UNIT OF PRODUCT BUILD REQUIREMENT

o a i n m n

ix x n s

A COMPLETE PRODUCT MUST HAVE ONE 
ELEMENT FROM EACH MODULE FAMILY. 
THESE ARE CALLED MODULES.

C O N N E C T E D  T O  E A C H  M O D U L E  IS  T H E  
T O T A L  P A R T  R E Q U IR E M E N T

Figure 12: The framework of modules in Land Rover's Product 
Definition Concept, from reference [94].

For example the EN family would collect all the Engine modules. 
An example is :

EN003 = a 4 cylinder petrol engine with an oil cooler
and evaporated Loss control for Gulf.
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At the beginning of 1989 there existed approximately 1500 
modules, each one allocated to a specific family and while some 
of them may have been deleted or new ones created, it was always 
within the same family. For a vehicle to be completely specified 
ONE module of each module family is chosen. The process occurred 
at 3 levels:

- BASE SPECIFICATION (70% Of the definition)

The left hand steering vehicles represent the largest percentage 
of the company's sales worldwide. The company, at the beginning 
of the specification of the vehicle, tries to cover the wider 
range of customer requirements, hence all the Modules in this 
first stage of the specification of the vehicle are allocated to 
create products which are left hand drive.
eg. Ml module + M2 module + .... M* module = Base Specification

- CORE SPECIFICATION (10% of the definition)

Land Rover has divided the 170 customer countries around the 
world into 25 areas called "Build to Regions" depending on legal, 
marketing or Engineering requirements with common specification. 
The Core Specification links the product to the "Build to Region" 
area and in that way adds all the legal, marketing or engineering 
requirements. More modules are added to the specification of the 
product, eg.
Ml + M2 + ... m * + Mfc+i + .... M^ = (Base + Core) specification. 
At that stage the vehicle is almost fully specified.

- SALES SPECIFICATION
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The third and final stage completes the specification by adding 
the rest of optional features :

- alternative features eg. trim level and colour.(for 
example Range Rover has 15 colours and 4 trim levels)

- additional features eg. sunroof, antilock brakes etc.
(ie. Land Rovers have a choice of up to 67.)

So, the specification of the vehicle at that stage it would like: 
Ml + M2 + . . . Mfc + M^+i + .... Mj. + Mi + 1 + . . . . Mn (module») =
(Base + Core + Sales) specification.

At this stage of the vehicle Specification, experienced auditors 
apply module rationalisation which means that they run the 
Product Definition system in liaison with the most technically 
experienced engineers to generate the final "usage statement" of 
the vehicle. Notice, the usage statement of a Land Rover's 
product it will be quite different from what it has been said 
till now with reference to Ford and Chrysler. It refers to 
Modules rather features combinations, though the notation remains 
the same. ie. "+", etc. The modules, however, implicitly
refer to vehicle features. Even further, each module is connected 
to its total part requirements, every last nut, bolt and screw, 
which takes the vehicle from the Product Definition system direct 
into the COPICS Bill Of Materials.

The rationalisation of modules is done with the application of 
rules that determine the correct combination of modules. There 
exist two types of rules within Land Rover the resolution and 
feasibiity rules.
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A resolution rule, for example, may stand as :

IF module Ml appears into the final vehicle "usage 
statement"

(ie. left hand drive car, with automatic transmition .. 
... which probably belongs to module family MF1)

and
module M2 appears into the final vehicle "usage statement" 

(ie. right hand drive car, with automatic transmission 
... which probably belongs to the same module family MF1) 

THEN
choose module M2 (the most specific) or 

IF (Ml + M2) THEN M45 (where M45 is a totally different 
module).

The feasibility rules code the "common sense" in the design of 
the vehicle such as that you can't have 8 or 7 doors in a 
vehicle, or 6 wheels.

3.2 SUMMARY ON THE CHAPTER

In this chapter the PSC of Land Rover was discussed. The major 
concern in this thesis is the enhancement of the way which 
conditionally specifies the vehicles in a company, as this is the 
case with Rover. Conditional specification means the 
specification of the parts by using feature combinations and
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boolean algebra (see chapter 2).

3.2.1 Modules and conditional specification

The use of Modules by Land Rover to specify vehicles is 
apparently simpler than the conditional way of combining vehicle 
features. This is because a specific Module includes a specific 
combination of features rather than a huge number of all the 
possible combinations of those features. For instance, the EN003 
Module, which was discussed earlier, uniquely identifies a part 
for the vehicle:

a 4 cylinder petrol engine with

an oil cooler and

evaporated loss control, for Gulf.

In the conditional way this would represent at least 23 = 8
combinations of the three vehicle features which are implicitly 
expressed within the Module such as the type of the engine, the 
cooler and its control. If the type of the engine fuel is 
concerned as well, such as diesel or petrol, this would create 24 
= 16 possible combinations of the features mentioned in the
Module instead of a single one. The multiple feature combinations 
naturally affect the assembly structures which have to be re­
organised each time the combination of features in the top 
assembly changes. Finally, in a Module, the territory
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restriction (ie. for Gulf) is included whereas in the conditional 
case, the specification of the vehicle becomes even more 
difficult if it is considered the multiple territory restrictions 
usually for each feature combination.

Unfortunately, although the Modules specification is simpler 
than the conditional way of specification, it can only be used 
efficiently for vehicles whose customer requirements are limited. 
For example, the use of Modules in Rover each one connected to 
its own specific assembly structure would create Module Families, 
each one consisting, of literally millions of Modules, each 
Module representing a possible feature combination. Land Rover 
uses the Modules specification because of the only limited number 
of options which are required to satisfy the part of the market 
in which it operates.

The other point which emerged from the study of the automotive 
literature is that the specification of the vehicle, regardless 
if it is conditional or based on Modules, is done manually.

Regardless of the different audit philosophies invented to 
alleviate the load of specification (ie. module rationalisation, 
or the traditional Boolean algebra way) the thinking process for 
the validation of the usage conditions of the parts of a vehicle 
is done from humans. Consequently, mistakes are inevitable to 
happen because of human nature and the problem of the 
specification of the vehicle is still open for investigation.
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The next chapter is concerned in particular with the PSC in Rover 
and discusses typical tools used by the company and other 
concepts which constitute it. The idea is that by understanding 
the PSC better, parts of its application may be found which may 
be automated or supported by a computer system and consequently 
the human error could be reduced.
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4. MQS___ROVER___TACKLES__THE__P.S.C

The following two sections provide a gradual introduction to the 
basic concepts which are needed in the conceptual design of the 
Rover's Product Specification Concept and the tools which Rover 
uses for its application.

4.1

4.1.1 Vehicle Part Grouping (V.P.G) (funtionality)

An automobile company, in order to control the thousands of 
parts which assembly each of its products, needs a way of 
discriminating their function and fitment into the Vehicle. Rover 
uses the Vehicle Part Grouping "logic"; a standard grouping of 
parts by their function. At the highest level of Vehicle grouping 
Rover uses the V. P . G.-groups such as:

DESCRIPTION CODE

Complete Vehicle 10
Body System 11

Frame and Mounting System 12

19
20

Exhaust System 
Fuel System 
Steering System
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Each V.P.G-group can be then broken down into V.P. G. -sub-groups. 
For example, the V.P.G.-group "Steering System" is broken to the 
VPG-sub groups:

DESCRIPTION CODE

Vehicle Gears 2101
Steering Column and Wheel 2102
Power steering pump and fluid 2103

At the next level down, V.P.G.-SUb-Sub groups can be defined for 
each V.P.G. Sub-group.ie.

DESCRIPTION CODE

Column, Shafts,Coupling & Tube 2102AA
Shrouds & Locking Mechanism 2102 BA

Steering Wheel 2102CA

A VPG-Sub-Sub group can then be broken to different assembly
"families" with unique functionality in the vehicle area that the 
group represents. So, the "Column, Shafts, Coupling & Tube" 
group includes the assembly areas in Manufacturing with unique 
codes (QTB, QTC, QTD, QTG, ... QTN, QTP). The discrimination of 
the Vehicle parts can continue even more with the actual 
'meaning' of the part itself within each assembly family. For 
example, as shown below an assembly family within the "Column, 
Shafts, Coupling & Tube" V. P .G.-SUb-Sub-Group can include more
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than one different Part Descriptions:

DESCRIPTION: CODE:

Pad assy Cruise Control QTC
Pad assy non Cruise QTC
Pad assy strg wheel QTC

Support moulding assy Cruise control QTD
Support moulding assy Non Cruise QTD

Badge Steering wheel QTG
Badge & carr assy countryman L/E QTG

A part description, ie. 'Badge Steering wheel', as the term 
indicates, represents only the higher level of description of 
probably a group of different physical Vehicle parts with 
significant resemblance. ie. more than one types of 'Badge 
Steering wheels' may exist, similarly there are many different 
types of screws under the Part Description "Screw-flanged head". 
Hence, more than one Part Number may be allocated under the same 
Part Description to identify uniquely a physical part.

At the last stage of the Vehicle Part Grouping, physical parts 
(part numbers) are linked logically to various fitment 
conditions, which means that a single part may be applied in 
different ways on the vehicle. For example, for the part 
description "Screw-flanged head" more than one fitment is 
available, and applies accordingly to the way the part is 
specified in its usage statement.
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Figure 16: VPG group level - Sub Groups
STEERING COLUMN & WHEEL.

Figure 17: Sub-VPG level - STEERING COLUMN.

41



26

Figure 18: Sub-Sub-VPG level, from reference [23].
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Part Numbers

"Screw-flang head" JTR123419xxx
- door handle fitment
- boot assembly
- interior lighting

Part Description Physical Parts - Fitments

Diagrams 16, 17 and 18 show a subassembly explosion of the
steering columns VPG of the Rover vehicle which have been
discussed.

4.1.2 Parts TO Features TO Model concept (functionality)

4.1.2.1 Features to Model concept

As mentioned earlier a vehicle is a combination of many different 
multilevel assemblies. eg. engine assemblies, glass assemblies, 
wiring, seat assemblies (plastic, leather, etc), vehicle carpets, 
electrics, etc. In that sense, it seemed logical for any 
automobile company to orientate the breakdown of its product in 
the assemblies direction. Vehicle Part Grouping as discussed 
earlier represents the methodology of this idea. Furthermore, 
such an analysis of the vehicle to different parts by their 
functionality has enabled Rover to refer to vehicle 
characteristics such as adjustable seat, central door locking, 
electric mirrors, manual gearbox etc. Those are the features of 
the vehicle which were referred during the introduction of the
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Product Specification Concept. Features as used within Rover 
represent different Sets of Parts going for manufacturing and 
subassembly and then on to the vehicle dnd top assembly. For 
example, at figure 19, the use of feature FI in the model Ml 
will indicate to manufacturing that model Ml 'gets' the parts PI, 
P3, and the assemblies ASSY-A and ASSY-B.

4.1.2.2 Usage Conditions TO Parts Concept (physicality)

The Sets-of-Parts as they are carried over from the feature 
statements, are initially meaningless to manufacturing and a 
transposition from 'functionality' to 'physicality' is required, 
ie. the "compilation" of all the parts usage statements to parts 
fitments.

In an environment like manufacturing which everything must be 
unambiguous and accurate, it is the fitment of each part which 
drives the assembly structures of the final production line, 
rather than the part itself.

4.1.2.3 Assembly Structure Concept (physicality)

When all the features of a model variant have been defined and 
the usage statements of all the parts have been specified against 
those features, Manufacturing can thoroughly document the fitment 
of each part and consequently generate the Bill Of Materials 
(B.O.M) for the specific vehicle (figure 20).
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In summary, the combination of the above 3 basic concepts 
provides the theoretical background for the design of the 
Product Specification Concept within Rover. Figure 21 shows how 
all these concepts are linked together for its implementation.

4.2 APPLICATION TOOLS

In this section the different tools - electronic or manual - that 
Rover uses to either implement individually or link together each 
of those concepts is introduced.

4.2.1 Product Information Management System

The first thoughts for the physical development of a Product 
Specification System were focused on the prime requirement that 
the system should be capable of handling huge amounts of data and 
both unambiguously and flexibly mix and match the data with the 
newcoming feature combinations. It also should allow for 
extension. In order to get the maximum benefits of such a system 
Rover introduced in 1981 a computerised specification system 
called the PRODUCT INFORMATION MANAGEMENT SYSTEM (PIMS) to 
replace the manual Engineering Release System which had been in 
operation since 1972. PIMS was initially designed for British 
Leyland cars. It was the first attempt by Rover to support 
electronically its Specification system and it used the database 
technology available then, namely the hierarchical structure.
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Figure 21: Rover's PSC showing subsystems, from reference [17].
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Hence, PIMS is a complex Mainframe-based system of multilevel 
hierarchical Information Management System (IMS) databases both 
stand alone and physically linked. Although PIMS is generally 
referred to as a single database, at least five major databases 
can be categorized and several smaller subsidiary ones, as well. 
Database programs run exercises for the control of these data in 
the form of Rover's needs, eg. a program may use the PIMS 
databases to generate the Automatic Part Numbering (A.P.N.) of 
a new part. The 5 major databases carry information relevant to 
Parts, Model ranges, Classifications, Sources and Control data. 
The reader for further information can refer to [17].

Although PIMS is the prime author for the specification of a 
part, several other documents are created and circulated inside 
the company to support the general operation for the 
specification of the product and are discussed in the following.
These are:

- Features List
- Base and Additional Features Charts

- Base Features Summary Chart
- Model Summary Chart
- Additional Features Chart

- Territory Group Index Report
- Territory Code Index Report
- Base Features Code Index Report
- Additional Features Group Index Report
- K87 or Company Features Directory
- Automatic Part Numbering (APN)
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- Usage Conditions to Parts System

4.2.2 Features List (fig 27, 28)

The Features list is issued by the Vehicle Directorate department 
and appears at the very first phase of the life of the new 
product. It defines in an English-like language the form the new 
product should take. It actually lists the various derivatives - 
different versions - of the product that will be produced in
terms of their trim levels, badging, body type and engine
capacity. The availability of "features" that the product may 
have is presented as a matrix map of X's (standard
availability), 0's (optional availability) and empty spaces (not
available) (appendix 1).

4.2.3 Base and Additional Feature Charts. (fig 37, 38 and 31,
32, 33)

The Specification Services department uses the Features List 
documentation to compile the Base and Additional Features Charts 
(BAFC). The BAFC provide the availabilities of the vehicle 
features in Boolean code which Manufacturing should receive from 
Design Engineering.
More specifically, BAFC list all the Features Groups which 
experience and practice within Specification Services have 
invented to tackle the areas of the car which show a tendency for 
regular multioptional availability, hence maximum complexity in
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their specification. Within a Feature Group the availability of 
each feature or vehicle characteristic is more specifically 
defined according to Combinations, Territory and Base features 
restrictions issued from the Vehicle Directorate.

Combinations restrictions establish the availability of a vehicle 
feature in combination with other features of the product 
whereas territory restrictions control the availability of each 
feature to the various territorial options such as Europe, UK 
only, etc.

For example, the Base and Additional Feature Charts of Metro 
include all feature families that made up this model; bumbers, 
floor coverings, radio speakers, exterior mirrors finish etc. 
The Feature Group description "Exterior Mirrors Finish" has 
Feature Group code "B12", and more specifically for this model 
includes the features :

1 DESCRIPTION CODE

BLACK Mirror - standard head" "B12A"
BODY COLOUR MIRROR - standard head" "B12C"
BLACK Mirror - large head" "B12D"
NIMBUS: mirror - large head" "B12G"

Within the BAFC the restrictions of each feature is defined with 
the same Boolean notation, discussed earlier ie. (+), (-), etc.

The BAFC consists of three documents:

51



(i) Base Features Summary Chart (fig. 37)
(ii) Model Summary Chart (fig. 38)

These two documents keep similar vehicle information in 
different format; the Base features of the particular model, and 
are mentioned in more detail in chapter 5.

(iii) Additional Features Chart (fig. 31, 32, 33)

This is the largest and most important document in AFC. It lists 
all the Additional features offerings from Rover for a particular 
model, restricted to various territories and design 
combinations.

The BAFC though are documents with high discipline, the 
presented vehicle information using manufacturing codes and 
boolean statements make it unfriendly for design engineers.

4.2.4 Territory Group Index Report Territory Code Index 
Report (fig. 36, 35)

The first of these two documents groups territories in the 
following sequence: Supergroups, Groups and Countries and the 
latter works the other way around, from the countries to 
supergroups. eg. the supergroup with description "HOME GROUPS" 
and code
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M20*" includes the groups :

"U.K. EXPORT GROUP" (M20E) including the countries:

Cyprus, Germany-RHD, Malta, New Zealand, and 
"UNITED KINGDOM GROUP" (M20E) with countries :

Irish Republic and United Kingdom.

4.2.5 Base Features Code Index Report (fig. 34)

This translates the Base Features coding system into English.

4.2.6 Additional Features Group Index Report (fig. 29, 30)

This document lists the availability of all Feature Groups in 
relation to all Rover vehicles.

4.2.7 K87 or Company Feature Directory

It records all the Base and Additional features available for any 
model, from the time that BAFC started to be applied within 
Rover.

4.2.8 Automatic Part Numbering (A.P.N.) (see fig 28, 54)

A.P.N. has been developed in response to a requirement outlined 
by Rover who wished to add significance into the part number and 
have the facility of on-line creation and recording of the parts. 
The Part Description Catalogue contains all the descriptions of
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the parts which have been used by Rover until now and represents 
the higher level for the search of a part and assign to its part 
number.

4.2.9 Usage Conditions to Parts System

This Usage Conditions to Parts system was developed by ISTEL, as 
was PIMS, and uses the information from PIMS - ie. the usage 
statements of all parts of the new vehicle - to calculate the 
quantity of individual components required on the production 
line. As mentioned earlier, features in reality represent sets of 
parts to be assembled. Thus, the Usage Conditions to Parts system 
can broadcast the quantity of parts required by 'pulling out' 
from the data base parts whose usage condition matches the order 
specification. This is discussed in more detail in chapter 9.

In summary, the first section of this chapter analysed the 
subsidiary concepts of the Rover's PSC. Typically, these 
represent the common ideas which have modelled the PSC in 
automobile through the years. The top-down specification of the 
vehicle, from features to the actual physical parts, forced 
automobile to create tools which would support such a process at 
each level.

The Features List and the BAFC are among the major tools in the 
specification of a vehicle. They respectively document and code 
the parts of a vehicle in the form of usage statements. They are 
typical examples of tools which are used when the vehicle is
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specified conditionally.

PIMS is another important tool for the specification of the 
vehicle as it keeps all the usage statements of all the parts of 
the vehicles. Notice, however, such databases of usage statements 
accumulate information rather than elaborate it. APN which is a 
subsidiary database of PIMS and hierarchically groups the parts 
of the vehicle according to the Vehicle Part Grouping concept is 
another major tool for the specification of the vehicle and it 
will be used later.

The Usage Conditions to Parts system, concerns mainly 
manufacturing and it not used in the specification of the parts. 
However, the knowledge of the way its principle works to collect 
the parts usages related to a company order can help for higher 
quality in the specification of the parts.

The rest of this chapter, shows the Rover's PSC with only brief 
indications to the tools it uses.

4.3 THE ROVER'S PRODUCT SPECIFICATION CONCEPT

4-3.1 a 'high level' simplified approach

The Rover's release system which issues the information to 
support the Product Specification Concept is shown simplified in
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figure 22a. In reality it represents a very complicated procedure 
with nested subtasks. Further details can be found in [19].

The preparation of any specification starts with the Customer. 
The customer's requirements are established by the Marketing 
department via extensive market research. Marketing must then 
relay these to the Vehicle Directorate/Line so that they can be 
translated into a specific vehicle strategy which accounts for 
the needs of the customer. Vehicle Directorate compile a detailed 
proposal of the actions required to complete the project which is 
then issued as the Product Development Letter (PDL). This 
authorises work and development to be carried out for the new 
product and supports it by compiling the Features List of the 
vehicle.

Features Lists outline in "feature’' terms the make up of the 
total vehicle. Specification Management/Specification Services 
then use the Features List to compile the Base and Additional 
Feature Charts. The Base and Additional Feature Charts form the 
high level of the specification. Together with the next assembly 
relationships (the next higher level in the assembly structure), 
they represent the two basic types of information which combine 
to form the complete product specification. The Base and 
Additional Feature Charts are then used by the Design, Concept 
and Product Engineering areas to develop the parts that will 
comprise the model variants.

At present. Specification and/or Audit services receive 
documents from Product Engineering at any form ie. in boolean 
expressions or english statements and either check the validation
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of each part's usage statement or work out those statements for 
themselves. This operation is performed manually and auditors 
liaise with Component Engineers in the case of queries or raise 
questions both verbally and using Release Query Notes.

Finally, the audited engineering packages (features & parts) are 
loaded to PIMS from where they can be used by other departments
of the company that needs them such as Inventory, Purchasing,
Manufacturing etc.

4.3.2 the Rover's PSC/release system as related to build
phases.

Figure 22b depicts (still simplified) a closer look to the
processes happen during each build phase of the vehicle.

The fundamental of the procedure is to start the programme by 
establishing on PIMS a complete product specification (ie. all 
vehicle/unit derivatives intended for final production) during 
the concept phase (D01). Then at each build phase, first 
validate the complete PIMS specification, and from that, derive 
electronically the specification of the products chosen to be 
built in that phase. The 'build specification' is then sealed and 
transferred to Application System (AS), the IBM's database 
handler, and subsequently kept up to date for the duration of the 
build phase. AS holds the Master Part Status (parts to be 
manufactured or bought from outside), BAFC, timing information 
(lead times for manufacturing and purchasing of parts), long lead
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items etc. In reality there is more information in AS than in 
PIMS.

This process is repeated at each build phase starting with the 
re-validation of the complete PIMS specification. The timing of 
each event will be detailed on the appropriate Timing Plan.

Thus, throughout the whole development process, PIMS is the 
prime source of data, but the unique build specifications, 
although initially derived from PIMS, are held separately on AS.

Note that during the PSC developement process there are, in effect, two 

'specifications' :

1) The complete product-intent specification, held on PIMS, and

2) The unique build phase specifications, held on AS,

and throughout the process they must BOTH be kept up to date and consistent 

with each other [19].

4.3.3 PROBLEMS OF THE ROVER'S PSC / RELEASE SYSTEM

The first main problem that came to light to prevent the correct 
application of the Product Specification Concept is the re­
formatting of the vehicle information through the route of its 
release within the various departments of the company.

It was mentioned that the Product Specification Concept and more 
specifically its features semantics were developed on the idea 
that people within the company could communicate with each other



regardless of their own specialisation. However, things are not
as simple as they seem in theory. Contradictory motives arise
with the actual application of the concept in the company.
Because of the different needs of the various departments within 
Rover, the features of a vehicle must both be defined
unambiguously to understate the risk of false specification but 
also ambiguously concerning flexibility in the market to the 
legal or technological changes. This comes as result of the 
apparent confusion in Rover of what people really mean by the 
word feature.

Vehicle Directorate, for example, implements the Features List 
having its main input from Marketing. Marketing as a cost 
analysis oriented department details the slightest modification 
in the vehicle that affects cost as a new "feature" of the 
product. Thus, a major number of such "features" are compiled in 
the Features List of the vehicle. The following example clarifies 
the situation.

The Features List of the Rover R8 model includes the "feature" 
'BOOT LID FITTINGS' which is detailed further to other "features" 
such as

key operated boot lock
Plastic sleeves over boot latch
Rear spoiler, black
Moulded plastic boot lock cover etc.

For Vehicle Directorate/Line, the above are considered to be 
"features" of the product as the responsibility of this
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department is to point out all the project details of cost 
feedback.

On the other hand, such boot details do not mean anything as far 
as the Base and Additional Feature Charts document of the vehicle 
is concerned. The BAFC describes only the major features. That 
is, features for which experience within Specification Services 
has revealed that they represent the main cause of changes in the 
design of new derivatives or new models. These are the Base and 
Additional features which were discussed earlier during the 
introduction of the Product Specification Concept. In the the 
Base and Additional Feature Charts for the model boot details are 
not referred to at all but are linked implicitly through the 
BAFC'S feature 'REAR BADGE'.

For this reason, the features of a vehicle which are defined in 
the Features List document are marked by upper quotes. This 
convention is used to indicate that such "features" do not 
represent the features concept in this research.

The terminology "Features List" used by Vehicle Directorate for 
the document that supports the development of the new product is 
misleading as there are not only features inside this document 
but also parts. Specification Services translates the Features 
List into the logic of the Base and Additional Feature Charts.

The problems of the Rover's Product Specification Concept start 
w^th this "change of gears" in the features ideology.
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4.3.4 DIFFERENCES__BETWEEN__THS__XHQ__DOCUMENTS

Firstly, the Features List is written in an english like language 
whereas the Base and Additional Feature Charts code unambiguously 
features with their restrictions.

Secondly, the Features List and Base and Additional Feature 
Charts implement similar information but from totally different 
angles. Not only in the way that the features meaning differs but 
also in the design of the information itself within the 
documents.
The Features List specifies the vehicle features and
restrictions on the basis of the UK market vehicle
specification (main document) with the rest of the world
derivatives being variations on this. The reference specification 
point is geographical e.g. the UK market [9] .

On the other hand, the Base and Additional Feature Charts are 
oriented to the characteristics of the vehicle which control its 
design update. The specification reference point is the vehicle 
feature and all the territorial information is grouped around it.

The Base and Additional Feature Charts of the model, once they 
are compiled from Specification Services, never go back to 
Vehicle Directorate for in line re-specification with the 
Features List although they are released to various departments
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within the company (figure 22a).

4.3.5 WHY SUCH A DIFFERENCE IMPACTS ON THE__AUDITING__EUNGIIQH-
AND FURTHER__IQ THE__PSC IN THE COMPANY

The problem this gives rise to is that the re-formatting of 
vehicle information during its release to the various departments 
of the company creates confusion in the Product Specification 
Concept. That is because engineers, having the choice of the 
Features List document, they prefer to work with it, as it is 
written in English. However, they must specify their design 
intents on the basis of the BAFC's coding system. The meaning of 
the vehicle feature becomes vague and auditors have to work with 
both documents.

Furthermore, as the two documents differ so much in their 
compilation, inconsistencies appear with regard to the same 
information existing in both documents resulting from compilation 
error in Specification Services. Auditors have to check for their 
in-line compatibility, as well.

In summary, a closer look to the Rover's PSC, showed that the 
specification of a vehicle does not happen in one circulation of 
the relevant information through the various departments. 
Instead, information for the new product is gathered gradually,
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fed-back from the various departments, quality tests and market 
situations. This process can last even one year or more and
usually implies more than 11 circulations of the vehicle
information (build phases). At each build phase the old
information is updated in PIMS and AS having previously validated 
from the Auditing department.

In addition, studv»*« further some of its tools, it becameU
apparent that the re-formating of the original vehicle
specification is a major cause of human error. The PSC looses its 
original clarity because of the created features definition 
confusion as it expressed in the various documents which are 
compiled from different angles. Such a confusion impacts upon the 
various departments of the company and especially Auditing. From 
the literature survey it was found that such a phenomenon is
common among all the automobile companies which justifies why up
till now the Specification Services and/or Auditing have been 
highly dependent on 'common sense' and 'experience' and not yet 
automated.

Having, discussed the Rover's PSC the following chapter continues 
further the investigation, more specifically, with the Rover's 
Audit function itself. For this reason, the following chapter 
introduces the way which auditors use to validate the documents 
coming from Component Engineering manually.
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5. The auditing function

The need for the existence of the auditing department within 
Rover arises from the inability of the engineers to understand 
and work with the complexity of the Product Specification 
Concept. That is, though they are well trained in component 
design, they are concerned only with their areas of 
specialisation rather with the complexity of the vehicle in a 
whole. In addition, they find the coding systems most unfriendly 
to work with.

Training of these engineers in the techniques used by Auditing 
services would not be a solution as it would require at least 3 
months of course attendance and up to one year working with the 
system on a daily basis, also, because of the need to keep design 
lead time down (see discussion associated with table 5). 
Designers need to concentrate on their basic function rather 
learn other skills.

For this, the auditing function exists independently as a 
separate department within the company; it is applied 
exhaustively within Rover, in all vehicles, in all phases of 
their design, at any new changes in their specification, 
throughout their life.

More specifically, the job of the Auditing department is to 
validate the specification packages - as they are called - 
compiled by Component Engineering. Figures 23, 24 represent two
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pages (or physical parts) of a specification package which refer 
to two different parts which are linked in assembly.

At the top right corner of figure 23 which represents the "SEAT- 
FRONT COMPLETE manual", the 8 digits code number under the 
heading "PART NO." represents the part number of the physical 
part which uniquely identifies it. The "USAGE CONDITION" section 
describes the usage statements of the part and the number under 
the heading "USAGE QUANTITY" shows the quantity of such physical 
parts needed in one car. Two more pieces of information are of 
great importance; the "NEXT ASSY NO." which indicates the higher 
level assembly (part number) in which this part is going to be 
assembled and "QUANTITY" which records the number of such parts 
needed at each assembly. Figure 24 which represents the "COVER- 
ASSY-SEAT-FRONT-SQUAB" shows that one such a part is fitted to 
the "SEAT-FRONT COMPLETE manual" assembly.

A typical specification package would usually consist of about 30 
of these pages each representing a physical part linked together 
by engineering design and/or manufacturing rules. Often the 
drawings of the parts accompany the specification package and 
show the relationships between these parts.

In actual fact, specification packages arrive in the Auditing 
department in various forms, in addition to the official one 
(figures 23, 24). This is because many engineers cannot
understand or work with the auditing coding system and express 
their design in ways they find more suitable. Some usual cases 
are the submission of documents in a eg. matrix form or even the
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description of the characteristics of the design of the part in 
English. Rover tends to accept such alternatives in order to save 
design time even though it is likely to increase the possibility 
of mistakes in specification. This, then, creates even more 
pressures on the Auditing department as now the auditors not only 
have to validate the usage statements coming from Component 
Engineering but also to create them from scratch, assuming they 
fully understand from the ambiguous English statements the 
reasons for which the component was designed.

In the next section a typical audit exercise is discussed in 
order to clarify the tools that the audit function uses and also 
to provide a basis of the understanding of the design of a 
computerised system which may automate it.

Notice, the existing manual system has grown over many years in a 
pragmatic manner, extra procedures being invented as required by 
individual auditors. The analysis which was essential for the 
development of an automated system had to led to a 
reconfiguration of the system in a structural manner.

Contribution to knowledge:
- the identification and sequencing of three phases in the 

Auditing function
- the identification of areas in which computer algorithms 

could possibly be implemented.

5.1 An audit example.
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5.1.1 PHASE___I

The auditor uses all the application tools discussed in the 
previous chapter in order to validate or create the usage 
statements of the parts of the vehicle (Features List, BAFC, K87 
etc.).

The process that the auditor follows in the first phase of the 
audit function is shown in figure 25.

The Features List represents the "bible" - using the auditors' 
terminology - for the auditing process. It is the first document 
relating to the product compiled by the company and describes the 
vehicle in english. Figures 26, 27 depict two consecutive pages
from the Features List of the Rover R8 model and its counterpart, 
the Honda Concerto.

In them, the side-headings at the top of the figure "CLASS" and 
"TR. LEVEL" represent the various derivatives of the Rover R8 
which were offered by Rover until the middle of 1989. The 
"DESCRIPTION" section details the characteristics of the 
vehicle, with their availability indicated with Xs (standard 
fitment) or Os (optional fitment) across the row of derivatives. 
Finally, the "REMARKS AND EFFECTIVITY" section on the right hand 
side of the figure comments upon such characteristics and shows 
the human orientation of the document.

In the example which follows the auditor is required to validate 
(or create) the usage statements of the front seats of the Rover
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R8 model. In reality, the description of the part which is going 
to be audited is chosen from the Automating Part Numbering 
Catalogue (APN) and it will be very specific; for example, "SEAT- 
FRONT COMPLETE manual" (figure 28).
In this case, the information relevant to this seat in the 
Features List of the Rover R8, exists under the sub-heading front 
seats. Thus the auditor has his first view of the 
characteristics ("features") of the Rover's R8 seats which helps 
him to identify the possible new additional features which have 
been offered by the company for the product in the past and which 
may condition the usage of the part at a later stage. The 
auditor, also, knows from experience some other features which a 
seat part of the vehicle usually uses in its specification such 
as the material from which it is made (leather, plastic seat), 
the style of its operation (manual, automatic) etc. Combining 
both of these inputs he can select only those features - actually 
feature groups - which are closely related to the application.

Not all of them, however, may be available to the specific model. 
In this case, the Additional Feature Group Index Report (AFGIR) 
will help the auditor to identify only those feature groups 
applicable to the specific model. For example, for the lowest 
specification car, the Rover Mini, it would not be expected that 
luxurious options be offered on its seats (such as heated, or 
remote control adjustable seats).

Figures 29, 30 represent two pages from the Additional Features 
Group Index Report. This document maps in a matrix form the 
availability of all the additional feature groups which have
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been compiled by the Specification Services, against all the 
current Rover models (the code XW represents the Rover R8 model, 
XF the Metro, XS the Rover 800 etc.).

In the AFGIR it can be inferred that the feature groups which 
affect the front seats of any Rover model would be: "B38: SEAT

BELTS FRONT", "B40 o r  B 51 : SEAT MATERIAL F IN IS H ", "B 44: SEATS -

RECLINING", "B69: SEAT HEATING" etc. It might be assumed that
the AFGIR would provide the information on which feature groups 
affect the front seats of any Rover model. However, this is only 
partly true as shown in figure 29. The "B38: SEAT BELTS FRONT" 

feature group is not available to the Rover R8 model, thus it 
cannot condition the usage statement of its front seats. On the 
other hand, the rest of the feature groups are available for the 
Rover R8 model and may condition them.

Up to this point, the auditor has clarified the area of the 
vehicle information needed for his exercise. The following 
feature groups are available for specifying the front seat of the 
car (R8) :

"B51: SEAT MATERIAL F IN IS H " (the "B44" feature group does
not account as it existed only in the past),

"B44: SEATS -RECLINING" and "B69: SEAT HEATING" feature
groups.

Thus, he can access the details of this information for each 
feature in the feature group in particular, by using the 
hardcopy indexes (like "Table Of Contents") which are 
implemented within the Additional Features Charts document.
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Figures 31, 32, 33 depict three typical pages each representing a 
feature group from the Additional Features Charts.

The second column in figure 31, for example, "FEATURE 
DESCRIPTION" describes in English the feature as it is compiled 
by Rover's Specification services in order to be offered as a 
new option to the new product. The third column codes the type of 
the feature availability ie. standard fitment (s), or optional 
(o) , or a legal requirement (1) etc. The fourth column specifies 
the base features of the vehicle. The last column records the 
effectivity of the feature or Design Effect Point (DEP). That is 
the time the feature compiled first time from Rover (DEP IN) and 
the time which the Specification Services people withdrawn it 
(DEP OUT). The fifth, sixth and seventh columns are concerned 
with the combinations and territory restrictions of the feature.

The boolean algebra codes which appear in the Additional Features 
Charts represent Rover's notation to express restrictions on its 
products. For example, the group territory restriction M32S" 
in figure 32 means that the Rover R8 model can get an autolux 
leather seat, provided that the car is not going to the Spain 
group (M32S). In other words it is not going to the countries: 
Canary Isles, Gibraltar, Greece, Portugal and Spain. When more 
than one boolean expression is involved in the restriction of the 
feature, the specification area becomes the logical combination 
of these statements. For example, the top combination of the 
restrictions in figure 33 "+ M32B M32D M34A" and "M32B +DK" is 
interpreted as : "the front seat for the passenger of a Rover R8 
model can be heated at the trim level 51 (X), for a left hand
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drive car (B) , if such a requirement is coming from the countries 
of the Belgium group (M32B), Austria group (M34A) but only from 
the Germany (DK) in the Germany group (B32D).

The Additional Features Charts therefore describe all the 
applicable options (features) of each feature group individually, 
together with the restrictions which control their availability. 
The auditors use three hardcopy files in order to interpret the 
codes of the Additional Feature Charts into English: the Base 
Feature Code Index Report, the Territory Code Index Report, and 
the Territory Code Index Report (figures 34, 35, 36). In addition 
to these, they use two more documents for quick references for 
the application they working on, rather than thoroughly search 
the complete Additional Features Chart of the product. These are 
the Base Feature Chart and the Model Summary Chart (figures 37, 
38) .

The Base Features Chart lists all the possible base feature 
combinations of the product with reference to their territory 
restrictions, whereas the Model Summary Chart expresses similar 
information - the base features of the product - from a different 
angle; it provides a synopsis of the TRANSMISION and DRIVE 
specifications with the rest of the combinations of the base 
features of the vehicle.

The existence of so many different documents corresponds to the 
the auditor's need to be able to handle vehicle information from 
many different perspectives, as no clear line of audit guidance 
exists. However, once the auditor has identified the information
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relating to his application, the Additional Feature Charts will 
be the main document which will describe this information at its 
lowest level.
In the example cited, the auditor through the Rover R8's 
Additional Features Chart can view any detail concerning the 
specifications of the seats and their restrictions and his job is 
then to match them with the specification and restrictions given 
by the engineer. In order to do that he has to understand the 
rationale behind of the new design of the seat and accordingly 
mix the features which condition it. As stated in [9], "a correct 
usage statement should only include those features which 
condition the fitment of the part in the vehicle".

It should be noted that although the engineer is the prime author 
for the design of his part, it is the experience and knowledge of 
the auditor for the product and in particular for the part itself 
which ensures the correct usage condition. That is, it is the 
auditor who has the responsibility for actually loading the usage 
statement in Rover's database. He, also, has a better 
understanding than the engineer for the part, as he has coded its 
usage condition in the past. It can be concluded then that it is 
his function to code the usage statements of the parts in the 
most optimum way; ie. to avoid duplication of the information 
and make the design intentions of all the parts obvious to its 
users.

Thus, in the example, if the front seat of the Rover R8 has been 
designed with a new heating mechanism, perchaps because the 
direct competitor of this product, the Ford Escort, offers such
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Figure 38: A page from the MSC of the Rover R8 model.
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option, then the feature group which controls the heating of the 
seats of the vehicles must be incorporated in the usage statement 
of the seat.

For the purpose of the demonstration, we assume that all the 
three feature groups, valid according to the AFGIR,"B51: SEAT 
MATERIAL FINISH", "B44: SEATS -RECLINING", "B69: SEAT HEATING", 
are needed to condition the usage statement of the seat in the 
example. Then, the valid combinations of all the features within 
a feature group will determine all the different seats which can 
be made for this three feature group specification area.

The auditor generates all the usage statements for the seat, ie. 
all the possible newly designed seats, using a mix and match 
method applying to the above participating feature groups. The 
term validation algorithm has been adopted in this research to 
formalise the procedures used.

The algorithm is an iterative process which combines at each step 
two feature groups (parent groups). The result of their 
combination (child group) is recorded in order to be combined 
later with the rest of the feature groups. The depth of the 
algorithm (ie. sequential steps to the final result) can be zero 
if the part was offered unconditionally to all derivatives of 
the model, one if only one or two feature groups condition the 
fitment of the part into the vehicle, three if three feature 
groups are involved in the usage statement or more generally (n 
~ 3) + n , where n is the number of features (see section 
8.2.1.2.1) . The root of the search of the validation algorithm 
is the trim levels of the product and it performs a three
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Step 1

B44
B44B

B44R
Step 2

B51F, B51K, B51L, B51 

B51F, B51K, B51L, B51 result 1

B44B
B44

B44R

B69D ...

