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Abstract

Perturbations of coronal structures by impulsive events such as solar flares
generate waves which are interpreted with MHD theory. These waves allow plasma
processes to be studied, and seismology of the local plasma parameters to be per-
formed. The focus of this thesis is the detailed observational study of these waves.

A statistically significant number of kink oscillations of coronal loops were
analysed. The measured periods scale linearly with the estimated loop length, as
expected from the standard interpretation of the waves as the global fundamental
standing mode. A typical kink speed of Ck=(1300˘50) kms´1 is obtained. A linear
scaling of the damping time with period is observed, and non-exponential damping
profiles were noted. The study was then extended to determine if there is any
scaling between the quality factor of the oscillations and the oscillation amplitude.
Selected events from the kink oscillation catalogue were analysed in detail, and
it was found that the damping profiles of several oscillations were better fit by a
Gaussian envelope than an exponential one. These damping profiles were then used
to perform seismological inversions, including the transverse density structure of
the loops. The obtained transverse density profile was compared to the observed
intensity profile for one loop, using forward modelling and Bayesian inference, where
good agreement was found.

The intensity cross-sections of 233 coronal loops were analysed. Assuming
an isothermal and cylindrical cross-section the transverse density structure of the
coronal loop plasma was inferred. Several models for the transverse density profile
were quantitatively compared. Very strong evidence was found for the existence
of an inhomogeneous layer where the density varies smoothly between the rarefied
background plasma and the dense centre of the loop. In a significant number of
cases the width of this layer was high enough to conclude that the loop does not
have a core at all and has a continuously varying transverse density profile.

Finally, a flaring event was analysed which excites a series of propagating
EUV intensity perturbations, and simultaneously produces a series of features in
radio spectrometer data. This is the first observation which links quasi-periodic
fast waves observed in the EUV band to quasi-periodic features in radio spectra.
2D numerical simulations of impulsively generated wave trains in coronal density
enhancements are presented. This aims to establish how these waves are affected
by initial perturbations which enter the non-linear regime, thereby establishing the
feasibility of some of the mechanisms by which the observations presented could be
explained.

xviii



Chapter 1

Introduction

1.1 The Sun

The Sun has been worshipped, philosophised over and studied throughout human

history, and our knowledge of it has accelerated rapidly over the last 100 years. The

Sun was formed around 4.5 billion years ago and it is currently in the main sequence

phase of its life-cycle, after which it will expand and become a red giant, engulfing

its nearest planets. It has a mass of 2 ˆ1030 kg, and a radius 6.96 ˆ108 m. The

plasma that the Sun is comprised of is largely Hydrogen, and a small amount of

Helium, in various states of ionisation depending on the local temperature.

1.1.1 The solar interior

Our knowledge of the Sun’s interior comes from indirect sources. These indirect

observations have been combined with direct observables to create a Standard Solar

Model (SSM) [e.g Lodders, 2003], which assumes the Sun is perfectly spherical and

that the effects of the rotation and magnetic field can be ignored. Measurements of

the solar neutrino flux can be made from Earth, and let us probe the nature of the

fusion reactions which occur in the core. Initially there was a deficit in the detected

neutrino flux compared to the predicted value from the SSM, known as the solar

neutrino problem. This was solved by neutrino oscillations [Ahmad et al., 2001].

The fusion reactions occurring in the Sun’s core produce energy which is

eventually emitted as photons from the solar surface, as well as the energy which

drives energetic and dynamic processes higher in its atmosphere. The temperature

of the Sun’s core is « 15 MK. Above the inner core lies the radiative zone. Here

the energy from the fusion reactions is transferred to the upper layers via radiative

diffusion, which takes over 100,000 years. At the boundary of the next layer, the

convection zone, the temperature has dropped to 1.5 MK. As the name suggests, in

this layer the energy transport and plasma dynamics are dominated by convection
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Figure 1.1: The structure of the solar interior. Courtesy of NASA.

cells. This is the last layer of the solar interior, before the solar atmosphere is

reached. These interior layers are shown in Fig. 1.1.

Helioseismology uses acoustic wave modes (or p modes), which have the pres-

sure gradient as their main restoring force, to probe the interior and the processes

that occur there [e.g Deubner & Gough, 1984]. The waves are excited by fluid turbu-

lence in the convective zone and allow us to probe the region below the photosphere

(the visible surface). The sound speed changes with depth in the solar interior,

meaning that waves with different frequencies are refracted at different depths. Lo-

cal helioseimology (in contrast to global) is used to study local features such as

sunspots by interpreting the full wave field measured at the surface [e.g Gizon et al.,

2010].

1.1.2 The solar atmosphere

There are order of magnitude variations of the temperature in the Sun’s atmosphere,

plotted in Fig. 1.2. The solar atmosphere begins with the photosphere, which has

a temperature of less than 10,000 K. The majority of the energy from the Sun is

emitted from this layer as white light, as the photosphere is transparent to visible

wavelengths. Hence, it is the first directly observable section of the Sun. The
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Figure 1.2: Solar temperature plot. Courtesy of MSU.

influence of the Sun’s strong and dynamic magnetic field can be observed here, with

the presence of magnetic features such as sunspots and faculae. Sunspots appear

as dark regions due to their enhanced magnetic field, whereas faculae appear as

brightenings in the vicinity of sunspots. Granulation patterns can also be seen in

the photosphere, which are caused by convection cells in the convection zone below

(Fig. 1.3). Much of our knowledge about the Sun’s magnetic field comes from this

layer, as instruments such as the Helioseismic and Magnetic Imager (HMI) on the

Solar Dynamics Observatory (SDO) [Lemen et al., 2012] produce magnetograms,

showing the distribution and polarity of the magnetic field. An example is shown

in Fig. 1.4.

Above the photosphere is the chromosphere. This layer extends 2000–3000

km above the temperature minimum in the photosphere. Here the main emission is

from the H-alpha line of the hydrogen atoms in the plasma, which has a wavelength

peaking at 656.28 nm. The temperature here is higher than in the photosphere,

as can be seen in the temperature plot in Fig. 1.2. Neutral Hydrogen still exists

at chromospheric temperatures, so the plasma is partially ionised. The dynamics

here are dominated by strong convection and granulation can be seen, as in the

photosphere. In this layer structuring of the plasma due to the magnetic field is

evident, such as loops and prominences, which can be formed here by hot plasma

upflows and eruptions from below.

The transition region lies between the chromosphere and the corona. It
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Figure 1.3: Granulation in the photosphere. Courtesy of NASA.

Figure 1.4: A HMI magnetogram. Courtesy of NASA.
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is a very thin layer (« 100 km) where the plasma becomes fully ionised and the

temperature increases rapidly in the radial direction.

The corona is the outer layer of the Sun’s atmosphere and extends up to sev-

eral solar radii out from the solar surface. The temperature here is of a comparable

magnitude to the temperature in the core (ą 1 MK). This was first noted in the

19th century via observations of emission lines from highly ionised iron [see Vand,

1943]. Despite the thermal emission of the coronal plasma peaking at EUV wave-

lengths, the corona can be clearly imaged during eclipses via scattered white light

(Fig. 1.5). The structure of the plasma here is determined by the magnetic field.

EUV imagers typically image the corona at different wavelengths, corresponding

to different temperature ranges. An example image is shown in the lower panel of

Fig. 1.5. The corona can be divided into three main regions; active regions, coronal

holes and quiet Sun regions. Active regions are highly structured and dynamic, and

are formed as a result of emerging magnetic flux from lower in the Sun, which will

now be discussed.

1.1.3 Magnetic field and solar cycle

Sunspots on the solar surface have been recorded for hundreds of years. These are

regions of enhanced magnetic field, which appear as dark regions on the photosphere.

From variations in the number of sunspots the 11 year solar cycle was discovered,

often plotted as the well known butterfly diagram (Fig. 1.6). This clearly shows the

solar cycle, and how the locations of emerging sunspots, and therefore the overlying

active regions, drift from high latitudes at the start of each cycle towards the equator.

The polarity of the two hemispheres is flipped every 11 years and so the full cycle

is 22 years, known as the Hale cycle. Evidence for the solar cycle can also been

seen using helioseismology. It causes a modulation in the frequencies of the p modes

[Broomhall et al., 2009], linking the variation in the sunspots on the surface to

processes deeper in the interior. The solar cycle is of high importance as the solar

activity discussed in the next section varies strongly over the 11 years.

It is widely accepted that the solar cycle is caused by the solar dynamo, which

is the mechanism that generates the Sun’s strong magnetic field. Due to the more

gaseous nature of the outer layers of the solar interior the Sun experiences differential

rotation. The high latitude regions rotate slower than the equatorial regions caus-

ing the magnetic field generated in the tachocline to shear and twist. This creates

complex magnetic structures and regions of amplified magnetic field strength, which

emerge as sunspots and active regions higher in the Sun’s atmosphere. Addition-

ally this generates small scale magnetic elements covering the entire surface. The

efficiency of this process varies during the solar cycle. The magnetic field structure

that is generated can be directly observed in the photosphere via magnetograms,
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Figure 1.5: Top: the corona imaged in white light during an eclipse. Bottom: the
corona and lower layers imaged in multiple EUV wavelengths. From left to right
these are; 1700 Å (photosphere), 1600 Å (upper photosphere and transition region),
335 Å (corona), 304 Å (chromosphere), 211 Å (corona), 193 Å (corona), 171 Å
(corona), 131 Å (corona) and 94 Å (corona). The background segment is the white
light continuum emission from HMI. Courtesy of NASA.

6



Figure 1.6: Top: the butterfly diagram, which shows the evolution of sunspots
locations in latitude over time. Bottom: the average sunspot area as a percentage
of the visible solar hemisphere. Both data sets clearly show the 11 year solar cycle.
Courtesy of NASA.

and indirectly in the chromosphere and corona via the structuring of the plasma

which is believed to highlight magnetic field lines.

1.1.4 Active regions and coronal loops

Active regions appear in the Sun’s atmosphere where the complex magnetic field

structures generated in the convection zone emerge from below. They are seen in

the corona as bright regions with complex networks of arc shaped structures which

are known as coronal loops (see Fig. 1.8), and normally lie above sunspots observed

in the photosphere. The magnetic field topology often becomes unstable, resulting

in eruptions and flares which release some of the stored magnetic energy.

Coronal loops are one of the most obvious consequences of the dominance

of the magnetic pressure over the gas pressure in solar active regions. They are

considered to be cylindrical tubes of plasma which follow the curvature of magnetic

field lines. This makes them useful in testing magnetic field extrapolation codes

which are based on the magnetic field measured in the photosphere [e.g Wiegelmann

& Sakurai, 2012]. There are many poorly understood aspects of coronal loops and

the Magnetohydrodynamic (MHD) oscillations they undergo, making their study

compelling. They are normally considered to be overdense [Aschwanden, 2005],

compared to the expected density due to hydrostatic pressure balance, and are

often modelled as having a uniform core surrounded by a layer where the density
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varies between the external and internal values.

Loops can be categorised based on their average temperature. Generally

these are; cool loops (ă 1 MK), warm loops (« 1 MK) and hot loops (ą 1 MK)

[Reale, 2010]. The exact determination of a loop’s internal temperature, how it

varies along the length of the loop, and its comparison to the external temperature

are still topics of research and debate. Analysed coronal loops have been found to

range from near isothermal to highly multi-thermal. Aschwanden & Boerner [2011]

performed a systematic study of the cross-sectional temperature structure of coro-

nal loops using the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics

Observatory [SDO; Lemen et al., 2012], finding evidence for near isothermal loop

cross-sections. High-resolution Coronal Imager (Hi-C) data was used to measure the

Gaussian widths of multiple loops, finding a distribution that peaked at 270 km, the

temperature distributions were also found to be narrow [Brooks et al., 2013]. Fur-

ther examples for narrow temperature ranges in coronal loops include [e.g Warren

et al., 2008]. However, there are many examples of multi–thermal loops [Schmelz

et al., 2010; Nisticò et al., 2014a, 2017] and hot flaring loops are also multi-thermal

[Aschwanden, 2005].

The unresolved sub-structure of coronal loops is also debated, i.e loops (or

threads) which appear monolithic may be comprised of multiple smaller threads

with a certain filling factor. Despite numerous studies using multiple instruments

no clear consensus has been reached [e.g. Reale et al., 2011; Brooks et al., 2012;

Peter et al., 2013; Brooks et al., 2016]. However, it appears the lower limit of thread

widths is close to being resolved, with a lower limit of 100 km predicted [Aschwanden

& Peter, 2017].

1.1.5 Solar activity

Solar flares are energetic events where magnetic energy is released and cause heating

and the generation of energetic particles [see reviews by Shibata & Magara, 2011;

Fletcher et al., 2011]. The first recorded observation of a solar flare was in white light,

despite the majority of the flare energy being released at other wavelengths. The

Carrington Flare occurred in 1859, and remains the strongest solar flare recorded.

Flares mostly occur in active regions and so their occurrence rate also varies with the

solar cycle. Coronal mass ejections (CMEs) often occur during solar flares [e.g Chen,

2011; Webb & Howard, 2012]. They are releases of magnetic field and plasma from

the corona, but occur due to emergence of magnetic field structures from deeper in

the Sun. Understanding and predicting these phenomena is important as they can

affect the local environment around Earth. The effects of this include the generation

of Aurora, the damaging of satellites and even the disruption of power grids. Due to

their intrinsic link to solar flares and active regions their occurrence rate also varies
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Figure 1.7: A CME imaged by the SOHO satellite. Courtesy of NASA/ESA.

with the solar cycle.

Another form of solar activity is the solar wind. In contrast to the phenomena

described above this a more constant effect. There is a continuous stream of charged

particles released from the Sun’s atmosphere, in two components, the fast and slow

solar wind. The slow solar wind appears to emanate from the streamer belt, at mid

latitudes, whereas the fast solar wind seems to dominate in the polar regions, where

coronal holes are found. There is still variance of the wind with solar activity, as

active regions release a flux of charged particles during flares and CMEs. The solar

wind is also subject to interesting MHD wave behaviour [see Ofman, 2010].

Events such as flares and CMEs cause strong localised heating and impulsive

perturbations to the coronal plasma and magnetic field. As such they can drive

waves and oscillations in coronal structures, which will be discussed in Section 1.2.
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1.1.6 Gaps in our understanding

Despite the significant progress made in solar physics over several decades, a number

of fundamental questions remain unanswered. It is not understood why the solar

corona is more than an order of magnitude hotter than the chromosphere below

it, and the mechanism for this heating has been the subject of countless studies

and conjectures. Waves and oscillations must deposit some energy in the corona,

however current observations of MHD waves indicate that it is only a small fraction

of the energy needed to continuously heat the corona [e.g Klimchuk, 2015]. The

acceleration of the fast solar wind is another unsolved problem, as is the exact

nature of solar flares and eruptions.

More specific questions relate to the waves and oscillations observed on the

Sun, and the nature of the structures in which they are observed. Quasi-Periodic

Pulsations (QPP’s) have been detected in solar and stellar flares, and conclusive

evidence as to the source of this periodicity has not been found. One potential

mechanism is modulation of the flare emission via MHD waves, introduced in Section

1.3. The formation and equilibrium conditions of coronal loops are still a debated

topic, as well as their internal structure. The resolution of these questions may be

aided through studies of MHD wave modes seen in coronal loops. There are also

observed waves which are poorly understood, and their seismological potential is yet

to be unlocked. The study of waves and oscillations in the corona, and the coronal

waveguides in which they propagate will be the focus of this thesis.

1.2 Coronal waves and oscillations

The corona of the Sun is highly structured due to the influence of the magnetic field

emerging from lower in the atmosphere. The dominance of the magnetic field over

the gas pressure causes it to determine the spatial distribution of the plasma. This

forms closed structures such as prominences and coronal loops (see Fig. 1.8, and the

red field lines in Fig. 1.9), as well as structures with open magnetic field lines such

as coronal holes and funnels (see the green field lines in Fig. 1.9). These structures

can act as wave guides for MHD waves and oscillations (see Section 1.3).

Dynamic events such as solar flares and CMEs (see Section 1.1) occur in the

solar corona. These events can trigger waves and oscillations in coronal wave guides.

An intensively studied example are kink, or transverse, oscillations of coronal loops,

one of the focuses of this thesis and discussed further in Section 1.4. Other wave

activity includes global EUV waves [e.g. Patsourakos et al., 2009; Gallagher & Long,

2011], and their coronal and chromospheric counterparts [e.g. Moreton, 1960; Chen

et al., 2005; Warmuth, 2015], propagating and standing slow magnetoacoustic waves

[e.g. De Moortel, 2009; Wang, 2011] and rapidly propagating quasi-periodic wave
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Figure 1.8: A collection of coronal loops imaged with AIA/SDO. Courtesy of NASA.

Figure 1.9: A global coronal magnetic field extrapolation for open (green) and closed
(red) magnetic field lines [Wiegelmann et al., 2017].
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trains [e.g. Liu et al., 2011] discussed further in Section 1.5.

The detection of waves in the corona can be difficult. The typical spatial

scale of coronal structures may determine the wavelength and therefore the period

of the waves they exhibit. This results in periods ranging from several seconds up

to several minutes. For spatial imaging of these waves sufficient cadence to resolve

a few points per wave period is required, as well as sufficient spatial resolution to

resolve the wavelength. The seminal EUV imager was the Transition Region and

Coronal Explorer (TRACE) [Handy et al., 1999] which was launched in 1998 and

operated at EUV wavelengths, obtaining its last science image in 2010. This has

subsequently been superseded by modern instruments, such as SDO/AIA, the focus

of Section 1.7.

The interest in wave activity in the Sun’s atmosphere stems from several

sources. It serves as a natural laboratory for the study of plasma waves and pro-

cesses. This can supplement studies performed with laboratory plasmas, or the

understanding of other solar system plasmas and beyond. MHD waves in the Sun’s

atmosphere have been intensively studied over the last 30 years, often in the context

of the coronal heating problem and the acceleration of the fast solar wind. In addi-

tion, there has been a growing interest in performing seismology with these waves,

known as MHD seismology.

To study the processes which occur in the Sun’s atmosphere in more detail

accurate knowledge of the local plasma environment is required. This includes the

magnetic field, temperature and density, as well as the gradients of these parameters

in certain locations. The exact value of the coronal magnetic field remains unknown,

because of intrinsic difficulties with direct methods (e.g., Zeeman splitting and gy-

roresonant emission). Extrapolations of the magnetic field from magnetograms still

have unknown uncertainty and do not perform well for specific small scale features.

There is expected to be a large variance of the magnetic field within different regions

of the corona, both large and small scale. Additionally, specific coronal transport co-

efficients, such as the shear viscosity, resistivity, and thermal conduction, are still not

accurately determined, especially locally in different coronal structures. Finally, it is

believed that many coronal structures observed may have unresolved sub-structure,

which may also be probed by using MHD waves and oscillations.

The idea of MHD seismology is most often seen in the context of coronal seis-

mology [see Nakariakov & Verwichte, 2005; De Moortel & Nakariakov, 2012; Liu &

Ofman, 2014, for comprehensive reviews]. It is similar to helioseismology of the solar

interior using sound waves, however there are three main MHD waves (introduced

in Section 1.3) with very different properties in different coronal structures. The de-

tection and analysis of waves and oscillations in the corona combined with analytic

theory or numerical modelling of the wave modes involved can allow local plasma

12



Figure 1.10: The methodology of MHD coronal seismology [Nakariakov & Verwichte,
2005].

parameters to be determined, such as those mentioned above. This method was first

suggested in Uchida [1970] and Roberts et al. [1984] and the general methodology

is represented in Fig. 1.10. It has since been applied to numerous different types

of waves and oscillations in different coronal structures. As observations as well as

theory advance, the opportunity to perform more complex seismological inversions

from the wave properties has arisen. The details are discussed in detail in Section

1.4.3, and related results will be presented in Section 3.

1.3 MHD description of coronal plasma

Magnetohydrodynamics (MHD) is the approach used to describe the dynamics of

an electrically conductive fluid. The plasma of the Sun’s atmosphere can be mod-

elled and understood with such an approach if certain conditions are fulfilled. The

structuring of the Sun’s atmosphere is on a scale many orders of magnitude higher

than individual electrons and ions that the plasma is comprised of, and an extremely

large number of particles fill the studied volumes. This makes the modelling of the

individual particles impossible, however this is not necessary in MHD. The use of

this approach requires the following:

• Characteristic velocities are non-relativistic (i.e v ! c).

• Characteristic length scales are significantly higher than the ion Larmor radius

(i.e L " rli).

• Characteristic time scales are significantly longer than the ion gyro-period (i.e
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T " pgi).

• The assumption of quasi-neutrality should be applicable, i.e the total net

charge of the plasma should be zero.

In other words the plasma must be Maxwellian and describable by hydrodynamics.

In the coronal plasma rli ă 10 km and pgi ă 10´4 s for the majority of physical

parameter combinations [Nakariakov & Verwichte, 2005]. As such, it is appropriate

to describe large scale, slow plasma motions in the corona with MHD. First the set

of governing equations will be set out before considering how MHD can be applied to

the coronal plasma. This can be done by combining the equations of fluid mechanics

and Maxwell’s equations of electrodynamics. Derivations of the following equations

are readily available [e.g Aschwanden, 2005].

The MHD equations can be written as follows. Mass (particle) conservation;

Bρ

Bt
`∇ ¨ pρvq “ 0. (1.1)

The momentum equation;

ρ
Bv

Bt
` ρpv ¨∇qv “ ´∇p´ ρg ` jˆB` F . (1.2)

The induction equation;

BB

Bt
“ ∇ˆ pv ˆBq ` η∇2B. (1.3)

Energy conservation;
ργ

γ ´ 1

d

dt

ˆ

p

ργ

˙

“ ´L. (1.4)

Here ρ is the total plasma density which is given by ρ “ nemp if quasi-neutrality is

assumed and mp " me is taken. v is bulk velocity, p is the isotropic pressure, B is

the vector magnetic field, γ is the adiabatic index (usually taken to be 5/3 in the

solar corona), g is the gravitational field vector, F represents any additional forces

(e.g viscosity), j is the electric current density, η is the magnetic resistivity and L

is the energy loss (or gain) function. When η =0, as well as any other coefficients

such as viscosity and thermal conductivity, this is ideal MHD, which is considered

in this thesis.

It is also important to mention the frozen-in condition. This states that

the number of magnetic field lines passing through a closed surface must remain

constant. This has the implication that moving magnetic field lines will cause the

local plasma to be ‘dragged’ with them, and vice versa. This can be expressed
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mathematically as;

Φ “

ż

S
B.dA “ const, (1.5)

where Φ is the flux, S is a closed surface, and A defines an area vector normal to

the closed surface S.

A relevant quantity to define which has been mentioned numerous time is

the plasma beta (β). This is the ratio of the gas and magnetic pressure;

β “
p

B2{2µ0
. (1.6)

This quantity can be used to determine if the plasma dynamics will be dominated by

thermal effects or the magnetic field. In some circumstances it can be used as a proxy

for the stability of a given plasma system, such as the solar active regions mentioned

above. This is important, when considered with the frozen-in condition it means

that the plasma observed should trace out magnetic fields lines, and that magnetic

field eruptions result in eruptions of plasma. The plasma β in active regions and

coronal loops is usually taken to be small, around 0.1 and 0.01 respectively, although

it may increase during flaring and eruptive events.

1.3.1 MHD waves

The description of MHD waves begins by considering a uniform plasma (with con-

stant density ρ0, and pressure p0) within a uniform magnetic field oriented in an

arbitrary direction with a magnitude B0, in a stationary equilibrium. A perturba-

tion of the form p “ p0 ` p1 is applied, and quadratic and higher order terms are

ignored. This results in linear equations which can be Fourier decomposed in the

form;

p1pr, tq “ δp0e
ipk.r´ωtq, (1.7)

where r is the spatial coordinate and t the temporal. ω corresponds to the wave

frequency and k the wavenumber. This results in a linear set of equations with the

general form;

A.u “ 0, (1.8)

whereA is matrix representing the linearised MHD equation set and u= pp1, ρ1,v1,B1q

and the index 1 denotes that they are the perturbed quantities. The condition for

the existence of a nontrivial solution to this set of algebraic equations is

det|A| “ 0. (1.9)
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Figure 1.11: Top: phase speeds for the three MHD wave modes in a uniform plasma
for the case CA ą CS , with φ being the angle between the direction of propagation
and the magnetic field and the x and y axis being the wave velocities as a fraction
of the Alfvén speed (CA). The fast speed is plotted in black, the Alfvén speed is
plotted in red, and the slow speed is in blue. Bottom: as above but with the group
speeds plotted.

