A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/109415

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Retrieving information about a group from its character table

Sandro Mattarei

Thesis submitted for the degree of Doctor of Philosophy of the University of Warwick

Mathematics Institute
University of Warwick
Coventry
CV4 7AL
July 1992

Contents

1 Introduction 6
2 Technical results 12
2.1 Commutators 12
2.2 Lineas and bilinear maps arising from commutation 13
2.3 Itreducible modules for abelian groups 17
2.4 Homogerncous modules 22
2.5 Induction and tensor indaction 24
2.6 Basic commutators 29
2.7 Character table isumorphisms 34
3 Looking for a counterexample 35
3.1 Introduction 35
3.2 Structure of a minimal connterexample 36
3.3 Chief fartors 38
3.4 More about the action of Q on H^{\prime} 44
3.5 The smallest cases which can orcur 48
4 Comparing character tables 54
4.1 Our philosophy 54
4.2 Vanishing of character values 59
4.3 A tool for comparing character tables 61
4.4 A generalization 66
5 Counterexamples 70
5.1 Introduction 70
5.2 General construction 72
CONTENTS 2
5.3 The unary case 78
5.4 Matrix representations for the mary case 84
5.5 The binary case 90
5.6 Matrix representations for the binary case 97
5.7 Power-maps 101
6 Nilpotent counterexamples 107
7 Wreath products 117
7.1 Chararters of wreath products 117
7.2 Conjugary classes of wreath products 124
7.3 Character tables of wreath products 128
7.4 A11 application to character tables and derived length 134

Acknowledgements

I would like to thank my research suprrvisor Dr T. O. Hawkes for his constant support.

I arknowlerlge the financial support of CNR (Consiglio Nazionale de-le Ricerche. Italy).

Declaration

The work contained in this thesis is original except where otherwise indicated.

Summary

This thesis concerns chararter tables of finite soluble groups. In particular, our main objective is that of showing that the derived length of a soluble group G is not determined by the chararter tahle of G. In fact, in Chapters 5 and 6 we shall construct pairs (G, H) of groups which have identical rhararter tables but different derived lengths, uamely 2 and 3. A more general result will be proved in Chapter 7, namely that for any natural number $n \geq 2$, there exist pairs (G, H) of groups with identical character tables, and derived lengths n and $n+1$ respectively. Two by-products of our investigation are a methorl for comparing character tahles in special situations (in Chapter 4), and a description of the character tables of wreath products (in Chapter 7).

Chapter 1

Introduction

Representation theory, aud in particular rhararter theory, have proved to be powerful tools for the study of finite gronps. Furthermore, character theory provides a practiral way of gathering a lot of information abome a group G in a very condensed form, by means of a matrix with complex entries, called the chararter table of G. This is especially true for simple groups. In fact, chararter tables are perhaps the man information provided by the Atlas of finite simple groups [4]. whirh is ad indisprnsahle refereuce for the classification of the finite simple groups. Each finite simple group is uniquely identified by its chararter table, and some sporadic simple groups were kuowu through their rhararter tableas even hefure theit existence was proved.

The rharacter tahle of a finitr group G is the matrix T (which turns ont to be square), whose (i, j) th entry is $x(g)$), where $f 1 \ldots . ., i_{t}$ are the irterlurible characters of G (over the complex field), and g_{1}, \ldots, g_{k} are a set of representatives for the cunjugacy classes $\boldsymbol{K}_{1}, \ldots, \boldsymbol{K}_{k}$ of G (with $g_{\mathcal{\prime}} \in \boldsymbol{\mathcal { K }}$). Since characters are class functions, the character table T is not affected by the choice of different representatives $g_{;}^{\prime} \in \mathcal{K}_{3}$, and thus the columns of T will also be indexed by the conjugary classes of G. It also follows from this that the kuowledge of the character table T of G anounts to the knowledge of all irreducible characters of G, as functions from G into C, once one knows the correspondence hetwent rows of T and irreducible characters of G, and the correspondenere betwern columns of T and ronjugary classes of G. These corrempondences will not be cousidered part of the object character table, nor will any other information abont G and its characters, like orders of the mements, or Frobeuins-Schur indicators. An additional piece of information,
namely the so-called powr-maps, will be considered orcasionally, hut this will be explicitly stated as character table with powernaps.

Uulike simple groups, soluhle groups are not uniquely identifed by their character tables. The easiest example is given by the two mon-abelian groups of order cight. namely the diluedral group D_{K} and the quaternion group Q_{N} : in fart, their common character table is the following matrix T.

$$
T=\left|\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 \\
2 & -2 & 0 & 0 & 0
\end{array}\right|
$$

We may uotice that the first row of T corresponds to the trivial chararter of G. and the first colnm corresponds to the identity class of G. Apart from this, which wr shall adopt as convention, there is no natural mule for ordering the comjugary classes of G and its irreducible characters (thongh practical rules are used in [4], for the sake of convenience). Consequeutly, the chararter table T of a gromp G is defined up to permutations of its rows and of its columns. Hence. we shall say that the character tables T_{1} and T_{2} of two groups are identical if it ia possible to obtain T_{2} from T_{1} by permuting rows and columens of T_{1}. Later we shall give a more handy definition of having identical charactor tables, namely Definition 2.7.1.

We shall see in Chapter 4 that D_{A} and Q_{M} form just a sperial case of a more general situatiun in whirh two groups have identiral rharacter tables.

Although a group G is not unicuely determined by its character table T. a lot of properties of G cau be read off from T. We shall give a brief review of some of these properties, after noticing that each propesty can usually be ohtained from T in several ways.

A first class of properties employs the so-ralled second orthogonality relation. part of which is the formula

$$
\left|C_{e}\left(g_{y}\right)\right|=\sum_{i=1}^{L}\left|x_{v}\left(g_{y}\right)\right|^{2}
$$

which allows une to compute the order of the centralizer of an element of the rlass \mathcal{N}, hy means of the correspondiug column of T. In particular, for the
identity class $\boldsymbol{\mathcal { X }}_{1}$, the above fommula becomes

$$
|G|=\sum_{i=1}^{t} X_{.}(1)^{2},
$$

and thus yields the order of G. As a consequeuce, the length of earb conjugacy alass \mathcal{K}, of G ran be computed, because $\left|\mathcal{K}_{2}\right|=\left|G: \mathbf{C}_{G}(q),\right|$. Also, the columns of T which correspond to central elements of G can be determined, and this the order of the centre of G can be connputed. It follows that it can be alecided whether G is ahelian (though a simplet method for this is checking that all characters of G have degree 1). If this is the casp, then G is determined by T up to isomorphism. More genetally, $Z(G)$ is always determined by T up to isomorphism.

The second rlass of properties which we are going to examine employs the fact that the kernels of the irreducible characters can be read off from the chararier table (meaning that it ran be decided which rlasses of G are contained in the kernel of a given itredurible chararter) ; in fact, it is easy to sere that

$$
\text { ker } \chi=\{g \in G \mid \chi(g)=k(1)\}
$$

if $x \in \operatorname{Ir}(G)$. Now, kermels of characters are notinal sulbgroups of G, and conversely, each normal subgroup N of G is the ketnel of some character of G. For instance the chararter afforded by the regular representation of G / N, viewed as a representation of G. Since the kernel of a reducible character is the intersection of the keruels of its irreducible constituents, it follows that all normal suhgroniss of G can the found from T, as intersertions of kernels of irreducihle rharacters. Moreover, since each normal subgroup N of G is found as a union of conjugary classes of G, its order can be computed, aud inclusion relations with other nomal sthgroups can be determined.

To summarize, from T we read the lattice of normal subgroups of G, earh with its order attarhed. But we can do more: for earh normal subgroup N, the character table of the factor group G / N ran be extracted from T, simply by deleting those rows of T which correspond to irreducible characters χ such that $N \notin$ ker x, and then replacing each set of identical columens with a siugle one. Let us remark that a similar procedure for obt aining the character table of the normal subgroup N does not exist. For instance, D_{8} has exactly three normal subgroups of order 4, which are indistinguishable by looking at the character table of $D_{\text {ni }}$ yet they do not have identical chararter tables, because one of them is cyclic, and the other two are elementary abelian.

The knowledge of the lattice of normal subgroups of G, together with the character tables of the correspouding factor groups, allows one to decide about the nilpotency, supersulnhility, or soluhility of G. In fact, G is nilpotrat, respectively supersoluble, or soluble, if and only if there is a normal seriess

$$
1=\boldsymbol{N}_{0}<\boldsymbol{N}_{1}<\cdots<\boldsymbol{N}_{1}=\boldsymbol{G}
$$

such that all factors N_{1} / N_{1-1} are rentral, respertively cyclic of prime order. or p-groups: all of these couditions ran be cherked on the character table T of G.

The terms of the upper central series of G can be inductively located in T. by taking centres and factor groups in turns; in particular. if G is nilpotent. its uilpotency class is determined by T.

The lower rentral series of G can also be found, for instance by inspecting all rentral series descruding from G aud finding the fantest descending one. However, another method is available, which yields even more. In fact, it follows by indurtion fronn [13, Problem $3.10(a) \mid$ that the rhararter table of G allows one to decide which conjugary classes of G contain elennents of the form $g=\left[r_{1}, \ldots, x_{1}\right]$ with $x_{1}, \ldots, x_{1} \in G$; these conjugacy classes generate $\gamma_{1}(G)$, the ith term of the lower ceutral series, though their (set-theoretical) union may be properly contained in $\gamma(G)$.

Iuspection of the latice of normal subgroups of G (with orders) shows which uormal suhgroups N are nilpotent: they are exartly those which contain normal subgroups of G of order $|N|$, for all prime divisors p of $|N|$ (here, as usual, $|N|_{p}$ denotes the higgest powet of p which divides the order of N). As a consequence, the Fitting subgroup of G can be fonnd (as the biggest nilputent nurmal subgroup of G); hence, if G is soluble, the Fitting series of G ran be determined inductively, and the Fitting length can be computed.

What about the derived series of G (and in particular the derived length of G, if G is soluble)? The derived suhgroup G^{\prime} can certainly be read off from T, as the smallest uormal subgroup N of G such that G / N is abelian, or equivalently as the intersection of the keruels of all linear characters of G. The problem of fiuding the second derived subgroup $G^{\prime \prime}$ amounts to heing able to tell whether G^{\prime} in abelian from the character tahle of G. The following more general question appuared as Prohlem 10 in R. Braner's report on representations of finite groups, in [19, page 141]:

Given the character table of a group G and the set of conjugacy
rlasses of G which make tup a normal subgrotp N of G, can it be drasied whether or not \mathbf{N} is abelian?
As Brauer then remarked, a positive answer to this question would allow oue to identify the terms of the derived series of G by looking at its character table, and in particular to compute the derived length of G, for G soluble.

Unfortunately, the answer to Brater's Problem 10 is negative, as announced by A. I. Saksonov in [20]. A computational approach to this problem has been used recently by K. Dorkx and P. Igodt in [7], which led to the same conclusion and produced additional examples. However, neither Saksonov, nor Dorkx and Igodt, answered Braner's question about the derived length.

One of the main results in this thesis is the construction of groups G and H with identical character tables and derived lengths 2 and 3 respectively, which proves that the derived length of a soluble group cannot be read off from its chararter tahle. This will be done in Chapter 5.

The discovery of the above meutioned examples was a consequence of the close study of the structure of a minimal example of groups with identical rharacter tables and different derived lengths. This study is also part of this thesis, and will be rarried ott in Chapter 3.

Chapter 6 is devoted to the construrtion of another example of groups with identical rharacter tables and derived lengths 2 and 3. The groups of this example ate p-groups, unlike those of Chapter 5 , which are not nilpotent. The existeuce of this chapter is justified by the fact that the discussion of a minimal example in Chapter 3 is rarried ont under the assumption that the groups in question are not nilpotent.

A tool for the romparison of chararter tables will be developed in Chapter 4. Being suited to our examples of Chapters 5 and 6 , it concorns a rather special ronfiguration, that of Camina groups. Howevet, since Camina groups have been studied extensively, and seem to arise in many different situations, the results of this chapter may prove useful elsewhere.

Early and shorter versions of Chapters 4 and 5 will appear together as an artirle (namely [17]), in the Journal of the Londun Mathematical Soriety.

The final chapter of this thesis, namely Chapter 7, concerns character tables of wreath prudurts. We shall prove that the chararter table of a wreath product $G \mid A$ is completely determined by the permutation group A and the rharacter table of G. An almost immediate consequence of this fact is the construction of pairs (G, H) of groups with ideutical rharacter tables aud derived lengths n and $n+1$, for any given integer $n \geq 2$.

Some more or less standaril results from group theory and representation theory, which we shall need, are collected in Chapter 2.

Chapter 2

Technical results

2.1 Commutators

We shall use the standard notation of [10] for rommutators. In particular, if A and B are subsets of a group G. we set

$$
[A, B]=\langle[a, b] \mid a \in A, b \in B\rangle .
$$

However. it will be useful to have a notation also for the set of rommutators $[a, b]$ with $a \in A$ and $b \in B$. Thus, we shall ocrasionally use the following non-standard notation:

$$
\lfloor A, B\rfloor=\{[a, b] \mid a \in A, b \in B\} .
$$

If G_{1}, \ldots, G_{n} are subsets of G, we set

$$
\left[G_{1}, \ldots, G_{n}\right]=\left\langle\left[g_{1}, \ldots, g_{n}\right] \mid g_{1} \in G_{2}\right\rangle,
$$

where $\left[g_{1}, \ldots g_{n}\right]$ is defined recursively by the formula

$$
\left[g_{1}, \ldots, g_{n}\right]=\left[\left[g_{1}, \ldots, g_{n-1}\right], g_{n}\right] .
$$

We observe that

$$
\left[G_{1}, \ldots, G_{n}\right] \leq\left[\ldots\left[\left[G_{1}, G_{2},\right], G_{3}\right], \ldots, G_{n}\right],
$$

though equality does not hold in general.
Wr shall need the following well-known lemma about roprinte actious.

Lemma 2.1.1 Let A be a Q-group, with $(|A|,|Q|)=1$. Then

$$
[[A, Q], Q]=[A, Q]
$$

and

$$
A=[A, Q] C_{A}(Q)
$$

Furthermore, if A as abelian, then

$$
A=[A, Q] \times C_{A}(Q)
$$

Proof Our first statement is [10. Kapitel III. Hilfssatz 13.3 b)], from whose proof our second statement follows. Our third statement is [10. Kapite] III. Satz 13.4 b)].

2.2 Linear and bilinear maps arising from commutation

Lemma 2.2.1 Suppose that $H_{1}, H_{2}, H_{3}, K_{1}, K_{2}, K_{3}$ are subgroups of a group G. Suppose that $K_{i} \triangleleft H_{1}$ and that H_{i} / K_{i} гs abelian ($\mathrm{i}=1,2,3$). Suppose alao that $\left[\boldsymbol{H}_{1}, \boldsymbol{H}_{2}\right] \leq H_{3}$ and that $\left[\boldsymbol{H}_{1}, \boldsymbol{K}_{2}\right],\left[\boldsymbol{K}_{1}, \boldsymbol{H}_{2}\right],\left[\boldsymbol{H}_{1}, \boldsymbol{H}_{2}, \boldsymbol{H}_{1}\right]$ and $\left[H_{1}, H_{2}, H_{2}\right]$ are all contained in \boldsymbol{K}_{3}. Then there exista a \mathbf{Z}-bilinear map ๆ: $\boldsymbol{H}_{1} / K_{1} \times H_{2} / K_{2} \rightarrow H_{3} / K_{3}$ such that

$$
\left(r K_{1}, y K_{2}\right)^{\gamma}=[r, y] K_{3} \text { for all } r \in H_{1} \text { and for all } y \in H_{2} .
$$

Furthetmore, if $H_{1}=H_{2}$ and $K_{1}=K_{2}$, then the map 9 is skew-symmetric, in other words $\left(\boldsymbol{J} K_{1}, x K_{2}\right)^{\gamma}=K_{3}$ for all $x \in H_{1}$.

Proof This lenma is a slightly more general form of [11, Chapter VIII. Lemma 6.1] and can be proved in the same way. The last statement of the lemma is cobvious.

If $H_{1} / K_{\text {, }}$ has exponent p for $i=1,2,3$, where p is a prine, then each H_{1} / K_{1} can be regarded as a vector space over the field F_{μ}, and the map $\mathcal{\gamma}$ is obviously \mathbf{F}_{p}-bilinear.

A differeut formulation of Lemma 2.2 .1 is that (with the given hypotheses) the map

$$
\hat{v}_{y}: H_{1} / K_{1} \rightarrow H_{3} / K_{3}
$$

surb that $\left(s K_{1}\right)^{w_{0}}=\left[x_{i} y \mid K_{3}\right.$ is a well]-defined group homomorphism for all $y \in H_{2}$. and the map

$$
\gamma: H_{1} / K_{1} \rightarrow \operatorname{Hom}\left(H_{1} / K_{1}, H_{3} / K_{3}\right)
$$

such that $\left(y K_{z}\right)^{2}=$ Fy $_{y}$ is alsen a well-defined gronp homomorphism. More generally we have the following result.

Lemma 2.2.2 Assume the hypotheses of Lernma 2.2.1. In addition, suppose that Q is a group of operators for G and that H, and K, are Q-subgroups, of G. whence in partirular H_{1} / K_{1} becomes a $Z Q$-module ($i=1,2,3$). Suppose also that Q centralizes H_{i} / K_{3}. Then the map

$$
\varphi_{y}: H_{1} / K_{1} \rightarrow H_{1} / K_{3}
$$

such that $\left(x K_{1}\right)^{\varphi_{s}}=[r, y] K_{3}$ for all $x \in H_{1}$ is well defined and a $\mathbf{Z Q}$-module homomorphism for all $y \in H_{2}$, and the map

$$
\text { \%: } \boldsymbol{H}_{2} / \boldsymbol{K}_{2} \rightarrow \boldsymbol{H o m}_{\text {a }}\left(\boldsymbol{H}_{1} / \boldsymbol{K}_{1}, \boldsymbol{H}_{3} / \boldsymbol{K}_{3}\right)
$$

such that $\left(y K_{3}\right)^{4}=p_{y}$ for all $y \in H_{2}$ 24 well defined and a group homomor. phasm.

Proof The fart that ψ_{y} is a group homomorphism for all $y \in H_{2}$ follows pasily from Lemma 2.2.1. In order to show that the maps py are artually $\mathbf{Z} Q$-homomorphisuss it is sufficient to notire that for all $x \in H_{1}, y \in H_{2}$ and $\xi \in Q$ we have

$$
\begin{aligned}
\left(\left(x K_{1}^{\prime}\right)^{\varphi v}\right)^{\varepsilon} & =[x, y]^{4} K_{3}^{\prime}=\left[r^{\ell}, y^{\ell} \mid K_{3}^{\prime}\right. \\
& =\left(s^{\ell} K_{1}, y^{\ell} K_{2}\right)^{\top}=\left(r^{\ell} K_{1}, y K_{2}\right)^{x}=\left(r^{4} K_{1}\right)^{v y} .
\end{aligned}
$$

This proves that $\varphi_{y} \in \operatorname{Hom} \mathrm{~m}_{\mathrm{q}}\left(H_{1} / K_{1}, H_{3} / K_{3}\right)$. It is an easy ronsequencer of Lemma 2.2.1 that γ is a group Lomomorpbism.

Later on, namely in Section 3.4, we sball see how to handle alse the rase in which Q does not centralize H_{2} / K_{2}. For the moment, let us suppose that
wr are interested in obtaining a single homomorphism $\nu_{w}: \boldsymbol{H}_{1} / \boldsymbol{K}_{1} \rightarrow \boldsymbol{H}_{3} / \boldsymbol{h}_{3}$ (defined as in Lemma 2.2.2) for a fixed $u \in H_{2}$. Wr may apply Lemma 2.2.2 with $H_{2}=\langle w\rangle$ and $K_{2}=1$, hut since now we do not care anymore about the linearity of $\underset{\sim}{ } w$ with respect to w we may find the bypothesen of Lemma 2.2.2 too restrictive (for justance we may wish to replace $\left[H_{1},\langle w\rangle\right] \leq H_{3}$ with the weaker assumption $\left.\left[H_{1}, v_{1}\right] \leq H_{1}\right)$. In the following lemma we shall also drop the assumption that the factor groups $\boldsymbol{H}_{1} / \boldsymbol{K}_{1}$ and $\boldsymbol{H}_{3} / \boldsymbol{K}_{3}$ are abeliau (botice that the subgroups H_{3} and K_{3} will be renumbered).

Lemma 2.2.3 Suppose that $H_{1}, H_{2}, K_{1}, K_{2}$ are subgroups of a graup G. unth $K_{1} \triangleleft H_{1}(i=1,2)$. Let us fix an element w of G and suppose that $\left[H_{1}, w\right] \leq H_{2}$ and that $\left[K_{1}, w\right]$ and $\left[H_{1}, w, H_{1}\right]$ are contained in K_{2}. Then the map

$$
\stackrel{F}{n}: H_{1} / K_{1} \rightarrow H_{2} / K_{2}
$$

such that $\left.\left(x K_{1}\right)^{\omega}=[\lrcorner, w\right] \boldsymbol{K}_{2}$ for all $x \in H_{1}$ is well defined and a group homomorphiam. Furthermore, if Q in a group of operators for G which centralizes w and if $H_{1}, H_{2}, K_{1}, K_{2}$ are Q-subgroups of G, then the map ${ }_{\mathrm{w}}$ is a Q-homomorphism.

Proof Since $\left[H_{1}, w\right] \leq H_{2}$. we have $[x, w] \in H_{2}$ for all $x \in H_{1}$. The following comnutator identity holds for all $x, y \in G$:

$$
\left.[x y, w]=[x, u]^{v}[y, u]=\mid x, w\right][x, w, y][y, w \mid .
$$

If $r \in \boldsymbol{H}_{1}$ and $y \in \boldsymbol{K}_{1}$, the wo have $[r, w, y] \in \boldsymbol{K}_{2}$ because $\left[\boldsymbol{H}_{1}, u, \boldsymbol{K}_{1}\right] \leq \boldsymbol{K}_{2}$, and $[y, w] \in \boldsymbol{K}_{2}$ becanse $\left[\boldsymbol{K}_{1}, w\right] \leq \boldsymbol{K}_{2}$; hence $[r y, w] \boldsymbol{K}_{2}=\left[r, w \mid \boldsymbol{K}_{2}\right.$, and this shows that the map φ_{w} is well defined. For $x, y \in H_{1}$ we have $[r, u, y] \in K_{2}$ since $\left[H_{1}, w, H_{1}\right] \leq K_{2}$, and this proves that p_{m} is a gronp homonorphism. Now smppose that the gromp Q acts on G by automorphism nommalizing H_{1}. $\boldsymbol{H}_{2}, \boldsymbol{K}_{1}, K_{2}$ and reutralizing \boldsymbol{u}. In particular Q acts ou $\boldsymbol{H}_{1} / \boldsymbol{K}_{1}$ and $\boldsymbol{H}_{2} / \boldsymbol{K}_{2}$. Then, for all $x \in H_{1}$ and $\xi \in Q$, we have

$$
\begin{aligned}
\left(\left(x K_{1}\right)^{* w}\right)^{\ell} & =[x, w]^{\ell} K_{2}=\left\{x^{\ell}, w^{\ell}\right] K_{1} \\
& =\left[x^{k}, w\right] K_{2}=\left(x^{2} K_{1}\right)^{v *}
\end{aligned}
$$

Thus φ - is a Q-bonomorphism.

The special case of Lemma 2.2 .3 in which $\boldsymbol{K}_{\mathbf{1}}=\boldsymbol{K}_{\mathbf{2}}=1$ will lie most useful: in this case, the hypothesis $\left[\boldsymbol{K}_{1}, \boldsymbol{w}\right] \leq \boldsymbol{K}_{2}$ of Lemma 2.2 .3 is trivially satisfied, and thus only the bypotheses $\left|H_{1}, w\right| \leq H_{2}$ and $\left[H_{1}, w, H_{1}\right]=1$ survive. If we also drop the hypothesis $\left[H_{1}, w, H_{1}\right]=1$. theu the map F_{2}. is not a group lomonurphism in general. but it satisfien the rule

$$
(x y)^{\infty-}=\left(x^{\infty}-\right)^{\varphi} y^{\infty-} \text { for all } x, y \in H_{1} .
$$

It is clearly pussible to ubtain a gronp homonurphism from φ_{0} by restricting its domain; in fact, the restriction of p_{4} to any sulgroup H_{1} of H_{1} is a group homomorphism exactly when $\left[\boldsymbol{H}_{1}, w_{,} \boldsymbol{H}_{1}\right]=1$. Though there may not be in general a unigue sul)group, H_{1} of G which is maximal among those which satisfy this property, a seusible choice of H_{1} will be given in Lemma 2.2.4.

To prorerd systematically, let is first remark that while the image of p w is not in general a sulgroup of \boldsymbol{H}_{2}, the iuverse image of the trivial subgroup under $F_{\text {w }}$ is $\mathbf{C}_{\boldsymbol{H}_{1}}(w)$, and thus it is a suhgronp of \boldsymbol{H}_{1}, although not neressarily normal. (Let us also notice that $\mathrm{C}_{H_{1}}(w)$ satisfies one of the properties of the kerucl of a bomomorphism, namely

$$
x^{\infty *}=y^{\infty} \Longleftrightarrow x y^{-1} \in \mathbf{C}_{H_{1}}(w)
$$

though φ_{w} is not a homomorphism.)
More generally, if H_{2} is a subgroup, of H_{2} surh that $\left[H_{1}, H_{2}\right]=1$, and if \dot{H}_{1} denotes the inverse image of \dot{H}_{2} uuder φ_{w}, then H_{1} is a subgroup of H_{1}. and the restriction of ψ_{0} to H_{1} is a group homomorphism. Both assertious are straightforward ronsequeures of the commutator formula

$$
[s y, w|=| x, w][x, w, y][y, w] .
$$

In fact, for $r, y \in H_{1}$ we have that

$$
[s, u, w] \in\left[\dot{H}_{1}, u_{1}, \dot{H}_{1}\right] \leq\left[H_{2}, H_{2}\right]=1 ;
$$

therefore \dot{H}_{1} is a subgroup of G and the restriction of ow to \dot{H}_{1} is a gromp homomorphism.

If, in addition, Q is a group of operators for G which centralizes w and uormalizes H_{2}, then H_{1} is clearly a Q-sulgroup of G, and the restriction of φ_{w} to H_{1} is a Q-homomorphism. What we have just proved is stated in the following lemma.

Lemma 2.2.4 Let H_{1}, H_{2} be Q-subgroups of the Q-group G (with Q possibly the trivial group), and let w be an element of G which is centralized by Q and such that $\left[H_{1}, w\right] \leq H_{2}$. Lat ua put $H_{2}=\mathrm{C}_{H_{2}}\left(H_{1}\right)$, and

$$
H_{1}=\left\{h \in H_{1} \mid[h, w] \in H_{2}\right]
$$

Then H_{1} is a Q-subgroup of H_{1}. the map

$$
\begin{aligned}
\psi_{w}: \boldsymbol{H}_{1} & \rightarrow \boldsymbol{H}_{2} \\
r & \mapsto[\boldsymbol{r}, w]
\end{aligned}
$$

is a Q-homomorphistr, and the kernel of ψ_{w} is $\mathbf{C}_{H_{1}}(w)=\mathbf{C}_{H_{1}}(w)$.

2.3 Irreducible modules for abelian groups

The following theorem describes all irreducible modules for a finite abelian group over a finite firld. With an abuse of language, by a faithful $\mathrm{F} G$-module we shall always mean an $F G$ module which is faithful for G (that is to say, no nou-identity element of G acts trivially on it), but not neressarily for the group algelora FG.

Theorem 2.3.1 Let $\mathbb{F}_{p^{\prime}}$ be the finite field of order n^{\prime}, let A be an abelian group and let \downarrow ' be a faxthful irreducible. F_{p} A-module of dimension n over $\mathbb{F}_{\boldsymbol{p}} \boldsymbol{f}$. Then:
(i) A is cyclic of order prime to p;
(is) n is the smalleat positive integer auch that $|A|$ divides ($p^{\text {nt }}-1$) (we al4o say that n in the multiplicative order of p^{f} modulo $|A|$); thus $F_{p^{n}}$, is the smallest extension field of F_{μ}, which contaizs a primitive $|A|-$ th root of unity ε, in particular we have $\mathbf{F}_{p^{\prime}}(\varepsilon)=\mathbf{F}_{p^{n s}}$:
(iii) if a_{0} is a generator of A, then there exista a primitive $|A|-$ th mot of unity ε in $\mathbb{F}_{p n \mathrm{~m}}$ such that V is isomorphic to the F_{p} A-module V_{e} whose underlying vector space ouer F_{p} is the field $F_{p^{n \prime}}$ and where the action of A on V ia given by

$$
x \in t_{0}^{\prime}=\varepsilon^{\prime} x \text { for all } x \in \mathbb{F}_{p^{n \prime}} \text { and for all } i=0, \ldots,|A|-1 \text {. }
$$

(iv) the ring Euclr, $A(V)$ is a field Laomorphic to $F_{p^{n \prime}}$, and consiata of the maps

$$
\begin{aligned}
\varphi_{v}: V & \rightarrow V \\
v & \rightarrow v y,
\end{aligned}
$$

for $y \in F_{p} d$.
Proof Statemeuts (1), (or), and (ist) of the therrem follow from [10, Kapitel II. Satz 3.10] aud its proof. Let us ohserve that [10, Kapitel II. Satz 3.10] only states that the actions of A on V and on V are permutation isomorphic. but it is clear from its proof that V aud V_{s} are actually isomorphic as F_{p}, A modules.

In order to prove assertion (iv) of the theorem, we may take $V=V_{e}$, according to statement (iii). Then earl of the maps $\vartheta_{n}: V_{e} \rightarrow V_{z}$ is the multiplication by some fixed element of $\mathrm{F}_{\mathrm{p}}{ }^{\prime \prime}$, and thus it is clearly an endomorphism of V_{f} as an F_{p} A-module. Hence the set of the maps p_{0} for $y \in F_{p}, A$ is a field isomorphic to $F_{p^{\prime \prime}}$, and is a subring of End $r_{p^{\prime}} A\left(V_{s}\right)$. Accorrling to Maschke's Theorem, End $r_{,}\left(V_{a}\right)$ is a division ring; thertfore. $V_{:}$ is a vertor spare over Eurl $p_{p},{ }_{A}\left(V_{\sigma}^{\prime}\right)$. From the fact that V_{s} Lhas urder $p^{\prime \prime}{ }^{\prime}$ it follows now that $F_{:}$hav dimension 1 over Eud $F_{j} A^{\prime}\left(V_{8}\right)$, and that

$$
\text { End } r_{p}, A\left(V_{e}\right)=\left\{\hat{Y}_{v} \mid y \in F_{p}, A\right\}
$$

The prowf is complete.
We cobserve that the choice of the primitive $|A|$-th root of unity ε in statement (iii) is wot arbitrary. In fact, different choices of ε may give rise to nou-isomorphic $\boldsymbol{F}_{\boldsymbol{p}}$ A-modiale structures on F_{p} as. More precisely, we whall see that V_{s} and $V_{\sigma^{\prime}}$ are isomorphic if and only if ε and ε^{\prime}, whirh are primitive $|A|$ th roots of unity in $F_{p^{n \prime}}$, are G Galois ronjugate over F_{p}.

Let $m(x) \in F_{\mu^{\prime}}[r]$ be the minimad polyoomial of the $\boldsymbol{F}_{p^{\prime}}$-linear transformation induced by a_{0} on V (via the module action). According to Thevrem 2.3.1, onr $m(x)$ is also the minimal polynomial of the $\boldsymbol{F}_{p} \boldsymbol{p}^{\prime}$-linear transfurmation of $\mathbf{F}_{p^{\prime \prime} / \text { given }}$ by multiplication by ε. It follows that $m(x)$ is the minimal polynonial of ε over F_{p}, in particular ε is an eigenvalue of a_{0} on V '.

Furthermore, the eigenvalues of a_{0} on V are exartly the Galois roujugates

$$
\varepsilon, \varepsilon^{p^{\prime}}, \varepsilon^{\rho^{\prime \prime}}, \ldots, \varepsilon^{\mu=-1) \prime}
$$

In fact, since ε is a root of $m(x)$, aud because the roefficients of $m(x)$ belong to the field F_{p}. We have

$$
m\left(\epsilon^{p^{\prime \prime}}\right)=m(c)^{p^{\prime}}=0 \text { for all } i=0 \ldots ., n-1 \text {; }
$$

bence $\varepsilon_{,} \varepsilon^{p^{\prime}}, \varepsilon^{p^{3 /}} \ldots \ldots, \varepsilon^{\left.p^{(n-1)}\right)}$ are routs of $m(x)$. They are pairwise distinct as $F_{p^{\prime}}(\varepsilon)=F_{p^{n s}}$ las dimension n over $F_{p^{\prime}}$. Since the degree of $m(s)$ does uot exceed the dine to say, all the eigemvalues of a_{0} on V.

Now let us extenal the ground field $F_{p \prime}$ of V^{\prime} to $E=F_{p-\rho}$. The tensor produrt $V^{-E}=I^{-} \quad 5, E$ is a vector space over E and becomes an $E A$-nodule in a natural way (see [10, Kapitel V. Hilfsatz 11.1 and Hilfsatz 11.3]). The Elinear transformation induced by a_{0} on $b^{\mathbf{L}}$ ran be put into diagonal forms. leranse it has all its eigeuvalues in E. and they are all distinct. Hence there pxist an E-basis ro..... v_{n-1} of V^{-5} surh that

$$
v_{1} a_{0}=\varepsilon^{p} v_{1} \text { for all } i=0, \ldots, n-1
$$

We have seres that an irreducible faithfnl module for a cyclic group over a finite field F_{p} determines a Galois conjugary rlass of roots of unity over F_{n}, . The following result is strotger.

Theorem 2.3.2 Let $A=\left(a_{0}\right)$ be a cyclic group and let E be a splitting field for the polynomial $\left.\right|^{|A|}-1$ over \mathbf{F}_{p}. The isomorphism classes of irreducible F_{p} A-modules are in a bijective cormespondencr with the orbits of $|A| t h$ roats of unity in \mathbf{E} under the Galais grousp of \mathbf{E} over F_{p}. This rorrespondence. assonciates to each irreducible F_{p} A-module I' the set of the eigenvalues of a_{0} on 1 .

Proof Let ns first prove the theorem under the assmmption that $|\boldsymbol{A}|$ is not divisible by p.

Let R be the set of the $|\mathcal{A}|$ th roots of unity in \mathbf{E} Since \mathbf{E} is a splitting field for $\boldsymbol{r}^{|A|}-1$, and since p does not divide $|A|$, the field E rontains $|A|$ distinct $|A| t h$ roots of unity, and therefore $|R|=|A|$. If $\varepsilon \in R$, the extension field $F_{p^{\prime}}(\varepsilon)$ can be regarded as a vertor space over $F_{p^{\prime}}$ and berones an $F_{p^{\prime}} A$ noodule if one slefiness

$$
u a_{0}^{\prime}=\varepsilon^{*} v \text { for all } v \in F_{p}(\varepsilon) \text { and for all } z=1, \ldots,|A| \text {. }
$$

This F_{p}, A-module. which we shall denote by V_{n}^{\prime}, is irreducible, because any
 V.

If V^{\prime} is any irredurible F_{y} A-moclule. then V can be regarded as a faithful irreducible module for $A=A / K$ over $F_{p \prime \prime}$, where

$$
K=\{a \in A \mid v=v \text { for all } v \in V\}
$$

is the kernel of the representation of A on V. It folluws from statement (iii) of Theoresn 2.3.1 that there exists a primitive $|A|$ th ruot of unity ε (in particular ε is an $|A|$ th root of unity and we may assume that $\epsilon \in R$) such that V is isomorphic to V, as an $\boldsymbol{F}_{p} s$-module, and hence as an $\boldsymbol{F}_{p} / \boldsymbol{A}$-module.

Thus the set of modules V; for $\varepsilon \in R$ contains a complete set of representatives for the isomorphism ciassea of irreducible F_{p} A-modules. As we have seen ahuve, the eigenvalues of a_{0} on $V_{\text {; }}$ are exartly all the distinct Galois conjugates of ε. In particular if $V_{\mathbf{v}}$, and $V_{\mathbf{r}^{\prime}}$ are isomorphir (for $\varepsilon, \varepsilon^{\prime} \in \mathcal{R}$), then ε and ε^{\prime} are Galois conjugate, in other words they belong to the same orbit of the Galuis group of \mathbf{E} over $\mathbf{F}_{\boldsymbol{p}}$ on \mathcal{R}.

Conversely, let us assume that ε atud ε^{\prime} are Galois coujugate. Then since the Galois group of \mathbf{E} over $\mathbf{F}_{p^{\prime}}$ is generated by the automorphism $c \rightarrow \boldsymbol{c}^{\prime}$, we bave $\epsilon^{\prime}=\varepsilon^{p \prime}$ for some intfger i. Iu particular $V_{\text {; }}$ and $V_{\text {' }}$, have the same nuderlying vertor spare over $\mathbf{F}_{p^{\prime}}$, uamely the field $\mathbf{F}_{p^{\prime}}(\varepsilon)=\mathbf{F}_{p^{\prime}}\left(\varepsilon^{\prime}\right)$. The map $\theta: V_{:} \rightarrow V_{n}$ surh that $r^{n}=r^{\prime \prime \prime}$ is then an isomorphism of $\boldsymbol{F}_{\boldsymbol{p}}, A$-modules, berause it is an isomorphism of vector spaces over $F_{p^{\prime}}$ and it satisfies

$$
\left(v a_{0}\right)^{d}=(v \varepsilon)^{p^{\prime \prime}}=v^{p^{\prime \prime}} E^{p^{\prime \prime}}=v^{\prime \prime} a_{0}
$$

for all ${ }^{\prime} \in V_{\varepsilon}$. Hence V_{ε} and $V_{r^{\prime}}$ are isomorphic if and only if ε and ε^{\prime} are Galois ronjugate.

Thus the theorem is proved nuder the additional assumption that $|A|$ is not divisible by p. Now let us drop this nssumption, aud let p^{r} be the highest power of p which divides $|\boldsymbol{A}|$ Let us put $A=A / P$. where $P=\left\langle a_{0}^{\mid A 1 / P}\right\rangle$ is the Sylow p-subgroup of A.

According to [10, Kapitel V, Satz 5.17] P is contained in the kernel of every irredurible representation of A over $\mathbf{F}_{p} ;$ bence carh irteducible $\mathbf{F}_{p^{\prime}} A$ module V ran be regarded as an irreducible $F_{p} A$ module. On the other hand, siuce

$$
x^{|A|}-1=x^{|A| F^{\prime}}-1=\left(x^{|4|}-1\right)^{P^{\prime}},
$$

the splitting field \mathbb{E} for $x^{|A|}-1$ over $\boldsymbol{F}_{p^{\prime}}$ is also a splatting field for $x^{|A|}-1$ and the set R of $|A| t h$ roots of unity in E coincides with the set of $|A|$ th roots of unity in \mathbb{E}.

Since \boldsymbol{p} does not divide $|\boldsymbol{A}|$, the theorem is true for the gronp A, as we have proved above. Thus, in view of these observations, its conclusion holds for the group A too.

We observe here that Theorem 2.3.2 in digguise says that the isomorphism rlasses of irreducible F_{p} / A-modules are in a bijective correspondence with the Galois ronjugary classes over F_{p} of irreducible E characters of A : thus Theorem 2.3 .2 may also be deduced from [13, Theorem 9.21] together with [13. Corollary 9.7].

An important consequence of Theorem 2.3 .2 is that the isomorphism class of an irreducible F_{p} A-module V (for a cyclic group $A=\left\langle a_{0}\right\rangle$) is uniquely determined by the isomorphism class of the (not qecessarily irredurible) EAmodule $V^{\mathbf{L}}$. In fact. we saw that V^{2} has an Ebasis whose elements are eigenvertors for a_{0} and, arcording to Theorm 2.3.1, the rorresponding eigenvalues form an orbit under the Galois group of \mathbb{E} over F_{p} and determine the $F_{p^{\prime}}$ A-module V^{\prime} up to isomorphism. We shall need the following more general result.

Corollary 2.3.3 Let W' be a semisimple module for the cyclir group A over $\mathbf{F}_{p^{\prime}}$ and let E be a splitting field for the polynomial $x^{|A|}-1$ over $F_{p^{\prime}}$. Then the isomorphism class of W as an \boldsymbol{F}_{p}, A-module is uniquely determined by the isomorphistn class of $W^{\mathbf{L}}$ as an EA-module.

Proof Since W^{\prime} is semisimple, we have $W^{\prime}=\bigoplus_{1-1}^{\prime} V_{1}$, where the V_{1} are irreducible F_{p} A-modules. It is easy to see that $W^{\mathbf{L}} \cong \bigoplus_{i=1}^{0} V^{\mathbb{L}}$. Since we saw that V ' ${ }^{2}$ determines V_{i} uniquely up to isomorphism, the conclusion follows.

Let us notice that Corollary 2.3 .3 remains true if we replare the cyclic group A with an arbitrary finite gronp. This is again a consequence of $[13$, Theorem 9.21 and Corollary 9.7].

2.4 Homogeneous modules

An $F Q$-module I^{\prime} (where F is a field and Q is a group) is said to he homogeneote if it is semisimpla and all its $\mathcal{F Q}$-composition facturs are isomorphic.

If \mid ' is a settisimple $F Q$-module (for instance V is always seminimple when the characteristic of F is 0 or a prine not dividiug the order of Q. according to Masrhase's Therorem), then by definition is a direct sum of irreducible FQ-submodules. A stibmodule of V which is the sum of all irredurible submodules isomorphic to a fixed irreducible $F Q$-module is called a homogereous component of l. It is pasy to see that cach honogemeons component of V ' is invariant under $F Q$-eudomorphisms of V, aud that V is the direct sum of its homogemons romponents (see for instance [13, Lemma (1.13)]).

Lemma 2.4.1 Let F be a field. Q an abelian group and S a semisimple FQ-modulf. Then the following assertions are equivalent:
(i) every cyclic: $\mathbf{F Q}$-submodule of S is irteducible:
(ii) S is the union of ile irredurible $F Q$-submodules:
(iii) S is $F Q$-homogeneous.

Proof ($(\mathrm{i}) \Rightarrow$ (ii)) If earh element of S generates an irreducible suhmotule of S, then S is clearly a waion of irrerlucible submodules.
((ii) \Rightarrow (iii)) Since S is semisimple, S is the direct sum of its $F Q$. homogeneous components and every irreducible $\mathbb{P Q}$-submodule of S is coutained in some $F Q$-homogeneruss romponent of S. Hence S has only one $P Q$-homogeneons componett, or in other words. S is $F Q$-homugenevus.
((iii) \Rightarrow (i)) Since S is semisimple, S ran be written as an internal direct $\operatorname{sum} S=V_{1} \oplus \oplus V_{k}$ of irreducible $\mathbf{F Q}$ submodules $V_{1} \ldots . ., V_{t}$, which are all isomorphic becanse S is $\mathbb{P Q}$-hotnogencous. We may therefore assume that $S=V^{\prime} \oplus \cdots \notin V$, the external direct sum of \mathfrak{d} isomorphic copies of au irreducible $\mathbf{F Q}$-module \boldsymbol{F}.

Let ($\mathrm{r}_{1} \ldots . \mathrm{r}_{k}$) be n not-zero clemert of S. Wie may mssume $\mathrm{r}_{1} \neq 0$. Since V^{\prime} is irreducible we have ${ }^{\prime}, \vec{F} Q=I^{\prime}$, in particular for ${ }^{\text {rach }} i=2, \ldots, k$ thore" יxists an elenent a_{1} of FQ such that $z_{1} a_{1}=r_{1}$.

