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Summary

In response to the growing body of evidence suggesting the direct infection of 
neural cells may contribute to the pathogenesis of the neurological syndrome 
associated with HIV infection, the AIDS dementia complex, the regulation of HIV-1 
gene expression by cytokines was investigated in cells of central nervous system 
origin.

Expression from a reporter gene under the control of the HIV-1 LTR was 
determined by transient transfection assays in a collection of cells representative of 
the major neural components of the central nervous system. These were human 
neuroblastoma, astrocytoma, glioblastoma cell lines, primary murine astrocyte 
cultures and a murine oligodendroglioma cell line. Cellular stimulation with a range 
of cytokines, TNFa, IL-1A IL-6, IFNa and IFN7, individually and in pairs revealed a 
number of these capable of significantly augmenting expression from the LTR. 
TNFa was found to stimulate LiR-driven gene expression in all neural cells as did 
IL-10 in astrocytoma, glioblastoma and astrocyte cultures. IL-6 enhanced expression 
only in astrocyte cultures. The interferons generally suppressed LTR-driven gene 
expression except IFN7 which consistently augmented expression in murine 
astrocyte and oligodendroglioma cells and IFNa augmenting reporter gene 
expression in one neuroblastoma cell line.

The HIV-1 tat gene product was found to be functional in all cell types with 
varying degrees of efficient^ and in one cell line the combination of an activating 
cytokine or phorbol ester and Tat resulted in an enhancement above that obtained 
by co-transfection with Tat alone. In most the level of expression did not 
significantly change.

Analysis of the interaction of sequence-specific DNA-binding proteins with 
the HIV-1 LTR demonstrated that in both neuroblastoma and astrocytoma cells the 
augmentation of LTR-driven gene expression by TNFa or IL-ld correlated with the 
induction of factors recognizing the NFxB motifs of the HIV enhancer. These

Eroteins were rapidly induced and no other DNA-binding activities recognizing die 
TR were found to be regulated by cytokines. Many constitutive DNA-binding 

factors were observed to  interact with the LTR, such as LBP-1-, Spl-, TATA-, Site 
A- and Site B-like binding activities previously noted in lymphocytes and HeLa cells. 
In addition two neural specific factors were discovered which recognize octamer- 
and GTI-like binding motifs in the LTR.

The results obtained demonstrate that the cytokines can regulate cellular 
mechanisms that can lead to augmented transcription from the HIV-1 LTR in 
neural cells and suggest that a latent infection of neural cells by HIV-1 will be 
activated by TNFa and IL-l/J in the central nervous system of patients with the 
AIDS dementia complex.





2.
Chapter 1 : Introduction

1.1. Initial considarations

The acquired immune deficiency syndrome and its etiological agent, the human 

immunodeficiency virus, are evolving into a pandemic of great proportions across many 

countries of the world and the number of those seropositive for the virus increases yearly. 

Ultimately infection produces fatal disease through the suppression of host immunity 

gradually debilitating the immune reactivity until it fails to control often otherwise 

innocuous pathogens. A number of opportunistic infections are prevalent amongst AIDS 

sufferers and immunosuppression also increases the occurrence of certain neoplasms. In 

addition, HIV-1 infection will manifest neurological abnormalities in many infected 

individuals producing a progressive and lethal dementia in the absence of, or in conjunction 

with symptoms of AIDS. The syndrome of neurological disease is known as the AIDS 

dementia complex (ADC) and is a significant factor in the morbidity and mortality of 

HIV-1 infection.

The broad spectrum of disease that HIV-1 can induce and the insidious nature with 

which it begins this process, usually causing no undue harm to the host for several years, 

indicate it possesses the means to finely control its life-cycle. The ability of the virus to 

evade destruction by host immunity through the establishment of latent infection is being 

gradually understood through the analysis of processes that control virus expression and 

transcription in the infected cell. Work in this area is central to the pathogenesis of HIV-1 

infection and provides insights into how HIV-1 subverts normal cellular control 

mechanisms. The furtherance of this research to include the AIDS dementia complex, is 

similarly important and examination of the regulatory mechanisms operating in neural cells 

is likely to be equally enlightening and may also contribute to the understanding of the 

pathogenesis of ADC.



Chapter 1 3

1.2. The human immunodeficiency virus type 1 and A IDS

Infection with the human immunodeficiency virus has the capacity to begin a slow 

and progressive disease of the immune system which ultimately leads to a state of profound 

immunodeficiency known as the acquired immune deficiency syndrome, AIDS. This state is 

characterized by the establishment of life-threatening opportunistic infections and 

neoplasms that invariably lead to the death of the infected individual (Fauci, 1988). The 

mean time between infection and the onset of immunodeficiency is variable but is likely to 

exceed five years and may be as long as IS years (Haseltine etal., 1990). HIV-1 ultimately 

follows a varied clinical course due to involvement of other infectious agents and cancers in 

the pathogenesis of AIDS but infection progresses through several distinctive stages.

U .l .  Asymptomatic infection

Initially HIV-1 may replicate efficiently in cells of the lymphoid system and produce 

an acute infection with mononucleosis-like symptoms and readily detectable plasma 

viremia. During this period, which may occur from three weeks to six months post-infection, 

the virus can infect more than 1% of circulating CD4+ T lymphocytes and becomes further 

disseminated to other cells of the body (Haseltine et al., 1990; Garcia-Bianco and Cullen, 

1991). HIV-1 has the propensity to infect many cell types of the lymphoid system, including 

bone marrow progenitor cells (Folks etal., 1988; Zucker-Franklin and Cao, 1989) and cells 

of the monocyte/macrophage lineage which serve as one reservoir of virus in tissues 

throughout the body (Gendelman etal., 1989). Moreover, HIV-1 may enter the central 

nervous system at this time (Haseltine, 1989). Subsequently cells productively infected with 

HIV-1 are subject to destruction and clearance by an effective humoral immune response 

and the amount of circulating virus declines as the levels of antiviral antibody increase, 

resulting in the loss of detectable free virus and a drop in the numbers of infected CD4+ 

lymphocytes (Garcia-Bianco and Cullen, 1991). The level of circulating CD4+ cells, which 

decline during acute infection as a result of the prolific and cytopathic replication of the
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virus, return to normal and the seropositive individual enters the asymptomatic period of 

infection (Redfield and Burke, 1988).

A completely asymptomatic period may continue for around one year and is 

commonly followed by symptoms of mild to severe lymphadenopathy for a variable period 

of typically three to five years (Redfield and Burke, 1988). During this time the patient's 

CD4 + T  cell count steadily declines as far more CD4 + T lymphocytes are lost than are 

infected with HIV-1 and they often reach a low or undetectable level within two or three 

years, whilst the number of HIV-1 infected cells in the circulation gradually increases 

(Koenig and Fauci, 1990).

l i i .  CD4+ lymphoid cell depletion

The circulatory CD4 + cells mostly represent the T helper cell (Tfo) population 

which are fundamental in the initiation of immune reactivity to T  cell dependent antigens 

(Roitt etal., 1985) and there is evidence for a number of mechanisms by which HIV-1 

mediates their selective loss. The prolonged latent period before the development of frank 

immune deficiency supports the view that direct cytopathic effects induced by viral 

replication are not responsible for the loss of significant numbers of CD4+ T cells and even 

the envelope glycoprotein-induced cell fusion of CD4+ cells observed in vivo in thymus and 

brain tissue is not likely to be a major cause of the additional depletion of uninfected 

Th cells characteristic of HIV-1 infection (Habeshaw and Dalgleish, unpublished 

manuscript; Ho etal., 1987). Free envelope glycoprotein, gpl20, can sensitize other 

uninfected CD4+ cells to cell killing by antibody dependent cellular cytoxicity and the 

actions of NKand Kcells (Tyler etal., 1989). Autoantibody production is common in 

HIV-1 seropositive individuals and persistently produced lymphocytotoxic antibodies to an 

unidentified surface antigen will cause the death of CD4+ Tcells (Strieker etal., 1987). 

Further mechanisms based on the induction of autoimmunity have been suggested due to 

gpl20 bound to CD4 mimicking the physiological interaction of major histocompatibility 

(MHC) class II antigens and CD4. This may produce a cross-reactive immune response to 

MHC class II-bearing cells, as well as an antiidiotypic response to CD4+ cells, leading to
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their elimination by mechanisms equivalent to graft versus host disease [GVHD] (Fauci, 

1988; Koenig and Fauci, 1990). Recent evidence also indicates that HIV-1 may encode a 

'super-antigen', examples of which cause the selective elimination of T cells expressing 

particular V/3-antigen receptors independent of their antigen specificity and this could also 

lead to Tj, cell impairment and depletion (Imberti et al., 1991).

Other immunosuppresive properties of HIV-1 infection can further contribute to the 

state of immune dysfunction caused by the loss of Th cells and are a consequence of 

individual viral gene products. The envelope glycoprotein gpl20 and specific peptide 

sequences from transmembrane protein gp41, as well as the transactivator protein. Tat, are 

all capable of inhibiting mitogen or antigen-induced proliferation of lymphocytes in vitro 

(Habeshaw and Dalgleish, unpublished manuscript; Ruegg et al., 1989; Viscidi et al., 1989).

12J . AIDS-related complex

The gradual decline in CD4+ T cell numbers correlates with the disease progression 

to the AIDS-related complex (ARC) in which symptoms of local immune suppression begin 

to become apparent and lymphadenopathy may become severe (Gurley and Groopman, 

1990). Furthermore the replicative potential of HIV-1 isolated from the host correlates 

inversely with the fate of circulating CD4+ lymphoid cells such that during the 

asymptomatic stage of infection virus isolates tend to grow slowly and to low titres in vitro, 

whereas during ARC or AIDS, virus isolates grow more rapidly and to high titres which can 

continuously replicate in CD4+ cell lines and often induce syncytia (Cheng-Mayer etal., 

1988). This situation equates with the high mutation rate that exists amongst RNA viruses 

(Dougherty and Temin, 1988) and is suggestive of HIV-1 evolution in vivo, a hypothesis 

further supported by the significant variation between the RNA sequence of circulating and 

cell-associated virus and integrated proviral DNA (Simmonds etal., 1991). The 

accumulation of mutations within the viral genome appears related to the gradual increase in 

viral cytopathology. The emergence of viral 'species' that escape host immune defences has 

been shown to relate directly to mutations within the neutralization domains of the 

envelope glycoprotein gpl20 (LaRosa etal., 1990). Therefore mutation in virus epitopes
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provides one mechanism for the persistence of HIV-1 after acute infection and would also 

be necessary for the 'super-antigen' mediated elimination of CD4+ cells (Imberti etal., 

1991).

1.2.4. Acquired immune deficiency syndrome

Progression to AIDS is a clinical definition based on the appearance of certain 

diseases or neoplasms that are at least moderately predictive of defective cell-mediated 

immunity by comparison with the spectrum of disease known to occur in an 

immuno-compromised host. These conditions are characterized by serious opportunistic 

infection with normally innocuous pathogens and neoplasms such as malignant lymphoma 

and Kaposi's sarcoma (Gurley and Groopman, 1990).

1.3. Th« A IDS d«m«ntia complex

13.1. Central nervous system involvement in HIV-1 infection

It has become dear that infection with HIV-1 is capable of causing a progressive 

syndrome of neurological disease that is not strictly dependent upon the state of 

immunosuppression in the infected individual (Price etal., 1988). Although the central 

nervous system is often the target for opportunistic infections in the later stages of ARC or 

in AIDS, which may potentiate general CNS pathology, the AIDS dementia complex 

(ADC) is by far the most common cause of neurological dysfunction (Elder and Sever, 

1988) and may occur at any stage of the disease (Fischer and Enzensberger, 1988).

Neuropsychiatric abnormalities are often the prevailing symptom of the later stages 

of HIV-1 infection and occur in 40 to 50% of adults and as many as 70 to 80% of children 

with clinically defined AIDS (Petito, 1988). Other reports suggest that around two thirds of 

HIV-1 seropositive patients will suffer significant manifestations of the AIDS dementia 

complex before the terminal phases of their disease (Price and Brew, 1988). Rarely, the 

sole indication of HIV-1 infection is the involvement of the central nervous system (Navia
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and Price, 1987; Wiley and Nelson, 1990). Furthermore at post mortem the majority of 

AIDS sufferers have signs of central nervous system damage (Petito et al., 1986).

The neurological syndrome associated with HIV-1 infection portrays a slow, 

progressive degeneration of cognitive and motor functions that does not remit (Moller 

et al., 1988). Frequently it begins with mild symptoms of impaired concentration and motor 

impairment that gradually increase in severity leading to the loss of major intellectual 

capacity and concomitant motor disability. Finally patients enter a nearly vegetative state 

that is terminal (Price and Brew, 1988). The time course of progression through the stages 

of ADC is variable and probably dependent on unknown host or viral factors (Wiley and 

Nelson, 1990) but significant deterioration can occur in the course of two months to more 

than one year (Moller et al., 1988).

l J i .  Invasion of the central nervous system

The time at which HIV-1 gains entry in to the central nervous system is unclear. 

Several reports document aseptic meningitis as the dominant symptom of HIV-1 infection 

at the time of seroconversion (Wiley and Nelson, 1990) and further evidence of intrathecal 

HIV-1-specific antibody synthesis (Gallo et al., 1988) and the regular recovery of virus from 

cerebro-spinal fluid [CSF] (Brew etal., 1988) suggest an early viral entry. However, as 

noted from studies on herpes simplex virus, viral meningitis seldom progresses to 

encephalitis and other factors must influence this progression (Wiley and Nelson, 1990). By 

analogy to another lentivirus, Maedi Visna, free virus could cross the blood brain barrier 

following replication in cells of the choroid plexus (Wigdahl, 1989). Alternatively a more 

widely accepted view is that HIV-1 may be carried across a compromised blood brain 

barrier by infected macrophages, possibly after damage caused by the early infection of 

brain capillary endothelial cells (Wigdahl, 1989; Wiley and Nelson, 1990).

1 J J .  Neuropathological change«

The major histopathological changes in the central nervous system associated with 

ADC fall into three groups of focal, diffuse or overlapping lesions (Budka, 1989).
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Focal changes are initially found in the cerebral white matter and less frequently in 

the grey matter, where prominent microgranulomatous foci of multinudeate giant cells and 

reactive astrocytes occur (Rostad etal., 1987; Budka, 1989). There is mild infiltration by 

lipid-laden macrophages and lymphocytes and as the disease progresses these abnormalities 

are found more often in the grey matter (Petito, 1988). The formation of multinudeate 

giant cells with accompanying cell infiltration is often incorrectly referred to as sub-acute 

encephalitis.

Vacuolar myelopathy is found frequently during pathological examination of the 

CNS and resembles the spongiform changes seen in unconventional encephalopathies such 

as CJD and BSE (Rostad et al., 1987). The earliest lesions consist of intramyelin swelling 

causing vacuolation, whilst severe cases show extensive vacuolation and evidence of gross 

demyelination and axonal loss with atypical readive gliosis (Petito et al., 1986; Wiley and 

Nelson, 1990). Vacuolar myelopathy is most regularly observed in tissues of the spinal cord 

where it is often intense and the severity often correlates with the symptoms of spinal cord 

disease, such as spastic paraparesis. Additionally, the regions of the brain affected by 

vacuolar myelopathy, and the extent of damage also relate frequently to the symptoms of 

dementia (Petito, 1988; Wiley and Nelson, 1990). These lesions are further notable by the 

usual minimal inflammatory response in which only lipid-laden macrophages are observed 

occasionally around sites of vacuolation, with the cellular infíltrate containing mainly 

macrophage elements otherwise restricted to the perivascular regions (Wiley and Nelson, 

1990). The occurrence of vacuolar myelopathy can not be predicted by the presence of 

multinudeate giant cell encephalitis and the two may occur independently or concurrently, 

although multinudeate giant cell formation is found more frequently in patients with severe 

vacuolar myelopathy (Petito et al., 1986).

Radiological methods of examining CNS damage detect some gross changes during 

the course of the AIDS dementia complex. Computed tomography (CT) shows a rise in 

brain atrophy and ventricular enlargement with an increased signal from white matter as 

the disease progresses (Price et al., 1988) and magnetic resonance imaging (MRI) studies 

show more frequent abnormalities in additional regions of the CNS not clinically
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implicated by the symptoms and gives evidence of inflammatory changes (Wiley and 

Nelson, 1990). Furthermore the degree of cerebral atrophy as judged from MRI correlates 

with the symptoms and progression of ADC (Levin et al., 1990).

Diffuse damage is evident in the cerebral and cerebellar white matter and shows 

three characteristic traits of reactive gliosis, demyelination and disseminated perivascular 

infiltration by cells of the macrophage lineage often accompanied by multinudeate giant 

cells which also stain for macrophage-specific markers (Budka, 1989). This is most 

accurately described as a progressive diffuse leukoencephalopathy (PDL) as it shows 

evidence of an intensifying, generalized degeneration of the white matter without gross 

inflammation (Rostad et al., 1987; Budka, 1989).

0 .4 .  Cellular localization of HIV-1 in the CNS

i). Identification o f HIV-1 within cells o f the central nervous system

Resident cell types of the central nervous system can be divided into two categories 

of neuronal and glial cells. Neuronal cells are obviously involved in the transmission of 

nervous signals whilst the glia can be further classified into astrocytes and oligodendrocytes. 

Astrocytes perform many homeostatic and immunological functions within the CNS (see 

Section 1.6) and the primary role of oligodendrocytes is to form the myelin sheaths around 

the axons of neuronal cells. A third class of cell within the CNS, the microglia perform a 

role as the macrophage of the brain (see Section 13.4. ■■).

Following the close association between neurological dysfunction and HIV-1 

infection many studies were undertaken to determine whether direct infection of the 

central nervous system was the underlying cause of the AIDS dementia complex. Shaw 

etal., (1985) were the first to report that integrated and non-integrated HIV-1 sequences 

were present in the brains of patients suffering from ADC and the abundance of viral 

nucleic acids often exceeded that recovered from lymphoid tissues, such as lymph nodes 

and spleen.

Ultrastructural examination of brain tissue sections from three patients with ADC 

demonstrated virus particles within multinudeate giant cells and astrocytes (Epstein etal..
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1984/5; Clague et al., 1986), and, although none were detected in neurons or 

oligodendrocytes, Gyorkey etal. (1987) described HIV-1 virions in oligodendrocytes and 

again in astrocytes. Further analysis by in situ hybridization confirmed the presence of 

HIV-1-specific nucleic acid sequences in up to 15% of multinudeate giant cells, and 

immunocytochemical studies indicated that these cells were composed of macrophage-like 

cells. No neural cell markers were identified on giant cells by staining with specific antisera 

(Koenig etal., 1986). The major cell type supporting HIV-1 replication was, by 

ultrastructural (Meyenhofer etal., 1987) and immunocytochemical (Vazeux etal., 1987) 

criteria, macrophage in origin (encompassing microglia and infiltrating macrophages) and 

HIV-1 RNA and virus particles were frequently detected in these cells around regions of 

demyelination (Koenig etal., 1986). Another report confirmed that HIV-1 infection was 

predominantly localized to infiltrating mononuclear cells and multinudeate giant cells. In 

this study Wiley et al. (1986) also showed HIV-1 infection occurred significantly in capillary 

endothelial cells by immunocytochemistry and in situ hybridization techniques. In brain 

tissue from the most severe case of HIV-1 encephalopathy neurons and astrocytes also 

contained HIV-1 antigens (Wiley etal., 1986). Other investigations have confirmed this less 

frequent infection of neural cells and shown virus-spedfic antigens in astrocytes, neurons 

and oligodendrocytes (Stoler et a!., 1986). In situ hybridization also demonstrated HIV-1 

specific RNA and DNA in macrophage-like cells and to a lesser extent in glial cells and 

occasional neurons (Gosztonyi et al., 1988).

Macrophage-derived cells are most frequently found to harbour HIV-1 which, from 

the presence of virus particles, viral DNA and RNA support active replication in the brain 

(Wiley et al., 1986) and neural cells apparently form a site of less frequent HIV-1 infection. 

Whether the infrequent detection of neural cell infection noted by some investigators 

represents limitations in the sensitivities of the techniques employed or a true low level of 

infection remains to be determined (personal communication. Dr. C. A. Wiley, Department 

of Pathology, University of California, San Diego, La Jolla). A latent infection at low copy 

number may well be below the threshold of detection of the methods employed espedally 

with the sampling techniques available for human tissues (Wiley and Nelson, 1990).
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ii). Macrophage and microglia

The origin of the macrophage-like cells infected with HIV-1 in the CNS of AIDS 

encephalopathy is unclear and complicated further by the long-held controversy over the 

existence of a distinct lineage of microglia. The most widely held view is that microglia, the 

brain-specific macrophage, are derived from monocytes entering the CNS during the late 

embryonic and early post-natal periods (Perry and Gordon, 1989). There is no convincing 

evidence to demonstrate the existence of a population of cells in the CNS that have the 

morphology of microglia but are derived from the neural ectoderm. Monocytes and 

microglia share many antigens and there appears to be no definitive immunocytochemical 

distinctions between them (Perry and Gordon, 1989). Vazeux etal. (1987) identified the 

majority of HIV-1 infected mononuclear cells as microglia on the basis of lacking CD14 

and CD4 surface antigens, whilst other infected cells were CD14+ and CD4+ and 

categorized as macrophages of haematogeneous origin. Experimental animal systems have 

shown that expression of the CD4 antigen on microglial cells is not constitutive and is 

absent unless induced by inflammation or raised levels of CSF protein (Peny and Gordon, 

1989). In vitro studies on HIV-1 replication in microglial cells isolated from normal human 

brain demonstrated these cells to be CD4+ which served also as a receptor for virus 

infection (Jordan etal., 1991). However, these cultures of microglial-like cells may equally 

be contaminating blood-derived macrophages on the basis of CD4 expression. Other in vitro 

studies demonstrated that CD4', CD14\ CD68'  and Ki-M8* microglial cells (monocytes 

were positive for all four antigens) could not be infected with either monocytropic or 

lymphotropic HIV-1 (Peudenier etal., 1991). Further work is needed to define the factors 

which induce CD4 expression on microglial cells and whether amongst these AIDS 

encephalopathy can render them targets for the viral infection.
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U i .  Infection of neural cells by HIV-1 in vitro

i). Cellular tropism of HIV-1

HIV-1 becomes adapted in vitro to the two main lymphoid cell types that it infects 

such that virus isolated from T lymphocytes replicates poorly in monocytes, and virus 

isolated from monocytes, although capable of replicating in T  lymphocytes quickly loses the 

ability to re-infect monocytes after passage in lymphocytes (Gendelman etal., 1989; 

Meltzer etal., 1990a). The characteristics of HIV-1 replication also differ; in lymphocytes 

the majority of virus strains replicate to high titre and cause cytopathic effect (CPE) 

dependent on the interaction of CD4 and gpl20, whereas in monocytes only a few strains 

follow this course and HIV-1 replication is usually limited to transient CPE followed by low 

levels of replication with little release of infectious particles or CPE (Cheng-Mayer and 

Levy, 1990). Macrophage-adapted strains are substantially less cytopathic in these cells and 

infected macrophages are likely to form a reservoir of HIV-1, increasing persistence and 

virus spread (Gendelman etal., 1989; Meltzer etal., 1990a). A similar phenomenon is 

observed with brain-derived isolates which show distinct macrophage-tropism with reduced 

cytopathogenicity (Cheng-Mayer et at., 1989).

Many isolates of HIV-1 will productively infect glioma (Dewhurst et al., 1987; Weber 

etal., 1989; Keys etal., 1991), astrocytoma (Cheng-Mayer et al., 1987; Harouse et al., 1989) 

and neuronal cell lines (Li etal., 1990; Shapshak etal., 1991) and the virus usually exhibits 

low levels of replication and limited or absent cytopathic effects. Most studies have used 

HIV-1 propagated in T  cells, which on occasion required high multiplicity of infection to 

establish viral replication in neural cell types (Weber etal., 1989). Macrophage-tropic 

isolates showed similar persistent non-cytopathic replication in neural cell lines (Keys et al., 

1991). In some glial cells lines HIV-1 replication is more abundant and analogous to the 

chronic infections observed in lymphocyte and macrophage cell lines (Cheng-Mayer et al., 

1987; Dewhurst et al., 1988).

Primary human glial cell cultures infected with HIV-1 initially produce high levels of 

antigen and release considerable amounts of infectious virus until both progressively 

subside and the infection enters a persistent, latent phase where viral antigens are often
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undetectable (Christofinis et al., 1987; Tomatore et al., 1991). During the productive stages 

of replication HIV-1 antigens have been localized to astrocyte cells (glial fibrillary acidic 

protein (GFAP) positive), and enriched populations of primary human GFAP+ cells also 

support HIV-1 replication with very little cytopathic effect (Rytik et al., 1991).

it). Neural cell specific receptors for HIV-1

The expression of CD4 was apparent at low levels on some glial (Dewhurst et al., 

1987) and neuronal cell lines (Shapshak etal., 1991) where it was required for infection. 

But many glial and one neuronal cell line did not express detectable levels of CD4 antigen 

or mRNA (Harouse et al., 1989; Weber et al., 1989; Li et al., 1990) and their infection was 

not impeded by monoclonal antibody to CD4 (Harouse et al., 1989; Weber et al., 1989) or 

soluble recombinant CD4 (Li et al., 1990). Furthermore, transfection of a CD4 expression 

vector in to a susceptible glial cell line did not augment virus infection (Chesebro et al., 

1990). Entry of HIV-1 in to these cells is not dependent on expression of the CD4 antigen 

and in some examples where expression of CD4 has been demonstrated infection appears 

to occur by other means (Weber etal., 1989). HIV-1 infection of primary human glial cells 

may also operate via alternative mechanisms as Christofinis etal. (1987) failed to detea 

surface expression of CD4 by immunocytochemistry.

For cells of lymphoid origin the CD4 antigen is the receptor by which HIV gains 

entry into the cell (Haseltine, 1990). However, many neural cells capable of infeaion lack 

CD4 and this implies there are other receptors for HIV. The use of alternative receptors is 

not restriaed to cells of neural origin. HIV-1 will infea CD4* muscle (Clapham et al., 1989) 

and fibroblastoid cell lines (Tateno etal., 1989) where infeaion is unaffeaed by 

monoclonal antibody to CD4 or soluble recombinant CD4. Although virus entry could be 

non-specific and result from endocytosis or d irea fusion of the plasma membrane perhaps 

due to potential fusiogenic regions in the envelope protein gp41 (Gonzalez-Scarano et al., 

1987) other candidate receptors have been suggested.

Studies on whole brain seaions show struaures immunologically similar to CD4 in 

many locations which can interaa with gpl20 and microscopically were observed over
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neurons and glial cells (Pert etal., 1988a). CD4 mRNA was also present in brain 

homogenates from the same areas that express CD4 antigen (Maddon etal., 1986). 

Therefore in vivo CD4 may permit HIV-1 infection of the CNS, in agreement with the 

CD4-dependent infection of some neural cells. Nervous tissue also contains receptors for 

vasoactive intestinal peptide, VIP, which shares homology with a discrete region of gpl20, 

that in the form of a synthetic peptide [peptide T] is biologically active (Pert et al., 1988a) 

and can interact with CD4 on lymphoid cells (Brenneman et al., 1988). The distribution of 

VIP receptors in brain is remarkably similar to CD4 (Pert et al., 1988a) and VIP is a potent 

inhibitor of peptide T  binding to CD4 (Pert et al 1988b). VIP competes with the interaction 

of gpl20 and neuronal cells in an analogous way to the competition by anti-CD4 

monoclonal antibodies (Brenneman et al., 1988). The VIP receptor may therefore act as a 

secondary receptor for HIV in neural cells.

The existence of a distinct neural cell-specific receptor for HIV-1 is indicated by two 

CD4‘ neural cell lines, of neuronal and glial origin, in which infection can be inhibited by 

the antisera to galactoside-ceramide (GalC). This is a membrane-bound glycolipid 

identified originally on the surface of oligodendrocytes and Schwann cells where it could 

also serve as a receptor for HIV-1 (Harouse et al., 1991).

U .6. Pathogenesis of the AIDS dementia complex

i). Mechanisms o f nervous system dysfunction

There is a degree of correlation between the locations of pathological lesions noted 

in HIV-1 encephalopathy and the detection of HIV-1 infected cells (Koenig etal., 1986; 

Wiley et al., 1986) and a relationship exists between the affected structures of the brain and 

the symptoms of AIDS dementia, especially in patients who suffer a more progressive and 

severe clinical course (Price et al., 1988). But there is believed to be insufficient detectable 

virus in the CNS to account for the extent of neurological dysfunction (Wiley and Nelson, 

1990) and no direct replication-associated pathology within neuronal or glial cells (Wiley 

etal., 1986; Koenig etal., 1986). Therefore the body of evidence points to an indirect
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mechanism of neuronal dysfunction (Wiley et al., 1986; Price et al., 1988; Elder and Sever, 

1988).

Such mechanisms of indirect neuronal damage may result from the actions of 

several viral gene products, particularly the envelope glycoprotein gpl20. The binding of 

free gpl20 to neurons in culture causes their death via an interaction with receptors that 

also bind the neurotrophic factor, VIP which is implicated in neuronal survival (Brenneman 

et al., 1988). Astrocytic cells also possess receptors for VIP where gpl20 may also exert 

deleterious effects (Wilkin and Cholewinski, 1988). A further region of gpl20 shows 

homology with another neurotrophic factor, neuroleukin, which promotes the growth of 

motor neurons in vitro (Gurney et al., 1986). However, the suggestion of a similar 

interaction with neuroleukin receptors contributing towards the pathogenesis of ADC was 

questioned following the discovery that neuroleukin is probably an enzyme, phospohexose 

isomerase (Chaput et al., 1988). Intracerebral inoculation of gpl20 reduces cerebral glucose 

metabolism globally in experimental animals (Kimes era/., 1991) and parallels the clinical 

findings of altered glucose metabolism particularly in the sub-cortical regions of the brain 

that are targets of HIV-l-induced neuropathology (Price etal., 1988). Furthermore, the 

reduction in cerebral glucose metabolism by gpl20 was greatest in regions of the brain 

known to be rich in receptors for VIP (Raymon et al., 1989). Current evidence indicates the 

neurotoxic potential of gpl20 may operate via the mis-regulated increase in intracellular 

calcium in neurons (Dreyer et al., 1990).

The Tat protein of HIV-1 is toxic to neurons, glioblastoma and neuroblastoma cell 

lines in vitro and intracerebral injection of Tat is lethal to mice. It is suggested that the 

cationic properties of Tat protein are responsible for alterations in cell membrane 

permeability which mediate toxicity (Sabatier et al., 1991). Other studies have shown that 

Tat is secreted from expressing cells (Helland et al., 1991) and therefore the close proximity 

of cells actively replicating HIV-1 could promote neuronal damage.

By analogy with the proposed means of Tj, cell depletion in systemic HIV-1 

infection, powerful immunological mechanisms may operate in brain tissue causing the 

elimination of uninfected neural cells. Autoantibodies reactive to brain antigens are
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present in some AIDS patients and patients suffering ADC show a much greater frequency 

in their production (Kumar et al., 1989). Astrocytes share the immunodominant epitope of 

the transmembrane protein gp41 and astrocyte-reactive antibodies were found in the CSF 

of some AIDS patients with neurological complications (Yamada etal., 1991). It has also 

been noted that monoclonal antibodies directed against HIV-1 plTWf recognize uninfected 

astrocytes (Parravicini et al., 1988). The perturbation of astrocyte function could profoundly 

influence neuronal cells and the integrity of the blood brain barrier (Yamada etal., 1991). 

Infection of capillary brain endothelial cells (Wiley et al., 1986) and astrocyte proliferation 

[reactive gliosis), particularly the hypertrophy of astrocyte foot processes may account for 

structural changes noted in the capillary walls and may compromise the blood brain barrier 

(Taruscio et al., 1991). This would be expected to lead to vasogenic oedema and consequent 

neurological dysfunction (Wiley and Nelson, 1990).

Immunologically activated and HIV-1 infected monocytes will produce cytokines 

within the CNS, particularly TNFa, IL-1 and IFNa (Macé et al., 1989; Meltzer et al., 1990a). 

TNFa is cytotoxic to oligodendrocytes and, alone or with IL-1, leads to their degeneration 

and demyelination (Robbins et al., 1987; Hofman, 1989). IFNa will induce MHC class I 

antigen expression on astrocytes in culture (Borgeson et al., 1989) and the release of IFN7 

from activated lymphocytes will further amplify immunological reactions through the 

induction of both class I and II MHC antigens (Hofman, 1989) [see also Section 1.6.1). IL-1 

is also the cause of astrocytic proliferation (Gullian and Lachman, 1985) and with IFN7 

promotes the release of a TNF-like factor from astrocytes (Chung and Benveniste, 1990) 

[see also Section 1.6.2). Therefore the actions of cytokines within the central nervous 

system may account for several of the pathological changes observed in the CNS occurring 

in ADC.

HIV-1 infection of neural cell lines, and more prominently of primary glial cell 

cultures, would suggest that the general failure to detect HIV-1 nucleic acids or antigens in 

resident neural cells in AIDS encephalopathy (see Section 1.3.4) is a consequence of the 

latent or low level of replication observed in vitro. Indeed polymerase chain reaction (PCR) 

was required to detect HIV-1 infection in foetal CNS tissue from some seropositive
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mothers (Lyman etal., 1990). Therefore, latently infected neural cells and particularly 

GFAP+ cells may form another important reservoir of the vims (Tomatore etal., 1991). 

Moreover, infection of glial and neuronal cells by HIV-1 could contribute to the 

pathogenesis of the AIDS dementia complex due to direct antagonism of cell function 

(Price et a!., 1988; Li et al., 1990; Wiley and Nelson 1990; Cheng-Mayer and Levy, 1990).

1.4. The human immunodaficiancy virua typa 1

1.4.1. Virus and genetic structure

i) . The virion

HIV-1 is a retrovirus of the sub-family lentivirinae. Morphologically viruses of this 

class have an elongated and tapered cylindrical nudeocapsid surrounded by a protein 

matrix internalized within a lipid bilayer containing transmembrane and surface viral 

glycoproteins (see Figure 1.1, pl9). The nudeocapsid contains two copies of the viral 

genome, consisting of 9.2 Kb of single-stranded RNA, in association with the reverse 

transcriptase, protease and integrase proteins common to all retroviruses (Gallo and 

Montagnier, 1988), and an additional virus-spedfic protein, Vpr (Cohen et al., 1990a).

ii) . Gag, pol and env

In common with "classical" retroviruses the RNA genome of HIV-1 contains the 

typical gag, pol and env open reading frames that encode the vims structural proteins, the 

polymerase, protease and integrase functions and the membrane glycoproteins, 

respectively. However, the genetic structure of HIV-1 is more complex with an additional 

six genes located in different overlapping reading frames that produce non-stmctural 

regulatory proteins. A genetic map of the HIV-1 proviral DNA genome is represented in 

Figure 1.2, p28.

The primary translation product of the gag gene, p55, is proteolytically cleaved by 

the viral protease to produce four polypeptides, p24, p i7, p7 and p9 which form the 

structural proteins of the capsid and matrix in the mature vims particle (di Marzo Veronese
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et al., 1988; Haseltine et al., 1990). The major structural component of the nucleocapsid is 

p24. The matrix protein, pl7, forms the outer surface of the matrix and possibly interacts 

with the lipid bilayer through myristylation at its NH2 terminus. The gag proteins p7 and p9, 

by analogy to other retroviruses, are thought to bind the viral RNA [see Figure 1.1) 

(Haseltine etal., 1990). The reverse transcriptase, protease and integrase functions are
D it

encoded by4 polymerase gene. These are produced from a gag-pol fusion protein which 

arises by a translational frame-shift and is subsequently proteolytically processed to 

generate distinct polypeptide species. In addition, the reverse transcriptase protein 

possesses a ribonucléase H-like function also essential for the conversion of the viral 

genome into the DNA proviral form (Haseltine et al., 1990).

The envelope mRNA is translated to form the precursor molecule, gpl60 which is 

post-translationally modified to produce the external, gpl20, and transmembrane, gp41, 

glycoproteins of the virion (see Figure 1.1). Fully processed gpl20 is heavily glycosylated 

and has more than 25 potential sites for N-linked glycosylation in the external region of the 

protein. The transmembrane protein, gp41 is also glycosylated though to a lesser extent 

(Haseltine et al., 1990).

The gpl20 protein binds to the CD4 antigen with high affinity and this molecule 

serves as a cellular receptor for HIV-1 (Matthews etal., 1987). The CD4 antigen is 

expressed abundantly on the surface of T  lymphoid cells of the helper subclass (Tfo) and to 

a lesser extent on monocytes, macrophages and Langerhans cells. The interaction of gpl20 

with CD4 is the major determinant of the tissue tropism for HIV-1 (Haseltine etal., 1990), 

although CD4 is not the sole receptor for HIV-1 (see Section 1.3.5. ii.).

iii). Accessory proteins

The genome of HIV-1 contains numerous open reading frames encoding 

non-structural proteins which perform a variety of functions that influence or control the 

complex life cycle of the virus. Several proteins. Tat, Rev and Nef regulate viral gene 

expression and are discussed in detail in Section 1.5.2, whilst Vif, Vpr and Vpu influence 

later stages in the replication of HIV-1.



Figure 1.1. S tru ctu re o f th e  hum  an 
im m u n o d efic ien cy  v iru s type 1
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Experiments on the in vitro infection of CD4+ cells with HIV-1 suggest that 

expression of the Vif protein, which remains in the cytoplasm of the infected cell, enhances 

the infectivity of the progeny virus particles (Haseltine et al., 1990). Vif reportedly has a 

cysteine protease activity and modifies the processing and conformation of the env protein 

(Guy era/., 1991).

Disruption of the vpu open reading frame results in the accumulation of cell surface- 

associated viral proteins and a decline in the release of progeny virus from infected cells, 

indicating that Vpu would appear to influence steps in the maturation of HIV-1 (Klimkait 

et at., 1990). Recently Vpu has been shown to enhance the processing of the envelope 

precursor gpl60 in CD4+ cells, where in the absence of Vpu the formation of intracellular 

complexes between CD4 and gpl60 severely disrupts the production of gpl20 (Willey et al., 

1992).

1.5. Control of HIV-1 replication

1.5.1. Latency

During the long asymptomatic period before the onset of life-threatening disease, 

HIV-1 clearly pursues strategies that avoid immune elimination and lead to the 

establishment of a persistent infection within susceptible cells (Fauci, 1988). From the 

analysis of infected Th cells in vivo, it was found that around ten-fold more harboured 

latent proviral DNA than expressed detectable viral mRNA or protein (Garcia-Bianco and 

Cullen, 1991). Moreover, even in cells expressing viral antigens, virus replication appears to 

be controlled tightly, with the release of few infectious particles and little cytopathology 

(Haseltine etal., 1990). In tissue culture HIV-1 has been found to establish a latent 

infection by two distinct pathways which are believed to function in vivo.

The infection of resting Th cells is non-permissive for replication unless the cells are 

stimulated to leave the G0 phase of the cell cycle (Rosenberg and Fauci, 1989). However, 

quiescent cells are still targets for virus binding and entry but reverse transcription is 

inefficient and there is a block on proviral integration (Garda-Bianco and Cullen, 1991).
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Yet, from in vitro experiments it appears that the extrachromosomal HIV-1 genomes 

remain viable for periods of days to weeks and may provide a reservoir of viral sequences 

(Cullen and Greene, 1989). This hypothesis was borne out by the direct examination of 

lymphocytes from asymptomatic individuals where full length HIV-1 DNA was found to 

remain episomal in a large proportion of resting lymphocytes and these genomes retained 

the ability to integrate upon cellular activation (Bukrinsky etai., 1991). In monocytes there 

is no similar restriction on viral replication and productive HIV-1 infection can occur 

independent of cellular DNA synthesis prior to mitosis (Weinberg et al., 1991).

Activation of CD4+ lymphocytes is normally transient in vivo and when cellular 

proliferation ceases cells re-enter G0 and it is suggested that this may initiate a second 

period of latency in the form of an integrated but quiescent provirus (Fauci, 1988: Cullen 

and Greene, 1989). Monocytes in vitro will similarly maintain latent proviral DNA without 

productive replication or the release of virus (Meltzer et al., 1990a). The maintenance of 

latency and re-activation of virus replication are, for the most part, controlled by a complex 

interplay between viral regulatory proteins and host cell factors with the long terminal 

repeat and other regulatory regions of the viral genome.

1.52 . The regulatory genes of HIV* 1 and viral replication

i). Viral gene expression

Primary RNA transcripts from the HIV-1 genome are subject to a complex series of 

splicing events that regulate the expression of structural and non-structural gene products 

(Felber etai., 1989). During the early phases of HIV-1 replication, in the absence of 

significant Rev function, unspliced and singly spliced RNAs accumulate in the nucleus but 

only the short (2 kb) multiply-spliced mRNAs reach the cytoplasm and lead predominantly 

to the expression of the regulatory genes, tat, rev and nef (Cullen and Greene, 1989). The 

gag and pol structural genes of the virus are expressed only from unspliced (9.2 kb) mRNA 

that serve also as HIV-1 genomes, and env from singly-spliced (4.3 kb) mRNAs (Pavlakis 

et al., 1991). These mRNAs are dependent on the interaction of Rev and the cu-acting 

rev-responsive element (RRE) located within the envelope gene for their expression and in
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the early phases accumulate in the nucleus f Emerman et al., 1989). In the later stages of 

virus replication full length mRNAs begin to appear due to the action of Rev which 

controls processes leading to the cytoplasmic appearance of unspliced or singly-spliced 

RNAs containing the RRE (Cullen and Greene, 1989). In doing so Rev coordinate^ 

represses its own synthesis and that of the other regulatory proteins Tat and Nef (Felber 

et al., 1990). Although tat is also encoded by a singly-spliced mRNA containing the RRE 

(Pavlakis et al., 1991). Thus RNA synthesis switches to the production of viral genomes and 

structural proteins (Cullen and Green, 1989).

ii) .  re v

The rev gene product is a 19 Kd phosphoprotein (Cochrane et al., 1989) located 

primarily in the nucleolus of infected cells and is encoded by several multiply-spliced 

mRNAs (Pavlakis etal., 1991). Rev action requires binding to the RRE which is a highly 

structured, stem loop RNA element of 250 nucleotides in the central region of the env 

coding sequence [see Figure 1.2, p28] (Sharp etal., 1991). The function of Rev appears to 

depend on the relatively inefficient process of splicing affecting HIV-1 mRNAs and the 

interaction of splice sites with the cellular splicing machinery being sufficient to retain 

transcripts in the nucleus. The interaction of Rev with the RRE either regulates the 

formation, or promotes the dissociation of splicesome-RNA complexes allowing unspliced 

precursor transcripts to be transported to the cytoplasm (Chang and Sharp, 1989). A report 

that a  HIV-1 intron regulated by Rev is stabilized by forming a complex with U1 snRNP, a 

splicesome component, would also support this hypothesis (Lu et al., 1990). Furthermore, 

the additional interaction of cellular proteins and the RRE might suggest that Rev is 

interrupting a normal cellular process (Wong-Staal et al., 1991).

Other regulatory sequences, the cu-acting repressive sequences (CRS) located in the 

gag, pol and env open reading frames serve to repress expression of the structural genes and 

contribute to the retention of these RNAs within the nucleus through a mechanism that can 

be alleviated by Rev in the context of the RRE (Rosen etal., 1988; Cochrane et al., 1991). 

These are thought to represent additional sites that promote recognition with components
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of the splicing machinery (Sharp et al., 1991; Maldarelli et al., 1991). Indeed cellular factors 

have been found to interact with CRS elements and monoclonal antibodies against specific 

splicing components interfere with complex formation (Cochrane etal., 1991). However, 

there is a body of evidence from the analysis of CRS elements in heterologous systems that 

suggests Rev also acts to improve the translational capacity of RRE-containing mRNAs 

(Arrigo&Chm,1991; Cochrane et al., 1991).

iii). tat

The tat gene is encoded by three multiply-spliced and one singly spliced transcripts. 

Its expression is believed to be independent of Rev action during early events and 

dependent on Rev in the later phases of replication (Cullen and Greene, 1989; Pavlakis 

et al., 1991). Tat is a 14 Kd nuclear protein located predominantly in the nucleolus (Kalland 

et al., 1991) which functions as a powerful transactivator capable of raising viral mRNA and 

protein expression by over 100-fold and, like rev, is required for viral replication (Sharp and 

Marciniak, 1989). The specificity of Tat-mediated transactivation resides in the 

transactivation response element, TAR, which is positioned from nucleotides -17 to +80 

(relative to the start o f transcription) and is located at the S' termini of all HIV-1 

transcripts. The TAR RNA sequence is orientation and positionally dependent and forms a 

stable base-paired stem-loop structure that specifically binds Tat at a bulge region located 

just below the hairpin loop (Dingwall et al., 1990).

Transactivation by Tat increases the levels of steady-state RNA from the HIV-1 

LTR by around 20-fold and further enhances the translational capacity of the mRNA S-fold 

(Cullen, 1986; Sharp and Marciniak, 1989). However, the primary function of Tat is to 

stabilize the elongation of transcripts from the LTR, the rise in the rate of transcription 

initiation is believed to  be a secondary effect (Cullen, 1990). The HIV-1 LTR is an active 

but relatively inefficient promoter in that the majority of nascent transcripts terminate 

within SO to 100 bp of the cap site, yet in the presence of Tat the proportion of transcripts 

which proceed and result in a full length polyadenylated mRNAs significantly increases 

(Ratnasabapathy et al., 1990). The initiation complexes become more processive in the
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presence of Tat and raises the proportion of full length transcripts without greatly affecting 

the total number (Ratnasabapathy et al., 1990; Sharp et a!., 1991). Further in vitro analysis 

of transcription from LTR-linked templates of varying length indicates that two forms of 

initiation/elongation complexes assemble on the HIV-1 LTR which are either more or less 

processive and Tat functions to increase the ratio of the more processive type by 10-fold 

(Marciniak and Sharp, 1991).

Cellular factors are also implicated in the control of transactivation by Tat 

(Newstein et al., 1990) and several RNA-binding proteins have been detected that interact 

directly with TAR (Marciniak eta!., 1990; Gatignol etal., 1989; Waterman et al., 1991a). 

Interestingly, the binding of individual proteins has been demonstrated to both the hairpin 

loop and the Tat-binding site and cellular factors appear^bind in conjunction with, or in 

competition against Tat (Waterman eta!., 1991a; Wu eta!., 1991). Furthermore one 

protein, TRP-185, which specifically interacts with the Tat-binding bulge region will 

activate transcription from the LTR in vitro (Wu et al., 1991). This, together with the data of 

discussed above further suggests that Tat manipulates a cellular process (of transcriptional 

elongation) that is part of a more widely regulated process in mammalian cells than 

previously anticipated (Marciniak and Sharp, 1991).

Tat may also exert an affect on the translational capacity of mRNAs through a direct 

interaction with TAR such that efficient translation of TAR-containing mRNA requires 

exposure to Tat within the nucleus (Braddock et al., 1989). This finding has gone largely 

unexplained, and its relevance difficult to assess since experiments were performed by 

microinjection of Xenopus oocytes.

iv). Regulation o f gene expression by TAR

The interferon-induced p68 kinase is induced and activated by the double stranded 

RNA that forms the TAR element of HIV-1 mRNAs (SenGupta and Silverman, 1989) and 

this in turn enhances phosphorylation of eIF-2 and represses translation (Laurence, 1990). 

Many RNA viruses have evolved strategies to inactivate or sequester p68 kinase to avoid its 

detrimental effects on viral protein expression and HIV-1 is no exception. The p68 kinase
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binds TAR RNA with high affinity at sites on TAR distinct from those for Tat and 

TAR-binding factors and it is suggested that this mechanism may contribute to limit the 

expression of viral RNAs in latently infected cells and regulate the levels of regulatory 

proteins (Roy etal., 1991). Conversely, in actively replicating cultures p68 kinase levels are 

decreased and the actions of Tat may account for the observed repression (Roy et al., 

1990). Another interferon-regulated enzyme 2*-5’ oligoadenylate synthetase is also induced 

by TAR RNA (SenGupta and Silverman, 1989) and leads to the activation of the single 

strand specific RNAse L (Laurence, 1990). Similarly Tat has been reported to block this 

activation (Schroder et al., 1990). The production of short stable RNA transcripts from the 

HIV-1 LTR also maps to the TAR element and these may bind Tat keeping it functionally 

inactive by removing it from the transcription unit (Ratnasabapathy et al., 1990). Therefore 

the HIV-1 TAR sequence may negatively regulate viral protein expression and aid the 

maintenance of latency.

v).nef

The nef gene encodes two closely related proteins of 25 and 27 Kd by the alternative 

use of a downstream internal methionine codon for the initiation of translation (Kaminchik 

et al., 1991). The majority of Nef p27 is myristylated at its NH2-terminus and located mainly 

perinudearly in the Golgi complex and also at the nuclear membrane (Ratner et al., 1991; 

Ovod et al., 1992). Nef p25 lacks the myristylation residue and is consequently restricted to 

the cytoplasm (Kaminchik et al., 1991). The alternative initiation codon (position 20) is not 

universally conserved amongst all HIV-1 isolates, yet the two forms of Nef occur in strains 

where it is absent (Guy et al., 1990a).

Expression of Nef is from multiply-spliced mRNAs and is therefore independent of 

regulation by Rev (Pavlakis et al., 1991). In addition to myristylation, Nef is phosphorylated, 

capable of autophosphorylation, and in vitro possess weak GTP-binding and GTPase 

activities which indicated a certain degree of homology to G proteins and implies a role in 

signal transduction (Guy et al., 1987; Guy et al., 1990a).
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The precise function of Nef has still ro t been determined. Early reports indicated 

that Nef served to down-regulate transcription from the LTR up to 10-fold in vitro and the 

effect required a specific region of the LTR, the negative regulatory element [NRE; see 

Figure 1.2] (Ahmad and Venkatesan, 1988). In vivo RNA accumulation was similarly 

reduced and viral replication decreased 30- to SO-fold, although these investigators mapped 

the LTR sequences involved to  a position over the cap site (Niederman et al., 1989). 

Studies on the interaction of DNA-binding proteins supported the data of Ahmad and 

Venkatesan (1988) who later confirmed their original work (Maitra etal., 1991), and 

indicated that Nef operated at the level of transcription, as a cellular activation associated 

factor that bound to the NRE was found to be down-regulated in Nef expressing cells (Guy 

et al., 1990b). Yet, work presented by other groups disputed both the in vivo and in vitro 

findings and concluded that Nef had no negative function on viral transcription or 

replication (Kim et al., 1989; Hammes et al., 1989). Careful manipulation of proviral DNA 

of several HIV-1 strains to create chimeric proviruses and isogenic /ief-defective versions 

indicates that sequences within env regulate the effect of nef on viral replication and this 

may be positive or negative depending on the isolate and cell line examined (Terwilliger 

etal., 1991). Recently it has again been demonstrated that Nef suppresses HIV-1 

LTR-driven expression but only through the actions of myristylated, membrane-bound p27 

(Yu and Felsted, 1992). In addition, Nef will also down-regulate the levels of the CD4 

antigen on the cell surface of cell lines stably expressing Nef (Guy et al., 1990a; Garcia and 

Miller, 1991). This is effect does not occur at the level of transcription and results in the 

cytoplasmic accumulation of CD4 (Garcia and Miller, 1991). Furthermore similar cell lines 

expressing Nef exhibit an altered signalling pathway via the T cell receptor that does not 

result in the expected expression of IL-2 mRNA after induction with PHA and PMA. 