16



This condition can be written in the following way. Firstly, the solution which

corresponds to the dispersion relation of fast and slow magnetoacoustic waves;

pω2 ´ C2
Ak

2 cos2 αqpω2 ´ C2
Sk

2q ´ C2
Aω

2k2 sin2 α “ 0, (1.10)

where the Alfvén speed (CA) is given by

CA “
B0
?
µ0ρ

, (1.11)

and the sound speed (CS) is given by

CS “
a

γp{ρ. (1.12)

and α the angle between the wave vector (i.e the direction of propagation) and equi-

librium field. The fast speed is a combination of these two speeds, CF “
b

C2
A ` C

2
S .

The second solution is the dispersion relation for Alfvén waves;

ω2 ´ C2
Ak

2 cos2 α “ 0. (1.13)

For Alfvén waves the following can be written;

ω “ CAk cosα, (1.14)

vA “ ω{k “ CA cosα, (1.15)

vg “ ∇kω “ vAB. (1.16)

Here vA is the phase speed and vg is the group speed. Important Alfvén wave

properties to note are their incompressible nature (no change of p, |B2| or ρ), and

their group speed is directed along the direction of B. Therefore they cannot transfer

information across field lines. Fast and slow magnetoacoustic waves are compressive

and can propagate energy in all directions between them. The phase (upper panel)

and group (lower panel) speeds for these waves (for the case CA ą CS) are plotted

on the same axis to summarise this information (see Fig. 1.11).

1.3.2 MHD waves in structured plasma

MHD wave theory in structured plasma, such as the corona, was developed in the

1970’s and 80’s [Zajtsev & Stepanov, 1975; Roberts, 1981a,b; Edwin & Roberts,

1983]. A variety of wave modes and oscillations were predicted, many of them listed

in Section 1.2.
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Figure 1.12: The straight magnetic cylinder model, with the addition of a finite layer
(of width l) where the density varies linearly between the internal and external values
[Nakariakov & Verwichte, 2005].

Four important characteristic speeds defined from the MHD description of

plasma are the sound speed (CS), the Alfvén speed (CA), the fast speed (CF ) and

the tube speed (CT ), given by CT “ CSCA{pC
2
A ` C

2
Sq

1{2.

A frequently used model which has been applied to solar physics problems

for decades is the MHD modes of a straight plasma cylinder. A straight cylinder

of homogeneous plasma is considered, with a uniform density ρ0, pressure p0 and

magnetic field B0ez along the axis of the cylinder. The plasma in which the cylin-

der is embedded is also homogeneous, with a uniform density ρe, pressure pe and

magnetic field Beez in the same plane as the internal magnetic field. A sketch of

this configuration is shown in Fig. 1.12.

For this system to be in equilibrium there must be a balance of the total

pressure (ptot) inside and outside the loop, which is the sum of the magnetic and

gas pressure. From this it follows that;

p0 `
B2

0

2µ0
“ pe `

B2
e

2µ0
. (1.17)

CSe, CAe, CTe are the characteristic speeds in the external medium and CSi, CAi,

CT i are the corresponding speeds inside the plasma cylinder. Since a characteris-

tic spacial scale has been introduced via the radius R, waves within the cylinder

undergo dispersion. The dispersion relation can be derived by considering linear
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perturbations to the equilibrium, such as;

p1 “ δptotprqe
ipkzz`mφ´ωtq, (1.18)

where kz is the wave number along the axis of the cylinder and m is the azimuthal

wave number.

The following set of ordinary differential equations describe the behaviour

of the plasma cylinder when the above linear perturbation is applied, for a full

derivation see Sakurai et al. [1991].

D
d

dr
prξrq “ pC

2
A ` C

2
Sqpω

2 ´ C2
Tk

2
zqpκ

2 `
m2

r2
qrδptot. (1.19)

dδptot
dr

“ ρ0pω
2 ´ C2

Ak
2
zqξr. (1.20)

ρ0pω
2 ´ C2

Ak
2
zqξφ “ ´

im

r
δptot. (1.21)

The symbols take their previous meaning. ξr and ξφ are the displacements in the

radial and azimuthal directions. D is given by

D “ ρ0pC
2
A ` C

2
Sqpω

2 ´ C2
Ak

2
zqpω

2 ´ C2
Tk

2
zq, (1.22)

and κ is the transverse wave number defined as

κ2pωq “ ´
pω2 ´ C2

Sk
2
zqpω

2 ´ C2
Ak

2
zq

pC2
A ` C

2
Sqpω

2 ´ C2
Tk

2
zq

. (1.23)

Reducing this set of equations in the external and internal medium and solv-

ing the resulting equations gives us the classic dispersion relation for magnetoacous-

tic waves in the plasma cylinder [Edwin & Roberts, 1983; Nakariakov & Verwichte,

2005]

ρepω
2 ´ k2zC

2
Aeqk0

I 1mpκ0aq

Impκ0aq
` ρ0pk

2
zC

2
A0 ´ ω

2qκe
K 1
mpκeaq

Kmpκeaq
“ 0, (1.24)

where Impxq and Kmpxq are modified Bessel functions of order m, and the prime

denotes their derivatives with respect to x. κe and κ0 are the transverse wave num-

bers in the external and internal plasma. The solutions to this dispersion relation

for coronal parameters are plotted in Fig. 1.13. m is an integer which corresponds

to the azimuthal structure of the wave modes, sausage modes are waves with m =

0, and kink modes are waves with |m| = 1 . Body waves (which require κ2e ą 0)

have oscillatory behaviour within the plasma cylinder and evanescent behaviour out-

side, whereas surface wave modes have evanescent behaviour in both cases (if both
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Figure 1.13: The Dispersion relations of MHD modes in structured coronal plasma.
The hashed regions are where modes with real frequency and wavenumber are ex-
cluded. The dashed horizontal lines denote the wave speeds indicated on the axis.
The solid and dashed curves are the dispersion relations of the modes indicated,
with azimuthal wavenumbers 0 and 1 respectively [Edwin & Roberts, 1983].

the external and internal plasmas are of low β). The wave modes are traditionally

split into two categories, fast (between CA0 and CAe) and slow (between CT0 and

CAe). The fast modes are strongly dispersive, highlighted by their departure from

a horizontal line in the dispersion plots (see Fig. 1.13).

If the long wavelength limit is taken then the phase speed of all modes apart

from the fast sausage modes tends to the kink speed,

Ck “
`B2

0{µ0 `B
2
e{µ0

ρ0 ` ρe

˘1{2
“

`ρ0C
2
A0 ` ρeC

2
Ae

ρ0 ` ρe

˘1{2
. (1.25)

The sausage mode approaches its cut-off frequency at the external Alfvén speed,

waves with lower wavenumbers (i.e lower frequencies) are not trapped within the

structure. This is illustrated in the dispersion plot in Fig. 1.13.

1.4 Kink oscillations of coronal loops

Kink (or transverse) oscillations of coronal loops have been intensively studied since

their detection with TRACE just before the turn of the Millennium [Aschwanden

et al., 1999; Nakariakov et al., 1999]. Prior to their detection they were the subject

of a range of theoretical and numerical studies [e.g. Zaitsev & Stepanov, 1982; Edwin

& Roberts, 1983; Roberts et al., 1984; Murawski & Roberts, 1994]. Their study is

compelling due to the many poorly understood aspects of coronal loops, some of
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Figure 1.14: An example of a kink oscillation of a coronal loop observed with
TRACE. On the left is the active region showing the flare and the loop which be-
comes perturbed and on the right is the time series of the oscillation, approximated
by an exponentially damped [Nakariakov et al., 1999].

which were discussed in Section 1.1.4.

Standing global modes induced by flaring activity are the most commonly

detected form of kink oscillation [e.g. Nakariakov et al., 1999; Schrijver et al., 2002;

White & Verwichte, 2012]. For a standing mode with wavelength λ in a coronal

loop of length L;

Ck “ λ{P, (1.26)

with λ “ 2L for the fundamental standing mode. This should also be equal to this

expression for the kink speed given in Eqn. 1.25.

This phenomenon is clearly observed with the spatial and temporal resolution

of recent EUV imagers, such as TRACE, and the Atmospheric Imaging Assembly

(AIA) onboard the Solar Dynamics Observatory (SDO) [Lemen et al., 2012]. An

example observation with TRACE is shown in Fig. 1.14, and an example observation

with AIA is shown in Fig. 1.15. Other types of detections have included higher

spatial harmonics in coronal loops [e.g. Verwichte et al., 2005; De Moortel & Brady,

2007; Van Doorsselaere et al., 2007], their propagating form [Tomczyk et al., 2007],

oscillations of polar plumes [Thurgood et al., 2014], and kink waves in coronal jets

[Vasheghani Farahani et al., 2009].

Observations of coronal loops and their oscillations have improved in the

years since the launch of SDO, as discussed in Section 1.1.4. Cross-sectional struc-

ture and intensity oscillations were found in an oscillating coronal loop analysed in

detail [Aschwanden & Schrijver, 2011]. Several oscillations observed with AIA were

analysed in White & Verwichte [2012]. More recent studies include; White et al.

[2013]; Russell et al. [2015]; Sarkar et al. [2016].
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Figure 1.15: An example of a kink oscillation of a coronal loop observed with AIA.
On the left are 3 Time-Distance (TD) maps showing the kink oscillation at three
different positions along the loop, and the right are the corresponding time series
and fits [White & Verwichte, 2012].

A decayless regime of these oscillations was detected before and after a large

amplitude decaying kink oscillation [Nisticò et al., 2013]. Recently a statistical study

of these oscillations found that they are present in the majority of the active regions

analysed [Anfinogentov et al., 2015b]. This results in the opportunity to use these

oscillations to perform seismology at any time, in contrast to the flare triggered

decaying oscillations. It was also noted that the period of the oscillations scales

with the estimated length of the loop, indicating that they are the fundamental

standing kink mode. The existence of these ubiquitous low amplitude oscillations

heightens the need to understand coronal loops and extract as much information as

possible from the oscillations they exhibit.

There are several proposed mechanisms for the initiation of the large ampli-

tude decaying kink oscillations, including via a blast wave from the flare epicentre,

restructuring of the active region after the flare and CME or through direct me-

chanical displacement by the erupting plasma. In Zimovets & Nakariakov [2015]

58 eruptive events, including 169 individual kink oscillations, were catalogued and

analysed. It was found that the dominant mechanism for the perturbation was a

direct perturbation from a CME or Low Coronal Eruption (LCE).

22



1.4.1 Damping

In Nakariakov et al. [1999] the rapid damping of the observed kink oscillation was

noted. The damping mechanism considered was dissipative and resistive damping,

meaning that coronal dissipation coefficients were noted to be eight or nine orders

of magnitude higher than the theoretically predicted values. The numerically de-

termined scaling law for damping via dissipative and resistive effects is [see Ofman

et al., 1994a]

τ

P
“ 16.3R0.22

e , (1.27)

where τ is the damping time, P is the period and Re is the Reynolds number. This

is given by Re “ LCA0{ν, where ν is the shear viscosity and L is the relevant length

scale. Several observational studies noted that this cannot account for the rapid

damping observed without unrealistic dissipative parameters, as mentioned above.

The observed rapid decay of kink oscillations has now been explained in terms

of linear coupling of the collective kink (fast magnetoacoustic) mode to torsional

(shear) Alfvén waves in a narrow resonant layer, where the phase speed of the kink

wave matches the local Alfvén speed [e.g. Ruderman & Roberts, 2002; Goossens

et al., 2002]. This is known as resonant absorption or mode coupling, and occurs

due to the wave guide having an inhomogeneous transverse structure, which causes

CA to vary, and match the kink speed in a certain location. Strong gradients in

density, and therefore in the value of CA, cause this process to occur more efficiently,

resulting in faster damping. The resulting Alfvén waves in the inhomogeneous layer

are expected to decay via phase mixing, which is discussed below.

A convenient description of resonant absorption in coronal loops can be

formed by assuming the loop has a core of uniform density surrounded by an inho-

mogeneous layer where the density varies linearly between the external and internal

values (see Fig. 1.12). This model (Model L) is defined as;

ρ prq “

$

’

’

&

’

’

%

A, |r| ď r1

A
´

1´ r´r1
r2´r1

¯

, r1 ă |r| ď r2

0, |r| ą r2

, (1.28)

where r1 “ RL p1´ ε{2q, r2 “ RL p1` ε{2q, and ε “ l{R is the transition layer width

l normalised to the minor radius RL and defined to be in the range ε P r0, 2s.

For the fundamental kink mode in a plasma cylinder with this transverse

density profile the damping is exponential, and the scaling law for this damping via
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resonant absorption is given by [see Ruderman & Roberts, 2002]

τ

P
“

2

πε

ˆ

ρ0 ` ρe
ρ0 ´ ρe

˙

, (1.29)

where τ is the exponential damping time, and the other symbols have their previous

meanings.

This mechanism has been shown to produce damping profiles and rates con-

sistent with observational results [e.g. Aschwanden et al., 2003; Verth et al., 2010].

In Aschwanden et al. [2003] it was found that a transverse density profile with an

inhomogeneous layer was consistent with the observed transverse intensity profile of

the loops. The damping times measured were consistent with damping via resonant

absorption when the estimated density contrast was taken into account.

Phase mixing is a mechanism for dissipating wave energy in inhomogeneous

media through a process which can be thought of as friction between nearby mag-

netic field lines. The scaling law for damping of the standing kink mode via phase

mixing can be given by

τ

P
“

ˆ

3

4π2

˙1{3ˆ l

L

˙2{3

R1{3
e , (1.30)

where the quantities are as described previously. This relation can be approximated

as τ „ P 4{3 for coronal loops [Ofman & Aschwanden, 2002].

Due to the success of resonant absorption in describing the damping of kink

oscillations phase mixing is now explored as the mechanism by which the torsional

Alfvén waves generated are dissipated. The deposition of the energy from the kink

mode is therefore determined by the phase mixing timescale and length scale. Alfvén

wave phase mixing was first described in Heyvaerts & Priest [1983]. In the context

of Alfvén waves in the magnetosphere of the Earth, the time dependence of the

phase mixing length was found to be [Mann et al., 1995b]

Lph “
2π

ω1At
, (1.31)

where ω1A « k||v
1
A and for the transverse loop density Model L v1A “ pCAe ´ CA0q {l.

This approximation was found to closely describe numerical results of Alfvén waves

generated by resonant absorption of kink waves propagating along coronal loops

[Pascoe et al., 2010].

Mann & Wright [1995] estimated the lifetime of Alfvén waves in the Earth’s

magnetosphere as τA “ ka{ω
1
A, where ka is the azimuthal wavenumber. For kink

modes ka “ 1{R, where R is the minor radius of the loop, and the Alfvén waves

generated via resonant absorption retain this symmetry. In terms of the parameters
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used in the study of kink oscillations τA can be written as

τA “
εL

π pCAe ´ CA0q
, (1.32)

where the parameters have their previous meanings. This shows how the time scale

of the Alfvén wave damping depends on the loop parameters, and could result in

different post oscillation heating rates for different loops.

Additional damping mechanisms which have been considered include wave

leakage to the external medium [Brady & Arber, 2005] and additional damping via

cooling of the loop [Morton & Erdélyi, 2009b].

There have been several attempts to match the observed scaling of the damp-

ing time and period with the scaling predicted by numerical and analytical studies

of the potential damping mechanisms. This was attempted with TRACE data in

Ofman & Aschwanden [2002]. These results, along with several more, were collated

in Nakariakov et al. [2005] and this has since been continued using AIA data and

COMP observations of propagating waves in Verwichte et al. [2013b]. These studies

generally find that it is not possible to distinguish between different damping mech-

anisms from the scaling law alone, but that constraints can be put on parameters

such as the density contrast and inhomogeneous layer width if a particular damping

mechanism is used. An example is shown in Fig. 1.16.

1.4.2 Generalised damping

More recently, a general spatial damping profile for resonant absorption which de-

scribes the damping envelope of propagating kink waves was proposed and its seis-

mological application was explored [Pascoe et al., 2013a]. The work was based on

the full analytical solution derived in Hood et al. [2013]. The spatial damping profile

proposed consists of two approximations of the full analytical solution, a Gaussian

profile for early times, with damping length scale Lg, and an exponential profile for

later times, with damping length scale Ld. This extra observable has the potential

to make the seismological inversion based on this theory well posed. The damping

profile is given by

A pzq “

$

&

%

A0 exp
´

´ z2

2L2
g

¯

z ď h

Ah exp
´

´ z´h
Ld

¯

z ą h
, (1.33)

where Ah “ A pz “ hq, the height/distance of the switch in profiles is given by the

damping lengths

h “ L2
g{Ld. (1.34)

This can be extended to standing kink oscillations of coronal loops. The
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change of variable t “ z{Ck can be used, which corresponds to the long wavelength

limit for which the kink mode phase speed is the kink speed Ck, as given in Eqn. 1.26.

The damping time and length scales can be related to the coronal loop transverse

density profile via

τg
P
“
Lg
λ
“

2

πκε1{2
, (1.35)

and

τd
P
“
Ld
λ
“

4

π2εκ
, (1.36)

where τg is the Gaussian damping time, τd is the exponential damping time, ε “ l{R

is the normalised inhomogeneous layer width and κ “ pρ0´ρeq{pρ0`ρeq is a ratio of

the internal density ρ0 and the external density ρe. The two relationships depend on

the chosen density profile in the inhomogeneous layer. Here it is given for Model L,

defined in Eqn. 1.28. The constant of proportionality is known for the exponential

damping profile for other density profiles [see Goossens et al., 2002; Roberts, 2008].

However, for the damping profile with the transition from a Gaussian regime to an

exponential regime only model L has a known solution.

The damping profile for standing kink waves can now be given by

A ptq “

$

&

%

A0 exp
´

´ t2

2τ2g

¯

t ď ts

As exp
´

´ t´ts
τd

¯

t ą ts
, (1.37)

where As “ A pt “ tsq and the switch in profiles occurs at a time ts, given by

ts “ h{Ck “ τ2g {τd. (1.38)

1.4.3 Seismology

The principles behind MHD seismology of the solar corona were outlined in Sec-

tion 1.2, and now the specific application of kink oscillations of coronal loops will

be considered. The phase speed is equal to the kink speed, Ck, which is given by

Ck « p
2

1` ρe{ρ0
q1{2CA0. (1.39)

From this the Alfvén speed can be given by

CA0 “ Ck

c

`1` ρe{ρ0
2

˘

. (1.40)
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Figure 1.16: Scaling of the exponential damping time of kink oscillations with the
oscillation period [Verwichte et al., 2013b]
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This means the magnetic field can be estimated as

B0 “ CA0
?
µ0ρ0 «

?
2µ0L

P

a

ρ0p1` ρe{ρ0q. (1.41)

Thus the magnetic field in an oscillating loop can be estimated by simply recording

the period of the oscillation and the length of the loop. In addition an estimate of

the density contrast and absolute value of one of the densities must be made. This

approximation was first applied to observations in Nakariakov & Ofman [2001],

yielding an estimate of the magnetic field in the loop of 13 ˘ 9 G. Similar estimates

were made by Aschwanden et al. [2002] and Verwichte et al. [2004], finding field

strengths ranging from 3-90 G and 9-46 G respectively.

A new series of studies took place after the launch of SDO/AIA, due to its

advanced time resolution and sensitivity. A single loop oscillation was studied by

Aschwanden & Schrijver [2011], who compared the seismologically determined mag-

netic field strength in the oscillating loop of 4 ˘ 0.7 G to the value obtained from

magnetic field extrapolation, 11 G. In Verwichte et al. [2013a] a detailed compari-

son of field strengths from seismology and from magnetic field extrapolations was

performed. It found that the extrapolated values averaged along the loop are sys-

tematically higher. The differential emission measure (DEM) technique was used to

obtain values for the density, meaning that the use of guessed values was avoided.

The inhomogeneous layer width, ε, was calculated, but covered most of the pos-

sible values due to the large uncertainties. Statistical seismology was explored in

Verwichte et al. [2013b], which was discussed above in context of the damping mech-

anisms considered. By considering a large sample of kink oscillations with measured

damping times and periods, constraints were put on physical loop parameters based

on the distribution of the quality factors of the oscillations, i.e the ratio of the

damping time to the period.

There has also been a growing interest in the use of seismological inversion

techniques. These have most commonly been applied to kink oscillations assumed

to damp via resonant absorption. The full analytical description is used to produce

inversion curves for each parameter to be determined based on the observed char-

acteristics of the oscillations. This technique was explored in Goossens et al. [2008]

under the thin tube and thin boundary approximations. The inversion was applied

to several kink oscillations observed with TRACE. For one loop the inversion curves

were plotted for the internal Alfvén travel time (τA), the density contrast (ζ) and

the inhomogeneous layer width (l{R), which are plotted in Fig. 1.17.

The recently proposed generalised damping profile with a switch from a Gaus-

sian to exponential damping regime was discussed in Section. 1.4.2. The extra seis-

mological information made available by this damping profile comes from the link
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Figure 1.17: Analytic and numerical inversion curves for three coronal loop pa-
rameters; the internal Alfvén travel time (τA), the density contrast (ζ) and the
inhomogeneous layer width (l{R) [Goossens et al., 2008].
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between ts and ρ0{ρe. They can be related in terms of Nc, the number of cycles of

oscillation before the switch occurs

Nc “
ts
P
“
h

λ
“

1

κ
“
ρ0 ` ρe
ρ0 ´ ρe

“
ρ0{ρe ` 1

ρ0{ρe ´ 1
. (1.42)

Therefore loops with larger density contrasts are expected to transition from the

Gaussian to the exponential profile sooner than loops with smaller density contrasts.

This forms the basis of the seismological method for determining κ for an observed

oscillation. The value of ε can then be calculated from the relation in Eq. (1.35)

or (1.36). This extra parameter allows the inversion to give us singular values for

the transverse structuring parameters of the loop rather than dependencies between

them.

The seismological inversion may be calculated with the following set of equa-

tions;

τd “ τ2g {ts, (1.43)

κ “ P {ts, (1.44)

ρ0{ρe “ p1` κq { p1´ κq , (1.45)

ε “ 4P {
`

τdπ
2κ
˘

, (1.46)

Ck “ 2L{P, (1.47)

CA0 “ Ck{
a

2{ p1` ρe{ρ0q, (1.48)

CAe “ CA0
a

ρ0{ρe, (1.49)

B0 “ CA0
a

µ0µ̄mpn0, (1.50)

where µ0 “ 4π ˆ 10´7 H/m, µ̄ “ 1.27, mp “ 1.6726 ˆ 10´27 kg, n0 “ neρ0{ρe

and the other values take their previous meanings. The seismological potential

demonstrated above makes the accurate analysis of coronal loop damping profiles

extremely important. This would allow the detection of the profile given in equation

1.37 and confirm its applicability to real observational data. This in turn would allow

unique seismological inversions to be made, giving a more accurate estimate of the

magnetic field and allowing the transverse density structure of the loop to be inferred
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for the first time. This was one of the motivations behind the work presented in

Chapter 2. It should be noted that using this seismological inversion the absolute

value of the density still needs to be estimated via other means.

The detection of different harmonics of the same wave mode in the same

coronal loop may allow additional seismological information to be extracted. For

standing modes the longitudinal wavenumber k is an integer multiple of π{L i.e.

kn “ nπ{L. The fundamental kink mode is denoted by n “ 1 and the second har-

monic is n “ 2 and so on. In the long wavelength limit, kink waves are weakly

dispersive, however non-uniformity of the kink speed along the loop results in the

periods of longitudinal harmonics no longer being integer multiples of the funda-

mental mode; for example P1{2P2 is varied from unity by several effects. Andries

et al. [2005] used the period ratios detected observationally [Verwichte et al., 2004]

to estimate the density scale height. McEwan et al. [2006] performed a similar study,

and an analytical expression for the dependence of the period ratio on the density

scale height was derived in McEwan et al. [2008]. Other effects considered include

elliptic curvature of the loop axis [Morton & Erdélyi, 2009a] and the effect of steady

siphon flows [Chen et al., 2014].

There have been several observations and seismological applications of higher

harmonics of kink oscillations of coronal loops [e.g De Moortel & Brady, 2007; Van

Doorsselaere et al., 2007; Srivastava et al., 2013]. Recently Guo et al. [2015] analysed

AIA data and looked at the anti-node positions of the detected harmonics, which

were found to shift towards the region of weak magnetic field. They also used the

fundamental kink mode to estimate the magnetic field strength, obtaining B = 8

˘ 1 G, and used DEM to estimate the temperature and density. The shift of the

anti-node positions indicated that the density stratification and the temperature

difference effects on the period ratio are larger than the magnetic field variation

effect.

