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Summary

The research described in this dissertation centres on the application ofa discipline
of formal methods in railway signalling system design. A generic abstract model of
railway track networks and signals has been developed in Higher-Order Logic(HOL).
It consists of several theories arranged in a hierarchy. Railway track networks are
modelled by a class of constraint labelled directed graphs. HOL theories of graphs
and paths have been developed for representing track networks. HOL theories mod-
elling individual track components and signals have also been developed. These
theories are then combined to create a theory of track network.

Three applications of this model are described. The first is a network verifier
which verifies a formal specification of track layout against its abstract model by
proving theorems automatically. The second application is to extract information
from the specifications and to create control tables automatically. Lastly, a method
of modelling the interlocking processor using finite state machines is described.

Although this research has centred on railway signalling, it can be viewed as a
case study of how to apply formal methods in the analysis and design of safety-
critical systems. The approach and methods used can be generalized in order to be

useful in other industries.



Part |

Preliminary

The main text of this thesis, which consists of ten chapters, is divided into
three parts. The first part. Preliminary, contains introductory material. There
are three chapters in this part. The first chapter begins with a brief discussion of
safety-critical systems and formal methods and continues with an overview of the
research. The major tool used in the research is Higher Order Logic (HOL). The
second chapter provides a brief introduction to HOL logic and the HOL system for
the benefit of readers who are not familiar with them. This chapter also explains
the notation for presenting HOL text and examples used in subsequent chapters.
Chapter 3 describes the basic principles of railway signalling and the state-of-the-art
technology for the automation and integration of signalling systems.

The second part of the thesis, Theories, presents the HOL theories resulting
from the research. These theories form a generic abstract model of railway track
networks. The last part, Applications describes several possible applications of the

theories in the specification and design of interlocking. The dissertation concludes



with a discussion of the findings of this research and suggestions for further works.
This dissertation also includes several appendices. These list the HOL theories,
the ML sources of these theories and listings of various programs described in the

main text.



Chapter 1

Introduction

This chapter gives a brief introduction to safety-critical systems and for-
mal methods and an overmew of the research presented in this disserta-
tion.

During the last decade, advances in microelectronics and microcomputer tech-
nology have changed the way we work and live. Programmable devices have replaced
much old, hard-wired equipment to offer improved flexibility and cost effectiveness.
This provides the designer with many opportunities for developing new products
and new manufacturing processes, and control systems containing programmable
devices are now very common. Applications include the generation of electricity,
flying large passenger aircraft and safeguarding the running of trains. As these
systems become more powerful and perform more difficult tasks, they also become
extremely complex. The complexities of some of these computer control systems
have grown to a point where even their designers are barely able to comprehend
them. This raises some serious questions: how can we be sure that the systems
function correctly and what will happen if they fail?

The research to be described in this dissertation is a small contribution towards
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an answer to these questions. Like designers in other well-established branches of
engineering, computer control system engineers resort to mathematics. In this case,
the helping hand comes from mathematical logic. Research in applying formal logic
in the analysis and design of computer systems has been carried out for several
decades, but it is only recently that the technology has matured to a point where it
is feasible to use it in practical systems. Nevertheless, there are still many unsolved
problems, especially when dealing with large complex systems. The research pre-
sented in this dissertation is a first attempt to apply a particular discipline of formal
methods, namely Higher-Order Logic, to a specific problem—railway signalling sys-
tems. However, it is possible to generalize the methods used in this research so that
they can be used in other types of system.

An overview of the research will be presented in the last section of this chap-
ter, but before that, a brief discussion of safety-critical control systems and formal

methods will be given.

1.1 Safety-critical systems

If, when a system fails, it causes human injury, or even fatality, or causes serious
environmental damage, then such a system is a safety-critical system. Examples of
such systems include shut-down systems for nuclear generation plants, flight control
systems for passenger aircraft, railway signalling interlocking systems and radiother-
apy equipment.

Safety-critical systems can be classified into different risk classes according to

two orthogonal dimensions: the severity of potential accidents and the frequency
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of their occurrence. The risk of a system is higher if the consequence is more
severe or the frequency is higher. Preliminary hazard analysis should be carried out
to access the risk of a system before any extensive design and development work
is commenced. There are international and national standards governing hazard
analysis, classification of critical systems and, specification and design of safety-
critical systems [41] [40] [52] [51] [37] [67]. Preventative measures should be taken
in the design of such systems to minimize the risk.

After the risk associated with the failure of a system is identified, subsystems
and components have to be classified according to their function criticality, i.e.,
the importance of each subsystem or component in ensuring the system safety.
One method of categorising safety systems uses four classes: class | to class IV.
The higher the class, the more critical it is. When analyzing railway signalling
systems [24], Cullyer found that point and signal actuators are of class II, and the
point position sensors and signal proving circuits are of class 11l. The sensors and
proving circuits are more critical because, if they malfunction, the system loses
the correct information of its state and hence, may perform a hazardous function
without knowing it. For example, a broken RED bulb (actuator) can be detected
by the proving circuit, but a faulty proving circuit may make the system think that

the RED aspect is alight when, in fact, it is not.

1.2 Formal methods

Formal methods are the application of applied mathematics — formal logic — to

the design and analysis of computer systems[58].
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Every formal method is based on a formal system (L,C) where £ is a language
and C a consequence relation. A language is defined by a set of symbols 5 and
a grammar which specifies the rules of forming sentences using symbols in 5. A
consequence relation is a set of inference rules which transform sentences in L while
maintaining their validity. Forexample, modus ponens isan inference rule in classical
predicate logic. A structure (U,I), where U is an universe containing a set of values
and / is an interpretation mapping sentences of L into U, is used to assign meanings
to sentences of L. A structure M is a model of a sentence A if Ais true in M. A
sentence A is valid if it is true in every model of L. This concise description of the
theoretical bases of formal methods is due to Wing [19].

Formal methods are usually applied in three phases: formal specification; design
and documentation; and verification. The requirements of a control system are usu-
ally first written in a natural language. In the formal specification phase, functional
requirements are translated into a formal language. This is necessary because a
formal language eliminates ambiguity. Implementation of the formal specification is
developed in the design and documentation phase. In this phase, formal methods
can be used to transform a specification into an implementation. This process is
known as synthesis. The whole system is often divided into subsystems, and different
technologies are used to implement various subsystems. For example, hardware can
be used to implement a subsystem which requires a rapid response, while software
is used for other part of the system. Different methods are often used with different
implementation technologies. After the design has been developed, it has to be ver-
ified against the specification to see whether it really implements the specification

correctly. This is the third phase. The verification is often carried out by proving
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Figure 1.1: System specification and verification.

theorems asserting the equivalence of the specification and the implementation.

In developing large complex systems, the entire system is divided into subsystems
and they in turn are divided into subsubsystems. The processes of specification, de-
sign and verification are often applied to several levels as illustrated in Figure 1.1.
The implementation of a level is often the specification of the next lower level except
the lowest one where physical VLSI circuits and actual program codes become the

implementation. Verifications are carried out to show each level is correctly imple-
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mented by its next lower level, e.g., a theorem asserting the functional equivalence
of the system specification and the subsystem specifications.

The benefits of using formal methods are many, but the mo6t important ones

it helps designers to understand their problems more thoroughly, to gain

greater insight, and thus to achieve better design;

it helps to uncover more errors at earlier stages, and thus reduces development

costs, and;

it helps to give higher confidence in the correct functioning of the system.

All these help to reduce the risk of accident and save time and money, resulting in
a better system.

Many formal methods has been developed during the last two decades. Now,
some of them are becoming mature and are widely available and are being used in
practical systems. Methods in this category include Z, VDM, OBJ, HOL, and the
Boyer-Moore theorem prover. All these have supporting computer tools.

Z is a notation based on elementary set theory and first-order logic, and was
developed at Oxford University’s Programming Research Group in the the late sev-
enties and early eighties. A definitive description of Z can be found in [62], and
examples of using Z can be found in [63] [27] and [28].

VDM stands for Vienna Development Method. It is a model-based specification
language developed at the IBM Vienna Research Laboratories during the 1970s. In
VDM the description of systems, both specification and designs, are given as models.

The major references on VDM include [42] [6], [59] and [7].
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OBJ is a specification language with both executable and non-executable parts
based on order-sorted equations! logic. It integrates specification, design, prototyp-
ing and verification in a single system. The algebraic approach to specification on
which OBJ is based is described by Goguen et al. in [32]. The current version of
OBJ is described in [30], and its use as a theorem prover in [31].

The Boyer-Moore theorem prover was developed by Boyer and Moore at the
University of Texas at Austin and was started in 1972. It supports first-order logic
using LISP as the meta-language. The logic and the theorem prover are described in
[8] and [9], and the future of this ongoing project is discussed in a recent paper [10].
This prover has been used to verify a microprocessor design [39]. A collection of
system components known as the CLI ‘verified stack’, in which a lower level com-
ponent implements its next higher level component, has been verified and described
in the Journal of Automatic Reasoning 5(4) by five related papers [5] [4] [38] [45]
and [66].

HOL is a theorem prover supporting higher-order logic which has been used in
the research to be described in this dissertation. A brief description of the logic and
the system will be given in Chapter 2. Meanwhile, its application areas are reviewed
briefly.

The first application area of HOL was initially in the specification and verifi-
cation of hardware design. This was first advocated by Hanna [36]. The VIPER
microprocessor was a processor whose functional requirements were formally speci-
fied [23] and this specification has been partially verified in HOL [15] [16]. Although
the processor is very simple compared to most commercially available microproces-

sors, the methodology used for the specification and verification of the processor is
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an excellent case study of the application of formal methods in real hardware, and
this should be further developed and exploited.

Other areas of HOL applications include: software verification[33] and commu-
nication protocols[43]. The idea of producing a totally verified system by linking

verified software to verified hardware has been explored by Joyce [44].

1.3 An overview of the research

Railway signalling systems are certainly safety-critical systems. The safety record of
railway signalling systems has been very good due to the stringent requirements im-
posed on the design and manufacturing of such systems. From the early mechanical
semaphore signals to modern power signals based on electromechanical technology,
signalling engineers have had a great helping hand from nature, namely the gravita-
tional force, in ensuring their systems are fail-safe. In semaphore signals, the weight
of the arm forces it to return to the danger position in the event that the inter-
locking frame is broken. However, when computers and solid state components are
introduced, this fail-safe feature, guaranteed by a natural force, is lost. Therefore,
more rigcrous methods of design and verification of signalling systems are necessary.

The research to be presented in this dissertation is thought to be the first attempt
to apply formal methods to the design and verification of railway signalling systems.

The approach of the research is first to create a formal model of a railway track
network and signals. This model is then used in the formal specification of railway
track layouts and in other phases of interlocking system design.

After studying the basic principles of interlocking in signalling systems, the au-
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thor developed a formal model to represent railway track networks and signals. The
model consists of several HOL theories which form a hierarchy. The top level theory
is the NETWCRK theory which models the topological relation of the track network.
Some generic properties of the model have been derived. Networks are represented
by a class of constrained labelled directed graphs. A theory of labelled directed
graphs has been developed for the purpose of representing track networks.

The first application of this formal model of track networks was to generate
formal specifications of track layouts and to verify them. A verifier has been im-
plemented to automate the process of verifying track layout specifications. The
verification is performed by proving theorems stating that the given specification
represents a well-formed track network.

Next, a method of generating control tables is developed. This method extracts
information from the formal specification to compile the control tables. The speci-
fication of the core of a table generation program will be described.

The dynamic aspects of the track network and the problems of ensuring that
the interlocking operates safely are investigated. The most important properties
of a working network are safety and liveness. Safety is guaranteed by the correct
implementation of the interlocking regulations. In essence, no conflicting movement
of trains should be allowed. The liveness of a network can be expressed as the ability
to run trains according to the prescribed timetable. A network with all signals
constantly displaying the red aspect is certainly safe but not live. A method of
modelling interlocking systems by finite state machine and how to deduce important

properties of such machine will be described.



Chapter 2
The HOL Logic and the HOL

system

This chapter gives a brief introduction to Higher-Order Logic and the
HOL system. The notation for presenting HOL text in this dissertation
is also described.