Now the map

$$
\begin{aligned}
\bullet: V & \rightarrow S \\
v & \mapsto\left(v, \operatorname{ra} a_{\mu}, \ldots, v \alpha_{k}\right)
\end{aligned}
$$

is clearly Flinear. Furthermore, the map p is an $F Q$ thomomorphism, because Q is ahelian

Siuce V is irreducible and \varnothing is not the zero bomomorphism, γ is a monomorphism. Thus its image ($\left(t_{1}, \ldots, r_{k}\right) \mathbb{F Q}$, namely the cyclic $\mathbf{F} Q$ submodule of S generated by (p_{1}, \ldots, r_{2}), is isomorphic to V^{\prime}. in partirular it is an irredurible $F Q$-module.

The notion of homogeneous romponent generalizes to a situation in which the modules are not semisimple, namely that of abelian groups (or in other words. \mathbf{Z}-modules) with operator groups of coprime order. To proceed systenatically. let us first rerall some well kuowu farts.

Theorem 2.4.2 Let A be an abelian p-group. and let Q be a p^{\prime}-group of antomorphisthe of A. Suppose that A is indecomposable as a Q-group. Then A is homocyclic (in other words, A is the direct product of cyclic groups of the same order), and the only Q-subgroups of A are

$$
\Omega \Omega_{1}(A)=\left\{a \in A \mid a^{p^{*}}=1\right\} .
$$

for $:=0,1, \ldots$, where p^{r} is the exponent of A. Furthermare, all Q composition factors of A are Q-isomorphic.
Proof See [11, Chapter V'III, Theorem 5.9 and Theorem 5.10]. The fact that all Q-composition factory of A are Q-isomorphic is a consequence of the fact that the map

$$
\begin{aligned}
& A \rightarrow A \\
& a \mapsto a^{p}
\end{aligned}
$$

is a Q endomorphism of A.
Now let \boldsymbol{A} be an abelian p group with a \boldsymbol{p}^{\prime}-group of automorphisus Q. If V is a fixed irrecturible $F_{p} Q$-module, let B be the product of all indecomposalule Q-subgroups of A whirb have some Q-romposition factor isomorphir to V (as a Q-group, or equivaloutly as an $F_{p} Q$-module). It is an easy consequence of Theorem 2.4.2 that all Q-composition factors of B are Q-isomorphir to V. We shall this call B a Q-homogeneous component of A. The name is justified by the eany facts that Q-homugeurous compouents of A are invariant nuder Q-cudomorphivms of A, and that A is the direct product of
its Q-homogeneons romponents. (We ohserve that the statement of Letuma 2.1.1 which refers to A abelian is a sperial rase of this, $C_{Q}(A)$ being the Q-homogeneous component of A which correspouds to the trivial module.)

2.5 Induction and tensor induction

While the reader is certainly familiar with induction of modules and characters, he may be not so with tensor iuduction. This techuique is particularly useful for the description of the representations of wreath products. In order to show the similarity hetween ordinary induction and tensor induction we shall give a hrief exposition of hoth terhnigures in surcession. Expositiony of tensor induction can also be found in [5, §13] and [14, Section 4].

Let H be a sulogroup of the group G, let \mathbf{F} be a field and W a right $\mathbf{F} H$. module. Since the group algelira $\mathbf{F G}$ is an ($\mathbf{F H}, \mathbf{F G}$) bimodule, the tensor product $\mathbf{U}^{\prime} \otimes_{H H} F G$ hecomes a right $F G$-module according to $\{10$, Kapitel V, Satz 9.8], which is called the iuduced module and is denoted by $\boldsymbol{W}^{\text {cig}}$.

Let T be a right trausversal for H in G. Then $F H=\oplus_{\ell \in \mathcal{T}}(\mathbb{F} H) t$ is a decomposition of FG as a left FH-module (which shows that FG is a free left $\mathbf{F} H$-module). Hewer we have the deromposition

$$
\mathbf{w}^{-i}=\boldsymbol{W} \otimes_{\mathbf{W}} \mathbf{F G}=\bigoplus_{\in \boldsymbol{T}}\left(\mathbf{u}^{*} \otimes \boldsymbol{t}\right)
$$

of \boldsymbol{W}^{G} as a vector space over \mathbf{F}. where $\boldsymbol{W} \otimes t=\{w \otimes t \mid \boldsymbol{w} \in \boldsymbol{W}\}$. Each $\boldsymbol{U} \otimes t$ is an $F H^{\prime}$-sulmodule of W^{G}. In fact, for $h \in H$ we have

$$
(w \otimes t) h^{t}=w \otimes h t=w h \otimes t .
$$

Now G acts ou the set of right cosets of H in G by right multiplication, hence it arts on T. Let us denote this action by $(t, g) \leftrightarrow t \cdot g$. In other words, $t \cdot g$ (for $t \in T$ aud $g \in G$) is the unigue element of T such that $t g \in H(t \cdot g)$, or equivalently $\operatorname{tg}(t \cdot g)^{-1} \in H$.

We therefore have

$$
(w \otimes t) g=u t g(t \cdot g)^{-1} \otimes(t \cdot g) \in \boldsymbol{U} \otimes(t \cdot g),
$$

where we observe that in order to compute $w t g(t \cdot g)^{-1}$ it is sufficient to kuow \boldsymbol{W} as an $\mathbf{F} H$-module, because $\boldsymbol{t g}(t \cdot g)^{-1} \in H$. Mure generally, any element
of $U^{-r ;}$ has the form $\sum_{i \in T}\left(w_{t} \otimes t\right)$ for some w, W, and we have

$$
\left(\sum_{1 \in T}\left(w_{t} \otimes t\right)\right) g=\sum_{i \in T}\left(x_{t} \otimes t\right)
$$

where $x_{1}=u_{t, g^{-1}}\left(\left(t \cdot g^{-1}\right) g^{-1}\right)$.
There is an alternative definition of $\boldsymbol{W}^{\text {ri }}$ which builds it as the direct sum of \mathbb{T}-spares \mathbb{W}^{\prime} Qt, earh isomorphic to \mathbb{K}^{\prime} via the map $w \mapsto w \otimes t$, aud makes it into an FG-module according to the formula above. Although our original clefinition of $W^{\text {'Gi }}$ is to be preferred as it does not involve any choice of a transversal T, the formula aloove will serve as a model for the definition of the tensor induced modnle $W^{s i d}$

As we have sern, $W^{\prime \prime}$ is the direct sum of the \mathbb{F}-subspaces $W^{\prime} \& t$ for $t \in T$, and each $W \otimes t$ is an $\boldsymbol{F H}^{t}$-sinmorlule of $\boldsymbol{W}^{\boldsymbol{C}}$. Let us detine the F-spare

$$
\boldsymbol{W}^{r \cos i}=\bigotimes_{l \in T}(W \operatorname{l},
$$

namely $W^{* i n}$ is the tensur product over F of the F-spaces $W Q t$, where wie are assuming some fixed but arbitrary total onder on T.

The \boldsymbol{F}^{\prime}-module structure of each $W^{\prime} \otimes t$ can now be used to give $W^{\omega G}$ au $\boldsymbol{P G}$-module structure, much in the same way as for \boldsymbol{W}^{-G}. We define an action of $g \in G$ on the pure tensors $\otimes_{\in \in T}\left(w_{1} \otimes t\right)$ (for some $w_{1} \in W$). as follows:

$$
\left(\bigotimes_{t \in T}\left(w_{t} \otimes t\right)\right) g=\bigotimes_{t \in T}\left(x_{t} \otimes t\right)
$$

where $r_{t}=w_{1 \cdot g^{-1}}\left(\left(t \cdot g^{-1}\right) g t^{-1}\right)$. We observe that this formula cau be obtained from that which gives the action of g on $W^{\prime G}$ by replaring $\sum_{t \in T}$ with $\boldsymbol{Q}_{t \in T}$. Consequently, the artion of g on the pure tensors of $W^{B G}$ can be described in terms of the artion of g on $W^{\text {ci }}$ as follows:

$$
\left(\bigotimes_{t \in T}\left(w_{t} \otimes t\right)\right) g=\bigotimes_{t \in T}\left(\left(\sum_{s \in T}\left(w_{s} \otimes s\right)\right) g\right)^{\pi_{t}}
$$

where the maps $\pi_{t}: W^{\prime C} \rightarrow$ W $8 t$ are the projections on the summands of $W^{\prime G}=\oplus_{i \in T}(W \otimes t)$.

Siuce the action of g on the pure tensors is linear in each $w_{t} \otimes t$, it extends to a miciue and well-defined action of g on W^{06}. It is easy to check that

$$
\left(\left(\bigotimes_{t \in T}\left(w_{t} \otimes t\right)\right) g_{1}\right) g_{2}=\bigotimes_{t \in T}\left(w_{t} \otimes t\right) g_{1} g_{2}
$$

bence Wrid becomes an $P G$-module. We observe that

$$
\operatorname{dim} W^{\cdot G}=|G: H| \operatorname{dim} W
$$

and that

$$
\operatorname{dim} W^{\prime * G}=(\operatorname{dim} W)^{|G: M|}
$$

It is not difficult to show that the isomorphism rlass of $W^{* S G}$ depends only on the isomorphism class of W, and not on the transversal T, or on the particular ordering given to it.

Now let ψ be the rharacter of H afforded by W and let ψ^{G} and $\psi^{\text {QG }}$ be the characters of G afforded by $\boldsymbol{W}^{G i}$ and $\boldsymbol{W}^{* G}$ respertively. We shall compute explicit expressions for ψ^{G} and $\psi^{\otimes G}$ in terms of ψ.

Lemma 2.5.1 Let $g \in G$ and let denote the function from the group G to the field \mathbb{F} which coincides with ψ on the subgroup H and takes the value zero on $G \backslash H$. Then we have

$$
v^{\theta}(g)=\sum_{t \in T} v^{*}\left(t g t^{-1}\right)
$$

Proof Let $w_{1} \ldots, w$, be a basis of W. Then a basis of $\boldsymbol{W}^{-\boldsymbol{\theta}}$ is given by the elements $w_{1} \geqslant t$ for $t=1, \ldots s$ and for $t \in T$. Let us write

$$
w_{1} h=\sum_{j=1}^{\sum} a_{1}(h) w_{j}
$$

for $h \in H$, with $a_{1}(h) \in F$. In particular, we have $\neq(h)=\sum_{i=1} a_{11}(h)$. On the other hand, we have

$$
\left(w_{i} \otimes t\right) g=w_{i}\left(t g(t \cdot g)^{-1}\right) \otimes(t \cdot g)=\sum_{j=1}^{\infty} a_{i}\left(t g(t \cdot g)^{-1}\right) w_{j} \otimes(t \cdot g)
$$

Now we have $w, \otimes t=w, \otimes(t \cdot g)$ exactly when $i=j$ and $t=t \cdot g$, or equivalently when $x=j$ and $\operatorname{tg}^{-1} \in H$. It follows that

$$
t^{\prime} t^{\prime}(g)=\sum_{t \in T^{\prime}} \sum_{i=1}^{t} a_{i t}\left(t g t^{-1}\right)=\sum_{t \in T} \psi^{\circ}\left(t g t^{-1}\right)
$$

where T^{\prime} is the set of the elements t of T such that $\operatorname{tgit}^{-1} \in H$. The proof is complete.

We observe that since ψ is a class function, when \mathbb{F} has chararteristic zero we can also write

$$
v^{\omega}(g)=\frac{1}{|H|} \sum_{k \in G} v^{0}\left(s g r^{-1}\right)
$$

If we rhooser a set of representatives x_{1}, \ldots, x_{m} for the ronjugary classes of H contained in g^{G} (that is to say, $g^{\sigma} \cap H=r_{1}^{H} \cup \cdots \cup r_{m}^{H}$), we olstain

$$
s^{\theta}(g)=\frac{|G ; H|}{\left|g^{G}\right|} \sum_{i=1}^{m}\left|x_{i}^{H}\right| \hat{k}\left(x_{i}\right) .
$$

The following useful formula follows:

$$
\psi^{G}(g)=\left|C_{i}(g)\right| \sum_{1=1}^{m} \frac{\psi\left(x_{0}\right)}{\left|\mathbf{C}_{\boldsymbol{H}}\left(x_{0}\right)\right|}
$$

This can also be expressed by saying that $\psi^{\prime \cdot}{ }^{C}(g)$ equals $|G: H|$ times the netan value of ψ° uver g^{i}.

Now let us pass to the computation of the tensor induced character
Lemma 2.5.2 Let $g \in G$ and let T_{0} be a set of representadives for the orbits of (g) in its action on T via . For $t \in T$, let $n(t)$ denote the size of the $\langle g\rangle$-orbit which contains ℓ. Then we have.

$$
v^{n \cdot t}(g)=\prod_{t \in T_{0}} \psi^{\prime}\left(t g^{n(t)} t^{-1}\right)
$$

Proof Let $\Omega_{1}, \ldots, \Omega$, be the orbits of (g) on T, let us choose a set

$$
T_{0}=\left\{t_{1}, \ldots, t_{r}\right\}
$$

of representatives for them (with $t, \in \Omega_{1}$), and let us put $n(i)=\left|\Omega_{\|}\right|$. Hence $\langle g\rangle /\left\langle g^{\text {nit }}\right\rangle$ arts regularly on Ω, and we have

$$
\Omega_{1}=\left\{t_{i} \cdot g, \ldots, t_{i} \cdot q^{n(i)}=t_{i}\right\}
$$

Since the isomorphisin class of $W^{-1 / 2}$ is independent of the ordering given to T. we are allowed to order T as follows:

$$
T=\left\{t_{1} \cdot g, \ldots, t_{1} \cdot g^{n(1)}, \ldots, t_{\sigma} \cdot g_{\mu} \ldots, t_{\sigma} \cdot g^{n(r)}\right\}
$$

Now $W^{r * G}$ regarded as an $\mathbf{F}(q)$-module is isomorphic to the tensor product module $W_{i-1}^{\prime} W_{1}$, where W_{1} is the $F(g)$ module

$$
W_{i}=\bigotimes_{\jmath=1}^{n(1)}\left(W^{\prime} \otimes\left(t_{i} \cdot \boldsymbol{q}^{j}\right)\right) .
$$

If 4 , deuotes the character of (g) afforded by W., we have

$$
\psi^{S G}(g)=\prod_{t=1}^{n} w_{s}(g)
$$

arcording to [13. Thewrem 4.1].
Let us fix au index $z=1, \ldots, r$. We shall prove that $s(g)=\psi\left(t_{i} g^{m(1)} t_{1}^{-1}\right)$. Let w_{1}, \ldots, w, be an F-basis of W, then an \mathbb{F}-hasis of W, is given by the tensurs

$$
\bigotimes_{j=1}^{n\left(t_{1}\right)}\left(w_{t}, \otimes\left(t_{1} \cdot g^{j}\right)\right),
$$

for $\left(k_{1}, \ldots, k_{n(1)}\right) \in\{1, \ldots, s\}^{n(i)}$. The action of g on any element of this hasis of $\boldsymbol{W}^{\text {MGG }}$ is given by the formula
where $s,=w_{k j=1}\left(\left(t_{4} \cdot g^{s-1}\right) g\left(t_{1} \cdot g^{s}\right)^{-1}\right)$, and the index j is read mod $n(z)$ (in particular, $\left.u_{k_{0}}=u_{k-a}\right)$. Let $A,=\left(a_{k, i}\right)_{k . l=1}$, he the matrix of the artion of $\left(\left(t_{i} \cdot g^{3-1}\right) g\left(t_{1} \cdot g^{3}\right)^{-1}\right)$ ou W^{\prime} with respect to the basis u_{1}, \ldots, w_{s}; in other words

$$
w_{k}\left(\left(t_{1} \cdot g^{j-1} \lg \left(t_{s} \cdot g^{t}\right)^{-1}\right)=\sum_{i=1}^{\dot{\infty}} a_{j k i t} w_{t} .\right.
$$

Now the coefficient of the lasis element $\otimes_{j=1}^{n t i}\left(w_{k}, \otimes\left(t, g^{J}\right)\right)$ in the expression of $\boldsymbol{Q}_{j=1}^{\text {nit }}=\left(x, \boldsymbol{Q}_{1}\left(t_{1} \cdot g^{\prime}\right)\right)$ as a linenr combination of the elements of the given basis of W, is

Heuce we have

$$
v_{1}(g)=\sum \prod_{j=1}^{n(4)} \alpha_{2 \lambda_{i-1}} \lambda_{1}=\operatorname{tr}\left(A_{1} A_{2} \cdots A_{m(t)}\right)
$$

where the sim is taken over $\left(k_{1}, \ldots, k_{\text {n(t) }}\right) \in\{1, \ldots, s\}^{n(t)}$. The matrix $A_{1} A_{2} \cdots A_{\text {n(1) }}$ is the matrix of the action of

$$
\prod_{j=1}^{n(t)}\left(\left(t_{1}-g^{t-1}\right) g\left(t_{1} \cdot g^{j}\right)^{-1}\right)=t, g^{n(t)} t_{t}^{-1}
$$

on W, with respect to the basis w_{1}, \ldots, w_{4}. Therefore we bave

$$
v(g)=v\left(t, g^{n t()} t_{1}^{-1}\right)
$$

as claimed. It follows that

$$
=\prod_{i=1}^{r} w_{i}\left(t_{i} s^{n(t)} t_{i}^{-1}\right)
$$

which coucludes the proof.

2.6 Basic commutators

In Chapter 6 we shall need the notion of basic commutators.
Definition 2.6.1 [8, p. 178] Let F be a free group of ronk n, generated by r_{1}, \ldots, r_{n}. The basic commutators on $x_{1} \ldots, x_{n}$ are the elements of the ordered infinite set $\left\{r_{1}\right\}_{\mid \in N}$ defined inductively an follows:
(i) $c_{1}=x_{1}$ for $i \leq n$, are the basic commutators of weight 1 , and are orderrd by the rule $c_{1}<c_{2}<\cdots<c_{n}$;
(ii) if basic commutators of weight less than 1 have been defined and ordered. then the commutator $[u, v]$ is a basic commutator exactly when
(a) u and v are basic commutators, and the sum of their weights is l,
(b) $u>v$,
(c) if $u=\{u, t \mid$, then $v \geq 1$;
furthermore, commutators of weight 1 follow all those of lower weight, and if $\left[u_{1}, v_{1}\right]$ and $\left[u_{2}, v_{3}\right]$ have wright l, then we have

$$
\begin{aligned}
& \qquad\left\{u_{1}, v_{1}\right]<\left[u_{2}, v_{2}\right] \\
& \text { if either } v_{1}<v_{2} \text { or } v_{1}=v_{2} \text { and } u_{1}<u_{2} .
\end{aligned}
$$

We state without proof the following theoren (see [8, Theorem 11.2.4] for a proof).
Theorem 2.6.2 If F is a free group with free generators x_{1}, \ldots, f_{n}, and if $l \geq 1$. then an arbitrary element f of F has a unique representation

$$
f=c_{1}^{c_{1}} c_{2}^{c_{2}} \cdots c_{1}^{c_{1}} \bmod \gamma_{1+1}(F)
$$

where c_{1}, \ldots, c_{1} are the ordered basis commutators of weight less than or equal to n, and $4, \ldots$. ci, are integers. In particular. for all $l \geq 1$, the fartor group $\gamma_{1}(F) / \mathcal{\Lambda l + 1}(F)$ is a free abelian group (this is also in /11. Chapter VIII. Theorem 11.15]), and the basir commutators of weight l form (a set of representatives of) a basis for $\eta(F) / \gamma l_{+1}(F)$ over \mathbf{Z}.

The analysis of the ciesceuding central series of n froe group F in terms of bavir commutators, provided by Thoorem 2.6.2, will be used in Chapters 5 and 6 for the construction of rettain groups of exponent p, where p is a prime. Thus we shall be mainly interested in the structure of the descending ceutral series of the factor group $F=F / F^{\mu}$ (of conrse this is a hard problem in greetal, directly related to the famons Burnside's problem, ser [10. Kapitel III, Benerkungen 6.7))

The factors $\gamma(F) / \gamma_{t+1}(F)$ of the descrnding cuntral series of F are finite elementary alirlian p-groups; hence, they can be regarded as vector spaces over F_{p} (whilv the factors $\eta_{1}(F) / \mathcal{T}_{+1}(F)$ can be regarded as free Z modnles). It is rasy to see that the basic commutators of weight / generate $\gamma_{1}(F) / \gamma_{+1}(F)$. Unfurt unately, what would be the analogue for F of the last statement of Theoretn 2.6 .2 dows not hold in general: the basic commutators of weight l in F do not constitute a basis of $\gamma_{n}(F) / \gamma_{t+1}(F)$ over F_{p} in gencral. For instance, whe's $p=2$ we have $F^{\prime} \leq F^{2}$ (see [10, Kapitel III, Satz 3.14]); cousequently, F is an elementary ahelian 2 gronp, and thus all commutators of weight $l>1$ are trivial.

However, the last statement of Tberrem $\mathbf{2 . 6 . 2}$ passes on to F (with the word \mathbf{Z}-hasis replaced by \mathbf{F}_{p}-hasis) for $l<p$. Let us state this fart as a therorem

Theorem 2.6.3 Let F be a free group with free generators f, \ldots, x_{n}, let p be a prime, and let $F=F / F^{p}$. Then, for all $l \geq 1$, the factor groap $\gamma_{1}(F) / \gamma_{\gamma+1}(F)$ is a finite elementary abelian p-group, and it is generated by the basic commutators of weight 1 . Furthermorr, if $l<p$, the hasic commutatars of wright l form a basis of $\gamma_{1}(F) / \gamma_{1+1}(F)$ over F_{P}

Throrem 2.6 .3 is an easy consequence of a well-kuown result (see for instance (21. Lemmas 1.11 and 1.12]), whirl gives \mathbf{F}_{p}-bases, iu terms of basic connmitators and their powers, for the fartors of the p-lower central series $\mathrm{N}_{\mathrm{I}}(F)$ of F (which is defined in [11. Chapter VIII. Definition 1.10] as

$$
\kappa_{i}(\boldsymbol{G})=\prod_{v^{p} \geq 1} \gamma_{i}(G)^{n}
$$

for av arbitrary grup, G, and with respert to a fixed prime p): $\kappa_{d}(F) / \kappa_{t+1}(F)$ is an elementary ale lian p-group, and (a set of representatives of) a basis for it over F_{p}, is given by the set of all elements of F of the form \boldsymbol{p}^{+}, where p^{k} divides l, and r is sonte liavic commutator of weight l / p^{k} (iu particular, the basic commutators of weight l form a basis of $\kappa_{1}(F) / \kappa_{t+1}(F)$ over F_{p} for l not a multiple of p). Now siuce $\kappa_{l}(F)=F^{p} \gamma_{l}(F)$ for $l \leq p$, we have $\kappa_{l}(F)=\gamma_{l}(F)$ for $I \leq p$, and Theurem 2.6 .3 follows.

Howeyer, we shall give bere a more self-coutained proof of Theorem 2.6.3. after tecalling withont proof the following lemma.

Lensma 2.6.4 If r, y are elements of a group G, and p is a prime, then

$$
(r y)^{p}=x^{p} y^{p} \bmod \gamma_{\partial}(G)^{p} \gamma_{p}(G)
$$

(that is to say, the map

$$
\begin{aligned}
& G \rightarrow G / \gamma_{\partial}(G)^{p} \gamma_{p}(G) \\
& s \rightarrow A^{p} \gamma_{\lambda}(G)^{p} \gamma_{p}(G)
\end{aligned}
$$

is a group homomorphism).

Proof This is a special case of [11. Chapter V'III, Lemma 1.1].

Proof of Theorem 2.6.3 We have $\gamma_{n}(F)=\gamma_{l}(F) F^{p} / F^{\mu}$ for $l \geq 1$, and thus

$$
\begin{aligned}
\mu(F) / \varkappa_{+1}(F) & =\eta^{\prime}(F) F^{p} / \gamma_{+1}(F) F^{p} \\
& \cong \eta_{n}(F) / \eta_{1}(F) \cap \eta_{n+1}(F) F^{p}=\eta_{1}(F) /\left(\gamma_{n}(F) \cap F^{p}\right) \gamma_{+1}(F) .
\end{aligned}
$$

Hence $\eta_{1}(F) / \gamma_{1+1}(F)$ is isomorplic to a factor group of the free ahelian group $9(F) / \gamma_{1+1}(F)$. It follows from Theorem 2.6 .2 that the basic cummutators of weight l ou r_{1}, \ldots, x_{n} (as clements of F) generate $\gamma_{i}(F) / \gamma_{1+1}(F)$. Conse([ubitly, and because F has exponeut p, the factor gronp $\gamma_{1}(F) / \gamma_{1+1}(F)$ is a finite elementary abolian p-gromp, and its dimension over F_{p} is at most the rank of the free abelian gronp $\gamma_{1}(F) / \chi_{+1}(F)$.

Now the basic commutaturs of weight t on x_{1}, \ldots, x_{n} flearly form an F_{p} hesis of $\gamma_{1}(F) / \gamma_{1}(F) \gamma_{1+1}(F)$. Consequently, the conclusion of the theorem will follow if we can prove that

$$
\left(\gamma_{(}(F) \cap F^{p}\right)_{u+1}(F)=\gamma_{1}(F)^{p} \gamma_{h+1}(F)
$$

for $l<p$. Since the inclusiun \geq is chearly true for all l, we ouly have to prove that. for $1<p$,

$$
\eta_{n}(F) \cap F^{p} \leq \eta_{n}(F)^{\rho} \gamma_{+1}(F)
$$

We shall prove the following equivalent statement, which lends itself to an inductive argument:

$$
\mu_{1}(F) \cap \eta_{n-k}(F)^{p} \leq \gamma_{1}(F)_{\mu_{+1}}(F) \text { for all } k=0, \ldots .
$$

This is certainly true for $k=0$. Now let $0<k<1$, and let assume that

$$
\gamma_{1}(F) \cap \gamma_{l-t+1}(F)^{p} \leq \gamma_{l}(F)^{P} \gamma_{l+1}(F)
$$

Las already beeu proved. Let g be au element of $\gamma_{1}(F) \cap \gamma_{-k}(F)^{p}$; then g can be written as a product

$$
g=\prod_{j=1}^{j} y_{j}^{E}
$$

with $y_{1} \ldots, y_{p} \in \gamma_{t-t}(F)$. According to Lemma 2.6.4, we have that

$$
\boldsymbol{g}=\prod_{j=1}^{r} y_{j}^{p} \equiv\left(\prod_{j=1}^{r} y_{j}\right)^{p} \bmod \gamma_{2}(G)^{p} \gamma_{p}(G)
$$

where we have put $G=\operatorname{qu}_{- \pm}(F)$. In particular, the above cungrisence holds

$$
\bmod _{\gamma_{-t+1}(F)^{p} \gamma_{p}(F), ~}
$$

because ncrording to [10, Kapitel III, Hanptsatz 2.11 b)] wo have that

$$
\gamma_{2}\left(\gamma_{1-k}(F)\right) \leq \gamma_{x(1-k)}(F) \leq \gamma_{1-k+1}(F),
$$

and clearly $\gamma_{p}\left(\gamma_{h-t}(F)\right) \leq \gamma_{p}(F)$.
Now we shall prove that $\Pi_{j=1}^{*} y, \in H_{-t+1}(F)$. According tos Therorem 2.6.2, we call write

$$
\prod_{i=1}^{t} y_{s}=\prod_{r=t}^{1} c_{i}^{r_{i}} \bmod \gamma_{i-k+1}(F)
$$

where $c_{4} . . . c_{1}$ are the hasic commutators of weight $l-k$. and $e_{n}, \ldots, e_{\text {, are }}$ integers. As before, Lemma 2.6 .4 yields that

$$
\left(\prod_{n=1}^{\prime} C_{i}^{*}\right)^{v}=\prod_{k=1}^{\frac{1}{2}} c_{2}^{\bmod \gamma_{2}(G)^{p} \gamma_{m}(G), ~}
$$

where $G=\gamma_{t-k}(F)$: in particular this holds mod $\gamma_{t-t+1}(F)$ (let us notice that here we are not using the fact that $l<p$. herause

$$
\gamma_{\mathrm{P}}\left(\gamma_{i-k}(F)\right) \leq \gamma_{\rho(1-k)}(F) \leq \gamma_{i-k+1}(F)
$$

by a repeated application of [10. Kapite] III. Happtsatz 2.11 b)]). Now we obtain that

$$
g \equiv\left(\prod_{j=1}^{t} y_{v}\right)^{p} \equiv \prod_{t=t}^{1} c_{t}^{p e n} \bmod \gamma_{t-t+1}(F)
$$

Ou the other haud, $g \in \mathcal{H}^{\prime}(F) \leq \pi_{-k+1}(F)$. According to Theorem 2.6.2, c_{1}, \ldots, c_{1} are \mathbf{Z}-linearly independent in $\gamma_{1-t}(F) / \gamma_{t-t+1}(F)$; cunsequently, we have $e_{a}=\cdots=\epsilon_{1}=0$, and thus

$$
\prod_{j=1}^{\kappa} y, \in \gamma_{1-t+1}(F)
$$

as claimed. Since we found earlier that

$$
g \equiv\left(\prod_{i=1}^{t} y_{i}\right)^{v} \bmod \gamma_{t-\downarrow+1}(F)^{p} \gamma_{p}(F)
$$

it follows that $g \in \gamma_{l-k+1}(F)^{p} \gamma_{p}(F)$. Now our hypothesis that $l<p$ comes into play, and yields that $\gamma_{p}(F) \leq \gamma_{1+1}(F)$. Consequently,

$$
g \in \gamma_{i}(F) \cap \gamma_{t-k+1}(F)^{p} \gamma_{\lambda+1}(F)=\left(\gamma_{u}(F) \cap \gamma_{t-k+1}(F)^{p}\right) \gamma_{t+1}(F) .
$$

By inductive hypothesis, we finally oltain that

$$
g \in \gamma_{\gamma}(F)^{\boldsymbol{P}} \gamma_{/+1}(F) .
$$

This concludes the proof.

2.7 Character table isomorphisms

As promised in Chapter 1, here is a more handy definition of having identical chararter talless'.

Definition 2.7.1 Let G_{1}, G_{2} be finite groups. We will say that G_{1} and G_{2} have identical character tables if there exist bijections

$$
\sigma: G_{1} \rightarrow G_{2}
$$

and

$$
\beta: \operatorname{IrI}\left(G_{1}\right) \rightarrow \operatorname{Irr}\left(G_{2}\right),
$$

such that

$$
\lambda^{\prime \prime}\left(g^{\infty}\right)=\gamma(g) \text { for all } g \in G_{1} \text { and for all } \lambda \in \operatorname{Irr}\left(G_{1}\right) \text {. }
$$

We shall also say that $(\boldsymbol{\alpha}, \boldsymbol{f})$ is a character table inomorphism from G to H.
Siuce the irreducible characters of G_{1} (for $i=1,2$) form a basis of the space of class functions on G_{1}, with values in the ficld of the complex numbers, if such α, H exist, a must send any conjugary class of G_{1} onto a conjugary class of G_{2}. It is also clear that a sends the identity class of G_{1} to the identity class of G_{2}, and that α sends the trivial character of G_{1} to the trivial chararter of G_{2}.

Chapter 3

Looking for a counterexample

3.1 Introduction

The work of this thesis began as an attempt to prowe that the chararter table of a soluble gromp G determines the derived length of G. Our exposition will follow this approarh, and thus this chapter hegins with the following conjecture, which will eventually turn out to be false.

Conjecture 3.1.1 Let G and H be groups with identical character tables aud assumite that G is metabelian. The:n H is metabelian.

We shall disprove this conjecture by exhibiting a counterexample. But what could such a counterexample look like? Let us choose a counterexample (G, H) to Conjecture 3.1 .1 with $|G|$ minimal and let (a, β) be a rharacter table isomorphism from G to H. Then $H^{\prime \prime}$ is the unique minimal uormal suhgroup of H. In fact, if this wore not true, H would have some non-trivial normal subgronp K with $H^{\prime \prime} \notin K$. But then the fartor groups G / K, where $K=K^{\alpha^{-t}}$, and H / K would have identical character tables, and $(\boldsymbol{H} / \boldsymbol{K})^{\prime \prime}=\boldsymbol{H}^{\prime \prime} \boldsymbol{K} / \boldsymbol{K} \neq 1$; hence $(\boldsymbol{G} / \boldsymbol{K} . \boldsymbol{H} / \boldsymbol{K})$ would he a counterexample $\mathbf{t o}$ our conjecture with $|G / K|<|G|$, a contradiction. Thus $H^{\prime \prime}$ is the unique minimal normal suhgroup of H. Since G and H have isomorphic lattices of normal sulbgroups, the subgroup $\left(H^{\prime \prime}\right)^{\boldsymbol{a}^{-3}}$, which we will henceforth rall N, is the unique minimal normal sulugroup of G.

Hence \boldsymbol{N} and $H^{\prime \prime}$ are elementary abelian \boldsymbol{p}-groups for some prime \boldsymbol{p}, and of course they are isomorphic as they have the same order (because γ is a
bijection). Throughont this rhapter we shall assume that G and H are not p-groups. More precisely, we shall cousider the following hypotheses,

Hypotheses 3.1.2 Let G and H be groups with identical character tables wa the bijections (α, β). Let us assume that G and H are not nipotert, that G is metabelian and that $H^{\prime \prime}$ is the unique minimal normal subgroup of H. Thuw $N=\left(H^{\prime \prime}\right)^{م^{-1}}$ is the unique minimal normal subgroup of G, and in particular V and $H^{\prime \prime}$ are elementary abelian p-groups for some prime p.

Cuder thene hyputheses we shall obtain in the next section a nice description of a minimal counterexample (G, H). Subsequently, in Chapter 6, we shall also coustruct a counterexanple (G, H) with G and H nilpotent .

3.2 Structure of a minimal counterexample

Lemma 3.2.1 Assume Hypotheses 3.1.2. Then
(i) G^{\prime} and H^{\prime} are p-groups;
(ii) $G^{\prime \prime}$ has a complement $W^{\prime} \times Q$ in G and H^{\prime} has a complement $W^{*} \times Q$ in H. where W, W are (abelian) p-groups and Q, Q are cyelic p 'groups:
(iii) Q acts regularly on $G^{\prime \prime}$ and Q acts regularly on H^{\prime};
(iv) Q acta faithfully and irreducibly on N by conjugation and Q acts faithfully and irreducibly on $H^{\prime \prime}$ by conjugation:
(v) $\mathrm{C}_{w}\left(G^{\prime}\right)=1$ and $\mathrm{C}_{W}\left(H^{\prime}\right)=1$.

Proof Since the Fitting subgroup $F(G)$ of G is nilpotent, earh Sylow subgroup of $F(G)$ is normal in $F(G)$ and hence in G. But G has a unique minimal normal sulugroup N, which is a p-group; hence $F(G)$ is a p-group.

We have $G^{\prime} \leq F(G)$, Let P be a Sylow p subgroup of G. Then from $G^{\prime} \leq F(G) \leq P$ it follows that $P \triangleleft G$ aud heuce $F(G)=P$. Let us put $P=P^{o}$. Berause o is a bijection, P is a Sylow p-subgroup of H and of course $H^{\prime} \leq P \triangleleft H$. Thus both G and H have a normal Sylow p-sulogroup. which contains the derived subgromp, and assertion (t) is proved.

Let Q and Q be complements for P in G and for P in H respectively; these exist according to the Theorem of Schur-Zassenhans. Clearly Q and Q are albelian. They are also non-t rivial, berause we assumed that G and H are not
nilpotent. Since G and H are soluble groups, we liave $C_{G}(F(G)) \leq F(G)$ and $\mathbf{C}_{H}(\mathbf{F}(H)) \leq \mathbf{F}(H)$ (see [10, Kapitel III. Satz 4.2]); in particular it follows that $\mathrm{C}_{Q}(\Gamma)=1$ and $\mathrm{C}_{Q}(P)=1$.

Now we shall prove that Q acts regularly on G^{\prime}. Let K be a non-trivial subgroup of Q. Theri, acrording to Lemma 2.1.1, we have $G^{\prime}=\left[G^{\prime}, K^{\prime}\right] \times$ $\mathbf{C}_{G^{\prime}}\left(\boldsymbol{K}^{\prime}\right)$. Since $\left[\boldsymbol{G}^{\prime}, \boldsymbol{K}^{\prime}\right]=\left[\boldsymbol{G}^{\prime}, G^{\prime} \boldsymbol{K}^{\prime}\right]$ and $\mathbf{C}_{\boldsymbol{G}^{\prime}}(\boldsymbol{K})=\boldsymbol{C}_{\boldsymbol{G}^{\prime}}\left(\boldsymbol{G}^{\prime} \boldsymbol{K}^{\prime}\right)$ are normal subgroups of G, and since G has the unique minimal normal suhgroup N, either $\left[G^{\prime}, K^{\prime \prime}\right]$ or $C_{\text {ge }}\left(K^{\prime}\right)$ is trivial. Assume for a rontradiction that $\left[G^{\prime}, K^{\prime}\right]$ is trivial. Then we have $\left[P, K^{-}, K^{-}\right]=1$, whence $[P, K]=1$ according to Lemma 2.1.1. This contradicts the fact that $\mathbf{C}_{Q}(P)=1$; we conclude that $C_{f^{\prime}}\left(K^{\prime}\right)=1$ and $\left[\boldsymbol{G}^{\prime}, \boldsymbol{K}\right]=G^{\prime}$. Thus Q arts regularly on \boldsymbol{G}^{\prime}.

Now let us prove that Q asts regularly on H^{\prime}. We cannot apply the same argument as for G, herause H^{\prime} is not abelian. But since $(|P| .|Q|)=1$, asserting that Q arts regularly on G^{\prime} is equivalent to saying that all nontrivial conjugary classes of G contained in G^{\prime} have length a multiple of $|Q|$. From the fact that the bijection or sends earb ronjugary class of G rontained in $G^{\prime \prime}$ outo a conjugacy class of H contained in H^{\prime}, we deduce that all nontrivial conjugary classes of H routained in H^{\prime} have length a multiple of $|Q|=|Q|$. This fart in turin is equivalent to saying that Q acts regularly on $H^{\prime \prime}$. Thas assertion (ut) is proved. Furthemore, we have that $H^{\prime}=\left[H^{\prime}, Q\right] \mathbf{C} \cdot(Q)$, according to Lemma 2.1 .1 again. Since $\mathrm{C}_{H^{\prime}}(Q)=1$, it follows that $\left[H^{\prime} . Q\right]=$ H^{\prime}

Now let us pist $\boldsymbol{W}=\mathbf{C}_{P}(Q)$ and $W^{*}=C_{P}(Q)$. We have $P=[P \cdot Q] \mathbf{C}_{P}(Q)$. Since $G^{\prime}=\left[G^{\prime}, Q\right] \leq[P, Q] \leq G^{\prime}$, we have $[P, Q]=G^{\prime}$, and thus $P=G^{\prime} W^{\prime}$. From $G^{\prime} \cap W^{\prime}=G^{\prime} \cap \mathbf{C P}_{P}(Q)=\mathbf{C}_{G^{\prime}}(Q)=1$ it follows that W^{\prime} is a complement for G^{\prime} in P. Now W^{\prime} is centralized by Q; consequently, $W^{\prime} Q=W \times Q$ is a complement for G^{\prime} in G. We olstain similarly that W is a complement for H^{\prime} in P and thus $W^{\prime} Q=W \times Q$ is a complement for H^{\prime} in H.

Now let us show that Q and Q are cyclic groups. The minimal normal sulogroup N of G, like any chef factor of G, can be regarded as an irredurible $\mathbb{F}_{p} G$-module. By restriction N can be also regarded as an $\mathbb{F}_{p} Q$-module. and N is still irreducible as an $F_{p} Q$-module. In fact any $F_{p} Q$-submodule of N is an $F_{p} G$-sulmodule, berause $G=P Q$ and $N \leq Z(P)$. Furthermore, N is a faithful $\mathbb{F}_{p} Q$-module, berause Q arts regularly on G^{\prime}, and in particular on N. Arrording to Theorem 2.3.1 then Q is cyclic of order dividing $|N|-1$.

Similarly, we can dedure that Q is ryclic (this also follows directly from the fact that Q and Q are both isomorphic to $G / P \equiv H / P)$, and that Q acts
faitbfully and irreduribly on $H^{\prime \prime}$. Thus assertions (11) and (iv) are proved.
It romains to prowe assertion (p). If the element w of \mathbb{W} centralized G^{\prime}, then u wond be central in G, becanse W is an abelian complement for G^{\prime} in G. Hence (w) would lue a normal subgronp of G not rontaining the nuigue mininal normal subgronip N. Therefore $w=1$. Thus we have $\mathbb{C}_{\boldsymbol{u}}\left(G^{\prime}\right)=1$. Similarly one proves that $\mathbf{C}_{W}\left(H^{\prime}\right)=1$. The proof of the lemma is now complete.

Let us notice that $W \times Q \geqslant G / G^{\prime \prime}$ and $W \times Q=H / H^{\prime}$. From the fact that G and H have identical rharacter tables we deduce that G / G^{\prime} is isomorphic to H / H^{\prime}. It follows that $W \cong W$ and $Q \cong Q$.

Whe also observe, as we already said in the proof of Lemma 3.2.1, that Q aud Q are mon-trivial, otherwise G and H would bee p-groups, rontrary to Hyputheses 3.1.2. The gronps W and W' are not trivial either; if they were, then G would have a normal ahelian Sylow p-subgronp (namely G^{\prime}) and H would not (because H^{\prime} in not abelian). This would contradict the fact that G and H have the same rharacter degrevs; in fact [13, Corollary 12.34] asserts that a gronp has a normal abelian Sylow p-subgroup if and only if all its irredurible characters have degree not divisible by p.

3.3 Chief factors

We continue our aualysis of groups G and H satisfyiug Hypotheses 3.1.2. In the next three lemmas we shall be cuncerned with rettain chief fartors of G and H regarded as irreducible G-groups and respectively H-groups by conjugation.

Let M_{1} / M_{2} be a rhief factor of G; hence \boldsymbol{M}_{1} and M_{2} are normal subgroups of G with $M_{2} \leq M_{1}$ and there exists no normal suligroup M of G with $M_{2}<$ $M<M_{1}$. Then M_{1} / M_{2} berones an irreducible G-gronp by conjugation. Since the Fitting subgroup $F(G)$ of G rentralizes all rhief fartors of G (see [10, Kapitel III, Satz 4.3]), in particular $F(G)$ is contained in the kernel of the action of G on M_{1} / M_{2}. Since Q is a romplement for $F(G)$ in G, the G-gronp M_{1} / M_{3} remains irreducible when it is regarded as a Q.group by restriction. Thus all rhief factors of G are Q-composition factors of G (but not vire versa, becanse if M_{1} / M_{2} is a Q composition factor of G the Q-subgroups M_{1}, M_{2} of G are uot necessarily normal in G). Furthemore, two chief factors of G are
G-isomorphir exartly when they ate Q-isomorphic. Similar assertions huld for rhief factors of H regarded as H-groups and as Q gronps.

Lemma 3.3.1 Assume Hypotheses 9.1.2. Then all chief factors of G below G^{\prime} are G-isomorphir.

Proof Let us regard the ahelian normal subgroup, G^{\prime} of G as a Q-group (actually a $\mathbf{Z Q}$-module) by conjugation. In view of the remark which precedes the lemma it suffices to show that all composition factors of G^{\prime} are isomorphic as) Q-groups.

As we said in Section 2.4, there exists a unique decomposition of $G^{\prime \prime}$ (written additively) into the direct sum of its Q-homogeneous components $B_{1} \ldots, B_{m}$. Now W rentralizes Q : consequently, earb element of \boldsymbol{W} indures by conjugation an automorphism of G^{\prime} as a Q-group. According to what we said in Section 2.4, it follows that earh B_{1} is nommalized by W, and being of course normal in G^{\prime} because G^{\prime} is abelian, each B, is a normal subgroup of G.

