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Abstract

We propose a novel panel Bayesian Markov regime-switching Poisson regression model with time-varying tran-

sition probabilities to test existing theories on the driving forces of wave-like patterns in same-industry mergers

and acquisitions (M&A). We show that the dynamics and persistence of merger waves change substantially in

the cross-section of deal flow. This suggests that any inference on existing economically justified competing

explanations of merger waves at the aggregate market level could be misleading, as the observed cross-industry

heterogeneity in waves is shown to be the consequence of different responses to common or distinct drivers of

merger activity.
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1 Introduction

Periodic waves of mergers and acquisitions (M&A) have been an integral part of capitalist development

since its inception, representing an important mechanism for the reorganization and restructuring of

a market economy across industries. Economic theory suggests that mergers can occur either in

response to economic shocks that trigger restructuring and consolidation, or be driven by managerial

market timing. Nonetheless, to date, there is no clear consensus as to why merger deals have occurred

in cyclical patterns in which periods of intense activity have been followed by intervening periods of

fewer mergers.

In this paper, we define a merger wave as a substantial, yet temporary, increase in the intensity of

M&A activity, and develop econometric tools to investigate whether the dominant view that merger

waves have different dynamics across industries is backed up by empirical evidence (see, for example,

Mitchell and Mulherin, 1996). Then, we also ask whether wave-like patterns of merger activity at

the industry level may derive from heterogeneous exposure to competing theory-based explanatory

variables, such as sector-specific economic shocks, managers’ market timing, or aggregate macro-

financial conditions.

In methodological terms, we propose a novel Markov regime-switching Poisson regression approach

with time-varying transition probabilities that allows for the explicit investigation of the driving

factors behind abnormal M&A activity. The main underlying assumption of the model is that the

decision to embark in M&A depends on a set of parameters that represent the reaction of agents to

realizations of a latent industry-specific discrete state St, which identifies mounting evidence of deals.

The intuition is simple: from the point of view of the corporate decision maker, waves in M&A at

time t are not determined by her own decision. However, observing abnormally high merger activity

increases the aggregate propensity to engage in a deal. As a result, the question of understanding

the driving factors in the dynamics of St coincides with investigating why managers value mergers

more in some states than others. This modeling framework is fairly general and implies that the

intensity of merger activity can differ across industries, that it is multi-factorial in nature, and that

it is unlikely to be entirely captured by any single, observable, industry-specific characteristic or

aggregate factor. We model merger waves as a first-order Markov state with time-varying transition

probabilities that accommodates the time-varying effect of multiple industry-specific and aggregate
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macro-financial factors. The cross-sectional heterogeneity and correlations across different industries

are captured by industry-specific random-effects that are sampled from a common distribution.

A few measurement tools for merger waves have been proposed in the literature (see, for example,

Shugart and Tollison, 1984, Town, 1992, Golbe and White, 1993, Barkoulas et al., 2001, Resende,

2008, and Choi and Jeon, 2011). The common feature of these approaches is that determinants of

merger waves are investigated in a conditionally Gaussian framework and separately after a latent

state St is identified. As a result, any causality statement is thus to be read as contingent on having

full confidence on the normal assumption for the distribution of M&A activity and the consequential

identification of waves. Unless additional assumptions are introduced, such procedures can potentially

suffer from endogeneity and misspecification issues that can distort standard hypothesis testing. We

extend the existing literature by proposing a model that explicitly and jointly acknowledges the

time-varying, uncertain, and non-Gaussian nature of M&A activity.

As far as the model estimation is concerned, we follow Chib and Winkelmann (2001), Frühwirth-

Schnatter and Wagner (2006), Frühwirth-Schnatter and Frühwirth (2007) and Kaufmann (2015) and

implement an approximate, yet accurate, Markov Chain Monte Carlo (MCMC) estimation scheme for

the unknown parameters, the hidden discrete states identifying merger waves, and the time-varying

transition probabilities. By using an MCMC approach, we are able to make inferences on parameters

and latent states in a single step, developing a finite-sample testing framework that is based on

the posterior distributions of virtually any function of the model outputs. This allows us to test

hypotheses on the nature, dynamics, and structure of industry merger waves in a unified setting,

which is something that earlier literature did not do.

Empirically, we focus on a sample of M&A bids announced by US private and public acquirers

for US public and private targets in the period from 1983 to 2016. M&A deals are aggregated at the

industry level for each quarter, assigning each deal to one of 12 industries based on the four-digit SIC

code of the bidder at the time of the announcement. We test a set of common competing explanatory

variables of merger waves; first, we consider industry-specific stock valuation variables related to the

behavioural hypothesis, which suggests that M&A activity is driven by firm-specific and market-wide

valuations, or managerial market timing (see, for example, Shleifer and Vishny, 2003, Rhodes-Kropf

and Viswanathan, 2004, Rhodes-Kropf et al., 2005 and Maksimovic et al., 2013). A second set of

explanatory variables is related to the neoclassical hypothesis, which suggests M&A activity primarily
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occurs in response to technological, regulatory and/or economic shocks that trigger restructuring and

consolidation at the industry level (see, for example, Coase, 1937, Gort, 1969, Shleifer and Vishny,

1992, Harford, 1999, Andrade et al., 2001, Holmstrom and Kaplan, 2001, Maksimovic and Phillips,

2001, Jovanovic and Rousseau, 2002, and Harford, 2005). In addition to these mainstream theories,

we also investigate the explanatory power of aggregate macro-financial conditions (see, for example,

Melicher et al., 1983, Shugart and Tollison, 1984, Becketti, 1986, Town, 1992, Golbe and White, 1993,

Mulherin and Boone, 2000, and Choi and Jeon, 2011). Although with mixed results, these theories

have been found to explain M&A activity over the last century, and thus are clearly relevant to a

comprehensive understanding of merger waves.

We report two main novel results. First, we show that the dynamics and persistence of merger

waves change substantially across industries over the last thirty years. This suggests that wave-like

patterns are essentially industry specific. As a matter of fact, we show that the posterior estimates

of the cross-sectional correlations of industry-specific random-effects are rather low, albeit significant.

Second, we show that such heterogeneity can be explained by differences in the transition dynamics

that drive the states of merger waves. For instance, the uncertainty around valuations represents a

significant explanatory variable that negatively affects M&A activity for industries such as Manu-

facturing, Telecommunications, and Healthcare, while it does not appear to be relevant for, say, the

Money industry. Similarly, an index of economic activity, as constructed in Harford (2005), turns out

to significantly and negatively affect M&A only in the financial sector, while it barely appears in other

industries. Interestingly, merging activity in the Money industry is tightly linked with capital liquid-

ity, consistent with the idea that, in the financial industry, M&A deals are mostly pro-cyclical and

tend to occur for restructuring purposes. As a whole, the results show that deteriorating aggregate

economic conditions and the uncertainty related to market valuations are expected to be associated

with the intensity of M&A deals.

2 Modeling Merger Waves

The number of deals yit for each industry i = 1, . . . , n and time t = 1, . . . , T is modeled as a Poisson

process in which the intensity rate is a direct function of a set of industry-specific variables wit,

macroeconomic information xt, and a parameter µi that represents the unobserved cross-sectional
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heterogeneity, i.e, a group-specific random effect,

yit|λit ∼ Poisson (λit) , λit = exp
(
z′itβ

i
Sit

+ µi
)
, (1)

where z′it = (x′t,w
′
it) is a p-dimensional vector of explanatory variables, βi,′k =

(
βi1k, . . . ,β

i
pk

)
is the

vector of the corresponding regression parameters for St = k, µi ∼ N (µ, D) is a random effect that

is sampled from a common multivariate Normal distribution, and Sit is a latent discrete state that

identifies a merger wave for the ith industry. That is, the intensity of M&A activity is state-dependent.

