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Summary

This thesis concerns character tables of finite soluble groups. In particular, 
our main objective is that o f showing that the derived length of a soluble 
group G is not determined by the character table of G. In fact, in Chapters 5 
and 6 we shall construct pairs (G , H ) of groups which have identical character 
tables but different derived lengths, namely 2 and 3. A more general result 
will be proved in Chapter 7, namely that for any natural number n >  2, 
there exist pairs (G, H ) of groups with identical character tables, and derived 
lengths n and n +  1 respectively. Two by-products of our investigation are a 
method for comparing character tables in special situations (in Chapter 4), 
and a description of the character tables of wreath products (in Chapter 7).



Chapter 1 

Introduction

Representation theory, and in particular character theory, have proved to be 
powerful tools for the study of finite groups. Furthermore, character theory 
provides a practical way of gathering a lot of information about a group 
G in a very condensed form, by means of a matrix with complex entries, 
called the character table of G. This is especially true for simple groups. 
In fact, character tables are perhaps the main information provided by the 
Atlas o f finite simple groups [4], which is an indispensable reference for the 
classification of the finite simple groups. Each finite simple group is uniquely 
identified by its character table, and some sporadic simple groups were known 
through their character tables even before their existence was proved.

The character table of a finite group G is the matrix T  (which turns 
out to be square), whose (*,_/')th entry is x*(fl!»)> where , \k are the
irreducible characters of G (over the complex field), and gi , . . .  ,</* are a set 
of representatives for the conjugacy classes K\,. . . , AC* of G (with g} € Kj). 
Since characters are class functions, the character table T is not affected by 
the choice of different representatives g'} E Kj, and thus the columns of T 
will also be indexed by the conjugacy classes of G. It also follows from this 
that the knowledge of the character table T  of G  amounts to the knowledge 
of all irreducible characters o f G, as functions from G into C, once one knows 
the correspondence between rows of T  and irreducible characters of G, and 
the correspondence between columns of T  and conjugacy classes o f G. These 
correspondences will not be considered part of the object character table, 
nor will any other information about G and its characters, like orders of the 
elements, or Frobenius-Schur indicators. An additional piece o f information,
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namely the so-called power-maps, will be considered occasionally, but this 
will be explicitly stated as character table with powermaps.

Unlike simple groups, soluble groups are not uniquely identified by their 
character tables. The easiest example is given by the two non-abelian groups 
of order eight, namely the dihedral group Dg and the quaternion group Q$\ 
in fact, their common character table is the following matrix T.

1 1 1 1 1  
1 1  1 - 1 - 1  
1 1 - 1 1 - 1  
1 1 - 1 - 1 1  
2 - 2  0 0 0

We may notice that the first row of T  corresponds to the trivial character 
of G. and the first column corresponds to the identity class of G. Apart 
from this, which we shall adopt as a convention, there is no natural rule 
for ordering the conjugacy classes of G and its irreducible characters (though 
practical rules are used in [4], for the sake of convenience). Consequently, the 
character table T  of a group G is defined up to permutations o f its rows and 
of its columns. Hence, we shall say that the character tables T\ and T2 o f two 
groups are identical if it is possible to obtain T2 from T\ by permuting rows 
and columns o f T\. Later we shall give a more handy definition of having 
identical character tables, namely Definition 2.7.1.

We shall see in Chapter 4 that Dg and Qs form just a special case of a 
more general situation in which two groups have identical character tables.

Although a group G  is not uniquely determined by its character table T, 
a lot of properties of G  can be read off from T. We shall give a brief review 
of some of these properties, after noticing that each property can usually be 
obtained from T  in several ways.

A first class of properties employs the so-called second orthogonality re­
lation, part of which is the formula

which allows one to compute the order of the centralizer of an element o f the 
class ICj by means of the corresponding column of T. In particular, for the
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identity class ACj, the above formula becomes

|G| = E*,(1)’,

and thus yields the order of G. As a consequence, the length o f each conju- 
gacy class Kj o f G  can be computed, because |ACj| =  |G : Cc(<7>)|- Also, the 
columns of T  which correspond to central elements of G can be determined, 
and thus the order of the centre of G can be computed. It follows that it 
can be decided whether G  is abelian (though a simpler method for this is 
checking that all characters of G  have degree 1). If this is the case, then 
G is determined by T  up to isomorphism. More generally, Z (G )  is always 
determined by T  up to isomorphism.

The second class of properties which we are going to examine employs 
the fact that the kernels of the irreducible characters can be read off from 
the character table (meaning that it can be decided which classes of G  are 
contained in the kernel o f a given irreducible character); in fact, it is easy to 
see that

ker * =  <9 e G l x ( f )  =  * ( ! ) } .
if X € Irr(G). Now, kernels of characters are normal subgroups o f G, and 
conversely, each normal subgroup N  of G is the kernel of some character of 
G, for instance the character afforded by the regular representation of G/N, 
viewed as a representation of G. Since the kernel of a reducible character is 
the intersection of the kernels of its irreducible constituents, it follows that 
all normal subgroups of G can be found from T, as intersections of kernels 
of irreducible characters. Moreover, since each normal subgroup N  of G is 
found as a union of conjugacy classes of G, its order can be computed, and 
inclusion relations with other normal subgroups can be determined.

To summarize, from T  we read the lattice of normal subgroups of G, each 
with its order attached. But we can do more: for each normal subgroup N, 
the character table o f the factor group G/N can be extracted from  T, simply 
by deleting those rows of T which correspond to irreducible characters x such 
that N  £  ker x » and then replacing each set of identical columns with a single 
one. Let us remark that a similar procedure for obtaining the character table 
of the normal subgroup N  does not exist. For instance, Du has exactly three 
normal subgroups of order 4, which are indistinguishable by looking at the 
character table of D8; yet they do not have identical character tables, because 
one of them is cyclic, and the other two are elementary abelian.
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The knowledge of the lattice of normal subgroups o f  G , together with 
tin* character tables of the corresponding factor groups, allows one to decide 
about the nilpotency, supersolubility, or solubility of G. In fact, G  is nilpo- 
teut, respectively supersoluble, or soluble, if and only if there is a normal 
series

1 =  No < Nt <  • • • < AT. =  G,
such that all factors Ni/Ni-i are central, respectively cyclic o f prime order, 
or p-groups; all of these conditions can be checked on the character table T 
o f O.

The terms of the upper central series of G  can be inductively located in T, 
by taking centres and factor groups in turns; in particular, if G  is nilpotent, 
its nilpotency class is determined by T.

The lower central series o f G  can also be found, for instance by inspecting 
all central series descending from G  and finding the fastest descending one. 
However, another method is available, which yields even more. In fact, it 
follows by induction from [13, Problem 3.10(a)] that the character table of 
G  allows one to decide which conjugacy classes of G contain elements o f the 
form g =  [aq, . . .  , x,] with Xi, . . .  , x, € G; these conjugacy classes generate 
7 ,(G ), the ith term of the lower central series, though their (set-theoretical) 
union may be properly contained in 7 ,(G).

Inspection of the lattice of normal subgroups of G  (with orders) shows 
which normal subgroups N  are nilpotent: they are exactly those which con­
tain normal subgroups of G o f order | JV|P for all prime divisors p  o f |7V| (here, 
as usual, |JV|p denotes the biggest power of p which divides the order o f N). 
As a consequence, the Fitting subgroup of G  can be found (as the biggest 
nilpotent normal subgroup of G); hence, if G is soluble, the Fitting series of 
G  can be determined inductively, and the Fitting length can be computed.

What about the derived series of G (and in particular the derived length 
of G, if G is soluble)? The derived subgroup G' can certainly be read off 
from T, as the smallest normal subgroup N  o f G such that G/N  is abelian, 
or equivalently as the intersection of the kernels of all linear characters of 
G. The problem of finding the second derived subgroup G "  amounts to 
being able to tell whether G' is abelian from the character table of G. The 
following more general question appeared as Problem 10 in R. Brauer's report 
on representations of finite groups, in [19, page 141]:

Given the character table o f a group G and the set o f  conjugacy
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classes o f G  which make up a normal subgroup N  o f G, can it be 
decided whether or not N  is abelian?

As Brauer then remarked, a positive answer to  this question would allow one 
to identify the terms of the derived series o f G  by looking at its character 
table, and in particular to compute the derived length of G , for G  soluble.

Unfortunately, the answer to Brauer's Problem  10 is negative, as an­
nounced by A. I. Saksonov in [20], A computational approach to this problem 
has been used recently by K. Dockx and P. Igodt in [7], which led to the same 
conclusion and produced additional examples. However, neither Saksonov, 
nor Dockx and Igodt, answered Brauer's question about the derived length.

One of the main results in this thesis is the construction o f groups G  and 
H with identical character tables and derived lengths 2 and 3 respectively, 
which proves that the derived length of a soluble group cannot be read off 
from its character table. This will be done in Chapter 5.

The discovery o f the above mentioned examples was a consequence of the 
close study of the structure of a minimal exam ple of groups with identical 
character tables and different derived lengths. This study is also part o f this 
thesis, and will be carried out in Chapter 3.

Chapter 6 is devoted to the construction o f  another example of groups 
with identical character tables and derived lengths 2 and 3. The groups of 
this example are p-groups, unlike those of Chapter 5, which are not nilpotent. 
The existence o f this chapter is justified by the fact that the discussion of a 
minimal example in Chapter 3 is carried out under the assumption that the 
groups in question are not nilpotent.

A tool for the comparison o f character tables will be developed in Chapter 
4. Being suited to our examples of Chapters 5  and 6 , it concerns a rather 
special configuration, that of Camiua groups. However, since Camina groups 
have been studied extensively, and seem to arise in many different situations, 
the results of this chapter may prove useful elsewhere.

Early and shorter versions of Chapters 4 and 5 will appear together as an 
article (namely [17]), in the Journal of the London Mathematical Society.

The final chapter of this thesis, namely Chapter 7, concerns character 
tables of wreath products. We shall prove that the character table of a 
wreath product G l A  is completely determined by the permutation group A 
ami the character table of G. An almost immediate consequence of this fact 
is the construction of pairs (G, H ) o f groups with identical character tables 
and derived lengths n and n +  1 , for any given integer n > 2 .
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Some more or less standard results from group theory and representation 
theory, which we shall need, are collected in Chapter 2.



Chapter 2

Technical results

2.1 Com m utators
We shall use the standard notation of [10] for commutators. In particular, if 
A  and B  are subsets of a group G, we set

[A, B\ =  ([a,b] |a€>t, b €  B).

However, it will lx* useful to have a notation also for the set of commutators 
[a, 6] with a & A and b 6  B. Thus, we shall occasionally use the following 
non-standard notation:

[A ,B\  =  {[a, 6] | a 6  A, b e B } .

If G\, . . .  , G„ are subsets o f G , we set

[G.......« . ] - < [ * ...... 9.] I S. € G.>,

where [^ i,. . .  ,</„] is defined recursively by the formula 

[01............0 n ] =  [[01............0n—1] , 0» ] -

We observe that

[G,......G„] <  [...[[G,,G„],G3]...... G n],

though equality does not hold in general.
We shall need the following well-known lemma about coprime actions.

12
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Lem m a 2.1.1 Let A  be a Q-group, with (|A|. |Q|) =  1. Then 

(|A,Q],<J| =  \A,Q],

and
A  =  [A,Q\Ca(Q ).

Furthermore, if  A  is abelian, then

A = [ A , Q ] x C a (Q).

P ro o f Our first statement is [10, Kapitel III. Hilfssatz 13.3 b)], from whose 
proof our second statement follows. Our third statement is [10, Kapitel III. 
Satz 13.4 b)]. □

2.2 Linear and bilinear maps arising from  com ­
m utation

Lem m a 2.2.1 Suppose that H\. H2, H3 , K\, K 2, A'3 are subgroups o f a 
group G. Suppose that Ki <3 H, and that H,/Ki is abelian (i =  1 ,2,3). 
Suppose also that [H^,H2) < H3 and that [HU K 2], [A'i, H2], [H ,,H 2 ,H X] 
and [H\. H2, H2\ are all contained in A 3 . Then there exists a Z -bilinear map 
7  : H\/K\ x  H2/K 2 —* H3/K3 such that

(x K i ,y K 2y  =  [x , j/]A'3 for all x  G H\ and for all y G H2.

Furthermore, if  H\ =  H2 and K\ =  K 2, then the map 7  is skew-symmetric, 
in other words (xA ’ i, xl\2)y =  A 3 fo r all x G H 1 .

P r o o f  This lemma is a slightly more general form of [11, Chapter VIII, 
Lemma 6.1] and can be proved in the same way. The last statement of the 
lemma is obvious. □

If H,/K, has exponent p for i =  1,2,3, where p is a prime, then each 
H,/K, can be regarded as a vector space over the field Fp. and the map 7  is 
obviously Fp-biliuear.
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A different formulation of Lemma 2.2.1 is that (with the given hypotheses) 
the map

<Pt/ : H\/K\ —* H3/K3

such that (t K i )*" =  [x,y] A 3 is a well-defined group homomorphism for all 
y €  Hz. and the map

7  : Hz/Kz -  Hom(H\/K\,H3 / K 3 )

such that (y A j ) -* =  <Pv *s also a well-defined group homomorphism. More 
generally we have the following result.

Lem m a 2 .2 .2  Assume the hypotheses o f  Lemma 2.2.1. In addition, suppose 
that Q is a group o f  operators for G and that H, and Ki are Q-subgroups of 
G, whence in particular H,/ K, becomes a 7 Q  -module (i =  1 ,2,3). Suppose 
also that Q centralizes Hz/Kz ■ Then the map

Vw : Hi/h'i -  H3/K3

such that (xK\)'fiy =  [x,y]A '3 for all x E H\ is well defined and a 7,Q-module 
homomorphism for all y E Hz, and the map

7  : Hz/Kz — HomZQ( H, /  A ',, H:i/AT*)

such that (yKz)*1 =  P̂y fo r all y E Hz is well defined and a group homomor­
phism.

P r o o f  The fact that ipy is a group homomorphism for all y E Hz follows 
easily from Lemma 2.2.1. In order to show that the maps <py are actually 
ZQ-homomorphisms it is sufficient to notice that for all x 6 Hi, y E Hz and 
£ E Q we have

{{xK xY«)^  =  [x,y]( K3 =  [x( ,y t]K3

=  (x*Kx,y*KzT  = (x«A'„yA'2r  = (***.)*•

This proves that ipy E H.omiq(H\lK\, H3/K3 ). It is an easy consequence of 
Lemma 2.2.1 that 7  is a group homomorphism. □

Later on, namely in Section 3.4, we shall see how to handle also the case 
in which Q  does not centralize Hz/Kz- Fur the moment, let us suppose that
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we are interested in obtaining a single homomorphism <pw : H\ / K\ —* H3/K3 
(defined as in Lemma 2.2.2) for a fixed 10 G Hi- We may apply Lemma 2.2.2 
with Hz =  (w) and K% =  1, but since now we do not care anymore about 
the linearity o f with respect to w we may find the hypotheses of Lemma 
2.2.2 too restrictive (for instance we may wish to replace [H\, (10)] <  H3 with 
the weaker assumption [¿7i,w] <  H \). In the following lemma we shall also 
drop the assumption that the factor groups H\ / K\ and H3/K3 are abelian 
(notice that the subgroups H3 and K3 will be renumbered).

Lem m a 2.2 .3  Suppose that H\, Hz, K\, Kz are subgroups of a group G, 
with Ki <3 Hi (i =  1,2). Let us fix an element w o f G and suppose that 
[H\, 10] <  Hz and that \K\, u>] and [H\, w, H\ ] are contained in Kz ■ Then the 
map

: H\/K\ -> Hz/Kz

such that (xK i)*'“ =  [x,w ]Kz fo r  all x 6  H\ is well defined and a group 
homomorphism. Furthermore, if  Q is a group o f  operators for G which cen­
tralizes w and if H\, H2, K\, Kz are Q -subgroups o f G, then the map <pw is 
a Q-homomorphism.

P ro o f  Since [H\, 10] <  Hz. we have (x, te] G Hz for all x G H\. The following 
commutator identity holds for all x, y G G:

[xy, 10] =  (x, w)v [y, 10) =  [x, 10] [x, 10, y ] [y, 10).

If x G H\ and y G K\, then we have [x, 10, y] G Kz because [H\,w,K\] <  Kz, 
and [y,i0] G Kz because [K\,w] <  Kz; hence [xy,w\Kz =  [x,tej/vj, and this 
shows that the map ipw is well defined. For x ,y  E H 1 we have [x,t0,y] G Kz 
since [H\,w, H\\ <  Kz, and this proves that <pw is a group homomorphism. 
Now suppose that the group Q  acts on G by automorphisms normalizing H\. 
Hz, A'i, Kz and centralizing w. In particular Q  acts on H\/K\ and Hz/Kz- 
Then, for all x G H\ and  ̂ G Q , we have

( ( x A 'i D 4 =  (x,i0]eA' 2 =  [x€,t0f )A'2 

=  [x*,w]Kz =  (x i A'i)'^“'.

Thus is a Q-homomorphism. □
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The special case of Lemma 2.2.3 in which K\ =  K 2 =  1 will be most 
useful; in this case, the hypothesis [K \, u>] < I\ 2 o f Lemma 2.2.3 is trivially 
satisfied, and thus only the hypotheses [i?|,w] <  H2 and \H\,w,H\\ =  1 
survive. If we also drop the hypothesis [//], u>, f /i]  =  1, then the map is 
not a group homomorphism in general, but it satisfies the rule

(ary)*" =  (x v'’ )vy*~  for all x ,y  G H\.

It is clearly possible to obtain a group homomorphism from <pw by restricting 
its domain; in fact, the restriction o f ipw to any subgroup H\ o f H\ is a group 
homomorphism exactly when H\] =  1. Though there may not be in
general a unique subgroup H\ o f G  which is maximal among those which 
satisfy this property, a sensible choice of H\ will be given in Lemma 2.2.4.

To proceed systematically, let us first remark that while the image of ipw 
is not in general a subgroup of i / 2, the inverse image of the trivial subgroup 
under is C « , (w), and thus it is a subgroup o f H\, although not necessarily 
normal. (Let us also notice that C //, (w) satisfies one of the properties of the 
kernel of a homomorphism, namely

x*“  =  yVw <=> *y~' e  C Hl(w),

though ipw is not a homomorphism.)
More generally, if H2 is a subgroup of H2 such that [H\, H2] =  1, and if 

H\ denotes the inverse image of H2 under tpw, then H\ is a subgroup of H\, 
and the restriction of to Hi is a group homomorphism. Both assertions 
are straightforward consequences o f the commutator formula

[iy , u-j =  [x, w] (x, w, y] (y, u>].

In fact, for x ,y  £  Ht we have that

[x ,w ,y] G [H i,w ,H i] <  [H2 ,H i ] =  1;

therefore H i is a subgroup of G  and the restriction of to Hi is a group 
homomorphism.

If, in addition, Q is a group of operators for G which centralizes w and 
normalizes H2, then H\ is clearly a Q-subgroup of G, and the restriction of 
<pw to Hi is a Q-homomorphism. What we have just proved is stated in the 
following lemma.
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Lem m a 2.2.4 Let H ,. Hj be. Q-subgroup* o f  the Q-group G (with Q possibly 
the trivial group), and let w be an element o f  G which is centralized by Q 
and such that [/f|,w] < H L e t  us put H2 =  C h7(H\), and

Hi =  { h e  Hx I [h, ti>] €  Hi}.

Then Hi is a Q -subgroup of H i, the map

ipw : Hi -> Hi
I  «  [x,w]

is a Q-homomorphism, and the kernel o f ipw is C Ht(w) =  C w,(u>).

2.3 Irreducible m odules for abelian groups
The following theorem describes all irreducible modules for a finite abelian 
group over a finite field. With an abuse o f language, by a faithful FG-module 
we shall always mean an FG-module which is faithful for G  (that is to say, 
no non-identity element of G  acts trivially on it), but not necessarily for the 
group algebra FG.

T heorem  2.3.1 Let Fp/ be the finite field o f  order p f , let A be an abelian 
group and let V be a faithful irreducible Fp/  A-module o f dimension n over 
Fp/ . Then:

(i) A is cyclic o f  order prime to p;
(it) n is the smallest positive integer such that |,4| divides (p"f — 1 ) (we also 

say that n is the multiplicative order o f  modulo \A\); thus Fpn/ is the 
smallest extension field o f  Fp/  which contains a primitive \A\-th root of 
unity £, in particular we have Fp/ (e )  =  Fp«/:

( iii)  if  rt0 is a generator of A, then there exists a primitive \A\-th root of 
unity e in Fp»/ such that V is isomorphic to the Fp/  A-module Vt whose 
underlying vector space over Fp/  is the field Fpn/ and where the action 
o f A on Vt is given by

[q =  e 'x  for all x £  Fpn/ and fo r  all i =  0 , . . .  , |.4| — 1.
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(iv )  the ring Eud|-p//«( V ) is a field isomorphic to Fp../ , and consists o f  the 
maps

f v ' V  —* V
v Vy ,

fo r  y G Fp/A .

P r o o f  Statements (*), ( « ) ,  and (in ) of the theorem follow from [10, Kapitel 
II, Satz 3.10] and its proof. Let us observe that [10, Kapitel II, Satz 3.10] 
only states that the actions o f A  on V  and on Ve are permutation isomorphic, 
but it is clear from its proof that V  and Ve are actually isomorphic as Fp/ ,4- 
modules.

In order to prove assertion (iv) o f the theorem, we may take V  =  Ve, 
according to statement (iii). Then each of the maps <py : Ve —► Ve is the 
multiplication by some fixed element of Fp- / , and thus it is clearly an en­
domorphism of Ve as an Fp/-4-module. Hence the set of the maps <pu for 
y G Fp/ A  is a field isomorphic to Fp../, and is a subring of Endrp/-4( l « ) .  Ac­
cording to Maschke’s Theorem, Endr ¿ ¿ (K ) is a division ring; therefore, Ve 
is a vector space over Endp^ ¿(V^). From the fact that Ve has order p',f it 
follows now that V, has dimension 1 over Eudrp//i(K ), and that

EndV -4(K )  =  { ^ l y e F p / - 4 } .

The proof is complete. □

We observe that the choice of the primitive |-4|-th root of unity e  in 
statement (iii) is not arbitrary. In fact, different choices of e may give rise 
to non-isomorphic Fp/  -4-module structures on Fpn/. More precisely, we shall 
see that V€ and Ve> are isomorphic if and only if e and e', which are primitive 
|-4|th roots of unity in Fpn/, are Galois conjugate over Fp/.

Let m (x)  G Fp/  [j-] be the minimal polynomial of the Fp/-linear transfor­
mation induced by <to on V  (via the module action). According to Theorem 
2.3.1, our m (x) is also the minimal polynomial of the Fp/-linear transforma­
tion of Fp../ given by multiplication by e. It follows that rn(x) is the minimal 
polynomial of e over Fp/ , in particular e is an eigenvalue of a0 on V.

Furthermore, the eigenvalues o f «o on V  are exactly the Galois conjugates

C , S , S ' ........ S ' - " ' .
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In fact, since £ is a root of m (x), and because the coefficients of m (x) belong 
to the field F;, / , we have

m (ep,/) =  m(£)p,/ =  0 for all i =  0, . . .  , n — 1 ;

hence e, £p /, epJ/, . . .  , £p<"-,,/ are roots of m (x). They are pairwise distinct as 
Fp/(£ ) =  Fpn/ has dimension n over Fp/ .  Since the degree of m (x) does not 
exceed the dimension n of V, they are exactly all the roots of m (x), that is 
to say, all the eigenvalues of «o on V.

Now let us extend the ground field Fp/ of V  to E =  Fpn/. The tensor 
product V E =  V  ,  E is a vector space over E and becomes an E4-module 
in a natural way (see [10, Kapitel V , Hilfsatz 11.1 and Hilfsatz 11.3]). The 
E-linear transformation induced by a0 on V 1  can be put into diagonal form, 
because it has all its eigenvalues in E, and they are all distinct. Hence there 
exist an E-basis t»0i • • • ,vn- i  of such that

UiOo =  £p , v,i for all i =  0, . . .  , n — 1 .

We have seen that an irreducible faithful module for a cyclic group over 
a finite field Fp/  determines a Galois conjugacy class o f roots of unity over 
F,,/. The following result is stronger.

T heorem  2.3.2 Let A  =  {ao) be a cyclic group and let E be a splitting field 
fo r the polynomial x ''4! — 1 over Fp/  . The isomorphism classes o f irreducible 
Fp/  A-modules are in a bijective correspondence with the orbits o f  \A\th roots 
o f unity in E under the Galois group o f  E over Fp/ . This correspondence 
associates to each irreducible Fp/ A-module V the set o f  the eigenvalues o f a0 

on V.

P ro o f  Let us first prove the theorem under the assumption that |j4| is not 
divisible by p.

Let TL be the set of the |A|th roots o f unity in E. Since E is a splitting 
field for x ^  — 1, and since p does not divide |v4|, the field E contains |/1| 
distinct |j4|th roots o f unity, and therefore \R.\ =  |A|. If £ € the extension 
field Fp/ (e) can be regarded as a vector space over Fp/ and becomes an Fp/ A- 
module if one defines

u«o =  e ‘ v  for all v 6  Fp/  (e) and for all t =  1 , . . .  , |j4|.
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This Fp/A-module, which we shall denote by Ve, is irreducible, because any 
Fp/  A-submodule of Ve is an ideal of the field Fp/(e ), and hence is either 0 or
K .

If V  is any irreducible Fp/  A-module, then V  can be regarded as a faithful 
irreducible module for A =  A/K  over Fp/ , where

K  =  {a  € A  | va =  v for all d 6 V (

is the kernel of the representation of A  on V. It follows from statement 
(Hi) o f Theorem 2.3.1 that there exists a primitive |j4|th root of unity e  (in 
particular £ is an |A|th root of unity and we may assume that £ € 7?) such 
that V  is isomorphic to Ve as an Fp/ A-module, and hence as an Fp/ A-module.

Thus the set of modules Ve for £ 6 contains a complete set of represen­
tatives for the isomorphism classes of irreducible Fp/ A-modules. As we have 
seen above, the eigenvalues of a0 on Ve are exactly all the distinct Galois 
conjugates of e. In particular if V, and Ve> are isomorphic (for £,£ ' €  H), 
then £ and e' are Galois conjugate, in other words they belong to the same 
orbit of the Galois group of E over Fp/  on 7?.

Conversely, let us assume that £ and e' are Galois conjugate. Then since 
the Galois group of E over Fp/ is generated by the automorphism c •-» c?*, 
we have e' =  £p> for some integer i. In particular Ve and Vt> have the same 
underlying vector space over Fp/ , namely the field F,,/ (£) =  Fp/  (f ') . The map 
9 : Ve —► Ve' such that v° =  vp is then an isomorphism of Fp/ A-modules, 
because it is an isomorphism of vector spaces over Fp/  and it satisfies

(vao)0 =  (ve)p,/ =  vp,f£p’J =  vea0

for all v e  V,. Hence Ve and Ve< are isomorphic if and only if £ and e' are 
Galois conjugate.

Thus the theorem is proved under the additional assumption that |A| is 
not divisible by p. Now let us drop this assumption, and let pr be the highest 
power of p which divides |A|. Let us put A  =  A/P, where P =  (a{)‘4|/p ) is 
the Sylow //-subgroup of A.

According to [10, Kapitel V, Satz 5.17] P  is contained in the kernel of 
every irreducible representation of A over Fp/  ; hence each irreducible Fp/ A- 
module V  can be regarded as an irreducible Fp/A-module. On the other 
hand, since

_  i  _  xWp- _  i  m _  ,)✓
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the splitting field E for — 1 over Fp/ is also a splitting field for — 1 
and the set 7? o f |A|th roots o f unity in E coincides with the set of |A|th 
roots of unity in E.

Since p does not divide |A|, the theorem is true for the group A, as we 
have proved above. Thus, in view of these observations, its conclusion holds 
for the group A  too. □

We observe here that Theorem 2.3.2 in disguise says that the isomorphism 
classes of irreducible Fp/  /1-modules are in a bijective correspondence with 
the Galois conjugacy classes over Fp/ of irreducible E-characters o f A; thus 
Theorem 2.3.2 may also be deduced from [13, Theorem 9.21] together with 
[13, Corollary 9.7].

An important consequence o f Theorem 2.3.2 is that the isomorphism class 
of an irreducible Fp/  A-module V  (for a cyclic group A — (a0))  is uniquely 
determined by the isomorphism class of the (not necessarily irreducible) E.4- 
module V 1. In fact, we saw that VrE has an E-basis whose elements are 
eigenvectors for a0 and, according to Theorem 2.3.1, the corresponding eigen­
values form an orbit under the Galois group of E over Fp/  and determine the 
Fp/ A-module V  up to isomorphism. We shall need the following more general 
result.

C orollary 2 .3 .3  Let W  be a semisimple module for the cyclic group A over 
Fp/ and let E be a splitting field for the polynomial — 1 over Fp/ . Then 
the isomorphism class o f W  as an Fp/ A-module is uniquely determined by 
the isomorphism class o fW 1  as an E 4 -module.

