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ABSTRACT 

The behaviour and design of stainless steel I-section beams under concentrated transverse loading are 

investigated in this study. Twenty-four experiments on stainless steel I-sections, formed by the welding 

of hot-rolled plates, were performed. The tests were conducted under two types of concentrated 

transverse loading − internal one-flange (IOF) and internal two-flange (ITF) loading. The experimental 

set-up, procedure and results, including the full load-displacement histories, ultimate loads and failure 

modes, are reported. A complementary nonlinear finite element modelling study was also carried out. 

The models were first validated against the results of the experiments. A parametric investigation into 

the influence of key parameters such as the bearing length, web slenderness and level of coexistent 

bending moment, on the structural response was then performed. Finally, an assessment of current 

design provisions for the resistance of stainless steel welded I-sections to concentrated loading is 

presented. The results show that the current design formulae yield safe-sided, but generally rather 

scattered and conservative capacity predictions, with considerable scope for further development. 
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1. INTRODUCTION 

Structural steel members under concentrated transverse loading are encountered in a wide range of 

situations − examples include primary girders at bearing supports, primary beams under roof purlins, 

columns in beam-to-column connections [1] and bridge girders during their launching phase [2, 3]. 

Members under concentrated transverse loading are subjected to non-uniform stress distributions, 

complex edge restraint conditions between the web and flanges, and local yielding beneath the load 

[4]. Taken together, these render the development of analytical formulations able to predict accurately 

the ultimate resistances of members under concentrated loading non-trivial. Even analytical models 

for the key reference points of the elastic buckling load and plastic collapse load [5, 6], which can be 

used to predict ultimate resistance, are still complex, and numerical techniques are often necessary for 

their accurate determination [7, 8]. 

Experimental investigations carried out to determine the ultimate bearing resistances of steel members 

under concentrated transverse loading date back to 1946, when the first tests on cold-formed carbon 

steel members were reported by Winter and Pian [9]. Such tests have since been performed on cold-

formed carbon steel members with different cross-section shapes, including I-sections, C-sections, Z-

sections, hat-sections, deck sections, and hollow sections [10-14], on members with and without flange 

restraints [15-18], and web openings [19-21], and on cold-formed stainless steel members [22-25]. 

Numerical studies on cold-formed stainless steel members have also been performed [23, 26-28]. Tests 

on cold-formed members are often referred to as web crippling tests due to the failure mode exhibited 

during the experiments. A substantial number of tests has also been carried out on hot-rolled and 

welded I-section members with slender [29, 30] and stocky webs [31], considering different bearing 

lengths [32-34] coincident bending moments [35, 36] and including sections made of high strength 

steel [37]. There exist, however, very few tests on welded stainless steel I-section members subjected 

to concentrated transverse loading [38].  

The structural performance of stainless steel members under concentrated transverse loading is the 

focus of the present study. Two types of concentrated transverse loading are considered: (i) internal 
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one-flange loading resulting in failure beneath a single concentrated load away from the beam end, 

and (ii) internal two-flange (ITF) loading, leading to failure between two concentrated loads applied 

at opposite flanges away from the beam end. An experimental investigation involving twenty-four 

physical tests to examine the influence of different bearing lengths and bending moments on the 

ultimate resistance of stainless steel beams under IOF and ITF loading is first presented. Following 

this, numerical models, validated against the results of the physical experiments, are used to generate 

further data across a broad range of practical cases. Finally, the experimental and numerical results are 

employed to assess the accuracy of existing design provisions [39, 40] for the design of stainless steel 

members under concentrated transverse loading. 

2. EXPERIMENTAL INVESTIGATION 

Sixteen internal one-flange (IOF) loading tests and eight internal two-flange (ITF) loading tests were 

carried out to assess the web bearing strengths of stainless steel I-section members. The specimens 

were fabricated from hot-rolled stainless steel plates which were laser-welded in accordance with EN 

ISO 13919-1 [41]; the quality level was Class B (stringent). Four cross-section sizes were examined: 

(i) I 1026855, (ii) I 15216069, (iii) I 15075710, and (iv) I 160821012. The cross-

sections were formed from austenitic stainless steel of different grades: Grade EN 1.4571 for the first 

two cross-sections, Grade EN 1.4404 for the third and Grade EN 1.4307 for the fourth. The IOF tests, 

the setup for which is shown in Fig.  1, were performed on three different cross-section sizes with 

different bearing lengths and a range of spans, while the ITF tests, the setup for which is depicted in 

Fig.  2, were carried out on two different cross-section sizes with different bearing lengths. Both test 

series were designed to cover a range of structural responses and isolate the influence of the key 

parameters. The adopted test labelling system identifies the loading type (IOF or ITF), and the nominal 

cross-section height (102 mm, 150 mm, 152 mm, or 160 mm), specimen length (from 300 mm to 750 

mm) and bearing length ss (from 5 mm to 100 mm); for example, IOF-H102-L500-SS20 indicates a 

member under IOF loading with a cross-section height of 102 mm, a length of 500 mm and a bearing 



4 

 

length of 20 mm. In the following subsections, the member tests, together with the accompanying 

material coupon tests and geometric imperfection measurements, are reported. 

2.1. MATERIAL TESTING 

A comprehensive characterization of the tensile stress-strain properties of the cross-sections tested 

herein can be found in Gardner et al. [42]; in this section, a brief summary is provided. All the tensile 

coupon tests were performed according to EN ISO 6892-1 [43], using an Instron 8802 250 kN 

hydraulic testing machine. The coupons were extracted from the longitudinal direction of the members. 

For cross-sections comprising plates of the same thickness, a single coupon test was performed, while 

for those fabricated from plates of different thicknesses, two coupon tests (one from the web and one 

from the flanges) were carried out.  A summary of the measured tensile material properties for each 

cross-section size is given in Table 1, where E is the Young’s modulus, fy is the 0.2% proof stress, f1.0 

is the 1% proof stress, fu is the ultimate tensile stress, εu is the strain the at ultimate stress, and εf is the 

strain at the fracture, measured over the standard gauge length. 