Activation of the IL-2 promoter is defective yet augmentation of expression from the HIV-1 

LTR is unaffected (Luria et al., 1991).

Messenger RNAs encoding Nef predominate in early infection [77%] and far 

outweigh the level of rev transcripts [20%], whereas mRNAs for tat account for only a small 

minority [3%] (Robert-Guroff etal., 1990). The overall conclusion from the known
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functions of Nef strongly implicate it as having a central role in the establishment and 

maintenance of proviral latency (Guy etai., 1987; Guy etai., 1990a; Guy etai., 1990b; 

Garcia and Miller, 1991; Luria etai., 1991). The nef open reading frame may further 

determine viral pathogenesis, suggested by the finding that rhesus monkeys infected with 

the simian immunodeficiency vims SIVmac containing a deletion in nef survive infection 

whilst those receiving wild type virus die of AIDS (Groopman, 1991).

vi). vpr

The IS Kd Vpr protein is, like Nef, Vif and Vpu, dispensable for virus replication 

in vitro (Cohen etai., 1991) and differs from the other regulatory genes discussed here in 

that it is expressed from a singly-spliced mRNA and is subject to regulation by Rev (Arrigo 

and Chen, 1991). Evidence of expression is found in all seropositive individuals (Dedera 

et al., 1989) and would occur late in the replication cycle when structural proteins begin to 

accumulate (Cohen etai., 1991). Vpr is a virion-associated protein and multiple copies of 

Vpr are found in mature vims particles, suggesting that it may be the first viral gene 

product to function in the infected cell (Cohen etai., 1990a). The inactivation of the 

%  amino acid allele of vpr results in reduced cytopathogenicity and delayed replication 

kinetics compared to wild type, isogenic vims (Ogawa etai., 1989). However, unless 

infectious vims particles are used, derived originally from vpr+ and vpr proviruses, no 

differences are observed following infection of susceptible cells (Dedera et al., 1989). This 

correlates with the reported inclusion of Vpr in the virion and implies that the protein 

creates a cellular environment more permissive for the early stages of viral replication 

(Cohen et al., 1990a; Cohen et al., 1990b). Vpr was demonstrated subsequently to encode a 

second viral transactivator that increased gene expression from the HIV-1 LTR 3-fold 

(Cohen et al., 1990b). Deletion analysis of the LTR indicates that transactivation requires 

sequences within the NRE downstream of nucleotide position -167 [relative to the start of 

transcription] (Cohen et aL, 1990b). Vpr also transactivates the HIV-2 LTR and other viral 

promoters, such as those of CMV and HTLV-I to a similar degree (Cohen et al, 1990b; 

Cohen etai., 1991).
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l i J .  Activation of HIV-1 replication

It is apparent from the ultimate progression to disease that HIV-1 does not maintain 

an entirely quiescent state forever and the close association between the pattern of virus 

replication and the status of host cell indicates that specific cellular signals will re-activate 

latent HIV-1. Clearly the identification of cellular signals which lead to augmented HIV-1 

transcription and the production of virus will be important in the understanding of latency.

i). Induction o f HIV-1 gene expression: role o f cytokines

After the initial cellular stimulation and proliferation required to permit the 

integration of the HIV-1 provirus (Garcia-Bianco and Cullen, 1991), CD4+ lymphocytes 

return to the G0 phase of the cell cycle and enter a quiescent state as memory cells 

(Greene, 1990). Subsequent exposure of memory cells to challenge with their cognate 

antigen in the context of a proper MHC interaction will re-activate events leading to their 

proliferation and acquisition of immunological function (Crabtree, 1989). Signals 

emanating from the T  cell receptor also initiate events leading to augmented expression 

from the HIV-1 LTR (Tong-Starksen et al., 1989). The enhanced transcription from the 

LTR, probably amplified through the increased synthesis of Tat (Rosenberg and Fauci, 

1990), leads to a rise in the level of Rev which alters the pattern of mRNA processing and 

produces a shift from regulatory to structural gene expression and productive viral 

replication (Cullen and Greene, 1989; Pomerantz et a ! 1990).

The exposure of CD4+ T  lymphocytes to antigen and the accessory signal provided 

by the antigen-presenting cell are necessary for the activation of T  cells and induction of 

IL-2 synthesis (Crabtree, 1989) and similarly both signals facilitate the maximal induction 

of expression from the HIV-1 LTR (Tong-Starksen eta!., 1989). In addition, HIV-1 

expression will respond sub-optimally to non-mitogenic signals such as stimulation of CD2 

or CD28 T cell surface antigens with antibody to mimic physiological activation 

independent of the T  cell receptor. Also, signalling via the lymphocyte homing antigen and 

hylauronic acid receptor, CD44, enhances HIV-1 LTR-driven gene expression to a lesser
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extent. Moreover, CD28 stimulation synergizes with the cytokine-induced activation of 

protein kinase C simulated by exposure to phorbol ester (Gruters et al., 1991).

The process of T cell activation ultimately leads to the production of cytokines, in 

addition to IL-2, which mediate diverse immune reactions (Roitt étal., 198S). 

Immunologically competent T  lymphocytes secrete IFNa, IFN7, IL-3 and GM-CSF, and the 

synergistic action of IL-2 and IFN7 lead to TNF/Î release. In the induction of the antibody 

response from B cells, IL-6 will also be released (Hamblin, 1988). Certain cytokines prompt 

intracellular events that lead to the activation of HIV-1 gene expression (Okamoto etal., 

1989) (see Section 1.5.3. ii, iii and iv] and in lymphocytes, HIV-1 replication is strongly 

enhanced by TNF, (Matsuyama etal., 1989a; Ito etal., 1989; Matsuyama etal. 1989b; 

Vyakarnam et al., 1989) a cytotoxic cytokine with many functions including those central to 

inflammatory reactions (Hamblin, 1988).

Furthermore TNFa activates HIV-1 replication in macrophages (Poli etal., 1990a; 

Rosenberg and Fauci, 1990) and HIV-1 replication in monocytic cells is activated by a 

significantly wider range of cytokines than is known for lymphocytes, with IL-3 (Koyanagi 

etal., 1988; Schuitemaker etal., 1990), IL-6 (Poli etal., 1990a), M-CSF (Koyanagi etal., 

1988; Meltzer et al., 1990a) and GM-CSF (Koyanagi et al., 1988; Schuitemaker et al., 1990) 

all increasing virus replication, an effect that does not rely upon a mitogenic response by 

the host cell (Koyanagi etal., 1988; Poli etal., 1990a). The increasing exposure of 

macrophages to IFN7 also primes and then activates these cells to produce IL-1, TNFa and 

reactive oxygen metabolites involved in immune and inflammatory reactions (Hamblin, 

1988). Exposure of HIV-1 infected T cells to oxidative stress mediated by these metabolites 

induces HIV-1 replication and the efficient replication of HIV-1 in macrophages may also 

be a consequence of cellular mechanisms for the production of an effective oxidative burst 

(Schreck etal., 1991).

In contrast, HIV-1 replication can be negatively regulated by IFNa0 in both 

lymphocytes and macrophage-derived cell lines (Femie etal., 1991) and IFN7 may have a 

limited antiviral effect in vivo (Hartshorn et al., 1987). The action of IFNa, however, does
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not greatly reduce virus replication as such, but rather limits the release of mature virions 

from chronically infected lymphoblastoma and promonocytic cells (Femie et al., 1991).

Infection with a heterologous viruses has been implicated as a co-factor in the 

stimulation of HIV-1 replication and experiments using HIV-1 LTR-driven reporter gene 

constructs have identified a number of gene products from DNA viruses and another 

retrovirus that transactivate expression from the LTR. Cytomegalovirus early proteins IE1 

and IE2 are potent inducers of LTR-driven gene expression (Barry et al., 1990) and further 

synergize with signals that activate HIV-1 expression in lymphocytes (Paya etal., 1991). In 

addition, the presence of CMV regulatory proteins, under the control of the CMV 

promoter, confers indirect inducibility to the HIV-1 LTR via another signalling pathway 

[PKA-dependent] (Paya etal., 1991). The X protein from HBV (Siddiqui etal., 1989), Tax 

protein from HTLV-1, ICP-O protein from HSV-1, a gene product from the polyoma virus 

JC (Rosenberg and Fauci, 1989) and co-infection of lymphocytes with HHV-6 (Ensoli et al., 

1989) or HSV-1 (Gimble et al., 1988) all result in the up-regulation of HIV-1 replication.

ii). Interaction of cellular transcription factors and the HIV-1 LTR

The 630 bp long terminal repeat of the human immunodeficiency virus type-1 

contains a unique array of cu-acting regulatory elements (see Figure 1.2) that interact with 

specific cellular factors to coordinate viral transcription (Greene, 1990; Orchard etal., 

1990; Waterman et al., 1991a). These transcription factors control basal expression from the 

LTR and mediate the induction of expression upon activation of the host cell and are 

therefore likely to be the initial determinants that release the provirus from latency 

(Siekevitz et al., 1987; Waterman et al., 1991a).

ill). Inducible factors: NFkB  and NFAT-1

The physiological activation of Tj, lymphocytes via the T  cell receptor, in 

conjunction with the accessory signal simulated by PMA, triggers two signal transduction 

mechanisms in an overlapping manner; a rise in the intracellular calcium levels, and protein 

kinase C (PKC) translocation (Crabtree, 1989). Stimulation of the PKC-dependent pathway
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results in the functional activation and nuclear localization of members of the NFkB family 

of transcription factors (Franza et al., 1987; Bohnlein et al., 1988; Crabtree, 1989; Molitor 

et al., 1990), whilst both stimuli lead to the de novo synthesis of the NFAT-1 transcription 

factor (Crabtree, 1989; Hivroz-Burgaud etal., 1991). Neither of these factors are found in 

unstimulated T  lymphocytic cell lines (Shaw et al., 1988; Molitor et al., 1990). NFuB-binding 

factors interact with tandem recognition sites that constitute a strong enhancer in HIV-1 

(Siekevitz et al., 1987; Osborn et al., 1989) and NFAT-1 binds to specific sequences further 

upstream within the same U3 region of the LTR [see Figure 1.2] (Shaw et al., 1988).

HIV-1 gene expression is concomitantly induced following these stimuli and deletion 

analysis of the LTR demonstrates that the effect is predominantly due to the interaction of 

NFkB factors with the enhancer (Siekevitz et al., 1987: Tong-Starksen et al., 1989; Tong- 

Starksen et al., 1990). Although the integrity of the NFAT-1-binding domain is required for 

maximal induction of the LTR (Siekevitz et al., 1987: Tong-Starksen et al., 1989), it does not 

activate LTR-driven expression significantly in the absence of a functional enhancer (Tong- 

Starksen et al., 1989).

iv). The NFkB  family o f DNA-binding proteins

The induction of NFkB also correlates with the augmentation of HIV-1 gene 

expression (Israil etal., 1989; Osborn etal., 1989) and replication in lymphocytic and 

monocytic cells by TNFa (Meltzer etal., 1990a; Rosenberg and Fauci, 1990) and 

transactivation due to co-infection by HSV-1 (Gimble etal., 1988), HHV-6 (Ensoli etal., 

1989) and the HTLV-1 tax gene product (Rosenberg and Fauci, 1989). Furthermore 

NFkB-like factors are also induced by IL-1 in certain cell lines (Osborn et al., 1989; Brasier 

etal., 1990).

Moreover, the interest in NFkB created by its involvement in HIV-1 expression has 

also highlighted the central role that NFkB has in the intracellular events leading to the 

initiation of immune reactions, as many critical genes contain binding sites for this and its 

related transcription factors. The NFkB motif has been described in the promoter regions 

of genes encoding the cytokines IL-1 (Trede etal., 1991), IL-2, IL-6, GM-CSF, M-CSF,
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TNFa, TNF/? and IFN/? (Baeuerle, 1991) and the intracellular adhesion molecule I-CAM1 

(Stade et at., 1990), class I MHC antigens (Baldwin and Sharp, 1988), the T cell receptor 

/9-chain, immunoglobulin light chain, /^-microglobulin (Baeuerle, 1991) and IL-2 receptor 

a-chain (Bohnlein et al., 1988).

Analysis of the inducible factors which bind to the HIV-1 enhancer reveals a family 

of structurally and functionally related polypeptides recognizing the NFkB motif. These 

represent the NFkB complex of /«/-related proteins which bind DNA as heterodimers [or 

pairs of heterodimers, Baeuerle, 1991)] of 50 Kd DNA-binding (p50 or p50B) and 65 Kd 

(p65) transmodulator proteins (Ghosh et al., 1990; Ballard et al., 1990; Bours et al., 1992), 

and products of the proto-oncogene c-rel and the related gene relB, that also bind as 

heterodimers with members of NFkB and other as yet unknown cellular proteins (Franza 

et al., 1987; Molitor et al., 1990; Lee et al., 1991; Hansen et al., 1992; Ryseck et al., 1992).

The c-rel and NFkB group of transcriptional activators share many properties that 

underlie their role as signal transducers. The p50 or the related p50B subunit of NFkB 

contain dimerization and DNA-binding domains (Ghosh et al., 1990; Bours et al., 1992) and 

are present in the cytoplasm in a transcriptionally inactive form complexed via p65 or relB 

to an inhibitory subunit IkB (Urban and Baeuerle, 1990; Ryseck et al., 1992). Agents that 

stimulate the PKC-dependent signalling pathway induce phosphorylation of IkB, which 

exists in two forms a  and /?, and permit the translocation of NFkB to the nucleus where it 

activates expression of genes containing the NFkB motif (Baeuerle and Baltimore, 1988; 

Baeuerle, 1991; Kerr et al., 1991). IkB/? inhibition of NFkB action is additionally responsive 

to PKA-dependent phosphorylation and IkB/? is probably identical to the /«/-associated 

protein pp40 (Baeuerle, 1991; Kerr etal., 1991). The c-rel proteins are also found in a 

cytoplasmic complex with a protein that represents the precursor of p50B or the precursor 

of p50 (pl05), and an inhibitory subunit (Kerr etaL, 1991) and exhibits similar cytosol to 

nuclear translocation upon cellular activation (Franza et al., 1987; Molitor et al., 1990; Lee 

et al., 1991). The c-rel gene product p85 has recently been shown to bind to the NFkB motif 

as a complex with the p65 subunit of NFkB (Hansen etal., 1992) and in vitro forms 

complexes with pl05 or a protein analogous to p50B (Schmid et al., 1991).
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NFkB p50/p65 (Kawakami et ai., 1988), pSO/RelB (Ryseck et al., 1992), p50B/p65, 

pSOB/RelB (Bours et al., 1992) and c-Rel (Muchardt et al., 1992) will transactivate 

expression from a promoter containing tandem NFkB sites and the HIV-1 LTR. The 

NFicB/ne/ proteins now constitute a growing family of transcriptional activators and 

DNA-binding proteins that can mix and form heterodimers which can specifically interact 

with the NFkB motif, a situation analogous to products of the fos and jun  proto-oncogenes.

HIV-1 infection also seems specifically to induce nuclear NFkB during the course of 

infection and higher levels of active NFkB are found in cells undergoing a productive 

infection (Bachelerie et al., 1991). In vitro the HIV-1 protease will process the precursor of 

the pSO DNA-binding subunit of NFkB plOS to a 45 Kd protein capable of interacting with 

NFkB p65 which can bind DNA and may contribute to the increased levels of active NFkB 

(Rivière et al., 1991). This process may also contribute to the autocrine stimulation of 

constitutive and inducible virus replication by TNF apparent in chronically infected cells 

(Poli et al., 1990b). This cytokine both induces NFkB binding activity and contains NFkB 

regulatory domains in its promoter region and may mobilize an increased intracellular pool 

of inactive NFkB due to the actions of the HIV-1 protease. The same phenomenon may 

apply to IL-6 which is induced by TNFa (Kohase eta!., 1986) and stimulates HIV-1 

replication in monocytes, predominantly via a post-transcriptional mechanism (Poli et a!., 

1990a), and also contains an NFkB binding site in its promoter (Hirano et al., 1990). 

Furthermore the promoter of the gene encoding pl05, the precursor of p50 NFkB, contains 

multiple NFkB  motifs and expression from this promoter is up-regulated by phorbol ester 

and TNFa, a  process that should replenish the cell with part of the NFkB complex (Ten 

eta!., 1992).

Phorbol esters act via PKC in the induction of NFkB yet TNF does not invoke the 

same pathway (Baeuerle, 1991). Indeed, TNF acts through a mechanism independent of 

PKC-, PKA- and calcium-regulated protein kinases and demonstrates that other 

uncharacterized signalling pathways also lead to the modification of IkB (Feuillard eta!., 

1991).
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In addition, there is evidence to suggest that PKC induces another transcription 

factor AP-1 which plays a role in the T  cell expression of IL-2 (Crabtree, 1989). The HIV-1 

LTR contains two AP-1 recognition sites within the NRE (Franza etai., 1988) and three 

sites located in thepol open reading frame (Van Lint etai., 1991). Furthermore both sites 

in the HIV-1 genome bind AP-1 (Franza etal., 1988; Van Lint etai., 1991) but AP-1 does 

not appear to contribute to the inducibility of gene expression directed by the HIV-1 LTR 

(Siekevitz et al., 1987).

v) . Constitutive NFkB expression

The p65 subunit of NFkB regulates the subcellular localization of the active 

complex, such that in T cells NFkB is only translocated to the nucleus when the cells are 

activated by the appropriate stimulus (Urban and Baeuerle, 1990). Constitutive 

NFuB-binding factors have been identified as H2TF1 (Baldwin and Sharp, 1988), KBF1 

(Yano etai., 1987) and EBP-1 (Wu etai., 1988) in some cell lines such as HeLa. These 

factors are homodimers of p50 molecules and are transcriptionally inactive (Kieran etai., 

1990; Baeuerle, 1991). Only heterodimers (see above) strongly transactivate gene 

expression (Schimtz and Baeuerle, 1991). Active heterodimeric NFkB is constitutively 

present in the nucleus of only a restricted range of cells, such as mature B cells, monocytes 

and macrophages (Baeuerle, 1991). In these cells NFkB expression becomes activated as 

these cells undergo terminal differentiation and is associated only with the mature 

phenotype (Griffin etai., 1989; Baeuerle, 1991). The constitutive levels of active NFkB may 

contribute to the different characteristic of HIV-1 infection in monocytes compared to 

lymphocytes where there are higher levels of viral transcripts and steady production of 

infectious particles that are sequestered in intracellular vacuoles (Gendelman et al., 1989).

vi) . Basal transcription from the HIV-1 LTR

The HIV-1 LTR contains three GC-rich sites, located downstream of the TATA 

box, which bind the sequence-specific transcription factor Spl [see Figure 1.2] (Jones et al., 

1986). Spl falls generally into the class of promoter proximal transcription factors and
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binding sites are found in a wide variety of viral and cellular promoters (Mastrangelo et al., 

1991). A single Spl binding site can activate transcription from a synthetic promoter in vitro 

and the interaction of Spl with the HIV-1 LTR contributes to the basal level of expression 

(Jones etai., 1986). The third Spl site has the highest affinity for Spl (Jones etal., 1986) 

and contrary to what may be expected there is no co-operation in Spl binding to adjacent 

sites (Courey etal., 1989). Site-directed mutagenesis to disrupt the individual Spl sites does 

not effect transcription from the LTR but the inactivation of all three sites will result in up 

to a ten-fold reduction (Jones et ai., 1986; Harriett et al., 1989).

The functional integrity of the TATA box present in the HIV-1 LTR is necessary for 

full promoter activity and contributes to the basal level of expression (Jones et al., 1988) 

through the interaction with TFIID and the other components of RNA polymerase II 

initiation complex (Greenblatt, 1991). Additionally the TATA box is required for the 

correct initiation of HIV-1 transcripts (Jones et al., 1988). Downstream of the transcription 

initiation site also lie four sites for the leader binding protein, LBP-1 which forms another 

basal promoter element of the LTR (Waterman et al., 1991a). Mutations in this region have 

a negative effect on transcription from the LTR in vitro and confirm that the 63 Kd LBP-1 

protein stimulates transcription (Jones etal., 1988). Although these binding sites are 

located in the TAR element, conservative mutagenesis that disrupts LBP-1 sites but not 

important residues of TAR indicate that these motifs function as DNA recognition sites for 

LBP-1 (Jones etal., 1988). However, another factor, U N F 1 exhibits identical 

sequence-specificity but binds the same sequence in both DNA or RNA (Gaynor, 1991)

LBP-1 may also negatively regulate transcription from the LTR as an additional site 

overlapping the TATA box which binds LBP-1 with lower affinity was observed with 

purified LBP-1 (Kato et al., 1991). Interaction of LBP-1 with this site competes with TFIID 

for binding to the TATA box in vitro and mutations which abolish LBP-1 binding but leave 

TFIID intact increased transcription from the LTR in cell lines (Kato et al., 1991).
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vii). Negative regulatory element

Deletion of the S' portion (nucleotide positions -420 to -137) [see Figure 1.2] of the 

HIV-1 LTR significantly enhances gene expression directed by the LTR (Siekevitz etal., 

1987) and the insertion of this 263 bp fragment downstream of a heterologous promoter, 

such as SV40 late or HTLV-1, suppresses promoter activity (Lu et al., 1991). Thus cu-acting 

sequences within this region have a negative effect upon transcription and constitute the 

NRE.

Interaction with one cellular factor, USF, originally characterized as a positive 

regulator of expression from the adenovirus major late promoter (Pognonec and Roeder,

1991) , provides a considerable proportion of the repressive effect on HIV-1 LTR-driven 

gene expression (Lu etal., 1990). An identical sequence is present in the IL-2 receptor 

a-chain gene promoter and this interacts with the same factor that recognizes the HIV-1 

LTR and also negatively regulates gene expression (Smith and Greene, 1989). The USF 

region has been shown to interact with three cellular proteins of different molecular 

weights, 44 kd representing a USF-like protein (Smith and Greene, 1989; Giacca et al.,

1992) and 70 and 110 kd, which are all constitutively expressed and, although whilst USF 

has been demonstrated to repress gene expression from the LTR, the functions of the other 

two have not been clearly defined (Giacca etal., 1992). The USF interaction exerts a 

similar negative effect on the LTR in the presence (Lu et al., 1990) o r absence of Tat and 

after cellular stimulation with phorbol ester (Giacca et al., 1992).

The NRE contains a palindromic binding site designated Site B which interacts with 

constitutive DNA-binding proteins that are members of the steroid hormone receptor 

super-family (Orchard etal., 1990). Site B was also demonstrated to  interact with the 

human homologue of the chicken transcription factor COUP, a member of the steroid 

hormone family (Cooney et al., 1991) and this may account for the binding activity observed 

by Orchard et al., (1990). Mutation of this region to destroy one half site of the palindrome 

increases gene expression directed by the LTR in the presence of Tat (Orchard et al. ,1990) 

as does deletion of the entire domain in the absence of Tat transactivation (Zeichner et al..
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1991). Therefore the interaction o f Site B-binding factors also appears to contribute 

towards the effect of the NRE.

Another protein-binding site within the NRE, Site A also interacts with constitutive 

DNA-binding factors (Orchard et al., 1990) but deletion of this region does not effect gene 

expression directed by the LTR in the presence (Lu et al., 1990) or absence (Zeichner et al., 

1991) of Tat. Furthermore deletion o f  the NFAT-1 domain which is located in the negative 

regulatory region does not effect the level of gene expression from the LTR in unstimulated 

cells (Zeichner et al., 1991).

1.6. Nsuroimmunology

The central nervous system may form a distinct environment for the development 

and pathogenesis of HIV-1 infection, and immune responses occurring within the brain are 

likely to be modulated within the constraints of CNS immunology. The CNS has long been 

referred to as an immunologically privileged site because of the lack of lymphatic drainage 

and the physical separation by the blood brain barrier (Frei and Fontana, 1989). The 

penetration of the CNS by the cellular components of the immune system may be minimal 

and immune surveillance low, yet the CNS retains the ability to initiate responses against 

neurovirulent pathogens and the effector functions of lymphocytes are intact in this 

environment (Borgeson et al., 1989; Frei and Fontana, 1989). In order to maintain the CNS 

as a site of limited immune reactivity and minimize immunopathological damage to 

important neuronal and oligodendroglial cells evidence suggests that astrocytes, microglia, 

and capillary brain endothelial cells to some extent, mediate the interaction with 

components of the immune system and posses a number of important immunoregulatory 

properties (Hughes et al., 1988; Frei and Fontana, 1989).
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1.6.1. Antigen presentation and major histocompatibility antigen expression within the

CNS

The absence or low levels of MHC antigens on resting neural cells undoubtedly 

contributes to the partial shielding of the brain from immune reactions (Pryce et al., 1986). 

MHC class I antigens are not displayed on the surface of neurons or oligodendrocytes 

in vivo and their expression is limited to microglial cells, and a subset of astrocytes and 

brain endothelial cells (Pryce et al., 1986; Mauerhoff et al., 1988; Frei and Fontana, 1989). 

IFN7 and TNFa will induce MHC class I expression on oligodendrocytes (Suzumura et al., 

1986; Mauerhoff et al., 1988) and both cytokines will function to increase the proportion of 

MHC class 1+ astrocytes and endothelial cells (Pryce et al., 1986) but will not stimulate 

MHC class I antigen expression on neurons (Mauerhoff et al., 1988; Borgeson et al., 1989). 

This a property that protects neurons but not astrocytes from class I restricted T 

cell-mediated cytotoxicity (Borgeson etal., 1989) and may ensure the survival of latently 

infected neurons.

In addition, IFN7 will induce strongly MHC class II antigen expression on the 

surface of brain endothelial cells, astrocytes and microglial cells and I-CAM1 expression on 

brain endothelial cells. This corresponds with the ability of these cells to behave as antigen 

presenting cells (APC] (Pryce et al., 1986; Fontana et al., 1987; Frohman et al., 1989). TNFa 

synergizes with IFN7 in MHC class II antigen induction on astrocytes (Frohman etal., 

1989) and brain endothelial cells (Hughes etal., 1988) and the induction of adhesion 

molecules on the latter cell type may facilitate increased lymphocyte traffic into the CNS 

(Hughes etal., 1988) conceivably allowing the entry of HIV-1 infected cells. It has been 

suggested that the predominant endogenous APC in the brain is the astrocyte (Fontana 

et al., 1987) and that these cells, perhaps initially via the brain endothelium and microglia, 

control the development of immune reactivity within the CNS (Pryce et al., 1986).

1.62 . Generation of cytokines within the CNS

The majority of the available data on neuroimmunological processes described 

below has been determined using animal models and in vitro analysis of cultured cells.
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However, studies on the pathology of multiple sclerosis in vivo generally supports these 

findings (Hofman, 1989).

Activated astrocytes and microglia are potent sources of particular cytokines within 

the CNS, although microglia are essentially the same as macrophages in this respect 

(Goetzl et at., 1989). IL-1 is secreted by astrocytes and microglia after exposure to 

stimulants such as LPS or neurotropic virus infection (Lieberman et al., 1989; Goetzl et al., 

1989), and is necessary for effective antigen presentation and IL-2-induced proliferation of 

receptive T  cells (Roitt etal., 1985) and plays a central role in inducing inflammatory 

reactions (Dinarello, 1989). Stimulated astrocytes also release IL-3, which leads to the 

proliferation of microglia and macrophages (Frei and Fontana, 1989), an IFNa0-like 

molecule (Goetzl etal., 1989) that enhances MHC class I antigen expression (Borgeson 

et al., 1989) and the multipotent stem cell factors, GM-CSF and M-CSF are also released 

by astrocytes which may further recruit immune cells to the CNS (Frei and Fontana, 1989).

In addition, astrocytes stimulated with LPS or neurotropic virus infection secrete 

TNFa (Lieberman etal., 1989) which, like the IFNs, will perpetuate immune reactions 

through the induction of MHC antigens (Frohman et al., 1989) and exert cytotoxic effects 

on oligodendrocytes (Robbins et al., 1987). Moreover, TNFa stimulates the production of 

GM-CSF from astrocytes (Frei and Fontana, 1989) and other factors chemotactic for 

leukocytes from endothelial cells (Mantovani and Dejana, 1989). IL-6 is released from 

these cells under similar conditions and will have pleiotropic effects, including the 

enhancement of T  cell proliferation, B cell differentiation and antibody production within 

the CNS (Hirano etal., 1990). Microglial cells also release IL-1, IL-6 and TNFa after 

appropriate stimulation (Frei and Fontana, 1989).

Furthermore astrocytes are sources of eicasonoids, metabolites of arachidonic acid, 

and certain of these molecules will increase vasodilation and oedema (Murphy et al., 1988). 

Moreover prostaglandins have neuromodulatory functions (Murphy et al., 1988) and along 

with another potent immunosuppressive factor, analogous to TGF/J, released from 

astrocytes provide a mechanism by which these cells can suppress immune reactions within
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the CNS through interference with the proliferation of T cells (Murphy et al., 1988; Goetzl 

et al., 1989).

The interaction of the molecular mechanisms operated by cytokines and HIV-1 

expression is an area of intense investigation in cells of the lymphoid system and is 

providing valuable insight in to cellular regulatory mechanisms that activate productive 

infection from latent proviruses. Following the finding of considerable neurological illness 

associated with HIV-1, the abundance of virus within the brain and the low-level of direct 

neural cell involvement, in conjunction with the latent nature of HIV-1 infection, a 

complementary analysis of resident neural cells was prompted. In the environment of the 

central nervous system HIV-1 expression may follow a similar pattern of regulation by 

cytokines and therefore experiments were designed to first investigate and then to 

determine the mechanisms by which this may occur in neuronal and glial cells.
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2.1. Cell linas

The cell lines in this study were established originally from human or murine 

tumours of neural cells. These were chosen to represent a range of the CNS cell types (see 

Table. 2.1), and were selected from the cell types from which tumour cell lines have been 

derived. No permanent or tumour-derived microglial cell lines have been described 

(Personal communication. Dr. David Male, Institute of Psychiatry, DeCrespigny Park, 

Denmark Hill, London).

Two human neuroblastoma cell lines, SK-N-SH and SK-N-MC (Spengler et al., 

1973), were purchased from the American Type Culture Collection (ATCC). The human 

astrocytoma U373MG and glioblastoma U138MG (Pontin and Macintyre, 1968) were 

obtained from the MRC AIDS reagent programme and were originally also from the 

ATCC. The murine oligodendroglioma G26-24 (Sundarraj et al., 1975) and Jurkat (Osborn 

et al., 1989), a human T lymphoblastoma cell line, were donated by Dr. Alan Morris, 

Department of Biological Sciences, University of Warwick. Also primary murine astrocytes 

were prepared as described in Section 2.6.2.

2.2. Bacterial atraina

The E.coli K12 strain TG2 (Sambrook et a!., 1989) was used in all transformations 

and for the amplification and maintenance of plasmid vectors. It was originally derived 

from strain JM101 and has the genotype: Alacpro, thi, SupE, HsdDS, Fm>D36, proAB, 

lacW, ZAM 15  and recA~.



Table 2.1. Properties of n eu ra l ce l ls

Cell
Designation Cell Type

Phenotypic
m arker orig in

U138MQ Qlloblastoma Cell morphology i Human
U373MQ Astrocytoma QFAP+ 1 Human

- Primary astrocytes QFAP+ Mouse
Q26-24 Oligodendroglioma GalC+ Mouse
SK-N-SH Neuroblastoma Dopamine 3-hydroxylase S Human
SK-N-MC Neuroblastoma Dopamine 3-hydroxylase i Human

I  Also produces appropriate tumour in nude mice.
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2.3. M rtia

2.3.1. Tissue culture media

All neural cells were cultured in DMEM and lymphoid cells in RPMI-1640, with the 

addition of 10% (v/v) foetal bovine serum, 2 mM L-glutamine and antibiotics; penicillin 

(100 IU/ml) and streptomycin (100^g/ml) [media containing these additions is referred to 

as complete in the text). Cell growth in DMEM was buffered by HCO3 7 CO2 *n a 5% (v/v) 

CO2 atmosphere, and in RPMI-1640, 25 mM Hepes was included. All cells were cultured at 

37°C in a humidified incubator (Flow Laboratories).

2 J 2 .  Bacterial growth media

E.coli TG2 clones were grown in L broth supplemented with 100 /¿g/ml ampicillin 

to maintain the plasmid vector. Solid media was obtained by the addition of 1.5% (v/v) 

Difco bacto-agar prior to autoclaving at 121°C for 15 min. Indicator agar plates for the 

detection of lac z expression in recombinant colonies also contained 0.5 mM IPTG and

0.02% (w/v) X-gal.

LB broth: 10 g tryptone.

5 g yeast extract.

5 g NaCl

2 ml 1M  NaOH (to adjust to pH 7.2) 

distilled water to 1 litre.

2.4. Oligonucl«otid«t

Oligonucleotides were synthesised on an Applied Biosystems DNA synthesizer as 

single-stranded molecules. Complementary strands were annealed from equimolar mixtures 

by heating to 90°C for 10 min, and cooling slowly for 3-4 hrs until below the melting 

temperature (Tm) of each oligonucleotide. Tm was estimated from the base composition
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using the following formula: Tm ■ 4[G+C] ♦ 2[T+A] (Sambrook et al., 1989). The 

sequences of all oligonucleotides employed in the analysis of nuclear proteins are given in 

Table 2.2.

The sequence of the oligonucleotide VPR, a 42mer containing the wild type coding 

sequence for the repair of the BH10 vpr gene is given below. Novel restriction sites are 

indicated by underlining and those forming the cohesive termini by bold text (see also 

Chapter 3, Section 33 3 ) .

Eco Rl-Pst I-Pvu II Sal I
5 '  -  XATTCTGCAGCAGCTGCTGTTTATCCATTTAGAATTGGGTQ - 3  '
3 ' -  qACGTCGTCGACGACAAATAGGTAAATCTTAACCCACAOCT - 5 '

2.5. Sources of cytokines

Recombinant human and murine IFN7, partially purified from transfected CHO 

cells (Morris and Ward, 1987), was obtained from Dr. Alan Morris. All other cytokines 

were purchased from external suppliers (see Appendix A., list of Suppliers).
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Tabla. 2.2. Saquanca composition of doubla-strandad ollgonuclaoUda 

proboa

Notes:

1. Underlined text indicates the nucleotides which constitute the protein binding site, 

except for Site A [Orchard et at., 1990] and 5C159 (Chapter 8) which indicate the extent of 

protected region in DNAse I footprint.

2. All sequences are given S' to 3' with the coding strand above the non-coding strand.

Site A (30 mer) 
[Orchard etal., 1990].

TFIID consensus sequence
[La Thangue and Rigby, 1988].

AOAOCATATAAGGTOAOOTAOOA
W W W BM BM Iaatwtcttqatoto

NFkB wild type consensus 
sequence (29mer) [Osborn et at., 1989].

CTF/NF1 consensus
sequence [Jones et at., 1985].

TCTCOTATATTCCACTCCATCCT

CAAOGGACTTTCCCCTGCOCACTTTCCAC ccTUfifi£AIfi£I2££AAIATC
opAggcfigiacaacaomTAcOTTCCCTgAAAggcoACCCCiqhAAggCT

Spl high affinity consensus 
sequence (ISmer) [Harrich et at., 1989].

NFkB mutant sequence (29mer) 
[Osborn et at., 1989].

OCCCCCCCGCCGCTQ
CGOCCCCGCCCCGAC

CAACTCACTTTCCGCTGCTCACTTTCCAG

Site B (30mer) 
[Orchard et at., 1990].

159 oligo, HIV-1 LTR -249/-219 
(30mer).

TCQACAGGGGTCAGATATCCACTGACCTTC
AGCTGTCCCCAGTCTATAGGTGACTGGAAO

ACACCCTGTCACCCTGCATCGAATCGATCA
TGTGGGACACTCGGACGTACCTTACCTACT

BM5 Site B mutant sequence 
(30mer) [Orchard et at., 1990]

5C159 oligo, HIV-1 LTR 
261/-240

TCGACACACTAGCGATATCCACTGACCTTC
AOCTGTGTCATCOCTATAGCTGACTGGAAG

CACCAOCTTOTTACACCCTOT
GTOOTCOAACAATGTGGOACA
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2.6. TIm u « culture

2.6.1. Growth of tissue culture cells

Adherent cells were in grown tissue culture-grade plastic flasks in complete DMEM, 

with fresh medium at 2-3 day intervals. Cells were passaged by trypsinization when 

confluent, at a ratio of 1:8 • 1:12 depending upon cell type. All solutions were pre-warmed 

and cultures were rinsed briefly in PBS then incubated with trypsin-EDTA solution 

(5 mg/ml trypsin, 5 mM EDTA, 145 mM  NaCl) at 37°C until detached (1-2 min). The cell 

suspension was mixed gently with 10 ml complete DMEM and the cells recovered by 

centrifugation at 40% for 5 min. The pellet was then resuspended in fresh medium and 

plated at the required dilution in a new flask.

Suspension cells were grown in upright plastic flasks and cells were maintained at a 

density of approximately 100,000 cells/ml by the resuspension in fresh media every 2-3 

days.

2.6J.. Preparation of primary murine astrocyte cultures

The method used was based on that of Morris and Tompkins, (1989). Ten to twenty 

neonatal Balb/c mice were killed by decapitation with sterile dissecting scissors and the 

heads washed in ethanol. The skin over the skull was removed and the skull carefully cut 

from the base of the neck to the nose. The brain was exposed by gentle pressure with 

forceps on the snout and the complete brain excised into 5 ml sterile PBS. The remainder 

of the procedure was performed in a tissue culture hood. The meninges were stripped from 

each brain by carefully rolling on dry filter paper (UV-sterilised for 20 min prior to use), 

and the remaining material was transferred to a 60 mm Petri dish containing 5 ml PBS and 

a stainless steel mesh. The tissue was disaggregated by forcing through the wire mesh with a 

glass rod using gentle pressure, then the mesh was washed a further three times with 5 ml 

PBS and the washes combined. The homogenate was further disaggregated by passage 

through a 21 gauge needle and the cells were pelleted by centrifugation at 40% for 5 min. A
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single-cell suspension was prepared by resuspension of the cell pellet in 10 ml PBS 

containing 0.2 mA/ MgCl2, trypsin (1 mg/ml) and DNAse I (40ug/ml) followed by 

incubation at 37°C for 30 min. Ten millilitres of complete DMEM (which contained 10% 

[v/v] foetal bovine serum) was added to inhibit the trypsin digestion and the cells collected 

by centrifugation as described previously. The medium was carefully aspirated and the cells 

were resuspended in complete DMEM for counting in a Neubauer chamber. 

Approximately 0.3 x 10** cells were obtained per brain and l.S x 10** were seeded into a 

25 cm* tissue culture flask in 5 ml complete DMEM. Cells were cultured as previously 

described with media changes on every alternate day until the monolayers were confluent, 

by around day 8. Following this period, and when plated at this cell density, astrocytes grew 

out from the brain cell cultures and formed the predominant neural cell type, as assessed by 

indirect immunofluoresent staining for the astrocyte marker glial fibrillary acidic protein 

(see Figure 2.1).

2.63. Liquid nitrogen storage of cells

Confluent monolayers of cells were trypsinized and collected by centrifugation. The 

cell pellet was resuspended in approximately 1 ml of complete medium containing 20% 

(v/v) DMSO, per 25 cm2 area of cells harvested and aliquots of 1 ml transferred to freezing 

vials. The vials were wrapped in paper towel, placed in a plastic beaker and stored at -70°C 

overnight. The next day vials were transferred to liquid nitrogen for storage. Initially a vial 

of each cell type was recovered in the following days to check the viability of the frozen 

stock.
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Figure 2.1. Indirect immunofluoresence staining of the astrocyte-specific marker glial 

fibrillary acidic protein (GFAP) and FTTC-labelled second antibody in a). Primary murine 

astrocyte cultures at day 8 (magnification xl50) and b). U373MG astrocytoma cells which 

were known to express GFAP and were stained to provide a positive control (magnification 

x300).
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2.6.4. Recovery of cells from liquid nitrogen

Vials were removed from liquid nitrogen and thawed quickly in a 37°C water bath. 

The contents were mixed with 10 ml complete media and the cells pelleted by 

centrifugation to remove the DMSO. The pellet was then resuspended in 5 ml complete 

media and seeded into a 25 cm2 tissue culture flask. The next day the cultures were either 

trypsinized if confluent or the medium replenished.

2.7. Indirect immunofluoresence

Cells were grown on sterile glass coverslips until nearly confluent in a Petri dish 

containing tissue culture medium, prior to cell staining. Coverslips were washed once in 

PBS (all washes were with 10 ml of solution at room temperature) and fixed in 4% (w/v) 

paraformaldehyde for 10 min. After two washes in PBS supplemented with 0.05% (v/v) 

Tween 20, the cells were permeabilized by immersion in 0.2% (v/v) Triton X-100 for 5 min 

and washed twice again in 0.05% (v/v) Tween 20 in PBS. The coverslips were then 

incubated in PBS containing 10% (v/v) FBS for 5 min, and washed twice more in 0.05% 

(v/v) Tween 20 in PBS. Antibodies were diluted in 10% (v/v) FBS in PBS at 1:50 - 1:100 

(monoclonal antibodies, supplied as cell culture supernatants, were used neat) and 60 pi 

aliquots placed onto a strip of Parafilm lying flat on wet Alter paper in a plastic box. 

Coverslips were placed cell side down onto each of the antibody solutions and incubated for 

40 min at room temperature. After which they were washed three times in 0.05% (v/v) 

Tween 20 in PBS and incubated with 60/d of the relevant FITC or biotin-conjugated 

secondary antibody for 30 min. Cells were washed three times in 0.05% (v/v) Tween 20 in 

PBS and coverslips stained with FTTC-labelled antibodies allowed to air dry in the dark for 

20 min. Phycoerythrin conjugated to streptavidin was used to detect biotinylated antibodies. 

Cells were also washed three times in 0.05% (v/v) Tween 20 in PBS then incubated for 

10 min with PE-streptavidin (diluted 1:50 in PBS containing 10% (v/v) FBS), and washed 

three times (1 min each) in 0.05% (v/v) Tween 20 in PBS. Coverslips were then treated
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with stabilizer (Amersham) for 20 min and air-dried for 20 min in the dark. The coverslips 

were placed cell side down onto a drop of mountant (Amersham) on a microscope slide 

and observed under a Zeiss UV microscope. Photographs were taken with Kodak 

ektachrome 160 tungsten film using an automatic exposure meter.

The following antibodies were employed for cell staining by this method, all 

antibodies were polyclonal unless otherwise indicated and the relevant dilution is given in 

parenthesis: rabbit anti-cow glial fibrillary acidic protein (1:100), goat anti-rabbit FTTC 

conjugate (1:100), mouse IgM anti HIV-1 tat monoclonal, kindly donated by Dr. Sheila 

Green, Laboratory of Molecular Biology, Hills Road, Cambridge; and goat anti mouse 

immunoglobulin biotin conjugate (1:50).

2.8. Routine manipulation of nucleic acids

22.1. Phenol extraction

Phenol extractions were performed to remove contaminating protein from samples 

of nucleic acids. An equal volume of phenol/chloroform/iso-amyl alcohol (25:24:1) 

containing 0.1% (v/v) hydroxyquinolone was added, the sample vortexed briefly, and the 

phases separated by centrifugation (20,00Cfc) in a microcentrifuge for 5 min. The upper 

aqueous layer was removed to a fresh tube and the sample was usually back-extracted with 

0.5 volumes of distilled water. This was then combined with the first extraction and the 

nucleic acids precipitated with alcohol (see Section 2.8.2).

2 JJ . Precipitation of DNA

All precipitations of nucleic acids, unless otherwise stated, were carried out in the 

following manner.

DNA solutions were adjusted to 03  M  sodium acetate (pH 5.2) and 2.5 volumes of 

absolute ethanol or 1 volume of isopropanol added. Precipitations were carried out either 

at -20°C overnight, -70°C for 30 min or in an ethanol/dry ice bath for 5-10 min. Nucleic
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adds were recovered by centrifugation (microcentrifuge) for 5-15 min at 20,00Qj. The 

pellets were washed once in 70% ethanol (0.9 ml) and dried briefly under vacuum before 

resuspension in TE buffer (lOmAf Tris-HCl (pH 7.6], 1 mM  EDTA) or sterile distilled 

water.

2 JJ . Gel electrophoresis of DNA

i) . Agarose gels.

DNA was routinely analysed for purity or following restriction enzyme digestion by 

electrophoresis through horizontal agarose slab gels submerged in 1 x TAE buffer (40 mM 

Tris-acetate, 1 mM  EDTA). The percentage of agarose, made up in 0.5 x TAE, was varied 

between 0.8 and 2.0% (w/v) depending upon the size of the DNA fragments to be resolved. 

Electrophoresis was performed using a Gibco-BRL Model H5 gel tank which allowed gels 

to be poured in a plastic tray of dimensions U.Ox 14.0 cm (width x length). Wells were 

formed using 1 or 2 mm thick combs of 10 or 20 teeth depending upon the number or 

volume of samples to analysed. Samples were supplemented with one fifth volume of load 

dye (5 x TAE, 30% [v/v] glycerol, 0.25% [w/v] bromophenol blue) and electrophoresis 

performed at 50-150 V at room temperature with buffer containing OAjig/ml ethidium 

bromide. Size markers were included in all gels; at least one track contained 1-4 fig of 

Gibco-BRL 1 Kb ladder (fragment sizes ranged from 12-0.1 Kb). DNA was visualised by 

placing the gel on a UV trans-illuminator and photographed using a Polaroid camera and 

type 55 4" x 5" land film.

ii) . Extraction o f DNA from agarose gels

DNA was purified from agarose gels by electro-elution (Sambrook et aJ„ 1989). A 

dialysis membrane was first rinsed with 0.5 x TAE, sealed at one end with a dialysis clip and 

filled with this buffer. The region of the gel containing the desired DNA fragment was 

excised with a clean scalpel and placed into the dialysis bag. Excess fluid was removed, 

leaving just sufficient to keep the gel slice from touching the sides of the membrane, and
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the bag sealed with another clip. The bag was then submerged in electrophoresis buffer 

( l x  TAE) in the gel tank and a voltage (100-200 V) applied for 1-2 hrs. The electrophoretic 

removal of the DNA from the gel slice was checked by UV trans-illumination and the 

polarity was reversed for 30 s to free the DNA from the dialysis tubing. The buffer 

containing the DNA was removed to a microcentrifuge tube and the bag rinsed out with 

0.5 volumes (approximately 200 p\) of 0.5 x TAE. The eluted DNA was subsequently 

extracted with phenol/chloroform/iso-amyl alcohol (25:24:1) and ethanol precipitated 

before use in further reactions.

H i). Polyacrylamide gels

Native polyacrylamide gels were employed in the preparation of end-labelled DNA 

probes or, at low ionic strength, for the resolution of nucleo-protein complexes in gel 

retardation assays. Radiolabelled RNA probes were also purified by electrophoresis 

through denaturing 8 Af Urea gels. In all cases 4 or 5% (w/v) gels (20:1 

acrylamide:bis-acrylamide) were formed in a 150x170 x 0.8 mm 

(width x length x thickness) apparatus and polymerized with 200 p \ (w/v) ammonium 

persulphate and 25 /¿l TEMED for 1 hr. Electrophoresis was carried out in a Gibco-BRL 

model V16 system at 150 V in 1 x TBE (89 mAf Tris-HCl [pH 8.3], 89 mAf Boric acid, 

10 mAf EDTA) or 0.2 x TBE for low ionic strength gels.

iv). Extraction o f DNA from polyacrylamide gels

Radiolabelled DNA fragments or oligonucleotides were recovered from 

polyacrylamide gels by the 'crush and soak' method (Sambrook et al., 1989). The gel slice 

containing the DNA was placed in a microcentrifuge tube and crushed against the side with 

a pipette tip. One to two volumes of elution buffer (0.5 Af ammonium acetate, 10 mAf 

magnesium acetate, 1 mAf EDTA [pH 8.0], 0.1% [w/v] SDS) was added and the sample 

shaken overnight at 37"C on a rotary platform to elute the DNA. The sample was then 

vortexed, centrifuged briefly and the supernatant removed. Another 0.5 volumes of elution
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buffer was added and the procedure repeated. Both supernatants were then combined and 

contaminating acrylamide fragments removed by passage over siliconized glass wool. A 

1 ml syringe was loosely packed to 2-3 cm height with glass wool and placed in a 15 ml 

Corex tube above a microcentrifuge tube. The sample was pipetted into the syringe body 

and forced over the glass wool by centrifugation at 50Q? for 1 min. The solution was 

collected and subsequently extracted with phenol/chloroform/iso-amyl alcohol (25:24:1), 

ethanol precipitated, washed with 70% ethanol, re-precipitated and washed with 70% 

ethanol twice more in order to remove acrylamide contaminants. After each step excess 

ethanol was removed from the samples by brief re-centrifugation and aspiration with a 

micro-pipette. Samples were then finally resuspended in TE or sterile distilled water for 

further use.

2.8.4. Use of DNA modification enzymes

i) . Restriction enzyme digests

The DNA to be cleaved by the restriction enzyme(s) was prepared in sterile distilled 

water and the appropriate 10 x buffer concentrate added. Enzymes were supplied by either 

Gibco-BRL or Amersham and the specified manufacturer's buffers were used in all cases. 

The number of units of enzyme required to digest the DNA in the given time (1-24 hrs) was 

calculated from the activity of the enzyme with aDNA as the substrate. This was then added 

to start the reaction and the tube incubated at the required temperature.

ii) . Dephosphorylation o f DNA

Following digestion with restriction endonucleases plasmid vector DNA was usually 

treated with C1AP to the remove 5' terminal phosphates and prevent re-ligation. Digests 

were first extracted with an equal volume of phenol/chloroform/iso-amyl alcohol (25:24:1), 

back extracted with 0.5 volumes of distilled water and ethanol precipitated. The pellet was 

resuspended in 50/d CIAP buffer (10 mM  Tris-HCl (pH 8.3], 1 mM  ZnCl 3  1 mM MgCl 2) 

and for protruding 5' ends, 1 unit of CIAP per lOOpicomoles of DNA was added and
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incubated for 30 min at 37°C. Blunt or recessed termini were incubated with 

1 unit/2 p/comoles for 15 min at 37°C, then with a second aliquot of CIAP for a further 

45 min at 45°C (Sambrook et al., 1989).

iii). Blunt end reaction

DNA molecules possessing protruding 5' termini generated by restriction enzyme 

digest were converted to blunt ends when required by incubation with the Klenow fragment 

o f E.coli DNA polymerase I in the presence of the required nucleoside triphosphates. The 

restricted DNA was extracted with phenol/chloroform/iso-amyl alcohol (25:24:1), back 

extracted, ethanol precipitated and resuspended in buffer (0.5 M  Tris-HCl (pH 7.5], 0.1 M 

MgSO,*, 1 mM DTT, 500 pg/m l bovine serum albumin {fraction V}.) containing the 

dNTPs at 1 mM final concentration. The reaction was started by the addition of 1 unit of 

enzyme per pg  of DNA and incubated at room temperature for 30 min. This was then 

terminated with 1 /al 0.5 M  EDTA (pH 8.0) followed by extraction with 

phenol/chloroform/iso-amyl alcohol (25:24:1), back extraction and ethanol precipitation.

