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Abstract 

For solid-state power devices, there exists need for a material with a higher band 

gap which will result in a higher critical electric field, improved power efficiency and 

thermal performance. This has resulted in the use of Silicon Carbide (SiC) as a serious 

alternative to Silicon for power devices. SiC trench MOSFETs have attracted major 

attention in recent years because of 1) lower on resistance by eliminating the JFET 

effect which exists in lateral MOSFETs, 2) higher channel density which lowers the 

threshold voltage and 3) reduction of the required surface area because of the vertical 

channel. These advantages allow faster switching speeds and the potential for a higher 

density of devices leading to more compact modules.   

This work was focused on fabrication of the first generation of 4H-SiC trench 

MOSFETs in Warwick University.  Two main goals were achieved in this work: a 

comprehensive understanding of fabrication of trenches in 4H-SiC and fabrication of 

first generation of 4H-SiC trench MOSFET with mobility as high as 35 𝑐𝑚2/𝑉. 𝑠. 

A detailed study of fabrication of trenches in 4H-SiC showed that both masking 

method and the etching recipe affect the smoothness, the shape and the angle of the 

sidewalls. The biggest challenges in etching trenches in SiC were found to be roughness 

of sidewalls and microtrenches. Microtrenches are small trenches in the corner of the 

sidewall that results in lower breakdown voltages.  The results showed that while 

Nickel (Ni) is the best mask to eliminate microtrenches, Silicone dioxide (SiO2) results 

in the smoothest and cleanest sidewall hence lowest leakage current. SiO2 was used as 

the etching mask and a sidewall shadow was created by optimizing the etching RF 

power that helped to protect the trench sidewall and hence successfully eliminate 

microtrenches. 

The trench MOSFET fabrication results showed that without any post etch or 

oxidation treatments the mobility can be as low as 5𝑐𝑚2/𝑉. 𝑠. Post etch treatment using 

hydrogen (𝐻2) annealing resulted in the highest mobility as high as 35 𝑐𝑚2/𝑉. 𝑠 while 

post oxidation 𝐻2 annealing or phosphorus activation resulted in higher mobility close 

to 15 𝑐𝑚2/𝑉. 𝑠. The downside of post etch treatments is slightly higher leakage current 

than the post oxidation treatment. 
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1 Introduction 

During recent years, it has been widely recognized that power switching 

devices in Silicon (Si) are approaching their theoretical limits and there is a need 

for another material with higher band gap, higher critical electric field, 

improved power efficiency and thermal performance. Silicon Carbide (SiC) 

Chapter 
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devices have been suggested as a suitable replacement to Si because of many 

advantages associated with this material.  

Power semiconductors such as Schottky barrier diodes, MOSFETs are the 

heart of the power electronics. SiC Power semiconductors offer faster switching, 

less power loss and can be used in higher voltage and temperature applications. 

These advantages make SiC devices great candidate for applications such as 

convertors for renewable sources, electrical cars and trains. Using SiC devices 

results in higher energy efficiency and can also improve the size of passive 

components and weight by 50% [1].  

SiC devices are widely used in power convertors such as AC/DC power 

convertors for renewable energy sources, PFC, UPS and power convertors for 

industrial applications such as air-conditioning. The main advantage that 

makes SiC suitable for this application is the higher energy efficiency compared 

to the SiC devices.  

The other application of SiC power devices is in electrical distribution 

systems. The electricity grid is moving toward distributed energy resources in 

the recent years by addition of many distributed and renewable resources such 

as combined heat and power (CHP) plants, solar and wind farms. This results 

in more losses in the system as energy needs to be transmitted over long distance 

from these distributed resources. Also these resources degrade the frequency 

instability of the grid because of their low inertia and also volatile energy 
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generation. The grid should operate at frequency of 50Hz (in the UK) to avoid 

any damage to the connected electrical assets. At any time the consumption and 

generation of electricity should be equal to keep the frequency at 50 Hz and the 

volatile nature of renewable resources means that control of frequency is more 

difficult. The other main challenge with the renewable resources is their 

contribution to reduction in grid inertia. This is mainly due to the fact that 

inverter connected solar and wind farms do not provide rotational inertia. Low 

inertia results in faster frequency changes in the grid [1]. Currently National 

Grid uses assets with response times as fast as 1 seconds to balance the 

frequency during the consumption/generation imbalance to restore the 

frequency back to 50Hz but it is predicted that there will be need for assets with 

sub second response time.  SiC Power systems offer high speed control of 

supplies and motors and also enables high voltage, high frequency power 

conversion that is necessary to add large scale renewables to the grid. This 

means that using such systems not only offer higher energy efficiency but also 

offer high speed of control during any electricity imbalance [2]. 

Other applications of SiC devices include aerospace and military where 

there is a need for stable power devices in extreme temperature since SiC can 

operate at temperate as high as 250 °C. 
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1.1 Wide Band Gap Material 

4H-SiC material has a bandgap three times higher than Si (Table 1.1) 

which is a key benefit in term of power devices. Higher band gap results in a 

higher intrinsic temperature, at which the intrinsic carrier concentration 

becomes comparable to the doping concentration, resulting in a sudden current 

increase and hence failure of the device.   

The intrinsic carrier concentration (𝑛𝑖) of a semiconductor is given by 

equation 1.1, where 𝑁𝑐 is the effective density of state of the conduction band, 

𝑁𝑣 is the effective density of state of the valance band, 𝐸𝑔 is the band gap energy, 

𝑘𝐵 is the Boltzmann constant and T is the absolute temperature.  

𝑛𝑖 =  √𝑁𝑐𝑁𝑣. exp (−
𝐸𝑔

2.𝑘𝐵.𝑇
)              Equation (1.1) 

As can be seen, the intrinsic concentration depends on the energy band gap 

and the temperature. Hence due to the narrow band gap of Silicon (Si), the 

intrinsic carrier concentration of Si increases rapidly with the increase in the 

temperature and hence Si devices fail in lower temperature compared to SiC 

device. This high intrinsic temperature of SiC allow the device to reach 

temperature as high as 700°C before it fails.  
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1.1.1  High Avalanche Breakdown Electric Field 

With a breakdown electric field 10 times higher than Si for the same 

voltage rating, 4H-SiC devices can be designed with thinner, more highly doped 

drift regions, which results in less specific-on resistance. This leads to higher 

power efficiency and decreasing power loss with respect to 4H-SiC. 

Property Si 3C-SiC 6H-SiC 4H-SiC 

Bandgap(eV) 1.12 2.35 3.08 3.28 

Breakdown field (MV/cm) 0.3 1.5 2.2 2.3 

Intrinsic carrier concentration (𝑐𝑚−3) 1x1010 1.5x10−1 1.6x10−6 5x10−9 

Electron mobility (𝑐𝑚2/𝑉𝑠) 1350 900 370 800 

Hole mobility (𝑐𝑚2/𝑉𝑠) 480 40 80 120 

Saturated electron velocity (107𝑐𝑚/𝑠) 1 2 2 2 

Thermal conductivity (W/cmK) 1.5 4.9 4.9 4.9 

Dielectric constant 11.8 9.6 9.7 9.7 

Electron affinity (eV) 4.05 3.8 3.3 3.1 

Table 1-1: Comparison of Si with different SiC polytypes 

1.1.2  High Electron Saturation Velocity 

An electron saturation velocity twice that of Si, enables faster switching 

frequencies. A higher electron saturation velocity also results in shorter 
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reverse recovery time as charge stored in the depletion region can be removed 

faster. 

Other advantages such as the thermal conductivity being three times that 

of Si devices results in a higher thermal stability making 4H-SiC material 

perfect thermal conductors with further reduction in cooling requirements. 4H-

SiC is the most favorable SiC polytype due to higher carrier mobility and a 

higher degree of isotropy. 

 

1.2 Metal Oxide Field Effect Transistor 

(MOSFET) Structures 

Metal Oxide Field Effect Transistor (MOSFET) structure can be designed 

so that the channel region is lateral or vertical. The first SiC MOSFETs 

introduced were mostly based on lateral channels (Figure 1.1A). The recent 

attempts to block voltages higher voltages, resulted in the introduction of the 

double diffused MOSFET (DMOSFET), where a drift layer is included on top of 

the drain region to support high voltages, the channel is formed laterally when 

voltage is applied to the gate. As can be seen in Figure 1.1, there still exist a 

JFET region in this type of MOSFET like lateral MOSFETs. Also the lateral 
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channel imposes limitation on the cell pitch and requires a large surface area to 

accommodate the lateral channel.  

 

        

 (A): N-channel DMOSFET, the current channels (shown in red) are horizontal 

under the gate oxide. 

 

(B): N-channel trench MOSFET, the current channels (show in red) are 

vertical on the trench sidewalls 

Figure 1.1: Structure of (A) planar MOSFET (B) trench MOSFET 



Chapter 1: Introduction to 4H-SiC Trench MOSFET 

1-8 

 

The attempts to reduce the specific-on resistance resulted in introducing 

trench MOSFETs. Trench MOSFET includes a vertical structure where the 

source and drain are on the opposite side of the wafer to support higher voltages. 

The gate is located in a trench and the channel is created on the vertical wall of 

the trench (Figure 1.1B). The trench is extended to the drift region and hence 

the parasitic JFET effect that exists in the lateral channel MOSFET is 

eliminated and therefore the specific on resistance is improved significantly. 

Since the current channels are vertical, using trench technology offers a higher 

channel density and helps to minimize the required surface area, since the 

channels exist on the side walls. 

1.2.1  On State 

Figure 1.2 shows the current flow in a trench MOSFET during the on state 

when the device is conducting current. The gate metal/insulator/P-body region 

create a MOS capacitor and hence applying voltage to the gate metal that is 

higher than a minimum voltage, called threshold voltage (𝑉𝑇ℎ), creates a current 

channel on the trench side wall in the P-body region. This will create a current 

path from the N+ source to the drain. 
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Figure 1.2: Current flow in trench MOSFET [3]  

The amount of the source drain current depends on the gate voltage and 

the on-resistance between the drain and source.  The current-voltage (I-V) curve 

of a MOSFET is shown in Figure 1.3. As can be seen, during the on state the     

I-V curve is divided into two regions: linear (ohmic) and saturation (pinch-off) 

regions. For low drain voltage (𝑉𝐷), the I-V characteristics have a linear form, 

this area is called ohmic region. When the drain voltages is increased the drain 

current saturate at a maximum level (pinch off or saturation region). The 

transition between the ohmic region and the pinch off region is called quasi 

saturation.  
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As can be seen, the higher the gate voltage is, the higher the drain current 

would be. If the drain voltage is increased to more than the breakdown voltage 

rating of the device, avalanche breakdown happens, and the amount of current 

passing between the source and the drain increases rapidly and suddenly. The 

avalanche breakdown is due to the increase of electric field to more than the 

critical electric field of the semiconductor material. Though as would be 

discussed in this work, basic SiC trench MOSFET structure such as the one 

shown in Figure 1.2 enters breakdown because of breakdown of the insulator 

layer not the semiconductor material.  

Figure 1.3 : Current-Voltage characteristics of a MOSFET [4]  
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The other factor that affect the I-V characteristics, is the on resistance 

between the source and drain (𝑅𝐷𝑆𝑂𝑁). The amount of current that can pass 

through source to drain when the voltage is increased, depends on 𝑅𝐷𝑆𝑂𝑁. The 

slope of the curve on the ohmic region is representative of 𝑅𝐷𝑆𝑂𝑁, lower slope 

means higher 𝑅𝐷𝑆𝑂𝑁. Higher on resistance, results in higher energy loss, lower 

switching speed and lower channel mobility and should be minimized.  

1.2.2  Off State 

Off state refers to the state where there is no voltage applied to the gate 

contact (or if the gate voltage is less than the threshold voltage). During the off 

state, the current channel does not exist on hence there is no current flow 

between the N+ source and the drain region except for very little leakage 

current. The drain voltage in this state is supported by the depletion region that 

is created by the P-body/N- drift junction. The effect of the N+ source/P- body/N-

drift bipolar transistor is suppressed by shorting the P-body and N+ source [5]. 

It is very important to choose the right thickness and doping for the P-body 

region, otherwise the depletion region in the P-body will reach to N+ source that 

will result in a large leakage current. The reach through design can result in 

premature breakdown of the device.  

Figure 1.4 shows the creation of depletion region across P/N junction. The 

depletion region is created when the device is in reverse biased operation mode 

when a positive voltage is applied to the N- doped (drift) region. Majority 
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carriers in the N- doped region (free electrons) are attracted to the positive 

terminal, leaving immobile positive ions near the P/N junction. The positive ions 

near the junction on the N- doped region, will start to repel the holes on the P-

doped side. The holes will leave immobile negative ions near the P/N junction. 

This will create a depletion region near the P/N junction of immobile ions that 

will block the current (Figure 1.4). The ions near the junction create a strong 

electric field that will block the voltage. 

 

 

Figure 1.4: Depletion region created in a PN junction. 

 

Higher drain voltages, result in higher electric field in the P/N junction. 

When this electric field reaches the critical electric field of SiC material, an 
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abrupt leakage current is observed. This maximum drain voltage is called 

breakdown voltage. The blocking capacity of the trench MOSFET is determined 

by the N- drift region thickness and doping. This will be discussed in more 

details in the Chapter 3. 

1.3 MOS Capacitor  

MOS capacitors are the foundation of every MOSFET including trench 

MOSFETs, therefore it is necessary to understand MOS capacitors. In this 

section, the operations modes of a MOS capacitors are explained. As will be 

discussed in the Chapter 2, the quality of MOS capacitors in the trench 

MOSFETs is the main problem with SiC MOSFETs that needs to be improved 

hence the common defects and problem with MOS capacitor such as oxide and 

interface defects and leakage current are also discussed. 

1.3.1  Characteristics of an Ideal MOS Capacitors 

A MOS capacitor is made of two electrodes, separated be an insulation 

layer (Figure 1.5).  
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Figure 1.5: Structure of a MOS capacitor 

A low resistivity metal (gate) at the top of the insulating layer acts as the 

first electrode and the N-type (or P- type) substrate act as the second electrode.  

When voltage is applied to the gate one of the cases shown below (Figure 1.6) 

takes place in the substrate. 

 

(A) Inversion in Si MOS capacitor 
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(B) Deep depletion in a SiC MOS capacitors 

Figure 1.6: Applying a large negative voltage to the gate results in two 

different behavior in Si and SiC MOS capacitors, while inversion is observed in 

Si MOS capacitor (A), a deep depletion is created in a SiC MOS capacitor 

1.3.2  Inversion or Deep Depletion (𝑉𝑔 ≪ 0) 

When a large negative gate voltage is applied, it repels the electrons from 

the surface. In silicon substrate electrons leave the surface and the minorities 

of opposite charge (holes) are attracted to the surface right beneath the 

interface.  This creates a channel of minority carriers (holes) in an N- type 

substrate where majority carriers are electrons (Figure 1.6A). This mode is 

called inversion where the surface of the substrate is inverted to the opposite 

polarity. 

In SiC MOS capacitors, because of the long generation time for minorities, 

inversion mode is not observed and instead the SiC MOS structure turns to the 
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deep depletion mode. The very low concentration of the minorities in SiC is the 

reason behind the long generation time for minorities [6]. In this mode the 

negative voltage of the gate repels the electrons from the surface, and electron 

leave immobile accepter ions behind (Figure 1.6B). The capacitance is reduced 

to the minimum value at this mode and its value of capacitance in this mode is 

proportional to the doping concentration of the material. 

1.3.3  Depletion (𝑉𝑔 < 0) 

When the gate voltage is still negative but closer to zero, it still repulse the 

electrons in smaller number from the surface and they leave positively charged 

ions. This means in the area closer to the interface, the number of majority 

carriers (electron) is less than the value in the original substrate. That is the 

reason that this mode is called depletion.  

 

Figure 1.7: Depletion mode in SiC MOS structure 
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1.3.4  Accumulation Region (𝑉𝑔 >  𝑉
𝑇ℎ

) 

When the voltage is increased to more than a certain value, called 

threshold voltage (𝑉𝑇ℎ), the gate metal attracts a large amount of negative 

charges to a surface very close to the interface. In this case a high density of 

majority carriers (electron) are presented in the shallow layer just beneath the 

interface and therefor the MOS capacitor is operating in accumulation region. 

At this mode, the capacitor reaches the maximum level of capacitance that 

defines the oxide capacitance.  

 

Figure 1.8: Accumulation mode in MOS structure 

1.3.5  Electrical Properties of a MOS Capacitor 

An ideal MOS capacitor has the following properties [7]: 
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1) The difference between work-function of metal (ɸ𝑀) and semiconductor 

(ɸ𝑆𝑖𝐶) is zero.  This means the Fermi level of metal (𝐸𝐹 𝑀) and SiC substrate 

(𝐸𝐹 𝑆𝑖𝐶) is flat and is aligned. There is no flow of charge in this condition 

2) Only charges in semiconductor and the opposite charge in the gate can 

exist under any biasing condition 

3) There are no traps in the interface of 𝑆𝑖𝐶/𝑆𝑖𝑂2 and the oxide is free from 

defects and impurities. 

4) There is no flow of carriers through the insulator layer. 

Figure 1.9 shows the energy band model in accumulation, deep depletion 

and flatland mode of an ideal SiC MOS capacitor.  
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Figure 1.9: The energy band models a n- type SiC MOS capacitor assuming no 

defects exist [8] 

Flat band mode is the state where there is no voltage applied to the gate 

and hence the conduction and valence bands are flat (Figure 1.9C ). Fermi level 

is the highest energy state occupied by electrons in a material at absolute zero 

temperature. The distance between the metal and substrate Fermi levels in the 

ideal MOS capacitor is equal to the applied gate voltage (𝑒𝑉𝐺). If the MOS 

structure is in the flatband mode, this difference is called flatband voltage (𝑉𝐹𝐵), 

which is equal to zero for an ideal MOS capacitor. 

𝑉𝐹𝐵 = ɸ𝑀 − ɸ𝑆𝑖𝐶    Equation (1.2) 
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Applying bias will result in separation between Fermi levels of metal gate 

and the semiconductors and therefor flatband voltage is not zero anymore. When 

bias is applied to the gate, no bending will occur in the metal as it is an 

equipotential region (only the energy bands move up or down) but due to the 

imbalance of the charges in the semiconductors, there will be bending of the 

energy band near the interface where there is build up charge as well as moving 

up or down the energy band. 

In accumulation region, positive voltage is applied to the gate. The 

resulting charges in gate and substrate moves the gate energy bands lower 

relative to the substrate and therefor bend the valence (𝐸𝑣) and conduction (𝐸𝑐) 

band downward near the interface in the semiconductor. This bend represents 

higher electric field that exist due to the crowding of electrons near the interface 

in accumulation. 

As the negative bias is applied to the gate, the gate energy bands start to 

move higher relative to the n-type SiC substrate where electrons are repelled 

from the surface and the electric field is reduced [8].  

In reality there are a number of issues that challenge the performance of a 

MOS capacitor specially SiC MOS structure. The oxide that is thermally grown 

on SiC substrate has defect and there exist different charges in addition to 

substrate and metal charges, like oxide trapped charges, fixed charges in oxide. 



Chapter 1: Introduction to 4H-SiC Trench MOSFET 

1-21 

 

In the next section defects such as charges and leakage current of a non-ideal 

MOS capacitor are introduced.  

1.3.6  Charges 

In a real MOS device, there are charges in the oxide and the interface of 

SiC/SiO2. There are at least four type of charges associated with SiC MOS 

capacitor. These charges are: fixed oxide traps, mobile ionic charges, oxide 

trapped charges and near interface trapped charges [9].  

 

Figure 1.10: Oxide charges in SiC MOS structures [10] 

1.3.6.1  Oxide trapped charges (Qtox) 

These are high-energy positive or negative charges that exist in the oxide 

(not the interface) due to the existence of holes or electrons that are trapped in 

the defects in the oxide [11] during FN tunneling, avalanche breakdown and 

similar processes [10].  Density of these trapped charges varies and any kind of 

leakage current through the oxide can increase the number of trapped charges.   
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𝑄𝑡𝑜𝑥 =  −𝑉𝐹𝐵. 𝐶𝑜𝑥    Equation (1.3) 

1.3.6.2  Mobile oxide charges (𝑸𝒎) 

These lightly charged ions are caused by the process and can move if 

voltage is applied to the device. It is suggested that ionic impurities inserted 

into the oxide film during oxidation may be the main cause of this issue [10]. 

These charges could be improved by surface conditioning before growing oxide 

or by passivation after oxidation. These charges could be calculated using the 

following equation in high temperature: 

𝑄𝑚 =  −𝛥𝑉𝐹𝐵. 𝐶𝑜𝑥    Equation (1.4) 

1.3.6.3  Interface trap density (𝑫𝒊𝒕) 

Interface trapped charges are one of the main challenges in growing high 

quality oxide on SiC. The origin of this issue is not clear but it is suggested that 

existence of carbon clusters and dimmers and oxygen vacancies very close to the 

interface can cause higher trap density [12].  

These charges can be charged through the SiC surface potential. They can 

trap electron and holes and act as a scattering center.  

These traps can be charged positively or negatively depending on the 

potential in the surface. Accepter traps are charged negatively, while donor 

traps are charged positively if filled. 
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Figure 1.11: Different type of trap charges [12] 

1.3.6.4 Near interface fixed charges (𝑸𝒇) 

These are charges located near the interface inside the oxide. The density 

of fixed charges relates to oxidation process such as: gases, temperature and 

ramping down condition and could be reduced by optimizing process or 

annealing post oxidation [13].  

The presence of fixed oxide charges shifts the flatband voltage of the MOS 

structure toward the positive range if the traps are positively charged and 

toward the negative range if the charges are negative. The value of fixed oxide 

charges could therefore be measured by following equation: 

𝑄𝑓 = (ɸ𝑚𝑠 − 𝑉𝐹𝐵)𝐶𝑜𝑥    Equation (1.6) 

Where  ɸ𝑚𝑠 = ɸ𝑀 − ɸ𝑆𝑖𝐶. 

Figure 1.12 shows the capacitance-voltage graph of an ideal SiC MOS capacitor. As 

can be seen the maximum capacitance takes place when the capacitor is in accumulation and 

the capacitance decreases due to the depletion until it reaches deep depletion.  
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Figure 1.12: C-V characteristic of an ideal n-type SiC MOS capacitor 

In a real MOS capacitor structure, the oxide and interface charges 

discussed earlier will change the electrical behavior of the device. As it is shown 

in the Figure 1.13, oxide trapped charges shift the flatband voltage positive or 

negative if it is charged positively and negatively (respectively). Near interface 

traps only create hysteresis [13].  
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Figure 1.13: changes in C-V graph induced by oxide and interface charges 

[13] 

Interface traps stretch out the C-V curve near the accumulation region. As 

mentioned previously in accumulation region, a large of number of electrons are 

attracted toward a thin layer very close to the interface in SiC bulk. Since 

interface traps can act as columbic scattering energy, they will scatter electrons 

away from the interface and therefor it takes a longer time to create the 

accumulation layer.   

The most common way to characterize the defect in 𝑆𝑖𝑂2/𝑆𝑖𝐶 interface is 

using the C-V measurement. High-low frequency method is used in this project 

to measure𝐷𝑖𝑡. 
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Figure 1.14: High-low frequency measurement technique 

In the high-low method, capacitance in measured at two different 

frequencies. At very low frequency, all the interface charges can respond to the 

signal and at the high frequency, the interface trap life time is not short enough 

to respond to the signal.  The equivalent circuits are shown in Figure 1.15, where 

𝐶𝑜𝑥  is oxide layer capacitance, 𝐶𝐷 is depletion layer capacitance and 𝐶𝑖𝑡 is the 

interface trap capacitance.  

Figure 1.15: The equivalent circuits of capacitance in MOS capacitor 

under (A) low and (B) high frequency measurement 
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Capacity is defined as  

𝐶 =
𝛥𝑄

𝛥𝑉
                                                        Equation (1.7) 

Where 𝛥𝑄  is the change in charge corresponding to the change in the 

voltage, 𝛥𝑉. Based on the models shown in Figure 1.15, the low frequency 

capacitance (𝐶𝐿𝐹) is defined by: 

𝐶𝐿𝐹 =
1

𝐶𝑂𝑋
−1+( 𝐶𝑖𝑡+𝐶𝐷)−1                                 Equation (1.8) 

Since trap density (𝐷𝑖𝑡) is defined as 𝐶𝑖𝑡/𝑞, using equation 1.8, the trap 

density is given by 

𝐷𝑖𝑡 = [
𝐶𝑜𝑥.𝐶𝐿𝐹

𝐶𝑜𝑥−𝐶𝐿𝐹
−  𝐶𝐷] .

1

𝑞
                               Equation (1.9) 

Also the high capacitance (𝐶𝐻𝐹) is given by 

𝐶𝐻𝐹 =
𝐶𝑜𝑥𝐶𝐷

𝐶𝑜𝑥+𝐶𝐷
                                              Equation (1.10) 

Using equation 1.10 to solve for 𝐶𝐷, equation 1.9 could be rewritten as  

𝐷𝑖𝑡 = [
𝐶𝑜𝑥𝐶𝐿𝐹

𝐶𝑜𝑥−𝐶𝐿𝐹
−

𝐶𝑜𝑥𝐶𝐻𝐹

𝐶𝑜𝑥−𝐶𝐻𝐹
] .

1

𝑞
                         Equation (1.11) 

Since the value of traps can be different across the interface, the trap 

density is plotted against the energy band gap position (𝐸 − 𝐸𝑉[𝑒𝑉]) [9].  The 

position of the Fermi level with respect to the majority carrier band edge at the 

surface of the semiconductor is given by 
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𝐸 − 𝐸𝑉 =
𝐸𝑔

2
− 𝐾𝑇𝐼𝑛(

𝑁𝑏𝑢𝑙𝑘

𝑛𝑖
) + 𝛷𝑆                    Equation (1.12) 

Where kT is the thermal energy at room temperature and 𝛷𝑠 is the surface 

potential given by  

𝛷𝑆 =
𝑞𝑁𝑏𝑢𝑙𝑘𝑊𝑑𝑒𝑝

2

2ℇ𝑆ℇ𝑂𝑋
                                                Equation (1.13) 

𝑁𝑏𝑢𝑙𝑘 is the bulk doping of the semiconductor, ℇ𝑂𝑋 is the oxide dielectric 

constant, ℇ𝑆 is the dielectric constant of the semiconductor, 𝑊𝑑𝑒𝑝 is the depletion 

width.   

