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Abstract 6 

There has been an increasing focus on the development of automation in vehicles due its many 7 

potential benefits like safety, improved traffic efficiency, reduced emissions etc. One of the key 8 

factors influencing public acceptance of automated vehicle technologies is their level of trust. 9 

Development of trust is a dynamic process and needs to be calibrated to the correct levels for safe 10 

deployment to ensure appropriate use of such systems. One of the factors influencing trust is the 11 

knowledge provided to the driver about the system’s true capabilities and limitations. With a 56 12 

participant driving simulator study, the authors found that with the introduction of knowledge about 13 

the true capabilities and limitations of the automated system, trust in the automated system increased 14 

as compared to when no knowledge was provided about the system. Participants experienced two 15 

different types of automated systems: low capability automated system and high capability automated 16 

system. Interestingly, with the introduction of knowledge, the average trust levels for both low and 17 

high capability automated systems were similar. Based on the experimental results, the authors 18 

introduce the concept of informed safety, i.e., informing the drivers about the safety limits of the 19 

automated system to enable them to calibrate their trust in the system to an appropriate level.   20 
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1. Introduction 34 

In the last decade there has been a gradual increase of Advanced Driver Assistance Systems (ADASs) 35 

(e.g. Adaptive Cruise Control (ACC), Lane-Keep Assist etc.) in vehicles. More recently, there has 36 

been a push towards the introduction of higher levels of automation in vehicles with the aim of having 37 

Automated Driving (AD) features. The push towards ADAS and AD systems is driven due to their 38 

many potential benefits like increased safety leading to reducing the number of accidents (Tingvall, 39 

1997; Guériau et al., 2016; Cicchino, 2017), increased traffic throughput and road efficiency (Le Vine 40 

et al., 2016; Talebpour and Mahmassani, 2016), time and monetary savings on parking (Fagnant and 41 

Kockelman, 2015), lower emissions (Fagnant and Kockelman, 2014), decreasing drivers’ workload 42 

(Stanton and Young, 1998; Balfe, Sharples and Wilson, 2015) and providing more productive time to 43 

drivers (Cairns et al., 2014). 44 

While it is important to provide drivers the opportunity to use ADAS and AD systems (with 45 

development in technology), it is equally important to ensure that the drivers actually use the systems 46 

in order to ensure the potential benefits from the use of such systems are realized (Lee and See, 2004; 47 

Diels and Bos, 2016). Unfortunately, the usage of ADAS features like ACC and Lane Departure 48 

Warning has been low (51% of highway driving time (Eichelberger and McCartt, 2014)). Studies 49 

discussing the introduction of new technology in different domains like aviation, rail, automotive, etc. 50 

have shown that for the new technology to be accepted and used, effort needs to be made to introduce 51 

trust towards the new technology (Molesworth and Koo, 2016). Molesworth and Koo (2016) 52 

discussed that when participants were given a choice between conventionally piloted aircraft and 53 

remotely piloted aircraft (new technology), participants chose the former as they trusted it more. 54 

In the driving context, design and behaviour of ADAS and AD systems should be communicated to 55 

the driver (Stanton, Young and Mccaulder, 1997) and should be more human-like as it would make 56 

the driver-automation cooperation more transparent (Bifulco et al., 2013; Casner, Hutchins and 57 

Norman, 2016; Wang et al., 2016), leading to increased trust in the system. One of the challenges 58 

with the design of ADAS and AD is that their introduction changes drivers’ task from active 59 

engagement to passive monitoring (van den Beukel, van der Voort and Eger, 2016). Drivers’ driving 60 

task is said to have three different levels: 1) strategic 2) tactical and 3) operational (Michon, 1985). 61 

ADAS and AD systems alter these levels of driving tasks and the decision to design automation into 62 

any of the three levels is generally a trade-off decision (Johansson and Nilsson, 2016; Khastgir, 63 

Sivencrona, Dhadyalla, Billing, et al., 2017). The trade-off decision determines the level of 64 

engagement of the driver in the driving task. The shift from active engagement to passive monitoring 65 

introduces new types of potential errors (human errors) in the driving task as the human driver is not 66 

suitable for the task of monitoring monotonous systems (Fitts et al., 1951). 67 

1.1. Trust 68 

While introduction of automation assumes the removal of human error, in fairness it only shifts the 69 

human error from the driver to the designer of the system (Bainbridge, 1983). The designer of the 70 

automation makes assumptions about the best design for automation and distribution of driving tasks 71 

between the driver and the automated system. These assumption may or may not match with the 72 

drivers’ perception of the automated system and task distribution. Muir (1994) has suggested that as 73 

the automation capability or reliability increases, trust also increases. However, a mismatch between 74 

drivers’ perception and expectations about the capability of the automated system, and the designers’ 75 

assumptions can lead to misuse (due to mistrust), disuse (due to distrust) or abuse of the automated 76 

system (Parasuraman and Riley, 1997). Misuse is a situation when the driver uses the automated 77 

systems for tasks it was not designed to perform and is caused due to mistrust, thus making the 78 

situation more unsafe than manual driving. Disuse is a situation when the driver doesn’t use the 79 



system in situations where the automation is suitable to use, due to distrust, thus not benefiting from 80 

the system. Thus, in order to ensure appropriate use of the system, it is essential to calibrate drivers’ 81 

trust to the appropriate level. 82 

Trust is one of the most important factors influencing use of automation (Muir, 1987; Lee and Moray, 83 

1992; Muir and Moray, 1996; Parasuraman and Riley, 1997; Parasuraman and Miller, 2004; Rudin-84 

Brown and Parker, 2004; Walker, Stanton and Salmon, 2016). Before the authors discuss details of 85 

the development of trust, it is important to define trust in driving context. In order to define trust, the 86 

authors adapt the definition of trust from (Lee and See, 2004) as, “a history dependent attitude that an 87 

agent will help achieve an individual’s goals in a situation characterized by uncertainty and 88 

vulnerability”. The addition of the reference to “history dependent” is particularly important for this 89 

work because prior knowledge about the system’s capabilities and limitations affects an individual’s 90 

attitude towards a system, thus affecting their trust. Trust is said to be influenced by various factors 91 

