A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/109988

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Tha Themion Alenebea
t

Quantum 8 Entintical Mechanicat

Monodromy Finide on $\boldsymbol{1}^{1}$
and
Hoen- Permion Correapondence.
Neil Antmony Watling

Thenia aubmitted for the Degree of Doctor of Philomoply,
to the Univeraity of Warwick for remaneb
conducted in the Maibematica Inatitute.
January 1909

Taple of Contemta
A chrow lodgementa
Summary

- Letroduction
0.1 Monodromy Finld on $\mathbf{7}^{2}$ 1
0.2 Boson-Fermion Cosreapondeace ii

0. 1 Iuflita Complor Spin Groupt iI
0.4 Outline of Thenin iv
1 Pralimamarian1.1 Introduction1
1.2 The Permion Alpebra 1
1. The OCR Alpebea 3
1.4 KMS Stalem 4
1 Momodramy fielde on \mathbf{I}^{2}
2.1 Introduction 5
2.2 Notation 5
2.3 Remari 7
2.4 Ramarik 7
2.5 Remapt 7
2.6 Remark 7
1 A Condition for the Exhtence of Limiting One Point Corrulatione
3.1 Introduction 8
3.1 Coavergence Apgumeat 10
3.3 Convergenee Theorem 23
4 An Eremapla of a Non-trivial Limiting Oma Paint Corralation
4.1 Introduction 27
4.2 lavertigation of C for $\equiv=1,2$ 27
4.3 Invertigution of C° 33
s N Poimt Correlationn
5.1 Introduction 35
8.2 Conjecture for limitian \mathbf{N} poiat correlationn 35
8.1 Ordar dependence of correlation 36
Boman- Fermion Correapondesen
6.1 Introduction 40
6.2 Summary 40
7 Bowon- Tarmion Correnpandenca with Chemien Poteatial μ 7.1 Introduction 42
7.2 Tha ention of $\mathrm{Map}\left(S^{\mathbf{1}}, U(1)\right)$ 44
7.1 Inventigetion of V / p. 1 l 人 46
7.4 The Farmion debere from Map ($\left.S^{1}, U(1)\right)$ $B 0$
A Daterminant Identity
(1.1 Introduction 54
2. 2 Benic Stracture 55
8.1 Applieation of Baric Strueture 57
8.4 Factorability of Elemente 62
A.B Calculation of Ona Point Correlationa 65
3. The det ${ }_{2}(1+L \Delta R)$ term 68
17 The Determineat Identity 73
Appendiz 75
Refinrenced 1

ACEMOWLEDAEMENT

 to C^{-}-alpohre in Mathamatical Phyaica and lim divica, murgationa and patimen onn carming thin thede. I would aloo life to thank my brotherf, Kaith, for cometerememplea to the frat ettampta at aproof of Proponition 3.2 .1 and the Mathamasica Departmant at Uaivarity Collage of Swanea whare thin woik we complated. I aho azprem thanh to the Scienea and Emgimering Rmanch Commed for providing the funding for them wath Finelly I thent Commodone Buainem Mechimen, Appla Computar Inc., Doand Kauth and tha Amarican Methematied Society for tha Amigh, thac, TpX and Aus-TEX reppectively without which thin thanim mould the unrecogriable

Summary

 approach to Statimical Mechanaien. A eriterion ler the critical limit ona poiat cormalution

$$
\operatorname{Hn}_{11}\left(\theta_{4}(M)\right\rangle
$$

 corralationa in aloo considared and a congertura for the critical limit a point conrelationa pootulseed.

Tha bonoo-termion corrempondence fior the reprementation of the CAR adpebre over $L^{2}\left(S^{1}, C\right)$ defised by the (r, f) KMS atate with chamical potential μ in comidernd and the een-bifectivity chown. Uning an alearastive formulation the corrolatiose eve recat culated leading to a detarmiaant identity reminiecant of Suego's Theorem.

Section 0 Intmoduction

0.1 Manodruany Fiaide on \boldsymbol{I}^{1}.
 noo [AS], [C4], [E1] [ES] and [LS] for aramplo. Monodromy fiald an 2', introduced in [P2] are is family of lattice fiold in two dimersiona which are a natural gareralimation of the two dimanioad lring fleld. Thay wore iappired by [$[1]$ and in a mona are lattice
 Thirrian modela, [ila] and [C12] reapectively. Thean lattice fielda are intareatiag for enveral reamen. Firtally, by eopatrolling the meding timit, matharnatically preciet information on the continumm ena be found and thin approach man avecenfully mand for
 atructuran augeating a dincrete theory an the lation itall. Far $M \in G L(, C)$ and a $\in \mathbb{Z}^{2}$ it in postibla to define the mooodromy flald $\boldsymbol{c}_{\mathrm{a}}(M)$ at a. Thi in a generaliation of the loing field in the anm that wham M in the ecalen -1 the vecuum expectation of
 for the name 'monodromy field' in the fact that it it po-ibla to 'ereeta' monodromy M located at a $\in \boldsymbol{Z}^{1}$ in the solution to a certrin limar diffaremce equation on the latice through a formula iavolving $\sigma_{a}(M)$.

In [P2] the on point convilajon when M in a medar meve calculated unige an elliptic aubatitution. Alno the moptotice of the corrabatione oore axamined in tha ecaling limit, that ia tha limit that teade the latice apacing to nero and the 'tamparature' to the eristical point weh that the correlation length remaing fred (masive acaling regime). In [P3 the eritical ecaling limit wen atudied, that in the large acele eronptotica of the correlatione at the criticel point (manlen regime). However a limitation of the asalyain
 $\sigma_{a}(M) \sigma_{b}(M)^{-1}$, which wer referred to athe twis problem. That in only correlationa of the form

$$
\left(\sigma_{e_{0}}\left(M_{1}\right) \sigma_{h}\left(M_{1}\right)^{-1} \ldots \omega_{c_{0}}\left(M_{n}\right) \sigma_{h_{0}}\left(M_{n}\right)^{-1}\right)
$$

eonld be atudiad. Moreover tha \boldsymbol{M}_{4} had to hava nom-negative aigenvaluea.
In ofdar to find tha large meale aymptotice at the critical point that following limit needn to be inventignted:

$$
\frac{\lim _{n}\left(\varepsilon_{\omega_{1}}\left(M_{1}\right) \ldots \omega_{\varepsilon_{0}}\left(M_{m}\right)\right) .}{}
$$

 comjecture from [PI] wan that the limit exiata and in finite if $M_{1} \ldots M_{m}=I$ and if $M_{1} \ldots M_{n} \neq I$ then tha limit in 0 or ∞. The ecoond half at thie conject ure in now ahomen to be fine by an andyria of the limiting one point correlation:

$$
\operatorname{lon}_{n}\left(\theta_{0}(M)\right\rangle
$$

A critarion for thin limit in found eatbling the aximence of a mon-identity M witl faite critieal limit corrolation to be ahowe. However min the cane for the reaulta in [PA] thim in only true for M having non-megative eipenveluet. As for the generel m poind correlationa - product formula, me [P3] of [P4], enablen thea so be Fitcen the product of the individual one point correlationa and a dati carm, sea [S8] for a defnition. Thin auggenta that the one point corveletiona are auniciant though a proof io mot available yout.

The reatrictice on M to have non-aegative aiganveluet in momewhat incomvanient nince
 case and the critical asymptotics for the two dimensional laing model remain unknown.
0.2 Boacm- Turnalon Correppondere.

For many yeare phyaicinta haw writian farmion flalda formal functiona of certain

 formion corrempondence. Aloo in [C11], in $1+1$ dimamional field theory, represeatationa of curfor ajghry wara obtaiged uning mutomorphime of the farmion or CAR algabe

 Adoptien a ampliffed vartion of trmione, mamaly tha CAR ayrahe over $L^{3}\left(S^{1}, C\right)$ this enabled an explicit operator veraion of thin correnpondence for fren boec halda. Im [CB] thim whe iahen further and the representation of loop groupa wich arion from representation of the CAR auggented by watintical mechanice ware inventigeted and im
 theory.

So the baje ides of the bowom-termion corrmpondence in 1 apace dimanaina in tha followitg. Given areprenatetion of tha CAR in wich the loced geuge growp \boldsymbol{G} in implementable, by metricting to those mapa in G which tahe ithir veluea in the marimal toruan m rapresentation of the CCR in Weyl form in obtained. Fbe the other wey, comaider particular gauge group elemente cellod 'hlipa' \%. Thead depand on tha roal paramatar
 where F in a representation of the geuge group, converger in a certain eence to a fermion field. Thin coavergence in racher delicale, atrong convergence on a dence domaim of the

Berv the relation to etetintical macherien of [Cs] in extended to include the chemicel
 The prime ramon for tryigg thim extemion wen in inveatigete Bom-Eigatain condenation, en [B2], [Be], [L1] and [L2] for ezamplo. Homever thin did mat prove wary truitfal.

It ought to be mentioned that thim in mot the oaly conatruction rafarred to magotermion coprompadance. Hudron and Parthamarathy have developed a bowom-farmion correapoadance ming quantem atochmetic anayion ane [H2], [H13] and [P10], and a aimpla meochatic integral. Alno Garbecievalti, [G1] and rafaremcen theraia, hea yat another form however the consection of either with the above in uncleer.

0.3 Inflite Camplan Sple Groupe.

Both of then objectic are realy axmmplea of a general theory imapired by [${ }^{5} 1$]. From

 of their reaulte in of intereat for thir receon and tho in ita owe right to devilop an inflaita dirnamional theory which may indeed go boyod thate of the flate can. In
 He loen developed in [Ce] and [P4]][PI] with a ammary in [C3]. It concarm the exiniance of implementera $\mathrm{F}_{\boldsymbol{g}}(G)$ on $\mathrm{A}\left(\boldsymbol{W}_{+}\right)$nuel that

$$
\Gamma_{Q}(G) F_{Q}(\varphi) \Gamma_{Q}(G)^{-1}=F_{Q}(G w)
$$

whare Fo(.) in a reprementation of $C(W, P)$ and G in an element of $O_{\text {rea }}$ (W) where

$$
Q_{v a}(W)=\{G: G \text { orthopoanl, } G Q-Q G \text { in Hilbert Schmidt }\}
$$

in aubgroup of the complex orthonond proup

$$
O(W)=\left\{G: P G P=P^{-1}\right\}
$$

Tha aubgroup of $O_{\text {rea }}(W)$ where G in a ugitary fa mell known and the Bilbert Sehmids
 of the remone for atedyiag thin era:
(1) An eboers iu 0.1 ancetly solvebie modele is tro dimetnional quantem field thenry
 ezemple tha Paderbugh model [RI], [R4], the Luttiver modal [CS], the mavalen Thirriag model [C17] and the laing and monodromy felde of 0.1. Noea thet them lat two require tha in mite dimenional anaguen of [31] and bence are not covered by the atanderd reaulta on 'Bogoliuhov tranalormationa', ese [R1], [R2], [C10] and [F1] for anamplo.
(2) The eeprementacion of locp eroupa, varter operatorn and atring theory, and [P12], and heaee by the comments in 0.2 bonon-fermion correapoadalace.
(3) Segal and Wiben, [35], used ambgroup of Oran (W) ie their atudy of the KdV equation. The work in [D1] augrende that thim method ean be artended to the Leadan-Lifhhite equation uning $O_{r a}(W)$.
Tha beric remon tiof iatroducing $O_{r a t}(W)$ is mimply to enlarge the group of Boppoliuhov traneformation atudiad to provide more 'room' in which ta have epprozimatinge to the opermions in [81].

Here the roatic of [P1| are uned to reedeulata the corrolatione oceurrian in the boomfermion ecrreapondance onmatructed. Thia heade to a datarminant idantity mimilar is form to Seagro's Theorem (\sim [M1,Chmpter X] and [Hi]).

From [P2] the one point correlation

$$
\langle\sigma(\lambda)\rangle=\frac{\theta_{3}(-i / 2 \log \lambda, t)}{\theta_{3}(0,9)}
$$

and from [C5] the mame retio of thate functiona occura in the atate dafining the repreatatation und for the bonon-fermion coermpondence. Thim appeare ta be more than coincidence and the alliptic curve derivation of the formula above linke thin with the commenta made in Siection 2.3 of [C3] concerning a weak form of beson-fermion correepoadence.
0.4 Outhine of Theal.

The format of the thenio in as followe:
(1) Section 1 introducea the beaic definitionas and notation.
(2) Section 2 introducen the deffitition of the monodronmy field $\theta_{t}(M)$.
(3) Section 1 deducea a criterion for the critied limit ane point corrolation baned on the reault of [P2] concerting the sealer cono.
(4) Section 4 und thie criterion to find a non-trivial example of a matrix M with faita critien limit conrelation. The atructure of that of auch metricen in also andied.
(5) Section E powen a conjacture for the general m point correlationaming a product formula. The variance/invariance of the conrelatione under the obvious ection of S_{1} in almo comidered.

(7) Section 7 ertandu thin metion by the eddition of amothar veriable m, the chmemical potemtil, leadiag to mome intaresting remulta comeorning the corrmpondence.
(d) Section of une mome reaults of [P1] to reformulate the frat havf of Section 7 and
 cant of Seemo'e Theorem.
(9) The Appendix piven eome peneral renulta and aorme proole of facta ned is Section 4.

Section 1

Paelimina mien

1.1 Introduction.

Thim mection will provide a brief descripting of the objecter used throughout thin theain Thoy are fairly atandard hat do have alight variation. Hence the varriona ueed are givan hern c_{o} eot deffitiona and notation.

1.2 The Fermion Algebre.

1.2.1 Derinimon. Let H be a Bilbert apace. The Fermion or CAR algebra over H, $A(H)$, i the C^{-}-dgobra genetated by the olemente $\{(f): f \in H\}$ where a in a conjugate linear map from \boldsymbol{H} into $\boldsymbol{A}(\boldsymbol{H})$ atijfying the Canonical Antieommutation Ralationa:

$$
\begin{aligned}
a(f) a(\rho)+a(\rho) a(f) & =0_{1} \\
a^{*}(f) a(g)+a(\rho) a^{*}(f) & =6, f) 1_{1}
\end{aligned}
$$

for all f, g in H, where $\boldsymbol{m}^{-(}(f)=a(f)^{*}$
1.2.2 Rryank. There in an important representation of the CAR algebra known a the Fock reprementation which in follown. Let $\Lambda(H)$ denote the Fock epece (alternating tenaor algebra) over H. Define the operatoft $a(f), a^{\prime \prime}(f)$ a follown:

$$
\begin{aligned}
\wedge\left(f\left(g_{1} \wedge \cdots \wedge g_{n}\right)\right. & =n^{1 / 2}\left(f_{1} g_{1}\right)\left(g_{2} \wedge \cdots \wedge g_{n}\right) \\
c^{\prime \prime}(f)\left(g_{1} \wedge \cdots \wedge g_{n}\right) & =(n+1)^{1 / 2}\left(f \wedge \xi_{1} \wedge \cdots \wedge g_{n}\right)
\end{aligned}
$$

Then if $n=1 \oplus 0 \oplus 0 \oplus$.

$$
\begin{aligned}
& c(f) \Omega=0 \\
& e^{-}(f) \Omega=f
\end{aligned}
$$

for all $f \in H$. These operaton do indeed give a representation of the CAR thebra. Moreover thim repreantation in unique in that it in the only irreducible representation for which a noe-sero vector Ω exinta auch ihat $a(f) \Omega=0$ for all $f \in H$. The vectior \cap in ealled the var uum vector and $a(),. a^{\prime \prime}($.$) anmihilation and creation operatorat retepectively.$

There are two other mgebrea which are ementially equivelent to thin which will be of une in Intar mections thum their deffitiona are now given.
1.2.3 Derinition. Let K be Hilbert apace and Γ an antiunitary involution on K. The melf dud CAR algebra, AsDc (K, Γ), over (K, Γ) in the C^{4}-algebra generated by the elemente $\{B(t):\{\in K\}$ where B in a conjugate linear mep from K into $A \operatorname{sinc}(K, \Gamma)$ matiafying the following:

$$
\begin{gathered}
B(k) B(l)^{\bullet}+B(d)^{\bullet} B(b)=(k, l) 1_{4} \\
B(k)^{\circ}=B(\Gamma k) .
\end{gathered}
$$

1.2.4 Definition. Lat W be a Bilbert apace and P a conjugetion on W. The Clifiord algebra, $C(W, P)$, over W in the C^{0}-dgebra generated by $\{c(w): w \in W\}$ whare e in a linear map from W into $C(W, P)$ eatiofying the following:

$$
d(v) c(v)+e(v) c(v)=\langle P v, v\rangle) .
$$

Nose that $c(v)$ will probably be identified with w.
 equivalance:
(1)

$$
A_{g} b c(K, \Gamma)=C(K, \Gamma)
$$

under the ldamilleation $\boldsymbol{B}(\boldsymbol{b})^{*}=$ (b).
(2)

$$
A \operatorname{ABc}(K, \Gamma) \geqslant A(E K)
$$

whare E in a baim projacticn, that io projoction E mith rET $=1-E$, ming the identification

$$
B(b)=a(E k]+a^{*}(E \Gamma h) .
$$

 geup-iaviriant quani-tree atates Fhich are analogyed of Gaumian dintribution in cle--icel probebility with the atate completely determined by ite two poina fuection.
1.2.6 Definition. A atete w on the CAR algebra in geuge-invariant if it in inverient under the group of gauge tranformationa

$$
m\left(\alpha(\Lambda)=\alpha\left(e^{\mu \prime} f\right), \quad \in \in[0,2 \pi)\right.
$$

1.2.7 Definition. If R in a ponitive coatraction then there in a unique genge-invariant queni-free atnele, denoted by wh, atalialy

$$
\omega_{A}\left(e^{*}\left(f_{m}\right) \ldots a^{*}\left(f_{1}\right)\left(f_{1}\right) \ldots\left(g_{n}\right)\right)=\operatorname{det}\left[\left(f_{1}, R / f\right)\right] \delta_{m e n} .
$$

In particular

$$
\omega_{R}\left(\omega^{*}(f)=(0)\right)=(0, R n)
$$

Moreover $\omega_{\boldsymbol{R}}$ in pure \boldsymbol{H} and caly if R in a projection.
1.7.8 Notation. Lat $\left(\mathcal{H}_{\boldsymbol{m}}, \mathrm{F}_{\boldsymbol{R}}, \Omega_{\mathrm{A}}\right)$ denote the GNS repreaentation of the etate $\boldsymbol{w}_{\boldsymbol{m}}$.

Another cet of ataten which will be of under are the Q-Fock atalea on $C(W, P)$ which are deflimed a followe.
1.2 .0 Depriwrrion. Suppone Q in a melf edjoist operator on W with $Q^{2}-1$ and $Q P+$ $P Q=0$. Then thart exinta a repremptation of $C(W, P)$ on the eltarnating tentor elgebra, $\mathrm{A}\left(\mathrm{W}_{+}\right)$, canersied by

$$
F_{Q}(w)=a^{*}\left(Q_{+} w\right)+a\left(P Q_{-w}\right),
$$

where a"(.), a(.) are cration and enmihilation operacon on $A\left(W_{\psi}\right)$ with $Q_{t}=1 / 2(1 \pm Q)$ and $W_{+}=Q+W$. The q-Foct atete ω_{g} in then given by

$$
\omega_{Q}(\varepsilon)=\left(\Omega, F_{Q}(x) \Omega\right), \quad \varepsilon \in C(W, P)
$$

1.2.10 Lemma. The Q-Foct atale on $C(W, P)$ is equivileat to the quati-from otate on Agoc (W, P) giver by the bacin projectin $E=Q$. Alleratively the quani-fne anate on Asoc (W, P) givan by the bein projection E in oqmirulet to the \mathcal{Q}^{-}-Pbet atate on $C(W, P)$ bhare $Q^{\prime}=1-2 E$.
Proor: If E in a bean projection on W, fag be identiffed with

$$
E(B(v))=((1-\Sigma) v)+\varepsilon_{0}^{*}((1-\Sigma) P v),
$$

 equivileact of A soc (W, P) and $C(W, P)$ given by $B(\omega)^{\circ}=\alpha(\omega)$,

Comperiag thie with the form piven is Daflaition 1.2 .9 for the representation meocinied with $\& G$ - Pock atate it in emy to mor that

$$
1-E=Q_{4} .
$$

 atem given by the abow. Nemmely $Y E$ in a bedi projection then $Q=1-2 E$ deflaee a

With thea two ficte both verrinen of the Lamme era ibowe.
 eteter and moreower they are pura.

1.3 The CCR Aleobre.

1.8.1 Depinimon. Lat H be eyillbert apace. The CCR agebra ovar H th the -
 Cesonical Comantistion Relationa:

$$
\begin{gathered}
a(f) a(g)-a(\rho) c(f)=0, \\
a^{*}(f) a(g)-a(g) a^{-}(f)=6, \cap 1,
\end{gathered}
$$

foer all g, h in H, where $a^{*}\left(\Omega=\alpha(f)^{*}\right.$
1.3.2 Depinition. If the mif adjoint opernear $0(\cap)$ in defined ma

$$
\varphi(f)=\frac{\bar{\sigma}(\eta)+\sigma^{*}(\eta)}{\sqrt{2}}
$$

and $W(f)$ the unilary aparator m

$$
W(f)=\operatorname{axp}\{(f(f)\}
$$

ben

$$
W(f) W(s)=\operatorname{enp}\{-1 / 2 \operatorname{lm}(f, s)\} W(f+s)
$$

The operators $W(f)$ are ealled Wayl operatort and the commetation relation

$$
W(f) W(g)=e^{-i / 2 \ln (f \cdot a)} W(f+g)=e^{-i \ln (f \cdot s)} W(\rho) W(f)
$$

the Wayl form of tha Camonical Commutation Relationa with the C^{-}-agebra generated by the Weyl operatine callad the Wayl lopm of the CCR alabiara.
 Weyl oparators, $W(f)$, whare f in an element of a real linear apece H with a nondegenercte aymplectic bilimen form of
[That in : $H \times H \rightarrow$ (with $r(f, g)=-\sigma(g, f)$ for an $f, \boldsymbol{f} \in H$ and if $\sigma(f, \rho)=0$ for 새f f than 0]
and commutation rolation

$$
W(\rho W(s)=\exp \{-i / 2 \theta(f, s)\} W(f+\theta) .
$$

Por exampla if H ia a complex pro-Bilbert spece and

$$
\theta(f, g)=\operatorname{lm}(f, \theta)
$$

then the CCR agport ie ohtained.

1.4 KME ataten

1.4.1 Depinition. Lat \boldsymbol{A} be mery edioint operator on that Bilbart apach H and mama

$$
\omega(A)=\frac{\operatorname{Tran}\left(e^{-\Delta K_{n}} A\right)}{\operatorname{Trace}\left(e^{-B K_{n}}\right)}
$$

dencte the Gibba prand canoaical equilibrium nate over the CAR agebra $A(H)$ and

$$
\eta(A)=e^{i \pi K_{p}} A e^{-i \pi K_{n}}
$$

the evolution correapoading to the pamardiaed Hemiltonian $\boldsymbol{K}_{\mathbf{g}}$. So it perticular

$$
n(a(f))=e^{-i t \beta} a\left(e^{i k} f\right)
$$

 quali-free atate with two poitt furetion

$$
\left.\omega\left(\sigma^{*}(f) m(\rho)\right)=6,8 \varepsilon^{-\infty}\left(1+\pi e^{-\rho m}\right)^{-1} f\right) .
$$

-here s is ef
For eny further detailh comearning thin and the reat of Section 1 ano [A1], [A2 2] and [B4] for example.

section 9

2.1 Introdacilion.

Thiemertion given the bealc dafnitiona for the atudy of monodromy falde on $\mathbf{1}^{\mathbf{t}}$.

2. 2 Noththan.

In T be the miltiplication opprator on H deffed by the 2×2 menpix:

$$
T f(\theta)=\left[\begin{array}{cc}
c^{2} / a-\operatorname{ces} \theta & \Delta \operatorname{cin}-1(c / s-c \cos \theta) \\
\operatorname{anin} \theta+i(e / s-\cos \theta) & c^{2} / s-\cos \theta
\end{array}\right] f(\theta)
$$

whare $e_{1}:>0$ and $e^{2}-s^{2}=1$.
Lat O ba the multiplication opartion om H deflaed by:

$$
Q f(\theta)=\left[\begin{array}{cc}
0 & \operatorname{des}(\theta) \\
-i e^{-\tan (\theta)} & 0
\end{array}\right] f(\theta)
$$

-hare $a(0)$ in detepmiced by the following, teilh $Y(0)>0$:
(1) $a(0)=0$,
(2) conlt $7(1)=c^{1} / s-\cos 1$,

Note that

$$
T(\theta)=\operatorname{axp}[-\gamma(\theta) Q(\theta)]=e^{-\gamma(\theta)} Q_{+}(\theta)+e^{\gamma(\theta)} Q_{-}(\theta)
$$

-herin $Q_{1}=1 / 2(1 \pm Q)$ चith $Q^{2}=1, Q$-II edjaint
A loo lex a br the milapliention operator on H deffeed by:

$$
f(0)=e^{6 t} f(0)
$$

Now extend T, Q and a to oparatori on H^{\prime} in tha obviou manaer, mamaly temoring by P l.e. the operator acte obeach eopy of H. With a alight sheod of notation call theme operatorn T, Q and s. Lat $W^{\prime \prime}=H^{P}$ © \boldsymbol{A}^{\prime}, whare \boldsymbol{F} denalen tha Hilbert apace
 oparalor on $W^{\prime \prime}$ deffacd $a \in(-Q)$ then $Q w$ anticommaten with P and $Q w$ in alf adjoint with $Q^{2}, 1$.

Hence Q_{w} definet Q_{w}-Fock rtave of the Clifford alatobe $C\left(W^{*}, P\right)$ whome mocialad
 $Q_{\mathrm{w}}^{\mathrm{w}}=1 / 2\left(1 \pm Q_{w}\right)$. The gencratora of thin repremantation ard given by:

$$
F(w)=a^{*}\left(Q_{w}^{t} w\right)+a\left(P Q_{w}^{-} w\right)
$$

Now define the rextricted peral lineer frowp $G L_{g}\left(H^{p}\right)$ ef tha group of bounded,
 dacompatition of H° darived from Q have B, e Bilbert Schmidt and a, Aredhoim of
 the aulgroup with $\mid=e=0$.
 denen tineen domein, $\bar{D} \subseteq A\left(W_{+}^{T}\right)$, wogether with two homomorphiam, $\Gamma_{q}: G L_{g}\left(H^{P}\right) \vec{D}$ $L(D)$ and $\Gamma: G L_{\rho}^{1}\left(H^{P}\right) \rightarrow L(D)$ whore $L(D)$ denotea the linear mapa from D to D_{1} anch shat:

$$
\begin{aligned}
& \Gamma(g) F(w)=F\left(g \oplus \boldsymbol{f}^{t^{-1}} w\right) \mathrm{r}(g), \quad, \in G L_{Q}^{\prime}\left(H^{\nu}\right), \\
& \text { and } \mathrm{r}_{\mathrm{q}}\left(\mathrm{hgh}^{-1}\right)=\Gamma(h) \Gamma_{q}(\mathrm{~g}) \Gamma^{(h)^{-1}} \text {. }
\end{aligned}
$$

$$
g_{1} \times h_{1}, \theta_{2} \times h_{2}=g_{1} h_{1} g_{2} h_{1}^{-1} \times h_{1} h_{2}
$$

then the ahove givee $f \times h \rightarrow \Gamma_{g}(g) \Gamma(h)$ a homomorphimen with kernel

$$
K=\{!\times h: g h=1 \text { and } \operatorname{det} d(e)=1\}
$$

Deflen $G L_{Q}\left(H^{P}\right)=G L_{Q}^{\circ}\left(H^{P}\right) \times G L_{Q}^{1}\left(H^{P}\right) / K$ then $(g \times h) K-g h$ in a well deflned homomorphium $T: G \widehat{L}_{Q}\left(H^{P}\right) \rightarrow G L_{Q}\left(H^{P}\right)$ with thernel \mathbf{C}^{*}. Identifying $\boldsymbol{G} \widehat{\mathrm{L}}_{\boldsymbol{Q}}\left(H^{\prime}\right)$ with ite image in $L(\mathbb{D})$:

$$
\rho F(w)=F\left(T(s) \oplus T(s)^{-1} w\right) y . \quad g \in E L_{q}\left(H^{v}\right)
$$

i.. g in the implementer of $T(g)$. If Ω_{q} in the vecuum vector of $A\left(W_{q}^{P}\right)$ define

$$
(\infty)_{Q}=\left(\Omega_{q}, \Omega_{q}\right), \quad, \in \in \bar{L}_{Q}\left(H^{F}\right)
$$

that in if $y^{\prime}=\left(\sigma^{\prime} \times h^{\prime}\right) K$

$$
\begin{aligned}
(\boldsymbol{\rho})_{Q} & =\left(\Omega_{Q}, \Gamma_{Q}\left(f^{\prime}\right) \Gamma\left(h^{\prime}\right) \Omega_{Q}\right) \\
& =\left(\Omega_{Q}, \Gamma_{Q}\left(f^{\prime}\right) \Omega_{Q}\right) \\
& \left.=\operatorname{det}\left(\boldsymbol{\sigma}^{\prime} \boldsymbol{f}^{\prime}\right)\right) .
\end{aligned}
$$

For more detaile of thin, together with proole, ace [P2] and [C8].
 foe $i=0,1$ then $T\left(\left(\xi_{0} \times g_{1}\right) K\right)=g$, thum the implementer of the automorphimm induced by g on the Clifford algebra in given by $\Gamma_{q}\left(f_{0}\right) \Gamma\left(g_{1}\right)$ at leeto on the dense domaia D and upto acalar multiple- a choice of fectoristation at the $G L_{0}\left(H^{P}\right)$ level being equivalent Lo choice of notmalization at the $\widehat{G L_{0}}\left(H^{\prime}\right)$ level.

With the atructuren defined abowe it in now pomible to define the monodrony field $\sigma(M)$, where $M \in G L(p, C)$. Let M act on $H^{\prime \prime} \in I \otimes M$ and define ε as the convolution operntor no H thome Fourier traneform acta on $\ell^{2}\left(\mathbf{I}_{1 / 2}, C^{2}\right)=\ell /(k)=\operatorname{sgn}(k) /(k)$, for $t \in \mathbb{Z}_{1 / 9}$. Let $\epsilon_{ \pm}=(1 \pm \varepsilon) / 2$ and defipe

$$
\theta(M)=t-1,+\varepsilon+\otimes M
$$

In $[P]]$ is is shown that $s(N) \in G L_{0}\left(H^{*}\right)$, then $\sigma(M)$ ie rementielly defined wech that $T(\rho(M))=a(N)$ So from commenm made above a factorisation of a(M) into pogi
 factorisation in conatructed in $[\mathrm{P}]$] and uning that notation $(M)=0(M) D(N) \pm$ thes:

$$
\left.\alpha(M)=\Gamma_{Q}(\alpha M)\right) r(D(M))
$$

Thin deflation can be eztended to the pointa on $a Z^{2}$ lactice a followa. Les $\Gamma(T)$ and $\Gamma(a)$ be the implementern of T and a then define

$$
\begin{aligned}
& s_{s}(M)=T^{-1} z^{+1} \alpha(M) y^{-\infty} T^{-4}, \\
& \text { and } \sigma_{s}(M)=\Gamma(T)^{\alpha_{1}} \Gamma(x)^{e_{1}} d(M) \Gamma(x)^{-a_{1}} \Gamma(T)^{-\alpha_{1}},
\end{aligned}
$$

where $=\left(a_{1}, a_{1}\right) \in Z^{2}$. Cell $\sigma(M)$ the monodromy field $a \in \sim \infty(M)$ in the monodrony fild ait 0 .
2. A Remank. The matiplication aparmbor Tintroduced ot tha bagionimg of 2.2 Notetion

 to corrmpand to balow the critieal tomparatura, at the cetilital tompareture and showe tha eritiked tampertiture rempetively.
2.4 Rrmank. One prohlem- which hen hean glomed over oo fer-in the fect that (M) $G L_{g}\left(H^{P}\right)$ when a 1 (Q depandin on T and then a) and cogequently a

2.5 Rruany. The objecta of atedy are the n point correlationa:

$$
\left.\left(\theta_{e_{1}}\left(M_{1}\right) \ldots \theta_{\psi_{-}}\left(M_{k}\right)\right)\right)_{\varphi_{1}}
$$

 criticel tampereture.
2.6 Remank. Prom now on it with be mumed thet $4<1$ and athemation- it 1aucgeath the limit from below will be comidered. Alvo the Q aubecript in the correletion will be dropped.

