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Abstract: Plant hormones are master regulators of plant growth and development. Better knowledge
of their spatial signaling and homeostasis (transport and metabolism) on the lowest structural levels
(cellular and subcellular) is therefore crucial to a better understanding of developmental processes
in plants. Recent progress in phytohormone analysis at the cellular and subcellular levels has
greatly improved the effectiveness of isolation protocols and the sensitivity of analytical methods.
This review is mainly focused on homeostasis of two plant hormone groups, auxins and cytokinins.
It will summarize and discuss their tissue- and cell-type specific distributions at the cellular and
subcellular levels.
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1. Introduction

The most well-documented groups of plant hormones are auxins and cytokinins (CKs) (Figure A1)
with reasonably well-described signaling, transport, and metabolism (biosynthesis, conjugation,
and degradation). Moreover, mutual auxin–cytokinin regulation and/or crosstalk appear to control
many developmental processes in plants [1]. Since the 1950s, both CKs and auxins have been known
for their ability to effectively determine the type of organs regenerated in vitro from undifferentiated
callus cultures [2]. High auxin-to-CK ratios stimulate root formation, whereas low ratios promote shoot
formation. Müller and Sheen [3] showed that antagonism between CK and auxin is primarily realized
at the molecular level and is important for specifying root stem cells during early embryogenesis.
Moreover, recent transcriptomic data have shown that meristems reform in positions determined
by antagonistic auxin and CK signaling domains during tissue repair [4]. On the other hand,
synergistic effects of auxins and CKs have also been reported, an example being shoot apical meristem
formation [5,6].

The importance of phytohormone homeostasis at the cellular level has become more prominent
with the increasing sensitivity of analytical tools [7]. It is generally accepted that compartmentation is a
key feature of eukaryotic cells. Plant cells contain admirably complex, albeit well-organized membrane
systems dividing them into organelles or compartments. This partition provides possibilities to create
appropriate microenvironments and conditions for specialized metabolic pathways. Thus, unique sets
of enzymes, transporters, and other proteins are found separated into organelles.
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Current advances in indirect or direct visualization methods and other sensitive analytical
techniques enable us to visualize phytohormone distributions in vivo at the cellular and subcellular
levels. In this review, the authors have connected homeostasis (transport and metabolism) of auxins
and CKs with their tissue- and cell-type specific distributions at the cellular and subcellular levels.
They are convinced that this topic will open completely new horizons in understanding how the
balance of plant hormones is created and controlled.

2. Organelle-Specific Phytohormone Profiling

Analytical methods for quantitation of auxins and CKs have become increasingly sensitive and
capable of discriminating not only the free hormones, but also many of their precursors, metabolites,
and catabolites [7,8]. Nevertheless, at the subcellular level, organelle-specific phytohormone profiling
is challenging and many factors need to be optimized, such as (i) leakage during isolation; (ii) purity
of isolated compartments; and (iii) dynamic metabolic changes during isolation.

2.1. Subcellular Fractionation

The original idea of separating intracellular compartments to study the partition of enzyme
processes was developed by De Duve and co-workers in the 1950s [9]. Methods of organelle
isolation are mainly based on differential centrifugation or density gradient ultracentrifugation [10–14].
Even the simplest differential centrifugation can provide enriched fractions of crude organelles [15,16].
Higher purity organelle fractions can be achieved by density gradient ultracentrifugation yielding
fractions enriched in endoplasmic reticulum (ER) [14], Golgi apparatus [17], vacuoles [11],
mitochondria [16], and chloroplasts [12,18].

Alternative methods for compartment separation have been also described, for example,
two-phase partitioning [19] and non-aqueous or aqueous fractionation [20,21]. Techniques such as flow
cytometry can be used for more rapid sorting of organelles labelled by fluorescent probes, for example,
nuclei [22], chloroplasts [23], and mitochondria [24]. Affinity capture or pull down by magnetic
microparticles has been also used for isolating nuclei [25] or mitochondria [26].

2.2. Phytohormone Profiling in Organelles

Currently, there are only few reports dealing with the determination of phytohormones in live-cell
systems [7]. In addition, little is known about extra- and intracellular phytohormone distribution,
or the phytohormone levels in individual cell compartments. Indole-3-acetic acid (IAA) has been
determined in chloroplasts and mitochondria [27], whereas CKs, IAA, and abscisic acid concentrations
have been determined in chloroplasts [28,29] (Table 1). The full profile of IAA and its metabolites
has been described in wild-type Arabidopsis thaliana vacuoles [30] with determinations providing,
for example, clear functional evidence of the vacuolar auxin transport protein WALLS ARE THIN 1
(WAT1) (Figure 1).

Profiling of CK metabolites at the subcellular level has been performed in both Arabidopsis and
barley (Hordeum vulgare) [31]. Concentrations of 25 CK metabolites were determined from isolated
apoplast, cytosol, and vacuoles (Table 1). Surprisingly, the highest proportion of CKs was located
outside the cell (up to 90%, with a majority as O- and N-glucosides), and only about 10% was
present in cytosol and vacuoles. In transgenic barley expressing the cytokinin oxidase gene AtCKX1,
severe decreases in extracellular trans-zeatin (tZ) and tZ-7-glucoside (tZ7G) were accompanied by
compensatory increases of isopentenyladenine (iP) and vacuolar isopentenyladenosine (iPR).

All these practical examples indicate that a far richer picture can be drawn of phytohormone
homeostasis and fluxes with higher resolution data, but hormone profiling and quantitation remain
challenging at the resolution required for reliable data about subcellular compartmentation.
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Table 1. Auxin and cytokinin (CK) profiles at the subcellular level. Compounds are ordered according
to their abundance in particular organelles. Abbreviations of auxins and CKs are listed in Figure A1.