(Lee and See, 2004; Xu et al., 2014; Walker, Stanton and Salmon, 2016), with previous work 92 

conducted by the authors suggesting this can also include knowledge, certification, situation 93 

awareness, workload, self-confidence, experience, consequence and willingness (Khastgir, Birrell, 94 

Dhadyalla and Jennings, 2017). In this paper, authors discuss the effect of knowledge on trust.  95 

1.1.1. Forms of trust 96 

Within scientific literature, trust is often discussed as a single construct. However, inspired by 97 

Rajaonah et al. (2008) who suggest two forms of trust: trust in automation and trust in the cooperation 98 

with automation; for the automotive context, the authors classify trust quantitatively into two forms: 99 

 Trust in the system  100 

 Trust with the system 101 

“Trust in the system” means the drivers’ trust in the capabilities of the system and/or in the system’s 102 

ability to do what it is supposed to do. “Trust with the system” means drivers’ awareness or attitude 103 

towards the limitations of the systems and their subsequent ability to adapt their use of the system to 104 

accommodate for the limitations in order to deliver the expected benefit from the system. Trust with 105 

the system implicitly means that the drivers are aware about the true capabilities, and limitations of 106 

the system, and are able to adapt their usage to overcome the limitations of the system in real-time. 107 

This paradigm of trust is going to be adopted in this paper. 108 

1.1.2. Knowledge: a factor influencing trust 109 

In order to have appropriate trust, is it important to convey the designer’s assumptions about the safe 110 

boundaries of the system to the driver. The knowledge of these boundaries provides the ability to have 111 

a safe cooperation with the automated system (Beller, Heesen and Vollrath, 2013). In the absence of 112 

such knowledge, drivers may not be able to calibrate their trust to an appropriate level (Lee and See, 113 

2004; Chavaillaz, Wastell and Sauer, 2016). While failures of automation has been proved to have a 114 

detrimental effect on trust, Lee and See (2004) argue that some failures can be classified as “good 115 

failures” with neglegible impact on trust. Good failures are those whose occurrence is predictable, 116 

which allows the driver to be prepared to accommodate for it. Predictability of failures of an 117 

automated system comes with knowledge about the true capabilities and limitations of the system. 118 

For complex systems requiring supervision, it has been argued that there is a need for an abstraction 119 

hierarchical representation of knowledge of the functional properties of the system (Rasmussen, 120 

1985). The abstraction hierarchy can potentially be done on two fronts. The first category is a 121 

whole/part of the system hierarchy, in which the system is viewed as a number of interacting sub-122 

systems working together at different physical levels (Rasmussen, 1985). The second category 123 

suggested in Rasmussen’s hierarchical knowledge representation is the abstraction of the functionality 124 

(Rasmussen, 1985). The physical form of the system represents the lowest level of abstraction. 125 

Moving up through the levels, physical functions represents the next level, next is generalized 126 



functions, abstract functions forms the penultimate level with functional purpose forming the highest 127 

level of knowledge abstraction. The higher abstraction levels do not just represent the abstraction of 128 

physical form, they provide knowledge about the control laws for the interactions of the functions at 129 

the lower levels. Moving up the abstraction levels provides a purpose of the task for the level below, 130 

while moving down the levels provides information about how the task will be achieved.  131 

When put in a driving context, the lower levels of abstraction represent the operational (as per Michon 132 

(1985)) driving task (means to a desired end goal) while the higher levels of abstraction represent the 133 

tactical and strategic driving tasks (defining the desired end goal). As priority is always given to 134 

higher levels of abstraction, a driver has to make a trade-off between the end goal (tactical / strategic 135 

goals) and means to achieve it (operational goals), to ensure the means to achieve the goal (lower 136 

levels of abstraction) lie within the safe boundaries of the system. In a manual driving task, such a 137 

trade-off has clear boundaries and represents a causal system (Rasmussen, 1985). The introduction of 138 

automation makes the driving task and the system more complex with blurred boundaries and no 139 

simple relationship between function and physical processes making it difficult to represent them as a 140 

causal system. Such systems are referred to as intentional systems. For intentional systems (ADAS 141 

and AD systems), decision making requires knowledge about the system, its limitations and the actual 142 

input to the system (from the environment) and a top-down approach to control the system in a safe 143 

manner (Rasmussen, 1985). 144 

1.1.3. Types of knowledge 145 

Based on literature (Rasmussen, 1985; Seppelt and Lee, 2007; Xu et al., 2014; Biassoni, Ruscio and 146 

Ciceri, 2016; Feldhütter et al., 2016; Miller et al., 2016; Bennett, 2017), the following classification for 147 

knowledge about the capabilities and limitations of automated systems was proposed by (Khastgir, 148 

Birrell, Dhadyalla and Jennings, 2017): 149 

 Static knowledge: Understanding of the functionality of the automated system (intentions 150 

behind the design of the system and functionality) (Larsson, 2012; Eichelberger and McCartt, 151 

2014). Static knowledge is administered prior to the driving task and is akin to an owner’s 152 

instruction manual, however with information at a higher abstraction level. Over time, a person 153 

can also build up static knowledge based on experiences. 154 

 Real time knowledge: or dynamic knowledge about the automated system (e.g. automation 155 

health, current state of the automation, near-future intentions of the automation). With the help 156 

of real-time information about the automated system health, drivers can be brought back “in-157 

to-the-loop” (Louw and Merat, 2017), as it helps increase their awareness (Banks and Stanton, 158 

2016) and increase transparency in the cooperation between humans and automation (Eriksson 159 

and Stanton, 2017). While in-vehicle information systems (IVISs) are known to have 160 

detrimental effect on driving performance (Peng, Boyle and Lee, 2014), they have a potential 161 

to have a contrasting effect in an automated vehicle as the driver is not actively involved in the 162 

driving task. Real time knowledge during repeated driving cycles leads to supplemental static 163 

knowledge of the driver about the capability and limitations of the system as it forms part of 164 

the consciously imparted knowledge driver brings to the next use of the automated system. 165 

 Internal mental model: Prior beliefs influenced of external sources (e.g. word of mouth, media 166 

etc.). Marketing of an automated system can affect the public trust and perception towards the 167 

product. This can potentially backfire if the information provided in marketing material is 168 

inaccurate as customers expect the systems to function as advertised (Casner, Hutchins and 169 

