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Summary

A collection of over 300 streptomycetes, comprising both natural isolates 
and type strains, were assessed for the distribution of fatty acids, antibiotic 
resistances, compounds in solvent extracts, and sequences that hybridized to 
antibiotic resistance gene probes. These data were clustered using numerical 
methods and groups of similar strains were delimited. The production of selected 
antibiotics by all strains was also determined and the data examined for any 
correlations with the defined clusters.

Production of bioactive compounds was observed in twenty percent of the 
natural isolates studied; nigericin and geldanamycin production was common. 
Geldanamycin was only biosynthesized by strains which also produced nigericin and 
most strains which were thought to produce a novel antibiotic were also capable of 
nigericin production. When the sources and concentrations o f nutrients in the 
cultures of antibiotic producers were altered, differentiation responses and the 
expression of antibiotic production were found to be strain specific. In addition to 
this, nigericin production could be repressed by oxygen limitation.

In a production medium, fluctuations in fatty acid profiles occurred 
concomitantly with antibiotic biosynthesis, although this could not be correlated. 
However, fatty acid profiles did not allow the delimitation of groups of 
taxonomically related strains, which were cultured in a growth medium. Thin layer 
chromatography patterns obtained from the solvent extracts of streptomycete 
cultures showed much variation and were not suitable for use as systematic data.

Antibiotic resistance patterns allowed the delimitation o f bioactive strains 
from certain non-bioactive groups of strains; antibiotic producers showed multiple 
antibiotic resistance phenotypes, whereas a single selected resistance and a multiple 
sensitive phenotype was characteristic of non-bioactive strains. Most strains were 
resistant to penicillin and a large proportion were resistant to nigericin, but strains 
with resistance to aminoglycosides were rare.

Preliminary evidence showed that DNA from strains with multiple 
resistance patterns hybridized more often to gene probes (these were internal 
fragments of aphD, aph, vph, bar, tsr Nbr) than did DNA from strains with 
multiple sensitive phenotypes. Similarités were observed between strains grouped by 
their hybridization patterns and those grouped by the chemical class of their 
product. This work also allowed the selection of phenotypically resistant strains 
with different resistance genes and possible resistance mechanisms.

X X II



Chapter 1.

Introduction

1.1. The Lifecycle and Ecology pf the Streptomycctca.
Streptomycetes are commonly found in a variety of terrestrial and aquatic 

environments, including compost, river mud, sea water (Williams and Wellington, 

1982; Williams et al., 1989b) and the intestines of insects (Bignell et al., 1991). 

They are particularly abundant in the soil (Williams and Wellington, 1982) and are 

present in both the surface layers and the lower horizons. Soils which are present in 

countries with warm climates are more conducive to extensive colonisation than are 

those in cooler areas and streptomycete populations proliferate in grassland and 

pasture soils rather than those which are waterlogged or acidic ( Alexander, 1977; 

Reed Rodrigues Coelho and Drozdowicz, 1978).

The number and diversity of streptomycetes depends on seasonal variations 

(Williams, 1978, Huck et al., 1991); although their abundance can vary markedly 

in different microsites within the same soil sample. For example, Wellington et al. 

(1990) obtained electron micrographs of streptomycete mycelia in the soil showing 

large uncolonised areas, but with hyphae present in distinct regions within crevices 

between the soil particles. The size of a streptomycete community also depends on 

physical characteristics, such as pH and the presence of organic matter.

Streptomycetes play an important role in degrading complex recalcitrant 

polymers from plant and animal tissue (Williams, 1978). When nutrients have been 

depleted streptomycetes undergo a series of morphological changes, which begin 

with the lysis of vegetative mycelia. This provides nutrients for the production of 

aerial mycelia, which coil and divide from the tip downwards. The walls of the 

individual compartments formed by this process thicken and round off to give 

chains of immature, asexual spores which become more spherical and contain 

pigments when fully mature.

Organisms which sporulate may be well suited to survival in an environment 

where there are large fluctuations in nutrient availability. Streptomycetes are likely
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to exist in the soil predominantly as spores, only becoming active mycelial 

organisms for brief periods of time when conditions are favourable (Wellington et 

a l., 1990). Germination of spores and the development of mycelium is a rapid 

process (Wellington et al., 1990) and so shows good adaptation to feast and famine 

conditions. In addition, the ability to grow in filaments facilitates the search for 

nutrients over a larger area than would be permitted by unicellular growth.

1.2. The Taxonomy of Streptomvcetes.

1.2.1. The Definition of the Genus Streptomvces.

Waksman and Henrici proposed the genus Streptomyces in 1943, and its 

taxonomy was developed over the next forty years, by workers such as Silvestri et 

al. (1962) and Williams et al. (1983a). Streptomyces became well known as a rich 

source of antibiotics with many new species being described for patent purposes. 

This was often a subjective procedure, since early attempts at species classification 

were based on differences in morphology and cultural characteristics. Conditions 

used in these studies were not standardised and so the overall result was a 

proliferation in the total number of Streptomyces species. The International 

Streptomyces Project was initiated in 1964 to help improve the situation and it 

resulted in the redescription of over 450 species (Shirling and Gottlieb, 1976).

In 1983, Williams et al. (1983a) published a study, which became the 

foundation of the current Streptomyces classification. Correct identification of 

streptomycetes was viewed as polythetic (Williams et a l., 1983a) and was obtained 

by probabilistic methods (Williams et al., 1983b). The resulting phena contained 

strains with high overall similarities, but no single character could cause or prevent 

group membership. The work (Williams et al., 1983a and b) clarified relationships 

within the genus and led to an extensive revision of the number of genera assigned 

to the family Streptomycetaceae. It also provided information which was useful for 

formulating selective isolation procedures (Williams and Wellington, 1982).
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Several probabilistic identification matrices have been constructed from the 

Williams et al (1983a) data. The first used forty one distinguishing characters to 

identify 23 major phena and was a valuable framework for the identification of 

Streptomyces isolates (Williams et al., 1983a). Two further matrices were 

constructed by Langham et al. (1989), one comprised all major clusters from the 

original classification and the other contained minor and single member clusters. 

This extended the number of streptomycetes which could be identified 

probabilistically, whilst utilizing the minimum number of characters required for 

discriminating taxa.

The great diversity of the genus made it difficult to devise a single workable 

identification matrix and large numbers of time-consuming tests were therefore 

required to identify unknown isolates. Several rapid tests have emerged over the last 

five years, culminating in the introduction of miniaturized numerical identification 

tests (Kampfer and Kroppenstedt, 1991a). The system was based on physiological 

characters from which a single probabilistic identification matrix was constructed 

for all major and minor clusters (Kampfer et a l., 1991b). Morphological criteria 

were not included in this study because they were thought to be too difficult to 

determine. Many of the groups found by Williams et al. (1983a) were confirmed, 

although some were not detected and the authors concluded that the genus was still 

overspeciated and suggested the amalgamation of certain species groups and the 

inclusion of streptoverticillia within the genus Streptomyces. Streptoverticillium has 

been formally reduced to synonomy with Streptomyces by Witt and Stackebrandt 

(1990) and the genus now also includes Kitasatosporia (Wellington et al., 1992) 

and the genera Actinopycnidium, Chainia, Elytrosporangium and Microellobisporia 

(Goodfellow et al., 1986; Williams eta l., 1989b).
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1.2.2. Chemotaxonomic Tests used for Classifying Streptomycetes

Carbon source oxidation tests have been used in several numerical taxonomic 

studies (Williams et at.; 1983a, Kampfer et at., 1991a) and the more traditional 

methods relying on detecting pH changes were often biased towards sugar 

utilization tests. Recently, Bochner (1989) devised an automated microtitre system, 

which used up to 93 carbon sources for differentiating between Gram-positive 

organisms. A redox dye indicated increased respiration and the results were 

automatically stored on a computer database which was equipped with systematic 

techniques. Other recently developed methods, which have proved useful for 

detecting enzymatic activity, have used chromogenic and fluorogenic substrates. For 

example, Goodfellow et at. (1987) found that groups, which were defined by 

Williams et at. (1983a), had individual patterns of enzyme activity, whilst Kampfer 

et at. (1991a), who incorporated similar tests in their numerical study, obtained 

different results from the work of Williams et at (1983a).

Pyrolysis mass spectrometry has been used to give whole cell fingerprints of 

a variety of organisms including streptomycetes (Gutteridge, 1983). Protein 

profiling has also proved to be a useful taxonomic tool (Kersters, 1983). The latter 

technique, involves submitting soluble cellular proteins to electrophoresis and 

extracting the banding pattern obtained on the gel, which can then be compared with 

the profiles of other strains. For example, Ochi (1989) made ribosomal protein 

patterns using two-dimensional gels, which showed specific profiles within 

Streptomyces species, whilst Vesselinova and Tsvetkov (personal communication) 

have shown discrimination between variants of the same strain. Serology has also 

been applied to Streptomyces taxonomy and although it previously relied upon 

Ouchterlony double diffusion assays, it has now been improved by the use of 

Enzyme Linked Immunosorbant Assays (Kirby and Rybicld, 1986).

Isoprenoid quinones are present in most bacterial membranes and the 

menaquinones of streptomycetes, which vary in length and saturation, have proved 

valuable in Streptomyces taxonomy (Alderson et at., 1983). The composition of
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isoprenoid quinones changes as the culture ages and so harvesting must talm place at 

specific stages in the growth cycle (Saddler et a l, 1986). Fatty acids are also 

present in bacterial membranes (Kaneda, 1991) and Saddler et al. (1986) showed 

that the fatty acid profiles of Streptomyces cyaneus remained relatively constant 

during both the stationary phase and logarithmic growth. Fatty acid methyl esters 

(FAMEs) have most frequently been used to differentiate organisms above the genus 

level (Goodfellow, 1989), although Saddler et al. (1987) partially recovered a group 

of S. cyaneus strains from a heterogeneous mixture of related taxa by using FAME 

profiles.

DNA hybridization studies on streptomycetes have been carried out by 

various workers, who have then compared their results with species groups which 

were defined using other methods. Mordarslri et al. (1985) carried out 

hybridizations using DNA from members of the Streptomyces albidoflavus, 

Streptomyces halstedii and Streptomyces griseus clusters, which were previously 

defined by Williams et al. (1983a) and found partial congruence between the two 

studies. In a similar study, Labeda and Lyons (1991) carried out extensive DNA- 

DNA hybridizations on the S. cyaneus cluster, but found that hybridization values 

spanned a wide range (40%-60ft) and were not consistent with strains belonging to 

the same species. Another molecular approach has been to obtain fingerprints of 

bacterial DNA using restriction analysis with pulse field electrophoresis; the 

patterns produced appear to be highly strain specific and reproducible (K J. Forbes, 

personal communication).

Information from RNA sequencing studies has been used to design species 

specific oligonucleotide probes (Stackebrandt and Charfreitag, 1990; Kemmerling et 

al., 1989; Witt et al., 1990). Studies to date have concentrated on 16S rRNA 

sequences in three regions of hypervariability, however Stackebrandt et al. (1991) 

reported that only one third of strains tested could be distinguished. Probes from the 

gamma region of 16S rRNA, 23S rRNA and the intercistronic spacer remain under
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investigation, although the variation in SS rRNA was considered unlikely to be 

sufficient for the construction of species-specific probes (Stackebrandt et al., 1991).

1.2.3. Systematic Methods Used in Taxonomic Studies.

Various aspects of the history and development of taxonomic methods have 

been reviewed by Cain (1962), Cowan (1962) and Sneath (1962), whilst thorough 

descriptions of techniques that are used are given by Alderson (1985), Sneath and 

Sokal (1973) and Austin and Priest (1986).

Classifications can be constructed to serve a variety of purposes and 

phylogenic, genealogical or cladistic classifications (often based on sequence data) 

attempt to trace evolutionary pathways, whilst taxonomic classifications aim to 

make generalisations (with respect to a wide range of tests) about their members 

(Sneath, 1962). Both are equivalent to phenetic classifications, provided there has 

been no parallel or convergent evolution (Sneath and Sokal, 1973) and they aim to 

arrange organisms into groups based on high overall similarities and which contain 

polythetic taxa (Sneath, 1962).

Special purpose classifications are designed for particular disciplines, where 

traditional taxonomy is inadequate because of its general nature (eg. a classification 

system for the food industry might only contain spoilage organisms, Heslop- 

Harrison, 1962). Such methods of grouping strains are artificial and are based on 

restricted information; they are largely monothetic and a single feature can be 

sufficient for group membership (Sneath, 1962).

For a good taxonomic classification the number of strains or operational 

taxonomic units (OTU's) should be greater than sixty to take account of strain 

variation and sampling error (Sneath and Sokal, 1973). Larger numbers of strains 

are required for studies which aim to define taxa than for those which examine 

relationships within species groups (Austin and Priest, 1986). Sokal (1985) stated 

that stable classifications can result from as few as 60 characters, although the 

optimum number of tests for a taxonomic study was given as 100 to 150 by Austin
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and Priest (1986). The tests, chosen for a numerical study, should be reproducible, 

standardized, easy to assess and appropriate for all strains (Goodfellow and 

Dickenson, 1983), whilst the strains should not be biased towards a particular group 

and should include reference organisms. Suitable statistics can be employed to 

detect test error (Sneath and Johnson, 1972).

After the tests have been scored the data must be coded; qualitative data is 

represented in binary form (1 or 0). Quantitative data can also be represented by 

binary numbers if one arbitrarily divides the scale up into one or more two state 

characters (Sneath and Sokal, 1973) or alternatively it can be computed in its raw 

form. Certain forms of qualitative data can be multi-state; for example colours and 

these can be divided into several two state characters.

The next stage is to calculate similarity and this is achieved using various 

coefficients, such as those formulated by Jaccard (Sneath, 1957) Sj (a/a+b+c), 

Dice (1943), S<jice (2a/2a+ b+c) and Sokal and Michener (1958) Ssm (a+d/ 

a+ b + c+ d ). The symbols refer to the number of positive and negative matches (a 

and d respectively) and dissimilar results (c and b). Distance coefficients, such as 

Euclidian distance (Sokal, 1961) measure geometrical distances between OTUs; this 

particular coefficient satisfies the Pythagoras theorem by measuring the distance 

between OTUs in terms of co-ordinates of a right angle. The choice of coefficient 

can be determined by the nature of the original data matrix and an association 

coefficient is preferred for binary data, whereas a distance coefficient is suitable for 

multi-state data (Sokal, 1983). Most taxonomic studies have used Ssm or Sj 

(Goodfellow and Dickenson, 1983).

Taxonomic structure is found by ordering OTUs into groups of high overall 

similarity; hierarchical clustering uses an algorithm to search the data matrix for the 

best matched pairs of OTUs. The couple with the highest similarity value is treated 

as a single OTU and the computer retrieves the next most similar OTU to form a 

group. Algorithms differ by their criterion for group admission; single linkage 

(nearest neighbour clustering, Sneath, 1957) joins an OTU to an established group
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at the highest similarity level of any member of that group and complete linkage 

(furthest neighbour clustering, Sorensen, 1948) clustering joins the OTU at the 

lowest similarity, whilst average linkage (the unweighted pair group method of 

arithmetic averages or UPGMA, Sokal and Michener, 1958) joins a new OTU at 

the average similarity for all group members. The output from these processes is 

usually represented as a hierarchical taxonomic tree, which summarises the salient 

points and can be related to taxonomic rank (Sneath 1962). However such trees can 

distort the distances between major groups (Alderson, 1985). UPGMA is reportedly 

the algorithm of choice, because it gives high within-group similarity (Sokal, 1985), 

although single linkage is often used for comparison against UPGMA (Goodfellow 

and Dickenson, 1985).

All taxonomic relationships are multi-dimensional and ordination methods 

allow up to three dimensions to be observed and give a more realistic measure of 

the distances between groups than a dendrogram. They are most useful if the 

relationship between entities is continuous, but they may distort distances between 

close neighbours (Alderson, 1985). OTUs are viewed in phenetic or taxonomic 

space and their arrangement depends to some extent on the position from which they 

are observed. Examples include principle co-ordinates analysis, which use distance 

matrices (PCD) and principle components analysis (PCA), which use distance and 

similarity matrices. Computing the principle components of the resulting matrix 

involves calculating its eigenvalues and eigenvectors. The eigenvalues are 

orthogonal and a framework of low dimensionality accounts for a large proportion 

of the variation in the original data (Sneath and Sokal, 1973, Alderson, 1985); both 

methods can give similar results, but PCD is less disturbed by missing data than 

PC A.

Sackin (1985) pointed out that differences between classifications can be due 

to addition or removal of characters or OTUs and changes in character coding, 

coefficient and algorithm. Good classifications should remain invariant when 

different methods are used for measuring similarity and for the clustering data.

8



They should also remain stable when new tests and strains are added (Sokal, 1985). 

Strain similarity can be distorted by test error, reproducibility and the statistics used 

and it has therefore been recommended that duplicate strains amounting to 5% of 

the total should be included as an internal check (Goodfellow and Dickenson, 

1985).

In addition, the taxonomic map should adequately represent the original data 

matrix (known as goodness of fit) and this can be assessed by calculating cophenetic 

values. A good classification shows little overlap between phena (Goodfellow and 

Dickenson, 1985) and Alderson (1985) pointed out that care should be taken when 

trying to interpret ordination diagrams, since clusters which are distinct in the full 

hyperspace may overlap in low dimensional plots. However, there may be a 

tendency to overlook the fact that many organisms from natural habitats do not form 

tight clusters (Goodfellow and Dickenson, 1985) and hierarchical methods may 

impose a hierarchy on data which is not warranted.

Identification is the culmination of a taxonomic procedure and has been 

reviewed by Holmes and Hill (1985). The difference between the frequency of a test 

in one taxon and that in another can be used to choose good distinguishing 

characters (Sneath, 1962). Not all members of a taxon give uniform results, but 

values of 80-85% of organisms is considered positive and 15-20% negative for the 

overall phenotype of the group (Austin and Priest, 1986). Computer-based 

identification systems use diagnostic tables and compare results from unknowns with 

stored data. The likelihood of an isolate belonging to a given taxon is the 

probability of obtaining the observed test result with a strain of this taxon and is 

derived by multiplying together the probabilities o f individual test results.
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1.3. The Biosynthesis. Evolution and Natural Role o f Antibiotics in Streptomycetes.

1.3.1. Interactions Between Primary and Secondary Metabolism in Streptomycetes.

Primary metabolism is an interrelated series of enzyme-catalysed reactions, 

which are ubiquitous to all microorganisms and which function under a very wide 

range of growth conditions; the physiological processes involved serve known roles 

and are important for cellular growth. In this type of metabolism, biosynthetic 

precursors are converted into essential macromolecules (ie. DNA, RNA, protein, 

lipids and polysaccharides) which are formed as single definite products. Primary 

metabolites usually have relatively simple constitutions and intermediate products 

rarely accumulate, because the relevant processes are finely regulated.

Secondary metabolites are produced by certain taxonomically defined groups 

of organisms, such as the actinomytcetes, and, although they can reflect common 

molecules present in particular groups (Lechevalier, 1977), they are usually the 

distinctive products of individual strains (Arai et al., 1976). Well-defined 

physiological conditions are required for secondary metabolism and it often occurs 

after growth-associated cellular processes have declined. Secondary metabolites are 

structurally diverse compounds with intricate molecular frameworks and, although 

they have no known role in the internal economy of the producer, they often exibit 

biological activity. In addition, they have low molecular weights and are usually 

formed by multi-enzyme complexes as mixtures of closely related substances.

Secondary metabolites belong to a large number of different chemical classes 

(Figure 1.1.), but are formed by a few basic biosynthetic pathways (Turner, 1973) 

which are related to and use the intermediates of primary metabolism (Figure 1.2.). 

In primary metabolism, the catabolism of glucose occurs via pyruvate and acetate 

and then joins the tricarboxylic acid cycle (TCA). Alternatively hexose 

monophosphate is shunted through the pentose phosphate pathway and returned to 

glycolysis in the form of trióse phosphate. Glucose is eventually converted to 

carbon dioxide, water and energy (ATP), although
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Fig. 1.1. The chemical classification o f antibiotics.

The diagram summarizes a method for classifying antibiotics into families and 

subfamilies, which is based on their chemical structures. It follows the same 

classification as that used in the Berdy database (1988), where antibiotics are further 

sub-divided into groups and then individual antibiotics.
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Fig. 1.2. The interactions of primary and secondary metabolic pathways.

The diagram gives a brief summary which shows how the pathways of 

secondary metabolism seen in streptomycetes are derived from the catabolic and 

anabolic pathways of primary metabolism.
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intermediates of the glycolytic pathway are used in the anabolism of various 

primary metabolites, such as amino acids, fatty acids and nucleosides.

The entire carbon skeleton of glucose is incorporated into aminoglycosides 

(eg. kanamycin, neomycin and streptomycin (Grisebach, 1978), whilst other 

antibiotics, such as erythromycin and novobiocin contain only a portion in the form 

of a glycoside moiety (Kominek, 1972; Weber et a l., 1985; Stanzak et al., 1986). 

Ribose from the pentose phosphate pathway can be used to form nucleosides or 

structurally related antibiotics, such as 5-azacytidine, tubercidin and blasticidin S. 

The biosynthesis of the sugar components in antibiotics has been reviewed in detail 

by Grisebach (1978).

The shildmic acid pathway of aromatic amino acid synthesis originates from 

erythrose 4 phosphate in the pentose phosphate pathway and phosphoenolpyruvate 

from glycolysis. Antibiotics such as lincomycin, actinomycin, thiostrepton and 

novobiocin are produced directly from aromatic amino acid precursors, whilst 

ansamycins, such as geldanamycin and herbimycin (Ghisalba et al., 1984) arise 

from intermediates which lead to shildmate formation. Pathways for the formation 

of other amino acids, which are involved in antibiotic formation, branch off from 

triose phosphate (eg. Beta-lactams; Pratt, 1989), pyruvate (eg. bialaphos; Murakami 

et al., 1986), acetate and the TCA cycle (eg. blasticidin S; Prabhakaran and Gould, 

1990). In addition to the standard 18 L-amino acids of primary metabolism 

microorganisms can use D-amino acids and methyl, dihydro and hydroxy amino 

acid derivatives to form bioactive cyclic peptides (eg. virgineomycin and 

cyclosporin A; Monaghan and Teaks, 1990). Peptide antibiotic formation has been 

described extensively by Kleinhauf and von Dohren (1987).

Carboxylation of acetate produces malonate, the basic building block of fatty 

acid biosynthesis, whilst further condensations of these two molecules can lead to 

the coenzyme-A derivatives of propionate, butyrate, 2-methyl malonate and 2-ethyl 

malonate, which are involved in polyketide biosynthesis (Floss et al., 1986; Nisbet 

and Porter, 1989). The substrate specificity of enzyme complexes involved in
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polyketide biosynthesis is much lower than that required by enzymes involved in 

fatty acid anabolism (Kaneda, 1991). Biosynthesis begins with a starter unit (acetate 

or some other compound) and a highly variable number of malonate, acetate, 

propionate, butyrate, 2-methyl malonate or 2-ethyl malonate units which become 

attached together by successive condensation steps. Chain elongation is not 

dependent on whether the beta-keto group is modified prior to the next condensation 

step and some of the keto groups are maintained in the final structure, although 

most are simply reduced to hydroxyl groups. Products of this pathway include 

actinorhodin, oxytetracycline (Binnie et al., 1989; McDowell et al., 1991) and 

polyene macrolides, such as erythromycin and polyethers, such as nigericin (Martin, 

1977). The isoprenoids, steroids and terpenes are formed via mevalonate from 

acetate, and geosmin, which gives acdnomycetes their characteristic odour, is also 

formed via this route (Bendy and Megan than, 1981).

1.3.2. The Diversity o f Secondary Metabolites from Streptomvcetes.

Table 1.1 illustrates the diversity of secondary metabolites with respect to 

their mode of action, chemical class and spectrum of activity and Fig. 1.1. shows 

the chemical classification of antibiotic groups and sub-families by their chemical 

structure and biosynthetic origins. Each sub-family contains a number of groups, for 

example aminoglycoside antibiotics comprise streptamine, 2-deoxystreptamine and 

inositol-inoseamine derivatives (eg streptomycin, neomycin and validomycin 

respectively), other aminocyclitols (fortimycin) and aminohexitols (sorbistin) 

(Lechevalier et a l., 1988). There are over one hundred chemical groups to which 

the six thousand or more different antibiotics discovered so far (Berdy, 1988) can 

belong and this constitutes an enormous structural diversity.

The activity spectra shown by antibiotics can differ substantially between 

compounds belonging to the same group. For example, although the ansamycins 

geldanamycin and herbimycin are both antifungal compounds, this property is much 

weaker in herbimycin, whose main activities are against plants and viruses.
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Table 1.1. The chemical groups, inodes of action and activity spectra of selected 

antibiotics.

This table shows the diversity of secondary metabolites from streptomycetes (and 

fungi) and also includes information on antibiotics which were of interest with 

respect to the research presented later in this thesis; these were bialaphos, 

herbimycin, geldanamycin, nigericin, erythromycin, neomycin, novobiocin, 

streptomycin, thiostrepton, viomycin, blasticidin S, kanamycin, Oxytetracycline and 

penicillin G.

Key to activity spectra;

F — fungicidal 

G +  = anti-Gram-positive 

G- ”  anti-Gram-negative 

H = herbicidal 

I =  insecticidal 

M ”  anti-mycoplasmal 

P “  anti-protozoal 

T -  anti-tumour activity 

V *  anti-viral
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Geldanamycin has a broader spectrum of activity including antagonism 

against tumours, protozoa, Gram-negative and Gram-positive bacteria. Other 

macrolide antibiotics are antiparasitic, antibacterial, antifungal, antiviral and 

antitumour agents, enzyme inhibitors, immunomodulators and coccidiostats, 

showing that this family exhibits a wide range of biological activities (Monaghan 

and Teaks, 1990).

The modes of action of bioactive secondary metabolites can be categorised 

into a series of broad groups based on the physiological processes with which they 

interact and targets include proteases, glucosidases, chitinases and membrane 

transport; they can also interfere with the biosynthesis of DNA, RNA, proteins and 

cell wall components. The specific activity of antibiotics can depend on their 

molecular shape and the distribution o f specific functional groups, although 

compounds with very different structures can act on the same metabolic process 

(Vining, 1990).

1.3.3. The Evolution of Antibiotics and its Relationship to Antibiotic Function.

ZShner's theory of "elbow room in biochemical evolution" (1982) suggests 

that secondary metabolic pathways arise in a games room, where a reasonable level 

of low cost inventive evolution is tolerated. ZShner et al. (1982) hypothesized that 

random combinations of catalytic sequences which gave no advantage to an 

organism would eventually be eliminated, whilst advantageous combinations would 

be selected for and maintained. This view o f secondary metabolism as evolution in 

progress was shared by Hotter (1982), who believed that it increased the ability of 

organisms to cope with a changing environment and Vining (1990), who postulated 

that new secondary metabolic pathways were acquired when the precursors of 

primary metabolism became modified by a mutated enzyme. The resulting abnormal 

product was then modified by random permutations of existing enzymes and 

advantageous pathways were then be improved by further mutation and selection. 

Zfthner's model also accommodates horizontal gene transfer by "division of labour



in biochemical evolution.” Here novel compounds can find a function in an 

organism other than the one in which they originated. Recent sequence comparisons 

were consistent with Zahner's gene transfer theory (L.C. Vining, personal 

communication); for instance, amino acid sequence similarity between fatty acid 

synthases in animals and polyketide synthases in Penicillium was greater than when 

both enzymes from Pemcillium were compared. This indicated to Vining that 

secondary metabolism evolved due to a  high rate of gene transfer, rather than 

coevolution.

Williams et al. (1989a) rejected the idea that natural products could have 

originated from initially neutral mutations, arguing that this was an unlikely route 

for the formation of the highly ordered gene clusters which give rise to antibiotic 

production. Instead they reasoned that whilst essential structures and mechanisms 

evolved early in the evolution of living organisms and are highly conserved, the 

increased diversification of individual microbial niches led to a later development in 

genotypic and phenotypic variation. Williams et al. (1989a) believed that natural 

product diversity co-evolved alongside species variety and gave examples of specific 

compounds, which may have evolved to act in an antagonistic capacity with 

neighbouring organisms. The sophisticated receptor-antibiotic complementarity of 

these molecules was seen as evidence for their evolution under the pressures of 

natural selection specifically as a strategy for survival. Piepersberg et al. (1991) 

took a similar view, believing that secondary metabolism has undergone a long term 

of evolution, but thought that this may have been in parallel with the metabolism of 

proteins or RNA with the complete pathways being diversified, degenerated or 

individualized at a later stage. These workers also suggested that the main period 

where antibiotics had general and essential functions could have been in precellular 

times. This is in agreement with recent studies by Julian Davies (personal 

communication), who has been studying the interactions of certain aminoglycoside 

and peptide antibiotics with group I introns (which are related to rRNA with respect
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to catalytic function). This work has led to the hypothesis that the original function 

o f  these molecules could have been to interact with an early form of catalytic RNA.

The gathering of production genes to form clusters could be viewed as a 

means for conservation under strong selective pressures (the nature of which 

remains unknown), but this may also allow the transfer of whole biosynthetic 

pathways (Piepersberg et a l., 1991). Piepersberg et al. (1991) believe that evolution 

continued as production genes were acquired, lost and exchanged and that enzyme 

families involved in secondary metabolism were derived from a few ancient protein 

groups (not necessarily in producer organisms), whose substrate specificities then 

evolved divergently and convergently to form various catalytic functions observed 

today. It is known that genes involved in secondary metabolism are frequently in 

unstable genomic segments (Altenbuchner and Cullum, 1985; Flett and Cullum, 

1987; Birch et a l., 1989; Hausler et al., 1989; Leblond et al., 1989) and gene 

duplication could also be a means of evolution. Genetic instability is often 

associated with amplification and deletion events in genomic "hotspots* (Demuyter 

et al., 1991; Schrempf, 1991), which can involve up to 10% of the streptomycete 

genome (Cullum et al., 1991). Variable streptomycete phenotypes may also be 

explained by the loss of plasmids (Schrempf, 1982). Hopwood et al. (1992) views 

gene duplication events as a means by which the different forms of polyketide 

synthase may have evolved.

1.3.4. Theories Proposed for the Function of Secondary Metabolites

One of the leading questions in the study of secondary metabolism is "why 

are antibiotics biosynthesized?" Even though antibiotics are a highly diverse group 

o f  compounds, many of the early hypotheses suggested that they had a universal 

function. This concept is no longer supported (Vining, 1990) and the present view 

is that it probably serves a selection of different purposes. There is a great deal of 

evidence for the functionality of secondary metabolism; firstly the molecules are 

structurally complex and often show a high degree of complementarity to receptors
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at their sites of action. This may suggest a highly sophisticated structure, function 

relationship (Williams et al., 1989a). Secondly antibiotic biosynthesis is an energy- 

requiring process and involves a series of complicated reactions, which are are 

frequently catalysed by unique enzymes and which can respond to environmental 

factors. Large tracts of DNA are consigned to antibiotic production (Binnie et al., 

1989; Stanzack et al., 1990) and the relevant biosynthesis genes are organised into 

clusters along with regulatory elements and resistance determinants (Chater and 

Bruton, 1985; Malpartida et al,. 1986; Murakami et al., 1988; Binnie et al., 1989; 

Stanzak et al., 1990).

It may be possible that antibiotics have no function and are an artefact of 

laboratory cultivation or else they may be produced at such low levels in the natural 

environment that they remain intracellular. Demain (1981, 1984) has stated several 

times that antibiotic production in non-autoc laved non-amended soil has been 

detected and although Williams and Vickers (1986) maintained that convincing 

evidence was lacking, they believed that production could be possible at low levels 

within micro-habitats. More recent evidence for antibiotic production in the soil has 

been provided by Weller and Thomashow (1990), who believe that secondary 

metabolites are responsible for the success of certain biological control agents.

Some early theories on the function of secondary metabolites considered that 

they were vehicles for unwanted primary metabolites, which had formed from the 

metabolism of reactive intermediates and had deleteriously accumulated within the 

cell (Bu'Lock et al, 196S). The fact that many antibiotics are highly toxic 

themselves was used as evidence against the cellular waste or detoxification theories 

and Tempest and Neijssel (197S) put forward a modified theory of overflow 

metabolism. Secondary metabolites were now thought to be adventitious shunt 

products, which were formed by the action of normal non-specific enzymes on 

abnormal accumulations of primary intermediates and the biological activity of 

secondary metabolites was therefore presumed to be accidental. Demain (1984) 

pointed out that there was an array of regulatory mechanisms to maintain
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endogenous products at low levels and that such a system would require the loss of 

these resulting in competitive disadvantages. The above theories are now discarded 

by many scientists (Demain 1984; Williams et al. 1989a; Vinning 1990), who argue 

against antibiotic-producing organisms expending large amounts of energy, DNA 

and enzymes in creating compounds, which at the outset have no use. It has been 

suggested that the non-specific enzymes involved in the overflow theory may belong 

to vestigial remnants of a formerly useful pathways. However the existence of 

dormant pathways is questionable when loss due to mutations and lack of selective 

pressure is considered.

There are certain cases where shunt products may be a bona fide  solution to 

an organism's problem. Hood et al. (1992) have shown that proline transport and 

catabolism are constitutive in a  wild type strain of Streptomyces coelicolor. Mutant 

cells, which cannot utilise proline dispose of it in the form o f undecylprodigiosin 

excreted into the medium. These workers suggest that the capacity to produce an 

antibiotic from an amino acid, creates a sink for excessive amounts of this precursor 

and that the need to tightly regulate its metabolism is negated; they expect 

regulation to be tighter in cases where there is no relevant sink compound. Vanek 

and Mikulik (1978) commented that identical sugar precursors are used in cell wall 

and aminoglycoside biosynthesis and both processes use the same initial enzymes; 

consequently cell wall inhibitors can lead to increased aminoglycoside production.

Another early theory o f  antibiotic function was that they were nutrient 

reserves and although this theory has been dismissed because antibiotics are usually 

excreted, it may be true for specific cases. The streptomycin biosynthesis pathway 

may have developed under positive selection because guanido inositol derivatives 

served a function as nutrient reserves (Walker 1990). Another hypothesis given by 

Bu'LocK (1961) was that secondary metabolism maintained enzymes from primary 

metabolism at a standby level during deleterious growth conditions so that 

producing organisms could resume normal activity more quickly than dormant 

species.
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Some believe that all secondary metabolites have a biological function and 

more recently specific functions have been proposed for individual antibiotics and 

groups of compounds (Drautz and Z3hner, 1985). Ionophores are produced by 

Nocardia, Streptomyces and Micromonospora and can transport specific ions across 

cell membranes and there is evidence that this plays a useful role in the producer 

organisms. For example the siderophores and sideramines are involved in the uptake 

of ferrous and ferric ions (Hutter, 1982) and producers of these compounds have 

specific membrane proteins for their uptake. Such strains probably have a survival 

advantage in low iron environments because they are not detrimentally affected by 

iron depletion. A similar case has recently been cited by Vinning (1990), where a 

macrotetralide-producing S. griseus was able to survive in a high sodium low 

potassium environment; this was in direct contrast to a non-producing strain. 

Williams et al. (1989a) were convinced that the ionophore lasalocid must have a 

function because out of all the alternative structural configurations this compound 

had the best barium-binding capabilities.

Antibiotics have also been proposed as weapons against competitive species. 

The bleomycins, produced by Streptomyces verticulus have been reported to act by 

binding to guanine containing nucleic acids, especially at sites with alternate 

purine/pyrimidine bases and sequences with C and T 's are cleaved preferentially. 

Mitomycin C, from Streptomyces caespitonis, alkylates DNA and causes cross- 

linkages to form in helical DNA; it also inhibits DNA polymerase and might inhibit 

DNA repair. This antibiotic remains inactive until the quinone is enzymatically 

reduced by the victim, causing activation of the carbamate and azidine moieties. A 

similar example is given by calichemycin a compound which remains latent until 

activated by nucleophilic attack, when it develops the ability to cleave double- 

stranded DNA (specifically after TCCT). Williams et al. (1989a) suggested that the 

function in all of the above cases was cleavage of non-self DNA.

Functions have also been proposed for certain aminoglycosides and Barabas 

et al. (1976) suggested that streptomycin might be involved in building the cell wall
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network in S. griseus because streptidine (a component of the streptomycin 

molecule) was a cell wall constituent. Szabo et al. (1985) found streptomycin was 

bound to the cell walls of hyphae and the spores of S. griseus. The antibiotic was 

liberated mainly in germinating spores and was implicated in the protection of 

young hyphae. Aminoglycoside antibiotics have also been implicated as regulators 

of cell wall lysis, since streptomycin has been shown to accelerate the action of 

autolytic enzymes (Szabo et al., 1990).

Some antibiotics may be agents of metabolic change and may modify gene 

activity in response to the environment or they could link various activities, which 

are involved in cytodifferentiation; A-factor, which positively controls sporulation 

and streptomycin production in S.griseus is an example of this (Horinouchi and 

Beppu, 1986). Intraspecific pheromones which coordinate sporulation within a 

colony have also been observed in several streptomycetes, namely Streptomyces 

viridochromogenes, Streptomyces bikiniensis and Streptomyces cyaneofusculus 

(Professor T. Beppu, personal communication). Antibiotics which affect 

differentiation include pamamycin, which induced the formation of aerial mycelium 

and inhibited the uptake of inorganic phosphorus and nucleosides in its producer, 

Streptomyces albidoniger (Pogell, 1984) and methylenomycin A and lincomycin 

(high concentrations), which inhibited aerial mycelium formation in S.coelicolot 

(Pogell, 1984). However, low concentrations of lincomycin enhance the production 

of aerial mycelium.

Some antibiotics may confer activity against the activities o f organisms from 

other species and the term ecomone can be used to describe an antibiotic activity 

which is specifically directed at these organisms in the natural environment. Such an 

activity could confer a selective advantage on producing organisms and the 

acceptance that microbial secondary metabolites might be formed in soil 

microenvironments has helped this idea. For example Rothrock and Gottlieb (1984) 

described the production of geldanamycin and two other antibiotics by a strain of 

Streptomyces hygroscoplcus in sterile soil containing diseased plants.
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Martin and Demain (1980) suggested that secondary metabolites could be 

produced in microenvironments and might confer antimicrobial activities or even 

reducing predation by protozoa , but to follow the theory through, substances which 

act on the physiology of higher animals and their immune system must be 

adequately accounted for; for example B-factor is produced by yeast cells and 

functions in nocardia by stimulating rifamycin production and it also has a structural 

similarity to cAMP. Beppu (198S) suggested that some effectors in actinomycetes 

could be universal signals or messengers for cellular functions in both prokaryotes 

and eukaryotes. Williams et at. (1989a) expanded this idea by suggesting that the 

molecules which permit specialized glands, neurones and immune blood and tumour 

cells to communicate (eg. hormones and receptors) were present in unicellular 

organisms before these larger organs evolved. Some fungi produce sex hormones 

similar to testosterone, oestradiol, antherdiol and oogoniol and there are also fungal 

peptide hormones which lead to animal cell proliferation and other compounds (eg. 

FK506), which can activate T-cells. It has been accepted for a long time that 

chemical defenses play an important role in the survival of plants and Williams et 

al. (1989a), who pointed out that natural products are most common in organisms 

which lack an immune system, believe that this is also true for microorganisms.

On the whole the different reputable concepts neither exclude nor contradict 

one another and each probably plays a part in the true explanation of secondary 

metabolism, which must encompass mechanisms of evolution, the development of 

individual functions and nutritional and regulatory aspects.

1.4. The Regulation and Control of Secondary Metabolism.

The course of events associated with the production of antibiotics in the 

laboratory include a phase of biomass formation (the trophophase) followed by a 

decline in growth rate and a period of natural product synthesis (the idiophase). 

Demain (1984, 1983) has suggested that a similar growth and production profile
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might be advantageous in the natural environment if the product is either an effector 

of differentiation or a potent antibiotic which can inhibit the growth of the producer.

Microbial growth is limited in soil ecosystems because nutrients are scarce 

and so appropriate control systems are required (Mateju, et al. , 1985). The various 

control mechanisms which regulate secondary metabolism in streptomycetes include 

environmental factors such as carbon, nitrogen, phosphorus, salts, trace metals, 

oxygen and light and regulation can be through intermediary metabolism or by 

feedback regulation in secondary metabolic pathways. The negligible expression of 

antibiotic biosynthesis genes at high growth rates could be due to the repression of 

inducible catabolic enzymes (Hutter, 1982) or the inhibition o f enzyme activity 

(Iwai and Omura, 1981).

14.1. Carbon Source Regulation.

Glucose exerts carbon catabolite regulation in many fermentations (Iwai and 

Omura, 1981) and its catabolism accompanies growth. If another substrate is 

present in the same medium then antibiotic production usually accompanies the 

utilization of this second compound. The glucose effect interferes with the synthesis 

of many antibiotics including oleandomycin (Belousova et al., 1985), tylosin 

(Behai, 1985) and granaticin (James and Edwards, 1988) and is also important for 

the interconversions of members of an idiolite family. Carbon source regulation can 

be diminished and antibiotic production stimulated by adding the carbon source 

periodically as has been shown for the biosynthesis of both candicidin and polyenes 

(Iwai and Omura, 1981).

When glycerol, sucrose and D-mannose as were used as carbon sources in 

cultures of Streptomyces erythraea they delayed erythromycin production, but 

increased growth (Sanchez et at., 1984). Erythromycin biosynthesis was only 

transiently repressed by D-glucose, whilst citrate, propanol and propionate 

stimulated production of this antibiotic and the effect was thought to be due to 

induction of propionyl-Co-A carboxylase, one of the first enzymes involved in
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erythromycin biosynthesis (Sanchez et a l., 1984). Glucose and glycerol are known 

to completely repress the formation of several enzymes, including tryptophan 

pyrrolase, kynurenine formamidase II, hydroxykynureninase and phenoxazinone 

synthase, which are involved in actinomycin D biosynthesis by Streptomyces 

parvulus (Katz et al., 1984, Jones, 1985). Other carbon sources exert a suppressive 

effect, such as citrate on the production o f novobiocin, arabinose on heliomycin 

biosynthesis (Vinogradova et al., 1985), glycerol on cephalosporin synthesis 

(Demain, 1985) and mannitol and starch on granaticin production (James and 

Edwards, 1988).

1.4.2. Nitrogen Source Regulation.

Repression of antibiotic biosynthesis by nitrogen sources such as ammonium 

ions and certain amino acids is common in streptomycetes (Demain, 1985). 

Microbial nitrogen metabolism has been reviewed by Grife (1982), who concluded 

that the control of antibiotic formation by nitrogen sources can take three forms. 

These are (i) positive control, where production is enhanced, (ii) negative control, 

where antibiotics accumulate after the nitrogen source has been consumed and (iii) 

control o f the product spectrum. Positive nitrogen regulation was thought to be 

important in rifamycin SV biosynthesis because nitrate induced nitrate and nitrite 

reductases and enhanced the activity of various dehydrogenases. It also caused a 

decline in cellular lipid content, suggesting that the presence of nitrate had increased 

rifamycin biosynthesis at their expense (Chiao et al. , 1988).

Nitrogen metabolites can regulate primary metabolism by repressing 

enzymes that act on nitrogen-containing substrates and changes to both the type and 

concentration of nitrogen sources can influence antibiotic production (Iwai and 

Omura, 1981). For example, Sanchez et al (1984) found that ammonium strongly 

repressed erythromycin biosynthesis in S. erythraea and that the extent of 

suppression was proportional to the type of ammonium salt used and its 

concentration. Differences in erythromycin production were also observed in the
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presence of various amino acids and alanine was preferable for both growth and 

antibiotic formation. Katz et al. (1984) reported that other amino acids, namely L- 

glutamate, aspartate, alanine and D-valine, repressed the synthesis o f enzymes 

which was involved in actinomycin D production.

Rapidly utilised nitrogen sources such as ammonium ion, nitrate and amino 

acids are good growth substrates, but they sometimes inhibit antibiotic production; 

examples include oleandomycin biosynthesis by Streptomyces antibioticus, and the 

production of novobiocin by Streptomyces niveus. Ammonium ion also exerts a 

negative effect on the production of streptomycin, cephalosporins, chloramphenicol, 

leucomycin, tylosin and some rifamycins (Demain, 1985).