Section

A Condrtion mole tme Existence of Limitina On표 Point Colenelationa
0.1 Int roduction.
 for all matrice $M \in G L(p, C)$, $p \in N$ with mon-egative digumviun. The atarting point the thin clamifiction in a remult of $[P 2]$ concetting the one dirnentional mealar cene, that in $(y=1)$.
3.1.1 Propasition. Lent $=a^{2}, H^{2}=1-k^{2}$ and

$$
K^{(t)}=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{1+k^{(\prime)^{2}} \sin ^{2} \theta}}
$$

$$
\sigma(\lambda))=\operatorname{det} d(\lambda)=\prod_{i>0}\left[\frac{1+\lambda^{-1} q^{2 x}}{1+q^{2 i}} \frac{1+\lambda q^{2}}{1+q^{2}}\right]
$$

Whare $I \in \mathbf{Z}_{1 / 3}$ and $=\exp \left(-\pi K^{\prime} / K\right)$.
Note. Aad($\boldsymbol{\lambda}$) in invertibla the correlation io nom-nero.
Now mume $M \in G L(p, C)$ and han no megative eigenveluce. Hence there orion a
 of M. Thua

$$
\begin{aligned}
A(M) & =\left(1 \odot S_{M}^{-1}\right)\left(\varepsilon-8 I+\epsilon_{+} \otimes J \mu\right)\left(1 \otimes S_{M}\right) \\
& =\left(1 \oplus S_{M}^{-1}\right) \Delta\left(J_{M}\right)\left(1 \otimes S_{M}\right) .
\end{aligned}
$$

$$
\left(\left(1 \odot S_{M}^{-1}\right) a\left(J_{M}\right)\left(1 \odot S_{M}\right)\right)\left(\left(1 \odot S_{M}^{-1}\right) D\left(J_{M}\right)\left(1 \odot S_{M}\right)\right)
$$

Bence

$$
\begin{aligned}
& (\sigma(M))=\operatorname{det} d\left(\left(1 \oplus S_{M}^{-1}\right) \&\left(J_{M}\right)\left(1 \oplus S_{M}\right)\right) \\
& \left.=\operatorname{det}\left(1 \oplus S_{M}^{-1}\right) d\left(\alpha_{M}\right)\right)\left(1 \otimes S_{M}\right) \\
& -Q_{-}=Q_{-} I \text { commutee with } I \otimes S_{-1}^{(-1)} \\
& =\operatorname{del} d\left(e\left(J_{w}\right)\right) \\
& =\left(\sigma\left(J_{n}\right)\right) \text {. }
\end{aligned}
$$

Appealieg to [P2], in general the factorinieg tepmare given by the following:
Suppone $P_{+}, P_{\text {- are }}$ the orthoponel projection anto the aubaparen of $L^{2}([-K, K], C)$ -home elementa lave lourint expanaion in exp(avis/K) with no I megraive, poritive terme reapertively. Thea:

$$
D(M)=I_{+} \oplus\left(P_{+} \otimes I_{+}+P_{-} \otimes M\right)_{-},
$$

 O and

$$
\left.(M)=a(M) D(M)^{-2} \quad \text { with } d(M)\right) 1+\text { trece clan }
$$

So suppose the eigenvalues of M are $\boldsymbol{\lambda}_{1} \ldots \boldsymbol{\lambda}_{\boldsymbol{p}}$ then the Jordan form

$$
J_{M}=\left[\begin{array}{cccc}
\lambda_{1} & \delta_{1} & & \\
& \ddots & \ddots & \\
& & \ddots & \delta_{p-1} \\
& & & \lambda_{p}
\end{array}\right]
$$

where $\lambda_{i} \in \mathbf{C} \backslash(-\infty, 0)$ for $i=1, \ldots, p$ and $\delta_{j}=0$ or 1 for $j=1, \ldots, p-1$. Therefore

$$
\left.D\left(J_{M}\right)=\left[\begin{array}{l}
1 \\
\end{array} \begin{array}{cccc}
D\left(\lambda_{1}\right) & x_{1} & & \\
& \ddots & \ddots & \\
& & \ddots & \\
& & & \\
D\left(\lambda_{p}\right)
\end{array}\right]\right]
$$

where $D\left(\lambda_{i}\right)=P_{+}+\lambda_{i} P_{-}$for $i=1, \ldots, p$ and $x_{j}=0$ or P_{-}for $j=1, \ldots, p-1$. Denote the ($\left.Q_{-}, Q_{-}\right)$term of $D\left(J_{M}\right)$ by D and let $s\left(J_{M}\right)=\left[\begin{array}{ll}a\left(J_{M}\right) & b\left(J_{M}\right) \\ c\left(J_{M}\right) & d\left(J_{M}\right)\end{array}\right]$ then

$$
A\left(J_{M}\right)=\left[\begin{array}{ll}
a\left(J_{M}\right) & b\left(J_{M}\right) \\
c\left(J_{M}\right) & d\left(J_{M}\right)
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & D^{-1}
\end{array}\right],
$$

80

$$
\begin{aligned}
& \left.d\left(d_{M}\right)\right)=4\left(J_{M}\right) D^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \langle\rho(M))=\left(\sigma\left(J_{m}\right)\right)=\operatorname{det}\left(N\left(J_{M}\right)\right)=\prod_{i=1}^{p} \operatorname{det}\left(\lambda_{1}\right) \\
& =\prod_{i=1}^{p} \prod_{i>0}\left[\frac{1+\lambda_{1}^{-1} 4^{n t}}{1+f^{2}} \frac{1+\lambda_{1} q^{2}}{1+t^{2}}\right] .
\end{aligned}
$$

Alon note that fot $a=\left(a_{1}, A_{1}\right) \in \boldsymbol{2}^{2}$

$$
\begin{aligned}
& \left(\sigma_{a}(M)\right)=\left(\Gamma\left(T^{\omega_{0}} \Gamma(a)^{s_{1}} \cdot(M) \Gamma()^{-e_{1}} \Gamma(T)^{-\Delta_{1}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\Gamma_{Q}\left(T^{a_{1}} z^{a_{1}}(M) z^{-\theta_{1}} T^{-a_{2}}\right) \Gamma\left(T^{a_{1}} z^{a_{1}} D(M) z^{-\theta_{1}} T^{-a_{s}}\right)\right) \\
& =\left(\Gamma_{0}\left(T^{\omega_{1}} z^{e_{1}}(M) z^{-a_{1}} T^{-\omega_{0}}\right)\right) \\
& =\operatorname{det} d\left(T^{\omega_{n}} a^{A_{1}}(M) x^{-*} T^{-*_{n}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\{(M)) \text {. }
\end{aligned}
$$

So have shown the following lemme:

$$
\left(\sigma_{c}(M)\right)=\prod_{i=1}^{p} \prod_{i>1}\left[\frac{1+\lambda_{1}^{-1} f^{2}}{1+\phi^{2}} \frac{1+\lambda_{4}^{2}}{1+\phi^{2}}\right], \quad \forall a \in 2^{3} .
$$

3.1.3 Levma. The operatar $9, T$ and 1 commute.

Proor: By deflaition

$$
\begin{aligned}
T & =e^{-\gamma(\theta)} Q_{+}+e^{\gamma(\theta)} Q_{-} \\
& =\operatorname{ton} \gamma(\theta) I-\ln -\gamma(\theta) Q
\end{aligned}
$$

giviaf T and Q commuta

$$
T f(b)=T_{-} \varepsilon^{-1} f(\Delta)+T_{\Delta} /(b)+T_{4} I f(b)
$$

where

$$
\begin{aligned}
& T_{-}=-\frac{1}{2}\left[\begin{array}{cc}
1 & -s(e+s) \\
i(e-s) & 1
\end{array}\right] \\
& T_{e}=\frac{e}{s}\left[\begin{array}{cc}
e & -i \\
i & e
\end{array}\right], \\
& T_{+}=-\frac{1}{2}\left[\begin{array}{cc}
1 & -i(c-e) \\
1(c+s) & 1
\end{array}\right]
\end{aligned}
$$

As etay calculation ahowit T and a commele. Thun, wing the relation betwen T and Q above, it in eagy to and and Q commula.
Note. Thie lemma artually proven that T and z ara in the domain of \boldsymbol{T} which ham been impliad by the notation nofr.

3.2 Convergence Argumant.

The previon subserwon sioned inat il $M \in G L(f, C)$ han mo megrotive eigenvelue then

$$
\left\langle\sigma_{e}(M)\right\rangle=\prod_{i=1}^{F} \prod_{/>0}\left[\frac{1+\lambda_{i}^{-1} f^{2}}{1+\phi^{2}} \frac{1+\lambda_{6} \varphi^{2}}{1+T^{2}}\right], \quad V_{e} \in Z^{2}
$$

where $\boldsymbol{\lambda}_{1}, \ldots, \lambda_{1}$ are the eigenvaluen of M. Thim may be rewritien a

$$
\prod_{D=i=1}^{p}\left[1+\frac{c\left(\lambda_{i}\right) q^{2 t}}{\left(1+s^{2}\right)^{i}}\right]=\prod_{b=0}\left[1+\sum_{i=1}^{n} a^{n}\left(\frac{q^{2 t}}{\left(1+q^{2 i}\right)^{2}}\right)^{n}\right]
$$

3.2.1 Lerma. Suppone $\lambda \in C \backslash\left(-\infty, 0 \mid\right.$. Deflec $f:[0,1] \rightarrow C=f(s)=1+c(\lambda) \frac{x}{(1+x)^{x}}$ where $c(\lambda)$ in defined as sbove. Then $|f(s)|>c>0 \quad \forall x \in[0,1]$.
Pnoor: If $d(\lambda)=a+$ th then $|f(x)|=\sqrt{\left(1+a \frac{z}{(1+z)^{2}}\right)^{3}+\left(b \frac{x}{(1+z)^{2}}\right)^{2}}$.
 it in atro if and only if both entrien are sero which in not panible. Thir in dua to the fact that if $a=0$ then $\left(1+a \frac{x}{(1+z)^{3}}\right)=1$ and if $t=0$ then $\left(1+\frac{x}{(1+z)^{5}}\right)>0$ ee C >-1 by the restriction on λ. Thua $|f(s)|>0 \quad \forall \varepsilon \in[0,1]$.
Therefione $|f(s)|>c>0 \quad \forall \in \in\{0,1]$.

 as important part in the analyin that follown. Thetige migerithma above hade to

$$
\begin{aligned}
\log \left(\sigma_{a}(M)\right\rangle & =\sum_{b=0} \log \left\{1+\sum_{i=1}^{p} a_{i}\left(\frac{9^{2}}{\left(1+9^{2}\right)^{2}}\right)^{t}\right\}, \quad i \in Z_{i} \\
& =\sum_{==1}^{\infty} \log \left\{1+\sum_{d=1}^{2} a^{2}\left(\frac{f^{2-1}}{\left(1+q^{2 n-1}\right)^{2}}\right)^{i}\right\}
\end{aligned}
$$

 celenlation so ahom that $\in(0,1)$ and m il1, 11 .
3.2.3 Peopoartion. Suppone $\Sigma_{4}:[1, \infty) \rightarrow C$ in deflaed ac

$$
z_{p}(x)=1+\sum_{i=1}^{p} c_{i}\left(\frac{s^{2 z-1}}{\left(1+8^{2 x-i}\right)^{t}}\right)^{\prime}
$$

where $\in \in(0,1)$ and G_{1} are deflaod a ahow, and $Y_{1}:[1, \infty) \rightarrow C a Y_{1}(*)=\log X_{4}(a)$. Thee

$$
\lim _{\infty 11}\left(\frac{1}{3} \sum_{n=1}^{\infty}\left(Y_{6}(m)+Y_{8}(m+1)\right)-\int_{1}^{\infty} Y_{6}(m) d r\right)=0
$$

The proof of thin proponition will fallow ather a merion of lemmen which are of tuademeatal uee in the proof.
3.2.4 Lemma. Deffae the following function from $N \times(0,1) \times[0,1] \rightarrow C$.

$$
\begin{aligned}
& X_{1}(n, q, s)=1+\sum_{i=1}^{p} a\left(\frac{i^{m-1+2 n}}{\left(1+i^{m-1+2}\right)}\right)^{i}, \\
& X_{3}(n, q, s)=\sum_{i=1}^{p} c_{i} i\left(\frac{q^{2 m-1+2}}{\left(1+q^{i n-i+2 i n}\right)^{j}}\right)^{i-1},
\end{aligned}
$$

Then $3 C_{i}>0$ for $i=1,2,1$ and $Q \in(0,1)$ weh thet

(i)	$\left\|X_{1}(\omega, 4, \omega)\right\|>C_{1}>0$	$\forall x \in N, V_{i} \in(0,1), V_{u} \in[0,1]$.
(i)	$\left\|X_{3}(n, 4, v)\right\|<C_{3}$	$\forall \boldsymbol{V} \in \mathbb{N}, V_{i} \in(0,1), V \in \in[0,1]$,
(iii)	$\left\|X_{3}(m, 4, m)\right\|<C_{0}$	$V \rightarrow \in \mathbb{N}, V_{i} \in(Q, 1), V \cup \in[0,1]$.

Peoor: i): followi from remert 1.1 .2
iif): followe from the fact that the furection $f(y)=\frac{y}{(1+y)^{2}}$ oon $[0,1]$ bea maximum vilue $1 / 4$ so the

$$
c_{2}=\sum_{i=1}^{t}\left|e_{1}\right| \frac{1}{1-1}
$$

피):

$$
\begin{aligned}
& \frac{1}{9^{20}} \frac{\left(1+q^{2 m-1-2 v}\right)^{2}}{\left(1+q^{m-1}\right)^{2}}=1+\frac{\left(1-q^{2 n}\right)\left(1-q^{2 m-2+2 x}\right)}{q^{2 n}\left(1+f^{\ln -1}\right)^{2}} \\
& <1+1 / \mathrm{q}^{2} \quad V_{n} \in \mathbb{N}, V_{u} \in[0,1] \\
& <\boldsymbol{V} \in(Q, 1) \quad Q=\frac{1}{\sqrt{1}} \text {. }
\end{aligned}
$$

So

$$
\sum_{j=0}^{i-1}\left(\frac{\left(1+y^{2 m-1+2} y^{n}\right.}{9^{n}\left(1+9^{m-i}\right)^{j}}\right)^{\prime}<\sum_{i=0}^{i-1} y=\frac{1}{2}\left(y^{j}-1\right)
$$

and

$$
\begin{aligned}
& <\sum_{i=1}^{p}\left|e_{1}\right| \frac{1}{\sin ^{-1}} \frac{1}{2}\left(s^{\prime}-1\right)
\end{aligned}
$$

s.2.6 Lemma. Defme the following fanction from $\mathbf{N} \times(0,1) \times[0,1] \rightarrow \mathbf{C}$.

$$
\begin{aligned}
& M_{0}(n, 7, v)=\frac{9^{2 n-1}\left(1-9^{2 w}\right)\left(1-9^{(n-2+2 w}\right)}{\left(1+8^{2 m-i}\right)^{2}\left(1+8^{2 n-i+2 w}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=3}^{n} a_{i}\left(\frac{4^{2 n-1+2 v}}{\left(1+q^{m-1+2}\right)^{2}}\right)^{i-1} \sum_{j=1}^{i-1} \sum_{i=0}^{i-1}\left(\frac{\left(1+4^{2 n-1+2 n}\right)^{2}}{q^{2 n}\left(1+4^{2 m-1}\right)^{2}}\right)^{i} \\
& 1+\sum_{i=1}^{p} e^{2}\left(\frac{r^{2-1+2}}{\left(1+4^{2-16 m}\right)^{3}}\right)
\end{aligned}
$$

Then BM, and Q_{1} for $1=1,2,2$ and that
$\left|M_{i}(n, q, \eta)\right|<M_{i} \quad \forall ต \in N, \forall \in \in[0,1], \forall \in \in(Q 1,1)$
and 30a ancil that
$\left|M_{n}(\omega, 4, \omega)\right|<1 \quad \forall m \in N, V \cup \in[0,1], V_{i} \in\left(Q_{0}, 1\right)$.
Phonof: 1): it the sotation of lemme 1.2 .4

$$
M_{0}(n, q, v)=\frac{q^{2 n-1}\left(1-q^{2 v}\right)\left(1-q^{20-2+2 v}\right)}{\left(1+q^{2 n-1}\right)^{2}\left(1+q^{2 n-1+20}\right)^{\prime}} \frac{X_{3}(n, q, v)}{X_{1}(n, 4, v)}
$$

Therelore by lomma $\mathbf{3 . 2 . 4}$

$$
\begin{aligned}
\left|M_{0}(n, 甲, v)\right| & <\left(1-\varepsilon^{3}\right) \frac{C_{1}}{C_{1}} \quad \forall m \in N, \forall m \in[0,1], \forall \in \in\left(\frac{1}{\sqrt{2}}, 1\right) \\
& <1 \quad \forall m \in N, V_{v} \in[0,1], V_{\varphi} \in\left(\max \left\{\frac{1}{\sqrt{V}}, \sqrt{1-\frac{C_{1}}{C_{3}}}\right\}, 1\right) .
\end{aligned}
$$

2): in the motation of lemme 3.2 .4

$$
M_{1}(n, 4, v)=\frac{1}{\left(1+4^{m-1-\pi i}\right)^{2}\left(1+4^{2 n-i}\right)^{2}} \frac{X_{4}(n, 4, w)}{X_{1}(n, n, v)}
$$

Therefore by berman 3.2.4

$$
\left|M_{1}(n, \oplus, \backsim)\right|<\frac{C_{3}}{C_{1}} \quad \forall n \in N, \forall \in \in[0,1], \forall \in \in(0,1)
$$

Hence take $M_{1}=\frac{G_{2}}{5}$ and $O_{1}=0$.
3): from the proof of lemma 2.2 .4 pert Hi)

$$
\sum_{i=0}^{j=1}\left(\frac{\left(1+q^{2 n-1+2 u}\right)^{2}}{q^{2 u}\left(1+q^{2 n-1}\right)^{2}}\right)^{n}<\frac{\left(3^{j}-1\right)}{2}<\frac{3^{j}}{2} \quad \forall n \in N, \forall u \in[0,1] Y_{q} \in\left(\frac{1}{\sqrt{r}}, 1\right)
$$

Therefore $V_{n} \in \mathbb{N}, \forall u \in[0,1]$ and $V_{\mathbb{C}} \in\left(\frac{1}{\sqrt{5}}, 1\right)$
thes $V \in \in N, V \in \in[0,1]$ and $V_{f} \in\left(\frac{1}{\forall}, l\right)$

Alan $V \rightarrow \in N, Y \in[0,1]$ and $V_{\in} \in\left(\frac{1}{2}, 1\right)$

$$
\left|\frac{\left(1-4^{i n-3+2 w}\right)^{3}}{8^{2 \pi}\left(1+4^{2 m-i}\right)^{2}\left(1+4^{2 n-i+26}\right)^{2}}\right|<\frac{1}{9^{2}}<2
$$

so by the above and lemma 3.2.4

$$
\left|M_{2}(n, q, u)\right|<2 \sum_{i=2}^{p}\left|c_{i}\right|\left(\frac{3}{4}\right)^{i} \cdot \frac{1}{C_{1}} \quad \forall n \in N, \forall u \in[0,1] \forall q \in\left(\frac{1}{\sqrt{2}}, 1\right)
$$

Hence take \mathcal{M}_{2} as above and $Q_{2}=\frac{1}{\sqrt{2}}$.
4): in the notation of lemma 3.2 .4
$M_{3}(n, q, u)=\frac{q^{2 n-1}\left(1-q^{4 n-2+2 u}\right)^{2}}{\left(1+q^{2 n-1}\right)^{4}\left(1+q^{2 n-1+2 u}\right)^{4}}\left(\frac{X_{3}(n, q, u)}{X_{1}(n, q, u)}\right)^{2} \sum_{m=0}^{\infty} \frac{(-1)^{m+1} M_{0}(n, q, u)^{m}}{m+2}$
so by lemma 3.2.4 and 1) above

$$
\begin{aligned}
\left|M_{3}(n, q, u)\right|< & \left(\frac{C_{3}}{C_{1}}\right)^{2} \sum_{m=0}^{\infty} \frac{\left(\left(1-q^{2}\right) \frac{G_{4}}{C_{4}}\right)^{m}}{m+2} \quad \forall n \in N, \forall u \in[0,1] \forall q \in\left(\frac{1}{\sqrt{2}}, 1\right) \\
< & \left(\frac{C_{3}}{C_{1}}\right)^{2} \sum_{m=0}^{\infty} \frac{1}{(m+2) 2^{m}} \\
& \forall n \in N, \forall u \in[0,1] \forall q \in\left(\max \left\{\frac{1}{\sqrt{2}}, \sqrt{1-\frac{C_{1}}{2 C_{3}}}\right\}, 1\right) \\
& \stackrel{\operatorname{def}}{\equiv} M_{3} .
\end{aligned}
$$

3.2.6 LEMMA.

$$
\begin{aligned}
& \frac{Z_{g}(n)}{Z_{g}(n+u)}=1+\frac{q^{2 n-1}\left(1-q^{2 u}\right)\left(1-q^{4 n-2+2 u}\right)}{\left(1+q^{2 n-1}\right)^{2}\left(1+q^{2 n-1+2 u}\right)^{2}} \\
& \sum_{i=1}^{p} c_{i}\left(\frac{q^{2 n-1+2 u}}{\left(1+q^{2 n-1+2 u}\right)^{2}}\right)^{i-1} \sum_{j=0}^{i-1}\left(\frac{\left(1+q^{2 n-1+2 u}\right)^{2}}{q^{2 u}\left(1+q^{2 n-1}\right)^{2}}\right)^{j} \\
& 1+\sum_{i=1}^{p} c_{i}\left(\frac{q^{2 n-1+2 u}}{\left(1+q^{2 n-1+2 u}\right)^{2}}\right)^{i}
\end{aligned}
$$

Proof: Straightforward calculation using definition of $\boldsymbol{Z}_{\mathbf{q}}(x)$ and the factorization

$$
a^{i}-b^{i}=(a-b)\left(a^{i-1}+a^{i-2} b+\cdots+a b^{i-2}+b^{i-1}\right)
$$

3.2.7 Lemma. Define the function $A:[1, \infty) \times(0,1) \times[0,1] \rightarrow R$ as

$$
A(n, q, u)=\left(1-q^{2 u}\right)\left(1-q^{4 n-2+2 u}\right)+u \log q^{2} \cdot q^{2 u} \cdot \frac{\left(1-q^{2 n-1+2 u}\right)\left(1+q^{2 n-1}\right)^{2}}{\left(1+q^{2 n-1+2 u}\right)}
$$

Then $\exists Q \in(0,1)$ such that $\forall n \in[1, \infty), \forall u \in[0,1]$, and $\forall q \in(Q, 1)$

$$
\begin{aligned}
|A(n, q, u)| \leq \max \left\{\left(1-q^{2}\right)\right. & +q^{2} \log q^{2} \\
& \left.-\left[\left(1-q^{2}\right)\left(1-q^{4}\right)+\log q^{2} \cdot q^{2} \frac{\left(1-q^{3}\right)(1+q)^{2}}{\left(1+q^{3}\right)}\right]\right\}
\end{aligned}
$$

Proof: If $u=0, A(n, q, u)=0 \forall n, q$ so forget this case.

> Now
> $-\left(1-4^{2 x}\right)\left(-4 \log 8-4^{2 n-2+2 n}\right)+\log 9^{2} f^{20} \frac{1}{\left(1+f^{2 m-14 m}\right)^{2}}\left\{\left(1+4^{2 m-14+m}\right)\right.$
> $\left|-\log \varphi^{2} 4^{2 m-1+2 n}\left(1+\varphi^{2 m-2}\right)^{2}+\left(1-q^{2 n-1+2 n}\right) 2\left(1+q^{2 n-1}\right) \log 9^{2}+4^{2 n-1}\right|$
> $\left.-\left(1-9^{2-1+2}\right)\left(1+f^{2-2}\right)^{2} \log f^{2} f^{m-1+20}\right\}$

$$
\begin{aligned}
& \left(\left(1+f^{2 m-1+2 n}\right)\left(1-q^{2 n-1+2 v}\right)-f^{2}\left(1+f^{2 m-1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left(1-\rho^{2 \pi}\right)^{2 m-1}\left(1+q^{2 m-1+20}\right)^{2}\right\}
\end{aligned}
$$

If the function $a, b, \epsilon:(0,1) \times(0,1] \rightarrow \boldsymbol{A}$ are defined m followa:

$$
a(\varphi, v)=m \log \varphi^{2}, \quad \quad(\varphi, v)=1-\varphi^{m} \quad \quad \text { and }(\varphi, v)=\varphi^{2 \omega}
$$

and the aubstitution $a=\boldsymbol{f}^{2 m-1}$ in made, the terminaide the brectet becomea (drapping the \uparrow, $\begin{gathered}\text { deppardence } \text { in the notation for convanience) }\end{gathered}$

$$
(1+s)(1-c z(1+e s))-1 s(1+e s)^{2} .
$$

In lemmes 3.2 .8 and 3.2 .9 it in shown thet auch a function in negative $\forall E \in[0,1]$, $\forall \in \in$ $(0,1)$ and $V u \in(0,1]$. Hence in particular it in true when $=q^{2 n-1}$ an $f^{2 m-1} \in[0,1]$, $\forall \in \in(0,1)$ and $\forall n \in[1, \infty)$, thu the term inide the bracket io negative $\forall \mathfrak{V} \in[1, \infty)$, $\forall \in(0,1)$ and $\forall \in(0,1]$. It in eany to met the the multiplyiag factor in aloo almay seprite. Hence $\frac{\partial A(n, 4, w)}{\partial n}$ in poaitive $\forall n \in(1, \infty), \forall \subset \in(0,1)$ and $\forall u \in(0,1]$.

So if a and mare fired A incremen m increane. Thu the inequality

$$
A(1, \varphi, m) \leq A(m, f, m) \leq A(\infty, \eta, m) \quad \forall n \in[1, \infty), \forall q \in(0,1), \forall w \in(0,1]
$$

holde where $A(\infty, \varphi, v)$ in tha function deffed from $(0,1) \times[0,1] \rightarrow$ R by

$$
A(\infty, 1, \varphi)=\left(1-\varphi^{2 n}\right)+\varphi \log 4^{2} \cdot 4^{2 \omega} .
$$

Lamma $\mathbf{1 . 2 . 1 0}$ ahown ithet

$$
|A(\infty, \varphi, \varphi)| \leq\left(1-q^{2}\right)+q^{2} \log q^{2} \quad \forall \in \in(0,1), \forall=\in[0,1] .
$$

Lemman 3.2.11 and 3.2 .12 mow that $V_{\mathbb{C}} \in(Q, 1), V_{u} \in[0,1]$

$$
|A(1, \phi, v)| \leq-\left[\left(1-\varphi^{2}\right)\left(1-\varphi^{4}\right)+\log \varphi^{2} 4^{2} \frac{\left(1-q^{3}\right)(1+4)^{2}}{\left(1+\varsigma^{2}\right)}\right]
$$

and the relavant Q in found.
Thum, a required, $V_{n} \in[1, \infty), \forall u \in[0,1]$, and $\forall \in \in(Q, 1)$

$$
\begin{aligned}
|A(n, \varphi, \varphi)| \leq \operatorname{man}\left\{\left(1-\varphi^{3}\right)\right. & +\varphi^{2} \log \varphi^{2} \\
& \left.-\left[\left(1-q^{2}\right)\left(1-9^{4}\right)+\log \varphi^{3} 4^{3} \frac{\left(1-9^{3}\right)(1+q)^{2}}{\left(1+q^{3}\right)}\right]\right\} .
\end{aligned}
$$

thes

$$
\frac{m(e-b)+t}{-((c+b) e}>1 \quad \forall \in \in(0,1), V \in \in(0,1] .
$$

 thet $\frac{\partial(a+b)}{\partial w}=\log 4^{2}\left(1-9^{2}\right)<0 \quad \forall v \in(0,1), \forall \in \in(0,1)$ and $(0+b)(a, 0)=0$ gives - continnom exiemion.
 rumprapmoent and the ohmorvation thet in $1-e$ in equivalant to

$$
4(a+b)-4(3 a+2 b)>0
$$

Therefors letting $f(4, m)$ denote thia function it in necemary $t 0$ prove that $f(\varphi, \varphi)>0$ $\forall \subset \in(0,1), \forall \in \in(0,1)$ where

$$
f(f, 4)=4\left(4 \log f^{2}+\left(1-f^{2 x}\right)\right)-\left(1-4^{2 x}\right)\left(6 x \log f^{2}+3\left(1-f^{2 x}\right)\right)
$$

Now

$$
\begin{aligned}
& \frac{\partial f(f, v)}{\partial x}=4\left(\log g^{x}-\log f^{2} f^{2}\right)+\log q^{2} \cdot q^{m x}\left(b x \log f^{3}+x\left(1-f^{x}\right)\right) \\
& -\left(1-4^{2}\right)\left(6 \log 9^{2}-3 \log f^{2} \cdot f^{2}\right) \\
& =\log f^{2}\left[\left(1-q^{2 \pi}\right)\left(6 q^{2 \pi}-1\right)+5 x \log q^{2} \cdot 9^{2 \pi}\right]
\end{aligned}
$$

 beeoman

$$
(1-5)(6 z-1)+5 x \log x
$$

Now coanidar the fumetion : $[0,1] \rightarrow$ R defned by $g(z)=(1-z)(6 a-1)+5 x \log \mathrm{a}$. $f(s)=12(1-\varepsilon)+5 \mathrm{log} 2$ and $\boldsymbol{f}^{\prime \prime}-12+5 / \varepsilon$ en (e) ha a marimum point at 1 tith

 in $[0,1]$ other than $a-1$. Bance $m(0)=-1, g(8)<0 \forall a \in[0,1)$.

Comequenty

$$
\left(1-f^{2 w}\right)\left(0 q^{2 n}-1\right)+5 n \log \varphi^{3} f^{x}<0 \quad \forall \subset \in(0,1), \forall u \in(0,1]
$$

Thus $\frac{\partial f(9, v)}{\partial 0}>0 \forall \in \in(0,1), \forall x \in(0,1]$. Heace $f(4, v)>0 \forall \subset \in(0,1), \forall \in \in(0,1]$ $a f(4,0)=0$ give 4 comianoun azteanion.
 $H:[0,1] \times(0,1) \times(0,1] \rightarrow \mathrm{A}$ by
then

$$
H(x, 4, v)<0 \quad \forall \in \in[0,1], \forall \in \in(0,1), \forall \in \in(0,1]
$$

Penay: From the peoof of lemman s.2. $a+1<0, \forall \in(0,1)$, Va $\in(0,1)$. Therafore

$$
\frac{\partial H(z, p, v)}{\partial z}=H(a-1)-a c-2(a(1+c)+2 b) e z-3(a+b) e^{2} z^{3} .
$$

 discriminant ' $B^{\prime}-4 A C$ ' is this caso in:

$$
\begin{aligned}
& \left.4 c^{3}(a(1+c)+2 b)^{2}+12(c+b) c^{3}(x-1)-c c\right) \\
& =4 e^{2}\left[s^{2}(1+c)^{2}+4 a s(1+c)+4 b^{2}+3 k(a+b)(a-1)-3 a c(a+b)\right] \\
& =4 c^{2}\left[a^{3}-a^{2} c+a^{2} c^{2}+a b+a k c+b^{2}+3 a^{2} b+3 b^{2}\right] \\
& =4 c^{2}\left(a^{2}+b^{3} b^{2}+b^{2}+2 a b+2 a^{2} b+2 b^{2}\right] \quad \text { uning } a=1-b \\
& =4 c^{2}\left[(a+b)^{2}+e^{2} b^{2}+2 e(a+t)\right] \\
& =4 e^{t}[(a+t)+c t)^{1}
\end{aligned}
$$

S_{0} if H in erieaded to a function on $R \times(0,1) \times(0,1]$ in the obvious way $\frac{\partial H}{\partial z}=0$ at

$$
\varepsilon_{0}^{*}=\frac{2(a(1+c)+21) c \pm 9 c-[(a+b)+a) \mid}{-22(a+b) e^{3}}=\frac{a(1+c)+21 \mp(a+b+a b)}{-3(a+b) c} .
$$

Then uegative sige in tront of the $(a+b)+$ at term follown from the fact that is it atrictly
 aince a<0 and $\mid>0$. So

$$
\begin{aligned}
& x_{i}^{+}=\frac{a(c-b)+b}{-3(a+b) c} \\
& x_{0}^{-}=\frac{2 a+3 b+a(c+b)}{-3(a+b) c}=-\frac{1}{c}, \quad \text { uaing } c+b=1
\end{aligned}
$$

 $-0<c<1$.