/v). Ligation

The ligation of DNA fragments was performed as follows: one hundred 

microgrammes of vector DNA was mixed with an equimolar amount of insert DNA, 

containing compatible termini, in a final volume of 50^1 ligase buffer (50 mA# Tris-HCl 

(pH 7.6], 10 mM MgCl2, 1 mM ATP, 1 mM DTT, 5% (w/v) polyethylene glycol-8000). One 

Weiss unit of T4 DNA ligase was added and the reaction incubated at 16°C overnight. 

Cohesive and blunt-ended termini were ligated in the same way.

M i .  Bacterial transformatloa and preparation of plasmid DNA

i). Transformation o f plasmid vectors

Competent cells were prepared from an overnight culture of E.coli TG2 by a method 

based on Sambrook et al., (1989). One millilitre was subcultured into 50 ml fresh L broth
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and incubated in an orbital incubator at 37°C until the OD 590 was approximately 0.3 

(about 90 min). The cells were incubated on ice for 30 min followed by centrifugation at 

4°C for 10 min at ISOCg. The pellet was resuspended in 25 ml ice-cold 100 mM MgCl 2 

(made fresh from solid), immediately centrifuged as before and resuspended in 2.5 ml 

100 mM CaCl2 (also ice-cold and made fresh from solid). The cells were then incubated on 

ice for 60 min before use.

Competent cells (200 pi) were transformed with 25 p\ of ligation reaction, made up 

to 100/d with 100 mM Tris-HCl (pH 7.4), by mixing in*12 ml polypropylene Falcon tube 

and incubating on ice for 30 min. Control reactions contained no DNA or 0.5-1 ng of 

circular, untreated vector. The tubes were heated at 42°C for 2 min and incubated for a 

further 30 min on ice before the addition of 700/ri of L broth and incubation at 37°C 

(orbital shaker) for 30 min. Aliquots of cells, typically 250 p\, 50 jd, 10/d and 1 /d were 

each plated out onto an LB agar plate containing ampicillin and incubated overnight at 

37°C. All vectors conferred ampicillin resistance to their host; pUC and pBSII vectors also 

carried the /3-galactosidase gene, the expression of which was inactivated by a cloned insert, 

and these transformants were screened on LB agar plates also containing X-gal and IPTG 

(see Section 23.2).

ii). Small-scale plasmid preparation

The 'mini-prep' procedure of Serghini etal., (1989) was used to prepare plasmid 

DNA from bacterial colonies. The DNA was subject to further analysis by restriction 

enzyme digestion and agarose gel electrophoresis in order to screen for recombinant 

plasmids.

A single colony was inoculated into 5 ml L broth containing ampicillin and grown 

overnight in an orbital incubator at 37*C. An aliquot of 1.5 ml was transferred to a 

microcentrifuge tube and the cells pelleted by centrifugation at 20,00Qj for 3 min. The 

culture supernatant was aspirated and the pellet resuspended in 50 p\ TNE buffer (10 mM 

Tris-HCl [pH  8.0), 100 mM NaCl, 1 mM EDTA). An equal volume of
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phenol/chloroform/iso-amyl alcohol (25:24:1) was added, vortexed vigorously for several 

seconds and centrifuged for 5 min at 20,00Cfc. Fifty microlitres from the aqueous phase was 

transferred to a fresh tube containing 50/41 of 4 M  ammonium acetate and the DNA 

precipitated by the addition of 200/41 ethanol followed by a 15 min incubation on ice. The 

DNA was collected by centrifugation for 10 min at 20,0OQj and resuspended in 15 /4l of 

distilled water. Aliquots of 5 /4l were then taken for restriction enzyme digestion in the 

presence of RNAse A (50 /4g/ml).

iii). Large-scale plasmid preparation

Large quantities of plasmid DNA (1-3 mg) were prepared by the alkaline lysis 

method of Sambrook et al. (1989). Twenty microlitres were taken from a  glycerol stock of 

bacteria (1 ml overnight culture plus 1 ml 80% [v/v] glycerol; stored at -20"C) and 

inoculated into 5 ml LB containing ampicillin. This was incubated overnight in an orbital 

shaker at 37°C then used to inoculate 500 ml fresh LB plus ampicillin which was incubated 

for a further 6-8 hrs, at which time chloramphenicol (20/4g/ml final concentration) was 

added in order to amplify plasmid numbers (Sambrook et al., 1989). The culture was 

incubated for a further 15-18 hrs overnight. The cells were harvested by centrifugation 

(MSE 6L, 2800 rpm for 30 min) and the pellet resuspended in 7 ml of Solution I (25 mM 

Tris-HCl (pH 8.0), 50 mM  glucose, 10 mM  EDTA) containing 5 mg/ml lysozyme. The 

suspension was transferred to a Beckman SW28 polyallomer tube, allowed to stand for 

5 min, and the bacteria lysed by the addition of 14 ml of freshly made Solution II (0.2 M 

NaOH, 1% [w/v] SDS). After gentle mixing, the tube was kept on ice for 10 min and 

10.5 ml of ice-cold Solution III (5 A# potassium acetate; 5Af K+, 3 A# CH3COO') was 

added, mixed and allowed to stand on ice for a further 10 min. The tube was loaded into a 

Beckman SW28 rotor and centrifuged for 20 min at 20,000 rpm to pellet the cell DNA and 

bacterial debris. The supernatant was then mixed with 0.6 volumes of isopropanol. This was 

incubated at room temperature for IS min and the DNA recovered by centrifugation (MSE 

Chilspin 4500 rpm for 30 min at room temperature). The pellet was washed with 70%
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ethanol and dried in a vacuum desiccator before being resuspended in 25 ml TE for 

purification on a caesium chloride density gradient.

ft'). Caesium chloride density gradients

Caesium chloride (26.5 g) and ethidium bromide (3-4 mg) were dissolved in the 

DNA solution, prepared from the method described above, and loaded into a Beckman 

38 ml quickseal tube. The tube was then filled with paraffin oil, heat-sealed and centrifuged 

for 16-20 hrs at 45,000 rpm in a Beckman Vti 50 rotor at 15°C. The closed circular plasmid 

DNA band was located with long wave UV light and the top of the tube removed with a hot 

scalpel. The solution containing the plasmid was then carefully aspirated into a syringe. The 

ethidium bromide was removed from the sample by extracting with an equal volume of 

water saturated 1-butanol followed by brief centrifugation to separate the phases. This was 

repeated a further three times before the CsCl was removed by dialysis against three 

changes of TE (pH 7.8), 5 litre volume, each for 1 hr. The plasmid DNA was subsequently 

recovered by ethanol precipitation and resuspended in 1 ml sterile distilled water. The yield 

was estimated by measuring the OD250 0-0 0 ^ 2 6 0  ■ 50/ig/ml ds DNA) and the purity 

by taking the ratio of OD250/O D 28O For pure DNA this is 1.8. If plasmid preparations 

contained excess protein they were extracted with an equal volume of 

phenol/chloroform/iso-amyl alcohol (25:24:1) then twice with water saturated diethyl 

ether, followed by incubation at 68°C for 5-10 min to drive off contaminating ether. The 

OD readings were then measured again and the procedure repeated until the 

OD260/OD280 rat'°  was within 0.1 of this value. Plasmid solutions were stored at -20°C.

2.9. Transfection of eukaryotic calls

23.1. Transfection of adherent cells

Adherent cells were transfected by a modified calcium phosphate co-precipitation 

technique (Gorman et al., 1985; Chen and Okayama, 1987). Confluent monolayers were



Chapter 2 60

trypsinized 24 hrs prior to transfection and re-plated to achieve approximately 80% 

confluence the next day. The number of cells was 3.5 - 6.5 x 10  ̂per 60 mm dish depending 

upon the cell type. One millilitre of Ca3(P0 4 >2-DNA precipitate was prepared for each 

pair of 60 mm dishes in the following way: up to 20 fig of each plasmid DNA (caesium 

chloride gradient-purified) was mixed with 50 n\ MM CaCl 2 and the volume increased to 

500 n\ with tissue culture-grade sterile distilled water. This was gently mixed with an equal 

volume of HBS (50 mA/ Hepes-NaOH [pH 7.12), 280 mA/ NaCl, 10 mA/ KCl, 12 mA/ 

glucose, 3 mA/ Na2HP0 4> and allowed to stand for 10-15 min, during which time a fine, 

translucent precipitate formed. The precipitate (0.5 ml) was added dropwise to the cell 

culture medium with gentle swirling and the cells returned to the 37°C incubator in an 

atmosphere of 3% CO2 for 20 hrs. The next day, monolayers were treated with 20% (v/v) 

glycerol in PBS for 2 min, washed twice with PBS and cultured in 5 ml complete DMEM. 

Cells were then placed back at 37°C in a 5% CO 2atmosphere and incubated for 22-24 hrs. 

When the fresh medium had equilibrated with respect to temperature and carbon dioxide, 

approximately 30-60 min, cells were treated with cytokines or phorbol ester if required. 

This was added dropwise to the medium in each dish with gentle swirling and then dishes 

incubated as previously described for 22-24 hrs.

2.9.2. Transfection of suspension cells

Lymphocytes were transfected by a DEAE-Dextran technique (Durand et ai., 1987). 

Cells from a  growing culture were collected by centrifugation into aliquots of 12 x 106 cells 

and resuspended in 1 ml serum-free RPM1-1640 with 500 ng DEAE-Dextran (diluted from 

a 10 mg/ml stock made in Tris buffered saline; 25 mA/ Tris-HCl [pH 7.4), 137 mA/ NaCl, 

5 mA/ KC1, 0.7 mA/ CaCl2, 0.5 mA/ MgCl* 0.6 mA/ Na2HP0 4). This was mixed with a 

further 1 ml of serum-free RPMI containing 0.2 mA/ chloroquine and up to 20 ng of each 

plasmid DNA, and incubated at room temperature for 70 min to  transfect the cells. The 

aliquots were pelleted by centrifugation, washed once in RPMI without serum and
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resuspended in IS ml complete RPMI. Cultures were then returned to the incubator at 

37*C.

2.9 J . G418 selection

The production of permanent cell lines was achieved by transfection of cells with a 

plasmid canying the neomycin resistance gene, aminoglycosidase 3'phosphotransferase 

(APH), driven by the SV40 late promoter, and subsequent selection in the presence of the 

neomycin analogue, G418 (Geneticin, Gibco-BRL). A retroviral vector, pMoLTR/of 

(Dingwall et al„ 1989), kindly supplied by Dr. J. Karn, Laboratory of Molecular Biology, 

Hills Road, Cambridge, was used to create permanent lines expressing HIV-1 tat. This 

vector also facilitated expression of the APH marker. Co-transfection of pLC2R with 

pWLneo (Stratagene), an APH expression vector (20:1 ratio), was used to generate cell 

lines expressing CAT under control of the HIV-1 LTR. Preliminary experiments were 

performed to ascertain the lowest concentration of G418 which killed all the cells within 

10-14 days. Cells were passaged 48 hrs after calcium phosphate transfection (as Section 

2.9.1) at a ratio of 1:2-1:4, and incubated for a further 24 hrs. Fresh medium was added with 

S00^g/ml G418, changed every 2-3 days, and the growth of resistant colonies monitored by 

microscopy. Once G418 resistant colonies had become established the flasks were 

trypsinized and re-plated to form a bulk culture. This was either employed directly in 

experiments or cloned by limiting dilution. A cell suspension was diluted so as to contain 

1 cell in 10/41, and 3 /el and 30/41 (equivalent to 0.3 and 3 cells) seeded separately into 

48 wells of a flat-bottomed %  well plate. Plates were cultured in medium containing G418 

and scored after 2 days for colonies consisting of, or derived from, a single cell. Fresh 

medium was added to such wells and when confluent the cells were transferred to 6 well 

plates (35 mm diameter). Alternatively cloning rings were used, these were held down with 

vacuum grease and although cumbersome allowed most of an individual colony to be 

harvested, thus avoiding re-growing from a single cell. Clones and bulk cultures were 

propagated in complete DMEM in the presence of 500/¿g/ml G418.
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2.10. Analysis of cytoplasmic extracts from transfsctsd calls

2.10.1. Preparation of cytoplasmic extracts

Cytoplasmic extracts were prepared from transiently-transfected cells for the 

analysis of reporter gene expression. Duplicate 60 mm dishes of cells, 22-24 hrs after 

glycerol shock, were washed briefly with 5 ml of ice-cold PBS and dislodged with a cell- 

scraper into a fresh 5 ml aliquot of PBS. All subsequent manipulations were performed on 

ice or at 4°C. Residual cells were removed by washing once with 5 ml PBS and the cells 

harvested by centrifugation at 4°C (120%, 5 min). Lymphocytes were harvested 40-42 hrs 

after DEAE-Dextran transfection by centrifugation (120% for 5 min at 4°C) and washed 

once with 10 ml ice-cold PBS. The cell pellet was resuspended in 150/d  ice-cold CAT lysis 

buffer (250 mA/ Tris-HCl (pH 7.8), 5 mA/ DTT, 10% (v/v) glycerol, 0.25% (v/v) 

Nonidet-P40) and kept on ice for 10 min. Cell lysis was achieved by three cycles of freeze- 

thaw; ethanol/dry ice bath for 2 min, 37°C water bath for 1 min. The cell debris was 

pelleted in a microcentrifuge at 20,00% for 12 min. The supernatant (cytoplasmic extract) 

was retained and stored on ice until use.

2.10.2. Protein assay

The protein content of all cell extracts was determined using the Bio-Rad assay kit. 

Reagent (200 ¿d) was placed in a 1 ml plastic cuvette and the volume increased to 1 ml with 

distilled water plus 1-10/d of extract. The mixture was vortexed briefly and allowed to 

stand for 5 min before the colour change was measured in a spectrophotometer at a 

wavelength of 595 nm. The zero control was reagent (200 /d) and water (800/d) only. 

Samples were diluted, if necessary, to produce an absorbance of 0.1-0.6 units which was in 

the linear (1-10/sg) range of the microassay procedure (Bio-Rad manual).
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2.10 J. /f-galactosidase assay

The /3-galactosidase activity present in cytoplasmic extracts was measured by 

monitoring o-nitrophenol production following enzymatic cleavage of the substrate ONPG. 

This produced a yellow colour in solution (Rosenthal, 1987).

The following reagents were combined in a 1 ml plastic cuvette: 3 n\ 

100 x magnesium buffer (100 mM MgCl2, 5 M  /3-mercaptoethanol), 66 n\ ONPG solution 

(4 mg/ml in sodium phosphate buffer (100 ml of 0.1 M  Na2HP0 4  adjusted to pH 7.3 at 

37°C with 0.1 M  NaH ¿*0 4) and sufficient sodium phosphate buffer to give a final volume 

of 300¿d including cell extract. An equal amount of fresh extract0was transferred from ice 

to each cuvette, mixed and placed at 37°C to commence the reaction. Cuvettes were 

incubated for 30-120 min until a yellow colour was visible, and the reaction stopped by the 

addition of 0.5 ml 1 M  Na2CC>3. The absorbance was measured in a spectrophotometer at a 

wavelength of 410 nm with water as zero control. Occasionally incubation at 37°C would 

cause the precipitation of material from the extract, making the solution turbid and 

producing a higher OD reading than anticipated. If this occurred, the contents from all 

cuvettes were transferred to microcentrifuge tubes and centrifuged at 20,00Qg for 10 min to 

clear the solution before the OD410 was measured. A positive control for the enzyme assay 

was run using 100 ng of purified enzyme in place of the extract.

2.10.4. Chloramphenicol acetyl transferase (CAT) assay

The direct scintillation diffusion method (Eastman, 1987) was used to assay CAT 

activity. The number of units of extract0 employed in each assay was normalised for

a). The amount of extract was varied for each cell type to obtain a sufficient signal; this was 

due to different transfection efficiencies and levels of expression from the reporter gene 

constructs. One unit of extract was defined as the volume of required to produce an 

absorbance of 1.0 in the protein assay and 1-5 units (17.5 to 87.5 /ig) were used in each

assay.
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transfection efficiency by the ratio of 0-galactosidase activity between samples. Because the 

promoters driving 0-gal expression are responsive to cytokines (experimental observation) 

it was not possible to normalise between extracts from cells treated with cytokines, only 

between duplicates. Fresh extract was heated to 65°C for 15 min to inactivate any 

endogenous acetyltransferase activity and this served to reduce background as bacterial 

CAT is relatively resistant to such treatment. One to five units was then mixed with the 

following reagents in a plastic scintillation vial: 50 n  1 5 mM  chloramphenicol (aq), 25 /d 

1 M  Tris-HCl (pH 7.8), 124 ftl distilled water and 0.1 M  Tris-HCl (pH 7.8) to give a final 

volume of 300^1. Vl-acetyl coenzyme A (0.1 nC\) was added to each vial to start the 

reaction and 4.5 ml Econofluor scintillation fluid quickly added. The vials were incubated 

at 37°C and the formation of labelled acetyl chloramphenicol product measured by 

counting in a scintillation counter for 10 s every 30 min over 2 hours. Controls were 

included to monitor the background diffusion of label into the scintillant and a positive 

control of purified CAT enzyme. Also, extracts from cells transfected with pOCAT served 

as a measure of the background expression from a promoter-less CAT gene. This data was 

used to plot graphs of product formed by the CAT enzyme (CPM of 3H-acetyl coenzyme 

A) against time (min) to demonstrate the linearity of the enzyme reaction during the assay. 

An example of such is given in Figure 2.2.
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2.11. Analysis of RNA

2.11.1. Extraction of cytoplasmic RNA

This method was based on that of Sambrook et al. (1989). Total cytoplasmic RNA 

was extracted from cells transfected with pLC2R, or from one permanent cell line 

containing at least one integrated copy of this plasmid. RNA was prepared after 12 hrs 

incubation. Adherent cells were transfected as detailed in section 2.9.1, except that cells 

were seeded into 100 mm dishes and 70 of only pLC2R DNA was used in 1 ml of 

calcium phosphate precipitate. The incubation period began after the cells were glycerol 

shocked.

Monolayers in 100 mm dishes were washed once with ice-cold PBS and stored on ice 

before the cells were harvested by gentle scraping into 10 ml PBS with a cell scraper. The 

cell suspension was centrifuged at 40% for 5 min at 4°C and the pellet washed again with 

10 ml of ice-cold PBS before being finally resuspended in 200 fi\ RNA extraction buffer 

(10 mM  Tris-HCl (pH 8.6), 0.14 M  NaCl, 1.5 mM MgCl* 0.5% (v/v) Nonidet P-40, 1 mA# 

DTT, 1000 U/m l RNAsin). This was vortexed for 15 s and stood on ice for 5 min, then the 

unlysed cells and nuclei were pelleted in a microcentrifuge at 12,00% for 90s. The 

supernatant was transferred to a fresh tube, mixed with 200 n\ proteinase K digestion 

buffer (0.2 M  Tris-HCl (pH 8.0), 25 mM EDTA (pH 8.0), 0.3 M  NaCl, 2% (w/v) SDS) and 

incubated with 50 fig/ml proteinase K for 30 min at 37°C. Following extraction with an 

equal volume of phenol/chloroform/iso-amyl alcohol (25:24:1) and centrifugation at 5,00% 

for 10 min, the aqueous phase was placed in fresh tube and precipitated with 400/d ice- 

cold isopropanol for 30 min on ice. The RNA was collected by centrifugation for 10 min at 

20,00% and washed with 70% ethanol. This was carefully aspirated and the pellet allowed 

to air-dry before being redissolved in 200/¿I 50 mM Tris-HCl (pH 7.8), 1mA/ EDTA 

(pH 8.0). Input DNA or contaminating DNA from the nuclei was removed by digestion 

with DNAse I. The MgCl2 and DTT concentrations were adjusted to 10 mM and 1 mM, 

respectively, and RNAsin included to 1000 U/ml. Five units of RNAse-free DNAse I



(Promega) was added and the tube incubated at 37°C for 60 min. The enzyme was 

inactivated by the addition of EDTA (pH 8.0) to 10 mAf and SDS to 0.2% (w/v), followed 

by extraction with an equal volume of phenol/chloroform/iso-amyl alcohol (25:24:1). The 

phases were separated by centrifugation at 12.00Q; for 5 min and the aqueous portion 

transferred to a fresh tube. The RNA was precipitated by the addition of 1/101*1 volume of 

3 M  sodium acetate (pH 7.0) and 2.5 volumes of ethanol on ice for 30 min and then 

collected by centrifugation at 20.00Q? for 5 min. The pellet was air-dried and resuspended 

in 100 n\ TE. The yield was estimated by measuring the OD 260 assuming a solution with 

an OD26O °f 10 contained 40 /4g/ml RNA. Approximately 30-100 ng of RNA was 

recovered from a 100 mm dish of cells. The quality of the RNA was assessed by the 

electrophoresis of 1 /4g in loading buffer (80% (v/v) formamide, 0.1% [w/vj xylene cyanol, 

0.1% [w/v) bromophenol blue, 2 mM EDTA [Solution E, RPA I kit, Ambion Inc.]) through 

a 2.0% agarose gel [as Section 2.8.3, i)] for 5-10 min at 150 V in 1 x TAE electrophoresis 

buffer containing 0.4 /4g/ml ethidium bromide and visualizing the integrity of the ribosomal 

RNA bands under UV light.

2.11.2. Production of radiolabelled RNA probes

Antisense riboprobes specific for HIV-CAT mRNA were synthesised from the T3 

promoter of plasmid pBSII-LTRF, linearized at the Bam HI site, by an in vitro transcription 

reaction in the presence of ̂ P-aCTP.

The following reagents were mixed in a microcentrifuge tube: 4 /d transcription 

buffer (200 mM Tris-HCl [pH 7.5], 30 mAf MgCl2, 10 mM  spermidine. 50 mM NaCl), 2 fi\ 

100 mM  DTT, 1 n\ RNAsin (25 units), 4 p\ of a solution containing 2.5 mM ATP, 2.5 mM 

GTP, and 2.5 mAf UTP, 2.4/41 100 nM  CTP, 500 ng linearized template DNA, and 5/41 

32P-aCTP (50/iCi) in a final volume of 19/41. The reaction was started by the addition of 

40 units of T3 RNA polymerase and incubated for 60 min at 37"C. After transcription the 

template DNA was destroyed by incubation with 1 U RNAse-free DNAse I (Promega) for 

a further 15 min at 37*C and the probe purified by electrophoresis through a 5% 8 M  Urea



polyacrylamide gel [see Section 2.8.3, iii)]. The position of the labelled probe was located 

by autoradiography for 2-3 min and excised with a clean scalpel into 350 /4l elution buffer 

(0.5 M ammonium acetate, 1 mM EDTA, 0.1% SDS [Solution F, RPA I kit, Ambion Inc.]). 

This was placed on a rotary platform and incubated overnight at 37°C. The gel slice was 

removed with sterile forceps and the probe stored at -70°C until required.

2.113. Ribonuclease protection assay

This was performed using the RPA I kit obtained from Ambion Inc., and the 

protocol as detailed below.

Cytoplasmic RNA (50-100/4g) and riboprobe (5x lO^cpm) were co-precipitated 

with 2.5 volumes of ethanol, in 100 /4l final volume containing 0.5 M ammonium acetate, by 

storage at -70°C for 15 min. In the assay each riboprobe also required two controls 

consisting of an equal amount (cpm) of probe and 10 /¿g yeast RNA. These were i); to 

check the integrity of the probe during the assay (no RNAse) and ii); to confirm no positive 

signal was produced from the carrier RNA after digestion with RNAse or due to 

incomplete digestion of free probe. The RNA was collected by centrifugation at 20.00Q? for 

15 min and the ethanol carefully removed. The tube was then re-centrifuged briefly and the 

remaining liquid aspirated. The RNA pellet was redissolved in 20/41 hybridization buffer 

(Solution A: 80% [v/v] deionized formamide, 40 mM PIPES, 400 mM ammonium acetate 

[pH 6.4], 1 mM EDTA), heated to 95°C for 3-4 min and incubated at 43°C for 12-16 hrs. 

Solution R (50 U/ml RNAse A, 10,000 U/ml RNAse T l) was diluted 1:100 in RNAse 

digestion buffer (Solution B) and 200 /4l added to each experimental tube and to one 

control tube. The second control tube received 200/¿I of solution B only. This was mixed by 

brief vortexing and incubated at 37°C for 30 min. An equal volume of Solution D1 

(Proteinase K/Yeast RNA) and D2 (20% [w/v] SDS) were mixed together and 20/41 

added to each tube. These were vortexed and incubated for a further 15 min at 37"C, 

followed by extraction with 250/<l phenol/chloroform/iso-amyl alcohol (25:24:1). The 

aqueous phase was removed and the RNA precipitated with 625 /4l ethanol at -7(PC for



IS min. After centrifugation for IS min at 20,00Q? and removal of the ethanol as described 

earlier, the pellet was resuspended in S p\ loading buffer (Solution E) and then separated 

on an 8% (w/v) acrylamide 8 M urea sequencing gel (see Section 2.12.3, ii)].

2.12. Analysis of DNA binding protsins

2.12.1. Preparation o f  nuclear extracts

i) . Cytokine treatment, harvesting and storage o f cells

This method required two to four roller bottles of confluent cells depending upon 

the cell type. When required the necessary cytokine was added to the medium of confluent 

cells prior to harvesting by trypsinization. U373MG astrocytoma cells were treated with 

250U/ml of IL-1/3 for \Vz-2 hrs and SK-N-MC and SK-N-SH neuroblastoma cells with 

100 U/ml of TNFa for 2 hrs. After trypsinization the cells were washed once with 25 ml of 

ice-cold PBS and the cell pellet ( s  1 ml), was resuspended in 2-3 pellet volumes of 30% 

(v/v) glycerol in PBS and stored at -70°C for up to 6 months.

ii) . Preparation o f nuclear extracts.

This method was based on that of Lubon and Hennighausen (1987). Nuclear extracts 

were prepared from either freshly harvested cells or frozen cells thawed on ice immediately 

before use. All solutions were kept chilled and protease inhibitors and DTT added just 

prior to use. Centrifuges were also cooled to 4°C for this procedure. The cells were 

pelleted and washed once with 10 ml PBS and resuspended in 3 pellet volumes of 0.3 M  

sucrose in buffer A (10 mA# Hepes-KOH [pH 7.8], 10 mM KC1, 1.5 mM MgCl2, 0.1 mM 

EGTA, 0.5 mM DTT, 0.5 mM PMSF, and 2 pg/ml each of antipain, leupeptin and 

pepstatin A) which was transferred to a Dounce tissue homogenizer. Cell lysis was achieved 

by 10-12 strokes of a  B pestle, followed by 3-4 strokes in the presence of 0.1% (v/v) 

Nonidet P-40. Complete lysis was confirmed by phase contrast microscopy. The nuclei were 

pelleted by centrifugation (120Cfc, 10 min) and washed twice with 3 ml buffer A without
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NP-40 (the cytoplasmic supernatant was retained after the first centrifugation step and 

stored at -70°C). The nuclei were then resuspended in 1-2 pellet volumes of buffer B 

(400 mA# NaCl, 10 mA# Hepes-KOH (pH 7.8), 1.5 mA# MgCl2, 0.1 rnA# EGTA, 0.5 mA# 

DTT, 5% (v/v) glycerol and 0.5 mA# PMSF) and thoroughly dispersed by 10 strokes (B 

pestle) in the tissue homogenizer. T he suspension was the transferred to a 7 ml glass 

universal and stirred slowly at 4°C for 30 min to elute the nuclear proteins. The extracted 

nuclei and insoluble material were pelleted by centrifugation at 100,OOCfc for 1 hr. The 

supernatant was dialysed against 100 volumes of buffer C (20 mA# Hepes-KOH [pH 7.8], 

75 mA# NaCl, 0.1 mA# EDTA, 0.5 mA# DTT. 20% [v/v) glycerol and 0.5 mA# PMSF) for 2-3 

hrs and precipitated material, mostly lipid, removed by centrifugation (25.00Q;, 15 min). 

The remaining protein solution was aliquoted into microcentrifuge tubes which were 

flash-frozen in liquid nitrogen before storage at -70°C.

2.12.2. Production of labelled DNA probes

DNA fragments, for gel retardation or footprinting assays, were radiolabelled at one 

end to produce high specific activity probes for each strand (Goodwin, 1990). One of two 

methods were employed, either the T4 polynucleotide kinase reaction (5' end) or end-filling 

with reverse transcriptase (3' end), in order to locate the labelled nudeotide(s) at the most 

favourable position relative to the proposed nuclear protein binding site. An overview of 

the procedure followed for the production of each DNA probe specifically labelled at one 

end is given in Table 2.3 (p74) and the region that it spans is given in Figure 2.1 (p75). 

Double-stranded oligonucleotides were labelled only by the T4 polynucleotide kinase 

reaction, on both 5' termini for gel retardation assays.

i). T4 polynucleotide kinase reaction

Fifty microgrammes of the relevant plasmid DNA, this was either pBSII-LTRF or 

-LTRfl which contain specific restriction fragments from the 5' or 3' regions of the HIV-1 

LTR (see Figure 2.3 and Chapter 3, Section 3.4), was digested with the first restriction
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enzyme in a final volume of 100/4l. An aliquot was removed and the extent of digestion 

checked by electrophoresis through a 1% agarose gel [see Section 2.83, i)] before 

proceeding to add 20 units of CIAP to the incubation buffer. This was incubated at 37°C 

for a further 30 min to remove 5' terminal phosphates from the linearized DNA. After 

addition of 2 n\ 0.5 Af EDTA (pH 8.0) and 5 n\ 20% (w/v) SDS the solution was extracted 

twice with 100 ¿<1 of phenol/chloroform/iso-amyl alcohol (25:24:1) and then once with 

chloroform/iso-amyl alcohol (24:1). The DNA was precipitated with two volumes of 

ethanol and centrifuged at 20,00Gg for 10 min. The pellet was washed once with 70% 

ethanol and the remaining ethanol removed by brief centrifugation and aspiration with a 

micropipette before resuspension in 20/41 TE buffer. A portion (10/4g) of the DNA was 

labelled with ^2p by mixing the following components: 4/41 of the digested and 

phosphatased DNA, 5/41 of kinase buffer (500 mAf Tris-HCl [pH 7.6), 100 mAf MgCl2, 

50 mM DTT, lm M  Spermidine. 1 mM EDTA), 12.5 n \  32P-,dATP (5000 Ci/mmol; 

125 /4Ci), 27.5/41 distilled water and 2/41 (20 units) T4 polynucleotide kinase in a final 

volume of 50/41. This was incubated at 37°C for 45 min before EDTA and SDS were added 

to stop the reaction and the solution phenol extracted and ethanol precipitated (as before). 

The pellet was resuspended in 200/41 TE, then re-precipitated by the addition of 20/413 Af 

sodium acetate (pH 7.0) and 2.5 volumes of ethanol. The DNA was centrifuged and washed 

twice with 70% ethanol as described earlier, before being redissolved in 20/41 distilled 

water and digested with the second restriction enzyme in a  volume of 50/41 for 1-2 hrs. The 

following were then added: 1 /4l 0.5 M  EDTA (pH 8.0), 2.5 /4l 20% (w/v) SDS and 12/41 

20% (w/v) Ficoll, and the sample loaded into two wells o f a  5% native polyacrylamide gel 

and electrophoresed at 150 V [see Section 2.83, iii)J. Formamide load dye (80% [v/vj 

deionized formamide, 10 mM NaOH. 1 mAf EDTA, 0.1% [w/v] Xylene Cyanol, 0.1% [w/v] 

Bromophenol blue) was placed in adjacent wells to monitor the electrophoresis which was 

continued until the bromophenol blue reached the bottom (2V4-3 hrs). The gel plates were 

separated from the apparatus, one glass plate removed and the gel face covered with Saran 

wrap. In a dark room, a film (Fuji RX) was placed over the gel and exposed for up to 4 min.
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This was developed to locate the band of interest which was excised with a clean scalpel. 

The DNA was extracted from the gel slice by the 'crush and soak' method [see Section

2.8.3, iv)] and resuspended in 100 /¿I TE to give a solution of 15,000-45,000 cpm /jd (2.4 - 

7.2 x 10^ cpm/pg).

Double-stranded oligonucleotides were labelled in a similar procedure: 

oligonucleotide (5 pmol) was mixed with 2 pi kinase buffer, 2.5 pi 32P 7dATP 

(5000 Ci/mmol; 25 pC\), 1 p i T4 polynucleotide kinase and distilled water to  give 20 pi 

final volume and incubated at 37°C for 45 min. The reaction was stopped by the addition of 

0.8 p\ 0.5 M  EDTA (pH 8.0) and 1 pi 20% (w/v) SDS, mixed with 5 pi 20% (w /v) Ficoll, 

and loaded into one well of a 10% non-denaturing polyacrylamide gel [see Section

2.8.3, in)]. This was electrophoresed at 150 V for approximately 1 hr (with formamide load 

dye in adjacent wells) and the labelled oligonucleotide located by autoradiography for 

2 min as described earlier. After elution from the gel slice and removal of polyacrylamide 

fragments [see Section 2.8.3, iv)] the solution was extracted once with 

phenol/chloroform/iso-amyl alcohol (25:24:1) and ethanol precipitated in the presence of 

carrier tRNA (5 pg). The oligonucleotide was recovered by centrifugation at 20,00Cfc for 

25 min, washed twice with 70% ethanol and resuspended in 100 p\ TE. This gave a solution 

of 50,000-100,000 cpm/^1 (3.5 - 7.0 x 10^cpm/^g).

ii). End-filling with reverse transcriptase

The protocol described above for the labelling of DNA fragments was followed 

except the end-filling reaction was performed in place of the kinase reaction. Ten 

microgrammes of DNA (4 p\), digested with the first restriction enzyme, was mixed with 

5*1 RT buffer (100 mA/ [pH 8.3], 800 mA/ KCI, 100 mA/ MgCl2. 20mA/ dGTP, 20mA/ 

d r  IF), 2 p\ 300 mA/ 0-mercaptoethanol, 12.5 pi 32P-adATP (6000 Ci/mmol; 125 *Ci), 

12.5*11 32P-adCTP (6000Ci/mmol; 125*iCi), 12*il distilled water and 2*il (40 units) 

AMV reverse transcriptase. This was incubated for 1 hr at 37 °C. The reaction was 

terminated and the protocol continued as previously described. Due to the m ore efficient
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incorporation of two labelled nucleotides into each DNA molecule the exposure time for 

autoradiography of the gel was reduced to 5-20 seconds and the final LTR fragment 

resuspended in 200 /d TE. This gave a solution of 135,000-175,000 cpm/iil 

(4.4 - 5.7 x 107 cpm/^g).



P la sm id F irs t
en zy m e

L abelline
p ro to co l

S econd
en zy m e Probe

pBSII-LTRB
rx b a . J Kinase Rsal 194C
( Hind III ) Rsal 159NC

( Xba I ) End-tilling Rsal 194NC
pBSII-LTRB

l  Hind III ) Rsal 159C
pBSII-LTRF Hind III Kinase Xba 1 ^NC
pBSII-LTRF Hind III End-tilling Xba 1 FC

Tabla 2.3. Production of radlolabelled probes spanning the HIV-1 
LTR. Indicating the starting plasmid, sequence of restriction 
enzyme digestions and labelling protocols followed In order to 
produce each probe end-labelled on one strand only. For additional 
Information on the region of the LTR contained in each probe see 
Figura 2.3.
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HIV-1 LTR
3 ’5 '

B^ll

•488

Region tubdorwd Into Xba I Hind III
plasmid pBSII-LTRB ______________________________ ’

Rofllon aubclonod Into 
plasmid pBSII-LTRP

Radiolabelling protocol 
(see Section 2.12.2 and Table 2.3)

Double stranded DNA probes end-labelled on one strand:

194C

— i i A

159C FC

194NC 1S9NC FN C

Figure 2.3. Schematic diagram ahowing the radiolabelled probes 
derived from the HIV-1 LTR (positions -488 to +77) The Bgl II •
Hind III LTR fragment was subcloned In two seperate fragments 
to produce plasmids pBSII-LTRF and pBSII-LTRB. These were 
employed In the radlolabelllng procedures detailed In Section 2.12.2 
and Table 2.3 which gave rise to six double stranded DNA probes 
corresponding to the entire LTR. Probee 194C, 1S9C and FC were 
labelled on the coding strand and 194NC, 159NC and FNC on the 
non-coding strand, a Indicates the position and number of labelled 
nucleotides In each probe.
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2.12 J . Sequencing of double stranded DNA

i). Chemical cleavage method

The LTR probes were sequenced by this method (Ausubel et a l , 1990) to allow the 

pattern of fragments produced by DNAse I foot-printing to be correctly orientated with 

respect to the sequence that they define.

Sufficient DNA (see Table 2.4) for the required chemical cleavage reactions was 

precipitated with isopropanol and the pellet washed twice with 70% ethanol. The DNA was 

dried and resuspended in sterile distilled water then distributed between the sequencing 

reactions. The chemical cleavage protocol was carried out as detailed in Table 2.4 and the 

DNA, after the final evaporation, redissolved in 5 n\ formamide load dye. The 

compositions of the buffers are given below.

DMS stop buffer 

1.5 M sodium acetate 

1 mM  EDTA (pH 7.0) 

Filter sterilized, then 

100/jg/ml tRNA added.

Hydrazine stop buffer

0.3 M  sodium acetate (pH 7.0)

0.1 mAf EDTA

Filter sterilized then 25 fig/ml 

tRNA added.

DMS reaction buffer 

50 mM  sodium cacodylate (pH 8.0) 

1.0 A# /1-mercaptoethanol 

100^g/ml tRNA



Table 2.4.
O utline of Maxam and G ilbert 
ch e m ic a l seq u en cin g  re a c tio n s

S p e c if ic ity  o f DNA c le a v a g e
C o m p o n en t G G+A T+C C

DNA, / i l 5 * 1 0 * 1 0 * * •
DMS Reaction buffer, / i l 200 -
W ater, / il 5 - 10 10
5  M NaCI, / i l • 5

B ase  e pe o lflo  m o d if ic a tio n  reac tions .
DMS, / i l  
Form ic acid, / i l  
Hydrazine, / i l

1
25

30 30
T im e (min), a t RT 4 10 15 0

R M o tlo n  s to p p e d  by  d ilu t io n  w ith  a to p  b u ffe r  a n d  -20*C e th a no l 
a n d  Im m e rs in g  In s th a n o l/d ry  loe  bath  to r  6  m in .
D M 8 stop  buffer, / i l  50
H ydraz ine s top  buffer, / i l  200 200  200
E th an o l./ i l  750 750  750  750
DNA co/hctod by enntr/fugnt/on at20,000g for 10 min, wnthndtwicn with 
70% thnno! and nir-drind.

R e m a in in g  rea g e n ts  rem o ve d  b y  re -p re o lp lta tlo n  (as  a bove)
W a te r,/ i l  200 200  200  200
3 M Sodium  acetate, / i l  20  20  20  20
E th an o l./ i l  500 500  200  200

S tra n d  M is s io n  rea o tlo n  a t m o d if ie d  b ases b y  Ino u ba tlo n  to r  3 0  m in  
a t 00"C  In 10% p ip e rid in e .
10%  (v/v) p ip e rid in e ,/il 70 70  70  70
70 lil w f r  addnd a/fr Incubation, vortwed and evapomted 
A ll  tra o ee  o f  p ip e r id in e  rem oved  b y  e va po ra tio n  tw lo o  fro m  w a te r. 
S terile  w ater, / i l  00  00  6 0  60
S terile  w a te r,/ i l__________________________ 50 50 50  50

*10,000, b 20,000 Cérènkov cpm
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ii). Sequencing gels

DNAse I digested DNA from foot-printing reactions along with chemically 

sequenced DNA, or RNA from ribonudease protection assays were resolved on 8% (w/v) 

acrylamide (19:1 acrylamide: bis-acTylamide) 8 M  urea gels.

Wedge gels (0.4-1.2 mm) were poured between glass plates measuring 31.0 x 38.5 cm 

(width x length) and allowed to polymerize overnight by the addition of 850 n\ 10% (w/v) 

ammonium persulphate and 95 fil TEMED. Gels were electrophoresed in a Gibco-BRL 

model S2 apparatus at 85 W (approximately 50 mA, 1500-1600 V) in 1 x TBE for 40-60 min 

to pre-run and warm the gel. The samples were loaded after being denatured at 90°C for 

3-4 min, frozen in ethanol/dry ice and thawed on ice. The gels were run at the same settings 

for 2V$-3 hrs to achieve the desired degree of separation. One glass plate was then removed 

and the gel fixed by immersion in 10% (v/v) acetic acid for 45 min. Afterwards, the gel face 

was covered with Saran wrap and the gel dried under vacuum at 80°C for 1 Vi hrs. Gels were 

autoradiographed at -70°C for 2-5 days with two intensifying screens using Fuji RX film.

2.12.4. Gel retardation assay

The method used was based on that of Goodwin (1990). To perform a gel 

retardation assay the following reagents were gently mixed in a microcentrifuge tube: 9 fi\ 

GR buffer (40 mM  Hepes-KOH [pH 7.6), 8% [w/v] Ficoll, 10 mM  MgCl2, 80 mM NaCl, 

0.2 mM  EDTA, 1 mM DTT and 0.5 mM ZnCl2), 1 fig pUC13 plasmid DNA, end-labelled 

DNA probe (1 x 104 cpm /\ poly (dEdCMdEdC^, 10-25 fig of crude nuclear extract and 

distilled water to 20/sl. This was incubated on ice for 60 min and loaded into one well of a 

4% (for oligonucleotide probes) or 5% (DNA fragment probes) non-denaturing 

polyacrylamide gel at low ionic strength [see Section 2.83, iii)]. Gels were

b) . Probes were either oligonucleotides ( 10-20 femtomo\, see Table 2.2) or end-labelled 

LTR fragments (2-5 femtomol, see Section 2.12.2).

c) . This was 03-0.4 fig for oligonucleotides or 3-5 fig for DNA fragments.
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pre-electrophoresed for 60 min and the buffer (0.2 x TBE) re-circulated prior to loading 

and during the electrophoresis. Formamide load dye was placed in empty wells to provide a 

marker and samples electrophoresed until the free probe was at the bottom of the gel, at 

150 V this was approximately 5-6 hrs for DNA fragments and 116-2 hrs for oligonucleotides. 

The gels were fixed for 20 min in 10% (v/v) glycerol, to retard cracking, and dried at 80°C 

under vacuum for 30 min, prior to autoradiography at -70°C for 1-3 days with two 

intensifying screens.

2.12.5. DNAse I foot-printing

A limited DNAse I digestion of an end-labelled LTR probe was performed in vitro 

in the presence of bound nuclear protein by the method of Goodwin (1990). Crude nuclear 

extract (0-225 /ig) was gently mixed with 4 ng poly (dI:dC)-(dI:dC) and 2-5 /emromoles of 

end-labelled DNA Fragment (2 x 104 cpm) in a 100 n 1 final volume of 20 mM Hepes-KOH 

(pH 7.8), 40 mM  NaCl, 2 mM CaCl2, 5 mM MgCl2, 1 mM DTT, 0.5 mM ZnCI2, 10% (v/v) 

glycerol. This was incubated on ice for 60 min then digested with 23 ng of DNAse I for 15 s 

on ice and 60 s at room temperature. The reaction was stopped by the rapid addition of 

100/41 stop buffer (2% [v/v] SDS, 10 mM EDTA [pH 8.0], 0.1 mg/rnl tRNA) followed by 

200^1 phenol/chloroform/iso-amyl alcohol (25:24:1) and mixed by vortexing. The phases 

were separated by centrifugation (5 min, 20,000)?) and the supernatant extracted again with 

phenol/chloroform/iso-amyl alcohol (25:24:1). The DNA was precipitated with 2.5 volumes 

of ethanol then pelleted at 20.00Q? for 10 min. The pellet was washed once with 70% 

ethanol and all traces removed from the sample by a brief re-spin and aspiration with a 

micro-pipette. It was then resuspended in 5 n\ formamide load dye and heated to 90°C for 

3 min, frozen rapidly in an ethanol/dry ice bath and allowed to thaw on ice before loading 

on to an 8% sequencing gel [see Section 2.12.3, ii)].







Chapter 3: Construction of plasmid vectors

Introduction

In the study of HIV-1 gene expression in mammalian cells the molecular 

biological techniques employed centred upon the use of plasmid vectors to  express 

HIV-1 or reporter genes under the control of viral promoters and to manipulate 

HIV-1 sequences. Details of the construction and structure of plasmid vectors are 

given in the following chapter and summarized in Table 3.1. The numbering system 

for the HIV-1 sequences used was the same as that employed by the Beckman 

Microgenie data base and cited by the original reference for the sequence involved, 

except for the HIV-1 LTR which was numbered relative to the start of transcription 

where +1 was the first nucleotide of nascent transcripts.

3.1. Chloramphenicol acatyl transfarasa expression vectors

All plasmids contained the reporter gene bacterial chloramphenicol acetyl 

transferase (CAT), SV40 donor and acceptor splice sites and polyadenylation signals 

from the gene encoding small T-antigen, in addition to a bacterial origin of 

replication and ^-lactamase gene for the propagation of recombinant E. coli using 

ampicillin selection.

The construct pLC2R (Herbomel et a/., 1984) expressed CAT under the 

direction of the HIV-1 long terminal repeat (LTR) subcloned from the LAI isolate 

(Wain-Hobson et al., 1985; also see Wain-Hobson et a/., 1991) as an 826 bp Xho I to 

Nar I fragment spanning the entire U3, R and U5 regions. This plasmid was kindly 

supplied by Dr. J Karn, MRC Laboratory of Molecular Biology, Hills Road, 

Cambridge. Due to the absence of a detailed map of the HIV-1 LTR CAT 

expression vector this plasmid was subjected to a limited restriction mapping, shown 

in Figure 3.1



Table 3 .1 . Sum m ary of th e  p la sm id  
fu n ctio n s

P la sm id  P ro m o te r  d riv in g  
D esig n a tio n  e x p ress io n

pLC2R HIV-1 LTR
PSV2CAT SV40 late promoter {, Chloramphenicol
pKILTRCAT Kirsten MSV LTR i acetyl transferase

pOCAT none -*
pCH110
pRSVßgal

SV40 late promoter ) 
RSV LTR $

U-galactoeidase

pSVLtat -v HIV-1 (BH10) tat
pSVLnefS if

SV40 late promoter
HIV-1 (BH10) n et

pSVLnefll < HIV-1 (SF-2) n et
pSVLvpr J HIV-1 (BH10) vpr
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Plasmids pSV2CAT and pKiLTRCAT contained the SV40 late promoter 

(Gorman, 1985) and Kirsten murine leukemia virus LTR (Norton et al„ 1984) 

respectively, to drive expression of the CAT gene. Plasmid pOCAT contained only 

the CAT reporter gene and no inserted viral or cellular promoter sequences. This 

was constructed from pSV2CAT by removal of the SV40 promoter as an 

Acc I - Hind III fragment and re-ligation of the plasmid after blunt ends had been 

formed. These plasmids were prepared and donated by Mr. George Ward, 

Department of Biological Sciences, University of Warwick.

3.2. 0-galactosidaM expression vectors

Plasmids pCHllO (Pharmacia) and pRSV/Sgal expressed the bacterial lac z 

gene (/3-galactosidase) from the SV40 late promoter and Rous Sarcoma virus LTR 

respectively. Polyadenylation and small T-antigen donor and acceptor splice sites for 

the processing of transcripts were from SV40. These vectors also contained a 

bacterial origin of replication and 0-lactamase gene.

Plasmid pRSV0gal was constructed by restriction digestion of pCHUO DNA 

with Hind III and Bam HI to release a 3736 bp fragment (nucleotides 1-3736) 

containing the lac z  open reading frame. This was isolated by electro-elution after 

electrophoresis of the digest through an agarose gel and ligated into CIAP-treated, 

Hind III/Bgl II digested RSV-33. RSV33 is a eukaryotic expression vector, obtained 

from Mr. George Ward, which contains the RSV LTR, SV40 processing signals and 

sequences for maintenance in bacteria. The ligation mixture was used to transform 

E.coli TG2 and positive colonies selected. These were blue due to the expression of 

0-galactosidase from a prokaryotic promoter in the inserted sequence when 

recombinants were grown on LB agar plates containing ampicillin, X-gal and IPTC. 

Plasmid DNA was prepared by the ' mini-prep' method from overnight cultures of 

one white and several blue colonies and was screened by restriction digestion
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followed by agarose gel electrophoresis to identify pRSV/9gal. A diagram of 

pRSV^gal is shown in Figure 3.2.

3.3. Con«trucUon of vectors for th* expression of HIV-1 genes

All plasmids were constructed using pSVL, a eukaryotic expression vector in 

which cloned genes inserted into a multiple cloning site were expressed under the 

control of the SV40 late promoter. Transcripts were spliced and polyadenylated 

using SV40 VP1 processing signals and the vector also contained a bacterial origin 

of replication and /3-lactamase gene.

3.3.1. ta t

Plasmid pSVL/or was constructed to express the tat gene of HIV-1. A 

molecular clone of isolate BH10, plasmid pBH10AR3 (Ratner et aJ„ 1983), which 

contained a proviral DNA copy of an incomplete genome was obtained from the 

MRC AIDS reagent programme. DNA was digested with Sal I and Bam HI to 

release a 2686 bp fragment (nucleotides 3143-7831) which was agarose gel-purified 

and ligated into dephosphorylated Xho 1/Bam HI restricted pSVL. The ligation 

mixture was then used to transform competent E.coti TG2 and plasmid DNA from 

ampicillin resistant colonies screened by restriction enzyme digestion. The 

recombinant plasmid (Figure 3.3.) contained both exons of tat and a functional 

protein was expressed when measured by transactivation of pLC2R in CAT assays.

3.3.2. M f

Vectors were constructed to express the nef open reading frame from two 

HIV-1 isolates. Plasmid pSVLnefll contained a functional nef gene derived from 

pARV2*7A, a molecular clone of the SF-2 proviral genome (formerly ARV-2) 

which lacked the S' LTR and was permuted by pUC19 at a unique Eco RI site
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(Sanchez-Pescador et al., 1985). Plasmid pARV2x7A was obtained from Dr. Dino 

Dina, Chiron Corporation, Emeryville, California, USA. Plasmid pSVLnefS 

contained a defective nef gene from pBH10*R3 (Ratner et al., 1985) truncated by a 

stop codon at position 124 of 207 amino acids.

Plasmid pSVLnefll was constructed in the following way: a 961 bp fragment 

(nucleotides 8627-9588) was isolated from Pst I and Sst I digested pARV2*7A by 

electrophoresis of the digested DNA through an agarose gel, followed by 

electro-elution of the fragment. The 961 bp fragment was then digested with Taq I. 

This produced two fragments of 521 bp (nucleotides 8916-9437) and 288 bp 

(nucleotides 8627-8915) which contained the nef open reading frame, designated 

nef L and nef S respectively, and a third 150 bp fragment (nucleotides 9438-9588) 

derived from the 3' LTR. Nef L and S were isolated separately by electro-elution 

following electrophoresis of the digest through an agarose gel and, after 

dephosphorylation of nef L, were combined in a ligation with Pst I/Acc I restricted 

pUC13 (Yanisch-Perron et al., 1985). Competent bacterial cells were transformed 

and inoculated onto agar plates containing ampicillin, X-gal and IPTG. The agar 

plates were incubated overnight at 37°C. Due to the insertional inactivation of the 

/9-galactosidase gene colonies containing inserts were white. Restriction digests of 

'mini-prep' DNA from recombinant colonies were carefully analysed to determine 

the correct arrangement of nef fragments. The resulting clone contained the 

complete nef gene (nucleotides 8627-9437) and was designated pUC13nefARV2. 