1.3.7  Leakage currents 

The other main challenge in achieving a high quality oxide is gate leakage 

current; there are two main sources of leakage current in MOS devices that are 

described in this section.  

1.3.7.1  Direct tunnelling  

When electrons move from a small band gap material (e.g.: metal) to a 

medium band gap material (e.g.: oxide), they encounter a potential barrier. 

According to quantum theory, electrons can pass this barrier and move inside 

the other material in some cases. This is called direct tunneling [14]. 
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Figure 1.16: Quantum physics theory: Electron (blue in the picture) can pass 

the potential barrier and move from one medium to another medium [14] 

As the width of the potential barrier decreases, the probability of direct 

tunneling increases exponentially [10]. When gate voltage is applied. At lower 

gate voltages electron can move from gate through oxide to 4H-SiC through the 

trapezoidal potential.  This phenomenon happens mostly in oxide thinner than 

5nm and therefor is not a main concern for this work where the oxide thickness 

is between 70-100 nm. 

At higher gate voltages FN tunneling is responsible for the leakage current 

that is explained in the next section. 

 

Figure 1.17: Direct tunneling in a MOS capacitor [10]  
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1.3.7.2  Fowler-Nordheim (FN) tunnelling 

F-N tunneling refers to the phenomenon where the charges start to cross 

through the oxide to SiC substrate when voltage is applied to MOS structure. 

At higher gate voltages, the resulting electric field pulls down the barrier of the 

𝑆𝑖𝑂2 layer. The higher the electric field, the barriers is pulled down more and 

eventually the triangular potential barriers results in tunneling of the carriers 

from metal Fermi level into the oxide. Once the carriers are inside the dielectric 

layer, they can move to valence or conduction band of the dielectric material and 

if they move to the conduction bands they are free to move inside and through 

the oxide. This results in a leakage current across the gate.  

 

Figure 1.18: FN tunneling in MOS device [10] 

 

 The FN tunneling current, 𝐽𝐹𝑁, is given by [10] 



Chapter 1: Introduction to 4H-SiC Trench MOSFET 

1-31 

 

𝐽𝐹𝑁 =
𝑞3𝑚𝑠𝑐

8𝜋ℎ𝑚𝑜𝑥𝛷𝐵
𝐸𝑂𝑋

2𝑒𝑥𝑝 [−
4√2𝑚𝑜𝑥𝛷𝐵

3

3𝑞ℎ𝐸𝑜𝑥
]                Equation (1.14) 

Where h is Planck’s constant, 𝑚𝑆𝐶 is the effective mass in semiconductor,  

𝑚𝑂𝑋 is the effective mass in the oxide, 𝛷𝐵 is the barrier height of the 

oxide/semiconductor interface and 𝐸𝑂𝑋 is the electric field across the oxide and 

is defined as 

𝐸𝑂𝑋 =
𝑉𝑔𝑉𝐹𝐵

𝑑
                                               Equation (1.15) 

Where 𝑉𝑔 is the gate voltage, 𝑉𝐹𝐵 is the flatband voltage and is the oxide 

thickness. 

The theoretical barrier height for FN tunneling is calculated as the 

difference between the dielectric conduction band and the semiconductor Fermi 

level. The conduction band offset between 𝑆𝑖𝑂2 and 4H-SiC is 2.7 eV which is 

smaller compared to conduction band offset of 3.2eV between of SiO2 and Si. 

This results in higher leakage current in SiC devices (Figure 1.19).  FN 

tunneling is one of the main concern in 4H-SiC MOS devices and can affect the 

lifetime of the device.  FN tunneling gives rise to the gate current and can 

increase the threshold voltage, which results in power dissipation. FN tunneling 

is reported to happen in oxide with thickness less than 50nm [10]. 
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Figure 1.19: Conduction(top) and valence band(bottom) offsets of different 

semiconductors with respect to 𝑆𝑖𝑂2 

1.3.7.3  Trap Assisted Tunnelling 

Trap assisted tunneling results in leakage current due to presence of traps 

density. This leakage current exists in low bias voltages as well. The amount of 

this leakage current depends on the traps density, though it is believed electric 

field stress can increase the number of traps and hence increases the leakage 

current. This current is called stressed induced leakage current (SILC) [10] [15]. 
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Figure 1.20: Trap assisted tunneling [10]  

1.3.8  Electrical Characteristics of Trench MOS Capacitors 

As MOS capacitor acts as the heart of a MOSFET, it is important to 

optimise this structure to reduce trap density and leakage current to have a 

functional trench MOSFET. One of the main questions in this project was if a 

trench MOS capacitor exhibits the same characteristics as a planar MOS 

capacitor. As there were not many resources available, the first step was to 

fabricate a trench MOS capacitor to confirm that the electrical characteristics 

such as the C-V curves are same as the planar MOS capacitors. 

The process of fabricating trench MOS capacitor is shown in the Figure 

1.21. 4H-SiC wafer was cleaned in solvent in ultrasonic bath to make sure there 

were not any large contaminations on the wafer (a), then a thick layer (2 µm) of 

TEOS oxide was deposited on the wafer to act as the mask layer (b). The next 
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step was to pattern the trench structures on the 𝑆𝑖𝑂2 layer (c). Shipley S1818 

has been used as the photoresist in this step. 

Corial 200IL ICP-RIE etcher was used to etch the trenches in the 𝑆𝑖𝑂2 layer 

(d) then photoresist layer is removed, and using 𝑆𝑖𝑂2 as the mask, trenches were 

etched in the SiC layer (e) using ICP power of 1000 W, RF power of 55 W, gas 

flow of 𝑆𝐹6 and Ar with flow rate of 50 SCCM and 40 SCCM (respectively) and 

pressure of 10 mTorr. The sample carrier was made of quartz and graphite. 

After removing the oxide layer with HF (f) the samples were cleaned properly 

using the process described in the Chapter 5, to prepare the samples for growing 

thermal oxide in the furnace. A layers of sacrificial 𝑆𝑖𝑂2 layer was thermally 

grown on the SiC layer in 𝑁2𝑂 atmosphere at 1300°C for 4 hours (g). After 

removing the sacrificial oxide layer in HF (h), gate oxide layer was thermally 

grown on SiC wafer (i). A layer of Titanium and Nickel (Ti/Ni) was then 

deposited at the back substrate to act as the substrate electrode. This layer was 

activated by annealing at 1200°C in Argon (Ar) for 2 minutes. The last step was 

to deposit Aluminum (Al) on the front side as the gate metal electrode.  
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Figure 1.21: Fabrication process of a trench MOS capacitor 
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Figure 1.22: Structure of trench MOS capacitor 

 

Figure 1.23: 4H-SiC trench MOS capacitor (A) after etch (B) after gate 

metal deposition 

 

Table 1.2 lists the structure of different fabricated capacitors and the 

resulting capacitance from calculation and capacitance. The measured 

capacitance is from the accumulation region, where the capacitance is at its 

maximum. In previous section, the calculated capacitance is explained. All 

measurements were done in low frequency (100Hz) to make sure the effect of 

traps densities is taken into consideration.  
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Table 1-2: Comparison of capacitance measurement and calculation for 

4H-SiC trench MOS capacitors with different structure. The oxidation was 

done in 𝑂2 for 1.5 hour at 1400°C, this was followed by 3 hours of 𝑁2𝑂 

annealing at 1300°C. The resulting oxide thickness was 0.112 µm. All trenches 

are located on 112̅0 wall except number 2, which is on °45 from 112̅0 wall. 
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Figure 1.24: C-V measurement of fabricated 4H-SiC trench MOS 

capacitors from table 2 

When calculating the capacitance, the circumstances such as crowding of 

the electric field in the corners of trenches and its effects on capacitance were 

ignored. As can be seen in Figure 1.25, the values of measured capacitance and 

calculated capacitance are very close. The lower values of measured capacitance 

can be explained by existence of leakage current through the oxide.  

Capacitors number 1 and number 2 have same area, but trenches’ wall are 

allocated on 112̅0 plane in capacitor number 1, and 45° toward 11̅00 orientation 

in capacitor number 2. It is seen that orientation of sidewall has resulted in a 

very small difference between these two capacitors. 
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Figure 1.25: Comparison of capacitance from measurement of the 

fabricated capacitors and ideal value(calculation). The numbers on x-axis refer 

to the Table 1.2 

When trench sidewalls were very rough, the C-V measurement usually 

showed very high leakage current. As can be seen in the Figure 1.26(B), lower 

frequencies in this case resulted in the lower capacitance, this is because the 

longer the voltage is applied on MOS structure, the more leakage current is 

resulted and therefor the capacitance is decreased. 
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Figure 1.26: 4H-SiC trench MOS capacitor with rough sidewalls (a) and 

its resulting C-V measurement 
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1.4 Conclusion 

This chapter gives an overview of characteristics of MOS capacitors and 

trench MOSFETs. In the last section, the common issues with gate oxide 

such as charges and leakage current were also introduced. This basic 

information will be used across this work and in different chapters. 

In the next chapter, a literature review of the current status of 4H-SiC 

trench MOSFETs and the common issues and suggested solution will be 

discussed. The literature review was a necessary step to understand the 

areas that need to be improved in 4H-SiC trench MOSFET.  

Chapter 2, reviews the studies on 4H-SiC trench MOSFETs. This was an 

important step   before starting this work, as the results provided a clear 

overview of the current status of these devices, and the issue and obstacles 

that need to be solved. The literature review showed that the main issue 

with SiC trench MOSFETs, is the quality of the oxide   and the interface 

between SiC and oxide. Hence the gate oxide was chosen as the focus of 

this project, instead of achieving high breakdown voltages. 

In chapter 3, a brief overview of design and simulation of 4H-SiC   trench 

MOSFETs is provided.  The results show that without a gate protection, 

the breakdown always happens in the oxide layer in the bottom of the 

trench corners.   
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Chapter 4 is entirely focused on etching trenches in of 4H-SiC. The very 

first experiments proved that the etching process is a very challenging 

steps that usually results in very rough surface or microtrenches at the 

corners of the trenches. Since there were no experience of fabrication of 

trench structures in our group, the author concluded that   a very clear 

understanding of etching process is necessary to be able to minimise 

roughness and microtrenches. The results of this chapter is that with 

combination of optimised photolithography process, mask and etching 

process, these issues could be minimised. 

In chapter 5, the focus is to understand the processes that are commonly 

used to fabricate gate oxide.   During the literature review, it became clear 

that except mobility and breakdown voltage, there are limited information 

on how different gate oxidation method can affect the electrical parameters 

of the device such as leakage current, threshold voltage. The results of this 

chapter provide a clear overview of effect of gate oxidation methods on the 

electrical measurements of the fabricated devices. This result could be used 

to determine which method should be used, or how the processes should be 

combined to achieve a reliable device when fabricating the second 

generation MOSFETs. 

Chapter 6 provide some recommendations on how to fabricate a 1.2kV 4H-

SiC trench MOSFET with higher current density and more reliable gate 

oxide.
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2  Introduction 

SiC is a very attractive material for high voltage, low on-resistance rated 

devices due to its superior material properties; high critical electric field 

strength, low intrinsic carrier concentration and high thermal conductivity. 

Table 2.1 gives a history of some of the first SiC MOSFETs produced and their 

corresponding specific on resistances [1]. At present, optically triggered SiC 

thyristor technology has been demonstrated up to blocking voltages of 12 kV / 

Chapter 

2 
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100 A [2, 3] and commercially available 6.5 kV / 80A (GeneSiC 

Semiconductors) [4]. Highly novel termination structures based on junction 

termination extension (JTE) accompanied by guard rings have been optimized 

for these structures.  

These SiC devices can currently operate at temperatures of 150 °C, 

displaying superior switching characteristics to their Si counterparts and 

lowest in-class on resistance for a given voltage and current rating. BJT 

technology offers a potential alternative for high voltage application. 4 kV 

BJTs have been realized [5] as early as 2005 with recent work being aimed at 

higher voltages. These devices demonstrated low currents with a specific on-

resistance of 56 mΩ-cm2 and a current gain of 9.  

 

 

Figure 2.1: Specific on-resistance vs. breakdown voltage of modern SiC power 
devices 
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The current state of the art for BJT technology has been developed by 

TranSiC, now owned by Fairchild Semiconductor. These are up to 4 kV devices 

and can operate within the temperature range of -80 – 250 °C. For higher 

switching frequency application, the SiC metal oxide field effect transistor 

(MOSFET) offers huge potential, especially when one considers its ease of 

voltage control (gate drive). CREE inc. commercialized the SiC MOSFET in 

2011 with their 1.2 kV / 24A / 160 mΩ range of devices. The SiC MOSFET has 

evolved from these initial 1.2 kV devices to 4kV/150A, right through to their 

latest research phase devices that have been demonstrated at 10 kV / 10 A. 

However, the specific on-resistance for these structures is extremely large 

measured [6] at 236 mΩ-cm2. This presents an opportunity for SiC trench 

MOSFETs to potentially enter the market. Trench MOSFETs can be realised 

with a lower specific on-resistance due to the elimination of the junction-FET 

(JFET) resistance. ROHM has commercialised SiC trench MOSFETs in the 

recent years with voltages as high as 1.2 kV, Current of 72A with on-resistance 

as low as 39 mΩ. These devices can operate at temperature as high as 175ºC.  

The first question that needed to be answered before starting this work was: 

what are the problems with 4H-SiC trench MOSFETs that we might 

encounter?  And what are the solutions that other studies have used. It is 

important to understand the common issues that the researchers and industry 

is facing and their suggested solution, to be able to find the areas in this field 

that needs improvement. 
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The main goal of this chapter is to look at studies on trench MOSFETs to 

provide an overview of main issues in design and fabrication of 4H-SiC trench 

MOSFETs. From the very first days of research on SiC MOSFETs, it became 

apparent that the main issue is the quality of oxide and interface of SiC/ SiO! 

and how it affects the operation and reliability of the devices.  
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2-1 Oxide Reliability 
During the off state, the drain voltage is supported by a depletion region 

formed in the p-base and n-drift region. The depletion layer results in a high 

electric field in both sides of the depletion layer. This is illustrated in Figure 

2.2, where the classis reverse biased p-n junction is shown. 

 

Figure 2.2: Formation of a p-n junction showing charge, electric field and 
potential distribution 

The trenches in a trench MOSFET are extended downwards into the n-

drift region to eliminate the effect of the parasitic JFET transistor, which 

exists in lateral channel MOSFETs. Therefore the gate oxide is exposed to the 

high electric field in the n-drift region. The electric field on the gate oxide in 

the off state could be determined from Gauss law:  

𝐸!" =
Ɛ!"#
Ɛ!"

.𝐸!"#   (2.1) 
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Moreover, since Ɛ!"#
Ɛ!"

= 2.5, the electric field in the gate oxide is much 

higher than the adjacent high electric field in the drift region. Therefore the 

device reaches the critical electric field of the gate oxide before reaching the 

avalanche breakdown field of the SiC material or in other word the device 

operation is limited by the gate oxide properties not the SiC material. The 

oxide electric field is higher in the corner of the trench (field crowding) which 

limits the operation of the device even further [7]. The other limitation 

imposed by this issue is that there is a need for cooling which is usually not 

required in other high junction temperature devices [7]. 

The other origin of problem with SiC trench MOSFETs is the high electric 

field of SiC material. This high electric field results in a higher surface electric 

field up to 10 times greater than Si devices [8]. However the barrier for 

electrons in the conduction band between SiO! and SiC is only about 2.7eV 

[9,10] compared to a barrier height of around 3.15eV between SiO! and Si, 

therefore the probability of Fowler Nordheim(FN) Tunnelling of electron from 

SiC to oxide is higher in SiC especially at elevated temperatures. Flow of FN 

current into oxide and the trapping of electrons into oxide causes higher 

threshold voltage [12, 13]. This also means that because of elevated leakage 

current, the critical electric field in SiO! is reached before avalanche 

breakdown in the SiC bulk.  

Although reducing the doping of the n-drift region can reduce the high 

electric field on the gate oxide, this results in a higher on-state resistance. 
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Many studies [7,14] have suggested keeping the oxide electric field under 1-2 

MV/cm and the temperature below 150°C. This issue must be carefully studied 

and there is a need for an appropriate solution since the low critical electric 

field of the oxide imposes a limitation on the gate drive voltage under the on 

state condition and the p-doping of the base region must be optimized in order 

to minimize the threshold voltage [7].Various studies from the literature have 

suggested many approaches to minimize the oxide electric field in on and off 

states. Some believe the change in oxide material is the solution [7,14,16] 

while others seek solutions in utilizing alternative structures [17,18,19,20,21]. 

The results from all the studies agree that without the proper solution the 

operation of trench MOSFETs at elevated temperature for the long term might 

not be possible. 

2.1.1  Optimization of Electric Field 

The optimization of the electric field effect in SiC devices has been the 

focus of many studies since the start of research on 4H-SiC MOSFETs. To 

improve the high electric field distribution on the gate oxide, there have been 

many suggestions, which include: 

o Electric Field Optimization through alternative structures. 
 

o High permittivity insulators. 
 
As mentioned before, the electric field on the SiO!is around 2.5 times higher than the 

adjacent SiC. This electric field is higher in the corner due to two-dimensional field 

crowding. The simplest solution to decrease the electric field at the trench corner is to 
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curve the corner [17,18,19,11]. One study [17] shows that the rounded corner results in 

around 2MV/cm less electric field on the oxide. It also indicates that wider trench width 

help to decrease the oxide electric field further. This study indicates that increasing the 

thickness of the oxide is another factor that can help to decrease the oxide electric field. 

Table 2.1: Oxide electric field taking into account the trench width 
and rounded corners [17]. 

 

Another very popular design to decrease the oxide electric field at the 

bottom of the trench is to deploy a shielding technique with a P+ implanted 

region (gate shield) underneath the gate [18, 19, 11]. This structure is shown 

in Figure 2.3B and it can be inferred that this results in the creation of a JFET 

transistor between shielded regions within the structure. 
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Figure 2.3:  (A) conventional trench MOSFET (B) trench MOSFET with gate 
p-region c) buried p-region d) gate p-region and buried p-region[18] 

 

Therefore the JFET resistance is added to the module, which degrades the on 

resistance. Studies [18,20] suggest that increasing the cell pitch can reduce the 

on resistance. However, it can be seen that the breakdown voltage and gate 

oxide electric field are also cell pitch dependent [18]. Increasing the cell pitch, 

increases the gate oxide electric field, with or without the gate shield, and also 

decreases the blocking voltage. Therefore there is always a trade-off between 

on resistance, electric field and breakdown voltage (Figure 2.4). Also it has 
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been suggested [18] that there is a critical cell pitch, with or without gate 

shield, which if exceeded, will result in punch through of the device. Therefore 

the effect of cell pitch must be carefully studied when designing a device. 

Other suggested structures are source trenches that are deeper than the gate 

trenches (Figure 2.3C)[18]. Deeper trenches attract the electric field and hence 

protect the shallower gate trenches. There are no oxide in the deeper trenches 

and hence the device will not break down due to the high electric field on the 

oxide. A gate shield was added to both source and gate trenches in the study 

that increases the breakdown voltage but also the on resistance. 
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Figure 2.4: Cell pitch dependence of (a) blocking voltage with different p-base 
concentration (b) gate oxide electric field at the breakdown and (c) specific on-
resistance of the UMOSFET structure with Gate p-region and without gate p-

region[18] 
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Other alternative solution include shifting the high electric field from the 

gate trench to either another implanted p-region (Figure 2.5) [21] , to a trench 

p-base [18] or to a pillar under the p-base (super junction design) (Figure 2.6) 

[18,22].  

[18] Has achieved gate oxide electric field of less than 3 MV/cm with on 

resistance of less than 6.8 mΩ𝑐𝑚! using buried p-base regions for the 

breakdown voltage of 3300 V (Simulation results) which demonstrates a very 

promising trade-off between critical gate oxide electric field and the on 

resistance(Figure 2.6) but this structures are very difficult to fabricate. 

Figure 2.5: Trench MOSFET with implanted p-region shield 

Figure 2.6: Trench MOSFET with Polysilicon trench [21] 
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Using a high permittivity insulator is another solution. Looking at 

equation 2.1, it can be seen that if a dielectric with higher permittivity is used, 

the oxide electric field will be reduced. The idea is to achieve a critical electric 

field of the insulator as close as possible to the SiC material to be able to take 

advantage of the SiC material properties to have a more reliable operation 

[14,16].[14] has considered dielectric such as TiO!  and  Ta!O! and report 

successful results with low traps density(the value is not disclosed). Though 

this is a new method and there are not many study on reliability of this 

insulator layer in trench MOSFETs. 

 

2-2 Channel Mobility 
One main issue with SiC MOSFETs is the trapped interface charges. The 

source of trapped interface charges is not very clear in this moment, but it has 

been suggested that carbon clusters type defects situated near-interface sub-

oxide is responsible [27]. Carbon dimmers in SiC or oxygen vacancies in the 

oxide near the interface can be the source of the trapped interface charge. A 

more detailed discussion on the origin of traps density will be presented in 

chapter 5.  Interface traps create localized energy levels which rise 

exponentially toward the conduction band in the upper half of the band gap 

[27][28]. The value of the interface state density reaches above 10!"𝑒𝑉!!𝑐𝑚!! 

near the band edge in SiC MOS devices [27][29] and since the interface traps 

near the conduction band have the most influence on the mobility in n-channel 
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MOSFET[30], This high value of interface state density results in issues such 

as poor mobility in channel which is one of the main problem with SiC trench 

MOSFETS in low voltages [32]. A high density of interface traps causes the 

induced electrons at the interface to be trapped and no more available for 

conduction. Also this trapped charge acts as a columbic force which scatter the 

rest of the mobile electrons causing a lower channel mobility in SiC MOSFETs 

[28][34][7]. The channel mobility also needs to be improved to achieve a low 

threshold voltage.  

Post oxidation annealing in Nitrogen, Phosphorus and Hydrogen have 

been the most effective solution to increase the mobility.  Nitric oxide (NO) 

annealing is the most promising solution to date. In recent years there have 

been attempts to improve the mobility of the inversion channel by reducing the 

interface trap density. Successful studies suggest high temperature

 post oxidation 

annealing in nitric oxide [37][35][36][38] which has been reported to be 

useful in improving the channel mobility [39,40,20] and have reduced the 

interface state density near the conduction band of 4H-SiC to the value similar 

to 6H-SiC [37]. This has resulted in an increase of channel mobility to 

approximately 30-35 𝑐𝑚!/𝑉. 𝑠 and recently a peak field effect mobility of 150 

𝑐𝑚!/𝑉 has been reported by oxidation in presence of alumina [41]. Though in 

recent years Phosphorus annealing has become very popular as it can increase 

the mobility to more than 80 𝑐𝑚!/𝑉. 𝑠[42]. This has been linked to lower traps 
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density that resulting with Phosphorus passivation. The detailed discussion on 

these methods will be presented in chapter 5. 

2-3 Time Dependent Dielectric Breakdown 
The high electric field on oxide in addition to temperature results in 

another issue that has been coined: Time dependent dielectric breakdown 

(TDDB) in SiC devices. 

 [44] studies TDDB measurement at various temperatures and electric 

fields and suggest a lifetime of 10 years at 375°C if the oxide electric field is 

kept below 4.6 MV/cm. Bernstein [45] suggests that the existence of different 

failure mechanism under low and high electric field and studies the lifetime in 

the range of high and low field electric field condition, taking into account 

temperature acceleration, area and failure rate in a SiC MOS device, and 

concludes that the TDDB breakdown SiC/SiO!  interface is only limited by the 

quality of oxide interface not the intrinsic properties of the SiC. A life time of 

10 years is suggested for gate electric field less than 4.6 MV/cm for a 

temperature of 150 °C.  For temperatures around 250 °C, maximum electric 

field strength of 2.9 MV/cm is suggested for a 10 years lifetime.  

[46] measured the constant voltage TDDB for different 4H-SiC MOS 

capacitors and suggest lifetimes of 10!"  hours at 3 MV/cm at the temperatures 

of 175°C.  [47] has suggested lifetime of 10 years for oxide electric fields of 3 

MV/cm at a temperature of 170 °C for a constant gate voltage of 20V. 
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2-4 Threshold Voltage Shift 
High temperature gate bias (HTGB) stress test on SiC MOS devices [48] 

shows that when a device is heated up to the maximum allowable temperature 

for long period , even though the gate survive the test but there is an increase 

in threshold voltage of the device. Also the results from high temperature gate 

switching, similar to a real situation, shows that there is a shift in threshold 

voltage with time. The results of a 1200V MOSFET shows that the threshold 

voltage shift of about o.25 V in 800 hours. 

Some researchers [49][50][51] suggest that the cause of this voltage shift 

is attributed to the channel electron trapped at the interface. Interface trap 

charges, oxide trap charges and fixed charges reduce the mobility and in 

consequence increase the threshold voltage and therefore they all need to be 

improved to achieve threshold voltage stability [49]. Solution such as NO 

annealing can improve the threshold voltage shift up to three times [25] as 

well as the channel mobility. 
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2-5 Conclusion 
The common problems in designing and fabrication of 4H-SiC trench 

MOSFETs were issued. From the results in this chapter, it was decided that 

the work on the first generation of trench MOSFETs in Warwick University 

should be to focus on the quality of the interface and not improving the 

breakdown voltage. Quality of oxide and the interface in trench MOSFETs is 

the main issue in designing reliable SiC trench MOSFETs.  
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3 Introduction 

The ultimate goal of this project is to contribute to fabrication of 10kV 4H-

SiC trench MOSFET, therefore in the first section (2.1), design and simulation 

of 10kV trench MOSFET is presented. In the next section (2.2) simulation of 

1.2kV 4H-SiC trench MOSFET that is fabricated during this work could be 

found. All simulations have been done in Silvaco software [1]. 
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3.1  Design of a10 kV Trench MOSFET Ideal 

Structure 

All the equations used to design the structure of 10kV and 1.2 kV trench 

MOSFETs, are based on Baliga’s theories [2]. 