No. $H(0,4, m)=a d<0 \forall \in \in(0,1)$, $\forall u \in(0,1]$ therefore

$$
H(\varepsilon, \oplus, 凶)<0 \quad \forall \varepsilon \in[0,1], \forall \subset \in(0,1), \forall u \in(0,1]
$$

sisce H ie megative at sorn and both turning pointa are outaide the intarvel $[0,1]$.
3.2.10 Lemma. Defae the function $K:(0,1) \times[0,1] \rightarrow$ R by

$$
K(f, x)=\left(1-r^{2}\right)+w q^{20} \log 9^{3}
$$

then

$$
|K(\varphi, m)| \leq\left(1-\varphi^{2}\right)+\varphi^{2} \log \varphi^{2} \quad \forall \in \in(0,1), \forall u \in[0,1] .
$$

Peooof: Suppowe the function f in defined on $[0,1]$ by $f(6)=\left(1-f^{2}\right)+f^{2}$ lon \boldsymbol{q}^{1}. Then f hat agative gradient $\forall \mathbb{Y} \in(0,1)$, a marimum point at 0 with valua 1 and a minimam point at 1 with value 0 . Hence $f(1)>0$ for at $f \in(0,1)$.
$K(4,0)=0 V_{i} \in(0,1)$ hence the inequality in trut in thin cano. Now

$$
\frac{\partial K(q, u)}{\partial u}=\left(\log q^{2}\right)^{2} \cdot u q^{2 u}>0 \quad \forall q \in(0,1), \forall u \in(0,1]
$$

So $K(e, 4)>0 \quad Y_{\mathbb{1}} \in(0,1), \forall \in \in(0,1]$ and

$$
K(\varphi, v) \leq K(\varphi, 1)=\left(1-\varphi^{2}\right)+\varphi^{2} \log q^{2} \quad \forall \uparrow \in(0,1), \forall v \in[0,1]
$$

$$
U(x, 4) \neq 0 \quad V=\in\left(\rho^{2}, 1\right)
$$

Penor: Split $L \leadsto I_{1}$ and I_{1} deflaed an:

$$
\begin{aligned}
& f_{1}(x, \varphi)=2 q(1-x)(1+q x)\left(p^{2} z-1\right) \\
& I_{5}(x, \varphi)=\log |=|(1+\varphi)^{2}\left(1-2 q z-\varphi^{2} z^{2}\right) .
\end{aligned}
$$

 for $E \in(0,1)$.
 $s=\frac{-(1+\sqrt{1})}{8}<-1$ or $\varepsilon=\frac{(\sqrt{2}-1)}{1}$

Using the fact that $\log r \begin{cases}<0, & \text { for }|\varepsilon|<1 \\ >0, & |c|>1\end{cases}$
cooficient quadratic it in eny to ment thet

$$
\begin{aligned}
& f(5, \phi)<0 \quad \text { fot } \quad\left\{\begin{array}{l}
=>\operatorname{man}\left\{1, \frac{(\sqrt{7}-1)}{}\right\} \\
z<\frac{-(1+\sqrt{2})}{1} \\
-1<\pi<\min \left\{1, \frac{(\sqrt{2}-1)}{4}\right\}
\end{array}\right. \\
& I_{2}(x, 9)>0 \quad \text { for } \quad\left\{\begin{array}{l}
\frac{-(1+\sqrt{n})}{f}<z<-1 \\
\min \left\{1, \frac{(\sqrt{2}-1)}{4}\right\}>z>\max \left\{1, \frac{(\sqrt{)}-1)}{v}\right\}
\end{array}\right.
\end{aligned}
$$

So if $4>(\sqrt{2}-1)$ then $\frac{(\sqrt{2}-1)}{1}<1$ and by the abowe $I_{2}(\varepsilon, \varphi)>0$ for $\frac{(\sqrt{12}-1)}{f}<\varepsilon<1$.
 is the intagval $\left(0, \frac{(\sqrt{2}-1)}{\ell}\right)$, but eot is the isterval $\left(\frac{(\sqrt{2}-1)}{\frac{1}{2}}, 1\right)$.

Therefora, if the requirement ithet $i^{2}>\frac{(\sqrt{5}-1)}{n}$ in added, which ather aimplification it
 that $m, L(n, 4) \neq 0 \forall z \in\left[\varphi^{2}, 1\right)$ bhere $\mid>\sqrt{\sqrt{2-1}}$.
8.2.12 Lempa. Deflae the fugction $\boldsymbol{J}:(0,1) \times(0,1] \rightarrow R$ by

Thea $3 Q \in(0,1)$ weh that $\forall \in(Q, 1), \forall \in \in[0,1)$

$$
|J(\varphi, \varphi)| \leq-\left(\left(1-\varphi^{2}\right)\left(1-\varphi^{4}\right)+\log \varphi^{2} \frac{\Phi^{2}\left(1-\varphi^{3}\right)(1+\phi)^{2}}{\left(1+\varsigma^{3}\right)}\right)
$$

Peoot: Suppese थ 10 then

$$
\begin{aligned}
& \frac{\partial J(q, u)}{\partial u} \\
& =-\log f^{2} \rho^{20}\left(1-9^{2+2 \pi}\right)-\log f^{2} f^{3+20}\left(1-9^{20}\right) \\
& +\log q^{2} \cdot \frac{q^{2 u}\left(1-q^{1+2 u}\right)(1+q)^{2}}{\left(1+q^{1+2 u}\right)}+u \log q^{2}(1+q)^{2} \log q^{2} \cdot q^{2 u} \frac{\left(1-q^{1+2 u}\right)}{\left(1+q^{1+2 q}\right)} \\
& +\frac{u \log q^{2}(1+q)^{2} q^{2 u}}{\left(1+q^{1+2 u}\right)^{2}}\left[-\log q^{2} \cdot q^{1+2 u}\left(1+q^{1+2 u}\right)-\left(1-q^{1+2 u}\right) \log q^{2} \cdot q^{1+2 u}\right] \\
& =-\frac{\log f^{2} t^{20}}{\left(1+f^{1+2 \pi}\right)^{2}}\left\{\left[\left(1-q^{2+m}\right)+f^{2}\left(1-q^{2 \pi}\right)\right]\left(1+9^{1+\infty}\right)^{2}\right. \\
& -(1+q)^{2}\left(1-q^{1+2 v}\right)\left(1+q^{1+2 v}\right) \\
& \left.-\log i^{3}(1+9)^{3}\left[\left(1-1^{1+20}\right)\left(1+q^{1+\infty}\right)-2 q^{1+\infty}\right]\right\} \\
& =-\frac{\log q^{2} \cdot q^{2 N}}{\left(1+q^{1+2 x}\right)}\left\{\left(1+q^{1+2 \pi}\right)\left(-2 q+2 q^{1+2 w}+2 q^{2+2 \psi}-2 q^{2+\pi}\right]\right. \\
& \left.-=\log q^{2}(1+9)^{2}\left(1-2 q^{1+2 \pi}-q^{2+4}\right)\right\} \\
& =-\frac{\log q^{2} q^{3 N}}{\left(1+q^{2+50}\right)^{1}}\left\{2 q\left(1-q^{2-2}\right)\left(1+q^{1+2 \phi}\right)\left(g^{2+2 v}-1\right)\right. \\
& \left.-\log q^{2}(1+q)^{2}\left[1-2 q^{1+2+}-q^{2+\epsilon t}\right]\right\} \text {. }
\end{aligned}
$$

If the aubatitution $a=n^{2 n}$ in made iamide the bracket, noting $\log z=m \log 4^{2}$, it may be witten a

$$
2 q(1-8)(1+e)\left(\varphi^{2} z-1\right)-\log x(1+\varphi)^{2}\left(1-2 q 2-\varphi^{2} z^{2}\right)
$$

Now by lemma $\mathbf{1 . 2 . 1 1}$ if $\quad>\sqrt{\sqrt{2}-1}$ thig in som-nem for $e \in\left[f^{2}, 1\right)$. In fect it in an eay conecquance from the proof that $L(\mathbb{a})<0$ for $\equiv \in\left(9^{2}, 1\right)$. Hut the aubutitution

$$
\frac{\partial J(q, u)}{\partial u}<0 \quad \forall q \in(\sqrt[3]{\sqrt{2}-1}, 1), \forall u \in(0,1]
$$

So $a J(\uparrow, 0)=0$ for all $\in(0,1)$

$$
\begin{gathered}
|J(\varphi, v)| \leq|J(t, 1)|=\left|\left(1-4^{2} M 1-\rho^{4}\right)+\log \psi^{2} \cdot \frac{\rho^{2}\left(1-f^{2}\right)(1+\phi)^{2}}{\left(1+t^{3}\right)}\right| \\
\forall q \in(\sqrt[3]{\sqrt{2}-1}, 1), \forall u \in[0,1]
\end{gathered}
$$

Now the Taylor merien erpansion for $\operatorname{lo} \boldsymbol{f}^{2}=\log \left(1-\left(1-\boldsymbol{f}^{2}\right)\right)$ givea $\log \boldsymbol{f}^{2}<-\left(1-\boldsymbol{f}^{2}\right)$. So

$$
\begin{aligned}
J(q, 1) & <\frac{\left(1-q^{2}\right)^{2}}{\left(1+q^{3}\right)}\left[\left(1+q^{2}\right)\left(1+q^{3}\right)-q^{2}(1+q)\left(1+q+q^{2}\right)\right] \\
& =\frac{\left(1-q^{2}\right)^{2}}{\left(1+q^{3}\right)}\left[1-q^{3}-2 q^{4}\right] .
\end{aligned}
$$

 Q_{4} in the uniqua solution in $(0,1)$ to $I-f^{2}-y^{4}=0$. If $q=\sqrt{\sqrt{4}-1}$ then

$$
1-4^{2}-2 q^{4}=\sqrt{2}(\sqrt{2}-1)(1-\sqrt{3} \sqrt{\sqrt{2}-1})<0
$$

a ithe leat tarm in megative. So $Q_{0}<\sqrt{\sqrt{r}-1}$ and $J(f, 1)<0$ for all $\in(\sqrt{\sqrt{2}-1}, 1)$. Therefore

$$
|J(4,1)|=-\left(\left(1-\varphi^{3}\right)\left(1-\varphi^{4}\right)+\log 4^{2} \frac{\varphi^{2}\left(1-f^{2}\right)(1+4)^{2}}{\left(1+f^{2}\right)}\right) \quad \forall \in \in(\sqrt[2]{\sqrt{2}-1}, 1)
$$

Beace have reault, where $Q=\sqrt[7]{\sqrt{2}-1}$.
With the information accumulated in the previoun lemmen s.2.4-8.2.12 it in now potuible to prove proponition 1.2.5.
Ploor:

$$
\begin{aligned}
& \frac{1}{\Delta} \sum_{n=1}^{\infty}\left(Y_{i}(n)+Y_{1}(n+1)\right)-\int_{1}^{\infty} Y_{1}(a) d \\
& =\sum_{n=1}^{\infty}\left\{\frac{1}{2}\left(Y_{0}(n)+Y_{0}(n+1)\right)-\int_{0}^{n+1} Y_{i}(s) d x\right\} \\
& =\sum_{n=1}^{\infty}\left\{\int_{n}^{\infty+1}\left(Y_{8}(\omega)-Y_{f}(s)\right) d x+\frac{1}{2}\left(Y_{8}(n+1)-Y_{8}(n)\right)\right\} \\
& =\sum_{i=1}^{n} \int_{0}^{1}\left\{Y_{0}(n)-Y_{p}(n+\theta)+v\left(Y_{9}(n+1)-Y_{8}(n)\right)\right\} d n \\
& =\sum_{n=1}^{\infty} \int_{0}^{1} \log \left\{\frac{Z_{n}(n)}{Z_{n}(n+n)} \cdot\left[\frac{Z_{n}(n+1)}{Z_{4}(n)}\right]^{n}\right\} d n .
\end{aligned}
$$

Now

$$
\left|\int_{0}^{1} \log \left\{\frac{Z_{n}(n)}{Z_{4}(n+s)} \cdot\left[\frac{Z_{n}(n+1)}{Z_{q}(n)}\right]^{*}\right\} d u\right| \leq \max _{s \in \operatorname{pan}}\left\{\left|\log \left\{\frac{Z_{n}(n)}{Z_{q}(n+s)} \cdot\left[\frac{Z_{0}(n+1)}{Z_{q}(n)}\right]^{*}\right\}\right|\right\}
$$

and when $w=0$ or 1

$$
\log \left\{\frac{Z_{q}(n)}{Z_{q}(n+u)} \cdot\left[\frac{Z_{4}(n+1)}{Z_{q}(n)}\right]^{u}\right\}=0 \quad \forall_{n} \in N, V_{q} \in(0,1)
$$

 reapect to m, that in

$$
\frac{\partial}{\partial u}\left(\log \left\{\frac{Z_{s}(n)}{Z_{n}(n+n)} \cdot\left[\frac{Z_{n}(n+1)}{Z_{q}(n)}\right]^{v}\right\}\right)=\frac{-\frac{\theta}{\partial m}\left(Z_{q}(n+n)\right)}{Z_{q}(n+n)}+\log \left\{\frac{Z_{n}(n+1)}{Z_{p}(n)}\right\}=0
$$

Therefore conaider the function $\boldsymbol{X}: \mathbf{N} \times(0,1) \times[0,1] \rightarrow \mathbf{C}$ deflined by

Now

$$
Z_{0}(n+*)=1+\sum_{i=1}^{n} c_{1}\left(\frac{y^{2 n-1+2}}{\left(1+4^{2 n-1+2 n}\right)^{1}}\right)^{\prime}=X_{1}(n, q, n)
$$

in the notation of lemmen 3.2.4, $\frac{1}{}$

$$
\begin{aligned}
& \frac{\partial z_{n}(n+v)}{\partial n}=\sum_{i=1}^{p} e_{c}\left(\frac{q^{2 n-1+20}}{\left(1+f^{2 m-1+2 v}\right)^{j}}\right)^{i-1} \cdot \log q^{2} \cdot \frac{q^{2 n-1+20}\left(1-q^{2 n-1+2 n}\right)}{\left(1+q^{2 n-1+20}\right)^{2}}
\end{aligned}
$$

is the notation of lemmen 3.2.4. Aloo from lemman 3.2 .6 and 3.2 .5

$$
\frac{Z_{n}(n)}{Z_{4}(n+n)}=1+M_{0}(n, n, v)
$$

vith
$\left|M_{0}(n, y, v)\right|<1 \quad \forall n \in N, V \in \in[0,1], V_{i} \in\left(\max \left\{\frac{1}{\sqrt{2}}, \sqrt{1-\frac{C_{1}}{C_{3}}}\right\}, 1\right)$

$$
\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m}\left(M_{0}(m, n, m)\right)^{m}
$$

provided in lerge enough. Therefore \boldsymbol{X} may be rewritten an

givin!

$$
\begin{aligned}
& +\left|\sum_{m=2}^{\infty} \frac{(-1)^{m-1}}{m}\left(M_{0}(n, v, v)\right)^{m}\right|
\end{aligned}
$$

Now

$$
\begin{aligned}
& M_{0}(n, q, v)+s \log _{q^{2}} \frac{q^{2 n-1+2 w}\left(1-q^{2 m-1+2 w}\right)}{\left(1+q^{2 n-1+2 k}\right)^{2}} \frac{X_{3}(n, q, s)}{X_{1}(n, q, v)} \\
& =\frac{q^{2 n-1}\left(1-q^{2 n}\right)\left(1-q^{m-2+2 n}\right)}{\left(1+q^{2 m-i}\right)^{2}\left(1+f^{2 n-1+2 n}\right)^{2}} \frac{X_{3}(n, q, v)}{X_{1}(m, 4, v)} \\
& +m \log \varphi^{2} \cdot \frac{q^{2 n-1+2 w}\left(1-q^{2 n-1+2 w}\right)}{\left(1+5^{2 m-1+2 \pi}\right)} \cdot \frac{X_{2}(n, q, w)}{X_{1}(n, q, v)}
\end{aligned}
$$

noe the proof of lemma 1.2 .8

$$
\begin{aligned}
& \left.+s \log q^{2} \frac{q^{2 \omega}\left(1-q^{2 n-1+20}\right)\left(1+q^{2 n-1}\right)^{2}}{\left(1+q^{2 n-1+20}\right)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =q^{3 n-1} M_{1}(n, q, v) A(n, 4, v) \\
& 1 \frac{q^{2 n-1}\left(1-9^{2}\right)\left(1-e^{f n-2+2 n}\right)}{\left(1+q^{2}-1\right)\left(1+f^{2 n-1+27}\right)^{2}} \frac{\left[(n, q, v)-X_{3}(n, 4, v)\right]}{X_{1}(n, 4, v)}
\end{aligned}
$$

Prom lemme 3.2.4

$$
\begin{aligned}
& X_{3}(n, q, w)-X_{3}(n, 4, w) \\
& =\sum_{i=1}^{p} e_{i}\left(\frac{1^{2 m-1+2 m}}{\left(1+i^{2-1+1+i}\right)^{2}}\right)^{1-3} \sum_{j=0}^{i-1}\left(\frac{\left(1+1^{2 m-1+3}\right)^{3}}{1^{2}\left(1+i^{2}-1\right)^{3}}\right)^{\prime} \\
& -\sum_{i=1}^{n} a_{1}\left(\frac{9^{2 n-1+3 v}}{\left(1+9^{2-1+5}\right)^{2}}\right)^{i-1} \\
& =\sum_{i=1}^{p} e_{i}\left(\frac{q^{2 n-1+2 v}}{\left(1+q^{m i n-1+i k}\right)^{2}}\right)^{i-1} \sum_{j=0}^{i-1}\left[\left(\frac{\left(1+q^{2 n-1+2 v}\right)^{2}}{q^{2 i}\left(1+q^{2 n-1}\right)^{2}}\right)^{j}-1\right] \\
& =\sum_{i=2}^{p} e_{i}\left(\frac{q^{2 n-1+20}}{\left(1+q^{m-1+\hbar \pi}\right)^{2}}\right)^{i-1} \sum_{j=1}^{i-1}\left[\left(\frac{\left(1+q^{2 n-1+2 v}\right)^{2}}{8^{2 \pi}\left(1+q^{2 n-1}\right)^{2}}\right)-1\right] \sum_{i=0}^{j-1}\left(\frac{\left(1+q^{2 n-1+2 v}\right)^{2}}{q^{2 i}\left(1+q^{2 n-1}\right)^{2}}\right)^{n}
\end{aligned}
$$

Hence have

$$
q^{2 n-1} M_{1}(n, q, v) A(n, q, v)+q^{2 n-1}\left(1-q^{2 v}\right)^{2} M_{2}(n, q, v)
$$

Also

$$
\begin{aligned}
\sum_{m=2}^{\infty} \frac{(-1)^{m-1}}{m}\left(M_{0}(n, q, v)\right)^{m} & =M_{0}(n, q, v)^{2} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{(m+2)}\left(M_{0}(n, q, v)\right)^{m} \\
& =q^{2 m-1}\left(1-\boldsymbol{q}^{2 n}\right)^{2} M_{3}(n, \ell, v)
\end{aligned}
$$

So

$$
\begin{aligned}
& |X(n, 7,4)|
\end{aligned}
$$

$$
\begin{aligned}
& +q^{m-1}\left|M_{3}(n, q, w)\left(1-q^{2 v}\right)^{2}\right| \\
& <q^{2 n-1} M_{1} \max \left\{\left(1-\varphi^{2}\right)+\varphi^{2} \log f^{2},-\left(1-q^{2}\right)\left(1-\varphi^{4}\right)-\log \varphi^{2} \frac{f^{2}\left(1-q^{3}\right)(1+q)^{2}}{\left(1+q^{3}\right)}\right\} \\
& +8^{2 n-1} M_{2}\left(1-f^{2}\right)^{2}+8^{2 n-1} M_{3}\left(1-q^{2}\right)^{2} \\
& \forall n \in N, v_{u} \in[0,1], \forall_{q} \in\left(\max \left\{\sqrt{\sqrt{2}-1}, \sqrt{1-\frac{C_{1}}{2 C_{2}}}\right\}, 1\right)
\end{aligned}
$$

using the reaulte of the previoun lemmen

$$
\begin{aligned}
& \left.+\left(M_{2}+M_{3}\right)\left(1-s^{2}\right)^{2}\right] .
\end{aligned}
$$

Thetefore in particular

$$
\begin{aligned}
& \left|\int_{0}^{1} \log \left\{\frac{Z_{0}(n)}{Z_{n}(n+n)} \cdot\left[\frac{Z_{n}(n+1)}{Z_{4}(n)}\right]^{*}\right\} d n\right| \\
& <\tau^{2 m-1}\left(M_{1} \max \left\{\left(1-\rho^{2}\right)+\tau^{2} \log \phi^{2},-\left(1-\varphi^{3}\right)\left(1-\varphi^{4}\right)-\log \varphi^{2} \frac{\varphi^{2}\left(1-\varphi^{3}\right)(1+\varphi)^{2}}{\left(1+\tau^{3}\right)}\right\}\right. \\
& \left.+\left(M_{3}+M_{3}\right)\left(1-q^{2}\right)^{2}\right] \\
& \forall_{n} \in N, V_{q} \in\left(\max \left\{\sqrt[3]{\sqrt{2}-1}, \sqrt{1-\frac{C_{1}}{2 C_{3}}}\right\}, 1\right) \text {. }
\end{aligned}
$$

So

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|\int_{0}^{1} \log \left\{\frac{Z_{q}(n)}{Z_{q}(n+u)} \cdot\left[\frac{Z_{4}(n+1)}{Z_{q}(n)}\right]^{w}\right\} d u\right| \\
& <q\left[\mathcal{M}_{1} \max \left\{1+\frac{q^{2} \log q^{2}}{\left(1-q^{2}\right)},-\left[\left(1-q^{4}\right)+\frac{\log q^{2}}{\left(1-q^{2}\right)} \cdot \frac{q^{2}\left(1-q^{3}\right)(1+q)^{2}}{\left(1+q^{3}\right)}\right]\right\}\right. \\
& \left.\quad+\left(M_{1}+M_{n}\right)\left(1-q^{2}\right)\right] \\
& \quad \forall n \in N, \forall q \in\left(\max \left\{\sqrt[3]{\sqrt{2}-1}, \sqrt{1-\frac{C_{1}}{2 C_{3}}}\right\}, 1\right)
\end{aligned}
$$

$$
\lim _{i 11} \sum_{n=1}^{\infty}\left|\int_{0}^{1} \log \left\{\frac{Z_{q}(n)}{Z_{q}(n+u)} \cdot\left[\frac{Z_{q}(n+1)}{Z_{9}(n)}\right]^{u}\right\} d u\right|=0
$$

So

$$
\lim _{i=1}\left[\frac{1}{2} \sum_{n=1}^{\infty}\left(Y_{q}(n)+Y_{q}(n+1)\right)-\int_{1}^{\infty} Y_{q}(z) d z\right]=0
$$

3.2.13 Remark. The number $\sqrt{1-\frac{C_{5}}{2 C_{3}}}$ may be replaced by $\sqrt{1-\frac{1}{3}}$ in order to see that there do metually axiat it is the range given.

3.3 Convergence Theoram.

The renults of aubection $\mathbf{3 . 2}$ can now be used to examine the behaviour of one point correlation at eritical temporasure in approached.
3.3.1 Tmronem. Suppose $M \in G L(p, C)$ with ith eigenviluea demoted by $\lambda_{1}, \ldots, \lambda_{\text {, }}$ and $\lambda_{1} \in C \backslash(-\infty, 0]$ for $i=1, \ldots$, . Deflne the complex numbers a for $i=1, \ldots, p$ an

$$
e_{1}=\sum_{1 \leq 1,1<\cdots, 5 p} a\left(\lambda_{1,}\right) \ldots c\left(\lambda_{1}\right) \quad \text { whers } q(\lambda)=\lambda+\lambda^{-1}-2,
$$

and the fuaction $G:[0,1] \rightarrow C$ by

$$
G(y)=\log \left\{1+\sum_{i=1}^{p} c_{i}\left(\frac{y}{(1+y)^{2}}\right)^{i}\right\}
$$

Now $\operatorname{let} I=\int_{1}^{1} \frac{G(0)}{7} d y$ then the following holda:

$$
\begin{align*}
& I \operatorname{Re} I>0 \quad \text { then } \quad \lim _{i n}\left\langle\sigma_{\mathrm{c}}(M)\right\rangle=+\infty \text {. } \tag{1}\\
& I R R e l<0 \quad \text { then } \quad \lim _{f 1}\left(\sigma_{a}(M)\right)=0 \text {. } \tag{2}\\
& I f=0 \quad \text { then } \quad \operatorname{lif}^{2}\left(F_{a}(M)\right)=1 \text {. } \tag{3}
\end{align*}
$$

3.3.2 Rrwanir. Tha imaginary pert of I determine the direction of the outward or intrard apiral occuring in cmen (1) and (2) which will be expleined in the proof.

Phoov: From Remark 8.2.2

$$
\begin{aligned}
& \log \left(\sigma_{a}(M)\right)=\sum_{n=1}^{\infty} \log \left\{1+\sum_{i=1}^{n} a_{i}\left(\frac{9^{m-1}}{\left(1+4^{m-1}\right)^{2}}\right)^{i}\right\} \\
& \text { - } \sum_{n=1}^{\infty} Y_{0}(n) \quad \text { in the motation of Proponition a.2.1 } \\
& =\frac{Y_{7}(1)}{2}+\left(\sum_{n=1}^{\infty}\left\{\frac{Y_{f}(n)+Y_{f}(n+1)}{2}\right\}-\int_{1}^{\infty} Y_{f}(x) d x\right) \\
& +\int_{1}^{\infty} Y_{f}(s) d
\end{aligned}
$$

Therefore

$$
\begin{align*}
& +\lim _{111}\left(\sum_{n=1}^{\infty}\left\{\frac{Y_{f}(n)+Y_{p}(n+1)}{2}\right\}-\int_{1}^{\infty} Y_{9}(z) d z\right) \\
& =\frac{1}{2} \log \left\{1+\sum_{i=1}^{p} \frac{c_{i}}{4^{i}}\right\}+\lim _{i 11} \int_{1}^{\infty} Y_{i}(x) d x+0 \tag{1}
\end{align*}
$$

$$
\int_{1}^{\infty} Y_{q}(s) d x=\int_{1}^{\infty} \log \left\{1+\sum_{i=1}^{p} c_{i}\left(\frac{q^{2 z-1}}{\left(1+q^{2 z-1}\right)^{2}}\right)^{i}\right\} d x
$$

- make the aubatitution $y=\varphi^{9 m-1}$ to met

$$
\int_{a}^{0} \frac{\log \left\{1+\sum_{i=1}^{p} c_{i}\left(\frac{y}{(1+y)^{y}}\right)^{i}\right\}}{y \log q^{2}} d y=\left(\frac{-1}{\log q^{2}}\right) \cdot \int_{0}^{i} \frac{G(y)}{y} d y
$$

Therefore

$$
\lim _{\pi \prod^{1}} \int_{1}^{\infty} Y_{q}(x) d x=\lim _{\| \prod^{1}}\left\{\left(\frac{-1}{\log q^{2}}\right), \int_{0}^{t} \frac{G(y)}{y} d y\right\}
$$

Bu!

$$
\lim _{e f 1} \int_{0}^{0} \frac{G(v)}{v} d y=\int_{0}^{1} \frac{G(y)}{y} d y=1
$$

تhich in mome complam number Ral $I+i l$ m I, siace it in a defaite integral of a function contingow on $[0,1]$. So if $I \neq 0$ the $\left({ }_{50}^{-1}\right)$) term will dominate and the behnviour in a followa:
(1) $R_{0} I>0_{i} \operatorname{lm} I>0: \lim _{4} \mid \int_{1} Y_{i}(s) d=\infty+\infty+\infty$

That in $\left\{\sigma_{a}\left({ }^{(M)}\right)\right.$) apiraln out

Thet in ($\omega_{\mathrm{a}}\left(\mathrm{M}_{\mathrm{M}}\right)$) apiraln ontwardr in a clockwive direction mat 11 .

That in $\left\langle\sigma_{a}(M)\right)$ apirale in wardo co sero in an enticlock wise direction an 11 .

That in if $I>0$ then liman $\left(\omega_{0}(M)\right)=\infty$
and if $1<0$ than limari $\left(m_{0}(M)\right)=0$.

That in if Im $I>0$ then $\left(\sigma_{n}(N)\right.$) rotetem anticlocliwina eround the circh of rediue R
and if $I m I<0$ than $\left(\sigma_{4}(M)\right)$ rotatea chactivim around the circie of radium R where $R=\operatorname{arp}\left\{R_{0} \mid\left\{\log \left(1+\sum_{i=1}^{\prime} a_{1} / 4^{4}\right)\right]\right\}$.
Heace the incerexting com occura when $I=0$.
Applying L'Hopital's Rule have

$$
\begin{aligned}
\lim _{i 11} \frac{\int_{0}^{4} \frac{G(v)}{v} d y}{-\log q^{2}} & =\lim _{i 1} \frac{G(q) / q}{-2 / q} \\
& =-\frac{1}{2} G(1)=-\frac{1}{2} \log \left\{1+\sum_{i=1}^{p} \frac{c_{i}}{4}\right\}
\end{aligned}
$$

So placing thin in equation (\dagger) have

$$
\begin{aligned}
\lim _{10}^{\log \left(\sigma_{0}(M)\right)} & =\frac{1}{2} \log \left\{1+\sum_{i=1}^{n} \frac{a_{i}}{4}\right\}-\frac{1}{2} \log \left\{1+\sum_{i=1}^{r} \frac{c_{i}}{4}\right\}+0 \\
& =0
\end{aligned}
$$

Therefore $\lim _{a+1}\left\langle\sigma_{a}(N)\right\rangle=1$.
Theoram 2.1.1 given a clamification of the critical limit of one point correlationa, which -ill be invertigntad more thorougly in the sext metion. But firt mome remerte on the negative eigenvilue nituation.
3.3.2 Remank. Firstly the apecial ewe when the eigenvalue in -1 . From Proponition 3.1.1

$$
\left\langle\sigma_{0}(-1)\right\rangle=\prod_{1>0}\left[\frac{1-q^{3 n}}{1+q^{3}}\right]^{2} .
$$

Thin in the equare of the apontaneoue magnetiantion for the laing model, thua ite criticel temperature behnviour in aready knowa, mee [O1], [O2], [Y1] and [M1,Chapter X] for example, namely

$$
h_{1}\left(\sigma_{0}(-1)\right)=0 \text {. }
$$

Conmquently, in come caren, the value -1 could be edded maperminible value for an eigenvalue with ita treanament being eeparate from the ocherr. That in, auppone the eigetival oen of M are $\lambda_{1}, \ldots, \lambda_{p-1}$ and -1 with the reduced matrix M^{\prime} heving eigesvaluen $\lambda_{1}, \ldots, \lambda_{2}, 1$ If M^{\prime}, watiaflet Theorem 3.8 .1 cmee (2) or (3) then

$$
\lim _{n}\left(\sigma_{n}(M)\right)=0 \text {. }
$$

 Lemma 8.2.1 frile if $\lambda=-1$. Coneequantly Rernark $\mathbf{1 . 2 . 2}$ faile meaning Lemman $\mathbf{1 . 2 . 4}$ (i) faila and thia bound play" a erucial role in the convergence argument. Having anid thie 1 mould duggent that if the limit exirta that it ie mero tince the individus emtriet of the itafnite product tend to eero 4 teredr to 1.

$$
\tan =\exp \left[\frac{\operatorname{tgn}(1+\lambda)}{2 I} \log (-\lambda)\right], \quad \operatorname{tor} I \in \mathbf{z} \dagger
$$

er equivalanty

$$
\operatorname{e}=\operatorname{axp}\left[\frac{\operatorname{tg}(1+\lambda)}{2 n-1} \cdot \log (-\lambda)\right], \quad \operatorname{son} \oplus \in N_{1}
$$

 arine.