P ro o f Since W  is semisimple, we have W  =  © ¡_ , V,, where the V, are irre­
ducible Fp/ A -modules. It is easy to see that =  © ]_, V*. Since we saw 
that V]1  determines V, uniquely up to isomorphism, the conclusion follows. 
□

Let us notice that Corollary 2.3.3 remains true if we replace the cyclic 
group A  with an arbitrary finite group. This is again a consequence of [13, 
Theorem 9.21 and Corollary 9.7].
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2.4 H om ogeneous modules
An FQ-module V  (where F is a field and Q is & group) is said to be homoge­
neous if it is semisimple and all its FQ-composition factors are isomorphic.

If V  is a semisimple FQ-module (for instance V  is always semisimple 
when the characteristic of F is 0 or a prime not dividing the order of Q. 
according to Maschke’s Theorem), then by definition V  is a direct sum of 
irreducible FQ-submodules. A submodule of V  which is the sum of all ir­
reducible submodules isomorphic to a fixed irreducible FQ-module is called 
a homogeneous component o f V. It is easy to see that each homogeneous 
component of V  is invariant under FQ-endomorphisms of V', and that V  is 
the direct sum of its homogeneous components (see for instance [13, Lemma
(U 3 )]) .
Lem m a 2.4.1 Let ¥  be a field, Q an abelian group and S a semisimple 
FQ-module. Then the following assertions are equivalent:
(i) every cyclic ¥Q-submodule o f S is irreducible;
(ii) S is the union o f  its irreducible ¥Q-submodules;
(Hi) S is ¥Q-homogeneous.

P ro o f ( (i)=> ( i i) )  If each element of 5  generates an irreducible submodule 
of 5 , then S is clearly a union of irreducible submodules.

((«)=£■ (iii)) Since S is semisimple, 5  is the direct sum of its ¥Q- 
homogeneous components and every irreducible FQ-submodule of S is con­
tained in some ¥Q -homogeneous component of S. Hence S has only one 
F(^-homogeneous component, or in other words, 5  is F Q - homogeneous.

((iii)=£- (i ) )  Since 5  is semisimple, 5  can be written as an internal direct 
sum 5  =  V\ ©  • • • ®  Vk of irreducible FQ-submodules V i ,. . .  , V*., which are 
all isomorphic because S is ¥Q-homogeneous. We may therefore assume 
that S =  V  ©  —  ©  V , the external direct sum o f k isomorphic copies of an 
irreducible FQ-module V .

Let ( » ! , . . .  ,Vk) be a non-zero element of 5 . We may assume t’i 0. 
Since V  is irreducible we have i>|F(̂  =  V’ , in particular for each i =  2 , . . . .  k 
there exists an element «, of FQ such that ei«, =  V;.

Now the map
* : V  -

V ►-»
5
(v ,va2, . . .  ,va k)
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is clearly F-linear. Furthermore, the map y> is an FQ -homomorphism, be­
cause Q is abelian.

Since V  is irreducible and yp is not the zero homomorphism, is a 
monomorphism. Thus its image (i>i, . . .  , Ujt)FQ. namely the cyclic FQ- 
submodule of 5  generated by ( iq ,. . .  , u*.), is isomorphic to V, in particular 
it is an irreducible FQ-module. □

The notion o f homogeneous component generalizes to a situation in which 
the modules are not semisimple, namely that of abelian groups (or in other 
words, Z-modules) with operator groups of coprime order. To proceed sys­
tematically, let us first recall some well-known facts.

T heorem  2.4.2 Let A be an abelian p-group, and let Q be a p'-group of 
automorphisms o f  A. Suppose that A is indecomposable as a Q-group. Then 
A is homocyclic (in other words, A is the direct product o f cyclic groups of 
the same order), and the only Q-subgroups o f  A  are

n ,(A ) =  { «  e  A  I ap‘ =  1),

fo r  i =  0 ,1 , . . .  ,e , where pr is the exponent o f A. Furthermore, all Q- 
composition factors o f A are Q-isomorphic.

P r o o f  See [11, Chapter VIII, Theorem 5.9 and Theorem 5.10]. The fact that 
all Q-composition factors of A are Q-isomorpliic is a consequence o f the fact 
that the map

A —* A

is a Q-endomorphism of A. □

Now let A  be an abelian p group with a //-group of automorphisms Q. 
If V  is a fixed irreducible FpQ-module, let B  be the product of all indecom­
posable Q-subgroups of A which have some Q-composition factor isomorphic 
to V  (as a Q-group, or equivalently as an FpQ-module). It is an easy conse­
quence of Theorem 2.4.2 that all Q-composition factors of B  are Q-isomorphic 
to V. We shall thus call B  a Q-homogeneous component of A. The name 
is justified by the easy facts that Q-liomogeneous components of A  are in­
variant under Q-eudomorphisms of A, and that A is the direct product of



CHAPTER 2. TECHNICAL RESULTS 24

its Q -homogeneous components. (We observe that the statement of Lemma 
2.1.1 which refers to A abelian is a special case of this, C q (A ) being the 
(^-homogeneous component of A  which corresponds to the trivial module.)

2.5 Induction and tensor induction
While the reader is certainly familiar with induction of modules and charac­
ters, he may be not so with tensor induction. This technique is particularly 
useful for the description of the representations of wreath products. In order 
to show the similarity between ordinary induction and tensor induction we 
shall give a brief exposition of both techniques in succession. Expositions of 
tensor induction can also be found in [5, §13] and [14, Section 4].

Let H  be a subgroup o f the group G, let F be a field and W  a right FH- 
module. Since the group algebra FG is an (FH. FG)-bimodule, the tensor 
product W  ® fn  FG becomes a right FG-module according to [10, Kapitel V, 
Satz 9.8], which is called the induced module and is denoted by W G.

Let T  be a right transversal for H  in G. Then FH =  ® (er(F /f )t is a 
decomposition of FG as a left F/f-m odule (which shows that FG is a free 
left F /f-m odule). Hence we have the decomposition

W G =  W  ® rH FG =  0 ( W  ®  t) 
ter

of W G as a vector space over F. where IV 0  1 =  {w  ®  t | ui €  H7}. Each 
W  ®  t is an F//'-subm odule of W G. In fact, for h G H  we have

(w  <g> t)h ‘ =  w ®  ht =  wh ®  t.

Now G  acts on the set of right cosets of H  in G by right multiplication, 
hence it acts on T. Let us denote this action by (t, g) t-g. In other words, 
t • g (for t  G T  and g 6 G ) is the unique element o f T  such that tg G H(t ■ g), 
or equivalently tg(t • g )- 1  G H.

We therefore have

(w  <8) t)g =  wtg(t ■ g)~ 1 ®  (* • if) G W  ® (t ■ g),

where we observe that in order to compute wtg(t ■ g)~l it is sufficient to know 
W  as an F/f-module, because tg{t ■ g )~x G H. More generally, any element
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o f W G has the form £ <e7-(u>i ®  t) for some w, €  W , and we have

<ier
where x, =  l )gt ’ ).

There is an alternative definition of W G which builds it as the direct sum 
o f F-spaces W  ® t, each isomorphic to W  via the map in *-» w ® t, and makes 
it into an FG-module according to the formula above. Although our original 
definition of W G is to be preferred as it does not involve any choice of a 
transversal T , the formula above will serve as a model for the definition of 
the tensor induced module W®G.

As we have seen, W G is the direct sum of the F-subspaces W  ® t  for t £  T , 
and each W  ® t is an FH‘ -submodule of W G. Let us define the F-space

namely is the tensor product over F of the F-spaces W  ®  t, where we 
are assuming some fixed but arbitrary total order on T.

The FH1 -module structure of each W  ®  t can now be used to give W®G 
an FG-module structure, much in the same way as for W G. We define an 
action of g G G  on the pure tensors ® ier(u,< ®  0  (for some w, £  W ), as 
follows:

where x, =  w,.g-i ( (t-g~1 )gt~l ). We observe that this formula can be obtained 
from that which gives the action of g  on W G by replacing with ® , €7 . 
Consequently, the action of g on the pure tensors of W®G can be described 
in terms of the action of g on W G as follows:

where the maps irt : W G —► {V ®  t are the projections on the summands of
w G =  e ieT(W ® t ) .

Since the action o f g on the pure tensors is linear in each w ,® t, it extends 
to a unique and well-defined action of g on W®G. It is easy to check that

W®G =
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hence W 9 0  becomes an FG-module. We observe that 

dim W G =  |G : i/|dimW,

and that
dim W 80  =  (dim

It is not difficult to show that the isomorphism class of W®G depends only 
on the isomorphism class of W , and not on the transversal T , or on the 
particular ordering given to it.

Now let ip 1»«* the character of H  afforded by W  and let ipG and %1>9G be 
the characters o f G afforded by W <: and W®G respectively. We shall compute 
explicit expressions for ipG and 0 ®c  in terms of ip.

Lem m a 2.5.1 Let g G G and let ip° denote the function from, the group G 
to the field F which coincides with ip on the subgroup H and takes the value 
zero on G \ H . Then we have

I£T

P ro o f Let u q ,. . .  , w, be a basis of W . Then a basis of W G is given by the 
elements u>, ®  t  for i =  1 ,. . .  s and for t G T. Let us write

Wih = ¿ a 0 (h )Wj

for h G H,  w’ith a¿j(h) G F. In particular, we have il'(h) =  <*,-,■( A). On
the other hand, we have

(Wi ®  t ) g  =  Wi(tg(t ■ g )~x) ®  ( t  ■ g)  =  ¿  ah (tg( i  ■ g)~'  )Wj ®  (< • g) .
7=1

Now we have uq ®  t =  Wj ®  (< • g) exactly when i =  j  and t =  t • g, or 
equivalently when i =  j  and tgt~l € H. It follows that

^a(9) =  5Z S X « * - 1) m ^2 ^°(*gt~l ),
*€T 'i= ! i€T

where V  is the set of the elements t of T  such that tgt~' G H.  The proof is 
complete. □
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We observe that since if is a class function, when F has characteristic 
zero we can also write

If we choose a set of representatives x \,. . .  , xm for the conjugacy classes of 
H contained in gG (that is to say, g(' fl H  =  x{*U • ■ • U/^J), we obtain

The following useful formula follows:

t/’“ (s) =  i c 0 ( « ) i f ;
i=i

<H*<)
|C„(.r,)r

This can also be expressed by saying that iJ'G(g) equals |G : H | times the 
mean value of tf° over gG.

Now let us pass to the computation of the tensor induced character

Lem m a 2.5.2 Let g 6 G and let To be a set o f representatives for the orbits 
o f  (g) in its action on T  via ■. For t 6  T, let n(t) denote the size o f  the 
(g)-orbit which contains t. Then we have

= n  « /w * 0* - ') .
i€T0

P ro o f  Let i l l , • • • .Or he the orbits of (g) on T, let us choose a set

r „ =  (<,........ t . )

of representatives for them (with t, € il,), and let us put n(i) =  |il,|. Hence 
(g)/(gn(,)) acts regularly on fi, and we have

0 , =  { l j  • g, . . .  ,<,■ • </"*'* =  t j} .

Since the isomorphism class of is independent o f  the ordering given to
T. we are allowed to order T  as follows:

T =  {*! g , . . .  ,tt gn(i\ . . .  , t r g , . . . , t r ■ gn[r)).



CHAPTER 2. TECHNICAL RESULTS 28

Now W ®° regarded as an F(</)-module is isomorphic to the tensor product 
module 0|_, IV,, where IV, is the F(g)-module

**(•)
Wi =  0 d V ® ( i t- •</>))•

j=i

If V’i denotes the character of (g ) afforded by W,, we have

^ 0O( 9 ) = n  ■".(«).

according to [13, Theorem 4.1].
Let us fix an index t =  1 ,. . .  , r. We shall prove that =  il>(tign^Hj )•

Let t c j , . . .  , w, be an F-basis of W , then an F-basis of IV, is given by the 
tensors

»<•')
g>(«>*, 8 (i. ■ s')),
J=1

for (k i , . . .  ,Ar„(,)) G {1 , . . .  ,a }"b). The action of g on any element of this 
basis of W ^a is given by the formula

«  (ti ■f’ n j  g =  ® ( j r ,  18 (<■ -J»)),

where x} =  ■ g, ~l )g(t, ■ gJ)~*), and the index j  is read m od n(i) (in
particular, wt0 =  «>* .,). Let A j =  (a}k i ) k , t = i be the matrix o f  the action 
of ((ti ■ gJ~l )g(ti • gJ)~l ) on W  with respect to the basis wt, . . .  , wt ; in other 
words

«"*((*< =  ¿a jk /tv ,.
i= i

Now the coefficient of the basis element <S>j=i(wkj ® (t, g1)) in the expression 
of <S>j=l(x j O (f, ■ g1)) as a linear combination of the elements o f  the given 
basis of Wi is

"(•)
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V’i(fl’) = H  I I  — tr(i4iA2 • • •
y=i

where the sum is taken over (k t , . . .  , fcn(,)) £ {1 , . . .  ,$}"•'>. The matrix 
A\Ai • • • -<4n(i) is the matrix of the action of

"(0
I I « ' . 1 - s ') -1) “
>=1

on W , with respect to the basis to »,. . .  , w,. Therefore we have

as claimed. It follows that

=  JJ V(

which concludes the proof. □

2.6 Basic com m utators
In Chapter 6 we shall need the notion of basic commutators.

Definition 2.6.1 [8 , p. 178] Let F  be a free group o f rank n, generated by 
* l , . . .  ,x „ . The basic commutators on ,x „  are the elements o f  the
ordered infinite set {c, },eN, defined inductively as follows:

( i )  Ci =  x ,, for i <  n, are the basic commutators o f weight 1 , and are ordered
by the rule ct <  Cj <  • • • <  c „ ;

( i i )  if basic commutators o f weight less than l have been defined and ordered,
then the commutator [u, t>] is a basic commutator exactly when
(a) u and v are basic commutators, and the sum o f  their weights is I,
(b) u > v,
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( c )  if  u =  [u»,t], then v >  t;
furthermore, commutators of weight l follow all those o f  lower weight, 
and if  [ui, t>i] and [u2, v2] have weight l, then we have

[U|,Vl] <  [u2,t>2]

if either v\ <  v2 o r  =  t>2 and u, <  u2.

We state without proof the following theorem (see [8, Theorem 11.2.4] for 
a proof).

T heorem  2.6.2 If F  is  a free group with free generators X i ,. . .  ,x „ ,  and if 
l >  1, then an arbitrary element f  o f F  has a unique representation

f  =  c\'<£? ••• c'* mod 7 /+i(F ) ,

where C\,. . .  , c( are the. ordered basic commutators o f weight less than or 
equal to n, and . , e t are integers. In particular, fo r  all l >  1, the 
factor group 7/ (F ) /7 /+i (F )  is a free abelian group (this is also in [11, Chapter 
VIII. Theorem 11.15]), and the basic commutators o f weight l form  (a set of 
representatives of) a basis for  7 / (F ) /7 /+i (F ) over Z .

The analysis of the descending central series of a free group F  in terms 
of basic commutators, provided by Theorem 2.6.2, will be used in Chapters 
5 and 6 for the construction of certain groups o f exponent p, where p is a 
prime. Thus we shall be mainly interested in the structure of the descending 
central series o f the factor group F = F /F p (of course this is a hard problem 
in general, directly related to the famous Burnside’s problem, see (10, Kapitel 
III, Bernerkungen 6^7]).

The factors 7/ (F ) /7 i+ i (F ) of the descending central series of F  are fi­
nite elementary abelian p-groups; hence, they can be regarded as vector 
spaces over Fp (while the factors 7/ (F ) /7/+i (F ) can be regarded as free Z - 
modules). It is easy to see that the basic commutators of weight / generate 
7i(F ) /7i+i (F ). Unfortunately, what would be the analogue for F  of the last 
statement of Theorem 2.6.2 does not hold in general: the basic commutators 
of weight l in F  do not constitute a basis of 7/ (F ) / 7/+ 1 ( F ) over F,, in general. 
For instance, when p =  2 we have F ' <  F 2 (see [10, Kapitel III, Satz 3.14]); 
consequently, F  is an elementary abelian 2-group, and thus all commutators 
of weight / >  1 are trivial.
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However, the last statement o f Theorem 2.6.2 passes on to F  (with the 
word Z-basis replaced by Fp-basis) for l <  p. Let us state this fact as a 
theorem.

T heorem  2 .6 .3  Let F  be a free group with free generators ,x n, let
p be a prime, and let F  = F/Fp. Then, for all l >  1, the factor group 
7l(F)/~fi+i(F ) is a finite elementary abelian p-group, and it is generated by 
the basic commutators o f weight l. Furthermore, if  l <  p. the basic commu­
tators o f weight l form a basis o f n(F)/'n+\(F) over Fp.

Theorem 2.6.3 is an easy consequence of a well-known result (see for 
instance [21, Lemmas 1.11 and 1.12]), which gives Fp-bases, in terms o f basic 
commutators and their powers, for the factors of the p-lower central series 
k/ (F ) of F  (which is defined in [11, Chapter VIII, Definition 1.10] as

m o  =  n
.>*>/

for an arbitrary group G, and with respect to a fixed prim ep): k/ (F ) / /c/+i (F ) 
is an elementary abelian ;>-group, and (a set of representatives of) a basis for 
it over Fp is given by the set of all elements of F  o f the form cp , where pk 
divides l, and c  is some basic commutator of weight l/pk (in particular, the 
basic commutators o f weight / form a basis of k/(F )//£ /+ i (F ) over Fp for /  not 
a multiple of p). Now since k/(F ) =  F P7/(F ) for l <  p, we have /c/(F) =  7/(F ) 
for / <  p, and Theorem 2.6.3 follows.

However, we shall give here a more self-contained proof of Theorem 2.6.3, 
after recalling without proof the following lemma.

Lem m a 2.6 .4  I f  x ,y  are elements o f  a group G, and p is a prime, then 

(xy)p =  xpyp mod yi (G)p'rp(G )

(that is to say, the map

G  - »  G /7a(G)p7p(G)
x ~  xp‘r3 (G)pi P(G)

is a group homomorphism).
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P r o o f  This is a special case o f [11, Chapter VIII, Lemma 1.1]. □

P r o o f  o f  T heorem  2.6.3 We have 7/ (F ) =  7¡(F )F P/FP for / >  1, and thus

7,(F )/7,+i (F ) =  ■yi(F)Fp/'ii+i(F)Fp

Hence 7/(T ')/7j+i (F) is isomorphic to a factor group of the free abelian group 
~li(F)/~n+i(F ). It follows from Theorem 2.6.2 that the basic commutators 
o f  weight / on X\,. . .  , x„  (as elements of F )  generate 7 / ( /p) / 7/+i (F ). Conse­
quently, and because F  has exponent p, the factor group ~ii(F)/~fi+\( F) is a 
finite elementary abelian />-group, and its dimension over F;, is at most the 
rank of the free abelian group 7 / (F ) /7/+i (F ).

Now the basic commutators o f weight / on x j , . . .  ,x „  clearly form an Fp- 
basis of ~n(F)/‘yi(F)p'yi+\(F). Consequently, the conclusion of the theorem 
will follow if we can prove that

for l <  p. Since the inclusion >  is clearly true for all /, we only have to prove 
that, for / <  p,

W e shall prove the following equivalent statement, which lends itself to an 
inductive argument:

This is certainly true for k =  0. Now let 0 <  k <  /, and let assume that

has already been proved. Let g  be an element of '11(F )  fl 7/_*(F )P; then g 
can be written as a product

with y i , . . .  ,yr 6  7i-k(F ). According to Lemma 2.6.4, we have that

55 7/ (F ) /7 i(F ) n  7/+i (F )F "  =  7l (F ) / (7l(F ) n F p)7i+,(F ).

(7i ( F ) n F ) 7W (F ) =  -u (F )p-n+l(F )

1 1 (F )  (~\ F p <  7i(F )p7i+ ,(F ).

7i(F ) n  7i_*(F )f <  1 ,(F )P1 ,+1 (F )  for all k =  0........./.

7/(F) ("1 7/_fc+i(F)'> < 7i (F )p7i+i (F)

s = n
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where we have put G — 7 /_* (F ). In particular, the above congruence holds 

m od7 /_*+, (F )p7p(F ),

because according to [10, Kapitel III, Hauptsatz 2.11 b)] we have that 

72(7'i-k (F )) <  72(i-k)(E) <  7/-fc+i(F), 

and clearly 7p(7i-* (F )) < 1 P(F ).
Now we shall prove that flj=i Vj €  7/_/t+i(F). According to  Theorem 

2.6.2, we can write

n  Vi =  n  °v  m° d 7 /-*+ i(* ’),

where c , , . . .  , c, are the basic commutators of weight / — k, and c3, . . .  , et are 
integers. As before, Lemma 2.6.4 yields that

( n  -  n  ^  m° d 72(G)p7P(G),

where G =  7 /_*(F ); in particular this holds mod7 /_*+i(F) (let us notice 
that here we are not using the fact that / <  p, because

7p(7<-*(F)) < 7p(i-k)(F) < 7i_fc+i(F),
by a repeated application o f  [10, Kapitel III, Hauptsatz 2.11 b )]) . Now we 
obtain that p

9 =  ( I I  Vi j  = I I  CT‘ mod Tl-k+1 (F).

On the other hand, g €  7 i(F ) <  7j_jt+i(F). According to Theorem 2.6.2, 
c j , . . .  ,C( are Z-linearly independent in 7/_ /t(F )/7/_t+i(F ); consequently, we 
have e, =  —  =  e* =  0, and thus

n  Vi e  7i-fc+i(F), 
j=1

as claimed. Since we found earlier that
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it follows that g € 7t -k+i (F )P7P(F ). Now our hypothesis that l <  p  comes 
into play, and yields that 7P(F )  <  71+1 (F ). Consequently,

g e  71(F) n ■yl- k+, (F )p~f,+l(F )  =  (71(F) n 7i-k+i(F )p)-ti+i(F).

By inductive hypothesis, we finally obtain that 

g e  7i(F )p7i+i (F).

This concludes the proof. □

2.7 Character table isom orphism s
As promised in Chapter 1, here is a more handy definition of ‘having identical 
character tables'.

D efinition 2.7.1 Let G\, G2 be finite, groups. We will say that G 1 and G2 
have identical character tables if  there exist bijections

a  \ G\ —* G 2

and
/ ? : I r r ( G ,) - I r r ( G 2),

such that

X0(9a) =  X(9) f ° r d l  9 €  G\ and fo r  all \ € Irr(Gi).

We shall also say that (a, ft) is a character table isomorphism from G to H .

Since the irreducible characters of Gi (for i =  1,2) form a basis of the 
space of class functions on G,, with values in the field of the complex numbers, 
if such a , 0  exist, a  must send any conjugacy class of G\ onto a conjugacy 
class o f G ]. It is also clear that a  sends the identity class of G\ to the identity 
class of G|, and that 0  sends the trivial character o f G\ to the trivial character
of G2.



Chapter 3

Looking for a counterexample

3.1 Introduction
The work of this thesis began as an attempt to prove that the character table 
o f a soluble group G  determines the derived length of G. Our exposition 
will follow this approach, and thus this chapter begins with the following 
conjecture, which will eventually turn out to be false.

C on jectu re  3.1.1 Let G and H be groups with identical character tables 
and assume that G is metubelian. Then H is metabelian.

We shall disprove this conjecture by exhibiting a counterexample. But 
what could such a counterexample look like? Let us choose a counterexam­
ple (G ,H ) to Conjecture 3.1.1 with |G| minimal and let (a , 0 ) be a char­
acter table isomorphism from G to H. Then H" is the unique minimal 
normal subgroup of H. In fart, if this were not true, H  would have some 
non-trivial normal subgroup A' with H " £  K . But then the factor groups 
G /K, where K  = K a~ , and H/K  would have identical character tables, and 
(H / K )" =  H "K /K  ±  1; hence (G /A\ H/K) would be a counterexample to 
our conjecture with |G/A'| <  |G|, a contradiction. Thus H "  is the unique 
minimal normal subgroup of H. Since G and H have isomorphic lattices of 
normal subgroups, the subgroup (H ")a , which we will henceforth call AT,
is the unique minimal normal subgroup of G.

Hence N  and H " are elementary abelian p- groups for some prime p, and 
of course they are isomorphic as they have the same order (because o  is a

35
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bijection). Throughout this chapter we shall assume that G and H  are not 
/»-groups. More precisely, we shall consider the following hypotheses.

H ypotheses 3 .1.2 Let G  and H be. groups with identical character tables 
via the bijections (a , 0 ). Let us assume that G  and H are not nilpotent, that 
G is metabelian and that H " is the unique minimal normal subgroup o f H . 
Thus N  =  (H ")n is the unique minimal normal subgroup o f G, and in 
particular N and H" are elementary abelian p-groups fo r  some prime p.

Under these hypotheses we shall obtain in the next section a nice descrip­
tion o f a minimal counterexample (G ,/f ) .  Subsequently, in Chapter 6, we 
shall also construct a counterexample (G, H ) with G  and H uilpotent.

3.2 Structure o f  a minimal counterexam ple
L em m a 3.2.1 Assume Hypotheses 8.1.2. Then 

( i )  G' and H' are p-groups;
( it)  G' has a complement W  X Q in G and H' has a complement W  X Q in 

H . where W , H are (abelian) p-groups and Q. Q are cyclic p'-groups; 
( i i t )  Q acts regularly on G' and Q acts regularly on H ';
( iv ) Q acts faithfully and irreducibly on N  by conjugation and Q acts faith­

fully and irreducibly on H " by conjugation;

(v )  C W(G') =  1 and C w (H ')  =  1.

P ro o f Since the Fitting subgroup F(G') of G  is nilpotent, each Sylow sub­
group of F(G) is normal in F (G ) and hence in G. But G  has a unique 
minimal normal subgroup N , which is a /»-group; hence F(G ) is a /»-group.

We have G' <  F (G ). Let P  be a Sylow /»-subgroup of G. Then from 
G' <  F (G ) <  P  it follows that P  <  G  and hence F (G ) =  P. Let us put 
P  =  P a. Because o  is a bijection, P  is a Sylow /»-subgroup of H  and of 
course H' < P  <  H. Thus both G and H have a normal Sylow /»-subgroup, 
which contains the derived subgroup, and assertion (») is proved.

Let Q  and Q be complements for P  in G  and for P  in H  respectively; these 
exist according to the Theorem of Sclmr-Zassenhaus. Clearly Q and Q are 
abelian. They are also non-trivial, because we assumed that G  and H are not
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nilpotent. Since G and H  are soluble groups, we have C<-,-(F(G)) <  F(G') and 
C h (F (H )) <  F (H )  (see [10, Kapitel III, Satz 4.2]); in particular it follows 
that C q (P )  =  1 and C<j(P) =  1.

Now we shall prove that Q  acts regularly on G'. Let K  be a uon-trivial 
subgroup of Q. Then, according to Lemma 2.1.1, we have G' =  [G',K\ X 
C c (K ) .  Since [G'.A'] =  [G'.G'K] and C a.(K ) =  C c .(G 'A ') are normal 
subgroups o f G. and since G has the unique minimal normal subgroup N, 
either [G',K'\ or C g' (K )  is trivial. Assume for a contradiction that [G', A'] 
is trivial. Then we have [P. A', A'] =  1, whence [P, A'] =  1 according to 
Lemma 2.1.1. This contradicts the fact that C q (P ) =  1; we conclude that 
C g ' ( K )  =  1 and [G', A'] =  G'. Thus Q acts regularly on G'.

Now let us prove that Q acts regularly on H'. We cannot apply the 
same argument as for G, because H' is not abelian. But since (|P|. |Q|) =  1, 
asserting that Q  acts regularly on G' is equivalent to saying that all nontrivial 
coujugacy classes of G  contained in G ' have length a multiple of |Q|. From 
the fact that the bijection «  sends each conjugacy class o f G contained in G' 
onto a conjugacy class o f H  contained in H ' , we deduce that all nontrivial 
coujugacy classes of H  contained in H' have length a multiple of |Q| =  |Q|. 
This fact in turn is equivalent to saying that Q  acts regularly on H'. Thus 
assertion (in ) is proved. Furthermore, we have that H' =  \H',Q\Ch'(Q ), 
according to Lemma 2.1.1 again. Since C h'(Q ) =  1. it follows that [H', Q] = 
H'.

Now let us put W  =  C/»(Q) and W  =  C p(Q ). We have P  =  [P, Q]C/»(Q). 
Since G' =  [G ',i?] <  [P,Q] <  G', we have [P,Q] =  G ', and thus P = G 'W . 
From G'C\W =  G'C\Cp(Q) =  C g'(Q ) =  1 it follows that W  is a complement 
for G' in P. Now W  is centralized by Q\ consequently, W Q  — W  x Q is a 
complement for G' in G. We obtain similarly that VVr is a complement for H' 
in P  and thus W Q  =  \V X Q is a complement for H' in H .

Now let us show that Q and Q are cyclic groups. The minimal normal 
subgroup N  o f G, like any chief factor of G, can be regarded as an irreducible 
FpG-module. By restriction N  can be also regarded as an F,,Q-module, and 
N  is still irreducible as an F;,Q-module. In fact any Fp(^-submodule of N  
is an F;,G-submodule, because G =  P Q  and N  <  Z (P ). Furthermore, N  is 
a faithful FpQ-module, because Q  acts regularly on G', and in particular on 
N. According to Theorem 2.3.1 then Q  is cyclic o f order dividing |iV| — 1.