3.1.1  Drift region Design 

Doping and thickness of the structure is calculated based on Baliga’s 

equations where doping (𝑁𝐷) and thickness of drift region is chosen based on the 

following equations: 

𝐵𝑉𝑝𝑝(4𝐻 − 𝑆𝑖𝐶) = 3𝑥1015𝑁𝐷
−3/4          (Equation 3.1) 

𝑊𝑝𝑝(4𝐻 − 𝑆𝑖𝐶) = 1.82𝑥1011𝑁𝐷
−7/8      (Equation 3.2) 

The doping is chosen based on the parallel plane breakdown voltage (𝐵𝑉𝑝𝑝), 

and the thickness is the corresponding maximum parallel plane depletion width 

(𝑊𝑝𝑝) given in equation 2. The resulting electric field (𝐸𝑐) is calculated based on 

equation 3: 

𝐸𝑐(4𝐻 − 𝑆𝑖𝐶) = 3.3𝑥104𝑁𝐷
1/8             (Equation 3.3) 

Figure 3.1 and 3.2 show the doping and thickness based on parallel plane 

junction breakdown voltage. There is a 20% added to the breakdown voltage 

value in this project. This is due to the fact that the value of breakdown voltage 

calculated based using Baliga’s equations can result in 20% smaller value in 
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comparison to Fulop’s power law [2]. Therefore, to add a safety margin we have 

added 20% to the required breakdown voltage and targeted breakdown voltage 

of 12.5 KV in our calculations. Using this equations doping of 1.5x1015𝑐𝑚−3 

 And thickness of 100 μm is chosen for 10kV 4H-SiC trench MOSFET. 

 

Figure 3.1: Breakdown voltage for Abrupt Parallel Plane Junction [2] 
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Figure 3.2: Maximum Depletion Width at Breakdown in Si and SiC[2] 

3.1.2  P-body Design 

The doping and thickness of the P-body region should be carefully chosen. 

The doping of the P-body affects the threshold voltage significantly. The results 

of the simulation is listed in Table 3.1. It is important to achieve low threshold 

voltage and hence lower doping is recommended.  

P-body 

doping 
1x1017𝑐𝑚−3 3x1017𝑐𝑚−3 5x1017𝑐𝑚−3 

Threshold 

Voltage  
7.619 V 12.932 V 14.186 V 

Table 3.1: Effect of the P-doping on the threshold voltage 

 

Si

4H-SiC
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The P-body thickness was kept to minimum to reduce the channel length 

and hence the on-resistance [2]. Though it is very important to make sure the 

thickness is chosen carefully to avoid reduction in breakdown voltage. During 

the blocking mode, the electric field is extended into the P-body region due to 

the creation of depletion region. If the thickness of this region was less than the 

depletion region width in the P-body, the depletion region will reach the N+ 

source and hence the N+ source and P-body will be short circuited. This will 

results in lower breakdown voltage.    

The depletion width in P-body for different P-body doping is shown in 

Figure 3.3. As can be see the depletion width in the P-body depend on the doping 

in both P-body and the N- drift region. For the calculated drift region doping of 

1.5x1015𝑐𝑚−3 and P-body doping of 1x1017𝑐𝑚−3, the resulting depletion width of 

1.7 μm is achieved. A 0.2 μm safety margin was added to to the P-body thickness 

in the simulations in this work. 
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Figure 3.3: Depletion layer width inside the P-body region in Si and 4H-SiC 
[2]  

3.1.3  Other Parameters 

To design the ideal trench MOSFET, we need to achieve low threshold 

voltage. Threshold voltage could be calculated using the following equation: 

𝑉𝑇ℎ = √4ℇ𝑆𝑘𝑇𝑁𝐴𝐼𝑛(𝑁𝐴/𝑛𝑖)
𝐶𝑜𝑥

+ 2𝑘𝑇
𝑞 𝐼𝑛(𝑁𝐴

𝑛𝑖
)   (Equation 3.4) 

Where 𝑁𝐴  is the doping concentration of the P-body, k is Boltzmann’s 

constant, T is the absolute temperature, 𝐶𝑜𝑥 is the specific capacitance of the 

gate oxide, ℇ𝑆 is the dielectric constant of the semiconductor, 𝑁𝐴 is the doping 

concentration in the P- body region. 
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This equation results in the Figure 3.4, for an oxide layer with thickness of 

0.05 µm.  Based on this equation we can expect the threshold voltage of around 

8V for a 10kV trench MOSFET.  

 

Figure 3.4:  Threshold voltage of 4H-SiC MOSFETs (dashed lines represent 
the use N+ polysilicon gate and an oxide fixed charge of 2x1011𝑐𝑚−2)[2] 
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value of traps density(9 × 1011𝑐𝑚−2𝑒𝑉−1) was used in all these simulation which 

is close to the best results achieved in the literature review.  

Region N+ source P- body N- Drift N+ substrate (drain) 

Doping 1x1019𝑐𝑚−3 1x1017𝑐𝑚−3 1.5x1015𝑐𝑚−3 1x1019𝑐𝑚−3 

Table 3.2: Regional doping concentration of ideal 10kV SiC trench MOSFET 

 

The ideal structure of 10kV, 4H-SiC trench MOSFET is shown in Figure 

3.5. This structure contains a lightly doped drift region with 100 μm thickness, 

a substrate (drain) with 1 μm thickness and P-body of 1.9 μm.  
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Figure 3.5: Ideal structure of 4H-SC 10kV  trench MOSFET (um=μm) 

Simulation results of this structure have demonstrated a breakdown 

voltage of 4.5 kV without any junction termination. Since in the off-state, no 

voltage is applied to the gate, the electric field in the insulator increases to a 

value more than in the on-state. Since the electric field across the insulator is 

about 2.5 times the SiC electric field, therefore it is important to minimize the 

oxide electric field so that it is less than the critical value.  Figure 3.6 shows that 

the value of the maximum electric field in the SiC drift region and on the oxide 

layer. 
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Figure 3.6: Electric field on gate oxide and SiC drift region as a function of 
breakdown voltage for fixed drift thickness and different doping concentration 

of drift region 

As discussed in the previous chapter, in an ideal structure without gate 

protection, the performance of the structure is limited by the oxide breakdown 

and hence the breakdown occurs at 4.5 kV, when the electric field in the 

insulator bottom and corner has increased to a value more than the critical 

electric field of 𝑆𝑖𝑂2.This is shown in Figure 3.7, where the potential inside the 

insulator layer has increased to more than zero. As can be seen the breakdown 

point is the corner of the trench.  Therefore the 10KV trench MOSFET structure 

would be limited to about 4.5 KV because of the gate oxide breakdown. 
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Figure 3.7: The potential distribution at breakdown for 100 μm drift region 
and doping of 1.5x1015𝑐𝑚−3, the structure shows the potential across insulator 

has increased to a value more than zero. 

The results clearly show that a solution is needed that prevent the breakdown in the 

oxide, so that the point of breakdown shifts the SiC. Next section present simulation of gate 

protection that is widely used in industry to avoid breakdown of oxide layers in SiC trench 

MOSFETs. 

3.1.5  Gate Protection 

In the previous section, it was demonstrated that careful consideration 

should be taken to avoid dielectric breakdown when designing a trench 
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MOSFET. The most common solution is to protect the gate insulator with a P+ 

shield instead of decreasing the drift region doping.  

Figure 3.8 shows the potential and electric field distribution across the 

same structure with a gate protection. The gate shield has doping of 1𝑥1019𝑐𝑚−3. 

As can be seen there is zero potential across the gate and the maximum electric 

field has been shifted to the interface of shield/SiC. 
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Figure 3.8: Potential distribution of shielded  trench MOSFET with no gate 
voltage applied at 10KV for doping of 1.5x1015𝑐𝑚−3 and thickness of 100 μm 

The other advantage of P+ gate shield is that it prevents the punch through 

in the base region. In the conventional silicon carbide power MOSFET structure, 

the minimum P-base thickness and doping concentration are constrained by the 

reach-through limitation [2]. This does not occur in the silicon carbide shielded 

power MOSFET structure due to shielding of the P-base region from the drain 

potential by the P+ shielding region. This allows reducing the channel length to 

less than 1 µm. In addition, the doping concentration of the P-base region can 
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be reduced to achieve a desired threshold voltage without reach-through-

induced breakdown. The smaller channel length and threshold voltage reduce 

the channel resistance. 

The current-voltage characteristic of this trench MOSFET is shown in 

Figure 3.9. The breakdown voltage of this shielded trench MOSFET is 10.2 kV. 

 

 

Figure 3.9: Forward Characteristics of 10kV trench MOSFET with gate 
shield 

 

3.1.6  Threshold Voltage 

Threshold voltage of a trench MOSFET is determined by the P-body doping 

and channel mobility, although the result of simulation listed in table 3.4 
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voltage. To achieve low threshold voltage, P-body doping and oxide thickness 

needs to be kept to minimum. From the results listed in tables 3.3 and 3.4, the 

P- body doping of 1 × 1017 𝑐𝑚−3 and gate oxide thickness of 0.05 µm was chosen 

for the first generation trench MOSFET. 

P-body doping (𝑐𝑚−3) 1 × 1017 3 × 1017 5 × 1017 

Threshold Voltage(V) 7.619 12.932 14.186 

Table 3.3: Effect of P-doping achieved from simulation of 4H-SiC trench 
MOSFET 

 

Gate Oxide Thickness 0.05 μm 0.07 μm 1 μm 

Threshold Voltage 7.619V 9.56V 12.1V 

Table 3.4: Effect of gate dielectric thickness for P-body doping of 
1 × 1017𝑐𝑚−3 achieved from simulation of 4H-SiC trench MOSFET 

 

 

 

3.2  1.2 kV Trench MOSFET  

A lower voltage trench MOSFET was fabricated in this project. The main 

reason for this decision was that all the experiments and results achieved using 
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a lower voltage trench MOSFET could be applied to a 10kV MOSFET without 

paying the high cost for a 4H-SiC wafer with 100-μm thicknesses.  

The doping and thickness of this MOSFET are listed in Table 3.5. The goal 

was to design and fabricate a 1.2 kV trench MOSFET. 

  Specification Unit 

Layer 1: n+ substrate (Drain) Doping 1.0𝑥1019 𝑐𝑚−3 

n-type Thickness 0.5 μm 

Layer 2: n- drift Doping 9.42 𝑥1015 𝑐𝑚−3 

n- type Thickness 15 μm 

Layer 3: P- body Doping 1.0 𝑥1017 𝑐𝑚−3 

P- type Thickness 2.1 μm 

Table 3.5: Properties of 1.2 kV MOSFET 

Since this was the first attempt of making any trench device in our 

research group, instead of creating an ideal device (smaller device with higher 

number of trenches to reduce on-resistance and increase current density), the 

focus was on fabricating trenches and then proving that the trenches can be 

used in a trench device. One other reason that prevented us from fabricating an 

ideal device was the limitation imposed by the machinery, mainly the resolution 

of photolithography mask aligner. Patterns and distance between patterns that 

were less than 4 µm were not clear using the microscope on the mask aligner  
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and hence the masks have to be re-ordered to make sure the boarders of the 

patterns are at least 4 µm from each other to avoid any error in fabrication that 

can be caused by high resolutions (example is short-circuiting source and gate 

contacts). The focus was of this work was on fabricating the first generation of 

trench devices that are working properly and improve on them in future.  

The structure of trench MOSFETs that were fabricated during this work 

is shown in Figure 3.10. 

 

Figure 3.10: Structure of 1.2 kV trench MOSFET (without junction 
termination) that was fabricated in this project 

The simulation results show that this 4H-SiC trench MOSFET has 

breakdown voltage of around 350-400 V (depending on the resolution of the 

simulation) without any gate protection or junction termination.  
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Figure 3.11: Simulation results of the breakdown voltage of 1.2 KV trench 
MOSFET fabricated in this project. 

 

Figure 3.12: Breakdown happens in the oxide layer at the corner of trenches in 
devices without gate protection  
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As this is the first generation of trench MOSFETs in science city group, we 

have not focused on increasing breakdown voltage. The focus is rather on 

achieving a functional device with acceptable electrical measurements such as 

current, voltage, mobility and leakage current. In the last chapter 

(recommendation), alternative structures are introduced that can be used to 

increase the breakdown voltage of 1.2 kV trench MOSFETs. These suggestions 

could be used to improve the first generations MOSFET and achieve higher 

voltages in future. 

3.3 Double Trench Edge Termination 

As it is shown in Figure 3.12, the trench corners seem to act as a point of 

attraction for the electric field. This behavior is similar to the P- ring used as 

junction termination. This raises a question, “can trenches be used for the 

purpose of junction termination?” If this could be proved, trench junction 

termination could be used instead of implanted ring around the device. This will 

eliminate the need for implantation and high temperature activation of P- rings.  

For simplification, this theory is tested on a 4H-SiC Schottky diode first. 

This diode has an ideal breakdown voltage of 1.2 kV.  
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Figure 3.13: Schottky diode with double trench junction termination 

From simulation results it can be seen unlike P-ring junction termination, 

where the electric field spreads horizontally, double trenches junction 

termination spreads the electrical field distribution mostly in Y-direction 

(Figure 3.13) and hence increases the breakdown voltage. The depth (D1, D2) 

and width of trenches (W) (shown in Figure 3.13) has to be carefully designed to 

achieve the highest breakdown voltage.  

As can be seen in Figure 3.14A, when the width, W is more than 2.5 µm, 

the electrical field doesn’t spread in the X-direction and does not reach the 
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second trench, but the second trench still helps to spread the electrical field in 

Y-direction. 

Changing width, while D1 and D2 are constant shows that, smaller W 

results in higher breakdown voltage by spreading the electrical field further 

downward (Figure 3.14B). 

 

 

(A) 
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(B) 

Figure 3.14: Effect of Width on the electrical field distribution D1=1.4 μm and 
D2=3.5 μm are kept constant (a) W=5μm (b) W=2.5 μm 

 

This can be explained by the fact that when width is smaller the second 

trench can affect the distribution of electric field more. In fact in best breakdown 

voltage (1000V) is achieved for the case where W is so small the electrical field 

has expanded to the second trench as well (Figure 3.14B), and hence the electric 

field distribution is both horizontally and vertically. 
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This also proves that to make sure the electric field is distributed between 

trenches we need to etch them at least 2.5 μm from each other. This result can 

be used in future to design the second generation of trench MOSFETs in science 

city group. 

The results of simulation also show that when the width is 50μm, at which 

the electrical field doesn’t spread to the second trench wall, and depth of the 

first trench, D1 is kept constant, by changing the depth of the second trench, 

D2, the breakdown voltage changes. Increasing D2 from 1.35 μm to 3.5 μm while 

keeping D1 at 1um and W at 50 um, the breakdown voltage changes from 700V 

to 850V by spreading the electrical field further in Y-direction. 

 

(A) 
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(B) 

Figure 3.15: Effect of changing depth of second trench, D2, on electrical field 
distribution while keeping W and D1 constant, D1=1 μm, W=50 μm, (a) D2=3.5 

μm (b) D2=1.35 μm 

 This means that the second trench can help to spread the electric field in 

the Y-direction regardless of if the electrical field reaches the second trench wall 

in X-direction or not (Figure 3.15). 
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The point of breakdown in all cases is the wall of the first trench. There 

seems to be an optimum depth for D1 and D2, if they are increased or decreased 

after this point the break down voltage decreases. The best value of D1 for this 

device seems to be 2.5 μm and for D2 is 3.5 μm. 

 

D1 
(μm) 

D2 
(μm) 

W1 
(μm) 

Breakdown 
voltage (V) 

Electric 
Field 
Depth 
(μm) 

0.5 3.5 2 867 5.2 
1.4 3.5 2 867 5.2 
2.5 3.5 2 1000 5.98 
3 3.5 2 983 5.9 
1.4 2.5 2 840 5.15 
1.4 1.35 2 700 4.8 
1.4 0.35 2 480 3.1 
2.5 3.5 50 750 4.91 
2.5 4.5 2 960 5.94 
2.5 1.5 2 710 4.81 

Table 3.6: Breakdown voltages achieved for different double trench junction 
termination on a Schottky diode with ideal breakdown voltage of 1.2 kV. 
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Figure 3.16: Breakdown voltage vs. the electric field distribution depth in Y-
direction using double trench junction termination.  

The maximum breakdown voltage of 1.0 kV was achieved using double 

trench junction termination. This is 80% of the ideal breakdown voltage. 

The most common method of junction termination in power industry is 

mesa junction termination by ion implantation around the edge of device. This 

region can be a single implantation ring (Figure 3.17a) or more than one ring 

that is called space modulated junction termination extension(SMJTE) (Figure 

3.17b). The implementation dosage, annealing temperature used to activate the 

implement and the distance between the rings (in case of Figure 3.17b) are the 

main factor that affect the breakdown voltage. There are other more complicated 

methods such as space modulated two zone junction termination (Figure 3.17d) 

that uses the same design as  SMJTE but with two different implantation 

dosage( shown with light blue and dark blue color in Figure 3.17d) that is 
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reported to increase the breakdown voltage more than a single SMJTE design if 

the ratio of the JTE 1 and JTE 2 are kept to 3:2 [4][5]. The idea behind using 

implantation is that these regions become completely depleted close to the 

surface at voltages close to breakdown voltage and hence reduce the crowding 

of electric field in the edge. This process is highly dependent on the dosage and 

activation of the implanted region. A further study was carried out during this 

work with collaboration with another researcher from Warwick University to 

investigate the most efficient junction termination method for SiC power device 

[3]. In this study different methods of junction termination including single zone 

implant, SMJTE and space modulated two zone JTE were compared to two steps 

mesa JTE. 

 

Figure 3.17: Schematics of different edge termination structures 
on Schottky diode [3] 

The simulation results showed that two steps mesa JTE results in around 

99% of the ideal breakdown voltage without the need for any implantation and 
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higher than the other methods shown in Figure 3.17. Combination of 

implantation and two steps mesa JTE did not improve the breakdown voltage 

any further, hence two steps mesa JTE method is suggested as the JTE solution 

for the next phase of this project. Further details on this JTE methods and 

results were published and could be found in the relative resource [3]. The 

fabrication process of trenches with high resolutions are discussed in this thesis 

in chapter 4 and the fabrication process and the optimised dosage of the 

implanted space modulated JTE(SMJTE) could be found in another project from 

Warwick University [4]. Simulation of two steps mesa JTE on a 1.2kV 4H-SiC 

MOSFET was carried out at the end of this project to find the optimised 

structure using this type of JTE. The results are presented in the last chapter 

of this thesis. 
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3.4 Conclusion 

The results show that without a gate protection the breakdown voltage is 

limited by breakdown in oxide at the trench bottom. The results of simulation 

shows that without a gate protection and junction termination, a breakdown 

voltage of 350-400V is expected. The results also confirm that using the same 

structure and adding the gate shield will results in a 1.2kV trench MOSFET 

and hence the second generation MOSFET can use the same structure.  
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Etching of 4H-Silicon Carbide 

(SiC) by Inductively Coupled 

Plasma Reactive Ion Etcher 

 

 

 

 

 
 
 
 

4 Introduction 

Due to the strength of the covalent bonds between silicon and carbon in 

Silicon Carbide (SiC), etching of SiC is a challenging process in the fabrication 

of trench MOSFETs. There are variety of etching techniques that can be 

exploited. However, wet etching is unsuitable for SiC as it is both slow and 

isotropic by nature (Figure 4.1A). In contrast, plasma dry etching is more 

applicable for the etching of SiC due to the high etch rate and anisotropic 

behaviour (Figure 4.1B).  

Chapter 

4 
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 Difference between (A) isotropic and (B) anisotropic 
etch 

High-density plasma etcher including inductively coupled plasma (ICP), is 

the most common method used to etch SiC, because of its ease of tuning, fast 

etch rate and cost efficiency.  This technique includes (a) generating ions (b) 

directing the ions toward the sample. The ions can etch the sample by chemical 

or physical reactions. 

 

 Illustration of Corial ICP-RIE etcher instrument [1] 
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A simple ICP-RIE etcher schematic is shown in Figure 4.2 and 4.3. To 

generate ions a time varying radio frequency voltage is applied to the coil (ICP 

generator). 

 

 Inside ICP reactor in ICP-RIE etcher [2] 

 This coil is wrapped around the RIE discharge region called the glow 

discharge region (Figure 4.3). This results in a current that induces a magnetic 

field. The changing magnetic field induces an electric field equal to the Maxwell-

Faraday equation.  Maxwell-Faraday equation states that a time varying 

magnetic field will always accompany electric field and vice versa. 
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Where E is the electric field and B is the magnetic field. The induced time 

varying electric field acts as a source of energy and helps to ionize the injected 

gas(es). The ionized gas is called plasma, which is combination of positive ions 

and free electrons. The initial ionized atoms and electrons are accelerated in this 

electric field and collide with the injected gas, hence further ions and electrons 

are generated.  

As electrons are accelerated, they hit the chamber walls and wafer platter 

(shown in green color in Figure 4.3). Chamber walls are dielectric and feed the 

electrons to the ground. The electrons that are deposited on the wafer platter 

build up charge, which result in a negative voltage (RF DC bias voltage). The 

combination of this bias voltage and the other radio frequency source (RF 

generator) that is connected to the substrate stage build up a negative charge 

that attracts the positive ions toward the sample. These positive ions react with 

the material on the surface mainly through chemical reactions, although 

physical reactions can also occur through sputtering. This is commonly referred 

to as the milling effect.  

Increasing the RF power connected to the substrate, increases the bias 

voltage and therefore the ions that hit the sample are more energetic. This can 

result in increasing milling aspect of the etching and if physical etching of a 
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sample is a high percentage, then increasing RF power can increase the etch 

rate noticeably. 

 The ICP power on the other hand controls plasma density. Raising the ICP 

power increases the induced electromagnetic field, which subsequently 

increases the ion density through amplifying the number of electron-gas 

collision. The degree of chemical etching is proportional to the number of ions 

reaching the sample. Due to the neutral charge of the plasma, the bias voltage 

remains unaffected by additional ions.  

The presence of individual RF and ICP generators creates an efficient 

etching technique as it provides complete control over both ion density and ion 

incident energy. Moreover, an additional advantage of separate generators is 

the reduced milling effect due to the option to increase the ions densities that 

are less energetic.  

The Corial 200IL Inductively Coupled Plasma (ICP) Reactive Ion Etching 

(RIE) instrument was used in this project. 

 

4.1 Challenges in Fabricating Trenches in 

SiC 

There are numerous challenges associated with dry etching of SiC 

including but not limited to microtrenches (Figure 4.4A), sidewall striation 

(Figure 4.4B) and roughness. Microtrenches or sharp corners induce the 
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crowding of electric field in the corner of trenches, thereby reducing the 

breakdown field. Striation in sidewall increases the leakage current through the 

gate oxide.  

      

 Common challenges in fabricating trenches in SiC: SEM 
images of (A) microtrenches: small trenches at the corner of the 

main trench, this can result in crowding the electric field and hence 
lower breakdown (B) striation is roughness of sidewall which can 

increase the leakage current 

Our first attempts to etch trenches using literature studies [3][4], resulted 

in the same etching rate but different physical characteristics, such as existence 

of microtrenches and/or striation. Hence it was important to understand the 

origin of these two issues to be able to solve them.  

4.1.1  Origin of Microtrenches 

Microtrenches are small trenches that are formed in the corner of trenches 

(Figure 4.4A). The exact formation mechanism of microtrenches remains 

unclear but has been linked to ion reflection from the trench wall [5] and 

differential charging [5][6]. Figure 4.5 shows the mechanism of ion reflection 

from the sloped sidewall: ions that are closer to the sidewall are deflected when 

they reach the sloped sidewall. 
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 Schematic of first suggested cause of microtrenches: ion 
deflection due to sloped sidewall 

On the other hand differential charging theory links the microtrenches to 

the difference in electrons and ions angular distribution. As electrons move 

isotropically, they tend to build up at the top opening corners of trenches, 

therefore even though ions move vertically; they are affected by the charge that 

is built up at the top corners and are deflected toward the sidewalls (Figure 4.6).  

 

 Schematic of microtrenches formation via differential 
charging effect based mechanism 

Mask Mask

Mask Mask

Mask

Substrate Substrate

Substrate
Substrate

Substrate

-
-
-
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To examine the source of microtrenches, SiC was etched using only Ar ions 

in metal beam evaporator in science city research group. This was to ensure the 

process was free from electrons charge. The result shown in Figure 4.7, confirms 

that in the absence of electron, there will be no microtrenches.   

 

 SEM image of Ar ion etching of SiC. This result 
confirms that in the absence of electron there will be no 

microtrenches. 

This means that (a) the existence of electrons is the source of 

microtrenches, though if the exact reason behind creation of microtrenches is 

due to differential charging theory or not, could not be confirmed by this 

experiment (b) ion deflection from the sloped sidewall or ions scattering cannot 

cause microtrenches. As it is clear the sidewalls are almost 65°. So if ions 

deflection from sidewall was the cause of microtrenches, the results should have 

shown sever microtrenches. Also as there is no RF power in the metal evaporator 

to direct the ions toward the wafer holder in the metal beam evaporator, we 

expect more ions scattering. As can be seen this has caused much slopped 
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sidewall but there is no sign of microtrenches. This result also suggest that ions 

scattering might be the source of slopped trench sidewalls, but does not affect 

microtrenches. 

During the first rounds of experiments, ICP-RIE etching of SiC using 

masks with different trench width (Figure 4.8), it was also evident that the 

lateral force on the ions that is directing them toward the trench corner, can 

only affect the ions in a very close distance to the sidewall. 

    

 The results show that microtrenches sizes are equivalent 
for different trench width (SEM image) 

Therefore, one way of removing the microtrenches can be to reduce the ions 

near the sidewalls. In this project, sidewall protection shadow was created to 

test this theory. The process and results are presented later in this chapter and 

the results prove that by creating side wall shadow, microtrenches could be 

completely eliminated. 

Different mask materials including Ni and SiO2 were also studied and the 

results show microtrenches do not depend on the mask material. This was done 

to make sure that charging of metal masks does not affect or cause 
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microtrenches. As will be presented in this chapter, even when SiO2 was used as 

a mask, microtrenches were observed.      

4.1.2  Origin of Striation 

Striation or line edge roughness (LER) is the waviness on the trench 

sidewall as shown in Figure 4.9. During photolithography, the patterns on the 

mask are transferred to the photoresist layer. The solubility of photoresist 

changes depending on whether it is exposed to the UV light or not. This is the 

stage that striation was first observed on the photoresist patterns (Figure 4.9A). 

