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Abstract

The focus of this thesis has been the feasibility o f  a novel load transfer concept for a 
carbon fibre reinforced plastic (CFRP) tendon system using non-laminated pin-loaded 
straps. The principle of these straps is that, as the tensile load increases, the relative slip 
between the layers produces a more uniform strain distribution in the layers leading to a 
higher load carrying capacity than when the laminate is fully consolidated (i.e. a 
laminated strap). This principle has been shown to occur by observing relative 
displacement between individual layers and strain measurements.

Such components could be used for post strengthening purposes o f  existing structures. 
They have the potential to alleviate the current problems associated with the corrosion 
of externally applied steel reinforcement. Furthermore, the low density of CFRP’s in 
combination with appropriate design procedures can provide a cost competitive 
solution. This advantage of choosing a non-metallic material is strengthened when 
whole life cycle costs are considered since composites are expected to outlive the 
conventional repair materials.

One objective o f the project was to develop a tape material with continuous parallel 
fibres at low cost. At the start o f  the project no material available was suitable in terms 
o f cost or quality. To drive the cost o f the material down, thin lamina tapes with a 
thermoplastic matrix were considered. The various manufacturing processes for 
thermoplastic prepreg tape were reviewed and the powder impregnation process was 
found to meet the project's specifications. This method can produce high quality 
prepreg at a higher production rate compared to pultrusion with a thermosetting matrix. 
Sulzer Innotec Ltd. had an existing aqueous powder impregnation facility for research 
and development purposes. The author collaborated with the company to make specific 
modifications to the facility with the objective o f  improving material quality. This was 
achieved towards the end of the project, and in the thesis this material is referred to as 
Tape IV.

Preliminary development work was carried out throughout the duration of the project to 
characterise five thermoplastic materials. Two practical connection methods where 
developed to anchor the final outer layer in the non-laminated strap option. It was found 
that the clamping method was superior to the fusion bonding method; both methods 
will, however, find applications. A new manufacturing process for laminated pin-loaded 
straps was developed and is reported.

The author used MARC K6.2, a commercial finite element software, to predict the 
stress concentrations in the region where the strap makes contact with the steel pin. The 
difficulties associated with the advanced numerical modelling included contact and 
friction. The required results from MARC K6.2 were highly dependent on a sliding 
velocity parameter for which no accurate value was known. Because of the lack o f rigor 
in the formulation of the finite element model, the stress concentrations predicted could 
not be used to optimise strap detailing. For completeness the MARC K6.2 modelling is 
described and the results reported.

To exploit the technology, research and development work will be needed, and the 
thesis shows where there are gaps in our knowledge and understanding.
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1

1 Introduction

1.1 Overview

Throughout the world there is a large number o f existing structures, which need to be 

replaced or retrofitted. This may be due to a change of social needs, upgrading of design 

standards, increased safety requirements or deterioration (Dunker et al. 1993 and 

Hamilton et al. 1995). Even for newer structures, which are not part o f the architectural 

heritage, rehabilitation is, in many cases, the only viable option as it is often a superior 

use o f resources, when compared to the replacement of the structure. The problems are 

particularly severe in the case o f reinforced concrete bridges where chloride induced 

deterioration is responsible for the need o f  rehabilitation methods (Clarke 1993). 

Strengthening requirements for existing structures may demand either, or both, an 

increase in flexural or shear resistance.

An overview o f the current technology and future applications o f advanced 

strengthening methods is given by Meier and Betti (1997). The application of externally 

bonded steel plates for flexural strengthening purposes as described by Bresson (1971)  

has been used for more than 25 years in Western Europe. Ruhnau and Kupfer (1985) 

summarise a number o f applications where external post-tensioned steel stirrups have 

been used for shear strengthening purposes. The major drawback o f both strengthening 

methods is the lack o f stress corrosion resistance of the externally applied material 

being exposed to the environment (Herbsleb and Theilcr 1989). Carbon Fibre
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Reinforced Plastic, (CFRP) would be an ideal replacement for externally applied steel 

reinforcement. The use o f CFRP’s would offer the essential environmental resistance in 

combination with high specific strength, high stiffness and superior fatigue properties 

(Hull 1981).

CFRP for externally bonded flexural strengthening purposes, as described by Meier 

(1987), has been used successfully in recent years. The strengthening method is 

experiencing an economical breakthrough in Switzerland with about 12 tons o f CFRP 

used for retrofitting purposes in 1996. Meier (1997) is predicting a world-wide usage of 

850 tons per annum for such applications in about twenty years.

Similar systems based on externally bonded fabrics or sheets for post shear 

strengthening purposes have been developed in the US by Chajes et al. (1995) and in 

Canada by Hutchinson et al. (1997), Drimoussis and Cheng (1994).

A different and more effective approach is the use of an active strengthening method. 

By post tensioning a structure, the occurrence o f  cracks can be delayed and the width of 

existing cracks can be reduced, which results in a superior performance. This has been 

shown by Deuring (1993) for the flexural strengthening method using pretensioned 

externally bonded CFRP sheets.

The above mentioned infrastructural applications of polymeric composite materials are 

exclusively based on thermosetting matrix systems. A thermoplastic matrix would be 

most desirable for future applications for a number of reasons, such as environmental 

issues and the potential of cost reduction (Vodermaycr 1992).
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The aim o f this research project is the development of a CFRP tendon with an efficient 

load transfer and a high flexibility in terms of length for active shear-strengthening 

purposes o f existing reinforced concrete structures. The challenge is the development of 

an appropriate end anchorage to account for the orthotropic mechanical properties o f the 

CFRP. An overview of different types o f anchorage systems used for CFRP tendons is 

given by Winistoerfer (1998). An additional requirement is the use of a thermoplastic 

matrix material.

1.2 Post shear strengthening

The behaviour o f  steel reinforced concrete beams under shear loading docs not seem to 

be well understood. Collins et al. (1996) state that the shear design provisions o f  the 

current American Concrete Institute design code consist o f about 43 empirical equations 

for different types of members and loading situations. The shear resistance o f  a 

reinforced concrete beam is thought to be comprised o f a combination o f aggregate 

interlock, dowel action o f the flexural reinforcement, the concrete compressive zone and 

the shear reinforcement. However, it is unclear which o f  these contributions is the most 

important in determining the ultimate shear capacity o f a reinforced concrete beam.

This lack o f understanding is one reason why practising engineers prefer the use of 

active shear strengthening methods (Guckcnbergcr et al. 1985). These active methods 

are based on post tensioning the structure in through-thickness direction using an 

external stirrup. The post tensioning enhances all the possible effects which contribute 

to the shear capacity o f a reinforced concrete beam by providing confinement and 

reducing crack widths.
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The Derendingen-Deitingen bridge in Switzerland shown in Figure 1.1 is an example 

which has been shear strengthened using external steel tendons which were post 

tensioned. This method is very expensive because o f  the necessity of custom-made 

fittings and excessive corrosion protection means. The long-term performance is 

questionable since stress corrosion may take place if the corrosion protection fails. It is 

for these reasons that a corrosion resistant alternative tendon is sought.
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1.3 Pin-loaded strap elements

1.3.1 Laminated pin-loaded strap elements

A non-metallic pin-loaded strap element, as shown in Figure 1.2, may provide a 

practical means o f joining different parts. These elements consist o f a unidirectional 

fibre reinforced plastic wound around two circular steel pins in a racetrack like manner. 

No machining o f holes is required. The pins transfer the load into the laminated and 

fully consolidated strap.

These straps have many desirable characteristics, including; high tensile strength, low 

weight, low thermal conductivity and low thermal expansion. As a result, laminated pin- 

loaded straps have been used in many different structural applications. The US-Army 

has investigated such components for temporary bridges (see Bauersfeld 1984), due to 

the structural efficiency and ease o f  application. Rotor-blades for wind turbines and 

helicopters are connected to the rotating shafts in a pin-loaded strap configuration as 

described by Knaust (1988). Pin-loaded straps made from glass fibres reinforced 

plastics are used as support structures for cryogenic applications (see Niemann et al. 

1978 and Weintz et al. 1994). The reason for this particular design solution is the 

combination of structural efficiency and low thermal and electric conductivity.
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Figure 1.2: Premature failure due to stress concentrations in the load transfer 

zone o f laminated pin-loaded straps made out of CFRP

A laminated, pin-loaded strap could be used as an external stirrup for the shear 

strengthening o f existing bridges. Both experimental and numerical investigations (see 

Section 4.4.1 and 5.5, respectively) have revealed that adjacent to where the strap leaves 

the pin, there are ’high’ stress concentrations resulting in premature failure as indicated 

in Figure 1.2. The effect of these concentrations is to reduce the failure load to about 

60% o f that o f the same laminate, as determined by a standard coupon test.

In addition, the production process described in Section 3.4.1, for such a component is 

not trivial despite the simplicity o f the shape. The manufacturing process may result in 

local misalignment o f  the fibres in the same location as the above mentioned stress

concentrations occur.
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Cost o f the material is crucial when deciding whether or not to apply a system and so it 

is necessary to use the material to its full potential. Furthermore, the manufacturing 

process has to be optimised to reduce the cost o f the tendon.

1.3.2 Conceptual design o f non-laminated pin-loaded strap elem ents

One means of reducing the undesirable stress concentrations and to overcome the 

manufacturing difficulties is outlined by Meier and Winistoerfer (1998). The 

consolidated laminate shown in Figure 1.3(a) is replaced by an equivalent non- 

laminated system shown in Figure 1.3(b), where the strap is comprised o f a number of 

non-laminated layers formed from a single, continuous, thin, thermoplastic matrix tape.

Figure 1.3: Load transfer area of a laminated (a) versus a non-laminated (b) pin-

(a) (b)

loaded strap
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In the non-laminated system the tape is wound around the pins and only the end of the 

outside, final layer is anchored. It can either be anchored to the previous layer or to the 

surrounding concrete using an end fixture. However, the reliability of the anchorage of 

the final layer is crucial for a successful strap concept.

Such a strap system  enables the individual layers to move relative to each other. The 

undesirable stress concentrations are reduced since this structural form is more 

compliant. Careful control o f the initial tensioning process allows interlaminar shear 

stress concentrations to be reduced such that a more uniform strain distribution in all 

layers is achieved. In addition, the system allows for a great flexibility in terms of the 

length of the tendon since the winding can be performed on site, for example to account 

for dimensional tolerances o f  the structure to be strengthened. Moreover the cost 

effectiveness compared to a laminated pin-loaded strap is superior due to the absence of 

a consolidation process which is required in the production of a laminated pin-loaded 

strap.

1.4 Objectives of Research

The primary objective o f this research is to investigate the feasibility of the concept of 

non-laminated pin loaded strap elements as the basis for the development o f a CFRP 

strap for post shear strengthening purposes. This proposed application imposes certain 

constraints on the system such as temperature range, environmental conditions and 

methods of application. With these constraints specific objectives are outlined as

follows:
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•  A thermoplastic matrix material should be employed to explore possible cost 

reductions.

• A suitable joining method has to be developed to facilitate the anchorage of the final 

layer.

• To provide fundamental information as a basis to establish the technique of non- 

laminated pin-loaded straps o f CFRP.

1.5 Outline of Thesis

The thesis is organised into seven chapters. Some of the work outlined is not as rigorous 

as one could expect since the experiments were fact finding to prove the concept and to 

provide appropriate testing procedures. The methods presented will enable a more 

rigorous investigation when the concept will be commercialised.

Chapter 2 is devoted to the materials used and in particular to the manufacturing process 

of the thermoplastic prepreg tape. The quality o f  the thermoplastic prepreg tape used is 

crucial to the success o f the novel concept. A number of different commercial products 

were evaluated, and the performance o f these products was found to be unsatisfactory. 

Favourable results were eventually achieved as a result o f certain modifications made 

by the author to a new manufacturing process for thermoplastic prepreg tape at Sulzer 

Innotec Ltd, in Winterthur, Switzerland.

The initial development work which was necessary to demonstrate the feasibility of the 

concept is outlined in Chapter 3. The methods of manufacturing laminated pin-loaded 

straps which were used for reference purposes are described in detail. The process used
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for the manufacturing of the characterisation specimens is also presented. Particular 

attention is given to the joining method employed to anchor the last layer o f a non- 

laminated pin-loaded strap. The methods for static and long term creep tests on various 

strap elements are also given.

The performance o f non-laminated pin-loaded straps, made from different commercially 

available materials, is presented in Chapter 4. The measured characteristics o f the 

modified material supplied by Sulzer Innotec Ltd. are described. Furthermore, a 

comparison o f laminated- and non-laminated pin-loaded strap elements is made.

Chapter 5 is concerned about the stress analysis on pin-loaded strap elements. Particular 

attention is given to the difficulties associated with the modelling of contact and friction 

problems using MARC K6.2, a commercial finite element software package. In 

addition, simple analytical models describing the stress distributions in strap elements 

are presented.

The main findings o f  the research into the feasibility o f non-laminated pin-loaded straps 

is summarised in Chapter 6. Suggestions for further investigations needed to 

commercialise the concept, and future applications are presented.

Conclusions regarding the feasibility o f pin loaded straps and recommendations for 

further investigations needed to make the concept exploitable are given in Chapter 7.
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2 Thermoplastic prepreg

2.1 Introduction

In this chapter, the constituent properties o f the different thermoplastic prepregs used 

within this research are considered. Furthermore, a list o f important requirements for 

prepreg tape for non-laminated pin-loaded straps is presented. In addition, a brief 

outline of the problems associated with different production processes o f  unidirectional 

thermoplastic prepreg is given. The aqueous powder impregnation technique described 

by Taylor (1981) and O'Connor et al. (1988) is reviewed and certain specific 

modifications to this process are introduced to improve quality of the material.

2.2 Polymeric composites

The major problem in the application of polymers in engineering is their poor 

mechanical properties compared to structural materials such as metals. One method to 

offset this deficiency is the addition of reinforcing fibres to the polymer to form a 

composite material. The characteristic o f such a composite reflects the properties o f  its 

constituents.

Common types o f reinforcing fibres are glass, aramid, carbon, boron and high strength 

polyethylene. The ideal selection o f the fibre type ought to be based on technical as well
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as economical decisions, depending on the application. Carbon fibres were found by 

Meier and Winistoerfer (1991) to be the most appropriate for infrastructural applications 

due to their excellent mechanical properties in combination with the corrosion 

resistance.

CFRP’s based on thermosetting matrix materials and continuous fibres are well 

established in a large number o f industrial applications. However, this is not yet the case 

for CFRP with a thermoplastic matrix material. According to Anon. (1998a), the 

turnover o f carbon fibre prepreg with thermosetting matrix in the US and Europe is 

about US$ 700 million per annum, compared to US$ 30 million for thermoplastic 

prepreg. Despite the superior properties o f thermoplastics such as, a higher fracture 

toughness, a higher strain to failure, an excellent environmental resistance and no 

requirements for special storage conditions, applications have been limited to selected 

components in the aerospace-, automotive- and the sport industry (Anon. 1998b). One 

reason for the reduced number o f applications is the difference in the order o f  

magnitude o f  the melt viscosity o f thermoplastic polymers compared to the generally 

low viscosity thermosets prior to the cross-linking process. A thorough impregnation of 

the fibres is crucial for the usage o f CFRP’s for load bearing structures, and this is 

difficult to achieve with thermoplastic melts because of their relatively high viscosity.

The thermoplastic matrix systems available can be divided into two main groups. The 

first group represents the high performance plastics such as PEEK 

(polyetheretherketone), PAI (polyamideimide), PEI (polyetherimide), PES 

(polyethersulphone) and PPS (polyphenylenesulphide). The second group contains the 

so-called engineering- and commodity plastics such as PET (polyethyleneterephthalate),
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PMMA (polymethylmethacrylate), PC (polycarbonate), PA (polyamide), PS 

(polystyrene), PE (polyethylene) and PP (polypropylene). The high performance 

thermoplastics function well in high temperature (> 100° C) and chemically hazardous 

environments. Whereas the engineering and commodity thermoplastics are less 

expensive and offer lower processing temperatures (< 300° C).

The choice of the different matrix systems used in this research is purely based upon 

availability of prepreg tape. An ideal matrix for a shear strengthening application would 

be PP or PA 12. Both polymers fulfil the requirements imposed by the working 

environment at the lowest cost.

2.2.1 Carbon fibre

Carbon fibres are produced from PAN (polyacrylonitrile) fibres, rayon (cellulose based 

fibre), or fibres gained from a melt spinning process o f pitch. These precursors are 

converted into graphite through a sequence o f heat treatment operations under tension. 

The aim o f this process is to preserve the high degree of orientation of the initial 

precursor, ensuring that the final graphite structure has a similar high degree o f  crystal 

orientation (McCrum et al. 1988).

A schematic representation o f  the sheet like structure o f a carbon fibre is shown in 

Figure 2.1 (from Hull 1981). Carbon atoms with strong covalent bonding are 

hexagonally arranged within the sheets or layer planes. However, the layers are held 

together by weak Van der Waals forces. The result is a highly anisotropic fibre with a 

theoretical longitudinal modulus of 910 GPa compared to 30 GPa in transverse



2. Thermoplastic prepreg 14

direction. These moduli assume a perfect, flawless, crystalline structure (Hull 1981). In 

reality, the structure o f a commercial carbon fibre is always somewhat disordered and 

micro-voided as shown in Figure 2.1. This is reflected in a large number of 

commercially available fibres with a longitudinal modulus ranging from 230 to 650  GPa 

(Toray 1997). In addition, the density of a single crystal o f graphite is, according to 

McCrum (1988), about 2200 k g /m \ whereas the lower value quoted in Table 2.1 for 

commercial products indicate an imperfect crystalline structure with many voids.

Fibre
axis

Figure 2.1 : Schematic representation of the graphitic structure o f a carbon fibre 

filament (From Hull 1981).

The degree o f perfection of the alignment o f  the crystalline structure influences the 

mechanical properties o f the fibre. It can be influenced by optimising the heat treatment 

parameters. The result o f different parameters is a diverse range o f commercially 

available fibres with different mechanical properties. In Appendix A, the fibre products 

o f a single supplier are compared with the fibres used in this research project.
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The different carbon fibres used in this investigation are AS4, by Hercules Inc., 34-700 

by Grafil Inc., and T700S made by Toray Inc. The mechanical properties stated in 

Hercules (1989), Grafil (1996) and Toray (1997) are given in Table 2.1.

Table 2.1: Properties o f the carbon fibres used in this research.

Fibre Tensile Tensile Modulus Filament Density
strength strain diameter

xf £fU Ef df P) ,
[MPa] [%] [GPa] [pm] [kg/m3]

Hercules AS4 4100 1.65 248 7 1800

Grafil 34-700 4500 1.9 234 6.9 1800

Toray T700S 4900 2.1 230 7 1800

2.2.2 Matrix

The objectives of the matrix in fibre reinforced plastics is described by Michaeli and 

Wegener (1989) as follows:

• To maintain the chosen orientation of the fibres according to the design.

•  To transfer the load into the fibres.

•  To provide lateral support to prevent buckling under compressive loading.

•  To protect the fibres from the chemicals in the environment.

