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ABSTRACT

The biosynthesis of polyamines is a topic of current interest.

A number of methods for the isolation and analysis of these polyamines 

have been described in the literature. However, the stereochemical 

course of the biosynthesis of these polyamines is still undefined.

After a general introduction to the importance of the polyamines 

in living cells (Chapter I), Chapter 2 outlines the materials, methods 

and the instruments used in this project. In Chapter 3, isolation,

separation and analysis of the polyamines via their phenylaminothiocarbonyl
I 13derivatives is described. The H and C n.m.r. spectroscopic analyses 

of these derivatives are also described. The synthesis of amino acids 

specifically or stereospecifically labelled with deuterium after some

modifications of a literature method, are described in Chapter A.
. . 2 13

The biosynthesis of spermidine from putrescine and H or C labelled

methionine is described in Chapter 5. This Chapter demonstrates the 

incorporation of the 3-aminopropyl group of the labelled methionine as 

an intact unit into spermidine. The condensation reaction between 

ethanal and I,3-diaminopropane is described in Chapter 6. The products 

of such condensations, namely hexahydropyrimidine compounds were 

acetylated. Full *H n.m.r. analysis for the hexahydropyrimidines and 

their acetyl derivatives are described. Decouplings in some cases 

are necessary to assure the assignment of the spectrum. The stereo­

chemistry of spermidine synthase is studied in Chapter 7. In this

Chapter, hexahydropyrimidine derivatives of stereospecifically
2

labelled biosynthetic Cl',2'- Hjlspermidines were used to define the 

relative configurations at the labelled methylenes (by A00 KHz *H n.m.r. 

spectroscopy). A definite judgement of the stereochemistry of

spermidine synthase necessitated the synthesis of stereospecifically
2

labelled [I',2'- (spermidines. The hexahydropyrimidines of these 

spermidines are compared with those of the biosynthetic spermidines 

obtained from stereospecifically labelled methionines by the action 

of E. a o li cells. The outcome of this work demonstrates the inversion 

of configuration at C-3 of the 3-aminopropyl group (originally C-A 

of methionine) after its incorporation into spermidine.

********
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CHAPTER I 

INTRODUCTION

I .A GENERAL

A great deal of the biochemistry of the naturally 

occurring polyamines, putrescine , spermidine (£) end 

spermine Q), has been elucidated since their discovery in 1678.

h 2n-(ch2)4-n h 2

<-l>

H2N-(CH2)3-NH-(CH2)a-NH2

<*>

H2N-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2

<*>

However, some aspects of their biological functions are still under 

investigation. The polyamines were found in a wide spectrum of 

living cells, which indicates the necessity of these compounds for 

the growth of living cells.

Large efforts have been devoted during the last 2S years

to the study of the biosynthesis of these polyamines. Most of these

experiments were carried out with radioactive precursors, and the

resultant polyamines were screened for radioactive labelling.

The main part of this thesis is concerned with the use 

2 13
of the stable isotopes H and C in the study of the mechaniam

of the biosynthesis of polyamines, and the stereochemistry of the



2

enzyme spermidine synthase.

In this Chapter the author will discuss the biosynthesis 

of polyamines and some of their biological functions in living 

cells. The current work on the biosynthesis of the pyrrolizidine 

alkaloids from polyamines has, briefly, been discussed.

As methionine is the precursor of the 3-aminopropyl group 

in spermidine and spermine, it is important to include a brief 

discussion, on some of its biosynthetic reactions, in this Chapter.

I.B THE BIOCHEMISTRY OF POLYAMINES

I.B.I Historical

The polyamines, putrescine (¡J, spermidine (£), and 

spermine (jj) are low molecular weight, aliphatic, nonprotein 

nitrogenous bases. Spermidine (2) and spermine (3) are aminopropyl 

derivatives of putrescine (I).

The history of these polyamines precedes that of nucleic 

acids by some 200 years. It began in 1678 when Antony von Leeuwenhoek 

observed the gradual deposition of crystalline spermine phosphate 

from human semen1. This observation was reported to the Royal 

Society in London as a description of the crystallisation of 

spermatozoa.

2
Independently, Nicolas Vauquelin also reported the formation 

of these crystals in his single paper on human semen, in 1791. He 

was apparently unaware of the report of Leeuwenhoek. These crystals 

were later rediscovered by many workers, in aged semen samples.

However, the nature of this crystalline compound remained ambiguous 

for more than a century. In 1895, these crystals were described by
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Boettcher, at a substance similar to proteins. In 1878, Schreiner 

showed that the crystals were a phosphate salt of an organic base, 

identical with similar crystals obtained from many tissues. Three 

years later, Fuerbringer proved that the prostate gland is the main 

source of the spermine of semen. The name "spermine" was given to 

the base by Ladenburg and Abel in 1888? but the determination of 

the structure of this base waited thirty six years before the 

important work of Otto Rosenheim . From 1924 to 1927, Rosenheim and his 

colleagues successfully synthesised spermine and the related base

4
spermidine which they had also discovered during the isolation of 

spermine.

I .B.2 General

2

Although the presence of polyamines in biological materials 

was reported1 for the first time some 300 years ago, they have been 

relatively unfamiliar to most investigators. Because these compounds 

were thought to have no pharmacological activity, and because the 

significance of their presence was not known, little effort was 

directed towsrds their area of research. Indeed,until recently,these 

polyamines were thought to be metabolic end-products. It is only 

during the past thirty years or so, that interest in the biochemistry 

and biological function of these compounds has been greatly increased.

Several observations*’̂’̂ indicate that the polyamines 

have important functions in cellular metabolism and are associated 

with many aspects of the growth of cells. This was supported by 

analytical studies showing the occurrence of polyamines in bacteria 

and plants in addition to animal tissues. The exact mechanism of 

action of these polyamines is still not understood.
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The biosynthesis of polyamines in Escherichia ooli cells 

wes studied in the late fifties by Tabor! and Green . Independently, 

they demonstrated that putrescine and L-methionine are the precursors 

for the spermidine molecule in bacteria (see Chapter 5). The Tabors 

were also the first to demonstrate that minced rat prostate could 

synthesisespermidine in vitro from radioactive putrescine1 It 

soon became clear that the biosynthesis of polyamines in animal 

tissues occurs through the same general pathway as in prokaryotic 

cells.

Convincing evidence has accumulated during the past 25 

years that clearly indicates that these polyamines are very important 

physiologically. This includes the feet that several microorganisms 

have an absolute requirement for diamines or polyamines1® for 

their growth. In addition, the concentrâtionof these amines snd 

their biosynthetic enzymes is high in actively proliferating animal 

tissues and increases rapidly when growth or differentiation is 

induced in resting cells. It is also reported11 that these changes 

precede incresscs in the DNA, RNA and the protein of the cell.

In vitro experiments show that these polyamines, because of their 

polycstionic nature, bind to nucleic acids and have a variety of 

effects on the biosynthesis and smtabolism of these acids It is 

currently accepted that the biosynthesis of polyamines is very

interrelated with the synthesis of nucleic acids snd proteins.

12
It hss been postulated by some workers that the polyamines 

specifically catalyse or control the biosynthesis of nucleic acids 

and that they are directly responsible for the increased macromolecular 

synthesis that occurs during growth. Even though there is a large 

accumulation of data about the relationship between polyamines and 

the nucleic acids there is still no conclusive evidence to support 

any of the specific proposals.
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Large interest in the naturally occurring polyamines was 

13
triggered, after Russell et al. reported that they had observed 

elevated diamine levels in hydrolysed urine samples of patients 

with malignant diseases. Since then numerous publications 

dealing with the polyamines have appeared. It is obvious that the 

analysis of these compounds in biological samples should take most 

of the effort in this area. However, the early suggestion that 

these polyamines might be useful in the early detection of occult 

cancer seems highly improbable at this time, mainly due to the time- 

consuming methodology which had been developed for the analysis of these 

compounds.

I.B.3 Biosynthesis of Polyamines

There are four enzymes involved in polyamine biosynthesis, 

two decarboxylases and two synthases. In animal tissues, putrescine 

is formed from ornithine (4) by the action (Scheme I.B.I) of 

ornithine decarboxylase (ODC). In bacteria, however, this diamine 

is either formed from ornithine as above, or from arginine (7) via 
agmatine (j£), with the enzymes involved being arginine decarboxylase 

and agmatinase. In most eukaryotic cells, the enzyme ODC is

present only in low concentrations, and is rate limiting in the 

biosynthesis of spermidine (£).

Q
Putrescine î ) is incorporated (Scheme I.B.I) directly 

into spermidine, and the propylamine moiety is derived from methionine9 

($)• The sequence involves the synthesis of S-adenosylmethionine 

(SAM) (£) from methionine (JJ) and ATP, followed by decarboxylation 

of SAM to give decarboxylated SAM (DSAM) (£). This is then followed 

by the transfer of the propylamine moiety to putrescine by the
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HjNCHjCHjCHjdHCCtyH :^HNC HjCHjCHjiHCOiH

(
l

7

CO,

h/jch/:h/:h^ h^h, ATP ♦ METHON*e 
i

H,N<C H,), NHC HjCH^HjNHj 
1
1 / 1 DSAM
[  ?r v—CH,SAd

H,N(CH2),NHCH£H,CH,CH,NH(CH,),NH,
1

Scheme I.B.I The biosynthesia of spermidine (£) and spermine (JJ)

action of spermidine synthase to give spermidine. Another synthase, 

spermine synthase, adds another propylamine group to spermidine to 

yield spermine (3).

Like most of the decarboxylases, mammalian ODC is a

pyridoxal phosphate-requiring enzyme. It has been purified from

14-16
a number of different sources . The molecular weight of 

mammalian ODC is estimated to be oa. 70,000. It appears that only

ODC obtained from livers of rats, which have previously been treated

1 7
with thioacetarnids, have shown a homogeneous preparation .

Mammalian ODC shows a specific requirement for thiols, and in the 

absence of these thiol compounds, the enzyme appears to undergo poly­

merisation leading to molecular species devoid of any enzymic activity17. 

One of the unique properties of ODC among other mammalian enzymes is

from putrescine (J) and methionine, via SAM (6) and 
DSAM (¡J).



its extremely ahort half-life which ia reported to be aa ahort 

aa 10-20 minutea.

There are aeveral linea of evidence indicating that the

concentration of putreacine, aa well aa that of apermidine, play#

an important role in the regulation of the activity of ODC in

eukaryotic organiama. Putreacine appeara to regulate the activity

19
of ODC in cultured awuae fibroblaata . Similarly, putreacine and

apermidine at micromolar concentration* aboliahed the increaae in

20
the activity of ODC in cultured lymphocyte* It haa alao been

ahown that an injection of a relatively large doae of putreacine

into the rat could prevent the atimulation of ODC activity by 

21
partial hepatectomy . Some evidence auggeata that the change* 

in ODC activity may involve change* in ita half-life, and in aome 

inatancea the atimulation of the enzyme activity ia aaaociated with 

a lengthening of ita half-life22.

The production of the enzyme S-adenoayl-L-methionine

decarboxylaae (SAMD) in higher organiama ia atimulated by putreacine 

23
and aimilar diamine* Thia appear* to be a univeraal characteriatic

of eukaryotic cellai however, aome higher plant* are poaaibl*

24
exception*to thia rule Thia ia in aharp contraat to the correaponding

enzyme from bacterial aourcea (a.g. E. ooli) which ahowa atringent

requirement for magneaium iona, and the enzyme from lower eukaryote*,

auch aa protozoa, which ia not influenced by either diamine* or 

25 26
magneaium iona ' SAMD haa bean purified from many aourcea

and that obtained from rat liver waa found to have a molecular

12
weight of oa. 68,000. SAMD ia found to be the only maanalian

decarboxylaae requiring pyruvate aa a cofactor, rather than the

27
more common pyridoxal phoaphate . The aeparation and purification

12
of SAMD to homogenity haa been achieved in contraat to an earlier

18
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report t which suggested that the formation of a functional complex

between SAMD and spermidine synthase was contributing to the difficulty

in purification of the two enzymes. Another difference between

SAMDs from prokaryotic and eukaryotic organisms appears to be the

sensitivity towards decarboxylated adenosylmethionine, (DSAM),

the product of the reaction. DSAM (£) has been reported1  ̂ to be a

much more powerful inhibitor for eukaryotic (e.g. rat prostate

and bakers' yeast) rather than for prokaryotic (e.g. E. ooli) SAMD.

In all eukaryotic cells, the total activity of SAMD is much

14 29
lower than that of spermidine synthase * It thus appears that

in most cases the rate of spermidine synthesis is determined by the

activity of SAMD and hence the synthesis of spermidine is mainly,

if not entirely, regulated by the concentration of cellular putrescine^.

Mammalian SAMD also has a very short half-life of only 

31 32
20-60 minutes ' . Thus it ranks close to ODC in the list of the

half-lives of manoalian enzymes.

The enzyme spermidine synthase catalyses the transfer of

the propylamine moiety of DSAM to putrescine to yield spermidine,

thiomethyladenosine, and one proton. This enzyme has been purified

to homoganity from E. ooli and has no known cofactor . The

corresponding enzyme from mammalian sources has been partially 

29
purified Spermidine synthase from rat ventral prostate has s 

high affinity for DSAM. The high activity of the enzyme for this

substrate, and the fact that its total activity greatly exceeds that

34 35
of SAMD , is probably the reason for the earlier suggestion that

only one enzyme was responsible for the decarboxylation of SAM and

the transfer of the propylamine group to putrescine.

In contrast to ODC and SAMD, spermidine synthase from rat

liver appears to have a rather long biological half-life since its

28
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activity require* several hours for decay .

The enzyme spermine synthase utilises DSAM as the donor of

the propylamine group and spermidine as the acceptor. Spermine

synthase has been purified oa. 100-fold from rat brain. The slow

progress in its purification and characterisation is attributed to

its low activity37. No cofactor or coenzyme appears to be needed in

the synthesis of spermine by the enzyme, which showed a high affinity37

for DSAM. Like spermidine synthase, spermine synthase seems to

36
be a rather stable enzyme with a long biological half-life .

I.B.4 Functions of polyamines

Many roles of the polyamines in both prokaryotic and eukar­

yotic cells are still undefined, but in the last 20 years numerous 

publications have appeared showing the importance of these polyamines 

in the cell proliferation processes. One of the first suggestions

that polyamines might be involved in the proliferative response of

38
cells and tissues came from the pioneering work of Herbst et al. when

they demonstrated increases in tissue levels of spermidine early in

the regenerative process. Since this observation, the correlation

between stimulation of cell growth and the large increases in the

rate of polyamine biosynthesis, has been extended to a wide variety 

39
of systems These correlations ware merely suggestive at the

beginning, and it was only with the isolation of a well-defined

putrescine auxotroph of Eaoheriohia ooli, that the growth requirement
40

for polyaminas was proved .

Closely related to the microbiological requirements for polyaminea 

61
is the finding of Mager that these substances have a marked 

stabilising effect on certain bacteria that require a high osmotic

36
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environment for survival. This stabilising effect may explain some of

the growth-promoting activity of polyamines.

A great number of researchers have taken the binding of

polyamines to nucleic acids in vitro as the object of their 
39 40

researches ’ . Much of the information provided little evidence

about the nature or the magnitude of this association, but definitely 

indicated the strong affinity between polyamines and nucleic acids. 

Complexing of polyamines and nucleic acids was suggested by such 

observations as the formation of an insoluble polyamine-nucleic acid

complex when dilute solutions of spermidine or spermine were added

42
to nucleic acid solutions .

The high affinity between polyamines and nucleic acids was

demonstrated when the interaction between DNA and polyamines has

resulted in the enhanced stability of the double helical structure

43
against thermal denaturation X-ray analysis of the crystal

structure of polyamine salts suggests that on interaction with DNA

molecules, spermidine or spermine may form a bridge between the two

strands of the DNA, via the protonatad amino and imino groups.
44

This model is supported by experimental evidence , which indicates 

the high specificity of this interaction.

In 1978, Cohen11 suggested that one of the important roles 

of polyamines is to organise the structure and activity of t-RNA. 

t-RNA can be converted from its inactive configuration to a more 

compact active form by the addition of either magnesium ions or 

polyamines. One or two mole of polyamines per mol of t-RNA have 

been found in both eukaryotic and prokaryotic cells. Therefore, 

it was not surprising to find that a mixture of magnesium ions

45
with spermidine would facilitate ontervd crystallisation of t-RNA

It was found that both spermidine and its analogue
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ethidium, [Fig. I.B.I(A)] which possesses similar distribution of free 

and substituted amino groups, bind similarly to tight and less tight 

binding-sites in t-RNA of E. ooli or yeast. Spermidine and ethidium 

compete for the binding sites and at the same time they can displace 

each other, depending on the ionic strength of each one1*. Numerous 

studies of the effect of cations on t-RNA indicated that one binding 

site for spermidine was in the vicinity of the relatively unstable 

stem of the dihydrouridine (D) arm [Fig. I.B.I(B)*]. Both spermidine, 

and magnesium ions, appeared to act sequentially in this region in 

stabilising and inducing folding of the t-RNA^.

The structural positions of spermine and magnesium ions

47
in crystals of yeast t-RNA have recently been determined [Fig. I.B.I(B)]. 

Two spermine molecules and four magnesium ions have been located in the 

structure.

Fig. I.B.1 (A) Ethidium structure
(B) Binding of spermine to t-RNA

Polyamines have been found in ribosomes isolated from 

both bacterial and animal cells . On this basis, it has been 

widely accepted that ribosomes in vivo also contain polyamines, 

and that polyamines are essential for ribosomal structure and function.

•This figure was taken from Ref. II.
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However, it has been demonstrated that ribosomes can take up amines 

from the cytoplasm after the disruption of the cell. The binding 

of polyamines to ribosomes is reversible, and it was found2 that, 

consequently, the amine content of the ribosomes changed during 

isolation procedures. Thus, it is impossible to be certain that 

ribosomes and polyamines bind to each other in vivo, or to the magnitude of 

this binding.

Several papers suggest that the polyamines play a role in

peptide initiation, possibly by altering the ribosomal conformation.

The amines decrease the requirement for magnesium ions for the

formation of an initiation complex between aminoacyl-t-RNA, m-RNA,

49
and ribosomes Spermine may also affect peptide elongation, since 

at low magnesium ion concentration, it stimulates the peptidyl 

transferase activity of ribosomes***.

I.B.5 Other pharmacological effects of polyamines

Growth of yeast and several bacteria can be inhibited by 

polyamines, but the sensitivity of different species to such inhibition 

can vary markedly. At pH 7 cells of Staphylooooaue aureus were killed 

by spermine at a concentration of 5 x I0”* mol, while I0~3 mol was 

enough to kill cells of E. ooli. The bactericidal potency*** was 

increased 10-fold when the pH of the two media were raised from 

7 to 8.

The antibacterial affect of polyamines could be due to 

their interference with the permeability mechanism of the cell

membrane, or due to the diamines preventing uptake of essential amino

.. 10 
acids

In 1953, Hirsch and Dubos were the first to observe that

48
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concentrations of spermidine that do not damage the cells or 

organisms, may become very toxic when mixed with beef plasma 

amine oxidase. They presumed that the products of the enzymatic oxidation 

of spermine are the responsible toxic factors51.

In animals, the polyamines have a marked renal toxicity1 .

The administration of 0.075-0.15 mmol/kg of spermine to a variety 

of animals51, produces only relatively mild acute effects. However, 

the resultant proteinuria and serum non-protein nitrogen retention 

which gradually develops are followed by death from renal failure. 

Spermidine is much less toxic than spermine and I,4-diaminobutane 

is not toxic at comparable doses.

In man1̂ , vomiting, albuminuria, acetonuria, and hyperglycemia 

are observed after intramuscular injection of spermine (0.033 sssol/kg).

I. B.6 Cancer and polyamines

13
Russell reported in 1971 that cancer patients had elevatad

levels of polyamines in their urine. Since that time numerous

publications have supported this report (full account of this subject

is discussed in the book "Polyamines in Biomedical Research", Ed.

52
J. M. Caugas, A. Wiley - Interscience, 1980). In a later report ,

Russell showed that changes in polyamine levels, in the plasma or 

urine of diagnosed csncer patients, were associated with alterations 

in tumour growth kinetics. Since these compounds are associated 

with many aspects of the growth of normal cells, it is not 

surprising to see them playing an important function in the cellular 

metabolism of cancer cells.

13
Since Russell'a report in 1971, the hope that the polyaminea 

and some of their metabolites would be useful as n tumour marker
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has motivated a considerable amount of research on these compounds.

This includes the extension of polyamine analyses to other physiological

53
fluids , such as whole blood, blood plasma, serum, and cerebrospinal 

fluid, along with variations in sample preparation and sophistication 

in the methodology of these analyses.

It is apparent from the literature in the last 10 years, 

that measuring polyamine levels in physiological fluids is a valuable 

tool in evaluating the pathogenesis of haematological diseases, as 

well as monitoring the course of the disease, with or without 

chemotherapeutic treatment. However, the early suggestion’5 that 

they might be useful in early detection of cancer seems highly 

improbable at this time. Firstly, the methodology is still time 

consuming and has not been applicable to mass-screening procedures, 

which would be necessary to ascertain their possible usefulness in 

early diagnosis. Secondly, other pathological conditions in which 

there is high cell turnover and high growth fractions also appear 

to result in increased urinary polyaminas, e.g. patients with cystic 

fibrosis54.

The use of polyamine analyses, as a general tumour markar 

and as an indication for either the state of health or disease stages, can 

be greatly improved if a specific antibody can be developed against 

putrescins, spermidine, spermine and the naturally occurring 

conjugated polyamines. This would establish the hoped-for 

isssunosssay for quick, specific, reproducible and reliable analysis 

of the polyamines in biological fluids.

I.B.7 Polyamines as precursors of alkaloids

Recant studies have implicated the polyamines as
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precursora of a number of alkaloids. In 1973, spermidine was 

demonstrated** to be the precursor of maytenin (10), in which 

two trana-cinnamoyl amide groups were added to the terminal amino 

groups of spermidine (Fig. I.B.2).

HjMCHjIjNHICHjItNH,

,____ 1___
I

rf-HNICHjJjNKCHjIjNH-tf

I k R s USS-PhCH*CHCO-

jib R * fii-PhCH=CHCO-

111 R s PhCO-

M R*

Fig. I.B.2 Alkaloids which are believed to be derived from 
spermidine and cinnamoyl unita.

In 1974, maytenin was reported to be the precursor of celacinnine 

Oja), in which the 13-membered ring is constructed from spermidine 

and one cinnamoyl unit. The I3*membered ring of celacinnine was 

also found in other alkaloid rings such as cellallocinnine (l^b), 

celabanzene (l|c), and celafurine** (IJd).
*7

Recently , evidence has been presented for the involvement 

of putrescine, spermidine and spermine in the biosynthesis of the 

pyrolisidine alkaloid, retrorsine. The most common base portion 

found in the pyrrolisidlne alkaloids is retronecine (1̂ 2), which was

demonstrated, by the use of 1*C-labelled precursors, to be biosynthesised

14
from arginine, ornithine and putrascine. The position of the C-labelling
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Scheme I.B.2 Biosynthesis of retrorsine from spermidine or 
putrescine.

58
ves determined by degradation. The results indicated the 

utilisation of two molaculas of each precursor, to give, a 

symmetrical intermediate of the type shown (1^) (Scheme I.B.2). This is 

followed by the conversion of ((^) into retrorsine (^4) via retronecine

(1,2).

I.C SOME BIOCHEMISTRY OF METHIONINE

In 1922 SMthionine was isolated and identified as a 

sulphur containing compound?^ Six years later, the structure of 

this compound was demonstrated60 to be CHjSCHjCHjCHNHjCOOH.

Methionine hes been shown to be neceeeery for growth in a number of

61 62 
organisms and an essential amino acid in man . The biosynthesis

of methionine in humans is closely linked to other sulphur-containing

amino acids such as cysteine and homocysteine*1.

The importance of methionine can be deannstrsted by the

large number of methylation reactions*3 involving the activated



17

form of methionine, SAM (Scheme I.B.3), as a donor of the methyl 

group, and a suitable acceptor for this group (e.g. alcohols, 

amino acids, aromatic and heterocyclic compounds).

Scheme I.B.3 Methionine as a methyl donor, after its activation 
by ATP.

The activated form of methionine (SAM) may donate its

methyl group, the alkyl chain or an adenosyl residue to a wide

spectrum of acceptors. Many macromolecules, are now known, which

after primary biosynthesis, are methylated in reactions63 involving SAM.

The méthylation of nucleic acids, proteins and polysaccharides has 

63
been demonstrated .

DNA enters a bacterial cell it may be degraded or it may survive 

and replicate. The specific enzyme endonuclease, which degrades 

foreign DNA, differentiates it from the native DNA by the degree 

of méthylation in both acids. The foreign DNA is thus cleaved 

rather than the native methylated DNA. The méthylation of t-RNA 

by SAM was first reported by Borek65; since then, these méthylation 

reactions have bean extensively studied63. It has been shown that 

the degree, and the pattern of this méthylation, is different in 

t-RNA obtained from different organisms. It has also been shown 

that under different physiological conditions, different t-RNAs can be 

obtained from the same organism. The significance of t-RNA méthylation.

Acceptor CHj-Acceptor

The methylation of the nucleic acid DNA plays an important 

role in the defence mechanism of the bacterial cell66. When foreign



with regard to its structure or function, has not yet been 

determined.

Another important aspect of methionine biochemistry is

shown in the biosynthesis of spermidine and spermine. This topic

is discussed in Chapter 5 of this thesis.

The biosynthesis of ethene in plants was the object of

much research^. Ethene has been shown to exhibit a great effect on

the growth and maturation of plants. The premature ripening of

fruit by gases from unburned paraffin was identified^7 as the

result of the ethene in these gases. The year 1934 brought the

proof that ethene is a natural plant hormone, after it was demonstrated

68
that apples produced ethene .

route of ethene production have been carried out, by plant physiologists. 

Thus, since 1950 many precursors of the ethene produced by plants 

have been suggested. Most of the work on these precursors and their

labelled I-aainocyclopropane-I-carboxylic acid (^5). They then infused 

labelled I-aminocyclopropane-l-carboxylic acid and obtained labelled 

ethane.

Many attempts for the elucidation of the biosynthetic

proposed pathways to ethene have been reviewed^, the most preferred

precursor of ethene was suggested to be methionine^. The most

69
recent evidence being described by Adams and Yang (Scheme 1.B.4).

CH,

Scheme I.B.4
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I.D OUTLINE OF THE PROJECT

1. General

A major problem facing Che biochemist wishing Co investigate 

the metabolic pathways, and stereochemistry of enzymic reactions, is 

the synthesis of labelled precursors and of labelled products for 

comparison with the biosynthetic molecules. The M i n  aim of this 

project is to study the biosynthesis of spermidine and the stereo­

chemistry of its synthase. This required the establishment of an 

efficient method for the isolation and analysis of spermidine from 

E. ooli cells. When this had been achieved, labelled methionines 

were used to study the biosynthesis of spermidine. The problem of 

identifying the relative configurations of deuterium labelled 

spermidines was solved by the chemical synthesis of ssmples of 

labelled spermidines as standards which were compared with 

biosynthetic ssmples of spermidines.

2. Phenylaminothiocarbonyl (PATC) derivatives of polyamines

The eventual aim of this project, to study the stereo­

chemistry of spermidine synthase, demanded a good and efficient 

method for the spectroscopic characterisation of spermidine.

None of the published methods were satisfactory for our purposes.

We studied various derivatives and eventually found that the PATC- 

derivatives of the polyamines were adequate for our purposes.

Free amines can be recovered from these derivatives by acid 

hydrolysis. Thismethod is now suitable for obtaining free spermidine , 

suitably labelled with or which can be used to study its

binding with nucleic acids.
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3. Biosynthesis of spermidine from labelled methionines

Methionines labelled with or at C-2 and C-3 or

2 13
at C-3 and C-4 with either H or C were used in studying the 

biosynthesis of speraidine from methionine and putrescine. The 

outcome of this work demonstrated the incorporation of the 3-aminopropyl 

group of methionine into spermidine as an intact unit.

A. Stereochemical atudiea

Studies on the stereochemical course of the transfer of 

the 3-aminopropyl group of methionine to putrescine were carried 

out with the aid of stereospecifically deuterium-labelled methionines. 

The establishment of the stereochemical outcome of this reaction 

proved to be difficult to analyse. Thus, the synthesis of deuterium 

labelled spermidine was carried out to assist in solving the cryptic 

stereochemistry of this reaction.

The thesis also describes synthesis of a number of model 

compounds, which were used to help understand some of the 'h n.m.r. 

spectral features of the hexahydropyrimidine derivatives of the 

spermidines. These derivatives were then used as intermediates 

in the study of the relative configurations of the deuterium atoms 

in the labelled spermidines.

5. Synthesis of deuterium-labelled amino acids

Methionines specifically labelled with deutarium(s) were 

prepared by an exchange reaction method70. The utilisation of this

method was extended as we have demonstrated to the preparation

2 2 7
of wo. [2,3- Hjlvallne, wo. [2- H|]alanlne, wo. C2,3— HjHsoleucine 2

2
and wo. [2,3,3- Hj]leucine.
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Preparation of atereoapecifically deuterium-labelled

methionines were carried out, starting from Cl,2-2H21acetylene.

The same route used in this synthesis was adapted in our laboratory

13
for the synthesis of reus.[3,4- Cjlmethionine from the commercially

available [1 ̂ lacetylene.
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CHAPTER 2

MATERIALS, METHODS AND INSTRUMENTAL

2.A MATERIALS

1. Solvents

All solvents used in the isolation and analysis of polyamines 

from E. ooli cells were of analytical grade, which were distilled and 

stored over 3A or -4A molecular sieve. Solvents used in the h.p.l.c. 

analysis were h.p.l.c. grade and were purchased from "Rathburn 

Chemicals Ltd., Walkerburn, Scotland". Other solvents were of 

laboratory grade which were distilled before use. Anhydrous solvents 

were purified and dried according to a standard method. Chloroform 

was obtained ethanol free by chromatography on basic alumina. Absolute, 

anhydrous and deuterated solvents were stored in tightly stoppered 

bottles with parafilsMd seals and were used in a dry box.

2. Chemicals

All chemicals were of the highest purity coasssrcially 

available, and in soma cases wars purified before use.

2.B METHODS

I. Solutions in organic solvents ware dried using MgSO^, which 

had been stored at IIO°C for at least 2 days. Evaporation of solvents 

under reduced pressure refers to the removal of bulk solvents by
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uaing a BUchi rotary evaporator at 12-15 naHg at room temperature. 

Otherwise, conditiona of evaporation would be atated.

2. All glaaaware uaed in the ayntheaia of deuterated compounds, 

exchange experiments and in a moisture sensitive reaction were dried 

at 1I0°C overnight, flamed and then allowed to cool to room temperature 

under a blanket of dry nitrogen.

3. Exchange experiments were carried out in the dry box under 

a blanket of nitrogen.

4. Solutions of sodium methoxide in methanol were prepared in 

a dry box from anhydrous methanol and freshly cut clean sodium.

Sodium was cleaned by dropping in a small amount of methanol before 

being added to the solvent. Titration of sodium methoxide solutions 

was done against standard hydrochloric acid aolutions using 

phenolphthalein indication.

5. Preparation of hypochlorous acid: Chlorine(I) oxide waa 

prepared1 by passing Cl2 (gas) through carbon tetrachloride. To 

the resultant solution was added, with stirring, the calculated 

amount of mercury(II) oxide. Filtration and the addition of water* was 

followed by the separation of the aqueous layer. The hypochlorous 

acid was titrsted sgainst 0.1 mol dm sodium thiosulphate before

use (N.B. for full detsils of this preparation see Ref. I). 6

6. T.l.c. was csrried out on home made plates of Kieselgel MN 

60 (Merck, Cst. No. 5554) which were activated at II0°C overnight 

before use. The analytical plates were of 0.25 mm thickness while the

*The amount of water was calculated according to the required strength 
of the acid.
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preparative plates were of 0.5 on thickness. The solvents were made 

up freshly and are quoted as volume to volume.

7. Gases were handled on an all glass vacuum line system.

2
Standard techniques were explored in handling and purification 

of all gas samples.

2.C INSTRUMENTAL

I. N.m.r.

*H n.m.r. spectra were recorded using the following 

instruisents.

(a) Perkin-Elmer (model R-34) 220 MHz 1H n.m.r. 

spectrometer

(b) Bruker (model WH-400) 400 MHz *H n.m.r. 

spectrometer

Peaks are designated by their chemical shift (6) in parts per

million, followed in brackets by their relative integral value

(e.g. IH) in hydrogens, their multiplicity (s ■ singlet, d ■ doublet,

t - triplet, q ■ quartet, p • pentuplet, m ■ multiplet), and the

spin-spin coupling constant (J) in Hertz, where appropriate. Spectra

were recorded in deuteratad solvents using TMS or TSS as a

reference (zero 6).

13
C n.m.r. spectra were recorded on a Bruker (model WH-90)

13
22.63 MHz C n.m.r. spectrometer, equipped with a variable 

temperature accessory. Peaks are designated as above. All spectra 

were run with broad band *H decoupling, and consists of singlets 

unless otherwise indicated.
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H n.m.r. spectra were recorded on a Bruker (model WH-400)

2
61.424 MHz H n.m.r. spectrometer. Peaks are designated as in the 

*H n.m.r. spectra.

All n.m.r. spectra were assigned by comparison to the 

n.m.r. spectra of model compounds, or of authentic materials.

2. Infra-red spectra

Infra-red (i.r.) spectra were recorded on a Perkin-Elmer (model 

580B) grating infra-red spectrophotometer. Samples were either mulls 

(nujol), thin films, solutions or gases (10 cm gas cells) and were 

run using NaCl plates. Peaks are designated by their wave number 

(cm *) as strong (s), medium (m), weak (w), shoulder (sh) and as 

broad (br).

3. Optical rotations

Optical rotations were measured with a Bendix NPL automatic

2
polarimeter (model I43D) using a 1.00 cm x 0.708 cm cell. The 

instrument was calibrated against s standard sucrose solution before each 

measurement. Values are expressed as specific rotations ([a]) .

4. Css liquid chromatography

C.l.c. analyses were carried out using Perkin-Elmer (model F—11) 

flame ionisation gas chromatograph, using Nj as carrier gas. Samples were 

compared to authentic materials.

2
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5. Ultra violet spectra

U.v. spectra were recorded with a Pye-Unicaa (model SP-1800) 

ultra violet spectrophotometer.

6. Melting point»

Melting points (m.pj were recorded using a Gallenkamp 

Instrument and are uncorrected.