Norman, 2016). Inaccurate information can potentially cause over-trust or mistrust in the 170 

system. Internal mental model is the pre-conceived notion a person brings to the first use of 171 

automation, without any conscious effort to understand the system. While internal mental 172 

model is influenced by other sources, static knowledge is consciously imparted to a person prior 173 

to the use of automation. 174 



Comparing the presented knowledge classification with Rasmussen’s abstraction hierarchies, the 175 

authors suggest that static knowledge helps adopt a top-down approach, while dynamic knowledge 176 

helps adopt a bottom-up approach. Static knowledge further provides the ability to shift the decision 177 

making to a higher level or a lower abstraction level depending on the level of dynamic knowledge 178 

provided to the driver, i.e. to facilitate the user to more easily transition between levels of the 179 

abstraction hierarchy. With the introduction of automation, complexity of system increases, requiring 180 

drivers to demonstrate top-down (mean-end) reasoning approach to accommodate for deviations in 181 

performance while receiving knowledge about the operational driving parameters (bottom-up 182 

knowledge) (Rasmussen, 1985), to demonstrate their knowledge-based behaviour due to unfamiliar 183 

nature of the situations (Rasmussen, 1983). The significance of the abstraction hierarchies can be 184 

further illustrated by the fact that causes of failures or incorrect function are explained by a bottom-up 185 

approach whereas the reasons for the proper function are explained by a top-down approach  186 

(Rasmussen, 1985). 187 

Qualitatively, knowledge can potentially be classified into: 1) signals 2) signs and 3) symbols 188 

(Rasmussen, 1983). Signals which display time-space sensory data, help the drivers demonstrate skill-189 

based behaviour (based on intuition and experience). While signs indicate towards a stored rule, they 190 

do not provide the ability for drivers to process the situation in case a stored rule does not exist in 191 

their mental model. Symbols on the other hand represent the relationship between signs and provide 192 

the ability for drivers to demonstrate their knowledge-based behaviour and process the information to 193 

create a new rule (by shifting the processing to a higher or a lower level of abstraction). 194 

1.1.4. Creation of knowledge: identifying failures 195 

While, as described above, providing knowledge to the drivers has a potential of increasing trust, it 196 

needs to be stressed that the accuracy of the knowledge provided is key. Inaccurate knowledge plays a 197 

detrimental role in development of trust as it takes additional cognitive effort on the part of drivers to 198 

re-calibrate their mental model (initially formed in accordance to the inaccurate knowledge) to the 199 

true capabilities of the system as they experience the system (Beggiato and Krems, 2013).  200 

In order to create the knowledge of the true capabilities and functionality of the automated system 201 

(i.e., to identify failures), it is essential to conduct a thorough verification and validation process. 202 

Moreover, due to the safety critical nature of ADAS and AD systems, their deployment needs to be 203 

preceded by extensive testing to establish their safety level and performance boundaries (Sepulcre, 204 

Gozalvez and Hernandez, 2013). As discussed in section 1.1.2, the identification of failures helps 205 

classify them as “good failures” as it provides a level of predictability about them and thus do not 206 

have a detrimental effect of trust (Lee and See, 2004). However, knowledge creation about the 207 

capabilities and limitations of ADAS and AD systems faces reliability challenges (Khastgir, Birrell, 208 

Dhadyalla, Sivencrona, et al., 2017) and validation challenges which include challenges in test 209 

methods and test setup (Hendriks, Pelders and Tideman, 2010; Khastgir et al., 2015; Yu, Lin and 210 

Kim, 2016). While the authors consider knowledge creation as an important part of the process of 211 

development of trust, it remains out of scope of this paper and will be discussed in future publications. 212 

While defining trust in section 1.1, the authors mentioned that trust is a history dependent construct, 213 

suggesting its dynamic nature. The authors adopt the definition of calibration of trust as “the process 214 

of adjusting trust to correspond to an objective measure of trustworthiness” (Muir, 1994). Khastgir et 215 

al. (2017a) introduced five stages of calibration of trust: initial phase (stage 1), loss phase (stage 2), 216 

distrust phase (stage 3) and recovery phase (stage 4 and stage 5). There can be various intervention 217 

methods to potentially increase/adjust trust in different stages of calibration. In this paper, the authors 218 

discuss the use of static knowledge as an intervention method in the process of calibration of trust. 219 



1.2. Research Question 220 

As discussed in section 1.1, many authors have studied the effect of reliability (or automation 221 

capability) on trust (Muir, 1994; Muir and Moray, 1996; Chavaillaz, Wastell and Sauer, 2016), 222 

suggesting that with increased reliability, trust increases. However, there is no published research on 223 

the effect of static knowledge of automation capability on trust in a driving context (both “trust in the 224 

system” and “trust with the system”). With the help of a driving simulator study, this paper aims to 225 

answer the following two research questions: 226 

1. Does providing static knowledge about the automation capability of the system influence 227 

“trust in the system”? 228 

2. With static knowledge about the automation capability, does automation capability influence 229 

“trust in the system”? 230 

1.2.1. Hypothesis 231 

The authors hypothesize that static knowledge influences “trust in the system” as it would help 232 

influence drivers’ mental model and aid in them exercising their knowledge-based behaviour in 233 

unfamiliar situations. Furthermore, the authors believe that static knowledge would have limited 234 

effect on drivers’ “trust with the system” as drivers’ lack information about the automation health and 235 

its intentions. While static knowledge does provide an ability for drivers to predict failures, it does not 236 

help them understand the real-time tactical and operational driving task choices made by the 237 

automated system. 238 

This paper is organized in five sections. Section two discusses the methodology adopted for the study, 239 

section three illustrates the results of the study, section four provides a discussion on the results and 240 

the paper concludes with a conclusion in section five. 241 

2. Methodology 242 

2.1. Driving Simulator 243 

The experimental study was conducted in WMG’s 3xD simulator for Intelligent Vehicles at the 244 

University of Warwick, UK (WMG, 2017). The 3xD simulator consists of a Land Rover Evoque 245 

Built-Up Cab (BUC) which is housed inside a cylindrical screen of 8 m diameter and 3 m height. The 246 

cylindrical screen provides a 360⁰ field of view for the driver siting inside the BUC. A push button 247 