We assume the latent state follows an independent first-order Markov process with time-varying

transition probabilities specified through a multi-Logit function, i.e.,

p (Sit = k|Sit−1 = l, zit−1,αi) = πilk,t =
exp

(
z′it−1α

z
ilk + αilk

)∑K
j=1 exp

(
z′it−1α

z
ilj + αilj

) , (2)

with α′i =
(
αz,′
i,Sit−1,Sit

,α′i,Sit−1,Sit

)
that is a K(p+ 1)−dimensional vector of parameters. The hidden

nature of Sit prevents prevents the deteriministic mapping of the explanatory variables zit−1 into the

joint decision-making process of bidders and eventually into abnormally high states of merger activity.

The formulation in (2) allows us to decompose the dynamics of merger waves into two compo-

nents: a time-varying component z′it−1α
z
i,Sit−1,Sit

that captures the pure effect of the determinants

on the regime-switching probabilities, and a time-invariant component αi,Sit−1,Sit that captures the

persistence of the latent state independently from exogenous factors. The reference state is defined

as the state in which the number of deals cannot be classified as falling within a merger wave. The

remaining states represent the increasing strength of merger activity.

For identification purposes, the parameters governing the transition to the state of no merger wave

are restricted to be equal to zero, i.e.
(
αz,′
i,Sit−1,1

,α′Si,it−1,1

)
= (0′, 0′). For example, for a model with

two states, this yields:

p (Sit = 1|Sit−1 = l, zit−1,αi) = πl1,t =
1

1 + exp
(
z′it−1α

z
il2 + αil2

) , l = 1, 2 (3)

such that the vector of parameters (αz
il2, αil2) is the only set of parameters we need to estimate.

The specification in (2) is rather general as it involves standard implementations as special cases.

For instance, by restricting the effect of the covariate zit−1 to be independent of past states, i.e.
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αz
ilk = αz

ik, we assume that the persistence of the latent state is governed only by the time-invariant

component αilk (see, for example, Filardo, 1994, and Amisano and Fagan, 2013). Further, a standard

time-homogeneous Markov regime-switching model can be recovered as a special case by restricting

αz
ilk = 0,∀l, k. If, instead, we restrict both αz

ilk = αz
ik and αilk = αik, we obtain the multi-state

analogue of the smooth transition model of Terasvirta and Anderson (1992) where regime probabilities

are a direct, monotone function of zit−1, and the transition mechanism is independent of the lagged

prevailing state.

One comment is in order. Our model captures over-dispersion in the dynamics of deal flow in

an unconditional sense, but not conditionally on the latent state of a merger wave. In this respect,

the Poisson regression in (1) implies that the unconditional variance of deal flow is higher than the

unconditional mean.

However, conditional on the latent state Sit, we have that V ar [yit|Sit] = E [yit|Sit] = λSit . A

possible solution would be to estimate a mixture of negative binomial distributions, which has one

parameter more than the Poisson regression and adjusts the variance independently from the mean.

We believe that would be an interesting extension to our modeling framework and represent a promis-

ing avenue for future research.

2.1 Prior Specification

We follow Frühwirth-Schnatter and Wagner (2006), Frühwirth-Schnatter and Frühwirth (2007) and

Kaufmann (2015) and implement an approximate, yet accurate, MCMC estimation scheme for the

unknown parameters, the latent state, and the time-varying transition probabilities. For each in-

dustry, the slope parameters of the p determinants of the intensity rate are gathered into the vec-

tor βi,′ =
(
βi,′1 , . . . ,β

i,′
K

)
. The parameters governing the transition probabilities are denoted by

αi = {αik|k ∈ K−k0} with k0 being the reference state, and αik = (αz
i1k, . . . ,α

z
iKk, αi1k, . . . , αiKk).

For the Bayesian inference to work, we need to specify the prior distributions for the model

parameters. For a given state Sit = k, the prior structure is conjugate as the function for the (log

of) intensity rate reduces to standard multiple linear regressions. For each state, we assume a normal
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conjugate prior:

p
(
βi
)

=
K∏
k=1

p
(
βik
)

=
K∏
k=1

Np (bik, Bik) , for i = 1, . . . , n (4)

with bik and Bik as the location and scale hyper-parameters for the ith industry, respectively. The

prior for the βs is independent of any assumption about the transition probabilities of the states.

We assume we do not have prior information about the betas and use uninformative prior hyper-

parameters, i.e. bik = 0 and Bik = I · 1000, with I a p× p identity matrix. The prior specification (4)

assumes the slope parameters for the intensity rates to be independent across industries and states.

This makes the prior invariant to state permutations.

As far as the transition probabilities are concerned, the multi-Logit specification allows us to

specify a Gaussian prior distribution for the parameter vector αik:

p (αi) =
∏

k∈K−k0

p (αik) =
∏

k∈K−k0

N (aik, Aik) , for i = 1, . . . , n (5)

in which, again, the independence across states makes the prior invariant to state permutations. The

independence across industries and regimes allows us to specify prior hyper-parameters independently

such that one prior can be imposed to be more informative for a state of, say, a merger wave. Through-

out the paper we take an agnostic approach and impose the same degree of non-informativeness across

states. That is, we assume we do not have prior information about the driving factors of the hidden

states, i.e. aik = 0 and Aik = I · 1000, with I a p× p identity matrix.

The prior distribution for the initial state is assumed to be discrete uniform, i.e. p (Si0) = 1/K.

We complete the model by assuming that the hyper-parameters of the random-effects follow an inde-

pendent Normal-Inverse Wishart conjugate prior distribution µ ∼ N (µ0, C0), and D ∼ IW (ν0, D0)

with non-informative prior hyper-parameters, i.e. µ0 = 0, C0 = I · 1000 with I an n × n identity

matrix, and ν0 = n,D0 = I · 1000.

2.2 Posterior Sampling

We follow Chib and Winkelmann (2001), Frühwirth-Schnatter and Wagner (2006), Omori et al. (2007),

Frühwirth-Schnatter and Frühwirth (2007) and Kaufmann (2015) and propose an approximate, yet
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accurate, Gibbs sampling scheme for both the unknown parameters and the hidden states of merger

activity. This is achieved by introducing sequences of auxiliary latent variables through data augmen-

tation. Appendix A shows the convergence properties of the Gibbs sampler and provides evidence

that our model appears to be reasonably accurate when we base posterior inference on 50,000 draws

with a burn-in of 10,000 and a thinning value of 10.

Let us denote with yiτ :t = (yiτ , . . . ,yit), τ ≤ t, a collection of vectors yiu of deal flow for industry i

at time u. The set of state-dependent parameters for the ith industry is defined as θi = (θi1, . . . , θiK),

where θik =
(
βik,αik, µi

)
. At each iteration the Gibbs sampler sequentially cycles through the follow-

ing main steps:

Step 1. Draw Si1:T conditional on θi, yi1:T and zi1:T , for i = 1, . . . , n,

Step 2. Draw the parameters αi conditional on Si1:T and zi1:T , for i = 1, . . . , n,

Step 3. Draw βi conditional on yi1:T , zi1:T , and Si1:T , for i = 1, . . . , n,

Step 4. Draw the parameters µi conditional on Si1:T , βi, yi1:T and zi1:T , for i = 1, . . . , n.

Below, we provide a detailed description of each step of the Gibbs sampler. For ease of exposition in

the notation we do not report the subscript i for each industry unless needed.

Step 1. Sampling the Latent States S1:T

The relationship between the intensity rate and the latent state of merger activity is non-linear and

non-Gaussian. In the following, we introduce two auxiliary sequences of latent processes that allow

us to eliminate both the non-linearity and the non-normality and implement a standard Bayesian

updating scheme.

For each t = 1, . . . , T the distribution of yt|λt may be regarded as the distribution of the number

of jumps of an unobserved Poisson process with intensity λt having occurred in the time period [0, 1].