Since each non-trivial B, contains the unique minimal normal subgroup N of G, there is a unique non-trivial $B_{;}$; consequently, G^{\prime} is Q-homogeneous, that is to say, all Q-romposition fartors of G^{\prime} are Q-isomorphir.

We shall also prove that when Hypotheses 3.1.2 bold, all rbief fartors of H below H^{\prime} are H-isomorphic. We cannot use the same arguments as for G berause H^{\prime} is not abelian. Heuce we shall split the proof in two parts: first we shall show that all chief factors of H lying between H^{\prime} and $H^{\prime \prime}$ are H-isomorphic and then that they are H-isomorphic to $H^{\prime \prime}$.

In order to prove the first part we shall employ the fact that G and H have identical character tables, and hence in particular isomorphic lattices of uormal subgroups.

Lemma 3.3.2 Assume Hypotheses 3.1.2. Then all chief fartors of H between H^{\prime} and $H^{\prime \prime}$ are H-ivomorphic.

Proof The statement of the lemma is clearly equivalent to the following assertion: all chief factors of $H / H^{\prime \prime}$ below $H^{\prime} / H^{\prime \prime}$ are H-isomorphic. Since Q is a complement in H for the Fitting subgronp of H, which centralizes all rhicf factors of H, the proof will be complete once we show that the Q-group
$H^{\prime} / H^{\prime \prime}$ is Q-homogeneons. We shall infer this from the fart that G^{\prime} / N is Q honogeneous, by using the fart that $\boldsymbol{G} / \boldsymbol{N}$ and $H / H^{\prime \prime}$ have identical chararter tables. In fact, the character table isomorphism (α, β) from G to H induces a character table isomorphism ($\overline{\mathrm{a}}, \beta$) from G / N to $H / H^{\prime \prime}$ iu a natural way.

Let S be the product of all minimal normal sulgroups of G / N contained ${ }_{11} G^{\prime} / \mathbf{N}$ (in wther words, S is the surle of G^{\prime} / N as a $\mathbf{Z} G$-1nodule). Since the map o induces an isomorphism between the lattices of normal subgroups of G / N and $H / H^{\prime \prime}$, and sends G^{\prime} / N outo $H^{\prime} / H^{\prime \prime}$, the image S of S under σ is the product of all minimal normal subgroups of $H / \boldsymbol{H}^{\prime \prime}$ coutained in $H^{\prime} / H^{\prime \prime}$. The groups S and S are clennentary abelian p-groups, and thus can be regarded as an $\mathbb{F}_{p} G$-module and an $\mathbb{F}_{p} H$-module respertively. The $\mathbb{F}_{p} G$ sulmodules of S (that is to say, the normal subgroups of G / N rontained in S) are in a bijective correspondence, induced by the map $\boldsymbol{\alpha}$, with the $\boldsymbol{F}_{p} H$ submodules of S. We also observe that the Fitting suligromps of G and H centralize S and S respectively; it follows that the set of $\mathbb{F}_{p} G$-submodules of S coincides with the set of $F_{p} Q$-submodules of S. Of course, a similar assertion holds for H. As a consequence, the map \bar{n} induces a bijection from the set of $F_{p} Q$-submodules of S outo the set of $F_{p} Q$-subnodules of S.

We know that the semisimple $F_{p} Q$-module S is homogeneous; according to Lemma 2.4.1, this is equivalent to the fact that S is the (set-theoretir) union of its irredurible $F_{p} Q$-submodules. This propetty of S can clearly be passed on to S via the bijertion $\bar{\sigma}$, namely we get that S is the union of its irreducible $\mathbb{F}_{\nu} Q$-submodules. Then Lemma 2.4.1 again yields that S is $F_{p} Q$-honogeneous.

From this fart we deduce that $H^{\prime} / H^{\prime \prime}$ is Q-homogeneous, as follows. The abelian Q-group $H^{\prime} / H^{\prime \prime}$ can he deromposed into the direct produrt of its Q homogeneous componeats (see Section 2.4). If M is a noutrivial Q. humugenowns romponent of $H^{\prime} / H^{\prime \prime}$, then M is normalized by W. ln fart, every element of W ' connmutes with the elements of Q, and therefore induces a Q-antomorphism of $H^{\prime} / H^{\prime \prime}$ by ronjugation; on the other haud, M is left invariant by every Q-endomorphism of $H^{\prime} / H^{\prime \prime}$, and thus is normalized by \boldsymbol{W}. It follows that M is a non-trivial normal suhgroup of $H^{\prime} / H^{\prime \prime}$. In partirular, M interserts S non-trivially. Because we have proved that S is Q-homogeneous, it follows that $H^{\prime} / H^{\prime \prime}$ has only one Q-homogeneons component. In other words. $H^{\prime} / H^{\prime \prime}$ is Q-homogeneous, and the proof is complete.

It remains to show that some chief factor of H between H^{\prime} and $H^{\prime \prime}$ is
H-isomorphic to $H^{\prime \prime}$. As we have already remarked in several places, siuce Q complements the Fitting subgronp P of H in H. it is sufficient to find a Q-isomorphism from a chief fartor of H between H^{\prime} and $H^{\prime \prime}$ onto $H^{\prime \prime}$. The tool which will produce such an isomorphism is Lemma 2.2.4.

Let us fix an element wo of $\boldsymbol{U}^{\prime}=\mathbf{C}_{\boldsymbol{\rho}}(\boldsymbol{Q})$. The map from \boldsymbol{H}^{\prime} to itself which sewds r to $[r, w]$ is not a group homomorphism, and thus its image $\left\lfloor H^{\prime}, w\right]$ is not necessarily a sulbgroup of H^{\prime}. However, according to Lemma 2.2.4 and the discussion which precedes it, the inverse image of $H^{\prime \prime}$ under this map, namely

$$
M_{\mathrm{u}}=\left\{x \in H^{\prime}\left\{[x, w] \in H^{\prime \prime}\right\}\right.
$$

is a sulogromp of H^{\prime}, and the restriction

$$
\begin{aligned}
\mathcal{H}_{w} & \rightarrow H^{\prime \prime} \\
\boldsymbol{x} & \mapsto[x, w]
\end{aligned}
$$

of our map is a $W Q$-homomorphism with kernel $\mathrm{C}_{H}(w)$. From the fact that $H^{\prime \prime} \leq \boldsymbol{Z}(\boldsymbol{P})$ it follows that the sulgroups $\boldsymbol{M}_{\mathbf{w}}$ and $\mathbb{C}_{H}(\bar{w})$ of H^{\prime} contain $H^{\prime \prime}$; therefore, they are normal in H^{\prime}, berause $H^{\prime} / H^{\prime \prime}$ is alselian. The fact that they are nomalized by W. Q finally implies that they are normal subgroups of H.

Let us suppose for a moment that our W W-homomorphism $\vec{\sim}$ e is surjertive. Then ψ_{w} indures a $W Q$ isomorphism from $M_{w} / C_{H}(w)$, which therefore is a chief factor of H, onto $H^{\prime \prime}$. Thus the assertion that some rhief fartor of H between H^{\prime} and $H^{\prime \prime}$ is W-isomorphic to $H^{\prime \prime}$ is proved, provided we can show that $H^{\prime \prime} \subseteq\left\lfloor H^{\prime}, w\right\rfloor$, or equivalently that $H^{\prime \prime} \subseteq\left\lfloor\bar{\omega}, H^{\prime}\right\rfloor$, for some $w \in W$.

We slatl infer this fart from a corresponding fact for G by means of the character table isomorphism (α, β). Indeed, we shall prove the following lemma.

Lemma 3.3.3 Assume Hypotheses 8.1.2. Then $w N \subseteq w^{G}$ for all $w \in W \backslash 1$, and $w H^{\prime \prime} \subseteq w^{H}$ for all $w \in W \backslash 1$

Proof Let us fix $u \in W=\mathbf{C}_{G}(Q)$ and let us consider the map

$$
\varphi_{w}: G^{\prime} \rightarrow G^{\prime}
$$

defined by $r^{\text {po }}=[r, w]$. According to Lemma 2.2.3 (with $H_{1}, H_{2}, K_{1}, K_{2}$, u, Q replaced by $G^{\prime}, G^{*}, 1,1, w, W Q$ respectively), the map ψ_{w} is a $W Q$ homsmorphism. Thus the situation here is much hetter than it was for H. In fart, the image $\left(G^{\prime}\right)^{\varphi \times}=\left|G^{\prime}, w\right\rangle$ of φ_{w} is a $W Q$-subgroup of G^{\prime}; hence it is a normal sulogroup of G, becanse G^{\prime} is abelian and $G=G^{\prime} W Q$.

Now let us assume that $w \neq 1$. Then w does not centralize G^{\prime}, ber ause we know from Lemma 3.2.1 that W acts faithfully on G^{\prime} by conjugation. Hence $\psi_{\boldsymbol{w}}$ is not the trivial homomorphism. In partirular, its image $\left|\boldsymbol{G}^{\prime}, \boldsymbol{w}\right|=\left[\boldsymbol{G}^{\prime}, \boldsymbol{w}\right]$ is a nou trivial normal subgroup of G. and therefore it contains the unique minimal normal snibgroup N. This is rearly equivalent to $N \subseteq\left\lfloor w, G^{\prime}\right\}$, and eventually to $u N \subseteq w^{E}$. This rlearly implies the first assertion of the lemma.

In order to pass on this piece of iuformation to H we shall first express it in character-theoretical languagr. Acrording to Lemma 4.2.1, the statement

$$
w N \subseteq w^{G} \text { for all } w \in U \backslash 1
$$

is equivalent to

$$
x(w)=0 \text { for all } x \in \operatorname{Irr}(G) \backslash \operatorname{Irr}(G / N) \text { and for all } w \in W^{\prime} \backslash 1
$$

We must be cautious here in applying the character table isomorphism (α, β), beranse U° does not necessarily coincide with W^{\prime}, inderd, $U^{\text {a }}$ is not uecessarily a sulgroup of H. But we observe that since characters are class fuuctions, the statement

$$
\gamma(g)=0 \text { for all } \star \in \operatorname{Irr}(G) \backslash \operatorname{Irr}(G / N)
$$

artually holds for all $g \in G$ which are conjugate to some $\boldsymbol{w} \in \boldsymbol{W} \backslash 1$.
Now we claim that the set of clements $g \in G$ which are ronjugate to some element of W coincides with the set of elements $g \in P$ such that $|Q|$ divides $\left|\mathbf{C}_{G}(\boldsymbol{q})\right|$ (and a similar assertion bolds for H). In fart, if $g \in G$ is coujugate to $w \in W$, then $\left|\mathbf{C}_{G}(g)\right|=\left|\mathbf{C}_{G}(w)\right|$, and $|Q|$ divides $\left|\mathbf{C}_{\mathcal{E}}(w)\right|$ because $Q \leq \mathrm{C}_{G}(\boldsymbol{w})$. On the other hand, suppose that $|Q|$ divides the order of the centralizer in G of an element g of G. Arcording to the Theorem of Schur-Zassenhans, there exists a complement Q_{0} for $P \cap \mathbf{C}_{G}(g)$ in $C_{G}(g)$. Since $|G|_{p^{\prime}}=|Q|$ divides $\left|C_{G}(g)\right|$, we bave $\left|Q_{0}\right|=|Q|$; therefore Q_{0} is a complement for P in G. The conjugacy part of the Theorem of Schur-Zassenhaus yields now that $Q=Q_{0}^{*}$ for some $x \in G$. Since olviously $g \in \mathbf{C P}_{P}\left(Q_{0}\right)$, it
follows that $g^{s} \in C_{P}\left(Q_{0}^{x}\right)=C_{P}(Q)=W$, and therefore g is coujugate to some clement of W°. Our claim is provect. The analogous rlaim for H can be proved similarly:

Thus we have

$$
(g)=0 \text { for all } \gamma \in \operatorname{Irr}(G) \backslash \operatorname{Irr}(G / N)
$$

for all $g \in P \backslash 1$ such that $|Q|$ divides $\left|\mathbf{C}_{G}(g)\right|$. Let us apply the chararter table automorphism (α, j) to this statment. After noticing that $P^{\infty}=P$, and that $\left|\mathbf{C}_{H}\left(g^{\alpha}\right)\right|=\left|\mathbf{C}_{G}(g)\right|$ for all $g \in G$ (according to the second orthogonality relation), we olstain

$$
\chi(h)=0 \text { for all } \chi \in \operatorname{Irr}(H) \backslash \operatorname{Irr}\left(H / H^{\prime \prime}\right)
$$

for all $h \in P \backslash 1$ such that $|Q|$ divides $\left|\mathbf{C}_{H}(h)\right|$. Since in particular $|Q|$ divides $\left|C_{H}\left(w^{\prime}\right)\right|$ for all $w \in W^{*}$, an application of Lemma 4.2 .1 yields

$$
u \boldsymbol{H}^{\prime \prime} \subseteq w^{\boldsymbol{H}} \text { for all } w \in \boldsymbol{W}^{r} \backslash 1
$$

which concludes the proof.
Now the second assertion of Lemma 3.3.3 together with the fact that $\boldsymbol{W} \neq 1$ (soe the wote after Lemma 3.2.1) implies that there exists some $w \in W \backslash 1$ such that $H^{\prime \prime} \subseteq\lfloor H, w\rfloor$. Siuce $H=W Q H^{\prime}$ and $[W Q, w]=1$, we have $\lfloor H, w\rfloor=\left\lfloor H^{\prime}, w\right\rfloor$. It follows that the $W^{\prime} Q$ homomorphism

$$
\begin{aligned}
\psi_{w}: M_{w} & \rightarrow H^{\prime \prime} \\
x & \mapsto[x, w]
\end{aligned}
$$

which we defined in the discussion preceding Lemma 3.3.3, is an epimorphisne, and thus induces an \boldsymbol{H}-isomorphism of some chief factor of H betwern \boldsymbol{H}^{\prime} and $H^{\prime \prime}$ onto $H^{\prime \prime}$. Thus we have the following lemma.

Lemma 3.3.4 Assume Hypotheses 9.1.2. Then all chief factors of H below H^{\prime} are H-isomorphic.

Proof The assertion follows from the preceding discussion together with Lemma 3.3.2.

Let us remark again that since Q is a complement for the Fitting subgronp $F(G)$ in G, any rhief factor of G is irredurible as a Q-group and is therefore a composition factor of G as a Q-group (similarly for H). Hence Lemma 3.3.1 and Lemma 3.3.4 imply that all Q-romposition fartors of G^{\prime} are Q-isomorphic and respectively that all Q-composition factors of H^{\prime} are Q-isomorphic.

3.4 More about the action of Q on H^{\prime}

In the previons section we have proved in particular that all Q-composition factors of H^{\prime} are Q-isomorphic. On the other hand, the actions of Q on $H^{\prime} / H^{\prime \prime}$ aud on $H^{\prime \prime}$ are not iudependent: in fart the artion of Q on $H^{\prime} / \mathbf{Z}\left(H^{\prime}\right)$ determines uniquely the action of Q on $H^{\prime \prime}$ wia the operation of forming commutators. In this section we shall play these two farts against each ot ber in order to draw further consequences about the action of Q on H^{\prime}. This will require the machinery developed in Sections 2.2 and 2.3, hut the simpler reasoning of the uext proposition will give the reader a taste of the method.

First let us recall a hasir fart about antomorphisms of ryclic p-groups: if C is a cyclir group of order p^{*} (p a prime), and ψ is an automorphism of p^{\prime}-order of $C / \Phi(C)$, then there is a unique automorphism ℓ of p^{\prime}-order of C which induces ψ. In fact, ψ, has the form

$$
c^{*}=c^{a} \bmod \Phi(C) \text { for all } c \in C
$$

for some integer a (which is unique if we require $0<a<p$). The map 6: $C \rightarrow C$ defined by

$$
c^{*}=r^{a} \text { for all } c \in C \text {, }
$$

is an automorphism of C, herause p does not divide a. Huwever, ψ might have order divisihle by p. Acrording to [10, Kapitel I, Satz 4.6 and Satz 13.19], the group of automorphisms of C is abelian (ryclic if $p \neq 2$) of order ($p-1$) p^{r-1}, becuce if f is any integer greater than or equal to $e-1$, then the autumorphisin ${ }^{\prime}=\psi^{\prime p^{\prime}}$ of C has p^{\prime}-order. We clearly have

$$
r^{v}=r^{b} \text { for all } c \in C \text {, }
$$

where $b=a^{p^{\prime}}$. Since $b \equiv a(\bmod p)$, the antomorphism of $C / \Phi(C)$ induced by ψ is ψ. The nuiqueterss of ψ follows from the fact that C and $C / \Phi(C)$ have the same number of automorphisms of p^{\prime}-order, namely $p-1$.

Proposition 3.4.1 Assume Hypotheses .9.1.2. Then H^{n} is not cyclic.
Proof Let us assume for a contradiction that $H^{\prime \prime}$ is cyclic, whence it has order p. Let us rhoose a generator η of Q and let a be the unique integer with $1 \leq a<p$ such that

$$
z^{\prime \prime}=z^{\bullet} \text { for all } z \in H^{\prime \prime} \text {. }
$$

The abelian factor group $H^{\prime} / H^{\prime \prime}$ has a deromposition into a direct product of Q-indecomposable groups. Let C be one of them. According to Theorem 2.4.2, the gromp C is homoryclic aud $C / \Phi(C)$ is an irreducible Q-group; hence $C / \Phi(C)$ is a Q-composition factor of $H^{\prime} / H^{\prime \prime}$. Since all Q composition fartors of $H^{\prime} / H^{\prime \prime}$ are Q-isomorphic to $H^{\prime \prime}$ by Lemma 3.3.4, we have that $C / \Phi(C)$ is ryclic of order p. Consequently, C is ryclic. Because $C / \Phi(C)$ is Q-inomorphac to $H^{\prime \prime}$. We have

$$
c^{n}=\sigma^{a} \bmod \Phi(C) \text { for all } c \in C .
$$

If \boldsymbol{p}^{\prime} is the exponent of $H^{\prime} / H^{\prime \prime}$, then $|C|$ divides p^{e}. Since η acts on C as an automorphism of order prime to p, the remark which precedes this proposition yields

$$
c^{n}=c^{b} \text { for all } c \in C
$$

where $b=a^{p^{-1}}$. Now this holds for all Q-inderomposable groups C of which $H^{\prime} / H^{\prime \prime}$ is the direct product, and therefore we have

$$
x^{\prime \prime}=x^{b} \bmod H^{\prime \prime} \text { for all } x \in H^{\prime}
$$

We also liave

$$
z^{\eta}=z^{b} \text { for all } z \in H^{\prime \prime}
$$

because $b=a(\bmod p)$.
Now let us choose $x, y \in H^{\prime}$ such that $[x, y] \neq 1$, whence $\langle[x, y]\rangle=H^{\prime \prime}$. Remembering that $H^{\prime \prime} \leq \mathbf{Z}\left(H^{\prime}\right)$, we compute

$$
[x, y]^{n}=\left[x^{n}, y^{n}\right]=\left[x^{h}, y^{h}\right]=|x, y|^{n^{2}}
$$

On the other hand, since $|x, y| \in H^{\prime \prime}$ we have

$$
[x, y]^{n}=[x, y]^{b}
$$

Since $[\boldsymbol{x}, \boldsymbol{y}]$ has order p, it follows that $b^{2} \equiv b(\bmod p)$; it folluws that $b \equiv 1$ (mod p), because b is not divisible by p. But this implies that

$$
z^{\eta}=z^{b}=z \text { for all } z \in H^{\prime \prime} .
$$

or in other words, that η rentralizes $H^{\prime \prime}$. This contradists the fart that Q ants faithfully on $H^{\prime \prime}$. by Lemma 3.2.1. Hence our assumption is wrong, and thus $H^{\prime \prime}$ cannot be cyclic.

The key idea of the proof of Proposition 3.4.1. namely that the action of Q on H^{\prime} must be compatile with commutation, will now be generalized to the rase in which $H^{\prime \prime}$ is not assumed to be cyclir. However, this will not lead to any contradiction in geueral.

Let us assume Hypotheses 3.1.2, and let us fix a chief series of H going from 1 to H^{\prime} thes:

$$
1<\boldsymbol{H}^{\prime \prime}=K_{1}<K_{2}<\cdots<\boldsymbol{K}_{t}=\boldsymbol{H}^{\prime} .
$$

Let r be the smallest index i such that $K, \notin \mathbf{Z}\left(H^{\prime}\right)$ (since H^{\prime} is not abelian such an index exists), and then let. \& be the smallest index j such that. $\left[\boldsymbol{h}_{\mathrm{r}}, \boldsymbol{h}, \mid \neq 1\right.$. Then we clearly have $1<r \leq s \leq 1$.

Siure $\left[\boldsymbol{K}_{r}, \boldsymbol{K}_{\mathbf{s}}\right] \leq \boldsymbol{H}^{\prime \prime} \leq \mathbf{Z}\left(\boldsymbol{H}^{\prime}\right)$ and $\left[\boldsymbol{K}_{r}^{*}, \boldsymbol{K}_{s-1}\right]=\left[\boldsymbol{K}_{r-1}, \boldsymbol{K}_{\varepsilon}\right]=\mathbf{1}$, arcording to Lemma 2.2.1 the map

$$
\gamma: \boldsymbol{K}_{\mathrm{r}} / \boldsymbol{K}_{\mathrm{r}-1} \times \boldsymbol{K}_{\mathrm{s}} / K_{s-1} \rightarrow H^{\prime \prime}
$$

such that

$$
\left(s \boldsymbol{K}_{r-1}, y \boldsymbol{K}_{r-1}\right)^{\top}=[x, y] \text { for all } x \in \boldsymbol{K}_{r} \text { and for all } y \in \boldsymbol{K}_{\mathrm{s}} \text {. }
$$

is \mathbf{Z}-bilinear. Mureover, if $r=s$, the map γ is skew-symmetric.
Since $K_{r} / K_{r-1}, K_{4} / K_{s-1}$ and $H^{\prime \prime}$ have exponent p, they can be regarded as vector spaces over F_{p}, and the map γ is \mathbf{F}_{p}-bilipear. We shall put $V_{1}=$ $K_{r} / K_{r-1}, V_{2}=K_{1} / K_{t-1}$ and $V=H^{\prime \prime}$.

Let $V_{1} \otimes V_{2}$ denote the tensor product of V_{1} and V_{2} over F_{p}. According to the universal property of tensor products, there exists a unique $\mathbf{F}_{\mathbf{p}}$-linear map $\gamma: V_{1} \otimes V_{3} \rightarrow V$ such that

$$
\left(r_{1} \otimes v_{2}\right)^{\dagger}=\left(v_{1}, v_{2}\right)^{7} \text { for all } v_{1} \in V_{1} \text { and for all } v_{2} \in V_{2}
$$

Now V_{1}, V_{2} and V^{\prime} are irreducition $F_{P} Q$-modules by conjugation, and according to Lemma 3.3.4, they are all isomorphic.

The tensor product $V_{i} \otimes V_{2}$ beconests an $F_{p} Q$-module in a standard way (seew for instance [13, Chapter 4], [10, Kapitel V, Definition 10.4], or [5, Definition (10.15)]). In short, the artion of a generator η of Q on $V_{1} Q_{2}$ is defined on the pure tensors $\mathrm{v}_{1} \otimes \mathrm{v}_{2}$ (for $\mathrm{v}_{1} \in V_{1}$) by the formula

$$
\left(v_{1} \otimes v_{2}\right) \eta=v_{1} \eta \otimes v_{2} \eta
$$

and extended \mathbb{F}_{ν}-linearly to $V_{1} \otimes \mathfrak{V}_{2}$. (Although the module artion in this case is given by conjugation, instearl of the exponential notation v_{1}^{n} we shall use the note common notation $n_{1} \eta$.)

Since $\left[x^{n}, y^{n}\right]=[x, y]^{n}$ for all $x \in \boldsymbol{K}_{r}$ and $y \in K_{\text {r }}$, we have

$$
\left(\left(v_{1} \otimes v_{2}\right) \eta\right)^{+}=\left(\left(v_{1} \otimes v_{2}\right)^{5}\right) \eta
$$

for all pure tensors $v_{1} \otimes 1_{2}$; heuce it follows by linearity that

$$
(u \eta)^{\psi}=\left(w^{4}\right) \eta \text { for all } w \in V_{1} \otimes V_{2} .
$$

Thus $\gamma: V \otimes V_{2} \rightarrow V$ is an $F_{p} Q$-module homomorphism. It ranuot be the zero homomorphism, berause $\left[\boldsymbol{K}_{r}, \boldsymbol{K}_{\mathbf{l}}\right] \neq 1$. But V is an irredurible F_{r}, Q-module, and therefore γ is an epimorphism. Hence the tensor square $F_{p} Q$-module $V^{\prime} \otimes V\left(\right.$ which is isomorphic to $\left.V_{1} \otimes V_{2}\right)$ has some fartor module isomorplait to V. This is impossible when V has dimension 1 over F_{b} (unless V is the trivial module, which it is not in our rase, acrording to Lemma 3.2.1). In fact, if V has dimension 1, they $V \otimes V$ also has dimension 1: in particular $V \otimes V$ is irreducible, but it cannot be isomorphic to V, unless V is the trivial module. For let $"$ be a generator of V; hence $v \otimes v$ generates $I \otimes V$. We have $\boldsymbol{\eta} \eta=a v$ for some $a \in \mathbf{F}_{F}^{x}$ (which is clearly independent of the choice of v), and thus

$$
(v \otimes v) \eta=v \eta \otimes v \eta=a v \otimes a v=a^{2}(v \otimes v) .
$$

It is clear then that V and $V \otimes V$ are unt isomorphir unless $a=a^{2}$, that is to say $a=1$ (hecause $a \neq 0$), which means that V is the trivial module. Thus we obtain a different formulation of the proof of Proposition 3.4.1.

In the next section we shall examine when $V \otimes V$ has a factor module isomorphic to V, for small values of the dimeusion of V over F_{p}. But before
doing that, we olsserve that in the sperial rase in which $r=s$ we lave $V_{1}=V_{2}^{\prime}$, and the bilinear map γ is skew-symmetric, which means

$$
(v, v)^{2}=0 \text { for all } v \in V_{1} .
$$

The sulspace

$$
\boldsymbol{w}^{\prime}=\left\langle v \otimes v \in V_{1} \otimes V_{1} \mid v \in V_{1}\right\rangle
$$

of $V_{1} \otimes V_{1}^{\prime}$, which is clearly an $F_{\mu} Q$-submodule of $V_{1} \otimes V_{1}$, is threfore rontained in the kernel of the $\mathbb{F}_{\nu} Q$-module epimorphism 9 .

The factor space $W_{i} \otimes V_{i} / W$ is by definition the exterior square $V_{1} \wedge V_{1}$, which thus becomes an $F_{p} Q$-module (with the notation of [11, Chapter VII, Definition 8.16 and according to [11, Chapter VII, Lemma 8.17], we have $V_{1} \wedge V_{i}=V_{i} \otimes V_{i} / S\left(V_{i}\right) \cong \mathbf{A}\left(V_{i}\right)$; ser also $\left.[5, \S 12 A]\right)$.

Hence we obtain an $F_{p} Q$-modnde epimorptism $\gamma: V_{1} \wedge V_{1} \rightarrow V$, such that

$$
\left(v_{1} \wedge v_{2}\right)^{\frac{\pi}{7}}=\left(v_{1}, v_{2}\right)^{v} \text { for all } v_{1}, v_{2} \in V_{1}
$$

where by definition

$$
v_{1} \wedge v_{2}=\left(v_{1} \otimes v_{2}\right)+W \in V_{1} \wedge V_{1} .
$$

Therefore, when $r=A$, the $\mathbb{F}_{p} Q$-module V is isonorphic to a factor module of $\mathrm{I}^{\prime} \wedge 1$ 。

We shall henceforth distinguish between the rase in which $r<s$ (whirh ouly gives rise to a map, $\gamma: V_{1} \otimes V_{2} \rightarrow V$) and the rase in which $r=s$ (which in addition gives rise to a map $\left.\gamma: V_{1} \wedge V_{1} \rightarrow V\right)$ hy referring to them as the binary case and the unary cose.

3.5 The smallest cases which can occur

In this section we shall investigate for which values of p and $|Q|$ the modules $V \otimes V$ and $V \wedge V$ have a composition factor isomorphic to V, where V is a faithful irreducible module for the cyclic p^{\prime}-gronip Q over F_{p}.

Let E be a splitting field for the pelyuomial $x^{|Q|}-1$ over F_{p}; heure \mathbb{E} is the smallest extension field of F_{p} whirh contains a primitive $|Q|$ th root of unity, or, in other words, the smallest extension field of F_{p} whose multiplicative group E^{\times}contains a subgroup of order $|Q|$ (which is neceusarily
ryclic). Hence \mathbf{E} is clearly isomorphic to $\mathbf{F}_{p^{n}}$, where \boldsymbol{n} is the multiplicative order of p (mod $|Q|$). that in to nay, n is the smallest positive integer such that $|Q|$ divides $p^{n}-1$. According to Theorem 2.3.1. the integer n equals the dimension of V^{\prime} ovet F_{p}.

Since $|Q|$ is not divisible by p, the F_{p}-algehra $F_{p} Q$ is semisimple, according to Masthke's Theorem. In phrticular, $V \otimes V$ and $V \wedge V$ are semisimple $F_{p} Q$. modules. Arcording to Corollary 2.3.3. the composition fartors of $V \otimes V$ and $V^{\prime} \wedge V$ an $\mathbb{F}_{p} Q$-modules are completely determined by the composition factors of $\left(V \otimes V^{*}\right)^{2}$ and $(V \wedge V)^{2}$ as $\mathbb{E} C$-modules. It is easy to see that

$$
(V \otimes V)^{E} \cong V^{\Sigma} \otimes V^{E} \text { and }(V \wedge V)^{E} \cong V^{L} \wedge V^{\prime L}
$$

Let e he a primitive $|Q|$ th rost of unity in \mathbf{E}. The discussion whirh follows Theorm 2.3.1 yields that $\varepsilon, \varepsilon^{p}, \ldots, \varepsilon^{p^{n-1}}$ are all the distinct eigenvalues of η (a gruerator of Q) on $V^{-\Sigma}$. Morfover, $V^{\mathbf{Z}}$ has a basis $v_{0} \ldots, v_{n-1}$ over \mathbb{E} such that

$$
v, \eta=e^{\prime \prime} v_{\mathrm{c}}, \text { for all } \mathrm{t}=0 \ldots, n-1 .
$$

Thus hases for $V^{L} \otimes V^{\mathbf{x}}$ and $V^{\mathbf{L}} \wedge V^{\mathbf{t}}$ over \mathbf{E} are given by

$$
v_{i} \otimes v_{1}, \text { for } i, j=0, \ldots, n-1
$$

and respectively

$$
v_{1} \wedge v_{,}, \text {for } 0 \leq 1<j<\boldsymbol{n} .
$$

These bases are made of eigenvectors for η; in fact

$$
\left(v_{1} \otimes v_{s}\right) \eta=r_{1}, \eta \otimes v_{s} \eta=\epsilon^{p^{\prime}+\mu}\left(v_{1} \otimes v_{j}\right)
$$

and

$$
\left(v_{i} \wedge v_{s}\right) \eta=v_{1} \eta \wedge v_{1}, \eta=\varepsilon^{p^{\prime}+p^{\prime}}\left(v_{1} \wedge v_{J}\right) .
$$

The cigenvalues for η on $V^{+E} \otimes V^{\prime \mathbb{L}}$ and $V^{\mathrm{L}} \wedge V^{\mathbf{L}}$ (considered with multiplicities) ran be grouped into Galois conjugary classes, whirb in turn determine the isomurphism rlasses of the composition factors of $V^{\mathcal{Z}} \otimes V^{\mathbf{E}}$ and respectively of $V^{\Sigma} \wedge V^{\mathbb{L}}$ as $\mathrm{F}_{p} Q$-modules, acrording to Theoren 2.3.2.

Sets of representatives of the distiurt Gaiois conjugary rlasses of the eigeuvalues of η on $V^{\mathbf{E}} \otimes V^{\mathrm{E}}$ and $V^{\mathrm{E}} \wedge V^{\mathrm{E}}$ are contained in the set

$$
\left\{\varepsilon^{\mathrm{p}^{\prime}+1} \mid 0 \leq 1 \leq n / 2\right\}
$$

and respertively in the set

$$
\left\{\varepsilon^{p^{\prime}+1} \mid 0<i \leq n / 2\right\} .
$$

In fart, the eigenvalue $\varepsilon^{p^{\prime}+m^{\prime}}$ is Galois conjugate to $\varepsilon^{p^{-1}+1}=\left(\varepsilon^{\left.p^{p}+\right)^{p}}\right)^{p^{n-1}}$ and to $\varepsilon^{p+--1+1}=\left(\varepsilon^{p^{\prime}+p^{p}}\right)^{p^{m-1}}$; on the other hand, if $0 \leq i \leq j<n$, then we have either $0 \leq j-i \leq n / 2$ or $0 \leq n+i-j \leq n / 2$.

Heure $V^{\prime} \otimes V^{\prime}$ has a composition factor (hence a direct summand, because $V \otimes 1$ ' is semisimple) isomorphic to V exartly when $e^{\prime \prime}$ appears as an element of the set $\left\{\varepsilon^{\mathrm{P}}+\mathrm{t} \mid 0 \leq i \leq n / 2\right\}$ for some $j=0, \ldots, n-1$. A similar assertion luclds for 1×1. We shall state both assertious it the following lemma.

Lemma 3.5.1 Let V be a faithful irreducible module for a cyclic group Q over F_{p} (in particular p daes not divide $|Q|$) and let n be the dimension of V never F_{P}. Then:
(i) the tensor square $\mathbf{F}_{p} Q$-module $V \otimes V$ has a direct summand isomorphic to 1 if and only if

$$
\mu^{\prime}+1 \equiv \mu^{\prime} \bmod |Q|
$$

for some i, j with $0 \leq i \leq n / 2$ and $0 \leq j<n$ (or, equivalently, for some non-ncgative integers i, j):
(ii) the exterior square $F_{p} Q$-module V $\wedge V$ hav a direct summand iaomorphie. to V if and only if

$$
\mu^{\prime}+1=p^{2} \bmod |Q|
$$

for some 3.J with $0<i \leq n / 2$ and $0<j<n$ (or, equivalently, for some non-regntive integers i, j, with i not a multiple of n).

We observe here that we may also restrict uur atteution to $|Q|$ odd in Lemma 3.5.1. In fact, if $|Q|$ is eveu, then p is odd, and hence the congruence $p^{\prime}+1 \equiv p^{j}($ mud $|Q|)$, has clearly mo solution. It follows in particular that if ($G . H$) is a pair of gronps which satisfy Hypotheses 3.1.2, then the ryclic complement Q for the normal Sylow p-subgroup of H has odd order. However, this is also a conserquence of the general fact that a non-ahelian group canuot bave a fixed-point-frec antomorphism of order 2, acrording to [10, Kapitel V. Satz 8.18| (while any uon-identity element of Q induces a fixed-point-free automorphism of the uon-abeliau gronp H^{\prime} by conjugation).

Wi- shall sere in Chapter 5 that all the rases described in Lemma 3.5.1 artually arise from the analysis of commerexamples to Coujecture 3.1.1. In other words, for any faithful irredurible module V for a non-trivial cyrlir
 isomorphic to V, there exists a pair of groups ($G . H$) satisfying Hypotheses 3.1 .2 and such that

- Q is a conplement for the normal Sylow p-sulgroup of H,
- $H^{\prime \prime}$ is isomorphic to V when it is regarted as an $F_{p} Q$-morlule by conjugation.
- the nap γ (respectively γ) arising from some rhief series of H. as described in the last section, is an $F_{p} Q$-module mpimorphism of $V \otimes V$ (respectively of $I^{\prime} \wedge V$) onto V.

Now let us take a different point of view. We shall expliritly coustruct pairs (G, H) of groups satjsfying Hypotheses 3.1 .2 in Chaptet 5: we would like them to be as small as possible. Therefore it makes seuse to fix a small value n of the dimension of I and then determine for which primes p and cyclic p^{\prime} gromps Q some (actually, according to Lemma 3.5.1, any) fajthful irreducible module V for Q over F_{p} appears as a composition factor of $V \otimes V$, or even of $V \wedge V^{r}$. We shall see in some detail what happens for $n=1,2,3,4$ and show in particular that while case (i) of Lemma 3.5.1 can already happren for $n=2$, case (ii) does not orcur unless $n \geq 4$.

Case $n=1$. We have already seen that in this case $V Q V$ (which is irreducible, beranse it has dimension 1 over F_{p}) cannot be isomorphic to V as an $F_{p} Q$-module.

Case $n=2$. Since in this case $V \wedge V$ has dimension 1 , it is irredurible and rertainly not isomorphir to V, which has dimension 2 .

On the other hatd, $V \otimes V$ has dimension 4 over F_{p}. According to Lemma 3.5.1 then $V \otimes V$ has a composition factor isomorphic to V if and only if $p^{\prime}+1 \equiv p^{\prime}(\bmod |Q|)$ for some $t=0,1$ and $\jmath=0,1$. The rases $(i, j)=$ $(0,0),(1,0),(1,1)$ are easily ruled out, remembering that p does not divide $|Q|$. Hence we are left with $p^{0}+1=p(\bmod |Q|)$. If this is the case, from $|Q| \mid(p-2)$ it follows that $(|Q|, p-1)=1$. Nuw $F_{p^{1}}$ coutains a primitive $|Q|$ th root of unity according to T heorem 2.3 .1 ; ronsequently, $|Q|$ divides
$\left|\mathbf{F}_{p_{2}^{2}}^{\mathbf{x}}\right|=p^{2}-1=(p-1)(p+1)$. Thercfore $|Q|$ divides both $p+1$ and $p-2$. and hence $|Q|=3$.

Thus there exists a two-dimensional faithful irredurible module V for a cyclir group, Q over F_{p} such that V^{\prime} is isomorphic to a composition fartor of $\mid \otimes V^{\prime}$, if and only if $|Q|=3$ and $p \equiv-1(\bmod 3)$.

Case $n=3$. It is rertainly possible that \mathfrak{V} is isomorphic to a composition factor of $V \otimes V^{\prime}$. For instance, when $|Q|=7$ and $p \equiv 4(\bmod 7)$ we have that p has multiplirative order $3($ mod $|Q|)$ and that $p^{0}+1 \equiv \boldsymbol{p}^{2}(\bmod |Q|)$. However, we shall not go into further details here. We shall only prove that V' $\wedge V$ cannot lave any composition factor isomorphic to V. In fact, if this were true we would have, according to Lemma 3.5.1, that $p+1 \equiv p^{\prime}$ mod $|Q|$ for some $j=0.1,2$. Since the cayes $j=0,1$ are casily ruled out, we wouhd have that $|Q|$ divides $p^{2}-p-1$. On the other hand, because F_{p} must coutain a primitive $|Q|$ th root of unity, $|Q|$ should divide $\boldsymbol{p}^{3}-1$. It would follow that $|Q|$ divides $\left(p^{3}-1\right)-(p+1)\left(p^{2}-p-1\right)=2 p$, and this contradicts the fact that $|Q|$ is odd and prime to p.

Case $n=4$. We shall prove that if V has dimension 4 it can happen that V is a composition fartor of $V \wedge V$ (and hence of $V \otimes V$ teo). Arcording to Lemma 3.5.1 we need to determine for which values of μ and $|Q|$ it is possible to have $p^{\prime}+1=\boldsymbol{p}^{\mathbf{3}}(\bmod |Q|)$ for some $\boldsymbol{i}^{=1,2}$ and $j=0,1,2,3$.

It is not difficult to rule out the rases with $i=2$, either by working with the congruences or by simply noticing that the eigenvalues ε^{p+1} and $\varepsilon^{p^{x}+p}$ of a generator η of Q on $V \wedge V$ form a Galois conjugary class of length two over F_{p}. which thus ronresponds to a composition factor of $V \wedge V$ of dimension two. in particular not isomorphic to V, which has dimension $n=4$. Hence we are left with $t=1$.

Now the cases $(i, j)=(1,0),(1,1)$ are clearly impossible; bence we have rither $(i, j)=(1,2)$ or $(i, j)=(1,3)$. In the first case, we have that $p+1 \equiv p^{2}$ (mod $|Q|$), in other words $|Q|$ divides $p^{2}-p-1$. Kerping in mind that $|Q|$ also divides $p^{4}-1=\left|\mathbf{F}_{k}^{x}\right|$, we obtain that $|Q|$ divides

$$
\left(p^{4}-1\right)-\left(p^{2}-p-1\right)\left(p^{2}+1\right)=p\left(p^{2}+1\right)
$$

and therefore that $|Q|$ divides $p^{2}+1$. Hence $|Q|$ also divides

$$
\left(p^{2}+1\right)-\left(p^{2}-p-1\right)=p+2
$$

Now from $p^{2} \equiv-1(\bmod |Q|)$ and $p \equiv-2(\bmod |Q|)$ we olstain that $5=0$ (mod $|Q|$). It follows that $|Q|=5$ and $p \equiv 3(\bmod |Q|)$. In a similar way one can find that in the case $(i, j)=(1,3)$ it must be $|Q|=5$ and $p=2$ $(\bmod |Q|)$.

Conversely, if $|Q|=5$ and $p \equiv 3(\bmod |Q|)$ or $p=2(\bmod |Q|)$, then p has multiplicative order $4(\bmod |Q|)$ and $p+1 \equiv p^{2}$ (mod $\left.|Q|\right)$, or respertively $p+1 \equiv p^{3}(\bmod |Q|)$.

We conclude that there exists a faithful irreducible module I' of dimension 4 over F_{p} for a cyclic group Q. such that V is somorphic to a romposition factor of $V \wedge V$, exactly when $|Q|=5$ and $p \equiv 2 \operatorname{or} 3(\bmod 5)$.

Chapter 4

Comparing character tables

4.1 Our philosophy

We said in Chapter 1 that two groups can bave identical character tables withunt heing isomorphic. But how can one compare character tables in practice? In this chapter we shall elevelop a method which allows one to do this, in special situations. We shall employ some basic Clifford theory: This is the part of chararter theory which analyzes the relations hetween the characters of a group, G tud the characters of a normal subgroup N of G. For our present purposes, the two most fundamental results of Clifford theory will suftice, namely Clifford's Theorem (see [13, Theorem 6.2]), aud the Clifford Correspondence ([13. Theorem 6.11]).

Let us start from the side of group theory by recalling the well-known analysis of a gromp G in terms of a normal sulgronp N of G and the factor group G / N. Given two groups N and H, there are in general many ways of constructing a group G which has N as a normal sulogroup and such that $G / N \equiv H$. This is the so-called extension problem for groups, and its answer is given by the following well-known theoren.

Theorem 4.1.1 Let H and N be groupa, let

$$
h \mapsto \varphi(h)
$$

be a map from H into Aut (N), and let

$$
\left(h_{1}, h_{2}\right) \mapsto f\left(h_{1}, h_{2}\right)
$$

be a map from $H \times H$ into N, a sn-called fartor system. Let wassume that p^{2} and f satisfy the following conditions, for all $n \in N$ and for all $h_{1}, h \in H$:
(1) $f\left(h_{1}, h_{2} h_{3}\right) f\left(h_{2}, h_{3}\right)=f\left(h_{1} h_{2}, h_{3}\right) f\left(h_{1}, h_{2}\right)^{\varphi\left(h_{3}\right)}$.

(3) $f(h, 1)=f(1, h)=1$.