Organelles (Species 1) Auxins Cytokinins Reference

Chloroplasts
(Nicotiana tabacum)

Precursors (n.a. 2)
Active compounds (IAA)

Metabolites (n.a.)

Sum of CK bases (B)
Sum of CK ribosides (R)

Sum of CK N-glucosides (NG)
Sum of CK O-glucosides (OG)

Sum of CK phosphates (P)

[29]

Chloroplasts (Nicotiana
tabacum, Triticum aestivum) n.a.

B (iP, DHZ)
R (ZR, iPR, DHZR)

NG (Z9G, DHZ9G, iPNG, Z7G,
DHZ7G)
OG (n.a.)

P (iPRMP, ZRMP, DHZRMP)

[28]

Vacuoles (Arabidopsis)

Precursors (Trp, IAN, ANT,
TRA, IAM)

Active compounds (IAA)
Metabolites (IAA-Glc, oxIAA)

n.a. [30]

Vacuoles (Arabidopsis,
Hordeum vulgare) n.a.

B (tZ, iP)
R (cZR, iPR, tZR)

NG (iP7G, tZ7G, DHZ7G, tZ9G,
iP9G, cZ9G, DHZ9G)

OG (cZROG, cZOG, tZOG,
DHZOG, tZROG)
P (iPRMP, tZRMP)

[31]

1 Phytohormone profiles are shown for species in bold. 2 “n.a.” indicates that the phytohormones were not profiled
in the study.
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Figure 1. Indole-3-acetic acid (IAA) and 2-oxindole-3-acetic acid (oxIAA) contents were measured
in vacuolar fractions isolated by density gradient ultracentrifugation from the wild-type (Arabidopsis
Col-0) and the vacuolar auxin transporter mutant line (wat1-1). Plant tissues were grown, and vacuole
isolation was performed as previously described [31]. Samples were purified by in-tip solid-phase
microextraction [32] using a minor modification of the protocol described by Pěnčík et al. [33].
Quantification of IAA and oxIAA was performed by LC-MS/MS [34]. The bars represent averages
(±SD) of four independent biological replicates; the asterisk indicates p-values of the genotype
comparisons in an ANOVA analysis (* p < 0.05). White arrow indicates flux direction.

3. Auxins

It is well described that cellular IAA concentrations are strictly regulated by its transport,
biosynthesis, and catabolism [35]. Changes in auxin concentrations and morphogenic gradients are
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created in plant tissues and organs as a response to both exogenous and endogenous stimuli, resulting
in various developmental events, but how homeostasis is managed in these systems is far from clear.
While TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX proteins (TIR1/AFBs) are
considered as proven auxin receptors, the clear contribution of AUXIN BINDING PROTEIN 1 (ABP1)
and S-PHASE KINASE-ASSOCIATED PROTEIN 2A (SKP2A)-dependent perception to auxin signaling
still remains controversial [36,37] (Figure 2).

Polar auxin transport (PAT) is a regulated cell-to-cell transport of auxin that provides
essential directional and positional information for all vital plant developmental processes, such as
vascular differentiation, apical dominance, patterning, organ polarity, embryogenesis, organogenesis,
phyllotaxis, and tropisms [38]. Disruption of such directional auxin movement by genetic or
pharmacological manipulations results in severe developmental defects [39]. Local auxin production,
frequently together with auxin transport, influences lateral root development, embryogenesis, and leaf
and fruit development, whereas a strong reduction in auxin levels leads to defects in gravitropism,
vasculature development, and reduced apical dominance [40]. All these activities are described at the
tissue level, but little is known about how homeostasis, and perturbations to homeostasis, are affected
at the subcellular level.

3.1. Locations of Auxin Biosynthesis and Metabolism

The first organelle-specific activity connected with auxin homeostasis described indole-3-butyric
acid (IBA) enzymatic conversion to IAA in a peroxisome-dependent reaction [41]. However, whereas
IBA has been recorded from a number of plant species [35], other labs have had difficulties detecting
IBA or report it at much lower concentrations than IAA [34,42]. Certainly, IBA is a poor ligand for the
receptor TIR1 [43,44], but IBA and/or its conjugates might still contribute to IAA homeostasis [45].

The biosynthesis of IAA as a natural auxin could be mediated by two main directions: via
an L-tryptophan (L-Trp)-dependent or an L-Trp-independent pathway [46,47] (Figure 2). De novo
synthesis through the L-Trp-independent pathway is well described in microorganisms [48] but still
discussed in higher plants [49,50]. In contrast, L-Trp-dependent pathways are a significant source of
endogenous IAA for higher plants [40], as L-Trp is synthesized by the shikimate pathway localized in
the chloroplast stroma. Downstream, IAA biosynthesis is predominantly via the indole-3-pyruvic acid
(IPyA) pathway with three main family proteins (Figure 2): TRYPTOPHAN AMIDOTRANSFERASE
OF ARABIDOPSIS (TAA1 localized in cytoplasm) and TAA-Related (TAR1 localized on plasma
membrane (PM)) that are responsible for the synthesis of IPyA from tryptophan, and flavin
monooxygenases from the YUCCA family that are responsible for the conversion of IPyA to IAA [51,52]
(Figure 2). The YUCCA enzymes are likely to be cytoplasmic, although Arabidopsis YUCCA4 can be
localized both to the cytosol and to the cytosolic face of the ER membrane [18]. At least three of the
maize auxin biosynthetic proteins are also localized to ER membranes [53] (Figure 2).