The first auxiliary step of our MCMC scheme follows Frühwirth-Schnatter and Wagner (2006) and

creates such a Poisson process for yt and introduces the inter-arrival times τtj , for j = 1, . . . , (yt + 1),

as missing data. We start from the fact that, conditional on the latent states and the parameters, in a
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Poisson process, inter-arrival times are distributed as Exponential random variables, τtj ∼ Exp (λt),

τtj |θ, St =
ξtj
λt
, ξtj ∼ Exp (1) (6)

This can be rewritten as a linear non-Normal model of the form

− log τtj |θ, St = z′tβSt
+ µi + εtj , εtj = − log ξtj , ξtj ∼ Exp (1) (7)

Now, let τ = (τtj , j = 1, . . . , (yt + 1) , t = 1, . . . , T ) denote the collection of all the inter-arrival times.

The full conditional distribution p (S1:T |θ, τ ,y1:T ) depends on y1:T only through τ , i.e. p (S1:T |θ, τ ,y1:T ) =

p (S1:T |θ, τ ). Given θ, S1:T and y1:T , the inter-arrival times are i.i.d;

p (τ |θ, S1:T ,y1:T ) =
T∏
t=1

p
(
τt1, . . . , τt,yt+1 |yt,θ, S1:T

)
(8)

For fixed t, the inter-arrival times τt1, . . . , τt,N+1, where N = yt are stochastically dependent, and the

joint distribution factorizes as

p (τt1, . . . , τt,N , τt,N+1|yt = N,θ, S1:T ) = p (τt,n+1|yt = N,θ, S1:T , τt1, . . . , τt,N ) p (τt1, . . . , τt,N |yt = N)

That is, the first N inter-arrival times are independent of all model parameters, and are determined

only by the observed number of counts yt. By standard properties of the Poisson process, the first N

arrival times are distributed as the order statistics of N uniform [0, 1] random variables. Therefore, if

yt > 0, the joint distribution p (τt1, . . . , τt,n|yt = N) is approximated by sampling the order statistics

ut(1), . . . , ut(N) of N = yt Uniform[0, 1] random variables, and defining the inter-arrival times as

their increments τtj = ut(j) − ut(j−1), for j = 1, . . . , N , where ut(0) = 0. Only the final inter-

arrival time τt,N+1 depends on the states S1:T and the model parameters θ through the intensity rate

λt. Conditional on yt, only yt = N arrivals occur in [0, 1], and arrival (N + 1) is known to occur

after 1. Since increments are independent, the waiting time after 1 is then distributed as Exp (λt).

Therefore, the final arrival time is sampled from p (τt,N+1|yt = N,θ, S1:T , τt1, . . . , τt,n) by defining

τt,N+1 = 1 −
∑N

j=1 τtj + ξt, where ξt ∼ Exp (λt). The linear approximation of (7) generates a non-
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Normal error term, the density of which can be approximated by a mixture of R normal components:

p (ε) ≈
R∑
r=1

ωrN
(
ε;mr, σ

2
r

)
, (9)

where, for r = 1, . . . , R, mr and σ2r are the mean and variance of a Gaussian density. We use R = 10

deterministic components with values ωr,mr, and σ2r indicated in Frühwirth-Schnatter and Wagner

(2006) and Frühwirth-Schnatter and Frühwirth (2007).

Now, let R = (rtj , j = 1, . . . , (yt + 1) , t = 1, . . . , T ) denote the collection of latent component

indicators. Conditional on τ and R, the non-normal, non-linear model (1) reduces to a linear,

Gaussian model of the form

− log τtj |θ, St, rtj = z′tβSt
+ µi +mrtj + εtj , εtj |rtj ∼ N

(
0, σ2rtj

)
(10)

To sample R we exploit the fact that all indicators are independent given τ ,θ, S1:T and y1:T , i.e.,

p (R|τ ,θ, S1:T ,y1:T ) =
T∏
t=1

yt+1∏
j=1

p (rtj |τtj ,θ, St) (11)

That is, for each t = 1, . . . , T and each j = 1, . . . , yt + 1, the indicator rtj is sampled independently

from p (rtj = r|τtj ,θ, st). This density depends on the data only through τtj :

p (rtj = r|τtj ,θ, St) ∝ p (τtj |rtj = r,θ, St)ωr (12)

where

p (τtj |rtj = r,θ, St) ∝
1

σr
exp

(
− 1

2σ2r

(
− log τtj − z′tβSt

− µi −mr

)2)
(13)

Finally, conditional on the hidden inter-arrival times τ , the mixture component indicators R, and

the parameters θ, the observation in (7) takes the form

− log τtj |θ, St, rtj = z′tβSt
+ µi +mrtj + εtj , εtj |rtj ∼ N

(
0, σ2rtj

)
(14)
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For each time t we can redefine the observation vector ỹt of dimension N = yt + 1 as

ỹt =


− log τt1 − µi −mrt1

...

− log τtN − µi −mrtN

 (15)

That is, we can rewrite an augmented model in a state-space form as

ỹt = z̃′tβSt
+ ηt, ηt ∼ N (0,Σt) , (16)

where Σt = diag
(
σ2rt1 , . . . , σ

2
rtN

)
and z̃t contains N rows of zt, i.e., z̃t = (z′t, . . . , z

′
t)
′.

Now we have a state-space model with a repeated measurement in which the transition equation

for the hidden states S1:T is the same as for the original Poisson regression model (1). As a matter

of fact, (16) can be treated as a Markov regime-switching seemingly unrelated regression model. As

a result, we can now implement a standard Forward Filtering Backward Sampling (FFBS) algorithm

for discrete latent states by iterating two steps: the prediction step at each time t

p (St+1 = j|θ, ỹ1:t) =
K∑
k=1

πkj,tp (St = k|θ, ỹ1:t) (17)

and the subsequent updating step

p(St+1 = k|θ, ỹ1:t+1) =
p(ỹt+1|St+1 = k,θ, z̃t)p(St+1 = k|ỹ1:t,θ)

p (ỹt+1|, z̃t,θ)
(18)

where p(ỹt+1|St+1 = k,θ, z̃t) = N (z̃′tβk,Σt+1), and the normalising constant is the marginal predic-

tive likelihood defined as

p (ỹt+1|z̃t,θ) =
K∑
k=1

p (ỹt+1|St+1 = k,θ, z̃t) p (St+1 = k|θ, ỹ1:t) (19)

Posterior draws of the latent states can then be obtained recursively and backward in time by using

the smoothed probabilities, for example,

p (St = k|St+1 = j,y1:t,θ) =
πkj,tp (St = k|y1:t,θ)

p (St+1 = j|θ,y1:t)
(20)
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Step 2. Sampling the Parameters αk

The sampling of the parameters governing the time-varying transition probabilities πlk,t are drawn

based on a data augmentation process as in Kaufmann (2015). In a first step, we extend the model

to a non-normal specification for so-called state-dependent latent utilities:

Suk,t = Z′t−1αk + νk,t, ∀k ∈ K−k0 ,

Suk0,t = νk0,t, for the identification restriction of the reference state αk0 = 0, (21)

where Zt =
(
ztD

(1)
t , ztD

(2)
t , . . . , ztD

(K)
t , D

(1)
t , D

(2)
t , . . . , D

(K)
t

)
with D

(k)
t being a dummy variable that

takes a value equal to one if St = k. The errors νk,t are i.i.d. and follow a type I extreme value distri-

bution. Conditional on the latent state variables S1:T , we sample Suk,t by using a set of independent

random draws V1t, . . . , VKt from a Uniform[0, 1], such that

Suk,t = − log

(
− log (V1t)∑K

k=1 λ̃kt
− log (Vkt)

λ̃kt
I{St 6=k}

)
, (22)

with λ̃kt = exp
(
Z′t−1αk

)
. The simulation step (22) is derived by exploiting the assumption that the

maximal value of Suj,t is obtained in correspondence of the observed state. That is, exp
(
−Suj,t

)
is

the minimum value among all of the possible alternatives exp
(
−Suk,t

)
if St = j. The type I extreme

value distribution of νk,t implies that exp
(
−Suk,t

)
∼ Exp

(
λ̃kt

)
.