Let us define a multiplication on the cartesian product

$$
G=\{(h, n) \mid h \in H, n \in N\}
$$

through the formula

$$
\left(h_{1}, n_{1}\right)\left(h_{2}, n_{2}\right)=\left(h_{1} h_{2}, f\left(h_{1}, h_{2}\right) n_{1}^{\varphi\left(h_{2}\right)} n_{2}\right)
$$

Then G becomes a group with this mudiplication. The set

$$
N=\{(\mathbf{1}, \mathbf{n}) \mid n \in N\}
$$

is a normal subgroup of G isomorphic to N, and the fartor group G / \bar{N} is isomorphir to H. The group G is called the cxtension of H by N with respect to the automorphisms $\varphi(h)$ and the factor set $f($,$) .$

Proof See [10, Kapitel I, Satz 14.2], or [8, Theorem 15.1.1].
Let us summarize Theorem 4.1 .1 by saying that in order to construct the grutu, G from the normal subgronp N and the factor group G / N, we need the folluwing ingredients:
(i) the group $H=G / N$,
(ii) the group N, together with a map $: H \rightarrow$ Aut (N),
(iii) a factor set $f: H \times H \rightarrow N$;
moreover, conditions (1), (2), and (3) of Theorem 4.1.1 lave to he satisfied.
Let us say that our ingredient (ate) is usually the most difficult to haudle. and can be dealt with by using columological methods.

Let us remark that in the special rase in which N is abelian, and more gencrally when $f\left(h_{1}, h_{2}\right) \in Z(N)$ for all $h_{1}, h_{2} \in H$, the map

$$
h \mapsto \varphi(h)
$$

is a group homomorphisn from H into $\operatorname{Aut}(N)$; thus when N is abelian. it becomes a $\mathrm{Z} H$-module. When N is arbitrary, the map ψ is not a gronp homomorphism: however, the composite map

$$
\hat{2 \pi}: H \rightarrow \operatorname{Out}(N)=\operatorname{Aut}(N) / \operatorname{Inn}(N)
$$

is a homomorphism, where $\pi: \operatorname{Aut}(N) \rightarrow \operatorname{Aut}(N) / \operatorname{Inn}(N)$ is the natural epimorphism. As a consequetre, v induces an action of H on the set of coujugacy classes of \boldsymbol{N}. The knowledge of the orbits of this action allows one to cletermine the conjugacy classes of G which are contained in N. More information is uerded in general in order to determine the remaining ronjugary classes of G, namely some information about the factor set f is necessary.

Let us turn onr atteution to the character tables now. Let us order the conjugary classess of G in such a way that those which are contained in the normal subgroup N precede those which are contained in $G \backslash N$. Similarly, for the irreducible characters of G. let us first list those whose kernel contains N, which we shall identify with the characters of G / N, and then the remaining ones. The rharacter table T of G can be divided into four sulmatrices accordingly, thus:

$$
\underset{\operatorname{lm}(G) \backslash \operatorname{lr}(G / N)}{\ln (G / N)}\left[\begin{array}{c|c|c}
N & G \backslash N \\
\hline C & D
\end{array}\right]
$$

Let us examine which of the submatrices A, B, C, D of T is influenced by each of our ingredients (2), (22), and (212).

Ingredient (2), namely the fartor group $H=G / N$, gives iuformation about A and B. In fact, the submatrix of T made up of the sulmatrices A and B roincides with the chararter table T of the fartor gromp G / N, except that some rolumns of T are repeated in A or B (in partirular all the rolumns of A are equal). Therefore (i) determines the uumber of rows of A and B. and all the eutries, up to repeating some columns.

Now let us see how the normal subgroup \boldsymbol{N} together with the map φ : $H \rightarrow$ Aut (N), which ronstitute our ingredieut (ii), give information about A and C. The matrices A and C display the restrictions of the irredurible characters of G to the normal subgroup N. According to Clifford's Theorem. if χ is an irreducible chararter of G, then its restriction χ_{N} is a multiple of the sum over a G-orbit of irredurible characters of N. We are assuming that the group N is known: consequently, its rharacter table is uniquely determined.

We thave already said that the map φ determines an action of $H=G / V$ on the set of conjugary classes of N; to be explicit, if $h \in H$ and \mathcal{K} is a conjugacy class of N. then K^{n} is the conjugary class of N given by

$$
K^{-h}=\left\{n^{v(n)} \mid n \in \mathcal{K}\right\} .
$$

The map ψ also determines au action of H on $\operatorname{lrr}(N)$ via

$$
\theta^{h}(n)=\theta\left(n^{\varphi(h)^{-1}}\right) \text { for all } n \in N,
$$

where $h \in H$ aud $\theta \in \operatorname{Irr}(N)$. In other words, the map p induces two actions of H, one on the set of columns and one on the set of rows of the character table of N. Therefore, assuming that we are able to write the chararter table of N, we can replace each set of rows of the table which correspond to a G orbit of $\operatorname{Irr}(\mathrm{V})$ with a single row, namely their sum; finally, we can delete multiple columns. Let us call T the matrix which we ohtain. Then, first of all, A and C have the same number of columns as T. Serondly, possibly after permuting the columns of T, each row of A or C is a multiple of some row of T hy a positive integer; on the other hand, each row of T has some multiple which appears as a ruw of either A or C. In other words, the submatrix of T made up of A and C has the same number of columns as T, and can be obtaned from T by repetition of some rows and then multiplication of some rows by some positive integers.

The little asymmetry in the ways in which we obtained A, B from T and A. C from T would disappear if we cousidered the table of central chararters $\omega_{\text {s }}$ of G, instead of the ordinary rbararter table of G; bere the central character ω_{1} assoriated with the irreducible character λ of G is the map from G into C defined by the formula

$$
\omega_{x}(g)=\frac{x(g)}{x(1)} \text { for all } g \in G
$$

(the name central character is due to the fact that ω_{x} ran be extended \mathbf{C} lisearly to a character of the reutre $\mathbf{Z}(\mathbb{C} G)$ of the group algebra $\mathbb{C} G$. in other words, to a \mathbf{C}-algebra homomorphism from $\mathbf{Z}(\mathbb{C} G)$ into \mathbb{C}).

We have seen that the submatrix A of T is completely determined by our angredieuts (2) and ($(2$), white B and C ane ouly partly determined (B is determiued up to reprating columns, and C up to repeating rows and multiplying them by positive integers). The remaining submatrix of T, namely D. usually requires some knowledge of our ingredicnt (tzi).

We shall get rid of the problem of computing D by assuming that D is the zero matrix. As we shall sew, this assumption will also eliminate the residual indeterminary in the matrices B and C; in fact there will not be any repeated column in B, nor any repeated row in C. and the first orthogonality relation will determine which multiple of earh row of T (not corresponding to the trivial character of N) apperars as a row of C. Thus our ingredients (1) and (a), together with the assumption $D=0$, will determine the chararter table of G uniquely (though they do not determine G up to inomorphism). We shall see in Sertion 4.2 how the condition $D=0$ can be expressed by two equivalent statements: one of them concerns ronjugacy classes of G and G / N, while the other one concerns irreducible characters of G and N.

We observe now that in order to describe the submatrices A, B, and C of T we did not use all of the information contained in our ingredients (i) and (ii). In fact, in our discussion we never used the group structure of H and N, but only their character tahles, together with the orbits of H on the set of roujugacy classes and the set of irreducible characters of N. It turns out that our ingredients (i) and (iz) can be safely replared with the following weaker ingredients:
(I) the character table of $H=G / N$.
(II) the rharacter table of N, together with the knowledge of the G-orbits of $\operatorname{Irr}(N)$.
With Theorem 4.3.1 we shall give a formal proof that (I) and ($I I$), together with the condition $D=0$, determine the character table T of G uniquely. We only observe here that in ($I I$) we do not require the knowledge of the orbits of G on the set of conjugary classes of N. This is due to the following general fact. which we mention without proof: if the character table of a normal subgroup N of G is given. together with the orbits of the action of G on $\operatorname{Irr}(N)$ (whithout any further information about this artion), then the orbits of G on the set of ronjugary classes of N can be uniquely determined; conversely, the character table of N and the orbits of G on the set of ronjugary rlasses of N determine the orbits of G on $\operatorname{Irr}(N)$.

We conclude this section by noting that ingredient (II) can be further wrakened (though it is sufficient as it stands for our purposes), because, iustead of the character table of N we rather used the table T, which displays the values of the sutns over the G-orbits of $\operatorname{Irr}(N)$. We shall come bark to this remark in Section 4.4.

4.2 Vanishing of character values

The matter of this section is the vanishing of the submatrix D of the rharacter table T of G as described above. The following two lemmas show how the vanishing of a rolumn (respertively row) of D is equivalent to a conditon on the ronjugary class (respectively irreducible character) of G which corresponds to that colmm (respectively row). Since these results cannot be easily found in the literature in this form, we shall give their proofs in full.

Lemma 4.2.1 Let N be a normal subgroup of the group G. let $g \in G$ and let $\pi: G \rightarrow G / N$ be the natural epimorphiam. Then any two of the following monditions are equivalent:
(a) $\mathbf{x}(g)=0$ for all $\vDash \operatorname{Irr}(G) \backslash \operatorname{Itr}(G / N)$;
(b) $\left|\mathrm{C}_{G(g)}\right|=\left|\mathrm{C}_{G / N}\left(\boldsymbol{g}^{\pi}\right)\right|$;
(c) $g^{G}=g^{G} \quad N$;
(d) $g, N \subseteq g^{G}$;
(e) $\mathbf{N} \subseteq\lfloor g, G\rfloor$.

Proof $((a) \Longleftrightarrow(b))$ By using the second orthogonality relation we get

$$
\left|\mathbf{C}_{G / N}\left(g^{r}\right)\right|=\sum_{\lambda \in \ln (G / N)}|\lambda(g)|^{2} \leq \sum_{\lambda \in \ln (G)}|\lambda(g)|^{2}=\left|\mathbf{C}_{G}(g)\right|,
$$

with equality if and only if $\lambda(g)=0$ for all $\chi \in \operatorname{Irr}(G) \backslash \operatorname{Irr}(G / N)$,
$((b) \Longleftrightarrow(c))$ Since $\left(g^{\pi}\right)^{\left(x^{*}\right)}=\left(q^{x}\right)^{\pi}$ for all $g, r \in G$, we have

$$
\left(\left(g^{\mathbb{N}}\right)^{\left(\pi^{*}\right)}\right)^{\pi^{-3}}=g^{x} \cdot N \text { and }\left(\left(g^{\mathbb{F}}\right)^{G / N}\right)^{\mathbb{m}^{-1}}=g^{G} \cdot N
$$

Therefore

$$
g^{G} \subseteq g^{G} \quad N=\left(\left(g^{\pi}\right)^{G / N}\right)^{\pi^{-1}}
$$

It follows that $\left.\left|g^{G}\right| \leq|N| \cdot \mid\left(g^{r}\right)^{G / N}\right) \mid$, which is equivalent to

$$
\left|\mathbf{C}_{G}(g)\right| \geq\left|\mathbf{C}_{G / N}\left(g^{*}\right)\right|
$$

We have equality here if and only if $g^{G}=g^{d} \cdot N$.
$((c) \Longleftrightarrow(d) \Longleftrightarrow(e))$ This is ceasy.

If N is a normal subgroup of the group G and $\theta \in \operatorname{Irr}(N)$, let us write

$$
\operatorname{Irr}(G, \theta)=\{\chi \in \operatorname{Irr}(G) \mid[\chi N, \theta]>0\}
$$

where the brackets [.] deuote the scalar product of rharacters. Since $[\lambda N, \theta]=\left[x, \theta^{d}\right]$ by Frolbenins Reciprocity. $\operatorname{Irr}(G, \theta)$ is the set of all irreducible constituents of $\theta^{\prime \prime}$.

Lemma 4.2.2 Let $N \in G$, let $\theta \in \operatorname{Irr}(N)$ and $\chi \in \operatorname{Irr}(G, \theta)$. Lete $=|\chi N, \theta|$ and let t be the number of distinct G-conjugates of θ. Then the following conditions are equivalent:
(a) $\operatorname{Irr}(G, \theta)=\{\lambda\}$
(b) $\backslash(g)=0$ for all $g \in G \backslash N$:
(c) $c^{2} t=|G: N|$.

Proof Let $\theta=\theta_{1} \ldots, A_{1}$ be all the distinct G-ronjugates of θ; then according to Clifford's Theorem we have

$$
x_{N}=e \sum_{k=1}^{1} \theta_{1}, \quad \text { where } e=[x, \theta]=\left\{x, \theta^{(G}\right\}
$$

Thus \boldsymbol{x} is an irtedurible constitnent of $\theta^{\boldsymbol{e}}$ with multiplicity e. It follows that $\operatorname{Irr}(G . \theta)=\left\{\chi\right.$ if aud only if $\theta^{c}=e_{\lambda}$, or equivalently $\theta^{c}(1)=e_{\chi}(1)$. But

$$
\theta^{G}(1)=|G: N| \theta(1) \text { and } \quad v(1)=r t \theta(1)
$$

and so $\operatorname{Irr}(G, \theta)=\{x\}$ is equivalent to $|G: N|=e^{2} t$. Acrording to $\{13$, Lemma (2.29)] we have

$$
\epsilon^{2} t=\left[\chi N, \chi_{N}|\leq| G: N \| \chi, \chi\right]=|G: N|,
$$

and equality bolds if and only if $x(g)=0$ for all $g \in G \backslash N$. This concludes the proof.

It follows from Lemma 4.2 .1 that the obvious character-theoretic expression of the coudition $D=0$, namely

$$
\chi(g)=0 \text { for all } g \in G \backslash N \text { and for all } \chi \in \operatorname{Irr}(G) \backslash \operatorname{Irr}(G / N)
$$

has a purely group-theoretic equivalent, namely

$$
\left|\mathbf{C}_{\boldsymbol{G}}(g)\right|=\left|\mathbf{C}_{G / N}(\boldsymbol{Q} N)\right| \text { for all } g \in G \backslash N .
$$

This condition on G, with respect to a normal sulgroup N, has bern given a tame.

Definition 4.2.3 Let N be a proper non-trivial normal subgroup of the group G. The pair (G, N) is called a Camina pair if the following condition holds:

$$
\left|\mathbf{C}_{G}(g)\right|=\left|\mathbf{C}_{G / N}(g \mathrm{~N})\right| \text { for all } g \in G \backslash N .
$$

Camina pairs have bertu introduced in [2] as a generalization of Frobenius groups; in fact it is easy to see that (G, N) is a Camina pair if G is a Frobenius group and N is its Frobenius kernel. Further examples of Camina pairs are given by (G, G^{\prime}), where G is an extraspecial p-group. We refer to [2], [3] and [16] for series of results on Camina pairs.

We olserve that, arrording to Lemma 4.2.1. Camina pairs are also chararterized by the following property: the inverse inage of each non-trivial runjugary class $(g N)^{G / N}$ of the [actor group G / N, under the natural epimorphism $\pi: G \rightarrow G / N$ is a conjugary class of G, namely g^{G}. (Let us notn that in general the inverse image under π of a ronjugary class of G / N is a whion of conjugacy classes of \boldsymbol{G}.)

Finally, let us mention a remarkable property of Camina pairs: if (G, N) is a Camina pair, then every chief series of G must pass throngh N; in other words, parh normal sulbgroup of G, either contains N, or is contained in N.

4.3 A tool for comparing character tables

The following throrem provides a rigorons formulation of the result which we sketched in Section 4.1.

Theorem 4.3.1 Let $N_{1} \triangleleft G_{1}, N_{2} \triangleleft G_{2}$, and suppose that the following conditiona hold:
(i) G_{1} / N_{1} and G_{2} / N_{2} have identiral character tables:
(ii) N_{1} and N_{1} have identacal character tables, via the bijections

$$
\alpha: N_{1} \rightarrow N_{2}
$$

and

$$
\dot{\beta}: \operatorname{Irr}\left(N_{1}\right) \rightarrow \operatorname{Irr}\left(N_{2}\right) .
$$

and, moreouer, β takes each G_{1}-arbit of $\operatorname{lrr}\left(N_{1}\right)$ onto some G_{2}-orbit of $\operatorname{Irr}\left(\boldsymbol{N}_{2}\right):$
(iii) $\left(G_{1}, N_{1}\right)$ and $\left(G_{2}, V_{2}\right)$ are Camina pairs.

Then G_{1} and G_{2} have identical character tables
Proof By hypothesis (i), there exist bijections

$$
a: G_{1} / N_{1} \rightarrow G_{2} / N_{2}
$$

and

$$
\bar{\beta}: \operatorname{Irr}\left(G_{1} / N_{1}\right) \rightarrow \operatorname{Irr}\left(G_{2} / N_{2}\right),
$$

such that

$$
{ }^{G}\left(x^{d}\right)=(x) \text { for all } x \in G_{1} / N_{1} \text { and for all } \in \operatorname{Irr}\left(G_{1} / N_{1}\right)
$$

Let $\pi_{1}: G_{1} \rightarrow G_{1} / N_{1}$, for $i=1,2$, be the natural epimorphisms. Let α : $G_{1} \backslash N_{1} \rightarrow G_{2} \backslash N_{2}$ be any bijection making the folluwing diagram commute:

Let us extend a to a bijection $n: G_{1} \rightarrow G_{2}$ by

$$
n^{a}=n^{\alpha} \text { for all } n \in N_{1}
$$

Then the extevded \cap also satisfies $\cap \pi_{2}=\pi_{1} \dot{\sigma}$.
If $\chi \in \operatorname{Irt}\left(G_{1}\right) \backslash \operatorname{Irr}\left(G_{1} / N_{1}\right)$ (for $i=1$ or 2), then bypotbesis (ati) together with Lemma 4.2.1 guarantee that

$$
\lambda(g)=0 \text { for all } g \in G_{1} \backslash N_{1}
$$

Furthermore, if θ is an irreducible constituent of the restrietion χN_{1}, then

$$
\operatorname{Irr}\left(G_{1}, \theta\right)=\{\chi\},
$$

according to Lemma 4.2.2.
Let us define a map:

$$
\beta: \operatorname{Irr}\left(G_{1}\right) \backslash \operatorname{Irr}\left(G_{1} / N_{1}\right) \rightarrow \operatorname{Irr}\left(G_{2}\right) \backslash \operatorname{Irr}\left(G_{2} / N_{2}\right)
$$

as follows. If $\mathfrak{E} \operatorname{Irr}\left(G_{1}\right) \backslash \operatorname{Irr}\left(G_{1} / N_{1}\right)$, let θ be an irreducible coustituent of $\left\{N_{4}\right.$, so that $\operatorname{Irr}\left(G_{1}, \theta\right)=\{x\}$ and θ is not the trivial character of N_{1}. It follows that θ^{\prime} is not the trivial character of N_{2}, and hence $\operatorname{Irr}\left(G_{2}, \theta^{8}\right)$ is a subset of $\operatorname{Irr}\left(G_{2}\right) \backslash \operatorname{Irr}\left(G_{2} / V_{2}\right)$. Therefore $\operatorname{Irr}\left(G_{2}, \theta^{3}\right)=\{1]$, for some $\bar{x} \in \operatorname{Irr}\left(G_{2}\right) \backslash \operatorname{Ir}\left(G_{2} / N_{2}\right)$ (namely x is the unique irreducible constituent of the induced character $\left(\theta^{i}\right)^{G_{a}}$). Then define $\boldsymbol{x}^{3}=\hat{\chi}$.

This definition does not depend on the only choice we made. namely the choice of an irreducible coustituent θ of XN_{1}, berause β takes \boldsymbol{G}_{1}-conjugate characters of N_{1} to G_{2}-conjugate characters of N_{2}, according to bypothesis (is).

By Clifford's Theorem and Lemma 4.2.2, the map which sends any i E $\operatorname{Irr}\left(G_{1}\right) \backslash \operatorname{Irr}\left(G_{1} / N_{1}\right)$ (for $:=1$ or 2) to the set of the irreducible constitupnts of N_{1} is a bijection from $\operatorname{Irr}\left(G_{1}\right) \backslash \operatorname{Irr}\left(G_{1} / N_{1}\right)$ onto the set of G_{1}-orbits of $\operatorname{Irr}\left(N_{1}\right) \backslash\left\{1_{N .}\right\}$. Since β is a bijection, it is clear that the map β is also a bijection.

Let us exteud β to a bijection $\beta: \operatorname{Irr}\left(G_{1}\right) \rightarrow \operatorname{Irr}\left(G_{2}\right)$ by defining

$$
x^{\beta}=x^{3} \text { for all } x \in \operatorname{Irr}\left(G_{1} / N_{1}\right)
$$

It will follow that G_{1} and G_{2} have identical character tables, once we show that

$$
\lambda^{\prime}\left(g^{n}\right)=\chi(g) \text { for all } g \in G_{1} \text { and for all } x \in \operatorname{Irr}\left(G_{1}\right)
$$

We will prove this by distinguishing three cases.
Case 1: $\notin \in \operatorname{lr}\left(G_{1} / N_{1}\right), y \in G_{1}$.
We have

$$
\chi^{\beta}\left(g^{\alpha}\right)=\mathfrak{i}^{\theta^{\prime}}\left(g^{\alpha \pi_{2}}\right)=\chi^{\beta}\left(g^{\star_{1} \alpha^{\alpha}}\right)=\chi\left(g^{\pi_{1}}\right)=x(g)
$$

Case 2: $\forall \in \operatorname{Irr}\left(G_{1}\right) \backslash \operatorname{Ir}\left(G_{1} / N_{1}\right), g \in N_{1}$.
Let θ be an irredurible constituent of iN_{1} and let $\theta=\theta_{1}, \ldots, \theta_{r}$ be all the distinet G_{1}-conjugates of θ. Then

$$
\forall N_{1}=+\sum_{j=1}^{1} \theta_{j}
$$

and the positive integer e is determined by $e^{2} t=\left|G_{1}: N_{1}\right|$, arcording to Lemma 4.2.2. The \boldsymbol{G}_{2}-conjugates of $\boldsymbol{\theta}^{3}$ are $\boldsymbol{\theta}^{3}=\theta_{1}^{2}, \ldots, \theta_{i}^{3}$, by hypothesis (ii): hence

$$
\left(x^{A}\right)_{N_{x}}=\hat{e} \sum_{j=1}^{Y} \theta_{s}^{\hat{3}}
$$

and $e^{2} t=\left|G_{2}: N_{2}\right|$, by Lemma 4.2 .2 again. But the groups G_{1} / N_{1} aud G_{2} / N_{2} have identical character tahle, in particular they have the same orderThis forces e and i to be the same number, therefore

$$
\left(x^{\beta}\right)_{N_{x}}=e \sum_{j=1}^{1} \theta_{j}^{\mu} .
$$

But then we have

$$
x^{3}\left(g^{a}\right)=\epsilon \sum_{i=1}^{1} \theta,\left(g^{i}\right)=e \sum_{i=1}^{1} \theta,(g)=k(g)
$$

Case 3: $\forall \in \operatorname{Irr}\left(G_{1}\right) \backslash \operatorname{Irr}\left(G_{1} / N_{1}\right), g \in G_{1} \backslash N_{1}$.
Since χ and χ^{a} vanish on $G_{1} \backslash N_{1}$ and $G_{a} \backslash N_{2}$ zespertively, we have

$$
\chi^{\prime}\left(g^{\alpha}\right)=0=\downarrow(g)
$$

This completes the proof.
The previons theorem will actually be used in presonce of much stronger Hypotheses, namely those of the uext corollary.

If N is an abelian nommal sizgroup of the gromp G, we can regand N as a $Z G$-moclule, with G acting on N by conjugation. Since N is contained in the kernel of this action, N ran also be regarded as a $Z(G / N)$-module. If H is a group and $\gamma: H \rightarrow G / N$ is a group homomorphism, then N heromes an $\mathbf{Z} H$-module in the usital way.

Corollary 4.3.2 Let N_{1} be an abelian notinal subgroup of G_{1}, for $:=1,2$, and suppose that the following conditions hold:
(i) there exists a group isomorphism

$$
\overline{\mathrm{a}}: G_{1} / N_{1} \rightarrow G_{2} / N_{2}
$$

(ii) therr exists a $\mathbf{Z}\left(G_{1} / N_{1}\right)$-module inomorphism

$$
a: N_{1} \rightarrow N_{2}
$$

whetre the $\mathbf{Z}\left(G_{2} / N_{2}\right)$-module N_{2} is regarded as a $\mathbf{Z}\left(G_{1} / N_{1}\right)$-module via the isomorphiam a:
(iii) $\left(G_{1}, N_{1}\right)$ and $\left(G_{2}, N_{2}\right)$ are Camina paers.

Then G_{1} and G_{2} have identiral character tablea.
Proof Suppose that the hypotheses of the corollary hold. Then hypotheses (1) and (tit) of Theorem 4.3.1 are clearly satisfied. Let us define a map $d: \operatorname{Irr}\left(\boldsymbol{N}_{1}\right) \rightarrow \operatorname{Irr}\left(\boldsymbol{N}_{2}\right)$ by means of the formula

$$
\theta^{\partial}(n)=\theta\left(n^{a^{-1}}\right) \text { for all } n \in N_{2} \text { and for all } \theta \in \operatorname{Irg}\left(N_{1}\right) \text {. }
$$

The'u N_{1} and N_{2} lane iclentival character talikes, via the bijections of and $\bar{\beta}$.
Let $\theta \in \operatorname{Ir}\left(N_{1}\right)$ and $g \in G_{1}$; then, for all $n \in N_{1}$, we have

$$
\left(\theta^{g}\right)^{\overline{1}}(n)=\theta^{g}\left(n^{\hat{\sigma}^{-1}}\right)=\theta\left(\left(n^{\hat{\omega}^{-1}}\right)^{\theta^{-1}}\right)=\theta\left(\left(n^{g^{-1}}\right)^{\bar{\theta}^{-1}}\right)=\theta^{\overline{3}}\left(n^{g^{-1}}\right)=\left(\theta^{\overline{3}}\right)^{g}(n)
$$

Hence

$$
\left(\theta^{g}\right)^{3}=\left(\theta^{3}\right)^{g} \text { for all } \theta \in \operatorname{Irr}\left(N_{1}\right) \text { and for all } g \in G_{1}
$$

It follows that t takes earh G_{1}-orbit of $\operatorname{Irr}\left(N_{1}\right)$ onto some G_{2}-orbit of $\operatorname{Irr}\left(N_{2}\right)$. Thus hypothesis (22) of Theorem 4.3 .1 is also satisfied, and the desired conchnsion follows

Perthaps the simplest situation in which Corollary 4.3 .2 applies is when G_{1} and G_{2} are extraspecial pronps of the same order, and N_{1}, N_{2} are their centres; in fact $\left(G_{1}, N_{\mathbf{f}}\right)$ is ohviously a Camiun pair in this case (for $i=1,2)$. Mone generally. $(G, Z(G))$ is easily seren to be a Cannina pair if G is it semi-extraspecial p-group, according to the following definition, which was introduced in [1].

Definition 4.3.3 A non-trival p-group G is called semi-extrasperial if G / N i. estrasprcial for each maximal subgroup N of $\mathbf{Z}(G)$.

A semi-rxtraspecial p-group G in obvionsly a special p group, and

$$
|G: \mathbf{Z}(G)|=p^{2 n}
$$

for some positive integer n. It turns out then that $|\mathbf{Z}(G)| \leq \boldsymbol{p}^{n}$ (sere [1]). For example, Suzuki 2-gromps of type B. C. D (see [9] or [11. Chapter VIII, §7]) are semi-extraspecial and satisfy $|\boldsymbol{G}: \mathbf{Z}(\boldsymbol{G})|=|\mathbf{Z}(\boldsymbol{G})|^{2}$. Acrording to Corollarv 4.3.2, the character tabie of a semi-extrasperial p group G is completely determined by the two numbers $|G: \mathbf{Z}(G)|$ and $|\mathbf{Z}(G)|$. Consequently, semiextraspercial p-gronps provide plenty of examples of not-isomorphic groups which have the same character table.

4.4 A generalization

In this section we shall generalize Theorem 4.3.1 in two different directions.
Our first generalization concernes a weakening of the condition that the pars of groups (G_{1}, N_{1}) and (G_{2}, N_{2}) ane Camina pairs, that is to say, hypothesis (12) of Theorem 4.3.1. The condition that a group G forms a Camina pair, together with some normal subgroup N, is indeed quite a strong tequirement on G, as it appears for instauce from the cesults of [3] and [16]. The more general coudition which we propose is better illustrated by using the language of Section 4.1.

Let us ronsider two proper non-trivial normal subgroups N and M of a group G, with $N \leq M$. The charactex table T of G assumes the following form, after possibly rearranging the conjugacy classes and the irredurible rharacters of G :

We shall assume that $A_{3 a}$ is the zero matrix (this clearly sperializes to (G, N) heing a Camina pair, when $N=M$). An (informal) argument similar to that used in Section 4.1 suggests that it should be possible to obtain T
starting from the chasacter table of the factor group G / N, and the character table of the normal subgroup M. together with the knowledge of the orbits of G on the set of conjugacy classes of M. It also appear that there must be some kind of compatibility hetween the character tables of G / \mathcal{V} and M. where these two pieces of information owerlap, namely on the nornal section M / N of G. These heuristic considerations lead to the following theorem, which geweralizes Theorem 4.3.1

Theorem 4.4.1 Let $N_{i} \triangleleft G_{i}$ and $M_{i} \triangleleft G_{i}$ for $i=1,2$, with $N_{i} \leq M_{1}$. and suppose that the following conditions hold:
(i) G_{1} / N_{1} atid G_{2} / N_{2} have identical character tables, via the bijertions

$$
a: G_{1} / N_{1} \rightarrow G_{2} / N_{2}
$$

and

$$
\beta: \operatorname{Irr}\left(G_{1} / N_{1}\right) \rightarrow \operatorname{Irr}\left(G_{2} / N_{2}\right) ;
$$

(ii) M_{1} and M_{2} have identical character tables, via the bijectiona

$$
\hat{\hat{\sigma}}: M_{1} \rightarrow M_{2}
$$

and

$$
\beta \cdot \operatorname{Irr}\left(M_{1}\right) \rightarrow \operatorname{Irr}\left(M_{2}\right)
$$

and, morenver, $\bar{\beta}$ takes each G_{1}-orbit of $\operatorname{Irr}\left(M_{1}\right)$ onto $a G_{2}$-orbit of $\operatorname{Irr}\left(\mathrm{Mf}_{2}\right)$;
(iis) $g^{(i,}=g^{G_{1}} \cdot N_{1}$ for all $g \in G_{1} \backslash M_{1}$, for $i=1,2$;
(iv) $\left(M_{1} / N_{1}\right)^{h}=M_{2} / N_{2}$, and the diagram

Le commutative, where $\pi_{1}: M_{1} \rightarrow M_{1} / N_{1}$ are the natural epimorphisms (for $i=1,2$).

Then G_{1} and G_{2} have identical character tables.

Proof A full proof can be given along the lines of the proof of Theurem 4.3.1, but we shall not give it here. Let us only notice that we need hypothesis (zv) here, in order to be able to extend the bijertion a to a bijection a : $G_{1} \rightarrow G_{2}$ which satisfies $\sigma \pi_{2}=\pi_{1} \Omega$.

Now we propuse a second generalization of Theorem 4.3.1, which weakens hypothesis (n). Informally, as we anticipated at the end of Sertion 4.1, hypothesis (ii) of Theorem 4.3 .1 ran be replared by the weaker requirement that the matrices T_{1} and T_{2} are equal, where the matrix T_{1} is ultained from the character table of N_{1} as we did in Section 4.1, and thus T, displays the values of the sums of irreducible characters of N_{1} over G_{1}-orbits, as functions of the conjugacy classes of G_{1} contained in N_{1}. This wraker coudition will be made precise in the following theorem.

Theorem 4.4.2 Let $N_{1} \triangleleft G_{1}$ and $N_{2} \triangleleft G_{2}$. For $z=1,2$, let \mathcal{I}_{1} denote the set of the (possibly reducible) chararters w of N, surh that

$$
\psi=\sum_{j=1}^{1} \theta_{j}
$$

for some G_{1}-orbit $\theta_{1}, \ldots, \theta_{1}$ of $\operatorname{Ir}\left(N_{1}\right)$, where $\theta_{1}, \ldots, \theta_{1}$ are pairuise diatinct). Suppose that the following conditions hold:
(i) G_{1} / N_{1} and G_{2} / N_{2} have identical chararter tables:
(ii) there exist bijections

$$
\bar{\sim}: N_{1} \rightarrow N_{2}
$$

and

$$
\beta^{\prime}: I_{1} \rightarrow \mathcal{I}_{2}
$$

such that

$$
\psi^{\frac{\xi}{s}}\left(n^{\alpha}\right)=\psi^{\prime}(n) \text { for all } n \in N_{1} \text { and for all } \psi \in \mathcal{I}_{1}
$$

(iii) $\left(G_{1}, N_{1}\right)$ and $\left(G_{2}, N_{2}\right)$ arr Camina pairs.

Then G_{1} and G_{2} have identical character tables.

Proof This theorem can be proved essentially in the same way as Theorem 4.3.1. The main difference is when one defites ${ }^{\prime \prime}$ for $\chi \in \operatorname{lrr}\left(G_{1}\right) \backslash \operatorname{Irr}\left(G_{1} / N_{1}\right)$. We shall hriefly sketch this part of the proof.

Let $x \in \operatorname{Irr}\left(G_{1}\right) \backslash \operatorname{Irr}\left(G_{1} / N_{1}\right)$. Let us choose an irreducible constitisent θ of $\lambda N_{1} ;$ then we have $\operatorname{Irr}\left(G_{1}, \theta\right)=\{\chi\}$. Now, if we put $e=\left[\chi N_{1}, \theta\right]$, then we bave $\ell N_{1}=\in \in$ for a mique $\psi \in \mathcal{I}_{1}$, namely the sum of all G_{1}-ronjugates of θ. Let θ be an irreducible ronstituent of b^{3}, then we have $\operatorname{lrr}\left(G_{2}, \theta\right)=\{\lambda\}$ for some $i \in \operatorname{Irr}\left(G_{2}\right) \backslash \operatorname{Irr}\left(G_{2} / N_{2}\right)$. Finally, let us define $x^{B}=\hat{i}$.

Another remark that should be made is that the number t of G_{1}-coujugates of θ equals the mumber t of G_{2}-conjugates of θ; in fact, we have

$$
t=\left[\psi, \psi^{\prime}\right]=\frac{1}{\left|C_{2}\right|} \sum_{g \in \hbar_{n}}\left|\psi^{\prime}(g)\right|^{2}=\frac{1}{\left|G_{n}\right|} \sum_{, \in \mathcal{L}_{2}}\left|\psi^{, \bar{\beta}^{\prime}}\left(g^{\alpha}\right)\right|^{2}=\left[\psi^{\dot{\beta}^{\prime}}, \psi \psi^{\beta^{\prime}}\right]=\hat{t}_{-}
$$

Fut the rest of the proof, the reader is referred to the proof of Theor rem 4.3.1.

Clearly, hypothesis (is) of Theorem 4.3.1 implies hypothesis (28) of Theorem 4.4.2. However, we do not kuow of any example of groups G_{1} and \boldsymbol{G}_{2}, with normal subgroups N_{1} and respectively N_{1}, which satisfy the hypotheses of Theorem 4.4.2 without satisfying the hypotheses of Theorem 4.3.1.

Chapter 5

Counterexamples

5.1 Introduction

In this chapter we shall construct pairs of gromps (G, H) with identical chararter tables and derived length 2 and 3 respectively, which thus will be countrexamples to our Conjecture 3.1.1. Since our philosoplyy is that of tryiug to buikl our examples as muall as possible wo shall assume that G and H satisfy Hypotheses 3.1.2. With these hypotheses, a fairly detailed description of the strueture of G and H is given in Chapter 3 , in particular by Lemmas 3.2.1, 3.3.1 and 3.3.4. Thus, using for a moment a common notation for G and H, each of the groups G and H is a semidirect product of the form

$$
[D](W \times Q)
$$

wher

- D (which stamls for 'derived sulbgroup') is a p-group containing the unique minimal uormal subgroup N of G (respectively H),
- D / \boldsymbol{N} is abelian,
- W is an abelian p-gronp,
- Q is a nom-trivial cyrlic p^{\prime}-gronp,
- Q acts faithfinlly and irreducibly un N by ronjugation,
- W acts faithfully on D by coujugation,
- all Q-composition fartors of D are Q-isomorphic.

Furthermore, if we fix a chief series of H going from 1 to $D=H^{\prime}$, according to our abalysis carried out in Section 3.4, commutation in H^{\prime} gives rise to an $\mathbf{F Q}$ module epimorphistu

$$
\overline{\bar{\gamma}}: V \wedge V \rightarrow V
$$

in the unary rase (that is to say, when $r=s$, where r aud s are as defined in Section 3.4), or

$$
\gamma: V \otimes V \rightarrow V
$$

in the hinary rase (when $r<s$), where V denotes the elementary abelan p-group $H^{\prime \prime}$ regarded as a faithful irredurible $F_{F} Q$-module by conjugation.

We shall not attempt to describe all pairs of groups (G, H) which satisfy Hypotheses 3.1.2 However, at least for $p \neq 2$, we shall construct examples (G, H) which satisfy Hypotheses 3.1.2, and which give rise to any preserilied $F_{p} Q$ epimorphism $\bar{\gamma}: V \wedge V \rightarrow V$ or $\gamma: V \otimes V \rightarrow V$. In our examples, the suhgroup D will have the smallest possible Q-leugth, nanely 2 in the unary rase, and 3 in the binary rase. In all cases the factor group D / N will be elementary abclian.

Now a word should be spent on W ' We shall assume that $[D, W\} \leq N$. In particular ($\left.D W^{\prime}\right)^{\prime} \leq N$ (we shall have equality for H), and since $N \leq \mathbf{Z}\left(D W^{\prime}\right)$ because N is a minimal normal sulogroup of G (respectively H), the subgroup DW will be nipotent of class at most 2 (actually, exartly 2). According to Lemma 2.2 .2 (with $H_{1} / K_{1}=D / N, H_{2} / K_{2}=W$ and $H_{3} / K_{3}=N$), the map

$$
\begin{aligned}
\varphi_{w}: D / N & \rightarrow N \\
x & \mapsto[x, w]
\end{aligned}
$$

is a Q-homomorphism for all $w \in W^{\prime}$, and the map

$$
\begin{aligned}
\hat{\gamma: W} & \rightarrow \operatorname{Humb}^{(D / N, N)} \\
w & \mapsto P
\end{aligned}
$$

is a group homomorphism. Actually γ is a monomorphism, because W'acts faithfully on D. Wie shall mmploy Corollary 4.3 .2 to prove that the groups G and H of our examples have identical character tables. In order to satisfy hypothesis (iii) of that corollary we shall require that the map γ above is surjective, and hence that it is a group inomorphism.

5.2 General construction

In the present section we shall develop the part of the construction which is common to the groups G and H of all the examples which we are going to build in this rhapter and wo shall prove that the resulting groups G and H have identical character tables.

Let us fix a prime p and make the following assumptions (for $i=1,2$):
(1) D_{1} is a p-group with an elementary abelian subgroup N_{1} such that $\Phi\left(D_{1}\right) \leq N_{1} \leq \mathbf{Z}\left(D_{1}\right) ;$
(2) $Q_{\text {, }}$ is a nou-trivial cyrlir p^{\prime}-group of automorphisms of D, whirh normalizes N, and acts faithfully and irreducibly on N_{1}; hence N, becomes a faithful irreducible module for Q, over F_{p} :
(3) all Q, - composition factors of D, are Q,-isomorphic;
(4) there is a group isomorphism $\sigma: Q_{1} \rightarrow Q_{2}$;
(5) N_{2} regateded as an $F_{p} Q_{1}$-module via σ is isomorphic to the $F_{P} Q_{1}$-module N_{1} :
(6) D_{1} and D_{2} have the same order (in particular the Q_{1}-length of D_{1} equals the Q_{2}-length of D_{2}).

Starting from these ingredients, we shall define a certain group W, of automorphisms of $D_{\text {. }}$. Let us regard the elementary abelian p group $D_{1} / N_{\text {, as an }}$ $F_{p} Q_{1}$-module by ronjugation. Acrording to Mascbke's Theorem, the module D_{1} / V_{1} is semisimple, because p does not divide $\left|Q_{1}\right|$. If V denotes N, regarded as an $\mathbb{F}_{p} Q_{\text {,-module, then by assumption } V}$ is irredurible and all composition fartors of D_{1} / N_{1} as an $F_{p} Q_{1}$-module are inomorphic to V. Hence D_{0} / N_{1} is isomorphic to $\oplus_{j=1}^{\prime} V_{\text {, where }} V_{1}, \ldots, V_{1}$ are copies of V, and the number l is the sane for $i=1,2$, because the Q_{1}-length of D_{1} / N_{1} equals the Q_{2}-length of D_{2} / N_{2}.

Now we have the $F_{p} Q$,-nodule isomorphism

$$
\operatorname{Hom}_{Y_{p} Q_{i}}\left(\bigoplus_{j=1}^{\prime} V_{j}, V\right) \cong \bigoplus_{j=1}^{\prime} \operatorname{Hom}_{\bar{Y}_{p} Q_{i}}\left(V_{j}, V\right)
$$

(which holds more generally if $V_{1} \ldots, V_{i}$, and V are arhitrary $F_{p} Q_{1}$-modules). Acrording to Theorem 2.3.1, the ring End $\boldsymbol{F}_{p} Q_{i}(V)$ is a field of p^{n} elements, where $|V|=p^{n}$. Since V, V, we have

$$
\left|\operatorname{Hom}_{F_{p} Q_{1}}(\boldsymbol{V}, V)\right|=|\boldsymbol{V}| \text { for all } j=1, \ldots, l .
$$

It follows that

$$
\left|\operatorname{Homr}_{p_{Q}}\left(D_{i} / \boldsymbol{N}_{i}, \boldsymbol{N}_{i}\right\rangle\right|=\left|D_{i}: \boldsymbol{N}_{i}\right| .
$$

Later on we shall also need the following fact, which is easy to prove: for any element $r N_{\text {; }}$ of D_{1} / N_{1} with $\mp \notin N_{\text {, there exists some }}$

$$
\varphi \in \operatorname{Hom}_{F_{p} q_{1}}\left(D_{1} / N_{1}, N_{1}\right)
$$

such that $\left(r N_{1}\right)^{\omega} \neq 1$.
Now we shall assoriate to earh $\varphi \in \operatorname{Hom}_{p} G_{1}\left(D_{1} / N_{1}, N_{1}\right)$ an automorphism w_{0} of D_{1}. Let $\varphi: D_{1} / N_{\mathrm{t}} \rightarrow N_{\mathrm{t}}$ be an $\mathbb{F}_{p} Q_{1}$-homomorphism. Since N_{t} is a central subgroup of D_{1}, the map

$$
\begin{aligned}
w_{\varphi}: D_{i} & \rightarrow D_{1} \\
x & \mapsto x\left(x N_{i}\right)^{甲}
\end{aligned}
$$

is a gronp automorphism of D, and it clearly commutes with the action of Q_{1}. Let $W_{\text {, }}$ be the set of all antomorphisms of D_{1} which arise in this way, iu other words

$$
W_{i}=\left\{w_{\varphi} \mid \psi \in \operatorname{Hom}_{r_{p} \varphi_{1}}\left(D_{2} / N_{1}, N_{1}\right)\right\}
$$

Then W, is a sulogroup of Aut $\mathrm{F}_{\mathrm{p}} \mathrm{q}_{\mathrm{g}}\left(\mathrm{D}_{1}\right)$. In fact, the map

$$
\begin{aligned}
\delta: \operatorname{Hom}_{r_{p} Q_{i}}\left(D_{1} / N_{1}, N_{1}\right) & \rightarrow \operatorname{Autg}_{1}\left(D_{1}\right) \\
\varphi & \mapsto w_{\infty}
\end{aligned}
$$

is a group homomorphism. because

$$
x^{\omega_{w_{1}+\infty_{2}}}=x\left(x N_{i}\right)^{\infty_{1}+\infty_{2}}=x\left(x N_{i}\right)^{\omega_{1}}\left(x N_{i}\right)^{\infty_{2}}=\left(x^{\omega_{1}}\right)^{\omega_{\infty_{1}}}
$$

for all $x \in D_{1}$, and W_{1} is its image. Clearly δ is a monomorphism, namely w_{ϕ} is the identity automorphism of D, exactly when φ is the zero bomomorphisni. It follows in particular that the order of W; equals the order of $\mathrm{Homr}_{\mathrm{p}} \mathrm{a}_{\mathrm{i}}\left(D_{1} / N_{\mathrm{t}}, N_{0}\right)$, which we computed earlier; hence

$$
\left|W_{i}^{r}\right|=\left|D_{i}: N_{1}\right|
$$

We observe that the group W_{i} is an elementary abelian p-group, berause Homp $_{p} q_{1}\left(D_{1} / N_{1}, N_{1}\right)$ is a vector space over F_{p}. Let us also notice that if φ_{w}, for $w \in W_{\text {; }}^{\text {, deuotes the }} \mathbb{F}_{\nu} Q$-module homomorphism

$$
\begin{aligned}
\varphi_{w}: D_{i} / N_{i} & \rightarrow N_{i} \\
\Sigma N_{1} & \mapsto[x, w],
\end{aligned}
$$

then the group homomorphism

$$
\begin{aligned}
\dot{\gamma}: W_{i} & \rightarrow \operatorname{Hom}_{F_{p}},\left(D_{i} / N_{i}, N_{1}\right) \\
w & \mapsto \mathcal{F}_{w}
\end{aligned}
$$

Is an isomorphism, in accordance with the requirement which we made at the end of Section 5.1, and is the inverse of the isomorphism

$$
\delta: \operatorname{Hom}_{r_{p},}\left(D_{1} / N_{i}, N_{i}\right) \rightarrow W_{i}
$$

defined above.
The sulggroups W_{i}, and Q_{1} of Aut $\left(D_{1}\right)$ satisfy $W_{i} \cap Q_{1}=\left[W_{i}, Q_{i}\right]=1$, hetuce $W_{i}^{\prime} Q$, is a sulggroup of Aut $\left(D_{1}\right)$, and is the internal direct product of W, and Q. Heuce W, Q, is ranonically isomorphic to the external direct prodnct $W_{i} \times \mathcal{Q}_{1}$, whirlithus arts on D_{1}. Let us define groups G_{1} and G_{2} as the semidirect products

$$
G_{0}=\left[D_{0}\right]\left(W_{1} \times Q_{1}\right) .
$$

We ohserve that N_{1} is a minimal normal suhgroup of G_{1}, herause Q_{1} acts irreducibly on N_{1}. It would not be difficult to prove that N_{1} is the unique minimal normal sulggroup of G_{1}. However, arcording to the last observation of Section 4.2 , this will also follow from the fact that (G_{1}, N_{1}) is a Camina pair. which is proved in the following lemma.