1.4.4 Non-linear effects

The majority of theoretical studies of kink oscillations are performed in the linear

regime and in these studies the finite amplitude effects are neglected in the gov-

erning MHD equations. In kink oscillations the amplitudes of the perturbations of

the magnetic field and density, as well as the speeds of the displacement, are ob-

served to be just a few percent of the equilibrium parameters and the Alfvén speed,

respectively, justifying the linear nature of the oscillation.

However, the displacement amplitude is often similar to, or greater than,

the minor radius of the loop, suggesting that the assumption of the linearity of

the observed kink oscillations might not be fully applicable to all oscillating loops.

Non-linearity may modify the efficiency of the damping mechanisms or introduce
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Figure 1.18: Left: time-distance maps forward modelled to EUV emission from
numerical simulations of the KHI instability in oscillating coronal loops. Right:
The same simulations, shown as a cross section of the emissivity depicting how the
loop cross-section is perturbed during the oscillation [Antolin et al., 2016].
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additional sources of damping or dissipation. With the lack of direct observational

evidence of non-linear effects in the kink mode dynamics, the theory of non-linear

kink oscillations has only been addressed in several dedicated studies. The shear

Alfvén waves produced after the damping of kink modes via resonant absorption

may become large amplitude due to their very narrow localisation at the resonant

shell inside the oscillating loop and their inability to spread across the field. How-

ever, consideration of the time-dependent evolution of this process has shown that

the shear Alfvén waves are not exclusively confined to the hypothetical narrow res-

onant layer, but spread along the whole non-uniform layer because of phase mixing,

gradually lowering their resulting amplitude [e.g. Soler & Terradas, 2015].

Several theoretical studies have generalised the effect of resonant absorption

in the non-linear regime. For example, large amplitude kink waves can induce field-

aligned plasma flows and density perturbations by the ponderomotive force, which is

similar to the well-known non-linear effect in linearly or elliptically polarised Alfvén

waves [see Vasheghani Farahani et al., 2012, for a recent discussion]. For example,

Terradas & Ofman [2004] showed that this effect leads to the accumulation of mass

at the loop top. The resulting redistribution of the matter in the oscillating loop

would change the location of resonant layers and therefore the efficiency of wave

damping. Usually these induced flows are essentially sub-sonic and sub-Alfvénic,

as they are proportional to the square of the relative amplitude of the mother kink

waves. However, these induced flows are likely to be non-uniform in the transverse

direction [e.g. Clack & Ballai, 2009]. These flows may cause various shear-flow

instabilities that enhance the transport coefficients locally and, hence, the damping

[e.g. Ofman & Davila, 1995].

Ofman et al. [1994b] showed that the Kelvin–Helmholtz Instability (KHI) for

torsional Alfvén waves, first described by Browning & Priest [1984] in the context of

Alfvén phase mixing, can occur at the resonant layer of an oscillating loop resulting

in enhanced dissipation. Terradas et al. [2008] performed a high-resolution, three-

dimensional numerical study of non-linear kink oscillations and found that shear-

flow instabilities develop and deform the boundary of the flux tube, and that the

evolution of the tube is very sensitive to the amplitude of the initial perturbation.

They relate their results to the development of KHI. It was found that KHI can

develop over timescales comparable to the kink oscillation period [Soler et al., 2010].

Further numerical studies of KHI in oscillating structures in the corona include

transverse prominence oscillations [Antolin et al., 2015] and coronal loops [Antolin

et al., 2016] (Fig. 1.18). Additionally, numerical simulations of Magyar & Van

Doorsselaere [2016b] suggested that highly multi-threaded, or braided, loops could

be unstable to transverse oscillations and that the KHI is also efficiently generated

in this case. In all of these examples the transverse structure is perturbed, which
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Figure 1.19: The evolution of a fast sausage wave in the low-β limit, showing the
three main phases of the evolution [Roberts et al., 1984].

is of theoretical and observational significance in the study of kink oscillations of

coronal loops.

1.5 QFP wave trains

Another example of MHD waves in coronal wave guides are Quasi-periodic Fast

Propagating wave trains (QFP wave trains). These have recently been imaged with

AIA, however they remain poorly understood and their seismological potential has

yet to be exploited.

The dispersive evolution of a broadband sausage fast magnetoacoustic wave

when propagating in a coronal plasma wave guide was shown to result in a propagat-

ing quasi-periodic wave train (see Fig. 1.19 [Roberts et al., 1984]). This phenomenon

occurs at a certain distance from the initial perturbation, depending on the width

of the wave guide, the fast magnetoacoustic speed and the spatial spectrum of the

propagating perturbation. The time signature of the developed wave train can show

a characteristic “crazy tadpole” wavelet spectrum, where a narrowband tail pre-

cedes a broadband head (see Fig. 1.20 [Nakariakov et al., 2004]). This feature will

only occur if the spectrum of the initial perturbation is broad, sitting largely above

the cut-off wave number [Nakariakov et al., 2005]. This signature of dispersive evo-

lution was shown to be a robust feature of plane fast magnetoacoustic waveguides

with different perpendicular profiles of the plasma density [Yu et al., 2015, 2016]

and was found to be consistent with analytical estimations [Oliver et al., 2015]. The

wavelet signatures of impulsively-generated fast wave trains formed in cylindrical

waveguides appear “head-first” due to the change in geometry [Shestov et al., 2015].

The first detection of this phenomenon came from analysis of the radio emis-

sion of flares using the ICARUS spectrometer [Roberts et al., 1983]. This revealed

coronal wave trains qualitatively similar to theoretical predictions. An observation
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Figure 1.20: Numerical simulation of a dispersively generated fast magnetoacoustic
wave train generated from a single impulsive perturbation. In the lower panel is
the wavelet spectra of the density time series in the upper panel [Nakariakov et al.,
2004].

of fast propagating waves from the Solar Eclipse Coronal Imaging System (SECIS)

exhibited a characteristic crazy tadpole wavelet spectrum. This led to its interpreta-

tion as a dispersively generated fast propagating wave train guided by a field-aligned

non-uniformity of plasma density [Katsiyannis et al., 2003; Cooper et al., 2003].

The high spatial and temporal resolution of the SDO/AIA instrument has

recently allowed the detection of QFP wave trains at EUV wavelengths. These

wave trains appear to be triggered by a variety of flaring and eruptive events, with

differing propagation speeds and periods. Liu et al. [2010, 2011] detected EUV

emission disturbances at 171 Å, propagating from a flaring source along a coronal

funnel, with a projected phase speed of 2000 km s´1 and a 3 minute period (see

Fig. 1.21 and Fig. 1.22). Liu et al. [2012] detected wave trains running ahead of

and behind a CME front at 171 and 193 Å, with a dominant 2 minute period.

More recently, Nisticò et al. [2014b] detected and modelled a fast coronal wave

train propagating along two different paths, with a speed of ď 1000 km s´1 and

period of 1 minute. In that study a numerical simulation of fast magnetoacoustic

waves undergoing leakage and dispersive evolution in a coronal loop was performed

and found to be consistent with the observational results. An overview of these

waves and their observation with AIA was given in Liu & Ofman [2014]. Similar

signatures are also frequently detected in post-flare radio emission [e.g. Mészárosová
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Figure 1.21: Quasi-periodic fast propagating waves in a funnel structure detected
with the AIA instrument [Liu et al., 2011].
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Figure 1.22: Left: Multiple QFP wave trains analysed in Yuan et al. [2013]. Middle:
A time-distance map showing the wave fronts of the QFP waves. The bottom panel
shows flare pulsations detected with RHESSI, which may be related to the detected
waves [Liu et al., 2010]. Right: Fourier power diagram produced from the data to
the left, which allowed the wave speed to be measured. Also taken from Liu et al.
[2010].

et al., 2009a, 2016; Karlický et al., 2013], suggesting a common physical cause.

The detected QFP wave trains are generally considered to be a series of

quasi-periodic fast magnetoacoustic waves, due to the measured speed and how

they appear to be guided by coronal structures. In most EUV imaging detections

they appear as a series of arc shaped intensity perturbations, with an amplitude of

a few percent, propagating away from flaring active regions. They are often noted

to exhibit strong decelerations, explained by the expected reduction of the fast

magnetoacoustic speed with distance from the flare epicentre. Normally the waves

appear to be propagating upwards into the corona along an open funnel structure,

although there are cases where the waves are observed to propagate along closed

loop systems. These waves seem to be detected best at 171 Å, which may be due to

compressive or thermal properties of the wave, or due to favourable observational

conditions with this AIA filter.

Consideration of the driver of these events has led to various interpreta-

tions. Nisticò et al. [2014b] considered dispersive evolution as the mechanism for

the production of the observed wave train. This is supported by numerical and

analytical modelling from Pascoe et al. [2013b], Pascoe et al. [2014] and Oliver et al.

[2014], which has produced results consistent with observations, by considering the

dispersion and leakage of fast magnetoacoustic waves in funnels, holes and loops,

respectively. However, Liu et al. [2011] and Shen & Liu [2012] showed a common

periodicity between the quasi-periodic fast propagating wave and the flare quasi-

periodic pulsations, suggesting a common origin. Yuan et al. [2013] re-analysed the
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second of these events, finding distinct wave trains with start times correlated with

radio bursts emitted by non-thermal electrons. This correlation with pulsations in

the flaring emission has led to an interpretation of the observed wave trains as the

result of repetitive magnetic reconnection associated with the flare, or another mech-

anism which periodically excites broadband pulses of fast magnetoacoustic waves.

Recent modelling results from Yang et al. [2015] have confirmed this as a viable

mechanism for the production of a series of fast magnetoacoustic waves with phase

speeds and observational signatures which match observations.

As mentioned above, the seismological potential of these waves remains to be

fully explored, both theoretically and observationally. If they do indeed propagate

at the fast speed, then this may be used to obtain an estimate for the magnetic

field if the density is measured or estimated. Additionally, if the quasi-periodicity is

generated via dispersion, then it depends on physical properties of the wave guide.

As such, the wavelet spectra or time-series may be used to infer some aspects of

the physical properties of the wave guides, if dispersive evolution is assumed to take

place.

1.6 SDO/AIA

1.6.1 Introduction

The strongest emission from the solar corona is at EUV, soft X-ray, hard X-ray

and radio wavelengths. The detailed study of waves and oscillations in the corona

requires EUV imaging with sufficient spatial and temporal resolution.

The Transition Region and Coronal Explorer (TRACE, see Fig. 1.6 and

Handy et al. 1999) was a satellite aimed at investigating the dynamics of the mag-

netised plasma in the transition region and corona with high temporal and spatial

resolution. It included four filters which imaged different EUV wavelengths cor-

responding to different temperatures of plasma. This made it well suited to the

detection of waves and oscillations in the corona, described in Section. 1.2. An-

other EUV instrument was included in the Solar Terrestrial Relations Observatory

(STEREO) spacecraft. This mission consists of two spacecraft in orbit around the

Sun, giving different line-of-sight images, allowing 3D information about coronal

structures to be obtained. The potential applications of this data included infer-

ence of the 3D coronal loop geometry [e.g Aschwanden et al., 2008]. The Coronal

Multi-channel Polarimeter (COMP) began observing in 2009, and was a dedicated

low-coronal imager, which detected ubiquitous propagating kink waves in structures

low in the corona [Tomczyk et al., 2008]. However, observations were confined to a

narrow spatial region of the corona (i.e not full disc images) and the data required

heavy processing to extract the oscillatory signals.
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Figure 1.23: The Solar Dynamics Observatory (SDO) with its three instruments
labelled. Courtesy of NASA.

The Solar Dynamics Observatory (SDO) was launched in 2010 as part of

NASA’s ‘Living With a Star’ program (see Fig. 1.23). Its aim is to investigate

the generation and structuring of the Sun’s magnetic field, and how this energy

is released into the heliosphere as CMEs, the solar wind and energetic particles

[Pesnell et al., 2012]. The satellite includes three instruments, the Atmospheric

Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI) and the

Extreme Ultraviolet Variability Experiment (EVE), shown in Fig. 1.23. AIA, as its

name suggests, is dedicated to imaging the Sun’s atmosphere.

1.6.2 The AIA instrument

AIA provides continuous, full disc monitoring of the solar corona [Lemen et al.,

2012]. It produces images which extend up to 1.5 solar radii with 4kˆ4k pixels,

at a spatial resolution of 0.6 arcsec/pixel. It also has a cadence of 12 s. The Sun
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Figure 1.24: Temperature response functions for six EUV channels of AIA [Lemen
et al., 2012].

is imaged in 10 different narrow-band channels, seven of which correspond to EUV

wavelengths: Fe XVIII (94 Å), Fe VIII, XXI (131 Å), Fe IX (171 Å), Fe XII, XXIV

(193 Å), Fe XIV (211 Å), He II (304 Å), FeXVI (335 Å). The temperature of the

plasma observed in these EUV bands ranges from about 0.6 MK to about 16 MK.

In addition there are two UV channels: C IV line (1,600 Å) and the continuum

emission (1,700 Å). These wavelengths correspond to the transition region, upper

photosphere and temperature minimum. Finally, a white light channel (4,500 Å)

images the visible surface of the Sun.

The response functions of the six main EUV channels of AIA are shown in

Fig. 1.24. The different EUV filters mean that the data corresponds to different

temperatures of plasma. However, there is overlap between some of the channels

and some have peaks at several temperatures, meaning that complex analysis is

required to accurately determine the temperature of the plasma being observed.

The different channels also have different point spread functions (PSFs) associated

with them [Grigis et al., 2013]. The processing and analysis of the EUV imaging

data from AIA will be discussed in Section. 1.7.1.

1.7 Data analysis techniques

1.7.1 EUV image analysis

The strength of the electromagnetic emission from the coronal plasma depends on

its density and temperature. Plasma of different temperatures contains different
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excited states of the constituent ions, resulting in emission at different wavelengths.

Different EUV filters relate to different temperatures of plasma, and the response

function of a given wavelength varies with temperature. As mentioned above, some

EUV filters have multiple peaks in their response functions. Additionally, coronal

plasma is optically thin and so multiple structures or waves along the observational

Line Of Sight (LOS) appear superposed. All of these effects mean that analysing

EUV images of the corona is a complicated process.

A widely used quantity is the Differential Emission Measure (DEM), which

measures the amount of plasma along the LOS that contributes to the observed

emission within a temperature interval [Aschwanden, 2005];

DEMpT q “ nenH
dz

dT
dT, (1.51)

where z is the coordinate along the LOS, ne is the electron density and nH is the

elemental hydrogen density, often nH{ne « 0.83 is assumed. The intensity at a given

wavelength can then be formed as;

Ipλiq “

ż 8

0
GpT, λi, A, neq

DEMpT q

dT
dT, (1.52)

where λi is the wavelength of interest, G is the instrumental response function and A

is the abundance factor which incorporates the parameters related to atomic physics

of the plasma.

DEMs can be obtained from inversions of EUV images using multiple wave-

lengths, providing the temperature response of the different channels and appropri-

ate model DEMs from the different EUV lines are used. From the obtained DEMs

temperatures and densities of coronal structures, and their uncertainties, can be

obtained, however it is important to note that this is an ill-posed inversion. An

example procedure for SDO data is described in Hannah & Kontar [2012]. In this

thesis the DEM inversion technique will not be used, however it is important to

understand the complex relationship between the observed EUV intensity and the

plasma from which it comes. The limitations of any analysis procedure which does

not account for any of the effects described above should be considered.

The EUV data sets can be retrieved in the Flexible Image Transport System

(FITS) format at full resolution (4k ˆ 4k) from the Joint Science Operations Center

(JSOC), with spatial and temporal resolution of 0.6 arcsec and 12 s respectively,

using the standard SolarSoftware (SSW) function vso search.pro. The images

should then be prepared and corrected using the SSW routine aia prep.pro, in-

cluding normalisation by the exposure time of the instrument, which can vary during

flare emission. A series of images can be obtained for a region of interest within a

given time interval by submitting a SSW cut-out request. The data cubes obtained
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will have the standard pixel size of 0.6 arcsec, and a temporal cadence of 12 s, or 24

s in some cases when the intermediate image was not returned owing to an insuf-

ficiently short exposure time, which should be accounted for in any analysis in the

time domain. Time-Distance (TD) maps are a frequently used method of detecting

and analysing waves and oscillations in imaging data. One axis corresponds to time,

and the other to a one-dimensional distance along the selected slit in the images.

They will be frequently used to present data throughout this thesis.

1.7.2 Time series analysis

Time series analysis is an important aspect in most branches of science. It is abso-

lutely critical in fields such as astrophysics, where spatial information is not normally

available, so variations in time series must be analysed in great detail to infer any

spatial information. In solar physics, despite the often abundant spatial and spectral

information the data must often still be reduced to a time series for further analysis,

including the proper treatment of uncertainties.

An important aspect of time series analysis is the detrending of the data. This

can be done in a number of ways. To highlight waves and oscillations in imaging

data the images themselves can be detrended. Previous images may be subtracted

from the current image to produce a running difference image, which highlights the

changes which have occurred between the two images as positive and negative values.

Alternative options include taking the ratio of the image to a previous image. The

same ideas can be applied to one dimensional time series, which can include taking

the derivative (similar to running difference images), smoothing, or subtracting a fit

to the background trend.

One technique to analyse time series is to use least-squares fitting to fit

the data with a model which has either empirical or theoretical justification. This

procedure involves finding the best fitting curve to the data points by minimising

the sum of the squares of the offsets between the data and the fit, i.e the residuals.

For vertical least squares fitting this can be expressed as

R2 “
ÿ

ryi ´ fpxi, a1, a2, ..., anqs
2, (1.53)

where yi represents the data to be fit, and f the function to be fit, which depends on

the independent variable at each point, xi, and the adjustable vector of parameters,

a. R2 is then minimised, i.e the condition

BpR2q

Bai
“ 0, (1.54)

is enforced. The most commonly used implementation of this procedure is Levenberg-

Marquardt least-squares fitting with the data points weighted according to their
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errors. There are multiple different functions which use this technique within IDL

(Interactive Data Language), such as mpfit.pro [Markwardt, 2009], gaussfit.pro

and curvefit.pro.

One of the major branches of time-series analysis is the detection of period-

icities. This is due to many physical processes having a built in periodicity, which

often depends on physical parameters, such as in coronal seismology. One method

is to detrend the time-series, and then fit a periodic function to the data using

least-squares fitting. When this is not possible then significant peaks in the fre-

quency domain can be searched for, via a Fourier transform or construction of a

periodogram [Scargle, 1982].

If temporal information about a non-stationary periodicity is required, then

other spectral analysis techniques are required. The Windowed Fourier Transform

(WFT) performs a Fourier transform on discrete portions of a time series, allowing

the local spectra to be obtained for different times, allowing the time evolution of

periodicities within the signal to be examined. In the time domain it is equivalent

to multiplying a signal by a window function that scans the time-series. Similar

to a WFT, the wavelet transform allows time-dependent power spectra to be ob-

tained, allowing the evolution of detected periodicities to be analysed. The wavelet

transform is defined as the convolution of a time series with a scaled version of a

mother function, such as the Morlet function. A commonly applied wavelet analysis

software is available online in multiple programming languages, including IDL [see

Torrence & Compo, 1998].

1.7.3 Bayesian inference

In solar physics the best-fitting parameters for a particular model of interest are

often determined by a Levenberg-Marquardt least-squares fit to the relevant data,

with each point weighted according to its error. Now a method based on Bayesian

statistics will be discussed. Bayesian analysis allows robust estimation of how the

output of the proposed model depends on the input parameters. It can be used

to determine information about model parameters from data (inference) and to

compare how well different models explain the observed data (model comparison)

[see von Toussaint, 2011]. Bayesian inference is well used in many branches of

physics, in particular astrophysics. Recently, it has been used to seismologically

infer coronal loop parameters from observations of damped kink oscillations, as

discussed several times in Section. 1.4 [e.g., Arregui & Asensio Ramos, 2011; Arregui

et al., 2013a, 2015; Arregui, 2018]. In particular, Arregui et al. [2013b] used the

Gaussian and exponential damping regimes described in Section 1.4.2, and describe

an inversion procedure based on Bayesian analysis, conversely Arregui & Asensio

Ramos [2014] apply Bayesian analysis to the ill-posed case, where only exponential
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damping is considered.

The general methodology behind parameter inference and model comparison

will now be described, in the next section the specific implementation used in this

thesis will then be discussed. A parameter inference problem assumes that the

observed data D can be fully interpreted by an assumed model M , which has a

parameter set θ “ rθ1, θ2, ¨ ¨ ¨ , θN s. The aim is to obtain the values of the model

parameters θ that best described the observed data D, or to compare multiple

different models and determine which is the most probable based on the data. The

standard formulation of Bayesian parameter inference relies on three definitions:

1. The prior probability density function (PDF) P pθq represents the knowledge

about the model parameters θ before considering the observational data D.

This is where knowledge from previous measurements or a model parameter

being confined to a certain range may be included, and how the results are

influenced by this prior information can be readily quantified.

2. The likelihood function P pD|θq describes the conditional probability to obtain

the observed data D for a set of values, θ, of the model parameters, i.e a

function of θ with fixed D.

3. The posterior PDF P pθ|Dq describes the conditional probability that the

model parameters are equal to θ under condition of observed data being equal

to D and the assumed model, i.e a function of D with fixed θ. Computing this

distribution is normally the main goal in Bayesian inference codes.

These three quantities are connected via the Bayes theorem

P pθ|Dq “
P pD|θqP pθq

P pDq
. (1.55)

where the normalisation constant P pDq in denominator is the Bayesian evidence or

marginal likelihood, given by

P pDq “

ż

P pD|θqP pθq dθ. (1.56)

This is an integral of the likelihood over the prior distribution, which normalises the

likelihood such that it becomes a probability.

For the prior probability P pθq and likelihood P pD|θq functions, the posterior

probability distribution P pθ|Dq can be calculated for any value of the parameter

set θ using Eq. (1.55). For seismological applications the aim is to obtain the most

probable value and corresponding uncertainties for each parameter θi, which are

the physical parameters which best explain the observed data, given model M . To
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obtain these values the full marginalised posterior is calculated for each parameter

as

P pθi|Dq “

ż

P pθ1, θ2, ¨ ¨ ¨ , θN |Dq dθk‰i. (1.57)

This posterior distribution includes all the information for the given model param-

eter, from both the prior and the data. The uncertainty from all of the model

parameters is taken into account in the uncertainty of the parameter of interest for

which the integral is computed. To define a particular value for model parameter

θi, the median value, or peak value of the distribution can be taken. Alternatively,

the maximum a posteriori value of the parameter can be estimated, θMAP
i , which is

the value which maximises the posterior, P pθ|Dq.

For low-parametric models the integrals in Equation (1.57) can be calculated

directly using standard numerical integration methods. However, this is not possible

for models with a large set of parameters due to the increase in the computation

time. Therefore, sampling methods, such as Markov Chain Monte Carlo (MCMC),

are often used for complex models. This is described further in Section 1.7.4.

For model comparison purposes the Bayes factor can be obtained from the

ratio of the Bayesian evidence (1.56) for two models to be compared. This allows

us to quantify how plausible one model is compared to the other. For two models

Mi and Mj the Bayes factor is defined as

Bij “
P pD|Miq

P pD|Mjq
, (1.58)

where P pD|Mq are defined as above. To define evidence thresholds the natural

logarithm of this factor, i.e.

Kij “ 2 lnBij , (1.59)

is often considered, where values of Kij greater than 2, 6 and 10 correspond to

“positive”, “strong”, and “very strong” evidence for model Mi over model Mj ,

respectively [Kass & Raftery, 1995]. Negative values indicate evidence for model

Mj subject to the same thresholds.

1.7.4 Bayesian inference implementation

For the applications presented in this thesis, the marginalised posteriors (Equa-

tion 1.57) cannot be practically calculated by direct or numerical integration. There-

fore a sampling approach is employed which uses Markov-Chain Monte-Carlo (MCMC)

sampling, which allows us to obtain samples from the posterior probability distribu-

tion P pθ|Dq. When a sufficient number of samples are obtained, the marginalised

posterior can be approximated by constructing a histogram for the desired model
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parameter θi.

The sampling algorithm used generates samples from the posterior distri-

bution using a function which is proportional to that distribution. The classic

Metropolis-Hasting random walk algorithm is used [Metropolis et al., 1953] (See

Allison & Dunkley [2014] for a comparison of different sampling techniques). The

multivariate normal distribution is used as the proposal distribution. The sampling

algorithm finds the maximum probability area in the parameter space and is then

carried out again to obtain a chain which explores this high probability region, and

removes any dependence on the starting values of the parameters. The generated

samples are accepted or rejected based on a certain criteria, and can then be used

to produce histograms which represent the marginalised posteriors P pθi|Dq.

