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Summary

Monodromy fields on | 3 are a family of lattice fields in two dimensions which are
a natural generalisation of the two dimensional Ising field occurring in the C*-algebra
approach to Statistical Mechanics. A criterion for the critical limit one point correlation
of the monodromy field tra(M ) at a6 13,

um(#.(M)>.

is deduced for matrices M € GL(p, C) having non-negative eigenvalues.

Using this criterion a non-identity 2x2 matrix is found with a finite critical limit one
point correlation. The general set of p x p matrices with finite critical limit one point
correlations is also considered and a conjecture for the critical limit n point correlations
postulated.

The boson-fermion correspondence for the representation of the CAR algebra over
L3(S1,C) defined by the (t,0) KMS state with chemical potential p is considered and
the non-bijectivity shown. Using an alternative formulation the correlations are recal-
culated leading to a determinant identity reminiscent of Ssego’s Theorem.




Section 0
Introduction

0.1 Monodromy Fields on z*.

The C*-algebra approach to the king model via the transfer matrix is now well-known,
see [AS], [C4], [EI] [E3] and [L3] for example. Monodromy fields on Z}, introduced in
[P2] are a family of lattice fields in two dimensions which are a natural generalisation
of the two dimensional Ising field. They were inspired by [SI] and in a sense are lattice
analogues of the continuum fields used in [S1,1V] and also in the Federbush and massless
Thirring models, see [R3] and [C12] respectively. These lattice fields are interesting
for several reasons. Firstly, by controlling the scaling limit, mathematically precise
information on the continuum can be found and this approach was successfully used for
the Ising field in [PS] and [P9], secondly there are numerous analogues of continuum
structures suggesting a discrete theory on the lattice itself. For M € GL(p,C) and
a € z* it is possible to define the monodromy field qu(M ) at a. This is a generalisation
of the Ising field in the sense that when M is the scalar -1 the vacuum expectation of
a product <r,,(—1).. .<ra, (- 1) gives the square of an Ising correlation. The motivation
for the name ‘monodromy field" is the fact that it is possible to ‘create’ monodromy M
located at @ € Z* in the solution to a certain linear difference equation on the lattice
through a formula involving <r.(Af).

In [PS] the one point correlations when M is a scalar were calculated using an elliptic
substitution. Also the asymptotics of the correlations were examined in the scaling
limit, that is the limit that sends the lattice spacing to sero and the ‘temperature’ to
the critical point such that the correlation length remains fixed (massive scaling regime)
In [P3] the critical scaling limit was studied, that is the large scale asymptotics of the
correlations at the critical point (massless regime). However a limitation of the analysis
carried out in [P3] was the fact that the monodromy fields had to appear in pairs,
<r.(M)<r{A/)~1, which was referred to as the twin problem. That is only correlations
of the form

<H <K (FL)-m eeen (kL (m.>-">.

could be studied. Moreover the Mi had to have non-negative eigenvalues.
In order to find the large scale asymptotics at the critical point the following limit
needs to be investigated:
ua(*., (Mi)...a.,(Mn)).

This is non-trivial since the monodromy fields, <r,(M), are not defined for s = 1. A
conjecture from [P3] was that the limit exists and is finite if M\ ... M, = 7 and if
M i..,M, £ I then the limit isOor oo. The second halfof this conjecture is now shown
to be false by an analysis of the limiting one point correlation:

(e (>

A criterion for this limit is found enabling the existence of a non-identity M with finite
critical limit correlation to be shown. However as is the case for the results in [P3] this is
only true for M having non-negative eigenvalues. As for the general n point correlations
a product formula, see [P3] or [P4], enables these to be written as the product of the
individual one point correlations and a det2term, see [S5] for a definition. This suggests
that the one point correlations are sufficient though a proof is not available as yet.
The restriction on M to have non-negative eigenvalues is somewhat inconvenient since
the Ising field case is given by the scalar —1 so non of the results are applicable to this



0.2 Boson-Formion Correspondence.

For many years physicists have written fermion fields as formal functions of certain
boson fields in 1+1 dimensions, see [C13] and [D2] for example. However these formulse
are difficult to make sense of mathematically. In [F2] representations of certain infinite
dimensional Lie algebras were constructed and in [F3] these were related to boson-
fermion correspondence. Also in [C I1], in 1-f 1dimensional field theory, representations
of current algebras were obtained using automorphisms of the fermion or CAR algebra
for the 1+ 1dimensional Dirac field. These were connected in [C7] via the work in [$2]
using projective repr 1s of infinite nal Lie groups (see also [C I, [C2]).
Adopting a simplified version of fermions, namely the CAR algebra over L*(SI,C)
this enabled an explicit operator version of this correspondence for free bose
[C5] this was taken further and the representations of loop groups which a
representations of the CAR suggested by statistical mechanics were investigated and in
[C8] projective representations of the gauge groups of 1+ 1 dimensional quantum field
theory

So the basic idea of the boson-fermion correspondence in 1 space dimension is the
following. Given a representation of the CAR in which the local gauge group G is
implementable, by restricting to those maps in G which take their values in the maximal
torus a representation of the CCR in Weyl form is obtained. For the other way, consider
particular gauge group elements called ‘blips’ my. These depend on the real parameter
( such that they are singular at t = 1 and there exists a constant ¢, such that c(r('y<),
where T is a representation of the gauge group, converges in a certain sense to a fermion
field. This convergence is rather delicate, strong convergence on a dense domain of the
approximate fermion fields has been shown in [C9].

Here the relation to statistical mechanics of [C5] is extended to include the chemical
potential ft leading to some interesting technicalities concerning this correspondence.
The prime reason for trying this extension was to investigate Bose-Einstein conden-
sation, see [B2], [B3], [LI] and [L2] for example. However this did not prove very
fruitful.

It ought to be mentioned that this is not the only construction referred to as boson-
fermion correspondence. Hudson and Parthasarathy have developed a boson-fermion
correspondence using quantum stochastic analysis, see [H2], [H3] and [P10], and a
simple stochastic integral. Also Gar i, [G1] and references therein, has yet
another form however the connection of either with the above is unclear.

0.3 Infinite Complex Spin Groups.

Both of these objects are really examples of a general theory inspired by [SI]. From
a mathematical point of view their work is not rigorous in the infinite dimensional case
since it freely uses results only shown in the finite dimensional case. The generalisation
of their results is of interest for this reason and also in its own right to develop an
infinite dimensional theory which may indeed go beyond that of the finite case. In
[P 1] certain results were extended rigorously to the infinite dimensional case and this
has been developed in [C8] and [P4]-[P7] with a summary in [C3]. It concerns the
existence of implementers Tq(G) on A(1V+) such that

r,(0i',(.)r,(o)-
where Fq(.) is a representation of C(W,P) and G is an element of Or,,(W ) where
Or,(W)m{Q :G orthogonal, G Q -Q G is Hilbert Schmidt)
is a subgroup of the complex orthogonal group
O(W)=[G :PCTP* P*1}.

a



The subgroup of Or,, (IV) where G is a unitary is well known and the Hilbert Schmidt
condition is the necessary and sufficient condition for the existence of Vq (G), [S4]. Some
of the reasons for studying this are:

(1) As shown in 0.1 exactly solvable models in two dimensional quantum field theory
(see [B1]) are connected with representations of Or,, (W ) and its subgroups. For
example the Federbush model [R3], [R4], the Luttinger model [Cft], the massless
Thirring model [C12] and the Ising and monodromy fields of 0.1. Note that
these last two require the infinite dimensional analogues of [SI] and hence are
not covered by the standard results on ‘Bogoliubov transformations’, see [R1],
[R2], [C10] and [F 1] for example.

(2) The representation of loop groups, vertex operators and string theory, see [P12],
and hence by the comments in 0.2 boson-fermion correspondence.

(3) Segal and Wilson, [S3], used a subgroup of Or, (W ) in their study of the KdV
equation. The work in [D1] suggests that this method can be extended to the
Landau-Lifshits equation using Or,, (W ).

The basic reason for introducing Or,.(W ) is simply to enlarge the group of Bogpliubov
transformations studied to provide more ‘room’ in which to have approximations to the
operators in [S1].

Here the results of [P I] are used to recalculate the correlations occurring in the boson-
fermion correspondence constructed. This leads to a determinant identity similar in
form to Ssego’s Theorem (see [MI,Chapter X] and [H1]).

From [P2] the one point correlation

and from [C5] the same ratio of theta functions occurs in the state defining the rep-
resentation used for the boson-fermion correspondence. This appears to be more than
coincidence and the elliptic curve derivation of the formula above links this with the
comments made in Section 2.3 of [C3] concerning a weak form of boson-fermion corre-
spondence.

0.4 Outline of Thesis.

The format of the thesis is as follows:

(1) Section 1introduces the basic definitions and notation.

(2) Section 2 introduces the definition of the monodromy field

(3) Section 3 deduces a criterion for the critical limit one point correlations based
on the result of [P2] concerning the scalar case.

(4) section 4 uses this criterion to find a non-trivial example of a matrix M with
finite critical limit correlation. The structure of the set of such matrices is also
studied.

(5) Section 5 poses a conjecture for the general n point correlations using a product
formula. The variance/invariance of the correlations under the obvious action of
Sn is also considered.

(6) Section 6 introduces the idea of boson-fermion correspondence as used in [C5].

(7) Section 7 extends this notion by the addition of another variable ft, the chemical

potential, leading to some interesting results concerning the correspondence.
Section 8 uses some results of [P 1] to reformulate the first half of Section 7 and
recalculate the correlations concerned leading to a determinant identity reminis-
cent of Ssego’s Theorem.

(9) The Appendix gives some general results and some proofs of facts used in Section

i v

(8)



Section 1

1.1 Introduction.

This section will provide a brief description of the objects used throughout this thesis.
They are fairly standard but do have slight variation. Hence the versions used are given
here to set definitions and notation.

1.2 The Fermion Algebra.

1.2.1 Definition. Let H be a Hilbert space. The Fermion or CAR algebra over H,
A(H), is the C*-algebra generated by the elements (0 (/):/ € H) where a is a conjugate
linear map from H into A (H) satisfying the Canonical Anticommutation Relations:

S(/M#)+ «(#M /) =0
SH(L)-(#)  -(#)ee (1) = <# L.

for all J,§8 in H, where «=(/) = «(/)*s

1.2.2 Remark. There is an important representation ofthe CAR algebra known as the
Fock representation which is as follows. Let A(H) denote the Fock space (alternating
tensor algebra) over H. Define the operators o(/), a(/) as follows:

C()(#1 A eeA#») - 9i)(f* A =eeATL),
«o()(fi Awe A#,) = (n+ 1)* (AT, A ==sAgn).

Then ifO=1©0©00© ..

«/)0 =0
w(/)n = /.

for all / € H. These operators do indeed give a representation of the CAR algebra.
Moreover this representation is unique in that it is the only irreducible representation
for which a non-iero vector O exists such that a(/)0 = O for all / € H. The vector fl is
called the vacuum vector and a(.), a*(.) annihilation and creation operators respectively.
There are two other algebras which are essentially equivalent to this which will be of
use in later sections thus their definitions are now given.
1.2.3 Definition. Let A be a Hilbert space and T an antiunitary involution on K.
The selfdual CAR algebra, ASdc (K, T), over (K, T) is the C*-algebra generated by the
elements {B(k) :k € K) where B is a cogjugate linear map from K into Asdc(K,T)
satisfying the following:

B(K)B(iy + B(I)B (k) —
B(r - fl(r).

1.2.4 Definition. Let W be a Hilbert space and P a conjugation on W. The Clifford
algebra, C(W ,P), over W is the C*-algebra generated by {c(ts) :W€ IV} wherec isa
linear map from W into C(W, P) satisfying the following:

Note that c(w) will probably be identified with w.

V
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1.2.5 Remark. With the definition given above i
equivalence«:

0)

ia not difficult to «<how the following

c*oc(*.r)c(#f,r).

using the identification £ (*)* = e(k).
<)
AmdclK S)* A(EK),

where E is a basis projection, that is a projection E with TET = 1- E, using
the identification
f1(*) » a(Ek)+ s*(EXh).

Acting on this algebra are a particular set of states (linear functionals) called the
gauge-invariant quasi-free states which are analogues of Gaussian distributions in clas-
sical probability with the state completely determined by its two point functions.

1.2.6 Definition. A state U on the CAR algebra is gauge-invariant if it is invariant
under the group of gauge transformations

MM./)) s =<c"/). #€(0,2w).

1.2.7 Definition. If R isa positive contraction then there is a unique gauge-invariant
quasi-free state, denoted by ur, satisfying

w» (@*(/m) me a*(/i)a(g,). a(gn)) = det[(*, R/j))snm.

e (

Moreover ur is pure if and only if R is a projection.

(£)e<#))=<#.%/)

1.2.8 Notation. Let (ftjf.irjt.0ji) denote the GNS representation of the state ur .
Another set of states which will be of use later are the Q-Fock states on C{W,P)
which are defined as follows.

1.2.9 Definition. Suppose Q is a self adjoint operator on W with Q1 —land QP +
PQ = 0. Then there exists a representation of C{W ,P) on the alternating tensor
algebra, A(W +), generated by

where a*(.), a(.) are creation and annihilation operators on A(W +) with = 1/2(1£Q)
and W+ = Q+W. The Q-Fock state uq is then given by

uqg(m) = (0,Fa(mo),  + € C(W,P).
1.2.10 Lemma. The Q-Fock State on C(W,P) is equiva/ent to the qumai-fne State on
Asdc(W ,P) giren by the basis projection E = Q_. Alternatively the quasi-free State
on Asdc(W ,P) giren by the basis projection E is equiva/ent to tbe Q'-Fock State on
C(W,P) whereQ' = I-2E .
PROOF: If E is a basis projection on W, *e can be identified with
wa (B(w)) = -o((1- E)w)+ «S((1- E)Pw),

2



where 00(.), *o() are annihilation and creation operatorc on A ((I - E)W). Using the
equivalence of Asdc (W ,P) and C(W ,P) given by B(w)' * c(u>),
(=) - re<*<o)e) - (¢(»)*

pe i ((1-TH)* )+ e ((* -*)**»)
Comparing this with the form given in Definition 1.2.9 for the representation associated
with a Q-Fock state it w easy to see that

1-E-Q +.

That is E = Q. or alternatively Q = | - 2E.

Now there is a correspondence between basis projections, E, and Q'u defining Q-Fock
states given by the above. Namely if E is a basis projection then Q = 1- 2E defines a
Q-Fock state and if Q defines a Q-Fock state then E = Q - is a basis projection.

With these two facts both versions of the Lemma are shown.

1211 Remark. The above Lemma shows that Q-Fock states are in fact quasi-free
states and moreover they are pure.

1.3 The CCR Algebra.

1.3.1 DcriNITION. Let H be~Jlilbert space. The CCR algebra over H is the 4t-
algebra generated by {<>(/) :/ € H} where a is a conjugate linear map satisfying the
Canonical Commutation Relations:

e</)e(#)- <8KTf)- o
Se()ee (/) = <#S)L
for all g,h in H, where a*(f) = «(/)*.
1.3.2 Definition. If the selfadjoint operator ¢ (/) is defined as

e</) = 3ZE+*3Z5,

and W (f) the unitary operator as
W(J) = exp {,+</)},

then

m /)W (1) = exp <-./2 Im(/,#)} W (f + #).
The operators W (f) are called Weyl operators and the commutation relations

W (W (t) = + IO INVAN

the Weyl form of the Canonical Commutation Relations with the C*-algebra generated
by the Weyl operators called the Weyl form of the CCR algebra.
1.3.3 Remark. This form can in fact be slightly generalised to the following. Consider
Weyl operators ,W (f), where / is an element of a real linear space H with a nondegen-
erate symplectic bilinear form <,
[Thatiso :H x H -* R with ./) forall f,g € H and if a(f,f) = 0 for
all 7/ € H then* * 0]
and commutation relation

mw (i)=cp i-i/M7Z.t) W u+q.
For example if /f is a complex pre-Hilbert space and

*(/.#) = Im(/.9).

then the CCR algebra is obtained.