Lemma 5.2.1 Let G_{1} and G_{2} as above. Then
(i) $G_{1}^{\prime}=D_{1}$ and $G_{2}^{\prime}=D_{2}$;
(ii) G_{1} and G_{2} have identical chararter tables:
(iii) $\left(G_{1}, N_{1}\right)$ and $\left(G_{2}, N_{2}\right)$ are Camina pairs.

Proof (i) Since $\left[D_{1}, Q_{1}\right] \leq D_{1}$ antil $\left[D_{1,}, Q_{2}\right] \triangleleft\left\langle D_{1}, Q_{1}\right)=D_{1} Q_{1}$, the group [D_{1}, Q_{1}] is a normal subgroup of D_{1} and is also uormalized by $Q_{\text {, (in other }}$ words. $\left[D_{1}, Q_{1}\right]$ is a normal Q_{1}-suligroup of $\left.D_{1}\right)$. Furthermore, $Q_{\text {, centralizes }}$ the fartor group $D_{1} /\left[D_{1}, Q_{1}\right]$. Since thy hypothesis all Q_{1}-composition fartors of D_{1} are Q_{1} - isomorphic and $Q_{\text {, does }}$ not centralize N_{1}, we have $\left[D_{1}, Q_{1}\right]=D_{1}$. In particular, it follows that $G_{1}^{\prime}=D_{1}$. because G_{1} / D_{1} is clearly abelian.
(ii) We shall apply Corollary 4.3 .2 to the groups G_{1} and the uormal subgroups N_{1}. Let us check then that the hypotheses of Corollary 4.3.2 are satisfied.

First of all, let us show that $G_{1} / N_{1} \cong G_{2} / N_{2}$. We assumed that D, is a Q. group all whose Q,-romposition factors are Q,-isomorphic, fur $:=1,2$. Let us regard the Q_{2} group D_{2} as a Q_{1} group via the isomorphism $\sigma: Q_{1} \rightarrow Q_{2}$ If follows that all Q_{1}-composition factors of D_{2} are Q_{1}-1somorphic. Since we also assumed that N_{2}, viewed as an $F_{p} Q_{1}$ module, is isomorphic to N_{1}, we get that each Q_{1}-composition factor of D_{1} is Q_{1}-isomorphic to earb Q_{1}-composition factor of D_{2}. Now the Q_{1}-factor groups D_{1} / N_{1} and D_{2} / N_{2} are elementary abelian p-groups; heure they ran he regarded as $F_{p} Q_{1}$-modules, and they are semisimple arcording to Maschke's theorem, because p does not divide $\left|Q_{1}\right|$. Also, they have the same Q_{1}-length, let us say l. Heure, if V denotes N_{1} regarded as an $F_{p} Q_{1}$-morlule, then earh of D_{1} / N_{1} and D_{2} / N_{2} is isomorphic as an $F_{p} Q_{1}$-module to the direct sum of I copies of V, in particular D_{1} / N_{1} and D_{2} / N_{2} are isomorptic as $\boldsymbol{F}_{1} Q_{1}$-modules. Let us fix an $\mathbb{F}_{p} Q_{1}$-isomorphism $r: D_{1} / N_{1} \rightarrow D_{2} / N_{2}$. In other words. let r he a group isomorphisin which satisfies

$$
\left(\left(x \cdot V_{1}\right)^{\xi}\right)^{\tau}=\left(\left(x N_{1}\right)^{\tau}\right)^{\xi^{*}} \text { for all } x \in D_{1} \text { and for all } \xi \in \mathcal{Q}_{1} .
$$

Now, the groups \mathcal{W}_{1} and W_{2} are elementary abelian p groups of the same order; in fact,

$$
\left|\boldsymbol{W}_{1}\right|=\left|D_{1} / \boldsymbol{N}_{1}\right|=\left|D_{2} / N_{2}\right|=\left|\boldsymbol{W}_{2}\right| .
$$

Let us fix a group isomorphism

$$
\rho: W_{1} \rightarrow W_{2}
$$

Since W_{1} rentralizes Q, and D_{1} / N, by construction, we have

$$
G_{\mathrm{r}} / N_{\mathrm{t}}=\left(D_{1} W_{1} Q_{1}\right) / N_{1} \cong\left(D_{1} Q_{1} / N_{1}\right) \times W_{t} .
$$

Let

$$
\bar{\sigma}: G_{1} / N_{1} \rightarrow G_{2} / N_{2}
$$

he the map such that $\left(x w \xi N_{1}\right)^{a}=\left(x N_{1}\right)^{\boldsymbol{\sigma}} w^{\rho} \xi^{\sigma}$ for all $x \in D_{1}$, for all $w \in W_{1}$ and for all $\xi \in Q_{1}$. It is clear that α is a bijection; moreover, α is a group isomorphism. In fact, we have

$$
\begin{aligned}
\left(\left(x w \xi N_{1}\right)\left(x w \xi N_{1}\right)\right)^{\omega} & =\left(\left(x x^{\ell-1}\right)(w w)(\xi \xi) N_{1}\right)^{\alpha} \\
& =\left(x \bar{x}^{-1} N_{1}\right)^{*}(w w)^{\circ}(\xi \xi)^{\sigma} \\
& =\left(x, N_{1}\right)^{r}\left(\left(x N_{1}\right)^{\sigma}\right)^{\left(\varepsilon^{\sigma}\right)^{-1}} w^{\rho} w^{\rho} \xi^{\sigma} \xi^{\sigma} \\
& =\left(\left(x N_{1}\right)^{\top} w^{\rho} \xi^{\sigma}\right)\left(\left(\bar{r} N_{1}\right)^{\sigma} w^{\rho} \xi^{\sigma}\right) \\
& =\left(x w \xi N_{1}\right)^{\alpha}\left(x w \xi N_{1}\right)^{\alpha} .
\end{aligned}
$$

Thus hypothesis (1) of Corollary 4.3.2 has heen verified.
Let us regard N_{1} as an $F_{p} Q_{1}$-module by conjugation. We can also regard Σ_{2} as an $\boldsymbol{F}_{p} Q_{1}$-module via the isomorphism $\sigma: Q_{1} \rightarrow Q_{2}$. Wie assumed that V_{1} and N_{2} are isonnorphic as $F_{p} Q_{1}$-modules. Let

$$
\dot{\dot{\alpha}}: N_{1} \rightarrow N_{2}
$$

he an $F_{p} Q_{1}$-module isomorphism. Now N_{1} can be regarded as an $F_{p}\left(G_{1} / N_{1}\right)$ module hy conjugation, while \mathcal{N}_{2} can be regarded as an $\mathbb{F}_{p}\left(G_{d} / N_{2}\right)$-modulaby conjugation and also as an $\boldsymbol{\Gamma}_{p}\left(G_{1} / N_{1}\right)$-nodule via the isomorphism $\bar{\alpha}$; $G_{1} / N_{1} \rightarrow G_{2} / N_{2}$ which we defined earlier. Because $N_{1} \leq \mathbf{Z}\left(D_{1} W_{1}\right)$, the $\boldsymbol{F}_{p}\left(G_{1} / N_{1}\right)$-modules N_{1} and N_{2} cau also be viewed as $\boldsymbol{F}_{\mathbf{p}}\left(\boldsymbol{G}_{1} / D_{1} \boldsymbol{W}_{1}\right)$-modules. Since the isomorphism of extends the isomorphism $\sigma: Q_{1} \rightarrow Q_{2}$, and Q_{1} (for $1=1.2$) is a complement for $D_{1} W$, in G_{1}, it is clear that the $F_{p} Q_{1}$-module isomorphism à: $N_{1} \rightarrow N_{2}$ is artually an $F_{p}\left(G_{1} / D_{1} W_{1}\right)$-module isomorphism and thus an $\mathbb{F}_{p}\left(G_{1} / A_{1}\right)$-module isomorphinm. This is exactly what is required hy hypothesis (2z) of Corollary 4.3.2.

It remains to rhech that hypothesis (it2) of Corollary 4.3 .2 is satisfied. namely that $\left(G_{1}, N_{1}\right)$ and $\left(G_{2}, N_{2}\right)$ are Camina pairs, or in other words, that

$$
g_{1}^{G}=g_{1}^{G} \cdot N, \text { for all } y \in G_{1} \backslash N_{i}, \text { for } z=1,2
$$

According to Lemma 4.2.1, this is equivalent to

$$
N_{1} \subseteq\left\lfloor g_{1} G_{i}\right\rfloor \text { for all } g \in G_{1} \backslash N_{1}
$$

We will distinguish three cases.

Case 1: $g \in N_{i} W_{1} \backslash N_{1}$.
Let us write $g=r w_{\varphi}$. with $s \in N_{\text {, }}$ and $w_{\bullet} \in W^{*}$. Since $w_{\varphi} \neq 1$, the $\mathbb{F}_{p} Q_{1}$ module homomorphism $\varphi: D_{1} / N_{0} \rightarrow N_{1}$ is not the zero homomorphism; therefore p is surjective, berause N_{1} is an irreducible $F_{P} Q_{1}$-module. Thus we have

$$
\left\lfloor D_{i}, g\right\rfloor=\left\lfloor D_{i}, w_{\varphi}\right\rfloor=\left(D_{i} / N_{i}\right)^{\varphi}=N_{i}
$$

I_{11} particular $N_{1}=\left\lfloor q, D_{1}\right\rfloor \subseteq\left\lfloor g, G_{n}\right\rfloor$.
Case 2: $g \in D_{1} W_{1} \backslash N_{1} W_{1}$.
Let, us write $g=r w$, with $s \in D_{1} \backslash N_{1}$ and $u \in W_{1}$. Then

$$
\left\lfloor g, W_{1}\right\rfloor=\left\lfloor x, W_{0}\right\rfloor=\left\{\left(x N_{0}\right)^{\bullet} \mid \gamma \in \operatorname{Hom}_{r_{p} g_{1}}\left(D_{1} / N_{6}, N_{0}\right)\right\}
$$

is reparly a subgroup of V_{1} normalized by $Q_{1,}$ in other worde an $F_{\nu} Q_{1}$ submodule of the irreducible $F_{p} Q_{1}$-module N_{1}. As we remarked earlier, since $r N_{1} \neq N_{0}$, there exists some $\downarrow \in \operatorname{Hom}_{p_{p}} Q_{1}\left(D_{1} / N_{1}, N_{1}\right)$ such that $\left(x N_{1}\right) \neq 1$. Hence $\left\lfloor g, W_{i}\right\rfloor$ is not the trivial $F_{p} Q_{1}$-submodule of N_{1}, and thus we have $\left\lfloor g, \boldsymbol{H}_{1}\right\rfloor=N_{1}$. In partirular $N_{1} \subseteq\left\lfloor g, G_{1}\right\rfloor$
Case 3: $g \in G_{1} \backslash D_{1} W_{1}$.
Let us write $g=x w \xi$, with $r \in D_{1}, w \in W$, and $\xi \in Q$, with $\xi \neq 1$. Then $\left\lfloor V_{1}, g\right\rfloor=\left\lfloor N_{1}, \xi\right\rfloor$ is an $F_{p} Q_{1}$-submodule of N_{a}; in fact, it is the image of the $F_{p} Q$,-module homomorphism

$$
\begin{array}{rlll}
N_{i} & \rightarrow V_{i} \\
x & \mapsto[x, \xi] .
\end{array}
$$

Since Q, acts faithfully on N_{1} and $\xi \neq 1$, we have $\left\lfloor N_{1}, g\right] \neq 1$ and thus $\left\lfloor N_{1}, g\right\rfloor=N_{1}$. In partirular, $N_{1}=\left\lfloor q, N_{1}\right\rfloor \subseteq\left\lfloor g, G_{1}\right\rfloor$

Hence we have proved that

$$
g_{1}^{G}=q_{1}^{G} \cdot N_{i} \text { for all } g \in G_{0} \backslash N_{0}
$$

and this hypothesis (zi) of Corollary 4.3 .2 has also been verified. Its courlusion that G_{1} and G_{2} have jdentical chararter tables now follows
(iij) The fact that $\left(G_{1}, N_{1}\right)$ and $\left(G_{2}, N_{2}\right)$ are Camine pairs has beru proved above.

5.3 The unary case

This section and Section 5.5 are devoted to the construction of pairs (G, H) of groups, arcording to the pattern described in the previous section (with $G_{1}=$ G aud $G_{2}=H$). The derived subgroups D_{1} (abelian) and D_{2} (metabelian) will have Q_{1}-length and respectively Q_{2}-length 2 in this section and 3 in Section 5.5.

As we said earlier, any $F_{p} Q$-module epinorphism

$$
\overline{\bar{\gamma}}: V \wedge V \rightarrow V
$$

or

$$
\gamma: V \otimes V \rightarrow V
$$

where V^{\prime} is a faithfil irrecturible $F_{p} Q$-module, can arise from concrete examples ($G . H$) satisfying Hypotheses 3.1.2, by means of the procedure described in Section 3.4. However, for the sake of simplicity we shall prove this fart only for $p \neq 2$ and limit ourselves to giving some representative examples for $p=2$ (in Sections 5.4 and 5.6).

Hence let us assume that p is an odd prime, and let us make the following assumptions:

- Q is a (non-trivial) cyclic group of \boldsymbol{p}^{\prime}-order:
- I ' is a faithful irreducible $F_{p} Q$-module;
- $\gamma: V \wedge V \rightarrow V$ is a fixed $\mathbb{F}_{p} Q$-module rpimorphism.

We observe that the dimension n of V over F_{p} is uniquely determined by p and $|Q|$ according to Lemma 2.3.1

Let $A=V \in V$ be the direct sum of two copies of V. The $F_{p} Q$-fartor moslule $A /\left(0 \oplus V^{\prime}\right)$ and the $F_{p} Q$-submodule $0 \oplus V^{\prime}$ are both isomorphir to F, in particular

$$
\operatorname{Hum}_{F_{p} Q}(A /(0 \oplus V), 0 \oplus V) \equiv F_{\nu^{n}}
$$

as vector spaces over F_{p}, where n is the dimension of V over F_{p}. For any

$$
\varphi \in \operatorname{Hom}_{\Psi_{r}} q(A /(0 \oplus V), 0 \oplus V)
$$

the map w_{ψ} defiued by

$$
a^{*}=a+(a+(0 \oplus V))^{\bullet} \text { for all } a \in A
$$

is an automorphism of A as au $F_{p} Q$-modnle. Then

$$
\boldsymbol{V}=\left\{w_{\varphi} \mid \rho \in \operatorname{H}_{\varphi} \omega_{\psi_{p}} \varphi\left(A /\left(0 \oplus V^{\prime}\right), 0 \oplus V^{\prime}\right)\right\}
$$

is a subgroup of $A u^{\prime} t_{p} Q(A)$. The order of W equals the order of V, namely $p^{\prime \prime}$ In fact. if we put $D_{1}=A, N_{1}=0 \oplus V, Q_{1}=Q$ and use a multiplicative notation for D_{1}, then D_{1} satisfies conditious (1), ..., (6) of Section 5.2; hence W is exartly the subgroup W_{1} of $A^{\prime} Q_{Q_{1}}\left(D_{1}\right)$ which is defined there and has order $\left|D_{1}: V_{1}\right|=p^{n}$. Let us define

$$
G_{1}=\left[D_{1}\right]\left(W_{1} \times Q_{1}\right)
$$

as in Section 5.2. The group G_{1} will also be called G here and we shall therefare write

$$
G=[A]\left(W^{\prime} \times Q\right)
$$

Arcording to Lemma 5.2.1, we have $G^{\prime}=A$ and thus $G^{\prime \prime}=1$, that is to say, G is metabelian.

Let us pass to the coustruction of the group H. Let F be a free group of rank ${ }^{\prime \prime}$. Then

$$
F=\dot{F} / \gamma_{3}(F) F^{v}
$$

is a free mipotent group of rlass two and exponent p (that is to say, F is a fres object in the variety of nilpotent groups of class 2 and exponent p, see [18]). If p were the prime 2 , then the group F would be abelian, but siuce we assumed $p \neq 2$, we have $F^{\prime} \neq 1$. More precisely, F^{\prime} is elementary abelian of order $p^{n(n-1) / 2}$. Iu fart. according to Lemma 2.6.3. if

$$
F=\left(x_{1}, \ldots, x_{n}\right)
$$

then a basis of F^{\prime} over \mathbb{F}_{p} is given by the set of hasic commutators of weight 2 on $x_{1}, \ldots s_{n}$, namely

$$
\left\{\left[x_{1}, I_{k}\right] \mid 1 \leq k<j \leq n\right\} .
$$

The factor gronp F / F^{\prime} is a free abelian gromp of exponent p and rank n, in other words it is elementary abelian of order \boldsymbol{p}^{n}. Let us fix an $\boldsymbol{F}_{\boldsymbol{p}}$-linear isomorphism

$$
\tau: V \rightarrow F / F^{t}
$$

and let us make F / F^{\prime} into an $F_{p} Q$-module isomorphic to V via τ, namely let us define an action of Q on F / F^{\prime} according to the formula

$$
\left(x F^{\prime}\right)^{\varepsilon}=\left(\left(x F^{\prime}\right)^{r^{-1}} \xi\right)^{r} \text { for all } x \in F \text { and for all } \xi \in Q
$$

and extend it T_{p}-linearly to an action of $T_{p} Q$ on F / F^{\prime}. Thus F / F^{\prime} becomes an $F_{\mu} Q$-module and t an $F_{p} Q$-module isomorphism.

Let us fix a generator ξ of Q. The antomorphism of F / F^{\prime} iuduced by ξ can be lifted to an automorphism ξ of F. because F is a relatively free group (see [18]). Since F is a finite group, the automorphism \& has finite order: this is certainly a multiple of $|Q|$, which is the order of ξ. We may assume that the order of ξ is not a multiple of p, otberwise we can replace ξ with a suitable power \&p (t integer), which induces on F / F^{\prime} the same automorplism as ε does. Now $\varepsilon^{\prime \emptyset}$ is an automorphism of p^{\prime}-order of the p group F, which induces the identity automorphism on $F / \Phi(F)=F / F^{\prime}$. Acrording to $[10$, Kapitel III, Satz 3.18] then $\xi^{|Q|}$ is the identity automorphism of F, aud thus ξ has order $|Q|$. Therefore F can be regarded as a Q-gronp. In particular F^{\prime} can be viewed as a (sennisimple) $\mathbb{T}_{\nu} Q$-module.

According to Lemma 2.2 .1 (with $H_{1} / \boldsymbol{K}_{1}=H_{2} / K_{2}=F / F^{\prime}$ and $H_{3} / \boldsymbol{K}_{3}=$ F^{\prime}), commutation in F gives rise to an F_{p}-bilinear map

$$
\begin{aligned}
\delta:\left(F / F^{\prime}\right) \times\left(F / F^{\prime}\right) & \rightarrow F^{\prime} \\
\left(x F^{\prime}, y F^{\prime}\right) & \mapsto[x, y] .
\end{aligned}
$$

Since δ is skew-symmetric and F^{\prime} is a Q-subgroup of the Q-group F, we obtain in turn an $F_{p} Q$-module homomorphism

$$
\begin{aligned}
\delta:\left(F / F^{\prime}\right) \wedge\left(F / F^{\prime}\right) & \rightarrow F^{\prime} \\
\left(x F^{\prime}\right) \wedge\left(y F^{\prime}\right) & \mapsto[x, y] .
\end{aligned}
$$

Because we assmmed that p is odd, δ is an isomorphism. In fact, the set

$$
\left\{\left(x, F^{\prime}\right) \wedge\left(x_{k} F^{\prime}\right) \mid 1 \leq k<j \leq n\right\}
$$

is a basis of $\left(F / F^{\prime}\right) \wedge\left(F / F^{\prime}\right)$ over F_{p}, and δ sends it bijectively onto the set of basic commutators of weight 2 on x_{1}, \ldots, s_{n}, which is an F_{p}-basis of F^{\prime}, as we saw earlier. The $F_{p} Q$-module isomorphism

$$
T: V \rightarrow F / F^{\prime}
$$

induces an $F_{p} Q$-module isomorphism

$$
\tau \wedge \tau: V \wedge V \rightarrow\left(F / F^{\prime}\right) \wedge\left(F / F^{\prime}\right)
$$

in an obvious way. We get the following commutative diagiam of $F_{p} Q$-module homomorphisms:

Now let us put

$$
K=\operatorname{ker}\left(\bar{\delta}^{-1}(\tau \Lambda \tau)^{-1} \bar{\gamma}\right)=(\text { ker } \bar{\gamma})^{(+\wedge \gamma)^{\frac{1}{\delta}}} .
$$

The factor group F^{\prime} / K is then an $F_{p} Q$-module, and the $\mathbb{F}_{p} Q$-module epinorphism

$$
\bar{\delta}^{-1}(r \wedge r)^{-1} \gamma: F^{\prime} \rightarrow V
$$

indures an $F_{P} Q$-module isomorphism

$$
\nu: F^{\prime} / \kappa^{\prime} \rightarrow V
$$

such that $\delta^{-1}(\tau \wedge \tau)^{-1} \gamma=\pi \nu$, where $\pi: F^{\prime} \rightarrow F^{\prime} / \boldsymbol{K}$ is the natural epinuorplisin. Since K is also a rentral subgromp of F, we can form the factor gromp $X=F / K$, which is a p group of class 2 , exponent p and order $p^{2 n}$.

Let ξ denote the automorphism of X (like ξ and ξ, having order $|Q|$) induced by the antomorphism ε of F and let Q be the subgroup of $A u t(X)$ generated by ξ. Let $\sigma: Q \rightarrow Q$ be the group isomorphism surh that $\mathcal{Z}=\xi$. Then the Q gronp X becomes a Q-gtonp via σ^{-1}, it has Q-length 2 and its Q-composition factors $X / X^{\prime}=F / F^{\prime}$ and $X^{\prime}=F^{\prime} / K$, regarded as $\mathbb{F}_{p} Q$ modules via σ, are both isomorphic to V. We clearly lave $\Phi(X)=X^{\prime}$, and also $\mathbf{Z}(X)=X^{\prime}$, because $\mathbf{Z}(X)$ is a proper Q-subgroup of X which contains the derived sulgroup X^{\prime}, and X / X^{\prime} is an irreducible $F_{p} Q$-module.

For earh

$$
\varphi \in \operatorname{Hown}_{p_{p} \phi}\left(X / X^{\prime}, X^{\prime}\right),
$$

the map w_{\downarrow} defined by

$$
x^{*}=x\left(x X^{\prime}\right)^{\varphi} \text { for all } x \in X,
$$

is an automorphism of X commuting with ξ. The set

$$
W^{\prime}=\left\{w_{\psi} \mid \varphi \in \operatorname{Hom}_{\Gamma_{\mu}} \phi\left(\boldsymbol{X} / \boldsymbol{K}^{\prime}, X^{\prime}\right)\right\}
$$

is a subgroup of $A u t(X)$, and the order of W equals the order of X / X ', namely $p^{\prime \prime}$. In fact, if we put $D_{2}=X, N_{2}=X^{\prime}$ and $Q_{2}=Q$, then D_{2} satisfies ronditions (1),... (6) of Section 5.2, and W is exactly the sul)group W_{2} of Aut $\varphi_{2}\left(D_{2}\right)$ which is defined there.

Let us define

$$
G_{2}=\left[D_{2}\right]\left(M_{2} \times Q_{1}\right)
$$

as in Section 5.2. The group G_{2} will also be called H here and we shall therefore write

$$
H=[\mathbf{X}](W \times Q)
$$

Since all assumptions of the previous section are satisfied, Lemma 5.2.1 applies and yields that G and H have identical chararter tables, and that $H^{\prime}=\mathcal{N}^{\prime}$, whence $H^{\prime \prime}=X^{\prime}$ and $H^{\prime \prime \prime}=1$. Thus G and H have identical chararter tables and G is metahelian, as we saw earlier, while H has derived length 3.

We observe that the group $\boldsymbol{X}=K^{\prime}$ has a mique Q-composition series, namely

$$
1<\mathbf{X}^{\prime}<\mathbf{X}
$$

which is also part of a chief series of H going from 1 to X. According to the analysis of commutation in which we rarried ont in Section 3.4, the $F_{1} Q$-module epimorphism associated with our chief series is the following:

$$
\begin{aligned}
\delta \pi:\left(X / X^{\prime}\right) \wedge\left(X / X^{\prime}\right) & \rightarrow X^{\prime} \\
\left(x X^{\prime}\right) \wedge\left(y X^{\prime}\right) & \mapsto[x, y]
\end{aligned}
$$

Now, the $F_{p} Q$-module epimorphism δ_{π} coincides with our prescribed $F_{p} Q$ morlule epimorphism $\gamma: V \wedge V \rightarrow V$, after identifying X / X ' and X^{\prime} with V' by means of suitable $F_{p} Q$-module isomorphisms. In fact, one can easily cherk that the following diagram is commutative:

As we promised, under the assumption $p \neq 2$, we lave constructed pairs of groups (G, H) which satisfy Hypotheses 3.1 .2 and which give rise, through the methud of Section 3.4, to any arbitrarily given $F_{\mu} Q$-module epimorphism $\dot{\gamma}: \wedge V^{\prime} \rightarrow V$.

Let us remark that the normal Sylow p-subgroups of G and H, namely $P=A W$ and $P=X W$, have identical character tables, as one could easily show by applying Corollary 4.3.2. Of course P and P are both metabelian, beranse they are uilpotent gronps of class two, but we watht to stress bere that they are not isomorphic. Let us prove this fact.

Let \mathcal{A}_{p} (and respectivedy \mathcal{A}_{f}) denote the set of the abe-lian suhgroups of P (resp. P) of order $p^{2 t h}$ and containing $P^{\prime}\left(t e s p . P^{\prime}\right)$. Once wo prove that the sets \mathcal{A}_{r}, and $\mathcal{A}_{\mathcal{P}}$ have different cardinality, it will follow that P and P are not isomorphic.

First, let K be a now trivial subgroup of Q, and let S be a subgroup of P of order $p^{2 n}$ which contains P^{\prime} and is nommalized by K^{\prime}. According to Lemma 2.1.1 we have

$$
S=[S, \boldsymbol{K}] \mathbb{C}_{s}(\tilde{K})
$$

with $\left[S, K^{*}\right] \leq G^{\prime}=A$ and $C_{S}\left(K^{\prime}\right) \leq \mathbf{C}_{P}\left(\boldsymbol{K}^{\prime}\right)=\boldsymbol{W}^{\prime}$ (this last assertion follows easily from statements (it) and (izi) of Lemma 3.2.1). Let us assume that S is different from A and $P^{\prime} W^{\prime}$, that is to say, $\left[S, K^{\prime}\right]>P^{\prime}$ aud $C_{9}\left(K^{\prime}\right) \neq 1$. Let w be a non-identity element of $C_{s}\left(K^{\prime}\right)$, and hence in particular of W^{\prime}; then the map,

$$
\begin{aligned}
& A \rightarrow P^{\prime} \\
& a \rightarrow[a, w]
\end{aligned}
$$

is by coustruction a group epimorphism with kernel $P^{\prime \prime}$, and heuce its restriction to the sulogroup $[S, K]$ of A is not the zero homomorphism. As a consequeuce, S is not abelian. It folluws that A (which is G^{\prime}) and $P^{\prime} W^{\prime}$ are the only abelian suligroups of P of order $p^{2 \prime \prime}$ which contain P^{\prime} and are normalized by some non-trivial subgroup K of Q. Since Q acts on \mathcal{A}_{p} and every nou-trivial subgroup K of Q fixes only the elements A and $P^{\prime} W$ of \mathcal{A}_{P}. it follows that all orbits of Q on $\mathcal{A}_{P}, \backslash\left\{A, P^{\prime} W\right\}$ have length $|Q|$; therefore we have

$$
\left|\mathcal{A}_{P}\right| \equiv 2 \bmod |Q|
$$

Similarly one proves that $P^{\prime} W^{\prime}=X^{\prime} W^{\prime}$ is the ouly abelian sulogroup of P of order $P^{2 n}$ which contains $P^{\prime}=X^{\prime}$ and is normalized by some non-trivial
subgroup of Q (because in this case $\boldsymbol{H}^{\prime}=\boldsymbol{X}$ is nut abelian). Here Q acts on \mathcal{A}_{f}. and every non-trivial sulagroup of Q fixes only the element $P^{\prime} W$ of \mathcal{A}_{p}. It follows that

$$
\left|\mathcal{A}_{P}\right| \equiv 1 \bmod |Q| .
$$

Since $|Q|=|Q|$, we couclude that P and P are not isomorphic.
Finally let us compute the smallest possible order of G (and hence of H) for a pair of groups ($G . H$) constructed by the ahove method. As we saw in Section 3.5. I' cannut appear as a composition fartor of $V \wedge V$ uniess the dimension of V over F_{p} is at least 4. Mureover, there exists a failhful irreducible module V^{\prime} of dimensiou 4 over F_{p} for a (non-trivial) cyclic p^{\prime}-group, Q, such that V is isonorphic to a composition factor of $V \wedge V$, if and only if Q has order 5 and $p=2$ or 3 mod 5 . Since in the present section we assumed that p is odd, we see that the smallest possible value for $|G|$ ocrurs when $p=3$ and $|Q|=5$, in which case we have

$$
|G|=3^{12} \cdot 5 .
$$

5.4 Matrix representations for the unary case

All groups G and H which we have constructed have natural faithful represertations as groups of matrices over $\mathbf{F}_{p^{n}}$; in other words, G and H are isomorphic to certain subgroups of $G L_{r}\left(p^{n}\right)$ for some r. Whereas G is issmorphic to a sulgroup of $G L_{3}\left(p^{n}\right)$, we ueed higger matrices for representing H. The smallest possible size depends on the choise of the particular $F_{p} Q$ module epimorphisin $\gamma: V \wedge V \rightarrow V$. We shall nut discuss such matrix representations in general. However, for each rhoice of an odd prime p and of a faithful irreducille module V for a cyclic p^{\prime}-group Q over F_{p}, surh that V is a composition factor of $V \wedge V$, we shall chooser a particular $F_{p} Q$-module epimerphism $\bar{\gamma}: V \wedge V \rightarrow V$ and give an explicit representation of the resulting group H as a subgroup of $G L_{4}\left(p^{\prime \prime}\right)$.

We recall that if V^{\prime} is a faithful irredurible module for a ryclic gromp Q over F_{p}, then V is isomorphic to the module $V_{\text {r }}$ defined in Theorem 2.3.1, for a suitable prinitive $|Q|$ th root of unity ε in $\mathbf{F}_{p=1}$, where n is the dimension of V ' over F_{p}. Furthertuore, arcording to Lemma 3.5.1, the fact that V is a composition factor of $V \wedge V^{\prime}$ (or of $V^{\prime} \otimes V$) depeuds only on the prime p and the order q of Q. As a consequence, we do not lose in generality if we take.
as the basic ingredients of our construction. an odd prime \boldsymbol{p} and a positive integer q satisfying the ronditions stated below.

Let us fix an odd prime p and a positive integer q, such that

$$
p^{\prime}+1 \equiv p^{\prime} \bmod q
$$

for some integers i, j, with i not divisible by n, where n is the multiplicative urder of p mod q. It follows frotn the observation which precedes Lemma 3.5.1 that we may always assume that

$$
0<i \leq n / 2 \quad \text { and } \quad 0 \leq j<n .
$$

Even with this assumption, the pair (i, j) is in general not unique. For instance, if q is also a prime and p has multiplicative order $q-1$ mod q (examples are given by $(p, q)=(3,5),(5,7),(7,11))$, them

$$
\left\{p, p^{2} \ldots, p^{q-2}\right\} \equiv\{2,3, \ldots, q-1\} \bmod q ;
$$

consequeutly, if $q \geq 5$ there exists at least oue pair (i, j) of integers suct that

$$
p^{\prime}+1=p^{\prime} \bmod q
$$

and with

$$
0<i<(q-1) / 2 \quad \text { aud } \quad 0<j<q-1 ;
$$

if $q \geq 7$, there exist at least two such pairs.
Let $\boldsymbol{Q}=\langle\xi\rangle$ be a cyclic group of order q, and let ε be a primitive q th root of unity in F_{p}. Acrording to Theorem 2.3.1, the module V_{q} is a faithful irreducible module for Q over F_{μ}. where the underlying vector space of V_{Q} is the field $F_{p^{n}}$, and the artion of Q on V_{s}^{\prime} is given by

$$
v \xi=\varepsilon v \text { for all } v \in V_{c} .
$$

We shall also consider the $\mathbb{F}_{,} Q$-motule $V_{\text {ru }}$ defined similarly, which is isomorplice to V_{e} via the $F_{p} Q$-module isomorphism

$$
\begin{aligned}
V_{s} & \rightarrow V_{s v^{\prime}} \\
v & \mapsto v^{\prime}
\end{aligned}
$$

Berause of our assumptions on p and q, and according to Lemma 3.5.1, the $F_{p} Q$-module $V_{G} \wedge V_{z}$ has a composition factor isomorphic to V_{s}, and bence
to V_{ν}, . Actually, we can explicitly define an $F_{p} Q$ epimorphism from $V_{i} \wedge V_{0}$ onto $l_{\text {er }}^{\prime}$, as follows. Let γ be the map

$$
\bar{\gamma}: V_{\varepsilon} \wedge V_{z} \rightarrow V_{\varepsilon, \mathcal{L}}
$$

such that

$$
(x \wedge y)^{f}=x y^{p}-x^{p^{i}} y \text { for all } s, y \in V_{c}
$$

Berause the expression $s y^{p}-x^{p} y$ is \mathbf{F}_{p}-bilinear and skew-symmetric in (x, y), the map γ is well defined and F_{p}-linear. We have

$$
\begin{aligned}
((x \wedge y) \xi)^{\frac{3}{2}} & =((\varepsilon x) \wedge(\varepsilon y))^{4} \\
& =\varepsilon^{1+p^{\prime}}\left(x y^{P^{\prime}}-x^{p^{\prime}} y\right) \\
& =\varepsilon^{1+p}(x \wedge y)^{\frac{4}{4}} \\
& =\varepsilon^{\prime}(x \wedge y)^{4} \\
& =(x \wedge y)^{\frac{4}{\prime}} \xi
\end{aligned}
$$

and hence it follows by F_{p}-linearity that γ is an $F_{p} Q$-module homomorphism.
Fisthermore, γ is surjective. In fart, a nou-zeru element of $V_{\varepsilon} \wedge V_{\varepsilon}$ of the form $x \wedge y$ (whirh of course is not a gemeric element of $V_{\varepsilon} \wedge V_{\varepsilon}$) belongs to the kernel of γ exactly when

$$
\left(x y^{-1}\right)^{p^{1}}=r y^{-1}
$$

on the other hand, the field antomorphism of $F_{p^{n}}$ given by $x \mapsto r^{p}$ is not the ideutity automorphism, because i is not a multiple of n. It follows that the kernel of $\mathcal{\gamma}$ is not the whole of $V_{e} \wedge V_{e}$. Hence γ is not the zero homomorphisin, and thus it is an $\mathbb{F}_{p} Q$-module epimorphism, because $V_{\text {s }}$ is irreducible. (It should be said that not all $\mathbb{F}_{p} Q$-module epimorphisms from $V \wedge V$ outo V can be put into this particularly simple form by suitably identifying V with V_{e} and $V_{e w}$.)

With this particular choice of the $F_{p} Q$-module epinorphism γ, let us define the group $X=F / K$ as we did in Section 5.3. The set X_{3} whose elements are the matrires

$$
\left|\begin{array}{ccc}
1 & a & b \\
& 1 & a^{p^{\prime}} \\
& & 1
\end{array}\right|
$$

with $a, b \in \mathbb{F}_{p^{n}}$ is clearly a sulogroup of $G L_{3}\left(p^{n}\right)$ (because the map $a \mapsto a^{p^{\prime}}$ is a field antomorphism of $\vec{F}_{p^{\prime \prime}}$, and in particular it is \boldsymbol{F}_{p}-linear). Furthermore, X_{3} is isomorphic to X. In fact, it is not difficult to define an epimorphism from F onto X with kernel F, after uoticing that

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & a & b \\
& 1 & a^{p^{\prime}} \\
& & 1
\end{array}\right|^{-1}\left|\begin{array}{ccc}
1 & a & b \\
& 1 & a^{p^{\prime}} \\
& & 1
\end{array}\right|^{-1}\left|\begin{array}{ccc}
1 & a & b \\
& 1 & a^{p} \\
& & 1
\end{array}\right|\left|\begin{array}{ccc}
1 & a & b \\
& 1 & a^{p^{\prime}} \\
& & 1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & & a a^{p}-a^{p} a \\
& 1 &
\end{array}\right|
\end{aligned}
$$

It is also clear that the diagonal matrix

$$
\bar{\xi}_{3}=\left[\left.\begin{array}{lll}
1 & & \\
& \epsilon & \\
& & \varepsilon^{1+p^{\prime}}
\end{array} \right\rvert\,\right.
$$

normalizes X_{3}, and induces by conjugation an automorphism of X_{3} which corresponds to the autumorphism ξ of X defined in Sertion 5.3 (for a suitable rhoice of the isomorphism from X to X_{3}). Thus the normal subgroup $X Q$ of H is isomorphic to a subgroup of $G L_{3}\left(p^{\prime \prime}\right)$.

Let us note in passing that X_{3} would be abelian if i were a multiple of n, which it is not in our case.

Now we are ready to embed the whole of H into $G L_{4}\left(p^{n}\right)$. First of all. we observe that the set X_{4} of the matrices

$$
\left|\begin{array}{cccc}
1 & a & a^{p^{\prime}} & b \\
& 1 & & a^{p^{*}} \\
& & 1 & \\
& & & 1
\end{array}\right|
$$

with $a_{,} b \in F_{p^{n}}$ is a subgroup of $G L_{4}\left(p^{n}\right)$ isomorphic to X_{3} (and heruce to X); in fact, the map

$$
\left.\left|\begin{array}{ccc}
1 & a & b \\
& 1 & a^{p^{p^{\prime}}} \\
& & 1
\end{array}\right| \longmapsto \left\lvert\, \begin{array}{cccc}
1 & a & a^{p^{j}} & b \\
& 1 & & a^{p^{\prime}} \\
& & 1 & \\
& & & 1
\end{array}\right.\right]
$$

is an isomorphism from \boldsymbol{X}_{3} onto \boldsymbol{X}_{4}. The diagonal matrix

$$
\bar{\xi}_{4}=\left[\left.\begin{array}{llll}
1 & & & \\
& \varepsilon & & \\
& & \varepsilon^{p^{\prime}} & \\
& & & \varepsilon^{p^{\prime}}
\end{array} \right\rvert\,\right.
$$

normalizes X_{4} (romember here that $\varepsilon^{1+p^{\prime}}=\varepsilon^{p^{\prime}}$). The attomorphism of X_{4} indured by ξ_{4} by conjugation corresponds to the antomorphism of X_{3} induced by ξ_{3} by conjugation (with respect to the given isomorphism from X_{3} onto X_{4}) and thus to the antonorphism $\&$ of X (with respect to a suitable isomorphism from X outo \mathbf{K}_{4}).

Now the subgroup W_{4} of $G L_{4}\left(p^{n}\right)$ ronsisting of the matrices

$$
\left[\left.\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & c \\
& & & 1
\end{array} \right\rvert\,\right.
$$

with $c \in F_{p^{\prime \prime}}$ is elementary abelian of order p^{n}, rentralizess ξ_{A}, and normalizes X_{4} : in fact,

$$
\begin{aligned}
& {\left[\left.\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & c \\
& & & 1
\end{array}\right|^{-1}\left|\begin{array}{cccc}
1 & a & a^{p^{\prime}} & b \\
& 1 & & a^{p^{\prime}} \\
& & 1 & \\
& & & 1
\end{array}\right|\left|\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & c \\
& & & 1
\end{array}\right| .\right.} \\
&=\left|\begin{array}{cccc}
1 & a & a^{p^{\prime}} & b+a^{p^{\prime}} c \\
& 1 & & a^{p^{\prime}} \\
& & 1 & \\
& & & 1
\end{array}\right| .
\end{aligned}
$$

Now it is clear that $H=[X](W \times Q)$ is isomorphir to the subgronp $H_{4}=X_{4} W_{4}\left(\varepsilon_{4}\right)$ of $G L_{4}\left(p^{n}\right)$, namely the group of the matrices

$$
\left|\begin{array}{cccc}
1 & a & a^{p^{\prime}} & b \\
& \varepsilon^{\prime} & & a^{p^{\prime}} \\
& & \varepsilon^{i p^{\prime}} & c \\
& & & \varepsilon^{i \boldsymbol{p}}
\end{array}\right|
$$

with $a, b, r \in F_{p "}$ and $l=1, \ldots, Q \mid$. Thus we have constructed a faithful matrix representation of H.

