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Abstract

In this paper we present a framework for solving two phase flow problems in porous
media. The discretization is based on a Discontinuous Galerkin method and includes local
grid adaptivity and local choice of polynomial degree. The method is implemented using
the new Python frontend Dune-FemPy to the open source framework Dune. The code
used for the simulations is made available as Jupyter notebook and can be used through
a Docker container. We present a number of time stepping approaches ranging from a
classical IMPES method to fully coupled implicit scheme. The implementation of the
discretization is very flexible allowing for test different formulations of the two phase flow
model and adaptation strategies.

Keywords: DG, hp-adaptivity, Two-phase flow, IMPES, Fully implicit, Dune, Python,
Porous media

1 Introduction

Simulation of multi-phase flows and transport processes in porous media requires careful nu-
merical treatment due to the strong heterogeneity of the underlying porous medium. The
spatial discretization requires locally conservative methods in order to be able to follow small
concentrations [4]. Discontinuous Galerkin (DG) methods, Finite Volume methods and Mixed
Finite Element methods are examples of discretization techniques achieving local conservation
at the element level [16]. Application of DG methods to incompressible two-phase flow started
within the framework provided by a decoupled approach called Implicit Pressure Explicit Sat-
uration (IMPES) where first a pressure equation is solved implicitly and then the saturation
is advanced by an explicit time stepping scheme. Upwinding, slope limiting techniques, and
sometimes H(div)-projection were required in order to remove unphysical oscillations and to
ensure convergence to a solution.

In the fully implicit and fully coupled approach, the mass balances are usually discretized
in time by the implicit Euler method, resulting in a fully coupled system of nonlinear equations
that has to be solved at each time step. The main advantage of a fully implicit scheme is
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the possibility of using significantly larger time step sizes, which can be crucial in view of
long-term scenarios like atomic waste disposal. Commonly, rather simple, yet robust space-
discretization schemes, like cell-centered or vertex-centered finite volume schemes, are used
[4, 6]. Fully implicit DG schemes have been proposed in [17] and [18], where the schemes are
formulated in two space dimensions for incompressible fluid phases and numerical tests are
performed without any kind of adaptivity.

Bastian introduced in [5] a fully coupled symmetric interior penalty DG scheme for in-
compressible two-phase flow based on a wetting-phase potential and capillary potential for-
mulation. Discontinuity in capillary-pressure functions is taken into account by incorporating
the interface conditions into the penalty terms for the capillary potential. Heterogeneity in
absolute or intrinsic permeability is treated by weighted averages. A higher-order diagonally
implicit Runge-Kutta method in time is used and there is neither post processing of the veloc-
ity nor slope limiting. Only piecewise linear and piecewise quadratic functions are employed
and no adaptive method is considered.

A general abstract framework allowing for an a-posteriori estimator for porous-media
two-phase flow problem was introduced by Vohralik et al. [31]. This paved the way for an
h-adaptive strategy for homogeneous two-phase flow problems [11]. However, it has not been
applied to DG methods so far.

Finally, Darmofal et al. introduced recently a space-time discontinuous Galerkin h-
adaptive framework for 2d reservoir flows. Implicit estimators are derived through the use of
dual problems [7, 8] and a higher-order discretization is performed on anisotropic, unstruc-
tured meshes. Unfortunately, application to 3d problems and hp-adaptive strategies haven’t
been considered yet.

In this paper, we implement and evaluate numerically interior penalty DG methods for in-
compressible, immiscible, two-phase flow. We consider strongly heterogeneous porous media,
anisotropic permeability tensors and discontinuous capillary-pressure functions. We write the
system in terms of a phase-pressure/phase-saturation formulation.

Adams-Moulton schemes of first or second order in time are combined with an Interior
Penalty DG discretization in space. This implicit space time discretization leads to a fully
coupled nonlinear system requiring to build a Jacobian matrix at each time step for the
Newton-Raphson method.

This paper extends our previous work in [22, 23] and [24]. We consider here new hp-
adaptive strategies and compare the fully implicit scheme with the iterative IMPES scheme
and the implicit iterative scheme. The implicit iterative scheme is based on the iterative
IMPES approach presented in [28] and treats the capillary pressure term implicitly to ensure
stability. We also provide a more comprehensive model framework allowing to conveniently
implement and compare various two-phase flow formulations.

The implementation is based on the open-source PDE software framework Dune-FemPy,
which is a Python frontend for Dune-Fem [13] based on the new Dune-Python module [15]
and which adds support for the Unified Form Language [3]. It allows for a compact, legible
presentation of the different discretizations under consideration. We combine Dune-FemPy

with Jupyter [27] and Docker [9] to ensure reproducibility of our numerical experiments. The
adaptive grid implementation is based on Dune-Alugrid [2] and parts of the stabilization
mechanisms used are provided by Dune-Fem-DG [14].

The rest of this document is organised as follows. In Section 2, we describe the two-
phase flow model. The DG discretization is introduced in Section 3. Numerical examples are
provided in Section 4. Conclusions are drawn in the last section.
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2 Mathematical Model

This section introduces the mathematical formulation of a two-phase porous-media flow. In all
that follows, we assume that the flow is immiscible and incompressible with no mass transfer
between phases.

2.1 Two-phase flow formulation

Let Ω be a polygonal bounded domain in Rd, d ∈ {2, 3}, with Lipschitz boundary ∂Ω and
let T ∈ R+. The flow of the wetting phase (e.g. water) and the nonwetting phase (e.g. oil,
gas) is described by Darcy’s law and the continuity equation (e.g. balance of mass) for each
phase α ∈ {w, n}[21]. In all that follows, we denote with subscript w the wetting phase
and with subscript n the nonwetting phase. The unknown variables are the phase pressures
pw, pn : Ω× (0, T ) → R and the phase saturations sw, sn : Ω× (0, T ) → R. For each phase
α ∈ {w, n}, the Darcy velocity vα : Ω× (0, T )→ Rd is given by

vα = −λαK(∇pα − ραg) in Ω× (0, T ) (1)

where λα : Ω × (0, T ) → R is the phase mobility, K : Ω → Rd×d is the absolute or intrinsic
permeability tensor of the porous medium, ρα : Ω × (0, T ) → R is the phase density, and
g ∈ Rd is the constant gravitational vector.
Phase mobilities λα : Ω× (0, T )→ R are defined by

λα =
krα
µα

, α ∈ {w, n}, (2)

where µα is the constant phase viscosity and krα : Ω× (0, T )→ R is the relative permeability
of phase α. The relative permeabilities are functions that depend nonlinearly on the phase
saturation (i.e. krα = krα(sα)). Models for the relative permeability are the van-Genuchten
model [30] and the Brooks-Corey model [10]. For example, in the Brooks-Corey model,

krw(sn,e) = (1− sn,e)
2+3θ
θ , krn(sn,e) = (sn,e)

2(1− (1− sn,e)
2+θ
θ ), (3)

where the effective saturation sα,e is

sα,e =
sα − sα,r

1− sw,r − sn,r
, ∀α ∈ {w, n}. (4)

Here, sα,r, α ∈ {w, n}, are the phase residual saturations. The parameter θ ∈ [0.2, 3.0] is a
result of the inhomogeneity of the medium.
For each phase α ∈ {w, n}, the balance of mass yields the saturation equation

φ
∂(ραsα)

∂t
+∇ · (ραvα) = ραqα, (5)

where φ : Ω → R is the porosity, qα : Ω × (0, T ) → R is a source or sink term (e.g. wells
located inside the domain in the case of a reservoir problem).
In addition to (1) and (5) the following closure relations must also be satisfied:

sw + sn = 1, (6)

pn − pw = pc(sn), (7)
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where pc(sn) : Ω × (0, T ) → R is the capillary pressure, a function of the phase saturation.
For the Brooks-Corey formulation,

pc(sn,e) = pd(1− sn,e)−1/θ. (8)

Here, pd ≥ 0 is the constant entry pressure, needed to displace the fluid from the largest pore.
In summary, the immiscible, incompressible two-phase flow formulation is

vα = −λαK(∇pα − ραg), α ∈ {w, n}, (9)

φ
∂sα
∂t

+∇ · (vα) = qα, α ∈ {w, n}, (10)

sw + sn = 1, (11)

pn − pw = pc, (12)

where we search for the phase pressures pα and the phase saturations sα, α ∈ {w, n}.