7. Combustion analysis

C.H.N. combustion analysis were carried out by C.H.N. 

Laboratories, Leicester.

8. H.P.L.C.

High pressure liquid chromatography (h.p.l.c.) analyses were 

carried out on a Watars Associates (model 204) liquid chromatograph 

equipped with a U6K septumless injector, 6000A solvent delivery system, 

and a 400 single channel absorbance detector (254 run).

9. Mass spectra

Maas spectra were recorded on a Kratos MS80 spectrometer. 

Peaks are quoted as m/s followed by their percentage where relevant.

The molecular ion is designated as M*.
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CHAPTER 3

ISOLATION, SEPARATION AND 
ANALYSES OF POLYAMINES

3.A INTRODUCTION

Interest in the determination and enelyais of the polyamines

spermidine end spermine, end their precursor putrescine, has been

I 2
greatly stimulated by the reports of Russell ' , which described 

elevated levels of these compounds in the urine of patients with 

metastatic cancer. Following these findings, numerous papers dealing 

with the estimation of these polyamines have been published. Polyamines 

have been successively described as the foul-smelling indicators of the 

male reproductive function, then as the promoters and regulators of 

cell growth, and OK>st recently, as potentially useful indicators for 

the state of human health or disease. Parallel with these observations, 

polyamine analyses were developed that were qualitative at the 

beginning, but later quantitative measurements began to be used.

Finally, highly sensitive measurements ware needed if any useful 

clinical results were to be derived from these analyses.

The most favoured of the early methods for characterising
3

polyamines was crystallisation of either their phosphate salts , 

or their picrates*. The latter were often identified by their 

melting points. Later on, ion-exchange chromatography^ was used 

for the separation of polyamines. This method has successfully 

achieved separations in the nanomol range with fair specificity.

Other methods of similsr sensitivity followed, e.g. paper electrophoresis, 

paper chromatography and an ensymic assay using spermidins oxidase.
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The final stage in the analysis of polyamines began when dansyl

derivatives^ of the polyamines were assayed fluorimetrically, after

being separated by t.l.c. on silica gel plates. This technique

permitted the assay of 20-200 ptnol of spermidine. The use of

g.l.c. was introduced in the analysis of polyamines as their

trifluoroacetyl derivatives7 and showed a reasonable sensitivity

to 200 pmol . This method was later improved by the use of

g.c./m.s.t utilising analogues of polyamines as internal standards.

In the mid-seventies numerous publications appeared describing

the use of h.p.l.c. as a sensitive method for the quantitative

analysis of polyamines. The most important of these was the

a
separation of the dansyl derivatives of the polyamines by h.p.l.c.

This method exhibits a fairly good sensitivity (25-30 pmol), and

allows a good separation between the diamines. The innovation of

q
using antibodies against polyamines showed that immunoassay 

was the ultimate analytical approach for routine estimation of the 

polyamines. Although this technique has its own drawbacks, mainly 

the cross-reaction between the antibodies, it is extremely sensitive 

(t 0.05 pmol). Another drawback is the low specificity of the 

assay, but this may be compensated for by the high sensitivity of 

the method. The clinician observing abnormal values of a 

polyamine can then use a more specific method to identify the 

polyamine responsible.

Although many analytical methods of high sensitivity 

have been developed, this by no means suggests that the analysis 

has reached maturity. Many years of work are needed to bring the 

currently developing methods, especially immunoassay, into 

full flower.

Future developments in polyamine analysis should also
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allow for Che analysis of metabolites and conjugates of polyaaines.

The work of M. M. Abdel-Monem10 on the dansyl derivatives of the 

acetyl conjugates of polyamines appears to have started this 

hoped-for new era in the field of polyamine analysis.

One step in the biosynthesis of spermidine is the 

reaction between decarboxylated S-adenosylmethionine and

I,4-diaminobutane (putrescine), which is catalysed by spermidine 

synthase (3-aminopropyl transferase)11. In order to study the 

biosynthesis and the stereochemistry of this reaction, we enlisted 

the aid of precursors labelled with stable isotopes. Thus, we 

required s convenient method for the isolation and separation of 

polyamines from cells of Escherichia colt. Furthermore we

1 2
required s derivative of spermidine whose n.m.r. spectra ( H, H 

13
and C) would show, ideally, separate and easily assignable resonances

for each carbon or methylene group [N.B. the 220 MHz *H n.m.r.

spectrum of spermidine in CDCl^ with TMS as internal standard,

shows signals at 6 1.3 (5 H, brs), 1.49 (4 H, m), 1.64 (2 H, p)

and 2.5-2.9 (8 H, m) p.p.m.]. No properly characterised derivatives

of the polyamines, suitable for isolation, separation and spectroscopic

12 13
analysis, have been described. After trying benzoyl , dansyl ,

14 15
4-methoxybenzoyl and p-toluenesulphonyl derivatives and finding 

various shortcomings (especially incomplete derivatisation), we 

examined the phenylaminothiocarbonyl derivatives (PATC-derivatives) 

obtained by reacting polyamines with isothiocyanatobensene (PhNCS).

This classies 1 procedure for derivatising amines14 * 16 had not been 

applied to polyamines with the exception of I,4-diaminobutane.

We found these derivatives to be very suitable for our purposes.

The fully blocked PATC-derivstivss of polyamines were easy to 

prepare and separate by chromatography, using silics gal and
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1 13
non-aqueous solvents. They were fully characterised by H and C 

n.m.r. spectroscopy and by combustion analysis.

In order to assign the spectroscopic data of phenylamino- 

thiocarbonyl derivatives of polyamines, we needed simple amino 

compounds as models which would give PATC-derivatives whose *H

I 13
and { H) C n.m.r. spectra were straightforward to analyse.

We isolated the polyamines spermidine and putrescine 

from cells of E. ooli by making the PATC-derivatives. The separa­

tion and purification was done on p.l.c. Preliminary analysis by

h.p.l.c. was achieved with a mixture of authentic PATC-derivatives 

and was compared with PATC-derivatives isolated from E. ooli cells. 

Finally, the separated PATC-spermidine was hydrolysed to give 

free spermidine, which later on was used for further studies, 

e.g. reactions with carbonyl compounds.

3.B PHENYLAMINOTHIOCARBONYL DERIVATIVES OF POLYAMINES

The natural polyamines do not possess structural features 

which enable tljeir direct analysis and detection to be readily 

achieved. A potential method for detection and analysis of 

polyamines is through derivatiaation. This method has the 

advantages of permitting, in principle, sensitive detection and 

good physical separation. It also has the advantage of allowing 

the accumulation of the polyamines by solvent extraction. None 

of the numerous derivatives of polyamines described in the 

literature fulfilled the needs of our objectives.

12
Most of the derivatives we examined (e.g. benzoyl ,

13 14
2,4-dimethylbenzoyl, dansyl , 4-methoxybenzoyl , and p-toluene- 

sulphonyl1  ̂have showed various shortcomings, such as incomplete
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derivatisation and poor apectroacopic properties. Considerable 

effort was invested in the 4-methoxybenzoylamide derivatives of 

polyamines.

More than one procedure for the preparation of these 

derivatives was tried. The reaction between p-anisoylchloride 

and the polyamines was carried out in various organic solvents 

(DMSO, dichloromethane, pyridine) with pyridine as a base.

Stirring for 12 h at room temperature gave mixtures of compounds 

containing partially reacted polyamines (n.m.r. and t.l.c. 

analysis) and some acid anhydride (i.r., vmax> 1800 cm *)•

Attempts to purify such mixtures were unsuccessful.

Finally, preparation of these derivatives in a pure

state was achieved, but in rather low yield, when the reactions

-3 14
were carried out in 2 mol dm aqueous sodium hydroxide . The 

220 MHz *H n.m.r. spectra of these derivatives were recorded and 

showed them to be reasonably pure, but their combustion analyses 

showed unacceptable results, especially for the derivatives of 

spermidine and spermine. The n.m.r. spectra of these derivatives 

showed mainly broad, signals for which assignment was impossible 

due to overlapping of the resonances of the alkyl chain.

Analysis of the 4-methoxybenzoylamide derivatives of 

putrescine, spermidine and spermine by h.p.l.c. was attempted on 

columns of u-Cjg, p-Porasil and Partisil. On the y-Cjg column, 

various combinations of water and methanol were used to elute 

the three derivatives, but with no success in achieving separation. 

When chloroform/methanol (99/1,v/v) was used as eluent on the 

silica gel columns, the Partisil column showed a good separation 

for the three derivatives, but the quality of the peaks was very 

poor (high Wj). The p-Porasil gave the best results when this
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solvent system was used, but the irreproducibility of the chromato­

grams made this system unreliable for accurate analyses.

We finally examined the phenylaminothiocarbonyl (PATC)- 

derivative of polyamines and found them to possess ideal chemical, 

chromatographic and spectroscopic properties in comparison to other 

derivatives in use. The PATC-derivatives have been fully

characterised by CHN combustion analyses, m.p., t.l.c., h.p.l.c.,

1 1 1 3
i.r., u.v., H n.m.r. and { H) C n.m.r.

We found that the PATC-derivatives of putrescine, 

spermidine and spermine were difficult to prepare under similar 

conditions to those used for simple amines. Under these conditions 

(ethanolic solution), oiling out of products and failure of crystallisa­

tion of these oils, made it difficult to get analytically pure 

derivatives. Finally, the PATC of polyamines were obtained in 

crystalline form from solutions of aqueous ethanol. We have observed, 

by t.l.c. and *H n.m.r. spectroscopy, the full blockage of all 

amino groups of the polyamines, irrespective of whether the derivatisa- 

tion was carried out in ethanol or in aqueous ethanol.

We did some preliminary kinetic experiments on the 

formation of the PATC-derivatives. This showed that blocking of all 

amino groups of the polyamines was complete within 3 minutes.

Isothiocyanatobensena (PhNCS) is specific for amino 

functions. If used in excess during the reaction, it does not 

interfere with subsequent h.p.l.c. or t.l.c. analyses, because it 

can be removed by pumping at I0~* mmHg/r.t. There is no need 

to remove the PhNCS before the chromatogram when it is present 

in relatively small quantity.

The chromatograph we used in the h.p.l.c. analysis was 

fitted with a single absorbance detector (234 nm). In applying
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3.B.I Chromatogram for the h.p.l.c. analyaia of

authentic phenylaminothiocarbonyl derivativea of:

( 1)  ethylamine

(2) 1,3-diaminopropane

(3) putreacine

(4) spermidine

(5) spermine



h.p.l.c. analysis it was important for us to have a derivative

which gives an appreciable absorption at this wavelength. We

found by the u.v. analysis of PATC-derivatives that they possess

a very high extinction coefficient at X 252 ran. These
max

characteristics of PATC-derivatives contributed to the high

sensitivity of this method, which showed a detection limit of oa.

0.2 pmol at I0Z of full-scale deflection.

Mixtures of the PATC-derivatives of ethylamine (^6),

I,3-diaminopropane (^8), I,4-diaminobutane (J9), spermidine (^0)

and spermine (^1) could be analysed by isocratic h.p.l.c. [30 cm x

3 -I
4.6 ran i.d. (p-Porasil), 0.5 cm min ]. Elution with IZ methanol 

in chloroform gave five nicely separated peaks (Fig. 3.B.I). The 

only setback of this h.p.l.c. analysis is the slight tailing of the 

peak corresponding to compound (3J).

Mixtures of the PATC-derivatives can also be separated 

very easily by preparative layer chromatography. The PATC-derivatives 

behaved well on silica gel plates (Kieselgel MN) and showed no tailing 

after elution with dichloromethane/acetonitrile (87/13, v/v), and 

detection with iodine.

Another advantage in favour of the PATC-derivatives is 

the ease of recovery of the polyamines from the PATC-derivatives by 

hydrolysis in cone. HC1 (overnight/I I5°C). For PATC-spermidine, 

evaporation and crystallisation from ethanol gave spermidine 

trihydrochloride, which could be passed through an ion exchange 

column to give hydrochloride-free spermidine.

The only disadvantage we faced while utilising the 

PATC-derivatives was their unsuitability for mass spectrometric 

analyses. Both c.i./e.i./m.s. gave no molecular ion or useful 

fragments for any of the PATC-derivatives. The advantages

39
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xnhch2ch2ch2nxch2ch2ch2ch2nxch2ch2ch2nhx
V

xnhch2Jh2£h2ch2nxch2ch2ch2nhx
( ? 0 )

XNHCH2CH2CH2CH2NHX
< k ? >

XNHCH2CH2CH2NHX

ch3ch2nxch2ch3
< u >

xnhch2ch3
< t f )

{ X=PATC )

Fig. 3.C.I Phenylaminothiocarbonyl darivativta of 

ethylamine (16), diethylamine (jj),

1,3-diaminopropane ((£), putrescine (^9), 

spermidine (̂ 0) and spermine (^1).
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mentioned above more than compensated for this disadvantage and put 

these derivatives among the most important pre-chromatographic 

derivatives known for polyamines.

3.C ASSIGNMENTS OF *H AND {*H}*3C n.m.r. SPECTRA

1 1 13
The assignment of resonances in the H and { H) C n.m.r. 

spectra for the phenylaminothiocarbonyl derivative of polyamines 

was undertaken with the aid of the spectra of model compounds. The 

assignment of signals in the *H n.m.r. spectra for the model 

compounds, N-(phenylaminothiocarbonyl)-ethylamine, iPATC-ethylamine 

(16)], N-(phenylaminothiocarbonyl)-diethylamine, [PATC-diethylamine 

(jj)] and N.N'-Hsfphenylaminothiocarbonyl)-! ,3-diaminopropane,

[PATC-I,3-diaroinopropane (18)] presented no problem. The same can 

be said about N,N-fcis(phenylaminothiocarbonyl)-l ,4-diaminobutane, 

[PATC-putreseine (19)] as can be seen from the relevant data in 

Table 3.C.I and the structures in Fig. 3.C.I. It remains to 

justify the assignments of resonances in the *H n.m.r. spectra of 

the compounds N,N',N"-trts(phenylaminothiocarbonyl)-N-(3-aminopropyl)-

1,4-diaminobutane, [PATC-spermidine (^0)] and N,N,,N",N"'-fcet«ifcta- 

(phenylaminothiocarbonyl)-Mo-N,N'-(3-aminopropyl)-l ,4-diaminobutane, 

fPATC-spermino (21)]. For the 1H n.m.r. spectra, assignments 

followed directly by comparison with the derivatives (16), (17), (18) 

and (J9) (of. Table 3.C.I).

Recording the *H n.m.r. spectra at 30°C gave poor resolution 

for the resonances from the alkyl chain. Resolution was greatly 

improved when the spectrum was measured at higher temperatures 

(e.g. I00°C) (of. compound (^0) Fig. 3.C.2). This could be due to 

an increase in the rate of equilibration of the many rotational
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(1,6)

(18)

_ 1 1 1 1

»

I 13
The 22.6 MHz { H) C n.m.r. spectra of phenylamino-

thiocarbonyl derivatives ( 6̂>. (JJ), (^8) and (^9).

Derivatives (^6) and (JJ) were measured in (CDCljt

TMS) while ((̂8) and (jj)) were measured in

<r2H,]-DMSO, TMS). 
o
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FIG. 3-C-4

I JJ
7ig. 3.C.4 { H> C n.a.r. spectrum of phany laino thiocarbonyl

derivativo of apotuidino (5), In C^.l-DNSO~ D
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isomers o f  Che d e r i v a t i v e s .

I 13
The 22.63 MHz { H} C n.ra.r. spectra for the model compounds 

(1̂ 6), (jj), (1̂ 8) and the PATC-putrescine (^) (Fig. 3.C.3) were 

easily assigned and need no further comment. It remains to justify 

the assignments made for compound (^0). The ( H) C n.m.r. spectrum 

of compound (^0) (Fig. 3.C.4 shows three distinct groups of signals)

(of. Table 3.C.2). The signals at 41.74 and 43.69 are assigned to 

C-3' and C-4, respectively by comparison with data for compounds 

(I8)and (19). The signals at 48.63 and 50.19 [of. C-l for compounds 

(16) and ({7)]are assigned to C-l' and C-l, respectively, by considering 

the C-l of compounds (^) and (1̂ 9). We assign the signal at 26.86 to 

C-2* [of. C-2 positions for compounds (18) and (19)] and the signals at 

24.72 and 26.15 to C-2 and C-3 respectively [of. C-2 for compound (16) 

and C-2 for compound (|7)]. The deshielding of C-l for compound (\J) 
compared to C-l for compound (^6) and the shielding of C-2 of compound 

(\J) compared to C-2 of compound ()£), parallel effects seen with, 

e.g. aminoalkanes, dialkylamines and trialkylamines17 (Fig. 3.C.5). Data 

on the shielding and deshielding of these amino compounds can be 

seen in Table 3.C.3.

a 13
TABLE 3.C.3 C n.m.r. chemical shift data for mono- and

dialkylamines. For structures see Fig. 3.C.5.

Amine C-l C-2 C-3 C-4 C-5

< 39.5 39.2 39.5

k 42.7 32.1 32.1 42.7

k 42.5 34.0 29.7 23.0 14.3

i 50.8 30.7 30.3 23.3 14.6

♦Data in this table was extracted from Kef. 17.
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Chromatogram for the hplc analysis of PATC-derivative 
of biosynthetic:

(1) putrescine C 9̂)

(2) spermidine (^0)



3.D ISOLATION, SEPARATION AND ANALYSIS OF 
PUTRESCINE AND SPERMIDINE FROM E. COLI CELLS

The inoculación of a standard salt medium, containing

L-methionine, with the E. ooli strain 630 Hfr| (a methionine

auxotroph) was carried out in small volumes to allow for maximum

aeration of the cells. The polyamines putrescine and spermidine

18
were obtained after extraction with trichloroacetic acid and 

conversion into their PATC-derivatives. H.p.l.c. of the mixture 

of derivatives (Fig. 3.D.I) showed mainly two peaks corresponding to 

PATC-putreseine (^9) and PATC-spermidine (?0). T.l.c. and *H n.m.r. 

analyses were consistent with their identity as the PATC-derivatives 

(tf) and (*0).

The separation of the compounds (JJ>) and (^0) was done by 

p.l.c. and gave pure samples of the components (}J0 and (^0)

(*H n.m.r. analysis).

This method of isolation and derivatisation of polvamines 

from E. ooli has proved to be very useful for studying the biosynthesis 

of spermidine. The stability of the derivatives to air was checked 

using an authentic sample of the derivative (^0). No change was 

observed after standing for 2 months in an aerated solution of 

chloroform.

The ease of separation, and the relatively high amount of

isolated derivatives obtained by this method, has made it very easy

to study the biosynthesis of several other polyamines in many

19
different living species. Khan and Robins have used our method 

to isolate homospermidine from the plant Senecio ieatideua. This 

eventually provided some evidence for homospermidine being an 

intermediate in retronecine biosynthesis.

We noticed that there was no difference in the yield of



E. ooli cells if Che culture was inoculated with DL-methionine

-3 -3
(0.1 g dm ) rather than L-methionine (0.03 g dm ). It is

possible that the E. ooli cells do not allow the D-isomer to pass

the cell membrane, but leave it in the medium. Alternatively, by

the action of an isomerase, the D-isomer is isomerised to the

L-isomer. The latter possibility makes possible the utilisation

of all the methionine.

3.E EXPERIMENTAL

3.E.I Preparation of PATC-derivatives

I. Preparation of N-(phenylaminothiocarbonyl)-ethylamine
[PATC-ethylamine (!.$)]

- 2
Ethylamine (1.8 g, 4 x 10 mol) was dissolved in ethanol 

3
(10 cm )• To this mixture was added dropvise a solution of iso-

—2 3
thiocyanatobenzene (10.8 g, 8 x 10 mol) in ethanol (A0 cm ).

After I h of stirring at room temperature a crystalline precipitate

3
was formed, which was filtered off and washed with water (10 cm )

3
and ethanol (10 cm ). Recrystallisation of crude compound (ĵ6) was 

achieved by dissolving it in an excess of boiling ethanol. To the 

ethanolic solution was added decolourising charcoal and the 

mixture was stirred with warming for 30 minutes. The warm mixture 

was filtered through Celite and the volume of the filtrate was 

reduced to oa. 150 cm^. After cooling at -20°C overnight the crystalline 

precipitate was filtered off and washed with cold ethanol (20 cm ).

The crystals were dried in vaauo (10 * mmHg) to give pure (ĵ6) as 

white crystals (6.7 g, 94Z).

M.p. 102-104°C (lit.20 m.p. I06°C).

T.l.c. (neutral alumina/ethyl acetata/u.v. detection) Rf 0.64.
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I.r. vn>x (cm-1): 3240 (w, sh), 3210 (w, sh), 3110 (w, br), 1592 (•)

and 1200 (m).

220 MHz 'h n.m.r. ([2H6]-DMS0) at 30°C, 6 1.11 (3 H, t, J 7 Hz,

H-2), 3.49 (2 H, p, J 7 Hz, H-1), 7.7 (1 H, bra, CHjNH), 9.4 (1 H, 

brs, PhNH) and 7.0-7.4 (phenyl protons) p.p.m.

220 MHz 'h n.m.r. ([2H6]-DMSO) at I00°C, 6 1.12 (3 H, t, J 7 Hz,

H-2), 3.5 (2 H, q, J 7 Hz, H-1) p.p.m., 7.5 (I H, brs, CH2NH), 9.2 (I H, 

brs, PhNH) and 7.0-7.4 (phenyl protons)p.p.m.

22.6MHz {'h )13C n.m.r. (CDC13), 6 14.30 (C-2) and 40.17 (C-l) p.p.m.

<pf. Fig. 3.C.3).

2. Preparation of N-(phenylaminothiocarbonyl)-diethylamine
[PATC-diethylaminc (17)1 ------

•2
Diethylamine (2.93 g, 4 x 10 mol) was dissolved in ethanol

3
(10 cm ). To this mixture was added dropwise a solution of PhNCS 

(10.8 g, 8 x 10 2 mol) in ethanol (40 cm3). After 2 h of stirring 

at room temperature, compound ((J) separated as an oil. All attempts 

to crystallise the oily product (^) have failed. Purification of the 

crude product ((J) was achieved by decanting the solvent, adding 

ethanol (25 cm ) and decanting again (two times). The oil was then 

dissolved in ethanol (500 cm ). To the ethanolic solution was 

added decolourising charcoal and the mixture was stirred with 

warming for 2 h. The warm mixture was filtered through Celite.

Ethanol was evaporated from the filtrate under reduced pressure 

to leave behind a colourless oil which was dried in vaouo (I0~^ nsnHg) 

to give pure (IJ) (8.94 g, 98Z).

Oil, (lit. 20 m.p. 34°C)

T.l.c. (neutral alumina/ethyl acetate/u.v. detection) Rf 0.74 

I.r. vbjix (cm"1): 3242 (w, sh), 3213 (w, sh), 3110 (w), 1590 (s)

and 1205 (m).

220 MHz 'h n.m.r. (r2H6]-DMSO) at 30°C, «1.15 (6 H, t, J 7 Hz,



2 x H—2), 3.75 (4 H, q, J 7 Hz, 2 x H-l), 8.9 (I H, s, PhNH) and

7.4-7.8 (phenyl protons) p.p.m.

(N.B. broad signals at 30°C were sharpened when the spectrum was 

measured at I00°C.)

22.6 MHz {'h },3C n.m.r. (CDClj) 6 12.67 (2 x C-2) and 45.63 (2 x C-1) 

p.p.m. (Fig. 3.C.3)

3. Preparation of N,N'-bia(phenylaminothiocarbonyl)-l,3-diamino-
propane [PATC-1,3-diaminopropane (1.8)]

_2
I,3-Diaminopropane (2.96 g, 4 x 10 mol) was dissolved in

3
ethanol (10 cm ). To this mixture was added dropwise a solution of 

PhNCS (16.2 g, 12 x 10 2 mol) in ethanol (40 cm3). After 1 h of

stirring at room temperature a crystalline precipitate appeared,

3
which then was filtered off and washed with water (10 cm ) and

3
ethanol (10 cm ). Recrystallisation of compound (1^) was achieved by 

dissolving it in excess of boiling ethanol. To the ethanolic 

solution was added decolourising charcoal and the mixture was 

stirred with warming for 30 minutes. The warm mixture was filtered 

through Celite and the volume of the filtrate was reduced to ca.

200 cm3. After cooling at -20°C overnight, the crystalline precipitate

3
was collected and washed with cold ethanol (20 cm ). The crystals 

-4
were dried tn vacuo (10 tmnHg) to give compound ((£) as white 

crystals (12.8 g, 94Z).

M.p. 115-119°C (lit. 20 m.p. II6°C)

T.l.c. (neutral alumina/ethyl acetate/u.v. detection) Rj 0.46

I.r. v__ (cm-1) 3450 (w, sh), 3285 (w, sh), 3135 (w, br), 1595 (s)max

and 1170 (m)

220 MHz 'h n.m.r. (t^D-DMSO) at 30°C, 6 1.8 (2 H, p, J 7 Hz, H-2), 

3.5 (4 H, m, H-l and H-3), 7.8 (2 H, br s, 2XCH2NH), 9.5 (2 H, br *,

2 x PhNH) and 7.0-7.4 (phenyl protons) p.p.m.



54

(N.B. broad signals at 30°C were sharpened when the spectrum was 

measured at I00°C.)

22.6 MHz {'h ),3C n.m.r. ([2H6]-DMSO) 6 28.49 (C-2) and 41.48 (C-l 

and C-3) p.p.m. (of. Fig. 3.C.3)

A. Preparation of H,N'-2)ta(phenylaminothiocarbonyl)-l,4-
diaminobutane [PATC-putreseine (K?)]

_2
I,4-Diaminobutane (1.76 g, 2 x 10 mol) was dissolved in

3 -2
water (40 cm ) and a solution of PhNCS (8.1 g, 6 x 10 mol) in

3
ethanol (50 cm ) was added. After I h of stirring at room 

temperature, the mixture was cooled to -20°C with stirring for 2 h to 

give a more easily filtered crystalline precipitate. The slight 

yellow crystalline product was filtered off and washed with water 

(50 cm ). The precipitate was dissolved in excess of boiling 

ethanol. To the ethanolic solution was added decolourising charcoal 

and the mixture was stirred with heating for I h. The hot mixture 

was filtered through Celite and the volume of filtrate was reduced 

until the solution was turbid. The solution was left at -20°C

overnight and the crystalline precipitate was filtered off and

3
washed with cold ethanol (20 cm ). The white crystals were dried 

in vaouo (10 mmHg) to give compound (19) (6.8 g, 95X).

M.p. I78-I80°C (lit. 21 m.p. 177-I79°C)

T. l.c. (neutral alumina/ethyl acetate/u.v. detection) Rf 0.4

U. v. X 252 nra, c 2.6 x 10^ (in methanol).
max

C.H.N. combustion analysis • found: C, 60.25; H, 6.30; N, 15.602. 

C I8H22N4S2 r*9u*reB! c* 60*30; H, 6.20; N, 15.652.

I.r. v (cm-1): 3250 (w), 3150 (m, br), 3030 (w), 1590 (s)
max

and 1180 (s).

220 MHz !H n.m.r. (f2H6M)MS0) at 30°C, 6 3.5 (4 H, br s, H-l and 

H-4), 1.57 (4 H, br s, H-2 and H-3), 7.76 (2 H, br s, 2 x CH2NH),
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9.43 (2 H, br s, 2 x PhNH) and 7.0-7.4 (phenyl protons) p.p.m. 

(N.B. raising the temperature to I00°C resulted in the sharpening

of the signals.)

22.6 MHz {'h >'3C 

42.68 (C-l and C-4) p.p.m. (Fig. 3.C.3).

22.6 MHz {'h )13C n.m.r. ([2H6]-DMSO) 6 26.19 (C-2 and C-3) and

5. Preparation of N,Nl,N"-trte(phenylaminothiocarbonyl)- 
H-(3-aminopropyl)-l,4-diaminobutane 
[ PATC-spermidine (2,0) ]

*-2
Spermidine (2.9 g, 2 x 10 mol) was dissolved in water

(40 cm^). To this solution was added a solution of PhNCS (10.8 g,

—2 38 x 10 mol) in ethanol (50 cm ). After ! h of stirring at room 

temperature the mixture was cooled at -20°C with stirring for 2 h 

to give a coagulated precipitate. The solvent was decanted off 

and the solid residue was dissolved in excess of boiling ethanol.

To the ethanolic solution was added decolourising charcoal and the 

mixture was stirred with heating for I h. The hot mixture was 

filtered through Celite and the volume of the filtrate was reduced 

by boiling, with the addition of some water. The boiling and the 

addition of water was continued until the solution was turbid. The

solution was left at -20°C overnight and the crystalline precipitate

3
was filtered off and washed with cold ethanol (20 cm ). The white

-4
crystals were dried in vaouo at 10 ranHg to give compound (^0)

(II g, 97Z).

M.p. 141—143°C.

T. l.c. (neutral alumina/ettyl acetate/u.v. detection) Rf 0.31.

U. v. X 252 nm, c4.2x 10^ (in methanol).
max

C.H.N. combustion analysis - found: C, 61.20; H, 6.25; N, I5.I0X.

C28H34N6S3 re9uire8! C’ 61.10; H, 6.20; N, I5.25X.

I.r. v (cm-1): 3280 (w, sh), 3260 (w), 3150 (w, sh), 1595 (s)
max
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and 1172 (>).

220 MHz 'h n.m.r. ([2H6]-DMSO) at 30°C, 6 1.62 (4 H, m, H-2 and H-3),

1.92 (2 H, br p, H-2'), 3.52 (4 H, m, H-3' and H-4), 3.76 (4 H, m,

H-l and H-l*), 7.77 (2 H, br a, 2 x CHjNH), 8.95, 9.42 and 9.48 (each ia

1 H, br a, PhNH) and 7.0-7.4 (phenyl protona) p.p.m. [see Fig. 3.0.2(B)]. 

220 MHz 'h n.m.r. ([2H6]-DMSO) at I00°C, 6 1.65 (4 H, m, H-2 and

H-3), 1.95 (2 H, p, J 7 Hz, H-2'), 3.55 (4 H, q, J 7 Hz, H-3' and 

H-4), 3.8 (4 H, p, J 7 Hz, H-l and H-l'), 7.62 (2 H, br a,

2 x CH2NH), 8.79, 9.26 and 9.48 (each is I H, br a, PhNH) and 

7.0-7.4 (phenyl protona) p.p.m. [aee Fig. 3.0.2(A)1.

22.6 MHz {*H>13C n.m.r. ([2H6]-DMSO) 6 24.72 (C-2), 26.15 (C-3), 26.86 

(C—2'), 43.69 (C-4), 41.74 (C-3'), 48.0 (C-l') and 50.19 (C-l) p.p.m.

(aee Fig. 3.0.4).

6. Preparation of N,N' ,N",N"' ~tetrakio (phenylaminothiocarbonyl)-
bis-N,Nk-(i-aminopropyl)-l,4-diaminobutane 
EPATC-apermine T Z U  J

-2 3
Spermine (4 g, 2 x 10 mol) waa diaaolved in water (40 cm )

-2 3
and a aolution of PhNCS (13.5 g, 10 x 10 mol) in ethanol (50 cm )

waa added with atirring. After I h at room temperature the mixture

waa cooled to -20°C with atirring for 2 h. An oil of alightly yellow

colour aeparated. The mixture waa cooled further to -78°C. Cradual

warming with acratching gave a yellow cryatalline precipitate. The

precipitate waa diaaolved in exceaa of boiling ethanol. To the

ethanolic aolution waa added decolouriaing charcoal and the

mixture waa atirred with heating for I h. The hot mixture waa

filtered through Celite and the volume of the filtrate waa reduced

under preaaure until the aolution was turbid. The aolution waa

left at -20°C overnight and the cryatalline precipitate waa

filtered off and waahed with cold ethanol (20 cm ). Drying in Vacuo



—A
at 10 mmHg gave pure product (^1) (13.9 g, 92Z).

M.p. I73-I75°C.

T. l.c. (neutral alumina/ethyl acetate/u.v. detection) Rj 0.19.

A
U. v. X 252 nm, c 6.5 x 10 (in methanol).

max

C.H.N. combustion analysis found: C, 61.40; H, 6.10; N, 15.20%. 

C38H46N8S4 re9uire,s C, 61.40; H, 6.25; N, 15.10%.

I.r. (cm-1): 3370 (m), 3200 (w, br), 1595 (m), and 1182 (m, br).

220 MHs 'h n.m.r. ([2H6]-EMSO) at 30°C, 6 1.68 (4 H, br s, H-2 and 

H-3), 1.92 (4 H, br p, H-2’and H-2"), 3.52 (4 H, m, H-3' and H-3"), 

3.78 (8 H, m, H-l, H-l\ H-I'*and H-4), 7.8 (2 H, br s, 2 x CHjNH), 

8.96 (2 H, s, 2 x PhNH), 9.5 (2 H, br s, 2 x PhNH), and 7.0-7.4 

(phenyl protons) p.p.m.

(N.B. raising the temperature to I00°C resulted only in the sharpening 

of the signals. )

3.E.2 Analyses of PATC-derivatives by t.l.c. and h.p.l.c. I.

I. T.l.c: For analytical t.l.c. of PATC-derivatives, 0.25 mm

thick layers of Kieselgel 60 HR reinst were used. Elution was 

carried out with dichloromethane/acetonitrile (87/13, v/v) followed by 

iodine detection.

A mixture of the PATC-polyamines was spotted on the plates 

(5 x 20 x 0.25 mm). After elution and developing, the following 

Rf's were recorded: PATC-putrescine (|̂ 9) Rf 0.34, PATC-spermidine (?0) 

Rf 0.25 and PATC-spermine (^1) Rf 0.18.

The spots were of a nicely rounded shape, and were well 

separated from each other. No tailing, which is characteristic of 

other polyamine derivatives (e.g. dansyl), was observed in our 

analyses.



2. H.p.l.c; The analysis of PATC-derivatives was attempted

on three different columns.

(a) wCjg: A reverse-phase column, which failed to separate

a mixture of the PATC-derivatives. Elution was tried with different 

mixtures of water/methanol. No separation was achieved and all PATC- 

derivatives gave one wide peak of the same Rt.

(b) Partisil: A silica gel column which showed an appreciable 

separation for the PATC-derivatives 0,6), (1,7), and (¡9). Elution 

was carried out with chloroform/methanol (99/1, v/v). Compounds 

(3|0) and (^1) gave overlapping peaks in this system.

(c) w-Porasil: A silica gel column which provided a good 

separation for the compounds (1^), (18), (19), (^0) and (^1).