(with a backlight) (akin to an emergency stop button within a highly autonomous vehicle) was 248 

connected (hardwired) to a Raspberry Pi 2 board which in turn was connected to the 3xD simulator 249 

through a TCP/IP client-server interface. When the participants pressed the button, the backlight 250 

switched-off and the vehicle applied emergency braking and came to a stop. When the participant 251 

pressed the button again, the emergency brake was released and vehicle continued to drive in 252 

autonomous mode, with the backlight glowing again. This setup enabled a true user in the loop 253 

simulation platform, with the user being able to transition in and out of autonomous driving mode 254 

anytime they desired, rather than only at predefined, scripted simulator events. 255 

2.2. Participants 256 

Ethical approval for the experiment was secured from the University of Warwick’s Biomedical & 257 

Scientific Research Ethics Committee (BSREC) (REGO-2015-1746 AM02). Fifty six participants (16 258 

female and 40 male) were recruited for the study via email invitations. The mean age of the 259 

participants was 36.29 years (S.D. = 12.82 years). All participants were required to have a valid, UK 260 

full driving license and be at least 21 years of age. The average driving experience of the participants 261 



was 14.29 years (S.D. = 13.73 years). The participants’ assignment was counter balanced among three 262 

groups which were: 1) control group 2) low (20%) capability automation 3) high (80%) capability 263 

automation. The difference in automation capability is described in section 2.3.2. Informed consent 264 

was obtained from all participants. 265 

Out of the 56 participants who took part in the study, eight participants were not able to complete the 266 

study due to simulator sickness and technical issues while running the driving simulator. The 48 267 

participants who completed the study were assigned to three groups (see Table 1). 268 

Table 1: Study design: participant groups 269 

 Control Group: Without knowledge 
Group 1: Low 

capability automation 

Group 2: High 

capability automation 

Number of Participants 8 7 21 12 

Run 1 
Low capability 

automation 

High capability 

automation 
Without knowledge Without knowledge 

Run 2 
High capability 

automation 

Low capability 

automation 
With knowledge With knowledge 

2.3. Study Design 270 

The experiment was designed as a 2 x 2 mixed factorial design with automation capability as the 271 

between-subject factor, and knowledge of the automation capability as a within-subject factor. For the 272 

control group, automation capability was used as a within-in subject factor to evaluate whether trust 273 

increased with experience without providing any knowledge to the driver (participant) about the 274 

automation capability. As a part of the study, each participant was driven in automated mode (SAE 275 

Level 4 as per SAE J3016 (SAE, 2018)) twice and witnessed five hazardous incidents during each 276 

complete run. Since the study was evaluating SAE Level 4 automation, participants were asked to sit 277 

in the front passenger’s seat and hold the emergency stop button in their hands. Such an arrangement 278 

also ensured that the participants could only use the button (instead of brake pedal) to stop the vehicle. 279 

They were further informed that when the emergency stop button was pressed, the vehicle will apply 280 

emergency brakes and will need to cover the braking distance depending on the speed of the vehicle. 281 

In cases where the participant met with a simulated accident, the run ended abruptly. The driving 282 

simulator route for the experiment involved a drive around the University of Warwick campus. Each 283 

complete run lasted around 10 minutes. The route around University of Warwick was chosen to 284 

provide a better immersive environment for the participants as most of them were familiar with the 285 

university campus. Additionally, the University of Warwick route in the 3xD simulator has photo-286 

realistic imagery and realistic road feedback (vibration) due to a LiDAR scan input which forms the 287 

base for the simulation environment. The speed of the automated vehicle was according to the speed 288 

limits set on the campus map, ranging from 10-30 miles per hour. 289 

In order to overcome the lack of real-world consequences often experienced by simulation 290 

participants, who can easily choose not to react as they might if their own life were in jeopardy (as in 291 

real-world), the study had a gamification aspect to it. The game gave participants a goal during the 292 

experiment run and added an element of risk to the study (Table 2). Both these factors have been 293 

discussed in section 1.1 as being essential to evaluate development of trust. Participants were awarded 294 

1 point for every second they spent in automated mode. Every time they pressed the button, the button 295 

press was classified as a “correct stop” or an “incorrect stop”. For every correct stop they were 296 

awarded a bonus of 200 points and for every incorrect stop, a penalty of 200 points. Before the run, 297 

they were further provided information about what defined a correct and an incorrect stop. A correct 298 

stop was one where the participant correctly identified that the automated system wouldn’t be able to 299 

handle the situation, prompting the participant to intervene and press the emergency stop button. An 300 

incorrect stop was one in which the participant pressed the emergency stop button and brought the 301 

vehicle to standstill, even though the automated system was capable of handling the situation. 302 



Additionally, in case any participant crashed (met an accident), a penalty of 10000 points was given 303 

and the experiment run came to an end.  304 

An extremely high penalty was added for a crash to add a high degree of risk and motivate 305 

participants to avoid crashing the vehicle as perceived risk influences driver’s interaction with the 306 

automated system (Eriksson, Banks and Stanton, 2017). The penalties were added to get the 307 

participants to react in a similar manner as if they were in real danger. The participants were asked to 308 

maximise their score. However, the score was not a variable within the study. It was more of a 309 

mechanism to encourage engagement in the task. Participants were provided information about their 310 

score after the study was completed. Participants were given two objectives: 1) avoid crashing the 311 

vehicle by pressing the button (emergency stop) 2) maximize time spent in automated mode. They 312 

were asked to press the button only if they felt that the automated system couldn’t handle the situation 313 

or if they felt unsure about the automated system’s performance. 314 

Table 2: Scoring criteria for study (gamification) 315 

Type of Action Points 

Automated mode 1 / second 

Correct Stoppage of the automated vehicle +200 

Incorrect Stoppage of the automated vehicle -200 

Crash -10000 

 316 

2.3.1. Hazards 317 

In order to choose the five hazardous events, a hazard analysis of an automated vehicle was conducted 318 

as per the ISO 26262 (ISO, 2011) functional safety process. Five different automated vehicle 319 

functions were identified and a hazard was identified for each of the functions (Table 3). For each 320 

hazard, a hazardous event was identified which was created in each of the driving scenarios in the 321 

experiment runs in the 3xD simulator. The hazard and hazardous event identification was done by 322 

independent safety experts. One of the factors influencing the selection of the hazardous events was 323 

the ability to create the events in the 3xD simulator. 324 

Table 3: Description of five hazardous events 325 

Function Hazard Hazardous event description 

Braking Lack of Braking 
Pedestrian suddenly changes direction and comes in front of the ego 

vehicle (automated vehicle) 

Torque 
Excessive torque – 

excessive acceleration 
Vehicle approaching round-about and accelerates instead of braking 

Object Detection 
Blind-spot and delayed 

object detection 

Another vehicle in perpendicular lane comes in path of the ego vehicle 

suddenly 

Path Planning 
Not following rules of 

road  

Ego vehicle joins a roundabout while another vehicle is still in the 

roundabout and has right of way. 