1.4 KMS state*.

1.4.1 Definition. LetA be a self atjjoint operator on the Hilbert space H and assume
that exp { —0Kk) is trace class. Let

T>ace(e-

denote the Gibbs grand canonical equilibrium state over the CAR algebra A(H) and
n(A)

the evolution corresponding to the generalised Hamiltonian K,,. So in particular

It follows that u is the unique (r, 0) KMS state, and that this state is the gauge-invariant
quasi-free state with two point function
W (-(/We>) = a0+ w-"*)-m /).

where x = e*T.
For any further details concerning this and the rest of Section 1see [Al], [A2] and
[B4] for example.



Section 2
Monodromy Fields on Z*
3.1 Introduction.
This section gives the basic definitions for the study of monodromy fields on z*.
3.3 Notation.
Let HME*(5',C*) and p a poaitive integer with H' * He  ® # * H
Let T be the multiplication operator on H defined by the 2 x2 matrix:

c*/s-cos0 +sin0—-«(e/s —ccos 0)
+sin0+ f(e/s —ccos0) c*/$- cosO 1<,

where e,s > Oand ¢* —a* = 1
Let Q be the multiplication operator on H defined by:
0 is4*) ]
/(9.
where o (0) is determined by the following, N
(D) o(0) = 0.
(2) coshi (0) = e3/* - cosO,
(S) sinh7 (#)e<~#) « (e/s - ccoal) + issinO.
Note that

TV)« **p[-rV)Q ()] =.-"""«J. («) + « <*>0- (*).

wh.r, Q, = 1/2(1 + Q) with <f m 1. Q wlf anoint
Also let X be the multiplication operator on H defined by:

7 (<1r."/ Q)=

Now extend T, Q and X to operators on Hr in the obvious manner, namely tensoring
by P je. the operator acts on each copy of H. With a slight abuse of notation call
these operators T, Q and x. Let W* = Hr ® 77*, where 77 denotes the Hilbert space
conjugate to H, and define a conjugation P on Wf by P(x ®y) = y® z. If QW is the
operator on Wf defined as Q © (-Q ) then Qw anticommutes with P and Qw is self
adjoint with QW = I+

Hence Qw defines a Qw-Fock state of the Clifford algebra C(Wr,P) whose associated
representation lives in the alternating tensor algebra A(W j) where = Q" Wp and
Qw = 1/2(1 + Qw)- The generators of this representation are given by:

where a*(.), a(.) are creation and annihilation operators on A (W j). Alternatively this
representation can be thought of as the GNS representation of the selfdual CAR algebra
over Wr with antiunitary P defined by the basis projection Q”, see Lemma 1.2.10 .

Now define the restricted general linear group GLaq(H p) as the group of bounded,
invertible linear maps on Hpwith bounded inverses whose matrices [* *] in the J/*07f*
decomposition of Hr derived from Q have b, e Hilbert Schmidt and a, d Fredholm of
index 0. Also define GL”(HP) as the subgroup with d 1+trace class and GLR(H>) as
the subgroup with 6= ¢ = 0.



[P4), (P3) uid (CS)— also a brief summary in (C3)— demonstrate the existence of a
dense linear domain,V £ A (W j), together with two homoniorphisms, Tq :G Lq(H p) —
L(T>) and T : GLG(Hp) — L(V) where L(V) denotes the linear maps from V to D,
such that:

()- F( e e g1%(H),
T()/m(). F(, 9, , E GLg{HT).
*<i = r()r<,0)re)-".

Also if GLq(HT) x GLE(H*) is the semi-direct product with composition rule
9i * An-fr * *i = * oatye
then the above gives § x A —* rg(p)r(A) is a homomorphism with kernel
K = [f XA:f*= land detd(p) a 1}.
Define 6 Tq(H’) a GL%(H>) x GLY(H')/K then (f x h)K — fA is a well defined

homomorphism T : (jLg(Hr) =G Lq(Hr) with kernel C*. Identifying &L~g(Hr) with

its image in L(V) :
TEW). f (T(,)<sn,)e-"*),, IE<StQH").
ie. y is the implementer of T(]). If fig is the vacuum vector of A(IV j) define

(flg a (ng.fflg), fe(jLa(Hr),
that isif 9a (9*x h')K

9>g = (fig. Tg(f4r(A.)Qg)
= <ng.,rg(9)0g)
= det(4f’)
For more details of this, together with proofs, see [P2] and [CS].

In other words, if9 € GLq(H p) and has a decomposition as goti where gt € GLq(H*)
foria 0,1 thenT ((g0x g\)K) a g, thus the implementer of the automorphism induced
by 9 on the Clifford algebra is given by rg(9)r(9i) at least on the dense domain V and
upto scalar multiple— a choice of factorisation at the GLq(Hf) level being equivalent
to a choice of normalisation at the GLq(Hf) level.

With the structures defined above it is now possible to define the monodromy field
<r(M), where Af € GL(p,C). Let M acton Hf as /® Af and define c as the convolution
operator on H whose Fourier transform acta on f*(Zi/j,Ca) as tf(k) = sgn(A)/(A), for
k6 1j/j. Letet = (1 + €)/2 and define

(Af) = e_ ®If + e+ ® Af
In [P2] it is shown that #(Af) € GLq(H f), then 0 (M) is essentially defined such that
T(tr(M)) = t(M) So from comments made above a factorisation of e(Af) into gog\
where gt € GLq(Hp) is sufficient since ff(Af) may be defined as rg (90)r (fi). This
factorisation is constructed in [P2] and using that notation s(Af) = g(M)D (M) so
that:
V(M) = rQ(g(A/)r(D(A#)).
This definition can be extended to the points on a ZAlattice as follows. Let F(T) and
r(s) be the implementas of T and x then define
*a(Af) = T**s**s(Af)s—T —»,
and «r.(Af) = r(T)-r(*)-cr(Afr(s)— r(T)—»,
where a = (ai,a2) € za. Call <a(Af) the monodromy field at a— so <r(Af) is the
monodromy field at 0.



2.3 Remark. The mutiplication operator T introduced Atthe beginning of 2.2 Notation
is the aame ac that for the study of the Ising model in [PS] and [P9] where e = cosh 2K *.
Hence, using this connection, it is possible to consider the cases s < 1,s= land * > 1
to correspond to below the critical temperature, at the critical temperature and above
the critical temperature respectively.

2.4 Remark. One problem— which has been glossed over so far— is the fact that
s(Af) i GLq(H') when s = 1 (Q depends on T and thus s) and consequently a
limiting argument is required, which is the cause of the problems in this area.

2.5 Remark. The objects of study are the n point correlations:

and in particular their limit as i f 1, that is, their behaviour as they approach the
critical temperature.

2.6 Remark. From now on it will be assumed that » < 1and as the notation— * f 1—
suggests the limit from below will be considered. Also the Q subscript in the correlation
will be dropped.



Section 3
A Condition roR the Existence or
Limiting One Point Correlations
3.1 Introduction.

This section minis to clsssify the critical limit one point correlations, lim,M(cr,(M)),
for all matrices M € GL(p,C), p € N with noo-negative eigenvalues. The starting point
for this classification is a result of [P 3] concerning the one dimensional scalar case, that
is(p>1).

3.1.1 Proposition. Letk = a2, *'* = 1- *2and

Suppose A€ C\(—00,0). Ifs(A) - *(A) D(A) and ¢ (A) « d(g(A>)« Q- then
¢(A) is invertible and

<, (*»

where| € 1t/] and q = exp(-»A '/ A).

Note. As ¢(A) is invertible the correlation is non-sero.

Now assume M € GL(p,C) »nd has no negative eigenvalues. Hence there exists a
matrix 5*# € GL(p,C) such that S*#AfS~* = Ju where Jm denotes the Jordan form
of M. Thus

«A) = (I05* )<«-®f +«#»./*) (1®5*)

- @®Ssjf) s(IML®Sit)m

Therefore if S(JM) is factorised as 1(J u') D(Ju), *(Af) may be factorised as

(1® « SU)) ((L«SIYW «i)(1®S,))
Hence
e o= (1®Sii(/,)(i®s«))
=*t(1®Si')SUI»)(i®s,)
mQ. = Q_ @f conwi.le. with 1® S~ 1L
=W «»-

Appealing to [P2], in general the factorising terms are given by the following:

Suppose P+, P_ are the orthogonal projections onto the subspaces of L2([—A, A ],C)
whose elements have fourier expansions in exp(ts7z/A) with no / negative, positive
terms respectively. Then:

D(H)« /+e (/»®/,+P.® *)_ .
where /+ is the identity on H\, (P+ ® /*+ P- ® Af)_ actson A" 2 L2((—A, A],C)®
CT and
i(Af) = a(M)D(A)~I, with d («(Af)) 1-ftrace class.

8



du(3»)=d(J,)D

ra*>) v
d(A.)
Therefore del¢ (¢ (7 ¢)) = ftf.,

((A#)) = <#</*)

Also note that for a = (at,aj

DO,)-

Dc*,)-

del ¢(A%), that is:

= detd(£(y *)) * fidete*,)
(wi

mprj-r [L+ AfV* 1+ J1

HSI

)€ 2z3

B >k

<> =(r(mT(*)- »(A/)r(*)—r(f)—
* (IXTyrwT, ((AM)r r(*)—r(r)—
= Q7 (AF)s r—-) r (T“** D(Af)*—

S<rL(r-*-*AO0*F— 1 — )

= detdf(ro*-t(jt/) — r--)

a detT-**"'

adetd(£(Af)

= (#(A/)>.

d(g(Af)) g~niT ~nt by Lemma 3.1.J below,

So have shown the following lemma:

1



3.1.2 Lemma. IfM € GL(p,C) ha» no negative eigenvalue» then

1V, I+ W, 1
(. (» =pnnp=-T2J- ,+K- y. e
qu>O[L tl- : j/ ! ’k J
3.1.3 Lemma. The apermton Q. T end < cammule.
PAOOr By deRnition

veoh-r(#)/-«wh7(#)g
giving T and Q commute.
Considering the fourier transforms of T and * on /(Zi/»C*):

T/(h)« T-.-*/1h)+ T./(h)+ ne/(h),

(et 1

Sige -1
7 1%(e + *)
and »**/ (*) */ (*=1 1.
An easy calculation shows T and x commuti . Thus, using the relation between T and
Q above, it is easy to see x and Q commute.
Note. The lemma actually proves that T and z are in the domain of T which has been
implied by the notation so far.
3.2 Convergence Argument.
tif Af € GL(p,C) has no negative eigenvalues

1+ Vv 11* 1+Aif*

< . (oEnnl ey 14, VIE I

where Aj,..., X are the eigenvalues of M. This may be rewritten as
0 + «*>"

where c(A<) = A<+ Af* - 2and e, « Eigi.< <**, «(Ai.) seee<**)e

3.2.1 Lemma. SuppoeeA € C\(-00,0]. Define/ :[0,1] — C as/(*) = I+c(A)

where c(A) is defined as above. Then |/(*)] >t >0 V*€[0,1].

PROOF: Ifc(A) = o+ i* then |/(] s
Now the term inside the square root.is a product of two squares and thiis > 0, also
it is sero if and only if both entries are sero which is not possible. This is due to the
fact that if* = O then :land if b= O then Ay o
0 +-0T™ (1+*1i771?) >0*
a> -4 by the restriction on A. Thus /()] >0 V* € [0,1).
Therefore |/(*)] > t >0 V* € [0,1].

10 V



3.2.2 Remark. By the lemma Above 1+ et 1>(>0 *y€(0.1]aoin

particular it ia true when y = qv Vf € (0,1), V/€ Z|. Thia lower bound will play
an important part in the analyaia that followa. Taking logarithma above leada to

SO{HI (™ B}

Using the definition of qand the Thylor series expansion for (1 - *)“'/* it is a simple
calculation to ahow that g€ (0,1) and ass T1,f TI.

3.2.3 Proposition. Suppose Zt : (1,00) -» C is defined mb

where q € (0,1) and c, are defined as above, and Yt : [1,00) —* C as Yt(*) = log Zt(x).
Then
“fy (BE <n(>+w « + m))-/* »e (*)*) -«

The proofof this proposition will follow after a series of lemmas which are of funda-
mental use in the proof.

3.2.4 Lemma. Define the following function» from N x (0,1) x [0,1] —*C.

1+ ((, *fIs.Ulsjl) «

N e

Then 3Cf > 0 fori = 1.23andg € (0,1) such that

(m) JATI(.«.QI>C] >0 Vn€N,Vf€ (0,1),Vn € (0.1].
(V) IX.(nif,.)]<C, VNEN,VfE(0,1),VE (0,1).
0 I*a(r,f.0]<C, Vn€N,Vf€(Q,1),Vue€ (0,1].

Proof: i): follows from remark 3.2.2 .
ii): follows from the fact that the function /(y) = ~ *~3 01 (0,1 has
value 1/4 so take

3l rT-
1

Bo



101+ S (- i e
«N iE )t

<LH /0% VeeN,VE]O,1]

<3 VI€(Q.l) whereQ* Aj.
iy o< Q>
7 i-0
_ til'd +r— ¢-)m

TArrf..... M<;w (jrF7=:

9 11,
«EMsWjol-»
imi
Let C> be aa sbove, thes [Xs(>.1.)| < C% V> C N.VeC(0.1].Ve € (Ay. 1)

3.2.5 Lemma. Define the following functiona from N x (0,1) x (0,1) -* C.

+ eGi+i-"N)'—
+ AN v
1+S c‘Gi+t*-'*i,)iiT

= tiL (i VA <V Tem )i

t-fiiA )
it-t™~sw rus”)
1+
(-ir+'Alio(n,i,ur

c(l+A-Vd+f— »-rh m+2



Then 3M i madQ, fori = 1,2,3 tuch that

| «) 1 <Mi vn€N.VmC (0,1),Vf6 (Q,, 1)

*nd 3Qo auch that

|A#o(nf9l <1 VN€N.Vc€ (0.1].*f € (Qo. 1)

Proof: 1) in the notation of lemma 3.2.4

Therefore by lemma 3.2.4
IMo(..,)l<(-,%)" Vn€N,Vu€ 01V, € 1)
<1 vreN,v.€(o,il,v,e

2): in the notation of lemma 3.2.4

*(i+ Hid*d
Therefore by lemma 3.2.4
W .0l < A VnEN.V-€[0,1.V, £ (0,1)
Hence take M\ = and Qt —O0.

3): from the proof of lemma 3.2.4 part iii)
VREN,VNE(,)V, e (-Jj.
Therefore Vn £ N. Vn £ [0,1] nnd Vf £ 1)
SSVWF+/N-"W *£e*“ & -»<t
thusVn EN, VN E [0,1) nnd V» £ (2, 1)
N N\ 1 1N\
GrrrggiW inr

Also Vn € N, Vu € [0,1] and V« € (2 5,1)






- »—K -i%c, - (,<.th% Uh), {(n-o— m»)
Cloloff *vesm (L+ 16 - 1)* + (-
B N R 8 | N Y
LA KA(1 -,>m),<>Aret b re)
@+ cm-tetmXl i
-8 L7 (| mee) <«——OE—4»

S(i- )R 1Ry

I the functions a,b,e: (0,1) x (0,1] — R are defined u follow«

(€)= dd<n,e, T T Kid X t.«) - f*.
and the substitution r = fl2' -1 is made, the term inside the bracket becomes (dropping
the f ,u dependence in the notation for convenience):

01+ *)(& —e* (I + c*)) —6*(L +c*)* .
In lemmas 3.2.8 and 3.2.9 it is shown that such a function is negative Vx € (0,1], V? €
(0.1) and Vu € (0,1]. Hence in particular it is true when * = gIn~1 as i2'-1 € [0,1],

VO € (0,1) and Vn € [1,00), thus the term inside the bracket is negative Vn € [l.0oj,
Vf € (0,1) and Vu € (0,1]. It is easy to see that the multiplying factor is also always

negative. Hence is positive Vn € [1,00), Vf € (0,1) and Vu € (0,1].
Soiff and u are fixed A increases as n increases. Thus the inequality

41.c.¢)< AN, ,«) < M(0o.f.u)  Vn€ (1.00).V« € (0,1),Vu € (0,1]
holds where 34(00,9,u) is the function defined from (0,1) x [0,1] — R by
>400,f,u) = (1- F**) + «len V -

So |>4(n,g,u)l < max{]>4(Li,u)].|>4(00.i,u)
Lemma 3.2.10 shows that

1>4(00,,,)] < (1 - lot,’ V.e (0,1).¥«€ [0,1].
Lemmas 3.2.11 and 3.2.12 show that Vf 6 (Q, 1), Vu € [0,1]
1-41.f.-11S - [(1-4*H1-«V )11

and the relevant Q is found.
Thus, as required, Vn € [I,00), Vu € [0,1], and Vf € (Q, 1)

1-4(.f.01 < max{(l- ,*)+ " log,’ .