Compound (\J) was overlapping with compound (18), so it was 

eventually excluded from the analysis. The chromatograms were 

developed using isocratic elution with chloroform/methanol (99/1, 

v/v), with a flow rate of 0.5 cm^min 1 and a pressure reading of 

500 psi. The pure PATC-derivatives (^6), (H3), (ĵ 9), ($0), and (^1) 

each gave a single peak when tested separately by this system. A 

mixture of the derivatives (|̂6), (1̂8), (Ĵ 9), (%0), and (^1) were 

analysed by this system to give five nicely separated peaks with 

the following retention times [relative to (16)]: R( (J6), 1.00;

Rt (!£), 1.12} Rt (|̂ 9), 1.21; R£ ($0), 1.36 and Rf ($0), 1.87 

(of. Fig. 3.B.1).

The p-Porasil column was kept in n-hexane when not in 

use. After oa. 100 experiments the column was deactivated and 

reactivated. This was necessary to clean the column of any 

polar compounds or impuritiss, which would give unsatisfactory 

results in a later analysis. The column was washed with 

ethyl acetate, methanol, acetone and water (100 cm ) and was reac-



59

t i v a t e d  by r e v e r s i n g  Che order o f  Che w ashin g, i . e .  a ceto n e ,  

meChanol, eChyl a c e t a t e  and chloroform  (N.B. we have n oc iced  th a t  

t h i s  washing i s  important f o r  the  r e p r o d u c i b i l i t y  o f  the a n a l y s e s ) .

3.E.3 Percentage recovery of polyamines via PATC-derivatives

The recovery of polyamines from their solution in aq.

trichloroacetic acid (TCA) was measured by dissolving each of the

-2 -3
polyamines, putrescine, spermidine and spermine (10 mol) in 0.4 mol dm aq.

TCA (7 cm ). The solutions were extracted with ether (3 x 10 cm )

rejecting the ethereal layers. The aqueous layers were adjusted to pH 9

by addition of I mol dm  ̂aq. sodium carbonate. Isothiocyanatobenzene

(1 mol equiv. ♦ I mol equiv.per amino group) in ethanol (5 cm^) was

added to each reaction mixture and the resulting solutions were

stirred for 1 h at room temperature. The solutions were extracted

with dichloromethane (3 x 50 cm ) and the combined extracts were

washed with saturated aq. sodium bicarbonate (2 x 50 cm^), I mol dm~^

3 3
sulphuric acid (2 x 50 cm ) and water (2 x 50 cm ). The dichloromethane 

layer of each reaction mixture was dried and evaporated, followed by 

pumping at 10 * mmHg/40°C to leave white residues of the PATC-deriva­

tives. The recovered derivatives were weighed and gave yields of 

95, 92 and 90X for PATC-putreseine, PATC-spermidine and PATC-sperraine 

respectively.

3.E.4 Rate of formation and hydrolysis of PATC-spermidine (20) I.

I. Rate of formation of compound (20)

Solutions containing spermidine and PhNCS were prepared 

in aqueous ethanol (8 or 10 cm , l/t,v/v) and were incubated with



stirring at room temperature:

(a) spermidine (10 2 mol) and PhNCS (3 x 10 1 mol) in 

10 cm^ ethanol,

(b) spermidine (10 2 mol) and PhNCS (4 x 10 1 mol) in
3

10 cm ethanol,

(c) spermidine (IS x 10  ̂mol) and PhNCS (2 x 10 1 mol)
3

in 8 cm ethanol,

(d) spermidine (15 x 10 * mol) and PhNCS (2 x 10 2 mol)
3

in 8 cm ethanol.

Mixtures (a) and (b) were analysed after 5 minutes by 

t.l.c. for PATC-spermidine and for free spermidine, using two 

different systems. [For PATC-spermidine see above. For t.l.c. 

analysis of free spermidine,silica gel plates (0.25 ran thick 

layers of MN Kieselgel plates) were used. Elution was done with 

methanol-formic acid (8/2, v/v) followed by ninhydrin detection.] 

The analysis showed the existence of PATC-spermidine, but free 

spermidine was undetectable. Mixture (b) showed residual PhNCS, 

whereas mixture (a) did not. For mixtures (c) and (d), t.l.c. 

showed both PATC- and free spermidine after I minute, but after 

5 minutes no free spermidine could be detected.

2. Hydrolysis of compound (20)

_2
Compound (^0) (0.3 g, 55 x 10 ranol) was dissolved in 3

3
concentrated hydrochloric acid (5 cm ) and the mixture was boiled 

under reflux overnight. Evaporation to dryness under reduced 

pressure gave a white precipitate that was dissolved in water

3
(IS cm ) and the resulting solution was evaporated to dryness 

under reduced pressure. The last step (i.e. addition of water and 

evaporation) was repeated twice and gave a white residue.
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Pre-cooled ethanol (15 cm) was added to the residue and the mixture 

was filtered off. The collected white crystals were washed with 

cold ethanol and dried in vacuo to give spermidine trihydrochloride 

(0.1 g, 74X). The 220 MHz 'h n.m.r. spectrum (DjO) of this trihydro­

chloride was completely identical to that of authentic spermidine 

trihydrochloride, 6 1.79 (6 H, m), 2.10 (2 H, p, J 7 Hz) and 

3.0-3.3 (8 H, m) p.p.m. The filtrate contained no spermidine trihydro 

chloride and was mainly aniline hydrochloride (analysis by *H n.m.r. 

after evaporation). Free spermidine can be obtained by passing the 

hydrochloride through an ion exchange column [Amberlite IRA-400 

OH form, (I x 10 cm)], using water as eluent. Evaporation of the 

first (100 cm ) fraction under reduced pressure left behind a 

pure hydrochloride-free spermidine.

3.E.5 Isolation and separation of putrescine and spermidine 
from S. colt cells I.

I. E. colt strain and growth media

The E. ooli strain K(2, 630 Hff) (a methionine auxotroph) 

used in this study was purchased from "The National Collections of 

Industrial and Marine Bacteria, Aberdeen, Scotland". The purity of 

the strain was maintained by a monthly transfer of pure colonies to 

new plates of media.

Growth media were prepared from the following solutions. 

SOLUTION A: Contains K2HP04 (I40 g), KHjPO^ (36 g) per 

dm3 HjO.

SOLUTION B: Contains MgS04.7H20 (25 g), CaCl2>2H20 (2 g), 

Fe-EDTA (1.5 g) and NaCl (20 g) par dm3 HjO. 

Contains ZnS04>7H20 (3 mg), NaMo04.2H20 

(4 mg), H3B03 (50 mg), MnS04.4H20 (40 mg),

SOLUTION C:



61

Pre-cooled ethanol (15 cm ) was added to the residue and the mixture 

was filtered off. The collected white crystals were washed with 

cold ethanol and dried in vaauo to give spermidine trihydrochloride 

(0.1 g, 74X). The 220 MHz *H n.m.r. spectrum (DjO) of this trihydro­

chloride was completely identical to that of authentic spermidine 

trihydrochloride, 6 1.79 (6 H, m), 2.10 (2 H, p, J 7 Hz) and 

3.0-3.3 (8 H, m) p.p.m. The filtrate contained no spermidine trihydro­

chloride and was mainly aniline hydrochloride (analysis by *H n.m.r. 

after evaporation). Free spermidine can be obtained by passing the 

hydrochloride through an ion exchange column [ Amberlite IRA-400

OH form, (I x 10 cm)], using water as eluent. Evaporation of the

3
first (100 cm ) fraction under reduced pressure left behind a 

pure hydrochloride-free spermidine.

3.E.5 Isolation and separation of putrescine and spermidine 
from S. ooli cells

I. E. ooli strain and growth media

The E. ooli strain K j2, 630 Hff| (a methionine auxotroph) 

used in this study was purchased from "The National Collections of 

Industrial and Marine Bacteria, Aberdeen, Scotland". The purity of 

the strain was maintained by a monthly transfer of pure colonies to 

new plates of media.

Crowth media were prepared from the following solutions. 

SOLUTION A: Contains K2HPOA (I40 g), KHjPO^ (36 g) per 

dm3 H20.

SOLUTION B: Contains MgSO^HjO (25 g), CaCl2<2H20 (2 g), 

Fe-KDTA(1.5 g) and NaCl (20 g) per dm3 H20. 

Contains ZnS0^.7H20 (3 mg), NaMo0^.2H20 

(4 mg), H3B03 (50 mg), MnSO^HjO (40 mg),

SOLUTION C:
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CuSO^.S^O (4 mg) and I cm3 of aq. CoClj^HjO

(0.2 g dm 3) per 200 cm3 HjO.

SOLUTION D: Contains thiamine.HC1 (50 mg), calcium

3
pantothenate (100 mg) and I cm of biotin 

(50 pg dm 3) per 50 cm3 HjO.
3

SOLUTION H: Ammonium acetate (27.5 g) per dm HjO.

3
The final growth medium was made up from 10 cm of

. 3 3 3
solution B, 10 cm of solution H, I cm of solution D and I cm

3
of solution C, made up to I dm with water. This solution was

sterilised in an autoclave and then supplied with L-methionine

3 3 3
solution (50 mg/10 cm ), solution A (10 cm ) and glucose (10 cm )

(20Z, w/v), which were sterilised separately.

I 8
2. Isolation of polyamines from E. ooli cells

3 3
The standard medium (10 x I dm ) in 10 flasks of 2 dm capacity

was inoculated with E. ooli cells K^» 630H£r). The culture was

incubated at 37°C for 30 h with aeration. The cells were harvested

3
by centrifugation (6 x 10 r.p.m.) and were washed with aqueous NaCl

3
and KC1 solutions (200 cm , 0.25 w/v). The wet cells (30 g) were

-3 3
extracted with 0.4 mol dm trichloroacetic acid (3 x 50 cm ). The

combined extracts were filtered through Celite and extracted with

3
ether (3 x 300 cm ), rejecting the ethereal layers (N.B. the

procedure up to this stage was modified from Ref. 18). The aqueous

3
layer was reduced to 10 cm by evaporation under reduced pressure

_3
and the pH was adjusted to 9 by the addition of I mol dm aqueous

3 3
sodium carbonate. Isothiocyanatobenzene (I cm ) in ethanol (8 cm ) 

was added and the resulting solution was stirred for I h at room 

temperature. The reaction mixture was then extracted with

3
dichloromcthane (3 x 100 cm ), and the combined extracts were washed
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3 -3
with saturated aqueous sodium bicarbonate (2 x 100 cm ), I mol dm

3 3
sulphuric acid (2 x 100 cm ) and water (2 x 100 cm ). The dichloro- 

methane layer was dried and evaporated under reduced pressure to 

give a white residue of the phenylaminothiocarbonyl derivatives of 

putrescine and spermidine (by *H n.m.r. analysis) containing 

residual isothiocyanatobenzene which was removed by pumping at 

10 ^ mnHg/room temperature. The removal of residual PhNCS was 

necessary before the h.p.l.c. analysis of the isolated mixture, 

whereas it was not important for t.l.c. analysis. The residue was 

checked by t.l.c. on a silica gel plate (Kieselgel 60 HR reinst,

0.25 mm thick). Elution with dichloromethane/acetonitrile 

(87/13, v/v) gave two spots with R.'s 0.34 and 0.25 corresponding 

to PATC-putreseine and PATC-spermidine, respectively. Small 

amounts of polar impurities were also detected. The h.p.l.c. 

analysis was carried out as described for the authentic PATC-derivatives 

and showed mainly PATC-putreseine and PATC-spermidine, in addition to 

traces of residual PhNCS, and small peaks of unknown impurities 

before the peaks of the derivatives (|̂ 9) and (^0) (see Fig. 3.D. I).

3. Separstion and purification of compounds (1,9) and (¿0)
by p.l.cl

The mixture of compounds (jji) and (^0) was separated and 

purified by preparative layer chromatography. The mixture was 

dissolved in a minimum volume of dichloromethane. The solution was 

spplied onto a silica gel plate [Kieselgel 60 HR reinst (0.5 mm x 

20 x 100 cm)] . Double elution with dichloromethane/acetonitrile 

(9/1, v/v) gave two clear bands (detection with iodine was not 

necessary). Each band was scraped off and extracted with acetone 

(2 x 200 cm ). Evaporation of each extract gave white crystalline 

residues.
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H.p.l.c. analysis of each residue showed one single peak 

corresponding to either PATC-putrescine (70 mg) or PATC-spermidine 

(55 mg). *H n.m.r. spectra of the fractions were consistent with 

their identity as compounds (JJ)) and (^0) [comparison with spectra 

of authentic derivatives (|J>) and (^0)].

3.E.6 Preparation of 4-methoxybenzoylamides of polyamines

-3
To a solutions of polyamines (10 mmol) in 2 mol dm 

3
aqueous sodium hydroxide (15 cm ) was added a solution of p-anisoyl 

chloride (I mol equiv. ♦ I mol equiv. per amino group). The 

mixtures were stirred overnight at room temperature when a white sticky 

precipitate appeared in each reaction mixture. The supernatant of each

solution was decanted off and the solid residue was dissolved in 

3
dichloromethane (50 cm ). The organic solutions were each washed 

-3 3
with I mol dm sulphuric acid (3 x 50 cm ), saturated aqueous

3 3
sodium bicarbonate (3 x 50 cm ) and water (2 x 50 cm ). The organic 

solutions were separated, dried and evaporated under reduced 

pressure to leave behind an oily residue containing a small amount 

of acid anhydride. The oily residue was applied to a short column of 

silica gel. Elution with dichloromethane/methanol (94/6, v/v) gave 

fractions containing the 4-methoxybenzoylamide of a polyamine 

and these were combined and evaporated under reduced pressure to 

give slightly yellow crystals. The crude product was dissolved 

in ethanol (150 cm ), decolourising charcoal was added and the 

solution stirred for 2 h at room temperature. The mixture was 

filtered through Celite, and the filtrate was reduced to 50 cm^ 

under reduced pressure. The resulting solution was left at -20°C 

overnight to give white crystals of the 4-mcthoxybenzoylamide
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of putrescine (68%), spermidine (63%) and spermine (60%), respectively. 

The CHN combustion analyses gave:

4-Methoxybenzoylamide of putrescine. Found: C, 67.58;

H, 6.70; N, 7.82%

C20H24N2°4 Re<lu*re8! c * 6^.39; H, 6.79; N, 7.86% 

4-Methoxybenzoylamide of spermidine, Found: C, 67.58;

H, 6.98; N, 7.44%

C,.H,_N,0, Requires: C, 67.99; H, 6.81; N, 7.67%J I  J /  J o
4-Methoxybenzoylamide of spermine, Found: C, 64.91; 

H, 6.83; N, 7.17%

C42H50N4°8 Re<lu^res! c * 68.27; H, 6.82; N, 7.58%
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CHAPTER 4

SYNTHESES OF DEUTERIUM-LABELLED AMINO ACIDS

4.A INTRODUCTION

Methionines labelled at either C-2 and/or C-3, or at C-3 

and/or C-4 are of great value for studying the catabolic fate of 

methionine, especially that of its alkyl chain (see Chapter 5). In 

this Chapter, syntheses of methionines specifically labelled at 

C-3 and C-4 with deuterium and of known relative configuration, 

will be discussed in detail. The routes of these syntheses were 

originally developed by D. C. Billington.

We have also modified a literature method1 for the

syntheses of rao.[2,3,3-^H^] and rac. [3 .i-^HjJmethionine, rao.T2,3.3— J— 

2 2
leucine, rao.[2,3- H2]i>oleucine, rao.[2- Hjlalanine and

2 2 rao. [2,3- H2lvaline. Resolution of the rao.[2,3,3- H^lmethionine
2 2

was achieved following a literature procedure . The L-[2,3,3- H^]- 

methionine obtained was used for studying the biosynthesis of 

spermidine in E. ooli cells (of. Chapter 5).

4.B Rao. AMINO ACIDS

In 1974, a method for the selective deuteration of amino 

acids at the a- and/or B-position(s) was published'. This method 

made use of the observation that the relative exchange of a- and B- 

protons in an amino acid/aluminium(III)/pyridoxal (vitamin B-6) complex 

is a pH-dependent process. Vitamin B-6 is an essential cofactor for 

enzymes which carry out a multitude of amino acid reactions. In
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Scheme U. B.I Postulated mechanism for the transamination and 
racémisation reactions of amino acids and 
vitamin B-6 in presence or absence of Al(IU).



1954, Snell showed that the mechanism for two of the vitamin B-6 

reactions, which involve cleavage of the a-hydrogen of amino acids,

i.e. racémisation and transamination, could be represented by 

interconversions of the amino acid - vitamin B-6 complexes (Schiff's 

bases) of (^2), (?3) and (^4) (see Scheme 4.B.I) or their metal-ion

A
complexes (^5), (?6) and (3J). Snell has also shown that with some

metal ions the ratio of to (?£) at equilibrium is highly pH

dependent. This could reflect some difference in stability between

(2^) and (^4), although it was suggested to be due to different pH

maxima for the transamination and racémisation reaction. An amino

acid may react with pyridoxal to form the aldimine (^2).

Racémisation may occur via (?2) -* (^3) •* enantiomer of (^), while

transamination to the keto acid is the result of (%2) -*• (23) •* (24)

followed by hydrolysis of (2,4). Abbott et al. 1 have demonstrated

that selectivity between these two reactions can occur through

modification of coenzyme (pyridoxal) in the absence of enzyme. In

the presence of excess of amino acid the Schiff's base (22) is most

likely to be formed. This aldimine might tautomerise to (2,4) and

back to (3£) via (?,J), or to (^) and back to enantiomer of (^2)

without going to (2,4). After returning to this aldimine is

at equilibrium with the free amino acid and after many passes through

this sequence of reactions, all the amino acid will have been acted

upon. From the above analysis it would be expected that if the

2
reactions were done in the presence of HjO, the a-position of 

the amino acid would become deuterated. Actually, it was found^ 

that both the a- and B-positions were deuterated. This was 

explained^ as arising from imine-enamine tautomérisation of (2,4).

Abbott and his coworkers1 have carried out pH-dependent 

studies on these exchange reactions in the presence of AK1II), which

3
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is supposed Co give complexes (^5), (^6) and ($7) (Scheme 4.B.I).

This metal serves as a model for Che enzymes involved in trans- 

aminacion and racemisacion. They concluded Chac when Chese 

exchanges were carried ouC ac pH oa. 5 Che a- and 6**proCons of 

an amino acid are exchanged ac comparable races, whereas ac pH 

oa. 10 Che race of ((-exchange gready exceeds chac of B-exchange.

The absence of Al(III) from Che reacCion mixture gave no significanC 

deuteration. Ic was concluded ChaC Al(III) is important for Che 

cransaminacion, which is considered Co go from (^5) (^6) (^7)

and in reverse, and also for Che racemisacion, (^5) -*■ (^6) -*■ 

enanciomer of (^5). The key incermediace in Che deuCeracion of amino 

acids in Che presence of Al(III) is complex ($7). This should have 

Cwo tautomeric forms (Che imine shown and a derived enamine) aC pH S, 

which lead Co Che deuCeracion of a- and 6-posiCions. AC pH 10 Che 

imine is presumably noc converced co Che enamine (because Chis
g

requires N-proconadon), and so exchange only occurs ac Che a-posicion.

We have applied Che mechod of Ref. I (N.B. Chis reference describes

only Che preparacion of deuCeraced alanine, valine and a-amino

2
buCyric acid) Co Che preparacion of rao.[2,3,3- H^DmeChionine,

2 2 2 rao. r3,3- Hjlmethionine, rao.[2,3,3- H^lleucine, rao. [2,3- Hjlisoleucine
2

and we repeaCed Che synCheses of rao.[2,3- Hjlvaline and
2

rao.[2- H|1alanine. The reacCion condicions for each amino acid 

were opcimised by moniCoring Che exchange by 220 MHz 1H n.m.r. 

spectroscopy. The labelled amino acids were directly crystallised 

from Che reacCion mixCure in a good yield (N.B. no yields were 

reporced in Ref. I).

2
The synChesis of rao.[3,3- H2Imethionine was firsc cried

q
in our laboratory by D. C. Billington , who claimed a 972 yield of 

pure produce. In Crying to synthesise more of this compound,



f o l lo w i n g  t h i s  p ro ced u re , Che auChor obcained a y i e l d  o f  I05Z!

Checking Che produce for tnecal ions by carrying ouC a flame CesC 

indicaCed che presence of a large amounC of sodium chloride. This 

could only arise from Che sodium hydroxide added Co Che reacción 

mixeure Co adjuse Che pH Co 10.2. To avoid Chis problem Che auChor

used l ic h iu m  hydroxide* Co adjusc  Che pH of Che r e a c c ió n  mixCure.

2
The isolaced rao.[3,3- H2Imethionine (yield 87%), when CesCed for 

lichium ions, gave a negacive result (flame CesC).

The cime allowed for each amino acid Co exchange was variable, 

depending on Che solubilicy of Che amino acid, besides sCrucCural 

factors. Methionine was Che fastest amino acid to exchange ac both 

its a- and 8-positions. Monitoring the reaction by *H n.m.r. 

spectroscopy showed that ca. 98% of the a-position had been 

exchanged after 24 h., whilst ca. 80% of the 8-position was deucerated. 

The 220 MHz *H n.m.r. of unlabelled methionine shows resonances at 

(2H20, TSS) « 2.12 (3 H, s), 2.2 (2 H, m), 2.7 (2 H, t) and 3.82 

(I H, C) p.p.m. The disappearance of the signals at 6 3.82 and

2.2 p.p.m. (corresponding to a- and 6-protons, respectively) were

2
used to follow the production of rao.[2,3,3- Imethionine. It should 

be mentioned that part of the resonance of the 6-protons is covered 

by the resonance of the methyl group of methionine. Hence, accurate 

judgement (by 'h n.m.r. analysis) about the extent of deuteration

2
at this position is rather difficult. Because of this, rao. Í2,3,3— H^l- 

methionine was analysed by e.i.m.s. to quantify the total amount of 

deuterium present. The N-trifluoroacetyl butyl ester*f> derivative was

made and examined by m.s. and showed an overall deuterium content of

1 2 >. 86%. From the H n.m.r. spectrum of rao. (2,3,3- Hj Imethionine we

M.ithium chloride is much more soluble in ethanol than sodium 
chloride.
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estimated that most of the a-position had been exchanged (* 98Z)

leaving k 80Z of deuterium on the 8-position.

The exchange reaction of leucine took 15 days for complete

deuteration. In the *H n.m.r. spectrum of unlabelled leucine, signals

a t  5 3.72 and 1.68 p.p.m. correspond to  a- and 6 / Y - p o s i t i o n s ,

respectively. The disappearance of the a-resonance (6 3.72 p.p.m.)

and the s i m p l i f i c a t i o n  o f  the s i g n a l  a t i  1 .68 p.p.m. from a m u l t i p l e t

to  p en tu p let  (I H), co rresp o nd in g to  the Y - p o s i t i o n ,  i s  a good

indication for the completion of the exchange process. The integrals 

I .2
in the 220 MHz H n.m.r. spectrum gave a [ H] content of % 95Z.

The exchange reaction of isoleucine took 10 days for the

2 I
production of rac. [2,3- ^Ksoleucine. In the 220 MHz H n.m.r.

2
spectrum of the produced rac.i2,3- H^lisoleucine, no signals at 

6 3.67 and 1.96 p.p.m. (originally belonging to a- and B-protons in the

unlabelled isoleucine, respectively) were present. Integrals in

I 2
the 220 MHz H n.m.r. of labelled isoleucine gave a C H) content of

* 93Z.

2
In the preparation of raa. f 2- Hjlalanine, the exchange 

reaction was monitored for two days when deuteration of the a-proton 

was judged to be complete. The reaction was stopped after the dis­

appearance of the resonance at 6 3.75 p.p.m. corresponding to the

a-proton of unlabelled alanine. The integration of the *H n.m.r.

2 2
spectrum of rac.[2- H(Jalanine suggested a f H] content of ) 97Z 

at the a-position.

2
The exchange reaction of valine to prepare rac. f 2,3— H^valine 

took 10 days before showing complete exchange of the a- and B-protons.

This was checked by the disappearance of signals at 6 3.62 and 2.27 p.p.m.

corresponding to a- and 0-protons, respectively. The integration in

I 2 m 2
the H n.m.r. spectrum of rac, 12*3- H^lvaline suggested a f HJ content
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The 220 MH* H n.m.r. ( HCl/^HjO, TSS) spectrum of 

rao. Í 3,4-'^ Imethionine, showing the .1 * *C-114 

(‘oi ipl  ¡ u r ,

I'ip,. 4.C.I
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of » 94 Z.

I

4.C RESOLUTION*OF Rac. [3.4-13C:]METHIONINE

13Rac. [3,4- C2]methionine**was used in studying the biosynthesis 

of spermidine from methionine in E. c o li cells (o f. Chapter S). It is 

well established11 that this microorganism utilises only the L-isomer

of methionine in this biosynthesis. Ue therefore resolved the

13 2
ra c .[3,4- C2]methionine, following a literature procedure , in order

to make use of the L-isomer in the biosynthesis of spermidine. The

recovered D-isomer was then racemised and so could be used to obtain

more of the L-isomer after another resolution. The 220 MHz *H n.m.r.

13
analysis of L-[3,4- C2Imethionine gave a spectrum (Fig. 4.C.I)

9 13
identical to the published spectrum of ra c .[3,4- C2]methionine.

4.D STEREOSPECIFICALLY LABELLED Rac. (3R,4R)-[3,4-2H23METHI0NINE»**

In the course of our studies on the biosynthesis of spermidine 

from L-methionine in E. c o l i cells, aimed specifically at the mechanisms

of spermidine synthase, we needed a stereospecifically labelled

2
methionine. The rac. (3R,4R) and (3R,4R)-f3,4- H2]methionine used in

9
part of this work were originally synthesised by D.C.B. . The author

.0 p.p.m.

*The resolution of DL-methionines was carried out before we 
observed that cultures of E. o o li can be fed with 
DL-methionine rather than L-methionine and still yield a 
similar weight of cells (Chapter 3).

**This methionine was synthesised by D.C.B.^ from fI,2-'^C2lcthene 
containing 81X r1 3C21. 18* M 2C-'3C1 and IZ M 2 c 2l giving overa11 
907. atom f '3d. The route used was similar to that described for 
the synthesis of r a c .(3R.4RH 3,4-2H2 Imethioninc in this Chapter
(Sect ion 4.K.3).

(1R,4R)-I 3,4-^ll2 Imethionine is an abbreviation for a mixture 
of equal amounts of (2R.1K.4R), (2S.3R.4R), (2R.3S.4S), and 
t ,’ S , IS ,4S) - I 1 , 4-•’ll , Imot h i  on i nos. Mi«*. ( IS , 410 -  I 1 , 4-2ll, Imothioni no 
i s  an ahhroviation Tor a mixture of equal amounts of ?2K,1R,4S), 
CIS, I It, 4 S) , (2K,IS,4K) and (2S, IS , 4 R )-II ,4-2H2 Ime t hioni non.
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The Fundam ental Bands (c m '  *) o f Dcutcrated Ethylcnes

Band Type c , h 4 C , D . C , H ,D C H ,C D , r t H C H D ) , re a m -(C H D ), C ,H D ,

symmetrical C —  H (D ) stretching — — 3002 3019 2300 — 2280
C ~ C  stretching — — 1605 1585 1567 — 1546
C H j f D j )  symmetrical bending — — 1290 1032 1215 — 1047
out-of-planc C — H ID )  bending — — 1001 — — 988 765

** C — H (D )  stretching — — 3062 2335 3055 — 2232
** in-plane C H (D )  bending — — 1128 1150 — — 995
¥1 out-of-plane C — H (D )  bending 949 720 ( m ) 807 752 842 727 724
vr out-of-plane C — H ID )  bending — — 943 944 — — 919
vt C —  H (D )  stretching 3106 234} ( n ) 3103 3095 3058 3065 3045
*10 C — H (D )  bending 810 584 715 — 646 678 610

C — H (D )  stretching 2990 2200 <m) 2272 2231 2251 2270 2222
*11 C — H (D )  bending 1444 1078(J) 1403 1384 1342 1300 1290

Table 4.D. I The fundamental bands in the i.r. spectrum of 
deuterated ethenes. This table was copied 
from Ref. 14.
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Scheme 4.D.2 The scheme shows the stereospecificity of the 
addition reaction of p-chlorobcnzenesulphenyl 
chloride to d o -  or trann-2-butene.



repeated the route to synthesiseraa. (3R,4R)-[3,4- H2Jmethionine and
9

obtained spectroscopic data agreeing well with those published .

The first step in the synthesis of these methionines is 

the addition of methanesulphenyl chloride (29) to (E)-fI,2-2H,3ethenef\j L
I 2

(28) to give l-chloro-2-(methylthio)ethane (30) (Scheme 4.D.I).f\f %
2 1 3

The [ l^lethene (28) was prepared by the stereospecific reduction

2
of [ H23acetylene with chromium(II) solution. The purity of (^8) 

was checked by l.r. analysis . It was found to be free from any

9
(Z)-[l,2- H2lethene. The i.r. spectrum of (?£) was characterised

by the presence of a band at 987 cm 1. No band at 843 cm 1 (characteristic

2
of (Z)-[l,2- H2lethene) was present. Complete i.r. data for (E)- and

2 14
(Z)-[l,2- H23ethene is presented in Table 4.D.I

The mechanistic description of the addition reaction

2
between methanesulphenyl chloride (29) and (E)—T1,2— H23ethene (2,8) 

suggests a rate determining formation of a thiiranium ion'5, which 

undergoes a nucleophilic opening by chloride as the product-forming 

step. Numerous studies of the reactions between alkyl or

aryl-sulphenyl halides and alkenes provide convincing evidence in 

favour of this interpretation. It was found that such reactions 

proceed completely in a trane stereospecific manner1̂ . The trano 

addition is favoured because of steric hindrance generated by the 

sulphur and its substituent. The ring opening step can be 

assumed to follow the classical SN2 pathway (i.e. inversion).

Stereochemical studies17 on the addition of p-chlorobenzenesulphenyl 

chloride to oia or tmna-2-butene at various temperatures in 

1, 1,2,2-tetrachloroethane, proved that these additions proceed 

stereospecifirally (Scheme 4.D.2). This shows that if leakage to 

an open-chain carbenium ion were involved in these additions, two 

isomers should have been detected.rather than one, from each addition.

2



FIG.4-D-1

Spectrum of structures for the proposed thiiranium 
intermediate . The direction of the arrow indicates 
the change in the structure upon increasing the 
polarity of the solvent.
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Generally, the formation of cationoid intermediates in an organic

reaction (including addition processes) produces a mixture of

products due to the ability of such intermediates to rearrange.

This can lead to stereoconversion and reaction with other nucleophiles

present in the reaction mixture. None of these characteristics were

observed in the addition reactions of sulphenyl chlorides to alkenes.

18
Recently, Smit eta l. have suggested the involvement of other

bridged species, in the addition of sulphenyl halides to alkenes,

such as the covalent o-sulphurane (Fig. 4.D.I). They pointed out

various abnormalities in the behaviour of so-called thiiranium

intermediates, that could be explained by proposing a spectrum of

structures (Fig. 4.D.I). The precise structure of the "thiiranium

ion" depends on its environment (e.g. solvent polarity). However,

whatever the structure of the intermediate involved in the reaction

of halide (%9) with ethene (28) in dichloromethane, the stereochemical

outcome can be assumed to be rigorously trane addition. Rearrangements

and loss of stereochemical integrity have only been observed in systems

19
well known to rearrange via cationic species (e.g. norbornyl)

The intermediacy of the primary carbenium ion 2-(methylthio)ethyl

carbocation can be excluded both on theoretical grounds (primary

20
carbocations have never been observed in non-polar solvents ), and

2
experimental evidence (Ref. 9) that (E)-[I,2- lethene leads to a

2 , 2
different set of f3,4— H2Imethionines than (Z)—T1,2— Hjlethene.

The reaction of ethene (28) with the halide (29) will 

result in a racemic mixture of chloride (30). (N.B. In Scheme

4.D.I we show this reaction to proceed via a I-methylthiiranium ion 

only for simplification; it should be kept in mind that other

18
less polar intermediates may be involved under these conditions 

(<?/. Fig. 4.D.I).1. Chloride (^0) was immediately used in the next
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1

2 P .P ."*.

Fig. 4.D.2 The 220 MHz *H n.m.r. (2H20/2HC1, TSS) of

A - (2R.3R.4R), (2S,3R,4R), (2R,3S,4S),
(2S,3S,4S)-f 3,4-2h2Intet h ioni nés.

B - Standard unlabelled methionine
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step of the synthesis, because of its toxicity and in order to 

reduce the risk of racemisation by SN2 attack of chloride ions on 

(30), [which might be formed reversibly from (30)].

Condensation of chloride (30) with the sodium salt of
%

diethyl acetamidomalonate (31) is also expected to proceed via a

thiiranium ion under the conditions used (in ethanol, a relatively

polar solvent). It was necessary to show that this reaction does

not proceed via a S 2̂ pathway, which would lead to products of

inverted configuration at C-3 of methionine. Under good S^2

conditions, (Kl/acetone), chloride (30) reacted I.S times faster 

21
than n-butyl chloride . The chloride (30) can react with salt (31)

via a thiiranium ion or via an SN2 pathway, whereas n-butyl chloride

can only react via an S^2 pathway. A competitive reaction between

chloride (JO) and n-butyl chloride and a limited amount of salt 

0
(3J ), was conducted under the same conditions as was used with 

the labelled rao.chloride (30) [I-chloro-2-(methylthio)-rI^-^Hjlethane). 

The outcome of this experiment showed a product derived only from 

the reaction of chloride C$0) with salt (^1) and no product from the 

reaction of salt (^1) with n-butyl chloride. This proved that the 

rate of reaction of chloride (30) is much faster than n-butyl chloride,

and indicated that chloride (30) reacts with salt (31) via a thiiranium% \
ion rather than by direct S 2̂ displacement.

The stereochemistry of the ethyl 2-acetamido-2-ethoxycarbonyl-

4-(methylthio)butanoate [derivative (32)] derived from (E>—[I,2—

ethcne is shown in Scheme 4.D.I. Acidic hydrolysis of derivative (32)%

resulted directly in a pure mixture of (2R,3R,4R), (2S,3R,4R),

(2R,3S,4S), and (2S,3S,4S)-[3,4-2H2]methionines. This will be 

abbreviated as rao. (3R,4R)-[3,4-2H2]methionlne. The 220 MH* *H n.m.r. 