Section

An Example of a Non-tilivial Limitimg One Point Conerlation

4. 1 Introduction.

The praviown action geve acondition for a matriz fith mon-magetive aipmevive to
 coerelation. Homever, met, the eximence of any mon-trivial matriz which ectually entimen thin condition heot heow momen. It in thm matter which ie comidered in thie mettica.

$$
\begin{aligned}
& C_{f}^{f}=\left\{\left(c_{1}, \ldots, c_{p}\right) \in C^{P}: c=\sum_{1, j, \cdots<j_{1} \leq 0} c\left(\lambda_{j_{1}}\right) \ldots c\left(\lambda_{j_{0}}\right)\right. \text { whore } \\
& c\left(\lambda_{1}\right)=\lambda_{1}+\lambda_{i}^{-1}-2 \text { and } \lambda_{1} \in C \backslash(-\infty, 0 \mid V i=1, \ldots, p\}
\end{aligned}
$$

and deflac the map $/: C_{n}^{\infty} \rightarrow C$ by

$$
I\left(c_{1}, \ldots, c_{p}\right)=\int_{0}^{1} \frac{\log \left\{1+\sum_{i=1}^{p} c_{i}\left(\frac{y^{y}}{(1+y)^{i}}\right)^{i}\right\}_{d y}}{y}
$$

Them the objact of intereat in the eot of pointe in C_{h}^{\prime} with $f\left(c_{1}, \ldots, c_{p}\right)=0$ which will be demoled by c
4.2 Imventigation of CF for $P=1,2$.
4.2.1 Phoposition.
(1) $0 \in \infty \quad \forall p \geq 1$.
(2) $c^{1}=\{0\}$.

Penof: (1): $7(0, \ldots, 0)=0$ in obviom. Thim in equiraled to M haing the idertity matrix atid in the 'trivjal' aitution reforred to above.
(2): $I(c)=\int_{0}^{1 \log \{1+c(1+p)\}} y_{y}^{y}$, where

$$
\begin{aligned}
c \in C_{1}^{1} & =\left\{e \in C: e=\lambda+\lambda^{-1}-2, \lambda \in C \backslash(-\infty, 0]\right\} \\
& \subset C \backslash(-\infty,-4) .
\end{aligned}
$$

Suppose $c=a+i b$ then

$$
\arg \left(1+c \frac{y}{(1+y)^{2}}\right)=\arctan \left(\frac{b y}{(1+y)^{2}+a y}\right)
$$

 $1<0$ for all $y \in[0,1]$. That

$$
\int_{0}^{1} \frac{\arg \left(1+c \frac{y}{(1+y)^{x}}\right)}{y} d y=0 \Leftrightarrow b=0 .
$$

If $b=0$ than $c=a \operatorname{coc} c$ in real.
Sisee for al y $\in(0,1]$

$$
\log \left(1+a \frac{y}{(1+y)^{2}}\right) \begin{cases}>0 & \text { for } a>0 \\ <0 & \text { for } a<0\end{cases}
$$

it in aimple to ase that

$$
\int_{0}^{1} \frac{\log \left(1+a \frac{v^{2}}{(1+y)^{y}}\right)}{y} d y=0 \Leftrightarrow a=0 .
$$

That in $I(c)=0$ if and coly if $c=0$. So $c^{1}\{\{0\}$.
 of the logarithm mea tahne atong the megative real axia.

Homevar the ramod for thin in the 'lack of treedom' in the ecalar ceat which mill mow be explaized. From the prool of Proporition 4.2 .1 to get I(c) ieso the imagiaary part
 veriable dapondence in mot aunciant to gat man-trivid molution. That in oen veriabla
 the larger dimanioan eman $(y \geq 2)$ thare are more veriablea prowet and lienee more 'fresolom' so a nom-trivial solvtion in pomibla. It it thin that will mow be ahowa by conaidaring the aimpleat case $p=1$.

4.2.s Pmopoaition.

$$
c^{2} \geq\{0\}
$$

 $\boldsymbol{I}\left(\mathrm{A}_{1}, \mathrm{c}_{9}\right)=0$. Ta eimplify thin prohlem nomewhat, ennider the rentriction where $\left(\lambda_{1}\right)$ and $e\left(\lambda_{y}\right)$ are real the forcing c_{1} and c_{2} to be real by deflmiticm.

No. demote $\left(\lambda_{1}\right)$ and $c\left(\lambda_{9}\right)$ by c and drapectivaly than

$$
c, d \in(-4, \infty), \quad e_{1}=c+d \quad \text { and } e_{3}=\text { ed. }
$$

Thue

$$
\begin{aligned}
&-0<c+1 \\
& 0<(e+4)(d+4)=e_{1} \\
& e_{2}+4 e_{1}+16_{1} \\
& \text { and } 0=c_{1}-4 e_{2} \quad \text { real. }
\end{aligned}
$$

Hemce the permimible viven of c_{1} end c_{2} are thon in the obaded area of A^{2} thown below.

Deflae tha function $\boldsymbol{F}_{\mathrm{A}_{1}, e_{\mathrm{a}}}:[0,1] \rightarrow \mathbf{R} \mathbf{b y}$

$$
E_{c_{1}, c_{2}}(y)=\frac{\left.y \mid c_{1}+\left(2 c_{1}+c_{y}\right) y+c_{1} \xi^{2}\right]}{(1+)^{4}}
$$

so that

$$
I\left(c_{1}, c_{2}\right)=\int_{0}^{1} \frac{\log \left\{1+F_{e_{1}, c_{2}}(y)\right\}}{y} d y
$$

Now ming $\log (1+2)<a$ for $9+0$

$$
\begin{aligned}
f\left(\epsilon_{1}, c_{2}\right) & <\int_{J_{1}}^{1} \frac{F_{\epsilon_{1}} x_{1}(y)}{v} d y \\
& =\frac{\left(\sigma_{c_{1}}+c_{2}\right)}{12} \quad \text { by a aimple celculation. }
\end{aligned}
$$

Thue If $e_{1}=-c_{1}$ then $I\left(e_{1}, c_{9}\right)<0$.
 $-4 c_{1}$ than $F_{L_{1}, w_{2}}(y)>0$ for ally $\mathbb{E}(0,1)=0 \quad\left\{\left(c_{1}, c_{1}\right)>0\right.$.

$$
-e_{1}<c_{3}\left(e_{1}\right)<-e_{1} \quad \text { and } I\left(e_{1}, c_{3}\left(c_{1}\right)\right)=0
$$

That in $\left(\epsilon_{1}, c_{2}\left(c_{1}\right)\right) \in C^{2}$ for $0<c_{1}<8,0 C^{2}(0)$.
4.2.4 Pruanc. The proof of Proponition 4.2 .1 demonatrated the axintence of a partic-
 in C^{1}. Thin problem in now conaidered:
(1). Suppone if and c_{g} are real then either $e\left(\lambda_{1}\right), e\left(\lambda_{1}\right)$ are ras of $e\left(\lambda_{1}\right)=\overline{c\left(\lambda_{3}\right)}$.
1): If $\boldsymbol{a}\left(\lambda_{1}\right), c\left(\lambda_{2}\right)$ are real then the mituation in an Propoaition 4.2.3 and it in fairly simplo to toe the following:

If $\varepsilon_{1}, e_{1}>0$ then $\quad\left(e_{1}, \varepsilon_{2}\right)>0$.
(b)
(c)
(a)

If $c_{1}=0, c_{2} \neq 0$ then I($\left.e_{1}, c_{9}\right)$ hen the same sign as c_{7} -
If $c_{1} \neq 0_{1}, c_{2}=0$ then $\boldsymbol{I}\left(c_{1}, c_{2}\right)$ ten the same sign as c_{1}.
If $\epsilon_{1}<0$ then $\boldsymbol{I}\left(c_{1}, c_{1}\right)<0$.

$$
\begin{equation*}
\text { If } c_{1}>0,4 c_{1}+c_{2} \geq 0 \text { then } I\left(c_{1}, c_{2}\right)>0 \tag{d}
\end{equation*}
$$

This give the following picture.

Thin expleins the matriction, in the proof of Proponition 4.\%.8, of e_{5} to the ragge

With $e_{2}+4 c_{1}<0$, Fhich in trua b the aras of interent, it il pomible to deduca the
 A ppeadiz for the proof.):
(1) $F_{A_{1}, a_{2}}(0)=0: F_{a_{1, \infty}}(0)>0$

(د) Ve, melh that $0<e_{1}<16$, Jue $(0,1)$ usch that

$$
0<F_{\epsilon_{4}, w_{2}}(m)<1: F_{c_{t}, c_{2}}(m)=0: F_{\theta_{0}, c_{2}}(m)<0 .
$$

 Taking the interral thromgh the avm thin may be calculated leading to the following iafinite aum eveluation of $/\left(c_{1}, c_{4}\right)$.

$$
I\left(c_{1}, c_{2}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} c_{1}^{n}\left\{\sum_{i=0}^{n} \sum_{j=0}^{i}\binom{n}{i}\binom{i}{j} R(i, j, n)\right\}
$$

where

$$
R(i, j, n)=e^{i-j} \frac{(3 n-i-j-1)!(n+i+j-1)!}{2^{i n-1}(4 n-1)!} \sum_{i=n+i+j}^{4 n-1}\binom{4 n-1}{k}
$$

with $e=2+c_{2} / c_{3}$.
Thin infaite aum can thob be unod to approrimate the $c_{3}\left(c_{1}\right)$ giver in Propocition 4.2.4. For $e_{1}=1$ chim given an approsimata vilue for c, of -5.03 .
II): $d\left(\lambda_{1}\right)=d\left(\lambda_{2}\right)=a+i b$ nay, where $b \neq 0$.

Than $c_{1}=2 a$ and $e_{2}=a^{2}+b^{2}$ mo changing to polar coordiantan $c_{1}=2 r \cos \theta$ and $c_{2}=r^{2}$ and $F_{c_{4}, c_{9}}$ becomes

$$
G_{r, p}(y)=\frac{2 r \cos \theta_{y}}{(1+y)^{2}}+\frac{r^{2} y^{3}}{(1+y)^{2}}
$$

whare $r>0$ and $\in(-T, 0) \cup(0, T)$

Uning $\log (1+a)<\varepsilon$ for $a 0$

$$
\begin{aligned}
I\left(2 r \operatorname{con} 1, r^{2}\right) & <\int_{0}^{1} \frac{G_{r, \theta}(y)}{y} d y \\
& =2 r \cos \theta \int_{0}^{1} \frac{d y}{(1+y)^{2}}+r^{2} \int_{0}^{1} \frac{y}{(1+y)^{4}} d y \\
& =r \cos +r^{2} / 12=r(\cos \theta+r / 12) .
\end{aligned}
$$

Therefora if $0<r<12$ and $\cos 0 \leq-r / 12$ then $I\left(2 r \cos \theta_{1} r^{2}\right)<0$.
Thir give the following picture.

So, by continuity, for $0<r<12$ there eximata a $\boldsymbol{O}(r)$ euch than

$$
0>\cos (r)>-r / 12 \text { and } I\left(2 r \operatorname{con} 4, r^{2}\right)=0
$$

Solving the equation

$$
\lambda+\lambda^{-1}=(x+i \eta), \quad \eta \neq 0
$$

or alternatively

$$
\lambda^{2}-\left(\varepsilon+i_{5}\right) \lambda+1=0
$$

 Hence ${ }^{l} l$ the valuen $++\in C \backslash R$ uned in the previom argurnant are poaihle and the valuen of e_{1} and ϵ_{2} given by 2 ean and \boldsymbol{r}^{2} renpectively are perminible. Therefore the pointa gives above are further pointa in \boldsymbol{c}^{2}.
(1). One of e_{1}, c_{3} in real the other it atrictly complex.

The imeginany part of $I\left(e_{1}, e_{2}\right)$ equala

$$
\int_{0}^{1} \arg \left(\frac{\ln \left(c_{1}\right) y /(1+y)^{2}}{\cdots}\right) d y
$$

or

$$
\int_{0}^{1} \arg \left(\frac{\ln \left(c_{2}\right) y^{3} /(1+v)^{4}}{\ldots}\right) d y
$$

 gived thin in nom-naro and heace $\left(c_{1}, c_{1}\right) \& C^{1}$
(3). c_{1} and c_{1} are beilh atrictly complex.

Cannot really any much about thia pertieular case. One problem in the description of vilue which are permiatible. If C^{2} in comidared, igooriag the pointe where the logarithm mould not be defined a there eannot ba perminibla, the following esa be seen:
Suppose $c_{j}=a_{j}+\dot{H}_{j}$ for $j=1,2$
(i) b_{1}, hy have to be in the wheded area for the pomibility that $\left(c_{1}, c_{y}\right) \in C^{1}$.

(ii) a_{1}, a_{2} have to be in the shaded area for the possibility that $\left(c_{1}, c_{2}\right) \in \boldsymbol{C}^{2}$.

 tende io $-\infty$ at $y=1$. Thin euggete that $l\left(e_{1}, e_{2}\right)<0$ for mome $e_{2}\left(e_{1}\right)$ in the interval

$$
\left(-\left(4 e_{1}+16\right)+d\left(e_{1}\right),-\left(4 e_{1}+16\right)\right)
$$

Thia in turg augente that there exime a $\zeta_{1}\left(c_{1}\right)$ auch that

$$
I\left(e_{1}, \epsilon_{2}\right)=0 \text { for all } e_{1} \geq 0 \text {. }
$$

Similarly for the case (1) 11): a oon approachen - I, l.a. tenda to F, the minimum
 anggenta thet

$$
I\left(2 \mathrm{ecos} \theta, r^{2}\right)<0 \text { for soms } \theta(r) \text { with con }(r) \in(-1,-1+e(r))
$$

$$
I\left(2 r \cos \tilde{f}, r^{2}\right)=0 \text { for all } r>0 \text {. }
$$

Then remarle show that \boldsymbol{C}^{3} contein pointa other then thowe given in the proof of Propoaition 4.2.s. However ite complete atructure in atill unclear
4.3 Inventifation of c^{P}.

The efructure of thia est in not clear for $F \geq 2$, a shoma by the previoun andyain of \boldsymbol{C}^{2}, however the following propertied can be ann farly eanily:
(1)

$$
\{0\}=c^{1} c c^{2} c \cdots c c^{+} c \ldots
$$

-here the incluaion $\boldsymbol{C}^{\boldsymbol{+}} \rightarrow \boldsymbol{C}^{\boldsymbol{+}+1}$ in the map which taken

$$
\left(c_{1}, \ldots, c_{1}\right) \in c^{\downarrow} \longmapsto\left(c_{1}, \ldots, c_{1}, 0\right) \in c^{\omega+1} .
$$

This in equivalent to embedding the $t x \notin$ metrix correeponding to the element of $C^{\text {L }}$ in $a(\$+1) \times(1+1)$ matrix by adding ± 1 on the diagood.
Hence $C^{p} \geqslant\{0\}$ for all $p \geq 2$, thet $i n$, for $p \geq 2$ there exiat nom-trivial $p x$ matricen M_{f} when monodromy one point correlation ($\omega_{\mathrm{f}}\left(M_{p}\right)$) han a critical limit.
(2)

$$
c^{n} \times c^{m} \subset c^{n+m}
$$

The map at thin level i- equivalent to placing the $n \times n$ matrix and the $m \times m$ mairix down the diagonal to form an $(n+m) \times(n+m)$ matrix. The formula at the C^{m} level i mot given a it in not very illuminating. Note that the map given in (1) in a apecial case of thin map when $n=t$ and $m=1$.
(3) If

$$
I_{+}=\left\{\left(c_{1}, \ldots, c_{p}\right) \in C^{-}: \left.\left.\right|_{\mid}+\sum_{i=1}^{1} e_{1}\left(\frac{y}{(1+y)^{2}}\right)^{i} \right\rvert\, \geq 1 \quad \forall y \in[0,1]\right\}
$$

and

$$
I_{-}=\left\{\left(c_{1}, \ldots, c_{p}\right) \in C^{P}:\left|1+\sum_{d=1}^{p} \epsilon\left(\frac{y}{(1+y)^{2}}\right)^{4}\right| \leq 1 \quad \forall y \in[0,1]\right\}
$$

then $C^{\nabla} \cap\left(t_{+} \cup f_{-}\right)=\{0\}$.
(4) If for $j=1, \ldots$, with $p \geq 2$

$$
I_{j}=\left\{\left(c_{2}, \ldots, c_{p}\right) \in C^{*}: c \in C \cap R, 1 \neq j ; \operatorname{Im}\left(c_{j}\right) \neq 0\right\}
$$

then $c^{p} \cap \cup_{j=1} I_{j}=0$.
Thin follown from a timilar atgument to that in Propoition 4.2 .1 for the imaginary part of $I\left(c_{1}, \ldots, c_{j}\right)$ aince only one of the c_{1} 'a, namely c_{y} in I_{j}, han a non-tero imaginery part.
(5) A alight generaliation of (4) in given by the following:

Suppose $e_{j}=e_{j}+i b_{j}$ for $j=1, \ldots, p$. Then if the mon-mero b_{j} 's are all of the same aign the argument remain in $[0, \pi)$ or $(-\pi, 0]$ and thua $\left(c_{1}, \ldots, c_{9}\right) \& c^{\circ}$.
(8) In fact if for all $y \in(0,1)$ either

$$
\sum_{i=1}^{p} b_{i}\left(\frac{y}{(1+y)^{2}}\right)^{i}<0
$$

or

$$
\sum_{i=1}^{p} b_{i}\left(\frac{y}{(1+y)^{2}}\right)^{i}>0
$$

then it is easy to see that $\left(c_{1, \ldots}, c_{p}\right) \& C^{p}$.
(7) Using $\log (1+x)<x$ for $\approx \neq 0$, if $\left(c_{1}, \ldots, \epsilon_{p}\right) \in C_{R}^{p} \cap R^{p}$

$$
\begin{aligned}
I\left(c_{1}, \ldots, c_{p}\right) & =\int_{0}^{1} \frac{\log \left[1+\sum_{i=1}^{p} c_{i}\left(\frac{1}{(1+\eta)^{z}}\right)^{i}\right]}{y} d y \\
& <\sum_{i=1}^{p} c_{i} \int_{0}^{1} \frac{y^{i-1}}{(1+y)^{2 i}} d y \\
& =\sum_{i=1}^{p} c_{i} \frac{(i-1)!(i-1)!}{(2 i-1)!2^{2 i-1}} \sum_{i=i}^{2 i-1}\binom{2 i-1}{k} \quad \text { see Appendix } \\
& =\sum_{i=1}^{p} c_{i} \frac{[(i-1)]^{2}}{2(2 i-1)!} \quad \text { using } \sum_{k=1}^{2 i-1}\binom{2 i-1}{k}=2^{2 i-2} .
\end{aligned}
$$

Thus if $\sum_{i=1}^{p} e_{i} \frac{[(i-1)!]^{2}}{2(2 i-1)!}<0$ then

$$
I\left(c_{1}, \ldots, c_{p}\right)<0 \text { and }\left(c_{1}, \ldots, c_{p}\right) \notin c^{p}
$$

(8) In fact if

$$
\left|\sum_{i=1}^{\infty} c_{i}\left(\frac{y}{(1+y)^{2}}\right)^{i}\right|<1, \quad \forall y \in[0,1]
$$

then

$$
I\left(c_{1}, \ldots, c_{p}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} S(n)
$$

where

$$
S(n)=\sum_{n_{1}+\ldots+n_{p}=n}\left\{\frac{n!}{n_{1} \ln n_{2}!\ldots n_{p}!} c_{1}^{n_{1}} \ldots c_{p}^{n_{v}} \frac{(N!)^{2}}{(M-1)!2^{M-1}} \sum_{k=N+1}^{M-1}\binom{M-1}{k}\right\},
$$

n_{1}, \ldots, n_{p} are non-negative integers and

$$
\begin{aligned}
& N=m_{1}+2 m_{2}+\cdots+2 m_{g}-1, \\
& N=2 m_{1}+4 n_{2}+\cdots+2 m_{m} .
\end{aligned}
$$

See Appandix for a proof of thin.
Note. Eech mon-maro point of C^{P}, of indead C_{h}°, citully corrmponda to a family of matricen aince it only dependa on the eigenvaluan of the matrix and in invariant under the tranmormation $\lambda \mapsto \lambda^{-1}$. The origin, homever, oaly correaponda to the identity matrin.

Section 8

N Point Colinelatione

E. 1 In roduction.

Tha two ptavious actiond dalt with oan point corralationg and thair eriticed limita.

$$
T\left(b_{b}\right)=G_{4}=\left[\begin{array}{ll}
a_{k} & b_{k} \\
c_{2} & d_{b}
\end{array}\right] \in G L_{Q}(H)
$$

$$
\left(\varepsilon_{1} \ldots N\right)=\prod_{t=1}^{N}\left(\theta_{k}\right) \operatorname{det}_{3}(1+L R)
$$

L dencia than $N \times N$ bloct matrix with antriay
for $1<\boldsymbol{L}_{1}$

$$
\iota_{i k}= \begin{cases}-Q_{+} & k=i+1 \\ -a_{i+1} Q_{+} & k=i+2 \\ -a_{i+1} \ldots a_{k-1} Q_{+} & k>i+2\end{cases}
$$

for $1>b$,

$$
\iota_{i k}= \begin{cases}Q_{-} & i=k+1 \\ d_{k+1}^{-1} Q_{-} & i=k+2 \\ d_{i-1}^{-1} \ldots d_{k+1}^{-1} Q_{-} & i>k+2\end{cases}
$$

and for $1=4$

$$
e \mathrm{it}=0
$$

and $\boldsymbol{R}=\boldsymbol{R}_{1} \oplus \boldsymbol{R}_{\mathbf{2}} \oplus \cdots \oplus \boldsymbol{R}_{\boldsymbol{N}}$ wbera

$$
R_{k}=\left[\begin{array}{cc}
-b_{k} d_{k}^{-1} r_{k} & b_{k} d_{k}^{-1} \\
d_{k}^{-1} c_{k} & 0
\end{array}\right]
$$

B. 2 Coajecturve thr Hmition N point conrmbationa.

The 'product formula' given in Theorem 8.1 .1 given rian to the following two CarolIerien Fhete eppliad to the apecific ceen of monodromy fleide.
6.2.1 Comollaky. Suppoe $M_{j} \in G L(B, C)$ and hea no segative eigeavaluea for $j=$ 1,........ TMen

$$
\left\langle e_{*}\left(M_{1}\right) \ldots \sigma_{\omega_{n}}\left(M_{n}\right)\right\rangle=\prod_{t=1}^{n}\left(\sigma\left(M_{k}\right)\right) d e t_{3}(1+L R)
$$

whari L and R have the atructure deifned above with

$$
v_{a_{k}}\left(M_{k}\right)=\left[\begin{array}{ll}
a_{k} & b_{k} \\
c_{k} & d_{k}
\end{array}\right]
$$

 as

$$
(\Gamma(M))=\left(C_{0}(M)\right), \quad \forall \in \in \mathbb{T}^{2}
$$

5.2.2 Notation, Lat the expienion ($1+L R$) preeent in Corollary 5.2.1 be denoted by

$$
X\left(M_{1}, \ldots, \boldsymbol{M}_{\boldsymbol{n}}: \boldsymbol{m}_{1}, \ldots, \boldsymbol{\omega}_{\boldsymbol{m}}\right)
$$

and let

$$
X\left(M_{1}, \ldots, M_{n}\right) \oplus X\left(M_{1}, \ldots, M_{n}: \Theta_{1}, \ldots, \varepsilon\right)
$$

5.2.1 Comollany. Suppose $M_{j} \in G L(y, C)$ and has mo negative rigenvalue for $y=$ 1,....m. Them

$$
\left\{\varepsilon_{a_{1}}\left(M_{1}\right) \ldots \theta_{a_{2}}\left(M_{m}\right)\right)=\left(\sigma\left(M_{1} \ldots M_{n}\right)\right\rangle \frac{\operatorname{det}_{2} X\left(M_{1}, \ldots, M_{m}: a_{1}, \ldots, a_{1}\right)}{\operatorname{det}_{1} X\left(M_{1}, \ldots, M_{n}\right)} .
$$

Pmoar: Apply the product formula to

$$
\left\langle\left(M_{1} \ldots M_{n}\right)\right\rangle=\left\langle\left(M_{1}\right) \ldots\left(M_{n}\right)\right\rangle
$$

This together with Corollary s.2.1 given the reault.

5.2.4 Rrmank. To prove thia conjectute the exintence of a limit for the determinent expremion is required. Thim appears inspaciable at the present aince $A_{4}(M) \& G L_{o_{0}}\left(H^{\prime \prime}\right)$
 in trivially true when $a_{1}=\ldots \equiv a_{n}$ merpremione are equal.
5. 5 Ordar dependenca of courtelatiome.

Ancther problem to conmider in the inverianco/variance of the m point correlationa under the obvioun action of S_{n}, namely permuting the entrien. In other worde to what extent doen the order of the monodromy fielda in the correlation matiter.
5.8.1 Lemma. Suppone $\boldsymbol{T}_{3}(a-b)=0$ and $\boldsymbol{T}_{1}(d) \leq T_{1}(b)$. Then
(1) $\sigma_{a}(M) \sigma_{a}(N)=\omega_{6}\left(M N M^{-1}\right) \omega_{a}(M)$.
(2) $\omega_{1}(N) \sigma_{a}(M)=\sigma_{0}(M) \sigma_{b}\left(M^{-1} N M\right)$.

Peoof: Firtt sole from [P1,(2.22)]

$$
\begin{aligned}
a(M) \times(M)^{-1} & =\Sigma+(I \ominus(M-I)) P_{1 / 2 I} \\
& =z\left(I+(I \otimes(M-I)) P_{-1 / 2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
s(M) x^{-1} e(M)^{-1} & =z^{-1}+\left(I \oplus\left(M^{-1}-I\right)\right) P_{-1 / 2^{z^{-1}}} \\
& =s^{-1}\left(I+\left(I \oplus\left(M^{-1}-I\right)\right) R_{1 / y}\right)
\end{aligned}
$$

It in a nimple eonmequence of thia that for $p \geq 0$

$$
\begin{aligned}
& s(M) z^{F} s(M)^{-1}=z^{P}(I+(I s(M-I)) P[-p, 0]) \text {, } \\
& \mathcal{G}\left(M^{-P} s(M)^{-1}=s^{-P}\left(I+\left(I \odot\left(M^{-1}-I\right)\right) P(0, P I)\right. \text {. }\right.
\end{aligned}
$$

From the deflotion of (M) it in simple to deduce that for $I \leq 0$
(1) $\quad a(M N)(I+(M-I) P(I$, 의 $)=(I+(M-I) P(I, 0)) \leadsto(M N)$

$$
=\varepsilon_{-}-I_{5}+\varepsilon_{4} \otimes M N+P[i, 0] \otimes(M-I)
$$

and for $\boldsymbol{4} \geq 0$
(2)

$$
\begin{aligned}
s(M N)\left(I+\left(M^{-1}-I\right) P(0,1]\right) & =\left(I+\left(M N M^{-1} N^{-1} M^{-1}-I\right) P(0,4) a(M N)\right. \\
& =-I+G+G N+P \emptyset, 1] \otimes M N\left(M^{-1}-I\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
a(M N)(I+(M-I) P(I, 0]) D(M N)^{-1} & =(I+(M-I) P[I, 0]) a(M N) D(M N)^{-1} \\
& (I+(M-I) P[I, 0]) \Delta(M N) .
\end{aligned}
$$

But the right land aide in in the domain of Γ_{a} eo
$\left.\Gamma_{Q}(M N)(I+(M-I) P[I, O]) D(M N)^{-1}\right)=\Gamma_{Q}((I+(M-I) P(I$, 여 $)(M N))$
and it in aimpla to see that thin cal be rewritian an

$=\Gamma_{Q}(I+(M-I) P(I, 0]) \Gamma_{Q}(\mathbb{C}(M)) \Gamma(D(M N))$,
That in, if $/$ denotee ($(, 0)$

$$
\sigma(M N) \sigma_{1}(M) \sigma(M)^{-1}=\sigma_{1}(M) \sigma(M)^{-1} \sigma(M N) .
$$

But

$$
\begin{aligned}
\sigma(M N) \sigma_{1}(M) \mapsto(M)^{-1} & =\sigma(M N) \sigma(M)^{-1} \omega_{1}(M) \\
& =\left(M N M^{-1}\right) \sigma_{1}(M),
\end{aligned}
$$

and

$$
\sigma_{1}(M) \sigma(M)^{-1} \sigma(M N)=\sigma_{1}(M) \sigma(N)
$$

- 0 for $1 \leq 0$

$$
\left.\sigma_{1}(M) \sigma(N)=\nabla_{(} N M^{-1}\right) \nabla_{1}(M)
$$

Rere the following reatice of [P2] hava hean med

$$
\begin{aligned}
& \theta_{m}(M) \sigma_{n}(M)^{-1} \equiv(\operatorname{det} M)^{F_{b}\left(=-m^{-}\right)} \Gamma_{q}\left(\theta_{m}(M) \omega_{m}(M)^{-1}\right), \\
& \text { and } \sigma_{m}(M) \sigma_{n}(M)^{-1} \equiv \sigma_{m}(M)^{-1} \sigma_{m}(M) \text { when } \Pi_{7}(m-N)=0
\end{aligned}
$$

Now if ir denoter $\Gamma(T)^{h}=\Gamma(T)^{\text {en }}$ shen

$$
\begin{aligned}
& \sigma_{1}(M) \sigma_{s}(N)=\Sigma \Gamma(s)^{1} \omega_{a-b}(M) \boldsymbol{m}(N) \Gamma(s)^{-b_{1}} e^{-1} \\
& =\Sigma \Gamma(s)^{t_{1}} \sigma\left(M N M^{-1}\right) \sigma_{a-s}(M) \Gamma(s)^{-1} m^{-1} \quad \text { by the shove } \\
& \equiv E \Gamma(s)^{t_{1}} \sigma\left(M N M^{-1}\right) \Gamma(s)^{-b_{1}} \Gamma(s)^{a_{s}} \theta(M) \Gamma(s)^{-t_{1}} v^{-1} \\
& =\sigma_{\Delta}\left(M N M^{-1}\right) \sigma_{s}(M) \text {. }
\end{aligned}
$$

If N ie repleced by $M^{-1} N M$ the othat result followi.
By the manne minthod the remalt

$$
\sigma_{a}(M) \sigma_{\mathrm{a}}(N)=\sigma_{\mathrm{a}}(N) \sigma_{\mathrm{a}}\left(N^{-1} M N\right)
$$

where $F_{1}(d) \geq F_{1}(b)$ and $\nabla_{1}(a-b)=0$ cen be obicined from ithe equality (2). However,

5.8.2 Comollawy. Ifra

$$
\left\langle\rho_{0}(M) \omega_{b}(N)\right\rangle=\left\langle\omega_{0}(N) \omega_{d}(M)\right\rangle
$$

 By deflaition

$$
a\left(M N M^{-1}\right)=(1 \odot M) a(N)\left(1 \oplus N^{-1}\right)
$$

and a(M) may be Fritten a

$$
\left.s(M)=(1 \otimes M) e(M) N 1 \otimes M^{-1}\right)
$$

$$
\begin{aligned}
\sigma\left(M N M^{-1}\right) & \left.=\Gamma_{Q}\left((1 \otimes M)(N)\left(1 \otimes M^{-1}\right)\right) \Gamma_{Q}((1 \odot M) D N)\left(1 \otimes M^{-1}\right)\right) \\
\sigma(M) & =\Gamma_{Q}\left((1 \otimes M) \operatorname{L}(M)\left(1 \otimes M^{-1}\right)\right) \Gamma_{Q}\left((1 \otimes M) D(M)\left(1 \otimes M^{-1}\right)\right)
\end{aligned}
$$