Thermosets, the more frequently used matrix materials are characterised by a highly 

cross-linked structure restricting chain motion (Young and Lovell 1991). After the 

forming and curing, or cross-linking, the macromolecular chains are intractable and 

degrade rather than melt upon the application of heat.
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However, thermoplastics can be moulded and remoulded into virtually any shape upon 

the application of heat and pressure. They consist o f large macromolecules which are 

highly coiled and entangled. Thermoplastics are separated into crystalline or amorphous 

types, based on their molecular structure (Frank and Biederbick 1984). In most cases the 

crystalline types are semi-crystalline with both crystalline and amorphous regions. The 

crystalline phases of a thermoplastic material can be characterised by Tm, their melting 

temperature. The amorphous phases are characterised by TK, their glass transition 

temperature. At Tg, the amorphous regions transform from a glassy to a rubbery solid 

due to increased motion o f  the macromolecular chains.

The crystalline structure, the size and number of the spherulites and the degree of 

crystallinity of a thermoplastic matrix is influenced by processing conditions such as 

cooling-rate, mass and geometry. The strength and stiffness of a thermoplastic material 

increase with increasing crystallinity, whereas the fracture toughness decreases (Young 

and Lovell 1991).

The molecular structures o f  the three different matrix materials used in this investigation 

are shown in Figure 2.2. They are like many other high-performance polymers prepared 

by polycondensation. The benzene ring, shown in Figure 2.2 as a common feature of 

PEEK and PPS, is a typical constituent of many thermoplastics with high softening

temperature (> 150° C).
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Figure 2.2: Molecular structure o f the different matrix materials used.

The mechanical properties and suppliers o f the matrix materials are given in Table 2.2. 

The data are taken from Victrex (1998), Kohan (1995), Hoechst (1996) and Hills (1996) 

for Matrix 1 ,2 ,3  and 4, respectively.

Table 2.2: Properties o f the different matrix materials used.

Matrix 1 Matrix 2 Matrix 3 Matrix 4

Material PEEK PA 12 PPS PA 12

Glass trans. temp. T k  [°C] 143 50 85-100 48

Melting temp Tm [°C] 334 172-178 280-285 178

Modulus Em  [MPa] 3650 1450 3700 1400

Tensile strain Em U [%] 50 250-300 4 300

Tensile strength Xm [MPa] 92 65 75 40

Water absorption Cm [%] 1.6 0.01 1.5

Density p m [kg /  m 3] 1320 1010 1350 1020

Brand-name APC-2 unknown Fortran 
0205 B4

Vestosint
2159

Supplier ICI unknown Hoechst
AG

Frankfurt
Germany

Hüls AG 
Marl 

Germany
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2.3 Prepreg tape

The fibre and matrix materials outlined above resulted in four different prepreg tapes 

which have been investigated in this research project to show the feasibility o f  the 

concept of non-laminated pin-loaded straps. The prepreg properties supplied by the 

manufacturer are given in Table 2.3. The manufacturing characteristic ’slit-tape’ refers 

to prepreg tape which is produced at a standard width, typically 305 mm, and then cut 

longitudinally to the required width according to the customer requirement. A ’tow’ is 

produced from a single roving, without any longitudinal cutting at the free edges, 

ensuring a minimum o f damaged filaments.

The Tape IV prepreg is a combined development of Sulzer Innotec Ltd and the author. 

Details of this development are outlined in Section 2.6. Continuous improvement o f the 

new processing at the Sulzer plant resulted in three different qualities o f the Tape IV 

prepreg supplied. The different qualities are characterised by different fibre volume 

fraction as indicated in Table 2.3. To account for the different qualities, the materials 

will be referred to as Tape IV-1 (V /=  41 %), IV-2 (Vy = 49  %) and IV-3 (Vj = 56 %), 

respectively.

The longitudinal stiffness, £ /,  and the longitudinal tensile strength, X/, were not 

specified for the products supplied by the University o f Berlin and Sulzer Innotec Ltd. 

Therefore, these values are not given in Table 2.3.
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Table 2.3: Overview o f the prepreg tape used.

(Information is based on written quotes from the supplier).

Tape I Tape II Tape III Tape IV

Fibre AS 4 34-700 T700S T700S

Yield Tf [g/1000m] — 804 800 800

Matrix material PEEK PA 12 PPS PA 12

Matrix type 1 2 3 4

Manufacturing slit tape tow tow tow

Dimensions w x / [mm] 6.1-1520 x 
0.125

6.35 x 0.178 — 6 x 0 .1 9 ,  
0.16, 0.14

Fibre content Vf  [%] 60 38 61 4 1 ,49 , 56

Modulus £ / [GPa] 138 83 — —

Tensile strength Xi [MPa] 2068 1246 — —

Product name APC-2 AS 4 C /  PA 12 C /P P S C F /P A  12

Supplier ICI Fiberite 
Europe 

Germany

Baycomp
Burlington

Canada

TU Berlin 
Germany

Sulzer
Innotec

Winterthur
Switzerland

2.4 Product requirements

The prepreg tape used for non-laminated pin-loaded straps has to fulfil the following

requirements:

•  A high strength which can only be achieved if the continuous fibres are thoroughly 

impregnated and minimal fibre damage occurs during the processing.

•  A low flexural stiffness o f  the lamina is necessary in order to reduce the bending 

stresses. Therefore, a minimal tape thickness is desirable which implies a high fibre 

volume fraction. Furthermore, the combination of high fibre content and low 

thickness provides superior creep properties in the through-thickness direction, 

which is important in the load transfer region of pin loaded straps.
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• Accurate edge contours and small width tolerances are necessary to ensure an even 

support to all the layers.

• Depending on the application, a suitable matrix material has to be selected to 

withstand the environmental conditions.

• Sufficient matrix material has to be present to ensure an even surface texture for a 

constant coefficient o f friction. In addition, the matrix rich surface will facilitate the 

end anchorage of a single layer. This is particularly useful when two layers of tape 

have to be joined in a welding process.

• A high processing speed during impregnation is required to reduce cost and, 

therefore, to make the material more attractive to applications in the construction 

industry.

The properties o f the prepreg will, to a certain extent, be a result of the chosen

manufacturing process, some of which are introduced next.

2.5 Melt impregnation

The impregnation of unidirectional fibres with a thermoplastic matrix is principally 

carried out using a melt impregnation process. Rovings are pulled through an 

impregnation tool which is filled with polymer melt. The tool contains features such as 

a number o f steel pins which change the direction o f  the fibres and thereby force the 

matrix into the roving. This process is very similar to the pultrusion process applied 

with thermosetting matrix materials where a production speed of 0.1 -  3 m/min can be 

reached according to Kempe (1997).
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Augustin (1989) developed an impregnation tool which was capable o f impregnating 

unidirectional glass fibres at a maximum line speed o f  5 m/min, having a fibre volume 

content of 60 %. However, glass fibres typically have a diameter of 17 pm, whereas 

carbon fibres have a typical diameter o f  7 pm. The smaller carbon fibres cause a higher 

flow resistance to the molten polymer and are therefore more difficult to impregnate. In 

addition, the orthotropic carbon fibres have poor transverse strength properties and are 

susceptible to damage during processing. As a result, line speeds o f only one fifth (see 

Vodermayer, Kaerger and Hinrichsen 1993) of the maximum obtained in the melt 

impregnation o f glass fibre rovings were found with carbon fibres.

An overview of alternatives to melt impregnation is given by Neitzel and Breuer (1997). 

Those include solvent impregnation for amorphous thermoplastics (Zepf 1997), the use 

of commingled materials (Singkofer and Mehn 1996) and a number of powder based 

processes. One established method described by Werner (1997) is to use an electrostatic 

fluidised bed to deposit powder particles on the fibres. Powder based processes, in 

particular the aqueous powder impregnation technique, reduce fibre damage and 

facilitate the fast impregnation of carbon fibre rovings (see Hartness 1988).

2.6 Aqueous powder impregnation

The aqueous powder impregnation o f  rovings has been used for several years. The most 

cited literature is the US patents by Chabrier et al. (1986) and OConnor (1987). The 

process is characterised by the following advantageous features:

•  A short flow length can be achieved due to the small powder particles used (see 

Section 2.6.4). This offers the possibility o f high production velocities.
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• A large number of different types of polymers (i. e. different viscosity) can be used.

•  Minimal fibre damage occurs since very simple guiding mechanisms are used in the 

impregnation bath.

•  There is little thermal degradation of the polymer due to the short time in the molten

stage.

•  A controlled fibre volume content in the range of 30-70% can be achieved.

•  Operators are not exposed to health hazards.

The major drawback of the technique is that the cost o f the polymer in powder form is 

higher compared to that of granular form. In addition, availability o f appropriate particle 

sizes is often a problem (see Section 2.6.4).

2.6.1 Set-up and principle of the process

The prepreg manufacturing process employed by Sulzer Innotec Ltd. is based on 

aqueous powder impregnation. Many o f the parameters in the process cannot be 

quantified due to commercial reasons. The impregnation facility is shown schematically 

in Figure 2.3. A roving is pulled off the spool with a constant force, which is controlled 

by the belt drive at the end of the line. The tension in the roving is measured just before 

it enters the impregnation bath. The actual impregnation takes place in the bath where 

the roving is pulled through an aqueous polymer powder dispersion. Details o f the 

impregnation mechanisms involved are given in Section 2.6.2. As the wet roving leaves 

the bath, it contains evenly distributed powder particles. In the next stage, the water on 

the surface o f the filaments is evaporated in the drying chamber. Industrial air guns are 

installed in the chamber to increase the airflow within the chamber. The drying process
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is very important and determines the production rate of unidirectional fibre reinforced 

tapes. All the water has to be removed prior to the melting stage to ensure a low  

porosity in the final composite. A damping unit (as described in Section 2.6.6) is 

situated at the exit o f the drying chamber to prevent extensive vibration o f  the roving.

A roving spool E heating oven
B impregnation bath F profile rollers
C drying chamber G belt drive
D damping unit H prepreg tape

Figure 2.3: Powder impregnation process (Sulzer Innotec Ltd.)

The evenly distributed polymer particles are subsequently melted in three consecutive 

heating ovens. Profile rollers (as described in Section 2.6.6) are located at the exit of 

each oven. These rollers are free to roll but provide consolidation pressure responsible 

for the final impregnation and for controlling the geometrical properties o f  the tape. The 

consolidation pressure between the profile rollers can be varied by putting weights on 

the top roller fixture. To produce high quality tape, the option of a single oven-roller 

combination was found to be unsatisfactory.

The process described above enables fast production at a rate of up to 60 ttt/min of 

unidirectional carbon fibre reinforced thermoplastic prepreg, fulfilling all the

requirements listed in Section 2.4.
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2.6.2 Summary o f important parameters

A number of critical parameters are mentioned, but their influence on the properties of 

the prepreg is very complex since many o f these parameters are interrelated. The 

parameters influencing the quality of the impregnation can be divided in three different 

groups:

1. Bath parameters (see Section 2.6.3 and Figure 2.4):

• The total contact angle between the impregnation pins and the roving in the bath.

• The number and the diameter o f impregnation pins.

• The distance between the impregnation pins.

2. Processing parameters:

• The roving velocity.

•  The tension in the roving.

• Temperatures in  the drying chamber and the heating ovens.

3. Material parameters:

• The particle s ize  (see Section 2.6.4).

• The concentration of powder in the dispersion (see Section 2.6.4).

•  The filament diameter of the fibres.

The viscosity o f  the dispersion.
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2.6.3 Impregnation bath

The aqueous dispersion is agitated in the impregnation bath using five magnetic stirrers 

to prevent the segregation of the particles in the dispersion. As shown in Figure 2.4, the 

roving is guided through the bath by five fixed steel impregnation pins of 10 mm 

diameter, which are submerged in the dispersion.

Figure 2.4: Impregnation bath.

Four different mechanisms are involved in the impregnation process. However, the 

pressure impregnation mechanism is considered to be the most important. The four 

mechanisms are:

• Pressure impregnation: The contact forces between the pins and the roving force 

the powder particles into the fibre bundle. Ideally, the overall contact angle between 

pin and roving should therefore be the same on the top and the bottom o f the roving. 

This is not the case in practice. In addition, the particles act as spacers and cause the 

roving to spread to about twice its original width. The water acts as a lubricant and 

very little fibre damage is introduced.
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• Diffusion: Only a minimal number of particles are acquired by the roving as a result 

of diffusion. The increased surface area due to the pins will increase the amount of 

diffusion that occurs.

• Capillary impregnation: The capillary effect at the entrance and exit of the bath is 

negligible since it mainly results in the movement o f the water and not the polymer 

particles.

• Surface tension: The roving collects a small number of particles on the surface due 

to the surface tension of the water. The surfactant present in the dispersion to 

improve the wetting behaviour will enhance this effect.

2.6.4 Particle size

The ideal particle size is found by minimising the distance between two adjacent 

particles (in the fibre direction) with a given fibre diameter and fibre volume fraction. 

The aim is to reduce flow length of the polymer melt. It can be determined using the 

geometrical model by Vodermayer (1992). The model is based on the following 

simplifying assumptions:

• Idealised shapes for the constituents are utilised. Spherical particles with identical 

diameters and cylindrical fibres with a diameter o f  7 pm, which is a typical value for 

carbon fibre filaments.

•  The particles and the fibres are arranged in a hexagonal array as shown 

schematically in Figure 2.5.

• Closest packing conditions are assumed with a certain fibre spacing corresponding 

to the particle diameter.
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•  Rheological influences such as viscosity and wetting behaviour in the melting and 

consolidation processes are neglected.

Figure 2.5: Hexagonal array o f fibres and polymer particles.

The resulting fibre volume content, Vf , as a function o f the particle radius, r,„ assuming 

perfect consolidation and no porosity, is shown in Figure 2.6. In practice, the matrix 

flows not only in the longitudinal direction but also in the perpendicular direction. Since 

this model neglects the flow in the perpendicular direction, it will tend to underestimate 

the ideal particle size.
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Figure 2.6: Fibre volume fraction, V f, vs. particle radius, rn, after consolidation of

the impregnated Fibres.

The longitudinal spacing, Lp, o f the particles is the minimum distance the polymer melt 

has to flow (see Figure 2.7) for a complete impregnation in the molten stage o f the 

polymer matrix. The free volume in the elementary cell, Ve, (which has to be filled with 

matrix material during the melting and consolidation processes) vs. the particle radius, 

r;„ is shown in Figure 2.8. Figures 2.6 to 2.8 show the ’mathematically’ ideal particle 

size ranging from a radius of 2.5 to 6 pm maintaining a reasonably small flow length 

and free volume. The exponentially increasing longitudinal spacing and free volume, as 

a function of the particle diameter, demonstrates that the particle radius should not 

exceed 10 pm in order to exploit the advantages o f the aqueous powder impregnation. 

Practical considerations such as the non-availability o f small particles and the wetting of  

a large number of these small particles in the aqueous solution may force the use of 

larger particles. This compromise with the ideal situation not being achieved may result 

in an increased porosity of the composite.
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Figure 2.7: Flow length, Lp , vs. particle radius rp (V /= 60 %).

Figure 2.8: Free volume, Ve , vs. particle radius rp before consolidation {Vj = 60 %).
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2.6.5 Particle concentration

A critical aspect o f the impregnation process is the concentration of the polymer powder 

in the aqueous solution. Ideally, the concentration o f the particles in the bath should be 

equal to the concentration in the roving leaving the bath. This is to ensure a constant 

fibre volume fraction during the impregnation process.

The ideal concentration o f  particles, c„ph (in grams per litre) in the aqueous solution for 

a certain fibre volume fraction can be calculated using Equation (2.1), assuming that the 

free volume (see Figure 2.8) in the unit cell is filled with water.

In Equation (2.1), rp, is the polymer particle radius, p m, the density o f the polymer and 

V'/., the free volume in the unit cell.

A small amount o f surfactant, typically <1%, has to be added to the water to attain an 

even distribution o f particles in the dispersion with the required concentration. This is 

achieved by improving the particle’s wetting behaviour by reducing the surface tension 

of the water.

2.6.6 Modifications of the process

c ( 2. 1)

Commercially available thermoplastic prepreg tape manufactured by the methods 

described in Sections 2.5 and 2.6 are fabricated as raw materials for further processing. 

Dimensional accuracy and edge contours are not important features for such a raw
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material since the processing generally involves heating and reforming of the polymer 

composite.

This is not the case for an application such as non-laminated pin loaded straps. Accurate 

edge contours and small width tolerances are necessary to ensure an even support to all 

the layers in the strap. These dimensional properties are determined by the consolidation 

rollers in the impregnation process. The standard roller sets used by Sulzer Innotec Ltd. 

are machined with a width, w, o f 5 mm from a single piece of stainless steel. The radii, 

rcim, of the female comers in the bottom rollers (see Figure 2.9) are typically in the 

range of 0.15 mm which is about the thickness of an impregnated roving. A polished 

cross-section of a tape section produced using these rollers is shown in Figure 2.10. The 

variable shape of the cross-section of the tape and the irregular surface texture may be 

responsible for some of the difficulties encountered at the beginning of this project.

Figure 2.9: Set of consolidation rollers.



2. Thermoplastic prepreg 32

An alternative method had to be found to produce consolidation rollers with high 

accuracy in the width dimension of the slot, reduced surface roughness and sharp edges 

in contact with the thermoplastic prepreg. This improvement to the existing Sulzer 

process was developed by the author.

Figure 2.10: Polished cross-section o f a prepreg tape produced using the unmodified 

impregnation process.

The bottom roller in Figure 2.9 was machined from three different pieces o f stainless 

steel. The central piece was shaped like the top roller with polished (surface roughness 

< 0.5 pm) outer diameter and contact faces for the two circular disks. A. ’perfect’ 

perpendicular fillet at the junction of base and sides was thereby obtained. Two circular 

disks with polished (surface roughness < 0.5 pm) contact faces were then bolted to the 

two sides o f the central piece. The top roller was produced in the same manner as the 

bottom central piece. This resulted in two precisely matching tools with separate
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machined and polished faces and an exact rectangular gap (w =  6 mm) between top and 

bottom rollers. The improvement of the quality in terms of fibre distribution and surface 

texture of the tape can be seen by comparing the materials in Figures 2.10 and 2.11. 

Both materials exhibit many cracks which may have been introduced in the processing.

Figure 2.11 : Polished cross-section of a prepreg tape after modifications of the 

impregnation process.

A second source of problems was a damping unit located at the exit o f the drying 

chamber. The large airflow inside the drying chamber caused the tape to vibrate to such 

an extent that the tape came into contact with the chamber wall. Hence, the author chose 

glass for two restraining pins, since the glass surface was expected to minimise 

adhesion o f the molten polymer. They were placed horizontally about 1 mm above the 

moving tape to prevent excessive vibrations. It was found that residues of molten 

polymer and damaged fibres were collected at these pins. The residue has to be removed
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periodically by an operator to maintain high quality tape. Otherwise large deposits were 

to be found along the length of the tape.

The tapes used by the author in the project were manufactured when the drying chamber 

had glass pins at the exit. Further improvement has been achieved since then using the 

damping roller system shown in Figure 2.12. The working surface o f  the steel rollers 

was coated with Teflon to reduce the amount of collected residues. The time period 

between each cleaning operation has now increased significantly.