HOL stands for Higher Order Logic. The HOL logic is a version of typed pred-
icate calculus based on the simple theory of types founded by the logician Alonzo
Church[14]. A more modern description of simple type theory can be found in [3].
The HOL logic is supported by the HOL system' developed by a team headed by
Gordon in the University of Cambridge Computer Laboratory[34]. For the sai a of
completeness, and for the benefit of readers who are not familiar with HOL, this
chapter provides an informal description of both the logic and the HOL system. A
formal, set theoretic based description of the HOL logic and the soundness of the

'The acronym HOL ia used for both the logic and the computer system supporting the logic.
Usually, the context can make clear what is referred to when the acronym is used on its own. In

cases where this is not clear, the term "HOL logic' or 'HOL system’ will be used instead.

12
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HOL proof system can be found in [17], and tutorial examples of using HOL are
given in [18].

The HOL system provides an interactive environment for the user to carry out
formal reasoning in the HOL logic. The interface to the logic is the meta-language
ML which is a functional programming language. The HOL system used in the
research described by this thesis is HOL88 version 2.0.2

A brief introduction to the meta-language ML is given in the Section 2.1. The
object language, the HOL logic, is described in the Section 2.2. Methods of carrying
out formal proofs in HOL are described in the Section 2.3. At the same time
as describing HOL, the notations for presenting HOL text and theorems in the

subsequent chapters are introduced.

2.1 ML — The meta-language

ML is a strongly typed functional programming language. It was first designed and
implemented by Milner, Morris and Wadsworth at the University of Edinburgh in
the early 19707s. It was designed originally to be the meta-language of the Edinburgh
LCF system[35]. Since then, the language has evolved to become a large family of
related languages. The most notable one is the Standard ML defined by Milner et
al.[49], and it has several very good implementations.3 The ML of the Cambridge

3In fact, the theories and proofs described in this dissertation were developed using Version 1.11.
Small modifications were made to bring them up-to-date with Version 2.0 when it was released.

3Two new implementations of HOL based on Standard ML are being developed at the University
of Calgary, Canada and by International Computers Limited (1CL), England. The Calgary version

is in the public domain and has been beta-released since November 1991.



CHAPTER 2. THE HOL LOGIC AND THE HOL SYSTEM 14

HOLS88 is between the original ML and the standard ML.

The user of HOL interacts with the system by typing in expressions in ML. The
system evaluates each input expression and prints out its value and type. Some
expressions may also have side effects, for example, creating a theory file. This
read-evaluate-print loop is known as the top-level.

Throughout this thesis, segments of ML programs and ML expressions are dis-
played typeset in typewriter font. In this section, meta-variables typeset in italic

are used to stand for parts of an ML expression.

ML types Every expression in ML possesses a type. An expression may possess
many types, in which case it is said to be polymorphic. Polymorphic types contain
type variables whose names are strings of one or more *o* characters optionally
followed by a number or an identifier. For example, «, «*, *2 and ««+loo are all legal
type variables. The type of the expression is printed after the expression separated
by a colon (:).

There are four basic types in ML: void which contains a single object denoted
by (); int which stands for integers, such as 1, 2, 3 and so on; bool which stands
for boolean values true and falsa; and string which stands for ASCII character
strings which are enclosed by a pair of single quotes( *) like this “This is s string".
There are three special infix type constructors: s constructs a cartesian product,
also known as a pair; +constructs a disjoint sum and -> indicates a function type.
All these type constructors are associated to the right, i.e., (int « int # bool) is
equivalent to (int ¢ (int « bool)). There is a pro-defined type constructor list

which takes a single argument. For example, (int)list is the type for integer lists
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and (*)liat is a polymorphic type standing for a list whose elements may be of any
type.

The ML type checker uses a set of rules to check the type of every input expres-
sion before evaluating it. This strict type checking has its roots in the original ML
language. It is important, among other reasons, because abstract types are used
to represent terms and theorems of the logic and the values of the latter cannot be
created arbitrarily. Incorrectly typed expression will cause an error message to be

printed and no evaluation will be performed.

Expressions ML expressions consist of constants, variables, function applications,
lambda expressions, conditionals, local declarations and exceptions.

Constants of the basic types are already described above. Constants of com-
pound types can be expressed using constructors and basic constants. Since lists
and pairs are used very often, a special syntax is provided for inputing expres-
sions of these types. Elements of a list can be enclosed in a pair of brackets and
each is separated by a semicolon. For example, [1;2;3;4] is a list containing four
integers. A pair is enclosed in parentheses and the elements are separated by a
comma. The parentheses of nested pairs can be ignored, leaving the commas to
act as right-associative operators. For example, (1,2,true) is a pair of the type
(Int « int « bool).

Names of variables, or identifiers, can be either a sequence of alphanumeric
characters starting with a letter or a special symbol chosen from a list which can
be programmed by the user. Identifiers of the second form will not be used in this

thesis. An identifier can be bound to any value, for example, a HOL definition or
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a theorem. All ML identifiers mentioned in the subsequent chapters will be typeset
in typewriter font.

Function applications have the form ejej where e\ is an expression which must
be evaluated to a value possessing a function type and ti must be an expression
possessing a type which is an instance of the domain of e\. For example, the pre-
defined function hd has the type (*)list -> *. The expression hd[l;2;3;4] isa well
typed function application. The type of this expression will be int which is obtained
by substituting the type of the argument, namely (int)liat into the function type,
the type variable * is then instantiated by Int.

A lambda expression has the form \x. e where the ASCII character \ is used
to approximate the lambda symbol (A) used in conventional mathematics. The
evaluation of any lambda expression always yields a function value whose type is
ty\ -> tj/2 where ty\ is the type of x and ty? is the type of e.

Conditionals in ML have the form if e than e' else e". When a conditional is
evaluated, the expression e, which must possess type bool, is evaluated first. If the
result is true, €' is evaluated, otherwise e" is evaluated. The value of either e' or e"
will become the value of the conditional. The alsa e" part is optional. If this part
is omitted and e is evaluated to falsa, the unique value of type void is returned.

Local declarations have the form d in e where d is a declaration as described
below. The scope of this declaration is the expression e.

Exceptions are a special class of expression. Their purpose is to trap errors.
They take the form failwithe. When an exception is encountered, the expression

e is evaluated whose result must be of type string, then a failure is generated.
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Declarations ML declarations take one of the following forms:

Isti me
st/ Z|...z, me

Istrsc / *i. . m e

The first declares a variable, then e is evaluated and the resulting value is bound to
X. The second declares a function with name / and formal arguments x\ ...xn. The

last form is the same as the second except that the declared function is recursive.

2.2 Overview of the HOL Logic

In classical propositional logic, each proposition can be either true or false, but not
both. There are a number of logical connectives to combine simple propositions
to form more complex ones, such as negation(->), conjunction(A), disjunction(V),
implication! D), and so on. This can be regarded as zero-order logic.

In predicate logic, there is an infinite set of variables and, for each n >0, a set
of n-place predicates. There are quantifiers, such as forallfy) and there erists(3) to
quantify variables. This can be regarded as first-order logic.

In the HOL logic, variables can range over functions and predicates, a function
can take another function as its argument and can deliver a function as the result
of applying it. Such a function is called a higher-order function or functional. One
can talk about “for all function / *and so on. Hence, it is a higher-order logic.

Expressions of the HOL logic are terms, and they are represented in ML by values
of type term. They are usually input using the mechanism known as quotation in

which a logical expression is enclosed by a pair of double quotes, like "A A B". To
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the HOL system, "A A BMis an ML expression of type te n, and it denotes a logical
term meaning ‘the conjunction of Aand B’

Every expression in the HOL logic belongs to a type which can be thought of as
a set of objects having certain common properties. This type is known as logical type
in contrast to the ML types of ML expressions. For example, the logical expression
"A A B" has logical type :bool which stands for boolean. All logical types are
typeset in typew riter font prefixed by a colon(:) as in the above example. Logical
types are represented in ML by an abstract type type. The ML function type_of
takes a term and returns its logical type. This may seem confusing. The HOL
session below may help to clarify the difference between logical types and ML types.

o lett - "AA B"j;
t*"AA B" : ter»

# type.of t;;
Mbool" : type

In the above example, the hash sign (¢) is the HOL system prompt and the
double semi-colon (;;) terminates each input expression. The line between them is
the input typed by the user. The next line is the system response. In the first line,
the user declare an ML variable t and binds the logic expression "A A B" to it.
HOL responds with the value of this variable and its type. In the second input line,
the user applies the function type~of to t. HOL responds with the logical type of

the term.

2.2.1 HOL types

Logical types can be one of the following:
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a type variable which stands for an arbitrary set of objects. This is also
known as polymorphic type. Names of logical type variables are constructed

following the same rules as ML type variables.

an atomic type or constant type which stands for a fixed set of objects.
Some of the pre-defined atomic types are :bool for booleans, :nua for natural
numbers. :one for a set containing only a single element and :ind for an infinite

set.

a function type which is written as :ty\ -> ty2. This stands for a set of

functions whose domain is the set ty\ and whose range is the set ty2.

a compound type of the form (tyi,..., tyn)op where tyi,..., tyn are types,
known as argument types, and op is a type operator, op is said to be of
arity n since it takes n types as its arguments. A compound type stands
for the set resulting from applying the type operator op to the sets denoted
by tyi,...,tyn- li»t is a pre-defined type operator of arity 1, and prod is
a pre-defined type operator of arity 2 which stands for cartesian products,
also known as pairs. For example, :(nua)list is the type for lists of natural
numbers, and :(nun,bool)prod is the type for pairs whose first elements are
natural numbers and whose second elements are booleans. Since pairs are
used frequently, a special syntax is provided for the type operator prod; an
infix « can be used, for example, the type :(nun,bool)prod is usually written

as :nun < bool.

Function types and constant types can be considered as special cases of general com-

pound types. A function type :tyi -> ty2isequivalent to :(tyi ,ty2)tun. Constant
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Kind of HOL Standard Description

term notation notation

Variable v oty vE variable of type o

Constant c ity C. constant of type o

Combination tl t2 Ms apply the function tj to the argument ti
Abstraction  \x. t Axt A-abstraction

Table 2.1: HOL primitive terms,

types are type operators of arity 0.

A polymorphic type ty containing type variables tyvar\,...,tyvarn can be sub-
jected to a simultaneous substitution by the types tyx,...,tyn. The resulting type
tylis called an instance of ty. For example, (bool, nua)prod is an instance of the

type (tyvari Jyi>ar2)prod.

2.2.2 HOL Terms

Well formed expressions in HOL are called terms. Unlike predicated logic, there
is no separate syntactic class for formulae; their roles are played by terms of type
:bool. Every term belongs to a type and denotes an element of the set denoted by
that type. The HOL system quotation parser attempts to deduce the type of a term
when it is input in a quotation. Sometimes, there is not enough information for the
parser to work out the type, in such case, explicit type information can be attached
to the term or any part of it. For example, in *x : bool", the variable x is specified

to be of type :bool.
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Kind of term
Truth

Falsity
Negation
Disjunction
Conjunction
Implication
Equality

Conditional

HOL notation

<iVi3

*iAl>

hnh

21

Standard notation Description
T true
1 false
>t not t

Vt3 <dort2
il At2 ti and f2
tiDh ti implies t2
h=h tl equals t2

L) if t then ti else t2

Table 2.2: HOL infix terms and special constants.

Kind of term
V-quantification
3-quantification

f-term

HOL notation
tz.t
Ix.t

ox.t

Standard notation Description
V.t forallx :t

3z.t for some x :t
tx.t an x such that: t

Table 2.3: HOL binders.
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Table 2.1 lists all kinds of primitive terms in HOL. All terms can be constructed
from these primitives. Some constants are given special syntactic status of infix or
binders. The pre-defined infix constants are listed in Table 2.2 and binders are listed
in Table 2.3.

Within a quotation, an expression of the form *(f) is called an anti-quotation
where t must be an ML expression of type term or type. Such an expression
evaluates to the value of t.