2.2. GEOMETRIC DIMENSIONS AND IMPERFECTION MEASUREMENTS 

Prior to the member tests, the dimensions and geometric imperfections of the specimens were 

measured. The initial imperfection measurements were taken using the setup shown in Fig.  3, 

following a similar procedure to that employed by Schafer and Pekoz [44] and Zhao et al. [45]. A 

Linear Variable Displacement Transducer (LVDT) was attached to the head of a milling machine, 

while the specimens were secured to the moving machine bed. The LVDT was utilised to measure the 

variation in the out-of-plane displacement along the top, mid-height and bottom lines across the web 

length of the specimens. To eliminate the influence of the weld geometry, the measurements were 

taken 10 mm away from the web-to-flange junctions, as shown in Fig.  3(a). The local web 

imperfection amplitude ω0 for each specimen was taken as the difference between the mid-height (umid) 

displacement reading and the average of the displacement readings along the top (utop) and bottom 

(ubottom) of the web, under the concentrated load (i.e. at mid-span) as shown in Fig.  4. The measured 

dimensions and geometric imperfections of the IOF and ITF test specimens are reported in Table 2 and 
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Table 3, respectively, where h is the cross-section depth, tw is the web thickness, bf is the flange width, 

tf is the flange thickness, ss is the bearing length (equal to the bearing height sh), L is the beam span, 

hep, bf,ep and tep are the end plate height, width and thickness respectively, and ω0 is the measured web 

imperfection under the concentrated load. 

2.3. INTERNAL ONE-FLANGE LOADING TESTS 

The internal one-flange (IOF) test setup consisted of a three-point bending configuration with the load 

applied through a bearing plate at mid-span, as shown in Fig.  1. Two carbon steel plates were welded 

to the ends of the specimens and supported on rollers, which were configured to slide horizontally in 

response to the applied loading. The bearing plate, through which the loading was applied, had a roller 

welded to the top, which allowed rotation about the out-of-plane axis, but no horizontal translation. 

Displacement control was adopted in the tests driving an Instron 8800 750 kN hydraulic testing 

machine at a constant rate of 0.005 mm/sec. Displacement transducers (DTs) were used to capture the 

out-of-plane web displacement (DT1) and the vertical displacement at the bottom flange (DT2) of the 

beams. The vertical displacement of the machine was also recorded. Fig.  5 shows the failed specimens, 

all of which exhibited out-of-plane deformation of the web beneath the applied load and flange 

bending. The load-vertical displacement responses of the IOF test specimens are provided in Fig.  6 to 

Fig.  8, the load-web shortening responses are provided in Fig.  9 to Fig.  11 and the load versus web 

out-of-plane displacement responses are shown in Fig.  12 to Fig.  14. The vertical web shortening was 

determined by taking the difference between the vertical displacement of the testing machine and the 

vertical displacement measured at the bottom flange of the specimen (DT2). The key IOF test results 

are presented in Table 2, where Fu is the ultimate test load, δu is the vertical web shortening at the 

ultimate load and δu,v is the vertical displacement of the top flange at the ultimate load.  

The out-of-plane deformation field of the webs of the tested members was also recorded using a Digital 

Image Correlation (DIC) system. A random speckle pattern was first applied to the web surface of each 

of the tested specimens. Two high-resolution cameras were used to monitor the web region during the 

tests. Images were taken at 3 second intervals and were processed using the software DaVis 8.4.0 [46]. 
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Fig.  15 shows the load-out-of-plane displacement response, together with the out-of-plane 

deformation fields obtained from the DIC data at different stages during the testing of specimen IOF-

H150-L400-SS60. The out-of-plane deformation fields indicate that the maximum out-of-plane 

displacement occurred at mid-span under the point of load application above the mid-height of the 

web. 

2.4. INTERNAL TWO-FLANGE LOADING TESTS 

The internal two-flange (ITF) test setup shown in Fig.  2 consists of a member subjected to two 

simultaneous transverse loads applied through two bearing plates, one positioned at the top flange and 

the other at the bottom flange. Both bearing plates had the same dimensions and were placed at the 

mid-span of the member. Carbon steel plates were welded to both ends of the test specimens. Similar 

to the IOF tests, the ITF tests were performed under displacement control at a constant rate of 0.005 

mm/sec using an Instron 8800 750 kN hydraulic testing machine. Vertical displacement was measured 

by the testing machine, while the out-of-plane displacement was measured by the displacement 

transducer DT1. Fig.  16 shows the failure modes of all the internal two-flange test specimens. Mid-

height out-of-plane web buckling failure together with significant local flange bending were observed 

in all cases. The load-web shortening responses of the ITF test specimens are presented in Fig.  17 and 

Fig.  18 while the load-out-of-plane displacement responses are plotted in Fig.  19 and Fig.  20. The 

key ITF test results are reported in Table 3, where δu is the vertical web shortening at the ultimate load 

taken as the displacement measured using the testing machine. 

Digital Image Correlation (DIC) was also employed, as described previously for the IOF specimens, 

to obtain the out-of-plane deformation fields of the webs of the tested ITF specimens. Fig.  21 shows 

the load-out-of-plane displacement response, together with the out-of-plane deformation fields 

obtained during the testing of specimen ITF-H102-L500-SS20. The out-of-plane deformation fields 

indicate that the maximum out-of-plane displacement occurred at mid-span under the point of load 

application but unlike for IOF test specimens, the maximum out-of-plane displacement occurred 

approximately at the mid-height of the web. 
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3. NUMERICAL MODELLING 

Numerical models were developed using the finite element analysis software Abaqus [47]. Initially, 

the full load-deformation histories and failure modes obtained from the experiments were used to 

validate the numerical models and assess their sensitivity to various input parameters. Further 

parametric studies were then carried out to extend the experimental database. 