Figure 2.12: Damping rollers to prevent vibration of the tape due to the airflow in the

drying chamber.
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3 Experimental methods

3.1 Introduction

This chapter presents the experimental work used to show that the pin-loaded strap has 

a future. The work detailed is o f a preliminary nature for the reasons given in Chapters 1 

and 2. It includes characterisation o f the tape material’s mechanical properties, the 

successful development of a fusion bonding process for end anchorage, and the 

development o f a practical manufacturing process for laminated pin-loaded straps.

3.2 Characterisation of the material

3.2.1 Longitudinal properties

The sensitivity o f unidirectional CFRP’s in the directions other than the fibre direction 

leads to the problem of load transfer between a composite specimen and the grips of a 

testing machine. An inappropriate load transfer can cause premature failure o f the 

specimen and leads therefore to inaccurate material properties. Standards, such as EN 

2561, are available to determine the longitudinal properties of laminates with a specified 

geometry. This standard considers specimens cut from a prefabricated sheet o f 1 mm 

thickness. The properties of Tape I material were determined following EN 2561. A 

single ply of the preprcg was used instead of a prefabricated sheet, which would
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comprise of eight layers o f prepreg. Cutting the Tape I material with a scalpel made it 

difficult to accurately control the width o f the strip. A crack tip progressed into the 

material several millimetres ahead o f the scalpel resulting in a unacceptable variation of 

several millimetres in the tape’s width. Hence, the following method was developed to 

overcome the preparation problem.

About 10 m of the 305 mm wide Tape I material was wrapped tightly around a plastic 

pipe o f 200 mm external diameter. The outer end was fixed to the layer below with 

adhesive tape. A diamond coated grinding wheel was used to cut slices from the pipe at 

11 mm widths. The grinding process did cause some damage to the tape edges and the 

heat generated allowed a number o f layers to be fusion bonded together, such that these 

layers could not be unwrapped. To remove the damaged zone, the slices were machined 

on either side using wet abrasive paper to a final constant width of 10 mm. This process 

resulted in tape o f controlled width, but there were still fibres damaged and exposed at 

the edges.

Aluminium end tabs were adhesively bonded to the 160 mm long specimens in the 

gripping area to distribute the clamping force more uniformly. A toughened epoxy 

adhesive (Scotchweld® 9323) was used to bond the 2 mm thick end tabs with squared 

edges to the specimens. Degreasing using Acetone was the only pre-treatment method 

employed.

A more effective system to transfer load into a specimen was found by modifying the 

clamping device used by Gerritse (1990) for anchorage purposes o f Arapree tendons 

(i.e. tendons o f aramid fibres). The clamping device is shown in Figure 3.1. It consists
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of a base plate having 26 threaded holes, two rubber pads and a 1 mm thick steel cover 

sheet with the same hole pattern as the base plate. The 500 mm long specimen was 

clamped between the rubber pads by using steel bolts which were tightened to different 

torque values. The torque on the pair of bolts at the front o f the anchorage was 0.6 N m , 

and it increases linearly to a torque of 2 N m at the back. The thin steel cover sheet 

deformed non-uniformly under the bolt loading. This resulted in a gradient in the 

through-thickness compression forces which restrained the specimen at the back while 

maintaining adequate shear flexibility towards the front. This fixture reduced the peak 

shear stresses, Tu , at the front end and therefore prevents premature failure due to 

interlaminar shearing. A trial and error procedure was used to establish the optimum 

torque values ensuring no slip at the back of the anchorage.

load

length

Figure 3.1: Rubber padded clamping device for anchorage purposes.
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The measured strength properties (see Chapter 4.2.1) suggest that the clamping fixture 

was not performing satisfactorily. An alternative anchorage system, based on the 

principles described by Meier et al. (1998), was therefore also used in conjunction with 

the final Tape IV-3 material. The cast anchorage system using a conical shaped socket, 

as shown schematically in Figure 3.2, has been used successfully in a cable stayed road 

bridge in Winterthur, Switzerland. One pair, out of the total of 12 pairs, o f  stay-cables 

are made of CFRP material. The cables have a load carrying capacity o f 12 MN.

Figure 3.2: Conical cast anchor.

The tape specimens were anchored in steel sockets using Aralditc^ 5052 as the load 

transfer medium. This is a commercially available, room temperature curing epoxy 

resin. The back ends of the sockets were closed with a cover plate containing a 

clamping mechanism to position the specimen centrally. Specimens o f 500 mm length 

were clamped at both ends and the two sockets pushed apart to tension the tape and to 

ensure specimen alignment. Acetone was used in the region of the anchorage to 

degrease the specimen. The sockets were kept in a vertical position in the oven at 40° C 

while the epoxy resin was poured into the first socket from the open front end. The
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elevated temperature reduced the viscosity of the resin and therefore facilitated the 

casting process. The system was left in the oven at 40° C for twelve hours to cure. The 

casting process was repeated for the second socket. The resulting specimen gauge 

length was 140 mm.

The same anchorage system was used with a specimen made from twenty layers o f Tape 

IV-3 material. To consolidate the laminate, a simple steel tool was made from 

rectangular sections which are commercially available with polished faces (surface 

roughness < 10 pm). The ends of the tool were left open as shown in Figure 3.3. The 

lower die was made from three standard sections whereas the dimensions of the central 

piece defined the 6 mm wide slot. The same section was used for the lower part o f the 

upper die. The steel tool was prepared by the application of Release-All” 70, a releasing 

agent, before the twenty layers of prepreg were placed between the two dies. The upper 

die was clamped to the lower using steel springs to maintain the consolidation pressure 

throughout the whole production cycle in the oven. The system was placed in the oven 

at 190°C for 2 hours to allow the polymer to melt and therefore to consolidate the layers 

to a thickness of 3 mm. The system was left in the oven to cool down before it was 

demoulded by disassembling the steel tool.

The matrix on the surface o f the specimen was removed with abrasive paper to bond to 

the fibres. The specimen was anchored in the conical steel socket using the process

outlined above.
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consolidation springs

specimen

lower die

upper die

Figure 3.3: Steel tool to consolidate layers of prepreg tape.

The anchorage method using the rubber padded clamping device was found to give the 

highest strength values although the measurements given in Section 4.2.1 suggest that 

there is scope for further improvement of the anchorage system.

The strain measurements were performed using an optical extensometer which is built 

into a Zwick 1474 standard testing machine. The loading rate o f 2 mm/min was selected 

to reach the failure load within about 1 minute.
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3.2.2 Transverse and shear properties

The properties o f the tape material in other than the fibre direction are required for the 

stress analysis in the load transfer region o f a pin-loaded strap. The geometry of the 

prepreg tape does not allow the use o f standard coupon testing to determine transverse 

and shear properties. Puck and Schiirmann (1982) proposed a very suitable, but 

expensive method based on tubular specimens. This method allows material 

characterisation under multiaxial loading conditions by combining axial, torsional and 

internal pressure loading on the tubular specimens.

To determine transverse properties a tubular specimen is loaded in axial tension. The 

tube would have continuous fibres aligned in the hoop direction. The load is transferred 

into the tube by way of metal end fixtures that are adhesively bonded to the composite 

tube.

The tubular specimens were produced by wrapping prepreg rings of 6 mm width onto a 

cylindrical aluminium mandrel o f 40 mm diameter, as shown in Figure 3.4. The 

mandrel was first prepared by the application of the releasing agent Release-All'"' 70. A 

tapered laminate thickness was required to ensure that failure occurs in the centre of the 

specimen away from the end fixtures. The number of layers varied from twenty-two, at 

the ends o f 60 mm length, to twelve in the central region o f 90 mm length. Four 

intermediate steps were used to develop the gradual tapered region. The final layer was 

fixed temporarily using a temperature resistant adhesive tapie. Each ring was pushed 

against the previous one using a stiff steel consolidation ring to ensure a well 

consolidated laminate in the longitudinal direction of the mandrel. A rubber shrinkage 

tube was placed over the prepreg rings. To achieve a more uniform pressure distribution



3. Experimental methods 42

a polyester shrinkage film was wrapped around the rubber tube. The system was left in 

an oven at 190 °C for 2 hours. The prepreg rings were consolidated by the expanding 

aluminium mandrel and the contracting rubber tube and polyester film.

The aluminium mandrel was readily removed without damaging the specimen after the 

system was left in the oven to cool down. The central region of the specimens was 

machined on a lathe. This was necessary to achieve a defined cross-sectional shape and 

a central region of constant thickness for the application o f strain gauges. The final 

specimen is shown schematically in Figure 3.5.

Figure 3.4: Schematic layout of the manufacturing process used for tubular 

specimens.

The steel end fixtures were bonded to the tubular specimen over a length of 40 mm 

using Scotchweld® 9323, a room temperature curing epoxy adhesive. The steel was pre­

treated by grit blasting and the tubular CFRP specimen with abrasive paper to remove
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the matrix on the surface to bond to the fibres. Acetone was used as a solvent for 

degreasing purposes. The specimen consisting of the CFRP tube and the two steel 

fixtures was clamped to a steel L-section until the adhesive was cured to ensure 

alignment of the two end fixtures. The base o f  the steel fixtures had features for either 

axial or torsional loading.

The experiments were performed on an Instron-1343 servo-hydraulic testing machine 

capable o f tension, compression and torsion loading. The stroke controlled tensile test 

for the transverse properties o f the CFRP was carried out at an actuator speed of 2 

mm/min. Strain gauges with 10 mm gauge length were applied in the longitudinal 

direction of the tube at four different locations. These were equidistanced on the 

circumference and at the centre o f the specimen.

To determine the shear properties o f the CFRP a pure torsion test was performed at a 

rotational speed of 2 °/min. The control system of the machine ensured that no axial 

loading was applied as the specimen twisted. Two strain rosettes were applied 

equidistanced at the centre of the specimen. The torsional test is shown in Figure 3.5. 

Each rosette had three strain gauges o f 10 mm length, positioned at 45°, -45° and 0° 

with respect to the tube’s axis.
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test specimen torsion test

Figure 3.5: Characterisation of the CFRP in transverse and shear direction.

3.2.3 Frictional properties

The load transfer into individual layers of a non-laminated pin-loaded strap is based on 

friction. Therefore, the friction properties o f different material combinations (see 

Section 4.2.3), which could occur in a non-laminated strap, were determined according 

to standard DIN 53375. The standard is used to characterise polymeric film materials. 

The layout of the experiment is shown in Figure 3.6. Specimens I and II, or friction 

partners, were respectively fixed to the base plate using a clamping device, and to the 

weight using double sided adhesive tape. This procedure ensured that the movement
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took place between the friction partners. The contact pressure between the partners was 

varied by adding weight on top of specimen II. The maximum weight was limited due 

to the tensile strength o f  the nylon string used to transfer the horizontal friction force to 

a vertical one, so an Instron 1122 testing machine could be used. The maximum weight 

resulted in a normal stress, cr„, of 0.17 MPa. The length o f the two strips for specimen I 

was 200 mm, whereas it was 140 mm for the specimen II strips. A constant contact 

pressure could be maintained over a travel distance of 60 mm. The cross-head speed of 

100 mm/min was defined by the standard.

Figure 3.6: Schematic layout of the friction measurements.

3.3 Anchorage methods

A critical issue for the feasibility of non-laminated pin-loaded straps was the 

development of a suitable end anchorage for the final layer. General concepts of 

anchorage systems which could be used, are described by Winistoerfer (1998). Failure 

modes associated with the anchorage of CFRP laminae are presented in Section 4.3.
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3.3.1 Clamping

The clamped end anchorage system used by the author is equivalent to the system 

described in Section 3.2.1. The rubber padded clamping device is attached to the fixture 

containing the steel pin, as shown in Figure 3.7. One drawback of this system is the lack 

of control over the required length of the non-laminated strap specimen. The frictional 

forces in the load transfer region of a non-laminated pin-loaded strap build up as the 

pins are moved apart under tension. Hence, the load displacement behaviour of a 

specimen critically depends on the quality o f the wrapping process.

Figure 3.7: Clamped end anchorage system of a non-laminated pin-loaded strap.
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3.3.2 Fusion bonding

The fusion bonding methods described by Arias (1998) and Wise (1992) involve CFRP 

materials with thermoplastic matrix to be joined by the application of heat and pressure. 

In the process the surfaces o f  the two parts to be bonded have to be heated such that the 

matrix can fuse. Possible heat sources are hot plates (which are removed before the 

surfaces are brought together), resistive implants, induced eddy currents, ultrasound, 

microwaves or vibrations.

The particular geometry encountered in the end anchorage of the final layer o f a non- 

laminated pin-loaded strap, particularly when anchored to the previous layer, allows the 

application of heat from the outside of the joint. The process developed by the author to 

fabricate a single lap-joint which anchors the final layer in the non-laminated pin-loaded 

strap is shown schematically in Figure 3.8. The two layers of prepreg tape to be joined 

are clamped between two electric heating elements. The option of having the polymer 

film between the two mating surfaces does result in a higher joint capacity when the 

material is Tape IV-3 material (see Section 4.3). The heat was applied until one o f the 

thermocouples placed on the outside of the heating elements reached a predetermined 

value. The temperatures were varied, as described in Section 4.3, to optimise the joint 

capacity. The maximum use temperature of the heating elements was 250°C and this 

was sufficient for fusion bonding of Tapes II and IV material. The developed welding 

rig was, however, not suitable to fusion bond of Tapes I and III material. The-resulting 

lap-joint length was about 90 mm. This length cannot be reduced using the apparatus 

shown in Figure 3.9, but it could be increased by placing two consecutive joints next to 

each other with a partial overlap. The joint length was not varied for this research. The 

fan contained in the control unit shown in Figure 3.9 allowed a reduced cycle time



through forced convection cooling. The applied pressure was kept constant during the 

fusion bonding process by placing a steel block (not shown in Figure 3.9) of 1.5 kg 

mass on top of the welding rig.

Single lap-shear specimens o f 250 mm total length were produced to determine the load 

carrying capacity of the fusion bonded joint. The lap shear tests were carried out using 

the rubber padded clamping device described in Section 3.2.1. The test was performed 

under stroke control at a rate o f  2 mm/min. The maximum load was recorded.
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Section A-A

Figure 3.8: Schematic layout of the fusion bonding process.
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Figure 3.9: Welding rig for thermoplastic prepreg tape.

During the early stages of the development of the process, difficulties were encountered 

with misalignment of the fibres. The nature of this problem is shown schematically in 

Figure 3.10. O f particular importance is the misalignment out-of-the-plane of the tape 

since the resulting comparatively small radii o f curvature reduce the joint strength 

dramatically. In severe cases the lap-joint could be pulled apart by human effort. The 

influence of the transverse in-plane deformations o f the tape was not investigated.



CFRP misaligned areas

plan-view heated zone
in-plane

Figure 3.10: Difficulties encountered in a fusion bonded joint.

These difficulties were overcome by stainless steel sheets supporting the joint in both 

directions where the misalignment occurred. The supporting sheets shown in Figure 3.8 

extend beyond the length of the heating elements to ensure alignment just outside the 

heated zone where the flow of heat energy is sufficient to cause the matrix to melt. The 

sheets on top and bottom of the joint are 0.6 mm thick to minimise the mass. The 

supporting sheets at the sides had to be matched to the exact thickness of the joint. 

Strips of 10 mm width are commercially available in thicknesses every 50 pm. The next 

smaller size compared to the overall joint thickness was selected. All the sheets in 

contact with the prepreg tape were treated using the release agent Release-All® 70.

3.4 Pin-loaded straps

The experimental investigation on pin-loaded straps, where dynamic loading was 

required, were performed on an Instron 1152 servo hydraulic testing machine. The static
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tests were performed on a spindle operated universal testing machine made by Zwick. 

The cross-head, or actuator speed was 2 mm/min throughout the whole investigation. If 

not otherwise stated, the specimen length was kept constant at 200 mm separation 

between the centres o f  the two steel pins, independent of the pin diameter.

The loading pins had a slot machined to match exactly the width of the strap. These 

slots restrained the strap in the transverse direction and ensured the centred position of 

the specimen relative to the end fixtures.

3.4.1 Laminated

The most appropriate method to produce laminated pin-loaded straps from 

thermoplastic prepreg tape would be the use o f a fibre placement machine. In this 

continuous process (Kempe 1997), the prepreg tape is placed on a mandrel which 

represents the inner contour o f the component to be made. The thermoplastic matrix is 

heated locally to the molten stage just before contacting the mandrel. A consolidation 

roller is placed in front of the placement head to press the tape onto the mandrel. The 

roller cools the tape sufficiently to keep the tape in place.

For the manufacture of the author’s specimen such a machine was made available by the 

ABB corporate research centre in Daettwil, Switzerland. Unfortunately, the control unit 

of the robot allowed only rotational symmetric components to be made. An 

unsuccessful attempt was made to use the so called ’teaching option’ to programme the 

robot manually.
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Instead of using the ABB fibre placement machine the method shown schematically in 

Figure 3.11 was developed by the author. The prepreg tape was wrapped around a steel 

centre mould which represented the inner contour of a strap. A  silicon rubber pad 

containing a slot representing the outer contour o f the strap was placed over the steel 

mould. The slot in the rubber pad was made using a numerically controlled water jet 

cutting machine. The size o f the slot was varied according to the number o f tape layers 

wrapped around the steel mould. A ring made from 2 mm thick aluminium sheet 

material was placed around the perimeter of the silicon rubber pad (see Figure 3.11). 

Two steel sheets o f 2 mm thickness were placed above and below the specimen and the 

whole system placed in a heatable press. The silicon rubber pad tries to expand with 

increasing temperature. However, the expansion of the rubber pad was restrained by the 

outer aluminium ring and therefore a consolidation pressure was exerted on the 

specimen. Once the temperature in the plates o f the press reached 190°C the heating 

was switched o ff and the system left to cool down.
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Figure 3.11: Schematic layout of the manufacturing process used for laminated pin- 

loaded straps.

Figure 3.12 shows a laminated strap produced when there was a problem in controlling 

the thickness in the mould. One reason for such thickness changes was the inherent 

variation in dimensions in the off-the-shelf silicon rubber sheet. Another reason for 

thickness changes was the mismatch in thermal expansion between the rubber pad and 

steel mould parts. The gaps which occurred at 190° C became filled with the composite 

material and the resulting poor quality strap is shown in Figure 3.12. To produce straps 

which had the right shape a steel plate acting as a pressure intensifier was introduced 

during the development of the process. This pressure intensifier shown in Figure 3.11 

overlapped the perimeter dimensions of the strap by about 10 mm.

\
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The applied pressure of the heatable press had to be optimised for each rubber pad used. 

The range of the oil pressures and the resulting press clamping force are given in 

Table 3.1 for the three different inner contours.

Table 3.1: Processing parameters for laminated pin-loaded straps.