1.4.3. Regulation bv Inorganic Phosphorus (Pit.

Many idiolites are produced at concentrations of inorganic phosphate (Pi), 

which are sub-optimal for growth (Demain, 1985) and there are at least two 

mechanisms responsible for this effect. Pi can repress or inhibit the phosphatases 

which are involved in antibiotic synthesis, but it can also repress intracellular 

effectors or possibly other synthetases. Antibiotics with phosphorylated 

intermediates, such as streptomycin, neomycin, viomycin, turimycin and 

nourseothricin are subject to the first type of control mechanism (Iwai and Omura, 

1981; Muller and Ozegowslri, 1985). For example high levels of Pi in the 

streptomycin fermentation lead to poor antibiotic production and a high 

concentration of streptomycin phosphate (the last intermediate in the pathway). For 

antibiotics, which do not have phosphorylated intermediates, but are subject to Pi 

control, ATP levels decline as Pi decreases and secondary metabolism increases 

because the metabolic conversions required for antibiotic production are 

derepressed. As Pi increases, ATP levels increase and so does primary metabolism 

(Iwai and Omura, 1981).

Candicidin production in S. griseus requires the depletion of Pi and 

extracellular Pi remains low during the entire candicidin idiophase, although
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addition of Pi (lOmM) at the onset of production, returns the culture to 

trophophase. During this period ATP levels rise, but protein and RNA synthesis 

remain constant. This implicates ATP in the control of biosynthesis (Martin and 

Demain, 1980). High Pi levels repress the synthesis of candicidin synthase (Hutter, 

1982) and rifamycin SV production (Chaio et aJ., 1988). In the latter case growth 

and ATP levels were enhanced and mycelial lipid levels increased (at 2.5 mM Pi), 

whilst the enzyme activities involved in rifamycin SV production (methylmalonyl- 

CoA carboxytransferase and methylmalonyl-CoA mutase) were suppressed. 

Variations in the adenylate pool were thought to be responsible for these effects. Pi 

also exerts control over the production of Chlortetracycline in Streptomyces 

aureofaciens and an increase in potassium dihydrogen orthophosphate (0.2-0.4mM) 

accelerates glucose and ammonium consumption, whilst Pi depletion is required 

before antibiotic production can occur (Martin and Demain 1980). Jechova and 

coworkers (1985) made similar observations and noted that the intracellular level of 

adenylates was inversely proportional to the activity of the penultimate enzyme in 

the Chlortetracycline biosynthesis pathway. In Streptomyces clavuligerus, another 

Chlortetracycline producer, production increases with increased levels o f  Pi up to 

25mM then declined at higher concentrations (Iwai and Omura, 1981).

1.4.4. Other Bioregulators.

In the cases described above enzyme induction has been caused by the 

catabolites themselves, but there are also more unusual molecules, which can elicit 

these effects (reviewed by Beppu, 1985). The best known example of this is the 

induction of streptomycin biosynthesis by A-factor, which is encoded by the 

structural gene qfsA and stimulates transcription of the streptomycin 

phosphotransferase gene (Horinouch and Beppu, 1986). Demain (1985) stressed that 

A-factor was most effective when added before growth. The compound is produced 

by 15% of non-streptomycin-producing streptomycetes and is strain specific. AfcA
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has an extrachromosomal location in S. griseus and this is in contast to the 

regulatory gene (tfsB, which is located on the S.coelicolor chromosome. The latter 

gene positively regulates the biosynthesis o f  A-factor in S. coelicolor and also plays 

a role in regulating the production of actinorhodin, undecylprodigiosin and possibly 

methylenomycin and a calcium-dependent antibiotic. Horinouchoi and Beppu (1986) 

put forward the hypothesis that the product of this gene, which contains two DNA- 

protein binding domains, might bind to a regulatory region of a key gene involved 

in secondary metabolism and either stimulate or decrease its activity. Alternatively 

the qfsB protein could bind directly to biosynthetic genes (eg the act genes) and 

stimulate their expression.

Other regulatory substances of actinomycètes include inducing material (IM) 

in Streptomyces virginiae, which effects staphylomycin production and B-factor, 

which is essential for rifamycin production in Nocardia species (Beppu, 198S). The 

whiG gene of S.coelicolor encodes an RNA polymerase sigma factor and mutations 

in this gene block the formation of spores in the aerial mycelium. An increased gene 

dose of whiG gives rise to greater sporulation in S.coelicolor and its product is 

thought to be a positive effector (Mendez and Chater, 1987). Chater et al. (1989) 

sequenced the gene and found it was related to a minor motility sigma factor of 

Bacillus subtiUs. Multiple copies of a sigma-dependent promoter from this strain 

were introduced into S.coelicolor, where they caused reduced sporulation. This 

suggested that the S.coelicolor sigma factor recognised and bound to the Bacillus 

promoter and reduced transcription of its normal targets. A range of diverse 

streptomycetes were found to harbour a  whiG homologue and this is in direct 

contrast to the bldB gene needed for normal aerial mycelium, which appears to be 

absent from species other than S.coelicolor (Piret et a l., 1988).

1.4.5. Genetic Control and Organisation in Secondary Metabolism.

A large number of studies have shown that the genes for the biosynthesis of, 

resistance to and control of many antibiotics are organised into co-ordinately
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regulated clusters (Malpartida and Hopwood, 1984; Murakami et a l., 1986; Distler 

et a l., 1987b; Malpartida et al 1987, Binnie et al., 1989, Webber et al., 1990). 

Most appear to be located on the streptomycete chromosome, however the 

methylenomycin cluster is plasmid-borne (Kirby et al., 1975, Wright and 

Hopwood, 1976). There is evidence for other production (Kinashi et a l., 1987) and 

resistance (Woodman, personal communication) genes being associated with 

extrachromosomal elements. The most extensively studied streptomycete genome is 

that of S.coelicolor, a strain which produces several antibiotics including 

actinorhodin (Rudd and Hopwood, 1979; Malpartida and Hopwood, 1984 and 1986; 

Malpartida et al., 1987), but much is also known about the genetics of many other 

antibiotic pathways (Seno and Baltz, 1989).

The streptomycin biosynthesis pathway is fairly well understood (Walker and 

Walker, 1982) and S.griseus has provided a good model to study gene organization 

and regulation (Distler et a l., 1987b) Blocked mutants from this strain have been 

isolated and analysed for accumulated intermediates (Ohnuki et a l., 1985; Distler et 

al., 1985) and cloned segments of its DNA have been used in complementation 

studies (Ohnuki et al., 1985). A genetic map of some streptomycin genes is given in 

Fig. 1.3., although currently sequence analysis of the streptomycin gene cluster has 

revealed at least 14 genes (Piepersberg et al., 1991). The strB gene, which encodes 

an aminidotransferase is linked to strC (a dihydrostreptosyl-transferase gene), strR, 

a regulatory gene, which is thought to be a trans-acting positive effector and the 

resistance gene, which encodes a streptomycin-6-phosphotransferase (strA, aphD, 

SPH). A different resistance gene has also been cloned from the biosynthesis gene 

cluster (Heinzel et a l., 1988) and this encodes a streptomycin-3- 

phosphotransferase. Not all genes involved in streptomycin biosynthesis have been 

cloned, so evidence for a single gene cluster is incomplete. More is known about 

the actinorhodin cluster, whose genes are organised into four transcription units, 

consisting of two polycistronic mRNA's encoding actl, VII, IV  and act V and V7 

respectively and single small transcripts encoding actll (thought to be a positive
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Fig. 1.3. Summary of genes, which have been cloned and which are involved in the 

biosynthesis of streptomycin.

The diagram has been adapted from Seno and Baltz, 1989 and shows the structural 

organization o f the streptomycin gene cluster. DNA segments A to E refer to genes 

cloned by the following researchers:

A =  Ohnuld et al., 1985 (cloned from S.griseus ATCC10137).

B =  Distler et al., 1985, 1987a and 1987b (cloned from S.griseus N2-3-11).

C =  Tohyama et al., 1987 (cloned from S.griseus ISP 5236).

D =  Vallins and Baumberg, 1985 (cloned from S.griseus ATCC1247S).

E =  Kumada et al., 1986 (cloned from S.bikiniensis ATCC11062).
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regulator) and actll (Malpartida and Hopwood, 1986). In the case of streptomycin 

biosynthesis at least 5 partially overlapping transcripts have been detected (Distler et 

al., 1987b). This type of arrangement might facilitate the co-ordinate or prior 

activation o f resistance genes similar to that demonstrated in Streptomyces rimosus, 

where the otrA resistance gene is linked to the early oxytetracycline biosynthesis 

genes and otrB to the late genes (Butler et al., 1989.).

Antibiotic producers may encounter endogenous or foreign antibiotics and 

might have more than one genetic mechanism specifying resistance to them. 

Additionally the same resistance mechanism could be under more than one form of 

regulation (Seno and Baltz, 1989). The streptomycin-6-phosphotransferase gene 

(Onhuld et al., 1985), which is clustered with streptomycin biosynthesis genes in 

S.griseus, is under both negative regulation by a region downstream o f strA and 

positive control by strR, which also activates at least one biosynthesis gene. Seno 

and Baltz (1989) postulated that the negative control responds to exogenous 

antibiotic, whilst the positive control activates a  higher level of resistance prior to 

antibiotic production.

The promoter regions of several streptomycin biosynthesis and resistance 

genes have been analysed (aphD, strB and orfl). The two promoters in aphD (PI 

and P2) and in orfl (PI and P2), the hydroxystreptomycin phosphotransferase gene 

of Streptomyces glaucescens (Vogtli and Hutter, 1987) have two or more 

transcription start points. This might relate to the need to express the genes in 

different phases of growth, when different promoter binding specificities are 

expressed by the predominant forms of RNA polymerase (Seno and Baltz, 1989). 

One of the aphD promoters, located inside the strR gene is constitutive, whilst the 

other is switched on later in the growth phase (Distler et a l., 1987b).

There is thought to be no difference between promoters used in primary and 

secondary metabolism and base similarities have been observed between different 

streptomycete promoters. For example, there is a highly conserved 8-10 bp 

sequence centred around -13 in aphDPl, aphDPl and strBP, although its
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significance is not known. Sequence homology observed within the -10 and -35 

regions of promoters does not seem sufficient to explain promoter activity and it is 

also thought that the high GC content of streptomycete DNA might make the 

formation of open complexes difficult, necessitating the involvement of 

transcriptional activators (Seno and Baltz, 1989).

The translational start codon in some streptomycete promoters (eg. aphPl), 

is located at the extreme S' end of the mRNA. This allows no room for ribosome 

binding, and so translation might require a "back-tracking” mechanism (Seno and 

Baltz, 1989).

1.4.6. Antibiotic Resistance Mechanisms in Streptomycetes.

Over the last twenty years the molecular and physiological basis for 

antibiotic resistance in streptomycetes has received considerable attention and the 

resistance mechanisms elucidated so far can be classified into three main categories 

(illustrated by Tables 1.2., 1.3. and 1.4). Many antibiotic producers make enzymes 

that specifically inactivate secondary metabolites, including the beta-lactamases, 

which work by opening up covalent bonds in chemical structures. The majority of 

streptomycetes have been shown to produce these enzymes constitutively (Ogawara, 

1981), although the major form of resistance to beta-lactams is the modification of 

penicillin-binding proteins (Ogawara, 1991). Antibiotics can also be disrupted via 

the chemical substitution of key residues (Table 1.2.). The position of the 

substitution is given as a prefix to the enzyme responsible.

Popular forms of self-defence for aminoglycoside producers are acetylation, 

where acetyl-Co A provides the acetyl group, and phosphorylation, where ATP is 

the source of phosphate (Cundliffe 1984, 1986); these chemical reactions have also 

been observed in the producers of peptide antibiotics, but less commonly in the 

producers of nucleosides and macrolides (Table 1.2). Other enzymes which can 

confer resistance include hydrolases, such as chloramphenicol hydrolase, which
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Tables 1.2., 1.3. and 1.4. give examples of antibiotic resistance mechanisms, which 

have been classified into three groups; modification by enzyme detoxification, target 

site modification and exclusion mechanisms.

Key to Tables 1.2. to 1.4.

NP = non-producer of these compounds 

M = methylase

AAC = aminoglycosides acetyltransferase

AC = acetyltransferase

APH =  aminoglycosides phosphotransferase

PH = phosphotransferase

VPH = viomycin phosphotransferase

GS = glutamine synthetase
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Table 1.2. The modification of antibiotics bv detoxifying enzymes.

Organism Antibiotic Modifying Enzyme Reference

S.capreolus capreomycin PH, AC Skinner and 
Cundliffe, 1980, 
Cundliffe, 1984.

S.coelicolor macrolide 2' PH’s Marshall e ra /., 1989

S.fradiae neomycin APH(3') Thompson et a l., 
1980

AAC(3)

S.griseus

S.griseus

streptomycin

kanamycin
(NP)

APH(6)
APH(3')
AAC(3)

Distier étal., 1987a. 
Heinzel et a l., 1988 
Hotta et al., 1988

S.glaucescens hydroxystrep
-tomycin

APH Hintermann et al. , 
1984.

S.hygroscop-
-icus
S.hygroscop-
icus

bialaphos 

hygromycin B

AC

APH

Murakami et a l., 1986 
Sezonov et a l., 1990, 
Zalacain et al., 1986

S.kanamycet-
icus

kanamycin AAC(6')
AAC

Cundliffe, 1986 
Murakami et a l., 
1983.

S.rimosus paramycin APH; AAC Zalacain étal., 1986

S.vendar-
-gensis

macrolide 2' glycosylase Eady étal., 1990

S. Venezuela* chloramphen
-icol

hydrolase Mosher et a l., 1990

S. vinaccia viomycin VPH Thompson et al., 
1982b

S.virido
-chromogenes

bialaphos AC Strauch et al., 1988 
Wohlleben et a l., 
1991

Srv.eurocidicus 2 APH's Zalacain étal., 1986

Stv.spp. Blasticidin S AC Perez-Gonzalez et al., 
1990
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Table 1.3. Target site modifications, which confer antibiotic resistance.

Organism Antibiotic Target Modification Reference

S.azureus thiostrepton rRNA Methylase Thompson and Cundliffe, 1980

S.fradicie tylosin rRNAM Zalacain and Cundliffe 1991

S.hyçros-
-copicus

bialaphos 2 x GS isoforms Kumada et al., 1990

S.kanam-
-yceticus

kanamycin RNA methylase 
23S

Nakano and Ogawara, 1986

S.hygros-
-copicus

geldanamycin resistant RNA 
polymerase

Blanco et al., 1986

S. U vidons macrolide
lincosamide

23S rRNA 
methylase

Jenkins et al., 1989

S.mycofa-
-ciens

midecamycin rRNA methylase Hara and Hutchinson 1990

S. ni ve us novobiocin DNA gyrase 
+2 unknown 
mechanisms

Mitchell et al., 1990

S.noursei nosiheptide rRNAM Woodman, 1991 
(personal communication)

S.rimosus oxytetrac
-ycline

ribosomal
resistance

Ohnuld et al., 1983.

S.spheroides novobiocin DNA gyrase Thiara and Cundliffe, 1989

S.tene-
-braius

kanamycin
(np)

RNA methylase Skeggs et a l., 1987.

S.thermo-
-tolerans

carbomycin RNA methylase Epp et a l., 1987

S.tenji-
-mariensis

S.virido-
-chromogenes

apramycin
kanamycin
(np)

rRNA methylase 
16S

resistant glutamine 
synthetase

Skeggs et al., 1986 and 1987 

Wohlleben et al., 1991

S.virido-
chromogenes

rRNAM Kami may a and Weisblum, 
1986
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Table 1.4. Resistance to antibiotics conferred bv drug exclusion or excretion.

Organism Antibiotic Exclusion Mechanism Reference

S.fradiae tylosin multi-component ATP- 
dependant transport system 
for active secretion

Rosteck et a l., 1991

S.griseus strepto­
mycin

transport and permeability 
mechanisms

Sugiyama et a l., 1990.

S.rimosus ox y tetra 
cycline

drug export Ohnuki et a l., 1985, 
McDowell et al., 1991
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catalyses the removal of a dichloroacetyl moiety from the antibiotic and 

glycosylases, which introduce a glycoside residue to the relevant compound.

Enzymes, which modify antibiotics may also be involved in antibiotic 

biosynthesis; for instance the bar gene encodes an acetytransferase, which catalyses 

the acetylation of dimethylphosphinothricin, step 10 in bialaphos production 

(Murakami et al., 1986). Cundliffe (1984) pointed out that some antibiotic­

inactivating enzymes might normally act at an earlier step in the biosynthetic 

pathway and might not contribute to the mechanism of resistance, which is actually 

used by the antibiotic-producing organism. Thus the physiological roles o f  

antibiotic-inactivating enzymes should not be assumed, especially when the 

permeability properties of the cell surface are not known. In addition , certain 

antibiotics might not have vital groups which are sensitive to modification and it 

might not be possible to prevent all drugs from binding to their targets by 

performing chemical modifications (Cundliffe, 1984). This may explain the 

existence of other resistance mechanisms.

The modification of drug targets in antibiotic-producing streptomycetes is 

well documented (Table 1.3.). Specific méthylation of ribosomal RNA has been 

frequently cited (Cundliffe, 1986) and is a common means of resistance to 

macrolide antibiotics. The macrolide-lincosamide-streptogramin type B (MLS) 

phenotype was first described by Fujisawa and Wiesblum (1981), who found that 

resistance to subsets of MLS antibiotics, could be induced by a range of these 

compounds in strains with a variety of diverse phenotypes. Other examples include 

erythromycin resistance in S.erythraea (Skinner et al., 1983), tylosin resistance in 

Streptomyces fradiae (Zalacain and Cundliffe, 1989) and an inducible rRNA 

méthylation in the non-producer Streptomyces lividans (Jenkins et al., 1989). 

Resistance is due to either mono- or di-methylation of adenine residue 2038 

(Graham and Weisblum, 1979) and it operates by a mechanism known as 

translational attenuation (Weisblum 1984). The inducer binds to prokaryotic 

ribosomes during translation of the erm leader region and this H*»«tahiii»« the
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mRNA structure. Then the ribosome binding site for erm methylase is free and 

methylase synthesis begins; thus MLS drugs are prevented from binding to 

ribosomes. The potency of individual inducers in a given system may be determined 

by their ability to inhibit the incorporation of different amino acids (Kadam, 1989). 

Not all producers of MLS antibiotics employ this resistance mechanism, although 

hybridization analysis has revealed homology between ermE and resistance genes in 

many of these organisms (Stanzack et al., 1990; Epp et al., 1987). Ribosomal RNA 

methylation has also been reported to confer resistance to the aminoglycoside 

kanamycin and its derivatives (Skeggs et al., 1986; Skaggs et al., 1987; Nakano 

and Ogawara, 1986) and to certain peptide antibiotics (Cundliffe et a l., 1984).

Target site modification includes enzymatic alterations, such as that found in 

the RNA polymerase of ansamycin producers (Blanco e t a l., 1986) and in the DNA 

gyrase of novobiocin producers (Thiara and Cundliffe, 1989; Mitchell et al., 1990). 

In the latter case the enzyme is duplicated, one form being resistant and the other 

sensitive. Similarly protection against bialaphos is conferred by resistant forms of 

glutamine synthetase (Kumada et al., 1990; Wohlleben et a l., 1991) and 

S.hygroscopicus harbours two resistant isoforms of this enzyme. Reduction in the 

physiological importance of the target is also included in the category of target site 

modification and the inate bialaphos resistance of streptomycetes with an alternative 

pathway for ammonium utilization is an example of this. Target site modification 

confers higher levels of resistance than does antibiotic modification, however if an 

antibiotic confers a regulatory role during cell growth or differentiation then 

producers may need to be sensitive to their products at certain times (Cundliffe, 

1984).

Resistance by prevention of access to the target can be via a total or partial 

permeability barrier (ie. is combined with other forms o f  resistance) or by confining 

products to discrete sub-cellular compartments. For example, it is thought that in 

the biosynthesis o f aminoglycosides' inert precursors are activated during export 

from the cell by dephosphorylation (Miller and Walker, 1969). Many antibiotic
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producers have been shown to harbour more than one resistance mechanism; for 

example they might contain more than one substituting enzyme working in 

conjunction (Table 1.2.)> sometimes synergistically (Thompson et al., 1982b). 

Alternatively, they might contain additional types of resistance mechanisms and 

effective permeability barriers are thought to exist in many antibiotic producers 

(Cundliffe, 1984; Sugiyama et al., 1990). Similarly bialaphos and kanamycin 

resistance are conferred by both enzymic modification and resistant target molecules 

(Tables 1.2., 1.3. and 1.4.).

1.4.7. The Relationship o f Antibiotic Resistance and Biosynthetis to Phenotype and 

Genotype.

Information on how far phenotypic and genotypic similarities correlate 

between producers or with one another is still fragmentary. However there has been 

a remarkable congruence in the resistance phenotype between some producers of 

similar or identical compounds. For example the rRNA methylases of Streptomyces 

sioyaensis, Streptomyces lauremii, Streptomyces azureus and Planomonospora 

paronyospora are almost indistinguishable (Thompson and Cundliffe, 1980). These 

strains produce the highly related peptide antibiotics siomycin, thiostrepton, 

thiostrepton and sporangiomycin respectively. In addition, the methylases of 

Streptomyces actuosus and Streptomyces bemenisl partially resemble that of 

S. azureus. Nosiheptide, the S.actuosus product, is similar to thiostrepton, but 

beminamycin is not structurally related, although it does have a similar mode of 

action (Thompson et a l., 1982b). There is often great symmetry in the organisation 

and regulation of biosynthetic pathways between different producers of identical 

compounds (Fig. 1.3.) and this may be shown to extend to the pathways of related 

products, such as streptomycin and blueniomycin (Walker, 1990).

In some cases gene homologies correlate with taxonomy, whilst in others 

they do not; for example erythromycin biosynthesis and resistance genes from 

Saccharopolyspora erythraea hybridize strongly to macrolide producing
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Saccharopolysporas, but only weakly with the DNA of macrolide-producers from 

other genera (Stanzak et al., 1990). In a different case, rRNA methylases from 

different genera and from the producers of widely different antibiotics appear 

related at the DNA level (Skeggs et al., 1987). Reports where genes of secondary 

metabolism do not correlate in producers of the same compound are rarer, however 

Mosher et al., (1990) have shown that the chloramphenicol resistance gene of 

Streptomyces venezuelae does not hybridize to the DNA of Streptomyces 

phaeochromogenes, another chloramphenicol producer.

There has been much evidence of genetic homology between families of 

genes, probably due to their common ancestry. Beta-lactamases may be descendants 

of or parallel developments to the peptidoglycan-metabolizing peptidases from 

eubacteria or to the penicillin binding proteins, which are related to a very ancient 

family of molecules including many esterases and serine proteases (Brenner, 1988). 

Forseman et al (1991) have found significant homology between the beta-lactamase 

genes from Streptomyces badius, Streptomyces cacaoi, Streptomyces fradiae and 

Streptomyces lavendulae and suggest that the Gram-negative class A beta-lactamases 

evolved from these. Piepersberg et al. (1988 and 1991) illustrated a similar example 

for the 23S rRNA methylases, stating that they were related to 16S rRNA 

methyltransferases, whose targets are often very similar. Lim et al. (1989) revealed 

a striking homology between the aphD gene o f Streptomyces griseus with other 

antibiotic phosphotransferases and protein kinases, suggesting similar structures and 

a common ancestry; this relationship was also suggested by Distler et a l., 1987b, 

Heinzel et al., 1988 and Piepersberg et al., 1991. Kiiby (1990) presented evidence 

that aminoglycoside phosphotransferase genes originated in an ancestor closely 

related to actinomycetes and he illustrated this with rooted phylogenetic trees based 

on protein sequence data. It was also implied that aminoglycoside acetyltransferases, 

phosphotransferases and nucleotidyltransferases shared a common origin with other 

kinases and nucleotide-binding proteins because they shared conserved motifs.
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Our knowledge on the interplay between antibiotic action, its regulation and 

the development o f resistance is very poor (Piepersberg, 1991). Antibiotic 

resistance can be acquired by the mutation of resident genes in a given sensitive cell 

or by taking up additional preformed determinants, as with the resistance genes of 

clinical bacteria. Piepersberg (1991) regards the hypothesis that most resistance 

determinants could have originated in producing organisms as proven for many 

wide-spread mechanisms and DNA sequencing studies between Streptomyces and 

clinical isolates have been used to support the notion of horizontal gene transfer 

(Trieu-Cout et al., 1987). Kirby (1990) have given further support to this notion by 

demonstrating (via phytogeny) that aminoglycoside phosphotransferases probably 

originated in an actinomycète and were transferred to clinical bacteria through 

transposition. This event was believed to have occurred after the split between 

Gram-negative and Gram-positive organisms and it was thought likely that several 

horizontal gene transfer events occurred at different times in the evolutionary past. 

Evidence against horizontal gene transfer has been given by data base studies at the 

John Innés Institute (Bibb 1986), where the level of resemblance between 

Streptomyces resistance determinants and those of clinical isolates has been shown to 

be identical to sequence similarity of Streptomyces resistance determinants and those 

of other proteins. There are barriers to DNA transfer and gene expression, but in 

view of its diverse nature, soil could provide the relevant conditions for transfer of 

antibiotic resistance and production genes (Kirby, 1990). The acquisition of genes 

within the genus Streptomyces is a complicated issue, for example O- 

acetlytransferases, involved in chloramphenicol acetylation, are not found in 

producers but have been observed in other streptomycetes (Murray et al., 1989). 

Therefore clinical resistances may originate from a variety of sources, which 

includes bioactive and non-bioactive actinomycètes, but does not necessarily 

comprise them.
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1.5. The Exploitation of Antibiotics from Streptomycctes.

1.5.1. The History of Natural Product Screening.

The beginning of the antibiotic era was marked by the discovery of penicillin 

by Alexander Fleming and its extraction twelve years later by Florey, Heady and 

Chain. The search for other antibiotic-producing microorganisms accelerated due to 

the medicinal needs of World War II resulting, in the discover o f streptomycin and 

more broad spectrum compounds such as chloramphenicol and the tetracyclines. To 

begin with researchers focused on the fungi for sources o f new medicinal 

compounds, but few leads were discovered and major emphasis shifted to the 

Streptomyces. This genus has become the most prolific source of commercially 

important antibiotics in the history of natural product screening.

The soil is a reservoir of numerous diverse microorganisms and so in the 

archetypal days of antibiotic discovery little effort was required to isolate novel 

strains and isolation was designed to match the scale-up procedures of a particular 

company. Early methods of screening were based on the random screening of high 

numbers of isolates and included a variety of simple procedures. In one method, 

plates were inoculated to a density of 300-400 colonies and microbes which were 

surrounded by a ring of inhibition were selected for further investigation; the 

drawback of this method was that zones of clearing could form due to pH effects or 

nutrient depletion. These tests were superceded by screens which overlayed plates 

(30-200 colonies per plate) with a series of test organisms; antibiosis profiles could 

also be obtained by overlaying streak plates or plugs of streptomycete growth. 

Another development was the use of replica plating which provided an easy way to 

increase the numbers of test organisms (Rhodes et a!., 1961;Lechevalier and Corlce, 

1953).

Secondary screening further tested the capabilities of the organisms under 

study and often taxonomic classification was used to predict pathogenicity and to 

give an indication of growth characteristics. The scientific and patent literature was 

examined to find related organisms which could give an indication of the type of
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product being formed and to avoid rediscovering known antibiotics. Other 

techniques were to scrutinize UV absorption spectra, chromatographs, extraction 

patterns and bioautographs o f the crude extracts. It was during this stage that the 

feasibility of pharmacological or agrochemical use of a compound was determined. 

For example some good attributes for the agrochemical products were stability of 

homogenates in plant tissue, stability to heat, exceptionally high biological activity 

with a desired spectrum of activity and the ability to move through discs of plant 

tissue. Following selection the ability to protect plants against target pathogens and 

the phytotoxicity of the crude extract were determined in small greenhouse tests. If 

these were successful then large scale trials both in the greenhouse and small plots 

of land would be undertaken.

1.5.2. Modem Antibiotic Discovery.

Due to the ease of antibiotic discovery described above more sophisticated 

methodologies were not required until the mid-1960's onwards, when qualitative 

improvements were brought about at every step of the screening programme. Data 

feedback systems were initiated and these contained microbiological, biochemical 

and chemical information about the producing organisms and about the biosynthesis, 

mode of action and biochemical properties of the antibiotic. A description o f new 

screening methods is presented in the sections below, but the reasons for their 

development are given in this section.

The probability of finding new antibiotics steadily declined as the number of 

discovered antibiotics increased and many promising activities were found to be due 

to known antibiotics (Okami, and Hotta 1987; Ayer et al, 1989). Random screening 

wasted time and resources on the examination of thousands of strains, which lacked 

desired activities and the use o f easily isolatable strains probably meant that highly 

common strains were screened repeatedly. It is generally accepted that many strains 

capable of producing useful compounds have been screened under conditions which 

did not allow expression; for example the tetracenomycins were discovered by
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screening the hydroxystreptomycin-producer Streptomyces glaucescens under a 

different set of conditions (Zahner et al., 1982). Another problem is that more than 

one compound can be present in a culture extract and the activity of many useful 

highly specific compounds could have been masked by the presence of known 

antibiotics, which were identified by their spectrum of activity.

1.5.3. The Selection of Organisms for Industrial Screens

At first antibiotics of actinomycete origin were exclusively provided by the 

Streptomyces, but more recently companies have begun to target rarer genera 

(Williams and Wellington, 1982), consisting of actinomycetes with relatively low 

isolation frequencies (Okami and Hotta, 1988). Rare genera include actinoplanetes 

and maduromycetes, Kitasatosporia (Omura 1986), Nocardia, streptoverticillium 

and rare forms of streptomycetes. By 1982 one quarter of actinomycete products 

were provided by non-streptomycetes (Nisbet 1982) and 400 o f the 6,000 known 

antibiotics are produced by actinoplanetes and maduromycetes (Berdy, 1988). The 

streptomycetes continue to provide larger numbers of diverse antibiotic products 

than other actinomycete genera (Okami and Hotta, 1988) and there may still be 

large numbers of Streptomyces species or strains with novel antibiotic productivity 

in nature. Nevertheless, the shift towards rare genera reflects a search for increased 

variety and aims to reduce the re-isolation of known strains and the rediscovery of 

known products. A related approach taken by some companies has been to isolate 

the organisms which they screen from extreme (Williams and Wellington, 1982) or 

unusual, previously unexplored, environments (N. Porter, personal 

communication).

The extent to which antibiotic production correlates with taxonomic 

identification is extremely important when deciding which organisms should be 

targeted. There is some evidence that selected Streptomyces species do have 

distinctive antibiosis patterns (Wellington and Cross, 1983) and there are also 

specific taxonomic groups such as S. hygroscopicus (Arai et a l., 1976) which show

44



a high incidence of antibiotic production. Generally, however, antibiotic production 

in actinomycetes is strain specific (Okami and Hotta 1988) and conventional 

taxonomy cannot be used to predict the type of antibiotic produced, although Okami 

and Hotta (1988) postulated that there might be some specific genotypes which do 

correlate with antibiotic production. Classification is still an important part of the 

drug discovery process because it helps avoid screening duplicate strains and also 

patents often require a thorough description of the producing organism (O'Donnell, 

1988). This type of data is also important because physiological characters which 

correlate with bioactivity may be discovered and isolation methods can be developed 

for those species which are useful targets for antibiotic production; for example the 

actinoplanetes are mainly novobiocin resistant so this compound can be used as a 

positive selection pressure for their isolation.

1.5.4. The Design of Media for Antibiotic Screening Programs.

In 1981, Iwai and Omura reviewed the culture conditions necessary for 

secondary metabolite screening. They concluded that different carbon and nitrogen 

substrates were favoured by different cultures and that generally readily utilized 

carbon and nitrogen sources were unfavourable for antibiotic production. There are 

exceptions to this including anticapsin production, which is favoured at 10% 

glucose (Boeck et al, 1971). The use of slowly utilizable sugars and nitrogen 

compounds, as the sole sources of carbon and nitrogen were advised by Hu and 

Demain (1979) and Martin and Demain (1980); although the more rapidly utilized 

nitrogen source, ammonium can be used if ion depressors are also added (Omura 

and Tanaka, 1984, Omura, 1986).

Large amounts of Pi accelerate carbon and nitrogen utilisation, but tend to 

reduce antibiotic production. However Imanaka and coworkers (Arima et al., 1965; 

Miyairi et a l., 1970; Miyoshi et al., 1972) discovered three new antibiotics by 

screening on high (>  180mM) phosphate media. The production of some antibiotics 

takes place between two threshold concentrations of Pi; for example Hall and
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Hassall (1970) described the differential production of two antibiotics by 

Streptomyces jamaciensis. At O.lmM, monamycin was produced but a different 

antibiotic was produced at 0.4mM.

Inorganic salts are added to media to increase production and different ones 

affect different antibiotics; for instance very large amounts o f sodium chloride can 

inhibit antibiotic biosynthesis, or in rarer cases, stimulate production (Okami et al., 

1976). Trace elements are needed for enzymes and cofactors and zinc and iron are 

reported as being the most important for actinomycetes (Weinberg, 1970), with 

larger amounts being needed for production rather than growth. S.clavuligerus 

required 130 /tg/ml ferrous iron for maximum cephamycin C biosynthesis (Rollins 

et al., 1989). However, there are often thresholds beyond which antibiotic 

production is negatively or positively affected (Iwai and Omura 1981).

The dilemma of media design is that although specific growth requirements 

are important for the expression of certain types of secondary metabolites general 

use media are needed. Researchers have used complex media containing a variety of 

carbon and nitrogen sources to vary growth rates and physiological states hoping to 

alter internal metabolite pools and to diversify secondary metabolite production. 

Nisbet (1982) put forward some guide-lines for the design o f media which allow 

good product formation and he stated that different media should be prepared using 

a variety of growth-limiting nutrients because secondary metabolite patterns can 

often vary when same strain is grown on different media (Grabley et al., 1990). For 

each type of nutrient depletion different forms of the growth sufficient nutrient 

should be used and readily assimilated forms of carbon and nitrogen ought to be 

avoided; the recommended C:N ratio was 10 for antibiotic production (Hutter, 

1982). Finally use of a polymeric or complexed form of the growth-limiting 

substrate was thought advisable and an attempt should be made at buffering the 

medium, which should also include known cofactors.

Increased screening of rare actinomycetes and extremophiles has lead to the 

development of special ranges of media suitable for their growth (Okami and Hotta,
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1988) and selective isolation (Wellington et al., 1987); specific media have also 

been used to select for growth forms which were more likely to result in antibiotic 

production (M. Bushell, personal communication). Some companies screen on solid 

media on the premise that antibiotics decompose more slowly and may diffuse away 

from destructive enzymes (Iwai and Omura, 1981). Screening for enzyme producers 

also tends to involve zone clearing assays on solid media, although an advantage of 

liquid media is that there is a  better correlation with scale up procedures. Economic 

aspects are also of importance and simple growth media form the basis of cheaper 

commercial processes, although this must be balanced with the fact that this could 

limit what is discovered.

1.5.5. Extraction Procedures and Chemical Identification Systems.

For the initial stages o f screening general use solvents are required. These 

are usually chosen for the ability to extract a wide range of chemicals, which can 

then be formulated as required prior to being applied to screens, but they are also 

selected for safety because large volumes are handled. The solvents which are used 

include butanol, methanol, ethyl acetate, isopropanol, dichloromethane, diethyl 

ether and various mixtures.

One of the earliest methods for assessing the probability that an interesting 

antibiotic was already known was by chromatographic analysis. Aszalos et al (1968) 

presented a rapid TLC method for assessing antibiotics from crude extracts, where 

eighty four known antibiotics and fourteen solvent systems were used in a two tier 

system, which assigned mqjor and then sub-group classifications to the antibiotics. 

The antibiotics could not be identified but the choice was narrowed to a small 

number, which were then eliminated.

Hamill (1982) described the use of specific chemical reactions on semi- 

purified preparations to identify various chemical groups. Another innovative 

method was described by Z&hner et al. (1982) who selected unique spots from strain 

extracts run on TLC plates and out of five compounds tested three were novel.
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Aszalos (1980) hinted that combinations of many of the new and old techniques (eg. 

TLC, preparative chromatography, gas chromatography, high performance liquid 

chromatography, mass spectrometry and infra-red spectroscopy) might increase the 

number of antibiotics that could be included in a particular identification system.

Techniques, such as high performance liquid chromatography (HPLC), 

nuclear magnetic resonance (NMR) spectrometry and diode array detectors meant 

that the tiniest amounts o f active substances could also be isolated and analysed and 

unstable compounds and minor products could be extracted and purified (Omura, 

1986). Many companies now have computer libraries (H.P. Fielder, personal 

communication), which contain the HPLC and ultraviolet and visible light spectra 

spectra of hundreds of microbial secondary metabolites, but one of the most useful 

tools, which many natural product screening companies still use, is the Berdy 

database (Berdy database, 1988).

1.5.6. Target Directed Screening.

As the rate of discovery of new antibiotics declined screening programmes 

consisting of differential assays for targeting specific groups of antibiotics were 

established. For example Zihner et al. (1982) explained a novel approach to the 

detection of narrow spectrum antibiotics, where an unusual bacterium was added to 

established test organisms (ie. Staphylococcus aureus and B.subtilis) and then in 

order to increase the chance of discovering a novel compound, only antibiotics 

which affected the unusual organism were selected. Many other screens have been 

developed to detect activity against a variety of human, plant and animal pathogens 

and target-directed screening may focus on searching for inhibitors of the target 

sites of known antibiotics or of rationally selected receptor sites. They may also use 

unusual biological or chemical test procedures to detect rare types of activity or 

specific structural moieties (Fleming et al., 1982).
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1.5.7. Screens used in the Agrochemical Industry.

Highly specific, biodegradable compounds are needed for the control of crop 

pests because treatment involves the release o f large amounts of chemicals into the 

environment. This often involves choosing a target, which is specific to a certain 

weed or insect or the selection of a specific bacterial, fungal or viral plant pathogen. 

For example the conversion of lanosterol to ergosterol (Nisbet and Porter, 1989) has 

a lethal effect on fungi but is harmless to plants.

Prevention of fungal protoplast regeneration has been used to find chitin and 

glucan inhibitors because it is difficult to find antifungals with low mammalian 

toxicity. The fungal membrane is a good target because differential binding to 

ergosterol rather than cholesterol can ensure the selection of highly specific 

compounds. Nisbet and Porter (1989) predicted that by cloning genes from Candida 

albicans into defective mutants of Saccharomyces cerevisiae, preferential inhibition 

o f recombinants could provide an innovative means of discriminating the most 

selective compounds.

Some herbicides are inhibitors of glutamine synthetase and cause death by 

ammonium accumulation. Phosalacine was discovered by use of an assay in which 

B.subtilis was inhibited on minimal medium but not in the presence of glutamine. 

Other screens for herbicides can involve detecting inhibition of germination and 

radicle growth from surface-sterilised seeds and foliar or root elongation assays 

(Heisey et al. , 1988).

Some of the early screens detected antifungal activity by the abnormal 

growth of test organisms or by inhibition of their growth. The nikkomycini were 

discovered as inhibitors of zygospore formation in Mucor hiemalis (Z&hner 1986) 

and were of interest for the development of insecticides because they attack chitin 

synthesis. A simple assay to detect insecticidal activity is the photoactivity response 

of insect larvae; healthy mosquito larvae swim away from light and compounds with 

insecticidal activity prevent this reaction (Heisey et al., 1988).
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Highly specific assays were designed for the discovery of avermectins and 

were based on the fact that these compounds bind to membrane receptors. 

Avermectins enhance the affinity of these receptors for benzodiazepines and this 

provides a new incentive to design screens, which may discover second generation 

avermectins, (Monaghan and Tkacs, 1990)

1.5.8. Screens Used in the Pharmacological Industry.

A range of enzyme inhibitor screens have been used in the pharmaceutical 

industry and these have been aimed at discovering compounds which inhibit 

enzymes involved in the synthesis of compounds important in human physiological 

disorders such as obesity, diabetes, migraines, Parkinsons disease and Senile 

Dementia. Inhibitors of enzymes involved in adrenalin and lipid synthesis have 

provided drugs for the treatment of hypertension (eg oudenone, fusaric acid) and 

cholesterol reduction (monacolin K) and inhibitors of glycosidases are o f potential 

use in the treatment of obesity and diabetes, and protease inhibitors may prove 

useful for inflammatory, thrombotic and haemorrhagic conditions (Hamill, 1982).

Screens have also been designed to detect inhibitors of essential enzymes 

involved in bacterial, viral and fungal diseases and such assays must be highly 

specific for the organism under study. Monaghan and Tkacs (1991) described a 

screen for inhibitors of HIV reverse transcriptase in their review on bioactive 

microbial products. The enzyme can now be produced in large quantities in 

Escherichia coli, purified by affinity chromatography and used to test natural 

products.

Other pharmacological screens have involved the search for beta-lactamase 

inhibitors, which could be used with beta lactamase sensitive antibiotics such as 

penicillin; for example novel compounds could be detected by the increased 

beta-lactamase production of resistant strains in their presence. Mechanism-based 

screens for beta-lactam antibiotics are reviewed by Okami and Hotta (1988) and 

Nisbet and Porter (1989), but included a mode of action assay based on peptidase

50



inhibition, the use of hypersensitive mutants and antimycoplasma activity (Omura, 

1986).

Many glycopeptide antibiotics have also been discovered using mechanism 

based assays, which have exploited their binding with peptides that end in acyl-D- 

ala-D- ala. Radio-immuno-assay (RIA), enzyme-linked immunosorbant assay 

(ELISA) and fluorimmunoassay have also been used for glycopeptide detection and 

have shown little cross reactivity with other antibiotics.

In vitro screens have been developed for the initial stages of antitumour drug 

discovery (White, 1982), although these drugs must be tested later on the more 

expensive in vivo screens. Initially the drugs were discovered using antimicrobial 

and cell toxicity assays, but more recently mechanistic approaches have been taken; 

protozoa have similar multiplication behaviour to tumour cells, and can be affected 

by the same drugs. For example hitachimycin was discovered on an antiprotozoal 

screen simultaneously to its discovery as an anticancer compound (Omura, 1986). 

Recent assays are reviewed by Okami and Hotta (1988) and Nisbet and Porter 

(1989), who describe the use of mutant cell lines which respond to oncogene 

expression, antibiotics which intercalate with DNA molecules and the use of human 

and animal tissue cultures.

L 5 A  Beneficial Products Derived from the Pharmaceutical and Agrochemical 

Industries.

Demain (1983) listed about 40 different pharmacological activities of 

microbial secondary metabolites, including anti-inflammatory drugs (eg pyrothrine 

from Streptomyces verticillium), antitumour drugs (eg bleomycins from 

S.verticullus), vasodilators (eg WS1228 A and B from S.aureofaciens), inhibitors of 

the complement cascade (eg complestatin, from S.lavendulae) and

immunosupressors (eg FK506 from Streptomyces tsukubaensis). Drugs which are 

known to bind to specific receptors include L-156,373, which binds to the oxytocin
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receptor and might have a use in delaying premature labour and MY336a from 

Streptomyces gabonae, which is an agonist of the beta-adrenergenic receptor.

The farming industry have benefited from veterinary drugs, produced by 

Streptomyces such as the coccidiostatic agent, lasalocid, and other antibiotics, 

including monensin and virginiamycin which are marketed as animal growth 

promoters. The mode of action of virginiamycin is probably as an appetite modifier 

because it is acts as an antagonist of the brains' gastrin and cholestoldnin satiety 

controlling receptors.

Chitin synthase inhibitors have proved useful as agricultural fungicides and 

insecticides. For example allosamidin is an insect chitinase inhibitor, which 

interferes with insect moulting, nikkomycins have been used as acaricides and their 

relatives, the polyoxins as antifungal compounds. Highly specific insecticides 

include the avermectins, which work by blocking neuromuscular transmission in 

arthropods and helminths; their mode of action is to bind to synaptic gamma 

aminobutyrate receptors and paralyse the victim.

Microbially-produced herbicides include antimetabolites such as the 

herbicidins, active against dicotyledonous plants, homoalanosine which has a 

functional resemblance to aspartate and glutamate and the herbimycins, which block 

angiogenesis and are also active against plant viruses (eg TMV). Enzyme inhibitors 

also have a place in the herbicide market. For instance, bialaphos is a competitive 

inhibitor of chloroplast glutamine synthase, causing the accumulation of ammonium 

and death of plant pests.