3.1. MODELLING ASSUMPTIONS 

The four-noded shell element with reduced integration, referred to as S4R in the Abaqus element 

library [47], was used to mesh the beams and endplates, while the eight-noded linear solid element 

with reduced integration, referred to as C3D8R in the Abaqus element library [47], was used to model 

the bearing plates. A uniform element size approximately equal to half the web thickness of the 

considered I-sections was adopted for all features of the models (i.e. bearing plates, I-section and end 

plates), following a preliminary mesh sensitivity study. The measured engineering material stress-

strain curves obtained from the tensile coupon tests described in Section 2.1 [42] were converted into 

the form of true stress and log plastic strain according to Eqs. (1) and (2), where true is the true stress, 

εln
pl is the true plastic strain, E is the Young’s modulus, nom and nom are the engineering stress and 

the engineering strain, respectively, before input into the finite element models. The measured 

engineering stress-strain curve and the true stress-strain curve for the material extracted from each of 

the tested cross-sections are shown in Fig.  22. 

true nom nom(1 )     (1) 

 pl true
ln nomln 1

E


     (2) 

 

Elastic material behaviour was adopted for the end plates, with a Young’s modulus E of 210000 MPa 

and a Poisson’s ratio ν of 0.3. The bearing plate was simulated as a rigid block by constraining all its 

degrees of freedom to a reference point where the load was applied. The boundary conditions of the 

models were defined to reflect the two test setups: for the IOF loading models, as shown in Fig.  23 
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(a), the vertical (U2) and out-of-plane (U1) displacements, as well as the rotations about the vertical 

(UR2) and longitudinal (UR3) axes at the bottom of each end plate were restrained; for the ITF loading 

models, as shown in Fig.  23 (b), the out-of-plane displacement (U1) was restrained at four end plate 

nodes, while in all the models, the longitudinal displacement (U3) was restrained at the mid-length of 

the top flange, providing symmetry in the boundary conditions, as in the tests.  

The interaction between the bearing plate and the top flange of the I-sections beneath the applied 

loading was taken into account by defining surface-to-surface contact between the bearing plate 

(master surface) and the I-section flange (slave surface). A finite sliding procedure [47] was adopted 

which allows arbitrary motion of both surfaces. A friction coefficient of 0.4 was used for the tangential 

contact properties while for the normal contact properties, a “hard” contact relationship was adopted, 

which assumes that the contact pressure-overclosure relationship is dictated by the stiffness of each of 

the parts in contact with each other [47]. 

During the fabrication process, laser-welded I-sections are subjected to thermal gradients which lead 

to the development of residual stresses during the cooling phase. A predictive model for residual 

stresses in laser-welded I-sections was proposed in [42, 48]. However, a preliminary study into their 

influence on the structural response under concentrated loading revealed very low sensitivity; a similar 

finding was reported for the cross-section resistance of stainless steel welded I-sections in bending 

[49], and residual stresses were thus not explicitly incorporated into the numerical models developed 

herein. Initial local geometric imperfections were accounted for by defining imperfection patterns in 

the form of the first buckling mode shapes obtained from prior linear eigenvalue buckling analyses. A 

sensitivity study was performed to investigate the influence of four different imperfection amplitudes 

ω0 on the structural response of the modelled I-sections: (i) the value measured for each specimen in 

the experiments ω0 using the procedure described in Section 2.2 and, (ii) 1/100, (iii) 1/300, and (iv) 

1/500 of the cross-section web thickness. Following incorporation of the initial geometric 

imperfections into the numerical models, geometrically and materially non-linear analyses (GMNIA) 
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were carried out using the modified Riks solver [47] to obtain the full load-deformation response of 

the specimens, including the post-peak behaviour. 

3.2. VALIDATION OF FINITE ELEMENT MODELS 

The accuracy of the finite element (FE) models was assessed by comparing their load-web-shortening 

responses, ultimate load predictions, web shortening values at the ultimate loads and failure modes 

against those observed of the experiments. The ultimate load and corresponding web shortening values, 

considering the four imperfection amplitudes in the numerical models, are reported in Table 4 for the 

IOF loading cases, and in Table 5 for the ITF loading cases. As can be seen from the table, the ultimate 

load and corresponding web shortening values obtained from the numerical models are very close to 

those of the tested specimens. The best agreement between the test and finite element results was 

obtained for an imperfection amplitude of tw/500 for both loading cases; hence, an amplitude of tw/500 

is adopted in the numerical models for the parametric studies described in the following section. 

Excellent agreement is also observed between the numerical and experimental failure modes for both 

loading conditions, as shown in Fig.  24 for a typical IOF loading specimen and Fig.  25 for a typical 

ITF loading specimen. Typical numerical and experimental load versus web shortening responses and 

load versus out-of-plane displacement responses for the IOF and ITF loading cases are shown in Fig.  

26 to Fig.  29. These comparisons show generally good agreement over the full load-deformation 

history, including initial stiffness, ultimate load and post-ultimate response.  

3.3. PARAMETRIC STUDIES 

Following validation of the finite element models against the test results, parametric studies were 

performed to evaluate the influence of a range of key parameters on the web bearing resistances of 

welded stainless steel I-sections under internal one-flange (IOF) loading and internal two-flange (ITF) 

loading. In these studies, the measured material properties of the I 1026855 specimen (see Table 

1) were adopted, with the initial geometric imperfection in the form of the first buckling mode scaled 

with a maximum amplitude of 1/500 of the cross-section web thickness tw (i.e. tw/500). The web height 

(hw), flange thickness (tf) and flange width (bf) were kept constant and taken as equal to hw = 200 mm, 
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tf = 5.2 mm and bf = 67.8 mm for both loading conditions. A member length of 350 mm was adopted 

for the IOF models, while a member length of 500 mm was used for the ITF models in the parametric 

studies. The web thickness (tw) and the bearing length (ss) values were varied to cover a range of web 

slendernesses (hw/tw) from 10 to 120 and a range of ratios of bearing length to web height (ss/hw) from 

0.05 to 1.20. The influence of these parameters is assessed in the following two sub-sections. 