3.2.8 Lemma. Define the functions ab,c:(0,1) X (0,1] -+ R by

e («.«). . logf>. *<eqm 1. fre “.de(f,

- £<.e+ >ie> J," V ,i (0.0.V«€ (0,11.

Proof. First note that a + »< 0 Vu € (0,1],V* € (0,1). This follows from the fact
iko Zion'(i -,*m)< 0 Y«€(0, i],v*e(o,n »d (. +»)(,0)* 0 ,i»«
a continuous extension.

So as ¢ > 0 it is equivalent to prove a(c —b) + b > —3(a + b)e which after some
rearrangement and the observation that b= 1- e is equivalent to

4<a+*)-k<5« + 3%)>0.

Therefore letting f(q,u) denote this function it is necessary to prove that f(q,u) > 0
VAl € (0,1), Vu € (0,1] where

/(,,.)<«4(«log,” + (1-,*m))-(1 -«*=) (5.log,” + J(1-,*m))

«lo, - 10,*V ) +1 °(V (B6clo,, +«1 - *m))
- < 1-,'%)(510it, -310,>.,*")
- lo,» [1- - 1)+ 6.10,,"

Making the substitution * = g* and noting log* = ulogqlthe term inside the bracket
becomes

(1- *X«* -1) + 5*log*.

Now consider the function g : [0,1] —»R defined by g(x) = (I —x)(6* —1) + 5*log*.
g'(x) = 12(1- *) + 5log * and g" = -12 + 5/* so g(X) has a maximum point at 1with
value 0. Uaing simple properties of the functions 12(* - 1) and 5log* it is easy to see
that g'(x) has another unique sero in (0,1). So g(x) has only one more turning point
in (0,1] other than * = 1. Hence as g(0) = —1, g(x) < 0V* € [0,1).

Consequently

(L- ")« - 1) +Sal®*i'V" <0 V]€(0,1),V«E(0,1]

Thu. >0V, E(0,1), Vu£ (0.1]. Hence /(,.n) > 0V, £ (0,1). Vn £ (0,1)
as f(q,0) = O gives a continuous extension.

3.2.9 Lemma. Define the functions a,b,c ns in lemma 3.2.8 and define the function
H :(0,1] x (0,1) x (0,1 —* R by

H(s,q.«) « ab+ (B(s- 1)- SC)« - («(1+ )+ 2K)exi - (a + *)*>*e,

H(*,»,«)< 0 V*€(0,13,V» € (0,1),Vx € (0,1).
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Proof: From the proofof lemma3.2.8 a+ 6< 0, Vg £ (0,1), Vu € (0,1). Therefore
H(g,g.u) is a cubic in * with a positive leading coefficient. Now

This ia a quadrati

in (and thua ban at moat 3 aolutkma lor =p Tha
B’ - 4AC’ In tbia rana ia:

47 (0(1+«) + »)" + 13+ *)a (»(s- 1) - no)

=fcl[« (1+e) +4ut<l+¢c) + 44 + 34<0 + *H* - 1) - >"<e + %))

= SN+ «V o+ L+ obr+ 11+ 30" 6+ 3]

mfCV +«V + 1% +W +2a4+ 2¢] usingc - 1- 1

=fCL[(e + %) + "% + 30%<n + »)]

= 4o*[(.4.%) + F]

So if H ia extended to a function on R x (0,1) x (0,1] in the obvious way =o0at

*  2(a(l+e) + 2k)ct2e —[(c.+»)+ ald a(l+c)+ 202 (a+ 6+ ab)
-3 <.+ o(m = -S (. +V :

The negative sign in front of the (a + 6) + ab term follows from the fact that it is strictly
negative. This isobvious as each part is negative, (a + 6) as mentioned above, ab trivially
since a< 0 and 6> 0. So

From lemma 3.2.8*} > 1V* € (0,1), Vu € (0,1]. Also *,-< -1V {6 (0,1), V« € (0,1]
asO<c< L
Now H(0,g,ti) = ab< 0 Vg€ (0,1), Vu £ (0.1] therefore

H(x,4,0)< 0 *r£ [0,Il,Vj€ (0,1),Vo€ (0.1]
since H is negative at sero and both turning points are outside the interval [0, 1].
3.2.10 temma. Define the function K :(0,1) X[0,1] — R by

3f(i.n) = (1 —4*") + up* logpl,

()l £(1 - > )+ < icee’  Vje (0,1,vae (0,1,
Proof: Suppose the function / is defined on [0,1] by /(g) = (1- ga) + gJk>gg2. Then
7/ has negative gradient Vg € (0,1), a maximum point at 0 with value 1and a minimum
point at 1 with value 0. Hence /(g) > O for all g € (0,1).
tf(g,0) = 0 Vg £ (0,1) hence the inequality is true in this case. Now

So #f(g.u) > 0Vg € (0,1), Vu £ (0,1] and

*re> S < l) e (- &)+ v, e (0.1).vue [0,



3.2.11 Lemma. Define the function L :R\{0) x (0,1) — R by

U*.«) - Z(1- .MLees)(s' e~ 1)- log [*I(1 + «)*d - - f***).
Then ify > V>/1- 1,
VE(f*,1).
Proof: Split L anI\ and /j defined aa:
<.(r.«)e= +

Cov) m IOfIFHI + @*<1 - ack - «'o' >

Then £.(«,¢) = 0 if and only if !, («,¢) - /,(*,¢)
Now /] (*.y) ia a cubic in * with a negative leading coefficient and /i(z.y) =

= 0 when
*=1*=-1/y<-1or*=1/yJ> land /i(0.y) = -2q < 0. Therefore /i(*,y) < 0O
for * € (0, 1)

/a(*,y) = 0 when loglz] = Oor when (1 - 2y* - y***) = O, that ia, when z = *1 or
L= =Uzyll< _1, I= wi
<0, for Izl
o, f and sign properties of a negative leading
>0, for |2
coefficient quadratic it is easy to see that
a>no». {1,117}
fa(z,f)< 0 for , <=Uzjo1

-1 <* < min{l,

AEEL<.<_1

Also M a — 0% than f,(a,f) —* -00, and aa * -* £00 then /,(*,«) - . -00.

Soiff > (y/5—1) then [i¢tU < 1and by tho nbovo <,(»,¢) > O for <r et
Therefore, as /j(z,y) — -00 as z -* 0+, /i(2,y) and /j(z,y) must intersect somewhere
in the interval (0, but not in the interval

Therefore, if the requirement that yJ > is added, which after simplification is

y > 1, the functions Zi(z,y) and /j(z,y) do not intersect in the interval [ya,l),
that», L(z,y) # O V* € [f*. 1) wherey > VAVA- 1

3.212 Lemma. Define the function J : (0,1) x (0,1] — R by
S (L CoHi- Cere)t Iotl,, ~(" (1'% A D+ ,)

Then 3Q € (0,1) »ilcb fiai V« £ «J, 1), V« £ [0,1)

H<- (0o - «Hi-«>+10," "% ?2 NN
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Proof: Suppose u / O then

SR IV d - eres - ko Ol e*m)

it ;uC )i [<1- < #<)5¥(i - «»la +"~mm

S k*L<id m[(i -, +RHL+ <e'm) - VT )Y
=- (1~ 1V O1+ SV ATV AT 20 1)
- o, f3(1+ ) - 3, 1x- - mr ]}
= - et >kt 1)
kol Pl 2,01 - e<a])

I the substitution x = g3 is made inside the bracket, noting log* = ulog g3, it may
be written as

2(1 - X1+ £5)(F** - 1) - +F)*(1 - 205 - frxx)
Now by lemma 3.2.11 if ¢ > VA/5- 1 this is non-sero for « € [i1,1). In fact it is an
easy consequence from the proof that £.(*) < 0 for * € (¢3,1). But the substitution

* = 9* gives x € [«3, 1) since u € (0,1] as required. Also, as can be easily seen, the
multiplier in front of the bracket is positive for all g € (0,1), for all « € (0,1]. Thus

So as 7(f,0) = 0 for all g€ (0,1)

W)l < W Di-

t'xi- 14)+ fog,afsil-i A y tq

Now the Taylor series expansion for logg3= log(l - (1 —q3) gives log g3 < —1 —q3).
so



A simple analysis of the function 1—y8- 2y4 gives that J(y, 1) < 0 ify 6 (Qo. 1) where
Qo is the unique solution in (0,1) to 1- y8- y4=0. If « = VV/3- lthen

i-%-V =V5(V?-1)0- mASJ'A-i) <q

as the last term is negative. S0QO< vV 5 - landJ(q,1)< Oforally 6 (VA/5- 11).
Therefore

WELO- - (d- FKI-9+0." ,(1- A J»)) v, e(AvS-i, 1)

Hence have result, where Q = vV 5 - 1

With the information accumulated in the previous lemmas 3.2.4-3.2.12 it is now pos-
sible to prove proposition 3.2.3

Proof:
SENG>+io<+d) - 1y
=£ {{(N00+V,(«+d)-j~" n<)mk}
wE TV, - Yy + [(n(+»- nwi}
=£ £ {V.W - y,(-+<)+«(ner+1)- y,(»)} m

and when u= Oor 1

V.6 N.Vy € (0,1)

So the maximum value occurs at a turning point of log{ g*$?u) [ 1) wel
respect to u, that is

herefore consider the function X :N x (0,1) x [0,1] —* C defined by

Y(n *<)\ JEw+«»
h CESNZ, ) Z ()
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Ze(" )M L+Zj<* ((I+th-ui)l)

in the notation of lemma 3.2.4, so

«. U+V-HMI) lo* *
-In-1+3d] _ ar-1+
Py — (4, 0.-U )l «*n(n..

in the notation of lemma 3.2.4. Alao from lemmas 3.2.6 and 3.2.5

with
@l<1l V.€N,V.e [0,1],V, € (mu ( -jf,
Hence log {1 + MO(n, g, u)} may be written as an infinite sum
i-oro-w o

mel
provided 9 is large enough. Therefore X may be rewritten as

giving
Urk,.-)!'s
+ 1E — (AfO(n i, ti))m].
Now
. (1+ DL+ r— *>)> IT,(n,,,9)
+ulogj’.
: (i+ .- >

see the proof of lemma 3.2.5

f L.

' 0 +*5*

a—m (-, - ) (! [Af(nt.u)-A

(14 o=)> (14 ,>-"e>m)> Xi(n.y,

)

s (1- 5 wrme) [* (-,
@+ 9>"-»)i(l )

1-
+ fI>"-1+a-)a

>1

-9l

A



From lemma 3.2.4

E.Grfrrg«M 152sff

-o«="(irn="=)i)

ence have

ko
T*'g
L (rat+))
MO - «'m) > (5.0.4)

IX(n,f,M)]

<« W (G oM (GOl + fLer Ik <o, fL K 1- )]

1111-»")-n "lot,L-(I - ,"KI - <%) - logfl*<* 0* 1
+ Sy -y

V» €N,V.€[0,1]», £ (Muj i/Vj-1, - ~ | ,lj

using the results of the previous lemmas

SR e mu (- %)+ CSHL- t)- Pa< 1/ 4y )
+IM. +M,XI <*)4].

Therefore in particular

<,*-m [M,mu{(1- m)+, ke, \~(1-,"KI-»*)- b« (13" ) +,)1}

Vet € N, V€

2



So

+ (A4j + A*a)(l - )3

But limftiBHSs: 0 as limfji k>gf2/(1 —g3) = —1 Therefore

that there do actually exist g in the range given.

3.3 Convergence Theorem.
The results of subsection 3.2 can now be used to examine the behaviour of one point
correlations as the critical temperature is approached.

3.3.1 Theorem. Suppose M € GL(p,C) with its eigenvalues denoted by Xi,...,Xp

and Xi € C\(—00,0] for t= 1,...,p. Define the complex numbers d fori = 1,..,,p as
a= ~2 ofXit) .. .c(Xit)  wheree(A) = A+ A-l- 2,
1& ,<"<*&

and the function G : (0,1] —»C by

Now let 7= 7, 272 dy t/en the following holds:

) If Re/>0 then  lim(ffa(A/)) = +oo.
) 1f Re/<0 then  lim(<ra(A/)) = O.
3 1f1=0 then Um(s, (A/) = 1

3.3.2 Remark. The imaginary part of | determines the direction of the outward or
inward spiral occuring in cases (1) and (2) which will be explained in the proof.
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Proof: From Remark 3.2.2

= Kf(n)  in the notation of Proposition 3.2.3

+1°°Y Md'

Therefore

lim {log(<r, (Af))} = lim 002 4lim [ Y.*\ A*

the first term being straightforward, the last given by Proposition 3.2.3. Now

so make the substitution y = g,m~1 to get

?t!.i)mv iy:.i) VA

which is some complex number Re /+ i Im /, since it is a definite integral of a function
continuous on [0, Ij. Soif / 0 the ([e-U) term will dominate and the behaviour is as

follows:

(1) Re/> 0;1m /> 0: “limf,i ff° Yt(x)dx = 00+ 00*"
That is <a(Af)) spirals outwards in an anticlockwise direction as t ] 1.

(2) Re/ > 0; Im/ < 0: “lim~i  Y,(z)dz = 00 - ooi"
That is (<ra(A/)) spirals outwards in a clockwise direction as's f 1
(3) Re/< 0;Im/>0: ff° Yt(x)dx = —o0 + o0i"

That is (<ra(A/)) spirals inwards to zero in an anticlockwise direction as s f 1.

(4) Re/< 0;Im /< 0: “lim,i, Vf(*) dx = -00 —o0i”
That is (<ra(A/)) spirals inwards to zero in a clockwise direction as » f 1.
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(5) Im/ = 0so/=Re/ and /.22 VE(*) dz = agn(/)oo"
That is if /> 0 then lim..(<ra(A/)) = 00
and if /< O then lim ., («a(M)) mO.

(6) Re/ = 0ao/ = Im/i and F° Yf(*)d* - sgn(Im/)oof
That ia if Im/ > 0 then (AMA#)) rotates anticlockwise around the circle of
radiua R
and if Im / < 0 then (<ra (A#)) rotate« clockwise around the circle of radius R
where R = exp {Re (flog (I + £i.i */<*))}m

Hence the interesting case occurs when 1 = 0.

Applying L’Hopital'a Rule have

So placing this in equation (f) have

Bral<*<,,. («» . | log1l1+ logl 1+ £ jjj +0

=0

Therefore lim(fi(ffa(A#)) = 1

Theorem 3.3.1 gives a classification of the critical limit ofone point correlations, which
will be investigated more thoroughly in the next section. But first some remarks on the
negative eigenvalue situation.

3.3.2 Remark. Firstly the special case when the eigenvalue is —1. From Proposition

1>0 1 1

This is the square of the spontaneous magnetization for the Ising model, thus its critical
temperature behaviour is already known, see [0 1], [02], [Y 1] and [MI,Chapter X] for
example, namely

Um<a(-1)) = 0.

Consequently, in some ca--~, the value —1 could be added as a permissible value for
an eigenvalue with its treatment being separate from the others. That is, suppose the
eigenvalues of M are Ai,..., and -1 with the reduced matrix M ' having eigenvalues
Ai,...,Aj_i. If M" satisfies Theorem 3.3.1 cases (2) or (3) then

hm(aa (A /))=0.

If however M ' satisfies case (1) then the limit is not clear. This is due to the fact that
Lemma 3.2.1 fails if A= —1. Consequently Remark 3.2.2 fails meaning Lemma 3.2.4 (i)
fails and this bound plays a crucial role in the convergence argument. Having said this
| would suggest that if the limit exists then it is sero since the individual entries of the
infinite product tend to sero as g tends to 1.
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For A negative with A / -1, defining the aequence

= @P *>(—A)J , for /7€ Z{,

or equivalently

El

= P [ANIITP -loc(~A)] ® for n€ N,

w € (0.1) for all n, g, = 1but for each «, (<r.(A))~,., = 0. Thia suggesta

that for matrices with auch eigenvalues the limitasa f liaaeroif anyauch limit actually
exiata.



Section 4
An Example op a Non-trivial Limiting One Point Correlation
4.1 Introduction.