Striation was transferred to the etching mask and to SiC in the following steps 

(Figure 4.9B). 

     

 SEM images of (A) striation in photoresist before 
etching metal mask and SiC (B) after etching SiC, before removing 

metal mask (photoresist mask is removed)  

There are different suggestions for the cause of striation in photoresist. 

Generally they are divided to two categories (1) photoresist quality (2) 

photolithography instrument and process.  
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Two factors that can affect striations in the photoresist, are thickness and 

sensitivity of the photoresist [7][8]. Higher sensitivity of photoresist corresponds 

to more photo-acid generator. Photo-acid generators are used for chemical 

amplification of photoresist. By amplification of photoresist, they will be more 

sensitive to the UV light exposure [9].  

 

 Effect of photoresist thickness and sensitivity on LER. 
Photoresist B is 2.5 times more sensitive [10] 

Other source of striation that can be linked to photoresist is intrinsic non-

uniformities in photoresist. Different sizes in the polymer chains of photoresist 
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can results in developing/under-developing along the edge of the photoresist 

[11]. 

 

 Intrinsic non-uniformities in photoresist can cause 
striation along the edge [11] 

The third origin of striation is linked to the photolithography instruments 

and is suggested to be variation in the light exposure dose [11]. In an ideal 

photolithography process, the light that passes through the mask and reaches 

the photoresist has a step shape, hence unprotected photoresist is exposed to 

even dosage of light everywhere. In the real scenario though, the light dosage at 

the pattern edges are different and look like Figure 4.12. The light intensity is 

less on the edge of the patterns. If the intensity of light is less than a threshold 

value, then the photoresist will not receive enough UV exposure and hence will 

not be developed well. The exposure light fluctuation (due to variation in the 
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laser’s output, optical system, movement in the wafer stage, or fluctuation in 

the light due to light quantization [11]) has therefore more effect on the edge of 

patterns. Can we solve this problem by increase the light dosage to much higher 

than the threshold value? This chapter will focus on studying all the 

photolithography process parameters to analyse the effect on striation.  

 

 The light intensity that reaches the unprotected 
photoresist is not step shaped[11] 

There are other factors such as the photolithography mask. In this work, 

high-resolution mask were used and the comparison of striation in mask and 

photoresist proved that the mask cannot be the origin of striation. The striation 

on the mask was non-existent under microscope, while the striation in the 

photoresist was clear to eyes.  
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There are alternative studies that suggest that reflections of UV light from 

a reflective mask layer can also affect striation and hence using non-reflective 

surface or post photoresist patterning bake can reduce striation [12][13]. 

Striation generated because of reflective masks seems to be along Y- direction.  

Though in this work, striation was only observed in X-direction and the first 

experiments showed that using non-reflective masks cannot eliminate or reduce 

striation hence this was not considered in this study. 

 

 SEM images of photoresist after (A) post bake only (B) 
with TEOS as non-reflective surface and post-bake. None of these 

methods helps to improve the vertical striation. 

 Another important observation that will be discussed in this chapter was 

that the magnitude of the striation can increase when transferred to the 

underlying layers. Hence to minimise striation we must (1) minimize the 
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creation of striation during photolithography process (2) minimise the effect of 

mask and SiC etching process on striation.  

As can be seen the two main challenges in fabricating trench structure, 

starts in the photolithography process not the etching. Hence it is important to 

understand every step of creating trench structure including (a) 

photolithography (b) etching mask (c) SiC etching parameters to be able to 

minimize striation and microtrenches. In the next section these three stages of 

fabricating trenches will be discussed and analyzed in detail. The ultimate goal 

of this chapter is to (a) understand how every parameters in the above three 

stage affect trench structure (b) minimize striation and microtrenches and 

create a smooth and clean trench structures. 

As this was the first generation of trench devices in science city research 

group, there was no previous knowledge of any of these processes and hence the 

first part of this project was focused on understanding every process with the 

current material (photoresist, mask materials, etc.). We hope that the results of 

this chapter can be used as a reference point in identifying the source of problem 

in SiC etch process. 

4.2 Overview of Dry Etching Process 

An example of etching process of SiC is summarised in Figure 4.14. The 

photolithography process starts with cleaning the sample and then deposition 

of the mask material (metal in this example) on the SiC wafer. Then a layer of 
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photoresist is applied to the wafer. The photoresist is then baked before being 

exposed in the mask aligner. This is called soft baking and this process can be 

done in different temperature and duration. After soft bake, using a mask 

aligner, patterns on a chrome masks are transferred to the photoresist. The 

mask aligner can be set to use different exposure dosage, wavelength and times 

(duration). After exposing the photoresist to UV light using the aligner, some 

photoresist including AZ ECI 2000 will require additional round of baking, 

called post exposure bake (POB). This is not necessary for S1818 series (or most 

positive resist). Afterwards, the sample is put into a development solvent that 

develops the pattern on the photoresist. If a positive resist (S1818) is used, all 

areas that was exposed to UV light will be developed and hence will be removed. 

In the case of a negative resist, exposed areas will remain unaffected and 

unexposed area to UV light will be removed.  

 

 Photolithography process 
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The process is divided into four main stages: 

1) Preparing the samples and masks 

2) Photolithography process of photoresist and mask layer patterning 

3) Etching of SiC 

In the next section, every stage is studied in details to optimise the trench 

structures.  

4.3 Step one:  Sample and Mask 

Preparation  

One important challenge in defining small patterns with fine straight 

boarders, is the requirement that the mask be in direct contact with the wafer 

through the entire wafer. With the test grade wafers problem such as what can 

be seen in following picture (uneven surface) can prevent this direct contact.  

Therefore, a prime grade wafer was used for this work.  

 

 Sample default on the surface of test grade material: 
This can prevent through contact with mask (miscroscopic image) 
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The second problem arises from contamination, therefore cleaning the 

wafer, mask and also the wafer chuck at each stage of fabrication is an 

important part of the experiment. Contamination is induced during fabrication, 

or from handling and wafer dicing. 

 

                                  

 Microscopic images of SiC wafer (A) before cleaning 
(B) after cleaning 

Figure 4.17 shows a clean wafer but the laser cut process has damaged the 

edges of the samples and can induce problems. It is possible to minimise the 

damage by lowering the laser cut power. At higher power, the damaged edge 

keep breaking up and the dust is deposited back on the sample during 

fabrication processes, even after cleaning the samples with solvent after every 

step. 
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  Microscopic image of effect of laser cutting on the edge 
of sample 

Once laser cutting is complete, the wafer is subjected to the following 

procedures (1) blow drying with N2 to get rid of the cutting dust; (2) cleaning the 

samples with both cotton and acetone; (3) soaking the sample in solvent for 10 

min and (4) followed by ultrasonic for 4 minutes. Piranha cleaning for 15 

minutes, followed by HF bath for one minute. At the end water bath the sample 

for five minutes and blow dry with 𝑁2 again. 

Sample preparation has a significant effect on the results. It is important 

to make sure there are no particles on the sample, especially cotton particles 

after removing the backside photoresist. Therefore, nitrogen blow dry before 

placing the sample in the aligner is suggested. 

Another factor that can affect the trench structures is preparation of 

photolithography masks. To achieve straight boarders and grass-free trenches, 

cleaning the photolithography mask has to be done. Photoresist that remains on 

the mask during process builds up primarily around the boarders of the patterns 

on the mask, this results in striation of boarded as can be seen in Figure 4.18B. 
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Also the photoresist that remains in middle of the patterns results in the grass 

effect as can be shown in Figure 4.18A. 

 

 

       

  SEM images of (A) grass effect (B) striation caused by 
photoresist left on the photolithography mask 

To avoid this problem, as mentioned before, masks have to be cleaned with 

acetone after every use but piranha cleaning(less frequently, depends on the 

photoresist) is essential. This is helpful in removing photoresist particles that 

cannot be removed by acetone. The exact time of piranha cleaning depends on 

photoresist. 
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(A)                                                                  (B) 

 

                                                                      (C) 

 Microscopic images of photolithography chrome mask 
(A) before Cleaning Mask, (B) after 2 min Piranha cleaning(C) after 

6 min Piranha clean 
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4.4 Step two: Photolithography process 

Different parameters of the photolithography process have been 

investigated in this study including wavelength, soft bake temperature and 

time, exposure dosage, post exposure bake (POB) temperature and time (for AZ 

ECI 3012 photoresist) and development time. Two different positive resists 

(S1818 and AZ ECI 3012) photoresists and one negative resist (AZ 5214) have 

been used to fabricate trench MOSFET, hence the result in this chapter covers 

these three photoresist 

In section 4.5.1 the experimental details are introduced, this includes 

experimental process of applying different masks. In section 4.5.2 the results 

are presented and effect of different photolithography parameters (including 

masking methods) on trench structure are discussed. 

4.4.1  Experiments Setup 

The experiment starts with cleaning the wafer as explained in section 4.4. 

The process of photolithography is different for each masking methods and will 

be described separately in section 4.5.1.2. Depending on the masking method, 

the photoresist is applied either on the SiC wafer (lift off method) or on the etch 

mask material (all the other methods).  Photoresist is applied using Laurell WS-

650Mz auto dispense spin coater. The photoresist is then baked (soft baked) 

using a hot plate. Suss Microtec MA/BA8 mask aligner is used to pattern the 

photoresist. The exposed photoresist is then immersed in developer liquid that 
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will dissolve the exposed photoresist. If a negative resist is used, another round 

of baking and exposure (flood exposure of the whole area of photoresist without 

a mask) is needed before developing the photoresist.  Using negative resist the 

unexposed areas will be dissolved in the developer. 

In the first round of experiments, we could not achieve any straight 

boarders. When high resolution microscope was used, uneven layer of 

photoresist was observed around the corners of the samples. This is called edge 

bead. After removing edge bead the striation of the patterns improved 

significantly. Next sections discuss the experimental details of removing edge 

bead and masking methods before the results are presented. 

4.4.1.1  Removing Edge Bead 

During spin coating of photoresist on the samples, a bead is created at the 

outer edge of the samples.  This bead can be minimised by optimising the process 

but cannot be eliminated. Edge bead removal is done by exposing the edge of the 

sample to UV light while the rest of sample is protected using a 

photolithography mask. The sample is then placed in the photoresist developer 

that removes the edge bead. 

Edge bead removing can help to achieve higher resolutions. During this 

step it is essential to ensure that there is zero distance between the mask and 

the sample during exposure. While it was possible to achieve 1 μm trenches with 

1 μm distance from each other after removing edge bead, without doing so, it 

was only possible to achieve trenches with width bigger than 2 μm with distance 
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more than 2 μm. Also for sample size as small as 1 cm x 1 cm, it was impossible 

to get straight lines without removing edge bead, though this problem does not 

exist for quarter wafer samples.  

      

     Microscopic images of pattern on photoresist (A) 
without edge bead removal (B) with edge bead removal 

4.4.1.2  Masking Methods 

Three different masking methods have been investigated in this work. This 

was done to investigate (A) effect of masking material on microtrenches (B) 

effect of masking material and process on striation. 

x Method 1: Wet etching metal with positive resist using Nickel (Ni) as the 

mask 

x Method 2: Lift off technique using negative resist using Aluminium (Al) 

as the mask layer 

x Method 3: Dry etching using positive resist using Titanium (Ti) and 

Silicon dioxide (SiO2) as the mask layer 
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4.4.1.2.1 Method 1: Wet etching of etch mask using Ni Mask 

A Ni mask is deposited on the SiC wafer using SVS 8 pocket electron beam 

evaporator. Photoresist is applied on the Ni mask and  is patterned using S1818 

photoresist, and then the photoresist is used as a mask to etch Ni using the 

following wet etch recipe: 

x Nitric acid (5ml)/Acetic acid (5ml)/Sulphuric acid (2ml)/Water (10ml).  

All these percentage were studied carefully in 38 different test rounds to 

be able to achieve a percentage for each liquid that results in the best pattern 

with straight edge. Using different percentage of these liquids results in 

decreasing or increasing the development time which resulted in much distorted 

boarder on the Ni mask. 

 

 Etching SiC procedure using metal mask:1) deposit a 
0.15 um thick layer of Ni, 2) pattern the photoresist on top on of the 

Ni mask layer and then etch Ni layer, etch Ni 3) etch SiC   

 

SiC Wafer

Ni

SiC Wafer

Ni

Ni

SiC Wafer

(1)

(2)

(3)
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A Ni mask has a very interesting characteristic that makes it very efficient 

as the etching mask for SiC. As mentioned in literature review, there is a 

requirement to exploit the use of a high-power ICP-etching system to achieve 

high etching rate of SiC. All mask materials studied in this work, have higher 

etching rate in high ICP etch. Experiments in this work show that in contrast 

to other materials, higher ICP power results in lower etch rate of Ni. Hence 

higher selectivity of Ni mask over SiC is achieved at high ICP power.  

Dry etching of SiC is an anisotropic process and the best results achieved 

in this work show sidewalls with 80°-82° angle. Ni is etched very slowly at high 

powers and so creates a shadow masking at high ICP powers (Figure 4.22). As 

described in section 4.2.1 the results of this work show that the only the ions 

near sidewalls are affected by differential charging. Hence it can be assumed 

that if we can decrease the numbers of ions near sidewall, microtrenches can be 

minimised or eliminated. To test this theory, we have used high selectivity of Ni 

mask at high power to etch SiC while Ni mask creates a shadow protection 

around the edges. The results shown in figure 4.22 confirm our theory: that 

sidewall protection can eliminate microtrenches. This is especially important 

because the only other method is to reduce the ICP power which in turn reduces 

the etch rate. 
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  SEM images of overshadow protection of sidewall 
created when using Ni mask. This size of this overshadow protection 

is bigger in higher ICP powers. 

As can be seen in Figure 4.22, the downside of using Ni mask is that 

striation of sidewall seems to be worse than what was observed on the 

photoresist mask. To minimise this, Ni wet etch process needs to be optimised 

even further. The most promising results achieved in these experiments gave 

average peak-to-peak striation of 0.16 μm with Ni mask. 

 

 SEM picture illustrate the peak to peak measurement of 
striation for Ni mask 
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4.4.1.2.2 Method 2: Lift-off Technique - Al Mask 

The lift off technique is an alternative method that has been explored. 

Figure 4.24 shows the complete process of life off.   

 

 Lift off process using Al (A) clean SiC sample surface 
(B) pattern the photoresist on the SiC wafer (C) deposit Al on top of 

the photoresist (D) put the sample in ultrasonic acetone bath, this 
will remove the photoresist and the Al on top of it (E) the 

unprotected SiC parts will be etched. 

 

An advantage of using this technique is that photoresist patterns are 

developed directly on SiC surface, which is a great deal easier than developing 

a pattern on deposited metal. In this process we usually use a negative 

photoresist (AZ 5214 in this project). This is because softening temperature of 
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positive resist are lower and hence the patterns become easily rounded, in such 

cases the mask layer usually covers everywhere on the photoresist including the 

sidewall of patterns and hence it is very difficult to remove the underlying 

photoresist with acetone bath. Negative resist on the other hand usually achieve 

under cut that make it more suitable for lift off (Figure 4.24B) [14]. 

Photoresist patterns on SiC surface generally possess straight borders and 

are well developed. This may be due to the non-reflective nature of SiC wafer 

and also the uniformity of the wafer. Moreover, the lift-off method is less 

sensitive to time. After depositing Al on top of the patterned photoresist, even if 

the sample is left in the ultrasonic bath longer than the required development 

time, the borders will not be distorted. An additional advantage of the lift off 

method is that only the photolithography process needs to be optimized we do 

not need to etch the metal layer in this process.  

Table 4.1 shows the step by step process of etching SiC using lift-off 

achieved using AZ 5214 photoresist. Bake 1 and Exposure 1 refer to the soft 

bake of photoresist, which is done after photoresist spinning on the wafer. 

Unlike positive resist, negative resist will need another round of bake and 

exposure (Bake 2 and Exposure 2) to reverse their polarity (from positive to 

negative) before they are developed. The results show that the patterns are in 

average 0.4 μm bigger than the original pattern on the photolithography mask. 

Further study is needed to investigate the source of this problem.  
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The best peak-to-peak striation achieved by this process was around 0.25 

μm using Al mask. 

Experiment 1 

Mask material Al 

Soft Bake 1 115 °C, 1 min 

Exposure 1 90 mJ/cm2,3 s 

Bake 2 120 °C, 2 min 

Exposure  2 120 mJ/cm2,3 s 

 

Photoresist 

development time: 35 s 

 



Chapter 4: Etching of 4H-SiC by ICP-RIE Etcher 

 

4.31 
 

 

 

After lift off 

(50seconds in 

ultrasonic bath) 

 

Table 4.1: Lift off technique processes using AZ 5214 negative resist and Al mask 

4.4.1.2.3 Method 3: Dry Etching of Etch Mask Using Titanium (Ti) 

Mask and SiO2 Mask 

A Ti layer was deposited on SiC wafer using metal evaporator. In the next 

step photoresist on top of Ti layer was patterned using S1818, and was dry 

etched using RIE etcher. This study was carried out to study if dry etching the 

mask can be useful to minimise the transfer of striation from photoresist to the 

mask layer. 

     

  Microscopic pictures of trench pattern (1) after 
photolithography, (2) after etching of Ti mask, (3) after etching SiC 
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A primary disadvantage of this technique is that SiC etch recipe 

simultaneously etches Ti, thereby reducing the selectivity of Ti on SiC. 

Consequently, very thick Ti should be used. Moreover, overshadowing of Ti was 

not as efficient as Ni despite the average peak-to-peak striation being similar to 

that of wet etching of Ni. The recipe used to etch Ti is shown in the Table 4.2.  

Gas 1 - 

(sccm) 

Gas 2 - 

(sccm) 

Chamber 

pressure(mT) 

RF Forward 

Power (W) 

Peak Voltage 

(V) 

Ar -5 SF6 - 10 7 150 850 

Table 4.2: Etch recipe for RIE etch of Ti 

Since Ti did not seem to solve striation problem, it was replaced by SiO2 

mask as shown in Figure 4.26. SiO2 was etched using RIE etcher.  

 

 Etching SiC procedure using SiO2 mask (A) deposit 
SiO2 layer on SiC (B) pattern SiO2 using dry RIE etch and S1818 
photoresist and the mask layer (C) etch SiC using ICP-RIE etcher  
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One problem associated with the SiO2 mask is the low densification, which 

results in etching SiC surface through the micro-holes in the SiO2 layer. This 

problem was eliminated by densification of SiO2 in Ar gas at 1000 °C for 1 hour.  

 

 SEM image of micro-etch problem due to low 
densification of SiO2 mask layer. 

As the selectivity of SiO2 masks is not very high at increased ICP power, 

the overshadowing is minimal. However, the minimum overshadowing is 

created and can still protect the sidewall (Figure 4.28).  By further optimisation 

of the etching process, we can increase the width of overshadow and support the 

corners from micro trench as will be discussed in next section.  

 

  SEM image of microtrench effect in SiC using SiO2 
mask 
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Table 4.3 compared the selectivity of the mask layers. Mask selectivity is 

defined as the ratio of the SiC etch rate to the mask etch rate. Ni mask has the 

highest selectivity. Also Ni is the only material that showed higher selectivity 

by increasing ICP power. 

Metal mask Selectivity 

Evaporated Ti 0.6 

Evaporated Ni 68 

Evaporated Al 16.25 

SiO2 1.93 

Table 4.3: Comparison of mask selectivity 

 

4.4.2   Results: 

The detailed study of photolithography process and different masking 

method presented in previous sections shows that striation is affected by every 

step from cleaning, photolithography to etching SiC. On the other hand 

microtrenches seem to be only affected by the mask material (and the SiC etch 

process that will be discussed in the next section). In this section the effect of 

photolithography and masking method on striation and microtrenches are 
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represented. The goal was to find the best parameter and process that can help 

to minimise both challenges.   

4.4.2.1   Striation 

The results show that different parameters during photolithography 

process can affect striation. These parameters include: (1) softback time and 

temperature (2) exposure wavelength and dosage (3) development time (4) 

masking material 

4.4.2.1.1 Photoresist Development Parameters 

Two main factor seemed to affect striation the most when patterns are 

developed on photoresist: (1) Soft bake time and temperature (2) Development 

time of photoresist. 

 The process of soft bake is both temperature and time specific. If 

performed at a low temperature or the baking duration is insufficient, results in 

distorted boarders. This is due to the high dark erosion rate. Additionally, if 

performed at a high temperature or longer bake times, the development time 

would increase which also increase the dark erosion rate (Figure 4.29B).  

Therefor both time and temperature should be optimised for the soft bake time. 
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 Soft bake of a S1818 photoresist at (A) 100°C and (B) 
125°C. When soft bake is done at higher temperature like 125°C, the 

development time increased to more than 10 minutes and the 
trenches that were closer than 1μm to each other were over 

developed (microscopic images) 

The other factor in the photoresist development process that can affect the 

striation is development time after the resist is exposed to UV light. It is 

essential to optimise the development time for vertical devices, as even an 

additional couple of seconds can lead to severely distorted boarders. The exposed 

resists need enough time in the developer liquid to dissolve, if the time is not 

enough, the small patterns will not be developed clearly, but if the duration is 

even a few more seconds that the necessary duration, then the boarders will be 

distorted severely.  

Development time: 35 s Development time:40 s 

  

Table 4.4: Lift off technique using AZ 5214 negative resist and Al mask: 5 more 
seconds of development time resulted in severe striation 
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4.4.2.1.2 Exposure Wavelength and Dosage 

Apart from the photoresist, the parameters chosen when using mask 

aligner also affect the striation, but have no effect on microtrenches. The 

wavelength and dosage of mask aligner are the two parameters that must be 

optimised to minimise the striation in photoresist pattern. Suss Microtec 

MA/BA8 mask aligner has been used in this work and there are only two 

wavelengths available in the settings of this aligner: 365nm and 435nm.  

 

 

 Absorption coefficient vs. wavelength for AZ series 
photoresist [15] 
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Using shorter wavelength (365 nm) decreases the development time 

significantly; this is due to the fact that the absorption increases at this 

wavelength as can be seen in Figure 4.30 (This can be different for different 

photoresist, AZ series and S1818 both show similar pattern in shorter 

wavelength). At higher wavelength the absorption coefficient decreases and the 

problem that is caused by this is that more time is needed to develop the 

photoresist. For example if 435 nm wavelength is used, a higher dosage (almost 

three times) is needed to develop the photoresist as can be seen in the Table 4.5. 

Long development time increases dark erosion and hence cause striation in 

photoresist, therefor it’s important to use a wavelength that increase the 

absorption coefficient. In this work 365 nm has been used for AZ and S1818 

photoresists. 

Soft bake time 

& temperature 
Dosage Wavelength 

POB time and 

temperature 

Development 

time 

90 °C for 1 min  75 mJ/cm2 365 nm 110 °C for 1 min 55 s 

90 °C for 1 min 75 mJ/cm2 435 nm 110 °C for 1 min 3 min 10 s 

Table 4.5: Development time vs. wavelength for AZ ECT 3000 resistance 

Another parameter that should be chosen carefully is the dosage of 

exposure. High dosages are not recommended because they result in distorted 

boarders (Table 4.6). This is due to the increase of the scattered and diffracted 
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lights. Very low dosage can also result in distorted patterns as bad as high 

dosage because of the increase in dark erosion, mainly because of increase in the 

pattern development time. This means that there is an optimum dosage for 

every photoresist that should be used to minimise the striation. This optimum 

dosage value is different at different wavelength. 

Exposure dosage 

mJ/cm2 
Striation 

150 

 

130 

 

95 
 

Table 4.6: Effect of exposure dosage on the patterns: very high and low dosage 
increase the striation; a balanced dosage should be used. 
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4.4.2.1.3 Masking Material and Method 

The third factor that affect striation is the etch mask material and method. 

Using the same recipe to etch SiC with the different masking methods that were 

introduced in the experimental setup (section 4.5.1.2), it was clear that the etch 

mask could degrade the striation in patterns. Using metal masks results in 

worse striation in comparison to 𝑆𝑖𝑂2, regardless of what type of 

photolithography process has been used. All metal masks and methods 

including: Al (using lift-off), Ni (using wet etch of Ni) and Ti (ICP-RIE etching 

of the mask) have resulted in higher striation in comparison to SiO2. 

Figure 4.31 shows the comparison between the etching results using metal 

mask and SiO2 mask. Between metals, Ni results in less striation. 𝑆𝑖𝑂2 mask 

was further improved when photolithography was done on a quarter wafer 

instead of small samples.  

     

  SEM images of striation in SiC trench using (A) Ni 
mask (B) SiO2 mask 
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While the striation of metal could be measured peak to peak to be min 

around 0.16 µ for Ni and 0.25 μm for Al,  the striation in SiO2 is in much smaller 

scale. The striation was only observed by setting the contrast to maximum 

(Figure 4.31B) but even by using SEM, the striation in SiO2 were too small 

(almost non-existent) from the top view to be measured. From the results of this 

section, we conclude that SiO2 mask is the best choice to reduce striation. In the 

next section, the effects of photolithography and masking method on 

microtrenches are presented. 

4.4.2.2   Microtrenches 

While the masking material does not directly affect the microtrenches, they 

result in different microtrench size since the undercut that is created using 

different material has different size. The Ni mask is the most efficient at 

eliminating microtrenches as it creates the biggest overshadow support at high 

ICP powers (Figure 4.32B).  

Using Al and Ti at high ICP power results in almost non-existent 

overshadow protection and hence the microtrench size is maximised (Figure 

4.32C). SiO2 mask create a smaller undercut that minimise the microtrenches 

but did not eliminate them (when the same recipe was used to etch using Ni 

mask, the microtrenches were completely eliminated) (Figure 4.32A and 4.32B).  

One must notice that the sidewall angles are the same when different 

masks are used (80° in all cases). This proves that (1) anisotropic aspect of SiC 

etch is not related to metal mask (2) the difference in the size of undercut 
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(overshadow protection) created by different mask material is not because of 

etch of SiC material in X-direction (anisotropic etching).  

The reason for different undercut size is because all the masks used in this 

work, are also etched during SiC dry etch. Ni mask and SiO2 mask seems to 

show minimum etch in the X-direction and when the SiC sidewall is etched from 

90° to 80°, the mask material is not etched in the same rate in the X direction. 