Similarly, we can deduce that Q is cyclic (this also follows directly from 
the fact that Q  and Q  are both isomorphic to G /P  =  H /P), and that Q acts
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faithfully and irreducibly on H ". Thus assertions ( « )  and (iv) are proved.
It remains to prove assertion (v). If the element w of W  centralized G ', 

then w would be central in G, because W Q  is an abelian complement for G' 
in G. Hence (w) would be a normal subgroup of G not containing the unique 
minimal normal subgroup N . Therefore w =  1. Thus we have C iv(G ') =  1. 
Similarly one proves that C w (H ') =  1. The proof of the lemma is now 
complete. □

Let us notice that W x Q  =  G/G' and W  x  Q =  H/ H '. From the fact that 
G  and H  have identical character tables we deduce that G/G' is isomorphic 
to H/H'. It follows that W  == W  and Q ^ Q .

We also observe, as we already said in the proof of Lemma 3.2.1, that Q 
and Q  are non-trivial, otherwise G and H would be p-groups, contrary to 
Hypotheses 3.1.2. The groups W  and W  are not trivial either; if they were, 
then G  would have a normal abelian Sylow p-subgroup (namely G') and H 
would not (because H' is not abelian). This would contradict the fact that G  
and H  have the same character degrees; in fact [13, Corollary 12.34] asserts 
that a group has a normal abelian Sylow p-subgroup if and only if all its 
irreducible characters have degree not divisible by p.

3.3 C hief factors
We continue our analysis of groups G and H  satisfying Hypotheses 3.1.2. 
In the next three lemmas we shall be concerned with certain chief factors 
of G  and H  regarded as irreducible G-groups and respectively //-groups by 
conjugation.

Let M\ /M2 be a chief factor of G; hence M\ and M2 are normal subgroups 
of G with M2 <  Mt and there exists no normal subgroup M  of G with M 2 <  
M  <  M\. Then M\/M2 becomes an irreducible G-group by conjugation. 
Since the Fitting subgroup F (G ) of G centralizes all chief factors o f G  (see 
[10, Kapitel III, Satz 4.3]), in particular F (G ) is contained in the kernel of the 
action of G on M\/M2. Since Q is a complement for F(G) in G, the G-group 
M\/M2 remains irreducible when it is regarded as a Q-group by restriction. 
Thus all chief factors of G  are Q-composition factors o f G  (but not vice versa, 
because if M\/M2 is a Q-composition factor of G the Q-subgroups M i, M2 o f 
G are not necessarily normal in G). Furthermore, two chief factors o f G  are
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G-isomorphic exactly when they are Q-isomorphic. Similar assertions hold 
for chief factors of H regarded as //-groups and as Q-groups.

L em m a 3.3.1 Assume Hypotheses 3.1.2. Then all chief factors o f  G below 
G' are G-isomorphic.

P r o o f  Let us regard the abelian normal subgroup G' o f G  as a Q-group 
(actually a ZQ-module) by conjugation. In view of the remark which precedes 
the lemma it suffices to show that all composition factors o f G' are isomorphic 
as Q-groups.

As we said in Section 2.4, there exists a unique decomposition of G' 
(written additively) into the direct sum o f  its Q-homogeneous components
B\........ Bm. Now W  centralizes Q\ consequently, each element of W  induces
by conjugation an automorphism of G' as a Q-group. According to what we 
said in Section 2.4, it follows that each B, is normalized by W , and being of 
course normal in G' because G' is abelian, each B, is a normal subgroup of
G.

Since each non-trivial B, contains the unique minimal normal subgroup 
N  o f G, there is a unique non-trivial B,\ consequently, G' is Q  - homogeneous, 
that is to say, all Q-composition factors o f G ' are Q-isomorphic. □

We shall also prove that when Hypotheses 3.1.2 hold, all chief factors of 
H  below H' are //-isomorphic. We cannot use the same arguments as for 
G  because H' is not abelian. Hence we shall split the proof in two parts: 
first we shall show that all chief factors of H  lying between H' and H" are 
//-isomorphic and then that they are //-isomorphic to H ".

In order to prove the first part we shall employ the fact that G  and H 
have identical character tables, and hence in particular isomorphic lattices 
o f normal subgroups.

L em m a 3.3.2 Assume Hypotheses 3.1.2. Then all chief factors o f  H be­
tween H' and H " are H-isomorphic.

P r o o f  The statement of the lemma is clearly equivalent to the following 
assertion: all chief factors of H/H" below H'/ H" are //-isomorphic. Since 
Q  is a complement in H for the Fitting subgroup of / / ,  which centralizes all 
chief factors of H , the proof will be complete once we show that the Q-group
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H'/ H" is Q-homogeneous. We shall infer this from the fact that G'/N is in­
homogeneous, by using the fact that G/N and H / H" have identical character 
tables. In fact, the character table isomorphism (a , ¡i) from G to H induces 
a character table isomorphism (d , ft) from G/N to H /H " in a natural way.

Let 5  be the product of all minimal normal subgroups o f G/N contained 
in G'/N (in other words, 5  is the socle of G'/N as a ZG-module). Since 
the map a  induces an isomorphism between the lattices o f  normal subgroups 
of G/N and H/H " , and sends G'/N onto H'/H", the image 5  of S under 
a  is the product of all minimal normal subgroups of H /H " contained in 
H'/H" . The groups 5  and 5  are elementary abelian /»-groups, and thus can 
be regarded as an FpG-module and an Fp H -module respectively. The FPG- 
submodules of S  (that is to say, the normal subgroups o f  G/N contained in 
S) are in a bijective correspondence, induced by the map a , with the FPH- 
submodules of S. We also observe that the Fitting subgroups of G and H 
centralize S and S respectively; it follows that the set o f FPG-submodules 
of 5  coincides with the set of FPQ-submodules of 5 . O f course, a similar 
assertion holds for H. As a consequence, the map d induces a bijection from 
the set of FpQ-submodules of S  onto the set of FpQ-submodules of 5.

We know that the semisimple FpQ-module 5  is homogeneous; according 
to Lemma 2.4.1, this is equivalent to the fact that 5  is the (set-theoretic) 
union of its irreducible FPQ-submodules. This property o f S can clearly be 
passed on to S  via the bijection d , namely we get that S  is the union of 
its irreducible FpQ-submodules. Then Lemma 2.4.1 again yields that S is 
Fp Q-homogeneous.

From this fact we deduce that H'/H" is Q-homogeneous, as follows. The 
abelian Q-group H'/H" can be decomposed into the direct product of its 
(^-homogeneous components (see Section 2.4). If M  is a non trivial in­
homogeneous component of H '/H " . then M  is normalized by W . In fact, 
every element of W  commutes with the elements of Q, and therefore induces 
a (^-automorphism of H'/H" by conjugation; on the other hand, M  is left in­
variant by every Q-endomorphism of H'/H". and thus is normalized by W . It 
follows that M  is a non-trivial normal subgroup of H'/H " . In particular, M  
intersects S non-trivially. Because we have proved that S  is Q - homogeneous, 
it follows that H'/H" has only one (^-homogeneous component. In other 
words, H '/H " is Q-homogeneous, and the proof is complete. □

It remains to show that some chief factor of H between H' and H" is
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//-isomorphic to H". As we have already remarked in several places, since 
Q  complements the Fitting subgroup P  o f H in H, it is sufficient to find a 
(¿-isomorphism from a chief factor of H  between H' and H" onto H ". The 
tool which will produce such an isomorphism is Lemma 2.2.4.

Let us fix an element w of W  — C p(Q ). The map from H' to itself which 
sends x to [x, ic] is not a group homomorphism, and thus its image [H', w\ 
is not necessarily a subgroup of H '. However, according to Lemma 2.2.4 and 
the discussion which precedes it, the inverse image of H" under this map, 
namely

Mw =  { x  €  I f  | [x,tl>] 6  H " } , 
is a subgroup of H', and the restriction

: M u, — H"
I  M  \x,u>]

of our map is a W (¿-homomorphism with kernel C//>(tv). From the fact that 
H" <  Z (P )  it follows that the subgroups Mw and C/y*(tZ>) of H' contain H"\ 
therefore, they are normal in H ', because H '/ H "  is abelian. The fact that 
they are normalized by W Q  finally implies that they are normal subgroups 
of H.

Let us suppose for a moment that our W(¿-homomorphism is surjec­
tive. Then induces a W (¿-isomorphism from AIw/Ch'(w ), which therefore 
is a chief factor of H, onto H ". Thus the assertion that some chief factor 
of H between H' and H" is W(¿-isomorphic to H " is proved, provided we 
can show that H" C [ / / ',  jeJ, or equivalently that H" C H '\, for some 
w €  W .

We shall infer this fact from a corresponding fact for G  by means of the 
character table isomorphism (o , (i). Indeed, we shall prove the following 
lemma.

Lem m a 3 .3 .3  Assume Hypotheses 3.1.2. Then wN  C wG for all w G W \ l, 
and wH" C u>H for all w €  W  \ 1.

P ro o f Let us fix w €  W  =  C c '(Q ) and let us consider the map

<pw : G' -*  G'
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defined by x*w =  [x, tv]. According to Lemma 2.2.3 (with Hi, Hj, K\, K j, 
w, Q  replaced by G', G ', 1, 1, w, W Q  respectively), the map ipw is a WQ- 
homomorphism. Thus the situation here is much better than it was for H. 
In fact, the image (G ')*u =  |G', tvj of tpw is a W'Q-subgroup of G'; hence it 
is a normal subgroup of G, because G' is abelian and G =  G 'W Q.

Now let us assume that w ^  1. Then tv does not centralize G', because we 
know from Lemma 3.2.1 that W  acts faithfully on G' by conjugation. Hence 
~pw is not the trivial homomorphism. In particular, its image \G', tcj =  [G', tv] 
is a non trivial normal subgroup of G , and therefore it contains the unique 
minimal normal subgroup N. This is clearly equivalent to N  C [tv, G '\, 
and eventually to wN  C  wG . This clearly implies the first assertion of the 
lemma.

In order to pass on this piece of information to H  we shall first express it 
in character-theoretical language. According to Lemma 4.2.1, the statement

wN  C wG for all w €  W  \ 1

is equivalent to

X (w )  =  0 for all \ 6  Irr(G) \ Itt(G/N) and for all tv €  W  \ 1.

We must be cautious here in applying the character table isomorphism (a , /?), 
because W a does not necessarily coincide with W , indeed, H “  is not nec­
essarily a subgroup of H . But we observe that since characters are class 
functions, the statement

\(g) =  0 for all * G Irr(G) \ Irr(G/N)

actually holds for all g  € G  which are conjugate to some w £ W  \ 1.
Now we claim that the set of elements g  €  G  which are conjugate to 

some element of W  coincides with the set of elements g € P  such that |Q| 
divides |Cg (<7)| (and a similar assertion holds for H). In fact, if g 6  G  is 
conjugate to w € W , then |Cg(«/)| =  |Cc(te)|, and |(̂ | divides |Cc(te)| be­
cause Q < Ca(tv). On the other hand, suppose that |Q| divides the order 
of the centralizer in G  o f an element g  o f G. According to the Theorem of 
Schur-Zassenhaus, then* exists a complement Q0 for P  fl C g (<7) in C c(g)- 
Since |G|P> = |Q| divides |Cg(<7)|, we have |Q0| =  |Q|; therefore Q0 is a com­
plement for P  in G. The conjugacy part of the Theorem of Schur-Zassenhaus 
yields now that Q =  Qo for some x €  G. Since obviously g G C/>(Qo). it
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follows that g 1  G C p(Q%) = Cf-(Q) =  W , and therefore g is conjugate to 
some element o f W . Our claim is proved. The analogous claim for H can be 
proved similarly.

Thus we have

\ (g ) =  0 for all \ 6  Irr(G) \ lrr(G/N),

for all g € P\ 1 such that |Q| divides |C<-;(i/)l- Let us apply the character table 
automorphism ( « ,  (i) to this statement. After noticing that P n — P , and that 
|Ch (s°)| =  |Cc (if)| for all g G G (according to the second orthogonality 
relation), we obtain

\(h) =  0 for all \ € Irr(//) \ Irr(H/H"),

for all h G P\1  such that |̂ | divides |C//(fc)|. Since in particular |Q| divides 
|C«(u>)| for all xv G W , an application of Lemma 4.2.1 yields

wH" C wH for all w G W  \ 1,

which concludes the proof. d

Now the second assertion of Lemma 3.3.3 together with the fact that 
W jt 1 (see the note after Lemma 3.2.1) implies that there exists some 
tv G \V \ 1 such that H " C [f/.u ij. Since H =  W QH' and [WQ,w\ =  1, we 
have [H, ii>J =  [H\ xv\. It follows that the W homomorphism

V* : M* — H"
I  «  [»,!»],

which we defined in the discussion preceding Lemma 3.3.3, is an epimorphism, 
and thus induces an //-isomorphism of some chief factor of H between H' 
and H" onto H ". Thus we have the following lemma.

Lem m a 3.3.4 Assume Hypotheses 8.1.2. Then all chief factors o f H below 
H' are H-isomorphic.

P ro o f  The assertion follows from the preceding discussion together with 
Lemma 3.3.2. D
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Let us remark again that since Q is a complement for the Fitting subgroup 
F(G) in G, any chief factor of G  is irreducible as a Q-group and is therefore a 
composition factor of G  as a Q-group (similarly for H). Hence Lemma 3.3.1 
and Lemma 3.3.4 imply that all (^-composition factors of G' are Q-isomorphic 
and respectively that all (^-composition factors of H' are Q-isomorphic.

3.4 M ore  about the action o f  Q  on H '

In the previous section we have proved in particular that all Q-composition 
factors o f H' are Q-isomorphic. On the other hand, the actions o f Q on 
H'/ H" and on H "  are not independent: in fact the action of Q on H '/Z(H ') 
determines uniquely the action of Q on H" via the operation o f  forming 
commutators. In this section we shall play these two facts against each other 
in order to draw further consequences about the action of Q on H '. This 
will require the machinery developed in Sections 2.2 and 2.3, but the simpler 
reasoning o f the next proposition will give the reader a taste of the method.

First let us recall a basic fact about automorphisms of cyclic p-groups: 
if C  is a cyclic group of order pr (p a prime), and V’ is an automorphism of 
//-order o f C /$ (C ) ,  then there is a unique automorphism of //-order of C  
which induces t/>. In fact, «/’ has the form

c* =  c° mod 4>(C) for all c g  C,

for some integer a (which is unique if we require 0 <  a <  p). The map 
: C  —* C  defined by

c* =  ca for all c €  C,
is an automorphism of C, because p does not divide a. However, i/’ might 
have order divisible by p. According to [10, Kapitel I, Satz 4.6 and Satz 
13.19], the group of automorphisms of C  is abelian (cyclic if p ^  2) o f  order 
(p — 1 )pr_1, hence if j  is any integer greater than or equal to e — 1 , then the 
automorphism =  t/,p/ of C  has p'-order. We clearly have

c* =  cb for a l l c g C ,

where b =  apl. Since b =  a (mod p), the automorphism of C /$ (C )  induced 
by tl> is V’- The uniqueness of rp follows from the fact that C  and C / $(C ) 
have the same number of automorphisms of p'-order, namely p — 1 .
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P rop osition  3.4.1 Assume Hypotheses 3.1.2. Then H " is not cyclic.

P ro o f Let us assume for a contradiction that H" is cyclic, whence it has 
order p. Let us choose a generator r/ of Q and let a be the unique integer 
with 1 <  a <  p such that

zn =  za for all z €  H ".

The abelian factor group H'/ H " has a decomposition into a direct product 
of Q-indecomposable groups. Let C  be one of them. According to Theorem 
2.4.2, the group C  is homocyclic and C /$ (C ) is an irreducible Q-group; 
hence C / $(C )  is a (^-composition factor of H'/ H ". Since all (^composition 
factors o f  H '/ H" are Q-isomorphic to H" by Lemma 3.3.4, we have that 
C /$ (C )  is cyclic of order p. Consequently, C  is cyclic. Because C ¡$ (C )  is 
Q -isomorphic to H ". we have

c" =  ca mod 4*(C) for all c €  C.

If pr is the exponent of H'/ H ". then |C| divides pr. Since ij acts on C  
as an automorphism of order prime to p, the remark which precedes this 
proposition yields

c" =  cb for all c €  C,

where b =  ap' . Now this holds for all (^-indecomposable groups C  o f which 
H'/ H " is the direct product, and therefore we have

x” =  xb mod H " for all x £ H '.

We also have
z”  =  zb for all x 6  H ",

because b =  a (mod p).
Now let us choose x ,y  G H' such that (x, y] ^  1, whence ([x,y]) =  H ". 

Remembering that H" < Z(H '), we compute

k » r = [ * ’ . » ”] =

On the other hand, since [x,y] €  H " we have

I*.*]" = [*.*]*•
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Since [x, y] lias order p, it follows that b2 =  b (mod p); it follows that 6 = 1  
(mod p), becatise 6 is not divisible by p. But this implies that

z - =  zh =  z for all z €  H ",

or in other words, that l/ centralizes H ". This contradicts the fact that Q 
acts faithfully on H ", by Lemma 3.2.1. Hence our assumption is wrong, and 
thus H" cannot be cyclic. □

The key idea of the proof of Proposition 3.4.1, namely that the action of 
Q on H' must be compatible with commutation, will now be generalized to 
the case in which H" is not assumed to be cyclic. However, this will not lead 
to any contradiction in general.

Let us assume Hypotheses 3.1.2, and let us fix a chief series of H going 
from 1 to H' thus:

1 <  H" =  A', <  K 2 <  • • • <  K, =  H'.

Let r be the smallest index i such that K, £  Z (H') (since H' is not abelian 
such an index exists), and then let s be the smallest index j  such that 
[A'r. A'j] ^ 1. Than we clearly hove 1 <  r  < . * < / .

Since [A'r, A',) <  H " <  Z(H') and [A'r, A ',_i] =  [A'r_ i , A',] =  1, according 
to Lemma 2.2.1 the map

7  : A'r/ A'r_ , x A ',/A '._ , — H"

such that

(xKr- i , y K , - i y  =  [x,y] for all x  €  A'r and for all y €  A',,

is Z-bilinear. Moreover, if r =  s, the map 7  is skew-symmetric.
Since A'r/A',—1 , A ',/A ',_i and H" have exponent p, they can be regarded 

as vector spaces over F;, , and the map 7  is Fp-bilinear. We shall put Vi =  
A'r /  A'r—1 , Vi =  A './A '.-i and V =  H".

Let Vi ® V2 denote the tensor product o f V\ and Vj over F(, . According 
to the universal property of tensor products, there exists a unique Fp-linear 
map 7  : VJ ® Vj —► V  such that

(17 ® v^y — ( 17 , t’a)1  for all 17 £ Vi and for all v2 6  Vt
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Now Vi, V2 and V  are irreducible ¥PQ -modules by conjugation, and according 
to Lemma 3.3.4, they are all isomorphic.

The tensor product Vi ®V2 becomes an F,,Q-module in a standard way (see 
for instance [13, Chapter 4], [10, Kapitel V, Definition 10.4], or [5, Definition 
(10.15)]). In short, the action of a generator i) of Q  on V\ ®  Vj is defined on 
the pure tensors V| ® v2 (for v, €  Vi) by the formula

(t»J ®  I>l)t} — V\T) ®  v2ti

and extended Fp-linearly to Vi ® V2. (Although the module action in this 
case is given by conjugation, instead o f the exponential notation vj1 we shall 
use the more common notation t>jif.)

Since [xv, »/''] =  [x, y]'1 for all x  €  K r and y G A',, we have

((wi ®Vj)Tf)* =  ((v, ® v 2)^)tf

for all pure tensors t>i ®  v2; hence it follows by linearity that 

(wt/)* =  (tv^)r/ for all w € Vi ®  V2.

Thus 7  : Vi 0 V2 —» V  is an Fj.Q-module homomorphism. It cannot be 
the zero homomorphism, because [K r, I\,] ^  1. But V  is an irreducible 
F,,(^-module, and therefore 7  is an epimorpliism. Hence the tensor square 
FpQ-module V' <gi V  (which is isomorphic to Vi ® Vi) has some factor module 
isomorphic to V . This is impossible when V  has dimension 1 over Fp (unless
V  is the trivial module, which it is not in our case, according to Lemma 
3.2.1). In fact, if V has dimension 1, then V ® V' also has dimension 1; in 
particular V  ®  V  is irreducible, but it cannot be isomorphic to V', unless V  
is the trivial module. For, let v be a generator of V ; hence v ®  t’ generates
V  ®  V . We have vi) =  av for some a €  F* (which is clearly independent of 
the choice of t>), and thus

(v ® v)t) =  vt] ® vt) =  av ® av =  a2(u ® v).

It is clear then that V  and V  ®  V  are not isomorphic unless a =  a2, that 
is to say a =  1  (because a ^  0), which means that V  is the trivial module. 
Thus we obtain a different formulation of the proof o f Proposition 3.4.1.

In the next section we shall examine when V’ ®  V  has a factor module 
isomorphic to V , for small values of the dimension of V  over F,,. But before
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doing that, we observe that in the special case in which r =  a we have 
V\ =  V2, and the bilinear map 7  is skew-symmetric, which means

=  0 for all t» €  V\.

The subspace
W  =  (v ® v € VI ® V\ | v G Vi)

of V\ (8) Vi, which is clearly an Fp<?-submodule of V\ ®  Vi, is therefore contained 
in the kernel of the FPQ-module epimorphism 7 .

The factor space Vi 0  Vi /W  is by definition the exterior square Vi A Vi, 
which thus becomes an FPQ-module (with the notation of [11, Chapter VII, 
Definition 8.16] and according to [11, Chapter VII, Lemma 8.17], we have 
V, A V, =  V, ®  V ,/S (V i) A (V ,); see also [5, §12A]).

Hence we obtain an FPQ-module epimorphism 7  : V\ A Vi —► V, such that

(t>i A « 2)  ̂= (t»i,V2)"r f°r all e i,t>2 € V\,

where by definition

t>i A v2 =  (t>i ®  n2) +  W  €  Vi A VJ.

Therefore, when r =  .s, the FPQ-module V  is isomorphic to a factor module 
of V  A V.

We shall henceforth distinguish between the case in which r <  s  (which 
only gives rise to a map 7  : Vi ®  V2 —► V ) and the case in which r =  s (which 
in addition gives rise to a map 7  : Vi A Vi —* V ) by referring to them as the 
binary cose and the unary case.

3.5 The smallest cases which can occur
In this section we shall investigate for which values of p and |Q| the modules 
V  ®  V  and V A V have a composition factor isomorphic to V, where V  is a 
faithful irreducible module for the cyclic p'-group Q  over Fp.

Let E be a splitting field for the polynomial — 1 over Fp; hence E 
is the smallest extension field of Fp which contains a primitive |Q|th root 
of unity, or, in other words, the smallest extension field of Fp whose mul­
tiplicative group E* contains a subgroup of order |Q| (which is necessarily
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cyclic). Hence E is clearly isomorphic to Fpn, where n is the multiplicative 
order of p (m od |Q|), that is to say, n is the smallest positive integer such 
that |(̂ | divides p” — 1. According to Theorem 2.3.1, the integer n equals 
the dimension of V  over Fp.

Since |Q| is not divisible by p, the Fp-algebra ¥pQ  is semisimple, according 
to Maschke’s Theorem. In particular, V  ® V  and V  A V  are semisimple FPQ- 
modules. According to Corollary 2.3.3, the composition factors of V  ®  V  and 
V A K a s Fp (¿-modules are completely determined by the composition factors 
of (V  (g) V ) 1  and (V  A V ) 1  as Ei,)-modules. It is easy to see that

(V  8  V )1  ï !  V 1 8  V 1  Mid (V A F ) ‘ ï V 1 AVrI.

Let e be a primitive |Q|th root of unity in E. The discussion which follows 
Theorem 2.3.1 yields that e ,ep, . . .  , £p"~' are all the distinct eigenvalues of r/ 
(a generator of Q) on V E. Moreover, V’E has a basis v0, . . .  , v„_i over E such 
that

vitf =  ep‘vi, for all i =  0 , . . .  , n — 1 .
Thus bases for V/E ® V 1  and V e A V c over E are given by 

Vi ®  Vj, for i, j  =  0, . . .  ,n  — 1 ,

and respectively
Vi A Vj, for 0 <  * <  j  <  n.

These bases are made of eigenvectors for r/; in fact

(t>, ®  Vj)l] =  Vit) ®  Vjl) =  £p' +pJ(v i  ®  Vj)

and
(v i  A  V j)tj = Viif A  Vji] =  ep‘+pl( i>, A  V j).

The eigenvalues for i] on V z® V l  and V eAVe (considered with multiplicities) 
can be grouped into Galois coujugacy classes, which in turn determine the 
isomorphism classes of the composition factors of V 1  <g> V e anti respectively 
of V'E A V e as FpQ-modules, according to Theorem 2.3.2.

Sets of representatives of the distinct Galois conjugacy classes of the eigen­
values of i] on V e ®  V 1  and V e A V,E are contained in the set

{ £pi+l | 0 < « < n/2)



CHAPTER 3. LOOKING FOR A COUNTEREXAMPLE 50

and respectively in the set

{ep‘+l | 0 <  i <  n/2 ).

In fact, the eigenvalue ep'+pl is Galois conjugate to epj~,+l =  (ep'+p> )p"_' and 
to  cp"+,-',+1 =  (ep'+pj )Pn~1; on the other hand, if 0 <  i <  j  <  n, then we have 
either 0 <  j  — i <  n/2  or 0 <  n +  t — j  <  n/2 .

Hence V ®  V  has a composition factor (hence a direct summand, because 
V  ® V  is semisimple) isomorphic to V  exactly when ep> appears as an element 
o f  the set {£p+1 | 0 <  i <  n /2 } for some /  =  0 , . . .  , n — 1. A similar assertion 
holds for V  A V. We shall state both assertions in the following lemma.

L em m a 3.5.1 Let V  be a faithful irreducible module for a cyclic group Q 
over Fp (in particular p does not divide \Q\) and let n be the dimension o fV  
over Ff, . Then:

( i )  the tensor square FpQ-module V  ® V  has a direct summand isomorphic 
to V  if and only if

p' +  1  =  p1 mod |Q|
for some i , j  with 0 <  i <  n/2  and 0  <  j  <  n (or, equivalently, for  
some non-negative integers i , j ) ;

( i t )  the exterior square FpQ-module V A V  has a direct summand isomorphic 
to V  if  and only if

p‘ +  1  =  p’  mod |0 |
for some i , j  with 0 <  i <  n/2  and 0 < j  <  n (or, equivalently, for  
some non-negative integers i , j .  with i not a multiple o f n).

We observe here that we may also restrict our attention to |Q| odd in 
Lemma 3.5.1. In fact, if |Q| is even, then p is odd, and hence the congru­
ence p‘ +  1 =  p) (mod |Q|), has clearly no solution. It follows in particular 
that if (G .H ) is a pair of groups which satisfy Hypotheses 3.1.2, then the 
cyclic complement Q for the normal Sylow /»-subgroup of H  has odd order. 
However, this is also a consequence of the general fact that a non-abelian 
group cannot have a fixed-point-free automorphism of order 2 , according to 
[10, Kapitel V, Satz 8.18] (while any non-identity element of Q induces a 
fixed-point-free automorphism of the non-abelian group H' by conjugation).
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We shall see in Chapter 5 that all the cases described in Lemma 3.5.1 
actually arise from the analysis of counterexamples to Conjecture 3.1.1. In 
other words, for any faithful irreducible module V  for a uon-trivial cyclic 
group Q over Fp such that V ® V  (respectively V A V ) has a composition factor 
isomorphic to V, there exists a pair of groups {G, H ) satisfying Hypotheses 
3.1.2 and such that

• Q is a complement for the normal Sylow ;>-subgroup of H ,

• H" is isomorphic to V  when it is regarded as an FpQ-module by con­
jugation,

• the map 7  (respectively 7 ) arising from some chief series of H . as 
described in the last section, is an FpQ-module epimorphism of V  ® V  
(respectively o f F  A V) onto V.

Now let us take a different point o f view. We shall explicitly construct 
pairs (G. H ) o f groups satisfying Hypotheses 3.1.2 in Chapter 5: we would 
like them to be as small as possible. Therefore it makes sense to fix a small 
value n o f the dimension of V  and then determine for which primes p and 
cyclic //-groups Q some (actually, according to Lemma 3.5.1, any) faithful 
irreducible module V for Q over Fp appears as a composition factor o f V ® V, 
or even of V  A V. We shall see in some detail what happens for n =  1,2,3,4 
and show in particular that while case (i) o f Lemma 3.5.1 can already happen 
for n =  2, case (*'»') does not occur unless n >  4.

Case n =  1. We have already seen that in this case V  ® V  (which is 
irreducible, because it has dimension 1 over Fp) cannot be isomorphic to V  
as an FpQ-module.