3.3.1. INFLUENCE OF BEARING LENGTH 

The influence of bearing length ss on the ultimate web bearing resistances of the modelled I-section 

members under IOF and ITF loading is shown in Figs. 30 and 31, respectively. The same data are 

plotted on two different scales on the vertical axis (which shows the ultimate load Fu) in (a) and (b) to 

distinguish better between the data points with lower failure loads. On the horizontal axis, the bearing 

length is normalised by the web height (i.e. ss/hw). For both loading types, the ultimate load may be 

seen to increase almost linearly with increasing bearing length, due to the load being spread of a larger 

region of the web.  

3.3.2. INFLUENCE OF WEB SLENDERNESS 

The influence of web slenderness on the ultimate resistance of the modelled I-section members for 

different bearing lengths is shown in Figs. 32 and 33 for IOF and ITF loading, respectively, in which 

the web slenderness hw/tw is plotted on the horizontal axis while the ultimate load Fu is again plotted 

at two different scales in (a) and (b) on the vertical axis. For both loading cases, the ultimate load may 

be seen to reduce sharply with increasing web slenderness, particularly for hw/tw values less than 60. 

4. ASSESSMENT OF EXISTING DESIGN RULES  

In this section, the methods provided in the European code EN 1993-1-4 [50] and in the American 

AISC Design Guide 27  [40] for the design of stainless steel members under concentrated transverse 

loading are described and assessed. The accuracy of the design provisions is evaluated by comparing 

the experimental and numerical failure loads (Fu) against the ultimate loads predicted by the 

specification (Fu,pred), utilising the recommended design interaction curves for resistance to combined 
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concentrated loading and bending moment assuming proportional loading (see Fig.  34) for the internal 

one-flange (IOF) loading case. For the internal two-flange (ITF) loading case, the predicted ultimate 

loads (Fu,pred) are compared directly with the experimental and numerical ultimate loads. A value for 

Fu/Fu,pred greater than unity indicates a safe-sided design prediction. Note that the measured (or 

modelled) material and geometric properties were used in all the comparisons and that all partial safety 

factors were set equal to unity. 

4.1. EUROPEAN DESIGN PROVISIONS: EN 1993-1-4 (EC3) 

EN 1993-1-4 [50] adopts the carbon steel design rules set out in EN 1993-1-5 [39] for stainless steel 

members under concentrated loading. The design resistance to local failure under concentrated 

transverse loading FRd is determined using Eq. (3), where fyw is the web 0.2% proof stress, tw is the 

web thickness and Leff is the effective length, which is given by the product of effective loaded length 

ly from Eq (4) and the reduction factor χF. The method adopted for the determination of the effective 

loaded length ly is based on the four-hinge plastic mechanism model originally proposed by Roberts 

and Rockey [51]. The reduction factor χF, determined from Eq. (5) is a function of the slenderness 

parameter F , which is equal to the square root of the ratio of the plastic load (Eq. (6)) to the elastic 

buckling load Fcr of the member under concentrated force. The buckling load is determined from Eq. 

(7) where kF is the buckling coefficient, which has different values for different transverse loading 

types (i.e. IOF, ITF etc), and a is the distance between stiffeners taken as the span excluding the end 

plate thickness (i.e. 
epa L t  ). 

Rd yw eff wF f L t where eff F yL l  (3) 

 y s f 1 22 1l s t m m     where 
yf f

1

yw w

f b
m

f t
  and 

2

w
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F
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  

 

 (7) 

In the case of a member subjected to concentrated transverse loading plus bending moment  (i.e. 

internal one-flange (IOF) loading), the interaction between the forces should be considered through 

Eq. (8), where FEd is the applied concentrated transverse force, FRd is the design resistance to 

concentrated transverse loading given by Eq. (3), MEd is the applied bending moment and Mpl,Rd is the 

plastic bending moment resistance of the cross-section regardless of its classification (compactness). 

Note that the maximum attainable bending moment resistance MRd is still limited to the plastic, elastic 

or effective moment capacity for Class 1-2, Class 3 and Class 4 cross-sections, respectively.  

Ed Ed

Rd pl,Rd

0.8 1.4
F M

F M
   (8) 

 

The experimental and numerical ultimate capacities for the case of internal one-flange (IOF) loading 

are plotted on the EC3 interaction diagram in Fig.  35. The comparisons reveal the safe-sided, but 

generally overly-conservative nature of the EN 1993-1-5 (EN 1993-1-4) resistance predictions for 

stainless steel I-sections, particularly with decreasing web slenderness F . A quantitative evaluation of 

the accuracy of the EN 1993-1-5 resistance predictions for the IOF loading case can be found in Table 

7, which shows a mean Fu/Fu,EC3 value of 1.91 with a coefficient of variation (COV) of 0.44 for all the 

studied cases. The table also shows increasing Fu/Fu,EC3 ratios for the stockier sections (e.g. Fu/Fu,EC3 

= 3.53 for hw/tw = 10 in comparison to Fu/Fu,EC3 = 1.44 for hw/tw = 120). The overly-conservative results 

for the stockier sections, also observed in Fig.  36, are attributed to the neglect of the pronounced strain 

hardening exhibited by stainless steel members with stocky webs. Such behaviour has also be observed 

for stocky stainless steel cross-sections in other loading configurations [45, 49] and addressed by 

means of the deformation based continuous strength method [52]. Fig.  37 shows a comparison of the 

EN 1993-1-5 strength curve for concentrated transverse loading, i.e. the reduction factor F , given by 
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Eq. (5) versus the non-dimensional slenderness F , and the IOF test and FE results. The IOF test data 

of Sélen [38] on welded stainless steel I-sections are also included in the figure. Note that only results 

where failure under concentrated loading (rather than bending) is dominant are shown, which is 

deemed to be the case according to the EN 1993-1-5 interaction formula when Mu < 0.5Mpl. The 

conservatism of the EN 1993-1-5 provisions is evident over the full analysed slenderness range, but 

particularly for the more stocky cross-sections. 