Object Detection 

Compromised detection 

due to environmental 

factors 

In foggy/rainy weather, ego vehicle is not able to detect traffic lights 

within the specified range. 

 326 

2.3.2. Automation Capability 327 

Two levels of automation capability were used in the study: 1) low capability automation 2) high 328 

capability automation. The difference between the two systems was based on the ability of the 329 

automated system to tackle the five hazardous events mentioned in section 2.3.1. Low capability 330 

automated system was able to handle one out of the five hazardous events, requiring the driver to 331 

intervene in four hazardous events to ensure safe performance of the vehicle. High capability 332 

automated system was able to handle four out of the five hazardous events, requiring the driver to 333 

intervene in only one hazardous event situation to ensure safe performance. 334 



2.4. Procedure 335 

When participants arrived for the experiment, they were initially briefed about the experiment 336 

following which informed consent was taken from each participant and they were asked to fill in a 337 

demographic questionnaire. Before the start of the study runs, each participant was given a trial run 338 

(on a route different from the one used for the study runs) on the driving simulator with a researcher 339 

seated next to the participant, to familiarize the participant with the visuals, motion feedback, 340 

experience of sitting inside a car within a simulator and using the button to apply emergency brake on 341 

the vehicle. Participants were told that they can ask for as many trial runs as they wish, in order to 342 

make them comfortable with the simulator environment. Each trial run was of five minutes in length. 343 

While most of the participants requested only one trial run, some participants requested for an 344 

additional (second) trial run. After the trial runs, participants were asked whether they would like to 345 

continue the study. In the case that the participant agreed, each participant experienced two 346 

experiment runs of around 10 minutes each. Before the second run (for group 1 and group 2), 347 

participants were provided knowledge about the capabilities of the automated system. Commentary 348 

was read out to them via a prepared script. Effort was put into the preparation of the script in order to 349 

avoid introducing any experiment bias. The script was reviewed by three independent human factors 350 

experts. 351 

For the control group, participants were told that in the two runs, they will experience automated 352 

control systems from two different suppliers. No other information about system capabilities was 353 

given. However, before the second run, it was reiterated that the participants will now experience a 354 

different automated control system from a different supplier. Such a design of the control group was 355 

implemented to check if there was any changes in the trust levels due to experience. Eight out of 15 356 

participants in the control group experienced low capability automation in their first run and high 357 

capability automation in their second run. The remaining seven participants experienced the runs in 358 

the reverse order. 359 

At the end of each experiment run, participants were asked to fill a trust rating questionnaire (section 360 

2.4.2), Simulator Sickness Questionnaire (SSQ) (Kennedy et al., 1993), and Van Der Laan’s 361 

acceptance questionnaire (Van Der Laan, Heino and De Waard, 1997). However, the results from the 362 

latter two haven’t been included in this paper. 363 

2.4.1. Imparting knowledge 364 

Knowledge was imparted to the participants via a prepared script which included illustrations 365 

regarding the automated systems’ capability and limitations. Special care was taken to ensure that 366 

participant’s mental model was informed so that they understood the functioning of the system in a 367 

lay-man language to ensure higher level system understanding. This was particularly important in 368 

order to ensure they were imparted with knowledge-based behaviour, as compared to rule-based or 369 

skill-based behaviour. The knowledge imparted would enable them to deal with the unfamiliar 370 

situation by transferring the cognitive task to a higher level or a lower level of abstraction in search of 371 

an existing rule or intuition of their mental model (Rasmussen, 1985). In the automated driving 372 

context, the significance of knowledge-based behaviour is further emphasized as it helps a driver 373 

adopt a means-end approach to execute the appropriate human intervention needed for the task. The 374 

following two scripts are examples of the how knowledge was imparted to the participants. 375 

Example 1: “The automated control system from the supplier is based on camera based sensors and 376 

each automated control system will be trialled in separate runs in the sim. However, due to cost 377 

pressures, they have chosen a single low quality camera with reduced field of view. 378 

Vision based systems are dependent on the quality of the camera used. Due to cost pressures, the 379 

supplier has compromised with the accuracy of the camera used for the vehicle. In this vehicle, a 380 

lower grade camera has been used. Lower grade cameras are vulnerable to environmental factors 381 



and image recognition degrades with lower visibility. E.g., certain cameras find it hard to detect 382 

objects in rain, snow or fog or at certain times of the day due to image washout (Figure 1). In your 383 

drive today, you might have witnessed bright sunlight or rain. You have the luxury of using 384 

sunglasses, wipers etc. However, Camera doesn’t have that. It has been found that light colour 385 

objects against a bright sky is difficult to detect. This was the case in the recent Tesla Model S crash 386 

(NHTSA, 2017) where the white rear end of the truck was not detected against the bright sky.” 387 

 388 

 389 

Example 2: “While, automated vehicles have a repeatable and predictable behaviour, their behaviour 390 

is “programmed” by human engineer. Every vehicle before being released to market undergoes 391 

rigorous testing. However, it is possible that sometimes a programming bug introduced by a human 392 

error manifests itself into a larger failure. The rules of the road are pre-programmed into the 393 

automated control system. The automated system in your next run is a pre-production control system 394 

and is still undergoing testing. While previous test results have been extremely positive, I advise you 395 

to take caution. An example of this might be that as a driver, we know that if a pedestrian is standing 396 

next to a zebra crossing, they have the right of way (Figure 2). However, for a camera system, he/she 397 

will only be a pedestrian with unknown intention. In this example the automated control system 398 

wouldn’t know the rules of the road and will not have the understanding of the priorities.  399 

Another rule of the road that we as drivers are used to is the priorities at roundabouts and junctions 400 