The previous section gave a condition for a matrix with non-negative eigenvalues to
have a monodromy field which has non-degenerate, not sero or infinity, critical limit
correlation. However, as yet, the existence of any non-trivial matrix which actually
satisfies this condition has not been shown. It is this matter which is considered in this
section.

411 Notation. Let  denote the permissible values ofci,....Cp, that is,
<*o{<o. <*)€<? £ «</ oMM (> *> | -
»Sii<-<iifip
«(A)« A+ A GC\(-00, O]Vi - )
and define the map | :CR — C by
Then the object of interest is the set of points in with /(ci,... ,Cf) = 0 which will

be denoted by Cf
4.2 Investigation of C* for p = 1,2.
4.2.1 Proposition.
(1)0€<? Vpfcl.
(2) ¢ = (0).
Proof: (1): 7(0,...,0) = 0 is obvious. This is equivalent to M being the identity
matrix and is the ‘trivial’ situation referred to above.

-*ndy, where

\%
e€Cj, = {c€C:e=A + X~| —2,A€ C\(-00,0)}
C C\(—00,—4].
Suppose ¢ = a+ ib then

so the argument is either in the interval [0,») or (—w, 0 depending on whether b> 0 or
b< 0for ally € [0,1]. Thatis

1f b= 0 then e = aso c is real.
Since for all y € (0,1]

it is simple to see that

Thatis 7(c) = Oifand only ife = 0. So C1l= {0}.



Note. In the above the definition log(x) = log || + inrgx waa used where the branch
of the logarithm waa taken along the negative real axis.

4.2.2 Remark. This proposition may appear a bit discouraging as it says, for the scalar
case (p=1), there exist no non-identity complex numbers A € C \ (- 00,0] which have a
relation lim,.t. M »»

However the reason for this is the ‘lack of freedom’ in the scalar case which will now
be explained. From the proof of Proposition 4.2.1 to get /(e) sero the imaginary part
of e must be aero, thus /(e) is now only determined by the real part of ¢ and this one
variable dependence is not sufficient to get a non trivial solution. That is one variable
does not provide sufficient ‘freedom’ for a non-trivia) solution to exist. However for
the larger dimensional cases (p > 2) there are more variables present and hence more
‘freedom’ so a non-trivia] solution is possible. It is this that will now be shown by
considering the simplest case p = 2.

¢ 2@

Proop: By Proposition 4.2.1 (1) it is sufficient to find non-sero c,,cj € Cj, such that
/(ei,ei) = 0. To simplify this problem somewhat, consider the restriction where c(A.)
and c(Aj) are real thus forcing c, and cj to be real by definition.

Now denote c(Ai) and c(Aj) by e and d respectively then

4.2.3 Proposition.

c,d€ (—4,00), ci=c+d andcj= ed
Thus
% < c+A s e,
0< (c+4Kd+ 4)= O + 4c, + 16,
and 0 < cj - 4cj as c, d real.

Hence the permissible values of Ci and cj are those in the shaded area of RJ shown
below.

C*-4c,-0

Define the function Feiea:[0,1) — R by

A Ja . Vie+ (20 + c)y+ c.yal

————————— (1T »)5---—--
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Now using log(1+ *) < * for * / 0

Jo v

by a simple calculation.

Thus ifcj = -flci then I(c\,cj) < O.

By a simple analysis of the function see Remark following this proof, if c2 =
-Acxthen FCl,,(y) > Ofor all y€ (0,1) so /(ci.cj) > O.

Hence, by continuity, for each c\ such that 0 < Cj < 8there exists a c2c,) such that

-4ci < cj(ci) < -6e,  and /(ci,calci)) = O

That is (ci,c2ei)) € C2for 0 < ei < 8 s0 CL~ {0}.

4.2.4 Rkmark. The proofof Proposition 4.2.3 demonstrated the existence of a partic-
ular set of non-zero points in C3 without specifying if these were the only such points
in C2. This problem is now considered:

(1). Suppose ci and c2are real then either c(Ai),A3 are real or c(Ai) = c(A2).
1): If (Ai),c(A2) are real then the situation is as in Proposition 4.2.3 and it is fairly
simple to see the following:

*) Ife,.ej > Othen /(c,c,) > 0.
() Ifci = 0,cj Othen s(x ) has the
(e) Ifei 7 0,¢3= Othen /(ci.cj) has the
(<9 Ife, < Othen I(ex,a) < 0.
) Ifei >0,4ci + cj » Othen /(ci,ca) > 0.
[ Ifci > 0,6¢i +cj g Othen 7(ci,ca) < 0.

This gives the following picture.

I(C..Cj)<0
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Thin explains the restriction, in the proof of Proposition 4.2.3, of ¢c( to the range
0 < C] < 8as the existence of a cj such that /(ci,c2) < Ofor c1> 8is not known.
With ej + 4ci < 0, which is true in the area of interest, it is possible to deduce the
following about the function FQLEY(y) defined in the proof of Proposition 4.2.3 (See
Appendix for the proof.):

(i) '*.p..»-0 N .«m >0 ..

m o> >-i .0= i)>a

(3) Vci such that 0 < C] < 16, Bpo € (0,1) such that

o< <1: -0r, <a

Hence for 0 < c> < Id the logarithm in /(ci.cj) can be rewritten as an infinite sum.
Taking the integral through the sum this may be calculated leading to the following
infinite sum evaluation of 7(c|,c2).

where

with e = 2+ cj/ci.
This infinite sum can then be used to approximate the c2(ci) given in Proposition
4.2.3. For c\= 1this gives an approximate value for c2of-5.93.
11): ¢(Aj) = c(Aj) = a+ ib say, where bjb 0.
Then Cj = 2a and c2= aa+ b3so changing to polar coordinates

where r > 0and 0€ (-», 0) U (0, #).
Hence if cos* > Othen G, t(y) > Ofor all y € (0,1) and /(2rcos0,r*) > 0.
Using log(1+ x) < x for x / 0

1(2r cos O

= rcosfi+ r*/12 = r(cos6+ r/12).

Therefore if 0< r < 12and cos9< -r/12 then 7(2rcos0,r3) < 0.
This gives the following picture.



So, by continuity, for 0 < r < 12 there exists a 0(r) such that
0> coaO(r) > -r /12 and /(2rcosO,ra) = O.

Solving the equation
A+ A-x= (X + %), y#0,

or alternatively
A*—(* + ©A + 1-0,

for A demonstrates that a A exists that is strictly complex for all * + iy with y ji 0.
Hence all the values a+ » € C \R used in the previous argument are possible and the
values of c> and Cj given by 2rcos0 and r3 respectively are permissible. Therefore the
points given above are further points in C3.

(2) .OneofCi.c, is real the other is strictly complex.
This set has no points in C3. This can be easily seen as follows:
The imaginary part of /(ci,ca) equals

I (< ot > e r,

depending on which e< is complex. An argument similar to that in Proposition 4.2.1 (2)
gives this is non-sero and hence (ci,ea) £ C3.

(3) .ci and cj are both strictly complex
Cannot really say much about this particular case. One problem is the description
of values which are permissible. If Ca is considered, ignoring the points where the
logarithm would not be defined as these cannot be permissible, the following can be

Suppose ¢j =aj + ibj forj = 1,2
(i) 61,63 have to be in the shaded area for the possibility that (
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4.2.5 Remark. For the cue (1) 1): above, aacj approaches —(4cj + 16) the logarithm
tends to —oo at y = 1. This suggests that /(ei.cj) < O for some cj(ci) in the interval

(-(4e, + 16) + c<e,),-(4e, + 16))
This in turn suggests that there exists a c/~(cj) such that
= Oforall ci > 0.

similarly for the case (1) I1): as cos® approaches —1, i.e. 9 tends to W, the minimum
value of Gr,$(y) tends to —1 causing the logarithm to tend to —oo at this point. This
suggests that

7(2rcostf,ra) < 0 for some 9(r) with cosO(r) € (-1,-1 +e(r)).
Hence this suggests that there exists a ff'fr) such that
/(2rcosO\r*) = Oforall r > O.

These remarks show that C3 contains points other than those given in the proof of
Proposition 4.2.3. However its complete structure is still unclear.
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4.3

Investigation of £7.

The structure of this set is not clear for p > 3, as shown by the previous analysis of
C1, however the following properties can be seen fairly easily:

(1)

>)

(5)

(0)

{0} mc*ccrc eeccre

where the inclusion Ck —* Ck+l is the map which takes

(et......e*) € C* «=* (ej.......e*,0)€ C *+1.

This is equivalent to embedding the k x k matrix corresponding to the element
of C*ina(k+ 1) x (A + 1) matrix by adding a 1on the diagonal.

Hence & 2 {0} for all p > 3, that is, for p > 3 there exist non-trivial p x p
matrices Mr whose monodromy one point correlation (r( (M,)) has a critical
limit.

c* xr* cc"+m.
The map at this level is equivalent to placing the n x n matrix and the m x m
matrix down the diagonal to form an (n + m) x (n + m) matrix. The formula at
the C* level is not given as it is not very illuminating. Note that the map given
in (1) is a special caae of this map when n = k and m = 1.
it

/e = ..cp)eC "t 1+ 1>l V,£[0,1]3
1 =
and
L= 1+3 I<1 Vijre [0,1]]
{<'e 1 u (T+or)
then £7 n(/+ u /7-) = (0).
Iffory = i,.. .,p with p > 3
vfo fle <*)€EC': c€Cnn,./i;"<(/)fio)

then £7 , y f.
This follows from a similar argument to that in Proposition 4.3.1 for the imagi-
nary part of / («,,... ,Cp) since only one of the Ct'n, namely cj in |j, has a non-aero

imaginary part.

A slight generalisation of (4) is given by the following:

Suppose C j=a j+ ibj for j = 1,...,p. Then if the non-sero bj’s are all of the
same sign the argument remains in [0,») or (-f,0] and thus (ci,... ,<y) ~ £7.
In fact if for all y € (0,1) either




N = thi + 2na+ ses+ pnf - 1,

M = 2ni + 4na+ ===+ 2pnp.

See Appendix for a proof of this.
Note. Each non-sero point of Cf, or indeed C~, actually corresponds to a family of
matrices since it only depends on the eigenvalues of the matrix and is invariant under
the transformation A m A-1. The origin, however, only corresponds to the identity

matrix.



Section 5
N Point Correlations
5.1 Introduction.

The two previous sections deslt with one point correlations and their critical limits.
This section will consider higher order correlations. Unfortunately, as yet, there are no
concrete results concerning critical limits only a conjecture. The starting point for this
analysis is the ‘product formula* , see [P4] or [P3], which is stated below for reference.

5.1.1 Theorem. Suppose that gke GLqg(H) fork= 1,..., N with
T(.)- C.- [**  CGtq(H)

Suppose aiso that dk is invertible for each k = 1,.... N. Then

N

<#i #n > -

provided (g\ -mgs) / O, where:
L denotes the N x N block matrix with entrier

fori <Kk
fori >k,
and fori = k

lit=0
and R = R\© R70 m--© R" where

o
5.2 Conjecture for limiting N point correlations.

The ‘product formula’ given in Theorem 5.1.1 gives rise to the following two Corol-
laries when applied to the specific case of monodromy fields.

5.2.1 COROLLARY. Suppose Afj € GL(p,C) and has no negative eigenvaluem for j =
1.....n. Then

where L and R have the structure defined above with

Proof: By definition T(<r.(A/)) = e,(Af). The condition on the eigenvalues of Mj
implies that dj is invertible for all j = 1,... ,n. Hence Theorem 5.1.1 gives the above

<ecn-<e (*r. vie I'.



5.2.2 Notation. Let the expression (1+ LR) present in Corollary 5.2.1 be denoted by

X(Mt...

and let

5.2.3 Corollary. Suppose Mj € GL(p,C) and has no negative eigenvalue* for j =
1....n. Then

detaX (Aii.......
detaX (Af,,. .A#.)

<., (ARD). .. (AZ)) = (O(*Z7¢  Mn))

Proof: Apply the product formula to
<HAH,LAR,)) = <H(AH).LH(ATL).

This together with Corollary 5.2.1 gives the result.
5.2.3 Conjecture. /lim ti(<r(A#i... M,)) exists then
lim,Ti(er., (M t) .. (Mn)) exists.

5.2.4 Remark. To prove this conjecture the existence of a limit for the determinant
expression is required. This appears intractable at the presentsince s,,(M) £ GLq,(H f)
where Qcdenotes the critical temperature Q, that isQe = lim.ji Q. Note the conjecture
is trivially true when d] = *me= a« as expressions are equal.

5.3 Order dependence of correlations.

Another problem to consider is the invariance/variance of the n point correlations
under the obvious action of Sn, namely permuting the entries. In other words to what
extent does the order of the monodromy fields in the correlation matter.

5.3.1 Lemma. Suppose #a(a - b) = 0 and »i(a) < »i(A). Then

(1) a.(AHwW*(N) = fir(A#NAF->_(Af).

(2) e>(N)*n{M) = e.(M)<rt(M-INM).

Proof: First note from [P2,(2.22>]

S(M)XS(M)-x= *+ (/ ® (M - 7)) />/*

+ (/o(c-m - 0)
(L +(/r(*7-m-7)) 1>,,).

It is a simple consequence of this that for p > 0

+ 1)) PI-p.01),
A(M).="(M)=" = .=»(/ + (;» (/*-' - 7)) P|O.Fi)

From the defintion of t(M) it is simple to deduce that for /< 0

(@) e(A#AT)(/ + (M - 1)P[1,0]) = (/ + (A# - )P (I,0])s(MN)
=e.9 1+« ®AFN + Pff.O)® (AT —1),



and for k> 0

<u
(A**)(/ + (*-> - /)PTO3) - (1 + {MNM~IN=IN~1- /)P0, A]) M N)
«f-®7/, ¢ ct® MAT+ PfI).f] 9 - /).

M N)(!+ (Af - //(/,01)D (MN)-X- (/ + (Af- 7)P[£,0])t(M N)D (M N)~x
= (/ + (A#-7)P[f,0])i(A/AT).

But the right hand side is in the domain of Tq so
r,, st A/ ®@s - tpraipyismrra) =rQ(/+ (af- I)P[l,Qi{MN))
and it is simple to see that this can be rewritten as

r«<enn))r<D(«»r,, <+ (« - )P|/,0)
= (/+ <« p{,0)r, <cMW>» r (osinao)

That ia, if | denote« (1,0)

rlw vin W M »)'" - NnOHMMTr'iOH/rt.

«r(AFF)#E»(1# ) <*)* 1= »(M A M A f)-*#,<A#)
* K(AHATA#-> (AT),

» (ATVI(AZ)- TT(ATAT) =

sofor /< 0
<r,(M)<r(N) = <r(MN M ~x)<n(M).

Here the following resulU of [P2] have been used
= (de1«) . <m—>1, (,<Af).,,(«)-"),
and» . (¢M »)-'» «.(V)-'n_(M)osban =,(>»- u)- 0
No» if n denote* r(T)*> = T(T)- then

n(Mp,W) =.r(<),'e..,(MW»)r(t),< 1
=*r(t)*>»(*F

e " (5.-.(M jn»)-**-1 by the above
=* ) * »(AfivIVE Pr(«)-*, r<)*s(M)r(»)}—e=»-*

» I(ATNAZ =) (M ).

If YV is replaced by M ~'N M the other result follows.
By the same method the result

<r.(A#y*(Ar) = *>(N)ea(N -xMN),

where *t(a) > *i(6) and wa-h) = 0 can be obtained from the equality (2). However,
since aA,n and M can all vary this result can be obtained from the one given.
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5.3.2 Corollary. If#a0 - *) = O then

<HEHF<)-wvy.wy
Proof: Assume a < b (For a > b switch roles ofa and 6.)
By definition
S(MNM~1) « (1®AfsAT)(I® M~1),

and s(Af) may be written as

S(W) = (1 ®W)a(W)(l »«

Thus the factorisation of <r(MNM ~x) and <r(Af) can be written as

»(watw-") - 1, ((i® ME/VKI@w -m))r,, (0 ® M)D(W)(i®w-1)),
<ssW) = r, (LO@W)I(M)(l« w-D)r, (1®W)D(W)(1®W 1)).