1.5.10. Target Directed Isolation and Selection.

If screens are exclusively dependent on target-directed assays the hit rate can 

still be as low as 1 in 1,000, but this can be improved by including target-directed 

isolation and selection of organisms. For example Okami and Hotta (1988) isolated 

aminoglycoside-resistant actinomycètes and obtained aminoglycoside resistance 

profiles for them. They then preselected strains with many resistances because they
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had a higher probability of antibiotic production. In this work novel antibiotic 

resistance patterns were regarded as markers for new antibiotic producers. The hit 

rate using this protocol was 1 in 10 and aminoglycosides were not the only type of 

antibiotic discovered. A similar example is the glycopeptide-directed screening of 

Rake et al. (1986) who isolated actinomycètes on vancomycin-containing media and 

then cultivated them under conditions suitable for glycopeptide production; the hit 

rate of these workers was improved from 0.3% to 2.2%. Directed isolation 

protocols can also involve choosing an environment which is likely to harbour 

organisms with desired activities and Lievens et al (1989) selected plant-associated 

organisms as a source of anti fungal s for phytopathogenic diseases. Similarly Verces 

et al. (1990) successfully chose the grapevine carposhere as a source of organisms 

producing anti-yeast compounds. Biological control agents have also been targetted, 

because their activity may be due to the production of compounds with biocidal 

activity (Weller and Thomashow, 1990). The isolation of organisms from dead 

insect pests is another common approach.

1.3.11. Other Approaches to Antibiotic Discovery.

Actions such as regrowing previously tested organisms on different media or 

testing them on new screens can lead to novel discoveries about their ability to 

produce natural products. Previous sections of this introduction contain several 

examples of compounds which were discovered on a particular screen and were then 

found to exhibit another useful activity. There have also been examples of strains 

which produced different compounds under altered conditions of growth.

Modem technology has permitted a more directed manipulation of known 

antibiotic producers. Okami and Hotta (1988) showed how a biosynthetic pathway 

could be directed in a different direction by supplying various precursors to the 

producer organism. Mutasynthesis also uses this approach but with blocked mutants, 

which require special media for antibiotic production (ie. analogues are incorporated 

into the biosynthetic pathway of the compound which they cannot synthesize to
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produce new antibiotics). Blocked mutants or those with altered biosynthetic 

pathways are another source of novel antibiotics because they accumulate 

intermediates which do not build up in the parent strain. There are also reports of 

foreign antibiotics being converted to new products by the biosynthetic enzymes of 

other antibiotic producers (Okami and Hotta, 1988).

Protoplast fusion and protoplast regeneration are powerful tools for 

generating or activating the expression of silent genes in actinomycètes, as in the 

discovery of indolizamycin (Yamashita et al., 1985a,c). Kurzatowsld et al., (1985) 

have also observed diversification of antibiotic production in cultures from 

regenerated protoplasts; however protoplast regeneration can result in the loss of 

antibiotic production as with carriomycin production in S. hygroscopicus (Ogura et 

al 1986.,); when this same strain was treated with ethidium bromide and a new 

antibiotic curromycin was produced.

In a few cases both inter- and intra-specific in vivo and in vitro genetic 

recombination have resulted in the formation of new antibiotics. For example the 

recombination of an auxotrophic non-producing mutant of the turimycin-producing 

S. hygroscopicus with a blocked mutant of a violamycin-producing S.violaceus 

resulted in the discovery of the anthracycline antibiotic, iremycin (Okami and 

Hotta, 1988).

The development of molecular cloning in Streptomyces made the isolation of 

many biosynthetic gene clusters possible (Chater and Bruton, 1985; Malpartida and 

Hop wood, 1986; Murakami et al., 1986). Hopwood et al., (1985) and Malpartida 

et al., (1987) discovered novel antibiotics by carrying out gene transfer experiments 

between strains which produce different isochromanequinone antibiotics. For 

example dihydrogranatirhodin was produced when the act genes were introduced 

into the granaticin-producer Streptomyces violaceoruber.
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1.6. Rationale and Aims for this Research

Over recent years, much has been learnt about antibiotic biosynthesis, 

antibiotic resistance and the physiology of antibiotic producers. Many relevant genes 

have been cloned and thousands of antibiotic producers are deposited in culture 

collections. This provided the means for the research presented in this thesis, which 

took a broad approach for studying secondary metabolism. The aims of the work 

were to investigate the distribution of antibiotic production and antibiotic resistance 

phenotypes in natural populations of streptomycetes. It was of additional interest to 

investigate the genetic basis of the observed antibiotic resistances and to examine 

factors which influenced the expression of antibiotic production in relevant bioactive 

strains. Another aim was to use any discoveries about the physiological and genetic 

characters, which are necessary for activity to develop techniques which could 

predict bioactive and non-bioactive groups o f streptomycetes and which would 

encourage antibiotic gene expression.

A further objective was to search for phenetic and chemotaxonomic 

characters, which correlated with bioactivity and the characters studied included 

antibiotic resistance patterns, fatty acid profiles and patterns obtained by thin layer 

chromatography of solvent extracts from streptomycete cultures. An overall 

objective was to use the information gathered from the population studies to try to 

understand the ecological role of secondary metabolism.

55



Chapter 2

Materials and Methods.

2.1 M aterials

Strains, which were used in this research comprised both type strains and 

natural isolates. Table 2.1. shows the natural isolates which were taken from the 

E.M.H. Wellington culture collection and Table 2.2. lists the type strains. Certain 

other strains were used as a source of plasmid DNA and a list of these is presented 

in Table 2 .3.; the genes which were isolated from the plasmids are given in Table 

2.4.

The compositions of media are shown in Table 2.3. and these were 

autoclaved at 121°C for 20 mins., unless otherwise indicated. Constituents are 

given in g/1 and exceptions to this are also given on the table. Table 2.6. shows the 

formulations of the buffers and reagents which were used and quantities of 

components are given in mM, unless otherwise indicated.
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Table 2.1 Summary o f natural isolates used for this research

Strain Source Isolation Medium No. of

Series Method Strains

A Italy Chemostat Starch 13

B Warwick Chemostat C32 2

C Warwick Pour Plate AGS 98

D Warwick Pour Plate C32 36

E Italy Chemostat C32 11

F Warwick Pour Plate C32 7

MM Martin
Mere

Pour Plate C32 I«

W Warwick Pour Plate C32 4

RB Italy Pour Plate AGS 3

MEL Brazil Spread Plate AGS 4

CAG Greece Various Various 25

JHCC Various Various Various 8

TOTAL 225

Series A to E were isolated by T.N. Whitmore; MM and W by N. Cresswell; RB 

by R. Bandoni; Mel by M. Walker; CAG by A. Karagouni and JHCC by various 

workers. Starch and C32 media were developed by T.N. Whitmore.
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Kev to superscripts on Table 2.2

^Strain was used in Chapter 4 for Fatty Acid Work.

^Strain was used in Chapter 5 for Chemical Profiles.

^Strain was used in Chapter 6 for Resistance Profiles.

^"Strain was used in Chapter 6 for Resistance Profiles, but were not used for cluster 

analysis.

NB. Superscripts with several numerals (eg. 456) indicate that the strain was present

in more than one study (eg. 4 and S and 6) and can therefore be taken to mean 4>
6.

Key to abbreviations used in Table 2.2. 

S. refers to .Streptomyces.

Stv. refers to Streptoverticillium.

The taxonomic identities, which are given on the table were assigned by 

Williams et al. (1983a). All strains apart from ATCC 442, ISP 5233, DSM 40069 

and KCC S-0783 were used in Chapter 7. for probing work. In addition to the 

strains shown in the table, M180 S.violaceoniger (C32) was used in Chapter 4 for 

Catty acid work and Chapter 5 for TLC profiles.
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Table 2.2. Summary o f type species and reference strains used in this research.

Culture
Collection

Tax.

Reference Name ID. Product

ATCC 274166" S. annulatus Cl Antibacterial
Antifungal

KCC S-04466" S. albidoflavus Cl

DSM 40260 S. albofaciens C42 Oxytetracycline

DSM 401066 S. azureus C18 Thiostrepton

DSM 40232 S. baamensis Cl

DSM 405986' S. bacillans Cl

ATCC 110626" S. bUdniensis C64 Streptomycin

KCC S-04595 S. bottropensis C19 Bottromycin

DSM 40419456 S. caesius C21

KCC S-0731456 S. caesius C21

DSM 403135 S. coralus C19

ISP 54A26- S.coeliatus Cl

A3(2)456 S. coelicolor C21 Methylenomycin
Undecyl-
prodigiosin
Actinorhodin
Polyamines

ISP 52334 S. coelicolor C21 As Above A3(2)

JCM 422045 S.cyaneus C18

ISP 4213456 S. endus C32 Endomycins

ISP 5060 S. exfoliatus C5

ISP 5022 S. filamentosus C5 Caryomycin

DSM 4112 S. filipensis C30 Filipin

DSM 403236" S. flavogriseus C l

ATCC 239076- S. flourescens Cl Actinomycin-X

KCC S-01336 S. fradiae C68 Neomycin

ISP 5064 S. gardened C5 Proactinomycins
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Culture
Collection
Reference Name

Tax.

ID. Product

DSM 4023646 S. griseus C l Streptomycin

DSM400684 S. halstedii C l

ATCC 21705456 S. hygroscopicus C32 Bialaphos

ATCC 146076" S. hygroscopicus C32 Bluensomycin

NRRL3602456 S. hygroscopicus C32 Geldanamycin
Nigericin

ATCC 3672456 S. hygroscopicus C32 Herbimycins
Nigericin

KCC S-077246 S. hygroscopicus C32 Hygromycins

NRRL 5739450 S. hygroscopicus C32 Milbemycin

NRRL366446 S. hygroscopicus C32 Scopofungin

ATCC 319554 S. hygroscopicus C32 L-155-175

ATCC 394470 S. hygroscopicus C32 MA 5000

ATCC 12760^ S. humidus C19 Dihydro-
Streptomycin

ISP 55505- S. katraie C61 Streptothricin
Polyenes

DSM4006946 S. lavendulae C61 Strq>tothricin
Polyenes

DSM 402166 

ATCC 33316“

S. lavendulocolor 

S. lipmanii

C61

KCC S-078346 S. lividans C21

J.I. 132645 S.lividans C21

KCC S-0495456 S. melanosporo- 
faciens

C32 Melanosporium
Elaiophylin

DSM 40091s S.murinus C17 Actinomycin-X

KCC S-0785456 S. lusitanus C44 Tetracycline
Chlor­
tetracycline

DSM 405086* S. naraeruis C l Naramycins
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Culture
Collection

Tax.

Reference Ñame ID. Product

ISP 5016 S. narbonensis C5 Narbomycin

DSM 40023®' S. nitrosporeus C1 Nitrosporin

NCIMB 9219 S. ni ve us C1 Novobiocin

ISP 5552 S. omiyaensis C5 Chloramphenicol

ATCC 25481®- S. omatus C1 Omamycin

DSM 40268 S. rimosus C42 Oxytetracycline

ISP 5174 S. roséolas C5 Antibacterial

ISP 5122 S. roseosporus C5 Antibacterial

ISP 54134 S. roseus C7

DSM 40077®" S. rutgersensis C1 Camphomycin

DSM 40445®* S. subrutilus C61 Hydroxy-
streptomycin

ISP 5329 S. termitum C5

KCC S-051946 S. thermotolerans C19 Carbomycin

ISP 5278 S. umbrinus C5 Antibacterial

NCIMB 8852® S. vinaceus C6 Viomycin

DSM 404384® S. violaceolatus C21

KCC S-0850456 S. violaceoniger C32

ISP 5196 S. zaomyceticus C5 Zaomycin

JHCC 131956 S. *pp. Actin

JHCC 123345® S. spp. Bialaphos

JHCC 139056 S. spp. Blasticidin

JHCC 123456 S. spp. Cyclohexamide

DSM 40049®" S. spp. C1

Lív. 463®- S. spp. C1

KCC S-0331® Stv. hachijoensis C55 Trichomycin
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Culture
Collection
Reference Name

Tax.

ID. Product

KCC S-03316 Srv. hachijoensis C55 Trichomycin

ATCC 274416" Stv. ladakanum SMC 5-Azacytidine

ATCC 239346" Stv. mashuensis C55 Streptomycin

TOTAL 73 STRAINS

Key to Abbreviations used to denote culture collections

ATCC refers to the American Type Culture Collection.

KCC S refers to strains from the Kaken Chemical Company.

DSM refers to the Deutsche Sammlung von Mikroorganismen.

ISP refers to the International Streptomyces Project.

NRRL refers to strains from the Northern Regional Research Laboratory.

NCIMB refers to the National Culture Collection of Industrial and Marine Bacteria. 

J.I. refers to strains from the John Innes Institute.

JHCC refers to strains from the ICI culture collection at Jealotts Hill.

Liv. refers to strains obtained from Liverpool University.

M refers to a type strain, whose origin was unknown.
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Table 2.3. shows the strains which provided plasmids for use during this work.

Table 2 .3 . The nlasmid hearing strains nsad in thi« research

Plasmid Host Selection

PCKL7191 E.coU DH1 Ampicillin

pU41042 E.coli Rec A 
Delta M15

Ampicillin

pSACJ3 E.coli
(unknown strain)

Ampicillin

pU6734 S. lividans TK24 Viomycin

PU6804 S. lividans TK24 Thiostrepton
Neomycin

pGL1035 S. lividans TK24 Thiostrepton

Key:

The superscripts on the plasmids refer to the suppliers, who were:

1. S. Baumberg, Department of Genetics, University of Leeds.

2. M.J. Bibb, Department of Genetics, John Innes Institute.

3. P. Leadley, Department of Biochemistry, University of Cambridge.

4. John Innes Institute.

5. D. Ritchie, Department of Microbiology, University of Liverpool.

E. refers to Escherichia.

S. refers to Streptomyces.
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Table 2.4. Genes used for preparation of the DNA probes used in this resftarrh

Plasmid Gene Source Enzyme Restriction 
Fragment 
Size (Kb)

pCKL719 aph S.griseus Pstl 0.671
DSM 40236 Stul

pU4104 bar S. hygroscopicus 
ATCC 21705

EcoRl 
HindHI

0.605

pU673 vph S. vinaceus 
NCIMB8852

Sphl 0.950

pU680 aphD S. fradiae 
KCC 013

SstU 0.953

tsr S. azure us 
DSM 40106

Ben 1.087

pGL103 NbR S. ni ve us
NCIB 9219

Bglil 1.100

Explanation of genes qouted in Table 2.4.

aph «  streptomycin phosphotransferase gene (Vallins and Baumberg, 1985).

bar = modified bialaphos resistance determinant, dimethyl phosphinothricin

acetyltransferase gene (Murakami et a l., 1983).

vph -  viomycin phosphotransferase gene (Thompson et a l., 1982a).

aphD -  neomycin phosphotransferase gene (Thompson et al., 1982a).

tsr -  thiostrepton rRNA methylase (Thompson et al., 1982a).

Nbr  -  undetermined novobiocin resistance determinant (Mitchell et al., 1990). S.

S. refers to Streptomyces.
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Table 2.5. Media used in this research,

Key to Superscripts in Table 2.5..

The amount of constituents in the medium is given as g/1 unless otherwise 

indicated

Added after autoclaving from filter sterilized stocks.
'i

. Amounts are given as grams per 800ml.

All media were autoclaved at 121°C for 20 mins. 

pH was adjusted to the values shown prior to autoclaving.
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Table 2 5 Media used in this research

Medium Ingredients * Amount g/1

A37 Broth Glucose 5.0

Starch 15.0

pH 7.0 NaCl 5.0

Com Steep Liquor 10.0

Soya Bean Meal 10.0

CaCC>3 32.0

Arginine Glycerol 12.5

Glycerol Arginine 1.0

Salts KH2P04 1.0

(AGS) k2s o 4 0.5

NaCl 1.0

pH 8.0 Agar 15.0

^Trace Elements MgS04 .7H20  (10g/l) 1ml

Solution for ZnS04 .7H20  (lg/1) 1ml

AGS. FeS04 .7H20  (10g/l) 1ml

CuS04 .5H20  (lg/1) 1ml

MnS04 .4H20  (lg/1) 1ml
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Medium Ingredients * Amount g/1

Glucose k h 2p o 4 7.0

Mineral K2HP0 4 3.0

Salts KNC>3 4.0

MgS04 .7H20 1.0

NaCl

^Add 133ml filter sterilised 
glucose (30%) after autoclaving.

1.0

GYM Yeast Extract 4.0

Malt Extract 10.0

Agar 13.0

ISP7 Glycerol 15.0

Tyrosine 0.5

pH 7.3. Asparagine 1.0

k 2h p o 4 0.5

TES 1.0ml

^ ra c e MgSO4 .7H20 0.5

Element FeSO4 .7H20 1.0

Solution (TES) MnCl2.4H20 1.0

for ISP7 ZnSO4 .7H20 1.0
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Medium Ingredients 1 Amount g/1

L Broth Bacto Tryptone 10.0

Yeast Extract 3.0

NaCl 3.0

Glucose 1.0

Malt Extract Broth 20.0

Agar (Oxoid) Agar 15.0

Nutrient Agar 28.0

(Oxoid)

Nutrient Broth 13.0

(Difco)

Oatmeal Agar Oatmeal 20.0

Yeast Extract 5.0

Agar

pH 7.2

Steamed before autoclaving.

15.0

R5 Sucrose 103.0

K2S04 0.25

MgCl2.7H20 10.12

Glucose 10.0
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Medium Ingredients * Amount g/1

R5-Continued Casaminoacids 0.1

Yeast Extract 5.0

TES Buffer 5.73

^Trace Element Solution 2 .0ml

Agar 22.0

^Trace ZnCl 20.04

Element FeCl2.7H20 0.2

Solution CUCI2 .2H2O 0.01

for R5 and R2. MnCl2.4H20 0.01

Na2B4O7 . 10H2O 0.01

(NH4)gMo7024.4H20 0.01

2After autoclaving and 0.5% KH2PO4 10.0ml

immediately prior to use 5M CaCl2.2H20 4.0ml

these ingredients (opposite) 20% L-proline 15.0ml

were added per litre. IN  NaOH 7.0ml

3R2 Sucrose 103.0

K2SO4 0.25

MgCl2.7H20 10.12

Glucose 10.0

Casamino acids 0.1

Distilled Water 800ml

Agar 22.0
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Medium Ingredients 1 Amount g/1

R2 (continued) 0.5% KH2PO4 10.0ml

After autoclaving and 3.68% CaCl2 .2H20 80.0 ml

immediately prior to use 20% L-proline 15.0 ml

the opposite ingredients 5.73% TES Buffer 100.0 ml

were added per 800 ml. (pH7.2)

2Trace Element Solution 2 .0ml

IN  NaOH 5.0ml

Sautons Medium Glucose 15.0

(Modified) Asparagine 5.0

pH 7.2 Casein Hydrolysate 2.0

Sodium Citrate 1.5

k h 2po 4 5.0

MgS04 .7H20 0.5

Ferric Ammonium Citrate

^Glucose is filter sterilized 
and added after autoclaving.

0.1

Yeast Extract Yeast Extract 3.0

Malt Extract Bacto-Peptone 5.0

(YEME) Malt Extract 3.0

Glucose 10.0

Sucrose

2.5M Magnesium Chloride 
(hexahydrate) 2.0  ml/1 added 
after autoclaving.

340.0

Media constituents were supplied by Oxoid, Difco, BDH or the Sigma chemical 
company.
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Table 2.6. Buffers and reagents used in probing work.

Table 2.6. gives the buffers and reagents, which were used during this research. 

They were made up using double distilled water and were sterilized by autoclaving 

at 121°C, when appropriate.

Key to superscripts used in this research:

1 The quantity of constituents is given as mM unless otherwise stated.
y

The DNA was dissolved to give 10 mg/ml in sterile distilled water. Following 

this it was syringed through a narrow bore needle, boiled for 10 minutes, chilled 

rapidly on ice and stored at -20°C.
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Table 2.6. Buffers and reagents used in probing work.

Reagent Ingredients ^Quantity (mM)

Acid Phenol Phenol (analar) 5.00(g)

Chloroform Chloroform 5.00 (ml)

Water 1.00 (ml)

8-hydroxyquinoline 5.00 (mg)

Alkaline SDS NaOH 300.00

Solution Sodium Dodecyl 
Sulphate

2%

Denaturing NaOH 1000.00

Solution NaCl 1500.00

Denhards Ficoll 2 %(w/v)
Solution (MW400.000 Sigma)

Bovine Serum Albumin 
(Fraction 5 Sigma)

2 %(w/v)

Polyvinyl Pynolidone 
(MW360,0d0, Sigma) 2 %(w/v)

^Non-homologous
DNA

Salmon sperm DNA 10.00 (mg/ml)

GTE Glucose 50.00

Sodium-EDTA (pH 8) 10.00

Tris-HCl 25.00

TBE Tris-HCl 89.00

Buffer Boric acid 89.00

Sodium-EDTA (pH 8) 2.00
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Reagent Ingredients * Quantity (mM)

TE Tris-HCl (pH8) 10.00

Buffer Sodium-EDTA (pH8) 1.00

Lysozyme Lysozyme 2.00 (mg/ml)

Solution Heat Treated RNAse 50.00 (mg/ml)

Tris-HCl (pH8) 0.30

Sodium-EDTA (pH8) 25.00

5 x Loading Sucrose 6.00 (g/1)

Buffer Sodium-EDTA (pH 8) 0.37 (g/1)

pH 8.00 Sterile Distilled 

Water

10.00(ml)

Bromophenol Blue 25.00%

Neutralizing NaOH 1500.00

Solution Tris (pH7.4) 1000.00

^Non-Homologous Salmon Sperm DNA 10.00 (mg)

DNA Sterile Distilled 

Water

10.00 (ml)

Phenol Phenol (HPLC grade) 100.00 (g)

Chloroform Chloroform 100.00 (ml)

Mix Tris-HCl (pH8) to equilibrate.
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Reagent Ingredients ^Quantity (mM)

Phenol Solution Phenol (HPLC grade)

8-hydroxyquinoline

TE Buffer (+  0 .1M NaOH)

500.00(g) 

0 .50(g) 

65.00 (ml)

Prehybridization 3 x SSC 15.00 (ml)

Solution 4 X Denhards solution

Non-homologous DNA 
(Salmon Sperm DNA)

Make up to 100ml with sterile 
deionzed distilled water.

4.00 (ml)

100.00 (fig)

RNAse RNAse 50.00 Oil)

Solution Sterile distilled 
water

950.00 Oil)

20 x SSC NaCl 175.32 (g/1)

Sodium citrate 88.23 (g/1)
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2.2. Strain Maintenance,

2.2.1. Routine Maintenance of Strains.

(See Table 2.4 for media)

Streptomycete strains were maintained on slopes in sterile universals of both 

of GYM and oatmeal agar, at 30° C. B. subtilis was maintained on nutrient agar 

and cultured for use in bioassays in nutrient broth at 30°C. Aspergillus niger was 

maintained on malt extract agar at 30° C, but for bioassay A. niger spores were 

suspended in glycerol salts medium. E. coli strains were maintained on nutrient agar 

containing a concentration of 35 pg per ml of ampicillin. S. lividans (TK24) was 

maintained on R5 medium. Alternatively the plasmid bearing mycelium was stored 

as a frozen paste until required.

2.2.2. Culture Storage.

Short-term storage was on the above slopes at 4° C . Long term storage was 

in 20% glycerol solution at -20° C. Streptomyces strains w ere grown up on oatmeal 

agar slopes until they sporulated. 5 ml of 20% glycerol solution was added to each 

universal with a sterile wide bore pipette. The tip of the pipette was used to scrape 

the spores and mycelium from the surface of the culture. The resulting suspension 

was dispensed into a sterile bijoux and stored at -20° C . Log phase E.coli and 

B.subtilis were pelleted in a centrifuge (14,000g at 10° C for 5 mins.) and were 

also stored in 20% glycerol solution at -20° C.

2.2.3. Strain Resuscitation.

Ampoules-containing freeze dried mycelium were heated and dipped in cold 

water to break the glass. Dried down streptomycetes were then resuspended in 500 

pi YEME. Aliquots of this were used to inoculate Oatmeal plates and YEME broth. 

These were incubated at 28° C until the organisms had grown.
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Whenever it was necessary to standardize inoculum size between strains, 

spore and mycelial suspensions were counted using a haemocytometer slide (0.02  

mm Thoma). Four fields of view were counted for each sample. These were then 

averaged and used to calculate the number of spores and mycelia per ml. 

Suspensions were then standardized at 1 x 107 spores and mycelial fragments per 

ml.

2.3. Characterization o f Streptomycetes

2.3. l.Extraction of Bioactive Compounds.

For the extraction of non polar (lipophilic) compounds, Ehrlenmeyer flasks 

(230 ml) containing 30 ml A37 medium were inoculated with a loopful o f 

streptomycete spores from a slope. These were incubated at 28° C in an orbital 

shaker at 200 r.p.m .. After 6 days, 10 ml ethyl acetate was added to each culture. 

The flasks were stoppered with rubber bungs to prevent the solvent from 

evaporating and were shaken (200 r.p.m ) for 1 hour at room temperature. The flask 

contents were transferred to centrifuge tubes and spun at 14,000g at 10° C for 13 

mins. The solvent phase was removed, placed in a universal and vacuum evaporated 

to dryness in a desiccator. The dried extracts were resuspended in 200 pi ethyl 

acetate and analysed by thin layer chromatography.

For the extraction of streptomycin, a 6 day old culture was spun down at 

14,000g at 10° C for 3 mins. The supernatant was collected into a 100ml glass pot 

and dried down in an oven at 80° C. The residue was resuspended in 200 pi 

methanol (in which > 20  mg/ml of streptomycin was soluble) and used for TLC.

2.3.2. Thin Laver Chroma tngranhv ( T in .

TLC was carried out on 0.23 mm silica gel with fluorescent indicator 

(UV254). The baseline was 2 cm from the bottom of each plate. 20 p i of each

2.2.4. Standardization o f  Streptomvcete Inocula.
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sample was loaded as a 1 cm line along the baseline with a 1cm interval between 

each sample and a 1.5 cm margin at the edges o f the plate. Plates were run until the 

solvent front was 2 cm from the top of the plate. The following three solvent 

systems were routinely used: (1) ethyl acetate : n-hexane : dichloromethane : 

methanol (v/v 9:6:1:1); (2) dichloromethane : methanol (v/v 9:1) and (3) butanol : 

acetic acid : water (v/v 3:1:1). Table 2.7 shows the approximate Rf values of 

commonly used antibiotics in these solvent systems. Pure forms of relevant 

antibiotics were used as standards.

Table 2.7. Rf values o f antibiotics screened for TLC

Antibiotic
1 (RO

Solvent System 
2 (Rf) 3 (Rf)

Streptomycin 0.0 0.0 0.2

Novobiocin

p
o

o N .T. N.T.

Thiostrepton 0.00 0.68 1.73

Nigericin 0.72 0.84 N.T.

Herbimycin A 0.37 0.75 N.T.

Herbimycin C 0.31 0.86 N.T.

Geldanamycin

o
o

o
P

r?

0.84
(top
spot)

N.T.

Key to Table 2.7.: N .T . -  Not Tested.

Rf values were calculated by dividing the distance travelled by

compound by the distance of the solvent front from the base line. Replicate samples 

were used to give a mean Rf value for each compound.

77



TLC plates were removed from the solvent tanks and air dried. A number of 

methods were used to detect antibiotics, but colouration under visible light and UV 

fluorescence at 254 nm were used routinely. Plates were also routinely sprayed with 

vanillin reagent (vanillin, 3.0 g; ethanol, 100.0 ml; Cone. H2SO4 , 0.5 ml) and then 

heated at 100° C for 10 mins. Other methods included covering the plates in a One 

spray o f 10% H2SO4  or with 0.2% ninhydrin in acetone. Plates treated in this way 

were also heated for 10 mins at 100° C. Table 2.8. shows the various reactions of 

commonly used antibiotics with these reagents.

2.3.3. Bioautography.

Antibacterial bioautograms involved inverting pre-run TLC plates were on a 

200 ml base layer o f nutrient agar in a Nunc bioassay dish. These were left for 30 

minutes to allow the metabolites to diffuse into the medium. The plates were 

removed and seeded overlays containing 200 pi log phase B. subtilis cells (lxlO6  

per ml) was poured evenly onto the base layer. These dishes were incubated at 

28°C overnight.

For antifungal bioautograms pre-run TLC plates were sprayed with A. niger 

spores (1x10^ per ml) in glycerol salts solution. Plates were then placed in bioassay 

dishes, supported on sterile bottle tops for 3-7 days at 30° C. They were suspended 

above wet filter paper to provide a humid environment. Zones of inhibition for both 

types o f bioautography were correlated with spots on replicate uninoculated TLC 

plates.

2.3.4. In vivo Agrochemical Screens.

Data relating to the bioactivity of the strains on in vivo agrochemical screens 

(herbicidal, insecticidal, fungicidal and plant growth regulator) was made available 

by Sarah Rees (ICI Agrochemicals). Information consisted of activities detected 

within each screening department and whether the activity was
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Table 2.8. Visualization o f antibiotics.

Anti­
biotic

Visible
Light

UV
Light

Ninhy-
drin

10%
h 2s o 4

Vanillin

Strepto
-mycin

- - - Brown Brown

Neomycin - + Plum Green Beige

Viomycin - + Violet - Lemon

Kanamycin - - Purple Brown Yellow-
Green

Blast-
icidin

+ + Green Purple Green

Oxytet
-racycline

Yellow - Yellow Rust Yellow-
Green

Erythro- 
- mycin

+ - Brown -

Novo-
-biocin

- + Brown Beige -

Thio-
-strepton

Yellow- + Brown Rust-
Brown

Orange-
Brown

Nigericin - - ND ND Scarlet

Herbi-
-mycin

Yellow + ND ND Green

Gelda-
-namycin

Orange-
yellow

+ ND ND Green

ND — Not Done 

- — Not Visible 

+  ■ Visible
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reproducible. However each screen comprised a range of assays to detect activity 

against a variety of agricultural pests. For example a typical plant pathology screen 

might comprise Rhizoctonia, Botrytis and Pythium species.

2.3.5. Taxonomic Identification.

Full taxonomic identifications were carried out on a random selection of the 

natural isolates in the study. This work was done by Dorothy A.Sanders, 

Department of Biological Sciences, University of Warwick, with the exception of 

the scanning electron microscopy data.

The taxonomical identities of streptomycete strains was done according to 

the probability matrix of Williams et al. (1983b).Good identifications were assessed 

as follows:

1. The Wilcox coefficient was greater than 0.85.

2. The taxonomic distance was equal to or less than 0.4.

3. The standard deviation was less than 2.

4. There was a low number of characters scored against the most suitable 

identification (ie the first numeral in the characters against and the identification 

columns respectively).

Ten strains gave good identifications whilst a further seventeen fell slightly 

short of the requirements. These identifications were used when a method was being 

assessed for use in taxonomy. This left 35 strains which did not identify closely 

with any species group on the Williams et al. (1983a) probability matrix. Although 

the identities of these strains remains unknown, much morphological, physiological 

and phenotypic information was generated about them. They may belong to minor 

clusters of the genus (Williams et a l., 1983a) and could be identified using the 

probabilistic identification matrix o f Langham et al. (1985), or else they represent 

rare streptomycetes.
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Table 2.9. Taxonomie data on natural isolates

Strain Wilcox
Coeff.

Tax.
Dist.

SD Characters Identity 
Against x > y > z

C1356 0.57 0.38 0.49 3:4:3 19:1:3

C24567 0.5 0.399 0.92 3:5:5 19:15:12

C2845 0.96 0.38 1.23 4:4:5 1:3:19

C33456 0.45 0.47 3.52 7:10:5 1:15:3

C4056 0.71 0.42 2.35 6:3:61 5:12:19

C535 0.94 0.403 1.75 4:5:5 12:19:15

C7045 0.91 0.44 2.7 5:10:10 12:15:18

C77456 0.52 0.45 2.19 7:5:7 19:3:5

C98456 0.91 0.39 0.69 4:7:6 19:21:15

C108456 0.46 0.43 1.73 - 19:1:3

C109456 0.95 0.35 0.28 3:4:6 1:19:15

C121456 0.73 0.37 0.19 3:3:4 19:3:1
C1294567 1.0 0.4 1.9 6:6:7 15:12:19

C U I456 0.66 0.42 2.13 4:5:5 6:1:3

C174 0.57 0.396 2.41 4:6:7 3:1:19

C l 77*56 0.97 0.42 2.1 6:6:7 1:15:19

C1844567 0.99 0.46 2.34 6 :8:11 19:12:15

C208456 0.8 0.36 0.0001 2:5:4 19:15:1

C2124567 0.98 0.41 1.17 4:6:7 19:18:1

C2224567 0.68 0.42 2.06 5:8:6 1:15:12

C229467 0.0 0.4 2.3 5:5:6 3:1:15

C2454567 0.8 0.46 3.3 6:9:10 12:15:29

D2456 0.76 0.49 3.1 8:7:8 12:18:15

D3456 0.42 0.42 1.48 5:5:5 19:15:3

D5567 0.67 0.42 2.1 5:4:7 1:3:19

• 1



Strain Wilcox Tax. SD Characters Identity
Coeff. Dist Against x > y > z

D9 0.89 0.42

D61456 0.93 0.4

D7956 0.75 0.37

D9856 0.96 0.38

D12556 0.66 0.35

D140456 0.76 0.4

D17945 0.8 0.38

E l4«7 0.88 0.34
£3 j4567 0.79 0.42

E464 0.78 0.44

E554 0.95 0.48

E574 0.87 0.4

F284 0.55 0.41

F53567 0.94 0.33

F664 0.87 0.44

CAG16-7 0.7 0.43

CAG26 -7 0.7 0.51

CAG36 "7 0.93 0.54

CAG46 -7 0.63 0.44

CAG56 -7 0.967 0.47

CAG66-7 0.97 0.42

CAG76-7 0.57 0.51

CAG86- 0.99 0.38

CAG96 - 0.98 0.37

CAG106-7 0.79 0.47

C A G ll6"7 0.91 0.47

2.35 7:5:5 15:1:9

1.06 3:5:7 19:1:5

0.19 2:4:9 19:1:15

1.23 4:4:9 1:19:15

1.04 3:6:5 3:15:19

1.97 5:6:7 15:19:1

1.16 4:7;4 1:15:19

0.84 3:5:5 3:1:19

3.57 5:6:7 32:15:12

2.02 6:7:9 19:12:-

3.77 7:10:9 12:19:18

1.7 6:4:5 15:12:19

1.99 6:6:9 1:19:15

0.15 4:5:5 12:15:19

2.76 6:7:6 12:19:15

2.5 5:7:7 12:18:19

3.7 10:8:10 19:18:12

4.35 12:10:9 19:29:18

1.69 5:6:4 18:19:6

2.77 8:8:6 19:37:6

1.4 15:6:7 18:15:12

3.76 9:9:6 19:61:6

1.22 4:5:6 15:18:19

0.09 3:6:5 18:15:19

2.58 7:8:6 19:18:15

3.64 7:9:10 15:18:19
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Strain Wilcox
Coeff.

Tax.
Dist

SD Characters Identity 
Against x > y > z

CAG126"7 0.61 0.51 3.74 9:9:9 19:1:37

CAG136"7 0.94 0.43 0.47 7:7:8 37:12:19

CAG166"7 0.55 0.53 4.18 9:10:12 19:18:15

CAG176" 0.94 0.39 1.38 3:4:6 1:19:12

CAG186"7 0.87 0.51 4.41 10:7:10 5:61:1

CAG196"7 0.62 0.44 1.84 6:6:5 12:19:15

CAG216" 0.67 0.44 2.8 7:7:6 15:12:19

CAG236"7 0.65 0.5 4.3 8:10:10 1:15:18

CAG246"7 0.97 0.4 0.97 4:6:7 19:18:12

CAG256"7 - 0.47 2.9 8:7:9 19:1:5

CAG266-7 0.76 0.47 2.9 8:8:9 19:12:18

The strains in this table were selected arbitrarily for identification. Various 

other strains had been identified prior to the work presented in this thesis. They 

were A10, A19, A39 and B4, which identified to cluster 19 and A26 and E44, 

which identified to cluster 12.

Key to superscripts and abbreviations used in Table 2.9.:

Wilcox Coeff. — Wilcox Coefficient.

Tax. Dist. ”  Taxonomic Distance.

x > y > z  -  x is the most probable identity; y is the next most likely identity; z is 

the third most likely identity.

*Used in Chapter 4; Fatty Acid Study.

^Used in Chapter S; Chemical Profile Study.

^Used in Chapter 6 ; Antibiotic Resistance Study.

**~Used in Chapter 6 , but not for clustering.

7Used in Chapter 7; Gene Probing Study.

(NB. where several superscripts have been used as in 456, this mean 4> 5 and 6.)

83



Strains were grown on sterile glass coverslips, inserted into plates of oatmeal 

agar at an angle of 43°. 10 pi spore suspension was streaked between the interface 

of the coverslip and the medium. The plates were incubated at 30° C. When the 

streptomycete had sporulated the coverslips were removed (the mycelium and spores 

having adhered to them) and placed in an atmosphere of formaldehyde overnight. 

These were used for observation under the Scanning Electron Microscope. The glass 

coverslips were mounted onto electron microscope stubs using electrodag 913 high 

conductivity paint (Agar Scientific Ltd.). A fine layer of gold was deposited onto 

each sample for 80 secs, using a Biorad-E5200 sputter-coater (20 mA, 10 lb/square 

* Argon). Coated samples were observed under vacuum using a JEOL T330A 

scanning electron microscope.

Partial identifications were carried out on a large number of strains by 

examining their spore surface morphology in the scanning electron microscope. 73 

strains were randomly selected from the C, D , E  and F series (Table 2.1). This was 

done to establish the proportion of strains isolated on C32 medium (D,E and F 

series, Table 2.1.), which were S. viridoehnomogenes. The species is easily 

recognised by its characteristic rugose ornamentation and tightly spiralled spore 

chains. The exercise also provided an opportunity to form a library of photographs 

(Fig.2.1.), which help to reidentify strains and eliminate duplicates. Table 2.10. 

shows the results from the exercise. In addition, all strains in the MM and W series 

were preselected for spiral, rugose spore chain morphologies by examination under 

SEM by N. Cresswell (Department of Biological Sciences, Warwick University).

2.3.6. Scanning Electron Microscopy.
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Strain Wilcox
Coeff.

Tax.
Dist

SD Characters Identity 
Against x > y > z

CAG12**"7 0.61 0.51 3.74 9:9:9 19:1:37

CAG136"7 0.94 0.43 0.47 7:7:8 37:12:19

CAG166’7 0.55 0.53 4.18 9:10:12 19:18:15

CAG176- 0.94 0.39 1.38 3:4:6 1:19:12

CAG186-7 0.87 0.51 4.41 10:7:10 5:61:1

CAG196"7 0.62 0.44 1.84 6:6:5 12:19:15

CAG216" 0.67 0.44 2.8 7:7:6 15:12:19

CAG236"7 0.65 0.5 4.3 8:10:10 1:15:18

CAG246*7 0.97 0.4 0.97 4:6:7 19:18:12

CAG256-7 - 0.47 2.9 8:7:9 19:1:5

CAG266*7 0.76 0.47 2.9 8:8:9 19:12:18

The strains in this table were selected arbitrarily for identification. Various 

other strains had been identified prior to the work presented in this thesis. They 

were A10, A19, A39 and B4, which identified to cluster 19 and A26 and E44, 

which identified to  cluster 12.

Key to superscripts and abbreviations used in Table 2 .9.:

Wilcox Coeff. =  Wilcox Coefficient.

Tax. Dist. “  Taxonomic Distance.

x > y > z  -  x is the most probable identity; y is the next most likely identity; z is 

the third most likely identity.

*Used in Chapter 4; Fatty Acid Study.

^Used in Chapter 5; Chemical Profile Study.

**Used in Chapter 6 ; Antibiotic Resistance Study.

6~Used in Chapter 6 , but not for clustering.

7Used in Chapter 7; Gene Probing Study.

(NB. where several superscripts have been used as in 456, this mean 4’ 5 and 6.)
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Strains were grown on sterile glass coverslips, inserted into plates o f oatmeal 

agar at an angle of 45°. 10 pi spore suspension was streaked between the interface 

o f the coverslip and the medium. The plates were incubated at 30° C. When the 

streptomycete had sporulated the coverslips were removed (the mycelium and spores 

having adhered to them) and placed in an atmosphere of formaldehyde overnight.

These were used for observation under the Scanning Electron Microscope. The glass 

coverslips were mounted onto electron microscope stubs using electrodag 915 high 

conductivity paint (Agar Scientific Ltd.). A fine layer of gold was deposited onto 

each sample for 80 secs, using a Biorad-E5200 sputter-coater (20 mA, 10 lb/square 

" Argon). Coated samples were observed under vacuum using a JEOL T330A 

scanning electron microscope.

Partial identifications were carried out on a large number of strains by 

examining their spore surface morphology in the scanning electron microscope. 73 

strains were randomly selected from the C , D, E and F series (Table 2.1). This was

done to establish the proportion of strains isolated on C32 medium (D ,E and F
¿ v v f .A .  X

series, Table 2 .I.), which were S.viridochromogtnes. The species is easily 

recognised by its characteristic rugose ornamentation and tightly spiralled spore 

chains. The exercise also provided an opportunity to form a library of photographs 

(Fig.2.1.), which help to reidentify strains and eliminate duplicates. Table 2.10. 

shows the results from the exercise. In addition, all strains in the MM and W series 

were preselected for spiral, rugose spore chain morphologies by examination under 

SEM by N. Cresswell (Department of Biological Sciences, Warwick University).

2.3.6. Scanning Electron Microscopy.

84



Figure 2.1. Scanning electron micrographs of streptomycete spore chains

Photograph.

A and B =  Rugose spore chains 

C and D =  Smooth and straight spore chains
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Table 2.10. Spore morphology of a selection of natural isolates.

Chain
Type

Spore
Ornamentation

C Series 
(No. strains)

D ,E,F Series 
(No. strains)

Spiral Rugose 2 6

Spiral Smooth 2 2

Straight Smooth 34 17

Hooked Smooth 4 2

Straight Warty 1 3

Total No. Strains 43 30

Six strains out of the thirty isolated on C32 medium were of the desired 

identity (16.7%). This compared with two out of forty-three strains isolated on AGS 

medium. From these results C32 is 3.8 times more successful for the isolation of 

S.violaceoniger strains, although the vast majority of strains isolated by both 

methods do not belong to this species group.

2.4. Fermentation Work.

2.4.1. Comparison of Antibiotic Production on Different Media.

A comparison of antibiotic production in Sautons medium with and without 

casein hydrolysate, R5 with and without casamino acids, MSG and ISP7 was made. 

Thirty ml medium in a 250 ml Erlenmeyer flask was incubated for six days at 28° 

C . After incubation antibiotics were extracted as in section 2.3.

2.4.2. Timecourses of Antibiotic Production in Strain D153.

Sixty ml ISP7 (500 ml flask) was inoculated with 60 p i spore suspension (1 

x 107 per ml). Incubation was at 28° C and 200 r.p.m . for 7 days. Samples (5 ml) 

were removed at 24 hourly intervals. After the samples were collected they were
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2.4.3. Oxygen Limitation Experiment.

Fifteen flasks containing ISP7 medium (30 ml) were inoculated with 60 ul 

spore suspension (1 x 107 per ml). These were incubated for 76 hours at 28° C. 

Then 5 control flasks were prepared as follows: 3 were left as they were and 2 were 

subasealed. The remaining flasks were also sealed with subaseals, but were flushed 

with nitrogen gas. A set volume of nitrogen was removed from the flask and an 

equivalent volume of oxygen was syringed in to make concentrations of 0, 5, 10, 15 

and 21% oxygen. Flasks containing 21% O2  were also controls. The volume of 

each flask was measured, prior to the experiment, by filling them with water up to 

the subaseal level and then weighing them. The precise volume of gas required for 

each oxygen concentration was then calculated. Samples (2 ml) were taken every 

twelve hours. Biomass was measured (dry weight) and the presence of antibiotics 

was detected using methods 1 and 2 in section 2.3.

2 .4 .4 . Dry Weight Measurements.

A known volume of filtered mycelium from a culture broth was dried down 

to constant weight in pre-weighed glass universal! at 100°C.

2.4.5 . Nutrient Gradients.

The defined medium was based on ISP7 with variation of either the 

nitrogen, carbon or phosphorus source. The carbon sources used were glucose, 

sucrose and glycerol,at concentrations between 0 and 20 g/1. Nitrogen sources were 

tyrosine asparagine and sodium nitrate, at concentrations between 0 and 4 g/1. 