(Pig. 4.D.2) snalysis agreed with data published in Ref. 9.
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2 2 
The m.s. analysis of the H content in rac.(3R,4R)-[3,4- H2 ]-

methionine was carried out on the N-trifluoroacetyl butyl ester

. . 10 . 2 
derivative as described previously for L-[2,3,3- HjDmethionine

(of. Section 4.E.I). The m.s. analysis showed the presence of I0Z

r H| 1 species and 90Z [ Hj ] species. The spectrum was compared with

spectra for derivatives from unlabelled methionine and (3R,4S)-

[3,4- H2 Dmethionine (obtained from D. C. Billington^) as shown in

Fig. 4.D.3.

4.E EXPERIMENTAL

4.E.I Syntheses of deuterium-labelled (C-2 and/or C-3) 
rac. amino acid7

I. Preparation, resolution and m.g. analysis of
rac.[2,3,3-*Hj]methionine

2
(a) Preparation of rac.[2,3,3- jmethionine

-2  2Rac.methionine (4.36 g, 3 x 10 mol) was suspended in H20

3
(5 cm ) and heated with stirring for 30 minutes. The mixture was

2
pumped to dryness and the residue was dissolved with wanning in H20

(30 cm3). To this solution was added Al(lII)* in 2H20 (3 cm3,

-4 -3
7.5 x 10 mol) and pyridoxal hydrochloride (0.6 g, 3 x 10 mol).

2The pH of the resulting solution was adjusted to 5.0 (p H 5.4) by 

2 2
addition of 40Z NaO H in H20. The reaction mixture was heated at reflux 

with stirring under nitrogen for 24 h. After cooling the reaction 

mixture to 0°C addition of pre-cooled ethanol (100 cm3) gave a
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precipitate of slightly yellow crystals. These were filtered off,

3
washed with cold ethanol and were dissolved in water (40 cm ). To 

the aqueous solution was added decolourising charcoal and the 

mixture was stirred with warming for I h. The mixture was

filtered through Celite and the volume of the filtrate was reduced

3 3
to oa. 8 cm before the addition of boiling ethanol (40 cm ). After

cooling at -20°C overnight the crystals which formed were collected,

3 3washed with ethanol (20 cm ) and ether (20 cm ). Air drying gave

2
roe.[2,3,3- H^Dmethionine (3.1 g, 712) as a white crystalline solid,

m.p. 275-277°C, pure by t.l.c. fKieselgel ^254* amnonia/ 

ethanol (23/77,v/v), ninhydrin spray, Rj 0.45], 220 MHz *H n.m.r., 

(2H20, TSS) 6 2.13 (3 H, s) and 2.63 (2 H, s) p.p.m.

2 2
(b) Resolution of roe.[2,3,3- H^lmethionine

2 -3
Aee.[2,3,3- H^lmethionine (1.49 g, 10 x 10 mol) and

- 3
ammonium-I-a-bromocamphor-n-sulphonate (3.28 g, 10 x 10 mol)

-3 3
were dissolved in pre-warmed I mol dm hydrochloric acid (10 cm ). 

The solution was allowed to cool to room temperature and soon

2
deposited crystals of the bromocamphorsulphonate of L-[2,3,3- Hjl-

methionine (oa. 1.9 g). These crystals were filtered off and were then

3 2
dissolved in hot water (4 cm ). L—T2,3,3— H^lMethionine was

precipitated by addition of cone, ammonia to pH 5.9 followed by

3
addition of hot methanol (40 cm ). The methionine was collected

(472 mg, 632 of available L-isomer) and recrystallised by dissolving 

3
in hot water (10 cm ), reducing the volume to a minimum, and adding 

hot methanol (40 cm^). After standing the resulting mixture overnight 

at 0°C, the crystals of L-(2,3,3-2H^Imethionine were filtered off,
3

washed with cold methanol (10 cm ) and dried in vacua to give a
') n ■ 1

yield of 445 mg (602), ialp ♦ 22 (c 0.037 in I m.l dm HC1). The
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220 MHz H n.m.r. spectrum was identical with that of the starting

2
rac.[2,3,3- H^methionine (of. data in Section 4.B.I).

2
(c) Preparation of N-trifluoroacetyl-L-[2,3,3-

butyl ester10 for mass spectrometric analysis
]methionine

spectromet snalysi

The derivatisation of L-[2,3,3- H^lmethionine (0.15 g,

-3 3
10 mol) was carried out by adding HCl/BuOH* solution (10 cm ,

_2
1.25 x 10 mol). The resulting suspension was heated on a steam 

bath for 2 h, with the exclusion of atmospheric moisture. The 

solvent was removed from the cooled solution by evaporation under 

reduced pressure (50°C, 20 nraHg, the last traces being removed at 

35°C, 0.1 mmHg) to provide a pale yellow oil. This oil was taken

3
up in dichloromethane (10 cm ) and trifluoroacetic anhydride 

3 -3
(I cm , 1.45 g, 7 x 10 mol) was added. The yellow reaction

mixture was sealed, and stored at 25°C for 90 minutes, during which

time it became colourless. The solvent, and excess trifluoroacetic

anhydride were removed under reduced pressure (30°C, 20 min. then

30°C, I mmHg) to give a pale yellow oil (ca. 0.25 g). T.l.c.

(silica HjSO^ spray and char) showed a major spot at

Rf 0.38 and some impurities at the origin. Purification was done

22by flash column chromatography [(2.5 mm dia. x 10 cm) column of 

Merck Kieselgel 60 (200-400 mesh)], eluting with CHjC^. The 

progress of the column was monitored by t.l.c. Evaporation of 

the relevant fractions gave pure product (0.22 g, 73Z) as a 

pale yellow oil pure by t.l.c. (Rf 0.38).

*A solution of dry hydrogen chloride in absolute butan-l-ol (HC1/ 
BuOH) was prepared by the dropwise addition of acetyl chloride 
(17.6 cm3, 19.5 g, 25 x I0"2 mol) to ice-cold, stirred, absolute 
butanol (200 cm3), under an atmosphere of dry nitrogen.



The mass spectrometric analysis showed the following peaks

and relative intensities for the molecular ion cluster: m/z 301 (0),

302 (19), 303 (21) and 304 (100), denoting 14Z [2H,], 14Z r2H2],
2

72Z [ Hj] and an overall deuterium content of ) 86Z.

2
2. Preparation of rac.[3,3- H^lmethionine

2 . -3
flac.[2,3,3- Hjjmethionine (1.0 g, 6.6 x 10 mol) was

3
dissolved in water (30 cm ). To this solution aluminium sulphate 

3 - 4
solution (0.66 cm , 1.7 x 10 mol) and pyridoxal hydrochloride

-4
(0.13 g, 66 x 10 mol) were added. The pH of the mixture was

adjusted to 10.0 by the addition of lithium hydroxide solution 
-3

(5 mol dm ). The rate of exchange at the a-position was monitored 

by 220 MHz *H n.m.r. analysis. After standing for 18 h at 37°C

the reaction mixture was evaporated under reduced pressure to oa.
3 -3

10 cm . Hydrochloric acid (5 mol dm ) was added until the pH fell

to 5.2, and the precipitated solid was redissolved by heating.

3
Boiling ethanol (50 cm ) was added, and the solution was stored

for 24 h at -20°C. The precipitated crystals were filtered off

3 3
and washed with cold ethanol (20 cm ) and ether (20 cm ). Air 

2
drying gave ra<?.[3,3- H2Jmethionine (0.86 g, 86Z) as a white

crystalline solid, m.p. 275-278°C. The 220 MHz *H n.m.r. analysis

showed resonances at (2H20, TSS) S 2.13 (3 H, s), 2.63 (2 H, s) and

4.03 (I H, s) p.p.m. The product was pure by t.l.c. (of. Section

4.E.I) and showed the absence of lithium ions (flame test). The

I 2
integrals in the 220 MHz H n.m.r. spectrum gave a f HI content of 

t 82Z.

3. 2
Preparation of mo.r2,3,3- H^jleueinc

- 2Rac.leucine (3.93 r , 3 x 10 mol) was suspended



88

2 3 . . .
in H^O (5 cm ) and heated with stirring for 30 minutes. The mixture

was pumped to dryness and the residue was dissolved with warming in

? 1 2 3
H.,0 (90 cm ). To this solution was added A1(III) in l^O (3 cm ,

-U -3
7.5 x 10 mol) and pyridoxal hydrochloride (0.6 g, 3 x 10 mol).

2
The pH of the resulting solution was adjusted to 5.0 (p H 5.A) by

2 2
addition of A05! NaO H in H20. The reaction mixture was heated at reflux 

with stirring under nitrogen and monitored by *H n.m.r. analysis for

15 days. After cooling the reaction mixture to 0°C addition of

3
pre-cooled ethanol (200 cm ) gave a precipitate of yellow crystals.

These were filtered off, washed with ethanol and were dissolved in

3 . .
water (200 cm ). To the aqueous solution was added decolourising

charcoal and the mixture was stirred with warming for 3 h. The

warm mixture was filtered through Celite and the volume of the

filtrate was reduced to ca. 15 cm3 before addition of hot ethanol

(100 cm3). After cooling at -20°C for 12 h, the crystalline precipitate

i 3was collected, washed with cold ethanol (20 cm-1), and ether (20 cm ).

2
Air drying gave ra c.[2,3,3- H^jleucine (3.0 g, 79Z) as a white 

crystalline solid, m.p. 292-295°C. The 220 MHz *H n.m.r. analysis 

showed signals at (^HjO, TSS) 50.9A (6 H, d) and 1.68 (I H, p) p.p.m.

The signal at 6 3.72 p.p.m. in the starting unlabelled leucine 

disappeared and the complicated multiplet at 6 1.68 p.p.m. from 

the protons at 0 3  and C-A was simplified to a pentuplet (I H)

corresponding to H-A only. The integrals in the 220 MHz 1H n.m.r.

2
gave a [ H] content of ) 95Z.

2
A . Preparation of rac.[2,3- H^lisoleucine

.2Rac. iso leucine (2.62 g, 2 x 10 mol) was suspended in 

2 3
1^0 (5 cm ) and heated with stirring for 30 minutes. The mixture 

was pumped to dryness ond the residue was dissolved with warming in



2H20 (50 cm^). To this solution was added Al(III) in 2H20

(2 cm , 5 x 10 mol) and pyridoxal hydrochloride (0.4 g, 2 x 10 mol).

2
The pH of the resulting solution was adjusted to 5.0 (p H 5.4) by 

2 2
addition of 40Z NaO H in H20. The reaction mixture was heated at reflux 

with stirring under nitrogen and monitored by *H n.m.r. analysis 

for 10 days. After cooling the reaction mixture to 0°C addition of

3
pre-cooled ethanol (100 cm ) gave a precipitate of yellow crystals.

These were filtered off, washed with ethanol, and were dissolved

in water (100 cm^). To the resulting aqueous solution was added

decolourising charcoal and the mixture was stirred with warming

for 3 h. The warm mixture was filtered through Celite and the

3
volume of the filtrate was reduced to oa. 10 cm before addition 

of boiling ethanol (70 cm^). After cooling to -20°C for 2 h, the

crystalline precipitate was collected, washed with cold ethanol

3 3 2
(20 cm ), and ether (20 cm ). Air drying gave rao.[2,3- Hjlisoleucine

(1.74 g, 70Z) as a white crystalline solid. The 220 MHz *H n.m.r.

analysis showed signals at (2H20, TSS) 6 0.98 (3 H, m), and 1.4 (2 H,

m) p.p.m. The removal of the signals corresponding to a- and B-protons

of the unlabelled isoleucine [at 6 3.67 (I H, d) and 1.96 (I H, m)
2

p.p.m., respectively] was complete. The [ H] content by the 220 MHz 

*H n.m.r. analysis was ) 93%.

2
5. Preparation of rao.[2- H|]alanine

_2
Rao. alanine (3.12 g, 3.5 x 10 mol) was dissolved in

2H20 (30 cm'*). To this solution was added Al(III) in 2H20 
3 -4

(3.5 cm , 8.8 x 10 mol) and pyridoxal hydrochloride (0.7 g,

. 3
3.5 x 10 ). The pH of the resulting solution was adjusted to 10.2

(p2H 10.6) by addition of 40% Na02H in 2H20. The rate of exchange 

at the a-poaition was monitored by 220 MHz *H n.m.r. analysis.



After 2 days of incubation at 30°C, the reaction mixture was

3
evaporated under reduced pressure to oa. 10 cm . Boiling ethanol

(70 cm2 3) was added and the solution was stored for 24 h at -20°C.

The crystals which formed were filtered off and were washed with 

3 3
cold ethanol (20 cm ) and ether (20 cm ). Air drying gave 

2
raa.[2- H(]alanine (2.2 g, 70Z) as a white crystalline solid,

m.p. 290-292. The 220 MHz *H n.m.r. analysis showed a signal at

2
( H20, TSS) 6 1.46 (3 H, s) p.p.m. No signal corresponding to the 

a-proton in the starting unlabelled alanine, [£ 3.75 (I H, q) p.p.m.]

was detected. The integrals in the 220 MHz *H n.m.r. spectrum gave

2
a [ H] content of ) 97Z.

2
6. Preparation of rac.(2,3- H.Jvaline

- 2  2Rac.valine (1.17 g, lx 10 mol) was suspended in HjO

3
(5 cm ) and heated with stirring for 30 minutes. The mixture was

2
pumped to dryness and the residue was dissolved with warming in HjO

(20 cm3). To this solution was added Al(III) in 2H20 (I cm3,

2.5 x 10 mol) and pyridoxal hydrochloride (0.2 g, I x 10 mol).

The pH of the resulting solution was adjusted to 5.0 (p2H 5.4) by 

2 2
the addition of 40Z NaO H in HjO. The reaction mixture was heated at

reflux with stirring under nitrogen. The rate of exchange at the

a- and B-positions was monitored by 220 MHz *H n.m.r. analysis.

After 10 days, cooling the reaction mixture to 0°C and addition of

3
pre-cooled ethanol (80 cm ) gave a precipitate of yellow crystals.

These were filtered off, washed with ethanol and were dissolved

3
in water (50 cm ). To the aqueous solution was added decolourising 

charcoal and the mixture was filtered through Celite. The volume of 

the filtrate was reduced to on. 8 cm before addition of boiling 

ethanol (50 cm*). After cooling at -20°C for 12 h the crystalline
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precipitate was collected, washed with cold ethanol ( 1 0 cm ) and

3 2
ether (10 cm ). Air drying gave r a o . [2,3- t^lvaline (1.01 g, 8 6Z)

as a white crystalline solid, m.p. 297-299°C. The 220 MHz *H n.m.r.

2
analysis showed a resonance at ( H20, TSS) 6 1.0 (6 H, s) p.p.m. The

disappearance of the signals corresponding to the a- and 6-protons

of the unlabelled valine [at 6 3.62 (I H, d) and 2.27 (I H, m) p.p.m.,

respectively] was complete. The integrals in the 220 MHz *H n.m.r.

2
spectrum gave a C H] content of i  9AZ.

I 3
A.E.2 Resolution of rac. T3,A- C-, Imethionine

13 -3Rao.[3,A- C2 Imethionine (0.91 g, 6 x 10 mol) and

-3
ammonium-1-a-bromocamphor-s-sulphate (1.98 g, 6 x 10 mol) were

-3 3
dissolved in pre-warmed I mol dm hydrochloric acid ( 6 cm ). The

solution was allowed to cool to room temperature and soon deposited

I 3crystals of the bromocamphor sulphonate of L-[3,A- C2Imethionine

(o a. 1.2 g). These were filtered off and were dissolved in water 

3
(3 cm ). The amino acid was precipitated by addition of cone.

3ammonia to pH 5.9, followed by addition of hot methanol (25 cm ).

The methionine was collected (0.26 g, 58Z of available L-isomer) and

3
was recrystallised by dissolving in hot water ( 1 0 cm ), reducing the

3
volume to a minimum and adding hot methanol (30 cm ). After standing

the resulting mixture overnight at 0°C, the crystals of 

I 3
L-[3,A- C2Imethionine were filtered off, washed with cold methanol and

20
dried in  vacuo (0.2A g, 5AZ of available L-isomer), * 21.5

(c 0.009 in I mol dm 3 HC1). The 220 MHz *H n.m.r. spectrum (2H20/

ĤCl, TSS) showed resonances at 6 2.15 (3 H, d), 2.28 (0.9 x 2 H,

2 x m, j ' V n  135 Hz, and 0.1 x 2 H, m), 2.78 (0.9 x 2 H, 2 x t. 

j '^C-'h 135 Hz and 0.1 x 2 H, t) and A.29 (I H, m) p.p.m. (see

3
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Fig. 4.C.I). The compound was pure by t.l.c. (see Section 4.E.I),

Rf 0.45.

The mother liquor from the first filtration containing mainly 

the bromocamphorsulphonate of D-methionine, was combined with the 

mother liquor from the above crystallisation. The pH of the mixture

was adjusted to 5.9 by addition of cone, ammonia. Hot methanol

3(50 cm ) was added and the precipitated methionine was filtered 

off and recrystallised (as described for the L-isomer) to give 

(0.64 g, 89Z) of methionine which was mainly the D-isomer (optical 

rotation measurement). Racémisation of this methionine (0.64 g,

-3 3
4.2 x 10 mol) was achieved by dissolving it in water (10 cm ) and

. . -4
adding aluminium sulphate (0.038 g, l.l x 10 mol) and pyridoxal

-4
hydrochloride (0.08 g, 4.2 x 10 mol); the pH of the solution was 

adjusted to 5.2 by addition of 40Z NaOH and the mixture was left standing

for 2 h/r.t. The reaction mixture was cooled to 0°C followed by

. 3addition of pre-cooled ethanol (200 cm ). The mixture was left at

-20°C overnight and the precipitated crystalline solid was collected

3 3and washed with ethanol (20 cm ) and ether (20 cm ) to give

raa. T3,4-*^C2Jmethionine (0.58 g, 90Z). The 220 MHz *H n.m.r.

spectrum was identical with the spectrum of the L-isomer (of. Fig. 4.C.I).

2
4.E.3 Synthesis of rac. (3R,4R)-f3,4- u Imethionine

2

I. Preparation of (E) —[ I ,2-2H., lethene1 ̂

Using dry apparatus, ^H20 (20 cm\ 20 g, I mol), 99.8Z 

atom,was added dropwise to calcium carbide (20 g, 0.3 mol). The

2
generated f H^lacetylene was collected by displacement of water from 

3
2 x 2.3 dm conical flasks. The generation of the gas was stopped

3 2
when 2 x I.9 dm of water had been displaced by the generated f H^1-
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acetylene. The remaining water waa removed from the flask uaing an 

aspirator and replaced by chromium(II) solution (2 x 250 cm )*. The 

flask was sealed and shaken at room temperature in an orbital shaker.

The progress of the reduction was monitored by g.l.c. (Chromosorb 101,

N2 at 20 psi, 25°C). The reaction was stopped when no acetylene could 

be detected (usually 36 h). The resulting (E)-[l,2- Hjlethene in the

two flasks was transferred to a vacuum line and dried (trap to trap

3 2
distillation) to give 3.6 dm of (E)-[l,2- ^lethene, free from any

traces of (Z)—C1,2-2H2]ethene by i.r. analysis [of. Table 4.D.I* ]:

(gas cell, 50 mmHg) 3070 (m), 2270 (w, sh), 1300 (m, sh), 988 (s, sh),

727 (s, sh) and 675 (m, sh) cm *. The absence of peaks at 1342 and 842 cm

2
is characteristic of (E)-[l,2- H2)ethene free from (Z)-isomer. Two

small peaks appearing at 1001 and 807 cm 1 were characteristic of 

14
monodeuterated ethene .

23
2. Preparation of methaneaulphenyl chloride (̂ 9)

Sulphuryl chloride (21.45, 0.15 mol) was added dropwise over 

15 minutes to stirred dimethyldisulphide (14.1 g, 0.15 mol) at -I5°C.

The reaction was allowed to warm up to room temperature with stirring 

over 2 h and the product was then fractionally distilled. The fraction 

boiling between 30 and 32°C (110 nmHg) was collected at -78°C to give 

methanesulphenyl chloride as a deep orange liquid (18.8 g, 72Z), 220 MHz 

'h n.m.r. (CDClj, TMS) 6 2.9 (3 H, s) p.p.m. CH}SC1 [N.B. absence of 

peak at 6 2.4 (s) p.p.m. due to (CHjS)21. The compound has a very

^Potassium chromium(III) sulphate dodecahydrate (100 g, 0.2 mol) was 
dissolved in hydrochloric acid (250 cm3, 3 rool dm“3) and 22 zinc 
amalgam (50 c m ')  was added. The mixture was shaken under an atmosphere 
of nitrogen until the colour changed from dark green to translucent 
blue. The amalgam was run off and the chromium(II) solution was used 
at once.
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strong smell and was stored in a sealed container at -20°C. The 

material was directly used after preparation and any residues were 

destroyed with sodium hypochlorite solution.

3. Preparation of (IS,2R)/(IR, 2S)-1-chloro-2-(methyl thio)-r 1. 2 - ^  He thane (^0)
_2

A solution of methanesulphenyl chloride (6 g, 7.2 x 10 mol) in 

3 3
dichloromethane (50 an ) was placed in a 250 an flask, cooled to -25 C

2
and evacuated to oa. 20 mmHg on a vacuum line. Dry (E)-[l,2- Hjlethene 

(¿8) was admitted to the solution with swirling. The admission of 

ethene (^8) was continued until no further absorption occurred, and the 

solution was colourless (40-50 minutes), whilst the temperature of the 

solution was kept below -25°C. Dichloromethane was distilled off at 

20°C/50 mmHg, to give l-chloro-2-(methylthio)-[I,2-2H2]ethane (}0).

The 220 MHz 1H n.m.r. (CDCl^, TMS) showed resonances at 6 2.15 (3 H, s),

2.8 (I H, br d, J 9 Hz) and 3.6 (I H, br d, J 9 Hz) p.p.m. The compound 

was taken directly to the next stage (N.B. this compound is a potent 

vesicant and should be handled with care).

4. Reaction between l-chloro-2-(methvlthio)-C 1,2-2H Jethane (\0) 
and sodium diethyl acetamidomalonate (31)

-2
Using dry apparatus, sodium (1.25 g, 5 x 10 mol) was dissolved

in anhydrous ethanol (35 cm ) by boiling the mixture under reflux with

the exclusion of atmospheric moisture. Diethyl acetamidomalonate 

_2
(11.25 g, 5 x 10 mol) was added and the mixture was boiled under

reflux until a clear solution resulted. The chloride (^0) (consisting

.2
of oa. 7.2 x 10 mol ♦ traces of dichloromethane) was added and the

reaction was boiled under reflux, with the exclusion of atmospheric

moisture, for 5 h. After cooling to 0°C, the precipitated sodium

chloride was filtered off, under suction, and washed with ice-cold 

3
ethanol (30 cm ). The combined filtrates were evaporated to dryness
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under reduced pressure Co provide an orange oil. This oil was

3
extracted into dichloromethane (3 x 50 cm ), the solution was filtered

through Celite and was evaporated under reduced pressure (20 mmHg, then

I mmHg for I h) to give ethyl 2-acetamido-2-ethoxycarbonyl-A-(methylthio)- 

2
-[3,A- HjJbutanoate (^2), (16 g, 93Z) as an orange crystalline mass.

The 220 MHz *H n.m.r. (CDCl^, TMS) showed resonances at 6 1.25 (6 H, t),

2.0A (3 H, s), 2.08 (3 H, s), 3.3A (I H, d, J 9 Hz), 3.65 (I H, d, J 9 Hz),

A.3 (A H, q) and 6.9 (I H, br s) p.p.m. This material was directly hydrolysed 

without any further purification.

5. Hydrolysis of (3R,AR)/(3S,AS)ethyl 2-acetamido-2-ethoxycarbonyl-A-
(methylthio)-[3,A-^H2)butanoate to rao. (3R,AR)-[3,A-*H2Imethionine

-2
The above product (^2) (16 g, 5.5 x 10 mol) was dissolved 

• ”3 3
in 2 mol dm hydrochloric acid (61 cm ) and the mixture was boiled

_3
under reflux for 6 h with stirring. A further amount of 2 mol dm

3
hydrochloric acid (61 cm ) was added and the reaction was boiled under

reflux for a further 3 h. The orange solution which resulted was

evaporated to dryness under reduced pressure (70°C, 10 nsnHg), to give

3
an orange oil. This oil was taken up in water (30 cm ) and the pH 

of the solution was adjusted to 7 by the addition of saturated 

lithium hydroxide. To the resulting solution was added decolourising 

charcoal and the mixture was stirred with warming for I h. The 

mixture was filtered through Celita. The filtrate was evaporated to dryness 

under reduced pressure and tha solid residue was dissolved in boiling 

water (10 cm3). After addition of boiling ethanol (50 cm3), the 

mixture was stored at -20°C for 2A h. The precipitated solid was 

filtered off under suction and washed with pre-cooled ethanol (20 cm3) 

and ether (20 cm3). Air drying gave rao. (3R,AR)-r3,A-2H2lmethionine 

(A.7 g, 3.0 x 10 2 mol) as a white crystalline solid, m.p. 175—178°C # 

pure by t.l.c. [of. Section A.E.I). The 220 MHs 'h n.m.r. analysis
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(DCl/^l^O/TSS) showed signals at 6 2.12 (3 H, s), 2.25 (I H, 2 x t, J 7 Hr),

2.7 (1 H, br d, J 7 Hz), and 4.28 (I H, d, J 7 Hz) p.p.m. (Fig. 4.D.2). This

product was checked by a flame test and was found to be free of any

2
lithium ions. The overall yield of rac. (3R,4R)-[3,4- H2]methionine

9
based on the ethene (38) used was 42Z. The reported yield for the

2
synthesis of rac.(3R,4R)-[3,4- H2]methionine in the above manner was 

35Z.
2

Mass spectrometric analysis on pure (3R,4R)-[3,4- ^Imethionine

2
was carried out vta the N-trifluoroacetyl-[3,4- H2Jmethionine

butyl ester1® derivative following the procedure described for the

2
derivatisation of L-[2,3,3- H^methionine in Section 4.E.I. This 

analysis (Fig. 4.D.3) showed the following peaks and relative intensities

for the molecular ion cluster: m/z 301 (0), 302 (10), 303 (100),

2 2
denoting I0Z [ H|], 90Z [ H2] and an overall deuterium content of 

> 95Z. Figure 4.D.3 shows the m.s. of the above derivative in

comparison with spectra for derivatives of unlabelled methionine,

2 9
and (3S,4R)-[3,4- Hjlmethionine supplied by D.C.B. .
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CHAPTER 5

BIOSYNTHESIS OF SPERMIDINE 

FROM L-C3,4-I3C;] AND L-[2,3,3-^METHIONINES

5.A INTRODUCTION

The polyamines putrescine, spermidine, and spermine are 

naturally occurring non-protein nitrogeneous bases. These polyamines 

are known to be widely distributed in almost all living cells1.

The first experiments on the biosynthesis of spermidine 

were carried out with growing cultures of E. ooli, using either 

labelled ornithine or '^c'^N-labelled I,4-diaminobutane2 (putrescine). 

These experiments demonstrated the expected conversion,by the action

of a decarboxylase,of ornithine into I,4-diaminobutane, which was

3
then incorporated into spermidine. Green has shown that the

3-aminopropyl unit of spermidine is derived from methionine. When

14Neuroapora oraaea was grown on [2- Clmethionine, the label was 

incorporated into spermidine. In the biosynthesis of spermidine from 

methionine, it was postulated that the first step is the formation of 

S-adenosyl methionine (SAM) from methionine and ATP. This reaction 

was described in yeast as the first step in the méthylation reactions. 

The methyl moiety of SAM is transferred to a variety of substrates 

(e.g. histamine). For the biosynthesis of spermidine, however, SAM 

is first decarboxylated and then the aminopropyl group is transferred 

to I,4-diaminobutane. The latter reaction, catalysed by spermidine 

synthase is analogous to transmethylation except that the aminopropyl

unit rather than the methyl group is transferred from a sulphonium

2
centre. Early experiments by Tabor at al. showed, as expected, that



no U C was incorporated into spermidine when cultures of E. ooli were

fed with Cl-'^CDmethionine. This confirms the decarboxylation of SAM

before the incorporation of the aminopropyl group into spermidine,

by the catalytic action of spermidine synthase^.

This Chapter describes our study of the biosynthesis of

spermidine from L-methionine with the aid of methionines labelled 

2 13
with stable isotopes ( H and C). The metabolite spermidine was

13 1 2
isolated, derivatised and subjected to C, H and H n.m.r. analyses.

1 13
These n.m.r. spectra were compared with H and C (natural abundance)

n.m.r. spectra of authentic derivatives which have been previously 

assigned (of. Chapter 3).
2

The methionines used in this study were L-[2,3,3- H^] and

13 13
L-[3,4- ^methionine. The importance of the C-labelled methionine

is to confirm that C-2 and C-3 of the aminopropyl unit are both

incorporated into spermidine without cleavage of the C-2/C-3 bond.

3
This complements the work of Green , in which he describes the

14
incorporation of C-l of the aminopropyl unit, derived from [2- C]- 

methionine, into spermidine. Taken together, these results would 

confirm the transfer of the aminopropyl group as an intact unit 

from methionine into spermidine.

2
One reason for using L-[2,3,3- H^lmethionine as precursor 13

13
of spermidine was to confirm the result obtained with [3,4- Cjtaethionine. 

However, the main purpose of using this methionine was to observe the 

fate of the deuteriums during the biosynthetic process leading to 

spermidine. The loss of deuterium at C-2 or C-3 might provide 

additional information about the mechanistic action of S-adenosylmethionine 

decarboxylase and spermidine synthase. Part of the research project 

described in this thesis is the study of the stereochemistry of the 

reaction between I,4-diaminobutane and decarboxylated adenosylmethionine



Fig. S.B.I The 400 MH* *H n.m.r. (f2H. Ipyridine, TMS) spectra 
of: 3

A - P A T C - r 2’- 2H 2 lspennidine (2jga)

B - P A T C - s p e r m d i n e  (20) (authentic unlabelled) 

where PATC • phenyl amt not hiorarbnnyI group.



in E. oolt using methionine stereospecifically labelled with deuterium 

at 0 3  and 04. It waa important for the succesa of this project to 

confirm that there ia no loaa of deuterium or ita atereochemical 

integrity during the bioayntheaia of apermidine from methionine.

5.B BIOSYNTHESIS OF SPERMIDINE FROM L-[2,3,3-2H .^METHIONINE

Cultures of E. ooli were grown on a salt medium which was
2

supplied with l-[2,3,3- H^lmethionine*. The biosynthesised putrescine 

and spermidine were isolated and purified via their phenylaminothio- 

carbonyl (PATC) derivatives as described for unlabelled compounds 

{of. Chapter 3).

The isolated PATC-putrescine (19) was subjected to 400 MHz 

*H n.m.r. spectral analysis and was found to be devoid of deuterium 

[spectrum very similar to that of the authentic (W)3.

The isolated PATC-spermidine (2£a) was examined by 400 MHz 

*H n.m.r. spectral analysis [Fig. 5.B.1(A)]. The spectrum showed some 

similar features to a spectrum of authentic unlabelled (^0) [Fig. 5.B.1(B)], 

the only significant differences being consistent with the presence of 

deuterium atoms at the positions indicated in labelled (2£a) [Fig. 5.B.I(A)]. 

Thus the spectrum of (2jga) showed complete retention of deuterium at C-2' 

of spermidine (originally C-3 in the labelled methionine). [N.B. The 

resonance for H—I * in the unlabelled (^0) was a triplet; this signal 

appeared as a singlet in the spectrum of the labelled PATC-spermidine 

(2£a), due to absence of coupling between this position and the adjacent

*l-[2,3,3-2Hj]methionine has a I 2H] content of ) 86Z (m.s. analysis).
By •h n.m.r. spectral analysis most (oa. 98X) of tha C-2 position 
was labelled with deuterium, leaving oa. 80Z deuterium at C-3.



o p p m .
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2 . .
Fig. 5.B.2 The 61.6 MHz H n.m.r. spectrum of PATC-spermidine

(2£a) (in pyridine). Spermidine was isolated from
E. ooli cells which were fed with L-f2,3,3-*H3]methionine.



H—2* (largely deuterated)]. The residual resonance at 6 2.33 (0.2 x 

2 H, q, H-2') of the isolated labelled PATC-spermidine (20a) is the 

result of proton impurities at C-3 of the labelled methionine, 

estimated to be 20Z (see the footnote). The intensity of this signal 

relative to the unlabelled methylene in the spectrum of compound (^Oa) 

was 1:5, which supports the estimate made above for protons at C-3 of 

the labelled methionine. This result supports the contention that 

C—I * C-3' of the isolated spermidine has been biosynthesised from

C-2 -*■ C-4 of the methionine supplied to the culture. No dilution 

from endogenous methionine took place. The *H n.m.r. spectrum of (2jga) 

showed also that a substantial loss of deuterium took place from 

C-3' [6 3.95 (4 H, m, H-3' and H-4) p.p.m.], originally deuterium at

C-2 in the labelled methionine [of. Fig. 5.B.1(B)].
2

The 61.6 MHz H n.m.r. spectrum of labelled PATC-spermidine 

(2jga) was examined. This spectrum (Fig. 5.B.2) confirmed the loss 

of deuterium from C-3'. The integration of the resonances for 

deuterium at C-2' and C-3' in the 61.6 MHz H n.m.r. spectrum of the 

isolated labelled PATC-spermidine (2£a) indicate that % 90X of 

deuterium at C-3' had been lost in the process of spermidine formation. 

Thus, the main product was [2’,2'-2H2]spermidine rather than the expected 

[2' ,2',3'-2H^]spermidine.

In the biosynthesis of spermidine, the enzyme SAM-decarboxylase 

catalyses6 the decarboxylation of SAM to give S-(5'-deoxy-5'-adenosyl)-l- 

(methylthio)propyl amine (decarboxylated-SAM)7. The enzyme spermidine 

synthase catalyses the transfer of the aminopropyl moiety from the 

decarboxylated-SAM to 1,4-diaminobutane (putrescine) to give spermidine4 . 

Recently, the enzyme SAM-decarboxylase has been purified to homogeneity 

from mammalian tissues6*^, yeast*^, and bacteria6. Many amino-acid 

decarboxylases utilise either pyridoxal phosphate or an enzyme-bound
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Scheme 5.B.I Proposed mode of binding between SAM-decerboxylase 
and SAM which might lead to the exchange of 
deuterium at C-2 in L-r2,3,3-3H-j]methionine 
during the decarboxylation process.



a-ketoacid aa prosthetic group. The decarboxylation requires the 

formation of an intermediate Schiff's base from the a-amino nitrogen 

of the amino-acid and the carbonyl function of the prosthetic group.