Case n =  2. Since in this case V  A V  has dimension 1, it is irreducible and 
certainly not isomorphic to V, which has dimension 2 .

On the other hand, V  ® V  has dimension 4 over Fp. According to Lemma
3.5.1 then V  ® V  has a composition factor isomorphic to V  if and only if 
p' +  1 =  p1 (mod IQI) for some 1 =  0,1 and j  =  0,1. The cases ( i , j )  =  
(0 , 0 ) , ( 1 , 0 ) , ( 1 , 1 ) are easily ruled out, remembering that p does not divide 
|0I- Hence we are left with p° +  1 =  p  (mod |(?|). If this is the case, from 
IQI | (p — 2) it follows that (|Q|,p — 1) =  1. Now Fpa contains a primitive 
|Q|th root o f unity according to Theorem 2.3.1; consequently, |Q| divides
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|F*j | =  p2 — 1 =  (p — l)(p  + 1 ) .  Therefore |Q| divides both p +  1 and p — 2, 
and hence |Q| =  3.

Thus there exists a two-dimensional faithful irreducible module V  for a 
cyclic group Q  over Fp such that V  is isomorphic to  a composition factor of
V  ® V, if and only if |Q| =  3 and p =  — 1 (mod 3).

Case n =  3. It is certainly possible that V  is isomorphic to a composition 
factor of V  ®  V. For instance, when |Q| = 7 and p  =  4 (mod 7) we have 
that p has multiplicative order 3 (mod |(?|) and that p° +  1 = p2 (m od |Q|). 
However, we shall not go into further details here. W e shall only prove that
V  A V  cannot have any composition factor isomorphic to V. In fact, if this 
were true we would have, according to Lemma 3.5.1, that p +  1 =  p2 m od |Q| 
for some j  =  0,1,2. Since the cases j  =  0,1 are easily ruled out, we would 
have that |Q| divides p2 — p — 1. On the other hand, because Fp» must contain 
a primitive |Q|th root of unity, |(̂ | should divide p3 — 1. It would follow that 
|Q| divides (p3 — 1 ) — (p +  l) (p 2 — p — 1 ) =  2p, and this contradicts the fact 
that |Q| is odd and prime to p.

Case n =  4. We shall prove that if V  has dimension 4 it can happen that
V  is a composition factor of V  A V  (and hence of V  ®  V  too). According to 
Lemma 3.5.1 we need to determine for which values o f  p  and |Q| it is possible 
to have p' +  1 =  p> (mod |Q|) for some t =  1 , 2  and j  =  0,1,2,3.

It is not difficult to rule out the cases with i =  2, either by working with 
the congruences or by simply noticing that the eigenvalues ep +1 and ep +p o f 
a generator »/ of Q on V  A V  form a Galois conjugacy class of length two over 
Fp, which thus corresponds to a composition factor o f V  A V  of dimension 
two, in particular not isomorphic to V, which has dimension n =  4. Hence 
we are left with t =  1 .

Now the cases ( i , j )  =  (1 ,0), (1,1) are clearly impossible; hence we have 
either (i , j ) =  (1,2) or ( i , j )  =  (1,3). In the first case, we have that p +  1 =  p2 
(mod |Q|), in other words \Q\ divides jr  — p — 1. Keeping in mind that |Q| 
also divides p* — 1 =  IF*« |, we obtain that |Q| divides

(p4 - 1) -  (p2 -  P -  i ) (P“ + 1) =  p(Pa + 1)

and therefore that |Q| divides p2 +  1. Hence |Q| also divides
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Now from p2 =  — 1 (mod |Q[) and p =  — 2 (mod |Q|) we obtain that 5 =  0 
(mod |Q|). It follows that |Q| =  5 and p =  3 (mod |(?|). In a similar way 
one can find that in the case ( i , j )  =  (1,3) it must be \Q\ =  5 and p =  2 
(mod |Q|).

Conversely, if |<?| = 5 and p =  3 (m od |Q|) or p =  2 (m od |Q|), then p 
has multiplicative order 4 (mod |Q|) and p +  1 =  p2 (mod |Q|), or respec­
tively p +  l =  p3 (mod |Q|).

We conclude that there exists a faithful irreducible module V  o f dimension 
4 over Fp for a cyclic group Q, such that V  is isomorphic to a composition 
factor of V  A V, exactly when |Q| =  5 and p =  2 or 3 (mod 5).



Chapter 4

Comparing character tables

4.1 Our philosophy
We said in Chapter 1 that two groups can have identical character tables 
without being isomorphic. But how can one compare character tables in 
practice? In this chapter we shall develop a method which allows one to 
do this, in special situations. We shall employ some basic Clifford theory. 
This is the part o f character theory which analyzes the relations between 
the characters of a group G  and the characters of a normal subgroup N  of 
G. For our present purposes, the two most fundamental results of Clifford 
theory will suffice, namely Clifford's Theorem (see [13, Theorem 6.2]), and 
the Clifford Correspondence ([13, Theorem 6.11]).

Let us start from the side of group theory by recalling the well-known 
analysis of a group G  in terms of a normal subgroup N  o f G  and the factor 
group G/N. Given two groups N  and H , there are in general many ways of 
constructing a group G  which has N  as a normal subgroup and such that 
G/N =  H. This is the so-called extension problem for groups, and its answer 
is given by the following well-known theorem.

T heorem  4.1.1 Let H and N be groups, let

h -> ifi(h)

be a map from H into Aut(jV), and let

(hu h2) ~ f ( h u h2)

54
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be a map from H  x H into N , a so-called factor system. Let us assume that 
and f  satisfy the following conditions, fo r all n G N  and for all h,,h G H:

(1 )  /(* „* ,* ,) /< * > ■ * » )  =  / (* ,* > , * > )/(* ., M ' “ ' 1.
(2) ^
W  / ( f t , i )  =  / ( i ,M  =  i.
Let us define a multiplication on the cartesian product

G =  { ( h ,n )\ h e H , n £  N ),

through the formula

(* i ,n ,) (fi2,n 2) =  (hih2, f { h t , fi2)nf(fcj)n2).

Then G becomes a group with this multiplication. The set

JV =  < ( i , » )| » e J V )

is a normal subgroup o f G isomorphic to N , and the factor group G/N is 
isomorphic to H . The group G is called the extension o f H by N  with respect 
to the automorphisms <p(h) and the factor set f ( ,  ).

P r o o f  See [10, Kapitel I, Satz 14.2], or [8, Theorem 15.1.1]. □

Let us summarize Theorem 4.1.1 by saying that in order to construct the 
group G  from the normal subgroup N and the factor group G/N , we need 
the following ingredients:

( i )  the group H =  G/N ,

(ii) the group N, together with a map <p : H —► Aut(iV),

(iii) a factor set f  : H  x  H N;

moreover, conditions (1), (2), and (3) of Theorem 4.1.1 have to be satisfied.
Let iis say that our ingredient (tit) is usually the most difficult to handle, 

and can be dealt with by using cohomological methods.
Let us remark that in the special case in which N  is abelian, and more 

generally when /(A|,A2) G Z(Ar) for all fcj,A2 G H, the map

h •-» yj(fi)
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is a group homomorphism from H  into Aut(TV); thus when N  is abelian, 
it heroines a Z //-m odule. When N  is arbitrary, the map is not a group 
homomorphism; however, the composite map

: H  -*  Out(AT) =  Aut(AT)/Inn(/V)

is a homomorphism, where 7r : Aut(/V) —» Aut(TV)/ Inn (A ) is the natural 
epimorphism. As a consequence, induces an action of H  on the set of con- 
jugacy classes of N. The knowledge o f the orbits of this action allows one to 
determine the coujugacy classes of G  which are contained in N. More infor­
mation is needed in general in order to determine the remaining conjugacy 
classes of G, namely some information about the factor set /  is necessary.

Let us turn our attention to the character tables now. Let us order the 
conjugacy classes of G  in such a way that those which are contained in the 
normal subgroup N  precede those which are contained in G \N . Similarly, for 
the irreducible characters of G, let us first list those whose kernel contains N , 
which we shall identify with the characters of G/N, and then the remaining 
ones. The character table T  of G  can be divided into four submatrices 
accordingly, thus:

N G\N  
hr(G/N) [  A  I B  1 

lrr(G) \ tn(G/N) [ C \ D J
Let us examine which o f the submatrices A. B. C, D o f T  is influenced by 
each of our ingredients (i), (ii), and (tit).

Ingredient («), namely the factor group H  =  G/N, gives information 
about A  and B. In fact, the submatrix of T  made up of the submatrices A 
and B  coincides with the character table T  o f the factor group G/N, except 
that some columns o f T  are repeated in A  or B  (in particular all the columns 
o f  A  are equal). Therefore (i) determines the number of rows of A and B. 
and all the entries, up to repeating some columns.

Now let us see how the normal subgroup N  together with the map ^ : 
H  —► Aut(AT), which constitute our ingredient (ti), give information about 
A  and C. The matrices A  and C  display the restrictions of the irreducible 
characters of G to the normal subgroup N. According to Clifford’s Theorem, 
if \ is an irreducible character of G, then its restriction \n 'is & multiple of the 
sum over a G-orbit of irreducible characters of N. We are assuming that the 
group N  is known; consequently, its character table is uniquely determined.
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We have already said that the map ^  determines an action of H =  G/N 
on the set of conjugacy classes of N; to be explicit, if h € H and AC is a 
conjugacy class of N, then AC" is the coujugacy class of N  given by

K h =  | n €  AC}.

The map ^ also determines an action of H  on Irr(TV) via 

0*(n) =  0 (»* (M' ' ) for all n 6  N,

where h 6 H  and 8 6 Irr(iV). In other words, the map ip induces two actions 
of H, one on the set of columns and one on the set of rows of the character 
table of N . Therefore, assuming that we are able to write the character table 
of N, we can replace each set o f rows of the table which correspond to a 
G-orbit of Irr(jV) with a single row, namely their sum; finally, we can delete 
multiple columns. Let us call T  the matrix which we obtain. Then, first of 
all, A  and C  have the same number of columns as T. Secondly, possibly after 
permuting the columns of T, each row of A or C  is a multiple of some row of 
T  by a positive integer; on the other hand, each row of T has some multiple 
which appears as a row of either A  or C . In other words, the submatrix of 
T  made up o f A  and C  has the same number of columns as T, and can be 
obtained from T  by repetition o f some rows and then multiplication of some 
rows by some positive integers.

The little asymmetry in the ways in which we obtained A , B  from T  and 
A, C  from T  would disappear if we considered the table of central characters 
uix of G , instead of the ordinary character table of G\ here the central char­
acter u>x associated with the irreducible character \ o f G is the map from G 
into C defined by the formula

v x(9) = f°r all 9 G G

(the name central character is due to the fact that u>x can be extended C- 
linearly to a character of the centre Z(CG) of the group algebra CG. in other 
words, to a C-algebra homomorphism from Z(CG) into C).

We have seen that the submatrix A of T is completely determined by 
our ingredients (») and (it), while B  and C  are only partly determined (B  is 
determined up to repeating columns, and C  up to repeating rows and mul­
tiplying them by positive integers). The remaining submatrix of T , namely 
D, usually requires some knowledge of our ingredient (tit).
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We shall get rid of the problem of computing D  by assuming that D  is 
the zero matrix. As we shall see, this assumption will also eliminate the 
residual indeterminacy in the matrices B  and C; in fact there will not be any 
repeated column in B. nor any repeated row in C . and the first orthogonality 
relation will determine which multiple of each row of T  (not corresponding 
to the trivial character of N ) appears as a row of C. Thus our ingredients (*) 
and (it), together with the assumption D =  0, will determine the character 
table of G uniquely (though they do not determine G  up to isomorphism). 
We shall see in Section 4.2 how the condition D  =  0 can be expressed by 
two equivalent statements: one of them concerns conjugacy classes of G  and 
G/N, while the other one concerns irreducible characters of G  and N .

We observe now that in order to describe the submatrices A, B, and C  
o f T  we did not use all of the information contained in our ingredients (t) 
and (**'). In fact, in our discussion we never used the group structure o f H 
and N , but only their character tables, together with the orbits of H on the 
set of conjugacy classes and the set o f irreducible characters of N. It turns 
out that our ingredients (i) and (it) can be safely replaced with the following 
weaker ingredients:
(I )  the character table of H =  G/N,

(I I )  the character table of N , together with the knowledge of the G-orhits 
of Irr(TV).

With Theorem 4.3.1 we shall give a formal proof that (I )  and (I I ) ,  together 
with the condition D =  0, determine the character table T  o f G  uniquely. We 
only observe here that in ( I I )  we do not require the knowledge of the orbits of 
G on the set of conjugacy classes of N . This is due to the following general 
fact, which we mention without proof: if the character table of a normal 
subgroup N  o f G  is given, together with the orbits of the action of G on Irr(TV) 
(wliithout any further information about this action), then the orbits of G 
on the set of conjugacy classes of N  can be uniquely determined; conversely, 
the character table of N  and the orbits of G on the set of conjugacy classes 
of N  determine the orbits of G  on Irr(TV).

We conclude this section by noting that ingredient ( I I )  can be further 
weakened (though it is sufficient as it stands for our purposes), because, 
instead of the character table o f N  we rather used the table T, which displays 
the values o f the sums over the G-orbits of Irr(TV). We shall come back to 
this remark in Section 4.4.
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4.2 Vanishing o f  character values
The matter of this section is the vanishing of the submatrix D  o f the char­
acter table T  o f G, as described above. The following two lemmas show how 
the vanishing o f a column (respectively row) of D  is equivalent to a conditon 
on the conjugacy class (respectively irreducible character) of G which cor­
responds to that column (respectively row). Since these results cannot be 
easily found in the literature in this form, we shall give their proofs in full.

Lem m a 4.2.1 Let N  be a normal subgroup o f the group G, let g G G and 
let it : G  —♦ G/N be the natural epimorphism. Then any two o f the following 
conditions are equivalent:

(<a) \ (») =  0 f or all \ e  Irr(G) \ Irr{G/N);
(b )  |C„(9)| =  |C0/K(s')|;

( c )  gc = g G N ;
(d) gN  Ç  gG;
( e )  N C  [s,GJ.

P r o o f  ((a) ■<=> (6)) By using the second orthogonality relation we get

\ C c , n ( 9 w) \ =  £  \x(g)\2 <  £  \x(g)\2 =  |cc(</)|,
X€lrr{G/N) X€ln<G)

with equality if and only if x (g ) =  0 for all \ G Irr(G) \ Irr(G/Af).
((6) <=► (c)) Since (j/*)**’ * =  (</*)* for all g ,x  G G, we have

« s ' ) " ' 1) ' "  =  s '  • N  and ( ( s ') 0' " ) ' "  =  g °  ■ N.

Therefore
s ° S s ° ( V  =  ( ( s ') 0 /" ) ' " -

It follows that Is°| <  |JV| • | (s ')° '")| . which is equivalent to

|Cc(s)l > |C„/W(»')|.

We have equality here if and only if gG =  g °  • N.
((c) <=> (d) <=> (e)) This is easy. □
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If JV is a uormal subgroup of the group G and 0 6  Irr(AT), let us write 

Irr(G,0) =  {*  e  Irr(G)|(xAr,#] >  0},

where the brackets [ , ] denote the scalar product of characters. Since 
[**,• ] =  [x,0G ] by Frobenius Reciprocity, Irr(G,0) is the set of all irre­
ducible constituents of #G.

Lem m a 4.2.2 Let N  <  G, let 0 G Irr(A') and \ €  Irr(G, 0). Let e =  [xa/»0] 
and let t be the number o f distinct G-conjugates o f 0. Then the following 
conditions are equivalent:

(a )  Irr(G,») = { X }.
(b j  \(g) =  0 fo r all g €  G  \ N ;
( c )  rH =  \G -.N\.

P r o o f  Let 0 =  0\.. . .  , 0t be all the distinct G-conjugates of 0; then according 
to Clifford's Theorem we have

X N  =  e X J  *•’  w lie re  e =  [x n - 0] =  [ X ,* C].

Thus \ is an irreducible constituent of 0(' with multiplicity e. It follows that 
Irr(G, 0) =  { x }  if and only if 0 °  =  ex, or equivalently 0G(1) =  ex (l)- But

0G(1) =  |G: N\0(l) and x ( l )  =  e<«(l),

and so Irr(G, 0) =  { x } >s equivalent to |G : AT| =  e2t. According to [13, 
Lemma (2.29)] we have

ea< =  [xAT,XAf]<|G:iV|[x,x] =  |G:iV|,

and equality holds if and only if \(g) =  0 for all g €  G  \ N . This concludes 
the proof. □

It follows from Lemma 4.2.1 that the obvious character-theoretic expres­
sion of the condition D  =  0, namely

x(g) =  0 for all g G G \ N  and for all x € Irr(G) \ Irr(G/AT),
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has a purely group-theoretic equivalent, namely

|Co(j)| =  |Cc//v(</JV)| for all g G G \ N.

This condition on G, with respect to a normal subgroup N, has been given 
a name.

D efinition 4 .2 .3  Let N be a proper non-trivial normal subgroup o f the group 
G. The pair ( G, N ) is called a Camilla pair if the following condition holds:

|Co(S)| =  |C0 ,k (j JV)| /o r  a l lg e C \ N .

Camilla pairs have been introduced in [2] as a generalization of Frobenius 
groups; in fact it is easy to see that (G, N ) is a Camilla pair if G  is a Frobeuius 
group and N  is its Frobenius kernel. Further examples of Camina pairs are 
given by (G , G '), where G is an extraspecial p-group. We refer to [2], [3] and 
[16] for series of results on Camina pairs.

We observe that, according to Lemma 4.2.1, Camina pairs are also char­
acterized by the following property: the inverse image of each uon-trivial 
conjugacy class (gN )Ĝ N o f the factor group G/N, under the natural epi- 
morphism ir : G  —» G/N, is a conjugacy class of G, namely gG. (Let us note 
that in general the inverse image under ?r of a conjugacy class of G/N is a 
union of conjugacy classes of G.)

Finally, let us mention a remarkable property of Camina pairs: if (G, N ) 
is a Camina pair, then every chief series of G must pass through N; in other 
words, each normal subgroup of G, either contains N , or is contained in N.

4.3 A  too l for com paring character tables
The following theorem provides a rigorous formulation of the result which 
we sketched in Section 4.1.

T heorem  4.3 .1  Let N\ <  G\, N j <  G j, and suppose that the following 
conditions hold:

(i) G\/N\ and G2/N2 have identical character tables;
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(ii) N\ and N2 have identical character tables, via the bijections 

a  : AT, - »  N2

and
¡3 : Irr(JV,) -*  Irr(JV2),

and, moreover, ¡3 takes each G\-orbit of\xx(N\) onto some G2-orbit o f
Irr (N 2);

(Hi) (G j, JV( ) and(G 2,N 2) are Camina pairs.

Then G\ and G2 have identical character tables.

P r o o f  By hypothesis (i), there exist bijections

d  : Gx/Nx -  G2/N2

$  : lxx(Gi/N\) -  Irr(G2/JV2),
such that

\^(xa) =  x (x )  for all x  6  G\/N\ and for all \ G Irr(G|/iVi).

Let 7r, : G, —* G ,/ N , , for i =  1,2, be the natural epimorphisms. Let a  : 
Gi\N\ —* G2 \ N2 be any bijection making the following diagram commute:

G, \ Nx - 2 —  G2 \ N2

(C,/JV1) \ {  1) - i -  (G2/JV2) \ {  1}

Let us extend o  to a bijection a  : G\ —► G2 by

n° =  n" for all n € N\.

Then the extended o  also satisfies cck2 =  7Tid.
If \ G Irr(G,) \ lxx(G,/Ni) (for i =  1 or 2), then hypothesis (***') together 

with Lemma 4.2.1 guarantee that

*(ff) =  0 f° r *11 9 € Gi \ Ni.
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Furthermore, if 9 is an irreducible constituent of the restriction \/v, , then

Irr(G„S) =  ( V},

according to Lemma 4.2.2.
Let us define a map:

D : Irr(G,) \ Irr(G ,/M ) -  Irr(Gl) \ Ifr(Ga/JV2),

as follows. If \ G Irr(Gi) \ Irr(G) /N\), let 9 be an irreducible constituent 
of Xn, j so that Irr(G|,0) =  {\ }  and 9 is not the trivial character o f N\. 
It follows that 9 * is not the trivial character of N2 , and hence Irr( G2 , 9li) 
is a subset of Irr(Gj) \ Irr(G2/JV2). Therefore Irr(G2, 9^) =  {\ } ,  for some 
\ G Irr(Gj) \ Irr(G2/iV2) (namely \ is the unique irreducible constituent of 
the induced character (9^)Gi). Then define \° =

This definition does not depend on the only choice we made, namely the 
choice of an irreducible constituent 9 of \n, , because ft takes G \-conjugate 
characters of N\ to G2-conjugate characters of 7V2, according to hypothesis 
(*«)•

By Clifford’s Theorem and Lemma 4.2.2, the map which sends any x  € 
Irr(G,) \ Irr(G,/JV, ) (for 1 =  1 or 2) to the set of the irreducible constituents 
of \s, is a bijection from Irr(G,) \ Irr(G, / N, ) onto the set of G.-orbits of 
Irr(iV,) \ {lyVi}- Since ft is a bijection, it is clear that the map ft is also a 
Injection.

Let us extend ft to a bijection ft : Irr( G \) —» Irr( G 2) by defining 

xf  -  X s  for all t  6  Irr(G,/JV,).

It will follow that Gi and G j have identical character tables, once we 
show that

\ff(ga) =  \(g) f°r all «/ G G| and for all \ G Irr(G|).

We will prove this by distinguishing three cases.
Case 1: x G Irr(G i/W ,), j  G G].

We have

v ' V )  =  \ V ” ) =  v V " 1) =  x W ) =  x M -
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Case 2: \ G Irr(Gi) \ Irr(G|/JV|), g 6 Nx.
Let 0 be an irreducible constituent of X/v, and let 0 — 0\, - ■ ■ , 0, be all 

the distinct G\-conjugates of 0. Then

X N , =

and the positive integer e is determined by e2t =  \G\ : iVj|, according to 
Lemma 4.2.2. The Gj-conjugates of 0‘* are 0a =  , ■ ■ ■ , 0?, by hypothesis
(ii); hence

( * ' ) « ,  =  « £ <

and e2t =  |Gj : /Vj|, by Lemma 4.2.2 again. But the groups G\/N\ and 
G-i/N-i have identical character table, in particular they have the same order. 
This forces e and e to be the same number, therefore

(X * )*  = « t < -
>=i

But then we have

=  e £ 0> (0d )  =  e 5Z d i ( S ' )  =  X ( $ ) -

Case 3: x € Irr(G ,) \ Irr(G,/JV,). g 6 G, \ Nx.
Since \ and \a vanish on G\ \ N\ and G2 \ N? respectively, we have

x 0(ga ) =  0 =  x(ir)-

This completes the proof. □

The previous theorem will actually be used in presence of much stronger 
hypotheses, namely those of the next corollary.

If ¿V is an abelian normal subgroup of the group G , we can regard N  as 
a ZG-module, with G acting on N  by conjugation. Since N  is contained in 
the kernel of this action, N  can also be regarded as a Z(G //V)-m odule. If H 
is a group and 7  : H  —» G/N is a group homomorphism, then N  becomes an 
Z //-m odule in the usual way.
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C orollary  4.3.2 Let N, be an abelian normal subgroup o f  G ,, for  i =  1,2, 
and suppose that the following conditions hold:

( i )  there exists a group isomorphism

d : Gt/Nt - *  G2/N2;

( i t )  there exists a Tt(G\/N\)-module isomorphism 

a :  N\ —* N2,

where the Z,(G2/N2)-module N2 is regarded as a "L(G\/N\)-module via 
the isomorphism a ;

( i i i )  (G t,N t) and (G2,N 2) are Camina pairs.

Then G\ and G2 have identical character tables.

P r o o f  Suppose that the hypotheses of the corollary hold. Then hypotheses 
(t) and (u i) of Theorem 4.3.1 are clearly satisfied. Let us define a map 
$  : Irr( A'i) —* Irr(N2) by means of the formula

9^(n) =  9{na ' )  for all n £ N2 and for all 6 £  Irr(iVj).

Then N\ and N2 have identical character tables, via the bijections d  and (). 
Let 6 £ Irr(iVi) and g £  Gi\ then, for all n £ N\, we have

{« » )* („ )  =  « • (» * - )  =  *< (»*")• “ ) =  * ( ( » * -  )*“ ) -  ^ (n * “ ) =  (»*)•(»). 

Hence
(O')® =  {,«>)• for all 0 6  IrrflV,) and for all g €  G ,.

It follows that fi takes each G i-orbit of Irr( N\) onto some G j-orbit of Irr(N2). 
Thus hypothesis (n ) of Theorem 4.3.1 is also satisfied, and the desired con­
clusion follows. □

Perhaps the simplest situation in which Corollary 4.3.2 applies is when 
G\ and G2 are extraspecial p-groups o f  the same order, and N \, N2 an* 
their centres; in fact (G ,,N i) is obviously a Camina pair in this case (for 
i =  1,2). More generally, (G, Z (G )) is easily seen to be a Camina pair if G  is 
a semi-extraspecial p-group, according to the following definition, which was 
introduced in (1 ).
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D efinition 4.3.3 A non-trivial p-group G is called semi-extraspecial ifG/N  
is extraspecial for each maximal subgroup N  o f  Z (G ).

A semi-extraspecial p-group G  is obviously a special p-group, and

\G : Z(G)| =  p2n

for some positive integer n. It turns out then that |Z(G)| < pn (see [1]). For 
example, Suzuki 2-groups o f type B, C , D (see [9] or (11, Chapter VIII, §7]) 
are semi-extraspecial and satisfy |G : Z(G)| =  |Z(G)|2. According to Corol- 
larv 4.3.2, the character table o f a semi-extraspecial p-group G  is completely 
determined by the two numbers |G : Z(G)| and |Z(G)|. Consequently, semi­
extraspecial p-groups provide plenty of examples of non-isomorphic groups 
which have the same character table.

4.4 A generalization
In this section we shall generalize Theorem 4.3.1 in two different directions.

Our first generalization concemes a weakening o f the condition that the 
pairs of groups (Gi, JVj) and (G j, N2) are Camina pairs, that is to say, hypoth­
esis (etc) of Theorem 4.3.1. The condition that a group G forms a Camina 
pair, together with some normal subgroup N , is indeed quite a strong re­
quirement on G, as it appears for instance from the results of [3] and [16]. 
The more general condition which we propose is better illustrated by using 
the language of Section 4.1.

Let us consider two proper non-trivial normal subgroups N  and M  of a 
group G, with N  <  M . The character table T  o f G  assumes the following 
form, after possibly rearranging the conjugacy classes and the irreducible 
characters of G:

N M\N G\M
1«t(G/M) An A l2 A 13

Itt[G/N)\Itt{G/M) An A n a 23
1ft(C) \ Irr(CpV) . A31 A n A33

We shall assume that A 33 is the zero matrix (this clearly specializes to 
(G, N ) being a Camina pair, when N  =  M ). An (informal) argument similar 
to that used in Section 4.1 suggests that it should be possible to obtain T
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starting from the character table o f the factor group G/N , and the character 
table of the normal subgroup M , together with the knowledge of the orbits 
of G on the set of coujugacy classes o f M . It also appear that there must 
be some kind o f  compatibility between the character tables of G/N and M, 
where these two pieces o f information overlap, namely on the normal section 
M/N o f G. These heuristic considerations lead to the following theorem, 
which generalizes Theorem 4.3.1.

T heorem  4 .4 .1  Let N,,• <  G< and Mi <  G, for i =  1,2, with Ar, <  M ,, and 
suppose that the following conditions hold:

( i )  G\/N\ and G 2/N2 have identical character tables, via the bijections 

a  : G\/N\ -  G2/N2

and
$  : Itt(G\/Ni ) -*  lrT{G2/N2);

(i t )  M\ and M 2 have identical character tables, via the bijections

à  : Mi - »  M2

and
0  ■ Irr(Afi) - »  Irr(A/2),

and, moreover, $  takes each G\-orbit o f  Irr (M\) onto a G  2-orbit o f  
Irr( M2 ) ;

(H i) gGi =  g Gi • Ni for all g e  G ,\  Mi, for i =  1,2;
(iv ) (M i/N\ )* =  M2/N2 , and the diagram

Mi — M2

M ./iV , — M2/N2

is commutative, where 7r, : M, —* M ,/ N, are the natural epimorphisms 
(fo r i =  1 ,2).

Then G\ and G 2 have identical character tables.
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P r o o f  A full proof ran be given along the lines o f the proof o f Theorem 4.3.1, 
but we shall not give it here. Let us only notice that we need hypothesis (*t>) 
her«*, in order to be able to extern! the Injection a  to a bijection o  : G\ —► G2 
which satisfies a t )  =  ic\6t. □

Now we propos«* a second generalization of Th«*orem 4.3.1, which weakens 
hypothesis (ii). Informally, as we anticipated at the end of Section 4.1, 
hypothesis (ii) of Theorem 4.3.1 can be replaced by the weak«*r requirement 
that the matrices T\ and T2 are equal, where the matrix T, is obtained from 
the character table of N, as we «lid in Section 4.1, and thus T, displays the 
values of the sums of irreducible characters of N, over G,-orbits, as functions 
o f  the conjugacy classes o f G, contain«*«! in N,. This weaker condititni will be 
m ade precise in the following th«*orem.