But (1 ® A/) and(l ® W- *) irt trivially in the domain of r, hence the above can be

rewritten as r<i«U)T,, (<) r E)) (i Rxcm),

r(t®w).r<, (a(M)) r (C/v) x (i ® w -1,
respectively. Therefore as T and x commute with both (1® M) and (1® M ~1)

and

» (W W W KW ) mf(I® «)e.(W)<A()A(1@ M -,).

(. ()., (V) = (e, (M A(M -'K(V))
= (r(i ® W), (Ai).(W)r(ica''))
= (e (<)

5.3.3 Corollary. Suppose ir3a,) = aand V, £ GL(p,C) is upper triungulur for all
i=1..., n. Let w£ Sn and let

2 (#,(3/,)...#,. (A/*))
denote the action of the permutation r on the monodromy Helds. Then
<*).. e..(W0)) = <+(»., (W,) a..(Wo))).
Proof: Need only examine the case when x is a transposition. Hence consider

eeeF CiLi(W (LD)FII(W Z)rjItl(ii/ (+1)...

Using Lemma 5.3.1 repeatedly this may be rewritten as

L *si-l(Arj-i)'ai (E0)*A+i(Mj+i)...e..(AL,),



rhere
. X, X,uxfN O xMxf! x‘ - {L. iH>!

f/ ifQj<ar
with v - { ~

For .+ 1< *<i - 1,
. J M,MkM ;"

N P
with for ¢+ 1< 4 < i,

ifad4< at

\ Mk ifad4> a*.

As the Afr for r = 1,...,n are upper triangular M k are upper triangular and moreover
for k= ....j

diag(Mt) = diag(M»)

Therefore aa the correlation can be expressed as the determinant of an upper triangular
matrix in this case with the diagonal entries derived from the diagonal entries of the
Mr

(a., (Af]) (A#)) = (@,,(Mi)... #.,_UA/< )T, (XTI 41(A/4+) ...
e CAFUI-)*FAH )Y L (Mi+]) . <r.(AZ,)>
= <# . (AH).. WA LA K, (AT )W A1(Af<, ) .
0L, (AH )W, (AT)» ALALI+,)  ac(AL)).

5.3.4 Remark. Corollary 5.3.3 suggests that for n > 2, (*«, (Aft) .. .cr., (AZ,)) is not
Sn invariant for general M it though it is if the Mt commute among themselves or there
exists an S € GL(p, C) such that SMiS~1 is upper triangular for all i = 1,....n.




Section 6
Boson-Fermion Correspondence
6.1 Introduction.

Boson-Fermion correspondence is the term used by physicists to describe the linking
of boson (CCR algebra) and fermi (CAR algebra) systems essentially through projective
representations of loop groups. The particular situation of interest here is that of
‘temperature states’ on loop groups as described in (C5). A brief summary of this
now follows.

6.2 Summary

Let H = ¢'(S1,C) and A(H) the CAR algebra over H. Define the one parameter

group (ri :t € {0,4»]) by

rIf(.) - «*'m (++<  »€S.aCS'- (0,2)
and let A denote the generator so that
M *) = (-id/d, + 1/2) #(s).
Now if the operator Ag is defined as
e~'fql + e“**)-1

the (r,0) KMS (temperature) state ug, O € (0,00) is the quasi-free state determined
by Ag, where r refers to the evolution (automorphism group) of A(H) induced by (r.).

Note that Ag — P- uniformly as 0 — 00 where P_ is the projection onto the subspace
of £%(5*, C) whose elements have fourier expansions in etkt with no k positive or aero
terms. The projective representation of the loop group of U (l) corresponding to /*_
giving rise to a boson-fermion corespondence was studied in [C7].

Let Wg be the representation of A(H) corresponding to the state wg. This is given
in the usual “doubling up” manner, so that wg ~ tp»\a(H90) where A(H ® 0) is the

subalgebra of A(H © H) and p£ is the projection on H © H given by the 2x 2 matrix
( a, AR
(¢po-it,) /s >-mo )"

with WpO denoting the Fock representation defined by P?. Then wpt and r~ - are

Alsowg and  are quasi-equivalent.

If ,+7  smooth maps from S| to 1/(1) define the unitary operator ;on K = HOW
to be multiplication by the function

The multiplicative group of all such operators is denoted by Map (S1,1/(1) x 1/(1)).
Each element of the group induces an automorphism of A (K) which is implemented in
the representation Wp». The subgroup of particular interest is Map (51,C/(1)) which
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f Let "i4 represent the implementer of this automorphism in \mwen the operators

1>{1) lor 4 € Map (S*,17(1)) define a 0-representation of this group with the 2-cocycle,
», being independent of /). Moreover if L m Map(S',R), L © L can be identified with
the Lie algebra of M ap~'.f/tl) x 1/(1)) and

p(4), d€ Map(5*,1/(1) x 1/ (1))
is a representation of the CCR algebra over with
A-W ), T1 Hh>s (i)

a representation of the CCR algebra over L. Also

W oexpi nyi
vV 0
where
d(s) = expi(n<  +  /rcre).

with the sum over non-sero k.
If the starting point is now reversed, that is, define a projective representation of
Map (S1,t/(1)) using the function given above. If a ‘blip’ 0a A is defined as

where y«,* denotes the 'kink’ function defined by

and 1>(.) denotes the projective representation then as A — |, Ba\ converges to a
fermion operator B(g), g € 1*(S*,C) » « suitable sense. Moreover the time dependence
of the ‘blips’ is given by
e ol
and this gives that the function defined above isa KMS state for the C*-algebra gener-
ated by the B(g), g € L*(S*,C) with evolution given by {r,}. Hence by the uniqueness
of KMS states on the CAR algebra this is the same as the state originally defined at
the beginning through Ap. For more details of these constructions see [C5], [C6], [C7]
and [CIS] for example.
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Section 7
Boson-Fermion Correspondence
with Chemical Potential ft
7.1 Introduction.

This section will extend slightly the notion of Boson-Fermion correspondence given
in section 0 to include sn extra variable ft in the KMS state. This variable ft is referred
to as the chemical potential and appears in the quantum statistical mechanics picture,
particularly in the formulation of Bose-Einstein Condensation on the CCR side.

Consider the one parameter group {rf :t € {0,45]} where

rf#(s) = e-*» (s + 1),  fteRgel*(s’C).
Then h* defined by
w*i(«) = (-id/ds - ft)g(t)

is the generator of rf and hMyn = (n —ft)gn where | denotes the corresponding operator
on the fourier transform space with

Each rf induces an automorphism of A(H), H — .C), via
«(F) =* (M)

and hence there is a corresponding automorphism group rf given by the above. So the
(v**,/2) KMS state uiptMfor 0 G (0,00), ft € R is the quasi-free state determined by Apit,
where AgiMis the operator

e~ (1+ «-"*m* e
That is
“0||I(a(«i)*a(f3)) = (fj.A~Fi)#.

Taking fourier transforms gives

> (i +
7.1.1 Remark. As /J—»00, where

fOo formw> M
\1 forn < [p]
{0 for n> ft
/2 forn= ft *rEZ.

1 forn< ft

with [*) denoting the integer part of X. This is interpreted physically as the property
that only particles with energy less than or equal to ft occur, which is described as the
Fermi sea, see [B4.P55].

Let *0,0 denote the representation of A (H ) determined by . This may be realised
by the usual ‘doubling up’ procedure [P 11], Set K = H © H and define the projection
Pi* :K — K by the 2 x 2 matrix

pfit _ f Af
U2<i-w*




then ia the restriction to the subalgebra A(H ® 0), isomorphic to A(H), of the
CAR algebra A(K) over A of the Fock state VpP+ on A (#f) defined by P *'m Moreover
the cyclic vector tip,? for the representation fr»,. corresponding to up».mis also cyclic
and separating lor A(H ® 0) and

7.1.2 Lemma. The representation of A(K) m equivalent to the representation
r~> where

mme *]e

with P . the operator whose fourter transform acfs as
fO0 forn>0

‘->mmifc forn< 0’

and M = 1- P-.

Proof: Wpt, and »p - are equivalent if and only if (F t* - PS®) a» Hilbert Schmidt

operator [PI1]- This is true if P- —ApIMand AU\ (1 —Ap~)11 are Hilbert Schmidt

operators. Now examining the fourier transforms of these operators it can be easily seen

that

25Tt=n(<".. - Aj.,) = - £ «-«"o> (1 + £ (1+ .
nto »1
and i
SALL))EE W st (T4, -c—»))m

So (P_ —AptH and (Ap~ (I —Ap,,)) are trace class as

o (1 +e* )" <> G H.\Vi? € (0.00),
n*l
by comparison with £A 7 nJ where K is fixed by 0 and p. Hence (P_ — Ap,,) and

(1 —Ap~yt* are Hilbert Schmidt operators as required.
7.1.3  Remark. The representations *pl0 and *p_ are quasi-equivalent. This follows if
and only if the operators (1 —AptP)x* —P+ and Ap * —P . are Hilbert Schmidt. Now

-al2P_=13(1_(1+
«0v
2xTrace(l - (1 - Ap+)U)P+ = A (I - (1-f*-*e-*e>)-%/5) < o0,

a~o

(1- A, )P_-ArP*=P. -

So the operators (1 - A7~')P., (L- (L - Ap#),”*)Pf> (1- Ap.*)P_ and Ap,P+ are
trace class. Using

<42 - +0 -

«l-A,)Db -/me)ecl-a,. )k - P+)= (1- AS.)P.+ <l- (1 -

the result is obtained.



7.1.4 Remark. The above lemma and remark were written in some detail aa the fact
that aome operatora are in fact trace claaa will be of great importance in a later aection
where the Hilbert Schmidt condition ia not aufficient.

7.1.5 Remark. The operator defined aa

satisfies

Pi-
Moreover from the reaulta of the previous remark 7.1.3 (I-H 'i,*) iaa trace claaaoperator

and det Wfiiom 1.

7.3 The action of Map (S\i/(1)).
Let di.  be smooth maps from S| to 1/(1), that ia elementa of Map (S', 1/(1)).
Define the unitary operator d on K to be multiplication by the function

and let Map (5 1,t/ (1) x 1/(1)) denote the multiplicative group of auch operators Theae
operators induce a corresponding Bogoliubov automorphism, r(d) on A(K) given by

«(*) ~ «(eft), KEK, where d *(«) = *e)*(*)e

These automorphiame are implemented in the representation , see remark below,
so there exis
that

721 Remark. For implementability require that (dPS® - PJ°d) w = Hilbert Schmidt
operator [S4]. The property that

for d smooth, d(s) = 1/73#  d*«**4, enables this to be deduced. This property will
be of use in a later aection which ia the reason for its inclusion here.
Now by the irreducibility of the representation x/>— the map d =-» Too (d) defines a

projective representation of Map(51C/(l) X 1/(1)). That ia, by fixing the phase of the
implementing unitaries, a 1/(1)-valued 2-cocycle, <, is defined on Map (S ",17 (1) x 1/(1)

such that > (<)r_ (%) - r,, (,9).

But the representations x/>- and Wp$are equivalent, hence there exists a unitary
€ W such that

SV (e<M)m



Thus if the unitary operator Tp~ ia defined as

this satisfies j
* % £ .
0 COr@® - (=<)m
That is 1>,, (d) implements the automorphism r (d) in the representation LA
simple calculation also gives

PR () res (o*) = f(*ira)res -
So the map d «*“P.m (d) defines a projective representation of Map (S*,t/(1) X 1/(1))
with the same 2-cocycle, 0, as r, (d)m

Map (S 1,1/(1)) denotes the subgroup of Map (S 1 1/(1) x 1/(1)) consisting of multi-
plication operators of the form A~ Jj which will be denoted by d- Then the above

shows the following.
7.2.2  Remark. The operator Tp# (d), d € Map (SAC/il)) defines a <r-representation
of the group with the 2-cocycle a being independent of both 0 and ft.

Let M denote the von-Neumann algebra generated by Tp,? (d), d € Map (S1,1/(1)).
As up,? is a (r*1/7 KMS state, M is contained in | i (ff ® 0)] where A(H ©0) is the
C*-algebra generated by the set

with 1> ,, (- 1) the implementer of the multiplication operator (V _°|) ~|C‘|

for more details and proofs.
The evolution r* of the system, that is A(H), can be extended to an evolution f of
A(K) by defining
(«(*)) = «(ff*), v*e K
where
=rfori,

is the extension of rf to K. These automorphisms are also implemented in the repre-
sentation wpt.ii, by T, say, thus giving a map on the ~-representation defined by
oW =T, r, . (*)Tr.
But Ttrpo (d)7 k1 and Tp~ (di)> where
*(
both implement the same automorphism thus
r,r,(«ir,-«r,(A).

where e is a complex number of unit modulus, dependent on d and i. Denote this by
d(d, <) then this satisfies the cocycle condition

rfd rf(L) «# o+,

() <P (M) = *(*.0*(tM M *.,IM

and the following holds.



7.2.3 Remark. The modular automorphism group r *lcorresponding to the state

on A(H) restricts on M to the one parameter group of automorphisms defined above
and moreover the state up,\m i* a (r",/?) KMS state.

7.3 Investigation ofw N IM -

First note that Map (S'.t/jl)) is the direct product of the subgroups

1) ™, = 1/ £ MtpiSLR)./(2») . /(0),jf" /(.)d.- o}

(2) Me= subgroup generated by the constant functions and the functions given by

sm exp(tns), n € Z.
Clearly Me can be identified with S| x Z hence let
Mo = von Neumann algebra generated by /If,* (¢ ):~ G Afo},
Ade = von Neumann algebra generated by (¢) : &€ 5% x Z}.

The previous subsection 7.2 demonstrated that the 2-cocycle for the rA# (.) is
the same as that for Toof-). Defining L as Map(51,R) then L is the Lie algebra of
Map(Sl1,i/ (1)) and L@ L the Lie algebra of Map (5°,f/(I) x 1/(1)). Now the results in
[C9] and |L4] imply the existence of a projective representation of L © L, denoted by
/+— «/»(/) oy. Where J , (f) is a self adjoint operator with

<fW -(/)n .o,

Too (exp(if)) = expiJooi/).
Therefore defining Jp,,.(f) *»
JAD - W-i/KVi
gives a projective representation of L © L with Jp,?(f) a self adjoint operator with
(exp(if)) = expidp,.(f).

The results in [C9] also imply the existence of a self adjoint operator Jp,~(f) with
expiJ p Af) differing by a phase from Tp” (exp (i/)j. The phase of r pt, (exp(«'/)) may
be changed though, without changing the cocycle <, to obtain this modified generator
Jp.n(f) with the properties

=0. xnd T,, (e*p(i/)) = exp</,,.(/).
This choice of phase will now be assumed and the tilde dropped from the notation.
On the restriction to Map (S 1,C/(l)) of the above the phase of r«, (< may be chosen

for ~ having arbitrary winding number w(43 consistently with the zero winding number
elements to give

»e. = RN A

where = exp ifj forj = 1,2, see [C7] for details. Hence
Tp. {*)TPpA+*) = (*. *)I> ., <*i)1#.,(*),
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where

H '*l)' e« {_5 J” (/><*)*(=) - Z16W. ()]}
HH* C Va)hxor- L.(5).()}

For the special case when 4) = **P»/> and ft € L for j = 1,2 this may be simplified
to
»<4,.*) A(Hr,(*)}

But the factor in the exponential determines a non-degenerate symplectic form on L,
hence the canonical commutation relations over L. Thus the map

. ke M*p(s"17(1))
gives a representation of the CCR algebra over L in Weyl form. Therefore the algebra
M o >agenerated by a representation of the CCR algebra.

From the definition of the cocycle above it is not difficult to deduce that

U+ <*)r,* (%) =1, (41)10% (#»),

whenever 4i G Mu and 4i € Me or vice versa. Therefore the algebras Mu and M e
contained in the commutanta of one another. Also the evolution rm leaves these two
algebras invariant. The expression given for the cocycle together with the condition (f)
enables the determination of the expression 9(4,t), see [C5] Lemma 2.7. This is given
by:

» () = . for anyp € R
so that
<<z (> =(Mm-"-"%) " s, <)m

7.3.1 Lemma. For eachp GR, 0 > 0 the algebra M e has a unique (r*,0) KMS state
ufi.a wh°** generating functional is

wkm *(.) . expe(» ti)W I{e] e £,,*<»«),“ s »here Ike Dome of Ike IkeU
function wg= e'w*.