The SAM-decarboxylase of E. ooli contains 1-2 mols of pyruvate covalently 

bound to each mol of enzyme^. This pyruvate was identified as the 

prosthetic group essential for the catalytic activity of the enzyme*’.

The most common prosthetic group in amino-acid decarboxylases is 

pyridoxal-5'-phosphate. The pyruvyl residue in SAM-decarboxylase 

is a relatively uncommon feature.

Abdel-Monem11 has proposed a binding mode between S-adenosyl-L- 

methionine decarboxylase and SAM. An azomethine bond was reported to 

be formed between the substrate and the enzyme (Scheme 5.B.I).

Incubation of the enzyme with substrate analogues resulted in a time- 

dependent irreversible inactivation of the enzyme11.

We can extend the proposed11 mode of binding between 

analogues of substrate and the enzyme, to explain the substantial 

loss of deuterium, originally present at C-2 of the labelled methionine. 

The first step in the decarboxylation of the substrate SAM is the 

formation of an azomethine bond between the amino group of SAM and the 

ketonic carbonyl of pyruvate to give enzyme-bound adenoaylmethionine 

(£) (Scheme 5.B.I). This is followed by decarboxylation of the adduct 

(£) to give an enzyme-bound imine (£). The cavity of the active site of 

the enzyme could have a functional group, which equilibrates the 

adduct (g) with (£), faster than (£) is hydrolysed to decarboxylated 

SAM. This functional group acts as a base (e.g. -NHj) in the 

conversion of (g) into (jg). Another possibility is that decarboxylated 

SAM is released, but undergoes a slower exchange via re-formation of

<«>'
The fact that deuterium originally at C-2 of methionine was
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lost, whereas that at C-3 was retained, has provided some more

information about the mode of action of SAM-decarboxylase.

It was very important to make sure that deuterium originally

at C-3 of methionine does not exchange in the formation of spermidine.

We intended to study the stereochemistry of spermidine synthase using

2
stereospecifically labelled [3,4- ^^methionines. Any exchange of 

deuterium at C-3 of these methionines would result in the loss of 

stereochemical information (of. Chapter 7).

5.C BIOSYNTHESIS OF SPERMIDINE FROM L-[3,4-'3C,]METHIONINE

L-[3,4-3C2]Methionine (containing 8IZ l3C2, 18Z l2Cl3C and

12
IX C) was added to a growing culture of E. ooli. Putrescine and 

spermidine were isolated as described for unlabelled smterials 

(of. Chapter 3) via their phenylaminothiocarbonyl derivatives. The 

isolated derivatives (1,9) and (2jjb) were subjected to *H and >3C n.m.r.

I 13
spectral analyses. The H and C n.m.r. spectra of compounds (19)

were consistent with spectra of authentic unlabelled (r9) and proved,

as expected, no incorporation of l3C into putrescine. The isolated

sample of compound (2JJb) showed in its 22.6 MHz{*H)l3C n.m.r. spectrum

13 13
an intense AX system [doublets J C- C 33 Hz, astride singlets at

6 26.8 (C-2') and 48.5 (C-l') p.p.m.] in addition to signals at

13
natural abundance [Pig. 5.C.I(A)]. The 22.6 MHz C n.m.r. spectrum 

of unlabelled PATC-spermidine (^0) was sssigned with the sid of model 

compounds (of. Chapter 3 ). The signals at 6 26.86 and 48.63 p.p.m.

in the spectrum of the unlabelled PATC-spermidine (^0) [Pig. 5.C.1(B)] 

were also assigned, with the aid of data for model compounds to 

C-2' and C-l', respectively (of. Chapter 3, Table 3.C.2). The 

position of the doublets in the l3C n.m.r. spectrum of lsbelled
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Fig. 5.C.2 The 220 MHz ' h n.m.r. <r2H6]-DMSO, TMS) spectrum of 
PATC-[ I' ,2' - 1 spermidine (2jj)b) showing * -̂ C— *H 
couplings.
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compound (2jgb) confirm chat C-l' is aa assigned previously in Che 

unlabelled compound (ac 6 48.63 p.p.m.). It shows also Chat Che 

resonance for 02' is as assigned in Che unlabelled PATC-spermidine 

(?0) ac i 26.86.

The incensicies of Che signals for C-l' and C-2', in

comparison wich Che nacural abundance signals, suggests ChaC methionine

had been fully incorporaced into spermidine without any significant

dilution from endogenous sources of methionine.

The 220 MHz *H n.m.r. spectrum of the l3C-labelled (2jgb)

was examined (Fig. S.C.2) and was similar to the spectrum of unlabelled

compound (^0) {of. Chapter 3 (Fig. 3.C.2)] with some modification due 

| ]
to the presence of two C atoms at C-l' and C-2'. The resonance 

for H—1 * appeared at 6 3.8 [double multiplet (0.9 x 2 H, J I3C-*H 

135 Hz and 0.1 x 2 H, m)] p.p.m. Part of this signal was covered 

by the broad resonances from H-4 and H-3'at 63.52 p.p.m. The resonance 

for H-2' appeared at 6 1.95 [double multiplet (0.9 x 2 H, j I3C-'h 

135 Hz and 0.1 x 2 H, m)] p.p.m. Part of this signal was covered by 

resonances from H-3 and H-2 at 6 1.65 p.p.m. The residual signals 

for H-l' and H-2' at 6 3.8 and 1.95 p.p.m. derive from the oa. 1OZ of 

unlabelled methionine. 13
The amount of L-[3,4- Cjlmethionine used in this batch of

-3 -3 
cultures was 0.035 gdm rather than the usual amount (0.05 gdm ).

This reduction in the amount of methionine did not affect the

amount of cells produced or the spermidine produced by them. The

amount of PATC-spermidine obtained (0.065 g) and the mass of wet

cells (29 g) were consistent with yields from other batches.

13 1
The C and H n.m.r. spectral analyses described above 

have proved that C-3 and C-4 of methionine are precursors for C-2'

1 2
and C-l', respectively, of spermidine. This is the first published 

work to demonstrate the incorporation of more than one methylene group
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from the C-2 -*• C-4 moiety of methionine into spermidine. It is 

slso the first work to utilise stsble isotopes in demonstrsting 

this incorporstion.

We considered the possible recovery of pure spermidine from

s PATC-derivstive, labelled st C—I * and/or C-2' with stable isotope(s).

It is possible to hydrolyse PATC-spermidine to free spermidine

(of. Chapter 3). This provides specificslly labelled spermidine

13
which may be of value for studying the metsbolism of spermidine

14
and its intersction with nucleic acids Recent studies have shown 

that spermidine is a precursor of a number of alkaloids1̂

Specifically labelled spermidine would be useful for studying detsils 

of the biosyntheses of these alkaloids.

5.D EXPERIMENTAL

5.D.I Isolation of [2'.2'-7H^]spermidine (2Qa)

The standard medium (10 x I dm^) in 10 flasks of 2 dm"*

2 - 3
capacity was supplied with L-[2,3,3- H^lmethionine (0.05 g dm ) and 

inoculated with E. ooli cells. The culture was incubated at 37°C 

for 30 h. The calls wera harvested by centrifugation to give 32 g

cells (wet). The polyamines putrescins and spermidine were extracted

2
from the cells with TCA . The extracted polyaminas wera converted 

into PATC-derivatives as described for the unlabelled compounds in 

Chapter 3.

The isolated mixture of PATC-putrescine (^9) and PATC- 

spermidine (2jga) was purified by p.l.c. on a silica gal plate 

(Kieselgel 60 HR rsinst 2 x (0.5 mm x 20 x 100 cm)]. Doubla elution 

with dichloromethane/acetonitrile (9/1, v/v) gave two bands. Each



from the C-2 -*• C-4 moiety of methionine into spermidine. It is 

also the first work to utilise stable isotopes in demonstrating 

this incorporation.

We considered the possible recovery of pure spermidine from

a PATC-derivative, labelled at C—1' and/or C-2' with stable isotope(s).

It is possible to hydrolyse PATC-spermidine to free spermidine

(of. Chapter 3). This provides specifically labelled spermidine

13
which may be of value for studying the metabolism of spermidine

14
and its interaction with nucleic acids Recent studies have shown 

that spermidine is a precursor of a number of alkaloids1^ * . 

Specifically labelled spermidine would be useful for studying details 

of the biosyntheses of these alkaloids.

5.D EXPERIMENTAL

5.D. I Isolation of [2' .2>-^H .̂]spermidine (2Pa)

3 3
The standard medium (10 x I dm ) in 10 flasks of 2 dm

2 _3
capacity was supplied with L-[2,3,3- H^lmethionine (0.05 g dm ) and 

inoculated with E. ooli cells. The culture was incubated at 37°C 

for 30 h. The cells were harvested by centrifugation to give 32 g

cells (wet). The polyamines putrescine and spermidine were extracted

2
from the cells with TCA . The extracted polyaminas were converted 

into PATC-derivatives as described for the unlabelled compounds in 

Chapter 3.

The isolated mixture of PATC-putrescine (̂ 9) and PATC- 

spermidine (2ga) was purified by p.l.c. on a silica gel plate 

rxieselgel 60 HR reinst 2 x (0.5 mm x 20 x 100 cm)]. Double elution 

with dichloromethane/acetonitrile (9/1, v/v) gave two bands. Each



band was acraped off and extracted with acetone (2 x 200 cm ).

Evaporation of each fraction gave white residues. T.l.c. analysis

for each fraction, on a silica gel plate (Kieselgel 60 HR reinst,

0.25 mm thick) and elution with dichloromethane/acetonitrile (87/13,

v/v) gave Rf's 0.34 and 0.25 corresponding to compounds (jj)) and (2£a)

respectively. The purity of each fraction was checked by h.p.l.c. and

each gave a single peak. The yield of compounds ((̂ 9) and (2£a) was

(50 mg) and(65 mg), respectively.

I 2
The 400 MHz H n.m.r. spectrum ([ Hj]-pyridine, TMS) of compound 

((̂ 9) showed resonances at 6 2.0 (4 H, m) and 4.0 (4 H, m) p.p.m. As 

expected, no deuterium was observed to be incorporated into 

compound (|̂ 9). The 400 MHz *H n.m.r. spectrum ([^Hj]-pyridine, TMS) 

of isolated compound (2jga), showed resonances at 6 1.74 (2 H, p,

J 7 Hz, H-3), 1.94 (2 H, p, J 7 Hz, H-2), 2.33 (0.2 x 2 H, q, J 7 Hz, H-2'),

3.95 (4 H, m, H-3' and H-4), 4.07 (2 H, br s, H-l), 4.18 (2 H, s,

H— I*) 8.31, 8.54 and 9.67 (I H, br s, PhNH) and 7.0-7.7 (phenyl protons)

2
p.p.m. The 61.6 MHz H n.m.r. (pyridine) of compound (2ga) was

exsmined (Fig. 5.B.2) and showed resonances at 6 2.35 (2 ^H, br s,^H-2')

2 2
and 4.0 (0.1 x H, br s, H-3') p.p.m. The n.m.r. indicates that ) 90Z of the 

deuterium at C-3' has been lost during the formation of spermidine.

5.D.2 Isolation of [I',2'-*3C^]spermidine (2Qb)

1 ^
The etenderd medium (10 x I dm ) in 10 fleeks of 2 dm 13

13 -3
capacity was supplied with [3,4- Cjlmethionine (0.035 g dm ) and 

inoculated with E. aoli cells. The culture was incubated at 37°C 

for 30 h. The cells were harvested by centrifugation to give 29 g 

cells (wet). The polyamines were isolated and purified via their 

PATC-derivatives, as described for the unlabelled compounds (of.

3
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Chapter 3). The pure compound (ĵ 9) isolated from this culture was

subjected to C n.m.r. spectral analysis and gave no indication

for the presence of 13C above natural abundance. Its *H n.m.r.

spectrum was very similar to that of authentic (^9). The 22.6 MHz

{*H}I3C n.m.r. (C^H^]-DMS0) analysis of isolated compound (2£b)

showed an intense AX system [doublets (J 35 Hz) astride singlets at

6 26.8 (C-2') and 48.5 (C—I *) p.p.m.] in addition to signals at

natural abundance (Fig. 5.C.I). The 220 MHz *H n.m.r. ([^H^l-DMSO, IMS)

of isolated derivative (2£b) was examined (Fig. 5.C.2) and showed signals at

6 1.65 (4 H, m, H-2 and H-3), 1.95 (0.9 x 2 H, 2 x m, J I3C-'h 135 Hz,

and 0.1 x 2 H, m, H-2'), 3.52 (4 H, m, H-3* and H-4), 3.75 (2 H,

m » H-l), 3.8 (0.9 x 2 H, 2 x m, J *^C-*H 135 Hz and 0.1 x 2 H, m,

H-l'), 7.75 (2 H, br m, 2 x CHjNH), 8.88, 9.45, 9.52 (each I H, s,

PhNH) and 7.0-7.4 (phenyl protons) p.p.m.
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HEXAHYDROPYRIMIDINES FROM SPERMIDINE 
AND RELATED COMPOUNDS

6.A INTRODUCTION

Recent studies on the physiological significance of amine- 

carbonyl interactions have centred on:

(1) the design of polyfunctional agents for sequestering 

metabolically generated ethanal1 and
2

(2) reactions between catecholamines and aldehydes .

The possible physiological significance of polyamine-aldehyde inter­

actions has usually been discussed in terms of imines or poly-imines 

as the supposed products of condensation.

In this Chapter the author describes the reaction of some 

polyamines with ethanal in neutral solvents (e.g. water and dichloro- 

methane). The reaction of I,3-diaainopropane, spermidine, and

I,2-diaminoethane always resulted in the formation of a cyclic product, 

whereas I,4-diaminobutane afforded a bis-imina. Some chemical aspects 

of these reactions and the products are discussed.

Our interest in the reaction of ethanal with polyamines 

started when we faced the problem of solving the stereochemistry of 

spermidine synthase. We could not achieve direct analysis for the 

stereochemistry of deuterium-labelled spermidines prepared synthetically 

or obtained biosynthetically from E. ooli cells. It was decided to 

approach this problem by conversion of these spermidines into 

hexahydropyrimidines. We found that spermidine reacts with 2 2 mol 

equiv. ethanal to give first a hexahydropyrimidine* (^3) and then an

*The name hexahydropyrimidine of spermidine ia an abbreviation for
l-(4'-aminobutyl)-2-methylhexahydropyrimidine, and the name iminc- 
hexahydropyrimidine is an abbreviation for l-[4'-(N-ethylidene)- 
aminobutyl ]-2-methylhexahydropyrimidine.

CHAPTER 6
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(Eqn. 6.1)

imine-hexahydropyrimidine (^4) (Eqn. 6.1). The assignment of Che 

*H n.m.r. spectrum of such a derivative was rather difficult by direct 

analysis. We found that the preparation and the *H n.m.r. analysis 

of model hexahydropyrimidines was essential for understanding the 

reactions between ethanal and polyamines and to achieve a correct 

analysis and understanding of the hexahydropyrimidines from spermidine.

In this Chapter, full analysis of the *H n.m.r. spectra of some model 

compounds are discussed in detail.

6.B SOME ASPECTS OF THE CHEMISTRY OF HEXAHYDROPYRIMIDINES * I

The condensation of aldehydes or ketones with an amino 

function is the most common way for the formation of an azomethine 

bond. The product of the condensation of a primary amine with a carbonyl 

group is usually called an aldimine (or Schiff's base). The condensa­

tion process is usually accompanied by the elimination of I molecule

of water. Usually, in the preparation of an aldimine, potassium

I 2
hydroxide is added to assist dehydration ' .

The importance of the amine/carbonyl condensation was 

demonstrated in the formation of an azomethine^ bond in many enzyme- 

mediated procesaes (e.g. transmethylation and decarboxylation).

Hexahydropyrimidines are mostly synthesised by the direct 

condensation of I,3-diaminopropane or its N-alkyl or N-aryl derivative 

with an aldehyde or ketone. Hexahydropyrimidines frequently exist in 

equilibrium with an open-chain amino-imine^’6, with the position of the
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equilibrium dependent on factors such as the degree of substitution 

of the ring and the reaction solvent. The ring-chain tautomerism in 

hexahydropyrimidines becomes evident when the cyclic structure is 

partially destabilised by the introduction of two alkyl groups at 

C-27. Thus, hexahydropyrimidine itself exists completely as the 

cyclic form and has no absorption in the double bond region of the 

infra-red spectrum. However, its 2,2-dimethyl derivative must be 

a tautomeric mixture in which the open-chain form gives rise to the 

O N  stretching vibration at 1670 cm 1 in the infra-red spectrum.

By replacement of one hydrogen atom of an NH group of a hexahydro­

pyrimidine with t-butyl, the tautomeric equilibrium shifts completely 

in favour of the open-chain form.

Hexahydropyrimidines show the normal behaviour of aliphatic 

bases, but some are unstable in the sense that C-2, being directly 

linked to two nitrogen atoms, is very readily eliminated by acidic 

hydrolysis yielding a I,3-diaminopropane and an aldehyde or ketone.

Preparation of hexahydropyrimidines by the catalytic hydro­

genation of pyrimidines is rather unlikely to succeed, because under 

normal hydrogenation conditions, the hexahydropyrimidines undergo 

reductive ring cleavage. Those cases where steric factors cause

■train in the cyclic structure and give rise to « dynamic equilibrium

a
with an open-chain tautomer containing an azomethine bond are more 

readily hydrogenated.

The oxidation of hexahydropyrimidine derivatives haa only 

been recorded for the N,N'-dimethyl compound, which gave N,N'-dimethyl-

1,3-diaminopropane7. 2-Methylhexahydropyrimidine (^5) ia unique among *

Jtf. u

*  h
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NHSCH

Scheme 6.B.I Fragmentation pattern« of hexahydropyrimidine* 
(abstracted from Ref. 9a).
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Che hexahydropyrimidines examined in that, when this compound was 

shaken with platinum and hydrogen under vigorous conditions, hydrogen 

was evolved from the reaction and 1,4,5,6-tetrahydropyrimidine was

isolated. Thus, under apparent reducing conditions, an oxidation occurred ! 

It could be assumed that under these conditions, a platinum-catalysed 

equilibrium between the hexahydro and the tetrahydro derivatives was 

set up which favoured the tetrahydro species in the case of the

2-methyl derivative.

Much mass spectral data is available for hexahydropyrimidines.

The favoured pathway for the fragmentation of a hexahydropyrimidine

9
is shown in Scheme 6.B.I . Of the three patterns indicated in the 

Scheme, the left hand side one is of interest because by loss of 

the R group the molecular ion gives a resonance-stabilised cyclic 

amidinium ion, already noted as responsible for the highly basic nature 

of I,4,5,6-tetrahydropyrimidine? The stability of the amidinium ion is 

indicated by its intensity being greater than that of the parent 

molecular ion.

Other alkylated and N-substituted hexahydropyrimidines exhibit 

this outstanding feature in their mass spectre, whereby a group is 

ejected from C-2 to give a resonance-stabilised entity of greater 

abundance than the molecular ion. When there is a choice of ejection 

of one of two radicals from C-2 to give two different amidinium ions 

of comparable stability, the cracking pattern involving the more 

stable and hence less energetic free radical predominates. Thus, 

with the molecular ion of 2-methylhexahydropyrimidine (^5) the preferred 

pathway by a factor of over 3 is ejection of a methyl radical to give 

the I,4,5,6-tetrahydropyrimidinium ion, rather than loss of a hydrogen 

atom to give the 2-methyl analogue. The ratio of peak heights is 

reported7 to be (M-l5)*XM-I)*7h + ■ 18:5:1. The preeence of a cyclic

8



amidinium ion in the mass spectrum of a hexahydropyrimidine is a 

useful means of differentiating between the cyclic and the open- 

chain tautomers. The mass spectrum of the latter is not expected 

to show any peaks corresponding to this ion.

The cyclic tautomers of hexahydropyrimidines can be identified 

by infra-red spectroscopy: presence of a strong peak at 3270 cm 1, 

which can be assigned to the NH stretching vibration of a secondary 

amine11. There is no sharply defined absorption in the 1600-1700 cm 1 

region which would be assigned to the -ON- stretching vibration of 

the open-chain tautomer.

The 6 values for certain absorption peaks in the *H n.m.r. 

spectra of hexahydropyrimidine and some of its derivatives are 

reported in Ref. 7.

The spectrum of I,3-diaminopropane consists of two peaks:

a triplet in the 2.5-3.25 i region assigned to the two protons of

each methylene next to the nitrogen atoms, and a multiplet in the

i ? i
1.3-2.3 6 region due to the central methylene . The H n.m.r.

spectra of hexahydropyrimidine and its derivatives, when examined at

room temperature (which is well above the temperature where ring

inversion between two equivalent chair forms is slow) do not 

13
differentiate between the axial and equatorial protons at C-2.

Full *H n.m.r. data for some model compounds is given in the next 

section.

The conformational preference of saturated heterocyclic 

six-membered rings is believed, like cyclohexane derivatives, to 

be for chair conformations with equatorial substituents. Hydrogen 

atoms on the nitrogens are axial leaving the lone pairs equatorial.

This has been demonstrated for a wide variety of compounds such as 

piperidine1'* and piperazine1*. These have chair conformations of
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geometry closely analogous to that of cyclohexane. In substituted 

cyclic compounds, the non-bonded interactions between an axial 

alkyl substituent and the 0-axial hydrogens, largely determine the 

conformational preference of that substituent. Large groups have a 

greater preference for the equatorial position than small groups.

In an N-alkyl substituted heterocyclic compound the substituents 

may occupy either the equatorial or axial position. Interconversion 

of these two conformations by nitrogen inversion is a much easier 

process (AG* S 40 kJ mol 1) than ring inversion (AC* > 40 kJ mol 1)*®, 

which enables the N-alkyl group to change its orientation without 

the intervention of ring inversion. The position of the equilibrium 

between the two chair conformations is determined by the size of 

the N-substituent and the interaction of the lone-pair(s) with 

adjacent substituents.

In hexahydropyrimidines, the presence of another nitrogen

atom in the ring increases the rate of nitrogen inversion (relative to

cyclic compounds containing one hetero atom, e.g. piperidine). It

13 17
was no surprise to find that the barrier to ring inversion ' is

45 kJ mol *, whereas the barrier to nitrogen inversion is very much 

18
less than this . The most important question concerning the conformations

of hexahydropyrimidines is the position of the conformational equilibrium

I 1 9 1 3  20
on nitrogen. This question was answered by H n.m.r. , C n.m.r.

21
and dipole moment measurements. The N-methyl derivative of 

hexahydropyrimidine was found from measurements of N-H to C-2 methylene 

coupling constants to have an equatorial methyl but an axial N-H 

group. The N,N'-dimethyl derivative of hexahydropyrimidine was 

studied by comparing its spectral characteristics with models
| (Jl.

(e.g. I,3,5,5-tetramethylhexahydropyrimidine) . The diequatorial 

conformation is aa. 2 kJ mol * more stable than either of the enantiomeric
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axial-equatoriÿl conformations.

6.C MODEL HEXAHYDROPYRIMIDINES

6.C.I Introduction

The work on hexahydropyrimidine derivatives was started when 

we faced the problem of assigning the stereochemistry of spermidine 

synthase. The assignment of the relative configuration of the 

deuterium atoms in spermidine, introduced at C—1 * and 02', was

considered to be impossible from examination of spectra of the free

2
Cl',2'- H2^spermidine because of signals overlapping. Although the 

PATOderivative of spermidine gives separated signals for the protons 

at Ol' and 02', it is impossible to assign the relative 

configuration of the deuterium atoms at C-l' and 02' in such a derivative 

because of the lack of knowledge about the conformations of this compound. 

It was therefore necessary to find a derivative of spermidine having 

a well-defined conformation and a 1H n.m.r. spectrum easy to analyse.

We considered the possibility of forming a diamagnetic metal complex of 

spermidine, which would have a 6-membered ring including the metal ion 

and Ol' -* 03' of spermidine. However, we found that polyamines 

in general and spermidine in particular react with ethanal to give 

hexahydropyrimidine derivatives which would have the desired properties.

We found that I,2-diaminoethane reacted with one mol equiv. 

of ethanal to give 2-methylimidazolidine (^6). , The *H n.m.r. spectrum 

of this compound showed resonances at (CDC1}, TMS) 6 1.28 (3 H, -CHCH^),
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2.78 (2 H, m, H-4ax and H-5ax), 3.01 (2 H, m, H-4eq and H-5eq) and

3.24 (I H, q, -CH-CHj) p.p.m. The preparation of such compounds is

22
well established in the literature . The condensation of ethanal 

with I,4-diaminobutane resulted in the formation of I,4-diamino- 

butane-bifl(ethylimine) [N.B. characterised by i.r. analysis which 

showed a C-N stretching vibration at 1670 cm 1 ] rather than the 

2-methyl-1,3-diazacycloheptane.

The preparation of hexahydropyrimidines was first attempted using 

the classical method of Branch^, who condensed a monoprotonated

1,3-diamine with a carbonyl compound to give the hexahydropyrimidine 

ring. Following this procedure, the maximum yield achieved by the 

author for the preparation of hexahydropyrimidine derivatives was 

20-25Z. This low yield could be due to acid-catalysed polymerisation 

of the hexahydropyrimidine produced. However, we found that carrying 

out the condensation of the 1,3-diamine with a carbonyl compound in 

a neutral organic solvent (CDCl^ or O^Clj) or in water ( H2O) (i.e. 

without the protonation of the starting diamine) gave much higher 

yields (60-70Z).

6.C.2 *H n.m.r. analysis of model compounds

I. Preparation and acetylation of 2-methylhexahydropyrimidine (^5)

The condensation of I,3-diaminopropane with l.l mol equiv. of 

ethanal in water gave rise to the rapid formation of 2-methylhexa­

hydropyrimidine (^5) (65Z yield), which was purified by distillation.

The *H n.m.r. spectrum of compound (^5) [Fig. 6.C.1(A)] showed 

resonances at (CDCl^, TMS) 6 2.85 p.p.m., corresponding to the axial 

protons at C-4 and 06, and resonances at 6 3.15 p.p.m. (Jgem 

14.0 Hz), corresponding to the equatorial protons at C-4 and C-6.
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The difference in the chemical shifts between the axial and equatorial

protons in compound (^S) is due to the shielding effect of the lone-pairs

also shows an AX^ system for the proton at C-2 [6 3.64 (I H, q) p.p.m.], 

and the methyl group [6 1.16 (3 H, d) p.p.m.] attached to that position. 

The protons at C-5 appeared at 6 1.48 p.p.m. as a broad multiplet.

anhydride in aqueous sodium hydroxide, gave I,3-diacetyl-2-methyl- 

hexahydropyrimidine (^7). The purity of this compound was confirmed 

by its combustion analysis. The e.i.m.s. analysis showed two

small peaks for M* (0.05Z) and (M-l)* (0.007Z) with a large peak 

for (M-I5)+ (I00Z). The amidinium ion (M-I5)+ resulting from the 

ejection of the methyl radical at C-2, is preferred to either 

the ion generated by the ejection of a hydrogen atom or the parent 

ion M* [relative intensities - 100:5:1, respectively]. This ratio is 

rather different from the ratio observed with hexahydropyrimidine (^5), 

in which the (M-I5)+ ion is not much preferred to (M-l)+ or M* 

[relative intensities 18:5:1, respectively].

The i.r. spectral analysis of compound (^7) showed a very 

strong and broad peak at VBJU{ I630c«r1 • This peak was assigned to the 

two acetyl groups at N-l and N-3.

showed signals at (CDClj, TMS) 6 1.45 and 6.65 p.p.m. These were 

assigned to the AX^ system of the methyl group and the proton attached to 

C-2. [N.B. The C-2 methyl became axial because the carbonyl function

of the acetyl group is directed towards the equatorial position.]

The signals at < 2.08 and 2.21 p.p.m. wera asisgned to the methyls

of the nitrogen atoms on the adjacent axial protons1̂ . The spectrum

23
Acetylation of compound (^5), using the reagent acetic

n

The 220 MHt H n.m.r. spectrum of compound (^7) [Fig. 6.C.1(B)]
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of Che acetyl groupa at N-3 and N-l, respectively. The difference in 

the chemical shifts of these two methyls suggested a difference in 

their environments [see structure in Fig. 6.C.1(B)]. It is necessary 

to postulate that one of the acetyl groups (say that at N-3) is 

positioned in such a way that its carbonyl group is directed away from 

the C-2 methyl, whereas the carbonyl of the acetyl group at N-l is 

pointing in the opposite direction (i.e. towards the C-2 methyl). 

Further evidence for this conclusion follows from examining the 

signals for protons at C-4 and C-6. The protons at C-4 showed 

resonances at 6 3.49 (1 H, t x d, Jgem 15 Hz, Jvic 3 and 15 Hz,H-4ax) 

and i 3.74 (I H, d x t, Jgem 15 Hz, Jvic 2.5 and 2.5 Hz,

H-4eq) p.p.m. The change in the chemical shifts of the H-4 signals

as a result of adding an electron withdrawing acetyl at N-3 was 

found to be 0.64 and 0.6 p.p.m. for H-4ax and H-4eq, respectively 

[from comparison with data for the precursor (35)]. The protons 

at C-6 showed resonances at 6 2.97 (I H, t x d, Jgem 15 Hz, Jvic 3

and 15 Hz, H-6ax) and 6 4.59 (I H, d x t, Jgem 15 Hz,

Jvic 2.5 and 2.5 Hz, H-6eq) p.p.m. The shifts in the signals of 

the C-6 protons of compound (^7), as a result of acetylating N-l 

and N-3, would be expected to be similar to the shifts of the H-4 

signals (see above). By comparison with data for compound (̂ 5)

[the precursor of (37)], H-6eq was found to have shifted downfield 

by 1.44 p.p.m., while H-6ax was shifted by only 0.12 p.p.m. These 

shifts resulting from acetylation at N-l are different from the 

values obtained from acetylation at N-3.

The observed differences for the chemical shifts of protons 

at C-4 and C-6 can be explained by the proposed conformation in 

Pig. 6.C.1(B). The proton H-6cq lies in the deshielding region of 

the adjacent carbonyl group and therefore appears at a very different



Confirmation for the assignment of the C-4 and C-6 protons 

of compound (^7) was achieved by decoupling experiments. Irradiation 

at 6 4.59 (H-6eq) p.p.m. resulted in the loss of the Jgem coupling 

of H-6ax (6 2.97 p.p.m.). The signal for H-6ax changed from a triple 

doublet to a double doublet (Jvic 3 and 15 Hz). The multiplet for 

protons at C-5 also showed some modification. Irradiation at 6 2.97 p.p. 

resulted in loss of the Jgem coupling of H-6eq, which changed from 

a doublet of triplets to one triplet with both Jvic 2.5 Hz. The 

resonances for protons at C-5 were also modified as expected.

Irradiation at 6 3.74 (H-4eq) and 3.49 (H-4ax) p.p.m. showed the 

expected modifications.

2. Preparation and attempted acetylation of I,2-dimethyl-
hcxahydropyrimidine Q 8)

Preparation of I,2-dimethylhexahydropyrimidine (}8) was 

achieved by the condensation of N-methyl-l,3-diaminopropane with l.l 

equiv. of ethanal in water. The yield obtained in the preparation 

of this compound was 60Z. The e.i.m.s. analysis of this compound

chemical shift from H-4eq.

{f

showed M+, (M-l)*, (M-2)* and (M-15)4 ions in a ratio of 5:27:88:1002, 

respectively. It seems that the displacement of the amino hydrogen 

in hexahydropyrimidine (^5) by a methyl group, increases the stability 

of the (M-l)4 ion at the expense of the (M-15)* ion. The loss of two 

hydrogens from C-2 and the unsubstituted amino group gave rise to a 

new ion (M-2)*, which showed a relatively high stability in comparison 

to the parent ion.

The 400 MHz *H n.m.r. spectrum of compound (^8) (Fir. 6.C.2(A)] 

showed an AX.̂  system at 6 1.21 (3 H, d) and 2.88 (I H, q) p.p.m. for
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Che proton and methyl group at C-2. The quartet of the C-2 proton 

at fi 2.88 p.p.m. was shielded by 0.76 p.p.m. compared to the quartet 

of the C-2 proton of compound (^5). This shielding arises from the 

presence of the equatorial methyl group at N-l [Fig. 6.C.2.(A)]. The 

signal for C-S protons in the 2-methylhexahydropyrimidine (^5) showed a 

broad resonance at £ 1.48 p.p.m. The C-5 protons of compound (^8) showed 

a signal of double raultiplets at £ 1.53 p.p.m. for H-5eq and a quartet of triplets 

at 5 1.74 p.p.m. for H-Sax. The presence of a methyl group (6 

2.21 p.p.m.) at N-l of the ring causes the lone-pair of that nitrogen 

to take up an axial position. The I,3-diaxial interaction between 

this lone-pair and H-Sax.compared to a I,3-diaxial H-H interaction in 

(^5), is probably responsible for the separation of H-Sax from 

H-Seq in (^8). The single N-substituent in (^8) leads to the 

appearance of resonances for H-4ax and H-6axt as well as H-4eq and 

H-6eq at different chemical shifts. The signal for H-6ax at £ 2.25 

p.p.m. ( t x d, Jgem 13 Hz, Jvic 3 and 13 Hz) was shielded by 0.6 p.p.m.

[in comparison to the signal of H-6ax (£ 2.85 p.p.m.) in compound (!j£)] 

due to the presence of the axial lone-pair at N-l. To a lesser extent, the 

lone-pair also shielded the H-6eq at £ 2.95 p.p.m. (d x m 

Jgem 13 Hz) by 0.2 p.p.m. fin comparison to the signal 

of H-6eq (£ 3.15 p.p.m.) in compound (^5)]. The N-3 lone-pair probably 

prefers an equatorial orientation as in (^5), and so there are only 

small chemical shift differences between H-4ax/H-4eq in (^8) and the 

corresponding protons in (^5). The assignments of the C-4 •* C-6 

protons were confirmed by a series of decoupling experiments by 

irradiating at each proton in turn.

The attempted synthesis of I,2-dimethyl-3-acetyl-hexahydro- 

pyrimidine failed due to the opening of the hexahydropyrimidine ring 

under the conditions used for the acetylation. These conditions were
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acetic acid and DCC in THF, or acetic anhydride and NaOH in water. 

Acetylation of compound (^8) was also attempted with acetic anhydride 

and NaOH in methanol or dichloromethane. The product of all these 

reactions, when examined by lH n.m.r. spectroscopy showed the 

formation of N.N'-diacetyl-N-methyl-l,3-diaminopropane (^9) [see 

Fig. 6.0.2(B)]. This was obtained via an imine intermediate, which 

resulted from the ring-opening of the hexahydropyrimidine as 

illustrated in Scheme 6.C.I.