In subsequent chapters, HOL terms will be displayed and typeset in typewriter
font using the quotation mechanism, i.e., always enclosed by a pair of double
quotes("), such as

"AA B-B/\A

When a term is referred to in running text, the logical constants are typeset in Sans
Serif font while the standard notations listed in the tables above will be used for

variables and special constants.

2.2.3 Theories

The result of a session with the HOL system is an object called a theory. A HOL
theory is very similar to a logician’s theory. Like a logician’s theory, a HOL theory
contains types, constants, definitions and axioms. The most important difference is
that a HOL theory also contains an explicit list of theorems which have been proved
from the axioms and definitions using the theorem prover while a logician's theory
implies all theorems (often infinitely many) that could be proved. Therefore, all
HOL theorems mentioned in subsequent chapters have actually been proved.

A HOL theory is stored in a number of files called the theory files. Each theory
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file contains some types, constants, axioms and theorems, together with pointers
to other theory files called its parents. The collection of reachable files is called
the ancestry of the theory. When the HOL system starts, the initial theory is the
theory HOL The ancestry of the theory HOL contains all types, axioms, constants
and theorems of the HOL logic. All new theories created during a HOL session are
extensions of the theory HOL, either directly or via some other theories such as those
provided as libraries. The names of theories and libraries are typeset in typewriter
font.

A theory can be extended in the following ways:

e by constant definition which introduces new constants by specifying formu-

lae to determine them uniquely;

®

by type definition which introduces new types or new type operators by
specifying a non-empty subset of an existing type and proving that the new

type is isomorphic to this subset;

by constant specification which introduces new constants which satisfy ar-
bitrary given consistent properties. The constants may not be uniquely deter-

mined. There is an ML function for this purpose.

All these extensions to theory are known as definitional extension. Theories created
solely by definitional extensions are called definitional theories. Since the new con-
stants and types are defined in terms of properties of existing ones, the extended
theory is consistent if the original theory is. All the theories described in the sub-
sequent chapters are definitional theories, and since they are extensions of the HOL

theory, they are consistent. Only the first two methods of theory extension have
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been used in developing these theories.

There are several pre-defined ML functions in HOL for defining constants. The
result of calling these functions is an equational theorem characterizing the newly
defined constant. The session below defines a new constant GRAPH using the func-
tion new-definition.

* let GRAPH-DEF = new .definition('GRAPH.DEF,

t "GRAPH ((V:(~V «rtoz)aet), (E:(*Edge)set)) m

o lel e 01 E «> (((«_src ) 11 V) I\ ((«.dm o) 11 V))-);;

GRAPH.DEF *

I- IVE. GRAPH(V.E) - (!s. « Il E ==> (0.src ») Il V/\ («.do« *) Il V)
The resulting theorem is stored in the current theory with the name GRAPHDER.
By convention, all definitional theorems are named with the suffix -DEF. In this
dissertation, new constant definitions are presented in the following form:

HOL Definition 1 (GRAPH-DEF)
"GRAPH ((V:(‘Vertex)set),(B:('Edge)set)) -

le. e Il E «> <<(e_src e) Il V) /\ ((e.dee e) Il V)"

The string following the definition number is the name of the definition. The term
characterizing the new constant is printed in the HOL input notation intypew riter
font.

A type definition package is provided to allow concrete recursive types to be
defined automatically (48). It provides an ML function define.type which accepts

a simple type specification language in the form of:
e=C ... bfIlL.. |c, til... lair

where type is the name of the new type and C, are the type constructors. The

results of defining a new type are
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« to formally define type as a type in the current theory;
* to make appropriate constant definitions for the constructors C*;
 to automatically prove a theorem which characterizes the newly-defined type.

The type definition package also provides a set of functions to automatically prove

theorems about the basic properties of the type. These functions are:

prove.constructors-one.one which proves a theorem stating the constructors are

one-one functions;

prove.constructors.diatinct which proves a theorem stating that, if more than
one has been defined, the different constructors produce different objects in

the type;

prove.cases.thm which proves a theorem stating that any object of the type is
produced by one of the constructors;

prova.induction.thm which proves a theorem stating the structural induction prin-

ciple of the type.

The session below defines a new type :Tcir with a constructor TCIR. The type
characterization theorem is stored with the name Tcir-Axiom; by convention, all

type characterization theorems are named with suffix -Axiom.

«lot Tcir.Axion * define.type ‘Tcir.Axiom’

‘Tcir m TCIR nun (nua->Tstata)*};

Tcir.Axion m |- 11. 2= In. In1° fCTCIRn 17 * 1 n 1*

In this dissertation, new type definitions are presented in a format similar to that
of constant definitions. The string specifying the new type is enclosed in a pair of
single quotesf *). which resembles the input syntax required by the type definition

package. Below is the definition of :Tcir shown in such a format.
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HOL Definition 2 (Tcir_Axiom)

*Tcir “ TCIR num (mi*->Tstate) *

2.2.4 Theorems

A theorem is the result of a proof. In a more formal sense, a proof is a list of pairs
[(r,,t,),.. .,(I',,,i,,)] known as sequents in a deductive system, and a theorem is the
last element of this list. The first component T, of a sequent is a set of formulae
called the hypotheses or the assumptions and the second component i- is a single
formula called the conclusion. Each sequent in a proof is either a theorem that has
been proved earlier or is derived from other theorems following some rules known
as the inference rules.

Theorems in the HOL system are represented by values of the ML abstract type
thm. There is no way to construct a value of type thm except by carrying out a
proof. In this way, the ML type system protects the HOL logic from the arbitrary
construction of a theorem, so that every computed value of the type representing
theorems is a theorem.

The HOL system prints values of type tha in a special way: it prefixes the con-
clusion with 1- which resembles the turnstile (I-) in the conventional mathematical
notation for theorems. For example, the theorem asserting the symmetry of addition
is printed as:

I- laa (a¢a)- (a+a)

There are five axioms in the HOL logic, which are the only pre-defined values of
type tha. All other theorems follow from them.

Once a theorem has been proved, it can be saved in the current theory. Every
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theorem is identified by two strings: the name of the theory file in which it is stored
and the unique name of the theorem. Theorems stored in any file reachable from
the current theory can be loaded into the current HOL session and bound to an ML
identifier. Theorems can be loaded automatically if autoloading has be set up. In
this case, a theorem is loaded whenever its name is first mentioned in the input, and
it is bound to an ML identifier of the same name. For example, the ‘symmetry of
addition” theorem is stored in the theory arithmetic and has the name ADDIYM
When this name first appears in an expression, the theorem will be loaded and
bound to the ML identifier ADDSYM

In this dissertation, all theorems are printed in conventional mathematical no-
tation rather than the raw output from the HOL system as shown above to improve
the readability. The format is similar to that used for definitions. An example is

shown below:

HOL Theorem 1 (G-UNION.SYM)

F VG, Ga.G] G.UNION G2 = GaG.UNION G,

The string after the theorem number is the name under which the theorem is stored.
The same ML identifier will be bound to the theorem if it is automatically loaded.

The conversion from the system output format to the format given above is
performed by a formatter developed by the author. The formatter is organized as a
library named latex-hol. It consists of a set of ML functions which takes a theorem
or a whole theory and generates text in IATgX format. The text can then be typeset
using the IATgX typesetting system. The implementation of the formatter is based

on the HOL pretty printer library prettyp. Details of how to use the formatter and
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its implementation can be found in [67].

2.3 Theorem proving in HOL

Proofs can be carried out in two different ways: forward proofand goal-directed proof.
A forward proof starts with an existing theorem and inference rules are applied
successively to transform this theorem into a sequence of new theorems until the
desired one is reached. A goal-directed proof sets up a goal which has exactly the
same form as the desired theorem, then tactics are applied to decompose it into a

list of subgoals, and this process continues until all subgoals can be solved.

2.3.1 Forward proof

Inference rules are used to transform a theorem when carrying out forward proofs.
They are implemented in HOL as ML functions which deliver a theorem. These
functions take one or more theorems and possibly other arguments depending on
the meaning of the inference rules. There are eight primitive inference rules in HOL.
Since there is no primitive constructor for the values of type thm in ML. calling these
functions is the only way to create a theorem. The primitive inference rule Motlus
Ponens, for example, is represented by the ML function HP. It takes two theorems
as its arguments: the first should be an implication and the second should be a
theorem matching the antecedent of the implication. It returns a theorem in the
same form as the conclusion of the implication.

There is a comprehensive set of pre-deiined ML functions implementing derived

inference rules. These functions are defined in terms of the eight primitive rule
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functions. Each of them combines a number of steps of applying the primitive rules,
and thus providing a set of more useful tools. Users of HOL can also define their
own functions implementing derived inference rules for their special needs.

A conversion in HOL is a rule which maps a term to a theorem stating the
equality of that term to some other term. The theorem produced by a conversion is
often used to convert the whole or part of a formula —i.e., rewriting or substitution.
Conversions are also represented by ML functions returning a theorem. For example,
the conversion bool-EQ.CONV takes a term for the form "bl = b2" and returns one
of the following theorems:

I- (61 =bj) =T if bi and bjare identicalboolean terms, or

F (& :tj) = Fifeach of and fﬂs Tor F but different, or
h (61 =62) = 62if6lis T, or

h (i =@ =6Lif isT.

There are a number of higher-order functions for combining conversions to form
more complex ones. For example, cont’i THENC conv3 is a conversion formed by the
function THENC. When this expression is evaluated, the conversion conv! is performed

first, then the conversion cont2is carried out.

2.3.2 Goal directed proof

The forward proof style is rather unnatural, and is too ‘low level’ for many applica-
tions. The goal directed proof style constructs a proof by organizing it into a tree in
which each node is a subgoal and each edge is a tactic. The tree is traversed twice,
the first is from the root representing the original goal to the leaves representing

the final (trivial) subgoals, the second is from the leaves back to the root. In the
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first pass, tactics are applied and subgoals are generated, and in the second pass, a
proof is computed from the theorems achieving the subgoals to yield the theorem
achieving the original goal. This is only a conceptual view of the goal-directed proof
style. No tree is actually created in HOL, but there is a subgoal package which
manages all the proof searching efforts. It provides functions for the user to set up
a goal and then to apply tactics. The idea of using tactics in goal-directed proofs
originated from Milner and was first implemented in Edinburgh LCF [35].

A tactic is an ML function. When applying to a goal, a tactic reduces it to
1. a list of subgoals, and

2. ajustification function mapping a list of theorems to a theorem.

The subgoal package keeps track of the justification functions and combines them
in the correct order to compute the final theorem that achieves the goal. There is a
comprehensive set of tactics provided by the HOL system. Tactics can be combined
to form more complex ones using tacticals. The user can define special tactics for his
application using the existing ones. In Chapter 6, the proof of a theorem asserting
a property of networks will be described in detail to illustrate the process of proof

searching in the goal-directed proof style.



Chapter 3

Principles of Railway Signalling

This chapter gives an introduction to the principles of railway signalling
and the state-of-the-art technology in automatic interlocking systems so
that readers not familiar with the subject can understand the following
chapters.

The primary function of a railway signalling system is to maintain the safe
operation of trains over the track network and to protect human beings from injury
and equipment from damage. In addition to this, the system should allow efficient
operation of trains so that the maximum capacity can be obtained.

.This chapter describes the signalling equipment, the principles of railway sig-
nalling and the state-of-the-art in automatic signalling systems based on the current
practice of British Rail [54]. The description is rather general and provides a view-
point for the research described in later chapters. Many important issues of railway
signalling which are not within the scope of this research are ignored. Most of the
concepts described here are also applicable to other railway authorities.

Section 3.1 describes the basic functions of individual components of signalling

equipment. The central concept of signalling systems — interlocking — and the
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Figure 3.1: A slip crossing and its equivalent atomic parts.

operation of the complete system are explained in Section 3.2. The last section of

this chapter presents the current technology of signalling systems in British Rail.

3.1 Railway track and signalling equipment

A signalling system consists of many kinds of component. These components can
be grouped into two classes: track components and signals. The first class forms
the railway track network, the permanent way, and the second is the means of

controlling the train movements over the track network.