For the members under ITF loading, Table 8 and Fig.  38 provide a comparison of the experimental 

and numerical failure loads Fu with the predicted failure loads according to EN 1993-1-5 Fu,EC3. The 

mean value of Fu/Fu,EC3 is equal to 1.80 with a coefficient of variation (COV) of 0.32, again indicating 

substantial conservatism in the current Eurocode design provisions. The ITF loading test and FE results 

are plotted against the EN 1993-1-5 strength curve in Fig.  39, revealing, together with Fig.  38, 

discrepancies between the reference results and the EN 1993-1-5 predicted values are most significant 

for stockier cross-sections (i.e. from hw/tw = 10 to hw/tw = 30). It should be noted also that an increase 

in Fu/Fu,EC3 values is  observed for cross-sections with slender webs relative to those with webs of 

moderate slenderness (i.e. Fu/Fu,EC3 = 1.55 for hw/tw = 90 and Fu/Fu,EC3 = 1.61 for hw/tw = 120). 

4.2. NORTH AMERICAN DESIGN PROVISIONS: AISC DESIGN GUIDE 27 

The AISC Design Guide 27 [40] for the design of stainless steel hot-rolled/welded I-section members 

under concentrated loading refers to the carbon steel design provisions set out in ANSI/AISC 360-16 

[53]. The design resistance is obtained through the evaluation of the following limit states: (i) web 

yielding, (ii) web crippling, and (iii) web buckling (for the internal two-flange loading only). The 

design equations for each limit state are set out in Table 6. No explicit rules for the interaction between 

concentrated transverse loading and bending moment are given [54], hence the provisions are 

evaluated by comparing the experimental and numerical failure loads Fu with the design resistance 

Fu,AISC taken as the minimum of the values determined for the aforementioned limit states. For the IOF 

loading case, Table 7 shows a mean value of 2.42 for Fu/Fu,AISC with a coefficient of variation (COV) 

of 0.44 for all the studied cases. Higher ratios of Fu/Fu,AISC for stockier cross-sections are observed in 
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Table 7 and Fig.  36, ranging from Fu/Fu,AISC = 1.63 for hw/tw = 120 to Fu/Fu,AISC = 3.04 for hw/tw = 10. 

For the ITF loading case, Table 8 and Fig.  38 show not only high Fu/Fu,AISC ratios for the stockier 

sections (i.e. Fu/Fu,AISC = 2.35 for hw/tw = 30 to Fu/Fu,AISC = 2.82 for hw/tw = 10) but also increasing 

Fu/Fu,AISC ratios for the more slender sections (i.e. Fu/Fu,AISC = 2.35 for hw/tw = 30 to Fu/Fu,AISC = 7.69 

for hw/tw = 120). The former is attributed to the neglect of the strain hardening experienced by stainless 

steel members with stocky webs, while the latter is due to the conservatism of the web buckling limit 

state formulae given in AISC 360-16, which do not consider the bearing length and were only 

calibrated for sections with hw/tw ≤ 40 [55]. This conservatism has also been observed by Menkulasi 

et al. [56]. 

4.3. DISCUSSION 

Overall, the evaluations presented in sections 4.1 and 4.2 reveal that the current European and North 

American design provisions for stainless steel members under concentrated transverse loading are safe-

sided but generally overly-conservative; this is the case for both internal one-flange (IOF) loading and 

internal two-flange (ITF) loading. In the low slenderness range, the under-predictions of resistance are 

attributed to strain hardening, which is particularly prominent in stainless steels, especially the 

austenitic grades. In the high slenderness range, substantial under-predictions of resistance arose from 

the application of the North American design provisions to the case of ITF loading where web buckling 

is dominant. There is considered to be scope for the development of improved design formulae for 

resistance to concentrated loading that take account of the particular characteristics of stainless steel 

over the full slenderness range. 

5. CONCLUSIONS 

An extensive experimental and numerical investigation into the structural response of welded stainless 

steel I-beams under two types of concentrated transverse loading: (i) internal one-flange (IOF) and (ii) 

internal two-flange (ITF) loading has been presented. The physical experimental programme 

comprised twenty four member tests: sixteen IOF tests and eight ITF tests. The experimental results 

were complemented by numerically generated data, allowing further investigation of the influence of 
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the bearing length and the web slenderness on the ultimate web bearing resistance of stainless steel I-

beams. Both the numerical and test results were used to assess the accuracy of the European and North 

American design provisions for the ultimate web bearing resistance of welded stainless steel I-sections. 

The results showed that the existing design rules generally lead to safe-sided but conservative 

resistance predictions for members with stocky webs under both loading conditions; this is attributed 

to the neglect of the significant strain hardening associated with stainless steel. Overly conservative 

results were also observed for cross-sections with slender webs. The findings of this study highlight 

the need for the development of new design rules for stainless steel beams under concentrated 

transverse loading that recognise the particular characteristics of stainless steel; this is the focus of 

ongoing work. 
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FIGURES 

 

 

 

 

 

 

(a) Schematic setup                     (b) Test setup 

Fig.  1. Experimental setup for IOF specimens. 

 

 

 

 

 

(a) Schematic setup                     (b) Test setup 

Fig.  2. Experimental setup for ITF specimens. 