Finally, the fitting routine used assumes that the error corresponding to the

measurements (Yi) is normally distributed with a standard deviation of σY . In this

case, the likelihood function to be computed as part of Equation 1.55 is the product

of Nd Gaussian functions

P pD|θq “
1

p2πσ2Y q
Nd
2

Nd
ź

i“1

exp

"

´
rYi ´MpX, θqs

2

2σ2Y

*

. (1.60)

The measurement error σY is considered as one of the unknown parameters. This

approach allows robust estimation of the uncertainties of the inferred parameters,

irrespective of whether the data have reliable uncertainties themselves.

Together, this approach allows the construction of a histogram which ap-

proximates the posterior probability distribution for each model parameter, which

is independent of the starting parameters. From this, inferred values of the pa-

rameter and the corresponding uncertainty can be obtained, which includes the

uncertainty from the variation of the other model parameters. This also allows

the calculation of the Bayesian evidence for a given model and data, which allows

quantitative comparison of different models for a given data set.
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Chapter 2

Statistical studies of decaying

kink oscillations

2.1 Introduction

Despite intensive studies of large amplitude kink (transverse) oscillations of coronal

loops over the two last decades, a large scale statistical investigation of the oscil-

lation parameters has not been made. Previous studies have analysed a handful

of oscillations at a time [e.g White & Verwichte, 2012], or have compiled the re-

sults from several studies [e.g Verwichte et al., 2013b]. In this chapter the first

large scale statistical study of kink oscillations using SDO/AIA EUV imaging data

is presented. Details of this instrument are given in Section 1.6, and details of

the oscillations themselves are given in Section 1.4. 58 kink oscillation events were

analysed, observed during 2010-2014. Parameters of the oscillations, including the

initial apparent amplitude, period, length of the oscillating loop, and damping are

studied for 120 individual loop oscillations. This is done with the aim of estab-

lishing the typical parameters of the oscillations and loops, which will help inform

future numerical and analytical studies, as well as designs and expectations for fu-

ture coronal imaging instruments. As mentioned in Section 1.4.1 the damping of

these oscillations is an intensively studied area so this is also an aim of the study.

Finally, motivated by the discussion in Section 1.4.4 the discovery of signatures of

non-linearity within the oscillations is also an aim. In Section 2.2 the data and anal-

ysis are described, in Section 2.3 the results are presented. In Section 2.4 a search

for signatures of non-linearity in the data set presented here as well as historic kink

oscillation data is presented. Discussion and conclusions are given in Section 2.5.
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Figure 2.1: Left: The active region from event number 40 from Table 2.2. The three
blue lines show some of the slits used to create time-distance maps for analysing the
oscillations of the corresponding loops. Right: The slit positions (x1, y1 from Table
2.2) used to produce the sample of time-distance maps to analyse kink oscillations of
coronal loops, plotted as blue asterisks. The overplotted red circles are the average
slit position for each event.
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Figure 2.2: Three typical time-distance maps, corresponding to loop 1 from event
32, loop 4 from event 40, and loop 2 from event 48. The fits correspond to the
detrending polynomial added to the sinusoidal fit, and multiplied by the exponential
damping profile for panels a) and b). The red points in panel c) were taken by eye to
map out the oscillation and used for the subsequent fitting. The vertical blue bars
represent the measurement of the initial displacement (a0) and the initial oscillation
amplitude (aosc in the figure, A0 throughout the text) of the upper loop edge.

49



2.2 Observations and Analysis

Large amplitude decaying kink oscillations of coronal loops from the catalogue in

Zimovets & Nakariakov [2015] are analysed using 171 Å data from SDO/AIA, dis-

cussed in Section 1.7. A series of images was obtained for each of the 58 eruptive

events listed using the provided date, oscillation time and location to define a field

of view and time interval which were subsequently submitted as a SSW cut-out

request. The data cubes obtained had a time span of 30 or 45 minutes (which was

extended for long period oscillations), the standard pixel size of 0.6 arcsec, and a

temporal cadence of 12 s, or 24 s in some cases, when the intermediate image was

not returned due to a short exposure time.

Movies created from the data cubes were initially inspected by eye, and

loop oscillations with sufficient quality for TD analysis were noted. TD maps were

created by taking linear slits with a 5 pixel width perpendicular to the oscillating

loop and stacking the intensities along the slit (averaged over the width to increase

the signal-to-noise ratio) in time, as described in Section 1.7.1. An example of an

active region is show in Fig. 2.1, with the slits used to create TD maps of different

loops overplotted. This process resulted in 127 TD maps, which were interpolated

to an equispaced temporal grid of 12 s. The extrema of the slits used are listed in

Table 2.2, along with the event number from Zimovets & Nakariakov [2015] and a

loop ID. The locations of the first extrema of each slit is overplotted on the disk in

Fig. 2.1 in blue, and the average slit position for each event is plotted in red.

The projected loop length was estimated for each oscillating loop. The ma-

jor radius (via the apparent loop height) or diameter (via the distance between

footpoints) was measured by eye, depending on the orientation of the loop with re-

spect to the Line Of Sight (LOS), and a semicircular loop approximation was used,

L “ πR, where R is the loops major radius. The loop lengths are listed in Table

2.2. In a few cases the loop length could not be estimated as the footpoint positions

or height could not be determined.

For each TD map the amplitude of the initial displacement and the initial

oscillation amplitude were estimated. The initial displacement is defined as the

difference between the initial loop position and the first maxima, and the initial

amplitude is defined between the first maxima and minima, as shown in Fig. 2.2,

panel c). In this case the displacement of the loops upper edge was estimated.

The start time of the oscillation was also recorded, in addition to the number of

oscillation cycles observed, all listed in Table 2.2.

Automatic tracking of the loop to record the oscillation was not appropriate

in many cases due to the overlap of multiple loops, or only the edge of the oscillating

loop being clearly defined. Due to this the oscillations were mapped out by taking

a series of points along the centre or edge of the loops by hand, and an error for
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the points was defined based on the clarity of the time-distance map, ˘ 1 pixel in

most cases. Three examples of TD maps are shown in Fig. 2.2, the points used to

define the oscillation are overplotted in panel c) of Fig. 2.2, where the loop edge

was mapped out and points were not taken when its position could not be reliably

determined.

There is a certain degree of subjectiveness and error associated with the loop

length measurement, the displacement measurements and the points taken to map

out the oscillation, however the sample size is large enough that this will not affect

the overall results.

The data points for each oscillation were detrended by fitting with a second

order polynomial function of the form y “ B0`B1t`B2t
2, and subtracting this from

the data. All fitting was performed with user defined functions and the IDL routine

mpfitexpr.pro. Fitting with a sinusoidal function, of the form y “ A sinp2πt{P`φq,

was performed for each detrended oscillation, with the period (P ) as one of the free

parameters. The best fitting period and the corresponding error were recorded for

each well defined oscillation.

To analyse the damping behaviour of the oscillations the absolute value of

the detrended oscillatory signal was taken and scrutinised by eye. For >50% of the

TD maps clear damping could not be seen, or the number of oscillation cycles was

not sufficient to perform fitting of the damping envelope. However these oscillations

are still clearly part of the decaying, rather than decayless, regime, discussed in

Section 1.4. For oscillations with a clear exponential decaying trend a weighted fit,

of the form Aptq “ A0e
´t{τ , was performed on the maxima of the absolute value

of the detrended signal. The damping time (τ) and the corresponding error were

recorded. For cases where the damping was not observed for the whole duration

of the signal, or where there were clearly non-exponential regions of the damping

envelope, the fit was only made for the region which was approximated well by an

exponential decay. By eye it was determined whether each damping profile was best

described by a purely exponential profile (see Fig. 2.2 panel a) ), or a combination

of both non-exponential and exponential profiles (see Fig. 2.2 panel b) ).

The result of the whole fitting process is overplotted on the TD maps in

Fig. 2.2, where the detrending polynomial has been added to the sinusoidal fit, as

well as the damping profile for panels a) and b). For panel a) the damping profile

was measured for the whole signal, for panel b) it was only measured for the last 2

cycles.
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Figure 2.3: Left: The distribution of the measured initial displacement of 120 kink
oscillations of coronal loops. Right: The distribution of the measured initial oscil-
lation amplitude of 120 kink oscillations of coronal loops, recorded from the first
cycle of oscillation after the initial displacement. The bin size of both histograms is
2 Mm.

Figure 2.4: The initial oscillation amplitude of 120 kink oscillations of coronal loops,
plotted against the initial displacement of the loop position. A linear fit of the data
passing through the origin is shown by the solid black line, with a gradient of 0.87
˘ 0.01.
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2.3 Results

From the 58 events analysed the periods of 120 individual kink oscillations were de-

termined, and for 118 of these the corresponding loop length was estimated. From

the oscillatory signals 52 exponential damping times were obtained. In addition to

these measurements other details of the oscillations were recorded, and are listed

in Table 2.2. This included whether damping was observed, and if so whether it

is best described by a purely exponential, or a combination of non-exponential and

exponential damping profiles. The number of oscillation cycles was also recorded,

however in many cases this was limited by the oscillatory signal becoming unclear,

rather than the damping reducing the amplitude to an undetectable level. These

non-exponential sections of the damping envelope could be explained by the pro-

posed Gaussian damping regime, discussed in Section 1.4.1.

2.3.1 Oscillation parameter histograms

Analysis of the amplitudes of the initial displacement and subsequent oscillation

may allow inferences to be made about the excitation mechanism, as well as giving

details of the typical spatial scales involved. The measured initial loop displacements

ranged from 0.6 to 31.8 Mm. In Fig. 2.3 a histogram of the measured initial loop

displacements is shown, with a bin size of 2 Mm. The distribution peaks strongly

at 1–3 Mm, and 59% of the measurements are covered by the range 1–5 Mm. The

distribution after this range is more uniform, but the number of cases decreases

towards the upper limit.

The initial oscillation amplitudes ranged from 0.5 to 27.6 Mm. In Fig. 2.3 a

histogram of the measured initial oscillation amplitudes is shown, with a bin size of

2 Mm. The distribution peaks at 4–5 Mm, with 57% of the measurements lying in

the range 1–5 Mm. The distribution again flattens and decreases towards the upper

limit of the measurements.

In Fig. 2.4 the initial oscillation amplitude is plotted against the initial loop

displacement. A rough correlation between these two parameters is observed. A

linear fit of the data cloud which passes through the origin gives a gradient of 0.86

˘ 0.01.

The measured oscillation periods ranged from 1.5 to 28 min. In Fig. 2.5 a

histogram of the measured oscillation periods is shown. The distribution peaks at

4–7 mins, and drops quickly to the maximum detected period, 28 min (not shown in

the histogram). No periods below 1.5 min were recorded, and there is a decrease in

occurrence approaching the lower periods. In Fig. 2.5 a histogram of the measured

loop lengths is shown. The most common length is in the range 220–260 Mm,

but there is a roughly even distribution between 140 and 460 Mm which decreases

53



above and below this range, with minimum and maximum values of 77 and 596 Mm,

respectively.

2.3.2 Dependence of the period on loop length

In Fig. 2.6 the period is plotted against the loop length, and the period clearly

increases with the length of the coronal loop. The period errors correspond to the

scaled covariance from the period fitting. An unweighted linear fit was made, due

to the errors alone not determining or reflecting the distribution of the data, due to

the variation of the density contrast and Alfvén speed and between different loops

and active regions.

The black line correspond to an unweighted linear fit of the data. The best

fitting linear function is P [min]=(0.025˘0.001)L[Mm], where L is the loop length

and P is the period, giving a kink speed of Ck=(1300˘50) km s´1 from the gradient

and the equation P “ 2L{Ck. The gradient can be varied to give upper and lower

bounds to the data cloud, giving a kink speed range of Ck=(800–3300) km s´1.

Calculation of the kink speed for each individual data point gives the distribution

shown in the inset histogram. This has a most common value of 900–1100 km s´1,

a peak value of of 1340 ˘ 60 km s´1 and a Gaussian width of 620 ˘ 60 km s´1, the

later two values were obtained by fitting the observed distribution with a Gaussian

model.

2.3.3 Relationship between the damping time and period

In Fig. 2.6 the damping time is plotted against the period, and a correlation between

the two parameters is obtained. The damping time errors correspond to the scaled

covariance from the exponential damping fits. The statistics are limited to the cases

where the damping time could be measured (see Table 2.2), so the figure is less

populated than Fig. 2.6. A weighted linear fit was made, corresponding to the solid

black line. The best fitting linear function is τ [min]=(1.53˘0.03)P [min], where τ is

the damping time and P is the period. These results offer no more clarity than in

the previous attempts to analyse this dependence.

In Fig. 2.6 the red circles correspond to damping profiles which were deter-

mined to be exponential by eye, and the blue squares correspond to damping profiles

best described by a combination of a non-exponential and exponential profile. For

the latter case, which corresponds to 21 of the measurements, the damping time is

determined from the exponential part of the profile. This corresponds to the values

“E ” and “E,NE ” in the column “Damping Profile ” in Table 2.2. No difference

between the two cases is observed. There are 9 additional cases where the profile

appears to be purely non-exponential, and no damping time was measured, noted

in Table 2.2 by “NE ”.
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Figure 2.5: Left: The distribution of the measured periods of 120 individual kink
oscillations of coronal loops. The bin size is 1 min. Right: The distribution of
the measured loop lengths for 118 individual coronal loops, which undergo kink
oscillations. The bin size is 20 Mm.

Figure 2.6: Left: period plotted against loop length for 118 kink oscillations of
coronal loops. The solid black line correspond to an unweighted linear fit of the data.
The best fitting linear function gives a kink speed of Ck=(1300˘50)km s´1 from its
gradient. The dashed lines correspond to kink speeds of 800 and 3300 km s´1 for the
upper and lower lines respectively. Right: damping time plotted against period for
54 kink oscillations of coronal loops. The solid black line correspond to a weighted
linear fit of the data. The best fitting linear function is τ [min]=(1.53˘0.03)P [min].
The red circles correspond to damping envelopes best described by an exponential
profile, and the blue squares correspond to those best described by a combination
of a non-exponential and exponential profiles.
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2.4 Amplitude dependence of kink oscillation damping

In this section the empirical dependence of the kink oscillation quality factor, the ra-

tio of damping time to oscillation period, on the oscillation amplitude is investigated.

Decaying kink oscillation events detected previously with TRACE, SDO/AIA and

and STEREO/EUVI in the extreme ultraviolet (EUV) 171Å band were included,

as well as the original data used and described in this chapter. Despite significant

progress in the development of the non-linear theory of kink oscillations, there is

still no a clear picture of the quantitative effect of the finite amplitude on the be-

haviour and damping of these oscillations. Further progress in understanding the

role of the non-linearity and the exploitation of its seismological potential requires

observational guidance. This works aims to establish empirically the relationship

between the damping time and amplitude of kink oscillations. In Section 2.4.1 the

data used and the method of analysis are described. In Section 2.4.2 the results are

described. The findings are discussed and summarised in Section 2.5.4.

2.4.1 Observations

Parameters of the kink oscillations used in this study, from the work presented above,

are shown in Table 2.2. This data is supplemented by other previously published

events detected with TRACE and STEREO/EUVI. The damping time, period, and

apparent (projected) amplitude of the oscillations were retrieved where possible

(see Section 2.2 for details). Some published detections had to be omitted as the

amplitude of the oscillation was not reported and could not be reliably estimated

from the provided figures. These additional data are summarised in Table 2.1.

2.4.2 Results

Fig. 2.7 shows the distribution of the observed apparent amplitudes of kink oscil-

lations. This figure is a modification of Fig. 2.3 of Section 2.3, adding the results

obtained for the events shown in Table 2.1. There appears to be no significant differ-

ence between these two figures, other than fewer statistics, as only about half of the

events discussed in the previous section are used in this work. Also, in the current

figure, the highest amplitude tail is absent, as in that part of the distribution the

oscillations do not have enough cycles to measure damping.

In the left panel of Fig. 2.8 the quality factor of the kink oscillations, defined

as the ratio of the damping time to the period, is plotted against the apparent initial

amplitude of the oscillation. A negative dependence between the two parameters is

evident, with Spearman and Pearson correlation coefficients of -0.44 and -0.42, and

p-values of 6 ˆ 10´5 and 5 ˆ 10´5, respectively. It is clear that larger amplitudes

correspond to systematically smaller quality factors. The dependence has a trian-
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Table 2.1: Damping times, periods, and apparent amplitudes of kink oscillations of
coronal loops.

Ref Damping time Period Amplitude
(#) (s) (s) (Mm)

1 870 261 0.8
1 300 265 2
1 500 316 6
1 400 277 4
1 849 272 5
1 600 435 0.7
1 200 143 0.5
1 800 423 0.7
1 200 185 9
1 400 396 1.8

2 714 234 7.9

3 920 249 0.34
3 1260 448 0.43
3 1830 392 0.49
3 1330 382 0.42
3 1030 358 0.56
3 980 326 0.22
3 1320 357 0.24

4 2129 436 0.4
4 1200 243 0.4

5 521 895 7.3
5 473 452 3.7

6 1000 630 3.7

7 3660 2418 5

8 500 377 9.5

The data listed were previously detected using TRACE and STEREO/EUVI. The
first column indicates the publication the results are taken from:
1: Aschwanden et al. [2002], 2: Wang & Solanki [2004],
3: Verwichte et al. [2004], 4: Van Doorsselaere et al. [2007],
5: De Moortel & Brady [2007], 6: Verwichte et al. [2009],
7: Verwichte et al. [2010], 8: Mrozek [2011].
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Figure 2.7: Distribution of the measured apparent initial amplitude of kink oscil-
lations of coronal loops, detected with SDO/AIA, TRACE, and STEREO/EUVI.
The bin size is 2 Mm.

Figure 2.8: Left: the quality factor of kink oscillations of coronal loops determined
as the ratio of damping time to the oscillation period, plotted against the apparent
oscillation amplitude. The red points are taken from Table 2.2. The blue points
correspond to those listed in Table 2.1. The grey line shows the scaling of the
quality factor with the maximum apparent amplitude. Right: the quality factor
plotted against the apparent amplitude of the initial displacement that excited the
oscillation. The data is taken from Table 2.2.
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gular shape on the quality factor – apparent amplitude plane. For lower apparent

amplitudes, up to 3–4 Mm, the quality factor ranges from 1–5, while for higher am-

plitudes the range of the measured quality factors decreases to 1–2. Unfortunately,

different methods of data analysis applied in the different studies summarised in

Table 2.1 make it difficult to estimate the error bars of those measurements (blue

points in Fig. 2.8).

The upper boundary of the data cloud in Fig. 2.8 can be approximated by

the expression

q « 7ˆArMms´1{2, (2.1)

where q is the quality factor and A is the kink oscillation amplitude. In the lack of

a large number of observations this best-fitting curve was made by eye, and should

only be considered a first attempt to quantify this scaling. A fit to the main body

of the data was not considered to be significant as this is affected by the suppression

of the amplitudes by the unknown LOS angle, which is discussed further below.

In the right panel of Fig. 2.8 the quality factor of the oscillations is plotted

against the apparent amplitude of the initial displacement that excited the oscilla-

tion. In contrast to the left panel, no correlation is seen despite the weak correlation

between the amplitude and displacement from earlier in the chapter. This indicates

that the amplitude of the oscillation itself, rather than amplitude of the initial dis-

placement, affects the quality factor and, therefore, the damping of the oscillations.

2.5 Discussion and conclusions

A comprehensive statistical analysis of large amplitude decaying kink oscillations of

coronal loops excited by flaring events, observed with SDO/AIA at 171 Å has been

presented in this chapter. Additionally the amplitude dependence of the quality fac-

tor of the oscillations was explored. The results are now discussed and summarised.

2.5.1 Oscillation parameter histograms

Details of the initial loop displacement and the subsequent oscillation have been

analysed. Fig. 2.3 indicates that lower amplitude initial displacements are more

common, and Fig. 2.3 shows that relatively low initial oscillation amplitudes are

also more common. A comparison between the two histograms mentioned leads

to the conclusion that the initial displacement prescribes the initial amplitude of

oscillation in the majority of cases. However, there are cases where a large initial

displacement leads to a new equilibrium position for the loop, where it oscillates

with an amplitude much smaller than the initial displacement, as recently discussed

by Russell et al. [2015]. Cases where a small initial displacement results in a larger

amplitude oscillation are also seen. A simple explanation is that the passage of the
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LCE has left the external plasma and magnetic field more rarefied, and the perturbed

loop passes through its initial equilibrium with an amplitude greater than the initial

displacement. A linear correlation between these two parameters is seen in Fig. 2.4,

with spreading due to measurement errors, but also reflecting the different regimes

discussed above.

The above results are subject to a LOS effect. The histograms in Fig. 2.3

will include an effect in the distribution due to how the observed kink oscillations

are distributed over the LOS angles. If all the initial displacements and oscillation

amplitudes were equal, distributions would still be obtained due to the different LOS

angles varying the measured values. It can be seen from Fig. 2.1 that loop positions

are mostly off-limb, near the equator, so North-South oscillation polarisations were

better detected. Further work is required to remove the effect of the varying LOS

angles from the measurements and obtain the true displacements and oscillation

amplitudes.

Some inferences can be made from the period distribution shown in Fig. 2.5.

The drop off in the occurrence of higher periods is likely to reflect a physical drop-

off, as larger length loops may be less likely to be formed and are also more difficult

to detect. The decrease in the distribution for lower periods may include an ob-

servational bias, as oscillations of shorter loops are more difficult to observe, but

may also reflect the excitation mechanism. If, as proposed by Zimovets & Nakari-

akov [2015], excitation due to LCE perturbations is the dominant mechanism, this

should preferentially excite loops above a certain height, which have correspondingly

longer lengths. The distributions of the periods and loop lengths differ, and this is

likely to be due to the loop length estimations becoming more inaccurate for longer

loops, as well as variation of the additional parameters which prescribe the period

of oscillation.

If general statistics of the loop lengths were available it could be used to nor-

malise the loop length distribution in Fig. 2.5. This would allow it to be determined

whether kink oscillations occur in all loops with the same probability or if loops of

certain lengths are more likely to undergo a kink oscillation. LOS effects should also

be included in such a study, and the varying ellipticity of the loops themselves, as

well as the inclination angle of the loop plane from vertical.

2.5.2 Dependence of the period on loop length

The period scales with the loop length as expected, and the best fitting kink speed of

Ck=(1300˘50) km s´1 is in agreement with previous results [Ofman & Aschwanden,

2002; Verwichte et al., 2013b]. The range of kink speeds from the main data cloud

(Ck=(800–3300) km s´1) should correspond to the spread of loop density contrasts

and Alfvén speeds. There are some points in Fig. 2.6 corresponding to short loops
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with larger periods than expected from the main body of the data, giving a lower

kink speed value. These data points may correspond to loops and active regions

with significantly lower Alfvén speeds, or greater density contrasts. More statistics

and analysis of the active region parameters are required to determine if these points

have a physical explanation, or are due to measurement errors.

Comparisons can be made with the results of a similar study which focused

on the decayless regime of kink oscillations [Anfinogentov et al., 2015a], as discussed

in Section 1.4. They obtained a similar scaling of period with loop length, but with

a lower gradient, and therefore, a higher best fitting kink speed of Ck=(1850˘70)

km s´1. The period distribution they present is similar to the distribution obtained

here, but peaks at a lower value, and their loop length distribution is significantly

less uniform. These differences may be due to a selection effect from their study, as

the data spanned 1 month, whereas the data presented here spans 4 years. It may

also reflect the different driving mechanisms, in particular the excitation mechanism

for the decayless regime remains unknown. The discrepancy between the statistics

of decaying and decayless kink oscillations should be further investigated when a

larger set of events becomes available.

2.5.3 Relationship between the damping time and period

The results on the linear scaling of the damping time with the oscillation period

are qualitatively consistent with the previously obtained observational results [e.g

Aschwanden et al., 2003; Verwichte et al., 2013b], as the data can be fit with a

linear relationship between the two parameters. The spread of the data makes it

unreasonable to make inferences about the damping mechanism from the observed

dependence however, as the different mechanisms in Section 1.4.1 should lead to dif-

ferent relationships being observed. In particular it is not possible to discriminate

between a linear or power law dependence, and such an approach requires consid-

eration of the influence of the varying cross sectional loop structuring and other

parameters.