B69D ------

result 2

Step 3

F ig u r e  3 9 :  Dlagramatic representation of the validation algorithm's process

dimensional check at each step ie. the the base features of the 
car, the combinations restrictions and the territory restrictions 
of the features.

The validation algorithm can use any feature group as the
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reference point of its combinatorial search. Assuming that the 
master (pivot) feature, group in the example is the "B44: SEATS - 
RECLINING" group. Then, each of its features will be combined 
with all the other features of the rest of the feature groups as 
the figure 39 shows. (A detailed analysis of the validation's 
algorithm process is discussed in the next chapter).

In summary, the first phase of the audit process represents the 
core. The auditor, individually, validates each page of the 
specification package representing a physical part, based in his 
experience with the parts and the information he collects 
through a series of steps and documents (Features List, 
Additional Features Group Index Report, Base features etc.). At 
the end, the validation algorithm uses this information to 
identify the appropriate sections of the Additional Feature 
Charts from which it extracts further data and compiles them into 
the boolean codes of the usage conditions of all the physical 
parts in the specification package.

5.1.2 PHASE 2

Figure 40 depicts the last two phases of the auditing function.

In the last two phases, the auditor examines the specification 
package as a single document of information rather than 
independent physical parts.
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Each specification package, as mentioned earlier, usually 
represents an area of the car and the physical parts which it 
contains, ie. the assembly structure of that area.

In the second phase, the links between the physical parts within 
the specification package are investigated in order to ensure 
that their relationships correspond with the physical assembly 
structures of that area of the car. Those links are expressed, 
through the part number reference under the "NEXT ASSY. NO" 
heading, in the document of every physical part (fig. 23, 24). 
For example in figure 24 the physical part "HGB100007" with part 
description "COVER-ASSY-SEAT-FRONT-SQUAB" is assembled to the 
higher level assembly with part number "HAD10006". In this case 
the top assembly is "SEAT-FRONT COMPLETE MANUAL" and the 
relationship is correct as can be seen in figure 41. Figure 41 
depicts the assembly structure of the "SEAT FRONT COMPLETE 
MANUAL". The equivalent drawings are shown in figure 42.

The most common errors in this case are the transcription errors, 
for example, the incorrect copying of a part number. Despite 
being though simple mistakes, these can distort the Bill Of 
Materials which the specification package represents.

The most important issue of the second phase is the validation of 
all the quantities for every physical part in the assembly. This 
process uses the "USAGE QUANTITY" and "QUANTITY" sections of the 
documents of the physical parts (figures 23, 24) to complete 
missing information. The equation for two physical parts X and Y, 
where X is fitted only to Y, is*.
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Diagrammatic representation

F ig u r e  40atThe second phase o f  the A u d i t  process

Diagrammatic representation

F ig u r e  40 b : T h e  th i r d  phase o f  the A u d i t  process
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USAGE-QUANT I TYy = USAGE-QUANTITYx * QUANTITYx

The equation becomes more complicated when the part X is fitted 
to more than one assembly. The audit process of the parts's 
quantities is discussed in detail in chapter 9.

In the example, the missing quantity of the part "HGB100007" is 2 
as results from the equation : 2 = 1 * ?X. The question mark
("?") corresponds to the question mark in figure 24.

5.1.3 PHASE 3

The correct validation of the usage statements in phase one 
represents the major part of the work of the auditing process 
(almost 90%). It is a difficult task because it requires the 
knowledge and experience of both the general philosophy of the 
automobile manufacture and also a good understanding of the 
specific product (ie. Rover R8) and the vehicle parts (ie. seat). 
Because this wide-ranging knowledge is required the risk of 
error in the usage statements of the parts is always present. The 
third phase, consequently, double checks the usage statements of 
the parts by using inputs from phases one and two. That is, it 
compares the usage conditions, derived at phase one, among 
themselves based on the relationships of the parts they represent 
which are audited at phase two.

Phase three, in other words, completes the original audit of the 
usage conditions especially those lower in the assembly level
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hierarchy parts. It helps to diffuse consideration of the parts 
which are affected by the change. The general rule is that the 
logical summation of the usage statements of the parent parts 
should equal the usage statement of the child part.

In the example shown in figure 41 the assembly of the heated 
front seat is cascaded down to the elementary part which makes 
the difference to any other top level front seat assembly. This 
is the heating element ("ELEMENT-HEATER-ST/F SQUAB" HEATING") 
which added in the SQUAB's OVERLAY subassembly.

The top level front seat assembly "SEAT-FRONT COMPLETE manual" 
is dependent on the feature group "B69: SEAT HEATING" and 
similarly the SQUAB, its OVERLAY and the HEATING ELEMENT must 
dependent on the "B69: SEAT HEATING" feature group (figure 41). 
(This cascade of all the usage statements of the parts in an 
assembly, starting from the top level, is discussed in more 
detail in chapter 9).

If the feature group "B69: SEAT HEATING" does not appear in 
either of the usage conditions of the above parts then such a 
part is wrongly specified as inferred from its assembly 
relationship. In that way, the auditor picks up missing 
specifications at the lowest level by cascading the specification 
package from its top assemblies downwards to the elementary 
components.

5.2 SUMMARY
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The auditing function, though mundane in nature, represents the 
backbone of the correct application of the Product Specification 
Concept. It operates as an extension to Component Engineering in 
order to correctly specify the new design intentions for the 
parts of a vehicle. It is a difficult exercise because of firstly 
the use of codes which creates the possibility of many errors and 
secondly the engineering design knowledge it requires, such as 
that a front car seat becomes heated by fitting heating elements 
on either or both of its CUSHION and SQUAB overlays or that sport 
seats take this style by fitting a lumbar subassembly to the 
basic seat frame.

In addition, the analysis of the audit process can be only 
vaguely specified sequentially as the known information relevant 
to the application is literally dependent on the experience and 
knowledge of the auditor. For example, the auditor may know the 
reason why a new part is specified if he happens to have 
discussed it with the engineer, together with the changes in its 
assembly structure. In this case he would start with the third 
phase. In the case that he has no knowledge of the new design, 
then he would start with the first phase by consulting the 
Features List and the BAFC of the model.

This research, has therefore identified three distinct phases in 
the auditing function:

(i) audit of the usage statements of each physical part

(ii) assembly and quantity relationships and finally

(iii) usage conditions relationships.
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A combinatorial algorithm can, also, be derived, from the 
existing manual operation that auditors apply to the Additional 
Features Charts of the model in order to specify the parts. This 
algorithm can be designed and proved to be practically correct 
and some of its properties postulated; the depth of its search, 
the time of its process etc.

Finally, using both the analysis of the audit phases and the new 
algorithm, a computerized expert system could be developed to 
behave knowlegeably within the problem domain and experiment with 
the automation of the auditing function.
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Sl,__CHARACTERISTICS__QE__THE__PROBLEM

This chapter summarises the characteristics of the problem which 
the investigation has revealed. Firstly, the PSC, giving a 
general picture of the rationales for which the Rover's 
specification concept is still in the area of research and 
experimentation. Then, most specifically the problems met within 
the Auditing function and how it affects and is affected by the 
overall PSC in the company and how such a function could be 
automated or supported by a computer system.

The general idea is that experimenting with the specific 
application of the PSC, which is the Auditing function, problems 
should become clearer as they would be of an applied nature 
rather than just theory. Their solutions, then, could be more 
clearly defined and investigated. If a computer system could be 
developed to support the Audit function, then the software 
development of the whole PSC in Rover could grow more naturally 
by extending further the existing system. In that respect, the 
automation of the audit function could become "vehicle" for 
clarifying the various concepts within the PSC and prototyping 
its automation.

The first section of the chapter outlines the characteristics and 
complexities of both the Product Specification problem and the 
Audit function, which lead to them still being a subject for 
research.

102



From the investigation two types of problems with the PSC within 
Rover can be distinguished: complexities, specific to its 
application in the company and general characteristics of such a 
problem which make its solution difficult.

6.1 complexities of the PSC

6.1.1 duplication and t o -formatting of information

It was discussed in chapter 4 how the PSC becomes obscure with 
the reformating of the original vehicle information from Features 
List to the AFC data.

6.1.2 unclear interrelation of the various functions of the PSC.

It was mentioned that the Audit function was invented by Rover as 
an 'artificial' mechanism to tackle the mistakes occurring in 
Component Engineering. Such a mechanism represents a classic 
example of how very large organisations, including Rover, usually 
tackles problem in complex system such as the PSC: new functions 
are invented and fitted somewhere inside the problem framework as 
autonomous entities rather than being integrated with the rest of 
the problem. This, however, creates additional problems such as: 

(i) the interrelation of the problem components becomes
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looser. It creates duplication in the information and overlapping 
of the tasks of the new function with some of the existing ones.

(ii) the overall PSC becomes more vague in the way that 
part of the additional detail is entered into the problem 
framework.

Furthermore, because of the high complexity in product
specification, the various departments involved (Purchasing, 
Auditing, Specification Services, Manufacturing etc.) tend to 
"tailor" their functions to their own needs which in return 
leads to views of the same problem from many different (and 
increasingly narrow) perspectives. Rover's PSC thus suffers from 
a proliferation of autonomous functions instead of a single 
integrated one. Clarity which would be the result of integration 
of the various functions has been sacrificed in favour of high 
specialisation and handling the whole complexity each function at 
once.

Because of the lack of clarity in the whole procedure of the 
Rover's PSC, it is difficult to study the Audit function in 
isolation. It is equally difficult to clearly specify the PSC's 
functions upon which the audit function is dependent or the 
functions which auditing directly supports.

6.1.3 fear of the new technology

It has become apparent through the investigation of the problem

103



PAGINATION
ERROR



that some people in various departments do not wish to co-operate 
in computer implementation of their job as they are afraid for 
their job security because of computer automation. In another 
situation, people have worked in the Auditing department manually 
throughout the period of their employment and have met the 
difficulties of the process in a daily basis such that they do 
not believe it is possible to develop computer solutions and 
consequently they are less than co-operative.

6.1.4 confidentiality

Literature in the subject is very limited if non existent. That 
is because of the confidentiality of such business in the 
industrial sector. Even when literature is found it is so highly 
specialised to the needs of the individual company that it is of 
little use.

6.2 general characteristics of the PSC

6.2.1 knowledge and experience

As the PSC tends to high specialisation in each of its functions, 
its application and maintenance are even more dependent on the 
knowledge of the experts scattered around the various departments 
of the company. For example, component engineers know the
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characteristics of the design of the parts with which they deal 
together with the update peculiarities of those parts. The 
Specification Services people can recognise features which are 
likely to change through the lifetime of the vehicle. 
Manufacturing and Purchasing know the lead times for building or 
purchasing the parts.

Such types of knowledge of the PSC are not fully documented 
anywhere within the company and the amount of labour required 
for it to be consolidated is great because of the amount of data 
involved. More specifically for the auditing function, such a 
knowledge is hard to code because of its qualitative factors such 
as "common sense" and "experience".

6.2.2 dynamic environment

The automobile environment is highly dynamic. The design
conditions of a product can change according to legal,
climate, technological, or market requirements. Rules which may 
used to be reliable in the past may not have any value in the 
future.

There follows a discussion of the difficulties of the auditing 
function, more specifically.

complexities of the Audit function
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6.3.1 use of codes

The auditing function is closely linked to codes. In reality 
auditors work so heavily with codes that they tend to think and 
express themselves in codes rather with the meanings of the 
codes. As humans are not generally good at remembering and 
manipulating codes, mistakes in the auditing process are likely 
to happen.

6 . 3 . 2  use of many different hardcopy fries

Auditors sometimes have to work with ten hardcopy files 
simultaneously. In general, the least number of files that 
auditors work with at the same time is three plus their own 
notebook for notes and calculations. Actually, as simultaneously 
working with so many files is such an everyday procedure in the 
Auditing department, practical methods of manipulating the 
paperwork manually better have been developed through experience 
and these are taught to the trainees during the auditing course.

6.4 characteristics of the Audit function

6.4.1 unclear procedures /subjective Information
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Each auditor follows his own way of usage condition validation 
dependent on his own knowledge and experience. This means that he 
may have alternative ways of reaching the result other than the 
three audit phases discussed in the previous chapter, or he may 
use them but in a different order.

Although the audit function has grown satisfactory during the 
last 10 years, it is still subject to "heavy functualism" 
Rover's terminology [20]. Heavy functionalism means that it is 
possible for auditors to interpret the design intentions of the 
engineer differently and consequently code similar information in 
the data base differently. Besides each one could exhibit equally 
valid arguments to support the correcteness of his usage 
statement ie. "my usage is better than yours".

6.4.2 need for multidisciplinary knowledge

It is quite important for a person (or a system) to have 
knowledge of many different aspects of the product in order to do 
the auditing job. That is manufacturing knowledge, design 
engineering knowledge, product specification understanding. Most 
important is that all this knowledge is accumulated only through 
experience.

In the rest of the chapter the reasons for which the PSC and the 
Audit function could possibly benefit from a computer system is 
discussed, based on the complexities and characteristics
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discussed previously.

6.5 Wliy__Lhs__PSC__and__the__auditing__function__represent__an
appropriate field for computer application.

Although the vehicle specification and/or auditing area in 
automobile are still done manually, as the intelligence required 
in such a business is dependent on the "common sense" and 
"experience" of experts, the analysis of the complexities and 
characteristics of the problem show that this could be 
computerised, in the following.

The PSC handles huge amounts of data of a dynamic nature (ie. 
update, deletion, insertion). Huge amounts of data, updated 
regularly can be more efficiently manipulated by computers than 
manually by humans.

The study of the PSC has shown that as the vehicle information is 
released through the various departments of the company, the same 
auditing procedure occurs at each build phase of the vehicle (at 
least 11 times): sourcing, update, specification, validation, 
loading in the data base. The only variable is the time. 
Computers are good for iterative (usually mundane) type of work 
as it is only necessary to implement the procedure once.

The auditing function in particular makes heavy use of codes with 
which computers are better designed to work than humans.

The use of many hardcopy files in the simplest situation could be
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replaced by many computer screen windows and user friendly 
interfaces.
The semantics (features) and syntax ("+" ..) of the PSC are 
implemented in boolean algebra. Consequently algebraic logic 
could be used to infer rules. Computers handle algebraic problems 
very efficiently.

The creation of the usage conditions of the parts is done through 
the application of combinations of features. Computers are much 
faster at combinatorial problems rather than humans.

It was mentioned that a huge amount of labour and time is 
required to collect knowledge from experts. In addition, the type 
of such knowledge is heavily dependent on experience.

Software research, nowadays, seeks to develop programs which 
could assist in knowledge acquisition and learn from experience. 
In that respect a computer could interactively consult the 
auditor or engineer with probably a highly refined knowledge 
derived from statistical analysis of existent data.

In the PSC parts are linked together by engineering and 
quantitative links; such relationships could be built directly 
within the computer memory, rather than using the flat structure 
of hardcopy files. In this way the representation of the 
knowledge of the problem could represent the problem domain 
itself resulting to higher naturality, understanding and 
performance.

Finally, computer programs could replace the subjectiveness



caused by humans in any aspects of the PSC or the 
function.

The following section introduces to the research of the 
tool required to satisfy the objectives cited above.

auditing

software



7___________ IN V E S T IG A T IO N _____ON_____T H E _____SOFTW ARE_____EN VIR ON M EN T____ FO R.
THE DEVELOPMENT OF THE SYSTEM

This chapter investigates the software environment needed for the 
automation of both the Audit function and the PSC, based on their 
characteristics discussed in the previous chapter. The research 
extended into the subjects of abstraction hierarchy, Meta­
knowledge, programming and database technology.

The audit function has been designed by Rover to control the 
correct application of the PSC. Thus, it is bound to maintain, 
even vaguely, the information needed to tackle the product 
specification problem in Rover. By understanding better the 
Auditing function, it was thought that the Product Specification 
Concept should become clearer and more easily automated. For 
this, the design of the overall system was firstly focused on the 
automation of the auditing function. Besides, this was the 
original objective of the project.

Things that may help the automation of the PSC, as well, are 
pointed out during the discussion which follows.

7.1 abstraction hierarchy.

The automation of the Auditing function within Rover could not 
immediately be understood in its entirety, therefore it was
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necessary to design it in easily understood components.

The general idea was first to solve the problem in an abstraction 
level, a simplified representation of the problem in which not 
all the details are involved. When a solution to the problem at 
the abstraction level was discovered all that remains would be to 
account for the details of the linkup between the steps of 
solution. This approach should also help the automation of the 
PSC, as such a solution at an abstract level should closely 
reflect the solution required for the automation of the whole 
PSC. That is, as the audit function represents the PSC's 
application, its solution at the abstract level should be the 
same as the theory which it follows, ie. the PSC in Rover.

The term for this approach, gradually inserting details in the 
design of the problem, has been borrowed from [48] in the AI 
field and it is used in this thesis as "planning in a hierarchy 
of abstractions". In some cases it may be referred as
"hierarchical planning" or "abstraction hierarchy", as well.

Planning in a hierarchy of abstractions, in the context of this 
thesis has been used to ease naturalness and understanding in 
the system design and facilitate rapid prototyping. These reasons 
are of great importance in the implementation of the system as

- no work relevant to this project has till now been carried 
out in automobile industry, to which one could refer for
literature and/or evaluation of alternative approaches

there seemed to exist multiple alternatives for the 
implementation of the system and it was difficult to judge the
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best one when no results of a prototype program exist.

Multiple alternatives arised mainly for two reasons:

Firstly, because of the different objectives which were 
drawn during the development phases of the system. The first 
audit phase, for instance, was implemented with the view to re­
configuring the Audit process in a manner such that it could be 
mechanised and guarantee correcteness in the creation of the 
usage conditions of the parts. That required the manipulation of 
part descriptions at an abstract level.

The development of the last two phases of the Audit function, 
however, had different objectives. One needed to be concerned 
with the overall Product Specification Concept and study the 
actual physical parts and assembly structures in the company.

Secondly, there is no single department within Rover that 
possesses the total knowledge for the Product Specification 
Concept. The Auditing department did not have sufficient
information - it eventually proved necessary for the designer of 
the system to understand the PSC rather than just the audit 
function. The required knowledge is scattered through the various 
departments of the company such as Component Engineering, 
Specification Services, Auditing, Manufacturing, Purchasing etc. 
which approach the problem from different angles, as well, 
subject to their profession.

In this perspective, it seemed vital that a planning technique be 
used which would allow the design of each phase to be tackled
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independently but also allow the adjustments that may affect to 
the whole system, be easily implemented.

"Planning in a hierarchy of abstractions" provides such 
characteristics and the whole design can be updated when needed 
by simply modifying the interactions protocol of the system's 
subcomponents. This is obtained by using satisfaction posting 
and making use of the almost hierarchical decompositions 
conceptualism (discussed in the following).

Polya has discussed quite early on the concept of decomposing a 
problem to subproblems in order for one to study it, refering 
actually to the way which the human problem solving mechanism 
operates [96] .

In the followings the benefits of such an approach in the design 
of the system are discussed.

7.1.1 CLEARER DEFINITION THE PROBLEM DOMAIN

With "planning in a hierarchy of abstractions" the apparent 
complexity of the design problem is reduced by understanding the 
better defined subsystems and hence the global exercise becomes 
clearer. An additional advantage of this approach is that the 
partitioning of the exercise can be done before the 
specifications of the subsystems and the implementation of the 
subsystems can be launched in parallel. This helped in the
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initial stages of the research into the auditing function: the 
distinguishing of three audit phases although their internal 
processes were not clear at the beginning.

Furthermore, "planning in a hierarchy of abstractions" 
knowledge engineer to distribute the acquisition of the 
knowledge evenly to the several specialists. A vital 
the computerisation of the PSC, in particular, where 
departments are involved in the process and view 
information from different angles.

helps the 
system's 

need for 
different 

similar

7.1.2 CONSTRAINT FOSTINO 
(using constraints to interact tlie subsystems)

The MOLGEN system [54] is probably the best known paper in AI 
literature covering the means of clarifying terminology in 
"planning in a hierarchy of abstractions". Constraint posting is 
defined in MOLGEN to "represent the approach to hierarchical 
planning which uses constraints to represent the interactions 
between the subproblems. Constraints are dynamically formulated 
and propagated during hierarchical planning, and used to 
coordinate the solutions of nearly independent subproblems".

Constraint formulation, Constraint propagation. Constraint 
satisfaction are defined clearly in the MOLGEN as well and the 
reader can refer to [54] for more details.
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The M O L G E N 's clear definition of the terms in the "planning in a 
hierarchy of abstractions" has been studied and used during the 
design of the computer system discussed in this thesis. However, 
constraint posting, as is defined in M O LGEN , represents the most 
important issue used in this thesis. That is, both consideration 
of the phases of the auditing function and how the whole auditing 
function fits into the PSC have been examined as independent 
subsystems without constant attention to their interactions. 
However, during the design of the audit function or the gradual 
learning of the PSC, interactions were always anticipated and 
were implemented later by the means of constraints when the 
knowledge of the problem had grown sufficiently.

7.1.3 M A K E  U S E  OF A L M O S T  H I E R A R C H I C A L  D E C O M P O S I T I O N S

Hierarchical planning by introducing constraints (or details) in 
the various steps of the planning process mainly comes from the 
work of synthesis and analysis of electrical networks. One of the 
first papers in this subject was C O N S T R A IN T S  [47] which tackled 
the apparent synergy in the design of a circuit by propagating 
constraints in the sense of algebraic dependency analysis among 
the circuit's various components ie. adders, multipliers etc. 
C O N S T R A IN T S , especially, encourages the abstract analysis of a 
system to a hierarchical (tree-like) decompositions for 
simplicity but it also, maintains the idea that a strictly 
hierarchical description of the problem can only be an
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approximation to its true structure of an object. Consequently, 
systems can only be decomposed to almost-hierarchical structures.

Figure 43 shows the functional operation of a timepiece - that 
CONSTRAINTS uses to illustrate the concept - which is not 
hierarchical but almost is.

W ATCH

O v e r l a p p i n g  d e c o m p o s i t i o n s  o f  a  w a t c h .

Figure 43: The hierarchical decomposition of both the
functionality and physical structure of a watch. 
From reference [47].

In the auditing function in particular, the manual example when 
structured, showed that the components which most probably would 
constitute a computerised system are: APN (part descriptions), 
EXPERIENCE LINK (design engineering knowledge), AFC (features), 
VALIDATION ALGORITHM (features combination) and a USER INTERFACE. 
At the beginning only a basic relationship to associate them 
together, a sequential reference, is adequate (figure 44).
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figure 44: a linear (ie. a basic hierarchy) approach of designing 
the automation of the audit function

However, when the details of each subsystem entered and 
constraint posting used to interact the subsystems the design of 
the whole system did not look like as a hierarchy but rather as a 
network (figure 69).

7.1.4 E X H A U S T I V E  S E A R C H  OF A L T E R N A T I V E S

By using the abstraction hierarchy approach, it is possible to 
investigate several alternatives to the solution of each 
subsystem, individually. This is, because the different 
subsystems of the problem are considered independently, one can 
approach them from totally different angles. This means that even 
the philosophies of such approaches can be totally different from 
each another and still all of them interface together naturally 
in the whole design. This is the case with the audit function 
where the first phase is tackled from a totally different design 
perspective than that of the last two phases.

7.1.5 FFEVENTING COMBINATORIAL EXPLOSION
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MOLGEN [54] uses hierarchical planning with constraint posting 
to plan gene-cloning experiments in molecular genetics. One 
apparent advantage of the technique is the prevention of 
combinatorial explosion of the solution routes. The effectiveness 
of this is shown in the following rat-insulin example.

If the variables were counted independently, the columns would be 
powers of the numbers shown. However, the numbe.s in the 
Combinations" column show how the combinations in the

Er

Constraint

Combinations 

Total Considered

Carries Resistance 

Gene

Ccesnt cot 
Resistance

Has Sites

Has Sites

Elimination of solutions using hierarchical 
planning, from reference [54],
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example reduced gradually from 3456 to 4 detailing at the various 
steps of the planning process genetics knowledge 
constraints.

Generally, when hierarchical and non-hierarchical approaches for 
the implementation of a computer system have been systematically 
compared, the former has dominated.

p l a n n i n g  i n  a  h i e r a r c h y  o f  a b s t r a c t i o n  s p a c e s

(ai s t * ip s  th e*  ? c r  th e  s a m p l e  paoscsm IW a s s t * ! «  stanca t r e e  in  t h e  s p a c e  c p
C PlTlCAUTY S

It*  A6S7.1IJS îlA P C /»  7R £ IS  
I *  THE 1P*CZ OP 
C ftlT iC A u T Y  S

un a is t r ip s  a  a  a  c «  t a  s i s  in th e  s pa c e  op c r it ic a l it y  2

Search ire«* for the sample problem.

A a rra ip s  s ea r c *  t r e s s

IN THE PROELSM SPACE

Figure 46: The search space trees a aniib, using STRIPS 
and ABSTRIPS, respectively.

1 2 1



For example, the ABSTRIPS program [48] was a version of the non- 
hierarchical STRIPS planning program [49], retro-fitted with a 
scheme for abstract reasoning. ABSTRIPS demonstrated having 
implemented in a higher abstract level only the important 
information of the problem, the power of the heuristics of the 
program are augmented, by the means of directing the search more 
efficiently and avoiding backtracking. Figure 46 shows the 
difference in performance of the two systems STRIPS and ABSTRIPS 
in the robot application.

In summary, the manual audit example has shown that the whole 
part specification problem is governed by the correct use of 
constraints in the appropriate stages towards the route of the 
solution (ie. the vehicle model, design feature groups, 
territorial, combinational and base features restrictions).

Naturally the search leads towards the study of already existing 
systems which are built both on hierarchical planning and gradual 
constraint refinement.

"Planning in a hierarchy of abstractions" can help not only for 
the clearer definition of the problems discussed in this thesis, 
the audit function and the PSC, but if those problems are going 
to be computerised as well, combinatorial explosion in the search 
routes can be avoided by refining the level of the detail in 
their search space. A vital need for the computerisation of the 
audit function especially, as the usage conditions of the vehicle 
parts are obtained through feature combinations.



Many papers in AI literature refer to hierachical planning, the 
most important are [50], [52]. A paper that approaches 
hierarchical planning from a quantitative point of view claims 
that "abstraction hierarchies can reduce time exponential 
problems to linear ones [51] .

Having adopted hierarchical planning in the design of the system, 
the next section looks at the best way of representing the 
knowledge of the problem and the best software tools for its 
manipulation.

7.2 "Planning in a hierarchy of abstractions" with Object Oriented 
knowledge representation flavor.

Investigation in the computer development of systems in AI which 
encapsulate the concept of hierarchical planning has shown that 
Object (or frame) Oriented knowledge representation was almost 
universally adopted in such a system design.

The CONSTRAINT's system, for example, represents the various data 
types in a kind of 'constraints frames', whose initialisation 
depends on the values of their slots. For example a resistor is 
represented as a 'frame of constraints' in the followings:
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(constraint resistor
( (vl number)
(v2 number)

(resistance number)

(m multiplier)
(== vl (» sum av) )
(== (>> a2 av) ( »  product m) )

(== Resistance ( »  m2 m) )
(“  il (>> al ai) )

) )

In the above resistor definition, an expression such as "(>> a 
b)" means the "a of b". The notation "==" expresses equality. 
Thus, for the above definition, the keyword "constraint" is 
followed by a name, a list of component names and types, and a 
set of linkages. The resistor definition, in fact, represents a 
real object which enforces numerical constraints among two node 
potentials (ie. vl, v2), two currents (ie. il, i2) and a 
resistance such as:

(vi - v2) = ^Resistance, where il + i2 =0.
For more details ref er to [47] .

In the MOLGEN system, as well, the different data types are 
represented in an object oriented way which distinguishes 
different laboratory objects such as a bacterium, a rat-insulin 
gene, a DNA-structure etc.

124



NASL [55] is a program for designing circuits hierarchically by 
combining and instantiating schemata representing functional 
subcircuits. Most of the "raw" information in the system is 
stored in "packets" defining known circuits, such as common 
emitters, amplifiers, voltage dividers etc. Additionally, 
decomposition rules of a circuit type are expressed as plan 
schemata, as well. Those are abstract objects, Instances of which 
may be thought of as hanging as little subnets off nodes in the 
task (overall plan) network. The author of the paper, McDermott, 
claims that "Plans" or "packets" in NASL correspond directly to 
Minskian frames.

R1 [56] is a program that configures VAX-11/780 computer systems. 
The configuration task in R1 has been implemented as a 
hierarchy of subtasks that have strong temporal independencies. 
Given a customer's order, it determines, what, if any,
modifications have to be made to the orders for reasons of system 
functionality.

In that respect it is closely related to the research of this 
thesis not only for its hierarchical planning design but for the 
automatic configuration of parts in particular, although it is 
concerned with computer instead of vehicle parts.

Each component in the data base consists of its name and a set of 
attribute/values pairs (component information). For example, thi 
value of the attribute "type" for the component (object) "RK711-
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EA", is DISK DRIVE. The system implements rules which indicate 
what components can be associated and what constraints must be 
satisfied in order for these associations to be acceptable 
(constraint knowledge). Currently there are 420 components 
supported from R1 and 480 rules of configuration manually 
extracted from the experts.

The following shows how information is stored in R1.

RK711-EA
CLASS: Bundle 
TYPE: Disc drive
SUPPORTED: yes
COMPONENT LIST: 1 070-12292-25 

1 RK07-EA*
1 RK611

RK611
CLASS: UNIBUS MODULE 
TYPE: DISK DRIVE
SUPPORTED: YES

TRANSFER RATE: 212
BOARD LIST: (HEX A M7904) (HEX A MS903) (HEX A M&901)

CABLE TYPE REQUIRED: 1 070-12292 FROM A DISK DRIVE
UNIBUS DEVICE
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Every component (object) in the database has a type attribute and 
a class attribute. There are 15 classes: bundle, cabinet, 
backplane, unibus module etc. Each component is connected with 
the other through specific object reference. For example, the 
"RK711-EA" component consists of several subcomponents including 
the "RK611" subcomponent disk drive, whose definition in the 
database is defined with another object datatype. For more 
details re fer to [56].

7.3 Meta knowledge (automatic transfer of expertise)

During the investigation of the audit function it became apparent 
that the development of a computerised system to automate or 
support it would need design engineering knowledge. Such 
knowledge, however, is not documented anywhere in Rover. For 
this, research in this thesis moved to another topic in AI; the 
development of programs which could transfer expertise knowledge 
into the system.

Notice, in the context of this thesis, research of the existent 
systems in AI which implement Meta knowledge programs 
concentrated on those which analyse empirical data, as this is 
the case with Rover; already a huge amount of empirical data of 
the past exists. Additionally, the research is mainly concerned
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with automatic transfer of expertise programs. This is because 
the huge amount of knowledge which is required to support both 
the audit function and the PSC makes an interactive approach 
impractical.

Similar problems of lack of knowledge in specialised fields has 
shifted AI search during the last decade to ways of automating 
knowledge acquisition. The theoretical basis of the 
implementation of such learning systems comes mainly from the 
fields of mathematics: fuzzy logic or probabilistic theory. 
(Bayer's rule, statistics etc.) [43].

Systems which already exist in AI field often re-present 
themselves with an additional learning element in their original 
implementation. META-DENDRAL [42] is a such example.

META-DENDRAL designed as the learning procedure of the 
existing heuristic DENDRAL system [41]. The DENDRAL 
implemented a "smart assistant" to help organic 
determine the molecular structure of unknown compounds, 
required when no X-ray crystalography is possible and 
have to resort to structure elucidation based on data 
from a variety of physical, chemical or spectroscopic 
The META-DENDRAL program refines further the analysis 
spectrometry.

already 
system 

chemists 
This is 
chemists 
obtained 
methods. 
in mass

The result of the spectrum is depicted in a histogram. The META- 
DENDRAL program decides which data points in the histogram are 
important (among 100 to 300) and looks for fragmentation 
processes that will explain them. It attempts to form general
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rules by correlating the plausible fragmentation processes of the 
various data points chosen. The production rules of the program
are implemented in the way which the left hand side of the rule
represents a description of the structure of a molecule and the 
right hand side of the rule expresses possible fragmentation 
processes of a such molecule. More specifically, bond cleavages 
and atom migrations.

For example, the below R1 rule:

(Rl) N-C-C-C — > N-C*C-C

indicates that such a molecule description on the left hand side 
it can be transformed to the right hand side where the asterisk 
(*) indicates breaking the bond at that position and recording 
the mass of the fragment (the molecule weight). If the most of
the data in the histogram shows a similar molecule weight then
the molecule structure can be found with high approximation. The 
META-DENDRAL program is actually made of two programs INTSUM 
(data Interpretation and Summary) and RVLEGEN (Rule Generator).

7.4 Meta knowledge with Object Oriented knowledge

representation flavor.

PROSPECTOR [40], CENTAUR [38] and PIP [39] assist experts in the 
areas of geology, pulmonary diagnosis and medicine generally 
(ie. glomerulonerphitis) by analysing empirical data, as well.
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The knowledge of these systems is represented with frame-like 
structures and production rules to perform the problem solving 
tasks. These frames (or prototypes) represent stereotype 
situations of the problem domain and they are used as a basis for 
comparison of the actual situation with that given by the data.

In summary, it has been discussed that "planning in a hierarchy 
of abstractions" can ease the understanding of the problem, the 
search for many alternatives, prevent combinatorial explosion and 
increase performance. Research in the AI field of systems which 
have been designed on this principle revealed that they 
implicitly or explicitly support the Object Oriented Paradigm in 
one form or another (specific frame definition such as R1 or 
MOLGEN, or constraint schemata CONSTRAINTS, NASL, ABSTRIPS). So,
it can be seen. Object Oriented Programming, to be the most
preferable environment for such a class of problems. From a
pragmatic perspective, as well, this can be justified; OOP is
concerned with the behaviour of objects, which can be expressed 
as constraints, and their relationships which can be expressed as 
almost-hierarchical decompositions. The objects themselves can 
even represent subgoals or plans in the system design exercise.

At the lowest contribution the Object Oriented Paradigm would 
promote experimentation in the design of the system as the 
behaviour of the objects could change much more flexibly than by 
using the conventional programming.

The need of both problems under investigation, the audit function 
and the PSC, to somehow enable knowledge to be transferred
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automatically from the experts, led the search to the
investigation of the existing systems in the AI field which 
implement Meta knowledge mechanisms. More specifically, those 
which analyse empirical data. As a result META-DENDRAL,, PIP, 
CENTAUR, PROSPECTOR were studied. Surprisingly, the most of them 
showed a preference to the Object Oriented Paradigm, as well.

In conclusion, the Object Oriented Paradigm represents a suitable 
environment for the implementation of complex or unclearly 
specified problems and/or systems which need automatic transfer 
of expertise. However, still more search would need to carried 
out at technical level for the choice of the software environment 
needed to automate both the audit function and the PSC in Rover. 
That came as a result of the situations occurred in Rover on the 
time and discussed in the followings.

7.5 Rover's objectives and the project

When the project was launched (Nov 1988), its objective was to 
automate or - if this did not prove feasible - to ease the audit 
function by introducing electronic equipment in the department. 
This project was a part of a more general CIE (Computer 
Integrated Engineering) project in Rover to interface vehicle 
specification data with the BOM (Bill Of Materials) [18], [93] 
(confidential).
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The prime objective of the CIE (or BOM) project was to replace 
the hierarchical PIMS data base with another more flexible one. 
The alternative idea of the time was ORACLE. This was for two 
reasons:

firstly, ORACLE was available on the VAX platforms of the 
Business System and Product Planning departments in Rover.

secondly, ORACLE represented one of the best application 
databases of the relational model, a very popular database design 
model recently in industry.

Rover launched, almost simultaneously, another project with 
objectives very similar to those of the project discussed in this 
document. The objectives matched because, as was discussed 
earlier, the scope of this search extended from not only 
automating the audit function but the PSC, as well, as it became 
apparent that one cannot automate the audit function without 
firstly understanding the whole PSC in Rover.

The system discussed in this thesis has been named ROOVESP 
standing for Rover's Object Oriented VEhicle specification). A 
project was launched in parallel to ROOVESP which was named 
Illustrated Parts List (IPL). It was intended (and still is) 
that ROOVESP and IPL interface with each other in the future in 
order to support the whole Product Specification Concept of the 
company.

IPL, apparently has been designed with the idea that the host 
database will be ORACLE. In reality it needed to use an 
additional relational database, as well, 4th Dimension, in order 
to both fulfil this idea and also meet the overall business
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objectives of the project.

It is appropriate to make an exhaustive comparison of the two 
paradigms as IPL uses the relational database model whereas the 
research in this thesis has indicated that the OOP is one of the 
most suitable environments to automate both the audit function 
and the PSC.

In the following section a clearer view of the relation of IPL 
with ROOVESP is discussed.

7.5.1 IPL and its relation with ROOVESP

Historically, IPL was launched by Business System and Component 
Engineering some months after of the ROOVESP project (Jan 1990). 
The two projects are linked functionally together in the Rover's 
original intention to merge them in a single new system which 
would support the existent Product Specification Concept.

Figure 47 illustrates the intended output of the new system, 
which was designed to replace the original format of the input 
documents in the specification packages (figures 23, 24).

Graphically, the relation of the two projects can be illustrated 
by the columns in which figure 47 is divided. The first two 
columns are of the main concern in the IPL project. That is, the 
integration of images and part descriptions, part fitments and
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part numbers in a single document. The third column represents 
the intention of IPL to enter intelligence, besides the user 
interface facilities, in the system. That is, the ability of the 
system to validate the usage statements of the parts appearing in 
the screen, which naturally coincides with the the objectives of 
ROOVESP.

With the output objective of figure 47 Rover had a sequence of 
demonstrations from three companies: XEROX [85], APPLE [86] and 
SYMBOLICS [3], [4] in order to choose the most appropriate 
software tool which would combine efficiently such texts and 
images. XEROX was rejected because it offered only a publishing 
document, whereas APPLE and SYMBOLICS offered two databases to 
tackle the problem: 4th Dimension and Statice (see Appendix 2), 
respectively.

Feasibility studies were carried out on the two products which 
resulted in Rover using 4th Dimension for the IPL project and the 
project covered in this thesis using Object Oriented programming 
and later the Statice Object Oriented Data Base using the GENERA 
environment of the SYMBOLICS Lisp Machines [4]. G. Sussman and G 
Steele [47] suggest that Lisp is a suitable environment for 
expressing constraints (such as the ones which are required to 
specify a vehicle ie. the vehicle model, Base features, 
Additional features restrictions etc.) by using the lambda 
abstraction (For more details see [62]).
The availability of Mclvory [s] in particular, a SYMBOLICS machine 
which incorporates both Lisp and Apple Macintosh environments, 
made such a choice even more preferable:
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- if the computer implementation of the audit function 
and/or the PSC were to fail in using the OOP approach, Rover 
could still utilise the option of the 4th Dimension without the 
need to buy new hardware.

even if ROOVESR and IPL, were implemented in different 
software environments such as GENERA and Apple Macintosh, they 
could still interface in the SYMBOLICS Mclvory machine.