2.2 Model A: Wetting-phase-pressure/nonwetting-phase-saturation formu-
lation

Considering the phases are incompressible (i.e. the densities ρα are constant), we get a total
fluid conservation equation by summing the two mass balance equations from (10),

φ
∂(sn + sw)

∂t
+∇ · (vn + vw) = qn + qw.

Thanks to relation (11),

∇ · (vn + vw) = qn + qw.

From relation (9) we have

−∇ · (λnK(∇pn − ρng) + λwK(∇pw − ρwg)) = qn + qw.

The last closure relation (12) allows to write

−∇ · (λnK(∇pc +∇pw − ρng) + λwK(∇pw − ρwg)) = qn + qw.

Finally,

−∇ ·
(

(λw + λn)K∇pw + λnK∇pc − (ρwλw + ρnλn)Kg

)
= qw + qn.

To complete our system, we consider as second equation the nonwetting phase conservation
relation

φ
∂sn
∂t

+∇ · vn = qn.

Using relation (9) and (12) yields

φ
∂sn
∂t
−∇ ·

(
λnK(∇pw − ρng)

)
−∇ ·

(
λnK∇pc

)
= qn.
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We get therefore a system of two equations with two unknowns pw and sn,

−∇ ·
(

(λw + λn)K∇pw + λnK∇pc − (ρwλw + ρnλn)Kg

)
= qw + qn, (13)

φ
∂sn
∂t
−∇ ·

(
λnK(∇pw − ρng)

)
−∇ ·

(
λnK∇pc

)
= qn. (14)

Substituting ∇pc = p′c(sn)∇sn for ∇pc as in [21, 20], the system (13)-(14) becomes

−∇ ·
(

(λw + λn)K∇pw + λnp
′
cK∇sn − (ρwλw + ρnλn)Kg

)
= qw + qn, (15)

φ
∂sn
∂t
−∇ ·

(
λnK(∇pw − ρng)

)
−∇ ·

(
λnp

′
cK∇sn

)
= qn. (16)

In order to have a complete system, we add appropriate boundary and initial conditions.
Thus, we assume that the boundary of the system is divided into disjoint sets such that
∂Ω = ΓD ∪ ΓN . We denote by ν the outward normal to ∂Ω and set

pw(·, 0) = p0
w(·) , sn(·, 0) = s0

n(·) , in Ω,

pw = pw,D , sn = sD , on ΓD × (0, T ),

vα · ν = Jα , Jt =
∑

α∈{w,n}

Jα , on ΓN × (0, T ).

Here, Jα ∈ R, α ∈ {w, n}, is the inflow, s0
n, p

0
w, sD, and pw,D are real numbers. In order to

make pw uniquely determined, we require ΓD 6= ∅.

2.3 General model framework

We provide here a unified model framework allowing for the representation of the models
introduced in the previous sections,

−∇ ·
(
App(s)∇p+Aps(s)∇s+Gp(s)

)
= qp, (17)

Φ∂ts−∇ ·
(
Asp(s)(∇p− Pg) +Ass(s)∇s+Gs(s)

)
= qs. (18)

The model is described once the physical parameter functions A, G, and Pg are known. For
Model A (i.e. (15)-(16)), we have for example p = pw, s = sn and

App(s) = (λn(s) + λw(s))K , Aps(s) = λn(s)p′c(s)K,
Asp(s) = λn(s)K , Ass(s) = λn(s)p′c(s)K,
Gs(s) = 0, Gp(s) = −(ρwλw(s) + ρnλn(s))Kg,

Pg = ρng,

qp = qw + qn, qs = qn.

3 Discretization

In this section, we provide a discretization framework for a two-phase flow in a strongly
heterogeneous and anisotropic porous medium.
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3.1 Space Discretization

Let Th = {E} be a family of non-degenerate, quasi-uniform, possibly non-conforming par-
titions of Ω consisting of Nh elements (quadrilaterals or triangles in 2d, tetrahedrons or
hexahedrons in 3d) of maximum diameter h. Let Γh be the union of the open sets that
coincide with internal interfaces of elements of Th. Dirichlet and Neumann boundary inter-
faces are collected in the set ΓhD and ΓhN . Let e denote an interface in Γh shared by two
elements E− and E+ of Th; we associate with e a unit normal vector νe directed from E−
to E+. We also denote by |e| the measure of e. The discontinuous finite element space is
Dr(Th) = {v ∈ L2(Ω) : v|E ∈ PrE (E) ∀E ∈ Th}, with r = (rE)E∈Th , PrE (E) denotes QrE

(resp. PrE ) the space of polynomial functions of degree at most rE ≥ 1 on E (resp. the space
of polynomial functions of total degree rE ≥ 1 on E). We approximate the pressure and the
saturation by discontinuous polynomials of total degrees rp = (rp,E)E∈Th and rs = (rs,E)E∈Th
respectively.
For any function q ∈ Dr(Th), we define the jump operator J·K and the average operator {·}
over the interface e:
∀e ∈ Γh, JqK := qE−νe − qE+νe, {q} := 1

2qE− + 1
2qE+ ,

∀e ∈ ∂Ω, JqK := qE−ν, {q} := qE− .
In order to treat the strong heterogeneity of the permeability tensor, we follow [19] and
introduce a weighted average operator {·}ω:
∀e ∈ Γh, {q}ω = ωE−qE− + ωE+qE+ ,
∀e ∈ ∂Ω, {q}ω = qE− .

The weights are ωE− = k+

k++k− , ωE+ = k−

k++k− with k− = νTe KE−νe and k+ = νTe KE+νe.
Here, KE− and KE+ are the permeability tensors for the elements E− and E+.