Distinguishing between the damping times from oscillations which showed a

purely exponential profile and a combination of a non-exponential and exponential

(only fitting the exponential section), did not reveal any systematic difference. This

indicates that the presence of a non-exponential stage does not affect the exponen-

tial stage of the damping. However, the detected damping profiles indicate that in

some cases the exponential fitting of the kink oscillation damping is not sufficient to

reproduce the whole damping profile. The amplitude of some oscillations remains

approximately constant for a significant period of time, but it has not been deter-

mined whether this corresponds to a slowly decaying Gaussian damping profile, or

a periodic driver sustaining a constant amplitude oscillation.
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The detected clearly non-exponential sections of the damping envelopes may

be better approximated by a Gaussian profile. If this is confirmed to be the case then

this is evidence for the Gaussian damping regime discussed by Pascoe et al. [2012].

This will be the subject of further study, as the detection of Gaussian damping

envelopes would allow new seismology to be performed, and comparisons with the

theoretical predictions to be made. Recently, the data from Table 2.2 was used in a

study by Montes-Soĺıs & Arregui [2017], where Bayesian inference was used to try

and distinguish between different damping mechanisms based on the damping time

to period ratios.

2.5.4 Amplitude dependence of the damping

The roughly triangular shape of the data cloud on the quality factor – apparent am-

plitude plane has a simple interpretation. The apparent amplitude is proportional

to the actual amplitude reduced by the angle between the LOS and the direction

of the oscillatory displacement. Thus, if several kink oscillations of the same dis-

placement amplitude are observed, but are randomly distributed with respect to

the LOS angle, the apparent amplitudes would range from zero (or the detection

threshold determined e.g. by the pixel size, or the loop intensity contrast with the

background), to the actual amplitude, for the oscillations displacing the loop in the

plane of sky. In other words, for a given value of the quality factor, the apparent

amplitudes of kink oscillations measured with randomly distributed LOS angles are

distributed in a horizontal stripe in the quality factor – apparent amplitude plane,

from zero to the actual amplitude. Fig. 2.8 shows that for higher quality factors the

highest apparent amplitudes are systematically lower. Thus, the triangular shape of

the data cloud clearly demonstrates the decrease in the quality factor with the am-

plitude. The quality factor dependence on the oscillation amplitude is approximated

by the power-law dependence with the exponent of ´1{2, however this is a by eye

estimate, and a more rigorous estimation of the scaling law requires more accurate

measurements and increased statistics. The physical mechanism responsible for this

dependence needs to be revealed.

The same reasoning is applicable to the dependence of the quality factor on

the apparent initial displacement amplitude. This dependence is more scattered

than the quality factor plotted against the oscillation amplitude, and there is no

clear dependence between the two parameters. The data from previous studies

is not included as measurements of the initial displacement were not as readily

available. The initial displacement and oscillation amplitude of kink oscillations

are different parameters, as the loop can oscillate around a new equilibrium after

the initial displacement [Zimovets & Nakariakov, 2015]. The difference between

the initial displacement and the observed amplitude could also be attributed to
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the excitation of leaky modes and higher harmonics, which was numerically found

by Terradas et al. [2007] who considered the excitation of kink oscillations by a

magnetic pressure pulse.

Thus, the main finding is the demonstration of the dependence of the kink

oscillation quality factor on the oscillation amplitude. This result indicates that

the damping mechanism depends upon the amplitude and hence is non-linear. The

dependence seems to be smooth, with a gradual decrease in the quality factor with

the amplitude, and does not have a clear break that would indicate the presence of

a threshold typical for shear-flow instabilities, such as KHI, as discussed in Section

1.4.4. However, the lack of break may be attributed to insufficient statistics, and

the use of a larger set of oscillatory events could change this conclusion. Recently a

qualitative similarity was noted between the results presented here and the results

of numerical simulations of non-linear kink oscillations presented in Magyar & Van

Doorsselaere [2016a].

2.5.5 Conclusion

The main findings are summarised as follows;

• The initial loop displacement prescribes the initial oscillation amplitude in

general.

• The period scales linearly with the loop length, as expected, and a kink speed

of Ck=(1300˘50) km s´1 is obtained, with the majority of the data points

lying in the range (800–3300) km s´1, following a Gaussian distribution.

• A linear scaling of the damping time with period is observed, and non-exponential

damping profiles have been detected.

• The quality factor of the oscillations was shown to be amplitude dependent.

In conclusion, a statistically significant number of individual kink oscilla-

tions has been analysed, and histograms of the measured parameters have allowed

insightful inferences to be made. Details of the distribution of amplitudes, periods

and loop lengths may be useful when considering the observational capabilities of

future instruments. In addition the scaling between different parameters has been

studied, and the damping behaviour has been characterised, both of which, after

further work, may allow seismological inferences and measurements to be made.
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Chapter 3

Coronal seismology with kink

oscillations in the era of

SDO/AIA

3.1 Introduction

In this Chapter the results of several studies are presented which utilise the examples

of decaying kink oscillations detected and analysed in Chapter 2. This includes

further analysis of the damping profiles, in Section 3.2, and then the application of

the seismological inversion given in Section 1.4.3. This was initially performed with

least squares fitting, in Section 3.3, and then extended with the use of Bayesian

inference in Section 3.4. Finally, the results of the seismological inversion, for one

loop, were compared to the results obtained by inferring the transverse density

profile of the loop from the transverse intensity profile. This method of inferring

the transverse density profile of coronal loops is extended to analyse a large sample

of coronal loops in the next chapter.

3.2 Damping profiles of coronal loops

As presented in the previous chapter, strongly damped standing kink oscillations

are frequently observed in coronal loops. The damping can be understood in terms

of resonant absorption, via which the wave energy is converted from bulk transverse

oscillations to localised, unresolved azimuthal Alfvén modes. The observed damping

time should be dependent on the loops density structure, and theory predicts two

possible damping profiles, as discussed in Sections 1.4.1 and 1.4.3, with the potential

presence of both profiles and a switch time between them. This motivates more

detailed analysis of the damping profiles observed in the catalogue of oscillations
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presented in the previous chapter. Encouragingly, many of the observations were

noted to appear non-exponential in nature, which will now be quantified.

3.2.1 Observations

Kink oscillation observations were selected from Table 2.2. A large number of events

from the catalogue are unsuitable for this study. Detailed investigating of the damp-

ing requires the loop to be accurately tracked for several cycles once the oscillation

begins, with a period of oscillation that remains relatively stable.

Time-distance maps for suitable events were created with the same SDO/AIA

EUV 171Å data analysed in the previous chapter by taking linear slits with a 5 pixel

width perpendicular to the oscillating loop and stacking the intensities along the slit,

averaged over the width to increase the signal-to-noise ratio, in time. As a more

careful analysis is required than in the previous study, one TD map selected by eye

is no longer used. A series of 100 slits were created for each loop, perpendicular

to an elliptical or linear fit of the loop axis, depending on loop orientation. An

example of a linear fit is seen in the bottom left panel of Fig. 3.1, and the other

three panels show elliptical fits. The displacement of the loop axis by the global

standing kink mode is greatest at the loop apex and decreases to zero at the loop

footpoints. Oscillations are therefore generally best measured near the loop apex,

though the particular details of the event such as line of sight effects can make a

measurement at the loop legs more suitable. The slit which maximised the clarity

of the TD map and the apparent amplitude of the oscillation was then chosen by

eye for further analysis. The active regions of four of the analysed loops, with the

fits of the loops axis plotted and the slits chosen for the analysis overplotted are

shown in Fig. 3.1.

Fig. 3.2 shows the TD maps for the selected oscillation events. From the

TD maps, the location of the loop axis (symbols with error bars) is identified by

fitting the intensity profiles of the vertical axis with a Gaussian profile. The fit is

carried out within a window around the loop of interest to avoid contamination from

other loops or bright features. The error for the loop centre position is determined

separately for each data point, according to the error reported by the Gaussian

fitting routine used. The damping behaviour of the kink oscillation is investigated

by fitting exponential and Gaussian envelopes to the time-series of the loop position

as described in the following section.

3.2.2 Damping profile analysis

Analysis is performed to determine which damping profile best describes the ob-

served decay of the chosen kink oscillations. Two limiting cases were predicted by

recent studies of resonant absorption, i.e a purely exponential damping profile and
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Figure 3.1: Four examples of the analysed coronal loops. The fit to the loop axis
is given by the red dashed line and the blue line shows the position of the chosen
slit. From left to right, top to bottom the loops are 43 4, 31 1, 32 1 and 40 10 (see
Table. 2.2). The labels at the top of the plots number the loops for discussion in
later sections of this chapter.
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Figure 3.2: Time-distance maps for the 6 chosen kink oscillations for damping profile
analysis. The slits used to produce four of them are shown in Fig. 3.1.
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Figure 3.3: Kink oscillation observations where the damping profile is better fit by a
Gaussian damping envelope than an exponential one. Left: the fitted position of the
loop axis as a function of time, with the sinusoidal fits overplotted with Gaussian
(blue lines) and exponential (red lines) damping envelopes. The χ2 values are given
for the two fits. Right: the absolute values of the extrema of the oscillations, with
the same fitted damping envelopes overplotted and the Gaussian and exponential
damping times given.
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Figure 3.4: As for Fig. 3.3 but for two cases where exponential damping profiles were
found to be favorable (top two panels) and one inconclusive case (bottom panel).
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a purely Gaussian damping profile, ignoring the possibility of a transition between

the two.

The data points for each kink oscillation were analysed by fitting the de-

trended oscillations with damped sinusoidal oscillations of the form

A sin pωt´ φq exp
`

´t2{2τ2g
˘

, (3.1)

for the Gaussian damping profile, and

A sin pωt´ φq exp p´t{τdq , (3.2)

for the exponential damping profile. The parameters A, ω, φ, and τ were determined

by a Levenberg-Marquardt least-squares fit with the data points weighted according

to their errors, as described in Section. 1.7.2. Here the background trend is found

by spline interpolation of the oscillation extrema, rather than including a polyno-

mial term in the fitting function, as it was found to better deal with the observed

background trends which vary with time. The accuracy of the two damping profiles

is quantitatively compared by calculating the χ2 values of the two fits. The fitted

values of the damping times τg and τd are given in the figures.

Figure 3.3 shows examples of oscillations for which a Gaussian envelope is

found to have a lower χ2 than an exponential envelope. The Gaussian profiles are

seen to describe the evolution of the oscillation more accurately, seen the right panels

of Fig. 3.3. This is the clearest for the first few cycles of the oscillation, which is

where the Gaussian and exponential profiles differ the greatest. For comparison

with these examples, Fig. 3.4 shows oscillations for which an exponential damping

envelope was found to give a better fit than a Gaussian envelope, and an inconclusive

case.

3.2.3 Discussion and conclusion

The Gaussian and exponential damping envelopes considered are both consistent

with damping due to resonant absorption, however distinguishing between them

for a given oscillation can provide seismological information about the transverse

density structure of the oscillating loop. It is demonstrated that in the majority of

the selected cases the Gaussian profile is as good as or better than an exponential

profile, which until now has typically been used to analyse observations.

Kink oscillations with a high signal quality were selected, which effectively

means cases with weak damping were selected. As presented in Section 1.4.3, reso-

nant absorption of the kink mode is weak if the density contrast and/or the inho-

mogeneous layer width are small. It should be noted some bias of the results due

the oscillations chosen is possible.
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The use of exponential and Gaussian damping profiles in this study was

motivated by recent theoretical studies of kink oscillation damping via resonant ab-

sorption. However, other mechanisms are capable of producing a non-exponential

damping profile, such as the non-linear effects discussed in Section 1.4.4 which may

cause the physical characteristics of the loop to evolve during the oscillations. A

search for signatures of these effects should be performed, especially when consider-

ing the potential scaling of the damping with amplitude presented in the previous

chapter.

3.3 Coronal seismology based on resonant absorption

In this section follow up work to the damping profiles study discussed above is

summarised. The seismological inversion shown in Section 1.4.3 for the generalised

damping profile (Gaussian with a switch to exponential after a certain time) was

applied to three of the loops, 43 4(loop 1), 31 1(loop2) and 32 1(loop3). The loops

are shown in Fig. 3.1. The fitting of the damping profile is updated to include the

switch between the Gaussian and exponential regimes, as the aim is to determine the

time at which this switch occurs, ts, as it provides seismological information which

makes the seismological inversion well posed. These fits are shown in Fig. 3.5 by

the green curves. For comparison fits with purely Gaussian (blue) and exponential

(red) damping profiles are plotted. In the left panels the fitted switch time (ts) is

represented by the dashed line.

In Fig. 3.6 the seismologically determined values of ε (the width of the in-

homogeneous layer) and ρ0{ρe (the density contrast) and their uncertainties are

plotted as the red points. In addition the inversion curves and their uncertainties

are plotted, which would be obtained if only exponential damping is considered. The

corresponding density profiles, and the resulting EUV LOS intensity are plotted in

the right hand panels, discussed below. The full set of seismologicaly estimated

values are given in Table 3.1. One drawback of this approach is that the absolute

value of the density needs to be estimated for the Alfvén speed and therefore the

magnetic field to be obtained. However the density contrast no longer needs to be

estimated, which reduces the number of free parameters in the inversion performed

based on the fitted parameters.

In Fig. 3.7 the seismologically determined density profiles are forward mod-

elled to the corresponding intensity for comparison to the observed intensity profile.

This is done by constructing the 2D density cross-section of the loop based on the

obtained density profile parameters, assuming it is perfectly circular. The density

squared is then integrated in one spatial direction to obtain an estimate for the LOS

intensity profile. The intensity from the predicted density profile is added to the
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fitted background trend and overplotted on the actual data points. Considering the

isothermal and cylindrically symmetric approximations made there is relatively good

agreement between the two intensity profiles, which is encouraging in the context

of the seismology performed.
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3.4 Coronal Seismology using Bayesian inference

The seismological study presented in the last section was updated to employ the

Bayesian inference and model comparison approaches discussed in Sections 1.7.3

and 1.7.4. This allowed additional parameters to be included in the fitted model,

and their relevance in interpreting the data to be tested. This approach is also used

in the next section as well as the next chapter.

The seismological analysis was updated to include additional physical ef-

fects. In particular the analysis was modified to describe a time-dependent period

of oscillation, additional longitudinal harmonics of the kink mode, and the decayless

regime of kink oscillations, which as described in the introduction, can be detected

in many coronal loops. The procedure for describing the background trend is also

updated. The method is based on spline interpolation and is better at describing the

dynamical background behaviour exhibited in these observations. The new method

is built directly into the model function, as opposed to the detrending made prior

to the fitting in Section 3.3. Bayesian analysis and MCMC sampling are used to

investigate the dependence of results on model parameters and perform quantitative

model comparison.

In Fig. 3.8 the oscillation for loop 1 is shown, with the different panels showing

different aspects of the analysis. It is described in detail in the figure caption. In

the top left panel the data and most credible model and its confidence interval are

plotted. It can be seen that the model describes the observational data well. The

wavelet plot in the top right panel and the detrended time series in the middle

left show that the contribution of the additional longitudinal harmonics (up to the

third) predicted by the model is not significant for this particular loop, however in

the corresponding paper [Pascoe et al., 2017a] cases with more significant amplitude

in the higher harmonics are presented. The major result of this work is presented

in the middle right panel. These two density structure parameters are uniquely

determined for the first time seismologically. The red error bars represent the 95%

credible intervals determined from the histograms below.

The Bayes factor used in this work compares how well a particular model

describes the data considering the whole explored parameter space, whereas a good-

ness of fit test, for example χ2, compares only the best fits. This was a limitation of

the work presented in Section 3.2. Morton & Mooroogen [2016] apply an alternative

approach to loop oscillation model comparison using the Kolmogorov–Smirnoff test,

for some of the same oscillation events.

For loop 1, the favoured model was one including the additional longitudinal

harmonics but without dispersion (i.e the period ratios are fixed to integer values).

This gave estimates of ε = 1.15`0.72´0.35 and ρ0{ρe = 1.71`0.22´0.19, in agreement with the

values obtained in the previous section (see Table 3.1). For loop 2 the same model
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Figure 3.5: Left: least-squares fits of the time series of the fitted loop centre po-
sition. In blue is the fit with a purely Gaussian envelope, in red with a purely
exponential envelope and in green the generalised damping profile which includes
both regimes. The dashed line corresponds to the fitted background trend and the
dashed-dotted line marks the start of the oscillation. Right: the extrema of the
oscillations detrended using the fitted background trend. The colour scheme for the
fits is the same as for the left panel. The dashed lines denotes the fitted value of ts,
the time of the switch between the Gaussian and exponential damping profiles.
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Figure 3.6: Left: seismologically determined values of ε and ρ0{ρe and their un-
certainties (red points). The solid line corresponds to the inversion curve obtained
by using the exponential damping time alone, and the dashed lines correspond to
the error bars. Right: density profiles for the transverse density structure obtained
seismologically. The corresponding LOS intensity for that density profile is shown
by the dashed curves.
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Figure 3.7: The seismologically determined transverse structure of the of the coronal
loops forward modelled to the corresponding EUV emission (blue). The observed
transverse intensity profile is given by the crosses. The green dashed curves corre-
spond to a Gaussian fit to the intensity profile.

was favoured, giving ε = 0.70`0.21´0.15 and ρ0{ρe = 1.93`0.24´0.18. For loop 3 the model

with a decayless component and the effect of stratification on the period ratios was

favoured. From this values of ε = 0.42`0.18´0.16 and ρ0{ρe = 3.49`6.61´0.90 were obtained,

which are significantly different from those found in the previous section. These

differences in the obtained transverse density structure of the three loops analysed

could be due to differences in their respective formation process within the active

regions, or differences in their evolution over time prior to being observed.

The improvements to the physical model combined with the use of Bayesian

inference and MCMC produces improved estimates of model parameters and their

uncertainties. By allowing the period of oscillation to vary in time the time series

used for analysis in Section 3.3 can be extended. The consideration of additional

longitudinal harmonics aimed to account for the non-harmonic shapes of some of the

oscillations. It can also provide additional seismological information from the ratios

these periods, as described in Section 1.4.3. Here the effects of density stratification

and loop expansion are also considered, which were not included in the previous

analysis. The results of the model comparison show a lack of evidence for interpret-

ing these period ratios in terms of either of these effects however. The exception

is for Loop #3 (not shown here), for which there was very strong evidence for the

stratified model, or any other model which describes P1{nPn ă 1.

3.5 Coronal loop density profile inference

In the work briefly summarised in the above two sections, the transverse density

structuring of coronal loops was calculated for the first time using the general damp-

ing profile for kink oscillations, with both least-squares fitting and Bayesian infer-

ence. The seismological method used assumes the density profile of the coronal

loop has a linear transition between the interior and exterior density. How well

this density profile accounts for the observed intensity profile of the loop will now

be considered, and how the transverse intensity profile may be used in conjunction
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Figure 3.8: Analysis for Loop #1 using the oscillation model without dispersion.
Top left: the fitted loop position time series (points) and the most credible model as
determined by the Bayesian inference (green line), which includes the background
trend determined by spline fitting (blue line). The red shaded region shows the 99%
credible intervals for the loop position predicted by the model, including fitted noise
σY . The dotted and dashed lines show the start of the oscillation, and the switch
time of the first harmonic respectively. Top right: wavelet spectrum of the loop
position time series with colours representing the normalised spectral amplitude.
The three dashed lines show the periods of oscillation in the model, determined by
the Bayesian inference. Middle left: detrended loop position (symbols) with the
first (green), second (blue), and third (red) longitudinal harmonics. Damping pro-
file switch times for these harmonics are plotted as the dashed lines in the same
colour. Middle right: the posterior 2D histogram of the transverse density profile
parameters, determined from the oscillation damping envelope. The red bars are
based on the median values and the 95% credible intervals, shown in the histograms
below. Bottom panels: the posterior histograms for the two density profile param-
eters, the solid curves are fits using the exponentially modified Gaussian function.
The dashed lines are the 95% credible intervals, used to produce the error bars in
the 2D histogram above. The dotted lines are the median values.
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with the seismological techniques as well as test them.

The relationship between the density profile of a coronal loop and its ap-

pearance in EUV images such as those produced by SDO/AIA is complicated and

has motivated numerous studies [e.g. De Moortel & Bradshaw, 2008; Owen et al.,

2009; Taroyan & Bradshaw, 2014; Yuan & Van Doorsselaere, 2016]. Some of the

inherent difficulties were discussed in Section 1.7.1. The emission by plasma at a

particular EUV wavelength depends on the density and temperature of the plasma

and may include contributions from multiple spectral lines. Additionally, since coro-

nal plasma is optically thin, multiple structures along the LOS of the observations

will appear superimposed. The final observed signal also depends on properties of

the imaging instrument. A detailed general introduction to the transverse density

profile of coronal loops is given in the next chapter, in Section 4.1.

3.5.1 Density profile inference

In this section the process for obtaining the transverse density profile parameters

from the observed transverse intensity profile is detailed, in contrast to the seis-

mology using the damping of the oscillations in the previous sections. Isothermal

and optically transparent approximations are made, therefore the intensity of EUV

emission is proportional to the square of the plasma density integrated along the

line of sight. The loop is also assumed to be stationary during the exposure of each

frame. These assumptions were applied in Section 3.3 to compare the seismolog-

ically determined density profile to the observed intensity profile. Four different

models for the transverse density profile are considered. The generalised Epstein

profile, the step function, the linear transition region profile, and a Gaussian profile.

Bayesian analysis, as described in Section 1.7.3 and 1.7.4 is used for comparison of

the different density profile models.

In general, coronal loops are described as overdense, i.e they have an internal

density ρ0, which is greater than the external density ρe. The minor radius is R. The

step function profile (Model S), is the simplest model of the coronal loop density

profile. The original analytical study of magnetohydrodynamic waves in a cylindrical

loop was performed with this transverse profile Edwin & Roberts [1983]. For a loop

with a cylindrically symmetric cross-section and radial coordinate r, the transverse

density profile for model S is given by

ρ prq “

#

A, |r| ď R

0, |r| ą R
, (3.3)

where A “ ρ0 ´ ρe is the loop density enhancement.

85



The generalised symmetric Epstein profile (Model E) is defined as

ρ prq “ A sech2

ˆ

|r|

R

˙p

, (3.4)

which describes a smooth profile with a steepness determined by the parameter p.

The linear transition layer profile (Model L) is given by

ρ prq “

$

’

’

&

’

’

%

A, |r| ď r1

A
´

1´ r´r1
r2´r1

¯

, r1 ă |r| ď r2

0, |r| ą r2

, (3.5)

where r1 “ R p1´ ε{2q, r2 “ R p1` ε{2q, and ε “ l{R is the transition layer width

l normalised to R and defined to be in the range ε P r0, 2s. The use of the linear

transition layer profile in seismology is motivated by the availability of the full

analytical solution for the general damping envelope [Hood et al., 2013], and used

in the previous sections.

A Gaussian density profile (Model G) [e.g. Aschwanden et al., 2007] is also

considered, given by

ρ prq “ A exp

ˆ

´
r2

2R2

˙

. (3.6)

Examples of the four model profiles are given in the right panel of Fig. 3.9, with

the magnitude of all parameters (A, R, p, ε) taken to be unity. The effect of the

instrumental point spread function (PSF) is included for the AIA channel used,

which effectively applies a Gaussian blur to the data, and the response function can

be ignored due to the isothermal approximation.

Loop 3 was chosen for this analysis as it has the largest radius, R « 4 Mm, of

the coronal loops for which seismology was performed in the work briefly presented

in the last two sections. The selected loops transverse intensity profile consists of

44 data points, and the 2D density profile is calculated at ten times that resolution

as convergence tests indicated consistent results for multiplication factors of ě 7.

The model intensity profile is then interpolated onto the original transverse coor-

dinates and compared with the observational data D using the Bayesian inference

and MCMC methods. Calculating the Bayes factor Bij allows quantitative compar-

ison of the four density profile models, as described in Section 1.7.3 using the given

evidence thresholds.

3.5.2 Results

The seismologically determined density profile parameters for the loop of interest

calculated in the work summarised in Section 3.4 are ρ0{ρe “ 2.96`1.00´0.66 and ε “

0.49`0.23´0.12, where the parameter ranges correspond to the 95% credible intervals.
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Each intensity profile is analysed using the four models. The loop contrast

as well as the apparent loop radius improve towards the loop top, therefore the

analysed slits are also close to the loop top. Fig. 3.10 and Table 3.2 summarise

the results for one particular slit (slit 10). The left panel of Fig. 3.10 shows the

observational intensity profile (symbols) and the profile for Model L (blue line).

The shaded region is the 95% confidence interval for the model. The right panel

shows the loop density profiles (using median values of sampled parameters) for each

of the four models and indicates that models E and L produce very similar results.

