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Abstract

This Thesis uses Italian panel micro-data to investigate the intertemporal 
wage covariance structure and the extent of transition probabilities at the bottom of 
the wage distribution, producing new and original evidence on the degree of 
persistence of cross-sectional wage differentials over individual life-cycles and on the 
features of the process governing wage mobility across low-pay thresholds. Chapter 
1 presents a survey of the debate generated by the rise of wage inequality observed 
in many industrialised economies and stresses how longitudinal analyses of wage 
persistence and mobility shed light on the long term impact of rising cross-sectional 
dispersion; a survey of the two research areas to which this Thesis contributes, i.e. 
variance components models of the wage covariance structure and econometric 
modelling of transition probabilities, is also presented.

Variance components models of the wage covariance structure are estimated 
in Chapters 2 and 3, where two unbalanced panels drawn from the Social Security 
archive on the 1974-88 and 1979-95 intervals (respectively) are analysed by 
applying the minimum distance technique. Chapter 2 shows that while permanent 
wage profiles converged within the overall wage distribution, divergence can be 
detected for white collar workers, suggesting that the former could have been 
imparted by the egalitarian wage policies of the late 1970s. Results from Chapter 3 
indicate that the rising wage inequality observed in Italy over the 1980s and the early 
1990s permanently affected the evolution of wage profiles especially during the 
second half of the 1980s; on the other hand, increases in the relative importance of 
wage volatility are shown to characterise the first half of the 1990s, thus mirroring the 
higher labour market “flexibility" of recent years. The Chapter also takes into account 
the relationship between covariance structure components and observable workers 
characteristics; in particular, a model which shifts the parameters of interest with 
respect to workers’ occupations is developed, finding that permanent differentials 
arise from the wage distribution of white collar workers.

A bivariate probit model with endogenous switching is developed in Chapter 4 
to analyse low-wage mobility taking the endogeneity of starting wage states into 
account, using survey data from the Bank of Italy. Results indicate the 
appropriateness of such a framework, the correlation between state and transition 
probabilities being statistically significant. While workers’ attributes are found to have 
a limited impact on the probability of leaving low-pay, a considerable share of 
aggregate low-pay persistence appears to be the consequence of true state 
dependence, i.e. the experience of low-pay raises, per se, the likelihood that the 
phenomenon occur in the future. Chapter 5 checks the robustness of these 
conclusions to the presence of endogenous attrition from the wage distribution over 
time by augmenting the model with a third equation for the probability of belonging to 
the balanced sample. The computational difficulties posed by the required evaluation 
of trivariate normal integrals are overcome by implementing simulation estimation 
techniques. Results indicate that exits from the wage distribution over time are an 
ignorable source of sample selection for the estimation of low-pay transition 
probabilities on these data, thus pointing towards the robustness of the findings of 
Chapter 4 to this generalization of the model.
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Introduction

Increasing levels of wage inequality have characterised the labour market in 

many industrialised economies over the recent past, a stylised fact which has 

become of central relevance for the debate in labour economics. A large body of 

literature1 documents how cross-sectional wage differentials have been growing in 

several directions and, as pointed out in these studies, positive and normative 

considerations related to this phenomenon are linked to each other. Under the first 

viewpoint, understanding which forces are driving the rise in inequality can shed light 

on labour market functioning and the way wage determination mechanisms react to 

structural changes in the labour market. On the other hand, disentangling the 

relationship between wage inequality and workers' characteristics has relevant policy 

implications, since it can indicate the source of rising inequality and what kind of 

intervention is needed to prevent it from growing further.

Despite being traditionally known as “rigid”, the Italian labour market shares 

this tendency of widening gaps between the top and the bottom of the wage 

distribution. Several studies2 have shown how, after dropping considerably over the 

late 1970s and early 1980s, measures of inequality tend to rise sharply during the 

second half of the 1980s and the early 1990s. These dynamics paralleled the 

remarkable changes in the wage setting framework taking place during the 1980s. 

As an example, in 1981 the system of wage indexation to the cost of living foresaw 

equal monetary increases all over the wage distribution, while ten years later any 

form of automatic wage protection against inflation had been abolished.

To observe that wage differentials measured on cross-sectional data grow over 

time is only partially informative about the degree of inequality generated by the 

labour market. Is the increasing dispersion persistently affecting workers’ careers or

1 These studies are surveyed in Section 1.2.
2 See Section 1.3 for a review of this literature.
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Introduction

is it just the outcome of wage volatility with transient effects? Is the wage rank of an 

individual in a given period a good predictor of her future ranks or is it likely to 

change? On the one hand, individuals may move within the classes of the wage 

distribution through time, so that those who occupy the lowest quantiles in a given 

year will not necessarily be observed in the same hierarchical position after a few 

periods. In such a case, growing cross-sectional dispersion doesn’t entirely translate 

into higher inequality in the medium or long run at the individual level: the labour 

market provides a dynamic redistribution of labour incomes and low-wage 

experiences are shared among individuals through their careers. Conversely, even if 

cross-sectional inequality is constant, the distribution could be characterised by a 

high degree of hierarchical persistence, so that individuals observed at the bottom 

end at one point in time have a high probability of also experiencing low-wages in the 

future. In this event, the labour market would produce inequality in a dynamic sense 

and cross-sectional measures of wage dispersion would not pick-up such a 

phenomenon. To answer the questions above and gain a complete picture of the 

wage distribution’s dynamics it is necessary to follow individual wage profiles over 

time, assessing the persistence of cross-sectional differentials and the probability of 

transitions within the classes of the distribution through time.

The multi-period perspective offered by the analysis of wage persistence and 

mobility can improve our understanding of the wage inequality issue from both the 

positive and normative viewpoint. In the first case, the distinction between permanent 

and transitory components of wage inequality can indicate which is the nature of the 

structural labour market changes causing the dynamics of aggregate differentials, as 

long as different kinds of shocks impact on each component with different intensities. 

For what concerns the policy implications, while assessing the degree of hierarchical 

persistence yields indications about the need of interventions to protect the low-paid,
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Introduction

disentangling the workers’ attributes generating transitions out of low-pay is 

informative about the kind of policies which could help in fighting long-term labour 

market poverty.

Studies of persistence and mobility require the availability of panel data on 

individual wages which make it possible to move from the analysis of the moments of 

the marginal wage distribution (typical of the wage inequality literature) to the 

assessment of those of the joint distribution over different points in time. The 

availability of multiple wage observations for the same individual over time allows 

identification of the long run wage component, so that a distinction can be made 

between permanent and transitory components of aggregate cross-sectional 

differentials. Also, panel data can be used to track individual movements within the 

classes of the wage distribution through time, so that the probability of changes in 

wage ranks can be estimated.

This Thesis uses Italian panel micro-data to investigate the degree of 

persistence and mobility of the wage distribution. While a growing body of literature 

analyses cross-sectional wage differentials in Italy, longitudinal studies are still rare 

and both the use of panel data and the methodological approaches followed in this 

study will provide a substantial improvement of our knowledge of the interplay 

between individual wage dynamics and wage inequality. Chapter 1 Introduces the 

theme of wage persistence and mobility, stressing the relevance of this kind of 

analyses for the wage inequality debate. After reviewing the main points that have 

emerged from the wide debate on wage inequality and the relevant facts on the 

Italian wage distribution, the Chapter shows how cross-sectional inequality and 

intertemporal persistence (immobility) are the two components of long term 

inequality, and how analyses of mobility are relevant in various circumstances
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Introduction

usually deemed to depend upon cross-sectional wage differentials, such as human 

capital investments or the design of low-wage protection policies. The literature on 

wage persistence and mobility is then reviewed, distinguishing between the two 

research areas to which this Thesis will contribute: variance components models of 

the intertemporal wage covariance structure and the econometric modelling of wage 

transition probabilities.

Chapter 2 analyses the intertemporal male wage covariance structure using 

administrative unbalanced panel data for the 1974-1988 interval, the data set being 

the only one available from this source at the time this research began. Variance 

components models which allow an assessment of the degree of persistence and 

volatility within the second moments of the joint intertemporal distribution of wages 

are estimated by applying the minimum distance technique, i.e. the restrictions on 

the theoretical covariance structure implied by the model are imposed directly on 

empirical second moments. A central issue addressed in this Chapter is the extent of 

convergence in permanent wages, which is assessed by specifying them as 

individual linear profiles (so called random growth models) whose intercepts and 

slopes are allowed to covary over individuals. Such a specification has been 

proposed to test human capital theories of wage dynamics, a negative covariance 

between individual intercepts and slopes being in line with the catching up of wage 

profiles predicted by the Mincerian on-the-job training version of the theory. 

Moreover, cross-overs of permanent wage profiles imply that wage mobility is 

generated by permanent workers’ characteristics rather than by volatility, thus 

preventing welfare worsening effects induced by wage uncertainty. Transitory wages 

are specified according to low-order ARMA processes which allow for the fact that, 

contrary to time series analysis, in a panel micro-data context initial conditions of the 

process cannot be placed in the infinite past and need to be explicitly modelled.
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Estimated models are also characterised by polynomial loading factors on each 

wage components, aimed at controlling for time-wise heterogeneity in the covariance 

structure. Finally, additional features of individual wage dynamics are addressed by 

performing the analysis within samples defined by workers' occupation.

The analysis of male wage persistence and volatility is extended along several 

directions in Chapter 3. First of all, the extent of time-wise heterogeneity in the wage 

covariance structure is assessed by means of period-specific shifters which do not 

impose any functional form, so that the relative importance of changes in permanent 

wage differentials and wage volatility in determining aggregate inequality dynamics 

can be flexibly estimated. A second relevant feature of the analysis in this Chapter is 

the comparison between alternative dynamic specifications of the permanent wage, 

namely random growth versus random walk models, the latter being aimed at 

capturing wage persistence through the unit root hypothesis. Thirdly, the relationship 

between variance components and workers attributes is analysed in detail and a 

model which shifts covariance structure parameters with respect to individuals’ 

characteristics proposed. Finally, a larger and more recent administrative panel is 

analysed, thus providing evidence also for the years in which automatic wage 

indexation has been completely abolished.

The issue of hierarchical mobility at the bottom of the wage distribution is 

addressed in Chapter 4, where an econometric model of low-wage transition 

probabilities is estimated. The perspective proposed in this Chapter is alternative and 

complementary to the one of variance components models: while in that case the 

whole distribution is subsumed under a limited number of parameters and the effect 

of both observable and unobservable workers' characteristics on persistence is taken 

into account within the permanent wage component, the low-wage mobility model 

concentrates on wage dynamics at the bottom of the distribution and estimates the
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effect of each observable attribute on the probability of crossing pre-defined low- 

wage thresholds. The modelling strategy follows and extends the framework 

proposed by Stewart and Swaffield [1999] who use bivariate probits with 

endogenous switching to analyse low-pay transitions controlling for the endogeneity 

of the conditioning starting state, the so called initial conditions problem. 

Implementation of this model is demanding in terms of data, since the availability of 

instruments to identify the initial conditions of the transition is required. Household 

survey data containing information preceding the labour market entry are used. 

However, such information is available only for recent waves of the survey, so that 

the analysis focuses on the 1993-95 transition; moreover, due to the small sample 

size, female and male data are analysed jointly. After estimating the effect of 

observable characteristics on low-wage transitions, the model's predictions are used 

to disentangle the extent of pure state dependence on aggregate persistence, thus 

shedding light on the role played by the experience of low-pay itself in determining 

the occurrence of low-pay episodes in the future.

Further insights on low-pay transitions are provided in Chapter 5, where the 

robustness of the results previously obtained to the presence of endogenous sample 

selection is assessed. Estimation of the model in Chapter 4 is based on a balanced 

sample, i.e. only observations with a valid wage at both ends of the transitions are 

used, while those exiting the group of wage earners are discarded from the analysis. 

As long as the process governing attrition from the wage distribution is correlated 

with low-pay transitions, such a selection rule may lead to biased estimates. To cope 

with this issue, an equation for the probability of staying in the sample and 

observations on those leaving the group of wage earners during the transition are 

added to the model, yielding a trivariate probit. However, estimation of the model 

poses a computational hurdle, since trivariate normal integrals are not packaged

7



Introduction

within statistical software. To overcome the problem, the method of simulated 

maximum likelihood has been implemented, in which the intractable bit of the 

objective function is replaced by its simulated counterpart; details on the 

implementation of the simulated maximum likelihood estimator are given in the 

Appendix to the Chapter. Simulated estimation of this model will thus enable us to 

set-up a more general framework for the analysis of low-pay transition probabilities, 

within which the potential endogeneity of panel attrition, and hence the robustness of 

results provided in Chapter 4, can be evaluated.
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1. Individual wage dynamics, persistent inequality and mobility

1.1 Introduction

This Chapter presents a survey of the literature on wage persistence and 

mobility and stresses the relevance of this kind of analysis for the more general 

debate on wage differentials and wage inequality. The study of wage inequality has 

become increasingly popular in recent years as an attempt to provide explanations 

for the considerable changes in the wage distribution observed in many industrialised 

economies. This literature typically utilises cross-sectional data and studies 

variations in the marginal wage distribution, i.e. the distribution of wages at a given 

point in time; for this reason it misses important dynamic aspects of the changes in 

wage inequality which can be assessed by utilising panel data to analyse wage 

persistence and mobility. The use of panel data in which the same worker is 

observed over several years allows the adoption of a different perspective: the joint 

wage distribution over various points in time can be studied, so that not only the 

extent, but also the persistence of wage differentials through time can be analysed. 

Such a different perspective generates an informative gain both for our 

understanding of labour market functioning and for the design of policies aimed at 

coping with increasing wage inequality.

The Chapter is organised as follows Section 2 offers a survey of the debate 

raised by the changes in the wage distribution characterising several countries over 

the last two decades The survey is not meant to be exhaustive, but is aimed at 

highlighting the main points emerged from such a wide debate. Relevance is given to 

the stylised facts shaping the debate, with particular reference to the United States, 

for which distributional dynamics have been extensively documented, and with some 

element of the European experience. The Section then develops by illustrating the 

main theoretical explanations put forward to account for the empirical evidence. 

Section 3 illustrates the stylised facts on the Italian wage distribution, stressing how

10



1. Individual wage dynamics, persistent inequality and mobility

institutional developments in the labour market have been relevant in determining the 

evolution of wage differentials. The link between cross-sectional wage inequality, 

persistence and mobility is introduced in the fourth Section, where it is shown how 

longitudinal data allow the adoption of a multi-period approach to inequality, which is 

relevant under both the positive and normative viewpoint. The last two Sections give 

an illustration of the empirical literature on wage persistence and mobility, making a 

distinction between the two main bodies of research to which this Thesis will 

contribute: the GMM analysis of the wage intertemporal covariance structure and the 

estimation of models for the probabilities of transition within the classes of the wage 

distribution through time. The line of argument is, in these two Sections, descriptive; 

the formal discussion will be developed in the next Chapters.

1.2 Wage inequality: stylised facts and proposed explanations

The marked growth of wage differentials undoubtedly represents a central 

phenomenon characterising the labour market of many industrialised countries over 

the last two decades. Its importance is mirrored by the large body of, mainly 

empirical, research dealing with the dynamics of the wage distribution in recent 

years; quoting the classical survey paper of Levy and Murnane [1992]:

“...within a decade, earnings inequality grew from a lightly studied branch of labor 

economics to a major research area. . .(pag. 1334)".

The analysis of the features characterising this process of growing differentials 

and of the causes behind it is relevant both for the understanding of the mechanisms 

of wage determination and for the study of policy measures aimed at coping with the

11



1. Individual wage dynamics, persistent inequality and mobility

welfare consequences of growing inequality. Under the first viewpoint, researchers 

have focused both on variations in the relative supply and demand for skilled labour 

and on the impact of developments in labour market institutions, and the interaction 

between such explanations has generated a paradigm within which an organic view 

of structural labour market changes can be gained. On the other hand, the welfare 

implications of growing inequality arise from the fact that it typically implies a loss in 

the relative purchasing power of workers at the bottom of the wage distribution 

(OECD [1996]), and that a growing number of individuals earns wages below fixed 

“decency thresholds”. In order to properly design policy interventions to fight labour 

market poverty, it is then important to understand the causes generating such losses 

and to identify the characteristics of the individuals who find themselves worse-off.

1.2.1 Stylised facts

A considerable share of the empirical evidence on growing wage inequality 

refers to the US labour market, a fact which probably reflects both the earlier 

emergence of the phenomenon and its higher intensity compared to Europe. The 

features of the US rise in wage inequality are thus well documented and, in 

particular, the following stylised facts have shaped the debate:

• a growth in the dispersion of raw labour incomes can be observed since the 

first half of the 1970s, with an acceleration during the 1980s decade (Levy 

and Murnane [1992]);

• wage differentials by education follow a sort of sine wave path, with a peak 

located around 1970, followed by a drop over the whole 1970s decade and a 

drastic re-opening during the 1980s (Murphy and Welch [1992]);

• wage differentials by years of labour market experience grow for each 

educational level during the 1970s, while during the 1980s they kept on

12



1. Individual wage dynamics, persistent inequality and mobility

growing only for the less educated segment of the labour force (Katz and 

Murphy [1992]);

• since the early 1970s wage dispersion grew steadily also within the cells 

defined by educational levels and labour market experience (Juhn et al. 

[1993]);

• the only differential which dropped consistently between the 1970s and the 

1990s was the gender wage gap (Gottschalk [1997]).

Juhn et al. [1993] analyse the effects of changes in labour force composition, 

changes in “prices” for such characteristics (i.e. estimated coefficients in wage 

regressions) and changes in residual (within-groups) variability on wage dispersion 

at various quantiles of the distribution. Using CPS data, these authors show that 

while the dynamics of personal characteristics had a limited impact on overall 

inequality, the evolution of their prices had a strong effect in the upper part of the 

distribution, especially during the 1980s and, on the other hand, within-groups 

variation accounted for relative wage losses in the bottom quantiles. Gottschalk and 

Moffitt [1994] use PSID panel data to compute medium term wage measures and the 

yearly deviations from them; they show that a relevant share (approximately one 

third) of growing cross-sectional dispersion can be ascribed to increasing wage 

instability.3

The dynamics of the wage distribution has typically generated increases in 

wage dispersion also in European labour markets. As documented in several issues 

of the OECD Employment Outlook [1993, 1996], the intensity of such changes is 

rather heterogeneous. Great Britain is the European country experiencing by far the

3 Being based on panel data this study deals with individual wage dynamics and the issue of changes 
in medium term inequality. However, it is reviewed here, rather than in the Sections centred on models 
of long term inequality and mobility, given Its relevant impact on the debate on inequality.
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1. Individual wage dynamics, persistent inequality and mobility

strongest growth in wage inequality, especially over the 1980s. Gosling et al. [1998] 

show how, during the 1980s and the early 1990s wage growth was rather limited for 

workers at the bottom of the distribution, while at the median and, especially, for the 

highest quantiles, it was much faster, generating, consequently, a drastic reopening 

of differentials. Stewart and Swaffield [1997] report an increased incidence of low- 

wage jobs since the mid-1980s.

Taking other European countries into account, it has been shown how the 

growth in measures of wage inequality has been less intense and/or has affected 

only certain dimensions of wage differentials (OECD [1993]).4 Typically, the existing 

literature suggests that, among those countries for which some evidence has been 

produced, the only one which didn’t experience any re-opening of differentials is the 

former West Germany (Gottschalk [1997]; Gottschalk and Smeeding [1997]). 

Abraham and Houseman [1993] report steady levels of wage dispersion over the 

1980s and suggest that the combination of the efficient German system of education, 

capable of satisfying the demand for various types of skilled labour, and of the highly 

unionised system of wage bargaining have been the main factors behind the 

distribution’s stability.

1.2.2 Proposed explanations

As anticipated above, the search for explanations capable of accounting for the 

empirical evidence has been mainly based on schemes of labour supply and 

demand. In particular, given that inequality grew along both observable (education 

and experience differentials) and unobservable (within-groups variance) dimensions 

of skills, rising differentials have been in many circumstances associated with a rise 

in the relative "price” for skilled labour and researchers' attention has been focused

4 The discussion on the dynamics of the Italian wage distribution is postponed to the next Section.
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1. Individual wage dynamics, persistent inequality and mobility

on the identification of structural changes in the labour market, especially in the US 

one, likely to alter the balance between demand and supply of skills. In parallel, 

alternative explanations emphasising the decline in labour market institutions have 

been put forward.

The evidence of wage differentials rising by degree of education or labour 

market experience requires the presence of factors capable of raising the relative 

demand for such workers characteristics. An explanation frequently advanced by the 

literature identifies such a factor in the non-neutrality of technological change with 

respect to different types of labour, in particular skilled versus unskilled, an 

hypothesis which is widely known as skilled biased technical change. According to 

this explanation, the introduction of production techniques with high technological 

content (such as the diffusion of personal computers in the workplace) requires an 

increase in the skill endowment of the labour force and, holding the supply of such 

skills fixed, alters the relative wage in favour of more skilled workers (Bound and 

Johnson [1992]; Johnson [1997]). In practice, this hypothesis assumes that the 

growth in the demand for skills has been faster than that in supply; evidence 

supporting this view is reported in Berman et al. [1997], It been observed how, 

similarly to Solowian theories of economic growth, the hypothesis treats technical 

progress as a residual: given that technical change its hardly observable, its 

relevance would result from the inability to find alternative factors capable of 

explaining the empirical evidence. However, some attempts have been made to 

directly measure the impact of technical change on wages. In particular, evidence in 

favour of the existence of a wage premia for the use of personal computers has been 

produced for the US and the UK (see Krueger [1993] and Bell [1996], respectively), 

while opposite results have been provided for France (Entorf and Kramarz [1997]).
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The main alternative market-based explanation for the rise in wage inequality is 

centred on the impact of international trade with less developed countries. According 

to this line of argument, the increasing degree of openness towards countries 

producing goods with a low skill content has put less skilled workers of industrialised 

economies in competition with similar workers in developing countries, thus 

depressing their wages (Wood [1995]). Evidence from macro-data supporting this 

hypothesis has been provided by Borjas and Ramey [1994], The main critique to this 

hypothesis stresses how wage dispersion has been growing also in sectors excluded 

from the globalisation process.

Some authors have stressed how also changes in labour supply could have 

played a role in generating increasing differentials (Topel [1997]). In this respect, the 

two major shocks on the supply side have been the entry of the baby-boom 

generation into the labour market between the 1960s and the 1970s and the 

increasing female labour force participation. The first phenomenon can account for 

the development of differentials for higher education and labour market experience 

during the 1970s (Katz and Murphy [1992]); the baby-boom wave has altered the 

composition of the labour force, which has become younger and more educated, 

thus depressing wage rates in these directions. For what concerns female labour 

supply, the existence of gender discrimination in the labour market could imply that 

female workers entering the labour market will compete with less qualified male 

labour force (Topel [1994]): this would explain both the relative loss for males at the 

bottom of the distribution and the reduction in the ceteris paribus gender wage gap.

An explanation based on changes in the institutional environment arise from 

the observation that the rise in inequality has paralleled a generalised reduction in 

the degree of unionisation and, consequently, in trade unions' bargaining power. In 

general, the presence of unions can affect wage dispersion in two directions. On the
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one hand a positive differential arises for workers covered by contracts negotiated by 

unions (higher between groups inequality); such an effect is weaker the more these 

contracts are extended also to non unionised workers. On the other hand, the wage 

distribution for unionised workers is more compressed than it would be in the 

absence of unions (lower within groups inequality). The empirical evidence reported 

in Fortin and Lemieux [1997] for the US suggests a quantitative predominance of the 

second effect, so that de-unionisation has a net positive impact on wage dispersion. 

Evidence in favour of this hypothesis has been provided also by Gosling and Machin 

[1995] for the UK. More in general, the presence of stronger labour market 

institutions in continental Europe could account for the weaker growth of inequality 

compared to the UK and the US, holding fixed the intensity of technical change or 

international trade; as noticed by Blau and Kahn [1996], even if egalitarian wage 

policies, in particular aimed at protecting workers in the lowest quantiles of the wage 

distribution, have been in place also in the US, European unions have been more 

successful both in compressing wage differentials for unionised workers and in 

extending contract provisions to non-unionised workers.

1.3 Evidence on the dynamics of the Italian wage distribution

The relationship between changes in labour market institutions and the 

dynamics of wage differentials is particularly relevant in the Italian case. Wage 

egalitarianism has been one of the main goals on the unions' side during the 1970s 

and, as Accornero [1992] points out, it was also meant to maintain the high level of 

social support which unions enjoyed after the "hot Autumn” of 1969, a period of 

intense social conflict. The era of wage egalitarianism began in 1969 with the 

introduction of automatic fixed amount wage increments to compensate for inflation
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in the contract of metal manufacturing workers and reached its peak in 1977 when, 

following collective agreements between workers’ and employers' confederations 

dating back to 1975, such fixed amount compensations (the so called Scala Mobile a 

punto unicof were extended by law to all workers (Treu [1984]).6 As we will see 

below, the egalitarian system of indexation imparted a drastic compression to wage 

differentials, which turned out to be hardly tolerable to white collar workers in the top 

part of the wage distribution. These workers progressively lost their attachment to 

unions and in 1980 a mass demonstration against egalitarianism (the March of the 

40,000) was organised in Turin, marking a turning point in the history of industrial 

relations. The 1980s have witnessed a series of reforms of the wage indexation 

system towards proportionality (Erickson and Ichino [1995]), while in 1993 collective 

agreements were signed with which any form of automatic wage indexation was 

abolished. In parallel, other reforms, typically orientated towards a higher “flexibility" 

in industrial relations, have been introduced (Bertola and Ichino [1995]); the literature 

reviewed in this Section shows how, during the same period, the wage distribution 

was characterised by a reopening of differentials.

International comparisons of wage inequality usually rank Italy among those 

economies with a modest growth of differentials during the 1980s. The 1993 OECD 

Employment Outlook reports the measures of dispersion computed by Erickson and 

Ichino [1995] using survey data from the Bank of Italy and assigns a 0 (no variation) 

to the dynamics of the distribution over the 1980s (the period actually considered is 

1978-1987). The 1996 edition of the same report adds three cross-sections from the

5 The expression Scala Mobile (escalator) designates the system of wage indexation; the punto unico 
(single point) version is the one with monetary increases equal over the whole distribution.
1 It has to be stressed how both unions (CGIL, CISL and UIL) and the confederation of employers 
(Confindustria) took advantage from the egalitarian reform of the escalator. If, in the first case, this 
constituted a “victory", in the second it amounted at introducing some additional rigidity in the process 
of wage determination which could help in containing strong calls for wage increases at the firm level 
originating from the high bargaining power of unions in the workplace (Accomero [1992]).
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same survey to the data set (1989, '91 and ‘93), showing how a drastic increase of 

differentials characterises the beginning of the 1990s. In their survey paper of 1997, 

Gottschalk and Smeeding report the statistics of Erickson and Ichino, concluding 

that, together with the former West Germany, Italy

“...form(s) a small group that experienced no measurable increase in earnings 

inequality during the 1980s. ..(pag. 652)".

In his 1997 paper, Gottschalk reports evidence from the 1996 OECD 

Employment Outlook and ranks Italy among countries with moderate increases in 

wage dispersion, stressing how the bulk of growing differentials is concentrated at 

the beginning of the 1990s. In a recent international comparison Bardone et al. 

[1998] compare micro-data from the Bank of Italy to those from the National Social 

Security Institute7 and show that, in the second case, the impression of growing 

inequality over the 1980s and early 1990s is clearer, both for intensity and timing; 

under this last viewpoint, while data from the Bank of Italy display growing 

differentials only from the beginning of the 1990s, Social security records show 

growing differentials since 1986, the first year of data available.

Apart from these international comparisons, a growing literature deals with the 

dynamics of the Italian wage distribution. The fundamental stylised fact reported is 

that the phase of distributional compression imparted by the egalitarian wage 

indexation system has been followed by a marked reopening of differentials.

Erickson and Ichino [1995] use micro-data from the Bank of Italy in 

conjunction, among others, with firm level data aggregated by occupation provided

' Both data sets will be used in this Thesis: their features are described in the next Chapters.
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by local and sectoral confederations of employers (Assolombarda and 

Federmeccanica, respectively). The authors reach contrasting conclusions about the 

timing of the turning point in inequality dynamics depending upon the data source 

utilised. In particular, while cell data present a minimum in inequality series within the 

first half of the 1980s, individual data provide the picture of continuous drop over the 

1980s already mentioned above. The information available in aggregated data 

enable them to decompose wage growth into the part bargained in national contracts 

(which includes Scala Mobile payments) and the one negotiated locally (the so called 

wage drift, determined at the firm level), showing how this last component has been 

used to neutralise the compression induced at the national level, with its effect 

prevailing since the mid-1980s. Moreover, they show how the tendency towards 

increasing educational wage premia has been weaker in Italy than in the US.

Data averaged by occupational level are utilised in Dell’Aringa and Lucifora 

[1994], who show how wage differentials by occupation started growing since the 

mid-1980s. The authors stress the importance of the wage drift for the reopening of 

differentials: a higher flexibility in pay determination on the employers’ side often 

translated into individual wage premia for high level white collar workers.

Casavola et al. [1996] utilise occupational wages at the firm level from the 

Social Security Institute merged with data from the Céntrala dei Bilanci8 on firms’ 

R&D expenses. The main aim of this study is a direct test of the skill biased technical 

change hypothesis as an explanation of growing inequality. The authors show how 

the growth of differentials during the central part of the 1980s has been concentrated 

in the wage distribution of non-manual workers, with a peak in 1988 followed by a 

slowing down in the next couple of years (the period studied is 1986-1990). A 

variance decomposition analysis within and between cells defined by occupation and

8 Literally Central o f Balance Sheets, this is a data set organised by the Banks' Association collecting 
balance sheet information from their affiliates.
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degree of R&D intensity reveals how the growth of differentials has been faster in 

firms with higher levels of R&D intensity, both between occupations and within white 

collar workers; however, no effects can be detected in the blue collar wage 

distribution, while one of the predictions of the hypothesis is that inequality should 

grow within groups holding fixed observable characteristics. Regression analyses 

show that the effect of innovation has been stronger on relative quantities (white/blue 

collar workers ratio in the firm) than on relative wages, suggesting that the supply of 

skilled labour is rather elastic at the firm level.

The work of Manacorda [1997] takes into direct account the distributive effects 

of the Scala Mobile using micro-data from the Bank of Italy. At the aggregate level, it 

is shown that the degree of coverage against inflation granted by the indexation 

system has been dropping over the 1980s. Using quantile regression techniques with 

fixed cohort effects, the author assesses wage dynamics at different points of the 

wage distribution (first, fifth and ninth decile), showing that while the wage drift has 

protected purchasing power at the top of the wage distribution, the reduction of 

indexation coverage has determined a deterioration of relative wages at the bottom.

Lucifora [1998] examines the dynamics of low-pay incidence, with the low-pay 

threshold defined as two thirds the median of the distribution for full-time dependent 

workers, using micro-data from the Bank of Italy and INPS. At the aggregate level, it 

is shown how the probability of holding a job below the indicated threshold tends to 

drop over the first half of the 1980s, rising afterwards, with different timings 

depending upon the data set utilised, mirroring the dynamics for the whole 

distribution documented in the literature reviewed above. Individual low-pay 

probabilities are then modelled using probit equations, where the discrete outcome of 

interest is the occurrence of a wage below the low-pay threshold. Results reproduce 

what we should expect from standard wage equations, with factors such as labour
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market experience, education, jobs in large firms and in the north of the country 

which significatively reduce the likelihood of low pay.

The work of Brandolini and Sestito [1994] takes into account family incomes 

from Bank of Italy micro-data. The authors highlight three phases in the dynamics of 

the income distribution during the period analysed (1977-1991): a first phase of 

compression (1977-1982), followed by a phase of re-opening (1983-87) and a new 

phase of slight compression (1989-1991). Syncronicity of these phases with the 

business cycle suggests the existence of pro-cyclicality in the evolution of income 

inequality.

1.4 Individual wage profiles and long term inequality: the relevance of

mobility

The empirical evidence on wage inequality reviewed above implicitly refers to 

an aggregate perception of wage differentials and doesn’t account for the fact that 

the dynamics of cross-sectional wage distributions are generated by the evolution of 

individual wage profiles within the intertemporal distribution of wages. Using a rather 

old metaphor (Atkinson and Cowell [1983]), it can be said that analyses of cross- 

sectional inequality provide a series of snapshots of the wage distribution over time, 

but do not capture its dynamics as could be done by a movie. Analyses of wage 

dispersion are focused on the intensity of wage differentials between individuals, but 

don't assess their duration (Blundell and Preston [1998]); they are informative about 

the proportions of the labour force which, at a given point in time, occupy pre-defined 

classes of the cross-sectional distribution, but don’t tell us anything about the degree 

of individuals' mobility within such classes through time, i.e. about the probability that 

the hierarchical ordering defined by the wage distribution changes over time. By
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observing that a proportion p of the labour force earns wages below a given quantile 

of the cross-sectional distribution it can’t be determined if the whole labour force has 

a probability p of experiencing low-pay during the working career, if a proportion p of 

the labour force is trapped below that quantile for the whole career or to what extent 

the actual situation is a combination of these two extremes (Stewart and Swaffield 

[1999]). To throw some light on these aspects it is necessary to analyse individuals’ 

mobility within wage hierarchies.

The passage from the analysis of wage dispersion to the analysis of wage 

persistence and mobility implies a change of focus from the moments of the marginal 

(cross-sectional) wage distribution to the ones of the joint (intertemporal) distribution. 

It is then clear that it is necessary to observe the wage of the same worker over 

several points in time, which is feasible only if panel data are available. If one wishes 

to study the wage distribution at time t and t+k, the dynamics of the variance can be 

assessed from the cross-sectional waves for the two years, but a subset of 

individuals observed in both years is necessary to estimate the correlation 

coefficient, thus taking into account wage persistence.

The use of panel data and mobility measures is such that the relevant time 

horizon for judgements on the actual degree of inequality is given by the working 

career or portions of it. This is evident if one wants to define a measure of multi­

period wage inequality. Let wlt be a wage measure observable for N individuals in T 

time periods and let W|.=(1/T)^f be a measure of long-term wages (assuming a

unit discount factor). Then, var(W|.)= (1/ r 2 ) ( ^ f o *  + 2 ^  X s> rPtsa t°s )  . where a f

indicates the variance in year t while p(s is the correlation coefficient between years t 

and s. Long-term inequality thus receives contributions both from point-in-time 

inequality and from the intertemporal correlation of wages (immobility); the larger the
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latter, the larger long term inequality. Moreover, even if point-in-time dispersion 

remains constant, a reduction of wage mobility would imply an increase in long-term 

dispersion which would not be picked-up by point-in-time measures.

Cross-sectional inequality and mobility are the two components of long-term 

inequality; the first assesses the placement of individuals across the classes of the 

marginal distribution at a given point in time, while the second has to do with 

variations of such placement over time. The two aspects are independent. Hart 

[1983] shows how a constant value of the variance over time is compatible with any 

value of the correlation coefficient. Moffitt and Gottschalk [1993] demonstrate that 

the probability of changes in hierarchical orderings is only a function of the 

correlation coefficient of wages, but doesn’t depend on the variances.

The relationship between measures of multi-period income inequality and point 

in time dispersion is formally analysed by Shorrocks [1978a], where it is 

demonstrated how (assuming convex inequality indices) the value of inequality 

measures based on long-term incomes can never exceed the average of such 

measures computed on cross-sectional incomes, the equality between the two 

holding when individual positions relative to the mean income do not change over 

time. This result follows intuitively from the fact that by raising the time interval over 

which long-term incomes are computed, the probability that individuals modify their 

hierarchical ordering becomes larger. Only in the absence of income mobility, i.e. 

when relative positions are fixed through time, point-in-time dispersion is an 

adequate indicator of long-term inequality. Shorrocks proposes an index of 

distributive rigidity based on the ratio between inequality of long-term incomes and 

the weighted average of point-in-time inequality measures.9

See BjOrklund [1993], Arkes [1998] and Jarvis and Jenkins [1998] for recant applications of the 
Shorrocks measure.
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By analysing the extent to which changing wage inequality is accompanied by 

variations in wage persistence, analyses of mobility can help in understanding the 

causes of rising inequality (see, for example, Moffitt and Gottschalk [1993]). 

Increasing wage persistence implies that inequality has to do with the remuneration 

of permanent workers’ characteristics such as skills, so that theories of wage 

inequality based on variations in the relative demand for skills could be adequate in 

explaining the widening of the wage distribution. On the other hand, if rising 

inequality is parallel to increasing mobility, widening cross-sectional differentials 

wash out (at the individual level) after few periods, signalling a growth in wage 

instability which could arise from increased instability in the labour market, as put 

forward by theories emphasising the decline of labour market institution.

The dynamic perspective offered by studies of wage mobility also makes them 

relevant to assess the welfare consequences and policy implications of cross- 

sectional inequality. As an example, one of the policy measures suggested to cope 

with the increased incidence of low-pay jobs induced by rising wage inequality is the 

introduction of minimum wages to protect low labour incomes. Opponents of such a 

policy reply that low-paid jobs act as an entry point into the labour market, which is 

then abandoned thanks to wage dynamics generated by the acquisition of skills and 

experience (Bingley and Westerg^rd-Nielsen [1995]), and maintain that minimum 

wages would increase rigidity and unemployment in a weak segment of the labour 

market. The validity of this line of argument depends on the extent with which wages 

are mobile over time: only if wages are mobile those observed in the lowest quantiles 

of the distribution will change status over time, so that the labour market is capable 

of dynamically redistributing incomes. It follows that the adequate policy in this case 

is the social diffusion of the workers’ attributes generating mobility, rather than 

minimum wages.
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An alternative way to see the relevance of wage persistence and mobility for 

policy purposes is suggested by Blundell and Preston [1998]. They observe that 

what matters for individual welfare is the level of consumption which, assuming 

perfect capital markets, depends on the expectation of long-term income (permanent 

income). As we saw above, long-run income inequality depends both on point in time 

inequality and intertemporal persistence. Then, an increase of cross-sectional 

inequality will affect permanent income and generate welfare losses the more it is 

paralleled by increases in correlation and persistence of the intertemporal income 

distribution; on the other hand, temporary fluctuations will only have a limited impact.