Inside radius r, Oil pressure Force
[mm] [bar] [kN]

15 2 0 -4 5 1 0 .1 -2 2 .6

25 3 5 - 6 0 1 7 .6 -3 0 .2

75 5 0 -  140 25.1 - 7 0 .4

Figure 3.12: Laminated pin-loaded strap produced with an imperfect rubber pad.
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The developed process is limited in terms o f the maximum number of layers that can be 

consolidated with this method. Straps consisting of fifteen layers o f Tape IV-1 material 

were produced successfully whereas twenty layers of Tape IV-1 material could not be 

consolidated to a strap of satisfying quality. The mismatch o f the thermal expansion 

coefficient between the steel centre mould and the CFRP strap resulted in a high contact 

pressure in the curved region of the strap where the pin is located. Hence, at the 

maximum operating temperature of 190°C, the fibres were believed to be orientated 

parallel to the inner contour of the strap. As the system cooled down, the centre mould 

contracted more that the strap. The consequence of the mismatch in thermal expansion 

was local fibre misalignment, particularly at the transition from the curved to the 

straight section of the strap. This misalignment is shown in Figure 3.13. Furthermore, 

the wrapping process prevented that the tape matched exactly the contour o f the mould 

at the centre since the straight section did not provide any contact pressure to the tape. 

Both effects supported the development o f  the poor quality fibre architecture shown in 

Figure 3.13. As the number of layers was increased the poor quality o f the straps 

became more severe.

Figure 3.13: Discontinuity in the fibre orientation in laminated pin-loaded straps.
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3.4.2 Non-laminated

The processes employed to produce non-laminated pin-loaded straps evolved in 

conjunction with the development of the materials (see Chapter 2). The initial screening 

tests on Tape I material were performed with an adhesively bonded end anchorage using 

Scotchweld® 9323, a room temperature curing epoxy adhesive. The length o f  the single 

lap-joint was about 60 mm. The lap-joint strength achieved was not sufficient and 

specimens consisting of five layers failed in the joint region by way o f  interfacial 

failure. Additional mechanical clamping was introduced along the joint region to 

increase the low adhesive bond strength.

Specimens consisting of five layers of Tape I material were wrapped around an 

aluminium tool representing the inner contour o f the strap. The final layer was anchored 

to the previous one by adhesive bonding. The inner layers were separated from the joint 

with a layer o f  release film ensuring no contamination of any other layers with adhesive. 

The release film and excessive adhesive was removed after curing. Two longitudinal 

strain gauges were applied to the innermost and outermost layer as shown in Figure 

3.14. All the specimens were loaded dynamically (between 1 kN and 10 kN) with 30 

cycles (at 6 Hz) prior to testing to failure. These dynamic loading cycles where 

introduced to promote the relative displacement necessary to attain an even strain 

distribution throughout all the layers in the strap (see Section 4.4.2 for further details). 

The strain was measured continuously at an acquisition rate o f 5 Hz.
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Figure 3.14: Configuration o f screening tests for non-laminated straps with Tape I

material.
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The influence of the pin diameter on the performance of the 

load transfer was investigated using pin-loaded strap elements 

consisting o f a single layer of Tape II or Tape 1V-2 material. 

Different steel pins o f 25, 30, 35,40, 50 and 150 mm diameter 

were used. The prepreg tape was wrapped around two 

identical pins and anchored as shown schematically in Figure 

3.15. The concept of the anchorage was identical to the 

system described in Section 3.2.1. The gradient in the 

clamping force was symmetrical about the centre o f  the lap- 

joint.

Figure 3.15: Test set-up.

The next generation of non-laminated pin-loaded straps consisted of Tape III material 

with a clamped end anchorage for the final layer. Seven layers of Tape III material were 

wrapped around two steel pins with the final layer clamped between a rubber padded 

steel fixture, as shown in Figure 3.16. The steel fixture was equivalent to the clamping 

device described in Section 3.2.1. It was attached to the fixture containing the bottom 

pin. The top and bottom pin were fixed to the testing machine by two universal joints 

ensuring only axial loading in tension. The top universal joint was equipped with a 

battery operated laser pointing to a pre-set mark on the bottom fixture to ensure no twist 

of the two pins. The tape edges were marked with white paint to visualise the relative 

displacements between individual layers. A steel ruler was placed next to the marked 

specimen for coarse displacement measurements. A digital camera was placed in front 

of the marks. It provided the author with a picture of the instantaneous response of the
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strap so that the stroke could be continuously updated. The author could visually inspect 

the specimen and operate the controls o f the machine at the same time.

Figure 3.16: Test layout with a clamped end anchorage for the final layer.

The internal signal generator o f  the Instron testing machine was modified to 

superimpose a signal o f a second, external generator. This allowed an independent 

control of the ramp rate at 2 mm/min with an additional high frequency ripple of 30 Hz 

having an amplitude o f 5 % of the anticipated failure load. The resulting load-time 

history is shown schematically in Figure 3.17.
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Figure 3.17: Schematic load-time history

The last generation o f  non-laminated pin-loaded straps were of the Tape IV-3 material. 

The manufacturing process for those strap specimens was changed because the fusion 

bonding process was available. The length for the bonding o f the outermost layer was 

calculated and the end position marked on the tape coming directly off the roll. The 

joint was made according to the procedure described in Section 3.3.2. After removing it 

from the welding rig (see Figure 3.9), the strap consisting of a single layer was turned 

inside out and the number of layers wrapped towards the inside of the strap. This 

method enabled the length of the final strap to match the predetermined length 

accurately.

Strain gauges were applied to different layers in two specimens consisting of 5 and 10 

layers, respectively. The strain gauges were applied on the side o f the strap opposite the 

fusion bonded joint spaced longitudinally. The spacing was determined such that there
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was no interference between the different strain gauges due to the increased thickness. 

The experimental set-up is shown in Figure 3.18. Measurements were made at discrete 

loading steps. The results are presented in Section 4.4.2.

Figure 3.18: Non-laminatcd pin-loaded strap equipped with strain gauges.
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The influence of the two different anchorage systems developed for the final layer of 

non-laminated pin-loaded straps by the author was investigated. Hence, the load 

carrying capacity o f non-laminated straps with clamped and the fusion bonded end 

anchorage systems were compared. The two different types of non-laminated pin-loaded 

strap elements are shown schematically in Figure 3.19. The specimens were identical in 

every respect except for the method used to anchor the final layer.

Figure 3.19: Last generation of non-laminated pin-loaded straps.

The fusion bonded specimens were produced as described earlier but without the strain 

gauges. The specimens with the clamped end anchorage were wrapped using the 

winding rig shown in Figure 3.20. The two pins were held against the retractable fixture 

by the tape which was tensioned by hand during the strap wrapping process. The 

retractable fixture with the specimen was placed into the testing machine and the final

200

.fusion bonded joint
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layer anchored using the fixture shown in Figure 3.16. Finally, the retractable fixture 

was removed and the specimen tested in tension to failure. This procedure developed by 

the author ensured a reproducible specimen length o f 200 mm.

Figure 3.20: Schematic layout of the winding rig used to produce non-laminated pin- 

loaded straps.

An important aspect was the normalisation procedure used to compare the performance 

of laminated and non-laminated pin-loaded straps with clamped and fusion bonded end 

anchorage systems. The number of load carrying layers in a non-laminated pin-loaded 

strap was reduced because the first layer does not carry load until it has passed over a
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pin. Equation 3.1 was used to determine the number o f load carrying layers, n^iad, from 

the number of layers wrapped, Nl-

2 - 1  (3.1)

3.5 Long term creep performance

The creep properties of non-laminated pin-loaded straps were determined using three 

purpose made test rigs. The rig shown in Figure 3.21 was built 20 years ago for earlier 

creep measurements on glass fibre composites. The design allows a constant load up to 

20 kN to be applied to the specimen. The use of a circular segment for the load support 

of the dead weight in combination with a thin spring steel sheet, supported on a circular 

disk, for the specimen support ensures constant loading and zero moments even at large 

creep strains. The three test rigs were located in an air conditioned laboratory. The 

constant environment had a temperature of 23°C and a relative humidity of 50%. The 

test rigs were calibrated prior to the experimental investigation by replacing the 

specimen with a calibrated load cell.
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dead weight

Figure 3.21: Creep test rig.

The rigs were originally not equipped for deformation measurements. The author fitted 

two dial gauges with a resolution of 0.01 mm to each rig to determine the creep strain at 

two different locations. The gauges are labelled in Figure 3.21. Gauge I measured the 

extension of the strap at the upper pin. Gauge II is located at the back of the cantilever 

beam. This resulted in an amplification of the strap displacement of 8.4. However, the 

displacement recorded by gauge II did also include deformation from within the test rig.

spring steel
Dad support
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The three different pin diameters of, 30, 50 and 150 mm were used in the test rigs to 

isolate the different contributions to the total creep strain of a specimen. Further details 

are given in Section 4.5 where the results are presented and discussed. Lead blocks of 

variable weight were placed at the rear end of the cantilever beam to ensure a constant 

load o f 9.6 kN load applied to each specimen.

The three specimens consisted of five layers of Tape IV-3 material. The lengths of the 

specimens were 209, 202 and 245 mm for the 30, 50 and 150 mm pin diameter 

specimen, respectively.

3.6 Verification of numerical model

An experimental investigation was performed using a single layer of Tape IV-3 material 

to provide data that could be used to verify the numerical and analytical models 

presented in Chapter 5. The single layer of prepreg tape with a fusion bonded joint was 

instrumented with five strain gauges as shown in Figure 3.22. A steel pin o f 50 mm 

diameter was chosen since it was large enough for the four gauges to be placed on its 

circumference. The strains were measured continuously at an acquisition rate of 20 Hz. 

There were errors in the strain measurements because of variations of the bond-line 

thickness of the strain gauges. These errors were compensated as described in Section

5.4.3.
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Figure 3.22: Experimental verification o f the strain distribution around a steel pin.
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4 Experimental Results

4.1 Introduction

This chapter presents and discusses the experimental results obtained from the test 

programme detailed in Chapter 3. The characteristics of the different tape materials are 

described. The performance of the fusion bonding process as a joining technique using 

one of the tape materials is presented. The load carrying capacities of laminated and 

non-laminated pin-loaded strap elements are compared. Creep data on non-laminated 

pin-loaded strap elements are given. The raw data of the measurements are given in 

Appendix B.

The order in which the test results are presented in each section corresponds to the 

availability of the tape materials. Load carrying capacities are quoted instead of stresses 

since the surface texture of the earlier materials did not allow accurate measurement of 

cross-section dimensions.

Rheological influences on the polymer’s properties (as described in Section 2.2.2) have 

been neglected since all the processes used to prepare specimens did not allow 

controlled cooling rates. Matrix dominant properties may have been affected slightly by 

this lack of process control. It is realised that these properties are important since they 

can affect the performance of a pin-loaded strap.
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4.2 Characterisation of the material

4.2.1 Reference data

The mean values of the load carrying capacities. Fu, the standard deviation, s, the 

number o f specimens, N, and the coefficient o f variation, C.O.V, o f the different tape 

materials introduced in Chapter 2, are given in Table 4.1. These values are the basis for 

various performance comparisons in this thesis. The measured properties o f the Tape 1 

material in Table 4.1 were determined according to the test method given in Section 

3.2.1. Tape I material was supplied in the form of 305 mm wide, thin sheets. It was cut 

into 10 mm wide tape strips using the method described in Section 3.2.1. The Tape 1 

material, therefore, had its tensile strength determined following the standard EN 2561. 

Aluminium end tabs were bonded to 10 mm wide specimens in the gripping area, where 

the failure initiated in most o f the specimens. The measured load carrying capacity of 

1840 N was significantly below the tensile capacity of 2540 N, as quoted by the 

material’s supplier (Section 2.3). This suggests that the standard tensile test method 

used is not appropriate to characterise such tape material. As a result, a different 

gripping method was developed using rubber padded clamps. The method is described 

in Section 3.2.1. This improved testing method was used to measure the tensile 

properties o f the remaining five materials in Table 4.1. Because Tape I material was not 

suitable for pin-loaded strap elements, its tensile strength was not determined after the 

preferred testing method was developed.

A theoretical value for a lower bound o f the load carrying capacity, Fut, can be 

determined using Equation (4.1) and fibre properties supplied by the fibre manufacturer 

(see Tables 2.1 and 2.3). The upper bound o f the load carrying capacity, Fut, can be
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calculated for a 12K roving using Equation (4.2). It assumes a perfectly circular cross- 

section for each filament. In both cases the contribution of the matrix is neglected. This 

assumption is deemed acceptable.

T,
F u i= X ,  x

Pf

F,i2 —X f *
d ,  X .71
-!■-------x  12000

(4.1)

(4.2)

Xf is the tensile strength of the fibre, Tf  is the yield, the weight per unit length, pf  is the 

density of the fibre and df  is the diameter o f a single filament. The fibre properties are 

given in Table 2.1.

Table 4.1: Load carrying capacities o f different tape materials

Material N[-] Fu  [N] s[  N] C.O.V[%] Fu, [N] Fu2 [N]

Tape 1 7 1840 110 5.98 . . . . . .

Tape II 6 1780 74 4.19 2010 2020

Tape III 6 2060 55 2.67 2180 2260

Tape IV-1 10 1830 55 3.02 2180 2260

Tape IV-2 10 1790 111 6.21 2180 2260

Tape IV-3 10 1860 116 6.24 2180 2260

The discrepancy between the measured load carrying capacity and the expected lower 

bound value is attributed to the following possible effects:

•  The particular fibre batch may not have the strength quoted by the manufacturer.

• The processing, mainly the impregnation process is responsible for a certain amount 

of residual stresses and damaged filaments.

•  The interfacial properties between fibre and matrix (see Section 4.2.2) may not be 

sufficient to transfer the load into the high strength fibres.
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•  The sudden, brittle failure of the specimens caused considerable secondary damage 

due to the release o f the elastic energy in the specimen. It was very difficult to 

determine the origin and nature of the failure in the tensile experiments described in 

Section 3.2.1. Hence, failure may have been initiated in the gripping area.

An attempt was made to have load-transferring fixtures, which would provide a more 

even stress distribution and therefore lead to a higher load carrying capacity. A conical 

shaped steel socket in combination with an epoxy based casting resin, as described in 

Section 3.2.1, was used to anchor single tape specimens of the Tape IV-3 material. A 

second specimen had a rectangular cross-section of 3 by 6 mm and was made from 

twenty layers o f tape according, to the procedure given in Section 3.2.1. Three single 

tapes failed without any longitudinal splitting at the end of the epoxy load transfer 

medium. The average tensile capacity was 58 % o f its expected value. In the case o f  the 

thicker specimen it pulled out of the socket at 54 % of the expected load. There was no 

failure of the specimen to be seen.

4.2.2 Mechanical properties

The Tape IV-3 material (V/ = 56%) was characterised in detail. It is the author’s 

recommendation that this material type will become the standard for future applications 

of non-laminated pin-loaded straps. The justification for this recommendation will be 

made using the results given in this Chapter.

A typical stress against strain curve for a Tape IV-3 specimen, measured according to 

the procedure given in Section 3.2.1, is shown in Figure 4.1. The non-linear nature of
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the curve indicates a continual increase in the longitudinal stiffness with increasing 

load. This effect is believed to be attributed to non-aligned filaments which become 

more accurately aligned as the tensile load in the tape is increased. The presence of a 

slight fibre misalignment is inherent when the material is processed. It is also known 

that the carbon fibres experience a certain non-linearity in their stress-strain response. 

The microstructural graphite layers forming a single filament have been found to 

become more accurately aligned as the load increases (see Guigon, Oberlin and 

Desarmot 1984 and Bunsell and Somer 1992).

Figure 4.1: Stress-strain curve of Tape IV-3 material.

The longitudinal modulus, £ /, and the longitudinal strength, X/, o f a unidirectional 

composite can be calculated using the Rule of Mixtures equations

(4.3a)E ^ E f X V f + E . x V - V , )

X , = X t x V , + o mUx i l - V , ) . (4.3b)
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Subscripts /  and m are for the constituent fibre and matrix property, respectively, and Vj 

is the fibre volume fraction. Equation (4.3a) allows an accurate prediction of £ / with, 

according to Hull (1981), an error of less than 2 %. £ / was determined experimentally 

according to EN 2561 as described in Section 3.2.1 using the secant gradient between 

10 and 50 % of the failure stress. This method to calculate £ /  is shown in Figure 4.1. 

The difference in Table 4.2 between the calculated and the measured £ / suggests a 

certain amount of misaligned fibres in the tape. Equation (4.3b) is not particularly 

accurate, since strength not only depends on the average constituent properties but also 

on the fibre matrix interaction.

A number of micro-mechanical, semi-empirical models to predict the transverse 

modulus, £ 2. and the shear modulus, G/2, of a unidirectional composite are described by 

Meier (1996). Equations (4.5) and (4.6) represent models for the particular case o f a 

composite with orthotropic carbon fibres. Poisson’s ratio, vm, for plastics is according to 

McCrum et al. (1988) about 0.4. The shear modulus o f  a carbon fibre, Gt , is quoted by 

Donnet and Bansal (1990) to be 21 GPa. The shear modulus, G„„ o f the matrix is 

determined using equation (4.4), since it can be assumed that the polymer is an 

isotropic, homogeneous material. The remaining constituent properties used for the 

calculations reported in Table 4.2 are given in Section 2.3.

G_ = £_
m 2 x (  i + vm ) 

£_

(4.4)

£ >
I -  v. T *(l  + V>

( l - V ,  )075 +6xV.  x -------- ---------- r
'  E , x  ( 1 - 0

(4.5)
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g , 2 = -
Gm x ( l  + 0.25xV,/ 05)

( l-V / ),J, + 1.25xV/ x -
(4.6)

Table 4.2: Mechanical properties o f the Tape 1V-3 material.

Description NI-] Measured s C.O.V. Calculated

E, [GPa] 10 121 3.60 2.98 129 (4.3a)

e 2 [MPa] 1 4830 n /  a n / a 3470 (4.5)

G,2 [MPa] 1 1550 n /  a n /  a 1580 (4.6)

X, [MPa] 10 2250 141 6.29 2760 (4.3b)

x 2 [MPa] 1 27.7 n /  a n / a —

S [MPa] 1 40.9 n /  a n /  a . . .

Table 4.2 compares measured moduli and strengths with theoretical values using the 

micro-mechanical models outlined above. The transverse tensile strength, X2, and the 

shear strength, S, quoted in Table 4.2 are given for completeness of the results. The 

measured values of the properties in transverse and shear direction are indicative, taken 

from one specimen only. The variation o f the longitudinal properties is given with the 

standard deviation, .s, and the coefficient o f variation C.O.V.

The stress-strain curves in Figures 4.2 and 4.3 show the matrix dependent non-linearity 

of the Tape IV-3 material in the transverse direction and under in-plane shear loading. 

The measurements were performed using purpose made tube specimens and the method 

by Puck and Schttrmann (1982). A description of this method is given in Section 3.3.2. 

The non-standard method o f testing introduces errors in the measurements because the 

processing of the tube specimens alters the thermal history of the matrix material. It is 

therefore to be expected that the matrix-dominated properties have been altered. It is to
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be noted that the geometry o f  the tape material does not allow the use o f standard 

coupon testing, except in the longitudinal direction.