This will create an undercut that is used as overshadow protection of sidewalls 

during ICP-RIE etching of SiC. Experiments in this work show that the bigger 

the overshadow is, the smaller is the microtrenches, and overshadow with width 

bigger than 0.1 µm can eliminate microtrenches are ICP power of 1000W.  

    

                                (A)                       (B) 
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                                                                (C) 

 SEM image of various masks using equivalent etching 
recipe (A) SiO2 (B) Ni and (C) Al.  

This results also show that the origins of microtrenches and non-vertical 

sidewall angles, are different. Reducing ions density near sidewall has improved 

the microtrenches but sidewall angles remain unaffected.  In the next section, it 

is shown that sidewall angles are only dependent on the ICP-RIE etch 

parameters. 

There are other issues that also were factored in choosing SiO2 mask 

including (1) Removing etching mask (2) Achievable resolution. 

Removing a mask can be a challenging step in fabrication of semiconductor. 

It is important to choose a mask that can be completely removed from the 

surface of the semiconductor after etching SiC as impurities on the surface can 

degrade the performance of the device.  
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If a mask is dry etched (e.g. SiO2 or Ti), the patterned photoresist on top 

can become carbonated which renders it extremely difficult to remove, as 

depicted in Figure 4.33. Moreover, in such cases there is increased difficulty in 

removing photoresist with acetone (even in an ultra-sonic bath). Although this 

problem has been rectified using dry RIE etching of photoresist.  

 

 SEM image illustrating the presence of carbonated 
photoresist remaining in SiC trenches    

A similar issue can occur whilst using a Ni mask. After removal of the Ni 

mask, even after cleaning with several different recipes, micro amounts of 

metals remain on the SiC, which could not be removed (Figure 4.34). Therefore, 

using metal mask on top of SiC is not recommended or the alternative is to use 

a thin layer of SiO2 between the metal mask and SiC surface. 
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  SEM images of remainder of micro metals after Ni 
removal 

Achievable resolution is another important factor in concluding to use SiO2 

mask. Patterns as small as 2 μm are easily achievable using positive resist on 

Ti, SiO2 and Ni masks. The resolution also depend on the instrument used in 

the cleanroom, the resolution of machinery in science city research group is 1 

μm. 1 μm resolution was achievable with all these masks, although the etch 

process must be optimized in the case of Ni as otherwise the 1 μm trenches will 

not develop thoroughly. 

Equivalent process and photolithography masks using the lift off method 

results in larger pattern. 1 μm trench pattern results in at 0.5-1 μm bigger 
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patterns in such cases (Figure 4.35B) and therefore would be more difficult to 

achieve high resolution device with lift off.  

 

(A) 

 

(B) 

 

                                                                              (C) 

 After etching the same pattern on SiC using (A) Ti mask 
(B)Lift off using Al (C) Ni mask. The results show that bigger 
pattern are achieved when using lift off technique (microscopic 

images) 
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Even though Ni is the most desirable and simplest method to eliminate 

microtrenches, SiO2 mask comes in the second priority and since it resulted in 

the minimum striation, it was decided to use SiO2  as mask layer. The minimum 

size microtrenches resulted using SiO2 mask layer were eliminated by 

optimising ICP-RIE etch recipe. This was done by reducing the trench sidewall 

angles to less than 80q so that the mask overshadow is increased. The 

alternative is decreasing the ICP power to minimise the microtrenches effect. In 

the next section we discuss how ICP-RIE etch parameters could be optimised to 

eliminate microtrenches and striations.  

SiO2 is also the optimum choice as it results in the cleanest surface. 

Moreover, as it is dry etched using RIE etcher, very high resolutions can be 

obtained without over complicating the process.  

In the next section, the effect of SiC etching parameters on trench 

structures will be discussed. 
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4.5 Step three: ICP-RIE etching of 

trenches in SiC  

In this section, the effects of SiC etching parameters such as RF power, 

ICP power and pressure have been studied. The results demonstrate that both 

ICP power and pressure heavily affect sidewall striation and microtrenches. 

Even though striation is not generated during the ICP-RIE etch, it can be 

enhanced during the ICP-RIE etch of SiC if the etching parameters are not 

optimized. On the other hand microtrenches are created in this step. In the 

previous section, minimizing the microtrenches using masks were introduced. 

In this section we study the etch process to determine which parameters affect 

the microtrenches. As mentioned previously only Ni mask can completely 

eliminate microtrenches because of the wide undercut that it provide and hence 

protect the sidewalls. The results of this section could be used to eliminate 

microtrenches if any mask other than Ni is used. The main focus of this section 

is to understand how every parameters can affect different aspect of trench 

structure such as roughness, sidewall striation, side wall angles, microtrenches 

and etc. At the end the best recipes to etch SiC using Ni mask and SiO2   mask 

is presented. 

4.5.1  Experimental setup: 

Corial 200IL ICP-RIE etcher was used to study the effects of varying 

etching parameters on the structure of 4H-SiC samples. ICP power in the range 

of 200 W-1000 W, RF power in the range of 20W-80W and pressure in the range 
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of 6-10 mTorr were used and the effects on microtrenches, striation, sidewall 

angles and bias voltage were analyzed. Different Sulfur hexafluoride (SF6) 

combination with (Oxygen) O2 and Argon (Ar) have been used to etch the SiC. 

The flow rate of SF6 and Ar were kept constant at 50 SCCM and 40 SCCM 

respectively. The sample carrier (shuttle) is made of quartz and graphite 

4.5.2  Choice of Etching Gas 

There have been attempts to use different gases to etch SiC, SF6  and NF3 

are reported to result in very high etch rate up to 600 nm/min for SF6  and up to 

900 nm/min for NF3 at high ICP power, while NF3 results in lower surface 

damage usually less than 1 nm in the wide range of low to high ICP power 

[16][17]. 

 

 Effect of ICP power on etch rate and roughness (RMS) 
[17]  

Choi [16] has studied NF3 in a wide range of ICP and bias(RF) power, 

pressure and distance(sample to coil) (Figure 4.37) and the results show that 
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roughness is always below 1 nm, and for ICP powers less than 800W the samples 

show no microtrenches while the side wall angle is around 80°.  

 

 Effect of ICP-RIE etch parameters etch results using NF3 
gas[16] 

SF6 based gases has been used in majority of studies. Different studies 

report on the roughness to be 0.2-0.5 nm[3], 0.5-1 nm[18] or 1-2 nm[17] 

depending on the pressure, ICP power or RF power. There have been no success 

at eliminating roughness at high etch and roughness is still a problem with SF6 

etch [19][20][21]. Studies show that using 100% SF6 , at high ICP power (900 W) 

and pressure (10 mTorr), etch rate of 360 nm/minutes could be achieved that 

results in a roughness of 0.8 nm [18] and sidewall angles with an average of 80°.  

There have been attempts to increase the etch rate and decrease the 

roughness by adding Oxygen (O2) [3][20][21] or Argon (Ar) [4][22] to SF6. All 

studies agree that while O2 can increase the etch rate to even more 1000nm/min 

[3][4], it degrades the roughness. On the other hand Ar has been reported to 
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reduce the roughness significantly [22] and hence it is recommended to use Ar 

with SF6 plasma etch. The highest achievable etch rate using this combination 

has been reported to be around 1000 nm/min [4] at high bias voltage, though the 

roughness is not reported for this study. 

Khan [4] has compared Cl2 based plasma etch to SF6 etch. The results show 

that the etch rate of Cl2 based plasma is much lower, around 200 nm/min. The 

interesting point is that even though Cl2 plasma results in slightly higher 

roughness, the results from electrical measurement such as barrier height (eV) 

or leakage current show that Cl2 plasma etch can have better electrical 

performance. These results are important reminder that improving physical 

characteristics does not always results in better electrical. 

The choice of gases in science city research group are Cl2 or SF6 based 

gases. Using Cl2 results in low etch rate, and also a deep cleaning of the ICP-

RIE etcher is needed after every use. From the literature review, it is clear that 

SF6 offers very high etch rate and also low roughness and hence is a great choice 

for the first generation of trench device. SF6 based gases are used in this work 

to etch trenches. Oxygen (O2) and Argon (Ar) are the gases that were available 

as well and were used to study the effect of adding a noble gas and a highly 

chemically reactive gas to the etching process. Ar was used to study the effects 

of noble gas in etching. Noble gases are a group of gases that have very low 

chemical reactivity. O2 was used to study the effect of a highly reactive gas in 

addition to SF6 . 
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Adding O2 to SF6 increases the roughness of both the sidewall and bottom 

of the trenches (Figure 4.38A). As it can be seen, in Figure 4.38A, the milling 

(physical etch) effects is clear on the bottom of trench and seem O2  increases the 

physical aspect of the etching. This is undesirable as milling effect usually 

results in increased roughness. Overall striation of side wall also becomes worse 

upon the addition of O2 to the gas (Figure 4.38B). At higher powers with the 

addition of O2 the striation and roughness becomes so severe and additional 

steps in the sidewall profile are seen (Figure 4.38B). 

 

  SEM images of (A) roughness increase due to addition 
of O2  to SF6  at ICP power of 200 W (B) striation becomes severe 

due to the addition of O2 at an ICP power of 1000 W. 

Adding 20% O2 to SF6 decreased the sidewall angle from ca. 80° to 68° but 

increased the etch rate from 0.58 µm/min to 0.64 µm/min (at fixed ICP power of 

500 W). Increasing the percentage of O2 to SF6 did not enhance the etch rate any 

further, and interestingly led to a decrease (Figure 4.39). From these results it 

is clear that the addition of O2 leads to an increase in the milling effect, 

roughness and striation and hence it was concluded that for roughness sensitive 

structures such as gate trench, O2 should not be added to SF6.  
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 Effect of O2 on the etch rate (ICP power = 500 W, RF 
power = 60 W, pressures = 10 mTorr) 

The other available option that was Ar, a noble gas, was also studied. They 

possess low chemical reactivity and it was anticipated that the addition of Ar to 

SF6 would render the etchant to become less reactive and thereby exposing less 

chemical damage on SiC. The results obtained demonstrated that the addition 

of Ar to SF6/O2 (Figure 4.40A) or SF6 (Figure 4.40B) resulted in the smoothest 

surface across all power ranges without increase the sidewall angles or 

microtrenches effect. As a result, Ar/SF6 gas combination was used in this 

project to etch trenches. 

   

  SEM images of etch results using (A) Ar/𝑆𝐹6/ O2 
(1/4/1) (B) Ar/𝑆𝐹6(1/4)  
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During this work, it was confirmed that the results are strongly linked to 

status of the etcher. The ICP-RIE etcher needs to be regularly checked to make 

sure different part such as ICP power generator, RF power generator, coil and 

etc. are working properly.  

During the three years of experiments, using the same recipe resulted in 

very different results every six months (on average). The only option was to 

understand every parameter, study how they affect the trench structure 

(especially sidewall striation, roughness, microtrenches and sidewall angles), 

then when any of this issues are observed during etch process, the source could 

be easily identified and eliminated.  
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4.5.3  Results: 

4.5.3.1  ICP and RF Power  

To study the effect of ICP power, the RF power and pressure were kept 

constant at 60 W and 10 mTorr respectively.  

Decreasing the ICP power results in reduced microtrenches size (Figure 

4.41) while no clear effect on striation was observed. This agrees with our 

previous theory that the microtrenches depends on the ions density and by 

reducing the ions density, the microtrenching effect should be reduced. 

Increasing the ICP power increases the magnetic field through the ICP-RIE 

etcher, which results in more collisions in the plasma, between electron and gas 

ions. This increases the ions density, which subsequently increases the etch 

rate, while the energy of ions remains unchanged. 

 

  SEM images illustrating increase in microtrenches by 
increasing the ICP power, (a) 200 W and (b) 500 W both at constant 

working pressure of 10 mTorr and RF power of 60 W 

A profound result elucidated was that when ions density is increased (by 

increasing ICP power), the sidewall angle remains at ca. 80° for ICP power in 

the range of 200 - 1000 W.  This suggests that while microtrenches are linked to 
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the ions density, the sidewall angles is linked to the ions energy that is 

controlled by RF power.  

The one question that arise from the results is from Figure 4.42D: The bias 

voltage decreases when ICP power in increased. Further investigation is needed 

to confirm why this behavior is seen and if the bias voltage is in fact increased, 

why the sidewall angles were unaffected? 

 

 

 Effect of ICP power on (A) etch rate (B) sidewall angles 
(C) microtrenches width and (D) bias voltage (constant working 

pressure of 10 mTorr and RF power of 60 W) 
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To confirm the theory that RF power controls the ions density and hence 

controls the sidewall angles, RF power was studied in the range of 20-80 W.  

During this experiment ICP power was kept constant at 900 W and the pressure 

was 10 mTorr.  

As expected RF power controls the sidewall angles and DC bias and has no 

direct effect on microtrenches or striation. The sidewalls are closer to 80° at 

higher RF power. 

 

 Effect of different etch RF power on (A) etch rate (B) 
sidewall angles (C) microtrenches width and (D) bias voltage (at 
constant working pressure of 10 mTorr and ICP power of 900 W) 

 One can conclude that as increasing the RF power, increase the bias 

voltage connected to the wafer stage, higher RF power creates stronger force to 

pull the ions toward the wafer. This lateral force can avoid the ions from 
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spreading and hence limit the ions angular distribution (IAD). Ions angular 

distribution refers to the spread of ions in X-direction as they move down the 

etcher [23].  

 

  SEM images illustrating the effect of RF power on 
sidewall angles (1) RF=38 W (bias=12 V), (2) RF= 50 W 

(bias=25V), (3) RF= 60 W (bias=41V) at constant working pressure 
of 10 mTorr and ICP power of 900 W 

Interestingly, increasing the RF power does not induce any effects on either 

the microtrenches or striation of the sidewalls, this again agrees with the theory 

that only ions density affect microtrenches regardless of their energy.  It can be 

concluded that microtrenches are the result of chemical etch not physical etch 

(milling), otherwise if ions with higher energy reach the corners, microtrenching 

effect should increase.  

This theory was further encouraged when milling effects where observed 

at higher RF power on the trench bottom (Figure 4.45), while the microtrenches 

size were unaffected. 

Milling effects can be due to the fact that at higher RF power, ions possess 

higher energy, thereby the milling (physical etch) effect of ions increases. 
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   (A) RF=38 W (bias=12 V)                 (B)   RF= 60 W (bias=41V)  

   

 

(C) RF= 60 W (bias=41V) 

  Microscopic images illustrating obvious milling effect 
at higher RF power (B and C) while microtrenches were unaffected. 

This suggest that microtrenches are not caused by physical etch 
(milling). 
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4.5.3.2  Effect of Chamber Pressure 

This study has demonstrated that lowering the pressure leads to the 

elimination of microtrenches. However, this can degrade the striation to an 

unacceptable level (Figure 4.46A).  

 

 SEM images illustrating elimination of microtrenches by 
decreasing pressure. Sidewall striation is degraded severely.  ICP 
power, RF power are 200W, 60W respectively, with a SF6/Ar gas 
combination. Working pressure is (A) 7 mTorr and (B) 10 mTorr. 

As the roughness of the bottom of trench is left primarily unchanged 

(Figure 4.46A), hence the change in ions energy due to pressure does not seem 

to be the original of very rough sidewall. Furthermore the bias voltage change 

also confirm that the bias voltage decreases (slightly) at lower pressure (Figure 

4.47D) and hence the ions are expected to be less energetic. 

 As decreasing chamber pressure results in decrease in the concentration 

of reactive elements [24], it is expected that the etch rate should be decreased 

this is confirmed by the results in Figure 4.47A. 
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This agrees with our assumption that in ICP-RIE etch process, which is 

low ion energy process, the main factor in deciding the etch rate is ions density. 

We have previously discussed that the ions are attracted to the trench corners 

in the ICP-RIE etch process. However, from the results it appears as if the 

pressured is reduced to less the optimum value, the number of ions reaching the 

trench corners reduces significantly and the trench corner is under-etched.  

Figure 4.46A shows that the corners are rounder when the pressure has 

been decreased. This however cannot explain the very rough sidewall at lower 

pressure and further study is needed to investigate this. 

 

 Effect of different etch pressure on (A) etch rate (B) 
sidewall angles (C) microtrenches width and (D) bias voltage 
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The results also demonstrate that sidewall angles are unchanged by the 

change of pressure and are all in the range of 80°-81° for the pressure between 

the ranges of 6-15 mTorr (Figure 4.47B, Figure 4.48).  

      

  SEM images illustrating that sidewall angles are 
unaffected by the pressure. ICP Power is 200 W, with a SF6/Ar gas 
combination. Working pressure is (A) 10 mTorr and (B) 7 mTorr 

For the purpose of this work, it was decided not to use reduction in pressure 

as a mean to eliminate microtrenches and simply optimize microtrenches 

through the choice of mask and ICP power as described before and hence 

pressure of 10 mTorr was used to fabricate trench structures in this work. 

From the results achieved in this section it is concluded that there is an 

optimum ICP and RF power that needs to be chosen carefully to achieve straight 

sidewalls, with smooth trenches, free of microtrenches. At pressure of 10 mTorr 

using SF6 and Ar (50 SCCM and 40 SCCM respectively), RF power of 60 W and 

ICP power of 900 W results in the best trench structure using Ni mask. The 

same recipe, using SiO2 mask results in Figure 4.49A.  
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 SEM images illustrating microtrench effect in SiC using 
SiO2 mask (B) after optimising etch recipie to achive bigger 

overshadow and hence minimise microtrench effect 

To eliminate the microtrenches completely, the RF power was reduced to 

55 W that decreased the sidewall angles to 78° and provides an enhanced 

protection of the sidewalls, hence the microtrenches were eliminated as can be 

seen in Figure 4.49B. At this RF power no milling effect was observed. The etch 

rate is around 830 nm/min. This recipe has been used to create trenches in 

trench MOSFETs in this work. 
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4.6 Conclusion 

To conclude, the results in this chapter demonstrate that both ICP 

power and pressure directly affect microtrenches. Additional factors such 

as gas combination can also slightly degrade microtrenches. Microtrenches 

is best optimized by a combination of mask material and etch recipe. An 

accurate recipe can provide overshadow on the sidewall. This is essential 

as other alternative use low ICP powers which result in very low etch rates.  

Striation is primarily caused by photolithography process and the 

only parameters that can degrade striation, after photolithography, were 

determined to be (1) mask material and (2) pressure. This study 

demonstrated that SiO2 is the best mask material that minimizes striation. 

It was demonstrated that the etch rate was dependent on ICP power above 

other parameters. Whereas, sidewall angles were dependent on the RF 

power.  
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5 Introduction 

The main focus of this chapter is not to achieve best parameters such as 

mobility or breakdown voltage. Instead the author has tried to understand the 

effects of different oxidation and treatments methods that are commonly used 

on the electrical parameters. During the literature review, it became clear that 

most researches have focused on mobility and breakdown voltage and have 

ignored other aspects of a functional and reliable trench MOSFETS. A trench 

MOSFET with very high mobility is not functional if the leakage current is high. 

There are not many resources to find the effect of oxidation process on all the 

Chapter 
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electrical parameters. Hence the main focus of this chapter was to understand 

how electrical parameters such as current density, breakdown voltage, mobility, 

gate leakage current, source leakage current are affected by the oxidation 

process. 

This chapter is divided into three sections. In the first section, 

characterisation techniques used in this chapter to characterise trench 

MOSFETs are introduced. In section 5.2, the fabrication process of 4H-SiC 

trench MOSFETs is explained in details and in the last section, 5.3, electrical 

measurement results on the fabricated devices are presented. 

 

5.1 Characterisation techniques 
Characterisation techniques are used to extract information about 

properties of semiconductors. In this work, various techniques have been used 

to compare different fabrication processes with each other, with the aim to select 

the best process. Characterisation techniques provide two types of information 

about semiconductors:  physical properties and electrical properties.  

Techniques such as scanning electron microscope (SEM) have been used to 

evaluate the physical properties of the trench such as the trench depth. Other 

physical techniques such as atomic force microscopy (AFM) can be used to 

measure surface roughness, though since the channel is formed on the trench 

sidewall, instead of spending the time correlating measurement using AFM, we 
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have used SEM to calculate average peak to peak striation for different samples 

to study the effects of fabrication process on roughness. Then the best results 

were chosen and electrical measurement were used to compare the results 

without studying the effects of roughness. 

Electrical characterisation techniques such as current-voltage 

measurements, threshold voltage, leakage current, mobility and other 

measurements were the main focus of this section and these techniques have 

mainly been used to evaluate performance of the trench MOSFETs. This is 

simply because physical properties such as roughness should be further studied 

by electrical measurement to decide the nature of their effects on the device 

performance.  

This chapter has used experimental method. The focus is to use 

experiments and measurements to find the recipe to fabricate MOSFETs with 

the lowest leakage current and highest mobility and breakdown voltage. 

 

5.1.1  Scanning electron microscope (SEM) 

SEM is used to visualise Nano-scale and Micro-scale devices. SEM uses 

electrons instead of light to form an image.  SEM has much higher resolution 

(up to nm) compared to the conventional microscope and hence can be used to 

magnify very small specimen in Nano and Micro-level. SEM has been used to 
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measure the trench depth, width and other physical properties such as the shape 

of trench corners. Also using SEM, we have measured the peak-to-peak striation 

of trench sidewalls that were presented in Chapter 4.  

Figure 5.1shows a picture of a typical SEM arrangement. Zeiss Supra 55-

VP FEG-SEM has been used in this work to capture images of trench structures. 

 

Figure 5.1: Components of an SEM (Courtesy of Iowa State University) 

SEM scans a sample by using a focused beam of electrons. The electron gun 

at the top of SEM produces a beam of electrons. The electron beam is accelerated 

in a vertical path (in a vacuum) due to a high voltage which is applied at the 

anode. A series of magnetic lenses in the SEM focus the electrons beam toward 

the sample as it moves down the column. The focused electrons beam then 



Chapter 5: Fabrication and Characterisation of 4H-SiC Trench MOSFETs 

5-5 

 

reaches the scanning coil. The scanning coil deflects the beam so that it can scan 

the surface in the X and Y direction. The specimen is located on a vacuumed 

stage that is equipped with tilt and rotation. This is important as without tilting 

the samples, pictures of trenches could only be 2-dimentional and hence 

information such as the depth of the trench could not be determined.  When the 

beam reaches the specimen, ejected electrons and X-rays (Figure 5.2) are 

collected by the SEM detectors and converted to a signal readable by the screen 

[1]. 

 

Figure 5.2: Ejected electrons X-rays from the samples after beam incident [1]  

The main two types of electrons used for imaging are: (1) primary 

backscattered electrons and (2) secondary electrons. Primary electrons are high 

energy electrons that are backscattered by the sample’s atoms [2]. The amount 

and direction of backscattered electrons depends on the specimen and hence 

compositional information could be concluded. These electrons are usually 

collected using semiconductors or scintillators detectors.  The downside of 
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backscattered electron detector is that the quality of the image depends on the 

material.  

On the other hand, a secondary electrons detector offers resolution 

independent of the material. Secondary electrons are low energy electrons that 

are ejected from the k-shell of atoms of the specimen in response to the inelastic 

scattering interactions with the beam. Everhard-Thornley detectors are usually 

used to collect secondary electrons. A Faraday cage is used to accelerate the 

electrons toward a scintillator. This results in a current that is amplified using 

photomultiplier. The amplified electrons can be viewed on an analogue video 

display. 

SEM can cause sample charging and therefore it is recommended to make 

electrical measurement before using SEM. Alternatively the sample could be 

coated by a conductive material such as metal, to avoid sample charging. Sample 

charging results in blurry pictures.  

5.1.2  Current-Voltage Measurement 

Current-Voltage (I-V) measurement is a key technique in evaluating 

MOSFET electrical characteristics. I-V measurements are used to calculate 

different semiconductors’ parameters such as current density and on resistance. 

The I-V curve is measured by applying voltage between the gate contact and 

source contact (𝑉𝐺𝑆), while sweeping the voltage between drain and source (𝑉𝐷𝑆) 

and measuring the drain current ((𝐼𝐷). In an ideal MOSFET, if 𝑉𝐺𝑆 is less than a 
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voltage that is called threshold voltage (𝑉𝑇ℎ), the drain current will be zero. By 

increasing 𝑉𝐺𝑆 the drain current will increase.  

 

Figure 5.3: Typical I-V characteristics of MOSFET 

In the cut-off region, the applied gate voltage is less than threshold voltage 

(𝑉𝐺𝑆<𝑉𝑇ℎ) and the device is off and there is no current conduction between source 

and drain. In reality there is small leakage current that is called subthreshold 

leakage current. The current in this region depends on the threshold voltage and 

hence any process that affects the threshold voltage value can affect the value 

of leakage current. 

In the linear region 𝑉𝐺𝑆> 𝑉𝑇ℎ , but the applied drain voltage is very small 

(𝑉𝐷𝑆< 𝑉𝐺𝑆 − 𝑉𝑇ℎ). The device is turned on and the current channel is created and 
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therefor there is a current flow between source and drain, though as can be seen 

the current is dependent on 𝑉𝐷𝑆 in this region.  

In the saturation region, gate voltage is more than the threshold voltage 

(𝑉𝐺𝑆>𝑉𝑇ℎ) and also the drain voltage is comparable to the gate voltage (𝑉𝐷𝑆>𝑉𝐺𝑆 −

𝑉𝑇ℎ). As the gate voltage is higher than the threshold voltage, the channel has 

been created and there is a flow of current between source and drain. As can be 

seen in the Figure 5.3, the drain current in this region is primarily controlled by 

gate voltage and increases as the square of the gate voltage. 

5.1.3  Threshold voltage measurement (𝑉𝑇ℎ) 

Threshold voltage is important to determine the on and off state of the 

device. Linear extrapolation method has been used to measure the threshold 

voltage. In this technique, drain voltage was kept constant at a very low value 

(50 mV) and the drain current is measured as a function of gate voltage. Low 

drain current ensures that the MOSFET is operating in the linear region.  
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Figure 5.4: Threshold voltage measurement using 𝐼𝐷 − 𝑉𝐺𝑆 graph 

As shown in Figure 5.4, the drain current versus gate voltage is 

extrapolated to 𝐼𝐷 =0 and the threshold voltage is determined from the 

extrapolated point on 𝑉𝐺𝑆  axis. The exact value is 𝑉𝑇ℎ = 𝑉𝐺𝑆𝑖 − 𝑉𝐷𝑆/2, where 𝑉𝐺𝑆𝑖 

is the extrapolated point. 𝑉𝐷𝑆 is ignored since the value of is very small. 