The derivation of the semi-discrete DG formulation is standard (see [5], [19], [25]). First,
we multiply each equation of (17)-(18) by a test function and integrate over each element,
then we apply Green formula to obtain the semi-discrete weak DG formulation. The bulk
integrals are thus given by:

Bp((p, s), ϕ; s̄) =
∑
E∈Th

∫
E

(
App(s̄)∇p+Aps(s̄)∇s

)
· ∇ϕ+

∑
E∈Th

∫
E
Gp(s̄) · ∇ϕ−

∑
E∈Th

∫
E
qpϕ

Bs((p, s), ϕ; s̄) =
∑
E∈Th

∫
E

(
Asp(s̄)(∇p− Pq) +Ass(s̄)∇s

)
· ∇ϕ+

∑
E∈Th

∫
E
Gs(s̄) · ∇ϕ−

∑
E∈Th

∫
E
qsϕ

The consistency terms on the skeleton are

Cp((p, s), ϕ; s̄) =
∑

e∈Γh∪ΓhD∪ΓhN

∫
e

{
App(s̄)∇p+Aps(s̄)∇s+Gp(s̄)

}
ω
· JϕK,

Cs((p, s), ϕ; s̄) =
∑

e∈Γh∪ΓhD∪ΓhN

∫
e

{
Asp(s̄)(∇p− Pq) +Ass(s̄)∇s+Gs(s̄)

}
ω
· JϕK.

To stabilize the scheme we define interior penalty terms on the skeleton with σ > 0 a given
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constant:

Sp(p, ϕ) = σ
∑

e∈Γh∪ΓhD

∫
e
γpe JpK · JϕK,

Ss(s, ϕ) = σ
∑

e∈Γh∪ΓhD

∫
e
γseJsK · JϕK.

We follow the suggestions from [1] and choose σ = r(r+ 1) where r is the highest polynomial
degree of the discrete spaces. The penalty terms δp and δs depend on the largest eigenvalues
of App(0.5) and Ass(0.5), respectively. For Model A they are given by

γpe = max(δ+
p , δ

−
p )

2k+k−

k+ + k−
× |e|

min(|E+|, |E−|)
,

γse = max(δ+
s , δ

−
s )

2k+k−

k+ + k−
× |e|

min(|E+|, |E−|)
,

where

δp = (ln(0.5) + lw(0.5)) and δs = ln(0.5)p′c(0.5).

The two bilinear forms thus are

Fp((p, s), ϕ; s̄) = Bp((p, s), ϕ; s̄)− Cp((p, s), ϕ; s̄) + Sp(p, ϕ),

Fs((p, s), ϕ; s̄) = Bs((p, s), ϕ; s̄)− Cs((p, s), ϕ; s̄) + Ss(p, ϕ).

3.2 Time stepping

Denoting with (pi, si) the approximation to the solution in the discrete function space at some
point in time ti we use a simple one step scheme to advance the solution (pi, si) at time ti to
(pi+1, si+1) at the next point in time ti+1 = ti + τ based on

Fp((p
i+1, si+1), ϕ; s̄) = 0, (19)∫

(si+1 − si)ϕ+ τFαs ((pi+1, si+1), ϕ; s̄) = 0, (20)

defining for a given constant α ∈ [0, 1] the bilinear form

Fαs ((p, s), ϕ; s̄) = (1− α)Fs((p
i, si), ϕ; si) + αFs((p

i+1, si+1), ϕ; s̄). (21)

The starting point of the iteration (p0, s0) are taken as an L2 projection of the functions given
by the initial conditions into the discrete space. In our tests we have always used α = 1 since
we were more interested in investigating the influence of s̄. We also used a fixed time step τ
throughout the whole course of the simulation although varying time steps can be easily used
as well.

Different choices for s̄ lead to different approaches for handling the nonlinearities in the
pressure. We tested five different approaches described in the following:

Linear For this approach we simply take s̄ = si leading to a forward Euler time stepping
scheme.
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Implicit Taking s̄ = si+1 leads to a backward Euler scheme. The resulting fully coupled
system is solved iteratively using a Newton method.

Iterative This is similar to the previous approach, replacing the Newton method by an
outer fixed point iteration to solve the system: we define s̄k = si+1,k with s̄0 = si and in each
step of the iteration we therefore solve for k ≥ 0:

Fp((p
i+1,k+1, si+1,k+1), ϕ; si+1,k) = 0, (22)∫

(si+1,k+1 − si)ϕ+ τFαs ((pi+1,k+1, si+1,k+1), ϕ; si+1,k) = 0. (23)

IMPES-iterative This results in an iterative scheme using an IMPES approach. This is
similar to the previous approach except that in each step of the iteration we solve

Fp((p
i+1,k+1, si+1,k), ϕ; si+1,k) = 0, (24)∫

(si+1,k+1 − si)ϕ+ τFαs ((pi+1,k+1, si+1,k+1), ϕ; si+1,k) = 0. (25)

IMPES Finally we use a classical IMPES approach, which is similar to the previous without
carrying out the iteration: the saturation in the pressure equation is taken explicitly and the
new pressure is used in the saturation equation (in contrast to the first approach where the
old pressure is used).

Fp((p
i+1, si), ϕ; si) = 0, (26)∫

(si+1 − si)ϕ+ τFαs ((pi+1, si+1), ϕ; si) = 0. (27)

With the exception of the first and the last approach, all methods use an iteration to
obtain a fixed point to the fully implicit equation

Fp((p
i+1, si+1), ϕ; si+1) = 0, (28)∫

(si+1 − si)ϕ+ τFαs ((pi+1, si+1), ϕ; si+1) = 0. (29)

In the third and the fourth method this is achieved using an outer iteration (based on the
first or the last method, respectively) while the second method uses a Newton method. To
make the approaches easier to compare, we use the same stopping criteria for the iteration in
all three cases. We take (pi+1, si+1) = (pi+1,l, si+1,l) with l such that

‖si+1,l − si+1,l−1‖L2(Ω) < toliter‖sl−1‖L2(Ω) . (30)

We use a value of toliter = 3 · 10−2 to stop the iteration when the relative change between two
steps is less then three percent.

3.3 Adaptivity

Different adaptive strategies are possible depending on how elements are refined/coarsened;
whether the elements should be p-refined or h-refined; when should the refinement process
be stopped (e.g. maximum level of refinement, stopping criterion). Keeping this in focus,
we provide in this section a brief introduction to different adaptive strategies implemented
and tested in this work. In all that follows, the parameters maxpoldeg and maxlevel refer
respectively to the maximum polynomial degree and the maximum level of refinement allowed.
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3.3.1 Error indicator

In the sequel, we implement an explicit estimator originally designed for non-steady convection-
diffusion problems. A thorough analysis is available in [29].

Applying the estimator to the phase conservation equation (18) yields:

η2
E =h2

E‖Rvol‖
2
L2(E) +

1

2

∑
e∈Γh

(
he
∥∥Re2∥∥2

L2(e)
+

1

he

∥∥Re1∥∥2

L2(e)

)

+
∑

e∈∂E∩∂Ω

(
he
∥∥Re2∥∥2

L2(e)
+

1

he

∥∥Re1∥∥2

L2(e)

)
. (31)

Here Rvol is the interior residual indicating how accurate the discretized solution satisfies the
original PDE at every interior point of the domain,

Rvol = qs − φ
∂s

∂t
+∇ ·

(
Asp(s)(∇p− Pg) +Ass(s)∇s+Gs(s)

)
.

The term Re1 is the numerical zero order inter-element (resp. Dirichlet boundary condition)
residual depending on the jump of the discrete solution at the elements boundaries (resp. at
the Dirichlet boundary), hence reflecting the regularity of the DG approximation (resp. the
accuracy of the approximation on the Dirichlet boundary),

Re1 =

{
σγseJsK if e ∈ Γh,
σγse(sD − s) if e ∈ ΓD.