Figure 4.2: Non-linear stress-strain curve of Tape 1V-3 material in transverse

direction.

The transverse modulus £ 2  and the shear modulus G 12 were determined analogously to 

Ei, using a secant between 10 and 50 % o f the stress at failure. This procedure is shown 

in Figures 4.2 and 4.3. The measurements given in Figures 4.2 and 4.3 represent the 

mean values o f  the four strain gauge locations (see Section 3.2.2) to account for bending 

effects due to possible misalignment. The shear stress, T/2, is calculated for the outer 

surface of the specimen using Equation (4.7).
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Where T  is the twisting moment, r„, the outside- and r„ the inside radius of the 

specimen.

Figure 4.3: Non-linear shear stress-shear strain curve o f Tape IV-3 material under

in-plane shear loading.

4.2.3 Frictional properties

The frictional properties for Tape II material were determined in accordance with 

standard DIN 53375. The test method is described in Section 3.2.3. The DIN standard 

was originally developed to determine frictional properties of polymeric film materials. 

The applied dead weight was varied from 5.78 to 30.78 kg resulting in a normal stress, 

ct„, from 0.03 to 0.17 MPa, which is considerably lower than the through-thickness 

stress in pin-loaded straps (see Sections 5.4 and 5.5). A typical load displacement curve 

is shown schematically in Figure 4.4. The horizontal force, F>, is the maximum and
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represents the force at the transition from a stick to a slip behaviour. It is the static 

coefficient of friction which allows an even strain distribution in a non-laminated pin- 

loaded strap element. A high coefficient o f friction prevents relative displacements 

between individual layers. Whereas a low coefficient o f friction leads to an unwrapping 

process when a non-laminated strap is stretched to its working load (see Section 4.4.2). 

Therefore, the concept of non-laminated pin-loaded straps relies on controlled frictional 

properties between the individual layers. The friction coefficient, fl, is calculated from 

the normal force, F„, and the horizontal force, Fh, for each specimen combination using

Figure 4.4: Schematic load displacement curve.

The measurements presented in Figure 4.5 indicate no influence o f the normal stress 

within the investigated range. The error bars in Figure 4.5 represent the standard

(4.8)

Displacement
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deviation from three measurements for all the friction partners investigated except the 

Wrightlon®/CFRP combination where five measurements were performed.

In addition to the friction partners (Steel/CFRP and CFRP/CFRP) encountered in a pin 

loaded strap, two combinations with CFRP and polymeric films were also tested. A 

Teflon® film of 0.15 mm thickness between two layers of CFRP prepreg tape was found 

to reduce the coefficient o f friction, /A by 60 %. A Wrightlon® polymethylpentene film 

of 0.05 mm thickness increased the coefficient of friction by 90 %. This range of 

frictional properties may be used to optimise non-laminated pin loaded straps with a 

large number of layers.

0.6 i

Steel/CFRP CFRP/CFRP Teflon /CFRP Wrightlon /CFRP

Figure 4.5: Frictional properties of Tape II material.

The frictional properties have not been determined on the other materials which 

replaced Tape II as the material development evolved. The experimental method used 

does not allow realistic testing conditions. The results in Figure 4.5 must therefore be
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viewed with caution. In Section 6.1, the author proposes an improved test method to 

accurately determine the value of fl.

4.3 Anchorage methods

A critical aspect for a successful application of non-laminated pin-loaded straps was the 

development of a suitable end anchorage for the final external layer. There are two 

different options available. Both have their merits depending on the application. One 

option is for the end o f the final layer to be anchored to the surrounding structure by 

means of clamping or bonding as shown in Figure 3.16. The alternative option is to 

anchor to the strap itself as shown in Figures 3.14 and 3.19.

The six distinct failure modes that may occur in the end anchorage, are shown 

schematically in Figure 4.6. Certain modes do not manifest themselves. The mode of 

failure found in the tests depends on material and strap design. The most effective 

anchorage is achieved when the tensile failure load of the parent material can be reached 

(mode A). Mode A occurs at a load level for the tape that is higher than the tape 

material will be subjected to in a non-laminated pin-loaded strap because o f stress 

concentrations (see Sections 5.4 and 5.5) in the pin region. The desired mode A 

provides the highest margin of safety against strap failure due to an anchorage failure in 

the final layer.
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A Longitudinal tensile failure of the parent material

B Longitudinal tensile failure of the parent material at the joint edge

C Longitudinal tensile failure of the parent material within the joint location

D Transverse failure of the parent material

E Interfacial failure

F Cohesive failure

Figure 4.6: Possible failure modes of the end anchorage.

Adhesive bonding of thermoplastic composites requires extensive pre-treatment to 

prevent interfacial failures (mode E) by increasing the surface energy of the matrix. 

According to Rasche (1987), reasonable strength properties can be achieved using 

methods such as corona or gas plasma pre-treatment. Furthermore, these methods do not 

result in a permanent increase o f the surface energy and should therefore be applied 

shortly before the bonding process (see Schindel 1988).

A more economic and environmentally friendly joining method is the fusion bonding 

method described by Arias (1998). This method is essentially a welding process using a 

thermoplastic matrix. Shear strength values of 50 MPa have been reported by Wise 

(1992) using a single lap-shear configuration and Tape I material. The supplier of Tape 

I material quotes an interlaminar shear strength of 97 MPa (Fiberite 1989) which results 

in a joint efficiency of about 52%.
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The fusion bonding process described in Section 3.3.2 allows the production of very 

effective joints. The tensile load capacity o f lap-shear specimens using Tape IV-1 

material is shown in Figure 4.7. The bars represent the mean values taken from six 

specimens. The error bars show the standard deviation as a measure of the variation of 

the data. The reference is the parent material’s tensile capacity taken from Section 4.2.1. 

The influence of the welding temperature is not significant within the investigated range 

with a maximum difference in the mean capacity of only 1.5%. Hence, the chosen 

welding temperature for all the following investigations was 185°C where 87% of the 

parent material’s tensile capacity could be reached. The observed failure mode was a 

combination of modes B and D. The interlaminar failure o f the parent material (mode 

D) is believed to be a secondary effect occurring immediately after the local tensile 

failure initiated (mode B).

2.00

1.60 -

0.00
reference 175' 180° 185°

Temperature [°C]
190° 195'

Figure 4.7: Lap shear properties of Tape IV -1 material at different welding

temperatures.
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The tensile capacity o f lap shear specimens using Tape IV-3 material is shown in Figure 

4.8. The error bars represent the standard deviation based on six specimens. The tensile 

capacity is clearly different to the one using Tape IV-1 material. Only 65 % of the load 

carrying capacity could be reached with the single lap-shear specimens described in 

Section 3.3.2. The Tape IV-1 material (V /=  41%), having a considerably lower fibre 

volume fraction, allowed 87 % of the load carrying capacity to be transferred. The 

higher fibre volume fraction of the Tape IV-3 material (V /=  56%) resulted in higher 

stress concentrations at the ends of the lap-joint. This may be due to the reduced bond­

line thickness which has a considerable influence on the stress distribution (Bresson 

1971).

The eccentricity in the load path is not considered to be important with a lap-length to 

joint thickness ratio o f about 240 and a joint thickness of about 0.4 mm. Single lap- 

joints with such geometrical features are known to be relatively efficient 

(Mottram 1998).

The problem of a reduced joint strength with higher fibre volume fraction tape, such as 

Tape IV-3 can be solved by placing, before the fusion bond is made, a thin polymer film 

between the two mating surfaces. This approach to remedy the low joint strength is 

described in Section 3.3.2. The film used was of PA 12 material, the same polymer as 

the matrix of the tape. It has a thickness of 40 pm. Employing this approath to control 

the bond-line thickness resulted in a lap shear strength of 99 % o f the strength of the 

parent material (see Figure 4.8). Hence, the failure o f the single layer lap-joint was not 

governed by the presence of the joint. The mode of failure could not be established due 

to the damage associated with the failed specimens.
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Figure 4.8: Lap-shear properties o f Tape IV-3 material with different joint

configurations.

4.4 Pin loaded straps

4.4.1 Laminated

Pin-loaded straps are generally described in the German literature (Michaeli and 

Wegener 1989) as a fibre conform design. A fibre conform design is defined as a 

preferred method for load transfer into composite materials. This statement may be 

valid for small radius ratios as indicated in Figure 4.9. The stress <Justrup in the gauge 

length at ultimate failure load of a strap is plotted versus the ratio of outside. r„ , to 

inside radius, r,. The experimental values taken from the literature are based on different 

types of carbon fibre and have therefore been normalised with respect to the material’s
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virgin tensile strength X/. The strength of the materials was determined by the author 

using the Rule of Mixtures Equation (4.3b) and information from the papers. This 

normalisation procedure provides a convenient way by which a measure for the 

efficiency of the load transfer can be achieved. Figure 4.9 shows a considerable 

variation of the experimental data. Although the general trend is a considerable 

reduction in the efficiency of the load transfer with increasing radius ratio. This is 

attributed to stress concentrations which reduce the load at failure compared to that of 

the virgin material, as determined by Equation (4.3b).

r a / r ,

Figure 4.9: Efficiency of the load transfer versus radius ratio of laminated pin-loaded

straps

The sources of the data plotted in Figure 4.9 are given in the legend. The number after
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the first author’s name refers to a different manufacturing process. For the laminated 

strap specimens tested by Wernc (1994) the processes are:
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•  1: Filament wound; Oven cured.

•  2: Filament wound; Cured in a hydraulic press with integrated heating.

•  3: Filament wound; Cured in a hydraulic press with integrated heating

using a multiple mandrel.

The different processes resulted in different fibre volume fractions, Vf, which may be a 

contributing factor for the variation in the load transfer efficiency.

The data in Figure 4.9 acquired by Oser have not been published previously and are 

taken from an unpublished internal report. His data given by the filled square symbols 

were from tests using an end fixture restricting transverse deformations. Oser’s other 

data given by the unfilled symbols gave an inferior performance. These straps were 

tested without the restraining end fixture. Conen (1966) and Hiitter (1966) have reported 

the same beneficial influence o f having the transverse deformations limited (see Section 

5.5) on pin-loaded straps made from glass fibres. Their work found an increase in the 

capacity of 35% when using a restraining end fixture.

Laminated pin-loaded straps were manufactured and tested by the author according to 

methods in Section 3.4.1. These straps of Tape IV-1 material were tested in order to 

provide performance indicators to compare with the non-laminated straps. Table 4.3 

gives the mean measured, Fmt.„,ure, and the predicted, Frrcju,, load carrying capacities 

based on the number of layers and the measured load carrying capacity of a single layer 

(see Table 4.1), assuming 100 % load transfer efficiency. The first number in the 

specimen identification represents the inside radius r,, the second number refers to the 

number of consolidated layers o f tape. The columns for the measured results contain the
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mean load values, Fmeamre, the standard deviation, s, and the coefficient of variation, 

C.O.V. from the number of specimens, N. The efficiency is the ratio of to Fpredu,.

Table 4.3 Load carrying capacities o f laminated pin-loaded straps made from Tape

IV-1 material.

specimen Fpredict N * imeasure s C.O.V. efficiency

[kN] [-] [kN] [kN] [%] [%]

15-5 18.3 5 13.6 1.90 14.0 74

15-10 36.6 5 26.1 2.03 7.8 71

15-15 54.9 5 31.9 1.23 3.9 58

25-5 18.3 6 14.4 0.53 3.7 78

25-10 36.6 5 28.7 1.68 5.9 77

25-15 54.9 5 39.0 2.71 7 .0 71

75-5 18.3 4 14.6 0.73 5.0 80

75-10 36.6 5 31.4 0.93 3.0 86

75-15 54.9 5 46.3 1.04 2.2 84

Larger radius ratios (> 1.2) could not be achieved using the manufacturing process 

described in Section 3.4.1. The data presented in Table 4.3 is also given in a different 

form in Figure 4.10. The measured load carrying capacity is plotted versus the ratio of 

outside, r,„ to inside, r„ radius. The experimental data have been normalised with 

respect to the measured tensile capacity of the material and a theoretical load carrying 

capacity using Equation (4.1). The graphs show a substantial reduction o f the load 

transfer efficiency, even at relatively small radius ratios (< 1.2 ), compared to what is 

seen in Figure 4.9. The high scatter o f the results may have been caused by 

imperfections introduced in the manufacturing process of the specimens. The method 

used to manufacture the strap specimens is given in Section 3 .4 .1. The two graphs show
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the discrepancy when measured and theoretical load carrying capacities are used for the 

normalisation procedure.

Figure 4.10: Efficiency o f the load transfer versus radius ratio of laminated pin-loaded 

straps made from Tape IV -1 material.

An interesting observation was made during the experimental investigation. Premature 

fracture events could be detected acoustically at about 84 % o f the ultimate failure load 

in 24 % o f  the tested specimens. These specimens experienced more delamination 

damage in the load transfer region, than others. This is shown in Figures 4.11 and 4.12, 

where a typical example o f both types is presented. It is assumed that these pre-ultimate 

fracture events are interlaminar shear failures. They may even be beneficial to 

performance o f the straps in alleviating the stress concentrations. The residual strength, 

after cyclic loading of similar laminated pin-loaded straps, was determined by Kruger
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(1985). The fatigue loading increased the residual strength by about 15 %. This was 

attributed to relaxation effects in the epoxy matrix.

Figure 4.11: Failure mode o f a laminated pin-loaded strap with extensive longitudinal 

splitting.

Figure 4.12: Typical failure behaviour o f a laminated pin-loaded strap.
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4.4.2 Non-laminated

To achieve the ideal situation of an optimum load transfer in a non-laminated pin- 

loaded strap all the layers should be strained equally (Winistoerfer and Mottram 1997). 

This can only be fulfilled if rigid body movement is superimposed on the elastic 

deformation of the tape. The rigid body movement has to be limited by controlled 

frictional properties in the load transfer region. An alternative method to uniform 

straining is a temporary reduction of the normal force caused by the contacting bodies.

Initial screening tests on non-laminated pin-loaded straps were performed using the 

Tape I material. Non-laminated pin-loaded straps of five layers with epoxy bonded end 

anchorages were produced for these screening tests. The clamped end anchorage 

described in Section 3.3.1 was not available at the time these tests were conducted. As 

outlined in Section 3.4.2, pressing plates were also applied to increase the strength of 

the adhesively bonded end anchorage. Static tests with monotonically increasing load 

where performed.

The relative displacements required to achieve a uniform load transfer throughout all the 

layers did not seem to take place. This poor results were due to the rough surface texture 

of the tape, it being similar to the texture shown in Figure 2.10. Therefore a number of 

dynamic loading cycles were introduced, prior to the final static loading, in order to 

overcome the ’stick-slip’ transition by a temporary reduction of the normal force. The 

specimens were loaded with 30 cycles (between lkN and 10 kN) at about 6 Hz before 

the load was increased up to failure. The measurements on Tape I material resulted in an 

average efficiency of the load transfer o f 87 %, based on the measured load carrying 

capacity of the material given in Table 4.1.
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One of the specimens was instrumented with two strain gauges, as described in Section 

3.4.2, to determine the strain difference between the innermost and the outermost layers. 

In the perfect strap, when exact relative movement between individual layers is taking 

place, the two strain gauge measurements should be equal. The strain gauge 

measurements are given in Figure 4.13. Each loading cycle causes some movement 

between the individual layers to take place and the arrows in the figure show this 

development with the cyclic loading. Decreasing strain in the innermost layer (layer 1) 

and increasing strain in the outermost layer (layer 5) is evidence to support this 

observation. Even after thirty cycles there is still a considerable difference between the 

two strain measurements. This information suggests an uneven strain distribution 

throughout the cross-section of the strap, thus the non-laminated pin-loaded strap is not 

ideal.

Figure 4.13: Strain gauge measurements of a non-laminated pin-loaded strap made of 

Tape I material subjected to cyclic loading.
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To investigate the influence of the pin diameter on the performance of the load transfer, 

a parametric study was carried out varying the pin diameter. A single ply was wrapped 

around two identical steel pins and was anchored using pressure pads as described in 

Section 3.4.2. Each strap was loaded in tension to ultimate failure. The influence of the 

frictional properties was determined using a Teflon® film at the interface between the 

steel pin and the tape. The mean load carrying capacities of one leg o f single layer 

straps are given in Figure 4.14. The error bar represents the standard deviation taken 

from ten specimens. A marginally higher mean load carrying capacity was found with 

the Tape II material and the reduced friction coefficient. The increase was more 

pronounced when the pin diameter was < 35 mm. Within the investigated range of pin 

diameters, the load carrying capacity is not significantly influenced. This observation 

applies particularly to the Tape IV-2 material straps. Although a smaller pin diameter is 

expected to have considerable influence, the selected pin diameter for future 

investigations was 30 mm. This diameter is believed to represent the smallest and 

therefore the most critical that will be used in most practical applications.

The next development stage was achieved by a certain improvement in the tape quality. 

A strap specimen consisting of seven layers of Tape III material had the clamped end 

anchorage, as described in Section 3.4.2. It was placed into a purpose made test-rig in a 

servo-hydraulic Instron machine. Figure 4.15 shows that the tape edges were marked 

with white paint. A digital camera was placed in front of the marks to take pictures of 

the relative deformation as the load was increased. The digital camera is necessary to 

get immediate results o f the relative displacements which allows instantaneous response

on the controls of the machine.
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Pin diameter [mm]

Figure 4.14: Load carrying capacities of one leg o f a single layer o f tape wrapped 

around steel pins of different diameters.

A small modification on the signal generator of the servo-hydraulic Instron machine 

allowed the use of a second external generator to superimpose a high frequency ripple to 

the applied load. The second generator was tuned to a frequency of 30 Hz and to an 

amplitude of 5 % of 20 kN (the anticipated failure load). These control conditions are 

beyond the limitations of the servo hydraulic testing machine and therefore it can be 

assumed that the specimen was subjected to a different loading condition.

The superimposed ripple is responsible for a temporary reduction of the normal forces 

acting in the through-the-thickness direction o f the tape. It therefore reduces the 

frictional resistance and thereby promotes relative displacements between individual 

layers. A schematic load time history is shown in Figure 3.17.
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The measurements displayed in Figure 4.15 show the relative displacements between 

individual layers with increasing load. The image on the far left is at the beginning of 

the experiment at 7% of the measured failure load. It indicates that there was no contact 

between different layers in the free length o f the specimen. As the load was increased 

the layers move closer together and slide over each other as shown in the consecutive 

images at 27%, 67% and 94% of the measured failure load. This relative change in the 

positions o f the layers is clearly seen in Figure 4.15.

The drawback of this approach to produce an efficient non-laminated strap system is the 

lack of control over the amount of relative displacement. The final layer was clamped to 

the test fixture (see Figure 3.16), and so it did not provide any restraint to the maximum
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length of the specimen. Under these test conditions it was found that the non-laminated 

pin-loaded strap gradually unwound as the load time history was applied. The amount 

of relative displacement between the innermost and the outermost layers was about 

10 mm.