The link between low-paid jobs and mobility is relevant also for incentives to 

invest in human capital. The presence of wage dispersion is usually deemed a factor 

which stimulates the acquisition of skills (see, among others, Blau and Kahn [1996]). 

Hart [1983] argues that such an effect is not to be ascribed to the presence of 

differentials remunerating skills, but rather to the individual perception of the actual 

probability of reaching high wage positions, which in turns depends on the degree of 

mobility.

The above examples suggest that by reducing the impact of cross-sectional 

dispersion on life-time incomes, mobility should be desirable from a welfare 

viewpoint. However, wage mobility could also have negative effects. In particular, by 

increasing the volatility of individual wage profiles, it makes the outcome of individual 

efforts more uncertain, thus depressing incentives to invest in human capital (Hart 

[1983]; Guillotin and Bigard [1992]; Jarvis and Jenkins [1998]). Also, in the presence 

of risk aversion, wage volatility could induce intertemporal substitution in 

consumption, thus reducing households' welfare (Blundell and Preston [1998]). 

Hence, judgements on the desirability of wage mobility are not clear-cut. As 

suggested by Bingley and Westergdrd-Nielsen [1995], some insights into this trade-

26



1. Individual wage dynamics, persistent inequality and mobility

off may be gained by investigating the extent to which wage mobility is determined by 

permanent workers’ characteristics: the idea is that while transitory wage fluctuations 

increase the uncertainty about the development of wage profiles, permanent 

movements are more predictable thus reducing negative effects.

Contrary to the analysis of wage dispersion, international comparisons of 

mobility are still rather rare. According to the 1996 OECD Employment Outlook, 

where some European Countries and the US are analysed, the degree of wage 

mobility tends to be pronounced and homogeneous across countries, with 

differences which do not mirror the ones in wage inequality. Such an outcome is 

confirmed in the subsequent issue of the same report (OECD [1997]), where it is 

also noticed that some sub-groups of workers (for example the more senior) tend to 

persist in low-paid jobs, once such a status has been experienced.

The remaining part of this Chapter is devoted to the empirical literature on 

wage persistence and mobility, distinguishing between the two research areas 

relevant to this Thesis: variance components models and the econometric modelling 

of wage transition matrices.

1.5 Variance components models and the distinction between 

permanent and transitory inequality

The use of variance components models of wages for the assessment of 

mobility can be introduced within the framework of classical panel data models with 

individual effects. Let us consider the “random effect” version of a panel log-wage 

equation, in which the error term is the sum of an individual specific component 

whose identification is possible thanks to the longitudinal structure of panel data, and
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by a white noise (WN) transitory component, independently and identically 

distributed (i.i.d.) with respect to both individuals and time periods, independent from 

the individual component; both components have a null mean with respect to 

individuals:

where wit is the residual log-wage, p, the permanent component and eit the transitory 

one. Residual variance is then composed by the sum of the variances of permanent 

and transitory effects; this last component vanishes when intertemporal wage 

covariances are taken into account:

Given this framework, the intertemporal correlation coefficient is constant and 

equal to the share of permanent on total variance; recalling that the correlation 

coefficient is a measure of immobility, it is clear how this class of models can be 

used for the analysis of wage mobility.

Figure 1.1 gives a representation of wage dynamics resulting from (1.1) and 

(1.2) for two hypothetical individuals (A and B) by different degrees of permanent 

wage dispersion (cases 1 and 2). Straight lines parallel to the time axis represent the 

levels of permanent wages, which is to say, the permanent components constant

W i t  =  M /  +  E / f  

Hi ~ (0,o^)

Erf ~WN(O.o?) 

E(HiEit) = 0
( 1. 1)

/' = 1.... N
t = 1.....T

( 1.2)
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over time; in this model, residual permanent wages are characterised by individual

specific intercepts, while growth rates are assumed to be zero for both individuals.

» permA » permB
° totA a totB

t
Fig. 1.1: Permanent wage inequality and mobility

The dots scattered across permanent wage lines represent total wages; in 

each of the four time period considered, the distance between the dot and the 

straight line gives the transitory wage fluctuation. The left panel (case 1) shows how 

individual’s B permanent wage is lower than individual A’s one; however, transitory 

fluctuations are such that in some periods, her total wage equates the one of 

individual A. By comparing total wages in the first and the last period observed, a 

change in hierarchical ordering takes place, generating mobility. The right panel 

maintains the same degree of transitory wage volatility but the distance between the 

two permanent wage profiles is now higher, so that case 2 is characterised by a 

larger permanent variance. In this case, transitory shocks are not capable of
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modifying the wage rank: an increase in permanent inequality generates, ceteris 

paribus, a reduction of mobility,

Lillard and Willis [1978] apply the model above to PSID data, allowing the 

transitory component to follow an AR(1) process, showing, among other things, how 

incomes for the black sub-sample present higher persistence than the white one. 

Their study is focused on the analysis of low-pay probabilities; making some 

additional hypotheses on the distribution of permanent and transitory components (in 

particular, they assume normality for both), these authors decompose the probability 

of the low-pay status into permanent and transitory components, showing, again, 

that they are more persistent for the black sub-sample.

A series of contributions to the literature on variance components models is 

characterised by a more flexible specification of the permanent component, which is 

specified as a linear function of time or labour market experience, so that each 

individual is described both by specific intercept and slope parameters and 

heterogeneity is not only due to fixed unobserved factors, but also to differences 

affecting the dynamics of wage profiles, such as heterogeneous learning abilities.10 

Such a specification is known as random growth model (Moffitt and Gottschalk 

[1993]; Baker [1997]), meaning that growth rates are a random variable distributed 

over individuals. A central role in this model is played by the covariance between 

intercepts and slopes of individual wage profiles. A negative value of this parameter 

implies that those observed in the bottom part of the initial wage distribution will 

experience larger growth rates than those at the top and viceversa, so that the 

distribution of permanent wages will tend to converge over time. Such a prediction

10 It is worth stressing that since such a specification refers to residual wages, usually net of quadratic 
trends in age or labour market experience, assuming linearity doesn't contradict the prediction of wage 
profiles concave over the life-cycle arising from human capital theories.
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arises, for example, from the Mincerian theory of (generic) on-the-job training. Those 

who invest in the acquisition of skills employable also outside the firm where the 

training takes place bear, at least in part, the cost of the investment and receive 

initial wages which are lower compared to those not investing. Since the present 

discounted value of wage flows must be equal across alternatives, the wage profile 

of those investing must be steeper, so that low intercepts will be associated to high 

rates of growth. This literature has based tests of the Mincerian hypothesis on the 

sign of the covariance parameter. From the mobility view point, a negative 

covariance implies that permanent wage profiles will cross each other over the 

working career, generating mobility and an overall equalisation of permanent wages. 

Hence, the random growth model provides insights on the extent of permanent wage 

mobility, which we have seen in Section 1.4 to be relevant for judgements on the 

welfare impact of overall mobility.11 It has to be stressed that other theories can 

generate predictions on the sign of the covariance parameter. As an example, 

combining signalling and matching models, initial wages will depend upon workers’ 

attributes observable by the employer at the beginning of the match, while wage 

profiles will be influenced by the revelation of information concerning the quality of 

the match over time. Assuming that workers who have better observable 

characteristics at the beginning are indeed more productive, those with high initial 

wages will also experience high growth rates: the covariance between intercepts and 

slopes will be positive in such a case, so that the distribution of permanent wages will 

diverge over the life-cycle.

Lillard and Weiss [1979] consider a sample of American scientists and find a 

negative covariance in raw wages, with the parameter which turns out to be positive

11 In the simplest error components model of wages in (1.1) mobility depends on the size of transitory 
variance relative to the total one, but no room is made for mobility within the permanent wage 
component.
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when age and time effects are removed, implying that permanent inequality grows 

over the life-cycle within the cells defined by these characteristics. These authors 

also present results by birth-cohort, showing that the dispersion of starting 

permanent wages is higher for older cohorts. Hause [1980] bases a test of the 

Mincerian on-the-job training hypothesis on a sample of young Swedish males; his 

results indicate a negative value of the covariance between intercepts and slopes, 

supporting the hypothesis. Bourguignon and Morrisson [1983] analyse a sample of 

French white collar workers and utilise a quadratic specification of the permanent 

wage, finding that the covariance is positive between intercepts and second order 

terms, negative between intercepts and first order terms and negative between first 

and second order terms. The sign of these covariances are in accordance with the 

presence of cross-overs of wage profiles, and the authors stress that this implies 

mobility of permanent wages. A renewed interest in this class of models has 

emerged in recent years. Baker [1997] uses PSID data and compares the Mincerian 

model with a random walk specification of the permanent wage, providing evidence 

supporting the former; his estimates imply that individuals with a slope parameter 

one standard deviation above the mean will experience a 20-30% growth of 

permanent wages over the analysed 10 year period. Baker and Solon [1998] utilise 

Canadian panel data and introduce also a quadratic specification of the transitory 

variance with respect to age, aimed at capturing a larger wage instability at the 

beginning and the end of the working career. Results show both permanent wage 

convergence and a convex profile of transitory variance over time.

An element of differentiation within the literature focused on random growth 

models is given by the estimation technique; In particular, while studies produced 

between the 1970s and the 1980s utilise GLS or maximum likelihood estimators, 

more recent contributions are based on the minimum distance estimator
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(Chamberlain [1984]). This is, in practice, an application of the GMM with which the 

structure of second moments implied by the theoretical model is mapped directly into 

empirical second moments, according to some metric. 12 One of the first applications 

of this method to the longitudinal analysis of wage dynamics is given in Abowd and 

Card [1989]. These authors are interested in the covariance between wages and 

hours of work and use the PSID to estimate the relevant parameters from first order 

differences. They show that the covariance between changes in wages and changes 

in hours is positive within the same period, becoming negative for data one year 

apart and negligible afterwards.

The application of the minimum distance estimator is a qualifying aspect of two 

recent contributions to the literature on the wage covariance structure (Moffitt and 

Gottschalk [1993] and Dickens [1996]) which focus on the permanent vs transitory 

nature of the rise in wage dispersion characterising the UK and the US in recent 

years. Both studies put great emphasis on the modelling of shifts in the covariance 

structure through time, which is pursued by introducing a time varying loading factor 

on each wage component, thus introducing time-wise heteroskedasticity.13 The 

dynamic analysis of the two wage components allows an assessment of their role 

within the aggregate dynamics of wage dispersion. From a policy perspective, this 

provides an estimate of the share of total inequality growth accounted for by the 

permanent component, thus indicating to what extent rising inequality persistently 

affects individual wage careers. As stressed above, this is also relevant for 

interpretation purposes: while increases in the relative importance of the permanent 

component support skill based explanations of changing wage inequality, a growth in

12 The method will be discussed in detail in the next Chapter. The method is not confined to the 
analysis of second order moments but allows a joint analysis of first and second order moments (see 
Crepbn and Mairesse [1997]).
13 As pointed out by MaCurdy [1982], this doesn't require any explicit parametrisation aimed at dealing 
with the incidental parameters problem, since, in the context of panel micro-data, period specific 
parameters are identified by cross-sectional variability.
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volatility could result from an increased instability of working careers, induced, for 

example, by a lower degree of institutional wage protections,14

Moffitt and Gottschalk [1993] use PSID data and adopt ARMA(1,1) 

specifications of the transitory wage, which allow wage rigidity to depend not only on 

the relative importance of the permanent wage, but also to shocks persistence. 

These authors show that the growth of US wage differentials has predominantly 

affected the permanent component during the 1970s; the 1980s are instead 

characterised by a different scenario, wage volatility being more relevant. Their 

results suggest an increasing instability and competition in the labour market in 

recent years. Similar conclusions are reached by Dickens [1996] who uses NES data 

and shows that growing UK wage inequality mainly arose from permanent 

differentials from the mid 1970s to the mid 1980s, while, afterwards, wage volatility 

has become increasingly important.

1.6 Transition matrices, mobility indices and econometric models of 

transition probabilities

The methodological approach to the analysis of wage mobility based on 

transition matrices directly focuses on the probability that the hierarchical ordering 

defined by the cross-sectional wage distribution changes through time. The starting 

point in this case is the discretization into classes of the marginal wage distribution of 

the two years delimiting the transition analysed. The availability of panel data allows

M As mentioned earlier in this Chapter, the distinction between permanent and transitory sources of the 
rise in US wage inequality is also at the core of the analysis in Gottschalk and Moffitt [1994], who do not 
utilise formal models of the covariance structure, but identify the permanent wage as a multiperiod 
mean of yearly wages and compute the transitory wage as difference between such means and yearly 
wages. They show that about one third of the rise in inequality over the 1970s and the 1980s can be 
ascribed to the transitory component. In his comment to this paper, Katz [1994] points out that, due to 
the introduction of technical innovations, workers in their old Job can behave as new workers, 
presenting a higher degree of wage instability, a caveat which should be borne In mind when deriving 
interpretations on the factors causing growing wage differentials from these models.
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crossing of these two orderings, yielding a contingency table whose elements 

represent the absolute frequencies of the intertemporal (discrete) wage distribution. 

Standardisation of each cell of the matrix with respect to the absolute frequencies of 

the marginal distribution of the starting year yields a transition matrix, which 

describes the probability of belonging to the classes of the arrival wage distribution 

conditional on starting classes.

1.6.1 Mobility indices

The classic way by which transition matrices have been employed to analyse 

wage mobility is based on mobility indices (see, for example, Atkinson et al. [1992]). 

A formal discussion of the theory of mobility indices is provided by Shorrocks 

[1978b], where mobility indices are defined as functions mapping from the space of 

transition matrices to the real axis, in particular to the unit interval in case of 

normalised indices. Some desirable properties for these indices are defined and the 

concepts of complete immobility and perfect mobility introduced. The first case 

corresponds to the absence of hierarchical permutations, with the resulting transition 

matrix given by the identity matrix. In the second case, wages of the arrival year are 

stochastically independent from those in the starting year, so that transition 

probabilities are independent from the starting class and the rows of the transition 

matrix are all equal.15 16 * The two extreme cases allow standardisation of indices 

computed under different circumstances, so that values of the same index computed 

on distributions with differing number of classes18 or values of different indices can 

be compared.

15 The definition of perfect mobility usually adopted for operational purposes is more demanding and 
also requires that transition probabilities are equal across arrival classes (what Shorrocks [1978b] calls 
strong perfect mobility). Assuming that the marginal distribution is constituted by p classes, the resulting 
transition matrix has all elements equal to 1/p.
16 The choice of the classes to adopt in the discretization of the marginal distribution is an obvious
source of arbitrariness (Atkinson et al. [1992]). Alternatives commonly adopted are equal partition of the
wage range, classes defined as ratios on the mean or median of the distribution or quantiles. The last
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Commonly used mobility indices* 17 can be classified according to the aspect of 

mobility analysed, namely the frequency or width of transitions. A basic frequency 

indicator is the immobility ratio, equal to the ratio between the trace of the transition 

matrix and the number of wage classes. Given that frequencies on the diagonal 

correspond to individuals who do not change wage rank during the transition, this 

measure gives the average probability of persistence. A more demanding definition 

of mobility is behind the quasi-immobility ratio, which considers also elements on the 

two main sub-diagonals; for an individual to be classified as mobile it is then 

necessary to cross the borders of at least two wage classes. Further specialisations 

of frequency indicators take into account the direction of movements; this is the 

feature of the ascending and descending mobility ratios, which are based on 

frequencies in the supers and sub-diagonal part of the matrix, respectively. The 

expected absolute jump, i.e. the average width of transitions conditional on having 

moved, is the most frequently adopted width indicator. Similarly to frequency 

indicators, also in this case the index can be specialised to take the direction of 

transitions into account.

The immobility ratio computed by starting class is used by Shorrocks [1976] to 

test the hypothesis that personal incomes evolve according to the first order Markov 

hypothesis. The implication of the theory under scrutiny is that the matrix governing 

the two-periods transition is the product of the two one-period matrices.18 By

option corresponds to a relative view of the mobility process. Quantiles usually have varying width and 
are typically more compressed towards the middle of the distribution, as long as frequencies tend to be 
concentrated over the central part of the wage range. They present the advantage of being robust to 
the presence of outliers and of being equally representative across the classes of the starting wage
distribution.
17 See Bourguignon and Morrisson [1983] and Guillotin and Bigard [1992] for an overview on mobility 
indices and their formalization.
18 The Markov hypothesis states that the level of current incomes and the transition matrix are sufficient 
for the prediction of future incomes, without additional hypotheses on the past of the income process; 
also, state and transition probabilities are assumed to be independent. Let us consider three points in 
time (i.j,=1.2.3) and let p, be the row vectors of the marginal wage distributions, and Q, the 
corresponding transition matrices. The hypothesis implies that: p2”p,Q12; p3=p2Q23; p3=p,Q ,3. It follows 
that Q i 3=Q i 2Q23.
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comparing immobility rates from the two-periods matrix with the ones from the 

product of single step transitions, the author shows that in this last case income 

mobility appears to be higher, rejecting the first order Markov hypothesis. 

Bourguignon and Morrisson [1983] use both frequency and width indicators on their 

panel of French white collars. They show that by raising the time span over which 

such measures are computed, mobility increases at decreasing rates. French data 

are analysed also by Guillotin and Bigard [1992], where attention is focused on the 

disaggregation of mobility indices by starting and arrival wage class and a 

methodology for the identification of immobility poles within the whole distribution is 

proposed. Their results show a considerable degree of mobility over the 15 years 

period analysed, which tends to drop as higher ventiles are taken into account. A 

comparison between French and Italian data using similar methodologies is provided 

by Bigard et al. [1998], showing that the Italian distribution is more rigid, especially at 

the bottom. Dickens [1997] utilises immobility ratios on NES data, showing that the 

increasing wage inequality has been accompanied by drops in mobility. The author 

also proposes a mobility measure based on changes in percentiles for each workers, 

corresponding to a mobility matrix in which each individual has her own wage class. 

Finally, immobility ratios are computed in OECD [1996] (whose results have been 

commented above) to produce international comparisons of mobility.

1.6.2 Econometric modelling of transition probabilities

The literature on transition matrices concentrates on the statistical description 

of mobility. Recent years have instead been characterised by studies focusing on the 

econometric modelling of individual transitions within the classes of the wage 

distribution; in other words, these contributions take into account the determinants of 

the assignment of individuals to the cells of the transition matrix. Attempts in this
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direction can also be found in the descriptive literature, where they are based on the 

estimation of mobility indices on sub-samples defined according to workers’ 

attributes (see, for example, Bigard et al. [1998]). Such an approach presents at 

least two disadvantages. Firstly, the analysis remains at the aggregate level in that it 

cannot distinguish between heterogeneity and pure state dependence within 

aggregate persistence, an important distinction which will be discussed at length in 

Chapter 4. Secondly, the interpretation of results is not straightforward, in particular 

being hard to make ceteris paribus statements in the presence of many explanatory 

variables.

Given that the object of the analysis is a probability, the natural route followed 

by researchers for its econometric modelling is the one of discrete response models. 

In practice, it is supposed that for each individual the discrete outcome mobile/not- 

mobile is the realisation of some latent propensity to move, of which only a binary 

realisation is observable; the resulting dummy indicator is then regressed on the set 

of personal characteristics by means of discrete response models. Compared to an 

equation of wage growth rates, such an approach introduces a loss of information by 

discretising an originally continuous variable, so that no distinction is made between 

transitions of different length. However, this caveat can be overcome by using 

discrete response models with more than two feasible outcomes to assess the 

number of jumps such as ordered probits or count data (see Chapter 4 for an 

application of the first).

The econometric analysis of transition probabilities is complicated by two 

potential sources of endogenous selection which are inherent to the structure of the 

problem. First of all, analysing transitions requires conditioning on lagged wage 

states and, as long as the assignment of workers to such states is non-random, 

selecting those starting from a given wage class to estimate the model can bias
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parameters estimates. Secondly, transitions can be observed only for those who 

belong to the sample of wage earners at both extremes of the time interval 

investigated, and the presence of non-random exits from the wage distribution can, 

again, lead to biased estimates. A first group of studies assumes the exogeneity of 

both selection processes. This is the case in Smith and Vavrichek [1992], who adopt 

a logit model to analyse mobility out of US minimum wages for a sample of 

individuals previously employed at the minimum wage and show that the lack of 

education is the main factor in determining the ceteris paribus probability of 

persistence. A linear probability model, in which the dummy dependent variables is 

treated by OLS, is proposed by Gregory and Elias [1994] to analyse transition 

probabilities from the bottom quintile of the distribution using NES data: they find that 

low-pay persistence rises with age. Sloane and Theodossiou [1996] use BHPS data 

and adopt a multinomial logit model to analyse destination states of workers 

observed below the third decile of the origin wage distribution, with destinations also 

including the exit from the data set, in this way avoiding selection on the basis of 

panel retention. It is shown that low-wage persistence is significantly lower for males, 

workers in large firms or those participating in re-training programmes. A logit model 

is utilised by Contini et al. [1998] to model the conditional probability of being below 

the third decile of the distribution for those starting the transition below the third 

decile or above the seventh on Italian administrative data (INPS); they show that job 

mobility and employment in large firms positively influence transitions out of low-pay, 

while, on the other hand, employment in the service sector and past unemployment 

episodes favour transitions into low-pay. Guillotin and Hamouche [1998] utilise a 

count data model to analyse the number of ascending jumps through deciles 

computed on French administrative data (DADS). They consider the whole origin 

distribution and include dummies for the origin decile among regressors, thus
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conditioning on starting states. Their results suggest that human capital 

accumulation favours ascending mobility and preserve higher wage ranks once 

reached.

The formal assessment of the potential endogeneity of initial conditions of the 

wage process and attrition from the wage distribution characterises two recent 

contributions to the econometric literature on wage mobility. The set-up adopted in 

these studies is based on multivariate microeconometric models in which selection 

and transition probabilities are jointly estimated, thus allowing correlation between 

error terms and tackling endogeneity problems. The framework is basically that of 

endogenous selection models, in which control is made for the fact that the equation 

of interest (the mobility equation) can be estimated only if observations satisfy two 

endogenous sample selection rules (initial conditions and attrition). The work of 

Bingley et al. [1995] jointly models state probabilities, retention probabilities and 

mobility across deciles of the wage distribution using a panel of Danish wages: the 

whole set-up is a trivariate probit. Identification of the model requires exclusion 

restrictions in the form of variables only entering each of the selection equations and 

not the mobility equation or the other selection equation; the authors assume that 

age only affects retention probabilities, while industrial affiliation and the number of 

children in the household only affect the origin decile. Results from the mobility 

equation indicate that changes in occupation or industry determine downward 

mobility; on the other hand, human capital in the form of education and labour 

market experience is associated with upward movements. The estimated error 

covariance matrix is characterised by statistically significant elements, signalling the 

actual endogeneity of the two selectivity processes and justifying the whole 

framework adopted.
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The paper of Stewart and Swaffield [1999] is focused on the analysis of low- 

pay transition probabilities using BHPS data. They use a bivariate probit to model the 

probability of current low-pay states conditional on lagged states, thus tackling the 

endogeneity of initial conditions. Their base model considers only wage earners at 

both extremes of the transition; the control for panel attrition is assessed by 

extending this model and modifying the binary outcome in the arrival year from “low- 

pay/high-pay” to “not moved up/high-pay”, where “not moved up” includes low-pay 

and exits from the wage distribution. The authors pay great attention to the strategy 

adopted for identification of initial conditions; in particular they reach exact 

identification using the square of labour market experience (which doesn’t enter the 

transition equation given its nature of wage change equation) and test the validity of 

parental background indicators as instruments for initial conditions, concluding in 

favour of their use. This paper is also characterised by the parallel use of several 

low-pay thresholds, and it is shown that results are typically robust to changes in the 

definition of low-pay. The estimated correlation coefficient between state and 

transition probabilities is statistically significant, thus rejecting the exogeneity of initial 

conditions; by comparing results from the bivariate probit with those obtained 

assuming exogenous initial conditions the authors show that in this last case both 

size and significance of estimates is higher, especially for education. On the other 

hand, factors such as training, plant size, union coverage and gender retain their 

significance in affecting low-pay transition after controlling for endogenous initial 

conditions.
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2. The covariance structure of male wages

2.1 Introduction

This Chapter applies the minimum distance technique to analyse the 

covariance structure of an unbalanced panel of Italian male wages. As stressed in 

Chapter 1, the analysis of the intertemporal covariance structure allows 

decomposition of cross-sectional wage inequality into a part due to permanent 

workers heterogeneity and a part due to the volatility of wage shocks, a distinction 

relevant both for interpretation purposes and to draw policy indication. From the first 

viewpoint, while permanent wage differentials are usually associated with the 

remuneration of permanent skills, wage volatility is more in line with a growth of 

labour market instability, which could in turn result from the decline of labour market 

institutions. Thus, analysing which of the two components is predominant in 

determining aggregate cross-sectional inequality can shed light on the factors driving 

changes in wage differentials. For what concerns the policy implications, permanent 

inequality implies that cross-sectional wage differentials are likely to persist over the 

life-cycle, making the need for low-wage protection more urgent.

The permanent wage will be specified in this Chapter according to the random 

growth model, in which individual (residual) wage profiles are assumed to be linear, 

and whose second moments allow assessment of the extent of cross-overs in 

permanent wages, and, consequently, of permanent wage mobility, thus providing 

insights on the welfare impact of overall mobility (see the discussion of Section 1.4). 

Also, time-wise heterogeneity of the covariance structure will be allowed by 

introducing time varying loading factors within each wage component.

The covariance structure analysis will be based on an unbalanced panel made 

available from the National Social Security Institute for the 1974-88 interval. The data 

thus cover a period of remarkable changes in wage determination policies for the 

Italian labour market (recall the discussion of Section 1.3), going from the era of
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wage egalitarianism to the second half of the 1980s, when pay determination on the 

employers’ side became more flexible and the use of individual wage premia became 

more frequent, especially in favour of white collar workers.19

The Chapter is organised as follows. Section 2.2 shows how the random 

growth model of residual wages can be implemented within the minimum distance 

estimator framework. Section 2.3 describes the data utilised, while Section 2.4 

reports the results obtained. Section 2.5 summarises the main findings of this 

Chapter, while details on the estimation method and the STATA codes written to 

implement it are outlined in the Appendix.

2.2 Model specification

The minimum distance technique will be applied in this chapter in order to 

model the second moments of the joint intertemporal wage distribution on an 

unbalanced panel of Italian wages made available by the National Social Security 

Institute (Istituto Nazionale di Previdenza Sociale, INPS). In particular, the distance to 

minimise will be the unweighted sum of squared deviations of the theoretical 

covariance structure from the empirical one (Equally Weighted Minimum Distance, 

EWMD). Estimated models of earnings residuals20 will derive from the following 

general specification:

"  Such a data set was the only one available from the Institute by the time this research started. The 
analysis of a new draw from the same archive, covering a more recent period, will be the object of 
Chapter 3.
' ' Before proceeding to the minimum distance estimation, raw wages are first adjusted for the effects of 
calendar time, age and birth cohort; details of these adjustment are given in section 2.4.
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where w„ is the log-wage residual for individual i in year t, the core permanent 

component is assumed to be linear in calendar time (pi+Yit), the core transitory 

component (vit) is specified as an ARMA(1,1) process21 and both are loaded by time- 

varying loading factors, g(t) and h(t) respectively. Hence, each wage component is 

composed by a core, representing individual heterogeneity, and a loading factor, 

which inflate or deflate the distribution of the cores but doesn't alter relative rankings 

within it. For the purposes of the present Chapter, the loadings will be specified as 

cubic polynomials in calendar time.

The first parameter of the core permanent wage component (pi) represents 

omitted individual characteristics whose effect is fixed over the working career, such 

as environmental background, while the second (y,) represents unobserved 

heterogeneity which affects earnings growth rates, such as learning ability. As stated 

in Section 1.5, a central role in determining wage dynamics is played by the 

covariance of these two terms across individuals; a negative value of aMy implies that 

wage growth over the life-cycle operates as a compensatory mechanism off-setting 

time invariant components of permanent inequality, as individual positions within the 

permanent wage distribution at the beginning of the period observed will be inversely 

related to future positions The resulting cross-overs of permanent wage profiles

' ' Moffitt and Gottschalk [1993] stress that in the case of autoregressive specifications of the transitory 
wage it would be more appropriate to refer to a mean-reverting wage component, rather than to a 
purely transitory one Bearing this point in mind, in the analyses of the current and the next Chapter I 
will still refer, for ease of exposition, to transitory wages.
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imply that mobility doesn't increase wage uncertainty, thus avoiding the welfare 

worsening effects mentioned in Section 1.4.

The theoretical covariance structure implied by the model is:

E(witwis ) = g(t)g(s)[o2 + o f  (ts) + o MY (t + s)] +

h(t)h(s){p2£(v/i_1v/s_1) + o 2[d(1 + 62) + ĉ O]}

d = l(|f -  s|= 0) 
d i  = l ( | f -s |=  1)

where l(A) is a dummy indicator equal to 1 when A is true and 0 otherwise.

Some remarks arise. First, permanent inequality is determined by initial fixed 

heterogeneity (a2 ), heterogeneous life-cycle behaviour (of )  or from the covariance 

between the two ( ctmy); the first two terms contribute positively to permanent 

inequality, while the third contribution could be negative. Moreover, earnings 

covariance between two points in time is lower the lower the value of aMY. Thus, the 

presence of a negative covariance between individual intercepts and slopes implies a 

convergence process of permanent wage levels (permanent mobility) which lowers 

permanent inequality over individual life-cycles without raising volatility.

Secondly, it has to be noted how core permanent wages are specified as a 

function of calendar time rather than labour market experience, which is the natural 

variable one would have in mind in a human capital wage profiles framework. 

Nevertheless, neither actual labour market experience nor years of education were 

available in the INPS data (see section 2.3 below) and it was not possible to 

construct a measure of potential experience. However, as we will see below, wages
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are net of age and birth cohorts effects, so that the use of calendar time is not such a 

dramatic simplification.

Thirdly, it can be noted how the core permanent wage specification places the 

intercept at the first year of the sample period, thus assessing wage convergence by 

considering the covariance between initial and life-cycle heterogeneity. Other studies 

(in particular, Lillard and Weiss [1979]) consider calendar time in deviations from the

sample mean (7) so that fixed heterogeneity is measured at t= l rather than at t=0. 

Such an alternative specification yields a different interpretation of the covariance 

between fixed and life-cycle heterogeneity. To see this, let us rewrite our specification 

of the random growth model (denoted as w^ ):

w^ = P i + y i T+Yi( f - 7 )  (2.3)

where now the new intercept n] = n, +y, 7 also includes a component representing

the effect of heterogeneity in wage growth on residual wages at 7. Clearly:

E(n‘ ,y i ) s a • = aMr + 7ay and a negative o(IY may well be consistent with a positive 

oM.y, the two specifications apparently yielding contradictory conclusions. In fact, such

an occurrence would be observed for a(ire(-7ay ,0), i.e. when initial convergence is

"weak" enough that its effects vanish between 0 and 7. It can also be observed how 

in case of initial divergence, conclusions arising from the two specifications are 

always in accordance.

A final remark has to be made on the core transitory component of the 

autocovariance structure in (2.2). The presence of an autoregressive component
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implies that current moments depend on their lagged values and, if one traces the 

recursion back to the first year of the sample, the whole theoretical covariance 

structure will depend, in its transitory part, on the moments of the initial conditions of 

the stochastic process. The usual assumption in time series analysis is that such 

initial conditions are irrelevant, or, equivalently, that the process started in the infinite 

past. As pointed out by MaCurdy [1982], such an assumption is untenable in panel 

data analysis, where the number of time periods is relatively small, and could lead to 

biased parameter estimates. A way to tackle the problem in the GMM context (see 

also Baker [1997]) is to include an additional parameter representing the 

accumulation of the stochastic process up to the first year of the panel which 

explicitly models the distribution of initial conditions, denoted op in the tables 

reporting the estimation results.22

2.3 The data utilised

The data source is the INPS 01/M form, a form that each employer has to fill, 

for each of her employees, in order to pay the National Social Security contributions. 

The data set has not been originally constructed for research purposes, but comes as 

a by-product of the administrative activity. This implies a good reliability of the 

information collected, but, on the other hand, explanatory variables are relatively 

few23.

The sample refers to full-time workers from the private non-agricultural non- 

self-employed sectors of the Italian economy over the 1974-1988 period. Each

22 The way in which the covariance structure has been parameterised with respect to the initial 
conditions of autoregressive stochastic processes is described in the Appendix.
23 The available information concerns, among others, the workers’ sex, age and occupation and the 
firms' size, industry and geographical location. Education and labour market experience are not 
observed For a full description of the explanatory variables available in the INPS data see Lucifora
[1995]
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worker is denoted by an INPS identification number which is constant over all the 

working career, enabling individual working histories to be traced over time, 

generating a panel. The available wage variable is the annual wage, comprehensive 

of extra-time payments and gross of income taxes; information on weeks worked 

during the year is also provided, and the analysis has been carried out in terms of 

weekly wages. For the purposes of this study, attention has been restricted to male 

workers aged between 23 and 65 and born between 1923 and 1951 24 This yields an 

unbalanced panel where the total number of workers (i.e. entering the panel at least 

once) is around 18,000.

Potential attrition problems can affect the data. Reasons for movements into 

and out from the data set are:

- periods of unemployment;

- changes to and from self-employment status;

- retirement;

-mobility to or from the public sector (which, with few exceptions, is not covered by 

the INPS file).

Trying to find good instruments to model sample selection, whose likely effect 

is to understate wage volatility, is difficult due to the limited information available and 

no attempts have been made to solve this problem; however, the use of a data set 

with an unbalanced design partially mitigates it.

Table 2.1 describes the structure of the INPS panel. The diagonal shows how 

the cross-sectional size of the data set tends to increase from 1974 to 1985, while a 

reduction occurs in the last three years. The attrition path of each cross-section

24 The upper limit of the birth cohort range comes from the original data set; the lower limit, which 
excludes those individuals ageing over 65 during the sample period, selects a negligible proportion of 
wage profiles (0.45%) out from the original data set.
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through subsequent years of the panel is reported above the diagonal, where the 

number of observations used in the computation of each cell of the covariance matrix 

for the whole sample is collected: as can be seen, this path is, with few exceptions, 

decreasing.

The evolution of some sample features over the period is reported in Table 2.2. 

As can be seen, apart from a tendency to white collar undersampling in 1976 and 

1977, the occupational structure tends to stay constant from 1974 to 1988, while the 

cohort composition shows how the weight of younger cohorts grows through years. 

The last two rows of the table report the evolution of the cross-sectional distribution of 

logarithmic wages over the period: mean logarithmic wages recorded a 5% growth 

over the period (23% in levels) while wage dispersion dropped of almost 20% from 

1974 to 1982 and grew thereafter, the value in 1988 being approximately equal to 

that in the starting year. We turn now to the longitudinal analysis of such inequality 

dynamics.

2.4 The covariance structure of Italian male wages

This section contains the results of the empirical analysis of Italian male wages. 

The analysis has been carried out for the whole sample (blue collars, white collars 

and managers) and for blue and white collar workers separately; this last exercise 

seems particularly relevant, given that, as seen in the Section 1.3, the use of flexible 

pay determination schemes during the 1980s developed mainly for non-manual 

workers.

In order to construct the wages covariance matrix, real wages25 have first been 

adjusted for year, age and cohort effects; the three effects are intended to capture

Nominal figures have been deflated with the CPI (1985=100).
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business cycle, life-cycle and productivity growth effects respectively and to identify 

the last two separately, cross-sections have been pooled over years. Age effects are 

controlled for by a quadratic function of age, while year and cohort effects are 

specified as dummy variables. Figure 2.1 plots kernel density estimates of the cross- 

sectional distribution of residuals from this regression for the whole sample: a 

noticeable feature is the concentration of frequencies around the mean taking place 

from 1977 to 1984, which results in an increase of the corresponding density height; 

this tendency reverts thereafter, especially during the last two years of the sample, 

when the peak’s height decreases.

2.4.1 The empirical covariance structure

For each of the 3 groups considered (i.e. whole sample, blue collars and white 

collars26) residuals from such initial regressions have then been utilised to construct 

the respective covariance matrices; Table 2.3 reports the one for the whole sample 

together with each element's standard error, while the corresponding correlation 

coefficients are reported below the diagonal.

As can be noted in the table, the covariance structure fails to asymptote to a 

long run level, a feature which has been observed both in UK and US data (see 

Dickens [1996] and Moffitt and Gottschalk [1993] respectively): a marked historic­

time dependence seems to be present in the data, with covariances peaking in 1985 

and especially in 1988.

Figures 2.2 to 2.4 provide some further element of discussion by reporting the 

evolution of the variance (i.e. the diagonal of the covariance matrix) and of some

26 The blue collar/white collar split has been carried out by considering the worker's occupational status 
of each year. This means that if a worker is classified as blue collar in year t and as white collar In year 
s (i.e. if a change in occupation takes place between t and s) he will not contribute to E(u„ u„) for either 
of the two sub-samples.
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wage persistence and immobility indicators, namely the correlation coefficient and the 

ventile quasi-immobility ratio.

The first panel of Figure 2.2 displays the well-known picture of trends in Italian 

wage inequality (see, for example, Dell’Aringa and Lucifora [1994]), with a strong 

compression of differentials during the 1977-82 period, in which the egalitarian 

system of indexation was fully effective, and a reopening thereafter, particularly 

marked in 1988. The remaining two panels of Figure 2.2 help in assessing the 

evolution of inequality within each occupational group; the reopening of wage 

differentials affects white collars data since 1984, while the decrease of blue collars' 

wages variance continues, although at a diminished pace, until 1987. If compared 

with the evidence in the top left corner of the figure, this suggests that the widening of 

overall wage differentials was, to a large extent, driven by inequality within white 

collar workers, for which it seems that the relaxation of equalising forces had quicker 

effects.