Proof: The proof in [C5] Lemma 2.8 for the special case ft = —1/2 is sufficient as it
is dependent only on the cocycle and the time evolution both of which are independent
of /and fi.

The following proposition concerns the factorisation of a KMS state. It is taken from
[C5J. See Proposition 2.9 in that paper for a proof.

7.3.2 Proposition. Suppose B and C are von Neumann algebras of operators on
the same space, each of which is in the commutant of the other, and each of which is
invariant under the action o f a one parameter group, t +— r,, of automorphisms of the
algebra A they generate. Then any (r, 0) KMS state on A restricts to (r, 0) KMS states
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on B and C. Moreover if C has a unique (r,0) KMS state u£ then the original state
factorises into a product ofui£ and a(r,0) KMS state on B.

7.3.3 Theorem. The(r*,/}) KMS state on the von Neumann algebraM has the
form
<DF,., (%)) . 1.0g(@x,(0-" «Pl £ %0 -
1 Mo
where «(*) = exp (i(na + a + J2k*0 /*« ') «

Proof: Prom the two preceding comments the form of up,? on Afo > the only thing
required asup,,, ia the product of the unique KMS state on M ¢ given by Lemma 7.3.1
and a KMS state on Mo, that is

up,r(momc) = Up,?(mo)u™(mt).
By the methods of [C9] and [L4], for the representation / **Jp,?(f)of L © L
<N,.,IpM)JIpA2V>o0*) = TtaceiP' *p *rrriry

The case of interest involves the simplification

in which case the two Lemmas following this proof give

MO

Hence as Mo is generated by a representation of the CCR algebra, standard properties

of this algebra lead to
=«p %—ﬁ*d -em'VIAF

<oo.e>, (i) 0,.,) = det(1l+ «)-u/>,

where = expif € Mo-
Now from [R 1]

b = [pt-'ip?-“)-"pi'ip +i'pt-nri-ri-

TWorpif*= (‘00 J),

= det(l+B)-I1

=[n (| tac.«-*—>k

B .
>) (i

Hence comparing this with the form given in Lemma 7.3.1 it can be seen thatp = 0
and thus 0 3 63.

Combining this and the previous formula for up,? on Mo gives the result.
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7.3.4 Lemma. Supposep € R, n € Z\(0) and p € (0,00). Then
J](1+€c-2>)" (1 +«-«r— »))" =-«(1
Proof:

(i (i

= (i-«

)-m [ (i+ar

Hence the sum can be rewritten as
(i E [+

Now, suppose AT > n then

£ [(i+ A e>) (i

1 I
-~ 1+ + 1+ sH»s\

n temt

as other terms cancel. But each positive term tends to 0 as N —»00 and each negative
term to —1. Thus

J™MUE [(e+*c—o -l (ite*— »)"] -

and the result follows.

7.35 Lemma. SUPPOSE ¢ (*) = expt(ns + @+ E»*0/»c* *) " d /(*) = E»no Ac'**-
Then iff denotes the 2x2 matrix ~  jjJ,

(ri‘fri'fri*) =~ E *0 -

Proof: With / as above, after simplification

(p '/ ri*m//7*2¢)
Taking fourier transforms this can be shown to equal

BNV

SE {/m-E (>+(>ee-**— 0"}
Now ~ is a unitary operator, that is = 4>x. But

*= exp-i(ns + o + 5~ Jktik*),

MO
and
= exp-»(ns + 0* + X)
MO
Therefore a = a*, that is a is real, and /* = Hence = /% - I/l

These facts together with Lemma 7.3.4 give the result.
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7.4 The Fermion algebra from Map (S1,U(l)).

The other direction will now be considered, that is, with a projective representation
of Map (S*,1/7(1)) defined through a particular function, then the CAR algebra acts on
the Hilbert space of this representation and the CAR elements are limits, in a certain
sense, of the loop group elements.

Let denote the following function on the central extension of Map (S 1,1/(1))
determined by the 2-cocycle, <, given in the previous subsection 7.3

W, #<4) = *(W,)exp</.(L/1+ #)*(/)#N0) - "exp | ¢ £*< 1 - *-*)-* |/ ]*
*i*o

where ¢(s) = exp ((ns + £ *6i Ac'**))-

This determines a <-representation of Map (S ,.i/(1)) as follows:
if
“5«) = (c.oWoinsiort.xp ( - L)/
[ “ito

subsection 7.3 gives that cJp(4) determines a ~-representation of Map (S *,t/ (1)) which
will be denoted by (4)- Note the function really has no dependence on fi so r Oi, (4)
could be written 1X4) see [C5]. This fact is the main point of subsection 7.3 . Hence

uUtlA+) =

*p*fo(1/2 +
determines a ~-representation via
U.M) =«P *70(l/2 + (4)
The elementary functions which will enable the construction of the CAR elements are
given by the following:

let the special loops or ‘kinks’ be the functions defined by

(A -cer — i

where A € (0,1). These enable the approximate fermion operators or ‘blips’ to be
defined as

- S AT (y N E ) (t..a)

using the definition of the cocycle a and the fact that la,x(0) can be written as

laAOQ) = exp

There now follows two propositions concerning the limit process used to obtain the
fermion operators. One describes the limiting procedure and its domain while the other
demonstrates the fermion operators. They are general results and may be found in
[C12] for the computationally harder case of R instead of S| and also in [P12] in a
slightly different form so no proofs are given here.



7.4.1 Proposition. Set  (Ai,...,

/ n
dan...A»a,G(0i......
<l
where (*) iodic*tee that the atfjoint may be substituted at any point and where G is a
smooth function on S1. Then ;¢ (G) is a well defined vector in H and the strong limit
asXj —*1j m1,..., AT exists independently of the order in which the Xj are taken to
1. For g asmooth function ofS| the operator B(g)(,) may therefore be defined on the
domain consisting of polynomials in the blips and also inductively on the larger domain
obtained by taking the span of all vectors of the form ¢ ¢ (G) via

Bh)M*K(G) = »Jta j " 4K(C).
7.4.2 Proposition. Suppose ; = expif € Map (SI,U (I)) and <*C€ (0,2ir). Then

(i) T.,A*)B.ro, (*y

(2) [B;,B<]+ =2»4(0-01.

) =
where B,, = limx—i Ba,x-
7.43 Remark. Proposition 7.4.1 defines an ‘operator-valued distribution’ and Propo-
sition 7.4.2 is suppose to be understood in the sense of distributions. For example (2)
means

«</)e()e+r(»)en(/)=1i jr tw ffid.
Hence B(g)(+> can be defined for all g € 1,(SLC). Proposition 7.4.2 shows that the
limiting distributions satisfy the anticommutation relations.
7.4.4 Remark, from subsection 7.2 the time evolution of the loop group elements,
regarded as multiplication operators on L9(S1,C), is given by ¢ —* ¢, where ¢<(s) =
i(s + 1). Hence it is a simple calculation to show that the ‘kinks’ evolve according to
TorA-* (Te,a]] = Tor-LA.
This leads to the following Lemma.
7.4.5 Lemma. The ‘blips’evolve according to
B..a- =«-MB._m.

Proof: Fiom subsection 7.3

(r (T ..

S (7.0 (), ), (7)) .
Hence

ecr .r ) (7-»(0>t-.ac)-,) ./ 1. (7..,.,)

cc-tmrm (] - *%)'m » - <T—n

. o (i - rm)-m/e [
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7.4.6 Remark. Thia essentially gives the operator valued distribution Ba evolves ac-
cording to
B.-

7.4.7 Theorem. The state uiPjll is a KMS state for the O'-algebra generated by
(B<>) :»S £'<*',C))
Proof: The proof is essentially the same as that in [C5] Proposition 3.12, the only

difference is that the 'blips’ evolve somewhat differently. Using the notation of that
Proposition, suppose X and Y are products of ‘blips’ and their adjoints and let

be the terms appearing in X and Y in the limit with elements of X ifj € J,
ke K wherea = |J] and b= \K|.
So by the ebove ]9 u exp (-i>(b - 0)t) time» the epproprixte correlation

function for the limits of the ‘blips *. That is, ai becomesaj-t ifj € J and becomes
C*—tif k€ K. With the correlation function written explicitly in the form given by
[C5] Proposition 3.8 together with the additional expi/o(1/2 + ft) term, which equals

exp (172 + /i)

in this case, the t dependent factors are

and 0] terms.

Now the exp (—ip(b - a)t), expi/2(a- b)t and exp «(1/2+ ft)(b - a)t terms combine to
leave 1, which is t independent. Thus the 03 and OXterms are the only t dependent.
Similarly these are the only t dependent terms in Wpilt([X],Y) and the proof of [C5]
Proposition 3.12 covers the t dependence of these terms to give

AA[X)LY) = UFAY[X\,N).

That is upiO is a KMS state.

7.4.8 Remark. Since is a KMS state on the CAR algebra with the time evolution
given in the previous remark, by the uniqueness of KM states for the CAR algebra this
must coincide with the quasi-free state given at the beginning of this analysis. That is,
the quasi-free state defined by Ap~.
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7.4.9 Remark. This analysis demonstrates that the Boson-Fermion correspondence as
described is not as good as it could be. The only situation a byective correspondence
occurs is when /i+1/2 = 0 and it is this situation which is described in [C5]. Otherwise
the process from loop group to CAR algebra is iiyective but from CAR algebra to CCR
algebra it certainly is not. This may be due to the implicit choice of phase taken in the
argument so that
=a

With another choice of phase the cocycle might be adjusted so that the ‘rotation’
exp>/0(I/2+ m) occurs in the state.

7.4.10 Remark. This extra term expi/o(1/2 + /i) appears to tie in with [C6] Section
4.3, certainly if /i € Zj/j so that (1/2 + p) € Z, giving a connection with Bose-Einstein



Section 8
A Determinant ldentity

8.1 Introduction.
This section uses results of [P 1] to calculate the expression

<n,.r,wW)n,,)

defined in section 7. Identifying this formula with that produced in the previous section
leads to a determinant identity reminiscent of Ssego’s theorem. A brief description of
the structure and results of use from [P 1] now follows.

Suppose W is an infinite dimensional complex Hilbert space with complex structure
i and distinguished conjugation P. Let Q be a self adjoint operator such that Q2 = 1
and QP+ PQ = 0. The Q-Fock representation of the Clifford algebra C(W, P) is given
by

rQ(w)

where a(.), a*(.) are annihilation and creation operators on the alternating tensor alge-
bra A(tt+). (W+ = Q+W, Q+ = 1/2(1 + Q), see section 2.2 for an example.)

«(<242) 02iPQ-c.),

8.1.1 Definition. Let G(W, Q) denote the set of bounded operators g on A(W+) such
that

#F(w) = F(T(g)w)g,
for some bounded, invertible, P-orthogonal T(g) on W .
Note. An operator T on W is P-orthogonal if PT'P = T~1I.

8.1.2 Theorem. IfTia unitary on W commuting with P and TQ —QT is a Hilbert
Schmidt operator on W then there exixta a unitary g € G(W,Q) such that T = T(g).
Conversely ifg iaa unitary element otG(W,Q) then T(g)Q-Q T(g) is a Hilbert Schmidt
operator on W.

8.1.3 Definition. The ~-representation of W is the representation where

where A is a complex structure.

8.1.4 Remark. If T = jjjj in the (*-representation of W then:
HiiTn =0
TjjTia =0

T is P-orthogonal e>  TSiTu + TijTaa «/
THA = AT 5«12
Ta,A = -A Tk
PT'PT = 1and T = Ti.

8.1.5  Definition. An element g € G(W,Q) is factorable if Q -T(g) + Q+ is invertible.
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8.1.6 Remark. If
Tii<#)
To(l)



8.2.1 LEMMA. Suppose K u a Hilbert apace. Let K = K ©@7T where "K denote* the
Hilbert apace conjugate to K and where the inner product ofK iagiven by
(ft ®/a,fi ©/a)* = </ifiy#r + </a./a)jr-

Let r denote the operator on K defined by

r(*O») mHO .
Then the CAR algebra over K, A(K), ia *-iaomorphic to the aelf-dual CAR algebra over
K with antiunitary involution T, Aspcfk, T).
Proof: r* = 1is obvious
1f/ = Ji© /a. 9= 9i © 92 then

<17,r#)* = (/ae/i,020 Oi)£
-<#./>*

using the defintion of the inner product given above and

<ra>* VST
So T is an antiunitary involution, thus Asoc(k,r) can be defined.

Suppoee AsDc(k,D is generated by /€ K and ¢ (1) by «(*)<e>, * € If
then the *-iaotr.orphism is given by the identification
B(<B1)-=(=)+==(8).

8.2.2 Lemma. Suppoae P iaaprojection on K andup ia the quaai-free state on A (K)
determined by P. Then us, the quaai-free state on Asoc(k,T) determined by S =
P© (1 - P), iaequivalent toup. That ia, up acting on a combination of a(/<) 'aand
°(9j) * fi,9j € K iaequal to us acting on the correaponding B (zk© yk) a given by
the *-iaomorpbiam and vice versa.

Proof: T5r =1 —5 and0<5 = 5 *<Iso5 does indeed determine a quaai-free
state u$. Now

“p(<me(/©)) =

-¢,®0),(P®(i-P))(/e0»,

= 0®0).S(/®0))<

= us (B*(/® 0)) definition ofw,
=u,(B(0®/)B(®0))

T (e</me/ )r(rm @ *i) = <@ «*), </ @ "
S(Fi.P /i) + (a.(i-P)/ )1
S Gi.p /i)y + </, <% - (APLi)er
as P is self adjoint
= w/<a*(/ia(fi) + (j2,f)K - «<(/aM/a))
by the definition of wp
= wf («'(/iW fi) + a(/a)a*(*a))
using the_canonical anticommutation relations
- W= (oM e=o)
using the properties of a quasi-free state.

So the two point correlations agree. Hence as the two states are quasi-free they agree
on any correlation as quasi-free states are determined by their two point correlations.
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8.2.3 Remark. If R is an operator on K with 0 < R £ 1, R adf adjoint then if T ia
defined aa R © (1 —R) the previous Lemma is true for uir and u*r in place of up and
us.

8.2.4 Lemma. Suppose U is s unitary operstor on K. Then the Bogoliubov sutomor-
phism of A (K) given by
r(I7)n(k)-4 I/k),  KE/C
is equivalent to the Bogoliubov automorphism of Asdc(.K,T) fino by
r(U)B(/)=B(U/), /€~

whereU * U <&U.

Proof: rwr —U so r(U) doe* indeed define an automorphism of Asdc(K ,T)- The
equivalence is obvious.

8.2.5 Remark. P is a projection, hence S = P© (I-P )is a projection and since
rsr = 1- 5 it isa basis projection. Thus using the results in Section 1the state Us is a
Q-Fock state where Q+ = 1- S,(5 = Q _) with its corresponding representation on the
alternating tensor algebra A(Q+K). Hence the results of subsection 8.1 are applicable.
8.3 Application of Basic Structure.

In this particular case K = H© H where H = L7(SI,C) and P = P?'* is the
projection on K given by the 2 x 2 matrix

pfi.M
i-At* r
where
»oa-te<tt
with
hp9(.)m (-id/ds -p)f(s), FE -

So to examine the state upt., on A(K) and its associated representation rps., the state
us on Asdc(K ,T) and its associated Q-Fock representation will be studied. To do this

the ‘Q-representation of W' in this case needs to be determined.

8.3.1 Notation. Let Q denote the operator on K given by the 2 x 2 matrix form

Then define Qt
Also let

with corresponding definitions for Q and S' as above where Pf° is given in Lemma
71.2.
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8.3.2 Lemma. Let qdenote the operator on R given by the 4 x 4 matrix

9 a P- o0
0 a* o+ o
P- 0 9 s
[p+ 0 0 «v
where a is a partial isometry such that aa* = P+.a* = P-.
For example
I-in+i) forn<O VARRTD) forn> 0
* *e \ 0O forn> 0 0 forn< o

Then g is a unitary end

() .*ov.-(J ®).
tTe=1T
A

(3) g*Aq = where

Proof: Direct computation using the following properties of a and a*:
P-a = aP+ = 0and P+a= aP- = a,
a*PL = P+a* = 0 and a*P+ = P-a* = a*.
8.3.3 Corollary. Let Wpt, be the operator on K defined in Remark 7.1.5 and Wp,,,
the operator on R given by

(w,..