The indole-3-acetaldoxime (IAOx) pathway is a unique biosynthetic pathway in Brassicaceae with
cytochrome P450 enzymes CYP79B2 and CYP79B3 localized in chloroplasts, where their substrate Trp is
synthesized [54], converting Trp to IAOx, and then to indole-3-acetamide (IAM) or indole-3-acetonitrile
(IAN) downstream. However, the enzymatic steps between IAOx and IAN have yet to be identified.
The synthesis of IAM from IAOx has been directly demonstrated in assays with cyp79b2 cyp79b3
mutants [55,56], and IAM hydrolases have been isolated from Arabidopsis and tobacco BY-2 cells
(AtAMI1 and NtAMI1) and shown to convert IAM to IAA in vitro, but the subcellular localization of
these enzymes remains unclear [57,58], despite some evidence of AtAMI1-green fluorescent protein
(GFP) fusion protein in the cytoplasm [59].
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Figure 2. Model of cellular and subcellular auxin homeostasis and signaling in Arabidopsis.
IAA biosynthesis (indicated by dark blue arrows) could be mediated by L-tryptophan
(L-Trp)-dependent or independent biosynthetic pathways [47]. Tryptophan as a substrate for the
synthesis of IAA is synthesized in stroma of chloroplast [40]. There are already four described
biosynthetic pathways named according to their first intermediates (in dark blue rectangles [60]).
In Arabidopsis, IAA biosynthesis is running predominantly via the indole-3-pyruvic acid (IPyA)
pathway including: cytoplasmic TRYPTOPHAN AMIDOTRANSFERASE OF ARABIDOPSIS (TAA1),
TAA-Related (TAR1) localized on plasma membrane (PM), and YUCCA4 attached to the ER
membrane [47,52]. Free IAA levels can be modulated via conjugation and/or oxidation, rarely via
methylation (metabolic pathways are represented by yellow arrows [59,61]. Four main families of
active auxin transporters are described: PM localized AUXIN1/LIKE-AUX1 (AUX1/LAX) auxin influx
facilitators, and perhaps also into the ER [62]; PINs efflux carriers [36,63]; ATP-binding cassette type
B (ABCB) proteins [64] involved in the influx or efflux of auxin [65,66]; and finally PIN-like (PILS)
together with short PIN-FORMED proteins (PINs) (PIN5, 6, and 8) with confirmed localization at
ER [67]. WALLS ARE THIN 1 (WAT1) is a recently described tonoplast-localized auxin transporter [30].
Similarly, NPF6.3 (NRT1.1) can control auxin influx (transport is marked by white arrows [68,69].
Nuclear TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX proteins (TIR1/AFBs)
are considered as proven auxin receptors. However, the strong proof that putative AUXIN BINDING
PROTEIN 1 (ABP1) and S-PHASE KINASE-ASSOCIATED PROTEIN 2A (SKP2A) receptors directly
mediate auxin signaling still remains contentious (signaling is highlighted by red arrows [37,70]).
Light blue arrows indicate protein trafficking. Solid arrows indicate known and well-described
pathways, dashed arrows indicate not well-defined pathways. Abbreviations and structures of all IAA
metabolites (precursors, catabolites, and conjugates) are listed in Figure A1a.

Free IAA levels are probably managed by activities in the cytoplasm, the compartment of synthesis
and of arrival by transport. In the cytoplasm, IAA can be modulated via conjugation and/or oxidation,
and rarely via methylation [59]. IAA can be conjugated via ester linkages to glucose by UDP-glucosyl
transferases UGT74D1 and UGT84B1 to create 1-O-indole-3-acetyl-β-D-glucose (IAA-Glc) [71], or to
amino acids by the GRETCHEN HAGEN 3 (GH3) family of IAA-amido synthases [72,73]. Interestingly,
Barbez and Kleine-Vehn [74] later hypothesized that the localization of the GH3 family is in the
ER, but this would place them in the same compartment as ILR1-like amidohydrolases (ILR1, ILR2,
and ILR3 [75]), which will hydrolyze the products of GH3s. Unfortunately, clear evidence for GH3
localization to the ER is still missing. If IAA conjugates are synthesized in the cytoplasm, the authors
can hypothesize that such conjugates are rapidly transported out of the cytoplasm for storage or
derivative pathways.
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The GH3 enzymes are induced strongly by elevated concentrations of auxin and this provides
one level of homeostatic control [76,77], but the role of the ILRs in subsequently releasing free IAA
back from amido-conjugates is not known. The steady state concentration of IAA in the cytoplasm
is considered to be 5 µM when calculated in system models [78]. Rises in concentration above
the steady state in the cytoplasm and nucleus will induce transcription and translation of GH3s,
among many other genes, and the analysis above suggests that these reside in the cytoplasm ready to
react with the elevated free IAA. Consideration of the kinetic properties of these enzymes suggests
that GH3s will become increasingly active in the micromolar range of IAA concentrations (Km for
OsGH3-8 = 182 µM, [77]; Km for AtGH3-5 = 700 µM, [79]). While these Km values suggest poor activity
at the concentrations of IAA likely to be encountered in the cytoplasm, the enzymes do have very high
catalytic efficiencies (kcat/Km) and so free IAA will be rapidly conjugated by resting levels of enzyme,
and this will be rapidly supplemented as new enzyme is generated by the auxin response. In the ER,
ILRs will become active at somewhat lower concentrations of the conjugates (Km AtILR1 = 14 µM; [75]),
but the proper location of the conjugates remains to be determined.