Given the latent utilities Sukt, we can now sample the parameters αk. However, the dynamics

implied by (21) is non-Gaussian. Just as in Step 1 above, we can approximate such distribution

by using a mixture of Normal distributions. Let Rs =
(
rst,k, k = 1, . . . ,K, t = 1, . . . , T

)
denote the

collection of latent component indicators. Given Su1:T and Rs, the non-normal, non-linear model (21)

reduces to

Suk,t = Z′tαk + m̃rst,k
+ εt,k, εt,k|rst,k ∼ N

(
0, σ̃2rst,k

)

To sample Rs we exploit the fact that all indicators are conditionally independent given the state-

utilities. As such, the density p (Rs|Su1:T ,α, z1:T ) depends on the observable data only through Rs:

p
(
rst,k = r|Suk,t,αk

)
∝ p

(
Suk,t|rst,k = r,αk, S1:T

)
ωsr ,
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with

p
(
Suk,t|rst,k = r,αk, s1:T

)
∝ 1

σ̃2r
exp

(
− 1

2σ̃2r

(
Suk,t − Z′t−1αk − m̃r

)2)
, k ∈ K−k0 ,

where r = 1, . . . , 10 and the respective m̃r, σ̃
2
r and ω̃r are deterministic values taken from Frühwirth-

Schnatter and Frühwirth (2007). Notice that the Gaussian mixture approximations for R and Rs are

drawn separately.

Finally, for all given state-utilities Su1:T =
(
Su1,1, . . . , S

u
K,1, . . . , S

u
K,T

)
and all component indica-

tors Rs = (rs11, . . . , r
s
K1, . . . , r

s
KT ), we obtain a standard linear regression model for the parameters

governing the transition probabilities to each state, except for the reference state k0, which implies

αk0 = 0. Given the conjugate prior structure (5), the posterior distribution is updated as

(αk|y1:T , S
u
1:T ,R

s) ∼ NN

(
A∗k

(
T∑
t=1

Z′t−1

(
Suk,t − m̃rst,k

)
/σ̃2rst,k

+A−1k ak

)
, A∗k

)
, (23)

with A∗k =
(∑T

t=1 Zt−1Z
′
t−1/σ̃

2
rst,k

+A−1k

)−1
being the posterior scale parameter.

Step 3. Sampling the Slope Parameters βk

Conditional on S1:T ,y1:T and the Gaussian linear approximation (16), the prior (4) is conjugate;

that is, we can use standard Bayesian updating rules for a multivariate Normal distribution. Let

Tk = {t : st = k} the sample conditional on the state k, the posterior for the regime-dependent betas

βk is defined as

(βk|y1:T , S1:T ) ∼ Np

B∗k
∑
t∈Tk

z̃′tỹt +B−1k bk

 , B∗k

 (24)

with B∗k =
(∑

t∈Tk z̃tz̃
′
t +B−1k

)−1
being the posterior scale parameter. Notice that the conditional

covariance Σt is given by the latent indicators R.

Step 4. Sampling the Random-Effects

We follow Chib and Winkelmann (2001) and sample the random-effects via a Metropolis-Hastings

(MH) step with a random-walk proposal. That is, given the current value of the parameter µi, a
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sample proposal value µ∗i is generated from q (µi, µ
∗
i ) = p (µ∗i |µi, µ̃D) where µ̃ is a scalar that is

adjusted in trial runs to obtain suitable candidates. The acceptance rate probability is calculated as

ψ (µi, µ
∗
i ) = min (p (µ∗i ) q (µ∗i , µi) /p (µi) q (µi, µ

∗
i ) , 1) where

p (µi) = N (µi|µ, D)

T∏
t=1

exp
[
− exp

(
z′itβSt

+ µi
)]
×
[
exp

(
z′itβSt

+ µi
)]yit

Once a cycle of the Metropolis-within-Gibbs sampler is completed for each industry, we can esti-

mate the hyper-parameters that drive the random-effects. The Normal-Inverse Wishart independent

prior in Section 2.1 is conjugate, which means that posterior draws can be sampled from the posterior

distribution

µ|D, . . . ∼ N

C∗(C−10 µ0 +

n∑
i=1

D−1µi

)−1
, C∗

 with C∗ =
(
C−10 + nD−1

)−1
,

and D from

D|µ, . . . ∼ IW

n+ ν0,

[
D0 +

n∑
i=1

(µi − µ) (µi − µ)′
]−1

One comment is in order. The choice of a random-walk proposal for the MH step arguably generates a

high correlation in the sample of draws from the Markov chain. To increase the effective sample size,

we keep one in ten draws and discard the draws in between. This substantially reduces the amount of

autocorrelation in the posterior sampling. Appendix A reports a set of convergence diagnostics that

show the good performance of our algorithmic procedure.

3 Data Description

The sample contains all announced bids for US private and public acquirers that were announced in the

period from 1983 to 2016, for which the bidder did not previously own a majority interest in the target

and was seeking to obtain a majority interest through the transaction. Data on M&A deal flow are

collected from Thomson One Banker and complemented with firm-level stock market and accounting

data from the Centre for Research in Security Prices (CRSP) and Compustat databases, respectively.

Macroeconomic factors are collected from the Federal Reserve Economic Data series and from the
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official providers of the relevant indexes. A deal is included in the final sample if the transaction

value is above $5 million and the transaction is not a buyback, an exchange offer, a recapitalization,

an acquisition of partial or remaining interest, a spin-off, a self-tender or a repurchase. The sample

includes 65,073 observations overall, for which deal value was disclosed.

M&A deals are aggregated at the industry level for each quarter, assigning each deal to one of

twelve industries based on the four-digit SIC code of the bidder at the time of the announcement.

We use the twelve industry classification codes obtained from Kenneth French’s website. We form a

panel by matching the number of deals observed in each quarter and for each industry with a set of

variables proxying for economic shocks and market valuations.

We follow Harford (2005) and construct industry-specific economic shocks as the first principal

component of the median absolute annual changes of a set of industry-specific fundamentals variables:

margin on sales (i.e. Margin, the ratio of net income over sales), asset turnover (i.e. AT, the ratio

of sales over assets at the beginning of the period), research and development (i.e. R&D expense

scaled by assets at the beginning of the period), capital expenditures (i.e. CAPEX, scaled by assets

at the beginning of the period), growth in the number of employees (Emp), return on assets (ROA),

and sales growth (Sale). These variables are typically associated to the neoclassical hypothesis on

merger waves (see, for example, Coase, 1937, Gort, 1969, Shleifer and Vishny, 1992, Harford, 1999,

Andrade et al., 2001, Holmstrom and Kaplan, 2001, Maksimovic and Phillips, 2001, Jovanovic and

Rousseau, 2002, and Harford, 2005). All these variables are computed by aggregating firm-level data

available on Compustat in each industry, such that we allow economic shocks to have different effects

and magnitudes across industries. In addition, other factors related to the neoclassical hypothesis

are contemporaneous capital liquidity (C&I), measured in terms of the spread between the average

interest rate on Commercial and Industrial loans, and the Fed Funds rate, as published by the Federal

Reserve.

The panel consists also of variables that capture market timing and valuations, such as the

industry-specific average book-to-market ratio (BM), its cross-sectional standard deviation (std(BM),

computed across all firms with data available on Compustat for each industry), and value-weighted

industry stock returns (Returns). These variables are often associated to the behavioural hypothesis

outlined in Shleifer and Vishny (2003), Rhodes-Kropf and Viswanathan (2004), and Rhodes-Kropf

et al. (2005), among others.
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We also consider a set of variables that capture aggregate macroeconomic conditions (see, for

example, Melicher et al., 1983, Shugart and Tollison, 1984, Becketti, 1986, Town, 1992, Golbe and

White, 1993, Mulherin and Boone, 2000, Andrade et al., 2001, and Choi and Jeon, 2011). These

include: year-on-year monthly compounded industrial production growth as a measure of changes

in aggregate output, the credit spread (measured as the yield spread between Moody’s 20-year Baa-

and Aaa-rated corporate bonds), and the real risk-free rate (proxied by the difference between the

one-month T-bill rate and the CPI log inflation rate). Table 1 provides a detailed description of

sources and frequencies of the determinants investigated in the empirical analysis.