Simplification to the production of straps was achieved with the development of the 

Tape IV-3 material (see Chapter 2). The regular surface texture and the superior 

accuracy of the width and edge contours was found to improve the load carrying system 

substantially. Furthermore, the relative displacements needed for the uniform strain 

distribution to exist could be generated without the application of any sophisticated 

dynamic loading. This demonstrates that the correct material characteristics are essential 

if non-laminated pin-loaded straps are to find applications. The desired characteristics 

were achieved during the course of this project through the development o f Tape IV-3 

material.

A different approach to the one given above was used to show that the relative 

displacements had occurred. Strain gauges were applied to different layers in two straps 

made of Tape IV-3 material. The final layer was anchored to the previous one using the 

fusion bonding process described in Section 3.3.2.

The measured strains in specimens consisting of 5 and 10 layers are shown in Figures 

4.16 and 4.17, respectively. In Figure 4.16 the discontinuities in the curves at loads 

above 10 kN were a result of three loading and unloading cycles being performed 

between 0 and 10 kN load, prior to increasing the load up to failure. This procedure was 

selected to determine any difference in the strain distribution after a number of loading
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and unloading cycles. No significant difference could be found, hence only the last 

loading cycle is shown in the figures. The two figures show a very uniform distribution 

o f  the direct strain measurements throughout all the layers. The specimen consisting of 

five layers (Figure 4.16) shows hardly any difference, whereas the innermost layer 

(No 1) of the specimen consisting of ten layers (Figure 4.17) experiences an increase of 

9  % compared to the outermost layer.

Figure 4.16: Strain in different layers of a five layer strap made o f Tape IV-3 material.
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Figure 4.17: Strain in different layers of a ten layer strap made of Tape IV-3 material.

The mean capacities and the standard deviation, represented by the error bars, taken 

from three welded, non-laminated straps are shown in Figure 4.18. In addition, the 

capacities o f equivalent straps with a clamped end anchorage, as described in Section 

3.4.2, are given. There is almost a linear increase in the failure load with the number o f  

layers. The clamped end anchorage configuration performed slightly superior compared 

to the fusion bonded technique.

Both fixing techniques, however, have their merits depending on the application of the 

strap. The results shown in Figure 4.19 represent the same experimental data with the 

mean failure load per layer normalised using the tensile capacity of the virgin tape 

material. The capacity o f the tape was determined using the test method described in 

Section 3.2.1, and is given as the reference in Figure 4.19. For comparison, the tensile 

performance o f  laminated pin loaded straps is given for 5, 10 and 15 layers of tape. The
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strength of the non laminated strap is superior provided that the number of layers is 

larger than 10. A maximum increase of 29% is found with straps of 15 layers and 

clamped end anchorage. There appears to be a maximum in the failure load per layer at 

about 10 layers of tape. The load transfer mechanism relies on frictional effects between 

individual layers and the normal force acting on an individual layer is dependent on the 

number of layers. This may be a reason why there is an optimum number of layers. 

Future research is needed to establish the optimum number o f  layers.

70

60 •

3 5 7 10 15 20
Layers

Figure 4.18: Tensile capacity o f  Tape IV-3 non-laminated pin-loaded straps
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Layers

Figure 4.19: Normalised performance of non-laminated pin-loaded straps as a 

function o f the number of layers

Observations during testing showed that the failure of a non-laminated pin-loaded strap 

was o f a progressive type, starting within the innermost layer. Failure was initiated in 

the region adjacent to the pin-strap interface. This is supported by the failure seen o f the 

specimen shown in Figure 4.20. It can be seen that the outside layers remained separate 

and intact, whereas the failed inner layers are severely fractured and joined together. 

The released elastic energy in a fracture event probably allowed sufficient relative 

displacement between damaged and intact layers to fusion bond these layers together.

The extensive failure in the pin region become more dominant as the number of layers 

increased. It would be expected, however, that if  failure was governed only by the stress 

in the pin region then there would be no difference in capacity when the anchorage was 

either clamped or welded. It can be seen in Figure 4.19 that the straps with clamped
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anchorage had a higher load carrying capacity, thereby indicating that failure was also 

dependent on the anchorage method. The reason for the contradictory results are unclear 

and this lack of understanding is one aspect for further work.

Figure 4.20: Load transfer area o f a failed non-laminated pin-loaded strap

4.5 Long term creep performance

The creep properties o f non-laminated pin-loaded straps made from Tape IV-3 material 

were determined on three specimens employing the method described in Section 3.5. 

Specimens consisting of five layers were tested with different pin diameters. The 

applied load was 9.6 kN which is 76 % of the average static load carrying capacity, as 

reported in section 4.4.2 for the strap with 30 mm diameter pins. The same load was 

applied to the other two specimens having pin diameters o f  50 and 150 mm. The creep 

strain, £,, was determined using 

AL
£, = — ^ L xlO O .

Lo
(4.9)
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AL,reep is the creep contribution to the extension of the specimen, neglecting the elastic 

contribution and, L0, the initial distance between the centres of the two steel pins.

Three different contributions to the total creep strain are anticipated and these are:

• Creep o f  the prepreg itself in the longitudinal fibre direction which is expected to be 

small since longitudinal mechanical properties are dominated by the continuous 

fibres (Bieling 1983).

•  Creep o f  the prepreg in the through-the-thickness direction which is limited to the 

load transfer region around the pin where transverse stresses are caused by the 

contacting bodies.

• Creep in the end anchorage of the final layer, particularly in the fusion bonded 

anchorage.

Of these three contributions the first two can be neglected since they are small due to 

the material or geometric properties of the strap. However, the creep in the end 

anchorage is considered to be a problem which may be serious enough to cause failure 

of the strap due to creep rupture.

It was hoped that by using different pin diameters to change the through-the-thickness 

stresses in the load transfer region, the different creep effects could be isolated. 

Unfortunately the creep results are not conclusive in this respect.

The test rig, shown in Figure 3.21, was equipped with two dial gauges having a 

resolution of 0.01 mm to determine the creep strain. The results from dial gauge 1 are 

given in Figure 4.21, and give the direct length measurements at the specimen. The
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length variations between two consecutive measurements was often within the 

resolution of the gauge. The calculated strain is based on the distance between the 

centres o f the two pins. Specific conclusions cannot be drawn from the direct strain 

measurements, because of the measurement resolution problem.

Dial gauge II was placed at the rear end on top of the cantilever beam (see Figure 3.21). 

This resulted in a magnification with a factor o f 8 .4  compared to the direct 

measurement. The results from the second gauge are presented in Figure 4.22. These 

measurements appear to be more reliable because o f the sufficient resolution of the 

measurements but the movements in the test rig are also included. The test with the 

50 mm pin diameter had to be terminated after 8900 hours because the rig failed due to 

stress corrosion in the spring steel sheet carrying the specimen. The 50 mm specimen 

did not show any obvious damage from the severe creep loading.

The fusion bonded end anchorage o f the 150 mm specimen failed due to creep after 

9800 hours. The same specimen experienced damage o f  unknown origin at 8400 hours 

where a dramatic increase of the strain was observed. The further measurements show a 

larger strain rate after the event. The event itself is not shown in Figures 4.21 and 4.22 

since the data are manipulated to reduce the plotted range. The real measured data are 

given in Figure 4.23.

The failure o f  the 150 mm strap may have been a typical creep rupture type (Callister 

1997), which occurred after primary, secondary and tertiary creep took place. There is 

an urgent need for further investigations of the creep properties o f non-laminated pin- 

loaded straps since failure occurred at a load level below the short-term static.
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Time [h]

Figure 4.21: Direct measured creep data o f  Tape 1V-3 straps with different pin 

diameters (150 mm data are manipulated).

Time [h]

Figure 4.22: Indirect measured creep data o f Tape IV-3 straps with different pin

diameters ( 150 mm data are manipulated).
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Figure 4.23 Measured creep data o f  Tape IV-3 straps with different pin diameters.
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5 ANALYSIS

5.1 Introduction

This chapter gives the results o f the analysis performed to determine stress distributions 

in pin-loaded straps. The modelling strategy employed is illustrated, and some of the 

difficulties encountered in finite element modelling, when the influence of contact and 

friction effects are considered. In addition, experimental results are compared with 

stresses from classical closed-form solutions and finite element models.

5.2 Modelling strategy

The ultimate goal o f the numerical analysis was an acceptable model for a non- 

laminated pin-loaded strap consisting o f  a number of layers. MARC-Mentat, a general 

purpose finite element code was used for the finite element analysis (FEA). The 

software is, according to the vendor, very suitable to solve engineering problems 

involving contact and friction effects.

In reality, a pin-loaded strap is a three-dimensional contact problem which requires 

knowledge of the pin clearance, the frictional properties between pin and strap, the 

elasticity and support conditions of the pin, etc. As such the ultimate goal is outside the 

scope of this thesis. However, the essential features of a strap may be reproduced by
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simplifying the problem to a two-dimensional one. This approximation is shown in 

Figure 5.1. The two-dimensional model will be generated in the x-y plane, cutting 

through the strap.

Since a non-laminated pin-loaded strap comprises a number o f  layers wrapped one on 

top of each other, the analysis commenced by studying a single layer of prepreg tape 

being wrapped 90° around a circular rigid body (representing the steel pin). Details and 

results are given in Section 5.4.2. The stress distributions resulting from this model 

were planned to be used as initial conditions for further analysis considering a 

multilayered non-laminated strap. Unfortunately, limitations in computational power 

and the sensitivity o f the results, given in Section 5.4.2, to the numerical parameter 

described in Section 5.3 ensured that further analysis was not an option.

n
y

'  t

Figure 5.1: Schematic of a pin-loaded strap indicating the plane for the two-

X

dimensional FE model.
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5.3 Contact and friction modelling using MARC K6.2

Mechanical problems involving contact are inherently non-linear due to the unknown 

boundary conditions. A powerful way to deal with this non-linearity is to adopt a step- 

by-step incremental solution procedure. The time domain is thereby divided into a 

number of discrete steps, for which individual solutions are found, instead o f  finding a 

solution which satisfies all the required conditions at any time instant. Details of the 

incremental solution procedure can be found in Zienkiewicz and Taylor (1991). Contact 

problems always involve friction phenomena. In certain engineering problems where 

frictional forces are sufficiently small, they may be neglected to simplify the analysis. 

However, the frictional effects in non-laminated pin-loaded straps are vital to their 

successful performance and therefore cannot be neglected.

Unlike many other finite element software packages which require the use o f  designated 

contact elements, MARC K6.2 allows the user to define contact bodies within the 

standard set o f elements. This enables the user to model complicated problems 

involving sliding contacts, whereby the location of contact does not have to be 

specified. The analysis o f  a metal blank in a sheet forming process is an example of an 

engineering problem where sliding contact exists.

In reality, such problems involve a transition from a state without relative motion 

between the two bodies to a state where the tangential force, F,, reaches a critical value, 

and relative motion between the two bodies can occur. This effect will be referred to as 

the stick-slip transition. The numerical modelling of this effect requires a smooth 

transition instead of the step function which is typical in reality. The MARC K6.2 

programmers invented a numerical parameter called relative sliding velocity, C, to
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create a smooth stick-slip transition (MARC 1996). Equation (5.1) gives the expression 

for the tangential force in terms of C.

F. = / / x F  x - x tan~'(—) (5.1)

Whereby, fl, and, F„, denote the friction coefficient and the normal force, respectively. 

The user is required to provide this numerical parameter below which a sticking 

condition is simulated. The user manuals for MARC K6.2 does not give the analyst 

much guidance on how to determine the appropriate value for C. The author was also 

not able to find information on the contact algorithm in the open literature. The 

influence of C is shown in Figure 5.2 where the tangential force is plotted versus the 

tangential velocity, v. A small value for C (< lmm/s in the example shown below) is a 

good representation of ’reality’, but fails to provide a convergent solution. Whereas a 

large value for C (> 10 mm/s) provides a convergent solution but represents the ’reality’ 

inadequately. It is recommended by MARC (1997) that the value of C should be 1 to 

10% of a typical tangential velocity, v. The influence o f this parameter on the resulting 

stress distributions is investigated for a single layer strap in Section 5.4.2.
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Figure 5.2: Stick-slip transition for various relative sliding velocities.

Details o f the numerical methods used in the code to consider the influence of contact 

and friction causing non-linear boundary conditions are unknown to the user since the 

vendor does not reveal these for proprietary reasons. A  common method to implement 

the contact constraint is the penalty method described by Zhong (1993) whereby the 

motion is constrained by applying a penalty to the amount of penetration that occurs. 

The contact constraint is based on nodal springs with a non-linear characteristic 

depending on the amount o f penetration or the displacement ratio between the 

contacting bodies.
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5.4 Investigations on a single ply

5.4.1 Classical modelling

Equation (5.2) describes, between B and C, the longitudinal stress at the surfaces of a 

single layer of prepreg tape wrapped around the circular rigid pin shown in Figure 5.3. 

The first term is also the constant stress in the free length o f the tape (C to D). The 

second term in Equation (5.2) describes the bending stress due to a constant radius of 

curvature for the contact length between B and C. If frictional effects were to be 

considered Equation (5.3) is used, whereby the constant stress term is replaced by the 

Euler rope friction formula described by Dubbel (1995). The influence o f the frictional 

effects are shown in Figure 5.4, where Equations (5.2) and (5.3) are plotted for a Tape 

IV-3 material wrapped around a 50 mm diameter pin, using the material and 

mechanical properties given in Tables 2.3 and 4.2 and Figure 4.4. The tape is assumed 

to be free of initial stresses or strains. The load, Fa, was defined such that a constant 

stress o f 2000 MPa resulted in the free length of the strap.

The through-thickness direct stress and the shear stress distributions are given by 

Equations (5.4) to (5.7). The superscript * denotes the consideration o f  the frictional 

influence. Figures 5.4 to 5.6 show the stress distributions at the pin-tape interface from 

B to D, which is at the end of the strap. The graphs indicate a considerable influence of 

the frictional effects on the stress distribution. A comparison between these simple 

closed-form expressions, the FE modelling, and the experimental results will be given

in Section 5.4.2.
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Figure 5.3: A single layer o f tape wrapped around a circular pin.
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5.4: Longitudinal stress component at the pin-tape interface.

Figure 5.5: Through thickness stress component at the pin-tape interface.
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Figure 5.6: Shear stress component at the pin-tape interface.

5.4.2 Finite Element modelling

The initial condition was a straight section o f  prepreg tape fixed in a horizontal position 

at B (Figure 5.3). The tape was then wrapped around one quarter of the pin 

circumference and finally tensioned to a predetermined load. This problem is a highly 

non-linear one. In addition to the boundary non-linearity described in Section 5.3, it 

involves large displacements. Furthermore, the unidirectional orientation o f  the carbon 

fibres result in highly orthotropic material properties (see Table 5 .1 for example).

Figure 5.7 shows the boundary conditions used to model the outlined problem. The 

nodes along the symmetry plane (x  = 0) are free to move in the y-direction but not in the 

¿-direction where symmetry forces the tape to be restrained. The bottom node on the 

plane of symmetry at B was also restrained in y-direction to prevent any rigid body
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motion. The load was applied at the opposite end of the tape using a shear stress defined 

in the global coordinate system. This loading remains in the specified vertical direction 

and is gradually transformed to a direct stress as the tape end rotates around the pin.

fixed initial shear load

r
'
'

____

/
tape

initial condition

Figure 5.7: Boundary conditions.

The applied stress acting always in the negative y-direction was 2000 MPa. It was 

applied using the incremental loading sequence shown in Figure 5.8. The large number 

of increments in combination with the low stress level at the beginning (0.45 MPa) was 

necessary to prevent numerical instability because o f the low tlexural stiffness o f  the 

thin (ca. 0.15 mm) tape. The deformation of the tape at different stages in the analysis is 

shown in Figure 5.9. The magnitude of the vertical stress at the two intermediate stages 

of 150 and 200 increments was determined, from a trial and error approach, to be 0.45 

and 100 MPa, respectively. The software contains an adaptive loading feature where an 

increment can be recycled a certain number o f times creating sub-increments with even 

smaller load steps. This feature enabled the author to use the same loading conditions 

for all the geometries investigated.
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Figure 5.8: Incremental loading at the tape free-end.

B B B B

Increment 0  Increment 150 Increment 200 Increment 250

Figure 5.9: Tape deformation due to incremental loading.

The problem was assumed to be of plane stress type. The tape was modelled using 

isoparametric arbitrary, quadrilateral membrane elements with reduced integration 

capabilities. This element is preferred over higher-order elements due to the superior 

representation o f the contact pressure (see MARC 1997). The element is suitable for 

contact analysis involving orthotropic materials. It was assumed that the stress-strain
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relationships were linear. This assumption is considered acceptable despite experimental 

evidence given in Figures 4 .1 ,4 .2  and 4.3 that the moduli are not constant.

The material properties used in the analysis in this Chapter are given in Table 5.1. The 

values used for the numerical models differ from the measured properties given in 

Chapter 4 because the finite element analysis was performed prior to some of the 

characterisation measurements.

Table 5.1: Mechanical properties used in the analysis.

FEM Classical

E, 133 GPa 121 GPa

e 2 — 4.8 GPa

e 3 8.9 GPa 4.8 GPa

G,} 7.1 GPa —

V l 2 = V l 3 0.28 0.34

V 2 I = V J I — 0.014

V23 — 0.4

One of the element edges was selected as a reference axis for the orthotropic material 

behaviour. The updated Lagrangian formulation option was used to account for the 

large rotations of the tape influencing the reference axis o f the orthotropic material.

The measured, the classical and the FE stress distributions at the tape’s outer surface are 

shown in Figure 5.10. The classical longitudinal stress is from Equation (5.3), although 

the term representing the superimposed bending stresses is added because the surface 

where bending generates tensile stresses is considered. The measured data points were
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acquired, as described in Section 3.6, and scaled according to the measured distances, 

tgouge, (see Figure 5.11) between the tape and the centre o f the four strain gauges in the 

pin region where the tape was bent. The distances for the four gauges are given in 

Table 5.2. Only one measurement was taken at each strain gauge location.

Table 5.2: Measured distances between the tape surface and the strain gauge.

¡gauge

Gauge 1 88 pm

Gauge 2 95 pm

Gauge 3 98 pm

Gauge 4 90 pm

The measured data points in Figure 5.10 contain error bars with a ±10% margin to 

indicate the error introduced by variations in the longitudinal modulus, E¡. Errors of 

such a magnitude are typical if  the modulus is determined at different strain levels.

The outer fibre stress is higher at C than in the free length of the strap at D because of 

the bending deformation. The magnitude o f the bending stress in C is found to be three 

times higher using the classical model than from the FE analysis. There is no 

experimental results to estimate the actual value for the bending stress at C. All three 

stress distributions show that the longitudinal stress increases from B to C such that 

there must be a shear stress at the tape-pin interface. The effect o f  the discontinuities at 

C arc clearly seen and so the development o f a failure criterion to determine load 

capacity o f a strap will need to focus on the stress distribution here.
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Both, the experimental and FE distribution from B to C give a non-linear increase in 

stress and comparing with the exponential relationship from Equation (5.3) it is 

observed that frictional effects are probably not constant.

Figure 5.10: Longitudinal stress component at the tape’s outer surface.