In reality the 𝐼𝐷 -𝑉𝐺𝑆  curve is not straight, due to leakage current and 

degraded resistance and mobility above threshold voltage. Therefor a straight 

line is fitted to the 𝐼𝐷-𝑉𝐺𝑆 and used for extrapolation. The threshold voltage can 

be measured in both linear and saturation regions.  In saturation region, the 

current is given by  

𝐼𝐷 = 𝜇𝑛𝐶𝑂𝑋
2

𝑊
𝐿

(𝑉𝐺𝑆 − 𝑉𝑇ℎ)2    Equation (5.1) 
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𝐼𝐷 is directly related to 𝑉𝑇ℎ
2, therefor the square root of 𝐼𝐷 is plotted against 

𝑉𝐺𝑆 and the curve is extrapolated to 𝐼𝐷=0.  The advantage of using this equation 

is that the 𝐼𝐷-𝑉𝐺𝑆 curve is usually much more straight and hence easier to fit a 

straight line to it. In this project threshold voltage is calculated from √𝐼𝐷-𝑉𝐺𝑆 

graph.  

5.1.4  Field Effect Mobility (𝝁𝑭𝑬) 

One of the main challenges with 4H-SiC power semiconductors is the low 

channel mobility. Therefore one of the primary focuses of this work was to 

improve the field-effect mobility (𝜇𝐹𝐸) of the device. 𝜇𝐹𝐸  is derived from gate 

transconductance,𝑔𝑚, defined by 

𝑔𝑚 = 𝜕𝐼𝐷 
𝜕𝑉𝐺𝑆 

|𝑉𝐷𝑆     Equation (5.2) 

The drain current is the total of drift current and diffusion current. 

Mobility is measured at very low  𝑉𝐷𝑆(50mV in this study), where the diffusion is 

minimum; therefore we can ignore diffusion current and assume the drain 

current to be  

𝐼𝐷 = 𝑊
𝐿

𝜇𝐹𝐸𝐶𝑂𝑋(𝑉𝐺𝑆 − 𝑉𝑇ℎ)𝑉𝐷𝑆   Equation (5.3) 

This results in  

𝑔𝑚 = 𝑊
𝐿

𝜇𝐹𝐸𝐶𝑂𝑋𝑉𝐷𝑆    Equation (5.4) 
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And therefore 𝜇𝐹𝐸 could be calculated from the following equation: 

𝜇𝐹𝐸 = 𝑔𝑚𝐿
𝑊𝐶𝑂𝑋𝑉𝐷𝑆

    Equation (5.5) 

Where W is the channel width and L is the channel length. As mentioned 

in the literature review the value of drift resistance is quite high in voltages 

close to 1000V. The calculation described in this section does not exclude the 

drift resistance and hence the value of motilities achieved will be lower as they 

are also affected by the drift resistance. Though as the structure is kept constant 

and all MOSFETs were fabricated on the same wafer, during all the experiment, 

the drift resistance is constant and hence the difference in the motilities is a 

reflection of the channel mobility. This method has been used to compare 

different recipes to achieve the best oxidation recipe. Though it is recommended 

that the accurate value of mobility should be measured when junction 

termination is added to the device. The method to measure the accurate mobility 

is described in Chapter 6, recommendation. 

5.1.5  Current Density 

Current density is defined as the current flowing per unit area of MOSFET 

and is defined as: 

𝐼𝐷/𝑐𝑚2 = 𝐼𝐷
𝐴

        Equation (5.6) 
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Current density is an important factor in designing electrical circuits. 

Current density depends on the device area and hence it is important to achieve 

a higher current density as it means higher number of devices can be fabricated 

in smaller area. 

5.1.6  Drain to Source On State Resistance (𝑅𝐷𝑆(𝑜𝑛)) 

On resistance is the resistance of the device in the on state. On resistance 

of a trench MOSFET is the sum of substrates resistance (𝑅subs), N- epi layer 

resistance (𝑅epi), P-N accumulation region resistance (𝑅acc), channel resistance 

(𝑅ch) and n+ source resistance (𝑅s) as can be seen in Figure 5.5. 

𝑅𝐷𝑆𝑂𝑁 = 𝑅𝑠𝑢𝑏𝑠 + 𝑅𝑒𝑝𝑖 + 𝑅𝑎𝑐𝑐 + 𝑅𝑐ℎ + 𝑅𝑠   Equation (5.7) 

 

 

Figure 5.5: Drain source on resistance components on a trench MOSFET [3]  
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Channel resistance is given by [4] 

𝑅𝑐ℎ = 𝐿𝑊
2µ𝑖𝑛𝑣𝐶𝑜𝑥(𝑉𝐺−𝑉𝑇𝐻)

                                 Equation (5.8) 

where 𝐿  is the channel length, 𝑊 is the channel width, and µ𝑖𝑛𝑣  is the 

inversion layer mobility. The resistance contributed by accumulation region is 

given by 

𝑅𝑎𝑐𝑐 = 𝐾𝐴
𝐿𝐴𝑊𝑐𝑒𝑙𝑙

2µ𝑎𝑐𝑐𝐶𝑂𝑋(𝑉𝐺−𝑉𝑇𝐻)
                           Equation (5.9) 

where 𝐾𝐴 is accumulation region coefficient that accounts for the current 

spreading from this layer to drift region[4], which is usually around 0.6 in trench 

MOSFET, 𝐿𝐴 is the accumulation layer path and µ𝑎𝑐𝑐 is the accumulation layer 

mobility. The epi-layer (drift region) resistance is given by 

𝑅𝑒𝑝𝑖 = Ƿ𝐷𝑊𝑐𝑒𝑙𝑙
2

𝑙𝑛 [𝑊𝑇+𝑊𝑀
𝑊𝑇

] + Ƿ𝐷 (𝑡 + 𝑥𝐽𝑃 − 𝑡𝑇 − 𝑊𝑀
2

)     Equation (5.10) 

Where 𝑊𝑇 is the trench width, 𝑊𝑀 is the distance between two trenches, t 

is the drift region thickness,  𝑡𝑇 us the trench depth, 𝑥𝐽𝑃 is the P-base junction 

depth and Ƿ𝐷 is the resistivity of the drift region. The other types of resistance 

are smaller compared channel, accumulation and drift region resistance and can 

be ignored in the calculation [4].  

Figure 5.6 represents the specific on resistance versus breakdown voltage 

for SiC trench MOSFETs in comparison with planar SiC MOSFET and Si 

MOSFETs [4]. As can be seen, as we move to higher voltages, the specific on 

resistance becomes closer to the theoretical (ideal) value. At voltages higher 

than 5000V, the drift region rather than the channel dominates the total 
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resistance of the trench MOSFET. This bodes well in that high power trench 

MOSFET devices in SiC have the potential to achieve ideal on resistances that 

are 100 times lower than their equivalent Si counterparts. 

 At voltages less than 1000V, the channel resistance is the dominant 

resistance of the device and since channel resistance is highly dependent upon 

the inversion channel mobility at the SiO2 /SiC interface (Equation 5.8), the 

inversion mobility plays an important role in the optimising the resistance of 

the device [4]. 

 

 

Figure 5.6: Trench MOSFET specific on-resistance vs. breakdown voltage for varying channel 

mobility[4] 
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 The lower the resistance (in addition to higher field effect mobility) results 

in higher switching speed. 𝑅𝐷𝑆(𝑜𝑛) is calculated in linear mode of operation and 

is given by: 

𝑅𝐷𝑆(𝑜𝑛) = 𝑉𝐷𝑆
𝐼𝐷

     Equation (5.11) 

Which is the inverse slope in the linear region, so the steeper the I-V graph 

is in the linear region, the smaller is the on resistance.  

5.1.7  Leakage currents 

Zero gate drain current (𝑰𝒅𝒔𝒔) is the drain source leakage current during 

the off state (when 𝑉𝐺𝑆 is zero). This measurement is made at a specified drain 

voltage. This current increases with temperature. This is an important factor as 

it contributes to leakage power loss.  Leakage power loss is calculated as 𝐼𝑑𝑠𝑠 

times 𝑉𝐷𝑆 and is usually negligible. 

 Gate source leakage current (𝐼𝑔𝑠𝑠)  is the leakage current that flows 

through the gate. 𝐼𝑔𝑠𝑠 is measured by shorting the drain and source contacts and 

increasing the gate voltage to it is maximum. This current is independent of the 

temperature. The leakage current through the gates depends on the quality of 

the oxide. The sources of leakage current were discussed in Chapter 1. 
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5.1.8  Breakdown Voltage (Vbr) 

Breakdown voltage is the 𝑉𝐷𝑆 of a MOSFET that causes the device to enter 

into breakdown region.  At this region the drain current increases drastically. 

The breakdown curve of a MOSFET is shown in Figure 5.7. 

 

Figure 5.7: Breakdown characteristic of a MOSFET  
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5.2 Fabrication Process of 4H-SiC Trench 
MOSFET 

A prime grade wafer was bought from Norstel with the following 

parameters listed in the Table 5.1. The original SiC wafer was bought from 

Norstel with Si-face surface, and the experiments were done with the trenches 

fabricated on a-face, 112̅0 plane, as it’s been reported to result in the highest 

mobility in different studies [5]. 112̅0 plane can be found in respect to the major 

flat of the wafer. In case of the wafer order from Norstel, this plane was the 

perpendicular plane to the major flat (Figure 5.8). This information could be 

found the data sheet provided by the manufacturer. 

 

Figure 5.8: The major flat is used to identify the 112̅0 plane on the wafer 

 As mentioned, we expect a breakdown voltage of 350V without any 

junction termination using this wafer (as presented in chapter 2). 
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Layer Properties Value Unit 

Layer 1: n+ drain 

(n+ substrate) 

Doping 1 × 1019 𝑐𝑚−3 

Thickness 0.5 μm 

Layer 2: N- drift 
Doping 9.42 × 1015 𝑐𝑚−3 

Thickness 15 μm 

Layer 3: P- body 
Doping 1 × 1017 𝑐𝑚−3 

Thickness 2.1 μm 

Table 5.1: Properties of the SiC wafer 

The fabrication process of trench MOSFET began with a simple sample 

preparation and cleaning, and then the alignment marks were etched on the 

sample surface (Figure 5.9A). The 𝑛+ source was implanted in the next step 

(Figure 5.9B).  In the next step (Figure 5.9C) a layer of TEOS oxide was 

deposited on the surface to act as the mask for gate trench etching. Gate trench 

was then etched in the sample (Figure 5.9D) using oxide as the mask layer. 

In step E (Figure 5.9E) a layer of sacrificial thermal oxidation was grown 

on the sample and was removed, this step is necessary to smooth the surface 

and round the trench corners. Gate oxide was thermally grown in the next step 
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(Figure 5.9F). After that, the gate oxide was patterned to open space for 

source/body and substrate (drain) contacts (Figure 5.9G). The source/body and 

substrate (drain) contacts are deposited on the sample in the next step (Figure 

5.9H) and the sample was annealed to activate the contacts. In the last step 

(Figure 5.9I) gate metal was deposited on the gate oxide. 

 

 

5.9(A): First step is sample preparation and cleaning, and then the alignment 

marks are etched on the sample surface (P- body) 

 

5.9(B): The 𝑛+ source is implanted 
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5.9(C): A layer of TEOS oxide is deposited on the surface to act as the etching 

mask 

 

5.9(D): Gate trench is etched 

 

5.9(E): A layer of sacrificial thermal oxidation is grown on the sample and is 

removed. This steps help to round the corners 
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5.9(F): Gate oxide is thermally grown in high temperature furnace 

 

5.9(G): The gate oxide is patterned to open space for source/body and substrate 

(drain) contacts 

 

5.9(H): The source/body and substrate (drain) contacts (Ti/Ni) are deposited on 

the sample and annealed to activate the contacts 
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5.9(I): Al Gate metal is deposited on the gate oxide 

Figure 5.9: Step by step overview of fabrication process of 4H-SiC trench MOSFET 

5.2.1  Alignment marks 

Alignment marks are used to align the patterning mask on the sample 

during photolithography process. Every photolithography mask has alignment 

marks on them that will be aligned to the previous marks.  Figure 5.10A shows 

the first alignment mark on the sample and 5.10B is the same alignment mark 

at the end of the process. The silver rectangle shows the gate metal alignment 

marks that are aligned to the opposite windows on the original mark. 
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Figure 5.10: Microscopic image of (A) First alignment mark (B) alignment marks at the end of 

the process 

Alignment marks must be carefully designed for the trench MOSFETs. 

This is due to the fact that as can be seen in Figure 5.9I the source and gate 

contacts are located very close to each other. To achieve a trench MOSFET with 

high current and breakdown voltage, the trenches are usually located 1 μm 

apart. This high resolution is more problematic especially if finger design (where 

source and gate contacts are strip such as Figure 5.9 is used. This is due to the 

fact that the metals contacts are very close to each other and any misalignment 

can result in shorting the gate and the source contacts and hence the device will 

not function properly.  
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Figure 5.11: Structure of 1.2Kv trench MOSFET fabricated in this work 

When alignment marks with a large distance between alignments marks 

are used (Figure 5.12A), misalignment is harder to inspect because of visual 

judgement error. Both 5.12A and 5.12B are misaligned toward the left and the 

bottom by the same distance, though this is more obvious in case of 5.12B. 

 

Figure 5.12: Comparison of two different sizes of alignment marks, the inner rectangle in both 

(A) and (B) is misaligned toward the left and the bottom by the same distance, but 

misalignment is more obvious in case (B)  
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Without the correct alignment marks, it is impossible to achieve high 

resolution. This is due to the fact that when gates are only 1-2 µm apart, there 

is no place for misalignment error. In such devices, even if the gate contact is 

misaligned toward left or right for 0.5 µm, it can create a short circuit between 

the gate and the source contacts. Therefore it is extremely important to design 

corrects alignment marks for such devices. Based on the results from this work, 

alignment marks with maximum distance of 4 μm from each other is suggested 

in Warwick University cleanroom (Figure 5.12B). The resolution is limited by 

the microscope on the mask aligner. 

5.2.2  Source Implantation 

The next step is the  𝑛+ source implantation. The mask used for source 

implantation was (Tetraethyl orthosilicate) TEOS oxide. TEOS was deposited 

using Tetreon (Thermco) LPCVD system that is used to deposit high quality 

oxide film. The oxide was annealed in Argon (Ar) at 1000 °C for 1 hour as 

described in the previous chapter to increase the density and make sure there 

are no micro size holes in the TEOS.   

There are three steps in source implantation: (1) simulation, (2) 

implantation, and (3) activation. The implantation was first simulated using 

SUSPRE software [6]. This software is used to simulate how far the ions can 

reach in the material when implanted. Nitrogen was used to create the 𝑛+ 
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source. It is important to achieve high density of ions concentration in the SiC 

surface as it helps to make better ohmic contacts.  

The concentration in 𝑆𝑖𝑂2  layer is also simulated to make sure the 

thickness of 𝑆𝑖𝑂2 mask layer is enough to block the ions from the areas that are 

not supposed to be implanted.  Multiple implantations has been used to achieve 

a box shaped profile for the n+ sources. The energy and dosage of each 

implantation are listed in Table 5.2.  The resulting nitrogen ion profile, in both 

SiC and SiO2 based on simulation are shown in Figure 5.13 and 5.14. Based on 

the simulation results, it can be concluded that TEOS with a thickness of 1.5 µm 

should be used as the implantation mask.  

 

 N2 implantation 

Energy Dosage Range in SiC Range in SiO2 

250 Kev 15e14 3613 A  6067 A  

150 10e14 2312 A 3868 A 

100 6e14 1602 A 2639 A 

50 5.8e14 859   A 1365 A  

Table 5.2: Ni implantations energy and dosage used to implant n+ source 

in trench MOSFETs in this work. The resulting profile in both SiC and TEOS 

is shown in Figure 5.12 and Figure 5.13 
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Figure 5.13: Simulation of Nitrogen ion implant range in SiC 

 

Figure 5.14: Simulation of Nitrogen ion implant range in 𝑆𝑖𝑂2 
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Activation of ions was carried out in 1650 °C for 1 hour. The study on 

implant activation time and duration was performed by Dr. Hua Rong, a 

previous PhD student in the Warwick Science City research group [7]. The 

results showed that activation at 1650°C for 1 hour results in highest mobility. 

Argon was used during the annealing step and nitrogen was used for both ramp 

up and ramp down processes. The result is shown in Figure 5.15. Most of the 

implanted areas are visible to eyes, though this is not true for all parts. 

 

Figure 5.15: Microscopic image of SiC surface after source implantation and removing the 

oxide mask 

5.2.3  Etching Trenches 

A layer of TEOS 𝑆𝑖𝑂2  was deposited on the SiC surface using LPCVD 

system (Thermco system) and was patterned to act as the etching mask. 

Densification of 𝑆𝑖𝑂2 layer was carried out in Ar gas at 1000°C for 1 hour. This 

helps to ensure there are no micro holes in the mask layer (as discussed in 

Chapter 4). Trenches were etched using ICP power of 1000 W, RF power of 55 
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W, gas flow of 𝑆𝐹6 and Ar with flow rate of 50 SCCM and 40 SCCM and pressure 

of 10 mTorr. The picture below shows the etched sample after oxide mask was 

removed (Figure 5.16). A Corial 200IL ICP-RIE etcher was used to etch trenches 

in this work. The 𝑆𝑖𝑂2 layer was removed by placing the samples in Hydrofluoric 

acid (HF 10%) acid for 15 minutes. 

 

Figure 5.16: SEM images of the samples after etching trenches and removing the mask 



Chapter 5: Fabrication and Characterisation of 4H-SiC Trench MOSFETs 

5-30 

 

5.2.4  Cleaning Process 

The cleaning process is an important step in fabrication of thermally grown 

oxide. The main purpose of cleaning is to minimise (1) contaminating the oxide 

furnace and (2) contamination of the 𝑆𝑖𝐶/𝑆𝑖𝑂2 interface. 

After removing the 𝑆𝑖𝑂2 layer. The samples were first cleaned in solvents. 

They were first immersed into acetone for 15 minutes (in the ultrasonic bath) 

followed by methanol bath for 15 minutes. This process was repeated once more. 

The solvent cleaning helps to remove oil and organic residues, though they leave 

their own residues and hence two solvent methods are used.  

The samples were then immersed in HF for one minute to remove any 

native silicon oxide. Then piranha cleaning was applied to the samples. The 

piranha includes hydrogen peroxide (50 ml) and sulphuric acid (150 ml). 

Piranha clean can help to remove any organics and hydroxylates. The samples 

were left in piranha for 15 minutes. 

The last step was RCA cleaning procedure. The process is useful to remove 

organics and metallic contamination. The samples were first put in HF bath for 

another 1 minute. The RCA cleaning consists of the following two steps: 

Step 1: 30ml ammonium hydroxide is added to 150 ml DI water (that is 

heat to 80°C), then 30 ml hydrogen peroxide is added. The samples are 

immersed in SC1 bath for 15 min while the temperature is kept at 80°C. This 
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process is finished by DI water bath for 1 minute and DI wash for another 5 

minutes. Then another HF bath (2%) in used to remove the native oxide for 1 

minute. 

Step 2: 30ml Hydrochloric acid in added to 150ml DI water heated to 80°C, 

then 30 ml Hydrogen peroxide is added and then samples are cleaned in this 

bath for another 15 minutes. At the end the same process of DI water bath for 1 

minute and 5 minutes of DI wash is applied. The samples were immersed in HF 

bath (2%) for another 1 minute and were washed in DI water for 5 minutes at 

the end and blown dry by nitrogen. 

5.2.5  Gate Oxide 

The thermal oxidation process was carried out immediately after the 

cleaning process. Warwick University’s high temperature tech furnace was used 

to grow the oxide. The samples are loaded into the furnace at 600°C and the 

temperature was ramped up to 1400°C at the rate of 5°C per minute. The oxide 

is grown at 1300°C-1400°C using different gas combinations that will be 

discussed in the result section. At the end the temperature was ramped down at 

the same rate of 5°C per minute. During both ramp up and ramp down argon 

atmosphere was applied. 
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Figure 5.17: Thermal oxidation process of gate oxide 

5.2.6  Opening Source and Drain Contacts 

During thermal oxidation the backside of the samples were not protected. 

This was done to make sure no contamination exist. The backside oxide was 

removed using RIE etcher. The front side was patterned using S1818 

photoresist. Unprotected areas were etched using RIE etcher to remove the 

thermal oxide to open space for source contacts. The photoresist is not removed 

and is used for lift off technique in next step. 
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Figure 5.18: Samples surface after removing oxide from source/body contacts 

5.2.7  Source and Drain Metal Contacts 

10 nm Titanium (Ti) and 100 nm Nickel (Ni) were deposited on the 

patterned photoresist as the source/body contact using electron beam evaporator 

deposition system at the base pressure of 2 × 10−7 mBar. The unwanted metal 

was then removed using the lift off technique in acetone in an ultrasonic bath. 

The same metals were deposited at the back of the samples as the drain contacts. 

 

Figure 5.19: After depositing source/body contacts (silver colour) before RTA annealing 
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Figure 5.20: Electron beam evaporator deposition system in Warwick University 

The samples were then annealed in a Rapid Thermal Annealing (RTA) 

furnace at 1000°C for 2 minutes to activate the ohmic contacts. The contacts and 

activation process were studied in other work at Warwick University[7][8] and 

results in specific contact resistance in order of 10−6 𝛺. 𝑐𝑚2 on the n- type SiC 

and 10−3 𝛺. 𝑐𝑚2 on p- type SiC. The source and body contacts are short-circuited 

to supress the N+/P/N bipolar transistor effect when the transistor is in blocking 

mode.   
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5.2.8  Gate Metal Contact 

500 nm Aluminium (Al) gate metal contacts were deposited on the gate 

using lift off technique. Electron beam evaporator deposition system was used 

to deposit Al as well.  The experiments in this work shows that to achieve an 

acceptable cover in the gate trenches the photoresist thickness should be 

minimised. Otherwise the metal does not cover the top of the gate trenches very 

well.  

 

 

Figure 5.21: Trench MOSFET after depositing gate metal 
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Figure 5.22: Trench MOSFET gate metal 

The focus on this project is not increasing the current density, as this 

requires high-resolution photolithography process to etch trenches 1μm from 

each other. The distance between trenches in this project is 32μm. Though 

distance minimised to 4μm with trenches as wide as 4μm are achievable in the 

science city lab in Warwick University. Smaller features are not clearly visible 

by the microscope attached to the mask aligner and even 4 μm features are 

blurry. Hence it was decided to leave at least 4μm space between all features 

and not focus on achieving high-resolution devices in this project as it was the 

first attempt of making any trench device in our group.  
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Figure 5.23: Trench MOSFET Structure 
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5.3 Results 
The following section present the results achieved by different oxidation 

methods. These processes are listed in Table 5.3. The results are compared to 

the commercialised device by ROHM listed in the relevant reference [9].  

No. Post Etch 

Treatment 

Gate Oxidation Post Oxidation 

annealing (POA) 

Thickness 

1  1 hour direct 𝑂2  thermal dry 

oxidation at 1300°C 

 50nm 

2  1 hour direct 𝑂2  thermal dry 

oxidation at 1300°C 

3 hours N2O 

annealing 

58nm 

3  1.5 hours direct 𝑁2𝑂  thermal 

dry oxidation at 1500°C 

 140nm 

4  4 hours direct 𝑁2𝑂  thermal 

dry oxidation at 1300°C 

 70 

5  4 hours direct 𝑁2𝑂  thermal 

dry oxidation at 1300°C 

2 hours Phosphorus 

POA at 1000C, 5 

lit/min 

72 

6 Sacrificial 

oxidation (4 hours 

direct 𝑁2𝑂  thermal 

4 hours direct 𝑁2𝑂  thermal 

dry oxidation at 1300°C 

 75 
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dry oxidation at 

1300°C) 

7 1 hour 𝐻2 post etch 

annealing at 

1000°C, 2 lit/min 

4 hours direct 𝑁2𝑂  thermal 

dry oxidation at 1300°C 

 68 

8  4 hours direct 𝑁2𝑂  thermal 

dry oxidation at 1300°C 

1 hour 𝐻2  POA at 

1000°C, 2 lit/min 

79 

Table 5.3: List of recipes used and the resulting gate oxide thickness 

First we discuss why 𝑁2𝑂  direct growth was chosen as the oxidation 

method. The post oxidation annealing and its effects will be discussed in details 

in the next section. Then the effect of post etch treatments are discussed. At the 

end of this chapter we compare effect of post etching treatments and post 

oxidation treatments. 

5.3.1  Choice of the Gate Oxidation Method: Direct 
Nitrous Oxide (𝑵𝟐𝑶) Oxidation Growth  

There are two choices of thermal oxidation gases in Science City lab in 

Warwick University: 𝑂2  and 𝑁2𝑂 . 𝑁2𝑂  can be used for both direct thermal 

oxidation and/or 𝑁2𝑂 post oxidation annealing (POA). Both of these methods are 

suggested to improve the mobility by increasing the nitrogen atoms at the 

interface and replacing the carbon atoms in comparison with 𝑂2 direct thermal 
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oxidation [10]. 

Three different recipes were tested in this section: (1) direct 𝑂2 thermal 

oxidation (2) direct 𝑁2𝑂thermal oxidation and (3) 𝑂2 thermal oxidation followed 

by 𝑁2𝑂 post oxidation annealing were performed in clean furnace to make sure 

there is no contamination. The goal of these experiments was to determine the 

ideal gas and temperature to create the thermal gate oxide layer. 