Gradients of dipotassium hydrogen orthophosphate were examined between 0 tol 

g/1 ,0  to 5 g/1 and 0 to 10 g/1. The gradients were prepared by omitting the nutrient 

under scrutiny from the 50 ml base layer poured on a slant in a 10 x 10 cm bioassay

frozen until required. Biomass (dry weight) was measured for each sample and the

presence of geldanamycin and nigericin were determined by TLC.
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dish. The SO ml top layer was made at the maximum concentration for the test 

nutrient. This was poured onto the base layer to give a flat surface. Diffusion from 

the top layer to the bottom layer resulted in a plate with a continuous gradient from 

0 to maximum g/1 for each nutrient. 35 /¿I streptomycete spore and mycelium 

suspension (lxlO 7 per ml) was dispensed in an even line across the gradient and the 

plates were incubated at 30° C for up to 2 weeks. The growth on the plates was 

observed every day for diffusible pigments and to observe the growth and 

development o f each organism.

Antibiosis for selected strains was observed after 90 hours growth. 

Streptomycete cultures were killed by exposing them to S mins, shortwave (2S4 nm) 

UV light. Then the plates were overlaid with test organisms. For antifungal activity 

SO y1 A.niger spores (1 x 10^ per ml) were inoculated into IS ml YEME medium 

and used to overlay gradient plates. They were grown at 30°C for 3 days. The 

position and size of zones, where there was no fungal growth were measured. For 

activity against B.subtilis SO y\ log phase (1x10^ per ml) cells were used to 

inoculate IS ml nutrient agar. Gradient plates were overlaid and incubated at 28° C 

overnight. Clear zones were recorded with respect to their size and position on the 

gradient

2.5 Fatty Acid Analysis.

2.5.1. Extraction Procedure.
The following reagents were used during the analysis of whole cell fatty

acids:

Reagent 1.; Saponification reagent: 4Sg NaOH, Fisher certified ACS grade; ISO ml 

methyl alcohol HPLC or spectroanalysis grade; ISO ml deionized, distilled water. 

Reagent 2 .; Methylation reagent: 32S ml 6  N hydrochloric acid (HC1); 27S ml 

methyl alcohol (as above).
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Reagent 3.; Extraction solvent: 200 ml hexane, Fisher HPLC grade; 200 ml ethyl 

ether, anhydrous Fisher certified spectroanalysed.

Reagent 4 .; Base wash: 10.8g sodium hydroxide (as above); 900 ml deionized 

distilled water.

Streptomycetes were grown in 30 ml modified Sautons medium at 28° C for 

three days. Cells were harvested by filtration through Whatman 3 mm filter paper in 

a Buchner filter and washed with distilled water. The wet biomass w as dried at 100° 

C to a constant weight. 30 mg dried biomass was transferred to a Teflon stoppered 

"Pierce" reactivial and saponified in 1ml Reagent 1 at 100° C for 30 mins.The tube 

was vortexed for 3-10 secs, at times 0 and 3 mins. A 2 ml amount o f Reagent 2 was 

added to the tube, which was then vortexed for 3-10 secs. This was placed in an 80 

+ /- 1° C water bath for 10 mins, to carry out the methylation reaction. The Fatty 

Acid Methyl Esters (FAMES) were extracted into 1.23 ml Reagent 3 by rotating the 

tube end-over-end for 10 mins. The aqueous lower phase was discarded and 3ml 

Reagent 4 was added. The tube was rotated for 3 mins. Then 2/3 o f the organic 

extract was added to a Gas Chromatography (GC) sample vial after drying over 

anhydrous Na2SC>4 .

2.5.2. Combined Capillary Gas Chromatography Mass Spectroscopy fGCMSl.

GCMS was carried out by Sue Slade, Department of Biological Sciences, 

University o f Warwick.

A Krates MS25 RFA Mass Spectrometer in conjunction w ith a Carloerba 

MFC 500 Gas Chromatograph was used. The column was a Chrompack CP Sil5 

(non-polar) o f length 23m, inner diameter 0.33 mm and film thickness 0.12 pm. 

The carrier gas was helium, the temperature ramp 100° C for 8 m ins, then 4° C per 

min. to 250°C and the flow rate 2 cubic cm /min. A 1.5 pi aliquot (30% split ratio) 

was injected into the GCMS at 240° C. The source temperature was 200° C and an 

ionization an electron impact o f 70 eV was used. A qualitative standard mix of 

methyl esters, supplied by Supelco (Catalogue No. 4-7080) was used in order to

89



detect the presence of specific compounds. For the timecourse experiments a 

quantified internal standard (methyl undecanoate) was used so that the amount of 

each methyl ester relative to this standard could be calculated using the area under 

each peak.

2.5.3. Timecourses.

Fatty Acid Analysis Procedure and GCMS Protocol were as above, except 

cells were harvested daily for 7 days. Biomass samples from each timecouse were 

frozen at -20° C until they had all been collected then the FAMES were isolated 

and analysed. Dry weight measurements were taken and antibiotic production was 

analysed in timecourse 2 .

2.6. Metabolite Profiles.

These were based on the results from extraction method 1, TLC system 1 

and visualization under ultra-violet light. For each strain the presence or absence of 

29 compounds was scored using an external standard to aid between plate 

comparisons. Method development is discussed in Chapter 5.

2.7. Resistance Profiles.

2 /L l.T h e Use of Antibiotic Gradient Plates to Determine Phenctic Resistance in 

Strentormces Strains.

Resistance was defined by reference to sensitivity of a large population of 

streptomycetes (193 strains). This was achieved by testing the population using 

gradient plates composed of AGS medium. To make antibiotic gradient plates, 150 

mis AGS medium was poured as a 0-5 mm slant in a bioassay dish (22 x 22 cm). A 

further 150 mis AGS, containing the prescribed antibiotic was poured on top of the 

base layer to give a flat surface. The plates were poured immediately prior to use 

and then 75 pi spore and mycelial suspension (lxlO7 spores and mycelial fragments
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per ml) was inoculated in an even line using a Finn pipette across gradient plates 

(containing one of the following antibiotics) and incubated for 6 days at 30° C. The 

antibiotics tested were thiostrepton (0 to SO ug/ml), neomycin (0 to 10 ug/ml), 

novobiocin (0 to 100 ug/ml), viomycin (0 to 30 ug/ml), streptomycin (0 to 10 

ug/ml), erythromycin (0 to 100 ug/ml), oxytetracycline (0 to 100 ug/ml), 

kanamycin (0 to 100 ug/ml), nigericin (0 to 17 ug/ml), blasticidin S (0 to 100 

ug/ml) and penicillin G (0 to 100 ug/ml). Growth across the gradient was measured 

in mm's and since the strains did not grow where an antibiotic had reached an 

inhibitory level, the measurement was related to the minimum inhibitory 

concentration. An extrapolated value was taken from these measurements using the 

following equation:

LENGTH OF LINE OF GROWTH x MAXIMUM ~ LEVEL OF
(mm)_____________________________ ANTIBIOTIC ANTIBIOTIC
TOTAL LENGTH OF GRADIENT CONC. RESISTANCE
(mm) (/tg/ml) (/tg/ml).

These tests were done in duplicate for each strain and the results were only 

scored when control plates containing no antibiotic showed growth, the distances 

(and extrapolated antibiotic concentrations) at which the population became constant 

were as follows; thiostrepton, 2.23 cm (3 /tg/m l); neomycin, 4.3 cm (2 /tg/ml); 

novobiocin 4.3 cm (20 /tg/ml); viomycin 4.3 cm (2 /tg/m l); streptomycin, 7.88 cm 

(3.3 /tg/m l); erythromycin, 9 cm (40 /tg/m l); oxytetracycline, 10.13 cm (43 

/tg/ml); nigericin, 19.93 (16 /tg/m l); blasticidin S 0.3 cm (2 /tg/m l); penicillin G 

21.38 cm (93 /tg/ml).

Antibiotics were obtained from the Sigma Chemical Company L td., except 

for viomycin, which was supplied by the Upjohn Company and blasticidin, which 

was a g ift from ICI Agrochemicals pic.
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2.7.2. Determination of the Relationship Between Antibiotic Concentrations 

Extrapolated from Gradient Plates and Corresponding Concentrations from Pour 

Plates.

AGS gradient plates and pour plates with the same depth of agar were poured and 

incubated at 28° C for S days. Pour plates contained the concentration o f the 

relevant antibiotic at its cut-off concentration (Section 6.2.1.). Plugs of agar were 

removed from duplicate AGS gradients at the position of the estimated cut-off point 

for thiostrepton, neomycin, kanamycin and streptomycin (6.2.1). These were 

placed, antibiotic side uppermost on nutrient agar seeded with E.coli (711) for 

streptomycin and B.subtilis (supplied by D. Sanders, Department of Biology, 

University of Warwick) for the other antibiotics (10 ul overnight culture per ml of 

medium). Controls were plugs, of the same dimensions as above, from the 

corresponding pour plates. Bioassays were carried out at 37° C overnight and the 

mean zone size of triplicate samples from duplicate plates were compared.

2.8. DNA Isolation and Prohiny.

2.8.1. Small Scale Alkaline Lysis for Plasmid Preparation of E.coli.

A single colony o f E.coli was inoculated into 3 ml L-broth which contained 

33 pg/ml ampicillin. After overnight incubation at 37° C the cells were pelleted and 

resuspended in 1 ml TE buffer. This suspension was pelleted in the microfuge and 

then resuspended by vortexing in 130 pi ice cold GTE. The sample was incubated at 

room temperature for 3 mins., after which 200 pi of 0.2N sodium hydroxide and 

1% SDS was added. The tube was inverted 2-3 times to mix the solution, which 

was kept on ice until it was clear (3 mins.). Ice cold potassium acetate (130 ul at pH 

4.8) was added and the tube inverted immediately (3 x) and then kept on ice for 3 

mins. After centrifuging at high speed in the microfuge for 3 mins the supernatant
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was transferred to a fresh eppendorf. This was treated with phenol-chloroform and 

chloroform-isoamyl alcohol. The supernatant was ethanol precipitated and 

resuspended in TE buffer.

2.8.2. Maxi Preparation of  Plasmid from E.coli.

A single colony of plasmid-bearing E. coli was used to inoculate 10 ml L. 

Broth containing 35 pg/ml ampicillin. This was incubated at 37° C overnight and 

used to inoculate 11 of the same medium. After a further overnight incubation the 

cells were pelleted by centrifugation in 4 x 250 ml pots (4000g, 4° C, 10 mins).

8mls GTE was added to each pair o f pellets. The pooled volumes were 

placed into oakridge tubes and a spatula tip o f lysozyme was added to each. These 

were incubated for 10 mins, at room temperature. 15 ml of 0.2N NaOH with 1 % 

SDS was added and the tubes were gently inverted for 1 min. Then they were left 

for a further 10 mins, on ice. Vigorous sharp jerks were administered to the tubes 

upon addition of 12 ml of 5M sodium acetate (pH4.8), which were again left on ice 

for 10 mins. The tubes were then centrifuged at 39,000g at 4° C for 30 mins. The 

supernatant was isopropanol precipitated, the supernatant was discarded and the 

pellet was dried by inverting on a tissue for 30 mins. It was then resuspended at 37° 

C in 31 mis TE buffer. After the presence of plasmid DNA was confirmed by 

running some of the sample on a minigel, density gradient centrifugation was 

carried out.

2.8.3. Density Gradient Centrifugation.

The volume of the sample was measured and 1.05g caesium chloride was 

added per ml of sample. 50 pi ethidium bromide (10 mg/ml) was added. This 

mixture was pipetted into a centrifuge tube (Beckman T0S3OE), weighed and 

balanced with another tube. The tubes were heat sealed and spun at 55,000g for 18 

hours.
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The plasmid band was visualised by using a UV transilluminator. A sterile 

needle was used as a vent while another needle and a syringe facilitated the removal 

of the band. One volume of TE saturated with butan-l-ol (1:1) was repeatedly 

added, shaken and the solvent phase removed until the lower phase was clear. The 

remaining volume was measured and mixed with two volumes of water and six 

volumes o f ice-cold ethanol. This was placed at -20° C overnight, the solution was 

centrifuged at 39,000g and 4° C for IS mins. The ethanol was discarded and the 

tube vacuum desiccated to dryness. The DNA was then resuspended in an 

appropriate volume of TE buffer.

2.8.4. Large Scale Isolation of Plasmid DNA from Streptomycetes.

500 ml of S.lividans TK24 containing either pU673 or pU680 was grown for 

2-3 days in shake flasks of TSB supplemented with ampicillin (35 pg/m l) were spun 

down at 4,000g for 20 mins. These were resuspended in 5ml of lysozyme solution 

and incubated for 30 mins, at 37° C. The cells were gently mixed and 2.5 ml 

alkaline SDS solution added. This was thoroughly mixed by pipetting up and down, 

incubated for 20 mins, at 700 C with slightly unscrewed caps and then cooled to 

room temperature. Phenol chloroform (acid) extraction was then carried out on the 

sample followed by isopropanol precipitation and caesium chloride centrifugation.

2.8.5. Isolation of Streptormces " Total" DNA.

Streptomycete spore suspensions (200 pi) were inoculated into YEME, 

supplemented with 3% glycine. After 2-3 days the mycelium was harvested by 

filtration using a Buchner filter, through two sheets of Whatman No 1 filter paper. 

The mycelium was washed with 10% glycerol and stored as a paste at - 20° C.

50 mg of mycelium was resuspended in 500 pi lysozyme solution and 

incubated at 37° C for 30 mins, in an eppendorf tube. Then 250ul 2% SDS was 

added and the solution vortexed for 1 min. This solution was then extracted with 

neutral phenol-chloroform and isopropanol precipitated.
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2.8.6. Phenol Extraction

An equal volume of neutral phenol-chloroform was added to the sample. The 

solution was vortexed for 1 min. and centrifuged at 20,000g for 15 mins. The upper 

phase was transferred to another container leaving the white interface behind. This 

was repeated until no interface was seen. Then half the volume of chloroform : iso­

amyl-alcohol (25 : 1) was added and the solution was again vortexed for 1 min, but 

centrifuged at 20,000g for 2 mins.

2.8.7. Quantitation of DNA

Readings were taken at 260 nm and 280 nm. An OE>260 of 1 was taken to 

be equivalent to 50 pg/m l DNA and an OD260/OD280 ratio 1-8 taken to be pure 

DNA.

2.8.8. Restriction Endonuclease Digestion of DNA

Ingredients Volume(pl)

10 x Enzyme buffer 2.0

DNA in TE buffer 2.0

Restriction endonuclease 2.0

Sterile distilled water to 20.0

The above mixture was incubated at 37° C for 1-3 hours. Double digests were made 

up as above, but made up to 19 pi. They were incubated for an appropriate time and 

then 2 p i o f the second enzyme was added and the incubation was continued for 

another 1-3 hours.
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2.8.9. Dot Blots,

Streptomyces chromosomal DNA was denatured by adding an equal volume 

of denaturing solution and incubated at room temperature for 10 mins. The reaction 

was neutralized with four volumes of 0.5M  HC1, O.SM Tris (pH 7.4) and 1.5M 

NaCl, 20 x SSC, mixed together as a 1:1:2 ratio.

Hybond nylon filters were prewetted in 10 x SSC and placed in a 

commercial dot blotting apparatus (Hybri-Dot Manifold-1050MM. Bethesda 

Research Laboratories, Life technologies Incorporated PO Box 6009, Gaithersberg, 

MD 20877 U.S.A). Samples, containing 1 pg DNA were ejected rapidly into the 

sample wells and transferred under vacuum onto the nylon filter. The filter was 

removed from the manifold and dried. The DNA was fixed by UV cross-linking on 

a longwave transilluminator for 4 mins. Filters were heat sealed in plastic bags until 

use.

2.8.12. Aparose Gel Electrophoresis.

A 1% agarose solution was prepared by boiling in 1 x TBE. Ethidium 

bromide was added to make a final concentration of 0.5 pg/m l. The cooled agarose 

was then poured into the gel apparatus( BRL minigel 1060 or BRL 1087 model H5); 

this having been prepared by taping the ends and inserting a comb to make the 

wells. The set gel was submerged in TBE and DNA samples containing 0.2 volumes 

of loading buffer were injected into the wells. Electrophoresis was carried out at 

75V for 3 hours or at 20V overnight. Restriction digested lambda bacteriophage 

DNA was used as molecular weight markers of 23.31, 9.416, 6.557,4.361, 2.322, 

2.027, 0.564 and 0.125Kb. (Hopwood el a l., 1985)

2.8.13 Ethanol Precipitation.

DNA was precipitated by mixing with 0.1 volume of 3M sodium acetate and 

2 volumes of ice cold ethanol. After chilling for 3 hours at -20° C the precipitate
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was centrifuged at 14,000g for IS mins., washed in ice cold 70% ethanol and 

recentrifuged at 14,000g for a further S mins. The DNA pellet was dried under 

vacuum and resuspended in TE buffer.

2.8.14. Isopropanol Precipitation.

One tenth of a volume of 3M sodium acetate (pH4.8) was added and mixed 

into the sample, followed by 1 volume of isopropanol. This was incubated at room 

temperature for S-1S mins and then spun at lS,000g for 2 mins. The supernatant 

was discarded and the pellet dried. The DNA pellet was then resuspended in an 

appropriate volume of TE buffer.

2.8.15. Electroelution.

The required band was excised from an agarose gel using a sharp scalpel, 

having been visualised under long wave ultra-violet light (300-360 nm) to avoid 

damage to the DNA. The band was placed in a well in the IBA electroeluter with 

TBE with the valve in the "up-position”. The channels were filled with 7.SM 

ammonium acetate, using a syringe and making sure that there were no air bubbles. 

The apparatus was run at 100V for 20 mins. The absence of the DNA from the 

band of agarose was checked under the transilluminator. The ammonium acetate and 

DNA was removed from the appropriate channel using a needle and syringe and 

placed in an eppendorf. The DNA was then precipitated in 2 volumes o f ice cold 

ethanol for 3 hours at -20° C. The precipitate was centrifuged at 10K for IS mins., 

washed in 70% ethanol and recentrifuged at 10K for a further S mins. The DNA 

pellet was then dried under vacuum and resuspended in 10 /*1 TE buffer. 3 n1 was 

then run on an agarose gel to check for the presence of the DNA.

2.8.16. Prehybridization.

Filters were sandwiched between layers of nylon mesh (no more than 4 

filters per stack). Any air bubbles between the layers were removed and the stack
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was rolled up and placed in a Hybaid tube, along with a small amount of 2 x SSC 

The roll was unravelled until it stuck to the walls of the tube. Any air bubbles 

between the wall and the filters were removed. The liquid in the tube was 

exchanged for 15 ml prehybridization solution. The sealed tube was placed in the 

Hybaid Oven overnight at 70° C.

2.8.17. Preparation of the Probe.

Random primed labelling was carried out using the following mixture.

Ingredients H1

Probe DNA 
(preboiled for 10 mins)

5.0

dATP 1.0

dTTP 1.0

dCTP 1.0

Reaction Buffer 2.0

Sterile distiled water 7.0

Klenow 1.0

dCT32P 2.0

Ingredients were added in the order shown to keep handling o f the 

radioactive nucleotide to a minimum. During the preparation the mixture was kept 

on ice. Following addition of dCT32P the mixture was incubated at 30° C for 30 

mins. The reaction was quenched using 160 ul TE buffer containing 0.1% SDS.

2.8.18. Removal of Unincorporated Nucleotides.

A Sephadex 050 column was prepared in a 150 mm Pasteur pipette with a 

glass wool filter. The 180 pi reaction mixture was run through the column, using 

180 pi amounts of TE buffer with 0.1% SDS to wash it through. Each 180 ul
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elution was collected in an eppendorf. The first peak was incorporated DNA and 

could be followed down the column using a giegercounter. Eluent was collected up 

to the beginning of the second peak (unincorporated nucleotide). Samples belonging 

to the first peak were pooled and used in the hybridization reaction.

2.8.19. Hybridization.

The radioactively labelled DNA was boiled for 10 mins, with 500 ul salmon 

sperm DNA (10 mg/ml) and then snap cooled on ice. 10/tl of this was removed for 

Cherenkov counting. The rest was added to the prehybridized filters after 10 ml of 

prehybridization solution had been removed, leaving 5 ml for the hybridization 

reaction. Hybridization was at 70° C overnight in the Hybaid oven.

2.8.20. Stringency.

For the purposes o f dot blotting filters were washed twice for 30 mins., in a 

volume o f 50 ml, at each of three levels of stringency. These were 3 x SSC and 

0.1% SDS, 1 x SSC and 0.1% SDS and 0.2 x SSC and 0.1% SDS, all at 70° C. 

Autoradiography was carried out at each stringency. For southern blotting filters 

were washed twice for 30 mins, in 2 x SSC; 0.1% SDS and twice for 30 mins in 

0.2 x SSC; 0.1% SDS, again at 700 C. Autoradiography was carried out after the 

highest stringency wash.

2.8.21 Cerenkov Counting.

This was carried out in a Beckman LS700 scintillation counter, using 

program 10 (1 min.). 10 /*1 radioactive sample in an eppendorf tube was placed 

inside a scintillation vial. Disintegrations per min., per 700 til sample were 

calculated. This was multiplied by 2.5 to approximate to Cerenkov counts per min.

99



2.8.22. Detection of Radioactivity.

Depending on the specific activity of each probe varying times of exposure 

were used, but in general these were one week after the first wash, two weeks after 

the second and four weeks after the third. For autoradiography, X-ray film (Fuji X- 

Ray) was exposed to hot filters in Harmer autoradiography cassettes containing 

intensifying screens. The time of exposure was variable. X-ray film was developed 

by placing in developing solution (Kodak LX-24) for S mins, and washing in water. 

The developed film was fixed (Kodak FX-40) for 5 mins, and rinsed in water again. 

Alternatively a Beta-Scope (Betagen, 100 Beauer Street, Walton, MA 02154, 

U.S.A) or Phosphorimager (Molecular Dynamics Ltd., 4, Chaucer Buisiness Park, 

Kemsina, Sevenoaks, Kent, TN15 6PL, U.K.) were used and so exposure times 

were greatly reduced by direct counting. Positive hybridizations were scored on 

filters where the negative controls did not hybridize and positive controls (1 ng 

DNA from the plasmid containing the gene and 1 ¡ig DNA from the source 

organism).

2.9. Cluster Analysis. fFig.2.U.

Data was stored in Foxbase (Fox Software Inc., 118 W.South Boundary, 

Perrysberg, Ohio, 43551.) and in Paradox Relational Database version 3.5 (Borland 

International, 1800, Greenhills Road, PO Box 660001, Scotts Valley CA 95067- 

0001). Data matrices, taken from the database provided input for NTSYS-pc 

(Exeter Publishing, Ltd, 100 North Country Road, Building B, Setauket, New York 

11733), where either the SIMINT (interval data) or SIMQUAL (binary data) 

programs were used to give similarity and dissimilarity matrices. In SIMINT either 

the Manhatten distance (Lance and Williams, 1967) or euclidean distances were 

calculated, whilst the simple matching coefficient (Sokal and Michener, 1958), 

Jaccard's coefficient (Jaccard, 1908) and the Dice coefficient (Dice, 1945) were 

used in SIMQUAL.
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Hierarchical clustering was performed in SAHN, using algorithms for Single 

Linkage (Florek et al., 1951a and b), Complete Linkage (Lance and Williams, 

1967b) and the Unweighted Pair Group Method with Arithmetic Averages (Sokal 

and Michener, 1958). Graphics hardcopy of phenograms were provided by the 

treeG program. Cophenetic matrices were obtained using COPH and cophenetic 

correlations with MXCOMP and MXCOMPG. Multivariate analysis in the form of 

principle components analysis (PCA) was performed either by using MACSPIN on 

an Apple Mackintosh or by using the EIGEN and PROJ programs in NTSYS. 

MXPLOT and MXPLOTG were used to obtain plots of the data.

Clusters were defined by eye when PCA was used, however special purpose 

computer program was used in conjunction with hierarchical clustering (PI, Fig. 2). 

The PI program was able to list all alternative similarity levels, at which clusters 

could be defined. After the computer operator had chosen one of these levels the 

relevant clusters of strains were defined and the strains in each group listed. A 

second program (P2) established the percentage of strains in each group with 

various characters from the original data matrix. These were then listed in 

descending order within each cluster. Each possible position for a character was 

given a value, which increased the further a value was from the central row of the 

table. All values for a given character were added to give a final score. High final 

scores, corresponding with high standard deviations were regarded as good 

distinguishing characters and of value for numerical taxonomy. In order that 

correlations between different data sets could be established (for example, do 

clusters based on antibiotic resistances correlate with bioactivity?) a third program 

(P3) was written. The percentage of strains in each group, as defined by P I, with 

any type of data stored in the database(s) could be calculated. A fourth program 

(PO) was designed to run within paradox. This used Ssm in SIMQUAL and 

UPGMA from SAHN as defaults and automatically fed into PI and P2.

Computer programs were written by G Barry Joyce and Steve Green sides 

(Department of Mathematics, University of Warwick).
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Fie. 2.2. Summary of data handling procedures used in this re s^ rrh

The diagram shows the stages used when carrying out both heirarchical 

clustering and ordination. PO, P I, P2 and P3 refer to special purpose programs, 

which were written by Greg King, Barry Joyce and Steve Green sides.

Two databases (Paradox and Foxbase) were used, whilst NTSYS was used 

for cluster analysis and special purpose programs allowed some additional 

datahandling.
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Chapter 3.

The Distribution and Expression o f Antibiotic Production in Natural Streptomvces 

Isolates.

3.1. Introduction.

Streptomycetes are usually cultivated in nutritionally rich media and 

antibiotic production normally begins when the culture conditions become limiting 

(Hutter, 1982); this shows that antibiotic biosynthesis is regulated. The major 

factors involved in the control of secondary metabolism are carbon and nitrogen 

catabolites, phosphorus, inorganic salts, trace metals (Vanek and Mikulik, 1978; 

Martin and Demain, 1980; Iwai and Omura, 1981) and other bioregulators, such as 

A-factor (Beppu, 1985; Horinouchi and Beppu, 1986). Cultural conditions such as 

oxygen tension (Yegneswaran et al., 1988) are also known to be important 

influences on the biosynthesis of bioactive metabolites.

Carbon catabolite regulation inhibits the synthesis or activity of enzymes 

involved in antibiotic production (Katz et al., 1984; Jones, 1985). A variety of 

carbon sources gives rise to catabolite repression including glucose (Belousova et 

al., 1985; Behai, 1985; James and Edwards, 1988) plus glycerol and sucrose 

(Sanchez, 1984; Demain, 1985). Similarly, nitrogen catabolites have been shown to 

inhibit enzymes which are important for secondary metabolism (Katz et al., 1984); 

for example, rapidly utilized nitrogen sources such as nitrogen, ammonium and 

amino acids inhibit the production o f a variety of antibiotics (Sanchez et al. , 1984; 

Omura, 1984a and b; Demain, 1985). Many idiolites are produced at sub-optimal 

phosphorus concentrations (Demain, 1985) and this is due to the control of either 

phosphatase enzymes (Iwai and Omura, 1981, Muller and Ozegowsld, 1985) or 

antibiotic synthases (Hotter, 1982).

One aim of the research presented in this thesis was to investigate the 

distribution of antibiotic production in natural Streptomyces isolates and to discover 

phenotypic and genotypic characters which correlated with it. Bioactivity was

103



measured for the strains concerned by use of a variety of complex and defined 

media, extraction procedures and screens (Sections 2.3.1 - 2.3.4.). However, the 

proposed study was limited by the screening methods used and the literature 

indicated that unconventional media often yielded interesting observations about 

antibiotic production. Imanaka and co-workers (Arima et al., 1963; Miyairi et al., 

1970; Miyoshi et al, 1972) discovered new antibiotics on high phosphate media and 

high glucose concentrations have been shown to favour the production o f some 

antibiotics (Boeck et al., 1971). A smaller study, which involved testing the 

expression of antibiotic production with fewer strains, but under a wider set of 

conditions enabled the larger bioactivity study to be assessed in an objective manner 

(Section 3.3).

Results

3.2. Bioactivitv as Measured Under Standard Conditions.

Anti-B.subtilis and anti-A.niger bioautograms were used to measure 

antibacterial and antifungal activity and this was supplemented with data from in 

vivo agrochemical screens, which measured activity against a wide range of 

organisms. Typical activity spectra for nucleoside, polyether, nonactin and 

cycloheximide producers were detected on the in vivo screens, whilst nigericin, 

geldanamycin and herbimycins A and C were detected using TLC. An example of 

an antibacterial bioautogram is shown in Fig. 3.1.

3.2.1. Antibacterial Activities.

Twenty-three strains showed activities against B.subtilis (Fig. 3.2.), which 

were not due to any of the specific compounds tested for. Eight of these strains 

were replicated, but, although each replicate was bioactive, the antibiotic profiles 

were variable, suggesting that the range of substances with biological activity for 

some producers might be diverse.
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Fig 3.1. Example of an antibacterial bioautogram.

The diagram shows a bioassay dish, containing a base layer of nutrient agar, onto 

which a TLC plate, containing extracts from streptomycetes was inverted for 30 

mins. This was then removed and the base layer was overlayed with nutrient agar 

seeded with B.subtilis. The plate was photographed after overnight growth at 28°C 

and shows zones of clearing where antibacterial compounds have diffused from the 

TLC plate onto the bioautogram.
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Fig. 3.2. Summary of activity against B.subtiUs, which was shown by various 

streptomycete strains during this research.

The diagram represents a stylized thin layer chromatography plate. Each strain has 

been given a symbol, which is positioned at Rf values where the extract from the 

relevant strain gave an antibacterial zone on a bioautogram. Sometimes several 

zones were merged and this is represented on the diagram by an adjoining line. 

Certain strain labels are followed by R1 or R2 and this indicates that the strain was 

replicated.
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Standard conditions were used throughout this work, except for a variable inoculum 

density (a loopful of spores) which may have caused changes in the rates of 

substrate utilization and oxygen demand and may have had an adverse effect on 

antibiotic production. Factors which affect the reproducibility of TLC are 

in Chapter S.

3.2.2. Antifungal Activities.

Of eight strains which were active against A.niger (Fig 3.3), four produced 

compounds that were possibly novel antibiotics. Three others belonged to the MM 

series of isolates, which were not assessed on agrochemical screens. However, they 

showed additional activity against S.endus (091) during plug assays, which were 

part of a series of tests aimed at distinguishing between duplicate strains within the 

MM and W series isolates (data not shown). The remaining strain was a nonactin 

producer (C208).

Apart from MM44.2, strains which showed antifungal activity were also 

active against B.subtilis (Fig 3.2.), however different solvent systems were used for 

the different types of bioautogram, so it is difficult to comment on whether this was 

caused by the same compounds. Strains E35 and E100 appeared to have identical 

bioactivities because they gave the same profile on both types of bioautogram, but 

their profiles on agrochemical screens differed. F139 (R2) and E8 also appeared 

similar, although F I39 produced geldanamycin and nigericin, whilst E8 did not.

All strains with antifungal activity (apart from C208) were identified by 

SEM as S.violaceoniger (C32) strains. This species group contains many strains 

which produce bioactive secondary metabolites (Arai et at., 1976) and includes the 

S.hygroscopicus sub-species group, whose products have frequently been patented 

as novel antibiotics (DeBoer et al., 1970; Iwai et at., 1980). Strains of 

S.hygroscopicus autolyse during short term storage and it was noted that F139 and 

E3S
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Fig. 3.3. Summary of strains showing activity against Aspergillus niger.

The diagram is a stylized bioautogram, showing the Rf values at which specific 

strains showed antifungal activity. Each strain has been given a symbol, which ii 

positioned at the Rf value corresponding to the centre of the zone o f clearing. 

Sometimes zones were merged and this is indicated by an adjoining line. Strain 

names are sometimes followed by R1 or R2 and this indicates that they have been 

replicated. E35 and E100 gave a similar profile and are represented by the same 

symbol.
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also possessed this trait.

3.2.3. Specific Biological Activities.

Table 3.1 shows profiles of the natural isolates in which bioactivity was 

confirmed. Many of these strains were used in other work in this thesis and are 

therefore marked with a superscript to indicate which strain was present in which 

study. All strains were used in Chapter 5 for chemical profiles and so the 

superscript identifying these strains has been omitted. Strains marked4 were used in 

Chapter 4 for fatty acid analysis, strains denoted^ were used in Chapter 6 for 

Resistance work and strains indicated by^ were used in Chapter 7 for gene probing.

3.2.4. Agrochemical Activities.

A large number of strains were given to ICI when the original isolation work 

was done, including most of the random subset of strains chosen for this work. ICI 

provided summaries of agrochemical activities for all of the strains they had been 

given, enabling bioactivity in many of the strains presented in Table 3.1. to be 

confirmed and indicating additional bioactive strains (also placed in Table 3.1.). 

Additional strains (C47, D l, E92, E33, F150) which produced compounds that 

might be novel were selected from the larger culture collection and were used to 

confirm trends observed during this research.

C47 was later confirmed to produce cycloheximide and borrelidin and Dl 

produced nigericin and nonactin. In addition to their novel activities E92 produced 

nigericin and geldanamycin, and E33 and F150 produced nigericin. E92, E33 and 

F139 were thought to produce the same new compound, whilst E33 (Table 3.1.) 

produced 2-deoxycytosine in addition to the profile shown.
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Table 3.1. Bioactive Streotormces isolates discovered and used during this researrh

Strain
Geld

Type of Activity 
Nig HA H

Detected 
C Cyc Act Nuc Ab Af

A1067 - + - - - - . . •

A14 - - - - - - - + -

A4646 - + - - - - - - -

A 73-67 - - - - - - - + -

C3 - - - - - - - + -

C284 - - - - ? - ? - -

C3867 - + - - - - • - .

C7045 - - - - - - - + -

C77456 - - - - - - - + -

C90 - + - - - - - - -

C10846 - - - - - - - + -

C10946 - - - - - - - + -

C20846 - - - - - + - - -

C2224 - - - - - - - + -

C3144 - - - - - - - + -

C337 - - - - - - - + -

C3386 - + - - - - - - -

C40267 - - + + - - - - -

D567 - - + + - - - - .

D1256 - + - - - - . . .

D153467 + + - - - . . . •

E l4«7 - + - . . . . . •

E8467 - - - - - - . + +

E31467 - + - - - . . + .

E33467 + + • • . • • + +
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Strain
Geld

Type of Activity Detected 
Nig HA HC Cyc Act Nuc Ab Af

E100467 + + • _ + +

F5367 - ? - ? - ? - -

F139467 + + - - - - + +

RB2596 - + - - - - - -

RB2866 - + - - - - - -

MM44.26 + + - - - - + +

MM58.267 + + - - - - + +

MM82.267 + + - - - - + +

2813 + + - - - - - -

2817467 + + - - - - . .

2818467 + + - - - - - -

Kev to Table 3.1.

+  — Present 

- =  Absent

? =  one of the compounds marked by ? can be produced by the relevant strain but 

which one has not been confirmed.

Geld — Geldanamycin Act ■ Nonactin

Nig *  Nigericin Nuc ■ Nucleoside

HA — Herbimycin A Ab — Antibacterial

HC “  Herbimycin C 

Cyc -  Cycloheximide

Af — Antifungal
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3.3. Factors Affecting the Expression of Bioactivity.

A selection of streptomycetes which produced different combinations of 

nigericin, geldanamycin and other activities were chosen to investigate the 

expression of these antibiotics in a more detailed manner. These were A10, A46, 

C38, C338, C402, D5 , D125, D153, E l, E31, E35, E100, F139, 2813, 2818, 

MM44.2, MM58.2, MM82.2, RB259, NR3602. The strains were streaked across 

carbon, nitrogen and phosphorus gradients and examined for changes in 

differentiation and antibiotic production.

3.3.1. Choice of Medium.

The original bioactivity data (excluding that done at ICI) were generated on 

a complex medium (A37), but in order to examine the effects of various media 

components on the secondary metabolism of the strains, it was necessary to rind a 

defined medium on which antibiotic production could occur. The liquid form o f the 

medium was used in antibiotic production timecourses, which could also be related 

to alterations of fatty acids in the culture (Chapter 4), whilst the solid form was 

used for nutrient gradients.

Table 3.2 shows how different media initiated differences in the expression 

of antibiotic production. The three strains gave similar profiles, apart from F139, 

which did not produce geldanamycin on R2 and which did not grow on either R" or 

S ' media. Geldanamycin production was only observed on media, which contained 

trace elements (eg. ISP7). Production of both antibiotics was also greatly enhanced 

on ISP7 and so this medium was chosen for work on the expression and repression 

of antibiotic production in the above sub-set o f strains.
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Table 3.2. The expression of geldanamvcin and nigericin production on different 

media.

Medium Growth 
F139 D153 E100

Antibiotic Production 
F139 D133 E100

R2 + + + G G

R2- - + + G G

S + + + - -

S- - + + - -

ISP7 + + + G +N *G +N *G +N *

MSG + + + N N N

* =  Large amounts of metabolites 

- =* Absent 

+  — Present 

N =  Nigericin production 

G = Geldanamycin production 

R2 — R2 medium

R2- — R2 medium without casaminoacids.

S »  Sautons medium

S- “  Sautons medium without casein hydrolysate 

MSG -  Mineral salts and glucose
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3.3.2. Effects o f  Nutrient Gradients on Differentiation,

Tables 3.3. and 3.4 summarize observations made about the differentiation 

responses observed within geldanamycin and nigericin producers when they were 

grown on nutrient gradients. Plating out was in triplicate and the positions of one 

strain relative to the others was changed for each replication in order to minimize 

the effect o f temperature and oxygen gradients and to prevent any diffusible 

products from one strain affecting another more than once. Plates with strains 

grown only on ISP7 were used as a comparison, but the results were not judged 

relative to this medium since the carbon and nitrogen sources had been altered.

The trends summarized in Table 3.3 and 3.4 were first observed after 3 days 

and remained stable throughout the experiment (14 days), apart from those seen on 

the sucrose gradients which disappeared with time. Mycelium progressed through 

the streptomycete lifecycle at a different rate depending on its position along the 

gradient and some strains remained immature for 2 weeks at specific positions on 

the gradients.

Ten strains were affected by Pi gradients and most had differentiated 

mycelium from mid-plate to the highest concentrations, which were above the 

normal phosphorus concentration of ISP7 (i.e. 0 .3  g/1).
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KEY to Tables 3.3  and 3.4

The tables illustrate where fully differentiated mycelia were observed 

amongst the strains and gradients studied. The figures given refer to the position of 

sporulating mycelia along the gradient, unless a superscript has been given. a 

indicates that aerial mycelium was present over the range given and v indicates that 

only substrate mycelium was present. - denotes that the mycelium was at the same 

stage of development along the whole gradient.

The nutrients are expressed in grams per litre on these tables. These 

values were extrapolated from measurements of distance along gradient plates.
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Table 3,3. Summary of the effects of nitrogen and phosphorus gradients on

differentiation.

Strain Pi Tyrosine NaN0 3 Asparagine

D5 5.5-10 _v 0 -2.6 0-1.8

C402 6-10 .V 0-2.5 0-0.8

2818 .a 0 -1.2* 0-3* 2.3-4*

2813 6-10* _v _v 2.8-4*

MM82.2 7-10* 1-2.4* 0-1.6* 2-4*

MM58.2 0-7.5* .V 0-2.4* .a

MM44.2 7.5-9.5* _v 2.6-4» 0-1

D153 - 2.4-4* 0-2.4 0 -2*

A10 .a .V 0-2.2 _v

A46 .V 0-1.8* _v .V

D123 - .a - .V

C38 - 0 -1.2 - 0-2

C338 3-10 .a - 2-4

RB259 .V 0-1.4 0-2.4 0 .8-1.8
3.6-4

El 5-10 - 1.2-4 0-1
2-4

E31 -a .a 0-2.4 0-2

E35 .a 2.8-4 0-2.8 0 -1.6

E100 6-10 2.2-4* 0-2.8 0 -1.6
2.4-4

F139 3-10 0-1.4* 2.8-4 0 -1.2
2.4-4
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Table 3.4. Summary o f  the effects o f  carbon source gradients on differentiation

Strain Glucose Sucrose Glycerol

D5 0-10.5 - 0-8

C402 0-10 - 0-5

2818 0-14 0-6* .a

2813 0-10 0 -12* 0-4*

MM82.2 0-12 0 -8* 0-13.3

MM58.2 - 0-4* -

MM44.2 0-10 - 0-10

D153 0-10 - -

A10 0-8.5 .a 0-10

A46 0-7.5 0-8* 0-10

D125 0-9 - -

C38 0-5.3 - 0-9

C338 0-10 - -

RB259 0-10 0-8 -

E l 0-5 - .a

E31 0-6 0-16 -

E35 13-20 - 0-8

E100 0-8 - 0-8

F139 12-20 - .a
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When carbon source gradients exhibited an effect, differentiation was usually 

most advanced at concentrations below IS g/1, whereas higher concentrations 

seemed to inhibit morphological differentiation. Strains E3S and F139 had immature 

mycelia at concentrations below 12 g/1 on glucose, and the mature forms occurred 

up to the most concentrated point on the gradient. Depending on the strain, high and 

low concentrations of the nitrogen sources could encourage differentiation, although 

low to mid levels were predominant and asparagine sometimes encouraged 

differentiation at two separate ranges of concentrations within a single replicate 

strain. E100 caused some adjacent strains (E31, E35 and 2813) to mimic its 

differentiation pattern on the nitrogen gradients (not shown in Table 3.3), but this 

was not observed when these organisms were grown on plates without E100, 

suggesting that a diffusible substance was responsible. All strains affected were 

thought to belong to the S.violaceoniger species group, suggesting an intra-species 

regulator. There are many examples of inter-species (Landau et al., 1984; Barabas 

and Szabo, 1977) and strain-specific effectors, including both antibiotic and non­

antibiotic substances (Beppu, 1983; Pogell, 1984; Horinouchi and Beppu, 1986; 

Chater et al. , 1989).

1 3 .3 . The Effects of Nutrient Gradients on Antibiotic Production in a Selection of 

Streptomvcetes.

A smaller selection of isolates, which had varied bioactivity spectra were 

selected to examine how nutrient gradients affected the production of antibacterial 

(Tables 3.3. and 3.6) and antifungal compounds (Tables 3 .7  and 3.8). A herbimycin 

producer was not selected because no simple assay procedure was available for 

detecting the compound directly on agar plates.
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Table 3.5. Antifungal activity on nitrogen gradients.

Strain Tyrosine
Nutrient g/1 
NaNOs Asparagine

C338 NA 0 -0.2 NA

D153 CA CA CA+

MM82.2 0-1.2 - CA*

+<U

E100 O > + CA 0-3.4*

D125 NA NA NA

F139 0.4-3.8" CA

+<U

Table 3.6. Antifungal activity on carbon source gradients.

Strain Glucose
Nutrient g/1 
Sucrose Glycerol

C338 NA NA NA

D153 8-20 NA 9-20

MM82.2 0-8 0-14- 0-18-

E100 0-16m NA 5-13m

D125 NA NA NA

F139 12-20 NA 10-20

Key to Tables 3.5. and 3.6.

NA -  No activity.

CA *  Activity over total gradient length.

+  ”  Larger zone diameter at higher nutrient level.

* -  Larger zone diameter at lower nutrient level 

m “  Larger zone diameter in the centre of the range.
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Table 3.7. Antibacterial activity on nitrogen gradients.

Strain Tyrosine
Nutrient g/1 
NaN0 3 Asparagine

C338 CA 0-3' 2.S-3.2
3.6-4.0

D153 CA' CA' CA

MM82.2 0 -2.2 0-3.4+ 0-2

E100 0-3.2- CA+ 0-2 .6 '

D123 NA NA NA

F139

i 
! 

•<u
 

[

CA NA

Table 3.8. Antibacterial activity on carbon source gradients

Strain Glucose
Nutrient g/1 
Sucrose Glycerol

C338 NA NA CA

D153 6-13+ NA CA+

MM82.2 CA NA CA'

E100 10-20+ NA 5-20+

D12S NA NA NA

F139 NA NA CA+

Kev to Tables 3.7. and 3.8.

NA -  No activity.

CA — Activity over total gradient length.

+  “  Larger zone diameter at higher nutrient level. 