 

 

 

 

 

 

 

 

 

                              (a) Schematic setup                   (b) Test setup 

Fig.  3. Imperfection measurement setup.  
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Fig.  4. Measured out-of-plane geometric imperfections uavg for IOF-H102-L300-SS10 test specimen. 
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Fig.  5. Failure modes of internal one-flange (IOF) loading test specimens. 
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Fig.  6. Load-vertical displacement response of the tested IOF H150 specimens. 

 

 

Fig.  7. Load-vertical displacement response of the tested IOF H152 specimens. 
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Fig.  8. Load-vertical displacement response of the tested IOF H102 specimens. 

 

 

Fig.  9. Load-web shortening response of the tested IOF H150 specimens. 
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Fig.  10. Load-web shortening response of the tested IOF H152 specimens. 

 

Fig.  11. Load-web shortening response of the tested IOF H102 specimens. 
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Fig.  12. Load-out-of-plane displacement response of the tested IOF H150 specimens. 

 

Fig.  13. Load-out-of-plane displacement response of the tested IOF H152 specimens. 
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Fig.  14. Load-out-of-plane displacement response of the tested IOF H102 specimens. 

 

 

Fig.  15. Load-out-of-plane displacement response of test specimen IOF-H150-L400-SS60 and corresponding 

out-of-plane web deformation fields obtained using Digital Image Correlation. 
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Fig.  16. Failure modes of internal two-flange (ITF) loading test specimens. 

 

 

Fig.  17. Load-web shortening response of the tested ITF H102 specimens. 
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Fig.  18. Load-web shortening response of the tested ITF H160 specimens. 

 

Fig.  19. Load-out-of-plane displacement response of the tested ITF H102 specimens. 
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Fig.  20. Load-out-of-plane displacement response of the tested ITF H160 specimens. 

 

Fig.  21. Load-out-of-plane displacement response of test specimen ITF-H102-L500-SS20 and corresponding 

out-of-plane web deformation fields obtained using Digital Image Correlation. 
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Fig.  22. Engineering and true stress-strain curves for material from tested cross-sections. 

 

 

 

 

 

 

 

(a) IOF                     (b) ITF 

Fig.  23. Boundary conditions adopted in the finite element models. 
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Fig.  24. Experimental and numerical failure modes of specimen IOF-H102-L300-SS12.5. 

 

 

Fig.  25. Experimental and numerical failure modes of specimen ITF-H102-L500-SS60. 

 

Fig.  26. Experimental and numerical load-web shortening responses of the IOF-H102-L300-SS15 specimen. 
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Fig.  27. Experimental and numerical load-out-of-plane displacement response of the IOF-H152-L450-SS30 

specimen. 

 

Fig.  28. Experimental and numerical load-web shortening response of the ITF-H102-L500-SS40 specimen. 
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Fig.  29. Experimental and numerical load-out-of-plane displacement response of the ITF-H102-L500-SS100 

specimen. 

  

0

50

100

150

200

250

300

0 5 10 15

L
o
ad

 (
k
N

)

Web shortening (mm)

Test

FE



36 

 

  

           (a) Vertical axis scale up to 3000 kN      (b) Vertical axis scale up to 250 kN 

 

Fig.  30. Influence of bearing length (ss), normalized by web height, on ultimate load of IOF models for different 

web slenderness (hw/tw). 

 

  

        (a) Vertical axis scale up to 2500 kN     (b) Vertical axis scale up to 140 kN 

 

Fig.  31. Influence of bearing length (ss), normalized by web height, on ultimate load of ITF models for different 

web slenderness (hw/tw). 
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           (a) Vertical axis scale up to 3000 kN      (b) Vertical axis scale up to 500 kN 

 

Fig.  32. Influence of web slenderness (hw/tw) on ultimate load of IOF models for different bearing length to 

web-height ratios.  

 

  

           (a) Vertical axis scale up to 2500 kN      (b) Vertical axis scale up to 500 kN 

 

Fig.  33. Influence of web slenderness (hw/tw) on ultimate load of ITF models for different bearing length to 

web-height ratios.  
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Fig.  34. Definition of Fu and Fu,pred for IOF loading case.  

 

Fig.  35. Comparison of IOF test and FE results with EN 1993-1-5 F-M interaction diagram. 
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Fig.  36. Comparison of IOF loading test and FE results against the European and North American design 

resistance predictions. 

 

 

Fig.  37. Comparison of ultimate strengths determined from IOF loading tests and FE simulations against EN 

1993-1-5 design curve. 
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Fig.  38. Comparison of ITF loading test and FE results against the European and North American resistance 

predictions. 

 

 

Fig.  39. Comparison of ultimate strengths determined from ITF loading tests and FE simulations against EN 

1993-1-5 design curve. 
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TABLES 

Table 1. Summary of material properties measured from tensile coupon tests [42]. 

Specimen 

E fy f1.0 fu εu εf 

(N/mm2) (N/mm2) (N/mm2) (N/mm2) (%) (%) 

I 1026855 186800 222 331 580 50 64 

I 15075710 (Web) 197300 274 344 596 58 68 

I 15075710 (Flange) 197200 267 323 560 50 66 

I 15216069 (Web) 191400 272 349 586 50 65 

I 15216069 (Flange) 204700 227 287 561 52 67 

I 160821012 (Web) 198500 264 341 618 53 64 

I 160821012 (Flange) 197500 286 342 619 52 65 
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Table 2. Summary of measured dimensions, geometric imperfections and test results of the IOF specimens. 