[Insert Table 1 about here]

Merger deals are clustered at quarterly frequency as a trade-off between having enough granularity in

the data and keeping enough information; namely, this means there are a sufficient number of deals

for each data point and for each industry. In order to ensure a coherent comparison across sets of

predictors, we collected the data on both financial variables and economic shocks at the quarterly

frequency, as well.

Shocks to an industry environment can also come from major regulatory changes. We define

a dummy variable to indicate whether or not the industry has recently been subject to one of the

deregulatory events.

[Insert Table 2 about here]

Table 2 documents major deregulatory initiatives during the sample period 1983:Q1-2016:Q4. Dereg-

ulatory events are considered at the industry level, assigning each event to one of twelve industries

based on the SIC code of the bidder at the time of the announcement. The events are constructed

from Viscusi et al. (2005) and by searching for recent major initiatives in Factiva.

4 Empirical Results

Following Harford (2005), we call the first principal component from the seven economic shock vari-

ables (Margin, AT, R&D, CAPEX, Emp, Roa, and Sales) the Economic Activity index. This index

is included in the regression together with the regressors justified by the behavioral theory, a dummy

for regulatory changes, the proxy for capital liquidity and the set of macro-financial factors, which
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makes zt composed of nine explanatory variables.

For the ease of exposition, we report the time series of deals for four representative industries,

namely Manufacturing, Telecommunications, Money and Healthcare. Although this choice looks

restrictive, it turns out that these four sectors are fairly representative of overall market activity.

Figure 1 shows the unconditional distribution of the deal flow across industries, calculated on the

basis of the average number of deals over the sample period for a given industry relative to the

average number of deals at the aggregate market level.

[Insert Figure 1 about here]

The figure makes clear that Money represents the biggest market where M&A is implemented and

that, together with Manufacturing, Telecommunications and Healthcare, it represents almost half of

the total market activity. Figure 2 shows the time series of market transaction data (light blue bars).

[Insert Figure 2 about here]

The dynamics of deal flow is not synchronous across industries but varies in the cross-section. For

instance, while the deal flow for Money yMoney,t (bottom-left panel) peaks in the second half of the 90s

and from 2005 to 2010, the intensity of M&A activity for the Telecommunications sector is sensibly

increasing from the late 80s, while it is substantially flat from the beginning of the 2000s. Also,

different industries show different persistence in periods of high merger activity. For instance, the

deal flow is remarkably high for almost ten years for the Telecommunications industry, while it lasts

a few years for Manufacturing and Other. Notably, across all industries, the major M&A activity is

concentrated between the late 90s and the first half of the 2000s.

We first test the significance of determinants of merger waves for each industry separately. In

the modeling framework, we explicitly consider industry-specific random-effects, which are drawn

from a common cross-sectional distribution. We assume throughout that two regimes are enough to

characterize the dynamics of merger waves in the time series of deal flow. In Section 4.2, we formally

assess out-of-sample the assumption of two regimes by calculating the log-predictive density ratios

of a model with three regimes and a model with two regimes. The results show that a two-state

specification compares favorably to the three-state alternative specification.
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4.1 The Dynamics of Merger Waves

In terms of the two states, we label St = 1 as “no-wave” and St = 2 as “wave”, respectively. In our

modeling setting, the significance of a specific factor to determine a change to a state of merger wave

can be directly tested on the basis of posterior estimates of αz
12 =

(
αz

12,1, . . . ,α
z
12,N

)
. For instance, a

positive and significant αz
12,1 implies that the first factor can explain a regime switch towards a merger

wave. On the other hand, if αz
12,1 is not statistically different from zero, it means that the first factor

does not significantly affect regimes of merger activity. Figure 3 shows the posterior distributions

of αz
12 across four representative industries, namely Manufacturing, Telecommunications, Money and

Healthcare. Posterior estimates are obtained from the Gibbs sampler detailed in Section 2. For ease

of exposition, we do not report the posterior estimates of those parameters that are not statistically

significant at the 95% confidence level, i.e. those where the zero value enters the 95% posterior

credibility interval.

[Insert Figure 3 about here]

The cross-sectional standard deviation of the book-to-market ratio significantly and negatively affects

the dynamics of merger waves, with the exception of the financial sector. This is consistent with the

evidence provided by Shleifer and Vishny (2003), Rhodes-Kropf and Viswanathan (2004), and Rhodes-

Kropf et al. (2005), which showed that the increasing volatility of valuation ratios can have a negative

effect on merger activity, meaning that when market volatility increases the aggregate propensity to

engage in M&A decreases. Similarly, the level of the book-to-market ratio represents a significant

predictor of aggregate M&A activity for the financial sector and the Telecommunications industry.

Again, this is consistent with the existing evidence and the behavioral hypothesis, which posits that

merger waves tend to occur when market prices are higher than fundamentals, i.e. market timing.

This explains the negative relationship between the book-to-market ratios and merger waves. On the

other hand, past returns do not seem to be significantly related to the one-step ahead probability of

being in a state of merger wave.

The impact of economic activity on the dynamics of merger waves is null except for in the Money

sector. Overall, shocks to industry-specific economic conditions do not represent significant driving

factors of transitions towards periods of abnormally high merger activity. As a result, the empirical

evidence does not support the neoclassical theory on merger waves for most industries. Interestingly,
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and partly consistent with the results of Harford (2005), capital liquidity negatively affects merger

waves for the Money industry. As liquidity conditions gets tighter, the propensity to engage in merging

deals in the financial sector decreases.

One comment is in order. We do not argue that capital liquidity per se does not have a direct

effect on merger activity. Indeed, non-financial firms could be heavily affected by the access to credit

markets. Instead, we assess that the explanatory power of liquidity conditions can be mitigated once

including the aggregate business cycle in the regression specification. Indeed, aggregate economic

and credit conditions are closely related. This intuition is captured by the coefficient on industrial

production for the non-financial industries, whose interpretation should be opposite to the one on

capital liquidity, as proxied by the C&I loan spread. Output growth positively and significantly affects

the majority of industries, i.e. αz
12 6= 0. Regulatory changes turn out to increase the propensity of

engaging in M&A for Telecommumications. This is consistent with the results provided in Harford

(2005).

The posterior estimates of the sensitivity parameters in Figure 3 suggest that macroeconomic

fundamentals play a significant role in the dynamics of merger waves, supporting a more general

“merger activity-economic prosperity” theory to complement the behavioral explanation (see, for

example, Reid, 1968, Melicher et al., 1983, Shugart and Tollison, 1984, Becketti, 1986, Town, 1992,

Golbe and White, 1993, Mulherin and Boone, 2000, Andrade et al., 2001, and Choi and Jeon, 2011

for related discussions). As a matter of fact, the slope on industrial production turns out to be a

significant driving force for the state of merger wave. Interestingly, the effect of economic growth is

opposite for financial vs non-financial firms, with output growth that is negatively related to M&A

activity for the latter. This is consistent with the conventional wisdom that posits that consolidation

and re-structuring in the financial sector is often countercyclical. As far as the non-financial sectors

are concerned, higher output growth leads to an increased probability of being in a merger wave. In

other words, for non-financial sectors, merger waves tend to be positively correlated with the business

cycle.

The ability to capture the heterogeneity in the significance of merger wave determinants is a key

feature of our model. In fact, by aggregating deals at the market level, one would likely average

out the longitudinal variation. Figure 4 shows this case in point. The left panel shows the posterior

estimates of the industry-specific random-effects for representative sectors, namely Manufacturing,
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Telecommunications, Healthcare, and Money.

[Insert Figure 4 about here]

The estimates make clear that there is indeed a substantial degree of heterogeneity in the industry

fixed-effect, meaning that there are non-trivial effects across industries that are not directly captured

by our set of explanatory variables. The right panel of Figure 4 shows the posterior estimates of the

cross-sectional covariance matrix D in Step 4 of the Gibbs sampler outlined in Section 2. Although

random effects are highly significant, the low cross-sectional correlations show that they share only a

mild common structure. This suggests that, conditional on the set of predictive variables, the residual

co-movement across merger waves is low.