3.1.1 TVack components

For the purposes of this research, the property of the track components which is
of interest is their topology, that is, how they are interconnected to form a track
network. Based on this consideration, the track components have been divided into
the following four classes: buffers, tracks, points and diamond crossings. They are
called parts. Table 3.1 below shows a schematic drawing of these parts together
with a brief description.

There are other, more complex track components in real networks, such as the
single slip crossing. It can be considered as a compound of a simple diamond cross-

ing with a pair of simple points connected to either end of it. This is illustrated in
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> buffer — the dead end

- plain track — simple track sections without any branchs and
crossing
point (switch) — a branching point which can be set at ei-
ther ‘“NORMAL’ or ‘REVERSE’ positions to route train to
different directions
diamond crossing — an intersection where two routes are

crossing each other

Table 3.1: Track components.

Figure 3.1 with the single slip crossing shown on the left-hand side and the decom-
position to atomic parts on the right. The four simple components listed above are
atomic. All complex track components can be built up by combining appropriate
atomic parts. A complete track network can be formed by connecting the required
track components together and placing signals at the appropriate locations.

The primary means of detecting the presence of a train is by the use of track
circuits. Aconceptual view of the operation of the circuits is illustrated in Figure 3.2.
A voltage is applied to the two rails of the track. This can be detected by a sensor to
indicate that the track section is ‘CLEAR’. When a train is present, its wheels bridge
the circuit reducing the voltage between the rails, so that the output is changed to
‘OCCUPIED’. The design of a track circuit is fail-safe, in that it will always give an
‘OCCUPIED’ output when it is faulty.

In a fixed block system, the track network is divided into sections. Each section
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Figure 3.2: The principle of track circuit.

is controlled by a signal and may be occupied by at most one train except in certain
special operations, such as the coupling of an engine. Track sections are electrically
insulated from each other. In a simple layout, each section usually has its own
associated track circuit, and consists of only a single part, for example, a plain
track. In a complex layout, such as a busy terminal station, a section may contain
several track circuits, each circuit spanning several parts.

The point where the adjacent sections meet is called a join. Since the track
is characterized by different kinds of part, the term join is also used to mean the

meeting point of two adjacent parts. In practice, there are several types of join:

« conducting join — which is the join between two parts that share the same

track circuit;

« insulated join — which is the join between two track circuits;
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Figure 3.3: An overlap.
« overlap join — which is also formed between two track circuits, but in addition,
one of the circuits is a special section of track, known as an overlap.

An overlap is a short section ahead of a stop signal, whose function is to pro-
tect a train against overrunning the signal in adverse conditions. As illustrated in
Figure 3.3, the section between joint j 2 and j3 is an overlap which protects a train

from overrunning signal 511 , and thus j 3 is an overlap joint.

3.1.2 Signals

Like track components, there are several kinds of signals. Their names and functions

are listed below:
main signal — gives instructions to the normal running traffic;

junction indicator — provides information at the entry to a branch so that a

diverted train may slow down;

subsidiary signal — (always associated with a main signal) authorizes the driver

to pass the main red aspect and draw ahead to stop short of any obstructions;
shunting signal — gives instruction for slow movements into or out of sidings etc.

Sometimes, a combination of several types of signals is installed on a single signal

post, for example, a main signal and a junction indicator are often combined at the
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entry to a branch line.

According to the number of different aspects they can display, main signals
can be of 2, 3 or 4-aspect. For 2 and 3-aspect types, there are stop signals and
repeaters. The repeaters are used where earlier warning is required of the aspect of
a stop signal. A 2-aspect stop signal can display RED and GREEN while a 2-aspect
repeater can display YELLOW and GREEN. A 3-aspect signal can display RED,
YELLOW, GREEN. A 4-aspect signal can display a DOUBLE YELLOW" aspect in
addition to all aspects of the 3-aspect signal. The use of different number of aspects
depends on the traffic density, the headway and the length of the track sections. For
example, in Figure 3.3, 511 is a 2-aspect stop signal with an overlap protection and
510 is a 2-aspect repeater.

At any time, a signal is in either of the two states: ‘ON’ or ‘OFF’. A train
must not pass a signal which is in the ‘ON’ state; this is shown as the RED aspect.
All other aspects are said to be ‘OFF’. All aspects of main signals employ double
filament bulbs. The auxiliary filament is switched into use automatically as soon
as the main filament is broken. When this happens, an indicator on the control
panel is illuminated to warn the signalman. A signal will not be taken as showing a
particular aspect simply because it is selected. There is proving circuit built into the
signal which checks whether the selected aspect is drawing current, that is the bulb
for the selected aspect has at least one filament illuminated. In the case in which

both filaments of the selected aspect are broken, the signal is said to be faulty.
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Figure 3.4: An example of track layout: a double left-hand junction.

3.2 Signalling principles

Singalling systems provide two types of controls to the traffic: the first is route
control, which is achieved by setting the appropriate points; and the second is speed
control which is achieved by setting the aspects of the appropriate signals. All these
controls are operated from a central location — the signal control centre.

Each control centre may supervise an area of up to hundreds of kilometres of
tracks, which consists of many points and signals. The track network is organized
into a number of routes. Each route starts from a signal, the entry signal, and
usually ends at another signal, the exit signal. If two routes share at least one part,
they are said to be conflicting. To allow a train to pass through a route, it has to
be set up and proved. This means that the conditions which provide a safe passage
through the route have to be satisfied. For example. Figure 3.4 shows a layout in

the vicinity of a left-hand double junction. Suppose that the route from signal S10
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to S12 is to be set up. This requires:

all the track circuits along the route, namely tell, tcl2, tcI3 and tcl4, to

be ‘CLEAR?;

the point P200 to be set to NORMAL and detected at the correct position;

the exit signal S12 is not faulty;

the entry signal S1I of the conflicting route from this signal to S15 is turned

‘ON’and proved to be alight;

the track circuit along the conflicting route up to the point of conflict, namely

tc26, must be ‘CLEAR’.

After all of these conditions are satisfied, the entry signal to the route can then be
turned ‘OFF’, and the route is said to be ‘set’.

Central to the operation of the signalling system is the concept of interlocking.
For example, the route locking is in operation after the above route is set. This
means that the satisfied conditions should not be destroyed by subsequent operation
of points or setting up a conflicting route. This is important because the incoming
train has been given permission to proceed and if the entry signal is changed to
‘ON” unexpectedly, the driver may not be able to stop short of it and dangerous
situations could arise.

Traditionally, these operation conditions are expressed in a tabular form, the
control tables. The control tables have a well-defined syntax and semantics for
the interlocking functions, and are very well understood by signalling engineers. A

control table for the example route above is shown in Table 3.2.
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ROUTE TRACK CIRCUITS REQUIRE POINTS SIGNALS
CLEAR OCCUPIED NORMAL REVERSE ALIGHT ON

§10S12  tcll,tcl2 P200 s12
tels.tel*

Protect from conflicting traffic

tc26 L s.1

Table 3.2: An example of control table.

3.3 Solid-state interlocking

In the early days of railway signalling, interlocking was achieved by the mechanical
interlocking frame. When electromechanical technology was adopted, relay circuits
implemented the interlocking function and are still in widespread use. Since its ad-
vent in the late 70’s, microprocessor technology has influenced every branch of engi-
neering and railway signalling is certainly no exception. However, the application of
microcomputer control technology in signalling systems is rather conservative. This
is because of the strict safety assurance required in such systems. Due to the unpre-
dictable failure modes of a complex microcomputer control system, microprocessors
were only used in non-vital functions in the early attempt of applying computer in
signalling controls.

The first use of microprocessor in control of vital safety functions in the U.K. was
the Solid State Interlocking project of British Rail Research[20](21] which started
as soon as the first 16-bit microprocessors became available. The aim of the project

was towards the ‘eventual replacement of present day electromechanical signalling
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interlocks'[22]. At the same time, the new system should not alter any signalling
principles and the appearance and behaviour of the system so far as the operator
is concerned. The result is the now highly-acclaimed SSI system, which has been

adopted for all new signalling installations in British Rail.

3.3.1 Features of the SSI
The SSI system can be divided into three parts:

« one or more microcomputer interlockings;
« a control panel;

« a maintenance terminal.

The heart of the computer interlocking is the interlocking processors. There are
three processors which operate as a triple modular redundancy! TMR) system to
achieve the strict requirements of reliability and fault tolerance. These perform all
the safety-critical logical operations of the signalling controls. The commands to the
equipments, such as point machines and signals, are transmitted to specialized inter-
face units at the trackside via a duplex data highway. The data on this highway are
encoded in two levels to withstand the severe electromagnetic interference encoun-
tered with electric traction and to maintain the high overall integrity required. Two
panel processors perform the non-safety tasks of servicing the control panel which
can be either the conventional mosaic push-button type or new style Visual Display
Units(VVDU) type. A diagnostic processor provides information to the maintenance

terminal which is used by the technician to monitor the performance of the system.
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The software controlling the interlocking processors is designed to be data driven.
Since every signalling scheme has a different configuration, it will be very inefficient,
if not impossible, to design, implement and verify a special version of the control
program for each installation. The arrangement of the signals, the track layout and
the rules for controlling them are encoded in a data base. The standard software
is based on the concept of the control cycle: in each cycle, the system processes
one incoming message and generates one control command. During the cycle, it
updates a set of variables representing the current state of the network, consults the
database for the applicable rules, and derives the correct control commands.

Since the software is safety-critical, it is subjected to rigorous testing and vali-
dation processes to ensure that it is logically correct and faithfully implements the
specification. The software development and validation processes were described
in [60]. The basic principles are to be disciplined in the development stage and to
be rigorous in the validation stage.

Very strict rules are applied to the design and development of the software.
The programs are highly modular and well structured. The use of interrupts is
excluded in favour of simple looping and polling. Data flow between modules is
made explicit. High quality documentation has been produced which contributes
to the correctness of the software and simplify the validation process. Several well-
established techniques are used to validate the software: functional analysis checks
the correspondence between the requirement specification and the software; struc-
tural analysis checks the programming logic; information flow analysis ensures the
correct data passing between modules; modular analysis confirms the correctness of

each module; and semantic analysis proves the software correct by logical deduction.
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The whole software development process, from specification through design to
validation, makes certain assumptions about the environment within which the final
program will execute. These include the behaviour of the hardware, the equipment
which under the program control. Only system testing will uncover any misconcep-
tion on the reality. Therefore, extensive system testing has to be carried out, both

in an environment simulated in a laboratory and in the real field environment.

3.3.2 The design procedures
Briefly, the procedures of designing and implementing a signalling scheme using SSI
[50] is as follows:

1 specify the required track and signalling layout;

2. produce control tables;

3. generate geographic data;

4. test the geographic data on a simulator;

5. install the SSI with EPROMs containing the geographic data.

One of the major task of the railway signalling engineer is to produce the control
tables required for a particular track and signalling layout. The geographic data are
then extracted from this table and written in a special-purpose high-level program-
ming language. This program is subsequently compiled into data object «odes and
installed in the SSI. The process of producing control table and geographic data is

being carried out manually because it requires skill and experience. The research

described in later chapter shows a possible way of automating these operations.
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3.3.3 The benefit and the future

The major benefits of the SSI system are its flexibility, good maintainability and
cost-effectiveness. The flexibility is due to the modular organization of the system
which provides an easy path to future evolution for both the interlocking itself and
other systems it interfaces with. For example, the Integrated Electronic Control
Centre (IECC)[61] is the new human interface built on top of the interlocking. It
replaces the conventional mosaic push-button control panel by track balls, keyboards
and VDU. The modular system also contributes to other benefits, the bulk of the
cost saving being achieved by the dramatic shrinkage of the physical dimensions of
the new equipment.

The flexibility of the SSI system also opens up the possibility of higher order
control systems. The Automatic Route Setting(ARS) is one of such systems. It is
interlinked with the Signalling and Information Networks. It is informed of the pre-
planned schedule, the location of the trains, and it learns from the SSI the real-time
state of the signalling and track occupation. From this information, it can deduce
the required route and whether there are any conflicts. It can then calculate the
optimal routing strategy and translate it into commands to the SSI.