0 v
0 w,,J
Then

@q*wi,,rwp,,, =
(3)

q*Wp,AWp., = A’
Proof: Prom Remark 7.1.5
- —pij*
w,.,p? w;, =Pi-*,
hence
and (1) follows from Lemma 8.3.2.

Since Wp,,, is a unitary and commutes with both T and A (2) and (3) also follow from
Lemma 8.3.2.



8.3.4 Remark. From Corollary 8.3.3 above it can be deduced that

That is, the unitary 9* implements the Q-representation of K . Note also that the
unitary 9* implements the Q'-representmtion of K since

8.3.5 Lemma. Suppose U isa unitary on K. Then the following bold:
(1) r{U) 8 implementuble in *p~ O r(i/) is implementnble in Wpt., .
(2) r(U) is implementable in wp~ « r(U) is implementable in *s*-
(3) r(U) it implementable in wpt., » r(1/) is impiementuble in wg.
(4) t(u) is implementable in *s> O r(i/) is implementable in #5.

Paoor: (1) :
r(U) isimplementable in rpc<

/P - is Hilbert Schmidt
O UWB*P?W ;j,) - (WHBPTWB,)U s Hilbert Schmidt

Now (1 —Wit,,) is a trace class operator (See Remark 7.1.5), T say, so WBi = | —T
hence

1/ - T)PA(N-T *)-(1 - T)P2(1- T*)U is HUbert Schmidt
0 UPr - PTI/- {(i/TPf°- TPTI/)+ (UP?T* - TPTU)

- (UTP?2r - TETTU)) isHilbert Schmidt
O UP?- P?U is Hilbert Schmidt
Or(U) isimplementable in v/>—.

():

r(U) isimplementable in wp-

O UP? - P?U s Hilbert Schmidt

« ! gn}_t&fﬂ 1 goc is Hilbert Schmidt

O US'- S'U s Hilbert Schmidt
O t(U) is implementable in #5..

(3) : Same as (2) with Pf° and S' replaced by Pt'* and S respectively.
(4) : Follows from (2)<*(1)<*(3).

8.3.6 Remark. From the previous section the multiplication operator 4 =

where 4 € Map (S*,1/(1)) induces an automorphism of A (K) which is implemented in
both the representations and rpe., by rM (4) and Ip,* (d) respectively. Hence the
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indue™ an autamocpluani of A ,BC{K. H which

Let1> (=) and Tm(s) depot,

multiplication operator + a
iaimplen.-ated in both the repreeenlalionu  and a,
the respective implementen.

Now relationship« between r,(4),
der that the results obtained for T* (=) are applicable to I>,, (#).
considered below.

(=), !'>-(*) and r,(d) are required in or-
This problem is

8.3.7 Lemma. IfUw a unitary on K with r{U) implemcntable in wp~ then
D()> "1, ()¢) . HpaLLLNa>,
<. (" Ly <QnL) »y <L T™M((/)«).

Pnoor: The GNS representation, » a, of the state wa on AaDc (K ,r) can be identified
with the representation »1 given by

Lo = A- 1 +di@- sy,

where Ao, AD are the annihilation and creation operators on the Fock space of K,
F(K) = F (K © 7T), respectively. But

F(KaT)* F(K)F(F),
allowing the identification
M fO0#) «nal/)® 7+ 1@ «o(f),

where a0, aj are the annihilation and creation operators on F(K), and 7 is the self
atfjoint unitary such that

7-s(/)= —o(/h.
that is 7 is the implementer of the Bogoliubov automorphism r(-1), and 711 = 0 where
0 is the vacuum vector.

Therefore itf = f e K

(<)) =id ((i- pixyro pexiy +Ad((i- rie)yi ®r=-t)
S (d-Pi*>/)@t+1 @« .(2%5)
Ll ((1- 1?294) ®@T+ 1@ai(iV e/j
S*> (< /2t *><ee<ly

where
*»(e(/))=«s ((L - P2*)/)® 7+ 1®«0 (N V)

is a representation of i4(/f) on F (K)® F(7T).

Hence if ra(t/) is the implementer of r(t/) in the representation ir3 of A (
T,(U) is the implementer of r(U) in the representation », of ASDC(K , T).
ri(W) = r,(1/)aad

K) then
That is

<0i.ri(f/)n,) = (0j,r*(i/)o.).



But the GNS representation, *pt* , of the state on A (K) can be identified with
the representation tr3. Hence by the weak continuity of the inner product
<ns,r,(«)o*>-<nl.r (ioo,)
=(n,,r,(t/)nf)
RILP) . (CO**)_
The equality for S' and Pf° holds by exactly the same argument replacing S with S
and P*+ with PT.
A trivial application of this Lemma gives the following.

8.3.8 Corollary. With the notation of Remark 8.3.6

<[e<#)>V<n,.r,<qgn,> - (0, .1 , <#)¢,>.
(i>(s»v - (n_,r-<«u»).
8.3.9 Lemma. IfU is a unitary on K with r(If) implementable in then

ro(U=r.waty r» (ur, W) ,
re(u) =r,. >.)*r,. @>rr (w,,,)

Proof: From the previous section (7.2)

where UOIP is a unitary such that
(s(*))" 1% « »Ff- (o(*)) > * €K
Claim: « Tm{\WI\
Now WOTIP is a unitary operator with 1—WOIP a trace class operator and det WO,, = 1,

see Remark 7.1.5. Therefore the Bogoliubov automorphism r[W Oill) is inner, so certainly
p 1table, in the repr 1 Tp~. Denote this implementer by Too (W OtP) then

r. QDY () r. Waly =tr ((WF*K)), *€#
Replacing k by WO and rearranging gives
AW (ODT_ W) - ((¢.0)

- WL, (o
(=(*)

Therefore UOP —r M (*V)I),), as required and the first equality is shown.
The same proof gives the second equality, rj and fj< are unitarily equivalent by
the equivalence of rp$., and */>e and the equivalence unitary can be shown to be

rj< (W ,.,)" using the same method and

Applying this Lemma to the particular case of interest.
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8.3.10 Corollary. With the notation of Remark 8.3.6
(*)=r,, (W,.0yr, (4r«Wway.
r,(¢)*r,.(WQ,yrt.(¢)iv (*>,)
8.4 Factorability of Elements.
From Corollary 8.3.10
— k- *

<I, (#)) = <X WP EE () 1T (W)
In order to use the results of Palmer outlined in subsection 8.1, in particular Lemma
8.1.9 and Theorem 8.1.10, on the RHS correlation IV (WA ,*), IV (W/jIM* and IV (=)
need to be factorable. This is now considered.

8.4.1 Lemma. IV and 1V (>*>,,)* are both factorable.

Proof: From Definition 8.1.5 and Remark 8.1.8 IV = factorable if T(W Olthn
is invertible where T(WP,,) is the ~'-representation of H>,,.

\er ° [ia

FHV.s) = *e%>

% - “d
X = P'W P + A’WprA,
Y = P'Wp~A + A'WTipP.

nwpjn = x
P'Wp.P+ A*Wp, A
\p- M TA&r-*[l-A, 0/t atEp* -0 - a)p-\Np. 0

PO 0l pagires(n-a, )1p- APt (0] Iy 0
ffe e TATIIP-E (1AL P AJIP+-(i-At,) 1" P-\ fo 1
+w ) N-atlp o+ {\-a,j 'I'P- - A reed Lo o]
NACJIP L+ QA LTt . 1

| 0 ClA L e

which is clearly invertible with

Hence 1V (Vty,,,) is factorable.
N« iv (w,.,)- =rs.(w;,) »1

nwj)ecerl-m wo o= [ES %]
So T(Vy:.)M = X* = X by examination, which is invertible by the above. Hence
IV (MV,)* is factorable.

Ssego’s Theorem will be of use when considering IV (*) hence the relevant version
will be stated here for this and future reference.
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8.4.2 Szeqo’'s Theorem. Suppose DN isthe N x N Toeplit* determinant

co c_i e-N+i

cl Co C-W+»

cn'l Civ-a eee 0

where

Under suitable conditions (\)

where

The conditions (\) used in this particular case are the following:

(1) ET-o0 M <=
<> ET— -M *< oo.
(8) C«) * 0forgl= 1
(4) IndCtf) = 0.
For a proofof thia version of Ssego’s Theorem see [HI].
8.4.3 Lemma. If € Map(S',1/(1)) has a winding number of zero then Ts'O is
factorable.

PROOF: Asin Lemma 8.4.1 Ts*(+) is factorable if T (*)u is invertible. Now

with
D=PmA+ A>P,

C = /4P + A*+A,

where P and A are defined as in the proof of Lemma 8.4.1 and 4>» given in Remark
8.3.6 . Therefore

T(*)aa = P"4P + A*4A

fP-+P- + P+ 0 1
1 o ar*o + P+J-
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So T(4)n is invertible provided there exist operators X, Y acting on PJksuch that
X = (P-4P-)-1
y -(a;*)-1.
That is
P_=P-4P-XP-=P.XP-4P-,
P- = <r<pia’Ya =a*yao>,

n*)h - [ 1

Now 4 is a multiplication operator so P-4 P - has matrix form

in which case

o 4-i 47

N ]
4i 40 4o
with respect to the basis
[e~u e-™ e o)

of P-H. But any cutoffof this gives a Toeplits matrix so Szego’s Theorem enables the
determinant to be deduced.
If ~ is written as

mp< ot /A E S " F T
then the winding number of A is n. So by assumption n = 0. Also the term exp i/0 is a

constant and can be factored out as follows:
rewrite 4 as tiio4' then it is easy to see that

4 is invertible on RH o 4" is invertible on P_V\.

Therefore the situation to consider is when

This form for 4 enables the fourier coefficients for In~ to be seen trivially, and in
particular p = 1in this case. The fact that $satisfies the conditions (f) required for
Szego’s Theorem follows from the fact that 4 € Map (S 1,17(1)) and the winding number
of A is zero by assumption. See Remark 7.2.1 for example for (2).

Applying Szego’s Theorem shows that the determinant of is positive, as
9-n9n = -[I/n|p in this case, hence in particular it is invertible in /~having non-
zero determinant.

Similarly a*¢a has matrix form

4a  4i 4
4-i 4o
4-7 41
with respect to the basis
[F*e «tre et )

of P-H. Consequently it is also invertible in P-tyas it is just the transpose of P-4P-
given above.






nwt,

Hence

where

So

r,m-Ajg(l -
r,=01-A,)*A}" +

S (- ALITTAjY,

-4

-3
P V(> - BVF)U- 4 avi0 - gt
Fo=aMaj,(i-*,)->e+«s:i(i- yre,)e.
=12
_ "IP. +(i-Adj,)-p* 0
= f/la..P-+(I->4> )" 0
1 « > -
O« (/+ireoe.,),nwW . tii
+ '
0 *(1-A t,,)g+ aA,,,a—\\/}
I<fct(A,,,P. + <1- - ALL)C+ aAt,te))-
I<* ("’ 0 - Ayda+ (- AL)IPA, L ce))"

M



Hence
10V (W, )" = |kt - A,,).+ @- n

Now at the fourier aeries level the operators Apitl, a and a* act as follows :
I S o) (1 + corotes) 0,

fo n<o0 . fo n>0
afc" I f — | "~0* * **= | n<o

So it is not difficult to show that

Aa‘(\- A,,)l )

n>o
{ (o) (i+r-nt)-1 o

{o n<o
L+ c-*—»>)m' (1+ n>o0
wvang
(> F (- >4, K L e)»,
=r 0 +5%*>)-" (i+wor>ome»))-', <0
11+ (J+a-cotmen>)-* ,>0.
Therefore
detivs-'i* - +0 -
=n 0 +ec-")) I (i+€c-e>0"e))" N (i+ «-*-"3" 1(i+
n<o n>0"
Jn ( > )l (itc-a-e*eten)].
So

(@(AJS(I 'ASH)'+ @- A‘!m"')]

S (i tertmer>) i (i .

8.5.3 Remark. Suppose d = * p iE *« /*¢,M then from the previous Section (7.3.3)

kTuM D DbI-«/.)<eor'exp| -¢E*d

and from [C7]

(n~.Too (djn») :exp’\{ _ c S H
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is not difficult to

8.5.4 Remark. Using the formulk given in the previous remark i
show that



From
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The ¢(2) terms.
Similarly in the (*-representation of K

thus the ¢(2) terms are as follows:
i)ym *
is already known and it can be easily seen that
nXr-'- \P-X*P-+P+ _ 0 1
n*)n -[ o F_(jrT)*P_+ FfJ
\P-XTP-+P+ 0 1
* [o] p.Xp. +pH
where X denotes the operator formed by complex conjugating the matrix elements of

vwa
I55; =ri(j);r=[r<>
and these terms are already known.

The Individual Entries.
By the calculations above these are:

1)
S-**»*;. = -[m, 8]

(2)

< om e - w s]
(3)
(4)
P L]

(8)
- -3V

(«)
— [ ]

where
mo-nw ). w )i

1,-TW n

k. =n«Mnmes*
R, - \



thus (1 + ¢Aft) has the form

10 0 -ft, 0 -LtM.1

0 10 0 0 o0

o 01 0o o -MI
Mi 90 10 9

0 00 0 1 0
~LiMi OR; 0 0 1

Simplification of det, term.

Given the form of ¢ A ft above and the Remarks 8.6.1 and 8.6.2 it is possible to deduce
that ¢ Aft is trace class. Hence

det,(I + ¢Aft) * dei(l + ¢ A ft),«* "WLCV-AtO

1 0 o
[¢] 10
(] 0 1
-Mi 0 0
[¢] 00
-¢-M, 0 ft,
1 0 -ft,
[¢] 1 0
-Mi 0 1
-LiMx R* O
MiRi MiLtMi
M,Ri  L\MiLjM\ -RaMt]}'* *°
—dM«- UR)L-LULM,+WjM,)- M,R,M,L,U,)
- del(l - MH, - L,U,LM,+ U,R,L,M,L,M, +S,M,
M ,R,R,M,- M,A,M.E,»}.
Straightforward talcirlatio«. naing thr formule. for If,. , and tnahk thia lo Ix

rewritten as

icl(l*l@("mp’e’pxp + p-irf.d/v(i-
+p.xp.a;y(i-a,,) +d(i- i - d*,)
+A](i- X j-tar,yptli- A,,)-"laﬁlll
M- A,.rRPXPXPRN\ A, AL

-a]&A,jl‘nptAP—)tpA,w -d L))

< {e-"V /'O -de.,)  dP v+ . d B (i- -d

+eKdi., (i-d,.,)-*«<- «d;i™(i- d,.,)""dPrvj>tv'd,. (i - d,
—eyp. ic(i-d,~).-

. i A”)'"*PYF{YPMX“ df, ).+
e APIPYAA .
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Using the identity
det(l + A+ B + AB) = det(l + A)det(l + 0),
this mny be simplified to

<*(1+ < I (i - vim - *e*) a4 PoXP-.(Gi<i- /1,.)
+P-XP-#/%(i - *,1r'nx'Jl- af u - a,,)-'<’p.*p-XP-a;X i- a,.,))

defi+ Ay iI'XCAIP (i - *, .
* *)_t
mA\Ju--v.IW +.a,J|--|J)I.,ded N a,)--)
With the connection between X and Y given in Remark 8.4.5 and the identity
= (1- i40,-(i+.))a,

this can be rewritten as
det(l + AJUL- Atj.)-"I’.Xa'(1- A , A '/ '+ P.XP.Afs(1- A,.,)
+p.xp_*p.(l-A.~-"PAYI- A ftl- mV )-IV *P_*P-/l;.;.<| - <*#,)))

da(1+ (1 - S AL)TFANL I+ P-XrP-(1- AFj)AGY-
P-XTP-*TP.U-A,,>)-"A7 IM | -A 7;Pt+TP.XTP-(I-A,j,)A;K)
where A= —(1 + p). But
det(l + C~IDC) * det(l + D),
hence this may be simplified to
d.t(l+ <mtes(>- A, )-'Ad,, + P-XP_AjI(I- A,,.)
+P-XP-dP.<lI- A, )-'A,,, - P.AP.XP.AJJI- -V )I

d*(1+ (- +(1- AJ)AINNP-XTP.
- (@-a,x)a;lp-xtp-atpt+ (1- A, yr'A, xPt*TP-xTP-)
where in the first determinant
C=P.+ (@-AiJ-"I'"AJIP*,
and in the second
c =(t- AX)-'"Ai.xP-+V /7 (I-
This in turn can be rewritten as
<fet(i+. i« (i- +P-Xp.a;j i-
+P-XP-dPt(l - a,*)-'a,™ - pt+p.xp."~;i(i - 7..))
de([l+ .re" (I - Aj,r'A,,x + P-XP-A-,\(1- A,X)
+ PXP_+P*(1 - -p+dp.jfp.fo - vrjp).
Now ddD s dotDr bence thi. mmy be written u
detP(AT,/<).drtP(If,-(1+(i)).
where
fe* 4) = Lrkes<] - CATP-XPLAIN- AL
+P-XP.dP.(I-4%,)-% ., - p+d P .xp.d;i(i - x,

Hence the following Lemma has been shown.
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8.6.3 Lemma.
det,(I + LAR) = del F(X,ft). det F(X,-(1 + p))t
where

F(X.p)- 1+ em*ee(l- A, )-'A,,. + F.XF.AfAH - A,,,)
+P-XP-*F.il- A,,)-"A,., - PtAP-XP.A:'JI- A,

Note. The identity
= (1- ¢#,-(1+0))«

ia a simple calculation similar to those at the end of the proofof Proposition 8.5.2 .