'  -  Larger zone diameter at lower nutrient level
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Even when strains were thought to produce the same compounds, nutrient 

gradients affected antibiotic production in a strain-specific manner. For example, 

two strains were thought to produce nigericin as a single product and because this 

compound has both antibacterial and antifungal activity, such a strain might be 

expected to show the same trends on both type of assay. However, C338 showed 

correlating antibacterial and antifungal activity only on very low levels of NaN0 3 > 

Antibacterial activity without antifungal activity was observed on glycerol, 

asparagine and tyrosine gradients, suggesting that this strain might be capable of 

producing an additional compound. No antibiosis was detected for D125, indicating 

that the conditions required for antibiotic production in this strain had not been met.

MM82.2 and D133 were previously (Table 3.1.) reported to produce 

nigericin and geldanamycin, but they gave different responses on some gradients. 

C338 produced an antifungal compound, which inhibited A.niger at low sucrose 

concentrations, but there was no corresponding antibacterial activity, suggesting that 

a different antibiotic was being produced. Wherever C338 or D133 showed 

corresponding antifungal and antibacterial activity, it overlapped rather than was 

exactly equivalent. Interestingly, bioautography of D133 grown in ISP7 later 

showed three additional antifungal zones, which were not due to nigericin.

F139 and E100 had already been shown to produce additional antibacterial 

and antifungal activities to geldanamycin and nigericin. The results from this study 

confirmed the additional antifungal activity in both cases, although geldanamycin 

could not be distinguished from any other antibacterial activity by this assay.

3.4. The Characterization of Antibiotic Production in D133.

3.4.1. Timecourses.

Timecourses of D133 cultures showed the onset of geldanamycin production 

at 82-106 hrs (82-94 hrs., rep. 2; 94-106 hrs.,rep. 1) and of nigericin biosynthesis 

at 106 hours (Fig.3.4). The intensity of both types of bands became progressively
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Fig. 3.4. Timecourse of geldaiuunycin production by D153.

The photograph illustrates the results of an experiment, which determined the 

profile of geldanamycin production on ISP7 medium (28°C; 200 rpm) over a period 

of 6 days.

Geldanamycin can be recognized by comparing the pure antibiotic with 

corresponding bands within the strain extracts.
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Fig. 3.4. Timecourse o f geldanamycin production by D153.

The photograph illustrates the results of an experiment, which determined the 

profile o f geldanamycin production on ISP7 medium (28°C; 200 rpm) over a period 

of 6  days.

Geldanamycin can be recognized by comparing the pure antibiotic with 

corresponding bands within the strain extracts.
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stronger with time. This information was used to design an experiment which would 

investigate the impact of reduced % O2 on antibiotic production in this strain.

3.4.2. Repression of Nigericin Biosynthesis.

Nigericin can prevent the discovery of narrow spectrum compounds on 

agrochemical screens because it has a very potent broad spectrum of activity and 

can therefore mask the presence of narrow spectrum compounds within the same 

extract. Certain strains (eg. A10, A46, C90, D72) only produced nigericin on solid, 

but not in liquid media, whilst other strains (eg E l, E31, E33) produced higher 

levels of this compound on solid media (Data supplied by ICI). It was o f interest to 

try to discover the reason for this and differences in oxygenation were hypothesized 

as a possible cause. The cultures were treated as described in section 2.4.3. and the 

atmosphere inside the flasks was altered at 76 hrs, because this was assumed to be 

prior to the onset of antibiotic production.

Geldanamycin biosynthesis in D153 was unaffected by the experimental 

conditions and the onset of production in the batch culture control was similar to 

that in the previous timecourse (section 3.4.1). However, nigericin was not 

observed in any of the cultures grown in reduced atmospheres of oxygen, whilst the 

subasealed control cultures were delayed in the onset of biosynthesis. However, 

nigericin production occurred earlier than previously observed in the 2 1 % O2 

control, and presumably more O2 was present here than in flasks which were 

subasealed without disturbing the internal atmosphere.
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Table 3.9. The effect of oxygen on geldanamvcin and nigericin production in D153.

Onset of Antibiotic Production (hrs)

%02 Nigericin Geldanamycin

0 absent present at 94

5 absent present at 94

10 absent present at 94

15 absent present at 94

Controls

Normal atmosphere 94 76 to 94

Normal atmosphere 94 present at 94

2 1 * 0 2 *94/103 present at 94

Subasealed 1117/129 present at 94

Key to superscript

1 refers to the first instance at which production was detected within each duplicate. 

3.5. Discussion

3.5.1. The Distribution of Antibiotic Production in Streptomvces Isolates.

The compound found most frequently in natural Streptomyces isolates was 

the ionophoric polyether nigericin. This compound perturbs ion gradients across cell 

membranes by complexing specific cations (eg. Na+ ) and encasing them in an 

ampiphilic shell, which can then passively diffuse through membranes. There is 

evidence that some polyethers carry out specific functions for their producers, 

therefore the high incidence of producers might relate to nigericin serving a  useful 

function in Streptomyces. Lasalocid and monensin are closely related to nigericin 

and have been shown to bind to spore surfaces in a manner similar to the 

germination inhibitor of S. viridochromogenes (Grafe et al., 1986; Ensign, 1976).
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Interestingly, these compounds are often found in streptomycete extracts from solid 

surface cultures (J. Benner, personal communication). Other evidence for the 

natural role of polyethers has been presented by Williams et al. (1989a) who argue 

that the highly sophisticated receptor-antibiotic complementarity, as seen for 

example in the lasalocid-Barium complex, implies active evolution towards a 

survival strategy. Grabley et al. (1990) provided similar evidence for nigericin, in 

that the antiviral and antibacterial properties and the binding of Na+  and K+  to this 

polyether were not improved when its C l carboxyl group (which participates 

directly in ligand binding and is implicated in the biological effect) was chemically 

altered.

Production of the ansamycin antibiotic, geldanamycin was also common. 

This is an inhibitor of bacterial and eukaryotic RNA polymerase and blocks 

initiation during the early stages of transcription. Rothrock and Gottlieb (1984) 

demonstrated geldanamycin production by S.hygroscopicus var geldanus in 

sterilized soil and showed that the compound controlled the level of Rhizoctonia 

solani without harming the host plant. If  production can occur under natural 

conditions then geldanamycin producers might have a selective advantage when 

competing with other soil microflora. Interestingly, S.hygroscopicus var geldanus 

was observed to produce nigericin during this research.

The co-production of related idiolites, as observed for the herbimycins is not 

unusual (Tanida et al., 1980; Lazar et a l., 1983,) and the co-synthesis of 

herbimycins A and B has been already been reported (Iwai et a l., 1980). Reasons 

for the frequent association between production of geldanamycin and nigericin may 

lie in the fact that both antibiotics have portions of their structure that are 

biosynthesised via the polyketide pathway. Geldanamycin is derived from 3-amino- 

5-hydroxybenzoate, but also has a polylcetide-derived handle stretched between 

adjacent benzenic portions. The aromatic moiety comprises acetate and propionate 

units, with O-methyl groups derived from methionine, and two C2 units from 

glycolate (Ghisalba, 1983).
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Nigericin is a fairly lipophilic molecule made up of cyclic ethers and is 

formed by the condensation of C2, 3 and 4 units into a polyene precursor via a 

triepoxide intermediate (Cane et al., 1983). The discovery of the biosynthetic route 

of polyethers lead to the proposition that there was a common genetic basis 

influencing the synthesis of both polyenes and polyethers, O'Hagan (1988) indicated 

that there were similarities between the structures of certain macrolides and 

polyethers, suggesting that both polyether and macrolide antibiotics also had a 

common genetic source and that the stereochemical similarities between them were 

dictated by a common enzyme system. It is interesting to hypothesize that 

geldanamycin production could share biosynthetic enzymes with the nigericin 

pathway, especially in view of the fact that genes, involved in the early stages of 

polyketide biosynthesis, have been shown to hybridize strongly with one another 

(Malpartida et a l., 1987; Kakinuma et al., 1991). Alternatively, the two antibiotics 

may have simply co-evolved in the same progenitor strain. Strains which do hot 

express geldanamycin production may contain silent genes or represent a second line 

of descendants which retained only the nigericin pathway. A gene transfer event 

could also have caused the two lines of descent.

The data presented in Table 3.1. suggest that 20% of strains from a random 

selection of streptomycetes could produce a known broad spectrum antibiotic 

(mainly nigericin). Three of these were also considered to be potential producers of 

novel agrochemicals (E35, E100 and F139). In addition, 3 new strains with 

potentially novel activities (section 3.2.4.) produced broad spectrum compounds and 

there are similar cases cited in the literature where novel compounds have been 

discovered in nigericin producers (Grabley et al., 1990a). Both nigericin and 

geldanamycin are broad spectrum antibiotics and a novel metabolite might only be 

discovered if part of its spectrum of activity was different. This led to the 

hypothesis that other potentially novel antibiotics might be found by close 

examination o f strains, presumed to produce only unwanted broad spectrum 

metabolites.
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CL
3.5.2. Factors Effecting Differentiation and Antibiotic Production.

It is well known that nutrient depletion induces sporulation and secondary 

metabolite biosynthesis (Iwai and Omura, 1981; Demain, 1984 and 1985). The 

metabolism of glucose and other carbon sources usually accompanies growth, with 

differentiation occurring when they become growth limiting. Where low nutrient 

levels illicited positive differentiation the cause was probably nutrient limitation. 

The trend of high Pi levels to permit a positive differentiation response seems 

unusual and may be related to pH effects rather than Pi concentration. The pH of 

the gradient should be 7.3 at the time of inoculation, but since a culture might 

metabolize at different rates along the gradient, a pH gradient might also form. It is 

also possible that pH effects occurred in other gradients, for instance the 

fermentation of sugars tends to decrease the pH, whilst the fermentation of amino 

acids and nitrate increase pH. Changes in pH may trigger differentiation before 

nutrient depletion occurs or might provide an additional inhibitory factor. The 

concentration of H +  and OH* ions are known to cause changes in membrane 

properties and cell wall formation (Bader, 1986) and these are both important 

factors in the morphological development of streptomycetes.

The different response profiles of individual strains indicates that 

differentiation in streptomycetes is strain specific and may reflect differences in 

rates of substrate utilization, thresholds for responses to nutrient limitation, or the 

presence of special mechanisms for the uptake of nutrients, which are in short 

supply.

A wide variety of pigment effects accompanied growth on nutrient gradients, 

including differences in the colouration of vegetative mycelium, aerial mycelium 

and spores, diffusible pigments and the presence of pigment droplets on culture 

surfaces. This tendency for polymorphism may be related to an evolutionary 

strategy, which helps streptomycetes to cope with a changing environment, and 

since pigments are often secondary metabolites, a close association between
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cytodifferentiation and secondary metabolism was suggested. For instance, the two 

herbimycin producers showed similar morphologies on different gradients.

The antibiosis profile of an organism seemed to depend on its nutrient 

environment; for example, bioactive strains did not biosynthesize their products 

under some conditions and new activities were found in certain strains, indicating 

that they showed a more varied product spectrum when observed under more 

diverse conditions. Differences in the detection limit o f  the antibacterial and 

antifungal assay could have influenced results and it is possible that non-bioactive 

strains could contain hidden activities if they were grown under the correct 

conditions. It is also relevant that high levels of ions can reverse the biocidal 

activity of ionophores and this may help to explain specific cases where zone sizes 

were smallest at high nutrient concentrations (eg. on the NaN0 3  gradients).

Alterations in differentiation are often accompanied by changes in secondary 

metabolism. During this work, antibiotic production was observed in both 

differentiated and non-differentiated mycelia on nutrient gradients and this may 

suggest that whilst the production of some antibiotics is closely associated with 

cytodifferentiation, others provide other functions within the cell, which may or 

may not be related to the availability of nutrients.

Certain strains produced nigericin on solid but not liquid media, and it was 

hypothesized that the circulation of air in a bioassay dish would be slower than in a 

shake flask, causing diffusion gradients of oxygen. The best aeration might be 

expected to occur at the edges of the plates and that this might be responsible for the 

predominance of nigericin biosynthesis on solid media. However, the above results 

indicated that reduced oxygenation prevented nigericin biosynthesis.

A major difference between solid and liquid cultures is agitation; fragmentation 

has been observed in the shake flask cultures of several nigericin-producing strains 

and it is thought that this might be a negative influence on antibiotic production. 

Small mycelial fragments may be incapable of antibiotic production due to 

insufficient capacity for oxygen transfer (Personal communication, M.E. Bushell).
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Other theories include speculation that diffusible products capable of inducing 

secondary metabolism might reach higher concentrations at localized areas on solid 

media than if they were subjected to rapid distribution during batch fermentations. 

Nutrient limitation is a less favoured theory because the effect is observed on a 

variety of media, some of which are highly complex.

129



Chapter 4

The Use of Fattv Acid Profiles for Grouping Streptomvces Species.

4.1.Introduction

Fatty acids are building blocks of bacterial membrane constituents (eg. the 

acyl components of cellular lipids) and they are synthesized by a specific pathway, 

in which a single starter unit and a small number of malonate units are joined 

together by condensation. A beta-keto group is formed at each of these steps and it 

is subsequently modified by reduction, dehydration and by hydrogenation prior to 

the next chain extension. The biosynthesis of fatty acids was reviewed by Martin 

(1977) and Kaneda (1991) who described two major families of fatty acids, which 

were derived from different precursors. The branched chain fatty acids include iso-, 

anteiso- and acyclic forms. Odd chain iso-branched fatty acids use isovaleryl-CoA 

as a precursor, whilst even chain iso-branched forms use isobutyryl Co A. Anteiso- 

branched fatty acids have 2-methylbutyryl-CoA as the initiator and acyclic forms 

originate from cyclic carboxylic acid primers, (ii) The straight chain fatty acids are 

synthesized from acetyl-CoA (gives an even number of C atoms) or propionyl-CoA 

(gives an odd number of C-atoms) as the primer molecule.

Fatty acid analysis has frequently been used to distinguish between bacterial 

genera (Lechevalier, 1977; Goodfellow, 1989; Kaneda, 1991), but they have also 

proved useful in the delimitation of species groups in Bacte nodes, (Brondz et al., 

1991) and for strain determination in a  variety of bacteria (Gudmestad et al., 1988; 

Cacciapouti et al., 1991). Members of the genus Streptomyces have fatty acid 

profiles which comprise straight chain, iso- and anteiso-branched chain fatty acids 

with a carbon chain length between 14 and 18 atoms (Hofheinz and Grisebach, 

1965; Lechevalier, 1977; Popisil et a l., 1985; Saddler et al. 1986 and 1987). 

Hydroxylated methyl esters have been observed in some Streptomyces species
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(Kroppenstedt, 1985), but there is little information about the distribution of 

cyclopropane fatty acids in streptomycetes, apart from the presence of Me. cis-9,10- 

methylenehexadecanoate in S. cinnamonensis (Popisil et al., 1985).

One approach to the discovery of new microbial metabolites is to target 

taxonomic groups, which have a high incidence of antibiotic producers; the 

S.violaceoniger group fits into this category (Williams et a l., 1983 a and b; Arai et 

al., 1976). These organisms have a characteristic spore chain morphology, which 

distinguishes them from other streptomycetes and it was of interest to know if they 

differed in any other respects. In 1987, Saddler et al. demonstrated that fatty acid 

profiles could be used to cluster S.cyaneus strains away from other members of the 

genus and this success indicated that it might be interesting to determine the fatty 

acid profiles of S.violaceoniger. However, the evidence that Saddler et al. (1987) 

used to suggest that fatty acid profiles in streptomycetes remained stable during 

batch culture growth (Saddler, 1986) was weak because it was based on the 

reproducible profile of only one strain, NCIB 9616. Quantifying fatty acid levels 

might accentuate variations due to differences in growth rates between strains under 

standard conditions. Therefore a study which examined qualitative differences 

between strains was designed to find any major differences between the fatty acid 

profiles of S.violaceoniger strains compared with other streptomycetes.

There is a close relationship between fatty acid metabolism and the 

polyketide pathway of secondary metabolite biosynthesis (Martin, 1977, Hopwood 

and Sherman, 1990, Fig. 1.1). Intermediates of fatty acid biosynthesis and the fatty 

acids themselves have been shown to be precursors of polyketides and related 

antibiotics and certain studies have indicated that polyketide producers might 

contain more iso-branched fatty acids (Popisil et al., 1985; Hafner et al., 1991). 

Two common products of natural Streptomyces isolates (nigericin and 

geldanamycin) were derived from polyketide pathways and so a second study was 

undertaken, using an antibiotic production medium to examine the relationship of 

geldanamycin and nigericin production with fatty acid profiles.
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4.1.2. Choice of Strains and Test Materials.

Twenty-six type strains were used for this study (Tables 2.2 and 4.1.), 

including eleven S.violaceoniger strains and seventeen S.griseoruber strains, which 

have been taxonomically well studied. Both groups represented tight, clearly 

defined clusters and were therefore good marker strains. A small selection of other 

type strains was included to give a broader view of the genus.

A selection of natural isolates was chosen arbitrarily from several of 

the series shown in Table 2.1. (Table 4.1). They comprised, 1 A, 25 C, 9 D, 8 E, 7 

F and 11 MM groups of strains. Thirty-five were isolated by specific procedures for 

cluster 32 streptomycetes (series D, E, F and MM) whilst twenty-six were not. 

Twenty-eight natural isolates were fully identified (Table 2.9); nine gave high 

Wilcox probability identification scores and five gave acceptable values (Table 4.2). 

A further twelve strains were identified as S.violaceoniger (C32's) by their rugose 

spore chains (Table 2.10). The remaining strains were unidentified, but were not 

cluster 32's, since scanning electron microscopy indicated a non-rugose spore chain 

morphology. Three type strains and five natural isolates were duplicated. This is 

10.6 % of the total sample set and is twice the number of replicates recommended 

for use in cluster analysis by Saclrin (1983).

Fig.4.1 shows the mixture of FAMES, used in this study. Twenty-five 

compounds were observed, including branched, straight chain, hydroxy- and 

cyclopropane fatty acid methyl esters.
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Fig. 4.1. Fatty acid methyl ester profile of the qualitative standard used for this 

research.

The diagram is a GCMS profile of the qualitative FAME profile (supplied by 

Supelco) which was used to identify fatty acids present in strain extracts.
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Table 4.1. Type strains and Natural Isolates in fattv acid study.

Species Cluster Number of Number of
Group Number Type Strains Isolates

S.aibidoflavus C l 2 3

S.atroo-
livaceus

C3 0 1

S.roseus C l 1 0

S.rochei C12 0 2

S.virid-
osporus

CIS 0 2

S.cyaneus C18 1 0

S.diasta-
tochromogenes

C19 1 6

S.griseoruber C21 7 0

S.violaceo-
niger

C32 11 13

S.pactum C44 1 0

S.lavendulae C61 1 0

S. spp. 0 32

Total 26 59

Key to Abbreviations 

S. refers to Streptomyces.

C refers to cluster group, as defined by Williams et id., 1983a.
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4.2.-4.S. Results,

4,2. The Distributions of Fattv Acid Methvl Esters Within Streptomycetes.

4.2.1. The Distribution of Individual FAMEs and FAME Classes Within 

Representatives of the Genus Streptomvces.

Fifteen methyl esters, comprising FAMEs with 14-19 carbon atoms were 

found in the population of streptomycetes studied (Table 4.2), although more than 

17 carbon atoms was rare. Variations of octadecanoate were found in three 

S.violaceoniger strains (S.hygroscopicus var geldanus, NR3602, S.endus, ISP4213 

and a natural isolate, MM 2817) and a S.griseoruber strain (S.violaceolatus, 

DSM40438), which also contained nonadecanoate. This was in agreement with the 

14 and 18 carbon atoms quoted in the literature as typical for the FAMEs of 

streptomycetes (Lechevalier, 1977; Saddler el al. 1986 and 1987; Popisil et al., 

1983; Hofheinz and Grisebach, 1963), apart from nonadecanoate, which might 

indicate that the strain was a member of the genus Actinomyces (Kroppenstedt, 

1983). However, S. violaceolatus was a type species and was unlikely to have been 

misidentified. Pentadecanoate was the only ubiquitous fatty acid, but six other fatty 

acids were common (Table 4.2.).

All organisms contained both branched and straight chain FAMEs and this 

was in accordance with the work of Saddler et al. (1987), Popisil et al (1983) and 

Kroppenstedt (1983). A cyclopropane FAME was found in approximately 30% 

strains. The majority of streptomycetes (93%) had at least one hydroxylated methyl 

ester, which was in contrast to previous work and might be explained by the 

instability of hydroxy fatty acids (Kroppenstedt, 1983).

All three strains containing cis-9, 12-octadecanoate also had cis 9,10- 

methylenehexadecanoate, which was only present in twenty-six strains. The latter 

fatty acid was associated less frequently than average with all forms of 

tetradecanoate.
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Table 4.2. The distribution o f FAMEs in streptomvcetes.

No. FAME NAME No. Strains.

7. 14:0 Me. tetrad ecanoate 81

8. i-15:0 Me. 13-methyltetradecanoate 23

9. a-15:0 Me. 12-methyltetradecanoate 80

10. 15:0 Me.pentadecanoate 85

11. 2-OH 14:0 Me. hydroxy tetrad ecanoate 81

13. i-16:0 Me. 14-methylpentadecanoate 44

14. 16:1 Me.cis-9-hexad ecanoate 84

15. 16:0 Me. hexadecanoate 60

16. i-17:0 Me. 15-methylhexadecanoate 84

17. 17:0 > Me.cis-9,10-methylene 
hexadecanoate

26

18. 17:0 Me. hep tad ecanoate 83

19. 2-OH 16:0 Me.hydroxyhexadecanoate 22

20. 18:2 Me.cis-9,12-oc tad ecanoate 3

23. 18:0 Me. octadecanoate 1

25. 19:0 Me.nondecanoate 1

N.B. The total number of strains in the study is 85, but including duplicates there 

are 93 OTUs.

Key to abbreviations used in Table 4.2.

Me. denotes Methyl.
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4.2.2. The Diversity of FAME Pattern Types Within Streptomvcetes.

The strains in the study differed by the number of FAMEs, which ranged 

from 6-11 and the diversity of types, which could include hydroxy-, cyclopropane- 

and long-chain FAMEs. Table 4.3. illustrates how this diversity was distributed and 

shows how unique fatty acid profiles were observed for seven type strains and ten 

natural isolates, whilst sixteen further patterns were replicated amongst the 

remaining strains.
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Table 4.3. Fattv acid profiles observed within streptomycetes.

PATTERN
TYPE 14:0 i-15:0 a-15:0 15:0 2-OH 14:0 1-16:0 16:1 16:0

1 1 0 1 1 1 0 1 0

2 1 0 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1

4 1 1 1 1 1 0 1 1

5 1 0 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1

7 1 0 1 1 1 1 1 1

8 1 0 1 1 1 1 1 1

9 1 0 1 1 1 0 1 1

10 1 0 0  1 1 0 1 1

11 1 1 1 1 1 0 1 1

12 1 0 1 1 0 1 1 1

13 1 0 1 1 0 1 1 1

14 1 1 1 1 1 1 1 1

13 1 0 1 1 1 0 1 0

16

17-33

1 0 1 1 

Various

1 0 1 1
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Table 4.3. Fattv acid profiles observed  within streptomycete!

PATTERN 
TYPE 1-17:0 17:0 > 17:0 2-OH 16:0 18:2 18:0 19:0 No.

1 1 0 1 0 0 0 0 18

2 1 0 1 0 0 0 0 11

3 1 0 1 1 0 0 0 5

4 1 0 1 0 0 0 0 4

5 1 0 1 1 0 0 0 4

6 1 0 1 0 0 0 0 4

7 1 1 1 0 0 0 0 4

8 1 1 1 1 0 0 0 3

9 1 0 1 0 0 0 0 2

10 1 1 1 1 0 0 0 2

11 1 1 1 0 0 0 0 2

12 1 1 1 0 0 0 0 2

13 1 1 1 0 0 0 0 2

14 1 1 1 0 0 0 0 2

15 1 0 1 1 0 0 0 2

16 1 1 1 0 0 0 0 2

17-33 Various 1

Key to Table 4.3.

1 “  FAME present 

0 -  FAME absent
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— Hierarchical_Clustering tQ__ Determine Inter-relationshins Between

Streptomvcetes Based on their Fattv Acid Profiles.

The binary data, discussed in section 4.2., was used for conventional 

taxonomic clustering and resulting groups were tested by comparing the topologies 

of 2 phenograms (Figs. 4.2 and 4.3.). Fig. 4.2. was created using the Dice 

coefficient (S^jr f ) and the UPGMA algorithm, whilst Fig. 4.3. was obtained by the 

same method, but using Ssm. Good group formation was characterized by clearly 

well separated tight clusters at a similarity level of 83.6% for Fig. 4.2. and 89% on 

Fig. 4.3., where two sets of seven identical groups were defined. Three strains 

proved to be exceptions and were in different clusters for each phenogram.

The point of major change on the dendrograms was where there were many 

short stems, above and below which groups merged or separated. This occurred at a 

similarity level of 89 % for Fig. 4.2. and 93% for Fig. 4.3. where sixteen and 

seventeen groups, respectively, were defined. Comparison o f the two sets showed 

that 9 groups remained intact apart from 4 strains and groups 10 and 11 (Ssm) 

merged to form group 6 (Sd) and groups 3 and 9 (Ssm) merged to form group 3 

(Sd), whilst the three remaining groups were partially disrupted between the two 

phenograms. This coupled with the fact that short stems can often be highly 

insignificant indicated that the data was stable and the cophenetic correlation 

supported this, giving a mantle coefficient of 0.802 for Fig.2.

The groupings were subsequently examined for correlations with taxonomic 

data and bioactivity. Figs. 4.4 and 4.3 illustrate the distribution of these two factors 

across the 7 groups of the phenogram shown in Fig.4.2. No correlations between 

fatty acid profile and either antibiotic production or Streptomyces phena (Williams 

et al., 1983a and b) were found, nor did the distribution contain particular strain 

series grouped together. Most of the S. violaceoniger strains, which were thought to 

produce nigericin clustered to group 2 , whilst the nigericin producers found in 

group 1 also produced geldanamycin. All the strains, which produced compounds
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Fig. 4.2. Phenogram based on fatty acid profiles, created using and UPGMA.

The diagram illustrates the groups which formed at two similarity levels (83.6% and 

89%) on a phenogram, created using fatty acid profiles. Similarity was calculated 

using the Dice coefficient and UPGMA was used to form the phenogram.
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Fig. 4.2. Phenogram based on fatty acid profiles, created using and UPGMA.

The diagram illustrates the groups which formed at two similarity levels (83.6% and 

89%) on a phenogram, created using fatty acid profiles. Similarity was calculated 

using the Dice coefficient and UPGMA was used to form the phenogram.
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FIG .4.3 .

Fig.4.3. Phenogram based on fatty acid profiles, created using S sm and UPGMA.

The diagram illustrates the groups, which were chosen at two similarity levels (89 X 

and 93%) on a phenogram, created using fatty acid profiles. Similarity was

calculated using the simple matching coefficient and UPGMA was used to form the 

phenogram.
0.70i—
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The diagram indicates where various streptomycete taxa clustered on a phenogram 

created using fatty acid profiles, whose similarities were assessed using the dice 

coefficient. These relationships were presented as a tree by use of UPGMA, whilst 

the streptomycete taxa which are shown were defined by Williams et al. (1983a) 

The group number is given from the top of the phenogram downwards at a 

similarity level of 83.6.

NB. Duplicate strains are included in this diagram.

Fig.4.4. The distribution o f Streptomyces species across a phenogram (Fig. 4.2.)

based on fatty acid profiles.
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Fig. 4.5. The distribution of antibiotic producers across a phenogram (Fig.4.2.)

based on fatty acid profiles.

The diagram shows where groups of strains, which were classified by the chemical 

structure of the antibiotics which they produced, clustered on a phenogram created 

using Sdice and UPGMA and based on fatty acid profiles.

NB. duplicate strains are included in this diagram.
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that might be novel agrochemicals were in group 2, apart from one E100 duplicate, 

which formed group S. Six out of eight duplicated strains clustered to group 2, but 

2 duplicates were split. E100 was in group 2 and group 5, whilst A1002 had two 

replicates in group 2 and one in group 1.

4.4. Distributions of FAMEs Within Sub-groups of the Population.

No general relationship between fatty acid profiles and taxonomic status or 

antibiotic production was found in section 4.3.2. Closer examination of the raw data 

was made to see if any specific relationships existed between individual FAMEs and 

particular groups of strains.

4.4.1. The Distribution of FAMEs in Streptomvces Species Groups.

Specific FAMEs were assessed for their ability to distinguish between 

Streptomyces species groups. A FAME was evaluated as a good distinguishing 

character if it had a high standard deviation and was present in different groups at

<  20 and >  80% strains. In addition 2 x Sd from the mean was used to assess 

significant differences, although the small size of the sample sets was taken into 

account when making observations. All S.diastaochromogenes (C19) strains lacked 

Me.heptadecanoate. These strains could also be differentiated from the remaining 

population, by being less likely to have Me. 14-methylpentadecanoate (present in 

one strain) and Me.hexadecanoate (present in 2 strains), although the desired split of

<  20 and >  80% was not observed. Significantly fewer S.violaceoniger (C32) 

strains contained Me. 13-methyltetradecanoate when compared with the mean for the 

entire population. The distributions of Me.2-hydroxytetradecanoate in 

S.diastatochomogenes (C19), Me.2-hydroxyhexadecanoate in S.albidqflavus (Cl) 

and Me.octadecanoate in S.griseoruber (C21) showed significant differences from 

the mean. However, the small sample sizes of some of the above groups meant that 

these latter observations were not statistically valid. More strains would need to be
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Table 4.4. The distribution o f FAMEs within Strentotmces Species.

FAME C l C19
% Strains 
C21 C32 Other Mean Sd

14:0 100.0 85.7 100.0 95.8 95.2 95.4 2.9

i-15:0 20.0 42.9 42.9 4.2 35.7 27.1 15.2

a-15:0 100.0 100.0 10.0 91.7 92.9 94.2 3.2

13:0 100.0 100.0 100.0 100.0 100.0 100.0 0.0

2-OH
14:0

80.0 100.0 85.7 87.5 90.5 89.4 4.2

i-16:0 40.0 14.3 42.9 29.2 73.8 51.8 22.8

16:1 100.0 100.0 100.0 100.0 97.6 98.8 1.2

16:0 60.0 28.6 57.1 41.7 97.6 70.6 27.8

i-17:0 100.0 100.0 100.0 100.0 97.6 98.8 1.2

17:0 20.0 0.0 42.9 29.2 35.7 30.6 10.5

17:0 > 100.0 100.0 100.0 95.8 97.6 97.6 31.5

2-OH
16:0

40.0 28.6 28.6 25.0 23.8 25.9 3.9

18:2 0.0 0.0 0.0 12.5 0.0 3.5 5.7

18:0 0.0 0.0 14.3 0.0 0.0 1.2 4.0

19:0 0.0 0.0 14.3 0.0 0.0 1.2 4.0

Number
Strains.

5 7 7 24 42 85 85

This table shows the distribution of specific fatty acids amongst strains which have 

been grouped by their taxonomic identity (Williams et al., 1983a).
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examined before further comments could be made.

4.4-2. The Distribution of FAMES Within Producers of Specific Claw.« nf 

Antibiotics.

It was interesting to see if information could be gleaned by comparing the 

general FAME profiles of producers of specific classes of antibiotics (Table 4.S). 

The same rules as in section 4.2.2 were used to assess this data.

The FAME profiles of all groups of strains were fairly similar and there 

were no FAMEs which could be classed as good distinguishing characters. This 

explained why these strains did not emerge as related groups during the cluster 

analysis. However, some interesting observations were made from Table 4.5. None 

of the twenty polyether producers contained the iso-branched fatty acid Me. 13- 

methyltetradecanoate and the rare Me. cis-9,12-octadienoate was only found in 

polyene or polyether and ansamycin producers. Unfortunately there were only 5 

producers of macrolides and macrolide-like antibiotics in the study, but preliminary 

observations suggested that the fatty acid profiles of these strains could be different 

in several respects. They could be more likely to contain the iso branched Me. 13- 

methyltetradecanoate and the cyclopropane FAME, Me.cis-9,10- 

methylenehexadecanoate and they may be less likely to have anteiso-branched 

Me. 12-methyltetradecanoate, Me.heptadecanoate and Me.hydroxytetradecanoate.

4.4.3. Distribution of FAMEs Amongst Isolates from Specific Geographical 

Locations and Isolation Procedures.

The different strain series were examined for a predisposition towards any 

specific fatty acids which could reflect differences in the environment from, which 

they were isolated or even in the isolation procedure used. The results are shown in 

Table 4.6., which indicates that there were no instances, where differences in 

specific FAMEs related to strain series.
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Table 4.5. The distribution of FAME'S within specific antibiotic producers

The table shows the distribution of Catty acids amongst strains which have 

been grouped by the chemical class of their antibiotic product. The ansamycin 

producers were geldanamycin apart from 3672 the herbimycin producer and 

nigericin belongs to the polyether class of antibiotics.

Key to superscripts used in Table 4.5.

^There were 57 other strains but 2 of them produced fatty acid derived metabolites. 

These were A3(2) S.coelicolor and KCC S-0785 S.lusitanus the tetracycline 

producer. These were included in the column for all fatty acid derivatives.

^The mean and standard deviation refer to columns 1-5.
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Table 4.5. The distribution o f  FAMEs within specific antibiotic producers.

Strains with Specific Classes of Antibiotic Product (% strains)
FAME Poly

ene
Niger
-icm

Nig+
Ansa

Macro
lide

Others zMean zSd All
Ab.
Prods.

14:0 100.0 100.0 93.3 100.0 94.6 96.4 3.4 96.7

i-15:0 33.3 0.0 0 .0 40.0 29.1 10.7 17.3 16.7

a-15:0 100.0 100.0 93.3 80.0 96.4 92.8 6.8 93.3

15:0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0

2-OH
14:0

100.0 100.0 100.0 80.0 90.9 96.4 7.8 96.7

i-16:0 0.0 60.0 26.7 20.0 54.6 28.6 17.0 33.3

16:1 100.0 100.0 100.0 100.0 98.2 98.8 8.6 100.0

16:0 66.7 60.0 100.0 60.0 50.9 82.5 19.6 83.3

i-17:0 100.0 100.0 100.0 100.0 96.4 97.6 1.7 100.0

17:0> 33.3 40.0 20.0 60.0 23.6 32.1 15.4 33.3

17:0 100.0 100.0 100 80.0 100.0 96.4 7.8 96.7

2-OH
16:0

0.0 40.0 33.3 20.0 20.0 28.6 11.9 30.0

18:2 33.3 0.0 13.3 0.0 .00 10.7 10.1 10.0

18:0 0.0 0.0 0 .0 0.0 1.8 1.2 0.9 0.0

19:0 0.0 0.0 0.0 0.0 1.8 1.2 0.9 0.0

No
Strains

3 5 15 5 *55 83 83 30
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Table 4 .6 . The distribution of FAMES amongst various strain series.

FAME MM C D E F Mean Sd

14:0 90.1 91.3 100.0 100.0 100.0 94.7 4.5

i-15:0 100.0 30.4 44.4 12.5 28.6 24.11 4.7

a-15:0 100.0 87.0 88.9 100.0 100.0 93.1 6.3

15:0 100.0 100.0 100.0 100.0 100.0 100.0 0.0

2-OH.
14:0

100.0 95.7 100.0 87.5 100.0 96.6 4.2

i-16:0 18.2 65.2 44.4 75.0 100.0 58.6 24.8

16:1 100.0 100.0 88.9 100.0 100.0 98.3 4.1

16:0 18.2 78.3 66.7 87.5 100.0 69.0 26.5

i-17:0 100.0 95.7 100.0 100.0 100.0 98.3 2.1

17:0 > 18.2 21.7 11.1 37.5 42.9 24.1 10.2

17:0 100.0 100.0 100.0 100.0 100.0 100.0 0.0

16:0
2-OH

36.4 21.7 22.2 25.0 28.6 25.9 5.6

18:2 9.1 0.0 0.0 0.0 0.0 1.7 3.4

18:0 0.0 4.4 0.0 0.0 0.0 1.7 2.2

19:0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total No. 
strains

11.0 23.0 9.0 8.0 7.0 58

The table shows the distribution o f fatty acid profiles amongst strains which 

have been grouped by their isolation series. The MM series were all S. violaceoniger 

and therefore would interfere with any observations made in this section.
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4.5. Alterations in the FAME Profile of D153 During Batch Culture and its 

Relationship to Secondary Metabolite Biosynthesis.

Qualitative fatty acid data was not related to secondary metabolism in a 

general way and could not be used to predict bioactivity. It was hypothesized that 

changes in the levels of Catty acids through the growth cycle might be more 

indicative o f a  strains bioactive capabilities. A feasibility study was carried out to 

test this hypothesis. The common occurence of geldanamycin and nigericin in 

streptomycetes has been discussed in Chapter 3 where it was mentioned that both 

antibiotics have portions manufactured by the polyketide route, therefore a strain 

(D153), which produced these compounds was chosen for this work. D153 was not 

included in the initial population study, but was chosen because it was a good 

canidate for chemostat work. Consequently this strain contained some additional 

FAMEs, which can be found listed in the key (Fig. 4.1.).

4.5.1. Choice o f Medium.

Sautons medium was used to generate fatty acid profiles, but it was 

discovered that antibiotic production for a number of strains was not expressed on 

this medium and so ISP7 was chosen for this study, after it was shown to be 

compatible with GCMS procedures (Table 4.7).

Fatty acid profiles of D153 were similar for the two media, although 

Me.tridecanoate, Me.trans-9-octadecanoate and Me.octadecanoate were not 

observed using Sautons medium and the cyclopropane FAME Me.cis-9,10- 

methylenoctadecanoate was not observed on ISP7 cultures (NB. all of these 

compounds were only observed in single replicates). Five other peaks were detected 

which were not present in the standard mix but which were consistent for all 

replicates on both types of media. An example o f a GCMS trace is given in Fig.4.5.
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Table 4.7. The effect of Sautons medium and ISP7 on the FAME profile o f D153

13:0 14:0
Fatty Acid 
i-15:0a-15:0 2-OH 14:0 i-16:0 16:1 16:0

Sautons Repl

0 1 1 1 1 0  1 1

Sautons Rep2

0 0 1 1 1 0  1 1

ISP7 Repl

1 1 1 1 1 0  1 1

ISP7 Rep2

0 0 1 1 1 0  1 1

i-17:0 17:0 > 17:0 2-OH 16:0 18:2 18:1 18:0 19:0 >

Sautons Repl

1 1 1 1 0 0 0 1

Sautons Repl

1 1 0 0 0 0 0 0

ISP7 Rep 1

1 1 1 1 0 1 1 0

ISP7 Rep 2

1 1 1 1 0 0 0 0

The table shows the qualitative FAME profiles of strain D153 in replicate on 

Sautons and ISP7 media. The data was taken after 3 days growth.
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Fig. 4.6. Example of a GCMS trace from strain D1S3.

This diagram shows a GCMS trace from a fatty acid extract of D1S3, which was 

taken after 3 days growth at 28°C, in ISP7 medium.

Key to Peak Numbers

8 =  Me. 13-methy ltetradecanoate

9 “  Me. 12-methyltetradecanoate

10 «■ Me. pentadecanoate

13 — Me. 14-methylpentadecanoate

14 =  Me. cis-9-hexadecanoate 

13 =  Me. hexadecanoate

16 =  Me. 13-methylhexadecanoate

16a =■= Me. cis-9, 10-methylenehexadecanoate

17 =  Me. heptadecanoate

18 =  Me. 2-hydroxyhexadecanoate

21 =■ Me. trans-9-octadecanoate

Me cis-11-octadecanoate

22 — Me. octadecanoate

23 — Me. cis-9, 10-methyleneoctadecanoate

153

FIG.4.6
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4.5,2. Timecourse o f Fattv Acid Biosynthesis Versus Antibiotic Production in 

D153.

Quantitative and qualitative changes in the fatty acid profile of a selected 

strain were examined over 7 days, with the aim of detecting shifts in the nature and 

levels of fatty acids and to try to correlate them with onset of antibiotic production.

Table 4.8. shows the results of the qualitative experiment where FAMES 

with chain lengths of between C14 and C18 carbon atoms were first detected at day 

2. On day 3, this range was extended to include Me. tetradecanoate, Me. 

octadecanoate and Me. cis 9-10 methyleneoctadecanoate. FAMEs with a chain 

length of 18C appeared transiently.

Fig. 4.6. shows part of a separate experiment where an internal standard 

which allowed relative quantifications was included in the fatty acid samples. 

Fig.4.7. shows the corresponding antibiotic profile for D153, with respect to batch 

culture growth. Geldanamycin production began at day 3, peaked between days 4-5 

and then remained constant up to day 7, whilst nigericin production peaked at day 

7, although small traces began to appear at day 3. Fatty acids which appeared 

transiently in the above experiment were not detected this time and this could be due 

to these compounds being produced at very low levels, which fluctuated about the 

detection limit of the GCMS.

All fatty acid levels increased up to day 2 and this was in line with a 

logarithmic increase in biomass. Subsequently all fatty acids, apart from Me 

pentadecanoate, Me. heptadecanoate, Me. cis-9-hexadecanoate and Me. 15- 

methylhexadecanoate, followed a similar profile (ie decreased until day 3, then 

began to rise until day 6 , when levels fell with the onset of cell death). However 

from day 2 Me. pentadecanoate and Me. heptadecanoate levels continued to 

increase, until the onset of stationary phase at day 3 (this was also the onset of 

antibiotic production). The levels of these fatty acids and Me. cis-9-hexadecanoate 

fell until day 4, when they began to rise, but then followed the pattern of the other
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Table 4.8. Qualitative differences in the fattv acids of D153 with time.

FAME (Day +  
Blank

rep)
Blank DIRI D1R2 D2R1 D2R2 D3R1 D3R2

14:0 0 0 0 0 0 0 1 1

i-15:0 0 0 0 0 1 1 1 1

a-15:0 0 0 0 0 1 1 1 1

2-OH 
14:0

0 0 0 0 1 1 1 1

i-16:0 0 0 0 0 1 1 1 1

16:1 0 0 0 0 1 1 1 1

16:0 0 0 0 0 1 1 1 1

i-17:0 0 0 0 0 1 1 1 1

17:0 > 0 0 0 0 1 1 1 1

17:0 0 0 0 0 1 1 1 1

2-OH
16:0

0 0 0 0 1 0 0 1

18: l9 0 0 0 0 1 0 0 0

18:1U 0 0 0 0 1 0 0 1

18:0 0 0 0 0 0 0 0 1

19:0 > 0 0 0 0 0 0 0 1

1 denotes the presence and 0  the absence of a fatty acid.

fatty acid graphs. The level of Me. 15-methylhexadecanoate showed less fluctuation 

than other fatty acids in the study.
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Table 4,8. Qualitative differences in the fatty acids of D153 with time.

FAME D4R1 D4R2 D5R1 DSR2 D6R1 D6R2 D7R1 D7R2

14:0 1 1 1 1 1 1 1 1

i-15:0 1 I 1 1 1 1 1 1

a-15:0 1 1 1 1 1 1 1 1

2-OH
14:0

1 1 1 1 1 1 1 1

i-16:0 1 1 1 1 1 1 1 1

16:1 1 1 1 1 1 1 1 1

16:0 1 1 1 1 1 1 1 1

i-17:0 1 1 1 1 1 1 1 1

17:0 > 1 1 1 1 1 1 1 1

17:0 1 1 1 1 1 1 1 1

2-OH
16:0

1 1 1 1 0 1 0 0

18: l 9 0 0 0 0 0 0 0 0

18:ln 0 0 0 0 0 0 0 0

18:0 0 0 0 0 0 0 0 0

19:0 > 1 0 0 1 0 0 0 0
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Fig. 4.6. Changes in the fatty acid profile of D1S3 through a cycle of batch culture 

growth.

The graphs show how the levels of FAMES, which were present within D153 

during batch culture growth on ISP7, changed relative to the concentration of an 

internal standard (a known amount of which was introduced into each sample prior 

to GCMS).

157

Lo
g %

 R
ela

tiv
e t

o 
In

ter
na

l S
tan

da
rd

 
Lo

g %
 R

ela
tiv

e t
o 

In
ter

na
l



Fig. 4.7. Profile of antibiotic production by strain D153.

The photograph shows a TLC plate which contains ethyl acetate extracts from a 

culture of D1S3 which were taken at different times during batch culture growth. 