Caesium chloride density gradient-purified pUC13nefARV2 DNA was then digested 

with Hind III and the termini blunt-ended with Klenow DNA polymerase I before 

digestion with Bam HI to release all the HIV-1 sequences. The insert was isolated 

from an agarose gel and used to ligate CIAP-treated Sma I/Bam HI restricted 

pSVL. Plasmid pS W n efll was subsequently generated following transformation and 

screening of plasmid DNA from recombinant bacterial colonies by restriction 

enzyme digestion (see Figure 3.5).
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In order to produce pSVLnefS a 1096 bp Bam HI - Sst I fragment 

(nucleotides 7832-8928) was isolated from a pBH10*R3 Bam Hl/Sst I digest by 

agarose gel electrophoresis and subsequent electro-elution which was then ligated 

into CIAP-treated Bam Hl/Sst I digested pUC13 DNA. The ligation mixture was 

used in a transformation reaction and 'mini-prep' plasmid DNA from ampicillin 

resistant colonies was screened by restriction enzyme digestion to obtain pUC13nef 

containing the nef fragment. Caesium chloride density gradient purified pUC13nef 

DNA was digested with Xba I and Sst I to release the nef gene and, after gel 

purification, was ligated into dephosphoryiated, Xba I/Sst I digested pSVL. Plasmid 

pSVL/tefS was identified following the usual transformation and screening 

procedure (see Figure 3.6).

3 J 3 . vpr

Both available sources of cloned HIV-1 DNA, (from the isolates BH10 and 

SF-2) contained defective vpr genes as only the 96 amino acid allele is functional 

(Cohen et al., 1990b). The vpr gene from pBH10xR3 was truncated at 84 aa due to a 

frame-shift mutation, and a three base pair insertion in the corresponding SF-2 gene 

encodes a reportedly inactive 97 aa protein (Cohen et al., 1990b). However, the 

fortunate positioning of restriction sites in the BH10 vpr gene allowed simple repair 

of the mutated sequence with an oligonucleotide, (designated VPR, see Chapter 2, 

Section 2.4.).

Initially the gene was subcloned into plasmid pBSIIKS+ [Stratagene] (Mead 

et al., 1985) in the following procedure. Plasmid pBH10*R3 was digested with Stu I 

and a 1424 bp fragment (nucleotides 4764-6188) containing the vpr gene isolated 

from an agarose gel by electro-elution. The fragment was then digested with Rsa I 

and a 490 bp Stu I - Rsa I fragment (nucleotides 4764-5254) gel-purified and ligated 

into H in d i restricted and dephosphoryiated pBSIIKS+. Following transformation 

of E.coli and inoculation onto ampidllin/X-gal/IPTG LB agar plates, recombinant
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colonies were again white due the inactivation of /3-galactosidase expression by the 

foreign insert. Plasmid DNA was prepared from suitable colonies by the 'mini-prep' 

procedure and analysed by restriction enzyme digestion and agarose gel 

electrophoresis in order to identify the recombinant plasmid, pBSIIvprS. Caesium 

chloride density gradient purified plasmid pBSIIvprS DNA was subsequently 

digested with Eco RI and Sal I. This released a 43 bp fragment (nucleotides 

5102-5145) containing the single base pair insertion in the vpr gene and a 337 bp 

Eco RI - Eco RI fragment containing the part of the vpr gene (nucleotides 

4764-5101) due to the presence of an Eco RI site in the multiple cloning site of 

pBSIIKS + . The vpr Eco RI fragment and the pBSIIKS+ vector band, which also 

possessed part of the vpr sequence from the Sal I site to the Rsa I/Hinc II junction 

(nucleotides 5146-5254), were excised from an agarose gel and extracted by electro

elution in order to remove the 43 bp fragment. A synthetic oligonucleotide, VPR, 

which comprised of coding sequences necessary to return the open reading frame to 

its wild-type, pre-mutated status was then substituted for the 43 bp fragment. The vpr 

EcoRI fragment, VPR oligonucleotide and the isolated pBSIIKS-f vector DNA 

were used as substrates in a ligation reaction, in which the DNA fragments were at 

equimolar ratios and the oligonucleotide at 100-fold molar excess (oligonucleotides 

would not concatenate due to the absence of 3' terminal phosphates) and 

subsequently used to transform competent E.coli. Novel Pst I and Pvu II sites were 

introduced into the vpr gene by conservative mutations in the oligonucleotide and 

these were used to identify recombinants carrying the repaired gene, designated 

pBSIIvprfl.

Caesium chloride density gradient purified pBSIIvprR DNA was digested 

with Xho I and Hind III to release the repaired vpr gene, followed by a Klenow end

filling reaction to produce blunt ends. The Xho I • Hind III fragment was then 

purified by electro-elution from an agarose gel and used in a ligation with Sma I 

digested and phosphatascd pSVL. Following transformation of E.coli and screening
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of ampicillin resistant colonies, a vector containing the vpr gene in the correct 

orientation was obtained, and this was designated pSVLvpr (see Figure 3.4).

3.4. Subcloning of tho HIV-1 LTR

The HIV-1 long terminal repeat sequences were subcloned from the CAT 

expression plasmid pLC2R. Plasmid DNA was linearized by digestion with Ava I, at 

site a 1S9 bp S' to the junction of the U3 and R regions (see Chapter 1, Figure 1.1 

and Chapter 2, Figure 2.3), and treated with Klenow DNA polymerase I to produce 

blunt termini. The DNA was then digested with Bgl II and Hind III to release the 

complete LTR in two fragments. A 236 bp fragment (Ava I - Hind III) spanning 

most of R and 159 bp into U3 (LTR F), and one of 329 bp (LTR B) covering the 

remaining S' end of U3. These were separately isolated from an agarose gel, purified 

by electro-elution, and then ligated into dephosphorylated pBSIIKS + which had 

been digested with enzymes to generate compatible termini. For LTR F the vector 

was digested with Sma I and Hind III, and LTR B  Bam HI and Eco RV. The ligation 

was used to transform competent E.coii TG2 and cells were plated on LB agar plates 

containing ampicillin, X-gal and IPTG in order to select for colonies containing 

inserted DNA. Plasmids pBSII-LTRF and pBSII-LTRB (Figure 3.7 and 3.8, 

respectively) were identified following digestion of 'mini-prep' plasmid DNA with 

suitable restriction enzymes and analysis by agarose gel electrophoresis.
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Figure 3.7. Plasmid pBS-LTR F
HIV-1 LTR fragm ent

Figure 3.8. Plasmid pBS—LTR B
HIV-1 LTR fragm ent
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Discussion

All CAT expression plasmids were available from the sources given in the 

relevant section of the text and it was unnecessary to construct any further vectors of 

this type for the study.

The /¡-galactosidase expression plasmid, pCHllO, was employed in the 

co-transfection of most cell types as the internal control for transfection efficiency. 

Expression of /3-galactosidase from the SV40 late promoter (pCHllO) was not 

detectable in Jurkat lymphoblastoma or SK-N-MC neuroblastoma cells so a similar 

vector expressing 0-galactosidase under the control of the RSV LTR was 

constructed. When tested in transient co-transfection experiments with Jurkat and 

SK-N-MC cells pRSV/Sgal produced a satisfactory signal and was subsequently used 

in the standardisation procedure for these cell lines.

For reasons of biological containment, only cloned HIV-1 sequences that 
dkiw«A

wereAfrom incomplete viral genomes were suitable for genetic manipulation and 

*. were replication incompetent and unable to produce progeny virus.

Plasmid pSVL/af was constructed to express both exons of the transactivator 

protein Tat. The large Sal I - Bam HI fragment (nucleotides 5145-7831) subcloned 

into pSVL also spanned the open reading frames of several other HIV-1 genes; vpr, 

vpu, the first exon and part of the second exon of rev, and most of env (containing 

gpl20 and part of the gp41 coding sequences). But no other gene should result in the 

expression of a functional protein. The vpr gene of this viral isolate (BH10) has 

already been described in Section 3 3 3  and is non-functional due to frame-shift 

mutation (Cohen et ai., 1990b). Rev function would also not be present as there was 

insufficient coding sequences from the second exon to produce a functional protein 

(Hadzopoulou-Cladaras et ai., 1989; Kjems et ai., 1991). Also, it has been noted that 

splicing of RNA from tat expression vectors containing the large Sal I - Bam HI 

fragment, such as pSVDar, are Rev-responsive due to  the possession of the RRE in
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the gpl20 coding sequence (Malim et al., 1988). In the absence of Rev, the transcript 

is spliced using a splice donor site just downstream of the first exon of tat and a 

splice acceptor upstream of exon 2. Splicing of the transcript will preclude 

expression of vpu or any env coding sequences as both depend upon Rev for their 

expression (Arrigo et al., 1990).

Plasmid pSVL/ie/5 contained a truncated nef gene that is reported not to 

produce a stable Nef protein (Hammes et al., 1989) and the construct was employed 

to assess the effect of transfection of such plasmid on HIV-1 LTR driven CAT 

expression. Plasmid pSVLnefll was constructed to express the entire n e f open 

reading frame, although from a different isolate of HIV-1, which promised the 

expression of the complete functional Nef protein.

As already described, each vpr gene contained in isolates BH10 and SF-2 was 

defective, and so the BHIO-derived coding sequence was returned to wild type by 

insertion of the VPR oligonucleotide. This repair was necessary as, like nef, vpr is 

often found to be inactivated by mutation in cloned isolates of HIV-1 derived from 

viruses isolated by tissue culture. The %  aa protein that the 'repaired' gene should 

encode has an identical amino acid composition to the functional LAI Vpr protein 

(Cohen et al., 1990b).

The HIV-1 LTR was removed as two fragments, LTRF and LTR/?, and each 

subcloned separately in order to produce constructs that were suitable for 

radiolabelling the LTR (see Chapter 2, Section 2.12.2). The convenient positioning 

of restriction enzyme sites within and at the borders of the HIV-1 LTR in plasmid 

pLC2R allowed this procedure to be performed without the disruption of any known 

nuclear factor binding sites contained within the HIV-1 LTR.





Chapter 4: Transient gene expression directed by the HIV-1 LTR 

and the effects of the regulatory genes, tat, nef and vpr

Introduction

The assessment of promoter activity was performed by the use of reporter 

gene assays in which bacterial chloramphenicol acetyl transferase, linked to the 

HIV-1 LTR or other viral promoters, provided a measurement of the level of 

expression in eukaryotic cells. These studies relied upon the efficient introduction of 

plasmid constructs into cells where they were expressed transiently in an episomal 

form (Alam and Cook, 1990), and the mRNA processed and translated. The level of 

enzymatic function of the protein product was then determined in cytoplasmic 

extracts. Reporter genes, however, do not provide a direct assessment of 

transcription from the promoter, rather a measurement of gene expression. This is 

likely to be related to the steady-state RNA levels and, perhaps to the frequency of 

transcriptional initiation at the promoter but other factors, such as regulation at a 

post-transcriptional level and mRNA stability, should be taken into consideration. 

The efficiency of translation into functional enzyme may also effect the level of CAT 

activity present. These qualifications aside, reporter gene assays provide useful data 

on the functions of cloned regulatory elements.

In order to produce a more accurate measurement of CAT activity in 

transfected cells, a standardisation procedure was employed to compensate for any 

variation in the efficiency of transfection. A second reporter gene, ^-galactosidase, 

was co-transfected with the CAT plasmid in question, expression of 0g*l was driven 

by either the SV40 late promoter or the RSV LTR, and its activity in cellular 

extracts provided an estimate of transfection efficiency, such that the CAT activity 

was determined from a portion of extract from different dishes of transfected cells 

within an experiment that expressed the same level of ^-galactosidase activity.
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Hence variations in transfection efficiency would do little to effect the true level of 

CAT expression.

The direct scintillation diffusion method was performed to measure CAT 

activity in extracts and allowed the detection of lower amounts of CAT enzyme than 

the previous TLC-based procedure (Neumann el al., 1987). Indeed, no CAT 

reporter gene activity was detected from the HIV-1 LTR in extracts from Jurkat 

cells (Okamoto et al., 1989) yet a sufficient signal is produced in the same cells when 

assayed by the direct scintillation diffusion protocol (Figure 4.1); both in the absence 

of HIV-1 Tat. This assay provides a linear relationship between the amount of CAT 

enzyme present and radiolabelled product over a wide range so long as less than 

50% of the tritium label (approximately 110,000 cpm) enters the scintillation 

cocktail during the 2 hr incubation.

4.1. HIV-1 LTR-driv«n reporter gene expreeeion in a 

T lymphoblastoma and cells of neural origin

4.1.1. Assessment of relative promoter strength

Preliminary experiments were performed to estimate the level of CAT 

expression from the HIV-1 LTR in the range of neural cell types under study (see 

Chapter 2, Section 2.1 and Table 2.1). To provide an estimate relative to other viral 

promoters, independent of the transfection efficiency, cells were also transfected 

with CAT expression constructs under control of the SV40 late promoter or the 

KiMSV LTR.

The results showed that the HIV-1 LTR produced a detectable signal in all 

cell types, although it was usually weaker than the other viral promoters in directing 

basal gene expression in the absence of Tat (Figure 4.1), and revealed a wide 

variation in the activities of different promoters in directing CAT expression in the 

range of cell types studied. Direct comparison between cell types is difficult due to
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their varying transfection efficiencies and different amounts of extract protein were 

required in the assays to produce either a detectable signal or one that was not 

above the range of the CAT assay. There was one notable similarity in the pattern of 

expression from the different promoter constructs amongst one pair of cells of the 

same lineage: the primary murine astrocyte cultures and U373MG astrocytoma cells 

both produced a very strong signal from the SV40 late promoter compared to much 

weaker expression from the other two constructs. In contrast, the two human 

neuroblastoma cell lines, SK-N-SH and SK-N-MC, produced opposite levels of CAT 

activity from the viral promoter-CAT plasmids.

The results also show the level of expression from a CAT construct lacking 

any defined promoter or enhancer sequences. This represented the background level 

above which CAT activity was considered to be due to the inserted transcriptional 

element. In Jurkat cells, however, an anomaly appeared to exist, pOCAT directed 

relatively high levels of CAT expression, especially when compared to SV40 which 

was almost non-functional in these cells. This result has been found in another 

laboratory (personal communication. Dr. Marion Major, Regional Virus laboratory. 

East Birmingham Hospital) and presumably results from undefined sequences 

present in the prokaryotic elements of the plasmid. A similar result was not seen 

with any neural cell tested.
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4.2. Modulation of HIV-1 gana axprassion by tha regulatory 

ganaa of HIV-1

Because of the involvement of the regulatory genes of HIV-1 in the control of 

transcription and gene expression from the viral LTR (discussed in Chapter 1, 

Section 1.S.2), eukaryotic expression vectors were constructed to express the tat, nef 

and vpr genes. Each was co-transfected into cells with pLC2R in order to evaluate 

the individual effect of these genes on HIV-1 LTR-driven reporter gene expression.

4.2.1 Augmentation of CAT expression by the transactivator. Tat

The HIV-1 Tat protein was demonstrated to be functional in all neural cells 

and able to transactivate expression from the LTR to varying degrees of efficiency 

when cells were co-transfected with the Tat expression vector, pSVL/of, and pLC2R 

(Table 4.1). The precise levels of transactivation were found to be less than that 

achieved in the T lymphocyte cell line, Jurkat, especially in the murine G26-24 

oligodendroglioma and primary astrocyte cells where a  high level of Tat-mediated 

transactivation was not demonstrated. Murine cells are reported to lack at least one 

cellular protein co-factor that is required for the full activity of Tat in human cells 

(Newstein et al., 1990).

The optimum amount of pSVL/or required for maximal transactivation was 

determined in preliminary experiments. It was noted that the different cell types 

varied in their sensitivity to increasing microgramme amounts of the Tat vector in 

the transfection buffer (20 ng  of pLC2R was always used). CAT activity from Jurkat 

and primary astrocyte cultures was transactivated to the same level over a range 

of pSVliaf concentrations (5-20 ng and 2-8 fig, respectively). However, with the 

other neural cell types there was an optimum amount of pSVL/or required to give 

maximum transactivation and excess resulted in reduced augmentation (except also 

U138MG in which 5 or 10 fig of pSVL/a/ produced the same level of
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transactivation). Hence quite precise amounts were often needed. For example, in 

one such cell line, SK-N-MC, optimum transactivation of HIV-CAT occurred with 

2.5 fig of pSVL/of, and there was less CAT activity in extracts from cells transfected 

with 5 fig of pSVL/or than from cells transfected with pLC2R only. G26-24 cells 

were also as sensitive to the amount of pSVL/or, here 2 fig produced the highest 

level of transactivation and 5 fig reduced the amount of CAT expression to below 

that achieved with pLC2R alone. In other cell lines CAT expression was reduced to 

a lesser extent by co-transfection with amounts of pSVL/af above the optimum, such 

as U373MG cells where the highest transactivation was seen with 5 fig of pSVL/ar 

and 10|ig of pSVL/or produced the same level of transactivation as 2 fig, some 25% 

less than the transactivation achieved with 5 fig.

42 2 .  The effect of the nef gene product on CAT expression

Initially the truncated nef gene, subcloned from HIV-1 isolate BH10, was 

used in transfection experiments to determine its effect on HIV-1 LTR-driven gene 

expression in Jurkat T lymphoblastoma cells. Co-transfection of pSVL/ie/5 with 

pLC2R produced a dose-dependent reduction of CAT activity (Figure 4.2.A) 

sufficient to reduce expression to less than background levels when equal amounts 

of pLC2R and pSVLne/S were used. With lower amounts of pSVL/ie/5 relative to 

pLC2R in the transfection there was still a significant reduction in CAT expression 

to around 45% of basal activity driven by the HIV-1 LTR.

The nef expression vector, pSVLnefl! contained the full length nef gene from 

the SF-2 isolate of HIV-1. In co-transfection experiments with U138MG 

glioblastoma cells a decrease in CAT activity driven by the HIV-1 LTR was also 

found (Figure 4.2. B), although when a smaller amount of pSVLne/II was transfected 

with the same amount of pLC2R there was a reduction in CAT expression to a 

slightly lesser extent, compared to pSVL/iefS in Figure 4.2. A. The suppression of 

CAT activity was similar for the two constructs when 10 fig of nef expression vector
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was transfected, whereas at 5 fig, pSVL/ie/S was slightly more effective, albeit in 

different cell types. U138MG glioblastoma cells were chosen to evaluate pSVLnefll 

due to their relative high efficiency of transfection compared to the other neural 

cells and Jurkat. U138MG therefore produced higher levels of CAT expression 

above background, indicated by the level of CAT expression from the 'promoter-less' 

CAT plasmid, pOCAT.

42 3 .  The effect of the vpr gene product on CAT expression

The expression vector for vpr, pSVLvpr, was constructed to contain an intact 

open reading frame which should be expressed and translated to produce the 

functional 96 aa form of the protein. However, co-transfection of the vector with 

pLC2R into U138MG glioblastoma cells resulted in a reduction of CAT expression 

that was not directly proportional to the amount of pSVLv/w contained in the 

transfection buffers (Figure 4.2. C). This was contrary to the reported function of 

Vpr which transactivates expression from the HIV-1 LTR (Cohen et al., 1990b). In 

the absence of a direct assay for the expression of the Vpr protein this result may not 

accurately reflect the function of Vpr in this cell line. Although, as in all experiments 

duplicate dishes of cells were transfected and there was only the usual slight 

variation in ^H-acetyl chloramphenicol production between duplicates.



§ Fold tran sact iva t ionCell type
U138MQ glioblastoma 
U373MQ astrocytoma 
Q26-24 oligodendroglioma « 
SK-N-MC neuroblastoma 

SK-N-SH neuroblastoma 
Primary astrocytes »
Jurkat T-lymphoblastoma

16.6 ±  4.7 
10.4 ± 2.6 

2.2 ± 0.5
12.3 ±  2.7 
30.1 ± 1.6

4.0 ± 0.8
41.4 ± 1.2

Table 4.1. Tranaactlvatlon of the HIV-1 LTR by the Tat protein 
of HIV-1 In neural cells and a T lymphocyte cell line. I  Figure 
represents the mean transactivation ± the standard deviation 
from two CAT assays, 42-44 hours post transfection, calculated 
aa the ratio of »H-chloramphenlcol In extracts from cells transiently 
transfected with an optimum amount of pSVUat, versus cells 
transfected with pLC2R alone. «  murine cells.
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Figure 4.2. Effects of the regulstory genes, nef and vpr on HIV-1 
LTR-drlven gene expresslo in lymphoblastoma or glioblastoma cells.
A. Inhibition of CAT expression from the HIV-1 LTR in extracts from 
Jurkat T lymphoblastoma cells after co-transfection with pSVLnefS 
(5-20 pg); the level of expression from pOCAT is indicated by a 
dashed line.
B. Inhibition of CAT expression from the HIV-1 LTR in extracts from 
U138MQ glioblastoma cells after co-tranefection with pSVLnefll 
(5-1 Opg).
C. CAT activity driven by the HIV-1 LTR In extracts from U138MQ 
glioblastoma cells after co-transfection with pSVLvpr (5-1 Opg)
Note. Parts B and C: the level of CAT expression from pOCAT is not 
Indicated due to the high level of CAT expression obtained with 
U138MQ. This corresponds to a fold Inhibition of 0.013 units.
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Discussion

Reporter gene assays

The investigation of reporter gene expression directed by the different viral 

promoters served to establish the transfection and CAT assay techniques as suitable 

for the analysis of HIV-1 LTR-driven gene expression. Other reporter genes were 

considered, such as luciferase and secreted alkaline phosphatase (Alam and Cook, 

1990), but neither one can be measured at more than one time point during the 

assay. In the direct-diffusion CAT assay the enzyme reaction was monitored over 

four time points during the two hour incubation which permitted the linear 

relationship of the enzyme/substrate reaction to be established and ensured a 

greater degree of accuracy in the results. Although, the numbers of assays done in 

this project regrettably preclude the use of line graphs an example is given in 

Chapter 2 (see Figure 2.2).

E x p e r i m e n t a l  t e c h n i q u e

In order to maintain the highest levels of transfection, buffers were prepared 

fresh monthly and stored at -20°C as deterioration in transfection efficiency had 

been noted with buffers stored for longer periods, and especially when at room 

temperature. Plasmid DNA for transfection purposes was always purified by 

caesium chloride density gradient centrifugation and samples were checked by 

agarose gel electrophoresis to ensure greater than 50% of the DNA was present in 

the closed circular form. This was estimated by visualization of an ethidium bromide 

stained agarose gel under UV light. Plasmid DNA that is linear or contains excessive 

single-strand 'nicks' does not transfect cells well and may fail to be expressed to the 

same extent (Gorman, 1985). These precautions resulted in transfection experiments 

that were always successful. Experience with commercial transfection 'kits' had 

shown that great care was needed with the quality of reagents.
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The measurement of CAT activity by the method chosen and the 

incorporation of the /9-galactosidase control for transfection efficiency allowed 

reproducible and precise results to be obtained. The variation in CAT activity 

between duplicate dishes of transfected cells was found to be extremely low. From a 

random selection of twenty-one pairs of measurements of the CAT activity from 

duplicates the standard deviation from the mean was determined for each pair and 

used to estimate the mean variation between duplicates as a percentage, this was 

found to be 4.9% ± 3.4 (representing the sample mean ± the standard error).

Tat transactivation

Expression of the Tat protein of HIV-1 in neural cells confirmed its role as a 

strong transactivator of gene expression from the HIV-1 LTR. From the clear 

enhancement of reporter gene expression seen it was evident that pSVL/ar was able 

to express a functional protein and it was unnecessary to confirm the presence of Tat 

using the specific antibodies that were available. The highest level of Tat-mediated 

transactivation in each cell type was reported in Table 4.1, however, in repeat 

experiments with the same optimum amount of pSVL/of there was often an 

unusually large variation in the transactivation observed, even when the same 

preparations of plasmid DNAs were used. This suggests that slight differences in 

transfection efficiency occurring between different experiments were sufficient to 

alter the amount of Tat that is produced in the cells.

The variation in the levels of transactivation noted between the different 

neural cells may also have explanations which were not addressed by the simple 

co-transfection of pSVL/or and pLC2R. Apart from being related to the different 

nuclear environments of each cell type, the response to increasing amounts of the 

Tat expression vector in transfections indicates that different cell types require 

variable amounts of Tat protein to achieve maximal transactivation in this assay.
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Although it is probable that different transfection efficiencies contribute, this may 

not account for the sensitivity of the transactivation response to higher doses of the 

Tat vector. It is likely that by employing amounts of pSVL/af above that needed for 

the optimum transactivation. Tat was over-expressed and the deleterious effect seen 

on gene expression due to a cytotoxic property of Tat which varied between the cell 

types. To highlight one example, SK-N-MC cells appeared from previous 

experiments to transfect at the lowest efficiency of all the neural cells examined, yet 

the transactivation response was one of the most sensitive to increases of only 2.5 ng 

in the amount of pSVL/or co-transfected. Thus, whilst transfection efficiency may 

effect the absolute amount of expression vector required in the transfection these 

cells posses a sensitivity to Tat. This may relate to the neurotoxic potential of Tat 

which exerts significant toxicity towards neuroblastoma and glioblastoma cells in 

culture (Sabatier et al., 1991).

The effect o f Nef

The function of the Nef protein of HIV-1 in human cells has not been 

completely determined (see Chapter 1. Section 1.5.2. v). Early reports suggested that 

Nef was able to down-regulate both virus production (Kim et al., 1989) and 

LTR-driven reporter gene expression and thus function as a transcriptional 

repressor of HIV-1 (Niederman et al., 1989). However, further work suggested that 

the LTR sequences at the 3' end of the nef gene when present in an expression 

vector were responsible for the reduction of reporter gene expression from the LTR 

(Hammes et al., 1989). The nef open reading frame is located at the 3' end of the 

viral genome in a region that also includes most of the U3 region of the LTR, the 

final codon of nef in HIV-1 isolate BH10 (Ratner et al., 1985) and SF-2 

(Sanchez-Pescador et al., 1985) is 20 nucleotides upstream of the enhancer (see also 

Chapter 1, Figure 1.2). Therefore, two expression vectors for Nef were constructed: 

one, pSVL/tefll, to encode a full length open reading frame (from SF-2) located in a
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fragment that did not contain any unnecessary LTR sequences (the Taq I site at the 

3' end nef is 3 nucleotides past the stop codon); and two, pSVL/te/S, which contained 

the truncated nef gene from BH10 which does not give rise to a stable protein 

(Hammes et al., 1989), located in fragment from the viral genome that extended past 

the enhancer into the R region of the LTR. Thus, containing most of the nuclear 

protein binding sites in the HIV-1 LTR. The two constructs were used to distinguish 

any function of Nef on LTR-driven reporter gene expression from transcriptional 

interference. The 3' LTR sequences that span the regulatory elements of the LTR 

are thought to sequester nuclear factors that are in limiting concentrations and in 

the absence of the Nef/LTR vector would direct increased gene expression from the 

LTR-CAT construct (Hammes et al., 1989). Ideally, these plasmid constructs should 

be derived from the same allele of nef and attempts were made to obtain a nef gene 

derived from BH10 in which the stop codon at position 124 had been removed by 

site-directed mutagenesis. But this work had been performed by Glaxo Inc. (Geneva, 

Switzerland) who were not willing to release the vector (personal communication. 

Dr. Mark Harris, Department of Veterinary Pathology, University of Glasgow).

The results obtained from the co-transfection of the Nef expression vectors 

and pLC2R neither confirmed nor convincingly disproved an artificial role for the 3' 

LTR sequences in reducing LTR-driven gene expression as both constructs caused a 

decrease in CAT expression. However, contrary to results reported here, other 

workers (Hammes et al., 1989) report that removal of LTR sequences to the Taq I 

restriction site described above results in no repression of CAT activity directed 

from the HIV-1 LTR. This finding was not reproduced here and may suggest a real 

suppression of LTR-driven gene expression by Nef, although further 

experimentation would be required. Hammes et al. (1989) transfected COS, Jurkat 

and U937 cells (a myelomonocytic cell line) with HIV-1 LTR-CAT, Nef and Tat 

expression vectors, presumably to allow sufficient CAT activity to be detected by the 

TLC-based method, and the effect of Nef alone on HIV-LTR-CAT expression was
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not addressed. Whether co-transfection of Tat as well as Nef expression vectors 

would mask any effect of Nef remains to be determined. In the absence of an assay 

for the production of Nef from the pS VL/tef vectors constructed here it is difficult to 

attribute directly the reductions seen in LTR-driven CAT expression to the Nef 

protein, particularly as no consensus exists in the literature for the function(s) of 

Nef. Antibody to Nef was not available from the MRC AIDS reagent programme 

nor was there a commercial source at the time. Also, it cannot be ruled out that the 

slight differences in the effects of the Nef vectors on the expression of CAT from the 

HIV-1 LTR may be due to different cell types employed.

The effect o f Vpr

The effect of co-transfection of the Vpr expression vector was inconclusive in 

establishing a role for Vpr in HIV-1 LTR-driven gene expression. The aberrant 

result may be due to errors in the coding sequence introduced in the cloning 

protocol as ideally the 'repaired' gene should be sequenced. In addition, perhaps 

cells are very sensitive to the amount of vector transfected, similar to that noted with 

pSVL/or, and too large an amount was employed. Although, a recent report from 

Cohen et al., (1991) showed a 3-fold transactivation of LTR-driven reporter gene 

expression with a ratio of Vpr to LTR-CAT vectors of 1:4, the same as tested here. 

The expression of antigenic Vpr in the transfected cells could also not be examined 

as no specific antiserum was available commercially nor even serum from HIV-1 

positive individuals through the MRC AIDS reagent programme. As defining the 

precise function(s) of Vpr, like Nef, would a require great deal of experimentation it 

was decided not to be pursued any further. For these reasons further work 

concentrated on the investigation of the function of Tat in the regulation of HIV-1 

gene expression. However, the experiments done with nef and vpr were useful in that 

they validate the experimental system used.





Chapter 5: Regulation of HIV-1 LTR-Drivan gene expreaaion by 

cytokinea and phorbol eater

Introduction

Cytokines

The response of gene expression directed by the HIV-1 LTR to cytokines and 

phorbol ester was also investigated by the use of the chloramphenicol acetyl 

transferase (CAT) reporter gene. As described previously, cells were transiently 

transfected with the HIV-1 LTR-CAT construct (pLC2R), and a /3-galactosidase 

expression vector, and subsequently exposed to cytokine(s) or PMA for 22-24 hrs. 

CAT activity was then determined in cell extracts to assess the effect of each 

cytokine on expression from the LTR relative to that in unstimulated cells. The 

range of cytokines was chosen on the basis of those which are already known to be 

important in the activation and regulation of immune responses to foreign antigens 

and further qualified by those that are also produced by resident cells of the central 

nervous system (see Chapter 1, Section 1.3.3 and 1.4). Although there may be other 

molecules that would regulate gene expression from the HIV-1 LTR other 

considerations, such as cost and the multiplication of the numbers of reporter gene 

assays required, served to confine investigations to five cytokines; TNFa, IL-1/3, IL-6, 

IFNa/9 and IFN7 and the known activator of HIV expression, PMA (Kaufman et al., 

1987). Human recombinant TNFa, IL-l/J and IL-6 were employed for both murine 

and human neural cells as these molecules are fully active in murine systems 

(manufacturer's data). Only the interferons from this group of cytokines are 

species-specific, therefore natural human IFNa and recombinant human IFN7, and 

natural murine IFNa/? and recombinant murine IFN7 were used.
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Experimental technique

The ^-galactosidase control plasmid was included in the transfections in 

order to standardize for transfection efficiency as described in Chapter 4, but 

because the promoters driving /J-galactosidase expression are responsive to cytokines 

and PMA (unpublished observations) it was not possible to normalize between 

extracts from untreated cells and those treated with different agents. Therefore, the 

/?-galactosidase activity in an equal amount of extract protein was determined for all 

samples, and each pair of duplicates, treated with the same or no cytokine/PMA, 

normalized so that CAT activity was measured in an aliquot containing the same 

amount of /9-galactosidase activity.

To reduce further the variation in transfection efficiency between samples 

the calcium phosphate-DNA precipitate used to transfect cells was prepared in bulk, 

as the same plasmids were used to transfect many experimental samples, and an 

equal aliquot added to each dish of cells. The difference in transfection efficiency 

between duplicates, estimated from the 0-galactosidase assay, was observed to be 

typically less than 10%. Indeed, from a random selection of 21 pairs of 

/9-galactosidase assays taken from duplicates of cytokine-treated cells the mean 

variation was 6.2% ± 5.0 (sample mean ± standard error).

In initial experiments the effects of cytokines and PMA were determined on 

cells transfected with the 'promoter-less' control plasmid, pOCAT, in order to 

confirm that no sequences in the CAT gene itself or in the transcript processing 

signals resulted in increased background expression of CAT following exposure of 

cells to cytokines. As expected no cytokine, or PMA, could enhance the background 

level of expression from pOCAT, and in subsequent experiments it was only 

necessary to include unstimulated cells transfected with pOCAT as a control.
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Co-transfection with the Tat expression vector

When cells were co-transfected with the Tat expression vector, pSVL/ar, and 

pLC2R then exposed to cytokines or phorbol ester, duplicates treated with each 

agent and those also expressing Tat were normalized together as expression of Tat 

did not effect the expression of /3-galactosidase from either the SV40 late promoter 

or RSV LTR (results not shown). For the measurement of CAT expression from the 

HIV-1 LTR in permanent cell lines expressing Tat from integrated retroviral vector 

(pMoLTR/or, see Chapter 2, Section 2.9.3 and Dingwall et al., 1989) extracts were 

also standardized with respect to ^-galactosidase activity between duplicates of 

untreated cells or those treated with the same agents.

5.1. Control ol HIV-1 gono expression by cytokines and phorbol 

ester

5.1.1. Tumour necrosis factor-a

i). Augmentation by TNFa

The exposure of neural cells to TNFa resulted in a large augmentation of 

CAT activity directed by the HIV-1 LTR (Figure 5.1). TNFa was typically able to 

activate expression by two- to three-fold in all cells, with the highest values of 2.8- 

and 3.3-fold seen for U138MG glioblastoma and U373MG astrocytoma cells, 

respectively. For the other cell types TNFa produced approximately a two-fold 

enhancement of CAT activity.

The data presented in Figure 5.1 shows the highest level of augmentation of 

CAT expression by TNFa seen at its optimum concentration for each cell type, from 

the duplicate samples of one experiment. The optimum concentration was 

determined only for the neural cell lines and the concentration tested on the primary 

astrocyte cultures was estimated from these results. However, each cell type was 

tested between two and three times in separate experiments and TNFa was found to
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always augment CAT expression. The concentration of TNFa required for maximum 

induction of gene expression from the HIV-1 LTR was in the region of 100 to 

250 U/ml for most cell types. The one exception was the astrocytoma line U373MG, 

where a ten-fold higher concentration at 2500 U/ml was optimum.

Interestingly, no cytopathic effects of TNFa on any cell type were noted when 

added to the culture medium for up to 24 hrs (exposure for longer periods of time 

was not examined). TN Fa is extremely cytotoxic for certain cell lines, such as L cells 

and COS (Okamoto et al., 1989) but neural cells appeared to tolerate exposure well 

and in one case, U373MG, even proliferate in response to high concentrations of 

TNFa (s  10,000 U /m l; Lachman et al., 1987) which probably accounts for the higher 

doses of TNFa employed for this cell line.

ii). The response o f HIV-1 LTR driven CAT expression to increasing concentrations of 

TNFa in neural cell lines

Dose response curves for all the neural tumour cell lines were constructed 

from the augmentation of CAT expression in cells treated with TNFa at different 

concentrations in order to determine the nature of the dose-response and the 

cytokine concentration at which optimum stimulation of expression occurred. The 

results are shown in Figures 5.2 and 53.

From the data in Figure 5.2 it can be seen that significant augmentation of 

HIV-1 LTR-driven CAT expression occurred at low concentrations of TNFa in the 

three glial cell lines, U138MG glioblastoma, U373MG astrocytoma and G26-24 

oligodendroglioma. At 1 U/ml of TNFa, U138MG and G26-24 produced over a 

13-fold stimulation of CAT expression and in U373MG at 10 U/ml this was over 

2-fold. In U138MG the level of augmentation then increased steeply reaching a peak 

at 10 U/ml, falling slightly at 100 U/ml, and producing maximum augmentation at 

250 U/ml of TNFa. Although, there was not a great difference in the augmentation 

when TNFa was present at 10-250 U/ml. The graph for U373MG is very similar.
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Augmentation rises sharply to a peak at 100 U/ml, falls again slightly at 1000 U/ml 

but reaches the optimum at 2500 U/m l where U373MG cells produced the highest 

level of HIV-1 LTR-driven CAT expression in response to TNFa. There is also little 

difference in the amount of augmentation between 100-2500 U/ml of TNFa. In 

G26-24 the initial rise in the level of augmentation is not as steep and develops more 

progressively than in U138MG or U373MG cells. The increase in augmentation 

begins to fall off at higher concentrations and forms a reasonable curve with a small 

difference in the enhancement of CAT expression between 100 and 250 U/ml. The 

optimum was also at 250 U/ml TNFa. The graphs in Figure 5.2 indicate that the 

response of HIV-1 LTR-driven reporter gene expression to TNFa in the glial cell 

lines appears to become saturated at the higher cytokine concentrations, and 

substantial responses occur at relatively low concentrations of TNFa.

In the neuroblastoma cell lines there was significant augmentation of 

LTR-driven CAT expression at 10 U /m l of TNFa and this reached an optimum at 

100 U/ml in both cell lines. However at 1000 U/ml of TNFa the level of 

augmentation fell quite sharply to around the same as that produced by 10 U/ml in 

SK-N-MC and to less than this amount in SK-N-SH cells (Figure 53). The optimum 

enhancement by TNFa in neuroblastoma cells was defined by a sharp peak within 

the range of cytokine concentrations tested. The extreme sensitivity of the response 

to higher TNFa concentrations in the neuroblastoma cells may reflect the degree to 

which neuronal cells are susceptible to the cytotoxic effects of TNFa.
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Figure 5.1. Augmentation of HIV-1 LTR-CAT expreaaion by TNFa 
In neural celle, f  Relative CAT activity wee calculated from 
the mean cpm of 3H-acetyl chloramphenicol product from 
extract* of celle trenefected with pLC2R after TNFa treatment for 
22-24 hr* divided by mean cpm without. Cytokine concentration* 
(U/ml) were U138MQ 250; U373MQ 2500; aatrocytes 100; Q26-24 
250; SK-N-MC and SK-N-SH 100.
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Figure 5.2. Augmentation of HIV-1 LTR-driven CAT expression in 
U138MQ glioblastoma, U373MQ astrocytoma and <326-24 
oligodendroglioma cells by TNFcr over a range of concentrations. 
Cells were transiently transfected with pLC2R and treated with TNFor 
for 22-24 hrs before CAT activity was determined In cytoplasmic 
extracts.

117



Au
gm

en
ta

tio
n

SK -N -SH  SK-N-MC

Figure 3.3. Augmentation of HIV-1 LTR-driven CAT expreeaion in 
SK-N-SH and SK-N-MC neuroblaatoma cells by TNFa over e 
range of concentrations. Cells were transiently transfected with 
pLC2R and treated with TNFa for 22-24 hrs before CAT activity 
was determined In cytoplasmic extracts.
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5.1.2. Interleukin \-fi

i). Augmentation by ¡L-10

IL-1/3 was demonstrated also to  be a strong activator of HIV-1 LTR-driven 

gene expression in neural cells (Figure 5.4). It was able to augment CAT activity 

over two-fold in three of the four cell types tested. These were U138MG 

glioblastoma, U373MG astrocytoma and primary astrocyte cultures with a 2.5-, 2.5- 

and 2.1-fold enhancement of CAT expression, respectively. The oligodendroglioma 

cell line G26-24 did not respond to IL-10, even when exposed to high doses of 1000 

or 2500 U/ml. The neuroblastoma cell lines SK-N-SH and SK-N-MC were not 

tested with this cytokine, this was primarily so as not to increase the number of 

reporter gene assays any further.

The results in Figure 5.4 demonstrate the highest level of augmentation seen 

at the optimum concentration of IL-1/9 for U138MG and U373MG and at 

1000 U/ml for primary astrocytes (the optimum concentration for astrocytes was not 

determined). The response of HIV-1 gene expression to IL-1/9 was tested with each 

cell type between two and four times. The concentration o f IL-l/J necessary for 

optimum induction of CAT expression varied between cell lines, this was at 

500 U/ml for U138MG and 100 U /tnl for U373MG, with a 1000 U/ml producing a 

comparable level of induction in primary astrocytes. U373MG cells also proliferate 

in response to high concentrations of IL-1/9 ( s  20,000 U /ml; Lachman et aL, 1987), 

but maximum induction of LTR-driven gene expression was at the relatively low 

concentration of 100 U/ml. Indeed, proliferation in response to  IL-1 is a property of 

astrocyte cells in general (Giulian and Lachman, 1985), which may also explain why 

at concentrations of IL-10 up to 2500 U/m l no cytopathic effects were noted.
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Figure 5.4. Augmentation of HIV-1 LTR-CAT expreesion by IL-1B 
in glial cella. I  Relative CAT activity waa calculated from 
the mean cpm of »H-chloramphenicol product from extract! of 
cell* transacted with pLC2R after IL-15 treatment for 22-24 hra 
divided by mean cpm without. Cytokine concentration! (U/ml) 
were U138MQ 500; U373MQ 100: aatrocytea and Q26-24 1000.
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Figure 5.5. Augmentation of HIV-1 LTR-driven CAT expreation in 
U138MQ glioblastoma and U373MQ astrocytoma cells by IL-1 H 
over a range of concentrations. Cells were transiently transfected 
with pLC2R and treated with IL-13 for 22-24 hrs before CAT activity 
was detsrmlned In cytoplasmic extracts.
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ii). The response o f HIV-1 LTR driven CAT expression to increasing concentrations of 

IL-lfi in glial cell lines

Graphs displaying the response of HIV-1 LTR-driven gene expression to 

increasing IL-1/3 concentrations in U138MG and U373MG cells are shown in 

Figure 5.5. Following information from the manufacturer on the range of IL-1/3 

concentrations that promote biological responses and that of Lachman etal. (1987), 

IL-l/I was tested in a higher range of concentrations at 100, 500, 1000, and 

2500 U/ml.

In U138MG and U373MG cells the response to IL-1/9 reached a maximum at 

the lower end of the range of concentrations tested, at 500 and 100 U/ml, 

respectively and in both cell lines the level of augmentation then appeared to 

stabilize. In U138MG there was only a small difference in the level of augmentation 

between 1000 and 2500 U/ml. In U373MG the greatest enhancement of CAT 

expression was found at the lowest concentration (100 U/ml) of IL-1/3 so the 

experiment may not have defined the true optimum if the response were to have 

reached a peak below or indeed above this concentration of cytokine. At higher 

concentrations the response was not as strong and essentially unaltered from 500 to 

2500 U/mlofIL-10.

5.1 J . Interleukin-4

The effect of IL-6 on HIV-1 LTR-driven gene expression was examined again 

in four cell types, U373MG astrocytoma, U138MG glioblastoma, G26-24 

oligodendroglioma and primary astrocytes (Figure 5.6). Only in the primary 

astrocytes was expression from the HIV-1 LTR augmented significantly following 

treatment with IL-6, here there was a 2.3-fold increase, the highest level of 

augmentation obtained with any cytokine in these cells. The other cell types showed 

a very modest increase in CAT expression with IL-6 to around 1.2-fold which, 

although small was always reproducible in repeat experiments.



§ 
R

el
at

iv
e 

C
A

T
 a

ct
iv

it
y

3
■  + IL-6

U373MG G 2 6 -2 4

Figure 5.6. The affect IL-6 on HIV-1 LTR-CAT expreealon 
In glial cella. I  Relative CAT activity waa calculated from 
the mean cpm of *H-acetyl chloramphenicol product from extracts 
of calls transfected with pLC2R after IL-6 treatment for 22-24 hre 
divided by mean cpm without. Cytokine concentration for all 

cells was 400 U/ml.
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Cells were treated with IL-6 at a concentration of 400 U/ml, which would 

appear from the large augmentation in primary astrocytes to be in the correct range. 

No other concentrations of IL-6 were tested, and it is of course possible that at a 

higher concentration augmentation of HIV LTR-driven gene expression could 

occur.

5.1.4. Interferon afi

i) . The effect o f interferon afi

Treatment of the cell lines, U138MG and SK-N-SH with human IFNa and 

primary astrocytes and G26-24 oligodendroglioma with murine IFNa# always 

resulted in a slight reduction in the level of CAT expression directed by the HIV-1 

LTR, to around 80% of the uninduced value (Figure 5.7). Yet, in SK-N-MC 

neuroblastoma cells IFNa reproducibly stimulated expression by up to 1.7-fold, 

which is comparable with that seen by TNFa and PMA in these cells. All assays were 

repeated between two and four times with IFN and produced similar results.

All cells were treated with interferon at 1000 U/ml except SK-N-MC in 

which IFNa at 100 U/ml appeared to be the optimum. These doses of interferon did 

not appear to cause any undue harmful effects to the cells when monitored by phase 

contrast microscopy during the experiments.

ii) . The response o f HIV-1 LTR driven CAT expression to increasing concentrations of 

IFNa in SK-N-MC neuroblastoma cells

In SK-N-MC the level of augmentation of CAT expression by IFNa increased 

rapidly with increasing cytokine concentration to a defined maximum at 100 U/ml 

(Figure 5.8), and at 1000 U/ml declined to approximately that produced by 

10 U/ml. Interestingly, this response was almost identical to that observed with 

TNFa in this cell line and hence it may also suggest a similar sensitivity of SK-N-MC 

cells to IFNa.
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Figure 5.7. Modulation of HIV-1 LTR-CAT expression by IFNo 
In neural cells, f Relative CAT activity was calculated from 
the mean cpm of *H-scetyl chloramphenicol product from 
extracts from cells transfected with pLC2R after IFN treatment for 
22-24 hrs divided by mean cpm without. Cytokine concentration 
was 1000 U/ml for all cells, except 8K-N-MC100 U/ml. IFNcr was 
used for aH human calls and IFNofl for murine cells.
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Figure 5.8. Augmentation of HIV-1 LTR-drlven CAT expreaelon in 
SK-N-MC neuroblaetoma cells by IFNa over a range of cytokine 
concentrations. Cells were transiently transfected with pLC2R 
and treated with IFNa for 22-24 hrs before CAT activity was 
determined in cytoplasmic extracts.
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5.1.5. Interferon 7
i) . The effect of interferon 7

Interferon 7 was also quite effective in suppressing expression from the 

HIV-1 LTR in the four human cell lines, U138MG glioblastoma, U373MG 

astrocytoma and the two neuroblastomas, but with the murine primary astrocyte and 

G26-24 oligodendroglioma cells there was significant augmentation of CAT 

expression to 1.5- and 2.3-fold, respectively (Figure 5.9). In SK-N-SH neuroblastoma 

cells IFN7 showed the strongest inhibition of expression down to 30% of the basal 

level, compared to 80% observed in the other cell lines. All cells were treated with 

IFN7 at 1000 U/ml. Repeat experiments further confirmed that gene expression 

from the HIV-1 LTR in G26-24 and primary astrocyte cells was indeed augmented 

by IFN7.

ii) . The response o f HIV-1 LTR driven CAT expression to increasing concentrations of 

IFNy in G26-24 oligodendroglioma cells

In G26-24 cells the dose-response curve constructed for the stimulation of 

LTR-driven CAT activity by IFN7 shows that augmentation does occur at low 

concentrations (10 U/ml), although to a lesser extent than with TNFa. The level of 

augmentation then increases more progressively with higher concentrations and 

reaches an optimum at 1000 U/ml (Figure 5.10). At the highest concentration of 

IFN7 (2500 U/ml) the graph shows that the response begins to decline.

iii) . Neutralizing antiserum to TNFa does not abolish the up-regulation by IFNy

In order to confirm that the augmentation of HIV-1 LTR-driven CAT 

expression by IFN7 in G26-24 oligodendroglioma cells was not due to the induction 

of TNF secretion and subsequent autocrine stimulation (See Discussion) cells were 

stimulated with IFN7 at the optimum concentration of 1000 U/ml just after the 

addition of a neutralizing antiserum to murine TN Fa (Genzyme). The results show
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that the antibody to TNFa did not effect either basal or IFN7 augmented expression 

from the HIV-1 LTR in G26-24 cells (FigureS.il). An enhancement of around 

1.5-fold was observed with or without the addition of anti-TNFa antibody to the 

culture medium indicating that TNFa was not responsible for the effect.