8.7 The Determinant Identity.

8.7.1 Remark. Using the Remarks 8.5.1, 8.5.3, Proposition 8.5.2 and Lemma 8.6.3

[*.(Zo).(0)-".xp | -~E,(e"-1)-"| /.]»I] = «(*,,)e(*, -(! +(m).

where

“(<.0=no

Note that the expression on the left hand side is independent of u, similar to Lemma
734 .

8.7.2 Remark. From the previous Section, in the proofof Theorem 7.3.3

W oA (0)-1
SN (i-n c-c-e. /b <a-t— S)m) (ita-Fe-t>)"0]
= [n ( i v ) (i

no(>4s o /eam

>4 (et me)>) (T4 -a-040)) ]
Hence the identity can be rewritten as

detF(X,p)detF (X, -(1+*))

(* + 2€05/0e~c— *) + (<~ * — ‘e3)*)
n>0

(1 + 2c0S/0e =N "4 4 > (X (k> HRe))*) L

Thus when /i = —1/2 this simplifies to

detF (X ,—1/2)

=11 (1+S c / L £ BV TA R



which is reminiscent of Siego* Theorem because of the following:

(1) Suppose * = i*. the simplest case, then
F(X.0) = 1+ <A,

and it is not difficult to show that

detF (X ji)detf(X .-(I+*<))m JJ (1 + 2c0s/0e -*"-" >+ (k-c"-<*))»)

o (1 + 2008708 -* "+, 40>

Thus the two infinite product terms are similar to the p term in Szego'i Theorem.
(2) As for the exponential. This i- already similar to the exponential term in Ssego’s
Theorem. Note that

1/"la = fnfn = fnf-m proofof Lemma 7.3.5 ,
and that g,, = ifn in the application of Ssego’s Theorem, see Lemma 8 4.3, which

explains the minus sign in the exponential. The Af,, terms presumably produce
the extra term (en* - 1).
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Al Proposition. ForO<n<m-2let

Proof: First note t

~ =T (>+)".
= rir(i I /e nyte(l-fa)-
| Jo /e

" m - 1)1+ gm~l " (m

So assuming the formula is true for /n-i.m-1

N (M- n-2)Un- 1)K 2(m —2\
e N)7TN--»)Nit)-> £(, o

T(m -1)(1+,)

(m—n —2)w?
=(m -DIL+ )"

(m —n- 2)in
(m —n- 2)int
(ra- 112+ )=

as required. Now for p > 2

te ). o mri>?- l--(,_i) I,

P> -+t iTHY)

S(m- (>t H ) -0

r=fc?”~rgf;>

That is, the formula is true for /0>f for all p > 2. Therefore it is true by induction for
In,m where 0 < n < m —2. (Start at /o,m-n and work upwards.)

((m —1) —(w f Dss!
(14 )- : (m —ni2m-1 an+l
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A2 Proposition. Define the function F,,, :[0,1] -* R by

wheree, > 0 and ca < 0. Suppome abo that ca+ 4«i < 0 andca+ Aex+ 16 > O then the
following are true:

(») r,,~(0)=o0:f;1,(0)>0.

(2) 0> r.,.,(1)>-1: =0:r~M(1)> 0.

(3) Vci, 3 u unique ee € (0.1) «urA ticul

Moreover if0 < cx< 16 then 0< Fe,.t,(yo) < 1

Proof: (1) and (2) are obvious.

= ()6 “)% (- 2) (ci + 2(ci + ea)y + e,v*)]
= (TA)T K** fel) * 3(ci + 2ca)y + 3caya+ cm*] .
(3) The roots of the equation cx+ 2(ci + ca)y + cjy9 = O are

—(ci + ca)+ y/ca(ca+ 2ct)
@
Using the conditions on cx and ca it is easy to see that
-(ci + ca)~ >/oi(ca + 2¢Q
SN

and i

is the unique root in (0,1) since

~(g] + ca)+ y/ci(c3-f2ci) ~ 3

So Fll tt(yo) = 0 by construction and

Hence 0 < F, . (*>) < 1ifc?+ 4ea< O.
But the line ca+ 4cx =0 and the curve cj + 4ca = 0 intersect at the origin and the
point ¢ = 10, ca = -64. Therefore if 0 < C] < 16 the condition ca + 4ci < O gives
0< F.AATMO) < L
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Corollary. If Fe, . t(y) it the function defined in the previous Proposition snd the
following hold:

(1) ej + 4ej <0,

(2) cj+ 4ci + 16> 0,

(3) 0<ci< 16

then ife= 2+ cj/ei

where

Proof: From Proposition A2
N L) < 1 VH€(0.1).

Therefore the logarithm can be replaced by an infinite sum and the integral taken inaide
to get

Then, using

AL rr s

and the Corollary to Proposition Al the result may be obtained.

A3 Proposition. Suppose







References

[Al] H. Araki, Oa ilitii of lit CAR and Bogoliubou avfomorpkieme, RIMS Kyoto t
(1970), 385443,

[A3] H. Araki, On Ike Diagonaiiaatioa of a Bilinear Htmillonion by a Bogoliubou tnn,formation,
RIMS Kyoto 4 (1988), 387-413.

[AS] H. Araki, D. E. Evana, Oa aC *-algebra approach la pksse transition in Ut two-dimeneional
laint model. Commun Math. Phya. 91 (1983). 489-503.

[B1] R. J. Baxter, “Exactly acived modela in atatiatkal mechanic,” Academic Preaa, London, 1983,

[BS] M. van den Berg, J. T. Lewie, J. V. Pulfc, A general theory of Boae-Einatein eondenaalion,
Helv. Phya. A 59 (1988), 1371-1388.

[BS] M. van den Berg, J. T. Lewis, M. Lunn, Oa the general theory of Boat-EinaUin eondenaalion
and the elate of the fret hoaon yes, Helv. Phys. A 59 (1988), 1389-1310.

[B4] O. Brattell, D.W. Robinson, “Operator Algebras and Quantum Statistical Mechanics 11,” Texts

hs in Physics, Springer, New York, 1981
[C%]a?élé.l(?arey, Infinite dimtnaionol groupa and fsaalam field theory, Acta. Appl. Math 1 (1983),

[CS] A. L. Carey, Some infinite dimensional groupe and bundlet, RIMS Kyoto 30 (1984), 1103-1117.

[CS] A. L. Carey, Syia groupe, infinite dimeneional Clifford algebraa and applications, in “Operator
Algebras and Applications 3: Mathematical Physics and Subfactore,” London Math. Soc. Lecture
Note Series 136, Cambridge Univ. Press, Camridge, 1983

[C4] A. L. Carey, D. E. Evana. The Operator algebra. of the two-dimenaional loing model, in “Braids,
editors J. Birman, A. Libgober,* Contemporary Math.,

[C5] A. L. Carey, K. C. Hannabuaa, Temperature atatea on loop groupe, theta funetiona and the
Luttingar model., J Func. Anal. T5 (1987), 138-180.

C6] A. L. Carey, K. C. Hannabuas, Temperatare stales oa Gauge groupa, A.N.U. Preprint (1986).

CT] A. L. Carey, C. A. "Hurst, A aole oa Ike boaon-fermion correspondence and infinite dimeneional
groupe, Commun. Math. Phya. 98 (1985), 435-448.

[C8] A. L. Carey, i. Palmer, The infinite complet spin groupa. Preprint.

[C9] A. L. Carey, S.N. M. Ruijsenaars, Oa Fermion gauge groupa, carrent algebraa and Kac-Moody
slyetnas, Acta. Appl. Math. 10 (1987), 1-86.

[CIO] A. L. Carey C. A. Hurst, D. M. O'Brien, Automorphiama of the canonical anticommutation
relatione and index Ikeory, J. Func. Anal 48 (1983), 393.

[Cil] A. L. Cany, C. A. Hurst, D. M. O'Brien, Fermion carreals ia 1+ 1 dimenaiona, J. Math.
Phys. 34 (1983), 33133331

[C13] A. L. Carey, S. N. M. Ruijaenaars, J. D. Wright, The maaaleaa Thieving model: positivity of
Klaiber'a n-point funetiona, Commun. Math. Phys. 99 (1985), 347-376.

[C13] S. Coleman, Qsantam sine-Gordon eguation as a massive Thirring model, Phys. Rev. D 11
(1975), 3088-3097.

[D1] E. Daté, M. Jimbo, M. Kaahiwara, T. Miwa, Landau-Lifahita eyaslioa; eolitone.guaeiperiodie
aolutiona and infinite dimenaional Lie slyetras, J. Phya. A 18 (1983), 331-336.

[D3] O. F. DeH'Antonio, Y. Frishmnn, D. Zwansiger, Thirring model in terme of estreats: Solution
and light-one expansions, Phys. Rev. D 6 (1973) 983-1007.

[El] D. E. Evans, Tke C' -algebraa of the two-dimeneional laing model, in “Lecture Notes in Math.,
1136, Springer, Berlin-New Yoik. 1985, pp. 163-178.

[E3] D. E. Evana, J. T. Lewis, The apectrum of the trana/er matrix ia Ike C*-algebra of the laing
model at high temperaturea, Commun. Math. Phys. 93 (1984), 309-337.

[E1] D. E. Evans, J. T. Lewis, Oa a C* -algebra approach to phaae transition in tke two-dimensional
laing model 11, Commun. Math. Phys. 103 (1986), 531-535.

[F1] K. Fvedenhagen, Implementation of Automorphiama and Darioatione of the CAR algebra. Com-
mun. Math. Phys. 53 (1977), 355-366.

[Fa] I B. Frenkel, Two eonatructiona of affine Lie algebra representations and the boaon-fermion

ia ysaalsmfield theory, J. Func. Anal. 44 (1981), 359-337.

[FS] I B. Frenkel, V. G. Kac, Basie representations of affine Lie algebma and dual resonance modela.
Invent. Math. 63 (1980), 33-66.

[G1] P. GarbacsewsU, Some aspects of the boaon-fermion (in)eguioalence: a remark on the paper
by Hudaon and Pathaaarathy, J. Phys. A. 30 (1987), 1377-1383.

[H1] 1. 1. Hirschman, J. Anal. Math. 14 (1965), p. 335.

[H3] R. L. Hudaon, K. R. Parthasarathy, Quantum Flo'sformula and stocksotic eoolutiona, Commun.
Math. Phys. 99 (1984), 301-333.

[H3] R. L. Hudson, K. R. Parthasarathy, Unification of Fermion and Boaon Stochaatic Calculua,
Commun. Math. Phys. 104 (1986), 457-470.



(11) 3. T. Lewi.,, Wk, do Boon, nWIMI t, In “Sutiatical Mechanic and Field Theory: Math-
u||c (Groningen, 1085) Lecture Notea in Phya., 257, Springer, Berlin-New York,
198, pp. 23425,

[L3] J. T. Lewie, J. V. Puli, Tke BguiKkrium Suits of Ike Fret Booo Go,, Commun. Math. Phya.
88 (1074), 1-18.

(L8) J. T. Lewie, M. Winnink, Tkt /eta# model pkat, Intuition and tke indoa of otatoo on lke
Clifford algtkn, Colloquia Mathematica Sodetatia. Janoa Bolyai 27, Random field.. Eaatergom,
Hungary (1970).

[L4) L. E. Lundberg, Quaoi-fret tecond guantiaation, Commun. Math. Phya. 80 (1975), 103-112.

[Mbll B. M. McCoy, T. T. Wu, The Two-dimenaional king model,” Harvard Univ. Pram, Cam-

, 1973

oL Ct\aagcr Phye. Rev 85 (1944), 117-149.

[03] L Onaager, 1] Nuovo Cimento Supplement 8 (1949), 281-282.

[Pi] J. Palmer, Prodncto ia ,pin reyreeeafaftoae, Ad. App. Math. 8 (1981), 290-328.

[P3] J. Palmer. Monodnmg Field, on | 2, Commun Math. Phya. 108 (1985), 175-20«.

[P8] J. Palmer, Critical , eating for monodromp fieldt. Commun. Math. Phya. 104 (1988), 353-385.

[P4] J. Palmer, Product formula. Jot ofktrical function,, Unpublished MS.

(P»j J. Palmer, A product formula for Toephtt determinant,, Ariaona Preprint (1988).

[P8] J. Palmer, A Gratimann caleula, for infinite ,pin group,, J. Math. Phya. 39 (1988), 1283-1299.

[PT] J. Palmer, A Gr.um.aa calcula, for OL(H), In

[P8] J. Palmer, C. Tracy, Two dimeneional /»in, correlation,: coneerpeuce of tke ,cahng limit, Ad.
App. Math. 8 (1981), 329-388.

[P9] J. Palmer, C. Tracy, Two dimcmional Iring correlation,: tke SMJ aaalptii. Ad. App. Math.
4 (1983), 48102,

(P10) K. R. Paithaaarathy, K. B. Sinha, Bo,on Fermion ftelation, in Setcral Dimension,, Pramana
37 (1988) 105116

(Pli) R. Powera, E. Starmer, Free »tote, of tkt canonical antieommutation relation®, Commun.
Math, Phya 18(1970) 133,

[P13] A. N. Preaaley, G. Segal, ' Loop Groupa,” Oxford Mathematical Monographa, Oxford Univ.

, Oxford, 1988

[B-1] S. N. M. Ruij.en.ar, Oa BogoKukou truntformation, for tptiema of relatirittie ekarged parti-
cle,, J. Math, Phya. 18 (1977), 517-528.

[R3] S. N. M. RulJKnaara, Oa Bogoliukoo tranaformation, I1: tkt general cate, Ann. Phya. 118
(1978) , 105134,

B3] S. N. M. FaJueenaara Tkt Wigktman Awiom, for Ike Fermionic Ftderkuik Model, Commun.
Math. Phya 87 (1982), 181-228.

[*4J S. N. M. Ruijaenaara, Scetterin, tkeorp for tkt Ftdtrkok, mat,It, Tkirrin, and eeafiaaam
Iring model,, J. Fine. Anal. 48 (1982), 135-171.

(S1) M. Sato, T. Miwa, M. Jitnbo, Holonomie feaafam field, 1, RIMS Kyoto 14 (1978), 223-287;
11, RIMS Kyoto 15 (1979), 201-278, 111, RIMS Kyoto 15 (1979), 577-829; 1V, RIMS Kyoto 15
(1979) , 871:972; v, RIMS Kyoto IS (1980), 531-584.

[S3] G. Segal Jacoki'* identitp and an itomorpkitm ketween a *ymmetric algekra and aa erfrrior
algekra. Unpublished M:

[53] G. Segal. G. Wilson, Loop Group, an efsaf.es. of KdV tppe, IHES 81 (1985), 5-85.

[54] D. Shale, W. Stineapring, 5f.fr» of tke Clifford algtkra, Ann. of Math. 8 #3 (1964), 386-38L

[55] B. Simon, "Trace ideals and their appllcallon " London Math. Soc. Lecture Note Series 35,
Cambridge Univ. Preaa, Cambridge, 19

[Y1] C. N. Yang, Tkt eyoafaaecae magnellsalion of tkt two-dimenrional 1,ing model, Phys. Rev.
85 (1952), 808816.