Patterns of wage persistence are described in Figure 2.3 by means of the 

correlation coefficient, which is plotted for wages one and five years apart. The graph 

in the top left corner shows a short term measure which tends to cycle before 1982 

and to slightly decrease in the years of growing dispersion, with the exception of the 

last year of the sample; the picture is different for the medium term measure, for 

which a marked drop can be observed from 1985 onwards. Taking manual wages 

into account, it can be seen how correlation tends to be concentrated in the central- 

final part of the sample period, depending upon the lag width considered; both the 

decrease in short term correlation since the early 1980s and the drastic drop in 

medium term correlation from 1985 onwards are still evident. The data for white collar 

workers data tell a somewhat different story, with correlation which increases both in 

the short and the medium term during the last years of the data, with a drop in 1988.
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Figure 2.4 plots the values of the ventile quasi-immobility ratio for wages one 

and five years apart; compared with an usual immobility ratio (i.e. the average, 

across classes, proportion of cases not changing wage class during the transition 

considered) this measure considers immobile also those individuals moving only to 

the adjacent class and is thus robust to the effect of small wage “pushes".27 

Compared to the correlation coefficient, which is based on co-deviations from the 

marginal mean and picks-up absolute changes at each point of the wage range, 

quantile mobility indices measure variations in relative ranks and ignore within 

classes movements (see also Jarvis and Jenkins [1998]).

The graph shows, for the whole sample and blue collar workers, a tendency for 

the frequency of transitions among ventiles to initially drop and then level-off towards 

the central years of the data, especially in the short term. The pattern is slightly 

different for the white collars' sample, where immobility steps up in correspondence 

of the increase in autocorrelation observed above.

2.4.2 Variance components models for the covariance structure

Table 2.428 presents results for the EWMD estimator applied to the whole 

sample of male wages. In this and the subsequent tables the fourth moment matrix 

has been utilised to correct asymptotic standard errors (reported in parentheses) for 

the presence of both heteroskedasticity and serial correlation in second moments 

(see the Appendix). Two goodness of fit measures are reported: the sum of squared

The measure ranges from .145 in the case of “perfect mobility' (stochastic independence of earnings 
in the years delimiting the transition considered), to 1 in the case of ‘complete immobility' (no changes 
in ventile ranks).
Ja Each column in the tables containing the estimation results has been numbered and I will refer to 
each model using such numbers. The same numbers are then used in the corresponding graphs.
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residuals and the sum of squared residuals weighted by the inverse of the fourth 

moment matrix29 30

As a starting point for the analysis, columns 1 to 7 present results obtained 

without allowing for time varying loading factors within each component. A first thing 

to note in the table is that the permanent wage component explains about 75% of 

residual variance in the basic model (model 1, with constant permanent and white 

noise transitory component), a split similar to that obtained in previous studies (see 

Dickens [1996]). By letting the transitory component admit some form of serial 

correlation (models 2, 3 and 4, where the transitory component is AR(1), MA(1) and 

ARMA(1,1), respectively, while the permanent wage is held constant), we can see 

how the additional parameter capturing the dispersion of transitory wages in the first 

year of the panel required by the AR part impacts on the estimate of permanent 

variance, which tends to be lower in such cases; moreover, in the case of the AR(1) 

transitory component (model 2) this also affects the estimate of the base transitory 

variance ( o^ ).

When the permanent wage component is allowed to be a linear trend (models 5 

to 7), intercepts and slopes of such individual trends negatively covary: the

covariance parameter ( tr>iy) thus captures the compression of differentials which has 

been observed in figure 2 and indicates the presence of forces equalising wage 

levels within the permanent wage component. 29 *

29 Moffitt and Gottschalk [1993] adopt the unweighted sum of square residuals, while Dickens [1996] 
reports the weighted sum of squared residuals: as can be seen from the tables, judgements arising 
from the two measures are not always in accordance.
“ Under the null of correct specification, this last measure is distributed as a *2  statistic with T(T+1)/2-P  
(P is the number of estimated parameters) degrees of freedom. Nevertheless, as noted by Dickens 
[1996], due to large sample size any deviation from the theoretical distribution multiplies up, so that the 
null is always rejected at conventional levels and the statistic has to be used to compare the fitting 
performances across models rather than to conduct inference on the specification of the single model.
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Moreover, by comparing these models with their counterparts in the left panel 

of Table 2.4, we could note a sharp increase in the dispersion of individual intercepts 

): this indicates that models with a constant permanent component tend to mask

the dynamics of permanent wages over the life-cycle, averaging them within the 

intercept term. This, in turn, affects the size of the initial transitory variance, which is 

considerably lower (models 2 vs 6).

Another remarkable feature of the results in Table 2.4 is the relatively small 

dispersion of individual slopes (a *)31, which implies that individuals tend to share the

same rate of growth of wages through their life-cycles; this evidence seems to be in 

line with the importance which seniority has traditionally had in the Italian system of 

wage determination. The estimate of a* in model 6 implies that an individual with a 

slope parameter one standard deviation above the mean will experience a 26% 

growth of permanent wages over the sample period.

Taking now the transitory component estimates for these models into account, 

a sharp drop in the AR(1) correlation coefficient can be observed (model 6) with 

respect to the equivalent specification in the left panel (model 2): in the latter case 

such parameter has to smooth out the effect of the large initial transitory variance. 

Finally, it can be seen how no results are reported for the ARMA(1,1) specification of 

the transitory component: such models didn’t converge to a well determined vector of 

estimated parameters and, in particular, the aj?, and 0 parameters systematically 

had huge standard errors, leaving the impression that, with a linear permanent

31 Although the comparison should take into account differences in the definition and measurement of 
the wage variable, the same coefficient is five to ten times larger in Bourguignon and Morrisson [1883]

and Moffitt and Gottschalk [1993] (in this last paper, is restricted to be zero).
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component, the ARMA(1,1) specification tends to impose an over-parametrization on 

the data32.

A way to improve the analysis carried out up to now is to allow for time shifts in 

the wages covariance structure: as emphasised in Section 1.5, it is important to allow 

the relative weight of the two wage components to vary over time, in order to capture 

the effect of different shocks affecting the labour market, which are likely to influence 

one wage component differently from the other. With this aim, I have estimated 

models where each wage component includes a year specific loading factor. Such 

loading factors are specified as a cubic function of time33 and are normalised to 1 in 

1974 for identification. Models are estimated with both versions of the permanent 

component (constant and linear) and with WN and AR(1) specification of the 

transitory one.34 Results for specifications with time-varying loading factors are 

outlined in the right panel of Table 2.4 (models (8) to (11)) and in Figure 2.5, where 

the predicted total, permanent and transitory variances of models 9 and 11 are 

plotted. These predictions are obtained utilising parameter’s estimates in the 

formulas given in (2.4) below, where Ep(witwis) denotes the predicted permanent 

covariance structure and ET(witwls) is the predicted transitory covariance structure, 

while predicted total covariance results from the sum of the two components.

32 Various attempts in order to avoid such problems were made by minimising the noise in the data 
dropping n outliers from each tail of the cross-sectional distribution, but without improvements in the 
results obtained. This strategy was also (this time successfully) pursued in order to solve similar 
problems in models 10 and 15, where n is equal to 10 and 7.
3 The choice of the cubic has been dictated by the fact that a quadratic trend is already present in the 

function to estimate when the permanent component is linear, while linear loading factors could not 
ensure enough flexibility to fit the empirical covariance structure. Recalling the notation adopted in 
section 2, g(t)=1+a,t+a2t2+a3t3 and h(t)=1+6,t+62t2+53t3.
34 While for the ARMA(1,1) specification the already mentioned over-parametrisation problem was 
exacerbated the MA(1) specification of the transitory component have not been reported for 
exposition's compactness: the comparison of results from models (6) and (7) suggests that the 
restrictive autocorrelation form hypothesised by such models makes them redundant when also AR(1) 
are estimated.
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EP(wltwis) = g(t)g(s)[o2 + o2(ts) + o w (t + s)]

ET (witw is ) = h(t)h(s){p2E(v/i_1i//s_1) + o2[d(1 + 02 ) + cy-,9]} 
d = l(|f -  s|= 0) 
dì = l( |f-s |= 1 )

By comparing these models with the analogous specifications without time 

shifters, it can be noticed how the absolute value of increases in models 10 and

11 with respect to models 5 and 6: by allowing time specific loading factors, the 

convergence of wage levels characterising the data from 77 to 82 is not (or is less) 

averaged with the 74-76 and 87-88 intervals (which present a marked increasing 

trend), so that its effect on the estimated parameters is stronger. By considering 

Figure 2.5 it can also be seen that the importance of the transitory component is 

larger toward the end of the data, a fact which is consistent with the reduction in 

institutional wage rigidities stressed by the literature on Italy. Such an evidence can 

also shed light on the behaviour of raw correlation outlined in Figure 2.3: the 

increasing importance of transitory shocks in the last years of the data means that 

persistence “washes out" after few years and this is reflected by the fact that the 

correlation coefficient drops more evidently in the medium than in the short run 

(Moffitt and Gottschalk [1993]) make a similar point in their analysis of the PSID). 

Another interesting feature of these graphs is that they allow a better understanding 

of the effects of the linear specification of the permanent wage component (right 

panel): this amounts at introducing a higher memory in the permanent variance, 

which, in this case, doesn’t follow the rise in overall variance characterising the last 

years of the data, and the final increase in transitory variance turns out to be 

amplified Overall, while wage convergence operates through the permanent wage, 

the re-opening of differentials is also determined by the increased volatility. However,
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in the light of the descriptive mobility analysis of Figure 2.4, permanent wages 

convergence doesn’t seem to have induced any increase in the degree of 

hierarchical mobility.

The fact that a negative value of doesn’t show up in variations of quantile 

rankings casts doubts on a human capital interpretation of the aggregate wage 

convergence process. On the other hand, the egalitarian wage indexation system 

effective in the first part of the period considered could be consistent with a 

generalised convergence of the wage distribution which leaves the relative wage 

hierarchy unaltered. In an attempt to shed some light on this institutional 

interpretation, the analysis has been extended by estimating separate models for 

blue and white collar workers. The assumption behind this exercise is that if market 

forces also contributed to the convergence process, the permanent mobility effect 

should still be present after conditioning on occupation, institutional factors mainly 

operating between occupations. Moreover, if convergence is determined by the 

remuneration of human capital investments along the lines of the Mincerian on-the- 

job training model, it should still be effective within occupations (see, for example, 

Lillard and Weiss [1979]).

Results from this experiment are reported in Table 2.5 (models (12) to (19)) 

and in Figures 2.6 and 2.7. The striking fact emerging from models 18 and 19 is that

the oMr parameter is positive for white collar workers, thus implying a life-time 

divergence of wage levels which contrasts with the permanent wage convergence 

singled out in Table 4 for the whole sample. A positive ctmt could be consistent with a

signalling/matching framework, in which more productive workers earn higher initial 

wages according to their observable abilities and experience faster growth due to the
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increasing value of the match; also this evidence is consistent with the diffusion of 

individual wage premia in the 1980s, as reported by Dell'Aringa and Lucifora [1994], 

and mirrors the increases in autocorrelation and immobility in this sub-sample shown 

by the descriptive analysis of Figures 2.3 and 2.4.

The parameter is instead negative for blue collar data, where the empirical 

wage dispersion plotted in Figure 2.2 decreased until 1987. Another fact to note in 

the Table is the higher dispersion of residual wage profiles’ slopes (a*) in white

collars data. Finally a higher base variance of the transitory component (O j) can be 

noted in blue collars data. The inspection of Figure 6 reveals that this last finding is 

mainly due to the dynamics in the extreme years of the data: if we recall that the 

empirical trend to fit is decreasing from 77 to 87 and sharply increasing from 74 to 76 

and from 87 to 88 (Fig. 2.2), it is clear how the permanent component could not pick 

up such drastic changes, so that they have to be recorded as transitory. Moreover, if 

we specify a more persistent permanent variance (Fig. 2.6 right panel), the transitory 

component accounts for all the wage dispersion of 1988. In general, what can be 

observed in figure 6 is a lagged and persistent reaction of the permanent variance 

profile to the evolution of the total variance one. The situation is different in white 

collar’s data (Fig. 2.7), where the permanent variance profile closely follows that of 

total variance and tends to increase its predominance toward the end of the data. It is 

worth noting how here the linear specification of the permanent component doesn’t 

change the permanent variance profile in the last years of the data as it did for blue 

collars’ data: the empirical variance for white collars increases since 1984, so that 

there’s enough time to incorporate the increasing trend within the permanent wage 

component.
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Results obtained by conditioning on occupation could be driven by the fact that 

such characteristic is not time-invariant: as time elapses, changes of occupational 

status may take place and this could lead to some misleading conclusions. In 

particular, such changes could affect workers in the upper tail of the origin wage 

distribution, who, as a further development of their career, reach a higher 

occupational status. In the light of these considerations, results such as the 

convergence of permanent wages observed for the blue collars distribution should be 

considered with caution. In order to check the robustness of results to the effects of 

between occupations mobility, models have been re-estimated imposing the 

constancy of the occupational status. Thus, rather than considering the wage 

distribution of workers with a given occupation in a given year, the focus has been 

pointed to the occupation a worker has the first year he appears in the panel, which 

has been assumed as his time-invariant occupational status. Hence, the models 

estimated also take into account the effects of the occupational career on the 

individual wage profile. Results are contained in the right panel of Table 2.5 (models 

(20) and (21)) and show that while both the intercepts and slopes variances tend to 

increase (not surprisingly given the design of the occupational classification), the sign 

of the convergence parameters remains unchanged, thus confirming the evidence 

arising from the previous analysis.

From a permanent mobility viewpoint, results from Table 2.5 suggest that the 

convergence of permanent wage levels observed in the overall wage distribution was 

to a great extent due to the effects of the wage indexation system, being absent in 

white collars data, where the oMr parameter is positive. Of course, this evidence is not 

enough to conclude that human capital investments have not been remunerated for 

white collar workers: it may well be that other factors, such as an increase in the
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demand for skilled labour, were operating in this period and that their effectiveness 

was enhanced by the relaxation of the compressing forces outlined above, thus 

offsetting any converging trend.

On the other hand, we observe a convergence of the blue collar wage 

distribution which substantially covers the whole period. Such convergence operates 

through the permanent wage component (crw<0), so that one would be tempted to 

conclude that the blue collars wage distribution behaved according to the human 

capital paradigm. Nevertheless, if we carefully observe the dynamics depicted in the 

right panel of Figure 2.6, we can note that the permanent wage variance reacts with a 

certain lag to the development of total variance: in particular, permanent is increasing 

in 1976-77, while total variance is decreasing, and the opposite is true in the 85-87 

interval. Hence, the evidence of permanent mobility could be due to the lagged 

reaction of the permanent component, which makes the effect of the egalitarian wage 

indexation system more persistent.

2.5. Summary and conclusions

Results arising from the above analysis clearly underline some features of the 

dynamics of the Italian wage distribution over the 1974-88 period.

First of all, a clear reversion in inequality trends has been detected, with a 

declining phase characterising the data from the end of the 1970s to the first half of 

the 1980s, and a reopening of wage differentials (especially between blue and white 

collar workers and within white collars) thereafter. Such evidence is not new, being 

reported by the existing literature on the Italian wage distribution, and many authors 

agree in attributing it, at least to a large extent, to the egalitarian system of wage 

indexation which was effective in the first part of the period considered. By taking
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advantage of the longitudinal structure of the data utilised, the paper has also looked 

at indicators of autocorrelation and mobility. While for the overall wage distribution 

and for blue collar workers there's a tendency for autocorrelation to decrease 

(especially in the medium term) and for immobility to be stable after the u-turn in 

inequality, white collar data display increments in both measures of persistence over 

the last years of the sample.

The econometric analysis has focused on the estimation of the parameters of 

the joint wage distribution and, in particular, on the investigation of the permanent 

and transitory components of inequality and mobility. Results show how a 

convergence of permanent wage levels is indicated by the data, and it has been 

interpreted as reflecting the equalising institutional factors at work. Moreover, the 

relative weight of the transitory wage component is found to increase toward the end 

of the sample period, signalling an increased vulnerability of wages to transitory 

shocks during and thus a higher uncertainty of labour incomes. Finally, by extending 

the analysis within occupational groups, permanent wage divergence has been found 

in white collar data, suggesting that institutional forces, mainly effective between 

occupations, were in fact an important factor in determining the observed overall 

convergence.

From a policy viewpoint, these results imply a certain inability of the Italian 

labour market in stimulating human capital accumulation and, given that the 

effectiveness of equalising institutional factors has been reduced In recent years, 

suggest that great attention should be devoted to the wage careers of workers at the 

bottom end of the wage distribution.
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2. Tables and Graphs

Table 2.1: The structure of the INPS panel

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
1974 7291 7055 6985 6680 6859 6863 6814 6497 6194 5798 5768 5735 4842 4855 3754
1975 9083 8762 8384 8524 8523 8502 8187 7844 7395 7431 7345 5895 5750 4537
1976 9619 8965 9021 8996 8998 8669 8308 7834 7856 7773 6259 6127 4780
1977 9705 9129 9098 9084 8759 8375 7960 7916 7813 6314 6133 4837
1978 10630 10232 10086 9706 9302 8766 8720 8614 7033 6739 5241
1979 11089 10548 10154 9753 9165 9111 8976 7372 7043 5475
1980 11621 10767 10306 9637 9613 9464 7761 7422 5772
1981 11737 10875 10142 10082 9631 7907 7610 5948
1982 11721 10334 10630 9958 8190 7835 6098
1983 11438 10122 9466 7679 7304 5978
1984 11914 10678 8717 8185 6441
1985 12275 8941 8404 6669
1986 10277 8184 6429
1987 10623 8334
1988 10059

Note: each cell gives the number of individuals whose wage residuals are used in the computation of 
the corresponding cell of the wage covariance matrix in table 3

Table 2 2: Sample proportions by years and selected workers’ characteristics (upper panel) 
and descriptive statistics of the cross-sectional log-wage distribution (lower panel)

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
%

Blue 69.1 71.74 79.22 85 84 7046 70.14 70.15 71.61 72.24 71 69 73.1 71 27 70.73 7097 70 06
collars
White
collars

30 13 27.57 20.18 21 68 2866 28 92 28.72 27.42 26.82 27.28 25 72 27.23 27 85 27.29 27.86

cohort 1 23 118 1.15 1 09 1.12 1.10 1.10 1.15 1 16 1.15 1.18 1.13 1 06 0.96 0 88
1923-24
cohort

1925-29
8 64 8 24 8 17 8 04 7 96 7.76 7 63 7 62 7.71 7 34 7.55 7.51 7.03 7.40 7.15

cohort
1930-34

19 27 19 20 18 60 18 48 18.25 17.95 18.01 17.77 17 93 17.78 18.05 17.60 17 66 18.08 17.34

cohort
1935-39

22.18 22.02 21.59 21 49 21 46 21.41 21.14 21.07 20.83 20 41 20 85 20.74 20.19 20.78 20 65

cohort 21 52 21.17 21.29 20 96 21 10 20 89 21 29 21.13 20.89 21.34 20.68 20.88 20 86 20 71 20 95
1940-44
cohort

1945-49
20 85 21.39 21 86 22.33 22.19 22 53 22 49 22.71 22 63 23 09 22 81 23.02 23.84 22.96 2344

cohort
1950-51

6.31 6 80 7 33 7 61 7 92 8 36 834 8.55 8.86 8.88 8.89 9.12 9 36 9.11 9 59

Mean 5.70 560 5.67 5.67 5.71 5.74 5.78 5 80 5.79 5 82 5 81 5 85 5 85 5.89 5.89
St.Dev. 0 559 0 577 0 612 0 580 0 549 0 529 0.504 0 464 0.439 0465 0 456 0.490 0 461 0.470 0.560
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2. The covariance structure of male wages

year==74
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year==82
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Fig. 2.1: Adjusted log-wage cross-sectional distributions

a) whole sample

Fig. 2.2: Adjusted

b) blue collar workers
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° lag 1
a) whole sample

♦ lag 5
b) blue collar workers

0454 , T- r
75 76 78

~ii---- r~
80 82

“I---- 1-------r
84 86 88

year
Fig. 2.3: Correlation coefficients at lag 1 and 5

° lag 1
a) whole sample

0 846

c) white collar workers

* lag 5
b) blue collar workers

i I--- 1-----1------ 1-----1-----1----r
75 76 78 80 82 84 86 88

year
Fig. 2.4: Ventile quasi-immobility ratios at lag 1 and 5
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° predicted total variance 
» predicted transitory variance

Fixed permanent component [9]

* predicted permanent variance

Linear permanent component [11]

year
Fig. 2.5: Variance decomposition - Whole sample

» predicted total variance 
•> predicted transitory variance

Fixed permanent component [13]

♦ predicted permanent variance

Linear permanent component [15]

year
Fig. 2.6: Variance decomposition - Blue collar workers
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° predicted total variance 
• predicted transitory variance

Fixed permanent component [17]

•-----1------1------1-------1------1--------1----r
74 76 78 80 82 84 86 88

* predicted permanent variance

Linear permanent component [19]

Fig. 2.7: Variance decomposition - White collar workers
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Appendix A2: Minimum distance estimation of variance components 

models for the wage covariance structure

This Appendix presents the method utilised in the estimation of the (adjusted) 

wage covariance structure and of the variance components models of Chapters 2 

and 3 and the STATA codes written for its implementation. The procedure is the one 

set out in Chamberlain [1984] and Abowd and Card [1989] and extended to 

unbalanced panels by Dickens [1996]; see also Crepon and Mairesse [1997] for a 

general overview of the method.

Our data set consists of information on wages and explanatory variables on N 

individuals observed over a time span of length T, with individual records which may 

be missing in a given year. Let y„ denote the real wage of worker i in year t.

As a first step in the procedure, raw wages are regressed on a set of life-cycle, 

business-cycle and productivity growth indicators in order to abstract from such 

effects in the variance decomposition analysis; in particular, this is done with an OLS 

regression pooling the panel waves:

' ° g y „  =  * r fP  + u it 

uit ~WN(0,o2u)
(A2.1)

Let w„ denote the residuals from this first stage regression. The following step 

in the procedure requires estimation of the second moments of such residuals, which 

will be given by the sample average of individual second moments. To form the 

second moments matrix (W) for individual /', define w, as the vector of residuals for

individual /: w, = (w(1.....wIT) , with wis=0 if worker / is not observed in year s. Then:

W, = WjWj. Next define a dummy variable dit = l(wrf *  0), and, correspondingly, the
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2. The covariance structure of mate wages

vectors d ,= (d /i.....diT) and the matrices D,=d,d/. Then, the empirical second

moments matrix (C) will be given by the element by element ratio of the two matrices

W  and D, with W  = ^  Wj and analogously for D.
i

Let m=vech(C), i.e. the T(T+1)/2x1 vector containing the distinct elements of C, 

and mrvech(W). The main point for asymptotic properties of the estimator is that 

independence of the w, implies independence of m,. Chamberlain [1984] shows that 

(under fairly general conditions) m,~ N(m, V), where V is the fourth moments matrix. 

An estimate of V is given by the empirical fourth moments matrix. Define

p=vech(D) and m, = m, -  m . Then V may be estimated as the element by element

ratio of the two matrices M and P, where M = m, nv and P = pp '.
i

The STATA code c o v a x . do which implements estimation of the second and 

fourth moments matrices is reported below. The program uses as input the file 

m a t re s .d ta  which contains the T columns of residuals from the first stage 

regression in (A2.1) (the variables named re s * , where * goes from 74 to 88, i.e. 

the code refers to the data set of Chapter 2) and the INPS identification number (the 

variable in d ) for N individual records.
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2. The covariance structure of male wages

use matres /* covax.do */
capture program drop codda /»fills in the gaps of the

unbalanced panel*/
program define codda 

version 5.0 
local j =74 
while ' j'< = 88 {

recode res'j1 .=0 
local j = 'j1+l

}
end
codda

capture program drop cprod /»creates cross-products of
wit*/

program define cprod 
version 5.0 
local i=74 
while 'i1<=88 { 

local j ='i 1 
while 'j 1<=88 {

gen res'i’ ' j 1=res'i'»res'j 1 /»element
of Wi*/

local j = 'j 1 +1
}
gen d'i1=res'i1~=0 /»generates the dummy for

presence in sample*/
drop res'i 1 
local i = 'i1+1

}end
cprod
matrix accum bop=d* /»provides

panel
the description of 
structure*/
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2 The covariance structure of male wages

capture program drop cdum /‘cross-products of
dummies*/program define cdum 

version 5.0 
local i=74 
while ~i'<=88 { 

local j = 'i' 
while " j ' < = 8 8 {

gen d'i''j '=d'i'*d~j1 /«element of Di*/ 
local j = ~j1+l

}
drop d' i ’ 
local i='i 1+l

}end
cdum

capture program drop covax /«second and (half of) fourth
moments*/

program define covax 
version 5.0 
local i=74 
while 'i ■ < = 88 { 

local j = 'i• 
while 'j 1 < = 88 {

egen s'i 1'j •=sum(res'i1'j’)
/«element of W*/ 

egen t'i 1 'j 1=sum(d'i'*j')
/«element of D*/ 

gen m'i’'j '=s'i ''j '/t~i' “ j '
/«element of M*/ 

quietly gen dev'il'j'=(m'i,'j'- 
res'i1'j 1)/(t'i■'j 1) if res'i''j 1~=0 
/«standardised deviations of individual c- 

p from mean c-p*/
quietly recode dev'i’'j' .=0
drop res'i''j' s'i''j' d'i''j' t'i''j*
local j='j1+1

)
local i='i1+l

sort ind
end
covax
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save tempo,replace 
use tempo
matrix accum fm=dev* ,noc /»gets the fourth

matrix*/
drop _all 
svmat fm,n(col)
save fmp,replace /*and saves it*/
use tempo
mkmat m* in 1/1, matrix (m)/«gets the vector

moments*/
matrix mm=m' 
drop _all 
svmat mm,n(m)
save mmp,replace /‘and saves it*/

moments

of second
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2. The covariance structure of male wages

The variance decomposition analysis of Chapters 2 and 3 is performed by 

fitting the theoretical covariance structure implied by the hypothesised model of wage 

residuals to the empirical covariance matrix contained in m. The theoretical 

covariance structure will be, in general, a non linear function of the parameters of the 

model, say f(b). As Chamberlain [1984] shows, the restrictions implied by the 

theoretical model can be imposed by

The minimum distance estimator b is shown to be consistent for b with

asymptotic covariance matrix given by V(b) = (G'AG) 1G'AVAG(G'AG) 1, where

problem (see Chamberlain [1984]).

The choice of A generates a class of minimum distance estimators. In 

particular, Chamberlain [1984] suggests the adoption of A=V1, which yields the 

optimum minimum distance (OMD) estimator. Recently, Altonji and Segal [1996] 

have provided Monte Carlo evidence showing that correlation between second and 

fourth moments could bias the OMD in finite samples; they argue in favour of an 

equally weighted minimum distance estimator (EWMD), where A=l.

m in ^ Im , - f (/>)]'A[m, -f(b)] (A2.2a)

or, equivalently, by

min[m -  f(b)]'A[m -  f(b )] (A2.2a)

where A is some suitable weighting matrix.

A

A
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2. The covariance structure of male wages

A test for the estimated model against the alternative of an unrestricted 

covariance structure is given by the sum of squared residuals weighted by the 

inverse of the fourth moments matrix, which, under the null of correct model 

specification, has a *2 distribution with T(T+1)/2-q degrees of freedom, where q is 

the dimension of b.

As pointed out in Section 2.2, the derivation of f(b) poses a problem due to the 

initial conditions of autoregressive stochastic processes: in particular, the process 

cannot be deemed to have started in the infinite past (as customary in time series 

analysis) and the variance of the initial conditions has to be explicitly modelled within 

the covariance structure parameters. For illustrative purposes, below I show the 

implications of this initial conditions problem in the case of an AR(1) process:

which, tracing the recursion back to the initial year of data, can be written as:

After some algebra we get the autocovariance function which takes into

Vit = Pvit-1 + E/f 
Etf ~WN(0,a?)

(A2.3)

(A2.4)

account the variance of the initial conditions of the process (a§):
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2. The covariance structure of male wages

Exit's is) =

s,t = 0....T
s > t

PSfJ0

p<'+s>a2+p l'-sl l
,21

1 - P ‘

if s > t  = 0 

if S Ï Î 2 1

(A2.5)

The EWMD estimator of the covariance structure has been implemented using 

STATA’s non linear least squares routine (nl) and extending it to obtain the 

asymptotic robust standard errors; below I illustrate the code for a simple process 

with constant permanent component and AR(1) transitory component:

w it = P i + Vn 

v it = p v n - t  + * i t

P i~ (  0,0^) (A2.6)

V¡0 - (0 ,ag)

~W/V(0,o?)
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/♦konar.do*/ 
set matsize 800 
use fmp
mkmat dev*,matrix(fm) 
drop _all 
use mmp /♦loads the vector of second 

moments*/

/♦loads fourth moments colums*/ 
/♦forms the matrix*/

capture drop resi
capture program drop nlkonar 
program define nlkonar 

version 5.0 
if "'i'„■■»?» {

global S_1 "bO b3 b30 b4" /‘declares and

}
replace ~l'=$b0 + ($b30*$b4~s)*dr0+($b30*$b4*(t+s) + 
((l-$b4*(2*t))/(l-$b4"2))* $b3*$b4^tds)* (1-drO) 
/♦autocovariance function*/

quietly nl konar mmp t s tds, leave
/♦the leave option gets the columns of the gradient matrix*/ 
/*t and s are time indices for the rows and columns of the 
matrix respectively, tds=|t-s|,drO=I(t=0)*/

compute the chi2 stat*/
mkmat bo bl b2 b3 b4, matrix (g) /‘forms the gradient

matrix*/
matrix gg=g1*g 
matrix gginv=inv(gg) 
matrix ppl=g'*fm 
matrix pp2=ppl*g 
matrix pp3=gginv*pp2

initialises
parameters*/

global b30=.02

global b0=.2 
global b3=.05

0global b4=.8 
exit

/* p */

end

nlpred resi, resid /♦residuals needed to

A

matrix vp=pp3*gginv 
mkmat resi, matrix(resi) 
matrix fminv-inv(fm) 
matrix chil=resi'* fminv

/*V(b) = (G'G) 1G'VG(G'G)“ 1* /

matrix chi=chil*resi / * X2 = ( m - f ( b ) ) 'V - \m - f ( b ) ) * /
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

3.1 Introduction

This Chapter presents an extension of the analytical framework of Chapter 2 in 

several directions. A first relevant feature of the empirical models utilised resides in 

the modelling of the time-varying loading factors on each wage component. In 

particular, following the work of Dickens [1996], I relax the polynomial specification of 

the loadings to allow them to freely vary in each sample year, i.e. each wage 

component will be characterised by T-1 (where T is the time dimension of the data) 

time shifters to be estimated. Such a specification presents the advantage of not 

imposing any a priori functional form on the loading factors, so that the extent to 

which changes in aggregate differentials are permanent or transitory can be better 

assessed.

A second innovation with respect to the analysis of Chapter 2 is that (similarly 

to Baker [1997]) the random growth specification of the permanent wage component 

will be compared with a random walk model, the assumption underlying the two 

specifications being rather different. As we will see below, conversely to Baker’s 

results, the INPS data are, in various circumstances, favourable to the random walk 

assumption, thus pointing to a context in which individual permanent wage dynamics 

present a high degree of persistence and, rather than following person specific 

profiles as would be predicted by (e g.) human capital theories of wage dynamics, 

move erratically around their long-run level.

Thirdly, greater attention will be paid to the role of observable workers 

characteristics. This will be done in two steps. First, the variance decomposition 

analysis will be extended to wages adjusted also for the effect of observable 

characteristics, i.e. within the cells defined by such explanatory variables. Then, after 

performing within group analyses on sub-samples defined by such characteristics (as 

in Chapter 2), a method for conditioning the covariance structure on such
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

observables will be introduced, thus providing a unified framework for assessing the 

impact of the variables of interest on the wage covariance structure and providing 

additional insights into its dynamics.

Finally, a noticeable difference is given by the data set. As mentioned in the 

Introduction to the Thesis, only a "small" INPS draw was available at the time this 

research began, and this is the data set utilised in the previous Chapter. Afterwards, 

a second (unbalanced) draw has been made available, which is larger in size (with 

the estimation sample which is more than triple the one used in Chapter 2) and 

covers a more recent period of time, in particular including the years in which 

automatisms in wage indexation have been completely removed.

The chapter is structured as follows. Section 3.2 discusses the analytical 

framework, while Section 3.3 describes the “large" INPS sample. Section 3.4 

provides some descriptive statistics on the covariance structure, while the EWMD 

estimation results are presented in Section 3.5. Section 3.6 draws some conclusions.

3.2 The analytical framework

The model specification in this chapter has two main differences compared to 

the restrictions imposed on the covariance structure of Chapter 2. Let us define our 

model of adjusted log-wages as :

w it = 9 (t)w %  + h (t)w j, (3.1)

where P and T denote the permanent and transitory wage component respectively, 

wp and wT represent the “core" of each wage component, while g( ) and h( ) are
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functions capturing time shifts in the covariance structure. As in Chapter 2, a 

specification of the core permanent wage which will be adopted here is the random 

growth (RG henceforth) model, which allows each observational unit to have its own 

wage profile and whose EWMD estimation focuses on variances and covariances of 

intercepts and slopes of such individual profiles over the sample:

w,? = m + y it
(3.2).35

An alternative specification which will also be analysed in this chapter allows 

permanent wages to follow a random walk process (RW henceforth);

wit = wit- 1 + Kit
= Pi

Pi ~(0,a^)

Kit ~WN(Q,a\)

(3.3)

In the RG case permanent wages are supposed to evolve along linear profiles 

whose second moments have implications for the theory behind observed wage 

dynamics. The RW model, on the other hand, is more of a purely statistical kind, and 

is aimed at capturing the high level of wage persistence through the unit root 

hypothesis. As stressed in Baker [1997], such an outcome could arise from low rates 

of human capital depreciation or the impact of macroeconomic conditions via implicit 

contracts.

' 1 Theoretical underpinnings of the model and their implications in terms of restrictions on the sign of 
rr^y are discussed in Chapters 1 and 2.
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The two models generate differing restrictions on the structure of second 

moments, in particular, while the RG imposes a quadratic dependence of covariance 

elements on calendar time (see equation 2.3), the RW implies a linear trend:

E Rl/l/(w ^w £) = c^+m in(/, s )o | (3.4)

Moreover, both the models allow for mobility of permanent wages, the RG one 

through the sign of the convergence parameter ( ctmy , see the discussion in Chapter

2), the RW model via the size of the white noise variance , a larger value implying

greater scope for permanent wages to be reshuffled (I borrow this expression from 

Baker and Solon [1998]) with respect to their lagged values.

As far as the transitory component is concerned, its specification will follow the 

previous Chapter by hypothesising an ARMA(1,1) in which the variance of initial 

conditions is modelled separately from the white noise variance (the two parameters 

are indicated by oq and oj?, respectively, in the tables reporting results, while p and 

0 correspond to the AR and MA parameter respectively). This specification allows 

transitory mobility to be analysed in that it yields estimates of transitory wage 

correlation.

As anticipated in the Section 3.1, a central and qualifying difference with 

respect to the models of Chapter 2 Is given by the specification of the time varying 

loading factors. These parameters are meant to capture the effect of forces which 

inflate-deflate the distribution of the two wage components, but leaving their ranks 

unaltered, thus impacting on the relative importance of the two components (and
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hence on persistence), but not on the extent of mobility within each of them. In 

Chapter 2, such loadings were specified as cubic functions on calendar time; here 

we follow Dickens [1996] and specify them as flexible time shifters, i.e. each time 

period has its couple of shifters, one for each component:

wit = "fW# + Ttwf, (3.5)

where 7it and t t indicate the shifters on the permanent and transitory component 

respectively, with the parameters for the first period set to 1 for identification. This 

specification implies the following restriction on second moments:

E(witwis) = C Z ^ o d>nt ) ( 'Z Ss=Odsns)E(~w!tw^  +

Œ ,r=“c!d'T' )(X f ="ods Ts )Eiwftwl  > (3.e:
d j = l ( j  = k) j  = t,s k = 0.... 7 -1

"0 = ^0 = 1

where the dys are dummy variables indexing the rows and columns of the covariance 

matrix. Following this route, changes in the relative importance of the two wage 

components over time can be assessed without relying on specific assumptions on 

the functional form of the loadings.

3.3 The data utilised

The data set utilised in this study is a panel of individual wages referring to the 

1979-1995 interval which has been made available by the INPS. The target 

population is the same as for the previous Chapter, i.e. dependent workers from the
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private non-agricultural sector of the economy; the available sample is a 1% random 

drawing of all the workers registered in the INPS archive during the period examined 

and born between 1928 and 1970. The data set has been built by merging the 

information contained in a form which refers to the worker with other information 

concerning the firm. On the workers side, the available information consists of the 

gross yearly wage (inclusive of any over-time and extraordinary compensation), year 

of reference, year of birth, gender, occupation and number of weeks worked. 

Information on the firm refers to its INPS identification code, size, geographical 

location and five digits industry.

The data set constitutes an unbalanced panel covering roughly 100,000 wage 

histories. Similarly to the sample of Chapter 2, attrition problems can potentially arise 

from non-random movements into and out from the data, caused by the same 

reasons outlined in the previous Chapter. Again, no formal control for attrition has 

been implemented due to the lack of instruments. However, some attention will be 

paid to the consequences of using the unbalanced panel instead of a balanced 

sample.

For the purposes of this study, I select full-time male workers employed on a 

regular basis born between 1930 and 1970 inclusive. Moreover, in order to improve 

the convergence properties of the GMM estimator, I also exclude the top and bottom 

5 observations from each tail of the cross-sectional distributions. This yields an 

unbalanced panel where the total number of wage histories is 70,002 and whose 

structure is reported in Table 3.1, where diagonal elements give the cross-sectional 

dimension of the data and extra-diagonal element are the number of observations 

used in the estimation of the corresponding element of the covariance matrix.
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The cross-sectional composition of the data with respect to some workers’ 

characteristics is reported in Table 3.2. As can be seen, the cohort structure of the 

data reflects the entry of younger cohorts into the labour market; cohort turnover 

thus attenuates the progressive ageing of the sample with calendar time. We can 

also note a movement away from manual occupations, which can either reflect 

occupational mobility of older cohorts and a higher propensity of younger cohorts to 

be employed in non-manual jobs. A slight shift away from larger firms can be also 

observed, while the industrial structure tends to stay constant over time.