Specimen 

h tw bf tf ss = sh L a hep bf,ep tep ω0 Fu δu δu,v 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (kN) (mm) (mm) 

IOF-H150-L150-SS60 149.9 6.95 75.8 9.91 60.0 162.0 149.9 161.3 89.9 12.1 0.098 424.4 6.2 7.1 

IOF-H150-L200-SS60 150.0 6.87 75.8 9.79 60.0 212.2 200.1 161.4 89.8 12.1 0.056 393.1 3.4 5.1 

IOF-H150-L300-SS60 149.9 6.88 75.8 9.76 60.0 313.1 301.0 162.1 89.9 12.1 0.055 368.6 3.2 6.5 

IOF-H150-L400-SS60 150.2 6.81 75.7 9.80 60.0 414.1 402.0 161.6 89.9 12.1 0.029 342.2 9.2 6.8 

IOF-H150-L450-SS60 150.0 6.87 75.7 9.79 60.0 464.1 452.0 161.7 89.9 12.1 0.041 340.0 9.9 7.8 

                

IOF-H152-L150-SS30 151.7 6.20 160.0 8.73 30.0 162.2 150.0 164.5 150.0 12.2 0.007 340.0 6.2 6.7 

IOF-H152-L300-SS30 152.9 6.18 159.0 8.77 30.0 313.1 301.0 164.0 150.1 12.1 0.058 322.2 4.6 6.5 

IOF-H152-L450-SS30 152.0 6.22 159.6 8.73 30.0 463.1 451.0 164.3 150.1 12.1 0.017 301.1 3.8 6.3 

IOF-H152-L600-SS30 152.3 6.18 159.6 8.88 30.0 610.1 598.0 164.3 150.1 12.1 0.027 296.7 4.0 8.3 

IOF-H152-L750-SS30 151.8 6.13 159.8 8.68 30.0 762.6 750.5 160.5 149.5 12.1 0.030 275.0 4.1 9.5 

                

IOF-H102-L300-SS5 101.4 4.89 67.9 5.10 5.0 311.1 299.0 110.0 89.9 12.1 0.046 126.7 7.0 10.3 

IOF-H102-L300-SS7.5 101.9 4.98 67.9 5.20 7.5 311.1 299.0 110.0 89.9 12.1 0.003 132.3 5.6 8.5 

IOF-H102-L300-SS10 100.8 4.92 67.8 5.19 10.0 311.1 299.0 110.0 89.9 12.1 0.031 121.8 4.0 6.5 

IOF-H102-L300-SS12.5 101.3 4.94 67.9 5.17 12.5 310.1 298.0 110.0 90.0 12.1 0.043 143.2 5.2 8.7 

IOF-H102-L300-SS15 101.9 4.99 67.8 5.12 15.0 310.1 298.0 110.0 89.8 12.1 0.064 130.8 3.0 5.5 

IOF-H102-L300-SS20 100.9 4.91 67.8 5.10 20.0 310.6 298.5 109.9 89.8 12.1 0.002 142.5 3.2 6.2 
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Table 3. Summary of measured dimensions, geometric imperfections and test results of the ITF specimens. 

Specimen 

h tw bf tf ss = sh L a hep bf,ep tep   ω0 Fu δu 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)   (mm) (kN) (mm) 

ITF-H102-L500-SS20 101.3 4.94 67.8 4.94 20.0 524.0 500.0 112.0 89.8 12.0  0.016 154.5 5.7 

ITF-H102-L500-SS40 101.6 4.98 67.8 4.97 40.0 522.4 498.3 111.9 89.9 12.0  0.001 178.4 3.5 

ITF-H102-L500-SS60 101.4 4.94 67.7 4.92 60.0 524.4 500.3 112.0 89.8 12.0  0.011 194.8 2.4 

ITF-H102-L500-SS80 101.5 4.95 67.7 4.93 80.0 524.0 500.0 111.9 89.8 12.0  0.077 209.6 1.8 

ITF-H102-L500-SS100 101.6 5.01 67.8 4.95 100.0 524.0 500.0 111.9 89.8 12.0  0.046 239.6 1.5 

                

ITF-H160-L475-SS20 160.1 9.71 82.5 11.70 20.0 500.5 476.5 168.8 89.8 12.0  0.015 626.6 21.2 

ITF-H160-L475-SS40 160.0 9.72 82.5 11.75 40.0 500.1 476.0 169.1 89.8 12.0  0.038 678.8 18.9 

ITF-H160-L475-SS60 160.1 9.76 82.5 11.74 60.0 499.9 475.8 168.9 89.8 12.0  0.006 690.6 11.8 
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Table 4. Comparison of the IOF test results with FE results for different imperfection amplitudes. 

Specimen 
Measured amplitude   tw/100   tw/300   tw/500 

Fu,FE / Fu,Test δu,FE / δu,Test   Fu,FE / Fu,Test δu,FE / δu,Test   Fu,FE / Fu,Test δu,FE / δu,Test   Fu,FE / Fu,Test δu,FE / δu,Test 

IOF-H150-L150-SS60 0.99 0.59   0.97 0.47   0.99 0.48   1.00 0.51 

IOF-H150-L200-SS60 1.01 1.05   0.99 0.66   1.01 0.73   1.06 0.81 

IOF-H150-L300-SS60 1.01 1.36   1.00 0.61   1.01 0.62   1.02 0.62 

IOF-H150-L400-SS60 1.04 0.59   1.02 0.22   1.02 0.19   1.03 0.21 

IOF-H150-L450-SS60 1.03 0.64   1.01 0.17   1.01 0.19   1.01 0.17 

                        

IOF-H152-L150-SS30 1.05 0.79   0.96 0.58   1.00 0.70   1.02 0.64 

IOF-H152-L300-SS30 0.96 0.93   0.93 0.57   0.95 0.66   0.96 0.65 

IOF-H152-L450-SS30 1.01 1.47   0.96 0.69   0.99 0.78   1.01 0.86 

IOF-H152-L600-SS30 0.96 1.53   0.93 0.62   0.95 0.69   0.96 0.68 

IOF-H152-L750-SS30 0.95 1.69   0.92 0.53   0.94 0.58   0.95 0.65 

                        

IOF-H102-L300-SS5 0.96 0.97   0.95 0.65   0.99 0.68   0.99 0.72 

IOF-H102-L300-SS7.5 1.03 1.49   0.96 0.75   0.99 0.77   1.01 0.80 

IOF-H102-L300-SS10 1.05 1.52   1.05 0.89   1.07 0.94   1.09 1.03 

IOF-H102-L300-SS12.5 0.92 1.08   0.92 0.63   0.94 0.70   0.95 0.70 

IOF-H102-L300-SS15 1.02 1.69   1.04 1.01   1.06 1.11   1.07 1.14 

IOF-H102-L300-SS20 1.02 1.98   0.96 0.82   0.99 0.91   1.00 0.94 

                        

Mean 1.00 1.21  0.97 0.62  0.99 0.67  1.01 0.70 

COV 0.04 0.36  0.04 0.35  0.04 0.36  0.04 0.37 
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Table 5. Comparison of the ITF test results with FE results for different imperfection amplitudes. 