The term Re2 is the first order numerical inter-element residual (resp. Neumann boundary
condition residual) depending on the jump of numerical approximation of the normal flux
at the elements boundaries (resp. at the Neumann boundary). It also allows to assess the
regularity of the DG approximation (resp. the accuracy of the approximation on the Neumann
boundary),

Re2 =

{
JAsp(s)(∇p− Pg) +Ass(s)∇s+Gs(s)K · νe if e ∈ Γh,
Jn +

(
Asp(s)(∇p− Pg) +Ass(s)∇s+Gs(s)

)
· νe if e ∈ ΓN .

3.3.2 Adaptive strategies

The indicator presented above will be used to drive adaptive algorithms. The h-adaptive
algorithm is depicted in Algorithm 1. Given the error indicator ηr,nE defined in equation (31)
for a polynomial degree r in time step n for each element E, we refine each element whose
error indicator is greater than a refinement threshold value hTolnE and we coarsen elements
where the indicator is smaller than the coarsening threshold 0.01× hTolnE .

In order to automatically compute the tolerance for refinement hTolnE used in each timestep
during the simulation we choose the following approach. We pre-describe a tolerance for the
initial adaptation such that the resulting refined grid looks satisfactory. Then we applied
an equi-distribution strategy which aims to equally distribute the error contribution over all
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time steps and grid elements. As a result we compute hTolnE based on the initially computed
error indicator,

hTolnE := tTol
τn

|T nh |
with tTol :=

1

T

∑
E∈Th

ηr,0E . (32)

In the following we use ηrE = ηr,nE as abbreviation for ease of reading. The choice between
increasing or decreasing the local polynomial order depends heavily on the value of an in-
dicator ςE(ηrE , η

r−1
E ) where ηrE , E ∈ Th is a given error indicator and ηr−1

E is the same indi-
cator evaluated for the L2 projection of the solution into a lower order polynomial space.
The derivation of this L2 projection is quite straightforward due to the hierarchical as-
pect of the modal DG bases implemented. We considered a marking strategy based on
the difference of ςE = |ηrE − ηr−1

E |. When this difference on a given element is non zero
we expect the higher order to contribute to the accuracy of the scheme and keep or in-
crease the given polynomial on that element otherwise the polynomial order is decreased.

Algorithm 1 h-adapt
1: Let ηr,nE be given
2: for all E ∈ Th do
3: hE = diam(E)
4: if ηr,nE >hTolnE AND maxlevel>level(E) then

5: hnewE := hE
2

6: else if ηr,nE <0.01×hTolnE AND level(E) > 0 then
7: hnewE := 2hE
8: else
9: hnewE := hE

10: end if
11: end for

Algorithm 2 p-adapt: markpDiff
1: Let ςE be given
2: for all E ∈ Th do
3: rE := poldeg(E)
4: if ςE<ptol then
5: if rE>1 then
6: rnewE := rE − 1
7: else
8: rnewE := rE
9: end if

10: else if ςE>100× ptol then
11: if rE<maxpoldeg then
12: rnewE := rE + 1
13: else
14: rnewE := rE
15: end if
16: else
17: rnewE := rE
18: end if
19: end for

3.4 Stabilization

Although due to the presence of the capillary pressure terms strong shocks do not occur in
the numerical experiments carried out in this paper, the DG schemes needs stabilization to
avoid unphysical values, such as negative saturation which would lead to an undefined state
in equation (8).

We follow the approach from [12] which has been initially proposed by Zhang and Shu
in [32]. The general idea is to scale each polynomial on each element such that a constraint
on minimum and maximum values of the saturation is respected. We define the following
projection operator Πs : Dr(Th) −→ Dr(Th) with∫

Ω
Πs[s] · ϕ =

∫
Ω
s̃ · ϕ ∀ϕ ∈ Dr (33)

where on each element E of the grid we define a scaled saturation s̃(x) := χE
(
s(x) − s̄

)
+ s̄

10



with s̄ being the mean value of s on element E. The scaling factor is

χE := min
x∈ΛE

{1, |(s̄− smin)/(s̄− s(x))|, |(smax − s̄)/(s̄− s(x))|} (34)

for the combined set of all quadrature points ΛE used for evaluation of the bilinear forms
defined earlier, i.e. interior and surface integrals.

The scaling limiter is applied after each Newton iteration for the implicit scheme and after
each iteration of the iterative schemes.

4 Numerical Experiments

This section provides different numerical experiments aiming to demonstrate the effectiveness
and robustness of the DG discretization of porous media flow models. All test are imple-
mented with the hp-adaptive DG method described in the previous section using the different
approaches for the time step computation. The maximal grid level was fixed to three and
the maximal polynomial was also three. The main components of the code areddescribed in
some detail in B and provide as part of a docker container as explained in A. We also show
results based on some alternative approaches for example for the underlying model or for the
adaptive strategy. These modifications to the python code are also provided in Appendix B.
They demonstrate the flexibility of the Python code.

4.1 Problem setting

A container is filled with two kinds of sand and saturated by water with density ρw =
1000 Kg/m3 and viscosity µw = 1 × 10−3 Kg/m s. The dense non-aqueous phase liquid
(DNAPL) considered in the experiment is Tetrachloroethylene with density ρn = 1460 Kg/m3

and viscosity µn = 9× 10−4 Kg/m s.
We consider a two-dimensional DNAPL infiltration problem with different sand types and

anisotropic permeability tensors. The material properties are detailed in Table 1. The bottom
of the reservoir is impermeable for both phases. Hydrostatic conditions for the pressure pw
and homogeneous Dirichlet conditions for the saturation sn are prescribed at the left and
right boundaries. A flux of Jn = −5.137 × 10−5 m s−1 of the DNAPL is infiltrated into the
domain from the top. Detailed boundary conditions are specified in Figure 1 and Table 2.
Initial conditions where the domain is fully saturated with water and hydrostatic pressure
distribution are considered (i.e. p0

w = (0.65 − y) · 9810, s0
n = 0). The permeability tensor

KΩ\Ωlens of the domain Ω\Ωlens is

KΩ\Ωlens =

(
10−10 −5× 10−11

−5× 10−11 10−10

)
m2

and the permeability tensor KΩlens of the lens Ωlens is

KΩlens =

(
6× 10−14 0

0 6× 10−14

)
m2.

The coarsest (macro) mesh consists of 60 quadrilateral elements globally refined everywhere
to the finest level would result in 3840 elements. The final time is T = 800 s. For visualization
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we later plot the solution of s over the line

x(σ) = (1− σ)(0.25, 0.65)T + σ(0.775, 0.39)T (35)

with σ ∈ [0, 1]. Snapshots of the evolution of the resulting flow and the grid structure are

DNAPL

0
.2
6
m

0
.0
6
m

0.9 m

Ω
Ωlens

0.39 m 0.51 m

0.34 m 0.56 m

DNAPL

ΓEΓW

ΓS

Ω
Ωlens

ΓNΓN ΓIN

x(σ)
.

Figure 1: Geometry and boundary conditions for the DNAPL infiltration problem. The purple line
in the right picture is described by x(σ) from equation (35).

Ωlens Ω\Ωlens

Φ [-] 0.39 0.40

Swr [-] 0.1 0.12

Snr [-] 0.00 0.00

θ [-] 2.0 2.70

pd [Pa] 5000 755

Table 1: 2d problem parameters.