In order to construct the wage covariance matrix, the logarithms of real weekly 

wages (1995 prices) have first been adjusted for year, age and cohort effects. This 

has been done by regressing the 17 pooled cross-sections on a set of cohort 

dummies fully interacted with a quadratic in age and year dummies. The three 

effects are meant to capture business-cycle, life-cycle and productivity growth effects 

respectively, and the pooled cross-sections approach enables separate identification 

of age and birth cohorts. It’s worth recalling from Chapter 2 that the aim of this initial 

adjustment is to remove the influence of structural factors (such as earnings 

progressions with age) which generate inequality between groups and could drive 

the results as an effect of changes of these characteristics within the sample through 

time. Moreover, the control for birth cohorts is very important in the INPS data since 

it can capture fixed differences in education between cohorts, thus, at least partially, 

coping with the non-availability of education among explanatory variables.
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3.4 Patterns of inequality and mobility

Before proceeding to the formal analysis of the covariance structure, an useful 

starting point for the empirical investigation is to consider some descriptive statistics 

of both the marginal and the joint (over time) wage distribution.

Figure 3.1 reports the evolution of various indicators of (residual) cross- 

sectional wage dispersion computed from the 17 waves of the INPS panel after 

removing the structural effects mentioned above. Trends in the figure reproduce to 

some extent those reported by the literature reviewed in Chapter 1, with an initial 

phase of dropping inequality which stops in the early 1980s and is followed by a 

marked widening of wage differentials until the end of the data. The graph illustrates 

how increasing wage dispersion characterises not only the central-final part of the 

1980s, as shown in Chapter 2, but is also a feature of the first half of the 1990s. The 

graph in the top left corner (stdev) plots the standard deviation of adjusted 

logarithmic weekly wages and shows how the reduction in inequality which occurs 

from the start of the data until 1982 is substantially neutralised by 1987. The re­

opening of differentials is far from smooth and presents peaks in 1983, ‘85, ‘88 and 

94. It is worth stressing how the last two years of data, subsequent to the 1993 

bargaining round which completely abolished automatic wage indexation, are 

characterised by a pronounced increase in dispersion. The remaining panels of the 

figure (from I90_10 to I90_50) report the logs of the ratios between percentiles of the 

wage distribution, which, compared to sdlww, are robust to the presence of outliers. 

The evidence from I95_5, I90_10 and I75_25 suggests that the peaks in the growth 

of inequality are in fact a consequence of decompression at the tails of the 

distribution, being smoothed away the more robust the measure considered. From 

these panels it is also evident that wage dispersion grew quite slowly during the 

years immediately subsequent to the 1982 u-turn, while since 1987 the growth of

88



3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

inequality seems to be faster. Taking into account inequality trends at the bottom and 

top halves of the wage distribution (I50_10 and I90_50, respectively) it can be 

observed how the variation in the rate of growth of wage dispersion characterising 

the data since the second half of the 1980s can probably be ascribed to dynamics at 

the top of the distribution; on the other hand, the strong growth of the last two years 

of the sample seems to come from the bottom half.

The evidence shown so far concerns the marginal wage distribution: as such it 

is not informative about the degree of individual persistence (immobility) within the 

distribution which accompanies the widening of differentials. A first insight into this 

issue may be gained by considering some indicators of wage correlation and

mobility.

Figure 3.2 reports the autocorrelation function of adjusted wages by various 

starting years. We can see how the patterns reported tend to reproduce the negative 

exponential shape of the autocorrelation function of an AR process. However there 

are some departures from it and, in particular, there seems to be an increase in 

persistence around the second half of the 1980s, the period which has been shown 

above to be characterised by an acceleration in the growth of dispersion; conversely, 

persistence drops faster over the early 1990s. The figure also suggests that 

persistence is increasing during the sample period, i.e. the autocorrelation functions 

tend to shift upwards as we move to more recent starting years. This last remark is 

confirmed by Figure 3.3, which plots wage autocorrelations by fixed lags over the 

sample period. Reported trends are typically increasing over time, although with 

some cycling. It is interesting to note how the downturns of such cycles tend to be 

placed in correspondence of the peaks of the standard deviation (the one reported in 

Figure 3.1); as an example, 1988 and 94 tend to be a local minimum in all the panels
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in the first row of the graph, suggesting that the distribution is more volatile in those 

years. As we move towards higher order lags, autocorrelation profiles tend to 

become flatter, indicating a greater stability of persistence for wages further apart, 

the effect of serially correlated wage shocks having washed away.

As mentioned in the previous Chapter, the correlation coefficient measures 

persistence in absolute terms and can be usefully accompanied by measures of 

wage mobility based on quantile transition matrices which focus on changes in 

relative wage ranks. Figure 3.4 plots the value of the mobility ratio and of the 

average absolute jump computed on ventile transition matrices for wages one, five 

and ten years apart; the first measure counts the average (over ventiles) frequency 

of cases changing ventile during the transition examined, while the second is 

concerned with the average absolute difference between departure and arrival 

ventile conditional on having moved. The joint implementation of the two indices 

allows us to focus not only on the number of workers moving, but also on the width 

of the transitions made.36 Estimates of the frequency indicator are in line with the 

outcomes from the analysis of the correlation coefficient. In the short term mobility is 

decreasing over the sample period, with the exception of the last two years of the 

data; taking longer run measures into consideration, the evidence of dropping 

transition frequency is less apparent, mobility profiles tending to be flatter. Taking the 

width indicator into account, we can notice first of all how, under this respect, mobility 

is less pronounced, the maximum value plotted in the left panel being (differently 

from the frequency measure) even less than 50% of the “perfect mobility” value. 

Also, we can see how in this case, dropping mobility is more evident for longer lags.

’ As an upper benchmark for these numbers one could use the values corresponding to the case of 
stochastic independence of wages in the two periods, which are 95 for the mobility ratio and 7 for the 
average absolute jump.
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Overall, Figure 3.4 points towards a dynamic of the wage distribution in which 

transitions have been declining over time and of limited scope.

The evidence provided thus far shows that the degree of persistence of 

individual positions within the distribution tended to increase over the period 

analysed. If coupled with the increasing cross-sectional dispersion, this fact suggests 

that widening wage differentials permanently affected individual wage profiles. In the 

next section I use formal models of the wage covariance structure to directly address 

this issue.

3.5 Variance components models of the wage covariance structure

This section reports the results obtained by fitting the covariance structure 

implied by the models of Section 3.2 to the empirical covariance matrix estimated 

from the INPS panel.

The empirical covariance matrix for the whole sample of full time male workers 

is reported in Table 3.3: diagonal and super-diagonal elements are wage variances 

and autocovariances (respectively), with asymptotic standard errors reported in 

parentheses, while, below the diagonal, the corresponding correlation coefficients 

(which are the ones plotted out in Figures 3.2 and 3.3) have been computed. The 

covariance matrix elements are all significant at conventional confidence levels. 

Casual inspection of super-diagonal elements reveals how, typically, the 

autocovariance function presents the negative exponential shape noted above for 

the autocorrelation function; similar evidence is reported by Dickens [1996] for the 

UK and Moffitt and Gottschalk [1993] for the US, and in both cases it has been 

argued that these patterns can be picked up by some form of autocorrelation in the
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transitory component. It can be observed how, compared to the analogous table in 

Chapter 2, here the evidence of historic time dependence in the covariance structure 

is less apparent, but still present (recall, for example, the concavity characterising 

the autocorrelations of figure 3.2 over the 85-88 interval). We can also observe how 

comparable points in the two cases (say, for example, the variance of 1979) are, 

numerically, quite different, figures being lower in the case of the present Chapter: 

this is due to differences in the first stage regression, in particular to the fact that in 

Chapter 2 cohort effects are not fully interacted with age and year effects, thus 

leaving more variation in the data.

3.5.1 Estimates for the whole sample

A first group of results for the whole sample is reported in Table 3.4, namely 

models with a RW or RG specification of the permanent component, while the 

transitory wage is assumed to be ARMA(1,1); in both cases, no time shifters are 

allowed, so that the whole dynamics of the covariance structure are picked up by the 

linear and quadratic terms in calendar time within the permanent wage and by the 

correlation coefficient within the transitory one.37

Parameter estimates are well determined and indicate a substantial growth of 

permanent wage dispersion in both cases; in particular this is in the order of 64% in 

the RW case and 55% for the RG specification.38 Moreover, the RG model indicates 

that workers with a growth rate parameter one standard deviation above the mean 

will experience a 24% growth of permanent wages over the sample period. A second

Specification of the RG model assumes that the time trend is common to all workers, i.e. 

w' j  =  m  + f j t ,  experiments have also been made with individual specific tim e trends

(w £  =  p i + Y / t / ,  with t, measured as difference from t and the first year i is observed in sample) 

obtaining virtually the same results as the one presented.
* This figures are computed as )((o 2̂ (T - l )+  cr2p)/ o 2p ] - l  } * * I 0 0  for the RW  and as ( [ (o 2y ( T - l ) 2+2 

rrpY(T-1)+ o 2p )/ o 2p ] - 1) * 100 for the RG model.
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relevant fact emerging from these estimates is the positive sign of the covariance 

between intercepts and slopes of the RG model (o My) which indicates divergence in 

permanent wage profiles over the life cycle. This supports the interpretation which 

was given to the negative estimate of a My in the previous Chapter, i.e. that such an 

outcome was an effect of the wage indexation system: the data set of the current 

Chapter is less influenced by the compressionary effect of the Scala Mobile, so that 

the underlying tendency of diverging wage profiles is evident also between 

occupations. Taking the transitory wage into account, we can notice how, differently 

from Chapter 2, the ARMA specification is now supported by the data also in the 

presence of a dynamic permanent wage, a fact probably arising from the presence of 

higher variation in the data set of the present Chapter, which allows identification of 

more flexible specifications of individual wages. Estimates of the transitory wage 

parameters are fairly stable across the two models, the most relevant difference 

being in the MA parameter which, as an effect of the introduction of a quadratic term 

in the permanent covariance (i.e. for the RG specification), gets nearly halved in 

size. A final comment is deserved by the measures of fit. The sum of squared 

residuals is lower for the RG model, in line with what we would expect from the fact 

that this model has one additional parameter; however, this doesn’t hold for the x 2 

statistic, which is lower for the less parametrised RW model, suggesting that this 

specification provides a better description of permanent wage dynamics.

Table 3.5 reports estimates from the same specifications of the permanent and 

transitory wage, but including period specific time shifters on the two wage 

components. By comparing these results with the ones from the previous table we 

can see how parameter estimates for both the transitory (an exception is Oq ) and
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the permanent wage get inflated by the inclusion of the loading factors. On the other 

hand, the loadings are smaller than one and, for the RG specification of the 

permanent wage, they are monotonically decreasing over time. However, this 

doesn’t mean that permanent wage covariance is decreasing over time, given that 

we have to consider the whole impact of estimated parameters, i.e. both the loadings

and the dynamics within the permanent wage components as captured by o |,o ^

and .

To better assess the dynamics of covariance components, Figure 3.5 plots out 

the Table's predictions in terms of variance decomposition. These predictions are 

obtained utilising parameter’s estimates in the formulas given in (3.7) below, where 

Ep(wjtwis) denotes the predicted permanent covariance structure and ET(wltWiS) is the 

predicted transitory covariance structure, while predicted total covariance results from 

the sum of the two components:

E p (w itw is ) =

E T (Wit WjS ) = ( Z [ ; 0V t ) ( l i > sTs)E (v v X ) (3.7)
d j  = /(; = k) j  = t,s k = 0.... T -1

"0 = T0 = 1

In both cases, it can be observed how permanent variance accounts for the 

largest share of the level of total variance in each time period and, in parallel to the 

growth in total variance, the permanent variance profile is increasing over the sample 

period, while the transitory variance is roughly constant. The estimates underlying 

the figure imply that in the RW case, total variance increased by 54% from 1982 to 

1995, of which 90% can be ascribed to the permanent component; corresponding 

figures for the RG model are 50% and 77%. Estimates of the core permanent
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component in the two cases still point towards a context of highly persistent, if not 

diverging, wage dynamics, and it is probably the large and positive estimate of 

in the RG case which imparts the decreasing pattern to the loading factors for the 

permanent component, counterbalanced by the increasing transitory dispersion in 

the initial years of the sample. Combining the estimates of a* and of the loading 

factors, the RG model predicts a 28% growth of permanent wages over the 17 years 

period for workers one standard deviation above the mean in the distribution of y . 

Again, the x 2 statistic favours the RW permanent wage specification, despite having 

one parameter less than the other model. Considering this fact in conjunction with 

the similar conclusion drawn from the previous table, it seems that the data support a 

picture of individual wage dynamics characterised by the high persistence of random 

walk processes, rather than evolving according to theoretically derived linear profiles. 

In any case, both the RG and RW specifications lead us to rule out the possibility of 

wage convergence at this stage of the analysis.

Going back now to the dynamics of transitory wage variance depicted in Figure 

3 5, we can observe how the peaks characterising total variance in 1988 and 1994 

are in fact a consequence of wage volatility. Transitory wage variance is increasing 

in the last years of the data; in particular, from 1989 to 1995, wage volatility grows by 

76% in the RW case and by 59% in the RG one. Thus, apart from the peak of 1994 

which, similarly to the one which can be observed in 1988, could in part arise from 

the higher turmoil characterising the distribution in these years and which produced 

dispersion at the tails (as Figure 3.1 showed), increasing volatility can be detected 

within the distribution in the last part of the period under investigation, a fact which 

accords with the higher institutional flexibility which characterises the Italian labour 

market over the late 1980s and the 1990s. This is also in line with the fact that, as
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observed when commenting on Figure 3.4, frequency mobility measures tend to drop 

more evidently in the short than in the medium and long run over these years: wage 

immobility has more to do with shock persistence in this case and washes out after a 

few periods. By recalling the discussion of Section 1.4, this also means that while on 

the one hand cross-sectional inequality has a lower impact over individual life-cycles, 

on the other wage profiles are characterised by higher uncertainty, which could 

worsen workers’ welfare.

As a next step in the analysis, Table 3.6 and Figure 3.6 report results obtained 

by restricting the attention to the balanced sample, i.e. by discarding those wage 

profiles for which observations are missing in any of the years considered. By doing 

so, it will be possible to get a feeling of the effects of panel attrition on the models 

under estimation. Moreover, the selected sample will correspond to a more 

homogeneous group, the cases being ruled out relating to workers moving into or out 

from private dependent employment or the labour force, in particular workers 

belonging to extreme birth cohorts beginning or ending their careers. Estimation 

results will thus be informative of the effects of (broadly defined) job stability on the 

covariance of wage components.

Compared with Table 3.5, reported parameter estimates present .a smaller 

dispersion of initial permanent wages (oj;), which accords with the sample design;

the growth parameters of the “core” permanent variance are also lower, and similar 

remarks apply to the parameters of the transitory wage. The covariance between 

intercepts and slopes of the RG model still indicates divergence of wage profiles over 

the life-cycle. On the other hand, the size of the loading factors rises for the 

permanent component, while for the transitory one this holds only over the first part 

of the sample period, a drop in the transitory loadings characterising the last part of
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the data. The fitting measures suggest a higher capability of the models in capturing 

empirical variation, a likely consequence of the higher homogeneity characterising 

this sub-sample.

Figure 3.6 shows the implication of these estimates in terms of variance 

decomposition. First of all we can notice how the peaks of total variance in 1988 and, 

especially, 1994 are smoothed out. By recalling that, for the whole sample, these 

were symptoms of wage volatility, the finding reflects the more stable nature of the 

sub-sample under investigation. A relevant difference with respect to the whole 

sample is given by the growth of estimated total variance, which, for the interval 

1982-1995 amounts at approximately 90% for both specifications of the permanent 

wage. As we should expect from the sample design, permanent variance plays a 

predominant role in shaping overall dynamics, its contribution to total variance 

growth being 98 and 95% for the RG and RW model respectively; thus, a higher 

permanent wage homogeneity at the beginning didn’t translate into higher 

homogeneity at the end of the period. Accordingly, we can observe how the last part 

of the period is characterised by a lower level of transitory variance with respect to 

the unbalanced case.

3.5.2 The covariates of permanent and transitory inequality

Results presented thus far show that although the aggregate divergence of 

wage differentials had an impact on both wage components, a major role was played 

by the dynamics of permanent wage variance. In what follows, advantage will be 

taken of the availability of observable workers and firms characteristics in the INPS 

archive in order identify the directions along which permanent inequality and wage 

volatility grew more markedly.
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A first way by which this purpose can be pursued is to remove also the effect of 

observable characteristics from the first stage regression; this amounts at abstracting 

from the effects of between groups wage differentials and the resulting covariance 

decomposition will thus be within the cells defined by the additional controls adopted 

in the first stage regression. A comparison of such within-groups analysis with results 

from Section 5.1.1 will then be informative about the effects of between-groups 

differentials on permanent and transitory wage variation. Among the (few) 

observable characteristics available in the INPS panel, here I focus on occupation, 

industry and firm size. To control for them, I add dummy variables defined according 

to the splits reported in Table 3.2 in the first two cases and the logarithm of firm size 

in the third to the age, cohort and time effects. Results obtained are reported in 

Table 3.7 and Figure 3.7. Reported specifications of the permanent component are 

the RW model for the within occupations analysis and the RG one in the remaining 

cases. While for the sample with occupational effects removed the RG model didn’t 

converge to a well determined vector of estimated parameters, in the remaining 

cases the RG specification of the permanent wage provided a much better fit to the 

data, with the x 2 approximately halving as a consequence of the additional 

parameter. Such evidence contrasts with results from the previous analysis, when it 

was argued in favour of the RW specification and suggests that, those conclusions 

were in part due to persistence in wage differentials between firms of different size 

and industrial sector.

Looking at the “core" permanent wage for models with RG specification (i.e. 

the last three columns of Table 3.7), we can notice how the covariance between 

intercepts and slopes of individual profiles is now negative, Indicating convergence. 

The dynamics of permanent variance are, for what concerns the two central columns 

of the table, still growing, as signalled by the loading factors and confirmed by the
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graph: after removing the effects of these observables, the impact of the forces 

generating permanent inequality is transferred from the interplay between fixed and 

time varying heterogeneity to shifters which affect workers independently from their 

position in the distribution of permanent wages. This is true also for the last column 

(in which the three effects are removed simultaneously), but the level of initial 

permanent dispersion is (not surprisingly) roughly half that in the other cases, so that 

the permanent variance profile plotted out in the graph displays a less evident 

growth. Focusing on the first column of the table and comparing it to its counterpart 

of Table 3.5, we can observe for the within occupation covariance structure a lower 

level of RW initial permanent dispersion, which is in line with the fact that wages are

net of occupational dummies, and a larger white noise variance (o^), which means

that wage profiles present larger variability around their long-run level, an occurrence 

which is, again, in accordance with the fact that between occupation differences 

have been taken out from adjusted wages. The loading factors in the first column of 

Table 3.7 are smaller and monotonically decreasing through time, so that a larger 

o? doesn’t impact on the dynamics of overall permanent variance.

The panels of Figure 3.7 clearly suggest that between occupations effects are, 

among those considered, the most important in determining permanent and, 

consequently, total wage inequality: the within-occupations profile of total variance is 

basically flat all over the period, while similar conclusions may not be drawn when 

within firms size or industries (but between occupations) differentials are taken into 

account. Thus, between occupations wage differentials seem to play a role in 

determining the level of wage persistence; given that a worker's occupation is 

probably the best proxy for permanent skills available in the INPS data, such 

evidence points towards a role for skill biased changes in the labour market in
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explaining the widening wage distribution. Of course, this doesn't explain the nature 

of such changes, which may well come from market forces or from a shift in the 

priorities of wage bargainers after the era of wage egalitarianism.

Finally, taking wage volatility into account, the figure provides a profile of 

transitory variance which is similar across cases and also resembles the ones of 

Figure 3.5; in particular, the growth of transitory variance over the 1989-95 interval 

ranges from 28% in the within size sample to 38% in the within occupations one. 

Combining these findings with their counterparts emerging from Figure 3.5, the 

growth of wage instability characterising the last years of the data appears to spread 

both between and within the cells defined by observable workers characteristics.

Evidence from the within groups analysis shows the importance of 

occupational differentials for the dynamics of variance components; a further 

investigation of this finding (along the lines of what has been done in Chapter 2) is 

provided by the first two columns of Table 3.8, which refer to models estimated on 

sub-samples defined according to workers’ occupations. In order to perform such an 

exercise, the current workers occupation has been re-coded into a time invariant 

equivalent one, namely the weighted average of annual classifications with weights 

given by annual weeks worked,39 so that wage profiles are not “cut” in 

correspondence of steps in the occupational career.

For both sub-groups, RW specifications of the permanent wage are estimated. 

While for the blue collar sample the RG model yielded a value of the x 2 statistic 

higher than the RW’s one, for white collar workers it failed to converge, signalling 

that it tends to overparametrise the data. Considering parameter estimates it can be

In order to cope with the arbitrariness of this criterion, a dummy signalling whether in a given year the 
worker belongs to an occupational group different from the time invariant equivalent has been Included 
in first stage regressions.
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seen how the “core" components of the permanent wage are fairly similar across 

sub-samples, with the estimate of o f;, which is less precise (but still highly

significant) for white collar data; moreover, the white noise variance within the RW 

(which captures the linear growth of permanent variance through time) is also similar 

to the one for the whole sample in Table 3.5. The parameters for the “core” transitory 

wage are instead less similar, white collar workers presenting a higher degree of 

serial correlation, meaning that wage shocks are more persistent for this group. 

Thus, the two occupational groups seem to be characterised by similar degrees of 

permanent wage mobility, while a lower level of transitory mobility is evident in the 

white collar sample. A difference may also be observed for what concerns the 

behaviour of the loading factors; in particular, for the permanent components of the 

white collar sample they start being larger since the second half of the 1980s, while 

for the transitory wage larger loadings for white collars may be observed over the 

end of the 1980s decade and the early 1990s.

In order to gain some additional insights into the occupational differences in the 

wage covariance structure, I proceed by jointly modelling the data from the two 

groups. The fact that some parameters tend to be similar across groups points 

towards the opportunity of a more parsimonious joint modelling, which would also 

allow direct tests of the statistical significance of such similarities. With this aim the 

two occupational covariance vectors have been stacked into a single vector of 

empirical moments40, on which restrictions have been imposed assuming that each 

of the parameters of interest results from the sum of two parts, a base component

The fourth moments matrix for this problem Is block diagonal with blocks given by the matrices of the 
two groups.

101



3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

and a second one representing the shift of the parameter in correspondence of 

second moments coming from the white collar sample.

Attempts at estimating a “fully shifted” model, however, produced estimates of 

the core transitory wage which were opposite to the ones arising from the sub­

sample analysis, in that the AR and MA parameter were smaller in absolute value for 

white collar workers, while some of the transitory loading factors implausibly turned 

out to be negative for this group 41, leaving the impression that simultaneously 

shifting the core transitory wage and its loadings imposes too much structure on the 

data, and that restrictions have to be put on the transitory wage specification.42 A 

first attempt has been made by restricting the core of the transitory component to be 

the same across groups, while letting the loadings vary: this produced a value of the 

X2 statistic of 1611.22 which, as we will see below, is larger than the one obtained 

by following the alternative route, despite corresponding to a model with 12 

additional parameters; resulting estimates of the transitory loadings for the white 

collar sample were in general much smaller than the ones in the second column of 

Table 3.8, in particular being between .05 and .15 from 1989 to 1995. Thus the 

alternative route was taken, so that the specification of the occupationally shifted 

covariance structure model restricts the transitory wage loading factors to be the 

same across occupations, while the core parameters are allowed to vary: we can 

interpret this restriction by assuming that the loadings pick-up the effect of economy­

wide shocks which impact on volatility irrespective of occupation, while the ARMA

Negative loadings imply that workers on one side (with respect to the mean) of the distribution of the 
core wage happen to be on the other side of the distribution of the overall wage as a result of the 
interaction with the loading factor, an outcome hardly making sense whatever the nature of the forces 
behind the loading factors on the transitory wage.

Attempts were also made by using this general model with only some of the transitory loadings 
restricted to be equal across occupational groups, namely the 1983, 85 and 88 ones, the choice being 
dictated by comparison of the within groups estimates: results similar to the one reported for the fully 
shifted model arose also with this specification.
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parameters capture occupation specific serially correlated transitory shocks. The 

"preferred" specification is thus:

wit =(*< +njvcd( )( +^„) + T,[(p + p wcdi)vit_ i+Eit +(0 + 0 wcd/ )e#_1]

<  ~[0.(o* + 0 ^ , ) ]

4/r ~ [0 , (o l+ a l wcdi)] (3.8)

v i0 ~[0i,(og+o§'*Bd/ )] 

eit ~ [0,(o* +oj?kvcd( )]

where the wc superscript denotes shifts of the parameters in correspondence of 

white collar wages, while d, is a dummy indicating white collar workers.

Results from the shifted covariance model estimates are reported in the last 

column of Table 3.8. The core of the permanent wage resembles the estimates for 

the blue collar sub-sample, while occupational shifts of its parameters are not 

significant, mirroring what has been noticed above when considering the two groups 

separately and confirming that the process governing core permanent wages is 

similar across occupations. The variance of initial conditions of the transitory wage 

also presents a statistically insignificant occupational shift. On the other hand, the 

ARMA parameters present significant differences across occupations, and, in 

particular, suggest that transitory shocks in the white collar distribution are more 

concentrated and more persistent.

The behaviour of the loading factors for the permanent wage is quite 

interesting. During the first part of the period considered, estimates of these 

parameters are fairly similar across occupations, with some of the white collar 

shifters being significantly negative, although of moderate size. Since the second half 

of the 1980s, and especially over the 1990s, this tendency reverts, and the white
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collar sub-sample attracts a considerable positive difference in these parameters 

with respect to blue collar data. Matched with the evidence about the core 

permanent wage discussed above, this implies that differences in persistence across 

occupations can be ascribed to factors which inflate the distribution and affect all 

individuals within one sub-group in the same fashion, rather than to persistent 

heterogeneity across individuals within that group. For example, this could result 

from contract provisions which differentiate wage dynamics between the two sub­

groups, but not among individuals within each group, and can also explain the 

acceleration of aggregate inequality growth at the top half of the distribution over this 

period.

Figure 3.8 plots out predicted variance decomposition from this last model43 

and shows how the dynamics of wage dispersion differ considerably across sub­

samples, a fact which, given the above discussion, can be ascribed to the loading 

factors of the permanent wage and to the parameters of the ARMA transitory 

process. Blue collar data present a profile of total wage dispersion which is, on the 

whole, decreasing up until 1993, while the peak observed in 1994 for the whole 

sample is still evident, and it is, as in that case, picked up by the transitory 

component. Overall inequality dynamics are accounted for by the transitory wage 

over the last part of the period. The right panel of the graph shows how both total 

and permanent differentials steadily grew after 1982 for white collars; moreover, 

while permanent and transitory wage variance are at the same level during the early 

1980s, transitory differentials remain roughly constant until the end of that decade, 

implying that persistence is growing. The increasing volatility of the early 1990s also 

characterises white collar data, by an extent which is amplified if compared with the

Only estimated occupational shifters marked by asterisks in Table 3.8 (I.e. statistically significant at 
least at the 20% level) have been used to construct the graph.

104



3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

sample of manual workers, in accordance to the differences in the ARMA 

parameters estimated above.

3.6 Summary and conclusions

This Chapter has looked at the permanent/transitory nature of male wage 

inequality dynamics using a large panel of INPS wage data over the 1979-1995 

interval. Descriptive statistics of the marginal wage distribution have shown that after 

the 1982 u-turn already documented in Chapter 2, cross-sectional differentials kept 

on growing up until the end of the data, in particular for what concerns the late 

1980s-early 1990s interval and the top half of the distribution. Indices of correlation 

and mobility have been used to show that these trends were paralleled by increasing 

persistence, especially in the short and medium terms.

Formal models of the wage covariance structure have been estimated by 

Equally Weighted Minimum Distance. Alternative specifications of the permanent 

wage have been estimated, namely random walk and random growth models, 

showing that the former tends to provide a better description of permanent wage 

dynamics. Moreover, both specifications’ estimates show the absence of wage 

convergence over the life-cycle; given that the data set of the current Chapter covers 

a period less influenced by the Scala Mobile than the one used in Chapter 2, this 

reinforces the conclusion advanced there, when convergence was ascribed to the 

effects of the egalitarian wage indexation system.

Models with flexible time shifters on the two wage components have been 

estimated to assess changes in the covariance structure through time. Results 

indicate that the overall growth in inequality was to a large extent driven by
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permanent differentials, which account for 70 to 90% (according to the specification 

of the permanent wage) of total inequality change. A role has been detected also for 

volatility, which contributes to growing dispersion over the early 1990s, a fact which 

accords with the increased “flexibility" of the labour market characterising these 

years. Thus, the relative importance of permanent inequality decreased in recent 

years due to a growth of wage uncertainty, which we have seen in Section 1.4 to 

have the potential for inducing welfare worsening effects. This conclusion is 

weakened when analysis is restricted to the balanced sub-sample, permanent 

differentials becoming predominant.

The analysis has next turned to the effect of observable workers' 

characteristics on covariance structure analysis. This has first been done by 

estimating our models on wages purged of the effects of between groups 

differentials, groups being defined by occupation, industry and firm size. It has been 

shown that much of the dynamics of total and permanent differentials arise from 

differences between occupations, while the other differentials considered do not alter 

conclusions reached about the dynamics of permanent and total inequality. On the 

other hand, the increasing volatility characterising the last part of the period analysed 

still persists after jointly removing the effects of observables, meaning that it spreads 

through the wage distribution both between and within the cells defined by the 

controls adopted.

Occupational differences have then been analysed in greater detail. Sub­

samples defined according to occupation have been constructed and a method for 

shifting covariance parameters according to a worker’s occupation has been 

proposed Results show that permanent wages evolved according to random walk 

processes whose parameter estimates are similar across occupations, while
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estimates of time shifters for these processes indicate the presence of positive 

differentials in favour of white collar workers since the second half of the 1980s. On 

the other hand, ARM A transitory wages are significantly more persistent for white 

collar workers, while the loadings of this wage component have been restricted to be 

the same over occupations. The permanent wage structure thus reflects the use of 

wage premia in favour of white collar workers which, as mentioned in Chapters 1 and 

2, became more frequent during the 1980s. However this has not generated 

differences in the dynamics of wage profiles within the white collar permanent wage 

distribution, but has rather shifted it with respect to the one for manual workers.

I
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

Table 3.4: Estimates for the whole sample without time shifters

Random walk+ARMA(1,1) Random
growth+ARMA(1,1)

0.1036 (0.0011) 0.1042 (0.0016)
o 2y 0.0002 (9.14E-06)

ct-Ç; apy 0.0042 (0.0001) 0.0002 (0.0001)
CT28 0.0228 (0.0004) 0.0273 (0.0003)
ct' o 0.0559 (0.0014) 0.0484 (0.0017)
p 0.5362 (0.0170) 0.5859 (0.0135)
0 -0.3194 (0.0241) -0.1647 (0.0150)
fit 0.0040 2701.48 0.0033 2916.13

n obs 70002 70002

Notes: Asymptotic robust standard errors in parentheses; fit measures are the SSR (left) and the SSR 
weighted by the inverse of the fourth moments matrix (right). Columns are labelled according to the 
model specified for wlt (as defined in the text). Estimates shown refer to (in descending order): 
covariance structure of the core permanent wage (from a 2p to a 2Ç; apy), covariance structure of the 
core transitory wage (from ct2e to 0).
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

Table 3.5: Estimates for the whole sample.

n,'Random walk+Tt*ARMA(1,1) n,'Random growth* t,*ARMA(1,1)
0.1254 (0.0038) 0.1375 (0.0038)

CT‘y 0.0013 (0.0002)
apy 0.0051 (0.0007) 0.0067 (0.0011)

a 2e 0.0459 (0.0034) 0.0502 (0.0038)
0.0323 (0.0035) 0.0200 (0.0034)

P 0.7323 (0.0219) 0.8430 (0.0086)
0 -0.4319 (0.0133) -0.4241 (0.0074)

nXO 0.9739 (0.0063) 0.8968 (0.0112)
nXI 0.9061 (0.0086) 0.7833 (0.0156)
nX2 0.8562 (0.0104) 0.6986 (0.0187)
nX3 0.8821 (0.0132) 0.6852 (0.0224)
nX4 0.8585 (0.0146) 0.6363 (0.0242)
nX5 0.8733 (0.0167) 0.6207 (0.0266)
nX6 0.8782 (0.0188) 0.6035 (0.0286)
nX7 0.9054 (0.0209) 0.6015 (0.0308)
nXX 0.9043 (0.0218) 0.5783 (0.0317)
nX9 0.8933 (0.0234) 0.5558 (0.0321)
n9() 0.9078 (0.0249) 0.5467 (0.0331)
n9l 0.9076 (0.0260) 0.5292 (0.0333)
n92 0.9155 (0.0270) 0.5166 (0.0340)
n93 0.8875 (0.0266) 0.4829 (0.0331)
n94 0.8967 (0.0270) 0.4711 (0.0335)
n95 0.9013 (0.0282) 0.4608 (0.0338)
tXO 0.6490 (0.0428) 0.6480 (0.0335)
tXI 0.6862 (0.0395) 0.7240 (0.0337)
tX2 0.7174 (0.0367) 0.7598 (0.0323)
tX3 0.7401 (0.0374) 0.7868 (0.0328)
tX4 0.7636 (0.0363) 0.7982 (0.0323)
tX5 0.7746 (0.0372) 0.8104 (0.0328)
tX6 0.6729 (0.0328) 0.7389 (0.0287)
tX7 0.6717 (0.0333) 0.7390 (0.0288)
tXX 0.7406 (0.0360) 0.7851 (0.0314)
tX9 0.6258 (0.0316) 0.6988 (0.0277)
t90 0.6495 (0.0357) 0.7174 (0.0303)
t91 0.6477 (0.0325) 0.7207 (0.0292)
t92 0.6782 (0.0337) 0.7481 (0.0304)
r93 0.7667 (0.0367) 0.8094 (0.0332)
t94 0.9053 (0.0414) 0.9147 (0.0380)
t95 0.8265 (0.0404) 0.8739 (0.0364)
fit 0.00016 911.19 0.00013 1020.24

n obs 70002 70002

Notes: Asymptotic robust standard errors in parentheses; fit measures are the SSR (left) and the SSR  
weighted by the inverse of the fourth moments matrix (right). Columns are labelled according to the 
model specified for w„ (as defined in the text). Estimates shown refer to (in descending order): 
covariance structure of the core permanent wage (from cr2p to o 2Ç; crpy), covariance structure of the 
core transitory wage (from a 2e to 0), loadings of the core permanent (the ns) and transitory (the is )  
wage
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

Table 3.6: Estimates for the balanced sample.

7tt*Random walk+Tt*ARMA(1,1) 7t,*Random growth+ t,*ARMA(1,1)
ctV 0.0782 (0.0023) 0.0779 (0.0037)
o - y 0.0002 (0.0002)

ct‘ 4 ;  c rp y 0.0016 (0.0002) 0.0021 (0.0018)
CT26 0.0279 (0.0017) 0.0333 (0.0026)
a 20 0.0446 (0.0022) 0.0450 (0.0037)

P 0.7441 (0.0158) 0.7603 (0.0096)
0 -0.3194 (0.0131) -0.2600 (0.0105)

7t K0 1.0365 (0.0058) 1.0078 (0.0308)
TtXI 1.0076 (0 0075) 0.9542 (0.0553)
71X2 0.9739 (0.0089) 0.8985 (0.0748)
t iX3 1.0418 (0.0111) 0.9387 (0.0999)
7tX4 1.0450 (0.0130) 0.9204 (0.1175)
7 i85 1.0883 (0.0151) 0.9370 (0.1380)
j tX 6 1.1167 (0.0176) 0.9421 (0.1558)
7tX7 1.1773 (0.0203) 0.9731 (0.1772)
TtXX 1.1892 (0.0221) 0.9630 (0.1904)
i tX 9 1.2038 (0.0241) 0.9554 (0.2028)
7t9(> 1.2377 (0.0258) 0.9622 (0.2174)
7t9 1 1.2533 (0.0274) 0.9543 (0.2281)
7t92 1.2837 (0.0291) 0.9565 (0.2403)
7t93 1.2883 (0.0300) 0.9391 (0.2470)
n 9 4 1.2997 (0.0306) 0.9262 (0.2541)
ti9 5 1.3533 (0.0323) 0.9432 (0.2688)
t XO 0.8338 (0.0210) 0.8001 (0.0326)
t X 1 0.8275 (0.0254) 0.7818 (0.0335)
tX 2 0.8516 (0.0279) 0.7972 (0.0317)
t X3 0.8761 (0.0306) 0.8215 (0.0339)
tX 4 0.8354 (0.0305) 0.7890 (0.0335)
t X5 0.8629 (0.0362) 0.8175 (0.0375)
tX 6 0.7090 (0.0276) 0.7024 (0.0297)
t X7 0.6692 (0.0288) 0.6789 (0.0299)
t XX 0.6344 (0.0327) 0.6514 (0.0323)
t X9 0.5690 (0.0224) 0.6013 (0.0255)
t 9 () 0.6083 (0.0320) 0.6276 (0.0330)
t9 I 0.5653 (0.0218) 0.5966 (0.0265)
t92 0.6000 (0.0263) 0.6266 (0.0296)
t 93 0.5903 (0.0271) 0.6244 (0.0286)
t 94 0.6982 (0.0296) 0.7088 (0.0317)
t9 5 0.7475 (0.0321) 0.7606 (0.0326)
f i t 0.00005 551.50 0.00004 544.76

n o b s 29235 29235

Notes Asymptotic robust standard errors in parentheses: fit measures are the SSR (left) and the SSR 
weighted by the inverse of the fourth moments matrix (right). Columns are labelled according to the model 
specified for w„ (as defined in the text). Estimates shown refer to (in descending order): covariance structure 
of the core permanent wage (from o2p to cr24; opy), covariance structure of the core transitory wage (from 
n to 0). loadings of the core permanent (the ns) and transitory (the ts) wage.
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

Table 3.7: Estimates for the whole sample adding the indicated controls to the first stage
regression.