Besides the SSI system in the U.K., railway authorities in other countries have
also developed computer controlled signalling systems, such as the ERILOCK sys-
tems in Swedish Railway Administration[13], the SMILE systems in Japanese Na-
tional Railways[2], and so on.

Since the SSI is the key element in providing interlocking, a rigorous formal ap-

proach to the design and implementation is necessary and desirable. The research
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described in the later chapters was carried out with the aim of helping railway
signalling engineers and designers to improve the integrity and correctness of inter-

locking systems based on the use of microprocessors and real-time software.



Part 11

Theories

In order to apply formal methods in signalling systems, a formal model of the
railway track network and signalling equipment must first be established. This
model is an abstract view of the railway track network, based upon which, specifi-
cations of interlocking system can be developed. This part presents such a formal
model expressed in Higher-Order Logic. It is organized into several theories which
form a hierarchy shown on the next page.

In the hierarchy, the sets theory isone of the HOL system libraries. The theories
below the dashed line are developed by the author.

On the left-hand side are the theories describing the mathematical structures,
namely graphs and paths, which are used to model the network. The main the-
ories graph and path contain definitions and theorems about these mathematical
structures, while the auxiliary theories func and «list contain some lower level
definitions and theorems about functions and lists which support the main theories.

These theories are described in Chapter 4.
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Figure 11: The hierarchy of theories.

On the right-hand side of the hierarchy are the theories modelling the railway
equipment. The theory TRACK models track components, and the theory SIGNAL
models signals. The PART theory combines individual components to provide a
uniform interface to the network model. These theories are described in Chapter 5.

The top level of the model is the theory NETWCRK which characterizes track net-
works. Some basic properties of such networks have been proved. This is described
in Chapter 6. The complete listings of each theory can be found in Appendix A and

the ML sources for creating these theories are listed in the Appendix B.



Chapter 4

The mathematical foundation

This chapter describes the HOL theories graph and path and two auxil-
iary theories func and « list. These theories contain the abstract math-
ematical structures for modelling the network.

Graph theory is a very large branch of mathematics, and it has found applications
in many diverse fields. The theory described in this chapter is only a first attempt at
expressing a small portion of the conventional graph theory in Higher-Order Logic.
The main criteria for deciding what to include in the theory are the requirements
of modelling the track network.

The definitions and theorems about graphs and paths are organized into two
main HOL theories, graph and path, and two auxiliary theories, func and «list.
The graph theory contains definitions of labelled directed graphs, several basic re-
lations of vertices and edges, and basic operations on graphs. Some properties of
graphs and related operations have been proved and the theorems are stored in this
theory. The path theory contains definitions of walks, trail and paths, and basic op-
erations on them. Similarly, some basic properties in the form of theorems are stored

in this theory. The func theory contains definitions and theorems about functions

rid
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some of which are used in the reasoning of graph isomorphism. The features used
will be described when graph isomorphism is discussed. The « list theory contains
some operations and facts about lists which are needed for reasoning about paths.
It is described in Section 4.2.2.

The theories have been developed in a very general way so that they will be
suitable to be used for other applications. The terminology and definitions adopted
in these theories follow the convention found in many textbooks, such as [64] [65]
[29]. Since there is not a library of graphs in the HOL system up to version 2.0, the
theories as described below provide a starting point for building a comprehensive
library of graphs. Thus, when applications requiring the use of graph arise, the

library can be called upon without the repeated work of defining a graph.

4.1 The theory graph

4.1.1 The representation of graphs

First of all, graphs have to be represented by some structure in HOL. This rep-
resentation should reflect the abstract properties of graphs, and should be general
and flexible so as to be suitable for use in different applications. Based on these
considerations, a type and a predicate have been chosen to represent graphs. The
type is a pair of sets. The first element of the pair is the set of vertices which can
be of any type, that is And the second is the set of edges. Each edge is a
triple containing the source vertex, the destination vertex and its own label. The

vertex fields are of the same type of the elements of vertex set. The label field is of



CHAPTER 4 THE MATHEMATICAL FOUNDATION 49

a distinct polymorphic type For convenience, it is abbreviated in ML asl:
let Vertex » and
Edge » " oo ko KE)

Graph » ":(*)set « (*#*# e*)eetM;

Thus, antiquotation can be used to make the subsequent HOL text much more
readable. M'Graph"” is the polymorphic type for a general graph. Any particular
instance of graph can be created by instantiating the types ":*" and with the
required types for the vertices and for the labels of the edges.

The choice of this concrete representation follows most conventional definitions
of graphs. However, not every object of the type :'Graph is a proper graph. A
predicate is required to distinguish those which are graphs from others in the type.
The definition of this predicate reads:
HOL Definition 1 (GRAPHI5EF)
"GRAPH ((V:('Vartex)set), (E:('Edge)aat)) m

1. = 11 B ——> (((«.arc @ X1 V) /\ ((a.daa a) XI V))"

where a.arc and a.daa return the first and second field of the triple representing the
edges, respectively. This specifies that, to be a graph, the source and destination
vertices of every edge in the edge set must be elements of the vertex set. This is the
dominant abstract property of a graph.

Having this definition ofa graph, we need to assert that there exists at least one

graph, i.e., the theorem GRAPHEXISTS.

HOL Theorem 1 (GRAPHEXISTS)

h 36?2. GRAPHG

Inss.typs-abbrev cannot be used since these are polymorphic types.
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> <I>

Figure 4.1: Examples of simple graph.

A trivial example of graph is the null graph ({ },{ }), (A logical constant
NULL-GRAPH is defined to be a null graph.) and a more interesting graph shown

in Figure 4.1(a) can be written in HOL as

({1,2,3,45,6,7,8},
{(1,2,0),(2,3,6),(3.,4,¢),(4,1,d),(5.6,e),(6,7,/),

(7,8.j),(8,5,/»),(1,5,i),(2,6,j),(3,7,%),(4,8,7)})

As a consequence of this representation, all graphs are directed. This is because
(ui,t>2,*) A (»2,»i,*) forall tj, v2 and i. However, it is still possible to represent
an undirected graph using the same representation. Each edge of an undirected
graph can be replaced by a pair of anti-parallel edges. Also, all graphs are labelled.
To represent an unlabelled graph, the label field of the edges can be instantiated
by the type :ono. Since there is only one object in this type, all the labels will be

identical, hence, (ti,t>2,*) = (vt,v2y) for all x and y.
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4.1.2 Some basic definitions of graph

Two constants, VS and ES, are defined to access the vertex set and the edge set.

They are characterized by the theorems VERTICES and EDGES

HOL Theorem 2 (VERTICES)

HVVE.VS(V,E) = V

HOL Theorem 3 (EDGES)

hVVEES(V £)= E

A loop is defined to be an edge whose source vertex and destination vertex are
identical. Applying the predicate HAS.LOOP to a graph G will yield true if and
only if the graph G contains a loop. The graph shown in Figure 4.1(b) has a loop,
the edge labelled /.

HOL Definition 2 (LOOP.DEF)

“LOOP (a:*Bdga) * («.arc = m a.daa <)"

HOL Definition 3 (HASLOOPIDEF)
"HAS.LOOP G m 2(=:“Edge). (= Il (S 0>) A (LOP a)"

A graph is said to have multiple edges if and only if there is more than one
edge which has the same vertex as its source and the same vertex as its destination.
This property is expressed in the predicate MULTI-EDGE. The graph shown in
Figure 4.1(c) has multiple edges, (1,2,a) and (1,2,6).

HOL Definition 4 (MULTI-EDGE-DEF)
“NULTI.EDGE G - 2(al: “Edga) «2.

@1 E0)A @Il EOo) A
“(al ma2) A (a.arc al m a.arc a2) A (a.daa al m a.daa a2)"
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A simple graph is defined to be a graph containing neither loops nor multiple

edges. A finite graph is a graph whose vertex set and edge set are both finite.

HOL Definition 5 (SIMPLEGRAPH_DEF)

*SIVPLE GRAPH (G:* Graph) -

(GRAHG) A *(HASLOCP 0) A *(MULTI-EDGE G)M
HOL Definition 6 (FINITEGRAPH-DEF)
“FITEGRAPH (G:* Graph) -

(GRAPHG) A FINITE (VS 0) A FINITE (ES GM

Other abstract properties of graphs can be defined in a similar way.

4.1.3 Relationship between vertices and edges

Incidence An edge is said to be incident with the vertices which are the source
or destination of the edge. It is said to be incident from the source vertex and to
be incident to the destination vertex. The function INCIDENT.WITH, applied to a

graph G and a vertex v, returns a set of edges which incident with the vertex v.
HOL Definition 7 (INCIDENT-WITH-DEF)

“INCIDENTWITH (G:* Graph) v «
<e | (+ ISEDGEG) A ((a_src » mv) V («.das  mv))>"
Let us name the graph in Figure 4.1(a) as G', then

INCIDENT.WITHG'I

is equal to {(1,2,a),(4,1,d),(1,5,t)}. Similarly, we can define INCIDENT.FROM

and INCIDENT.TO in HOL as below:
HOL Definition 8 (INCIDENT-FROMDEF)

*INCIDENT-FROM (0:“ Graph) v -
{1 (@ ISEDGEG A (a.arc amv) }"
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HOL Definition 0 (IHCIDEMT.TO DEF)

“IICIDEIT.TO (G:'Graph) v =
{+ | (a ISEDGE G) /\ (a.daa » * v)>"

Degree The degree of a vertex is the total number of edges incident with it. The
out-degree of a vertex is the number of edges incident from it and the in-degree is
the number of edges incident to it. The HOL definition of degree make use of the
definitions of incidence and the cardinal number of sets. They are listed below:
HOL Definition 10 (OUT-DEGREEDEF)

"OUT.DEGREE (G:'Graph) v - CARD (I*CIDEIT_FROM G v)M

HOL Definition 11 (IN)EGREE_DEF)

“II.DEGREE (G:'Graph) v » CARD (IICIDEIT.TO G v)M

HOL Definition 12 (DEGREE-DEF)
"DEGREE (G:'Graph) v *
(I.DEGREE G v) ¢ (OUT.DEGREE G v)”

Thus, DEGREEG '\ is 3, OUT.DEGREE G' 1is 2 and IN.DEGREE«' 1is 1

Adjacence Two vertices are said to be adjacent ifand only if there exists an edge
between them. The predicate VER-ADJA G 5 \j is true if there is an edge (t>i, W, *)
or («2,vi,y) for some x and y. The HOL definition of VER-ADJA is:

HOL Definition 13 (VER-ADIA-DEF)

"VERADJA G vl (v2:*> «

(GRAPH G) A (vI IS.VERTEX G) A (v2 IS.VERTEX G) A
(?(+:*Edge). (+ 1S.EDGE G) A

(((e.arc » mvl) A (a.das a mv2)) V

((e.arc a mv2) A (a.daa a « vl))))"
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In Figure 4.1(a), VER.ADJAG' 12 is T while VER-ADJAG' 13 is F. Similarly, two
edges are adjacent if there is a vertex which is the destination of one and the source

of the other.
HOL Definition 14 (EXDJA DEF)

"EADIA 0 «l («2:'Edge) »
(GRAPH G) /\ («1 ISEDGE G) /\ («2 IS.EDGE G) A
((«.dM el m «.arc *2) \/ («.d«i «2 m «.arc al))M

Succeaaor and predecessor A vertex rj is a successor of another vertex i if
and only if there exists an edge from i to i>. The predicate IS-SUC.VER defined
below indicates this relationship.
HOL Definition 15 (IS_SUC VER DEF)
"IS.SUC.VER (G:‘Graph) vl v2 m

%e. (a ISEDGE G) A (a.src a mvl) A (a.daa a = v2)H
The vertex 2 in G' is the successor of vertex 1. The converse of successor is the
predecessor. The corresponding predicate is IS.PRE.VER:
HOL Definition 16 (ISPRE VERDEF)
"IS.PRE.VER (G:‘Graph) vl v2 m

7a. (a ISEDGE G) A (a.daa a mvl) A (a.src a - v2)H
The functions SUC.VERS and PRE.VERS return the set of vertices which are suc-
cessors and predecessors, respectively.
HOL Definition 17 (SUCVERSJJEF)

“SUC.VERS (G:‘Graph) v m
<v* | (v* ISVERTEX G) A (ISSUCVER 0 v v')>*"
HOL Definition 18 (PREVERSJ)EF)

"PRE.VERS (G:'Graph) v >
<v* | (v* ISVERTEX G) A (ISPRE.VER 0 v v*)>M
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Referring to Figure 4.1(a), SUC.VERSG' 1= {2,5} and PRE.VERSG' 1= {4}.