T h e o re m  4.4.2 Let Ni <  G\ and N? <  G2. For t =  1,2, let I ,  denote the 
set o f  the (possibly reducible) characters i/’ o f  AT, such that

*i> =

f o r  some G,-orbit 0t, . . .  , 8t of\vx(Ni) (where 9\, . . .  , 8, are pairwise distinct). 
Suppose that the following conditions hold:

( i )  G\/N\ and G^/Ni have identical character tables;
( ii)  there exist bijections

a  : Nt —* N?

and
0 ' —» I 2

such that

tl>̂  (n4 ) =  V’(n) for all n €  Nt and for all ij> €  T\\

(H i) (G t,N t ) and (G?, N-i) are Camina pairs.

Then G 1 and G2 have identical character tables.
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P ro o f  This theorem rail be proved essentially in the same way as Theorem
4.3.1. The main difference is when one defines \a for \ G Irr(G( )\Iii(G t/Nx). 
We shall briefly sketch this part of the proof.

Let \ G Irr(G'i) \ hr(Gi/N\). Let us choose an irreducible constituent 6 
of XN, ; then we have Irr(G,. 6 ) =  { * } .  Now, if we put e =  [y /v, , 0], then we 
have x/v, =  for a unique 4’ €  J\, namely the sum of all G\ -conjugates of 
6. Let 9 be an irreducible constituent o f V , then we have Irr(G'2, 9) =  {x }  
for some \ G Irr(G2) \ Ir r fG j/^ ). Finally, let us define \a =

Au«»tlier remark that should be made is that the number t of G \-conjugates 
of 9 equals the number t o f G2-conjugates of 9\ in fact, we have

I = [«'.V»] =  ^  E  I'/’(»)I1 = ¡7 ^  E  W'3,(i*)i“ = i * * .* * ]  = <•

For the rest of the proof, the reader is referred to the proof of Theo­
rem 4.3.1. □

Clearly, hypothesis (it) o f Theorem 4.3.1 implies hypothesis (ii) of The­
orem 4.4.2. However, we do not know of any example o f groups G\ and G'2, 
with normal subgroups N\ and respectively Nj, which satisfy the hypotheses 
of Theorem 4.4.2 without satisfying the hypotheses of Theorem 4.3.1.



Chapter 5

Counterexamples

5.1 Introduction
In this chapter we shall construct pairs of groups (G, H ) with identical char­
acter tables and derived length 2 and 3 respectively, which thus will be coun­
terexamples to our Conjecture 3.1.1. Since our philosophy is that of trying 
to build our examples as small as possible we shall assume that G and H 
satisfy Hypotheses 3.1.2. With these hypotheses, a fairly detailed description 
of the structure of G  and H  is given in Chapter 3, in particular by Lemmas
3.2.1, 3.3.1 and 3.3.4. Thus, using for a moment a common notation for G 
and H , each of the groups G and H is a semidirect product of the form

ID )(W  x Q),

where

• D  (which stands for “derived subgroup’ ) is a /»-group containing the 
unique minimal normal subgroup N  o f G  (respectively H),

• D/N  is abelian,

• W  is an abelian p-group,

• Q  is a uon-trivial cyclic //-group,

• Q acts faithfidly and irreducibly on N  by conjugation,

• W  acts faithfully on D  by conjugation,

70
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• all (^-composition factors of D  are (^-isomorphic.

Furthermore, if we fix a chief series of H  going from 1 to D  =  H', according 
to our analysis carried out in Section 3.4, commutation in H' gives rise to an 
FQ-module epimorphism

7 : V  A V  -> V

in the unary case (that is to say, when r =  a, where r and s are as defined 
in Section 3.4), or

7 : V ®  V  ->  V

in the binary case (when r <  a), where V  denotes the elementary abelian 
/»-group H" regarded as a faithful irreducible F,,Q-module by conjugation.

We shall not attempt to describe all pairs of groups (G, H ) which satisfy 
Hypotheses 3.1.2. However, at least for p  ^  2, we shall construct examples 
(G ,H ) which satisfy Hypotheses 3.1.2, and which give rise to any prescribed 
FpQ-epimorphism 7 : V  A V  —* V  or 7  : V  <g> V  —► V. In our examples, the 
subgroup D  will have the smallest possible Q-length, namely 2 in the unary 
case, and 3 in the binary case. In all cases the factor group D/N  will be 
elementary abelian.

Now a word should be spent on W . We shall assume that [D, W] <  N. In 
particular (D W )' <  N  (we shall have equality for H ), and since N  <  Z (D W ) 
because N  is a minimal normal subgroup o f G  (respectively H), the subgroup 
D W  will be nilpotent of class at most 2 (actually, exactly 2). According to 
Lemma 2.2.2 (with H\/K\ =  D/N, H-i/Ki =  W  and H3/K3 =  AT), the map

ipm : D/N — N
I  «  [x ,u ]

is a Q-homomorphism for all w G W , and the map

-»  HornQ(D /N ,N ) 
ui >->

is a group homomorphism. Actually 7  is a monomorphism, because W  acts 
faithfully on D. We shall employ Corollary 4.3.2 to prove that the groups G 
and H o f our examples have identical character tables. In order to satisfy 
hypothesis (tit) of that corollary we shall require that the map 7  above is 
surjective, and hence that it is a group isomorphism.
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5.2 General construction
In the present section we shall develop the part of the construction which is 
common to the groups G and H  o f all the examples which we are going to 
build in this chapter and we shall prove that the resulting groups G  and H 
have identical character tables.

Let us fix a prime p and make the following assumptions (for i =  1,2):

(1 ) Di is a p-group with an elementary abelian subgroup N, such that
* (D i) <  N, <  Z(D,)\

(2 ) Q, is a nou-trivial cyclic p'-group o f automorphisms of D, which normal­
izes N, and arts faithfully and irreducibly on N,\ hence N, becomes a 
faithful irreducible module for Q, over Fp;

(3 ) all ^.-composition factors o f D, are Q,-isomorphic;

(4 ) there is a group isomorphism a  : Q t —* Q2\

(5 ) N2 regarded as an FpQi-module via a  is isomorphic to the FpQi-module

(6 ) D\ and D-t have the same order (in particular the Q t - length of Dt equals 
the Q2-l^ngth of D2)-

Starting from these ingredients, we shall define a certain group W, of auto­
morphisms of Di. Let us regard the elementary abelian p-group D,/Ni as an 
EPQ ,-module by conjugation. According to Maschke’s Theorem, the module 
D,/N, is semisimple, because p does not divide |Q,|. If V  denotes N, regarded 
as an FPQ.-module, then by assumption V  is irreducible and all composition 
factors of Di/Ni as an FPQ,-module are isomorphic to V. Hence Di/Ni is
isomorphic to 0 J=i Vj, where VJ,___ Vj are copies of V . and the number / is
the same for i =  1,2, because the Q k length of D\/N\ equals the Qj-length
of d 2/n 3.

Now we have the Fp -module isomorphism
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(which holds more generally if Vj, . . .  , V}, and V  are arbitrary FpQi-modules). 
According to Theorem 2.3.1, the ring EndrpQ,.(V) is a field of pn elements, 
where IV] =  p " . Since Vj =? V , we have

| Homrpg,(Vy, V)| =  |V| for all j  =  1 ,__, /.

It follows that
|H om ,,g .(D ./W ,W )l _  |Di :JVi|.

Later on we shall also need the following fact, which is easy to prove: for any 
element xN, of D,/Ni with j- & N, there exists some

ip €  HomrpQi(D ,/N „N ,)

such that (.rJVi)* jt 1 .
Now we shall associate to each p  € HoniypQt(D,/N,, Ni) an automorphism 
of D,. Let p  : D,/N, —♦ N, be an FPQ,-homomorphism. Since N, is a 

central subgroup of D,, the map

«>, = A  -  D.
x  •-» x (x  Ni)*

is a group automorphism of D, and it clearly commutes with the action of 
Q,. Let IV, be the set of all automorphisms of D, which arise in this way, in 
other words

Wi =  {w *  | p  €  Hornr„g.(A/iV.,iV,)}.
Then IV, is a subgroup of Autrpg ,(A )-  In fact, the map 

6 : HomTpQ{(D t/N „N ,) - »  Autg , ( A )

P w*

is a group homomorphism, because

xm"**** =  x(xNi)'n +'* =  x(xN i)^ (xN i)^  =  (x w*> )w**

for all x 6  D,, and W, is its image. Clearly 6 is a monomorphism, namely 
Wf is the identity automorphism of D, exactly when p  is the zero homo­
morphism. It follows in particular that the order of W, equals the order of 
HomrpQ, (D, /N,, N,), which we computed earlier; hence

IWI =  ID. : « | .
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We observe that the group W, is an elementary abelian p-group, because 
HomipQ, (Di/N,, N ,) is a vector space over Fp. Let us also notice that if ipw, 
for w E Wt, denotes the FpQ-module homomorphism

is an isomorphism, in accordance with the requirement which we made at 
the end o f Section 5.1, and is the inverse of the isomorphism

defined above.
The subgroups W, and Q, of A »it ( D ,) satisfy \V, fl Q, =  [W\,Qi] =  1, 

hence W,Qi is a subgroup of A ut(D ,), and is the internal direct product 
of Wi and Q,. Hence W,Q, is canonically isomorphic to the external direct 
product Wi x Q,, which thus acts on D,. Let us define grcmps G i and Gi as 
the semidirect products

We observe that iV, is a minimal normal subgroup of G ,, because Q, acts 
irreducibly on AT,. It would not be difficult to prove that AT, is the unique 
minimal normal subgroup of G,. However, according to the last observation 
of Section 4.2, this will also follow from the fact that (Gi, Ni) is a Camilla 
pair, which is proved in the following lemma.

Lem m a 5.2.1 Let G\ and Gi as above. Then 

(i) G\ =  £>i and G j =  D i;

(it) G i and Gi have identical character tables;
(Hi) (G i,A fi) and (G i, N i) are Camina pairs.

Vw : Di/N, -»
xNi ~

then the group homomorphism

7  :W , -► HomT, Qi(Di/Ni,Ni)
w t—►

6 : HomTpQi(Di/Ni,Ni) -> W,

G, =  \D.\(W, x Q.).
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P r o o f  (I) Since [A ,Q i] <  A  an<l [D „Q ,] <  (D „Q ,) =  D ,Q „  the group 
[ A - A ]  is a normal subgroup of D, and is also normalized by Q, (in other 
words, [ A - A ]  is a normal (^.-subgroup of D,). Furthermore, Q, centralizes 
the factor group A / [ A - A ] -  Since by hypothesis all (^.-composition factors 
of D, are ^.-isomorphic and Q, does not centralize N, , we have [D ,,Q ,] =  A .  
In particular, it follows that G\ =  A ,  because G,/D, is clearly abelian.

(ii) We shall apply Corollary 4.3.2 to the groups G, and the normal 
subgroups N,. Let us check then that the hypotheses of Corollary 4.3.2 are 
satisfied.

First of all, let us show that G\/N\ — G2/N-2. We assumed that A  is a A* 
group all whose Q ,-composition factors are Q,-isomorphic, for i — 1,2. Let us 
regard the in  group D 2 as a A -group via the isomorphism a : Q\ —► Q2. It 
follows that all A -com position factors of D 2 are -isomorphic. Since we also 
assumed that ;V2, viewed as an V,,Qt-module, is isomorphic to Nt, we get that 
each Qi-composition factor of A  is Qi-isomorphic to each Q t-composition 
factor of D j. Now the -factor groups D\/N\ and D2/N2 are elementary 
abelian /»-groups; hence they can be regarded as F,,Qi-modules, and they are 
semisimple according to Maschke's theorem, because p does not divide | A  |. 
Also, they have the same Q i-length, let us say /. Hence, if V  denotes N\ 
regarded as an FPQ|-module, then each of D\/N\ and D 2/N2 is isomorphic 
as an VpQ t-module to the direct sum of / copies of V , in particular D\/N\ 
and D 2/N2 are isomorphic as FPQ\-modules. Let us fix an ¥pQ t-isomorphism 
r : D\/N\ —* D 2/N2. In other words, let r  be a group isomorphism which 
satisfies

((xJV,)«)' =  ((xJV ,)')'" f o t a l l x e D ,  and for all f  g Q ,.

Now, the groups W\ and W2 are elementary abelian /»-groups of the same 
order; in fact,

\Wt\ =  \Dl/Ni \ =  \D2/N2\ =  \W2\.
Let us fix a group isomorphism

p : —» W2.

Since W, centralizes Q, and Di/Ni by construction, we have

Gi/Ni =  (D,W,Q,)/Ni S? (D,Qi/N,) x W„
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Let
d  : G,/TV, — G2/N2

be the map such that (xw£N\)“  =  (xN\)Twp(ta for all x  £ D\, for all w £ Wi 
and for all £ £  Q\. It is clear that d  is a Injection; moreover, d is a group 
isomorphism. In fact, we have

U xx‘ " ) ( ww m ) N , ) ‘

(x i< "  N , r ( w w n a r
(*JV,)'((*jV, ) ' ) « '> "  w - u f C ?  
((xN ,)rw 'n u iN ,r w ’ r )  
(xw{N,)° (xwZNj)*.

Thus hypothesis (t) of Corollary 4.3.2 has been verified.
Let us regard N, as an FPQ,-module by conjugation. W e can also regard 

TV2 as an F,,Qi-module via the isomorphism a : Q\ —> Q2. We assumed that 
iV| and TV2 are isomorphic as ¥pQ i-modules. Let

d : AT, - »  N2

be an Fp(^|-module isomorphism. Now N t can be regarded as an Fp(G i/A i )- 
module by conjugation, while N2 can be regarded as an FP(G 2/TV2 (-module 
by conjugation and also as an Fp(Gi/TV, (-module via the isomorphism d  : 
G,/TV, —» G2/TV2 which we defined earlier. Because TV, <  Z(D,W t), the 
FP(G , /A , )-modules TV, and A 2 can also be viewed as ¥P(G\ / D\W\ (modules. 
Since the isomorphism d extends the isomorphism it : Q\ —► Q2, and Q, (for 
? =  1,2) is a complement for D,W, in G,, it is clear that the FPQ|-module 
isomorphism d : TV, —► N2 is actually an ¥P(G\ / D\XV\ (-module isomorphism 
and thus an FP(G, /TV, (-module isomorphism. This is exactly what is required 
by hypothesis (it) of Corollary 4.3.2.

It remains to chech that hypothesis (its) of Corollary 4.3.2 is satisfied, 
namely that (G,,TV,) and (G2,TV2) are Camina pairs, or in other words, that

g ?  =  9?  ■ Ni for all g £  G, \ TV,-, for t =  1,2.

According to Lemma 4.2.1, this is equivalent to

AT, C L̂, G*J for all g £ G< \ A,.
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We will distinguish three rases.
C ase 1: j  6  TVjW,- \ iV,.

Let us write g  =  xw^, with x  G N, and G W . Since w^ ^  1, the FPQ,- 
module homomorphism <f : Di/Ni —» Ni is not the zero homomorphism; 
therefore ^  is surjective, because N, is an irreducible FpQ,-module. Thus we 
have LA.sJ = LA.U..J = (D i/N iY  = Ni.
In particular Ni =  [</, A J  C \g, Gi\.

C ase 2: g G AW< \ N,W,.
Let us write g = xw, with i  G A  \ Ar, and w G W,. Then

Lfif, WiJ =  |x, Wi\ =  {(xA^)* | G Hon\rpQt(D,/Ni, Ni)}

is clearly a subgroup of N, normalized by Q,, in other words an FPQ,- 
submodule of the irreducible YPQ ,-module N,. As we remarked earlier, since 
xN, /  Ni, there exists some <p G Honing, ( A /A ^ , N,) such that (x N ,y  ^  1. 
Hence [51, W.J is not the trivial F(,Q,-submodule of N, and thus we have 
[5 , W,J =  N,. In particular Ni C [¡r, G,J.
Case 3: g G Gi \ DiWi.

Let us write g =  xw£, with x  G A .  w G Wi and (  G Q, with (  ji  1. Then 
LW’ i/J =  LAi’ Ĵ is an FPA-submodule o f N,\ in fact, it is the image of the 
FPQ ,-module homomorphism

Ni -» Ni
* «  [x,i|.

Since Q, acts faithfully on AT, and £ ^  1, we have [N,, g\ ^  1 and thus 
=  Ni. In particular, AT, =  [<7.A,J C 

Hence we have proved that

g f  =  <7,° • Ni for all g G Gi \ Ni,

and thus hypothesis (u i) of Corollary 4.3.2 has also been verified. Its con­
clusion that G 1 and Gi have identical character tables now follows.

(iii) The fact that (Gi,ATj) and (G i, A/j) are Camilla pairs has been 
proved above. □
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5.3 The unary case
This section and Section 5.5 are devoted to the construction o f pairs (G , H) of 
groups, according to the pattern described in the previous section (with G\ =  
G  and G-j =  H). The derived subgroups D\ (abelian) and D-i (metabelian) 
will have Q\-length and respectively (¿2-length 2 in this section and 3 in 
Section 5.5.

As we said earlier, any Fp (¿-module epimorphism 

^ : V A  V - »  V  

or
7 : V  ® V  -»  V,

where V  is a faithful irreducible F,,(¿-module, can arise from concrete exam­
ples (G. H) satisfying Hypotheses 3.1.2, by means of the procedure described 
in Section 3.4. However, for the sake of simplicity we shall prove this fact 
only for p ^  2 and limit ourselves to giving some representative examples for 
p =  2 (in Sections 5.4 and 5.6).

Hence let us assume that p  is an odd prime, and let us make the following 
assumptions:

• Q is a (non-trivial) cyclic group of //-order;

• V  is a faithful irreducible Fp(¿-module;

• ■ y rV 'A V —» V is a  fixed Fp (¿-module epimorphism.

We observe that the dimension n of V  over Fp is uniquely determined by p 
and |Q| according to Lemma 2.3.1.

Let A =  V  ©  V  be the direct sum of two copies of V. The Fp (¿-factor 
module A/(0 © V) and the Fp(¿-submodule 0 ©  V  are both isomorphic to V, 
in particular

Honirpg (A /(0  ®  V ),0  © V ) =  Fpn,
as vector spaces over Fp, where n is the dimension of V  over Fp. For any 

V?€ Homrp(,(A /(0 ©  V ) ,0 ®  V),

the map defined by

+ (a + (0 © V))* for all a € A,
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is an automorphism of A as an FPQ-module. Then

W  =  {tv,, | tfi €  HomrpQ(i4/(0 ©  V ),0 ©  V )}

is a subgroup of Autrp<}(A). The order of W  equals the order of V'. namely 
pn. In fact, if we put D\ =  A, N\ =  0 © V, Qi =  Q  and use a multiplicative 
notation for D\, then D\ satisfies conditions (1 ) , . . .  , (6 ) of Section 5.2; hence 
W  is exactly the subgroup W\ o f Autg, ( D\) which is defined there and has 
order \D\ : N\ \ =  pn. Let us define

C , =  [B ,](W , x 0 . )

as in Section 5.2. The group G i will also be called G  here and we shall 
therefore write

G =  [A](W  x Q).

According to Lemma 5.2.1, we have G' =  A  and thus G" =  1, that is to say, 
G  is metabelian.

Let us pass to the construction of the group H. Let F  be a free group of 
rank n. Then

F  =  F/‘i3(F )F p

is a free uilpotent group of class two and exponent p (that is to say, F  is a 
free object in the variety of nilpotent groups of class 2 and exponent p, see 
[18]). If p were the prime 2, then the group F  would be abelian, but since 
we assumed p ^  2, we have F' ^  1. More precisely, F' is elementary abelian 
of order In fact, according to Lemma 2.6.3, if

f  =  <*.........

then a basis of F' over Fp is given by the set o f basic commutators o f weight 
2 on Xi, . . .  x„, namely

{[x>,xfc] | 1 < * < > < » » } .

The factor group F/F' is a free abelian group of exponent p and rank n, 
in other words it is elementary abelian of order p". Let us fix an Fp-linear 
isomorphism

t : V  —* F/F'
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and let us make F /F' into an F()(¿-module isomorphic to V  via r , namely let 
us define an action of Q  on F /F' according to the formula

(xF ')«  =  ((* F /)r_,£)r f°r all x G F  and for all £ €  Q,

and extend it Fp-linearly to an action of ¥PQ on F/F'. Thus F/F' becomes 
an FpQ-module and r an F,,(¿-module isomorphism.

Let us fix a generator (, o f Q. The automorphism of F/F' induced by £ 
can be lifted to an automorphism £ of F, because F  is a relatively free group 
(see [18]). Since F  is a finite group, the automorphism £ has finite order; this 
is certainly a multiple of |Q|, which is the order of £. We may assume that the 
order of £ is not a multiple o f p, otherwise we can replace £ with a suitable 
power C’  (f integer), which induces on F/F' the same automorphism as 
£ does. Now is an automorphism of //-order of the /»-group F , which 
induces the identity automorphism on F/$ (F ) =  F/F'. According to  [10, 
Kapitel III. Satz 3.18] then (Wl is the identity automorphism o f F . and thus 
£ has order |Q|. Therefore F  can be regarded as a (¿-group. In particular F' 
can be viewed as a (semisimple) Fp (¿-module.

According to Lemma 2.2.1 (with H\/K\ — Hj/Kj =  F/F' and H3 /K3 =  
F ') , commutation in F  gives rise to an Fp-bilinear map

6 : (F/F') x  (F/F') -  F'
(x F ',y F ') •-» [x,y].

Since 6 is skew-symmetric and F ' is a (¿-subgroup of the (¿-group F , we 
obtain in turn an FPQ-module homomorphism

6 : (F/F') A (F/F') — F'
(x F ')A (y F ')  »-» [x,y].

Because we assumed that p is odd, 8 is an isomorphism. In fact, the set 

{(x jF ')  A (xkF ') \ l < k < j < n )

is a basis o f (F /F ')  A (F /F ')  over Fp, and 6 sends it bijectively onto the set
of basic commutators of weight 2 on X|,__,x „ , which is an Fp-basis of F',
as we saw earlier. The Fp(¿-module isomorphism

t : V  - »  F /F '
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induces an FpQ-module isomorphism

r  A t  : V  A V -*  (F/F') A (F/F')

in an obvious way. We get the following commutative diagram of FpQ-module 
homomorphisms:

(F/F1) A (F/F') — F ‘

V A V — 5—  V
Now let us put

K  -  ker { T \ t A r ) - ' i )  =  (ker i ) 1' * ' 1*.

The factor group F'/K  is then an FpQ-module, and the FPQ-module epimor- 
phism

r I(T A r ) " , 7  : F ' - * V

induces an FpQ-module isomorphism

i/ : F'/K  - »  V

such that 6  (r  A r )- *7  =  m/, where tr : F' —* F '/K  is the natural epimor- 
phism. Since A” is also a central subgroup of F , we can form the factor group 
.Y = F/K, which is a /»-group of class 2. exponent p  and order pin.

Let £ denote the automorphism of X  (like £ and having order |Q|) 
induced by the automorphism £ of F  and let Q be the subgroup of Aut(-Y) 
generated by Let <r : Q  —» Q be the group isomorphism such that 
Then the Q-group X  becomes a Q-group via <r_1, it has Q-length 2 and 
its (^-composition factors X / X ' =  F/F' and X ' =  F '/ K , regarded as FPQ- 
modules via <7, are both isomorphic to V . We clearly have $(.Y ) =  X ', and 
also Z(.Y) =  X ', because Z(-Y) is a proper Q-subgroup o f X  which contains 
the derived subgroup X \  and X/X' is an irreducible FpQ-module.

For each
<p  e  Homr^ (X/ x \ x ' ) ,

the map tv$ defined by

X** = x (xX ')* for all x € X ,
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is an automorphism of A' commuting, with ( .  The set

W  =  {w ,  I v> 6 H°mTr0 ( X / X ' ,X '»

is a subgroup of Aut<j(.,Y), and the order o f W  equals the order of X/X', 
namely p". In fart, if we put D 2 =  X , N2 =  X '  and Q 2 =  Q, then D 2 satisfies 
conditions (1 ) , . . .  , (6) of Section 5.2, and W  is exactly the subgroup W 2 of 
AutQ3 (D 2) which is defined there.

Let us define
c 2 =  {D ,](W , x Q t)

as in Section 5.2. The group G2 will also be called H here and we shall 
therefore write

H =  [ * ] ( » '  x Q).

Since all assumptions of the previous section are satisfied. Lemma 5.2.1 
applies and yields that G  and H  have identical character tables, and that 
H' =  X , whence H" =  X '  and H'" =  1. Thus G  and H  have identical 
character tables and G  is metabelian, as we saw earlier, while H  has derived 
length 3.

We observe that the group X  =  H' has a unique ^-composition series, 
namely

1 <  X ' < X ,
which is also part of a chief series of H  going from 1 to X . According to 
the analysis of commutation in A' which we carried out in Section 3.4, the 
F,,Q-module epimorphism associated with our chief series is the following:

Sir : (X /X ') A (X /X ') -  X '
(x X ')A (y X ')  •-» [x,y].

Now, the FpQ-module epimorphism Sir coincides with our prescribed F\,Q- 
module epimorphism 7  : V  A V  —* V, after identifying X/X' and X ' with 
V  by means of suitable F,,(^-module isomorphisms. In fact, one can easily 
check that the following diagram is commutative:

(X /X ') A (X /X 1) X '

V A V
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As we promised, under the assumption p ^  2, we have constructed pairs of 
groups (G ,H ) which satisfy Hypotheses 3.1.2 and which give rise,through 
the method o f Section 3.4, to any arbitrarily given FpQ-module epimorphism
5 : V  A V  — V.

Let us remark that the normal Sylow p-subgroups of G  and H, namely 
P  = A W  and P  =  ,YW , have identical character tables, as one could easily 
show by applying Corollary 4.3.2. O f course P  and P  are both metabelian, 
because they are nilpotent groups o f class two, but we want to stress here 
that they are not isomorphic. Let us prove this fart.

Let A p  (and respectively A p) denote the set of the abelian subgroups of 
P  (resp. P) o f order p2u and containing P' (resp. P'). Once we prove that 
the sets A p  and Ap  have different cardinality, it will follow that P  and P  
are not isomorphic.

First, let K  be a non trivial subgroup of Q, and let 5  be a subgroup of P  
of order p2n which contains P' and is normalized by K . According to Lemma
2 .1 . 1  we have

5 =  [5, A ']Cs(A '),
with [5, A'] <  G' =  A  and C.s-( A’ ) <  C/>( A’ ) =  W  (this last assertion follows 
easily from statements (it) and (Hi) o f Lemma 3.2.1). Let us assume that 5  
is different from A and P 'W , that is to say, [S, A'] >  P' and C«,-(A") ^  1. Let 
iv be a non-identity element of C.s-(A'), and hence in particular of IV'; then 
the map

A —* P'
a «  [«,»]

is by construction a group epimorphism with kernel P', and hence its re­
striction to the subgroup [5, A'] o f A  is not the zero homomorphism. As 
a consequence, 5  is not abelian. It follows that A  (which is G') and P 'W  
are the only abelian subgroups of P  o f order piu which contain P' and are 
normalized by some uon-trivial subgroup K  of Q. Sine«- Q acts on Ap  and 
every uou-trivial subgroup K  of Q  fixes only the elements A  and P'W  of A p, 
it follows that all orbits of Q  on A p  \ (A , P 'W ) have length |Q|; therefore 
we have

\AP\ =  2 mod |0|.
Similarly one proves that P 'W  =  X 'W  is the only abelian subgroup o f P  

o f order piu which contains P' =  X '  and is normalized by some non-trivial
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subgroup of Q (because in this case H' =  X  is not abelian). Here Q  acts on 
Ap, and every uou-trivial subgroup of Q fixes only the element P 'W  o f A/>. 
It follows that

\AP\ =  1 mod IQI-
Since |Q| = |Q|, we conclude that P  and P  are not isomorphic.

Finally let us compute the smallest possible order of G (and hence of H) 
for a pair of groups (G ,H ) constructed by the above method. As we saw 
in Section 3.5, V  cannot appear as a composition factor of V  A V  unless 
the dimension of V  over Fp is at least 4. Moreover, there exists a faithful 
irreducible module V  o f dimension 4 over Fp for a (non-trivial) cyclic //-group 
Q , such that V  is isomorphic to a composition factor of V A V , if and only if 
Q has order 5 and p =  2 or 3 mod 5. Since in the present section we assumed 
that p is odd, we see that the smallest possible value for |G| occurs when 
p =  3 and |Q| =  5, in which case we have

\G\ =  3 ‘ 2 • 5.