(Figure 2). Imagine a person is given a driving license when he/she doesn’t know the rules of the 401 

road. Not only its dangerous for him/her, it is hazardous for the traffic around.” 402 

 403 

 404 

Figure 1: Camera view while driving in fog  
(image source: https://www.flickr.com/photos/kubina/2160242894; date accessed: 2017-12-04) 

Figure 2: Rules of road: rule 19 (left) and rule 185(right). (DfT, 2017)  

https://www.flickr.com/photos/kubina/2160242894


In the above examples, effort was made to differentiate between knowledge and rule-based 405 

behaviours. Simple rules are comparatively easy to convey to participants, for Figure 1, a rule would 406 

be ‘automated system will not work in fog’. However, there is no understanding why it will not work 407 

(e.g. image recognition degrades with lower visibility which was provided as a part of the script). 408 

Knowledge about other similar situation where the camera may not work was also provided via the 409 

script (…hard to detect objects in rain, snow or fog or at certain times of the day); (You have the 410 

luxury of using sunglasses, wipers etc. However, Camera doesn’t have that. It has been found that 411 

light colour objects against a bright sky is difficult to detect. This was the case in the recent Tesla 412 

Model S crash where the white rear end of the truck was not detected against the bright sky). By 413 

trying to impart knowledge the participant can envisage their own varied and numerous situations 414 

where the automated system might act unexpectedly. 415 

2.4.2. Trust questionnaire 416 

At the end of each of the two experiment runs, participants were asked to rate their level of “trust in 417 

the system” and “trust with the system”. A subjective rating scale was used and participants were 418 

asked to draw a line across a 100 mm box to indicate their level of trust (c.f. (Muir and Moray, 1996; 419 

Rajaonah, Anceaux and Vienne, 2006)). Before being asked to rate different trust levels, participants 420 

were briefed about the difference in the different types of trust via a prepared script which included 421 

examples (was read to the participants as well as given in text form) to highlight the difference 422 

between “trust in the system” and “trust with the system”. Existing rating scales like Jian’s scale 423 

(Jian, Bisantz and Drury, 2000), couldn’t be used as they don’t classify trust into the two components 424 

mentioned in section 1.1. In order to explain the two different concepts of trust, participants were 425 

briefed using an example of a mobile phone and call service provider. The following text was used for 426 

the explanation: 427 

“Trust in the system means that you have trust in the capabilities of the system and in its ability to do 428 

what it is supposed to do as advertised to you. In other words, it does what it says on the box. Trust with 429 

the system means that you are aware of the limitations of the systems and you adapt your use of the 430 

system to accommodate for the limitations in order to get maximum benefit from the system. 431 

For example, if you buy a mobile phone, you have trust in the systems about its advertised 432 

capabilities. You develop trust with the system once you start using it and understand its limitations. 433 

Ability to work with limitations guides your trust with the system. For the mobile phone and the call 434 

service provider you have, you get call drop-outs in certain part of our house and not in another part 435 

of your house. You would adapt your usage of the mobile phone by making calls only when you are in 436 

a part of the house where you know call connection service is good. This is an example of you 437 

acknowledging the limitations of the system, adapting your usage and developing trust with the 438 

system” 439 

On the trust scale, a 0% rating suggested very low trust and 100% suggested very high trust. As trust 440 

is a continuum, any value in between 0 -100 suggests that the participant had partial trust. 441 

3. Results 442 

3.1. Trust levels 443 

The average “trust in the system” for low capability automation increased substantially from 32.4% to 444 

65.4 %, with the introduction of knowledge about the system capabilities and limitations (Figure 3). 445 

While an increase in “trust in the system” rating with the introduction of knowledge was seen for high 446 

capability automation from 54.2% to 70.5% also, the effect was comparatively lower. It is interesting 447 

to note that with the introduction of knowledge about the automated system’s capabilities and 448 

limitations, both median and mean values for “trust in the system” for low-capability and high-449 



capability automated system were similar (Figure 3). In the low capability automation group, barring 450 

two participants out of the 21 participants, all participants showed an increase in trust in the system 451 

with the introduction of knowledge (Figure 4). High capability automation group also showed a 452 

similar trend. The box-plots for trust in the system illustrate a higher convergence in trust ratings with 453 

the introduction of knowledge, potentially due to appropriate calibration of trust level (Figure 3).  454 

A repeated measures ANOVA was conducted for the “trust in the system” and “trust with the 455 

system” ratings with automation capability as the between factor variable and knowledge as the 456 

within factor variable. The introduction of knowledge about the automation capabilities and 457 

limitations had a highly significant statistical effect on the level of “trust in the system”, F (1, 31) = 458 

33.712, p = 0.000002 with a ηp
2 = 0.521, suggesting 52.1% of the variance being associated with the 459 

introduction of knowledge. The introduction of knowledge didn’t have an interaction effect with 460 

automation capability, F (1, 31) = 3.846, p = 0.059 (ηp
2 = 0.11). Therefore, there was no effect of 461 

automation capability on trust in the system ratings when knowledge was introduced. 462 

While the average “trust with the system” changed with the introduction of knowledge (Figure 5), the 463 

effect was statistically insignificant, F (1, 31) = 3.652, p = 0.065 with a ηp
2 = 0.105. There was no 464 

interaction effect between knowledge and automation capability for trust with the system ratings, F (1, 465 

31) = 0.742, p = 0.396 (ηp
2 = 0.023).  466 

In order to negate the effect of experience on trust ratings, a repeated measures ANOVA was 467 

performed on the control group. The effect of the runs was statistically highly insignificant on the 468 

level of “trust in the system”, F (1, 13) = 0.105, p = 0.751 with a ηp
2 = 0.008. There were no 469 

interaction effects between the runs and the two control groups, F (1, 13) = 0.020, p = 0.89 (ηp
2 = 470 

0.002). 471 

 472 
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Figure 3: Box-plots of Trust-In the system ratings (highlighting average trust ratings) (central dot represents average 

value) 
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 475 

 476 

3.2. False presses 477 

While the introduction of knowledge about system capabilities and limitations increased trust in the 478 

system for both low and high capability automation, it had contrasting effect in the two groups in 479 

terms of number of false presses. The authors define a false press as a button press in a situation 480 

which could be handled by the automated system, indicating distrust in the system. 481 