Occupation Firm’s size Sectoral affiliation Occup., size &sect.
cT p 0.0955 (0.0039) 0.0854 (0.0026) 0.0763 (0.0021) 0.0394 (0.0020)
a ' y 0.0001 (0.00001) 0.0001 (0.00001) 0.0001 (0.00001)

c s \ \  a p y 0.0122 (0.0013) -0.0021 (0.0004) -0.0022 (0.0002) -0.0013 (0.0001)
a 2e 0.0396 (0.0026) 0.0400 (0.0020) 0.0413 (0.0019) 0.0418 (0.0018)
ct2<> 0.0234 (0.0038) 0.0493 (0.0025) 0.0558 (0.0019) 0.0583 (0.0020)
p 0.7969 (0.0135) 0.7742 (0.0092) 0.7364 (0.0091) 0.7511 (0.0073)
0 -0.4430 (0.0088) -0.3575 (0.0083) -0.3223 (0.0086) -0.3193 (0.0071)

rx80 0.8895 (0.0111) 1.0264 (0.0104) 1.0104 (0.0085) 1.0207 (0.0131)
ti8 I 0.7704 (0.0115) 1.0124 (0.0179) 1.0251 (0.0136) 1.0411 (0.0203)
ti82 0.6758 (0.0114) 1.0101 (0.0260) 1.0435 (0.0195) 1.0357 (0.0278)
7t83 0.6693 (0.0136) 1.0816 (0.0370) 1.1082 (0.0272) 1.0967 (0.0376)
ti84 0.6223 (0.0140) 1.0948 (0.0466) 1.1451 (0.0349) 1.1093 (0.0461)
7t85 0.6043 (0.0150) 1.1736 (0.0602) 1.2342 (0.0453) 1.1951 (0.0587)
ti86 0.5934 (0.0167) 1.2228 (0.0736) 1.3188 (0.0568) 1.2559 (0.0712)
ti87 0.5914 (0.0178) 1.3074 (0.0903) 1.3954 (0.0691) 1.3019 (0.0837)
7188 0.5718 (0.0176) 1.3532 (0.1060) 1.4824 (0.0837) 1.3534 (0.0981)
7i 89 0.5539 (0.0182) 1.3825 (0.1213) 1.5375 (0.0979) 1.3831 (0.1101)
ttMO 0.5437 (0.0183) 1.4622 (0.1423) 1.6231 (0.1153) 1.4337 (0.1252)
7X9 1 0.5361 (0.0184) 1.5133 (0.1618) 1.6850 (0.1321) 1.4930 (0.1423)
7i 92 0.5299 (0.0186) 1.5824 (0.1846) 1.7402 (0.1494) 1.5334 (0.1592)
ti93 0.4973 (0.0175) 1.5957 (0.2028) 1.7650 (0.1664) 1.5116 (0.1716)
7194 0.5003 (0.0177) 1.6344 (0.2275) 1.8217 (0.1896) 1.5479 (0.1930)
7X95 0.5090 (0.0190) 1.6756 (0.2559) 1.8608 (0.2146) 1.6077 (0.2201)
x 8(> 0.6857 (0.0366) 0.7927 (0.0214) 0.8087 (0.0174) 0.8271 (0.0168)
x 8 1 0.7809 (0.0361) 0.8177 (0.0236) 0.8328 (0.0209) 0.8487 (0.0200)
x82 0.8537 (0.0343) 0.8486 (0.0233) 0.8484 (0.0210) 0.8879 (0.0200)
x83 0.8574 (0.0348) 0.8754 (0.0244) 0.8643 (0.0219) 0.8991 (0.0210)
x84 0.8787 (0.0343) 0.8869 (0.0244) 0.8765 (0.0224) 0.9027 (0.0213)
x85 0.8908 (0.0353) 0.9066 (0.0255) 0.8873 (0.0237) 0.9150 (0.0227)
x86 0.7865 (0.0299) 0.8230 (0.0213) 0.7994 (0.0194) 0.8280 (0.0189)
x87 0.7836 (0.0309) 0.8191 (0.0223) 0.7963 (0.0207) 0.8219 (0.0200)
t XX 0.8543 (0.0339) 0.8732 (0.0251) 0.8507 (0.0231) 0.8756 (0.0223)
t X9 0.7307 (0.0286) 0.7814 (0.0213) 0.7518 (0.0191) 0.7716 (0.0183)
t 9 0 0.7697 (0.0332) 0.8067 (0.0257) 0.7821 (0.0238) 0.8011 (0.0228)
t9 1 0.7623 (0.0304) 0.8006 (0.0232) 0.7807 (0.0209) 0.7902 (0.0198)
x92 0.7782 (0.0310) 0.8090 (0.0245) 0.8074 (0.0223) 0.7902 (0.0202)
x93 0.8369 (0.0328) 0.8438 (0.0265) 0.8345 (0.0242) 0.8111 (0.0215)
x94 0.9648 (0.0364) 0.9736 (0.0299) 0.9521 (0.0275) 0.9220 (0.0251)
t 9 5 0.8612 (0.0332) 0.8851 (0.0270) 0.8627 (0.0255) 0.8066 (0.0214)
fit 0.0001 1009.80 0.0001 814.06 0.0001 745.77 0.0001 864.48

n o b s 70002 70002 70002 70002

Notes Asymptotic robust standard errors in parentheses; fit measures are the SSR (left) and the SSR 
weighted by the inverse of the fourth moments matrix (right). Columns are labelled according to the additional 
controls adopted in the first stage regression. The core permanent wage is specified as a random walk in the 
Occupation” column and as a random growth in the remaining columns. The core transitory wage is 

specified as an ARMA(1,1) in each column. Estimates shown refer to (in descending order): covariance 
structure of the core permanent wage (from a 2p to apy), covariance structure of the core transitory 
wage (from o 2r. to 0), loadings of the core permanent (the txs) and transitory (the ts) wage.
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

Table 3.8: Estimates by time invariant equivalent occupational classification.

Blue Collar Workers White Collar Workers Joint model with occupational shifters
Base parameter Shifter

0.0776 (0.0039) 0.0699 (0.0114) 0.0764 (0.0034) -0.0013 (0.0069)
0.0053 (0.0010) 0.0043 (0.0018) 0.0052 (0.0009) 0.0009 (0.0014)

CT‘ E 0 0482 (0.0038) 0.0289 (0.0031) 0.0380 (0.0030) -0.0123* (0.0016)
ct2o 0 0392 (0.0037) 0.0443 (0.0117) 0.0393 (0.0033) 0.0019 (0.0071)
P 0.6368 (0.0198) 0.9390 (0.0120) 0.5861 (0.0222) 0.3397* (0.0226)
0 -0.3031 (0.0135) -0.4655 (0.0301) -0.2552 (0.0180) -0.2351* (0.0273)

nXO 0.9354 (0.0116) 0 9536 (0.0236) 0.9366 (0.0108) -0.0086 (0.0255)
nXI 0.8487 (0.0162) 0.8529 (0.0268) 0.8536 (0.0146) -0.0283 (0.0306)
nX2 0 7916 (0.0195) 0.7492 (0.0283) 0.8050 (0.0178) -0.0881* (0.0344)
nX3 0.7865 (0.0233) 0.7946 (0.0290) 0.8067 (0.0214) -0.0635** (0.0387)
nX4 0.7538 (0.0252) 0.7133 (0.0345) 0.7616 (0.0225) -0.0549*** (0.0408)
nX5 0.7350 (0 0269) 0.7748 (0.0335) 0.7552 (0.0249) -0.0324 (0.0434)
nX6 0.7260 (0.0292) 0.7887 (0.0389) 0.7365 (0.0264) 0.0212 (0.0451)
nX7 0.7116 (0.0300) 0.8717 (0.0558) 0.7250 (0.0273) 0.0767*** (0.0483)
nXX 0 7066 (0.0312) 0.8196 (0.0480) 0.7198 (0.0285) 0.0510 (0.0494)
nX9 0.6742 (0.0316) 0.8172 (0.0503) 0.6804 (0.0282) 0.1346* (0.0519)
n90 0.6573 (0.0315) 0.8405 (0.0552) 0.6655 (0.0283) 0.1559* (0.0537)
n 9 l 0.6509 (0.0322) 0.8408 (0.0568) 0.6574 (0.0287) 0.1725* (0.0549)
n92 0.6281 (0.0317) 0.8526 (0.0585) 0.6327 (0.0281) 0.2198* (0.0565)
n93 0.6052 (0.0313) 0.7860 (0.0506) 0.6075 (0.0277) 0.1865* (0.0530)
7194 0.6011 (0.0312) 0.7813 (0.0509) 0.6062 (0.0281) 0.1605* (0.0530)
n95 0 6005 (0.0324) 0.8158 (0.0607) 0.6038 (0.0288) 0.2037* (0.0557)
t XO 0.7130 (0.0415) 0.8344 (0.0556) 0.7589 (0.0360)
t XI 0.7384 (0.0413) 0 8615 (0.0529) 0.8176 (0.0390)
t X2 0.7721 (0.0381) 0.8396 (0.0476) 0.8361 (0.0380)
t X3 0.8146 (0.0394) 0.8183 (0.0510) 0.8600 (0.0398)
t X4 0.7849 (0.0383) 0.9265 (0.0501) 0.9044 (0.0408)
t X5 0.8383 (0.0406) 0.8260 (0.0508) 0.8926 (0.0406)
tX6 0 7147 (0.0347) 0.7964 (0.0502) 0.8063 (0.0376)
tX7 0.7350 (0.0357) 0.7298 (0.0564) 0.8074 (0.0386)
t 8X 0.7850 (0.0387) 0.8090 (0.0532) 0.8662 (0.0401)
i X9 0 6395 (0.0314) 0.8112 (0.0503) 0.7399 (0.0347)
t90 0.6912 (0.0376) 0.8133 (0.0539) 0.7814 (0.0395)
t 9 1 0 6761 (0.0326) 0.8289 (0.0549) 0.7733 (0.0362)
t92 0.6893 (0.0330) 0.8801 (0.0558) 0.7982 (0.0375)
t93 0.7378 (0.0351) 0.9315 (0.0549) 0.8672 (0.0402)
194 0 9095 (0.0421) 1.0092 (0.0584) 1.0402 (0.0459)
t9 5 0 7914 (0.0368) 0.9506 (0.0547) 0.9164 (0.0417)
fit 0 000151 621.82 9.7E-05 607.48 0.0004 1387.24

n obs 49011 19894 68905

Notes Asymptotic robust standard errors in parentheses; fit measures are the SSR (left) and the SSR 
weighted by the inverse of the fourth moments matrix (right). The first two columns are labelled according to 
the sub-sample used in estimation. Remaining columns are labelled according to the parameter component 
they refer to The core permanent wage is specified as a random walk, the core transitory wage as an 
ARMA(1 ,1). Estimates shown refer to (in descending order): covariance structure of the core permanent 
wage (from a p  to a 2̂ ), covariance structure of the core transitory wage (from a 2e to 9), loadings of the core 
permanent (the ns) and transitory (the ts) wage. In the “Shifter" column *, ** and ***, denote significance at 
the 5, 10 and 20 percent levels respectively.
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

1) stdev

79 81 83 85 87 89 91 9395  

4) I75_25

79 81 83 85 87 89 91 9395

2) I95_5

79 81 83 85 87 89 91 9395  

5) I50_10

79 81 83 8^87^89 91 9395

3) I90_10

79 81~83 85 87 89 91 9395  

6) I90_50

79 81 83 85 87 89 91 9395

year
Fig. 3.1: Wage inequality dynamics
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Fig. 3.2: Autocorrelations by starting year
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?
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Fig. 3.3: Autocorrelations by lag
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Fig. 3.4: Mobility indices by lag
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

° predicted total variance 
« predicted transitory variance

a) random walk perm.comp.

79 81 83 85 87 89  91 93 95

* predicted permanent variance

b) random  growth perm.comp.

year
Fig. 3.5: Variance decomposition - Whole sample

° predicted total variance 
» predicted transitory variance

a) random walk perm.comp.

♦ predicted permanent variance

b) random  growth perm.comp.

year
Fig. 3.6: Variance decomposition - Balanced sample
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3. Male wage inequality dynamics: permanent changes or transitory fluctuations?

° predicted total variance 
° predicted transitory variance

a) occupation

♦ predicted permanent variance

b) firm 's s iz e

79 8 1 ^  83 85 ~87 8 9 ~ iM  9 3 ~  95

year
Fig. 3.7: Variance decomp.-Whole sample within groups

° predicted total variance 
« predicted transitory variance

blue collar workers
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*■ predicted permanent variance

white collar workers

year
Fig. 3.8: Variance decomp, with occupational shifters
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4. Mobility at the bottom of the wage distribution

4.1 Introduction

This Chapter analyses individual transition probabilities at the bottom of the 

wage distribution using survey panel data from the Bank of Italy. As stressed in 

Chapter 1, increasing wage inequality involves a low-pay issue, with a growing 

proportion of the labour force paid below fixed “decency thresholds", a fact whose 

policy relevance is witnessed in many countries by a renewed interest in minimum 

wage legislations. However, focusing on the incidence of low-pay at a point in time 

offers only an incomplete picture of the problem which has to be integrated with 

analyses of the degree of persistence of the low-pay status over individual careers. 

At one extreme, the bottom of the wage distribution could be characterised by a high 

degree of mobility, so that the experience of low-pay is shared among individuals 

over time. On the other hand, if low-pay is a persistent condition, workers are 

trapped in such “bad" jobs for a relevant portion of their career, so that the labour 

market produces inequality in a dynamic sense even if cross-sectional wage 

distributions are stable over time and the need for low-wage protection is more 

urgent. It is then important to analyse the degree of wage mobility across the low-pay 

threshold.

The analyses of this Chapter are focused on the econometric modelling of low- 

wage mobility, which can provide indications about the workers’ attributes relevant in 

generating mobility across the low-pay threshold. Moreover, such an exercise will 

allow investigation of the extent of true state dependence within aggregate low-pay 

persistence, thus shedding light on the effect of the past experience of low-pay in 

determining future low-pay episodes. Such an approach will then provide an 

alternative and complementary perspective on wage persistence with respect to the 

one of Chapters 2 and 3: while there the whole wage distribution was subsumed into 

a limited number of parameters and the effect of both observable and unobservable
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4. Mobility at the bottom of the wage distribution

characteristics was assessed, the current Chapter places the emphasis on wage 

classes at the bottom of the distribution and on the effect of observable attributes in 

determining exits from and entries into them.

As pointed out in Section 1.6, various studies of wage mobility have been 

devoted to the econometric modelling of transition probabilities in recent years by 

treating the outcome mobile/not-mobile by means of discrete response models and 

conditioning it on a set of personal characteristics. However, as stressed by Bingley 

et al. [1995] and Stewart and Swaffield [1999] (S&S thereafter), the structure of the 

problem involves two potential sources of endogenous sample selection which, if not 

properly tackled, could bias parameter estimates in the transition probability 

equation. First of all, the analysis of transitions requires the conditioning of current 

wage states on their lagged values and as long as workers assignment to the initial 

conditions of the transition is correlated with unobservable workers characteristics, 

such a conditioning cannot be deemed exogenous. Secondly, mobility can only be 

analysed for workers with a valid wage at both ends of the transition and the 

presence of non-random exits from the wage distribution could induce a second 

source of endogenous selectivity. The modelling strategy of this Chapter will be 

focused on the initial conditions problem and, in particular, the model of S&S will be 

extended. Robustness of these results to the presence of attrition bias will be 

analysed in Chapter 5.

The Chapter is organised as follows. Section 4.2 describes the 1993 and 1995 

waves of the SHIW data, which form the object of the analysis. Section 4.3 defines 

the low-pay thresholds and describes the characteristics of low-paid workers in terms 

of the ceteris paribus probability of being low-paid. Section 4.4 takes into account 

transitions out from and into the low-pay status: the econometric model of low-wage
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4. Mobility at the bottom of the wage distribution

mobility is set out and results are presented. Section 4.5 analyses the impact of a 

more flexible specification of the transition equation, which accounts for the width of 

transition, on estimated parameters. Section 4.6 concludes, while a comparison 

between the data set used in this Chapter and the INPS data is reported in the 

Appendix.

4.2 The data

The data set utilised in this study is drawn from the 1993 and 1995 waves of 

the Survey on Households Income and Wealth (SHIW), a micro-data archive set up 

by the Bank of Italy with the aim of providing information on the economic behaviour 

of Italian households. Interviews have been conducted on an annual basis since 

1977 and biannually from 1987 onwards. Although the sampling unit is the 

household, increasingly detailed information on labour market variables for 

individuals within the household has been made available in the recent waves of the 

survey44.

The two waves utilised are the latest in the SHIW and various reasons dictated 

the choice. First of all, given that the focus of this study is the dynamic behaviour of 

wage earners and of their transitions within the wage distribution through time, the 

availability of a panel is crucial. A panel sub-section has been introduced in the 

SHIW data since 1989: however, the proportion of panel households (i.e. those 

sampled in at least two consecutive waves) has initially been fairly small, 

approaching 50% only in 1993 and 1995. Secondly, the structure of the 

questionnaire referring to the labour market varied considerably over time, and the 

1993 and 1995 waves provide an acceptable degree of homogeneity in the available

44 See Cannarl and Gavosto [1994] for a full description of the subsection of the survey referring to the 
labour market.
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4. Mobility at the bottom of the wage distribution

information: as an example, the employer size, which we will see to have a 

considerable effect on the incidence of low-pay, is only available in the two selected 

waves. Finally, and probably most importantly, in 1993 a subsection on 

intergenerational mobility was introduced and, in particular, questions on the parents’ 

education and occupation were asked to the spouse and the head of household: as 

will be clear later, such information plays a central role in the econometric analysis of 

earnings mobility and its absence from previous waves is the main reason which 

prevented the extension of the analysis to preceding transitions.

The characteristics of the data are reported in Table 4.1, where the first two 

columns refer to the sample composition in the 1993 and 1995 waves, while the third 

reports the same features, observed in 1993, for the panel sub-sample linking the 

two waves. The upper part of the Table illustrates the structure of the whole set of 

individual observations available under each partition; as we can see, the 

employees, both full and part-time and accounting for missing wage observations, 

amount at approximately one fourth of the sample, either in the two cross-sections 

and in the panel sub-sample. On the other hand, around 60% of the sample do not 

participate into the labour market.45 By comparing the two cross-sections with the 

panel sub-sample, it can be observed how the proportions of students is slightly 

higher in the latter case, while the opposite is true for the retired, thus reflecting a 

higher propensity to stay within the household, and thus within sample, for students 

and inherently higher exit rates for pensioners.

The next panels in the Table go on to describe the sample structure for full­

time employees with valid wage observations and aged between 18 and 65, which

4 Given the well known importance of underground jobs in the Italian labour market, this is probably an 
overestimate. In the analysis which follows, I will consider only those employed on a regular basis and 
will not take into account individuals which, for example, report a labour income despite classifying 
themselves as  retired.
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will form the object of the econometric analysis. As can be seen, panel observations 

are now a smaller proportion relative to cross-sectional observations: the 

requirement for an observation to stay within the sample is now more demanding, 

which explains the fact. The differences in the sample composition between the 

cross-sections and the panel are not dramatic when age, experience and gender are 

taken into account, although in the first two cases the variable is slightly less 

disperse in the panel. A difference may instead be observed for what concerns the 

position in the household, the proportion of children in the panel sub-sample being 

some 4% lower than the two cross-sections, reflecting a higher propensity to leave 

the household in this group. Taking into account the other characteristics reported in 

the table, which basically consist of the wage determinants available in the SHIW 

data, we can see how, when compared with the two cross-sections, the panel sub­

sample tends to be more educated, to hold non-manual jobs (teachers in particular), 

to be concentrated in the public administration46 and to be employed in larger firms47, 

all characteristics which indicate a stronger labour market attachment. This evidence 

suggests that panel attrition has an effect on the sample structure: the extent to 

which it affects estimates of the low-wage mobility model will be assessed in the next 

Chapter.

4r> The classification of sectoral affiliation in the SHIW questionnaire is jointly based on the type of 
product market and the public/private nature of the employer: this means that the coefficients on the 
p u b lic  sector dummies in the next sections have to be interpreted not as public/private differentials, but 
as differentials between the public sector and the omitted category.

Information on the employer's size only refers to private sector employees.
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4 Mobility at the bottom of the wage distribution

4.3. Definition and determinants of the low-pay status

This Section deals with the definition of the low pay threshold and with the 

quantification of the effect of observed workers characteristics on the probability of 

being low paid at a point in time.

A problem which is inherent to the analysis of low wage employment (and of 

poverty in general) is the definition of the threshold below which a worker may be 

considered a low wage earner. In particular, the problem is that of results robustness 

to the choice of the threshold. Various choices have been adopted in previous 

studies and, clearly, there are no a priori grounds to prefer one with respect to the 

others; to cope with this issue, here I follow the approach proposed by S&S and, 

instead of selecting a single threshold, I look at different thresholds in parallel.48 In 

particular, I consider the first quintile and the third decile of the wage distribution of 

full time dependent workers aged between 18 and 65, which have both been used in 

previous studies (see Asplund et al. [1998] and Contini et al. [1998] respectively); 

both thresholds, being based on order statistics, guarantee robustness to outliers 

and avoid problems of updating over time.

A second issue is the definition of the wage variable. The wage information 

available in the SHIW data refers to the net annual wage, inclusive of overtime 

payments, and separately, to the monetary value of fringe benefits: for the purposes 

of the current analysis, I added them together to form the take-home net annual 

wage. This figure has then been normalised to account for heterogeneity in the 

amount of time effectively worked. Under this respect, the information available 

consists of the number of months effectively worked during the year and in the 

number of hours (inclusive of extra-time) averagely worked on a weekly basis; no 

information is available on the average number of weeks per month worked. This

"" This strategy Is also adopted by Jarvis and Jenkins [1997] in their analysis of low-income dynamics.
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implies that to study hourly wages it is necessary to make some assumption on the 

number of weeks worked per month: here I follow Bardasi [1996] and assume that 

each individual worked 52/12 weeks each month. However, I also analyse monthly 

wages in parallel, so that any dramatic change in results between the two definitions 

can be checked.

Some features of the distribution of hourly and monthly (nominal) wages in the 

two years considered are reported in the upper panel of Table 4.2. As we can see, 

nominal wage growth has been fairly weak either at the mean and the median of the 

distribution for both wage measures, while wage dispersion has basically remained 

constant over the period. It can also be noted how the distribution of monthly wages 

tends to be more compressed, thus suggesting that heterogeneity in hours worked 

matters. The table also reports the low pay thresholds used in the analysis, and 

compares them with two thirds of the median wage, another threshold widely 

adopted in the literature; this last value tends to be lower than the first quintile. The 

lower panel of Table 4.2 deals with the proportions of workers which are defined low- 

paid under these three thresholds both in the cross-sectional sample and in the 

panel sub-sample. A first thing to note is that, in certain cases, the proportion of 

observations falling below or at a given percentile exceeds the level which one would 

expect from the percentile's definition, thus indicating the presence of clustering in 

the data. Secondly, we can observe how the lowest threshold (2/3 the median) is 

located around the fiftieth percentile for hourly wages and just above the first decile 

for monthly wages, again showing how this last variable is less dispersed. Finally, 

when the panel sub-sample is taken into account, the proportion of low-paid workers
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4. Mobility at the bottom of the wage distribution

decreases under each threshold, a fact which is in line with the different structure of 

this group discussed above.49

A simple way of analysing the determinants of the low-pay status is to assess 

the effect of individual characteristics on the probability of being low-paid and to treat 

the problem by means of a discrete response model, namely a probit.50 The use of 

discrete response models for the analysis of continuous variables clearly induces a 

loss of information. However, such models correspond to the idea that there exist a 

(possibly non-linear) change in the wage process below and above the low-pay 

threshold, i.e. that personal characteristics with a given impact at the middle or at the 

top of the distribution could produce rather different effects once the low-paid are 

taken into account. Moreover, while these models allow statements on the probability 

of low-pay without relying on any distributional assumption for wage levels or 

logarithms, some distributional assumption would be needed if one wanted to derive 

probability statements from a model for the continuous variable (as in Lillard and 

Willis [1978]). Finally, as already stressed in Chapter 1, the loss of information can 

be reduced by utilising discrete response models with multiple ordered outcomes, as 

I will do in Section 4.5.

Let us assume that, in a given year, wages depend on a set of individual and 

job characteristics:

g (wi ) = X/ 'S  +  Uj (4.1)

1 In particular, this leads to small proportions for the lowest threshold, especially for monthly wages; 
this small cells problem was the reason which led to the exclusion of 2/3 the median from the 
econometric analysis. The same problem arises in OECD [1996],

Probit regressions for the incidence of low-pay are estimated by Lucifora [1998] using the 1987 wave 
of the SHIW. The formalization used here is the one proposed by S&S.
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4. Mobility at the bottom of the wage distribution

where /' indexes individuals, w is the nominal wage rate, x, is a vector containing a 

constant and a set of wage determinants, 8 is the vector of associated coefficients 

and g(.) is a monotonic transformation such that u; is standard normally distributed 

over /'. Let X be the low-pay threshold and d, a dummy variable indicating the low-pay 

event: d, = l(w,- < X),  where 1(A) is a binary indicator which equals 1 when A is true 

and 0 otherwise.

Then, the probability that individual / will be low-paid is:

probfdj = 1) = probfwi <X) = prob(g(wi)< g(X)) = <b(g(X) -  x,'f>) = <D(x,'pj (4.2)

where <t> is the standard normal cumulative distribution function (c.d.f.), the new 

constant term in p subsumes the difference between g(A.) and the old constant in 8 

and the coefficients associated with the individual characteristics in p are the same 

as in 8, but with opposite sign.51

Such probit models for the low-pay probability have been estimated on the two 

SHIW cross-sections both for hourly and monthly wages; results are reported in 

Table 4.3.52 Results are reported in terms of marginal effects, i.e. the change in 

predicted probabilities induced by a marginal change in the explanatory variable. For

__ A  A  _

a continuous variable (say the j-th), these are evaluated as ^(x’ p) py (where x is the 

vector of sample means of the explanatory variables and <|> is the standard normal 

density function), while for a dummy variable (say the k-th) they’re are computed as

’’ Given that this is a model for the probability of having a low wage, we should expect signs to revert 
with respect to a wage equation.

The number of observations used in the estimation differs from the figures of Table 4.1 due to 
missing values in some of the explanatory variables. The same remark applies for the analysis of
sections 4 and 5.
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the change in predicted probabilities as the dummy changes from 0 to 1, all the other

A  _  A  _  A

variables being evaluated at the sample mean, i.e. f D ^  + x - f c ' p ^ J - q ^ x - f c ' p ^ ) ,  

where the -k subscript denotes the corresponding vector deprived of the k-th 

element.

Looking first at each column of the table for hourly wages in isolation, it can be 

seen how the effect of personal characteristics tends to be in line with what one 

should expect from standard wage equations. Labour market experience (computed 

as age minus age at the beginning of the first job) has a non-linear effect on the 

probability of being low-paid, with the minimum located around 30 years. Educational 

qualifications have a negative impact on such a probability, with the effect of holding 

a BA degree which is roughly twice that of having an high school degree, both 

compared to those without an high school degree. Workers holding a non-manual job 

have a low-pay probability which is (depending upon the threshold) 10 to 26 

percentage points lower when compared with blue collar workers; interestingly, the 

marginal effect for teachers is even higher than that for high level white collar 

workers, managers, university professors or magistrates53, a fact which I will 

comment on later in the section. The effect of sectoral affiliation (with respect to 

manufacturing) is well determined for the public sector and agriculture, while the 

retail trade and services sectors display some effect depending upon the threshold 

or year considered; on the other hand, the employer size plays a clear role in 

reducing low-pay probabilities. Gender54 and the region of residence have a 

significant effect; in particular, in the latter case it is the north-east which tends to 

have the lowest incidence of low-paid jobs. Finally, while both being married and

' Managers, professors and magistrates have been amalgamated with high level white collars 
because, since they tend not to fall below the threshold, a dummy for this group happens to be a 
"perfect classifier" and the corresponding parameter not identifiable.
* Rather than running a separate regression for each gender, I treat the effect with a dummy, in order 

to maintain homogeneity with the analysis of transition probabilities in the next section, where the 
pooling of female and male data has been necessary in order to preserve cells size.
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head of the household significantly reduce the likelihood of low-pay, the presence of 

dependent (aged less than 14) children in the household has a less clear effect.

Taking now into account the estimates’ stability over time, it can be noted how, 

apart from few exceptions, there are no dramatic differences. In particular, the size 

of the coefficients on the agriculture dummy drops considerably, while the effect for 

the retail trade group shows up only in the 1995 wave, which is also true (but only for 

the lower threshold) for the services sector. It is also interesting to observe how there 

is some evidence of geographical polarisation in low-pay probabilities over time, with 

the two northern marginal effects which tend to increase while the one for the centre 

falls.

Another interesting exercise is to control how estimated marginal effects 

change as the low-pay threshold is raised from the first quintile to the third decile. 

The general finding is that absolute values of significant effects tend to increase, 

while some effects which are non significant under the lower threshold become 

significant (this is the case for the services sector). This evidence is due to the fact 

that the bulk of observations which have personal characteristics with a given effect 

on the low-pay probability is located higher up in the wage distribution.55

The second part of Table 4.3 reports the results obtained for the distribution of 

monthly wages; differences with respect to hourly wages can then be ascribed to 

heterogeneity in hours supplied. Patterns emerged from the analysis of hourly wages 

are typically confirmed, but with some remarkable exception. First of all, the marginal 

effect for teachers is now the weaker (among occupational dummies) in absolute 

value, thus reversing the occupational ordering emerged from hourly wages. 

Secondly, a drop ranging from 3 to roughly 10 percentage points depending upon the

' In a separate experiment. I found that (for hourly wages in 1993) the effect of being a blue collar 
w o rke r on the probability of having a wage below or at a given threshold grows monotonlcally until the 
m edia n  of the distribution and then falls.
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threshold considered can be observed in the coefficients for the public sector. In both 

cases, heterogeneity in supply behaviour is determined by institutional factors. 

Finally, the female disadvantage in the probability of having a low wage is 

exacerbated in the monthly wage distribution, signalling that females tend to offer 

less hours than men, and the source of heterogeneity has more to do with 

behavioural factors.

4.4 The econometric analysis of low-wage transition probabilities

This Section takes advantage of the panel nature of the SHIW data to analyse 

the dynamics of the low-paid status at the individual level. The model proposed will 

enable detection of the workers’ attributes relevant in determining low-pay 

persistence and, at the same time, of the forces driving falls into low-pay status from 

the upper part of the distribution, so that those personal characteristics which can 

guarantee the stability of higher hierarchical positions once reached can be 

identified. The extent of pure state dependence within aggregate persistence 

probabilities will also be analysed.

4.4.1 Aggregate transition probabilities

Before moving on to the econometric analysis of wage mobility, it may be 

instructive to look at the extent to which low-paid workers persist in their status at the 

aggregate level; such information is provided in Table 4.4, where raw transition 

probabilities from the 1993 to the 1995 status are reported both for hourly and 

monthly wages using the two low-pay definitions of the previous section; the first part 

of the table restricts the attention to the sample of employees in both years aged 

between 18 and 65 in 1993. The table points towards a substantial degree of low-pay
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persistence: 56% of those below the first quintile of hourly wages in 1993 are still 

low-paid in 1995, and such figure rises to nearly 71% when the threshold is defined 

in terms of the third decile. Similar figures, 61 and 64% respectively, arise for the 

monthly wage distribution. On the other hand, the probability of falling into low-pay 

from the top of the distribution is bounded below 10%.

These figures imply a considerable degree of (raw) state dependence in the 

conditional probability of being low-paid in 1995: if we use the difference 

prob[L95\Lg3] -  prob[Lg5\Hg3] (with L and H meaning low- and high-pay) as a 

measure of state dependence, we can see that it ranges from 50 to 60% depending 

upon the threshold and wage measure considered.

Although striking, such evidence may well imply different phenomena 

(Heckman [1981b]). On the one hand, it could be the result of workers heterogeneity, 

with the personal characteristics determining the low-pay status persisting over time; 

in this case, it is the difference in such characteristics between workers above and 

below the low-pay threshold which determines the observed state dependence. At 

the other extreme, raw figures may be generated by true state dependence, meaning 

that it is the experience of low-pay which modifies individual tastes or constraints and 

determines per se a higher persistence probability, holding fixed personal 

characteristics. As pointed out by S&S, true state dependence in low-pay persistence 

may arise from various models of the labour market. For example, if we think of low- 

paid jobs as "bad" jobs with no skill content, human capital models of wage 

determination can predict state dependence as a result of skill deterioration induced 

by the past experience of low-pay. The same prediction can arise in a signalling 

contest, where potential employers can use previous wages to make inference on 

the workers' quality and thus making low-wage offers to applicants who have
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formerly been low-paid. In addition, we could also think of a job search model where 

the experience of low-paid jobs induces workers to reduce their reservation wage, 

thus raising the probability of accepting low-wage offers in the future. The distinction 

between heterogeneity and true state dependence within aggregate persistence has 

relevant policy implications: while in the first case the probability of persisting in low- 

pay can be influenced by modifying workers’ attributes (say via training programs), in 

the second more direct forms of low-wage protections are needed. Disentangling 

heterogeneity and true state dependence is thus an important issue in the analysis of 

low-pay transitions and the econometric analysis in this section will address this 

point.

Focusing only on those employed in both years could lead to ignore important 

aspects of the low-pay problem; for example, evidence of a cycle between low-pay 

and unemployment has been found for the UK (see Stewart [1999]). To shed light on 

the extent of the phenomenon in the SHIW data, Table 4.4 also considers transitions 

into other labour market states, namely self-employment, unemployment and 

retirement, for those aged 18 to 65 in 1993. In each of the four cases, the low-paid 

have a higher transition probability into both self-employment and unemployment 

when compared to the higher-paid, with raw state dependence being higher in the 

latter case. This suggests that low-wage jobs are characterised by a higher 

instability. On the other hand, a higher transition probability into retirement 

characterises the high-paid group, a likely effect of the life-cycle of earnings. Taking 

now into account the first column in each of the four matrices, we can also notice 

how in three out of four cases the unemployed are more likely to find a job below, 

rather than above, the low-pay threshold. This evidence is not enough to make 

statements about the existence of a cycle between unemployment and low-pay
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(which would require to observe at least two transitions), but is certainly not against 

such a hypothesis.

4.4.2 Model specification

The next step in this section is the construction of an econometric model of 

low-pay transition probabilities, i.e. the probability of being low-paid in 1995 

conditional on the 1993 status; in particular, the object of the analysis will be the 

impact of personal characteristics, measured at the beginning of the transition56, on 

individual transition probabilities. One central issue which arises in this context is that 

conditioning on the lagged state cannot be treated as exogenous: given that the 

wage process under investigation started prior to the sampling period its initial 

conditions are not observable by the researcher while, due to the presence of serial 

correlation in such a process, they will be embedded in wage levels at each time 

period, causing lagged wages to be endogenous with respect to current wages. This 

is the so-called initial conditions problem described in Heckman [1981a] and ignoring 

it can lead to biased estimates in the transition probability equation. The issue may 

also be thought of as a sample selection problem: if the propensity to be low-paid (or 

high-paid) in 1993 is not randomly distributed across the sample but depends on the 

unobservable initial conditions, estimating a transition equation selecting those who 

start from a low-pay (high-pay) state is endogenous to the transition probability.

This last remark suggests that some sort of correction for sample selection is 

needed; however, given the limited dependent nature of the transition equation, 

Heckman's correction techniques are not suitable in this context and the two 

probabilities (starting state and transition) have to be estimated jointly (O'Higgins 

[1994]).

’ This qualification is aimed at avoiding endogeneity issues between changes in wages and changes 
in wage determinants
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To overcome the problem, here I extend the approach proposed by S&S57 and 

treat it by means of a bivariate probit model with endogenous switching, i.e. the 

probit equivalent of usual endogenous switching models58. The model proposed by 

S&S assumes partial observability of the arrival wage distribution conditional on the 

origin wage distribution, i.e. for a given transition destination states are observable 

only for workers starting from low-pay. Such an hypothesis is not imposed by the 

lack of observations for those in a high-pay state at the beginning of the transition, 

but it is introduced for modelling purposes. I relax such an assumption and allow 

destination states to be observed also for the initially high-paid. This extension of the 

S&S's model thus implies a fuller exploitation of the information available. In this 

way, not only the effect of personal attributes on low-pay persistence can be 

estimated, but also the impact of these same factors on the probability of falling into 

low-pay from the top of the distribution can be assessed within the same model.59 

This in turn allows assessment of the extent with which the effect of observable 

attributes on low-pay transitions varies with the starting state.

Let us specify the selection equation for the initial state along the lines adopted 

in Section 4.3 to model the low-pay probability at a point in time:

9 ( w i g 3 ) =  X i ' 8  +  U i  

di = HW/93 ^ ^93)

where the specification of the x-vector differs from Table 4.3, as will be clear later.

The S&S's model corresponds to model no. 3 In Meng and Schmidt [1981] catalogue of bivariate 
pmbit models; an application of this type of model is given In Section 4.5.