5.4 M atrix representations for the unary case
All groups G and H  which we have constructed have natural faithful rep­
resentations as groups o f  matrices over Fpn; in other words, G  and H  are 
isomorphic to certain subgroups of GLr(p") for some r. Whereas G  is iso­
morphic to a subgroup of G L ^ p "), we need bigger matrices for representing 
H. The smallest possible size depends on the choice of the particular FPQ- 
module epimorphism 7  : V  A V  —► V. We shall not discuss such matrix 
representations in general. However, for each choice of an odd prime p and 
of a faithful irreducible m odule V  for a cyclic //-group Q over Fp, such that 
V  is a composition factor o f  V  A V, we shall choose a particular FpQ-module 
epimorphism 7  : V  A V  —* V  and give an explicit representation of the 
resulting group H  as a subgroup of GL\ (//*).

We recall that if V  is a faithful irreducible module for a cyclic group Q 
over Fp, then V  is isomorphic to the module Vt defined in Theorem 2.3.1, for 
a suitable primitive |Q|th root of unity e in Fp-., where n is the dimension 
of V  over Fp. Furthermore, according to Lemma 3.5.1, the fact that V  is a 
composition factor of V  A V  (or of V  ® V ) depends only on the prime p  and 
the order q of Q. As a consequence, we do not lose in generality if we talc«*.
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as tin* basic ingredients of our construction, au odd prime p and a positive 
integer q satisfying the conditions stated below.

Let us fix an odd  prime p and a positive integer q, such that

p‘ +  1 =  p* mod q

for some integers i , j ,  with i not divisible by n, where n is the multiplicative 
order of p mod q. It follows from the observation which precedes Lemma
3.5.1 that we may always assume that

0  <  i <  n/ 2  and 0 <  j  <  n.

Even with this assumption, the pair ( i , j )  is in general not unique. For 
instance, if q is also a prime and p  has multiplicative order q — 1 mod q 
(examples are given by (p,q ) =  (3,5), (5 ,7), (7,11)), then

{p , p 2, . . .  ,p,_2} =  { 2 , 3 , . . .  ,q — 1 } mod q; 

consequently, if q >  5 there exists at least one pair ( i , j )  o f integers such that 

p* +  1  =  pf m od q,

and with
0 <  i <  (q — l )/2 and 0 <  j  < 9  — 1 ; 

if 9 >  7, there exist at least two such pairs.
Let Q = (£) be a cyclic group of order q, and let e  be a primitive 9th 

root of unity in Fp... According to Theorem 2.3.1, the module Ve is a faithful 
irreducible module for Q  over F|(. where the underlying vector space of Ve is 
the field Fp- , and the action of Q on V, is given by

v£ =  ev for all v €  Vt .

We shall also consider the F(,Q-module VfP> define«! similarly, which is iso­
morphic to Ve via the F;,(¿-module isomorphism

V. -  V.s

B«*caus<‘ of our assumptions on p and 9, and according to Lemma 3.5.1, the 
F,.(¿-module V, A Ve has a composition factor isomorphic to V̂ , an«l hence
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to  VePj . Actually, we can explicitly define an FpQ-epimorphism from Vt A V* 
onto Vtpj, as follows. Let 7  be the map

7  : V. A V. -  Vtpi

such that
(x A y)^ =  xyv — xp y for all x, y €  Vt .

Because the expression xyp —xp y is Fp-bilinear and skew-symmetric in (x, y), 
the map 7  is well defined and Fp-linear. We have

( ( *  A  y ) 0 *  =  ( ( £ x ) A ( £ y ) ) *

=  e i+p‘ (xypi- x piy)

=  eI+p(x  A y )*1 

=  epi( x A y ) 'i 
=  (x A y ^ C

and hence it follows by F;,-linearity that 7  is an Fp(^-module homomorphism.
Furthermore, 7  is surjective. In fact, a non-zero element of V, A V, o f the 

form x A y (which of course is not a generic element of Ve A Vt ) belongs to 
the kernel of 7  exactly when

( x » - y  =  * » - ' ;

on the other hand, the field automorphism of Fp- given by x  t—» xp is not the 
identity automorphism, because i is not a multiple of n. It follows that the 
kernel o f 7  is not the whole of V, A V,. Hence 7  is not the zero homomorphism, 
and thus it is an FPQ-module epimorphism, because Vpj is irreducible. (It 
should be said that not all Fp(?-module epimorphisms from V  A V  onto V 
can be put into this particularly simple form by suitably identifying V  with 
Vt and V ̂ .)

With this particular choice of the FpQ-module epimorphism 7 , let us 
define the group X  =  F/K  as we did in Section 5.3. The set X 3 whose 
elements are the matrices

l a  b 
1 a"'

1
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with a, b € Fp» is clearly a subgroup of GL^(pn) (because the map a >—* ap' is 
a field automorphism of Fp.., and in particular it is Fp-linear). Furthermore. 
X 3 is isomorphic to X . In fact, it is not difficult to define an epimorphism 
from F  onto X  with kernel A', after noticing that

l a  b - 1 I d  6 -1 l a  b l a  6
1  api 

1
1 api 

1
1 ap 

1
1  ap‘ 

1

1 aap — a? a
=  1

1

It is also clear that the diagonal matrix

e i+pi

normalizes X 3 , and induces by conjugation an automorphism of X 3 which 
corresponds to the automorphism l  of X  defined in Section 5.3 (for a suitable 
choice of the isomorphism from X  to X 3). Thus the normal subgroup X Q  
of H  is isomorphic to a subgroup of G L^p").

Let us note in passing that X 3 would be abelian if i were a multiple of n, 
which it is not in our case.

Now we are ready to embed the whole of H  into GL4(pn). First of all, 
we observe that the set X 4 of the matrices

' 1 a a* b 
1 api

1
1

with a, 6 € Fpn is a subgroup of GL4(pn) isomorphic to X 3 (and hence to X ); 
in fact, the map

1 a 
1

6
ip'
1
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is an isomorphism from X 3 onto .Y4. The diagonal matrix

ep>
ev>

normalizes .Y4 (remember here that e l+p’ =  ep>). The automorphism of 
-Y4 induced by £4 by conjugation corresponds to the automorphism o f .Y3 
induced by £3 by conjugation (with respect to the given isomorphism from 
-Y3 onto ,Y4) and thus to the automorphism (  of X  (with respect to a suitable 
isomorphism from X  onto -Y4).

Now the subgroup W4 of GZ,4(p ") consisting of the matrices

1  c 
1

with c €  F;,» is elementary abelian o f order p", centralizes £4, and normalizes
X«; in b e t .

1 -1 1 a a” 1 b 1
1 1 api 1

1 c 1 1  c
1 1 1  .

1  a a’’’  b +  api c

Now it is clear that H =  [-Y](W x Q) is isomorphic to the subgroup 
//4 =  -Y4W4(^4) of G I 4(p"), namely the group of the matrices

1 «  a*  b '
e1 ap‘

e »  c
elpi
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with a,b, c G Fp>* and /  =  1 ,. . .  , |Q|. Thus we have constructed a faithful 
matrix representation o f  H.

It is much easier to give a matrix representation of the group G. In fact, 
it is straightforward to  check that G is isomorphic to the subgroup G'3 of 
GL$(pn) which consists o f the matrices

with a ,b ,c  G F,,» and /  =  1 ,. . .  , |Q|; in particular, the normal Sylow p- 
subgroup A W  of G is isomorphic to a Sylow /»-subgroup of GL^(pu).

Let us also notice that G  is isomorphic to the subgroup G 4 o f GL4(pn) 
which consists of the matrices

with a, b, c  €  Fpn and /  =  1 ,. . .  , |Q|. In fact, an isomorphism from G3 onto 
G4 is given by the map

Since G a and H4 normalize each other, G4H4 is a subgroup of GL4{pn). 
Clearly G 4HA consists o f  the matrices

l a b

e‘

1 a ap> b
e'

&  c

l a b 1 a a*  V 1 
r 1

c
s'

1 a b
d

with a ,b ,c ,d  G Fpn and l =  1 ,. . .  , |Q|. The groups G 4 and H4 are normal 
subgroups of G4H4 o f index p". In particular, we have shown that our groups
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G and H ran be simultaneously embedded as normal subgroups into a group 
of order p"|G!|.

As a final remark, we observe that the construction of all groups of ma­
trices of this section works as well if we drop our assumption that the prime 
p is odd. The resulting groups G4 and H\ do have identical character tables 
and derived length 2 and 3 respectively, even if p =  2. The only differences 
for p =  2 are that they do not correspond to any of the groups defined in 
Section 5.3, and that the normal Sylow 2-subgroups o f G4 and H4 have ex­
ponent 4 — p2 instead of p. However, the construction of Section 5.3 could 
be easily modified in order to include the case p =  2. If we allow p  =  2, then 
the smallest possible order for G4 and H4 drops down to 2li ■ 5.

5.5 The binary case
Let p  be an odd prime, and let us make the following assumptions:

• Q is a non trivial cyclic group of p'-order;

• V  is a faithful irreducible FpQ-module;

• 7  : V  ® V  —» V i s a  fixed FpQ-module epimorphism.
Let A =  V’ ® V ’'® V r be the direct sum of three copies of V. We have

HomFp<J(A /(0  0  0 © V ),0  ©  0 0  V ) “  Fpn © Fp...

as vector spaces over Fp, where n is the dimension of V  over Fp. For any 

v? €  HomFpQ(A /(0  © 0 ®  V ),0  0  0 0  V), 

the map Wf defined by

a“v  =  a +  (a + (0 ® 0 ® V ))*  for all a € A, 

is an automorphism o f A  as an FPQ-module. The group

W  =  { « v  | ip e  Homrpg (A /(0 ® 0 ®  V ) ,0 ® 0 ®  V )}

is a subgroup of AutFpg(A ), of order |V ® V| = p2n. With the notation of 
Section 5.2, we may take D\ =  A, N\ =  0 ® 0 © V, Q\ — Q, and thus obtain 
W\ =  W . Let us construct the semidirect product

G\ =  [!?,](Wx x Q t )
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as in Section 5.2. The group G\ will also l»e called G  here ami we shall 
therefore write

G =  ¡A)(W  x Q).

According to Lemma 5.2.1, we have G' =  A ; therefore G" =  1, and thus G 
is metabeliau.

Let us pass to the construction of the group H . Let 

F  =  ........ xn,y u . . .  , yn)

be a free group of rank 2n. Then F / 73(F ) F p is a free nilpotent group of 
class two and exponent p. Its derived subgroup is elementary abelian of 
order p"*2" -1) and, according to Lemma 2.6.3, it has a basis over F(, given by 
the set of basic commutators of weight 2 on X j , . . .  , x n, j / j , . . .  ,j/„, namely

{[* * * » ] . [y>,y*] I 1 <  k < j  <  n) U {[y>,x*] \ j,k  =  1 ,. . .  ,n }.

Let us put R =  ([xj,Xfc], [y ,,2/fc] | 1 < k <  j  <  n) and define

F  =  F/t»(F )F*R .

Then F' is clearly elementary abelian o f order />" and a basis of F ' over F,, 
is given by the set

| =  1 ,. . .  , » } .
The factor group F/F' is a free abelian group o f exponent p and rank 2n; 
in other words, it is elementary abelian of order p2n. Let us fix an Fp-linear 
isomorphism

r : V  ©  V  - »  F/F'

such that t maps

V © 0  onto (x i.........xn)F'/F\

and 0 ©  V  onto (y i , . . .  ,y„)F '/F '.

Let us make F/F' into an FPQ-module isomorphic to V  ©  V  via r, namely 
let us define an action of Q on F/F' according to the formula

(xF ')< =  ((x F ')T > £)T for all x G F  and for all {  G Q,
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and extend it Fp-linearly to an action of ¥,,Q on F/F'. Thus F/F' becomes an 
FpQ-module and r an FPQ-module isomorphism. Furthermore, F/F' is the 
direct sum o f the FpQ-submodules (x j, . . .  , x„)F '/F ' and (yt, . . .  , x„)F '/F '.

Let us fix a generator £ of Q. We shall show that the automorphism 
of F/F' induced by £ can be lifted to an automorphism £ of F. First of 
all, the automorphism induced by (  on F/F' =  F/F'FP can be lifted to an 
automorphism £ of the free group F , and we may assume that the subgroups 
F\ =  ( x i , . . .  ,x „ )  and f j  =  ( y i , . . .  ,y n) o f F  are left invariant by £. In 
particular, the subgroups

F[  =  ([*>,**], 73(Fi) I 1 < k <  j  <  n)

and
H  =  ((y>,yfc],73(/j) I 1 < k  < j  < n )

are left invariant by or in other words, (F [ )* =  F[ and (FJ)* =  F2. Since 
73(F ) and F p are characteristic subgroups of F , we also have that 73(F)* = 
73(F ) and (F p)* =  F p. As a consequence, the automorphism £ of F  induces 
an automorphism of F  = F/~i3(F )F pF{F'i , which we shall also call We 
may assume that £ has order |Q| (otherwise we may replace £ with a suitable 
power £p" ' ), and thus we can regard F  as a Q-group. In particular, F ' can 
be regarded as a (semisimple) F,,Q-module.

Now let us put
E  =  ( F ' , x , , . .. ,x „ )

and let us apply Lemma 2.2.1 to the following subgroups of F:

K% =  1, H3 =  A'i =  F '. Hi =  h i  =  E, H2 =  F.

Thus we obtain an Fp-biliuear map

6 : (E / F ')x (F / E )  -  F '
(x F ',y E )  [x,y].

Since E  is a Q-subgroup of F , the factor groups E/F', F/E can also be 
regarded as F,,Q-modules. Thus we obtain an FpQ-module homomorphism

6 : (E/F') ®  (F /E ) -  F'
(xF ') ®  (yE ) •-» [x,y].
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Actually, 8 is ail isomorphism. Iu fact, the set

0  (W f ) i j ,k  , « }

is a basis of (E/F') ® (F/E) over Fp, and we have 

((*jF') ® (y*E))* =  [*,,!/*] =  [y*,

on the other hand, the elements [y*, x }\ o f F ' are distinct for j ,  k =  1 ,. . .  , n 
and form a basis of F' over Fp, as we saw earlier. Thus 8 is an F(,Q-module 
isomorphism, and hence F' is isomorphic to V  ®  V  as an FpQ-module.

Now the FpQ-module isomorphism

t : V  ®  V  — F/F'

induces two module isomorphisms from V  onto E/F' and F/E respec­
tively, namely

r2 : V  — F/E 
v ~  (0,v )TE.

An FpQ-module isomorphism

r, 0  r2 : V  0  V  -  (E/F') 0  (F/E)

is induced in an obvious way, and we have the following commutative diagram 
of Fp (^-module homomorphisms:

— E/F'
- »  (v ,0 )T,

and

(E/F') ® (F/E) - i —  F ‘

Let us put
K  =  ker ( i  ' ( t| 0  ra)- , 7 ) =  (ker
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The fac tor group F'/K  is then an FPQ-module and the FPQ-module epimor- 
phism

<g) Ta)_ ,7  : F ' —* V

induces an FPQ-module isomorphism

v : F'/K  V

such that ¿ _ i (T| ®  t2)_ ,7  =  7ri/, where w : F' —* F'/K  is the natural epi- 
morphism. Since K  is also a central subgroup of F , we can form the factor 
group X  =  F/K , which is a p-group of class 2, exponent p and order p3n. 
Let us put L = E/K. Then L is an elementary abelian normal subgroup of 
.Y and has order p .

Let £ denote the automorphism of -V (like £ and £, having order |Q|) 
induced by the automorphism £ o f F  and let Q  be the subgroup of Aut(JY) 
generated by £. Let <7 : Q  —> Q  be the group isomorphism such that £" = 
Tlic*u the Q-group X  becomes a Q-group of Q-length 3 via <r_ l. The series

1 <  X ' <  L < X

is a (^-composition series o f X  and the (^-composition factors of X, regarded 
as Fp(^-modules via <7 , are all isomorphic to V'. Furthermore, the factor group 
X /X ' is elementary abelian, and regarded as an F,,C?-module it is isomorphic 
t o V e V .  In particular, X '  is the Frattini subgroup of X .

Furthermore, we have that Z (X ) =  X '. In fact, Z(JY) is a Q-subgroup 
of -V, and it contains X '. Let us suppose for a moment that X ' <  Z(.Y). It 
follows that Z (X ) has Q-length 2, because Z(.Y) cannot be the whole of X , 
which is not abelian. If Z(.Y) contained L, then from the fact that [L, .Y] =  1, 
it would follow that [£ , F] <  A'; this would contradict the fact that the map 
6  defined above is an isomorphism. We deduce that Z(.Y) L. and thus that 
Z (X )L  =  X ,  because X /X ' has Q-lengtli 2. It follows that X '  =  L' =  1, 
which contradicts the fact that X  is not abelian. As a consequence, our 
assumption is wrong, and therefore we get that Z(.Y) =  X'.

For each
<p € HomFjj<} ( X /X ',  X '),

the map u>̂  defined by

=  x (x X ')*  for all x €  X ,
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is an automorphism o f X  commuting with The set

w  =  (uv | •f € Homrw(J f/X ',X '))

is a subgroup o f Aut<j(A), and the order of W  equals the order of X/X', 
namely p2". In fact, if we put D2 =  X , N2 =  X ' and Q 2 =  Q, then D2 satisfies 
conditions (1 ) , . . .  , (6) of Section 5.2, and W  is exactly the subgroup W 2 of 
AutQj(D2) which is defined there.

Let us define
G2 =  [D2)(W 2 x Q2)

as in Section 5.2. The group G2 will also be called H  here and we will 
therefore write

H  =  [X](IV x Q).

Since all assumptions of Section 5.2 are satisfied. Lemma 5.2.1 applies 
and yields that G and H have identical character tables, and that H' = X , 
whence H" =  A" and H"' =  1. Thus G and H have identical character tables 
and G is metabelian, as we said earlier, while H  has derived length 3.

Let us consider the following (^-composition series of X ,  which is also 
part of a chief series of H going from 1 to A :

1 <  X ' < L < X .

According to the analysis of commutation in X  which we carried out in 
Section 3.4, the F,,Q-module epimorphism associated with our chief series is 
the following:

Sir : (L/X') ®  (X/L) — X '
(x X ')® (y L )  [x,y],

where the factor groups L/X' and X/L have been identified with E/F' and 
F/E  respectively. If we regard the F,,Q-modules L/X', X/L  and X ' as 
FpQ-modules via a, then the FPQ-module epimorphism Sir is also an FPQ- 
module epimorphism. As such, Sir coincides with our prescribed F(,(^-module 
epimorphism 7  : V  ®  V  —* V , after identifying L/X', X/L and X '  with V  by 
means of suitable F,,(^-module isomorphisms. In other words, the following
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diagram is commutative:

|r,®is |t<

V ® V  - 2 - .  V.

As we promised, iu analogy with what we did in Section 5.3 for the map 7 , 
under the assumption p ^  2 we have constructed pairs o f groups (G, H) which 
satisfy Hypotheses 3.1.2 and which give rise,through the method of Section 
5.2, to any arbitrarily given FpQ-module epimorphism 7  : V  <8> V  —» V.

It is perhaps worth remarking that

1 < X ' < L < X

ot iu this case the unique (^-composition series of X ,  nor the unique chief 
es of H passing through 1 and H. If we choose a different (^-composition

1 < x '  < L < x .
it may happen that L is not abelian. In that case, our analysis of commuta­
tion in AT would produce a non-trivial skew-symmetric Fp-bilinear map

6' : (L/X ‘ ) x (L/X ') X\

and thus we would fall again into the unary case, for which we have already 
built examples in Section 5.3. However, the situation described above cannot 
happen if our FPQ-module V is a composition factor of V  ®  V , but not of 
V A V  (for example, if V  has dimension 2 or 3 over Fp); this shows that the 
binary case gives rise to examples which are genuinely different from those 
of the unary case.

Now, we observe that the normal Sylow /»-subgroups of G  and H, namely 
P = A W  and P  =  X W , have identical character tables but are not isomor­
phic. We omit the proof of this fact, which consists of a counting argument 
similar to that which we used iu the proof of the corresponding fact of Section 
5.3. We only observe that the argument here is slightly more complicated, 
because A/P' is not a chief factor of G\ therefore, in addition to the set Ap  
o f abelian subgroups of P  which have order p3" and contain P ', one needs to
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consider also the set Bp o f unordered pairs {B .C )  o f elements of A p  such 
that B C  = P  (and similar sets A p  and Bp concerning P).

We conclude this section by computing the smallest possible order of G 
and H for a pair (G ,H ) of groups constructed as above. It follows easily 
from the case-study which concludes Section 3.5 that if p is an odd prime, 
Q  is a uon-trivial cyclic //-group, and V  is faithful irreducible module for Q 
over Fp such that V  ® V  has a composition factor isomorphic to V, then the 
smallest possible order of V’ is attained when V  has dimension 2 over Fp, the 
group Q  has order 3, and the prime p  is 5. In that rase, V  has 25 elements, 
and the order of G is as small as possible, namely

|G| =  510 • 3;

however, this is bigger that 312 • 5, that is the order of the smallest groups G 
and H  which we constructed in Section 5.3.

5.6 M atrix representations for the binary case
In this section we shall construct explicit matrix representations for some of 
the groups of Section 5.5. We shall represent faithfully G  as a subgroup of 
GL^ip"), and H as a subgroup of GL$(pu).

Let us fix an odd prime p and a positive integer q such that

p* +  1 =  p* mod |Q|

for some integers i , j  (and we may always assume that

0 <  i <  n / 2  and 0 <  j  <  n).

Let Q =  (£) be a cyclic group of order q, and let £ be a primitive q-th 
root o f unity in Fp-. Let Vt be a cyclic group o f order </, and let £ be a 
primitive ^tli root of unity in Fpn. Let V, be the faithful irreducible module 
for Q over Fp which is defined in Theorem 2.3.1. We shall also consider the 
FPQ -modules VfP. and VfpJ defined similarly, which are both isomorphic to 
V,. Because of our assumptions on p  and <7, the module Ve appears as a 
composition factor of the tensor square module V, 0  Vt- We shall explicitly 
define an FpQ-epimorphism from V, 0  VtP- onto V(p].
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For all pure tensors x ® y of V* ®  VeP>, let us define 

(x  <g> =  xy.

Since the expression xy  is Fp-bilinear in (x ,y ), it follows that 7  extends to 
an Fp-linear map

7 ^ V " , .
Furthermore, the map 7  is an FpQ-module homomorphism, because we have

((x (8) y)0* = ((ex) ® (ep'y))^
=  e,+p<xy 
=  « ' ^ ( x ® ^
=  e^Jx®  j/)^
=  (ar <S> y^t-

It is clear that 7  is not the zero homomorphism. Thus 7  is an FpQ-module 
epimorphism, because Vpj is an irreducible FpQ-module. (It should be said 
that not all FpQ-module epimorpliisms from V  ® V  onto V  can be put into 
this particularly simple form by suitably identifying V  with V€, V(P, and VtPj .)

With this particular choice of the FpQ-epimorphism 7 , let us define the 
group _Y =  F/K  as we did in Section 5.5. Let X 3 be the set of the matrices

1  a c  '
1 b ,

1

with a, 6, c  6  Fpn; hence X 3 is a Sylow p-subgroup of GL3 (pn). Moreover, X 3 
is isomorphic to „Y, and it is not too difficult to construct an epimorphism 
from F  onto X , with kernel K . It is also clear that the diagonal matrix

e,+pi

normalizes X 3 , and induces by conjugation an automorphism of X 3 which 
corresponds to the automorphism £ o f .Y defined in Section 5.5 (for a suitable 
choice of the isomorphism X  —* -Y3). Thus the normal subgroup X Q  of H 
is isomorphic to a subgroup of GL3 (pn).
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Now we axe ready to embed the whole of H into GLs(pn). First of all, 
we observe that the set X j  of the matrices

1 a a”’ I f  c  '

with a,b, c  € Fpn is a subgroup of GLs(pn) isomorphic to X 3 (and hence to 
X ) .  In fact, an explicit isomorphism from X 3 onto X$ is given by the map

normalizes X 5. The automorphism of X 5 induced by £5 by conjugation corre­
sponds to the automorphism of X 3 induced by £3 by conjugation (with respect 
to the given isomorphism from X 3 onto X$) and thus to the automorphism 
Ç o f X  (with respect to a suitable isomorphism from X  onto X 5).

Now the subgroup Ws of GL5(p") consisting of the matrices

1 b
1

1
1

1 a a* b f
1  1 1

1
11

1

The diagonal matrix

1
£

6  =

1
1

1 d
1  e

1

with d,e £ Fp- is elementary abelian of order piu, centralizes £5, and nor­
malizes ,Y5. It is quite clear now that H =  (JY](VF x Q) is isomorphic to the
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subgroup Hi = X sW i({s) o f GL5(p"), namely the group of the matrices 

’ 1 a a*  V c
br'
d

& e
e *

with a ,b ,c ,d ,e  £ Fp- and / — 1, —  , |Q|. Thus we have constructed a faithful 
matrix representation of H.

It is much easier to give a matrix representation of the group G. In fact, 
it is easy to see that G  is isomorphic to the subgroup G« of GLA(pn) which 
consists o f the matrices

1 a b c 
e1 d

with n, 6, c £  Fp.. and /  =  1 ,. . .  , |Q|.
Let us also notice that G  is isomorphic to the subgroup G* of G Ls(p") 

which consists of the matrices

1  a api b

with a ,b ,c  £  Fp.. and / =  1 ,. . .  , |Q|. In fact an isomorphism from G j onto 
G5 is given by the map

■ i  a ff c 1 a a»" bP c?

e 1 d e 1
e,pi dp>e1 e 

ei e *  epi
t P  .

Since G* and H*. normalize each other, Gg/fs is a subgroup of GLh(pn).
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Clearly GsH& cousists of the matrices

1  a b c
e f

d

with a ,b ,c,d ,e, f  6 F,,.. and l =  1 ,. . .  , |Q|. The groups G& and Hs are 
normal subgroups of G'sH$ of index pn. In particular, we have obtained that 
our groups G  and H ran be simultaneously embedded as normal subgroups 
into a group of order p"|G|.

We finally observe that our assumption that the prime p  is odd is unnec­
essary for the construction of our groups of matrices (like it was in Section 
5.4). Of course, when p =  2, the normal Sylow 2-subgroups of G and H 
will have exponent 4 =  p2 instead of p. If we allow p =  2, then the small­
est possible order for G$ and H$ becomes 210 • 3, which is smaller than the 
minimal order of the matrix groups G4 and H4 of Section 5.4. Indeed, this 
is the smallest example of a pair of groups satisfying Hypotheses 3.1.2 which 
we were able to construct.

5.7 Power-maps
In this last section we shall show that for most of the pairs o f groups (G, H) 
which we have constructed in this chapter, G and H have not only identical 
character tables, but also identical character tables with power-maps.

If AC is a conjugacy class of G and m is an integer, then there is a conju- 
gacy class AC^ of G  which consists of the mth powers o f the elements of AC. 
The maps AC >—* AĈ n̂ from the set of the conjugacy classes o f  G into itself are 
usually called power-maps. When the power-maps are added to the charac­
ter table of a group G  (in some way which we shall not formalize here), the 
resulting object gives considerably more information about G  than the char­
acter table alone does. In particular, the power-maps determine the order 
of the elements of any given conjugacy class, and thus sometimes allow one 
to distinguish between groups which have identical character tables, like for 
instance DH and Q& (or, more generally, the two non-isomorphic extraspecial 
/»-groups of a given order). We should say, though, that the prime factors of
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the orders of the elements are determined by the character table alone, as 
shown in [13, Theorem (8.21)].

If two groups G  and H  have identical character tables, via some bijectious 
a  and /?, the additional condition that G and H  also have identical power- 
maps can be expressed by requiring that

<fc")w  =  o c ' - ' r

for all conjugacy classes K  o f G and for all integers in. We shall give instead 
the following equivalent definition.

Definition 5.7.1 Let G\ and G2 be finite groups. We shall say that G\ and 
G2 have identical character tables with power-maps if there exist bijections

a  : G\ —* G 2

13 : Irr(G ,) -  Irr(G2),
such that for all integers m we have

X0((gaD  =  x(9m) f ° r oU 9 €  Gi and fo r  all \ 6 Irr(Gi).

We observe that when rn is composite, the rnth power-map K. *—* K\™\ 
o f a group G is completely determined by the set of the pth power-maps 
with p ranging over the prime divisors o f m. Furthermore, we can restrict 
our attention to the primes p  which divide the order of G. In fact, the mtli 
power-maps for (m,|G|) =  1 (which, incidentally, are the only power-maps 
which are bijective) are uniquely determined by the character table of G. as 
the following well-known lemma shows.

Lem m a 5.7.2 Let G i and G 2 have identical character tables via the bijec­
tions

a  : Gi —» G2,
/J : Irr(G ,) -  Irr(G2),

and let m be an integer with (m , |G|) =  1. Then we have

=  X(9m) f or d l  g  € Gi and fo r  all \ G Irr(Gj).
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P r o o f  Let n =  |Gi |, and let E be the splitting field for the polynomial x " — 1 
over Q  in C. Then E =  Q[e], where £ is a primitive nth root of 1 in C. 
From the fact that (m , |G|) =  1 it follows that em is also a primitive nth 
root of 1. Now let Q be the Galois group of E over Q. Since the cyclotoinic 
polynomials over Q  are irreducible (see for instance [15, Theorem 4.17]), the 
primitive nth roots o f 1 in C  are transitively permuted by Q. Hence there 
exists a  € Q such that e°  =  em.