IAA oxidation to 2-oxindole-3-acetic acid (oxIAA) is the major IAA catabolic pathway
in Arabidopsis [34,80,81]. It was later shown that another oxidative metabolite in Arabidopsis,
oxIAA-glucose (oxIAA-Glc), was synthesized via glycosylation of oxIAA and not via oxidation of
IAA-Glc [82,83]. Oxidation of some IAA amides in Arabidopsis was also detected [80,84]. The first
characterized IAA oxidases, DIOXYGENASE FOR AUXIN OXIDATION (DAO) in dicots, were
rice OsDAO homologs in Arabidopsis AtDAO1 and AtDAO2 [83,85,86]. These dioxygenases are
cytoplasmic [83] and so, again, responses to elevations of IAA concentration are targeted to the
cytoplasm and one may expect the cytoplasmic concentration at homeostasis to be micromolar or
lower given that OsDAO1 actively oxidized IAA when 1 µM IAA was supplied [85].

AtDAO1 was shown to be a primary determinant of auxin homeostasis [83]. However, the work
on oxidases [83,86] showed that the loss of IAA oxidation in atdao1 mutants did not lead to a
significant change in IAA levels, suggesting redundancy in homeostatic mechanisms. Moreover,
the mathematical model from Mellor et al. [87] suggests that, in atdao1 mutant, IAA-aspartate (IAA-Asp)
and IAA-glutamate (IAA-Glu) accumulate, compensating for the loss of IAA oxidation.

There are several reports indicating that methylation of IAA is highly relevant for some plant
developmental processes, such as leaf development [88] and differential growth in the hypocotyl [89].

Taken together, these results suggest that plants possess redundant and sensitive mechanisms
to catabolize cytoplasmic IAA [90]. It will be useful in future to know into which compartment the
oxidation and other catabolic products are moved. The presence of the amidohydrolases in the ER
suggests that this compartment is important, but it remains possible that this is only involved in
feedback control of cytoplasmic IAA concentrations.

3.2. Auxin Transport

There are four main families of active auxin-specific transporters and by their nature, each is
localized to specific membranes (Figure 2). Therefore, one can surmise their roles in auxin homeostasis
in some detail: (i) AUXIN1/LIKE-AUX1 (AUX1/LAX) auxin-H+ symporters, responsible for auxin
transport from the apoplast into the cell, and perhaps also into the ER [62,91,92]; (ii) PIN-FORMED
proteins (PINs) that are gradient-driven secondary transporters (efflux carriers) [63]; (iii) ATP-binding
cassette type B proteins (ABCBs) [64] uniformly localized at the PM are involved in the ATP-driven
influx or efflux of auxin [65,66]; and (iv) the PIN-like (PILS) protein family with confirmed localization
at ER [67] (Figure 2). Additionally, it has been demonstrated that the nitrate transceptor NPF6.3
(NRT1.1, Figure 2), which belongs to the NPF (NRT1/PTR) family in Arabidopsis [68,69], is involved
in the auxin influx in heterologous systems of Xenopus oocytes, yeast, and tobacco BY-2 cells [93–95].
Finally, the tonoplast-localized auxin transporter WAT1 and endomembrane ADP1, that are involved
in maintaining the intracellular auxin homeostasis, were also identified [30,96]. Experiments showed
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that WAT1 confers auxin efflux to yeast cells and Xenopus oocytes [30]. However, it is still not known
which auxin-related compound(s) are transported in planta.

In Arabidopsis, the PIN family consists of eight members and divides into two subfamilies
according to the length of a hydrophilic loop located in the middle of their polypeptide chain.
The “long” canonical PINs (PIN1-4, and 7) [97–99] act as auxin efflux carriers and are polarly localized
at the PM where they direct auxin flow [100,101]. The “short” non-canonical PINs (PIN5-6 and
PIN8) have the hydrophilic loop, either partially (PIN6) or significantly reduced (PIN5 and PIN8) [99].
“Short” PINs are predominantly localized to the ER where they presumably regulate auxin homeostasis
by pumping auxin into (PIN5) or out (PIN8) of the ER lumen or hypothetically from the ER lumen into
the nucleus (PIN6 and PIN8) [14,102–105]. However, Ganguly et al. [106,107] and Simon et al. [108]
revealed dual localizations of PIN5, PIN6, and PIN8 at the PM and ER in Arabidopsis epidermal and
root hair cells, as well as in tobacco BY-2 cells. PIN5::GFP was predominantly localized to the ER and
PIN8::GFP, to the PM. However, in the epidermal and cortical cells of the root meristem region (the
PIN2 domain), PIN5 showed a PM localization pattern [106,107]. Finally, Ganguly et al. [107] came up
with the hypothesis that both PIN5 and PIN8, with their dual localization property, may act as linkers
between the ER-based PILs and the PM-based canonical PINs. It is also clear that PINs do not stay
static but undergo constitutive cycling through the clathrin-coated vesicle machinery between the PM
and ER compartments [109,110].

ABCB, ABCD, and ABCG protein subfamilies are directly or indirectly involved in auxin transport.
There is a clear and well-described functional interaction between members of the ABCB family (ABCB1
and ABCB19) and TWISTED DWARF1 (TWD1) which acts as a chaperone during PM trafficking [111].
Dudler and Hertig [112] were the first to determine the substrate specificity of ABCB1 and later
Sidler et al. [113] pointed out the role of ABCB1 in the regulation of hypocotyl elongation and its
localization to the PM. ABCB1 and ABCB19 show mainly apolar cellular localizations, although partial
apical localization is found in different tissues [114–116]. Interestingly, PAT in abcb19 was highly
reduced, in both inflorescence stems and hypocotyls [117], and by ~70% in the abcb1 abcb19 double
mutant, whereas pin1 exhibited only a ~30% reduction [118,119]. Similar drastic reductions in PAT were
found in twd1 [120]. This suggests that ABCBs primarily contribute to long-distance auxin transport
and do not function in establishing the basal auxin flows that regulate organogenesis [111,118,119,121].
It has also been demonstrated that ABCB4 works as a unique auxin concentration-dependent switchable
influx/efflux transporter [65,66], and this will clearly contribute to homeostatic control of cytoplasmic
auxin concentrations.