",— Me 

*‘" 'T ~~'-~NMe

V-Me

OH

,e»cess ACjQ
0; Me

Ẑ TNH
^NHMe

»

SCHEME b - C- t  I

3. Preparation and acstylation of 2-benzylhexahydropyrimidine (^0)

Preparation of 2-banzylhaxahydropyrimidina (^0) was achieved 

by the condensation of l.l mol equiv. phenylacetaldehyde with I molequiv.

I,3-diaminopropane in water, and gave the pure compound (^0), on 

distillation (80°C at 2 x I0~2 nsHg), in 732 yield. The 220 MHz 

*H n.m.r. spectrum of compound (^0) showed resonances [Fig. 6.0.3(A)] 

at 6 2.26 p.p.m. (d, CH-CHj-Ph) overlapping with resonances of 

H-4ax and H-6ax at 62.27 p.p.m. The signals for H-6eq and H-4eq 

resonated at 6 3.IS ( d, Jgem 13.6 Hs, with additional fine
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6 7.4

-i I---

6.5 4.8

h

2.82.2 1.5 p. p .m.

Fi r. 6.C.3 The 220 MHz 'h n.m.r. (CDClj, TMS) apectra of 

A - 2-Renzylhexahydropyrimidine (^0)

B - I,3-Diacetyl-2-benzylhexahydropyrimidine (41)
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splitting from the vicinal couplings) p.p.m. Signals for C-S protons 

appeared as a broad multiplet at £ 1.46 and signals for H-2 appeared 

at £ 3.7 p.p.m. as a triplet.

Acetylation of compound (̂ >0) afforded a pure product of

1,3-diacetyl-2-benzylhexahydropyrimidine (^1). The i.r. spectral 

analysis of compound (^1) showed two strong peaks at v 1630 and 

1645 cm 1. These peaks were assigned to the acetyl groups at N-l and N-3.

The e.i.m.s. analysis of compound (41) showed amidinium 

ions of similar stability resulting from the ejection of the benzyl 

group (M-9I)+ (I00Z) followed by eliminations of ketene [ions at 

(M-133)* (I00Z) and (M-175)* (I00Z)L The parent ion showed a very 

small percentage (ca. 4Z) relative to the amidinium ions.

The 220 MHz *H n.m.r. analysis for compound (41) was consistent 

in every detail with the structure of the compound [Fig. 6.0.3(B)].

The effect of acetylation on compound (^0) is similar to that seen 

with compound (^5). The assignment of signals for C-4 and C-6 protons 

on compound (41) was done directly by comparison with the *H n.m.r. 

spectrum of compound (37) [Fig. 6.0.1(B)]. The only new feature in 

the *H n.m.r. spectrum of compound (41) is the appearance of an ABX 

system between the protons of C-l' (-CHj-Ph) and the adjacent H-2 

proton. The two methyls of the acetyl groups are pointing in opposite 

directions as for compound (^7). One of the protore (H^) of C-l' 

is assumed to be pointing in the direction of the carbonyl group 

attached to N-l and is therefore expected to be deshielded. The 

signal of the HA proton appeared at £ 3.32 (d x d, Jgem 12 Hz, Jvic 

<4 Hz)  p.p.m. The signal of the Hg proton appeared at £ 2.88 (d x d,

Jgem 12 Hz, Jvic 3.6 Hz) p.p.m. The Hx proton (i.e. H-2) 

resonated at £ 6.57 (d x d, .(vie 3.6 and 14 H z )  p.p.m.
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Fig. 6.D.I The m e «  spectrometric analysis of compound (^3)s 

A - The c.i.m.s. showing the ion (M*l)+ at 172 

B - The e.i.m.s. showing the ion (M-15)4 at 156
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6.D HEXAHYDROPYRIMIDINES FROM SPERMIDINE

I. Preparation of l-(4l-aminobutyl)-2-methylhexahydropyrimidine

The hexahydropyrimidine derivative of spermidine (^3) was 

prepared by dropwise addition of I mol equiv. of ethanal into a 

solution of spermidine in chloroform. This reaction was monitored 

by *H n.m.r. spectral analysis which showed after 5 minutes the 

disappearance of free spermidine and the complete formation of the 

cyclic derivative (^3). [N.B. The *H n.m.r. spectrum of compound (̂ 3)

is very similar to that of l-[4'-(N-ethylidine)aminobutyl]-2-methyl- 

hexahydropyrimidine (^4) (see below),the only differencesbeing the 

absence of the resonance for the N-CH-CH^ group, and the appearance of 

the C-4' protons partly overlapping with the resonancesof the 

H-l'eq and H-4ax at 6 aa. 2.67 p.p.m.] Compound (^3) was analysed

I

by c.i. and e.i. mass spectrometry. The c.i. mans spectrum 

[Fig. 6.D. 1(A)] showed a major peak for the protonated molecular ion 

(M+l)* at m/z 172. The e.i. mass spectrum fFig. 6.0.1(B)] showed a 

major peak at m/z 156 corresponding to the ion (M-15)*. An exact 

mass measurement for this ion gave a value of 156.1494 (CgHjgN.j, 

error -3.8 p.p.m.).

2. Preparation of I-I 4l-(N-ethylidene)aminobutyl]-2-methyl-
• hexahydropyrimidine (^4)

The imine-hexahydropyrimidine derivative of spermidine (̂ 4) 

was prepared by dropwise addition of cthanal (2 2 mol equiv.) into 

a solution of spermidine in chloroform. For *H n.m.r. analysis
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Fig. 6.D.2

,

The masa spectrométrie analysis of compound (}4)

A - The c.i.m.s. showing the ion (M*l)+ at 198 

B - The e.i.m.s. showing the ion (M-15)* at 182



136

Fig. 6.D.3 The 400 MHz 'h n.ra.r. spectrum (CDCI3, ™ s) of l-C4'-(N- 
ethy1idene).iminobutyl ]-2-methylhexahydropy rimidi ne (!}4) .
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this reaction was carried out, directly in the n.m.r. tube. The 

cyclisation and imine formation of compound (^4) was complete within 

5 minutes at room temperature (see Eqn. 6.1). Compound (!}4) was 

analysed by c.i. and e.i. mass spectrometry. The c.i. mass spectrum 

[Fig. 6.0.2(A)] showed a major peak for (M+l)* at m/z 198. The e.i. 

mass spectrum [Fig. 6.0.2(B)] showed a peak at 182 corresponding to 

the (M-15)* ion. An exact mass measurement for this ion gave a 

value of 182.1657 (Cjgl^QN^, error 0 p.p.m.).

The assignment of the 400 MHz *H n.m.r. (CDCl^, TMS) 

spectrum of compound (^4) (Fig. 6.0.3) was difficult. This assignment 

was achieved with the aid of data for model compounds(of. 6.C).

The 4'-(N-ethylidene)aminobutyl chain of compound (^4) is expected 

to take up an equatorial position on the hexahydropyrimidine ring leaving 

an axial lone-pair at N-l (of. 6.B). It is expected on steric grounds 

that the butyl chain will take up a conformation which extends away from 

the ring.

The first order analysis for spectrum of compound (!}4)

(Fig. 6.D.3) showed signals at 6 1.22 (3 H, d, J 6 Hz, C-2Me), 1.95 

(3 H, d, J 4.5 Hz, N-CHMe), 3.20 (I H, q, J 5.8 Hz, H-2), 3.36 (2 H, t,

J 6.9 Hz, H-4'), and 7.60 (I H, q, J 4.5 Hz N-CHMe) p.p.m. The 

signals for the protons H-5eq, H-2' and H-3' were all in the region 

i 1.35-1.65 p.p.m., which appears as a complicated multiplet.

Although the position of each signal for H-5eq, H-2' and H-3' can 

be roughly assigned, the exact shape and position of these signals 

is impossible to judge because of overlap. The H-5ax proton appeared 

at 6 1.67 (q x t, .Igem 12 Hz, Jvic 4,4,12 and 12 Hz) p.p.m.

This assignment was confirmed by decoupling experiments. Irradiation 

at 6 3.04 p.p.m. (H-6eq and H-4eq), resulted in the appearance of the 

H-5ax signal as a quartet (Jgem 12 Hz, Jvic 12 and 12 Hz) due to
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E

Fig. 6.D.4 Th« remaining resonances of Che H-6ax end H-I'sx signals (A) 
sfter decoupling the protons of:
(B) H-Sax, (C) H-5eq, (D) H-2' and (E) H-6eq.
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Che loss of Che small Jvic coupling wich H-4eq and H-6eq. Irradiación 

ac 6 2.33 p.p.m. (H-6ax) changed Che signal from H-Sax inCo a triple 

CripleC (Jgem 12 Hz, Jvic 4, 4 and 12 Hz) owing Co Che loss of Che 

big Jvic coupling wich H-6ax. A similar resulc (i.e. Co Che effecC from 

H-6ax decoupling) was obCained when Che H-4ax proCon was decoupled.

Signals ac 6 3.04 p.p.m. were assigned Co H-6eq and H-4eq (d, Jgem 12 Hz, 

wich addicional fine spliccing). The assignmenc was confirmed by 

decoupling H-Sax ac 6 1.67 p.p.m. This caused Che signals from 

H-6eq and H-4eq Co lose Che fine spliccing [due Co coupling wich 

H-5ax (Jvic 'v 4 Hz)]. Ic remains Co juscify Che assignmenCs for 

H-6ax, H-I'ax, H-4ax and H-l'eq.

The signal from H-6ax appeared ac 6 2.33 (c x d,

Jgem 12 Hz, Jvic 3 and 12 Hz) p.p.m., and were pardy overlapping 

wich Che signals of H-I'ax at 6 2.28 (dxdxd.Jgem 13 Hz, Jvic 6 and 

8.5 Hz) p.p.m. [see Fig. 6.D.4(A)]. Confirmation of these assignmenCs 

was derived from a series of decoupling experiments involving Che 

protons of H-5ax, H-5eq, H-6eq and H-2' and speccral simulation wich 

the aid of the instrument's computer. Irradiation at H-5ax (6 1.67 p.p.m.) 

resulted in the formation of a double doublet in place of the original signal 

of H-6ax (Jgem 12 Hz and Jvic 3 Hz). The signal of H-I'ax was essentially 

unaffected [of. Fig. 6.0.4(B)]. The decoupling of H-5eq (oa. 6 1.52 p.p.m.) 

from H-6ax resulted in the collapse of Che signal of H-6ax into a triplet 

wich Jgem - Jvic ■ 12 Hz. The power of the irradiation also affected 

the signal of H-I'ax [N.B. because Che signals of H-5eq and H-2' are 

very near, the power of the irradiation also decoupled H-2' procons from 

H-I'ax], which collapsed into a broad doublet [of. Fig. 6.0.4(C)]. This 

doublet was sharpened when the irradiation was centred at the protons 

of C-2' (oa. 6 1.47 p.p.m.). This irradiation did not affect the triple 

doublet of H-6ax which became easier to discern (of. Fig. 6.0.4(D)].
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Irradiation at 6 3.04 p.p.m. (H-6eq) resulted in the collapse of the triple 

doubletof H-6ax into a double doublet. The double double doublet of H-I'ax 

was essentially unaffected [of. Fig. 6.D.4(E)].

The assignments for H-6ax and H-l'ax were further supported 

by simulation of their signals on the Bruker WH-400 computer ('Panic' 

Programme). The parameters measured from the spectrum were fed to the 

computer and were iterated. The simulated signals* for H-I'ax and 

H-6ax [Fig. 6.D.5(A)] were very similar to the observed signals (B)

(above Figure) and gave the following coupling constants:

H-6ax-H-6eq, J 12.0 Hz 

H-6ax-H-5eq, J 3.6 Hz 

H-6ax-H-5ax, J 11.4 Hz 

H-I'ax-H-I'eq, J 12.1 Hz 

H-l 'ax-H-2**, J 6.5 Hz 

H-l 'ax-H-2***, J 8.2 Hz 

6 (H-6ax) - 6 (H-I'ax) - 15.36 Hz 

The signals for H-4ax at 6 2.66 p.p.m. appeared as a triple 

doublet (Jgam ca. 13 Hz, Jvic 3 and oa. 12 Hz) and was partially 

overlapping with the signal of H-I'eq at 6 2.63 p.p.m.C(theoretically 

d x d x d) observed couplings Jgem 13 Hz, Jvic oa. 7 and 8. Hz) [Fig. 

6.0.6(A)]. The assignments were confirmed by a sequence of

*These signals have a line width of 2 Hs.
**The H-2' protons are not individually assigned.
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I

Fig. 6.D.6 Th« remaining resonances from H-4ax an
i.i u ,t,r ‘••coupling the protons of: 
<B> H-4aq, (C) H-5ax, (D) H-5#q and (I

H-I'eq signals 

H-2\
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decoupling experiments at H-4eq, H-5ax, H-5eq, and H-2'. Irradiation 

at 6 3.04 p.p.m. (H-4eq) resolved the signal of H-4ax into a double 

doublet. The signal of H-I'eq was unaffected [Fig. 6.D.6(B)].

Irradiation at 6 1.67 p.p.m. (H-5ax) also resolved the signal of 

H-4ax into a broad doublet due to the removal of Jvic 12 Hz 

[Fig. 6.D. 6(C)]. Decoupling the H-5eq from H-4ax by irradiation at 

6 1.52 p.p.m. showed the collapse of the signal of H-4ax into a triplet, 

which was still overlapping with the remnant of H-I'eq [N.B. upon 

irradiation at H-5eq the protons at C-2' were also affected; this led 

to appreciable decoupling between H-2' and H-I'eq] [Fig. 6.0.6(D)].

Decoupling of H-2' from H-l'eq collapsed the signal from the proposed 

dxdxdinto a doublet with a strong Jgem coupling (13 Hz). Each peak 

of this doublet was overlapping with two peaks from the triple doublet of 

H-4ax [Fig. 6.0.6(E)].

The above assignments were further supported by simulation of 

the overlapping H-4ax, H-I'eq aignals using the Bruker WH-400 computer 

('Panic' Progranme). The parameters measured from the spectrum were 

fed to the computer and were iterated. The simulated signals* for 

H-4ax and H-I'eq [Fig. 6.0.7(A)] were mostly similar to the observed signals

(A) simulated (B) observed.

[Fig. 6.0.7(B)], and gave the following coupling constantsi

*These signals have a line width of 1.5 Hs.
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H-I'eq-H-I'ax, J 12.1 Hz 

H-I'eq-H-Z*, J 6.5 Hz 

H-I'eq-H-?*, J 8.2 Hz 

H-4ax-H-4eq, J 12.0 Hz 

H-4ax-H-5eq, J 3.6 Hz 

H-4ax-H-5ax, J 11.4 Hz 

« (H-4ax) - 6 (H-I'eq) - 7.5 Hz 

Finally, ic is worth mentioning that a number of polyamine

conjugates play a key biochemical role and possess interesting

24
pharmacological properties . One of these conjugates is trimethyl-

25
ated spermidine . This conjugate was synthesised recently from the

parent spermidine via a hexahydropyrimidine derivative which served,

in the synthesis, as a protecting group and as a latent N-methyl

function. Hexahydropyrimidine derivatives of spermidine were also used

26
in the syntheses of a variety of plant alkaloids . The importance

of the hexahydropyrimidine ring in these syntheses is that it brings

about the differentiation of the two primary amino groupa of spermidine

by the reversible blocking of one amino group (usually the amino group

of the aminopropyl chain). This leaves the other primary amino

group of spermidine free for reactions, without any interference from

the blocked amino group. [N.B. The two primary amino groups in free

27 28
spermidine have similar basicity and reactivity . This feature is

characteristic of the general problem facing researchers on the

29
metabolically important polyamines .]

*The two H-21 protons are not individually assigned.
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6.E EXPERIMENTAL

6.E.I Preparation of model compound«

1. 2-Methylhex«hydropyriaidine (̂ 5)

A pre-cooled solution of ethanal (9.7 g, 2.2 x 10 1 mol)
*

in water (30 cm ) was reacted, by dropwise addition, with

-1 3
I,3-diaminopropane (15.4 g, 2 x 10 mol) in water (50 cm ), whilst 

the temperature was kept at 5-IO°C (ice bath). The reaction mixture 

was sealed and magnetically stirred overnight. A slightly yellow 

product was brought out of the solution by the action of solid 

sodium hydroxide and cooling. The product was separated and dried.

Distillation of the crude product gave a colourless oil, b.p. I39-142°C 

(652 yield). The *H n.m.r. spectrum [Fig. 6.0.1(A)] showed resonances 

at (CDC13, TMS) 6 1.16 (3 H, d, J 6 Ha, -CH-CH3), 1.48 (2 H, m, H-5),

2.85 (2 H, m, H-4ax and H-6ax), 3.15 (2 H, d ( with additional 

fine structure, Jgem 14 Ha, H-4eq and H-6eq) and 3.64 (I H, q, J 6 Ha,

H-2) p.p.m.

2. Preparation of I,3-diacetyl-2-methylhexahydropyrimidine (^7)

- 2
2-Methylhexahydropyrimidine (I g, 10 mol) was dissolved

<1
in water (5 cnr). The aqueous solution was added at I0°C to a

stirring solution of sodium hydroxide (2.4 g/12 cm ). To the

-2
resulting solution, acetic anhydride (6.12 g, 6 x 10 mol) was 

added over I h. The reaction mixture was stirred for a further 2 h.

Evaporation gave a viscous yellow residue which was taken into

dichloromethane. Decolourising charcoal was added and the mixture

was stirred at room temperature for 30 minutes. The charcoal was

removed by filtration through Celite, followed by the removal of dichlorometham



Co give crude product (^7) as an oil. Crystallisation was achieved 

by dissolving the product in the minimum volume of dichloromethane 

(5 cm3), followed by addition of ether (120 cm3). Cooling at -20°C 

for 3 h precipitated clean white crystals. The precipitate was 

filtered off and washed with ether (20 ctn ). Drying at 40°C gave 

pure product (^7) (1.35 g, 73Z), m.p. 85°C.

C.H.N. combustion analysis, found: C, 58.81; H, 8.71;

N, 15.31, CgHjgNjOj requires: C, 58.67; H, 8.75; N, 15.21.

The e.i.m.s. analysis showed peaks at m/z 284 (M)\ (IX),

283 (M-l)\ (5Z), and 269 (M-I5)+, (I00Z).

The 220Mfe *H n.m.r. spectrum [Fig. 6.C.1(B)] showed 

resonances at (CDC13, TMS) 6 1.45 (3 H, d, J 6 Hz, -CH-CKj), 1.69 

(2 H, m, H-5), 2.08 (3 H, s, N-3-COCHj), 2.21 (3 H, s, N-l-C0CH3),

2.97 (1 H, t x d, Jgem 15 Hz, Jvic 3 and 15 Hz, H-6ax), 3.49 (1 H, 

t x d, Jgem 15 Hz, Jvic 3 and 15 Hz, H-4ax), 3.74 (I H, 

d x t, Jgem 15 Hz, Jvic 2.5 and 2.5 Hz, H-4eq), 4.59 (I H, dxt 

Jgem 15 Hz, Jvic 2.5 and 2.5 Hz, H-6eq) and 6.65 (1 H, q, J 6 Hz, H-2)

p • p • m.

The i.r. spectral analysis showed the presence of a strong 

and broad peak which was assigned to the acetyl groups at v__
u la X

1630 cm"1.

3. Preparation of I,2-dimethylhexahydropyrimidine (^8)
-2

A pre-cooled solution of ethanal (4.85 g, II x 10 mol) in

water (15 cm3), was reacted by dropwise addition with N-methyl-l,3-

“2 3
diaminopropane (8.8 g, 10 mol) solution in water (20 cm ), whilst 

the temperature was kept at 5-10°C (ice-bath). The reaction mixture 

was sealed and magnetically stirred overnight. The crude product 

was brought out of the solution by the action of an excess of
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sodium hydroxide and cooling. The crude product (^8) was separated 

and dried. Distillation of crude (^8) gave a pure product, b.p. 35°C 

at 12 mnHg (6.85 g, 60Z), as a colourless oil. The 400 MHz *H n.m.r. 

spectrum [Fig. 6.0.2(A)] showed resonances at (CDCl^, TMS) i 1.21 

(3 H, d, J 6Hz, -CH-CH3), 1.53 (I H,d.xm Jgem 13 Hz, H-5eq), 1.74 

(I H, q x t, Jgem 13 Hz, Jvic 3, 3, 13 and 13 Hz, H-5ax), 2.21 

(3 H, s, N-I-CH3), 2.25 (I H, t x d, Jgem 13 Hz, Jvic 3 and 13 Hz, 

H-6ax), 2.65 (I H, t x d, Jgem 13 Hz, Jvic 3 and 13 Hz, H-4ax),

2.88 (I H, q, J 6 Hz, H-2), 2.95 (I H, d x m, Jgem 13 Hz,

H-6eq) and 3.06 (I H, d x m, Jgem 13 Hz, H-4eq) p.p.m. The 

e.i.m.s. analysis of compound (^6) showed peaks at m/z M+

(5%), (M-l)* (27Z), (M-2) 1 (88Z) and M-I5)+ (100Z).

4. Preparation of 2-benzylhexahydropyrimidine (^0)

-2
A pre-cooled solution of phenylacetaldehyde (12 g, 10 mol)

in water (20 cm ) was reacted with a solution of I,3-diaminopropane

_2 3
(7.1 g, 9.6 x 10 mol) in water (30 cm ) by dropwise addition to the 

latter whilst the temperature of the mixture was kept at 5-10°C (ice-bath). 

The reaction flask was sealed and magnetically stirred overnight. The 

crude product was brought out of the solution by the action of an 

excess of sodium hydroxide. Separation of the crude product was 

followed by drying and distillation at 80°C at 2 x 10 2 mmHg to 

give pure compound (^0) (12 g, 73Z). Its 220 MHz *H n.m.r. spectrum 

[Fig. 6.0.3(A)] showed resonances at (CDC13, TMS) 6 1.96 (2 H, m,

H-5), 2.26 (2 H, d, J 6 Hz, -CHjPh), 2.27 (2 H, m, H-4ax and H-6ax),

3.15 (2 H, d, with additional fine splitting, Jgem 13.6 Hz,

H-4eq and H-6eq), 3.7 (I H, t,J 6 Hz, H-2) and 7.25 (5 H, m, phenyl 

protons) p.p.m.
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5. Prpearation of I,3-diacetyl-2-benzylhcxahydropyrimidine (^1)

- 3
2-Benzylhexahydropyrimidine (1*3 g, 7.4 x 10 mol) was 

3
dissolved in water (5 cm ). To the aqueous solution was added a sodium

hydroxide solution (3 g, 12 os'*) with cooling at I0°C. Acetic

-2
anhydride (3.5 g, 3.5 x 10 mol) was added dropwise over I h. The 

reaction was brought to room temperature and left stirring overnight. 

Evaporation of the mixture gave a crude residue as an oil. The crude 

compound was extracted into dichloromethane (3 x 100 cm ). Decolourising 

charcoal was stirred with the organic solution for I h at room temperature. 

The solution was filtered through Celite, dried and evaporated to leave

a colourless oily residue. The compound was dissolved in dichloro-

3 3
methane (3 cm ) and to the resulting solution ether (30 cm ) was added.

The mixture was kept et -20°C overnight. The precipitated crystals

q
were collected, washed with ether (20 cm ) and dried, to give pure 

compound (^1) (1.01 g, 52Z), m.p. 113—115°C. The e.i.m.s. analysis 

for compound (^1) showed peaks at m/z M+ (5Z), (M-l)+ (3Z), (M-9I)+

(I00Z), (M-l33)* (97Z) and (M-175)* (92Z). Its 220 MHz *H n.m.r. 

spectrum [Fig. 6.0.3(B)] showed resonances at (CDCl^, TMS) 6 1.64 

(3 H, s, N-3-COCHj), 1.78 (2 H, m, C-5), 2.1 (3 H, s, N-l-COCHj),

2.88 (I H, d x d, Jgem 12 Hz, Jvic 3.6 Hz, H-I'B), 3.12

(I H, t x dpJgem 12 Hz, Jvic 3.4 and 12 Hz, H-6ax), 3.32 (I H,d x d,

Jgem 12 Hz, Jvic 14 Hz, H-I'A), 3.57 (I H, t x d , Jgem 12 Hz,

Jvic 3.4 and 12 Hz, H-4ax), 3.79 (I H, d x t, Jgem/2 Hz, Jvic 3.4 and 

3.4Hz, H-4eq), 4.7 (I H, d x t, Jgem 12 Hz, H-6eq),

6.57 (I H, d x d, Jvic 3.6 and 14 Hz, H-2) and 7.25 

(5 H, m, phenyl protons) p.p.m.

The CHN combustion analysis for compound (41)i- 

found: C, 69.19; H, 7.74; N, 10.74. c |5H20N2°2 re9u^re,!

C, 69.20; H, 7.74$ N, 10.76.
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The i.r. spectral analysis for compound (^1) showed the

presence of two strong peaks corresponding to the acetyl groups at

v 1639 and 1645 cm *. 
max

6.E.2 Preparation of hexahydropyrimidines from spermidine

I. Preparation of l-(4'-aminobutyl)-2-methylhexahydropyrimidine
[hexahydropyrimidine derivative of spermidine (^3)j

The hexahydropyrimidine derivative of spermidine (^3) was

- 3
prepared by the dropwise addition of ethanal (0.1 g, 2.2 x 10 mol)

- 3
into a stirring solution of spermidine (0.145 g, I x 10 mol) in 

chloroform (5 cm'*), with cooling at 5-IO°C. The reaction was stirred 

for 5 minutes. The solvent was removed under reduced pressure to give 

oily compound (^). The product was checked by *H n.m.r. analysis 

and found to be pure. Its *H n.m.r. spectrum showed signals at 

(CDClj, TMS) 6 1.22 (3 H, d, -CH-CHj), 1.35-165 (5 H, complex multiplets, 

H-5eq, H-2' and H-3'), 1.67 (I H, q x t, H-5ax), 2.28 (I H, d x d x d

H-I'ax), 2.33 (I H, t x d, H-6ax), 2.63 (1 H, m, H-I'eq), 2.66 

(3 H, t x d, H-4ax), 2.67 (2 H, m, H-4'), 3.04 (2 H, d, with 

additional splitting, H-4eq and H-6eq) and 3.20 (t H, q, H-2) p.p.m.

The analysis of the signals in the spectrum of compound CJ£) is similar

to the analysis of the signals for compound (^4) (see below).

The c.i. mass spectrometric analysis of compound (^3) showed 

a major peak for the ion (M+l)* at m/z 172. The e.i. mass spectrometric 

analysis showed a peak for the ion (M-15)* at m/z 156. An exact mass

measurement for this ion gave a value of 156.1494 (CgH(gNj, error 

-3.8 p.p.m.) [of. Fig. 6.D. 1(A) and (B)1.
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2. Preparation of I-[41-(N-ethylidene)aminobutyl]-2-methyl-
hexahydropyrimidine [Imine-hexahydropyrimidine derivative 
of spermidine (^4)]

The imine-hexahydropyrimidine derivative of spermidine
_3

(^4) was prepared by dropwise addition of ethanal (0.2 g, 4.5 x 10 mol)
_3

into a stirring solution of spermidine (0.29 g , 2 x 10 mol) in 

chloroform (6 cm ), with cooling at 5-10 C. The reaction was magnetically 

stirred and monitored by *H n.m.r. analysis. The cyclisation of spermidine 

and imine formation at the terminal nitrogen was complete within 5 minutes. 

The solvent was evaporated to dryness leaving a colourless oily residue of 

(3>4) (0.38 g, 97Z),pure by 400 MHz *H n.m.r. analysis, which showed 

(Fig. 6.D.3) resonances (CDClj, TMS) at 61.22 (3 H, d, J 6 Hz, CH-CHj), 

1.35-1.65 (5 H, complex multiplets, H-5eq, H-2' and H-3'), 1.67 (I H, 

q x t, Jgem 12 Hz, Jvic 4, 4, 12 and 12 Hz, H-5ax), 1.95 (3 H, d,

J 4.5 Hz, N-CHCH3), 2.28 (I H, dxdxd, Jgem 13 Hz, Jvic 6 and 8.5 Hz, H-I'ax), 

2.33 (I H, t x d , Jgem 12 Hz, Jvic 3 and 12 Hz, H-6ax), 2.63 (I H, m,

Jgem 13 Hz, Jvic oa. 7 and 8 Hz, H-l'eq), 2.66 (I H, t x d, Jgem oa. 13 Hz,

Jvic 3 and oa. 12 Hz, H-4ax), 3.04 (2 H, d , Jgem 12 Hz with additional fine 

splitting, H-4eq and H-6eq), 3.20 (I H, q, J 5.8 Hz, H-2), 3.36 (2 H, t,

J 6.9 Hz, H-4') and 7.6 (I H, q, J 4.5 Hz -N-CHMe) p.p.m.

The above assignments were derived by a sequence of decoupling 

experiments of the protons at C-4, C-5, 0 6  and O l '. The parameters 

presented above were either obtained directly from the spectrum, or 

from the spectra of the decoupling experiments (see above 6.D).

The assignment of signals for H-6ax, H-I'ax and H-4ax,

H-l'eq were further supported by simulation of their signals on the 

Bruker WH-400 computer ('Panic' Programme). The observed parameters 

(measured above) were fed to the computer and were iterated. The 

simulated signals were similar to the observed ones \of. Fig. 6.D.5 

and Fig. 6.D.7).
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The c.i. mass spectrometric analysis of compound showed

a major peak for the ion (M+l)+ at m/z 198. The e.i. mass spectrometric 

analysis showed a peak for the ion (M-I5)+ at m/z 182. An exact mass 

measurement for this ion gave a value of 182.1657 (c|gH20N3' error 

0 p.p.m.) [of. Fig. 6.0.2(A) and (B)L
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CHAPTER 7

STEREOCHEMISTRY OF SPERMIDINE SYNTHASE

7.A INTRODUCTION

The enzyme spermidine synthase catalyses the formation of the 

polyamine spermidine [N-(3-aminopropyl)-l,4-diaminobutanel from putrescine 

(I,4-diaminobutane) and decarboxylated adenosylmethionine. The primary 

function of spermidine synthase is to assist the transfer of the 

aminopropyl group of decarboxylated adenosylmethionine to one of the 

nitrogen atoms of I,4-diaminobutane. In this Chapter we will study 

the cryptic stereochemistry of this reaction, at the reacting methylene 

group of the aminopropyl unit of the decarboxylated adenosylmethionine.

In principle, the stereochemistry of spermidine synthase

2
could be elucidated by converting [4- H]methionine of known configuration 

2
at C-4 into [I'- Hlspermidine by cells of E. ooli. However, we could

not conceive a simple method for establishing the absolute stereochemistry

of such a labelled spermidine. Our approach has been to use E. ooli

to convert methionine labelled with deuterium at both C-3 and C-4 and

of known relative configuration (see Chapter 4) into spermidine

labelled at C-l' and C-2' of its aminopropyl group.

A culture of E. ooli was fed (2R,3R,4R), (2S.3R.4R),

(2R,3S,4S), and (2S,3S,4S)-[3,4-2H2]mathionine (abbreviated as

rao. (3R,4R)-[3,4-2H2]methionine). Another culture was fed (2R,3R,4S),

(2S,3R,4S), (2R,3S,4R), and (2S,3S,4R)-[3,4-2H2]methionine (abbreviated
2

as rao. (3R,4S)-[3,4- HjDmethionine). Dideuterated spermidines were 

isolated either via their PATC-dsrivstive (of. Chapter 3) or by direct
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purification on a basic ion exchange column. The free dideuterated 

spermidines were reacted with i 2 mol equiv. of ethanal to give 

imine-hexahydropyrimidines. These derivatives were subjected to 

400 MHz *H n.m.r. analysis and decoupling experiments. The imine- 

hexahydropyrimidine from unlabelled spermidine showed a very 

complicated n.m.r. spectrum. Although all signals in the spectrum 

were assigned and the assignments were supported by a series of 

decoupling experiments (of. Chapter 6), it was difficult to determine 

the relative configuration of deuteriums in the dideuterated imine- 

hexahydropyrimidine by comparison with the spectrum of the unlabelled 

derivative because of the problem of signal overlap.

These complexities necessitated the synthesis of a reference 

sample for one of the dideuterated imine-hexahydropyrimidines.

Synthetic possibilities were explored with unlabelled materials. 

Initially, 4-acetamidobutylaziridine was prepared, but its aziridine

ring could not be opened. We eventually achieved an efficient

2
synthesis of spermidine via 2-trifluoromethyl-A -oxazoline. This

method was then adapted to prepare a dideuterated spermidine from

2
(E)-[I,2— Hjlethene. The dideuterated samples of the imine-hexahydro- 

pyramidines originating from the spermidine of the E. ooli cells were 

then compared with the sample of dideuterated imine-hexahydropyrimidine 

generated from the synthetic dideuterated spermidine.

7.B SOME CHEMICAL ASPECTS OF AZIRIDINES

Asiridines have attracted considerable attention in recent

years because of their fundamental importance as examplas of highly-

strained and reactive rings. As a result of this interest, the

I 2 3
chemistry of asiridines have been the subject of many reviews ' * .
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Haloamines were used in Che original preparation of

. . .  . 4  .
azindines by Gabriel in 1888. He treated 2-bromoethylamine with

potassium hydroxide and he obtained a product which he formulated

as vinylamine. Later, Marckwald5 pointed out the aziridine

structure as being more likely for the product of this reaction.

The subsequent observations of Gabriel were, thus, later reinterpreted^

as ring-opening reactions characteristic of the strained three-

member ed ring.

The dimensions of the three-membered ring in aziridine,

7 8as determined by microwave spectroscopy * , electron diffraction 

9 , 1 0
spectroscopy and by x-ray diffraction , showed that the C-C 

bondlength equals the C-N bondlength (ca. 1.49 X). The internal 

bond angles are expected to be close to 60° (compared with 111.3° 

for the C-N-C bond angle in dimethylamine). The resultant ring 

strain is reflected in the infra-red spectrum11 as an increase in the 

C-H vibrational frequency and a decrease in the N-H vibrational 

frequency.

The fact that asiridine is a relatively weak base has been

discussed in terms of pseudoaromaticity or electron delocalisation

12
in the three-membered ring . A variety of alkyl asiridines have 

pKgb in the range 7.93-9.47, whereas for asmonia it is 9.5 and for 

diethylaaine 10.7*'*.