The major obstacle for Rover in choosing an OODB was the 
confidence which the people in the company had to work with the 
traditional relational data bases rather with a new software 
technology. Another reason was that the prime idea of ORACLE as 
the host database of the whole CIE project was becoming obsolete 
by the use of Statice.

In the following two sections, IPL is described and the 
feasibility study which direct compares the relational databases 
(using as example ORACLE) with the OODBs (using as example 
Statice) is given.

IPL

IPL uses the Oracle and 4th Dimension relational databases to 
interface texts with images. The way Oracle and 4th Dimension are 
linked in IPL is shown in figure 48.



Figure 48: The Illustrated Parts List system

Data coming from PIMS pass from a C language based program 
(pro*C) which fills already existing data tables in ORACLE. This 
translation of the IBM mainframe data to ORACLE data is required 
in order for PIMS data to communicate with 4th Dimension. ORACLE 
represents the host server DBMS of the IPL system whereas 4th 
Dimension plays the role of "gluing" images to the PIMS data 
(text).
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Text interface between ORACLE and 4th Dimension is implemented 
through the standard relational databases SQL language which both 
data bases support. The images of the IPL system are kept in the 
micro Vax in the form of scanned input. 4th Dimension which 
operates in an Apple Macintosh machine accesses the images from 
the host graphics library manager through a software package 
called PACER. Finally both text and images data are presented 
to the Engineer under 4th Dimension platform where now he can use 
its front end facilities: the WIMP environment [86] ie. Windows, 
Icons, Mouse, Pop up menus.

The engineer operates in the following sequence:
Firstly, he specifies the new parts or changes which he 

applies to the old parts output on the screen eg. deletion of 
parts, or creation of new ones, swap one part for another.

Secondly, he changes or specifies new usage statements for 
the parts. IPL guides the engineer's choice for only a specific 
collection of features groups that correspond to the VPG group he 
is working on. The implementation of such relationships between 
VPG groups and features groups is currently operated manually on 
a prototype basis using knowledge gathered from engineers.

A part of the IPL's logical E-R (Entity-Relationship) diagram 
shown in figure 49 gives a flavor of such a mapping of design 
features groups to VPG groups.

The part which shows similarity with ROOVESP is illustrated on 
the top left hand corner of the figure. The "Products" table 
represents the set of part descriptions which appear on the
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Figure 49: Apart ofthe IPL's E-R logical diagram.
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screen ie. "seat-front-complete manual". This set of part 
descriptions - in reality a VPG group or a part of a VPG group 
is linked to the "Design Feature Group/Vehicle Part Group” table. 
This table maps Rover's design feature groups on to the VPG group 
under consideration. In reality, this table is the result of the 
questioning of human experts for the specific VPG, "filtered" 
from the Additional Feature Group Index Report for the 
availability of some features groups to the specific model. 
(Product/Design Feature table).

In order to change an image the engineer must have of the 4th
Dimension software and make his changes with a scanner or a
drawing package.

Finally, when the specification is completed, the changes are 
hardcopied and transferred back to Specification Services where 
people manually update PIMS, and the cycle continues.

Notice, that in order IPL to meet the original objective of the 
project, ie. to replace PIMS, the data from PIMS which filled the 
ORACLE tables at the beginning of the exercise are kept in the 
ORACLE data base. The general idea is that all data from PIMS 
will eventually populate ORACLE. Consequently, there is 
duplication of the information in PIMS and ORACLE. In result an
additional load of work has moved to IPL, to keep 'in line' the
two databases.

Having outlined the functionality of the IPL project which is 
based on the relational database model, this can now be used as 
an example of the relational database model in a direct
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comparison of the Object Oriented databases and more specifically 
Statice.

7. 6 Object Oriented Programming and comparison with the 
traditional programming and the Relational paradigm.

This chapter compares the relational database model, the most 
popular traditional database technology, with the OODB model, 
recently emerging on a commercial basis from the development 
stage. It was mentioned previously that such a comparison is done 
by using as examples real databases: ORACLE and Statice. It is 
not felt appropriate to describe ORACLE here as it is a well 
established product and it has been used widely in universities 
and industry. A description of Statice (and FLAVORS) however can 
be found in appendix 2 (and appendix 1) which uses examples of 
the ROOVESP implementation.

J
The comparison is done at a general rather than the more narrow 
industrial requirements of Rover and the following aspects are 
discussed :

naturaleness in prototyping 
data abstraction
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- modularity, extendability, consistency and uniformity
- efficiency during the system development and performance
- storage of graphics
- encapsulating the concept of time
- user interface

The above topics have been chosen to reflect the software needs 
of the complexities and the characteristics of the problem (ie. 
the Audit function and the PSC) which were discussed in the 
previous chapter. Some of them are:

a. unclear interrelation of the various functions of the
PSC

b. unclear procedures / subjective information in the Audit 
function

c. duplication and re-formatting of information
d. dynamic environment
e. fear of the new technology
f. use of many hardcopy files

Data abstraction and naturaleness in prototyping (for a, b and 
c) are vital in order to implement the system in a hierarchy of 
abstractions which is needed to overcome its complexity. Data 
abstraction in particular, helps give a clearer evaluation of the 
various formats in which the vehicle information appears resul­
ting in the choice of the most suitable one for the development 
of the system.
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Modularity, extendability. consistency and uniformity (for d) are 
important for the computerised development of the PSC, in 
particular which shows a highly dynamic nature.

The user interface and other facilities available from the 
software environment under consideration (for e and f) are 
important as a means of easing and accelerating prototypes of the 
system which in return increases confidence and communication 
with the people resulting in higher co-operation.

Finally, both the storage of graphics and the encapsulation--q£_
tllfi__concept of time are under constant consideration in the
research: the need to store graphics in this specification 
documents in order to help the PSC was the main reason that 
launched the IPL project. The concept of time has been previously 
mentioned in that it is important to the PSC during the various
build phases of the vehicle. In addition, performance__and
efficiency issues must be taken in account throughout the 
investigation of a software environment.

There follows further discussion on each of these topics.

7 -6.1 natu.raleness in prototyping
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All programming applications start with a conceptual model of the 
domain. In the object oriented software, these real world 
concepts are directly implemented with a class. This contrasts 
with the conventional structured programming where functions with 
numerous subroutines are coded to simulate the behaviour of the 
concepts. The complex interrelations between the functions and 
sometimes between their subroutines, often result in the whole 
system to bearing little resemblance to the concepts it supported 
at the beginning. In object oriented programming, the programmer 
focus on the properties of the objects being modelled which 
encourages the use of meaningful names, for the objects and their 
behaviour (functionality). Also, as the code is implemented by 
reflecting the domain being programmed, the development of the 
code becomes more natural and thus more rapid than using 
conventional programming.

7.6.1.1 dummy variables

In the relational database model the relationships among the 
tables are expressed by using the join operator on the keys of 
the tables. In the case that multiple values exist in a table and 
this table needs to relate with another one, a new table is 
created called the intersection entity of these tables which has 
as values in its fields unique pairs of the keys of the original 
tables. When the system grows and intersection entities have to 
be designed among multiple tables, multiple keys of tables have 
to be considered. In order to avoid dealing with multiple keys, 
database designers resort to the creation of unique identifiers



for each table. For instance, the fields projsctJJID, part U1D, 
fitment UID, etc. These identifiers are usually incremental files 
which are created during the software development of the database 
and initiate the value of a dummy field in the tables. This at 
least decreases naturaleness in the design of the data base. In 
reality, the new version of ORACLE supports a mechanism which 
handles the automatic creation of unique identifiers and shows 
the close relationship of the relational model with dummy 
variables.

In OOP, however, the attributes of the object can be used as 
direct conceptual pointers to express relationships among objects 
which closely simulates the designer's thinking and hence 
increases naturaleness.

In addition, such a representation of knowledge is more concise. 
As stated in [61] "often consiseness is the preferred metric for 
describing naturalness".

1■6.1.2 semantic overload

All the relationships between objects in the relational model are 
based on data values, and the designer must simulate pointers by 
comparing the values of identifiers in order to traverse from one 
relation to another (typically using the join operator). This 
limitation creates another problem: the relational databases 
become semantically overloaded. The term has been coined from the 
work of R. Hull and R. King [66] (and discussed in chapter 11 in

145



more detail).

Semantic overload in the relational database means that there is 
a limited choice of ways to express 'meaning' within the 
database. Meaning is usually expressed by relationships. In the 
relational model there are only two ways of expressing 
relationships: the fields within a table and the join operator.

On the other hand, relationships in the Object Oriented paradigm 
can be defined by many different primitives. In reality, all the 
research in OOP is concerned with the implementation of different 
primitive constructs of relationships ie. first strict hierarchy 
then multiple hierarchy, deterministic or dynamic (delegation in 
CommonOrbit [61]), as well as instances constructors, methods, 
entity's attribute types etc.

The broader choice of such primitives helps the design engineer 
to express the relationships on the way he conceptualises them, 
resulting in greater naturaleness.

7.6.2 Data abstraction.

In relational data bases data abstraction is implemented through 
aggregation. As stated in the work of J. Miles and D. Smith [3] 
"an aggregation is an abstraction which allows a relationship 
between named objects to be thought of as a (higher-level) named 
object". For example, the table Design-Feature-Group/ Vehicle- 
Part-Group which expresses the relationship between the Design 
Feature Group and Vehicle Part Group tables - in the form of
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uniquely identified pairs of values of feature groups and VPG 
codes - can be considered to be the aggregation of "design­

engineering-philosophy" .

The problem with the relational model is that although the new 
table represents abstraction in the database design, this is not 
the case regarding the data itself. Any time the programmer needs 
to retrieve information from this table he has to remember its 
internal structure. A hard job considering that this table may 
represent the aggregation of three or more tables. (This subject 
discussed in more detail in chapter 11).

On the other hand, in the Object Oriented Paradigm, methods can 
be attached to objects and called externally from any other 
function in the software development. As T. Rajan states in [64], 
"methods in Object Oriented Programming can be considered to be a 
communications protocol through which other programs can 
communicate with that object. This property is known as data 
abstraction ... The essence of data abstraction is that client 
programs need not concern themselves with the details of 
implementation or internal representations of the data within the 
object".

7.6.3 Modularity, Extendatility. Consistency and Uniformity.

When a system is being developed to simulate an application area 
that changes rapidly, or when incomplete information exists for



the application 
create totally

and
new

better understanding of the problem 
alternatives, it is important that

may
such

changes can be implemented easily. The Rover specification
problem falls to both these categories:

- Both the format of BAFC and the design logic in their 
compilation changes through the time and the same happens with 
the APN catalogue.

The various departments that are involved in the Product 
Specification Concept maintain only a portion of the 
understanding of the problem which makes the initial knowledge in 
the design of the system incomplete and subjective.

Object Oriented programming offers the required type of 
modularity better than action oriented programming. For example, 
in object oriented programming it is easy to add new types of 
objects and extend the program, as it is only necessary to add 
new code, not to modify existing code. In action-oriented 
programming, the insertion of new types adds new cases in the 
generic function which must be updated ie. modified (see appendix 
1). A detail discussion of this subject can be found in the work 
of K. Smedt [61].

As it will be proposed in chapter 10 the further development of 
the system can grow naturally, with the addition of new entity 
types to the data base such as physical parts, fitment, etc. 
Their behaviour can be defined independently of the rest of the 
objects in the database with individual methods associated with 
them.



Besides, the most sophisticated OOP environments such as FLAVORS 
or Statice, CommonOrbit [61], etc. provide internal mechanisms of 
inferential integrity. This means that if during the development 
of the system the designer changes the behaviour of the object 
then all the instances of the object are updated and that these 
changes are immediately accessible to the other objects sharing 
its behaviour (for example through inheritance). In Statice for 
example, the deletion of an instance of an entity from the data 
base would result in the automatic deletion of all references of 
this instance from the instances in the data base to which it was 
related.

In the relational example such actions must be 'coded' by the 
programmer. Remembering, as well, the semantic overloading of the 
relationships in the relational model this becomes difficult to 
maintain during the development phases. As R. Hull and R. King in 
[66] state "this is the reason that integrity constraints such as 
key and inclusion dependencies are commonly used in conjuction 
with the relational model. Although these do provide a more 
accurate representation of the data, they are typically expressed 
in a text base language; it is therefore difficult to comprehend 
their combined significance". Text base language means the tools 
that are usually used in relational databases to describe the 
design eg. in Oracle is CASE* methods, another more standard one 
is EXPRESS.

Finally, the modularity and uniformity in software developmment 
which the Object oriented style supports, makes easier programs
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to maintain and expand (it discussed in more details in chapter 
11) •

7.6.4 efficiency during the system development, and performance

Researchers in CAD/CAM design admit that relational data bases 
are slow comparatively to OODB. This is because of the nature of 
the CAD/CAM business: As stated in the work of D. Maier [76] 
"design operations aren't really single fetches and stores, but 
typically involve following a path to another entity or filling 
in a new object in a class." Consequently, performance increases 
if the data base offers facilities with which the designer can 
access directly only the local area of his concern each time.

OODB has been designed for interactive processes ie. the user is 
able to work with data from a specific small area of the data 
base, the data on the screen for example, whereas Relational data 
bases and other traditional data bases are designed such that the 
entire database must be on-line even if a very small section of 
this is required. Thus OODB design relates more closely to the 
PSC and Audit example as most of the time new parts are designed 
on the basis of old ones, consequently on updates of specific 
assembly structures (discussed in the following) .

A detailed reference to the greater performance of OODB, 
comparatively to a relational one for other aspects such as 
locking or logging, concurrency control etc is covered in [76] 
and [58]. Especially in [58], R. Martin supports that only 10% of
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the existing data-intensive applications (such as this Rover 
application is) have moved from the older database technology to 
the relational databases. The reason, he supports, is because the 
performance of the relational database is even slower than the 
hierarchical or network database technology of the past.

The indexing routines of the relational model are considered to 
be the most sophisticated and highly tuned of any class of 
software systems. OODBs and especially Statice support them, as 
well. Actually, R. Martin in [58] supports that sometimes, other 
database techniqes for improving performance, such as clustering, 
could be superior in OODBs than the relational.

7.6.4.1 representing assembly structures

In chapter 4 the assembly concept (BOM) which represents one of 
the design components of the PSC in Rover was discussed. In a 
highly manufacturing oriented company such as Rover it is 
expected that it will be vital for the data base which would 
support its various applications be capable of maintaining 
hierarchical data structures (assemblies) and the complicated 
relationships between them efficiently.

The performance of the software tool under investigation becomes 
of the highest importance as the actual physical parts in 
manufacturing must be taken into account. Currently there exist
180,000 such parts recorded in Rover's PIMS database. More
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importantly, in a CIE project where an image has to be tagged, to 
the information of each of the data in the database in order to 
represent them in the outside user, this requires even more 
processing every time each of the data is manipulated (update of 
its usage statement, sourcing, quantity).
The direct access of one object to another within the computer 
memory, as it occurs with the OODBs is much faster than the 
relational model where the relationships have to be "flatten out" 
and retrieved by using the join operator. For further detail on 
this subject see the work of D. Maier in [76] and R. Martin in 
[58] .
Lufthansa who uses Statice for its planning process, investigated 
ORACLE as a possible candidate in its feasability and quotes: 
"firstly, the relational model is too "flat" to represent our 
complex data in a reasonable way. Secondly, we run into massive 
performance problems" [63].

7.6.4.2 efficiency during the system development

Considering the complex nature of the PSC that had to be tackled 
it became apparent in the begining that OOP matches with the 
requirements of the efficient development of such a problem. For 
instance, it was not clear all the object types that may be used 
in the development of the program ie. objects for statistical 
analysis, a fitment object type or physical parts type objects.

In an action-oriented style, the number of object types will
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increase the average search time becauses more cases will have to 
be considered (see APPENDIX land the work of K. Smedt in [61]). 
In the object-oriented approach, such an increase has no effect 
because the information is associated directly with each type. 
This results in more efficient design and better testing 
capabilities during the development period and the final 
implementation. In addition, the new object types can smoothly 
interface with the rest of the program, instead of the relational 
approach which would need re-organisation of the data base, re­
normalisation etc.

7.6.5 storing images

Image database management naturally leads itself to the paradigm 
of managing objects. The presentation types of the GENERA 
environment are discussed in appendix 1. Image database 
management represents the same philosophy. An object can have a 
way of presenting itself by some operations (methods) linked to 
it. Then the user can think of the presentation of the object as 
the object itself which makes data representation more natural, 
ie. the representation of a node with a circle.

As W. Grosky states in [73] "virtually all proposals from the 
database community for the management of nontextual information 
use object-oriented techniques".
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Statice offers the facility to store permanently images as real 
values of an entity type attribute in the data base (raster 
arrays). The association of the rest of the textual data that is 
concerned with the image is direct as all belong to the same 
object. On the other hand, in the relational model images have to 
be stored in a separate database and then linked with the textual 
data by both a software intermediate (like Pacer) and a program 
'linker' which has to be developed by the programmer. A complex 
task considering that more than one software environments are 
involved.

7.6.6 f. i me

The variable of time is quite an important requirement for the 
selection of the data base which would support the PSC, as during 
the specification of a product, Rover keeps timed versions of the 
specification, currently duplicated in two different systems each 
time; AS (Applications System) and PIMS (see chapter 4). OODBs 
can more easily embed time in their design than relational 
models.

As stated in [6] "... another problem in studying the product 
variants in automobile is timing. The new product is designed 
before the specifications are completed. As a result of the 
information problems the number of variants of existing products 
is not known and neither are the distinctions of the different 
product variants. An investigation showed that 60% of the product



variants already existed in predecessor product".

T. Atwood who investigates the way how time variability could be 
implemented in a database model in [75] states that "in the 
relational models what the database returns from a query, is the 
most recent version of the object. This makes it impossible to 
get an older version, because the data manipulation language 
simply gives the application programmer no way of asking for one. 
...The only option the programmer has is to circumvent the system 

to roll the whole database back ..., copy the versions he 
wants out ..., then roll the database forwards. The programmer is 
forced to step out at least once, in the operating system... At 
worst the time involved in rolling the database backwards and 
forwards ...".

Cache values in Statice (other facilities exist for other OODBs) 
can keep an older version of the data and operations can be 
written easier to support time requirements. For further details 
in the subject the reader can refer to [3].

7.6.7 User Interface facilities

Graphics in Lisp-based workstations are implemented as mouse- 
sensitive icons in windows. The presentation type facility of 
GENERA which came out of the research into Object Oriented 
Programming [1] is referred into appendix 1. With presentation 
types, objects can be represented as icons and the user can use
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all their information naturally by simply manipulating and 
working with their icons. As K. Smedt states in [61] "connotative 
information can be conveyed in graphical representations, such as 
the information conveyed to human users in the shape of objects".

Experience with the development of expert systems in AI has shown 
that one of the most difficult parts in their implementation is 
the acquisition of the required knowledge from the experts. The 
use of user friendly interfaces can facilitate knowledge 
acquisition as the user can view both the internal structure of 
the data and the decision process of the system and incrementally 
refine the program.

Additionally, already built-in facilities such as menus windows, 
icons (see storing an image section) and tree like graph of 
inheritance in Object Oriented Programming environments can 
facilitate early prototyping which in turn can encourage 
experimentation with many different approaches.

On the other hand, in the relational example, this would require 
the additional need of an external language like C, or a graphics 
environment such as GKS in the VAX system to interface with the 
ORACLE database or both.

In summary, the choice of software environment was reduced to two 
options either the relational approach with ORACLE and 4th 
Dimension from APPLE^ and OOP and Statice from SYMBOLICS. The 
search was based on the characteristics and complexities of the
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problem which were discussed in chapter 6. Those involved the 
unclear specification of the problem (ie. Audit function and 
PSC), the traditional human oriented environment which makes it 
difficult for people to co-operate with the new technology, the 
dynamic nature of the problem, the complex interrelationships 
among the vehicle parts existing in the form of experience and 
design engineering knowledge, the need to store images in the 
data base, the need to implement the concept of time in the PSC 
etc.

The search led to the same result as that of the two requirements 
of the problem ie. the design of the system in a "hierarchy of 
abstractions" and the development of automatic Meta knowledge 
programs to transfer knowledge expertise: the most suitable 
software environment is believed to be the Object Oriented 
Paradigm.
The great disadvantage of OOP (such as FLAVORS) is that they 
represent no real data bases. This is discussed in the following 
in more detail. Additionally, the existing OODB systems are new 
and consequently have not been thoroughly tested for their 
performance concerning their ability to support large industrial 
projects.

The following sections discuss the pragmatic needs which led to 
the selection of Statice, instead any other OOP environment (such 
as FLAVORS or Common Orbit) in order to support a realistic 
system for Rover.
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FLAVORS is the standard object oriented data base environment in 
Lisp machines and a feasibility study of the Object Oriented 
Paradigm and OODBs always refers to this.

Statice is a new version of the existent FLAVORS environment in 
Lisp machines updated in the way in which the data are stored in 
the computer. The Statice characteristics are similar to those of 
FLAVORS.

Having decided to adopt the Object Oriented Paradigm, Statice was 
only later investigated in order to meet the pragmatic needs of 
R O O V ESP ie. the implementation of a system supported by a real 
data base.

The gradual investigation and need for Statice as arised during 
the search is discussed in the following.

7.7 Need for reel OODB

In the GENERA environment there are two ways of storing the data 
in the computer; the STRUCTURES as in conventional programming 
and FLAVORS. (A detailed reference to FLAVORS exists in appendix 
1 and that to STRUCTURES environments can be found in [4].) The 
latter was chosen for two reasons:

Firstly, FLAVORS supports more facilities such as debugging 
mechanisms (FLAVOR EXAMINER), inferential integrity, etc. and is 
closer to the actual concept of the Object Oriented Programming
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with multiple inheritance, methods inheritance, etc.

Secondly, by using FLAVORS one can more easily transfer the 
storage of the the data from the FLAVORS environment, in virtual 
memory, to a real Object Oriented Database such as Statice, on 
the disk.

The problem with the Object Oriented Paradigm in GENERA or 
generally with the Lisp workstations, at least until recently, is 
that the Object Oriented data base environments which are 
supported, exist only in the virtual memory of the computer. Data 
in the FLAVORS environment for example, although behaving as a 
real data base with complicated relationships among its data 
(objects), insertion, deletion etc, vanish when the machine is 
booted, or if the power failed as they exist only in the 
computer's virtual memory. To provide persistent storage, the 
user must arrange to copy the information out to files. In files, 
however, the interconnected structure of diverse objects must be 
flattened out, and somehow encoded into only simple bytes and 
characters. This encoding adds complexity to the application and 
takes time to run. As the files become large, saving out data and 
reading it back in becomes slow. Because information is being 
copied, the user has to worry about the copies becoming 
inconsistent. The benefits of object oriented programming are 
lost.

For this reason the literature investigation directed towards 
Object Oriented Data Base systems which would support in reality, 
as well, the merits of the Object Oriented Paradigm, as they
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revealed previously.

7.7.1 REAL___QQPB AVAILABLE COMMERCIALLY

Real Object-Oriented database systems are a new phenomenon, only 
recently emerging from the research world. There are only a few 
commercially released semantic or object oriented DBMSs for a 
knowledge engineer to choose from. These include: GemStone (from 
Servio-Logic) [59], SIM (from Unisys) [59], V-Base (from Onto- 
logic) [78] and Statice (from Symbolics) [2].

The last OODB, Statice, which is a direct product of SYMBOLICS, 
was naturally considered as the first choice for developing 
R O O V E S P 's  data bases, as it is fully compatible with the GENERA 
environment which were offered by SYMBOLICS to Rover during the 
demonstrations in the original I P L  project investigation. 
However, the search continued in the case of better alternatives, 
concerning the cost, the performance and the compatibility.

7.7.1.1 Gemstone

Conceptually, GemStone is persistent Smalltalk. It runs on Vaxes, 
SUNs in a server request. It uses a programming language called
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Opal which is Servio-Logic's version of Smalltalk-80. There are 
doubts as to its compatibility with the Lisp's FLAVORS 
environment and even integration were possible it is anticipated 
that it would be a difficult exercise. No referencies have been 
found that compares its performance favourably with that of 
Statice.

7.7.1.2 SIM

SIM is a full featured commercially robust semantic DBMS based on 
the D. Shipman's functional data base Daplex [60] and the Semantic 
Data Model [80], [84], [81]. Since Statice is also based on
Daplex, the conceptual differences between Statice and SIM are 
quite trivial. However, the implementations differ greatly. SIM 
is much faster. Unfortunately, SIM runs only on Unisys 
mainframes. There is a choice of COBOL, Algol or Fortran for host 
language programming interfaces - no Lisp. The graphics it 
supports are at least primitive, whereas the hardware is very 
expensive (at least $250,000 compared to $10,000 per seat or 
$50,000 per site for Statice). The vendors claim that SIM will 
be available under Unix in 1991 and will probably have a C 
language interface.

7 • 7-1•3 V-base
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V-base is supplied by Ontologie. It supports full inheritance and 
persistent and shared objects. It is written in two languages: 
TDL the type definition or schema language and COP an Object- 
Oriented extended C. Its developers see favourable advantages in 
the clustering capabilities of the system to reduce access time 
on the disk [59]. It is not compatible with GENERA. Futher 
details can be found in [70] and [59].

There are also as many university prototype systems that it is 
hard to keep track of them. Postgress from UCB (University of 
California) [65], Orion, Iris, Cactis from the University of 
Coloranto [67], [68] are some of the better known ones. Postgress 
is really an extended relational database whereas the others are 
true object-oriented. The reference of this can be found in [69].

Research which is generally confidential to the SYMBOLICS company 
[59] has benchmarked several of these prototypes and the report 
notices that in one case a prototype would need 3 years to load 
the team's data base before they could begin to benchmark it. The 
report concludes that at least two years of a commercial release 
are required to evaluate an OODB product. As it is stated in the 
report [59] "the way it is now (February 1990) the OODB world is 
as it was the relational database technology in 1981".

7.7.1.4 St at i

162

J



When Statice was investigated, was found to be FLAVORS 
compatible. It has been on the market long enough and regular 
benchmarks have run on it. There is documentation about some of 
the Statice known deficiencies [59] which is very important in 
order to be able to evaluate it and decide its feasibility in 
real life systems. The SYMBOLICS report [59] states that "it can 
be compared to the performance of the relational database systems 
3 to 5 years ago and with careful design it can be used in real 
life systems".

In summary, Statice even after the investigation of other real 
OODBs, still seemed to be the preferable software tool to 
support R O O V E S P , especially as the specifications were formed 
after the adoption of the GENERA environment for R O O V E S P . Statice 
when initially investigated showed no hard limit on the number of 
entity types, the number of attributes in a type, or the length 
of names of entity types and attributes. Similarly, it showed no 
hard limit on the number of users per single server. In addition, 
it supported an SQL-like language for queries at the top level - 
the user can view the actual objects in the data base by entering 
queries upon the attribute values of the objects.

Finally, as real OODBs are a new phenomenon in the software world 
it is difficult to find referencies to such systems supporting 
real life problems and which consequently could be evaluated. 
However, reference to Statice being used in real life 
applications has been found in literature which highly indicated 
its feasibility to similar real life problems such as the
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automation of the Audit function and the PSC in Rover. These 
systems are discussed in the following.

7.7.2 Other applications of Statice

There are only three real life systems for which the author found 
references to use the Statice OODB. Actually, only one of them 
it found to be fully implemented whereas the other systems are 
still under development.

Houston Power 4 Light is using Symbolics' Statice [62] to store 
and manipulate data for power-plant maintenance schedules. The 
data come from a mainframe payroll system. Each schedule contains 
2,000 to 10,000 discrete activities.

Scheduling requires manipulation of teams of individual workers 
each having a unique set of skills, pay rates and work schedules; 
physical considerations such as distances from one plant to 
another; specific repairs required at each plant. Each power 
plant has a unique set of equipment, but each instance of that 
equipment shares many characteristics with others in its class 
and some pieces of equipment work together. Some of the 
attributes of the object express relationships with other 
independent object such as tools, parts, equipment, a particular 
class of worker is qualified to repair, and groups of items (such



as work teams) . When an object is selected, the system loads the 
object ID (a unique number) and the object IDs of the other 
objects it has relationships with, according to the use the user 
application specifies.

The question is how the company can combine all these 
permutations to generate effective schedules? Houston P&L did it 
so effectively with Statice (plus an expert system) that overtime 
dropped by $442,000 (38%). It used to take three hours to load a 
file to start scheduling one plant (out of 25) , but it now takes 
five minutes because of the semantic design of the data base 
which results in the system only loading the specific object 
necessary. In addition, the expert system only restructures the 
relevant data instead of recompiling it all each time a change is 
made.

The Houston Power *  Light project relates to the research of this 
thesis with the reduction of the permutations in scheduling.

Another company called Alcoa is experimenting with Statice [62] 
in order to manage information about the equipment and the 
processes in a cold-steel rolling mill. A future implementation 
under consideration by the company is the interface of Statice 
with an expert system for diagnosis.

At Lufthansa German Airlines there are currently two knowledge- 
based planning systems under development. Both of the systems are 
concerned with the development of the Lufthansa flight schedules



and one of them AMS (Aircraft Assignment and Maintenance 
Scheduling) is based on the Statice OODB.

Development of a flight schedule at Lufthansa starts 
approximately 4 to 5 years prior to the date of flight operation. 
Complex interrelationships exist between objects and/or events 
which form the appropriate environment for the application object 
oriented data base: to make sure that the flight schedule meets 
all the operational constraints such as maintenance requirements, 
station limitations, etc., to evaluate the schedule robustness 
with respect to unpredictable events and delays as well as 
integrate long term maintenance operations with the flight 
schedule. Lufthansa Airlines's intention it is not (yet) to 
substitute the planners capabilities with Statice and an expert 
system but rather to use Statice as an up-to-date database and 
use its semantic structure to provide as much as possible direct 
access and support to the planners in schedule evaluation. That 
is achieved partially by providing an appropriate user interface 
(presentation types) and partially by using a ruled based system 
for statistical analysis on the collected data which answers 
"schedule inquiries"
The AMS project started in September 89 and a feasibility study 
[59] for the software support of the system rejected relational 
databases - in reality ORACLE - because of their model nature 
being too "flat" which could not support the Lufthansa's complex 
data in a reasonable way. Germany Symbolics has undertaken the 
project together with Lufthansa developers and it is estimated 
that the production system sould be available at the end of 1991.
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The under development project of the Laithnce German Airlines 
relates to the search in this thesis by the means of the need of 
complicated relationships among the data and electronic support 
to the users as well as support from statistical analysis of the 
data. This is the case with the Audit function and the PSC where 
complicated relationships exist among the parts of a vehicle in 
the form of assembly structures and the need for support of the 
functions both with electronic equipment and statistical analysis 
to retrieve past knowledge.

In summary, Object Oriented Database systems are a new phenomenon 
in the software world. As a result there only few commercially 
available. Statice, coming from the implementation of FLAVORS in 
Lisp Machines, is one of them and there is at least one reference 
in literature for an existing real life system that uses it 
(Houston P&L). However, many more are under development (more 
than 60 units have been sold worldwide [62]) .

Rover intends to be one of the pioneers in use of real life OODBs 
by automating the auditing function and the PSC using Statice 
accompanied by an expert system.

1.8 knowledge representation in ROOVESP
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Having determined the advantages of OOP and OODB and the specific 
hardware/software environment, this section discusses from the 
software point of view, the reasons why other types of knowledge 
representation must be involved.

ROOVESP which will be discussed on the following chapter, 
represents a hybrid AI environment of the combination of object 
oriented, rule based, and procedural knowledge representation 
environments.

The Object Oriented environment is embedded in the system with 
the storage of the data in the Statice data base (or Flavors) and 
the various operations that imply their organisation and 
retrieval.

The rule-based part of the system has been developed in the 
inference engine of the program, the 'experience' and heuristics 
which choose and combine the vehicle features.

Finally, procedural knowledge is implemented in the control 
structure of the program that drives sequentially the whole 
R O O V E S P 's process.

Although neither of those knowledge representations are efficient 
enough to tackle the problem in isolation, together they can 
harmoniously co-exist and constitute a powerful software 
environment.

OODBs implement mainly hierarchical structures of knowledge 
representation with the use of object types facilities and
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inheritance - assemblies of a vehicle for example. In a pure 
rule-based system such a hierarchical knowledge representation, 
(see figure 41, 72) as well as the attributes of each object data 
type should be expressed as a set of rules of the form

(if ?(x = Physical-Part) then (?x isa Part Description))
(Inheritance), or

(If (?y = "seat-front-complete manual") then
<?y has VPG 1109AA))

(assignment of the values of the attributes of each data type) .

The number of the relationship rules increases almost 
exponentially to the depth of the hierarchical taxonomy. This 
can be the case of the implementation of large systems with a 
solely rule based knowledge representation: the rules of the 
decision-making of the system become overwhelmed by the rules 
which specify the domain itself. A reference to this can be found 
in the work of K. Hawley [61].

Practically, the implementation of ROOVESP by a purely rule based 
representation is impossible. There exist thousands of part 
descriptions each of them with at least 15 attributes, even more 
physical parts (180,000) which would need a huge number of rules 
to define the relationships among themselves. In addition, the 
knowledge of the domain in a purely ruled based system becomes 
more vague as definition domain rules and decision making rules 
are mixed in the same syntax. The program's consistency is 
affected, as well, and the maintenance of the system becomes a
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nightmare for the programmer.

The adoption of an Object Oriented Data Base, to store and define 
the relationships of the data, eases the development process, as 
it distinguishes heuristics knowledge from concept hierarchy. The 
hierarchical relationships among the data having been defined 
abstractly with only few rules, can then be generated 
automatically from the inheritance mechanism of the environment. 
For performance aspects, it is crucial that only a few rules be 
checked by the system - the now distinguished heuristics - rather 
than a huge number of IF-THEN clauses.

On the other hand, the implementation of ROOVESP in a purely 
procedural knowledge representation would give disadvantages as 
far as modularity and consistency are concerned. As stated in 
[84] "in a procedural representation, the interaction between 
various facts is unavoidable because of the heuristics 
information itself". Consequently, the insertion of a new fact in 
the knowledge base may affect other pieces of code which should 
be updated as well. Besides, the complicated interactions make 
the meaning of the internal representation of the knowledge 
vague and a change may result in side effects in the consistency 
of the program which may not seen immediately. Worst cases may 
require a huge re-programming of the old code or cause 
incompleteness in the decision mechanism of the system.

The embedding of the procedural knowledge for update of the data 
base, within OOP method> eases modularity. The rest of the 
procedures can more easily be tested for consistency and 
completeness as they only represent the control structure of the
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system. The use of OOP, also, helps to perform default reasoning 
more efficiently than both production rules and procedural 
representation can implement.

Finally, notice that the use of production rules and procedural 
representation is vital for the system because both of them 
provide the directness which is needed for the system to reach 
the solution. Notice, as well, the smooth interface of all 
different representations of the knowledge domain (heuristics, 
procedures. Object oriented Databases) under a unique 
environment: GENERA.

7.9 Summary on the chapter

This chapter discussed the reasons that Object Oriented 
Programming was chosen to represent the software environment for 
ROOVESP, which automates the Audit function and the PSC.

The lack of clarity in the definition of the procedures of both 
the PSC and the Audit function suggested design of such a system 
in a "hierarchy of abstractions", adopting almost-hierarchical 
decompositions in its subsystems and gradually entering details 
in the form of constraints. The linkage of the subsystems in the 
later stages of the design could be defined by using constraints, 
as well.
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Search on existing systems in the AI field which implement 
hierarchical planning indicated the use of an OOP environment. 
The same environment was indicated after the research for the 
implementation of automatic Meta knowledge mechanisms, which 
investigation showed that is needed in the system.

However, when Rover launched a new project, IPL, and a decision 
had to be made between the Relational and OOP alternative 
insufficient research had been done to justify the risk of using 
OOP. A research in the existent software literature was carried 
out to direct compare the Object Oriented Paradigm with the 
Relational example. The comparison was made on the basis of the 
characteristics of the Audit function and the PSC in Rover and it 
was concluded that OOP was the most suitable software environment 
for their automation.

An investigation of real OODBs which could support ROOVESP in a 
real life application then led to SYMBOLICS'Statice being 
chosen.

Finally, performance and programming issues led to the 
implementation of ROOVESP as a hybrid system which involves OOP 
and OODB, procedural and heuristic knowledge representation.

The two following chapters discuss the ROOVESP's implementation.
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a ROOVESP (Rover's Object Oriented VEhicle specification
(THE FIRST PHASE OF THE AUDIT FUNCTION)

This chapter considers the first phase of the audit function (as 
defined in chapter 5) which represents the core of the whole 
audit process. The original objective of this project was the 
implementation of a computer algorithm which would validate 
parts's Usage Statements coming from Component engineering. 
However, research showed that such a function (ie. a validation 
procedure which embeds auditing knowledge) cannot be isolated 
from the rest of the vehicle specification processes as all of 
them are linked together with design engineering and 
manufacturing rules. Consequently, the objective of the project 
was extended to cover at least the first phase, including the 
acquisition of the most general design engineering knowledge.

The implementation of a computerised system which not only audits 
usage statements of vehicle parts but virtually generates them is 
discussed in the next two sections of this chapter. The first 
section introduces the components of the system and their 
software specification whereas the second section details their 
functionality. In particular, the second section discusses the 
further needs which led to the change of the original project 
objective and the need for expansion of the system outside the 
scope of the Auditing department, to the Specification Services 
of the company. Chapter 9 discusses the automation of the audit
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phases 2 and 3 which is currently under development. For the rest 
of this chapter the term audit process will be taken to mean only 
the first phase of the overall audit function.

The last section of this chapter describes further the 
functionality of the system and especially examines its Meta­
knowledge component and testing of the system.

contribution to knowledge:

Tightening up the existing conceptualism of the PSC in 
Rover (ie. no duplication of the information, possible 
applications of data extraction, correct compilation of the BAFC 
document, algorithmisation of the various audit procedures etc.).

The introduction of new concepts in the PSC in order to 
tackle the problems which have appeared overtime.

- Proposal of the use of the Object Oriented Paradigm in the 
PSC to enable domain knowledge to be represented in the most 
natural manner.

Using historical data to acquire Design Engineering 
knowledge. Mainly because of the revived PSC conceptualism and 
the way in which the existing knowledge is represented.

- The creation of an almost self-contained automatic 
auditing function in Rover.

8.1 INTRODUCTION TO THE SYSTEM__DESIGN.



It was mentioned in chapter 5, during the description of the 
manual audit function, that the way in which the audit function 
is presented does not truly reflect the way in which it 
currently operates within the company. Instead, it has been 
enhanced in a structural way. In this way, the structure of the 
audit process mainly represents the design of the system itself. 
Thus, the automated system right from its conceptual 
implementation eliminated the deficiencies of the existing manual 
audit function ie. duplicate information, subjective audit 
inferences, etc. It makes use only of the minimum required input 
and follows a well defined searching route that guarantees 
solution. In a further step, the system re-organises some part of 
the original information to achieve optimality.

8.1.1 DU ? LICATE INFGRMATIOH

8.1.1.1 Features List

The system considers some of the application tools discussed in 
chapters 4 and 5 redundant and consequently does not use them.