 The results show that direct growth in 𝑁2𝑂 increases the mobility to about 

8.7 𝑐𝑚2/𝑉. 𝑠 in  a-face 4H-SiC trench MOSFETs, which is more than the results 

from direct 𝑂2  oxidation with 𝑁2𝑂  POA annealing.  Also high temperature 

(1500°C) oxidation results in lower mobility. This is the first report of using 

temperature higher than 1400°C for a-face 4H-SiC trench MOSFETs based on 

the best of the authors knowledge.  
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Figure 5.24: Comparison of field effect motilities 

Direct oxide growth in 𝑂2 results in the lowest mobility with or without 

𝑁2𝑂  annealing. The values of traps density calculated from trench MOS 

capacitors using the same recipes are listed in Table 5.4. The comparison of 

traps density and mobility shows that for the traps densities close to 1013 

cm−2eV−1  and higher the mobility is very small and the devices are not 

functional. Using direct 𝑁2𝑂 oxidation drops the traps density and increase the 

mobility dramatically. Any temperature less than 1300 °C using 𝑁2𝑂 results in 

less mobility and very low oxidation rate, this agrees with the results achieved 

on the planar MOSFET[7][10]. 
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Gate Oxide Recipe Traps density (𝒄𝒎−𝟐𝒆𝑽−𝟏) 

at 𝑬𝒄 = 𝟎. 𝟐 𝒆𝑽 

Mobility(𝑐𝑚2/𝑉. 𝑠) 

𝑂2 at 1300°C (1 h) 1 × 1014 3.3× 10−2 

𝑂2 at 1300°C (1 h) plus 𝑁2𝑂 

POA(3 h) 

8.1 × 1012 1.35× 10−1 

𝑁2𝑂 at 1300°C (4h) 8.5 × 1011  8.07 

𝑁2𝑂 at 1400°C (3h) 1.8 × 1012  5.1 

𝑁2𝑂 at 1500°C (1.5h) 2.1 × 1012 3.17 

Table 5.4: Comparison of traps density and mobility for different gate 

oxidation recipes 

The very low mobility with direct 𝑂2 growth could be linked to the high 

traps density in SiC/Si 𝑂2  interface. The origin of this high interface traps 

densities are linked to different sources. The first source is the intrinsic defect 

in SiC.  At the surface of SiC some atoms might be missing and this creates Si 

or C dangling bonds at the interface (Figure 5.25A) [11]. Every Silicon atoms 

has four valence electrons and can bond four carbon atoms and hence unpaired 

valence electrons (resulted from dangling bonds) form electrically active 

interface traps.   

The second source of traps density has been linked to the carbon clusters 

as the main reason behind the high interface traps density [12]. The carbon 
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cluster model links the carbons on the surface and carbons generated during 

oxidation to be the main contributors to the high traps density. During oxidation 

of SiC, carbon atoms form Si-O-C-Si, Si-C-Si and C-C clusters [13][14][15][16].   

 

 

Figure 5.25: Illustration of SiC/Si𝑂2 interface: (A) intrinsic defects (B) Breaking Si-C bond by 

Nitrogen annealing (C) termination of dangling bond by Hydrogen [15] 

The theory that high traps density is related to carbons at/near the 

interface has been confirmed by many other researchers [17][18][19][20]. The 

carbon cluster model can explain why 𝑁2𝑂  annealing or direct 𝑁2𝑂  growth 

results in lower traps density. It has been proved that both these methods 

results in less carbon compounds in the SiC/Si𝑂2 interface and also strong Si-N 
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bonds in the interface [21]. H. Watanabe [15] argues that annealing in nitrogen 

can break Si-O-C and C-C bonds by forming strong C-N bonads. D.P. Ettisserry 

[22] argues that when these carbon bonds are broken, some of these Nitrogen 

atoms actually incorporate in the 𝑆𝑖𝑂2 lattice. This theory has been confirmed 

by other researchers [23]. One example of how nitrogen annealing (NO in this 

case) can remove the carbon from Si-C-Si defect and incorporate Nitrogen in the 

Si𝑂2 lattice is shown in Figure 5.26. 

 

Figure 5.26: Effect of NO passivation on Si-C-Si defect. Either A-C-E or B-D-E will take place. 

If another NO is present, then Nitrogen incorporation in Si𝑂2 lattice (from D to F) will 

happen. In all cases defect is released as NCO molecule. Silicon-blue, Carbon-yellow, 

Oxygen-red, Nitrogen-Grey [22] 
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Using direct 𝑁2𝑂 growth results in less carbon compounds in comparison 

with direct 𝑂2 and 𝑁2𝑂 annealing and hence this might be the reason why better 

motilities with less traps density are observed. Using direct 𝑁2𝑂 growth, more 

nitrogen are incorporated at the interface [24] in comparison with direct 𝑂2 

growth with 𝑁2𝑂 annealing. P. Jamet [21] propose that this is due to the initial 

condition of oxidation. Using direct growth method, the removal of carbons start 

from the beginning of the process, carbon clusters seeds are removed from the 

original surface and this continues throughout the process, whereas in the case 

of 𝑁2𝑂 treatment after 𝑂2 direct growth, first carbons are accumulated in the 

interface during oxidation and 𝑁2𝑂  treatment has to remove the additional 

clusters as well. The author confirms that NO direct growth is the best solution 

that results in even higher mobility and less traps density than 𝑁2𝑂 . NO was 

not available in Warwick University during this work. Hence direct 𝑁2𝑂 

oxidation was chosen as the gate oxidation recipe. 

V. V. Afanas’ev [25] suggest that using UV ozone cleaning before oxidation 

car reduce the number of carbons on the surface before oxidation process. This 

step has not been performed in this work but could be used in the future 

improvement of trench MOSFET in Science City research group. 

5.3.2 Post Oxidation Annealing (POA) 

Common solutions to increase mobility are: hydrogen or phosphorus post 

oxidation annealing. There are other types of annealing such as sodium 
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passivation. Sodium passivation is carried out by incorporating sodium into 

oxide using carrier boats made of sintered alumina during oxidation. Even 

though sodium passivation is reported to increase the mobility but it is not a 

recommended procedure as it increases the mobile ions and results in unstable 

threshold voltage[26][27] and hence was not studied in this project. The 

following section first introduces these methods and then presents and compares 

the results of these treatments. 

5.3.2.1 Hydrogen (𝑯𝟐) Post Oxidation Annealing 

Hydrogen post oxidation annealing has been used in Si industry to 

terminate the dangling bonds, this techniques has been effective in reducing the 

traps density from 1014  cm−2eV−1   to 1010  cm−2eV−1  [28]. In the recent year, 

hydrogen post oxidation annealing has been reported to increase the mobility of 

SiC MOSFETs [29] to 110 𝑐𝑚2/𝑉. 𝑠 when it is done in temperature higher than 

800 °C. The increased mobility has been linked to reduced traps density in the 

interface as well [30].  

The hydrogen post etch annealing was carried out at 1000°C with flow rate 

of 2 litre/minutes for 30 minutes. Since H2 is a flammable gas and is dangerous 

to use it in high temperature, mostly 𝑁𝐻3 and 𝑁𝐻2 are used instead. We have 

used a mixture of nitrogen (𝑁) and hydrogen (𝐻2) in this project. 
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5.3.2.2 Phosphorus Passivation 

Phosphorus passivation has been reported to increase the mobility to 

around 80-90 𝑐𝑚2/𝑉. 𝑠 [31], which makes it more effective than the conventional 

NO or 𝑁2𝑂 that can increase the mobility to average of 20 𝑐𝑚2/𝑉. 𝑠 [10][7]. 

In this technique, 𝑆𝑖𝑃2𝑂7 phosphorus planar diffusion source (PDS) was 

used for the purpose of post oxidation annealing.  The treatment was done at 

the temperature of 1000°C for 2 hours with nitrogen flow rate of 5 litres/minutes.  

The exact process of phosphorus passivation can be found in the relevant source 

[7]. Science city group has previously reported that by using phosphorus 

passivation the mobility of Si-face planar MOSFEET can increase to 60-80 

𝑐𝑚2/𝑉. 𝑠 [7].   

5.3.3  Results: Comparison of Post Oxidation 
Annealing Methods 

Post oxidation annealing in hydrogen (forming gas) and phosphorus have 

improved the mobility to around twice of the reference sample (direct 𝑁2𝑂 oxide 

growth). The results of direct 𝑁2𝑂 oxide can be used as representative of 𝑁2𝑂 

post oxidation annealing and be compared to hydrogen and phosphorus 

annealing results. 
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Figure 5.27: Comparison of motilities for trench MOSFETs with different post etch and post 

oxidation treatments  

The limiting factors of mobility were discussed previously. The main 

questions to be answered is: how these treatments are helping?  And why one 

treatment is more efficient that the other? 

[32] and [33] have compared the traps density and mobility using the same 

fabrication process on both a-face and Si-face. The results show that even though 

a-face can show higher traps density than Si-face, it always show higher 

mobility. This suggests that the coulomb scattering effects of traps density is not 
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the main contributor to limiting the mobility on a-face. This theory has been 

confirmed for nitrogen annealed a-face trench MOSFETS.  G. Liu [10] has 

studied the temperature dependencies of a-face after NO annealing and reports 

that mobility decreases at higher temperatures (Figure 5.28). Negative 

dependency on temperature suggests that phonon scattering might be the 

limiting factor of mobility of trench MOSFETs that are annealed in Nitrogen 

(NO or N2O ) [10] [34].  A reliable source of temperature dependencies 

information of phosphorus and hydrogen annealed trench MOSFET does not 

exist and it is strongly recommended to be carried out as part of further work of 

second generation trench MOSFETs in Warwick University. The important 

point to remember is that the annealing process, might have different effects on 

different surfaces. 
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Figure 5.28: Negative temperature dependencies of mobility on the a-face SiC[10] 

An important discovery was that defect passivation is not the only reason 

that mobility is improved with nitrogen or phosphorus passivation [35]. They 

are both n-type donor and studies suggest that they can insert in SiC and change 

a thin layer of p-body from p-type to n-type [36][37]. Surface of SiC was 

measured [37] after both nitrogen and phosphorus passivation and the results 

shows that the density of phosphorus and Nitrogen was much higher especially 

on the a-face (Table 5.5). This can explain why the mobility increase on a-face is 

more than Si-face using post oxidation annealing. In the previous section the 

mechanism of incorporation of nitrogen in SiO2 lattice was discussed. 
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Table 5.5 : Density of nitrogen and phosphorus after NO and phosphorus 

passivation. The oxide is removed to make this measurement [37]  

In another study [37], measurement of the surface resistance after 

removing oxide shows that phosphorus passivation results in less resistance 

compared to N2O . Some studies [10][37] recommend this is due to the fact that 

phosphorus passivation results in higher n-doping in p-body and hence reduces 

the resistivity. This can explain why phosphorus passivation results in higher 

mobility as can be seen in Figure 5.27. This phenomenon is called counter 

doping. Counter doping and reduction in traps density result in higher mobility 

and less threshold voltage [38].  

 

Hydrogen post oxidation annealing has also increased the mobility (Figure 

5.27). Measurement of the a-face MOS capacitors after hydrogen post oxidation 

annealing shows reduction on traps density on both a-face [29] and Si-face [30]. 

W. Yiyu [39] studied the effect of 𝐻2 POA annealing at low temperature (450ºC) 

and proves that there is no change in traps density or mobility. However when 

𝐻2 POA at low temperature is carried out after NO passivation, there is an 

improvement to the traps density in comparison with NO passivation only. The 

study suggests that the reason is that NO dissolves the carbon clusters and 
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hydrogen terminated the resulting dangling bonds (Figure 5.25). O.K. Fukuda 

[30] proves that Hydrogen POA can be efficient in decreasing traps density 

without the need for any other passivation if the annealing temperature is 

higher than 700ºC.  This study also proves that the decrease of traps density is 

due to increase of hydrogen concentration in the surface and suggests that the 

hydrogen atoms have terminated the dangling bonds of Si and/or C.  

The results of this work also show that even though with phosphorus POA 

and hydrogen POA the mobility has increased to a similar value of 15 

𝑐𝑚2/𝑉. 𝑠. The current density graphs were also similar for both methods.. 

Though there were three important differences observed between these two 

processes: 

(1) The threshold voltage has not improved (decreased) by hydrogen 

annealing (Table 5.6). These results clearly shows that the mechanism of 

improving mobility using these annealing methods are different.  

(2) The other important difference between phosphorus POA and hydrogen 

POA is the leakage currents. Phosphorus POA results in the lowest drain to 

source leakage current and hydrogen POA results in the lowest gate to source 

leakage current.  
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Gate oxide recipe Vbr 

Vg= 0 V 

𝑰𝑫𝑺=0.01mA 

Threshold 

voltage 

(V) 

Mobility 

𝒄𝒎𝟐/𝑽. 𝒔 

1 hour O2 plus 3 hours N2O annealing 435 7.5 1.35× 10−1 

4 hour N2O oxidation plus phosphorus 

POA at 1000C 

354 

 

0.1 15 

4 hours N2O oxidation plus 4 hours 

sacrificial oxidation in N2O 

195 16 22 

4 hours N2O oxidation at 1300C 410 16 8 

4 hours N2O oxidation plus 1 hour H2 

post etch treatment 

205 

 

7 33 

4 hours N2O oxidation plus 1 hour H2 

POA 

363 

 

11 16 

Table 5.6: Comparison of electrical parameters measured from trench 

MOSFETs with different post etch and post oxidation treatments 

The value of drain to source leakage current (𝑰𝒅𝒔𝒔) is usually in range of 

average of 10 to 20 µA to maximum 500 µA for commercialised MOSFETs. 𝑰𝒅𝒔𝒔 

for all trench MOSFETs were measured before their breakdown. All devices 

resulted in 𝑰𝒅𝒔𝒔 of less than 5-80 µA right before the breakdown and phosphorus 

POA results in the lowest 𝑰𝒅𝒔𝒔  of 5 µA just before breakdown. The point of 

breakdown for these trench MOSFETs with the area of 0.146mm2 is defined to 

be when the devices reached the drain source current of 0.01mA. Based on this 

assumption, hydrogen POA results in breakdown voltage of 240V and  𝐼𝑑𝑠𝑠 of 10 



Chapter 5: Fabrication and Characterisation of 4H-SiC Trench MOSFETs 

5-54 

 

µA (Figure 5.29). Phosphorus POA on the other hand results in breakdown 

voltage of 354 V with 𝐼𝑑𝑠𝑠 of 5 µA. If the hard breakdown is considered(instant 

rapid increase in the current), then both devices have reached breakdown at 

around 350V, though phosphorus POA results in 𝐼𝑑𝑠𝑠 of 5 µA and hydrogen POA 

results in 𝐼𝑑𝑠𝑠 of 500 µA which is similar to the maximum value of 𝐼𝑑𝑠𝑠  achieved 

in industry but far from the average value of 10 µA. Unfortunately the graph if 

𝐼𝑑𝑠𝑠  is usually not available on datasheet and hence we can only compare the 

value of 𝐼𝑑𝑠𝑠 at the breakdown point. 

 

 

(A) Drain current vs. drain voltage 

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008

5 30 55 80 10
5

13
0

15
5

18
0

20
5

23
0

25
5

28
0

30
5

33
0

35
5

38
0

40
5

43
0

Dr
ain

 Cu
rr

en
t (

A)

Drain Voltage(V)

Breakdown Voltage Comparison

N2O oxidation at 1300C plus
Phosphorus POA
N2O oxidation at 1300C

N2O oxidation at 1300C plus
H2 POA



Chapter 5: Fabrication and Characterisation of 4H-SiC Trench MOSFETs 

5-55 

 

 

(B)Log of drain currents vs. drain voltage 

Figure 5.29: Comparison of breakdown voltages of trench MOSFETs with different post etch 

and post oxidation treatments  

(3) The third important difference is seen in the gate source leakage 

current 𝐼𝑔𝑠𝑠.  The gate source leakage current is a representative of oxide and 

interface quality and hence it is important parameter. Hydrogen passivation 

and  N2O direct growth (that is a representative of Nitrogen annealing) results 

in the lowest 𝐼𝑔𝑠𝑠, while the maximum 𝐼𝑔𝑠𝑠 at high gate voltage(more than 27V) 

seems to be similar, in lower voltage, Hydrogen annealing results in much lower 

𝐼𝑔𝑠𝑠 in range of µA till 20 V. The commercial 1.2 kV devices have 𝐼𝑔𝑠𝑠 of maximum 

100nA at gate-source voltage of 22V. The 𝐼𝑔𝑠𝑠 of phosphorus annealed devices 
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are 154 µA at the same voltage and hydrogen and nitrogen annealed device 

results in 𝐼𝑔𝑠𝑠 of 18 µA.   

 

(A) Gate source leakage current 

 

 

(B)Log of gate source leakage current 

Figure 5.30: Gate source leakage current (𝐼𝑔𝑠𝑠) of trench MOSFETs with different post 

oxidation treatments  
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As can be seen in Figure 5.29 and 5.30, phosphorus annealing results in a 

better drain source leakage current but worse gate source leakage current in 

comparison to hydrogen post oxidation annealing. So which method is more 

suitable? As mentioned gate source leakage current measures the quality of 

oxide and interface around the channel area on the trench sidewalls, on the 

other hand the drain source leakage current in trench MOSFETs (without gate 

shield) is a representative of the structure (P-N Junction between the body and 

drift) and also the oxide quality at the bottom and corners of the trenches(Figure 

5.31).  

The drain source leakage current is calculated before the point of 

breakdown and during the reverse bias. In a simple P-N junction, during the 

reverse bias, there is very little current flow (leakage current) until the point of 

breakdown where the electric field reaches beyond the point of breakdown of the 

material. This leakage current depends on the structure (doping and thickness). 

In a trench MOSFET without a shield, the breakdown happens in the oxide at 

the corners of the trench bottom (as was discussed in the simulation chapter), 

before the P-N junction reaches the breakdown point. Hence the drain source 

leakage current can be the current that passes through the gate oxide bottom. 

Since the trench structure were the same in all the samples and they were all 

etched in the same batch, the difference in the results of drain source leakage 

current represent the difference in the oxide quality at the trench bottom 

specially at the corners(Figure 5.31).  
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Figure 5.31: Areas of measurement using different leakage tests in a trench MOSFET without  

gate shield 

Therefore it can be concluded that hydrogen annealing results in better oxide 

and interface quality on the a-face (where the trench walls are located) and 

hence improved gate source leakage current is observed. As it was discussed 

before both methods reduce traps density and hence result in reduction in traps 

assisted leakage current. Further investigation is needed to confirm the origin 

of superior quality of oxide resulting from hydrogen annealing, but the 

possibility is that the lowest traps density and hence lower leakage current is 

achieved using hydrogen. It must be noted that phosphorus annealed devices 

have slightly higher mobility but higher gate leakage current. If traps density 

was the origin of both low mobility and leakage current, we would have expected 

to see better mobility and reduce leakage current on the same samples.  
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 The lowest source drain leakage current using phosphorus annealing can be 

because of (1) better quality of oxide in the Si-face (the trench bottom) using 

phosphorus annealing. Annealing on different planes can have different results 

and hence it is possible that phosphorus results in better quality oxide on the 

Si-face (2) randomness in the oxidation thickness which was observed during 

the experiments. The origin of this varying thickness is not clear but to minimise 

this, different batch of MOSFETs were fabricated (2 batch, 2 samples in each 

batch, 30 trench MOSFETs on each) and the results look similar (even though 

the value of leakage current were different).  

Why is the drain source leakage current very different from the commercial 

devices while other parameters are similar?  The commercial trench MOSFETs 

have gate shield protections (or other methods) to make sure the high electric 

field is not located on the trench oxide and hence the breakdown happens in the 

SiC region (as was shown in the simulation chapter). Therefor the leakage 

current is limited to the reverse bias leakage current. To be able to compare the 

source drain leakage current to the commercial devices, gate protection should 

be added to the second generation of the devices. Adding the gate protection (or 

other methods that will be presented in the recommendation chapter), will 

minimise the effect of trench bottom oxide on the drain source leakage current. 

We assume the source drain leakage current achieved from both hydrogen and 

phosphorus annealed devices will be similar to the commercial devices when 

gate protection is added. 
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5.3.4  Post Etch Treatments 

Two post etch treatments have been studied in this work: sacrificial 

oxidation and hydrogen post etch annealing. Both treatments have been proven 

successful in rounding the corners of trenches [40][41]. Rounding the trench 

corners can reduce the crowding of electric field on the corners and hence 

increase the breakdown voltage. Though the simulation results only show 

increase in breakdown voltage to be on average 35V. As presented in Chapter 3, 

a 1.2kV trench MOSFET, can enter breakdown in much lower voltages as low 

as 350V due to the breakdown in the gate oxide.  

The fact is that rounding the corner cannot avoid the premature 

breakdown of the oxide. The best practice in industry to increase breakdown 

voltage is to implants a 𝑃+  shield at the bottom of trench [42] or sacrificial 

trenches [43]. Increasing breakdown voltage is out of scope of first generation 

trench MOSFETs in Warwick University but will be introduced in the 

recommendation chapter in this work. Though looking at the recommended 

sources of low mobility and high traps density that were mentioned earlier, it is 

obvious that there is a need to eliminate the dangling bonds and carbon cluster 

to improve the traps density. One of the questions that has not been answered 

clearly is if improving the surface after etch and before oxidation can also 

increase the mobility. In the next section two methods of post etch treatments 

are discussed. As a matter of fact these two process were first examined to round 
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the corners of trenches, but the resulting trench MOSFETs exhibited very 

different electrical characteristics. The next sections present these results.  

5.3.4.1 Sacrificial Oxidation 

Sacrificial oxidation is the process of thermally growing oxide and then 

removing it before the growth of the main gate oxide layer. It is suggested that 

this process can help rounding the trench corner and hence increasing the 

breakdown voltage. Sacrificial oxidation was carried out in 𝑁2𝑂 atmosphere at 

1300°C for 4 hours as well. This was done to make sure the amount of carbons 

and dangling bonds on the surface is minimised before the actual gate oxidation 

growth. Sacrificial oxidation is very effective in eliminating microtrenches and 

rounding the corners as can be seen in Figure 5.32.  

               

Figure 5.32: SEM images of (A)trenches before sacrificial oxidation, (B)trenches after 

sacrificial oxidation: the corners are rounded 

Sacrificial oxidation helped to increase mobility and current density of 

trench MOSFETs as can be seen in Figure 5.33 and 5.35.  
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Figure 5.33: Comparison of motilities with and without gate sacrificial oxidation 

 Figure 5.35 shows that the gate source leakage current for the device with 

sacrificial oxidation (1) increases rapidly even at low gate voltages (2) to a much 

higher value compared to the device without sacrificial oxidation. Gate source 

leakage current (𝑰𝒈𝒔𝒔) is the current that travels through the gate when gate-

source voltage is applied and drain voltage is kept at minimum (0.5 V).  𝑰𝒈𝒔𝒔 

increases due to poor oxide quality and it is dependent on the device size[44]. 

 Thermal oxidation can results in surface roughness, K. Y. Cheong [45] has 

studied the SiC surface after oxidation and confirmed the roughness caused by 
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thermal oxidation. He has compared the roughness of the surface using direct 

𝑂2 growth with NO annealing and direct NO annealing and as can be seen in 

Figure 5.34, direct 𝑂2 growth results in higher roughness. The study links the 

roughness to carbon removal as well. Carbone removal reduces the carbon 

cluster at the interface and hence might have been the reason for less roughness.  

 

(A) SiC surface after direct 𝑂2 + NO annealing 

 

(B) SiC surface after direct NO growth 

Figure 5.34: Topography images from AFM: SiC surface after removing the gate oxide grown in 

(A) direct 𝑂2 + NO annealing (B) direct NO growth. The root mean square roughness is 

(A)0.193 and (B) 0.132 nm [45] 
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Figure 5.35: Comparison of leakage current with and without gate sacrificial oxidation 

Also from simulation results, it is expected that if the gate oxide quality remains 

the same after sacrificial oxidation, the rounded corner should help to increase 

the breakdown voltage by an average of 30-40V.  This is due to the less crowding 

of electric field at the corner of trenches.  The results achieved in this work do 

not agree with the simulation (Figure 5.36). This means that the oxide or SiC 

surface quality was degraded because of sacrificial oxidation. As can be seen in 

Figure 5.36, the source drain leakage current is very high before the breakdown 

for the trench MOSFET with sacrificial oxidation and the low quality of the 
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oxide at the trench bottom results in the premature breakdown of the oxide. 

Other researchers have also reported that sacrificial oxidation can result in 

degraded gate and unreliable gate oxide [24][46]. 

 

(A) Breakdown voltage comparison (showing drain current) 

 

(B)Breakdown voltage comparison (showing log of drain current) 

Figure 5.36: Comparison of breakdown voltages with and without sacrificial oxidation 
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The value of traps density measured from the device with sacrificial 

oxidation was 3.4 × 1012 𝒄𝒎−𝟐𝒆𝑽−𝟏 . The Comparison of this value and the traps 

density of the device without sacrificial oxidation (listed in Table 5.4) shows that 

the improvement in mobility is not due to the decrease in traps density.  

Though sacrificial oxidation does not really degrade the traps density and 

hence increased leakage current is not due to the traps density. S. Miyahara [46]   

reports higher roughness, leakage current and failure rate after sacrificial 

oxidation. The photo-emission analysis done in that work, suggests that the spot 

with higher roughness results in local electric field concentration and higher 

leakage current. Similar behaviour was seen with trench MOS capacitors in this 

work: most trench MOS capacitors with long time (4 hours) sacrificial oxidation 

were unreliable. They had very high leakage current and entered breakdown at 

very low voltages. Other method of oxidation were tested as part of 

recommendation for second generation trench MOSFET that will be introduced 

in recommendation chapter. 

5.3.4.2 Hydrogen (𝑯𝟐) Post Etch Annealing 

Post etch hydrogen annealing has been used to round the corners of 

trenches. Hydrogen annealing must be done in high temperature (more than 

1400°C) to achieve rounding of corners, the suggested duration of annealing in 

temperature of higher than 1400°C is reported to be less than 10 minutes and 

only 2-3 minutes in higher temperature (1500°C ) [40][41].  
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The temperature and time were studied carefully in the range of 500°C -

1550°C. Even though other studies have reported successful results in the range 

of 1400°C -1600°C, our results were not satisfactory and were similar to Figure 

5.37. Etching at any temperature higher than 1000°C resulted in etching of the 

material. And in higher temperature (example: 1400°C) even 2 minutes 

annealing resulted in etched surface. As can be seen in Figure 5.37, annealing 

the etched surface resulted in a very rough surface. 