For low capability automation, the average number of false presses increased significantly from 0.47 482 

to 2.67 with the introduction of knowledge. On the contrary, for high capability automation the 483 

average number of false presses decreased from 1.73 to 1.36 with the introduction of knowledge 484 

(Figure 6). The outlier data from the box-plot were removed for mean calculation. This meant one 485 
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Figure 4: “Trust in the System” level of individual participants for low capability and high capability automation 
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Figure 5: Box-plots of Trust-With the system ratings (central dot represents average value) 



data point each from the two runs for high capability automation was removed. There were no outliers 486 

in the data set for low capability automation group. 487 

A paired-sample t-Test was conducted to assess the significance in the number of false presses with 488 

the introduction of knowledge. For low capability automation, there was a statistically significant 489 

difference in the number of False Presses for without knowledge run (M = 0.47, SD = 0.60) and 490 

knowledge run (M = 2.67, SD = 1.65); t (20) = -6.398, p = 0.000003. For high capability automation, 491 

the number of False Presses (FP) for without knowledge run (M = 2.41, SD = 2.79) and knowledge 492 

run (M = 1.67, SD = 1.43) was statistically insignificant; t (11) = 0.792, p = 0.445. 493 

As discussed in section 2.4.1, for the low capability automation group, participants were given a lot of 494 

knowledge based on the automated systems’ limited capability. One of the potential reasons for the 495 

contrasting results between the two groups could be the amount of knowledge provided in the low 496 

capability automation group and the participants’ ability to process all the knowledge, develop 497 

accurate mental model and display knowledge-based behaviour. However, higher trust ratings with 498 

introduction of knowledge suggest that knowledge-based behaviour was displayed. Another potential 499 

reason for the contradictory results could be the lack of dynamic (real-time) knowledge provided to 500 

the participants (discussed in section 4). 501 

 502 

 503 

3.3. Accidents 504 

The authors define an accident as a collision of the ego vehicle (automated vehicle) with other entities 505 

(vehicles, pedestrians or cyclists) in the scenario or if the own vehicle doesn’t follow the traffic light 506 

rules. Introduction of knowledge about the automated system capability had similar effect on the 507 

average number of accidents for both the automation groups. For low capability automation, the 508 

average number of accidents reduced significantly from 1 to 0.38 with the introduction of knowledge 509 

(Figure 7). For high capability automation, the average number of accidents reduced slightly from 510 

0.58 to 0.42 (Figure 7). It is interesting to note that most of the accidents were caused to due to late 511 

interventions rather than absence of interventions. This may be explained due to lack of accurate 512 

situation awareness about scenario handling capabilities of the automated system during the 513 

automated driving scenario which could potentially be due to the lack of dynamic knowledge of the 514 

participants. A paired sample t-Test was conducted to assess the statistical significance in the number 515 

of accidents with the introduction of knowledge. There was a statistically significant difference in the 516 
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Figure 6: Average number of false presses 



number of accidents between the without knowledge (M = 1, SD = 0) and with knowledge (M = 0.38, 517 

SD = 0.49) conditions; t (20) = 5.701, p = 0.000014, for low capability system. 518 

Similar to the false presses, the number of accidents for without knowledge (M = 0.5, SD = .52) and 519 

with knowledge runs (M = 0.42, SD = 0.51) conditions for high capability automation was 520 

insignificant; t (11) = 0.321, p = 0.754. 521 

 522 

 523 

4. Discussion 524 

As mentioned in section 1.1.1, “trust in the system” refers to the capability of the system where as 525 

“trust with the system” refers to the ability of the driver to work with the system. In the study 526 

presented, the authors have illustrated that with the introduction of knowledge about the system 527 

capabilities and limitations, “trust in the system” increases, to similar trust ratings for low-capability 528 

and high-capability systems. These results differ from the study in (Helldin et al., 2013) and (Hergeth, 529 

Lorenz and Krems, 2017). While these studies did provide some feedback about the system 530 

boundaries to the drivers, they were unable to instil knowledge-based behaviour as they didn’t 531 

mention how the system works due to which the driver’s higher level mental model could not be 532 

made.  533 

It is worth noting that the effect of knowledge on “trust in the system” had a statistically highly 534 

significant relationship (p = 0.000002), the effect of knowledge on “trust with the system” was 535 

statistically not significant (p = 0.065). This can be explained by analysing the nature of knowledge 536 

provided to the participants. As mentioned in section 1.1.2, knowledge can be qualitatively classified 537 

into three categories. In the study presented, participants were provided with only static knowledge 538 

about the capabilities and limitations of the systems. While this allowed them to demonstrate their 539 

knowledge-based behaviour and helped them calibrate their trust in the system, the lack of system 540 

feedback on the real-time state and intention of the system, led to lower levels of trust with the 541 

system. This inference is further corroborated by the qualitative feedback from participants who were 542 

asked to explain their rating of trust in their own words. One of the participants (participant #20) 543 

commented: “warnings from the car missing” while other (participant # 40) commented “no 544 

warnings & notification”. Another participant (participant #37) mentioned: “I was able to 545 

accommodate for the system but it was discomforting… near misses and close calls”. 546 
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In other words, the introduction of static knowledge provided participants the capability to 547 

demonstrate top-down understanding as per the abstraction hierarchy levels. However, with the 548 

absence of dynamic knowledge, they were unable to get feedback (signs and signals) on the causes of 549 

the failure, subsequently their reasoning capability was limited. Thus, in order to be able to work with 550 

the system, i.e. accommodate for the limitations of the system and display their knowledge-based 551 

behaviour appropriately, participants also require real-time knowledge (e.g. signals and signs) to 552 

move the decision task to a higher or a lower abstraction level in search of pre-existing rules or 553 

intuition, similar to a co-pilot in the aviation domain (Eriksson and Stanton, 2017). Thus, the authors 554 

suggest that “trust with the system” is potentially influenced to a larger extent by dynamic (real-time) 555 

knowledge about the system capabilities and limitation. 556 

The introduction of knowledge didn’t have an interaction effect with automation capability on trust 557 

ratings (p = 0.059 for “trust in the system” and p = 0.065 for “trust with the system” ratings). Thus 558 

suggesting that similar levels of trust can be achieved if knowledge about the true capabilities and 559 

limitations of the systems is provided to the driver. 560 

While due to the study design the control group’s trust ratings can’t be compared with the low-561 

capability automation or high-capability automation group’s trust ratings, they do provide more 562 

confidence in the results obtained in the two latter groups. The role of the control group was to either 563 

support or negate the hypothesis that any change in trust ratings could be a result of experience. 564 