4.1.4 Operations on graphs

Insertion and deletion The primitive operations on graphs are insertion and
deletion of a vertex or an edge. The definition of inserting a vertex is:
HOL Definition 19 ( INSERT-VERTEX_DEF)

“IISERT_VERTEX v (G:‘Graph) * (v IISERT (VS 0), (ES G))M

and the definition of inserting an edge is:
HOL Definition 20 (INSERT-EDGEDEF)
"lISERT-EDGE + (G:‘Graph) m

(vs G),

((((+_src +) IS.VERTEX G) /\ ((e.des +) ISVERTEX G)) +>
(- IISERT (ES G)) | (ES G)))M

Note that to maintain the integrity of a graph, the only edges which can be in-
serted are those incident with vertices already in the graph. The reverse operations
of insertion is DELETE-VERTEX and DELETE-EDGE. Their definitions are listed

below:
HOL Definition 21 (DELETEVERTEXDEF)

“DELETE-VERTEX (G:‘Graph) v m
(((VS G) DELETE v), ((ES G) DIFF (IICIDBIT-WITH G »)))"

HOL Definition 22 (DELETE-EDGEDEF)
"DELETE_EDGE (0:‘Graph) + m
((VS G), ((ES G) DELETE e))H
Note also that deleting a vertex must also delete all the edges incident with it. The
following four theorems assert that the abstract property of a graph is maintained

over these operations.



CHAPTER 4 THE MATHEMATICAL FOUNDATION 56

HOL Theorem 4 (GRAPHINSERT.VERTEX)
h VG». GRAPHG D GRAPH (» INSERT-VERTEX G)

HOL Theorem 5 (GRAPHINSERT-EDGE)

I-VG e. GRAPHG D GRAPH (e INSERT-EDGE G)

HOL Theorem 6 (GRAPHDELETEVERTEX)

h VG v. GRAPHG D GRAPH (G DELETE-VERTEX V)

HOL Theorem 7 (GRAPHDELETEEDGE)

h VG e.GRAPH G D GRAPH (G DELETE.EDGE «)

All of these operations are commutative. These facts are asserted by the following

theorems:

HOL Theorem 8 (INSERT-VERTEX-OONN)
|- VGt>,vj.
», INSERT.VERTEX (2 INSERT.VERTEX G) =

V2 INSERT.VERTEX (r, INSERT.VERTEX G)

HOL Theorem 9 (INSERT-EDGE-CONN)

K VGeie2.
e, INSERT.EDGE (e2 INSERT.EDGE G) «

€2 INSERT-EDGE (c, INSERT.EDGE G)

HOL Theorem 10 (DELETE.VERTEXCONN)

h VG tity.
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(G DELETE.VERTEX t>,) DELETE.VERTEX vj =

(G DELETE.VERTEX v2) DELETE.VERTEX t

HOL Theorem 11 (DELETEEDGECOVM)
hVGe, ea.
(G DELETE.EDGE e,) DELETE.EDGE e2 =

(G DELETE.EDGE e2) DELETE.EDGE c,

Graph union and intersection Two important operations on graphs are the
union and intersection of two graphs. The union of two graphs G\ and G2 is
defined to be the unions of their vertex sets and edge sets. The HOL definition

reads:
HOL Definition 23 (GUNION.DEF)

“G.UIXON (G I:“Graph) G2 =
((VS GI) UIXOR (VS G2), (ES Gl) UIXOI (BS G2))"

The operation G.UNION is closed within the set of all graphs, i.e., the union of any
two graphs is a graph.
HOL Theorem 12 (GRAPHUNION)

h VGi G2

GRAPH Gi A GRAPH G2 D GRAPH (Gt G.UNION G2)

This operation is symmetric, associative and the union of a graph with itself

results in itself. These properties are asserted by the following three theorems.

HOL Theorem 13 (GUNIONSYM)

HVG, Ga.Gi G.UNION Ga » G2G.UNION G,
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HOL Theorem 14 (GUNION-ASSOC)
KVG,G2G3.

(G, G.UNION Ga) G.UNION G3 = Gi G.UNION (G2G-UNION G3)

HOL Theorem 15 (GUNION-IDENT)
KVG.G G.UNION G = G

It is obvious that if v is a vertex of the union of G, and G3, then it is either a
vertex of G\ or a vertex of G3. Similarly, if e is an edge of the union of G\ and Gj,

then it is either an edge of G\ or an edge of Gj. Hence, the following two theorems:

HOL Theorem 16 (VERTEX-IN-UNION)
h VG, Gatx

I IS-VERTEX (GXG.UNION G2) = IS.VERTEX G, VVIS.VERTEX Gj

HOL Theorem 17 (EDGE-IN-UNION)
h VG, Gae. e IS.EDGE (G, G.UNION Ga) = e ISEDGEG, V't IS.EOGE Ga

The definition of graph intersection is the intersections of their vertex sets and
edge sets:

HOL Definition 24 (G-INTER-DEF)

"«INTER («1:-Graph) «2 m
(((VS 01) INTER (VS 02)), ((ES Gl) INTER (ES G2)))H

This operation is closed within the set ofall graphs. This is expressed in the following

theorem:

HOL Theorem 18 (GRAPH-INTER)

I- VG, Ga- GRAPH G, AGRAPH Ga D GRAPH (G, G-INTER Ga)
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And this operation is also symmetric, associative and reflexive, hence, the following

three theorems:

HOL Theorem 19 (GIMTERSYM)

I-VG, G3.Gi G.INTER Ga = GaG-INTER G|

HOL Theorem 20 (GINTERJSSOC)
h VG, G2G3.(G, GINTER G2) GINTERG3 = G, GINTER (G2GJINTER G3)

HOL Theorem 21 (G INTER IDENT)

HVG.GG.INTERG = G

All vertices of the intersection of two graphs must be the vertices of both of the
graphs. Similarly, all edges of the intersection must be the edges of these graphs.

The following two theorems assert these facts:

HOL Theorem 22 (VERTEX_IN-INTER)

|- VG| Gj u. #IS.VERTEX (G, GINTER G2) = «ISVERTEX G, Ar ISVERTEX Ga

HOL Theorem 23 (EDGE-IIf-IRTER)

h VGiGae.t ISEDGE (G, GINTER G3) = t ISEDGE G, Ac ISEDGE G3

4.1.5 Subgraphs and graph isomorphism

Subgraph A subgraph of a graph G is a graph whose vertex set and edge set are
subsets of the vertex set and edge set of G, respectively. A predicate SUBGRAPH is

defined for this relation.
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HOL Definition 25 (SUBGRAPHIER)

"SUBGRAPH (H:*Graph) (G:*Graph) >
(GRAPH H) /\ (GRAPH G) A
((VS H) SUBSET (VS G)) A ((ES H) SUBSET (ES G))"

SUBGRAPH H G is true if H is a subgraph ofG. As the definition implies, a subgraph

is itself a graph. This is asserted by the theorem SUBGRAPHGRAPH

HOL Theorem 24 (SUBGRAPHGRAPH)

h VGH.SUBGRAPH H G D GRAPHG AGRAPH H

The subgraph relation is reflexive, transitive and antisymmetric. These properties

are asserted by the following three theorems.

HOL Theorem 25 (SUBGRAPHRER)

HVG. GRAPHG D SUBGRAPHGG

HOL Theorem 26 (SUBGRAPHTRANS)

h VG, G2G3.SUBGRAPH Gi G2 A SUBGRAPH G2G3 3 SUBGRAPHG, G3

HOL Theorem 27 (SUBGRAPHINTISYN)

HVG,G2.SUBGRAPH G ,G 2A SUBGRAPH G2G, D (Gi = G2)

From the definition, a subgraph can be obtained by deleting an edge and/or a

vertex from a graph. This is expressed in the following two theorems:

HOL Theorem 28 (SUBGRAPH.DELETE.EDGE)

HVGe.GRAPHG D SUBGRAPH (G DELETE.EDGEI)G
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HOL Theorem 29 (SUBGRAPH_DELETE VERTEX)
h VGv. GRAPHGD SUBGRAPH (G DELETE-VERTEX v)G

A subgraph can also be obtained by applying selection functions to the vertex
set and the edge set of a graph. This operation is defined in HOL as:
HOL Definition 26 (MK-SUBGRAPHDEF)
"MK.SUBGRAPH (G:*Graph) fv fa m

<v | v ISVERTEX G /\ fv v>,
<a | » ISEDGE GA fa e A fv («.arc a) A fv (a.das a)}"

The theorem MK-SUBGRAPHGRAPH asserts that the result of this operation maintains
the integrity of graph, and the theorem MK-SUBGRAPHSUBGRAPH asserts that the

result is indeed a subgraph of the original graph.

HOL Theorem 30 (HKSUBGRAPHGRAPH)
1-VGfv ft. GRAPHG D GRAPH (MK.SUBGRAPH G fv ft)

HOL Theorem 31 (H<SUBGRAPH.SUBGRAPH)
h VGfv ft. GRAPHG D SUBGRAPH (MK_SUBGRAPHG/v/e)G

Graph isomorphism Two graphs Gi and Gj are isomorphic if there exists a
one-one correspondence between the vertices and edges of G\ and the vertices and
edges of Gj, respectively. The predicate GRAPHJSO is defined for this relation:
HOL Definition 27 (GRAPHISOJ)EF)

“"GRAPH.ISO (G:‘Graph) (H:‘Graph) (f,g) =
(GRAPH G) A (GRAPH H) A
((VS G) <—> (VS H))f A ((BS G) <--> (ES H))g"
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where the infix constant <—>means one-one correspondence. In the above definition,
((VS G) <—> (VS H)) i means f is a one-one correspondence between the elements
of the vertex set of Gand the elements of the vertex set of H

Four theorems about graph isomorphism have been proved. They assert the
properties of this relation, namely reflexive(automorphism), transitive and symmet-

ric.

HOL Theorem 32 (GRAPHISO-AUTO)
h VG. GRAPHG D GRAPH.ISOGG (1,1)

HOL Theorem 33 (GRAPHISO-TRAVE)
aVyi g293f\ 9i h 9
GRAPHJSOO, 0a(/i.ii)AGRAPH_ISO02i3(/a.0a) 3

GRAPH.ISOYy, 0s ((/, 0/,), (0, ogt))

HOL Theorem 34 (GRAPH ISO SYM
FV G H fg. GRAPH.ISOG H (f,g) D (3 f g'. GRAPHISO H G (f.,0"))

HOL Theorem 35 (GRAPHISOSYMHNY)
h VC H Jg. GRAPH.ISOG H (/,#) D

GRAPH.ISO H G(FUNINV/(VSG)(VS # )/, FUNINV(ESG)(ES H)g)

The theorem GRAPHISO SYM IMV makes a stronger assertion about the symmetry of
graph isomorphism by explicitly providing an inverse function FUN.INV where the
expression FUNJNV S\ S2f is an inverse function of /, and its domain is the set Sa

and its range is the set S\.
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4.2 The theory path

One of the most important uses of graphs with respect to the applications in railway
signalling systems is the derivation of paths. The path theory contains definitions
of a path and related constants. Some basic properties of paths have been proved.

Consider any two vertices i and v2 in a graph, v2is reachable from W if there is
a sequence of edges through which one can arrive at uj from ®j. There are usually
many different ways one can arrive at v2. According to whether all the edges in the
sequence are distinct, the sequences can be classified into several classes. They are

walks, trails and paths.

4.2.1 Walks in a graph

A walk in agraph G is a sequence of edges ei, €3, ..., en, which satisfies the following:
1.n>0
2. eiisanedgeof G, foralli=1,...,n;

3. the destination of ei is equal to the source of e”i for 1< t<n.