One of these is the Features List of the product. Instead of 
this document, it uses the Base and Additional Features Charts of
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the vehicle. This decision was made on the basis of software 
engineering. That is, the format of the Features List (see 
figures 26, 27) is highly human oriented as much of the document
is written in English, and follows a reasonably well structured 
english grammar and syntax. Take for example figure 26 Features 
List, there is the description "manual slide, recline, lumbar 
adjust, height 1". This description is written in relatively 
clear English grammar and syntax. The equivalent from the AFC 
document (figure 31) is:

"front seats reclining (reseat)"
"ft seats reel lum & dr ht adj (lumbar)".

It would be difficult, if not impossible, to conclude from a data 
matching exercise that these pieces of information from two 
different documents are the same. It is not clear that "reel" 
matches "reclining" or "ft" matches "front" and there is no 
consistency in these abbreviations.Another solution might be the 
double cross linkage of the Features List with the Base and
Additional Features Charts, using a string matching program. 
However, that has been proved unsuccessful as common language of 
discourse for both documents does not exist.

For example, in figure 26 the Features List of the Rover R8 
expresses three options on the front seats of the product, that 
differ in their operation:

"manual slide and recline",
"manual slide, recline, lumbar adjust",
"manual slide, recline, lumbar adjust, height 1".
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The equivalent AFC's information, compiles only two features for 
the operation on the seat:

"front seats reclining (reseat)"
"ft seats reel lum & dr ht adj (lumbar)".

The same inconsistency exists for the material of the seats. It 
is apparent that the two documents could not be reliably linked 
automatically. Though the feature descriptions in the AFC have 
discipline, the english expressions of the Features List change 
subject to the way the Vehicle Directorate compile them. Besides, 
even the index reference numbers of the two documents do not 
match, ie. "B51", "B44".

However, the greatest problems arise when a Features List 
description expresses vehicle characteristics which belong to 
two different feature groups of the BAFC of the product. For 
example the Feature List's descriptions:

Height adjustable/tilting head rests trimmed in:
-seat facing material
-doeskin
-leather/PVC

actually refers to features of two different feature groups: the 
"B44: seats -reclining" and "B51 or B40: seat face material" of
the AFC document. In consequence, a one to one link of Features 
List's descriptions to features compiled in the Additional 
Features Charts, is not feasible.

An additional problem is that there is a lack of discipline in
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the storage of a Features List document to a backup tape. It only 
follows a loose pattern of specified records in order to be 
printed later to an A4 paper of a special format. The parsing of 
such a tape would not be reliable.

Figure 50: The intersection of BAFCs with the Features List of the model

The question, consequently, arises: If it is not feasible to use 
the Features List, how can the system access such information 
which it is so important for its application? Naturally, an 
answer at a first glance is the Base and Addition Features Charts 
which contains similar information. The problem, however, is that 
the Features List document keeps information for both the 
features and the pa rts of the car (see figure 50). In 
consequence, a high percentage of information may be missed by 
adopting this solution. Unfortunately, however, there are no
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other alternatives.

The deadlock may be overcame eventually, when it is faced within 
the overall design of the system as a vehicle specification 
package rather than just audit process of specific input and 
output. The solution in this case, is the implementation of 
alternatives such as similar information relevant to the missing 
parts being retrieved electronically from other documents (such 
as EJA18V, discussed later) and when appropriately analysed, this 
part information could be linked to features which the system 
knows to use. This information gained, it would represent a part 
of the design engineering missing from the company. For example, 
it could be found (from analysis) that part information such as 
"key operated boot lock", "plastic sleeves over boot latch", 
"rear spoiler, black" etc. is linked to the vehicle feature 
"Rear Badge" (discussed in chapter 4, section 4.3.3). The details 
of such a process are discussed in the next section.

8.1.1.2 Territory Code Index Report and Model Summary Ctläct-

Both the Territory Code Index Report and Model Summary Chart
documents are not used for the system. The Territory Code Index
Report is redundant as the system uses double links to refer from 
supergroups to groups, to countries and in reverse. The 
information of the Model Summary Chart is expressed in the Base 
Features Charts more precisely, and makes therefore the use of 
the former redundant.
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8.1.2

The basic components of the system represent the tools of the 
auditor as discussed in the previous chapter, together with some 
supplementary parts which either help the electronic transfer of 
the audit hardcopy documents into the computer or code the 
knowledge and experience within the auditing function.

All the components of the system are shown in figure 51.

All the information needed for the audit process is stored in the 
memory of the computer through the application of parsing 
programs to raw text data. Temporary object oriented databases 
are created and the audit process starts. The part description of 
a physical part is chosen from the APN catalogue. The auditor 
from experience links some feature groups with this part 
description in order to carry out his application. However, when 
questioned by the system to indicate the vehicle model for which 
this part has been designed, the resulting combination will 
eliminate the available feature groups as the process passes 
through the AFGIR. In sequence, the validation algorithm is 
invoked which works at two levels:

(i) planning function: It combines all the features of the 
available feature groups in order to create part specifications, 
whereas when it needs consultancy from the auditor/engineer 
queries are made in understandable English, by translating the 
source code with the help of the existent documents (K87, 
Base Feature Code Index Report, Territory Code Index Report etc).

(ii) validation procedure: it works out and graphically
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The italics indicate the way in which the knowledge Is represented 
In the various components of the systemI i i

Future implementation

: - ;

Figure 51: T h e  f i r s t  d e v e l o p m e n t  phase o f  R O O V E S P
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outputs all the legal possible feature combinations for the 
specification of the part.

8.1.2.1 parsing program

The ISTEL company implemented Rover's existing specification 
system and it is the main source of software support and 
maintenance. ISTEL, consequently creates and keeps backup tapes 
of all the existing audit documents for all different systems.

The parsing program of the proposed computerised system uses 
mainly VAX tapes maintained by the Business System department of 
the company (BAFCs, APN, K87, etc.) to create its input. The 
parsing of all these tapes is done according to the
specifications given by ISTEL. The main function of the program, 
however, is independent of changes in the format specification of 
the tapes. Such a need arises from the dynamic nature of 
Specification Services. The format of the BAFCs and APN
catalogue, for example, have been changed twice during the last 
year. The rest of this section covers the parsing of the BAFCs, 
which represent a typical example for the parsing of the rest of 
the data base. The result is a data base of records representing 
the features of the car and their restrictions. Fortunately, the 
BAFC shows a high degree of discipline in its electronic 
compilation from ISTEL, hence can be used reliably by a computer 
application. The parsing of the restrictions of the features from 
the tape is based on tables of sequential exchanges of boolean
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Q l C1 Q 2 C2 Q3 C3 Q 4 C4 QS

Q6 C5 Q 7 C6 Q8 C7 Q 9 C8 Q 10

Q U C9 Q1 2 C9 Q13 C10 Q1 4 C11 Q 15

Q16 C12 Q17 C13 Q 18 C14 Q 19 C15 Q20

Q21 C16 Q22 C17 Q23 C18 Q24 C19 Q2 5

Figure 52a: Territory/Combination restrictions

Figure 52b,c: more specialised territory/combination restrictions

qualifiers and Rover codes, as shown in figure 52a.

The figures 52b, 52c show the way in which the territory 
restrictions are compiled in the tape in sequential fields of 
territory groups and countries exceptions.

The parsing of the BAFC represents a typical AI exercise in 
string-matching in combination with heuristic rules. The most 
difficult part is to assign to each restriction its qualifier and
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distinguish between several lines of restrictions or a single 
one. For example, if both the Q5 and Q6 qualifiers in figure 52a 
contain a value it would mean that the restriction expression of 
the feature is continuing in the next line of the table following 
the original parsing pattern, whereas no value on the Q5 
qualifier would mean that an additional restriction expression is 
added to the availability of the feature and a different parsing 
pattern needs to be applied (for more details see appendix 3).

8.1.2.2 Automatic Part Numbering__catalogue

When the engineer has completed the design of a physical part of 
the vehicle, he consults the APN catalogue, from where he picks 
up a part description that matches the english representation of 
the part. eg. "seat-front complete manual-passenger". 
Consequently, it seems logical for the computer system to start 
its application from the APN catalogue, as well.

As mentioned at the beginning of this chapter the system re­
organises pieces of information according to its software 
development needs. This is the case with the APN catalogue. The 
whole design of the system is built around the behavioural 
aspects of the parts of a vehicle - actually the part 
descriptions. That is, the way a usage condition (referenced to a 
specific part) is compiled, updated and made to co-exist with the 
rest of the usages in the data base. In this perspective, a part 
description from the APN catalogue is considered to be an
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individual entity in the system that contains all information 
relating to its identity. Following this logic, the part 
descriptions of the APN catalogue have been implemented as 
objects rather than conventional datatypes.

More specifically, the part descriptions of the system have been 
represented as FLAVOR objects within the Lisp Machine and only a 
representative sample of them have been input manually during the 
development.

8.1.2.3 Additional Features Chart

In addition to the part descriptions from the APN catalogue, the 
Additional Features Chart of each model is implemented as a 
series of FLAVOR objects within the system. In this case, each 
feature of the model represents an object with knowledge of its 
availability and restrictions to the vehicle. The specification 
of the part then becomes conceptually clearer being represented 
in terms of feature objects which control the fitment of the 
part into the vehicle.

8.1.2.4 The algorithm

The validation algorithm uses object oriented programming to 
manipulate the overall knowledge represented in the system. It is 
the control structure of the system and works on two levels:
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firstly as a planner and secondly as a validation procedure. As a 
planner, it collects the information relevant to the application 
from the engineer and/or auditor and returns relevant knowledge 
it possesses or feature mismatches that it found. It organises 
feature objects in hierarchical structures to meet the needs of 
the specification exercise and simultaneously maintains the 
information of the part description object under consideration 
(retrieve, delete, update).

As a validation procedure, it combines the availability of the 
feature objects and generates specification usages in Boolean 
form.

The nature of the knowledge it possesses is represented in the 
computer memory both in procedural form and production rules, and 
interfaced with the FLAVORS object oriented programming.

8.1.2.5 experience and knowledge link

Originally, this information is fed to the computer manually as a 
sequence of production rules. It represents the design 
engineering knowledge that determines the design engineering 
features which control the fitment of a part in the vehicle. This 
information does not currently exist in a documented form 
anywhere within Rover. Instead, it is knowledge and experience 
held by engineers, auditors and Specification Services people.
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8.1.2.6 the remaining of the components nf the system

The Base Features Chart, Territory Code Index Report, Territory 
Group Index Report, Base Features Group Index Report and K87 
exist in the computer as conventional data structures: lists of 
strings, or atoms or nested lists. The system can therefore use 
them as they are stored with no further processing.

The following section of the chapter will discuss in more detail 
the main components of the system, such as the algorithm, the 
experience link and the APN catalogue.

8.2 DETAILED DESCRIPTION OF THE SYSTEM'S COMPONENTS.

Before the details of the main components of the system are 
described, it is necessary to outline certain peculiarities of 
the audit function which were discovered after extensive 
investigation of the problem. Those peculiarities not only affect 
the conceptual design of the overall system and require the 
introduction of new terminology but also affect the software 
solutions adopted. As mentioned earlier, part descriptions as 
chosen from the APN catalogue, drive the whole specification 
process within the computer system.

The difficulty arises from the fact that each part description
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has to be viewed within the system from two different 
perspectives. Firstly, as a logical entity which abstractly 
represents a number of similar parts of the vehicle and secondly 
as each individual physical part of the vehicle. In the first 
case, each part description is linked with the design 
engineering features which control the fitment of physical parts 
of this type, whereas in the second case the actual assembly 
structure into which this part description (the specific 
physical part) fits, is assigned its dependency features. For the 
rest of the chapters, except where otherwise specified, the term 
"part description" will refer to the logical entity part 
description rather than the physical parts and the design of the 
computer audit system is built around this entity. That is, the 
relationship between the part description at the highest abstract 
level, the Rover design engineering features, and the 
restrictions of those features.

In that perspective, each part description can be viewed as an 
independent object of identical behaviour. It is at this point, 
however, that the peculiarities of the formalism of the existing 
audit function arise: part descriptions (or parts) are fitted to 
different vehicle models with different specification conditions. 
That means, there is no clear mapping between part descriptions 
and vehicle features (actually feature groups) and the 
implementation of such relationships would not be feasible under 
the current vehicle specification logic. For this reason two new 
vehicle feature concepts called the "musts" and "maybes" (or 
optional} feature groups have been invented for the new system 
implementation.
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For example, the feature group "B40 or B51 : SEAT FACE MATERIAL" 
is a must feature group for the specification of a part 
description such as : "seat-front complete manual", as the seats 
of the cars must always have some kind of material at their 
finished stage. On the other hand, the feature group "B44: SEAT 
RECLINING" it is a maybe (or optional) feature group as its 
application to the specification of the seat depends of the 
design intentions of the engineer. Besides, investigation into 
the AFC has proved that the must, and optional feature group 
concepts do exist vaguely within the document, sometimes compiled 
by specification services in the form of comments under 
combinations restrictions. For example, the definition of the 
"B53: SEAT SIDE ROLL" feature group in the AFC of the Rover R8 
model (figure 53) comments (c) on its combination-restrictions 
field that its specification is controlled by that of the "B51: 
SEAT FACE MATERIAL" feature group. Thus it might be viewed as an 
indirect indication to a must feature group.

In addition, inconsistencies of the current manual system have 
led into the introduction of one more vehicle feature concept, 
the negative feature. This is, because of the inefficiency of the 
existing system in specifying the usage statements of the parts 
correctly and in flexibly updating them, as well as controlling 
the parts effectivity (see chapter 10). For these reasons, the 
specification people have introduced feature description into 
part descriptions. The aim is to help engineers and/or auditors 
to fully understand the parts they specify and/or design. In 
order to explain further with the negative feature group
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terminology two examples are given.

There are many different types of front seats in a vehicle, such 
as:

"seat-front complete electric-passenger",
"seat-front complete manual",
"seat-front complete manual-driver" etc.,

though there should be only one part description, where its usage 
statement would discriminate its fitment each time (figure 45). 
It is the same case with the mirrors of the vehicle. There are at 
least 40 different types of mirrors (figure 54) such as 

"mirror assy-exterior r/c body colour",
"mirror assy-exterior r/c self-colour",
"mirror assy-ext-driver r/c self-colour",
"mirror assy-ext-passr e/c-less-cover" etc.

In both instances, seats and mirrors, design engineering features 
are entered in the part description: the operation of the seat 
(electric, manual), the colour of the mirror (body colour), 
respectively. This creates confusion as the vehicle features 
compiled from Specification services show similar specialisation. 
For example, in the Additional Feature Chart of the Metro model 
(figures 55, 56) there are design features with description:

"B12C: BODY COL MIRROR -STANDARD HEAD (PANFIN) "
"B15K: DRIVER'S DOOR MIRROR (DRVMIR)"

The design feature "B12C: BODY COL MIRROR -STANDARD HEAD
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to the part description 
because the same mirror

(PANFIN)" can be called negative
"mirror assy-exterior r/c__self-colour"
assembly cannot logically be both body colour and self colour. 
Similarly, the "B15K: DRIVER'S DOOR MIRROR (DRVMIR)" design 
feature is negative to the "mirror assy-ext-passr e/c-less-cover" 
part description because the mirror cannot be for both driver and 
passenger's door.

In summary, the system is designed around the behaviour of 
abstract part descriptions entities, more specifically, their 
relationships with design engineering features that may control 
their fitment into the vehicle.

The need for a formal implementation of this idea has resulted in 
the introduction of new concepts and terminology within the audit 
and/or specification environment: must and maybe (or optional) 
feature groups and negative features with reference to the part 
description of the vehicle.

8.2.1 THE VALIDATION ALGORITHM

(first development phase of the system)

The validation algorithm represents the core of the computer 
audit system. It was originally named so because of the objective 
to validate engineer's usage statements. However, during the
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for Metro.
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development of the system it has expanded to administrate the 
scope of its appliance, as well. For this reason it actually 
operates on two phases instead of the one its name implies.

In the first phase, it plans the route to the solution by 
successively building up a hierarchical research space. In the 
second stage it introduces finer levels of detail for each node 
in the hierarchy and creates a combinatorial exercise which it 
solves later.

8.2.1.1 first phase (Planning process)

The system collects all the information for the features that 
concern the part description in question by accessing the feature 
attributes of that instance object. This information will 
determines the must and maybe feature groups associated with its
intended specification. In sequence, the part description is
linked with the vehicle model that it has been designed for. This 
combination will consult the AFGIR and will authorise only those 
features applicable to the vehicle model to pass to the next 
processing step. The must feature groups which pass the
validation process continue by default towards the final
specification of the part, whereas the system questions the user 
regarding the valid raaybes (or optional) feature groups to
determine whether they meet his design intentions.

The route of specification continues with the system checking the 
feature group specification inconsistencies within the data base
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itself. For example, feature groups which refer to the same 
logical characteristic of the vehicle but appear more than once, 
eg. the feature groups "B51: seat face material" and "B40: seat 
face material". The specification people created the 
supplementary B51 feature group because the index references of 
features from A to Z ,for the material of the seat were filled up 
in the B40 feature group. It is not correct for identical design 
feature groups to be used in the specification of the part. For 
example, a usage statement such as "+ B40F + B51K" is logically 
incorrect as a seat of a car can only have one material when is 
finished, leather (B40F) or zenith (B51K) but not both.

At this point, where the feature groups (musts and maybes) of the 
specification have been established, the system searches through 
the AFC database to retrieve all the available features offered 
by Rover and referenced to those feature groups. Notice it picks 
up only those with live effectivity ie. the features which have 
not been deleted from specification services. In parallel, the 
system accesses the part description object under consideration 
and recovers the negative feature information known for this 
object. Both inputs are then combined to eliminate further 
illogical situations.

The engineer is then prompted to provide the remaining feature 
availabilities as negative features to the part description. 
Every positive answer from the engineer will result to the update 
of the part description object's attribute that keeps the 
information on the negative features. In this way, the engineer 
trains the system with regard to the negative features and the
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part description, such that the system remembers those and does 
not ask the same questions in future regardless of the model 
specification. After a reasonable amount of training, the system 
should be capable of storing all the information and need not 
question the engineer.

After the part description negative features have been excluded 
from the scope of the application, the computer system continues 
its processing by translating all feature availabilities from 
conventional data (Lisp lists) already taken from the VAX files 
to FLAVOR objects. These objects are instances of the feature- 
chart-entry class. A feature-chart-entry class represents a 
single feature availability in combination with its restrictions 
as compiled by Specification services. Schematically, it can be 
seen as a single line of information across any page of the AFC 
(figures 31, 32, 33). Notice this is the way the data arrives 
from the VAX tape.

Once the information relevant to the application has been 
translated to "Flavor" objects, each of these objects implements 
attributes equivalent to the column headings of a page in the AFC 
hardcopy file. ie. feature code, feature description, class, ... 
territory restrictions, design effect point etc. Such a knowledge 
representation is flexible as methods can be applied to the 
feature-chart-entry objects and their behaviour can be made to 
simulate that of the human auditors.

For example, a specific method in the program taxonomises the 
feature-chart-entry objects according to the feature group to 
which they belong. This results in a single page layout of the
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Figure 57:hierarchical representation of the feature-chart-entries in FLAVORS 
(a nested hash table)

Additional Features Chart hardcopy file and naturally helps the 
knowledge engineer to work in the same way as an auditor. Another 
method groups the feature-chart-entry objects by the trim levels 
(classes) of their availability. Such data organisation, serves 
another system design need; the application of the audit 
procedure.

In reality, the feature-chart-entry objects relating to the
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application are structured by the system in a hierarchy of 
abstraction levels: feature groups, feature descriptions and trim 
levels (figure 57).

Inside the memory of the computer the feature-chart-entry objects 
are represented as a nested hash table [79] of instances of the 
feature-chart-entry "Flavor". The keys of the table are the 
attributes of these objects: the feature code, the feature 
description and the trim level. The organisation of the data in 
a hash table is chosen because it represents the fastest 
available searching method. The disadvantage of space 
requirements is insignificant as the planning process of the 
system has already reduced drastically the number of objects.

The system at this stage has organised all the information 
(features-chart-entry objects) in such a way that it can be fed 
into the validation algorithm and create the usage statements of 
the part. However, additional processing may be required to 
smoothly complete the application of the validation algorithm.

8.2.1.1.1 ordering of feature groups

Although the validation algorithm can start its function by 
choosing any feature group as the reference basis for its 
combinatorial process, the correct selection of the Master (or 
pivot) feature group can ease the process.

It is more possible for the feature group with the most feature
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availabilities to cover all the trim levels of the model and 
consequently guide the search fully, rather than choosing a 
feature group with only a few of the trim levels of the model and 
result to additional speculation and processing of the missing 
information.

For this reason the system orders the possible candidate feature 
groups in priority sequence before it audits. The measure of 
ordering is implemented on two principles:

a. must feature groups precede tnayfoe feature groups
b. feature groups with the larger number of feature 

availabilities precede those with fewer.

For instance, in the manual audited exercise of chapter 5 the 
sequence of the feature groups starting from the higher in the 
order would be "B51: seat face material" (must feature group with 
4 feature availabilities), "B44: seat reclining" (must, feature 
group with 2 feature availabilities), "B69: seat heating" (maybe 
feature group with 1 feature availability). In sequence, the 
Master feature group is detected - in this case "B51: seat face

material" which is combined in pairs with the rest of the feature 
groups consulting the priority sequence established from the 
system, eg. (B51, B44), (B51, B69).

8.2.1.2 second phase (application of the validation 
algorithm)
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F ig u r e  58: The firs t step of the va lida tion  algorithm

In the second phase the generated pairs of feature groups are 
entered sequentially into the actual algorithm of the system that 
codes the audit knowledge and experience for the creation of the 
usage statements of the part into Boolean form. The detailed 
combination of the feature groups from the algorithm is discussed 
shortly. The rest of this section deals with the various 
processes that the algorithm has to take care of in order to 
complete its search and present its result.
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Th0 restrictions from the heating group (B69) represented in italics
Tin restrictions trom the saat-tace malarial group IBS 1) represanud in undTlinn

Figure 59: The second step o t the va lida tion  a lgorithm

8.2.1.2.1 combination of features

In order to demonstrate the combinatorial procedure, the manual 
example for the specification of the front seats of the Rover R8 
model as discussed in chapter 5. is used as illustrated here, as 
well.

The feature-chart-entry "Flavor" objects of the master feature
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Trim levels of the M aster (or pivot) fea tu re  group

The italics represent the restrictions from the combination of the
Master "seat-face material" feature group (BS1) with the "seat-heating" (B69) feature group

The underlines represent the restrictions from the combination of the
Master "seat-face material" feature group (B51I with the "seats-reclininq" (B44) feature group

Figure 60: The th ird  step o f the validation a lg o rith m

(a tw o d im ensional array w ith p o ss ib ly  
m u ltip le  values as its  elements)

group are combined with the equivalent objects of the first 
feature group in the sequence pattern of the planning function. 
The hierarchical structure of both feature groups eases the 
combinatorial search of the algorithm.

The steps of the combination procedure in the Rover R8's front
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seats example are shown in figures 58, 59, 60.

Firstly, the B44 group is combined with the master group. Their 
result is sorted against the possible feature combinations 
created and each of them against its trim level availabilities. 
Similarly, the B69 group is combined with the master group.

The last two results, however, are combined in a different way: 
The research space is a two dimensional array that maps the 
master feature availabilities against all the legal common trim 
levels derived from both combinations of the feature groups with 
the master group, (figure 60)

The common options combined with the most specific restrictions 
represent the result of the three feature group specifications. 
The final result is then sorted in a similar way to that 
discussed before. If no additional feature group is participating 
in the specification of the part, the result is combined 
according to the two dimensional array philosophy with the result 
of the combination of the new feature group with the Master 
group. If no additional result is participating, the system 
graphically presents the result of the features combinations to 
the user.
At each step the algorithm matches only candidate features with 
common trim level availability(ies). The intersection process 
applies to three perspectives for every feature combination: Base 
features, territory and combination restrictions. One mismatch of 
either of them is enough to disqualify the validation of the 
combination of features (for more details see appendix 9) .
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Notice, it is possible in the example for a one or two feature 
combination availability not to match with any of the trim level 
options of the third feature group. For example it may appear 
that feature combinations such as "B51K" or "B51K + B44R" do not 
combine with any of the features of the "B69: seat heating" 
group. Such results are not discarded from the system but they 
are passed as carry-over usage statements. These statements are, 
as well, active and may combine with a fourth feature group, if 
it exists at a later stage.

Finally it should be noted that the algorithm could assign the 
"B69: seat heating" feature group to be the Master feature group 
and still reach the same results. The process of the combination, 
however, would be different and harder to code. This case is 
discussed in chapter 10.

8.2.1.2.2 implicit trim levels.

Trim levels represent the main substrate for the matching of the 
additional features (feature-chart-entries) of the vehicle. As 
mentioned earlier, feature-chart-entry objects represent one line 
of information in the AFC. An attribute of their frame structure 
is the trim level. It happens sometimes that the reference of the 
trim level of a feature is not explicitly specified in the AFC of 
the vehicle.

Figure 61 shows that no values have been compiled by 
specification services for the trim level of all four features
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that control the anti-lock brake system of the car. 
Consequently, no values will be assigned to the attributes of all 
the feature-chart-entry objects that represent those features in 
the system. Nevertheless, the trim level availabilities of each 
of these features are implicitly defined through the rest of the 
base feature restrictions. The trim levels expressed in such a 
way in the AFC document have been termed implicit trim levels in 
this research.

In order to decode the implicit trim levels the system consults 
the Base Features Chart data. It searches through the whole 
document and picks up all those trim levels that can be legally 
combined with the base feature specifications of the additional 
feature under consideration.

8.2.1.2.3 boolean algebra.

The validation algorithm uses the conventional data structures 
(Lisp lists) of the Territory Group Index Report, Base Group 
Index Report, etc. to translate the restrictions that appear in 
the AFC document. The boolean expression restrictions sometimes 
tend to be written by the specification people with no a specific 
discipline.

For example, a territory restriction such as M32S" and T51X 
T53Z" would mean that the feature under consideration is not 

offered to the Spain Group (M32S) except the Canary Isles (T51X) 
and Greece (T53Z). This, in other words means that it is offered 
to Greece and the Canary Isles. The proper boolean restriction it
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should be "+ T51X + T53Z" to avoid the double negative above. 
Fortunately, the validation algorithm can tackle odd situations 
like these and make sense of the contents.

8.2.1.2.4 the PLUS ( + > and MINUS (-) signs of the usage
statements.

The boolean qualifiers that appear in the final usage statements 
of a part (+ and/or -) are created by the validation algorithm. 
This process is governed by both design engineering and 
specification logic rules.

(i) Design engineering knowledge: feature groups which are 
offered with more than one option (feature) in the AFC of the 
vehicle cover - or should cover - all the current trim levels of 
the model for that point in time.

(ii) Specification Services: it is preferred by Specification 
Services that feature groups which cover all the trim levels of 
the model should be specified positively in the usage statement 
of the part. The usage condition qualifier of such a feature 
group is expressed in Boolean logic with the plus (+) sign. On 
the other hand, feature groups which are offered only with a 
single option (feature) in the AFC of the vehicle - eg. "B69: 
seat heating" - they may not cover all the trim levels of the 
model and should be specified negatively (-).



In both cases the system works out all the trim levels of the 
feature group by referring to the Base Features of the model to 
compute implicit trim levels when necessary.

In the situation that only one feature is available from the 
feature group in question, three cases of its boolean qualifier 
may exist, plus ( + ), minus (-) and plus and minus (+/-) .

In order for the system to work out the proper qualifier of such 
a feature group it consults both the trim levels of the vehicle 
and the availabilities of each feature in particular. The 
algorithmic expression of this case is shown below. (Remember the 
combination of the feature groups "B51: seat material" (master 
group) and "B69: seat heating").

IF the trim levels of the master feature group do not cover 
all the trim levels of the feature in question 

THEN + and -.
ELSE
IF the feature covers all the trim levels

THEN IF all the availabilities of the feature are
standard

THEN +
ELSE
IF (all the availabilities of the feature 

are optional or base or legal etc.)
THERE IS A  REFERENCE IN THE record OF ANSWERS?

assign it to the qualifier (RETURN)
ELSE query the engineer.
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(if answer is no then +

OTHERWISE

else + and -) 
update the record of answers.

The query to the engineer looks like: "If the model does not get 
this feature, does it get something else instead ?"

There is a design engineering logic behind this situation in 
which the system interrogates the engineer. In the example the 
system has analysed all the trim levels of the "B69: seat­
heating" feature group and concluded that it does not cover all 
the trim levels (ie. all the different top assemblies in 
manufacturing) of the Rover R8 model. In addition, not all the 
availabilities of the feature of the group are offered as 
standard fitments to the car. Instead, all of them are optional. 
Consequently, it suspects that something else may replace this 
fitment to the car. This can be illustrated with a real life 
example of a car.

The front seat of a car, for instance, is usually offered with a 
head restraint fitted on the top. If the case occurs that the 
design feature group that controls the head restraint condition 
of the seat shows the above characteristics:

(i) it does not cover all the trim levels of the model and
(ii) all the available features are optionals (see 

availability in figures 31, 32, 33),
then the system questions the engineer/auditor if there is
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anything else that is fitted in the seat when the head restraint 
is not fitted.

If the answer is no, ie. no other part is fitted, the boolean
qualifier is assigned to PLUS (+). On the other hand if the
answer is yes ie. something else is fitted instead, then this
means two seats different in appearance are added at the
manufacturing stage: one with head restraint and another one with 
something else on the top. The boolean qualifiers in this case 
are + and -.

The first I F - T H E N  statement of the algorithmic expression is 
based on the logic that if the trim level availabilities of the 
feature under concern are more than those of the master feature, 
then the boolean qualifies must be assigned PLUS (+) and MINUS 
(-) in order to anticipate the missing combinations of the

validation algorithm (the master feature is the reference point 
of the combination process).

Notice, the system distinguishes among feature groups which have 
only a single feature option; ie. these which have been actually 
compiled in such a way by Specification Services and those which 
resulted in a single feature option because some of their 
availabilities were excluded by the system with the application 
of the negative features discrimination.

Finally, notice that the system recursively creates all the 
different combinations of the PLUS and MINUS usage statements, 
for all feature groups which present similar behaviour. For 
example, some of the usage statements of the R8 front seat
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(manual-passr) after the combination of the three feature groups
are:

"+B44R +B51L +B69D" , "+B44R +B51L -B69D"
"+B44R +B51F +B69D" , "+B44R +B51F -B69D".

The involvement of the "B45: sport style seat" feature group in 
the above specification result which shows similar 
characteristics with the "B69: seat heating" group, would
generate the following usage statements:

"+B44R +B51L 
"+B44R +B51F 
"+B44R +B51L 
"+B44R +B51F

+B69D +B45", 
+B69D +B45", 
+B69D —B45", 
+B69D -B45",

"+B44R +B51L 
"+B44R +B51F 
"+B44R +B51L 
"+B44R +B51F

B69D +B45" 
B69D +B45" 
B69D -B45" 
B69D -B45"

8 . 2 . 1 . 2.5 Grach: Generator a.r I’ruth Maintenance Mechanism.

When the algorithm runs it creates all the possible combinations 
of the features of the feature groups specification under 
consideration. Thus, it usually generates a lot of information 
which makes it difficult for the engineers to absorb the whole 
bulk of data in textual forms (first prototype version of the 
system).

In the latest version of the system a piece of code has been 
written to present the result graphically. It concerns the 
possible usage statements of the part found by the algorithm
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presented to tree-like legal combinatories that are restricted 
from their Base Features, Territory and Combination 
specifications.

A truth maintenance mechanism is supported at the user interface 
level, as well. This mechanism run invisibly to the user in the 
background of the validation algorithm's process. When it is 
invoked it graphically presents the route of legal combinations 
which the system followed to reach to the solution. The engineer 
and/or auditor can view internally any node of the truth 
maintenance tree and have fed back the reasons why a feature 
combination did not occur or how the restrictions in the top 
usage statement were generated.Additional menu choices enable the 
engineer and/or auditor to view the Base features of the vehicle 
or the internal structure of the Statice data bases, as well (for 
more details see photos A10 to A14 in the appendix 10).

The whole function of graphics generator is driven by the 
presentation type facility built-in to Object Oriented 
Programming and FLAVORS, in particular. For more details see 
appendix 7.

8.2.2 THE EXPERIENCE LINK

(second development phase of the system)
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The first phase of the system's development was based on the idea 
that the relation of the part descriptions to the feature groups 
that specify them is known. This is the design engineering 
knowledge and experience. In the first instance this knowledge 
was entered manually into the computer and only for a 
representative sample of the parts of the vehicle ie. exterior 
mirrors and front seats. The intention was that design engineers 
and specification people would provide all the knowledge required 
by the system, for all the parts in the company. However, when 
the second development phase of the system was launched - to 
cover fully all the part descriptions in the company - delays by 
Rover to feed the system with the information showed the problem 
faced: A team of people would be required to be constituted and 
work on a full time basis over a substantial period of time. 
There were two reasons for this:

Firstly quantity; the amount of information which had to be 
handled was extremely large. Almost 15,000 different part 
descriptions, each of them mapped against more than 300 feature 
groups currently exist in Rover. The definition of all negative 
features to each part description it would reach the range of 
15,000 * 5,000 manual checkings.

Secondly quality; the nature of this knowledge is very 
subtle. The must and maybe feature groups have to be 
distinguished unambiguously for every part description. However, 
only a few people within Rover really understand the Product 
Specification Concept. ie. experienced engineers, auditors or 
Specification Services. These people may disagree, as well, in 
the assignment of the must and maybe feature groups to the part
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description. This is because everybody views the newly defined 
?u"ft and maybe concepts from his/her own profession perspective. 
It soon became apparent that a new solution to the problem would 
need to be found. Further investigation into the PIMS database 
brought to light the existence of two documents which are created 
through overnight batch processes: the VPG and EJA18V documents.

Both of these documents compile the final stage of a specific 
model. That is, all the parts that make up the vehicle (about 
5,000), their usage statements, assembly links and quantity 
relationships. The difference between the two documents is that 
the VPG document pulls out from the PIMS data base all the parts 
of the vehicle which have ever been used all the years of the 
life of the model under consideration whereas the EJA18V states 
only the current parts. The first document costs Rover 10,000 
pounds whereas the latter 5,000 pounds and as it will be shown 
later, such important results from their analysis could justify 
their cost rather than only been used as backup information. Both 
of the documents can be electronically fed to VAX tapes which 
makes their usage from a computerised system practically 
possible.

Figures 62, 63, 64 illustrate typical pages from the EJA18V 
document [15].

The first column in the left hand side (fig 62) records the part 
number of the part (HAH10022xxx) , its fitment (0001) and the 
usage condition code (XW1134 99) which represents a usage 
statement for this part for this fitment. The third column 
describes both the part and its fitment. The fourth column keeps
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the usage condition of the part. The fifth and sixth column is 
concerned with the effectivity of the part. ie. the time it was 
designed and used within the company and the time it replaced by 
another part. The last column indicates the other parts that this 
part replaces or the parts which is replaced from.

Information on the relationships between part descriptions and 
feature groups can be derived through the document. An expert 
system has been implemented which uses both the design format of 
the document and statistical analysis to generate information:

Firstly, the data are parsed by a Lisp program. Because of 
the huge amount of information that is carried in the EJA18V 
document, ISTEL has split it to four separate files. The system 
links the files by means of logical pointers and constructs a new 
single data base of conventional type in the computer's virtual 
memory. This data base is constructed of nested lists that 
represent the format of the EJA18V document ie. physical part, 
fitments, usage conditions, date of appliance (figure 82). This 
parsing together with the grouping of the data to VPG areas takes 
an hour of processing time.

Secondly, every VPG group of the data base is individually 
processed and statistically analysed. The rules (information) 
generated for each specific VPG are stored into the equivalent 
area of the APN's catalogue VPG.

The statistical analysis of a VPG group translates the hierarchy 
of the conventional data to a hierarchy of equivalent objects and
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makes use of its structure to derive facts for the parts. The 
automobile logic that the hierarchy represents is that a part 
description covers a wide area of actual physical parts (see 
section 4.1.1) each of them fitted to the car in different ways 
under different usage conditions, at one point in time.

Consequently, it is the need to acquire information from the 
layout format of the EJA18V document that forces the hierarchical 
grouping of the data even more. The data base of such FLAVORS 
physical-part objects is created on the fly and exists only for a 
short period of time. It disappears once the statistical 
analysis of the VPG group has been completed.

The same software engineering tool has been used for the 
structure of the hierarchy as that of the validation algorithm 
ie. nested hash tables. Notice, that the system only passes to 
the data base current parts (especially when the VPG data tape 
is used). These are parts that have not been replaced by other 
parts.

The next section explains the statistical analysis of the system 
in more detail.

8 . 2 . 2.1 a-yi-

8.2.2.1.1 temporary data base of physical part objects
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When a temporary database of FLAVORS physical part objects has 
been structured hierarchically representing a VPG group of data 
coming from the tape, the system applies a statistical procedure. 
At the beginning it assigns feature groups to every object which 
is implicitly expressed through the usage statement of the 
object. Furthermore, it corrects any inconsistencies which appear 
in the EJA18V data tape before it applies evaluation to the data.

For example, in the VPG document or even in the EJA18V document 
of the current model, there are referencies for feature groups 
which are no longer in existence such as "B40: seat face 
material". The system assigns the feature groups in respect to 
the current feature group availability in Rover. In sequence, it 
evaluates the result in respect to a level higher in the data 
base hierarchy, that of part description instead of physical 
part.

The statistical analysis is based on a combination of data 
percentages and patterns that appear in the EJA18V document. The 
reason for this combination is that the EJA18V document which 
represents the search environment of the statistical algorithm is 
not standardised eg. there may exist many referencies for a part 
description or none. The patterns of usage statements may vary 
from one to many, as well. The term pattern used in these 
contexts means a combination of similar feature groups. For 
example, using as basis the "B51, B44, B69" the "+B51K -B44R 
+B69D" matches the pattern but "B51K +B44R" does not.
The following pseudo code represents the statistical algorithm 
applied on the data.
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IF the feature group appears in the usage condition of all the 
physical parts with the same part description, with 100% rate, 
then this feature group is a must feature group for that part 
description 

ELSE
IF the feature group appears at least 70% and it is 
involved to 4 different feature combinations patterns of 
physical parts with identical part description O R
IF the feature group appears at least 60% 
and it appears to 3 different patterns 
O R
IF the feature group appears at least 50% 
and it appears to 2 different patterns 
O R
IF the feature group appears at least 80% 
and it appears to 5 or more different patterns 

T H E N
the feature group it may be a must and it should be 

checked from the validation algorithm 
OTHERWISE

the feature group is a maybe (or optional) for the part 
description concerned.

8.2.2.1.2 Need for further investigation
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The statistics algorithm is a prototype procedure. In every 
statistical marker appearing in the IF statement of the 
procedure, the test area has been increased by at least a 5%. For 
example, though practising with the EJA18V document has shown 
that a 75% is enough to conclude correct results in the first 
condition of the algorithm, the author has reduced the 
conditional marker to 70%. This gives an additional 5% 
possibility of the data satisfying the condition. The 5% 
expansion of the IF statements, however, gives more features to 
the validation algorithm for auditing. The requirement for 
additional processing does not impact significantly on real time 
terms, as the computer performs all the calculations, but 
increases the credibility of the results of the algorithm 
drastically.

Initially, the statistical algorithm was designed with the simple 
idea that if feature groups appear all the time in the usage 
conditions of different physical parts with the same part 
description, then these feature groups would seem to control the 
fitment of this part description. In the terminology which the 
author has previously defined is a must feature group for the 
part description. Similarly, feature groups that do not appear 
always are maybe (or optional) feature groups for the part 
description.