The low cross-sectional correlations for the industry random-effects suggest that the model-implied

posterior estimates of the probabilities of being in a state of high merger activity can be quite different

across industries. Figure 5 shows that this is indeed the case. The posterior, i.e. smoothed, merger

wave probability changes quite substantially in the cross-section.

[Insert Figure 5 about here]

While for the Manufacturing industry (top-left panel) abnormally high M&A activity is mostly clus-

tered in a few years towards the end of the 90s, the posterior estimates for merger waves for Telecom-

munications (top-right panel), for example, tend to be more spread throughout the sample. More

generally, consistent with the results in Harford (2005), most of the wave periods are located across

the second half of the 90s and the beginning of the 2000s.

However, two important unexplored features emerge. First, coherent with the time series be-

haviour of deal flow, the length of model-implied merger waves is not homogeneous across industries,

as for some industries, such as Manufacturing, for example, the length of abnormally high merger

activity can be much more than for Telecommunications, Healthcare and Money. Such heterogeneity

in persistence would be ignored by pooling together information on deal flow and investigating the

determinants of merger waves at the aggregate level. Second, waves, although overlapping to some

extent, are not contemporaneous across industries. For instance, while the merger wave for Telecom-

munications mostly coincided with the economic prosperity of the mid- to late-80s and the second
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half of the 90s, the same explanation would not apply for the Healthcare and the Money industries.

Differently, the merger waves in these industries would be consistent with the recovery after the eco-

nomic recession of 1990–91, as confirmed by a positive effect of output growth on the propensity to

engage in a deal.

Such heterogeneity is primarily due to the differences in the persistence of the transition proba-

bilities. Figure 6 shows the posterior estimates of αz
22, which are the parameters that determine the

persistence of a state of high merger activity.

[Insert Figure 6 about here]

For the sake of comparison with Figure 3, we report the posterior estimates of the slope parameters

for the same explanatory variables. Two results emerge. First, it is evident that the factors driving

the persistence of the merger wave state are not the same across industries. For instance, while the

persistence of the latent state for Manufacturing is significantly affected by valuations uncertainty,

the same is not true for the Money sector, where the cross-sectional standard deviation of the book-

to-market ratio does not play any significant role. Second, some of the factors that contribute in

accelerating merger activity do not affect the persistence of merger waves. For instance, while the

top-left panel of Figure 3 shows that C&I is highly significant for the dynamics of αz
12, the same

variable does not have a significant effect on the persistence of St = 2. Similarly, both C&I and the

book-to-market ratio turn out to be insignificant for the persistence of merger waves (see bottom-left

panel). To summarize, Figures 5 provide evidence that, despite some overlapping, merger waves are

not synchronous across industries over time. More precisely, Figure6 shows that such diversity is

primarily due to the heterogeneity in the significant factors that drive the time-varying transition

probabilities.

5 Model Assessment

Figures 3 to 5 together support the idea that determinants of merger waves are heterogeneous in nature

and specific for different industries. These empirical results ground on the idea that two regimes are

enough to characterize the dynamics of merger waves in the time series of deal flow. Figure 7 gives

a visual impression of the model in-sample performance. The solid red line represents the posterior
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median of λSt,t as specified in (1), which represents an estimate of the expected number of deals. The

fit of the model is quite accurate.

[Insert Figure 7 about here]

Except for the initial part of the merger wave in the Healthcare industry, posterior estimates of the

expected number of deals closely follow peaks in merger activity. The model fits reasonably well the

deal flow for Money (bottom-left panel), Manufacturing (top-left panel), and Telecommunications

(top-right panel). As a whole, Figure 7 suggests that a non-linear, non-Gaussian model specification

with two regimes is likely coherent with the time-series of deal flows.

We now compute and compare the benchmark two-state regime-switching specification against

both a three-state and a one-state alternative by comparing the density forecasts; and we then evaluate

the log predictive density ratios (LPDR), at horizon k and across time indices t, that is,

LPDRit(k) =

t∑
τ=1

log{p(yiτ+k|yi1:τ ,Ms)/p(yiτ+k|yi1:τ ,M0)}, for i = 1, . . . , n, (25)

where p(yiτ+k|yi1τ ,Ms) is the marginal predictive density computed at time τ for the horizon τ + k

under the competing specification indexed by Ms, compared to our forecasting framework labeled

by M0. Marginal predictive densities allow us to make a robust comparison across models as they

take into account the latent nature of state indicators for merger waves and the uncertain nature of

the model parameters. In that respect, by calculating the marginal predictive density we provide a

measure of the ability of the model to explain not only the expected value, i.e. the intensity, of merger

deals, but also their overall distribution, naturally penalizing the size/complexity of different models.

The marginal likelihood for each model is not available in closed form and must be approximated

numerically.

We approximate the predictive density by using an importance sampling (IS) estimator (see,

for example, Geweke, 2005, and Geweke and Amisano, 2012), in which sampling draws from the

posterior distribution of the parameters are obtained using the entire sample of observable predictors

and latent expected returns. The IS estimator is expected to work well in practice when the Gibbs

sampler covers reasonably well the parameter region where the conditional likelihood is large. This

is usually the case for low dimensional models like ours. In addition, conditional on using the same
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set of parameters across forecasting horizons, the importance-sampling estimator is unbiased and the

predictive likelihood can be consistently estimated from the posterior (see, for example, Geweke, 2005).

We simulate in each Gibbs step yiτ+h|yi1:τ using (1) and the Markov regime-switching dynamics,

where we replace the parameters and the in-sample latent variables by the draw from the posterior

distribution.

As used by several authors recently, LPDR measures provide a direct statistical assessment of

relative accuracy and can be interpreted as a log predictive Bayes factor under the assumption of

equal prior models’ probabilities. In this respect, the LPDR weighs and compares dispersion of

forecast densities along with location, giving a broader understanding of the predictive abilities of the

different regime assumptions.

We obtain the one-quarter ahead predictions through direct forecasting, as indirect procedures

would entail iterating forward the posterior predictive distribution multiple times, including pre-

dicting the determinants, and thus repeatedly rerunning the MCMC sampler. Also, the Markov

regime-switching dynamics of the model imply that direct and indirect forecasting are approximately

numerically equivalent. The forecast at time t is based on a re-estimation of the model using an ex-

panding window of merger activity determinants. We start from an initial training sample of τ0 = 60,

and produce a one-step ahead forecast τ0 +1, which is then evaluated against the observable deal flow

at time τ0 + 1. We then repeat this process until the end of the sample and compute the predictive

densities to measure (25).

We compute the predictive densities both separately for each industry and jointly for the overall

economy. Figures 4 and 5 show that there is a mild but significant correlation for the merger waves

across industries. In this respect, the joint predictive density provides additional information about

the out-performance of the two-state model vs alternatives. In order to keep the graphs readable, we

rescaled the LPDR by its sample deviation. The top panels of Figure 8 show the results comparing

the three-state vs the two-state specification.

[Insert Figure 8 about here]

The top-left panel shows that the out-of-sample performance is strongly in favour of the two-state

regime switching specification across industries (see Kass and Raftery, 1995 for a discussion of thresh-

old values related to the log predictive Bayes factor). Except for the Telecommunicaitons industry
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in the early 2000s, the out-performance of the Poisson regression with two vs three regimes steadily

increases over time, especially for those sectors more correlated with the business cycle, such as Man-

ufacturing, Consumer Durables, Business Equipment and Consumer Non-Durables. The top-right

right panel shows the joint LPDR; again, the two-state specification fits the data better.

The bottom panels of Figure 8 show the results comparing the one-state vs the two-state specifica-

tion. With the only exception being Manufacturing in the late 90s, a model with two regimes vs state

invariant generates a much larger marginal predictive density. Similarly, the right panel shows that

the outperformance of the two-state specification is not limited to a few industries, but is confirmed

by the joint marginal predictive density. As a whole, the empirical evidence provided by Figure 8

strongly points towards a model with two regimes vs both a three- and a one-state alternative.