The green compounds were geldanamycin, whilst the scarlet red compound was 

nigericin; the pure antibiotics are present in the centre of the TLC plate and helped 

to identify the compounds in the extract.
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Fig. 4.8. Growth curve of D1S3 through batch culture growth.

The graph shows changes in the levels of biomass in D1S3 during batch culture 

growth. (Biomass is given as the log of the dry weight).
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Me. IS methylhexadecanoate showed no significant difference in amount between 

days 2 and 4, but followed the same trend as the others after day 4.

It is not possible to say from this data whether the observed fluctuations in 

fatty acid levels related to geldanamycin and nigericin biosynthesis, but fluctuations 

in cellular fatty acids in D1S3 did not follow the same profile as cellular biomass. 

The ratio of fatty acid to biomass increased during stationary phase, whilst antibiotic 

production was occurring. Prior to the onset of stationary phase and secondary 

metabolism there were major changes in the levels of fatty acids. More experiments 

would be required to establish exactly how or if  these events are interconnected.

4.6. Discussion.

New information on the presence of certain fatty acids in streptomyetes was 

uncovered during this work; hydroxylated fatty acids were much more common 

than has previously been thought (Kroppenstedt, 1985). These fatty acids are fairly 

unstable and their absence in other studies may be due to their degradation rather 

than an inability of the organisms under study to produce them. R. Kroppenstedt 

(personal communication) has found that hydroxy fatty acids are highly diagnostic 

for some streptomycete species, including S.violaceoruger, although a similar 

observation was not made during this work. There is no information in the literature 

about the distribution of cyclopropane fatty acids in populations of streptomycetes 

and this work has shown that 30% of the genus might produce at least one 

cyclopropane fatty acid.

Although, there were 33 FAME patterns in 85 strains, the attempt to delimit 

S.violaceoniger (Williams et al., 1983a and b) from other streptomycetes failed. 

Reasons for this may lie in differences between this study and the successful study 

of Saddler et al. (1987). Both studies used type strains which represented tight 

clusters, and markers from other groupings were also included. However, natural 

isolates were pre-selected by spore morphology in the study of Saddler et al. (1987) 

compared to an arbitrarily chosen selection that comprised a variety of species and
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unidentified strains (in this study). Work presented in Chapter 2 has shown that 

many of these isolates did not conform to described streptomycete taxa and if this 

was reflected by their fatty acid profiles they may have prevented the delimitation of 

tight groups for more typical strains.

Streptomyces species delimitation may require quantitative data, as opposed 

to the qualitative data used in this study. Saddler (1987) based an assumption that 

fatty acid profiles remained constant during logarithmic growth and stationary phase 

on a study based on one strain, grown in Sautons medium, with three day intervals 

between readings (Saddler, 1986). However, fluctuations in fatty acid levels 

occurred on a daily basis for D1S3 in ISP7 medium (section 4.5). Kroppenstedt 

(personal communication) suggested that changes in fatty acid composition at 

different growth states were responsible for his failure to cluster S.violaceoniger 

amongst a tree comprising 12 different Streptomyces taxa; clustering was however, 

achieved by removing three C32 strains (Williams et a l., 1983a), two of which 

were present in this study. Kroppenstedt's work comprised entirely type strains 

which may be biased towards strains, which have been patented for antibiotic 

production. They would differ from many of the antibiotic producers included here, 

since industrial strains are selected for the production o f  either one or a group of 

related idiolites. Antibiotic-producing isolates often produce several different 

compounds (Chapter 3), which may or may not relate to fatty acid profiles. Work 

carried out with D153, a producer of nigericin and geldanamycin, suggested that 

this was possible. The levels of fatty acids in this strain fluctuated in line with 

changes in secondary metabolism, although this was not known to be correlated in 

any way. However this study was carried out in a production medium (ISP7), 

compared to Sautons medium, which aims to optimize biomass for taxonomic 

studies. D153 did not produce antibiotics in Sautons medium (Chapter3).
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CHAPTER 5

The Relationship Between Chemical Profiles. Taxonomic Status and Biological

Activity.

5.1. Introduction.

The classification and identification of streptomycetes has generally relied on 

numerical methods which use a wide variety of tests to obtain polythetic taxa 

(Williams et al., 1983a and b; Langham et al., 1989; Kampfer et al., 1991a and b), 

although studies comprising large numbers of substrate utilization tests have also 

given good data for classification studies (Bochner, 1989; Goodfellow et a l., 1987). 

In the above studies the nature of what is being scored is fairly clear (eg. the 

presence of an enzyme), but other work has generated patterns which have been 

used to classify strains and species, when the precise nature of the components 

involved are not known. Protein profiling is an example o f this, where unidentified 

cellular proteins are submitted to electrophoretic separation and the banding patterns 

of different strains or species are compared (Kersters, 1985, Vesselinova and 

Tsvelkov, personal communication).

Pattern recognition has also been used during the drug discovery process to 

predict the likely chemical nature of specific bioactive products and a variety of 

schemes have been developed to reduce the time spent analysing unknown chemical 

compounds (Aszalos, 1980). For example, Aszalos et al. (1965) described how they 

used 14 solvent systems to assign sub-group classifications to 84 known antibiotics, 

unknown compounds were then processed by TLC and placed in a sub-group and 

although they were not identified, the list of possible chemicals was shortened.

Thin layer chromatography was used to determine the bioactivity of isolates 

used for this thesis (Chapter 3); during that work, a banding pattern comprising a
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variety of unknown metabolites was observed within each strain extract and it was 

interesting to see if these profiles correlated with phenetic relationships.

The profiles were also assessed for their use in forecasting bioactive natural 

isolates. This was done in two ways, firstly with respect to the whole profile and 

secondly by following the hypothesis of Zahner et al. (1982), who described how 

TLC could be used to predict novel compounds by selecting unique spots for further 

examination.

5.1.1. Characteristics of Strains Chosen for this Study.

A random selection of streptomycetes, comprising members of various 

isolation series (Tables 2.1., 2.9., 3.1. and 5.1) were selected.

Table 5.1. Origins of strains used in this study.

Strains

A 

B 

C 

D 

E 

F

MM 

W 

RB 

Other 

Types

Total 173

No.

7

1

79

32

6

5

14

3

2

5

19
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Taxonomic characterisation resulted in identification of 41 natural isolates to 

the species level. This is illustrated in Table 5.2., which also summarizes the 

identities of the type strains. Characterization of the strains with respect to their 

bioactivity and or antibiotic activity is given in Table 3.1.

Table 5.2. Streptomvces species involved in this study,

Spp. No.Natural Isolates No.Type Strains.

C l 5 0

C3 1 0

C12 3 0

C15 2 0

C17 0 1

C19 9 2

C21 0 4

C32 21 7

C44 0 1

S.spp. 123 4

Total 164 19

C refers to taxonomic cluster as defined by Williams et al., 1983a.

5.2. The Development of Methodology.

5.2.1. Scheme for the Numbering and Scoring of TLC Spots.

TLC profiles, which were generated by ethyl acetate extraction and run on 

TLC, using solvent system 1 were visualized under UV light (sections 2.3 and 2.6). 

When these were examined for all of the strains studied, 16 regularly observed spots 

and 13 rare compounds were revealed. Each of these spots was assigned a number 

from 1-29 (Fig. 5.1.).
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Fig S .l. Diagram to show the numbering system used to score spots on TLC plates.

The photograph shows the TLC profiles of 5 strains, which are denoted A to 

E; these strains were morphologically very similar and were thought to be replicates 

and so their extracts were run alongside one another. The profiles provided a good 

example of the way in which spots were scored because the sixteen most frequently 

observed spots were present (marked 1-16).
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The plates were examined by eye and scored for the presence and absence of these 

metabolites. The negative control comprised uninoculated, incubated and extracted 

medium, whilst positive controls were provided by running a standardized strain 

extract on every plate. The negative control gave 4 spots, which had similar Rf 

values to test spots, but development of plates with vanillin always showed that they 

were different from those being scored.

5.3. Results.

5.3. The Frequency of Occurrence of Different Spots.

Metabolites in the study were not identified, except if they corresponded to 

an antibiotic standard. A detailed discussion on the distribution of these unknown 

compounds is therefore unnecessary, except to discuss briefly what types of 

compound they might be.

5.3.1. Distribution of Metabolites.

The silica adsorbent on the TLC plates was hydrophilic and bound to and 

immobilized polar compounds. Conversely, the extraction solvent (ethyl acetate) 

and the solvent system (No.l, Chapter 2.3.2.) were non-polar and compounds 

which were extracted and separated the most successfully were lipophilic. The 

closer a compound was to the bottom o f the plate, the "more polar" it was. Spots 

near the baseline were as common as the "more lipophilic" spots but were usually 

fainter (Table 5.3.).
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Table 5.3. The frequency of the spots scored bv TLC.

Spot No.

1 182

2 116

3 171

4 173

5 177

6 86

7 63

8 83

9 75

10 176

11 182

12 61

13 95

14 119

15 126

16 132

No. Strains with Spot

This table shows the total number of strains which were examined and includes 

replicate strains.

Other factors which could have affected the mobility of compounds in the 

extracts included the presence of double bonds and certain functional groups on 

molecules, which raise their adsorption affinity to the silica. For example, saturated 

hydrocarbons are highly mobile in lipophilic solvents, methyl groups have little 

effect and carbonyls adsorb less strongly than amino or hydroxy groups. The
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possession of several functional groups are only partially additive because steric 

effects are also important.

5.4. The Estimation of Test Error Involved in Scoring Metabolite Patterns.

5.4.1. The Effect of Operator Error in Scoring Metabolite Patterns.

Ten plates containing 64 strain profiles were chosen to rescore several 

months after they had first been assessed. Both sets of results were then compared 

and the number of different answers noted down; 6.4% of the 16 most common 

spots were recorded differently between the two sets of observations. This value 

was above the desired figure of 5%, but below the 10% level of acceptability set

down by Sneath and Johnson (1972). 90.63% of the profiles examined were 

affected by this error, with an average of 1.9 discrepant spots for every strain (Sd 

=  1.47). The spread of the discrepancies is shown in Table 5.4.

Table 5.4. The number of soots in a subset of 64 strains affected bv onerator error.

No. Discraps. No. Strains Tot. No. Disc reps.

0 6 0

1 28 28

2 12 24

3 9 27

4 4 16

5 3 15

6 2 12

Total 64 122

Discrept. -  discrepancies; Tot. ■ total.
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Certain spots were prone to more error than others (Table 5.5.).

The two compounds nearest the base line accounted for 35% of the total 

errors made, whilst another 30% was contained in spots 11-13 and the remainder 

(35% error)

Table 5.5. The distribution of operator error amongst the 16 most common spots 

scored.

Spot No. Errors. P erroneous result 
(Sneath and Johnson, 1972)

1 5 0.041

2 3 0.024

3 1 0.008

4 4 0.032

5 5 0.041

6 6 0.049

7 7 0.058

8 7 0.058

9 3 0.024

10 1 0.008

11 10 0.085

12 13 0.145

13 4 0.032

14 10 0.085

15 20 0.194

16 23 0.245

The total number of errors was 122 and this save an overall test error of 0.064.
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was dispersed amongst the first 10 spots. Interestingly the operator error for spots 

1-10 was 3.4%, which is acceptable for taxonomic data (Sneath and 

Johnson, 1972). The increase in error towards the base line may be related to poor 

resolution between weakly eluted compounds. Spots 11-16 were confined to the 

bottom quarter of the developing distance (Fig.5.1.) and were closer together than 

the other spots. Due to the proximity of these compounds, a large quantity of one 

might result in difficulty in scoring neighbouring metabolites and also the amount of 

a substance can sometimes affect the Rf value if very low and high concentrations 

are compared.

The Rf value of a pure compound can be affected by the presence of 

impurities and because the samples in this study were mixtures of metabolites and 

the Rf values of individual compounds may have varied depending on the total 

composition of the extract. Variation between and within TLC plates might also 

exert an influence on operator error, but the presence of an external standard meant 

that these should not be major factors. Purified antibiotics which were used to 

identify specific antibiotics allowed between plate variation to be measured. The Rf 

of a geldanamycin standard from 10 different TLC plates gave a standard error of 

0.013. (The mean Rf was likely to lie + /- 0.0257 from the measured spot in 95% 

of cases and + /- 0.034 in 99% cases).

The humidity at the time of application and during development in the tank 

can cause variations in Rf and this is especially true for lipophilic substances. A 

multi-component solvent system was used and therefore the development distance 

was important because the solvent system would partially separate along the 

chromatograph, making the Rf value dependent upon the developing distance in 

relationship to the starting point. TLC plates were therefore developed to 1cm 

below the top of the plate and the tank atmosphere was kept saturated to prevent the 

solvent from evaporating off the layer during chromatography.

The measurement of within plate variation required an internal standard to 

be present within each extract; this was difficult because it had to be distinguishable
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from other spots in the study (Fig S .l) and also the RF of any standard might be 

affected by the other compounds in the extracts. It was possible to take various 

precautions, which might prevent plate effects; the tank atmosphere was kept 

saturated and TLC plates did not touch each other or the filter paper (used to 

saturate the atmosphere) and so the solvents could not rise by capillary action. (A 

non-saturated atmosphere would allow mote volatile constituents of the multi- 

component solvent to evaporate from the TLC plates in a preferential manner; the 

rate of evaporation would decrease from the edge to the middle of the plate, causing 

Rf values to increase from the centre to the edge of the plate.)

5.4.2. Reproducibility of Samples.

Forty sets of strains, which were duplicated from growth in a shake flask up 

to TLC, were included in the study. The mean probability o f erroneous spots 

between duplicate strains was 10.6% (Sneath and Johnson, 1972) and 97.5% 

duplicates contained erroneous results. The error between replicated strains was 

probably partially due to operator error, which was 6.4% (Table 5.5) and so an 

additional 4.2% error was due to inconsistency between replicates. Table 5.6. 

shows the spread of errors for each of the most common spots.
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Table 5.6. The distribution of errors for different spots.

Spot No. Errors PI P2 P3

1 12 0.184 0.041 0.143

2 15 0.25 0.024 0.226

3 12 0.184 0.008 0.176

4 10 0.147 0.032 0.115

5 16 0.276 0.041 0.235

6 17 0.306 0.049 0.257

7 16 0.276 0.058 0.218

8 18 0.342 0.058 0.284

9 10 0.147 0.024 0.123

10 10 0.147 0.008 0.139

11 16 0.276 0.085 0.191

12 13 0.25 0.145 0.105

13 18 0.342 0.032 0.31

14 21 0.388 0.085 0.303

13 18 0.342 0.194 0.148

16 17 0.306 0.245 0.061

The total number of errors was 241 and this gave an overall test error of 10.6%.

Key:

PI ■ P erroneous result (between duplicate strains).

P2 -  P operate»' error (taken from Table S.S.).

P3 -  P1-P2: Strain error.

The "No. Errors" column refers to the number of errors, which were observed 

between duplicate strains (PI).
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The reproducibility of two standard producing strains was examined in 

detail. These were NRRL 3602 and AM 3672, producers of gddanamycin and 

herbimycin respectively. Extracts that had been taken from different cultures of 

these strains, which were produced on different dates were run alongside one 

another (Fig. 3.2.) and were found to be highly variable. A second series of 

extracts, which had been produced in different flasks, but at the same time (Fig 

3.3.) were also highly variable. This problem was overcome by making large 

extractions, freezing them and using the same samples as external strain standards 

on all subsequent plates.

Variations in inoculum size might have been an important factor in 

determining the metabolic status of a culture at the time of extraction and because a 

complex medium (A37) was used the probability of creating alterations in gene 

expression might have been increased. Variation of physical factors, such as 

opening and closing incubators, switching the shaker and lights off and on could 

have caused transient changes in temperature, oxygenation, shear factors and 

illumination. All these variables could happen at random at any point along the six 

day incubation time; the data was accumulated over several seasons and duplicates 

were done randomly within this time period. These variables coupled with the many 

possible thresholds of nutrients and cofactors might be capable of initiating many 

different metabolic effects. In addition, certain metabolic triggers in streptomycetes 

may be intrinsically variable.
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Figs. 5.2. (A; top photograph) and 5.3. (B: bottom photograph)

Fig. S.2. Extracts of AM 3672 and ATCC 3602, which were produced at different 

times.

Key

1 NRRL 3602; extract produced on 1/11/88

2 NRRL 3602; extract produced on 2/11/88

3 NRRL 3602; extract produced on 4/10/88

4 NRRL 3602; extract produced on 10/11/88 

3 NRRL 3602; extract produced on 20/10/88

6 ATCC 3602; extract produced on 1/11/88

7 ATCC 3602; extract produced on 2/11/88

8 ATCC 3602; extract produced on 4/10/88

9 ATCC 3602; extract produced on 10/11/88

10 ATCC 3602; extract produced on 20/10/88

Fig. 3.3. Extracts of different cultures o f AM 3672 and ATCC 3602, which were 

produced at the same time.

1 to 4 -  ATCC 3672 (AM -  ATCC)

5 to 8 -  NRRL 3602

The extracts of all of these samples were produced on the same day, but from 

different cultures, which had been incubated alongside each other.
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5.5. Cluster Analysis

Although the estimates of error showed that the data were not suited to 

clustering, the aim of the study was to assess chemical profiles as both a taxonomic 

tool and a means of predicting bioactivity. An example of clustered data is therefore 

presented in this section. In addition to the sources of error discussed above there 

were probably additional errors which affected the calculation of similarity between 

strains. For example, different compounds could have had the same RF value and 

identical compounds might have been biosynthesised by different biochemical 

routes. This meant that observed similarity did not necessarily equal true phenetic or 

genetic similarity.

5.5.1. The Distribution of Streptomvcetes Based on Chemical Profiles Using 

Hierarchical Methods.

Figures 5.4 and 5.5 show phenograms created using the chemical profiles of 

natural isolates and type strains. Both diagrams were produced using the Dice 

coefficient and UPGMA. Comparison of fig. 5.5. with a phenogram clustered with 

the simple matching coefficient and UPGMA, showed fragmentary resemblance. 

For example, the phenogram based on natural isolates, single member groups were 

intact, but larger groups were separated via groupings of 4-8 strains.

Neither of the phenograms showed a correlation with taxonomic identity or 

with bioactivity. Figs 5.6. and 5.7. illustrate this for 54 groups, taken at 70% 

similarity on the phenogram comprising natural isolates (Fig.5.5). In addition, most 

replicate strains were placed distantly from one another on the dendrograms. Nine 

of the bioactive strains with rare spots (section 5.6) and five other bioactive strains 

were placed in single member groups. However three out of the four producers of 

antibiotics with possible novel activities were in the two groups with the largest 

numbers of members.
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Fig. 5.4. Phenogram showing relationships between type strains, based upon TLC 

profiles.

Binary data based on TLC profiles were used to create the phenogram; 

similarity values were calculated using the Dice coefficient and the UPGMA 

algorithm was used to form the diagram.

The names of the type strains used are given on the diagram.
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Fig. 5.5. Phenogram showing relationships between natural isolates, based upon 

TLC profiles.

Binary data based on TLC profiles were used to create form the phenogram; 

similarity values were calculated using the Dice coefficient and the UPGMA 

algorithm was used to form the diagram.

Binary data based on TLC profiles were used to create form the phenogram; 

similarity values were calculated using the Dice coefficient and the UPGMA 

algorithm was used to form the diagram.
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Fig. 5.6. The distribution of Streptomyces species across the phenogram (Fig. 5.4.).

The diagram is a stacked bar chart showing the proportion of strains in each 

of 54 groups (as shown in Fig. 5.4.), which identified to strain clusters as defined 

by Williams et al. (1983a).
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Fig. 5.7. The distribution of bioactive natural isolates across the phenogram (Fig.

5.4.).

The diagram illustrates how bioactive natural isolates were distributed with respect 

to their TLC profiles and shows that no discrimination was made between antibiotic 

producers and non-producers. In addition (not illustrated by the diagram) no pattern 

was observed with respect to the distribution of producers of chemically related 

antibiotics.

179

Gr
ou

p 
Nu

mb
er

 (N
o. 

in 
Gr

ou
p)

% Strains



5.5.2. Ordination o f Streptomvcete Chemical Profiles.

Principle components analysis was carried out on the binary data from this 

study where cluster 32 strains tended to be located either side of the y axis 

(Fig.5.8.). A small group of strains which produced both nigericin and 

geldanamycin remained closely associated as the ordination diagram was rotated 

(Figs. 5.9. and 5.10.); one of these strains (present in replicate) also produced a 

compound which might have novel agrochemical activity. The formation of this 

group may be explained by the fact that geldanamycin (and possibly spots 

correlating with the production of nigericin and other antibiotics) would be present 

within the profile. Apart from these two observations, no other correlations were 

observed amongst these data.
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The diagram illustates how most S.violaceoniger strains clustered to an area, 

which surrounded the y-axis.

S.violaceoniger strains are shown by circles as opposed to spots, which 

denote other strains.

Fig. S.8. Principle components analysis o f TLC profiles to show the position of

members of the S.violaceoniger group.
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The diagram shows how nigericin producers did not form a cluster, apart 

from a small group of strains, which also produced geldanamycin.

The nigericin and geldanamycin produce» are shown by a circle and a 

number, which refers to their position within the original data matrix. Other strains 

are represented by a spot.

Fig. 5.9. Principle components analysis o f TLC profiles, to show the position of

nigericin producers.
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The diagram is the same as Fig. S.9., but is presented in a different orientation. It 

shows the position of a small group of strains, which produced both nigericin and 

geldanamycin.

The nigericin and geldanamycin producers are shown by x and a number, 

which refers to their position within the original data matrix.

Fig. 5.10. Principle components analysis o f TLC profiles, to show the position of

nigericin producers.
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5.7. Recognising Interesting Strains Using TLC 

Table 5.7. Strains with rare spots.

Spot No. Strains Strain Names

17 4 C70 C129 D5 F89

18 6 C6C11C15C33C212 D153

19 10 C3 C4 C52 C70(2) C77(4) 

C108(2) C206(2) C314 C341 E8

20 6 C ll  C141 C212 C314 C341 W98.1

21 3 C52 C203 F53

22 4 C141 D2 F53 F139

23 2 C77 C141

24 2 C70 D52

25 3 C ll C32 F89

26 1 C15

27 2 C208 C212

28 2 C208 C314

29 2 C222 F89

Total 47 29

The rare spots are numbered from 17 to 29 and the strains, whose extracts contained 

each of the rare spots is given in the last column with the number of replicates, 

which gave a spot in parentheses, if it was more than one.

Twenty-nine spots were scored in all, but thirteen o f these were very rare 

(Table 5.7.)and were only observed in twenty-nine strains (NB. six of these strains
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contained two rare spots, whilst a further six had three). Approximately 25% of the 

strains examined in Chapter 3 proved to be bioactive, compared with 45% of strains 

which could be selected because their extracts contained an unusual spot. There 

were two strains in this study, which produced compounds which might be novel 

agrochemicals (E8 and F139), although it is not known whether the rare spots 

comprised bioactive compounds. Zahner et al (1982) carried out a similar study and 

tested unique spots for biological activity. He found that 3 out of 5 compounds 

comprised novel antibiotics with slight antibacterial properties. The antibacterial 

activities observed in this work were not followed up, but six strains showed 

unidentified activities against B.subtilis.

5.7. Conclusions.

The errors observed in this study meant that the data collected were poorly 

reproducible and therefore were unsuitable for taxonomy. Hierarchical and non- 

hierarchical cluster analysis did not allow the delimitation of species-groups or the 

prediction of bioactivity. However, TLC was of possible use for predicting 

bioactive strains by choosing those with unusual spots.
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CHAPTER 6

Relationship Between Antibiotic Resistance Phenotype and Biological Activities. 

6.1.1. Introduction.

Selected Streptomyces species have distinctive antibiosis and resistance 

patterns, therefore resistance to antibiotics has been used for both classification 

(Wellington et al., 1987) and selective isolation (Wellington et al., 1990), but in 

general, antibiotic production and resistance is strain specific (Hotta et al., 1983a 

and b, Okami and Hotta, 1988). Characterization by resistance to a wide variety of 

macrolide and aminoglycoside antibiotics has shown that many streptomycetes have 

individual patterns o f multiple resistance. Fujizawa and Weisblum (1981) reported 

finding a diverse range of resistance phenotypes to macrolide, lincosamide and 

streptogramin antibiotics and Hotta et al. (1983a) showed a wide variety of 

aminoglycoside-resistance patterns in type strains and natural isolates.

A number of studies have reported that biosynthesis and resistance genes are 

genetically linked (Chater and Bruton, 1983; Murakami et al., 1986; Skeggs et al., 

1987), but few studies have been concerned with the distribution of antibiotic 

production (Chapter 3) and resistance phenotypes or their corresponding genotypes 

in natural populations of streptomycetes. It is known that producers of auto-toxic 

compounds require self-defence mechanisms to secure survival against their own 

products (Cundliffe, 1986, 1989), but resistance mechanisms are not limited to such 

strains (Fujizawa and Wiesblum, 1981). For instance, resistance to kanamycin is 

exhibited by the producer, S.kanamyceticus (Murakami et a l., 1983, Cundliffe, 

1986) and S.griseus (Hotta, 1988), S.tenebralus (Skeggs et al., 1987) and 

S.tenjimariensis (Skeggs et al., 1986 and 1987), which are also aminoglycoside 

producers, but do not produce kanamycin. More strikingly, the non-producer 

S.Uvidans has an inducible rRNA methylase (Jenkins et al., 1989) and a variety of
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strains, which do not biosynthesize chloramphenicol are known to produce O- 

acetyltransferases, which detoxify this drug (Murray et a l., 1989).

The requirement for self-resistance determinants has been used in certain 

studies to demonstrate that strains which produce identical compounds can be 

grouped together on the basis of resistance to antibiotics of the same chemical 

family (Fujizawa and Weisblum, 1981; Hotta et al., 1983a; Bibikova et al., 1990). 

There is also evidence that novel compounds can be found by selecting strains with 

unusual resistance profiles and indolizamycin was discovered during protoplast 

fusion experiments because the resistance patterns of the producing strain differed 

from those of the two parental strains (Yamashita et al., 1983b).

There may be a link between unusual resistance profiles and the production 

of specific secondary metabolites. If so, antibiotic-resistance profiles could be used 

to select strains capable of producing certain classes of biologically active 

compounds from natural populations. This work was aimed at testing this hypothesis 

and at evaluating the phenotypic diversity of streptomycete populations based on 

antibiotic-resistance profiles. Such information is also o f  ecological interest, since 

the survival of soil microorganisms depends upon their ability to find suitable niches 

in which they can grow and survive. Antibiotic production and resistance are 

specializations, which have been attributed with survival functions (Williams et al., 

1989). Expression of antibiotic resistance in soil isolates could have implications for 

the production of antibiotics in the natural environment and may reflect selection 

pressures, which influence Streptomyces species in situ. Other implications of the 

work concern the evolution of secondary metabolism and the dissemination of 

relevant genes. The distribution of a variety of antibiotic-resistance phenotypes was 

therefore determined within a selection of soil isolates.
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6.1.2. Choice of Strains,

145 strains were chosen to represent a heterogeneous group of 

streptomycetes from different geographical locations and which were obtained using 

a variety of isolation methods (Tables 2.1 and 6 .1).

Table 6.1. Natural isolates selected for the study of antibiotic resistance patterns.

Strain
Series

No.Strains

A 7

B 1

C 58

D 26

E 6

F 2

MM 5

MEL 6*

CAG 22*

RB 3

JHCC 9*

Total 145

* The CAO, MEL and 5 of the JHCC strains were not used in the clustering 

described in section 6.4. This leaves 112 strains which were used in the cluster 

analysis.

A variety of type strains were chosen to represent a selection of known 

antibiotic producers and these are indicated in Table 2.2. Table 6 .2 . summarizes the
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cluster groups (Williams et al., 1983a) to which the type strains and any identified 

isolates belong. More details about identified isolates are given in Table 2.9.

table t.2 . Taxonomic identity ot strains used for analysis of antibiotic resistance.

Cluster Group No. Type Strains No. Isolates

C l 14 (1) 4(3)

C6 K D 0

C12 0 2 (2)

CIS 0 2 ( 1)

C18 K D 2 (0)

C19 2 (1) 8(5)

C21 5(5) 0

C32 9(9) 10 (10)

C37 0 1 (0)

C44 K D 0

C61 4(1) 0

C64 KO) 0

C68 K D 0

S.spp. 6(4) 116(91)

Srv.spp. 3(1) 0

Total 48 (26) 145(112)

Numbers in parenthesis refer to the number of strains used in the cluster analysis 

(Section 6.4). Details on individual strains are presented in Table 2.9. and the 

products o f the type strains are given in Table 2.2., whilst the bioactivity of the 

natural isolates included in this study is presented in Table 3.1.
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Results.

6.2. The Distribution of Antibiotic Resistance in Streptomvcetes.

6.2.1. The Distribution of Antibiotic Resistance in Natural Isolates.

Figures 6 .1 and 6.2. show the distribution of ten antibiotic resistances within 

a random population of Streptomyces isolates and type strains used for cluster 

analysis (Section 6.4.). There were two forms of distribution for antibiotic 

resistance within the population; increasing concentrations of some antibiotics 

elicited an exponential decrease, followed by a major change in gradient, where the 

resistant population became more constant and this identified populations of 

resistant and sensitive strains. The second type of resistance distribution occurred 

when antibiotics had a linear graph, showing a more gradual variation of phenotype. 

It was difficult to define resistant and sensitive populations for this type of 

distribution and so for the purposes of clustering an arbitrary value was assigned. 

Consequentially these data had a greater probability of giving an erroneous result 

(Table 6.4.). The most commonly occurring resistances within the population of 

isolates was also illustrated by Figs.6.1. and 6.2. Resistance to aminoglycosides was 

rare and only seen at low levels of the antibiotics, whilst penicillin, nigericin and 

oxytetracycline resistances were common.

The quantitative data were converted to qualitative data, using the 

distribution of each antibiotic resistance as a guideline. Strains, which showed a 

minimum inhibitory concentration before the elbow of a curve were designated as 

sensitive and those showing growth beyond it were called resistant. The extrapolated 

cut-off values were 2 pg/ml for neomycin, blasticidin, kanamycin and viomycin, 

3.5 pg/ml for streptomycin, 5 ug/ml for thiostrepton, 15 pg/ml for nigericin, 20 

Mg/ml for novobiocin, 40 jxg/ml for erythromycin, 45 pg/ml for oxytetracycline and
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The graphs show the distribution of resistance to 8 antibiotics, within the random 

population of streptomycetes isolates, studied. The y axis shows the proportion of 

the population that were resistant, whilst the x-axis shows a range o f antibiotic 

concentrations, which were extrapolated from the distance of mycelial growth, 

which occurred along antibiotic gradient plates.

Fig. 6.1. The distribution of antibiotic resistance phenotypes within a population of

Streptomyces natural isolates.
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The graphs show the distribution of resistance to 2 antibiotics, within the random 

population of streptomycetes isolates, studied. The y axis shows the proportion of 

the population that were resistant, whilst the x-axis shows a range of antibiotic 

concentrations, which were extrapolated from the distance of mycelial growth, 

which occurred along antibiotic gradient plates.

NB. Kanamycin resistance is omitted from the diagram because it was only 

observed at a low level for a single replicate of one natural isolate.

Fig. 6.2. The distribution of antibiotic resistance phenotypes within a population of

Streptomyces natural isolates.
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95 fig/ml for penicillin, but these could also be given as distances of the lines of 

growth along the gradient (Section 2.7.1). Test error calculations, pattern analysis 

and clustering were carried out on these binary data.

Some of the extrapolated cut-off values determined for this work appeared to 

be at low antibiotic concentrations, but they reflected the distribution of antibiotic 

resistance and sensitivity within the population studied. A similar study to the above 

was carried out by Shaw et al. (1991), who correlated antibiotic-resistance patterns 

in clinical isolates with hybridization to resistance gene probes. In that study a cut- 

off-point between resistance and sensitive strains was determined by using known 

concentrations of antibiotics in disc susceptibility assays, where a minimum zone 

size was used as a guideline for delimiting the population.

6.2.2. The Diversity of Antibiotic Resistance Profiles.

Table 6.3. gives the profiles of resistance, which were observed for 193 

different strains. The duplicates of each strain were merged into one profile by 

assigning a mismatch as positive arbitrarily (this was not done for the cluster 

analysis, where duplicated data were included). Although there are 4 x 107 (11!) 

theoretical antibiotic-resistance profiles, 83 strains exhibited unique patterns, whilst, 

a further 21 patterns were distributed amongst 110 different strains. One hundred 

and ninety strains contained at least one of the three most common antibiotic 

resistances and 25% isolates had a sensitive phenotype apart from showing 

resistance to penicillin.
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Table 6.4. The distribution of antibiotic resistance patterns within a population of

Streptomyces isolates.

The table shows 21 resistance profiles, which were present in more than one strain 

each, but there were also a wide variety of unique antibiotic resistance patterns.
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6.2.3. A Comparison Between Resistance Phenotypes Observed on 

Complex and Defined Media.

Resistance was determined on antibiotic gradient plates made from AGS, 

which is a defined medium and is different to the complex medium A37, which was 

used to generate bioactivity. It was of interest to know how the expression of 

resistance would differ on a complex medium and therefore a solid form of A37 

(15g/l agar) containing the antibiotic viomycin (in the gradients) was examined with 

the use of 64 duplicate strains from the above study. Results showed 4 resistant 

strains on A37; two of these had not shown resistance on AGS, whilst the others 

had grown to a greater distance along the A37 gradient. The latter might reflect 

differences in expression levels or differences in diffusion effects along the two 

types of gradient (see also section 6.3.3.)

6.3. Examination of Reproducibility and Test Error.

The data were assessed for suitability for use in cluster analysis, by 

determining error found within tests and duplicate OTUs.

6.3.1. Error Within Tests.

Table 6.4. shows the error found in each resistance test, calculated according 

to Sneath and Johnston (1972), from a total of 130 duplicates (138 had been used 

for the cluster analysis, whilst the additional 12 pairs comprised replicates of some 

of these strains). The mean test error fell below the recommended value of 3%. 

Although the test for penicillin resistance showed error above the 10% level of 

acceptability.
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Table 6.4. Table to show the presence of error in antibiotic resistance tests.

Resistance No. Discrepancies Test Error %

Penicillin G 33 12.383

Nigericin 26 9.386

Blasticidin 19 6.795

Erythromycin 19 6.795

Oxytetracycline 19 6.795

Thiostrepton 11 3.812

Novobiocin 9 3.096

Viomycin 6 2.042

Streptomycin 5 1.695

Neomycin 4 1.352

Kanamycin 1 0.335

The error for the whole series of tests was 4.84

Error increased as the occurrence of an antibiotic resistance increased and 

there was also a high probability of error when there had been difficulty in 

assigning a cut-off concentration, which distinguished between resistant and 

sensitive populations (penicillin, nigericin, oxytetracycline). The strains responsible 

for the erroneous results were examined in detail (section 6.3.2.).

6.3.2. Examination of the Stability of Resistance in Strains Causing Erroneous 

Results in Antibiotic-Resistance Profiles.

Two types of discrepancy could occur. Either a strain showed resistance in 

both replicates of the test, but one of the duplicates fell below the level at which a 

strain was called resistant (section 6 .2 . 1) or a strain was completely resistant in one
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test and completely sensitive in another. Table 6 .S. shows the distribution of 

discrepant results in ISO pairs of OTU's and gives the mean probability of error for 

the two types of discrepancy.

laDie t o .  m e distribution of two types of discrepancy for antibiotic resistance 

profiles.

Total Discrepancy Resistant
Resistance Number Around Versus

Cut-Off Point Sensitive

Penicillin 33 22 11

Nigericin 26 11 15

Blasticidin 19 9 10

Oxytetracycline 19 14 5

Erythromycin 19 11 8

Novobiocin 9 8 1

Thiostrepton 11 4 7

Neomycin 4 0 4

Streptomycin 5 1 4

Viomycin 6 0 6

Kanamycin 1 0 1

No Errors 152 80 72
P error 4.84 2.49 2.23

In an attempt to understand errors between duplicates further, the lowest level of 

resistance, for a discrepant pair, was subtracted from the highest resistance and the 

resulting value was divided by the highest concentration on the gradient plate. The 

resulting figure (the fraction of the gel, involved in the discrepancy) was used for a 

comparison of all discrepancies from all antibiotics. An average of 40.1% of the
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gradient was involved in strains with a discrepancy about the cut-off point (Sd = 

0.249). The mean % gradient involved in the second type of discrepancy was 

51.3% (Sd ■* 0.326). The distribution of discrepancies amongst the strains was also 

examined and 17 strains with 3 or 4 anomalous results each, were highly variable 

with respect to expressing antibiotic resistance and they contained 35.5 % of all 

errors. A further 20 strains, with 2 errors each, had 26.2% of the error. Minor 

discrepancies could be due to error in pouring gradient plates and differences in test 

conditions affecting antibiotic diffusion in the plates, whilst other anomalous results 

may have been due to differences in resistance and may have been caused by 

differential gene expression.

6.3.3. The Estimation of Minimum Inhibitory Concentrations from Antibiotic 

Gradient Plates.

Antibiotic in the top layer of a gradient plate might be expected to diffuse to 

the base layer in a complex manner, therefore some work was carried out to see 

how closely antibiotic concentrations estimated from gradient plates reflected 

antibiotic levels found in pour plates at the corresponding concentration. The results 

are shown in Table 6.7.

A log-dose response curve was produced for streptomycin and found 

to be linear from 1 fig to 10 mg (Fig 6.3.). This involved a filter paper assay and 

was intended to be used for the quantification of streptomycin in TLC extracts, 

rather than for use in this experiment and was therefore not done for the other 

antibiotics. However it may allow a rough idea of the extent to which antibiotic 

concentrations changed with differences in zone size (although diffusion from the 

plug onto the assay would be slower than from a filter paper disc and might retain 

more o f the antibiotic). The zone size for 3.5 fig of streptomycin was 18.2 mm on 

the conventional log dose response curve, whilst 15.7 mm was given as the average 

zone size corresponding to 3.5 fig/ml in an agar plug (2 fig/ml on the log dose 

response curve). The zone size from the gradient plate was larger (17.3 mm) and
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corresponded to 2.5 pg/ml on the log dose response curve. Some diffusion of 

antibiotic from the more concentrated to the less concentrated areas of gradient 

plates has taken place, but the extent of diffusion effects may differ along the 

gradient (perhaps with more downward diffusion at the lower concentration, but 

more sideways diffusion at the higher concentrations). The smallest and most polar 

antibiotics in this study were the aminoglycosides and one might therefore expect 

that any diffusion observed for other antibiotics would be less than for these; 

although more experimentation would be required before this could be assumed.

Table 6 .6 . Comparison of bioassav from antibiotic gradient and pour plates.

Antibiotic Concent- 
- ration 
0 *g/ml)

Pour Plate 
mean diam. 
(mm)

Gradient Plate 
mean diam. 
(mm)

Thiostrepton 5 26 25

Neomycin 2 11 12

Kanamycin 2 13 16.7

Streptomycin 3.5 15.7 17.3

Agar plugs were removed from pour plates and gradient plates, containing known 

and estimated antibiotic concentrations; these were then compared by use of an 

inhibition assay (section .2.7.2.)
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Fig.6.3. Log dose response curve for a streptomycin bioassay.

The graph shows a log dose response curve for streptomycin on filter paper discs. 

The graph was linear from lpg to lQmg; the units for the zone diameters were in 

mm and the antibiotic concentrations in ng.
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6.4. Hierarchical Clustering on Qualitative Resistance Profiles.

6.4.1. Comparison of Phenoerams Formed Using Different Coefficients and

Algorithms.

The nature of the data was carefully considered prior to clustering. It was 

concluded that a negative match was not always a true measure of similarity 

between strains, because it was possible that some strains were measured as 

sensitive when they were observed under incorrect conditions for expression of 

resistance. Consequentially a similarity coefficient, which did not consider negative 

matches was thought useful (eg. S^ice and Sj). Since duplicates were computed a 

mismatch might also be due to strain variability and so the Dice coefficient was 

chosen over Jaccard's because it weights against mismatches relative to matches and 

would prevent the underestimation of similarity values. The error calculated in 

section 6.3. relates to clustering using the simple matching coefficient, but could 

exert a greater effect on the clustering when using a coefficient which ignores 

negative matches. Clustering was therefore also done using the simple matching 

coefficient for comparison.

Figs. 6.4. and 6.3. show 4 phenograms made using the resistance data. The 

first two use Ssm and with UPGMA. Close examination of groupings showed 

that the same strains remained close relatives in each phenogram and although some 

group distortions were observed, there was good agreement with respect to 

observations made below (section 6.4.2.). Cophenetic correlation of the phenogram, 

which used Dice, gave a mantle statistic of 0.78, which showed reasonable 

agreement with the similarity matrix.

A comparison of different clustering algorithms was also made to minimise 

the chances of accepting misleading results. The phenograms of Fig. 6.3. show 

single and complete linkage with the Dice coefficient. Single linkage showed poorer 

group integrity, whilst complete linkage made groups which were more spread out, 

although
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A shows a phenogram created using and UPGMA.

B shows a phenogram created using Ssm and UPGMA.

The position of group 3 is highlighted on both phenograms to illustrate that the 

trends, which are discussed in Section 6.4. were apparent in all of the phenograms 

studied.

Fig. 6.4. Phenograms, which show relationships between natural isolates based on

their antibiotic resistance profiles.
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A shows a phenogram created using S^ice suid Complete Linkage.

B shows a phenogram created using S^ice and Single linkage.

The position o f group 3 is highlighted on both phenograms to illustrate that the 

trends, which are discussed in Section 6.4. were apparent in all of the phenograms 

studied.

Fig. 6.5. Phenograms, which show relationships between natural isolates based on

their antibiotic resistance profiles.
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there was still good agreement with respect to observations made below (section

6.4.2. ). The phenogram, which was formed, using average linkage was chosen to 

present results (Fig. 6 .6 .), but it is emphasised that all phenograms allowed the 

delimitation of clusters with differing bioactivity in terms of agrochemical interest 

(Fig. 6.7.).

6.4.2. The Distribution of Bioactive Strains in the Major 

and Minor Clusters.

The strains formed 5 major and S minor clusters at 51% similarity (Fig.

6 .6 .). When the distribution was examined with respect to bioactivity (Fig. 6.7.), 

cluster 3, which contained 37.59% of all strains in the study was comprised mostly 

of the strains which did not produce biologically active compounds. Those which it 

did contain were all natural isolates comprising a nonactin producer (C208), which 

has since been shown to have novobiocin resistance, a producer of either 

cycloheximide, nonactin or nigericin and two strains which produced antibacterial 

compounds which were inactive on agrochemical screens. All antibiotic-producing 

type strains were distributed outside cluster 2. There was no correlation between the 

class of antibiotic a strain produced and the group to which it clustered.

6.4.3. The Distribution of Resistance Phenotypes in the M^jor and Minor Clusters. 

Table 6 .8 . illustrates how groups of strains in cluster 3 were phenotypically

less resistant than the other groups of strains. The main resistance exhibited by 

strains in this cluster was penicillin, the most commonly observed resistance for the 

population (Figs. 6.1. and 6.2.). Penicillin resistance was present in large numbers 

o f strains in all mqor clusters, but was rare in the minor clusters (6-10). It did not 

contribute to the separation of bioactive from non-bioactive strains, but its rarity in 

the less similar clusters (6-10) showed that penicillin sensitivity could be useful in 

identifying unusual strains.
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The diagram illustrates the 10 groups of strains, which were defined at 51% 

similarity. It also shows how the phenogram could be divided into 4 areas.

Area 1 comprised clusters 1 and 2, which contained strains with multiple resistance, 

many of which produced antibiotics.

Area 2 comprised cluster 3 and antibiotic production was not observed in strains 

which clustered to this group

Area 3 comprised clusters 4 and S, which contained strains with multiple resistance, 

many of which produced antibiotics.

Area 4 comprised the 3 minor clusters (6-10) and contained strains with the more 

unusual or least similar profiles.

Fig. 6.6. Phenogram to show the relationships o f  Streptomyces strains based on

their antibiotic-resistance phenotypes.
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The diagram is a stacked bar chart and illustates the percentage of strains, which 

produced antibiotics and the percentage of strain, which were resistant to 4 or more 

antibiotics. Obviously a strain can have both attributes and the height of the bars can 

exceed 100%.

Fig. 6.7. The distribution o f multi-resistant and biologically active strains across a

phenogram based on antibiotic resistances (Fig. 6.6).
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Table 6.1. The distribution o f antibiotic resistance in the major and minor clusters.