Now let \ 6  Irr(G j) and g € G\. If X is a complex representation of 
Gi affording the character then, according to [13, Lemma (2.15)]. X (g) is 
similar to a diagonal matrix

diag(£'*,...

where /  =  x ( l )  and *> ,... , » /  are integers. In particular,

x(s) = £«*'.

It follows that X (gm) =  3E(«/)m is similar to d ia g(i"m, . .. ,£ ' '”*), and hence

V<9") =  E £l' "  =  £ ( * * ) ' '  * =  X (») '-

In a similar way we obtain that

V « « " ) ” ) = / ( « T -

Since x^(ga) =  x (g ), the conclusion now follows. □

A straightforward consequence of Lemma 5.7.2 is the following: if two p- 
groups o f exponent p have identical character tables, then they have identical 
character tables with power-maps. This fact was employed by Dade in [6], 
where he gave the first examples of non-isomorphic groups having identical 
character tables with power-maps, as an answer to a question of Brauer [19, 
Problem 4]. Let us notice in passing that Dade's proof that his />-groups have 
identical character tables was a special case of our Theorem 4.3.1.

Now, our Corollary 4.3.2 can be easily adapted in order to handle char­
acter tables with power-maps. Let us see only a special case.
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T h eorem  5.7.3 Let Ni be an abelian normal subgroup o f  G,, for i =  1,2. 
Let us suppose that following condition holds, in addition to hypotheses (i), 
(ii), (Hi) o f Corollary 4-S.2:

( iv )  (g) n  Ni =  1 fo r  all g e G i\  Ni, fo r i = 1,2.

Then G\ and G2 have identical character tables with power-maps.

P ro o f  Let us construct the maps a  and /i according to the proof of Corollary
4.3.2. Then we have

X^(ff°) =  x (g )  for all g G G\ and for all x G Irr(Gj).

Let us fix an integer rn. Although it is not necessarily true that (ga)m =  (gm)a 
for all </ €  Gi (which would conclude the proof), we do have that

(»* )”  =  (»“ )* for all 3  €  iV,,

and that
({gN i)*)ra =  (gmNi)a for all g €  G ,, 

because d  and d are group isomorphisms.
As a first consequence, the assertion

X*((9a )m) =  X(gm) for all x  G Irr(Gi),

is certainly true for g  6 Nt. Furthermore, it is also true for those g € G\\N\ 
such that gm G G\ \ N\. In fact, this implies that (ga)m €  G j\  N2, because 
d is a group isomorphism; hence

X0( ( g ° ) m) =  0 =  \(gm) for all x G Irr(Gi) \ Irr(Gi/Wi).

On the other hand, if X G Irr(G|/JVi) we have

xa( ( !> " n  =  x ' « * - ) - * . )
=  x ' m w r n
=  x^lsT -V .)*)
= X(9"AT,)
=  x(gm)-
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Now we are left with the case of an element g o f G\ \Ni such that g"‘ G N\. 
In this case we have (</“ )”* G iVj, again because a  is a group isomorphism. 
According to hypothesis (in), we have gm =  1 and (ga )m =  1. Consequently, 
we have

-  *a( l )  -  x ( l )  =  * (»“ ).
This concludes the proof. □

Now let us assume the hypotheses (1 ) , . . .  , ( 6 ) of Section 5.2, and let us 
assume in addition that the groups D\ and Di have exponent p; in particular, 
the prime p must be odd. Let us define the groups

G, =

for i =  1,2, as we did in Section 5.2. Then the normal Sylow p-subgroup 
D,W, o f G, has exponent p  (for i =  1,2); in fact, since D,\V, has class two 
and both of D, and W, have exponent p. we have

( « • ) ' - * '  in'll»,*]®  =  1

for all x  € D, and w €  Wi, according to [10, Kapitel III, Hilfssatz 1.3 b)].
As we proved in Lemma 5.2.1, G\ and G2 have identical character tables. 

Now Theorem 5.7.3 allows us to prove that G\ and G2 have identical character 
tables with power-maps. Indeed, let us define isomorphisms

d  : G\/N\ -  G2/N2

as in the proof o f Lemma 5.2.1; as we proved there, hypotheses (i), (tt), 
and (tit) of Lemma 4.3.2 (and thus of Theorem 5.7.3) are satisfied. Hence it 
remains to check hypothesis (tv) of Theorem 5.7.3, namely that

(g) n  Ni =  1 for all g € Gi\ Ni, for i =  1,2.

This is clearly true for g  G D,W, \ Ni, because D,W, has exponent p.
Let g G G, \ D, W ,. Then the order of g is not a power of p, and we can 

choose a prime divisor q o f the order |p| of <7, distinct from Hence h =  g 'a" 9 
has order q; consequently, h belongs to some Sylow ^-subgroup of G,. On
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the other hand, Q, contains a Sylow »/-subgroup of G,. It follows that h is 
conjugate to some ( 11011-identity) element o f Q,.

Now, every element of Q, different from the identity element acts fixed- 
poiut-freely on D, by conjugation. Consequently, h acts fixed-pont-freely on 
D, by conjugation; in other words,

C c (h )n D i =  1.

Because (g) <  C a(h) and N, <  D,, we have that

(9) n  M, - 1 .

Thus hypothesis (in) of Theorem 5.7.3 is also satisfied.
We conclude that the groups G\ and G j have identical character tables 

with power-maps, as claimed. In particular, for all the examples (G , H ) which 
we constructed in Sections 5.3 and 5.5, which satisfy the assumption p  ^  2, 
we obtain that G  and H  have identical character tables with power-maps.



Chapter 6

Nilpotent counterexamples

In Chapter 4 we had a fairly deep insight into the structure of a minimal 
counterexample (G ,H ) to Conjecture 3.1.1. In fact, the results of Chapter 
4 strongly suggest that the basic pattern for the construction of G and H  is 
essentially that of our examples of Chapter 5. However, behind our inves­
tigations of Chapter 4 there was a fundamental assumption, namely that G 
and H were not nilpotent (Hypotheses 3.1.2).

In this chapter we shall turn our attention to /»-groups. Although our 
knowledge about nilpotent counterexamples to Conjecture 3.1.1 is very lim­
ited, we shall be able to construct such a counterexample.

Let us briefly sketch how this example originates. We aim to construct 
/»-groups G\ and G2, such that G" =  1 and GJ ^ 1, and G\, G j have identical 
character tables. Since the character table of a nilpotent group determines 
its nilpotency class, G\ and G] must have the same class c; necessarily c is at 
least 4, because 74(G2) > GJ ^ 1. Thus, the smallest example we can hope 
for will have |74(G,)| =  |74(G2)| =  p  and G" =  1, G? =  7<(G2).

Our basic tool for comparing character tables is Corollary 4.3.2. In order 
to be able to apply that corollary with N, =  74(G ,) for * =  1,2, we shall 
require that

G ,h , ( G , ) ^ G ,h , ( G , ) .

But then we may as well regard G 1 and G2 as factor groups of the same 
group G; for example, we may take G  to be the direct product o f G\ ami G2 
with amalgamated factor groups G\/~h (G\) =  G i/ ^fG j) (see [10, Kapitel I. 
Satz 9.11]).

In the last analysis, we are looking for a /»-group G of class 4, in which

107
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14(G ) is the  direct product o f  two cyclic groups Z\, Z 2 o f  order p  w ith  Z\ =  
G ", and su ch  that (G /Z \ , i 4(G )/Z i ) and  (G /Z j, 14(G ) / Z t ) are both C am illa  
pa irs (w h ich  is hypothesis ( i i i )  o f C oro lla ry 4 .3 .2 ). L e t  u s put G, =  G/Zi 
and  Ni =  14(G )/Z,, for i  =  1, 2 . A cco rd ing  to L e m m a  4 .2 .1, the condition 
that (G j , iV i )  and (G j, X 2) are C am illa  pairs is equivalent to

Ni C  [g, G,\ for all <7 G G< \  N „  for i =  1 ,2 .

T h is  cond it ion  can be easily reformulated in  terms o f G , as follows:

( Li/, G\ n  74(G )) • Zi =  74 (G ) for all g  G G  \  7 4 (G ), for * =  1, 2 .

W e  on ly  observe that because 74(G ) is a central su bgroup  of G , the  set 
[</, GJ n  7 4 (G ) is a subgroup o f 74 (G ) (though it m ay  be  strictly  contained in 
[<7, G] H  74 (G )); this fact can easily be proved directly, o r  it can be viewed as 
an app lica tion  o f Lem m a 2 .2 .4 . It w ill be useful to keep in m in d  the above 
cond it ion  d u r in g  the course o f the construction.

N o w  let u s proceed w ith  the  details of the construction. Let F  be the free 
group on  three generators x, y and  2. Let u s fix a  p r im e  p  >  5 , and define

F  =  F/is (F )Fp,

where F p denotes the (fu lly invariant) subgroup o f F  generated by the pth 
powers o f all elements of F . T h e n  F  is a  nilpotent g ro u p  o f class 4  and ex­
ponent p  (actually F  is the 3 -generator free object in  the  variety of nilpotent 
groups o f  class 4  and exponent p).

W e kn ow  from  Theorem  2 .6 .3  that the factor g ro u p s  7 „ (F )/ 7 „+ i ( F )  for 
n  =  1, 2 , 3 ,4  are elementary abelian, and that a set o f  representatives for a 
basis o f  7 „ (F )/ 7 „+ i (F) as a  vector space over the field Fp is given b y  the set 
C„ of basic  com m utators o f weight n. Exp licitly, we have:

Ci =  { x , y , z } ,

C2 = { [ y , * ],[* ,* ],M ] } ,
C3 =  { [y, 1 , *], [2, x, x], [y, x, y], (2, x, yj, [2, y , y], [y, x ,  2], (2, x, 2], [2, y, 2]},
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C4 =  { [y ,x ,x ,x j,[z ,x ,x ,x ],[y ,x ,x ,y ],[z ,x ,x ,y ],[y ,x ,y ,y ],
[z, x, y, y], [z, y, y, y], [y,x, x, z], [z, x, x, z], [y, x, y, z],
[z, x, y, z], [z, y, y, z], [y, x, z, z], [z, x, z, zj, [z, y, z, z],
[[z, x], [y, x]], [[z, y], [y, x]], [[z, y], [z, x]]}.

In the next lemma we shall define a certain factor group H  of F, which 
is a 'first approximation' of the group G that we are looking for.

We recall that in a group of class 4 , like F , we have the identity

-  [9, A,*]'1;

furthermore, the W itt’s identity

Is, fc, 9*1 =  1

assumes the following form:

[y, h, k] [[y, h], [k, y]] [k, y, h] [[*, y], [h, *:]] [h, k, y] [[h, fc], [y, h]] =  1 .

L e m m a  6 .0 .4  For any prime p >  5, there exists a group H =  (x ,y ,z ) 
o f  order p10, exponent p and class 4, such that the following conditions are 
satisfied:

( i )  the subset C„ o f H defined below, for i =  1,2,3,4, forms a set o f repre­
sentatives o f a basis o f viewed as a vector space over
Fp. the field o f  p elements:

C. =  {-T .# .-).

A - < l » .  *].!* ,*]> ,
C, = ([v .* .*]i[*>*.*]> [».*.*]),

(H ) the following relations hold

[z, x, x, y] =  [y, x, x, z] [[z, x], [y, x]J_a,

[*,-r,y] =  [y ,x ,z] [[z ,x ],[y ,x ]]- ';
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(H i) in addition, the relation c =  1  holds for each basic commutator c not 
appearing in the diagram in (i) or in the relations in (ii).

P ro o f We shall proceed in three steps.
Step 1. Let us define the following subgroup of F:

R , =  <C.\(|z,* ,* ,» ] ,[ » ,* ,» ,* ] ,[ [ « ,* ] ,[# ,* ]] ) ,
[*.»>*. »1"' [»>*>*> *1 tt*. *1. I#. *]]■’)■

Since f?4 <  74(F )  <  Z (F ) (actually, it is not too difficult to prove that 
-¡4(F ) =  Z (F )), we have that Ci, C-i, C3 , and C\ are sets of representatives of 
bases of ^ „(F /R4 ) / ')„+\(F /R4 ) for n =  1 ,2 ,3,4  respectively.
Step 2. Let us define the following subgroup of F:

R , =  < * .,[» ,* ,» ] ,[ * ,» ,» ) , [* .* .* l . [* .» .* l .
[«,.,,[-■ [» ,.,*] [[.,.l,|»,.]|->>.

Then R3/R4 < Z (F/R4). We shall sketch a proof of this fact.
First of all, the basic commutators [y ,x ,y ),[z ,y ,y ],[z ,x ,z ],[z ,y ,z ]  are 

central in F/R4. In fact, the commutator of any of these elements with x, y 
or z (for instance [[r, y, 1/], x] =  [r. y , y , ./•]) is a (not necessarily basic) commu­
tator of weight 4 in the letters x ,y , z, in which either y or z appears at least 
twice; by a repeated application of the W itt's identity, this commutator can 
be written as a product of basic commutators of weight 4 and their inverses 
(we recall that since we are working in a group of class 4, all commutators 
o f higher weight are trivial) in which, again, either y or z appears at least 
twice; such basic commutators all belong to /?4, and what we claimed is 
proved. Since the computations which we outlined are easy, but tedious, let 
us see just one example:

[ z ,y ,y ,x ]  =  l(2 ,y ],[y ,x ]][*,y ,;r,y ]

=  l[*. y], [y> •»■]] [y< y]~‘  [*> y* y]
=  ([*, y], [y, *]] ( [v. * , y, * ] - ' [[*  *1, [*. y ]]"') [*, y, y]
=  [[*, y]. [y* *]]2 [y. y* *]“ * [*, y< y] e  RA

Now, we observe that [[;, ;r], [y, 2 ]] is central in F/R4; furthermore, the 
product [2 , x , y ]-1 [y, x , z] is also central in F/R4, because the elements y and
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z centralize ho th  o f [r, x, y] and [y, x, z] (m od  R4 ), w hile we have

H* . * .» ) - 1  (» .* .* ] .• « ]= 1*. * . » .  * r ’ 1» . » .  » , *i
=  |x, x, x, ÿ ) " 1 [[2, x], [», x]]- '[!f, x, x, 2] [[#, x], [z, x)]

=  [2, x, x, y ] - ' [», x, x, 2] [[2, x], b ,  x ] ] -2 e  fi4.

Hence [z ,x ,y ]_ l [y,x, z] [[z,x],[y,x]]-1 is also central in  F /R 4.
W e conclude that R 3/R4 <  7¿ (F / R a ) fl Z (F  / R4). Since  we also have 

R3/R4 fl 14(F / R A) =  1, it follows that sets o f representatives of bases of 
f n(F / R 3)/‘i„+ i(F / R 3) for n =  1 ,2 ,3 ,4  are given b y  Ct , C 2, C3, C4 respec­
tively.

Step 3. Let u s  define the follow ing su bgroup  o f F :

Rl =  («3,1=.»]).

The n  R2/R3 <  Z (F / R 3). In  fact, [r,y ]  clearly com m utes w ith  y and z 
(m od R j);  it com m utes w ith  x  too, (m o d  R 3), because the W it t ’s identity

[2 ,,,X -][X ,2 ,,-1  [V ,X ,2«| .1

read (m od  R 3) becomes

[z, y, x ] [x, z , y] [[x, *], [y, x]] [y, x, z] =  1 m od  R3,

and thus we get that

[2 ,» ,x] =  [ [ x . z l . b . x ] ] - ' [ x , 2 , ÿ ] - '

=  [|2 ,x ],(» ,x ]]|# ,x ,2 ]- ' [2,X ,k ]

=  « 2 , x ,» ] - ' [ # ,X ,2]([2 ,X ],b , x ]]-> )-' = ln > o d  R„

Hence R 3/R3 <  13( F /R3) fl Z (F / R 3). T h is  fact, together w ith  the fact 
that R2/R3 fl ~i3(F / R 3) =  1. im plies that sets o f representatives of bases 
o f 7n(F / Æ 2)/7„+ , (F / Æ 2) for n =  1, 2 , 3 ,4  are given b y  C\ =  C\, C3, C3, C4 
respectively.

Let u s define H  =  F / R i . Then  H  has exponent p  am i clearly satisfies 
the conditions (t), ( i i)  and  (tit). In  particu lar H  has order p 10 and  class 4 . 
T h is  com pletes the proof o f the lemm a. □
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Lemma 6.0.4 implicitly gives a (rather long) presentation of H in terms 
of generators (namely x. y and r ) and relations. It would be easy to prove 
that a shorter presentation is

We said earlier that the group H  should be a ‘first approximation' of the 
group G that we are trying to construct. In fact, it would be possible to 
show that

[g ,H \  n  -u (H ) ^  1 for all g  G H  \ 74 (H ).

However, H  does not satisfy the stronger condition which we required, namely 

( lif, HJ n  7 < (# )) ‘ H "  =  74(H )  for all g  G H  \ 74(H), 

because we have for instance

clearly define two mutually commuting automorphisms u, v o f the group F.
Actually, they also define automorphisms u, v o f its factor group H =  

F /Ri- In fact, u and i> fix each element o f 73(F ), and of course they fix [r, y]. 
Since Rt =  (R'i H 73(F )) • ((s, ¡/]), it follows that u, r centralize A], Hence 
they lift to automorphisms ti, i> of H  =  F/Rt .

Since the automorphisms u and v of H  have order p  (because they also 
have order p as automorphisms o f F ) the group K  =  (u, t>) is an elementary 
abelian group of automorphisms of / / ,  o f order p2.

Let us consider the semidirect product G  =  [H]K. It has order pu  and 
class 4. Since we assumed that p > 5, the p-group G is regular (see for 
example [10, Kapitel III, Satz 10.2 a)]); therefore G has exponent p, because 
H and K  have exponent p.

H  =  { x , y , z  I xp =  yp =  zp =  1 ,
[--y] =  [y,J\y] =  [z,x,z] =  [y,x,x,x] =  [r,x,x,x] =  1, 
[yi,g2*g3 ,g*,y$] =  l  for all ,gs e  H).

L[y,x],Hj D 74(H ) =  <[[*,*], [y,*]]) =  H". 

We shall quickly remedy this problem. The assignments
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The following equalities which hold in G will be useful in computations:

=  [ z ,x ,x ,y ] ,  [y ,x ,v ] =  1,

=  1 , [*,*,*>] =  [y, * ,* ,* ].

Let us define two central subgroups of G, namely

Z, =

Z i  =  ([y,x,x,x][[2 ,;r],[y,x]]*),

where .s is an integer such that a ^  0, - 1 , —2  (mod p) (for instance 5 = 1 ). 
The factor groups G\ =  G/Z\ and G2 =  G /Z 2 are groups of order p ' 1.

Now we state our final result.

T heorem  6.0.5 The groups G\ and Gj have identical character tables, but 
G i is metabelian, while G j has derived length three.

P ro o f  It is clear that the derived lengths of G\ and G2 are 2 and 3 respec­
tively.

In order to prove that G\ and G2 have identical character tables, we shall 
appeal to Corollary 4.3.2, with

Nl = y ,( G ,)  =  -,<(G )/Z„

%  = 1 .(G ,) =  7,(C)/Z1,

a  : G h ,{G )  -  G /i,(G )
the identity map and

a  : N\ —* N2

any group isomorphism, which is necessarily a G /74(G)-module isomorphism, 
the central subgroups N\ o f G\ and N2 o f G j beeing regarded as trivial 
G /74(G)-modules by conjugation. Then the conditions (i) and (it) of the 
corollary are satisfied.

It remains to verify condition (*»*), namely that (G i, N\) and (G2,JV2) 
are Camilla pairs, or equivalently that

Ni C [y, G.J for all <7 €  G ,\  N „  for » =  1,2.

We shall distinguish two cases.



C a s e  1: Either g  £  73(G<) \ 74(G i) or g  €  G, \  (72(G,), u, v).
Let us regard  the e lem entary abelian groups Vj =  ~/3(G )/~n(G ) an d  V2 =  

G / (72(G), u, v ) as vector spaces of d im ension 3  over F p . The n  the o rde red  sets 
{[y,j-,.r],[z,.r,.r],[y,.r,z]} and [ x , y , z ]  are sets o f representatives o f  b ases of 
Vj and V2 respectively. Let u s fix also the bases {[y, x, x , z ]}  o f ~,A(G)/Z\  and 
{[[x ,x ],[y ,*]] }  o f  74(G )/ Z 2. W e  have

[73(G), G] C  74(G),

[73(G), (72(G), u ,u )] =  1 

and [74(G), G ] =  1;

according to L e m m a  2 .2 .1, com m utation  in G  gives rise in  a  natura l w ay  to 
a  Z -b ilinear m ap  (actually F,,-bilinear, because V i, V2 are vector spaces over

K )
7  : V, x  V, - >  74(G).

Let x, : 74(G ) —* '14(G)/Z, be the natura l hom om orph is in s for i =  1 , 2 . W e  
shall show that the com posite  m aps

7 : V, x  V2 —♦ 74(G)/Z ,

are non-degenerate.
W e compute:

[ i » ,* ,* r [* ,* .* i* i» .* ,  * r , * * » v i  =  [» ,* ,* , *]“ • *♦ - [[2, i ] ,  [y, x ] ] -2“ - “ .

T h u s the m ap  7x1 has m atr ix

1 '
1

1

w ith  respect to  the given bases o f Vj, V2 and -14(G)/Z\ , and  hence 7x7 is 
non-degenerate. O n  the other hand, the m ap  7x2 has m atrix

—2 — s
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with respect to the given bases of Vj, Vj and 74(G) ¡ Z 2\ hence 7x2 is non- 
degenerate, because s ^  0, — 1, —2 (mod p). The non-degeneracy of 7X1 and 
7X2 m eans that

\g,Gi\ D Ni, for all g £  73(G ,) \  7'«(G,-), for i =  1, 2,

and that

[7 3 (G i) ,0 ]  2  Ni, for all g £  G, \ (72(Gi),u,v), for i =  1,2.

It follows in particular that

[g,Gi] 2  N, for all g £ (73(G .) \  y4(G ,)) U (G, \  (72(G .),u , u>), for « =  1,2.

Case 2: g £ (72(G ,), u, u) \ 73(G,).
Let us regard the elementary abelian group

W  =  g £  (73(G ),u ,u )/7s(C?)

as a vector space of dimension 4 over Fp. The ordered set {u , v, [3/, a:], [z, x ]} 
is then a set of representatives of a basis of W .

We have
(72(G),u,v)' <  74(G), 

and [(72(G ), u ,n ), 73(G)] =  1;

according to Lemma 2.2.1, commutation in G gives rise to an Fp-bilinear map

6 : W  x W  —. 7 4(G).

We shall show that the maps

¿x, : W  x W  -* 74 (G)/Z„

for i =  1 , 2 , are non-degenerate.
We compute

= [#, x. «]—  [x, x, ■•]'*-“  H*. x|, [», x ] ] - " '
=  [ » ,  X , X , [[* , x ) ,  [ , ,  x ] | l * - J ) - « — •->.
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Thus the map Sni has matrix

w ith  respect to the given bases o f W  and 74(g)/Z\\ it follows that the m ap 
SiTi is non-degenerate. O n  the other hand, the m a p  Sir 2 has m atrix

a A  2
s

- a -  2  - 1
—a 1

w ith  respect to the given bases o f W  and  7 4 (G )/Z2. T h is  m atrix  has deter­
m inant .s2( s  +  2 )2 ^  0  (m od  p), because a ^  0 , —2  (m od p). Hence 6 tt2 is 
non-degenerate.

T h e  non-degeneracy o f Stti, 6tt2 m eans that

Li7>(72(G,),ti,u)J 3  Ni for all g  €  (7a(G)*«>« ) \  7 3 (G ),  for i =  1,2.

In  particular, it follows that

[</, Gi\ D N, for all g  €  (7 2 (G ),u ,  v ) \ 7 3 ( G ) ,  for i =  1,2 .

W e  have proved that

U , G J  3  AT<, for all g  €  G  \  N u  fo r  i =  1,2;

hence all hypotheses of C oro lla ry  4 .3 .2  have been verified, and its conclusion 
that G\ and  G j  have identical character tables n o w  follows. □



Chapter 7

Wreath products

In  this last chapter we sh a ll  study  the character tables of wreath products. 
T h e  theory of the characters o f wreath products has been know n for a long 
time. However, as far as w e know, nobody has tried to isolate the exact 
ingredients on w hich the character table o f a  wreath product G  l A depends. 
W e shall show  that such ingredients are the character table o f G  and the 
perm utation group  A: these determ ine the character table of G l A uniquely. 
W h a t results is a powerful tool for increasing the derived length o f a  group, 
while keeping its character tab le  under control. W e  shall em ploy it in  Section
7 .4  to construct pairs (G . H ) of groups w ith identical character tables and 
derived lengths n and n +  1, for any given natura l num ber n >  2.

It  is a pleasure to th a n k  Prof. I. M . Isaacs for the conversations on this 
subject w hich we had d u r in g  h is stay at the U n ive rs ity  of W arw ick in June 
1991.

7.1 Characters o f  wreath products
In  this section a nd  in the n e x t  one we shall collect som e facts about irreducible 
characters, and respective ly conjugacy classes of wreath products.

D efinition 7.1.1 Let G  be a group and let A be a (not necessarily transitive) 
permutation group on a finite set fi. Then the wreath product T =  G I A is 
defined as the semidirect product [B]A, where the so-called base-group B =  
riwen the direct product o f  |fi| =  k copies o f G  and the action o f A on

117
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D  is given by
(Hi,-- - . 9k)a =  ,9k.->)

fo r  all ( g \ , g k ) G B  and fo r  all a E  A.

W e shall use the notation (g i , ...  ,«;*), a ssum ing that the set i l  is  identified 
w ith  the set {1 , . . .  , fc}.

Let u s recall that the irreducib le characters o f the base g rou p  B  =  G\ x 
••• x  Gki o r  m ore generally of any  direct product G i x  ••• x  G k, where 
G i ,...  , G k are arb itrary groups, are exactly the characters

0 =  0 , x  • • • x  9k

w ith  0, €  I r r ( G J  for t =  1, . . .  , k, where by definition

0(g\....... gk) =  9\(gi) - ■ - 9k(gk) for all (if,,... ,g k) €  G\ X  • • • x  Gk-

Furtherm ore, each 9, is un iquely determ ined b y  0 , as the un ique  irreducible 
constituent o f  the restriction 0<-,v

T h e  action  o f A  on B  induces the following action o f A  on Irr(Z ?):

(0i x  • • • x  9k )a =  0 ,.-i x  • • • x  9k.~ i .

In fact, we have

(0i x  ■ • x  9k)a(g\i. ■ ■ .gk) (0. x  • x 9k)((g t ...... gk )a ' )

(0 , x  ••• x  0fc)(<7i a...... if*-)

0i(gt. )  ■ 0k(gk‘ )

(0,.-, x  • • • x  0t l_, )(9 l------- 9k).

W e shall em ploy the technique o f tensor induction, an account of which 
was given in  Section 2 .5 . A  well-known result on  characters o f w re a th  prod­
ucts asserts that any irreducible character 0  o f the base group  B  w hich  is 
invariant in F -- [B\A is extendible to a character o f T  (a gene ra lization  of 
th is fact is g iven  in [14, Theorem  5 .2]). In  lem m a 7.1.3  we sh a ll  compute 
explicitly an  extension »/ G Ir r (T )  of 0 . but first let us do this in  the  special 
case in w h ich  A  is cyclic and acts regularly on fl. T h is  special case  is easier 
to prove an d  illustrates very well how  tensor induction comes in to  play.
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Lem m a 7.1.2 Let G  be a group and let C  be a cyclic grou p  o f  order k. Let 
us form  the regular wreath product F  =  G  \C  (that is to  sa y , with respect to 
the regular permutation representation o f  C ). Let 0 = 8\ X • •• x 0* be an 
irreducible character o f  the base group B  and assume that 8 is invariant in 
T. Then 0 is extendible to T  and an extension is given by  V>®, where tj> is 
the irreducible character o f  B  defined by

0  =  0i X 1g  X • • • X 1G-  

Furtherm ore, i f  c  is any generator o f  C , we have 

V>®r (c) =  « , ( 1 ) =  * (1 ) ''* .
Proof T h e  base group B  is a  direct product o f p  copies o f  G. W e m ay fix 
a generator c  o f C  and assum e that the action of C  on  B  b y  conjugation is 

g iven  by

(01,... .0 fc)c =  (9k ,g t .......ffk-i) for all ( 0 i , . . . ,g k )  €  B .

I f  0  is any irreducible character o f B , then 0  can be w ritte n  in  a  unique 
w ay as 0 , x • • • X 0*. where 0 j , ... , 0k are irreducible characters o f G . The  
action  o f C  on B  induces the following action of C  on  Ir r (  B )

(0 , x  ••• x  0k)c =  0k X  0 , X  x  0k- t .

Let u s assum e now that 8 — 0\ x  • • • x  0k is invariant in  T ; hence 0C — 8.
It  follows that 0 i =  02 — ■ ■ • =  0k, and in  particular that 0 ] .......0*  have all
the  same degree, nam ely 0 i ( l )  =  0(1)'^*.