5.1.6. Phorbol ester

i) . Augmentation by PMA

As expected, the protein kinase C activator, phorbol 12-myristate 13-acetate 

or PMA, was a strong activator of HIV-1 LTR-driven gene expression in all cells 

tested (Figure 5.12). Primary astrocytes were not treated with PMA but in the other 

cell lines there was a three- to four-fold enhancement of CAT expression, except for 

SK-N-MC in which there was 1.8-fold rise. Comparing with the data for the 

cytokines it was noted that PMA was capable of activating expression from the LTR 

in all cells to a level in excess of that produced by any cytokine. T he optimum 

concentrations of PMA determined for U138MG, U373MG and G26-24 cells were 

at 10, 250 and 250 ng/ml, respectively (dose-response data is given below), the 

neuroblastoma cell lines were tested at two concentrations only, 50 and 100 ng/ml, 

and the highest level of augmentation recorded and given in Figure 5.12. These 

experiments were also repeated twice for each cell line to verify tha t PMA does 

indeed function as an activator of HIV-1 LTR-driven gene expression in  neural cells 

similar to that seen in lymphocytic and monocytic cells (Rosenberg and Fauci, 1990).

ii) . The response o f HIV-1 LTR-driven CAT expression to increasing concentrations of 

PMA in glial cell lines

The level of augmentation of HIV-1 LTR-driven CAT expression was further 

examined in the three glial cell lines U138MG, U373MG and G26-24 at four 

different PMA concentrations, 1,50,100, and 250 ng/ml (see Figure 5.13).
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In U373MG and G26-24 cells the response to increasing concentrations of 

PMA is very similar, the stimulation of CAT expression rises steeply at lower 

concentrations and then begins to fall slightly at the higher end of the range of PMA 

concentrations. In both cell lines maximum augmentation of CAT expression was at 

250 ng/ml. The dose-response curve produced from U138MG suggests that 

maximum stimulation of LTR-driven CAT activity in these cells occurred at, or 

below the lowest concentration (10 ng/ml) of PMA tested. Higher concentrations of 

PMA produced a slightly erratic variation in the augmentation but clearly the effect 

was essentially close to maximum at concentrations of PMA above 10 ng/ml.
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Figure 5.9. The effect of IFNg on HIV-1 LTR-CAT expression 
In neural cells. I  Relative CAT activity waa calculated from 
the mean cpm of *H-acetyl chloramphenicol product from 
extracts from cells transfected with pLC2R after IFN treatment for 
22-24 hrs divided by meen cpm without. The IFNg waa used at 
1 0 0 0  U/ml for aH cells.
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Figure S.10. Augmentation of HIV-1 LTR-driven CAT expreaalon In 
oligodendroglioma ceUa by IFNg over a range of cytokine 
concentrations Celle were transiently transfected with pLC2R 
and treated with IFNg for 22-24 hre before CAT activity wee 
determined In cytoplasmic extracts.
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Figura 5.11. Augmentation of HIV-1 LTR-drlven CAT expreaalon 
by IFNg In Q26-24 ollgodemdroglloma calla In the presence of 
neutralising antiserum to murine TNFa (A/TNFa). Polyclonal 
antibody (Qenzyme) sufficient to neutralize the Indicated number 
of U/ml of TNFa, was added to the culture medium just prior 
to the addition of IFNg to 1000 U/ml and CAT activity determined In 
extracts prepared after 22-24 hrs. I  Relative CAT activity wee 
calculated from the mean cpm ■ H-ecatyl chloramphenicol In the 
presence of IFNg (±A/TNFa) divided by the mean cpm without.
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Figure 6.12. Augmentation of HIV-1 LTR-CAT expression by PMA 
In neural cell«. I  Relative CAT activity waa calculated from 
the mean cpm of *H-acetyl chloramphenicol product from extracts 
of cells transfected with pLC2R after PMA treatment for 22-24 hrs 
divided by mean cpm without. Phorbol ester concentrations 
(ng/ml) were U136MQ 100; U373MQ 250; 026-24 250;
SK-N-MC 50 and SK-N-SH 100.
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Figure S.13. Augmentation of HIV-1 LTR-driven CAT expreeeion in 
U13SMG glioblaatoma, U373MG astrocytoma and Q26-24 
oligodendroglioma cells by PMA over a range of concentrations. 
Celia were transiently transfected with pLC2R and treated with PMA 
for 22-24 hra before CAT activity was determined in cytoplasmic 
extracts.
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5.2. Pairs of augmenting cytokines are not additive in the 

augmentation of HIV-1 LTR-driven gene expression

5.2.1. The effects of TNFa, IL-Ifi and PMA on HIV-1 LTR-drlven gene expression in 

U138MG glioblastoma and U373MG astrocytoma cells

The human glial cell lines, U138MG and U373MG, were examined further 

for possible synergism between the cytokines found to augment HIV-1 LTR-driven 

gene expression. The cytokines TNFa and IL-1/3, and phorbol ester were tested 

individually and in pairs at their optimum concentrations on both cell lines. IL-6 in 

combination with TNFa was also included with U138MG cells. The augmentation of 

CAT expression is shown in Figure 5.14.

The results are comparable for both cell lines. Individual agents activate 

expression from the LTR to similar extent as those reported in Figures 5.1, 5.4 and 

S.12, although the absolute level of augmentation is less than previously seen with 

U373MG. The exposure of cells to TNFa and IL-1/1 together produced no increase 

above that observed for either cytokine alone, in fact the level of augmentation for 

U138MG was between that of the individual cytokines, and for U373MG it was 

approximately the same as for TNFa or IL-l/I alone. However, in U138MG cells 

exposed to TNFa and IL-6 a very slight additive effect of the two cytokines in 

augmenting CAT expression was observed, IL-6 and TNFa increased expression 

marginally to from 2.2-fold to 2.8-fold from that seen with TNFa alone. When PMA 

was added with either TNFa or IL-1/9 in U138MG cells it was able to augment 

further expression from the LTR and appeared to increase the level of 

augmentation by a similar amount with TNFa or ILrlfi. Although, in U373MG cells 

the outcome of PMA and IL-10 was not greater than PMA alone, a similar additive 

effect to that seen in U138MG was evident with PMA and TNFa, albeit to a lesser

extent.
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Figura 5.14. CAT activity from tha HIV-1 LTR In glial cella after 
expoaure to comblnationa of cytokinea and phorbol eater (PMA) 
for 22-24 hra. I  Relative CAT activity waa calculated from tha mean 
cpm of *H-acetyl chloramphenicol In tha preaence of cytokine/PMA 
divided by tha mean cpm without. Cytokine concentratlona 
(U/ml): TNFa; U138MQ 100. U373MQ 2500. IL-lfî; U138MQ 
500, U373MQ 100; and IL-5 400 U/ml. Phorbol eater, 250 ng/ml.
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Figura 5.15. CAT activity from tha HIV-1 LTR in Q26-24 cella after 
axpoaura to combination! of cytokine* and phorbol aater (PMA), 
for 22-24 hr*, f  Relative CAT activity waa calculated from the mean 
cpm of *H-acetyl chloramphenicol In the presence of cytokines 
/PMA, divided by the mean cpm without. Cytokine concentrations 
(U/ml): IFNg 1000, TNFo 100, IL-6 400. Phorbol eater, 100 ng/ml.
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S22 . The effects of TNFa, IFN7 and PMA on HIV-1 LTR-driven gene expression in 

G26-24 oligodendroglioma cells

The level of augmentation of CAT expression directed by the HIV-1 LTR 

produced by pairs of activating agents was also examined in G26-24 cells. In this cell 

line IFN7, TNFa and PMA had been shown to activate LTR-driven gene expression 

and these were tested again individually and in pairs. IL-6 plus IFN7 was also 

included.

The result (Figure 5.15) is similar to that observed for U138MG and 

U373MG. The combination of TNFa and IFN7 did not have an additive effect on 

gene expression, the level of augmentation fell between that of each agent alone. 

PMA was additive to the effect of each cytokine with TNFa and PMA producing a 

greater activation than either TNFa or PMA alone, although IFN7 plus PMA was 

only just above that seen for IFN7 alone and below that of PMA alone. Finally, the 

combination of IFN7 and IL-6 resulted in a significant decrease in CAT expression 

compared that of IFN7 alone. IL-6 and TNFa together were not tested.

5.3. Augmentation of HIV-1 LTR-drivan gana axprassion by 

cytokines or PMA in calls co-expressing the transactivator, Tat

53.1. Transient co-transfection assays

The effect of individual cytokines on HIV-1 LTR-driven gene expression was 

investigated in three cell lines, U138MG glioblastoma, U373MG astrocytoma and 

SK-N-MC neuroblastoma cells transiently expressing Tat by co-transfection with the 

optimum amount of pSVL/ar. In U138MG and U373MG cells TNFa, TLr\fi, IL-6 

and PMA were tested and in SK-N-MC. IFNa and PMA (Figure 5.16). Comparison 

of the amount of CAT activity in extracts from Tat transfected cells and those 

transfected with pLC2R alone, confirmed that Tat was functioning as expected in 

these experiments.



Chapter 5 139

Exposure of the glioblastoma cell line U138MG transiently co-transfected 

with Tat and pLC2R to cytokines or PMA produced a slightly increased amount of 

CAT expression above that observed with Tat alone. This correlated with the ability 

of each agent, in the absence of Tat, to augment expression from the LTR but 

neither agent was particularly able to synergize with Tat and enhance expression 

greatly. IL-6 was also examined in this system to determine if the minimal 1.3-fold 

augmentation of CAT expression it produced in the absence of Tat would be 

amplified when Tat was co-expressed. However, this was not evident with U138MG 

or U373MG cell lines where exposure to IL-6 lead to a slight decrease in the level of 

CAT expression to below that seen with Tat alone.

The HIV-1 LTR-driven CAT expression in U373MG cells expressing Tat was 

also enhanced by stimulation with TNFa, IL-1/3 and PMA. Here, expression in 

response to IL-1/3 and PMA rose by a small amount to over 1.5-fold and for TNFa 

this increased further to over 2.5-times the level seen with Tat alone. In this 

experiment, TNFa was able to synergize with Tat in augmenting LTR-driven gene 

expression and to a limited extent with IL-1/? and PMA.

In SK-N-MC cells, however, much greater synergy between Tat and agents 

shown to activate gene expression was found. Both IFNa and PMA enhanced 

expression greatly, to four-fold and over three-fold, respectively.

5 J 2 . The effect of exposure of cell lines permanently expressing Tat to cytokines or 

P M A

Permanent cell lines expressing Tat were produced by transfection of cells 

with the retroviral vector, pMoLTR/ar, which expresses Tat and subsequent 

selection of cells resistant to the neomycin analogue, G418 (see Chapter 2, 

Section 2.93). Tat expression in bulk cultures of U138MG, U373MG and G26-24 

cells was easily confirmed by comparison of the CAT activity directed by the HIV-1 

LTR present in 1.0 absorbance unit of extract with that in the same amount of
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extract from the parental cells after transfection with pLC2R, although, the level of 

transactivation of the HIV-1 LTR by Tat in these cells was not formally measured by 

comparison with parental cells expressing CAT from the LTR in the same 

transfection. The presence of antigenic Tat protein was detected by indirect 

immunofluoresence in the nuclei of U373MG cells resistant to G418 several weeks 

after transfection with pMoLTR/ar (see Chapter 6).

The effect of individual cytokines known to augment expression driven by the 

HIV-1 LTR in the parental cells was then determined by transfection of Tat+ cells 

with pLC2R and treatment with cytokines or PMA in the usual way (see 

Figure 5.17).

The exposure of U138MGTat+ cells to the cytokines TNFa and IL-1/9, and 

PMA resulted in only a slight increase in CAT expression above that seen in 

untreated cells with values of 1.3-, 1.4- and 1.2-fold noted, respectively. This was 

similar to the outcome in U138MG cells transiently transfected with Tat. The 

combination of TNFa and IL-6 was also included to see if these cytokines were still 

partially additive to the augmentation of LTR-driven CAT expression in the 

presence of Tat but this was not the case and TNFa plus IL-6 produced the same 

1.4-fold stimulation of CAT activity observed with TNFa alone.

In U373MGTat + cells the cytokines, TNFa and IL-1/3 were also only able to 

increase expression further by a small margin to 1.4-fold. In contrast to  the result 

seen with transiently transfected U373MG cells TNFa did not greatly enhance CAT 

expression but PMA was able to do so to a limited extent.

Finally, HIV-1 LTR directed CAT activity in G26-24Tat+ cells treated with 

the cytokines TNFa and IFN7, and PMA was quite similar to the response of 

U373MGTat+ cells. Cytokines hardly increased CAT expression above the level 

with Tat alone, only to 1.1-fold each whilst PMA was able to produce a slightly 

larger augmentation up to 1.5-fold.
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Therefore, from these results it would appear that if the Tat protein is 

present then augmenting cytokines have little effect on LTR-driven gene expression; 

except notably in SK-N-MC cells.
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Figure 5.16. CAT activity driven by the HIV-1 LTR in neural cell 
line* tranalently expressing Tat following exposure to cytokines/ 
phorbol ester (PMA) for 22-24 hrs. I  Relative CAT activity was 
calculated from the mean cpm of *H-acetyl chloramphenicol after 
treatment with cytokinea/PMA divided by the mean cpm without. 
Cytokine concentrations (U/ml): 11-6, U138MQ and U373MQ 400; 
IL-10, U138MG 100, U373MQ 1000; IFNa, 1000. Phorbol ester 
(ng/ml), SK-N-MC 50, U373MQ and U138MQ 100.
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Figure 5.17. CAT activity driven by the HIV-1 LTA In neural cell 
lines permanently expressing Tat following exposure to cytokines/ 
phorbol ester (PMA) for 22-24 hrs. I  Relative CAT activity was 
calculated from the mean cpm of *H-acetyl chloramphenicol after 
treatment with cytoklnea/PMA divided by the mean cpm without. 
Cytokine concentrations (U/ml): IL-lfi, U138MQ 100, U373MO 
1000; TNFa, U138MQ 100, U373MQ 1000; IFNg 026-24 1000,
IL-6 U138MQ 400. Phorbol ester, aH cells 100 ng/ml.
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Discussion

Cytokines and expression from the HIV-1 LTR

The exposure of neural cells transiently expressing the CAT reporter gene 

under the control of the HIV-1 LTR to cytokines clearly identified PMA and one or 

more cytokines capable of up-regulating expression significantly in each cell type. In 

summary, TNFa augmented expression in all cells of both neuronal and glial origin, 

and IL-l/J did so in the human and murine glial cells, except the murine 

oligodendroglioma. The neuronal cell lines were not tested with \Lr\fr. IL-6 

enhanced expression in one example only, the primary murine astrocytes. The 

interferons suppressed expression from the LTR except IFN7 which produced 

around a two-fold rise in murine primary astrocytes and oligodendroglioma cells and 

IFNa augmented expression in one neuroblastoma cell line.

Cells were tested with a range of cytokines at the different concentrations 

detailed in the relevant sections of the text and conclusions were drawn only from 

the data provided by these assays. Obviously the possibility exists that higher or 

lower concentrations of cytokine that were not tested could produce effects on 

HIV-1 LTR-driven gene expression different to those reported.

The experiments were performed as detailed in Chapter 2, by the addition of 

exogenous cytokine to neural cells transiently transfected with pLC2R, followed by 

the measurement of reporter gene expression. During the assays neural cells were 

cultured in medium containing 10% foetal bovine serum to support cell growth. The 

use of 10% FBS in the cell culture medium meant that the medium was undefined 

and complete absence of cytokines could not assured. Nevertheless, the levels of 

specific cytokines in the serum of healthy individuals are undetectable (Gallo et al., 

1989) which suggests that the use of serum would not have compromised the results.

Preliminary transfection experiments were performed in a serum-free 

medium containing insulin, transferrin and bovine serum albumin in DMEM.



Chapter 5 145

Primary astrocytes could be maintained for periods of over one week in this medium 

but did not appear to proliferate. Unfortunately, cells could not be transfected 

efficiently in the serum-free medium; it was noted that after the overnight 

incubation with the calcium phosphate-DNA precipitate, the precipitate adhered 

strongly to the plastic of the tissue culture dish in the spaces around the cells such 

that washing with PBS or medium could not remove it. Prolonged exposure to the 

Ca3(P04>2 precipitate was toxic to the cells and inhibited further cell growth. When 

dishes of these cells were harvested for the measurement of CAT expression there 

was usually insufficient extract protein to obtain a signal in the assay. This 

phenomenon would appear to be due to the lack of a serum component which coats 

the surface of the tissue culture plastic ware and prevents the seemingly irreversible 

binding of the Ca3(P04>2 precipitate. The identity of the serum component was not 

investigated but bovine serum albumin nor the addition of fibronectin to cells in 

serum-free medium could prevent it.

Comparisons with lymphocytes and macrophages

These experiments served to demonstrate certain similarities and notable 

differences in the cytokines involved in the regulation of expression from the HIV-1 

LTR in neural cells when compared to T lymphocytes and cells of the 

monocyte/macrophage lineage. These are discussed below.

TNFa

The activation of HIV-1 gene expression by TNFa agrees with the central 

role of this cytokine in activating both HIV-1 gene expression and replication in 

lymphocytes and macrophages alike (Rosenberg and Fauci, 1990). The effect of 

TNFa on HIV-1 was first identified by its ability to increase the cytocidal capacity of 

HIV-1 grown in both lymphoblastoma cell lines and primary lymphocytes in vitro 

due to the enhanced rate of replication of the virus (Matsuyama et aJ„ 1989b;
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Vyakarnam et al., 1990). Subsequently it was demonstrated to exert its effect by 

increasing expression from the viral LTR (Okamoto et al., 1989).

In similar reporter gene assays performed in the lymphoblastoma cell lines 

Jurkat and J. Jhan, CAT expression from the HIV-1 LTR in the absence of the 

transactivator. Tat was augmented by 1.2-fold (Okamoto et al., 1989), seven-fold 

(Israël et al., 1989) and eight-fold (Osborn et al., 1989), respectively. Therefore, the 

three-fold enhancement by TNFa found in neural cells is certainly of a comparable 

magnitude. Further examination of the experimental protocol employed by each 

group may also offer some explanation as to the differences observed. The length of 

time transfected cells were exposed to TNFa varied in each study, Okamoto et al. 

treated cells for 12 hrs at 400 U/ml, Israël et al. for 16 hrs at 1000 U/ml and Osborn 

et al. for 20 hrs at 100 U/ml which suggests that, in lymphoblastomas, induction of 

HIV-1 LTR-driven reporter gene expression requires 16-20 hrs before substantial 

CAT protein is synthesized. Because useful results were obtained in the experiments 

presented here with cytokine treatment for 22-24 hrs the length of time was not 

altered in the light of the above published works. However, I would suggest that 

from previous use of the 14C-chloramphenicol TLC-based CAT assay, which was 

employed in the above studies from lymphoblastoma cells, this method may lead to 

an inaccurate level of augmentation by TNFa being reported due to its higher 

threshold of detection. In lymphoblastoma cells the amount of CAT activity directed 

by the HIV-1 LTR in transient assays is at the limit of detection of the TLC-based 

assay, so no acetylated chloramphenicol product is visible in the presented 

autoradiographs and the claimed percent acetylation (0.4%) is not above 

background (data from Israël et al., 1989) [I found this to be in the 0.5-1.0% range, 

from experiments not shown]. Therefore when CAT expression was stimulated by 

TNFa in these experiments division of a detectable amount of CAT activity by the 

background level resulted in the reported augmentation being artificially higher. 

Taking these points into consideration I would suggest that the ability of TNFa to
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augment HIV-1 LTR-driven gene expression in neural cells is equivalent to that 

reported in lymphocytes.

In promonocytic cells transiently transfected with a HiV-1 LTR-CAT 

plasmid, TNFa was able to augment reporter gene expression considerably (Stanley 

et al., 1990). A 23-fold increase in CAT expression was observed and, although this 

may be subject to the same criticism as above due to the use of the TLC-based CAT 

assay, it suggests that TNFa has a stronger effect on LTR-driven gene expression in 

monocytic cells compared to lymphocytes or neural cells.

IL-lfl

The ability of IL-1/9 to augment HIV-1 LTR-driven gene expression in human 

glioblastoma and astrocytoma cell lines, and in primary murine astrocytes 

demonstrates a significant difference in the regulation of HIV-1 gene expression in 

neural cells compared to lymphocytes and macrophages. IL-1/1 has been reported 

not to augment LTR-driven reporter gene expression in Jurkat lymphoblastoma 

cells (Osborn et a!., 1989), neither will it enhance viral replication in the chronically 

infected ACH-2 T lymphocyte cell line or its monocyte equivalent U1 (Rosenberg 

and Fauci, 1990). While in transgenic mice containing integrated but non-expressed 

HIV-1 LTR-CAT plasmid DNAs there was expression of CAT in differentiated 

macrophages after exposure to IL-1 (Gendelman et al., 1989), a role for IL-1 and 

HIV-1 infected macrophages has not been found (Gendelman et al., 1989; Meltzer et 

al., 1990a; Stanley et al., 1990).

In support of the data presented here, expression from a CAT reporter 

construct under the control of the HIV-1 LTR in primary rat astrocytes was 

augmented 4-fold by exposure to IL-1/9 at 20 ng/ml (Rodland, 1989). This was 

equivalent to 20,000 U/ml of IL-1/9 used in this study. When assessed by the 

incorporation of ^H-thymidine the author reports that IL-1/9 did not stimulate 

cellular proliferation of primary astrocytes. This and the data of Lachman et al..
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(1987) suggests that the induction of HIV-1 LTR-driven gene expression in 

astrocytes and astrocytoma cells by IL-10 and TNFa occurs optimally at 

concentrations of cytokine that do not promote proliferation of the target cell.

Unfortunately a human oligodendroglioma cell line was not included in this 

study as examples of this rare tumour were not available from the two main cell 

culture repositories in Europe or America. Therefore it cannot be determined if the 

failure of IL-1/? to  effect LTR-driven expression in G26-24 cells is a common 

property of cells derived from oligodendrocytes or simply specific to murine cells.

IL-10 is also capable of stimulating the synthesis and secretion of another 

cytokine, IL-6, from a variety of cells including astrocytoma (U373MG; Yasukawa el 

at., 1987), glioblastoma, astrocytes (Goetzl el at., 1989) and this could modulate 

expression from the LTR. However, from the data presented in Figure 5.6, IL-6 

alone was not capable of augmenting CAT expression in astrocytoma and 

glioblastoma cell lines and so the effects were assumed to be entirely mediated by 

direct action of IL-1/9. But in primary murine astrocytes where IL-6 alone augments 

the possibility exists that IL-6 may have contributed to, or even been responsible for, 

the stimulation produced by IL-l/J. This was not disproved by the use of neutralizing 

antibody to IL-6. However, the evidence presented indicates that YL-Xfi has an 

immediate function on HIV-1 gene expression in other neural cells which in turn 

probably applies to primary murine astrocytes, yet it may operate in conjunction 

with endogenous IL-6.

IL-6

The strong augmentation seen by IL-6 in primary astrocytes was not evident 

in the tumour cell line most resembling its human counterpart, the astrocytoma 

U373MG, or in any other neural cell line tested. Although tumour cells and their 

primary cell equivalent are not expected to necessarily behave identically, certain 

similarities were demonstrated in the responses of HIV-1 gene expression to TNFa
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and \Lr\fi. It is not possible to say if the enhancement of HIV-1 LTR-driven gene 

expression by IL-6 in primary murine astrocytes would occur in human astrocytes as 

the question of whether this was a function of primary astrocytes in general or only 

of those of murine origin could not be addressed.

In general IL-6 did not have much effect on expression from the HIV-1 LTR 

in neural cells which is similar to the situation in T  lymphocytes, but contrary to 

monocytic cells where IL-6 is a strong activator of HIV expression (Poli etal., 

1990a). In chronically infected primary macrophages (derived from blood 

monocytes) and the promonocytic cell clone U l, IL-6 directly up-regulates 

production of HIV by, as yet, undefined transcriptional and posttranscriptional 

mechanisms (Poli et al., 1990a). IL-6 also synergizes with a physiological rise in 

temperature, GM-CSF, and TNFa, individually in the induction of HIV-1 

transcription and replication in these cells (Stanley et al., 1990; Poli et al., 1990a).

IFN

The interferons were quite effective in some neural cell types in reducing 

HIV-1 LTR-driven gene expression to below the basal level. This suggests that an 

antiviral state was induced by IFN in these cells which was capable of mediating the 

effect. Yet, it would be more difficult to relate the data provided from reporter gene 

assays to a possible function of IFN as an antiviral agent against HIV infected neural 

cells due to the many points of action of known for IFN. The basic mechanisms are 

at the post-transcriptional level where mRNAs are subject to degradation by the 

2  S' oligoadenylic add-induced RNAse L, and, via the IFN-regulated protein kinase, 

the initiation of translation of message is also inhibited in IFN treated cells 

(Laurence, 1990).

In HIV-1 infected lymphocytic and monocytic cell lines interferon aft exhibit 

a concentration-dependent suppression of viral replication (Hartshorn et al., 1987). 

IFNa and IFN0 will inhibit viral replication in peripheral blood mononuclear cells
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(Michaelis and Levy, 1989) and IFNa is particularly effective on monocytic cells 

where endogenously produced IFNa also restricts HIV-1 replication (Macé et al., 

1989). Furthermore the restriction imposed by IFNa on HIV-1 replication in 

chronically infected monocytic cells was primarily due an inhibition of the release of 

preformed virions from the plasma membrane (Poli et al., 1989). These findings 

suggest that the augmentation of HIV-1 LTR-driven gene expression produced by 

IFNa in SK-N-MC neuroblastoma cells is unique and probably specific to that 

tumour cell line as it was not evident with the other neuroblastoma. HIV replication 

or gene expression has not been reported to be enhanced by IFNa in any cell type 

examined.

IFN7 also restricts HIV-1 replication in lymphocytic and monocytic cell lines 

but has minimal antiviral activity against HIV-1 infected peripheral blood 

mononuclear cells (Hartshorn et al., 1987). More recently, the replication of HIV-1 

in peripheral blood mononuclear cells and CD4+ T  lymphocytes has been shown to 

induce these cells to secrete TNFa, TNF/? and IFN7 . The addition of exogenous 

IFN7 further enhances HIV-1 replication, albeit weakly, and the addition of 

neutralizing antiserum to IFN7 decreases viral replication (Vyakamam et al., 1990). 

The mechanism of such an effect is unknown but the stimulation of HIV replication 

by IFN7 may depend upon the endogenous production of TNF in the cultures.

The positive effect of IFN7 on HIV-1 gene expression in the murine G26-24 

oligodendroglioma and primary astrocytes is unusual. The augmentation would 

appear to be a direct consequence of IFN7 stimulation and not mediated by TNFa 

production, at least in G26-24 cells where neutralizing antiserum to TNFa did not 

effect the level of augmentation by IFN7. No information as to the ability of 

oligodendroglioma cells to secrete TNFa has been reported, which may not be 

surprising as TNF damages oligodendrocyte cell function (Hofman, 1989). 

Nevertheless, the combination of lipopolysaccharide and IFN7 or IL-1/9, or IFN7 

and IL-10 together will induce TNFa synthesis in primary astrocyte cultures (Chung
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and Benveniste, 1990). Only as little as 10 ng/ml of LPS alone or in conjunction with 

IL-1/Î or IFN-r is necessary (Chung and Benveniste, 1990). For this reason all 

medium and solutions were made from endotoxin-tested water (Sigma) and there 

was no significant LPS in the part-purified IFN7 preparations when tested by the 

Limulus assay (performed by Mr. S. McQuiston in the laboratory of Dr. Alan 

Morris, Department of Biological Sciences, University of Warwick). The reporter 

gene experiments performed here were only able to test the function of IFN7 on 

murine cells as the human equivalents or tissues were not available and whether 

IFN7 has the same effect on HIV-1 LTR-driven gene expression in normal human 

astrocytes or oligodendrocytes could not be assessed. However, LTR-driven gene 

expression was not augmented by IFN7 in the human astrocytoma cell line 

U373MG.

PMA

The phorbol ester, PMA, was the most effective agent in augmenting CAT 

expression directed by the LTR in all neural cells. In lymphocytic and monocytic 

cells PMA will also induce LTR-driven CAT expression and enhance or induce 

HIV-1 replication in infected cells (Israël et ai, 1989; Rosenberg and Fauci, 1990). 

Specifically, in Jurkat lymphoblastoma cells PMA augments HIV-1 LTR-driven 

CAT expression by 3.3-fold (Israël et ai, 1989) and in U937 promonocytic cells, a 

3.9-fold augmentation was reported (Stanley et ai., 1990). The data from these two 

authors indicates that PMA is considerably less efficient in stimulating CAT 

expression from the LTR in these cell types than TNFa. In neural cells, however, 

PMA was always able to augment LTR-driven expression more than TNFa.

PMA will also stimulate virus production in U373MG astrocytoma cells 

infected with HIV-1 (Harouse et al., 1989). PMA at 50/ig/ml augmented virus 

replication by around 20-fold, measured by the release of p24W i in to the culture 

supernatant. Although stimulation of U373MG here was only responsible for a
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3.3-fold augmentation of LTR-driven gene expression the results of Harouse ef al., 

(1989) suggest that these small rises in the level of expression driven by the HIV-1 

LTR will translate into a much greater stimulation of virus production. Surprisingly, 

PMA had no effect upon primary rat astrocytes transiently transfected with a HIV-1 

LTR-CAT reporter gene construct (Rodland, 1989).

Co-stimulation of HIV-1 LTR-driven gene expression with pairs o f cytokines

The use of pairs of cytokines found to individually augment HIV-1 

LTR-driven gene expression was useful in indicating whether the same or different 

cellular signalling pathways were invoked to produce the enhanced expression. An 

additive effect may suggest different pathways whereas non-additive suggests either 

the same or perhaps mutually exclusive mechanisms operate. For example, in 

T lymphoblastoma cells HIV-1 gene expression can be augmented by two agents, 

PHA and PMA, where PHA activates T cell surface antigens and PMA stimulates 

PKC, which individually produce approximately a 3-fold augmentation of 

LTR-driven CAT expression but together this rises to 11-fold (Israel et at., 1989): yet 

some authors report that PHA alone does not augment expression from the HIV-1 

LTR and was not additive to the effect of PMA (Tong-Starksen et al., 1989). 

However, it has been shown that PMA and PHA operate through different 

intracellular mechanisms in activating T lymphocytes which both regulate HIV-1 

gene expression (Siekevitz et al., 1987; Crabtree, 1989). Calcium ionophores are also 

additive to PMA in augmenting HIV-1 LTR-driven gene expression in lymphocytes 

(Gruters et al., 1991).

The results obtained in U373MG astrocytoma and U138MG glioblastoma 

cells treated with TNFa and IL-10 showed that there was no additive effect on 

HIV-1 LTR-driven gene expression. TNFa and IFN7 were also not additive with 

G26-24 oligodendroglioma cells. From the above hypothesis, this might suggest that 

these cytokines act through a similar mechanism to augment reporter gene
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expression directed by the HIV-1 LTR. This expectation was supported by later 

experiments detailed in Chapters 7 and 9.

The slightly enhanced level of augmentation apparent when U138MG cells 

were treated with TNFa plus IL-6 compared to TNFa alone cannot really be 

described as synergistic since IL-6 alone had very little positive effect on LTR-driven 

expression in these cells, and the small differences in augmentation observed are 

close to the standard error of the assay (see Introduction). As described previously, 

in monocytic cells IL-6 alone and in synergy with TNFa was able to augment HIV-1 

replication (Poli et al., 1990a). HIV-1 expression was induced to the extent that 

transcription was stimulated 3- to 4-fold by TNFa and 1.5-fold by IL-6 individually 

but together produced a 10-fold rise (Poli, et al., 1990a). Obviously the effect of 

TNFa and IL-6 on LTR-driven gene expression in U138MG cells does not compare 

with the situation in macrophages and this further disproves any synergistic function 

for that pair of cytokines and U138MG.

The ability of IL-6 and IFN7 to partially down-regulate CAT expression from 

the LTR in G26-24 cells compared to IFN7 does not correlate with the slight 

augmentation evident with IL-6 alone (see Figure 5.6). The result seen was 

therefore unexpected but probably of little overall significance.

Augmentation o f expression from the HIV-1 LTR in the presence o f Tat

In lymphoblastoma cells the co-transfection of a Tat expression vector and 

subsequent treatment with TNFa augments expression from a HIV-1 LTR linked 

reporter gene more than either agent alone (Israël et al., 1989; Okamoto et al., 1989). 

TNFa was reported to enhance expression relative to the amount obtained with Tat 

in the absence of TNFa treatment by 3-fold (Okamoto et al., 1989) and 19-fold (Israël 

et al., 1989) in similar cell lines. As stated earlier, in neural cells HIV-1 LTR-driven 

gene expression responded only in an analogous fashion in the SK-N-MC 

neuroblastoma cell line after stimulation with IFNa or PMA. Both these molecules
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augmented LTR-driven CAT expression 3- to 4-fold relative to Tat alone when 

SK-N-MC cells were similarly transiently co-transfected with a Tat expression 

vector. In U138MG there was only a slight difference when cells transfected with 

Tat were treated with agents that activate LTR-driven expression. CAT expression 

from the LTR in these cells, and to a lesser extent in U373MG (see Figure 5.16), 

appeared to be maximum when Tat was present and there was little or no further 

stimulation with cytokine or PMA. This appears to be another distinction between 

lymphoid and neural cells in the response of HIV-1 gene expression to cytokines. 

This was not due to the loss of a linear relationship between CAT activity and cpm 

of 3H-acetylated product in the CAT assay because, although, high levels of CAT 

are present in extracts from cells co-expressing Tat, only a sufficient amount of 

extract was used to keep within the limits of the assay. Interpretation of these 

experiments is further complicated as the promoter driving Tat expression in the 

transiently transfected cells is also responsive to cytokines (SV40 late promoter, 

experimental observations) which may effect the level of Tat expression from the 

vector. However, I do not feel that the extent to which this might have occurred was 

able to increase Tat expression to such a level that it was responsible for reducing 

expression from the LTR.

Hoping to clarify the situation further, the response of LTR-driven reporter 

gene expression in permanent cell lines expressing Tat from an integrated vector 

(pMoLTR/or) was examined. These cell lines were primarily produced for use in the 

analysis of RNA transcribed from the LTR, after transfection with pLC2R, and by 

virtue of the expression of resistance to G418 each cell should also be expressing Tat 

(confirmed by immunofluoresence data for U373MGTAT+ in Chapter 6). An 

SK-N-MC neuroblastoma cell line permanently expressing Tat was not prepared 

because with such a low transfection efficiency (experimental observation) 

detectable amounts of HIV-CAT mRNA would probably not be produced even in 

the presence of Tat. The response of the LTR to cytokines in the presence of Tat
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was assessed in U138MGTat + , U373MGTat+ and G26-24Tat+ cells to also see if 

there would be a significant difference in the levels of CAT expression to allow the 

effect of augmenting cytokines to be discerned at the RNA level (see Chapter 6). 

However, the results for these cell lines (see Figure 5.17) show that stimulation with 

cytokines in the presence of Tat was marginal. These experiments endorse what the 

co-transfection experiments had shown and indicate that the results obtained with 

transient expression of Tat were not on the whole effected by any undue variation in 

the amount of Tat transfected.

An explanation for the lack of synergy in neural cells between cytokines and 

Tat may stem from the results described in Chapter 4 on the level of transactivation 

of HIV-1 LTR-CAT by Tat. The data reported in Table 4.1 demonstrated that Tat 

does not transactivate with the same efficiency in neural cells as it does in lymphoid 

cells. Therefore, it is conceivable that Tat, performing less efficiently, may not be 

able to 'process' all the RNA that is transcribed from the HIV-1 LTR (a review of 

the proposed mechanisms of Tat functions is given in Chapter 1, Section 1.5.2 iii) 

and hence becomes saturated to a lesser or greater extent depending upon the cell 

line. To conform with this suggestion. Tat in SK-N-MC neuroblastoma cells would 

have to function with the same efficiency as in lymphoid cells which it appeared not 

to do (see Table 4.1). However, perhaps the highest level of transactivation by Tat 

was never achieved due the sensitivity of this cell line to the amount of Tat 

expression vector transfected.

Having determined the functions of certain cytokines on HIV-1 LTR-driven 

gene expression it was thought important to pursue further some examples at the 

level of steady-state RNA expression in order to investigate the effect of cytokines 

on transcription from the LTR.





Chapter 6: Detaction of RNA expressed from the HIV-1 LTR In 

glial cella

Introduction

Experimental technique

Following the analysis of protein expression under the control of the HIV-1 

LTR an examination of the steady-state RNA levels in transfected cells was 

undertaken. This was performed in order to correlate the augmentation of 

LTR-driven reporter gene expression by cytokines with an increase in steady-state 

RNA levels. Transient transfection is a fairly inefficient method of introducing 

foreign DNA into eukaryotic cells with at best 1 to 10% of cells taking up plasmid 

DNA (Chen and Okayama, 1987), therefore little specific mRNA is likely to be 

recovered from transfected cells. Only solution hybridization techniques which use 

partially overlapping complementary probes have the required degree of sensitivity 

to detect such levels of RNA (Ausubel et al., 1990). Therefore, a ribonudease 

protection assay was used with a single-stranded radiolabelled RNA probe 

corresponding to the 236 bp fragment of the HIV-1 LTR (LTRF, see Chapter 3, 

Section 3.4) overlapping the start of transcription from the LTR by 77 nucleotides.

Detection o f mRNA

The glial cell lines U138MG and U373MG were chosen for the analysis of 

RNA transcribed from the LTR after transient transfection as they appeared to have 

the highest effitiencies of transfection judged from the reporter gene experiments, 

with U138MG being the higher of the two. In order to increase substantially the 

levels of HIV-CAT mRNA available after co-transfection with pLC2R, cell lines 

permanently expressing Tat were produced containing pMoLTRTat (a retroviral 

vector for the expression of Tat) and employed for RNA isolation after transfection
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with pLC2R. A clone of G26-24 oligodendroglioma cells, G26(4), expressing CAT 

under control of the HIV-1 LTR was also created after co-transfection with pLC2R 

plus a vector encoding resistance to G418 and subsequent selection and screening to 

find cells expressing CAT. RNA was also prepared from these cells and assayed by 

the ribonucléase protection method for HIV-specific transcripts.

6.1. HIV-CAT specific RNA Isvsls

6.1.1. Indirect immunofluoresence staining of U373MGTat + cells

The expression of Tat was first examined in the bulk culture of U373MG 

astrocytoma cells created by transfection of pMoLTR/a/. to establish what 

percentage of cells were in fact expressing the protein. The measurement of CAT 

activity directed by the HIV-1 LTR in these cells already indicated that a functional 

Tat protein was being expressed (see Chapters, Section5.3.2), nevertheless cell 

staining by indirect immunofluoresence was performed using a murine monoclonal 

antibody to Tat and a secondary anti-mouse Ig antibody coupled to biotin. The 

complex was then detected using the fluorochrome phycoerythrin covalently linked 

to streptavidin.

Cells were photographed and are shown in Figure 6.1. Bright fluorescence 

was located to the nuclei of all cells and confirmed that an antigenic protein was 

produced and localized to the correct cellular compartment. The Tat protein 

contains a  signal for nuclear translocation and retention and is preferentially, and 

sometimes predominantly, localized to the nucleolus of expressing cells (Hauber et 

al., 1989). However, Tat in U373MG cells was not entirely restricted to the 

nucleolus as the whole nuclei of expressing cells was labelled. The fluorescence 

microscope used did not have sufficient resolution to distinguish the presence of Tat 

in any sub-nuclear compartment in the cells stained here.
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Figure 6.1. Indirect immunofluorescent of U373MG astrocytoma cells permanently 

expressing HIV-1 Tat. Tat protein was detected using a specific monoclonal 

antibody, followed by a biotin-conjugated second antibody and phycoerythrin 

coupled to streptavidin. Magnification x 300.
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6.12. Analysis of RNA from cells permanently expressing CAT from the HIV-1 LTR 

and after transient transfection of a Tat expressing cell line

For this assay two sources of cytoplasmic RNA were prepared, one from a 

bulk culture of U373MG astrocytoma cells permanently expressing Tat 12 hrs after 

transfection with the HIV-1 LTR-CAT plasmid pLC2R, and the other from the bulk 

culture of G26-24 oligodendroglioma cells containing and expressing integrated 

pLC2R DNA, designated G26(4).

Figure 6.2 shows the autoradiograph from a ribonudease protection assay 

after exposure for 2 days. A protected fragment of the correct size (77 bp) was 

detected with RNA from the CAT+ G26(4) cells (Tracks 1 and 2) but not with 

RNA from U373MGTat+ cells transfected with pLC2R (Track 3). The assay was 

resolved by electrophoresis through a sequencing gel and size markers were 

provided by Maxim and Gilbert chemical sequencing reactions of the ds DNA 

footprinting probe, LTRF, from which the riboprobe was derived. Very little 

difference was observed between the mobility of ss RNA and DNA through the gel 

and the protected fragment co-migrated with a DNA fragment of approximately 

77 nucleotides.

Tracks 4 and 5 were control reactions for the HIV-CAT probe and the 

absence of the 77 bp fragment in these samples confirms the specificity of the assay 

for mRNA transcribed from the HIV-1 LTR. There is a major band in track 3, the 

U373MG RNA, just below the undigested probe present in track 4 (no RNAse 

control), which most likely represents incomplete RNAse digestion of the input 

probe. No contaminating higher molecular weight species were present when RNA 

from G26(4) was assayed (Tracks 1 and 2, respectively). Autoradiography of the gel 

for longer periods of time showed minor bands in track 3 (U373MG) below the 

partially digested probe and extending down the gel which may have masked any 

specific band of 77 bp. However, a repeat experiment did not demonstrate a
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Discussion

/mmunofluoresence o f Tat expressing cells

Detection of the nuclear antigen Tat in expressing cells was only possible 

when the high-emission fluorochrome phycoerythrin from the Amersham 

cytochemical staining kit was used in conjunction with the IgM monoclonal antibody 

directed against Tat in the immunofluoresence protocol. U373MGTat+ cells, in

which the function of Tat had recently been indicated by the transactivation of CAT 
ta

expression from the HIV-1 LTR, were used^cell staining experiments. A murine IgG 

monoclonal antibody against Tat was unsuccessful as was the anti-Tat IgM antibody 

when an FITC-conjugated second antibody was used.

The two monoclonal antibodies to Tat react with different portions of the 

protein. The IgG antibody was raised against the N-terminal 14 aa and the IgM 

against the C-terminal 14 aa (Dingwall et al., 1989). However, neither epitope is 

thought to be masked when the protein is expressed in eukaryotic cells, and the 

difference in the detection is due to the isotype of the antibody (personal 

communication. Dr. Sheila Green, Laboratory of Molecular Biology, Hills Road, 

Cambridge). The much larger size of the IgM molecule makes it a better substrate 

for recognition by the secondary antibody, but successful detection of Tat still 

required the use of the biotinylated second antibody and the 

phycoerythrin/streptavidin conjugate which produces a much brighter fluorescence 

than the usual FITC labels (Amersham cytochemical kit handbook). The difference 

in detection may suggest that only relatively low levels of Tat are present in the 

nuclei of expressing cells, nevertheless this was sufficient to transactivate expression 

significantly from the HIV-1 LTR.

After U373MGTat+ cells had been stained satisfactorily the slide was 

examined under phase contrast microscopy to estimate the proportion of cells
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expressing Tat. Unfortunately, there was little cell ultrastructure remaining after the 

fixing and permeabilization procedures so the same field of view was not 

photographed under normal light. It could be estimated by eye that the majority, if 

not all cells in a number of fields examined expressed Tat, as judged from nuclear 

fluorescence.

Ribonuclease protection assay

The detection of mRNA transcripts from the HIV-1 LTR was possible only 

using large amounts (100/4g) of cytoplasmic RNA isolated from a clone of G26-24 

oligodendroglioma cells which expressed CAT under the control of the HIV-1 LTR. 

A sufficient signal was never observed in U373MGTat+ cells which had been 

transiently transfected with pLC2R. The time of incubation after the transfection of 

these cells was varied, by harvesting cells at 6, 12 and 24 hrs after the glycerol shock, 

in order to find the optimum incubation period that allowed the synthesis of largest 

amount of mRNA. The absence of signal in these transfected cells suggests that the 

CAT mRNA must be of extremely low abundance or stability. The relative ease with 

which functional CAT enzyme was assayed in transfected cells perhaps masked the 

scarcity of the RNA species that encoded it. Enzyme assays are sensitive primarily 

because an enzymatic function is detected and not individual inert protein. The CAT 

assays performed here are reported to be extraordinarily so, and capable of 

detecting less than 200/em;ogrammes of active enzyme (Eastman, 1987). However, 

CAT mRNA is notoriously unstable and consequently some laboratories have 

problems in its detection (personal communication. Prof. Hugh Woodland, 

Department of Biological Sciences, University of Warwick). Specific transcripts from 

the HIV-1 LTR were also not be detected in RNA from U138MG and U373MG 

cells transfected in the absence of Tat (data not shown).

Unfortunately, no further work other than the detection of a correctly 

initiated RNA species in G26(4) CAT+ cells was possible as CAT expression was
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not entirely permanent in these cells and all stocks were exhausted in establishing 

the assay. After the parent G26-24 cells had been transfected with the necessary 

plasmids and a CAT + clone obtained by CAT assay, the cells were grown up into 

one large ( 17S cm2) flask and aliquots stored in liquid nitrogen. Subsequently it was 

discovered that cells from clone G26(4) only retained CAT expression for a 

maximum of approximately two weeks after recovery from liquid nitrogen. Cells 

kept resistance to G418 but appeared to lose pLC2R sequences as induction of cells 

with the activating agents PMA and TNFa could not induce CAT expression (data 

not shown). Interestingly, when these cells expressed CAT from the HIV-1 LTR it 

was constitutive, unlike the simian Vero cells containing integrated HIV-1 

LTR-CAT DNA described by Bednarik et al. (1990) where expression was restricted 

by methylation of the LTR. G26(4) cells that had lost CAT activity were treated with 

S' aza-cytidine to suppress methylation of DNA but this did not induce CAT 

expression.

Experiments therefore could not be performed to demonstrate a correlation 

between steady-state HIV specific mRNA transcripts and the induction of 

expression by cytokines. However, a functional system was described for the 

detection of scarce transcripts from the HIV-1 LTR and with the information 

provided here it would be possible to embark upon such an investigation after 

preparation of sufficient stocks of G26-24 or other cells expressing CAT from 

integrated pLC2R DNA.





Chapter 7: Interaction of callular proteins with tha HIV-1 LTR

Introduction

The analysis of the regulation of gene expression from the HIV-1 LTR was 

continued at the molecular level by examining the interaction of the LTR with the 

various cellular proteins involved in the initiation and regulation of transcription. In 

doing so, it was hoped that information could be obtained about the cellular 

processes that cytokines activate in neural cells to promote enhanced gene 

expression from the HIV-1 LTR, and upon the identity of the cellular factors and 

regions of the LTR important in mediating the effect. Transcription factors regulate 

gene expression by binding specifically to certain sequence motifs in the LTR and 

enhancing the activity of RNA polymerase II in transcribing the viral genome. 

Therefore, experiments to evaluate the binding of nuclear proteins to the LTR were 

performed using a number of experimental systems. Firstly, in this chapter, the 

ability of restriction fragments from the HIV-1 LTR to form specific protein-DNA 

complexes with factors present in nuclear extracts was assessed by gel retardation 

assays. In Chapter 8, the locations of the sequences involved in the binding of 

nuclear proteins were determined in the LTR restriction fragment probes using 

DNAse I footprinting, and finally, in Chapter 9, the identification of 

sequence-specific DNA-binding activities was continued using ds oligonucleotide 

probes corresponding to specific regions of the LTR in further gel retardation 

assays.

Preparation o f nuclear extracts

Crude nuclear extracts were prepared by the elution of nuclear proteins from 

isolated nuclei with buffer containing a high concentration of salt as described in 

Chapter 2, Section 2.12.1. A buffer containing 0.4 M  NaCI was used because at this
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ionic strength the bulk of non-histone nuclear proteins are extracted from nuclei and 

the crude protein preparation can be employed directly in experiments without 

further purification (Goodwin, 1990). Varying the concentration of salt in the buffer 

allows the extraction of proteins with different binding affinities, such that with 

increasing ionic strength proteins with higher binding constants are eluted. Although 

the bulk extraction of nuclear proteins with 0.4 M  NaCl was found to be sufficient, 

the use of a  step-wise elution of the nuclei with buffers of increasing ionic strength 

can be useful in the isolation and fractionation of DNA-binding activities (Plumb et 

al., 198S). However, as ionic strength gradually increases beyond 0.4 M  NaO the 

histones are progressively solubilized and introduce a strong non-specific 

DNA-binding activity into the nuclear extracts which will interfere greatly with the 

analysis of sequence-specific proteins (Goodwin, 1990).

Gel retardation assay

This method facilitated the characterization of specific nuclear protein-DNA 

interactions due to the separation of complexes by electrophoresis through a 

non-denaturing polyacrylamide gel, such that free, unbound DNA migrates quickly 

through the gel and DNA complexed with protein is retarded to a variable extent 

depending upon the molecular weight and conformation of the DNA-binding 

protein(s) involved. The degree with which a fragment of DNA is retarded by the gel 

matrix can also be markedly dependent on the location of the protein-binding site. 

Studies on the prokaryotic transcription factor CAP, indicate that the interaction 

with its recognition site will produce the greatest mobility shift if the site is in the 

centre of the DNA molecule and a lesser shift if located at either end. This is a 

consequence of DNA bending by the specific interaction of the transcription factor 

with its binding site (Gamer and Revzin, 1990) and has recently been shown to 

occur with the eukaryotic transcription factors fos and jun  (Kerppola and Curran, 

1991). Complexes were visualized in these assays by the use of a radiolabelled DNA



fragment which was incubated with nuclear protein preparations to recreate the 

binding of nuclear proteins to LTR sequences in vivo. Binding reactions were also 

performed in the presence of a variable amount of the competitor nucleic acid, 

poly (dI:dC)-(dI:dC) ds co-polymer, and a fixed amount of pUC13 plasmid DNA, to 

absorb the non-specific DNA-binding activities present in the nuclear extracts and 

allow the high affinity, and hence sequence-specific nudeo-protein complexes to be 

resolved upon electrophoresis. The gel retardation assay is the most sensitive 

method for the detection of the DNA-binding properties of cellular proteins. This is 

due primarily to the separation of free and bound DNA during the electrophoresis 

which allows the use of a relatively high concentration of binding site DNA to 

facilitate nudeo-protein complex formation even when the concentration of a 

DNA-binding protein is extremely low. Information is obtained more on the relative 

rather than the absolute molecular weights of DNA-binding activities and on the 

relative abundance of each in a given preparation of nuclear proteins.

Cell lines

Experiments on the analysis of DNA-binding proteins in this and following 

chapters concentrated on three neural cell lines, the astrocytoma U373MG and the 

two neuroblastoma cell lines, SK-N-MC and SK-N-SH. This was chiefly because 

more relevant information would be obtained from the use of human cells in the 

study of HIV. No further work was conducted with the glioblastoma cell line 

U138MG as preparations of lysed cells were extremely viscous and would most 

likely make the preparation of nuclear extracts impractical. For each cell line 

examined nuclear proteins were also prepared from cells stimulated with an 

appropriate cytokine shown to augment HIV-1 LTR-driven reporter gene 

expression. Neuroblastoma cells were treated with TNFa at the optimum 

concentration of cytokine determined from the reporter gene assays (100 U/ml) and 

for the astrocytoma IL-l/J at 250 U /m l was used. Cells were stimulated for 1W2 hrs
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just prior to harvesting for the preparation of nuclear extracts as detailed in 

Chapter 2, Section 2.12.1.

7.1. Formation of nuclaar protain-DNA complexes with 

restriction fragments from the HIV-1 LTR

7.1.1. Nuclear protein-binding to probe LTRF

Probe LTRF spans the 3’ region of the HIV-1 LTR from the nucleotide at 

position +77 to -158 relative to the start of transcription at position +1 (see 

Chapter 2, Section 2.12.2) and was used in gel retardation assays with nuclear 

extracts from unstimulated U373MG, SK-N-MC and SK-N-SH cells. The formation 

of specific nudeo-protein complexes was determined after a fixed amount of nuclear 

protein extract was incubated with increasing amounts of the unlabelled competitor 

nucleic add, poly (dI:dC)-(dI:dC), and resolved on a 5% polyacrylamide gel. At the 

higher concentrations of poly (dI:dC)-(dI:dC) shown in Figure 7.1 suffident 

competitor was present to absorb out the non-specific DNA-binding activities of the 

extracts and allow the free probe in each sample to be separated effidently from the 

protein-complexed DNA. This required 2 ng or more of poly (dI:dC)-(dI:dC) for 

extracts from U373MG and SK-N-SH cells and b ug  or more for extracts from 

SK-N-MC cells. With SK-N-MC extracts even at this concentration of competitor 

little free probe was separated and the bulk of the DNA remained complexed with 

protein.