ΓIN Jn = −5.137× 10−5, Jw = 0

ΓN Jn = 0.00, Jw = 0.00

ΓS Jw = 0, Jn = 0.00

ΓE ∪ ΓW pw = (0.65− y) · 9810, sn = 0

Table 2: 2d problem boundary conditions.

shown in Figure 2.

4.2 Time step stability

In this section we compare the various splitting and solution strategy described in Section 3.2.
We compare three implicit and iterative coupling schemes and two loosely coupled schemes,
one of them the classical IMPES scheme.

For τ > 3 only the fully coupled schemes are able to produces reasonable solutions. This
is illustrated in Figure 3.

In Figure 4 we compare the solution of the various fully coupled schemes for different time
step sizes. If the solution converges then a correct solution profile is produced. The stability

Figure 2: Evolution of the non wetting saturation sn at times t = 200, 400, 600, and t = 800
(top) and the corresponding adaptive grid structure (bottom).
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Figure 3: All schemes for τ = 3 (left) and τ = 5 (right). All schemes are able to capture
the solution characteristics for times steps smaller and up to τ = 3. For τ > 3 only the fully
coupled schemes are able to produce reasonable solutions, while the loosely coupled schemes
do no longer capture the front position correctly.

of the implicit scheme is influenced by the fact that the stabilization operator is only applied
before and after the Newton solver.

In principle the explicit coupling schemes work fine for small time steps and fail to produce
a valid solution for larger time steps. Here, the implicit schemes show their strength allowing
for faster computation once the time step is chosen sufficiently large.
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Figure 4: Left, the solution for fully coupled implicit scheme for τ = 3, 5, 7. Right the solution
for the IMPES-iterative scheme for τ = 3, 5, 7, 9, 11, 13.

4.3 Cut off stabilization

In this section we study a very simple stabilization approach aining at finding a replacement
for the more complicated scaling limiter described in Section 3.4. The idea is to simply replace
values for the saturation s below a given threshold smin and smax. Values of the saturation
outside of the region considered physical will cause problems when computing the capillary
pressure. So in this approach we use a very simple cut off for guaranteeing that no non negative
values are used in the power laws required for the capillary pressure by replacing sw,e, sn,e by
min{max{sw,e, ε}, 1− ε} and min{max{sw,e, ε}, 1− ε}, respectively, where ε = 10−5.
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This approach can be directly incorporated into the symbolic description of the model as
shown in C.1.

As can be clearly seen in Figure 4.3 significant over and undershoots are produced by
all methods at the fronts. Both IMPES type splitting schemes fail to converge even for
smaller time steps and the fully coupled implicit scheme produces wrong flow speeds even for
moderate values of τ . Only the iterative scheme manages to produce at least a reasonable
representation of the flow.
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Figure 5: Left results for τ = 1, middle τ = 3 and right τ = 5. The IMPES and impesIterative
scheme fail to converge with this approach. The other schemes all produce oscillations around
the front. Interestingly, the fully coupled implicit also fails to compute the correct front
position for increasing times steps.

4.4 Different model: Model B

In this section we compare our original model formulation with a description where the two-
phase flow problem is modeled as a system of equations with two unknowns p̄ and sn. Here
p̄ = pw + 1

2pc:

−∇ ·
(

(λw + λn)K∇p̄+
(λn − λw)

2
p′cK∇sn − (ρwλw + ρnλn)Kg

)
= qw + qn on Ω× (0, T ),

(36)

φ
∂sn
∂t
−∇ ·

(
λnK(∇p̄− ρng)

)
− 1

2
∇ ·
(
λnp

′
cK∇sn

)
= qn on Ω× (0, T ).

(37)

To complete the system, we add appropriate boundary and initial conditions.

p̄(·, 0) = p0
w(·) +

1

2
pc(s

0
n(·)) , sn(·, 0) = s0

n(·) , in Ω,

p̄ = pw,D +
1

2
pc(sD) , sn = sD , on ΓD × (0, T ),

vα · ν = Jα , Jt =
∑

α∈{w,n}

Jα , on ΓN × (0, T ).

Here, Jα ∈ R, α ∈ {w, n} is the inflow, s0
n, p

0
w, sD, and pw,D are real numbers.

Following the general description of the problem given in Section 2 we have p = p̄, s = sn
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and

App(s) = (λn(s) + λw(s))K , Aps(s) =
λn(s)− λw(s)

2
p′c(s)K,

Asp(s) = λn(s)K , Ass(s) =
λn(s)

2
p′c(s)K,

Gs(s) = 0, Gp(s) = −(ρwλw(s) + ρnλn(s))Kg,

Pg = ρng,

qp = qw + qn, qs = qn.

The required changes to the Python code are again minimal and described in the C.2.
In the following we investigate the stability of the different methods with respect to the

time step size when applied to modelB. We perform the same investigation described in the
previous section where we used modelA. The results are summarized in Figure 6. We only
investigated the stability of the three methods implicit,iterative, and impes-iterative. For
modelB the splitting introduced in the impes type approach failed even for τ = 1 while the
other two methods produce results in line with the results produced with modelA although
for higher values of τ the iterative methods produce a discontenuety at the right most front
as can be seen in the plots on the bottom row of Figure 6. For τ > 5 the implicit method
fails, making modelB a less stable choice for this scheme. On the other hand the iterative
approach produced results also for larger time steps τ = 9, 11, 13, 15 (not shown here) but in
each case the solution showed the same type of discontinuety.

Taking all the approaches into account, it is clear that modelA is the more stable rep-
resentation of the problem. But our results also indicate that the stability of the iterative
scheme does not seem to depend so much on the choice of the model (at the least for the two
versions tested) and produces very similar results in both cases.

4.5 P-adaptivity

Here we compare different approaches for the indicator used to set the local polynomial degree.
In the following we always use the implicit method with τ = 5, h-adaptivity with a maximum
level of three and also a maximum level of three for the polynomial order. In addition to the
approach used previously we test a version without p-adaptivity and an indicator based on
determining the smoothness of the solution. In regions where the indicator detects a reduction
in smoothness the polynomial order is reduced but only if the grid has been refined to the

maximum allowed level. The smoothness indicator is based on ςE =
ηrE
ηr−1
E

and we set ptol = 1:
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Figure 6: Results using modelB. Top row: τ = 1, 3, bottom row: τ = 5, 7.

Algorithm 3 p-adapt: markpFrac
1: Let ςE be given
2: for all E ∈ Th do
3: rE := poldeg(E)
4: if ςE<0.01× ptol then
5: if rE<maxpoldeg then
6: rnewE := rE + 1
7: else
8: rnewE := rE
9: end if

10: else if ςE>ptol then
11: if rE>1 then
12: rnewE := rE − 1
13: else
14: rnewE := rE
15: end if
16: else
17: rnewE := rE
18: end if
19: end for

The changes to the code are described in C.3.
Figure 7 shows the distribution of the polynomial order for the two p-adaptive approaches.