But ($1 \otimes M$) end $\left(1 \otimes M^{-1}\right.$) are irivially in the domain of Γ, hence the above can be rewritter \boldsymbol{m}^{-1}

$$
\Gamma(1 \odot M) \cdot \Gamma_{Q}(\Theta(N)) \Gamma(D(N)) \cdot \Gamma\left(1 \otimes M^{-l}\right)
$$

and

$$
\Gamma(1 \otimes M) \cdot \Gamma g(\in M)) \Gamma(D(N)) \cdot \Gamma\left(1 \otimes M^{-3}\right)
$$

rempectively. Therefore $\boldsymbol{a} T$ and a commate with both $(1 \otimes M)$ and (I\& $\left.M^{-1}\right)$

$$
\sigma_{b}\left(M N M^{-1}\right) \sigma_{0}(M)=\Gamma(1 \odot M) \sigma_{k}(N) \sigma_{ \pm}(M) \Gamma\left(1 \otimes^{-1}\right),
$$

$\$ 0$

$$
\begin{aligned}
\left\langle\sigma_{d}(M) \sigma_{b}(N)\right\rangle & =\left(\sigma_{0}\left(M N M^{-2}\right) \omega_{0}(M)\right) \\
& =\left(\Gamma(1 \odot M) \omega_{0}(N) \omega_{0}(M) \Gamma\left(1 \odot M^{-1}\right)\right\rangle \\
& =\left\langle\sigma_{0}(N) \omega_{0}(M)\right\rangle
\end{aligned}
$$

 $\mathrm{i}=1, \ldots, \mathrm{~m}$. Let $\mathrm{m} \in \mathrm{S}_{\mathrm{m}}$ and het

$$
T\left(\sigma_{a_{1}}\left(M_{1}\right) \ldots \sigma_{\sigma_{n}}\left(M_{n}\right)\right)
$$

dencte the action of the permutation in on the monodrony flelda. Then

$$
\left(\sigma_{s_{1}}\left(M_{1}\right) \ldots \sigma_{e_{n}}\left(M_{n}\right)\right)=\left(\Gamma\left(\sigma_{e_{1}}\left(M_{1}\right) \ldots \sigma_{a_{n}}\left(M_{n}\right)\right)\right)
$$

Ploor: Nead only examine the ceat when in a tranapontion. Hence conader

$$
\begin{aligned}
\sigma_{a_{1}}\left(M_{1}\right) \ldots \sigma_{a_{i-1}}\left(M_{i-1}\right) \sigma_{a_{1}}\left(M_{1}\right) \sigma_{a_{1+1}}\left(M_{i+1}\right) \ldots \\
\ldots \sigma_{a_{j-1}}\left(M_{j-1}\right) \sigma_{a_{i}}\left(M_{i}\right) \sigma_{a_{j+1}}\left(M_{j+1}\right) \ldots \sigma_{a_{n}}\left(M_{n}\right)
\end{aligned}
$$

Uaing Lemma 5.3.1 repeatedly thim may be rawritter a

$$
\begin{aligned}
& \boldsymbol{\sigma}_{*_{1}}\left(M_{1}\right) \ldots \boldsymbol{\sigma}_{\omega_{i=1}}\left(M_{i-1}\right) \sigma_{\varepsilon_{i}}\left(\dot{M}_{i}\right) \sigma_{\omega_{i+1}}\left(\dot{M}_{i+1}\right) \ldots \\
& \ldots \sigma_{e_{j-1}}\left(\dot{M}_{j-1}\right) \sigma_{e_{j}}(\dot{M}) \sigma_{\theta_{j+1}}\left(M_{j+1}\right) \ldots \sigma_{a_{0}}\left(M_{\omega}\right)_{1}
\end{aligned}
$$

where

$$
\begin{aligned}
& \dot{M}_{1}=X_{j} X_{i+1} \ldots X_{j-1} M_{1} X_{i-1}^{-1} \ldots X_{i+1}^{-1} X_{j}^{-1} \text { with } X_{i}= \begin{cases}I & \text { if } a_{4} \leq a_{1} \\
M_{4} & \text { if } a_{4}>a_{k}\end{cases} \\
& \dot{M}_{j}=Y_{j-1}^{-1} \ldots Y_{i+1}^{-1} \tilde{M}_{j} Y_{i+1} \ldots Y_{j-1} \quad \text { with } Y_{i}= \begin{cases}1 & \text { if } a_{j} \leq a_{k} \\
\dot{M}_{4} & i f a_{j}>a_{4} .\end{cases}
\end{aligned}
$$

For $1+1 \leq \boldsymbol{t} \leq \boldsymbol{J}-1$,

$$
\hat{M}_{3}= \begin{cases}\hat{N}_{1} \hat{M}_{i} \hat{M}_{j}^{-1} & \|_{i} a_{j} \leq a_{k} \\ \hat{M}_{k} & U_{a_{j}}>a_{k}\end{cases}
$$

with for $1+1 \leq \hbar \leq j$

$$
\hat{M}_{k}= \begin{cases}M_{i} M_{i} M_{i}^{-1} & \text { if } a_{k} \leq a_{k} \\ M_{k} & \text { if } a_{k}>a_{k}\end{cases}
$$

 for $\boldsymbol{k}=\mathbf{i}, \ldots, j$

$$
\operatorname{dian}\left(M_{4}\right)=\operatorname{diag}\left(M_{4}\right)
$$

Therefore an the corralation can be expremed an tha datarminagt of an upper triaggular matrix is thim eme with the digronal entrien deriwed thom the diagonal entrien of the M_{r}

$$
\begin{aligned}
& \left(\sigma_{a}\left(M_{1}\right) \ldots \sigma_{\sigma_{n}}\left(M_{n}\right)\right)=\left\langle\sigma_{a}\left(M_{1}\right) \ldots \sigma_{a_{1-1}}\left(M_{i-1}\right) \sigma_{a_{i}}\left(M_{1}\right) \sigma_{a_{1+1}}\left(M_{i+1}\right) .\right. \\
& \left.\ldots \sigma_{\theta_{j-1}}\left(\hat{M}_{j-1}\right) \sigma_{e_{j}}\left(\dot{N}_{j}\right) \omega_{s_{j+1}}\left(M_{j+1}\right) \ldots \sigma_{\varepsilon_{n}}\left(M_{m}\right)\right) \\
& =\left\{\omega_{1_{1}}\left(M_{1}\right) \ldots \omega_{\omega_{-1}}\left(M_{i-1}\right) \psi_{N_{1}}\left(M_{j}\right) \omega_{e_{++1}}\left(M_{i+1}\right) \ldots\right. \\
& \left.\cdots \omega_{a_{i-1}}\left(M_{j-1}\right) \boldsymbol{m}_{a_{6}}\left(M_{1}\right) \boldsymbol{e}_{e_{f+1}}\left(M_{j+1}\right) \ldots \omega_{n}\left(M_{n}\right)\right) \text {. }
\end{aligned}
$$

 $S_{\text {a }}$ invariant for geaerel M_{i}, though it in if the M_{i} commeke among themenven or there exinte $S \in G L(f, C)$ auch that $S M_{4} S^{-1}$ in upper triangulay for and $d=1, \ldots$, , \quad.

Section 6

Boion-Fermion Correapondence

©. 1 Imeroduction.

Boson-Fermion correapondance in the term used by phymiciata to deacribe the lintiog of bowon (CCR ajgebra) and fermi (CAR algohra) ayatern enntially through projective representetion of loop groupa. The particulat aituation of intereat bere in that of 'tempereture ntalea' on loop soup a described in [CS]. A briof nummary of this now followe.
8.2 Summany.

Let $H=L^{2}\left(S^{1}, C\right)$ and $A(H)$ the CAR agebre over H. Defnan the one parameter group $\left\{\mathrm{F}_{\mathrm{i}}:: \in[\mathbf{0}, \mathbf{4} \mathbf{4}]\right\}$ by

$$
F_{1} g(0)=e^{d t / 2} s(\theta+t), \quad v \in H, v \in S^{1}=(0,2 \pi)
$$

and let h denote the generator mot that

$$
h_{F}(s)=(-i d / d s+1 / 2) \rho(s)
$$

Now if the operator $A_{;}$in defined a

$$
e^{-A}\left(1+e^{-A B}\right)^{-1}
$$

the (r, β) KMS (temperniture) atate $\omega_{\beta}, \beta \in(0, \infty)$ in the quai-free atate determined by A_{0}, where + refera to the evolution (automorphimm group) of $A(H)$ induced by $\left\{F_{1}\right\}$.

Note that $A_{\beta} \rightarrow P_{\text {_ uniformly }}$ a $\beta \rightarrow \infty$ where $P_{\text {_ }}$ in the projection onto the aubapace of $L^{2}\left(S^{1}, C\right)$ whone elementa have fourien expanaions in $e^{\text {the }}$ with no \& positive or sero term. The projective reprementation of the loop group of $U(1)$ correoponding to P _ giving riee to a bomon-fermion corempandence wan atudied in [CT].

Let F_{A} be the repreantation of $A(H)$ correaponding to the atete w_{g}. Thi in given
 uubalgebra of $A(H \oplus H)$ and P_{-}^{\prime} in the projection on $H \oplus H$ given by the 2×2 matrix

$$
\left(\begin{array}{cc}
A_{\beta} & A_{\beta}^{1 / 2}\left(1-A_{\beta}\right)^{1 / 2} \\
A_{p}^{1 / 2}\left(1-A_{\beta}\right)^{1 / 2} & 1-A_{\beta}
\end{array}\right)
$$

with $\pi_{p}{ }_{p}$ denoting the Fock representation defined hy P_{-}. Then $P_{P} p$ and P_{P} are equivalent where

$$
P_{-}^{\infty}=\left(\begin{array}{cc}
P_{-} & 0 \\
0 & P_{+}
\end{array}\right), \quad P_{+}=1-P_{-}
$$

Aln Fif and $\Psi_{m a}$ are queni-equivelent.
If ϕ_{1}, ϕ_{2} are amooth mapa from S^{1} to $U(1)$ define the unitery operator on $K=H \oplus H$ to be multiplication by the function

$$
\bar{\phi}(s)=\left(\begin{array}{cc}
\phi_{1}(s) & 0 \\
0 & \phi_{2}(s)
\end{array}\right)
$$

The maltiplicative group of all auch operetion in denoted by $\operatorname{Map}\left(S^{1}, U(1) \times U(1)\right)$, Each element of the group induce an autornorphimm of $A(K)$ which im implementad ia the representation F_{P}. The aubgroup of particular intereat in Mep $\left(S^{1}, U(1)\right)$ which
consists of operators of the form $\left(\begin{array}{cc}\phi(s) & 0 \\ 0 & 1\end{array}\right)$. For convenience denote this operator by ϕ. Let $\mathrm{r}_{\boldsymbol{A}}(\phi)$ represent the implementer of this automorphimm in $\boldsymbol{\pi}_{\boldsymbol{P}}$: then the operators

 tha Lin algebra of Map $\left(S^{1}, U(1) \times U(1)\right)$ and

$$
\bar{\phi}-r_{s}(\phi), \quad \bar{\phi} \in M a p\left(S^{1}, U(1) \times U(1)\right)
$$

in a reprementation of the CCR algebre over $L \oplus L$, with

$$
\phi \mapsto \Gamma_{p}(\phi), \quad \phi \in \operatorname{Map}\left(S^{1}, U(1)\right)
$$

a reprementation of the CCR algebre over L. Also

$$
\left\langle\Omega_{\beta}, \Gamma_{\beta}(\phi) \Omega_{\beta}\right\rangle=\delta_{n 0} \theta_{3}(\alpha) \theta_{3}(0)^{-1} \exp \left(-\frac{1}{4 \pi} \sum_{k \neq 0} k\left(1-e^{-\beta k}\right)^{-1}\left|f_{k}\right|^{2}\right)
$$

where

$$
\phi(s)=\exp i\left(m a+a+\sum f, e^{4 t a}\right)
$$

with the aum ower mom-mero t.
If the atarting point in now revered, that in, deffe a projective reprematation of Map ($S^{\prime}, U(1)$) uaing the function given above. If a 'blip' $B_{\text {e, }}$ in defined a

$$
B_{a, \lambda}=e^{i a}\left(1-\lambda^{2}\right)^{-1 / 2} \Gamma_{\theta}\left(\gamma_{a, \lambda}\right) \Gamma_{\lambda}\left(\gamma_{\sigma, \beta}^{-1} \gamma_{0, \lambda}\right)
$$

where 7a, denolen the 'kint' fuaction defned by

$$
Y_{0, \lambda}(\theta)=\frac{\left(\lambda-e^{(\theta-\theta)}\right)}{\left(\lambda e^{\Delta(\theta-\theta)}-1\right)}
$$

 lermics operator $B(b), \in L^{3}\left(S^{1}, C\right)$ in a mitable mense. Moreover the time dependence of the 'blipe' in given by

$$
\left[B_{e, \lambda}\right]^{\ell}=e^{a / 2} B_{e-1, \lambda 1}
$$

and thi givea that the function defined above in a KMS wate for the C°-aigebra generated by the $B(g), \in L^{2}\left(S^{1}, C\right)$ चith evolution given by $\left\{r_{1}\right\}$. Hence by the uniquenead of KMS atatem on the CAR algehre thin in the ame at the atecte origimally deffaed at the begianing through As. Foe more detaile of theee conetruction see [CB], [Ce], [CT] and [C12져 for exmemple.

SECTION 7

Boson-Frmmon Comperapondence with Campical Potential μ

T. 1 Introduction.

Thin eection will extend alightly the notion of Bogon-Fermion correppondence given in eection to include an extra veriable μ in the KMS atate. Thim variable μ in referred to an the chemical potential and appaars is the quantumatatiatical mechanica picture, particularly in the formulation of Bose-Einatein Condengation on the CCR aide

$$
r^{\prime \prime}(a)=e^{-i \mu 1}(a+t), \quad \mu \in \boldsymbol{N}_{1} \in L^{2}\left(S^{1}, C\right)
$$

Then h_{p} deflined by

$$
h_{\mu}(a)=(-i d / d a-\mu) g(a)
$$

\square the generatoe of r_{i}^{μ} and $h_{\mu} g_{n}=(n-\mu) h_{n}$ where : denotet the correaponding operator on the fourier tranform eppee with

$$
g(x)=(2 \pi)^{-1 / 2} \sum_{n} g_{n} e^{i n s}
$$

Each rif induce an automorphime of $A(H), H=L^{2}\left(S^{1}, C\right)$, via

$$
a(s) \mapsto a\left(r_{i}^{\prime} \rho\right) .
$$

and hence there in a correaponding automorphiam group fígiven by the above. So the
 where Ap.a the operacor

$$
e^{-\infty A_{n}}\left(1+e^{-\theta A_{m}}\right)^{-1} .
$$

That in

Taking fourier tranaform give

$$
A \hat{\beta}, \mathrm{gn}=e^{-\theta(n-\beta)}\left(1+e^{-\theta(n-\mu)}\right)^{-1} g n .
$$

7.1.1 Rematak. As $A \rightarrow \infty, A_{\beta, \infty} \rightarrow P_{p l}$ where

$$
\begin{aligned}
P_{\rho \mid g_{n}} & =\left\{\begin{array}{ll}
0 & \text { for } n \geq[\mu] \\
1 & \text { for } n<[\mu]
\end{array} \quad \mu \notin \mathbb{Z},\right. \\
& =\left\{\begin{array}{ll}
0 & \text { for } n>\mu \\
1 / 2 & \text { for } n=\mu \\
1 & \text { for } n<\mu
\end{array} \quad \mu \in \mathbb{Z} .\right.
\end{aligned}
$$

with [s] denoting the integer part of 2 . Thin in interpreted phywicelly at the property that only particlew with energy lem than ar equal to μ occur, which in described at the Fermi sea, see [B4,P55].

Let $\pi \beta, \ldots$ denote the representation of $A(H)$ determined by $w h$, . Thim may be renlined by the unnal 'doubling up' procedure [P11]. Set $K=H \oplus H$ and define the projection $P_{-}^{d}: K \rightarrow K$ by the $\mathbf{2 \times 2} \mathbf{2}$ matrix
 CAR elgabra $A(K)$ over K of the Fock etale $\omega_{p, z}$ on $A(K)$ defined by $P=$, Moreover
 and aparating $f(H) A(H)$ and

$$
\nabla_{2 . \Delta} \approx \nabla_{R}=l_{N(H e 0)}
$$

 Pre mare

$$
F_{N}=\left[\begin{array}{cc}
P_{-} & 0 \\
0 & P_{+}
\end{array}\right]
$$

with $P_{\text {- }}$ the operation whowe fourtar tranaform acte a

$$
\dot{P}_{-g_{n}}= \begin{cases}0 & \text { for } n \geq 0 \\ g_{m} & \text { for } n<0\end{cases}
$$

and $P_{+}=1-P_{\mathbf{L}}$
 operator [P11]. Thia in true if $P_{-}-A_{\text {g, and }} A_{\rho}^{1 / 2}\left(1-A_{B, n}\right)^{1 / 9}$ are Hilbert Schmidt oper atorn. Now aramining the fouriar tranforma of these operatort it can be eamily men that

$$
2 \pi \operatorname{Trace}\left(P_{-}-A s_{n}\right)=-\sum_{\infty=0}^{\infty} e^{-\beta(n-\infty)}\left(1+e^{-\beta(\theta-\beta)}\right)^{-1}+\sum_{n=1}^{\infty}\left(1+e^{-\beta(-n-\alpha)}\right)^{-1}
$$

and

$$
2 \pi \operatorname{Trace}\left(A_{\beta, j}\left(1-A_{\mu, n}\right)\right)=\sum_{n} e^{-\infty(11-\infty)}\left(1+e^{-\mu(n-\infty)}\right)^{-2}
$$

So $\left(P_{-}-A_{\beta, A}\right)$ and $\left(A_{p, a}\left(1-A_{\beta, n}\right)\right)$ are trace clean an

$$
\sum_{i=1}^{\infty}\left(1+e^{\beta(n \pm n)}\right)^{-1}<\infty \quad V_{\mu} \in R, V \beta \in(0, \infty)
$$

by comparivon with $\sum K / m^{2}$ where K in fixed by A and μ. Hence $\left(P_{-}-A_{p}, \omega\right)$ and $A_{j, i}^{1 / 3}\left(1-A_{1, j}\right)^{1 / 9}$ are Bilbert Schmidt operatorn a required.
7.1.3 REmamk. The representation Th., and Fe, are quas-equivalent. Thio folkwa if and only if the operatore $\left(1-A_{i n}\right)^{1 / 3}-P_{+}$and $A_{A, 0}^{1 / 3}-P_{-}$are Hilbert Schmidi. Now

$$
\begin{aligned}
& 2 \pi \operatorname{Trace}\left(1-A^{1 / 2}\right) P_{-}=\sum_{-\infty}\left(1-\left(1+e^{p(\pi-\mu)}\right)^{-1 / 2}\right)<\infty, \\
& 2 \mathrm{r} \operatorname{Trace}\left(1-\left(1-A_{\mu}\right)^{1 / 2}\right) P_{+}=\sum_{\sum_{20}}\left(1-\left(1+e^{-\mu(e-\mu)}\right)^{-1 / 2}\right)<\infty,
\end{aligned}
$$

and

$$
\left(1-A_{B_{-}}\right) P_{-}-A_{H_{-}} P_{+}=P_{-}-A_{p_{n}}
$$

 trece clan. Uaing

$$
\left(A_{b_{0}}^{1 / 3}-P_{-}\right)^{*}\left(A_{\beta_{y}}^{1 / 2}-P_{-}\right)=A_{\beta_{0}} P_{+}+\left(1-A_{j}^{1 / 2}\right)^{2} P_{-1}
$$

and
$\left(\left(1-A_{p}\right)^{1 / 2}-P_{+}\right)^{0}\left(\left(1-A_{\phi_{p}}\right)^{1 / 2}-P_{+}\right)=\left(1-A_{p_{p}}\right) P_{-}+\left(1-\left(1-A_{\rho_{,}}\right)^{1 / 2}\right)^{2} P_{+}$
the reault io obtained.
 that some operatori are in fect srace clan will be of great importeres in a laten eection where the Rilbert Schmidi condition feot emfinciant.
7.1.8 Remater. The operation $W_{p, i}$ defined en

$$
W_{\beta_{, \mu}}=\left[\begin{array}{cc}
A_{\beta, \mu}^{1 / 2} P_{-}+\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{+} & A_{\beta, \mu}^{1 / 2} P_{+}-\left(1-A_{\rho_{, \mu}}\right)^{1 / 2} P_{-} \\
-A_{\beta_{, \mu}}^{1 / 2} P_{+}+\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{-} & A_{\beta_{, \mu}}^{1 / 2} P_{-}+\left(1-A_{\rho_{, \mu}}\right)^{1 / 2} P_{+}
\end{array}\right]
$$

natinfe

$$
W_{g_{-},} P_{-}^{\infty} W_{\theta_{-}}=P_{-}^{N}
$$

 and det $W_{\text {, }}=1$.
7.2 Tha action of $\operatorname{Map}\left(S^{1}, U(1)\right)$.

Let A_{1}, ϕ_{2} be arrooth mape from S^{1} to $U(1)$, that in elementa of Mep $\left(S^{1}, U(1)\right)$. Define the unitary operstor on K to be multiplication by the function

$$
\tilde{\phi}(s)=\left[\begin{array}{cc}
\phi_{1}(s) & 0 \\
0 & \phi_{2}(s)
\end{array}\right]
$$

and let Map $\left(S^{1}, U(1) \times U(1)\right)$ denote the multiplicative group of auch operatart. Theae operatora induee \quad ecorrepooding Bogoliubov automorphiam, $T(\bar{\phi})$ on $A(K)$ given by

$$
a(t) \mapsto a(\bar{\phi} \cdot t), t \in K_{1} \quad \text { where } \dot{\phi}(s)=\tilde{\phi}(s) t(s)
$$

These automorphiama are implemented in the representation $F_{F} F_{7}$, mee remark below, wo there eriets a unitary operator $\Gamma_{\infty}(\bar{\phi})$ on the representation space \mathcal{K} of $\pi P_{=}$such that

$$
\Gamma_{\infty}(\tilde{\phi}) \pi_{P \infty}(a(k)) \Gamma_{\infty}(\tilde{\phi})^{-1}=\pi_{P=}(a(\tilde{\phi} \cdot k)), \quad \forall k \in K
$$

7.2.1 Rewalek. For implementability require that $\left(\bar{\phi} P_{-}^{\infty}-P_{0} \bar{\phi}\right)$ y a Hilbert Schmidt operator [84]. The property that

$$
2 \pi \operatorname{Trace}\left(P_{-} \phi^{*} P_{+} \phi P_{-}\right)=\sum_{k=1}^{\infty} k \phi_{k}^{*} \phi_{k}<\infty
$$

 be of uno in a later aection which in the reason tor itu inclusion here.
 projective reprementation of Mep $\left(S^{1}, U(1) \times U(1)\right)$. That in, by firing the phen of the implementiag uniterien, a $U(1)$-valued 2-cocycle, in deffned on Mep $\left(S^{1}, U(1) \times U(1)\right)$ much then

$$
\Gamma_{\infty}\left(\bar{\phi}_{1}\right) r_{\infty}\left(\dot{\phi}_{2}\right)=\mu\left(\bar{\phi}_{1}, \bar{\phi}_{2}\right) r_{\infty}\left(\dot{\phi}_{1} \vec{\phi}_{\alpha}\right)
$$

But the repreanatationa mend ande are equivaleat, bence there erinta anitary $U_{0, \boldsymbol{R}} \in \boldsymbol{K}$ nuch that

$$
U_{B, N} P_{P}=(a(k)) U_{B . \infty}^{-1}=\Psi_{P}+(a(k)), \quad V k \in K .
$$

Thue if the unitary operator $\mathrm{F}_{\boldsymbol{p}, \boldsymbol{w}}(\boldsymbol{\lambda})$ in defined a
thia eatimea
 uimple calculation aleo givea

So the map $\omega \Gamma_{\boldsymbol{p}, \mu}(\hat{\phi})$ defines a projective reprement ation of $\mathrm{Map}\left(S^{1}, U(1) \times U(1)\right)$ with the aame 2 -cocycie, $\theta, \Gamma_{m}(\delta)$.
$\operatorname{Map}\left(S^{1}, U(1)\right)$ denoted the aubgronp of $\operatorname{Map}\left(S^{1}, U(1) \times U(1)\right)$ conninting of multiplication opertiont of the form $\left(\begin{array}{cc}\left(\begin{array}{c}(a) \\ 0\end{array}\right. & 1\end{array}\right)$ which will be denoted by 4 . Then the above ahowe the following
7.2.2 Remark. The operacor $\Gamma_{\beta,}(d), \notin \operatorname{Mep}\left(S^{1}, U(1)\right)$ deflade a-representation of the group with the 2-cocycle obling independent of both A and μ.
 Ae woy in a ($\left.r^{\prime \prime}, \rho\right) \mathrm{KMS}$ atate, M in contained in $\{\lambda(H \oplus 0)\}^{\prime \prime}$ where $\lambda(H \oplus 0)$ in the C^{*}-agebra gencrated by the aet

$$
\left\{r_{g .,}(-1) \tau_{p_{n}}(a(g)): g \in H \oplus 0\right\}
$$

with $\Gamma_{\beta_{1}}(-1)$ the implementer of the maltiplication operator $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$, wee [CS] for more detaila and proofa

The evolution $r^{\prime \prime}$ of the byutem, that $\boldsymbol{i}(\boldsymbol{A}(H)$, can be extended to an evolution * of $A(K)$ by defining

$$
F(a(t))=a\left(q_{i}^{\prime \prime}, b\right), \quad \forall \in \in K
$$

where

$$
F_{i}^{\prime}=r_{i}^{n} \oplus r_{-1}^{m}
$$

in the extenaion of rif to K. Theer automorphime are abo implemented in the repreentation $\pi_{p, A}$, by T_{1} eay, thum giving amp on the o-representation defined by

$$
\Gamma_{\rho_{, ~}}(\phi) \mapsto T_{i} \Gamma_{\rho, \mu}(\phi) T_{i}^{-1}
$$

But $T_{1} \Gamma_{\theta, \mu}(\phi) T_{1}^{-1}$ and $\Gamma_{\rho, n}\left(\phi_{1}\right)$, where

$$
\phi_{a}(t)=r_{i}^{n} \psi_{i}^{n^{-1}}(s)=\phi(t+t)
$$

both implement the aeme automorphiam thus

$$
T \Gamma_{\beta, \mu}(\phi) T_{1}^{-1}=e \Gamma_{\beta, \mu}\left(\phi_{k}\right)
$$

where e in a compler nurrber of unit modulun, dependent on and 1. Denote thin by $Z(\phi, t)$ then thia matiafiea the eocyele condition

$$
\sigma(\phi, \phi) \sigma(\phi \phi, 1)=\bar{z}(\phi, t) \overline{(}(\phi, t) \sigma\left(\phi_{1}, \phi_{1}\right)
$$

and the following told.
 on $A(H)$ reatricti on M to the oon prametar proup of automorphian deflinad sbove and moraovar the atate whalas a ($\mathrm{r}^{\prime \prime}, \rho$) KMS atate.
T. 8 Invatigeting of wap $/ \boldsymbol{\mu}$.

Firat note that Map $\left(S^{\prime}, U(1)\right)$ If the direct product of the aubgroupe
(1) $M_{0}=\left\{e^{i f}: f \in M \operatorname{sp}\left(S^{1}, R\right), f(2 \pi)=f(0), \int_{0}^{f r} f(0) d s=0\right\}$.
(2) $M_{4}=$ sabbroup generated by the constant lumetione and the functiona given by

Clearly M_{a} cen be identified with $S^{1} \times I$ hence let
$M_{g}=$ won Neuminn algebra generated by $\left\{I_{\boldsymbol{g}}(\phi): \notin \in M_{1}\right)$,

The previoua aubection 7.2 demonatrated that the 2 -eocycla for the $\Gamma_{p, y}$ (.)' la
 $\operatorname{Map}\left(S^{1}, U(1)\right)$ and $L \oplus L$ the Lie agebre of $\operatorname{Map}\left(S^{1}, U(1) ¥ U(1)\right)$. Now the reaulta in [Ca] and [LA] imply the axintance of a projectiva represantation of $L \oplus L_{1}$ denoted by $f=J_{-\infty}(J)$ emy, where $J_{-}(\cap)=$ melf adjoint operator with

$$
\left(\Omega_{\infty}, J_{\infty}\left(\eta \Omega_{\infty}\right)=0\right.
$$

and

$$
\Gamma_{\infty}(\operatorname{arp}(i f))=\operatorname{axp} H_{\infty}(h)
$$

Therefore defining $f_{l, s}(f)$ at

$$
J_{A, p}(J)=U_{\theta_{\infty},} J_{\infty}(f) U_{0}^{-1}
$$

given a projective reprementation of $L \in L$ with $f_{G},(f)$ a alf adjoint operntor with

$$
\Gamma_{\Omega,-}(\exp (i f))=\exp i J_{\mu}(f)
$$

The realts in [Cg] aloo imply the eximence of a eelf adjoint operator $\tilde{f}_{f, y}(f)$ with
 be changed though, without changing the cocycio σ, to obtain thic modified generator $J_{\mathrm{A}}(\mathrm{f})$ चith the propertien

This choice of phane wifl now he amound and the tilde dropped from the nolation.
On the restriction to Map $\left(S^{\prime}, U(1)\right)$ of the above the phave of $\Gamma_{m}(\phi)$ may be choven for having erbitrary winding number $\boldsymbol{t}(\phi)$ conalatently with the sero winding number element: to give

$$
\theta\left(\phi_{1}, \phi_{h}\right)=\exp \left\{-\frac{i}{4 \pi} \int_{0}^{2 \pi} f_{2}(\theta) d / f(s)\right\} \phi_{2}(0)^{-\omega\left(\phi_{1}\right) / 2},
$$

where $\phi_{j}=\exp$ ifjfor $\boldsymbol{j}=1,2$, een [CT] for detaile. Hence

Whata

$$
\begin{aligned}
& \left(\phi_{1}, \phi_{i}\right)=\exp \left\{-\frac{i}{4} \int_{0}^{2-}\left[f_{j}(a) \omega_{1}(s)-f_{n}(a) \omega_{j}(b)\right]\right\} \\
& \exp \left\{-\frac{i}{4 \pi} f_{i}(2 \pi) f_{3}(0)-f_{2}(2 \pi) f_{1}(0)\right\}
\end{aligned}
$$

For tha apecial cose when $\psi_{j}=$ arpifj and $f_{j} \in L$ for $j=1,2$ thin may ha amplified to

$$
\theta\left(\phi_{1}, \phi_{n}\right)=\exp \left\{-\frac{i}{2 \pi} \int_{0}^{2 v} f_{n}(d) \psi_{1}(a)\right\}
$$

But the farlor in the exponential determinean non-degemerme aymplectic form on $L_{\text {a }}$, bence the casonicel commatation relationa over L. Thue the map

$$
\phi \mapsto \Gamma_{\beta, a}(\phi), \quad \phi \in \operatorname{Map}\left(S^{1}, U(1)\right)
$$

given arepreentation of the CCR agebra over L is Weyl form. Therefore the algebra M_{a} m generated by a representation of the CCR algebra.