As expected, it was evident that this region of the LTR was capable of 

spedfically binding nuclear proteins present in the extracts from astrocytoma and 

neuroblastoma cells and a similar pattern of protein-DNA complexes was produced 

for each cell line. Two major nudeo-protein complexes, marked C l and C2, are 

present in tracks 1 and 2 (U373MG), 3 and 4 (SK-N-MC). and 5 and 6 (SK-N-SH) of 

the autoradiographs of gels photographed for Figure 7.1. The ratio of complex Cl to
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C2 appears to vary between the cell lines. In U373MG roughly equivalent amounts 

of C l and C2, as judged from the intensity of the bands, were found whereas in the 

neuroblastoma cell line SK-N-SH complex Cl predominated over C2. In SK-N-MC 

extracts there appeared to be much more non-specific DNA-binding activity and 

substantial separation of complexes was not achieved even at the highest 

concentration of poly (dI:dC)-(dI:dC). The examination of further gel retardation 

assays between SK-N-MC nuclear extracts and probe LTRF seen in Figure 7.S did 

indicate the formation of complexes Cl and C2 similar to those seen with SK-N-SH 

extracts.

One less intense lower molecular weight complex marked C4 was also visible 

in gel retardation assays with extracts from U373MG astrocytoma cells present in 

Figure 7.1 between complex C2 and the free LTRF1 probe. A fifth complex below C4 

may also be present with U373MG cells but due to the proximity of the free probe at 

the bottom of the gel this was difficult to determine. Complex C4 was also noted in 

the autoradiographs of gel retardation assays with SK-N-SH cells in Figure 7.1. 

Complex C4 was not present with SK-N-MC extracts but in another experiment 

shown later (Figure 7.5) it was demonstrated that C4 could also be formed between 

LTRF and SK-N-MC extracts.

7.12 . Nuclear protein-binding to probe 159

Similar gel retardation assays were performed with probe 159 and nuclear 

extracts from U373MG, SK-N-MC and SK-N-SH cell line in the presence of 

increasing amounts of poly (dI:dC)-(dI:dC) competitor in order to identify any 

specific protein-DNA complexes. Probe 159 spans the central pan of the HIV-1 

LTR from the nucleotide at position -159 to position -305 upstream from the start of 

transcription (see Chapter 2, Section 2.12.2).

The gel retardation assays in Figure 7.2 demonstrate the formation of one 

major protein-DNA complex with nuclear extracts from all three cell lines in the
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presence of similar amounts of poly (dI:dC)-(dI:dC) competitor as probe LTRF. 

Comparing the mobility of the complex relative to the free probe with each cell line 

indicated that a major protein-DNA complex of a similar size was formed with this 

probe in both neuroblastoma and astrocytoma cells. In extracts from U373MG cells 

at least one minor complex (C2) was also present below the C l complex but was not 

seen in the autoradiographs for SK-N-SH and SK-N-MC.

7.1 J .  Nuclear protein-binding to probe 194

The last probe derived from the HIV-1 LTR, 194 corresponds to the 5’ region 

of the LTR from the nucleotide at position -306 to position -488 relative to the start 

of transcription (see Chapter 2, Section 2.12.2). Gel retardation assays with nuclear 

extracts from U373MG, SK-N-MC and SK-N-SH cells also demonstrated the 

formation of specific protein-DNA complexes with this probe (Figure 7.3) when 

incubated with the same concentrations of poly (dI:dC)-(dI:dC) as required for the 

other LTR probes.

Nuclear factors binding to probe 194 with extracts from U373MG 

astrocytoma cells definitely formed three specific complexes of differing intensities, 

designated CO, C2 and C3 in Figure 13. From close examination of the 

autoradiograph there would appear to be a fainter fourth complex Cl, located below 

CO, which is not clear in the assay shown in Figure 7.3 but more obvious in later 

oligonucleotide competition experiment (see Figure 7.7, Track 3). With extracts 

from SK-N-SH neuroblastoma cells three specific complexes were noted with 

probe 194, the pattern of which was similar to U373MG, as judged by the relative 

mobilities of the complexes relative to free probe. The complexes were also marked 

C l, C2 and C3 in Figure 7.3 to indicate this similarity. A protein-DNA complex of 

similar mobility to C3 was seen with SK-N-MC extracts but the other complexes 

formed with these extracts were not well resolved because the higher non-specific 

DNA-binding activity did not appear to be completely competed away. However, in
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a later experiment (Figure 7.6) enough competitor was present to allow resolution of 

all nudeo-protein DNA complexes formed between SK-N-MC extracts and 

probe 194 and a three complex pattern marked C l, C2 and C3 similar to that 

described for SK-N-SH was seen.

Figure 7.3 indicated that the nuclear protein(s) interacting with probe 194 

DNA to form complex C3 were more abundant compared to those involved in 

complexes C l and C2, in U373MG and SK-N-SH extracts, although more so with 

U373MG. Interpreting the data from Figure 7.3 and Figure 7.6 for the binding of 

proteins present in SK-N-MC extracts to probe 194 indicates that in this cell line, 

complexes Cl, C2 and C3 were of almost equal intensities and therefore of equal 

abundance in the extract preparation.
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Figure. 7.1. Gel retardation aeeaye demonstrating the formation of 
apecific nucleo-protein complexes between a radiolabelled probe, 
LTHF, spanning the HIV-1 LTR from position +77 to -158 and nuclear 
extracts from U373MQ astrocytoma, SK-N-MC and SK-N-SH 
neuroblastoma cells In the presence of Increasing poly (dl:dC)-(dl:dC) 
competitor. Tracks: 1 & 2,3 & 4; 10 pg of nuclear protein with 2 and 
4pg of poly (dl:dC)-(dl:dC), respectively: 5 8  6; 20 pg of nuclear 
protein with 4 and 6 pg of poly (dl:dC)-(dl:dC), respectively. Arrows 
denote the location of probe-specific complexes and free probe at the 
bottom of each gel. * presumed region of complexes C1 and C2 
Inferred from Figure 7.5.
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Figura. 7.2. Qel retardation aaaayi demonstrating the formation of 
specific nucleo-protein complexe* between a radiolabelled probe,
158, spanning the HIV-1 LTR from position -159 to -305 and nuclear 
extracts from U373MQ astrocytoma, SK-N-MC and SK-N-SH 
neuroblastoma cells in the presence of increasing poly (dl:dC)-(dr.dC) 
competitor. Tracks: 1 & 2,3 & 4; 10 pg of nuclear protein with 2 and 
4 pg of poly (dl:dC)-(dl:dC), respectively: 5 & 6:20 pg of nuclear 
protein with 4 and 6 pg of poly (dl:dC)-(dl:dC), respectively. Arrows 
denote the location of probe-specific complexes and free probe at the 
bottom of each gel.
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Figura. 7 3 Qel retardation aaaayi demonstrating the formation of 
«pacifie nuclao-protain complexes between a radiolabelled probe,
194, spanning the HIV-1 LTH from position -306 to -488 and nuclear 
extracts from U373MQ astrocytoma, SK-N-MC and SK-N-SH 
neuroblastome celle In the presence of Increaaing poly (dl:dC)-(dl:dC) 
competitor Tracks: 1 & 2,3 & 4; 10 pg of nuclear protein with 2 and 
4 pg of poly (dl:dC)-(dl:dC), respecttvely: 5 & 8; 20 pg of nuclear 
protein with 4 and 6 pg of poly (dl:dC)-(dl:dC), respectively Arrows 
dénota the location of probe-speciflc complexes and free probe at the 
bottom of each gel. * preaumed région of complexes C1 and C2 
Inferred from Figure 7.7.
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7.2. Comparison of nuclaar protein binding to the HIV-1 LTR 

with extracts from calls treated with and without cytokines and 

identification of protein-binding motifs by competition with 

synthetic oligonucleotides

Further gel retardation assays were performed in order to detect any changes 

in the factors that bind to the HIV-1 LTR after cells were exposed to a cytokine 

shown to augment LTR-driven gene expression. Protein extract from U373MG cells 

treated with IL-1/3 and from the neuroblastoma cells treated with TNFa was 

compared with an equivalent amount from unstimulated cells in the same assay. In 

some experiments, the protein-binding motifs involved in the formation of the 

complexes were identified by competition with excess unlabelled synthetic 

oligonucleotides.

7.2.1. Interaction of nuclear factors with probe LTRF: competition with 

oligonucleotides to protein-binding motifs located in the HIV-1 LTR and the efTects 

of cytokines

The region of the LTR spanned by probe LTRF is known to contain the 

binding sites for a number of cellular factors important in the regulation of HIV-1 

transcription. These include the enhancer-motif of duplicate NFkB sites, three 

binding sites for the transcription factor Spl and the TATA box which interacts 

indirectly with the cellular RNA polymerase II (See Chapter 1, Figure 1.2). In an 

attempt to identify the participation of any of these factors in the nudeo-protein 

complexes formed with LTRf, a competition experiment with unlabelled ds 

oligonucleotides containing the sequences most likely to be involved was performed 

with extracts from untreated or \Lr\fi stimulated U373MG cells. The sequences of 

the oligonucleotides are given in Chapter 2, Table 2.2. The binding site consensus 

sequences contained in the NFkB and TFIID oligonucleotides exactly matches those
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present in the HIV-1 LTR. Aliquots of nuclear extracts were incubated with 10 and 

25 p»co moles of unlabelled oligonucleotide for 30 min prior to the addition of the 

labelled LTRF probe (approximately 5 femtomoles), this represented competitor 

oligonucleotide at a molar excess of approximately 2000- and 5000-fold, respectively. 

The TFIID oligonucleotide was supplied commercially in a more dilute solution and 

competition was performed in the presence of 0.44 and 1.75 picomoles, equivalent to 

a 87.5- and 350-fold molar excess.

The results of this gel retardation assay are shown in Figure 7.4. In tracks 1 to 

7 nuclear extract from unstimulated U373MG cells and in tracks 8 to 14 extract from 

U373MG cells exposed to IL-1/3 was assayed. This demonstrated the formation of 

nudeo-protein complexes with LTRF DNA similar to those seen in Figure 7.1, with 

complexes C l to C4 visible with extracts from both stimulated and unstimulated 

cells. However, the ratio of complex Cl to C2 was clearly different between the two 

sources of nuclear extracts, the intensity of C2 was relatively weak compared to Cl 

in unstimulated U373MG cells whereas in cells stimulated with IL-1/1 C2 was as 

intense as Cl. Moreover, competition with the oligonucleotide containing tandem 

binding sites for NFkB, the HIV-1 enhancer, removed most of the protein-binding 

activity producing C2 and reduced the intensity of the complex down to the level 

seen with extract from unstimulated cells (Figure 7.4. Tracks 6 and 7 compared to 

tracks 13 and 14). Competition with the NFkB oligonucleotide at both 

concentrations also abolished the formation of complex C3 with extracts from cells 

treated with IL-lfi, whilst in extracts from unstimulated cells complex C3 was only 

present very weakly. Competition with the Spl oligonucleotide (Figure 7.4. Tracks 2 

and 3, and 9 and 10) did not considerably alter the formation of complexes Cl and 

C2, although, both complexes appeared somewhat fainter with stimulated and 

unstimulated U373MG extracts when the Spl oligonucleotide was used in 

competition. However, this oligonucleotide was able to prevent the formation of 

complex C4 in both stimulated and unstimulated U373MG extracts. Incubation of
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both sources of extracts with excess oligonucleotide to the TATA box region which 

binds factor TFIID (Greenblatt, 1991) did not affect the interaction of nuclear 

factors with LTR fragment. No changes were evident in the protein-DNA complexes 

seen at either concentration of excess TFIID oligonucleotide (Figure 7.4. Tracks 4 

and S, and 11 and 12).

A similar result was also obtained when this experiment was repeated using 

excess Spl and NFkB oligonucleotides and different preparations of U373MG 

nuclear extracts treated with and without IL-1/9. The finding that complex C2 was 

more abundant than C l in unstimulated cells was contrary to that described in 

Figure 7.1 but was confirmed in independent preparations of nuclear extracts from 

U373MG. The equal amounts of complex C l and C2 in Figure 7.1 may well be 

artifactual due to the slower harvesting of U373MG cells from individual flasks 

rather than roller bottles later used for the preparation of nuclear extracts employed 

in this and all other experiments. This may have caused the cells undue stress and 

lead to the activation of NFicB-like proteins. Subsequently great care was taken to 

harvest cells quickly from roller bottles and to keep cell suspensions on ice before 

freezing or nuclear protein preparation.

A limited oligonucleotide competition experiment was also performed with 

extracts from the neuroblastoma cell lines treated with and without TNFa, to 

investigate whether additional factor(s) recognized the NFkB elements in 

cytokine-stimulated cells. Equal amounts of extract from each source of nuclear 

protein were compared in the same gel retardation assay and in competition with 

excess unlabelled oligonucleotide to NFkB as described above for U373MG. The 

assay is shown in Figure 7.3. Tracks 1 to 3 and 7 to 9 employed unstimulated extracts 

from SK-N-SH and SK-N-MC cells, respectively and tracks 4 to 6 and 10 to 12 used 

extracts from SK-N-SH and SK-N-MC cells treated with TNFa, respectively. Again, 

a similar pattern of protein-DNA complexes to those seen in Figure 7.1 was formed 

with probe LTRF with extracts from both cell lines. Complexes C l, C2 and C4 were
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clearly visible in SK-N-SH extracts and complex C3 present faintly in TNFa 

stimulated SK-N-SH extracts. In SK-N-MC only complexes Cl, C2 and C4 were seen 

in extracts with or without TNFa. In both cell lines complex C l was more intense 

than C2 in unstimulated extracts yet, with SK-N-SH extracts exposed to TNFa, 

complex C2 was more intense than C l (Figure 7.5. Track 4). Extracts from 

SK-N-MC cells treated with TNFa appeared to indicate a similar result but 

unfortunately less radioactivity entered the gel in that track (no. 10) thus making 

interpretation awkward. Competition with excess NFkB oligonucleotide at either 

concentration did not alter complex formation between probe LTRF and either 

source of unstimulated nuclear extract (Figure 7.5. Tracks 2 and 3, and 8 and 9), 

however, excess NFkB oligonucleotide considerably reduced the intensity of 

complex C2 and abolished complex C3 in extracts from SK-N-SH cells treated with 

TNFa (Figure 7.5. Tracks 5 and 6). In SK-N-MC cells treated with TNFa (Figure 7.5. 

Tracks 10, 11 and 12) competition with excess NFkB oligonucleotide (Tracks 11 and 

12) may also have reduced the formation of complex C2. In track 10 complex C2 

does appear to be more abundant than C l whereas in tracks 11 and 12, in the 

presence of excess NFkB oligonucleotide complex C l was more intense than C2 and 

similar to that seen with unstimulated SK-N-MC nuclear extracts.



Unlabelled competitor oligonucleotide:
. Sp l TFIID NFkB . Spl TFIID NFkB

1 2 3 4 5 6 7 8 9 10 '11 12 i3  14

Figure 7.4. Identification of nucleo-proteln complexes formed between 
a radlolabelled probe, LTRF, spanning the HIV-1 LTR from position 
+77 to -158 and nuclear extracts from untreated and IL-10 stimulated 
U373MQ astrocytoma cells by competition with oligonucleotides 
to specific sequence elements located in LTRF. Arrows denote probe- 
specific proteln-DNA complexes and free probe. Tracks: 1-7, untreated; 
8-14, stimulated with 250 U/ml IL-10 for 1V4 hrs. Tracks: 1 and 8, no 
competition; 2 8  9, Sp l oligonucleotide at 2000-fold molar excess;
3 810, Sp l oligonucleotide at 5000-fold molar excess; 4 811, TFIID 
oligonucleotide at 87.5-fold molar excess; 5 812, TFIID oligo
nucleotide at 350-fold molar excesa; 6 813, NFkB oligonucleotide at 
2000-fold molar exceaa; 7 814, NFkB oligonucleotide at 5000-fold 
molar exceaa.
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SK-N-SH SK-N -M C

Figure 7.5. Identification of nucleo-protain complexes formed between 
a radlolabelled probe, LTRF, «panning the HIV-1 LTR from poeition 
+77 to -158 and nuclear extract! from untreated and TNFa stimulated 
SK-N-SH and SK-N-MC neuroblastoma cells by competition with 
an oligonuleotlde to the NFkB elements located In LTRF. Arrows denote 
probe-specific protein-DNA complexes and free probe. Tracks: 1 -3 
and 7-8, unstimulated: 4-5 and 10-12, stimulated with 100 U/ml TNFa 
for 2 hrs. Tracks: 1, 4, 7 & 10 no competition: 2, 5, 8 & 11, NFkB oligo
nucleotide at 2000-fbld molar excess: 3,6,8 & 12, NFkB oligo
nucleotide at 5000-fold molar excess.
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122 . Interaction of nuclear factors with probe 194: competition with 

oligonucleotides to protein-binding motifs located in the HIV-1 LTR and the effects 

of cytokine

i). The effects o f cytokines on the interaction o f nuclear factors with probe 194

Specific complex formation with probe 194 and nuclear extracts from all 

cytokine-treated cells did not reveal any differences compared to those evident with 

extracts from unstimulated cells (Figure 7.6). Essentially the same number and 

pattern of protein-DNA complexes were formed in U373MG and SK-N-SH extracts 

as those seen in Figure 7.3, although in this assay close examination of the 

autoradiograph did not suggest an additional complex below CO formed between 

probe 194 and U373MG extracts. A much dearer result was obtained with 

SK-N-MC nuclear extracts and probe 194 in this experiment compared to Figure 13  

and in Figure 7.3 the formation of three nudeo-protein complexes akin to those 

seen with SK-N-SH extracts were observed and remained unchanged with extracts 

from cytokine-stimulated cells.

The relative abundance of the protein(s) constituting each complex also 

remained similar to that described for probe 194 and each source of nuclear extract 

in Section 7.13 . Complexes formed with probe 194 and U373MG extracts were 

more intense with extracts from IL-^stim ulated cells but this was not significantly 

so. And with nuclear extracts from unstimulated and TNFa-treated SK-N-SH cells 

complex C2 was only faintly visible on the autoradiograph and can just be seen on 

the photograph in Figure 7.7.

it). Oligonucleotide competition o f factors interacting with probe 194

The 3' region of the HIV-1 LTR has been reported to contain two elements 

designated Site A and Site B which were important in the interaction with cellular 

proteins present in lymphoblastoid cells (Orchard et al., 1990). Site A binds as yet 

unidentified host nuclear protein(s) and Site B consists of two distinct elements
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similar to a steroid/thyroid hormone-binding motif (Orchard et al., 1990; Cooney et 

al., 1991). These are located in the negative regulatory element of the HIV-1 LTR 

(see Chapter 1 Figure 1.2) and were present at the 5' end of probe 194. Matching ds 

oligonucleotides were synthesized corresponding to Site A and Site B and one, BM5, 

in which the 5' element of Site B had been removed by mutation. The sequence 

composition of these oligonucleotides is given in Chapter 2, Table 2.2 and were 

identical to those reported by Orchard et al. (1990).

Oligonucleotide competition experiments were carried out with nuclear 

extracts from unstimulated U373MG and SK-N-SH cells by incubation of aliquots of 

nuclear extracts with excess unlabelled oligonucleotide for 30 min before the 

addition of labelled probe 194. Similar to Section 7.2.1, oligonucleotides were used 

at lOpicomoles which represented an approximate molar excess of 2000-fold. In this 

assay (Figure 7.7), a pattern of complexes was formed with probe 194 and U373MG 

nuclear extracts similar to those described previously in Figure 7.3, although in this 

assay a complex just below CO, C l was just discernible in the photograph (see 

Track 3). This was slightly dearer on the original autoradiograph. Competition with 

excess oligonucleotide to Site A did little to effect the formation of complexes CO 

and C3 with probe 194, however C2 appeared to be competed away (Figure 7.7. 

Track 2). More striking was the competition with excess Site B oligonucleotide 

which almost completely removed complexes CO and C3 but left C2 and Cl 

unaltered (Figure 7.7. Track 3). An oligonucleotide containing a consensus 

protein-binding site for CTF/NF1 which is recognized by a number of cellular 

factors that bind the nucleotide sequence CCAAT (La Thangue and Rigby, 1988) 

was also used in competition for factors interacting with probe 194. This was 

because the Site A binding site located in the LTR of HIV-1 isolate HBX-2 contains 

a  similar CTAAT sequence on the non-coding strand (Orchard et al., 1990) but in 

the LTR of the LAI isolate of HIV-1 (Wain-Hobson et al., 1985) employed here, 

there is a point mutation converting this element to the CCAAT motif (La Thangue
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and Rigby, 1988). Hence to determine if CCAAT box-binding factors also 

recognized this sequence an oligonucleotide for the CTF/NF1 family of factors was 

tested. However, no discernible difference in complexes formed with probe 194 were 

noted when competition was performed with this oligonucleotide (Figure 7.7. 

Track 4). Finally, excess unlabelled BMS oligonucleotide which contained only the 3' 

half-site of Site B (Figure 7.7. Track 5) was able to reduce the relative intensities of 

complexes CO and C3 but left complex C2 unchanged.

A similar competition experiment with SK-N-SH nuclear extracts using the 

same oligonucleotides to sequences involved in complexes with probe 194 is also 

shown in Figure 7.7. In the absence of oligonucleotide competition three complexes 

Cl, C2 and C3 were resolved (Track 6) and were again similar to those reported in 

Figure 7.3. When excess Site A oligonucleotide was incubated with the extract 

before the addition of labelled probe 194, complexes Cl and C2 were not seen in the 

gel retardation assay (Figure 7.7. Track 7). Excess oligonucleotide to Site B was 

capable of removing almost all the binding activity which formed complex C3 

(Track 8) and the use of Site A and Site B oligonucleotides together, seen in track 9, 

prevented the formation of almost any protein-DNA complexes with probe 194. The 

BM5 oligonucleotide that contained a mutated Site B S' half-site also partly reduced 

the intensity of the complex C3 and did not effect the Site A-specific complexes Cl 

and C2.



Figure 7.6. Comparison of nucleo-protein complexes formed between 
a radiolabelled probe, 194, spanning the HIV-1 LTH from position 
-306 to -488 and nuclear extracts from untreated and IL-16 stimulated 
U373MQ astrocytoma cells, and SK-N-MC and SK-N-SH neuroblastoma 
cells, untreated and stimulated with TNFa. Arrows denote probe-specific 
protein-ONAcomplexes and free probe. Tracks: 1,3 4 s, unstimulated: 
2, U373MG stimulated with 250 U/ml IL-13 for 1 Vfc hre; 4 6 6 SK-N-MC 
and SK-N-SH atlmulated with TNFa for 2 hrs, respectively
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Figura 7.7. Identification of nucleo-proteln complexée formed between 
a radiolabelled probe, 194, (panning the HIV-1 LTR from poeltlon 
•306 to -488 and nuclear extract* from U373MG astrocytoma and 
SK-N-SH neuroblastoma cells by competition with oligonucleotides 
to certain sequence elements located in 194. Arrows denote probe- 
specific protaln-DNA complexes and free probe. Tracks: 1 6  6, no 
competition; 2 8  7, Site A oligonucleotide at 2000-fold molar excess;
3 8  8, Site B oligonucleotide at 2000-fold molar excess; 4, CTF/NF1 
oligonucleotide at 700-fold molar excess; 9, Site A and Site 8 oligo
nucleotide each at 2000-fold molar excess; 5 810, BM5 oligo
nucleotide at 2000-fold molar excess.

186



Chapter 7 187

7 J  J .  Interaction of nuclear factors with probe 159: competition with 

oligonucleotides to protein-binding motifs located in the HIV-1 LTR and the effects 

of cytokines

i) . The effects o f cytokines on the interaction of nuclear factors with probe 159

Nuclear factor binding to probe 159 in extracts from unstimulated and 

IL-l/3-treated U373MG astrocytoma cells and unstimulated and TNFa-treated 

neuroblastoma cells also revealed no change in the number or mobility of the 

protein-DNA complex formed when cells were exposed to a cytokine shown to 

augment LTR-driven gene expression. One major complex of the same relative 

mobility and intensity was apparent with probe 159 in all nuclear extracts 

(Figure 7.8). The minor complex C2 previously noted in Figure 7.2 formed with 

U373MG extracts was not seen in either source of U373MG nuclear extract in this 

assay.

ii) . Oligonucleotide competition o f factors interacting with probe 159

Further oligonucleotide competition experiments were performed with 

extracts from unstimulated U373MG and SK-N-MC cells in an attempt to identify 

the factor(s) that formed the specific complexes previously noted with probe 159 in 

Figures 7.2. From DNAse 1 footprinting studies, described in Chapter 8, a major 

protein-binding site occupied by proteins present in neural cell extracts was located 

in probe 159 (see Chapter 8, Section 8.1.2). The protected sequence of which also 

contained a  CCAAT motif, therefore the CTF/NF1 oligonucleotide was again 

tested in competition experiments along with the Site A oligonucleotide which 

possessed a somewhat similar (see Section 7.13) but unrelated nuclear 

protein-binding sequence. The experiments were undertaken in an identical fashion 

to those competition assays already mentioned, with unlabelled ds oligonucleotide 

used at 2000-fold molar excess (ie. lOpicomoles).
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In both U373MG and SK-N-MC extracts one major nudeo-protein complex 

was formed with probe 159, and neither Site A nor CTF/NF1 oligonucleotides could 

compete this complex away to any extent (Figure 7.9). The formation of the minor 

complex just below Cl, present with U373MG extracts but not SK-N-MC extracts, 

was similarly unaffected by competition with either oligonucleotides.



U373MQ  SK-N -M C  SK -N -SH
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Figure 7.8. Comparison of nucleo-protein complexe« formed between 
a radlolabelled probe, 158, (penning the HIV-1 LTH from poaltlon 
-158 to -305 and nuclear extract* from untreated and IL-13 stimulated 
U373MG astrocytoma cells, and SK-N-MC and SK-N-SH neuroblastoma 
cells, untreated and stimulated with TNFo. Arrows denote probe-apeclflc 
protelrvDNA complexes and free probe. Tracks: 1,385, unstimulated: 
2. U373MG stimulated with 250 U/ml IL-13 for 1 Vi hr«; 4 & 6 SK-N-MC 
and SK-N-SH stimulated with TNFo for 2 hrs, respectively.
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Figura 7.9. Competition o f nucleo-proteln complexes formed between 
a radiolabelled probe, 159, «panning the HIV-1 LTR from position 
-159 to -305 and nuclear extracts from U373MG astrocytoma and 
SK-N-MC neuroblastoma cells with oligonucleotides to other elements 
with a degree homology to the nucleotide sequence Involved in complex 
C1. Arrows denote probe specific protein-DNA complexes and free 
probe. 1 & 4, no competition; 2 & 5, Site A oligonucleotide at 2000-fold 
molar excess; 3 ft 6 CTF/NF1 oligonucleotide at 700-fold molar excess.
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Discussion

Experimental analysis o f DNA-bindingproteins

Gel retardation assays were undertaken using DNA fragments derived from 

the HIV-1 LTR primarily to provide preliminary information on the interaction of 

DNA-binding proteins with these sequences and define which probe fragments from 

the LTR were worthy of further investigation by the more complicated DNAse I 

footprinting technique. The formation of one or more nudeo-protein complexes 

with each of the LTR probes ensured that it would be worthwhile to footprint the 

entire long terminal repeat in order to locate the sequences involved.

These gel retardation experiments also served to confirm the ability of the 

DNA probes, end-labelled on one strand for DNAse I footprinting, to bind nuclear 

proteins. Care was taken during the preparation of the LTR probes to avoid 

conditions which may cause damage to the DNA and can impair or destroy their 

interactions with nuclear proteins or create artefactual results. Possible causes 

include exposure to organic solvents, in particular, the evaporation of ethanol from 

nucleic acid samples after precipitation (Svaren et at., 1987). Therefore during probe 

preparation (see Chapter 2, Section 2.12.2) the excess ethanol that remained 

adhered to the walls of the microcentrifuge tubes after precipitation was always 

removed by brief re-centrifugation and aspiration with a micropipette and samples 

resuspended directly in TE buffer without drying by evaporation. The gel 

purification of the LTR probes also facilitated the separation of denatured DNA 

from native double stranded probe which can produce aberrant results when used in 

DNA binding assays (Goodwin, 1990).

Likewise, the gel retardation experiments performed here also confirmed 

that the nuclear extracts contained functional DNA-binding proteins and that the 

protein preparations did not suffer proteolytic degradation to any noticeable extent. 

This was judged from the discrete nature of the majority of the nudeo-protein
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complexes visualized in the assays, complexes that smear down the gel often indicate 

degradation of the extracts. Conversely, the formation of complexes that have an 

ill-defined upper border suggest a degree of heterogeneity in the factors that 

recognize the binding site. The identification of a number of distinct DNA-binding 

activities in the nuclear extracts, by competition with oligonucleotides, compared to 

the results reported in other studies (Malim et al„ 1989; Orchard et al., 1990; Parrott 

etal., 1991), provided evidence that extraction of nuclear proteins with 0.4 M  NaCl 

performed here produced a nuclear extract that contained most, if not all of the 

relevant DNA-binding proteins. A slight variation in the recovery of certain 

DNA-binding activities between extracts from the same cell type was noted. These 

variations were such that small differences in the relative intensities of 

nudeo-protein complexes seen in gel retardation assays between extracts from 

cytokine-treated cells and unstimulated cells were judged not to be significant. Also, 

different preparations of nuclear extracts often contained variable amounts of 

non-specific DNA-binding activity so the amount of poly (dI:dC)-(dI:dC) required to 

absorb this activity had to be determined empirically for each preparation. 

Although, apart from after prolonged storage of SK-N-MC nuclear extracts (see 

later in Discussion), the amounts of competitor required remained the same for all 

preparations.

Nuclear factor binding to the HIV-1 LTR

The HIV-1 LTR was able to form up to eight or nine specific complexes with 

proteins present in nuclear extracts from astrocytoma and neuroblastoma cell lines. 

Up to 4 of these complexes were found with probe LTRF which spanned the 3' 

region of the LTR, one complex with the central domain in probe 139 and three or 

four with the 3' region present in probe 194. This, in part, reflects the large number 

of recognition sites for transcription factors that have been reported to be located 

within the HIV-1 LTR (Greene, 1990) and also confirms that neural cells contain a
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significant number of DNA-binding activities that recognize the HIV-1 LTR. The 

presence of multiple protein-binding sites within each probe fragment may permit 

the formation of protein-DNA complexes that contain different sequence-specific 

binding activities and possibly allow cooperation between factors in DNA-binding, 

such that many different complexes may be resolved in gel retardation assays 

produced by a lesser number of protein-binding sites. The presence of three binding 

sites for the transcription factor Spl of differing affinities in the HIV-1 LTR 

(Harrich et al„ 1989) could permit the formation of up to three discrete 

protein-DNA complexes depending upon the concentration of only one transcription 

factor in the extracts. The situation can be further complicated if any of the nuclear 

proteins undergo oligomerization on binding their recognition sites. Therefore, some 

of the individual complexes noted were quite likely due to one or more factors 

interacting with the LTR at the same recognition sites or a single factor interacting 

at multiple recognition sites.

Sequence-specific DNA-binding activities

In the light of the oligonucleotide competition experiments carried out, some 

DNA-binding activities could be assigned as components of one or more of the 

nucleo-protein complexes seen. In U373MG nuclear extracts two complexes formed 

with probe 194 could be effectively competed out with excess oligonucleotide 

specific for Site B. This not only indicated the importance of this region of the LTR 

in mediating interactions with certain nuclear factor(s) but also that one sequence 

element formed two distinct complexes. The Site B recognition sequence, as 

mentioned earlier, was reported to consist of two important regions, closely spaced, 

which are characteristic of a nuclear site for members of the thyroid/steroid 

hormone receptor family (Orchard etal., 1990; Cooney etal., 1991). Generally, this 

class of ligand-bound receptors bind to both half-sites as homodimers and both sites 

are required for a transcriptional effect to be exerted (NJUlr et al., 1991). Competition
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with excess BMS oligonucleotide argued against the notion that one complex was 

specific to each part of Site B as the formation of both complexes was similarly 

reduced yet neither was removed. The fact that excess BM5 did not abolish binding 

altogether suggests also that the affinity of factor(s) for this mutant oligonucleotide 

was reduced compared to the wild type sequence and implies the importance for 

both half-sites in the interaction. Furthermore the finding of two retarded complexes 

specific for Site B correlates with the data of Cooney et al. (1991) who reported two 

molecular weight forms of a protein, COUP-TF, that interacts with Site B.

With SK-N-SH nuclear extracts, competition with oligonucleotide to Site B 

was also able to considerably reduce factor binding to one equivalent complex 

formed with probe 194. The presence of only one complex specific to Site B in these 

cells demonstrated a difference between neuroblastoma and astrocytoma cell lines. 

Whilst C3 appeared to be of equivalent mobility in all cell types, the presence of the 

higher molecular weight complex CO suggested that there were either multiple 

activities in astrocytoma cells that recognized this sequence, in agreement with 

Cooney etai. (1991), or some higher structure of Site B-binding protein(s), perhaps 

due to the observed increased abundance of this DNA-binding activity in 

astrocytoma extracts. Interestingly, Orchard etal. (1990) noted that Site B-binding 

activity surprisingly decreased in mobility in gel retardation assays after treatment of 

T  cell nuclear extracts with the mild detergents deoxycholate and Brij, indicating 

that the protein underwent a conformational change or complex formation. 

However, no detergents were present in the buffers employed in the protein-binding 

reactions of the gel retardation assays performed here so there were no such factors 

to promote any similar conformational change or complex formation.

Competition with excess oligonucleotide to the Site A region described by 

Orchard etal. (1990) was also able to prevent formation of complexes with 

probe 194. In extracts from SK-N-SH neuroblastoma cells both complexes Cl and 

C2 were competed away, as was complex C2 formed with U373MG nuclear extracts.
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Whether excess Site A oligonucleotide also resulted in the loss of C l in U373MG 

extracts could not be determined from the assay. This demonstrated again that one 

region of the LTR was responsible for the formation of up to two distinct 

protein-DNA complexes in gel retardation assays and that perhaps two (or more) 

proteins of different sizes recognized the sequence contained within the Site A 

oligonucleotide. Furthermore, despite the presence of a CCAAT motif in the Site A 

sequence of HIV LAI, the sequence was recognized by one or more factors that 

were distinct from the CTF/NF1 family of transcription factors. Another class of 

DNA-binding proteins that recognize protein-binding sites similar to Site A are the 

octamer factors (La Thangue and Rigby, 1988). Whilst not examined here, Orchard 

etal. (1990) report that an oligonucleotide containing an octamer consensus 

sequence did not compete for Site A-binding either.

The protein factor(s) that formed the one major nucleo-protein complex with 

probe 159 were found to be distinct from those that interact with Site A and the 

CCAAT box-binding factors CTF/NF1 as neither oligonucleotide was able to 

compete away the complex. The nature of this protein-DNA interaction is discussed 

further in Chapter 8 as little information was provided by experiments reported in 

this chapter; apart from the finding that the nuclear factor or factor(s) involved were 

relatively abundant in astrocytoma and neuroblastoma cells.

The comparison of complex formation to probes 194 and 159 after cells had 

been exposed to a  cytokine known to augment HIV-1 LTR-driven gene expression 

did not demonstrate any differences at the level of DNA-binding proteins 

recognizing either LTR region, and this indicated that these regions were not 

important in mediating the effects of the cytokines IL-lfi and TNFa. However, 

extracts were prepared from cells stimulated with cytokines for up to two hours only 

which would have precluded the discovery of alterations in DNA-binding proteins 

that occurred after that time. Furthermore, a  gel retardation assay can not



distinguish between different protein factors that migrated with the same mobility 

and interacted with the same regulatory element under different conditions.

Induction o f NFkB-like DNA-binding activity

The interaction of nuclear proteins with sequences located in probe LTRF 

provided the first indication that elements in the HIV-1 LTR responded to changes 

in nuclear factors that occurred in cells after exposure to the cytokines IL-10 or 

TNFa. The gel retardation assays identified a major nudeo-protein complex, in all 

cells, and a minor complex, in U373MG and SK-N-SH, (C2 and C3, respectively. 

Figure 7.4) that were formed strongly with LTRF only in cells exposed to the 

cytokines and were competed away by excess oligonucleotide containing NFkB 

binding sites. Competition with the NFkB oligonucleotide did not alter the 

formation of specific complexes between LTRF and extracts from unstimulated cells 

which indicated that this DNA-binding activity was only present in cytokine-treated 

cells and that the less intense C2 complex noted with unstimulated cell extracts was 

not due to the same DNA-binding activity. Therefore, the induction of an NFuB-like 

binding activity to the enhancer of HIV-1 by the cytokines TNFa and IL-10 was 

evident in neural cells and this is a cellular mechanism that can lead to enhanced 

gene expression from the LTR (Kawakami et al., 1988; Israël et a!., 1989; Osbom et 

a/., 1989). This result was clear with extracts from U373MG astrocytoma cells 

stimulated with IL-10 and SK-N-SH neuroblastoma cell extracts after TNFa 

treatment but was not as definitive in SK-N-MC cells due to a poor experiment. 

Unfortunately, repeating this for SK-N-MC cells was also unsuccessful due to 

insufficient competitor nucleic acid in the binding reactions, despite using more than 

in previous experiments. It was noted that nuclear extracts from SK-N-MC 

neuroblastoma cells developed increased non-specific DNA-binding activity over the 

length of time that they were stored, even though this was at -70°C and aliquots
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were never re-frozen and used again. This feature was unique to SK-N-MC cells and 

increased to such an extent that after around two months of storage these extracts 

could no longer be used.

Competition with an oligonucleotide containing a copy of a high affinity Spl 

binding site was also able to prevent the formation of one complex in gel retardation 

assays with probe LTRF performed with U373MG nuclear extracts. The 

corresponding complex was also noted in SK-N-SH extracts but competition with the 

Spl oligonucleotide was not carried out. This also provided evidence for the 

involvement of the Spl transcription factor in HIV-1 gene expression in neural cells 

which was not unexpected given that Spl has been reported to interact with the LTR 

in a variety of cell types (Harrich et al„ 1989; Parrot et al., 1991). The complex was 

present at approximately equal proportions in extracts from both cytokine-treated 

and untreated cells and also as expected, Spl DNA-binding activity did not appear 

to be induced by cytokine treatment of U373MG or SK-N-SH cells.

Surprisingly, the oligonucleotide containing the TATA box sequence that 

interacts with the general transcription factor TFIID did not alter the pattern or 

intensity of binding to probe LTRF even though the corresponding sequence was 

present in this part of the HIV-1 LTR. Although a smaller amount of the 

oligonucleotide was employed in the experiment than the other oligonucleotides, a 

350-fold molar excess is still quite considerable. However, the manufacturers 

(Promega) do report that the oligonucleotide does not perform well when used as a 

probe for TFIID binding activity with HeLa cell extract in gel retardation assays. 

Therefore, perhaps insufficient was employed in the competition experiment due to 

an interaction of lower affinity when TFIID binds its cognate sequence present in an 

oligonucleotide. A similar phenomenon was noted with Site A and Site B sequences 

when gel retardation assays were performed using radiolabelled oligonucleotides as 

probes (see Chapter 9). Binding of these factors was much more easily detected with
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less nuclear extract when probe 194 was used rather than the corresponding 

oligonucleotide. This is discussed further in Chapter 9 but does imply that short 

stretches of DNA do not bind nuclear factors as efficiently and perhaps flanking 

DNA sequences are important.





Chapter 8: Localization of nuclaar protein-binding altaa In tha 

HIV-1 LTR

Introduction

Experimental technique

DNAse I footprinting was employed to identify sequences within the HIV-1 

LTR which interact with the DNA-binding proteins present in nuclear extracts from 

the neural cell lines under study. The region of DNA involved in the direct binding 

of protein to fragments from the LTR was determined by the protection from 

cleavage afforded to the DNA by the specifically and tightly bound protein in the 

presence of DNAse I. Comparison of the cleavage patterns produced by the limited 

digestion of protein-bound DNA and protein-free DNA on linear sequencing gels 

allows the identification of gaps within the ladder of bands which correspond to the 

'footprint' from sequence-specific DNA-binding protein. Footprints are often 

identified by the presence of additional bands, termed DNAse stops, caused by an 

increase in the frequency of enzymatic cleavage of the probe DNA at a particular 

site due to the influence of bound protein. The identification of protein-induced 

changes in the pattern of DNAse cleavage products can be made more apparent by 

assaying at least two different concentrations of protein extract so that the effect of 

increasing protein can be observed. The further inclusion of chemical sequencing 

reactions of the LTR probe in parallel to the footprinting samples provides the 

necessary information to read the nucleotide sequence that constitutes the footprint. 

When conducting this type of experiment the DNA fragments under investigation 

must be specifically labelled only at one termini, on one strand, so that the region of 

protection can be orientated with respect to the position of the labelled 

nucleotide(s) and complete analysis of a given DNA sequence will require the 

separate examination of both coding and non-coding strands. Additionally,
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DNA-binding proteins may protect either the coding or non-coding strand to the 

same or different extents or produce a footprint that is more defined on one strand 

than the other.

DNA probes and nuclear extracts.

The use of high specific-activity radiolabelled probes containing one or more 

labelled nucleotides allows the detection of extremely small amounts of 

DNA-binding protein, however, the lack of separation of protein-bound and free 

DNA molecules in a binding reaction limits the sensitivity of the technique, such 

that the quality of the footprint depends upon the extent of occupancy of the protein 

binding site. Thus efficient labelling protocols for the production of high 

specific-activity probes are required to limit the amount of input DNA and therefore 

the number of binding sites available for protein-DNA interactions. In order to 

increase the occupancy of binding sites nuclear protein is included at a large excess 

to maximize complex formation.

When the DNA sequence under examination contains many potential protein 

binding sites, as is true for the HIV-1 LTR, the relative abundance of each 

DNA-binding activity in the nuclear extract will influence which protein-binding 

sites produce a footprint. The degree of occupancy of any one binding site will be 

dependent on the concentration of the factors that interact with it and the affinity 

with which this occurs, such that high concentrations of protein extract will be 

required if a given activity is scarce or it has low affinity for DNA. The binding 

constants of sequence-specific DNA-binding proteins vary over a wide range 

between 109 and 101* M"1 (Rhodes, 1989) but competitor poly (dI:dC)-(dI:dC) is 

required to absorb non-specific DNA-binding activity. The use of more than around 

150-200 pg  of protein (the exact amount depends on the quality of the extract 

preparation), which may be required to detect rare factors, often introduces 

substantial non-specific binding activity, inhibiting digestion of the DNA and leading
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to the appearance of artefactual protection. Unfortunately, the inclusion of larger 

amounts of competitor to counter this effect may also compete out the DNA-binding 

factors of lower affinity. Consideration of the technique to maximize the extent of 

occupancy of a protein binding site on the target DNA serves to illustrate that 

footprinting techniques offer only qualitative and not quantitative data on the 

protein-DNA interactions once a given binding site is fully occupied. Therefore, for 

this reason and others given above, experiments with both footprinting and gel 

retardation techniques are usually necessary for a complete analysis of protein-DNA 

interactions.

Preliminary experiments

Due to the more complex nature of the footprinting procedure the major 

variables must be established empirically before the assay will produce data from 

which meaningful results can be drawn. Preliminary experiments were therefore 

conducted to determine firstly, the time of DNAse I digestion of the labelled probe 

that will produce around the optimum of, on average, one cut per DNA strand, 

secondly, the concentration of competitor poly (dI:dC)-(dI:dC) required to compete 

away the non-specific DNA-binding activity and thirdly, the amount of nuclear 

extract necessary to give protection over the binding sites of interest. Points two and 

three will be dependent upon the quality of the nuclear extract preparation (see 

Chapter 7).

Once established, DNAse I footprinting was employed to identify regions of 

the LTR that bound nuclear factors in extracts from unstimulated neural cells and 

cells stimulated with a cytokine previously shown to augment HIV-1 LTR-driven 

gene expression. These were U373MG astrocytoma cells stimulated with IL-l/J and 

SK-N-MC and SK-N-SH neuroblastoma cells stimulated with TNFa. Some 

experiments were performed with nuclear extracts from unstimulated 026-24 

oligodendroglioma cells.
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8.1. Identification of soquoncos within tha HIV-1 LTR which bind

nuctear proteins

8.1.1. DNAse I rootprinting of probe LTRF

i). Coding strand

Figure 8.1 illustrates sequences on the coding strand of the HIV-1 LTR (-158 

to + 78) protected from DNAse I digestion by nuclear extracts from unstimulated 

and cytokine-treated U373MG, SK-N-SH and SK-N-MC cells. Comparison of the 

pattern of bands produced by DNAse I cleavage of the probe in the presence of 

nuclear protein to that in the absence of nuclear protein (Tracks 1, 6, 11, and 16) 

demonstrated regions of protection. These were stronger when 150 ng rather than 

75 ng of extract protein was used. The position of protected sequences was 

determined from Maxam and Gilbert chemical sequencing reactions (not shown in 

the figure) and given as the position relative to the start of transcription at +1.

With extracts from U373MG astrocytoma and SK-N-SH neuroblastoma cells 

there were similar regions of the LTR that exhibited reduced cleavage by DNAse I 

with nuclear extracts from unstimulated (Track 3, U373MG and 8, SK-N-SH) and 

ILrlfi- or TNFa-treated cells (Track 4, U373MG and 10, SK-N-SH). However, 

although this appeared to give the LTR partial protection over sequences from 

position -107 to -80, which correspond to the enhancer of tandem NFxB sites (Nabel 

and Baltimore, 1987), it was due to excessive non-specific DNA-binding activity in 

the extract preparations as no alteration in the DNAse I cleavage pattern was 

observed and neither were any bands in this part of the gel completely absent (see 

discussion).

The protection seen over two Spl sites [designated III and II] (Jones eta l., 

1986), from -79 to -56, with U373MG and SK-N-SH extracts (Figure 8.1. Tracks 3 

and 5, and, 8 and 10, respectively) did partly fulfil the criteria for the interpretation 

of a genuine region of protection as bands were almost absent from that region.
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However, no protein-induced DNAse stops were noted in the pattern of DNAse 

cleavage products. This and the partial protection seen over the last Spl site (I), 

which continued to position -36 may also be a consequence of non-specific 

protein-DNA interactions with U373MG extracts as again no bands were completely 

absent. Close examination of the autoradiograph over tracks 8 and 10 (150/ig of 

extract from SK-N-SH cells) revealed protein-induced DNAse stops in the same -55 

to -36 region and indicated sequence-specific binding of an Spl-like factor in 

SK-N-SH cells. The treatment of U373MG cells with IL-10 did not increase the 

artificial protection obtained over the Spl sites and the enhancer and therefore the 

presence of any Spl-like or inducible enhancer-binding factors could not be 

determined (Tracks 4 and 5). For similar reasons any TNFa-induced 

enhancer-binding protein could not be detected in SK-N-SH cells. The degree of 

protection of the Spl sites also did not change when extracts from 

cytokine-stimulated SK-N-SH cells were used.

The regions of protection seen over sequences in LTRF by extracts from 

SK-N-MC neuroblastoma cells did, however, completely satisfy the requirements for 

sequence-specific protein-induced protection (see introduction). With 75 fig of 

nuclear extract from unstimulated SK-N-MC neuroblastoma cells there was 

occupation of Spl site III, position -79 to -62, defined by the absence of a strong 

DNAse I hypersensitive site and the presence protein-induced bands at either side 

of the region that were absent from the no protein control (Figure 8.1. Track 12). 

Furthermore, what represented partial occupancy of Spl site I, position -56 to -36 

was also evident and was defined by the greatly reduced intensity of a site of DNAse 

cleavage and the presence of a protein-induced band at the -56 border. With 150 fig 

of extract there was complete protection of all three Spl sites, from position -79 to 

-36, (Track 13). At either concentration of extract from unstimulated cells the 

enhancer was not protected but there was an altered DNAse I cleavage pattern 

slightly dissimilar to the no protein controls at the -80 border due to the presence of
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specifically bound Spl-like proteins. When 75 ng of extract from TNFa-treated 

SK-N-MC cells was used there was a similar degree of protection over the Spl sites 

and additional partial protection over the enhancer region which probably 

represented the weak binding of factors to the proximal NFkB motif (Track 14). 

With 150 n% of nuclear extract from TNFa-treated cells full protection was similarly 

observed over all three Spl sites and protein factor(s) also fully protected the 

enhancer from position -107 to -80. This demonstrated the presence of 

TNFa-inducible proteins in SK-N-MC cells which recognize the NFkB sites of the 

HIV-1 enhancer.

ii). Non-coding strand

The binding of nuclear proteins to the non-coding strand of probe LTRF was 

also examined by DNAse I footprinting and is shown in Figure 8.2. This probe was 

radiolabelled at the same 3' end on the non-coding strand (designated NC) to allow 

the resolution of a similar region of LTR.

In Figure 8.2 the DNAse I cleavage pattern of probe LTRF NC in the 

absence of nuclear protein is present in tracks 1,6, 11 and 14. There was some 

fading of the autoradiograph across the samples such that the clearest footprints 

were obtained in the left hand portion of the gel and with 100 ng rather than 50 n% 

of nuclear extract.

Comparing extracts from IJ373MG cells unstimulated or treated with IL-1/9 

(Figure 8.2. Tracks 3, and 5, respectively) there were no discernible differences in 

the regions of the LTR protected from DNAse I cleavage by bound nuclear proteins. 

When 100 ng  of extract was used protein-induced protection was judged to be 

present over sequences from position -86 to -63, corresponding to Spl site III, by the 

complete absence of a strong DNAse I cleavage point seen with no protein and the 

increase in intensity of the band at the -63 border. Partial protection also appeared 

to be evident over the region from -62 to -56 (Spl site II) due to the absence of a
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weaker DNAse I hypersensitive site in the presence of nuclear extract, and 

protection from -55 to -37 over (Spl site I) by similar criteria. Further towards the 3' 

end of the LTR, sequences from -33 to -21 overlying the TATA box may also be 

weakly protected, although this could only be determined by the loss of two fainter 

bands and a  reduction in intensity of another within the region. Similarly it was 

difficult to determine if sequences from -4 to +4 containing the start of transcription 

and a binding site for the cellular protein LBP-1 (Jones etal., 1988) were also 

partially protected, a previous assay had shown this to be so (see below and 

Figure 8.3), but in this example it could not definitely be established. Below this 

region of the LTR the intensity of the bands on the autoradiograph faded such that 

no further footprints could be determined.

The footprints obtained with probe LTRF NC and extracts from SK-N-SH 

and SK-N-MC neuroblastoma cells treated with and without TNFa were regrettably 

much less clear than those achieved in Figure 8.2 with U373MG extracts, but were 

also unchanged when extracts from cytokine-treated cells were compared with 

extracts from unstimulated cells (Figure 8.2). In tracks 8 and 10 the region of the 

LTR from -86 to -63, overlying Spl site III was protected from DNAse I digestion 

and -55 to -37, corresponding to Spl site I was partially protected with SK-N-SH 

nuclear extracts. With SK-N-MC extracts (Tracks 12 and 13) the protected region 

appeared to cover all three Spl sites from -86 to -37 but this was a consequence of 

fainter exposure as direct examination of the autoradiograph showed a pattern of 

bands identical to SK-N-SH and indicated protection of Spl site III and partial 

protection of Spl site I. Weak protection of sequences surrounding the TATA box 

(-35 to -21) could not be established with SK-N-SH extracts or SK-N-MC extracts 

and no further protein-binding sequences of the LTR were determined from this 

experiment.

In another experiment with nuclear extracts from G26-24 oligodendroglioma 

cells and U373MG cells (with and without IL-l/J treatment), illustrated in Figure 8.3,
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there was extremely good protection from -86 to -37, over all three Spl sites, weak 

protection from -35 to -21 over the TATA region, and also a reasonable degree of 

protection from -4 to +4 over the cap site and LBP-1 (designated site number I). 