Experience with the VPG and EJA18V documents has shown, however, 
that though such assumptions are generally the case, they may be 
proved invalid in some situations. For instance, the usage 
condition of the third physical part of figure 64 and the fourth

224



usage condition in the same figure are:

"+B40C +B44B " and " +B40B +B44R -B69D" ,
respectively.

The "B69: SEAT HEATING" feature group does not appear in all 
cases where physical parts of the "SEAT-FRONT COMPLETE MANUAL" 
part description are referenced. This, does not necessarily mean 
that the feature group "B69: SEAT HEATING" is a maybe feature 
group for the part description. It is possible that the engineer 
wanted to specify the part he designed with the "B69: seat 
heating" feature group but the combination of all three features 
was not valid. Apparently, this is the case as the AFC of the 
Rover R8 model reveals.

Consider that the old B40C feature represents the current B51K 
(seat face material zenith). Then the combination "+B40C +B44B 
and "+B51K +B44B " are identical. The combination "+B51K +B44B 
is offered in the trim levels M and S ie. trim levels 3 and 4 
(see figure). Similarly the "B69: heat-seating" feature group is 
offered in the trim levels X and Y ie. 5 and 6. It is apparent 
that the "+B51K +B44B " combination does not intersect with the 
"B69: SEAT HEATING" feature group.

In this perspective, it can be assumed by the system that the 
"B69: SEAT HEATING" feature group may be a must feature group,
until it proved otherwise because it was found by the statistical 
analysis to be on the limit of the must, feature group confidence.

The question which arises now is how can such a situation be 
checked electronically?
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8.2.2.1.3 The need for statistical markers

The general idea is that as all the data (BAFC, Territory code 
Index report etc) needed for the specification of the parts of a 
vehicle are already compiled in the memory of the computer, the 
statistical procedure could consult the validation algorithm to 
check upon feature combinations. For instance, the validity of 
the example mentioned earlier:

"+B40C (or B51K) +B44B against the feature group "B69D".

The system could investigate all the possible combinations of 
features which may infer an optional feature group for all 
referencies of a part description but this would require a large 
amount of processing time. For this reason the system needs to 
discriminate among all the feature groups of each part 
description. This now makes it clearer the reason why the 
statistical markers were invented: to let pass only the feature 
groups whose need in the specification of the part is highly 
doubtful. The word highly expresses the statistical conditions 
under which a feature group must be examined from the validation 
algorithm. Notice, the statistical percentages have been assigned 
by the author after studying and practising with both EJA18V and 
VPG documents and may be subjective.

8.2.2.1.4 The need for feature combinations--patterns
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It was mentioned earlier that the data of the EJA18V document do 
not follow any rules. In particular, a quantitative approach 
which is so important for statistical analysis discipline does 
not seem to exist. References to different physical parts (hence 
quantitative figures) can vary from zero to many. For example 
there may exist 17 references for the part description "seat- 
front complete electric-driver" or 3. Similarly reference for the 
the squab frame of a seat may exist only once.

The problem arises because of such high differences in the 
distribution of the data for different part descriptions. It 
seems almost impossible to implement a general purpose procedure 
which would infer statistically new rules only from the number of 
part description entries, with the same credibility for every 
part description.

The following example is chosen to illustrate the logic in the 
design of the statistical rules. Assuming we have to analyse 
statistically the following data for the "seat front complete 
electric-driver" part description:

"seat-front-complete electric-driver"
Physical-parti : + B51N + B44R + B69D 
Physical-part2 : + B51L + B44R

It can be seen that the feature group "B69: seat heating" is used 
in the 50% of the references, which shows high indication that 
this part is maybe (or optional). It has not be used for a very 
high percentage (50%). However, this does not reflect the reality 
as it can be seen that it is only one case in which the "B69:
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seat heating" group has not used. It is quite possible that it 
was only in this one combination that it was not valid.

Now, given a different distribution of data:
"seat front complete electric-driver"

Physical-parti : + B51N + B44R + B69 
Physical-part2 : + B51L + B44R 
Physical-part3 : + B51N + B44R + B53F 
Physical-part4 : + B51K - B69K

In this case, as well, the feature group B69 appears in 50% of 
the references to the part description but it is more possible 
now for the feature group "B69: seat heating" to be optional to 
the part description. That is because it is combined with many 
more different combinations which decreases the possibility of 
all of them being invalid. It is because of that the author has 
introduced the concept of feature patterns. To give significance 
into the actual structure of the data themselves within the 
EJA18V document in the decision of the statistical algorithm.

The rest of the section deals with the interface of the 
statistical procedure with the validation algorithm and 
inferences which can be generated.

8.2.2.1.5 Inference from the history of the EJA18V data

It will be shown shortly that some information can be derived
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from the past history by studying the format of the EJA18V and/or 
VPG document provided the data are structured and interpreted 
accordingly. This was one of the reasons that the data was 
structured hierarchically in the first phase: to reveal 
information of the domain. For example, it can be seen from 
figure 63 that the feature group "B69: SEAT HEATING" is a nsyfce 
(or optional) feature group:

The usage statements of the last two physical parts do match 
except in the last feature; the "B69D". This means that it is 
valid to combine the B69D feature (driver's & pass seats heated) 
with the rest of the features combination as there is at least 
one reference for this (the second combination). However, in the 
first feature combination, the "B69D" feature has not been 
mentioned in the past by the engineers. This can be interpreted 
that the feature group "B69D: Driver's & pass seats heated" is 
not always needed to specify the design of the seat, consequently 
it is optional for the part description "seat-front complete 
manual-driver".

The system, searches each path in the temporary hierarchical 
data base (VPG group, family, primary description, part- 
description) down to the part description level and combines all 
the referencies for the part description as described above. In 
this way it tries to acquire most of the knowledge for optional 
feature groups from the history of the EJA18V data.

The need for individual routes is important as the secondary 
descriptions of parts from different primary-description parent
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may match and the results be mixed up. ie. "seat-front-complete 
manual-driver" and "cushion-comp-seat front manual-driver" 
(figure 65, 82).

The system cannot derive all the information for optional 
features from the history of the EJA18V tape because not all the 
relevant information has been entered in the past. Although the 
validation algorithm has been implemented on the principle of 
generating all the possible combinations of the feature groups at 
specification, the existing manual specification system has 
operated for years to input only some of them at a point in time.

Consequently, a large amount of past information is missing. The 
only solution in this case is the use of the validation algorithm 
itself to check for maybe (or optional) feature groups.

8.2.2.1.6 Inferring from the validation algorithm

The following steps underline the major phases through which the 
feature groups which have been found to need further 
investigation pass until finally audited by the validation 
algorithm.

Firstly, each feature group for re-evaluation is related to 
referencies of feature combinations existing in the same part 
description ie. the specific path in the hierarchy under 
consideration. These are feature combinations that indicate that
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a decision can be derived for the feature group under 
investigation. For example, the feature combination "+B40C +B44B" 
(or "+B51K +B44B" figure 64), mentioned earlier, is related to 
the feature group "B69: seat heating" as a possible indicator to 
reveal the nature of its application in the usage statements of 
the part (optional or standard). This is because another 
feature combination for the same part description reference has 
been found in the data base that refers to the same feature 
groups as the original feature combination and the feature group 
in question. This is "+B40C +B44R -B69D" (figure 64). It is shown 
diagramatically below that the "+B40C +B44B" feature combination 
is going to be audited against the "B69: seat heating" feature 
group from the validation algorithm.

"+B40C + B44R" --- > "B69: seat heating"

The system may need to calculate more than one features 
combination references for the same feature group and more than 
one feature group for the same part description.

The AFC data refering to the feature groups to be examined are 
accessed from the data base. The validation algorithm checks if 
the feature group under examination can be specified somehow with 
any of its feature combination references. If the answer to the 
validation algorithm is positive at some stage, the process 
terminates and passes to the next feature group in the queue to 
be examined by the validation algorithm. A positive result from 
the validation algorithm would mean that the feature group is 
maybe (or optional) whereas a negative one after the validation 
of all referencies of the feature group it would mean that the
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feature group may be a must. If there is a combination of 
features which are all negative to the part description under 
cosideration (for the specific path of the hierarchy), then the 
outcome if it is negative, it is ignored.

The following example considers that the feature group "B69: seat 
heating" is going to be validated against its two features 
combinations referencies: "+ B51L + B44R" and "+ B51N + B44R + 
B53F". The validation process is shown diagramatically in figure 
66.

The global feature group represents a pseudo feature group which 
is created dynamically by the system and offered to all trim 
levels of the model. The pseudo feature group afterwards is 
combined with the feature group in question. The need for the 
dynamic creation of a pseudo feature group is to enable the 
statistical procedure to use the routines of the validation 
algorithm and therefore must maintain the original format of the 
arguments (feature combinations) passed for evaluation.

8 . 2 . 2 . 1 . 7  the history of the EJA18V__document--- helps-----tka.
validation algorithm

All the way through the validation algorithm's process of 
combining the features of the feature groups under investigation, 
the system increases efficiency by recovering information -if it 
exists - from the data base concerning the validation of specific
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Figure 66: How the validation algorithm helps in the statistical analysis of past data.

combinations of features, instead of always running the 
algorithm. The algorithm runs when no such information can be 
recovered from the data base. The following example explains the 
situation.

Consider the statistical procedure has determined that the part
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description "cushion complete seat front" and the " +B25G + B51L" 
feature combination must be validated against the feature group 
"B53: seat side rolls". It can be seen from the data base, from
another part description's referencies (ie. a different node in 
the VPG hierarchy) that such a combination it is not valid.

In figure 62 the part description "headrestraint-comp-front 
bolster-nodding" is conditioned with two usage statements (the 
last ones) such as

" + B25G + B51L" and 
" + B25G + B51R + B53B".

These two usage statements represent the valid combinations of 
the feature groups of a single physical part that has been 
specified with (B25, B51, B53). This is because the feature
combinations entered into the system at the same time as shown by 

XW9H1
VAA02 /511.

which represents a manufacturing event in Rover. This could be 
for instance the Methods build phase of the Rover R17 coupe 
model, which eventually can be translated to a real date. , 0

Speculating with the above example, it can be thought that as the 
engineer entered usage statements of the same physical part at 
the same time, he would obviously refer to the same design 
intentions of the part (feature groups). In that respect, the 
absence of the "B53: seat side rolls" feature group in one of the 
usage conditions of the part must mean that such a combination 
was not valid. Hence, the feature combination " +B25G + B51L"
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cannot be valid with any feature combination of the "B53: seat 
side rolls" feature group and consequently, the validation 
algorithm does not need to be consulted.

Finally, it must be clear that though the system uses the 
validation algorithm when it needs it, it also updates it for its 
benefit. That is, it does not exclude feature groups which no 
longer exist from the AFC data base when it accesses the scope of 
its search, for instance the "B40: seat face material" feature 
group. Instead, it treats them as being currently available in 
order to infer more information from the past history of the 
EJA18V document for must, and maybe feature groups, as such 
references still exist in the document. (see section inferring 
from the validation algorithm).

The above process is repeated for all part descriptions in the 
VPG group. When all information for must, and maybe feature groups 
is generated for all the parts of the VPG group it is fed 
temporarily to the computer's virtual memory, in the form of the 
experience link part of the system and afterwards is stored 
permanently in the knowledge base of the APN catalogue. The same 
process is repeated for the next collection of the data coming 
from the EJA18V tape representing another VPG group. A schematic 
of the system at this point in its development is shown in figure 
67 .

8.2.3 THE APN CATALOGUE AND THE ADDITIONAL FEATURE CHARTS 
(third development phase of the system)
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Figure 67: The second development phase of ROOVESP
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The EJA18V data represent a finished current product (model) 
within Rover. Any informatiorf generated by the statistical 
analysis of the EJA18V data is then important for the company 
and it consequently should be stored permanently for use of any 
department that may needs it.

Up until this stage only a representative of the part 
descriptions of the vehicles has been implemented manually in the 
form of FLAVORS part-description objects within the Lisp's 
virtual memory ie. exterior mirrors and front seats (FLAVORS can 
only store data in the virtual memory).

The Additional Feature Charts although they are created 
automatically as FLAVORS feature-chart-entry objects from 
conventional data during the function of the validation 
algorithm, are also stored in the computer's virtual memory. The 
problem is that whenever the computer is switched off for re­
booting or from power failure, all those objects resident in its 
virtual memory are lost. That means that all the information 
created from the statistical analysis and fed to the part- 
description objects is lost. Additionally, the system has to 
start the installation procedure of the AFC and structure the 
knowledge base of the feature-chart-entry objects from the 
beginning each time. The requirement for a permanent storage of 
the information becomes crucial. It is achieved in the third 
phase of the system's development which translates it from a
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prototype to a real life system.

A real Object Oriented Data Base, Statice, has been used to store 
the information of the system that extends the power of objects 
beyond the bounds of the Lisp's virtual memory, out onto the disk 
and over the network.

The design logic and functions of the system remain unchanged. 
The system still thinks and operates in terms of FLAVOR objects 
and instances of them. In reality, however, these objects are 
instances of Statice entities that keep all the characteristics 
of the information belonging to a real data base: retrieval
under certain password, sharing among users, update and deletion 
with concurrent transactions and, most importantly permanent 
storage in the hard disk of the computer. Only the planning 
function of the system it has been changed slightly.

Figure 68 shows how both the feature-chart-entry and part- 
description objects were stored in the memory of the computer in 
the first and second development phases of the system. The part- 
description objects were entered into the system manually by the 
user.

Through the experience-link of the system, the initial planning 
function translated to FLAVOR feature-chart-entry objects the 
parsed data belonging to the feature groups which would specify 
the usage condition, from the Additional Features Chart tape. 
These feature-chart-entry objects defined the search space of the 
validation algorithm.

In the third phase of the system's development, all the AFC data
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are translated to objects (instances of Statice entities) well 
before the actual application of the program and stored in the 
Statice Object Oriented Data Base. The APN catalogue is created 
automatically, as well, directly from the VAX tape to a new 
Statice Object Oriented Database (new pathname). Figure 69 
illustrates the new version of the system with real data bases of 
information.

It must be mentioned, that although the transmission of all the 
AFC of all the Rover models (12) into Statice takes less than 
half an hour of processing time, the creation of the APN 
catalogue has been estimated to require about 4 or 5 days of 
continuous running of the system. This is not a major problem as 
it only needs to be done once.

The reason for the long processing time of the creation of the 
APN catalogue Object Oriented Data Base is that there is firstly 
a large number of part descriptions existing in Rover (almost 
15,000) and the system has to hard-wire all the relationships of 
these objects with bidirectional links for all VPG hierarchies 
(figure 65, 72). Below is detailed the process of the creation of 
the APN Statice OODB.

8-2.3.1 Storage of the APN catalogue to the Statice QQDB

The system stores the APN catalogue data in Statice by VPG group.
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in three steps :
Firstly it designs the appropriate Statice schema. This is, 

the definition of all the Statice entities required to 
represent the data hierarchy in APN catalogue ie. VPG group, 
family, primary description, secondary description.

Secondly, from the structure of the data coming from the 
tape it assigns the equivalent Statice entity in consideration 
and automatically creates new instances of the entity. The 
creation of new instances (objects) involves the initialisation 
of some of the attributes's values of the entity coming from the 
parsing of the data. (VPG code, design-resposibility, part- 
description etc) .

Finally, the system hard-wires the relations of all created 
instances of all different entities inside the VPG. Hard-wiring 
means the linkage of the instances (objects) with the internal 
memory references of the computer for the objects. In simple 
terms, the objects themselves. The hard-wiring of relationships 
of the objects is implemented in both directions in the VPG 
hierarchy.
For example, consider the "seat-front complete" instance (object) 
of the Statice entity "primary-description-id". It has two 
additional attributes in its frame design as well as those that 
represent the parsed data from the tape:

hao-secondary-descriptions and belongs-to-family.
Both attributes are initialised with actual objects. The first 
attribute associates the instance with the rest of the objects 
downwards to the hierarchy whereas the latter makes the 
association upwards.
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8.2.3.2 Update______the planning function__of__Uie__validation
algorithm

In the third version of the design of the system the planning 
function has been updated to meet the needs of interfacing the 
data retrieval and update of the Statice OODBs objects with the 
already existing parts of the system eg. validation algorithm, 
statistical procedure etc.

The planning function in the higher level of the application of 
the validation algorithm isolates it from the Statice data base 
and treats the data as Statice entity instances rather than 
FLAVOR objects. That is, it is concerned with the new software 
protocols of the new environment ie. data security for access and 
retrieval and data transactions that guarantee the consistency of 
the data base at any stage of the process even after a cold-boot 
of the machine or a system crash. That makes the Statice data 
manager program interface without complaints with the rest of the 
program.

The new domain of the planning function is shown in detail in 
figure 68b. It accesses both the part description of the APN 
catalogue and the AFC data of the model through specific 
pathnames in the Statice OODB. In sequence, it accesses the 
values of the attributes of the part description object that keep 
the experience link as it has been generated from the application
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of the statistical procedure (see photos A16 and A17 in Appendix 
10) . These values in combination with the value of the attribute 
in the part description that keeps the negative features specify 
the search space of the validation algorithm. These are instances 
of Statice entities retrieved from the AFC OODB and passed as 
arguments to the validation algorithm.

The close relation between the Statice entities with the FLAVOR 
objects that represented the data of the system in its first two 
development phases, means that as far as the algorithm is 
concerned there are no changes in the type of the arguments it 
applies.

As mentioned earlier, the experience link is retrieved from some 
of the attributes of the part description object. This is the 
case with the last version of the system where the experience- 
link becomes obsolete and no longer exists as a separate entity 
within the system but in the form of scattered attribute values 
within the frame design of each of the part description object. 
In this case the experience link would be deleted from diagram 
69.

8.2.4 THE STATICE OODBs OF ROOVESP

■ifc
8.2.4.1 The Additional Features Chart OODB

The Additional Features Chart schema is implemented in Statice 
with only one entity type: the feature-chart-entry entity (figure
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70). For more details see appendix 5.

This entity represents one line of information from the AFC 
document after it has passed through the parsing program of the 
system. The need of the AFC database to fit with the rest of the 
program created two new requirements in its design.

Firstly, the feat-group (feature group) attribute of the 
entity has an inverse reader function, the entity-of-the-feature- 
group. This function represents a one-to-many relationship. 
Originally, the planning function of the validation algorithm 
accessed the data that corresponded to each feature group that 
would specify the part by matching the feature group's code. 
Afterwards, it would translate them into objects of type feature- 
chart-entry. This represents a one-to-many relationship. The 
definition of the inverse reader function entity-of—the-feature- 
group implements that relationship automatically. An inverse 
index has also been defined to speed up the performance of the 
relationship.

Secondly, the :cached tag appears in all attributes of the 
feature-chart-entry entity. This results from the need of the 
validation algorithm to use data base information (instances of 
entities) in the same way as was implemented originally to 
combine flavor instances.

The objects for combination are now entities of a real data base, 
that everybody can use instead objects in the computer's virtual 
memory. Their access is governed by data base management



(define-schema the-data-base-of-the-AFC-of-R8

(feature-chart-entry))

(define-entity-type Feature-Chart-Entry 0 ;;;; no inheritance

((feature description string ¡cashed t : read-only t)

(all-the-combination-restrictions list ¡cashed t : read-only t)

(all-the-territory-restrictions list ¡cashed t ¡read-only t)

(class string :cashed t : inverse-index t :read-only t)

(body string :cashed t :read-only t)

(feat-group string ¡cashed t ¡inverse entities-of-the-feature-group 

: inverse-index t)......... ))
Figure 70: the Feature-Chart-Entry entity type of the AFC databases in

Statice.

principles, such as definition of the data base's pathname and 
most importantly, consistency of the data during all the 
transactions by the users. This, in software terms means that all 
functions of the original code would need to be interfaced with 
the Statice's primitives that control such behaviour. The 
modification of the original algorithm in order to incorporate 
those primitives is a lengthy task which may affect the internal 
structure of the program and destroy the system integrity. 
Fortunately, the Statice facility of snapshots can be used to
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overcome the problem without touching the original code.

8.2.4.1.1 snapshots

Attributes of Statice entities can keep a copy of their original 
values with the reached option tagged in their definition. The 
cached values reflect a snapshot of the database state - a 
frozen copy of what was in the database at a certain time in the 
past. This is because as transactions access and change the 
values of the attributes in the database, the cached values never 
change. The good thing however, with cached values is that they 
can be accessed outside a transaction without causing a problem 
with the Statice database manager program.

Summarising, within a transaction, a reader function gets the 
value of an attribute in the database. If reached t is specified, 
the reader can then work outside a transaction, skip the 
formalities of the database principles and access the cache slot 
for the database value. This characteristic of the Statice 
database has been used to smoothly interface the original 
algorithm with the newly created AFC Statice data base. The 
arguments passed to the algorithm are Statice entities. The 
virtually identical functional similarity between them and the 
FLAVOR objects and the access of only their cached values, makes 
the algorithm 'think' that they are FLAVOR objects upon which it 
carries out its process without complaint.
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In addition, no data inconsistency is created as the validation 
algorithm only uses the values for combination and does not 
change them. Besides for double security the :read-only option 
has been tagged to all attributes of the feature-chart-entry 
entity. All the AFC of all different Rover models are compiled 
and loaded to Statice with the same schema definition under 
different pathnames.

8.2.4.2 the APN catalogue OODB

8.2.4.2.1 The APN catalogue entities

The schema definition of the APN catalogue database, as mentioned 
earlier, is comprised of the entity types : Sub-Sub-Sub-VPG 
(VPG-code), family-within-SSS-VPG, primary-description-ID,
secondary-description-ID and a logical entity type called
reference-to-the-Rover-cars-- actually-Austin-Rover (see figure
71). For more details see appendix 5.

The latter entity type is designed because every secondary-part- 
description-ID should include such information structure. For 
economy of development, therefore, it is preferable to define 
such a structure rather than input the same kind of data to all 
entities individually.
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(define-schema ROVERS-APN-CATALOGUE (SSSVPG, Family, Primary-Description- 

ID, Secondary-Description-ID, CARS-reference)

(define-entity-type SSSVPG ()

(VPG-code string ¡unique t)

(Has-families (SET-OF family) ¡inverse index t)

...))

(define-entity-type FAMILY ()

(Family-code string ¡inverse the-actual-entity-of-the-family) 

(belongs-to-SSSVPG SSSVPG)

(Has-primary-descriptions (SET-OF primary-description-ID) ¡inverse-index 

t) ....))

(define-entity-type PRIMARY-DESCRIPTION-ID 

();; no inheritance

(primary-description string ¡inverse ... ¡cluster t) ... 
(has-secondary-description (SET-OF secondary-description-ID) ...))

(define-entity-type SECONDARY-DESCRIPTION-ID ()

(part-description string ¡unique t ¡no-null t ¡inverse ... ¡cluster t)

(belongs-to-primary PRIMARY-DESCRIPTION-ID) ... (Has-Must-feature-groups 
CARS-REFERENCE) (Has-Maybe-feature-groups CARS-REFERENCE) ...))

(define-entity-type CARS-REFERENCE

(Mini-musts list) (Mini-maybes list) ... (Rover-R8-musts list) (Rover- 

R8-maybes list)

...))

Figure 71: the Feature-Chart-Entry entity type of the AFC databases in 

Statice.
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The original design intention of this logical entity type was to 
represent a dynamically adjustable array. However, the inability 
of Statice to support arrays as attribute types forced the 
implementation of static vectors. The Lisp environment supports 
good documentation for arrays and adjustable ones, as well. The 
solution to this drawback in the future, consequently, would be 
the implementation of a piece of code which would define a 
physical type of adjustable array on the top of the already 
built-in attribute types in Statice.

8.2.4.2.2 Uniqueness of the instances of the entities

It was mentioned in the discussion of the AFC data base that the 
reader function of the attributes express relationships between 
the objects in the database. Therefore, when a knowledge engineer 
designs a schema in an OODB such as Statice he must be careful to 
think about each attribute, and decide which kind of reader 
function he wants it to have. In this way the database design 
becomes object oriented by the means that the knowledge engineer 
thinks in terms of the attributes (properties) of the object 
which in sequence naturally imply the relationships in the 
database, instead of thinking of the relationships first as 
happens with conventional databases.

Several important choices for the APN catalogue schema have been 
made by the designer. Take, for example, the implementation of 
the entities in the APN catalogue schema that represent the
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hierarchical structure of the APN tape: VPG code, family, primary 
description, secondary description. The function secondary- 
description-ID-part-description is o n e - to -o n e. This is 
convenient, because one would think that a part description 
should be unique. The same for the VPG code ,the family code and 
the primary description. In reality, however, the secondary 
description of parts of different primary description is not 
unique. The secondary description of the "seat-front complete 
manual-driver" is "manual driver". The same with the secondary 
description of "squab-comp-seat front manual-driver" (see fig 28) 
Consequently, there is an o n e - to -m a n y relationship of seconda ry -  

d e s c r ip t i o n  names to Statice entities. For this reason in the 
definition of the secondary-description-ID entity the seconda ry -  

d e s c r ip t i o n  o f the parts is not used as the name but rather the 
whole part description (p r im a r y  and secondary) which is unique.

8.2.4.2.3 Performance issues

The main problem with the APN catalogue OODB is that it takes a 
considerable amount of time to be constituted (4 or 5 days of 
continuous running). Therefore, the knowledge engineer must 
decide on the implementation of indexes which may be inverse or 
direct dependent on the relationships created by the reader 
functions of the entities's attributes.
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Although the difference in data quantity between the AFCs of all 
models and the APN part-descriptions is not large, during the 
trials of the creation of the APN catalogue OODB the time needed 
was proportionally longer. (It has been estimated that there 
exists about 15,000 part descriptions whereas an average number 
of feature-chart-entry entities for each model is about 500, 
hence 500 * 10 (Rover models) = 5,000 feature-chart-entry 
entities in whole).

The difference is that the feature-chart-entries for each model 
are not related to each other and the structure of each AFC data 
base is quite simple (only one entity). This is not the case with 
the VPG catalogue, however. There are five different entity types 
which are linked together bidirectionally in hierachical 
structures. Consequently, the system needs time to work out such 
relationships and as the database grows the process slows. For 
this reason inverse-indexes have been defined for all the inverse 
reader functions of all entity types in order to speed up access 
time for the Statice entities. These functions are constantly 
called by the program in order to create the links in the 
hierarchy. In addition, direct indexes are defined for set­
valued entity attributes for even greater performance. This 
subject is discussed in more detail in appendix 2.

In a further step the author defines clustering techniques in 
order to achieve greater performance in the internal structure of 
the way Statice itself processes. Statice is a sequence of pages. 
Everything in the database resides on some page (records, 
indexes) etc. When Statice accesses information in the database



it creates a buffer in the virtual memory of the computer. The 
buffer contains a page worth of data. The speed of accessing any 
data on that page is greater than accessing a different page 
which must be fetched from the database. Reference in this 
subject can be found in the Statice's manual [3] . Increase in 
performance can occur if the knowledge engineer can predict group 
of entities that would need to be accessed together during the 
running of the program. Entity types as they are created 
automatically by the program could predict where they would 
reside because of the hierarchical connections (see photo A15 
in appendix 10) at the VPG-group level and be manipulated 
accordingly in such a way that relevant entity types would 
reside in the same group of pages. Indexes and clustering 
techniques have reduced the creation time of the APN catalogue 
from almost 4 to five days to 2 days of processing.

8.2.4.2.4 imagp.q

Graphical data have been stored in Statice in the form of arrays 
(two dimensional bit arrays) in order to meet the more general 
objectives of the CIE project mentioned in section 7.5. The 
images have been scanned by both Apple Macintosh and Symbolics 
Platforms and are represented as real values in the image 
attributes of the Statice's entities (arrays). Consequently, 
these images can be scaled accordingly and because of the 
hierarchical links which exist between the Statice entities in 
which they belong, and the facility of presentation type that
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the Statice entities possess, graphical representations of all 
the different vehicle's assembly structures can be derived. In 
this way Statice could support graphically the manufacturing 
orientation of the Rover's usage condition data base (see photos 
A8 and A9 in Appendix 10).

8.3 FURTHER DESCRIPTION OF ROOVESP

8.3.1 The statistics procedure

In the previous two section of the chapter the way in which the 
system statistically analysed the data of the EJA18V tape was 
discussed and how it electronically fed them to the equivalent 
VPG groups of the APN catalogue in Statice. During that process 
FLAVOR objects were created temporarily in the virtual memory of 
the computer, taxonomised and used by both the statistical 
procedure and the validation algorithm. The overall process is 
reasonably fast. It has been estimated that up to two or three 
hours of processing time is required for the system to infer 
fully all the rules of the data of a single model. Most of this 
time is consumed in accessing the APN database in Statice rather 
than in the actual statistics and combinations of the features.

Figure 72 illustrates the "experience link" of the system as it 
now exists scattered in the form of attribute values of instances 
of all part description objects (actually secondary-description-
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ID entities) in Statice. The attributes that keep the information 
of the must and maybe (or optional) feature groups in the part 
description object are the has-must-features and has-m&ybe- 
features. These attributes are by themselves instances of the
reference-to-the-Rover-cars--actually-Austin-Rover Statice
entity (symbolised, for simplicity, "cars's reference" in figure
72. See, also, appendix 6).

The reference-tc-the-Rover-cars--actual!y- Au 3 1 in-Rove r entity
(in figure 71 it is represented as the CARS-REFERENCE entity) 
represents a logical rather than a physical object in the APN 
database, defined to map in a matrix form the feature groups 
availability against the Rover models, either maybes (or 
optional) or must, for the part description which this entity is 
linked to (for further details see appendix 5).
The statistical procedure of the system as described in the 
previous chapter refers to one EJA18V tape, consequently a single 
current model. This is therefore repeated for the rest of the 
Rover vehicles. However, still further statistical analysis is 
performed by the system, invisibly to the user, on the 
"knowledge" (design engineering rules) already acquired and 
stored at the beginning. That it happens from two different 
perspectives:

Firstly, all the secondary-description-IDs of the same 
primary-description-ID entity are checked against the stored 
values of the has-must-features attributes. If a must feature 
group is a must feature group for every secondary-description-ID 
then it is inferred that this feature group it is a must feature
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group for the primary-description-ID as well, in reference to the 
specific model. Similarly, mast feature groups of all primary- 
description-IDs which meet the conditions of this rule are 
assigned as must feature groups to the family-within-SSSVPG they 
belong to. The same process is repeated for all Rover vehicles, 
individually.

Secondly, similar logic is applied to the maybe and/or must 
feature groups information stored in the APN database but with 
reference to all Rover vehicles. That is, if a must feature group 
is a must feature group for all secondary-description-IDs 
belonging to one primary-description-ID for all Rover models, 
then it is inferred that this feature group it is a must feature 
group for the primary-description-ID as well, for all vehicles.

For example, the "B51: seat-face material" is a must design 
feature group for all Rover vehicles whenever the engineer 
specifies the usage statement of their front seats. This is 
represented in the database with the insertion in the empty 
value of the "has-must-features" attribute of the "seat-front 
complete" instance of the primary-description-ID entity, "B51: 
seat-face material".

The same process is repeated with the rest of the entity types in 
the VPG group ie. family-within-SSSVPG and SSSVPG. eg. feature 
groups which meet the condition of wholeness "travel" upwards in 
the VPG hierarchy filling the empty slots of the has-must- 
features attributes of the nodes. The values of the has-maybe- 
features are initialised with the collection of all the optional 
feature groups lower in the hierarchy.
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The result of the statistical analysis of the system for 5 Rover 
vehicles, the Rover R8, Rover 800, Rover R6, Mini and Metro for 
the VPG groups of the exterior mirrors and front seats is shown
in the figures 73, 74 .

The development of the statistical procedure uncovered
peculiarities in the data base that had not come to light
previously. Not all the part descriptions of the APN catalogue
appear in the data of an EJA18v tape ie. a single model. 
Consequently, there is insufficient information for a thorough 
statistical analysis of all part descriptions of a model. This 
happens because of the highly human oriented way the current 
specification system in Rover works. The Specification Services 
people in order to make conceptually clear to the engineers 
and/or auditors the nature of the part they design or specify, 
have entered feature descriptions in the part descriptions.

For example, consider "seat-front complete manual" being the 
part description chosen by the engineer from the APN catalogue to 
describe the part he designed for the Mini model. It may happens 
that if in the future another engineer designs an electric seat 
for the Rover R8, the Specification Services people will view the 
two seats as significantly different and create a new part 
description for the new part: "seat-front complete electric" or 
"seat-front complete electric-driver". Apparently, the new part 
description will not be referenced anywhere in the lowest in 
specification Mini model, whereas it will definitely appear in 
the data for the Rover R8. In addition, the "seat-front complete 
manual" part description may exist in the data of the Rover R8,
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as well, concerning a derivative of the model. This explains the 
highly unstandardised data of the EJA18V tape mentioned in the 
section 8.2.2.1.4.

The proposed system overcomes such inconsistency in two ways.
Firstly, the way the validation algorithm is implemented, 

the statistical procedure specifically links every single part 
description with every model in two dimensions:

(i) known information from the past, for this part 
description for this model, or

(ii) unknown information from the past for this part 
description for this model, but default consultancy from the rest 
of the part descriptions belonging to the same primary- 
description-ID.

Secondly, for the purpose of documenting information for the 
company, the statistical procedure analyses the data of the 
EJA18V tape into a higher abstract level, instead of the part 
description (ie. secondary-description-ID). This is the primary 
description of the part In the seats example this is the "seat- 
front complete" rather than each part description "seat-front 
complete electric" or "seat-front complete electric-driver" or 
seat-front complete manual etc. individually.

The results of the system, in particular for the front seats of 
the car, have been checked and approved by Rover's seat 
engineers with enthusiasm (discussed in the following) [100].
This was as anticipated because:

The general idea behind the adoption of the statistical analysis 
of the tapes of the Rover's finished products was that it was
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bound to guarantee reliable results for two reasons:
Firstly, the analysis occurs in the lowest level of the 

Company's information, actually the functional level ie. the 
physical parts of the vehicle, and

Secondly, the EJA18V data represents finished products that 
have been available in market long enough to not have 
specification errors.

Notice, the whole system works in a close loop methodology. The 
statistical analysis procedure (or experience link) needs the 
validation algorithm to infer its knowledge and the validation 
algorithm needs the statistical results (or experience link) to 
associate the part description with the feature groups that 
specify it in order to generate its usage statements (figure 69)

Finally, the information created by the statistical procedure is 
vital for the company, as it has not formally existed anywhere up 
till now. It is therefore intended by the Product Management 
department to be used in the future by Rover as reference source 
for a project (within PROMS or IBOMP which are discussed later) 
that would appropriately update and unambiguously document it and 
which it could support the PSC.

8.3.2 maintenance of the experience link

New feature groups are always compiled by Specification Services
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when a new derivative is launched in the market and sometimes old 
ones are deleted. Part descriptions are updated in a similar 
manner by Specification Services.

R O O V E SP, having forseen such needs to maintain dynamic updates in 
Specification Services, supports a maintenance mechanism. The 
maintenance mechanism represents a menu driven interface which at 
the lowest level interacts with the APN catalogue and updates the 
values of the attributes of the part description objects which 
maintain the maybe (optional) or must feature groups or negative 
features. It also updates the AFC of the models when the EJA18V 
tapes are changed by Specification Services (on average once 
every nine months). Additionally, because the maintenance 
mechanism deals with a real data base password protection 
lockings can be implemented to prevent corruption of the data or 
the implemented design engineering knowledge.

From the software design point of view the presentation type 
facility of object oriented programming has been used. The user 
can enter only feature groups or features and part descriptions 
whose format is compatible with the K87 data base and APN 
catalogue. A default option for the generation of must and maybe 
feature groups of a newly entered part description exists based 
on the old inferences of the specific sub-tree of the VPG 
hierarchy to which it belongs, as well as help facilities.

8 . 4  T E S T IN G



The validation algorithm has been tested throughout its 
development period by an auditor from Rover. Furthermore, the 
algorithm has been tested for exterior mirrors and front seats 
for both Rover R8 and Metro vehicles by two of the most 
experienced auditors in Rover and showed that the results were 
correct. The validation algorithm has been developed in a modular 
manner with a series of subroutines performing tasks such as the 
combination of the features, the search for the intersection in 
their restrictions (ie. base features, territory, combinations 
restrictions) , the assignment of the PLUS and MINUS qualifiers 
in the usage conditions, etc. These subroutines have all been 
tested for accuracy individually so it could be expected that the 
overall algorithm would work correctly and it did. For more 
details see appendix 9.

The testing process showed that the algorithm can take less than 
15 seconds to reach (actually to create) the specification of a 
part with three feature groups, whereas an auditor would need 
about an hour of manual validation. Time is reduced, as well, 
considering the time required for the auditor or engineer to 
write down all the combinations found for all restrictions and 
territories, whereas this is now done automatically by an 
external device ie. printer.

Additionally, in its planning function, the system takes less 
than two minutes to interact with the auditor or engineer for the 
confirmation of the model, the feature specification 
requirements, negative features etc. whereas the manual approach



takes more than one and half hour. This is because the engineer 
or auditor has to login in PIMS, choose the Part Description (the 
time for Automating Part Numbering does not account), consult 
both Features List and Base and Additional Features Chart and 
finally by indexing collect the scope of its search within the 
AFCs .

Most importantly, in real life terms, time is reduced considering 
that the end user is the engineer and not the auditor. This 
avoids the need for communication between the Component 
Engineering and Auditing departments with the redundant time 
consuming consequences that may occur such as absence of either 
party, misunderstanding etc.

Rover has estimated that the manual validation of a specification 
package takes an average of 5 working days. Using a complete 
system to support the PSC and the Audit function as proposed by 
this thesis, it is estimated to require less than a single 
working day. This results in at least an 80% reduction of 
validation time and considering the other time consuming factors 
which mentioned above a drop of the 90% of the overall time in 
the specification of the product is a realistic objective.

This, naturally would increase drastically the design time spent 
in Component Engineering, as now the time spent for validation 
from the design engineers would be decrease to 90%.

8.5 SUMMARY ON THE CHAPTER



In this chapter the design and implementation of ROOVESP was 
discussed. ROOVESP was implemented in three different phases:

(i) a prototype of the system (a validation algorithm) with 
temporary Object Oriented database (FLAVORS)

(ii) then the Meta-knowledge component of ROOVESP was 
developed to transfer design engineering knowledge in the 
prototype system

(iii) the prototype system was implemented to a working 
system for Rover with a real Object Oriented database (Statice) 
to support its processes, maintenance of the knowledge it 
possesses.

In particular, the Meta knowledge element of ROOVESP is of great 
importance because it acquires design engineering knowledge for 
the company, from past experience, and which has been proved to 
be of high reliability. Its importance increases when it is 
considered that such knowledge is not formally documented 
anywhere in automotive industry, in general.

ROOVESP, is one of the few systems in software literature that 
supports real Object Oriented database in its operation (ie. 
Statice).