 

Figure 5.37: SEM pictures of the results of post trench etch annealing at 1550°C in 𝐻2 for 15 

min 2it/min 



Chapter 5: Fabrication and Characterisation of 4H-SiC Trench MOSFETs 

5-68 

 

 The type of the furnace that was used can cause this; the furnace has to 

evacuate the 𝐻2 gas out of the furnace very fast at a very short time to make 

sure the duration of annealing is limited to 2-3 minutes; even one more minutes 

can cause surface distortion similar (but not as severe) as Figure 5.37. This 

capacity doesn’t exist in the furnace in Science City lab. The highest 

temperature that we could achieve without etching the material was 1000°C. 

This is mainly due to the lack of fast vacuum in the furnace. 

 At this temperature there are no apparent effect on the corners or surface, 

but the effect of hydrogen post etch treatment on the electrical performance of 

the device was not clear and hence a device was fabricated using post etch 

hydrogen treatment at 1000°C with flow rate of 2 litre/minutes for 30 minutes. 

       

Figure 5.38: SEM images of trench structures (A)without annealing, (B)after 𝐻2 post etch 

treatment at 1000°C for 30 min (Picture is taken after gate oxidation and gate metal 

deposition) 

The results are similar to sacrificial treatments, higher mobility is 

achieved using hydrogen post etch treatment as can be seen in Figure 5.39. 

Though as can be seen in figure 5.40, the gate source leakage current has 
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increased. Since the mobility is higher, we assume the traps density has 

improved, and the leakage current seems to be due to the roughness caused by 

etching of surface. As discussed previously, hydrogen can terminate the 

dangling bonds on the surface and that can results in higher mobility. From the 

sever roughness in Figure 5.37, it can be concluded even at lower temperature 

the roughness is resulted from the hydrogen etching and hence results in higher 

leakage current.  

 

Figure 5.39: Comparison of motilities using post etch treatments 
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Figure 5.40: Comparison of gate source leakage current using post etch treatments 

5.3.5  Comparison of all treatments types 

Current density is measured from the devices with 9 trenches of width of 4 

μm, trench distance of 32μm and trench length of 500 μm (total area of 

0.146mm2).  Figure 5.41 shows the measured current densities of all the trench 

MOSFETs.  
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Figure 5.41: Comparison of current densities for trench MOSFETs with different post etch and 

post oxidation treatments (Vg=20 for all the cases) 
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Figure 5.42: I-V characteristics of trench MOSFETs with different number of trenches and 

different trench length. The current is proportional to the total trench length 
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Figure 5.42 shows the I-V characteristic of trench MOSFETs (using 

phosphorus POA) with different trench length. This graph clearly shows that 

numbers of trenches are linearly proportional to the current. Hence we can 

assume that if we keep the same number of trenches and reduce the trench 

width and the distance between trenches to 2 μm, we should achieve the same 

current, but in a smaller area, hence the current density will increase. Table 5.7 

lists the optimised current density. The assumption is that trenches have width 

of 2 μm and are located 2 μm from each other (Total area of 2,000 µm2 for 9 

trenches with width of 500). 

The commercialised devices usually do not include the area (specially the 

active area) in their datasheets. From limited information [47] ROHM first 

commercialised SiC trench MOSFET had 100 A for active area of 3×3 𝑚𝑚2. This 

results in current density of 1.1𝑘𝐴/𝑐𝑚2.  The current has increased to 500A but 

the area is not disclosed. 

When looking at current density it is important to measure the leakage 

current to make sure high current is not due to the leakage current.  
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(A) 𝐼𝑔𝑠𝑠 vs. gate voltage 

(B) Log(𝐼𝑔𝑠𝑠)vs. gate voltage 

Figure 5.43: Gate source leakage current (𝐼𝑔𝑠𝑠) of trench MOSFETs with different post etch 

and post oxidation treatments  
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Gate source leakage current (𝑰𝒈𝒔𝒔)  (Figure 5.43) and subthreshold leakage 

current(Figure 5.44) both confirms that the highest leakage current belongs to 

post etch treatment, white the devices without any treatment and the trench 

MOSET with  𝐻2 POA have the lowest gate source leakage current 

 

 

Figure 5.44: Subthreshold leakage of trench MOSFETs with different post etch and post 

oxidation treatments  
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Gate oxide recipe Vbr 

Vg= 0 V 

𝑰𝑫𝑺 =0.01

mA 

Measured 

Current 

density  

𝐴/𝑐𝑚2 

Optimized 

Current 

density  

𝐴/𝑐𝑚2 

Measured 

𝑹𝑫𝑺(𝒐𝒏) 

(𝑚Ω. 𝐜𝑚2) 

Optimized 

𝑹𝑫𝑺(𝒐𝒏) 

(𝑚Ω. 𝐜𝑚2) 

1 hour O2 plus 3 hours 

N2O annealing 

435 

 

5 370 1.18E+05 1.62E+03 

4 hour N2O oxidation 

plus phosphorus POA at 

1000C 

354 

 

27 2000 3.72E+02 5.09E+00 

4 hours N2O oxidation 

plus 4 hours sacrificial 

oxidation in N2O 

195 70 5000 2.27E+02 3.12E+00 

4 hours N2O oxidation 

at 1300C 

410 

 

17 1200 1.16E+03 1.59E+01 

4 hours N2O oxidation 

plus 1 hour H2 post etch 

treatment 

405 

 

70 5000 1.03E+02 1.40E+00 

4 hours N2O oxidation 

plus 1 hour H2 POA 

363 

 

34 2900 5.09E+02 6.97E+00 

Table 5.7: Comparison of electrical parameters measured from trench 

MOSFETs with different post etch and post oxidation treatments 

The  𝑅𝐷𝑆(𝑜𝑛)  values are also listed in Table 5.7 under measured𝑅𝐷𝑆(𝑜𝑛) . 

Same as the current density, the measurements are based on the fabricated 

devices with area of 0.146 mm2 and optimised values are based on the area of 

2,000 µm2(trenches of width 2 µm and distance of 2 µm). This is not a good 



Chapter 5: Fabrication and Characterisation of 4H-SiC Trench MOSFETs 

5-78 

 

estimation for 𝑅𝐷𝑆(𝑜𝑛) as the relationship between the trench distance and/or 

width and on resistance is not linear though this was solely used to get an 

estimation values of what could be expected from the second generation of 

trench MOSFETs. 

The 𝑅𝐷𝑆(𝑜𝑛) of commercial devices from ROHM are in the range of 0.79 to 

2.4 𝑚Ω. 𝐜𝑚2. Comparing the values of 𝑅𝐷𝑆(𝑜𝑛) with current density, shows that 

at higher 𝑅𝐷𝑆(𝑜𝑛)  , the current density is usually much lower. The values of   

measured and optimised 𝑅𝐷𝑆(𝑜𝑛) for direct 𝑂2 growth (with 𝑁2𝑂 POA) and direct 

𝑁2𝑂 growth  are still much higher compared to the rest of trench MOSFETs with 

post etch treatment or post oxidation annealing, Therefor some kind of 

treatments(post etch or POA) is necessary to reduce 𝑅𝐷𝑆(𝑜𝑛). 

The on resistance of devices with post etch treatments are lower than the 

devices with post oxidation annealing. Since all the structures are using the 

same structures and same wafer, it can be concluded that the change in on 

resistance is representing the channel resistance.  

The last parameter to compare is the breakdown value. The breakdown 

voltage expected from simulation results (Chapter 3) is around 350 V. The 

breakdown is measured on the devices of size equal to 0.146 mm2 with only 9 

trenches of length 500 µm. 

While devices with direct N2O growth or with phosphorus POA enter hard 

breakdown, other devices seem to have a soft breakdown and a hard breakdown.  
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This can be because of the poorer quality of the gate oxide in the bottom of trench 

(as discussed before) since the breakdown in all devices happen in the oxide in 

the trench bottom. 

Increasing the drain voltage has resulted in more leakage source drain 

leakage current and hence the devices have entered a soft breakdown. In an 

ideal device, the leakage current should be independent of the drain voltage 

until the point of breakdown. Though it is expected that the leakage current 

before breakdown could be easily controlled using a gate shield, or sacrificial 

trenches that help to attract the high electric field. Therefor increasing the 

electric field does not affect the bottom of gate oxide and hence the leakage 

current would be more independent of the voltage. This will also increase the 

breakdown voltage.   

 

(A) Breakdown voltage (showing current) 
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(B) Breakdown voltage (showing log(current)) 

Figure 5.45: Comparison of breakdown voltages of trench MOSFETs with different post etch 

and post oxidation treatments  
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5.4 Conclusion 
It is clear that the quality of oxide is still the biggest problem in these 

devices. The oxide quality needs to be improved to achieve a device comparable 

to the commercialised device. As the results show the quality of the surface after 

etch, is as important as the oxidation process. Leakage current from roughness 

and low mobility due to the oxidation process seems to be the two area that 

needs to be improved. Though the hydrogen post oxidation annealing seems to 

be the best results, one must notice that the reliability of different devices in 

higher temperatures are still unclear. The other main aspect that was not 

considered in this work and is recommended for the second generation devices 

is: which annealing results in stronger bonds in higher temperature or electric 

field?  How would Si-N or Si-H bonds react at these conditions? 

The other question is why mobility was lower in comparison to the 

literature? To study if etching has caused the reduced mobility in comparison 

with the planar MOSFETs, a set of trench MOSFETs and planar MOSFETs 

were fabricated together in the same batch undergoing the exact same process 

at the same time.  The results shows that the highest achieved mobility is 9 

𝑐𝑚2/𝑉. 𝑠 for planar MOSFETs using phosphorus passivation and around 3.9 

𝑐𝑚2/𝑉. 𝑠 for direct N2O growth without annealing. This shows that the source of 

the low mobility is the quality of the oxide and not the etching process.  
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 There were patterns similar to contamination on the surface of samples 

after thermal oxidation and also the thickness of oxide was different throughout 

on a small sample. Due to the lack of time to carry on more experiments on oxide 

to improve the high tech furnace, the experiments were set to improve the 

mobility with the goal of comparing different annealing recipes together to 

decide how annealing affects other electrical. It is very important to expect a 

complete overview of the results instead of focus on one or two parameters. A 

clear example was the sacrificial oxidation in the previous section, where 

mobility was improved but more experiments prove that the leakage current 

and breakdown voltage was degraded.  

Our expectation is that once the furnace is fixed, the best recipe could be 

chosen in future to fabricate a trench device with higher mobility. 
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6 6. Introduction 

In this chapter, a few suggestions are provided on how to improve the 

device and fabricate the second generation of Trench MOSFETs. The goal is to 

improve the electrical properties of the device such as current density and 

breakdown voltage. It is important to improve these parameters further to 

make sure the device can operate in higher voltages as well. This would also 

help to test parameters such as leakage current and mobility in high voltages 

and optimise these values.  The same parameters as the fabricated trench 

Chapter 
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MOSFETs have been used in all the simulation and hence a breakdown 

voltage of at least 1.2kV is expected. 

6.1 Improving Current Density and Breakdown Voltage 

 The first suggestion is to improve the structure in order to increase the 

current density and breakdown voltage. This will help to test the device at 

higher voltage and current. Structure of the device has an important role in 

increasing current and breakdown voltage. By increasing channel length, or 

number of channels in trench MOSFETs, we can increase the current density. 

The results for increasing number of channels were presented in Chapter 5. 

 The structure could be improved to get higher number of channel in less 

area to make the device smaller and reduce on resistance. The same 

improvement to the structure can improve the breakdown voltage as well. 

Using Warwick University cleanroom, if the mask aligner microscope is 

improved, trenches as close as 1 µm could be achieved without any gate 

protection (Figure6.1). The simulation results show that if the distance 

between trenches is reduced to 1µm, the highest breakdown voltage is 

achieved. The current structure is made with trench space of 32µm and hence 

there is a hug space to improving current density and breakdown voltage by 

reducing the space between trenches. 
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Figure 6.1: Effect of space between trenches on breakdown voltage 

The results from simulation show that breakdown happens in the corners 

of trenches in all these cases. Decreasing the trench spacing, decrease electric 

field at the corners of the trenches and hence increases the breakdown voltage. 

Corner of trench is exposed to electric field in P-N junction as well as gate 

electric field. As simulation shows trench corners attract crowding of electric 

field. When reducing trench spacing, the P-N junction electric field is 

supported by more trenches and hence the electric field in the trench corners 

decreases. 
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(A) Space between trenches 2 µm 
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(B) Space between trenches=1µm 

Figure 6.2: Effect of trench spacing on the electric field in a Trench MOSFET 

with (A) trench spacing=2µm (B) trench spacing=1µm. It can be seen that 

when trenches are closer, the electric field in the oxide layer at the trench 

corners is reduced 

Though simulation confirms that trench width, does not play an 

important rule. Only when the trench gate width is reduce to 1 µm there is a 

small increase in breakdown voltage equal to 20V. At higher trench width the 

breakdown voltage stays the same 
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Figure 6.3: Effect of trench width on breakdown voltage 

In both cases the breakdown happens in the corners of trenches. The 

result shows the highest breakdown voltage is achieved with spacing of 1µm 

and trench width of 1 µm. The breakdown in this structure happens at the 

corner of trenches at 540V. This prove that without a solution to protect the 

gate, even when the structure is optimised, 1.2 kV breakdown voltage will not 

be reached. 
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Figure 6.4: Trench MOSFET design with 1µm cell pitch, the breakdown 

happens in trench bottom and trench corners 

As mentioned earlier the drift region of this wafer is designed for 

breakdown voltage of at least 1.2 kV.  Though as expected the breakdown in 

insulator layer has limited the device performance. To protect the gate 

insulator two options has been tested: 1) P+ shield layer 2) sacrificial trench. 

6.1.1  Gate Shield 

Using a P+ gate shield can help to protect the gate. Figure 6.5 shows the 

simulation results using two different doping (A) P+ shield with doping of 1 ×

1017 𝑐𝑚−3 (B)P+ shield with doping of 1 × 1019 𝑐𝑚−3. The result shows that for 

case (A), even though breakdown increase to 1050V but the point of breakdown 

is still in the gate oxide. Case (B) results show that the point of breakdown in 
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this case is under the P+ shield region in SiC not the insulator. The other point 

of breakdown in this design is the corner of mesa etch.  

 The breakdown in this case is much higher at around 1305. The other 

advantage is that by using high doping the electric field on the trench bottom 

has decreased to around 6 MV/cm. This can help with reliability of the oxide. 

Baliga [1] has stated that by using P+ shield we can reduce the channel length 

to less than 1 µm while avoiding punch through in the P- base. This can reduce 

the channel resistance and threshold voltage.  
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(A) Electric field across the device(shown with black line) with gate protection 

with the dopig of  1 × 1017 𝑐𝑚−3 
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(B)  Electric field across the device(shown with black line) with gate protection 

with the dopig of of  1 × 1019 𝑐𝑚−3 

Figure 6.5; Effect of P+ gate shield with different doping on the breakdown 

voltage, with lower doping like case (A), the breakdown still occurs in the 𝑆𝑖𝑂2 

layer, at voltages much closer to the breakdown voltage  
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As mentioned by using P+ shield with doping in range of 1 × 1019 𝑐𝑚−3, 

the breakdown can happen in the corner of mesa trench. To help prevent 

breakdown in the edge of the device, there is a need for some sort of junction 

termination edge (JTE) solution. In this design we have used double trench 

JTE and the device can reach 1650 V.  As can be see the simulation shows that 

highest electric field is located around the P+ region and the first trench 

corner.  As you notice the breakdown voltage is higher than calculated parallel 

breakdown voltage. This can be due to the depletion region caused by P+ 

shield/n- drift region that is added to the P- body/n- drift region. 

 

Figure 6.6: Trench MOSFET design with P+ gate shield and double trench JTE, 

highest breakdown voltage of 1650V is achieved. 
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Table 6.1 summarize the parameters that are used to design the junction 

termination. More details on how double trench JTE helps to improve 

breakdown voltage could be found in Chapter 3. 

W1(µ) D1(µ) W2(µ) D2(µ) 

1 5 1 3.5 

Table 6-1: Double trench junction termination parameters. The parameters 

corresponds to the parameters shown in Figure 6.6 

6.1.2  Sacrificial Trench 

The other method to decrease the high electric field on gate oxide and 

prevent breakdown at this point, is to use sacrificial trench structures. This 

includes using trenches between gates. As mentioned before, since trench 

corner attract crowding of electric field, they could be used to spread the 

electric field, hence if a trench deeper than gate oxide is etched between 

trenches, then breakdown voltage as high as 1500V could be achieved. 

The disadvantage of this techniques is that the cell pitch would be bigger 

(for example in Warwick clean room, we need at least 3 µm cell pitch to 

achieve this structure) and hence to achieve the same current density the 

device would need to be bigger, the advantage is that we do not need to 

implant the bottom of trench and put the device through implant activation at 

high temperature. 

Width of sacrificial trenches 

(µ) 

Depth of sacrificial trenches 

(µ) 

1 5 

Table 6-2: Parameters used to simulation sacrificial trenches in middle of gate 

trenches. These parameters resulted in breakdown voltage of 1500V 



Chapter 6: Recommendations 

 

6.13 

 

 

Figure 6.7: Structure of trench MOSFET with sacrificial trenches in the 

middle of gate trenches. The breakdown voltage is 1500V. 

 

Figure 6.8: Electric field across trench corners and oxide layer with 

sacrificial trench design. The design is shown in Figure 6.7. 

    SiC                    SiO2                         

SiC  

           SiC         SiO2            SiC  
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The electric field at the bottom of trench reaches 7 MV/cm at breakdown 

which is higher than the P+ shield with the dopig of of  1 × 1019 𝑐𝑚−3. With the 

P+ shield the electric field at breakdown was 6 MV/cm. Further investigation 

is needed to determine If this difference has any effect on the reliability of the 

device. 

6.2 Sacrificial Oxidation 

The results shows that long sacrificial oxidation usually results in higher 

leakage current but better mobility. The main problem with long sacrificial 

oxidation was that most devices were unreliable and not functional. To 

improve this process, two shorter time (1.5 hours) sacrificial oxidation in 𝑁2𝑂 

were tested on MOS capacitors. 2 batches of samples (2 samples in each batch, 

and 30 trench MOS capacitors on each samples) were fabricated in separate 

process. The results showed that 100% of the MOS capacitors were functional 

and even though there was slight increase in the traps density but the increase 

was not significant. The trench MOS capacitors were not fabricated using this 

process due to the lack of time but this process is highly recommended for the 

second generation of trench MOSFET. In the conversation with different 

researchers during this work, it was always agreed that even though sacrificial 

oxidation does not eliminate pre-mature breakdown of the oxide, but the 

following gate oxide on the rounded corners are much more uniform. 

 

Table 6-3: Comparison of sacrificial oxidation method and traps density for 

different trench plane. 
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6.3 Test Structures 

6.3.1  Transfer Length Method (TLM) 

One of the challenges in fabricating SiC MOSFET is forming low 

resistance ohmic contacts to p-type 4H-SiC. As mentioned in Chapter 5, this 

has been studied elsewhere [2][3] and the results from the literature were used 

in this work. It is recommended to include test structures on the wafer in 

future works, to measure the electrical performance of the contacts to make 

sure they have ohmic I-V properties. The most common method is transfer 

length method (TLM) that is used to measure the resistance of ohmic contacts. 

The test structure is illustrated in Figure 6.9A.  

 

(A) TLM structure  

 

(B) Suggested test structure, all dimensions are in 𝜇𝑚 [2] 

Figure 6.9: TLM structure used to measure the resistance of ohmic 
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From the Figure 6.9A, the total resistance between any two adjacent 

contacts could be calculated by 

𝑅𝑇 =
𝑅𝑠ℎ𝑑

𝑍
+ 2𝑅𝐶 ≈

𝑅𝑠ℎ

𝑍
(𝑑 + 2𝐿𝑇)             Equation 6.1 

where 𝑅𝑇 is the total resistance, 𝑅𝑠ℎ is the sheet resistance, d is the 

distance, 𝑅𝐶 is the contact resistance and 𝐿𝑇 is the transfer length, which is 

defined as the distance over which most of the current transfers from the 

semiconductor into the metal, or vice versa. The assumption is that the contact 

length L is ≥1.5𝐿𝑇, where  

𝐿𝑇 = (𝜌𝐶/𝑅𝑠ℎ)0.5                                            Equation 6.2 

where 𝜌𝐶 is the specific contact resistance. The total resistance is then 

plotted against various contact spacing as can be seen in Figure 6.10. 

 

Figure 6.10: TLM plot of the total resistance as a function of contact 

spacing 
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Using this plot the sheet resistance could be extracted from the slope, and 

the contact resistance is the intercept at d=0, and specific contact resistance 

could be calculated from extrapolating the plot to 𝑅𝑇 = 0 [2]. 

Since the sheet resistance underneath a contact is different from 

elsewhere, the front contact resistance (𝑅𝑐𝑓) and the total resistance could be 

calculated by [4] 

𝑅𝑐𝑓 =
𝜌𝐶

𝐿𝑇𝐾𝑍
coth (

𝐿

𝐿𝑇𝑘
)                                                  Equation 6.3 

𝑅𝑇 =
𝑅𝑠ℎ𝑑

𝑍
+ 2𝑅𝐶 ≈ 

𝑅𝑠ℎ

𝑍
[𝑑 + 2 (

𝑅𝑠𝑘

𝑅𝑠ℎ
) 𝐿𝑇𝑘]           Equation 6.4 

where 𝑅𝑠𝑘 is the sheer resistance underneath the contact. The transfer length 

is given by 

𝐿𝑇𝑘 = (𝜌𝐶/𝑅𝑠𝑘)0.5                                                      Equation 6.5 

The value of the 𝑅𝑠𝑘 is obtained from the end resistance measurement[2]. A 

current is passed between two contacts and the voltage is measured between 

one of these contacts and another contact outside the current loop. The end 

resistance is then calculated by 𝑅𝑐𝑒 =V/I and 𝐿𝑇𝑘 and thus 𝜌𝐶  could be 

calculated after knowing the end resistance using the following equation 

𝑅𝑐𝑒 = (
𝜌𝐶

𝑍𝐿𝑇𝑘 sinh(
𝐿

𝐿𝑇𝑘
)
)                                            Equation 6.6 

Sheet, contact resistance can then be extracted from the total resistance versus 

distance plot as explained above. 
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6.3.2 Van der Pauw method 

Van der Pauw (VDP) structure could be used to measure the sheet 

resistance of the semiconductor. the schematic of the test structure is shown in 

Figure 6.11. 

 

 

 

 

 

Figure 6.11: The schematic diagram of the VPD test devices 

The very small ohmic contacts are located at the corners of the VDP 

structure which has equal width and length (160x160 µm). A current is passed 

through the contacts A,B (𝐼𝐴,𝐵), while the voltage across the opposite contacts 

C,D (𝑉𝐶,𝐷) is measured. The resistance is then given by 

𝑅 𝐴𝐵,𝐶𝐷 =
𝑉𝐶,𝐷

𝐼𝐴,𝐵
         Equation 6.7 

This is called the vertical resistance, the horizontal resistance is given by 

𝑅 𝐵𝐶,𝐴𝐷 =
𝑉𝐴,𝐷

𝐼𝐵,𝐶
         Equation 6.8 

If we assume all the vertical and horizontal measurements are equal then we 

can define the average horizontal and vertical resistances to be  

𝑅 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 =
𝑅𝐵𝐶,𝐴𝐷+ 𝑅𝐴𝐷,𝐵𝐶 +𝑅𝐷𝐴,𝐶𝐵+𝑅𝐶𝐵,𝐷𝐴 

2
      Equation 6.9 

𝑅 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =
𝑅𝐴𝐵,𝐶𝐷+ 𝑅𝐶𝐷,𝐴𝐵+𝑅𝐵𝐴,𝐷𝐶+ 𝑅𝐷𝐶,𝐵𝐴

2
     Equation 6.10 

  A D 

C  B 

160x160 µm 

5x5 µm contacts 
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The sheet resistance 𝑅 𝑆 is related to horizontal and vertical 

resistances through the van der Pauw equation 

exp (−
𝜋𝑅 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

𝑅 𝑆
) + exp (−

𝜋𝑅 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑅 𝑆
) = 1    Equation 6.11 

6.4 Accurate measurement of the channel mobility 

Drift resistivity at the voltages close to 1000V is very high compared to 

the channel resistivity, hence to accurately measure the channel mobility, drift 

resistivity should be excluded in the calculation of mobility.  

In this project, the mobility calculation was based on the total resistivity 

as the structures of the MOSFETs were kept the same and therefor the drift 

resistivity was constant. Hence the changes in mobility was concluded to be 

due to change in the channel resistance.  It is recommended to accurately 

measure the mobility of the channel in future works. This section describes the 

calculation for such measurements.   

Since 𝑉𝐷𝑆 is very small during mobility measurement, the drain current 

can be re-written as [5] [6] 

𝐼𝐷 =
𝑊

𝐿
𝜇𝐹𝐸𝐶𝑂𝑋(𝑉𝐺𝑆 − 𝑉𝑇ℎ)(𝑉𝐷𝑆 − 𝐼𝐷𝑅𝑑)               Equation 6.12 

Hence gate conductance is given by 

𝑔𝑚 =
𝜕𝐼𝐷 

𝜕𝑉𝐺𝑆 
|𝑉𝐷𝑆

=
𝑊

𝐿
𝜇𝐹𝐸𝐶𝑂𝑋𝑉𝐷𝑆(1 +

𝑅𝑑

𝑅𝑐ℎ
)    Equation 6.13 

Where 𝐼𝐷 is the drain current and 𝑅𝑑 the total resistance between the source 

and the drain excluding the channel resistance (𝑅𝑐ℎ).  Equation 6.13 could be 

used to calculate the channel mobility excluding the resistances other than 

channel resistance. 

𝑅𝑑 and 𝑅𝑐ℎ could be calculated by the following equation as previously 

described by Equation 5.7 and 5.8 
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𝑅𝑐ℎ = 𝑅𝐷𝑆𝑂𝑁 − 𝑅𝑑 =
𝐿𝑊

2µ𝐹𝐸𝐶𝑜𝑥(𝑉𝐺−𝑉𝑇𝐻)
    Equation 6.14 

Where L is the channel length and W is the channel width.  The drain to 

source resistance 𝑅𝐷𝑆𝑂𝑁, could be measured from the I-V characteristic as 

described in Chapter 5.  
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