From the deflaition of the cocych abowe it in mot dificult to deduea that

$$
\Gamma_{\theta_{1}}\left(\phi_{1}\right) \Gamma_{\theta_{n}}\left(\phi_{n}\right)=r_{\theta_{2}}\left(\phi_{1}\right) r_{\theta_{j}}\left(\phi_{1}\right)_{1}
$$

Whanever $\phi_{1} \in M_{0}$ and $\mathcal{H}_{2} \in M_{4}$ or vice vertat. Therefore the algebrem M_{a} and M_{a} are contained in the commetant of one another. Almo the evolution top leavea thens two algebran inveriant. The expremion given for the cocycla together with the condition (1) enebles the determination of the erpremion $(\$, t)$, eed [C5] Lamma 2.7. Thia in given by:

$$
\phi(\phi, t)=\left(\phi(0) \phi(t)^{-1} e^{-i p t}\right)^{\phi(\phi) / 2} . \quad \text { for any } p \in R
$$

no that
 wh.a whon generating furctional in

$$
\omega_{\beta_{i}}\left(\Gamma_{B_{i}}(\phi)\right)=\delta_{n 0} \theta(\omega) \theta(\theta)^{-1}
$$

Pmoor: The proof in [C5] Lemme 2.8 for the special enea $\mu=-1 / 2$ in auficient at it in dependent coly on the cocycle and the time evolution both of which are indepeadent of ρ and μ.

The following proparition concerpe the factorisation of a KMS atate. It in takem trom [C8]. See Proporition 2.9 in that paper fine a proof.
7.3.2 Pmopoaition. Suppon B and C are Nommenn algehpen of operalorit an the asme apace, sach of mhich in in the comamiant of the orher, and aseh of which in inveriant undar the action of a one parameter aroop, $1 \mathrm{~m} \mathrm{~F}_{1}$ of antomorphime of the

 fectorisa into a product of wh and a (r, 今) KMS atate an B.
 form

Pmoor: Fhom the two preceding commente the form of wa, on M_{8} w the only thing required an win in the product of the unique KMS mata on M, given by Lemana 7.3.1 and aKMS stale oo Mo, that in

$$
\omega_{s_{1}}\left(m_{0} m_{n}\right)=\omega_{\theta_{\infty}}\left(m_{0}\right) \omega_{m_{n}}\left(m_{0}\right) .
$$

By the methode of [Ce] and [La], toe the represoatation $J \mapsto J_{0, N}(f)$ of $L \oplus L$

The case of intereat involven the aimplification

$$
\vec{f}=\vec{F}=\binom{f}{0}
$$

in which ceme the tro Lemman followiag thin proof give

$$
\left(\Omega_{\beta_{n}, 1} J_{\beta_{n}}(f)^{2} \Omega_{\beta_{n}}\right)=\frac{1}{2 \pi} \sum_{n=\omega} k\left(1-e^{-\beta t}\right)^{-1}\left|f_{h}\right|^{2}
$$

Hence $m \mathcal{M a}_{0}$ i generated by a reprenentation of the CCR agebra, atagdard propertioa of thin algebra lead to
where $\phi=\exp$ if $\in M$.
Now from [R1]

$$
\left(\Omega_{\mu_{\ldots},} \Gamma_{\theta_{. s}}(\tilde{\phi}) \Omega_{\beta_{\mu}}\right)=\operatorname{dot}(1+B)^{-1 / 3}
$$

where

Therefore if $\tilde{j}=\left(\begin{array}{ll}e^{(a} & 0 \\ 0 & 1\end{array}\right)$,

$$
\begin{aligned}
& =\operatorname{det}(1+B)^{-1 / 2} \\
& =\operatorname{det}\left(\left(P_{-}^{2} \cdot+P_{-}^{2} \cdot \mu\right)^{-1}\left(P_{-}^{2} \cdot \sqrt{2} \cdot P_{-}^{2} \cdot\right)^{-1}\right)^{-1 / 2} \\
& =\left[\prod_{\infty}\left(1+2 \cos \theta e^{-\theta(n-\beta)}+e^{-2 \omega(n-\omega)}\right)\left(1+e^{-\beta(n-\beta)}\right)^{-\eta}\right]^{1 / 3} .
\end{aligned}
$$

Hence compering thim with the form given in Lemma 7.1 .1 it cen be meen that $p=0$

Combining thim and the previoun formula for whan on M_{c} giver the remalt.

$$
\sum_{r=1}\left(1+e^{m(r-\mu)}\right)^{-1}\left(1+e^{-\infty(r-n-\infty)}\right)^{-1}=-n\left(1-e^{n \rho}\right)^{-1}
$$

Panor:

$$
\begin{aligned}
& \left(1+e^{\beta(r-\beta)}\right)^{-1}\left(1+e^{-\beta(r-s-\alpha)}\right)^{-1} \\
= & \left(1-e^{n-\theta}\right)^{-3}\left[\left(1+e^{n(r-\beta)}\right)^{-1}-\left(1+e^{-\beta(r-\infty-\infty)}\right)^{-1}\right]
\end{aligned}
$$

Hence the num can be remritian a

$$
\left(1-e^{n y}\right)^{-1} \sum_{r \in 1}\left[\left(1+e^{n(r-n)}\right)^{-1}-\left(1+e^{-n(r-\infty-m)}\right)^{-1}\right]
$$

Now, auppoen $N>\boldsymbol{m}$ than

$$
\begin{aligned}
& \sum_{r=-N}^{N}\left[\left(1+e^{n(r-\beta)}\right)^{-1}-\left(1+e^{-B(r-n-\infty)}\right)^{-1}\right] \\
& =\underbrace{\frac{1}{1+e^{p(N-n+i-p)}}+\cdots+\frac{1}{1+e^{(N N-p)}}} \\
& -\frac{1}{1+1(-N-\pi-m)}-\cdots-\frac{1}{1+e^{p /-N-i-m)}}
\end{aligned}
$$

- other terma cancel. Hut each poaitive tarm teadn to $0 \boldsymbol{N} \rightarrow \infty$ and each megative corm to -1. Thum

$$
\lim _{\rightarrow=0} \sum_{r=-N}^{N}\left[\left(1+e^{(r-n)}\right)^{-1}-\left(1+e^{-(n-n-n)}\right)^{-1}\right]=-n
$$

and the renuli foliona.

Them if f denote the 2×1 matrix $\left[\begin{array}{ll}f & 0 \\ 0 & 0\end{array}\right]$,

Peoof: With / a abov, Ater nimplification

Taking fourier trenaforma thin cen be shown to aqual

$$
\frac{1}{2 \pi} \sum_{n \neq 0}\left\{f\left(f-n \sum_{r \in 1}\left(1+e^{p(r-n)}\right)^{-1}\left(1+e^{-n(r-m-m)}\right)^{-1}\right\}\right.
$$

Now in a unitary operator, thet in $\phi^{*}=\phi^{-1}$. But

$$
\phi^{-1}=\operatorname{arp}-4\left(m a+a+\sum_{1 p} f e^{1 b a}\right)
$$

and

$$
\phi^{*}=\exp -1\left(m s+a^{*}+\sum_{t=1} f e^{-i k x}\right)
$$

There fertu logether with Lemma 7.3 .4 give the reault.
7.4 The Tergion algehra trow Mep ($\left.S^{2}, U(1)\right)$.

The other direction will now be conaidared, that in, with a projective represeatation of Map ($S^{1}, U(1)$) defned through a particular funetion, then the CAR algebra ectu on the Hilbert apare of thin reprememtation and the CAR ebmente are limita, in acerteia enene, of the loop group element.

Lat un, damote the following function on the central ertenaion of Map ($\left.S^{1}, U(1)\right)$ determined by the 2-cocycla, σ, given in the previou aubection 7.3

Where $(a)=\exp \left(f\left(m a+\sum_{\operatorname{can}} f_{a} e^{d a}\right)\right)$
Thin delarminea a σ-reprematation of $\operatorname{Map}\left(S^{\mathbf{1}}, U(1)\right)$ efollown: if

$$
\omega_{p}(\phi)=\delta\left(v_{0}\right) \omega_{n}\left(f_{0}\right) \rho_{n}(0)^{-1} \exp \left\{-\frac{1}{4 \pi} \sum_{4 N 0}\left(1-e^{-\mu t}\right)^{-1}\left|f_{1}\right|^{2}\right\}
$$

subeection 7.3 givet that $\omega_{g}(\phi)$ determinea a σ-representation of Map $\left(S^{1}, U(1)\right)$ which will be denoted by $\Gamma_{g_{, j}}(\phi)$. Note the function really han no dependence on μ 由o $\Gamma_{\rho, n}(\phi)$ could be written $\Gamma_{\mu}(\phi)$ eac [C5]. Thin faet in the main point of mubection 7.3 . Hance

$$
w_{\mu, m}(\phi)=\exp i f_{1}(1 / 2+\mu) w_{p}(\phi)
$$

determinea a-representation via

$$
\mathrm{r}_{\dot{p}, \mu}^{-}(\phi)=\exp i f_{\rho}(1 / 2+\mu) \mathrm{F}_{\beta_{\mu}}(\phi)
$$

The elementery function which will enahle the cometructica of the CAR elementa are piven by the following:
let the apecial loopa of 'Itinta' be the functiona defined by

$$
\gamma_{\sigma, \lambda}(\theta)=\frac{\left(\lambda-e^{(\lambda)-\alpha)}\right)}{\left(\lambda e^{(()-\alpha)}-1\right)}
$$

where $\lambda \in(0,1)$. Theme enable the approximate farmion operatore an 'blipa' to be defaned a

$$
\begin{aligned}
& =e^{\theta(1 / 2-\beta) \omega}\left(1-\lambda^{3}\right)^{-1 / 2}\left(\frac{1-\lambda e^{-1 e}}{1-\lambda e^{j \omega}}\right)^{1 / 2} r_{\beta, 0}\left(7_{\omega, \lambda}\right)
\end{aligned}
$$

uning the defnition of the cocycle σ and the fact that $\mathcal{F}_{a, \lambda}(d)$ can be written a

$$
7_{\theta, \lambda}(\theta)=\exp \left\{i\left[(\theta-\alpha)-i \sum_{n \neq 0} \lambda^{|n|} e^{i n(\theta-\alpha)} / n\right]\right\}
$$

There now follown two propositione concorming the limit procem ueed to ohtain the fermice operatorm. One described the limiting procedure and ita domain white the other demonatraten the fermion operatora. They are genefel reaule and may he found in [C12] for the computationally harder cane of A inateed of S^{4} and ano in [P12] in a alighty different form so no prooth are given here.
7.4.1 Propoation. Sat $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{16}\right)$ and
where (o) indicater that the adjoint may be aubstituted at any point and whera G in a amooth function on S^{1}. Then $\phi_{1}(G)$ in a well defleed vector in \boldsymbol{K} and the atrong bimit $\because \lambda_{1} \rightarrow 1 \mathrm{j}=1, \ldots, N$ arinu independonily of ithe order iem which the λ_{j} are tatran 1. For of mooth function of S^{1} the opertlor $B(g)^{(0)}$ may therefora be deffined an the domain comintiag of polynamial in the blipa and atoo inductively an the lerger domain obtrined by tating the apan of all roctort of the form $\phi_{2}(G)$ Fin

$$
B(g)^{(\cdot)} d_{2}(G)=\lim _{l_{j}-1} \int_{0}^{2+} \operatorname{dog}(a) B_{a}^{(*)} d_{l}(G) .
$$

7.4.2 Peoposition. Suppone $\phi=\exp i f \in \operatorname{Map}\left(S^{1}, U(1)\right)$ and $a, G \in[0,2 \pi)$. Then
(1) $\Gamma_{\rho_{m}}(\phi) B_{\infty} r_{p_{m}}(\phi)^{+}=\phi(\alpha) B_{m}$
(2) $\left[B_{a}^{*}, B_{C_{+}}\right]_{+}=2 \pi(a-C) 1$,
(3) $\left[B_{0}, B_{\mathrm{C}_{+}}=0=\left[B_{n}^{+}, B_{6}^{t}\right]_{+}\right.$,

- here $B_{a}=\lim _{\Delta \rightarrow 1} B_{\infty, \Lambda}$.
7.4.3 Rrmank. Proporition 7.4 .1 deflam an 'operator-valued diatribution' and Propoeition 7.4.2 in auppose to be underatood in the menge of dine ributiona. Fre exampla (2) meana

$$
B(f) B(g)^{0}+B(g)^{*} B(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(0) \bar{\rho}(0) d s
$$

Heace $B(g)^{(0)}$ cas be deflned for all $\in \mathcal{L}^{2}\left(S^{1}, C\right)$. Propacition 7.4 .2 ahown that the limiting diat ributiona atiely the anticommatation relations
7.4.4 Rimank. From nuheariion 7.1 the time evolution of the loop group elementa, regarded maultiplication operatore on $L^{3}\left(S^{1}, C\right)$, in given by $\phi \rightarrow \phi_{1}$ where $\phi 1(0)=$ ($(0+1)$. Bence it in a aimple calculation to ahoes that the 'kinko' evolve according to

$$
\gamma_{\omega, \lambda} \rightarrow \bullet\left[\gamma_{\epsilon, \lambda}\right]_{1}=\gamma_{\omega-1, \lambda} .
$$

Thin leade to the following temme.
7.4.5 Lenma. The 'Mipa' onolve according to

$$
B_{\infty, \lambda}-\left[B_{\infty, \lambda}\right]_{1}=e^{-i \omega} B_{\infty-1, \lambda} .
$$

Peoor: From nubmertion 1.3

$$
\left[\Gamma_{\theta, n}\left(\gamma_{c, \lambda}\right)\right]_{1}=\left(\gamma_{0, \lambda}(0) \gamma_{\sigma, \lambda}(t)^{-1}\right)^{1 / 2} \Gamma_{\beta, \infty}\left(\left[\gamma_{c, \lambda}\right]_{0}\right) .
$$

Heace

$$
\begin{aligned}
& {\left[B_{0,1}\right]_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-t a t} B_{a-t, A} \text {. }
\end{aligned}
$$

7.4.6 Rrmank. Thim enentially givee the operator vilued diatribution $B_{\text {a }}$ avolvee eccording to

$$
B_{\varepsilon} \rightarrow\left[B_{a}\right]_{q}=e^{-t e t} B_{a-t}
$$

$$
\left\{B(\theta): f \in L^{2}\left(S^{\downarrow}, C\right)\right\}
$$

Pnoor: The prool in ementially the enma athat in [CS] Proparition 1.12, the coly differeace ie that the 'blipe' wrolve moma what digareatly. Unigg the motation of that Proponition, auppow X and Y are producta of 'blipa' and thair adjointa and lat

$$
B_{\alpha_{1}}^{*}, \ldots, B_{\alpha_{N}}^{*}, B_{G_{1}}, \ldots, B_{C_{m}}
$$

be the terma appearing is X and Y in tha limit with $B_{0,}^{*}, B_{G}$, elemetre of X if $\mathcal{f} \in \mathcal{J}$, $t \in K$ where $a=|J|$ and $t=|K|$.

So by the above $\left.w_{p, j}(Y \mid X]_{0}\right)$ is $\exp (-i \mu(b-a) f)$ times the appropriale corralation function for the limite of the 'blipa '. That in, a_{j} becomea $\boldsymbol{e}_{1}-\boldsymbol{i}$ if $j \in \mathcal{J}$ and G_{2} becomea $\mathbf{G}-\boldsymbol{t}$ if $t \in K$. With the copreletion function writen explieitly in the form given by [C8] Proponition 3.8 trgether with the edditional exp $i f(1 / 2+\mu)$ term, which equala

$$
\exp 1(1 / 2+\mu) \sum_{j}\left(a_{j}-\zeta_{j}\right)
$$

in thin came, the idependent fectort are

$$
\begin{gathered}
\exp i / 2\left\{\sum_{j}\left(\zeta_{j}-\alpha_{j}\right)+(a-b) t\right\} \\
\exp i(1 / 2+\mu)\left\{\sum_{j}\left(\alpha_{j}-\zeta_{j}\right)+(b-a) t\right\}, \\
\theta_{3}\left[\sum_{j}\left(\alpha_{j}-\zeta_{j}\right)+(b-a) t\right] \\
\text { and } \epsilon_{1} \text { cerme. }
\end{gathered}
$$

Now the $\exp (-i \mu(b-a) t)$, exp $i / 2(a-b)$ and exp $i(1 / 2+\mu)(b-a)$ term combino to leave 1, which in 1 independeat. Ther that and θ_{1} ternin are the only 1 dependent. Sirnilanly these ere the omly 1 deperdent terma in $\omega_{Q_{1}}\left([X]_{\mathrm{p}} Y\right)$ and the proof of [CE] Proporition 3.12 covern the $\mathbf{1}$ dependance of these terma to give

$$
\omega_{\rho_{m}}([X], Y)=w_{A . \mu}(Y[X \mid,+\rho) .
$$

That in win in KMS atate.
7.4.8 Rrmalk. Since $w_{g, ~}$ io KMS atale ou the CAR alpebra with the time evolution give in the pravioun remark, by the uniquenem of KMS diming for the CAR algetra thin must coincide with the quasi-free atate given at the beginning of thim analyie. That in, the quani-free atate defieed by $\boldsymbol{A}_{\boldsymbol{A}}$,
T.4.9 Remanx. Thin enelynia demomatrater that the Bomon-Parmion correppondance en deacribed in mot angood it comld be. The anly nitanaion a hyective corrempendance occurn it when $\mu+1 / 2$ t 0 and it in thin nituation which in deacribed in [C5]. Otharwine the procen from loop group to CAR agebea in injectiva hut from CAR ajebra t OCR algebra it certainly is gat. Thim nay be dua to the implicit cheice of phene taber in the erguman mothat

$$
\left(\Omega_{\theta, \mu} J_{B, \mu}^{*} \Omega_{p, \mu}\right)=0
$$

With another choice of phase the eocyele might be adjuated so that the 'roiation' $\exp 1 f(1 / 2+\mu)$ occurn in the thata.
T.4.10 Remaen. Thin extreterm expifo $(1 / 2+\mu)$ eppeare to tia in with (Cel Seation
 condensation.

SECTION

A Deteraminant Identity

0.1 Introduetion.

$$
\left(n_{\rho_{\infty}}, \Gamma_{\theta_{0}}(\phi) n_{\rho_{A}}\right)
$$

deffed in mection 7. Identifying thin formela with that produced in the previous mection leade to a delarminant identity reminimcent of Seago's theorem. A brief deseription of the atructure end rearalte of une from [P1] eow folliown.

Suppowe W in an infaita dimenional complen Hilbert apace aith compler atrueture 1 and dintinguiahed conjugation P. Let Q be a mif adjoist oparator auch that $Q^{2}=1$ and $Q P+P Q=0$. The Q-Fock reprementation of the Clifiord agebre $C(W, P)$ in given by

$$
F_{\phi}(\vartheta)=a^{*}\left(Q_{\phi}{ }^{*}\right)+a\left(P Q_{-}{ }^{*}\right)
$$

where a(.), a"(.) are annibilation and crostion oper thor on the altarnating tenace elgebra $A\left(H_{+}\right) \cdot\left(W_{ \pm}=Q_{ \pm} W, Q_{ \pm}=1 / 2(1 \pm Q)\right.$, mee eection 2.2 for an example.)
8.1.1 Definition. Let $G(W, Q)$ demote the mef ofounded operatore $100 A\left(W_{+}\right)$auch that

$$
\boldsymbol{\|}(\#)=F(T(g) \omega) s
$$

for aorme hounded, invertible, P-orthogoral $T(\boldsymbol{f})$ on W.
Note. An operator T on W in P-orthopoad if $P T^{*} P=T^{-1}$.
A.1.2 Triconem If T in antery an W commuting with P and $T Q-Q T$ in a Hilbort Schmidt operator on W them there exirta anitary $\in \mathcal{G}(W, Q)$ uch that $T=T(g)$. Con vermely if 1 in a mitary elament of $G(W, Q)$ then $T(g) Q-Q T(g)$ in a Hilbert Schrnidt operator on W.
A.1.3 Definition. The Q-reprementation of W in the representation where

$$
Q=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad i=\left[\begin{array}{cc}
\Lambda & 0 \\
0 & -\Lambda
\end{array}\right]
$$

Fhere A in e complez etructure.
8.1.4 Remanc. If $T=\left[\begin{array}{ll}T_{11} & T_{13} \\ T_{n} & T_{23}\end{array}\right]$ in the Q-representation of W then:

This is a simple consequence of the facts $P T P T=1$ and $\boldsymbol{* T}=\mathbf{T i}$.
8.1. $\mathbf{8}$ Derinition. An element $f \in G(W, Q)$ in fatorable if $Q_{-} T(\theta)+Q_{+}$in invertible.
-1. 0 Remamb.
1

$$
T(g)=\left[\begin{array}{ll}
T_{11}(g) & T_{12}(g) \\
T_{21}(g) & T_{22}(g)
\end{array}\right]
$$

in the Q-representation of W then

$$
Q_{-} T(g)+Q_{+}=\left[\begin{array}{cc}
1 & 0 \\
T_{21}(g) & T_{22}(g)
\end{array}\right]
$$

Consequently $T(g)$ is factorable if and only if $T_{22}(g)$ is invertible in which case

$$
\left(Q_{-} T(g)+Q_{+}\right)^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-T_{22}^{-1}(g) T_{21}(g) & T_{22}^{-1}(g)
\end{array}\right]
$$

8.1.7 REMARK. If T_{22} is invertible then $T=L(1) L(2)$ where

$$
L(1)=\left[\begin{array}{cc}
T_{11} T_{22} & T_{12} T_{22}^{-1} \\
T_{21} T_{22}^{3} & I
\end{array}\right]
$$

and

$$
L(2)=\left[\begin{array}{cc}
T_{22}^{-1} & 0 \\
0 & T_{22}
\end{array}\right]
$$

If T is P-orthogonal then so are $L(1)$ and $L(2)$.
8.1.8 Definition. Let

$$
\begin{aligned}
R & =(T-1)\left(Q_{-} T+Q_{+}\right)^{-1} & =\left[\begin{array}{cc}
T_{22}^{-1}-1 & T_{12} T_{22}^{-1} \\
T_{22}^{-1} T_{21} & 1-T_{22}^{-1}
\end{array}\right], \\
R(1) & =(L(1)-1)\left(Q_{-} L(1)+Q_{+}\right)^{-1} & =\left[\begin{array}{cc}
0 & T_{12} T_{22}^{-1} \\
T_{21} T_{22} & 0
\end{array}\right], \\
R(2) & =(L(2)-1)\left(Q_{-} L(2)+Q_{+}\right)^{-1} & =\left[\begin{array}{cc}
T_{22}^{-1}-1 & 0 \\
0 & 1-T_{22}^{-1}
\end{array}\right],
\end{aligned}
$$

8.1.9 LEMMA. Suppose g is a factorable element of $G(W, Q)$. Then $T(g) Q-Q T(g)$ is a Hilbert Schmidt operator on W. Furthermore

$$
|(g)|^{2}=\left\|g \Omega_{Q}\right\|^{2} \operatorname{det}\left(I+\left|T_{12} T_{22}^{-1}\right|^{2}\right)^{-1 / 2}
$$

where $\langle g\rangle=\left\langle\Omega_{Q}, g \Omega_{Q}\right\rangle$ with $\Omega_{Q}=1 \oplus 0 \oplus 0 \oplus \ldots$ denoting the vacuum vector in $\mathbf{A}\left(W_{+}\right)$. 8.1.10 THEOREM. Suppose g_{k} is a factorable element of $G(W, Q)$ for each $k=1, \ldots, n$. Then if $\left(g_{1} \ldots g_{n}\right) \neq 0$

$$
\left\langle g_{1} \ldots g_{n}\right)^{2}=\prod_{k=1}^{n}\left(g_{k}\right\rangle^{2} \operatorname{det}_{2}(1+L \Delta R)
$$

where L is the $n \times n$ block matrix with entries

$$
L_{l m}= \begin{cases}-Q_{+} L_{l+1}(2) \ldots L_{m-1}(2) & \text { for } m \geq t+2 \\ -Q_{+} & \text {for } m=t+1 \\ 0 & \text { for } m=t \\ -\overline{L_{m l}^{*}} & \text { for } m<t\end{cases}
$$

and ΔR the $n \times n$ block diagonal matrix with entries

$$
\Delta R_{l m}=\delta_{l m} \Delta R_{m}
$$

where $\Delta R_{m}=R_{m}-R_{m}(2)$ and $\bar{X}=P X P$.

8.2 Basic Structure.

The necessary structure for the application of the results outlined in subsection 8.1 is now developed.
8.2.1 Lewna. Suppon K a Ailbert apace. Let $K=K \oplus X$ whars X danata the Hibert epace conjugate to K and where the inmer product of K in givel by

$$
\left(f_{1} \oplus h_{1}, g_{1} \oplus(f)\right)_{2}=\left(f_{1}, f_{1}\right)_{x}+\left(h_{2}, f_{3}\right)_{x}
$$

Lat I degote the optrator on K deland by

$$
\mathbf{r}(-1)=50 .
$$

$$
\begin{aligned}
\left\langle\Gamma, \Gamma_{g}\right)_{t} & =\left(f_{1} \oplus f_{1}, \|_{\mathrm{s}} \oplus f_{1}\right)_{\mathrm{h}} \\
& =(f,\rangle_{\mathrm{t}}
\end{aligned}
$$

uning the daffation of the inner product gives ebove and

$$
(\bar{x}, v)_{x}=(y, \nu)_{X}
$$

So Γ in an antiunitary iavolution, than $A \operatorname{sbc}(\mathcal{K}, \Gamma)$ ean be deffeed.
 then the "-imorrorptiom in given by the idantification

$$
B\left(\varepsilon \oplus v j=a(\varepsilon)+e^{c}(\rho)\right.
$$

8.2.2 Limma. Suppove P in a projection on K andwpin the quani-fres atace on $A(K)$ determined by P. Thea w, , the quari-tre atate on AgDc (\mathcal{K}, Γ) determined by $S=$

Proop: [ST =1-S and $0 \leq S=S^{\circ} \leq 1$ mo S doet indeed detarmine a qumi-frea utele ws. Now

$$
\begin{aligned}
& \omega_{P}\left(a^{*}(f)=(s)\right)=(g, P)_{k} \\
& =\left(g . P h_{K}+\left(0,(1-P)_{K}\right)_{K}\right. \\
& =\left((\sigma \oplus 0),(P \oplus(1-P))(J \oplus 0)_{k}\right. \\
& =((\sigma \oplus 0), S(f \oplus 0)\rangle_{*} \\
& =\omega_{\mathrm{I}}\left(B^{*}(J \oplus 0) B(g \oplus 0)\right) \quad \text { dollitition of } \omega s \\
& =\omega_{g}(B(0 \oplus \cap) B(\rho \oplus 0))
\end{aligned}
$$

and

$$
\begin{aligned}
& =\left(G_{1}, P h_{1}\right) x+\left(f_{n},(1-P) h_{h} h_{x}\right. \\
& =\left\langle 1, P_{1}\right)_{x}+\left(J_{2}, f_{2}\right\rangle_{x}-\left(J_{1}, P_{5}\right) x \\
& \text { - } P \text { jenerf edioint }
\end{aligned}
$$

$$
\begin{aligned}
& \text { by the dellnition of } \omega p \\
& =\omega_{p}\left(\omega^{\circ}\left(f_{1}\right) a\left(f_{1}\right)+a\left(f_{1}\right) a^{*}\left(h_{1}\right)\right) \\
& \text { uning the canonicel anticommutation relationa } \\
& =\omega_{p}\left(\left(\varepsilon^{\circ}\left(f_{1}\right)+e\left(f_{f}\right)\right)\left(e\left(g_{1}\right)+e^{\prime \prime}(f)\right)\right) \\
& \text { wing the propertien of a quai-hrea rete. }
\end{aligned}
$$

 om eny corralation quat-frea etaten are devermied by thair iwo poiat correlation.

 we.
8.2.4 LEvma. Suppas U i a unitary operator oa K. Them the Bogoliubov automopphimen of $A(K)$ given by

$$
r(U) \in(b)=\varnothing(U \sharp), \quad \Delta \in K
$$

in equivaloat to the Bapritubov automorphim of Asme (\bar{K}, Γ) gives by

$$
T(u) B(f)=B(u f), \quad f \in K
$$

تhere $\boldsymbol{U}=\boldsymbol{U} \oplus \boldsymbol{U}$.
 equivelence il obvioun.
A.2.8 Remanz. P in a projection, hence $S=P$ (1-P) ia a projection and aince $\Gamma S \Gamma=1-S$ it in a bania projection. Thum uriag the reaulta is Section I the tate wis a Q Pock atata where $Q_{+}=1-S_{1}\left(S=Q_{-}\right)$with ite correapoediaf representation on the altergatiag tener ajebra $A(Q+K)$. Hence the reaulte of nuheartion 8.1 are applicebie.
-. 1 Application of Beade Itructura.
In the partieular en $K=H \in H$ whare $H=L^{2}\left(S^{1}, C\right)$ and $P=P^{\prime}$ in tha projection on \boldsymbol{K} given by the $\mathbf{2 \times 2} \mathbf{2 m a t r i z}$

$$
P_{-}^{1, \mu}=\left[\begin{array}{cc}
A_{\beta, \mu} & A_{\beta, \mu}^{1 / 2}\left(1-A_{\beta_{, \mu}}\right)^{1 / 2} \\
A_{\beta, \mu}^{1 / 2}\left(1-A_{\beta, \mu}\right)^{1 / 2} & 1-A_{\rho, \mu}
\end{array}\right]
$$

Whare

$$
A_{p_{i}}=e^{-A_{2}}\left(1+e^{-A n}\right)^{-1}
$$

-ith

$$
A_{\operatorname{m}} P(a)=(-\dot{d} / d-\mu) \boldsymbol{a}(a), \quad \in \in H
$$

 wa on $A \operatorname{gbc}(\bar{K}, \Gamma)$ and ite amociaced Q-Pbet reprementation will be atudied. To do thil the ' Q-rapresentition of W ' is thin ceen neede to be delarmined.
8.3.1 Notation. Lat Q degote the operatoe on K givee by the 2×2 matrix form

$$
\left[\begin{array}{cc}
1-2 P_{-}^{\beta, \mu} & 0 \\
0 & 2 P_{-}^{\theta_{-},}-1
\end{array}\right]
$$

Thue define $Q_{ \pm}=1 / 2(1 \pm Q)$ and $Q_{+}=1-S$ so $Q_{-}=S$.
Aloolet

$$
Q^{\prime}=\left[\begin{array}{cc}
1-2 P_{-}^{\infty} & 0 \\
0 & 2 P_{-}^{\infty}-1
\end{array}\right]
$$

 7.1.2.
0.s. 2 Lemma. Lat demote the operator on K givel by the 4×4 malriz

$$
\left[\left.\begin{array}{cccc}
0 & & P_{-} & 0 \\
0 & 0 & P_{+} & 0 \\
P_{-} & 0 & 0 & 0 \\
P_{+} & 0 & 0 &
\end{array} \right\rvert\,\right.
$$

where a in a partial imometry such that a $a^{*}=P_{4}, a^{*} a=P_{-}$.
For erampla

Them in a unitery and
(1) $\boldsymbol{c}^{\circ} \boldsymbol{q}_{+1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
(2) $\boldsymbol{c}^{\bullet} \Gamma=\Gamma$
(d) 'Ap $=A^{\prime}$ ' where

$$
A=\left(\begin{array}{cccc}
i & & & \\
& i & & \\
& & -i & \\
& & & -i
\end{array}\right), \quad A^{\prime}=\left(\begin{array}{cccc}
-i & & & \\
& & & \\
& & 1 & \\
& & & -i
\end{array}\right)
$$

Pmoor: Direct eomputation viag the following propartien of a and a*:

$$
\begin{gathered}
P_{-}=a P_{+}=0 \text { and } P_{+} a=a P_{-}=a_{1} \\
a^{*} P_{-}=P_{+} a^{*}=0 \text { and } a^{*} P_{+}=P_{-} a^{n}=a^{*} .
\end{gathered}
$$

8.3.3 Comollayy. Let $W_{A, a}$ be the operator on K defined in Remark 7.1 .8 and W/an the operator on \bar{K} given by

$$
\left(\begin{array}{cc}
W_{p,} & 0 \\
0 & W_{0, \infty}
\end{array}\right)
$$

Then
(1) $\varphi^{*} w_{s, \psi} Q_{+} w_{p, \mu}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
(2) ${ }^{-} W_{D_{m}} \Gamma \mathcal{W}_{1}=\Gamma$.