The auxin carriers that are specifically localized to ER provide a clear link between auxin
compartmentalization and auxin conjugation-based metabolism. Moreover, the role of auxin
intracellular transport (PIN5, PIN8 and PILS) together with compartmentalization of auxin metabolism
can be interfaced in maintaining and regulating intracellular auxin homeostasis [74]. Mravec et al. [102]
were the first to realize that PIN5 increases cellular auxin retention in Arabidopsis protoplasts
presumably via auxin transport from the cytosol into the ER lumen. Moreover, PIN5 activity decreases
cellular levels of free IAA and increases levels of some auxin conjugates, namely, IAA-Asp, IAA-Glu,
and IAA-Glc, suggesting a possible role for PIN5 in compartmentalized auxin metabolism. However,
the picture for PIN8 is less clear [14,65,66,74,103]. As for PIN5, PILS2 and PILS5 in the ER increase
cellular auxin accumulation, but reduce nuclear auxin signaling, and so one can speculate that they
promote the sequestration of cytosolic auxin into the ER, where it is unavailable for nuclear auxin
signaling [67].

It is clear that local directed transport activities contribute significantly to the regulation of cellular
auxin metabolism. Indeed, Middleton et al. [122] have combined mathematical modelling with time
course data from both auxin-mediated nuclear signaling and quantitative phenotyping at the single
cell level, to show that an ER-to-nucleus auxin flux represents a major subcellular pathway to directly
control nuclear auxin levels. Based on the preceding, the authors can propose that auxin-mediated



Int. J. Mol. Sci. 2018, 19, 3115 8 of 21

responses are controlled by both maintenance of a homeostatic auxin pool in the ER together with
regulated rapid auxin fluxes between ER and nucleus.

4. Cytokinins

CKs are divided according to the chemical character of their side chain on the prevalent isoprenoid
group, such as tZ, cis-zeatin (cZ), dihydrozeatin (DHZ), and iP. The same classification applies to
benzyladenine (BA) and topolins, which occur less in nature, which are CKs carrying an aromatic
group instead of the isoprenoid (Figure A1b) [123–127]. Another group of naturally occurring CKs are
derivatives modified at position C2 by the methylthio group [128]. CKs promote many responses at
the cellular level (e.g., cell cycle and division [129], chloroplast development [130]) and are modulators
of PIN formation and polarity [131]. These processes are dependent on CK perception mediated by
three ARABIDOPSIS HISTIDINE KINASES (AHKs) which trigger a multistep phosphorelay cascade
leading to gene transcription. The AHK receptors sit mainly in the ER, but the PM might be relevant in
some circumstances as well (described in detail in [132,133]) (Figure 3).

4.1. Locations of Cytokinin Biosynthesis and Metabolism

Key enzymes catalyzing the first step of CK biosynthesis are the isopentenyl transferases (IPTs).
IPTs mediate the conjugation of an isopentenyl group to the N6-position of the adenine ribotide to
form isopentenyladenosine-5′-di- or -triphosphate (iPRDP or iPRTP, respectively). Several IPTs were
identified in Arabidopsis (AtIPT1-9) [134–136], where AtIPT2 and 9 can also catalyze isopentenylation of
tRNA to provide a source for cZ-type CKs [136]. AtIPT1, 3, and 5 fused with GFP were localized to the
chloroplasts of mesophyll cells [137], although AtIPT3 appears also in the nucleus. Specific localization
depends on posttranslational modifications such as farnesylation, which may overcome the presence
of chloroplast transit peptides [138] (Figure 3). GFP fusions of AtIPT2 and AtIPT4 point to cytosolic
localization. This finding agrees with the idea that AtIPT4 may utilize isoprenoid precursors
synthetized via the mevalonate pathway in the cytosol, but it is likely that the main pool of tZ
arises from plastids. Additionally, AtIPT7::GFP was observed in mitochondria [137] (Figure 3).

Synthesis of iPRDP and iPRTP nucleotides via transmission of isoprenoid moieties to adenosine
is followed by hydroxylation to produce tZ-type CKs, a reaction catalyzed by cytochrome P450
monooxygenases CYP735A1 and CYP735A2 [139]. CK nucleotides can get phosphoribohydrolased
by “LONELY GUY” (LOG) enzymes into highly active free-base forms [140]. To date, nine AtLOG
homologs targeted predominantly to the nucleus and cytosol have been identified [141].

It is expected that the metabolism of active free bases at least partially regulates CK homeostasis.
CK bases can be reversibly conjugated with sugars (e.g., glucose or xylose) through their hydroxyl
moiety on the N6-side chain of tZ, cZ, and DHZ via Arabidopsis uridine diphosphate glycosyltrasnferase
(AtUGT) 85A1 which is located to the cytosol [142,143] (Figure 3). A pool of O-glucosides (OG) could
serve as CK storage with the potential of rapid conversion back to active CKs via β-glucosidases [144].
Another reversible inactivation could be mediated by enzymes common with purine metabolism,
such as adenine phosphoribosyltransferases (AtAPT1-3), which appear to be cytosolic and act
antagonistically to other AtLOGs (Figure 3), switching bioactive CKs back to nucleotides [145–147].
Direct glycosylation at N7 or N9 might also be catalyzed by cytosolic UGT76C1 or UGT76C2, causing
irreversible CK inactivation [148].