However, the most important characteristic of ROOVESP is that it 
is self-contained. That is, each major component of the system 
needs the other for the system to work. For example, the 
validation algorithm needs the experience-link (design 
engineering knowledge) to work, but also the experience-link 
needs the validation algorithm to acquire its knowledge.
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In this chapter, ROOVESP delt only with the first phase of 
audit process; the validation (actually, the creation) of 
usage conditions of each part in the specification package, 
next chapter continues the description of ROOVESP and covers 
last two phases of the audit process.

the
the
The
the



a. FURTHER__IMPLEMENTATION OF THE SYSTEM__ANP THE— ESC.
(second and third phases of the Audit process)

The system, described earlier allows for cooperative (man- 
machine) problem solving in the generation of usage statements 
for the parts of the vehicle. It uses the auditor and/or 
engineer's relevant knowledge obtained by statistical analysis of 
the old data and it applies it systematically in order to specify 
usage conditions of newly designed parts. Its major objective is 
to guarantee that parts are specified with the proper feature 
groups ie. feature groups that represent their design, and also 
those be combined and validated in their features level. Top key 
points of the design to date are:

Firstly, ROOVESP tackled only the first phase of the Audit 
function.
Secondly, it concerned only with the specification of the parts 
in the abstract level ie. for a given part which are the features 
(feature groups) which specify it for a specific model and under 
what restrictions.

In real life terms for the company it could be viewed that the 
system up till now deals only the new parts ie. parts whose 
design need change. For example, given that a front seat of a car 
needs to become heated, which are the features with which the 
engineer must specify it based on his experience and the new 
situation of the company. In addition what are the restrictions 
of this new design. However, in some cases the usage condition
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of the new part may affect the usage conditions of the carry 
over parts ie. old parts which transfer automatically with the 
new design such as overlay, squab, cushion, seat frame etc. 
ROOVESP does not update the PIMS database in these cases. This is 
done manually by the specification people in a similar way to 
that of the IPL project.
The reasons that the design of the system focused on these 
principle are:

(i) the first phase of the Audit function represents more 
than the 90% of the overall audit process.

(ii) the generation of the usage conditions of only the new 
parts simplifies design and enables the Auditing process to be 
separated from the whole Product Specification Concept. The 
details of the PSC can be added afterwards and complete the 
system (design in a hierarchy of abstractions).

In this chapter, ROOVESP deals with the PSC in the company rather 
than just the Audit function. Notice the implementation of the 
second and third phases of the Audit function coincides with the 
implementation of the system to tackle the whole PSC.

The first part of this chapter is concerned with the expansion of 
the system beyond the above boundaries. This is discussed in two 
stages:

In the first stage introduces the original intentions for 
the further implementation of the system to cover the second and 
third phases of the Audit function.

The second stage discusses a new approach which further 
investigation of Component Design and Specification Services has
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revealed, the intelligent networks.
The latter, though not rejecting the former, has been adopted by 
the author and developed to a prototype phase. That is because of 
two reasons:

Firstly, The new approach expands the current system out of 
all its boundaries and only a single design of a system and 
software support is required. In addition, the same design can be 
used to tackle the PSC. Secondly, the new approach automates 
fully the Product Specification Concept.

contribution to knowledge:
Tightenig up of the theoretical background (ie. boolean 

logic, feature combination of alternatives, etc) upon which new 
parts are specified on the basis of the existing ones, within the 
PSC.

Introduction of computer intelligence in the BOM area of 
the PSC, based on the revised theoretical background.

- The creation of a working system which fulfils the whole 
area of the business (PSC and BOM) and, also, meets the pragmatic 
needs of the company.

9-1 ORIGINAL THOUGHTS ON THE FURTHER IMPLEMENTATION--- QE--- XHE.
SYSTEM

9.1.1 Parts quantities (second Audit phase)
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Figure 7 5 :  The calculation of QUANTITIES.
(per vehicle and per assembly) as originally thought.

The second phase of the Audit function was originally thought to 
simulate the auditor's job. The auditing of the quantities of the 
parts per assembly or per vehicle (actually, per usage statement 
using the correct terminology) is easy - at least in the way it 
currently operates.

Assume all the usage conditions have been validated for every 
single part in the first Audit phase of the specification package
(The system internally has created objects each of which

represent a specification document in the package). Then the
engineer or auditor can link the parts (objects) at the user
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interface level by using the information in the "NEXT ASSY" field 
(see figures 23, 24) . The system updates the next-assy attribute
of the objects and creates the internal links in the 
specification package.

In parallel, the engineer or auditor can enter the quantities 
required for each part in the assembly. Then the system can 
graph the assembly tree of the package and derive the missing 
quantity information at each level, following alternative routes 
if required (figure 75).

More specifically, the system tries to solve the equation at each 
level of the specification package tree:

Quantity—in—lower—level Quantity—per—assembly

Quantity-in—higher-level

If more than one variables happens to be unknown in the equation, 
the system can search neighbouring nodes and recover the value of 
either of them before it solves the equation (a prototype of the 
process has been developed).

Notice, the above process has been presented in a simplified 
form. The system in reality has to work out which link is which 
between the various usage statements existing in each of the 
specification documents. That helps the code in the "USAGE SEQ. 
No." field (figure 23, 24).

9.1.2 relationships among the parts (third Audit phase)
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The system uses the structure of the network that has been 
created in the virtual memory of the computer during the second 
Audit phase. Procedures can validate the Usage Conditions of each 
part of the network on the principle that the usage condition of 
a part it must result in the Boolean combination of the usage 
conditions of its parents (figure 75) .

9.1.3 Other validation procedures of the Audit function.

There exist other minor checking procedures that the auditors 
apply in the validation of the specification packages coming from 
Component Engineering. These procedures have not been mentioned 
during the auditing example in chapter 5 in order to concentrate 
on the major concern of the system design: the correct usage 
specification of each part in the package.

One of the procedures validates the "sourcing" of each of the 
parts. For instance, the C A C  code in figure 23 under the heading 
"SOURCE" indicates that the "seat-front complete manual" assembly 
(A) came from the Canley (C) division and went to Canley (C). 
Implicitly that means that it was brought from outside as a 
complete assembly. C D C  (fig. 24) represents a subassembly brought 
from outside. Consequently, not only the sourcing code must be 
correct but the logic of the various information fields within 
the specification document must match, as well. eg. If there was 
a value in the "NEXT ASSY. NO" field of figure 23 this would 
contradict the sourcing field (CAC) which represents top 
assembly. Another validation procedure is concerned with the
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information, if it exists, in the "ALT/ACCOM." field, which 
tackles accomodation numbers in the specification document (see 
[17] for more details).

There exist some even more minor procedures. The problem which 
arises is that the functionality of all these minor procedures is 
not related to the part itself but also among themselves, which 
makes it hard to code in a program in structural manner. 
Consequently, automatic validation of the specification document 
on this level would be difficult.

9.1.4 Manual update of the old parts in PIMS

As already mentioned ROOVESP has up till now dealt with the 
specification of newly designed parts. However, the usage 
statements of old parts can be affected by the insertion in the 
data base of new ones. This is because old parts represent a 
condition of the company in the past and they must be updated to 
the new market characteristics in order to discriminate 
themselves from the newly designed parts.

For example, if an old part represents the standard seat of the
Metro model with global specification (ie. "ALL Metros ") and
Rover introduces a new type of heated seat, then the global
specification of the old part has to be changed to reflect the
fact that it is not heated (ie. "Metros with NO-HEATED seat.") •
(The details of the above situation are discussed in the
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following section.) At the moment such changes are supposed to be 
done manually by the Auditing or Specification Services 
department, in the same way the IPL system operates.

In summary, the system as it has been discussed till now, 
implements the major concern of the Audit function: "get the 
usage statements of the parts, right first time" [17]. This 
represents more than the 90% of the Audit problem. This section 
has discussed the original thoughts for the system's further 
implementation. It has also shown the immense complexity of the 
problem, considering all the minor audit procedures involved and 
the dynamic association of all parts new and old. Although the 
validation of the parts usage statements is obtained 
automatically, at least one stage of manual manipulation of the 
data is required for the complete process of the Product 
Specification Concept: the update of the usage statements of old 
parts.

The next section proposes a new design methodology accompanied 
with a prototype software support that completes the existing 
system and potentially could automate the whole Product 
Specification Concept in Rover.

9-2 INTELLIGENT NETWORKS
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9.2.1 Existent implementation

(THE SECOND AND THIRD PHASES OF THE AUDIT FONCTION)

Up till now the design of the ROOVESP has been implemented around 
the concept of the part description. Part description in the 
context of the system means the high level description of 
physical parts with similar physical appearance (ie. nimbus 
mirror, body colour mirror, remote control mirror). This section 
approaches the Specification problem from a different 
perspective, the physical part. It builds up usage condition 
statements based on the Bill Of Materials (BOM) of the designed 
parts.

In order to gradually introduce the new methodology and the 
concepts involved, an example has been chosen. For commonality, 
this example uses the same context used previously ie. the 
specification of the two front seats of the Rover R8 model. 
Furthermore, among the numerous subassemblies of the vehicle's 
seat assembly, only the squab subassembly is discussed in the 
example (figure 76).

Figure 76 illustrates a simplified version of the assembly of the 
front seat of a car. Usually a seat assembly is made of 50 to 60 
components [5]. Of importance in the example is the squab 
subassembly which among its other subassemblies and parts gets 
an overlay subassembly.
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F ig u r e  7 6 : a simplistic view of the assembly 
of both front seats of a vehicle.

As far as the squab of a front seat is concerned, it is 
irrelevant which position the seat is in the vehicle and it is 
fitted to both seats (Design Engineering knowledge) as shown in 
figure 76.

Consider, in the initial vehicle design that the same seats are 
offered to all R8 derivatives, irrespectively of trim levels or 
other Base Feature specifications, body, drive etc. The original 
specification of the two seats is:

ul: "offered to all R3 derivatives".
The same therefore applies to the squab and overlay assemblies
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which share common usage condition (solid lines).

The quantity in the arrows indicates the quantity per assembly of 
the lower subassemblies or parts in the hierarchy. Notice, as 
well, that each assembly or part has its own part number that 
uniquely identifies it in Manufacturing.

Let's assume that after some time Rover decides to offer heated 
front seats as an option on the Rover R8 model. The new heated 
seats are designed in such a way that new overlays are fitted in 
their assembly structures. The rest of the parts or subassemblies 
do not change. The new overlay assemblies are consistent with the 
old overlay subassemblies plus a new heating element. The new 
situation is shown in figure 77. It is Manufacturing policy 
within Rover that whenever a physical part or assembly (ie. 
seats) changes in one of the products that drastically affects 
the new design of the product, then all the part numbers of the 
physical parts or assemblies higher in the hierarchy have to 
change, as well. In the example, because a new overlay is fitted 
to the new assembly, new part numbers for the cushion and for 
both right and left hand side seats are created. The creation of 
new part numbers by the engineer (in reality automatically from 
the Rover's current system) means the insertion of new parts or 
assemblies in the Manufacturing. In this case, heated seats. The 
usage conditions of all the physical parts of both assemblies 
have to change, now, to reflect the new Manufacturing situation.

Firstly, the usage conditions of the parts of the original 
assembly have to change. This is so that Manufacturing can



distinguish the unheated seat assemblies at the production level. 
The usage condition of both the right and left hand side seats in 
the original assembly changes to u2: -BS9D. The "-B69D" code 
means "Offered to the Rover R8 derivatives which get no-heated (- 
B69D) seat assemblies. This is because it must now become 
explicit that the original seat assemblies are not heated, as new 
heated seat assemblies exist in Manufacturing. The new usage 
statement overwrites the old one. Overwrite is used in this 
context to mean that the link of the old usage condition to the 
physical part becomes obsolete. From the top of the assembly 
structure the discriminating characteristic traverses downwards 
to the lowest assembly level, the physical parts. The usage 
condition of the original squab subassembly now becomes the 
Boolean combination of the usage conditions of its parent nodes, 
ie. u2: -B69D.

Secondly, the heating characteristic of the usage condition 
in the new assembly is explicitly specified all the way 
downwards in the hierarchy, as well. That is nl: +B69D, which 
means that the part either seat or squab or overlay or the 
heating-element is "offered to the Rover R8 cars with the heating 
option". However, in the case of the original overlay, the usage 
condition of the part does not change. This is because the 
Boolean combination of its parent nodes result in the empty set. 
In other words, the original overlay is fitted to both front seat 
assemblies, irrespectively of the insertion of the heating 
discrimination in Manufacture. If the engineer or auditor, 
specifies this part with either B69D" or " + B69D" usage 
conditions, then he falls to the overspecification error (for
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more details in this subject see [17] and the following section 
9.2.3.

Now let's assume that an order for a number of Rover R8 cars with 
heated front seats is received by the company. The Usage- 
condition-to-parts system depends on the correct specification of 
the parts in PIMS in order to retrieve the right components in 
the right quantities and build up the assemblies on the 
manufacturing line. In the example the Usage-Condition-to-Parts 
system will retrieve parts from the data base (PIMS) whose usage 
conditions watch exactly the order specification (ie. heated) or 
broader specification areas. In parallel, the quantities of each 
part which are linked to the selected usage conditions are 
retrieved, as well. The result of the search is shown below:

ORDER: "Rover R8 cars with heated seats"

PART DESCRIPTION

seat-front complete manual-LHD 
seat-front complete manual-RHD 
cover-assy-seat-front SQUAB 
overlay-seat-front SQUAB-HT/ELMT 
overlay-seat-front SQUAB 
element-heater-ST/F squab

SELECTED CONDITION QUANTITY

+ B69D 1
+ B69D 1
+ B69D 2
+ B69D 2
ALL 2

+ B69D 2

In this way. Manufacturing can estimate the volume of parts



required to build the specified number of Rover R8 cars with 
heated seats by multiplying this number with each of the 
quantities of the chosen parts. The source code (see section 
9.1.3) tagged to each part indicates whether the part is going to 
be brought from outside, hence manufacturing can authorise 
purchasing of the parts for the project or build in house which 
starts the operations for the establishment of the assemblies 
needed.

The example continues, with the introduction of sport-style seats 
as an additional option to the Rover R8 model (the sports style 
of the seat is achieved by adding a new lumbar support to the 
basic frame of a seat) . For simplicity only one of the seats is 
considered in the example, either left or right hand drive.
The insertion of more than one feature in the seat adds 
complexity in the logic of the methodology discussed above. In 
addition, a new factor has to be taken in account for the further 
consideration of the specification of all the parts in the seat 
assemblies; Rover's marketing policy.

9.2.1.1 BQVER'S__MARKETING POLICY

Let's consider that Rover for marketing reasons decides to offer 
the sports style option only to non heated seats. Consequently, a 
new assembly is entered in Manufacturing the "+ sport style - 
heated" seat. The old assemblies heated" and "+ heated" seats 
have to update their usage statements with the sport style"

283



284

F
ig

ur
e 

78
: 

R
o

ve
r’

s 
p

o
lic

y 
d

e
ci

d
e

s 
to

 o
ff

e
r 

sp
o

rt
 s

ty
le

 s
e

a
ts

 o
n

ly
 w

it
h

 n
o

n
 h

e
a

te
d

 o
n

e
s



condition in order to reflect the new Manufacturing requirements. 
This will indicate that the original seats are not of sport 
style.

The update of the new Manufacturing condition is shown in figure 
78.

On the other hand, in the case where the sport style feature is 
offered irrespectively to all seats in Manufacturing, this 
creates four new potential assemblies:

"+ sport style - heated"
"+ sport style + heated"

sport style - heated"
sport style + heated".

Notice, the existence of the original seat assemblies, as well:
heated" and 

"+ heated".
The latter, as mentioned earlier, have to update to

sport style - heated" and
sport style + heated".

Some, of these assemblies match, hence no new part numbers need 
to be created for the common ones.

The difference, from the previous situation is the insertion of 
an additional assembly "+ sport style + heated" which was not 
valid before. As it can be seen in figure 79, the different usage 
condition of the non heated squab (and all of its subassemblies) 
now reflects the different policy of Rover, ie. to offer the 
sport style option to all seat assemblies in Manufacturing.
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Up till now the analysis of both the new and old assemblies in 
Manufacturing, refers to changes in the design of parts which 
make them not interchangeable There is a company definition for 
interchangeable parts in Rover:

"A part is interchangeable when it can be interchanged in production and in 

service new for old, old for new both physically and funtionally including 

performance, appearance, safety and legislative requirements such there is no 

requirement for discrimination between before and after conditions".

Interchangeability is a complex concept in an automobile. This is 
because interchangeability can be viewed from many perspectives, 
according to the philosophy of the various departments within 
Rover such as manufacturing, customer services, specification 
services, etc. The study of interchangeability is beyond of the 
scope of this section. Further details can be found in [17].

In the context of this chapter interchangeability is defined 
from the design engineering and Manufacturing views. In the 
example above, for instance, the selection of a heated-squab or a 
no-heated one naturally affected the design of the top seat 
assembly. Consequently, heated and not heated seats are not 
interchangeable. In a tyres example, however, it does not really 
makes much difference to the design of the wheel assembly the 
brand of the tyres used eg. Michelin or Pirelli. Consequently, 
wheel assemblies with different tyre brands are interchangeable. 
In the case of interchangeable parts, the part numbers of the 
Parts higher in the assembly structure that are linked to them do 
not change (no new assemblies are created).
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Figure 80 illustrates a case of interchangeability.

In summary, this section is concerned with the engineer's job 
within the Component Engineering department. Notice, the way in 
which usage conditions are affected by changes in the data base 
and shown in figures 7 6 to 7 9 amended by the author, 
represents his own understanding of how the engineers within 
Rover should work. However, the design engineers work only with 
the general concept of this way ie. to specify newly designed 
parts or assemblies using the already existent specification 
information. In reality, they don't apply any thorough procedure, 
such as the one described above. Instead, they obtain a hardcopy 
of the VPG data (parts) that are relevant to the part which they 
have designed and manually update their usages. This is done by 
crossing out with pen some old parts and usage statements, and 
inserting new parts (new part numbers created automatically from 
the Rover's Automatic Part Number system), new usage statements 
or combining old ones.

The correctness of the application depends solely on the 
engineer's knowledge and experience in the area of his design. 
That is, if the engineer knows of the existence of parts in the 
VPG area which may represent similar functionalities in some of 
the assemblies of his design. The nature of the problem becomes 
even more subjective when the variations that exist for a single 
part description are considered and may cause the selection of 
the wrong parts in the VPG area. Additionally, the engineers do 
not use a specific procedure in the specification of the parts.
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They are dependent only on their knowledge to specify them or 
they pass the corrected hardcopy file to the Auditing department 
in order to compile it to usage statements.

The above examples have demonstrated that a new approach to the 
part description is possible. By no longer using an abstract 
entity but the actual physical part in the assembly structure, it 
is feasible to create usage conditions and quantity 
relationships of the parts. It appears, as well, that 'tiding up' 
such a process seems to maintain its uniformity throughout the 
various levels of its application to the update of new design 
features in the component parts (ie. for one, two, three or more 
features) . The steps of its application would be determined by 
the planning alternatives that would be chosen by the engineer, 
ie. if the parts in the assemblies are interchangeable or not 
with the insertion of a new feature, the Rover's marketing policy 
etc. Consequently, an "algorithm" could be designed which in 
interaction with menu driven options could implement 
intelligent networks of inference of usage conditions and part 
quantities from the way physical parts are linked into the 
assemblies. This algorithm would complete the system discussed 
in the earlier chapters and extend its boundaries to fully 
automate phases 1 and 2 of the auditing function and dynamically 
update PIMS. Furthermore, it would contribute to even more 
precise usage conditions as the reason for the design of the new 
part traverses throughout the whole assembly.
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9.2.1.2 EXISTENT WORK IN__INTELLIGENT__NETWORKS

A general purpose prototype has been developed to demonstrate the 
intelligent networks approach. It is actually an extension of the 
"nodes and arcs" example from the Lisp Lore book [2] enhanced 
with intelligence of the Rover's specification process. The term 
network is preferred to hierarchy because in the case of non 
interchangeable parts, assemblies are linked together, which 
looks more like a network than a tree-like structure. The 
prototype at its highest level supports a user interface 
substrate for linking physical parts (nodes) with assembly 
relationships (arcs). At its application level it infers quantity 
relationships and usage conditions of the physical parts (nodes) 
from the internal structure of the assembly.

9.2.1.2.1 User interface

The intelligent networks prototype is implemented in its own 
framework interface, with commands of its specific application. 
These are update of Part Descriptions, Part Numbers, quantities, 
Usage statements, the association of the parts (nodes) with 
assembly links (arcs) or the deletion of an existent link, the 
move of the parts around the screen and finally the image 
representation of the parts in the data base.

The commands can be applied in three different ways: by typing
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the first letters, or from the menu window or with mouse gestures 
ie. (click together Control and mouse Right button, etc.). 
Notice, the user interface from the software point completes all 
the needs of the intelligent networks methodology ie. graph the 
nodes, move or delete them, or link them with arrows etc. 
Consequently, the user interface is a complete implementation 
rather than a prototype.

9.2.1.2.2 application level

The prototype is based on the idea that component engineers 
design new parts based on already existing ones. With this 
perspective, when the prototype is invoked by the engineer, it 
queries him regarding the characteristic of its application 
design. This is to determine if the new part is interchangeable 
with its ancestor or not. If yes, the assembly structure of the 
ancestor part is retrieved from the data base and displayed. The 
engineer then can delete and add new parts in the assembly and 
assembly links. If the answer is no, then the prototype displays 
in the screen both the ancestor assembly and a new copy of the 
assembly with automatically created new part numbers. The 
engineer then can indicate the innovation of the new design by 
linking the assemblies appropriately. Additionally, he can insert 
the usage conditions and quantities of the parts per vehicle 
(actually, per usage statement). This can be done automatically 
by the system based on similar specifications in the past. For
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example, the prototype gives its best guesses to the engineer 
for the quantities of the parts in the new assembly based on the 
past experience. That is, it is quite possible for the new seat, 
for example, to always have one squab assembly irrespective of 
whether it is heated or not.

Notice, when a physical part is linked to another physical part 
at the part number level, the quantity referencies among 
themselves almost never change (actually in more than the 99% of 
the situations). The information regarding the quantities at the 
part number level exists in one of the files of the EJA18V tape. 
Consequently, such best guesses can be obtained automatically 
from the EJA18V tape; a program already exists that does it.

9.2.1.2.3 knowledge representation

The prototype has been implemented in Statice entities and 
represents only an example of the front seats of the Rover R8 
model. The Statice schema consists of two entity types: nodes 
(physical parts) and arcs (assembly links). A brief 
representation of the definition of the schema in Statice is 
shown in the following.
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(define-schema INTELLIGENT-NETWORKS (node arc))

(define-entity-type node 

0

(arcs (SET-OF arc))

(xpos integer)

(ypos integer)

(quantity-per-usage-for-one-vehicle integer)

(part-number string ¡unique t :no-nulls t ¡inverse-index t) 

(usage-condition string)

(radius ¡needs-calculation)

(image raster-array)...)

(define-entity-type arc

0

(nodel node)

(node2 node)

(parts-per-assembly integer)

...)

Figure 81: The intelligent networks Object Oriented implementation in

Statice.

A node includes information on the arcs that are attached to it, 
it has a part description which is not unique, neither is its 
usage statement, or quantity. However, its part number is unique
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and an inverse-index has been defined in order to speed up the 
program during the deletion or insertion of nodes or arcs. Also, 
as the node is represented graphically as a circle it needs to 
keep local variables like xpos, ypos which would determine its 
position on the screen. Finally, the picture attribute is a two 
dimensional array (actually a raster array, see []) which keeps 
the scanned image of the physical part represented by the node.

The arc entity type, for similar reasons of printing itself in 
the screen has attributes such as xpos, ypos which are 
automatically updated according to the xpos and ypos values of 
the nodes in which they are attached to. The arc entity type 
records the nodes which it is attached to by the nodel and node2 
attributes which represent the goal and destination nodes, 
respectively.

In summary, an internal representation of the figures 77, 78 and 
79, for some of the objects it would look like:

NODE: <# node:SEAT-MANUAL-LHD 1234567> 
arcs: (<#arcl23... from seat-manual-LHD to -> not-heated-squab>)

NODE: <#node:SEAT-MANUAL-RHD 4567892> 
arcs: (<#arc345... from seat-manual-RHD to -> not-heated-squab>)

NODE: <#node:NOT-HEATED-SQUAB 3333334> 
arcs: (#arcl23... from seat-manual-LHD to -> not-heated-squab 

#arc345... from seat-manual-RHD to -> not-heated-squab 
#arc678... from not-heated-squal to -> overlay-no-heat)
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ARC: <#arcl23... from seat-manual-LHD to -> not-heated-squab>
nodel: <# node:SEAT-MANUAL-LHD 1234567»
node2: <#node:NOT-HEATED-SQUAB 3333334»

ARC: <#arc345... from seat-manual-RHD to -> not-heated-squab>
nodel: <#node :SEAT-MANUAL-RHD 4567892»
node 2 : <#node:NOT-HEATED-SQUAB 3333334» .... ....

Notice, the numbers such as 1234567, ..., 4567892, etc. which
appear in the computer attached to the Statice entities (nodes or 
arcs) represent the memory references of the instances of such 
entities (objects) inside the computer. The instances of entities 
in Statice are called entity-handlers. In reality, the computer 
presents the above instances with the "entity-handle" prefix to 
show that are Statice entities, ie.

<#entity-handle-node:NOT-HEATED-SQUAB 3333334» instead the 
<#node:NOT-HEATED-SQUAB 3333334» which we used for

simplicity.

9.2.1.2.4 application program

The Intelligent Networks prototype works in the way that whenever 
a change occurs the whole network is updated, automatically. For
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example, if the engineer deletes or inserts a new assembly link 
in the network, the prototype's application program firstly, 
reorganises the information of the destination node. This is, the 
usage statement and the quantity of such parts (node) needed per 
vehicle, as well as the proportions of such parts per higher 
assemblies. The last is graphed in the middle of the assembly arc 
which links the two nodes.
Secondly, from that node downwards to the network all the 
children nodes of the node are recursively updated in a similar 
manner. Recursion and macro functions, the two most powerful 
tools of the Lisp environment, are used in this operation. A 
similar, process occurs when the engineer updates the usage 
condition of a node or its quantity value.

Notice, the arc object type (assembly link) with the existence 
of the nodel and node2 attributes in its definition it 
incorporates direction in its appliance ie. from nodel to node2. 
Consequently, the validation of the insertion of an assembly link 
can be checked against the data base. The information of such a 
validation is derived from the EJA18V tape.

9.2.1.2.5 presentation of the objects

Linked to the node and arc object types is a method, 
functionality for each of them, present-self, 
determines the way the object presents itself in the

of different 
This method 
user. It was
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mentioned earlier that nodes are presented as circles and arcs as 
arrows. For the nodes (parts), in particular, their presentation 
method has been expanded to encapsulate the scanned image of the 
part in the data base. This makes the specification of the parts 
with the intelligent networks methodology more natural. 
Additionally, the engineer can view in detail the whole image at 
the COMMANDS level.

9.2.2 Further Implementation in the Intelligent Networks 
prototype

The intelligent networks methodology has only been applied to a 
single simplified example of front seats of the car and the 
information has been entered into the Statice data base manually. 
Therefore a future implementation of the prototype would be the 
electronic transfer of all the physical parts to Statice. This 
would require extension to the design of the current Statice APN 
catalogue database (discussed in the next section of this 
chapter). At the moment the prototype does not implement Rover's 
policy in its application routines ie. which top assemblies are 
valid. Additionally, the automatic generation of the updated 
usage statements of the old top assemblies (eg. -B69D) could be 
coded provided the new design features of the new parts are 
given. Similarly, the usage statements of the new assemblies 
could be generated.

The existing code for analysing the assembly data in the EJA18V
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tape could be used to interface with the prototype and fully 
support its application program in two levels:

Firstly, by mapping the valid directions of association 
between the nodes (physical parts) based on the part description 
level ie. overlay is a subassembly of the squab assembly whereas 
the opposite is incorrect.

Secondly, the quantity relationships at the Part Number 
level.

Finally, the incorporation of images in the Intelligent Networks 
prototype slows down the performance of the whole system as the 
images have to be re-graphed every time that a change in a part 
(node) or assembly link is made by the engineer ie. changes in 
the usage condition, usage quantity, part desscription etc. A 
further implementation of the Intelligent Networks prototype 
should include the ¡redisplay facility of the GENERA environment 
within the existing code in order to speed performance.

9.2.2.1 Interface of the Intelligent Networks prototype with 
the rest of ROOVESP.

The part of ROOVESP which was discussed in the first two sections 
this chapter implemented design engineering knowledge and a 

validation algorithm for specification of parts. It dealt mainly 
with the first phase of the audit process. The Intelligent 
Networks prototype completes ROOVESP by dealing with the second
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and third phases of the audit process and with the same 
functionality tackles the Rover's PSC.

The first part of ROOVESP studies the general knowledge in 
automobiles. The main concept around which the design of this 
part focused was the part description. In this abstract level of 
a vehicle part the design engineering knowledge (feature groups) 
that specifies a part in the vehicle and the valid combination of 
such knowledge according to the company's policy (Base features, 
territory and combination restrictions) was important.
The Intelligent Networks prototype of ROOVESP focused on the 
pragmatic conceptualisation existing in automobiles. This is the 
need of the parts to discriminate themselves in the data base in 
such a way that the volume of production required for an order to 
be always correct. The main concept around which the Intelligent 
Networks prototype was designed was the physical part itself ie. 
how a specific physical part fits in an assembly and in what 
quantities.

Consequently, the two approaches are different. However, they can 
co-exist together and each benefit from the other. For example, 
the first part of ROOVESP needs the Intelligent Networks
prototype to complete the quantity requirements in the
specification of a part and update the usage conditions of 
existing parts for which reference exists in the specification 
package.

On the other hand, the Intelligent Networks prototype needs the 
design engineering knowledge of ROOVESP in order to specify the
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top assemblies in the network which would drive the whole process 
of the prototype. Design engineering knowledge would be required 
as well in order to implement directness in the prototype ie. 
whether it is valid or no a specific part to be fitted in a 
given assembly on the screen. Additionally, design engineering 
knowledge would help the Intelligent Networks prototype to 
establish the quantities of the old existing assemblies and give 
the best guesses for the quantities in the new ones.

The engineer, therefore, when working on a specification package, 
could use the first part of R O O V E S P  to establish the usage 
conditions of the top assemblies or the newly designed parts (ie. 
"seat-front complete HEATED", "heated- SQUAB"). He then could 
swap to the Intelligent Networks prototype if reference for 
already existing parts appeared in the specification package, in 
order to update their new usage condition.

Working with the Intelligent Networks prototype, the engineer 
would have a first glance at the feature groups which govern the 
new specification conditions in the assemblies for all the parts. 
Then these feature groups could be passed to the validation 
algorithm which would generate all the possible feature 
combinations of the new design situation.

Notice, in the examples which were used above to describe the 
Intelligent Networks prototype, we considered the simplest case 
where a feature group has only one feature. For example, it 
mentioned that a seat can be of sports style (or heated). 
However, they may exist more than one availabilities of sports 
style (or heated) seats as there are various types of seat
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material ie. zenith, leather etc. For this reason the validation 
algorithm is needed to audit the combinations of the features of 
the feature groups which are participating in the specification 
of each part in each assembly.

In summary, the validation algorithm and the design engineering 
knowledge, which was automatically transferred from past data, 
interface with the Intelligent Networks prototype to implement 
R O O V E S P. In this way both the Audit function and the PSC can be 
tackled with a single system and a single database, Statice. The 
enchancement of the design engineering knowledge, in particular, 
(discussed later) will show that R O O V E SP as well as being a 
working system can potentially be a complete real life system for 
Rover which would automate its PSC.

9.2.3 Testing of the Intelligent Networks prototype

It was mentioned that the Intelligent Networks prototype 
represents - after investigation - the author's understanding of 
how people in Rover should maintain the usage conditions data 
base. However, although indications of such a process seem to 
appear in the company, no standard way of relating the 
specifications of the parts seems to exist. The investigation 
therefore focused on whether such a process has a logical basis 
and can be proved to be correct applying mathematical rules ie.
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boolean algebra.

The process when conceptualised was presented to a team of two 
experienced auditors from Rover. A series of sessions followed 
where the process was studied manually and it was found to work. 
For example, the steps of its application (ie. one, two, three or 
more features) showed uniformity and therefore it could be 
algorithmised:

(i) the creation of all the combination of the possible top 
assemblies

(ii) the logical reference of the new created assemblies 
after combination with some of the existing ones. In addition, 
the application of Boolean algebra to the generation of the usage 
statements of the child part from its parent assemblies was shown 
to work correctly all across the network and represent 
realistically the situation of the company. Only one problem 
appeared but it was considered of minor importance indeed it 
could well be considered not a problem at all but to represent 
more realistically the needs of the company. This is discussed in 
the following example:

Consider figure 78. The part "overlay-seat-front SQUAB-HT/ELMT" 
(heated squab) is shown with a usage condition of "+ sports - 
B69D ", as derived by combining the usage conditions in the 
network. In automotive industry this means that the design of a 
SQUAB part (irrespective of whether it is heated or not) depends 
on whether the seat is heated or not and on the style of the seat 
(ie. if it is sport or standard etc). However, this is not fully 
true as from the component design point of view it is not

303



correct. The squab part is not dependent on the style of the seat
(the frame of the seat depends on this feature group). This is
called overspecification within Rover. It occurs because of the 
two different philosophies which have been applied in the first 
phase and third and second phases of the Audit process. In the
first case it was of importance that automotive design
engineering knowledge be used in order to support the application 
of the validation algorithm. In the latter the Intelligent
Networks prototype describes the pragmatic situation of the
company. However, this situation is not viewed as a mistake by 
the auditors of Rover for the following reasons:

(i) When the Usage-Conditions-to-Parts system applies to the 
data base for a specific order (ie. + sport style seats 
heated), the correct parts are pulled out and with the correct 
quantities. Consequently, the forecasting for the volume of the 
parts in production required will be always correct.

(ii) The usage conditions are updated in line with Rover's 
policy and in the most common situation, where Rover offers a 
part with all the possible combination of its features, 
overspecification disappears.

(iii) The existing design engineering knowledge acquired 
from statistical analysis can always be used to clear the usage 
conditions data base from ovespecification, if this is required.

In summary, the Intelligent Networks prototype when tested 
manually for its uniformity and correcteness was proved to work. 
Thus it can be algorithmised in a structural way and its process
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can be repeated with the insertion of new features. Its results, 
as well, although they sometimes may not be strictly compatible 
with the design engineering knowledge in automotive industry, are 
correct in a pragmatic manner for a real life system for the 
company.

The code of the Boolean algebra in the Intelligent Networks 
prototype has been implemented in some extent and it was proved 
that not only manually but also electronically correct results 
can be derived.

In this chapter the Intelligent Networks prototype was discussed. 
The Intelligent Networks prototype introduces a slight different 
conceptualism in R O O V E SP in order to tackle the whole PSC in the 
company ie. the physical part and assembly structures (photos A4 
to A7 in appendix 10 show a work sample of the Intelligent 
Networks prototype).

The next chapter investigates the further implementation of 
R O O V E S P .
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FURTHER IMPLEMENTATION___QE___ROQVESPia

This chapter discusses the further implementation of R O O V E SP in 
two aspects: from the software point of view and the further 
design of the system in order for it to become a real life 
application for Rover.

contribution to knowledge:
- Knowledge acquisition of the various aspects of the PSC 

ie. Purchasing, Manufacturing, Services, etc.
- Representation of the knowledge in the database in such a 

way to represent the business domain itself.

10.1 SOFTW ARE IS S U E S
10 . 1.1 APN catalogue

10.1.1.1 assembly structures

The Statice APN catalogue needs to be updated in order to 
organise the assembly links information of the part descriptions 
in a well structured way which can be later used efficiently by 
the system.
A new logical entity model could be defined which would 
discriminate physical parts in assembly for different models. 
That reflects Rover's policy to generate different part numbers 
for physical parts which fit to different vehicle models. In 
sequence, the implementation of the Statice data base could
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Figure 82: Further im p lem enta tion  o f the  data representation In STATICE

follow the hierarchical design of the EJA18V tape. That is,
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Physical part, Fitment, Usage-conditions, as shown in figure 82. 
Notice, such an implementation of the Statice APN catalogue would 
increase the performance of the Intelligent networks prototype 
discussed earlier, with the intention for it to be supported by 
Statice, and statistical analysis in the future. That is, because 
of the extended semantics of the data base. The decision, 
however, whether to detail the features of the hierarchy 
structures or not is a trade-off. Extended semantics makes 
querying faster, but impose a penalty on space storage and 
calculation.

10.1.1.2 physical entity types

At the moment the must and maybe feature groups are implemented 
in Statice in the form of vectors of integers. The integers are 
decoded by the system to the actual feature descriptions. That is 
because Statice does not support arrays as built-in attribute 
types. The knowledge engineer, however, has the facility in 
Statice to define his own attribute types. It would be advisable 
in the further implementation of the system to define a physical 
attribute type of adjustable array. Physical types, when defined, 
do their own transactions of a data value from "raw bits" into a 
Lisp object within Statice.

The adjustable array attribute type could replace the sequence
of vector attributes used in the the-reference-of-Rover-cars---
actually-Austin-Rover entity and dynamically adjust itself when
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new models are entered to the company. (Note adjustable arrays 
are supported by GENERA).

10.1.1.3 images

The author has implemented on a demonstration basis the storage 
of bit files or scaned images from Apple Macintosh and Symbolics 
in a Statice data base. Those images are not only a publishing 
document within Statice but an array value of an attribute of the 
object (actually a raster array). In that respect they can be 
manipulated as any other attribute value in Statice and Object 
Oriented Programming applied to them. For example, the graphical 
output of this value may represent the presentation type of the 
object itself which naturally follows. In addition, as the object 
under consideration is related within Statice to other parts by 
assembly relationships (data from EJA18V tape), a procedure 
(method) could drive the graphing of the overall assembly 
structure directly from the data base (provided the parts were 
scaled accordingly). This would facilitate the electronic storage 
of all the "prototype" top assemblies of the intelligent networks 
methodology.

10.1.2 EJA18V data parsing (minor)

The data of the EJA18V tape are in three or four separate files
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C om binat ion  o f  BS1 w i th  B44 feature  c roups :  

C O M M O N  T R I M  L K V E L S

C o m b i n a t i o n  o f  B51 wi t h  B69 f e a t u r e  g ro up s :
C O M M O N  T R I M  L E V E L S

B 5 1 F + B44R Y, z B 5 1 F  + B69D Y, X
B 51K  + B44B M , s B 5 1 L  + B 69D Y
B51L  + B44R Y, z B 5 1 R  + B 69D X
B51R + B44R W, X

R e s u l t :

C o m bin a t io n  o f  a l l  fe a tu re  g roups:

C O M M O N  T R I M  L E V E L S

BS1F + B44R+ B69D Y, Z
B 5 1 K  « B44B M, S

B 5 1 L  + B 4 4 R +_ B 6 9 D Y, Z
B 51R  + B44R*. B 69D W, X

F i g u r e  8 3 ;T h e  resu lt o f the va lida tion  a lgorithm  w ith  the  B51 the  M aster fea ture group.

ie. one file which keeps the usage conditions of the parts, 
another file maintains the assembly links of the parts etc. The 
system needs to link them together before it can proceed to the 
statistical analysis of the tape. The processing time for this 
function is one hour. It could be reduced by using a kind of 
search technique ie. bubble sort etc.