5. Analysis 118

Figure 5.11: Cross-section through a strain gauge bonded to a prepreg tape.

The mesh density was one of the parameters investigated in this thesis since it is a 

critical factor influencing the computational time. Tape sections with length-to- 

thickness aspect ratios exceeding 300 were investigated. Elements of constant 

rectangular size were used in each model. The maximum element aspect ratio was 

selected to be 1.5 to minimise the distortional errors described by Cook et al. (1989). 

This resulted in models with about 12000 degrees of freedom. The majority o f the runs 

were performed on a SUN server containing four UltraSPARC 50 MHz processors with 

256 Mbytes RAM each. The larger models were submitted to a more powerful Cluster 

system at the Swiss Center for Scientific Computing CSCS in Manno. The 

computational time for each model was about 8 to 12 hours.
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Figures 5.12 to 5.14 show the influence of the mesh density on the longitudinal, through 

thickness direct and shear stress distributions at the tape-pin interface. The number of 

elements in the legend refers to the number o f  equal sized elements across the tape 

thickness o f  0.15 mm.

The numerical models used to investigate the mesh density were based on a pin with 20 

mm diameter, a friction coefficient // = 0.2 and a relative sliding velocity of C = 10 4 

mm/s. In reality the relative sliding velocity varies along the tape length whereas the 

code allows only one specific value for each contact body.

The peak through-thickness direct and shear stresses at C (Figure 5.3) show the 

presence o f a mathematical singularity. This is not a surprising result since there are 

both material and geometric discontinuities at this location. From Figure 5.12 to 5.14 it 

can be seen that the maximum stress at C increases as the number of elements increase. 

This lack o f convergence at the location where failure is likely to initiate is one reason 

that prevented the author from considering a failure analysis.
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Figure 5.12: Longitudinal stress distribution at the pin-tape interface.

F ig u re  5 .1 3 :  T h r o u g h - th ic k n e s s  s t r e s s  d is t r ib u t io n  a t th e  p in - ta p e  in te r f a c e .
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Figure 5.14: Shear stress distribution at the pin-tape interface.

The next model variable under consideration is the frictional influence which depends 

on the coefficients o f friction, ¡1, and relative sliding velocities, C. The analysis is based 

on a pin with 2 0  mm diameter, a constant value for C of 5x10 1 mm/s and a varying fJ, 

and a constant friction coefficient f J  of 0.2 and a varying C. Figures 5.15 to 5.22 show 

the dominating influence o f the relative sliding velocity on the stress distributions 

presented. The change in longitudinal stress range for the range of friction coefficients 

from 0.1 to 0 .7  is about one third o f the change which is found when the range o f  

relative sliding velocities is increased from 105 to 10'1 mm/s. Hence the FE solution is 

far more sensitive to a numerical parameter, which has to be estimated by the analyst, 

than it is to the measurable frictional characteristic. The results in the figures show that 

for accurate modelling it will be necessary to know what C is in practice. The relative 

sliding velocity, C, may be determined experimentally but the resulting model may not
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be very versatile since it is not a constant value as the wrapped tape has contact between 

B and C.

Figure 5.15: Longitudinal stress distribution at the tape’s outer surface.

F ig u re  5 .1 6 :  L o n g i tu d in a l  s t r e s s  d is t r ib u t io n  a t  th e  p in - ta p e  in te r f a c e .
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Figure 5.17: Through-thickness stress distribution at the pin-tape interface.

F ig u re  5 .1 8 :  S h e a r  s t r e s s  d is t r ib u t io n  a t t h e  p in - ta p e  in te r fa c e .
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Figure 5.19: Longitudinal stress distribution at the tape’s outer surface.
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A further model variable considered was the pin diameter, D. Figures 5.23 to 5.26 show

the influence of the pin diameter on the stress distribution. The length of the tape was 

varied according to the pin diameter to reduce computational time. The maximum 

absolute value o f the stresses in Figures 5.23 to 5.25 increase exponentially with 

decreasing pin diameter. In the case of shear stresses shown in Figure 5.26, the peak 

value is likely to be the result o f the mathematical singularity present at C.

It is to be noted that for practical reasons, established after the FE analysis, the 

minimum pin diameter has been set to 30 mm. Load carrying capacities in Figure 4.13 

for single layer straps having a pin diameter from 25 to 150 mm do confirm that the 

stress concentrations causing failure increase in severity as the pin diameter is reduced.
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Lire 5.24: Longitudinal stress distribution at the pin-tape interface.
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Figure 5.26: Shear stress distribution at the pin-tape interface.

The three modelling variables investigated provide an insight into the behaviour of a 

prepreg tape wrapped around a circular pin. The models, as presented, cannot be used 

for any strength prediction due to the presence o f a mathematical singularity at the point 

where the two contacting bodies first touch. The through-thickness direct and the shear 

stress components are specifically influenced by the singularity and this leads to 

unrealistically high stresses. Furthermore the convergence tolerance of 0.1 used allows a 

maximum residual force in the analysis to be 10% of the maximum reaction force. This 

tolerance in combination with the orthotropic material properties results in transverse 

and shear stresses o f questionable accuracy. Furthermore, it has been established that 

the error in any stress component derived from FE analysis (Mottram and Shawl996) is 

5 % of the maximum stress component. This indicates that if a stress component 

causing failure in a material is an order o f magnitude less than the maximum case, then 

the error in this stress can be 50 %, and as such it is not useful in predicting failure.
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An important conclusion from this parametric study is the possibility of creating a more 

uniform stress distribution by the combination o f frictional effects with a gradual 

change in the radius o f  curvature of the pin.

5.5 Laminated pin-loaded strap

5.5.1 Classical modelling

The subsequent analysis considers the load transfer into a laminated pin-loaded strap 

assuming a perfect fit between strap and pin and a perfectly lubricated interface. Hence, 

zero shear stress at the pin strap interface is assumed (// = 0). An analytical formulation 

was developed by Conen (1966) to describe the stress concentrations in the load transfer 

region of straps made from glass fibre reinforced epoxy. The model assumes that the 

pin-loaded strap behaves like a thick walled pressure vessel for which Timoshenko and 

Goodier (1970) provide the Lamé equations a solution based on a two dimensional 

plane stress assumption. Equations (5.8) and (5.9) describe the tangential and the radial 

stress components, o> and a2 respectively, in an isotropic cylinder subjected to internal 

pressure, p„ per unit width.

p,
~ i  t7 xr. - r ,

1 - 4
J A

P i x r,
r.. - r f

1 + - 4
2 \

(5.8)

V. V
(5.9)
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The transfer of the load F  (2F a ), into the pin is assumed to be uniformly distributed. 

Neglecting any frictional effects results in a constant internal pressure of

per unit width. (5.10)

The generalised Hooke’s law comprising the effects o f symmetry in an orthotropic 

material can be described in terms of compliance as

s» 5,2 5,3 0 0 0 <7,
e2 Sn 5 22 5 2, 0 0 0 ^2

*3 5,3 5 2, 5„ 0 0 0 <r3
Yl 3 0 0 0 544 0 0 r 23

Yn 0 0 0 0 5„ 0 r,3

Yn 0 0 0 0 0 5« r,2

Where compliances StJ are given in Tsai (1988). Conen (1966) measured strains in a 

number of locations through-the-thickness of laminated pin-loaded GFRP straps. He 

showed a good agreement, with a maximum error of 11% between the measured data 

and anticipated theoretical values using Equations (5.8) to (5.11).

When their laminated pin-loaded straps failed, Conen (1966) and Hiitter (1966) 

observed extensive longitudinal splitting in the transverse direction. The damage mainly 

occurred at the interface between the strap and the steel pin. The splitting, which is 

responsible for the premature failure of a strap, was attributed to Poisson's ratio effects. 

These effects are dominated by the compressive stresses at the pin-strap interface (see 

Section 5.5.2 for further details). Hence they suggested the use o f a restraining fixture in
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the load transfer region to prevent positive transverse direct strains. Hiitter (1966) found 

from experiments an increase in the tensile capacity in the range of 14% (r„ / /-, = 1.4) to 

35% (r„ /  r, = 2.4) using such restraining end fixtures.

In addition, Conen (1966) developed a design criterion for laminated GFRP straps 

which contain the restraining fixture. He determined the stress in the transverse 

direction, 0 2  , from the boundary condition given by Equation (5.12) and Equations 

(5.8) to (5.11). Substituting for the three principal stress components resulted in 

Equation (5.13) that give the critical stress, CFusimp , in the free length of the strap at 

which a maximum allowable longitudinal strain, £u, occurs in the load transfer zone. 

The author tried to derive Equation (5.13) using MATHCAD. The resulting expression 

differed due to possible simplifications in the model development made by 

Conen (1966). Since the maximum error, within the investigated range, was less than 

2%. the simplified analysis by Conen (1966) was found to be acceptable

In Equation (5.13) v;y denote the Poisson ratios with the first index, /, indicating the 

direction o f the applied load and the second index, j ,  the direction of the resulting 

deformation. (Tusimp normalised by the measured tensile strength o f the material is 

presented in Figure 5.27 for a range of r„ / r/ from 1.01 to 1.2. The classical model

(5.12)

-1 x XV2:,+ V 2,
E2

(5.13)
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clearly overestimates the strength of laminated pin-loaded straps made from CFRP 

compared to the measured strengths described in Section 4.4.1.

The three stress components in Equations (5.8), (5.9) and (5.12) are used in the 

interactive failure criterion described by Knaust (1988). He derived Equation (5.14) 

from the general failure criterion for anisotropic materials described by Gol’denblatt and 

Kopnov (1965).

t r , 2 | a \  | a \  c r ,  x <t , ct, x j ,  a , x c r 2 | 3x(r,22 + r,2 + r \y) _ { (5 , 4 )

X,2 X 2 X 2 X, x X 2 X, x Xj X ,x X 2 S2

Substituting for the three direct stress components in Equation (5.14) results in a critical 

internal pressure, p„ which fulfils Equation (5.14). The corresponding stress in the free 

length o f the strap is normalised with the materials tensile strength. This stress ratio 

versus the radius ratio r„ /  r, is also given in Figure 5.27. This interactive failure 

criterion clearly underestimates the strength of laminated pin-loaded straps made from 

CFRP when r„ /  r, > 1.04. The difference is nearly three times when the radius ratio is 

1.20. It is therefore concluded that this model does not accurately predict the resistance.

Mansfield (1983) also considered the problem of load transfer into laminated pin-loaded 

straps. He assumed the pin to be rigid with a surface capable of transmitting only 

normal stresses. He showed that the maximum stresses vary markedly with the ratio of 

the longitudinal to transverse modulus o f the composite material. He derived Equation 

(5.15) to define stress concentration factors, k, for the hoop stress, O), at the pin-strap

interface.
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k = a x ( B  -  A)+ D 

where 

[E,

(5.15)

a  = .

A = —
{ c o - \ ) x [ a 2 - a  +  ( a 2 - v „ ) x ( ìw " “ 1 - 1 ) ]  

a x  [ (a  - 1 ) x ( I — o) a~' ) + (a +  l)x(<y"~' -1 ) ]

B = - A x a + 1 (a ) - \ ) x ( a  -v„) 
a x ( a - l )a -  1V /

D = \ - c o - A - B

o>='-^  
r.

The inverse o f the stress concentration factor, k, against the radius ratio is given in 

Figure 5.27. It is seen that the models by Conen (1966) and Mansfield (1983) give 

similar results which are non-conservative.

r 0  / r ,

Figure 5.27: Theoretical and measured efficiency of the load transfer o f laminated pin-

loaded strap made from Tape IV-1.
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5.5.2 FE modelling

A finite element analysis was carried out on a laminated pin-loaded strap to determine 

stress concentrations and to compare their positions to the failure locations found in the 

tests described in Section 4.4.1. The pin diameter was 20 mm and the radius ratio was 

1.3. The circular steel pin was assumed to be a rigid body with a friction coefficient, //, 

o f 0.2. A relative sliding velocity, C, o f 10'4 mm/s was used in analysis. A quarter-plane 

symmetry model was used for the CFRP strap as indicated in Figure 5.28. It had 

appropriate boundary conditions, to ensure zero displacement in ^-direction at the plane 

o f symmetry. To fulfil the symmetry requirement, the load on the strap was simulated 

by a fixed displacement in the y-direction. The strap was modelled using six elements 

across the thickness. The elements were four-noded, isoparametric quadrilateral 

elements with reduced integration. These elements are suitable for contact problems 

with orthotropic material properties. One o f the element edges was selected as a 

reference axis for the orthotropic material behaviour.

The longitudinal, through-thickness direct and the shear stress components are shown in 

Figure 5.28. The bending deformation (shown magnified in the Figure 5.28), combined 

with variation in the length of innermost and outermost fibres are responsible for the 

occurrence of the premature failure in the load transfer region (C). The failure location 

in the experiments is consistent with the stress concentrations determined by the FE 

model, and this is seen by comparing Figures 1.2 and 5.28. The numerical prediction for 

the strength was not performed since it is not promising using this particular model due 

to the presence of a mathematical singularity at the point were the two contacting bodies 

first touch. Similar findings were reported by Graff and Springer (1991a) and Werne 

(1994) where different techniques were investigated to overcome the local disturbance.



5. Analysis 135

A promising approach was the use o f  a so-called ‘softened contact’ option where a 

smooth stress distribution was obtained by placing truss elements between the pin and 

strap. The truss elements extended beyond the point where the strap leaves the pin. The 

truss stiffness was varied in this region to introduce a gradient in the influence of the 

friction. Graff and Springer (1991a) used this softened contact option successfully in 

combination with a purpose made finite element software Graff and Springer (1991b). 

The code allows a strength prediction o f laminated pin-loaded straps to an accuracy of 

about 15-20%.

magnified displacements in laminated pin loaded straps.
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The longitudinal, through-thickness and shear stress distributions at the pin-tape 

interface are given in Figures 5.29, 5.30 and 5.31, respectively, for two coefficients of 

friction. In addition to the friction effects represented in the graphs, the effects o f the 

mathematical singularity are present in the increased contact area (C to C’). Despite the 

possible errors in the stress recovery procedure outlined in Section 5.4.2 the through­

thickness and the shear stress components are critical in terms o f causing failure o f the 

strap if compared with the longitudinal stress component.

Figure 5.29: Longitudinal stress component at the pin-strap interface.
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5.30: Through thickness stress component at the pin-strap interface.

Figure 5.31: Shear stress component at the pin-strap interface.
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6 Future Development and Applications

6.1 Review and Further Developments

Non-laminated pin loaded straps could provide an economic solution to a large number 

of applications where structural elements are under sustained tensile loading conditions. 

The project has successfully demonstrated the feasibility of the general principle. A 

number of proposals for new applications of the system are presented in Section 6.2. 

EMPA has now an international patent for the concept of non-laminated strap elements 

because the organisation sees a large commercial potential in structural engineering 

applications of composites.

The thermoplastic matrix tape with a quality standard of the Tape IV material has the 

scope to provide cost effective solutions for stiffening and strengthening problems. 

Research and development is still needed before the system can be commercialised. 

This work is listed later in the section

A driving force for the investigation o f non-laminated pin-loaded strap elements was the 

development of a shear strengthening method based on post-tensioned external stirrups. 

The concept of non-laminated pin-loaded straps, as developed in this study, has been 

expanded to the use of non cylindrical ’pins’, allowing a concrete structure to be 

strengthened as shown in Figure 6.1. Details o f  this work will be published elsewhere
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since it is the combined effort o f a group of researchers at EMPA. A conventional 

reinforced concrete beam was specifically designed to investigate the shear 

enhancement due to the external post-tensioned CFRP straps. The beam shown in 

Figure 6.1 was strengthened with non-laminated straps using semi-elliptical steel pads 

instead of the cylindrical pins. The prepreg tape was threaded through holes in the 

concrete slab and wrapped around the pads. The final layer was anchored using the 

fusion bonding process developed by the author. The top pad was lifted with a jacking 

system to tension the strap to approximately 60 % of its capacity. The prestressing force 

in a strap was locked-off by a shim placed between the pad and the concrete.

- - fie .

Ìha 1

Figure 6 .1 : Shear strengthened concrete beam.

The unreinforced control specimen, tested in four-point bending, failed in shear at a 

load on each jack o f F  = 310 kN after tensile rupture of a steel stirrup. The beam, 

strengthened with twelve external straps of 200 mm spacing in the shear span of
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1100 mm, failed by yielding of the longitudinal reinforcement bars at F = 420 kN. As a 

result, four straps were removed from the damaged beam to double the spacing o f the 

external stirrups in the shear span to 400 mm. The second test on the damaged beam 

resulted in tensile failure of one strap in the pad region, followed by a shear failure of 

the beam at F = 410 kN. The shear failure in the beam occurred where the failed strap 

was located. The failed beam is shown in Figure 6.2.

These initial tests provided valuable information on the practicality o f the system. The 

preliminary results suggest that the shear strength of a reinforced concrete beam can be 

significantly enhanced by using external non-laminated straps as strengthening 

elements.

Figure 6.2: Shear failure in a concrete beam.
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Future research on non-laminated straps should address in more detail the various topics 

introduced in this study. Despite the considerable effort made to characterise the 

longitudinal tensile properties o f the prepreg tapes, reliable and more cost effective 

methods have to be developed for quality control purposes to ensure the reliability of 

non-laminated straps.

A key issue still to be investigated is the limitations o f the principle o f non-laminated 

straps. The limitations include the maximum number o f layers in a strap maintaining the 

required load transfer efficiency. It is not feasible to give an efficiency value because 

this will be application dependant. A measure for the efficiency could be the tensile load 

carrying capacity per layer in a strap. The requirements in terms of efficiency are, 

however, dependent on various factors, such as strength or stiffness requirements o f the 

tendon, length and manufacturing constraints. These factors have to be determined for 

each application and will include the overall cost o f the system.

The load carrying capacity per layer in a strap is believed to be dependant on the 

frictional properties o f the prepreg tape itself. Furthermore it may be influenced by 

variable frictional properties within the strap. An appropriate method for the 

characterisation o f the frictional properties has therefore to be developed. The standard 

DIN 53375 was found not to be appropriate because o f the low contact stress. The 

concept shown in Figure 6.3 would allow friction measurements at contact stress levels 

occurring in pin-loaded straps. The frictional properties could be determined by a single 

layer o f prepreg wrapped around a cylindrical pin fixed to a torsional testing machine. 

The prepreg could be tensioned to a predefined value to control the normal forces acting 

on the interface between the prepreg and the pin. Monitoring the loads in each leg of the
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strap and the torque applied to the pin would provide the information required to 

determine the frictional properties. The concept shown in Figure 6.3 will provide the 

frictional properties for the pin/CFRP combination. For any other combination, the 

other friction partner would need to be adhesively bonded to the pin surface.

Figure 6.3: Proposed concept for friction measurements.

Further consideration should be given to the long-term performance of non-laminated 

pin-loaded straps. The preliminary creep results presented in Section 4.5 question the 

reliability o f the fusion bonded joint. Moreover, the shear modulus of the polyamide 

matrix starts to decrease at temperatures around 20°C, depending on the humidity 

content in the matrix. Further creep tests must therefore be a priority, and they must be



6 . F U T U R E  D E V E L O P M E N T  A N D  A P P L IC A T IO N S 143

performed outside the controlled laboratory, where higher temperatures and humidities 

occur. Twelve units o f the test rig shown schematically in Figure 6.4 are currently being 

built and will be used for continuous outdoor weathering tests over the next few years. 