Cytokinin dehydrogenases/oxidases (CKXs) are recognized as the main enzymes mediating CK
degradation [149,150] and they play a key role in the maintenance of endogenous CK levels. The seven
CKX homologs in Arabidopsis have distinct subcellular localizations. It seems that the main site of
CK inactivation is localized in the apoplast by CKX2 and CKX4-6 [151]. CKX1 and 3 were initially
predicted as mitochondrial based on in silico experiments [152], although later GFP fusions showed
that these two enzymes are predominantly targeted to vacuole, with some observed signal also in
ER [151] where they are catalytically active [153]. In the case of CKX7, the lack of a signal peptide
suggests that it is localized to the cytosol [154] (Figure 3).
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As well as localizations, AtCKXs differ in their substrate specificity adding a level of complexity to
cytokinin homeostasis above that for auxin. While CKXs prefer unsaturated isoprenoids, aromatic CKs
can also be degraded but with lower turnover rates [155,156] and DHZ, OG, and almost all cZ-types
are believed to be resistant to AtCKXs.

4.2. Cytokinin Transport

CKs are long-distance signals and the different CK forms appear to be moved differentially.
For example, tZ riboside (tZR) is transported acropetaly in xylem sap, whereas iPR is mainly transferred
basipetaly via phloem [157–160]. Despite the importance of CK transport, the facilitator proteins
were not discovered until the beginning of the 21st century when three protein groups possessing
CK translocation activity were described: purine permeases (PUPs) [161], equilibrative nucleoside
transporters (ENTs) [162], and the G subfamily of ATP-binding cassette (ABCG) transporters [163,164]
(Figure 3). CK transport seems to be shared with essential nucleobases, although the molecular basis
of CK transport is still poorly understood compared with auxin transport.
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Figure 3. Model of cellular and subcellular CK homeostasis and signaling in Arabidopsis.
De novo synthesis of CKs is mediated by isopentenyl transferases (IPTs) mainly in chloroplasts;
nevertheless, they are localized also in mitochondria, cytosol, and nuclei [137,138]. LONELY GUY
enzymes (LOGs) present in cytosol and nuclei are other enzymes, which transform CK
nucleotides to active form [140] (biosynthesis is highlighted by dark blue arrows). In contrast,
APTs catalyze the opposite reaction [145–147]. Most of the active CKs can be modulated
by uridine diphosphate glycosyltransferases (UGTs) [148] or β-glucosidase [144,165] (yellow
arrows mark reversible/irreversible inactivation). The terminal degradation product of cytokinin
dehydrogenases/oxidases (CKXs) is adenine (Ade, yellow arrows also mark CK degradation).
CKXs are prevalent in the apoplast, although three homologs are intracellular [151,153,154].
Transport (represented by white arrows) of CK free bases and their ribosides to cytoplasm is facilitated
by purine permeases (PUPs) [161,166,167] and equilibrative nucleoside transporters (ENTs) [158,168],
respectively. Lomin et al. [169] proposed a model where ENTs are involved in tZR transport to
cytosol and its subsequent conversion via a putative kinase and LOG into an active CK base,
which enters to ER and triggers signaling. ABCG14 was described and proven as an exporter
of tZ-types [163,164]. CK signaling pathways (marked by red arrows) are initiated by three
ARABIDOPSIS HISTIDINE KINASES (AHKs) localized at PM [170] or ER [13,171]. Signal is transmitted
via ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER1-5 (AHP1-5) [172,173] to nuclear type-A
ARABIDOPSIS RESPONSE REGULATORS (A-ARRs) or B-ARRs (type-B). AHP6 is inhibitory [174,175].
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Activation of B-ARRs leads to transcription [176,177] of CK inducible genes including A-ARRs which
mediate a negative feedback loop [172,178–180]. Green stars indicate CK species; Glc—glucose;
NT—cytokinin nucleotides; NG—cytokinin N-glucosides; OG—cytokinin O-glucosides; P—phosphate
moiety; R—cytokinin riboside. Solid arrows indicate known and well-described pathways, dashed
arrows indicate not well-defined pathways.

The PUP family numbers 23 members [132,161] and some PUPs appear to mediate CK uptake
at the PM (Figure 3). AtPUP1 was first examined in a yeast mutant deficient in adenine uptake.
Results suggested that kinetin and tZ, but not tZR, were substrates by competitively inhibiting adenine
uptake. A mildly acidic apoplast raised AtPUP1 activity, whereas proton pump inhibitors reduced
it. These findings point to energy-dependent and potentially proton-coupled transport against the
concentration gradient [161], later confirmed by the transport of radiolabeled tZ [166]. However, PUPs
are promiscuous to other purines and even though PUP14, for example, was shown to be involved in the
early stages of plant development [167], their role specifically as CK carriers remains to be elucidated.

AtENT1 was described as a putative nucleoside transporter based on shared similarity with
human ENTs [181] and proton-dependent import was confirmed later [162,182]. AtENT1-8 are
localized at the PM [162,181,183] (Figure 3), although AtENT1 was also identified in the tonoplast
proteome [184]. Substrate specificity of some Arabidopsis ENTs has been examined using competition
assays of adenosine uptake. As a result, AtENT6 and 8 may participate in CK riboside transport and
AtENT6 preferred iPR to tZR [158,168].