The preparation of asiridina derivatives is most frequently 

accomplished in a two-step synthesis from a suitably substituted 

2-aminoalcohol. The reaction may be carried out via the 2-haloamina, 

which is treated with alkali to give the aiiridine (Gabriel synthesis 

Eqn. 7.1). Esterification of the 2-aminoalcohol by treatment with 

sulphuric acid, followed by base-induced cyclisation forms the basis 

of the Wanker route1* (Eqn. 7.2). In both the Gabriel and Wenkar
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reactions, the formation of piperazine is an important side reaction1*. 

The Wenker reaction offers some advantages in ease of

handling of the reagents. A major drawback of this reaction is 

dehydration, which occurs when the hydroxyl group is attached to

ring closures occur with inversion of configuration at the substituted 

carbon atom. The nucleophilic displacement of the halogen or 

haloester group by nitrogen follows an SN2 pathway and ring closure 

is therefore stereospecific. An optically active (2R,3R)-3-amino-2- 

butanol gave a sis-2,3-dimethylaziridine (Eqn. 7.3) whereas an

optically active trana-2,3-dimethylaziridine was obtained from an 

optically active(2S,3R)-3-amino-2-butanol (Eqn. 7.6). It is also

well established that the esterification of the hydroxyl group in

good leaving group at the amino-function, to facilitate the intra-

a tertiary carbon1*.

It is well established17 that both the Gabriel and Wenker

H

(Eqn. 7.A)

the Wenker reaction occurs with retention of configuration17.

Many methods for the preparation of aziridines are published

18
in the literature . One of these methods utilises the formation of 

I a
a B-carbanion species. This method requires the presence of a
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molecular displacement leading to the cyclic aziridine. Another 

useful method for the preparation of aziridines is by the metal

reaction, compared to, e.g. piperazines, by cleavage of C-N, and

occasionally C-C bonds. Ring-opening in aziridines is an acid-

catalysed process which proceeds via an SN2 pathway. There may be

an Ŝ l contribution when alkyl or other suitable substituents are

in a position to stabilise a developing carbenium ion. The hydrolysis

25
of such carbenium ions gives the expected amino-tertiary alcohol . 

However, the description of ring-opening in terms of extreme S„l 

or Sn2 paths does not adequately explain the proportions of the two 

possible products from ring-opening of unsymmetrically substituted 

aziridines. It is usually easy to decide which of the two ring-carbons 

is more S^l-susceptible (e.g. more highly alkylated) and which is the 

more SN2-susceptible (less substituted). Changes in solvent polarity 

or nucleophilicity of the attacking group may be expected to influence 

the degree of bond-breaking and bondmaking at the transition state. 

Using a strong nucleophile (NCS ),SN2 substitution occurs at the 

primary carbon in the 2,2-dimethylaziridine {of. equation 7.7).

Using a relatively weaker nucleophile (Cl ), the bond-breaking is

20
hydride reduction of some oximes (Eqn. 7.5). The a-chlorination 

21 22 23
of nitriles or imines ' followed by metal reduction also gives 

a substituted aziridine ring (Eqn. 7.6).

* Cl

(Eqn. 7.6)

Cl

to oa. 113 kJ mol

The strain present in the ring system of aziridines amounts 

-124
I kJ mol . This results in a much easier ring-opening
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M*

(Eqn. 7.7)

presumably ahead of bond-making and the most I-susceptible carbon 

is attacked (of. Eqn. 7.8).

x>
Much evidence, provided by kinetic measurements, supports the 

view that the ring-opening proceeds usually via an SN2-pathway with the

are usually reactive towards nucleophiles and they are only isolable 

using weakly nucleophilic solvents in the presence of a suitable counter-ion 

(e.g. perchlorate).

The ring-opening of aziridines with water or halogen acids 

is not of great preparative significance because the 2-aminoalcohols 

or 2-haloamines are often the starting materials for aziridine 

syntheses. Ring-opening with amines to give a 1,2-diamine, and with 

other nucleophiles, is of more value.

Reactions of aziridines involving ring-retention are well 

19
described . N-Alkylation of secondary aziridines with alkyl halides 

requires the presence of a base, such as potassium carbonate, to 

remove quickly any acid generated, which would otherwise cause acid- 

catalysed ring-opening. Nucleophilic addition of aziridine to the 

carbonyl function of ketones and aldehydes and to a,6-unsaturated 

nitriles (Eqn. 7.9) or carbonyl compounds occurs smoothly in the 

absence of acid or base. Acylation of aziridines may be achieved 

with the appropriate acylating agents in the presence of a base.

26
aziridinium ion as an intermediate in this process . The ease of

rupture of the aziridine ring is really the ease of ring-opening in

27
the postulated quaternary anmonium intermediate . Aziridinium salts



159

£ >  ♦ = /  --- - £ > - T CN <Eqn. 7-9>

The aziridine ring ioelf is opened by nucleophiles. Such

reactions are normally extremely slow. When the nitrogen bears an

acyl group, which can bring about the stabilisation of the developing

negative change, the reaction may proceed more readily.

Although many aziridines are quite stable and may be stored

for a long time in the pure state or in the presence of alkali, contact

with acid or alkylating agents frequently brings about rapid

polymerisation of the aziridine. This acid-catalysed polymerisation

may be explained as a nucleophilic attack on an aziridinium ion by 

28
a molecule of aziridine .

7.C SOME CHEMICAL ASPECTS OF A2-OXAZOLINES

29
The first alkyloxazoline was obtained by Gabriel , who

heated 2-bromoethylamine hydrobromide with acetic anhydride and

sodium acetate and obtained a 3Z yeield of 2-methyloxazoline. Usually

oxazolines can be obtained from N-acyl derivatives of 2-aminoalcohols 

30
in many ways , e.g. the action of p-toluenesulphonyl chloride on

N-aroyl derivatives of 2-amino-2-methyl-l-propanol in pyridine gives

31
an oxazoline in good yield .

2
Carboxylic acids are readily converted into A -oxazolines by

32 33
treatment with 2-aminoethanol or with 2,2-dimethylaziridine *

(Eqn. 7.10). The acid-catalysed reaction of oxiranes with nitriles

RCMjCÔ » P « HCHjCON

« - < ?
(Eqn. 7.10)

2 3A 35
provides an excellent route for the synthesis of A -oxazolines ' 

(Scheme 7.C.I).
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(Scheme 7.C.I)

36
The significant observation has been made that

DL-N-benzoylallothreonine ethyl ester with thionyl chloride gives an 

oxazoline which can be hydrolysed by acid to DL-threonine. Inversion 

at one of the chiral centres is thus involved, and the fact that the 

O-toluenesulphonate of benzoylallothreonine ester gives exactly the 

same oxazoline on treatment with alcoholic potassium acetate, makes it 

probable that inversion at the 6-carbon atom occurs when the ring is 

formed. The correctness of this general mechanism is indicated by 

the behaviour of N-benzoyl-eie- and ¿rans-2-aminocyclohexanol with 

thionyl chloride. The trans isomer gave the ots-oxazoline (Eqn. 7.11).

With the ota-isomer, where the inversion mechanism is not applicable, 

replacement of the hydroxide by the chloride was the only reaction

Oxazolines are much more resistant to alkalis than to acids. 

Acid-catalysed ring-opening of oxazolines (e.g. Eqn. 7.12) occurs

of an oxasolina by an Sg2 attack at the C-S position has not been

(Eqn. 7.11)

HCONHCH/TMjCI (Eqn. 7.12)
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NaCĤ  4-9 K

C H 3CONH^x ^ ' HN̂ / n CN
50

NO UACTION

Sehen« 7.D.I Attempted synthesia of spermidine vta 
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detailed in the literature. Although, oxazolines are conaidered 

more stable to bases than acids, we found that the oxazoline ring

carbon by nucleophilic attack with cyanide ion (in DMSO, at roan 

temperature). The product of this ring-opening was N-trifluoro- 

acetyl-3-aminopropionitrile.

The synthesis of stereospecifically deuterium-labelled 

spermidine was attempted by examining what appeared to be an easy

(^3). Attempted reaction between ethylene oxide and either compound 

(̂ 3) or its lithium salt [MeCONHiCHjJ^NLiTs] failed. It was hoped

yield by condensing I mol equiv. of ethylene oxide with 3 mol equiv. 

of compound (^2) in propan-l-ol at 85°C. Distillation of the 

reaction mixture gave pure N-(4-acetamidobutyl)-2-aminoethanol (̂ 4) 

in 54Z yield (based on ethylene oxide). Tosylation of compound (^4) 

gave N-(4-acetamidobutyl)-2-aminoethanol N.O-btfl-p-toluencsulphonate 

(^5). Displacement of the O-tosyl group in (^5) by a cyano-group 

was tried using sodium cyanide in HMPA. The product recovered from 

this reaction was N-(4-acetamidobutyl)-p-tolucnesulphonamide (^3),

h2ch2oh
7.D ATTEMPTED SYNTHESIS OF (I ,S,2'S)/(I 'R^'W-Cl ' ,2'-2H?]-

SPERMIDINE

02Et

)4NCH2CH2OH route (Scheme 7.D.I). The synthesis of N-acetamido-l,4-diaminobutane

38
(̂ 2) was achieved by modification of a literature method. Compound 

39
(̂ 2) was tosylated to give N-(4-acetamidobutyl)-p-toluenesulphonamide

COCF3

NCH2CH2OTs
COCF3

that tosylation would enable clean N-hydroxyethylation to be 

achieved, avoiding the disubstitution expected if compound (^2) was 

reacted with ethylene oxide.H
Finally, we found that addition of one 2-hydroxyethyl group 

to the nitrogen atom of compound (^2) can be achieved in acceptable



rather than the expected nitrile. Presumably, formation of the 

nitrile took place, but under the reaction conditions this underwent 

a base-catalysed elimination to give (^) and acrylonitrile.

In another approach, compound (̂ 4) was reacted with ethyl 

trifluoroacetate in acetonitrile to give N-(4-acetamidobutyl)-N- 

trifluoroacetyl-2-aminoethanol (^6). Direct displacement of the 

hydroxyl group in (^6) by a cyano-function was tried using the 

system tri-n-butylphosphine, potassium cyanide, !8-crown-6 and 

carbon tetrachloride in acetonitrile*®. However, the product 

isolated from this reaction was N-(4-acetamidobutyl)-N-trifluoro- 

acetyl-l-amino-2-chloroethane, showing that chloride rather than 

cyano displaced the activated hydroxyl group of compound (^6).

Compound (^6) was converted into its tosylate: N-(4-aceta- 

midobutyl)-N-trif luoroacetyl-2-aminoethanol O-p-toluenesulphonate 

(^7). The attempted displacement of the O-tosyl by a cyano function 

using sodium cyanide in methanol, resulted in the formation of 

cyclic products (see below). Tresting compound (^7) with sodium 

hydroxide, rather than sodium cyanide, in methanol, gave a similar 

result, but the reaction was cleaner. The crude product was 

examined by *H n.m.r. spectral analysis and showed the formation 

of two cyclic systems, namely the oxazolidine (^8) and aziridine 

(4̂ 9) in a 1:1 ratio (Scheme 7.D.I). The 220 MHz *H n.m.r. spectrum 

(CD^OD, TMS) showed resonances for the protons of the aziridine 

ring as an AA'BB' system at 6 1.27 (2 H, s with additional fine 

splittings, Ha and H^i) and 1.73 (2 H, s with additional fine 

splittings, Hb and Hgi) p.p.m. The protons of the N-(4-acetamido- 

butyl) group showed resonances at 6 1.55 (4 H, m, csntral methylenes), 

2.82 (2 H, t, -CH2N) and 3.19 (2 H, q, CHjCONHCHj-) p.p.m. The 

methyl of the acetyl group showed a signal at 6 1.92 (3 H, s) p.p.m.



The signals in Che *H n.m.r. spectrum corresponding Co the oxazolidine 

adduct were mostly clear and separated from the signals of the 

aziridine adduct, except for partial overlapping between the signals 

of the protons of the alkyl chain in both adducts. Signals at 

6 1.55 p.p.m. were assigned to the central methylenes in the chain of 

the N-(4-acetamidobutyl) group. These signals were overlapping with 

the corresponding methylenes from the aziridine. A signal at 6 3.19 p.p. 

was assigned to (-CONHCl^-) and (-CHjCHjN) protons. These signals 

were overlapping with those of the methylene adjacent to the 

acetamido group in the aziridine. Signals of the methylenes in the 

oxazolidine ring showed an ABXY system at 6 2.25 (I H, t, -N-CHA),

2.41 (I H, t, -N-CHg), 4.03 (I H, t, -0-CHx) and 4.18 (I H, t, -0-CHy) 

p.p.m. The methyl of the acetyl group in the oxazolidine showed a 

signal overlapping with the corresponding methyl in the aziridine 

adduct.

No attempts were made to separate the mixture of the 

aziridine and oxazolidine, and the structural assignment for the 

latter compound is tentative. Sole production of the aziridine (^) 

from compound (^7) was achieved when the reaction was carried out 

using potassium hplradde in benzene. The ’h n.m.r. spectral

6 S.O 1.0 p.p.m.
Fig. 7.D. I The 220 HHs 'h n.m.r. spectrum (CDC1., TMS) of pure 

asiridine (^9).



showed results similar to the one obtained above with small changes 

in the chemical shifts due to the solvent effect (N.B. The 'h n.m.r. 

spectrum of the aziridine and oxazolidine mixture was measured in

cd3o d.)

Nucleophilic (S^2) attack by cyanide at one of the methylenes 

of the aziridine (^>) would be expected to give the desired compound, 

N-(4-acetamidobutyl)-N-3-aminopropionitrile (^)). However, treatment 

of the aziridine (^¿0 with sodium cyanide, in dichloromethane or DMSO, 

in the presence of aqueous acid or Lewis acid failed to produce 

compound ($¿0. Polymerisation of (^) appeared to be the dominant 

process under these reaction conditions.

Although the synthesis of spermidine via an aziridine was 

unsuccessful, the chemistry described provides a convenient method 

for the synthesis of aziridine derivatives. This was demonstrated by 

the synthesis of 1-methylaziridine, l-propylaziridine, 2-methylaziridine 

and l-azabicyclo[3,l,0]hexane from 0-tosylated N-trifluoroacetylated 

precursors.

7.E SYNTHESIS OF (ItS,2,S)/(1,R.2,R)-[11,2'-^H^]SPERMIDINE

The synthesis of s stereospacifically labelled spermidine wss

more difficult than we anticipated {of. previous section). This

synthesis was finally achieved by coupling N-bansyloxycarbonyl-4-

aminobutyric acid (̂ 8) with the amino-function of (2R,3S)/(2S,3R)- 
2

[2,3- H2]3-aminopropionitrile ($J), followed by hydroganolysisand 

reduction to give the desired spermidine.

The synthesis of the labelled 3-aminopropionitrila (̂ 7) 

was achieved, after defining the synthetic route with unlaballed 

materials, by starting from (E)-[I,2-2H2]ethene. This wss prepared
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2 2 
from the reduction of [ H^acetylene (of. Chapter A). (E)-Cl,2- Hj]-

Al
ethene was reacted with hypochloroua acid [prepared from chlorine

oxide42 (C120) as described in Chapter 2] to give (IR,2S)/(IS,2R)-

[I,2- H2]2-chloroethanol (Scheme 7.E.I). The reaction of hypochlorous

acid with an olefinic double bond is a typical electrophilic 

A3 AA
anti-addition ’ . The addition of the hypochlorous acid to

2
(E)-[l,2- H2]ethene would generate the cyclic chloronium intermediate. 

Nucleophilic attack by hydroxide from the least hindered direction 

of the chloronium intermediate (Eqn. 7.13) would generate a mixture

(Eqn. 7.13)

of (ISt2R) and (IR,2S) isomers of the [1,2-2H2]chlorohydrin (!jj )* in 

1:1 ratio (Scheme 7.E.I). The *H n.m.r. spectrum of compound (51) 

showed resonances at 6 2.61, 3.63 and 3.83 p.p.m. (each is s, corresponding 

to IH, for -OH, -CHDOH and -CHDC1, respectively).

Compound (^1) was reacted with an excess of potassium 

hydroxide to generate by intramolecular SN2 displacement, (IS,2S)/

(IR,2R)—tI,2-2H2]ethylene oxide (N.B. full details for the reaction 

of 2-chloroethanol with potassium hydroxide and for the vacuum line 

technique used in this preparation is given in Ref. Al). The ethylene 

oxide was distilled (trap to trap) and reacted, in the vacuum line, 

with an excess of ammonia. This reaction is generally believed to 

proceed via an SN2 pathway to give (IR,2S)/(IS,2R)—C1,2-2H2]2-amino- 

ethanol ($2). Its 220 MHz *H n.m.r. spectrum showed signals at 

6 1.82 (I H.brs.OH), 2.82 (I H, s, NHjCHD-) and 3.58 (I H, s, -CH0H) p.p.m.

*The labelled compounds are differentiated from their corresponding 
unlabelled compounds by the letter (a) which follows the number 
of the latter.



168

The broadness in the signals of the H n.m.r. spectrum resulted from 

small H-D couplings.

The reaction of compound (̂ >2) with ethyl trifluoroacetate

2
in acetonitrile afforded pure (IR,2S)/(IS,2R)-N-trifluoroacetyltI,2- Hjl” 

2-aminoethanol ($3) in a 98Z yield. The 220 MHz *H n.m.r. spectrum 

of compound (̂ 3) showed resonances at 6 2.5 (I H.brs.OH), 3.5 (I H, s, 

-CHDNH) and 3.78 (I H, s, -CHDOH) p.p.m. Tosylation of the hydroxyl

group of compound (^3) afforded (IR,2S)/(IS,2R)-N-trifluoroacetyl- 

2
[1,2- Hj]2-aminoethanol O-p-toluenesulphonate (54) in 86Z yield. Its

*H n.m.r. spectrum showed signals at 6 3.65 and 4.15 p.p.m.(each

I H, s, -NHCHD- and -CHDOTs, respectively). The remaining signals in

the spectrum corresponded to resonances in the spectrum of N-trifluoro-

acetyl-2-aminoethanol O-p-toluenesulphonate (5^a).

Preparation of (4S,5S)/(4R,5R)-2-trifluoromethyl[4,5-2H2]A2-

oxazoline (55) was carried out by reacting compound ($>4) with potassium

hydroxide in a non-polar solvent (e.g. dichloromethane). The *H n.m.r.

spectrum of compound ($>5) was compared with the spectrum of 2-trifluoro- 

2
methyl-6 -oxazoline (5£a) (Fig. 7.E.I). The triplets of the methylenes

6 5.0 3.5 p.p.m. i 5.0 3.5 p. p .ffi.

Fig. 7.E.I The 220 MHs *H n.m.r. spectra (CDC1.,TMS) of labelled 
oxacoline ($5) and unlabelled oxasoline (5£a).
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10?

Fig. 7.E.2 The a.i.ia.a. analyaii of:

A - 2-Trifluoromcthyl-/^-oxazoline (5^a)

B - (4R,5R)MS,5S)-2-trifluoromethylU,5-2H2]A -oxaioline



1 7 0

in Che 2-trifluoromethyl-A oxazoline have lose Che scrong geminal

couplings and cherefore appear in Che labelled compound (^5) as

doubleCs aC 6 4.09 and 4.56 p .p .m . (H-4 and H-5, r e s p e c C iv e ly ) .

2
The e.i.m.s. analysis of 2-crifluoromethyl-A -oxazoline showed a

peak aC m/z 139 for Che parenC ion M* [Fig. 7.E.2(A)]. Compound (^5)

showed Cwo peaks for M* and (M+l)+ aC m/z 140 (I0Z) and 141 (90Z)

indicaCing Che absence of any undeuceraced species and Che presence

of oa. I0Z o f  mono-deuceraCed species [Fig. 7.E.2(B)].

The ring-opening of Che oxazoline (^5) was carried ouC by

nucleophilic accack of cyanide in DMSO at Che C-5 posición of Che

ring Co give (2S,3R)/(2R,3S)-N-trifluoroacetyl-[2,3-^H2]3-aminopropionitrile

(56). The oxazolines are considered Co be more scable Co bases Chan 

43acids . We found that che ring-opening of compound (^5) wich cyanide 

needs beCween 5-7 days for complecion at room temperature. Obviously,

Che electron-withdrawing trifluoromethyl group activates C-5 of 

compound (^5) to nucleophilic attack. The product of this ring­

opening, compound ($£), was difficult to separate from DMSO.

It was found to be more practical to proceed with the 

next stage of the synthesis without the purification of compound 

(3>6). The volume of the reaction mixture was reduced to a minimum 

by pumping (10 * mmHg/50°C). The residue of the reaction was then 

dissolved in a minimum volume of water. Lithium hydroxide was added

to hydrolyse the trifluoroacetyl group and affording (2R,3S)/(2S,3R)- 

2
[2,3- Hj^-aminopropionitrile ($J) which was isolated as its 

hydrochloride. The *H n.m.r. spectrum of the nitrile (^7) was 

consistent with the presence of deuterium atoms at C-2 and C-3.

The coupling between the nitrile ($J) and N-benzyloxy- 

carbonyl-4-aminobutyric acid (^8) was carried out in dichioromethane 

in the presence of DCCD to give (2S,3R)/(2R,3S)-(N-ben*y1oxycarhonyl-

2



1 7 0

in Che 2-trifluoromethyl-A oxazoline have lost Che acrong geminal

coupling* and cherefore appear in Che labelled compound ($£) aa

doublecs aC 6 4.09 and 4.56 p.p.m. (H-4 and H-5, reapeccively).

2
The e.i.m.a. analysis of 2-crifluoromethyl-A -oxacoline showed a 

peak aC m/z 139 for Che parenC ion M* [Fig. 7.E.2(A)]. Compound (^5) 

showed Cwo peaks for M* and (M+l)+ aC m/z 140 (10Z) and 141 (90Z) 

indicacing Che absence of any undeuceraced species and Che presence 

of oa. I0Z of mono-deuceraCed species [Fig. 7.E.2(B)].

The ring-opening of Che oxazoline (^5) was carried ouC by 

nucleophilic accack of cyanide in DMSO aC Che C-5 posidon of Che 

ring Co give (2S,3R)/(2R,3S)-N-crifluoroaceCyl-[2,3-^H2]3-aminopropionicrile

(56). The oxazolines are considered Co be more scable Co bases Chan

43
acids . We found ChaC Che ring-opening of compound (^5) wich cyanide 

needs becween 5-7 days for complecion at room CemperaCure. Obviously,

Che elecCron-vichdrawing crifluoromechyl group accivates C-5 of 

compound ($£) Co nucleophilic accack. The product of this ring­

opening, compound (j>6), was difficult to separate from DMSO.

It was found to be more practical Co proceed with Che 

next stage of Che synthesis without the purification of compound 

(5>6). The volume of Che reaction mixture was reduced to a minimum 

by pumping (10 * mmHg/50°C). The residue of the reaction was then 

dissolved in a minimum volume of water. Lithium hydroxide was added 

to hydrolyse Che trifluoroacetyl group and affording (2R,3S)/(2S,3R)- 

[2,3-2H2]3-aminopropionitrile ($7) which was isolated as its 

hydrochloride. The *H n.m.r. spectrum of the nitrile ($J) was 

consistent with the presence of deuterium atoms at C-2 and C-3.

The coupling between the nitrile ($J) and N-benzyloxy- 

carbonyl-4-aminobutyric acid ($£) was carried out in dichloromethane 

in the presence of DCCD to give (2S,3R)/(2R, 3S)-(N-benzyloxycarbonyl-

2
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A

B

jwlJ J u L
------- 1
1.5 p .p .m6 7.5

Fig. 7.E.3 Th« 220 MHz H n.m.r. (CDC1.,, TMS) of:

B -

(2S,3R)/(2R,3S)-(N-benzyloxycarbonylamino)- 
butyryl-f2,3-2H2l-3-aminopropionitrile (^9)
(N-benzyloxycarbonylamino)butyryl-3-aminopropionitrile

(S?-)
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Fig. 7.E.4 Tha c.l.m.a. analysis of:

A - (N-beniyloxycarbonylamino)butyry1-3-amino- 
propionitrilc (5£a)

B - (2S,3'R)/(2R,3S)-r2,3-2H2]-(H-ban«yloxycarbonyl
amino)butyryl-3-aminoprop ioni tri la (̂ 9)
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;ec

ino-

2 i I
amino)butyryl-[2,3- H2 ] 3 - aninopropionitrile (59). Its H n.m.r. 

spectrum [Fig. 7.E.3(A)] showed resonances at 6 2.6 and 3.45 p.p.m., 

each corresponding to one proton at C-2 and C-3, respectively,of 

the propionitrile unit of compound ($9) (-CONH^HDCHDCN). The 

remaining resonances were consistent with resonances for coispound 

(5£a) [Fig. 7.E.3(B)]. The c.i.m.s. analysis for a sample of the 

compound (5£a) showed a peak at m/z 290 for the ion (M+l)* [Fig.

7.E.4(A)], whereas the compound (^9) showed peaks at m/z 291 and 

292 for the ion M* (I0Z) and (M+l)* (90Z), respectively [Fig. 7.E.4(B)]. 

This analysis showed, as for the oxazoline (5,5), the presence of 1 OX 

total monodeuterated species, and an overall deuterium content of 

95 atom Z.

The reductive hydrogenation of compound (5>9) by the reagent 

Pd/C/H2 followed by borane/THF afforded (I'R,2fc)/(l'S,2'S)-[I*,2’-2H2]-

spermidine ((j0), isolated as its trihydrochloride, m.p. 254-257°C

4) S o
(lit. m.p. 256-258 C). The procedure followed above for the

conversion of (59) ■* ((g) was provided by Dr. David J. Robins****.
2

Free [t',2'- H2Jspermidine was obtained by running the

trihydrochloride through a column of a basic ion exchange resin.

1 2
The 220 MHz H n.m.r. analysis of ri',2'- H2 Ispermidine showed resonances 

at 6 1.5 (10 H, m, H-2', H-2, H-3, and 5xNH) and 2.7 (8 H, m, H-l,

H-4, H-l' and H-3') p.p.m. The overall yield of labelled spermidine 

based on ethene was I5Z.

7.F BIOSYNTHESIS OF C»,S.2,R)/(I,R.2,S) AMD (I,S.2*S)/(I'«^»R)-
fl1,^-ZH,]SPERMIDINE FROM STEREOSPECIFICALLY DEUTERIUM- 
LABELLED METHIONINES*(

Two standard salt media each containing either (3R,4R)-

2 2
i3,4- H2 Imethioninc or (3R,4S)-r3,4- H2Imethionine were inoculatedycarbonyl-
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with E. ooli cells (N.B. for the synthesis and the terminology of

these methionines see Chapter 4). The cells were grown for 37 h.

2
The polyamines, putrescine and C1',2* — Hjlspermidine, were isolated and 

purified, separately from each culture, via their PATC-derivatives, 

as described in Chapter 3. The PATC-spermidines isolated from the 

cultures were separately hydrolysed by cone, hydrochloric acid to 

give the trihydrochloride of either (I'S,2'S)/(I'R,2'R) or 

(I *R,2*S)/< 1 'S,2'R)-[ I' ̂ '^Hjlspermidine. The free spermidines 

were obtained by running the hydrochlorides through a basic ion 

exchange column. The *H n.m.r. spectra of the labelled spermidines were 

identical to the 1H n.m.r. spectrum of the synthetic (l'S,2'S)/

(I'R,2*R)—C1',2'-^Hj]spermidine (see above). Finally, the 

dideuterated spermidines were reacted, separately, with 2 2 mol 

equiv. ethanal to give the corresponding imine-hexahydropyrimidines 

which were then analysed by *H n.m.r. spectroscopy (see coming 

section).

7.C STEREOCHEMISTRY OF SPERMIDINE SYNTHASE ; *H N.M.R.
SPECTROSCOPIC ANALYSIS OF SYNTHETIC AND BIOSYNTHETIC 
SAMPLES OF STEREOSPECIFICALLY LABELLED SPERMIDINES

The enzyme spermidine synthase catalyses the formation of

the polyamine spermidine from putrescine and decarboxylated adenosyl-

48 49
methionine . This enzyme has no identified cofactor

The stereochemistry of spermidine synthase can be studied,

in principle, by converting a stereospecifically deuterium-labelled

methionine at C-4 into spermidine deuterated at C-l'. However, as

mentioned in the introduction (7.A) we failed to devise a synthesis of this 

labelled methionine and for establishing the absolute stereochemistry 

of the derived deuterated spermidine. We decided to study the
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stereochemistry of spermidine synthase by converting deuterium- 

labelled methionines at C-3 and C-4 and of known relative configura­

tions into spermidines labelled at C-l' and C-2'.

There are three plausible mechanisms for the formation

of spermidine from 1,4-diaminobutane and decarboxylated adenosyl- 

methionine:

(i) Enzyme-mediated SN2 attack of a nitrogen atom of

I,4-diaminobutane at C-l of the aminopropyl group 

of decarboxylated adenosylmethionine (Scheme 7.G.I). 

This mechanism would bring about an inversion of 

configuration at this carbon atom (i.e. at C-l' 

of spermidine).

(ii) Sjj2 attack at C-l of the aminopropyl group of

decarboxylated adenosylmethionine by a nucleophilic 

group of spermidine synthase, giving an aminopropylated 

enzyme. This reacts by an SN2 mechanism with I,4-diamino­

butane to give spermidine (Scheme 7.C.2). The stereo­

chemical consequence of this mechanism would be 

retention of configuration at C-l of the aminopropyl 

group of decarboxylated adenosylmethionine.

(Scheme 7.C.I)

H

N

(Scheme 7.C.2)
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(iii) Enzyme-induced intramolecular closure of decarboxylated 

adenosylmethionine to give azetidine, which then reacts 

with I,4-diaminobutane by an Sg2 mechanism to give 

spermidine (Scheme 7.G.3). This mechanism would bring 

about retention of configuration at C-l of the amino- 

propyl group of decarboxylated adenosylmethionine.

(Scheme 7.G.3)

Mechanism (iii) can be distinguished from (i) and (ii) by feeding

C-l' and C—2'. In the proposed azetidine [mechanism (iii) above], 

C—I * and C-3' are homotopic, so if spermidine was derived from the

must be a mixture of two isomers. One isomer would be labelled at 

C-l' and C-2', while the other would be labelled at C-2' and C-3'. 

The spermidine produced showed label only at C-l' and C-2'. This 

result excluded mechanism (iii) as a possibility for the mechanism 

of spermidine synthase.

We demonstrated (of. Chapter 6) that the reaction of 

spermidine with ethanal led to the rapid formation of an imine- 

hexahydropyrimidine derivative. This derivative exhibited a 400 MHz 

*H n.m.r. spectrum which by first order analysis yielded chemical

H H, H

♦ HjNn^ ^ nh^ Y * Nhi

13
[3,4- C2)methionine to E. aoli and determining the distribution 

13of C in the spermidine produced. The biosynthesis of spermidine

48
from such a labelled methionine was studied (for details see

13Chapter 3). The spermidine produced showed C label only at

shifts and coupling constants for all the protons in the molecule.
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with the exception of H-5eq, 2xH-2' and 2xH-3'. These data and 

analyses of spectra for models (of. Chapter 6) show that the preferred 

conformation of the imine-hexahydropyrimidine is a chair with 

equatorial substituents. That the N-substituent extends away from the 

chair is indicated by the identity of chemical shifts for all ring 

protons and by the chemical shifts of H-l'ax and H-l'eq in the 

imine-hexahydropyrimidine of spermidine. The proton H-6ax shows a triple 

doublet at 6 2.33 (Jgem 12 Hz, Jvic 3 and 12 Hz) superimposedcna double double

doublet for H-1'ax (Fig. 7.G.I). Hence the relative configuration of

2
deuterium atoms in a specimen of [I',2'- H23spermidine can be 

determined after its reaction with % 2 mol equiv. ethanal, by analysing 

the resonance for H-6ax. This will show a vicinal H-H coupling constant 

of either 3 or 12 Hz depending on the relative configuration of the 

deuterium atoms at H-5 and H-6 (axial-equatorial or equatorial- 

equatorial, respectively).

(Fig. 7.C.I)



Using the methionine-requiring auxotroph of E. ooli K|2;

630 Hf -i two cultures of cells were grown in media supplemented with

2 2
either (3R,4R)*-[3,4- Hjlmethionine or (3R,4S)*-[3,4- H2Imethionine.

Deuterated spermidine was isolated^® from each medium by the method

described in Chapter 3.

The dideuterated spermidines from the (3R,4R)

2
and (3R,4S)-[3,4- H2Imethionines were reacted with ethanal in 

deuterochloroform. These reactions were monitored by 400 MHz *H n.m.r. 

spectroscopy, which showed sequential formation of hexahydropyrimidines 

and imine-hexahydropyrimidines. If the formation of spermidine 

proceeds via the enzyme-mediated SN2 attack of a nitrogen atom of

I,4-diaminobutane on C-l of decarboxylated adenosyImethionine

[i.e. mechanism (i)3, the imine-hexahydropyrimidine obtained from

2
the (3R,4S)-[3,4- H2Imethionine will be a mixture of (2S,5R,6R)- 

2
and (2S,5S,6S)-[5,6- H2]isomers and their enantiomers (oa. 25% of 

each isomer). The imine-hexahydropyrimidine obtained from the 

(3R,4R)-[3,4-^H2]methionine will be a mixture of (2S,5S,6R)- and 

(2S,5R,6S) isomers and their enantiomers (oa. 25% of each isomer).

The *H n.m.r. spectra of each enantiomer of a pair will be 

identical, whereas the spectra from the diastereoisomeric pairs will 

differ. In the *H n.m.r. spectrum of each dideuterated imine-hexahydro­

pyrimidine H-5ax, H-5eq, H-6ax and H-6eq therefore corresponds to

0.5 H each, with H-5ax paired with either H-6ax or H-6eq, and H-Seq 

paired with either H-6eq or H-6ax, depending on the relative 

configuration of the deuterium atoms in each pair of enantiomers.

*(3R,4S) is an abbreviation for (2R,3R,48),(2R,35,4R), (2S.3R.4S) 
and (2S,3S,4R) isomers while (3R,4R) is an abbreviation for 
(2R,3R,4R),(2S,3R,4R), (2R.3S.4S) and (28,38,48) isomers.
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As expected, for the stereochemical course of spermidine 

synthase operating via mechanism (i), the resonance for H-6ax, from 

the imine hexahydropyrimidine of the (2S,5R,6R)- and (2S,5S,6S)-isomera 

and their enantiomers, was observed as a broad singlet (6 2.30,

Wj * 6 Hz) superimposed on resonances tor H-l'ax (Fig. 7.G.2). [N.B.

the H-D couplings are oa. 1/6 of corresponding H-H couplings^ and 

so the 'theoretical' appearance of the H-6ax signal is 10 lines with 

maximum separation of 11 Hz and with the A intense central lines each 

separated by oa. I Hz.]