6 Conclusion

We propose a novel Markov regime-switching Poisson regression model with time-varying transition

probabilities to rationalize wave-like patterns in the intensity rate of industry-specific merger activity.

Empirically, we show that merger waves vary significantly across industries, both in terms of their

timing and persistence. Such differences are mainly due to a significant heterogeneity in the factor

exposures. That is, the cross-sectional differences in the dynamics of merger waves can be explained

by differences in the transition dynamics that drive the states of merger waves, even after accounting

for cross-sectional random-effects. This suggests that any inference on existing economically justified

competing explanations of merger waves would suffer from generalization at the aggregate market

level, as the observed cross-industry heterogeneity in waves is shown to be the consequence of different

responses to common or distinct drivers of merger activity.
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Appendix

A Convergence Diagnostics

To further to understand the properties of our modelling framework, we investigate the convergence

properties of the MCMC algorithm outlined in Section 2. The results below are based on 50,000

posterior draws with a burn-in of 10,000 and a thinning value of 10. If the algorithm is designed

properly, we should expect that the Markov chain of the posterior draws of the parameters will

convergence to some stable distribution (see, e.g., Gelman and Rubin, 1992, Geweke, 1992, Raftery

and Lewis, 1992, and Brooks and Gelman, 1998 for details).

One way to see if our Markov chain is mixing is to see how fast it convergences to the same stable

mean. Th left panel of Figure A.1 shows the running mean plot. A running mean plot is a plot of the

iterations against the mean of the draws up to each iteration. More precisely, Figure A.1 reports the

running mean for the betas averaged across predictors for the Consumer Durable industry. Results

for other industries are qualitatively the same. The benchmark specification is with K = 2 and with

all predictors included.

[Insert Figure A.1 about here]

A good mixing chain is assumed to converge quickly to some long-run mean value. This is indeed

the case for both the chain conditional on a state of high merger activity (red line) and low merger

activity (blue line). The running mean quickly converges for both chains and remains highly stable

after the burn-in sample (vertical black line).

Another graphical way to assess convergence is to assess the autocorrelations between the draws

of the Markov chain. If autocorrelation is still relatively high for higher lags, this indicates a high

correlation between draws and slow mixing. That is, the higher the autocorrelation, the lower the

effective sample size used to approximate the posterior quantities of interest.

The right panel of Figure A.1 shows the autocorrelation function (ACF) for the average betas

across predictors for the Consumer Durable industry. The benchmark specification is with two regimes

and all regressors. The ACF is low from the very initial lags for the chain conditional on both merger

wave (blue line) and no merger wave (red line). The low autocorrelation is due to the fact that we
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keep one in ten draws and discard the others. This significantly reduces the persistence of the draws.

Albeit informative, the evidence provided in Figure A.1 is not conclusive. We now test the Markov

chain convergence by implementing a test of difference of means to investigate if draws are from the

same distribution (see Geweke, 1992). The test statistic is a standard Z-score with standard errors

computed using the Newey and West (1987) heteroscedasticity and autocorrelation robust variance

estimator with a bandwidth set to 4%, 8%, and 15% of the utilized sample size. Table A.1 shows

the results for the average betas for the explanatory variables in the merger waves dynamics across

different industries.

[Insert Table A.1 about here]

Column one of the summary of convergence diagnostics shows that even without correcting for auto-

correlation the t-statistic does not reject the null hypothesis of equal means in the sub-samples for

seven out of twelve industries, and only for Energy, Telecomm and Utilities the null hypothesis is

rejected at the 99% confidence level. The evidence of convergence significantly increases by adjusting

the standard errors for autocorrelation and heteroscedasticity. While for a bandwidth of 4% of the

data only Telecomm, Utilities and Energy reject the null hypothesis at the 95% confidence level, the

Z-score calculated using a bandwidth of 15% shows strong evidence of convergence with none of the

industries rejecting the null hypothesis.

To summarize, Figure A.1 and Table A.1 provide evidence that our model appears to be reasonably

accurate when we base posterior inference on 50,000 draws with a burn-in of 10,000 and a thinning

value of 10, which keeps the computational burden relatively low.
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Figure 1: Distribution of Deals

This figure shows the unconditional distribution of deals, calculated as the sample average of the deals flow relative
to the aggregate number of deals across the sample. Deals are measured as the number of all M&A bids announced
by US private and public acquirers for US public and private targets. We considered those deals with a value higher
than $5mln (including net debt of the target), and exclude those identified as spinoffs, recapitalizations, self-tenders,
exchange offers and repurchases. Industry classification is based on the four-digit SIC codes according to the twelve-
industry classification provided by Kenneth French. The sample period is 1983:Q1-2016:Q4.
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Figure 2: Time Series of Industry Merger Activity

This figure reports the time series of merger activity across industries, measured as the number of all M&A bids
announced by US private and public acquirers for US public and private targets in the period 1983:Q1 to 2016:Q4. The
left axis on each graph represents the number of deals.
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Figure 3: Explanatory Variables and Merger Waves

This figure shows the effect of explanatory variables on the posterior probability of a merger wave as identified by the
vector of coefficients αz

12. Industry classification is based on the four-digit SIC codes according to the twelve-industry
classification provided by Kenneth French. The sample period is 1983:Q1 to 2016:Q4, quarterly.
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Figure 4: Random Effects Estimates

This figure shows the posterior estimates of the industry-specific random effects for representative sectors, namely
Manufacturing, Telecommunications, Healthcare and Money (left panel), and the posterior estimates of the cross-
sectional covariance matrix D. The sample period is 1983:Q1 to 2016:Q4.
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Figure 5: Posterior Probabilities of Industry Merger Waves

This figure shows the model-implied probability of being in a state of high merger activity. Industry classification
is based on the four-digit SIC codes according to the twelve-industry classification provided by Kenneth French. The
shaded gray areas show the posterior probabilities and the blue lines show the rescaled number of deals for each industry.
The sample period is 1983:Q1 to 2016:Q4.

1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f 
a
 M

e
rg

e
r 

W
a
v
e

0

10

20

30

40

50

60

70
N

u
m

b
e
r 

o
f 
D

e
a
ls

 (
Q

u
a
rt

e
rl
y
)

Manufacturing

(a) Manufacturing

1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f 
a
 M

e
rg

e
r 

W
a
v
e

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r 

o
f 
D

e
a
ls

 (
Q

u
a
rt

e
rl
y
)

Telecommunications

(b) Telecommunications

1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f 
a
 M

e
rg

e
r 

W
a
v
e

0

50

100

150

200

250

300

350

N
u
m

b
e
r 

o
f 
D

e
a
ls

 (
Q

u
a
rt

e
rl
y
)

Money

(c) Money

1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f 
a
 M

e
rg

e
r 

W
a
v
e

0

10

20

30

40

50

60

N
u
m

b
e
r 

o
f 
D

e
a
ls

 (
Q

u
a
rt

e
rl
y
)

Healthcare

(d) Healthcare

31



Figure 6: Explanatory Variables and the Persistence of Merger Waves

This figure shows the effect of explanatory variables on the persistence of merger waves as identified by the vector of
coefficients αz

22. Industry classification is based on the four-digit SIC codes according to the twelve-industry classification
provided by Kenneth French. The sample period is 1983:Q1 to 2016:Q4, quarterly.
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Figure 7: Merger Activity and Model-Implied Intensity Rates

This figure shows the actual number of M&A deals and the median model-implied intensity rates computed assuming
there are two distinct regimes identifying merger waves, i.e. K = 2. Deals are measured as the number of all M&A
bids announced by US private and public acquirers for US public and private targets in the period 1983:Q1 to 2016:Q4,
quarterly. The solid red line is the merger intensity rate implied by the model.
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Figure 8: Log Predictive Density Ratio