ABCG14 was revealed as the first described CK exporter involved in root-to-shoot transport of CKs.
It is highly expressed in Arabidopsis root vascular tissue and loss-of function abcg14 mutants resemble
CK-deficient phenotypes [163,164], and measurements showed that mutant shoots contained decreased
tZ-type CKs, despite abundant tZs in roots. Interestingly, iP-type and cZ-type CK contents were
elevated in both shoots and roots, suggesting that the abcg14 plants are attempting to compensate for the
loss of transport of root-synthetized tZ-type CKs for intrinsic CK homeostasis [163,164]. Undoubtedly,
AtABCG14 represents an important element in the long-distance transport of CKs. Unfortunately, there
is little information on local or subcellular compartmentation of cytokinins or cytokinin catabolites.

5. Future Perspectives

In spite of many recent studies on plant hormones, there are still gaps in our knowledge about
the mechanisms of homeostasis. For instance, detailed information about intracellular CK transport is
still missing. Cell- and organelle-specific distributions of auxin, CK, and their related compounds are
also waiting for elucidation. Auxin and CK profiling at the subcellular level will definitely open new
insights and provide a better understanding of the regulation of auxin and CK homeostasis, offering
more precise inputs for mathematical modelling, the creation of biosensors, and other applications in
plant biotechnologies.

Mass spectrometry imaging and living single-cell mass spectrometry analysis could soon
provide powerful tools for studying hormone distribution, even though they are still limited for
hormone profiling [8]. Cell-specific sorting has been employed to gain more accurate insight into
auxin [33,185] and CK [186] distributions in Arabidopsis root tips, and flow cytometric techniques for
the sorting of organelles may soon provide a better view on subcellular distributions. Another possible
approach for visualizing auxin and CK distributions at the cellular or subcellular level is using novel
synthetic analogues labelled with 7-nitro-2,1,3-benzoxadiazole (NBD), for example, that have been
recently developed to mimic native phytohormones in vivo [187–189]. A combination of all these
methodologies with the use of mathematical modelling [78,122,190] to parameterize auxin homeostasis
at cellular and subcellular levels will undoubtedly lead to far more detailed insights into the secrets of
plant developmental control.
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Appendix A

Figure A1. Structures, names, and abbreviations of naturally occurring (a) auxins and (b) CKs.
Wavy cuts indicate position of substituent attachment.
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143. Šmehilová, M.; Dobrůšková, J.; Novák, O.; Takáč, T.; Galuszka, P. Cytokinin-Specific Glycosyltransferases
Possess Different Roles in Cytokinin Homeostasis Maintenance. Front. Plant Sci. 2016, 7, 1264. [CrossRef]
[PubMed]

144. Brzobohatý, B.; Moore, I.; Kristoffersen, P.; Bako, L.; Campos, N.; Schell, J.; Palme, K. Release of active
cytokinin by a beta-glucosidase localized to the maize root meristem. Science 1993, 262, 1051–1054. [CrossRef]
[PubMed]

145. Moffatt, B.; Pethe, C.; Laloue, M. Metabolism of Benzyladenine is Impaired in a Mutant of Arabidopsis thaliana
Lacking Adenine Phosphoribosyltransferase Activity1. Plant Physiol. 1991, 95, 900–908. [CrossRef] [PubMed]

146. Allen, M.; Qin, W.; Moreau, F.; Moffatt, B. Adenine phosphoribosyltransferase isoforms of Arabidopsis and
their potential contributions to adenine and cytokinin metabolism. Physiol. Plant. 2002, 115, 56–68. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/S0040-4039(01)96062-9
http://dx.doi.org/10.1016/0031-9422(75)85176-4
http://dx.doi.org/10.1111/j.1399-3054.1997.tb01052.x
http://dx.doi.org/10.1016/0300-9084(94)90044-2
http://dx.doi.org/10.1093/jxb/erv132
http://www.ncbi.nlm.nih.gov/pubmed/25873684
http://dx.doi.org/10.1093/jxb/erw216
http://www.ncbi.nlm.nih.gov/pubmed/27242371
http://dx.doi.org/10.1111/nph.14991
http://www.ncbi.nlm.nih.gov/pubmed/29355964
http://dx.doi.org/10.1093/pcp/pce112
http://www.ncbi.nlm.nih.gov/pubmed/11479373
http://dx.doi.org/10.1074/jbc.M102130200
http://www.ncbi.nlm.nih.gov/pubmed/11313355
http://dx.doi.org/10.1073/pnas.0603522103
http://www.ncbi.nlm.nih.gov/pubmed/17062755
http://dx.doi.org/10.1074/jbc.M314195200
http://www.ncbi.nlm.nih.gov/pubmed/14726522
http://dx.doi.org/10.1104/pp.107.107425
http://www.ncbi.nlm.nih.gov/pubmed/18184738
http://dx.doi.org/10.1074/jbc.M406337200
http://www.ncbi.nlm.nih.gov/pubmed/15280363
http://dx.doi.org/10.1038/nature05504
http://www.ncbi.nlm.nih.gov/pubmed/17287810
http://dx.doi.org/10.1105/tpc.109.068676
http://www.ncbi.nlm.nih.gov/pubmed/19837870
http://dx.doi.org/10.1007/s00425-012-1818-4
http://www.ncbi.nlm.nih.gov/pubmed/23187681
http://dx.doi.org/10.3389/fpls.2016.01264
http://www.ncbi.nlm.nih.gov/pubmed/27602043
http://dx.doi.org/10.1126/science.8235622
http://www.ncbi.nlm.nih.gov/pubmed/8235622
http://dx.doi.org/10.1104/pp.95.3.900
http://www.ncbi.nlm.nih.gov/pubmed/16668070
http://dx.doi.org/10.1034/j.1399-3054.2002.1150106.x
http://www.ncbi.nlm.nih.gov/pubmed/12010467