Note that even when obvious protection of this probe by sequence-specific proteins 

was evident there were no protein-induced DNAse I stops, these, I would suggest, 

are also influenced by the nucleotide sequences either side of the binding site but 

nevertheless are often a good marker for genuine protection. There was also 

reasonable protection over a second LBP-1 site (II) from +6 to +12 and perhaps 

weak protection of sequences over a third LBP-1 site (III) at +16 to +22.



U373MG SK-N-SH SK-N-MC

Figure 8.1. DNAm  I footprint analyaia of the HIV-1 LTR (-158/+78, 
probe LTRF) labelled on the coding «trend with nuclear extract« from 
unetlmulated or cytokine-treated U373MQ aetrocytoma and, SK-N-SH 
and SK-N-MC neuroblaatoma celle. Track«: 1, 6,11 8  18; no protein. 2 
& 3: U373MQ; 75 8  180pg. 4 8 5: U373MQ + IL-1B; 75 5  150pg. 7 8  8: 
SK-N-SH: 75 5  150 pg. 9 5  10: SK-N-SH +TNFo; 75 8  150pg. 12 8  13: 
SK-N-MC: 75 8  150 pg. 14 8  15: SK-N-MC +TNFo; 75 8  150pg. 
Marked aequencee Indicate the reglone of protection.
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U373MG SK-N-SH SK-N-MC

Figura 8.2. DNAae I footprlnt analyala of thè HIV-1 LTR (-158/+78, 
proba LTHF) labaHad on tha non-codlng «trand, wlth nuclear extracta 
from unatlmulated or cytoklne-treated U373MG aatrocytoma, and 
SK-N-SH and SK-N-MC nauroblaatoma calla. G, G+A: Chemical 
aequencing raacbona. Tracka: 1, 8,11 8  14; no protaln. 2 8  3: U373MG; 
50 8  100 pg. 4 8  5: U373MG +IL-1I3; 50 8 100pg. 7 8  8: SK-N-SH; 50 8 
100 pg. » 8  10; SK-N-8H +TNFo; 50 8  100pg. 12: SK-N-MC: 100pg.
13: SK-N-MC +TNFo; 100pg. Markad aequencea denota ragiona of 
protactlon. * Indlcataa ragion of partlal protaction.
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G26-24 U373M G

Figure 8.3. DNAse I footprint 
analysis of the HIV-1 LTR 
(-158/+78, probe LTRF) 
labelled on the non-coding 
strand with nuclear extracts 
from unstimulated G26-24 
oligodendroglioma and 
U373MQ astrocytoma cella, 
and IL-13-treated U373MQ 
cells. Q. G+A, T+C, C: 
chemical sequencing reactions. 
Tracks: 1 8  4; no protein. 2 &
3: 026-24:100 8 200 pg 5 &
6 ; U373MG 100 8 200 pg. 7: 
U373MG +IL-18; 200 pg. 
Marked sequences indicate 
the regions of protection.
* indicates region of weak 
protection.
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8.1.2. DNAse 1 footprinting of probe 159

i). Coding strand

Probe 159 (-305 to -159) was labelled on the coding strand (159C) and used 

initially to examine the DNA-binding activities present in nuclear extracts from 

unstimulated G26-24 oligodendroglioma, SK-N-MC and SK-N-SH neuroblastoma, 

and U373MG astrocytoma cells (Figure 8.4).

Examination of the autoradiograph in Figure 8.4 revealed a region of the 

LTR between positions -285 and -266 relative to the start of transcription that was 

protected to differing extents by similar amounts of protein extract from all cells. 

The presence of specific protection was indicated by the reduced intensity or 

absence of two DNAse cleavage points in the centre of the region and the presence 

of a protein-induced DNAse stop at the -285 border, the intensity of which 

correlated with degree of protection. The definition of the -266 boundary is less well 

defined due to a region of adenosine-rich sequence that is a poor substrate for 

DNAse I and therefore the exact position of this border may be at some point 

between -270 and -266. There is also some fading of the DNAse I cleavage ladder 

above the DNAse stop at -285, but there is no further evidence to define whether 

this is a consequence of protein binding to the region below, or genuine protection. 

A region of weak protection was noted by Shaw et al. (1988) over a similar part of 

the HIV-1 LTR (from -303 to -288) in extracts from activated and resting 

lymphoblastoma cells. The protected region contains an 8 bp element, AGGCCAAT 

located at -279 to -272, that differs by only one nucleotide from the consensus 

octamer-binding motif, ATGCCAAT, first noted in the human histone gene 

promoters (LaThangue and Rigby, 1988). Figure 8.4 indicates that the factor(s) 

recognizing the -285 to -266 sequence were much less abundant in the extract from 

SK-N-MC neuroblastoma cells as the region was extremely weakly protected in this 

assay, however, the formation of a nudeo-protein complex of similar mobility to the 

one seen between probe 159 and extracts from U373MG and SK-N-SH cells in gel
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retardation assays (Chapter 7, Section 7.2.2), and later footprinting assays supports 

the evidence for the presence of a factor in these cells capable of recognizing this 

region.

Comparative analysis of nuclear factor binding to probe 159C between 

extracts from cytokine-treated and untreated cells is illustrated in Figure 8.5. The 

footprint over the -285/-266 region of the LTR did not alter when the cells were 

stimulated with a cytokine known to augment LTR-driven gene expression in either 

U373MG, SK-N-SH or SK-N-MC cells. The fainter region of the DNAse cleavage 

ladder above -285 was noted and in this assay appeared to be a result of reduced 

probe digestion in the presence of protein. In agreement with Figure 8.4 no other 

sequences in probe 159C were observed to be protected by extracts from 

unstimulated cells, and neither were any additional regions found to be protected 

with extracts from cytokine-stimulated cells (Figure 8.5).

it). Non-coding strand

The interaction of nuclear proteins with the LTR was similarly examined on 

the non-coding strand of probe 159, initially with extracts from unstimulated G26-24, 

SK-N-MC, U373MG and SK-N-MC cells. Figure 8.6 indicated that a complementary 

region of the LTR on the non-coding strand of probe 159, from position -285 to -268, 

also interacted with nuclear factors present in similar amounts of nuclear extract, 

again from all cells. However, the degree of protection was weaker on the 

non-coding strand. The protected region was defined by the greatly reduced intensity 

of several DNAse I hypersensitive points with equally strong DNAse cleavage of the 

probe at the 5' and 3' borders. The exact border at the 3' edge was also not well 

defined due to the sequence composition of the probe and may lie between -271 and 

-268. Protein(s) protected a region of similar size and the degree to which this 

occurred was less variable than noted in Figure 8.4, particularly as extract from 

SK-N-MC cells covered the region more efficiently. Although the gel was over
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exposed to bring up the tracks in the right-hand side which made the footprint over 

the -28S/-268 region in tracks 2, 3 (G26-24) and 4 (SK-N-MC) less clear, this did 

allow better visualization of 3' sequences and the detection of a smaller region in 

probe 159NC that was occupied by nuclear protein(s) in extracts from G26-24 and 

SK-N-MC cells. The region protected by extracts from SK-N-MC from position -249 

to -243, was firmly indicated by the absence of several DNAse I cleavage points in 

the probe, and with G26-24 extracts there was a slightly smaller region from -249 to 

-244 that was similarly defined but also showed a protein-induced DNAse stop at the 

3' or -244 border. The nucleotide sequences were 'ATGTGGG' and 'ATGTGG' (3* 

to 5') for SK-N-MC and G26-24, respectively. This sequence of the HIV-1 LTR has 

not been previously reported to constitute a distinct nuclear protein binding site but 

the sequence does closely match a region of the SV40 promoter known as the GTI 

motif. The sequence protected here is smaller than in SV40 where 'GGTGTGGG' 

(3' to S') was defined as the minimal recognition sequence which is known to interact 

with several ubiquitous cellular proteins (La Thangue and Rigby, 1988). Sequences 

on the non-coding strand above the -285 border of the octamer-like protected 

sequence were not observed to interact with nuclear protein.

The equivalent -249 to -243 region of 159NC was not protected by SK-N-SH 

(Figure 8.6. Tracks 6 and 7) or U373MG extracts (Tracks 8 and 9) but from close 

examination of the autoradiograph other regions of the LTR, from -242 to -222, did 

display a  weaker pattern of DNAse digestion. This was also indicated in Figure 8.6 

for G26-24 and SK-N-MC extracts and may be evidence of protein-DNA 

interactions.

Another region of probe 159NC for which there was some evidence of weak 

protection by extracts from G26-24 and SK-N-MC cells (Figure 8.6) was located at - 

212 to -207 and contained the sequence 'CTCTCT (3' to S'). The interpretation of 

protection at this site was difficult as no alteration in the pattern of DNAse I 

digestion was seen at the immediate borders of the site and the region was only
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marked by the reduced intensity of a number of bands. Several novel bands were 

present a little past the S' end of this region, at position -217/-218, which could 

indicate that the limited protection seen represented partial protection of a larger 

site. On the coding strand this region is part of a purine-rich motif from -224 to -198 

that is homologous to sequences located -291 to -277 in the IL-2 gene enhancer 

which bind the inducible factor NFAT-1 (Randak etai., 1990). These LTR 

sequences are also reported to bind a related constitutive factor, ILF (Li etai., 

1991), and by homology of binding sites, other cellular factors may also interact 

(Klemsz et ai., 1990). Further examination with partially-purified nuclear extracts or 

by gel retardation assay would be required to confirm this region and those from 

-242 to -222 as a site of nuclear protein interaction.

When footprinting analysis was performed on probe 159NC with nuclear 

extracts from cytokine-stimulated cells, the results, shown in Figure 8.7, further 

indicated that the octamer-like motif (-28S/-268) was occupied by proteins present 

in extracts from both unstimulated and IL-l/Mreated U373MG astrocytoma cells. 

Unfortunately, this latter experiment did not produce such a dear picture due to the 

probe suffering a certain amount of radiochemical decay, and the data for SK-N-SH 

and SK-N-MC is poor as sequences around and further downstream of -268/-28S 

site were not well resolved. But after examination of the autoradiograph no major 

differences were noted in the sequences of probe 139 between extracts from 

cytokine-treated and unstimulated neuroblastoma and astrocytoma cells. This can 

also be said for the putative region from -242 to -222, defined in Figure 8.6, with 

extracts from unstimulated and IL-l/Mreated U373MG.
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Figure S.4. DNAm  I footprint analyais of the HIV-1 LTR (-30S/-159, 
probe 159C) labelled on the coding «trend, with nuclear extract« from 
unatimulated G26-24 oligodendroglioma, U373MG astrocytoma and, 
8 K-N-8H and 8K-N-MC neuroblastoma cell«. G. G+A, T+C, C: chemical 
aequencing reaction«. Tracka: 1,6,8 & 14; no protein. 2 4  4: G26-24; 
60pg . 3 6  5: 026-24; 120 pg. 7 6  6: SK-N-MC; 50 6  100 pg. 10 6  11: 
U373MG; 76 6  160 pg. 12 6  13: SK-N-SH; 76 6  150 pg. Sequence« 
marked denote the region of protection.

215



Figure 8.5. DNAie I footprint ana hymn of the HIV-1 LTR (-305/-159, 
probe 159C) labelled on the coding «trend, with nuclear extracts from 
unstimulated and cytokine-treated U373MG astrocytoma, and 
SK-N-SH and 8K-N-MC neuroblastoma cells. Q-i-A: chemical 
sequencing reactions. Tracks: 1,4, 7 & 8: no protein. 2: U373MG;
75 pg. 3: U373MG +IL-10; 75 pg. 5: 8K-N-8H; 75 pg. 8: 8K-N-8H 
+TNFo; 75 pg. 9: 8K-N-MC; 75 pg. 10: SK-N-MC +TNFcr; 75 pg.
* Sequences marked denote similar region of protection.

218



Figure 6.6. DNAaa I footprint analyela of tha HIV-1 LTR (-305/-159, 
probe 159NC) labelled on tha non-coding «trend, with nuclear extract* 
from unatlmulatad 026-24 oligodendroglioma, U373MQ aetrocytoma, 
and SK-N-SH and 8K-N-MC neuroblaatoma cell* O, G+A, T+C, C: 
chemical aequenclng reaction*. Tracka: 1,5, 4 10; no protein. 2 4  3: 
026-24; 60 4  120pg. 4: SK-N-MC; 100 pg. 6 4  7: U373MQ; 76 4  150 pg. 
Sequencee marked with a aoKd line Indicate region* of protection.
* denotea putative region of protection, aaa text.
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Figura 8.7. DNAae I footprlnt analyaii of »ha HIV-1 LTR (-305/-150, 
proba 159NC) labaNad on thè norvcodlng «trend, wlth nuclear axtracta 
from unatlmulated and cytoklna-traatad U373MQ aatrocytoma, and 
SK-N-SH and SK-N-MC neurobiaatoma calla. Q, Q+A: Chemical 
«aquanclng reactione. Tracka: 1 8  4; no protain. 2: U373MQ;
75 pg. 3: U373MQ +IL-1U; 75 pg. 5: SK-N-SH; 75pg. 5: SK-N-SH 
■ fTNFo; 75 pg. 7: SK-N-MC; 75pg. 8: SK-N-MC +TNFo; 75 pg. 
Markad aequencee Indicata tha ragion of protaction.
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8.1.3. DNAse 1 footprinting of probe 194

ii). Coding strand

Probe 194 spans the farthest S' sequences of the HIV-1 L.TR from position 

-306 to -488 and was labelled at the S' end for the analysis of sequence-specific 

DNA-binding activities present in nuclear extracts from unstimulated and 

cytoidne-treated U373MG astrocytoma and, SK-N-SH and SK-N-MC 

neuroblastoma cells. Figure 8.8 illustrates the sequences on the coding strand of 

probe 194C protected from digestion by DNAse I. Comparison with the pattern of 

bands produced in the absence of protein (Figure 8.8. Tracks 1,6, and 11) revealed a 

region of the LTR from -382 to -363 that was specifically occupied by nuclear 

protein(s) present in all extracts from both unstimulated and stimulated cells. The 

extent of the footprint observed in Figure 8.8 indicated that the proteins which 

bound to this region were relatively abundant in all cell extracts, although present to 

a greater excess in neuroblastoma cells as this sequence was fully protected with 

75 ng of extract from either SK-N-SH or SK-N-MC (Tracks 7 and 9. 12 and 13). yet 

partially protected with an equivalent amount from astrocytoma cells (Tracks 2 and 

4). The protected region was well defined by the complete absence of several strong 

DNAse I hypersensitive sites and covered the sequence 

TTCCCTGATTGGCAGAACTA' (5* to 3'), which corresponds to a region of the 

LTR defined originally by Orchard eta l. (1990) with nuclear extracts from 

unstimulated and PMA/PHA-treated Jurkat T  lymphoblastoma cells and designated 

as Site A. In lymphocytes, the factors interacting with this element have not been 

identified and despite some homology between the sequences involved they are 

distinct from octamer-binding proteins (Orchard et at., 1990). The results presented 

here demonstrate that cellular protein(s) with similar sequence-specificities were 

also present in neural cell lines regardless o f activation by the cytokines IL-1/1 and 

TNFa.
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Further towards the 3' end of the LTR two regions close to each other were 

observed to be protected by nuclear proteins, again in extracts from all stimulated 

and unstimulated neural cells. The regions were from -355 to -346 and -337 to -326 

and contain the sequences 'GGGCAGGG' and ’CCACTGACcTIT, respectively. 

These two regions were also protected to a greater extent by neuroblastoma rather 

than astrocytoma cell extracts. The -355/-346 region was well defined by 

protein-induced DNAse I stops at both 5' and 3' borders, as well as the partial or full 

loss of two central bands present in the no protein tracks, and the -337/-326 region 

was defined by the complete absence or reduced intensity of many strong DNAse 

cleavage points. The protected sequences were similar to  those also defined 

previously by Orchard etal. (1990) as one binding site containing two domains 

designated as Site B. Comparison with the data of Orchard etal., (1990) suggests 

that only partial protection of Site B was seen here giving the appearance of two 

separate regions. The sequences reported to be directly involved in the interaction 

with Site B-binding factor(s) present in T cells were (-347/-343J GGTCA' and 

(-334/-329) TGACC (5’ to 3'), spaced 9 nucleotides apart, which make up 5' and 3' 

half sites of an inverted palindrome with high homology to steroid/thyroid response 

elements (Beato, 1989; Orchard et al., 1990). The -355/-346 region seen here does 

not encompass all of the 5' half site as probably only partial protection was evident. 

This is supported by results reported in Chapter 7 which indicated that factor(s) 

recognize the entire Site B element of probe 194. Of note is that the two half sites of 

Site B w ere recognized as AP-1 binding motifs by sequence homology but the direct 

binding o f AP-l-like factors to the HIV-1 LTR has been referred to only as 

unpublished results in a paper by Franza et al. (1988). The finding that Site B- 

binding activity was present in unstimulated cells and not only in stimulated cells 

further suggests Site B proteins are distinct from AP-1. Furthermore, Orchard et al., 

(1990) could not compete away factor(s) from Jurkat recognizing Site B in gel 

retardation assays with an oligonucleotide containing an AP-1 binding site.
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Figure 8 8 DNAae I footprint analyila of the HIV-1 LTH (-488/-306, 
probe 104C) labelled on the coding »trend, with nuclear extract» 
from unetlmulated or cytokine-treated U373MQ aatrocytoma, and 
SK-N-SH and SK-N-MC nauroblaatoma celle. Q, Q+A: chemical 
aequanclng reaction» Tracka: 1,6 411; no protein. 2 4  3: U373MQ;
75 4  150 pg. « 4  5: U373MQ +IL-1B; 75 4 150pg. 7 4 8: SK-N-SH; 75 4  
150 pg. 9 4  10: SK-N-SH -l-TNFo; 75 4 150pg. 12: SK-N-MC; 75pg.
13: SK-N-MC +TNFa; 75 pg. Sequencee marked with eolld Knee 
denote ragiona of protaction. * eae text.
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ii). Non-coding strand

In a similar examination of DNAse I footprints on the non-coding strand of 

probe 194 a region of protection over Site A sequences was noted with extracts from 

all stimulated and unstimulated cells (Figure 8.9). This covered a similar portion of 

the non-coding strand from position -381 to -363 over the sequence 

'AGGGACTAACCGTC I“1GAT (3‘ to 5’) and was defined by the absence of 

several DNAse cleavage points, although the exact definition of the S' -381 border 

may not have been precise due to the A-rich composition of the probe. This 

experiment also indicated a greater abundance of Site A-binding factor(s) in extracts 

from neuroblastoma cells compared to astrocytoma cells as full protection was again 

seen with the lower concentration of nuclear extracts from SK-N-SH and SK-N-MC, 

but not from U373MG.

Interaction of Site B-binding factor(s) with probe 194 did not greatly alter the 

appearance of the DNAse I cleavage pattern of a  complementary region of the LTR 

when the probe was labelled on the non-coding strand. A close examination of the 

autoradiograph was required to reveal changes that suggested any degree of 

interaction. Small alterations in the pattern of DNAse I cleavage products were 

suggestive of broad region of weak binding between sequences from -332 to -323 

over a domain similar to Site B (Orchard et al., 1990). The weak footprint was 

suggested by the absence of one band at position -323 and the appearance of 

protein-induced band at position -336, and at -3S1 with U373MG extracts and -332 

with neuroblastoma extracts. These differences are  unfortunately difficult to see in a 

photograph of the autoradiograph. Some disparity between the no protein tracks 

(number 1 with respect to 6, 11 and 16) made assessment of further protein-induced 

DNAse stops uncertain. The observed changes were similar with extracts from either 

unstimulated or from cytokine-stimulated cells, except the band at -323 was absent 

only with extracts from IL-10-treated U373MG cells and not unstimulated U373MG 

cells. This was not considered to be a significant difference. The sequences over the
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Site B domain could not be accurately defined as protected, however, the 3' and 5' 

borders of the proposed region were similar to the footprint described by Orchard 

et ai. (1990) with extracts from unstimulated or PHA/PMA-treated lymphoblastoma 

cells.

Hi). Oligonucleotide competition

In order to clarify the interaction of nuclear proteins present in neural cell 

extracts and the sequences in probe 194 defined as Site B, a DNAse I footprint was 

performed with extracts from SK-N-SH neuroblastoma cells and probe 194 which 

gave the clearest footprint over this region, after competition with oligonucleotides 

to specific sequence elements of probe 194 had been performed. Aliquots of nuclear 

extracts were incubated with an approximate S,000- or 12,500-fold molar excess of 

unlabelled oligonucleotide to either Site A, Site B or the Site B mutant BM5 

(sequences are given in Chapter 2, Table 2.2) for 30 min to absorb specific 

DNA-binding activities before the addition of radiolabelled probe 194C. The assay 

is illustrated in Figure 8.10. Comparison of the no protein track 1 with track 2 shows 

both regions of protein-induced protection over Site A (-382 to -363) and the two 

regions corresponding to Site B (-355 to -346 and -337 to -326). The excess of Site A 

oligonucleotide at either concentration (Tracks 3 and 4) only caused the footprint 

over Site A to  become slightly less protected and allowed the faint appearance of 

the bands present only in the no protein track 1. In tracks 5 and 6, where Site B 

oligonucleotide had been pre-incubated with the nuclear extracts, the pattern of 

bands produced by DNAse I digestion was altered over -35S/-346 sequences and the 

protected region was slightly more obscured. Yet there was little difference over the 

-337/-326 part of Site B where only the borders of this protected region had become 

more intense and the footprint was marginally less apparent. Competition with the 

BM5 oligonucleotide that contained mutations to destroy the S' half site of Site B 

(located at positions -347 to -343 in the LTR) produced a footprint over the
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-3SS/-346 region that was slightly different to competition with the Site B 

oligonucleotide (Tracks 7 and 8) in that the pattern of bands defining this domain 

was more like that observed with no oligonucleotide competition (Track 2). This 

suggested that cellular proteins were not prevented from binding to the upstream, 5' 

part of Site B, due to the mutations present in the oligonucleotide, whereas over the 

-337/-326 region, there was a change in the footprint similar to that noted after 

competition with Site B oligonucleotide. The use of oligonucleotides to compete 

away the factors binding to certain regions of the LTR was able to produce only 

marginal changes in the pattern of protection seen over these domains, and this was 

probably due to the high degree of non-specific DNA-binding activity found in crude 

nuclear extract preparations. Therefore, although the changes seen do support the 

specificity of the protein-DNA interactions further experiments of this nature were 

not performed.

A summary of the nuclear factor binding sites on the HIV-1 LTR occupied by 

neural cell proteins indicated by these experiments is shown in Figure 8.11.





SK-N-SH

Figura 8.10. DNAaa I footprint analysis of the HIV-1 LTR (-488/-306, 
probe 194C) labelled on the coding atrand, with nuclear extracts 
from unstimulated SK-N-SH neuroblastoma after companion with excess 
unlabelled oligonucleotides. Q, Q+A. T+C, C: chemical sequencing 
reactions. Tracks: 1 ; no protein. 2 8  9: no competition. 3 8  4: Site A  
oligonucleotide 8,000 8  12,500 fold molar excess. 5 8  6: Sits B oligo
nucleotide 5,000 812,500 fold molar excess. 7 8  8: BM5 oligo
nucleotide 5,000 812,500 fold molar exceaa. Sequences marked with 
solid Unas indicate regions of protection. * see text.
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Fig 8.11. Nuclear transcription factor 
binding sites in the HIV-1 LTR
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Discussion

Interpretation o f DNAse I  footprints

The investigation of the sequence-specific protein-DNA interactions 

occurring with the HIV-1 LTR and extracts from neural cells defined many regions 

that potentially bind cellular proteins in vivo. However, only in a few examples 

reported was the binding of sequence-specific nuclear factors clearly illustrated,as 

partial or weak protection of a putative protein binding site was often seen. These 

were indicated by subtle changes in the pattern of DNAse I cleavage products or the 

reduced intensity of several bands at DNAse hypersensitive points. As loss of 

intensity is a relative property this was judged as a indicative of protein binding only 

if the bands defining the region were of equal intensity above and below the region 

and not obviously a consequence of the overall fading of exposure down the gel. 

Some features were not easily apparent from photographs of the much larger 

autoradiographs but the majority of conclusions on the interaction of nuclear factors 

can be determined from data contained in the photographs. Interpretation of 

marginal data is more convincing by examination of the original autoradiograph as 

fine detail is lost in reproduction to smaller photographs.

The limitations o f footprinting with crude nuclear extracts

The phenomenon of bands fading when nuclear extract was present in the 

binding reactions was apparent in almost all footprinting assays performed and was 

almost certainly due to the use of crude nuclear extracts. In order to detect 

sequence-specific protein-DNA interactions by footprinting techniques it is 

necessary to use sufficient protein to allow all the probe DNA molecules to become 

complexed with protein and this requires a low concentration of 

poly (dI:dC)*(dI:dC) competitor which must still be high enough to compete away 

the bulk if not all of the non-specific DNA-binding. The probe DNA should be
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loosely complexed with the bulk of the extract protein and bound tightly only by 

sequence-specific factors. The non-specific binding results in reduced DNAse I 

cleavage of the probe, with respect to the no protein controls, due to the relative 

inaccessibility of the DNA molecule to DNAse I in this environment. The intensities 

of the DNAse I cleavage products in a given assay are influenced by the amount of 

extract employed in the binding reaction and the level of non-specific DNA binding 

activity in the extract preparation. The latter point I found to be moderately 

constant when a  small amount of extract was assayed with the LTR probe in a gel 

retardation assay but, as footprinting requires 10 to 30-fold more protein, there was 

scope for considerable variation and increase in the level of non-specific 

DNA-binding activity in a footprinting binding reaction. With crude extract 

preparations these factors profoundly influenced the quality of the footprints 

produced (experimental observations) and limited the amount of protein extract that 

could be assayed for binding so that there were often problems in obtaining 

sufficient occupancy of a given binding site to produce a complete or recognizable 

footprint. Moreover the high number of binding sites in the HIV-1 LTR, interacting 

with many cellular proteins (see Figure 8.11) of variable abundance, multiplies these 

difficulties and the partial or weak protection of one or more of them is inevitable.

To improve greatly the quality of data obtained from footprinting techniques 

the use of partially or completely purified nuclear proteins is required. Purification 

techniques for this class of proteins are based on affinity chromatography and 

preliminary purification uses either DNA or heparin coupled to a solid support. This 

can then be followed by the other chromatography media related to characteristics 

of the protein(s) o f interest and finally with a DNA affinity resin containing high- 

affinity binding site DNA. Substantial enrichment of sequence-specific proteins (up 

to 250-fold) can be achieved after the first step, described above, as 99% of protein 

in whole cell extracts flows straight through (Sorger et at., 1989). Partial purification 

of nuclear extracts from neural cells was attempted by use of a calf thymus
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DNA-cellulose affinity column. However, such procedures require inordinately large 

quantities of starting materials, which when cells have to be grown as adherent 

monolayers was very time consuming and the purification was also not successful for 

a number of technical aspects, not least the use of too few cells. Around 7 ml packed 

cell volume (approximately 2.5 x 109 cells), somewhere in the region of 25 roller 

bottles of U373MG astrocytoma cells, is a realistic starting point for partial nuclear 

protein purification. Therefore the use of crude extracts in footprinting was 

obligatory but this still sufficed to produce a good proportion of meaningful data.

Many of the sites of protein-DNA interaction were positioned over elements 

that had been defined in other cell systems and were known to be recognized by 

proteins that regulate transcription (see Figure 8.11). The presence of a footprint 

over such a region can be interpreted as evidence for the binding of similar factors 

from neural cells to the LTR as these proteins are, in the most part, defined by the 

sequences with which they interact. The relationship of these sites to those defined 

by neural cell extracts is discussed below for each restriction fragment of the HIV-1 

LTR.

Nuclear factors binding to sequences located at -158 to + 78 in the HIV-1 LTR 

NFuB-like binding activity

DNAse I footprinting studies on the LTR between positions -158 and ♦ 78, 

relative to the start of transcription, demonstrated the interaction of DNA-binding 

activities from neural cells that interacted with NFkB, Spl, TATA and LBP-1 

elements (see Figure 8.11). When nuclear extracts were prepared from each cell line 

after stimulation with a cytokine known to augment HIV-1 LTR-driven gene 

expression, the only alteration noted in the footprints produced was by extracts from 

SK-N-MC neuroblastoma cells after stimulation with TNFa, where DNA-binding 

factors were induced and bound to  the pair of NFkB binding sites constituting the
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enhancer of HIV-1. Such nuclear factors were not present in extracts from 

unstimulated cells and, at least for SK-N-MC, provided further evidence for the 

involvement of NFuB-like factors in the induction of HIV-1 gene expression.

A similar change in nuclear factor binding was not detected following the 

activation of astrocytoma cells with IL-1/9 and SK-N-SH neuroblastoma cells with 

TNFa because of higher levels of non-specific binding in extracts from these cells 

that resulted in artefactual protection of these sequences (see Section 8.1.1). 

Previous experiments with an LTRF probe (results not shown), labelled on the 

coding strand at the S' rather than 3' termini, indicated that sequences around the 

enhancer were always partially or fully protected with extracts from unstimulated 

cells, or cytokine-stimulated cells irrespective of the presence of an NFkB-like 

factor, detected by gel retardation assays. This led to  the conclusion that this part of 

the LTR was highly susceptible to non-specific DNA-binding by proteins found in 

some crude extract preparations. Increasing the amount of competitor in the binding 

reactions did not alleviate the problem. The incomplete recovery of NFxB-like 

activity in the nuclear extract preparations from U373MG and SK-N-SH cells was 

excluded as aliquots from both were employed in gel retardation assays described in 

Chapter 7 and demonstrated the induction of NFicB-like factors by the respective 

cytokine in these cell lines. In further attempts to maximize the DNA-binding 

potential of NFkB, 3 mAf rGTP, which is known to stimulate this property of NFkB 

(Lenardo etal., 1989), was included in the binding reactions prior to footprinting 

procedure. The binding buffer already contained sufficient MgCl2 (5 tnM) to 

stimulate NFkB binding (Lenardo etal., 1989) yet the addition of GTP did not 

produce a change in the artefactual footprint observed over the enhancer on the 

coding strand for either U373MG or SK-N-SH cell lines (results not shown).

The unexpected failure to observe any footprint over the enhancer region 

when the non-coding strand was examined would appear to be due to the low 

concentration of the NFxB-like binding activity in the nuclear extracts as related
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factors from HeLa cells will protect the non-coding strand from DNAse I digestion 

after crude extracts have been subject to partial purification (Wu et al., 1988).

Spl-like DNA-binding activity

Another DNA-binding activity present in extracts from astrocytoma, 

oligodendroglioma and neuroblastoma cells was analogous to the transcription 

factor Spl, for which there are three binding sites in the LTR located in sequences 

from -77 to -46. Spl-like activity produced a footprint when both the coding and 

non-coding strands were examined and was capable of protecting all three Spl sites 

from DNAse I digestion. The analysis of DNA-binding with different concentrations 

of extract demonstrated that the distal Spl site (III) was preferentially occupied 

when DNA-binding activity was limited, indicating that this site possessed a higher 

affinity for Spl. When the extract concentrations were increased Spl-like binding 

was observed over both sites I and II, although results from footprinting the 

non-coding strand suggest that Spl-like factors will bind to site I before site II. The 

results of Jones et al., (1986) with affinity-purified Spl originally indicated that 

site III has a higher affinity for Spl but no preferential occupation of sites I and II by 

Spl was noted. In addition, when the HIV-1 LTR was subject to  DNAse I 

footprinting analysis with partially-purified HeLa cell extracts there was no 

protection of the Spl sites even when the binding reactions were supplemented with 

purified Spl (Garcia etal., 1987). This led the authors to conclude that other 

proteins in HeLa cells may inhibit Spl binding, such a finding was not observed in 

neural cells.

The binding of nuclear factors to the Spl sites in the HIV-1 LTR produced a 

footprint that extended 10 nucleotides past the 3' edge of site I on the coding strand 

and by 9 nucleotides on the non-coding strand. At the S' end of Spl site III on the 

non-coding strand the border of the protected sequences was 8 nucleotides past the 

last residue of the Spl site and on the coding strand the footprint merged with that
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produced by the enhancer-binding factor. The large molecular size of DNAse I 

(approximately 4 nm; Rhodes, 1989) accounts for a certain amount of this additional 

protection due to steric hindrance which is advantageous as it amplifies the 

protection offered by bound protein and results in clearer gaps in the digestion 

pattern of DNA. However, the 8 to 10 nucleotide space seen here would appear 

larger than expected as DNAse I was capable of detecting bound protein that 

occupied as few as 6 or 7 nucleotides. The difference may be due to the ability of 

Spl to form dimers (Courey etal., 1989) and perhaps provide a greater degree of 

steric hindrance. Another characteristic of DNAse I as a footprinting reagent is that 

the rate of cleavage of its substrate is dependent on sequence-determined variations 

in DNA structure and that some sequences, especially tracts of A or T are not 

readily digested (Goodwin, 1990). The sequences in the protected region at the 5' 

end of Spl site III are T-rich due to the proximity of the NFkB site, yet those at the 

3' are not, and this along with reports from others of a transcription factor, TCF-la 

identified in T  cells by its interaction with the enhancer of the human T cell receptor 

Ca  subunit, which can also bind to sequences over-lapping the proximal Spl site I of 

HIV-1 (Waterman et al., 1991a) may indicate an additional protein-DNA interaction 

worthy of further investigation. Especially as the authors report that in mixing 

experiments purified Spl and TCF-la can bind concomitantly to the same region of 

the HIV-1 LTR. Further TCF-la sites were also reported by Waterman etal. 

(1991a) to be present overlapping the LBP-1 site in the leader region of the LTR 

and in sequences located upstream of the distal NFkB site.

Nuclear factors that interact with TATA and leader sequences

The interaction of nuclear factors with elements of the HIV-1 LTR further 

downstream of the Spl motifs was noted only on the non-coding strand of 

probe LTRF. Factor(s) may weakly recognize the TATA box whilst other proteins 

could definitely be demonstrated to bind to the LBP-1 binding sites in the TAR
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region of the LTR from nuclear extracts of astrocytoma and oligodendroglioma cells 

and these sites of interaction were located to similar regions that had been defined 

previously with nuclear proteins from lymphocytes (Wu et al., 1988) and HeLa cells 

(Jones et al., 1988). No such binding was observed in extracts from SK-N-MC and 

SK-N-SH neuroblastoma cells in the assays shown for technical reasons (see 

Section 8.1.1) but a previous experiment with an LTRF probe radiolabelled on the 

non-coding strand at the S' termini had shown partial protection of equivalent 

sequences over the TATA box with SK-N-MC extracts, but did not permit the 

visualization of sequences further downstream (results not shown). The preferential 

protection of sequences on the non-coding strand may also be a consequence of the 

low abundance of these factors in crude nuclear extracts as in the reports referred to 

above, where partially-purified extracts were employed, a similar degree of 

protection was observed on both strands. The LBP-1 protein will also recognize a 

binding site in the HIV-1 LTR that overlaps the TATA box at an affinity lower than 

all other LBP-1 sites [see Figure 8.11J and protects a region of the LTR from -38 to 

-16 (Kato etal., 1991). However the extent of protection observed over the TATA 

region with neural cell extracts was from -35 to -21. Furthermore the lower affinity 

interaction is unlikely to have occurred in some experiments performed here due to 

the low abundance of LBP-l-like DNA-binding activity that did not result in 

protection of all the high affinity sites.

The protection observed around the TATA box from -35 to -21 with neural 

cell extracts was marginal and less apparent than that seen with nuclear proteins 

purified from HeLa or lymphocyte cells where there was a  region of protection from 

•42 to -14 due to the interaction of a  TATA box-binding factor (Garcia et al., 1987). 

The disparity in the size of the protected region between the results from neural 

cells and other cell types may indicate that different factors recognize these 

sequences or it may be a consequence of the lower DNA-binding activities present 

in crude nuclear extracts. DNAse I footprinting experiments on deletion and
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insertion mutants of the HIV-1 LTR around these sequences suggest that protection 

of the TATA region is dependent upon the presence of other local protein-DNA 

interactions, with Spl and LBP-1, that stabilize the otherwise weak binding of 

TATA box factor(s) (Garcia et al., 1987; Jones et al., 1988). No experiments were 

performed here to address a potentially similar situation in neural cells. However, 

the failure to observe such an extensive region of protection 3' to the TATA 

sequences may have been due to an A-rich tract in the non-coding strand that which 

was not cleaved by DNAse I and therefore poorly defined the 3' border.

The LBP- 1-like DNA-binding activity found in extracts from 

oligodendroglioma and astrocytoma cells occupied the LBP-1 site overlying the start 

of transcription at position -3 to +1 and another at + 6 to +12, and also weakly at 

+ 16 to +22. The failure to observe LBP-1 binding activity in SK-N-SH and 

SK-N-MC cells was due to poor DNAse I cleavage of the probe in the assay and the 

absence of an LBP-l-like factor was not established. When sufficient LBP-1 was 

present in the nuclear extracts from astrocytoma and oligodendroglioma cells the 

protection of LBP-1 sites I, II and III would suggest that, at least in these cells, an 

LBP-l-like activity may interact with all sites in the leader region of the LTR. A 

further two sites for this leader binding protein, which has also been named UBP-1 

(Waterman et al., 1991a), exist in sequences further downstream as do single binding 

sites for the distinct proteins, UBP-2 (Garcia et al., 1989) and CTF/NF1 (Jones 

et al., 1988) but these were too close to the position of the radiolabel to be resolved 

in the assays performed. The interaction of the TCF- la-like activity could not be 

distinguished from the LBP-l-like binding activity in the footprinting assays 

performed here, and whether such an interaction with the LTR would occur in 

neural cells depends upon the tissue-specificity of the TCF-la protein. Waterman 

etal. (1991b) report that TCF-la is restricted to T lymphoid cells, although no 

neural cell types were examined.
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Nuclear factors binding to sequences located at -305 to -159 in the HIV-1 LTR 

Oc tamer-binding factors

DNAse I footprinting of the -305 to -159 region of the HIV-1 LTR with 

extracts from astrocytoma, oligodendroglioma and neuroblastoma cells 

demonstrated the presence of a constitutive nuclear factor that bound sequences 

over a region highly homologous to an octamer motif. Octamer factors are 

ubiquitous transcription factors that can regulate expression in a cell-specific or 

cell-cycle dependent manner, such as occurs in the Bcell specific expression of 

immunoglobulin genes and histone gene expression (La Thangue and Rigby, 1988). 

This octamer binding site is located in a region of the HIV-1 LTR that has homology 

to sequences found in the 5' regulatory region of the IL-2 gene, at positions -63 to 

•93, that constitute the first antigen response element of the IL-2 gene promoter 

(Ullman etal., 1991). The sequence in the IL-2 gene promoter protected from 

DNAse I digestion by extracts from T lymphoblastoma cells has been shown to be 

analogous to the octamer motif present in histone genes and interacts with the 

ubiquitous octamer-binding factor, Oct-1, previously known as NF-IL2A (Ullman 

etal., 1991). Therefore, although a factor apparently capable of recognizing the 

octamer-like element of HIV-1 is found in T cells it has not been described to 

interact with these sequences and in this respect the binding of factors to the 

octamer-like motif may be specific to neural cell lines. This cell-specific difference 

could be accounted for by preferential occupancy of the additional proximal 

purine-rich domain located from position -277 to -262 (L iefal., 1991), which 

overlaps the octamer-like sequence, by nuclear proteins present in T lymphocytes 

(also see below).
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NFAT-1-related and other DNA-binding activities

The region of the HIV-1 LTR from position -2S4 to -216 is part of a large 

domain that has been demonstrated to bind the mitogen-inducible transcription 

factor NFAT-1, or a related factor with similar biological characteristics, present in 

T lymphocytes but without a recognition sequence highly homologous to the 

purine-rich NFAT-1 motif of the IL-2 gene promoter (Shaw etal., 1988). In the 

report of Shaw etal. (1988) DNAse I footprinting demonstrated the binding of an 

inducible factor which was related by the sequence it recognized to NFAT-1 to the 

region described above, and constitutive but unknown protein(s) to sequences of the 

HIV-1 LTR from -303 to -288 with extracts from T cells. There is also another 

constitutive nuclear protein that has been demonstrated by others (Li et al., 1991) to 

bind to either of the conserved distal or proximal purine-rich boxes, located at -276 

to -262 and -220 to -206, which lie either side of the NFAT-1 domain of Shaw et al. 

(1988) in the HIV-1 LTR. These purine-rich domains, by homology with the 

recognition sites, are more closely related to the NFAT-1 motif found in the 11̂ 2 

gene promoter (Randak et al., 1989) than the one described by Shaw etal. (1988). 

Such that it would appear quite probable that these purine-rich domains would bind 

the inducible NFAT-1 factor or another constitutive factor which also recognizes the 

NFAT-1-binding, purine-rich domain (Klemsz et al., 1990). However, any interaction 

with the proximal and distal purine-rich domains of the HIV-1 LTR was not found 

by Shaw et al., (1988) and there seems to be a lack of data on the exact interaction of 

both inducible and constitutive NFAT-l-related nuclear proteins and the HIV-1

No inducible proteins were detected in extracts from either astrocytoma or 

neuroblastoma cells that bound to sequences in probe 159 and might be analogous 

to NFAT-1 in lymphocytes. This may be due to there being insufficient 

DNA-binding activity induced in crude extracts or competition with constitutive
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factors such as those described above. The region of the HIV-1 LTR reported by 

Shaw et al. (1988) to interact with NFAT-1 was examined further in Chapter 9 by the 

use of complementary oligonucleotides in gel retardation assays to confirm if the 

region of weak protein interaction evident in DNAse I footprints between -242 to 

-222 did indeed bind any constitutive or inducible neural cell proteins. A definite 

region of protection was demonstrated just upstream (-249 to -243) with extracts 

from SK-N-MC and G26-24 cells and the footprint produced by nuclear protein(s) 

was over a sequence of the LTR with some homology to the GTI motif found in 

SV40 (La Thangue and Rigby, 1988). This is also present in a region of the HIV-1 

LTR previously reported to bind NFAT-1. Interestingly, the 'ATGTGGG' sequence 

of the GTI-related motif is 100% conserved in the LTRs of 23 out of 24 isolates of 

HIV-1 and, like the interaction with octamer-binding factors, may also be neural-cell 

specific. Complementary oligonucleotides also containing the protected sequences 

between nucleotides -249 and -243 were also employed in gel retardation assays to 

confirm that the footprints were due a specific protein-DNA interaction.

A recent report has shown sequences located within probe 139 to bind 

recombinant glucocorticoid receptor (GR) at two locations, from -264 to -259 and 

-255 to -250, which form two half sites of one domain (Ghosh, 1992), characteristic 

for this class of receptor (Beato, 1989). These sites overlap the distal purine-rich 

domain (Li et al., 1991) and are located directly adjacent to the octamer- and the 

GTI-related regions protected by all and two neural cell extracts, respectively. It 

would appear from the footprinting data presented here that these factors if present 

in neural cells are of too low abundance to be detected in crude extracts and, in any 

case, interaction with the HIV-1 LTR would not be expected to occur in the absence 

of cellular stimulation with a glucocorticoid hormone (Beato, 1989). Nevertheless 

from the large region of DNA protected by recombinant G R in the report of Ghosh 

(1992) it would also seem possible that the binding of factors present in neural cells
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to either the octamer or GTI-related motif may preclude the interaction of a 

putative GR-like molecule. The relationship of the GR site to the binding of nuclear 

factors in lymphoid cells is unclear. However, there is evidence which implicates 

glucocorticoids and particularly oestrogens in the stimulation of HIV-1 expression 

(Laurence et al., 1990).

No DNA-binding activity to the reported USF and URS binding sites of the 

HIV-1 LTR (Lu et al., 1991) was observed in the footprinting experiments with 

extracts from neural cells. These regions were located too close to the Ava I 

restriction site used to sub-clone and radiolabel the LTR sequences in probe 159 

and were not well resolved on the sequencing gels employed. Therefore it was not 

possible to establish any interaction between similar factors in neural cells and the 

HIV-1 LTR.

Nuclear factors binding to sequences located at -488 to -306 in the HIV-1 LTR 

Factors binding to the Site A element

The footprinting study of sequences within probe 194 demonstrated that 

neuroblastoma and astrocytoma cells contained a constitutive DNA-binding activity 

similar to that observed in T  lymphoblastoma cells (Orchard etal., 1990) that 

recognized equivalent sequences known as Site A. The footprint produced with 

neural cell extracts was slightly larger than that seen with T lymphoblastoma extracts 

by two residues at the 5' end and three at the 3' end on the coding strand, and one 

less residue on the 5' end of the non-coding strand and three more at the 3’ end. This 

suggests that slightly different but probably related protein(s) recognize Site A in 

neural cells compared to lymphocytes. Data from Chapter 7 also indicated that these 

factors can interact with the Site A element to form two discrete complexes of 

different molecular weights or conformations, however, there was no evidence from
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footprinting experiments to suggest that these did not recognize the same sequences 

of Site A.

Site B-like binding activity

Constitutive DNA-binding factors were present in astrocytoma and 

neuroblastoma cells that bound to a region similar to the Site B motif described by 

Orchard et at. (1990). This motif was originally defined by nuclear factors present in 

T lymphoblastoma cells which, from the palindromic nature of the binding domain 

and competition experiments with oestrogen and thyroid hormone response 

elements, were suggested to be members of the steroid/thyroid hormone receptor 

super-family (Orchard etal., 1990). A subsequent analysis by Cooney etal. (1991) 

demonstrated that the major Site B-binding factor in human T  lymphoblastoma cells 

was analogous to the chicken ovalalbumin upstream promoter transcription factor, 

COUP-TF, which is also member of the steroid/thyroid receptor super-family but 

distinct from oestrogen or thyroid receptor. Similar COUP-TF-like DNA-binding 

proteins were also found in HeLa cells where both the low and high molecular 

weight forms were present. The high molecular weight molecule predominated in 

lymphoblastoma cells (Cooney et al„ 1991).

The partial protection observed over the Site B region with all neural cell 

extracts (predominantly on the coding strand) was weakest with extracts from 

U373MG astrocytoma cells. This may have been a consequence of the reduced 

sensitivity of the footprinting technique as gel retardation assays with probe 194 had 

indicated that Site B-binding factors were in greater abundance to those recognizing 

Site A and especially in U373MG (Chapter 7, Section 7.1.3). This prompts the 

suggestion that the Site B complex was more labile under the conditions used for 

footprinting even though essentially similar buffers were used for the binding 

reactions in both gel retardation and footprinting assays. Orchard et at. (1990) used a 

similar buffer for the binding reactions but with a fractionally higher pH (7.9 as
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opposed to 7.6) and a greater concentration of glycerol (20% rather than 10% 

(v/vj). If either of these factors influenced protein stability it may be the increased 

glycerol concentration which can help stabilize of nuclear proteins (Goodwin, 1990).

The proximity of the protected regions of Site B to the major band 

representing undigested probe at the top of the autoradiographs made the 

identification of the protected sequences more difficult as linear sequencing gels do 

not separate fragments differing by only one or two nucleotides well when larger 

fragments (200 bp) are being resolved. The distance between the radiolabelled 

nudeotide(s) at the S' end of the probe fragment and the Site B sequences was also 

greater than the optimum 20-150 nucleotide distance for footprinting assays 

(Rhodes, 1989). Sequences further from, or closer to the radiolabel will not be well 

resolved on sequencing gels and the ability to discern by eye the differences between 

the digestion pattern of free DNA and that complexed to specific proteins is 

reduced. A more accurate footprinting analysis of Site B-binding factors would 

require the fragment to be re-cloned in order to locate the binding site nearer to the 

labelled nudeotide(s) and within the central portion of a sequencing gel where the 

resolving power is greatest. Unfortunately, it was not practical to move the 

radiolabel to the Rsa I restriction site 3' to Site B due to the presence of multiple 

Rsa I sites within the cloning vector.

Oligonucleotide competition

The competition of Site A- and B-binding activity with excess complementary 

oligonucleotides did not abolish the respective DNA-binding activities as effectively 

as might be expected, as this was unable to remove completely the respective regions 

of protedion from the DNAse I digestion pattern. The effects seen were specific for 

the sequence of the oligonucleotide employed but the limited effidency in 

competition may have be influenced by the reduced affinity of nuclear factors for the 

Site A and B sequences observed when these sequences were present in
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oligonucleotides rather than in the context of probe 194 (see discussion Chapters 7 

and 9). This may not have entirely accounted for the requirement of such a large 

molar excess of unlabelled oligonucleotide and excessive non-specific DNA-binding 

activity in crude extracts was almost certainly an additional factor.

The slight effect of competition with the oligonucleotide containing 

mutations to the S' half site of Site B, BMS, on the formation of the protected region 

from -3SS/-346 provides some evidence for the existence of two protein units that 

can independently bind to the two motifs of Site B. Comparing the results from gel 

retardation assays (Chapter 7, Section 7.2.2), where competition with excess BMS 

oligonucleotide to factors recognizing probe 194 partially reduced the intensity of 

proteins producing both Site B-specific complexes without affecting their relative 

mobilities, with these findings also provides preliminary evidence to suggest that the 

same DNA-binding protein(s) interact with either half site of Site B. Both of these 

suggestions are in agreement with the presumption that Site B-binding proteins are 

related to members of the steroid/thyroid hormone receptor family (Orchard et al., 

1990; Cooney et al., 1991).
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Summary

From the  examination of DNA-binding activities that recognize the HIV-1 

LTR in neural cell extracts it is apparent that similar factors to those initially 

defined in H eLa and lymphocyte cells are present (see Figure 8.11), with the 

addition of the octamer-related and GTI-related activities that appear neural 

cell-specific. T he ability of cytokines to promote changes in the nuclear factors 

binding to the HIV-1 LTR was only apparent by the footprinting technique in 

SK-N-MC neuroblastoma cells exposed to TNFa where factors specifically 

interacted with the NFnB sites that were unoccupied with extracts from 

unstimulated cells. In U373MG astrocytoma cells treated with IL-l/I and SK-N-SH 

cells treated with TNFa, the presence of inducible factors recognizing these 

sequences was not apparent as non-specific DNA-binding activity masked any 

similar interaction with these sequences. However, gel retardation assays performed 

in Chapter 7 provided evidence for equivalent events in U373MG and SK-N-SH 

cells.

The gel retardation technique was further exploited in Chapter 9, using 

oligonucleotides to known or suspected nuclear factor motifs present in the HIV-1 

LTR to provide further information on the interaction and induction of 

DNA-binding proteins.





Chapter 9: Tha affect of cytokines on the interaction of 

DNA-binding proteins with the HIV-1 LTR

Introduction

The final investigation of nuclear protein binding sites in the HIV-1 LTR and 

the DNA-binding activities from neural cells that recognize them was performed 

using specific radiolabelled, ds oligonucleotides in gel retardation assays with 

nuclear extracts from astrocytoma and neuroblastoma cells, and each cell type 

treated with the cytokine IL-10 or TNFa, respectively. Experiments were performed 

to further confirm the presence or absence of specific DNA-binding activities and 

investigate the ability of each cytokine shown to augment expression from the HIV-1 

LTR to modulate their interaction with the regulatory regions of the LTR. The data 

provided by gel retardation assays undertaken with restriction fragments from the 

HIV-1 LTR (Chapter 7), and from DNAse I footprinting (Chapter 8) indicated 

certain protein-binding motifs and other sequences from in HIV-1 LTR that bound 

nuclear factors. This information was used to select regions of the LTR for analysis 

as oligonucleotide probes (a list of oligonucleotides and the nucleotide sequences of 

each is given in Chapter 2, Table 2.2.).