This figure shows the recursive Log Predictive Density Ratio (LPDR) comparing a model with three regimes against a
model with two regimes (top panels), and comparing a model with one regime against a model with two regimes (bottom
panels). The left panels show the results for all industries separately and the right panels show the results for the joint
predictive density. The sample period is 1983:Q1 to 2016:Q4.
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Figure A.1: Convergence Diagnostics

This figure shows some convergence diagnostics for our MCMC estimation scheme. The benchmark specification is with
K = 2 regimes and the whole set of predictors outlined in Section 3. The left panel shows the recursive mean for the
average betas, conditional on both a state of high merger wave (red line) and a state of no-wave (blue line). The running
mean is computed by computing the mean for an enlarging window of the MCMC draws of the betas averaged across
factors. The right panel shows the autocorrelation function (ACF) of the average betas draws, conditional on both the
“no-wave” state (red line) and the “wave” state (blue line). The sample period is 1983:Q1 to 2016:Q4.
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Table 2: Deregulatory Events

This table reports major deregulatory initiatives during the sample period 1983:01 to 2016:12. Deregulatory events are
considered at the industry level, assigning each event to one of twelve industries based on the SIC code of the bidder
at the time of the announcement and according to the twelve-industry classification provided by Kenneth French. The
events are constructed from Viscusi et al. (2005) and searching for recent major initiatives in Factiva.

Year Event Industry

1984 Cable Television Deregulation Act Other
Shipping Act Other

1987 Elimination of Fairness Doctrine (FCC) Other
Sale of Conrail Other

1989 Natural Gas Wellhead Decontrol Act Energy

1991 Federal Deposit Insurance Corporation Improvement Act Money

1992 Cable Television Consumer Protection and Competition Act Other
Energy Policy Act Energy
FERC Order 636 Utils

1993 Elimination of State regulation of cellular telephone rates Telecomm
Negotiated Rates Act Other

1994 Trucking Industry and Regulatory Reform Act Other
Interstate Banking and Branching Efficiency Act Money

1995 Interstate Commerce Commission Termination Act Telecomm

1996 Telecommunications Act Telecomm
FERC Order 888 Utils

1999 FERC Order 2000 Utils
Gramm–Leach–Bliley Act Money
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Table A.1: Convergence Diagnostics

This table summarizes the convergence results for the posterior values of the model parameters, estimated over
the sample period 1983:Q1 to 2016:Q4. In order to assess inefficiencies, we used the benchmark specification
with K = 2 regimes and the complete set of explanatory variables outlined in the main text. For each set of
parameters, we compute the p-value of the Geweke (1992) t-test for the null hypothesis of equality of the means
computed for the first 20% and the last 50% of the retained MCMC draws after burn-in. The variances of the
means are estimated with the Newey and West (1987) estimator using a bandwidth of 4%, 8%, and 15% of the
sample sizes, respectively.

Summary of Convergence Diagnostics

Industry i.i.d Bandwidth of 4% Bandwidth of 8% Bandwidth of 15%

Cons. Non-Durb. 0.042 0.349 0.437 0.486

Cons. Durb. 0.893 0.898 0.899 0.905

Manufacturing 0.656 0.866 0.898 0.919

Energy 0.000 0.043 0.114 0.189

Chems 0.249 0.371 0.367 0.342

Business Equip. 0.020 0.056 0.088 0.160

Telecomm 0.000 0.011 0.071 0.124

Utils 0.000 0.031 0.052 0.134

Shops 0.231 0.394 0.474 0.514

Healthcare 0.173 0.416 0.492 0.541

Money 0.132 0.637 0.640 0.641

Other 0.201 0.340 0.550 0.701
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Frühwirth-Schnatter, S. and Wagner, H. (2006). Auxiliary mixture sampling for parameter-driven
models of time series of counts with applications to state space modeling. Biometrika, 93:827–841.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.
Statistical Science, pages 457–472.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior
moments. Bayesian Statistics 4.

Geweke, J. (2005). Contemporary Bayesian Econometrics and Statistics. John Wiley, Hoboken.

Geweke, J. and Amisano, G. (2012). Prediction and mispecified models. American Economic Review,
102:482–486.

Golbe, D. and White, L. (1993). Catch a wave: The time series behavior of mergers. The Review of
Economics and Statistics, pages 493–499.

Gort, M. (1969). An economic disturbance theory of mergers. The Quarterly Journal of Economics,
pages 624–642.

Harford, J. (1999). Corporate cash reserves and acquisitions. Journal of Finance, 54:1969–1997.

Harford, J. (2005). What drives merger waves? Journal of Financial Economics, 77:529–560.

Holmstrom, B. and Kaplan, S. N. (2001). Corporate governance and merger activity in the us: Making
sense of the 1980s and 1990s. Technical report, National Bureau of Economic Research, Working
Paper.

Jovanovic, B. and Rousseau, P. L. (2002). The q-theory of mergers. Technical report, National Bureau
of Economic Research, Working Paper.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association,
90(430):773–795.

39



Kaufmann, S. (2015). K-state switching models with time-varying transition distributions: does credit
growth signal stronger effects of variables on inflation? Journal of Econometrics, Forthcoming.

Maksimovic, V. and Phillips, G. (2001). The market for corporate assets: Who engages in mergers
and asset sales and are there efficiency gains? The Journal of Finance, 56(6):2019–2065.

Maksimovic, V., Phillips, G., and Yang, L. (2013). Private and public merger waves. The Journal of
Finance, 68(5):2177–2217.

Melicher, R., Ledolter, J., and D’Antonio, L. (1983). A time series analysis of aggregate merger
activity. Review of Economics and Statistics, 65:423–429.

Mitchell, M. L. and Mulherin, J. H. (1996). The impact of industry shocks on takeover and restruc-
turing activity. Journal of Financial Economics, 41(2):193–229.

Mulherin, J. H. and Boone, A. (2000). Comparing acquisitions and divestitures. Journal of Corporate
Finance, 6:117–139.

Omori, Y., Chib, S., Shepard, N., and Nakajima, J. (2007). Stochastic volatility with leverage: Fast
and efficient likelihood inference. Journal of Econometrics, 140:425–449.

Raftery, A. E. and Lewis, S. M. (1992). Comment: One long run with diagnostics: Implementation
strategies for markov chain monte carlo. Statistical Science, 7(4):493–497.

Reid, S. (1968). Mergers, Managers and the Economy. McGraw-Hill, New York.

Resende, M. (2008). Mergers and acquisitions waves in the uk: A markov-switching approach. Applied
Financial Economics, 18(13):1067–1074.

Rhodes-Kropf, M., Robinson, D. T., and Viswanathan, S. (2005). Valuation waves and merger activity:
The empirical evidence. Journal of Financial Economics, 77(3):561–603.

Rhodes-Kropf, M. and Viswanathan, S. (2004). Market valuation and merger waves. The Journal of
Finance, 59(6):2685–2718.

Shleifer, A. and Vishny, R. (1992). Liquidation values and debt capacity. Journal of Finance, 32:337–
347.

Shleifer, A. and Vishny, R. W. (2003). Stock market driven acquisitions. Journal of Financial
Economics, 70(3):295–311.

Shugart, W. and Tollison, R. (1984). The random character of mergers. RAND Journal of Economics,
15:500–509.

Terasvirta, T. and Anderson, H. M. (1992). Characterizing nonlinearities in business cycles using
smooth transition autoregressive models. Journal of Applied Econometrics, 7(1):119–136.

Town, R. (1992). Merger waves and the structure of merger and acquisition time-series. Journal of
Applied Econometrics, 7(1):83–100.

Viscusi, W., Harrington, J. W., and Vernon, J. (2005). Economics of Regulation and Antitrust. MIT
Press, Cambridge, fourth edition.

40


	Introduction
	Modeling Merger Waves
	Prior Specification
	Posterior Sampling

	Data Description
	Empirical Results
	The Dynamics of Merger Waves

	Model Assessment
	Conclusion
	Appendix
	Convergence Diagnostics