Cluster % Strains with Resistance to:
(No.) Thio Strep Vio Pen Blast Nig

1(60) 35.0 10.0 11.7 76.7 88.3 76.7

2(21) 4.8 71.4 0.0 33.3 0.0 0.0

3(103) 0.0 0.0 2.9 100.0 0.0 1.0

4(59) 35.6 1.7 3.4 83.1 0.0 86.4

5(17) 41.2 5.9 11.8 100.0 35.3 17.7

6(2) 50.0 0.0 0.0 0.0 100.0 0.0

7(5) 20.0 100.0 0.0 60.0 40.0 0.0

8(7) 14.3 71.4 0.0 42.9 28.6 0.0

9(2) 100.0 0.0 0.0 0.0 0.0

10(3) 0.0 0.0 0.0 0.0 0.0 0.0

Mean 19.0 5.0 6.8 87.8 24.0 40.4
SD 18.7 4.2 4.3 23.3 36.6 39.5

Mean values were calculated from the % strains, which were resistant within each 

cluster group and took into account the number of strains, present in each group.

Key:

Thio *  Thiostrepton Novo — Novobiocin

Strep — Streptomycin Ery — Erythromycin

Vio -  Viomycin Oxyt -  Oxytetracycline

Pen =* Penicillin O Neo ”  Neomycin

Blast -  Blasticidin Kan — Kanamycin

Nig -  Nigericin
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Table 6.7. The distribution of antibiotic resistance in the major and minor clusters.

Cluster % Strains with Resistance to:
(No.) Novo Ery Oxyt Neo Kan

1(60) 23.3 33.3 71.7 0.0 0.0

2(21) 100.0 0.0 0.0 0.0 0.0

3(103) 1.9 0.0 0.0 0.0 0.0

4(59) 13.6 3.4 5.1 5.1 1.7

5(17) 0.0 100.0 11.8 5.9 0.0

6(2) 0.0 100.0 0.0 0.0 0.0

7(5) 0.0 40.0 20.0 0.0 0.0

8(7) 0.0 28.6 14.3 0.0 0.0

9(2) 0.0 0.0 50.0 0.0 0.0

10(3) 33.3 0.0 0.0 0.0 0.0

Mean 0.0 13.4 15.8 1.4 0.4
SD 25.6 26.7 28.6 0.5 0.7
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The remaining groups contained a variety of antibiotic resistances and each 

cluster had a specific profile, which was responsible for its separation from the 

others. All nine clusters, which contained bioactive strains were distinguished from 

cluster 3 by containing strains with resistances other than penicillin. The 3 minor 

clusters (6-10) comprised smaller ranges of resistance than clusters 1, 2, 4 and 3 

and contained strains with the most unusual profiles. The milbemycin producer 

(A1002) was the only producer of a xenotoxic compound in the study. It grouped to 

cluster 8 , showing it had a very different resistance profile.

6.4.6. The Use of Resistance Profiles to Aid the Selection of Strains for Screening.

Four o f the strains included in the study had individual activity spectra that 

indicated the presence of potentially novel compounds and which warranted 

chemical characterization. This level of interest was typical for the sample size and 

the screens used. In order to test the hypothesis that antibiotic-resistance profiles 

could help select strains for screening, a selection o f 7 new strains were put through 

the clustering system. These strains also produced compounds with possible novel 

agrochemical activity. The results showed that all of the 7 new strains and the 4 

original strains had multiple patterns of between 4 and 7 antibiotic resistances (mean 

— 3.7). Consequentially all of these strains exhibit resistance characteristics which 

would place them in an area of a phenogram that would reinforce their selection as 

worthy candidates for screening.

Strains with multiple resistances appeared to be more likely to produce 

bioactive metabolites and so besides the 21 antibiotic producing type strains 

included in the phenogram, an additional 21 antibiotic producing type strains were 

also examined for antibiotic resistance. 81.4% of these had 3 or more resistances 

and 48.8% had 4 or more. The number of resistances ranged from 1-10 and the 

mean was 4.2 (Sd ■ 2.3). Four type strains had only one resistance, but the 

resistance was not one, which could place them in cluster 3. Consequentially all 

antibiotic-producing type strains would be selected for screening. A total of 6  type
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strains with no reported product were also examined and these also showed multiple 

antibiotic resistance.

6.4.7. The Distribution of Taxonomicallv Identified Strains Across the Phenogram.

Fig 6 .8 . shows the distribution of Streptomyces clusters as defined by 

Williams et al. (1983a), across the phenogram (Fig 6.4). It is apparent from this 

diagram that conventional taxonomy bears no general relationship to antibiotic 

resistance profiles. Table 6 .8. shows the average profile for 4 clusters as defined by 

Williams et al. (1983a). It includes strains shown on the phenogram plus additional 

strains.

A good distinguishing character would be one which was present in 80% or 

more of strains in one group and 20% or less in another group. Only clusters 1, 19, 

21 and 32 had sufficiently large sample sizes for comments to be made.

Streptomycin resistance distinguished cluster 1 streptomycetes from clusters 19, 21 

and 32. Streptomycin resistance has previously been shown to be common in cluster 

1 streptomycetes (Wellington and Cross, 1983). Cluster 32 streptomycetes differed 

to clusters 19 and 21 by their resistance to nigericin. Many more C32s showed 

resistance to nigericin, but it was below the cut-off point for binary data. Many 

C32s produce nigericin and some of these producers were scored as sensitive in the 

binary data.
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Fig. 6 .8 .The distribution of Streptomyces clusters as defined by Williams et al. 

(1983a) across the phenogram (Fig 6.4).

The diagram shows the distribution of 8 Streptomyces species groups (Williams et 

al., 1983a) within 10 groups, which were defined at a similarity level of 51 % on 

Fig. 6.4.
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Table 6.8. The distribution of antibiotic resistance in Streptomvces species,

Cluster
(No)

Thio Neo Novo Vio Strep Nig

32 (19) 15.8 5.3 31.6 10.5 10.5 20.1

1(18) 50.0 27.8 38.9 61.1 83.3 61.1

19 (10) 40.0 10.0 60.0 20.0 20.0 80.0

21(5) 20.0 0.0 60.0 20.0 20.0 80.0

Cluster
(No)

Pen G Oxyt Ery Blast Kan

32 (19) 57.9 20.1 15.8 26.3 0.0

1(18) 88.9 44.4 44.4 0.0 5.5

19 (10) 90.0 60.0 30.0 50.0 0.0

2 1 (5 ) 100.0 40.0 20.0 80.0 20.0

The table shows the distribution of antibiotic resistance within four cluster groups, 

which were defined by Williams et al. (1983a). The figures in parentheses refer to 

the number of strains, which were involved in the calculation.
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6.5. Relationship Between Phenetic Resistance and Antibiotic Production

Subsequent to screening for antibiotic resistance a search was made for 

producers of streptomycin, thiostrepton, novobiocin and blasticidin amongst the 

resistant isolates. This was done to determine i f  resistance was confined to 

producers of the relevant compounds because if this was not the case then the 

observation of a general relationship between multiple antibiotic resistance and 

bioactivity, above, was reinforced.

If any specific relationships were found between specific antibiotic producers 

and bioactivity then this would also be of interest, since one of the problems of drug 

discovery is that novel compounds can be produced in conjunction with known 

broad spectrum antibiotics and this can mean that the novel compounds remain 

unobserved if their spectrum o f activity is similar to that of the known antibiotic. 

For example nigericin is a potent antibiotic produced by many streptomytcetes and 

many nigericin producers also synthesize other bioactive compounds. A second 

problem is the rediscovery of known compounds. It would be of value to predict 

both novel and known broad spectrum compounds prior to screening. The 

relationship between nigericin producers and their antibiotic resistance profile is 

discussed below. Table 6.9. summarises the results discussed.
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Table 6.9. To show the number o f producers o f  specific antibiotics found in this

study.

Antibiotic No Resistant 
Strains 
Tested 
for
Production

No.
Producers
Found

Total No. 
Resistant 
Isolates 
at any 
cone.

Blasticidin 39 1 47

Geldanamycin * 9 *

Nigericin 96 18 96

Novobiocin 11 1? 41

Streptomycin 7 K+D 15

Thiostrepton 7 0 24

The table shows how many of the strains which were phenotypically resistant 

to one of 6 antibiotics were also found to produce that antibiotic. The full 

complement of resistant strains was not always tested and so the final column refers 

to the total number o f strains tested. The figure in parenthesis refers to a sensitive 

strain, which was thought to produce streptomycin.

* A small pilot study to develop gradient plates for the detection of 

geldanamycin failed to find sensitivity to this compound in 25 randomly selected 

strains. A larger study was therefore not undertaken. Although not proven to be 

ubiquitous, resistance to this compound was believed to be highly common. Blanco 

et al. (1986) have shown that certain other producers of RNA polymerase 

inhibitors, show resistance to geldanamycin at a variety of different levels. For 

example Streptomyces lydicus, which produces streptolydigin, was only resistant to 

geldanamycin up to 25 pg/ml. This level was within the range of concentrations 

tested in the pilot study for geldanamycin resistance.
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6.5.1. Nigericin Producers.

Nigericin producers did not cluster to a specific region in any of the 

phenograms studied because each nigericin producer had a unique antibiotic- 

resistance profile. In order to investigate their distribution across the phenograms 

and to assess its predictive value, clusters which contained more than 2 SD above 

the mean number of nigericin producers were selected. 17 strains (64% nigericin 

producers in the study) were detected by using both single and complete linkage 

with the Dice coefficient. When using this system an additional 12 strains which did 

not produce nigericin were diagnosed as being possible nigericin producers.

An alternative means of identifying the producers of specific compounds 

would be to use resistance profiles based on a single subfamily of compounds as in 

the work of Hotta el a l., (1983), who found that specific aminoglycoside resistance 

profiles could be used to predict the aminoglycoside products of various strains. 

Similarly, resistance profiles to a range of polyether antibiotics might prove 

predictive for strains which produce specific polyether compounds.

Nigericin resistance was not useful in predicting production because although 

15% of strains produced it, 40% of strains were resistant to it. Not all of the 

confirmed nigericin producers showed resistance to this compound above the cut-off 

level. This may reflect a difference in the type of resistance mechanism favoured by 

nigericin-producing strains compared to non-producers. Alternatively, the cut-off 

could have been selected at an inappropriate antibiotic concentration, due to the 

shape of the graph or range of concentrations used or else the work carried out on 

an inappropriate medium for the expression of nigericin resistance in some strains.

6.5.2. Producers of Other Compounds.

From 7 natural isolates, which were resistant to streptomycin, one (D147) 

appeared to produce the compound. Another strain (C ll) which was sensitive to 

streptomycin also appeared to produce this compound. One of the novobiocin
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resistant strains was identified as a possible producer of the compound and no 

thiostrepton producers were found. Similarly, blasticidin resistance did not seem to 

be an indicator of the production of blasticidin or of any other nucleoside. O f 39 

blasticidin-resistant strains analysed, only one strain was a blasticidin producer 

(JHCC a type strain supplied by ICI).

6.6. Discussion.

Examination of the resistance and bioactivity data of the total collection of 

strains gave a clear indication that there were two populations of strains; one with 

multiple resistance and the other with multiple sensitive phenotypes. This may be a 

reflection of the natural population and so provided an insight into the distribution 

of antibiotic resistance and biosynthesis genes in the natural environment. If strains 

which do and do not express antibiotic production under laboratory conditions, 

showed similar trends for gene expression in the natural environment, then one 

might expect those which expressed antibiotic production to have a survival 

advantage. It is then interesting to try to understand why strains which do not 

express antibiotic production and resistance have managed to survive alongside 

producing strains. Perhaps antibiotic production does not occur in the natural 

environment, although there is some evidence to suggest that this is possible 

(Demain, 1981 and 1984; Rothroclc and Gottleib, 1984; Martin and Demain 1980). 

Otherwise, these strains may have developed other specializations, which are 

advantageous to survival and might therefore inhabit different microniches than 

antibiotic producers. These could be separated in either time (the organism might 

have a specialization, which allows them to proliferate at a different stage in the 

decomposition cycle) or space (the organism might survive well in microniches, 

which have extreme environmental conditions).

The clustering data supported the observations of others that a correlation 

exists between multiple resistance and antibiotic production (Hotta et al., 1983a).
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An observation made in this study and that of Fujisawa and Weisblum (1981) is that 

antibiotic resistance may not be confined to producers o f these compounds. 

Although, it may be that some strains exhibiting resistance possess a silent form of 

the antibiotic production genes. This is also interesting in ecological terms if 

reflected in the natural environment. Such strains might represent opportunists, able 

to share nutrient pools with antibiotic producers, without expending energy on 

antibiotic production. This distribution of this type of strain may be important for 

understanding the selection pressures, which are present in the soil, if antibiotics are 

present. If not, one wonders why such genes are present in non-producers; perhaps 

they have evolved to carry out other functions or else represent gene transfer events, 

which then proved useful to the organisms.

Resistance profiles obtained using a range of diverse antibiotics were useful 

for predicting bioactivity. Reasons for this could be due to resistance being linked 

with the production of a closely related compound. For for example, Skeggs et al. 

(1987) have shown that single aminoglycoside-resistance determinants can confer 

resistance to several different 2-deoxystreptamine derivatives, namely kanamycin, 

apramycin and gentamycin. Resistance may be linked to another class of compound, 

perhaps with a similar mode of action. An example of this is the erm gene encoding 

for an RNA methylase, which simultaneously confers resistance to a selection of 

compounds from three antibiotic families; macrolides, lincosamides and 

streptogramin B 's (Fujizawa and Weisblum, 1981; Jenkins et al.,1989; Zalacain and 

Cundliffe, 1989). This type of mechanism would also explain certain patterns of 

multiple resistance. Other patterns of multiple resistance may be due to strains 

having an array o f different resistance determinants. It is already known that some 

antibiotic producers have several self-resistance determinants (Rosteck et al., 1991), 

and that others have supplementary genes, which confer resistance to foreign 

products (Skeggs et al., 1986 and 1987; Hotta et at., 1988). Although in these cases 

the foreign compounds are chemically structurally and biosynthetically related to the 

product.
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Exceptions to the trends seen during this work might be better understood by 

considering the role of antibiotics in the natural environment. Certain antibiotic 

resistances in some strains may be present to confer protection against the 

metabolites of other streptomycetes. For example, organisms which produce 

nigericin and penicillin are commonly isolated from the soil. If these compounds 

were produced in the natural environment this could result in a selection pressure 

for antibiotic resistance in streptomycetes. The large numbers of penicillin- and 

nigericin-iesistant strains observed in this study provide evidence for this 

hypothesis.

Alternatively a gene conferring resistance could do so fortuitously, having an 

entirely different function in the host. For example some streptomycetes have two 

pathways of ammonium assimilation and these organisms are resistant to the 

herbicide bialaphos, the target of which is glutamine synthetase. Also some 

resistance genes may not be expressed under laboratory conditions.

These data have lead to many interesting questions about the role of 

secondary metabolism in the natural environment. It also presented an ideal 

opportunity to find out more about the genetic and mechanistic nature of antibiotic 

resistance. By relating antibiotic resistance and sensitive phenotypes to genotype, it 

was hoped that we might come closer to understanding populations of 

streptomycetes in natural ecosystems.
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Chapter 7,

The Distribution of Sequences Hybridizina to Selected Antibiotic Resistance Gene 

Probes and their Correlation with Phenotypic Resistance.

7.1. Introduction.

Antibiotic resistance has been used with other phenetic characters to group 

members of the Sireptomyces genus (Williams et al., 1983a), but species-groups 

formed in this way have been shown to be heterogeneous at the DNA level (Labeda 

and Lyons, 1991) and by 16S rRNA analysis (Stackebrandt et al., 1991). Although 

selected Streptomyces species do have distinctive antibiosis and resistance patterns 

(Wellington and Cross, 1983), there is generally little correlation between antibiotic 

production and taxonomic groupings.

Reasons for the poor correlation between conventional taxonomy, which 

mainly relates to primary metabolism, and antibiotic resistance may include the 

diversity of resistance mechanisms, which exist in nature (Tables 1.2., 1.3. and

1.4.). For example, producers of the same antibiotic may sometimes rely on 

different mechanisms for self-defense. Mosher et al. (1990) showed that the 

chloramphenicol resistance gene of S.venezuelae did not hybridize to the DNA of 

S.phaeochromogenes, although both strains produced this antibiotic. Other antibiotic 

producers, such as S.fradiae, the tylosin producer, contain several resistance 

determinants (four in this case) for the inactivation of a single product (Rosteck et 

al., 1990). Antibiotic resistance has also been found in non-producers (Fujizawa 

and Weisblum, 1981; Jenkins et al., 1989) and also in antibiotic producers against 

foreign metabolites (Skeggs et al., 1986 and 1987; Cundliffe, 1987). Some 

resistance determinants confer resistance to more than one antibiotic in the same 

chemical family (Skeggs et a l., 1987) and others confer resistance to compounds 

which belong to different chemical classes, but have similar modes of action. For
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Chapter 7,

The Distribution of Sequences Hybridizing to Selected Antibiotic Resistance Gene 

Probes and their Correlation with Phenotypic Resistance.

7.1. Introduction.

Antibiotic resistance has been used with other phenetic characters to group 

members of the Streptomyces genus (Williams et al., 1983a), but species-groups 

formed in this way have been shown to be heterogeneous at the DNA level (Labeda 

and Lyons, 1991) and by 16S rRNA analysis (Stackebrandt et al., 1991). Although 

selected Streptomyces species do have distinctive antibiosis and resistance patterns 

(Wellington and Cross, 1983), there is generally little correlation between antibiotic 

production and taxonomic groupings.

Reasons for the poor correlation between conventional taxonomy, which 

mainly relates to primary metabolism, and antibiotic resistance may include the 

diversity of resistance mechanisms, which exist in nature (Tables 1.2., 1.3. and

1.4.). For example, producers of the same antibiotic may sometimes rely on 

different mechanisms for self-defense. Mosher et al. (1990) showed that the 

chloramphenicol resistance gene of S.venezuelae did not hybridize to the DNA of 

S.phaeochromogenes, although both strains produced this antibiotic. Other antibiotic 

producers, such as S.fradiae, the tylosin producer, contain several resistance 

determinants (four in this case) for the inactivation of a single product (Rosteck et 

a l., 1990). Antibiotic resistance has also been found in non-producers (Fujizawa 

and Weisblum, 1981; Jenkins et al., 1989) and also in antibiotic producers against 

foreign metabolites (Skeggs et al., 1986 and 1987; Cundliffe, 1987). Some 

resistance determinants confer resistance to more than one antibiotic in the same 

chemical family (Skeggs et a l., 1987) and others confer resistance to compounds 

which belong to different chemical classes, but have similar modes o f action. For
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example the erm gene confers resistance to antibiotics from three chemical classes 

of antibiotic (Fujisawa and Weisblum, 1981; Jenkins et at., 1989; 7.alar»in and 

Cundliffe, 1989). Multiple antibiotic resistance is also an established phenomenon 

(Fujizawa and Weisblum, 1981; Hotta et al., 1983a and b; Phillips et al. in press) 

and patterns of aminoglycoside or macrolide antibiotics have been shown to 

correlate with the production of an antibiotic of the same chemical class.

Detailed studies have been carried out on the biosynthesis and genetics of 

specific antibiotic producers and the regulatory, resistance and production genes of a 

range of species have been found to exist in clusters on their chromosomes (Chater 

and Bruton, 1985; Malpartida and Hop wood, 1986; Weber et a t., 1990). In 

addition, the biosynthesis pathways of many antibiotics have been elucidated 

(Stanzak et at., 1986; Binnie et at., 1989; Pratt, 1989) and certain resistance genes 

have been shown to play a role in antibiotic production (Murakami et a t., 1986). 

Some workers have related the occurrence of resistance genes to the presence of 

homologous sequences within producers of the same or related antibiotics; for 

example, homology to ermE has been found in tnacrolide-producing 

Saccharopolyspora strains, but is not present in macrolide producers from other 

genera (Stanzak et at., 1990). Similarly, homology to a streptomycin-resistance 

gene probe was specific to streptomycin-producing strains of S.griseus, whilst the 

kanamycin resistance determinant of S.griseus was found to be species specific 

(Hotta et a t., 1988). Virtually nothing is known about how such genes and 

antibiotic resistance mechanisms are distributed within natural populations in the 

soil.

Chapter 6 described the grouping of Streptomyces strains according to 

phenotypic antibiotic-resistance patterns. Two distinct populations were observed; 

one comprised strains with multiple and rare resistance phenotypes and many of 

these produced antibiotics, whilst the other contained strains with multiple antibiotic 

sensitivity and did not express antibiotic production. These data provided an 

opportunity to investigate the genetic basis of the resistance patterns and therefore
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was investigated for analysing these profiles further. Determining the distribution of 

sequences which hybridize to portions of cloned antibiotic resistance genes provides 

a first step for establishing the frequency with which specific genes occur in the 

natural environment and may assist in understanding the natural role o f secondary 

metabolism. The probes used are referred to as resistance gene probes, although it is 

understood that these determinants can also be involved in antibiotic biosynthesis.

7.1.1. Strain Choice.

Seventy-four Streptomyces type strains were used for this study and these are 

indicated in Table 2.2 and summarized in Table 7.1. They represented many species 

groups (Williams et al., 1983a and b) and produced a variety of antibiotics of 

different biochemical origin. Certain groups of strains were chosen from culture 

collections because there was evidence that they might light up a specific probe and 

these included a variety of cluster 1, 5 and 32 strains (Williams et al., 1983a). The 

latter were selected because this group has many bioactive members (Aral et al., 

1976), cluster Is were chosen to examine their relationship to the streptomycin 

resistance gene probe and the cluster 3 streptomycetes were chosen for probing with 

the bialaphos-resistance determinant because a strain of Kitasatosporia was known 

to produce phosalacine.

One hundred and two natural isolates were selected from strains studied in 

Chapter 6, including strains with multiple resistance and organisms with phenotypic 

resistances which might correlate with some of the gene probes used. A small 

selection of sensitive strains were also chosen. This study was aimed not only at 

finding more about the distribution of specific resistance determinants in 

phenotypically resistant strains, but also in antibiotic producers. All strains which 

produced potentially novel compounds were included as were strains which 

produced a selection of known antibiotics. Table 2.2. shows the products o f the type 

strains in the study, whilst Table 3.1. shows the bioactivity of the natural isolates.
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Table 7.1. Taxonomic identity (Williams et al. 1983a and b) of strains used in the 

Probing Study.

Number of Strains Number of Strains
Cluster Types Isolates Cluster Types Isolates

1 15 0 32 10 9

3 0 1 37 0 1

5 16 0 42 2 0

6 1 1 44 1 0

7 1 0 55 2 0

12 0 2 61 3 0

15 0 1 64 1 0

18 2 1 68 1 0

19 2 8 S.M.C. 1 0

21 6 0 S.spp 9 78

30 1 0

Key:

S.M.C. means single member cluster group.

Cluster refers to Streptomyces groups which were defined by Williams et al. 

(1983a)

7.1.2. Probes and Controls Used in this Work.

DNA probes used in this work are presented in Chapter 2 (Table 2.4). 

Internal fragments were excised from the appropriate plasmids (Table 2.3) using the 

restriction enzymes given in Table 2.4. Positive controls were chromosomal DNA 

from the Streptomyces strains from which the original genes were isolated (Table 

2.4), but additional positive controls were provided by loading 1 ng o f the plasmid
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containing the restriction fragment onto the filter. DNA from Streptomyces lividans 

66 (John Innes 1326), Erwinia carotovora (SCRI193) and salmon sperm 

(Boehringer) was selected as negative controls.

1.2. Interpretation of Data and Evaluation of Test Error.

One aim of the project was to give information on the likelihood that 

phenotypically resistant strains contained specific antibiotic-resistance genes (so they 

could be prioritized for future studies). This was assessed using highly stringent 

conditions and by choosing strains whose DNA samples gave a signal near to that of 

the positive control. A second aim of this research was to use results from DNA 

probing experiments as systematic information and for this work all signals which 

were stronger than the negative controls (usually no signal) were used. These 

constraints were also used when scoring positives at lower levels of stringency.

Random primed labelling (Feinberg and Vogelstein, 1983) was used to 

create radioactive DNA for probing and so the size of the hot DNA fragments 

varied in length. This meant that small highly conserved motifs could bind to 

labelled DNA at very high stringency, even though they did not indicate the 

presence of the entire probe sequence. This type of binding may account for some 

of the weaker signals observed at high stringency and may or may not indicate the 

presence of sequences which were related to the appropriate gene probe. The high 

G +C  content o f  Streptomyces DNA makes reiterations of small sequences more 

likely than in organisms which have a more even distribution of nucleotides in their 

DNA and it is therefore possible that some small homologous motifs which caused 

positive signals bore no relationship to the gene probes which were used.

The washing conditions were varied by using permissive and stringent salt 

concentrations so that gene sequences of varying levels of related ness might be 

indicated. The specific level of homology varied depending upon the G +C  content 

of the DNA sequence used for probing (Table 7.2).
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Table 7.2. The levels of  homology, which relate to hybridization to specific gene 

probes under various conditions of stringency.

Washing Conditions (0.1 % SDS + )
Gene G+C% of 

Probe
3xSSC lxSSC 0.2xSSC

aphD 68.55 66.86 74.82 87.43

bar 68.76 66.78 74.74 86.34

vph 76.0 63.81 71.77 83.37

aph 76.18 63.74 71.7 83.3

tsr 59.98 70.6 78.34 89.9

Mean 69.89 66.32 74.28 85.88

Average for Streptomyces DNA:

73 65.04 73

The above data were calculated from the following equation:

Tm -  81.5 +  16.6 (logM) +  0.41 (G+C%)

Tm was the melting temperature and M was the molarity of the salt solution 

A 1° change of temperature was assumed to be equivalent to a 1 % change in 

homology.

The sequence of the novobiocin-resistance determinant is not known, 

therefore a G +C  content of 73%, (Hopwood et a l., 1985) has been assumed.

84.6
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Positive signals declined as expected when stringency was increased from 

3xSSC and 0 .1 *  SDS to 0.2xSSC and 0.1% SDS (Table 7.3.). Fig. 7.1. gives an 

example of various stringent washes, after probing with aphD. A grid is provided 

showing the positions of each strain and the figure legend indicates which strains 

were scored positive for hybridization with the gene probe (replicate filters, in the 

same grid format, were used in the other experiments using different probes). The 

probability of non-specific binding within specific samples, which was due to 

protein contamination of DNA samples was another possible cause of weak signals, 

but was thought to be low because only 1.13% of strains hybridized with all six 

probes at high stringency.

It was possible to evaluate operator error for dot blots, which were probed 

with aphD at the lowest stringency and which were developed, both using the 

phosphorimager and by autoradiography. Autoradiography was the most common 

method and spots were read by eye, whilst the phosphorimager allowed the spot 

intensities to be quantified. An intensity, which was stronger than the count for the 

negative controls and which resulted in the same percentage positive strains as 

autoradiography was chosen from the phosphorimage (2000). Comparison of results 

from the two methods indicated that the P erroneous result (Sneath and Johnston, 

1973) was 11.02%. Unfortunately it was not possible to do a similar calculation for 

other filters or at other levels of stringency, therefore the P erroneous result for the 

whole of the data is not known.
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Fig. 7.1. (A and B); Dot blots, showing results from probing with apKD.

The photographs show one filter, which has been probed using aph at various levels 

of stringency.

A shows an autoradiograph of the filter after washing with 3 x SSC and 0.1% SDS. 

B shows an autoradiograph of the filter after washing with 1 x SSC and 0.1% SDS.

The following strains correspond to the dots and the figures in parenthesis illustrate

how each strain was scored for the purposes of cluster analysis:
A l, DSM4112 (0); A2, ISP5060 (11); A3, ISP5174 (11); A4, ISP5016 (11); A5, 
ISP5064 (0); A6 , ISP5022 (11); A7, ISP5278 (111); A8 , ISP5122 (111); Bl, 
ISPS 196 (11); B2, ISP5556 (11); B3, ISP5329 (0); B4, DSM40023 (11); B5, E35 
(0); B6 , DSM40077 (0); B7, ISP5069 (11); B8 , ISP4213 (111); C l, DSM40232 
(11); C2, ATCC12475 (111); C3, ISP5246 (111); C4, KCC S-0313 (11); C5, KCC 
S-0331 (0) C6 , DSM40323 (0); C7, KCC S-0783 (0); C8 , DSM40419 (0); D l, 419
(I I )  ; D2, DSM40438 (111); D3, DSM40455 (1); D4, KCC S-0446 (11); D5, KCC 
S-0459 (11); D6 , KCC S-0495 (0); D7, DSM40508 (111); D8 , KCC S-0519 (0); 
E l, ISP5550 (11); E2, DSM40598 (11); E3, KCC S-0731 (111); E4, KCC S-0772
( I I I )  ; E5, KCC S-0785 (111); E6 , KCC S-0850 (0); E7, C463 (111); E8, 
NRRL3664 (0); F I, JHCC1319 (111); F2, JHCC1236 (111); F3, JHCC1390 (11); 
F4, JHCC1234 (11); F5, 4-739 (11); F6 , 734 (1); F7, NRRL B-16130 (0); F8, 
NRRL B-16185 (111); G l, 734-A (1); G2, AM3672 (11); G3, A10 (111); G4, A19 
(111); G5, A26 (1); G6 , A39 (111); G7, A73 (0); G8, B4 (111); H I, C3 (0) H2, 
C5 (0); H3, C l l  (111); H4, C14 (111); H5, CIS (11); H6 , C20 (11); H7, C23
(I I )  ; H8 , C24 (1); II , C32 (0); 12, C38 (11); 13, C91 (111); 14, C92 (111); IS, 
C129 (0) ; 16, C151 (0) ; 17, C155, (11) ;I8 , C167 (11) ;J1, C158 (0) ; J2, C184
( I I I )  ; J3, C186 (111) ; J4, C189 (111) ; J5, C195 (11) ; J6 , C212 (111) ; J7, 
C159 (11) ; J8 , C222 (0) ; K l, C227 (0) ; K2, C229 (111); K3, C245 (111); K4, 
C284 (111); K5, C271 (11); K6 , C337 (11); K7, C402 (111); K8 , D5 (0); Ll, 
D104 (0); L2, D147 (111); L3, D1S3 (111); LA, E l (111); LS, Salmon Sperm 
DNA (1); L6 , JI1326 (0); L7, SCR119 (0); L8 , F53 (111).
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Fig. 7.I.C . Dot blot produced using the phosphorimager, where sample DNA was 

hybridized with a streptomycin resistance gene probe (aphD), overnight at 70°C in 

hybridization solution and washed twice with 3 x SSC and 0.1% SDS for 30 

minutes (equivalent to 63% homology, assuming G +C  =  73%). DNA from the 

following strains was probed and the phosphorimager signals (arbitrary units) are 

given in parenthesis.
A l, DSM4112 (2493); A2, ISP5060 (3093); A3, ISP5174 (2104); A4, ISP3016 
(1913); A5, ISP5064 (265); A6 , ISP5022 (2434); A7, ISP5278 (1712); A8, 
ISP5122 (8451); B l, ISP5196 (17338); B2, ISP5556 (4340); B3, ISP5329 (1401); 
B4, DSM40023 (2439); B5, E35 (1243); B6 , DSM40077 (1787); B7, ISP5069 
(3182); B8 , ISP4213 (3472); C l, DSM40232 (6793); C2, ATCC12475 (96865); 
C3, ISP5246 (5679); C4, KCC S-0313 (3662); C5, KCC S-0331 (1086) C6 , 
DSM40323 (1701); C7, KCC S-0783 (1508); C8, DSM40419 (140); D l, 419 
(3338); D2, DSM40438 (6576); D3, DSM40455 (2271); D4, KCC S-0446 (3276); 
D5, KCC S-0459 (5581); D6 , KCC S-0495 (2967); D7, DSM40508 (5305); D8, 
KCC S-0519 (256); E l, ISP5550 (3971); E2, DSM40598 (4170); E3, KCC S-0731 
(5636); E4, KCC S-0772 (16490); E5, KCC S-0785 95848); E6 , KCC S-0850 
(2060); E7, C463 (4790); E8 , NRRL3664 (545); F I, JHCC1319 (6469); F2, 
JHCC1236 (5534); F3, JHCC1390 (6469); F4, JHCC1234 (2499); F5, 4-739 
(2553); F6 , 724 (2134); F7, NRRL B-16130 (1986); F8 , NRRL B-16185 (6815); 
G l, 734-A (2393); G2, AM3672 (2906); G3, A10 (5406); G4, A19 (8362); G5, 
A26 (1171); G6 , A39 (5135); G7, A73 91548); G8 , B4 (5604); H I, C3 (1248) H2, 
C5 (2550); H3, C ll  (42567); H4, C14 (15060); H5, C15 (5023); H6 , C20 (3058); 
H7, C23 (3407); H8 , C24 (1475); II , C32 (1131); 12, C38 (2755); 13, C91 (3490); 
14, C92 (4070); 15, C129 (959.4) ; 16, C151 (1969) ; 17, C155, (6322) ;I8 , C167 
(3701) ¡11, C158 (1165) ; J2, C184 (4305) ; J3, C186 (14422) ; J4, C189 (2684) ; 
J5, C195 (3459) ; J6 , C212 (17048) ; J7, C159 (6000) ; J8, C222 (2715) ; Kl, 
C227 (1556) ; K2, C229 (5001); K3, C245 (13885); K4, C284 (4425); K5, C271 
(1749); K6 , C337 (3987); K7, C402 (6224); K8 , D5 (1406); L I, D104 (1638); L2, 
D147 (81129); L3, D153 (5335); L4, E l (3424); L5, Salmon Sperm DNA (735.1); 
L6 , JI1326 (1186); L7, SCR119 (251.5); L8 , F53 (2145).
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The use of replicate filters and replicate DNA samples could have helped 

with data interpretation and the estimation of test error. This was not done, since it 

was planned that positive results would be confirmed by carrying out Southern blot 

analysis (work in progress; Neil Cresswell and Leisa Huddleston, Department of 

Biological Sciences, University of Warwick). It is emphasised that positive results 

were used as an indication of homologous sequences to the gene probes, since only 

sequence analysis can provide information on their precise nature. It could also have 

been possible to prepare Southern blots from the outset, as in the study of Hotta et 

al. (1988), however this would not have been suitable for the screening of large 

numbers of strains and the study would have been more limited. The aim was to 

study a large population of strains, using several gene probes and to observe trends 

within that population. It was accepted that dot blots would contain more erroneous 

results than Southern blots. Information from this initial study can now be used to 

initiate more detailed studies concerning the nature specific positive signals and also 

of alternative resistance mechanisms.

7.3. The Distribution of Sequences, which Hybridized to Antibiotic Resistance 

Gene Probes.

7.3.1. The Distribution of Sequences, which Hybridized to Various Antibiotic

Resistance Gene Probes.
Table 7.3. shows that the most common hybridizations at high stringency 

were to the streptomycin and neomycin phosphotransferase gene probes and the 

least common was the bialaphos resistance fragment Fig 7.2. gives a graphical 

representation of this data where differences in the levels of homology, indicated by 

the stringency washes, have been taken into account.
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Fie. 7.2. The distribution of DNA from Streptomvces strains which hvhriHiwri tn 

antibiotic resistance gene probes.

The diagram is a graphical representation of Table 7.3. and shows the distribution 

of hybridizing sequences with respect to the stringency to which each probe was 

screened. (NB screening was only carried out at three stringencies for each probe).
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Table 7.3. The distribution of positive signals from dot blots within Streptomces 

Strains.

Probe Stringency (0.1 % SDS plus)
3 x SSC 1 x SSC 0.2 x SSC

aphD 69.32 (122) 56.25 (99) 31.82 (56)

aph 44.89 (79) 25.57 (45) 19.89 (35)

tsr 56.25 (99) 11.93 (21) 9.1 (16)

vph 59.66 (105) 27.27 (48) 7.39 (13)

nbr 27.84 (49) 14.21 (25) 8.52 (15)

bar 59.09 (104) 40.34 (71) 3.98(7)

The numbers given refer to the percentage of strains which hybridized, whilst the 

figures in parenthesis show the actual number of strains, which hybridized.

Different gene probes gave different homology profiles, possibly showing 

where there was an abundance or lack of related gene sequences, tsr, aph and nbr 

showed a sharp decline in the percentage of strains which hybridized to them 

between 3 x SSC and 1 x SSC and then the numbers of positive signals were more 

constant from 1 x SSC to 0.2 x SSC. This might suggest that highly related 

sequences to these genes were rare.

The probes for vph, aphD and bar gave more linear graphs and vph also 

showed a large decline in related sequences from 3 x SSC to 0.2 x SSC homology, 

but the percentage of hybridizing strains continued to fall, at a reduced slope, to 0.2  

x SSC. In contrast the mqjor loss of sequences binding to the bar and aphD gene 

probes was from 1 x SSC to 0.2 x SSC..

Table 7.3 describes positive signals which were stronger than the negative 

controls. However, different intensities were observed amongst the positive signals 

and Table 7.4 shows the strains for which the most intense signals were observed.
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Table 7,4. To show strains giving strong hybridization signals to antibiotic 

resistance pene probes.

Probe Strains Number

aphD •DSM40236, »ATCC25481 ATCC11062, 

C l l ,  D147, CAG23.

6(56)

aph CAG6 , *CAG7, Lu46, *C47, *C284 

•KCC S-0772, KCC S-0785, C402.

7(35)

tsr KCC S-0772, *KCC S-0785. 2(16)

vph •KCC S-0785, CAG7, 2(13)

nbr •KCC S-0772, *KCC S-0785. 2(15)

bar •1233, *8852. 2 ( 7 )

Positive controls are omitted from the table, but gave strong signals, whilst 

numbers in parentheses refer to the total number of positive signals.

Strains assigned * gave a signal which appeared as strong as the positive 

control; ie. the strain from which the relevant gene was isolated, except for Nbr  and 

aph where it was with reference to the spot from the plasmid containing the gene 

probe (this was because the relevant strains did not light up at 85% stringency).

The other strains on the table gave weaker signals (but these were stronger 

than the signals which were scored as positive for cluster analysis).

The number o f  highly related sequences was considerably reduced if only 

strong signals were scored. These strains were thought to be the most likely to 

contain similar genes to the actual probes used. The remaining weak signals could 

comprise strains with small homologous segments of DNA or strains with larger 

sequences which are not as closely related to the probes as the strong positives, 

although another consideration was the accuracy of spectrophotometric
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Four strong signals with the aphD probe occurred within the DNA of 

streptomycin producers (DSM40236, ATCC11062) and suspected producers (C ll, 

D147), whilst ATCC25481 (S.omatus) the omamycin producer also hybridized 

(none of the CAG or LU series have been screened for bioactivity). Strains, which 

hybridized to the aph probe included C402, which may produce herbimycins and 

C47, a strain suspected of producing a novel compound (recently found to be 

borrelidin). Interestingly, S.hygroscopicus (KCC S-0772) and S.lusitanus (KCC S- 

0785) hybridized strongly with several probes, including the nbr  probe, which is 

reported to be specific for the production of novobiocin (Mitchell et a t., 1990). The 

S.hygroscopicus strain is known to produce hygromycins and S.lusitanus produces 

tetracyclines. 1233 which hybridized to bar is an industrial strain of ATCC21705 

the positive control for the bar gene, whilst 8852 was S.vinaceus the viomycin 

producer. Most of the strains showing strong hybridization signals did not express 

resistance to the relevant antibiotic.

7.3.2. The Distribution of Patterns of Hybridization to Various Antibiotic 

Resistance Gene probes.

The diversity o f hybridization profiles, at high stringency is given in Table

7.5. Theoretically there are 720 (6 !) combinations of 6 gene probes; this contrasts 

with the 25 profiles which were observed within 176 different strains. Binding to 

either or both streptomycin and neomycin phosphotransferase was common, whilst 

multiple hybridizations were rare and each of these profiles was only ever present in 

1 or 2 strains. Examination of similar patterns at lower levels of stringency revealed 

greater diversity and there were 13 profiles repeated amongst 30 strains and 146 

which were unique (at 3 x SSC +  0.1% SDS).

quantifications. I f  1 /¿g o f DNA was not loaded for each sample then this might also

have contributed to differences in spot intensities.
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Four strong signals with the aphD probe occurred within the DNA of 

streptomycin producers (DSM40236, ATCC11062) and suspected producers (C ll, 

D147), whilst ATCC25481 (S.omatus) the omamycin producer also hybridized 

(none of the CAG or LU series have been screened for bioactivity). Strains, which 

hybridized to the aph probe included C402, which may produce herbimycins and 

C47, a strain suspected of producing a novel compound (recently found to be 

borrelidin). Interestingly, S.hygroscopicus (KCC S-0772) and S.lusitanus (KCC S- 

0785) hybridized strongly with several probes, including the nbr probe, which is 

reported to be specific for the production of novobiocin (Mitchell et al., 1990). The 

S.hygroscopicus strain is known to produce hygromycins and S.lusitanus produces 

tetracyclines. 1233 which hybridized to bar is an industrial strain of ATCC21705 

the positive control for the bar gene, whilst 8852 was S.vinaceus the viomycin 

producer. Most of the strains showing strong hybridization signals did not express 

resistance to the relevant antibiotic.

7.3.2. The Distribution of Patterns of Hybridization to Various Antibiotic

Resistance Gene probes.

The diversity of hybridization profiles, at high stringency is given in Table

7.5. Theoretically there are 720 (6!) combinations of 6  gene probes; this contrasts 

with the 25 profiles which were observed within 176 different strains. Binding to 

either or both streptomycin and neomycin phosphotransferase was common, whilst 

multiple hybridizations were rare and each of these profiles was only ever present in 

1 or 2 strains. Examination of similar patterns at lower levels of stringency revealed 

greater diversity and there were 13 profiles repeated amongst 30 strains and 146 

which were unique (at 3 x SSC +  0.1% SDS).

quantifications. If 1 ng o f  DNA was not loaded for each sample then this might also

have contributed to differences in spot intensities.
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Table 7.5. The distribution of patterns showing hybridization to antibiotic resistance 

gene probes.

The diagram shows how various strains hybridized to the gene probes at 85* 

stringency.

+  refers to a positive signal.

- refers to a negative signal.
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7.4. The Expression of Antibiotic Resistance and its Relationship to Homology with

Antibiotic Resistance Gene Probes.

Strains were classified into 4 groups based on resistance phenotype and 

hybridizations at 85% (Table 7.6.). Those strains which were resistant to a specific 

antibiotic and which hybridized to the relevant gene probe may provide evidence for 

the presence of that same gene in other streptomycetes and sensitive strains, 

showing hybridization to the gene probes may possess highly related sequences that 

are functionally unrelated, but are interesting in evolutionary terms, or else they 

could harbour silent antibiotic genes. Non-hybridizing resistant strains may exhibit 

resistance mechanisms other than those conferred by the probes (these are referred 

to in the text as alternative resistance mechanisms), whilst sensitive strains which 

did not hybridize did not contain the gene itself, highly related sequences or an 

alternative resistance mechanism (at least under the conditions tested in this study).

Sensitive non-hybridizing strains were most common for each probe, but the 

distributions amongst the other three categories varied. aphD and aph had many 

homologous sequences in sensitive strains and more strains with alternative 

resistance mechanisms than strains which were resistant and hybridized. There were 

high numbers of strains with alternative resistance mechanisms for the antibiotics 

viomycin, thiostrepton and novobiocin and very few strains with sensitive 

phenotypes hybridized with these gene probes. There were 16 strains which 

hybridized to three or more antibiotic-resistance gene probes, representing 48.5% of 

all positives observed at high stringency and two-fifths of these had resistant 

phenotypes.
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Table 7.6. T he distribution o f  antibiotic resistance and hybridization» (85%) to

antibiotic resistance gene probes.

Antibiotic
No. strains (total = 176) 
Resistant Resistant 
and and didn't 
Hybridized Hybridize

Sensitive
and
Hybridized

Sensitive 
and didn't 
Hybridize

Streptomycin 19 31 27 (12) 74 (13)

Neomycin 6 17 26(3) 105 (21)

Viomycin 9 33 3(1) 108(24)

Thiostrepton 13 53 2 (1) 86(23)

Novobiocin 8 38 7 100(25)

Numbers in parentheses refer to the number of strains which have not been 

tested for antibiotic resistance and could therefore be resistant. In the previous study 

(Chapter 6) strains were called sensitive below a cut-off value. Low level 

resistances affected three strains with high homology to novobiocin and these have 

been included in the above table as resistant.