This implies that the edges are not necessarily distinct in a walk, i.e., a walk may pass
through the same edge more than once. In HOL, a sequence of edges is represented
by a list of edges, of type : (*Edg«)liit. A list of edges satisfies the predicate WALK
if and only if it is a walk.

HOL Definition 28 (UALKJ)EF)

"WALK O (+:(*Edge)lint) >
~(WULL m) A (VALK.TAIL v 0)"
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HOL Definition 29 (WALKTAILDEF)
"(WALK.TAIL O (G:*Graph) « T) A
(I(hd:~Edga) tl. WALKTAIL (COBS hd tI) G«

(GRAPH G) A (hd IS.EDGE G)) A
((BULL t1) \/ ((WALKTAIL ti G) A («.da* hd * «.arc (HD t1)))))M

Here, the recursive predicate WALK.TAIL guarantees the list of edges forms a walk
by checking whether the conditions 2 and 3 listed above are met. The degenerate
case, the null list, is not to be considered as a walk. The entry of a walk is the
source of the first edge in the list, and the exit of a walk is the destination of the
last edge.

HOL Definition 30 (WALKEMIRY DEF)

"WALKEBTRY (1:(*Edga)list) - «.arc (HD 1)H

HOL Definition 31 (WALKEXIT-DEF)

"WALKEXIT (COBS (hd:‘Edga) tl) -
(BULL t1) «> (a.daa hd) | (WALKEXIT t)"

4.2.2 Some operations and facts on sequences of edges

Since the lists representing walks and other classes of edge sequences are special
cases of general lists, the operations, functions and theorems in the HOL system
theory list are not sufficient. Several predicates are defined to deal with these
edge sequences, and are described in this subsection, together with some theorems

about them.

Membership of a list The concept of membership is borrowed from set theory.
An object lisa member of a list [x0>..,*»] if * = *f°r some *where 0 < »< n.

The predicate ELEM is defined to have this list membership property.
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HOL Definition 32 (ELENJ>EF)

"ELEN O (x:*) « F) /\

BEN (@ESht) (x:*) » (x-h)\/ @BENt x))"

It is obvious that there is no element in a null list. If z is in a list /, it is also in the
list obtained by adding an element to I. If x is an element of the list obtained by
appending a list 12 to a list /j, it is an element of I, or 12. These facts are asserted

by the theorems NULL-NOT-ELEM H BMOONS and BEEMAPPEND.

HOL Theorem 36 (NALIOTIXEM)
HV/. NULL/ D Vx.-<(ELEM/x)

HOL Theorem 37 (ELEMOONS)
hW ry. ELEM/z D ELEM(CONSy I)x

HOL Theorem 38 (ELEMAPPEND)
h VI, 1,z. ELEM(APPEND 1, IaX:ELEM 1,zV ELEM |2(

The theorem IN-ELEM relates the set membership with the list membership. It
asserts that there exists a list | such that all members of a finite set a are elements

of I

HOL Theorem 30 (INJLEM)

HVs. FINITEs D (31. (Vz.z INs = ELEM1z))

Unique elements Ina list [20,.. the elements are called unique elements
if all z are distinct. The recursive function UNIQUE.EL is defined to check the

uniqueness of the elements of a list, and is used in the definitions of trail and path.
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HOL Definition 33 (UNIQUE-EL.DEF)

"(UIXQUEEL [] = T) /\
(UIIQUEEL (cols (hd:*)tl) - (EvERY (\x."(x « hd)) tl) /\ (UNQUEEL tl))"

Element set Aset can be constructed to contain all elements of a list. Obviously,
such a set will contain all distinct elements of the list. This provides a means of
collecting all distinct elements of a list, and applying set operations on them, for
example, checking whether two lists have common elements can be performed by
using the set disjoint predicate on the element sets (a definition corresponding to this
is shown in HOL Definition 35). The function EL.SET returns a set containing
all element of its argument list.

HOL Definition 34 (EL-SET-DEF)

«(«LSET D - O) A

(EL.SET (cols hd tl:* list) = hd NSERT (EL.SET tl))"
The element set of the list (APPEND Ix12) is the union of the element sets of ji and

.

HOL Theorem 40 (EL-SET.APPEND)
-V/, I2EL—SEI'(APPEND/, Ia= EL.5ET1, UNION EL-SET |2

The theorem ELEN-INEL-SET asserts that the list membership relation is equivalent

to the set membership of the element set.

HOL Theorem 41 (ELEMINEL-SET)
hVIXELEM/z s x INEL.SET/



CHAPTER 4. THE MATHEMATICAL FOUNDATION 67

Disjoint lists Two lists are said to be disjoint if they do not have common ele-
ments. The predicate DISJ.LIST is defined for testing this condition. It is defined

in the way suggested above.
HOL Definition 35 (DISJJ.ISTJJEF)

“DISLLIST (I1:(*)li«t) 12 * DISIONT (ELSET 11) (EL.SET 12)"

The basic properties of DISJ.LIST follow those of the set operator DISJOINT, i.e.,

it is symmetric.

HOL Theorem 42 (DISJ-LIST.COMM)
h V/,12.DISJ.LIST/, 12 = DISJ.LISTI2I\

The following two theorems state the facts about DISJ.LIST over the list operators

CONS and APPEND.

HOL Theorem 43 (DISJ_LIST_COKS)

KV/|12h. DISJ-LIST (CONSh Ix) 12 = DISJ.UST/, I2a ->ELEMI2h

HOL Theorem 44 (DISJ-LIST.APPEND)

I- v/, iais. DISJ-LIST(APPEND/, /a)/3 = DISJ.LIST/, /13 A DISJ.LIST/2/3

Vertex lists The functions described in the remaining of this subsection are used
in the reasoning of paths. They are meaningful only when applying to the edge
sequences which are walks in a graph.

Consider a walk to = [e0;.-.;e,,] in a graph, the vertices passed through by u;
are the source of e0 and the destinations of e for 0 < i < n. The function VER.LIST
returns the list of vertices a walk passes through. It is defined in terms of V.L which

returns the same list except the entry vertex.
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HOL Definition 36 (VERJ.IST.DEF)

“(VER.LIST O w 0O) /\
(VERLIST (CMS (hd:'Edge) tl) m CMS (e_src hd) (V.L (CMS hd tl)))M

HOL Definition 37 (VJ.DEF)

"<V_L O - 0O) A

(V.L (CMS (hd: “Edge) tl) « CMS («.dea hd) (V.L tI))H

The following three theorems state the properties of the function VER.LIST over the

list operators CONS and APPEND.

HOL Theorem 45 (V L APPELID)
I- Vp,pj. V_L(APPENDp, p,) = APPEND (VJ.pi)(VJ.pj)

HOL Theorem 46 (VER-LIST.COMS)
h Vph. VER.LIST (CONS hp) = CONS (#-srch) (CONS (e.des h) (V+ p))

HOL Theorem 47 (VERJLISTJIPPEND)
VpiPa -NULLpi A-.NULLpa D

(VER.LIST (APPEND Pl pa) = APPEND (VER.LISTpi)(TL(VER.LIST p,)))

4.2.3 Trails and paths

A trail is a walk which contains no repeated edges, i.e., all edges in the sequence
are distinct. However, it may pass through the same vertex more than once, thus
containing a cycle.

HOL Definition 38 (TRAILJ)EF)

“TRAIL (G:'Graph) (1:(*Edga)list) m
(WALK G 1) A (MIQUEEL 1)
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The clause UNIQUE-EL/ makes sure that all elements in the list | are distinct, i.e.,
no edges in a trail are repeated.

A path is a trail which passes through any vertex at most once, i.e., there is no
cycle in a path. PATHG | if and only if / is a path in the graph G.
HOL Definition 30 (PATHIJEF)
“"PATH (0:‘Graph) (1:('Edgs)list) »

(TRAIL G 1) A (UliQUEEL (VERLIST 1))M

The clause UNIQUE.EL (VER.LIST/) guarantees that all vertices passed through by
/ are distinct. In the application in railway signalling, paths are the most important
type of lists, therefore, some theorems about paths will be described in the next
subsection.

The entry of a path is defined to be the source vertex of the first edge in the
sequence:
HOL Definition 40 (PATHENTRY DEF)

“PATHEHTRY (1:(*Edgs)list) m «.arc (HD 1)M

and the exit of a path is the destination vertex of the last edge in the sequence. It
is defined in terms of the exit of a walk (WALK.EXIT).
HOL Definition 41 (PATH.EXIT.DEF)

"PATHEXIT (p:('Bdga)list) m WALKEXIT p"

4.2.4 Some properties of paths

Disjoint paths Two paths pi and p? are said to be disjoint if they do not overlap,
i.e., they do not share any edges, nor have identical vertices. A HOL definition for

this may be
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DISI.LIST pi p2 A DISILIST (VERLIST pi) (VERLIST p2)

The actual definition in the theory is DISI-PATH.DEF which replaces the constants
VER.LIST by V.L, thus, it excludes the entry vertices in the disjoint test. This is
needed to overcome a difficulty when DISJ.PATH is used to test two paths which
are to be connected to form a longer path. In such case, the exit of one path should
be equal to the entry of the other.
HOL Definition 42 (DISJ-PATH-DEF)
"DISIPATH G pi p2 m PATH G pi A PATH G p2 A

DISJ.LIST pi p2 A DISJLLIST (V.L pi) (V.L p2)
Extending a path An existing path p can be extended by adding an edge Ato
the front of it. The theorem PATH.CONS expresses the conditions that a path can be

extended in this way. The conditions are:
1. Amust be an edge in the same graph;
2. the entry of p is equal to the destination of A
3. Ais not already an element of p;
4. the source of Ais not equal to any of the vertices in p.
HOL Theorem 48 (PATHCONS)
h VpAG.
GRAPH G APATHG p A AIS.EDGE G A(PATH-ENTRYp = e-desA) A
-LOOP AA ->ELEM (VER.LISTp)(e_src A) A->ELEMph D

PATH G(CONS Ap)
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Two existing paths p\ and pa can also be concatenated using the list operator
APPEND to form a new path whose entry is the entry of p\ and whose exit is
the exit of pa, providing the following conditions hold:

1. the exit of p\ is equal to the entry of pa;

2. pi and pa are disjoint paths, i.e., DISJ.PATH G pipa;

3. the entry of p\ is not equal to any of the vertices in pa;
The first condition guarantees that the resulting path is connected, and the sec-

ond and third conditions eliminate the possibility that the resulting path will have

repeated edges and/or loops. This is expressed in the theorem PATH-APPEND.

HOL Theorem 40 (PATH-APPEND)
KVGpjpj.
GRAPHGADISJ-PATHGP,pjA(PATH.EXITp, = PATH.ENTRY pj) A
-ELEM(VER-LISTpj)(PATH.ENTRYp,) D

PATH G (APPENDp, p,)

Paths under graph operations Ifpisa path in G\, then it is still a path in the

union of G\ and another graph, say Ga.

HOL Theorem 50 (PATHGUNION)
HVPG, Ga

GRAPHG, A GRAPHGa A PATHGtP D PATH (G, G.UNION G 3)p
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If pis a path in G, then it is a path of the graph resulting from inserting an edge

or a vertex into G.

HOL Theorem 51 (PATHINSEDGE)
I-VpeG. PATHGp 3 PATH (e INSERT-EDGE G)p

HOL Theorem 52 (PATHINSVERTEX)

- VprG.PATHG p 3 PATH w INSERT-VERTEX G )p

Connected graph Finally, the concept of connected graph is defined in terms of
whether there is a path connecting any two vertices in the graph.
HOL Definition 43 (CONNECTED-DEF)

"CONNECTED G = GRPH GA
(IM v2. (vl ISVERTEXG) A (»2 ISVERTEXG) A ‘(vI - V2)
Fn>

(?1. PATHG1) A (vl » PATHENTRY 1) A (v2 - PATHEXIT 1)))"

The theories described in this chapter form a mathematical foundation for mod-
elling the track network. These theories have been developed in a very general way
to anticipate the needs of other applications. They have been organized into a li-
brary which can be loaded into the HOL system by a simple command. When other
applications call for the use of graph, this library will be a quick and reasonable

starting point.