The top two panels of Fig. 3.11 show the dependence of ε and R with height

for Model L. The loop is found to expand with height, and ε remains approximately

consistent with the seismological estimate (dotted lines). The value of ε inferred from

the intensity profile is less well constrained than the seismological estimate. The

right panel shows the Bayes factors calculated for model comparison. For lower slits

(with smaller R) there is no statistical evidence to prefer Model L or E over Model

S, indicating the effects of LOS integration over a circular cross-section and the PSF

are sufficient to account for the smoothness of the loop intensity profile. However,

the evidence in favour of the two profiles with transition layers greatly increases over

the step function for higher slits surpassing the requirements for “strong” (Kij ą

6) and “very strong” (Kij ą 10) evidence. This can be understood as the loop

expansion resulting in an effective higher resolution to resolve the inhomogenous

layer as the slits move up the loop axis. For this data, there is no statistical evidence

to distinguish between Models L and E (|KEL| À 2), consistent with these models

producing very similar results. Models L, E, and S all have very strong evidence

over Model G. For this loop a density model with a transition region (L or E)

provides a better account of the intensity profile than a profile without a transition

region (S). On the other hand, the transition region is sufficiently localised that

there is greater statistical evidence for Model S than the fully inhomogeneous case

of Model G.

3.5.3 Discussion and conclusion

The two transverse density profiles with finite transition layers are found to be

preferable to the step function profile, which supports the interpretation of kink

mode damping being due to mode coupling. The estimate of the transition layer

width using forward modelling is consistent with the seismological estimate.

For wide loops, that is those observed with sufficiently high spatial resolution,

this method can provide an independent estimate of density profile parameters for

comparison with seismological estimates. In the ill-posed case of only one of the

Gaussian or exponential damping regimes being observed, it may provide additional

information to allow a seismological inversion to be performed. Alternatively, it may
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Table 3.2: Inferred parameters for the density profile models Mi for slit 10.

Mi A x0 (Mm) R (Mm) ε, p KiS KiG

L 0.72`0.04´0.04 11.5`0.1´0.1 4.51`0.12´0.13 0.59`0.14´0.15 20.6 46.3

E 0.72`0.04´0.04 11.5`0.1´0.1 4.68`0.13´0.13 3.85`1.69´0.94 19.6 45.3

S 0.66`0.04´0.04 11.5`0.1´0.1 4.47`0.15´0.15 – – 25.6

G 1.06`0.14´0.11 11.7`0.3´0.3 3.68`0.59´0.45 – ´25.6 –
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Figure 3.9: Left: SDO/AIA 171Å image of the analysed loop, observed at 08:58:00
UT on 30 May 2012. The blue lines indicate the locations of the slits used to generate
transverse intensity profiles. Right: arbitrary transverse density profiles for the four
models. These are; Model S (dotted), Model L (solid), Model G (dashed) and Model
E (dashed-dotted).

be used to obtain structuring information for loops that do not oscillate, or to reveal

any time-dependent variations in the cross-sectional profile which may be associated

with non-linear effects, potential evidence for which was presented in Section 2.4. In

the next chapter this method is applied to a large sample of coronal loops, aiming

to establish what transverse density profile parameters are typically obtained and

which density profile model is the most applicable.
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Figure 3.10: Left: SDO/AIA 171Å EUV intensity (points) across the loop described
by Model L (blue line) which includes a background trend described by a second
order polynomial. The shaded regions represent the 99% confidence intervals for
the intensity predicted by the model, with (red) and without (blue) modelled noise.
The vertical dotted and dashed lines denote x0 and x0˘R, respectively. Right: the
inferred loop density profiles for Models L (solid), E (dashed), S (dotted), and G
(dash-dot).

Figure 3.11: Top: normalised layer width ε (left) and loop radius R (right) estimated
by forward modelling, as a function of length along the loop. The symbols show
the median values while the solid curves denote the 95% credible interval. The
horizontal dotted lines correspond to the seismologically estimated values. Bottom:
the Bayes factors KLS (solid), KES (dashed), KEL (dotted), and KLG (dash-dot)
as a function of length along the loop.
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Chapter 4

The transverse density

structure of coronal waveguides

4.1 Introduction

In this chapter a statistical study of inferred transverse density profiles of coronal

loops is performed using EUV imaging data from SDO/AIA. 233 coronal loops are

analysed, observed during 2015 and 2016. Three models for the density profile are

considered; the step function (Model S), the linear transition region profile (Model

L), and a Gaussian profile (Model G). Bayesian inference is used to compare the

three corresponding forward modelled intensity profiles for each loop.

The solar corona is highly structured, due to the magnetic field that pen-

etrates it from the lower atmosphere. The coronal plasma appears to fill in the

magnetic flux tubes in certain locations, normally within active regions, forming the

curved coronal loops and threads observed by EUV imagers. The precise nature

of coronal loop formation, and their transverse and longitudinal structure is still

debated, see Section 1.1.4. The transverse density structure of coronal loops is cur-

rently of high importance, as outlined in Section 1.4.1 and 1.4.3, and this discussion

is extended below.

There have been multiple studies of the transverse structure of coronal loops

with each generation of EUV imagers [e.g. Bray & Loughhead, 1985; Aschwanden &

Nightingale, 2005; Aschwanden & Boerner, 2011; Peter et al., 2013]. The majority

of such studies note that the transverse intensity profile of the loops resembles a

Gaussian peak, which is used to estimate the loop position, width and intensity

contrast. To infer the density structure from these intensity profiles the relationship

between the density profile of a coronal loop and its appearance in EUV images

needs to be considered, some relevant discussion was given in Section 1.7.1. The

emission in a particular spectral range in the EUV band depends on the plasma
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density and temperature. Additionally, coronal plasma is optically thin and so mul-

tiple structures along the observational Line Of Sight (LOS) will be superimposed

in the observations. Finally, the characteristics of the instrument should also be

taken into account. Coronal loops are generally considered to consist of a core of

uniform density with an inhomogeneous layer surrounding it where the density tran-

sitions from the internal to external value. Using TRACE data (see Section 1.6),

Aschwanden et al. [2003] measured the thickness of the non-uniform layer for multi-

ple loops based on a density profile with a sinusoidal transition layer and a uniform

core, this density profile was capable of reproducing the observed intensity profile.

Aschwanden et al. [2007] performed a large scale study of the transverse structure of

loops, using intensity profiles based on step function and constantly varying density

profiles.

The transverse structure of coronal loops can be determined from, and is

integral to, the study of the oscillations they exhibit. Kink, or transverse, oscillations

of coronal loops are one of the most intensively studied examples of MHD waves.

These waves were introduced in detail in Section 1.4. Large scale statistical studies

of kink oscillations have recently been performed (see Zimovets & Nakariakov [2015]

and Chapter 2). This work led to the confirmation of the presence of non-exponential

damping envelopes of some of the oscillations studied, which were further analysed

in 3.2. This can be attributed to the damping profile proposed in Pascoe et al. [2012,

2013a], which has subsequently been used to perform seismology, including the use

of Bayseian model comparison, presented in Sections 3.3 and 3.4. In Section 3.5 the

result of this seismology was compared to density profiles estimated from the EUV

intensity for one coronal loop.

The transverse density structure can also play an important role in under-

standing and detecting non-linear effects. In the studies mentioned in Section 1.4.4

the transverse structure is perturbed by the non-linear effects, which is of theoret-

ical and observational significance. In Section 2.4 the study of kink oscillations of

coronal loops showed a negative correlation between the quality factor of the oscil-

lations and the amplitude, suggesting the presence of non-linear effects causing real

or apparent additional damping. A similar dependence was found in a numerical

study by Magyar & Van Doorsselaere [2016a], in which non-linear mechanisms such

as KHI were found to modify the damping of the kink mode significantly at large

amplitudes.

The specific shape of the transverse non-uniformity is also responsible for

the geometrical dispersion of the fast magnetoacoustic waves guided by the loop,

which determines the specific shape of the quasi-periodic rapidly propagating wave

trains, as explored in Section 1.5. These wave trains have recently been detected

in the corona with the EUV imagers and the full realisation of their seismological
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potential requires the knowledge of the transverse profile of the waveguiding plasma

non-uniformity. Observational and numerical results relating to these waves will be

discussed in the Chapter 5.

In understanding the mechanisms and effects discussed above, as well as the

seismology which is based on them, it is important to understand the transverse and

longitudinal loop structure, combining knowledge of the formation and structure of

coronal loops and the oscillations they exhibit. In this chapter a sufficiently simpli-

fied forward modelling procedure is considered, allowing which transverse density

profile has the most evidence for individual loops to be tested, based on the observed

intensity profile using Bayesian inference. In addition, the most probable structur-

ing parameters are obtained for each density model. This chapter is organised as

follows; in Section 4.2 the observations and data are described, in Section 4.3 the

forward modelling and model comparison methods are outlined, in Section 4.4 the

results are presented, and the discussion and conclusions are given in Sections 4.5

and 4.6.

4.2 Observations

For this study any time dependent evolution of the loops is neglected. Therefore

single AIA images at 171, 193 and 211 Å are used. One set of images was down-

loaded for each week between January 2015 and September 2016. Each image was

plotted, and loops or threads which appeared monolithic and had a well contrasted

segment were identified. This may be an individual thread (or strand), which is

part of a larger loop bundle, as long as the width of the thread is sufficient for the

cross–sectional structure to be resolved, which was determined subjectively by eye.

Two points were selected by eye either side of the loop at a position which minimised

background contamination from other structures and maximised the intensity con-

trast. The intensity was extracted along a line connecting these two points, and was

averaged over a width of 5 pixels. The uncertainty and noise on these intensity pro-

files are considered to be unknown and were inferred during the analysis described

below. This process resulted in 233 loops for further analysis.

The sample of loops is not unbiased as loops or threads with a sufficient width

to be well resolved and which had no visible sub-structure were selected. Higher,

or longer, coronal loops are under sampled, due to the increased noise and reduced

intensity contrast making them unsuitable for analysis.

It was found that the correlation between the loops intensity profile at 171

Å and the other two wavelengths was low in general, implying that the structures

studied are not generally multi-thermal over the temperatures sampled by the cho-

sen AIA bands (which does not exclude them being multi-thermal within a nar-
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rower temperature range, or threads with different peak temperatures that are not

co-spatial). In general, it did not appear that the intensity profiles at 193 and 211

corresponded to the hotter outer layer counterpart of a cooler core seen in 171, which

is often assumed to be the case in forward modelling [e.g. Magyar & Van Doorsse-

laere, 2016b; Antolin et al., 2016]. For this reason the analysis is not extended to

the other wavelengths, and this should be the subject of further study.

4.3 Method

4.3.1 Constructed intensity profiles

In this study three models for the transverse (cross-sectional) density profile of the

coronal loops are considered; the step function profile, the transition layer profile,

and the Gaussian profile, as described and motivated in Section 3.5, and given by

equations 3.3 – 3.6. The generalised Epstein profile is not used as the two limits

of this profile are well represented by the transition layer profile and the Gaussian

profiles. In Section 3.5 it was found that the advantage of the Epstein profile, over

the layer profile, as reflected in the Bayes factor, was negligible. Examples of the

three model density profiles are given in the right hand panels of Fig. 4.1 for three

of the analysed loops. The use of the isothermal approximation allows the intensity

profile to be calculated as the square of the density integrated along the LOS (i.e

over a cylindrical cross-section). The loop intensity profile is calculated numerically

by constructing a 2D density profile for the radial profiles given in 3.3 – 3.6 with

r “

b

px´ x0q
2
` py ´ y0q

2, where x is the coordinate transverse to the loop, with

the loop centre at x0, and y is the coordinate along the LOS.

In addition to the contribution from the loop the density profile also includes

a background component which is described by a second order polynomial. This is

included to model the emission from the background plasma and other structures

along the LOS. The instrumental PSF is then simulated using a Gaussian kernel

with σ “ 1.019 pixels, corresponding to the 171Å SDO/AIA channel [Grigis et al.,

2013]. The 2D density profile is constructed with 10 times the resolution of the

observed intensity profile. The final model intensity profiles (L, G and S) are then

interpolated onto the observational coordinates (after the above procedure has been

applied) and compared with the observed intensity profile using the method outlined

below.

4.3.2 Bayesian inference

The same model comparison procedure based on Bayesian inference and Markov

chain Monte Carlo (MCMC) sampling is used, described in Section 1.7.3 and applied

to a coronal loop intensity profile in Section 3.5.
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Figure 4.1: Examples of loops for which Models L (top), G (middle), and S (bottom)
were found to best describe the data. Left: SDO/AIA 171 Å image of an analysed
loop. The blue line indicates the location of the slits used to generate the transverse
intensity profiles. The white box and inset show a magnified region around the loop.
Middle: 171 Å EUV intensity profile (symbols) across the selected loop. Model L,
G or S (blue line) is plotted, with the model values being the median values from
the corresponding probability distributions. The shaded areas represent the 99%
confidence region for the intensity predicted by the model, with (red) and without
(blue) modelled noise. The vertical dotted and dashed lines denote x0 and x0 ˘R,
respectively. Right: The inferred density profiles for Models S (solid), L (dashed)
and G (dotted).
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Figure 4.2: First column: histograms of the Bayes factor (Kij) comparisons of
Models L, G and S. Second column: histograms of the model probabilities (Pi)
calculated from the evidence values for each model.
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For this procedure priors need to be selected for each of the parameters.

An initial least squares fit is performed on the intensity profiles using the forward

modelled intensity profile from density profile L. This allows guess parameters to

be obtained, allowing suitable limits on the priors to be obtained for the x position,

radius and intensity contrast of the loop and the background polynomial. For the

layer profile 0 ď ε ď 2 is prescribed according to the definition of the density

profile. The prior probability distributions of all the above parameters are taken to

be constant within the prescribed bounds.

Any two models Mi and Mj may be quantitatively compared using the Bayes

factor, defined in Equation 1.55 as

Bij “
P pD|Miq

P pD|Mjq
, (4.1)

where the evidences, P pD|Mq are calculated as described in Section 1.7.3. Evidence

thresholds are defined with respect to the natural logarithm of this factor;

Kij “ 2 lnBij , (4.2)

where values of Kij greater than 2, 6 and 10 correspond to “positive”, “strong”, and

“very strong” evidence for model Mi over model Mj , respectively. Negative values

indicate evidence for model Mj subject to the same thresholds. All permutations of

the Bayes factor for Models S, L and G are considered.

For the purpose of prescribing which model is favoured for each intensity

profile, and to what degree, the probability of a given model is defined using nor-

malisation of the evidence values

Pi “
Ei

ES ` EL ` EG
, (4.3)

where Pi and Ei are the probability and evidence for a given model and ES , EL,

and EG are the evidence values for Models S, L and G as given by Equation 1.56.

To plot intensity profiles for the models, and plot the distributions of the

parameters of interest, estimates and uncertainties for the model values are obtained

by taking the median and 95th percentile of the posterior probability distributions

for a given parameter.

4.4 Results

4.4.1 Model Comparisons

233 coronal loops were analysed using the method described in Section 4.3, obtaining

Bayes factors, Kij , and the probability of each model, Pi, for each loop. Three
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examples are shown in Fig. 4.1. The top row shows a loop for which Model L was

favoured. The corresponding Bayes factors and model probabilities are KLS=32.3,

KLG=26.6, KGS=5.7 and PL=1.00, PG=0.00, PS=0.00. On the left the slit position

is plotted in blue, with a close up of the loop inset. The middle panel is the intensity

profile (symbols), and Model L (blue line), defined using the medians of the returned

probability distributions for each parameter. The shaded regions correspond to the

99 % confidence levels for the intensity profile with and without the modelled noise

(red and blue respectively). On the right the returned density profiles for Models S

(solid), L (dashed) and G (dotted) are plotted.

The middle row shows a loop for which Model G was favoured. The corre-

sponding Bayes factors and model probabilities areKLS=46.5, KLG=-13.5, KGS=60.0

and PL=0.01, PG=0.99, PS=0.00. The bottom row shows a loop for which Model S

was favoured. The corresponding Bayes factors and model probabilities are KLS=-

2.29, KLG=16.5, KGS=-18.4 and PL=0.24, PG=0.00, PS=0.76. It should be noted

that this loop has the smallest minor radius, R, and therefore the lowest spatial

information.

In the left column of Fig. 4.2 histograms of the Bayes factors KLS , KGS and

KLG are plotted. The values of KLS are seen to be largely positive, indicating that

Model L is almost always a better model for the density profile of the coronal loops

analysed than Model S, subject to the assumptions made. The values of KGS are

more evenly distributed about zero, indicating that the use of Model G over Model

S is not always justified, however there is strong evidence for it in many cases.

Finally, the values of KLG are also distributed about zero, with a slight bias to

positive values, indicating many loops show strong evidence for either of the profiles

over the other.

These results are better quantified by considering the evidence thresholds

stated in Section 4.3. These are summarised in Table 4.1 for KLS , KLG and KGS .

Each permutation of the Bayes factor is included, with the main result being that

in 47 % of cases there is very strong evidence for Model L over Model S and in 45

% of cases very strong evidence for Model G over S.

Thresholds can be used to determine which of the three models is favoured

for each loop, and how strongly. In Table 4.2 percentages of loops falling into each

evidence threshold for each model are listed. For a loop to be counted for a given

model i and threshold, its Bayes factor for the comparison to the other two models,

Bij and Bik must be greater than the threshold. In this case there is a competition

between models, so only 5 % of loops have very strong evidence for Model L or

G over both other respective models. The probabilities calculated for each model

for each loop, Pi, can be summed to show how the evidence is distributed between

the three models. These values are 101.5, 99.4 and 32.1 for Model L, G and S
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Table 4.1: Percentages of coronal loop intensity profiles falling into three evidence
thresholds for each permutation of the Bayes factor for Models L, G and S.

Kij >2 Kij >6 Kij >10

KLS 75 % 58 % 47 %
KSL 4 % 0 % 0 %
KGS 65 % 53 % 45 %
KSG 25 % 25 % 12 %
KLG 42 % 24 % 15 %
KGL 32 % 12 % 5 %

Table 4.2: Rows 1–4: percentages of coronal loop intensity profiles falling into three
evidence thresholds for each density model. For a loop to be counted for a given
model and threshold it’s Bayes factor from comparison to both other models, Kij

and Kik, must be greater than that threshold. Row 5: summed probability values
(Pi) for each density model, showing how the evidence is distributed between the
three models for the 233 analysed loops.

L G S

>0 44 % 43 % 13 %
>2 25 % 32 % 4 %
>6 8 % 12 % 0 %
>10 5 % 5 % 0 %
ř

Pi 101.5 99.4 32.1

respectively, given in Table 4.2. This again shows the similarly strong evidence for

Models L and G.

The right column of Fig. 4.2 shows histograms of PL, PG and PS . The

distributions of PL and PG show a significant number of cases where the respective

probabilities are greater than 0.5, indicating that the corresponding density profile

is the favoured model. The distribution of PS shows that the step function density

profile was unable to produce the observed intensity profile for the vast majority of

cases.

4.4.2 Parameter dependencies

The left panel of Fig. 4.3 shows histograms of ε for Model L for the different thresh-

olds of KLS and KLG given in Table 4.2 (red to orange), and with no threshold

(grey). These values correspond to the median values from the probability distri-

butions of the parameter. It can be clearly seen that adding the threshold removes

the cases where Model G was favoured (corresponding to a higher ε for Model L),

shifting the distribution to lower values. The cases where Model S was favoured

are also removed for the higher thresholds, removing the lower values of ε. In the
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Figure 4.3: Left: histograms of the normalised layer width ε for the combined
thresholds of KLS and KLG given in Tab. 4.1. Right: the normalised layer width,
ε, plotted against the loop minor radius for Model L, RL.

Figure 4.4: Comparison of the loop minor radius determined by the three models.
Top left: distribution of the median radii from Model S, RS . Top right: the loop
radii from Model L, RL, plotted against RS . Bottom: The loop radii from Model
G, RG, plotted against RS . The blue lines correspond to RL=RS and RG=RS
respectively. The error bars correspond to the 95th percentile.
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Figure 4.5: Top left: Bayes factor KLS plotted against loop radius RL. Top right:
Bayes factor KGS plotted against loop radius RG. Bottom: Bayes factor KLG

plotted against loop radius RL.

100



right panel of Fig. 4.3 ε is plotted against the radius for the layer model, RL, and

shows no correlation. The values of RL also correspond to the median values of the

probability distribution.

The top left panel of Fig. 4.4 shows the distribution of the radii for Model S,

RS . This shows that the sampled loops have radii peaking at 2 Mm with a number

of cases with higher radii. The top right panel plots RL against RS , where the blue

line corresponds to RL=RS and the bottom panel plots RG against RS , where the

blue line corresponds to RG=RS . This shows that despite the evidence values for

the different models varying the radii for the different models remain within error.

It can be seen that Model G slightly overestimates the radius compared to S and L.

In Fig. 4.5 KLS , KGS and KLG are plotted against RL, RG and RL respec-

tively, showing that the spread of Bayes factors increases with loop radius due to

the increased spatial information. It can also be noted that KLS is largely positive,

whereas KGS is more evenly split between positive and negative values, but with

higher values of both. KLG is also more evenly split between positive and negative

values, but with the highest evidence values for Model L (positive KLG).

4.5 Discussion

The results show that in the majority of cases there is evidence for a density profile

with an inhomogeneous layer, and in the majority of loops selected there is enough

spatial information to constrain the size of the inhomogeneous layer, or note a con-

tinually varying profile being preferred. The existence of this inhomogeneous layer

between the high density core and lower density background is a necessary condi-

tion for resonant absorption to occur. It is therefore crucial to the interpretation of

transverse loop oscillations in terms of kink oscillations damped by the coupling to

Alfvén waves inside the inhomogeneous layer, and hence the validity of any seismo-

logical calculations based on this interpretation, such as those discussed in Section

1.4.3 or presented in Chapter 3.

The three cases in Fig. 4.1 highlight how the different density profiles con-

sidered behave for different loops. For the case where Model L is favoured Model S

sets the radius to occur halfway through the inhomogeneous layer and has a corre-

spondingly reduced density contrast. Model G overestimates the width and height

of the density profile to match the gradient in the layer of Model L. For the case

where Model G is favoured Model L reproduces the profile well by minimising the

size of the homogeneous core. For the case where Model S was favoured Model

L matches the profile by minimising the size of the inhomogeneous layer. Model L

tends to Model S in the limit εÑ 0, and so for these cases the additional parameter,

i.e. ε, is redundant and so model S is naturally preferred in terms of the Bayesian
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evidence.

From the results it can be seen that despite Model G being favoured strongly

in some cases Model L is the most general as it can reproduce both Model S and

G satisfactorily, while providing additional information where there is evidence for

an inhomogeneous layer and homogeneous core. This is encouraging for seismology

being performed with Model L (as performed in Chapter 3), which is the only density

profile for which the full analytical solutions are known for damping via resonant

absorption [Hood et al., 2013]. However, the many cases in which there is evidence

for very large transition layers (or Gaussian density profiles), the thin boundary

approximation used would no longer hold. For finite inhomogeneous layers, the

damping rate (for the exponential damping regime) is modified by up to 25 % in

comparison with the thin boundary approximation [Van Doorsselaere et al., 2004].

This may also have implications for the damping and dissipation of the Alfvén

waves generated via the resonant absorption of kink fast magnetoacoustic waves

(see Section 1.4.1). The transverse Alfvén speed profile associated with the density

profile may vary both the energy dissipation rate and its spatial distribution [see

discussion in Pagano & De Moortel, 2017].

The tables and histograms of the Bayes factors Kij and probabilities Pi show

that there are a similar number of cases where Model L or G are favoured over the

other two, with many extending into the “very strong” evidence threshold. From

the bottom panel of Fig. 4.2, it can be seen that PL is evenly distributed compared

to PG, which is more confined to low and high values, reflecting the higher generality

of Model L as discussed above.

From the histogram of ε the distribution without a threshold (grey) shows

that the loops analysed generally have large or continuous inhomogeneous layers

(where Model G was favoured), in contrast to the typically small boundary layers

considered in numerical modelling. For the first two thresholds the distribution then

centres around l “ R. In Magyar & Van Doorsselaere [2016a] it was shown that for

thick boundary layers (ε > 0.5) there is little or no effect on the exponential damping

time at higher amplitudes. However for smaller layers (ε < 0.5) the amplitude can

have a strong effect on the observed damping time. The results indicate that the

loops have inhomogeneous layers which fall on both sides of this threshold, however

thicker layers appear to be far more common.