7.5. The Relationship Between Antibiotic Production and Resistance.

Previous studies provided evidence for a dichotomy in the distribution of 

antibiotic-resistance phenotypes amongst natural isolates and type strains, where a 

high proportion of the population expressed multiple antibiotic resistances (3-4 or 

more) and many produced antibiotics, whilst the remainder showed only a limited 

resistance phenotype and did not express bioactivity. It was clear that the population 

of natural isolates and type strains which produced secondary metabolites contained 

higher numbers of strains, whose DNA hybridized with the gene probes (Table 

7.7.). This was compared to a lower number of strains with hybridizing DNA
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Table 7.7. The clustering of strains with sequences hybridizing with antibiotic 

resistance genes.

This table relates to work presented in Chapter 6 , where strains, which 

possessed multiple sensitive phenotypes did not produce antibiotics. Such strains are 

represented by the columns entitled 'no expression' and are those, which clustered 

to Area 2 (cluster 3) in the phenogram in Fig. 6 .6 . Conversely, the column entitled 

'expression' refers to strains which clustered to Areas 1, 3 and 4 (clusters 1, 2 and 

4 to 10) in the phenogram presented in Fig. 6 .6 . These strains were shown to 

express multiple antibiotic resistance and antibiotic production was observed in 

many of them.

The table indicates that a greater proportion of strains from the Areas 1, 2 

and 4 of the phenogram (Fig. 6 .6) had DNA, which hybridized with the gene 

probes, than did DNA from strains from Area 2 (group 3).
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sequences in the sensitive population, which did not express antibiotic production. 

Whilst this is not definitive evidence that such strains contain the same gene it does 

appear to correlate well with the distribution of resistance phenotypes.

7.5.1. Relationship Between Aminoglycoside Production and Antibiotic Resistance.

Eleven type strains, which produce aminoglycosides similar to streptomycin 

were examined for hybridization to aphD (Table 7.8). Six strains hybridized to 

aphD a t high stringency (87.43%) and one, a dihydroxystreptomycin producer, 

hybridized at low stringency (66.86%). Two aminoglycoside-producing 

s t r e p t o v e r t i c i l l i a  and two streptothricin producers hybridized at 74.82% 

homology and Table 7.9. shows how this compared to the average homologies of all 

strains in the study, although the set of aminoglycoside producers includes two 

natural isolates which were thought to produce streptomycin. The distribution of 

hybridization to aphD for aminoglycoside producers tended towards binding at high 

stringency, but there was not such a strong correlation between aminoglycoside 

production and hybridization with the other phosphotransferase genes, aph and vph 

(Table 7.9.), although the tendency was towards greater hybridization than the most 

common mean categories (ie no hybridization at any stringency studied). 

Aminoglycoside producers followed the average tsr trend, but hybridized more 

often than average to the novobiocin-resistance determinant.

It is interesting to note that Hotta et al. (1988) found that the 

streptomycin phosphotransferase gene from S.griseus (SS-1198) was species specific 

for streptomycin-producing S.griseus strains. This gene was reported to be identical, 

with respect to size and restriction sites, to genes cloned by Distler et al. (1985) and 

Tohyatna et al. (1984); Lim et al. (1989) consider that these latter two genes 

correspond to aphD (Vallins and Baumberg, 1985). The fragment, which was used 

for probing in the Hotta et al. (1988) study was an 0.4 Kb Sail fragment, compared 

to a 0.8 Kb (Pstl Stul) fragment, used in this study. The fragment used as probe 

for this study contained the B, C and D regions and a small part of the E region
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Table 7.8. The distribution o f signals hybridizing to aph and aphD in aminoglycoside

producers

This table lists strains which were known aminoglycoside producers and shows 

whether their DNA hybridized to the aph and aphD gene probes.
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Table 7.9. T h e  distribution o f positive signals amongst specific antibiotic producers.

Antib­
iotic
Class

String­
ency

aphD aph tsr vph Nbr bar

Aminog- 0-65 0.0 38.5 38.5 15.4 46.2 38.5

lycos 65 7.7 30.8 38.5 46.2 7.7 0.0

ides 73 30.8 15.4 7.7 30.8 23.1 61.5

(13) 85 61.5 15.4 15.4 7.7 23.1 0.0

Macro- 0-65 60.0 80.0 40.0 80.0 100.0 60.0

lides 65 0.0 20.0 40.0 0.0 0.0 20.0

(5) 73 40.0 0.0 20.0 20.0 0.0 20.0

85 50.0 0.0 0.0 0.0 0.0 0.0

Amino 0-65 28.6 42.9 28.6 14.3 42.9 0.0

Acid 65 0.0 28.6 42.9 28.6 28.6 14.3

Deriva- 73 42.9 0.0 14.3 42.9 28.6 42.9

tives(7) 85 28.6 28.6 14.3 14.3 0.0 42.9

Cyclo 0-65

©©

33.3 66.7 66.7 66.7 33.3

alkane 65 0.0 66.7 33.3 0.0 33.3 33.3

Deriva- 73 33.3 0.0 0.0 33.3 0.0 0.0

tives (3) 85 66.7 0.0 0.0 0.0 0.0 0.0

Benzene 0-65 0.0 100.0 100.0 100.0 0.0 100.0

Deriva 65 100.0 0.0 0.0 0.0 100.0 0.0

tives 73 0.0 0.0 0.0 0.0 0.0 0.0

(1) 85 0.0 0.0 0.0 0.0 0.0 0.0

238



Class
o f
Antib
iotic

String
ency

aphD aph tsr vph Nbr bar

Macro- 0-65 50.0 50.0 25.0 50.0 100.0 50.0

lactams 65 25.0 50.0 25.0 25.0 0.0 0.0

(4) 73 25.0 0.0 50.0 25.0 0.0 50.0

85 0.0 0.0 0.0 0.0 0.0 0.0

Quinon 0-6 50.0 0.0 25.0 25.0 50.0 0.0

-es and 65 25.0 50.0 50.0 25.0 0.0 50.0

Tetrac- 73 0.0 50.0 0.0 25.0 25.0 50.0

yclines (4) 85 75.0 0.0 25.0 25.0 25.0 0.0

Mean 0-65 30.7 55.1 43.8 40.3 72.3 40.9

(176) 65 13.1 19.3 44.3 32.4 13.6 18.8

73 24.4 5.7 2.8 19.9 5.7 36.4

85 32.8 29.9 9.1 7.4 8.5 4.0

This Table uses the stringency values associated with 73% G +C . The 

homology levels relating to individual genes are shown in Table 7.2. The mean 

values refer to the proportion of the entire population which hybridized and figures 

in parentheses refer to the number of strains in each group of antibiotic producers.

(Lim et al., 1989), whilst the fragment in the study of Hotta et al. (1988) 

comprised the B region and portions of the A and C region.

The only other group with a reasonable number of strains was the diverse 

group of peptide antibiotics. Three probes tsr, vph and bar were isolated from 

producers of peptide antibiotics. Even when the presence of positive control strains
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were taken into account, there was more than the average amount of hybridization 

shown to the vph and bar probes within this group.

None o f the macrolide or macrolactam producers showed binding at high 

stringency to any of the probes. This was also rare for cycloalkane and benzene 

derivatives. All producers o f macrolides and macrolactams showed less than 65% 

homology to the Nbr probe.

7.6. The Relationship Between Sequences Hybridizing to Antibiotic Resistance 

Gene Probes and Streptomvcete Taxonomy.

There were sufficient strains for four cluster groups (Williams et al., 1983a) 

to be examined in detail with respect to their average gene homology profiles.

Table 7.10. The distribution of sequences hybridizing to antibiotic resistance genes 

within Streptom vces clusters as defined bv Williams e.t a l. (1983a1.

Cluster
Group

%
Homol

% Strains with Homology to: 
aphD aph tsr vph Nbr bar

1 0-65 14.3 35.7 28.6 28.6 53.5 42.3

(15) 65 7.1 7.1 50.0 14.3 13.3 14.3

73 42.9 7.1 0.0 42.9 6.7 28.6

85 35.7 42.9 14.3 14.3 26.7 7.1

5 0-65 18.7 79.0 50.0 50.0 81.3 50.0

(16) 65 18.8 21.0 50.0 37.5 6.3 25.0

73 43.8 0.0 0.0 12.5 12.5 25.0

85 18.8 0.0 0.0 0.0 0.0 0.0
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Cluster
Group

%
Homol

% Strains with Homology 
aphD aph tsr vph Nbr bar

19 0-65 20.0 50.0 70.0 30.0 100.0 0.0

(10) 65 10.0 40.0 30.0 60.0 0.0 40.0

73 10.0 0.0 0.0 10.0 0.0 20.0

85 60.0 10.0 0.0 0.0 0.0 0.0

32 0-65 47.4 57.9 68.4 52.5 73.3 52.6

(19) 65 5.3 21.0 10.5 26.3 21.0 5.3

73 10.5 0.0 15.8 10.5 0.0 36.8

85 36.8 21.0 10.5 10.5 5.3 5.3

Mean 0-65 30.7 55.1 43.8 40.3 72.3 40.9

65 13.1 19.3 44.3 32.4 13.6 18.8

73 24.4 5.7 2.8 19.9 5.7 36.4

85 32.8 29.9 9.1 7.4 8.5 4.0

This Table uses the stringency values associated with 73% G +C. For 

homology levels relating to individual genes please see Table 7.2. The mean values 

refer to the proportion of strains from the whole population which hybridized to the 

antibiotic resistance gene probes. Figures in parentheses refer to the number of 

strains belonging to each taxonomic cluster group (Williams el a l., 1983a).

7.6.1. The Distribution of Sequences Hybridizing with Antibiotic Resistance Gene 

Probes in Streptomvces albidoflavus (Cluster 1),

The aphD gene probe was isolated from Streptomyces g rise us. This strain 

taxonomically identifies to S.albldoflavus cluster 1 and specifically to lb
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S. annul at us. Fifteen cluster 1 strep tomycetes were probed with aphD in order to 

ascertain any relationship between the gene and taxonomic identity. These strains 

contained more than the average amount of hybridization to aphD (Table 7.10.) and 

showed more than average resistance to streptomycin (section 6.4.7., Wellington 

and Cross, 1983; Williams et al., 1983a). In addition cluster 1 strep tomycetes 

showed greater hybridization than average with the other two phosphotransferases. 

The novobiocin resistance determinant was also isolated from a cluster 1 

streptomycete (specifically lc), S. niveus and there was some indication that more 

Cl ' s  than average showed bound to this probe at high stringency.

7.6.2. The Distribution of Sequences Hybridizing to Antibiotic Resistance Gene 

Probes in Streptomvce.s exfoliatus (Cluster 51.

None of the probes used in the study originated from a cluster 3 strain, 

although phosalacine, a compound which is related to bialaphos, is produced by 

Kitasatosporia. Cluster 3 strains tended to hybridize less than average with the bar 

gene probe and the aph probe, but hybridized more often to aphD at 73% than was 

expected.

7.6.3. The Distribution of Sequences Hybridizing with Antibiotic Resistance Gene 

Probes in Streptomvces diastaiochromofenes (Cluster 191.

This group also contained many sequences, which hybridized to the aphD 

probe, but they hybridized less than average to other phosphotransferases; 

interestingly Distler et al. (1987a) has shown that the streptomycin 

phosphotransferase genes from the taxonomically diverse strains, S.griseus and 

S.glaucescens, share 73% homology. The cluster 19 strains also showed less 

hybridization than average to the other resistance gene probes and this could reflect 

the fact that this group does not contain a huge proportion of antibiotic producers. 

None of the probes were isolated from a Cluster 19 streptomycete.
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7.6.4. The Distribution o f Sequences Hybridizing with Antibiotic Resistance Gene

Probes in Streptomvces violaceonifer fCluster 22).

The bar gene was isolated from a S.hygroscopicus strain which is a member 

of this cluster, however the group profile for hybridization to this probe was very 

close to the average profile. Lower than the mean hybridization frequencies were 

shown to aphD and vph and an average profile to aph was observed. The strains 

also showed less than average binding to the u r  probe, although more strains than 

average hybridized to this probe at 73%.
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7.7. Clustering Based on Hybridization Patterns to Antibiotic Gene Probes and its

Relationship to Antibiotic Production.

The data were clustered using both a binary form and a semi-quantitative 

form. For the latter the highest value at which a strain showed hybridization was 

entered into the matrix. For the former, the data were entered as in the following 

example:

probe number 1

OTU1

3xSSC

0

lxSSC

0

0.2xSSC

0 0-65% Homology

OTU2 1 0 0 = 65% Homology

OTU3 1 1 0 = 73% Homology

OTU4 1 1 1 - 85% Homology.

OTU5 1 0 0 = 65% Homology

Trees were created using both UPGMA and single linkage and a selection of 

available coefficients were examined for use with this data. Similarity values were 

calculated using Euclidean distance and the Manhatten metric for the semi- 

quantitative data, whilst the Dice and simple matching coefficients were used for the 

binary data fS^ i^  was chosen to show how weighting against negative matches, 

affected the clustering, compared to Ssm which gave negative and positive matches 

equal weight). Similarity was scored in the same way as phenotypic data (ie. scored 

with respect to the test used) which incorporate parallel and divergent evolution and 

which may therefore contain genetic dissimilarity. A possible alternative form of 

clustering could have been to weight against characters referring to binding at lower 

levels of stringency and to give higher regard to results which might be likely to 

reflect related sequences.

Figs. 7.3. and 7.4. show four relevant phenograms clustered using 

UPGMA;
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A shows a phenogram created from semi-quantitative data, using Euclidean distance 

and UPGMA. Eleven groups have been defined on this phenogram at a Euclidean 

distance of 92.

B shows a phenogram created from semi-quantitative data, using Manhatten distance 

and UPGMA. The positions of strains belonging to the groups which are indicated 

for phenogram A.

Fig. 7.3. Phenograms to show the clustering o f strains based on their hybridization

patterns to antibiotic resistance genes.
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close examination revealed reasonable agreement between all of the phenograms and 

very good reproduction of groups for phenograms clustered using the quantitative 

data. This was better than for those clustered using binary data. The reason could be 

that when all stringency levels were given an individual character status, the number 

of negative results increased, causing an overestimation of similarity when Ssm was 

used compared to S^ice- Cophenetic correlations showed that phenograms based on 

quantitative data gave higher Mantle statistics (eg. 0.84 compared to 0.78 for 

Euclidean with quantitative data versus Dice with binary data and both with 

UPGMA) and therefore were better representations of the similarity matrix. When 

new characters were added (erythromycin biosynthesis gene probes; results not 

discussed) tree topology was hardly altered and this also indicated that the 

classification was good.

The phenogram derived from Euclidean distances (Fig 7.5) has been chosen 

to illustrate trends seen within the data and eleven groups were defined at a 

Euclidean distance of 92. The distribution of 33 antibiotic-producing strains has 

been superimposed on the phenogram and preliminary observations indicated that 

the producers of certain classes of antibiotics grouped to specific clusters. All of the 

macrolide producers clustered to groups 1 or 5, and the macrolactam producers to 

groups 6 and 10, polyene producers were observed in groups 1, 5, 8 and 11 and 

those which produced aminoglycosides in 5 and 8 . Quinones and benzene and 

cycloalkane derivatives were found in the latter half of the phenogram (groups 6,8,9 

and 10), compared to macrolides and polyenes, which were in the first half. 

Interestingly producers of peptide antibiotics clustered to either side of the 

phenogram depending upon whether they were derived from aromatic or non­

aromatic amino acids. Two groups in the phenogram were rotated at positions SI 

and S2 and a diagram was drawn to illustrate the positions of antibiotic producers 

across the phenogram (Fig.7.6).
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A shows a phenogram created from binary data, using and UPGMA 

B shows a phenogram created from binary data, using Ssm and UPGMA 

The positions of strains belonging to the group,s which are indicated for phenognm 

A, Fig. 7.3. are indicated on both diagrams.

Fig. 7.4. Phenograms to show the clustering o f strains based on their hybridization

patterns to antibiotic resistance genes.
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The diagram shows the positions of strains belonging to specified classes of 

antibiotics.

P = Polyenes 

M = Macrolides 

AA = Amino acid derivatives 

C = Cycloalkane derivatives 

A = Aminoglycosides 

Q = Quinones and tetracyclines 

ML = Macrolactams 

B = Benzene derivatives.

Fig. 7.5. Phenogram to show the clustering o f strains based on their hybridization

patterns to antibiotic-resistance genes.

)
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Fig. 7.6. Schematic diagram to shows the clustering o f specific classes of antibiotics 

across a phenogram based on hybridization patterns to antibiotic resistance gene 

probes.

Two groups on the phenogram shown in Fig. 7.5. were rotated at position SI and 

S2 and this schematic diagram shows how the positions of antibiotic producers 

change when these changes in topology. The diagram also shows the trends which 

were observed with respect the producers of specific classes of antibiotics clustering 

to specific groups on the phenogram.
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7.8. Discussion,

At present only a small proportion of the antibiotic biosynthesis pathways 

and resistance mechanisms in nature are known and virtually nothing is understood 

about the distribution of production and resistance genes within natural 

streptomycete populations. The present study helped to prioritize a sizeable 

proportion (30%) of strains for further studies aimed at determining the nature of 

positive signals given by dot blot hybridizations. There was also good evidence for 

the existence of alternative resistance mechanisms and the majority of strains 

classified as resistant (Chapter 6) failed to hybridize with the gene probes used.

Streptomyces azureus and Streptomyces laurentii produce thiostrepton and 

can methylate rRNA for self-defense (Thompson and Cundliffe, 1980). These 

determinants also confer resistance to other peptide antibiotics with the same mode

of action, namely siomycin, sporangiomycin, nosiheptide and thiopeptin (Thompson 

and Cundliffe, 1980; Woodman et al., 1991). Producers of these compounds are 

resistant to thiostrepton and have closely related resistance determinants to tsr which 

could possibly account for some of the positive signals in this study. S.azureus 

actually has two rRNA methylases for thiostrepton resistance and these are not 

linked to the biosynthetic gene cluster, but are integrated on pUlOl-like plasmids 

elsewhere in the chromosome Woodman et ai. (1991). This has lead Woodman et 

al. (1991) to hypothesize that these genes are fortuitous acquisitions obtained later 

than an original resistance gene, which evolved alongside the biosynthetic 

apparatus. This supports findings presented in this thesis, which suggest that 

alternative resistance mechanisms to tsr do exist in nature, although further analysis 

of the resistant strains found in soil is needed to determine if there is more evidence

M  '' aa/

j L L

for the mobility of resistance genes within streptomycete populations.

A correlation was found between aminoglycoside production and 

hybridization with the aphD probe. Other workers have found that aminoglycoside 

phosphotransferases are appreciably homologous within streptomycetes (Distler et 

al., 1987b; Lim et a l., 1989) and may have a common evolutionary origin (Heinzel
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et al., 1988; Lim et al., 1990) and some of the positive signals with the aphD and 

aph probes may be due to such genes. Neomycin is also known to be inactivated by 

an acetyltransferase (Thompson et al., 1982b) and so such enzymes may be 

responsible for some of the alternative resistance mechanisms observed for these 

aminoglycosides.

Walker (1990) suggested that there has been a selection pressure for the 

evolution of the streptomycin biosynthesis pathway. Guanidino inositol derivatives 

could serve as a nutrient reserve, which is readily utilized during starvation and 

differentiation and this might give organisms a selective advantage for developing 

this portion of the pathway (and might help the selection of the resistance gene). 

An alternative proposal for the function of streptomycin exploits its polycationic 

character, as an accelerator of cell lysis (Szabo et al., 1990). The high proportion of 

strains whose DNA hybridized to the aphD probe may indicate that there are related 

sequences within streptomycetes. Lim et al. (1989) found that aphD shared 

homology with other cloned antibiotic phosphotransferase genes and they also 

hypothesized that the B and D regions of the sequence encoded ATP binding or 

phosphate transfer domains, whilst regions A,C and E encoded antibiotic 

recognition sites. It may be that many of the weak signals were due to the binding 

of small motifs which encode similar functions to the B and D regions, but on 

different genes.

Only a small proportion of isolates hybridized to vph and Nbr, although the 

proportion of phenotypic resistance to sensitivity was similar to that observed for 

other antibiotics. The only known producer of viomycin is S.vinaceus, which has 

three resistance genes including vph, but the capreomycin-resistance determinant 

also confers resistance to this antibiotic (Skinner and Cundliffe, 1980). Although 

there is no evidence for an rRNA methylase in S.vinaceus, Mycobacterium 

smegmatis does possess such an enzyme, which makes it resistant to this antibiotic 

(Skinner and Cundliffe, 1980).
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The mechanism of the novobiovin-resistance determinant in this study is still 

unknown as is that of another resistance gene cloned from S.niveus (Mitchell t t  a/., 

1990). However, Cundliffe and co-workers have cloned a resistance determinant 

with DNA gyrase activity from another producer Streptomyces spheroides (Thiara 

and Cundliffe, 1989). It is possible that some of the strains with alternative 

novobiocin-resistance mechanisms in this study also contain such an enzyme.

Studying the diversity of streptomycete populations may help in 

understanding the evolution and ecological importance of antibiotic production and 

its relationship to antibiotic resistance. This study reported a novel approach to the 

analysis of resistance data and exploited taxonomic methodology for pattern 

recognition. It was shown that groups of strains producing similar antibiotics may 

be delimited by analysing their patterns of hybridization to antibiotic gene probes. 

These patterns appeared to be more related to antibiotic production than they were 

to the taxonomy of the relevant organisms.
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Chapter 8

General Discussion.

A variety of theories have described possible functions for secondary 

metabolite biosynthesis (Bu'loclc, 1965; Hutter, 1982; Z&hner, 1982; Williams et 

al., 1989a;), but the natural role of antibiotic production remains unclear. Few 

attempts have been made to investigate the distribution of bioactivity within natural 

populations of streptomycetes, although they comprise one of the major antibiotic 

producing groups. Most of the available data link taxonomic analysis with biased 

sampling of antibiotic producers (Arai et al., 1976). Whilst the current study did 

not involve an exhaustive investigation o f  secondary metabolite production and was 

still biased towards biologically active products, it attempted to link taxonomic data 

with phenotypic and genotypic analysis and superimposed biological activity on the 

clusters produced.

One of the main aims of this project was to take a new approach for 

analysing natural populations of streptomycetes. Methods from conventional 

bacterial taxonomy (Dice, 1945; Carmicheal and Sneath, 1969; Sokal and 

Michener, 1958; Florek et al., 1951; Lance and Williams, 1967) were used to carry 

out special purpose clustering. The data usually comprised single classes of 

characters (eg. fatty acid profiles, antibiotic resistance phenotypes and genotypes) 

which gave monothetic classifications. Groups of strains were delimited from these, 

allowing trends within the data and correlations with other characters to be 

discovered. This approach differs from conventional numerical taxonomy which 

uses large numbers of different tests to obtain polythetic classifications with the 

usual intention being to generate identification schemes based on general phenetic 

similarity (Williams et al., 1983 a and b; Langham et al., 1989; Kampfer et al., 

1991a and b). Variation and error are an integral part of systematic riata 

(Goodfellow and Dickenson, 1985) and must be rigourously tested as was done in
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other numerical studies (Williams et a l., 1983a, McCarthy and Cross, 1984 and 

Kampfer et al., 1991). If the error lies within acceptable limits (Sneath and 

Johnson, 1972) then cluster analysis can reveal stable relationships for given tests 

and OTUs.

Fatty acid profiles were observed from two different viewpoints, one which 

aimed to gain insight into the relationship between fatty acid metabolism and 

secondary metabolite biosynthesis and another which investigated their use as a 

taxonomic tool. The success of Saddler et al. (1987) in separating S.cyaneus from 

other streptomycetes had indicated that the delimitation of the S.violaceoniger group 

(Williams et al., 1983a and b) from less bioactive clusters was feasible. The attempt 

failed and reasons for this may lie in differences between the two studies. Like the 

study in Chapter 4, Saddler and co-workers (1987) used type strains, which 

represented a tight cluster and some markers from other groupings. However their 

natural isolates were pre-selected by spore morphology. This compared to an 

arbitrarily chosen selection, which comprised a variety of species (Williams et al., 

1983a and b) and unidentified strains. Work presented in Chapter 2 has shown that 

many o f the streptomycete natural isolates did not conform to described 

streptomycete taxa. If this was reflected by their fatty acid profiles they may have 

prevented the delimitation of tight groups for more typical strains, resulting in the 

relatively homogeneous groupings observed in Chapter 4.

Streptomyces species delimitation may require quantitative data, as opposed 

to the qualitative data used in Chapter 4. Saddler (1987) based his approach on an 

assumption that fatty acid profiles remaind constant during logarithmic growth and 

stationary phase following a study using one strain, grown in Sautons medium, with 

three day intervals between readings (Saddler, 1986). However, fluctuations in fatty 

acid levels occurred on a daily basis for D153 in ISP7 medium (section 4.3). 

Kroppenstedt (personal communication) suggested that changes in fluty acid 

composition at different growth phases were responsible for his failure to cluster 

S.violaceoniger amongst a tree comprising 12 different Streptomyces taxa. Success
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was achieved by removing three SMolaceoniger strains (Williams et al., 1983a), 

two of which were present in the study in Chapter 4. The study of Kroppenstedt 

contained only type strains, which may be biased towards strains which have been 

patented for antibiotic production and they would therefore differ from many of the 

antibiotic producers included in Chapter 4. Industrial strains are selected for the 

production of either one or a group of related antibiotics. Antibiotic-producing 

isolates often produce several different compounds (Chapter 3), which may or may 

not relate to fatty acid profiles. Work carried out with D133, a producer of 

nigericin and geldanamycin, suggested that this was possible. The levels of fatty 

acids in this strain fluctuated in line with changes in secondary metabolism. 

However, this study was carried out in a production medium (ISP7), compared to 

Sautons medium, which aims to optimize biomass for taxonomic studies. D153 did 

not produce antibiotics in Sautons medium.

Information about the bioactivity of isolates (Chapter 3) was of central 

importance to the project because it was used to find correlations with all of the 

other data sets. Data used for these comparisons were generated using a wide range 

of culture conditions, extraction procedures and screening methods to increase the 

chances that antibiotic production would be expressed. This also yielded information 

about the distribution of antibiotic production in natural Streptomyces isolates 

(within the experimental limits of the study). Twenty percent of the strains studied 

produced a bioactive compound. The most common antibiotics were nigericin 

(13.3%) and geldanamycin (10%). It was hypothesized that the presence of these 

metabolites in such large numbers of streptomycetes could indicate that they play a 

useful role in their producers. For example, a suggested function for nigericin was 

as an ion scavenging agent. The preferential binding of nigericin to K+  as opposed 

to Na+  could suggest a function in maintaining intracellular K +  concentrations. A 

similar role was put forward and a survival advantage indicated for the 

siderophores, which act as iron scavengers (Hutter, 1982). A role in the inhibition 

of germination has been suggested for other polyethers, which have been shown to
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bind to spore surfaces in a similar manner to the germination inhibitor of 

SMridochromogenes (Ensign, 1976; Grafe et al., 1986). It is not known whether 

nigericin binds to spores in this way. The proposed function of nigericin is further 

supported by the work of Williams et al. (1989a) and Grably et al. (1990), who 

have shown that a highly sophisticated receptor-antibiotic complementation exists 

between this antibiotic and chemically-related compounds and the ions to which they 

bind.

An additional discovery made was that geldanamycin production was always 

associated with nigericin biosynthesis. A portion of the geldanamycin molecule is 

derived from polyketide biosynthesis (Ghisalba, 1985) and it was suggested, 

therefore, that the two compounds might share early biosynthesis steps or else have 

evolved separately in the same progenitor strain (and possibly from the same 

progenitor pathway). In the latter case, nigericin producers which did not express 

geldanamycin production might contain silent biosynthesis genes or represent a line 

of descent in which the ability to make this compound has been lost. The producers 

of many polyketide antibiotics show hybridization to the early genes in actinorhodin 

biosynthesis (Malpartida et al., 1987) and the consensus of scientific opinion is that 

the majority of polyketide biosynthesis pathways share a common evolutionary 

origin (O'Hagan, 1988; Professor D.A. Hopwood, personal communication).

Most strains which produced compounds, thought to be good candidates for 

novel agrochemicals (comprising various different activities) also produced 

nigericin. Because both nigericin and geldanamycin are broad spectrum antibiotics it 

was hypothesized that novel compounds, which were produced concomitantly with 

them, might not be detected (ie their activity spectrum could be hidden within that 

of the broad spectrum antibiotic). Antibiotic expression in the producers of these 

compounds was examined more closely.
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Expression studies revealed a greater diversity of responses to different 

nutrient concentrations and oxygen tensions. Reducing oxygen tension, in cultures 

of strain D1S3, lead to differential expression, between nigericin production, which 

was repressed and geldanamycin biosynthesis, which remained unchanged. This 

effect may have been responsible for the expression of nigericin production on solid 

media, rather than in liquid media in certain strains where shear factors may have 

given rise to small mycelial fragments, which were inefficient at oxygen transfer. 

Polyethers are biosynthesized from a polyene precursor via a triepoxide 

intermediate. In monensin biosynthesis, the formation of this intermediate is the 

only point in the pathway which requires molecular oxygen (Cane et al., 1983). A 

similar pathway is likely for related polyethers, such as nigericin, and it is possible 

that denying sufficient molecular oxygen to D153 prior to nigericin biosynthesis 

would block the pathway at the point prior to the formation of this tri-epoxide 

intermediate.

Growth on nutrient gradients showed that a group of streptomycetes (similar 

in the sense that they all produced nigericin and that some produced geldanamycin) 

did not show the same response to possible stimuli for differentiation (Chapter 3). It 

was thought that this might reflect differences in rates of substrate utilization, 

thresholds for responses to nutrient limitation and pH or the presence of special 

mechanisms for the uptake of limited nutrients, which helped to delay the onset of 

starvation responses. Grafe (1989) has suggested that the characteristic 

cytodifferentiation and polymorphic behaviour of streptomycetes is a form of 

adaptation to a constantly changing natural environment. Grafe (1989) states that 

this could be done either by choosing between an array of pre-set developmental 

programs throughout the growth cycle or via rearrangements of chromosomal or 

extrachromosomal genetic elements. These were also thought to be possible 

explanations for the behaviour of some strains, which frequently exhibited variable 

expression in this work (Chapters 3 and 6).
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The expression of antibacterial and antifungal activity was also strain 

specific with respect to the nutrient environment and altering nutrient conditions led 

to a changed product spectrum for most strains. This is in line with observations 

made for the different responses of rifamycin-producing strains to nitrate 

concentrations (Ghisalba, 1984). There was evidence that some of the strains could 

produce compounds which had not been previously observed. Exposure to certain 

nutrient conditions caused some strains to repress antibiotic production, whilst under 

others they behaved as would be expected from the preceding work (Chapter 3). 

Differential expression at varying nutrient concentrations has also been reported by 

Hall and Has sal (1970) who found that S.jamaciensis produced a different antibiotic 

at 0. ImM Pi than it did at 0.4mM Pi. In addition, Grabley et al. (1990) have shown 

that the antibiotic spectrum of DSM 3816 (a nigericin producer, which also 

produces several other antibiotics) was also dependent on the culture medium and 

conditions. The switch on of antibiotic production within the group of strains 

presented in Chapter 3 required a diversity of nutrient conditions and nutrient 

gradient plates offered a novel approach to investigate this in some detail. Gradients 

were also used to investigate antibiotic resistance (Chapter 6).

Several facts emerged when antibiotic-resistance profiles were examined for 

correlations with bioactivity. Resistance was not always present in producers of the 

relevant compound and was found in strains which showed no evidence of antibiotic 

production; an observation also made by Fujisawa and Weisblum (1982). There 

was, however, a general correlation between resistance and secondary metabolite 

biosynthesis. A strain was more likely to be bioactive the more resistances it 

possessed, and also if these resistances were rare within the population examined. 

Strains which did not express antibiotic production during the current study showed 

mainly sensitive phenotypes apart from common resistances such as penicillin 

resistance. Interestingly, Hotta et al. (1983a, 1983b, 1983), Yamashita et al. (1983) 

and Bibikova et al. (1990) have shown that resistance profiles using specific classes
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of antibiotics correlate with the production of antibiotics belonging to the same 

chemical group.

Where sensitivity correlated with no antibiotic production, strains may not 

have been exposed to the conditions required to express the relevant genes. 

However, if there are streptomycetes which neither produce antibiotics nor possess 

antbiotic resistance genes then this has ecological implications. Perhaps these strains 

have other advantages for survival in the environment and might be suited to growth 

in more extreme conditions, such as high salt microenvironments. Alternatively they 

could have specializations for utilizing recalcitrant substances.

Resistances which were not associated with antibiotic production have been 

described by Fujisawa and Weisblum, 1981, Jenkins el al. , 1989 and Mosher et al., 

1990.). Antibiotic resistance (Chapter 6) was defined in the context of a population 

study and may not always reflect the levels of resistance required by an antibiotic 

producer. However, some strains which possessed antibiotic resistance but did not 

produce an antibiotic could have a survival advantage against external attack from 

the bioactive products of foreign microorganisms and might also benefit from the 

reduction of other competetive species without having to expend energy on 

antibiotic production. This assumes that antibiotic production occurs in the soil and 

some evidence for this was given by Rothrock and Gottleib (1984), who described 

the production of geldanamycin in soil by Streptomyces hygroscopicus var geldanus. 

The concept also is supported by Martin and Demain, (1980), Demain (1981) and 

(1984), Williams and Vickers (1986) and Weller and Thomashow (1990).

All the above types of strains (with respect to the expression of antibiotic 

resistance and production) were isolated from the same soil samples, but could 

inhabit different microniches. For instance, antibiotic producers may inhabit more 

competitive micro-environments, such as the rhizosphere, It would be interesting to 

know whether populations from different types of locations have higher or lower 

diversity with respect to antibiotic production and resistance. Most strains studied in 

Chapter 6 came from grassland or agricultural soil samples.
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The majority of phenotypic resistances did not appear to be correlate with 

the production of the relevant antibiotic by the resistant strain. Resistance directed 

against the compounds studied (Chapter 6) might be due to a variety of factors. 

Some determinants may have evolved to confer resistance against a different 

compound, which may be structurally related to the test antibiotic. For example, 

aminoglycoside self-resistance determinants can confer resistance to other antibiotics 

of the same class (Skeggs et al., 1987). Alternatively a different compound might 

have a similar mode of action as seen in the MLS resistance phenotype (Fujizawa 

and Weisblum, 1981; Jenkins et al., 1989; Zalacain and Cundliffe, 1989). Other 

resistances may be present to confer protection against the products of competitors. 

This type of resistance would not necessarily correlate with bioactivity, but by 

measuring how often a resistance occurs in a natural population could give a 

measure of the selection pressures, due to antibiotic production, present within that 

environment. Neither penicillin resistance nor a proportion of the nigericin 

resistances correlated with bioactivity and beta-lactams and polyethers are common 

products of soil isolates (J. Benner, personal communication). Assuming antibiotic 

production in the natural environment (Weller and Thomashow, 1990), the high 

occurrence of these resistances could be related to defence against external attack. 

Multiple resistances might indicate an array of different mechanisms or a general 

mechanism. C.J.Thompson (personal communication) has isolated a promoter, 

which can be switched on by many different antibiotics, irrespective of mode of 

action or structure. It was associated with a pristinamycin-resistance gene, which 

was thought to be involved in drug export. Apart from rRNA methylases 

(Cundliffe, 1989), drug export is implicated in multiple resistance (MLS) in many 

macrolide producers (C. Hershberger, personal communication).

The fact that specific phenetic resistance could be due to many underlying 

mechanisms {eg. resistance to kanamycin can be conferred by acetyltransferase 

(Cundliffe, 1986) and rRNA methylase (Skeggs et a l., 1987)} means that resistance 

profiles are very useful for preselecting strains for screening. A resistance expressed
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to a certain antibiotic could be due to a resistance determinant for a novel antibiotic. 

This hypothesis was strengthened by probing data (Chapter 7), which suggested that 

resistances exhibited by most strains in the study were due to mechanisms other than 

those which were related to the gene probes used. The data is also supported by the 

results from an antibiotic resistance pre-screen set up at ICI Agrochemicals Pic., 

which has shown that strains chosen because they have multiple antibiotic resistance 

patterns give many more positive activities on in vivo screens than do sensitive 

strains and the number of strains being further investigated is also greater.

In an attempt to understand the nature of antibiotic resistance at the genetic 

level, strains were probed with a relevant selection of antibiotic-resistance genes. 

Out of 9 strains with only penicillin resistance and 8 strains with only penicillin and 

nigericin resistance 2 showed positive hybridizations to one gene probe. Of the 

strains, which had three or more resistances, 45% hybridized to between 1 and 6 

probes. The probing data was of a preliminary nature, but if the homologies were to 

represent the presence of resistance genes then the phenetic trend would be 

supported by a similar genetic trend.

Tentative observations suggested that there could be a relationship between 

the production of specific antibiotic classes and the presence of sequences that 

hybridized to antibiotic resistance gene probes. Special purpose clustering 

uncovered two populations. Strains which showed a close relationship to the gene 

probes (ie hybridized to them) included aminoglycoside and macrolide producers. 

Producers of other antibiotics, derived from fatty acid metabolism, showed a lower 

relationship to the gene sequences used.

Potentially highly related sequences which gave strong signals were present 

in streptomycetes other than those from which the genes were isolated. Weaker 

signals were present at high stringency for many other streptomycetes and may have 

indicated the presence of less related sequences or highly related sequences of a 

shorter length. In order to assess how successful using dot blots as a primary screen 

for finding genes in large populations of streptomycetes confirmation using southern
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hybridization and sequencing studies will be required. The findings o f these future 

studies may have a bearing on the evolution of secondary metabolism, antibiotic 

resistance and gene transfer. The approach appears to have been useful in 

determining strains, which could have novel or different resistance mechanisms.

A recurring theme throughout this work was that the raw data were not 

definitive and referred to phenotype rather than genotype. For instance, the growth 

conditions were important for the expression of both antibiotic production (Chapter 

3) and antibiotic resistance (Chapter 6). Different nutrient concentrations and 

oxygen tensions affected whether or not antibiotics were produced and could change 

the product spectrum and which particular strains expressed antibiotic resistance was 

influenced by the growth medium. A consequence of this was that although a strain 

was negative under test conditions, it was not known whether that strain was 

capable of expressing a relevant set of genes if the environmental conditions were 

made favourable. Similarly, conditions could be found to repress gene expression 

by strains, which gave a positive score under the test conditions (Chapter 3). 

Strains, which express the same character under identical conditions, could be 

assumed to be more like one another than strains which express this character under 

different conditions. However, the latter is more like the former type of strain than 

a strain which cannot express the character at all.

Detection limits may also have influenced the scoring of negative results and 

low level expression might not always have been detected by the instrumentation or 

assay procedures used. Examples of where this may have occurred included, Gas 

Chromatography Mass Spectrometry (Chapter 4), thin layer chromatography 

(Chapters 3 and 3), and bioautography (Chapter 6). Likewise positive results could 

be due to different things. For example, phenetic antibiotic resistance was scored in 

Chapter 6 and a resistant phenotype could be due to one or several of a range of 

underlying mechanisms (a fact which was exploited). Even when a strain has the 

same mechanism the enzymes and genes responsible may be different. Similarly, in 

Chapter 3 different compounds may have identical Rf values. These problems are
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common to other taxonomic studies, which use the systematic approach for phenetic 

data. For example, carbon source utilization tests could show positive as a result of 

different enzymes, pigmentation can be due to different compounds and negative 

results might show positive under slightly different conditions. All these factors can 

lead to strains grouping against general trends during cluster analysis. In order to 

minimise the influence of 'mis-scored' negative results coefficients were chosen 

which weighted against negative matches.

Positive results using the dot blot approach gave a range of intensities and 

therefore a certain type of interpretation was necessary. Weak hybridizations were 

scored positive, although they could be due to non-specific binding resulting from 

protein contamination in DNA samples or, since random primed labelling was used, 

they might be due to short homologous motifs. Weak positive results may also have 

been due to related sequences, which might or might not comprise portions of 

resistance genes. In view of this equal weight was given to positive and negative 

signals, for cluster analysis.

8.2. Future Work.

This project has provided a variety o f opportunities for future research and 

the knowledge gained, whilst carrying out the work has led to the development of 

several interesting hypotheses. The theory that common occurrence of certain 

antibiotics might indicate that they are useful to their producers could be developed 

further by carrying out experiments aimed at discovering what their natural 

functions might be. For example, if nigericin was involved in maintaining ionic 

balance or if  it functioned as an ion scavenging agent then its producers might 

survive better in excessively high or low ionic (Na+ , K + ) environments than 

would non-producers.

Another fact which emerged was that geldanamycin appeared to only be 

produced by strains, which also produced nigericin. This is interesting from an 

evolutionary point of view and more insight might be gained into this relationship
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by carefully examining their chemical structures and pathways of biosynthesis. 

Professor Don Ritchie (personnal communication) has cloned the geldanamycin 

production genes and if relevant probes and sequence information became available 

then these could be used to examine nigericin and geldanamycin producing strains in 

detail. Experiments using strain D1S3 indicated that changes in the levels of fatty 

acids might be related to production of geldanamycin and nigericin and this 

relationship could be investigated in more detail. For example radioactively-labelled 

precursors might establish whether the decline in fatty acid levels relates directly to 

antibiotic production.

It is still not clear as to whether antibiotic production is a feature of all 

streptomycetes or if there are some strains, which do not express this aspect of 

secondary metabolism. Strains which did not express antibiotic production and 

resistance were identified during this research and a more detailed look at the effect 

of environmental factors on these strains might help to assess how the strains might 

behave in the natural environment. Questions to be addressed include whether they 

are incapable o f expressing bioactivity and resistance, and if not whether they might 

inhabit a different type of micro-niche to the strains which expressed antibiotic 

production and resistance. If evidence suggested that the latter case was correct then 

it would be o f ecological interest to determine if relevant strains were specialized 

for survival in the natural environment in other ways (eg. extreme concentrations of 

ions, salt, heavy metals or the ability to utillize recalcitrant compounds).

Little is known about secondary resistances (those not connected with 

antibiotic production), although this work has identified a series of strains which 

expressed antibiotic resistance, but did not produce an antibiotic under the 

experimental conditions used. It would be useful to use other methods for 

determining bioactivity in these strains. If this further supported the existence of 

secondary resistance in these strains then it would be challenging to pursue the 

ecological and evolutionary relationship between determinants, which confer 

secondary resistance and those which confer primary resistance.
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The study also indicated strains, which might contain specific antibiotic 

resistance genes or related genes and has allowed a smaller number of strains to 

enter a secondary screen, involving southern analysis, which will permit further 

selections to take place. The chosen strains will then undergo detailed analyses 

aimed at determining evolutionary relationships within their secondary metabolisms. 

For example, sequence specific and consensus primers from known genes (eg. 

aphD) might be used and sequence analysis of interesting genes might then be 

carried out.

Although a variety of antibiotic resistance mechanisms are known it is likely 

that more exist in nature. It might therefore be enlightening to examine the nature of 

resistance mechanisms in resistant nonhomologous strains. This could be achieved 

by using assays for specific enzymes that could be involved in antibiotic resistance 

or by using additional probes if they became available

The study also allowed the development of several new methodologies. For 

example nutrient and antibiotic gradient plates were useful tools for population and 

expression studies; both of these methods could undergo further development. 

Streptomycetes could be grown on two dimensional nutrient gradients and then 

overlayed with test organisms to provide useful information on conditions required 

for bioactivity in individual strains. Antibiotic gradients could also provide a means 

of stimulating antibiotic production. Diffusion effects on gradient plates could also 

be studied using dyes of varying solubilities, or by direct assay in the form of plug 

assays for the antibiotic plates; perhaps colorimetric and flourimetric enzyme assays 

could be adapted for use with nutrient gradients.

Another application of the work was that a pre-screen based on antibiotic 

resistance profiles was incorporated into the screening system at ICI Agrochemicals 

P.l.c. and proved useful in prioritizing strains for screening. This system could be 

developed to include a much wider range of antibiotic resistances, which might 

allow prediction of the producers of known compounds as in the work of Kunimoto 

Hotta.
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Although TLC profiles were not a useful taxonomic tool, it might be 

interesting to analyse the rare compounds which were observed in Chapter 5, both 

chemically and for biological activity. In addition chemical analysis of the variable 

spots might help to understand why the results were not consistent and timecourse 

experiments might show how important standardized conditions were to scoring 

profiles. Image analysis could be useful for reducing operator error.
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