Endogenous switching equations models for continuous variables are set out in Lee [1978].
J If one wanted to analyse the two types of effects with the S&S's model, estimation of two models 

would be needed
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Next, suppose that the effect of exogenous variables on the arrival state 

depends upon the initial state in the following way:

^ l(w'<95) = Z/ ,T11 + E1/ if d/93 = 1
h2 (wi95) = z / ' h2 + e2i if tf/93 =  0

where h/.) is a monotonic transformation such that Ey, is standard normally distributed 

over individuals and z is a subvector of x .60 Let digs be a dummy variable indicating 

the low-pay event in the arrival wage distribution and assume that u and the c’s are 

jointly distributed as a tri-variate normal:

'U i O' " 1

E1l ~ n 3 0 P1 1
^ 2 i' ,0, Vp2 P3 t

Given the assumptions on the error distributions, it follows that:

prob(di95 = 1, d/93 = 1) = rh2(z( ,y1,x),p;p1) 
prob(di95 = 1, d/93 = 0) = O2(z/ ,y2,-x / 'p;-p2) '

where <l>2 is the bivariate normal c.d.f., [t derives from ft in the same fashion of 

Section 4.3 and analogously for the y's and ty's; thus the elements of y, model the 

effect of individual characteristics on low-pay persistence, while y2 captures the effect 

of the same characteristics on the probability of falling from the upper part of the 

distribution into low-pay. Note that although these expressions refer to the joint

The S&S's model assumes that wl96 Is not observable If dl83*0
Note that p , is not identifiable since it would require observations belonging contemporaneously to 

both regimes
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4. Mobility at the bottom of the wage distribution

probability, estimation of the y/s is based on sub-samples defined according to the 

starting state and is, in this sense, conditional. Note also that, given the model’s 

structure, only the evaluation of the bivariate normal cdf is required. To derive the 

correct (i.e summing to one over the sample of the initially low or high-paid) 

expression for the conditional probability we need to normalise on the probability of 

the initial state:

prob(d, 95 = 1| C/ , 9 3  = 1) =
<t>(x,'p)

prob(dl95 1l d /9 3 =  0 v *^*2(^ / ' Y2.—x /~' Pi—P 2 ) ’
0»(-x,'P)

(4.6)

which makes clear how the parameters for such transition probabilities can be 

consistently estimated with a univariate probit on sub-samples defined according to 

the starting state only if py=0, i.e. only if the starting state is exogenous.

The log-likelihood function of the model may be written as:

logi- = S, i d'93^95 log[xt>2 (̂ ,' y 1, 1 p; pt)] + d/93(1 - d/gsJlogpt^-z/y^x/ft-pi)] +
(1 -d /93)d)95log[cb2(z,,y2,-x ,,p;-p2)]+ (4.7)
(1 -  di93)( 1 -  c/,95)log[<t>2(-Z /'y2,-x/P;p2)]}.

Identification of the transition process in (4.4) requires restrictions in the form of 

variables which enter the x-vector but not the z-vector; in the present case we need 

variables which influence the wage level but, given this, have no direct effect on the 

wage change Here I adopt S&S's identification strategy and use a set of indicators 

of the worker' s parental background in terms of her parents education and

I
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4 Mobility at the bottom of the wage distribution

occupation. As stated in Section 4.2, since 1993 the SHIW questionnaire contains a 

part on intergenerational mobility, where the spouse and head of household are 

asked to report, among others, their parents' education and occupation. For those 

workers who are “children" in the interviewed household, the necessary information 

has directly been recovered from the household questionnaire. Going back to Table 

4 2, this means that for 1.58% of the estimation sample (i.e. those who are “other 

relative or non-relative” in the interviewed household) such parental background 

variables are not available. In order to preserve the sample size, I treated these 

cases and the ones where the parental background information was “genuinely" 

missing with dummies for missing information.62

Besides the parental background indicators, another variable which only enters 

the selection equation is the square of labour market experience, given the 

interpretation of wage change equation which can be attributed to (4.4), i.e. states in 

1995 conditional on states in 1993. This implies that the equation for the transition 

probability is over-identified and that the validity of the parental background variables 

as instruments can be tested: such tests are presented along with the estimation 

results.

4.4.3 Results

Before considering the whole set of results from the switching probit analysis, 

Table 4.5 compares estimated ML coefficients under the two competing assumptions 

(i e endogeneity versus exogeneity) on the conditioning starting state, focusing, for 

expositional compactness, on the low-pay threshold defined as the bottom quintile of 

the hourly wage distribution.63 The table gives a flavour of the kind of bias induced by

These are, typically, negligible proportions of the sample, reaching at most 4%; only in the case of 
the mother's occupation the figure rises to 14%.

Results similar to the ones reported were obtained for the other low-pay and wage definitions. The  
exogenous starling state estimates are probit models for the 1895 low-pay event estimated on sub-
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assuming exogenous initial conditions. First of all it can be noticed that the null 

hypothesis of exogenous starting state is rejected for both starting states (i.e. low- 

pay and high-pay), the two correlation coefficients being statistically significant at 

conventional levels. Taking estimated coefficients into account, it can be observed 

that the exogeneity hypothesis leads to overestimate both their size and significance. 

This is true especially in the case of labour market experience, whose effect on the 

conditional probability of being low-paid vanishes once allowance is made for 

endogeneity. For the remaining explanatory variables such overestimation is, 

although less pronounced, also evident; on the whole, results from Table 4.5 confirm 

similar comparisons reported by S&S and warn against the dangers of assuming 

exogeneity of initial conditions.

Results from the switching bivariate probit model are given in Table 4.6 for 

each low-pay threshold and wage definition, both in terms of ML coefficients and 

associated marginal effects on the conditional probability.64 By considering 

correlation coefficients first, it can be observed how, in each case, they are 

statistically significative at usual confidence levels, thus clearly rejecting the 

hypothesis of initial conditions’ exogeneity. Such parameters are negative; given that

samples defined according to the 1993 position in the wage distribution, i.e above or below the low-pay
threshold.

For each explanatory variable, the marginal effect is given first, followed by the ML estimated 
coefficient and the asymptotic t-ratios. The computation of marginal effects from the bivariate probit 
estimates requires some additional caution, given that a change in a variable in z implies also a change 
in the corresponding element of x and thus in the denominator of the conditional probability. W hat we 
would require is instead a change in the conditional probability holding the past fixed (see S&S). With 
this aim, and focusing for the exposition's sake on the probability of low-pay persistence, let us define

A  ■  i  A

the average predicted probability of initial low-pay as <t> = <t>(x,' (1) /  N (N is the sample size) and its

A  - A

argument as x|) = <J> '(<•>) ; the marginal effect for the k-th dummy variable is then computed as

|l-(-1' 1* *  Z1 -  z -| indicating that the average is taken over the
<b <r>

relevant sample, the initially low-paid in this case. For labour market experience the effect has been 
computed as that of a discrete change from 20 to 30 years of experience.
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they measure the correlation between the probability of having a small wage change 

and the probability of having a low initial wage, the negative sign is analogous to a 

negative coefficient estimated in the regression of wage changes on wage levels, i.e. 

Galtonian regression towards the mean. Note also that, given the structure of the 

model and, in particular, the uniqueness of the selection equation which models the 

probability of having an initial low-wage, this is true also for the initially high-paid. 

Another fact to note is that the identifying restrictions on the parental background 

variables are supported by the data at usual confidence levels.

Taking the effect of observable characteristics into account, it can be noticed 

how labour market experience has basically no effect in reducing the conditional 

probability of having a low-wage. Educational qualifications, on the other hand, have 

an effect in such direction which tends to be stronger for those starting the transition 

below the low-pay threshold; the same is true for the female dummy, but with 

opposite sign. Non-manual jobs and jobs in large firms are instead characteristics 

which tend to prevent workers from falling into low-pay, while the effect on low-pay 

persistence is less robust; similar considerations, but only for the hourly wage 

distribution, apply for the public sector dummy. The agricultural sector dummy seems 

to favour drops into low-pay for the distribution of monthly wages, thus denoting a 

certain wage instability for these jobs. On the other hand, holding a job in the service 

sector positively affects low-pay persistence65, while no effect is detected on drops 

from the high-pay area. Such a result could arise from those workers who, say in a 

bank or an insurance company, are on a low-level job career (actually involving 

manual tasks such as delivering) but do not classify themselves as blue collar. An 

alternative explanation could be that this service category is broad enough to include

Similar results on Italian data are reported by Contini et al. [1998].

141



4 Mobility at the bottom of the wage distribution

cases which markedly differ from the conventional perception of service sector. 

Finally, the geographical dummy is significative in reducing low-pay persistence, 

while no effect can be detected for those initially high-paid.

As we saw earlier in this section, one important issue in the dynamic analysis 

of low-pay is the distinction between true state dependence and heterogeneity within 

raw persistence probabilities. Estimation results from Table 4.6 enable such a 

decomposition, which is reported in the last three rows of the table. The row labelled 

'Estimated state dependence" reports the difference in the conditional probability of 

being low-pay computable from the estimated model, giving a measure of overall 

state dependence which is, apart from small differences due to observations with 

missing values in the explanatory variables excluded from the regression analysis, 

the same as the aggregate state dependence effect of Table 4.4:

The measure of true state dependence has been obtained by computing this 

same quantity but holding fixed the sample over which it is averaged, i.e. abstracting 

from heterogeneity in observable explanatory variables between workers below and 

above the low-pay threshold in the origin wage distribution. This procedure yields two 

measures of true state dependence, corresponding to the two sub-samples over 

which the average is taken, which are reported in the two bottom lines. Such 

measures are equivalent to “price” effects in a classical Oaxaca decomposition of 

wage differentials; in terms of true state dependence, the “price" effect captures the

A  A  A A  A  A

(t>(x, P)

<*>2 (*/ y2 ~ x i P:-P2 )

o ( -x , p)
A

E S D  =
Z , ( 1~d/93)

(4.8)
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extent to which workers with the same observable characteristics are evaluated 

differently according to their past wage, i.e. the parameters of their environment are 

changed by the past low-pay experience per se. First of all it can be observed how 

true state dependence constitutes a considerable share of aggregate state 

dependence, ranging from 40 to 70%, thus indicating that, to a meaningful extent, 

the sole experience of low-paid jobs increases the likelihood of experiencing low- 

wages in the future, as could result from the presence of low-pay stigma, human 

capital depreciation or changes in search behaviour, all factors which, as stressed 

above, could be the way by which the occurrence of low-pay induces alterations of 

the economic environment. Secondly, true state dependence is higher when the 

parameters estimates are applied to the sample of the initially low-paid, probably as 

an effect of unobserved heterogeneity between workers above and below the low- 

pay threshold, not captured by the controls adopted in the model.

4.5 Accounting for the width of transitions

As is well recognised by the statistical literature on mobility (see, for example, 

Boudon [1972]), an important feature of the mobility process is given by the 

magnitude of the “jumps” made by those workers abandoning the origin wage class: 

not only the fact of changing wage rank is important, but also the width of such 

transitions matters in assessing the degree of distributional mobility. This is the 

reason why the descriptive literature on mobility indices reviewed in Chapter 1 

developed measures such as the expected absolute jump. In terms of the 

econometric modelling of transition probabilities, accounting for their width can give 

some indication on the loss of information induced by the dichotomic treatment of the 

wage variable underlying the switching bivariate probit above. In other words, the
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model of Section 4.4 considers only one alternative to the low-pay status in the 

destination wage distribution, and some of the effects significant in affecting low-pay 

persistence may well result from small wages "pushes”, just sufficient to bring 

individuals above the low-pay threshold. If one views these small pushes as potential 

sources of measurement errors, then the model utilised in this Section allows a more 

robust assessment of the forces governing the transition process.

To get a feeling on the extent of upward movements from the low-pay status, I 

report below the aggregate transition probabilities from the bottom three deciles of 

the distribution.

Transition probabilities from the bottom three deciles of the wage distribution 

(N = 21 60 )

hourly 1 2 3 4 5 6 7 8 9 10 %  1993
1 44 .25 26 44 15.52 3.45 4.60 1.72 2 .3 0 1.15 0.57 0 00 8 06
2 17.58 23 .03 26 .06 9 70 14.55 3.03 2 .42 1.21 2.42 0 .0 0 7 64
3 6.15 18.46 35.90 11.79 13.33 6.15 4 .1 0 2 .05 1.03 1.03 9 03

monthly
1 44  23 28.21 10.26 5.77 1.28 4 .49 0 .64 4 .4 9 0.00 0 .64 7.22
2 1 8 4 8 34.24 13.59 16.30 7.07 7.61 1.09 0 .54 1 09 0 .0 0 8.52
3 9.19 23 .78 15.14 22 .70 11.89 8.65 3 .24 3.78 0.54 1.08 8.56

As we can see there’s considerable variation in the destination states of those 

who cross the low-pay threshold, and while the bulk of transitions reach just the 

decile just adjacent the low-pay area, there are some cases (in particular starting 

from the third decile) in which the median of the distribution is crossed.

A way to investigate the impact of transition width on the parameters of interest 

is to allow for more than two outcomes in the transition equation. With this aim, I 

propose a second extension of the S&S’s model. In particular, I use their model with
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partial observability (1995 outcomes observable only for the 1993 low-paid) but 

model the transition equation with an ordered probit, rather than with a binary probit 

as in their case.66 Let us assume that selection into the starting state is still governed 

by (4 3), while the position in the destination wage distribution can only be observed 

for the initially low-paid (i.e., only the first part of (4.4) applies) and is represented by 

the following discrete ordered indicator:

1 if w i95 * *■95
0 if *■95 < wi95 < *■95 + Po

d i95 = ' -1 if *■95 + Po < Wi 95 5S ■̂95 + P1 (49)
-2 if ^95 + Pi < W/95 ^ •̂95 + P2
-3 otherwise

where the p’s are the first three deciles above the low-pay threshold, while the 

assumptions on the joint distribution of u, and ci( are unaltered67. The resulting log-

likelihood is:

logL = Z /W d<95 = 1)d/93 log[«t>2 (^/y 1, X/P; P1)] +

I(d,95 = 0)d<93 log[<t>2( vo + z,y i,x,P; p i) -  <t>2 (Z/Y1- X/Pl P i))+
■(£*/• 95 = - 1)^/93I°9[<I)2(V1 + ^ Y i .^/P;Pi ) - (I>2(v0 +Z /Yl.x /P:pl)]+ (4.10)
Hdj 95 = -2 )d /93log[(D2(v2 + z /y1,x,P;p1)-<D2(v1 + z (y1,X/P;p1)] +
Hdi95 = -3 )cfj93 log[«I>(x,-p)-  CJ2 (V2 + Z , y p X / p p ! ) ]  + (1 -  dy93)log[<J>(-x,P)]},

where the vj’s (=h|(X<„+pj)) are parameters to be estimated.

Guillotin and Hamouche [1998] model the number of jumps by means of count data models in a 
framework with exogenous initial conditions.

The specification in (4.9) is aimed at maintaining the comparability of y1 with the analogous vector 
estimated from the analysis in Section 4.4.
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Results from the estimation of this ordered probit with selectivity are reported in 

Table 4.7 and are compared with those from a switching bivariate probit with partial 

observability, i.e. where the polychotomous indicator in (4.9) is replaced by a binary 

indicator (1 for wj95 below the low-pay threshold and 0 otherwise). A first thing to note 

is that in each of the cases considered, the null of exogenous initial conditions is 

rejected at conventional levels, while the validity of the parental background indictors 

as instruments for the starting state is supported by the data. By comparing the 

correlation coefficient across the ordered and binary probit models, it can be 

observed that it is always lower (bigger in absolute value) in the first case. If we 

recall that a negative value of this parameter reflects the fact that small wage gains 

are negatively associated with low initial wages, its behaviour across models 

suggests that in the polychotomous framework low-pay persistence is a relatively 

worse outcome than in the binary case. On the other hand, for statistically significant 

coefficients and associated marginal effects68 the general finding (a remarkable 

exception is the dummy for the service sector) is that they decrease in absolute 

value as we move from the binary to the polychotomous specification of the position 

in the 1995 wage distribution, meaning that part of such effects was due to small 

wage “pushes".

4.6 Summary and conclusions

This Chapter has utilised panel data from the 1993 and 1995 waves of the 

Bank of Italy's SHIW to analyse the determinants of low-wage mobility.

As for the preceding analysis, such effects refer to variations in the probability of being low-paid in 
1995 conditional on low-pay in 1993. Their computation therefore coincides with the one reported in 
note 64 and, in particular, the conditioning probability is still given by a binary probit for low-pay in 1993. 
The relevant difference is that now the estimated y, reflects the existence of more than one alternative 
•o the low-pay status in 1995.
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Defining the low-paid alternatively as those below the bottom quintile or the 

third decile of the wage distribution, both in hourly and monthly terms, the usual set 

of wage determinants (human capital, demand side and demographic variables) has 

been found to have a significant effect on the probability of being low-paid at a point

in time.

The analysis has next turned to low-pay dynamics at the Individual level. The 

econometric analysis of low-wage mobility has been based on a bivariate probit 

model with endogenous switching, which extends the approach previously proposed 

by Stewart and Swaffield [1999] for the assessment of the initial conditions problem, 

i.e. the potential endogeneity of the initial low-pay status.

Results show how the hypothesis of exogenous initial conditions can always be 

rejected, the correlation coefficient between the unobservables in the starting state 

and transition equations being significantly different from zero. By comparing these 

results with those from models where the initial status is taken as exogenous, the 

paper has shown how in this last case the effects of mobility determinants are 

systematically overstated both in size and significance: this is especially true for 

labour market experience. Among the other variables controlled for, education, 

gender, sectoral affiliation to the service sector and geographical location have been 

found to affect low-pay persistence, while non-manual occupations and jobs in large 

firms are effective in avoiding falls into low-pay once higher wage positions have 

been reached, while their effects on low-pay persistence appear to be less robust. 

This last remark applies also to affiliation to the public sector, but only for the hourly 

wage distribution.

Estimates from the endogenous switching bivariate probit have been utilised to 

assess the extent of true state dependence within raw transition probabilities: it has
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been shown that true state dependence affects wage profiles to a meaningful extent, 

between 40 and 70% of raw state dependence: thus, a considerable share of low- 

pay persistence appears to arise from the experience of low-pay per se, rather than 

from heterogeneity in persistent observable workers attributes above and below the 

low-pay threshold.

Some attempt has also been made to understand the consequences of the 

binary treatment of the wage variable underlying the endogenous switching model. 

Using an ordered probit model with endogenous sample selection, it has been shown 

how, typically, significant effects tend to drop in size, suggesting that their 

effectiveness is to some extent confined to the quantiles just adjacent to the low-pay 

threshold.

These results show that while factors which are traditionally known as wage 

determinants have a limited effect on the conditional probability of abandoning the 

low-pay status, the past experience of low-pay has, per se, a considerable impact on 

future low-pay probabilities, both circumstances which raise concern about the 

welfare of workers at the bottom of the wage distribution. However, data limitations, 

in particular the fact that a single transition has been analysed, suggest caution in 

drawing conclusions and prompt future research on this issue.
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4. Tables
Table 4.1: Sample description

1993 1995 panel (1993)
n.obs/mean %/s.d. n.obs/mean %/s.d. n.obs/mean %/s.d.

employed 5768 24.02 5598 23.4 2634 2449
employed missing wage/part 
time

468 1.95 578 2.42 206 1.92

self-employed 1302 5.42 1492 6.24 564 5.24
entrepreneurs 585 2 44 557 2.33 256 2.38
seek first job 1215 5.06 1029 4.3 487 4.53
unemployed 511 2.13 690 2.88 234 2.18
retired 5401 22.49 5448 22.77 2193 20 39
student 4528 18.86 4400 18.39 2274 21.14
housewife 1247 5.19 1284 5.37 570 5 3
other 2988 12.44 2848 11.9 1337 12.43
Total 24013 100 23924 100 10755 100
Employed 18<=age<=65 5708 5541 2160
age 39.0555 10.7613 38.9821 10.7944 39.4032 9.99305
experience/10 1.92771 1.14947 1.96128 1.16041 1.90736 1.06188
male 3677 64.42 3510 63.35 1391 64.4
female 2031 35.58 2031 36.65 769 35.6
head of family 2998 52.52 2794 50.42 1191 55.14
spouse/cohabitee 1312 22.99 1328 23.97 536 24.81
child 1265 22.16 1310 23.64 399 1847
other relative-non relative 133 2.33 109 1.97 34 1.58
no school 81 1.42 55 0.99 16 0.74
elem. school (5 yrs) 824 14.44 679 12.25 260 12.04
junior high (8 yrs) 2035 35.65 2137 38.57 707 32.73
high school (13 yrs) 2123 37.19 2019 36.44 879 40.69
ba/bs (17+ yrs) 645 11.3 651 11.75 298 13.8
blue collar 2515 44 06 2525 45.57 854 39.54
white collar low level 2168 37.98 1814 32.74 832 38.52
teacher 598 10.48 647 11.68 293 13.56
white collar high level 289 5.06 416 7.51 124 5.74
manag, professor, magistrate 138 2.42 139 2.51 57 2.64
agriculture 164 2.87 133 24 42 1.94
other manufacturing 1597 27.99 1700 30.68 578 26.76
construction 333 5.84 300 5.41 105 4.86
retail trade 524 9.18 529 9.55 168 7.78
transport & communication 161 2.82 174 3.14 50 2.31
bank insurance 191 3.35 208 3.75 76 3.52
real estate 166 2.91 138 2.49 67 3.1
domestic & other services 191 3.35 188 3.39 59 2.73
public administration 2379 41.69 2171 39.18 1015 46.99
size<=4 470 14.12 484 14.36 145 12.45
5<=size<=19 930 27.94 950 28.19 272 23.35
20<=size<=49 499 14.99 476 14.12 163 13.99
50<=size<=99 324 9.73 280 8.31 107 9.18
100<=size<=499 474 14.24 499 14.81 179 15.36
size>=500 632 18.98 681 20.21 299 25.67
northwest 1389 24.33 1400 25.27 503 23.29
northeast 1200 21.02 1273 22 97 494 22.87
centre 1313 23 1162 20.97 426 19.72
south 1322 23.16 1235 22.29 533 24.68
islands 484 8.48 471 8.5 204 9.44
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Table 4.2: Descriptive statistics of the wage distribution (upper panel) and incidence of 
low-pay for different thresholds (lower panel)

hourly wages monthly wages
1993 1995 1993 1995

Descriptive statistics (thousands of lire)
mean 12.36 12.86 1958.30 2061.47
median 10.82 11.54 1833.33 1916 67
sd logs 0.47 0.45 0.40 0.39
log(90/10) 1.06 1.05 0.87 0.88
2/3 median 7.22 7.69 1222.22 1277.78
first quintile 8.05 8.55 1375.00 1500.00
third decile 8.97 9.62 1500.00 1625.00
Low-pay incidence
2/3 median 14.02 15.03 11.3 11.19
2/3 median (panel) 10.28 9.58 7.82 6.3
bottom quintile 20.04 20.43 20.08 24 36
bottom quintile (panel) 15.69 14.07 15.74 16.57
third decile 30.2 34 30.17 30.63
third decile (panel) 24.72 24.77 24.31 22.55

Table 4.3: Probit marginal effects for the probability of being low-paid: hourly wages
Threshold Bottom Quintile Third Decile

1993 1995 1993 1995
experience/10 -0.133 (9.59) -0.108 (7.49) -0.192 (9.00) -0.215 (9.28)
experienceA2/100 0.024 (7.66) 0.018 (5.92) 0.034 (7.39) 0.036 (7.30)
high school degree -0.044 (3.64) -0.045 (3.67) -0.089 (5.00) -0.091 (4.68)
ba degree + -0 085 (4.41) -0.083 (3.99) -0.176 (6.17) -0.187 (5.87)
white collar low-level -0.097 (8.23) -0.093 (7.74) -0.165 (9.65) -0.188 (10.14)
teachers -0.103 (5.94) -0.099 (4 96) -0.213 (8.17) -0.260 (907)
white collar high level, -0 091 (4.63) -0.101 (5.72) -0.176 (6.07) -0.219 (8.31)
managers, uni. prof., magistrate
public sector -0.189 (14.20) -0.202 (14.14) -0.317 (16.25) -0.326 (15.04)
agriculture,forests 0.147 (5.08) 0.059 (2.10) 0.140 (3.41) 0.040 (0.91)
construction -0.016 (1.04) 0.019 (1.04) -0.016 (0.64) 0.011 (0.39)
retail trade, household & other 0.013 (0.98) 0.034 (2.49) -0.002 (0.11) 0.059 (2 57)
services
transport & comm. -0.030 (1.23) -0.024 (0.97) -0.030 (0.82) -0.056 (1.42)
bank, insurance, real estate 0.004 (0.20) -0.034 (1.70) -0.061 (2.17) -0.083 (2.63)
20<=firm size<=99 -0.077 (8.55) -0.059 (5.69) -0.132 (8.40) -0.100 (5.18)
100<=firm size<=499 -0 090 (8.46) -0.103 (9.56) -0.174 (9.78) -0.178 (8.73)
size>=500 -0.118 (11.38) -0.119 (10.86) -0.213 (12.69) -0.245 (13.06)
female 0.096 (8.65) 0.087 (7.58) 0.140 (8.55) 0.137 (7.71)
north-west -0 068 (6.53) -0.096 (9.00) -0.098 (5.88) -0.100 (5.37)
north-east -0.080 (7.79) -0.093 (8.91) -0.103 (6.06) -0.133 (7.17)
centre -0.055 (5.27) -0.048 (4.22) -0.064 (3.79) -0.049 (2.50)
married -0.074 (5.55) -0.048 (3.61) -0.129 (6.79) -0.077 (3.79)
head of household -0.050 (4.41) -0.038 (3.20) -0.078 (4.69) -0.076 (4.19)
dependent children 0.015 (125) -0.007 (0.55) -0.010 (0.60) -0.053 (2.90)

Number of obs 5673 5522 5673 5522
chi2(23) 2061.13 1885.99 2494.03 2557.12
Prob > chi2 0 0 0 0
Pseudo R2 0.3642 0.3378 0.3594 0.3613
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Table 4.3 (continued): Probit marginal effects for the probability of being low-paid: 
monthly wages
Threshold Bottom Quintile Third Decile

1993 1995 1993 1995
experience/10 -0.150 (10.55) -0.192 (10.99) -0.219 (10.34) -0.276 (13.11)
experienceA2/100 0.027 (8.41) 0.033 (8.76) 0.038 (8.24) 0.048 (10.67)
high school degree -0.066 (526) -0.072 (4.74) -0.112 (6.26) -0.114 (6.30)
ba degree + -0.099 (5.69) -0.115 (5.07) -0.190 (7.41) -0.176 (6.71)
white collar low-level -0.099 (7.95) -0.119 (7.92) -0.204 (11.85) -0.165 (9.33)
teachers -0.072 (3.80) -0.096 (4.06) -0.171 (666) -0.134 (4.79)
white collar high level, -0.095 (4.43) -0.154 (7.03) -0.210 (7.26) -0.213 (8.26)
managers, univ. professor,
magistrate
public sector -0.156 (11.20) -0.174 (9 93) -0.221 (1085) -0.188 (8.85)
agriculture,forests 0 147 (4.85) 0 049 (1.43) 0.142 (3.41) 0.049 (1.20)
construction -0.008 (044) 0.012 (0 52) -0.018 (0.71) 0.033 (1.15)
retail trade, household & other -0.002 (0.13) 0.014 (0.81) -0.010 (0.46) 0.010 (0.50)
services
transport & comm. -0.049 (1.91) -0.045 (1.36) -0.037 (0.96) -0.086 (2.21)
bank, insurance, real estate 0.009 (0.41) -0.053 (2.07) -0.013 (0.41) -0.059 (1.83)
20<=firm size<=99 -0.077 (7.64) -0.067 (4.69) -0.117 (6.97) -0.084 (4.60)
100<=firm size<=499 -0.097 (8.27) -0.136 (9.09) -0.167 (8.67) -0.164 (8.44)
size>=500 -0.124 (10.47) -0.159 (10.33) -0.211 (11.41) -0.214 (11.18)
female 0.137 (11.57) 0 153 (10.87) 0.200 (11.99) 0.194 (11.70)
north-west -0 063 (5.77) -0.100 (7.40) -0.106 (6.45) -0.084 (4.95)
north-east -0.074 (6.77) -0.108 (7.96) -0.121 (7.27) -0.083 (4.84)
centre -0.056 (5.11) -0.054 (3.75) -0.077 (4.64) -0.025 (1.41)
married -0.083 (6.08) -0.088 (5.49) -0.120 (6.41) -0.094 (5.06)
head of household -0.054 (4.63) -0 058 (4.11) -0.075 (4.53) -0.060 (3.62)
dependent children 0.005 (0.36) -0.007 (0.45) -0.026 (151) -0.028 (1.62)

Number of obs 5673 5522 5673 5522
chi2(23) 1929.88 1847.26 2288.77 2074.12
Prob > chi2 0 0 0 0
Pseudo R2 0.3405 0.3015 0.3301 0.305
Notes: asymptotic t-ratios in parentheses, reference categories are no or elementary education, 
blue collar, manufacturing, firm size<=19, male, residence in the south or isles, not married, not 
head of household, no dependent children in the household
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4. Mobility at the bottom of the wage distribution

Table 4.4: Aggregate transition probabilities between labour market states (L=low-pay, 
H=high pay, SE=self employment, UN=unemployment, RET=retired)

Hourly wages
threshold==bottom quintile threshold=Third decile
N=2160 L 95 H 95 % 93 N=2160 L 95 H 95 % 93

L 93 56.05 43.95 15.69 L 93 70.79 29.21 24.72
H 93 6.26 93.74 84.31 H 93 9.66 90.34 75.28
% 95 14.07 85.93 % 95 24.77 75.23

Monthly wages 
threshold=bottom quintile threshold=•third decile
N=2160 L 95 H 95 % 93 N=2160 L 95 H 95 % 93

L 93 61.76 38.24 15.74 L 93 64.76 35.24 24.31
H 93 8.13 91.87 84.26 H 93 8.99 91.01 75.69
% 95 16.57 83.43 % 95 22.55 77.45

Hourly wages, L=bottom quintile
N=4096 L 95 H 95 SE 95 UN 95 RET 95 %93
L 93 46.91 36.79 3.21 10.37 2.72 9.95
H 93 5.59 83.76 1.08 2.11 7.46 50.09
SE 93 0.81 1.41 88.48 3.43 5.86 12.17
UN 93 13.02 13.02 9.38 59.90 4.69 4.72
RET 93 0.00 0.21 0.85 0.32 98.62 23.08
% 95 8.18 46.45 12.26 5.41 27.70

Hourly wages, L=third decile
N=4096 L 95 H 95 SE 95 UN 95 RET 95 %93
L 93 59.72 24.64 2.69 9.32 3.63 15.56
H 93 8.67 81.16 0.99 1.44 7.73 44.48
SE 93 1.01 1.21 88.48 3.43 5.86 12.17
UN 93 18.75 7.29 9.38 59.90 4.69 4.72
RET 93 000 0.21 0.85 0.32 98.62 23.08
% 95 14.16 40.48 12.26 5.41 27.70

Monthly
N=4096

Mages, L= 
L 95

:bottom quintile 
H 95 SE 95 UN 95 RET 95 %93

L 93 51.47 31.86 368 10.29 2.70 10.03
H 93 7.27 82.16 0.98 2.11 7.47 50.01
SE 93 0.61 1.62 88.48 3.43 5.86 12.17
UN 93 17.71 8.33 9.38 59.90 4.69 4.72
RET 93 000 0.21 0.85 0.32 98.62 23.08
% 95 9.71 44.93 12.26 5.41 27.70

Monthly wages, L=Third decile
N=4096 L 95 H 95 SE 95 UN 95 RET 95 %93
L 93 54.14 29.46 2.71 9.71 3.98 15.43
H 93 8.10 81.98 0 99 1.32 7.60 44.61
SE 93 0.81 1.41 88.48 3.43 5.86 12.17
UN 93 20.83 5.21 9.38 59.90 4.69 4.72
RET 93 0.00 0.21 0.85 0.32 98.62 23.08
% 95 13.05 41.58 12.26 5.41 27.70
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4. Mobility at the bottom of the wage distribution 
Table 4.5. Comparison of ML estimates of conditional low-pay probabilities equations 
under competing assumptions on initial conditions. Bottom quintile of the hourly wage 
distribution (asymptotic t-ratios in parentheses).

Model for low-pay probability 
conditional on

Low-pay High-pay

Assumption on initial conditions Endogenous Exogenous Endogenous Exogenous
experience/10 -0.0687 -0.2051 -0.0158 -0.0887

-(0.6465) -(2.9220) -(0.3004) -(1.6790)
education>=high school -0.6398 -0.7816 -0.2286 -0.3117

-(2.6898) -(3.5180) -(1.6147) -(2.1380)
female 0.2423 0.4276 0.1978 0.3192

(1.2268) (2.6030) (1.6943) (2.7170)
non-manual -0 1347 -0.2926 -0.4401 -0.5346

. -(0.5511) -(1.2330) -(2.9895) -(3.5580)
firm size>=100 -0 4091 -0.6501 -0.3924 -0.5494

-(1.4099) -(2.5290) -(2.7651) -(3.8800)
public sector 0.0762 -0.3013 -0.5340 -0.6996

(0.2285) -(1.1520) -(3.5323) -(4.5840)
agriculture 00772 0.2359 0.1064 0.3986

(0.2472) (0.7560) (0.3359) (1.2080)
bank, insurance, transports 
communication retail trade, 
personal &household serv

02572 0.3181 0.0006 0.0431

(1.5111) (1.8470) (0.0043) (0.2970)
living in the north -0.3727 -0.4688 -0.1635 -0.1880

-(2.2171) -(2.9740) -(1.6044) -(1.7760)
constant 0.9524 0.7741 -0.9903 -0.5871

rho
(5.1484) 
-0.4583 

-(1 8010)

(4.2920) -(5.8353)
-0.6468

-(3.4950)

-(3.7240)

n obs 2148 334 2148 1814
pseudor2 0.2725 0.1329 0.2725 0.1661
pvalue 0.0000 0.0000 0.0000 0.0000

Notes: reference categories are 20 (vs 30, see text) years of experience, education<high school, 
male, manual, firm size<100, manufacturing, residence in the centre, south or isles.
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4. Mobility at the bottom of the wage distribution 
Table 4.6. Endogenous switching bivariate probit estimated marginal effects for the 
conditional low-pay probability: Hourly wages____________________________

Low-pay threshold Bottom quintile Third decile

Conditioning starting state low-pay high-pay low-pay high-pay
experlence/10 -0.0300 -0.0015 -0.0294 0.0011

-0.0687 -0.0158 -0.0768 0.0075
(-0.6465) (-0.3004) (-1.2172) (0.1503)

education>=high school -0.2676 -0.0210 -0.0953 -0.0392
-0.6398 -0.2286 -0.2351 -0.2491

(-2.6898) (-1.6147) (-1.3634) (-1.9422)
female 0.1053 0 0186 0.1102 0.0492

0.2423 0.1978 0.2808 0.3041
(1.2268) (1.6943) (1.9274) (2.7750)

non-manual -0.0583 -0.0451 -0.1369 -0.0843
-0.1347 -0.4401 -03346 -0.4811

(-0.5511) (-2.9895) (-1.7419) (-3.6099)
firm size>=100 -0.1706 -0.0288 -0.0404 -0.0455

-0.4091 -0.3924 -0.0997 -0.3495
(-1.4099) (-2.7651) (-0.5139) (-2.4608)

public sector 0.0332 -0 0502 -0.0988 -0.0490
0.0762 -0.5340 -0.2403 -0.3150

(0.2285) (-3.5323) (-1.0579) (-2.1475)
agriculture 0.0337 0.0103 -0.1531 0.0427

0.0772 0.1064 -0.3636 0.2395
(0.2472) (0.3359) (-1.3761) (0.6517)

bank, insurance, transports 0.1120 0.0001 0.1792 0.0130
communication, retail trade 
personal &household serv

0.2572 0.0006 0.4781 0.0831

(1.5111) (0.0043) (3.0072) (0.6029)
living in the north -0.1610 -0.0143 -0.1269 -0.0131

-0.3727 -0.1635 -0.3201 -0.0879
(-2.2171) (-1.6044) (-2.5041) (-0.9472)

constant 0.9524 -0.9903 1.2583 -0.9037
(5.1484) (-5.8353) (7.8214) (-4.6931)

rho -0.4583 -0.6468 -0.4690 -0.5307
(-1.8010) (-3.4950) (-2.8237) (-3.2501)

nobs 2148 2148
pseudor2 0.2725 0.258
pmod 0.0000 0.0000
phead 0.0665 0.2270
psel 0.0001 0.0000
Estimated state dependence 0.4938 0.6104
True state dependence evaluated 
at the characteristics of the low-
paid

0.3389 0.4161

True state dependence evaluated 
at the characteristics of the high- 
paid

0.1939 0.3040

Notes estimated coefficients in italic, asymptotic t-ratios of M L coefficients in parentheses, phead is the p-value from a LR
test for the exclusion of the instruments In the headline equation, psel Is the p-value from a LR test for the inclusion of the
instruments in the selection equation, pmod is the model's p-value, reference categories as in Tab. 4.5
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Table 4.6 (continued). Endogenous switching bivariate probit estimated marginal effects 
for the conditional low-pay probability: Monthly wages_____________________

Low-pay threshold Bottom quintile Third decile

Conditioning starting state low-pay high-pay low-pay high-pay
experience/10 -0 0081 -0.0092 -0.0001 0.0017

-0.0185 -0.0649 -0.0002 0.0120
(-0.1702) (-1.3213) (-0.0038) (0.2519)

education>=high school -0.0506 -0.0188 -0.1128 -0.0288
-0.1153 -0.1520 -0.2421 -0.1934
(-0.5029) (-1.2026) (-1.4731) (-1.5130)

female 0.1512 0.0468 0.1901 0.0614
0.3466 0.3478 0.4148 0.3814

(1.6227) (3.2913) (2.8714) (3.5271)
non-manual -0.1960 -0.1010 -0.0294 -0.0765

-0.4496 -0.6855 -0.0633 -0.4595
(-1.7753) (-5.1487) (-0.3591) (-3.4210)

firm size>=100 -0.1057 -0.0245 -0.0331 -0.0434
-0.2406 -0.2231 -0.0709 -0.3484

(-0.9243) (-1.6194) (-0.3790) (-2.4851)
public sector 0.0746 0.0045 -0.0178 -0.0124

0.1714 0.0368 -0.0382 -0.0856
(0.6672) (0.2743) (-0.2196) (-0.6314)

agriculture -0.1585 0.1367 -0.0662 0.0976
-0.3639 0.6826 -0.1411 0.4790

(-1.0653) (2 5969) (-0.4896) (1.6337)
bank, insurance, transports 0.1254 0.0036 0.1015 0.0058
communication, retail trade 0.2892 0.0289 0.2223 0.0394
personal &household serv.