It should be noted that the cases where Model S were favoured often cor-

responded to thinner loops or threads with lower minor radii. This reduction in

the spatial information may cause Model S to be favoured irrespective of the actual

density profile. In some cases the background intensity was not accurately fit by the

second order polynomial, however this is the same for each profile and is reflected

in the 99% confidence levels shown in the middle panels of Fig. 4.1. It was found
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that using higher order polynomials for the background trend could lead to different

models fitting different portions of the intensity profile, invalidating their compar-

ison. The most common radius of the loops analysed was 2Mm, for the transverse

density profile rather than the apparent radius in the intensity images. This value

is affected by selection effects as wider coronal loops were preferentially selected.

The use of the isothermal approximation means that any temperature vari-

ation across the loop that is sufficient to vary the response function of the AIA

channel analysed (plotted in Fig. 1.24) will be interpreted as a density variation.

This may have contributed to the prevalence of thick or continuous inhomogeneous

layers obtained. However, considering the low correlation between the profiles seen

in 171 Å and the hotter channels, the structures analysed at 171 Å may have a

sufficiently narrow temperature distribution, with separate loops or threads existing

in the hotter channels at similar, but not co-spatial, locations.

An additional complication is the potential presence of unresolved substruc-

ture in the loops and threads analysed, and the resulting LOS effects. This was

studied for oscillating loops in De Moortel & Pascoe [2012]. In the case of static

loop observations the density profiles obtained relate to the density profiles of the

unresolved threads, and how the filling factor varies as a function of radius. In the

top row of Fig. 4.1 it is evident that the analysed loop appears to split into multiple

structures towards the loop apex. This may mean that the intensity profile anal-

ysed may include several overlapping threads, which affect the transverse structure

inferred, however the number of loops analysed is sufficiently large to avoid this

being the case for all intensity profiles. Despite these assumptions and complica-

tions, in Pascoe et al. [2017b] an agreement was found between the seismologically

determined value of ε and the value inferred from the intensity profile. Additionally,

numerical simulations of Magyar & Van Doorsselaere [2016b] suggested that highly

multi-threaded, or braided loops could be unstable to transverse oscillations. Since

decayless kink oscillations appear to be ubiquitous [Anfinogentov et al., 2015b], this

indicates that even if resolved loop threads are formed with unresolved substructure,

they may quickly evolve to a more monolithic structure.

4.6 Conclusions

The intensity cross–section of coronal loop threads observed at 171 Å by SDO/AIA

has been analysed. In this channel typical non-flaring coronal loops are seen with the

highest clarity and contrast. Assuming an isothermal and cylindrical cross–section

the transverse density structure of the coronal loop plasma which lies within the

temperature range corresponding to 171 Å SDO/AIA channel is analysed.

Accounting for the instrumental PSF and integration along the LOS, very
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strong evidence was found for the existence of an inhomogeneous layer where the

density varies smoothly between the rarefied background plasma and the dense

centre of the loop. In many cases, the width of this layer was high enough to conclude

that the loop does not have a core at all, and has a continuously varying density

which may be better modelled by a Gaussian profile. This may have implications

for the thin boundary approximation often used in the analytical description of

oscillating loops. Model L is found to be the most general as it can represent loops

with no boundary layer as well as loops with a continuously varying density profile.

Several assumptions have been made to obtain these results. The study

of multiple wavelengths, and the inclusion of the instrumental response function

and a non–isothermal model for the loop cross–section require further work. The

potential presence of unresolved sub-structure, and how this would manifest itself

in the results should also be considered further. The loop is assumed to be static

during the exposure time of the instrument. If they oscillate with a period shorter

than the exposure time, or move during the exposure, some apparent diffusion of

its boundary would be observed.

From this analysis it is clear that using a linear boundary layer density profile,

forward modelled to the resulting intensity profile, produces more information than

the Gaussian intensity profiles typically used to fit and track coronal loops. Even

with simple least squares fitting, when the spatial resolution is sufficient, this profile

would provide information about the size of the inhomogeneous layer compared

to the minor radius, and decouples the measured minor radius from the intensity

contrast.

Further work could include extension of this style of analysis to other coronal

structures, in particular coronal structures which host waves that undergo dispersive

evolution. The observed shape of the waveform depends strongly on the parameters

of the waveguide in this case, making any information about the transverse density

profile of such a structure important. Such waves are investigated in Chapter 5.
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Chapter 5

Observation and simulation of

dispersive coronal QFP wave

trains

5.1 Introduction

As discussed in Section 1.5, Quasi-periodic Fast Propagating (QFP) wave trains

in the corona are well resolved, temporally and spatially, however details for their

excitation, evolution and damping remain unknown. Therefore their seismological

potential has yet to be exploited. As mentioned in the last chapter, if the series

of wave fronts are formed via dispersive evolution then the final observed waveform

depends on the properties of the coronal structure it propagates through. In this

chapter analysis of a flaring event which excites a series of propagating EUV intensity

perturbations is presented, and numerical modelling which relates to the scenario

observed is described.

In Sections 5.2 to 5.6 radio emission observations from the Learmonth and

Bruny Island radio spectrographs are analysed to determine the nature of a train

of discrete, periodic radio ‘sparks’ (finite-bandwidth, short-duration isolated radio

features) which precede a type II burst. EUV imaging from SDO/AIA is analysed at

multiple wavelengths. A series of quasi-periodic rapidly-propagating enhancements

are identified, which are interpreted as a QFP wave train, and these are linked to

the detected radio features. An introduction to these waves was given in Section 1.5.

Compelling evidence is presented that a series of quasi-periodic ‘sparks’ in the radio

spectra are linked to disturbances seen in the low corona in the EUV band. This

is the first observation which links quasi-periodic fast waves observed in the EUV

band to quasi-periodic features in radio spectra.

In Section 5.7 2D numerical simulations of impulsively generated wave trains
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in a coronal plasma slab are presented, and how the behaviour of the trapped and

leaky components depend on the properties of the initial perturbation is investi-

gated. This aims to establish how these waves are affected by initial perturbations

which enter the non-linear regime, thereby establishing the feasibility of one of the

mechanisms by which the observations presented could be explained.

5.2 Solar radio emission

With the availability of imaging instruments simultaneously covering multiple wave-

lengths, and spatially resolved and unresolved recording of solar radio emission it

becomes possible to study the relationship between MHD waves and oscillations and

various non-thermal phenomena which may result in emission in the radio band [see,

e.g. Sych et al., 2009]. One of the most intensively studied examples of this are type

II radio bursts.

Coronal type II radio bursts are usually seen as two locally parallel emission

lanes on solar radio spectrograms with an instant frequency ratio of approximately

two, drifting from high to low frequencies. It is generally accepted that this ra-

dio emission is a result of plasma wave excitation at fronts of MHD shock waves

propagating upwards through the corona. The lower and higher frequency lanes are

thought to be emission at the fundamental and second harmonic of local plasma

frequency, respectively [e.g. Zaitsev, 1966; Mann et al., 1995a; Pick & Vilmer, 2008].

The frequency drift of the lanes can be used to calculate the speed of the emission

location, which is typically in the range of observed Coronal Mass Ejection (CME)

velocities. Despite this established association the details of the physical relation-

ship between flares, CMEs and the subsequent type II bursts is still only poorly

understood.

The frequency of the emission from the MHD shock wave is given by the

plasma frequency,

F “ 8.98ˆ 10´3
?
ne MHz, (5.1)

with the electron density, ne, in cm´3. Empirical models for the scaling of the

coronal density with height can be used to determine the height and speed of the

emission location using the electron density obtained from the frequency. A com-

monly applied model is the Newkirk model [Newkirk, 1961],

ne “ ne0 ˆ 104.32pRd{Rqcm´3, (5.2)

where ne0 = 4.2ˆ104 cm´3. With this information it is possible to use EUV imaging

observations to attempt to observe the emission location directly and compare the
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observed position to these estimates. Sometimes a splitting of the main emission

lanes (fundamental and harmonic) of the type II bursts into two or more additional

sub-lanes is observed. There is no consensus on the cause of this phenomenon, pos-

sibilities include simultaneous radio emission from the downstream and upstream

regions of a shock [e.g. Smerd et al., 1974; Zimovets et al., 2012], multiple expand-

ing structures in the CME creating multiple shocks, the passage of a single shock

through surrounding structures [e.g. McLean, 1967; Schmidt & Cairns, 2012] or a

combination of these [Zimovets & Sadykov, 2015].

Solar radio bursts can be modulated by variation in the density of the back-

ground plasma by MHD waves. For example, Type IV bursts, broadband emission

associated with high-energy non-thermal electrons accelerated during flares, exhibit

fine structure and periodicity [e.g. Magdalenić et al., 2005]. Analysis of light curves

from radio and microwave wavelengths showed signatures of QFP wave trains [e.g.

Mészárosová et al., 2009b, 2011]. Zebra patterns were found to show periodic wig-

gling, interpreted as the modulation of the double-plasma resonance location by

magnetoacoustic sausage oscillations [Yu et al., 2013].

5.3 Instruments and data

EUV imaging was used from SDO/AIA. The EUV data sets were retrieved in the

FITS format from the JSOC data centre1, with spatial and temporal resolution of 0.6

arcsec per pixel and 12 s respectively, using the SSW function vso search.pro. The

images were prepared and corrected using the standard SSW routine aia prep.pro,

and normalised by the exposure time of the instrument, which varies during the

flare emission. The cadence also varies by ˘ 1 s from 22:41:00 UT, so the data for

subsequent frames was re-binned to a constant cadence when required. Data was

downloaded between 22:00 UT and 23:30 UT on 03/11/2014, resulting in 450 frames

of 4096 ˆ 4096 pixels. Two smaller fields of view of 800 ˆ 800 pixels (bottom left

corner x = 0, y = 2100) and 500 ˆ 500 pixels (bottom left corner x = 200, y =

2250) used in the processing and analysis are shown in panel a) of Fig. 5.1.

Radio spectrograms covering the range 25-180 MHz were obtained from Lear-

month Solar Radio Observatory in Western Australia, part of the USAF Radio Solar

Telescope Network (RSTN) [Kennewell & Steward, 2003]. The data is arranged in

two bands, 25-75 MHz and 75-180 MHz, and is linearly spaced in both. Supplemen-

tary data covering the range 6 to 62 MHz from the Bruny Island Radio Spectrogram

(BIRS) [Erickson, 1997], located on Bruny Island off the south-eastern coast of Tas-

mania, was analysed to confirm the presence of features detected in Learmonth

spectra qualitatively.

1http://jsoc.stanford.edu/ajax/lookdata.html
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Figure 5.1: Panel a): SDO/AIA 171 Å image during the observed event at 22:00.00
UT centred on the active region of interest (AR 12205). The green boxes show the
fields of view used for Fig. 5.2 (solid) and Fig. 5.7 (dashed). Panel b): the analysed
region at 22:40:12 UT, F1 and F2 show the apparent extrema of the propagation
path of the observed periodic intensity enhancements along a funnel structure, and
the blue fit shows the slit used in the analysis. The red points P1 and P2 indicate
the positions at which the time series plotted in Fig. 5.4 were extracted from.
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Figure 5.2: Three SDO/AIA images of the active region. In all panels a region of
enhanced emission, associated with the ejection of the wave train, is highlighted by
a blue box. The red points F1 and F2 indicate the observed start and end points
of a guiding funnel structure. Panel a) shows the 171 Å image. Panel b) also
shows a 171 image, with the previous frame subtracted. The red arrow indicates
an enhancement propagating along the funnel. Panel c) shows a 131 Å image, the
orange arrow indicates the direction of a propagating outflow.

Additional data for the flaring emission could not be obtained, as the Hinode

instruments were targeting a different region of the disk, and ground based radio

instruments such as the Nançay Radioheliograph, the Nobeyama Radioheliograph

and the Siberian Solar Radio Telescope missed the event due to their respective

instrumental night times. No spatial information was available in the radio band,

and the RHESSI instruments recorded no data of interest during the event.

5.4 Observations and analysis

EUV and radio observations of a flaring event of GOES class M6.5 in the active re-

gion AR 12205 on the 3rd of November 2014 have been analysed. The active region

is located on the eastern solar limb (see Fig. 5.1). The GOES X-ray lightcurves

for the event, obtained using the SolarSoftWare (SSW) function goes.pro, show a

characteristic flare, beginning at approximately 22:06:30 UT, and reaching its peak

at 22:39:30 UT. A coronal mass ejection was associated with the flare, with an aver-

age projected propagation speed of „ 500 km s´1 according to the Computer Aided

CME Tracking (CACTus) catalogue2 [Robbrecht et al., 2009]. A global EUV/EIT

wave was also triggered.

2http://sidc.oma.be/cactus/catalog.php
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Figure 5.3: Two running difference images of the funnel structure at 171 Å. There
is a one frame (12 seconds) separation between the two images. The vertical blue
lines approximate the position of the propagating wave front. The dashed red curve
indicates the position of the solar limb.

5.4.1 EUV observations

A series of quasi-periodic intensity enhancements are seen within a guiding funnel

structure in the 171 Å band. One of the enhancements is indicated by the red arrow

in panel b) of Fig. 5.2, between points F1 and F2. This series of enhancements will

be referred to as a QFP wave train throughout the chapter. This guiding structure

is part of a bundle of open and expanding flux tubes, or funnels, to the south of the

active region. This structure is similar to those analysed in Liu et al. [2011] and

Nisticò et al. [2014b], and modelled by Pascoe et al. [2013b], which were also found

to guide QFP wave trains, as discussed in Section 1.5.

The projected speed of the wave train can be estimated from the observed

distance the individual wave fronts move between frames. Using the positions indi-

cated by the blue lines in Fig. 5.3 and the time between the observations, 12 seconds,

a speed of 1200 km s´1 is obtained.

A slit was created by selecting a series of points along the centre of the

propagation path of interest (between extrema F1 and F2) and fitting them with

a spline function, plotted in panel b) of Fig. 5.1. A TD map was formed by

interpolating over the pixels crossed by the fit, and averaging over an 11 pixel

width, as discussed in Section 1.7.1. TD maps created from the normal intensity

and running difference images, are shown in panels a) and b) of Fig. 5.4. The

intensity profiles at two different distances are plotted on panel a), marked P1 and
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Figure 5.4: Panel a): Time-distance map formed from the slit along the path of
intensity enhancements, between points F1 and F2, shown in Fig. 5.1. The intensity
profiles labelled P1 and P2 show the intensity profile at different positions along the
slit, and the green arrows indicate the position of main peaks, labelled E1-E6. Panel
b): a TD map formed from a slit along the path of intensity enhancements in the
running difference images. The diagonal green lines show the propagating intensity
enhancements, and the dashed vertical lines indicate the enhancements where no
propagation is seen. Box B1 highlights a series of enhancements of shorter spatial
and temporal extent. Panel c): an intensity time series extracted from D in panel b),
the intensity enhancements E1-E5 are labelled (E6 is missed as it is not prominent
at the chosen distance along the slit). Panel d): Morlet wavelet spectra for the
intensity time series, showing the distribution of the oscillation power with period
as a function of time. The time axis of the four panels refers to the time elapsed
since 22:00 UT.
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P2.

The TD maps show a main intensity enhancement at 32 minutes (22:32 UT)

and a series of additional enhancements before and after this peak, with an average

temporal separation of δtEUV = 1.7 ˘ 0.2 min. These are labelled E1-E6 in panels a)

and c) of Fig. 5.4. At low distances along the slit there is a series of more localised

guided enhancements which are visible in both TD maps, these are not sufficiently

resolved due to their apparent period of 24 seconds, twice the time resolution of the

data. These features are highlighted in panel b) of Fig. 5.4 by box B1.

The gradient of a slope fitted to the main wave fronts can give a measurement

of the propagation speed, however the scales involved are such that almost vertical

fronts are obtained, not allowing an accurate estimate. However, some propagating

features are seen, highlighted in Fig. 5.4 by the diagonal green lines, giving phase

speeds of „ 1200 km s´1, therefore the apparent phase speed is defined to be ě

1200 km s´1, which is consistent with the estimate made from Fig. 5.3.

To observe the wave train fronts more clearly a time series was extracted

from the running difference TD map at the distance marked by D in panel b) in

Fig. 5.4. This is plotted in panel c), with E1-E5 indicating the peaks of interest

(E6 is missed as it is not prominent at the chosen distance along the slit). The

peaks are amplitude modulated. A Morlet wavelet spectra (see Section 1.7.2) of

the intensity time series is shown in the bottom panel of Fig. 5.4. The solid white

line corresponds to the 90 % significance level based on white noise. A powerful

signal with a period of just below 2 minutes is present between 22:28 and 22:36 UT,

reflecting the behaviour seen in the TD maps and time series, and agreeing with

the period obtained. The 1 minute periodicity could be the second harmonic of

the main 2 minute signal connected with non-linear effects, as it appears when the

amplitude of the main signal is higher.

There is a region of enhanced emission seen at 171 Å and 131 Å, indicated in

all three panels of Fig. 5.2 by the blue box. This lasts for the same duration as the

series of enhancements and may be linked to the driving of the periodic wave train.

In panel c) of Fig. 5.2 a propagating outflow is indicated, which has a different

direction of propagation to the enhancements seen in 171 Å, and is not periodic.

This may be a jet of hot plasma related to the reconnection process indicated in

Fig. 5.2 by the blue box. The direction of propagation does overlap with the path

of the 171 Å enhancements, and may contribute to the complexity of the data in

Fig. 5.4.

5.4.2 Radio observations

The dynamic radio spectra show four discrete narrowband short-lived features (sparks)

at frequencies, and therefore densities, similar to the type II burst. These features
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Figure 5.5: Learmonth, panel a), and BIRS, panel b), radio spectrograms in the
ranges 25-170 MHz and 5-60 MHz respectively. Four regions of enhanced emission
are indicated in panel a) by R1, R2, R3 and R4. R2-R4 are also indicated in panel
b). The time axis refers to the time elapsed since 22:00 UT.
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are labelled R1-R4 in Fig. 5.5. R1 shows some type-II-like drift, but in general, the

properties of these features do not match any of the classical solar radio burst types

and they will be referred to as radio sparks for convenience. R1 is missing from the

BIRS spectrograph as it lies outside the observational band, therefore we use the

Learmonth data for the following analysis.

The periodic sparks are centred on the following frequencies F = [83, 59,

54, 42] MHz. Using the equation for the plasma frequency given in Section 5.2,

and assuming that this emission is at the fundamental plasma frequency, these

frequencies correspond to densities of ne = [8.47, 4.34, 3.56, 2.12] ˆ107cm´3. Using

the empirical formula for the height of these densities by rearranging the Newkirk

formula given in Equation 5.2 yields heights above the base of the corona of Z =

[209, 288, 334, 418] Mm. The periodicity of the radio bursts is Pr = 1.78 ˘ 0.04

min measured from the beginning of each spark.

A type II burst is also observed in this event as three separate strong lanes

of emission, labelled as H1, H2 and H3 in Fig. 5.6. Using the plasma frequency

and the Newkirk model as described above, the three lanes give speeds of 630, 380,

550 km s´1, respectively. These are interpreted as the harmonic emission from the

three weaker fundamental emission lanes, labelled as F1, F2 and F3. This indicates

that the periodic sparks R1-R4 are not a typical type II emission lane as they do

not have a stronger harmonic component. The time between the periodic sparks
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and the relative change in height from the calculated density gives an estimate of

the emission location speed of vemn = 630 km s´1.

5.4.3 Further analysis

The association between the periodic radio sparks and the CME is explored to make

inferences about the location at which the radio sparks are produced. The height of

the CME leading edge indicated in panel b) and c) of Fig. 5.7 is 247 Mm at the time

of the first radio burst. A TD map, shown in Fig. 5.8, taken from the slit indicated

in panel b) of Fig. 5.7 gives a speed of „ 500 km s´1 for the CME leading edge.

This slit position was chosen as it offers the best signal to noise ratio for detecting

the propagation. Extrapolating this position forward to the times of the subsequent

radio sparks, which are after it has left the observational FOV, gives heights of Z

= [247, 298, 349, 400] Mm, which are roughly consistent with the emission heights

of the radio sparks derived above.

From the upper and lower frequencies of each radio spark it is possible to

estimate the vertical extent of the emission region. From the frequencies the cor-

responding densities are obtained assuming the emission is at the electron plasma

frequency, which are then used to calculate the upper and lower heights of the emis-

sion from the Newkirk formula. The resulting vertical lengths of the emission region

for each spark are L = [29, 24, 26, 32] Mm.

The complex nature of the expanding CME structure is highlighted in panel

a) of Fig. 5.7. Three separate expanding structures were identified from the series

of images and are labelled as C1, C2 and C3. This series of expanding structures,

and the complex geometry of the active region, provide adequate mechanisms to

produce the 3 fundamental and harmonic emission lanes highlighted in Fig. 5.6.

This is supported by the speeds derived from the drifts in the radio spectrum,

which are in the range of typical CME velocities in the corona.

Finally, if it is assumed that the wave train fronts cause the radio sparks when

they reach the propagating feature ahead of the CME indicated as ‘leading edge’ in

Fig. 5.7, then the temporal separation (tr-tEUV) and height of the emission, Z or

ZCME, can be used to estimate the average wave train propagation speed between

the active region and the emission location. Matching the first EUV enhancement E1

with the first radio burst R1, and subsequently Ei with Ri, gives vEUV = [700, 970,

1120, 1390] km s´1. Matching the strongest wave train enhancement E3 with R1,

and subsequently Ei`2 with Ri, gives vEUV ą 4000 km s´1, which is unrealistic for

fast magnetoacoustic waves in the corona. The first set of speeds are approximately

consistent with the speeds measured lower in the corona for the propagating wave

train fronts.
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Figure 5.9: A schematic synopsis of the event. A flare occurs which is followed by
a CME comprising of the leading edge or EUV wave (green) and the main CME
plasmoid (blue). A funnel structure (red) within the active region is seen to host a
series of rapidly propagating quasi-periodic waves. A brightening is observed at the
base of this structure and is interpreted as a reconnection site. After a certain delay
periodic radio sparks are observed, which occur at an estimated height consistent
with the leading feature of the CME, and a periodicity consistent with the fast wave
period.

5.5 Discussion of observational results

Quasi-periodic EUV intensity disturbances are found to propagate along a guiding

funnel structure during a flaring event, beginning at 22:27:59 UT. The period is

PEUV = 1.7 ˘ 0.2 min, which becomes more pronounced with distance along the

wave guide. The CME plasmoid associated with the flaring event is seen to interact

with the active region at 22:27:56 UT, resulting in a region of enhanced emission

seen in all channels analysed near the base of the funnel structure. Thus, it can

be assumed that the periodic wave train is induced by the CME interaction with

background structures, possibly due to the resulting reconnection. A series of small

radio bursts, or sparks, occurs during the CME expansion prior to the type II

emission. These have a period of Pr = 1.78 ˘ 0.04 min, making it a reasonable

assumption that they are linked to the QFP wave train.

The EUV intensity disturbances can be interpreted as a series of guided

fast magnetoacoustic waves (Quasi-periodic Fast Propagating (QFP) wave train),

discussed in Section 1.5. These may be formed by the dispersive evolution of a
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pulse excited in the guiding structure, or by a periodic quasi-harmonic driver. Some

wave train fronts are clearly seen to propagate with projected speeds of 1200 km

s´1, which are consistent with previous QFP wave train observations. Some previous

studies have interpreted the observed wave trains as the result of repetitive magnetic

reconnection associated with the flare, or another mechanism which periodically

excites broadband pulses of fast waves [Liu & Ofman, 2014]. Recent modelling

results from Yang et al. [2015] have confirmed this as a viable mechanism for the

production of a series of fast waves with phase speeds and characteristics which

match observations.

Other possibilities for the nature of the enhancements exist, such as periodic

jets. However jets are normally multi-thermal and are therefore seen in multiple

channels [Nisticò et al., 2009]. In the observations no signature of the intensity

enhancements was seen at other AIA wavelengths. Jets are also normally seen as

narrow structures, which are more long lived than the observations, and do not

have low periodicities of several minutes. It is possible that a superposition of fast

waves and plasma ejections is present, which would explain the complex dynamics

observed.

The triple band type II burst is clearly resolved in the radio spectrograms,

and it is possible to match the strong harmonic emission lanes with their funda-

mental counterparts. The series of periodic radio sparks which precede these do not

correspond to any of the observed lanes, leading to their interpretation as a separate

phenomenon, which causes emission at the local plasma frequency without a second

harmonic component. They approximately follow the same drifting trend as the

fundamental components however, meaning their emission location may exhibit the

same dynamic behaviour as the CME which produces the shocks. Drifting velocities

of H1, H2 and H3 to be 630, 380 and 550 km s´1 were found, therefore they are

interpreted as emission associated with spatially separated shock waves driven by

different parts of the expanding CME.