10.1.3 Validation Algorithm
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At the moment the validation algorithm run the combinatorial 
exercise passed to it by the planning process of the system in 
the default order of feature groups. That is, it chooses the 
master (or pivot) feature group for a ' scoring' function based on 
the two principles outlined in Chapter 8.2.1.1.1.

C o m bin a t ion  o f  B44 w ith  B51 fe a tu re  groups: 

C O M M O N  T R I M  I .E V K L S

+ B 44B  + B 5 1 K M ,  S

+ B 4 4 R  + B 5 1 F Y ,  Z

+ B 4 4 R  + B 5 1 L Y ,  Z

+ B 4 4 R  ♦  B 5 1 R W ,  X

C o m b in a t ion of B 44 w i th B69 fea tu re  gr o ups: 

C O M M O N  T R I M  L E V E L S

+ B 4 4 R  + B 6 9 D  Y ,  Z

R e s u l t :

C o m b in a t io n  o f  a l l  fea tu re  g roups :

C O M M O N  T R I M  l.F .VF .LS

+ B 4 4 R + B 5 1 R  + B 6 9 D X

+ B 4 4 R + B 5 1 F + B 6 9 D Y

+ B 4 4 R + B 5 1 L + B 6 9 D Y

+ B 4 4 B + B 5 1 K M ,

F i g u r e  84 :  The resu lt o f the va lida tion  a lgorith  w ith  B44 the  M aster fea ture group

As discussed in section 8.2.1.1.1 the system always starts its 
combinatorial exercise with some of the must feature groups or a
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feature group which has at least two feature options in the AFCs 
of the model. The sequence of the combination of the feature 
groups does not affect the end result of the validation algorithm 
provided the algorithm does not start the process with a feature 
group which has only one feature availability (and other feature 
groups exist in the specification exercise). In that case, it may 
miss information. This is discussed in the following where in the 
"seat-front complete manual" example, the validation algorithm 
has being applied from three different starting points. Notice, 
for simplicity only the trim levels have been taken in account 
and no any other Base feature restrictions or territory and 
combinations restrictions.

The results are shown below firstly with the "B51: seat face 
material" feature group as the master feature group, secondly the 
"B44: seat-reclining" feature group and finally with the "B69: 
seat heating" feature group.

As it can be seen the first two approaches (figures 83 84) 
produce the same results , no matter the master feature group in 
question. In the third approach, however, information is missing. 
That is of the feature groups which do not combine with the 
master feature group in concern, in this case the "B69: seat 
heating" feature group. The algorithm shows this peculiarity 
because the "B69: seat heating" feature group does not cover all 
the trim levels of the Rover R8 model and there is the case where 
the rest of the feature groups do match in those missing trim 
levels. The problem can be solved with the update of the 
algorithm process as it is shown on the following diagramatically
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C o m b in a t io n  o f  B69 w i th  B51 fe a tu re  g ro u p s :  

C O M M O N  T R I M  L E V E L S

C o m b i n a t i o n  o f  B69 w i t h  B51 f e a t u r e  g r o u p s :
C O M M O N  T R I M  L E V E L S

B69D + B 5 1 F Y

B69D + B 5 1 L Y + B 6 9 D +  B 4 4 R Y .  X

B 69D  + B 5 1 R X

R e s u l t :

C o m b in a t io n  o f  B 6 9 w i th  B51 fe a tu re  g ro u p s :  

C O M M O N  T R I M  L E V E L S

+ B 69D  + B 5 1F + B 4 4 R Y

+ B 6 9 D  + B 5 1 L + B 4 4 R Y

+ B 6 9 D  + B 5 1 R + B 4 4 R X

+ B 4 4 B  + B 5 1 K

This was not picked up from the algorithm
II
II

However, it can be picked up by creating 
a new pseudo feature ’B69T’ and run the 
validation algorith again as shown below.

Combination o f  B69 with B51 feature groups: ||

COMMON TRIM LE^Ells
Combination o f  B69 with B51 feature groups:

C O M M O N  T R I M  LE V E LS

+ B69D + B51F Y
II
II

+ B69D + B51L Y II
II +

+ B69D + B51R X /  \
/

T
+ B69T + B51K M, S ' *
+ B69T + B51R W +
+ B69T + B51L Z

B69D + B44R

B69T + B44B 

B69T + B44R

Y, X

M, S 
Z

Figure 85: The p ro cess  o f th e v a lid a tio n  a lgo rith m  
(and its  Im p lem enta tion) 
w ith  the  B69 the  M aste r fe a tu re  g ro u p .
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(figure 85).

A new I F - T H E N  statement can be added to the system's planning 
process which interrogates the background of the master feature 
group. If the feature group happens to only have one feature 
option and its availability does not cover all the trim levels of 
the model a new pseudo-feature (ie. -B69D) is automatically 
created by the system and specified with the missing trim levels. 
Then the system continues its combinatorial exercise in the 
normal way and results in a first guess of valid combinations. In 
sequence, a string match checking against the record of the 
pseudo feature group is applied. This function collects all 
references for the possible legal combinations of the rest of the 
feature groups that do not appear in the first guess. Then the 
algorithm runs once more with these references as arguments. The 
result is the missing information, which updates the first guess. 
Notice, the new result is compatible with the rest of the system 
for further manipulation (graphing the output, statistical 
analysis etc.) as it has been generated by the validation 
algorithm itself. In addition, the practical implementation of 
this approach is reasonably easy by the means that functions 
which already exist in various applications within the system 
such as the automatic creation of a pseudo feature group 
(statistical analysis), or the backgound investigation of the 
feature group (definition of the PLUS and/or MINUS signs) etc. 
can be used.

In summary, the default mechanishm of the validation algorithm is
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the one acceptable by Rover. The investigation of cases in which 
a trivial feature group can drive the combinatorial exercise is 
practically obsolete. It has been discussed only for completeness 
of the software aspects of the system.

In the following section the further implementations which are 
required to be incorporated in the functionality of ROOVESP in 
order for the system to realistically tackle the PSC and 
interface with the existing work in the company are discussed.

10.2 System Design issues

10.2.1 Illustrated Parts List (IPL).

The validation algorithm of ROOVESP can interface with the IPL 
project in the sense that it could update its user interface by 
querying the engineer with IPL windows or matrices such as are 
proposed from IPL (see the third column of figure 47). The 
arguments which will represent the feature groups under 
consideration will be used as variables for the algorithm which 
will carry out its normal combinatorial search. Such an interface 
is possible because of the compatibility of the software and 
hardware platforms of Symbolics (algorithm) and Apple Macintosh 
(IPL) currently existing in parallel on the Maclvory machines. 
Those machines are standard Apple Macintosh machines with an 
additional Ivory board for the Genera software (Symbolics Lisp).
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The Macintosh software is used as the front end of the 
applications (windows, scanned images etc) whereas Lisp runs the 
actual program. Apparently, the design of these machines matches 
with the requirements of the algorithm and IPL interface.

10.2.2 Implementing the concept of time

The variable of time, which has not been mentioned till now for 
simplicity, can be entered in the system, as well. Remember the 
main documents which drive the Product Specification Concept 
within Rover, the Product Development Letter, the Features List 
and the Base and Additional Features Chart reflect marketing 
intention at a point in time. For this reason the feature groups 
which are compiled by the Specification Services exist only for a 
specific period of time. That is the Design Effect Point (DEP) or 
effectivity (mentioned in section 5.1.1). It is vital for the 
auditing department to check that the "DEP. NO" of each 
specification document (figures 31, 32, 33) falls within the 
timescale of the life of a feature group or a feature. Consider 
the manufacturing timescale of the Rover R17 model for both 5 and 
4 door salon and the coupe version of the vehicle is shown in 
figure 86 (The dates are hypothetical) .

The problem arises when an engineer by mistake specifies, for 
example, the front seat of the Rover R17 model with the "B69: 
seat heating" feature group at the build phase DOl (October 90) 
for the 5 door derivative whereas this feature group has been
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A part o f the R over's  R17 bu ild  phases

D1 QP METHODS
R17, 4 /5 DR I

XS9A1 XS9A2
29/10/90 3/3/91

23/6/91

D 02 D1

R17, COUPE

XS9A4 XS9A5

8/1/91 2/5/91

D r i v e r ’ s &  passr seats heated ( B 6 9 6 )

D r i v e r ’ s only seat heated (B 6 9 F )

29/10/90

Figure 8 6 :  How tim e a ffe c ts  the sp e c ifica tio n  of a veh ic le

forecast by Specification Services to enter into the company at 
the D02 build phase (January 91).

In another case if the usage statement of a part of the Coupe 
derivative is assigned to a date (XS9A4: January '91) later than 
the correct one (XS9A1: October '90 ), then this part will not be 
picked up by the Usage-Conditions-to-Parts system and will not be 
included in the PP&BLs (Preliminary Parts & Build Lists). 
Consequently, it will not be ordered for purchase from outside or
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built in house. The lost of time in production can be imagined 
when in reality it concerns thousands of such parts.

The implementation of the time variable in the system is quite 
easy as only the higher level of the algorithm needs to be 
updated: ie. its planning process. According to the time
requirement from the engineer to release his part (plus the part 
description and model type) the system could choose only the must 
and maybe feature groups (or features) with the correct
effectivity.

At the moment, the system checks only the effectivity of the 
features by means of current existence. Implementation of 
effectivity to a more detailed level is straightforward provided 
Rover produces the documents which translate effectivity codes to 
dates. Note, the effectivity codes do not directly refer to a 
date but to major manufacturing events within the company.

The concept of time could be implemented within ROOVESP with 
other more effective ways if this were required. Such an 
implementation is feasible because ROOVESP works with Statice and 
OODBs are far more flexible than traditional databases for 
encapsulating the concept of time within their data c.f. the 
cache facility of Statice. More details on this subject can be 
found in the work of Thomas Atwood [75].

10.2.3 PROSPECTS and PIMS (PROMS)
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The implementation of the ROOVESP coincides with a project 
currently under development within Rover called PROMS which is to 
integrate Land Rover's specification system (PROSPECTS database) 
with that of the previously known Austin Rover (PIMS database). A 
detail discussion for the PROMS system is beyond the scope of 
this chapter, however, the general idea of PROMS is to replace 
the existent PIMS and PROSPECTS data bases of the previously 
known Austin Rover and Land Rover companies respectively, with a 
single relational IBM mainframe data base (probably DB2). In 
that way both companies would operate with a single specification 
system and common data.

The replacement of PIMS by a new system gives rise to the 
possibility that all the information currently stored in PIMS 
will be lost. That is, not the actual data kept in PIMS but the 
thought processes which led to their creation.

Notice, there are various databases within the previously known 
Austin Rover, apart from PIMS, which operate as autonomous 
entities and service various other departments. For example, the 
COPICS database in Manufacturing and Purchasing department's data 
base. Up till now the Product Specification Concept within Rover 
has operated manually. Though the data are stored electronically, 
the actual thought mechanisms of product definition are 
implemented by the people. For 8 years people from the various 
departments of the company such as Specification Services, 
Auditing, Component Engineering, Manufacturing, Purchasing, 
Vehicle Directorate, have implicitly stored their knowledge and
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experience in databases.

The application of ROOVESP to the Auditing and Specification 
Services departments proved that such knowledge could be 
retrieved and analysed to well specified production rules which 
could form a kind of past experience (experience-link). A team of 
people within Rover, enthusiastic about the experience-link 
results, plan to apply the philosophy of the Meta-knowledge 
mechanism of ROOVESP (ie. combination of statistical analysis and 
specification patterns) in other databases, as well, and 
procedures are to be written in order to retrieve more 
information regarding the part descriptions within the company. 
Such a policy would serve two objectives:

Firstly, knowledge which may be lost with the implementation 
of PROMS will not only be saved but also refined and

Secondly, such a knowledge could support PROMS in its actual 
application within to Rover and ease the specification of the 
product. The rest of this section outlines thoughts by the author 
which ROOVESP could implement in the future.

The parsing of the APN catalogue and its consequent storage in 
Statice, for example, can reveal additional information for the 
source of the parts if appropriate statistical procedures apply 
(methods) . It is well known, for example, that the windscreen of 
the vehicles is always bought from outside. If such a condition 
could be proved statistically then the system could automatically 
apply the source information required by a specification document 
(eg. CDC see figure 24).

In addition, there is much information coming from the APN
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catalogue data tape which is not yet analysed. For instance, 
statistical analysis on the service indicator attribute of the 
part-descriptions entities (ie. secondary descriptions-ID) in the 
APN catalogue could identify items which Rover services. 
Otherwise auditors have to work out both the the specification 
document and the UNIPART document of the model.

Figure 87 represents a page of the UNIPART document. The parts of 
the front door handle of the Rover R8 model which Rover services 
are listed. This document has more than a thousand pages for each 
model which shows the load of the work involved in a manual 
operation.

Statistical manipulation of the data from the Purchasing 
department could establish lead times for the purchasing of some 
parts which have been bought in the past and forecast the new 
time schedules. Similar analysis on manufacturing data could 
reveal forecasting lead times for the manufacture of all the 
parts in a specification package.

One more possibility is that the production volume could be 
automatically detailed into the colour level for each part 
description with statistical analysis on the past data in the 
Purchasing department. Remember that most of the parts have to 
appear in the assembly line with a colour (see table 4). For 
example, a front seat may have a colour. The colour indicator is 
added at the end of the part number with a 3 digits code (it is 
the three X's appeared at the end of the part number, xxx, see 
figures 23, 24). The colour information is added later in
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manufacturing by another team of auditors who have to validate 
against the Colour and Trim Master Chart Release Document (figure 
88) . The system could specifically establish the volume of parts 
required in production for all the different colours of the 
assemblies. In summary, the general idea is that all this 
information, retrieved from statistical analysis of past data 
could be stored in a database and support PROMS "up front”. In 
this way the knowledge gained from the Meta-knowledge mechanism 
of ROOVESP could support PROMS in the specification of the 
product directly from its design phase to the final production 
line.

Figure 89 shows how statistical analysis at the part description 
level (as proposed by the author) can help PROMS by investigating 
all the existing sources of such information ie. colour, 
services, Purchasing, Manufacturing, etc.

10.2.4 SUMMARY ON THE CHAPTER

In this chapter was discussed the future developments of ROOVESP 
both from the software and design point of view required in order 
for the system to tackle the whole PSC in the company and also 
help existent systems under development for the same purpose.

IPL represents the first phase (or investigation) of interfacing 
images in the specification packages with which an engineer could
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work. PROMS (PROSPECTS & PIMS) represents the second phase. IBOM 
(Illustrated Bill Of Materials) the third.

ROOVESP stands among all them in order to give 
appropriate software tool required and designed 
proved that intelligence can be put to the PSC in 
than just electronic facilities.

ideas for the 
and also has 
Rover, rather
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li.__DISCUSSION__ON__RQOVESP

IPL has been previously mentioned and the fact that ROOVESP was 
guided to similar objectives with that of IPL. As IPL is already 
an operational system within Rover, it seems a good opportunity 
to compare the two systems in order to make clear the 
achievements of ROOVESP.

The first section of this comparison gives the opportunity to 
discuss in more detail the benefits of Object Oriented 
Programming and OODBs in relation to relational databases which 
were mentioned in chapter 7 but also revealed during the 
development of the system.

The second section of the comparison deals with the conceptual 
design of ROOVESP in relation to IPL.

contribution to knowledge:

An in-depth investigation (and comparison with the
traditional way of programming and data representation) of the 
merits of the Object Oriented Paradigm.

Proof for the integration of the existing systems in a 
single master database which can store both images and texts and 
increase performance.

- Enchancement of the traditional audit way.
Refinement of the design engineering knowledge and
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experience in the company.
- ROOVESP can benefit from existing systems in the AI^ field.

11.1 comparison of IPL with ROOVESP

IPL cost to Rover much more money than ROOVESP.

11.1.1 right software choice for the characteristics of the 
problem

In this section the software aspects mentioned in the comparison 
of OOP and OODBs in chapter 7 will be discussed in more detail.

11.1.1.1 Data abstraction and semantic overload

11.1.1.1.1 l-t APPROACH: NORMALISATION

Consider the relational IPL model in figure 49. This model has 
been 'normalised' (see [70]). For example, the table Design 
Feature Group/ Vehicle Part Group has been implemented as the 
intersection entity (see [66]) of both tables Vehicle Part Group 
and Design Feature Group which are related to a many-to-many 
relationship.
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There may exist many more conceptual relationships in the model 
(or any other relational model in general) than only intersection 
entities which are shown in the diagram (figure 49). These 
relationships are known only by the designer as they are not 
explicitly stated anywhere. For example, there is an implicitly 
expressed class-subclass relation between the feature groups and 
features in the system. However, although this relationship is 
obvious, it cannot be explicitly stated in the relational model. 
Instead, it only exists in the mind of the designer (in an OOP 
environment such a relation could be hard-wired). Additionally, 
sometimes two or more tables may express the same set of objects 
but with different table-names because of the need of different 
concepts in the design of the system. A more detailed explanation 
of this subject can be found in the work of R. Hull and R. King 
[ 66] .

Such relationships tend not to be explicitly stated anywhere, 
because there are only two ways to represent relationships in 
the relational model: fields (or attributes) within a relation or 
by using the join operator between the entity tables. For 
example, consider a simple query in the normalised IPL
environment of accessing the design features of the product 
"seat-front complete manual". The ORACLE'S SQL query would look 
like as in the following:

select Feature-Description
from DESIGN-FEATURE
where DESIGN-FEATURE-GROUP.feature-group-code in
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select DESIGN-FEATURE/VEHICLE-PART-GROUP.feature-group-code 
from DESIGN-FEATURE/VEHICLE-PART-GROUP
where DESIGN-FEATURE/VEHICLE-PART-GROUP.product-code in 

select PRODUCTS.product-code 
from PRODUCTS
where Products.product-name = "seat-front complete manual"

All the relations between the tables are represented with 
equality in the values of their equivalent fields. Consequently, 
because many different relationships in the data base are 
represented only in two different ways, the data base is 
semantically overloaded. In addition, the lack of documentation 
of those relationships by the model itself (by appropriate 
primitives), makes the representation of the knowledge in the 
system more obscure to the outside programmer.

In addition, the normalisation of the data base resulted in the 
creation of new logical tables (intersection entities). This adds 
to the work of software development of the system. That is_, at any 
stage of the development of the system when information from this 
table is required, the programmer has to know the internal 
structure of these tables in order to retrieve information from 
them. For example, if the programmer needed to find the feature 
groups which are associated to the part code "HAD12345xxx" he 
should know the way in which information is stored in the Design 
Feature Group/ Vehicle Part Group table. The procedure in SQL 
would like:
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select DESIGN-FEATURE/VEHICLE-PART-GROUP.feature-group-code 
in t o......
from DESIGN-FEATURE/VEHICLE-PART-GROUP
where DESIGN-FEATURE/VEHICLE-PART-GROUP.part-code

= "HAD12345xxx"

From the software point of view this decreases data abstraction 
as the programmer must be constantly aware of the details of the 
data structures, every time he uses the system.

On the other hand, in the OOP, as mentioned in chapter 7, methods 
attached to specific classes of objects represent the
communications protocol of the data base and the programmer need 
not be concerned with the way in which the objects are
implemented in the data base.

In order for this to become clearer let's consider the secondary- 
description-ID defined in the Statice data base (fig 90).

The attachment of the feature groups in its internal structure 
resulted in the creation of a new logical entity, as well, named
the-reference-to-Rovar-cars--- actually -Austin-Rover, but the
association of the secondary-description-ID object with this new 
logical entity is more abstract than the relational model from 
the programmer's point of view:
Two methods get-musts and get-maybes were defined to work with 
that logical entity and they were accessing the values of the 
must and optional feature groups of the part description it was 
linked to. The programmer did not need to know afterwards the
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internal representation of the entity in order to access the 
feature groups, every time they were needed. Notice, the 
functions themselves do indeed involve a lot of detail such as 
the specification of the model, the translation of vectors to 
lists and then to feature groups, etc. All this detail is hidden 
and consequently the program development becomes more rapid.

The equivalent implementation in a C function, for instance, to 
do the same job in the relational model does not offer the same 
level of abstraction. Firstly, because this function would not be 
local to the secondary-description-ID entity but generic to the 
whole program. Secondly, it could not be inherited in the 
knowledge representation hierarchy of the data base. 
Consequently, it could not be organised structurally and 
classified.

The example of defining and accessing data from the relational 
model continues and reveals even more complexity.

The must and maybe feature groups in the tha-reference-to-Eover-
cars--- actually-Aust in-Rover entity are implemented with two
matrix-like variables (in reality two sequences of vectors). The

(define-entity-type secondary-description-ID
0

(part-description string :unique t :inverse-index t)
(emission-indication string)
(services-indicator string)
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vector)(Has-negative-features 

(Has-must-feature-groups Fover-C3ra— actually-Austih-Rover)

(Has-maybe-feature-groups Rover-car?— actually-Austin-Rover)

(picture raster-array)

...)

(def ine-entity-type Rov-r-ca r — actual ly-Aas v. in-Rover

0
(Rover-R8-musts vector-of-integers)

(Rover-R8-maybes vector-of-integers)

(Mini-musts vector-of-integers)

(Mini-maybes vector-of-integers)

...)

Figure 90: The secondary-description-ID entity implemented in Statice.

matrix format is required in order to map the design features 
with the vehicles specification. Such an implementation in the 
relational model can be done in two ways:

Firstly, by creating two new tables (must and maybe feature 
groups) and linking them using aggregation (intersection entity) 
with the part description (products). This has already been 
discussed earlier and it was shown to result in greater space 
requirements and lack of naturalness in the representation of 
the knowledge in the system.
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Secondly, by using the relational model in a way that it 
could simulate object-oriented behaviour. For instance, the non- 
first-normal- form (NF2) model [97] and as stated in [69] "the 
non-first-normal-form model allows nested relationships whereby 
hierarchical relationships among subobjects can be modelled".

11.1.1.1.2 2nd A P P R O A C H : N O N  N O R M A L I S A T I O N

For example, using the NF2 model, the part description entity, 
assuming that up to 4 (either must or maybe) feature groups are 
needed to specify its usage statement, could be defined as:

create Part Description 
[product-name: string(40)
product-code: string(ll)

/* ordered list of axes */
[DH_MATRIX: / * 4x4

Denavit-Hartenberg

Matrix */

< 4 FIX [COLUMN: integer
VECTOR: <4 FIX real>] >

[ maybes
[DH MATRIX: /* 4x4 Denavit-Hartenberg

Matrix */
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< 4 FIX [COLUMN: integer.
VECTOR: <4 FIX real>] >

] )
end.

This example has used the syntax of the AIM-P prototype which 
represents an implementation of the NF2 relational model [98] 
(relations are denoted in AIM syntax by the pair of brackets 
{[...]} ). The reader for more details can refer to [98] or [69]. 
The definition of the Part Description relation, more
specifically, has been borrowed from the relation which defines 
an industrial robot in [98]. However, it can be used as a general 
example to demonstrate, that even the second approach would 
result in the lack of data abstraction in the database model.

The insertion of the must, and optional feature groups into the 
nested NF2 structure of Part Description would look like:

insert
[ COLUMN: 2,
VECTOR: <0, 1, 0, 0>]

into Part-Description.has-feature-groups.musts.DH_MATRIX[2] 
f r o m.....

The example demonstrates that the nesting of the relations in the 
Part-Description structure is reflected from the nesting of the 
operations which commit a transaction. As A Kemper, P. Lockemann
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and M. Wallrath state in [69] "this is by no means trivial and 
requires an intimate knowledge of the representation of the 
entities in the data base". The example also, shows that though 
this approach gives a better flavor in the 'meaning' of the 
representation of the data in the data base, it decreases 
drastically the data abstraction in the model.

11.1.1.1.3 3rd A P P R O A C H : I M P L E M E N T I N G  O B J E C T - O R I E N T E D  F E A T U R E S

I N  C O N V E N T I O N A L  D A T A B A S E S

For the reasons mentioned above, there are currently ongoing 
prototypes - or even prototype design database methodologies, see 
[37] which try to implement Object Oriented software facilities 
on the top of existent RDBMS. Those facilities would specify new 
datatypes in a more abstract way and they would be isolated from 
the internal structure of the data in the data base. Such an 
example is the ADT-INGRES [69], or POSTGRES [65], [78]
implemented on the top of the existing DBMS INGRESS, or R2B2 
(Relational Robotices Database System) [69].

The problems which arise in this approach are:

(i) since all abstract datatypes have to be mapped on a flat 
conventional database domain the abstract structure of a data 
objects is only superficial and the actual benefits of OOP get 
lost.

(ii) the designer has to become familiar with two quite



different systems. In the ADT-INGRES for example: (i) the
database language QUEL and (ii) the programming language C.

(iii) it is quite difficult to implement transitivity on the 
new defined abstract types. For example, it is hard to define a 
new matrix datatype on the basis of the before defined vectors 
datatypes.

On the other hand, Statice provides the facilities to the 
designer to specify his own logical or physical datatypes. In the 
case of the physical datatypes, actually, the designer can 
program his own way how he wants the specific datatype to store 
or retrieve its information from the data base. For instance, he 
can define a matrix of strings rather than only matrices of 
numbers, or a matrix of both, or still an adjustable matrix 
rather one with specified dimensions. The development of such a 
code is easier and faster than using conventional programming, as 
the designer is only concerned with a single software 
environment, GENERA, rather than two or more plus their required 
interfaces.

In addition, Statice provides the facility for building new 
database structures on top of those which have been previously 
defined by the programmer (transitivity) eg. the definition of 
matrices can be built on the definition of vectors. This extends 
even further the concept of data abstraction during the 
development of the database and debugging.

Finally, it must be noticed, the need of high variety of abstract 
datatypes in the engineering environment. This is because of the
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need of specialised data in this area such as CAD/CAM (solids or 
two dimensional objects with physical characteristics) or CIE 
data (images), rather than the stereotypical data required in the 
commercial world, strings, numerics, dates etc. In the work of R. 
Martin [58] it is illustrated the inability of the relational 
model to directly represent one of the simplest no-commercial 
datatypes, the array, though it represents a widely used and 
well-understood data structure.

11.1.1.2 Uniformity and extensibility with OOP

The environment for the extensibility of R O O V E S P  to a full system 
for Rover is the same, the GENERA environment, whereas this is 
not the case with the relational model. I P L  had to use a new 
language C in order to interface the needs (graphics and search) 
of the system with ORACLE. In this respect OOP is more uniform.

The primary benefit of OOP is improved productivity because of 
the higher level of modularity it embeds which eases maintenance 
and reuse of code. The internal inferential integrity of the 
FLAVORS or Statice environments guarantees higher consistency in 
the updated code whereas the special debugging mechanism for 
object oriented databases such as the FLAVOR EXAMINER [4], 
existing in Lisp machines, can result to even more modular 
extensibility of the code.

11.1.1.3 efficiency during the system development
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It was planned for I P L  and R O O V E S P  to interface with each other 
sometime on February 1990. However, this did not happen as 
unanticipated complexities due to problems arose in the program 
of I P L .  For example, in one case, it took 2 months and more than 
20 pages of code to program the deletion or insertion of a new 
part in the data base. That was because of all factors which 
needed to be taken into account: the parts which it is linked to, 
its image reference, etc. The programmer had to work with at 
least three different languages, SQL, ORACLE, 4th DIMENSION, plus 
their interfaces.

In R O O V E S P ,  on the other hand, the deletion of a part for 
example, was direct and natural due to the way in which Statice 
works and its embedded inferential integrity mechanism. In 
addition, only one software environment, GENERA, was required. 
Notice, of great importance to the fast development of R O O V E S P  

was the contribution made by the incremental compiler which Lisp 
Machines support. In this way, only the changed part of the 
program needed to be compiled each time rather than all the code. 
More details on this subject can be found in [4].

11.1.1.4 Database__performance

11.1.1.4.1 creation and run time performance
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The major problem with IPL is run-time performance. This is 
because when a VPG is considered by the engineer, the 
relationships of all of its parts are created 'on the fly' from 
the 'flat' structure of the relational database. Secondly, the 
reference to the images database needed in order to retrieve the 
appropriate scanned files to the text data slows down the whole 
process. In addition, the multiple interface protocols necessary 
because of the lack of a common hardware platform (PIMS, ORACLE, 
4th DIMENSION) loads the network processes and slows down the 
program's performance even more.

On the other hand, it was found that the creation of the actual 
Statice database takes a long time to complete. This is because 
of all the complex relationships of the data objects that need to 
be created during its initialisation. However, once the OODB has 
been created its performance during the actual operation of the 
system which is the generation of the usage conditions of the 
parts, is higher than that of the relational model. The 
superiority in the run time performance of OODB is because the 
objects in the database are linked by identity (the objects 
themselves), not state (key values) as in the relational model 
(More details on the subject can be found in the work of R. Hull 
and R. King in [66]). In the latter, at least one address 
translation is required to get from the key (attribute) value to 
the location of the tuple.

In OODB however, the objects in the program memory have 
attributes whose values point direct to other objects. (ie. has- 
secondary-descriptions, Belongs-to-the-VPG, ... see the
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definition of Secondary-Description-ID. See also, photos A14 and 
A15 in appendix 10).

11.1.1.4.2 indexing and clustering routines

Relational databases are considered to have the best indexing 
routines. Statice and other OODBs also support such routines. 
This can be shown in the following.

Looking at the primary-description-ID entity there is an index 
which is used to speed up a regular accessor function. This index 
increases the speed of locating the has-secondary-descriptions 
attributes in the data base. In reality, the performance 
improvement happens in both the reader and the writer functions 
of this attribute as such functions are used by the system when 
it builds up the APN catalogue database automatically. Working 
with Statice it can be assumed that its indexing routines can be 
quite efficient, especially when they are used in relation with 
some of the unique features of the OODBs. In order to understand 
this better let consider the secondary-description-ID entity in 
Statice.

The part-description attribute of the secondary-description-ID 
entity has as inverse function the the-part-description-entity- 
type. This function is created automatically by the Statice 
system when the :inverse option is tagged to the part-description 
attribute. When this function is applied, it accesses the object 
(entity) whose value of its attribute matches the query, from the



database eg. a query such as "seat-front-complete manual-driver" 
accesses the Statice entity with such a part-description value. 
Notice, that each part description attribute is unique in the 
data base, consequently only one Statice object will be returned 
after the evaluation of the function. In general every Statice 
reader function, including the inverse ones, can be characterised 
as one-to-one, many-to-one, one-to-many, many-to-many.

The inverse reader function is one of the additional facilities 
of Statice that no traditional database systems offer and when is 
used with indexing (¡inverse-index) can result in high 
performance in the data base. This is because the actual objects 
in the data base are sorted with the index routines and the 
values of the various attributes can be directly retrieved. To 
clarify this consider the inverse reader the-part-description- 
entity-type discussed earlier.

The way in which this function, it finds the entity for the part 
description named "seat-front-complete manual-driver" is by 
examining each entity of type secondary-description-ID (including 
entities whose type inherits from type secondary-description-ID) 
and checking the value of the part-description attribute to see 
whether it equals "seat-front-complete manual-driver". This 
inverse function although it is a unique facility offered only 
from OODBs, the performance of the database would be slower and 
slower as it grew, taking time linearly proportional to the 
number of secondary-description-ID entities (a significant 
problem if considered the almost 15,000 part descriptions within 
Rover). In fact this is what happens if there is not an index.
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The index can increase the performance of the database rapidly 
without the inverse function facility be lost.

In [58] R. Martin supports that the clustering techniques of the 
OODBs can be superior of those in the relational model. In the 
automatic creation of the APN catalogue database, because of the 
hierarchical connections at the VPG group level of the data after 
analysed from the VAX tape, it shown that clustering is a 
efficient characteristic of Statice and could increase 
performance drastically (see section 8.2.4.2.3).

In summary, the direct (by 'identity') relation of the data in an 
OODBs has been compared with the relational model where this 
happens with equality in the values of the attributes of the data 
in 'flat' files (by 'key'). In addition, it was shown that 
Statice supports the standard indexing routines which can be 
quite efficient when they are used with inverse readers functions 
which can directly access the objects from the data base.

Statice is slow during the creation of the database but it is 
superior than the relational model at the run time. The long time 
required for the creation of the data base can be overcome by 
overnight processing and needs to be performed once. However, the 
performance of a data base during the execution of the program is 
crucial - as it affects the company if it slows down - because it 
is needed daily.

1 1 .1 .1 .5  pappas anting-assem bly stru ctu res
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Here some conclusions which were drawn by developing the 
Intelligent Networks prototype using Object Oriented Programming 
and Statice are discussed.

The way that arcs (assembly links) and nodes (physical parts) are 
linked in the internal memory of the computer ie. direct 
referencing to the object which are linked to, it was shown in 
chapter 9. Considering the amount of data involved - 180,000
physical parts PLUS at least as many arcs - the Object Oriented 
Database representation offers the highest performance over any 
other means of storing data.

Performance proved to be higher than that of the relational IPL 
model. This is because of the direct relationship of the user 
interface with the database itself within the Object Oriented 
environment. For example, when the engineer at the command level 
requires the deletion of a node (part), the application program 
expects the indication of a node (object) by the mouse. When the 
engineer "clicks" on the node it actually "clicks" on the object 
of the data base itself. The node in the screen is only the 
"illusion" of the actual information kept in the object.

The facility of OOP of presenting objects in specific ways 
(presentation types) depending on the programmer's need proved to 
help development time rapidly. For example,

(i) the way to present the arc object as 
<#arc:.. . .from nodel to — > node2> 

increases naturalness which results in faster conceptualisation 
of the results of the developing code.
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(ii) as the programmer can pick up the bulk of information 
he needs by just clicking the mouse in one of the objects, and 
pass it as an argument to a function, development time decreases 
and debugging becomes much simpler.

11.1.1.6 Storing images

Statice offers the facility to store images permanently as real 
values (raster arrays) of an entity type attribute in the data 
base. In this way the relationship between the textual and non­
textual information is direct as it belongs to the same object. 
As another benefit it increases naturalness in the system.

In the IPL example, however, it has been shown that the system 
complexity and the fact that the images exist in a different 
database contribute to the low performance of the system. This 
was because of the need to link together the textual and 
nontextual information by using two more software tools besides 
Oracle, the Pacer and 4th Dimension and interface of different 
hardware platforms.

11.1.1.7 User interface facilities

ROOVESR is the result of the third approach to the problem (ie. 
the Audit function and the PSC), totally different from the 
previous ones. The first approached the implementation of the
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Features List and the second the use of multiple dynamic windows 
(Base and Additional features, explanation facilities, 
backtracking etc) updated at run time accordingly to the user 
choices. The involvement of many different departments in the 
problem (Engineering, Auditing, Specification Services, Business 
System, Manufacturing, Purchasing etc) showed that early 
prototype was to be the only solution for its implementation in 
order to co-ordinate their different perspectives based on the 
results of the program. Early prototyping also, helped greatly in 
the development of the second and third phases of the Audit 
function resulted to new way of thinking.

The use of the GENERA's presentation types to graph the truth 
maintenance mechanisms embedded in the system helped the 
engineers/auditors and the knowledge designer to communicate 
among themselves as both the internal structure of the data base 
and the inference procedures of the program could be seen on the 
screen. In the former, in particularly, the embedded inheritance 
mechanism of the Object Oriented Paradigm helped greatly. In this 
respect, Object Oriented Programming aided the "planning in a 
hierarchy of abstractions" technique. The different subsystems of 
ROOVESP (ie. the validation algorithm and the Intelligent 
Networks prototype) could be viewed from different angles, as the 
user interfaces were relatively easy to implement and different 
thoughts could be demonstrated to the people in Rover. This also 
proved that when Object Oriented programming is used together 
with the "Planning in a hierarchy of abstractions" technique, 
the development environment is capable of exhaustively searching
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many possible alternatives for the solution of the problem being 
programmed.

On the other hand, in the relational model, the implementation of 
user interfaces would require the need for additional software
tools such as the C programming language or GKS for the VAX
system, or both.
11.1.1.8 general issues in the selection of QODB

The choice of Statice to store the vehicle data was chosen on the 
basis of some general characteristics of the problem, as well. 
For example, the hierarchical design of the data by using an OODB 
was closer to the reality of the way in which the data were 
stored in Rover at the time. ie. the APN catalogue (or EJA18V) 
although has a flat structure in the VAX tape, it has been
processed to describe hierarchies of VPGs. OODBs are efficient
at maintaining hierarchical data structures (classes, 
inheritance, etc) while relational databases represent a totally 
different philosophy. Similarly, the structure of the AFCs in a 
simple hierarchy of feature groups and features results promotes 
naturalness in the system:

(i) the database represents the format of the hardcopy file 
which the auditors use, and

(ii) the designer of the system (in this case, the 
validation algorithm) can 'think' in a similar manner with that 
of the auditor or engineer ie. feature groups which are related 
to the part description and their feature restrictions which 
create the usage condition of the part.



In summary, up till now the software issues of ROOVESP in 
comparison with IPL have been discussed. In the following the 
reasons for which the design of ROOVESP makes it a better 
environment to tackle the Audit function and the PSC in the 
company than that of IPL is discussed.

11.1.2 conceptual analysis of ROOVESP

11.1.2.1 automation

IPL, with the way it currently works is limited to the existence 
of manual processing in some stage of its function: the engineer 
can make changes using the front end facilities of 4th Dimension 
such as the deletion of a part, update of the part's usage 
condition etc. but all these changes do not directly update the 
PIMS database. Instead, they are hardcopied and passed to the 
Specification Services/Auditing department people which manually 
update PIMS. Only the existing data tables which are already 
filled in ORACLE are updated automatically (see section 7.5.1).

On the other hand, ROOVESP with the use of the Intelligent 
Networks prototype can directly update Statice which holds all 
the parts and consequently the PSC can be fully automated.
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11.1.2.2 multiplication of the information

As previously mentioned the duplication of information in the AS 
(Applications System) and PIMS databases, already exists from the 
way the PSC in Rover operates. IPL generates a third 
multiplication of the information: the ORACLE database.

All three data bases must be 'on line' all the time without 
mentioned the update of the images database in an 'on line' 
basis, as well.

On the other hand, in ROOVESP there exist only a single database, 
Statice. The images, as well, are directly connected to the parts 
themselves which makes even easier the software development of 
the automatic 'on line' update (see photos A8 and A9 in appendix 
1 0 ) .

In IPL it is difficult if not impossible to write software which 
will simultaneously update text and image data because of the 
separate update of the images from the rest of the data (the 
engineer has to go out of the 4th Dimension software, in a scan 
or a drawing package) and also is manual.

11.1.2.3 intelligence

IPL applies only a basic 'checking' on the data. This is only a
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checking in the type of data expected in each field amended for 
the Rover's case; four characters with the fifth to be a number, 
etc. In reality, IPL plays the role of a "library" where the data 
are classified by VPG, Sub-VPG codes, etc. instead of doing any 
kind of validity test. For example, the engineer can delete a 
part (a part number), or change its usage statement without this 
be checked at all.

In one case only, IPL tried to apply a kind of 'intelligence' in 
its procedure. This was the association of feature groups with 
specific VPGs. This knowledge was manually obtained from a seat 
engineer who was appointed to work in a prototype project for the 
seats of the car. The gradual acquisition of the knowledge proved 
that experience is vital and the complexity of the specification 
can be extremely hard to maintain if is dependent only on the 
expertises conceptualisation of the problem. Even on that high 
level of analysis, the VPG, the association of VPGs with design 
feature groups proved to be a complicated exercise for IPL.