It is much easier to give a matrix representation of the group G. In fact, it is straightforward to rheck that G is isomorphic to the subgroup G_{3} of $G L_{3}\left(p^{n}\right)$ which cousists of the matrices

$$
\left|\begin{array}{lll}
1 & a & b \\
& c^{t} & e \\
& & \varepsilon^{t}
\end{array}\right|
$$

with $a, b, c \in \mathbb{F}_{p^{\prime}}$ and $\boldsymbol{l}=1, \ldots,|Q|$; in particular, the normal Sylow p suhgroup $A W$ of G is isomorphic to a Syluw p-subgroup of $G L_{3}\left(p^{4}\right)$,

Let us also uotice that G is isomorphic to the subgroup G_{4} of $G L_{4}\left(p^{n}\right)$ which consists of the matrices

$$
\left|\begin{array}{cccc}
1 & a & a^{p^{\prime}} & b \\
& \varepsilon^{\prime} & & \\
& & \varepsilon^{\boldsymbol{p}^{\prime}} & c \\
& & & e^{\prime p}
\end{array}\right|
$$

with $a, b, c \in \mathbb{F}_{p^{n}}$ and $l=1, \ldots,|Q|$. In fart, an isomorphimm from G_{3} onto G_{4} is given by the map

$$
\left\lceil\left.\begin{array}{ccc}
1 & a & b \\
& e^{\prime} & c \\
& & \varepsilon^{\prime}
\end{array}|\mapsto| \begin{array}{cccc}
1 & a & a^{p^{\prime}} & b^{p^{\prime}} \\
& \varepsilon^{\prime} & & \\
& & \varepsilon^{l p^{\prime}} & c^{p^{\prime}} \\
& & & \varepsilon^{l p^{\prime}}
\end{array} \right\rvert\,\right.
$$

Since G_{4} and H_{4} normalize earh other, $G_{4} H_{4}$ is a subgroup of $G L_{4}\left(p^{n}\right)$. Clearly $\mathrm{G}_{4} \mathrm{H}_{4}$ consists of the matrices

$$
\left|\begin{array}{cccc}
1 & \mathbf{a} & a^{\mu^{\prime}} & b \\
& p^{\prime} & & d \\
& & \varepsilon^{l p^{\prime}} & c \\
& & & \varepsilon^{l p^{\prime}}
\end{array}\right|
$$

with $a, b, c, d \in F_{p^{n}}$ and $\boldsymbol{l}=1, \ldots,|Q|$. The groups G_{4} and H_{4} are normal sul)groups of $G_{4} H_{4}$ of index $p^{n \prime}$. In particular, we have shown that our groups
G aud H ran be simultaneutsly embeded as normal subgronps into a group of order $\mu^{n \prime}|G|$.

As a final remark. we observe that the construction of all gronps of matrices of this section works as well if we drop our assumption that the prime p is odd. The resulting groups G_{4} and H_{4} do have identical chararter tahles and derived leugth 2 and 3 respertively, even if $p=2$. The only differences for $p=2$ ate that they do not correspond to any of the groups defined in Section 5.3, and that the normal Sylow 2-sulggroups of G_{4} and H_{4} have exponrnt $4=p^{2}$ instead of p. Howrver, the construction of Sertion 5.3 could be easily modified in order to include the rase $p=2$. If we allow $p=2$, then the smallest possible order fur G_{4} and H_{4} drops down to $2^{1 / 2} \cdot 5$.

5.5 The binary case

Let p be an odd prime, and let us make the following assumptions:

- Q is a non trivial cyclir gronp of p^{\prime} order:
- V' is a faitliful irredurible $F_{p} Q$-module;
- $\gamma: V \otimes V \rightarrow V$ is a fixed $F_{\nu} Q$-module epimorphism.

Let $A=I^{\prime} \oplus V^{\prime} \oplus V^{\prime}$ be the direct sum of three copies of V^{\prime}. Wr have

$$
\mathrm{Howr}_{r} Q(A /(0 \oplus 0 \oplus V), 0 \oplus 0 \oplus V) \cong \mathbf{F}_{p^{n}} \oplus \mathbf{F}_{p^{\prime \prime}} .
$$

as vector spaces over \mathbb{F}_{p}, where n is the dimension of \mathbf{V} over \boldsymbol{F}_{p}. For any

$$
\psi \in \operatorname{Hom}_{r_{p}} \varphi(A /(0 \oplus 0 \oplus V), 0 \oplus 0 \oplus V)
$$

the map wofined by

$$
a^{\varepsilon v}=a+\left(a+\left(0 \oplus 0 \oplus \vdash^{r}\right)\right)^{\bullet} \text { for all } a \in A
$$

is an automorphism of A as an $F_{p} Q$-module. The group

$$
W^{\prime}=\left\{w_{\omega} \mid \vartheta \in \operatorname{Hom}_{r_{r} \varphi}(A /(0 \oplus 0 \oplus V), 0 \oplus 0 \oplus V)\right\}
$$

is a subgroup of $A u t T_{p} Q(A)$, of order $|V \oplus V|=p^{2 n}$. With the notation of Section 5.2, we may take $D_{1}=A, N_{1}=0 \oplus 0 \oplus V, Q_{1}=Q$, and thus ohtain $W_{1}=W$. Let us ronstruct the setnidirect praduct

$$
G_{1}=\left[D_{1}\right]\left(W_{1} \times Q_{1}\right)
$$

as in Section 5.2. The gromp G_{1} will also be ralled G bere and we shall therefore write

$$
G=[A]\left(W^{\prime} \times Q\right)
$$

According to Lemma 5.2.1, we have $G^{\prime}=A$; therefore $G^{\prime \prime}=1$, and thus G is metabeliau.

Let us pass to the construction of the group H. Let

$$
F=\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\rangle
$$

be a free group of rank $2 n$. Then $F / \gamma_{3}(F) F^{p}$ is a free nilpotent gronp of class two and exponent p. Its derived subgroup is elemeotary abelian of order $p^{n(2 n-1)}$ and, according to Lemma 2.6.3, it has a basis ovet \mathbb{F}_{p} given by the set of basic commutators of weight 2 on $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, namely

$$
\left\{\left[x_{1}, x_{k}\right],\left[y_{1}, y_{k}\right] \mid 1 \leq k<j \leq n\right\} \cup\left\{\left[y_{1}, x_{k}\right] \mid j, k=1, \ldots, n\right\}
$$

Let us put $R=\left\{\left[x_{j}, r_{k}\right],\left[y, y_{k}\right]|1 \leq k<j \leq n\rangle\right.$ and define

$$
F=\dot{F} / \gamma_{\mathrm{a}}(\overline{\boldsymbol{F}}) \boldsymbol{F}^{\triangleright} R
$$

Then F^{\prime} is clearly elementary abelian of order $p^{\prime \prime \prime}$ and a hasis of F^{\prime} over \boldsymbol{F}_{p} is given by the set

$$
\left\{\left|y_{1}, x_{k}\right| \mid j, k=1, \ldots, n\right\}
$$

The fartor group F / F^{\prime} is a free abelian group of exponent p and rank $2 n$; in other words, it is elementary abelian of order $p^{2 n}$. Let us fix an F_{p}-linear isonorphism

$$
\tau: V \oplus V \rightarrow F / F^{\prime}
$$

such that τ maps

$$
\begin{aligned}
& V \oplus 0 \quad \text { onto } \quad\left(x_{1}, \ldots, r_{n}\right\rangle F^{\prime} / F^{\prime} \\
& \text { and } \quad 0 \oplus V^{\prime} \text { onto } \quad\left(y_{1}, \ldots, y_{n}\right\rangle F^{\prime} / F^{\prime} \text {. }
\end{aligned}
$$

Let us make F / F^{\prime} into an $\mathbb{F}_{p} Q$-module isomorphic to $V \oplus V$ via τ, namely let us define an action of Q on F / F^{\prime} acrording to the formula

$$
\left(x F^{\prime}\right)^{C}=\left(\left(x F^{\prime}\right)^{r-1} \xi\right)^{r} \text { fur all } r \in F \text { and for all } \varepsilon \in Q
$$

and extend it \mathbf{F}_{p}-linearly to an action of $\mathbf{F}_{\mathrm{p}} \boldsymbol{Q}$ on F / F^{\prime}. Thu* F / F^{\prime} becomes an $\mathbb{F}_{p} Q$-module and τ an $F_{p} Q$-module ismorphism. Furthermore, F / F^{\prime} is the direct sum of the $F_{r} Q$-submodules $\left(s_{1}, \ldots, x_{n}\right) F^{\prime} / F^{\prime}$ and $\left\langle y_{1}, \ldots, x_{n}\right\rangle F^{\prime \prime} / F^{\prime}$.

Let us fix a getuerator ξ of Q. We shall show that the automorphism of F / F^{t} induced by ε can be lifted to an antomorphism ε of F. First of all, the automorphism induced by ξ on $F / F^{\prime}=\bar{F} / \bar{F}^{\prime} \boldsymbol{F}^{\text {g }}$ can be lifted to an automorphism ε of the free group \bar{F}, and we may assume that the sulgroups $F_{1}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $F_{2}=\left\langle y_{1}, \ldots, y_{n}\right\rangle$ of \vec{F} are left invariant by ξ. In particular, the subgroups

$$
\dot{F}_{\mathbf{1}}^{\prime}=\left\langle\left[x_{j}, x_{k}\right], \gamma_{3}\left(\dot{F}_{1}\right) \mid 1 \leq k<j \leq n\right\rangle
$$

and

$$
\left.\hat{F}_{2}^{\prime}=\left\langle\left[y_{J}, y_{k}\right], \gamma_{3}\left(\hat{f}_{j}\right)\right| 1 \leq k<j \leq n\right)
$$

are left invariant by $\dot{\mathcal{E}}$, or in other words, $\left(\dot{F}_{1}^{\prime}\right)^{\ell}=\dot{F}_{1}^{\prime}$ and $\left(\dot{F}_{2}^{\prime}\right)^{\ell}=\dot{F}_{2}^{\prime}$. Since $\gamma_{3}(\bar{F})$ and F^{p} are characteristic subgroups of \bar{F}. we also have that $\gamma_{3}(\bar{F})^{\varepsilon}=$ $\gamma_{3}(\bar{F})$ and $\left(\bar{F}^{p}\right)^{\ell}=\bar{F}^{p}$. As a ronsequence, the automorphism ξ of \bar{F} induces au automorphism of $F=\hat{F} / \gamma_{a}(\hat{F}) \hat{F}^{\prime} \hat{F}_{1}^{\prime} \hat{F}_{2}^{\prime}$, which we shall also call \hat{E}. We may assume that $\hat{\xi}$ has order $|Q|$ (otherwise we may replace $\hat{\xi}$ with a suitable power $\left.\xi^{\mathcal{P}^{\prime \prime \prime}}\right)$, and thus we can regard F as a Q-group. In particular, F^{\prime} cau be regarded as a (semisimple) $F_{p} Q$-module.

Now let us put

$$
E=\left\langle F^{\prime}, x_{1}, \ldots, x_{n}\right\rangle
$$

and let us apply Lemma 2.2 .1 to the following subgroups of F :

$$
K_{3}=1, \quad H_{3}=\boldsymbol{K}_{1}=\boldsymbol{F}^{\prime}, \quad H_{1}=\boldsymbol{K}_{2}=\boldsymbol{E}, \quad H_{2}=F .
$$

Thus we obtain an \mathbf{F}_{p}-biliuear map

$$
\begin{aligned}
\delta:\left(E / F^{\prime}\right) \times(F / E) & \rightarrow F^{\prime} \\
\left(r F^{\prime}, y E\right) & \mapsto[x, y] .
\end{aligned}
$$

Siace E is a Q-sulgroup of F, the fartor groups $E / F^{\prime}, F / E$ can also be regarded as $F_{p} Q$-modules. Thus we obtain an $F_{p} Q$ module bomomorphism

$$
\begin{aligned}
\delta:\left(E / F^{\prime}\right) \otimes(F / E) & \rightarrow F^{\prime} \\
\left(\Sigma F^{\prime}\right) \otimes(y E) & \mapsto[x, y] .
\end{aligned}
$$

Artually, δ is an isomorphism. In fact, the set

$$
\left\{\left(x, F^{\prime}\right) \otimes\left(y_{k} E\right) \mid j, k=1, \ldots, n\right\}
$$

is a basis of $\left(E / F^{\prime}\right) \otimes(F / E)$ over F_{p}, and we have

$$
\left(\left(x, F^{\prime}\right) \otimes\left(y_{k} E\right)\right)^{6}=\left[x_{2}, y_{k}\right]=\left[y_{k}, x_{j}\right]^{-1} ;
$$

on the other band, the elements $\left[y_{k}, x_{2}\right]$ of F^{\prime} are distinct for $j, k=1, \ldots, n$ and form a hasis of F^{\prime} over F_{p}, as we saw earlier. Thus δ is an $F_{p} Q$-module isomorphism, aud heure F^{\prime} is isomorphic to $V \otimes V$ as an $F_{v} Q$-module.

Now the $F_{p} Q$ module isomorphism

$$
\tau: V \oplus V \rightarrow F / F^{\prime}
$$

induces two $\mathbb{F}_{y} Q$ module jsomorphisms from V onto E / F^{\prime} and F / E respertively, namely

$$
\begin{aligned}
r_{1}: V & \rightarrow E / F^{\prime} \\
v & \mapsto(\boldsymbol{v}, \mathbf{0})^{\top},
\end{aligned}
$$

and

$$
\begin{aligned}
\tau_{2}: V & \rightarrow F / E \\
v & \mapsto(0,2)^{r} E .
\end{aligned}
$$

An $\mathbb{F}_{\nu} Q$-module isomorphism

$$
T_{1} \otimes \tau_{2}: V \otimes V \rightarrow\left(E / F^{\prime}\right) \otimes(F / E)
$$

is induced in an obvious way, and we have the following commutative diagram of $\mathbf{F}_{p} Q$-module homomorphisms:

$$
\begin{array}{rll}
\left(E / F^{\prime}\right) \otimes(F / E) & \xrightarrow{\zeta} F^{\prime} \\
\prod_{n \otimes r} & & \left.\right|^{\delta-1}\left(r_{1} \otimes r_{2}\right)^{-1}, \\
V \otimes V & & \rightarrow V
\end{array}
$$

Let us put

$$
K=\operatorname{ker}\left(\delta^{-1}\left(\tau_{1} \otimes \tau_{2}\right)^{-1} \gamma\right)=(\text { ker } \gamma)^{(\text {ninn }) \delta} .
$$

The fartor group F^{*} / K is then an $F_{p} Q$-module and the $F_{p} Q$-module epimorphism

$$
\delta^{-1}\left(r, \otimes r_{2}\right)^{-1} \gamma: \boldsymbol{F}^{\prime} \rightarrow \boldsymbol{V}
$$

induces an $\mathrm{F}_{\mathrm{p}} \mathrm{Q}$-module isomorphism

$$
\nu: F^{\prime} / K \rightarrow V^{\prime}
$$

surh that $\delta^{-1}\left(T_{1} \otimes r_{2}\right)^{-1} \gamma=\pi \nu$, where $\pi: F^{\prime} \rightarrow F^{\prime} / K$ is the natural epimurphism. Since \boldsymbol{K} is also a crintral sulgroup of F. we can form the factor group $\boldsymbol{X}=\boldsymbol{F} / \boldsymbol{h}$, which is a p-group of class 2 , exponent p and order $p^{3 n}$. Let us put $L=\boldsymbol{E} / \boldsymbol{K}$. Then L is an elementary abelian normal sulgroup of X and has order $p^{2 n}$.

Let ξ denote the automorphism of X (like ε and ξ, having order $|Q|$) induced by the automorphism ε of F and let Q be the sulgroup of $A u t(X)$ generated by ε. Let $\sigma: Q \rightarrow Q$ be the group isomorphism surh that $\xi^{\boldsymbol{\prime}}=\xi$ Then the Q-group X becomes a Q group of Q-length 3 via σ^{-1}. The series

$$
1<\boldsymbol{X}^{\prime}<\boldsymbol{L}<\boldsymbol{X}
$$

is a Q-composition series of X and the Q-composition fartors of X. regarded as $\mathbb{F}_{\nu} Q$-modeles via σ, are all isomorphic to V '. Furthermore, the fartor group X / X^{\prime} is elementary abelian, and regarded av av \mathbf{F}, Q-module it is isomorphic to $V \notin V^{\prime}$. In particular, X^{\prime} is the Frattini sulgroup of X.

Furthermore, we have that $\mathbf{Z}(\mathbf{X})=X^{\prime}$. In fact, $\mathbf{Z}(X)$ is a Q subgroup of X, and it rontaius X^{\prime}. Let us suppose for a moment that $X^{\prime}<\mathbf{Z}(\boldsymbol{X})$. It follows that $\left.Z_{i} X\right)$ has Q-length 2 , because $\mathbf{Z}(X)$ cannot be the whole of X, which is not abelian. If $\mathbf{Z}(X)$ contained L, then from the fart that $[\boldsymbol{L}, \boldsymbol{X}]=1$, it would follow that $[E, F] \leq K$: this would coutradirt the fact that the map δ defined aloove is an isomorphism. We deduce that $\mathbf{Z}(X) \neq L$, and thus that $\mathbf{Z}(X) L=X$, because X / X^{\prime} bas Q-length 2. It follows that $X^{\prime}=L^{\prime}=1$. which contradicts the fart that X is nut abelian. As a ronsequence, our assumption is wrong, and therefore we get that $\mathbf{Z}(X)=X^{\prime}$.

For each

$$
\varphi \in \operatorname{Hom}_{r_{p},}\left(X / X^{\prime}, X^{\prime}\right)
$$

the map w_{i} defined by

$$
x^{* *}=x\left(x X^{\prime}\right)^{\varphi} \text { for all } x \in X
$$

is an automorphism of X commuting with $\hat{\xi}$. The set

$$
W^{\prime}=\left\{w_{\phi} \mid \varphi \in \operatorname{Hom}_{\nabla_{p} \phi}\left(X / X^{\prime}, X^{\prime}\right)\right\}
$$

is a sulogroup of $\operatorname{Aut}\left(X^{\prime}\right)$, and the order of \boldsymbol{h}^{\prime} equals the order of X / X^{\prime}, namely $p^{i n}$. In fart, if we put $D_{2}=\boldsymbol{X}, \mathbf{N}_{2}=\boldsymbol{X}^{\prime}$ and $Q_{2}=Q$, then D_{2} satisfies conditions (1), ... (6) of Section 5.2. and W^{\prime} is exartly the sulggroup W_{2} of Aut $G_{2}\left(D_{2}\right)$ which is defined there.

Let us define

$$
G_{2}=\left[D_{2}\right]\left(\boldsymbol{W}_{2} \times Q_{2}\right)
$$

as in Section 5.2. The group G_{2} will also be called H here and we will therefore write.

$$
H=[\boldsymbol{X}]\left(\boldsymbol{W}^{\prime} \times \boldsymbol{Q}\right)
$$

Smes all assumptions of Section 5.2 are satisfied, Lemma 5.2.1 applies and yields that G and H have identical character tables, and that $H^{\prime}=X$, whence $H^{\prime \prime}=\boldsymbol{X}^{\prime}$ and $\boldsymbol{H}^{\prime \prime \prime}=1$. Thus \boldsymbol{G} and \boldsymbol{H} have identiral character tables and G is metabelian, as we said earlier, while H has derived length 3.

Let us consider the following Q-romposition series of X, which is also part of a chief series of H going from 1 to X :

$$
1<X^{\prime}<L<\boldsymbol{X} .
$$

Acrording to the analysis of commutation in X which we carried out in Section 3.4, the $F_{p} Q$-module epimorphism assoriated with our chief series is the following:

$$
\begin{aligned}
\delta \pi:\left(L / X^{\prime}\right) \otimes(X / L) & \rightarrow X^{\prime} \\
\left(x X^{\prime}\right) \otimes(y L) & \rightarrow[r, y],
\end{aligned}
$$

where the factor groups L / X^{\prime} and X / L have been identified with E / F and F / E respectively. If we regard the $\mathbb{F}_{p} Q$-modules $L / X^{\prime}, X / L$ and X^{\prime} as $F_{p} Q$ modules via σ, then the $\mathbb{F}_{p} Q$-module epimorphism $\delta \pi$ is also an $F_{p} Q$ module epimorphism. As such, $\delta \pi$ coincides with our prescribed $F_{p} Q$-module epimorphism $\gamma: V \otimes V \rightarrow V$, after identifying $L / X^{\prime}, X / L$ and X^{\prime} with V by means of suitahle $\mathbf{F}_{\mathrm{p}}, Q$-module isomorphisms. In other words, the following
diagram is commutative:

As we promised, in athalogy with what we did in Section 5.3 for the map γ, under the assumption $p \neq 2$ we have coustructed pairs of groups (G, H) whirh satisfy Hypotheses 3.1.2 and which give rise through the method of Section 5.2, to any arhitrarily given $F_{p} Q$-module epimorphism $\gamma: V \otimes V \rightarrow V$.

It is prorhaps worth remarking that

$$
1<\mathbf{X}^{\prime}<L<X
$$

is not in this case the unique Q-romposition series of X, nor the unique rhief series of H passing through 1 and H. If we choose a different Q-composition series

$$
1<X^{\prime}<\dot{L}<X
$$

it may happen that L is not abrlian. In that case, our analysis of commuta tion in X wonld produre a non-trivial skew-symmetric F_{p}-bilinear map

$$
\delta^{\prime}:\left(L / X^{\prime}\right) \times\left(\dot{L} / X^{\prime}\right) \rightarrow X^{\prime}
$$

and thus we would fall ugain into the unary rase, for which we have already built examples in Section 5.3. However, the situation described ahove canuot happen if our $F_{p} Q$-module V is a composition factor of $V \otimes V$, but not of $\ddagger \wedge V$ (for example, if V has dimension 2 or 3 over \mathbb{F}_{p}); this shows that the binaty case gives rise to examples which are genuinely different from those of the unay y case.

Now, we observe that the normal Sylow p-subgroups of G and H, namely $\Gamma=A W$ and $P=\boldsymbol{X} W$, have identical character tables but are not isomotphic. We omit the proof of this fact, which rousists of a counting argument similar to that which we used in the proof of the corresponding fact of Section 5.3. We only ohserve that the argument here is slightly more complicated, because $A / P^{\prime \prime}$ is uot a rlief fartor of G; therefore, in addition to the set \mathcal{A}_{p} of abelian subgroups of P which have order $p^{3 n}$ and contain P^{\prime}, one ueeds to
consider also the set B_{P} of unordered pairs $\{B, C\}$ of elements of A_{P} such that $B C=P\left(\right.$ and similar sets $\mathcal{A}_{\dot{p}}$ and $\mathcal{B}_{\bar{p}}$ cuncerning P).

We conclude this sertion by computing the smallest possible order of G and H for a pair ($G . H$) of grunps constructed as above. It follows easily from the case-study whirh concludes Sertion 3.5 that if p is an oudd prime, Q is a non-trivial ryclic p^{\prime}-group, and V is faithful irredurible morlule for Q over \mathbb{F}_{p} surh that V 'Q V has a composition factor isomorphic to I^{\prime}, then the smallest possible order of V ' is attained when V has dimension 2 over F_{p}, the group Q has order 3, and the prime p is 5 . In that case, V has 25 elements. and the order of G is as small as possible, namely

$$
|G|=5^{10}
$$

however, this is bigger that $3^{12} \cdot 5$, that is the order of the smallest groups G and H which we constructed in Section 5.3.

5.6 Matrix representations for the binary case

In this section we shall construct explicit matrix representations for some of the gronps of Section 5.5. We shall represent faithfully G as a sulgroup of $G L_{1}\left(\nu^{n}\right)$, and H as a subgroup of $G L_{5}\left(\nu^{n}\right)$.

Let us fix an odd prime p and a positive integer q surb that

$$
p^{\prime}+1=\gamma^{3} \bmod |Q|
$$

for some integers i, j (and we may always assume that

$$
0 \leq i \leq n / 2 \quad \text { and } \quad 0 \leq j<n)
$$

Let $Q=\langle\xi\rangle$ be a ryclic gronp, of oriler q, and let ε be a primitive q-th root of unity in $F_{p^{n}}$. Let V, be a ryclic group of order q, aus let ε be a primitive $q^{\text {th }}$ root of unity in $\boldsymbol{F}_{p^{n}}$. Let V_{e} be the faithful irredurible module for Q over F_{p} whish is defined in Thevrem 2.3.1. We shall also ronsider ther $F_{p} Q$ modules $V_{e p^{\prime}}$ and $V_{, w}$ defined sinilarly, which are both isomorphic to V_{r}. Because of our assumptions on p and q, the module V appears as a composition factor of the tensor square module $V_{e} \otimes V_{e}$. We shall explicitly defice an $F_{p} Q$ epimorphism from $V_{8} \otimes V_{e p}$ onto V_{p}.

$$
(x \otimes y)^{7}=x y
$$

Siuce the expression ry is \mathbf{F}_{p}-hilinear in (r, y), it follows that γ extends to an \boldsymbol{F}_{p}-linear map

$$
\gamma=V_{*} \ln V_{* \nu^{\prime}} \rightarrow V_{* \omega^{\prime}}
$$

Furthermore, the may γ is an $\mathcal{F}_{p} Q$-module homomorphism, berause we have

$$
\begin{aligned}
((x \otimes y) \xi)^{*} & =\left((\varepsilon x) \otimes\left(e^{p^{*}} y\right)\right)^{4} \\
& =\varepsilon^{1+p^{\prime} x y} \\
& =\varepsilon^{1+p^{\prime}}(x \otimes y)^{4} \\
& =\varepsilon^{\prime}(x \otimes y)^{5} \\
& =(x \otimes y)^{\top} \varepsilon .
\end{aligned}
$$

It is clear that γ is not the zero homomorphism. Thus γ is an $F_{p} Q$-module epimorphism, berause V_{z} is an irreducible $F_{p} Q$-module. (It shonld be said that uot all $F_{P} Q$-module epimorphimms from $V \& V$ outo V can be put into this particularly simple form by suitably identifying $I{ }^{\prime}$ with $V_{\%} F^{\prime} F^{\prime}$ and $V_{i}{ }^{\prime}$.)

With this particular choice of the $F_{p} Q$-epimorphism γ, let 11.5 defive the group $X=F / K$ as we did in Section 5.5. Let X_{3} be the set of the matrices

$$
\left|\begin{array}{lll}
1 & a & c \\
& 1 & b \\
& & 1
\end{array}\right|
$$

with $a, b, c \in F_{p^{n}}$; hence X_{3} is a Sylow p-sulbgroup of $G L_{3}\left(p^{n}\right)$. Moreover, X_{3} is isomorphic to \boldsymbol{X}, and it is not ton diffirult to conatruct an epimorphism from F onto \mathcal{X}. with kerued \boldsymbol{K}. It is alno rlear that the diagonal matrix

$$
\bar{\varepsilon}_{3}=\left[\left.\begin{array}{lll}
1 & & \\
& \varepsilon & \\
& & c^{1+p^{\prime}}
\end{array} \right\rvert\,\right.
$$

normalizew X_{3}, and induces by conjugation an antomorphism of X_{3} which rorrespender to the antomorphism ξ of X defined in Sertion 5.5 (for a suitable choice of the isomurphism $X \rightarrow X_{3}$). Thus the normal sulgronp $X Q$ of H is isomorphic to a mibgroup of $G L_{3}\left(p^{*}\right)$.

Now we are ready to embed the whole of H into $G L_{5}\left(p^{n}\right)$. First of all, we olserve that the set X_{s} of the matrices

$$
\left|\begin{array}{ccccc}
1 & a & a^{p^{\prime}} & b^{\boldsymbol{p}^{\top}} & c \\
& 1 & & & b \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right|
$$

with $a, b, r \in \mathbb{F}_{p^{n}}$ is a sulgroup of $G L_{s}\left(p^{n}\right)$ isomorphir to X_{3} (and hence to X). In fart, au explicit isomorphism from X_{3} onto \boldsymbol{X}_{5} is given by the map

$$
\left|\begin{array}{ccc}
1 & a & c \\
& 1 & b^{p^{\prime}} \\
& & 1
\end{array}\right| \mapsto\left|\begin{array}{ccccc}
1 & a & a^{p^{\prime}} & b^{p^{\prime}} & c \\
& 1 & & & \nu^{\prime} \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right|
$$

The diagonal matrix

$$
\xi_{s}=\left|\begin{array}{lllll}
1 & & & & \\
& \varepsilon & & & \\
& & s^{\mu} & & \\
& & & e^{\mu} & \\
& & & & s^{p}
\end{array}\right|
$$

normalizes X_{5}. The automorphism of X_{5} induced by \boldsymbol{E}_{5} by conjugation rorresponds to the automorphism of X_{3} induced by ξ_{3} by conjugation (with respect to the given isomorphism from X_{3} onto X_{5}) and thus to the automorphism ξ of X (with respect to a suitable isomorphism from X onto X_{5}).

Now the subgroup W_{5}^{\prime} of $G L_{5}\left(p^{n}\right)$ consisting of the matrices

$$
\left|\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & \mathbf{1} & & \\
& & & \mathbf{d} & \mathbf{c} \\
& & & & 1
\end{array}\right|
$$

with $d, e \in \mathbb{F}_{p^{n}}$ is thementary abelian of order $\boldsymbol{p}^{2 n}$, rentralizes ξ_{s}, and normalizes X_{s}. It is quite clear now that $H=[X](W \times Q)$ is isomorphir to the
sulgroup) $H_{5}=X_{5} H_{5}\left(\xi_{3}\right)$ of $G L_{5}\left(p^{n}\right)$, namely the gronp of the matrices

$$
\left|\begin{array}{ccccc}
1 & a & a^{p^{\prime}} & b^{p^{\prime}} & c \\
& \varepsilon^{\prime} & & & b^{p^{\prime}} \\
& & \rho^{\prime p^{\prime}} & & d \\
& & & \varepsilon^{\prime p^{\prime}} & \varepsilon \\
& & & & e^{i p^{\prime}}
\end{array}\right|
$$

with $a, b, c, d, p \in \mathbb{F}_{p^{m}}$ and $l=1, \ldots,|Q|$. Thus we have constructed a faithful matrix representation of H.

It is much easier to give a matrix representation of the group G. In fart, it is easy to ser that G is isomorphic to the subgroup G_{1} of $G L_{1}\left(p^{n}\right)$ which ronsists of the matrices

$$
\left|\begin{array}{llll}
1 & a & b & c \\
& \varepsilon^{\prime} & & d \\
& & c^{\prime} & c \\
& & & f^{\prime}
\end{array}\right|
$$

with $a, b, c \in F_{p^{\prime \prime}}$ and $l=1, \ldots,|Q|$.
Let us also notice that G is isomorphie to the suligroup G_{5} of $G L_{5}\left(P^{n}\right)$ which consists of the matrices

$$
\left|\begin{array}{ccccc}
1 & \boldsymbol{a} & a^{\rho} & b & c \\
& d^{\prime} & & & \\
& & e^{i p^{j}} & & d \\
& & & e^{\prime \mu} & c \\
& & & & c^{i \mu}
\end{array}\right|
$$

with $a, b, c \in F_{p^{*}}$ and $l=1 \ldots,|Q|$. In fact an isomorphism from G_{3} onto G_{5} is given by the map

$$
\left[\begin{array}{llll}
1 & a & b & c \\
& \varepsilon^{i} & & d \\
& & \varepsilon^{i} & c \\
& & & \varepsilon^{\prime}
\end{array}|\mapsto| \begin{array}{ccccc}
1 & a & a^{p^{\prime}} & b^{\prime} & c^{p^{\prime}} \\
& \varepsilon^{\prime} & & & \\
& & \varepsilon^{\prime p^{\prime}} & & d^{p^{\prime}} \\
& & & \varepsilon^{\prime p^{\prime}} & \varepsilon^{\prime p^{\prime}} \\
& & & & \varepsilon^{\prime p}
\end{array}\right]
$$

Since G_{3} and H_{5}, mormalize earh other, $G_{3} H_{5}$ is a sulgroup of $G L_{5}\left(p^{n}\right)$.

Clearly $G_{s} H_{s}$ consists of the matrices

$$
\left|\begin{array}{ccccc}
1 & a & e^{\nu^{\prime}} & b & c \\
& \varepsilon^{\prime} & & & f \\
& & p^{t \nu^{\prime}} & & d \\
& & & e^{l p^{\nu}} & e \\
& & & & e^{\boldsymbol{p}^{\nu}}
\end{array}\right|
$$

with a,b,c,d,e,f$\in \boldsymbol{F}_{p^{n}}$ and $I=1, \ldots,|Q|$. The groups G_{5} and H_{3} are normal sulgroups of $G_{3} H_{s}$ of index p^{n}. In particular, we have ohtained that uni groups G and H can be simultaneously minbetded as normal subgroups into a group of order $p^{n}|G|$.

We finally observe that our assumption that the prime p is odd is numeessary for the construction of our gromps of matrices (like it was in Section 5.4). Of course, when $p=2$, the normal Sylow 2 -sulugroups of G and H will have exponent $4=p^{2}$ instead of p. If we allow $p=2$, then the smallent possible order for G_{5} and H_{5} becomes $2^{10} \cdot 3$, which is smaller than the minimal order of the matrix gronps G_{4} and H_{4} of Section 5.4. Iudred, this is the smallest example of a pair of gronps satisfying Hypotheses 3.1.2 whirh we were able to construct.

5.7 Power-maps

ln this last section we shall show that for most of the pairs of groups (G, H) which we have constructed in this chapter, G and H have not only ideutical character tables, but also identical character tables with power-maps.

If \mathcal{K} is a conjugary rlass of G and m is an integer, then there is a conjugacy class $\kappa^{(m)}$ of G which cousists of the mith powers of the elements of $\AA^{(}$. The maps $\mathcal{K} \mapsto \boldsymbol{K}^{[\operatorname{lng} \mid}$ from the set of the ronjugary classes of G into itself are usually called power-maps. When the power-maps are added to the character tahle of a group, G (iu some way which we shall not formalize bere), the resulting object gives considerably more information about G than the character table alone does. In particular, the power-mapss determive the order of the elements of any given conjugary class, and thus sometimes allow one to distinguish betwerin groups which have identical rharacter tables, like for instaure D_{s} aud Q_{A} (or, more generally, the two non-isonoorphic extragnecial 1 -groups of a give'y order). We should say, though, that the prime factors of
the orders of the elemeuts are determined by the character table alone, as shown in [13. Therorem (8.21)].

If two gronps G and H have ideutical character tables, via some bijectious σ and B, the additional rondition that G and H also have identical powermaps call be expresered by recpuiring that

$$
\left(K^{\alpha}\right)^{[m]}=\left(K^{-[m]}\right)^{\infty}
$$

for all conjugary classes \mathbb{K} of G and for all integers m. Wi shall give instead the following equivalent definition.

Delinition 5.7.1 Let G_{1} and G_{2} be finite groupa. We shall say that G_{1} and G_{2} have identical character tables with power-maps if there exist bijections

$$
\sigma: G_{1} \rightarrow G_{2}
$$

and

$$
\beta: \operatorname{Irr}\left(G_{1}\right) \rightarrow \operatorname{Irr}\left(G_{2}\right)
$$

such that for all integers m we have

$$
v^{A}\left(\left(g^{n}\right)^{m}\right)=\chi\left(g^{m}\right) \text { for all } g \in G_{1} \text { and for all } \backslash \in \operatorname{Irr}\left(G_{1}\right)
$$

We olserve that when m is romposite, the min power-map $\mathcal{K}^{\prime} \rightarrow \mathbb{K}^{-[m]}$ of a group G is completely determined by the set of the p th power-maps with p tanging over the prime divisors of m. Furthermore, we can restrirt our attention to the primes p which divide the order of G. In fart, the m th power-majs for $(m,|G|)=1$ (whirb, incidentally, are the ouly power-maps which are bijective) are uniquely determined by the chararter table of G, as the following well-known lemma shaws.

Lemma 5.7.2 Let G_{1} and G_{2} have identical character tables via the bijections

$$
\begin{aligned}
\alpha: G_{1} & \rightarrow G_{2}, \\
\beta: \operatorname{Irr}\left(G_{1}\right) & \rightarrow \operatorname{Irr}\left(G_{2}\right),
\end{aligned}
$$

and let m be an integer with $(m,|G|)=1$. Then we have

$$
x^{n}\left(\left(g^{\infty}\right)^{n}\right)=\mathfrak{k}\left(g^{n}\right) \text { for all } g \in G_{1} \text { and for all }, \in \operatorname{Irr}\left(G_{1}\right)
$$

Proof Let $n=\left|G_{1}\right|$, and let E be the splitting field for the poslynomial $x^{\text {th }}-1$ over \mathbb{Q} in \mathbf{C}. Then $\mathbf{E}=\mathbb{Q}[\varepsilon]$, where ε is a primitive nth root of 1 in \mathbf{C}. From the fact that $(m,|\boldsymbol{G}|)=1$ it follows that ε^{m} is also a primitive nth root of 1 . Now let \mathcal{G} be the Galois group of \mathbf{E} over \mathbf{Q}. Since the cyclotomic polynomials over \mathbb{Q} are irredurible (see for instaure [15, Theorem 4.17]), the primitive nth roots of 1 in \mathbb{C} are transitively permuted by \mathcal{G}. Hence there exists $\sigma \in \mathcal{G}$ such that $\varepsilon^{\theta}=\varepsilon^{m}$

Now let $\mid \in \operatorname{Irf}\left(G_{1}\right)$ and $g \in G_{1}$. If \boldsymbol{X} is a complex representation of G_{1} affording the character X, thell, acrording to [13. Lemma (2.15)]. $\boldsymbol{X}(g)$ is similar to a diagonal matrix

$$
\operatorname{diag}\left(\varepsilon^{\prime \prime}, \ldots, e^{\prime \prime}\right)
$$

where $f=\chi(1)$ and $i_{1}, \ldots, i_{\text {s }}$ are iutegers. In partirulas,

$$
x(g)=\sum_{j=1}^{1} \epsilon^{t_{j}} .
$$

It follows that $\boldsymbol{X}\left(g^{m}\right)=\boldsymbol{X}(\boldsymbol{q})^{m}$ is similar to diag $\left(\varepsilon^{t, m}, \ldots, \varepsilon^{\prime} \boldsymbol{p}^{m}\right)$, and hener

$$
\forall\left(g^{m}\right)=\sum_{j=1}^{t} \varepsilon^{t^{\prime, p n}}=\sum_{j=1}^{l}\left(\varepsilon^{0}\right)^{i}=\left(\sum_{j=1}^{f} e^{j_{j}}\right)^{\sigma}=x(g)^{\sigma} .
$$

In a similar way we oltain that

$$
x^{a}\left(\left(g^{\infty}\right)^{m}\right)=x^{s}\left(g^{\infty}\right)^{\sigma} .
$$

Since $\chi^{\beta}\left(g^{\alpha}\right)=\chi(g)$, the conclusion now follows.
A straightforward ronsequence of Lemma 5.7.2 is the following: if two p gromps of exponent p have identical character talules, then they have identical chararter tables, with power-maps. This fact was employed by Dade in [6], where he gave the first examples of nom-isomorphic groups having ielentical character tables with power-maps, as an answer to a question of Brauer [19, Prolbem 4]. Let us uotice in passing that Dade's proof that his p-groups have identiral chararter tables was a sperial case of our Theorem 4.3.1.

Now, our Corollary 4.3 .2 can be eavily adapted in order to handle character tables with power-maps. Let us see ouly a special case.

Theorem 5.7.3 Let N_{1} br an abelian normal subgroup of G_{1}. for $i=1,2$. Let us suppose that following condition holds, in addition to hypotheses (i), (ii), (iii) of Corollary 4.9.2:
(iv) $(g) \cap N_{1}=1$ for all $g \in G_{1} \backslash N_{1}$, for $i=1,2$.

Then G_{1} and G_{2} have identical chararter tables with power-maps.
Proof Let us construct the maps a and d according to the proof of Corollary 4.3.2. Then we have

$$
\chi^{\prime}\left(g^{n}\right)=\chi(g) \text { for all } g \in G_{1} \text { and for all } x \in \operatorname{Irr}\left(G_{1}\right)
$$

Let ins fix an integer m. Although it is not necessarily true that $\left(g^{a}\right)^{m}=\left(g^{o n}\right)^{a}$ for all $g \in G_{1}$ (which would rourlude the proof), we do bave that

$$
\left(g^{d}\right)^{m}=\left(g^{m}\right)^{d} \text { for all } g \in N_{\mathbf{t}}
$$

aud that

$$
\left(\left(g N_{1}\right)^{d}\right)^{m}=\left(g^{m} N_{1}\right)^{a} \text { for all } g \in G_{1}
$$

heranse $\hat{\tilde{\gamma}}$ and $\bar{\alpha}$ are group isomorphisms.
As a first consequence, the essertion

$$
x^{\theta}\left(\left(g^{\alpha}\right)^{m}\right)=x\left(g^{m}\right) \text { fur all } x \in \operatorname{lrr}\left(G_{1}\right)
$$

in certainly true for $g \in N_{1}$. Furthermore, it is also true for those $g \in G_{1} \backslash N_{1}$ such that $g^{m} \in G_{1} \backslash N_{3}$. In fact, this imphies that $\left(g^{\alpha}\right)^{m} \in G_{2} \backslash N_{2}$, heranse n is a group isomorphism; heuce

$$
\lambda^{A}\left(\left(g^{\alpha}\right)^{m}\right)=0=k\left(g^{m}\right) \text { for all } \lambda \in \operatorname{Irr}\left(G_{1}\right) \backslash \operatorname{Irr}\left(G_{1} / N_{1}\right)
$$

On the other haud, if $\in \operatorname{Irr}\left(G_{1} / N_{1}\right)$ we have

$$
\begin{aligned}
v^{\prime}\left(\left(g^{\mathrm{e}}\right)^{m \mathrm{~m}}\right) & =x^{d}\left(\left(g^{\mathrm{m}}\right)^{\mathrm{m}} N_{2}\right) \\
& =x^{d}\left(\left(\left(g N_{1}\right)^{\alpha}\right)^{m m}\right) \\
& =x^{d}\left(\left(g^{m} N_{1}\right)^{\alpha}\right) \\
& =x\left(g^{m} N_{1}\right) \\
& =x\left(g^{m n}\right)
\end{aligned}
$$

Now we are left with the rase of an element g of $G_{1} \backslash N_{1}$ surh that $g^{m n} \in N_{1}$. In this case we have $\left(q^{\alpha}\right)^{m} \in N_{2}$, again hecause a is a group isomorphism. Arcording to hypothesis ($2 v$). we have $g^{m}=1$ and $\left(g^{\alpha}\right)^{m}=1$. Consequently, wo haw

$$
x^{s}\left(\left(g^{n}\right)^{m}\right)=x^{s}(1)=x(1)=x\left(g^{m}\right)
$$

This concludes the proof.
Now let us assume the hypotheses (1),..., (6) of Section 5.2, and let us assume in addition that the groups D_{1} and D_{2} have expouent p; in particular, the prime p must be odd. Let us define the gronps

$$
G_{1}=\left[D_{i}\right]\left(W_{i} \otimes Q_{i}\right) .
$$

fur $:=1,2$, as we didi in Section 5.2. Then the normal Sylow p-sulggroup D, W_{i} of G, has expunent p (for $i=1,2$); in fact, since D, W, has class two and hoth of D_{1}, and W ', have exponeut p, we have

$$
(x w)^{p}=x^{p} w^{p}\left[w,\left.x\right|^{(z)}=1\right.
$$

for all $r \in D_{\text {, and }} w \in W_{\prime}^{\prime}$, according to [10, Kapitel III, Hilfssatz 1.3 b)].
As we proved in Lemma $5.2 .1, G_{1}$ and G_{2} have identical chatacter tables. Now Theorem 5.7 .3 allows us to prove that G_{1} and \boldsymbol{G}_{2} have identical character tables with power-maps. Indeed, let us define isomorphisms

$$
a: G_{1} / N_{1} \rightarrow G_{2} / N_{2}
$$

and

$$
\dot{\alpha}: N_{1} \rightarrow N_{2}
$$

as in the proof of Lemma 5.2 .1 ; as we proved there, hypotheses (i), (2 i), and (izi) of Lemmia 4.3 .2 (and thus of Theorem 5.7.3) are satisfied. Hence it remains to rheck hypothesis ($2 v$) of Theorem 5.7.3, namely that

$$
\langle g\rangle \cap N_{1}=1 \text { for all } g \in G_{1} \backslash N_{1}, \text { for } i=1,2
$$

This is clearly true for $g \in D_{1} W_{1} \backslash N_{1}$, berause $D_{1} W_{1}$ has exponent p.
Let $g \in G_{1} \backslash D, W_{1}$. Then the order of g is not a power of p, and we ran choose a prime divisor q of the order $|g|$ of q, distinct from p. Heuce $h=g$ ifir has order q; consequently, b belongs to some Sylow q-sulagroup of G. On
the other hand, Q, contains a Sylow q-sthgroup of G_{i}. It follows that h is conjugate to some (mon-identity) element of Q_{1}.