Each rig has a 100 kN tensile load carrying capacity and will allow continuous 

deformation measurements on the strap using a data acquisition system. The outdoor 

environment will incorporate the influence o f temperature and humidity but also 

possible deterioration of the frictional properties due to moisture ingress. The concept of 

the test rig and the deformation measurement device was designed by the author and 

detailed by engineers at EMPA.

Figure 6.4: Creep test rig for outdoor weathering tests.
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The fatigue properties of the prepreg itself are not considered to be an important issue, 

although fatigue loading on non-laminated straps may lead to a gradual unwrapping 

process and therefore to overloading of the end anchorage of the final layer. The result 

would be the failure o f the strap since the final layer is providing the normal force for 

the load transfer by friction. Hence, the fatigue properties should be investigated. 

Furthermore, the relaxation behaviour of non-laminated strap elements ought to be 

determined.

The feasibility o f non-laminated pin-loaded straps has been demonstrated using high 

quality prepreg tape with a polyamide matrix. The mechanical properties of this matrix 

material will unfortunately limit the range o f possible applications. The susceptibility of 

the polyamide to creep at temperatures above the glass transition temperature, TK, o f 

40° C, may require straps to be made from CFRP based on a different matrix material. 

The work presented has shown that the tape material must be o f high quality , having 

excellent surface finish and parallel continuous fibres aligned with the longitudinal axis 

o f the tape. The options for other thermoplastic matrices will therefore be limited to 

those where processing will maintain the required quality of the tape material.

A further aspect to investigate is the end-anchorage of the final layer. A plastic 

clamping device, as shown schematically in Figure 6.5, may provide sufficient capacity 

to anchor a single layer o f prepreg tape. Such a device could be bolted to the 

surrounding structure and be produced in large quantities by injection moulding. This 

simple load transferring device is seen by the author as a cost effective method to 

produce non-laminated strap elements.
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prepreg tape

Figure 6.5: Clamping device for anchorage purposes.

6.2 Further applications

A promising application for non-laminated pin-loaded straps could be permanent rock 

anchors in the tunnelling industry. The stress corrosion resistance of CFRP would 

provide a reliable product with a superior life expectancy compared to current products 

based on steel or glass fibre reinforced polymers. The challenge for this particular 

application is the development of a procedure to fabricate the end-anchorage which is 

not accessible.

Another application for non-laminated pin loaded straps is currently under investigation 

in an ongoing collaborative research project with the University of Manitoba, Canada. 

Highway and railway bridges made from sawn timber beams have been in service for 

more than 40 years. The main goal o f  this research project is the development of a
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strengthening technique to upgrade these bridges to increased loading conditions. The 

oil based impregnation of the timber prevents the use of any bonded reinforcement. 

Hence, a proposed solution is the use o f non-laminated pin-loaded straps as external 

post tensioning cables. Screening tests on strengthened timber beams have been 

performed at the structural testing facility at the University o f Manitoba. A  typical test 

specimen from the programme is shown in Figure 6.6

Figure 6.6: Timber beam strengthened with non-laminated pin-loaded straps.

The possibility to produce the non-laminated pin-loaded strap on site in various 

configurations, in terms o f  length and anchorage design, will allow different tailor made 

strengthening options to be developed over the next decade.
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Such a possibility is shown schematically in Figure 6.7. The figure shows an alternative 

method for flexural strengthening o f a reinforced concrete T-beam, whereby a non- 

laminated pin-loaded strap is placed horizontally on the tension face of the beam.

Figure 6.7: Flexural strengthening application.

The concept of non-laminated pin-loaded straps is not limited to civil engineering 

applications. Figure 6.8 shows a design of a composite connection rod for a combustion 

engine or a pump. The tensile loads between the two bearings are carried by a 

component with similar features as a pin-loaded strap element. This component could 

be replaced by a non-laminated design providing the potential for a low inertia rod at 

competitive cost.
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Figure 6.8: Composite connection rod.
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7 Conclusions and Recommendations

7.1 Conclusions

The focus of this research has been the feasibility of a novel load transfer concept for a 

CFRP tendon system using non-laminated pin-loaded straps. The principle is based on a 

number of non-laminated layers formed from a single, continuous, thin, thermoplastic 

matrix. Such a system enables the individual layers to move relative to each other. 

Undesirable stress concentrations are, therefore, reduced compared to a laminated 

system because this structural form has greater flexibility and a more uniform strain 

distribution is achieved in all the layers.

The material development, results from experimental investigation and the analytical 

modelling can be concluded as:

7.1.1 Material development

One objective of the research was the development of an appropriate material for non- 

laminated pin-loaded straps since no commercially available material was suitable in 

terms of quality or cost. The findings concerning the material development can be

concluded as:
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• commercially available prepreg tape materials were found to be inappropriate 

because of uneven surface texture and edge contours, extensive width tolerances and 

poor impregnation quality.

• aqueous powder impregnation of rovings using PA 12 particles was selected to 

produce tape material at high production rates to reduce the cost.

• specific modification to the existing facility o f Sulzer Innotec Ltd. resulted in 

prepreg tape o f high quality, suitable to show the feasibility of non-laminated pin- 

loaded straps.

• the measured longitudinal tensile properties, determined using different anchorage 

methods, were found to be lower than expected from the Rule of Mixture equation.

•  a successful process was developed to produce specimens to characterise 

thermoplastic tape material in transverse and in-plane shear direction.

•  the developed fusion bonding process resulted in a joint efficiency of 99% using a 

single lap-joint configuration.

7.1.2 Pin-loaded strap elements

The performance of laminated and non-laminated pin-loaded straps with different end 

anchorage systems can be concluded as:

•  a successful process was developed to manufacture laminated straps for research 

purposes.

•  the efficiency o f the load transfer in laminated straps decreases considerably with 

increasing radius ratio.
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•  A minimum pin diameter of 30  mm was selected since no significant influence on 

the load carrying capacity of a single layer strap could be determined when the pin 

diameter was varied from 25 to 150 mm.

• the relative displacement between individual layers was visualised to show the 

principle of non-laminated pin-loaded straps. As the prepreg tape material, 

developed with Sulzer become available, the feasibility was shown successfully by 

strain measurements on individual layers. The innermost layer of a 10 layer 

specimen experienced a strain increase of 9% compared to the outermost layer.

•  it was found that non-laminated straps, where the final layer was anchored to the 

surrounding structure using the clamping device developed to measure the 

longitudinal properties of the prepreg tape, were superior to straps with a fusion 

bonded anchorage, where the final layer is anchored to the strap itself. Hence, 

indicating that failure was dependent on the anchorage method. It was expected, 

however, that failure of a strap was governed by the stress in the pin region. This 

expectation was underlined by observations during testing where the progressive 

type o f failure initiated in the pin region. The reason for the contradictory results is 

unclear.

•  non-laminated straps attained a higher load carrying capacity compared to 

equivalent laminated straps. A  maximum increase of 29% was found with straps 

with a clamped end anchorage consisting of 15 layers.

•  the occurred creep failure questions the reliability of the fusion bonded anchorage 

system, although the circumstances were such that the result is not conclusive and 

further investigations are required.
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7.1.3 Analytical modelling

Analytical modelling was carried out to gain an insight o f the stress distributions in the

pin region. The main findings o f  this research are summarised as follows:

•  if contact and friction is to be considered in a finite element model using MARC 

K6.3, the analyst is required to provide the relative sliding velocity, a numerical 

parameter which defines the stick-slip transition. No accurate value for this 

parameter is known.

•  the influence of the relative sliding velocity was established by a sensitivity study 

where the friction coefficient and the sliding velocity was varied. The stress 

distribution was found to be highly dependent on the sliding velocity.

•  the failure location in the experiments is consistent with the stress concentrations 

determined by the finite element model. Furthermore, a material and geometric 

discontinuity is present in the same location. Hence, failure prediction was not 

performed.

•  the classical modelling carried out confirms the general trends o f the stress 

distributions acquired by finite element modelling and strain measurements.

•  classical failure criteria developed for laminated straps are non-conservative. The 

same classical modelling used in combination with an interactive failure criteria 

underestimates the strength of laminated straps considerably.

7.2 Recommendations for further work

From the experimental investigations and the stress analysis, the following aspects are 

required to be investigated to make the concept of non-laminated pin-loaded straps 

exploitable:
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•  the limitations o f the principle such as the maximum and the optimum number of 

layers in a non-laminated strap have to be investigated experimentally. The option 

of using variable coefficients o f friction within one strap by placing polymeric films 

between layers of tape should be considered in this investigation.

•  the reason for the higher load carrying capacity of non-laminated straps with a 

clamped end anchorage compared to the fusion bonded one, needs to be investigated 

further. The experimental observations suggest that failure was initiated in the pin 

region.

• for safety reasons and the efficient use o f the material the long term performance of 

non-laminated straps has to be investigated by creep and relaxation tests. Such tests 

have to be performed in a realistic environment, depending on the application. The 

degradation of the frictional properties due to the presence of lubricating substances 

should be included in the experimental program.

• the load transfer in pin-loaded straps can be optimised by using a non-circular pin. 

This optimisation requires a reliable classical or finite element model, which 

includes the influence o f friction, to determine the stress distributions in the pin 

region.

•  a classical or finite element model to predict failure of laminated and non-laminated 

pin-loaded straps will be needed.
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Tensile strength X ,  [MPa]

Tensile strength, X/, versus modulus, £ /, o f the different carbon Fibres used in this 

research project in comparison with the Torayca product line.
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Table B 1: Load carrying capacities o f different tape materials

Specimen Tape I Tape II Tape III Tape IV-1 Tape IV-2 Tape IV-3

ICI Baycomp TU-Berlin Sulzer Sulzer Sulzer

1 1941 1815 2077 1820 1725 1869

2 1695 1695 2021 1856 1830 1979

3 1740 1740 2136 1877 1722 1915

4 1903 1903 2053 1718 1605 1874

5 1998 1733 1975 1825 1669 1976

6 1797 1797 2079 1900 1980 1585

7 1816 1887 1894 1862

8 1792 1789 1900

9 1783 1856 1740

10 1848 1802 1861

Mean 1841 1780 2057 1831 1787 1856

s 110 75 55 55 111 117

c.o.v. 5.98 4.19 2.67 3.02 6.21 6.29
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Table B2: Mechanical properties o f the Tape IV-3 material.

Tape IV-3 Capacity Strain thickness width Stress Stiffness

[N] [%] [mm] [mm] [MPa] [GPa]

1 1868.80 1.89 0.14 5.90 2262.47 119.71

2 1978.90 1.94 0.14 5.90 2395.76 123.49

3 1914.90 1.86 0.14 5.90 2318.28 124.64

4 1873.90 1.90 0.14 5.90 2268.64 119.40

5 1976.30 1.92 0.14 5.90 2392.62 124.62

6 1584.60 1.71 0.14 5.90 1918.40 112.19

7 1862.40 1.86 0.14 5.90 2254.72 121.22

8 1899.50 1.93 0.14 5.90 2299.64 119.15

9 1739.50 1.74 0.14 5.90 2105.93 121.03

10 1861.10 1.86 0.14 5.90 2253.15 121.14

Mean 1855.99 1.86 2246.96 120.66

s 116.77 0.08 141.37 3.60

c.o.v. 6.29 4.17 6.29 2.98
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Table B3: Frictional properties of Tape II material

steel /  
CFRP

CFRP/
CFRP

Teflon / 
CFRP

Wrightlon / CFRP

weight M V weight A weight A

[kg] H [-] [-] [kg] [-] [kg] [-]

5.78 0.18 0.26 0.11 5.78 0.48 20.78 0.45

5.78 0.18 0.26 0.1 5.78 0.50 20.78 0.45

5.78 0.19 0.26 0.10 5.78 0.48 25.78 0.43

10.78 0.19 0.25 0.11 5.78 0.51 25.78 0.44

10.78 0.18 0.25 0.10 5.78 0.50 25.78 0.43

10.78 0.17 0.25 0.10 10.78 0.50 25.78 0.46

15.78 0.18 0.25 0.10 10.78 0.46 25.78 0.46

15.78 0.17 0.25 0.09 10.78 0.49 30.78 0.44

15.78 0.17 0.25 0.10 10.78 0.50 30.78 0.51

20.78 0.17 0.24 0.11 10.78 0.50 30.78 0.44

20.78 0.18 0.25 0.11 15.78 0.46 30.78 0.50

20.78 0.18 0.24 0.10 15.78 0.47 30.78 0.51

25.78 0.18 0.25 0.11 15.78 0.48 30.78 0.53

25.78 0.17 0.25 0.09 15.78 0.49 30.78 0.52

25.78 0.17 0.24 0.09 15.78 0.50 30.78 0.53

30.78 0.16 0.25 0.11 20.78 0.43 30.78 0.54

30.78 0.17 0.24 0.10 20.78 0.43

30.78 0.17 0.24 0.09 20.78 0.47
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Table B4: Lap shear capacities of Tape IV-1 at different welding temperatures.

Specimen 175°C 180°C 185°C 190°C 195°C

1 1661 1569 1696 1606 1583

2 1457 1595 1489 1588 1587

3 1557 1554 1618 1516 1528

4 1610 1607 1581 1606 1474

5 1595 1482 1655 1526 1622

6 1501 1557 1471 1554 1626

Mean 1563 1561 1585 1566 1570

s 75 44 90 40 59

c.o.v. 4.78 2.82 5.68 2.54 3.76

Table B5. Lap shear capacities of Tape IV-3 material with different

joint configurations.

Specimen as received PA-12 film

1 1185 1779

2 1069 1766

3 1158 1829

4 1174 1997

5 1230 1761

6 1370 1915

Mean 1198 1841

s 99 96

c.o.v. 8.31 5.19
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Table B6.1: Load carrying capacities o f laminated pin-loaded straps of Tape IV-1 

material.

Ful'S] D = 30 mm D = 50 mm D = 150 mm

5 layers 10541 13338 15526

13030 14579 14694

15411 14694 13875

14669 14746 14118

14234 14490

14272

Mean 13577 14353 14554

s 1904 525 734

c.o.v. 14.03 3.66 5.04

Table B6.2: Load carrying capacities o f  laminated pin-loaded straps of Tape IV-1

material.

D = 30 mm D = 50 mm D = 150 mm

*i/[N ] 24320 31130 30874

10 layers 24333 27750 32461

25446 28160 30976

28211 26829 32410

28416 29542 30464

Mean 26145 28682 31437

s 2033 1681 932

c.o.v. 7.78 5.86 2.96
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Table B6.3: Load carrying capacities o f laminated pin-loaded straps of Tape 1V-1 

material.

D = 30 mm D  = 50 mm D = 150 mm

Fu [N] 33280 42522 46080

15 layers 32384 36685 46541

31462 40909 47258

32461 36250 44595

30054 38400 46899

Mean 31928 38953 46275

s 1230 2707 1035

c.o.v. 3.85 6.95 2.24
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Table B7.1: Load carrying capacities of one leg o f a single layer o f tape wrapped 

around steel pins of different diameter.

Fu [kN] D = 25 
mm

D = 30 
mm

D = 35 
mm

D = 40  
mm

D = 50 
mm

D = 150 
mm

Tape II 1.16 1.27 l u 1.42 1.40 1.78

as received 1.11 1.35 1.15 1.41 1.24 1.75

1.19 1.27 1.22 1.61 1.51 1.74

1.27 1.22 1.19 1.47 1.53 1.79

1.24 1.31 1.25 1.58 1.41 1.63

1.22 1.16 1.21 1.71 1.57 1.65

1.34 1.16 1.20 1.57 1.45 1.61

1.22 1.37 1.24 1.34 1.59 1.85

1.31 1.34 1.26 1.53 1.37 1.69

1.30 1.26 1.35 1.55 1.42 1.55

Mean 1.23 1.27 1.22 1.52 1.45 1.70

s 0.07 0.07 0.07 0.11 0.10 0.09

c.o.v. 5.76 5.72 5.35 7.24 7.24 5.56
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Table B7.2: Load carrying capacities o f one leg o f a single layer of tape wrapped 

around steel pins of different diameter (Teflon film was placed between the pin and the 

tape).

Fu [kN] D = 25 
mm

D = 30 
mm

D = 35 
mm

D 40
mm

D = 50 
mm

D = 150 
mm

Tape II 1.26 1.36 1.46 1.61 1.73 1.64

Teflon 1.46 1.41 1.36 1.51 1.61 1.66

film 1.41 1.49 1.62 1.64 1.58 1.72

1.40 1.31 1.36 1.53 1.59 1.66

1.48 1.48 1.35 1.71 1.67 1.55

1.32 1.48 1.37 1.61 1.55 1.64

1.41 1.48 1.64 1.55 1.50 1.59

1.43 1.52 1.57 1.64 1.58 1.42

1.43 1.36 1.37 1.69 1.60 1.63

1.43 1.45 1.55 1.48 1.49 1.71

Mean 1.40 1.43 1.46 1.60 1.59 1.62

s 0.06 0.07 0.12 0.08 0.07 0.09

c.o.v. 4.60 5.02 8.01 4.92 4.44 5.42
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Table B7.3: Load carrying capacities o f  one leg of a single layer of tape wrapped 

around steel pins of different diameter.

Fu  [kN] D = 30 
mm

D = 50 
mm

D =  150 
mm

Tape IV-2 1.44 1.55 1.44

as received 1.47 1.68 1.47

1.39 1.57 1.39

1.43 1.56 1.43

1.45 1.47 1.45

1.48 1.59 1.48

1.48 1.41 1.48

1.49 1.60 1.49

1.38 1.49 1.38

1.66 1.24 1.63

1.40 1.40

1.40

Mean 1.46 1.52 1.46

s 0.08 0.12 0.07

c.o.v. 5.20 8.16 4.77
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Table B8: Tensile capacity o f Tape IV-3 non-laminated pin-loaded straps with a

fusion bonded end anchorage.

welded 3 layers 5 layers 7 layers 10 layers 15 layers 20 layers

Fc/[N] 6989 12493

7181 11072

6067 12544

6547 13030 20122 29491 36147 48845

7078 13082 16602 29286 39322 53146

7374 13414 18662 30029 36557 50432

Mean 6873 12606 18462 29602 37342 50807

s 481 828 1769 383 1727 2175

c.o.v. 7.00 6.57 9.58 1.30 4.62 4.28

Table B9: Tensile capacity of Tape IV-3 non-laminated pin-loaded straps with a

clamped end anchorage.

clamped 3 layers 5 layers 7 layers 10 layers 15 layers 20 layers

Fu [N] 7887 13363 21414 28493 41574 57344

7846 12493 19430 29696 41318 51482

8102 11807 22477 30925 41728 55091

Mean 7945 12554 21107 29705 41540 54639

s 138 780 1546 1216 207 2957

c.o.v. 1.73 6.21 7.33 4.09 0.50 5.41
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