Competition assays

The primary advantage of the use of synthetic oligonucleotides in gel 

retardation assays is to allow the interaction of cellular proteins with specific motifs 

to be assessed in isolation from other sequences as the formation of complexes will 

be dependent only on the short stretch of DNA that constitutes the protein-binding 

site. The use of crude nuclear extracts also required the inclusion of the unlabelled 

competitor nucleic acids, poly (dI:dC)-(dI:dC) and pUC13, in the binding reactions 

to reduce of non-specific complex formation and allow the specific interactions to be
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determined after titration with an increasing amount of competitor. As described 

previously the end-point is defined as the concentration that allows free probe to be 

efficiently separated from the bulk of complexed nuclear protein. In practice it was 

found that competitor did not remove all the non-specific DNA-binding activity 

present in the nuclear extracts within the range of competitor concentrations that 

could be practically employed before all DNA-binding activity was competed from 

the assay (experimental observations). This was apparent much more so when 

oligonucleotide probes were used rather than restriction fragments from the LTR. 

Therefore it was important to identify the specific protein-DNA complexes which 

formed with the oligonucleotide probes by competition analysis. This was facilitated 

by the higher affinity sequence-specific proteins have for their recognition sites 

compared to the other proteins in the nuclear extract (Sorger et al., 1989). Inclusion 

of excess unlabelled oligonucleotide probe (relative to labelled probe) in the binding 

reaction 20 min prior to the addition of the labelled probe will reduce or abolish the 

sequence-specific protein-DNA complexes before those arising from the lower 

affinity binding of abundant proteins. The majority of proteins in crude nuclear 

extracts bind to DNA in a sequence-independent manner (Goodwin, 1990). 

Addition of more unlabelled probe oligonucleotide than there is specific ligand for 

the binding site will begin to compete away complexes in order of the affinity of 

binding so that sequence-specific complexes will be lost first and non-specific 

complexes will also be removed at higher concentrations of unlabelled probe. By 

comparison of the amount of excess unlabelled probe required to compete away a 

given complex relative to another, the relative affinities of the protein(s) forming 

each complex with the probe can be ordered. Competition experiments were carried 

out for each oligonucleotide probe examined with two concentrations of excess 

unlabelled oligonucleotide to identify sequence-specific interactions.
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9.1. Nuclear factor binding to an Sp1 consensus sequence 

oligonucleotide

Gel retardation assays performed with an oligonucleotide containing a single 

high affinity binding site for the transcription factor Spl (Harrich et at., 1989) and 

nuclear extracts from U373MG astrocytoma, SK-N-SH and SK-N-MC 

neuroblastoma cells demonstrated the formation of a number of protein-DNA 

complexes (Figure 9.1. A). The oligonucleotide competition experiment in 

Figure 9.1. B indicated that one major sequence-specific complex, marked Spl, was 

readily detected in 15 fig of nuclear extract from each cell line. This complex 

predominated in intensity over one suggested non-specific complex from U373MG 

and SK-N-SH extracts (marked ns2) and three such complexes (nsl to 3) with 

SK-N-MC extracts (Figure 9.1. A). The non-specific complexes formed with the 

oligonucleotide probe were of similar mobilities in all cell lines but varied greatly in 

intensity and may be a consequence of the different cell lines from which the nuclear 

extracts were prepared.

When compared to the pattern of complexes produced with an equivalent 

amount of nuclear extract from IL-l/3-stimulated U373MG or TNFa-stimulated 

SK-N-SH and SK-N-MC cells, no novel protein-DNA interactions were seen and 

there was generally little change in the relative abundance of Spl activity 

(Figure 9.1. A). The intensity of the Spl complex was reduced in extracts from 

SK-N-SH cells stimulated with TNFa relative to unstimulated cells as was the 

non-specific complex ns2 and this may have been artefactual. Nevertheless, in 

agreement with previous results, the activation of neural cells with IL-10 or TNFa 

did not appear to significantly alter the DNA-binding properties of the Spl-like 

activity.



Figure 9.1. A. Nuclear protein binding to an Sp1 oligonucleotide probe 
in extract* from untreated and IL-1 0-aimulated U373MG astrocytoma, 
and from untreated and TNFo-itlmulated SK-N-SH and SK-N-MC 
neuroblastoma cells, deaignated ■ and +. Sp i indicates specific 
complex formation; net to 3, non-specific complexes; F, free probe.
B. Competition analysis with excess unlabelled Sp1 oligonucleotide 
and extracts from U373MG cells. 0, no competition; xSO- and xSOO-fold 
molar excess of unlabelled Sp1 oligonucleotide.

24«



Chapter 9 249

9.2. Nucl«ar factor binding to an NFkB consensus sequence 

oligonucleotide

The gel retardation assays shown in Figure 9.2 were performed with an 

oligonucleotide probe corresponding exactly to the sequence of the -104 to -81 

region of the HIV-1 LTR which spans the enhancer of two NFkB motifs and which 

also represents the consensus NFxB-binding sequence (Nabel and Baltimore, 1987). 

As anticipated, a significant difference was seen between the nudeo-protein 

complexes formed with the NFkB probe and extracts from unstimulated and 

cytokine-treated cells. In nuclear extracts from IL-10-stimulated astrocytoma and 

TNFa-stimulated neuroblastoma cells, two slowly migrating complexes of equal 

intensity, marked kB, were clearly visible and were absent from unstimulated cell 

extracts (Figure 9.2. A).

When oligonucleotide competition experiments were undertaken with a 50- 

and 500-fold molar excess of unlabelled NFkB oligonucleotide (Figure 9.2. B) to 

determine the specificity of complex formation, the two kB complexes formed with 

extracts from cytokine-treated astrocytoma or SK-N-SH neuroblastoma cells were 

eliminated, as was the complex marked ns2 that was also seen with unstimulated cell 

extracts (Figure 9.2. B). The removal of the ns2 complex was almost certainly due to 

the use of a molar excess of unlabelled oligonucleotide probe greater than was 

necessary to compete away only the complexes formed by the proteins with the 

highest affinity for the NFkB motifs, as competition with equivalent amounts of the 

mutant NFkB oligonucleotide, which will not bind NFkB or related factors (Schmidt 

et at., 1990), eliminated ns2 but not the kB complexes (Figure 9.2. B). With extracts 

from SK-N-SH cells stimulated with TNFa the mutant NFkB oligonucleotide did 

cause some reduction of the kB complexes (probably because a greater excess was 

used than was required). The other non-specific complex nsl, evident in all gel 

retardation assays in Figure 9.2, was unaffected by either oligonucleotide up to a
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500-fold molar excess and was due to more abundant non-specific DNA-binding 

factors in crude extracts. Therefore DNA-binding activity specific for the enhancer 

of HIV-1 was induced by the cytokines IL-1/3 and TNFa.

To confirm that the absence of an NFuB-like factor in unstimulated cells was 

not a consequence of the unequal loss during the nuclear extract preparation of 

co-factors which are known to stimulate the interaction of these proteins with DNA, 

the binding reactions were supplemented with a 3 mM final concentration of rGTP 

and spermidine (Lenardo et al., 1989). Gel retardation assays were performed with 

extracts from unstimulated U373MG and SK-N-SH cells and compared with an 

equivalent amount of extract from their cytokine-stimulated counterpart, also after 

incubation in the presence of rGTP and spermidine (Figure 9.2. C). However, this 

did not promote the formation of specific complexes with the NFkB oligonucleotide 

probe in nuclear extracts from unstimulated cells (Figure 9.2. C) and neither did this 

appear to enhance greatly the DNA-binding of factor(s) producing the kB 

complexes in extracts from cytokine-stimulated cells, although this was not 

compared in the same assay. Therefore the data indicates that there is no 

constitutive enhancer binding factor in astrocytoma or neuroblastoma cells and that 

stimulation by IL-1/? and TNFa, respectively induces an NFuB-like binding activity.
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9.3. Nuclear factor binding to Sit# A oligonucleotide

The use of a  radiolabelled oligonucleotide corresponding to the sequences 

defined by Orchard et al. ( 1990) as Site A, in gel retardation assays demonstrated 

extremely variable levels of this DNA-binding activity in the neural cell lines 

examined and no differences in the pattern of bands observed between extracts from 

unstimulated and cytokine-treated cells of the same type. With nuclear extracts from 

U373MG cells the complexes formed were most likely non-specific (see below and 

Figure 9.3. A). With SK-N-SH nuclear extracts two additional slowly migrating 

complexes were observed with the Site A probe but were relatively faint, these were 

marked Al' and A2' in Figure 9.3. These complexes were of a mobility similar to the 

range observed for the Site A sequence-specific complexes formed with nuclear 

extracts from G26-24 oligodendroglioma cells (Figure 9.3. B) and were reasonably 

well separated from each other suggesting they differed appreciably in molecular 

weight. Also complex A l' was more intense than A2'. However, these complexes 

were infrequently detected in similar gel retardation assays and could not be 

confirmed as sequence-specific interactions. In extracts from the SK-N-MC 

neuroblastoma cells (Figure 9.3. A) complexes were formed similar to U373MG and 

were similarly suggested to be non-specific by their mobility in comparison to other 

assays. The oligonucleotide competition with nuclear extracts from unstimulated 

G26-24 cells performed to identify the specific nudeo-protein complexes formed 

with the Site A probe demonstrated that in these cells there was readily detectable 

Site A-binding activity that produced a relatively slowly-migrating, broad complex 

that smeared partly towards the top of the gel, indicative of a degree of 

heterogeneity in the protein species recognizing the sequence (Figure 9.3. B). 

Competition with a  50-fold molar excess of unlabelled Site A oligonucleotide 

eliminated the broad complex but did not remove the non-specific band marked as

nsl.



Figure 9.3. A. Nuclear protein binding to a Site A oligonucleotide probe 
in extract! from untreated and IL-13-stlmulated U373MG astrocytoma, 
and from untreated and TNFo-atmulated SK-N-SH and SK-N-MC 
neuroblastoma cells, designated - and +. At'and A2' indicate putative 
specific complexes, see text; ns1 to 3, non-specific complexes; F, free 
probe. B. Competition analysis with excess unlabelled Site A oligo
nucleotide and extracts from 026-24 oligodendroglioma cells. 0, no 
competition; xSO-fold molar excess of unlabelled Site A oligonucleotide. 
A Indicates specific complex.

253
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9.4. Nuclear factor binding to Site B oligonucleotide

In nuclear extracts from both unstimulated and IL-1/S-t reated U373MG 

astrocytoma cells, similar sequence-specific binding (see below and Figure 9.4. B) to 

the Site B probe (Orchard et al., 1990) was represented by a broad, slowly migrating 

complex (Figure 9.4. A). This suggested a heterogeneous mixture of protein factors 

recognizing the binding motif rather than protein degradation as the complex was 

quite well defined at its lower but not its upper border. From the oligonucleotide 

competition with excess unlabelled Site B oligonucleotide and U373MG extracts 

(Figure 9.4. B), two complexes, marked nsl and ns2, were indicated to be 

non-specific, although nsl was much reduced with U373MG extracts in 

Figure 9.4. A, perhaps due to the different preparations of nuclear extracts 

employed. In nuclear extracts from unstimulated or TNFa-treated SK-N-SH 

neuroblastoma cells there was an extremely faint, ill defined complex above 

equivalent nsl and ns2 complexes, that may have indicated specific Site B-binding 

but which was much less intense and difficult to distinguish from the lower complex 

below due to the high background in the photograph. A close examination of the 

autoradiograph did not make the interpretation any more decisive, especially as no 

binding had been seen in previous assays, but no changes were noted between 

extracts from unstimulated and TNFa-treated cells. In nuclear extracts from either 

unstimulated or TNFa-treated SK-N-MC cells specific complexes could also not be 

determined and there was only a great deal of what was suggested to be non-specific 

binding activity recognizing the Site B probe, forming complexes analogous to nsl 

and ns2 in Figure 9.4 B. Complex ns2 was broad and intense and may have obscured 

any other complexes.



A B
U373MG SK-N-SH SK-N-MC U373MG 

-  +  • +  - +  0 x50

Figura 9.4. A. Nuclear protein binding to a Site B oligonucleotide probe 
In extracts from untreated and IL-1fl-stlmulated U373MG astrocytoma, 
and from untreated and TNFa-stlmulated SK-N-SH and SK-N-MC 
neuroblastoma cells, designated - and +. B, Indicates specific complex 
formation; B ' putative specific complex, see text; net to 2, non-specific 
complexes; F, free probe. B. Competition analysis with excess 
unlabelled Site B oligonucleotide and extracts from U373MQ cells. 0, 
no competition; x50-fold molar excess of unlabelled Site B 
oligonucleotide.
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9.5. G«l retardation assays with oligonuclsotidss containing othar 

sequences from the HIV-1 LTR

9.5.1. Nuclear protein interactions with 5C159 and 159 oligonucleotides

Oligonucleotide 5C159 contained complementary sequence to the HIV-1 

LTR from position -261 to -240, that was shown by DNAse I footprinting analysis 

(Chapter 8, Section 8.1.2) to contain a small region, from -249 to -243, protected by 

nuclear protein(s) in extracts from G26-24 oligodendroglioma and SK-N-MC 

neuroblastoma cells.

Oligonucleotide 5C159 was used as a probe to detect any similar binding 

activity in U373MG astrocytoma and SK-N-SH neuroblastoma cells, as well as 

SK-N-MC, in the gel retardation assays shown in Figure 9.5. In an initial experiment 

titrating the amount of poly (dI:dC)-(dI:dC) competitor required using extracts from 

both unstimulated neuroblastoma cells, two complexes were noted in assays 

performed in the presence of 0.1 to 0.5 Mg of poly (dI:dC)-(dI:dC) competitor which 

were of similar mobilities in either cell line. Figure 9.5. A, illustrates binding to the 

5C159 probe with 0.3 ng  and 0.4 Mg of poly (dI:dC)-(dI:dC). From this assay the 

slower migrating and relatively faint complex, marked 5C in the figure, was 

suggested to be specific because as the concentration of poly (dI:dC)-(dI:dC) was 

increased the faster migrating complex (ns2) began to decrease in intensity, an effect 

noted across the range of poly (dI:dC)-(dI:dC) concentrations from 0.1 to 0.5 Mg 

(not shown). The higher concentration of competitor was able to bind more 

non-specific activity but did not alter the intensity of the 5C complex suggesting it to 

be specific. Oligonucleotide competition shown in Figure 9.5. B, with nuclear 

extracts from unstimulated SK-N-MC cells and a 50- or 500-fold excess of unlabelled 

5C159 was not successful in further identifying complex 1 as sequence-specific 

because at the lower concentration no complexes were competed away and at the 

higher concentration both complexes 1 and 2 were removed. Complex 2 appeared
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analogous to ns2 in Figure 9.5. A, which was suggested to be non-specific. A third 

quickly migrating complex not found in Figure 9.5. A, could, however, be identified 

as non-specific.

Comparison of protein-DNA complex formation to probe 5C159 with 

extracts from TNFa-stimulated SK-N-MC cells did not reveal any changes compared 

to those described above for unstimulated cells, SK-N-SH cells were not examined 

(results not shown).

A second oligonucleotide to a region of the HIV-1 LTR suggested to perhaps 

weakly interact with nuclear factors by DNAse I footprinting (Chapter 8, 

Section 8.1.2) was also examined in gel retardation assays. Oligonucleotide 159 

contains sequences from -249 to -219 in a region that has been described previously 

by Shaw etal. (1988) to bind the inducible transcription factor NFAT-1 found in 

mitogen-stimulated T lymphocytes.

In gel retardation assays performed with extracts from unstimulated 

SK-N-MC neuroblastoma cells, two faint complexes of different mobilities were 

formed with radiolabelled 159 oligonucleotide probe (Figure 9.5. B). Unfortunately 

the correct level of oligonucleotide competition that would abolish either complex 

individually was not found (Figure 9.5. B. Tracks 4, 5 and 6), and neither complex 

could be identified as sequence-specific. However, when nuclear factor binding to 

oligonucleotide 159 was compared in equal amounts of extract from unstimulated or 

TNFa-treated SK-N-MC cells, a similar pattern of complexes to that illustrated in 

Figure 9.5. B was observed and there was no differences with extracts from 

cytokine-stimulated cells (results not shown).

Oligonucleotides 5C159 and 159 were also used to assay for any similar 

DNA-binding activity in extracts from unstimulated and IL-1̂ 1-treated U373MG 

astrocytoma cells. In gel retardation assays with oligonucleotide probe 159 three 

complexes, marked 1,2 and nsl, were observed with extracts from both unstimulated 

and IL-l/J-treated U373MG cells (Figure 9.5. C. Tracks 1 and 7). Competition with
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excess unlabelled probe indicated that complex nsl was non-specific but complexes 

1 and 2 could not be identified as sequence-specific as oligonucleotide competition 

with excess unlabelled 159 abolished both of the slower migrating complexes 

(Tracks 2 and 8). An indication of the lack of sequence specificity in factors forming 

complex 2 in Figure 9.5. C, was given by the ability of competition with a similar 

unlabelled excess of oligonucleotide 5C159 to reduce the intensity of complex 2 and 

dissociate factors forming this complex, such that an additional complex of higher 

mobility was also observed below complex 2 and the non-specific complex nsl 

became larger and more intense. Excess unlabelled 5C159 did not affect complex 1 

which was therefore suggested to be specific (Tracks 6 and 12). Complex 1 formed 

with oligonucleotide 159 was quite broad and not sharply defined and this also 

implied that a number of proteins may recognize these sequences in extracts from 

U373MG cells. No cytokine-inducible factors were identified.

Gel retardation assays with oligonucleotide probe 5C159 and extracts from 

unstimulated and IL-10-treated U373MG cells also formed a pattern of three 

complexes (Figure 9.5. C, Tracks 3 and 9). The complex with the highest mobility 

was judged to arise from non-specific interactions from the competition with excess 

unlabelled oligonucleotide (Figure 9.5. C. Tracks 4 and 10). Competition also 

abolished the two upper complexes and an identification of any sequence-specific 

binding could not be made. Although in keeping with the result from SK-N-MC cells 

the treatment of U373MG cells with IL-l/S did not alter the formation of 

nucleo-protein complexes with probe 5C159.

The sequences contained in oligonucleotides 5C159 and 159 overlap by 

9 nucleotides such that both probes contain the sequence from -249 to -243, the 

GTI-related motif described in Chapter 8 to be protected from DNAse I digestion 

with SK-N-MC and G26-24 nuclear proteins in footprinting analysis. Therefore 

reciprocal competition experiments with these oligonucleotides were performed 

with extracts from unstimulated or IL-l/3-treated U373MG cells to evaluate if the
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same protein factors were interacting with each probe via the sequences common to 

them. As already mentioned, competition of complex formation to oligonucleotide 

159 by excess unlabelled 5C1S9 oligonucleotide did not affect the intensity of the 

slowest migrating complex 1 which itself was suggestive of a specific interaction 

(Figure 9.5. C. Tracks 6 and 12) but the reverse; radiolabelled SC159 competed with 

excess unlabelled 159, prevented proteins forming complexes with 5C159 (Tracks 5 

and 11) as effectively as the equivalent amount of unlabelled 5C159 probe. This 

indicated that the factors interacting with oligonucleotide probe 159 may be distinct 

from 5C159, at least in U373MG cells, and that those forming complexes with 5C159 

were either bound via the sequences common between the two oligonucleotides, the 

GTI-related motif or weak, probably non-specific, interactions.
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Discussion

Sequence-specific DNA-binding activities and the HIV-1 LTR

The analysis of the DNA-binding factors present in nuclear extracts reliably 

demonstrated that in astrocytoma and neuroblastoma cell lines there was a 

constitutive Spl-like DNA-binding activity, and a cytokine-inducible NFicB-like 

activity after stimulation of astrocytoma cells with IL-1/1 and neuroblastoma cells 

with TNFa. Other DNA-binding factors reported in Chapters 7 and 8 to interact 

with the Site A and Site B elements of the HIV-1 LTR were not always detected by 

the use of complementary radiolabelled oligonucleotide probes in gel retardation 

assays, and Site B activity was confirmed only in U373MG astrocytoma cells and 

Site A in G26-24 oligodendroglioma cells. Nuclear protein binding to an 

oligonucleotide complementary to HIV-1 LTR sequences containing the 

GTI-related motif was detected in the other neural cell lines U373MG and 

SK-N-SH, as well as the neuroblastoma SK-N-MC. The specificity of this interaction 

was suggested by competition with increasing poly (dI:dC)-(dI:dC) competitor in 

neuroblastoma but not astrocytoma cells. The interaction of constitutive 

sequence-specific factors with another oligonucleotide probe containing sequences 

complementary to GTI-related motif and sequences reported to bind the T cell 

inducible transcription factor, NFAT-1 (Shaw et al., 1988) was also suggested by the 

gel retardation assays with U373MG extracts but could not be conclusively 

demonstrated. However, no cytokine-inducible DNA-binding activities other those 

recognizing the enhancer of NFkB motifs were found to operate in neural cells.

NFkB  DNA-binding activity

An oligonucleotide probe containing the two NFkB sites of the HIV-1 

enhancer interacted with sequence-specific nuclear proteins to form two retarded 

complexes of slightly different mobilities. Comparison with similar gel retardation
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assays performed with nuclear extracts from T lymphoblastoma cells after 

stimulation with mitogens or TNFa, and using an identical enhancer probe, also 

demonstrated the formation of two closely migrating specific complexes essentially 

the same as those observed here with neural cell extracts (Franza et al., 1987; 

Bohnlein et a!., 1988; Osborn et al., 1989; Schmidt et a!., 1990). Such complexes 

appear characteristic of the inducible DNA-binding activity that recognizes the 

HIV-1 enhancer and whether each complex represents single and double occupancy 

of the NFkB sites by exactly the same protein factors is unclear but studies by 

UV-crosslinking (Molitor et al., 1990; Hansen et al., 1992), microscale DNA-affinity 

precipitation technique (Franza et al., 1987) and direct cloning (Bours et al., 1992) 

have demonstrated up to four related polypeptides which form these inducible 

complexes in T lymphoblastoma cells. Identification of the NFxB-like factors 

induced in neural cells could most easily be achieved by the use of specific antiserum 

to members of the NFkB and c-rel family of proteins to produce a 'super-shift' or 

inhibit binding in gel retardation assays.

The detection of an enhancer-binding activity was always in the form of two 

complexes and these were never observed in nuclear extracts from unstimulated 

cells. A minimum of two independent preparations of nuclear extracts from 

unstimulated and cells stimulated with the respective cytokine were examined by this 

technique and despite the precaution of adding additional GTP or spermidine, 

NFuB-like proteins capable of binding DNA were not detected in nuclear extracts 

from unstimulated cells. The fact that these two molecules also did not appear to 

stimulate greatly the binding of NFxB-like factors to the probe DNA either suggests 

that close to maximum DNA-binding was seen in the assays preformed or that GTP 

and spermidine cannot stimulate DNA-binding of these factors from neural cells. No 

distinction can be made on the basis of the experiments carried out here. In 

experiments reported by Lenardo etal. (1989) GTP or spermidine considerably 

enhanced binding of NFkB to its recognition site.



Chapter 9 2*3

Spl-like DNA-binding activity

The gel retardation assays performed the Spl oligonucleotide probe further 

supported results obtained from gel retardation assays with LTR restriction 

fragments as probes and DNAse 1 footprinting experiments on the constitutive 

nature of this DNA-binding activity. A single high-affinity Spl binding site was used 

as the probe to maximize the detection of Spl-like factors and to simplify the 

interpretation of the complexes formed in gel retardation assays over the use of an 

oligonucleotide containing all three Spl sites present in the HIV-1 LTR (Jones etal., 

1986). Mutational analysis carried out by Harrich etal. (1989) showed that the high 

affinity consensus sequence probe will bind transcriptionally active Spl in the 

context of the HIV-1 LTR.

Site A - and Site B- binding activity

The ability of the complementary oligonucleotides to Site A and Site B to 

bind related factors found in neural cells was demonstrated earlier in Chapter 7 by 

the use of excess unlabelled oligonucleotide to compete away the corresponding 

protein-DNA complexes formed with the HIV-1 LTR probe 194. However, except 

for Site A-like activity in G26-24 cells and Site B-like activity in U373MG cells these 

factors were undetectable when radiolabelled oligonucleotides were used as probes. 

These DNA-binding factors appear to interact with oligonucleotide probes at lower 

affinity than when their recognition site is present in a DNA fragment and the 

difference emphasizes the importance of examining both the individual 

protein-binding motifs in the form of oligonucleotides and restriction fragments. A 

number of factors could influence this interaction but it is not likely to be due to a 

requirement for cooperative binding of Site A and Site B to their respective sites in 

the HIV-1 LTR because a complex that corresponded to both activities bound to the 

LTR was never observed in gel retardation assays (Chapter 7). Indeed the data of 

Orchard et ai. (1990) similarly implies that binding of either Site A or Site B factors



is enhanced in the absence of the other. One explanation for the differential binding 

of these factors to oligonucleotide and restriction fragment probes may lie in the 

recently confirmed ability of transcriptional factors to bend their cognate DNA on 

binding, such that the target DNA bends by about 90° around the protein factors 

(Lilley, 1991). Were the additional sequences to further stabilize the protein-DNA 

interaction this would provide one mechanism to account for the observed 

difference in binding independent of the sequence of the binding site.

The interaction of Site B-binding activity from U373MG astrocytoma cells 

demonstrated that at least when factors were more abundant (estimated from the 

gel retardation assays with LTR probe 194 in Chapter 7) the corresponding 

radiolabelled oligonucleotide probe could detect substantial binding. In the 

neuroblastoma cells less Site B-specific activity was present when assayed with LTR 

probe 194 and subsequently none was detected with the oligonucleotide probe. The 

heterogeneity in the protein factors present in U373MG extracts for Site B is 

supported by the existence of multiple COUP-TF proteins of at least three different 

molecular weights, which were shown by Cooney et al. (1991) to bind to Site B. The 

authors describe low Mr COUP-TFs of 46,000 and 47,000 daltons and high Mr forms 

of 68,000 daltons, although the high Mr form predominates in T cells and was shown 

to interact strongly with Site B. Unpublished data from Orchard et al. presented at 

the 1991 MRC AIDS directed programme meeting indicated that the Site B*binding 

factors purified from T cells have molecular weights of 97,000 to 10S.000 daltons by 

UV-crosslinking and gel renaturation experiments. This suggest that there are a 

number of factors present in the same cell line (both groups examined the 

T  lymphoblastoma Jurkat) that will bind to this recognition site.

Site A-binding activity has not yet received similar attention from other 

research groups but data presented in Chapter 7, demonstrating two Site A specific 

complexes, suggests proteins of two molecular weights or one or more factors that 

have different conformations. Unfortunately these were not sufficiently abundant to
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be reliably detected with a Site A oligonucleotide probe, although if the two 

complexes observed between the Site A probe and SK-N-SH nuclear extracts were 

sequence-specific then this would be in agreement with earlier results. The finding 

of a very broad complex between G26-24 oligodendroglioma extracts and the Site A 

probe indicates that in this cell line there are multiple factors capable of recognizing 

the binding motif.

DNA-binding activities that interact with the neural cell specific GTI-related motif and 

the putative NFAT-1 binding site

Gel retardation assays with oligonucleotide 5C159 further indicated that the 

GTI-related motif bound a sequence-specific nuclear factor or factors found in 

neuroblastoma cells and, by comparison of the gel retardation assays performed, a 

similar factor may also be present in astrocytoma cells. The gel retardation assays 

reported in Chapter 7 with LTR probe 159 demonstrated the formation of one 

major protein-DNA complex that was certainly due to factors recognizing the 

octamer-like motif, although assays with U373MG cells did infrequently detect 

another faint complex of higher mobility (see Chapter 7, Figure 7.9). However, 

experiments to investigate if this additional complex with LTR probe 159 was due to 

protein factors interacting with GTI-related motif were not performed.

The binding of nuclear factors to oligonucleotide 159 was inconclusive except 

for experiments with U373MG cells where the data indicated that some factors may 

specifically interact and were distinct from factors recognizing the GTI-related 

motif. Moreover, the use of oligonucleotide probe 159 to detect inducible protein 

factors that potentially interact with the NFAT-1 domain (Shaw etal., 1988) 

indicated that none were present in extracts from cytokine-stimulated U373MG and 

SK-N-MC cells. A result consistent with there being no additional protein-DNA 

complexes formed between LTR probe 159 and extracts from all three cytokine-
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Cytokine augmentation o f HIV-1 gene expression

The regulation of HIV-1 LTR-driven reporter gene expression by cytokines 

in neural cells described in this thesis provides evidence to indicate that expression 

of HIV-1 in these cells may also respond to the activation signals delivered by 

similar cytokines. This assumption parallels the situation reported previously in 

T  lymphocyte» (Israel etal., 1989; Okamoto etal., 1989; Osborn etal., 1989) and 

monocytic cells (Stanley etal., 1990) where similar augmentation of LTR-driven 

expression by cytokines corresponded to a like augmentation of HIV-1 replication 

(Matsuyama etal., 1989a; Poli etal., 1990a; Rosenberg and Fauci, 1990). In human 

neural cells, fom to«. ¡s most relevant to the AIDS dementia complex

(ADC), TNFa was capable of augmenting significantly expression from the LTR in 

neuronal and glial cell lines. Similarly IL-10 augmented expression in glial cell lines.

This is supported by the results of Tomatore et al. (1991) who demonstrated 

that TNFa and IL-10 also induced productive HIV-1 replication in latently infected 

primary human foetal astroglial cells, particularly in those cells positive for glial 

fibrillary acidic protein and morphologically resembling astrocytes. These data 

provided by Tomatore etal. (1991) complement the use of molecular techniques 

in vitro described here and suggests that results obtained from LTR-driven reporter 

gene assays may parallel the expected response of a quiescent HIV-1 provirus in 

neural cells. The response of the human astrocytoma and glioblastoma cells most 

closely modelled that of primary glial cells infected with HIV-1, whereas primary 

murine astrocyte cultures, also investigated here, did not. The additional response of 

LTR-directed gene expression to IFN7 and IL-6 in these cells implied a role for 

these cytokines in the induction of HIV-1 replication that was not supported by the 

equivalent primary human cell culture (Tomatore etal., 1991) and indicates that
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transfected or infected murine neural cells will not provide a suitable model for the 

study of the control of HIV-1 gene expression.

In contrast there have been no previous studies with primary neuronal cells 

parallel to those of Tomatore eta/. (1991) to define the signals that lead to the 

induction or augmentation of HIV-1 replication. However, from the function of 

TNFa on HIV-1 replication in infected lymphocytes (Matsuyama eta/., 1989a), 

monocytes (Poli et a/., 1990a) and foetal glial cells (Tomatore et a/., 1991) it is likely 

that this cytokine similarly regulates virus expression in infected neuroblastoma cells 

and by analogy, neurons. And this is implied by my results. There is evidence to 

indicate that neurons respond to IL-l/J, and perhaps IL-1/9 may stimulate the HIV-1 

LTR with a comparable effect to TNFa. Studies show that normal brain 

demonstrates immunocytochemical staining for IL-1 associated with neurons and a 

subpopulation of neurons have been noted to stain for IL-1 receptors (Hofman, 

1989). Furthermore, experiments indicate that IL-1 is a trophic factor for certain 

neurons in which somatostatin acts as a neurotransmitter (Scarborough et a/., 1989).

The augmentation of HIV-1 LTR-driven gene expression in astrocytoma and 

glioblastoma cells by TNF or IL-1/3 was not additive to the stimulation achieved by 

co-expression of the HIV-1 transactivator protein Tat. Similar results were obtained 

from transfection of a permanent murine oligodendroglioma cell line expressing tat 

and the subsequent stimulation with TNFa and IFN?. This suggests that activating 

cytokines would not enhance the rate of HIV-1 replication in an infected cell once 

active virus production had begun and rather that they function primarily as a signal 

to induce latent HIV-1. In the neuroblastoma cell line SK-N-MC, cytokines may 

operate as the initial cellular stimuli for the activation of HIV but results suggest 

that they would also perpetuate viral replication.

Activation of HIV-1 gene expression in neural cells was investigated from the 

aspect of cytokine control in relation to the strong association between the state of 

virus expression and immunological response mechanisms. It would be interesting to
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investigate whether other signals involved in the neurological functions of astrocytes 

and neuronal cells, such as the many neuro-active chemicals and peptides that 

astrocytes and neurons synthesize and are responsive to, also regulate either the 

latent or activated state of HIV-1. Some of these compounds, such as signals from 

^-adrenergic receptors (Melner et al., 1990) and VIP (Tseng and O’Dorisio, 1989) to 

astrocytes, induce a cAMP-dependent PKA pathway of signal transduction and 

would therefore not be expected to modulate expression from the HIV-1 LTR (Paya 

et al., 1991). Additional signalling pathways could operate in an analogous way to 

the stimulation of HIV-1 expression through cell surface antigens expressed on 

lymphocytes (Tong-Starksen et al., 1989; Gruters et al., 1991). One of these 

molecules capable of weakly activating the HIV-1 LTR, CD44, is found also on the 

surface of astrocytes in human brain and expression is increased during reactive 

gliosis (Girgrah et al., 1991).

Modulation o f viral transcription by specific DNA-binding protein interactions with the 

HIV-1 LTR

The augmentation of HIV-1 LTR-driven gene expression by TNFa and VLrXfi 

in neuroblastoma and astrocytoma cells was found to correlate with the induction of 

transcription factors specific for the HIV-1 enhancer. These protein factors were 

rapidly inducible, within 1 to 2 hrs following cytokine stimulation, and recognized 

the consensus but not mutant NFkB sequences. Although no experiments were 

performed to determine the direct effect of such proteins on transcription driven by 

the HIV-1 LTR there is substantial evidence (see Chapter 1, Section 1.5 J .  iv) to 

suggest that such proteins enable TNFa and IL-1/3 to augment HIV-1 LTR-driven 

gene expression in astrocytoma and neuroblastoma cells.

Confirmation that the induction of proteins specific for the NFicB motifs will 

also augment viral replication through enhanced transcription from the LTR would 

require further experiments involving the manipulation of whole virus. This has been
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examined previously in a lymphocytic cell line (Lu era/., 1991). Deletion of the 

NFkB sites from a HIV-1 proviral clone and transfection into unstimulated or 

PMA-treated lymphoblastoma cells indicate that in unstimulated cells the NFkB 

sites are not obligatory for viral growth but are important for augmented replication 

in activated lymphocytes (Lu etal., 1991). Both the NFAT-1 and NFkB motifs were 

found to mediate this effect, yet deletion of either site resulted in higher levels of 

virus production in activated cells than wild type virus and to a much greater extent 

with an NFAT-l-deleted provirus (Lu etal., 1991). Only deletion of both sites 

resulted in reduced viral replication (Lu etal., 1991). Moreover the authors 

presented data to suggest that the NFAT-1 motif interacts with the same 

PMA-inducible proteins that recognize the NFkB sites (Lu et al., 1991). The use of 

two distinct motifs in the LTR by enhancer-binding factors was not observed in 

astrocytoma and neuroblastoma cells.

The investigation of the DNA-binding proteins in neural cells was restricted 

to one time point following cytokine stimulation (for reasons of available time) even 

though the effect of TNFa and IL-1/9 on protein expression was determined after 22- 

24 hrs stimulation when reporter gene activity was maximal (data for this is not 

shown). Therefore it is possible that other protein factor(s) specific for sequences 

within the HIV-1 LTR were induced later during the course of reporter gene 

expression and these may modulate the effects of cytokines. It may be anticipated 

that transcription factors which require protein synthesis, unlike the NFkB /re/ 

family, would not be detected a short time after cytokine stimulation. The inducible 

transcription factor NFAT-1, associated with enhanced HIV-1 expression in 

lymphocytes (Shaw etal., 1988; Siekevitz etal., 1987), is detected in these cells 

within 30 min of stimulation and levels peak after 1 to 2 hrs (Hivroz-Burgaud et al., 

1991). Therefore if a similar factor requiring protein synthesis had been present in 

neural cells following cytokine stimulation it would have been detected in the assays 

performed, assuming it followed similar kinetics of induction.
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A further inducible factor suggested to interact with the HIV-1 LTR is AP-1, 

which is similar to the NFkB/re/ proteins in that it does not require protein synthesis 

and is rapidly activated by agents such as phorbol ester (Franza et al., 1988). There is 

evidence to suggest that this factor is induced in lymphocytes following physiological 

activation (Crabtree, 1989) but no indication that it plays an important role in the 

induction of HIV-1 gene expression (see Chapter 1, Section 1.53. iv). In nuclear 

extracts from neural cells no changes were noted in the mobility or number of 

protein-DNA complexes formed between Site B/AP-1 sequences present in the 

HIV-1 LTR (see Figure 1.2) after cytokine stimulation. It is interesting to speculate 

whether, following recent reports, a competitive interaction also exists between AP-1 

and the steroid hormone-like receptor factors that interact with Site B, such that 

Site B-factors repress activation mediated by AP-1 proteins and prevent the 

formation of an active AP-1 complex. This would be similar to a novel mechanism 

described for the regulation of collagenase and AP-1-dependent promoters where 

ligand-bound retinoic acid receptors inactivate AP-1 complexes and suppress 

expression (Desbois etal., 1991). This process requires the hormone receptor to be 

competent in binding its cognate DNA target, a property which Site B or COUP-TF 

molecules are thought to possess in the absence of a known ligand (Wang etal., 

1989). In the chicken ovalalbumin promoter COUP-TF activates transcription in 

conjunction with a second protein, S300-II, and it is possible that either no ligand is 

necessary or additional protein(s) replace the usual ligand-receptor interaction in 

this class of steroid hormone receptor-like molecules (Wang et al., 1989).

There are now known to be many proteins that recognize the NFkB sequence 

motif, forming a growing family of transcriptional activators with the majority of 

these protein related to the proto-oncogene product c-Rel which bind DNA as 

heterodimers or pairs of heterodimers (Baeuerle, 1991; Bours etal., 1992; Ryseck 

etal., 1992; Hansen etal., 1992; Muchardt etal., 1992). Data relating to the 

identification of nuclear factors specific for the NFkB binding site induced in



lymphocytes following PMA stimulation indicates that the polypeptides contributing 

to these protein-DNA complexes also change with time following stimulation 

(Molitor el al., 1990). UV-crosslinking experiments demonstrated that proteins of 

different molecular weights exhibit bi-phasic kinetics of induction; a complex 

analogous to NFkB (containing p65 and pSO or pSOB) is translocated to the nucleus 

within 20 min, whereas a second, additional complex consisting of proteins similar to 

p50 or p50B and c-re/ [p85] (Schmid etal., 1991) is induced after stimulation for 

16 hrs (Molitor el al., 1990). Therefore the NFkB and c-rel containing transcription 

complexes appear to be subject to differential regulation in human lymphocytes and 

a similar phenomenon may occur on NFkB motifs located in other promoters in 

different human cell lines (Hansen et al., 1992). Therefore the nuclear protein assays 

performed on neural cells may not have detected all the inducible complexes 

specific for NFkB sequences. In addition, a brain-specific transcriptional activator 

recognizing the NFkB motif has been identified in neurons and astrocytes of rat grey 

matter. The relationship of this factor to NFkB and rel has not been precisely 

determined but in preliminary experiments it appeared distinct from NFkB (Komer 

etal., 1989) and certain similarities with the data of Molitor et al., (1990) suggest it 

may represent a protein equivalent to c-rel.

The identity of the nuclear factors recognizing the HIV-1 enhancer may also 

hold the explanation for the lack of synergism between activating cytokines and Tat 

in the augmentation of LTR-driven gene expression in most neural cell lines. The 

idea that Tat-transactivation may become saturated in neural cells by the additional 

mRNA initiated due to the (presumed) actions of NFaB-like factors on the HIV-1 

LTR may be possible (see Chapter 5, discussion). Recent experiments point to a 

more complex interaction between Tat and the transcriptional machinery and show 

that although c-rel transactivates HIV-1 LTR-driven reporter gene expression up to 

15-fold in hepatoma cells, it does not add to the transactivation effect of Tat 

(Muchardt et al., 1992).
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In addition to inducible enhancer-binding factors, neural cell lines also 

expressed several constitutive DNA-binding activities which bound to other 

elements located in the negative regulatory element of the LTR. Potentially 

interactions from Site B, the octamer and GTlr-binding factors may contribute to 

any negative influence this region of the LTR is likely to have on HIV-1 LTR-driven 

gene expression and viral replication in neural cells. No DNA-binding activity 

corresponding to the USF factor, responsible for a  considerable proportion of the 

effect of the NRE on viral replication (Lu etal., 1991) and gene expression (Giacca 

etal., 1992) could be identified for technical reasons. However, constitutive 

sequence-specific factors may interact with the NFAT-1 region in astrocytoma and 

SK-N-MC neuroblastoma cells and this region is known to confer an additional 

significant negative influence on HIV-1 replication in unstimulated lymphoblastoma 

cells (Lueta l., 1991).

Octamer-binding factors are present in many cell types including those of 

lymphoid origin (Sive and Roeder, 1986) but it has not previously been reported that 

the octamer site in the HIV-1 LTR can be protected by nuclear factors, as my data 

demonstrate. The identity of the factor(s) responsible was not pursued but several 

octamer-binding proteins, including one identical to the lymphoid specific factor 

Oct-2, have been identified in brain extracts and a  glioma cell line (Komer et at., 

1989). No additional information was found on the other neural specific 

DNA-binding activity, GTIr, although the related motif in SV40 is known to bind a 

number of constitutive or cell-specific factors including an Spl-like molecule 

(La Thangue and Rigby, 1988).

The functions of the other sequence-specific DNA-binding activities, Spl and 

LBP-1, observed in neural cells, by analogy with other systems, could contribute to 

the basal level of expression from the HIV-1 LTR (Waterman et at., 1991a). The 

interaction of these factors, predominantly Spl, with the LTR is required for
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efficient viral replication in both lymphocytic and monocytic cell lines (Gaynor, 

1991; Parrot era/., 1991).

Cytokines and the AIDS dementia complex

Fragmentary evidence is beginning to accumulate consistent with the 

pathological findings observed in the CNS tissue of those suffering symptoms of the 

AIDS dementia complex supporting the proposal that neural cell infection by HIV 

may have a direct role in the pathogenesis of ADC. The low frequency of HIV 

detection in neural cells in vivo is not explained by an intrinsic resistance of neural 

cell lines and primary neural cells to HIV-1 infection in vitro (Cheng-Mayer and 

Levy, 1990). Moreover, the infection of primary brain cell cultures results in a 

persistent, latent infection in which viral replication and HIV-1 antigen expression is 

absent (Tomatore etal., 1991) or restricted (Christofinis et al., 1987; Rytik etal., 

1991). Along with the discovery of mechanisms that lead to the induction of HIV-1 

gene expression and replication (Tomatore etal., 1991) in neural cells, all of these 

findings suggest that HIV-1 may not be detected by immunocytochemistry or in situ 

hybridization for mRNA in resident neural cells unless activated by interactions with 

immune cells or through cytokines. The examination of brain explants from AIDS 

and ADC patients by dual labelling immunocytochemistry after culturing in the 

presence of TNFa or IL-1/9 may provide confirmation of the true extent of neural 

cell involvement in HIV-1 infection.

Furthermore, the importance of cytokines in ADC is indicated by the finding 

that the levels of IL-1/3, TNFa and IL-6 are elevated in the CSF of patients suffering 

symptoms of ADC: in four out of five patients, IL-l/J and IL-6 were detected in CSF 

samples, although in this study TNFa was not found (Gallo etal., 1989), and 

Grimaldi et al. (1991) reported TNFa to be elevated to more than twice the level in 

plasma in the CSF of 15 out of 19 patients in the later stages of HIV-1 disease and 

suffering neurological symptoms of ADC. The levels of TNFa in CSF were
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comparable with that necessary to augment HIV-1 replication in lymphocytes (Ito 

et al., 1989; Matsuyama et al., 1989a) and at a 1 U/ml would transactivate expression 

significantly from the LTR in several neural cell lines. The measurement of cytokine 

concentrations in the CSF may not accurately reflect the levels in the CNS 

parenchyma, as demonstrated by the high levels of TNFa on the surface of 

astrocytes and macrophages in patients with multiple sclerosis, without significant 

levels in the CSF (Franciotta et al., 1989; Hofman, 1989). Cell-associated TNFa will 

also augment HIV-1 LTR-driven gene expression (Tadmori et a!., 1991).

The production of cytokines within the CNS may arise from infiltrating 

immunologically competent lymphoid and myeloid cells (Hamblin, 1988) and 

endogenous cells of the CNS (see Chapter 1, Section 1.6.2). In addition, HIV-1 gene 

products, envelope gpl20 and the precursor gpl60 will induce IL-6 production from 

CD4+ T lymphocyte (Oyaizu etal., 1991) and IL-10, IL-6 and prostaglandin 

secretion from mononuclear cells (Meltzer etal., 1990b). Whether envelope 

products will have a similar effect on cytokine production by microglial or astrocyte 

cells is at present under investigation in the laboratory of Dr. Jean Merrill 

(■Department of Neurology, University of California, Los Angeles). In addition, 

macrophages have receptors for a number of neuropeptides which can induce the 

secretion of oxygen metabolites (Goetzl et al., 1989) and the cytokines IL-10, TNFa 

and IL-6 (Lotz et al., 1988), several or all of which can augment HIV-1 replication in 

macrophages, lymphocytes and glial cells (Ito et a!., 1989; Matsuyama et al., 1989a; 

Matsuyama et al., 1989b; Poli et al., 1990a; Tomatore et al., 1991).

In conclusion, the evidence I have presented here implies that (as with 

lymphoid and myeloid cells) cytokines, particularly TNFa and IL-10, may positively 

influence the levels of expression from the HIV-1 LTR in infected neural cells. 

Furthermore these cytokines may function as a signal to induce expression from 

latent proviral genomes and initiate productive replication within the central 

nervous system.
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Appendix A: List of Suppliers

Advanced Protein Products, Unit 18H, Premier Partnership 
Estate, Lews Road, Brierly Hill, West Midlands DYS 3UP. 

Foetal calf serum.

American Type Culture Collection (ATCC), Rockville, Maryland, USA. 
Cell lines SK-N-SH and SK-N-MC.

Amersham International pic., Aylesbury, Buckinghamshire, UK.
Goat anti-mouse Ig biotin conjugated antibody, human placental RNAse 
inhibitor, phycoerythrin/streptavidin immunocytochemical reagent, J^P 
Radioisotopes, restriction enzymes.

BDH Laboratory Supplies Limited, Fourways, Carlyon Industrial Estate, 
Atherstone, Warwickshire, CV9 1JG.

General chemicals.

Bio-Rad Laboratories limited, Caxton Way, Watford Business Park, Watford, 
Hertfordshire WD1 8RP.

Protein assay reagent.

Boehringer Mannheim (Diagnostics & Biochemicals) Limited, Bell Lane, Lewes, 
East Sussex, BN7 1LG.

Calf intestinal alkaline phosphatase, E.coli tRNA, restriction enzymes.

British Biotechnology Limited, Watlington Road, Cowley, Oxford. 0X 4 5LY. 
Recombinant human IL-l/f.

Camlab limited. Nuffield Road, Cambridge. CB4 1TH.
Phenol and phenol/chloroform.

Chiron Corooration, The Biocine Company, 4560, Horton Street, Emeryville, 
California 94608, USA.

HIV-1 molecular clone pARV2x7A.

Costar UK Ltd., Victoria House, 28-38, Desborough Street, High Wycombe, Bucks. 
Cell-freezing vials and tissue culture flasks.

Dako Ltd., 16, Manor Courtyard, Hughenden Avenue, High Wycombe, Bucks, 
HP13 5RE.

Rabbit anti-cow glial fibrillary acidic protein antibody.

Difco Laboratories,
Bacto-agar and Bacto-tryptone.

Du Pont (UK) limited. Biotechnology Systems Division, NEN Research Products, 
Wedgewood Way, Stevenage, Hertfordshire, SGI 4QN.

•’H-acetyl Coenzyme A and Econofluor scintillation fluid.

Eastman Kodak limited, Acomfield Road, Knowsley Industrial Park North, 
Liverpool L33 7UF.

135 mm transparency and print film. X-ray developer and fixative, 
photographic paper kodabrome F2RC.
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Fisons Limited, Bishop Meadow Road, Loughborough, Leicestershire LE11 ORG. 
Acrylamide, Butan-l-ol, chloroform, diethyl ether, dimethyl sulphoxide, 
iso-amyl alcohol, N'N-methylene bis-acrylamide.

Fluka AG, CH-9470, Buchs.
Hydrazine.

Fuji Photo Film Company (UK) Ltd, 125, Finchley Road, London.
X-ray film.

Genzyme, 75, Kneeland Street, Boston, Massachusets, MA 02111 USA.
Polyclonal anti-serum to murine TNFa, recombinant human TNFa and 
recombinant human IL-6.

Gibco-BRl, PO Box 35, Trident House, Renfrew Road, Paisley, PA3 4EF Scotland. 
DNAse 1 ,1 kb DNA ladder, trypsin-EDTA, glutamine, 
penicillin/streptomycin, modification and restriction enzymes.

HT Biotechnology Ltd., Unit 4,61, Ditton Walk, Cambridge.
Ribonucléase protection assay kit (Ambion Inc.).

Life Sciences Inc., 2900,72nt* Street North, St. Petersberg, Florida, USA.
AMV reverse transcriptase.

May and Baker Ltd, Ecdes, Manchester.
Acetic and formic acid.

Medical Research Council AIDS Reagent Project, National Institute for Biological 
Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts, EN63QG. 

ATCC Cell lines glioblastoma U 138MG and astrocytoma U373MG and 
HIV-1 molecular clone pBH10AR3.

Pharmacia Biosystems limited. Biotechnology Division, Davy Avenue, Knowlhill, 
Central Milton Keynes, MK5 8PH.

Plasmids pSVL and pCHl 10, poly (dI:dC)-(dI:dC), restriction enzymes.

Polaroid (UK) Ltd., Ashley Road, St. Albans, Herts.
Type 55 land film.

Prolabo, 12, rue Pelée, F70511, Paris, France.
Glycerol.

Promega (UK) limited. Epsilon House, Enterprise Road, Chilworth Research 
Centre, Southampton SOI 7NS.

Modification enzymes, RNAse-free DNAse I, TFIID and CTF/NF1 
consensus sequence oligonucleotides.

Sigma Chemical Company Ltd, Fancy Road, Poole, Dorset BH17 7TG.
Agarose, ampicillin, 5'-azacytidine, CAT enzyme, chloramphenicol, 
chloroauine, DEAE-dextran, DMEM, ethidium bromide, Ficoll, goat anti- 
rabbit Ig FTFC antibody, Genetidn, Hepes buffer/^), natural murine IFNa0, 
PMA, protease inhibitors: pepstatin A, leupeptin, antipain and PMSF.

Stratagene limited, Cambridge Innovation Centre, Cambridge Science Park, Milton 
Road, Cambridge, CB4 4GF7

Plasmids pBSII-KS +, pS V2CAT and pWLneo.
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