The local grid adaptivity is of course also influenced by the choice of indicator for the poly-
nomial degree because the values of the residuals change. This can also be seen in Figure 7.
As expected for the approach discussed in Section 3.3 the polynomial order is reduced to
the smallest admissible value (r = 1) in the regions where sn is constant. The approach
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Figure 7: Comparison of different approaches for choosing the local polynomial degree. The
top row shows the distribution of the polynomial order (left: original approach, right: modified
indicator). Red color refers to r = 3 and blue refers to r = 1. The bottom row shows the grid
level used for the three simulation. Red refers to l = 3 and blue refers to l = 0. Left to right:
original approach, modified indicator, with uniform polynomial degree of three. White lines
show 20 contour levels between sn = 0 and sn = 0.55.
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Figure 8: Comparison of different approaches for choosing the local polynomial degree. Shown
sn over the line in equation (35).

based on the smoothness indicator described in this section clearly leads to a reduction in
the polynomial order at the interface of the plume. This is expected since here the solution
can be said to have lower regularity. This demonstrates that the indicator works as expected.
On the left in Figure 8 the solution for the different approaches along the same line given in
equation (35) is shown. While the solution for the original adaptive method and the solution
without adaptivity are indistinguishable, the solution with the smoothness indicator given
above shows clearly an increase in numerical diffusion at the interfaces - especially at the
entry point to the lens which also leads to an increase within the lens. The number of degrees
of freedom during the course of the simulation depends on the number of elements and the
local distribution of the polynomial degree used. The number of elements increases in time
and so does the number of degrees of freedom. The right plot in Figure 8 shows the number
of degrees of freedom as a function of time. Clearly the method with maximal polynomial
degree on all elements requires the most degrees of freedom. Using the original indicator of
p-adaptivity reduces the number of degrees of freedom to about 66% at the beginning of the

17



Figure 9: Evolution of the non wetting saturation sn for the isotropic weak lens setting at
times t = 800, 1600, 2400, and t = 3200 (top) and the corresponding adaptive grid structure
(bottom).

simulation and still to 75% at the final time. The smoothness indicator given in this section
only leads to a reduction of 20% at the beginning of the simulation and by only 6% at the
final time.

Overall the indicator described in Section 3.3 does seem to lead to a better distribution
of the polynomial degree with negligible influence of the actual solution. As can be seen from
Figure 7, there is only little reduction of the order in the actual plume and the intermediate
order p = 2 is hardly used anywhere in the domain. Both these observations indicate that
further research into p-adaptivity for this type of problem is required.

4.6 Isotropic Flow over a weak Lens

In the final section we just study a second test case. The setup is the same as in the previous
example but the permeability tensors is isotropic and the lens is weaker:

KΩ\Ωlens =

(
10−10 0

0 10−10

)
m2 , KΩlens =

(
10−12 0

0 10−12

)
m2 .

On the Python side the problem class the definition of K has to be modified accordingly as
shown in C.4.

Snapshots of the evolution of the resulting flow are shown in Figure 9. The symmetry is
clearly visible both in the solution and in the grid refinement. The grid is locally refined at
the interface and around the lens once the flow reaches that point. Dune to the weaker lens
flow also passes through the lens. Overall our tests indicate that the conclusions obtained
from our previous tests also apply to this setting.

5 Conclusion

We have presented a framework that allows to study hp-adaptive schemes for two-phase flow in
porous media. The presented approach allows to easily study different adaptive strategies and
time stepping algorithms. The change from one algorithm to another is easily implemented.
All python based implementation is in the end forwarded to C++ based implementations to
ensure performance of the applications.

Furthermore, the prototypes build on very mature implementations from the Dune com-
munity to allow for a short transition from prototypes to production codes. Parallelization
and extension to 3d are straightforward with the prototype presented.
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We focused in this paper mostly on the stability of different approaches for evolving
the solution from one time step to the next. Our results indicate that IMPES type splitting
schemes can be used when smaller time step are acceptable while for larger time steps schemes
solving the fully coupled equations should be used. The simple fixed point iteration seems to
work quite well and seems quite stable with respect to the algorithmic approaches and models
tested. It turns out that the method does show convergence issues when too small values for
the stopping tolerance are used. The Newton method has more difficulty with convergence
for large time steps. This suggests a combined approach where first the iterative scheme is
used to reach a reasonable starting point for the Newton solver. We tested this approach and
could obtain reasonable results up to time steps of τ = 25 effectively tripling the maximum
time steps achievable when using only the Newton scheme. In future work we will focus more
on this approach.

In addition, we will investigate 3d examples and the possible extension to polyhedral cells
which are widely used in industrial applications. Preliminary work has been carried out, for
example, in [26]. The deployment of higher order adaptive schemes is an essential tool for
capturing reactive flows for applications such as polymer injections for improved oil recovery
or CO2 sequestration. Here, improved numerical algorithms help to reduce uncertainty for
predictions and thus ultimately improve decision making capabilities for involved stakeholders.
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A Reproducing the Results in a Docker Container

To easily reproduce the results of this paper we provide a Docker [9] image containing the
presented code in a Jupyter notebook [27] and all necessary software to run it.

Once Docker is installed, the following shell command will start the Jupyter server within
a Docker container:

1 docker run --rm -v dune:/dune -p 127.0.0.1:8888:8888

registry.dune -project.org/dune -fem/twophaseflow:latest

Notice that all user data will be put into and kept in the Docker volume named dune for later
use. This volume should not exist prior to the first run of the above command.

Open your favorite web browser and connect to 127.0.0.1:8888 and log in; the password
is dune. The notebook twophaseflow contains the code used to obtain the results in this
paper.

B Main Code Structure

In this section we show parts of the python script used in the simulation. The snippets are
not self contained but should provide enough information to understand the overall structure.
The full code which can be used to produce the simulations in Section 4.2 is available as a
jupyter notebook (see Appendix A) for details. In this section we describe parts of the code
following the overall structure of Sections 2 and 3.

B.1 Model A: Wetting-phase-pressure/nonwetting-phase-saturation formu-
lation

The model description is decomposed into two parts: this first part consists of a problem class
containing a static function for the pressure law pc, the permeability tensor K, boundary, and
initial data, and the further constants needed to fully describe the problem:

Python code
1 class AnisotropicLens:

2 dimWorld = 2

3 x = SpatialCoordinate(triangle)

4
5 g = [0,]*dimWorld ; g[dimWorld-1] = -9.810 # [m/s^2]

6 g = as_vector(g)
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7 r_w = 1000. # [Kg/m^3]

8 mu_w = 1.e-3 # [Kg/m s]

9 r_n = 1460. # [Kg/m^3]

10 mu_n = 9.e-4 # [Kg/m s]

11
12 lensDomain = conditional(abs(x[1]-0.49)<0.03 ,1.,0.)*\

13 conditional(abs(x[0]-0.45)<0.11,1.,0.)

14
15 lens = lambda a,b: a*lensDomain + b*(1.-lensDomain)

16
17 Kdiag = lens(6.64*1e-14, 1e-10) # [m^2]

18 Koff = lens(0,-5e-11) # [m^2]

19 K = as_matrix( [[Kdiag ,Koff],[Koff ,Kdiag]] )

20
21 Phi = lens(0.39, 0.40) # [-]

22 s_wr = lens(0.10 , 0.12) # [-]

23 s_nr = lens(0.00 , 0.00) # [-]

24 theta = lens(2.00, 2.70) # [-]

25 pd = lens(5000., 755.) # [Pa]

26
27 #### initial conditions

28 p_w0 = (0.65-x[1])*9810. # hydrostatic pressure

29 s_n0 = 0 # fully saturated

30 # boundary conditions

31 inflow = conditional(abs(x[0]-0.45)<0.06,1.,0.)*\

32 conditional(abs(x[1]-0.65)<1e-8,1.,0.)