Results showed that automation capability has no interaction effect on experience of the system (p = 565 

0.89), thus negating the hypothesis. 566 

4.1. Informed Safety 567 

Results from this study could infer that vehicle manufacturers may choose to introduce low-capability 568 

systems and provide knowledge in order to deliver increased user trust and overall system 569 

performance. However, there is a caveat to this inference. For low capability automation, while 570 

introduction of knowledge increased the level of trust in the system significantly (from 32.4% to 571 

65.4%), it also increased the number of false presses significantly (from 0.476 to 2.67). Therefore, 572 

very low capability and too much knowledge is also not an appropriate solution. The authors believe 573 

that there is an optimum level of system capability and knowledge to be imparted at which trust could 574 

be maximized and false presses could be minimized. Therefore, manufacturers may decide to enhance 575 

automation capability by providing knowledge. Until systems are fully (100%) capable, augmenting 576 

system capability with knowledge about the system’s true capabilities, could be a method to bridge 577 

the gap in trust. In other words, while manufacturers should aim to introduce high capability systems 578 

in the market, the gap in system capability (system limitations) should be provided as knowledge to 579 

the customers to ensure high trust in the system. 580 

It is important to appreciate the difference in the manner in which non-specialists (i.e. general public) 581 

would understand / interpret the knowledge imparted to them. As creators of the system, designers 582 

and engineers have an appreciation and inclination towards technical understanding and the technical 583 

feature explanation. Therefore, in this study care was taken in the language used in the script used to 584 

impart knowledge to the participants. Use of technical jargon terms was avoided and illustrations were 585 

used as examples to help participants visualize the system. In real life, it is important that 586 

manufacturers explain the system capabilities and limitations in a non-technical manner in order to aid 587 

customer’s understanding by providing examples and ensuring the people read the provided 588 

information.  589 

This paper introduces the concept of “informed safety”, as a means to calibrate trust to the appropriate 590 

levels, which may include increasing those with low trust in capabilities or even reducing trust in 591 

those with too much confidence in what the system can achieve by making them aware of system 592 



boundaries. Informed safety means informing the driver (via static and/or dynamic knowledge) about 593 

the safety limits of the automated system and its intention. Informed safety provides the ability to 594 

display knowledge-based behaviour to shift the interpretation of a scenario to higher abstraction level 595 

or a lower abstraction level (Rasmussen, 1983). Informed safety aids the driver to interpret an 596 

unexpected situation to adopt an appropriate tactical or strategic manoeuvre to handle the situation 597 

safely. Informed safety is not just about providing rules of usage, it includes the background 598 

information, understanding and knowledge about how the system operates.  599 

4.2. Future research 600 

It is a well-known fact that users don't read manuals and that vehicle dealers/Original Equipment 601 

Manufacturers (OEMs) rarely do a good job in sufficiently or appropriately informing customers 602 

about the system capabilities and limitations (Beggiato and Krems, 2013; Eichelberger and McCartt, 603 

2014; Larsson, Kircher and Hultgren, 2014). As automated systems are introduced, innovative 604 

methods of informing the driver (customer) to create an “informed safety” level, need to be 605 

implemented. One potential solution could be providing a virtual tour of the vehicle at the dealership, 606 

which gives the customers an immersive experience of the various features and can help them 607 

calibrate their mental models and their expectations from the vehicle. Other means of providing 608 

“informed safety” may be short videos on the working of the Human Machine Interface (HMI) or 609 

specifically designed voice assistant features. All the discussed methods may form a part of the initial 610 

showroom briefing or a pre-sale briefing. However, these methods need to be evaluated to measure 611 

their effectiveness.  612 

4.3. Study limitations 613 

The WMG’s 3xD simulator provides a fully immersive driving experience for participants. However, 614 

like all simulator studies, transferability of results to real world needs to be evaluated separately. Real-615 

world evaluation of trust remains out of the scope of this paper. Additionally, as discussed in section 616 

4.1, informed safety, as introduced in this paper, has two facets: 1) static knowledge (e.g. initial 617 

briefing and driving manual) and 2) dynamic knowledge such as human-machine interface. In this 618 

paper, the authors only provided static informed safety to drivers. Future studies are planned where 619 

participants will be provided both dynamic knowledge and static knowledge. Results will be 620 

published in future publications. 621 

5. Conclusion 622 

Trust in automated systems is one of the key factors that would help realize the potential benefits 623 

offered by the introduction of automation in vehicles. However, trust level needs to be calibrated to 624 

the appropriate level in order to reap the benefits of the automated systems in a safe manner by 625 

preventing misuse or disuse. This study explores the effect of knowledge about the automation 626 

capability on trust in the system. 627 

In this paper, the authors demonstrate via a 56 participants driving simulator study that “trust in the 628 

system” increases with the introduction of static knowledge about the capabilities and limitation of the 629 

automated system. With the introduction of static knowledge, trust in the system for both low 630 

capability automation and high capability automation were not significantly different, 65.4% and 631 

70.5% respectively, suggesting no influence of automation capability on trust in the system when 632 

knowledge is provided to the drivers. Based on results, the authors introduced the concept of 633 

“informed safety” which helps calibrate drivers’ trust to an appropriate level, subsequently ensuring 634 

safe use of the automated system. 635 



Interestingly, with the introduction of static knowledge the average number of false presses had 636 

contrasting results for the two automation groups. With the introduction of knowledge, for the high 637 

capability automation group, the average number of false presses decreased from 1.73 to 1.36, while it 638 

increased from 0.47 to 2.67 for the low capability automation group. However, average number of 639 

accidents decreased from 1 to 0.38 and from 0.58 to 0.42 for low capability automation and high 640 

capability automation respectively. The improved safety with the introduction knowledge lends its 641 

support to the concept of informed safety. In order to reduce the number of false presses, the authors 642 

hypothesize the need to provide “informed safety” in a dynamic manner, i.e., via knowledge about the 643 

automation state and health through the HMI system. Results on the study exploring the hypothesis 644 

will be presented in future publications. 645 
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