
The Library
Self-organising techniques for tolerating faults in 2-dimensional processor arrays
Tools
Evans, Richard Anthony (1988) Self-organising techniques for tolerating faults in 2-dimensional processor arrays. PhD thesis, University of Warwick.
|
PDF
WRAP_Theses_Evans_1988.pdf - Submitted Version - Requires a PDF viewer. Download (6Mb) | Preview |
Official URL: http://webcat.warwick.ac.uk/record=b3229759~S15
Abstract
This thesis is concerned with research into techniques for tolerating the defects which inevitably occur in integrated circuits during processing. The research is motivated by the desire to permit the fabrication of very large (> 1cm²) integrated circuits having a viable yield, using standard chip processing lines. Attention is focussed on 2-dimensional arrays of identical processing elements with nearest-neighbour, orthogonal interconnections, and techniques for configuring such arrays in the presence of faults are investigated. In particular, novel algorithms based on the concept of self-organisation are proposed and studied in detail. The algorithms involve associating a small amount of control logic with each processing element in the array. The extra logic allows the processing elements to communicate with each other and come to a collective decision about how working processors should best be interconnected. The concept has been studied in considerable depth and the implications of the algorithms in a practical system have been thoroughly considered and demonstrated by construction of a small array at printed circuit board level, complete with software controlled testing procedures.
The thesis can be considered in four main parts as follows. The first part (chapters 1 to 4) starts by presenting the objectives of the research and then motivates it by examining the increasing need for processor arrays. The difficulty of implementing such arrays as monolithic circuits due to integrated circuit defects is then considered. This is followed by a review of published work on hardware fault tolerance for regular arrays of processors. The second part (chapters 5 and 6) is devoted to the concept of self-organisation in processor arrays and includes a detailed description and evaluation of the algorithms followed by a comparison with other published techniques. Considerations such as hardware requirements and overheads, reducing the vulnerability of critical circuitry, self-testing, and the construction of the demonstrator are covered in the third part (chapters 7 to 10). The fourth part (chapters 11 and 12) considers potential applications for the research in both monolithic and non-monolithic systems. Finally, the conclusions and some suggestions for further work are presented.
Item Type: | Thesis (PhD) | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software | ||||
Library of Congress Subject Headings (LCSH): | Array processors, Integrated circuits -- Fault tolerance, Self-organizing systems, Parallel processing (Electronic computers) | ||||
Official Date: | October 1988 | ||||
Dates: |
|
||||
Institution: | University of Warwick | ||||
Theses Department: | Department of Computer Science | ||||
Thesis Type: | PhD | ||||
Publication Status: | Unpublished | ||||
Supervisor(s)/Advisor: | Nudd, G. R. | ||||
Sponsors: | Great Britain. Ministry of Defence | ||||
Format of File: | |||||
Extent: | xiii, 238 leaves : illustrations, charts | ||||
Language: | eng |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year