(1.6499) (0.2124) (1.5155) (0.2818)
living in the north -0.1997 -0.0107 -0.0635 0.0006

-0.4597 -0.0887 -0.1370 0.0043
(-2.7659) (-0.9624) (-1.1583) (0.0468)

constant 0.9767 -1.0374 0.8712 -1.2046
(5.4035) (-6.6316) (5.8356) (-7.4571)

rho -0.4718 -0.7233 -0.6095 -0.6747
(-2.0983) (-4.4092) (-4.7347) (-5.5251)

n obs 2148 2148
pseudor2 0.2334 0.2232
pmod 0.0000 0.0000
phead 0.3963 0.4415
psel 0.0002 0.0000
Estimated state dependence 0.5319 0.5567
True state dependence evaluated 0.3771 0.3944
at the characteristics of the low- 
paid
True state dependence evaluated 0.2742 0.2860
at the characteristics of the high- 
paid
Notes: estimated coefficients in italic, asymptotic t-ratios of M L  coefficients in parentheses, phead is the p-value from a LR
test for the exclusion of the instruments in the headline equation, psel is the p-value from a LR test for the inclusion of the
instruments in the selection equation, pmod is the model's p-value reference categories as in Tab. 4.5
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4. Mobility at the bottom of the wage distribution 
Table 4.7. Comparison of marginal effects between binary and polychotomous 
specification of the transition equation in models for the probability of low-pay persistence; 
Hourly wages.__________________________________________
Low-pay threshold Bottom quintile Third decile
Transition equation Ordered Binary Ordered Binary
experience/10 -0.0096 -0.0314 -0.0081 -0.0287

-0.0209 -0.0720 -0.0193 -0.0746
(-0.2592) (-0.6802) (-0.3460) (-1.1814)

education>=high school -0.1960 -0.2694 -0.0776 -0.0942
-0.4389 -0.6457 -0.1799 -0.2315

(-2.3251) (-2.7225) (-1.1768) (-1.3428)
female 0.0723 0.1069 0.0717 0.1092

0.1569 0.2468 0.1698 0.2769
(0 9882) (1.2525) (1.3138) (1.8992)

non-manual -0.0401 -0.0598 -0.0977 -0.1364
-0.0876 -0.1386 -0 2253 -0.3320

(-0.4494) (-0.5666) (-1.3499) (-1.7307)
firm size>=100 -0.0508 -0.1687 0.0135 -0.0365

-0.1117 -0.4051 0.0318 -0.0898
(-0.5258) (-1.3826) (0.1855) (-0.4616)

public sector 0.0776 0.0296 -0.0324 -0.0958
0.1670 0.0681 -0.0753 -0.2321

(0.6506) (0.2046) (-0.3779) (-1.0202)
agriculture -0.1069 0.0356 -0.1814 -0.1551

-0.2402 0.0818 -0.4049 -0.3668
(-0.9154) (0.2617) (-1.7018) (-1.3895)

bank, insurance, transport & 0.1313 0.1121 0.2015 0.1813
communication, retail trade personal 
&household serv

0.2842 0.2582 0.5047 0.4814

(1.8887) (1.5147) (3.3637) (3.0362)
living in the north -0.1604 -0.1646 -0.1234 -0.1280

-0.3511 -0.3822 -0.2911 -0.3213
(-24687) (-2.3002) (-2.5152) (-2.5201)

constant 0.9310 0.9556 1.1624 1.2576

vO

vl

v2

(5.8346)
0.6011

(7.4652)
0.8414

(8.2928)
1.3376

(9.2229)

(5.1153) (7.8697) 
0.2818 

(6.5951) 
0.7755 

(9.7521) 
1.0260 

(10.4639)

(7.8328)

rho -0.5824 -0.4509 -0.5658 -0.4766
(-3.2373) (-1.7691) (-3.8483) (-2.8700)

n obs 2148 2148 2148 2148
pseudor2 0.2667 0.3083 0.2612 0.2966
pmod 0.0000 0.0000 0.0000 0.0000
phead 0.7691 0.1579 0.3913 0.0966
psel 0.0001 0.0002 0.0000 0.0000
Notes estim ated coefficients in italic, asymptotic t-ratios of ML coefficients in parentheses, phead is the p-value from a LR
test for the exclusion of the instruments in the headline equation, psel is the p-value from a LR test for the inclusion of the
instruments in the selection equation, pmod is the model's p-value, reference categories as In Tab 4.5
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Table 4.7 (continued). Comparison of marginal effects between binary and 
polychotomous specification of the transition equation in models for the probability of low- 
pay persistence; Monthly wages.________________________________________
Low-pay threshold Bottom quintile Third decile
Transition equation Ordered Binary Ordered Binary
experience/10 0.0253 -0.0106 0.0134 0.0024

0 0534 -0.0243 0.0269 0.0051
(0.6471) (-0.2213) (0.4824) (0.0797)

education>=high school -0.0670 -0.0534 -0.1160 -0.1097
-0.1418 -0.1225 -0.2339 -0.2327

(-0.7299) (-0.5318) (-1.6148) (-1.4205)
female 0 1163 0.1519 0.1414 0.1841

0.2467 0.3508 0.2879 0.3966
(1.4354) (1.6217) (2.2968) (2.7268)

non-manual -0 1192 -0.1966 0.0145 -0.0230
-0.2529 -0 4538 0.0294 -0.0489

(-1.2106) (-1.7816) (0.1919) (-0.2777)
firm size>=100 -0 0332 -0.1062 0.0134 -0.0288

-0.0702 -0.2433 0.0272 -0.0610
(-0.3367) (-0.9259) (0 1694) (-0.3279)

public sector 0.1121 0.0704 0.0153 -0.0130
0.2387 0.1628 0.0309 -0.0277

(1.1304) (0.6295) (0.2043) (-0.1599)
agriculture -0 2068 -0.1511 -0.1366 -0.0669

-0.4541 -0.3482 -0.2739 -0.1409
(-1.5217) (-1.0169) (-1.0503) (-0.4913)

bank, insurance, transport & 0.1435 0 1262 0.1352 0.1041
communication, retail trade personal 0.3060 0.2934 0.2794 0.2255
Shousehold serv

(1.9380) (1.6704) (2.0507) (1.5451)
living In the north -0.1473 -0.2004 -0.0585 -0.0644

-0.3130 -0.4645 -0.1183 -0.1371
(-2.2156) (-2.7887) (-1.1244) (-1.1662)

constant 0 8942 0.9757 0 8653 0.8734
(5.5909) (5.3489) (6.3075) (5 8800)

vO 0.3400 0.4527
(6.0658) (8.4924)

vl 0.7564 0.7373
(8.1752) (10.1046)

v2 0.9782 1.1638
(8.8033) (11.2813)

rho -0.5971 -0.4579 -0.6856 -0.6254
(-3.8866) (-2.0000) (-6.3920) (-4.8878)

n obs 2148 2148 2148 2148
pseudor2 0.2369 0.2691 0.2193 0.2513
pmod 0.0000 0.0000 0.0000 0.0000
phead 0.1708 0.4830 0.2058 0.3358
psel 0.0003 0.0006 0.0000 0.0000
Notes estimated coefficients in italic, asymptotic t-ratios of ML coefficients in parentheses, phead is the p-value from a LR
test for the exclusion of the instruments in the headline equation, psel is the p-value from a LR test for the inclusion of the
instruments in the selection equation, pmod is the model's p-value, reference categories as in Tab 4 5
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Appendix A4: A comparison of the INPS and SHIW data

This Appendix analyses the properties of the wage variable across the two 

data sets utilised in this Thesis. The basic wage information is annual labour income 

in both cases. A major difference between the two sources which, due to the lack of 

information, cannot be controlled for in making this comparison is that while 

administrative INPS records are gross of income taxes, survey data from the SHIW 

are net of taxes. For this reason, statistics on raw wages will not be considered, and 

the attention will be focused on the effects of personal characteristics on wages. In 

both cases, data include overtime payments; in the SHIW case they also include the 

monetary value of fringe benefits. Another relevant difference is given by the 

available working time information; while INPS data report the number of weeks 

worked during the year, SHIW data report the number of months worked in the year 

and the number of hours worked on average per week. For this reason, the 

comparisons in this appendix are made in terms of annual figures; to control for 

heterogeneity in time supplied, monthly (SHIW) and weekly (INPS) wages are also 

considered. A further difference is given by the fact that SHIW data include the public 

and agriculture sectors. To increase the comparability of the two data sets, 

observations from both sectors have been discarded from the SHIW data. 

Comparisons are based on the 1995 cross-section in both cases; male and female 

data are analysed separately, with the age range restricted from 18 to 65.

Table A4.1 presents results from OLS regressions of logarithmic wages on a 

set of workers attributes. In each of the cases considered, wages present a concave 

profile with respect to age. For yearly labour incomes, the peak is located around the 

age of 45. After adjusting for time worked, the peak age slightly rises for SHIW male 

data (from 47 to 50.7), while for females it remains fixed at 43; differences are more
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evident in the INPS case (from 45 to 58 for males and from 46 to 57 for females). 

Estimated coefficients on occupational dummies are well determined and indicate 

differentials ranging from 21 to 45% for white collar workers and from 82 to 149% for 

managers, the reference category being blue collar workers. Wage differentials in 

favour of non-manual workers tend to be rather homogeneous across genders in the 

INPS data set; the differential for managers is instead higher for females in the SHIW 

case. Inter-industry wage differentials are next taken into account, the comparison 

category being given by the manufacturing sector. The direction of differentials for 

the construction sector is in accordance across the two data sets, being negative for 

males and non significative for females. The dummy for the transport and 

communication sector typically attracts a positive coefficient, with a negative 

coefficient (significant at the 15% level) characterising yearly male data in the INPS. 

The banking and insurance sector is characterised by a positive and significative 

coefficient in each case, with estimates from the INPS data which are nearly triple 

those from the SHIW. Patterns for the retail trade and hotel sector are less clear: in 

particular, while the differential estimated from the SHIW is negative for males and 

positive for females, estimates from the INPS are always negative. Wage 

differentials by firm size are well determined and indicate an increasing wage 

advantage as we move towards larger firms; the tendency for differentials estimated 

from the INPS to be larger is also present, but less evident than In previous cases, 

especially for females. Finally, coefficients on geographical dummies indicate higher 

wages in the north of the country, a smaller advantage accruing to the centre, both 

compared to the south and isles. It is worth stressing that while INPS data attribute 

the largest coefficient to the north-west, SHIW data suggest that wages are higher in 

the north-east; moreover, differences in the size of coefficients across the two data
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sets are not as evident as for the other effects considered. Looking at estimates from 

the SHIW it seems that regional wage differentials are more important for women.

A different perspective for the comparison of the two data sets is given in Table 

A4.2, where marginal effects from probit estimates of the probability of being low- 

paid in 1995 are reported. The low-pay threshold is the bottom quintile of the wage 

distribution computed from the samples used for the OLS regressions of Table 

A4.1.69 The ceteris paribus low-pay probability presents an u-shape profile, in 

accordance with the OLS analysis; the minima of these profiles tend to occur at 

slightly lower ages than the maxima of the OLS regression, major differences 

characterising weekly IN PS data. The patterns of occupational effects resemble OLS 

coefficients in that their absolute value is higher in INPS data; it can also be 

observed that these effects are stronger for females according to both data sets. 

Marginal effects for the construction sector tend to evolve in line with the OLS 

regression, being positive for males and non significative for females. The patterns of 

marginal effects for the other industries are less clear. The dummy for transports and 

communications attracts a negative effect in the SHIW male sample, while the 

opposite holds for INPS data; effects for females are typically non significative, the 

exception being a negative significative effect for female weekly wages in the INPS 

sample. Evidence for the banking and insurance dummy departs a bit from the OLS 

analysis, effects for male SHIW data being non significatively different from the 

manufacturing sector, while, in the rest of the cases, the effect is negative. For the 

retail trade and hotel sector, estimates are not well determined and tend to be 

negative, thus reverting, evidence from OLS regressions for the INPS data. Effects 

for the firm’s size and the region are well determined and negative; in both cases 

they tend to be stronger for females in both data sets.

69 Dummy variables happening to be “perfect classifiers' and observations scoring “1“ on these 
dummies have been dropped from the analysis.
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4. Mobility at the bottom of the wage distribution

Table A4.1: OLS log-wage regressions (t-ratios)

SHIW Males Females Males Females
Yearly wages Yearly wages Monthly wages Monthly wages

age/10 0.697 (12.664) 0.766 (8.079) 0.477 (11.622) 0.513 (7.098)
ageA2/100 -0.073 -(10.454) -0 088 -(6.903) -0.047 -(9.113) -0 059 -(6 081)

white collar* 0.236 (11.841) 0.220 (7.315) 0.225 (15.125) 0.210 (9.162)
manager 0.853 (15.514) 1.243 (4.413) 0.827 (20.173) 1.197 (5.576)

construction -0.104 -(3.985) 0.036 (0.344) -0.037 -(1.876) 0.041 (0.512)
transport & 

communication
0.074 (2.230) -0.017 -(0.194) 0.058 (2.325) 0.077 (1.149)

bank, insurance, 
financial and real

0.079 (2.570) 0.105 (2.334) 0.103 (4.528) 0.063 (1.843)

estates services 
retail trade & hotel -0.023 -(0.906) 0.039 (1.149) -0.019 -(1.017) 0.077 (2.998)
20<=firm size<100 0 102 (4.626) 0.098 (2.913) 0.082 (5.018) 0.129 (5.040)

100<=firm
size<500

0.181 (7.006) 0.162 (3.984) 0.160 (8.291) 0 196 (6.333)

firm size >500 0.265 (11.325) 0.271 (6.293) 0.217 (12.478) 0.287 (8.746)
north-west 0.120 (5.479) 0 258 (6.076) 0.121 (7.373) 0.277 (8.550)
north east 0.156 (6 881) 0.266 (6.355) 0 140 (8268) 0.285 (8.942)

centre 0 065 (2.724) 0.144 (3.303) 0.065 (3.686) 0.223 (6.740)
constant 8 207 (79.647) 7 836 (46.219) 6.245 (81 296) 5.888 (45.575)
adj-r2 0.428 0 304 0.506 0.371
nobs 2277 929 2277 929
INPS Males Females Males Females

Yearly wages Yearly wages Weekly wages Weekly wages
age/10 0 546 (18.797) 0.919 (14.137) 0.210 (13.078) 0.285 (9.463)

ageA2/100 -0 060 -(18.328) -0.098 -(12.716) -0.018 -(10.107) -0.025 -(7.023)
white collar* 0.399 (62.593) 0.456 (36 338) 0.359 (102.05) 0.340 (58.461)

manager 1.436 (87.863) 1.494 (17.331) 1.377 (152.56) 1.374 (34.445)
construction -0.281 -(31.490) -0.043 -(0.921) -0.109 -(22.021) -0.008 -(0.363)
transport & -0.015 -(1.564) 0.064 (1.823) 0.014 (2.742) 0.077 (4.752)

communication 
bank, insurance, 
financial and real

0.269 (26.827) 0.289 (15.067) 0.248 (44 759) 0.289 (32.505)

estates services 
retail trade & hotel -0.074 -(7.997) -0.125 -(8.261) -0.053 -(10.386) -0.005 -(0.686)
20<=firm size<100 0 156 (20.497) 0 135 (9.178) 0.122 (29.076) 0.114 (16.768)

100<=firm
size<500

0.246 (29.975) 0.200 (12.405) 0.193 (42.406) 0.194 (26.072)

firm size >500 0.357 (45.524) 0.298 (18.870) 0.274 (63.238) 0.259 (35.542)
north-west 0.229 (28.346) 0.248 (10.940) 0.107 (23.981) 0.057 (5.386)
north east 0.219 (24.546) 0.198 (8 359) 0.093 (18.793) 0.045 (4.077)

centre 0.193 (22.103) 0.183 (7.560) 0.077 (15.941) 0.025 (2.246)
constant 8.727 (138.89) 7.520 (56.523) 5.693 (163.97) 5.296 (86.007)
adj-r2 0.393 0.280 0.601 0.519
nobs 42843 12727 42843 12727
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4 Mobility at the bottom of the wage distribution

Table A4.2: Probit marginal effects for the probability of wages below or at the 
bottom quintile (t-ratios)

SHIW Males Females Males Females
Yearly wages Yearly wages Monthly wages Monthly wages

age/10 -0.365 -(9.410) -0.751 -(6.360) -0.315 -(8.600) -0.707 -(5.840)
ageA2/100 0 040 (7.920) 0.090 (5.680) 0.034 (7.060) 0.085 (5.230)

white collar* -0 060 -(3.750) -0.205 -(5.420) -0.064 -(4.240) -0.240 -(6.150)
manager -0.074 -(1.610)

construction 0.062 (3.200) -0.043 -(0.310) 0.023 (1 380) 0.086 (0.600)
transport & 

communication
-0 059 -(2.220) 0.005 (0.040) -0.062 -(2.570) -0.065 -(0.550)

bank, insurance, 
financial and real

0.027 (0900) -0.110 -(1.930) -0.014 -(0.530) -0.111 -(1.900)

estates services 
retail trade & hotel 0.009 (0.530) -0.044 -(1.080) 0.013 (0.810) -0.117 -(2.830)
20<=firm size<100 -0 052 -(3.990) -0 143 -(3.710) -0.038 -(3.140) -0.155 -(3.970)

100<=firm
size<500

-0 058 -(3.630) -0 170 -(3.710) -0.067 -(4670) -0.246 -(5.440)

firm size >500 -0.098 -(6.150) -0.248 -(4.900) -0.100 -(6.520) -0.300 -(5.980)
north-west -0.101 -(7.610) -0.328 -(7.200) -0.084 -(6.770) -0.342 -(7.190)
north east -0 099 -(7.740) -0.347 -(7.720) -0.094 -(7.840) -0.361 -(7.690)

centre -0 064 -(4.760) -0243 -(5.220) -0 053 -(4 180) -0.229 -(4.600)
pseudor2 0 262 0.2159 0.2715 0.2426

nobs 2277 927 2223 927
INPS Males Females Males Females

Yearly wages Yearly wages wages Weekly wages
age/10 -0 283 -(18.230) -0.724 -(13.800) -0.168 -(13.650) -0.526 -(9.550)

ageA2/100 0.033 (18.430) 0.077 (12.330) 0.018 (12.740) 0.051 (7.830)
white collar* -0.101 -(25.780) -0.343 -(33.500) -0.121 -(32.670) -0.458 -(43.140)

manager -0.111 -(11.880)
construction 0.117 (21.450) 0.037 (0.940) 0.054 (13.310) -0.021 -(0.510)
transport & 0.050 (8 540) -0.036 -(1.110) 0.013 (2.740) -0.078 -(2.090)

communication 
bank, insurance, 
financial and real

-0.055 -(6.360) -0.107 -(5.810) -0.053 -(5.780) -0.120 -(5.860)

estates services 
retail trade & hotel -0.003 -(0.570) -0.036 -(2.950) -0.013 -(3.270) -0.106 -(8.680)
20<=firm size<100 -0 060 -(17.800) -0.130 -(11.940) -0.062 -(26.240) -0.142 -(12.650)

100<=firm
size<500

-0.088 -(24.330) -0.202 -(18.090) -0.085 -(34.360) -0.256 -(23.530)

firm size >500 -0.148 -(37.240) -0.261 -(22.580) -0.155 -(46.380) -0.344 -(29.720)
north-west -0.114 -(27.650) -0.199 -(10.940) -0.087 -(26.510) -0.123 -(6.350)
north east -0.087 -(22.520) -0.133 -(7.420) -0.061 -(20.390) -0.083 -(4.270)

centre -0 071 -(17.980) -0 083 -(4.420) -0.039 -(12.120) -0.024 -(1.150)
pseudor2 0.2045 0.2447 0.2745 0.3571

nobs 42843 12679 41724 12679
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Chapter 5

Discontinuous wage profiles, endogenous selection 

and mobility: a simulated estimation approach



5.1 Introduction

In this Chapter the analysis of low-pay transitions will be extended to control for 

the potential bias induced by the discontinuity of wage profiles in the SHIW data. 

Estimation of the bivariate probit with endogenous switching in Chapter 4 is based on 

the sample for which a valid wage is observed at both ends of the transition 

investigated, while observations available only at the beginning or at the end of the 

transition are discarded from the analysis. Such a sample selection rule may lead to 

biased parameters’ estimates if the propensity to have a valid wage observation in 

both of the SHIW waves considered is not randomly distributed across individuals, 

but is correlated with unobservables in the transition equation.

A possible reason for such discontinuity could be panel attrition, i.e. 

unavailability of sample respondents in some of the panel waves. Movements out 

from the wage distributions could also be determined by economic or demographic 

factors (e g., for example, unemployment or retirement), which do not imply attrition 

from the sample of respondents. In what follows, the two causes of intermittency will 

be analysed altogether, and I will term the resulting sample selection process attrition 

from the wage distribution 70

The sign of the correlation between the propensity to have continuous wage 

observations and low-pay transition probabilities is not clear a priori. On the one 

hand, sample selection could be determined by demand side factors, with workers 

abandoning the sample of wage earners as a consequence of events such as 

layoffs. In such a case, individuals dropping out from the sample over time are likely 

to be characterised by a low degree of attachment to the labour market and their 

characteristics (both observed and unobserved by the researcher) would probably 

positively influence the propensity to persist in low-pay. The exclusion of these

In fact, this seems to be the meaning with which the term attrition is used by Bingley et al. [1995].

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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observations from the analysis would then lead to underestimation of both aggregate 

low-pay persistence and the effect of observable characteristics on transition 

probabilities. At the other extreme, exits from the data set may be the result of 

supply side decisions which, had the sample unit been observed in subsequent time 

periods, would have generated mobility out of low-pay, which is instead not observed 

due to the inability to track the missing observation. In this occurrence attrition from 

the wage distribution would negatively covary with low-pay persistence, so that 

inferences based on the “balanced” sample would overestimate both aggregate 

persistence and the effect of observable characteristics on transition probabilities. 

The actual situation will probably result from the interplay of these two effects and in 

the analysis which follows attention will be focused on the net result.

The case of endogenous attrition is an example of what Verbeek and Nijman 

[1992] define as a non-ignorable sample selection rule: conducting inference on the 

selected sample is legitimate only if conditioning on the availability of observations 

doesn't alter the joint density of the variables under examination, and only in this 

case the selection rule may be deemed ignorable. As pointed out in this study, given 

a set of incomplete data, there are three strategies which could be pursued. Data 

may first of all be imputed, i.e. missing bits of information are replaced by their 

prediction based on the available sample. Alternatively, available observations could 

be weighted in some way, in order to reconstruct their relative importance to what it 

should have been in a random (i.e. non attrited) sample. Finally, a model based 

strategy can be pursued. In this case, the treatment of the missing data process is 

deferred to the analysis stage, where the probability of belonging to the available 

data set is modelled jointly with the economic relation of interest. In the case of non- 

ignorability of the sample selection rule, this last strategy is superior in that both

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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imputation and weighting would need to be model based in order to be properly 

carried out.

Such a modelling approach to attrition characterises the few studies which 

address the problem in the context of panel data on earnings. Hausman and Wise 

[1979] were concerned with endogenous selection in wage equations estimated on a 

sample of participants in the Gary Income Maintenance Experiment, in particular with 

attrition of subsequent responses once the observational unit has already been part 

of the sample They have two waves of data and their model consists of a “random 

effect” log-wage equation plus a probit for the probability of staying in sample in the 

second period (retention probability). Correlation in unobservables is allowed 

between retention and wages in the second period, which in turn implies correlation 

between retention and wages in the first year through the “random effect" in wages. 

With this setup they can derive Heckman's correction term for wages in both waves. 

They find that the extent of bias is limited in statistical significance, while its sign 

implies that high wage workers tend to drop out from the experiment: this is 

consistent with the fact that high wage individuals benefit less from the experiment 

and are thus more likely to abandon it. They also find that attrition is more severe in 

simple analyses of variance rather than in structural models and suggest that this 

occurrence arises from the fact that in the latter case the conditioning set already 

includes the factors determining attrition (this point is also noted by Verbeek and 

Nijiman [1992]). Keane et al. [1988] were interested in analysing self-selection over 

the business cycle and thus to investigate the issue of wage cyclicality when 

macroeconomic shocks don’t hit workers at random. The framework is again that of 

Heckman’s selectivity correction in “random effect" log-wage equations, extended to 

multiple time periods. They found that attrition significantly biased wages in a

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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procyclical direction, suggesting that high wage workers exit the employed pool 

during downturns. The issue of attrition in the context of wage mobility modelling71 

was addressed in Bingley et al. [1995], who used a trivariate probit72 model to tackle 

selectivity of both initial conditions and attrition. Their model consists of a probit for 

the probability of having a valid wage at both ends of the transition investigated, an 

ordered probit for the starting wage decile and an ordered probit for mobility 

(descending, absent or ascending). It has to be stressed that in this study the kind of 

attrition analysed includes both genuine attrition and exits from the wage distribution, 

as is the case in the present Chapter. Their results point towards a statistically 

significative impact of attrition from the wage distribution on mobility, with attrition 

probabilities positively correlated with upward mobility.

This chapter implements trivariate probits to augment the low-pay transition 

model of Chapter 4 with an attrition (from the wage distribution) equation; following 

Bingley et al., double selectivity is modelled as a sequential nesting process. The 

use of trivariate normal integrals, which are not commonly packaged in statistical 

software, poses a computational difficulty for the implementation of maximum 

likelihood estimation. Such a problem is tackled here by means of simulation 

techniques, in particular by implementing the GHK simulator within STATA’s 

maximum likelihood routines: details on this qualifying aspect of the present Chapter 

are given in the Appendix.

5 Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

In the study of Stewart and Swaffield [1999], the impact of attrition on the bivariate probit estimates of 
low-pay persistence is investigated by amalgamating exits from the wage distribution together with 
persistence in low-pay, not moving up the wage distribution being the common factor between these 
two outcomes. They find that results are not dramatically different when compared to those obtained on 
the balanced sample
u  Computation of the trivariate integral is carried out using quadrature routines.
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5.2 Discontinuous wage profiles in the SHIW data

Before moving on to the modelling stage, this section describes the features of 

attrition from the wage distribution in the Bank of Italy's data set. In this context, an 

important aspect of the sampling design is the distinction between panel and non­

panel households, the first group corresponding to those households sampled in (at 

least) two consecutive waves. Assignment to this group is carried out in two steps. In 

the first step, which takes place at the date of the first wave’s interview (1993 in our 

case), each household is asked whether or not it is willing to be re-interviewed in the 

subsequent wave. At the second step, which takes place previous to interviews for 

the subsequent wave, roughly 50% of those households available for re-interview are 

sampled to take part in the new wave. In 1993, 87% of interviewed households 

(7040 out of 8089 households) gave their availability for a new contact in 1995; of 

these, 47% were actually re-interviewed. A limited number of households (299) were 

also re-sampled among those answering NO or DON’T KNOW at the question on 

availability for future interviews On the whole, of the 8089 households forming the 

1993 wave of the SHIW, 3645 belong to the panel sub-group.

Moving from the household to the individual level and focusing on the group of 

full-time wage earners with valid wage observations aged between 18 and 65 in 

1993, which is the sample implicitly deemed to be randomly selected in Chapter 4 

when cross-sectional probit regressions for the probability of being low-paid were 

carried out, such a sampling design implies that of the 5708 valid observations (see 

Table 4.1), only 2734 belong to panel households, of which 2160 (see again Table 

4.1) have a valid wage in both 1993 and 1995.

The sampling process just described suggests that some caution should be 

exerted when defining the control group for the sample selection analysis: a
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considerable number of cases exit the sample at random, i.e. from a decision of the 

survey builders, and not for economic or demographic reasons. It would clearly make 

no sense to include these observations in an analysis of the probability of staying in 

the sample.

5 Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

Table 5.1: Transition probabilities into 1995 status for the sample of 1993 wage 
earners aged from 18 to 65 belonging to panel households (low pay defined as 
bottom quintile of hourly wage distribution)

1993 w age  s ta tu s Low-pay High-pay
1995 s ta tus

low-pay 0 388 0.051
high-pay 0.304 0 761

missing wage; part-tim e 0 049 0.037
self employed 0.027 0 01
entrepreneur 0 0 1 2 0.01
unemployed 0 092 0 019

retired 0.022 0 068
other 0 004 0

housewife 0.027 0 002
not observed 0 076 0 043

Total obs 490 2244

The analysis of this chapter thus enlarges the estimation sample to include 

those observations which belong to a panel household in 1993 but don’t have an 

observable wage in 1995: these are observations which could have potentially 

stayed in the sample of wage earners, but are not observed in the arrival wage 

distribution, either because they left the employed labour force or the household of 

origin. Potentially, also those belonging to households refusing to cooperate (and not 

actually re-sampled) could have been used to form the control group; however, the 

reasons behind the willingness to cooperate in the subsequent wave are not clear 

and it has been preferred not to include these cases (a total of 367 individuals) in the 

analysis.73

Similarly, individuals belonging to panel households and with a valid wage only In 1995 (34 cases) 
are not included in the control group of the attrition equation.

I
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In order to get an illustration of the kind of movements out from the wage 

distribution which determine the attrition process, Table 5.1 gives the destinations in 

1995 for the sample of wage earners belonging to a panel household and aged 

between 18 and 65 in 1993, i.e. the estimation sample for the present Chapter. 

Focusing on the comparison between low- and high-paid in 1993, it can be seen how 

the low-paid are characterised by higher transition rates especially in the group of the 

unemployed, and, to a minor extent, in the housewives and the “not observed” (i.e. 

genuine attrition) classes. On the other hand, the high paid have higher transition 

rates into retirement.

An alternative illustration of the selection process is given in Table 5.2, which 

reports results from probit regressions for the probability of having a valid wage in 

both 1993 and 1995 on a set of personal characteristics: the event under 

investigation is persistence in the sample of valid wage earners, while explanatory 

variables are measured at the beginning of the transition. The estimation sample 

differs from the one considered in Table 5.1 due to the presence of missing values in 

some of the explanatory variables; the same remark applies to the sample used in 

estimating the model of the next section.

Column 1 considers the effect of the wage determinants used in the reduced 

form low-pay probits of Chapter 4 (i.e. the selection equations of the bivariate 

switching probit), but without controlling for parental background. We can observe 

that the probability of persisting in sample displays an inverted u-shaped profile In 

labour market experience, indicating a higher sample attachment towards the central 

part of the working career, with maximum probability approximately 18 years after 

the beginning of the first job. Education has a positive impact on such a probability, 

while being female reduces it by 4 percentage points. Among the other variables

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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considered, while geographical location, occupation and sectoral affiliations (within 

the private sector) have no significant impact, affiliation to the public sector or 

employment in large firms positively influence retention probabilities on a scale 

between 5 and 10 percentage points.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

Table 5.2: Probit estimates (marginal effects) for the probability of having a valid 
wage in 1993 and 1995 (asymptotic t-ratios in parentheses).

1 2
experience/10 0 .2 1 9 (9 .73) 0 .146 (5 .74 )

(experience/10)A2 -0 .0 5 9 (-11 30) -0 .044 (-7 .77 )
education>=high school 0 .0 3 8 d  73) 0 .048 (2 .20 )

female -0 .0 4 3 (-2 .46 ) 0 .017 (0 .64 )
living in the north -0 .0 0 5 (-0 .30 ) 0 008 (0 .49 )

non-manual 0 .0 0 6 (0 .29) 0 .010 (0 .46 )
firm size>=100 0 .0 4 9 (2 .36) 0 .047 (2 .23 )

public sector 0 .1 0 4 (4 6 3 ) 0 .097 (4 .35 )
agriculture -0 .0 3 8 (-0 .74 ) -0 .046 (-0 .89 )

service sector -0 .0 1 0 (-0 .46 ) -0 .009 (-0 .41 )
dependent children 0 .076 (2 .96 )

dependent -0 .096 (-2 .16 )
children'fem ale

married 0 .099 (3 .22 )
m arrled'fem ale -0 .048 (-1 .22 )

per capita equivalized -0 153 (-2 .99 )
household wealth

(millions of lire)
n. obs 2 7 1 6 2716

pseudo r2 0 0 7 9 2 0.0971

Column 2 augments the same specification with some reservation wage 

indicators; these are dummies for the presence of dependent children (Le. aged less 

than 14) in the household and for being married, interacted with the gender dummy, 

and the per capita equivalised household wealth.74 The first two variables are 

assumed to potentially influence workers’ motivation to participate in the labour 

market in different directions depending upon gender: while for males the presence 

of family responsibilities is supposed to raise incentives to participate, for females

Compulsory education usually lasted until 13 in the years examined. The equivalising factor for the 
wealth indicator is the square root of the number of household members.
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negative signs could arise from the social structuring of children and household care. 

On the other hand, wealth is assumed to raise the reservation wage irrespective of 

gender. We can first of all observe that, with the exception of the gender dummy, all 

the other effects are robust to the inclusion of reservation wage indicators. The 

reasons for the loss in size and significance of the gender dummy become clear as 

we move to consider the new variables included in the regression. In particular, 

considering the indicator for the presence of dependent children and its interaction 

with the gender dummy, we can see how these effects come with the expected sign: 

a male with a dependent children within the household has a higher probability 

(7.6%) of staying in sample than an otherwise identical worker, while for females this 

probability is 2% lower than for otherwise identical males without dependent children 

within the household.75 Taking the effect of marriage into account, it is rather strong 

(10%) and positive for males, while for females it is less intense and statistically 

significant. Finally, the household wealth indicator displays the expected negative 

sign.76

The probit analysis above has shed some light on the factors influencing exits 

from the sample of wage earners in 1995; in the next paragraph I will build on this in 

trying to assess the potential bias induced by attrition from the wage distribution 

within the model of low-pay transitions.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

Recall that the sample is not selected with respect the position in the household, i.e. this evidence is 
based also on 357 sons and 226 daughters, plus 55 other relatives. Thus, the sample departs a bit from 
a stylised model of labour supply allocation between husband and wife. Here I'm implicitly assuming 
that the factors determining the allocation of family responsibilities in the case of husbands and wives 
also influence the decisions of working sons and daughters.

In a separate non reported analysis, the effect of wealth have been differentiated by sex, finding that 
for females such effect is still negative, but greater that the male one (the p-value on the estimated 
coefficient is 0.17).
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5.3 A sequentially nested trivariate probit model for the analysis of

sample selection bias induced by discontinuous wage profiles

This paragraph describes the modelling approach adopted in order to assess 

to what extent results obtained in the previous chapter are plagued by the presence 

of sample selection bias. Is it correct to focus the analysis of wage transitions only on 

those individuals for whom a valid wage is available in each panel wave? Or, on the 

contrary, are these individuals systematically different from the ones dropping out 

from the survey, so that their selection for estimation is endogenous, thus biasing 

estimation results?

To provide an answer to these questions, the (structure of the) model in 

Chapter 4 has been extended to allow for a third dichotomic event which interacts 

with the ones previously considered (i.e low-pay/high-pay at both ends of the 

transition investigated) in determining the likelihood of the data. The resulting set-up 

is a trivariate conditional probit model which allows for sequential nesting of the 

equation of interest.

The modelling of attrition is carried out expanding the model for low-pay 

persistence proposed by Stewart and Swaffield [1999], i.e., differently from the 

model of Chapter 4, the 1995 wage outcome is assumed to be observable only for 

the 1993 low-paid. The model is expanded by acknowledging that it can be actually 

estimated only using observations for which a wage is observable in 1993 and 1995. 

Let R| be a dummy partitioning the sample of 1993 wage earners77 depending upon 

their wage observability in 1995. Recalling the notation from Chapter 4, let us also 

define dit as dummy variables for low-pay occurrence in year t.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

Recall from section 5.2. that these are wage earners belonging to panel households, this last state 
being assumed exogenous to low-pay transitions.
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At the first nesting level, a probit is estimated for the probability of having a 

valid wage in both periods.78 At the second nesting level, only those observations for 

which R|=1 are utilised to estimate a probit for the probability of low-pay in 1993. 

Finally, the sample of the 1993 low-paid observed in both waves is used to estimate 

a probit equation for low-pay in 1995. Of course, the probabilities of the three events 

above are simultaneously estimated, i.e. for those observation for which the 1995 

wage outcome is observed the estimated probability is Prob(Ri=1,di93=1,di95=1)= 

Prob(dig5=1|di93=1,Rj=1)Prob(di93=1|Rl=1)Prob(Ri=1). It is worth stressing that the 

multivariate normal density assumed allows for unrestricted correlation between the 

errors, thus allowing a proper assessment of potential endogeneity issues among the 

three events investigated.

More formally, let us assume that the propensity to stay in sample (retention 

propensity) is a latent variable R*; when R* overcomes an unobservable (possibly 

individual specific) threshold x*. observations remain in the sample of wage earners 

in both waves. R* is assumed to be a function of observable characteristics, and we 

only observe a dummy indicator signalling whether or not R*>x*:

Rj = x'ro s r  + vi

R, = /(« ;>  t?) (5.1)
v, ~ N(0,1)

where x'Ri contains the whole set of explanatory variables used In the model.

The second stage can be formalised according to the discussion in Chapter 4 

and assuming partial observability of the 1993 low-pay outcome:

m Note that specification in terms of retention, rather than attrition, characterises the models both of 
Hausman and Wise [1979] and Bingley et al. [1995].

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
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9 (wm ) = x'i 8 + ui if R, = 1
d,93 = Hg{Wi93) *  9(^93)) (5.2)
ui ~ N( 0,1)

The headline equation of interest is a probit equation for the occurrence of low- 

pay in 1995 for which two sources of partial observability are assumed:

hi (w,95) = Z/'n-i + e1( if Rj = 1 and di93 = 1
^/95 = K^t iwi95) — ^ 1(^95)) (5.3)
6! ~ A/(0,1)

Assuming that error terms in the three equations are jointly distributed as a tri­

variate normal

f v , ' O' r 1
Ui ~ n 3 0 P1 1

-E/1- ,0, VP2 P3 t

and that observations are iid, the log-likelihood function of the model may be written

lo9(- = X , {^ '9 3 ^ /9 5  SRtx’,- P,z',- yi;pi.P2 .P3 ) +

Ridi93^ -  c,/95)Io9‘I)3(x'R/ 8R.x'/ f t - * '/  ri;P l.-P 2-P 3) + 
Rii^~  di93) log4>2(X R/ 8r x'/ P;-Pi) +
(1 -R ( )logO (-x 'R, 8R)}.