Since the QFP wave train observed in the low corona and the series of radio

sparks have almost equal periods, the QFP wave train can be considered as the

driver of the periodic radio sparks. The slight offset in the detected periods may

support this, as the time delay between the radio sparks is expected to be longer

than the wave train period, due to the increasing height of the emission location.

An estimate of the transit velocity from the base of the guiding structure to the

radio burst emission location can be made using the inferred distance and time delay

between the observations. The most reasonable estimates came from matching wave

train fronts E1 or E2 with R1, which gives transit velocities in the range 800 - 2000

km s´1, which are roughly consistent with the velocities measured from the TD

map in Fig. 5.4, and are in the range of the expected fast magnetoacoustic speed in
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the corona. There is a large degree of uncertainty associated with these estimates,

however it is clear that the time delay between the EUV and radio features is large

enough to exclude energetic particles accelerated in the active region as the driver

of emission at these heights, due to their characteristic high propagation velocities.

The proposed scenario is similar to the ‘cannibalism’ of CMEs, when one

faster CME (ejected later) catches another slower CME (ejected earlier). In some

of these cases it has been found that the related type II radio burst emission can be

enhanced during this process of two CMEs merging [e.g Gopalswamy et al., 2001;

Mart́ınez Oliveros et al., 2012].

The different spectral aspects of the radio sparks can be explained by the

properties of the wave fronts, which may have different temporal and spatial extents,

similar to the snapshots of the fast magnetoacoustic waves generated by geometrical

dispersion in a plasma funnel in Pascoe et al. [2013b]. The first spark exhibits a

frequency drift, which can be explained by a broad wave front, such as the one

indicated in Fig. 5.2. Additionally, from Fig. 5.4 panel a) it can be seen that E1

is temporally broader than the following peaks, which could give rise to the drift

seen in R1. From the frequency range each spark covers the vertical extent of the

emission region for each was calculated, giving L = [29, 24, 26, 32] Mm for R1 - R4.

These values support the interpretation that the emission is generated in a localised

region corresponding to a feature of finite vertical width, such as the expanding

front ahead of the CME.

The estimated heights at which the radio sparks (R1-R4) are generated

roughly match the positions of the CME leading edge marked in Fig. 5.7. Ad-

ditionally, the trend of the sparks in the radio spectra matches the drifting of the

fundamental emission lanes, indicating a definite link to the kinematics of the CME.

The CME leading edge may be a developing EUV wave before it has decoupled from

the expanding CME.

Possible excitation scenarios to produce the periodic radio emission include:

steepening of the QFP wave train fronts which shock in the medium of the expand-

ing CME leading edge, emission due to the compression of the medium between the

CME leading edge and the approaching fast waves, or alternative emission mecha-

nisms such as the cyclotron-maser mechanism discussed in Wu et al. [2005]. These

scenarios would produce accelerated electrons, the bump-on-tail instability, and sub-

sequent emission of radio waves with a frequency corresponding to the local electron

plasma frequency.

Another possibility exists to explain the periodic radio emission without the

inclusion of the CME features. Panel c) of Fig. 5.4 shows that the series of EUV

enhancements vary in amplitude. Fast wave steeping depends on the waves am-

plitude, so different cycles of oscillation in the amplitude-modulated dispersively-
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formed QFP wave train [e.g. Jeĺınek et al., 2012; Pascoe et al., 2013b; Mészárosová

et al., 2014] will shock at different heights in the corona, which could produce the

drifting of the sparks from high to low frequency as observed. However, this scenario

does not explain why the appearance of the sparks in the radio spectrum matches

the drift of the type II bursts.

5.6 Summary of observational results

A flaring event and the associated CME and periodic waves were analysed with

SDO/AIA data, in addition to the corresponding radio features with Learmonth

and BIRS data. A series of finite-bandwidth, short-duration isolated radio features

drifting from high to low frequency are observed. The period of these radio sparks,

Pr = 1.78 ˘ 0.04 min, matches the period of the rapidly propagating wave train

observed at 171 Å, PEUV = 1.7 ˘ 0.2 min. The speed of the radio emission location,

630 km s´1, estimated from the instant frequencies of the radio sparks, is of the same

order as the speed of the CME and its leading edge, 500 km s´1. The calculated

height of the radio emission matches the observed (and then projected forward using

the observed velocity) location of the leading edge of the CME. Using the time

delay between the wave train fronts and radio sparks and the height of the emission,

propagation speeds in the range of fast magnetoacoustic waves are obtained.

The observations may be interpreted with the following scenario. A series

of fast waves are produced by the active region during a flare, during an energetic

energy release. The waves propagate upwards along a funnel structure, and interact

with the CME leading edge, or some associated disturbance that propagates slower

than the fast wave train. This results in the acceleration of electrons, the bump-

on-tail instability, and emission of radio waves with the frequency corresponding

to the local electron plasma frequency, appearing as quasi-periodic sparks in the

radio spectrograph (see Fig. 5.9). Theoretical modelling of the potential emission

mechanisms is needed. A first attempt to model one of the possible scenarios is

presented in the following section.

5.7 Modelling of non-linear dispersively formed QFP

wave trains

Quasi-periodic Fast Propagating (QFP) wave trains are frequently observed in EUV

images of the solar corona, or their existence is inferred from the quasi-periodic

modulation of radio emission. The dispersive nature of fast magnetoacoustic waves

in coronal structures provides a robust mechanism to explain the detected quasi-

periodicity. 2D numerical simulations of impulsively generated wave trains in coronal
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plasma slabs are performed. How the behaviour of the guided and leaky components

depends on the properties of the initial perturbation is investigated. High ampli-

tude perturbations should lead to non-linear wave steepening, generating a QFP

wave train with a series of steepened fronts. This could explain the series of radio

sparks which accompany the fast waves in the observational study presented at the

beginning of this chapter.

Simulations are performed using Lare2d [Arber et al., 2001], a 2.5D MHD

code which solves the non-linear MHD equations. A Lagrangian predictor-corrector

time step is applied and the variables are then remapped back onto the original

Eulerian grid, using van Leer gradient limiters. The code is well suited to the

modelling of the dispersive evolution of perturbations in waves guides, and has been

used for several related studies [Nakariakov et al., 2004; Pascoe et al., 2013b; Nisticò

et al., 2014b].

5.7.1 Numerical setup

The numerical setup is similar to previous studies which have used the 2D slab

geometry. The magnetic field is taken to be straight and uniform in the x-direction,

with strength B0. A coronal loop, or other waveguiding structure, is modelled with

a field-aligned density enhancement. The transverse density structure (y-direction)

is given by the general symmetric Epstein profile

ρ “ pρ0 ´ ρeq sech2
´ y

w

¯p
` ρe, (5.3)

where ρ0 is the density at the density enhancement axis, ρe is the density outside the

density enhancement, p ě 1 determines the density profile steepness, and w is the

waveguide half-width. The parameters used are ρ0{ρe “ 4 and p “ 8. This choice

of steepness parameter closely approximates the step function profile in terms of

wave behaviour while remaining smooth and hence numerically well-resolved, and

physically feasible, as shown in Chapter 4 for coronal loops. The setup is shown in

Figure 5.10.

The density structure is set in equilibrium by defining the internal energy

density ε as

ε “
pgas

ρ0 pγ ´ 1q
, (5.4)

to counter act the density enhancement, where pgas is the (constant) gas pressure and

γ “ 5{3 is the ratio of specific heat capacities. The gas pressure value chosen gives

a low plasma beta of β “ pgas{pmag “ 0.05, where pmag “ B2
0{2µ0, which is a typical

value for the solar corona. The initial perturbation is a localised compressive velocity

perturbation of the sausage symmetry in the centre of the density enhancement
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Figure 5.10: An overview of the numerical setup, showing the centre of the domain
(the full domain is 300 length units in both directions). The density structure is
shown, with white corresponding to the internal density of 4, and black to the exter-
nal density of 1. The blue arrow denotes the direction of the uniform magnetic field.
The red arrows denote the position and direction of the initial velocity perturbation.
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(x0 “ y0 “ 0), with the form

vy “
vy0

∆x∆y
y exp

«

´

ˆ

x´ x0
∆x

˙2

´

ˆ

y ´ y0
∆y

˙2
ff

, (5.5)

where vy0 is the initial amplitude, and the parameters ∆x and ∆y prescribe the

width of the initial perturbation. The perpendicular spatial scale is set to be the

density enhancement width ∆y “ w “ 1, and ∆x “ ∆y, which efficiently excites the

fundamental modes of the waveguide.

The 2.5D approximation implied by the use of Lare2d gives B{Bz “ 0. Due

to the geometry and nature of the chosen perturbation, vz and Bz remain zero hence

the model is essentially 2D.

The resolution used in all simulations was 8000ˆ8000 grid points, and conver-

gence tests at a resolution of 16000ˆ 16000 grid points show no notable differences.

Reflective boundary conditions are used, although the simulations end before any

perturbations reach the boundaries. In normalised units the domain size is 300ˆ300,

i.e. 300 half-widths of the waveguide. Length scales (X, Y ), time scales (T ), and

speeds (V ) in physical units are related to the dimensionless variables via X “ xw,

T “ t t0, and V “ v v0, where w, t0, and v0 are the chosen normalisation constants

and v0 “ w{t0.

5.7.2 Numerical results

Numerical simulations were run with increasing values of the perturbation ampli-

tude, A0 in Equation (5.5). The amplitudes are given as the maximum value of

the applied perturbation vy0 relative to the external Alfvén speed CAe. The density

perturbation (i.e. with the density profile at t “ 0 subtracted) at time t “ 60 for

the largest amplitude simulation vy0{CAe “ 1.5 is shown in Fig. 5.11. The region

shown has been shifted to focus on one half of the domain as the simulation is sym-

metric about the x and y axis. The guided components form two fast wave trains

propagating in the positive and negative x-directions, which have evolved to have

an extended quasi-periodic nature due to dispersion. The perturbations nearest to

the origin correspond to the slow mode, and propagate very slowly relative to the

fast mode due to the low-β plasma. The leaky components are also fast waves,

and leave the density enhancement and once outside propagate at the external fast

speed, which is mainly determined by the external Alfvén speed CAe “ 1. Both the

guided and leaky components are highlighted in Fig. 5.11.

In Fig. 5.12 the top and bottom panels show snapshots of the full density,

rather than the density perturbation. The top panel demonstrates that the am-

plitude is high enough that the guided sausage wave train noticeably perturbs the

boundary of the density enhancement. The slow mode at x « 20 has formed a shock,
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Figure 5.11: Snapshot of a region of the numerical domain for the largest amplitude
initial perturbation (vy0{CAe “ 1.5) showing the density perturbation towards the
end of the simulation run-time. The leaky and guided components are labelled. The
red asterisks show the locations where the time series are taken for the guided and
leaky wave trains.
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Figure 5.12: Top: the absolute density at time t “ 125 in the region of the numerical
domain around the density enhancement. Bottom: the one dimensional density
profile at y “ 0 in the top panel.
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and the entropy mode can be seen at x “ 0. The bottom panel shows the profile of

the density taken at y = 0. Figure 5.13 shows the maximum amplitude of density

perturbations due to the leaky component as a function of distance in the y direc-

tion. The wave train attenuates as it propagates due to the geometric expansion of

the wave front. For the lower amplitude perturbations, the maximum amplitude of

the perturbations follows the 1{
?
y behaviour expected for an expanding, circular

wave front created by a localised perturbation, while higher amplitudes experience

additional attenuation due to non-linear dissipation associated with the wave front

steepening.

Compared to the guided wave trains, the leaky components travel at a greater

speed, and have a longer wavelength and correspondingly longer period. They also

have a lower quality factor (i.e number of cycles) since they are dispersionless once

in the external uniform plasma, and hence do not evolve (except the geometric,

cylindrical decrease in the amplitude and non-linear steepening, addressed above).

Both leaky and guided fast wave trains could be responsible for the observations of

QFP wave trains introduced in Section 1.5 and presented earlier in this chapter.

The density perturbation signals are measured at p37.5, 0q, corresponding

to the guided wave trains, and at p0, 75q, corresponding to the leaky wave trains

propagating perpendicular to the slab axis. The results for three different amplitudes

of the initial perturbation are shown, A0 “ 0.01, 0.5, and 3.5, or vy0{CAe “ 0.004,

0.30, and 1.50. The density perturbation time series for the guided component is

shown in Fig. 5.14, with the corresponding wavelet spectra in the lower panels. The

same is shown for the leaky component in Fig. 5.15.

For the guided wave train, the amplitude of the perturbations increases with

the amplitude of the driver, but the wave trains are otherwise very similar and there

is no sign of non-linear steepening. There is the appearance of high-frequency oscil-

lations at t Á 95 which increase with vy0. This demonstrates that the geometrical

dispersion is strong enough to prevent the steepening of the wavefronts inside the

waveguide, even in cases when it is sufficiently large to cause the slow mode to

steepen (see Figure 5.12).

The leaky wave trains excited by the different amplitude perturbations ex-

hibit a similar number of oscillation cycles, as determined by the dispersive evolution

experienced before the waves leave the density enhancement. After this no further

geometrical dispersion occurs in the uniform external medium, however the wave

trains evolve by non-linear steepening, at a rate determined by the wave train am-

plitude relative to the local propagation speed (approximately the external Alfvén

speed). The steepening can clearly be seen in the second time series in Fig. 5.15

(vy0 “0.30) and is even stronger in the third time series (vy0 “1.5)

The attenuation of the external wave train due to expansion of the wave fronts
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Figure 5.13: Dependence of the maximum amplitude of the leaky wave train mea-
sured at x “ 0 on propagation distance y for different amplitudes of the initial
perturbation.

in Fig. 5.15 is approximately 75´1{2 « 0.12 and so the leaky wave train amplitude

upon leaving the density enhancement is comparable to that of the guided wave

trains. The amplitude of the external wave train upon leaving the density enhance-

ment is determined not only by the initial perturbation but also the perpendicular

density profile. The density contrast and steepness of the profile determine both the

extent of the dispersive evolution and the fraction of wave energy which leaks away.

It also depends on the relative spatial size of the initial perturbation with respect

to the width of the waveguide.

5.7.3 Discussion and Summary of numerical results

It has been demonstrated that multiple steepened wave fronts can be formed by a

single impulsive event with a sufficiently large amplitude. The geometrical dispersion

provided by coronal structures is required to generate QFP wave trains, however

the dispersion also efficiently suppresses non-linear steepening in the guided wave

train. Therefore the leaky component produces the steepened wave fronts and is the

candidate for shock formation and the acceleration of particles within the corona.

This mechanism could therefore account for the observation of quasi-periodic type–

II–like radio bursts after a flare or coronal mass ejection, and particularly those

with a similar periodicity to a wave train observed in EUV such as the observations
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Figure 5.14: Guided wave train time series and wavelet analysis for different ampli-
tude initial perturbations. The applied perturbation amplitude, vy0{CAe, is 0:004
(top), 0:30 (middle), and 1:50 (bottom).
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Figure 5.15: Leaky wave train time series and wavelet analysis for different ampli-
tude initial perturbations. The applied perturbation amplitude, vy0{CAe, is 0:004
(top), 0:30 (middle), and 1:50 (bottom).
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presented above, and recently in Kumar et al. [2017]. However, it is necessary

to appreciate that the shocks will be generated by the leaky components of the

impulsively generated wave trains, and to distinguish whether any imaged wave train

also corresponds to the leaky or the guided components, or if both are observed as

in Nisticò et al. [2014b]. It should be noted that many of the detected QFP wave

trains are formed within open, expanding coronal structures, as such the guided

components may still shock as the effect of dispersion will reduce with distance

propagated. This will be the subject of further study.

When considering how the simulation units relate to physical quantities the

choice of normalisation should be consistent with the MHD approximations. No

kinetic effects are included in the modelling. The focus is the behaviour of non-linear

MHD waves in terms of their capability to produce steepened wave fronts which

may generate radio bursts, but without directly modelling the associated particle

acceleration processes required. A low value of β was chosen to give separation

between the fast and slow waves, which should also be the case in most regions

of the corona. A normalisation for the slab width w could be chosen to match

the observations earlier in the chapter. The absolute values of the density and

magnetic field could then be adjusted so the waves speeds also match those in the

observations. However, since the model is effectively scale free and the steepening

is not dependant on the absolute value of those parameters, the results have been

presented in normalised units.

In comparison with standing kink oscillations of coronal loops, the seismo-

logical techniques based on QFP wave trains are far less advanced. Previous studies

demonstrate how the particular shape of the (guided and leaky) wave trains, or

its appearance in wavelet analysis, depends on the density profile of the guiding

density structure [e.g Jeĺınek & Karlický, 2012; Oliver et al., 2014]. However, no

simple inversion technique currently exists to determine the plasma, or structuring,

parameters from the measured oscillation parameters. If the structure of the density

enhancement was known a much narrower parametric study could be performed to

determine the properties of the driver (e.g. A, ∆x) required to reproduce the ob-

served wave trains and/or the corresponding ‘radio sparks ’. The technique applied

to determine the transverse density structure of coronal loops in Section 3.5 and

Chapter 4 may be applied to loops or other coronal structures in which QFP wave

trains are seen to propagate.

For large amplitude compressive perturbations, the geometrical dispersion

associated with the waveguide suppresses the non-linear steepening for the guided

wave train. The wave train formed by the leaky components does not experience

dispersion once it leaves the waveguide and so can steepen and form shocks. The

mechanism considered could lead to the formation of multiple shock fronts by a sin-

130



gle, large amplitude, impulsive event and so can account for quasi-periodic features

observed in radio spectra, such as those described earlier in the chapter.
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Chapter 6

Summary

In this thesis, observations of MHD waves in coronal structures observed with

SDO/AIA have been presented, in addition to a study of the structures themselves,

and numerical simulations of some of the wave processes.

A statistical study of decaying kink oscillations was performed in Chapter 2.

This was the first large scale, statistically significant, self-consistent study of de-

caying kink oscillations. A linear dependence was found between the period of

oscillation and the length of the loop, confirming that the standing kink mode is

being observed. The gradient from a linear fit of the data cloud gave a value for the

average kink speed in the analysed loop of Ck=(1300˘50) km s´1, with lower and

upper bounds of Ck=(800–3300) km s´1. Plotting the exponential damping time of

the oscillations against the period of oscillation gave a linear dependence between

the two parameters, but without enough accuracy to make any further conclusions.

However, it was noted that many of the oscillations were not well described by an

exponential damping envelope, leading to the confirmation of the Gaussian damp-

ing regime used to perform seismology in the next chapter. Finally, plotting the

quality factor (τ{P ) of the oscillations against the oscillation amplitude revealed

the signature of additional damping at high amplitudes. This may be attributed

the non-linear effects which are more prevalent at high amplitudes, and produce

additional damping, or cause significant disruption to the loop itself.

Coronal seismology with select cases from the statistical study was carried

out in Chapter 3 using the general damping envelope described in Section 1.4.2. This

consists of a Gaussian damping envelope which switches to an exponential envelope

after a characteristic time. This is the first time this theoretically predicted damping

envelope has been applied to observational data, and used to perform seismologi-

cal inversions. The use of this general damping envelope was found to be justified

quantitatively using least-squares fitting and Bayesian inference. Seismology was

performed and compared using least squares fitting and Bayesian inference. The

Bayesian inference allows more robust estimation of the uncertainties and allows
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increasingly complex models to be compared quantitatively. Finally, comparing the

transverse loop structure obtained to the results from a forward modelling approach

gave good agreement. Several new observational studies have recently been per-

formed, related to the work discussed in this chapter and the previous chapter [e.g

Pascoe et al., 2016, 2017c; Montes-Soĺıs & Arregui, 2017; Abedini, 2018].

The transverse structure of coronal loops was the focus of Chapter 4. Three

models for the transverse density profiles of the loops were quantitatively compared

using a forward modelling procedure. This allowed the density profiles to be applied

to observations of the transverse intensity profile for 233 coronal loops. The step

function density profile represents homogeneous loops with no transition between

interior and exterior density, the Gaussian profile represents fully inhomogeneous

loops and the linear transition layer model can represent the prior two cases as

well as a loop with a homogeneous core and a layer where the density transitions

from the external to internal density. The existence of a inhomogenous region in

the transverse density structure is necessary for damping via resonant absorption to

occur, and is the basis of the seismology in the previous chapter. It was found that

there is clear evidence for inhomogenous density profiles, with either the Gaussian

or transition layer profiles being favoured in over 80% of cases. The linear transition

layer profile was found to be the most general, despite the extra parameter meaning

it is penalised in the Bayes factor comparisons. The typical value of ε, the width

of the inhomogenous layer normalised to the radius, was found to be ą 1, which

is higher than is generally assumed in analytical or numerical modelling, and may

impact the applicability of such models. However, the simplifications made in the

forward modelling should be taken into account when considering these results. The

high degree of inhomogeneity across the loops is important for effects such as KHI

that depend on strong shear at the boundary of coronal structures, as well as the

dissipation of energy in the loop from waves or other sources. Larger inhomogeneous

layer widths correspond to less steep density, and therefore velocity, gradients across

the magnetic field.

Finally, EUV observations of a spatially resolved Quasi-periodic Fast Propa-

gating (QFP) wave train are combined with radio observations. These radio observa-

tions clearly show type III radio bursts associated with the flare and type II bursts

associated with the CME expansion. A series of radio sparks (finite-bandwidth-

short-duration radio features) were also observed which have the same period as

the fast waves seen in the EUV band, and the same frequency drift as the type II

emission. Several different scenarios were considered to explain the observations,

after further analysis of the entire event. Possible excitation scenarios to produce

the periodic radio emission include; steepening of the periodic wave train fronts

which shock in the medium related to the expanding CME, or emission due to the
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compression of the medium between the CME and the approaching fast wave train.

Additionally, the waves may steepen and produce shocks without any interaction

with any of the features of the CME, in this context 2D numerical simulations of

impulsively generated wave trains in coronal density enhancements were performed.

It was found that a series of quasi-periodic steepened fast waves can be produced,

which could result in quasi-periodic radio emission in certain conditions. Recently,

several new observational studies have been performed [Qu et al., 2017; Shen et al.,

2018]. In particular, Kumar et al. [2017] linked fast waves observed in EUV imaging

to quasi-periodic features in the radio spectra. More work should be done to explore

this relationship between coronal waves and oscillations, and periodic features seen

in radio emission. Additionally, further work should be done to combine modelling

and observations of QFP wave trains to begin to exploit their seismological and

diagnostic potential.
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Morton, R. J. & Erdélyi, R. 2009a, A&A, 502, 315
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Pascoe, D. J., Anfinogentov, S., Nisticò, G., Goddard, C. R., & Nakariakov, V. M.

2017a, A&A, 600, A78

Pascoe, D. J., Goddard, C. R., Anfinogentov, S., & Nakariakov, V. M. 2017b, A&A,

600, L7

Pascoe, D. J., Goddard, C. R., & Nakariakov, V. M. 2016, A&A, 593, A53

Pascoe, D. J., Hood, A. W., de Moortel, I., & Wright, A. N. 2012, A&A, 539, A37

Pascoe, D. J., Hood, A. W., De Moortel, I., & Wright, A. N. 2013a, A&A, 551, A40

Pascoe, D. J., Nakariakov, V. M., & Kupriyanova, E. G. 2013b, A&A, 560, A97

Pascoe, D. J., Nakariakov, V. M., & Kupriyanova, E. G. 2014, A&A, 568, A20

Pascoe, D. J., Russell, A. J. B., Anfinogentov, S. A., et al. 2017c, A&A, 607, A8

Pascoe, D. J., Wright, A. N., & De Moortel, I. 2010, ApJ, 711, 990

Patsourakos, S., Vourlidas, A., Wang, Y. M., Stenborg, G., & Thernisien, A. 2009,

Sol. Phys., 259, 49

Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Sol. Phys., 275, 3

Peter, H., Bingert, S., Klimchuk, J. A., et al. 2013, A&A, 556, A104

Pick, M. & Vilmer, N. 2008, A&A Rev., 16, 1

Qu, Z. N., Jiang, L. Q., & Chen, S. L. 2017, ApJ, 851, 41

Reale, F. 2010, Living Reviews in Solar Physics, 7, 5

Reale, F., Guarrasi, M., Testa, P., et al. 2011, ApJ, 736, L16

Robbrecht, E., Berghmans, D., & Van der Linden, R. A. M. 2009, ApJ, 691, 1222

Roberts, B. 1981a, Sol. Phys., 69, 39

Roberts, B. 1981b, Sol. Phys., 69, 27

Roberts, B. 2008, in IAU Symposium, Vol. 247, Waves Oscillations in the Solar

Atmosphere: Heating and Magneto-Seismology, ed. R. Erdélyi & C. A. Mendoza-
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