Specimen 
Measured amplitude   tw/100   tw/300   tw/500 

Fu,FE / Fu,Test δu,FE / δu,Test   Fu,FE / Fu,Test δu,FE / δu,Test   Fu,FE / Fu,Test δu,FE / δu,Test   Fu,FE / Fu,Test δu,FE / δu,Test 

ITF-H102-L500-SS20 0.97 0.82   0.92 0.72   0.96 0.81   0.98 0.88 

ITF-H102-L500-SS40 0.98 0.85   0.90 0.62   0.92 0.74   0.93 0.72 

ITF-H102-L500-SS60 0.94 0.66   0.92 0.59   0.93 0.64   0.94 0.67 

ITF-H102-L500-SS80 0.94 0.58   0.95 0.59   1.02 0.70   1.03 0.69 

ITF-H102-L500-SS100 0.95 0.63   0.95 0.62   0.98 0.73   0.99 0.74 

                        

ITF-H160-L475-SS20 0.96 0.75   0.89 0.64   0.93 0.70   0.95 0.74 

ITF-H160-L475-SS40 0.90 0.51   0.87 0.46   0.91 0.53   0.92 0.54 

ITF-H160-L475-SS60 0.98 0.68   0.90 0.51   0.94 0.56   0.95 0.60 

                        

Mean 0.95 0.68  0.91 0.59  0.95 0.67  0.96 0.70 

COV 0.03 0.17  0.03 0.13  0.04 0.14  0.04 0.15 
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Table 6. Design resistance of members under concentrated transverse loading according to AISC 360-16 [53]. 

Limit state Resistance formulae 

Web yielding 

AISC 360-16 [53], J10.2 

If load is applied at a distance greater than h from the member end: 

Rd yw w s(5 )F f t k s   

If load is applied at a distance equal or less than h from the member end: 

Rd yw w s(2.5 )F f t k s   

where k is the distance from the outer face of the flange to the web fillet toe. 

Web crippling 

AISC 360-16 [53], J10.3 

If load is applied at a distance greater or equal to h/2 from the member end: 

1.5

yw f2 s w
Rd w

f w

0.80 1 3
E f ts t

F t
h t t

   
     
    

 

If load is applied at a distance less than h/2 from the member end: 

For s / 0.2s h  : 

1.5

yw f2 s w
Rd w

f w

0.40 1 3
E f ts t

F t
h t t

   
     
    

 

For s / 0.2s h  : 

1.5

yw f2 s w
Rd w

f w

4
0.40 1 0.2

E f ts t
F t

h t t

   
      
    

 

Web buckling 

AISC 360-16 [53], J.10.5 

(for ITF only) 

 

If load is applied at a distance equal or greater than h/2 from the member end:

3

w yw

Rd

w

24 t E f
F

h

 
 
 
 

 

If load is applied at a distance less than h/2 from the member end:
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w

241

2

t E f
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 
 

 

 

 

 

Table 7. Comparisons of the IOF test and FE results with the ultimate web bearing strengths predicted by EN 

1993-1-5 (EC3) and AISC 360-16. 

(a) All cases     

No. of tests: 16 

Fu / Fu,EC3 Fu / Fu,AISC No. of FE simulations: 

24 

Mean 1.91 2.42 

COV 0.40 0.44 
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(b) hw/tw = 10     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 4 

Mean 3.53 3.04 

COV 0.26 0.27 

      

(c) 18 < hw/tw ≤ 22     

No. of tests: 16 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 0 

Mean 1.69 2.60 

COV 0.18 0.24 

      

(d) hw/tw = 30     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 5 

Mean 2.17 2.87 

COV 0.23 0.70 

      

(e) hw/tw = 60     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 5 

Mean 1.56 2.18 

COV 0.11 0.56 

      

(f) hw/tw = 90     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 5 

Mean 1.51 1.87 

COV 0.07 0.49 

      

(g) hw/tw = 120     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 5 

Mean 1.44 1.63 

COV 0.06 0.41 

 

Table 8. Comparisons of ITF test and FE results with the ultimate web bearing strengths predicted by EN 1993-

1-4 (EC3) and AISC 360-16. 

(a) All cases     

No. of tests: 8 

Fu / Fu,EC3 Fu / Fu,AISC No. of FE simulations: 

24 

Mean 1.80 3.87 

COV 0.32 0.58 
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(b) hw/tw = 10     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 4 

Mean 2.70 2.82 

COV 0.32 0.83 

      

(c) 18 < hw/tw ≤ 22     

No. of tests: 8 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 0 

Mean 1.81 2.27 

COV 0.24 0.29 

      

(d) hw/tw = 30     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 5 

Mean 1.81 2.35 

COV 0.40 0.40 

      

(e) hw/tw = 60     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 5 

Mean 1.46 3.36 

COV 0.07 0.20 

      

(f) hw/tw = 90     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 5 

Mean 1.55 5.45 

COV 0.05 0.19 

      

(g) hw/tw = 120     

No. of tests: 0 
Fu / Fu,EC3 Fu / Fu,AISC 

No. of FE simulations: 5 

Mean 1.61 7.69 

COV 0.04 0.19 

 