’ * The way « commutes into |l and p1 in y1 is explained is Chapter 4.

175



The structure of the model can be compared with those of previous studies. As 

far as attrition is concerned, this Chapter assumes that data availability at the start of 

the transition is exogenous, as in Hausman and Wise [1979] and differently from 

Bingley et al. [1995], who include also those workers with a valid wage only at the 

end of the transition in the control group of their retention probit. Moreover, as 

mentioned above, while Hausman and Wise analyse attrition from the sample of 

respondents, either Bingley et al. and this Chapter consider attrition from the sample 

of wage earners. Taking the modelling of wage dynamics into account, Hausman 

and Wise have no dynamics in their specification (and hence no initial conditions 

problem), the present Chapter conditions wage levels on their lags, while Bingley et 

al. condition wage changes on lagged wages. It has to be stressed that the Bingley 

et al.’s specification and the one in this Chapter are observationally equivalent when 

mobility from the tails of the wage distribution is considered.

As for the bivariate model, restrictions in the form of variables entering only xR 

would be desirable. Here I assume that such variables are given by some of the 

reservation wage indicators included in Table 5.1, namely the dummy for the 

presence of dependent children in the household interacted with the gender dummy. 

Such variables have been chosen on the basis of a reduced form bivariate probit 

model in which Rj and di93 have been conditioned on a general specification of xRi80; 

results from the reduced form show how these two variables do not enter the low- 

pay equation significantly81; it is then assumed that their effect on wages in both time 

periods only works through participation in 1995. The choice of such variables is also 

in line with previous studies of attrition bias in panel wage analysis, namely with 

Keane et al. [1988], who use the number of kids as an instrument in their

The specification includes the whole set of variables used in column 2 of Table 5.1 plus the parental 
background indicators of Chapter 4.

The p-value for these variables in the 1993 low-pay equation is .77 for the male dummy and .9 for the 
female one.
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employment equation. As mentioned in the introduction to the Chapter, attrition may 

well result from demand side factors, and it could also be argued that such factors 

are more relevant at the lower end of the wage distribution, where monopsonistic 

behaviour is likely to characterise the labour market (see Green et al. [1996]). 

However, it is difficult to imagine demand side factors, among the available 

information, which do not enter the wage equation directly.

As mentioned in the introduction, we can see from (5.5) that the log-likelihood 

function involves the cumulative density function of the trivariate normal distribution, 

whose evaluation has been implemented via simulation estimation: the appendix to 

this Chapter illustrates the practical implementation of such an estimator.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

5.4 Results

Results from the simulated maximum likelihood analysis are given in Table 5.3, 

which reports SML estimated coefficients and asymptotic t-ratios for the two nesting 

equations and the low-pay transition equation; the analysis is restricted to the low- 

pay threshold defined in terms of the bottom quintile of the hourly wage distribution, 

while, as a benchmark, the first column of the Table reports results obtained with a 

nested bivariate model which only controls for the endogeneity of initial conditions.82 

The simulated likelihood function is computed using 75 random draws from the 

truncated normal distributions of interest.83

Column 2 reports results from a general specification of the trivariate model. By 

comparing estimated coefficients with the ones in the first column, we can observe 

that differences are not remarkable, a fact which suggests that results from the

82 Results in column 1 are taken from Table 7 in Chapter 4, where bivariate and ordered probit 
specifications of the low-pay persistence equation were compared.
63 In the appendix the performance of the SML estimator at different choices of the number of draws is 
checked, showing how estimates are robust to such a choice.
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previous Chapter are robust to the addition of the attrition equation. This is confirmed 

by taking the estimated error covariance matrix into account. We can observe a 

positive correlation between retention probability and low-pay in the starting year 

conditional on retention, a negative correlation between retention and low-pay 

persistence conditional on retention and a negative correlation between low-pay in 

the starting year and low-pay persistence, both conditional on retention. None of the 

correlation coefficients is significant at conventional levels and the more precisely 

estimated is the correlation between low-pay level and low-pay persistence, which 

also preserves the sign and size it had in the analysis of Chapter 4. The correlation 

between retention and low-pay in the starting year is positive, a result which also 

arises in Bingley et al. [1995]. The correlation between retention and low-pay 

persistence is instead negative, meaning that those staying in sample have a lower 

propensity to remain in low-pay. However, neither is significantly different from zero.

Recalling the discussion from the introduction to this Chapter, such a result 

seems to indicate that observations abandoning the sample correspond to “weaker” 

labour market participants, and thus that their exclusion from the analysis could lead 

us to overestimate the whole phenomenon of persistence. As stressed above, 

however, the extent of the bias is irrelevant from the viewpoint of statistical 

significance.

As a next step in the analysis, restrictions are tested on the general model: 

after all, the previous finding of statistical insignificance of attrition bias could arise 

from the fact the structure imposed on the data is tod complex to be precisely 

estimated, so that before concluding in favour of the irrelevance of attrition it is worth 

checking whether or not the finding is also supported by restricted specifications of 

the model in column 2.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
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A first restricted version of the model is proposed in column 3, where the null 

hypothesis that the correlation between retention and initial low-pay is the product of 

the other two correlation coefficients is tested: p(Ri,di93)=p(Ri,dj95)*p(di93,di95). The 

hypothesis means that the correlation between initial low-pay and retention only 

works through the combination of the correlation between retention and final low-pay 

(p(Ri,dj95)) and the correlation between initial and final low-pay, i.e. the individual 

effect in earnings (p(di93,di95)); apart from this combined effect, there's no direct 

correlation between R| and di93. This hypothesis is adopted from the outset of the 

analysis by Hausman and Wise [1979], As discussed in the previous Section, the 

sample selection process in their study is similar to the one of this Chapter, which 

makes the hypothesis worth testing. Also, the signs (but not the sizes) of the 

correlation coefficients in column 2 are in accordance with this hypothesis. Results 

are given in column 3. By first considering the maximised simulated likelihood and 

comparing it to the one of the unrestricted model in column 2 via a Likelihood Ratio 

test, we obtain a x2 statistic of 0.18, which strongly supports the non-rejection of the 

null. The impact on the estimated parameters is negligible as far as the effect of 

explanatory variables is concerned. Taking the two remaining correlation coefficients 

into account, we can see that they both gain in size and precision, with the 

correlation between initial low-pay and low-pay persistence approaching 

conventional levels of statistical significance. This remark doesn’t apply to the 

correlation coefficient between low-pay persistence and sample retention (the main 

object of the analysis in this Chapter), whose sign still indicates that retention is 

negatively correlated with low-pay persistence.

Results up to this point indicate that the extent of attrition bias is pretty weak, a 

finding which also arises in Hausman and Wise [1979]. As shown by those authors, 

this finding emerges in a "structural” model of earnings, I.e. where the conditioning

5 Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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set contains a set of explanatory variables deemed to “cause” earnings, and which 

are likely also to determine the attrition process. This is actually true in their study: in 

a simple variance decomposition analysis of earnings they obtain a significant effect 

of attrition on earnings. A natural question which arises is then whether or not the 

finding of non significant attrition bias in our model of low-pay persistence is also due 

to the features of the conditioning set. To provide an answer to such a question, 

column 4 of Table 5.3 further simplifies the model of low-pay persistence, excluding 

both demand and supply side factors appearing in the transition equation from the 

model; consistently, such variables are also excluded from the selection equations.84 

By comparing the maximised simulated likelihood function with the one from column 

2 with a Likelihood Ratio test, we obtain a x2 statistic of 419.82, which is well above 

the critical values of the x2 distribution with 21 degrees of freedom (7 variables are 

excluded from each equation) at usual confidence levels, thus clearly rejecting the 

restriction imposed. We can notice how the exclusion of the set of explanatory 

variables brings labour market experience to the verge of statistical significance in 

the low-pay transition equation, although with a reverse sign which arises from the 

fact that we are not controlling for other factors, for example education. On the other 

hand, the coefficient on the gender dummy looses both size and significance. 

Focusing on the estimated error covariance matrix, we can observe a general rise in 

size and precision for each correlation coefficient, in particular for p(di93,dig5), which is 

now significantly different from zero at conventional levels. Gains in precision also 

characterise the estimate of p(R|,di95), but not enough to conclude in favour of the 

relevance of attrition bias. Thus, some effect of attrition seems to be present in this 

less-structured specification, but both the fact that the restricted model is not

84 The two explanatory variables left in the transition equation are the gender dummy and the linear 
term in labour market experience. The reason for leaving these variables in the model is to maintain a 
quadratic profile in experience for the low-pay selection equation, and a comparison category for the 
"instruments' of the retention selection equation.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
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supported by the data and the unsatisfactory precision characterising the attrition 

bias parameter even in this case clearly suggest that attrition can be deemed 

ignorable in this case.

A final test for the relevance of attrition bias is reported in column 5, which 

combines the restrictions of columns 3 and 4, i.e. p(Ri,d¡93)=p(R¡,di95)*p(d¡93,d¡95) with 

the exclusion of structural explanatory variables from the conditioning set. Again, 

these restrictions are clearly rejected at conventional levels (the unrestricted model is 

the one in column 2). Taking the attrition bias parameter into account, we can 

observe a further gain in size and precision, which is, however, not enough to 

conclude in favour of the relevance of attrition bias.85 Thus even if the combination of 

a restricted covariance matrix and a restricted conditioning set was supported by the 

data, its effect on the attrition parameter would not lead us to reject the analysis of 

Chapter 4 for suffering from sample selection bias.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

5.5 Summary and conclusions

This Chapter has investigated the extent to which results obtained in the 

analysis of low-pay transitions of Chapter 4 are biased by potentially endogenous 

exits from the wage distribution, i.e. by the possibly non-random propensity with 

which workers with a valid wage at the beginning of the transition observed leave the 

sample of wage earners during such a transition.

Focusing on this problem of sample selection involved some computational 

difficulties: controlling for attrition bias required expanding the bivariate probit 

framework of Chapter 4 to include a third limited dependent variable equation and 

hence the resulting likelihood function included trivariate normal integrals which are

85 The p-value for this coefficient is now 0.28.
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not packaged within statistical software. The problem has been tackled by 

implementing a simulated maximum likelihood estimator, in particular adopting the 

so-called GHK simulator, using STATA’s maximum likelihood routine; details on the 

construction of the simulated estimator are given in the Appendix.

Results obtained point towards the ignorability of sample selection bias: 

various versions of a sequentially nested trivariate probit model in which the first 

stage controls for non-random attrition from the wage distribution have been 

estimated on the SHIW data and in no case does the parameter measuring the 

extent of attrition reach statistical significance at conventional levels. The maximum 

level of precision for this parameter has been reached by restricting both the error 

covariance matrix and the conditioning set, with this last restriction not supported by 

the data. The sign of the parameter indicates that persisting in sample and persisting 

in low-pay negatively covary; had this parameter been significantly different from 

zero, this would have meant that the exclusion of attrited observations lead us to 

underestimate the true extent of low-pay persistence.

The finding of irrelevant attrition mirrors previous results from Hausman and 

Wise [1979] in the context of structural models of earnings. Opposite conclusions 

have been obtained in models of wage mobility by Bingley et al. [1995],

A final word of caution has to be issued in order to correctly interpret the 

results of this Chapter. The sampling design of the SHIW panel is peculiar in that 

about half of workers observed in the 1993 wave leave the sample at random due to 

a decision of the survey builders, and such observations have not been used in the 

estimation of the trivariate probit described above. As a consequence, the control 

group, i.e. attrited observations, in the analysis is relatively small (the balanced 

sample is enlarged by 26%), so that it may be that it doesn't provide enough 

variability to capture the effect of attrition. Results presented have thus to be viewed

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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as contingent on the peculiar sample structure, and confirmation of such findings 

should be pursued in the future on panel data sets with more conventional sample

design.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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Appendix A5: Simulated maximum likelihood estimation of the trivariate 

probit model

The sequentially nested trivariate probit model utilised in this Chapter requires 

evaluation of trivariate normal integrals, thus posing computational problems due to 

the fact that the function evaluating such integrals is not available among those 

usually packaged within commonly used econometric software. Moreover, multiple 

integrals are hardly tractable by usual linear numerical approximations such as those 

based on the Newton Raphson method, and produce unreliable results in terms of 

the goodness of approximation (Hajivassiliou and Ruud [1994]).

As an alternative to numerical approximations, simulation based inference has 

been developed in recent years (see Stern [1997] for a survey and Gourieroux and 

Monfort [1996] for an extensive presentation of simulation estimation techniques and 

its applications in various context; see also Bdrsch-Supan et al. [1992], Borsch- 

Supan and Hajivassiliou [1993] and Hajivassiliou and Ruud [1994] for applications of 

the GHK (Geweke-Hajivassiliou-Keane)-smooth recursive conditioning simulator in 

the context of ML estimation of limited dependent variable models). The basic idea of 

simulated maximum likelihood estimation (SML) is to replace the intractable bit of the 

likelihood function by its simulated counterpart. This appendix illustrates how this is 

practically done in the case of the trivariate probit model, and shows the 

implementation of the SML-GHK estimator using STATA’s maximum likelihood 

routine. The illustration of the method is carried out in terms of a (complete) trivariate 

probit, i.e., when full observability of the three variables is assumed. The STATA 

codes written to implement the simulated estimator are shown for both the trivariate 

probit and the sequentially nested trivariate probit used for the analyses of this 

Chapter.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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The model of interest is a (seemingly unrelated) trivariate probit:

Y,j =  XijPj + Ujj

Yij =  K Y ‘j >  0)
j  = 1,2,3 (A5.1)
i  = \..,N
/ ' l l  >u i 1 O' '  1

W/2 - 0 P12 1
^ 0 /3 / ,0 , VP13 P23 t

where l(A) is a dummy indicating whether or not A is true. Assuming observations 

are i.i.d., the log-likelihood function of the model is:

\ o g L ( P j , p j i ' ,X j ,Y j )  -  ^ (.log{<t3[K,iX,iPi/<)2X/2P2.f</3-^/3P3i 
K/V<,2Pi 2 . K, lK(3pi 3, K,2K)3p23 ]}

(A5.2)
j , l  = 1,2,3 
Kij=2Yij-1

which involves the trivariate standard normal cumulative density function d>3 and is 

hardly tractable with traditional numerical approximation.

The main intuition behind the GHK smooth recursive conditioning simulator is 

to exploit the definition of conditional distribution functions86:

Pr(Ui £  X i P i , l / 2 ^  - ^ 2 P 2 ’U3 5  ^ 3 P 3 )  =

Pr(l/3 S X3P3|£/2 5 -̂ 2P2'U1 ^ ^lPl)Pr(u2 ^ -̂ 2P2lu1 ^ -*lPl) (A5.3) 
Pr(0l s X # , )

86 I drop I indices for notational convenience.
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and to replace the joint multivariate normal with the product of sequentially 

conditioned univariate normal distribution functions. The expression in (A5.3) 

involves conditioning upon unobservables: if some approximation for these 

conditional distributions can be found, then the likelihood function only requires 

evaluation of univariate integrals which is feasible within ordinary statistical 

packages.

Consider the Cholesky decomposition of the errors’ covariance matrix:

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

E(uu’)=E=Cee’C’ (A5.4)

where C is the lower triangular Cholesky factor of £ and e~N3(0,l3), from which it 

follows that:

u 1 = C n e i
U2 =  C2 1 © 1  +  C2 2 6 2  (A 5 .5 )

u 3 =  c 31e 1 + c 32e 2 + c 33®3

where Cj, is the C element in position ji. 

Thus, we can re-write (A5.3) as:

Pr(t/i ^ X-|Pi,U2 £ X2P2.U3 £ X3p3) =

Pr(03 S (X3P3 -03262 -03161 )/C33)Pr(e2 ^(-*2P2 ~ c21e l ) / c22) (A5.6) 
P r ( e i  s  X 1 P 1  l c u )

where e*i and e*2 come from standard normal distributions with upper truncation 

points at XiPi/Cn and (X2p2-c2ie*i)/c22 respectively, i.e. they satisfy the conditioning
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events in (A5.3). It is worth stressing that we are now working with uncorrelated 

errors (the vector e) and that correlation between the elements of the original vector 

of errors u has been transferred to the truncation points of the sequential 

conditioning via the Cholesky decomposition of 2.

Evaluation of the probability in (A5.6) involves unobservable terms e*2 and e*,. 

Let us introduce R random draws of e*! and e*2, i.e. random draws of e! and e2 from 

upper truncated standard normals, with truncation points given above. The GHK 

simulator of (A5.6) is the arithmetic mean of the R probabilities we obtain for each of 

these draws:

where eqj  is the q-th draw for e*. The SML estimator is then obtained by replacing 

the cumulative trivariate normal distributions in (A5.2) by their simulated counterparts 

from (A5.7). Note that the resulting maximand will be conditional on the set of draws: 

for computational stability it is then important that such draws do not change with the 

parameter values during optimization steps (Hajivassiliou [1997]).

The last thing which is to be explained is how to generate random variables 

from upper truncated normal distributions. Such variables can be obtained by 

exploiting random number generators on the unit interval available in statistical 

packages and the inversion formula given, among others, in Stern [1997]. First of all, 

let us consider the relationship between draws from the uniform distribution on the

approach

Pg h k  = ^ Z r = 1 { P r (e 3 ¿ ( X 3 P 3  - C 32e r2 - C 3 1 e r i ) / C 3 3 ) 

Pr(e2 < (X 2p2 - c 21e ri ) / c 22)Pr(e1 £ X-,3-, /c , ,) }  =
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unit interval (say v) and the corresponding random draws (say z) from the standard 

normal distribution; such a relationship is given by:

z = 0~1(v). (A5.8)

Draws for (say) upper truncated standard normals can be similarly obtained by 

recalling that in this case F(z)=d>(z)M>(b) where F(.) indicates the cumulative density 

function of the truncated variable and b is the upper truncation point; replacing F(z) 

by the uniform on the unit interval and solving the expression for z we get:

z=0 '1(v0(b)). (A5.9)

Borsch-Supan and Hajivassiliou [1993] highlight the key features of the GHK 

simulator in the context of multivariate normal LDV models:

- simulated probabilities are unbiased;

- such probabilities are bounded in the (0,1) interval;

- the simulator is a continuous and differentiable function of the model’s parameters.

They also show that GHK is more efficient, in terms of variance of probabilities’ 

estimates, than other simulators such as the acceptance-rejection or the Stern 

simulator. Note that unbiasedness of simulated probabilities doesn't translate into 

unbiasedness of the logs of such probabilities, which is what is needed to compute 

the log-likelihood function. However, such bias becomes negligible as the number of 

draws is raised with the sample size (Hajivassiliou [1997]).

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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The remaining part of this appendix reports the STATA codes written to 

implement the SML estimator with GHK simulator for the trivariate probit model, 

together with some robustness checks performed.
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capture program drop myll /»TRIPROB.DO: SURE trivariate
probit*/
program define myll 

version 5.0

5 Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

local Inf 1» ** 2. 1 "
local 11 " " 2 ' " /»declares Xipi */
local 12 ii  ̂3 i ii
local 13 ii ** 4 i ii
local r21 " ** 5 ' " /»declares the rho's*/
local r31 " " 6 ' "
local r32 ii  ̂'j i ii
local yl: word 1 of $S_mldepn /»declares l(yj>0)*/
local y2: word 2 of $S_mldepn
local y3 : word 3 of $S_mldepn
mat A=I(3) /»places rho1s into a

matrix*/
local i=l 
while ~ i 1 < = 3 {

local j='i'+l 
while “j '<=3 {

mat A['j,,'i']='r'j,'i11 
mat A['i’,'j,]='r'j,'i11 
local j = ~ j 1+1

}
local i='i'+l

}
capture mat C=cholesky(A) /»takes Cholesky factor*/ 
if _rc==506 { /»if A<0 (i.e. not p.d.) => no action

taken*/
di "A<0"

}
local i=2 /»takes the elements of the Choi, factor*/ 
while ~i'<=3 { /»to feed them through the logL*/ 

local j=l 
while 'j 1 < ='i 1 {

mat ccc=C['i 1,'j 1] 
local cv i 1'j 1=trace(ccc) 
local j =' j 1+1

}
local i='i 1+1

}local d=l 
while 'd'<=$dr{

/*$dr is the number of draws, zl and z2 are the uniform random 
draws already generated outside the program*/

/»generates the truncated normals*/ 
local dll'd' "invnorm(zl~d'»normprob('ll1))" 
local dlO'd’ "invnorm(zl~d1»normprob(-'II'))" 
local d211'd' "invnorm(z2~d'»normprob(('12'- 

'dll'd' '*'c21' )/'c22•))" 
local d200'd' "invnorm(z2'd1»normprob((-'12'-

'dlO'd''*'c21')/'c221))"
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/♦the event space is partitioned into 8 (=23) 
components*/

/ M l , 1,1) */ 
local spl'd' /*
♦/"normprob(('I3'-'c32,*'d211'd' ' -

'c31'*'dll'd' ')/'c33 1 ) *normprob(('121 - 
'dll'd1 ' *'c21')/'c22') *normprob('ll1)"

/ * ( 0 , 0 , 0 ) * /
local sp2'd' /*
*/"normprob((-'I3'-'c32,*'d2 00'd' ' -

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach

'c311 * 'dlO'd'')/'c331 )♦normprob((-'12' -

/
dlO'd11*'c211)/ 
*(0,1,1)*/

0 to to )*normprob(-'ll')"
local sp3'd' 
/*(1,0,1)*/

" (binorm('121,'13', 'r321)-'spl 'd'')"
local sp4'd' 
/* (1,1,0) *'/

" (binorm('ll1,'13 ' ,'r311)-'spl ' d ' ' ) "
local sp5'd' 
/*(1,0,0)*/

" (binorm('ll1, / H to 'r21')-'spl ' d ' ■ ) "
local sp6'd' 

/*(0,1,0)*/

" (binorm(-'121 
'sp2'd11)"

, -'13 1 ,'r321)-

local sp7'd' 

/*(0,0,1)*/

" (binorm(-'111 
'sp2'd 1•)"

, - '13 ’,'r31')-

local sp8'd' " (binorm(-'11’ 
'sp2'd'')"

, - '12 1 ,'r21')-

local d='d'+l
}
quietly replace 'lnf'=0
local d=l
while 'd'<=$dr {

quietly replace 'Inf’ = 'Inf 1 + 'spl'd1’ if 
'yl1==l&'y21==l&'y31==1 

quietly replace 'Inf 1='Inf 1 + 'sp2'd11 if 
'yl1==0&'y21==0&'y31==0 

quietly replace 'Inf 1 = 'Inf 1 + 'sp3'd1 1 if 
'yl,==0&'y2,==l&'y3’==l 

quietly replace 'Inf'='Inf 1 + 'sp4'd’’ if 
'yl’=»l&'y21==0&'y31==1 

quietly replace 'Inf 1 = 'Inf 1 + 'sp5'd'' if 
'yl1==l&'y21==l&'y3'==0 

quietly replace 'Inf 1='Inf 1 + 'sp6'd11 if 
'yl,==l&'y2'»=0&'y3'==0 

quietly replace 'Inf 1='Inf 1+ 'sp7'd1' if 
'yl’==0&'y2’==l&'y31==0 

quietly replace 'Inf’='lnf'+'sp8'd11 if 
'yl’==0&'y2•==0&'y31==1 

local d='d'+l
}
quietly replace 'Inf' »In(('Inf 1 )/$dr)

end
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/♦Fragment by which the sequentially nested trivariate probit 
differs from the SURE trivariate probit*/

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated
estimation approach

local d=l 
while 'd'<=$dr{

/♦generates the truncated normals*/ 
local dll'd1 "invnorm(z 1' d '‘normprob('II'))" 
local d211'd' "invnorm(z2'd1‘normprob(('121 -
'dll'd1 1 *'c211)/'c22’))"

/♦the trivariate normal is required only for obs with both yl=l 
(not attrited) and y2=l (low-pay in 1993*/

/*(1,1,1)*/ 
local spl'd1 /*’
♦/"normprob (('I3l-'c32'*'d211'd' ' - 
'c31'*'dll'd' ')/'c33')*normprob( ('12 1 - 

'dll'd1'*'c211)/~c22')*normprob('II')"
/*(1,1,0)*/
local sp2'd' "(binorm('II1 1 2 r211)-'spl'd1 1)"
quietly replace 'Inf 1 ='Inf 1+'spl'd1 1 if 
'yl’==l&'y21==l&'y31==1
quietly replace 'Inf 1 ='Inf 1 + 'sp2'd 1 1 if 
'yl’==l&'y2'==l&'y31==0
if 'd1==$dr{

quietly replace 'Inf 1=ln(('Inf 1)/$dr) if 
'yl1= = 1 &'y 2 1= = 1 

}
local d='d'+l

}
/♦bivariate normal for observations not attrited but not low- 
paid in 1993*/

quietly replace 'Inf'=ln(binorm ('11',-'12' ,-'r211)) if'
'yl1==l&'y21==0

/♦univariate normal for attrited observations*/
quietly replace 'Inf 1=ln(normprob(-'II 1)) if 'yl'= = 0

end
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Table A5.1: Comparison of bivariate probit ML and SML (R=75) estimates (asymptotic 
standard errors)

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated
estimation approach

ML SML
Y1
x 1 1 -1 .2057 (0 .3394) -1 .1987 (0 .3395)
x12 0.2212 (0 .0900) 0.2200 (0 .0901)
x13 0.1244 (0 .2338) 0.1360 (0 .2340)
x14 0.1025 (0 .2869) 0 0898 (0 .2866)
Y 2
x21 -0 .3997 (0  3480) -0 .3945 (0 .3479)
x22 0.0455 (0 0932) 0 .0438 (0 .0932)
x23 0.3155 (0 .2191) 0.3231 (0 .2192)
x24 -0 .5707 (0 .3047) -0 .5718 (0 .3049)
rho 0.7450 (0 .0901) 0 .7530 (0 .0870)

n o b s 200 200
logLik -146.97 -146.603

Table A5.2: Comparison of SML (R=100) trivariate probit estimates (asymptotic 
standard errors) between LIMDEP and STATA

LIM D EP STATA
Y1 
x 1 1 -0 .9230 (0 .2954) -0 .9227 (0 .2616)
x12 0.7476 (0 .1245) 0 .7474 (0 .1224)
x13 -1 .6734 (0 .2555) -1 .653 7 (0 .2392)
Y2
x21 0.1721 (0 .2627) 0.1661 (0 .2607)
x22 -1 .2202 (0 3306) -1 .192 6 (0 .3172)
x23 0.2218 (0 .0861) 0 .2150 (0 .0835)
Y 3
x31 0.7563 (0 .2536) 0 .7607 (0 .2307)
x32 -0.3801 (0 .1051) -0 .3834 (0 .0966)
x33 0.5648 (0 .2048) 0.5554 (0 .1915)
rho 12 -0 .1127 (0 .1810) -0 .095 0 (0 .1758)
rho 13 0.0742 (0 .1453) 0 .0878 (0 .1438)
rho23 -0 .5409 (0 .1081) -0 .5445 (0 .1181)
n o b s
logLik

200
-272 .069

200
-272 .145
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Table A5.3: Behaviour of the STATA’s SML estimator by different choices of R 
(asymptotic standard errors)________________________

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated
estimation approach

R= 75 R= 100 R= 150
Y1
x11 -0 .9207 (0 .2610) -0 .922 7 (0 .2616) -0.9241 (0 .2620)
x12 0.7461 (0 .1221) 0 .7 474 (0 .1224) 0.7477 (0 .1226)
x13 -1 .6178 (0 .2304) -1 .653 7 (0 .2392) -1 .6610 (0 .2415)
Y 2
x21 0.1647 (0 .2618) 0.1661 (0 .2607) 0 .1505 (0 .2595)
x22 -1 .1752 (0 .3179) -1 .192 6 (0 .3172) -1 .1647 (0 .3129)
x23 0 2 0 9 5 (0 .0837) 0 .2150 (0 .0835) 0 .2088 (0 .0826)
Y 3
x31 0.7642 (0 .2311) 0 .7 607 (0 .2307) 0.7571 (0 .2305)
x32 -0 .3864 (0 .0966) -0 .383 4 (0 .0966) -0 .3825 (0 .0965)
x33 0.5436 (0 .1919) 0 .5 554 (0 .1915) 0.5593 (0 .1915)
rho12 -0 .0920 (0 .1710) -0 .095 0 (0 .1758) -0 .1243 (0 .1717)
rho13 0.0765 (0 .1306) 0 .0 878 (0 .1438) 0.0676 (0 .1435)
rho23 -0 .5155 (0 .1206) -0 .544 5 (0 .1181) -0 .5504 (0 .1185)
n o b s
logLik

200
-272.8304

200
-2 72 .1 45

200
-2 72 .2269
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The robustness checks of SML estimator built using STATA’s maximum 

likelihood routines are quite interesting. Table A5.1 compares a simulated bivariate 

probit estimate against its exact (or, more correctly, numerically approximated) 

counterpart, which is packaged within STATA. The sample utilised consists of 200 

observations randomly extracted from the SHIW data set. Either size and 

significance of estimated parameters are very close between the two estimators; this 

is also true for the maximum of the log-likelihood function.

Table A5.2 compares estimates between the SML trivariate probit built in 

STATA and the one available in LIMDEP 7.0, which also uses the GHK simulator. It 

is worth stressing that this packaged estimator wouldn't have been sufficient for the 

analyses of this chapter, given that the model utilised here allows for sequential 

nesting via partial observability of two of the variables in the model, while the 

LIMDEP estimator is a pure multivariate probit, i.e. with full observability of each 

variable. Again size of coefficients, their standard errors and the value of the 

maximised likelihood functions are very similar across models. Finally Table A5.3 

checks the sensitivity of the SML estimator with respect to the number of random 

draws used to approximate the trivariate integral: as can be seen, there are only 

minor differences when moving from one choice to another, suggesting that R=75 is 

sufficient. On the whole, evidence from the three Tables is supportive of the 

estimator built for this chapter in STATA.

5. Discontinuous wage profiles, endogenous selection and mobility: a simulated estimation
approach
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Concluding remarks

This Thesis has used Italian panel micro-data to investigate the intertemporal 

wage covariance structure and the extent of mobility at the bottom of the wage 

distribution. As stressed in Chapter 1, analyses of inequality based on cross- 

sectional data focus on wage differentials at one point in time, but are not informative 

about the degree of persistence of such differentials over individual careers or the 

extent of hierarchical mobility which reduces the impact of inequality over the life- 

cycle. Analyses of wage persistence and mobility are thus needed to gain a complete 

picture of the dynamics of the wage distribution, and this Thesis has pursued such a 

task following two distinct methodological approaches: the minimum distance 

estimation of variance components models of the wage covariance structure and the 

multivariate microeconometric analysis of low-wage transition probabilities.

The covariance structure analysis of wage dynamics has formed the object of 

Chapter 2, where variance components models are estimated by minimum distance 

on an unbalanced administrative panel of male wages covering 1974-88. A 

descriptive analysis of the raw covariance structure has shown how remarkable 

changes have characterised wage dispersion over this period, with a phase of 

compression of the distribution which stops in the early 1980s and is followed by a 

reopening of differentials, particularly marked in the second half of the 1980s. These 

dynamics have already been documented by the existing literature on the Italian 

wage distribution, where consensus has emerged in ascribing them, at least in part, 

to institutional developments of the wage setting framework, in particular to the 

evolution of the wage indexation system, which moved from the full egalitarianism of 

the late 1970s to the abolition of automatic wage compensations for inflation in the 

early 1990s. The econometric analysis has been centred around the random growth 

model of permanent wages, which allows assessment of the extent of convergence 

and mobility within the permanent wage distribution. Results indicate that the
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distribution of permanent wages converged over the period analysed, as would be 

predicted by human capital theories of wage dynamics. However, extension of the 

analysis within subsamples defined by workers' occupations has revealed how such 

a convergence is absent from white collar data, casting doubts on an interpretation 

of the overall convergence based on the human capital paradigm and suggesting 

that such an outcome could have been imparted by the egalitarian wage indexation 

system, which was mainly effective in compressing wage differentials between 

occupational groups. On the other hand the divergence of white collar permanent 

wages is in line with the use of individual wage premia which characterised wage 

policies for this group since the mid-1980s.

Further insights into the intertemporal male wage covariance structure are 

provided in Chapter 3, where a larger unbalanced panel referring to the 1979-1995 

interval has been analysed. Estimates of the raw covariance structure have shown 

how wage inequality has been growing also over the end of the 1980s and the first 

half of the 1990s and how these trends have been paralleled by increases in wage 

autocorrelation and hierarchical immobility. Estimated variance components models 

are characterised by flexible time shifters on each wage component which allow us 

to assess the role played by permanent differentials and wage volatility in 

determining aggregate inequality dynamics without relying on specific functional form 

assumptions. It has been shown how both components contribute to overall 

dynamics, with a predominant impact of permanent differentials which account for 

roughly 80% of the overall growth in inequality, their increase being concentrated in 

the central part of the 1980s, when egalitarian wage policies started to be abolished; 

on the other hand, increases in wage instability are observed over the first half of the 

1990s, a finding which is in line with the higher "flexibility" characterising the Italian 

labour market in recent years. Random growth estimates of the permanent wage
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indicate that individual profiles within the overall distribution diverge, thus supporting 

the institutional interpretation of convergence put forward in Chapter 2, the more 

recent data set being less influenced by the compressionary effects of the wage 

indexation system. Moreover the random growth specification has been compared 

with a random walk one and the data seem to favour the latter, pointing towards a 

context of high permanent wage persistence. The analysis has next developed by 

assessing the relationship between observable workers’ attributes and the dynamics 

of covariance components, showing how wage differentials between occupations are 

the main force behind the growth of permanent inequality. A model which 

decomposes covariance structure parameters according to workers’ occupations has 

then been proposed. Results show how permanent wages are characterised by 

random walk processes which are similar across occupations, while, on the other 

hand, transitory shocks are more concentrated and persistent for white collar 

workers. Estimates of time shifters for the permanent wage indicate the presence of 

positive differentials in favour of white collar workers since the second half of the 

1980s, suggesting that the growth in overall permanent inequality originated within 

the wage distribution for this group, confirming the relevance of the use of individual 

wage premia mentioned above. However, the model indicates that these policies 

have inflated the white collar permanent wage distribution, generating permanent 

inequality both between occupations and within white collar workers, but without 

altering individual wage dynamics between the two groups or inducing differentials in 

permanent wage mobility.

The analysis of low-wage mobility has been assessed in Chapter 4 using 

survey panel data for the 1993-95 transition. At the aggregate level, the Chapter has 

shown how raw low-pay persistence involves a considerable state dependence, the 

probability of being low-paid in the arrival wage distribution being much higher for
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those who are already low-paid in the starting year. The econometric analysis has 

been based on a bivariate probit model with endogenous switching which allows us 

to control for the potential endogeneity of the initial conditions of the wage process 

by modelling workers’ selection into starting wage classes. Parental background 

indicators have been used to identify the selection equation and their validity as 

instruments has been found to be supported by the data. Parameter estimates show 

that the hypothesis of initial conditions exogeneity can always be rejected at 

conventional significance levels. A comparison between estimates obtained under 

the two alternative hypotheses on the nature of initial conditions has shown that 

assuming exogeneity systematically leads to overstatement of both size and 

significance of the effects of workers’ attributes on transition probabilities. Once 

allowance is made for endogeneity, no effect on transitions can be detected from 

labour market experience. On the other hand, while some influence on low-pay 

persistence arises from workers' gender, education, geographical location or 

affiliation to the service sector, non-manual occupations and jobs in large firms seem 

to help in avoiding drops into the low-pay area from the upper part of the distribution. 

Model estimates have also been utilised to assess the extent of true state 

dependence within aggregate persistence, showing that the past experience of low- 

pay per se has a considerable effect on the future occurrence of the phenomenon. 

Data limitations, and in particular the fact that it has been possible to analyse only 

one transition, suggest the need to extend this kind of analysis on other data, once, 

and if, they became available.

The robustness of the conclusions reached in Chapter 4 to the presence of 

endogenous attrition from the sample of wage earners has been analysed in Chapter 

5 by augmenting the low-wage mobility model with a third equation which controls for 

the probability of belonging to the balanced sample, i.e. the one used in the

202



Concluding remarks

estimation of the model in Chapter 4. The resulting set-up is thus a sequentially 

nested trivariate probit, whose estimation is complicated by the fact that evaluation of 

trivariate normal integrals is required, whose computation is not feasible with the 

linear approximation algorithms normally employed by statistical software packages. 

To overcome the problem, a simulated maximum likelihood estimator, with which the 

intractable bits of the likelihood function are replaced by their simulated counterpart, 

has been implemented. Results indicate that estimates in Chapter 4 are robust to 

this generalization of the model to allow for panel attrition and that the extent of the 

attrition bias is not statistically significant. Various restrictions have been tested on 

the parametric structure and the conditioning set of the model, and also these 

simplified versions indicated that the hypothesis of exogenous attrition cannot be 

rejected.

Results produced by this study reveal how widening wage differentials to a 

large extent permanently affected the evolution of individual wage careers, especially 

within the distribution of white collar workers, an outcome which accords with the use 

of wage policies aimed at re-establishing occupational differentials which developed 

after the era of wage egalitarianism. However, such policies don’t seem to have 

affected the individual specific components of wage profiles, thus denoting a certain 

inability in remunerating the time-varying aspects of workers skills. Moreover, the 

increased wage instability detected in recent years implies that the impact of cross- 

sectional inequality over the life-cycle is reduced at the cost of an increase in the 

uncertainty of labour incomes, so that the net impact on workers' welfare could be 

negative. On the other hand, while observable workers' attributes have been found 

to have a limited impact on the probability of abandoning the bottom of the wage 

distribution, the occurrence of low-pay episodes seems to worsen, by itself, the
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future developments of wage careers, suggesting that it could translate into 

persistent poverty. At the same time, the considerable extent of pure state 

dependence within aggregate persistence suggests that policies aimed at coping 

with the low-pay issue should focus on forms of direct wage or income protection, 

rather than on programs aimed at modifying the attributes of the low-paid. This 

scenario thus indicates that the Italian growth of wage differentials should be 

carefully dealt with by policy makers and prompts future research on this subject.
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