Now, every clement of Q_{1} diffrent from the identity element acts fixed-point-freely on D, by conjugation. Consequently, h acts fixed pont-freely on D, by conjugation; in other words,

$$
\mathbf{C}_{G i}(h) \cap D_{i}=1
$$

Brecause' $(g) \leq \mathrm{C}_{G}(h)$ and $N_{1} \leq D_{1}$, we have that

$$
(g) \cap N_{i}=1
$$

Thus hypothesis ($2 v$) of Theorem 5.7.3 is also satisfied.
We conclude that the groups G_{1} and G_{2} have identiral character tables with power-maps, as claimed. In particular, for all the examples ($G . H$) which we constructed in Sertious 5.3 and 5.5 , which satisfy the assumption $p \neq 2$, we ohtain that G and H have identical character tables with power-maps.

Chapter 6

Nilpotent counterexamples

In Chapter 4 we had a fairly derp insight iuto the structure of a minimal connterexample (G, H) to Conjerture 3.1.1. In fact, the results of Chapter 4 strongly suggest that the hasic pattern for the construction of G and H is essentially that of our example's of Chapter 5. However, behind our investigations of Chapter 4 there was a fundanental assumption, namely that G and H were not nilpotent (Hypotheses 3.1.2).

In this rhapter we shall turn our attention to proups. Althongh our knowledge about nilpotent counterexamples to Conjecture 3.1 .1 is very limited, we shall be able to construct such a counterexample.

Let us loriefly sketch how this example originates. We aim to construct p gromps G_{1} and G_{2}, such that $G_{1}^{\prime \prime}=1$ and $G_{2}^{\prime \prime} \neq 1$, and G_{1}, G_{2} lave identical character tables. Since the character table of a nilpotent group determines its nilpotency class, G_{1} and G_{2} must bave the same class c; necessatily c is at least 4 , becanse $\gamma_{4}\left(G_{2}\right) \geq G_{2}^{\prime \prime} \neq 1$. This, the smallest example we ran hope for will have $\left|\gamma_{4}\left(G_{1}\right)\right|=\left|\gamma_{4}\left(G_{2}\right)\right|=p$ and $G_{1}^{\prime \prime}=1, G_{2}^{\prime \prime}=\gamma_{4}\left(G_{2}\right)$.

Our basic tool for comparing chararter tables is Corollary 4.3.2. In order to be able to apply that corollary with $N_{1}=\gamma_{4}\left(G_{1}\right)$ for $z=1,2$, we shall require that

$$
G_{1} / \gamma_{4}\left(G_{1}\right) \cong G_{2} / \gamma_{4}\left(G_{2}\right)
$$

But then we may as well regard G_{1} and G_{2} as factor groups of the same group G; for example, we may take G to be the direct product of G_{1} and G_{2} with amalgamatord factor groups $\boldsymbol{G}_{1} / \gamma_{4}\left(G_{1}\right) \triangleq \boldsymbol{G}_{1} / \gamma_{4}\left(G_{2}\right)$ (sec [10, Kapitel I. Satz 9.11]).

In the last analysis, we are looking for a p-group G of rlass 4 , in which
$\gamma_{4}(G)$ is the direct product of two cyclic groups Z_{1}, Z_{2} of order p with $Z_{1}=$ $G^{\prime \prime}$, and surh that $\left(G / Z_{1}, \gamma_{4}(G) / Z_{1}\right)$ and $\left(G / Z_{2}, \gamma_{4}(G) / Z_{2}\right)$ are hoth Camina pairs (which is hypothesis (iii) of Corollary 4.3.2). Let us put $G_{\mathbf{1}}=G / Z_{\text {, }}$ and $\boldsymbol{N}_{1}=\gamma_{4}(\boldsymbol{G}) / Z_{1}$, for $i=1,2$. Arcording to Lemma 4.2.1, the condition that (G_{1}, N_{1}) and (G_{2}, N_{2}) are Camina pairs is equivalent to

$$
N_{1} \subseteq\left\lfloor g, G_{\mathrm{t}}\right\rfloor \text { for all } q \in G_{\mathrm{l}} \backslash N_{\mathrm{t}}, \text { for } i=1,2 .
$$

This condition can be easily reformmated in terms of G, as follows:

$$
\left(\lfloor g, G\rfloor \cap \gamma_{4}(G)\right) \cdot \boldsymbol{Z}_{\mathbf{0}}=\gamma_{4}(\boldsymbol{G}) \text { for all } g \in \boldsymbol{G} \backslash \gamma_{1}(G), \text { for }{ }_{2}=1,2 \text {. }
$$

We ouly observe that because $\gamma_{4}(G)$ is a central sulggroup of G, the set [$\boldsymbol{G} . G\rfloor \cap \gamma_{4}(G)$ is a sulogroup of $\gamma_{4}(G)$ (though it may be strictly contaived in $\mid q, G\rceil \cap \gamma_{4}(\boldsymbol{G})$); this fart can pasily be proved directly, or it can be viewed as atu application of Lemma 2.2.4. It will be useful to keep in mind the ahowe condition during the course of the construction.

Nuw let us proceed wath the details of the construction. Let F be the free group on three generators s, y and z. Let us fix a prime $p \geq 5$, and define

$$
F=F / \gamma_{5}(F) F^{p}
$$

where F^{p} denotes the (fully invariant) sulgroup of F generated by the pth powers of all elements of F. Then F is a nilpotent group of class 4 and exponent p (actually F is the 3 -generator free object in the variety of nilpotent groups of class 4 and exponent p).

We know from Theorem 2.6 .3 that the factor groups $\gamma_{n}(F) / \gamma_{n+1}(F)$ for $n=1,2,3.4$ are elemeutary abeliau, and that a set of representatives for a hasis of $\gamma_{n}(F) / \gamma_{n+1}(F)$ as a vector space over the field F_{p} is given by the set \mathcal{C}_{u} of basic commutators of weight n. Expliritly, we have:

$$
\begin{gathered}
\mathcal{C}_{1}=\{x, y, z], \\
\mathcal{C}_{2}=\{[y, x],[z, x],[z, y]\} \\
\mathcal{C}_{3}=\{[y, z, r],\{z, x, r\},\{y, x, y],[z, x, y],[z, y, y],[y, x, z],[z, x, z],[z, y, z]\}
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{C}_{\mathbf{1}}= & \{[y, x, x, x],[z, x, x, x],[y, x, x, y],[z, x, x, y],[y, x, y, y], \\
& {[z, x, y, y],[z, y, y, y],[y, x, x, z],[z, x, x, z],[y, x, y, z], } \\
& {[z, x, y, z],[z, y, y, z],[y, x, z, z],[z, x, z, z],[z, y, z, z], } \\
& {[[z, x],[y, x]],[[z, y],[y, x],[[z, y],[z, x]]\} . }
\end{aligned}
$$

In the next lemma we shall define a certain factor group H of F, which is a 'first approximation' of the group G that we are looking for.

We recall that in a group of class 4 , like F, we have the identity

$$
[h, g, k]=[g, h, k]^{-|h, a|}=[g, h, k]^{-1}
$$

furthermore, the Witt's identity

$$
\left[g, h, k^{-}\right]\left[k, g, h^{k}\right]\left[h, k, g^{h}\right]=1
$$

assumes the following form:

$$
[g, h, k]\left[[g, h]_{,}[k, g]\right][k, g, h][[k, g],[h, k]][h, k, g][[h, k],[g, h]]=1 .
$$

Lemma 6.0.4 For any prime $p \geq 5$, there exists a group $H=\langle x, y, z\rangle$ of order p^{10}, exponent p and class 4 , wich that the following conditions are satisfied:
(i) the subset \mathcal{C}_{n} of H defined below, for $i=1,2,3,4$, forms a set of representatives of a bawis of $\gamma_{m}(H) / \gamma_{m+1}(H)$, viewed as a vector space over Φ_{p}, the field of p elements:

$$
\begin{gathered}
\mathcal{C}_{1}=\{x, y, z\} \\
\overline{\mathcal{C}}_{2}=\{[y, x\},[z, x]\} \\
\mathcal{C}_{3}=\{[y, x, x],\{z, x, x],[y, x, z]\} \\
\mathcal{C}_{1}=\{[y, x, x, z],[[z, x],[y, x]\}
\end{gathered}
$$

(ii) the following relations hold

$$
\begin{aligned}
{[z, x, x, y] } & =[y, x, x, z][[z, x],[y, x]]^{-z} \\
{[z, x, y] } & =[y, x, z][\mid z, x],[y, x]]^{-1}
\end{aligned}
$$

(isi) in addition, the relation $c=1$ holds for each basic commutator c not appearing in the diagram in (i) or in the relations in (it).

Proof We shall proceed in three staps.
Step 1. Let us define the following subgroup of F :

$$
\begin{aligned}
\boldsymbol{R}_{\mathbf{a}}= & \left\{C_{4} \backslash\{[z, x, x, y],[y, x, x, z],[[z, x],[y, x]\}\},\right. \\
& {\left.\left.[z, x, x, y]^{-1}[y, x, x, z] \mid[z, x],[y, x]\right]^{-2}\right) . }
\end{aligned}
$$

Since $\boldsymbol{R}_{4} \leq \gamma_{4}(F) \leq \boldsymbol{Z}(F)$ (actually, it is not too difficult to prove that $\left.\gamma_{4}(F)=\mathbf{Z}(F)\right)$. wr Lave that $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$, and \mathcal{C}_{4} are sets of represent atives of bases of $\gamma_{n}\left(\dot{F} / \boldsymbol{R}_{4}\right) / \gamma_{n+1}\left(F / \boldsymbol{R}_{4}\right)$ for $n=1,2,3,4$ respectively.
Step 2. Let us define the following subgroup of F :

$$
\begin{aligned}
R_{3}= & \left\langle R_{4},[y, x, y],[z, y, y],[z, x, z],[z, y, z],\right. \\
& {\left.\left.\left.[z, x, y]^{-1}[y, x, z] \| z, x\right],[y, x]\right]^{-1}\right\rangle }
\end{aligned}
$$

Then $R_{3} / \boldsymbol{R}_{4} \leq \mathbf{Z}\left(F / R_{4}\right)$. We shall sketch a proof of this fact.
First of all. the basic rommutators $[y, x, y], \mid z, y, y],[z, x, z],[z, y, z]$ are rentral in F / \boldsymbol{R}_{4}. In fart, the commutator of any of these clements with x, y of z (for instance $[[z, y, y], x]=[z, y, y, x]$) is a (not neressarily basic) commutator of weight 4 in the letters x, y, z, in which either y or z appears at least twire; by a repeated application of the Witt's identity, this commutator can be written as a produrt of hasic commotators of weight 4 and their inverses (we recall that since we are working in a group of class 4 , all commutators of higher weight are trivial) in which. again, either y or z appears at least twire: such basic rommutators all belong to R_{4}, and what we rlamed is proved. Since the computations which we outlined are easy, but tedious, let us ser just one example:

$$
\begin{aligned}
{[z, y, y, x] } & =[[z, y],[y, x]][z, y, x, y] \\
& =[[z, y],[y, x]][y, x, z, y]^{-1}[z, x, y, y] \\
& \left.\left.=[[z, y],[y, x]]\left([y, x, y, z]^{-1} \| y, x\right],[z, y]\right]^{-1}\right)[z, x, y, y] \\
& =[[z, y],[y, z]]^{2}[y, x, y, z]^{-1}[z, x, y, y] \in R_{4}
\end{aligned}
$$

Now, we observe that $[\mid z, r],[y, r]]$ is central in F / R_{4}; furthermore, the product $[z, x, y]^{-1}[y, x, z]$ is also contral in F / R_{4}, berames the elements y and
$=$ centralize both of $[z, x, y]$ and $[y, x, z]\left(\bmod R_{1}\right)$, while we have

$$
\begin{aligned}
& {\left[[z, x, y]^{-1}[y, x, z], x\left|=[z, x, y, x]^{-1}\right| y, x, z, x\right]} \\
& \left.\quad=[z, x, x, y]^{-1}[[z, x], \mid y, x\}\right]^{-1}[y, x, x, z][[y, x],[z, x]] \\
& \left.\quad=[z, x, x, y]^{-1}[y, x, x, z][\{z, x], \mid y, x]\right]^{-2} \in R_{4}
\end{aligned}
$$

Hence $[z, x, y]^{-1}[y, x, z][[z, x],[y, x]]^{-1}$ is also central in F / R_{4}.
We conclude that $R_{3} / R_{4} \leqslant \gamma_{3}\left(F / R_{4}\right) \cap \mathbf{Z}\left(F / R_{4}\right)$. Since we also have $R_{3} / R_{4} \Gamma_{1}\left(F / R_{4}\right)=1$, it follows that sets of representatives of bases of $\gamma_{n}\left(F / R_{3}\right) / \gamma_{n+1}\left(F / R_{3}\right)$ for $n=1,2,3.4$ are given by $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}, \mathcal{C}_{4}$ respertively.
Step 3. Let us define the following snbgroup of F :

$$
\boldsymbol{R}_{2}=\left\langle\boldsymbol{R}_{3},[z, y]\right\rangle .
$$

Then $R_{2} / R_{3} \leq \mathbf{Z}\left(F / R_{3}\right)$. \mathbf{l}_{11} fact. $[z, y]$ rearly commutes with y and z (mod R_{3}); it commutes with x too, (mod $\left.R_{3}\right)$, herause the Witt's identity

$$
\left[z, y, x^{x}\right]\left[x, z, y^{x}\right]\left[y, x^{x}, z^{*}\right]=1
$$

read (mod \boldsymbol{R}_{3}) becomes

$$
[z, y, x][r, z, y]\left[[x, z],[y, x] \mid[y, x, z] \equiv 1 \bmod R_{3}\right.
$$

and thus we get that

$$
\begin{aligned}
{[z, y, x] } & \equiv \mid y, x, z]^{-1}\left[[x, z \mid,[y, r]]^{-1}[x, z, y]^{-1}\right. \\
& =[\mid z, x],[y, x])[y, x, z]^{-1}[z, x, y] \\
& =\left([z, x, y]^{-1}[y, x, z][[z, x],[y, x]]^{-1}\right)^{-1}=1 \bmod R_{3} .
\end{aligned}
$$

Hence $R_{2} / R_{3} \leq \gamma_{3}\left(F / R_{3}\right) \cap \mathbf{Z}\left(F / R_{3}\right)$. This fact, together with the fact that $R_{2} / R_{3} \cap \gamma_{3}\left(F / R_{3}\right)=1$. implies that sets of represeutatives of bases of $\gamma_{n}\left(F / R_{2}\right) / \gamma_{n+1}\left(F / R_{2}\right)$ for $n=1,2,3,4$ are given by $\mathcal{C}_{1}=\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}, \mathcal{C}_{4}$ respectively.

Let us define $H=F / R_{2}$. Then H has exponent p and clearly satisfies the conditions (i), (ii) and (in). In particular H has order \boldsymbol{p}^{10} and class 4. This completes the proof of the lenma.

Lemma 6.0.4 implicitly gives a (rather long) presentation of H in terms of generators (namely x, y and z) and relations. It would be rasy to prove that a shorter presentation is

$$
\begin{aligned}
H= & \langle x, y, z| r^{P}=y^{p}=z^{p}=1, \\
& {[2, y]=[y, x, y]=[z, x, z]=[y, x, x, x]=[z, x, x, x]=1, } \\
& {\left.\left[g_{1}, g_{2}, g_{3}, g_{4}, g_{5}\right]=1 \text { for all } g_{1}, \ldots, g_{5} \in \boldsymbol{H}\right) . }
\end{aligned}
$$

We said earlier that the group H should be a 'first approximation' of the group G that we are trying to construct. In fact, it would be possible to show that

$$
\lfloor g, H\rfloor \cap \gamma_{4}(H) \neq 1 \text { for all } g \in H \backslash \gamma_{4}(H) .
$$

However, H dues not satisfy the stronger condition which we required, namely

$$
\left(\lfloor g . H\rfloor \cap \gamma_{4}(H)\right) \cdot H^{\prime \prime}=\gamma_{4}(H) \text { for all } g \in H \backslash \gamma_{4}(H)
$$

bercause we have for instance

$$
\left.\lfloor[y, x], \boldsymbol{H}\rfloor \cap \gamma_{4}(H)=\langle[z, x],[y, x]\rangle\right\rangle=\boldsymbol{H}^{\prime \prime} .
$$

We shall quirkly remedy this problem. The assigmments

$$
\left\{\begin{array} { l }
{ x ^ { u } = x [z , x , x] ^ { - 1 } } \\
{ y ^ { u } = y } \\
{ z ^ { u } = z }
\end{array} \quad \left\{\begin{array}{l}
x^{v}=x[y, x, x]^{-1} \\
y^{v}=y \\
z^{v}=z
\end{array}\right.\right.
$$

elearly define two mutually commuting antomorphisms u, v of the group F.
Actually, they also define antumorphisms u, v of its factor group $H=$ F / R_{2}. In fart, u and 1 , fix earh element of $\gamma_{3}(F)$, and of course they fix $[z, y$]. Since $\boldsymbol{R}_{2}=\left(\boldsymbol{R}_{2} \cap \gamma_{3}(F)\right) \cdot\langle\{z, y\}\rangle$, it follows that u, v centralize \boldsymbol{R}_{2}. Hence they lift to autonorphisms u, v of $H=F / R_{2}$.

Since the automorphisms n and v of H have order p (because they alse have order p as automorphistus of F) the gromp $K=(u, v)$ is an elementary abelian group of antomorphisms of H, of order p^{2}.

Let us consider the semidirect prodict $G=[\boldsymbol{H}] \boldsymbol{K}$. It has order p^{12} and class 4. Since we assumed that $p \geq 5$, the μ-group G is regular (see for "xample [10, Kapitel III, Satz 10.2 a)]); therefore G has exponent p, berause H and K have rxponent p.

The following equalities which hold in G will be useful in computations:

$$
\begin{array}{ll}
{[y, x, u]=[z, x, x, y],} & {[y, x, v]=1} \\
{[z, x, u]=1,} & {[z, x, v]=[y, x, x, z]}
\end{array}
$$

Let us define two central sulbgroups of G, namely

$$
\begin{gathered}
\left.\left.Z_{1}=\{\| \mid=, x],[y, x]\right]\right\rangle=G^{\prime \prime}, \\
Z_{2}=\left\langle[y, x, x, z][[z, x],[y, x]]^{\prime}\right\rangle,
\end{gathered}
$$

where s is an integer surch that $s \neq 0,-1,-2(\bmod p)($ for instance $s=1$). The factor grotups $G_{1}=G / Z_{1}$ and $G_{2}=G / Z_{2}$ are groups of order p^{11}.

Now we state our final result.
Theorem 6.0.5 The groups G_{1} and G_{2} have identical character tables. but G_{1} is metabelian, while G_{2} has derived length three.

Proof It is rlear that the derived lengths of G_{1} and G_{2} are 2 and 3 respec tively.

In order to prove that G_{1} and G_{2} have identical character tables, we shall appeal to Corollary 4.3.2, with

$$
\begin{aligned}
& N_{1}=\gamma_{1}\left(G_{1}\right)=\gamma_{4}(G) / Z_{1}, \\
& N_{2}=\gamma_{1}\left(G_{2}\right)=\gamma_{4}(G) / Z_{2}, \\
& \therefore: G / \gamma_{4}(G) \rightarrow G / \gamma_{1}(G)
\end{aligned}
$$

the jdentity map amd

$$
\kappa: N_{1} \rightarrow N_{2}
$$

any group isomorphisın, which is neressarily a $G / \gamma_{4}(G)$-module isomorphism, the central sulogroups N_{1} of G_{1} and N_{2} of G_{2} beeing regarded as trivial $G / \gamma_{4}(G)$-modules by conjugation. Then the conditions (i) and (u) of the corollary are satisfied.

It remains to verify condition (az), namely that (G_{1}, N_{1}) and (G_{2}, N_{2}) are Camina pairs, or equivaleutly that

$$
N_{i} \subseteq\left\lfloor g, G_{0}\right\rfloor \text { for all } q \in G_{1} \backslash N_{1}, \text { for } z=1,2
$$

We shall distinguisl two cases.

Case 1: Either $g \in \gamma_{3}\left(G_{i}\right) \backslash \gamma_{4}\left(G_{4}\right)$ or $g \in G_{1} \backslash\left\langle\gamma_{2}\left(G_{1}\right), u, v\right\rangle$.
Let us regard the elementary alolian groups $\boldsymbol{V}_{1}=\gamma_{3}(\boldsymbol{G}) / \gamma_{4}(G)$ and $\boldsymbol{V}_{2}=$ $G /\langle\gamma\rangle(G), u, v\rangle$ as vector spares of dimension 3 over F_{p}. Then the ordered sets $\{[y, x, x],[z, x, x], \mid y, x, z]\}$ aud $\{x, y, z\}$ are sets of representatives of bases of V_{1} and V_{2}^{\prime} respectively. Let us fix also the hases $\{[y, x, x, z]\}$ of $\gamma_{4}(G) / Z_{1}$ and $\{[\mid z, x],[y, x]\}$ of $\gamma_{4}(G) / Z_{2}$. We have

$$
\begin{gathered}
{\left[\gamma_{3}(G), G\right] \subseteq \gamma_{4}(G),} \\
{\left[\gamma_{3}(G),\left(\gamma_{2}(G), u, v\right)\right]=1} \\
\text { and }\left[\gamma_{4}(G), G\right]=1 ;
\end{gathered}
$$

arcurding to Lemma 2.2 , commutation in G gives rise in a natural way to a \mathbf{Z}-hilinear map (actually F_{p}-bilinear. because V_{1}, V_{2} are vertor spares over F_{p})

$$
\gamma: V_{1} \times V_{3} \rightarrow \gamma_{4}(G) .
$$

Let $\pi_{1}: \gamma_{4}(G) \rightarrow \gamma_{4}(G) / Z$, be the uatural homonorphisms for $,=1,2$. We shall show that the composite maps

$$
\gamma_{1}: V_{1} \times V_{2} \rightarrow \gamma_{4}(G) / Z,
$$

are non-degenerate.
We compute:

$$
\left\{[y, x, x]^{a}[z, x, x]^{b}[y, x, z]^{c}, x^{4} y^{b} z^{c}\right]=[y, x, x, z]^{0 c+b+c+c a}[[z, x],[y, x]\}^{-2 b b-c a} .
$$

Thus the map $\gamma \pi_{1}$ has matrix

$$
1^{1} \mid
$$

with respect to the given bases of V_{1}, V_{2} and $\gamma_{4}(G) / Z_{1}$, and bence $\gamma \pi_{1}$ is non-degenerate. On the other band, the map $\gamma \pi_{2}$ bas matrix

$$
\left|-1-s^{-2-s^{-s}}\right|
$$

with respect to the given hases of V_{1}, V_{2} and $\gamma_{4}(G) / Z_{2}$; bence $\gamma_{2} \pi_{2}$ is uondegruerate. becaus4 $\boldsymbol{s} \neq 0,-1,-2$ (mod p). The uou-degeneracy of $\gamma \pi$, and 7_{2} means that

$$
\left[g, G_{4}\right] \supset N_{1} \text {. for all } g \in \gamma_{3}\left(G_{1}\right) \backslash \gamma_{4}\left(G_{4}\right), \text { for } i=1,2 \text {. }
$$

and that

$$
\left[\gamma_{3}\left(G_{1}\right), g\right] \supseteq N_{1}, \text { for all } g \in G_{1} \backslash\left\langle\gamma_{2}\left(G_{i}\right), u, v\right), \text { for } i=1,2 .
$$

It follows in particular that
$\left[g, G_{1}\right] \supseteq N_{1}$ for al] $g \in\left(\gamma_{3}\left(G_{1}\right) \backslash \gamma_{4}\left(G_{1}\right)\right) \cup\left(G_{1} \backslash\left\langle\gamma_{2}\left(G_{1}\right), u, v\right)\right)$, for $:=1.2$.
Case 2: $g \in\left\langle\gamma_{2}\left(G_{i}\right) . w_{1}, v\right\rangle \backslash{ }_{3}\left(\boldsymbol{G}_{1}\right)$.
Let us regard the elementary abelian groups

$$
W^{\prime}=y \in\left(\gamma_{2}(G), u, v\right) / \gamma_{3}(G)
$$

as a vector space of dimension 4 over F_{p}. The ordered set $\{u, v,[y, z],[z, x \mid\}$ is then a set of representatives of a begis of W.

We have

$$
\begin{gathered}
\left(\gamma_{2}(G), u, v\right)^{\prime} \leq \gamma_{4}(G) \\
\text { and }\left[\left\langle\gamma_{2}(G), u, u\right), \gamma_{3}(G)\right]=1
\end{gathered}
$$

according to Lemma 2.2.1, rommutation in G gives rise to an F_{P}-bilinear map

$$
\delta: W \times W^{*} \rightarrow \gamma_{4}(G)
$$

We shall show that the maps

$$
\delta \pi_{1}: \boldsymbol{W}^{*} \times \boldsymbol{W}^{\prime} \rightarrow \gamma_{1}(G) / Z_{1}
$$

fur $i=1.2$, are uon-degenerate.
We compute

$$
\begin{aligned}
& \left.\left.\left.\left|u^{a} v^{v}\right| y, x\right]^{v} \mid z, x\right]^{d}, u^{x} v^{b} \mid y, x\right]^{c}[z, x]^{d} \mid=
\end{aligned}
$$

Thus the map δ *I has matrix

with respect to the given hases of \boldsymbol{W} and $\gamma_{4}(g) / Z_{1}$; it follows that the map $\delta \pi_{1}$ is non-degenerate. On the other hand, the map $\delta \pi_{2}$ has matrix

$$
\left|\begin{array}{cccc}
& & s+2 & \\
& & & s \\
-s-2 & & & -1
\end{array}\right|
$$

with respect to the given hases of W and $\gamma_{4}(G) / Z_{2}$. This matrix has determinant $s^{2}(s+2)^{2} \not \equiv 0(\bmod p)$, because $s \not \equiv 0 .-2(\bmod p)$. Heuce $\delta \pi_{2}$ is nou-degenerate.

The non-clegrneracy of $\delta \pi_{1}, \delta \pi_{2}$ means that

$$
\left\lfloor g,\left\langle\gamma_{2}\left(G_{1}\right), u, v\right\rangle\right\rfloor \supseteq N_{1} \text { for all } g \in\left\langle\gamma_{2}\left(G_{1}\right), u, v\right\rangle \backslash \gamma_{3}\left(G_{1}\right), \text { for }:=1,2 .
$$

In particular, it folluwn that

$$
\left\lfloor q, G_{1}\right\rfloor \supseteq N_{1} \text { for all } g \in\left\langle\gamma_{2}\left(G_{1}\right), u, v\right) \backslash \gamma_{3}\left(G_{1}\right), \text { for } i=1.2 \text {. }
$$

We have proved that

$$
\left\lfloor g . G_{1}\right\rfloor \supseteq N_{1 .} \text { for all } g \in G_{1} \backslash N_{1 .} \text { for } i=1,2 ;
$$

heuce all hypotheses of Corollary 4.3.2 bave heru verified. and its conchusion that G_{1} and G_{2} have identicnl chararter tables now folluws.

Chapter 7

Wreath products

In this last chapter we shall study the character tables of wreath products. The theory of the characters of wreath products has been known for a long time. However, as far as we know, nohody has tried to isolate the exart ingredients on which the character table of a wreath product $G i A$ depends. We shall show that such ingredients are the character table of G and the permutation group A : these determine the rharacter tahle of $G i A$ uniquely. What results is a powerful tool for iucreasing the derived leugth of a group, while keeping its character table under control. We shall employ it in Section 7.4 to construct pairs ($\mathcal{G}, \boldsymbol{H}$) of groups with identical character tables aud derived lengthe n aud $n+1$, for any given natural number $n \geq 2$.

It is a pleasure to thank Prof. I. M. Isaacs for the conversations on this sulject which we had during his stay at the Cniversity of Warwick in June 1991.

7.1 Characters of wreath products

In this sertion and in the next oue we shall collect some facts about irteducible characters, and respectively conjugary rlasses of wreath products.

Definition 7.1.1 Let G be a group and let A be a (not necessarily transitive) permutation group on a finite set Ω. Then the wreath product $\Gamma=G \mid A$ is defined as the semidinect product $[B] A$, where the so-called base-group $B=$ $\Pi_{\bullet \in \Omega} G_{-}$is the direct product of $|\Omega|=k$ copies of G and the action of A on
B is given by

$$
\left(g_{1}, \ldots, g_{k}\right)^{a}=\left(g_{k-1}, \ldots, g_{k^{-}}\right)
$$

for all $\left(g_{1}, \ldots, g_{k}\right) \in B$ and for all $a \in A$.
Wir shall use the nutation (g_{1}, \ldots, g_{k}), assuming that the set Ω is identified with the set $\{1, \ldots, k\}$

Let us recall that the irreducible characters of the base group $B=G_{1} \times$ $\cdots \times G_{k}$, or more generally of any direct product $\boldsymbol{G}_{1} \times \cdots \times \boldsymbol{G}_{\boldsymbol{k}}$. where $G_{1} \ldots, G_{k}$ are arbitrary gronps, are exactly the characters

$$
\theta=\theta_{1} \times \cdots \times \theta_{1}
$$

with $\theta_{1} \in \operatorname{lrI}\left(G_{i}\right)$ for $t=1, \ldots, k$, where by definition

$$
\theta\left(g_{1}, \ldots, g_{k}\right)=\theta_{1}\left(g_{1}\right) \cdots \theta_{k}\left(g_{k}\right) \text { for all }\left(g_{1}, \ldots, g_{k}\right) \in G_{1} \times \cdots \times G_{k} .
$$

Furthernore, rach θ_{1} is uniquely determined by θ, as the unique irredurible constituent of the restriction θ_{C}.

The action of A on B induces the following artion of A ou $\operatorname{Irr}(B)$:

$$
\left(\theta_{1} \times \cdots \times \theta_{k}\right)^{a}=\theta_{10^{-1}} \times \cdots \times \theta_{k^{-1}} .
$$

In fart, we have

$$
\begin{aligned}
\left(\theta_{1} \times \cdots \times \theta_{k}\right)^{a}\left(g_{1} \ldots \ldots, g_{k}\right) & =\left(\theta_{1} \times \cdots \times \theta_{k}\right)\left(\left(g_{1}, \ldots g_{k}\right)^{a^{-1}}\right) \\
& =\left(\theta_{1} \times \cdots \times \theta_{k}\right)\left(g_{1} \times \ldots, g_{k^{-}}\right) \\
& =\theta_{1}\left(g_{1}\right) \cdots \theta_{k}\left(g_{k}\right) \\
& \left.=\theta_{1-1}\left(g_{1}\right) \cdots \theta_{k}\right) \\
& =\left(\theta_{10^{-1}} \times \cdots \times \theta_{k^{--1}}\right)\left(g_{1}, \ldots, g_{k}\right) .
\end{aligned}
$$

We shall employ the technique of tensor induction, an account of which was given in Sertion 2.5. A well-kuown result on characters of wreath products asserts that any irreducible character θ of the base group B which is invatiant in $\Gamma=[B \mid A$ is exteudible to a chararter of Γ (a generalization of this fart is given in [14. Theorem 5.2]). In lemma 7.1.3 we shall rompute explicitly an extension $\eta \in \operatorname{Irr}(\Gamma)$ of θ, but first let us do this in the sperial case in which A is cyclir and acts regularly on Ω. This sperial case is easier to prowe and illustrates very well how tensor iuduction romes into play.

Lemma 7.1.2 Let G be a group and let C be a syclic group of order k. Let us form the regular wreath product $\mathrm{\Gamma}=G \mid C$ fthat is to say. with respect to the regular permutation representation of C). Let $\theta=\theta_{1} \times \cdots \times \theta_{k}$ br an irreducible character of the base group B and assume that θ is invariant in Γ. Then θ is extendible to Γ and an extension is given by ψ, wir , uhere ψ is the irreducible character of B defined by

$$
\psi=\theta_{1} \times 1_{G i} \times \cdots \times 1_{G}
$$

Furthermore, if c is any generator of C. we have.

$$
\psi^{\otimes \Gamma \Gamma}(c)=\theta_{1}(1)=\theta(1)^{1 / k} .
$$

Proof The base group B is a direct product of p ropies of G. We may fix a generator c of C and assume that the action of C on B by conjugation is given by

$$
\left(g_{1}, \ldots, g_{k}\right)^{c}=\left(g_{k}, g_{1} \ldots, g_{k-1}\right) \text { for all }\left(g_{1}, \ldots, g_{k}\right) \in B \text {. }
$$

If θ is any irreclucible character of B, then θ can be written in a unique way as $\theta_{1} \times \cdots \times \theta_{k}$, where $\theta_{1}, \ldots, \theta_{k}$ are irreducible characters of G. The artion of C on B induces the following action of C on $\operatorname{Irr}(B)$

$$
\left(\theta_{1} \times \cdots \times \theta_{k}\right)^{c}=\theta_{k} \times \theta_{1} \times \cdots \times \theta_{k-1} .
$$

Let us assume now that $\theta=\theta_{1} \times \cdots \times \theta_{k}$ is invariant in $\Gamma_{;}$hence $\theta^{-}-\theta$. It follows that $\theta_{1}=\theta_{2}=\cdots=\theta_{k}$, and in particular that $\theta_{1}, \ldots, \theta_{k}$ have all the same degree. namely $\theta_{1}(1)=\theta(1)^{1 / k}$.

Let us define $\psi=\theta_{1} \times 1_{G} \times \cdots \times 1_{G}$ and let us show that $\left(\psi^{\omega r}\right)_{B}=\theta$ For $\left(g_{1}, \ldots, g_{k}\right) \in B$ we lave

$$
\begin{aligned}
\psi^{*} \Gamma^{\left(g_{1}, \ldots, g_{k}\right)} & =\prod_{k=0}^{k-1} \psi\left(r^{\prime}\left(g_{1}, \ldots, g_{k}\right) r^{-1}\right) \\
& =\prod_{==1}^{k-1} \psi\left(g_{1+1}, \ldots, g_{k}, g_{1}, \ldots, g_{k}\right) \\
& =\prod_{k=0}^{k-1} \theta_{1}\left(g_{t+1}\right) \\
& =\prod_{i=0}^{t-1} \theta_{1+1}\left(g_{1+1}\right) \\
& =\theta\left(g_{1}, \ldots, g_{k}\right) .
\end{aligned}
$$

where we have employed the formula for 4 ®T given by Lemma 2.5.2. Hence 1. ${ }^{1}$ exteuds θ.

To prove the last assertion, let c^{\prime} bre a generator of C. Since $C=\left\langle c^{\prime}\right\rangle$ arts trausitively on the transversal $T=C$ of B in Γ via , we have

$$
\psi^{\varphi r^{r}}\left(c^{i}\right)=\psi\left(c^{i k}\right)=\psi^{\prime}(1)=\theta_{1}(1) .
$$

The proof is complete.
The general form of Lemma 7.1 .2 is the following
Lemma 7.1.3 Let G be a groacp and let A be a perthutation group on Ω, $w_{1} t h|\Omega|=k$. Let us form the ureath product $\Gamma=G \backslash A$. Let $\theta=\theta_{1} \times \cdots \times \theta_{k}$ be an irreducible character of the base group B. and let us assume that A is invariant in Γ. Then θ has an extension $\eta \in \operatorname{lrr}(\Gamma)$. and the value of η on the generic element $g=\left(g_{1}, \ldots . g_{k}\right) n$ of Γ is given by the formula

$$
\begin{equation*}
\eta(g)=\prod_{n=1}^{1} \theta_{n}\left(g_{n} g_{n} \cdots g_{-i} n_{i n-1}\right) . \tag{7.1}
\end{equation*}
$$

where $\omega_{1}, \ldots, w_{1}$ are representatives for the orbity of $\langle a\rangle$ on Ω and $n(8)$ is the length of the $\langle a\rangle$-orbit containing ω_{a}.

Proof Let tus derompose Ω into A-orbits

$$
\Omega=\Omega_{1} \cup \cdots \cup \Omega_{\mathrm{e}}
$$

We may identify Ω with the set $\{1, \ldots, k\}$ in such a way that

$$
\begin{aligned}
\Omega_{1} & =\left\{k_{1}=1, \ldots, k_{2}-1\right\} \\
\Omega_{2} & =\left\{k_{2}, \ldots, k_{3}-1\right\} \\
& \vdots \\
\Omega_{\mathrm{v}} & =\left\{k_{\mathrm{v}}, \ldots, k\right\} .
\end{aligned}
$$

Then k_{1}, \ldots, k_{v} is a set of representatives for the orbits of A on Ω. Let S_{1} denote the stabilizer of k_{1} in A, for $i=1, \ldots, v$,

By assumption θ is invariant in Γ. This is equivalent to

$$
\left(\theta_{1} \times \cdots \times \theta_{k}\right)^{n}=\theta_{1} \times \cdots \times \theta_{k} \text { for all } a \in A,
$$

that is to say.

$$
\theta_{1} \cdots \times \cdots \times \theta_{k^{-}-1}=\theta_{1} \times \cdots \times \theta_{k} \text { for all } a \in A \text {. }
$$

Since the components θ, are uniquely determined by θ. we have

$$
\theta_{, n}=\theta, \text { for all } \jmath=1, \ldots, k \text { and for all } a \in A \text {. }
$$

Now let us define the following chararters of B, for $i=1, \ldots, v$:

$$
\theta_{1}=1_{G_{1}} \times \cdots \times 1_{G_{k_{1}-1}} \times \theta_{k_{k}} \times \cdots \times \theta_{k_{1+1}-1} \times 1_{G_{k_{k+1}}} \times \cdots \times \mathbf{1}_{G_{k}} .
$$

Each θ, is irreducible and is clearly invariant in Γ. We slatl find an extension $\eta_{1} \in \operatorname{Irr}(\Gamma)$ of $\theta_{\text {, }}$ for earh $i=1 \ldots$. Since $\theta=\theta_{1} \cdots \theta_{1}$, the character $\eta=\eta_{1} \cdots \eta_{v}$ of Γ will be an extension of θ.

Let us fix an index i. The stabilizet S_{1} of k_{b} in A centralizes G_{k}; consequently, the suhgroup $B S$, of Γ decomposes into a direct product

$$
B S_{i}=G_{k_{i}} \times\left(\left(\prod_{\substack{1 \leq \leq k \\ j \neq k_{i}}} G_{j}\right) S_{i}\right)
$$

Thus there exists a mique extension $\psi_{i} \in \operatorname{Irr}\left(B S_{i}\right)$ of the irreducible chararter $\theta_{k_{c}}$ of $G_{k_{1}, \text { such that }}$

$$
\left(\prod_{\substack{1 \leq j<k \\ j \neq k_{i}}} G_{j}\right) S_{i} \leq \operatorname{ker} \psi_{i}
$$

The value of ψ_{1} on a generic element $g=\left(g_{1}, \ldots, g_{k}\right) a$ of $B S$, is given by

$$
v_{1}(g)=\theta_{k_{2}}\left(g_{k_{k}}\right) .
$$

Now we claim that the tensor induced character $\eta_{1}=\psi_{1}^{8 \Gamma}$ is an exteusion of θ, In order to prove the claim, let R, be a set of representatives for the right cosets of $S_{\text {d }}$ in A; hence R, also represents the right rosets of $B S_{\text {, in }} \Gamma$. The artion of Γ by right translation on the set of right rosets of $B S$, in Γ induces an action of Γ on R_{i}, namely $r \cdot g$ for $r \in R_{\text {, and }} g \in \Gamma$ is the unique element of R_{1} such that

$$
(B S, r) g=B S_{1}(r \cdot g) .
$$

Let us fix an element $g=\left(g_{1}, \ldots, g_{k}\right) a$ of Γ. Let R_{01} be a set of representatives of the orbits of $\langle g\rangle$ on R via , aud for $r \in R_{00} \operatorname{let} n(r)$ denote the length of the $\langle g$)-orlit $r(g)$. According to Lemma 2.5.2, we have

$$
\psi_{1}^{\otimes r}(g)=\prod_{r \in H_{-}} \ell_{i}\left(r g^{n(r)} r^{-1}\right)
$$

We compate:

$$
\begin{aligned}
& g^{\mathrm{nm}(\mathrm{r})}=\left(\left(g_{1}, \ldots, g_{\mathbf{t}}\right) \mathrm{f}\right)^{\mathrm{m}(\mathrm{r})} \\
& =\left(g_{1}, \ldots, g_{k}\right)\left(g_{1}, \ldots, g_{k}\right)^{a^{-1}} \cdots\left(g_{1}, \ldots, g_{k}\right)^{a^{-(n)(r)-1)}} a^{n(r)}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(g_{1} g_{1} \cdots \cdots g_{1 a^{m(r)-1}}, \cdots, g_{k} g_{k} \cdots g_{k^{\left.-m^{n+r}\right)-1}}\right) a^{n(t)} .
\end{aligned}
$$

It follows that

$$
r \eta^{n(r)} r^{-1}=\left(g_{1} \cdot g_{1} r a \cdot g_{1 r a^{n(0)-1}}, \ldots, g_{k} \cdot g_{k} \cdot \cdots g_{k^{-a} n(r)-1}\right)\left(r a^{n(r)} r^{-1}\right) .
$$

According to the definition of $n(r)$, we have $r \cdot g^{n+1}=r$, which means $B S_{1} r g^{n(r)}=B S_{r} r$, or in other words $r q^{n(r)_{r}^{-1}} \in B S_{1}$. Hence

$$
r a^{n(r)} \tau^{-1} \in A \cap B S_{0}=S_{1}
$$

Therefore we have
for $r \in R_{10} ;$ it follows that

We said earlier that $\theta, a=\theta$, for all $j=1, \ldots, k$ and for all $a \in A$; hence we may also write

We shall see that this result ran be formulated differently. Let $g=$ $\left(g_{1}, \ldots, g_{k}\right) a \in \Gamma$. Then g arts on R, via as a does: in fact, we have

$$
\left(B S_{1} r\right) g=\left(B S_{i}\left(g_{1}, \ldots, g_{k}\right)^{r-1}\right) r a=\left(B S_{1} r\right) a,
$$

and thus $r \cdot g=r \cdot n$ fur all $r \in R$, Since R_{10} is a set of representatives of the orbits of (g) on R, via , it is also a set of representatives of the orbits of $\langle\alpha\rangle$ on R_{1} via . Now the action of A on R_{1} via - is similar to the given permutation representation of A on Ω_{1}, berause R_{1} is a right transversal for the stabilizer S_{1} of k, in A. Mote precisely, the map

$$
\begin{aligned}
R_{i} & \rightarrow \Omega_{i} \\
r & \mapsto k_{i}^{r}
\end{aligned}
$$

is a bijection and satisfies

$$
k_{1}^{r a}=\left(K_{i}^{\prime}\right)^{a} .
$$

Therefore, the elements $h_{;}^{r}$ for $r \in R_{0}$ are distinct, they form a set of representatives for the orbits of $\langle a\rangle$ on Ω_{1}, and $n(r)$ is the length of the $\langle a\rangle$-orbit coutaining k_{c}^{r}. Thus formula 7.2 can be rewritten as follows:

$$
\begin{equation*}
\psi_{i}^{\ominus \Gamma}(\boldsymbol{g})=\prod_{j=1}^{t_{i}} \theta_{\omega_{i j}}\left(g_{\omega_{i, j}} g_{\omega_{i, j}} \cdots g_{\omega_{i j}^{a^{n i(i, j)-1}}}\right) \tag{7.3}
\end{equation*}
$$

where $\omega_{11}, \ldots, w_{h}$ are representatives for the orbits of $\langle a\rangle$ on Ω_{1}, and $n(i, j)$ is the leugth of the (a)-orbit which rontains w_{13}. In the particular case in which $g=\left(g_{1}, \ldots, g_{k}\right) a \in B$, we have $a=1$, and hence all orbits of $\langle a\rangle$ on Ω, have leugth one. Thus we get

$$
\psi_{i}^{\otimes \mathrm{\Gamma}}(g)=\prod_{j=k_{i}}^{k_{i+1}-1} \theta_{j}\left(g_{j}\right)=\hat{\theta}_{i}(g)
$$

Hence $\eta_{1}=\psi_{i}^{\circ}$ is an extension of $\dot{\theta}_{1}$, as we claimed.
Let us define

$$
\eta_{1}=\eta_{\mathbf{1}} \cdots \eta_{v} .
$$

Then η exteuds θ, in fact

$$
\eta_{H}=\left(\eta_{1}\right)_{B} \cdots\left(\eta_{v}\right)_{B}=\hat{\theta}_{1} \cdots \dot{\theta}_{v}=\theta
$$

Moreover, the value of η on a generic element $g=\left(g_{1} \ldots . g_{k}\right)$ a of Γ is given by the formula

$$
\eta(g)=\eta_{1}(g) \cdots \eta_{v}(g)=\prod_{i=1}^{v} \prod_{y=1}^{L_{i}} A_{\alpha_{i}}\left(g_{\alpha_{i}} g_{-2} \cdots+g_{-j}=(\Delta v-1)\right.
$$

where $\omega_{11}, \ldots, \omega_{i} \|_{\text {a }}$ are representatives for the orbits of $\langle a\rangle$ on Ω, and $n(t, j)$ is the length of the (a)-orbit containing ω_{i}, ,

The above fommla can clearly be written as

$$
\eta(g)=\prod_{i=1}^{1} \theta_{\omega_{i}}\left(\eta \eta_{\omega i} \xi_{-i} \cdots g_{\omega_{i}^{0}} n_{i(i)-1}\right)
$$

where $\omega_{i}, \ldots, \omega_{\text {a }}$ are representatives for the orbits of $\langle a\rangle$ on Ω and $n(z)$ is the length of the $\langle a\rangle$-orbit containing $u t$. The proof is complete.