Let u s define 0  =  0 i X l c  X ••• X l c  and let u s sh ow  that (V’®r )fl =  0 . 
Fo r  ( 0 i , ... ,0fc) €  B  we have

0® r (0 . .......9k) II V»(c*(0i .........9k)c-)

k-1
n  V’(0<+1 , . . .  ,0* ,0 i ......... 9i)

r i  * « (*+ .) 

n  ^•+i(0*+>)
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where we have employed the fo rm ula  fo r V’®r  given  by Lem m a 2 .5 .2 . Hence 
i- 1 extends #.

T o  prove the last assertion, let c* be  a generator o f C .  Since  C  =  (c1) acts 
transitive ly o n  the transversal T  ~  C  o f  B  in  T  v ia  •, we have

* “ V )  -  * ( c * )  -  *< I) -  # ,( 1 ).

T h e  proof is complete. □

The  general form  of Lem m a  7 .1 .2  is  the  following.

Lemma 7.1 .3  Let G be a group and let A be a permutation group on i l,  
with |il| =  k. Let us form the wreath product T =  G l A. Let 0 =  0\ X  • • • X 6k 
be an irreducible character o f the base group B. and let us assume that 0 is 
invariant in T. Then 0 has an extension g  6  Ir r (T ).  and the value o f  i] on 
the generic element g =  (g\,. . . .  gk)a o f  T is given by the formula

(7.1) g(g) =
i= i  ‘

where u>i,... ,u>/ are representatives fo r  the orbits o f  (a) on i l  and n(i) is the 
length o f the (a)-orbit containing u», .

Proof Let u s decompose f i into A -o rb it s

i l  =  f i , u - u i i . .

W e m ay identify fl w ith the set {1 , . . .  , k ] in  such a way that

ill =  {&i =  1 , . . .  , kj — 1 }
n2 =  , * 3 - i }

ii„  =  { * „ ....... k } .

T he n  k i , . . .  , k„ is a set o f representatives for the o rb its of A o n  il. Let Si 
denote the stab ilizer of k, in  A, for i =  1 , . . .  , t>.

B y  assum ption  0 is invariant in T. T h is  is equivalent to

(0, x • • • x 0k )a =  0, x  • • • x 0k for all a £  A ,
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that is to say,

X  • • • x  0ka-> =  0 , x  ■ • ■ x  0*  for all a 6  A .

Since the com ponents 9} are  un iquely determ ined by 8, we have 

8jm =  8j for a l l  j  =  1, . . .  , k and for all a 6  A.

N ow  let us define the fo llow ing  characters o f B , for i =  1, . . .  , v:

0. =  lc t x • • • x lc*,.., x $ki x • • • x Sfcl+I_, x 10*.+1 x - x l 0l.

Each 9, is irreducible and is  c learly  invariant in  T. W e shall find a n  extension 
r/, €  Ir r (T )  o f 9, for each i =  1,... ,v . Since  9 =  9\ - - 9v, the  character 
»/ =  r/i • • • r/„ of T will be an  extension  of 8.

Let us fix an index i. T h e  stabilizer 5 , o f k, in A  centralizes G * , ; conse­
quently, the subgroup B S , o f  T  decomposes into a direct p roduct

T h u s there exists a unique extension  t/\ 6  I r r ( B 5 ,) of the irreducib le  charac­
ter 9k. o f Gfc,, such that

The  value o f i/>,• on a  generic element g =  (g t ,.. .  ,g k )a o f BS, is g iven  by

Now’ we c laim  that the ten so r induced character t], =  0 ®r  is a n  extension 
of 9,. In  order to prove the  c la im , let R, be a set of representatives for the 
right cosets of S, in  A ; hence R , also represents the right cosets o f  BS, in  T. 
The  action o f T b y  right transla tion  on the set of right cosets o f  B S , in  T 
induces an action o f T on /?,, nam ely r  • g  for r  €  R, and g  G T is the  unique 
element o f 7?, such that

'J’ i(g ) =

(B S ,r )g  =  B S ,(r -g ) .
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Let us fix a n  element g — (g \ , . . .  ,g k)a of T. Let R M be a set o f represen­
tatives o f the  o rb its  o f (g) on R  v ia  •, and for r  €  R ,0 let n ( r )  denote the 
length o f the  (gr)-orbit Ac cord ing  to Lem m a 2 .5 .2 , we have

.̂®r(#)= II M r g n{T)r ~ ') .

g"{r ’  =  ((»!,-• ■ . » I « ) " 1’ 1

=  ( t i— .0*)(01. - ■ ,»)■ "• • • < ».......... s , ) " " " ” " ’ « " " 1
=  (g i, • • • ' 0*)(01«» •• • < 0*«) • • • (0,,-c-)-1, • • • , 0fc.*->-* )a"(‘
=  (0101« •• • 0,.«<r>-1........ 0fc0fc« • • •0fc.-(M-i )an(r).

It follows; that

rc/,,<r]r~ l =  (0k 0k « ■ gir.n(r)-!»••• -0t'0*'« ■ • • 0*,.»o->-i )(ran<r)r “ '

A cco rd ing  to  the  definition of n (r ),  we have r  • =  r. w hich m eans
¿?S,rc/n<r* =  B S ,r , or in other w ords r<y"*r* r -1 €  B S ,. Hence

r a "<r)r -1 e  A n  B S , =  5 ,.

Therefore we have

0i(rg nlT)r ) =  9k.(gkrgkr. ■ ■ • 0fcr„„<,>_,) 
for r  G /?l0; it  fo llow s that

^ f r (g ) -  II 9ki(gk?gk?‘  ■ ••gkr. « r )-• )•
r€«,o

W e sa id  earlie r that Bj. =  0 ,- for all j  =  1, . . .  , k and  for all a 6  A ; hence 
we m ay also w rite

(7-2) = II 9kr(gkrgkr‘  • • • gkr„rnr)-i).
r€«,o '

W e shall see that this result can be form ulated differently. Let g  =  
(</i* • • • ,gk )a  G  T. Them g  arts on  R, v ia  • as a does; in  fact, we have

( B S ,r )g  =  (B S i(g t .......gk)T~ ')ra  =  ( B S . r ) a ,
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and  thus r ■ g  =  r ■ a fur all r  €  R, S ince  R ,0 is a  set o f representatives of 
the  orb its o f (g ) on R, v ia  •, it is also a  set o f  representatives of the orbits 
o f  (a ) on R, v ia  •. N ow  the action of A  o n  R, v ia  • is s im ila r  to the given 
perm utation  representation o f A  on il,, because R, is a righ t transversal for 
the  stab ilizer 5 , o f k, in  A . M o re  precisely, the m ap

Therefore, the elements krt for r  £  R,0 are d istinct, they fo rm  a set o f repre­
sentatives for the orb its o f  (a) on  il,, and  n ( r )  is the length  o f the (a)-orbit 
conta in ing  h*. T h u s  fo rm ula 7.2  can be rew ritten as follows:

where u>n,... , u a r e  representatives for the  orb its o f (a) on  fi,, and n ( i , j )  
is the length o f the (a)-o rb it which conta in s u)tJ. In  the particu lar case in

M oreover, the value o f r/ on  a generic element g  =  (g \ , . . .  , )a o f T is g iven 
b y  the formula

is a  bijection and satisfies

( 7 .3 )

w h ich  g =  ( g i , . . .  ,gk)a  £  B . we have a =  1, and hence a ll orb its of (a) on 
il,  have length one. T h u s  we get

H ence t), =  V’f ’1'  is an extension of 0,. as we claimed.
Let us define

1  =  m ■ ■ ■ 'If-
T h e n  t) extends 0, in  fact

Vb  =  (Vi ) b  ■ • • (*1v ) b  =  Ot ■ ■ - 0V =  0.

n ( a )  =  v\(g )  • • •’i v (g )  =
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where U)n, . . .  are representatives for the o rb its o f  (a) on il,, and n (i ,j)  
is the length  of the (a)-orbit con ta in ing  uitJ.

T h e  above formula can c learly be  written as

V(9) =  I I  • - 9 ^ ) - 1 ),
1=1 ‘

where u v , ... , u>, are representatives for the orbits o f  (a) on i l  and n ( i)  is the 
length o f  the (a)-orbit conta in ing  u T h e  proof is complete. □

W e observe that the fo rm ula  fo r the extension g of 0 given in Lem m a
7 .1.3 does not contain any trace o f  the orbits o f  A  on  il, which instead 
are fundam ental in  the proof o f the  lemma. In  o rde r to compute 9 (g ) for 
9 =  (5 1 , • • • , <7jt)a G r , we on ly  need to know the action  of (a) on B. Since 
the subgroup  B(n) of T is natura lly  isom orphic  to G l(a), where (a) is regarded 
as a perm utation  group on i l  as a subgroup  of A, it  follows that in order to 
com pute ij(g ) we m ay as well ap p ly  the lemma w ith  A =  (a). T h is  leads to 
a sort o f ‘cauouic ity’ of the extension  r/ of 0. as stated in the next corollary.

C orollary  7.1.4 Let A be. a permutation group on a set il and let A\ be a 
subgroup o f A ; hence A\ is also a permutation group on il. Let G be a group 
and let us form the wreath product F =  G \ A. Let T 1 be the subgroup of T 
generated by the base, group B o f T and A\; hence T1 is naturally isomorphic 
to G l A 1 . Let 0 (E Irr(i?) be invariant in T, and let if.t)t be the extensions o f  
9 to r  and Ti respectively, constructed as in Lemma 7.1.3. Then r/p, =  rji.

P ro o f T h e  conclusion follows eas ily  from  the d iscussion  which precedes the 
corollary. □

7.2 Conjugacy classes o f  wreath products
Now  that we have an explicit w ay o f extending invariant characters of the 
base group  o f a wreath product T =  G \ A, let u s  turn our attention to 
the conjugacy classes o f T. W e  sh a ll partition T  into subsets which are 
not conjugacy classes, though each o f them is contained in som e conjugacy 
class o f r .  T h e  result o f Lem m a  7 .1 .2  would suggest to associate a  subset
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....£,)t>fr to each a 6  A  and each {-p le (£ | ,... ,C-i) o f conjugacy classes
of G. where 1 is the number o f orbits of (a) on 17, according to the following 
definition:

K-a\C..... .. =  {(»!,.••  ,gt)a  €  T |
■ ■9u)l.-<D-| G Cl,

9*,9«,‘ ■ ■ ■ 9Ml.« o -1 G £/},
where u>i........ a>/ are representatives for the orbits of (a) on if and n(i) is
the length of the (a)-orbit containing u\ (it can be easily shown that this 
definition is independent of the choice o f representatives W], . . .  In fact,
if 8 is an irreducible character o f  the base group B  which is invariant in 
B(a), then the extension o f 8  given by the formula of Lemma 7.1.2 is 
clearly constant on £„,(£,....c,)-

We shall define the subsets /Ca,{C,....c,) o f T using a slightly different no­
tation which will allow us to describe more easily how A  permutes them by 
conjugation.

Let M  denote the set of maps m : ft —» cl(G ), where cl(G) is the set of 
conjugacy classes of G. The action o f A on ft induces an action of A  on M . 
where tna for m €  M  and a €  A  is the map such that 

(ma)(u>) =  m(u>a~‘ ) for all u; € ft.
Let us define A4a for a 6 A  as the subset of the elements of ,Vf fixed by a; 
in other words M a is the set o f maps m : ft —► cl(G) which are constant on 
the orbits of (a) on ft. We observe that (M „ )b for a, b €  A  is the set o f the 
elements of ,Vf fixed by ah; hence

( M a)b =  M a>.

D e fin it io n  7 .2 .1  Let « 6 - 4  and m 6 M a. Let us choose representatives 
u>i,. . .  ,un for the orbits o f {a) on ft and let n(i) be the length o f the (a)-orbit 
containing ui,. Let us define

£«,m =  { ( $ ! , .  ■ • ,gic)a G T |
9»x9»i° • ■•Jlil.XD-i G

9»,9»i* ■ ■ • 9^ ,mo- • G m(u>/)}.
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This definition does not depend on the choice of the representatives 
<*»!,... ,u>/ o f the orbits o f (a) on il. In fact, let us replace for example 
u>, with a different representative u>, of its (a)-orbit, hence u>, =  u>"m for some 
integer m with 1 <  to < » ( * )  — 1. The element

9oi9af ■ ■ ■ 9Q9"(o - i  =  <7w,am!7u,1.am+> • • •

=  (9*i9u>ia ■ ■ • S * ,."—> ) _ I (Su.jS'u.,-- • • ' 9Mia— >)

(SU»m • • • • • • ̂ .m+XO-l )
=  {guiSvi* • • ■ i , . . " - '  ) “ * (&.,-&>,-« ■ ■ ■ 1 )(&>,&>,« ■ ■ • ¡ / „ . - I  )

is conjugate to g^g^« ■ • ■ #u,.an<,>-i in G, hence it belongs to the conjugacy 
class m(u>,) =  m(w,) exactly when g^g^i“ • • • does. Therefore, the
definition of the set AC„,m is independent of the choice o f the representatives

It is clear that the sets ACa,,„ for a £ A  and m € form a partition of 
T. In its action on T by conjugation A  permutes the sets ACa m, as the next 
lemma states.

Lem m a 7.2.2 For a ,b  € A  and m  £  A i a , we have

P ro o f First of all, the elements o f AC„,m have the form ( g i , . . .  ,gk)a for some
£Ti-----,gk €  G. Similarly, the elements of have the form (<71, . . .  , gk)ab
for some g \ ,. . .  ,gk G G. Let u>i, . . .  , u>/ be representatives for the orbits 
of (a) on il, then u>J,. . .  , u)b are representatives for the orbits of (ab) on il 
and the (afc)-orbit containing u>b has the same length n(i) o f the (a)-orbit 
containing u>i. We have

((^l > • • • =  («7,6- 1 , . . .  , gkb-i )ab =  (h i ,. . .  ,h k)ab,

where we have put h} =  gjb- ,  for all j  =  1 , . . .  , k. The condition

(7-4) (A ,.........hk)ab 6

is equivalent to

h ^ h ^ .  *>) • • • ^.K,i|»[i)-i G mb(u>b) for all i =  1 , . . .  , /.
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Since

/iw, afc) • • • h fc(a(>)"(i)—i —  hMibhMi*b • • h an(»)—i ̂

and m6(u>f) =  m(u>,) by definition, condition 7.4 is equivalent to 

• • • »w..»c)-i G m(u»j) for all i =  1 , . . .  , /,

and hence to

that is to say,
(</!<••• . J7/fc)a € fCa,m y

«9.. )«)‘ 6 (£„„)*.
The proof is complete. □

In the next lemma we shall compute the cardinality of the sets ACa m. 

L e m m a  7 .2 .3  We. have

IK...I = Id**1 fl |m(u,,)l.

where W], . . .  , u>i are representatives fo r  the orbits o f A on f i .

P r o o f  We observe that the equation

h\ • • hn — h

in the unknowns ht , . . .  ,hn € H, where h is a fixed element of a group H . 
has exactly |/f |n_l solutions (h i ,. . .  , h„). In fact, given arbitrary values in H 
to h i,. . .  , h „- 1 , there is exactly one value for /»„, namely h„ =  h~lt ■ ■ ■ h^'h, 
such that hih? • ■ • h„ =  h. Now, from the definition of Ka,m we easily get

|C..»l = ri(|GT,"|- 'M “ .)l).
i=1

where n(i) is the length of the (a)-orbit containing u>,. Since £ {_ , n(i) =  k, 
the conclusion follows. □
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7.3 Character tables o f  wreath products
T h e o r e m  7.3.1 Let G\ and G2 be groups with identical character tables and 
let A be a permutation group on i i . Then the wreath products T] =  G\ l A 
and T2 =  G2 l A  have identical character tables.

P r o o f  Let G\ and G2 have identical character tables via the bijections

6  : G\ —► Gj,
0  : Irr(Gi) -*  Irr(G2).

We shall prove the theorem by defining bijections

o : r ,  ^  r 2,
0  : Irr(Ti) -> Irr(r2),

and then checking that

\0 (.9 a ) =  x (9 ) for all \ € Irr(rj) and for all g £ IV  

D e fin it io n  o f  a.
Let us define subset of Ti and T2 according to Definition 7.2.1. Since now 

we have two wreath products T| = G\ l A  and T2 =  G j I A, we shall keep the 
notation of Definition 7.2.1 for what concerns the group IY  and add bars for 
the corresponding objects of T2. In particular. M a and .Vf„ for a £ A will 
denote the set o f maps m : fi —» cl(G i), and respectively m : f l  —► cl(G2), 
which are constant on each orbit of (a) on ii.

For each m G A4 let us define a map rna : il —» cl(G 2), that is to say, an 
element m° o f AA, via the formula

m“ (tf) =  m(u>)a for all uj £ SI.

We observe that the map d : A i —* M  defined above commutes with the 
actions of A  on A t and ,Vf, namely

(rn“ )a =  (ma)Q for all a £ A.

In fact, for u> £  i l  we have

(m ")a(u;) =  ' )  =  m(u»a ' ) “  =  ma(u>)° =  (ma)“ (a>).
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As a consequence, for a £  A  we have that m " £ M „  exactly when m € M a\ 
in other words, for each a £ A  we get a bijection

Now the sets AC„,m for a £ A  and m £ M a form a partition o f T i . 
Similarly, the sets Kamf. for a £ A  and m £ M „  form a partition o f Tj. 
Furthermore, according to Lemma 7.2.3, we have

where u>i,. .. , u>i are representatives for the orbits of (a) on ii. Since (<i, /?) 
is a character table isomorphism, we have |Gi | =  IG2I and

Thus we can choose a bijection o  : Ti —* Tj which sends K.a,m onto K.a ma for 
all a € A and for all m £ M a- 
D e fin it io n  o f  ¡i.

The bijection : Irr(Gi) —* Irr(G2) induces a bijection $  : Irr(Bi) —* 
Iit(B ì ), where Bd for B =  0, x • •• x Bk £ Irr(Bi ) is defined as

The bijection 0  commutes with the action of A  by ‘conjugation’ on Irr(Z?i) 
and Irr(B t ), namely

M a M a

and

|m(u>i)| =  M u ;,)“  I =  |m“ (u»i)|.

It follows that

l^a.ml =  |£a,m*| for all a €  A and for all m £ M a-

£ Irr(B-i).

(Ba)** =  (B^)a for all B £  Irr(Bi) and for all «  £ A.
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In fact, if 6 =  0\ x • • • X Ok G Irr(Z?i) we have

(0“ )d =  (0,„-. x • • • x 0ka-, )* =  #*_, x  • • • x = (0', )a.

Let us choose representatives 0\,... , 0r for the orbits of A on Irr( B \). Then 
0\.. ■ . , 0? are representatives for the orbits of A  on Irr(Z?2). For t =  1 ,. . .  , r 
let T, denote the inertia group of 0, in A, that is to say, the stabilizer of 0, 
in the action of A on Irr(f?i). Clearly, T, is also the inertia group of Of in A. 
According to Clifford's Theorem, Irr(Ti) and Irr(T2) decompose as follows

Irr(Ti) =  Irr(ri,0 i)U *-*U lrr(ri,0r),
Irr(r2) = Irr(r2,^ )U -U lr r ( r 2,^ ) .

We shall define bijections

ft : I r r ( r -» Irr(r2,tff),
for i =  1 . . . .  , r-, which will then be put together to give a bijection

0 : Irr(r,) -  Irr(r2).

Let us fix an index i. According to the Clifford correspondence (see [13, 
Theorem (6.11)]), induction of characters gives bijections from lrr(£?ilj,0,-) 
onto Irr(Ti, 0,) and from Irr(Z?27i, 0 f) onto Irr(T2, 0?). The construction of 
our bijection /?, will thus pass through the sets \vr(B\T,,0t) and Irr(Z?2T,.0f).

Now since 0, is invariant in B\Ti (which is canonically isomorphic to 
G\ I Ti), Lemma 7.1.2 guarantees that 0, is extendible to B, T, and provides 
us with a standard extension of 0,, let us call it 77, 6  Irr(f?l7’l). Similarly, 
let us call r), G h i(B 2T,) the standard extension of 0\ provided by Lemma
7.1.2. According to [13, Corollary (6.17)], the elements of hv(B\Ti,0i) are 
exactly the characters tjnp for ip G lrr(B\T,/Bt ). Similarly, the elements of 
Irr(B2Ti, 0f) are the characters r/,0  for 0  G hr(B 2T,/B2).

We have a natural bijective correspondence between lri(B\T,/Bi) and 
h i(B 2T,/B2), corresponding to the obvious isomorphism from B\T,/B\ onto 
B2T,/B2. To put it differently, the restriction map gives bijections

Itt(B jT,/B} ) - »  Irr(7i)
V •-» ‘fiTj 1
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for j  =  1 , 2 ; hence we can form a Injection

Irr(B ,77B ,) — lxi(B2T,/B2)

Y> *-* V,

where denotes the unique irreducible character of B2T, whose kernel con­
tains B¿ and such that ipj-, =  ipii.

Now we are ready to set up a Injection from Irr(Ti,0¿) onto Irr(r2, of). 
In fact, we have seen that

Irr(r,,«,) = f(T,¡y,)r' I 9 e IrrfB .r./B,)!
and

M r , , * ? )  =  |(>w)r- I v  e  M B iT , /f l , ) ) .
Let us define the following maps, for i =  1 ,. . .  , r:

fti : lrr(r,,0.) -> Irr (T2,é>f)
(»U v f '  (*7.<̂ )ra-

The maps ft, are well defined and are bijections. The various maps ft, can 
then be put together to give a single bijectiou

ft : IrriTi) —* Irr(T2).

V e r if ic a t io n  th a t  \a(ga) =  x(g).
Let us fix a character \ €  Irr(T|), say \ € Irr(Ti, Then \ =  (i/,^)r‘

for some E Itt(B xT,/Bx), where t¡, is the standard extension o f  9, to BXT, 
given by  Lemma 7.1.2. According to our definition of ft, we have \° =  

* where rj, is the standard extension of 9, to B2T„ and p> is the unique 
character in \tx(B 2T,/B2) such that tpj. =  <pT..

We shall first show that

(W ) (9 a) =  (W ) (g )  for all g E BXT,.

In order to prove this fact, let us ftx g =  (g i , . . .  ,gk)a E B XT,. Then there is 
a unique m E such that g G and hence we have

S U S U « - - 0 Wi .«<i >-i €  m (u>x),

9»,g«,° ■ ■ gMl.«o -i  G m(u>t),
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where u>i,... ,u>i are representatives for the orbits of (a) on if, and n(i) 
denotes the length of the (a)-orbit which contains a>t. According to our 
definition o f a , we have ga <E and hence g° =  (h i , . . .  , Zt*)« for some
hi, . . .  , ht €  G21 such that

€ m“ (u;i),

h^h^a ■ ■ ■ h an(i)—i €  ma(u)i).

Let us put x  ■ ■ • X 0,*. According to Lemma 7.1.2, we have

i
»/¿(fir) = II ),

and similarly, ■ ¡.(«"I = )■
>= 1

Now for each j  =  1 ,. . .  , /  we have

9«j9«j* ' '  • e

hUihUi* • • • h € m*(uj) = m(u^) .

From the fart that (d , /}) is a character table isomorphism, it follows that

( # * 4 )

for all > =  1 ,. . .  , Z. Hence we have »/,(</") =  Since we also have

■¿(0° )  =  ‘¿ ( « )  =  ¥>(«) =

it follows that

claimed.
W ) i f )  =  (•/¿V=’)(fl') for a11 9 G fiiT ,.



CHAPTER 7. WREATH PRODUCTS 133

Finally, we shall show that

= *(«) for «11 9 e r,.
Let (v.v)° (respectively denote the function on T| (respectively T2)
which extends (respectively fyip) and vanishes on Ti \ B\T, (respectively 
r 2 \ B2Ti). We clearly have

(9.V)#(0° )  =  (W )° (9 )  f«r all g € T,.

Let us fix g G T i ; we compute

xte) = (isv)r,(*) = H

=
I-*'! b£A

Similarly, we have

x3(</") =  («7^)r ,(fir") =  75V 1 5 1  ( w l ' t 1« “1 ' 1) 
*€1-,

I-* • I fc€/t

In order to conclude that

X0(9a) =  X(i/) for all g  G T,.

it will he enough to show that

(fii^)°(bgab~l) =  (ia<p)°(bgb-1). 

Since we have already proved that

(W )°((bgb~, )a) =  ( w ) 0(bgb-'), 

it remains to show that

(W )°(b g ''b -') =  (rj,£)°((bgb-')a)
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Because is constant on each /Cc.m• the equality above, and hence the
conclusion of the proof, will follow from the fact that bga b~1 and (bgb~1 )a 
lndong to the same /Cc,m• To prove this fact, we observe that on one hand, 
from ga E £„.m4 we Ket

bgab~' =  (ga )b ' E

according to Lemma 7.2.2. On the other hand, since g E ACa,m, we have 

bgb~l € ACat-i m» -i,

again according to Lemma 7.2.2; consequently, we obtain 

(bgb~')° G £„*-> )* =  ’

because (mfc )“  =  (m 4) ' . This concludes the proof. □

7.4 An application to  character tables and 
derived length

In this last section we shall construct, for any given natural number n with 
n >  2, a pair of groups G\ and G? with identical character tables and derived 
lengths n and n +  1 respectively. Let »is begin with a standard result.

L e m m a  7 .4 .1  Let G be a soluble group and C be a non-trivial cyclic group. 
Let us form the regular wreath product T =  G l C . Then we have

d i (n  =  di(G ) + 1 .

P r o o f  The base group B  is the direct product 

B =  G\ X  • • • X Gr

of r =  |C| isomorphic copies o f G. We may fix a generator c o f C  and assume 
that c  acts on B  as follows:

(fli........ 9r)e =  ,SV-i) for all ($ i , . . .  ,g r ) G B.
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We claim that

r  =  { ( 5 1 ........ 9r) e  B  I gi ■ ■ gr € G '}.

We observe that B' =  G\ x • • • x G'r is a normal subgroup of T contained 
in P : hence T'/B' =  (T / B Since T/B' is canonically isomorphic to the 
regular wreath product (G/G')\C , it will be enough to prove the claim with 
the additional assumption that G  is abelian.

Let us assume that G  is abelian and put

M  =  { (5 1 , . . .  ,gT) €  B  I gx ■ ■ ■ gr =  1}.
Clearly, M  is a subgroup of the abelian group B; furthermore, M  is normal 
in T, because it is C-invariant. Let (h i, . . .  , hr) G B. We have

, / , r ) , c - 1] =  ( h i ' ...........h ; ' ) ( h i , . . . , h r y - '

=  (h i ' .........h ; l )(h2 ......... hr,h t)
=  (h i 'h i ........ hil^hr, h ;'h i)  e  M.

It follows that T' =  (B C )' =  [B ,C ] < M
Now let (<7i , . . .  ,gr ) €  M . Let us put hi =  1 and /i1+i =  higi for i =  

1 ,. . .  , r — 1. Then we have

[(hi.........M . c “ 1] =  ( h r % ..........K ^ h , ,h i 'h i )
=  (ÿ i , . . .  ,9 r -it9rli •■9il )
=  (9 i.........9r)-

Thus we have M  <  T'. We conclude that T' =  M , and our claim is proved. 
In order to prove the lemma now it suffices to show that

dl(r') =  dl(G).

Since V  <  B  we have dl(T ') <  dl(fi) =  dl(G). On the other hand, the group 
homomorphism

r  - »  g

(»!»••• ,9r) >-» 9\
is surjective, because the element (g ,g~ ', 1 , . . .  , 1 ) o f £  is mapped to the 
generic element g o f G. Hence d l(r ') >  dl(G).

We conclude that dl( T ') =  dl(G), and the lemma is proved. □
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T h e o r e m  7 .4 .2  Let n be. a natural number with n >  2. Then there exist 
groups G i and G 2 with identical character tables, such that G\ has derived 
length n . while Gi has derived length n +  1 .

P r o o f  We shall prove the theorem by indurtion on n.
For the rase n =  2, the existence o f groups G\ and G2 with identical char­

acter tables and derived lengths 2 and 3 respectively was proved in Chapters 
5 and 6, where two different constructions were used.

Now let us fix n > 2 and assume that we have been able to construct 
groups G 1 and G 2 with identical character tables and derived lengths n — 1 
and n respectively. Let C  be a non-trivial cyclic group. Let us form the 
regular wreath product I\ =  G, l C , for i =  1,2. Then Tj and T2 have 
identical character tables, according to Theorem 7.3.1. On the other hand, 
the derived lengths of V\ and T2 are n and n +  1  respectively, according to 
Lemma 7.4.1. This concludes the proof. □

We observe that there are p-groups G\ and G2 which satisfy the conclu­
sions o f Theorem 7.4.2 (at least when the prime p is greater than or equal to 
5); in fact, we may take the p-groups G\ and G2 constructed in Chapter 6 
as the basis of the inductive proof o f Theorem 7.4.2, and then take a cyclic 
group of order p as the group C  o f the induction step.

We conclude this thesis with an open question.

Q u e stio n  7 .4 .3  Is there any pair (G ,H ) o f groups which have identical 
character tables, and derived lengths two and four respectively ?
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