Phoof: From Remarle 7.1 .5

$$
W_{p, F} P_{-}^{\infty} W_{p,}^{a}=P_{-}^{\infty},
$$

henee

$$
w_{0, ~}^{*}, Q_{+} w_{0, e}=q_{+}^{\prime}
$$

and (1) followe from Lemma s.3.2.
 Lemme 8.3.2.

$$
t^{2} w_{n, p} q w_{0, q}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

 unitary \boldsymbol{f}^{*} implamenea the \boldsymbol{Q}^{\prime}-repromatation of \bar{K} ince

$$
q^{*} Q^{\prime} q=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

8.s.5 Lxмma. Suppon U in a unitary on K. Thet the following hald:

Ploof: (1) :
$r(U)$ in implementable is I_{p}-a

* U $P^{2}-P^{2}-\boldsymbol{*} U$ in Rilbart Schmidt
$\leftarrow U\left(W_{\rho, \mu} P_{-}^{*} W_{\beta, \mu}^{*}\right)-\left(W_{\beta, \mu} P_{-}^{\infty} W_{i, \mu}^{*}\right) U$ in Hilbert Schmidt
 hence
$\Leftrightarrow U(1-T) P_{=}^{(1}(1-T)-(1-T) P_{-}^{*}\left(1-T^{*}\right) U$ in Hilbert Schmidt
$\Leftrightarrow U P_{-}^{\infty}-P_{-}^{\infty} U-\left\{\left(U T P_{-}^{\infty}-T P_{-}^{\infty} U\right)+\left(U P_{-}^{\infty} T^{+}-T P_{-}^{+} U\right)\right.$
- (UTP $\left.\left.{ }_{=}^{\left(T^{*}\right.}-T P_{=}=T^{*} U\right)\right\}$ in Rilbert Schmidt
$\Leftrightarrow U P^{\infty}=P_{=}^{\infty} U$ Hilbert Schmids
$\Leftrightarrow \tau(U)$ implementable ime
(2):
$r(U)$ implementablo in $T P$ $\Leftrightarrow U P_{-}^{\infty}-P_{-}^{\infty} U$ in Hilbert Schmidt
$\bullet\left(\begin{array}{ll}U & 0 \\ 0 & U\end{array}\right)\left(\begin{array}{cc}P_{\bar{\infty}}^{\infty} & 0 \\ 0 & 1-P_{-}^{\infty}\end{array}\right)-\left(\begin{array}{cc}P_{\bar{\infty}}^{\infty} & 0 \\ 0 & 1-P_{-}^{\infty}\end{array}\right)\left(\begin{array}{ll}U & 0 \\ 0 & U\end{array}\right)$ in Hilbert Sehmidt $\Leftrightarrow U S^{\prime}-S^{\prime} u$ in Hilbert Schmidt
$\Leftrightarrow r(U)$ in implemertabion in tat.
(d) : Same (2) with P^{0} and S^{\prime} raplaced by P^{\prime} in and S reapectively.
(4) : Follown from (2) $\boldsymbol{H}(1) \Leftrightarrow(3)$.
8.3.0 Remase. Prom the previon aection the multiplication operator $\overline{\mathbf{p}}=$
whare $\in \operatorname{Map}\left(S^{\prime}, U(1)\right)$ indacen an automorphiarn of $A(K)$ which in implaneated in

memiplieatice operator $=$
 the reapection implomanter

 comidered below.

$$
\begin{aligned}
& \left(\Gamma_{g}(\mu)\right\rangle=\left(\Omega_{g}, \Gamma_{g}(U) \Omega_{g}\right)=\left\langle\Omega_{\left.g_{g}, \Gamma_{\theta_{i}}(U) \Omega_{g_{g}}\right)} .\right.
\end{aligned}
$$

 Fith the mpracentation FI pivan by

$$
F_{i}(B(\bar{j}))=A_{0}((1-s) j)+A!((1-S) \Gamma j)
$$

Fhage $A_{0} A^{4}$ are the amililation and crantion operatom on the Folk apece of \bar{X}_{1} $F(K)=F(K \in X)$, reppectively. But

$$
F(K \oplus K) \equiv F(K) \oplus P(\bar{K})
$$

allowing the idantifleation

$$
A+f \oplus f)=\Theta_{-}(f) \oplus+1 \otimes=(1)
$$

 adjoint unitary mach that

$$
\operatorname{Ted}(\Omega)=-m_{0}(f) \pi
$$

 Qin the vacuum vector.

thate
in a reprementation of $A(K)=F(K) \otimes P(K)$.
Hence if $\Gamma_{5}(U)$ b the implamanter of $r(U)$ in the represeatation ${ }^{(U)}$ of $A(K)$ than $\mathrm{r}_{\mathbf{y}}(U)$ in the implamenter of $\mathrm{r}(U)$ in the reprematation \boldsymbol{F}_{1} of $A_{a D C}(\mathbb{K}, \Gamma)$. Thet in $\Gamma_{1}(U)=\Gamma_{3}(U)$ and

$$
\left(\Omega_{1}, \Gamma_{1}(u) \Omega_{1}\right)=\left\langle\Omega_{2}, \Gamma_{3}(U) \Omega_{2}\right)
$$

 the rapresentation fis. Hence by the weal continuity of the inear product

$$
\begin{aligned}
\left(\Omega_{s}, r_{s}(U) \Omega_{s}\right) & =\left(\Omega_{1}, \Gamma_{1}(U) \Omega_{1}\right) \\
& =\left(\Omega_{1}, \Gamma_{s}(U) \Omega_{1}\right) \\
& =\left(\Omega_{\rho, n}, \Gamma_{,, \mu}\left(U^{\prime}\right) \Omega_{\rho, s}\right)
\end{aligned}
$$

The equality for S^{\prime} and P^{2} - holde by exactly the seme argument replecing S with S^{\prime} and Pl.… Fith $P_{=}$.

A trivial epplication of thin Lamme give the following.
8.3.8 Comoliamy. With the aotation of Remart 8.3.6

$$
\begin{aligned}
\Gamma_{\theta_{j}}(U) & =\Gamma_{\infty}\left(W_{g, n}\right)^{+} \Gamma_{\infty}(U) \Gamma_{\infty}\left(W_{\rho, n}\right) \\
\Gamma_{B}(U) & =\Gamma_{s}\left(W_{0, n}\right)^{*} \Gamma_{s \cdot}(U) \Gamma_{g}\left(W_{,, n}\right)
\end{aligned}
$$

Proof: From the previon mection (7.2)

$$
\mathrm{r}_{\theta, \infty}(U)=U_{B, \infty} \mathrm{r}_{\infty}(U) U_{B,}^{*}
$$

where $U_{0, n}$ im a unitary auch that

Clam: $U_{e,}=\Gamma_{\infty}\left(W_{\theta_{\rho}}\right)^{*}$.

Replacing ${ }^{*}$ by $W_{i}^{*}{ }^{*}$ and rearranging give

$$
\begin{aligned}
& =\pi w_{0} F_{-\infty} w_{i,}(a(h)) \\
& =\pi_{p}=\left(\epsilon_{k}(k)\right) \text {. }
\end{aligned}
$$

Therefore $U_{g_{n}}=\Gamma_{m}\left(W_{e_{1}}\right)^{\prime}$ a required and tha firet equality it ahown.
Tha ame proof given tha eecond equality, Fa and Ige are maitarily equivelant by the equivalence of تp, and FPe and the equivalame vaitary can be ahowa to be $r_{\text {a }}\left(W_{, .,}\right)^{*}$ uaing the mane method and

$$
w_{p, p} s^{r} W_{g, e}=S
$$

Applying thir Lamma to the particuler cae of interent.
8.1.10 Conollaey. With the motation of Remart ©.s. 6
a.4 Fretormhility of Elemente.

From Corollary ©.8. 10

$$
\left(\Gamma_{s}(\phi)\right)=\left(\Gamma_{g}\left(W_{, \mu}\right)^{\bullet} \Gamma_{s}(\phi) \Gamma_{g}\left(W_{, ~ \mu}\right)\right)
$$

In oedar to use the reaulia of Palmar outlined ba aubeection ©.1, in perticular Lamma
 need to be fartoreble. This in moer conaidared.

 ie invertibie where $T\left(W_{\rho, \mu}\right)$ in the Q^{\prime}-representetion of $W_{\text {.e. }}$

But

$$
\begin{aligned}
T\left(W_{\omega_{, n}}\right) & =\mathbb{N}_{0, n}^{*} \\
& =\left[\begin{array}{ll}
A^{*} & P^{*} \\
P^{*} & A^{*}
\end{array}\right]\left[\begin{array}{cc}
W_{\rho, n} & 0 \\
0 & W_{B, \infty}
\end{array}\right]\left[\begin{array}{ll}
A & P \\
P & A
\end{array}\right] \\
& =\left[\begin{array}{ll}
X & Y \\
Y & X
\end{array}\right]
\end{aligned}
$$

where $P=\left[\begin{array}{ll}P_{-} & 0 \\ P_{4} & 0\end{array}\right], A=\left[\begin{array}{ll}0 & a \\ 0 & e^{-}\end{array}\right]$and

$$
\begin{aligned}
& X=P W_{A, n} P+A^{*} W_{B,} A \\
& Y=P W_{, ~} A+A^{*} W_{B_{n}} P
\end{aligned}
$$

So

$$
\begin{aligned}
& T\left(W_{, ~},\right)_{m}=\boldsymbol{X} \\
& =P^{-} W_{/, n} P+A^{*} W_{\mu, n} A
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
A_{i}^{1 / 3} P_{-}+\left(1-A_{\Delta a}\right)^{1 / 2} P_{+} & 0 \\
0 & e^{0}\left(1-A_{\rho_{A}}\right)^{1 / 3} e+a A_{b}^{1 / 2} s^{*}
\end{array}\right]
\end{aligned}
$$

which ielearly iavertible with

Henen $\Gamma_{g \prime}\left(W_{\theta_{i}}\right)$ in factorable.
$\operatorname{Now} \Gamma_{g^{\prime}}\left(W_{\rho, \mu}\right)^{*}=\Gamma_{g}\left(\mathcal{W}_{g,}\right)$ and

$$
T\left(W_{0,0}\right)=\varphi^{*} W_{i, \varphi}=T\left(W_{D_{0}}\right)^{*}=\left[\begin{array}{ll}
X^{*} & Y^{*} \\
Y^{*} & X^{*}
\end{array}\right]
$$

So $T\left(W_{\mu}^{\prime}\right)=X^{*} \equiv X$ by examinetion, which in invertible by the ebove. Reace $\operatorname{rgr}\left(\mathrm{W}_{\mathrm{G}} \mathrm{si}^{\circ}\right.$ in fetorable.

Smego's Theortm will be of ume when comadering [ar (象) hence the relevant vernion will be ntated here for thin ad fasure roferenca.

$$
\left|\begin{array}{cccc}
c_{0} & 4_{-1} & \cdots & e_{-N+1} \\
c_{1} & c_{0} & \cdots & e_{-N+1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{N-1} & c_{N-1} & \cdots & c_{0}
\end{array}\right|
$$

-hare

$$
\epsilon_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n t} C\left(e^{i t}\right) d \theta
$$

Uadnr auitable conditionan (\dagger)

$$
\lim _{N \rightarrow \infty} \frac{D_{N}}{\rho^{N}}=\exp \left(\sum_{n=1}^{\infty} n g_{-n} g_{n}\right)
$$

-here

$$
\rho=\exp \left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln C\left(e^{i \theta}\right) d \theta\right]
$$

and

$$
g_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta} \ln C\left(e^{i \theta}\right) d \theta
$$

The condition (1) uned in thin particuler cane are the following:
(1) $\sum_{n-\infty}^{\infty}\left|c_{1}\right|<\infty$.
(2) $\sum_{-\infty-\infty}^{\infty}\left|c_{n}\right|^{2}<\infty$.
(3) $C(E) \neq 0$ for $|k|=1$.
(4) $\operatorname{Ind} C(t)=0$.

Fir a proof of thia vertion of Saego's Theorem eve [स1].
 factarable.

$$
T(*)=\uparrow^{\bullet} \uparrow \in\left[\begin{array}{ll}
C & D \\
D & C
\end{array}\right]
$$

with

$$
\begin{aligned}
& D=P A^{-}+A^{\bullet} \hat{\phi} P \\
& C=P^{\bullet} \phi P+A^{\bullet} \hat{\phi} A
\end{aligned}
$$

where P and A are deffed an in the proof of Lemma A.4.1 and ive given Remark 8.3.6 . Therefore

$$
\begin{aligned}
T(\phi) \geq & =P^{0} P+A^{\bullet} \dot{A} A \\
& =\left[\begin{array}{cc}
P_{-} & P_{+} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\phi & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
P_{-} & 0 \\
P_{+} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
a^{*} & a
\end{array}\right]\left[\begin{array}{ll}
\phi & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & a \\
0 & a^{*}
\end{array}\right] \\
& =\left[\begin{array}{cc}
P_{-} \phi P_{-}+P_{+} & 0 \\
0 & a^{*} \phi+P_{+}
\end{array}\right] .
\end{aligned}
$$

So $T\left({ }^{(}\right)_{y}$ in invertible provided there esint oparatorn X, Y actiag on PMach that

$$
\begin{aligned}
& X=\left(P_{-} \phi P_{-}\right)^{-1} \\
& Y \equiv\left(\omega_{a}\right)^{-1}
\end{aligned}
$$

That in

$$
\begin{aligned}
& P_{-}=P_{-} \phi P_{-} X P_{-}=P_{-} X P_{-} \phi P_{-}, \\
& P_{-}=n^{2} \psi_{a}=Y_{-} Y \& \phi_{1}
\end{aligned}
$$

in which cen

$$
T(\odot)_{n 3}^{-1}=\left[\begin{array}{cc}
P_{-} X P_{-}+P_{+} & 0 \\
0 & a^{*} Y a+P_{+}
\end{array}\right]
$$

$$
\left|\begin{array}{cccc}
\ddots & \ddots & \iota_{1} & \vdots \\
\ddots & \phi_{0} & \phi_{-1} & \phi_{-1} \\
\ddots & \iota_{1} & \phi_{0} & \phi_{-1} \\
\cdots & \phi_{1} & \phi_{1} & \phi_{n}
\end{array}\right|
$$

with reapect to the heaid

$$
\left[\begin{array}{llll}
e^{-4 t} & e^{-20} & e^{-M t} & \ldots
\end{array}\right]
$$

 determinant to be deduced.

If $\boldsymbol{p}_{\text {in }}$ Fritten

$$
\exp i\left\{n e+f_{0}+\sum_{r=0} f_{r} e^{\omega \omega \theta}\right\}
$$

then the Finding number of in m. So by mumption $n=0$. Amo the termexpifo in constant and enn be factored out a followe:

$$
\phi \text { in invertible on } P M \Leftrightarrow \phi^{\prime} \text { in invertible on } P_{-} H \text {. }
$$

Therefore the aituation to comeider in thet

$$
\phi=\exp i \sum_{r p 0} f_{r} e^{i r t}
$$

Thin form for enable the fouriar coeficieate for $\ln \phi$ to be meen trivially, and in particular $=1 \mathrm{in}$ thim case. The fart that ϕ matiaflea the conditions (\dagger) required for Sega', Theorem followa from the fact that $\phi \in \operatorname{M} \otimes\left(S^{\prime}, U(1)\right)$ and the winding number of in ero by amuption. See Remayt 7.2 .1 for erample ion (2).

Applying Smego'a Theorem ahowa that the determinant of $P_{-} \phi P_{\text {- }}$. in ponitive, as $f_{-a} f_{\mathrm{m}}=-\left\|f_{m}\right\|^{2}$ in thin eme, hence in paticular it in invertible il Puhaving nonsero determinant.

Similarly a* hat matrix form

$$
\left.\left\lvert\, \begin{array}{cccc}
\ddots & \ddots & \ddots & \vdots \\
\ddots & d_{0} & \phi_{1} & \phi_{2} \\
\ddots & \phi_{-1} & \phi_{0} & \phi_{1} \\
\cdots & \phi_{-1} & \phi_{-1} & \phi_{0}
\end{array}\right.\right]
$$

with reapeet to the hagia

$$
\left[\begin{array}{llll}
e^{-10} & e^{-x \theta} & e^{-\infty} & \ldots .
\end{array}\right]
$$

of $P_{-} H$. Consequently it in elno invertible in $P H=$ it in juat the trannpose of $P_{-} \phi P_{-}$ given above.
8.4.4 Remark. If $n>0$ then $P_{-} e^{i n t} P_{-}+P_{+}$is not invertible as it has a non-trivial kernel. Similarly if $n<0$ then $a^{*} e^{\boldsymbol{i n} 0_{a}}+P_{+}$is not invertible as it has a non-trivial kernel. Both contain the function $e^{-6 \%}$.
8.4.5 Remark. It is easy to see that

$$
a^{*} Y a=\left(P_{-} X P_{-}\right)^{T}=P_{-} X^{T} P_{-}=X^{T}
$$

Thus

$$
Y=P_{+} Y P_{+}=a\left(a^{*} Y a\right) a^{*}=a X^{T} a^{*}
$$

and

$$
T(\Phi)_{22}^{-1}=\left[\begin{array}{cc}
P_{-} X P_{-}+P_{+} & P_{-} X^{T} P_{-}+P_{+}
\end{array}\right]
$$

This connection between X and Y will be of use later.

8.5 Calculation of One Point Correlations.

8.5.1 Remark. Using the results of subsection 8.1 together with the information in subsections 8.3 and 8.4 the following can be deduced.

$$
\begin{aligned}
& \left(\Omega_{\beta, \mu}, \mathrm{F}_{\beta, \mu}(\phi) \Omega_{\rho, \mu}\right)^{2} \\
& =\left\langle\mathrm{F}_{s}(\Phi)\right\rangle^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mathbf{\Gamma}_{s^{\prime}}\left(\boldsymbol{W}_{\beta, \mu}\right)^{*}\right)^{2}\left(\mathbf{\Gamma}_{s^{\prime}}(\Phi)\right)^{2}\left(\mathrm{\Gamma}_{s^{\prime}}\left(\boldsymbol{W}_{\beta, \mu}\right)\right)^{2} \operatorname{det}_{2}(1+L \Delta R) \\
& =\left(\Omega_{\infty}, \mathrm{r}_{\infty}(\phi) \Omega_{\infty}\right)^{2}\left(\mathrm{r}_{s^{\prime}}\left(\boldsymbol{W}_{\beta, \mu}\right)^{*}\right)^{2}\left(\mathrm{r}_{s^{\prime}}\left(\boldsymbol{W}_{\beta, \mu}\right)\right)^{2} \operatorname{det}_{2}(1+L \Delta R) \\
& =\left(\Omega_{\infty}, \Gamma_{\infty}(\phi) \Omega_{\infty}\right)^{2}\left\langle\bar{\Gamma}_{s^{\prime}}\left(\boldsymbol{W}_{\beta, \mu}\right)\right)^{2}\left\langle\Gamma_{s^{\prime}}\left(\boldsymbol{W}_{\beta, \mu}\right)\right\rangle^{2} \operatorname{det}_{2}(1+L \Delta R) \\
& =\left\langle\mathbf{\Omega}_{\infty}, \Gamma_{\infty}(\phi) \Omega_{\infty}\right\rangle^{2}\left|\left\langle\mathbf{r}_{s^{\prime}}\left(\boldsymbol{W}_{\theta, \mu}\right)\right\rangle\right|^{\boldsymbol{4}} \operatorname{det}_{2}(1+\boldsymbol{L} \Delta R) .
\end{aligned}
$$

This section will be concerned with the one point correlations in the above equation, that is all but the det ${ }_{2}$ term.
8.5.2 Proposition.

$$
\left|\left\langle\mathrm{r}_{s^{\prime}}\left(\mathcal{W}_{\beta, \mu}\right)\right\rangle\right|^{2}=\prod_{n \geq 0}\left(1+e^{-\theta(n-\mu)}\right)^{-1}\left(1+e^{-\beta(n+1+\mu)}\right)^{-1}
$$

Proof: By Lemma 8.1.9

$$
\left|\left(\mathrm{r}_{s^{\prime}}\left(\mathcal{W}_{\theta_{, \mu}}\right)\right\rangle\right|^{2}=\left\|\mathrm{\Gamma}_{s^{\prime}}\left(w_{\theta_{, \mu}}\right) \Omega_{S^{\prime}}\right\|^{2} \operatorname{det}\left(I+\left|T\left(w_{\theta, \mu}\right)_{12} T\left(w_{\theta, \mu}\right)_{22}^{-1}\right|^{2}\right)^{-1 / 2}
$$

But $\left\|\Gamma_{S^{\prime}}\left(\mathcal{W}_{\beta_{, \mu}}\right) \Omega_{S^{\prime}}\right\|^{2}=1$ as $\Gamma_{S^{\prime}}\left(\mathcal{W}_{\beta_{, \mu}}\right)$ is a unitary implementer, hence

$$
\left|\left(\mathrm{I}_{s^{\prime}}\left(\mathcal{W}_{\beta, \mu}\right)\right)\right|^{2}=\operatorname{det}\left(I+\left|T\left(\mathcal{W}_{\beta, \mu}\right)_{12} T\left(\mathcal{W}_{\beta, \mu}\right)_{22}^{-1}\right|^{2}\right)^{-1 / 2}
$$

Now from Lemma 8.4.1

$$
\begin{aligned}
& T\left(W_{\beta, \mu}\right)_{12} \\
= & P^{*} W_{\beta, \mu} A+A^{*} W_{\beta, \mu} P \\
= & {\left[\begin{array}{cc}
P_{-} & P_{+} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{\beta, \mu}^{1 / 2} P_{-}+\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{+} & A_{\beta, \mu}^{1 / 2} P_{+}-\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{-} \\
-A_{\beta, \mu}^{1 / 2} P_{+}+\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{-} & A_{\beta, \mu}^{1 / 2} P_{-}+\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{+}
\end{array}\right]\left[\begin{array}{cc}
0 & a \\
0 & a^{*}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
0 & 0 \\
a^{*} & a
\end{array}\right]\left[\begin{array}{cc}
A_{\beta, \mu}^{1 / 2} P_{-}+\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{+} & A_{\beta, \mu}^{1 / 2} P_{+}-\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{-} \\
-A_{\beta, \mu}^{1 / 2} P_{+}+\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{-} & A_{\beta, \mu}^{1 / 2} P_{-}+\left(1-A_{\beta, \mu}\right)^{1 / 2} P_{+}
\end{array}\right]\left[\begin{array}{ll}
P_{-} & 0 \\
P_{+} & 0
\end{array}\right] \\
= & {\left[\begin{array}{cc}
0 & -A_{\beta, \mu}^{1 / 2} a-\left(1-A_{\beta, \mu}\right)^{1 / 2} a^{*} \\
a^{*} A_{\beta, \mu}^{1 / 2}+a\left(1-A_{\beta, \mu}\right)^{1 / 2} & 0
\end{array}\right] }
\end{aligned}
$$

and

Bence

$$
T\left(W_{1, n}\right) เ: T\left(W_{, n}\right)_{3}^{-3}=\left[\begin{array}{cc}
0 & F_{1} \\
F_{8} & 0
\end{array}\right]
$$

there

$$
\begin{aligned}
& F_{2}=a\left(1-A_{\infty, n}\right)^{1 / 3} A_{D_{n}^{-1 / x}}^{-1 / a^{4} A_{2}^{1 / 2}\left(1-A_{\Delta}\right)^{-1 / 3} .}
\end{aligned}
$$

So

$$
\begin{aligned}
\left(T\left(W_{\rho_{n}}\right)_{1} T\left(W_{\rho_{n}}\right)_{n}^{-1}\right)^{*} & =\left[\begin{array}{cc}
0 & F_{j}^{0} \\
F_{1} & 0
\end{array}\right] \\
& =-\left(T\left(W_{\rho_{1}}\right)_{12} T\left(W_{\rho_{i n}}\right)_{22}^{-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|T\left(W_{s_{\mu}}\right)_{12} T\left(W_{p_{m}}\right)_{n=1}^{-1}\right|^{*}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
F_{3} & 0 \\
0 & F_{4}
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{1}=A_{\beta_{-\infty}}^{-1}\left(1-A_{\rho_{p, p}}\right) P_{-}+A_{p_{, ~}}\left(1-A_{\phi_{n}}\right)^{-1} P_{4},
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& t+\left|T\left(W_{p, \mu}\right)_{12} T\left(W_{p, \mu}\right)_{22}^{-1}\right|^{2} \\
& =1+\left[\begin{array}{cc}
F_{2} & 0 \\
0 & F_{4}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
A_{\rho_{, j}} P_{-}+\left(1-A_{f, \rho}\right) P_{+} & e_{0}^{*}\left(1-A_{B_{j}}\right) a+a A_{\beta_{1, ~} a^{*}}
\end{array}\right]^{-1}
\end{aligned}
$$

So

$$
\begin{aligned}
& \operatorname{det}\left(I+\left|T\left(W_{D_{i n}}\right)_{12} T\left(W_{H_{, ~}}\right)_{73}^{-1}\right|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\operatorname{det}\left(A_{g, e^{\circ}}\left(1-A_{\beta, n}\right) \operatorname{l}+\left(1-A_{0, n}\right) A_{\theta, \theta^{\circ}}\right)\right|^{-1} \text {. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \cos _{n}=\left\{\begin{array}{ll}
0 & n<0 \\
0-\infty-1 & m \geq 0
\end{array}, \quad *_{n}= \begin{cases}0 & n \geq 0 \\
g_{-\infty-1} & m<0\end{cases} \right.
\end{aligned}
$$

So it in mot diffeult to show thet

$$
A_{\text {a.n }} a^{*}\left(1-A_{p . n}\right) \alpha_{n}= \begin{cases}0 & n \geq 0 \\ \left(1+e^{(n-\alpha)}\right)^{-1}\left(1+e^{(n+1+\infty)}\right)^{-1} A_{n} & m<0\end{cases}
$$

and

$$
\left(1-A_{p . \infty}\right) \alpha A_{B_{s}=e^{*} g_{n}}= \begin{cases}0 & n<0 \\ \left(1+e^{-\beta(n-\mu)}\right)^{-1}\left(1+e^{-\beta(n+1+\beta)}\right)^{-1} g_{n} & n \geq 0\end{cases}
$$

giviag

Therefore

$$
\begin{aligned}
& =\prod_{m<0}\left(1+e^{\beta(-\mu)}\right)^{-1}\left(1+e^{(n+1+\mu)}\right)^{-1} \prod_{n \geqslant 0}\left(1+e^{-N(n-\mu)}\right)^{-3}\left(1+e^{-\beta(n+1+\mu)}\right)^{-1} \\
& =\left[\prod_{-2^{0}}\left(1+e^{-\infty(n-p)}\right)^{-1}\left(1+e^{-\infty(a+1+\mu)}\right)^{-1}\right]^{3} \text {. }
\end{aligned}
$$

So

$$
\begin{aligned}
& {\left[\operatorname{det}\left(A, s^{*}\left(1-A g_{, \mu}\right) a+\left(1-A,_{, j}\right) \operatorname{A} A_{,, n} e^{*}\right)\right]^{1 / 2}} \\
& =\prod_{n \neq 2^{0}}\left(1+e^{-(n-\mu)}\right)^{-1}\left(1+e^{-(n+1+\infty)}\right)^{-1}
\end{aligned}
$$

and from [C7]

$$
\left\langle\Omega_{\infty,}, r_{e n}(\phi) \Omega_{\infty}\right\rangle=\exp \left\{-\left.\frac{1}{4 T} \sum_{\Delta>0}| | f_{0}\right|^{2}\right\}
$$

 Thow the

$$
\begin{aligned}
\left\langle\Omega_{\rho, \mu}, \Gamma_{\rho, \mu}(\phi) \Omega_{\beta, \mu}\right\rangle= & \left(\Omega_{\infty}, \Gamma_{\infty}(\phi) \Omega_{\infty}\right\rangle \\
& \theta_{3}\left(f_{0}\right) \theta_{3}(0)^{-1} \exp \left\{-\frac{1}{2 \pi} \sum_{k=1}^{\infty} k\left(e^{h \beta}-1\right)^{-1}\left|f_{k}\right|^{2}\right\}
\end{aligned}
$$

8.6 The $\operatorname{det}_{2}(1+L \Delta R)$ term.

From Theorem 8.1.10 $(1+L \Delta R)$ is a 3×3 block matrix in this case with

$$
\begin{aligned}
L & =\left[\begin{array}{ccc}
0 & -Q_{+} & -Q_{+} L(2)_{\bullet} \\
\frac{-\left(-Q_{+}\right)^{*}}{\left(-Q_{+} L(2)_{\bullet}\right)^{*}} & -\frac{0}{\left(-Q_{+}\right)^{*}} & -Q_{+}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -Q_{+} & -Q_{+} L(2) \bullet \\
\frac{Q_{-}}{L(2) Q_{-}} & 0 & -Q_{-} \\
Q_{+} & 0
\end{array}\right] \quad \text { where } \bar{C}=\mathrm{rCT},
\end{aligned}
$$

and

$$
\Delta R=\left[\begin{array}{lll}
\Delta R_{w_{s i n}} & & \\
& \Delta R_{\psi} & \\
& & \Delta R_{w_{p, *}}
\end{array}\right]
$$

so that

The individual entries of this will now be calculated leading to a simplification of this term.

The $\Delta \boldsymbol{R}$ terms.
From Definition 8.1.8 and Theorem 8.1.10, in the \boldsymbol{Q}^{\prime}-representation of \tilde{K}

$$
\Delta R_{G}=\left[\begin{array}{cc}
0 & T(G)_{12} T(G)_{22}^{-1} \\
T(G)_{22}^{-1} T(G)_{21} & 0
\end{array}\right]
$$

Hence the $\Delta \boldsymbol{R}$ terms can be calculated as follows:

1) $\Delta R_{w_{0 . a}}$:

From Proposition 8.5.2

$$
T\left(\mathcal{W}_{\beta, \mu}\right)_{12} T\left(\mathcal{W}_{\beta, \mu}\right)_{22}^{-1}=\left[\begin{array}{cc}
0 & F_{1} \\
F_{2} & 0
\end{array}\right]
$$

where

$$
\begin{aligned}
& F_{1}=-A_{\beta, \mu}^{1 / 2}\left(1-A_{\beta, \mu}\right)^{-1 / 2} a-\left(1-A_{\rho, \mu}\right)^{1 / 2} A_{\beta, \mu}^{-1 / 2} a^{*} \\
& F_{2}=a\left(1-A_{\beta, \mu}\right)^{1 / 2} A_{\beta, \mu}^{-1 / 2}+a^{*} A_{\beta, \mu}^{1 / 2}\left(1-A_{\beta, \mu}\right)^{-1 / 2}
\end{aligned}
$$

From Lemma 8.4.1 and Proposition 8.5.2

$$
\begin{aligned}
& T\left(W_{\beta, \mu}\right)_{2 \lambda}^{-1} T\left(W_{\beta, \mu}\right)_{21} \\
= & \left(P^{*} W_{\beta, \mu} P+A^{*} W_{\beta, \mu} A\right)^{-1}\left(P^{*} W_{\beta, \mu} A+A^{*} W_{\beta, \mu} P\right) \\
= & {\left[\begin{array}{cc}
A_{\beta_{\beta, \mu}}^{-1 / 2} P_{-}+\left(1-A_{\beta, \mu}\right)^{-1 / 2} P_{+} & 0 \\
0 & a^{*}\left(1-A_{\beta, \mu}\right)^{-1 / 2} a+a A_{\beta, \mu}^{-1 / 2} a^{*}
\end{array}\right] } \\
& \cdot\left[\begin{array}{cc}
0 & -A_{\beta, \mu}^{1 / 2} a-\left(1-A_{\beta_{, \mu}}\right)^{1 / 2} a^{*} \\
a^{*} A_{\beta, \mu}^{1 / 2}+a\left(1-A_{\rho, \mu}\right)^{1 / 2} & 0
\end{array}\right] \\
= & {\left[\begin{array}{cc}
0 & F_{1} \\
F_{2} & 0
\end{array}\right] } \\
= & T\left(W_{\theta, \mu}\right)_{12} T\left(W_{\theta, \mu}\right)_{z_{2}}^{-1} .
\end{aligned}
$$

2) $\Delta R_{w_{j, ~}}$

From Lemma 8.4.1

$$
T\left(W_{\beta, \mu}^{*}\right)=\left[\begin{array}{ll}
X^{*} & Y^{*} \\
Y^{*} & X^{*}
\end{array}\right]
$$

By examination $X^{*}=X$ and $Y^{*}=-Y$ hence

$$
\begin{aligned}
T\left(W_{\beta, \mu}^{*}\right)_{12} T\left(w_{\beta, \mu}^{*}\right)_{22}^{-1} & =-Y X^{-1} \\
& =-T\left(W_{\beta, \mu}\right)_{12} T\left(W_{\beta, \mu}\right)_{22}^{-1}
\end{aligned}
$$

and it is a simple consequence that

$$
\Delta R_{w_{p_{0}}}=-\Delta R_{w_{p_{0}}}
$$

8.6.1 REMARK. The operators $\Delta R_{W_{\text {pie }}}$ and $\Delta R_{W_{j, i}}$ are trace class. This follows from Remark 7.1.3.
3) ΔR_{\bullet} :

From Lemma 8.4.3

$$
\begin{aligned}
T(\phi)_{12} & =T(\Phi)_{21}=P^{*} \bar{\phi} A+a^{*} \bar{\phi} P \\
& =\left[\begin{array}{cc}
0 & P_{-} \phi a \\
a^{*} \phi P_{-} & 0
\end{array}\right]
\end{aligned}
$$

and from Remark 8.4.5

$$
T(\Phi)_{22}^{-1}=\left[\begin{array}{cc}
P_{-} X P_{-}+P_{+} & P_{-} X^{T} P_{-}+P_{+} \\
0 & P_{-}
\end{array}\right]
$$

So
and

$$
T(\Phi)_{12} T(\Phi)_{22}^{-1}=\left[\begin{array}{cc}
0 & P_{-\phi} X^{T} P_{-} \\
a^{*} \phi P_{-} X P_{-} & 0
\end{array}\right]
$$

都

$$
T(\Phi)_{22}^{-1} T(\phi)_{21}=\left[\begin{array}{cc}
0_{-} & P_{-} X P_{-} \phi a \\
P_{-} a^{*} \phi P_{-} & 0
\end{array}\right]
$$

8.6.2 Remark. P - ϕa and $a^{*} \phi P$ - have matrix forms

$$
\left[\begin{array}{cccc}
\ddots & \vdots & \vdots & \vdots \\
\cdots & \phi_{-5} & \phi_{-4} & \phi_{-3} \\
\cdots & \phi_{-4} & \phi_{-3} & \phi_{-2} \\
\cdots & \phi_{-3} & \phi_{-2} & \phi_{-1}
\end{array}\right] \quad\left[\begin{array}{cccc}
\ddots & \vdots & \vdots & \vdots \\
\cdots & \phi_{5} & \phi_{4} & \phi_{3} \\
\cdots & \phi_{4} & \phi_{3} & \phi_{2} \\
\cdots & \phi_{3} & \phi_{2} & \phi_{1}
\end{array}\right]
$$

respectively. Hence both are trace class operators showing that ΔR_{ϕ} is also a trace class operator.