33 J_n = -5.137*1e-5

34 J_w = 1e-20 # ufl bug?

35 dirichlet = conditional(abs(x[0])<1e-8,1.,0.) +\

36 conditional(abs(x[0]-0.9)<1e-8,1.,0.)

37 p_wD = p_w0

38 s_nD = s_n0

39
40 q_n = 0

41 q_w = 0

42
43 p_c = brooksCorey

The Brooks-Corey pressure law is given by a function taking a problem class as first argument
and the value non wetting phase sn:

Python code
1 def brooksCorey(P,s_n):

2 s_w = 1-s_n

3 s_we = (s_w-P.s_wr)/(1.-P.s_wr-P.s_nr)

4 s_ne = (s_n-P.s_nr)/(1.-P.s_wr-P.s_nr)

5 cutOff = lambda a: min_value(max_value(a,0.00001),0.99999)

6 if P.useCutOff:

7 s_we = cutOff(s_we)

8 s_ne = cutOff(s_ne)

9 kr_w = s_we**((2.+3.*P.theta)/P.theta)

10 kr_n = s_ne**2*(1.-s_we**((2.+P.theta)/P.theta))

11 p_c = P.pd*s_we**(-1./P.theta)

12 dp_c = P.pd * (-1./P.theta) * s_we**(-1./P.theta-1.) *

(-1./(1.-P.s_wr-P.s_nr))

13 l_n = kr_n / P.mu_n

14 l_w = kr_w / P.mu_w

15 return p_c ,dp_c ,l_n ,l_w

The actual PDE description requires three vector valued coefficient functions one for
the solution on the new time level (u), one for the solution on the previous time level
(solution_old), and one for the intermediate state s̄ used in the iterative approaches (intermediate).
The vector valued test function is v. Furthermore, τ, β are constants used used for the time
step size, the penalty factor, respectively. These can be set dynamically during the simulation:
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Python code
1 s_n = u[1]

2 s_w = 1.-s_n

3 si_n = intermediate[1]

4 si_w = 1.-si_n

5
6 p_c ,dp_c ,l_n ,l_w = P.p_c(s_n=si_n)

7
8 p_w = u[0]

9 p_n = p_w + p_c

10 gradp_n = grad(p_w) + dp_c * grad(s_n)

11
12 velocity_n = P.K*(gradp_n-P.r_n*P.g)

13 velocity_w = P.K*(grad(p_w)-P.r_w*P.g)

14
15 #### bulk equations

16 dbulk_p = P.K*( (l_n+l_w)*grad(p_w) + l_n*dp_c*grad(s_n) )

17 dbulk_p += -P.K*( (P.r_n*l_n+P.r_w*l_w)*P.g )

18 bulk_p = P.q_w+P.q_n

19 dbulk_s = P.K*l_n*dp_c*grad(s_n)

20 dbulk_s += P.K*l_n*(grad(p_w)-P.r_n*P.g)

21 bulk_s = P.q_n

B.2 Space Discretization

Given the expressions defined previously the bulk integrals for the bilinear forms can now be
easily defined (compare Section 3):

Python code
1 form_p = ( inner(dbulk_p ,grad(v[0])) - bulk_p*v[0] ) * dx

2 form_s = ( inner(dbulk_s ,grad(v[1])) - bulk_s*v[1] ) * dx

3 form_p += J_p * v[0] * P.inflow * ds

4 form_s += J_s * v[1] * P.inflow * ds

Next we describe the skeleton terms required for the DG formulation. We use some geometric
terms defined for the skeleton of the grid and also the weighted average:

Python code
1 def sMax(a): return max_value(a(’+’), a(’-’))

2 def sMin(a): return min_value(a(’+’), a(’-’))

3 n = FacetNormal(cell)

4 hT = MaxCellEdgeLength(cell)

5 he = avg( CellVolume(cell) ) / FacetArea(cell)

6 heBnd = CellVolume(cell) / FacetArea(cell)

7 k = dot(P.K*n,n)

8 def wavg(z): return (k(’-’)*z(’+’)+k(’+’)*z(’-’))/(k(’+’)+k(’-’))

As shown in Section 3 it is straightforward to construct the required penalty and consistency
terms

Python code
1 ## penalty

2 form_p = penalty_p[0]/he * jump(u[0])*jump(v[0]) * dS

3 form_s = penalty_s[0]/he * jump(u[1])*jump(v[1]) * dS

4 ## consistency

5 form_p -= inner(wavg(dBulk_p),n(’+’)) * jump(v[0]) * dS

6 form_s -= inner(wavg(dBulk_s),n(’+’)) * jump(v[1]) * dS

7
8 ##### dirichlet conditions

9 ## penalty

10 form_p += penalty_p[1]/heBnd * (u[0]-p_D) * v[0] * P.dirichlet * ds
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11 form_s += penalty_s[1]/heBnd * (u[1]-s_D) * v[1] * P.dirichlet * ds

12 ## consistency

13 form_p -= inner(dBulk_p ,n) * v[0] * P.dirichlet * ds

14 form_s -= inner(dBulk_s ,n) * v[1] * P.dirichlet * ds

The factors for the penalty terms for the DG discretization depend on the model and are
given by

Python code
1 lambdaMax = k(’+’)*k(’-’)/avg(k) # P.K[0][0] + abs(P.K[0][1]) # assuming 2d and

K=[[a,b],[b,a]]

2 p_c0 ,dp_c0 ,l_n0 ,l_w0 = P.p_c(0.5) # is not the maximm ( increases for s_n ->1)

3 penalty_p = beta*lambdaMax*sMax(l_n0+l_w0)

4 penalty_s = beta*lambdaMax*sMax(l_n0*dp_c0)

5 penalty_bnd_p = beta*k*(l_n0+l_w0)

6 penalty_bnd_s = beta*k*(l_n0*dp_c0)

B.3 Time stepping

The final bilinear forms used to carry out the time stepping depend on the actual schemes
used. We first need to distinguish between the three schemes linear,implicit,iterative that are
based on the full coupled system and the two schemes impes,iterative-impes which are based
on a decoupling of the pressure and saturation equation. In the first case the final bilinear
form is simply

Python code
1 form = form_s + form_p

while in the second case we define a pair of scalar forms:

Python code
1 uflSpace1 = Space(( problem.dimWorld ,problem.dimWorld),1)

2 u1 = TrialFunction(uflSpace1)

3 v1 = TestFunction(uflSpace1)

4 form_p = replace(form_p , { u:as_vector([u1[0],intermediate.s[0]]),

5 v:as_vector([v1[0],0.]) } )

6 form_s = replace(form_s , { u:as_vector([solution[0],u1[0]]),

7 intermediate:as_vector([solution[0],

8 intermediate[1]]),

9 v:as_vector([0.,v1[0]]) } )

10 form = [form_p ,form_s]

Finally we need to fix s̄ i.e. intermediate according to the scheme used. In the case of the im-
plicit scheme we have intermediate=u, for linear and impes intermediate=solution_old,
while for the other two schemes intermediate is an independent function used during the
iteration.