(Fig. 7.G.2)

The dideuterated spermidine Tfrom (3R,4R)-

2
T3,A- H2 Imothionine I, assuming the operation of mechanism (i), led to 

an imine-hexahydropyrimidine mixture of (2S.5S.6R)- and (2S,SR,6S)- 

isomers and their enantiomers (“a. 252 of each isomer). Again, the n.m.r.
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spectrum of each enantiomer of a pair will be identical, whereas the 

spectra from the pairs will be different. [N.B. The explanation given 

above for the *H n.m.r. spectrum of the mixture of enantiomers 

of the imine-hexahydropyrimidine derived from (3R,4S)methionine, 

applies also to the mixture obtained from (3R,4R)methionine.]

The 400 MHz *H n.m.r. spectrum of this mixture showed a doublet for 

H-6ax at 2.30 (J *v> 12 Hz). This arises from the (2S,5S,6R)-[5,6-^H2]- 

iraine-hexahydropyrimidine (of. Fig. 7.G.3). This signal is expected 

to be a doublet (J 12 Hz) of 1:1:1 triplets (J 2 Hz) ignoring vicinal. 

Hax-Deq coupling . ^ h N

in k
I  u

The signals for H-6ax of dideuterated imine-hexahydro- 

pyrimidines (see Figures 7.G.2 and 3) derived from dideuterated 

spermidine were broadened and shifted upfield (aa. 12 Hz) compared 

to H-6ax in the unlabelled imine-hexahydropyrimidine, presumably due 

to a slightly different inductive effect of deuterium(s) compared to 

hydrogen. A further complication is that these signals overlap those
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D-6eq D~5eq

Fig. 7.C.4 The 61.4 MHz { H)2H n.m.r. apectrum of (2S.SR.6R)/
(2S,5S,6S)-f5,6-2M2]imine-hexahydropyrimidine derivative 
of aynthetic 0 ,R.2'R)/(I'S,2’S)-fI',2'-2H2]apenaidine.
The apcctrum ahova four peaka correaponding to the aignala 
of the diaateraoiaomeric paira in the mixture.
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for H-I'ax, which appears as two double double doublets separated by 7 Hz

in the spectrum of each dideuterated imine-hexahydropyrimidine. These two

double double doublets (originally one double double doublet in the

unlabelled imine-hexahydropyrimidine), arise from an isotope effect of

deuterium versus hydrogen transmitted from axial H or D through the nitrogen

lone-pair (axial) to H-2 (axial) and H-I'ax. (N.B. In the spectra of the

dideuterated imine-hexahydropyrimidines the signal of H-2 appears as two

quartets of similar intensities.]

The above complexities necessitated'the synthesis of a reference

sample of one of the dideuterated imine-hexahydropyrimidine. This was

achieved from (E)-[I,2-2H2]ethene via (2S,3R)/(2R,3S)-[2,3-2H2]3-

aminopropionitrile (of. Section 7.E). The synthetic (I *R,2*R)/

2
(I *S,2*S)—CI’,2'- H2Ispermidine was reacted with i 2 mol equiv.

ethanal in deuterochloroform to give the (2S,5R,6R) and the (2S,5S,6S)- 

2
[5,6- Hj]imine-hexahydropyrimidines and their enantiomers. The 61.4 MHz 

I 2
{ H) H n.m.r. spectrum of this mixture showed four singlets of equal 

intensities (Fig. 7.G.4) at 6 1.66 and 3.03 p.p.m. corresponding to 

the D-5eq and D-6ax, respectively, in the (2S,5S,6S)-isomer, and 

at 6 1.52 and 2.33 p.p.m. corresponding to the D-5ax and D-6eq, respectively, 

in the (2S,5R,6R)-isomer. The 400 MHz *H n.m.r. spectrum of the synthetic 

(2S,5R,6R) and (2S,5S,6S) isomers of imine-hexahydropyrimidine was 

similar (peak for peak matching) to the dideuteroimine-hexahydropyrimidine 

derived from the (3R,4S)-[3,4- H23methionine. In particular the 

resonance for H-6ax (Fig. 7.G.5) was, as expected, a broad singlet at

(Fig. 7.G.5)
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6 2.30 p.p.m., superimposed on resonances from H-l'ax.

The similarity between the signals for H-6ax in both the
o

synthetic (2S,5R,6R)/(2S,5S,6S)-[5,6- H2]imine-hexahydropyrimidine
2

and the [5,6- Hjlimine-hexahydropyrimidines derived originally from 

(3R,4S)-[3,4-^H2]methionine, confirms that enzyme-catalysed S 2̂ 

attack of the nitrogen atom of putrescine on the C-l of the aminopropyl 

group of decarboxylated adenosylmethionine, causing inversion of 

configuration at this carbon, is the route by which spermidine is 

biosynthesised.

A recent kinetic study* 1 of spermidine synthase from E. ooli
52 .

concluded that a ping pong Bi Bi mechanism operates, Via an
53

intermediate aminopropylated enzyme. It was suggested that this

conclusion should be confirmed by a stereochemical investigation.

However, if this conclusion is correct the stereochemical course of

spermidine synthase should be an overall retention via two inversion

steps. The contrasting conclusion from the present study is that

spermidine synthase operates by a sequential Bi Bi mechanism

exhibiting the stereochemistry of a classical S 2 reaction, i.e.

inversion [mechanism ( i ) ]. It is therefore analogous to enzymic

transmethylation with S-adenosylmethionine, for which inversion at

54
the sulphonium methyl has been conclusively demonstrated and 

also analogous to enzymic transadenosylation with methionine for 

which inversion at the 05' has been recently demonstrated**.

7.H EXPERIMENTAL

7.H.I Attempted synthesis of I 11t2'-2H.,lspermidine

I• Preparation of N-acatamido-l,4-dlaminobutane (^2)

I,4-Dlaminobutane (14 g, 1.6 x 10 1 mol) was added dropwise
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Co a stirring solution of glacial acetic acid (92 cm ). The resultant

solution was kept in a water bath at 50-60°C during the dropwise

addition, over I h, of acetic anhydride (1.26 g, 1.34 x 10 1 mol).

The resultant mixture was stored overnight at room temperature and

was then evaporated to dryness under reduced pressure. The oily

3 -3
residue was dissolved in a mixture of hot water (50 cm ) and 6 mol dm

3
hydrochloric acid (33 cm ). The acidic mixture was pumped to dryness 

(10 2 3 mmHg/40°C), to give unreacted I,4-diaminobutane-2HCl and 

N-acetyl-l,4-diaminobutane-HCl. Extraction of the mixture with

3
propan-2-ol (5 x 100 cm ) dissolved the acetylated fraction, which 

was separated by filtration from I,4-diaminobutane-2HCl. The volume 

of the organic solution was reduced to 200 cm^ and kept at -20°C 

overnight to give a white precipitate. Filtration and drying gave 

the hydrochloride of the product (̂ >2), 13.7 g (5IZ yield), m.p.

I38-140°C (lit.38 m.p. I36-I39°C). The hydrochloride-free

N-acetyl-l,4-diaminobutane was obtained by dissolving in methanol

3 -3 3
(200 cm ) and adding sodium methoxide in methanol (2.7 mol dm , 36 cm ).

The mixture soon deposited most of the available sodium chloride.

The salt was filtered off and the filtrate was reduced to a minimum

3
volume. Ether (300 cm ) was added. The precipitated salt was filtered 

off and the ethereal layer was evaporated under reduced pressure to 

give crude compound (^2). Distillation (b.p. I26°C/0.I ranHg) gave 

pure (^2), 9.4 g (88Z yield from its hydrochloride). Its 220 MHz 

*H n.m.r. spectrum showed resonances at (CDClj, TMS) 6 1.27 (2 H, s,

NH2), 1.53 (4 H, m, central methylenes), 1.97 (3 H, s, -COCHj), 2.72 

(2 H, t, -CH2NH,) and 3.24 (2 H, q, -CONHCHj-) p.p.m.

2. Preparation of N-aceiamido-l.4-diaminobutane-p-toluenesulphonamide (^3

-2
p-Tolucnesulphonyl chloride (7.0 g, 3.7 x 10 mol) was

3
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added in portions during 30 minutes to a mechanically stirred solution

-2
of mono-acetyl-1,4-diaminobutane (6.0 g, 3.6 x 10 mol) and sodium

-2 3 o
carbonate (7.7 g, 7.3 x 10 mol) in water (85 cm ) at 60 C. Stirring 

at 60°C was continued for 2 h. The mixture was allowed to cool to 

0°C, and stirring was continued until the product precipitated. The 

crystals were collected and recrystallised from ethyl acetate at -20°C 

to give the pure product (̂ 3) (8.0 g, 802), m.p. I24-I27°C (lit.^

m.p. 125-126). Its 220 MHz *H n.m.r. spectrum showed resonances at 

(CDClj, TMS) 6 1.52 (4 H, m, central methylenes), 1.95 (3 H, s, -COCHj), 

2.43 (3 H, s, Ar-CHj), 2.95 (2 H, q, -CHjNH-SOj-) 3.22 (2 H, q, 

-C0NHCH2-), 5.15 (I H, t, -SO^H-), 5.82 (I H, br s, -C0NH-) 

and 7.31 and 7.75 [each 2 H, d, phenyl protons] p.p.m.

3. Preparation of N-(4-acetamidobutyl)-2-aminoethanol (̂ 4)

Mono-acetyl-l,4-diaminobutane (145 g, l.l mol) was dissolved 

in propan-l-ol (I dm ) in a 3-necked flask which was fitted with 

an acetone-dry ice condenser. Ethylene oxide (14 g, 3.2 x 10 1 mol) 

was added to the above solution. The resulting mixture was 

incubated for 8 h at 85°C. The organic solvent was removed under 

reduced pressure to leave an oily residue which contained the 

product (^4) and some unreacted starting amide. The product was 

purified by distillation (I40°C at 0.3 mmHg) to give pure compound 

(ty) as a colourless oil (3.0 g, 542). The e.i.m.s. analysis showed 

a large peak for the ion (M-31)* at m/z 143, probably for the loss 

of -CHjOH. The CHN combustion analysis found: C, 55.20; H, 10.49;

N, 16.13, C8H|8N202 requires, C, 55.4; H, 10.41; N,16.08. The 

220 MHz *H n.m.r. spectrum of compound (44) showed resonances at 

(CDC13, TMS) 6 1.54 (4 H, m, - C H j C H ^ C H ^ ) , 1.96 (3 H, s, -COCHj),

2 .6 4  (2  H , t ,  -NHCH2CH20 H ) , 2 .7 5  (2  H , m , - C H jN H C H j- ) ,  3 .2 4  (2  H , q ,
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-CONHCH2-), 3.66 (2 H, t, -CHjOH) and 6.58 (1 H, br s, CONH-) p.p.m.

4. Preparation of N-(4-acetamidobutyl)-2-amin6AthSnol
H,0-btd-p-tolueneeulphortAte (̂5)

Alcohol (^4) (6.6 g, 3.8 x 10 2 mol) wax diaaolved in
3 -2

pre-cooled pyridine (70 cm ). Tosyl chloride (15.6 g, 8.2 x 10

mol) was added portionwise with stirring. The reaulting mixture

was stored at 0°C overnight. Addition of water (50 cm^) gave an

aqueous solution which was extracted with dichloromethane (4 x 60 cm ).

- 3
The organic layers were combined and washed with cold 2.5 mol dm

3 3
hydrochloric acid (3 x 120 cm ) and water (2 x 120 cm ). Decolourising 

charcoal was added to the organic solution and the mixture stirred for 

30 minutes at room temperature. The solution was filtered through Celite, 

dried and the solvent removed under reduced pressure to give an oily 

residue of compound (^5). The attempts to crystallise this oil failed.

The oil(12.6 g, 86Z yield)was pure by *H n.m.r. spectral analysis which 

showed resonances at (CDCl^, TMS) 6 1.52 (4 H, m, central methylenes),

1.95 (3 H, s, C0CH3), 2.43 and 2.48 (each 3 H, s, Ar-Cl^), 3.0 

[2 H, t, -(CH2)3CH2N], 3.25 (4 H, m, -NTa-CHjCHjOTs and -CONHCHj-),

4.15 (2 H, t, -NTsCHjCHjOTs) and 7.3-7.8 (8 H, m, phenyl protons) 

p* p.m.

5. Preparation of N-(4-acetamidobutyl)-N-trifluoroacetyl-2-
aminoethanol (^6T~

The alcohol (^4) (13.2 g, 7.7 x 10 2 mol) was dissolved in
3 -I

acetonitrile (100 cm ) and ethyl trifluoroacetate (22 g, 1.54 x 10 mol)

was added. The resulting mixture was heated under reflux for 2 h. ,

Removal of the solvent under reduced pressure gave a residue containing

mainly the product (^6), 99Z, and traces of solvent. The 220 MHz 1H n.m.r.

spectrum of compound (^6) showed resonances at (CDClj, TMS) 6 1.6

(4 H, m, -CH2CH2CH2CH2-), 1.96 (3 H, s, -COCHj), 3.25 (2 H, q, -CONHCHj-),

3 .5 5  ( 4  H , m , -C H j NCOCPj C ^ - )  a n d  3 . 8  ( 2  H , q ,  -C H 2OH) p . p .m .
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6. Preparation of N-(4-acetamidobutyl)-N-trifluoroacetyl-2- 
aminoetHanoi O-p-tolueneaulphonate (̂ 7) -3
N-trifluoroacetylaminoethanol (^4) (2.7 g, 10 x 10 mol)

3
was dissolved in dry pyridine (50 cm ). Tosyl chloride (3.8 g,

“3
20 x 10 mol) was added to the above solution with stirring. The 

resulting mixture was stored at 0°C overnight. Addition of water 

(50 cm) gave an aqueous solution which was extracted with dichloro-

methane (4 x 50 cm ). The organic layers were combined and washed

—3 3
with cold 2.5 mol dm hydrochloric acid (3 x 100 cm ) and water

(2 x 100 cm^). Decolourising charcoal was added to the organic solution.

The mixture was stirred for 30 minutes and then filtered through

Celite. The filtrate was dried and removal of the solvent under

reduced pressure gave an oily residue of product (^7). All attempts

to crystallise this oil failed. The oil of compound (^7) (3.1 g, 70X yield),

was checked by *H n.m.r. analysis and found to be pure. The 220

MHz *H n.m.r. spectrum showed resonances at (CDCl^, TMS) 6 1.6

(4 H, m, -CH2CH2CH2CH2-), 1.97 (3 H, s, COCHj), 2.45 (3 H, s,

Ar-CHj), 3.27 (2 H, q, CHjCONHCHj-) , 3.44 [2 H, t, - ( C H ^ a y K C O C F ^ a y ] ,

3.65 [2 H, t, -CH2N(C0CF3)CH2CH2-], 4.2 (2 H, t, -CHjCHjOSOj-), 5.9

(I H, br s, -C0NH-) and 7.35 and 7.75 Teach (2 H, d, phenyl protons)] p.p.m.

7. Preparation of N-(4-acatamidobutyl)asirldine (^9)

-2
Powdered potassium hydroxide (5.9 g, 10.4 x 10 awl) was added

.2
to a stirring solution of compound (^7) (22 g, 5.2 x 10 mol) in benzene 

(150 cm ). The mixture was sealed and left stirring overnight at room 

temperature. The precipitated salt was removed by filtration. The 

solvent was eveporsted from the filtrate to leave oily compound (^)

(5.8 g, 72X). This product was reasonably purs by *H n.m.r. analysis.

The 220 MHs 'h n.m.r. spectrum (Fig. 7.D.I) of compound (^9) showed 

resonances at (CDClj, TMS) 6 1.1 (2 H, s, with additional fine
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splitting, Ha and HA'), 1.6 [4 H, m, -CHjiCH^CHj-:], l.»l (2 H, s , 

with additional fine splitting, Hg and Hg,), 1.95 (3 H, s, -COCH^),

2.2 (2 H, t, -CH2N-), 3.25 (2 H, q, CHjCONHCHj-) and 6.3 (I H, br s, 

CH-jCONH) p.p.m. (Fig. 7.D. I).

7.H.2 Synthesis of (I 'K.2'R)/(I 1 ̂ '-^.Japermidine

I. Preparation of (IR,2S)/(IS,2R)-[I,2-^H2]2-chloroethanol (^J)
-3 3

Hypochlorous acid [2.9 mol dm (42 cm )] was placed in a

o
2 dm round-bottom flask which was supplied with a two-way tap.

The acid was frozen by application of a dry-ice bath. The frozen

acid was pumped tn vacuo to remove any traces of chlorine. The

2
flask was attached to a vacuum line in which (E)-[l,2- H2]ethene

3 - 1
(2.5 dm , l.l x 10 mol) was trapped. The flask containing the acid

was placed in a liquid-nitrogen bath. The trapped ethene was allowed to

condense over the acid. The flask containing the reaction mixture

was isolated from the rest of the vacuum line. [N.B. A safety device

(rubber balloon) was attached to the flask and the tap was opened

to allow for excess of pressure to escape.] The flask was allowed

gradually to warm up to room temperature. The reaction mixture was

then left stirring (orbital shaker) in the dark overnight. Saturated

sodium chloride (100 cm ) was added, and the reaction mixture was3
then extracted with dichloromethane (3 x 100 cm ). The combined 

organic layers were separated, dried and evaporated to leave behind 

an oily residue of compound (^1) (8 g, 89X yield). The residue was 

checked by 220 MHz (H n.m.r. spectroscopy (CDC1}, TMS) and showed 

resonances at fl 2.61 (I H, s, OH), 3.63 (I H, s, -CHDOH) and 3.83 

(I H, s, -CHDC1) p.p.m.
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2. Preparation of (1R,2R)/(1S,2S)-[1,2-^Hj]2-aminoethanol ($2)
-2

Compound ($J) (4.1 g, 5 x 10 mol) waa dissolved in water

3 3
(60 cm ) in a 500 cm flask containing a magnetic stirrer bar. The

solution was deep-frozen in liquid nitrogen. After addition of

potassium hydroxide (pellets) (56 g, I mol), the flask was attached

to the vacuum line and the whole apparatus was evacuated. The frozen

solid in the flask was slowly allowed to melt, which resulted in a

vigorous evolution of ethylene oxide. The ethylene oxide produced

was trapped by the action of a dry ice-acetone bath. The flask which

3
originally contained the reaction mixture was replaced by a 200 cm 

flask containing concentrated ammonia solution (100 cm^). The flask 

containing the ammonia solution was deep-frozen and evacuated, before 

the tap joining it to the main line was opened. Ethylene oxide 

was gradually released from its trap by warming and cooling*.

The flask containing the ammonia was magnetically stirred and was 

cooled by liquid nitrogen to trap some of the released ethylene 

oxide. After 30 minutes of stirring,the flask containing the ammonia 

was kept in liquid nitrogen for 15 minutes to trap all the remaining 

ethylene oxide (traces). The flask was isolated from the line by 

switching the relevant tap. After warming to 0°C stirring was 

continued for a further 5 minutes. The flask containing the reaction 

mixture was removed from the line and was evaporated under reduced 

pressure (12 mmHg at 35°C) to leave behind an oily residue (2.2 g, 

702) of compound ($£). Its 220 MHz 'h n.m.r. (CDClj, TMS) spectrum 

showed resonances at 6 1.82 (I H, br s, -OH), 2.82 (I H, s, NH^CHD-)

*The release of ethylene oxide into the line was controlled by warming 
and cooling the trap containing it by removing or replacing the 
dry ice-acetone bath. The manometer should always be observed, so 
as not to release too much gas.
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and 3.58 (I H, a, -CHDOH) p.p.m.

3. Preparation of (IR,2S)/(IS,2R)-H-trifluoroacecyl 
[I,2-^H2J~2-aminoethanol (§3)

Compound ($i2) (2.2 g, 3.5 x 10 mol) was dissolved in

3 -2
acetonitrile (30 cm ). Ethyl trifluoroacetate (6.0 g( 4.5 x 10 mol) was

added to the solution. The resulting mixture was sealed and magnetically

stirred for 20 minutes at room temperature. The solvent was removed

under reduced pressure to leave behind an oily residue of compound (^3),

(5.4 g, oa. 98Z yield ♦ 2X acetonitrile). Its 220 MHz *H n.m.r. (CDCl^,

TMS), showed resonances at 6 2.5 (I H, br s, OH), 3.5 (I H, s, -CHDNH-)

and 3.78 (I H, s, -CHDOH) p.p.m.

4. Preparation of (IR,2S)/(IS,2R)-N-trifluoroacetyl[l,2-^Hj]- 
2-aminoethanol O-p-toluenesulphonate ($4)

-2
The N-trifluoroacetylaminoalcohol ($3) (5.3 g, 3.3 x 10 mol)

3
was dissolved in pre-cooled pyridine (40 cm ). Tosyl chloride (8.5 g, 4.4 

-2
x 10 mol) was added portionwise to the above solution. The resulting 

mixture was kept at 0°C overnight. Water (20 cm'*) was added to the 

organic solution, which was then extracted with dichloromethane

3
(3 x 100 cm ). The combined organic layers were washed with cold

- 1  3 3
2.5 mol dm 3 hydrochloric acid (3 x 100 cm ) and water (2 x 100 cm ).

The organic layer was separated, dried and evaporated to leave behind

an oily residue of compound (^4). The oil was dissolved in ether

(10 cm ). Petroleum ether (50 cm ) was added gradually with stirring

to the ethereal solution which caused immediate precipitation of white

crystals of compound (^4). Filtration and air-drying afforded pure

compound (^») as white crystals m.p. 58-60°C (8.8 g, 86Z yield). Its

220 MHz *H n.m.r. spectrum (CDCl^, TMS) showed resonances at ó 2.46

(3 H, s, -CH3), 3.65 (I H, s, -NHCHD-), 4.15 (I H, s, -CHDOTs), 6.95
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(I H, br 8, -NH-) and 7.37 and 7.79 (each 2 H, d, phenyl protons) p.p.m.

E.i.m.s. analysis for compound (^4) gave peaks at m/z 312 (I0Z) and 

313 (90Z) corresponding to the ions (M-l)+ and M* respectively, and 

denoting an overall deuterium content of oa. 95 atom Z. An unlabelled 

sample of the compound (5£a) shoved a peak at m/z 311 corresponding 

to the M+ ion.

5. Preparation of (4R,5R)/(4S,5S)-2-trifluoromethyl
U.^H^-oxazoline (15)---------------

-2
Compound (^4) (8.8 g, 2.8 x 10 mol) was dissolved in

dichloromethane (150 cm^). To the organic solution was added powdered

-2
potassium hydroxide (2.8 g, 5 x 10 mol). The mixture was sealed and

magnetically stirred at room temperature. The reaction soon started

the precipitation of potassium tosylate. The mixture was kept stirring

for 4 h. The precipitate was discarded by filtration through Celite.

The filtrate was evaporated under reduced pressure to leave behind a

colourless residue of compound (^5), (3.2 g, 8IZ yield). The purity

of product (^5) was checked by *H n.m.r. analysis and found to be

2 98Z. Its 220 MHz *H n.m.r. (CDClj, TMS) spectrum showed peaks

(Fig. 7.E.I) at 6 4.05 (I H, d, J oa. 9.5 Hz, H-4) and 4.52 (I H, d,

J oa. 9.5 Hz, H-5) p.p.m. The *H n.m.r. spectrum for sample of 

2 56
2-trifluoromethyl-A -oxazoline (5£a) showed resonances (Fig. 7.E.I) 

at 6 4.09 (2 H, t, J oa. 9.5 Hz, H-4) and 4.56 (2 H, t, J oa. 9.5 Hz) 

p.p.m. The e.i.m.s. analysis for compound (5£a) shoved a peak 

(Fig. 7.E.2(A)] at m/z 139, corresponding to the ion M*. The e.i.m.s. 

analysis for compound (^5) showed peaks [Fig. 7.E.2(B)] at m/z 

140 (I0Z) and 141 (90Z). The overall deuterium content was oa. 95

atom Z.
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6. Preparation of (2R,3S)/(2S,3R)-[2,3- H0]3-aminopropionitrxle 
(57) Via (2R.3S)/(2S,3R)-N-trifluo~roaceeyl-[2,3-^H2J- 
3-aminopropionitrile (56)

-2
Dry sodium cyanide (1.5 g, 3 x 10 mol) was added to a

-2
stirring solution of oxazoline (55), (2.3 g, 1.6 x 10 mol) in dry

3
DMSO (30 cm ). The mixture was sealed and magnetically stirred at

room temperature for 6 days, the reaction being monitored by *H n.m.r.

-A o
analysis. The volume of the reaction was reduced (10 mmHg/40 C)

3 -2
to 5 cm . Lithium hydroxide (1.23 g, 3 x 10 mol) solution in

3 . .
water (10 cm ) was added to the residue and the resulting mixture

was magnetically stirred for 5 minutes. To it was added dropwise 

-3 3
5 mol dm hydrochloric acid (10 cm ). The mixture was evaporated

q '
to dryness (10 imnHg/40 C), to leave behind a viscous residue.

3
A mixture of water and ethanol (I/A) (30 cm ) was added to this

residue. The resulting solution was stirred over decolourising charcoal for

30 minutes. The charcoal was removed by filtration through Celite.

The filtrate was kept at -20°C overnight to precipitate a white 

crystalline product (5J). The precipitate was filtered off and 

dried under reduced pressure to give pure compound (5J) as a mono­

hydrochloride (0.95 g, 55Z yield) m.p. I62-I6A°C (lit.^7 m.p. I65°C).

Its 220 MHz *H n.m.r. analysis showed resonances at ^H^O, TSS)

i 2.93 (I H, d, J aa. 6 Hz, -CHDCN) and 3.32 (I H, d, J <?a. 6 Hz, -CHDNH3-Cl)p.p.m. The

220 MHz *H n.m.r. spectrum for sample of 3-aminopropionitrile

hydrochloride (\7a) showed resonances at S 2.92 (2 H, t, -CH^CN)

and 3.32 (2 H, t, -G^N^Cl) p.p.m. The i.r. analysis of compound

(5J) gave peaks at v 1708 and 22A5 cm *.

7. Preparation of N-benzyloxycarbonyl-A-aminohutyric acid (5̂ 8)

A-Aminobutyric acid (20.6 g, 2 x 10 * mol) was dissolved 

•3 3
in A mol dm sodium hydroxide (50 cm ). The aqueous solution was

2
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cooled at 0°C (ice-bath) with stirring, before the dropwise addition

-I -3
of benzyl chloroformate (37.A g, 2.2 x 10 mol) in 4 mol dm sodium 

3
hydroxide (60 cm ). The reaction mixture was magnetically stirred

3
at room temperature for 4 h, and then extracted with ether (2 x 100 cm ). 

The pH of the aqueous layer was adjusted to 3. The acidified solution 

soon precipitated white crystals when placed in a dry-ice/methanol bath.

The collected crystals were recrystallised by dissolving in chloroform

3 3(30 cm ) and adding petroleum ether (50 cm ). The resulting mixture was

cooled with stirring in a dry-ice/methanol bath and soon precipitated

transparent crystals of compound (^6). The crystalline precipitate was

collected and dried in vacuo (0.5 imnHg, overnight) to afford pure

compound (^8) (38 g, 802 yield), m.p. 65-68°C (lit.58 m.p. 65-66).

The 220 MHz *H n.m.r. (CDCl^, TMS) spectrum showed resonances at

6 1.81 (2 H, p, -CH2CH2CH2-), 2.38 (2 H, t, -C^COjH), 3.25 (2 H,

q, -C0NHCH2~) 5.09 (2 H, s, benzyl methylene) and 7.33 (5 H, s, phenyl

protons) p.p.m.

Preparation of (2S,3R)/(2R,3S)-(N-benzyloxycarbonylamino)- 
butyryir2,3-ZH.,]i-aininopropionitrile (59)

N-Benzyloxycarbonyl-4-aminobutyric acid ($>8) (1.54 g, 6.5 x

-3 -3
10 mol) and 3-aminopropionitrile hydrochloride (0.71 g, 6.5 x 10 mol)

were dissolved in dichloromethane (10 cm5). The resulting mixture was

cooled to -5°C (salt/ice-bath), and triethylamine (0.9 cm5, 6.5 x 10 5 mol)
-3

was added. DCCD (1.36 g, 6.6 x 10 mol) was added to the reaction

mixture, which then was left stirring overnight. The resulting

, 3
mixture was filtered and the filtrate was reduced to ca. 5 cm . A

white precipitate came out on cooling at -20°C (4 h). The precipitate

was filtered off and dried under reduced pressure to give white crystals

of compound (^9). Recrystallisation from dichloromethane gave pure

(̂ 9) 1*7 g, 902 yield, m.p. 114—115°C. The purity of the compound ($9)
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was checked by *H n.m.r. spectroscopic analysis [Fig. 7.E.3(A)]. Its 

220 MHz *H n.m.r. spectrum (CDCl^, TMS) showed resonances at 5 1.84 

(2 H, p, -CH2CH2CH2CONH-), 2.25 (2 H, t, -(CH^CHjCONH-), 2.6 

(I H, br s, -CONHCHDCHDCN), 3.26 (2 H, q, ph-CHjOCONHCj^CHj-),

3.45 (I H, br s, -CONHCHDCHDCN), 5.1 (2 H, s, phCHjOCONH-), 5.11 (I H, 

br a, CH2CONHCH2), 6.71 (I H, br s, ph-CHjOCONH-) and 7.36 (5 H, s, 

phenyl protons) p.p.m. The *H n.m.r. spectrum of unlabelled 

sample (5£a) showed resonances similar to those of the labelled 

compound ($>9), except for the signals of the methylenes in the 

aminopropyl unit. In the unlabelled sample (5£a) these appeared 

[Fig. 7.E.3(B)] at 6 2.6 (2 H, t, -CONHCHjCHjCN) and 3.46 (2 H, q, 

-CONHCH2CH2CN) p.p.m. The e.i.m.s. analyis (NH^+) for the unlabelled 

compound ($£a) showed a peak [Fig. 7.E.4(A)] at m/z 290 (M+l)*. The 

labelled compound (^9) showed peaks [Fig. 7.E.4(B)] at m/z 291 (10Z) 

and 292 (90Z) corresponding to the ions M* and (M+l)+, respectively, 

indicating an overall deuterium content of t 95 atom X.

9. 45 1
Hydrogenation and reduction of compound (59) 
(11R,!'R)/(11S,2ls)'-CliV 2 r-^H:lspemidine ($)

to give

The nitrile (^9) (0.3 mg, I x 10 3 mol) in dry methanol (10 cm3) 

was hydrogenolysed for 2 h at room temperature in the presence of I0Z 

Pd/C (0.035 g). The product of this reaction, obtained by filtration

and removal of the solvent, was used directly in the next step. A

-3 3
solution of I mol dm borane in tetrahydrofuran (19 cm ) was added

to the product of the previous reaction in dry tetrahydrofuran

3
(30 cm ) and the solution was heated under reflux for 18 h. The 

solvent of the reaction was avaporsted under reduced pressure.

*The detailed procedure for the hydrogenolysis and reduction of 
compound (^9) was kindly, supplied by Dr. D. J. Robins (Chemistry 
Department, University of Glasgow).
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This was followed by addition of pre-cooled dry ethanol (30 cm ).

Dry hydrogen chloride was passed through the resulting solution.

The solid trihydrochloride of (I *R.2'R)/(I *S,2*S)—[1',2'-2H2]spermidine 

was filtered off and recrystallised from ethanol to give the pure 

trihydrochloride of compound (ffO) as white crystals (0.16 gt 621 

yield), m.p. 254-257°C (lit.45 m.p. 256-258°C). Its 220 MHz 'h

n.m.r. spectrum showed resonances at (^H20, TSS) 6 1.8 (4 H, m, 2 x 

H-2 and 2 x H-3), 2.1 (I H, m, H-2') and 3.12 (7 H, m, H-l', 2xH-3\

2xH-l and 2xH-4) p.p.m. Free spermidine was obtained by running the

compound through a column of a basic ion exchange resin (Amberlite

- 3 v
IR 400, OH). The first 100 cm of the eluent (water) were collected

and evaporated to dryness to leave behind the hydrochloride-free

(l,R,2,R)/(IS',2'S)-[l',2,-2H2]apermidine (^0). The 220 MHz 'h

n.m.r. spectrum (CDCl^, TMS) for the free base showed resonances

at 6 1.5 (10 H, m, H-2', 2xH-2, 2xH-3 and 5xN-H), and 2.7 (7 H. m,

2xH-l, 2xH-4, H-l' and 2xH-3') p.p.m. The overall yield of (l'R,2'R)/

(I'S,2'S)-[I',2'-2H2]spermidine based on the (E)-[I,2-2H2]ethene

used was I5Z.

7.H.3 Biosyntheais of steraospecifically labelled Cl*.2*—2H«3— 
spermidine fro« (toAs)- and ( 3 R , t R H 3 > ^ ] m ; i K I 5 ^ n e s

Two standard media, each (10 x 1 dm5) in 10 flasks of 2 dm5 

capacity, were prepared es deecribed in Chapter 3. Each medium wee 

supplied with one of the following: (3R.4R) or (3R,4S)-C3,4-2H2lmathionine 

(0.05 g dm-5), and inoculated with E. ooli cells. The cultures were 

incubeted at 37°C for 30 h. The calls of each culture were harvested 

separately, by centrifugation to give oa. 30-33 g calls (wet). The 

polyamine spermidine was extracted from each batch of cells with TCA.

The extracted spermidines were converted into PATC-derivative as

3



described in Chapter 3.

The PATC-derivative of the dideuterated spermidine from 

each run was separately purified by p.l.c. on a silica gel plate 

[Kieselgel 60 HR reinst 2 x (0.5 x 20 x 100 cm)] (of. Chapter 3).

The PATC-derivatives of the two samples of the dideuterated 

spermidine were hydrolysed by dissolving each in concentrated hydro-

3
chloric acid (7 cm ) and boiling under reflux overnight. The 

trihydrochloride of each sample of the dideuterated spermidine 

was isolated as described in Chapter 3 (of. Section 3.E.4). The 

hydrochloride-free dideuterated spermidines were obtained by running 

each sample through an ion exchange column [Amberlite IR 400, OH 

form (I x 10 cm)], using water as eluent. Evaporation of the first

3
fraction (100 cm ) under reduced pressure left behind a pure hydro­

chloride-free (1'S,2'S)/(I,R,2'R)-[I',2'-^H^lspermidine from one batch 

and (I *R,2'S)/(1 'S,2'r )-[ I' ̂ '-^Jspermidine from the other culture.

The relative configuration of deuterium atoms in these 

spermidines are discussed and compared to synthetic dideuterated 

spermidine in the text of this Chapter (see Section 7.G).
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