We observe that the formula for the extension η of θ given in Lemma 7.1 .3 doess not contain any trace of the orbits of A on Ω, which instead are fundamputal its the proof of the lemma. In order to compute $\eta(g)$ for $g=\left(g_{1}, \ldots, q_{\boldsymbol{L}}\right) \boldsymbol{a} \in \Gamma_{\text {, we only }}$ need to know the artion of $\langle a\rangle$ on B. Since the sulgrouy $B\langle a\rangle$ of Γ is naturally isomorphic to $G\}\langle a\rangle$, where $\langle a\rangle$ is regarded as a permutation group on Ω as a subgroup of A, it follows that in order to compute $\eta(g)$ we may as well apply the lemma with $A=\langle a\rangle$. This leads to a sort of 'canonicity' of the extension η of θ. as stated in the next corollary.

Corollary 7.1.4 Let A be a pernutation group on a set Ω and let A_{1} be a subgroup of A; hence A_{1} is adso a permutation group on Ω. Let G be a group and let the form the wrath product $\Gamma-G \mid A$. Let Γ_{1} be the subgroup of Γ generated by the base group B of Γ and A_{1} : hence Γ_{1} is naturally isomorphir. to $G \backslash \mathcal{A}_{1}$. Let $\theta \in \operatorname{Irr}(B)$ be invariant in Γ, and let $\eta_{1} \eta_{1}$ be the extensions of A to Γ and Γ_{1} respectively, conatrurted as in Lemma 7.1.3. Then $\eta_{\Gamma_{1}}=\eta_{1}$

Proof The conclusion follows easily from the discussion which precedes the corollary:

7.2 Conjugacy classes of wreath products

Now that we have an explicit way of extending invariant characters of the base group of a wreath product $\Gamma=G \mid A$, let us turn our attention to the conjugary classes of Γ. We shall partition Γ into subsets which are not conjugary classes, though earh of then is rontained in some conjugary class of Γ. The result of Lamina $\mathbf{7 . 1 . 2}$ would suggest to assoriate a subset
$\mathcal{A}_{4}\left(\mathcal{K}_{1} \ldots \ldots \mathcal{C}_{1}\right)$ of Γ to carh $a \in A$ and carh l ple $\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{1}\right)$ of ronjugary classes of G. where l is the mumber of orbits of (a) on Ω, according to the following definition:

$$
\begin{aligned}
& \boldsymbol{K}_{a \cdot\left(\mathcal{C}_{2}, \ldots, c_{1}\right)}=\left\{\left(g_{1}, \ldots, g_{k}\right) a \in \Gamma \mid\right.
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{2}{2} \\
& \left.g_{\omega_{1}} g_{\omega_{1}} \cdots g_{\omega_{1}} \text { and } 11-1 \in \mathcal{L}_{i}\right\},
\end{aligned}
$$

wherer $\omega_{1} \ldots . w_{i}$ are representatives for the orbits of $\langle a\rangle$ on Ω and $n(i)$ is the length of the (a)-orbit containing ω_{i} (it can be easily shown that this defnition is independent of the rhoice of representatives $\omega_{1}, \ldots, w_{\text {h }}$), In fact, if θ is an irreducible character of the bese group B which is invariant in $\boldsymbol{B}(\boldsymbol{a})$, then the extension η of θ given by the formula of Lemma 7.1 .2 is clearly constant on $\boldsymbol{K}_{a,\left(c_{1}, \ldots, c_{l}\right)}$.
 tation which will allow us to describe note casily how A permutes them by conjugation.

Let. M denote the set of maps $m: \Omega \rightarrow \operatorname{cl}(G)$, where $c l(G)$ is the set of conjugacy classes of G. The action of A on Ω induces an action of A on M. where w° for $m \in M$ and $a \in A$ is the map such that

$$
\left(m^{a}\right)(\omega)=m\left(\omega^{a^{-1}}\right) \text { for all } \omega \in \Omega
$$

Let us define \mathcal{M}_{a} for $a \in A$ as the subset of the elements of M fixed by a; in other words M_{a} is the set of maps $m: \Omega \rightarrow r l(G)$ which are constant on the orbits of (a) on Ω. We observe that $\left(M_{a}\right)^{b}$ for $a, b \in A$ is the set of the elcments of M fixed by a^{b}; lenere

$$
\left(M_{a}\right)^{b}=M_{a^{b}}
$$

Definition 7.2.1 Lef $a \in A$ and $m \in M_{a}$. Let us choose representatives $\omega_{1}, \ldots, w_{1}$ for the orbity of $\langle a\rangle$ on Ω and let $n(i)$ be the length of the $(a\rangle$-orbid containing ω_{1}. Lett za define.

$$
\begin{aligned}
& \boldsymbol{\kappa}_{\mathrm{a}, \mathrm{~m}}=\left\{\left(g_{1}, \ldots, g_{k}\right) a \in \Gamma \mid\right. \\
& g_{\nu 1} g_{\omega_{1}} \cdots g_{\omega_{1}, n(1)-1} \in m\left(\omega_{1}\right) \text {. } \\
& \left.g_{\omega_{1}} g_{\omega_{1}} a \cdots g_{\omega_{1}=}=(1)-1 \in \boldsymbol{m}\left(\omega_{l}\right)\right\} .
\end{aligned}
$$

This definition does uot depend on the choice of the tepresentatives $\omega_{1} \ldots . . \omega_{1}$ of the orhits of $\langle a\rangle$ on Ω. In fact, let us replace for example
 integet m with $1 \leq m \leq n(2)-1$. The element

$$
\begin{aligned}
& g_{\omega_{1}} g_{\omega_{0}} \cdots g_{\omega_{i}^{m(i)-1}}=q_{\omega_{1}} a m^{m} g_{\omega_{1} a^{m+1}} \cdots g_{\alpha_{0}}=*=n-1 \\
& =\left(g_{\omega_{1}} g_{\omega_{1}} \cdots \cdot g_{\omega_{1}}=m=1\right)^{-1}\left(g_{\omega_{1}} g_{\omega_{i}}=\cdots g_{\omega_{0}}=m-1\right) \\
& \left(g_{m_{1}}=\cdots g_{n+}+\cdots-1\right)\left(g_{n}+\cdots \cdots g_{\omega_{1}=m+m(6)-1}\right) \\
& =\left(g_{\omega_{1}} g_{\omega_{1}} \cdots g_{\omega_{1}=m-1}\right)^{-1}\left(g_{\omega_{n}} g_{\omega_{1}} \cdots \cdots g_{\omega_{0}}=0-1\right)\left(g_{\omega_{1}} g_{\omega_{1}}=\cdots g_{\omega}=--1\right)
\end{aligned}
$$

is ronjugate to $g_{s_{1}, g_{w}} \cdots \cdots g_{\omega, m(1)-1}$ in G, hence it belougs to the conjugacy
 definition of the set $\boldsymbol{K}_{\mathrm{a}, \mathrm{m}}$ in independent of the choice of the representatives -个.... . . $\%$)

It is rlear that the sets \mathcal{X}_{a}.m for $a \in A$ aud $m \in M_{a}$ form a partition of Γ. In its artion on Γ by conjugation A permutes the sets $\boldsymbol{K}_{\mathrm{a}} \mathrm{m}$, an the next lemina states.

Lemma 7.2.2 For $a, b \in A$ and $m \in \mathcal{M}_{a}$, wp have

$$
\left(\mathbb{K}_{2, n}\right)^{b}=\AA_{n^{x}, \ldots n^{b}}
$$

Proof First of all, the clements of $\boldsymbol{K}_{a, m n}$ have the form $\left(g_{1}, \ldots, g_{k}\right)$ a for some
 for sonne $g_{1} \ldots, g_{k} \in G$. Lett $w_{1}, \ldots, w /$ be representatives for the orbits of $\langle a\rangle$ on Ω, then $w_{1}^{b}, \ldots, w_{i}^{b}$ are representatives for the orbits of $\left\langle a^{b}\right\rangle$ on Ω and the $\left(a^{6}\right\rangle$-orbit containing w_{f}^{b} has the same leugth $n(i)$ of the $\langle a\rangle$-orbit containing $\omega_{\text {a }}$. We have

$$
\left(\left(g_{1}, \ldots, m\right) a\right)^{b}=\left(g_{1^{b-1}}, \ldots, g_{k^{-2}}\right) a^{b}=\left(h_{1}, \ldots, h_{t}\right) a^{b}
$$

where we have put $h_{j}=g, w^{-1}$ for all $j=1, \ldots$. k. The condition

$$
\begin{equation*}
\left(h_{2}, \ldots, h_{k}\right) a^{\phi} \in \mathbb{K}_{w^{*}, m^{*}} \tag{7.4}
\end{equation*}
$$

is ecquivalant to

$$
h_{\omega_{0}} h_{\omega_{i}} \omega_{a^{b}} \cdots h_{\omega_{j}} \omega_{=b_{j}(t)-1} \in m^{b}\left(\omega_{1}^{b}\right) \text { for all }:=1 \ldots, t \text {. }
$$

Since
and $m^{b}\left(\omega_{1}^{b}\right)=m\left(\omega_{1}\right)$ by definition, rondition 7.4 is equivaleut to

$$
g_{-1} g_{-i}=\cdots g_{\omega, i^{n}(i)-1} \in m\left(\omega_{i}\right) \text { for all } i=1, \ldots, l \text {, }
$$

and hence to

$$
\left(g_{1}, \ldots, g_{\mathrm{k}}\right) a \in \mathcal{K}_{\mathrm{a}, \mathrm{~m}}
$$

that is to say,

$$
\left(\left(g_{1}, \ldots, 9 n\right) a\right)^{b} \in\left(\kappa_{a, m}\right)^{b}
$$

The proof is complete.
In the next lemma wir shall compute the cardinality of the sets $\boldsymbol{K}_{\mathrm{a}} \mathrm{m}$
Lemma 7.2.3 We have

$$
\left|\AA_{a, m}\right|=|G|^{k-1} \prod_{t=1}^{1}\left|m\left(\omega_{i}\right)\right|
$$

where $\omega_{1}, \ldots, w_{l}$ are representatives for the orbita of A on Ω.
Proof We olserve that the equation

$$
h_{1} h_{2} \cdots h_{n}=h
$$

in the unknowns $h_{1}, \ldots, h_{\mathrm{n}} \in H$, where h is a fixed element of a group H. lias exactly $|\boldsymbol{H}|^{\boldsymbol{n}-1}$ solutions (h_{1}, \ldots, h_{n}). In fact, given arbitrary values in \boldsymbol{H} to h_{1}, \ldots, h_{n-1}, there is exactly one value for h_{n}, namely $h_{n}=h_{n-1}^{-1} \cdots h_{1}^{-1} h$. such that $h_{1} h_{2} \cdots h_{n}=\bar{h}$. Now, from the definition of $\boldsymbol{K}_{\mathrm{a}}{ }_{\mathrm{a}}$ we wasily get

$$
\left|X_{a . r a}\right|=\prod_{i=1}^{i}\left(|G|^{p(i)-1}\left|m\left(\omega_{i}\right)\right|\right)
$$

where $n(i)$ is the length of the (a)-orhit containing ω_{1}. Since $\sum_{t=1}^{\prime} n(t)=k$, the conclusion Eollows.

7.3 Character tables of wreath products

Theorem 7.3.1 Let G_{1} and G_{2} be groups with identical character tables and let A be a permutation group on Ω. Then the wreath producta $\Gamma_{1}=G_{1} \mid A$ and $\Gamma_{2}=G_{2} 1$ A have identical character tables.

Proof Let G_{1} and G_{2} have identical rlaracter tables via the bijections

$$
\begin{aligned}
\dot{\alpha}: G_{1} & \rightarrow G_{2}, \\
\bar{\beta}: \operatorname{Irr}\left(G_{1}\right) & \rightarrow \operatorname{lrr}\left(G_{2}\right) .
\end{aligned}
$$

We shall prove the theorem by defining bijections

$$
\begin{aligned}
a: \Gamma_{1} & \rightarrow \Gamma_{2}, \\
\beta: \operatorname{Irr}\left(\Gamma_{1}\right) & \rightarrow \operatorname{Irr}\left(\Gamma_{2}\right),
\end{aligned}
$$

and then checking that

$$
\chi^{s}\left(g^{\alpha}\right)=\chi(g) \text { for all } \chi \in \operatorname{lrr}\left(\Gamma_{1}\right) \text { and for all } g \in \Gamma_{1} \text {. }
$$

Definition of α.

Let us define subset of Γ_{1} and Γ_{2} acrording to Definition 7.2.1. Since now we have two wreath products $\Gamma_{1}=G_{1} / A$ and $\Gamma_{2}=G_{2} / A$, we sliall kerp the untation of Definition 7.2.1 for what concerns the group Γ_{1}, and add bars for the corresponding objects of Γ_{2}. In partirulat. \mathcal{M}_{a} and \mathcal{M}_{a} for $a \in A$ will denote the set of maps $m: \Omega \rightarrow \mathrm{cl}\left(G_{1}\right)$, and respectively $\boldsymbol{m}: \Omega \rightarrow \mathrm{cl}\left(\boldsymbol{G}_{2}\right)$, which are ronstant on each orbit of (a) on Ω.

For earh $m \in \mathcal{M}$ let us define a map $\left.m^{\alpha}: \Omega\right\} \rightarrow \mathrm{cl}\left(\boldsymbol{G}_{2}\right)$, that is to say, an element $\boldsymbol{m}^{\mathbf{0}}$ of \boldsymbol{M}, wia the formula

$$
m^{\alpha}(\omega)=m(\omega)^{\alpha} \text { for all } \omega \in \Omega \text {. }
$$

We observe that the map à $M \rightarrow M$ defined above commutes with the actions of A on, \mathcal{M} and \mathcal{M}, namely

$$
\left(m^{\infty}\right)^{a}=\left(m^{a}\right)^{\alpha} \text { for all } a \in A
$$

In fact, for $\omega \in \Omega$ we have

$$
\left(m^{\alpha}\right)^{a}(\omega)=m^{\alpha}\left(\omega^{a^{-2}}\right)=m\left(\omega^{a^{-1}}\right)^{\alpha}=m^{\alpha}(\omega)^{a}=\left(m^{a}\right)^{\alpha}(\omega) .
$$

As a consequence, for $a \in A$ we have that $m^{n} \in \mathcal{M}_{a}$ exactly when $m \in \mathcal{M}_{a}$ in other words, for each a $\in \mathcal{A}$ we get a bijection

$$
\begin{aligned}
M_{a} & \rightarrow M_{a} \\
m & \mapsto m^{b}
\end{aligned}
$$

Now the sets $\mathcal{K}_{a m}$ for $a \in A$ and $m \in \mathcal{M}_{a}$ form a partition of Γ_{1}. Similarly, the sets $\boldsymbol{K}_{a . m^{*}}$ for $a \in A$ and $m \in \mathcal{M}_{a}$ form a partition of Γ_{2}. Furthermore, acrording to Lemma 7.2.3, we have

$$
\left|\mathcal{K}_{a, m}\right|=\left|G_{1}\right|^{k-1} \prod_{i=1}^{l}\left|m\left(\omega_{i}\right)\right|
$$

and

$$
\left|\overline{\mathcal{X}}_{a, m^{\hat{a}}}\right|=\left|G_{2}\right|^{k-1} \prod_{k=1}^{l}\left|m^{\hat{\alpha}}\left(\omega_{i}\right)\right|,
$$

where $\omega_{1}, \ldots, w_{i}$ are representatives for the orbits of (a) on Ω. Since ($\hat{\sigma}, \vec{\beta}$) is a chararter table isomorphism, we have $\left|G_{1}\right|=\left|G_{2}\right|$ and

$$
\left|m\left(\omega_{1}\right)\right|=\left|m\left(\omega_{1}\right)^{\alpha}\right|=\left|m^{a}\left(\omega_{1}\right)\right| .
$$

It follows that

$$
\left|\dot{X}_{\mathrm{a}, m}\right|=\left|\mathcal{X}_{\mathrm{a}, \mathrm{~m}^{\mathrm{d}}}\right| \text { for all } a \in A \text { and for all } m \in \mathcal{M}_{a}
$$

Thus we can choose a bijection o : $\Gamma_{1} \rightarrow \Gamma_{2}$ which seuds $\mathcal{K}_{a, m}$ onto $\mathcal{K}_{a \text { mat }}$ for all $a \in A$ and for all $m \in \mathcal{M}_{a}$.

Definition of β.

The bijection $\beta: \operatorname{Irr}\left(G_{1}\right) \rightarrow \operatorname{Irr}\left(G_{2}\right)$ induces a bijection $\beta: \operatorname{Irr}\left(B_{1}\right) \rightarrow$ $\operatorname{Irr}\left(B_{2}\right)$, where θ^{3} for $\theta=\theta_{1} \times \cdots \times \theta_{1} \in \operatorname{Irr}\left(B_{1}\right)$ is defined as

$$
\theta^{\beta}=\theta_{1}^{\beta} \times \cdots \times \theta_{k}^{\beta} \in \operatorname{Irr}\left(B_{2}\right)
$$

The hijection β commutes with the action of A by 'ronjugation' on $\operatorname{Irr}\left(B_{1}\right)$ and $\operatorname{Irr}\left(B_{2}\right)$, namely

$$
\left(\theta^{n}\right)^{A}=\left(\theta^{3}\right)^{a} \text { for all } \theta \in \operatorname{Irr}\left(B_{1}\right) \text { aud for all } a \in A
$$

In fart, if $\theta=\theta_{1} \times \cdots \times \theta_{i} \in \operatorname{Irr}\left(B_{1}\right)$ wo have

$$
\left(\theta^{a}\right)^{\prime \prime}=\left(\theta_{1^{-1}} \times \cdots \times \theta_{k^{-1}}\right)^{d}=\theta_{k^{-1}}^{j} \times \cdots \times \theta_{k-1}^{j}=\left(\theta^{d i}\right)^{a} .
$$

 $\theta_{1}^{1} \ldots \theta_{r}^{3}$ are representatives for the orbits of A on $\operatorname{Ir}\left(B_{2}\right)$. Fur $s=1, \ldots, r$ let $T_{\text {a }}$ denote the inertia group of θ_{1} in A, that is to say, the stabilizer of θ_{1} in thr action of A on $\operatorname{Irr}\left(B_{1}\right)$. Clearly, T_{1} is also the inertia group of θ_{1}^{3} in A. Arcording to Clifford's Theorem. $\operatorname{Ir}\left(\Gamma_{1}\right)$ and $\operatorname{Irr}\left(\Gamma_{2}\right)$ decompose as follows

$$
\begin{aligned}
& \operatorname{Irr}\left(\Gamma_{1}\right)=\operatorname{Irr}\left(\Gamma_{1}, \theta_{1}\right) \cup \cdots \cup \operatorname{Irr}\left(\Gamma_{1}, \theta_{4}\right) \\
& \operatorname{Irr}\left(\Gamma_{2}\right)=\operatorname{Irr}\left(\Gamma_{2}, \theta_{1}^{4}\right) \cup \cdots \operatorname{Irr}\left(\Gamma_{2}, \theta_{5}^{j}\right)
\end{aligned}
$$

We shall define bijections

$$
\beta: \operatorname{Irr}\left(\Gamma_{1}, \theta_{i}\right) \rightarrow \operatorname{Irr}\left(\Gamma_{2}, \theta_{1}^{d}\right)
$$

for $i=1 \ldots . r$, which will then be put together to give a bijection

$$
\beta: \operatorname{Irr}\left(\Gamma_{1}\right) \rightarrow \operatorname{Irr}\left(\Gamma_{2}\right)
$$

Let us fix an index i. According to the Clifford correspondence (see [13, Theorem (6.11)] , induction of characters gives bijections from $\operatorname{Irr}\left(H_{1} \boldsymbol{T}_{\mathbf{n}}, \theta_{1}\right)$ outo $\operatorname{Irr}\left(\Gamma_{1}, \theta_{1}\right)$ and from $\operatorname{Irr}\left(B_{2} T_{a}, \theta_{1}^{d}\right)$ onto $\operatorname{Irr}\left(\Gamma_{2}, \theta_{1}^{\prime}\right)$. The construction of our bijertion d_{1} will thus pass throngh the sets $\operatorname{Irr}\left(B_{1} T_{1}, \theta_{1}\right)$ and $\operatorname{Irr}\left(B_{1} T_{1}, \theta_{1}^{3}\right)$.

Now since θ_{1} is invariant in $B_{1} T_{0}$ (which is ranouically isomorphie to $\left.G_{1} \mid T_{1}\right)$, Lemma 7.1 .2 guaranteres that θ_{1} is extendible to $B_{1} T_{1}$ and provides us. with a standard extension of θ_{1}, let us call it $\eta_{1} \in \operatorname{Irr}\left(B_{1} T_{1}\right)$. Similarly, let us call $\hat{\eta}_{4} \in \operatorname{Irr}\left(B_{2} T_{1}\right)$ the staudard extension of θ_{1} provided by Lemma 7.1.2. Accordiug to [13, Corollary (6.17)], the elements of $\operatorname{Irr}\left(B_{1} T_{1}, \theta_{1}\right)$ are exactly the characters η_{1} p for $p \in \operatorname{Ir}\left(B_{1} T_{1} / B_{1}\right)$. Similarly, the elements of $\operatorname{Irr}\left(B_{2} T_{1}, \theta_{1}^{3}\right)$ are the characters η_{1}, for $\psi^{\prime} \in \operatorname{Ir}\left(B_{2} T_{1} / B_{2}\right)$.

We have a natural bijertive rorrespoudence between $\operatorname{Irr}\left(B_{1} T_{1} / B_{1}\right)$ and $\operatorname{Irr}\left(B_{2} T_{1} / B_{1}\right)$, corresponding to the obvious isontorphism from $B_{1} T_{1} / B_{1}$ onto $B_{2} T_{1} / B_{2}$. To put it differently, the restriction map gives bijections

$$
\begin{aligned}
\operatorname{Irr}\left(B, T_{1} / B_{2}\right) & \rightarrow \operatorname{Irr}\left(T_{1}\right) \\
\varphi & \rightarrow \varphi_{T_{i}}
\end{aligned}
$$

for $J=1,2$; lience we can form a bijection

$$
\begin{aligned}
\operatorname{Irr}\left(B_{1} T_{1} / B_{1}\right) & \rightarrow \operatorname{Irr}\left(B_{2} T_{1} / B_{2}\right) \\
\varphi & \mapsto \dot{\varphi}
\end{aligned}
$$

where $\left\langle\right.$ denotes the unique irreducille chararter of $B_{2} T_{1}$ whose kernel contains \boldsymbol{B}_{2} and such that $\varphi \tau_{1}=\varphi T_{\text {. }}$.

Now we are ready to set up a bijection from $\operatorname{Irr}\left(\Gamma_{1}, \theta_{2}\right)$ onto $\operatorname{Irr}\left(\Gamma_{2}, \theta_{1}^{j}\right)$ In fart. we have seen that

$$
\operatorname{Irr}\left(\Gamma_{1}, \theta_{1}\right)=\left\{\left(\eta_{i} \nu\right)^{\Gamma_{1}} \mid \varphi \in \operatorname{trr}\left(B_{1} T_{1} / B_{1}\right)\right\}
$$

and

$$
\operatorname{Irr}\left(\Gamma_{2}, \theta_{0}^{3}\right)=\left\{(\eta, \varphi)^{\Gamma_{2}} \mid \varphi \in \operatorname{Irr}\left(B_{1} T_{1} / B_{1}\right)\right\} .
$$

Let us define the following maps, for $i=1, \ldots, r$:

$$
\begin{aligned}
\beta_{1}: \operatorname{Irr}\left(\Gamma_{1}, \theta_{1}\right) & \rightarrow \operatorname{Irr}\left(\Gamma_{2}, \theta_{i}^{3_{3}}\right) \\
\left(\eta_{1} \varphi\right)^{\Gamma_{2}} & \mapsto\left(\eta_{1}, \hat{\varphi}\right)^{\Gamma_{2}} .
\end{aligned}
$$

The maps β_{1} are well defined and are bijections. The various maps β_{1} can then be put together to give a siugle hijection

$$
\beta: \operatorname{Irr}\left(\Gamma_{1}\right) \rightarrow \operatorname{Irr}\left(\Gamma_{2}\right) .
$$

Verification that $\ell^{\beta}\left(g^{\alpha}\right)=\{(g)$.
Let us fix a chararter $x \in \operatorname{Irr}\left(\Gamma_{1}\right)$, say $\mathfrak{x} \in \operatorname{Irr}\left(\Gamma_{1}, \theta_{1}\right)$. Then $x=(\eta, \varphi)^{\Gamma_{1}}$ for some $\geqslant \in \operatorname{Irr}\left(B_{1} T_{1} / B_{1}\right)$, where η. is the standard extension of $\theta_{\text {a }}$ to $B_{1} T_{1}$ given by Lemma 7.1.2. According to our definition of θ, we have $x^{\beta}=$ $\left(\tilde{j}_{1}, \overrightarrow{\xi^{2}}\right)^{r_{2}}$, where $\dot{\eta}_{1}$ is the standard extensiou of θ_{1} to $B_{2} T_{1}$, and $\bar{\sim}$ is the unique character in $\operatorname{Irr}\left(B_{2} T_{1} / B_{2}\right)$ such that $\varphi_{T}=\varphi T$.

We shall first show that

$$
\left(\eta_{i}\right)\left(g^{a}\right)=\left(\eta_{1} \varphi\right)(g) \text { for all } g \in B_{1} T_{1} .
$$

In order to prove this fact, let us fix $g=\left(g_{1}, \ldots, g_{k}\right) a \in B_{1} T_{1}$. Then there is a unique $m \in \mathcal{M}_{3}$ such that $g \in \mathcal{K}_{n, m}$, and bence we have

$$
\begin{aligned}
g_{\omega_{1}} g_{\omega_{1}} \cdots g_{\omega_{1}} \times(1)-1 & \in m\left(\omega_{1}\right), \\
& \vdots \\
g_{\omega_{1}} g_{\omega_{1}} \cdots g_{\omega_{1}}=-(1)-1 & \in m\left(\omega_{l}\right),
\end{aligned}
$$

where $\omega_{1}, \ldots, \omega_{1}$ are representatives for the orbits of $\langle a\rangle$ on Ω, and $n(t)$ denotes the length of the $\langle a\rangle$-orbit which rontains w_{1}. According to our definition of α, we have $g^{\alpha} \in \mathcal{A}_{\alpha, a^{\alpha},}$ and heure $g^{a}=\left(h_{1}, \ldots, h_{k}\right) a$ for some $h_{1}, \ldots, h_{k} \in G_{2}$, such that

$$
\begin{aligned}
& h_{-1} h_{-1} \cdots h_{-\infty}+\cdots=1 \in m^{\alpha}\left(\omega_{1}\right) \text {, } \\
& h_{\omega_{1}} h_{\omega_{1}} \cdots h_{\omega_{0}=\underline{m}(1)-1} \in m^{c}\left(\omega_{l}\right) \text {. }
\end{aligned}
$$

Let us put $\theta_{1}=\theta_{41} \times \cdots \times \theta_{a k}$. Arcording to Lemma 7.1.2, we have

$$
\eta_{1}(g)=\prod_{y=1}^{1} \theta_{k_{j}}\left(g_{0}, g_{2,}, \cdots g_{-,},=+j-1\right)
$$

and similarly,

$$
\hat{\eta}_{0}\left(g^{\alpha}\right)=\prod_{j=1}^{1}\left(\theta_{\omega_{j}}\right)^{3}\left(h_{-j} h_{-j} \cdots h_{-j}=+(n-1)\right.
$$

Now for earh $j=1, \ldots, 7$ we have

$$
g_{\omega}, g_{\omega}, \cdots g_{-j}=\cdots i n-1 \in m\left(\omega_{j}\right) .
$$

and

$$
h_{-,}, h_{\omega}, \cdots \cdot h_{-j,}+\cdots, 1 \in m^{\bar{\alpha}}\left(\omega_{3}\right)=m\left(\omega_{j}\right)^{k} .
$$

From the fact that $(\tilde{\alpha}, \tilde{\beta})$ is a chararter table isomorphism, it follows that

$$
\left(\theta_{a, u}\right)^{\theta}\left(h_{-,} h_{-j}+\cdots h_{\alpha, 0}-\alpha i-1\right)=\theta_{-\infty,}\left(g_{-j} g_{-j}+\cdots g_{-j}=\cdots i l-1\right)
$$

for all $j=1, \ldots, l$. Hence we liave $\eta_{1}\left(q^{\alpha}\right)=\eta_{i}(g)$. Since we also have

$$
\hat{\varphi}\left(g^{\alpha}\right)=\dot{\varphi}(a)=\varphi(a)=\varphi(g)
$$

it follows that

$$
(\bar{\eta}, \stackrel{\varphi}{p})\left(g^{a}\right)=\left(\eta, \stackrel{p}{)}(g) \text { for all } g \in B_{1} T_{1}\right.
$$

as rlainned.

Finally, we shall show that

$$
x^{\prime \prime}\left(g^{\prime \prime}\right)=\gamma(g) \text { for all } g \in \Gamma_{1}
$$

Let $\left(\eta_{\mathrm{i}}\right)^{\circ}$ (respertively $\left.\left(\hat{\eta}_{0} \tilde{r}^{2}\right)^{\circ}\right)$ denote the function on Γ_{1} (respectively Γ_{2}) which extends V_{i} (respectively $\eta_{1} \varphi$) and vanishes on $\Gamma_{1} \backslash B_{1} T_{1}$ (respectively $\Gamma_{2} \backslash B_{2} T_{1}$). We clearly have

$$
(\eta, \varphi)^{\circ}\left(g^{\infty}\right)=(\eta, \varphi)^{\circ}(g) \text { for all } g \in \Gamma_{1}
$$

Let us fix $g \in \Gamma_{1}$: we rompute

$$
\begin{aligned}
(g)=(\eta, \varphi)^{\Sigma_{1}}(g) & =\frac{1}{\left|B_{1} T_{1}\right|} \sum_{\Delta \in \Gamma_{1}}(\eta, \gamma)^{n}\left(x g x^{-1}\right) \\
& =\frac{1}{\left|I_{1}\right|} \sum_{B \in A}(\eta \cdot \gamma)^{*}\left(\operatorname{Hog}^{-1}\right)
\end{aligned}
$$

Similarly, wh have

$$
\begin{aligned}
& v^{3}\left(q^{\alpha}\right)=(\dot{\eta}, \hat{\varphi})^{\Gamma_{z}}\left(g^{\alpha}\right)=\frac{1}{\left|B_{i} T_{n}\right|} \sum_{x \in \Gamma_{2}}(\hat{\eta}, \dot{\varphi})^{\circ}\left(x g^{\alpha} s^{-1}\right)
\end{aligned}
$$

In order to conclude that

$$
\|^{\prime}\left(g^{\alpha}\right)=\lambda(g) \text { for all } g \in \Gamma_{1}
$$

it will be anough to slow that

$$
(\hat{\eta}, \hat{\varphi})^{a}\left(b g^{\circ} b^{-1}\right)=(\eta, \vartheta)^{0}\left(b g b^{-1}\right)
$$

Siuce we have already proved that

$$
(\eta, \varphi)^{0}\left(\left(b g b^{-1}\right)^{\alpha}\right)=(\eta, \downarrow)^{0}\left(b g b^{-1}\right)
$$

it remains to show that

$$
(\bar{\eta}, \varphi)^{\circ}\left(b g^{\omega} b^{-1}\right)=(\hat{\eta}, \hat{p})^{a}\left(\left(b g b^{-1}\right)^{\alpha}\right)
$$

Because $\left(\hat{t}_{1 / r}\right)^{*}$ is constant on each $\boldsymbol{K}_{c, m}$, the equality above, and hence the conclusion of the proof, will follow from the fact that $b g^{\alpha} b^{-1}$ and ($\left.b g b^{-1}\right)^{a}$ belong to the same $\boldsymbol{K}_{\text {ram }}$. To prove this fact, we observe that on one hand, from $g^{a} \in \mathcal{K}_{a, m^{*}}$ we get

$$
\operatorname{bg}^{a} b^{-1}=\left(g^{a}\right)^{b^{-1}} \in \mathbb{K}_{s^{2-1}}\left(m^{d}\right)^{-1}
$$

arcorrling to Lemma 7.2 .2. On the other band, since $g \in \boldsymbol{K}_{a, m}$, we have

$$
b g b^{-1} \in \mathcal{A}_{a^{t-1} m^{-1}}^{-}
$$

again according to Lemma 7.2.2; cousequently, we obtain

$$
\left(b g b^{-1}\right)^{a} \in \mathbb{K}_{a^{b^{-1}},\left(m^{k-1}\right)^{a}}=\AA_{n^{k-1}}\left\langle m^{-} y^{k-1},\right.
$$

because $\left(m^{b-1}\right)^{\alpha}=\left(m^{\bar{\alpha}}\right)^{\circ}$, This conchudes the proof.

7.4 An application to character tables and derived length

In this last section we shall coustruct, for any given natural number n with $n \geq 2$, a pair of groups G_{1} aud G_{2} with identical character tables and derived lengths n and $n+1$ respertively. Let us begin with a standard result.

Lemma 7.4.1 Let G be a soluble group and C be a non-trivial cyclic group. Let us form the regular wreath produrt $\Gamma=G / C$. Then we have

$$
\mathrm{dl}(\Gamma)=\operatorname{dl}(\boldsymbol{G})+1
$$

Proof The base gronp B is the direct product

$$
B=G_{1} \times \cdots \times G_{r}
$$

of $r=|C|$ isomorphic copies of G. We may fix a generator c of C and assume that c acts on B as follows:

$$
\left(g_{1}, \ldots, g_{r}\right)^{c}=\left(g_{r}, g_{1} \ldots, g_{r-1}\right) \text { for all }\left(g_{1}, \ldots, g_{r}\right) \in B
$$

We claim that

$$
\Gamma^{\prime}=\left\{\left(g_{1}, \ldots, g_{r}\right) \in B \mid g_{1} \cdots g_{r} \in G^{\prime}\right\} .
$$

We observe that $B^{\prime}=G_{1}^{\prime} \times \cdots \times G_{r}^{\prime}$ is a normal subgronp of Γ contaned in Γ^{\prime} : hernce $\Gamma^{\prime} / \boldsymbol{B}^{\prime}=\left(\boldsymbol{\Gamma} / \boldsymbol{B}^{\prime}\right)^{\prime}$. Since $\Gamma / \boldsymbol{B}^{\prime}$ is canonically isomorphic to the regular wreath product $\left(G / G^{\prime}\right) / C$, it will be enough to prove the claim with the adilitional assumption that G is abelian.

Let us assmue that G is abelian and put

$$
M=\left\{\left(g_{1}, \ldots, g_{r}\right) \in B \mid g_{1}, \cdots g_{r}=1\right\} .
$$

Clearly, M is a sulbroup of the abelian group B; furthermore, M is normal in Γ. because it is C invariant. Let $\left(h_{1}, \ldots, h_{r}\right) \in B$. We have

$$
\begin{aligned}
{\left[\left(h_{1}, \ldots, h_{r}\right), c^{-1}\right] } & =\left(h_{1}^{-1} \ldots, h_{r}^{-1}\right)\left(h_{1}, \ldots, h_{r}\right)^{-1} \\
& =\left(h_{1}^{-1}, \ldots, h_{r}^{-1}\right)\left(h_{2}, \ldots, h_{r}, h_{1}\right) \\
& =\left(h_{1}^{-1} h_{2}, \ldots, h_{r-1}^{-1} h_{r}, h_{r}^{-1} h_{1}\right) \in M .
\end{aligned}
$$

It follows that $\Gamma^{\prime}=(B C)^{\prime}=[B, C] \leq M$
Now let $\left(q_{1}, \ldots, g_{r}\right) \in M$ Lat ins put $h_{1}=1$ and $h_{1+1}=h_{1} g_{1}$ for $i=$ $1, \ldots, r-1$. Then we bave

$$
\begin{aligned}
{\left[\left(h_{1}, \ldots, h_{r}\right), r^{-1}\right] } & =\left(h_{1}^{-1} h_{2}, \ldots, h_{r-1}^{-1} h_{r}, h_{r}^{-1} h_{1}\right) \\
& =\left(g_{1}, \ldots, g_{v-1}, g_{r-1}^{-1} \cdots g_{1}^{-1}\right) \\
& =\left(g_{1}, \ldots, g_{r}\right) .
\end{aligned}
$$

Thus we have $\boldsymbol{M} \leq \Gamma^{\prime}$. We conclude that $\Gamma^{\prime}=\boldsymbol{M}$, and our claim is proved
In order to prove the lemma aow it suffices to show that

$$
\mathbf{d l}\left(\Gamma^{\prime}\right)=\mathbf{d l}(G) .
$$

Siuce $\Gamma^{\prime} \leq B$ we have $d l\left(\Gamma^{\prime}\right) \leq \mathrm{dl}(B)=d l(G)$. On the other hand, the gronp homomorphism

$$
\begin{aligned}
\Gamma^{\prime} & \rightarrow G \\
\left(g_{1}, \ldots, g_{r}\right) & \mapsto g_{1}
\end{aligned}
$$

is surjective, berause the element $\left(g, g^{-1}, 1, \ldots, 1\right)$ of B is mapped to the generic element g of G. Hence $\mathrm{dl}\left(\Gamma^{\prime}\right) \geq \mathrm{dl}(G)$.

We couclude that $d l\left(\Gamma^{\prime}\right)=d l(G)$, and the lemma is proved.

Theorem 7.4.2 Let n be a natural number with $n \geq 2$. Then there exist groups G_{1} and G_{2} with identscal character tables, such that G_{1} has derived length n. while G_{2} has derived length $n+1$.

Proof We shall prove the theorem by induction on n.
For the case $n=2$, the existence of groups \boldsymbol{G}_{1} and \boldsymbol{G}_{2} with identical character tables ant derived lengths 2 and 3 respectively was proved in Chapters 5 and 6 , where two different constructions were used

Now let us fix $n>2$ and assume that we have been able to construct groups G_{1} and G_{2} with identical character tahles and derived leugths $n-1$ and n respectively. Let C be a non trivial ryrlic group. Let us form the regular wreath produrt $\Gamma_{1}=G_{1} \mid C$, for $i=1,2$. Then Γ_{1} aud Γ_{2} have ulentical character tables, acrording to Theorem 7.3.1. On the other hand, the derived lengths of Γ_{1} and Γ_{2} are n and $n+1$ respectively, arcording to Lemuma 7.4.1. This concludes the proof.

We observe that there are p-groups G_{1} and G_{2} which satisfy the conclusions of Theorem 7.4 .2 (at least when the prime p is greater than or equal to 5); in fact, we may take the p-gromps G_{1} and G_{2} constructed in Chapter 6 as the hasis of the inductive proof of Theorem 7.4.2, and then take a cyrlir group of order p as the group C of the induction step.

We ronclude this thesis with an open question.
Question 7.4.3 Is there any pair (G, H) of groups which have identical charueter tables, and derived length two and four respectively?

Bibliography

[1] B. Aeisicgrl, Semi-rixtraspeziellen p-groppen, Math. Z. 156 (1977), 247 254.
[2] A. R. Camina, Some conditions which almost characterize Frobeniva groups, Israul J. Math. 31 (1978), 153160.
[3] D. Chillag. I. D. Mardonald and C. M. Scoppula, Genembized Frobenevea groups II. Israel J. Math. 62 (1988). 269282.
[4] J. H. Conway, T. R. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clareudou Press, Oxford, 1985.
[5] C. W. Curtis and I. Reiner. Methods of Representation Theory I, Wiley Interscience, New York, 1981.
[6] E. C. Dade. Answer to a Question of R. Brauet, J. of Algebra, 1 (1964), 1-4.
[7] K. Durk aud P. Igodt. Chararter tables and commetatevity of normal subgroups, SIGSAM Bull. of ACM. 25 (1991), 2831.
[8] M. Hall. The theory of groups, Marmillan Company, New York, 1959.
[9] G. Higman, Suzuki 2-groups, Illinois J. Math. 7 (1963), 7996.
[10] B. Huppert, Endliche Gruppen I. Springer-Verlag, Berlin, Heidelberg, New York, 1967.
[11] B. Huppert, N. Blackhuru. Finite Groups II, Suringer-Verlag, Berlin, Heidelberg. New York, 1982.
[12] B. Huppert, R. Gow, R. Kuörr. O. Manz. R. Staszewski, W. Willems, Lectures on "Clifford thenry and applications". Trento, September 14 18. 1987. Centro Internaziouale per la ricetca matematica, Trento.
[13] 1. M. Isaars, Character theory of finite groups, Academic Press, New York. Sau Francisco, Loudon. 1976.
[14] I. M. Isaacs. Character Correspondences in Solvable Groups, Advances in Mathematics 43 (1982). 284306.
[15] N. Jaculsou, Bavic Algebta I, W. H. Fremau and company. San Francisco. 1973.
[16] A. Mann and C. M. Scoppola, On p-groups of Frobenius type, Arch. Math. 56 (1991), 320332.
[17] S. Mattarei, Character tables and metabelian groups, J. Loudou Math. Soc., to appear.
[18] H. Neumam, Varieties of Gmups, Springer Verlag. Berlin. Heidelberg. New York, 1967.
[19] T. Saaty (Editor), Lectures on Modern Mathematica, Volume 1, John Wilry \& Sons. New York. 1963.
[20] A. J. Saksumov, An answer to a question of R. Brauer (Russian), Vessi Akad. Navuk BSSR. Ser. Fiz-Mat. Navuk (1967), no. 1, pp. 129130 (Math. Reviews 35 (1968) 』5527).
[21] C. M. Scoppola, Groups of prime power onder as Fonbenius-Wielandt complements, Traus. Amer. Math. Soc. (2) 325 (1991), 855874.