Int. J. Mol. Sci. 2018, 19, 3115 19 of 21

147. Zhang, X.; Chen, Y.; Lin, X.; Hong, X.; Zhu, Y.; Li, W.; He, W.; An, F.; Guo, H. Adenine phosphoribosyl
transferase 1 is a key enzyme catalyzing cytokinin conversion from nucleobases to nucleotides in Arabidopsis.
Mol. Plant 2013, 6, 1661–1672. [CrossRef] [PubMed]

148. Mok, D.W.; Mok, M.C. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. 2001, 52, 89–118.
[CrossRef] [PubMed]

149. Pačes, V.; Werstiuk, E.; Hall, R.H. Conversion of N-(Delta-Isopentenyl)adenosine to adenosine by enzyme
activity in tobacco tissue. Plant Physiol. 1971, 48, 775–778. [CrossRef] [PubMed]

150. Werner, T.; Köllmer, I.; Bartrina y Manns, I.; Holst, K.; Schmülling, T. New insights into the biology of
cytokinin degradation. Plant Biol. 2006, 8, 371–381. [CrossRef] [PubMed]

151. Werner, T.; Motyka, V.; Laucou, V.; Smets, R.; Van Onckelen, H.A.; Schmülling, T. Cytokinin-deficient
transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of
cytokinins in the regulation of shoot and root meristem activity. Plant Cell 2003, 15, 2532–2550. [CrossRef]
[PubMed]

152. Schmülling, T.; Werner, T.; Riefler, M.; Krupková, E.; Bartrina y Manns, I. Structure and function of cytokinin
oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 2003, 116, 241–252.
[CrossRef] [PubMed]

153. Niemann, M.C.E.; Weber, H.; Hluska, T.; Leonte, G.; Anderson, S.M.; Novák, O.; Senes, A.; Werner, T.
The cytokinin oxidase/dehydrogenase CKX1 is a membrane-bound protein requiring homooligomerization
in the endoplasmic reticulum for its cellular activity. Plant Physiol. 2018. [CrossRef] [PubMed]

154. Köllmer, I.; Novák, O.; Strnad, M.; Schmülling, T.; Werner, T. Overexpression of the cytosolic cytokinin
oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem
differentiation. Plant J. 2014, 78, 359–371. [CrossRef] [PubMed]

155. Galuszka, P.; Popelková, H.; Werner, T.; Frébortová, J.; Pospíšilová, H.; Mik, V.; Köllmer, I.; Schmülling, T.;
Frébort, I. Biochemical Characterization of Cytokinin Oxidases/Dehydrogenases from Arabidopsis thaliana
Expressed in Nicotiana tabacum L. J. Plant Growth Regul. 2007, 26, 255–267. [CrossRef]

156. Kowalska, M.; Galuszka, P.; Frébortová, J.; Šebela, M.; Béreš, T.; Hluska, T.; Šmehilová, M.; Bilyeu, K.D.;
Frébort, I. Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: Heterologous expression,
purification and properties. Phytochemistry 2010, 71, 1970–1978. [CrossRef] [PubMed]

157. Corbesier, L.; Prinsen, E.; Jacqmard, A.; Lejeune, P.; Van Onckelen, H.A.; Périlleux, C.; Bernier, G. Cytokinin
levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition.
J. Exp. Bot. 2003, 54, 2511–2517. [CrossRef] [PubMed]

158. Hirose, N.; Takei, K.; Kuroha, T.; Kamada-Nobusada, T.; Hayashi, H.; Sakakibara, H. Regulation of cytokinin
biosynthesis, compartmentalization and translocation. J. Exp. Bot. 2008, 59, 75–83. [CrossRef] [PubMed]

159. Kudo, T.; Kiba, T.; Sakakibara, H. Metabolism and long-distance translocation of cytokinins. J. Integr.
Plant Biol. 2010, 52, 53–60. [CrossRef] [PubMed]

160. Osugi, A.; Kojima, M.; Takebayashi, Y.; Ueda, N.; Kiba, T.; Sakakibara, H. Systemic transport of trans-zeatin
and its precursor have differing roles in Arabidopsis shoots. Nat. Plants 2017, 3, 17112. [CrossRef] [PubMed]

161. Gillissen, B.; Bürkle, L.; André, B.; Kühn, C.; Rentsch, D.; Brandl, B.; Frommer, W.B. A new family of
high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 2000, 12,
291–300. [CrossRef] [PubMed]

162. Wormit, A.; Traub, M.; Flörchinger, M.; Neuhaus, H.E.; Möhlmann, T. Characterization of three novel
members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family. Biochem. J. 2004, 383,
19–26. [CrossRef] [PubMed]

163. Ko, D.; Kang, J.; Kiba, T.; Park, J.; Kojima, M.; Do, J.; Kim, K.Y.; Kwon, M.; Endler, A.; Song, W.-Y.; et al.
Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl. Acad. Sci. USA
2014, 111, 7150–7155. [CrossRef] [PubMed]

164. Zhang, K.; Novák, O.; Wei, Z.; Gou, M.; Zhang, X.; Yu, Y.; Yang, H.; Cai, Y.; Strnad, M.; Liu, C.-J. Arabidopsis
ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 2014,
5, 3274. [CrossRef] [PubMed]

165. Kiran, N.S.; Polanská, L.; Fohlerová, R.; Mazura, P.; Válková, M.; Šmeral, M.; Zouhar, J.; Malbeck, J.;
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