The following code demonstrates how the evolution of the solution from ti to ti+1 is carried
out:

Python code
1 while True:

2 intermediate.assign(solution)

3 scheme.solve(target=solution)

4 limit( solution )

5 if errorMeasure(solution ,solution-intermediate)

6 break

where the stopping criteria is given by
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Python code
1 def errorMeasure(w,dw):

2 rel = integrate(grid , [w[1]**2,dw[1]**2], 5)

3 tol = self.tolerance * math.sqrt(rel[0])

4 rdiff = math.sqrt(rel[1])

5 return rdiff < tol

The implementation of the iterative-impes method looks almost the same

Python code
1 while n<self.maxIterations:

2 intermediate.assign(solution)

3 limit( iterate )

4 scheme[0].solve(target=solution.p)

5 scheme[1].solve(target=solution.s)

6 limit( solution )

7 n += 1

8 if error(solution ,solution-intermediate):

9 break

B.4 Stabilization

Note how we apply the limiting operator directly after the next iterate has been computed.
The stabilization projection operator is available as limit(solution).

B.5 Adaptivity

The estimator is given as a form taking vector valued solution u with a scalar test function
v0. This will later be used to generate an operator taking the solution and mapping into a
piece wise constant scalar space with the value ηE on each element:

Python code
1 uflSpace0 = Space((P.dimWorld ,P.dimWorld),1) # space for indicator (could use

dimRange=3)

2 v0 = TestFunction(uflSpace0)

3
4 Rvol = P.Phi*(u[1]-solution_old[1])/tau - div(dBulk_s) - bulk_s

5 estimator = hT**2 * Rvol**2 * v0[0] * dx +\

6 he * inner(jump(dBulk_s), n(’+’))**2 * avg(v0[0]) * dS +\

7 heBnd * (J + inner(dBulk_s ,n))**2 * v0[0] * P.inflow * ds +\

8 penalty_s[0]**2/he * jump(u[1])**2 * avg(v0[0]) * dS +\

9 penalty_s[1]**2/heBnd * (s_D - u[1])**2 * v0[0] * P.dirichlet * ds

and since we want to use the estimator for the fully coupled implicit problem independent of
the actual time stepping approach used, we add

Python code
1 estimator = replace(estimator , {intermediate:u})

The actual grid adaptivity is then carried out by calling:

Python code
1 estimator(solution , estimate)

2 hgrid.mark(markh)

3 fem.adapt(hgrid ,[solution])

where the marking function is
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Python code
1 hTol = 1e-16 # initial value , later tTol * dt / gridSize

2 def markh(element):

3 estimateLocal = estimate.localFunction(element)

4 r = estimateLocal.evaluate(element.geometry.referenceElement.center)

5 eta = sum(r)

6 if eta > hTol and element.level < maxLevel:

7 return Marker.refine

8 elif eta < 0.01*hTol:

9 return Marker.coarsen

10 else:

11 return Marker.keep

compare Algorithm 1.
Finally the p-adaptivity requires calling

Python code
1 estimator(solution , estimate)

2 # project solution to space with p-1

3 orderreduce(solution ,sol_pm1)

4 # compute estimator for p-1 space

5 estimator(sol_pm1 , estimate_pm1)

6 # compute smoothness indicator and modify polynomial order

7 fem.spaceAdapt(space , markp , [solution])

where the marking function markp is given by

Python code
1 def markp(element):

2 r = estimate.localFunction(element).evaluate(center)[0]

3 r_p1 = estimate_pm1.localFunction(element).evaluate(center)[0]

4 eta = abs(r-r_p1)

5 polorder = spc.localOrder(element)

6 if eta < pTol:

7 return polorder-1 if polorder > 1 else polorder

8 elif eta > 100.*pTol:

9 return polorder+1 if polorder < maxOrder else polorder

10 else:

11 return polorder

compare Algorithm 2.

C Code Modifications

C.1 Cut off stabilization

The cut off stabilization can be easily implemented with a minor change to the function
defining the capillary pressure:

Python code
1 def brooksCorey(P,s_n):

2 # cut all values of s below 1e -5 and above 0.99999

3 s_w = 1-s_n

4 cutOff = lambda a: min_value(max_value(a,0.00001),0.99999)

5 s_we = cutOff( (s_w-P.s_wr)/(1.-P.s_wr-P.s_nr) )

6 s_ne = cutOff( (s_n-P.s_nr)/(1.-P.s_wr-P.s_nr) )

7 kr_w = s_we**((2.+3.*P.theta)/P.theta)

8 kr_n = s_ne**2*(1.-s_we**((2.+P.theta)/P.theta))

9 p_c = P.pd*s_we**(-1./P.theta)

10 dp_c = P.pd * (-1./P.theta) * s_we**(-1./P.theta-1.) * (-1./(1.-P.s_wr-P.s_nr))

11 l_n = kr_n / P.mu_n
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12 l_w = kr_w / P.mu_w

13 return p_c ,dp_c ,l_n ,l_w

C.2 Different model: Model B

Changing the formulation of the two phase flow model requires redefining the terms for the
bulk integrals and the penalty factor for the DG stabilization. The adaptation indicators and
other DG terms do not need to be touched:

Python code
1 s_n = u[1]

2 p_avg = u[0]

3 p_c ,dp_c ,l_n ,l_w = P.p_c(intermediate[1])

4
5 dBulk_p = P.K*( (l_n+l_w)*grad(p_avg) + 0.5*(l_n-l_w)*dp_c*grad(s_n) )

6 dBulk_p += -P.K*( (P.r_n*l_n+P.r_w*l_w)*P.g )

7 bulk_p = P.q_w+P.q_n

8 dBulk_s = 0.5*P.K*l_n*dp_c*grad(s_n)

9 dBulk_s += P.K*l_n*(grad(p_avg)-P.r_n*P.g)

10 bulk_s = P.q_n

11
12 #### dg penalty factors

13 lambdaMax = k(’+’)*k(’-’)/avg(k)

14 p_c0bis ,dp_c0bis ,l_n0 ,l_w0 = P.p_c(0.5)

15 penalty_p = [beta*lambdaMax*sMax(l_n0+l_w0), beta*k*(l_n0+l_w0)]

16 penalty_s = [0.5*beta*lambdaMax*sMax(l_n0*dp_c0bis), 0.5*beta*k*(l_n0*dp_c0bis)]

C.3 P-adaptivity

To change the marking strategy for the p-adaptivity the function markp needs to be redefined:

Python code
1 def markp(element):

2 polorder = spc.localOrder(element)

3 if element.level < maxLevel: return min(polorder+1,maxOrder)

4 val = pEstimator(element ,element.referenceElement.center)

5 val = [estimate.localFunction(e).evaluate(x)[0],

6 estimate_pm1.localFunction(e).evaluate(x)[0]]

7 if val[0] > val[1]:

8 return polorder-1 if polorder > 1 else polorder

9 elif val[0] < 0.01*val[1]:

10 return polorder+1 if polorder < maxOrder else polorder

11 return polorder

C.4 Isotropic Flow over weak Lens

Changing the set up of the problem requires modifying the static components of the problem
class i.e. for the isotropic setting with the weaker lens we need to change permeability tensors:

Python code
1 Kdiag = Lens.lens(1e-12, 1e-10) # [m^2]

2 Koff = Lens.lens(0,0) # [m^2]

3 K = as_matrix( [[Kdiag ,Koff],[Koff ,Kdiag]] )
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