The $L(2)$ tarma.
Similarly in the \boldsymbol{Q}^{\prime}-reprenatation of K

$$
L(2)_{a}=\left[\begin{array}{cc}
T(G)_{22}^{-1} & 0 \\
0 & T(G)_{22}
\end{array}\right]
$$

thum the $L(2)$ terma are a followit:

1) $L(2)$:
$T(*)$ as in elready tmonn and it cen be enily meen that

$$
\begin{aligned}
T()_{\% 1}^{-1} & =\left[\begin{array}{cc}
P_{-} X^{*} P_{-}+P_{+} & 0 \\
0 & P_{-}\left(X^{\top}\right)^{*} P_{-}+P_{+}
\end{array}\right] \\
& =\left[\begin{array}{cc}
P_{-} X^{\top} P_{-}+P_{+} & 0 \\
0 & P_{-} X P_{-}+P_{+}
\end{array}\right]
\end{aligned}
$$

where X denotea the operator formad by compler conjugating the matriz elemeth of \boldsymbol{X}.
2) $\overline{L(2)}$

$$
L(2)_{6}=\Gamma L(2)_{\theta} \Gamma=\left[\begin{array}{cc}
T(\theta)_{72}^{*} & 0 \\
0 & T(\varphi)_{n}^{-1}
\end{array}\right]
$$

and thene tarma are already tnown.

The Individual Entrion.

By the calculationa ahove thene ava:
(1)

$$
Q_{-} \Delta R_{w_{B}}=-\left[\begin{array}{ll}
0 & 0 \\
M_{1} & 0
\end{array}\right]
$$

(2)

$$
\overline{L(2)} Q_{-} \Delta R_{w ; \infty}=-\left[\begin{array}{cc}
0 & 0 \\
L_{1} M_{1} & 0
\end{array}\right]
$$

(3)
(4)
(5)

$$
-Q_{+} L(2)_{e} \Delta R_{w_{2}}=-\left[\begin{array}{cc}
0 & L_{2} M_{1} \\
0 & 0
\end{array}\right]
$$

(6)

$$
-Q_{+} \Delta K_{w_{t-}}=-\left[\begin{array}{cc}
0 & M_{1} \\
0 & 0
\end{array}\right]
$$

where

$$
\begin{aligned}
& M_{1}=T\left(W_{D_{i n}}\right)_{12} T\left(W_{H_{m},}\right)^{-1} \\
& L_{1}=T()_{2}^{-1} . \\
& \left.L_{2}=T(\psi)\right\rangle_{20}^{-1} \text {. } \\
& R_{1}=T()_{18} T()_{18}^{1} \\
& R_{2}=T(*)_{2 i}^{-1} T(*)_{21} \text {. }
\end{aligned}
$$

thuy $(1+L \Delta R)$ her therm

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & -R_{1} & 0 & -L_{1} M_{1} \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -M_{1} \\
-M_{1} & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
-L_{1} M_{1} & 0 & R_{2} & 0 & 0 & 1
\end{array}\right]
$$

Sinplication of det, tarm.
Given the form of $L \Delta R$ nhow and the Remerta 1.6 .1 and 8.6 .2 it io porablateduce that $L \Delta R$ be trace clem. Hence

$$
\begin{aligned}
& \operatorname{det}(1+L \Delta R)=\operatorname{det}(1+L \Delta R), \operatorname{Tran}(L A R)=0 \\
& =\operatorname{det}\left\{\left|\begin{array}{cccccc}
1 & 0 & 0 & -R_{1} & 0 & -L_{3} M_{1} \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -M_{1} \\
-M_{1} & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
-L_{1} M_{1} & 0 & R_{2} & 0 & 0 & 1
\end{array}\right|\right\} \\
& =\operatorname{det}\left\{\left[\begin{array}{cccc}
1 & 0 & -R_{1} & -L_{1} M_{1} \\
0 & 1 & 0 & -M_{1} \\
-M_{1} & 0 & 1 & 0 \\
-L_{1} M_{1} & R_{3} & 0 & 1
\end{array}\right]\right\} \\
& =\operatorname{det}\left\{1-\left[\begin{array}{cc}
M_{1} R_{1} & M_{1} L_{1} M_{1} \\
M_{1} R_{1} & L_{1} M_{1} L_{1} M_{1}-R_{2} M_{1}
\end{array}\right]\right\}, \omega_{1} L_{4} M_{3} R_{1}=M_{1} R_{1} \\
& =\operatorname{det}\left(\left(1-M_{1} R_{1}\right)\left(1-L_{1} M_{1} L_{1} M_{1}+R_{3} M_{1}\right)-\quad M_{1} R_{1} M_{1} L_{3} M_{1}\right\} \\
& =\operatorname{det}\left[1-M_{1} R_{1}-L_{1} M_{1} L_{3} M_{1}+M_{1} R_{1} L_{1} M_{1} L_{3} M_{1}+R_{2} M_{1}\right. \\
& \left.-M_{1} R_{1} R_{3} M_{1}=M_{1} R_{1} M_{1} L_{3} M_{1}\right\} .
\end{aligned}
$$

 moritters ma

$$
\begin{aligned}
& 4 \approx 1\left\{1+A_{j}^{1 / 2}\left(1-A_{H}\right)^{-1 / 2} P_{+} \phi P_{-} X P_{-}+P_{-} X P_{-} \phi P_{+}\left(1-A_{D_{\mu}}\right)^{-1 / 2} A_{\delta_{i}}^{1 / 2}\right. \\
& +P_{-} X P_{-} A_{\beta_{i}^{-1}}^{-1}\left(1-A_{m_{n}}\right)+A_{\%}^{1 / 2}\left(1-A_{\beta_{\mu}}\right)^{-1 / 2} P_{+} \phi P_{-} X P_{-} X P_{-} A_{\beta_{-\infty}^{-1}}\left(1-A_{\beta_{n}}\right) \\
& +A_{B}^{1 / 2}\left(1-A_{p_{\infty}}\right)^{-1 / 2} P_{4} Y^{*} P_{+}\left(1-A_{4, \omega}\right)^{-1 / 2} A_{/ 2 / 2}^{1 / 2} \\
& +A_{/ 1 / 2}^{1 / 2}\left(1-A_{A_{m}}\right)^{-1 / 3} P_{+} \phi P_{-} X P_{-} X P_{-} \phi P_{+}\left(1-A_{D_{1}}\right)^{-1 / 2} A_{/}^{1 / 7} \\
& \left.-A_{B}^{1 / 3}\left(1-A_{\infty}\right)^{-1 / 1} P_{+} \phi P_{-} X P_{-} A_{-1}^{-1}\left(1-A_{\infty}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -a^{0} Y P_{+}+A^{-1 / 2}\left(1-A \rho_{-j}\right)^{1 / 3} e^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+a A_{D_{1}}^{-1 / 2}\left(1-A A_{i}\right)^{1 / 2} \phi P_{+} Y A_{A_{n}}\left(1-A_{\theta_{m}}\right)^{-1}\right\} \text {. }
\end{aligned}
$$

Uniag the idantity

$$
\operatorname{det}(1+A+B+A B)=\operatorname{dan}(1+A) \operatorname{det}(1+B)
$$

thie may be aimplifiod to

$$
\begin{aligned}
& \operatorname{det}\left(1+A_{\infty}^{1 / 2}\left(1-A_{p, n}\right)^{-1 / 2} P_{+} Y^{2} P_{+}\left(1-A_{, j}\right)^{-1 / 2} A_{/, ~}^{1 / 2}+P_{-} X P_{-} A_{\infty}^{-1}\left(1-A_{j,}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dat}\left(1+a A_{j=0}^{-1 / 2}\left(1-A_{\mu}\right)^{1 / 3} X^{*} A_{\rho-1}^{-1 / 2}\left(1-A_{\rho_{\infty}}\right)^{1 / 2} a^{*}+a^{*} Y A_{p, p}\left(1-A_{\mu \mu}\right)^{-1} a\right.
\end{aligned}
$$

With the connection between X and Y given in Remart 8.4 .5 and the identity

$$
\Delta A_{g_{j}, n}=\left(1-A_{0,-(1+n)}\right) \|_{,}
$$

thin can be rewrittea an

$$
\begin{aligned}
& \operatorname{det}\left(1+\left(1-A_{p, \lambda}\right)^{-1 / 2} A_{\beta, \lambda}^{1 / 2} a X^{T} a^{*}\left(1-A_{p, \lambda}\right)^{-1 / 2} A_{p, \lambda}^{1 / 2}+P_{-} X^{T} P_{-}\left(1-A_{p, A}\right) A_{i}^{-1}-\right. \\
& \left.P_{-} X^{T} P_{-} \phi^{\top} P_{+}\left(1-A_{p, i}\right)^{-1 / 2} A_{\beta, i}^{1 / 2}+\left(1-A_{p, \lambda}\right)^{-1 / 2} A_{\rho, \lambda}^{1 / 2} P_{+} \phi^{T} P_{-} X^{T} P_{-}\left(1-A_{\rho, \lambda}\right) A_{i}^{-1} \lambda\right) \\
& \text { where } \lambda=-(1+\mu) \text {. But } \\
& \operatorname{det}\left(1+C^{-1} D C\right)=\operatorname{det}(1+D),
\end{aligned}
$$

Hence thia may be aimpliffed to

$$
\begin{aligned}
& \left.+P_{-} X P_{-} P_{+}\left(1-A_{\rho, n}\right)^{-1} A_{\rho, n}-P_{+} \phi_{-} X P_{-} A_{i_{n}}^{-1}\left(1-A_{p_{n}}\right)\right\} \\
& \operatorname{det}\left(1+\left(1-A_{\beta, \lambda}\right)^{-1} A_{p, \lambda} \omega X^{T} a_{a}^{+}+\left(1-A_{\beta, \lambda}\right) A_{j, \lambda}^{-1} P_{-} X^{T} P_{-}\right. \\
& -\left(1-A_{p, A}\right) A_{j, 2}^{-1} P_{-} X^{\top} P_{-} \phi^{T} P_{+}+\left(1-A_{\rho_{-}}\right)^{-1} A_{p_{,} A} P_{+} \phi^{\top} P_{-} X^{\top} P_{-} \mid
\end{aligned}
$$

where ia the firat determinant

$$
C=P_{-}+\left(1-A_{\rho_{+}}\right)^{-1 / 1} A_{\rho_{1}}^{1 / 2} P_{+}
$$

and in the meeond

$$
C=\left(1-A_{, \lambda}\right)^{-1} A_{g, \lambda} P_{-}+A_{\beta, i}^{-1 / 2}\left(1-A_{g, A}\right)^{1 / 2} P_{4}
$$

Thin in turn can ba rewritten a

$$
\begin{aligned}
& \operatorname{det}\left(1+\operatorname{a}_{\bar{X}}{ }^{*}\left(1-A_{\theta_{-}}\right)^{-1} A_{\theta_{n}}+P_{-} X P_{-} A_{\rho_{\infty}}^{-1}\left(1-A_{\theta_{-}}\right)\right. \\
& \left.+P_{-} X P_{-} \phi P_{+}\left(1-A_{\rho_{\infty}}\right)^{-1} A_{\rho_{\infty}}-P_{+} \phi P_{-} X P_{-} A_{D_{1}}^{-1}\left(1-A_{\mu}\right)\right\} \\
& \operatorname{det}\left[\left[1+a X_{a^{4}}\left(1-A_{p, \lambda}\right)^{-1} A_{p, \lambda}+P_{-} X P_{-} A_{j, \lambda}^{-1}\left(1-A_{p, \lambda}\right)\right.\right. \\
& \left.\left.+P_{-} X P_{-} \phi P_{+}\left(1-A_{g, \lambda}\right)^{-1} A_{B_{,}, ~}-P_{+} \phi P_{-} X P_{-} A_{-\lambda}^{-1}\left(1-A_{p, \lambda}\right)\right]^{\top}\right) .
\end{aligned}
$$

Now dot $D=\operatorname{det} D^{\text {F }}$ hence this may be writiea m

$$
\operatorname{det} F(X, \mu) \cdot \operatorname{det} F(X,-(1+\mu))
$$

where

$$
\begin{aligned}
& F(X, \mu)=1+A s_{s}^{*}\left(1-A_{p}\right)^{-1} A_{\rho_{n}}+P_{-} X P_{-} A_{\beta_{-}}^{-1}\left(1-A_{\rho_{j}}\right)
\end{aligned}
$$

Hepes the following Lemma bea been shown.

8.e.3 LEMMA.

$$
\operatorname{det}_{2}(1+L \Delta R)=\operatorname{det} F(X, \mu) \cdot \operatorname{det} F(X,-(1+\mu)),
$$

Bhere

$$
\begin{aligned}
& +P_{-} X P_{-} \phi P_{+}\left(1-A_{a_{-}}\right)^{-1} A_{g_{-}}-P_{+} \phi P_{-} X P_{-} A_{p_{n}}^{-1}\left(1-A_{P_{n}}\right) .
\end{aligned}
$$

Note. The identity

$$
a A_{B_{1, n}}=\left(1-A_{p_{1}-(1+\infty)}\right)
$$

io a simple calculation cimilar to these at the end of the proof of Propopition A.E. 2

4.7 Tha Detorminems Ideatity.

8.7.1 Remark. Uaing the Remarta 8.5.1, 8.5.3, Proposition 8.8.2 and Lamma A.6.8

$$
\left[\omega_{0}\left(f_{0}\right) \omega_{\mathrm{s}}(0)^{-1} \exp \left\{-\frac{1}{2 \pi} \sum_{n=1}^{\infty} n\left(e^{m \beta}-1\right)^{-1}\left|f_{m}\right|^{2}\right\}\right]^{3}=M\left(X_{1} \mu\right) M\left(X_{1}-(1+\mu)\right)
$$

Fhere

$$
M(X, \mu)=\prod_{n 2^{\infty}}\left(1+e^{-\beta(n-\beta)}\right)^{-2} \operatorname{det} F(X, \mu)
$$

Note that the expreasion on the laft bend aide in independeat of μ, aimilar $\frac{1}{}$ Lemme 7.3 .4
8.7.2 REmanck. Prom the previous Section, in the proof of Theorem 7.8.3

$$
\begin{aligned}
& A_{3}(f 0) H_{3}(0)^{-1} \\
& =\left[\prod_{0}\left(1+2 e^{-\mu(-\infty)} \cos f_{0}+\left(e^{-\mu(\omega-\mu)}\right)^{2}\right)\left(1+e^{-\mu(=-\mu)}\right)^{-2}\right]^{1 / 2} \\
& =\left[\prod_{\frac{2}{0}}\left(1+2 \cos f \mathrm{o}_{\mathrm{o}} e^{-N(n-\mu)}+\left(e^{-N(n-\mu)}\right)^{3}\right)\left(1+e^{-\theta(n-\mu)}\right)^{-2}\right. \\
& \left.\cdot \prod_{n \geq 0}\left(1+2 \cos f_{0} e^{-\beta(\sigma+1+n)}+\left(e^{-\beta(n+1+\infty)}\right)^{2}\right)\left(1+e^{-\theta(\omega+1+\rho)}\right)^{-2}\right]^{1 / 2} .
\end{aligned}
$$

Renee the identity can ba rewritten a

$$
\begin{aligned}
\operatorname{det} F(X, \mu) \operatorname{det} F(X,-(1+\mu))= & {\left[\exp \left\{-\frac{1}{2 \pi} \sum_{n=1}^{\infty} n\left(e^{n \theta}-1\right)^{-1}|/ n|^{2}\right\}\right]^{2} } \\
& \prod_{-\geq 0}\left(1+2 \cos f_{0} e^{-\mu(n-\mu)}+\left(e^{-\mu(n-\mu)}\right)^{2}\right) \\
& \cdot \prod_{n \geq 0}\left(1+2 \cos f_{0} e^{-\mu(-1+\infty)}+\left(e^{-\mu(n+1+\mu)}\right)^{2}\right)
\end{aligned}
$$

Thue then $\mu=-1 / 2$ thin aimplifiee to

$$
\begin{aligned}
& \operatorname{det} F(X,-1 / 2) \\
& =\prod_{n \not 20}\left(1+2 \cos f_{0} e^{-n(n+1 / 7)}+\left(e^{-n(n+1 / 2}\right)^{2}\right) \exp \left\{-\frac{1}{2 \pi} \sum_{n=1}^{\infty} n\left(e^{n g}-1\right)^{-1}\left|f_{n}\right|^{2}\right\}
\end{aligned}
$$

(1) Suppose $4=e^{6 / 4}$, I. . the aimpleai cave, then

$$
F(X, \mu)=1+e^{t /} P_{+}\left(1-A_{p_{e}}\right)^{-1} A_{\theta_{e}}+e^{-i / v} P_{-} A_{\beta_{p}}^{-1}\left(1-A_{\theta_{a}}\right)
$$

end it in not difiticult to nhow that

$$
\begin{aligned}
\operatorname{dat} F(X, \mu) \operatorname{det} F(X,-(1+\mu))= & \prod_{n<2}\left(1+2 \cos f e^{-\mu(n-\mu)}+\left(e^{-\mu(n-\mu)}\right)^{2}\right) \\
& \prod_{n \geq 0}^{0}\left(1+2 \cos f e^{-\mu(n+1+\beta)}+\left(e^{-\beta(n+1+\mu)}\right)^{2}\right)
\end{aligned}
$$

Thu the two inflaite product terme are nimilat to the therm ia Sago'n Theorem.
(2) As for the exponential. Thin is alresdy aimilar to the exponential term in Smero'n Theorem. Noee that

$$
\left|f_{m}\right|^{2}=f_{m} f_{n}=f_{n} f_{-m_{1}} \quad \text { proof of Lemma } 7.3 .5
$$

and that $g_{n}=i f_{n}$ in the application of Saego's Theorem, aer Lernma A A S, wheh explang the minu aire in the expreantial. The As.m terme prenumably produce the axtre term $\left(e^{m p}-1\right)$.

APPENDIX

A 1 Proposition. Phe $0 \leq n \leq m-2$ lef

$$
I_{n, m}=\int_{0}^{t} \frac{y^{n}}{(1+y)^{m}} d y
$$

then

$$
t_{n, m}=\frac{((m-1)-(n+1))!n t}{(m-1)(1+q)^{m-1}} \sum_{i=n+1}^{m-1}\binom{m-1}{i} q^{i}
$$

Peoos: Firat mote that

$$
\begin{aligned}
I_{m, m} & =\int_{0}^{1} \frac{y^{n}}{(1+y)^{m}} d y \\
& =\left[\frac{\left[y^{n}(1+y)^{-m+1}\right.}{-m+1}\right]_{0}^{n}-\int_{0}^{n} \frac{m y^{-1}(1+y)^{-m+1}}{-m+1} d y \\
& =\frac{-q^{n}}{(m-1](1+q)^{m-1}}+\frac{n}{(m-1)^{2}} I_{n-1, m-1} .
\end{aligned}
$$

So muming the formula in true for $I_{\text {m-t, }}$ -

$$
\begin{aligned}
& I_{n, m}=\frac{-q^{n}}{(m-1)(1+4)^{m-1}}+\frac{n}{(11-1)} \frac{(m-m-2)(n-1)!}{(m-2)!(1+q)^{m-2}} \sum_{i=1}^{m-2}\binom{m-2}{i}^{4} \\
& ==\frac{(m-m-2)!m!}{(m-1)(1+i)}\left[(1+q) \sum_{i=n}^{m-3}\binom{m-2}{i} q^{i}-\frac{(m-2)!}{(m-n-2)!n!} e^{n}\right] \\
& =\frac{(m-m-2)!m!}{(m-1)(1+q)^{n-1}}\left[\sum_{i=n+1}^{m-2}\left\{\binom{m-2}{i}+\binom{m-2}{i-1}\right\} d^{i}+q^{m-1}\right] \\
& =\frac{(m-n-2)!m!}{(m-1)(i+\varphi)^{--T}} \sum_{i=n+1}^{m-1}\binom{m-1}{i} \varphi_{i}^{i}
\end{aligned}
$$

erequired. Now for $p \geq 2$

$$
\begin{aligned}
I_{0, v} & =\int_{0}^{p} \frac{d y}{(1+p)^{p}}=\left[\frac{(1+p)^{-(p-1)}}{-(p-1)}\right]_{0}^{u} \\
& =\frac{-1}{(p-1)(1+\phi)^{p-1}}+\frac{1}{(p-1)} \\
& =\frac{1}{(p-1)(1+\varphi)^{-1}}\left\{(1+\varphi)^{p-1}-1\right\} \\
& =\frac{(p-2)!}{(p-1)^{\prime}(1+\phi)^{-T} \sum_{d=1}^{p-1}(p-1)} 1
\end{aligned}
$$

That in, the formula in tree for f, for all $p \geq 2$. Therefora it in true by induction for $I_{m, n}$ where $0 \leq n \leq m-2$. (Start atit $I_{0, m-n}$ and mortitupwardl.)
Corollary.

$$
\int_{0}^{1} \frac{y^{n}}{\left(1+v^{m}\right.} d y=\frac{((m-1)-(n+1))!n!}{(m-1)!2^{m-1}} \sum_{i=n+1}^{m-1}\binom{m-1}{i}
$$

A2 Propoition. Deflec the fuaction $F_{0_{1}, a_{n}}:[0,1] \rightarrow$ R by

$$
F_{e_{1}, e_{2}}(y)=\frac{y\left[c_{1}+\left(2 e_{1}+c_{2}\right) y+c_{1} y^{2}\right]}{(1+y)^{4}}
$$

where $c_{1}>0$ and $e_{2}<0$. Suppose atro that $\varepsilon_{1}+4 \varepsilon_{1}<0$ and $e_{1}+4 e_{1}+10>0$ then the following and trus:
(1) $F_{a_{1}, e_{0}}(0) \equiv 0: F_{a_{1}, e_{q}}(0)>0$.
(2) $0>F_{s_{1, A_{p}}}(1)>-1: F_{6,+\infty}(1)=0: P_{N_{i, N_{0}}}(1)>0$.
(3) $\vee_{c}, 3$ a unique $\boldsymbol{v}_{0} \in(0,1)$ unch that

$$
F_{s_{2, N}}\left(v_{0}\right)=0 \text { and } F_{n_{t, v_{2}}}\left(y_{n}\right)<0 .
$$

Moroover if $0<c_{1}<16$ them $0<F_{1_{1}, s_{n}}\left({ }^{(1)}\right)<1$.
Panot: (1) and (2) are obvious.

$$
\begin{aligned}
F_{c_{1}, c_{3}}^{\prime}(y) & =\frac{(1-y)}{(1+y)^{5}}\left(c_{1}+2\left(c_{1}+c_{2}\right) y+c_{1} y^{2}\right) \\
F_{\hbar_{2}, \kappa_{2}}^{2}(y) & =\frac{2}{(1+y)^{2}}\left[c_{2}(1-y)^{2}+(y-2)\left(c_{1}+2\left(c_{1}+c_{2}\right) y+c_{1} y^{2}\right)\right] \\
& =\frac{2}{(1+y)^{2}}\left[\left(c_{2}-2 c_{1}\right)-3\left(c_{1}+2 c_{1}\right) y+3 c_{1} y^{2}+c_{1} y^{2}\right]
\end{aligned}
$$

(d) The rooke of the equation $c_{1}+2\left(c_{1}+c_{2}\right) y+e_{1} y^{2}=0$ ae

$$
\frac{-\left(e_{1}+\epsilon_{1}\right) \pm \sqrt{c_{1}\left(c_{1}+2 e_{1}\right)}}{c_{1}}
$$

Uaing the condition on en and e_{2} it in eny to nee that

$$
y_{0}=\frac{-\left(c_{1}+c_{1}\right)-\sqrt{c_{1}\left(c_{1}+\eta c_{1}\right)}}{c_{1}}
$$

and it il the unique root in $(0,1)$ aince

$$
\frac{-\left(e_{1}+c_{2}\right)+\sqrt{c_{1}\left(c_{1}+2 c_{1}\right)}}{c_{1}}>1
$$

So $F_{a, ~}^{*}\left(y_{0}\right)=0 \mathrm{by}$ conatruction and

$$
F_{\varepsilon_{1}, c_{2}}^{u}\left(y_{0}\right)=\frac{2 c_{2}\left(1-y_{0}\right)^{2}}{\left(1+y_{0}\right)^{8}}<0 \text { as } c_{2}<0 .
$$

Now

$$
\begin{aligned}
F_{c_{1}, c_{2}}\left(y_{0}\right) & =\frac{c_{1} y_{0}}{\left(1+y_{0}\right)^{2}}+\frac{c_{2} y_{0}^{2}}{\left(1+y_{0}\right)^{4}} \\
& =\frac{-c_{1}^{2}}{4 c_{2}} \quad \text { using }\left(1+y_{0}\right)^{2}=-2 \frac{c_{2}}{c_{1}} y_{0} .
\end{aligned}
$$

Hence $0<F_{\mathrm{a}_{1}, \alpha_{1}}\left(\mathrm{~m}_{\mathrm{N}}\right)<1$ if $\mathrm{e}+4 e_{1}<0$.
Hut tha line $e_{2}+4 e_{1}=0$ and the curva $f+4 e_{2}=0$ iscermet at the origin and the point $e_{1}=16, c_{9}=-64$. Therrfore if $0<c_{1}<10$ the condition $\epsilon_{1}+4 e_{1}<0$ gived $0<F_{a_{1}, c_{2}}\left(v_{0}\right)<1$.
 following bold:
(1) $e_{1}+4 e_{1}<0$,
(2) $\omega_{1}+4 c_{1}+10>0$,
(d) $0<c_{1}<10$,
than $4=2+c_{1} / c_{1}$

$$
\begin{aligned}
& \int_{0}^{1} \frac{\log \left(1+F_{t, n}(y)\right)}{y} d y \\
= & \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} c_{1}^{n}\left\{\sum_{i=0}^{n} \sum_{j=0}^{i}\binom{n}{i}\binom{i}{j} R(i, j, n)\right\},
\end{aligned}
$$

where

$$
R(i, j, n)=e^{i-j} \frac{(3 n-i-j-1)!(n+i+j-1)!}{2^{4 n-1}(4 n-1)!} \sum_{k=n+i+j}^{4 n-1}\binom{4 n-1}{k}
$$

Panor: From Propatition 12

$$
\left|F_{\sigma_{1}, u_{0}}(0)\right|<1 \quad \forall v \in[0,1] .
$$

Therefore the logarithmean ber replaced by minfinite aum and the intagral taten inaide to get

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \int_{0}^{1} \frac{\left[F_{f_{1}+2}(y)\right]^{n}}{y} d y
$$

Them, uaing

$$
\begin{aligned}
{\left[F_{s_{1}, a_{0}}(y)\right]^{\omega} } & =\frac{y^{n}}{(1+y)^{i}} c_{1}^{n}\left[1+e y+y^{j}\right]^{m} \\
& =\frac{c_{1}^{n} y^{n}}{(1+y)^{i n}} \sum_{i=0}^{n} \sum_{j=0}^{i}\binom{n}{i}\binom{i}{j} e^{i-j} y^{i+j}
\end{aligned}
$$

and the Corollary to Proponition th the renult may ba obteized.
As Pempoiltion. Suppana

$$
\left|\sum_{i=1}^{p} c_{i}\left(\frac{y}{(1+y)^{2}}\right)^{i}\right|<1, \quad \forall y \in[0,1] .
$$

If $I\left(c_{1}, \ldots, c_{p}\right)$ in deflaed ain 4.1 then

$$
I\left(e_{1}, \ldots, c_{p}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} S(n) \text {. }
$$

where

$$
S(n)=\sum_{n_{1}+\cdots+n_{p}=n}\left\{\frac{n!}{n_{1}!n_{2}!\ldots n_{p}!} c_{1}^{n_{1}} \ldots c_{p}^{n_{p}} \frac{(N!)^{2}}{(M-1)!2^{M-1}} \sum_{k=N+1}^{M-1}\binom{M-1}{k}\right\}
$$

n_{1}, \ldots, n_{p} are non-negative integers and

$$
\begin{aligned}
& N=n_{1}+2 n_{2}+\cdots+p n_{p}-1, \\
& M=2 n_{1}+4 n_{2}+\cdots+2 p n_{p} .
\end{aligned}
$$

Proof: The condition on the c_{i} 's enables the logarithm to be written as an infinite sum. Passing the integral through this and the sum from the multinomial formula for

$$
\left(\sum_{i=1}^{p} c_{i}\left(\frac{y}{(1+y)^{2}}\right)^{i}\right)^{n}
$$

leads to terms of the form

$$
\int_{0}^{1} \frac{y^{N}}{\left(1+y^{N}\right)} d y
$$

Now $M-N \geq 2$ so the Corollary to Proposition A1 gives the relevant formula leading to the expression above.

Refinincer

 (1870), 도옹․

 syi-sd1.

 irempa, Cenc. Math. Phy ea (ieng), ess-ite

|C18) ©. Col

 lomen Maxh. 12 (1000), 23-0.

 Mank. Plya, 19 (1)

 103, 234-200.
 20 (1074), 1-16.

 $\mathrm{H}=\mathrm{m}\left({ }^{(1074)}\right.$)

 Hader,Mme 1 Ifts.

 ((1983), $5-103$.
 97 (IR) ICA-116.
 Mant. Plya. 14 (1070), 1-304
 Prina, Oskerd, 19 en.

 (1674), 105-134.
 Manh. Phar. af (1002), 101-19n.

 alyet me, Uaponbilind MAS.

 18 (1) (1)