On the other hand, however, ROOVESP with the OOP, was able to 
automatically analyse the data in the part description level (and 
any level higher) by actually manipulating the lowest level of 
information available in the company, the physical parts.

In addition, there was still the inclination for mistakes in IPL 
as the engineer can choose for a wide area of feature groups 
which correspond to the equivalent VPG. The subtrees of the VPG 
family, however, even the nodes themselves sometimes do not share 
common design engineering "behaviour" (see figure 65).
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Consequently, the engineer can still make mistakes and choose a 
wrong feature group to specify his part.

In the following section the relation of ROOVESP to the other 
systems which were described in chapter 7 is discussed and some 
ideas of how methodology of other existing systems could 
contribute to the further implementation of ROOVESP.

11.2 ROOVESP in relation to other existing systems in AI.

11.2.1 Hierarchical planning

It was mentioned in chapter 7 that unclear procedures and 
complexity were met during the investigation of the Audit 
function and the PSC. In this perspective, it seemed vital that a 
planning technique be used which would allow the design of each 
phase to be tackled independently but also allow any adjustments 
that may needed by the whole system to be easily implemented.

Planning with abstraction provides such characteristics and the 
whole design can be updated if needed by simply modifying the 
interactions protocol of the system's subcomponents. This is 
obtained by using satisfaction posting. The same technique, 
abstract planning of almost hierarchical decompositions, has been 
used extensively within the first audit phase, as well (see
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figures 51, 67, 69).

Although the philosophy of using constraints for algebraic 
planning, the one which CONSTRAINTS adopts, has been used in the 
design of the validation of the usage conditions in the first 
audit phase, MOLGEN's philosophy of viewing constraints as the 
elements which define the subproblems interactions has been 
adopted in the design of the overall system.

R1 probably represents the best example in literature that 
resembles the application of this thesis ie. it configures a 
system (VAX computers) of components with relationships among 
themselves. The difference is that it does not use combinatorial 
search but the Match method instead.

The Match method, when it is considered as a searching method, it 
represents a weak (general) search technique (see [89]). 
Consider, for example, the below piece of code which represents a 
match function with a wildcard qualifier such as the star (*) 
(see [99]) .

(defun Match (pattern data)
(cond ((and (null pattern) (null data)) t) 

((or (null pattern) (null data)) nil)

((equal ((car pattern) '*)
(cond ((Match (cdr pattern) data))

((Match (cdr pattern) (cdr data))) 
((Match pattern (cdr data))))))

352



The interesting case here is the wildcard qualifier star (*) 
which when is going to match against a form of data it has to try 
out recursively all the possible combinations. When many wildcard 
qualifiers are involved in the searching of the algorithm this 
requires a huge amount of processing which in another case may 
lead to combinatorial explosion. As McDermott, the author of R1 
states, "the search space for Match is the space of all 
instantiations of the variables in a form, ... and Match is not 
always sufficient for the complete task."

The combinatorial search (as the validation algorithm discussed 
in this research) has been preferred from many researchers in AI 
(see [57] and [90]) as heuristics can be introduced in order to 
guide the path of the search by the means that more intelligent 
choices are allowed to be taken by the program rather than only 
pure chance. Furthermore, heuristics could be used to optimise 
the solution.

Regarding Rl, the simplicity of its domain configuration (VAX) 
relatively to the vehicle configuration discussed in this thesis, 
the rules of composition are only few (480) which have been 
derived manually from the experts. In this project however, as it 
will be shown later, that is practically impossible and automatic 
transfer of knowledge was required.

11.2 .2  Meta knowledge.

353



During the investigation of the problem it became apparent that 
the implementation of the system should need design engineering 
knowledge. Such knowledge, however, was not documented anywhere 
in Rover. For this reason the author resorted to the development 
of an automatic theory formation program which would recover such 
knowledge and which would represent the learning element of the 
system. Although this program uses a similar approach to Meta­
knowledge representation, frame-like structure of data, as the 
other systems in literature discussed earlier, it differs from 
all of them for different reasons.

NASL stores all the information (rules and data) in the same 
associative data base and resembles a script-based system rather 
than an object oriented one. Similarly, Rl's knowledge 
representation is closer to hierarchical rather than OOP.

PIP, CENTAUR and PROSPECTOR basically represent only prototypes 
and they do not use a real OODB for their application.

META-DENDRAL shows the closest resemblance to ROOVESP — not at 
the knowledge representation level but in the way which the meta­
knowledge information is obtained. That is, it tries to abstract 
the information by generating principles of the behaviour of the 
data in the sample. Even the two programs INTSUM and RULEGEN of 
META-DENDRAL can find equivalents in the design of the learning 
element of the system (see section 7.3). The motive of the 
automatic transfer of experience in the DENDRAL system, matches 
with the problem faced on this project: the lack of experts with 
enough specific knowledge to make a high performance problem 
solving program [42]. Finally, notice that META-DENDRAL, as the



learning mechanism ROOVESP does, takes account of the noise in 
the data sample.

The only major design difference between META-DENDRAL and ROOVESP 
is that ROOVESP uses the advanced technology in object oriented 
data representation (ie. FLAVORS and Statice) to 'abstract' the 
knowledge from the data rather than simple data triples (object, 
property, values). In data triples, type inheritance can only be 
coded with primitive nested lists whereas such relationships are 
hard-wired with the use of advanced OOP environments such as 
FLAVORS or CommonORBIT (see [99] for more details).

Another difference of META-DENDRAL with the learning system of 
ROOVESP is that the size of its research space can be extremely 
huge. For example as stated in [42] "the size of the space to 
consider for subgraphs, containing 6 atoms, each with any of 
(say) 20 attribute-value specifications, is 206 possible 
subgraphs. This makes it to be used only for "successful 
demonstration of scientific capability".

On the other hand, ROOVESP's learning system 'cuts down' the 
research space by applying statistical markers (derived after 
empirical analysis of the data and format of the EJA18V 
document).

11.2.3 Interactive transfer of expertise
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Another way of "handcrafting" knowledge bases for expert systems 
apart from the automatic theory formation programs which have 
been discussed up till now (ie. META-DENDRAL, PROSPECTOR, etc), 
is interactive knowledge transfer programs. These programs 
facilitate the interactive transfer of knowledge from a human 
expert to the system using a high level dialogue. Examples of 
such paradigms are TEIRESIAS [32], EXPERT [29] [30], and SEEK 
[33] .

The most important characteristic of these systems is that they 
embed explanation facilities for the conclusions of the system 
which could guide the user in the way that the new inference 
rules were acquired (a kind of a "debugging mechanism").

Especially, SEEK - used in rheumatology - is of great importance. 
It uses case experience data, in the form of stored cases with 
known conclusions to refine the rules of the model. It does this 
by using either generalisation (weaken the rules's IF part) or 
specialisation (strengthen the rules's IF part), if the results 
are not the desirable ones. SEEK distinguishes three different 
levels of confidence of the rules acquired: Possible, Probable or 
definite.

TEIRESIAS, EXPERT and SEEK give useful ideas for the further 
development of the Meta-knowledge mechanism of the system. The 
interactive transfer of knowledge matches with one of the 
fundamental objectives that led to the implementation of the 
learning mechanism of the system. That was, not only to support 
the overall system but also to represent the starting point of 
the documentation of the missing information in Rover.



The further implementation of the learning mechanism of the 
system to interactively advise the engineer for the cause of a 
conclusion derived, could help in its rule refinement. Notice, 
that the concepts of possible, propable and definite as they 
have been used in the SEEK system are also used in this system, 
for the specification of the design feature groups in relation to 
the part description. Consequently, the implementation of similar 
ideas in rule refinement such as used in SEEK have major 
potential for use in ROOVESP.

11.2.4 general discussion and summary on the learning— e lement­
al ROOVESP

Lenat in [33] distinguishes three kinds of theory in heuristics: 
Oth order, first order and second order. The 0th theory says that 
the relationship APPROPRIATNESS(Action, Situation) is continuous 
and time-invariant. This means that given an action, the 
appropriateness of this is always valid for that situation.

The first-order theory says that "the Oth-order theory is often a 
very useful fiction. It is cost-effective to behave as though it 
were true. Notice that the lst-order is itself a heuristic !" 
[34] .

The second-order theory says that heuristics are compiled with 
hindsight. As new empirical evidence accumulates, it may be 
useful to 'recompile' the new hindsight into heuristics 
(synthesize new heuristics and modify old ones).
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Summarising, it can be said that the learning element of ROOVESP 
can be further implemented and reach the second-order theory of 
heuristics, as expressed by Lenat, by adopting a mechanism with 
which the engineer could view the acquisition of the inference 
rules of the system and appropriately modify it in a way similar 
to the SEEK example. The learning element of ROOVESP reaches at 
least the first-order theory of heuristics: when the project 
started the state of design engineering knowledge was very 
incomplete. Currently, such knowledge is well understood and, as 
mentioned on the above, it is open to further correctness of its 
acquisition. In between, the heuristic search of the learning 
mechanism is a useful paradigm.

Another relevant paper to the learning of heuristics field is 
that of D.A. Waterman [35].

11.3 How ROOVESP affected the existent environment of the PSC 
in ROVER.

This section discusses a series of "thoughts" or concepts which 
were existent in the company and clarified during the 
investigation in this thesis.

ROOVESP was the system which enabled all those "thoughts" to be 
refined and linked together with the new concepts that were 
invented to overcome the various inconsistencies of the existing
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PSC in Rover. In this perspective, ROOVESP represents the means 
by which old and new concepts are linked to form Rover's new 
vehicle specification conceptualism: That is the automatic 
validation of the usage statements of all the parts of the 
vehicle and the ultimate aim for the automation of the whole PSC.

The last section of the chapter discusses the new concepts which 
were introduced in the company during this research and as a 
result of it.

In this section only the "thoughts" which were existent and which 
were clarified during the research are discussed. In addition, 
some other contributions of ROOVESP to the functionality of the 
various departments in the company such as Auditing, 
Specification Services, Business system, and Component 
Engineering are discussed.

1 1 .3 .1  A uditing department

1 1 .3 .1 .1 methodical approach of the various problems

- for the first time the audit function was analysed 
methodically and three phases were clearly distinguished whose 
internal operations defined unambiguously (chapter 5).

- a validation algorithm was methodically defined and 
actually implemented, which was empirically tested and proved to 
be correct.
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the generation of the boolean qualifiers PLUS (+) and 
MINUS (-) in the final usage statements of the parts of the 
vehicle, were studied in a structured way and algorithmised for 
the first time.

rraditional auditir«c

the analysis carried out for the design of ROOVESP 
enchanced the existing audit function itself. It reformed its 
process which till now was tied into the traditional way of 
duplicate documentations (Features List, Territory Code Index 
Report, etc) and the struggle of understanding the same 
information in different formats.

11.3.1.3 ROOVESP matures the Auditing function.

The audit function has grown throughout the years. In the early 
days of its application there were many cases where auditors or 
engineers used to specify vehicle parts based on the model trim 
levels. That is the worst case because no real specified 
information is generated. That is, it is well known that every 
part is dependent on the trim level. Rover's specification 
concept has passed this level but is still hampered by heavy 
functunalism as stated in [20]: "My specification is better than 
yours". With ROOVESP the way of specifying the parts of a vehicle 
becomes standard.
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11.3.1.4 ROOVESP the n e e aS ! O V » i

speciaiiaation within the Auditino department.

5% Experts in th e  m a jo rity  of Com ponent Areas

15%
Expert on  on e  p a rticu la r Com ponent Area - eg. 
Power U nit, BIW

30% Reasonably genera l know ledge in th is  group

20% Novices

30% Shortfa ll o f S upp ly  v Demand

Figure 91: T he percen tages o f experience 

w ith in  the A ud iting  departm ent

Figure 91 shows the distribution of knowledge and experience (and 
shortfall of experts) within the audit department as stated in 
the company's report [8].

This no longer needs to happen with the application of ROOVESP as 
the design information (coming from statistical analysis of the 
past data) is clear and available to everybody (ie. no need for 
auditors to be specialised in particular areas of the car such as 
seats, mirrors, harness etc.).

11.3.2 Business system
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11.3.2.1 Feedback on the quality of the stored data.

The Business Systems department which maintains all the backup 
data tapes used for the implementation of ROOVESP, was feed-back 
with information regarding the wrong quality, of some of the 
tapes. For example, it was found that the APN, AFGIR, EJA18V and 
AFC formats of these tapes are not compiled thoroughly by ISTEL. 
Sometimes these tapes even maintain corrupted data. This emerged 
because it is the first time that these tapes have been used by 
Rover for reasons other than hardcopy backup.

11.3.2.2 proposal for the correct implementation of 
de sc ripti ons da taba s e .

pa rt

The analysis of the APN catalogue showed the Business system 
people the confusion which is created by the way in which they 
implement the APN database. That is that a feature description 
should not be inserted in the description of the part. The usage 
condition should discriminate the parts and not the human 
conceptualisation.

11.3.3 Specification Services

11.3.3.1 ROOVESP 'documents' the way for the logical
compilation of the AFC of the model.
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- ROOVESP proves the need for a specific standarisation of 
the compilation of the Additional Feature Charts of the model. 
That brings to an end the controversy which has existed in Rover 
for many years. Feature groups which are offered with more than 
one feature availabilities in a model, should cover all the trim 
levels of this model in its AFC document. On the other hand, if 
only one feature availability exists for the feature group, it is 
advisable for the specification people to create its logical 
negation (let say, not heated seat) and compile it as a real 
feature availability of the AFCs of the model. This negative 
availability will then cover the rest of the trim levels in which 
the feature group under consideration is not offered.

- Although ROOVESP can tackle the unambiguous ways in which 
the restrictions of the features are coded in the AFC, it is 
advisable these restrictions follow a standard pattern in their 
compilation (see section 5.1.1).

11.3.3.2 refinement of the knowledge and experience 
Specification Services.

Specification Services people use their experience to 
compile the Base and Additional Feature Chart of a model. For 
example, if heated seat is introduced in the company for the 
current R8 model and this option is offered across to all Rover 
R8 derivatives, it sometimes happens that the specification 
people to not compile a new discriminating feature (ie. heated 
seat). However, if the company's policy was to change in the
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future, the specification people have not only to create a new 
feature but to re-compile the old BAFC of the model, as well (a 
major task).

The analysis of the must and feature groups provides a 
clear picture of the design engineering knowledge situation 
inside the company. It refines the past knowledge by the means of 
identifying the design feature groups which they are inclined to 
change throughout the time and the design feature groups (musts) 

which should always be compiled in the AFC of the model 
regardless of their standarisation across the whole range of the 
derivatives.

11.3.3.3 cost effectiveness for the company

By using the EJA18V and VPG tapes to extract past experience, 
ROOVESP makes these documents to worth their value which until 
now were used only for a report basis. Ironically, the actual 
EJA18V tapes till now have kept overwriting each other which 
makes their compilation from ISTEL even a less cost effective 
investment for the company.

11.3.3.4 computer based update of the data and knowledge

Using ROOVESP's maintenance mechanism the update of the Rover's 
data such as the APN catalogue, the BAFC of the models, the K87 
feature directory etc. are supported in a database logic, rather
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than implicitly through the generation of new backup data tapes.

11-3.4 Product Development

11.3.4.1
variants 
itself v/i

ROOVESP can reduce the large amount, of combination 
by instigating a better understanding of the product 
tin Product Development (or Vehicle Directorate).

As stated in a survey by Aachen university [6] "one approach of 
reducing the number of variants is neglected: Reducing the number 
of the product variants starting in the design phase. Less 
variants in the design reduce the amount of work in every other 
department".

This survey introduces a method called Variant Model and Effect 
Analysis (VMEA) to control the number of product variants and 
when it was applied to an Audi 100 car pedal system, it was 
proved that appropriate management in design changes resulted in 
a reduction of 29.8% parts and 62.5% variants. A cost analysis 
showed a reduction of approximately $2 per pedal system in a 
volume of 550 systems per day. Finally, the survey concludes that 
a 16 percent cost can be saved on the total product.

The design engineering knowledge which can be derived through 
ROOVESP can become the basis for such an analysis of variants at 
the design level. Remember, Japanese automobiles work on this 
principle and have reduced design time drastically (see table 5).
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In addition, the Intelligent Networks prototype would greatly 
contribute to the rationalisation of assembly and subassembly 
structures (the Bill Of Materials of the products) as all the 
knowledge of the vehicle and the new changes are shown in the 
screen.

The survey [6] states, that when questions such as
When does the variant first occur and which parts are 

involved in the variant?
- In which subassembly is it possible for a certain variant 

to occur?
are answered correctly, this would contribute to the correct 
analysis of the BOM of the product and consequently decrease its 
multiple derivatives.

In ROOVESP, the knowledge of the system stored in Statice 
represents the knowledge domain itself which also can be graphed 
in the screen. In that perspective ROOVESP can contribute to the 
better understanding of the product. This is discussed in more 
detail later.

As a matter of fact this survey - the only one which found in the 
literature to consider even implicitly the PSC in the automotive 
industry - came to the same conclusions as the research in this 
thesis, although from a totally different angle (ie. variants 
analysis) :

- Firstly, Object Oriented style: The survey supports that 
"each unit represents a functional entity in the variant tree 
which is not necessarily devoted to a single function",
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Secondly, graphical breakdown of the assemblies is 
required to support design analysis: "Graphic representation of 
the information is preferred ... the variant tree tool is able to 
support the design, also" [6].

11.3.4.2
which are 
clarifying

R O O V E S P  brings together all the 
involved in the Product Sped 

their contradictory concepts and

various aepartxnen t $
f¿cation Concept by
c a tr. 1n c? new concept:»

when is required.

Figure 92 shows the current situation in the company where many 
departments with their subsidiary databases are viewing the same 
information (ie. the product) from different angles. As stated in 
[20] "Today, across the company, many departments are receiving 
PIMS paper output, analysing, reformatting and re-keying data 
into stand alone systems. This, at best, is a duplication of 
efforts, or worst it leads to errors and continues the 
proliferation of autonomous rather than integrated systems".

In addition, with R O O V E S P  a common theory of communication is 
created (ie. must and maybe feature groups to the part 
description, validation procedures, assembly links algebra etc.) 
which guarantees to be and practically supported as one can refer 
to the existent results of the application software.

11.3.4.3 ROOVESP contributes to the implementation of existing
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Rover.pro i r c r.s in

The relationship between ROOVESP and IPL has been discussed ie. 
the most appropriate software tool for such a type of problems 
and the use of intelligence in the field. IPL represents the 
first of a three stage project in Rover. PROMS represents the 
second stage where all the existing data together with the Land 
Rover's data will be collected into a common data base system. 
ROOVESP helps PROMS by supporting the existence of design 
engineering knowledge - as well as other knowledge - at the part 
description level and it has been proved that such knowledge can 
be derived automatically from past experience data. The IBOM 
(Illustrated Bill Of Material) project represents the third stage 
of the overall project. This includes the interface of the 
existing IPL (images and usage conditions) and PROMS (for Land 
Rover, as well) data with Rover's CAD system. The choice of the 
data base for the IBOM project coincides with the experience 
gained from this research ie. the appropriateness of Object 
Oriented Data Base for such a type of problems.

Figure 93 shows the intended implementation of the whole BOM 
project. ROOVESP falls somewhere inside the Product Definition 
field, whereas the intersection of the fields define the 
duplication of information and effort as the three different 
projects are under parallel development. For example, it is shown 
that PROMS overlaps with IBOM. This is because data are input 
both in the OODB (the one chosen by IBOM) and DB2 (chosen by 
PROMS). However, because a relational database such as DB2 has
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been considered incapable of handling the CAD data (CADDS in the 
figure), the IBOM project is created which intends in the future 
to cover the whole BOM area in Rover (as the arrows indicating 
outwards).

This proves the validity of the search in this thesis in two 
ways:

- Object Oriented Programming and OODBs have been proved to 
be the most appropriate environment for the PSC in Rover,

- Secondly, the problem illustrated by the PSC has several 
generic features therefore the approach used here can be used in 
other problem areas that exhibit the same characteristics.

In addition, ROOVESP's feasibility study of the Object Oriented 
Paradigm and more importantly the implementation of its data base 
in a real OODB system such as Statice can help both in the 
investigation of this new field and more naturally guide the 
development of Rover's PSC to an Object Oriented environment.

1 1 .3 .4 .4  Decrease in the Specification time of a product.

Decrease in the time spent in the specification of the parts of a 
vehicle is expected potentially to drop drastically:

Firstly, because of the automation which has been
implemented on the Product Specification Concept and

secondly, because the engineers do not need to liaise with 
the auditors. That is because all through the implementation of 
ROOVESP, engineers were considered to be the prime authors of the
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Illustrated Bill of Materia! T30M ) Project 
Single Workstation for Text & Graphics
* Interaction Between CAD &. The BOM
* Intuitive Graphical Front End (Windows-based)
* Latest Technologies

Initial development focused on 1PL functionality, then 
core CADD5, Assembly Design and £DM functionality 
and data enriched to encapsulate corporate BOM functionality.

Figure 93: The proposed for future implementation in an OODB Rover's
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specification of the parts.

11.3.5 Component Engineering

11.3.5.1 ROOVESP makes interchangeability a 'visible' concept.

Interchangeability is a concept which has been discussed for 
many years in Rover and its definition is still under question 
(see section 9.2.1.1). This is because interchangeability faces 
different requirements for the various departments such as the 
Component Engineering, Manufacturing, Purchasing, Services etc. 
The prime author, however, for the definition of the
interchangeability of a part, is the component engineer.

The use of the interchangeability concept in the Intelligent 
Networks prototype for the first time illustrates this concept to 
the engineer by breaking down to the lowest level the assembly 
structures of every single part. In this perspective,
interchangeability becomes visible to anyone and easier to 
maintain.

11.3.5.2 ROOVESP points out for discussion the correct need for 
the creation of new physical parts.

The Intelligent Networks prototype discusses 
conditions for the creation of new parts (new part

the needed 
numbers) in
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the assembly of the new designed part. It advises that care is 
taken and new parts are created only when necessary [100]. For 
example, is not need for the creation of both a new heated- 
overlay and new heated-squab (see section 9.2.1) which adds 
confusion in the maintenance of the APN catalogue.

Having in this section discussed the various concepts and or 
"thoughts" existent in the company and the way they affected from 
the development of ROOVESP, the following section summarises the 
objectives of this thesis, as drawn during the search. It also, 
discusses the new conceptualism which ROOVESP introduced in order 
to overcome inconsistencies of the existent PSC and automate both 
this and the audit function.

11.4 The new conceptualism introduced in the PSC by ROOVESP

When the project was launched there were strong doubts about the 
successful application of computer technology in the field. That 
was due to the nature of the problem domain itself which is 
highly based on the "common sense" and "experience" of the 
people. Thus, the initial objective of the project was restricted 
in replacing the paper and pencil of the auditing function by 
electronic equipment. There was little attention to substitute 
the auditor's capabilities, instead the approach was to provide 
as much support as possible, partially using a rule-based system 
to apply basic validation procedures and partially by just
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providing an appropriate user interface. The central part of the 
Auditing process based on experience and intelligence viewed on 
the time to remain the task of the human beings, however.

The implementation of the rule-based system to validate the 
specification packages coming from Component Engineering was 
faced with two problems which from early on showed that the Audit 
process cannot be isolated from the more general Product 
Specification Concept in Rover which it supports.

Firstly, no clear audit process existed.

Secondly, its computerisation would need design engineering 
knowledge which was not documented anywhere in the company.

These two problems when examined closer uncovered inconsistencies 
in the Rover's PSC which would need to be corrected in order for 
the environment to reflect the futuristic automation of both the 
audit function and the PSC. This naturally led to the study and 
understanding of the various vehicle specification concepts or 
thoughts - some of them discussed earlier - which had to be 
clarified and corrected when required. When the inconsistencies 
of the PSC could not be solved by clarification or correction of 
the existent concepts, new ones were developed.

The application of software in both the audit function and the 
PSC could then be designed on the basis of this new vehicle 
specification conceptualism.

Thus, it can be concluded that the research of this thesis not 
only examines the application of computer technology in a
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traditionally human oriented environment such as Auditing and 
Vehicle Specification, but also analyses and "documets" these 
environments in order that they can be automated afterwards.

11.4.1 unclear audit process

The unclear definition of the audit function forced the 
investigation of the project to be viewed from a new perspective. 
That was the association of part descriptions with__design­
engineering feature groups at an abstract level.

The Business system department [9] was of the view that no such 
relationship existed but rather simple Manufacturing quantitative 
links based on the assembly structures of the parts.

This research however, has proved that the Features List document 
is not required and the parts specification can be extracted 
solely from the BAFC. Especially, as missing parts information 
from this document (normally presented in the Features List) can 
be retrieved.

Thus, as the complexity of the audit function gradually 
simplified, it became clear that in reality feature groups do 
relate with physical parts at the part description level. The 
only problem was the huge quantity of the design engineering 
knowledge which should be documented manually from the experts to 
support the system.
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11.4.2 need for design engineering knowledge

At this stage it became apparent that the original search should 
be expanded outside of the scope of the Auditing department and 
encompass the whole Product Specification Concept, including all 
the functionalities and the concepts of the departments which are 
involved in its process.

Xhe__must and m:;=yt-e feature group concepts introduced in the
company together with a statistical algorithm which was 
implemented to manipulate the internal representation of finished 
product documents such as EJA18V (specification patterns and data 
analysis). It proved that design engineering knowledge could be 
obtained for the company on the basis of this new conceptualism. 
This design engineering knowledge represents past experience 
accumulated in PIMS as long as PIMS is in existence. Its quantity
is huge - ie. 10 (models) * 5,000 (parts) * 200 (feature groups).
ROOVESP in a further step beyond the statistical analysis of the 
part description level obtains design engineering knowledge for 
higher levels in the parts data hierarchy (ie. families, VPGs) by 
abstracting from what it already knows.

This Meta knowledge element of the system represents the_Starting
point for the documentation of this knowledge in Rover ■ A major
achievement considering that the literature survey in automobile 
industry has revealed that no such knowledge is anywhere 
documented for any company.
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11.4.3 A real system

The third problem which was faced during the investigation of 
this thesis was the implementation of a real life system to 
support Rover in an everyday basis.

The implementation to a real system led in the investigation of 
both software programming environments and software database 
technology which would support both the Auditing and the PSC 
efficiently and flexibly. That resulted in the choice of the AI 
environment: Object Oriented Programming and actually the latest
software technology in the field: real Object Oriented Databases. 
Real Object Oriented Databases when compared with traditional database 
approaches it was proved that they support more closely the complicated 
relationships of the problem and still can be efficient and accurate.

Statice, a relatively new OODB product from SYMBOLICS, was
explored and chosen to support the PSC in Rover.

After, the full implementation of the first Audit phase, it 
proved that the objectives of the project not only successfully 
met but still could be more ambitious for the future:

The system does not only replace pencil and paper but intelligence, as well, 
and can be a realistic working system for Rover. The following step, under 
development, is the full automation of the Product Specification Concept and
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its integration to the rest of ROOVESP.

The work which has been done in the Intelligent Networks 
prototype proves the feasibility of the latter objective and 
represents that such an achievement is a matter of completeness 
of the data in the database and time rattier than research-

The following section discusses the general aspects which were 
learnt during this research and some figures are given which both 
help the better understanding of the contribution of ROOVESP to 
a realistic application for the company and the need for it.

11.5 What can be learnt from ROOVESP

11.5.1 integration of the existing systems

The PSC in the automotive industry represents a typical example 
of problems which exist in big companies. The large amount of 
information which is involved in the running of the business 
gives to the proliferation of many different systems - possibly 
computerised - which are developed in a such a specialised way as 
to solve only different individual areas of the same problem 
without necessarily integrating naturally with each other (see 
figures 92, 93 existing and future implementation of the PSC in
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information, usually in different formats. It leads to different 
interpretations of the same source of data knowledge, the high 
specialisation of the various departments involved and finally 
the gradual isolation of one from the other.

The original difficulty of solving the specific problem within 
the company is transferred to the management of complexity which 
constantly grows by specialising the solution of its subproblems.

In such situations, especially when multiple computerised systems 
exist where each one maintains its own data base, one solution to 
the problem is the integration of the systems to a single 
database and with different procedures in the application program 
meeting the various functional requirements the different needs 
of the various departments rather than the representation of data 
within each database. The representation of the data in the new 
data base, however, should represent the domain in the most 
natural way in order to ease the development of such procedures 
and help the designer to globally maintain the changes done in 
the database from any angle.

11.5.2 Object Oriented Databases are suited__for--in te r a c t iv e
update problems

The need for the natural representation of the knowledge of the
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domain finds as one of the best software environment candidates, 
the Object Oriented Paradigm. In addition, the specific 
characteristics of the PSC and generally any other problems of 
this nature suggests the use of the OOP. This is the need for 
interactive processes in the data base between the user and the 
data.

The PSC falls in the category of CAD/CAM like exercises. As 
discussed in chapter 7, the PSC has been invented to help specify 
new derivatives on the basis of the existing ones. Consequently, 
not only in the re-design of already existent parts for which 
market research has discovered inefficiencies but even in the 
case of the insertion of a new vehicle, the whole process of the 
PSC is dependent on changes based on already existing data.

The Object oriented databases, more specifically Statice as used 
in this research, are designed to work for a such class of 
problems. The user can refer directly to a specific section of 
the database under consideration, as only the relevant data is 
'pulled out' because of the 'by identity' relationships between 
all the data of the section. The data can then be updated as 
required on the screen, by manipulating their presentation types. 
This represents the most natural way of the interactive update of 
the data base as the user thinks not in the terms of the internal 
unfriendly representation of the data but their connotative 
information which has been conveyed into graphical 
representations such as a part, an assembly etc. This 
information, however, is the actual data themselves. Consider 
that in an engineering environment, engineers are not computer
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experts which makes OODBs the most useful because of its 
naturalness to describe data and express graphically connovative 
information.

In the traditional way of storing data, those data bases have 
been designed to work with queries which search all the data in 
the database rather than just a specific section.

It has been estimated by Rover (confidential [93]) that "the 
inability of the current system in the company to respond to 
change (mainly because of the way in which the data are stored in 
the data base) not only hinders performance at the development 
phases, but also impinges on the company's ability to exploit 
market trends."

Further investigation on the current system has shown that the 
unnatural way in which the data are stored in the data base leads 
engineers to re-design already existing parts in the data base 
because it is difficult to access the section of the information 
with which they are concerned and consequently they have no full 
knowledge of the database contexts (see section 9.2.1).

11.5.3 The new world of OODBs

Statice is a typical example of the new database technology: real 
It has been found that it can be a realistic databaseOODBs.



system (ie. making use of pathnames, concurrency control, etc.) 
and work in a real life application when the indexes and 
clustering techniques are implemented properly in the system.

There are reservations regarding the amount of time that is 
required to create a large and complicated database (for ROOVESP 
that has been estimated estimated to be 5 days). The performance 
issues which were discussed earlier in this chapter were based on 
only a representative amount of data; not a large one. In this 
case it was found that Statice and hence OODBs in general are 
much faster than the traditional databases. On the other hand, 
for large mainframe applications Statice shows lower performance 
than the traditional datadases (it compares to the performance of 
relational databases 3 to 5 years ago). However, the author is of 
the opinion that OODBs (which have been in the market long 
enough) are still preferable for such type of problems as 
ROOVESP. This is because nowdays the software technology is 
moving in this direction and consequently more efficient software 
will be available in the future. In addition, the main reason for 
performance, ie. hardware, is changing rapidly and on-going 
improvements in CPU and disk speed which constantly will make 
OODBs much faster. Even with the existing performance the 
implementation of a system in OODBs is faster than rewriting an 
existing application, especially as much time can be gained 
during the development phase because of the naturalness in OOP.

Lufthansa which uses Statice in a real life application has 
created 50 thousand objects which correspond to 50 Mega Bytes of 
storage memory. These objects are massively interrelated and no
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problem in performance has arisen. They support that a future 
implementation of 300,000 objects in the Statice database 
(corresponding to 100 MegaBytes) with equally complicated 
interelationships will not make any difference in the performance 
of the data base [92]. SYMBOLICS supports that up to 2 Giga Bytes 
can be handled by Statice. Rover's current PIMS data base is 
almost 1.2 Gigabytes [92]. Consequently, there is strong 
indication that Statice could replace PIMS or at least a major 
part of it (ie. the most complicated areas) and still maintain 
higher performance than the traditional databases approach. 
However, this still remains a challenge for the future.

11.5.4 experience and knowledge acquisition

In most big companies there is a huge amount of data which is 
stored usually in different kinds of computer data bases. It can 
be said that these data reach the second order of knowledge 
representation: "information". They do, in reality keep 
information for specific areas in the company. However, using the 
expression stated in [84], these data are not knowledge, any more 
than an encyclopedia is knowledge. This information can be 
translated to knowledge by understanding it. This means the study 
of the internal structure of the way in which the data are 
organised in the flat files and the way in which the data is



maintained. Consequently, though the data in the flat files does 
not intentionally represent knowledge data, its format in the 
data base can be used in combination with rules which govern its 
maintenance and general rules of the way in which company run its 
business.

For example, when the internal structure of the data of a 
finished product (EJA18V) was studied, it showed that the need 
for such information to cover various needs of Rover, included 
identifiers which might help in the refinement of the "meanings" 
of this information such as dates, code replacements of one part 
from another, feature combinations etc. (format information). 
Consider the above knowledge with the fact that a part represents 
a unique design intention of mutually exclusive alternatives at a 
particular point in time (company's general knowledge) and 
knowing that a part's usage statements are date stamped (document 
maintenance knowledge). This can enable one to derive that if 
two different usage conditions also exist for the part, at the 
same point in time and one of these includes less design feature 
groups, and it can be proved that the missing feature groups can 
be added in a valid combination, then it could be determined 
that this feature group is a maybe for the design of the part 
(design engineering knowledge, see section 8.2.2.1.7) where an 
example is stated).

This understanding of the internal structure of the data in 
combination with the various rules results in the ability to use 
additional tools for a more thorough investigation. In our case 
it was the validation algorithm (checking for combinations), the
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invention of specification patterns and statistical analysis.

11.6 The new consepualism and Rover

11.6.1 How Rover reacted to the new concepts introduced by 
ROOVESP in the PSC.

ROOVESP was implemented on the basis of the business knowledge 
extracted during the investigation of the PSC in Rover. 
Naturally, the new conceptualism which was introduced, it was 
expected to be acceptable from the people in the company and it 
did. In fact, the new concepts which were introduced did exist 
implicitly within the various departments but it was difficult 
to be expressed or justified without the existence of an 
application environment ie. a computer system.
For example, the must and maybe feature group concepts, as it 
discussed in section 8.2, are implemented implicitly within the 
BAFC document. In a similar manner, implicit reference to such 
concepts has been expressed within the company during the 
specification of a part or the retrieval of the required volume 
of production (see section 11.3.3.2 and [100].
The inefficient way in which the description of the parts is 
compiled in the APN catalogue, has been discussed over the years 
in Rover [88], [7]. Thus, the "negative to the part description"
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feature has been accepted by the company. Similarly, the 
compilation of the BAFC in the way which ROOVESP suggests (see 
11.3.3.1) is, also, globally acceptable.

The integration of all the systems to a single data base is an 
issue which has been proposed overtime from certain deparments 
within the company ([7], [18], [91]). In fact, the present 
tendency of Rover towards an OODB (see 11.3.4.2) shows the 
acceptance of the ROOVESP's philosophy and/or software 
environment.

The Intelligent Networks prototype of ROOVESP coincides with the 
objectives of a supplimentary to ROOVESP project, which was under 
consideration at the beginning of this research [18] and now is 
in progress (see 11.3.4.1): the rationalisation of the 
Manufacturing assemblies. For more details in this subject the 
reader can refer to [6] and [13].

Auditing, in general, has accepted ROOVESP because of its user 
interface facilities, the automatic validation of the part 
specifications and also due to the shortfall of expertise demand 
in the department. However, some auditors are concerned of the 
changing role of the auditing function within the PSC in Rover.

Engineers, as it was discussed in section 8.3.1 [100], have 
expressed enthusiasm for ROOVESP. Now they can see that liaison 
with auditors (with the consequent drawbacks ie. delays, 
misunderstanding, need of their profession, etc.) becomes 
obsolete.
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In summary, it can be said that ROOVESP was met with surprise and 
sometimes enthusiasm rather than scepticism.

11.6.2 Recommendations to Rover.

The recommendations of this research to the company are:
(i) Rover should turn towards the integration of all the 

existing systems to a single master database.
(ii) Knowledge should be attempted to be retrieved from 

existing data base for the various aspects of the whole business 
ie. Design Engineering, Purchasing, Services, Manufacturing, etc.

(iii) Simply, a user friendly system is not sufficient
(as it was proved with IPL) tp tackle the complexity of the PSC. 
Intelligence should be incorporated and coded within the 
procedures which run the business.

(iv) ROOVESP should be extended to encompass the
rationalisation of the Manufacturing assemblies. Such knowledge 
should be used "up-front" in the "Design to Manufacture" circle 
of each new product ie.

(v) The prime author of the specification of the parts
should be the engineer and only him.

(vi) OOP and OODB is the recommended software environment 
to suuport the complexity of the PSC in Rover and the ongoing 
developments required for the integration of the BOM data with 
the CAD data.
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In summary, expert knowledge can be derived by using existing 
information which only vaguely exists on a research field such as 
the format of a document, interrelationships among pieces of 
information and with general knowledge of the companies business. 
The full understanding of such business and the correct 
association of the different pieces of information can ease the 
further development of knowledge abstraction of the information 
space under investigation by methods which are already existent 
such as practical results (statistical markers), statistical 
analysis, or even with outside procedures (validation algorithm).

In the following chapter the conclusions of this research are 
discussed.
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12 CONCLUSIONS

Below are listed the contributions of ROOVESP to the company.

ROOVESP could potentially replace the load of paper with which 
auditors or other departments work. This load of paper can easily 
be compared with twice the whole Encyclopedia Británica.

ROOVESP standardises the method of the specification of parts 
irrespectively of subjective interpretations.

The validation algorithm of ROOVESP not only validates Usage 
Conditions for the parts but actually creates them.

ROOVESP proves that the Product Specification Concept (and its 
accompanied Auditing function) can be automated.

With ROOVESP the time for the specification of a vehicle will 
eventually drop to 90%.

Whilst developing ROOVESP it was found that existing information 
could be translated to knowledge valuable to the company.

ROOVESP generates design engineering knowledge which currently is
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documented nowhere else. The techniques developed in ROOVESP can 
be extended to extract knowledge for other areas of the company 
eg. Services, Purchasing, Manufacturing, etc.

A major contribution of ROOVESP to Rover is that it assigns the 
various tasks to the departments clearly so that the maintenance 
of the design engineering knowledge is assigned to the 
Specification services, the creation of the usage statements of 
the parts in the engineers etc. Consequently, when a mistake 
occurs its responsibility can be easily tracked back to its 
source and more easily corrected which increases the discipline 
in the PSC.

Categories of problems such as CAD/CAM need data types other 
than the traditional ones in the conventional world such as 
strings, numbers, etc. Especially there is a need for images and 
the internal natural representation of new data types embedded in 
the OOP brings such a software development environment even 
closer to Engineering and Manufacture.

OODBs will not replace data models for traditional mainframe 
applications such as payroll and accounting. Rather, the object 
oriented data bases will replace data models required many data 
types such as knowledge based systems, CAD/CAM, CIE, and 
workstations in general.
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