Chapter 5

Modelling of Railway

Components

This chapter describes the theories which model the individual track com-
ponents and signals.

Let us now consider how to model the railway track components and signals.
Their basic functions have been described in Chapter 3. The key to the modelling
is abstraction. The basic principle in the development of the theories modelling
these components is to concentrate on the major function of each of them. An
abstract type is defined to represent each class of components. The basic functions
of the components are encoded in the properties of these types. The types are
defined using the type definition package[48] in the HOL system described briefly
on Page 24. Then, appropriate projection operators and discriminators are defined
to manipulate objects of these types. These types and constant definitions and
theorems about their basic properties are arranged in three HOL theories: TRACK,

SIGNAL and PART. Each of these theories is described in detail in a separate section

3
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below.

5.1 The theory TRAK

This theory contains type definitions and constant definitions about the individual
track components, namely joins, track circuits and points. The complete theory
is listed in Appendix A.6 and the ML source creating this theory is listed in Ap-

pendix B.7.

5.1.1 Joins

Since joins have no moving parts, all that is required to characterize a join is its
type. Simply, an enumerated type is defined to represent them. There are three
types ofjoins in the real track network as listed in Section 3.1. In addition, a special
type ofjoin is required to indicate the connection point between the two areas under
different control centres. Therefore, the enumerated type has four possible values.
The name of the type is Join, its specification is

HOL Definition 44 (JoinJixion)

"Join m J_conduct 1 J.insulats 1 J.overlap 1 J terainats”™

The value J.terminate is for the joins between control areas. Four predicates,
ISJICOND, ISJINSU, ISJOVER and ISJTERM are defined for testing the value
of a join. They return T if they are applied to a join whose value is J-conduct,

Jdnsulate, J.overlap or J.terminate, respectively.
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5.1.2 Track circuits

At any given time, a track circuit is in one of the two physical states, either ‘CLEAR’
or ‘OCCUPIED’. When a route has been set up. it locks the sections of track so that
a conflicting route cannot be set up. Although the track circuits along the route are
not in the ‘OCCUPIED’ state, they cannot be included into another route. They
are said to be in a ‘LOCKED” state. The track circuit state is represented by an
enumerated type :T»tate with the following specification:

HOL Definition 45 (Tstate_Axiom)

"Tstat* m occupied I locked I clear”

The three constant values correspond to the physical states ‘CLEAR’, ‘OCCUPIED’,
and the logical state ‘LOCKED”.

A track circuit is represented by the type :Tcir with the following specification:
HOL Definition 46 (TcirJIxiom)

“Tcir m TCXR nun (nua->Tetate)*

The first field of a track circuit is its identification number, which is of type :nua.
The second field is a function of time yielding the current state of the circuit. For
example, if a track circuit is occupied at the time slot 10, then 5(c10 = occupied,
where Stc is its state function. This time function represents the physical input into
the system.

Within the abstract model of railway, time is represented by natural numbers,
i.e., of type :nua, thus, time is on a discrete scale. This is reasonable approximation
of the real system providing the unit of time is sufficiently small. The actual unit

depends on how the control system is implemented. In the case of SSI or similar
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implementations, the time unit could be the duration of a control cycle. The origin
of the time scale could be any fixed time in the past.

There are projection operators defined for accessing the fields of track circuits.
They are TCJD which returns the identification number, and TC.5FUNC which

returns the state function.

5.1.3 Points

The modelling of points follows the same general principle of modelling track circuits.
There are two sets of orthogonal states: one concerns with the physical states,
the position of the point which can be either ‘“NORMAL’, ‘REVERSE’ or moving
between these static positions; the other set concerns with the logical states which
indicate whether the point can be moved. The set of physical states is represented
by the type :Ppos. Its specification is

HOL Definition 47 (PposJixiom)

‘Ppos = normal | reverse | moving*

The set of logical state is represented by the type :Ploc with the following specifi-
cation:

HOL Definition 48 (Ploc-Axioa)

'Ploc = free_move | free.nor.rev | free.rev.nor | reaote.locked*

where free.move indicates the point is free to move to any position, free.nor.rev
indicates it is free to move from NORMAL to REVERSE, free.rev.nor indicates it is
free to move from REVERSE to NORMAL, and remoteJocked indicates it cannot

be moved at all.
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A point is represented by the type :Point which contains three fields as shown
in the specification below:
HOL Definition 49 (Point-Axiom)

‘Point m POUT num (num->Ppos) (nua->Ploc)’

The first field is the identification number, the second is the physical state function
and the last the logical state function.

There are three projection operators corresponding to these fields, namely PNTJD,
PNT.POS and PNT.LOC. As it is often required to test the position of points, the
predicates PNT.NORMAL and PNT.REVERSE are defined to yield T if the point is
at the respective position.

HOL Definition 50 (PNT-NORMAL-DEF)
"PITIORMAL p t ® ((PIT.POS p t) « normal)”
HOL Definition 51 (PNT.REVERSEJ)EF)

“PIT-REVERSE p t » ((PIT.POS p t) M ravers«)"

5.2 The theory SIGNAL

It has been mentioned in Chapter 3 that there are a number of classes of signals and
that several signals from different classes may be combined on a signal post to form
a compound signal. Following the basic principle, a type is defined to represent each
class of signals. Another type based on these types of simple signals is defined to
represent compound signals. The complete theory is listed in Appendix A.5 and the

ML source creating this theory is listed in Appendix B.6.
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5.2.1 Simple signals

Main signal  Main signal is the most complex of all classes of simple signals be-
cause they can display up to 4-different aspects, and because there are different
types according to the number of aspects can be displayed. The enumerated type
:MAspect is defined for the current state of main signals.

HOL Definition 52 (MAspect-Axiom)

"MAspect » green I double.yellow I yellow I red

1 ireen.flash 1 double._yellow_flash I yellos.flash
1 laulty.aspect*®

faulty-aspect indicates that the signal is faulty. All other values indicate that the
chosen aspect is proved to be alight. Another enumerated type, namely Mtype is
defined for distinguishing the kind of main signals, i.e., the number of aspects it can
display.
HOL Definition 53 (Mtypa_Axion)
"Htype = tso.aspect | three.aaqect 1 four.aspect

1 two.repeat | three.repeat

The type for main signal is Haig which has two fields: the first indicates the
kind of signal and the second is the state function.
HOL Definition 54 (Maig_Axion)

"Msig = MSIG Mtype (nun->MAspect)*

There are three predicates for testing the current state of a main signal, namely
MAIN.ON, MAIN.OFF and MAIN.FAULTY. A main signal is said to be ON if the
RED aspect is alight. It is said to be faulty if the state function returns the value

faulty.aspect. Otherwise it is ‘OFF".
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HOL Definition 55 (HAIN.ONJ)EF)
“"MAXILOl a (t:nu») * (MASPECT at)» rad"
HOL Definition 56 (MAIN FAULTYJ)EF)

“NAILFAULTY a (t:nun) * (MASPBCT at) - Taulty.aapact”

HOL Definition 57 (MAIN-OFFJ)EF)

"NAXI-OFF a (t:nuai) * ' (KAXI.Ol a t) A ‘(HAILFAULTY a t)"

Junction indicatora The type Jaig is defined for both junction indicators and
route indicators regardless how they are implemented. The only thing which con-
cerns us is whether the indicator is alight. A state function of type :nua->bool is
used for the current state, where T (true) means the chosen arm or route number
of the indicator is proved alight.

HOL Definition 58 (Jaig-Axiom)

‘Jaig * JSIG (nua->bool)*

Subsidiary signala A subsidiary signal has only the ‘OFF” aspect which gives
authority to the driver to pass the main signal showing the ‘ON’aspect but prepare
to stop short of any obstruction. Therefore, the type for subsidiary signal aspect
has two possible values: sub.not.show and sub-off. The type representing subsidiary
signals is :Subsig which has only a state function returns the current aspect.

HOL Definition 50 (SubAspect-Axiom)

‘SubAapact m aub_not_ahov | sub.off'

HOL Definition 60 (Subsig-Axion)

‘Subaig = SUBSIG (nu»->SubAapact)'
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Shunting signals Shunting signals have two possible aspects: ‘ON’ and ‘OFF’,
and may have a proving circuit for the ‘ON” aspect; thus the type :ShAsp*ct has
three possible values. The type for shunting signal :Shsig has only one field, the
state function.

HOL Definition 01 (ShAspect-Axiom)

‘ShAspect m sh.on 1 sh_off I sh.faulty”

HOL Definition 62 (Shsig-Axiom)

*Shsig » SHUITSIG (nun->ShAspsct)*

5.2.2 Compound signals

Compound signals are represented by the type :Signal. A constructor is provided
for each combination of types of signals.
HOL Definition 03 (Signal-Axiom)
‘Signal > SZQIALN nun Nsig |
SZGIAK) nun Haig Jsig |
SIGIALIVB nun Nsig Subsig |
SIGIALIVBI nun Nsig Subsig Jsig |
SIGNALS nun Shsig*
The first field of any compound signal is the identification number. The other fields
are the constituent signals. The projection operators SIGNALID and SIGNAL-MAIN
are defined to access the identification number and the main signal.
HOL Definition 04 (SIGNAL-IDJ)EF)
"(SIGIAL_ID (SIGNALH id n) - id) A
(SIGNAL-ID (SIGNAL» id a j) mid) A

(SIGNAL-ID (SIGNALS id sh) m
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HOL Definition 65 (SIGNALJAINJ)EF)

"(SIGNALJUIN (SIGNALN id m) m m) A

(SIGNALJUIN (SIGNALNJ id m j) « m) A
(SIGNAL.MAIN (SIGNALAS id = m) - m) A
(SIGNAL.NAIN (SIGNALAS] id m > J) « m)

Since the ‘ON” and ‘OFF’ states are of most importance in the operation of in-
terlocking, two predicates, ON and OFF are defined for testing the current ON/OFF
state of a signal.

HOL Definition 66 (ONJ)EF)

“(ON (SIGNALN id a) t m (AAINON m t)) A

(ON (SIGNALNJ id m j) t m (AAINON at)) A

(ON (SIGNALNS id ms) t * (AAINON at)) A
(ON (SIGNALNSJ id m a j) t m (AAINON a t)) A
(ON (SIGNALS id ah) t - (SHUNT.ON ah t)) *
HOL Definition 67 (OFFJ)EF)

“(OFF (SIGHALN id a) t - (NAIN.OFF a t)) A
(OFF (SIGNALNJ id a j) t > (NAINOFFat)) A
(OFF (SIGNALNS id a a) t - (NAINOFFat)) A

(OFF (SIGIALHSJ) id a a j) t - (NAINOFFa t)) A
(OFF (SIGNALS id ah) t * (SHUNT.OFF ah t)) "

If a signal is neither “ON’ nor ‘OFF’, then it is faulty, the predicate SIGNAL.FAULT

indicates such a state.
HOL Definition 68 (SIGNALFAULTJ)EF)

“SIGNALFAULT a t- *((ON a t) \/ (OFF a t))M

At any given time, a signal will be in either ‘ON” or ‘OFF’ or ‘FAULTY” state,
and it will never be in both ‘ON” and ‘OFF’ states characterized by the predicates
ON, OFF and SIGNAL.FAULT, and they are in turn based on the properties that

the constructors for the types of signal aspects are distinct and one-one. This is a
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important property of the signals and it is asserted by the theorems SIGNAL.STATES

and SIGNAL_MOT_ON OFF.

HOL Theorem 53 (SIGNAL-STATES)

h vt on a)v orF= v sienaLFauLT )

HOL Theorem 54 (SIGNALJIOT.ON.OFF)

KVii. -n((ON jl)A(OFFa0)

5.3 The theory PART

This theory contains two type definitions defining two kinds of atomic building
blocks for creating track networks. The first is the parts which will become the
vertices in the graph representing the network, and the second is the labels of the
edges. Chapter 6 will show how a network is formed using these parts and edges.
Meanwhile, the definitions of parts and edge labels are described. The complete
theory listing can be found in Appendix A.7 and the ML source creating this theory
is listed in Appendix B.8.

5.3.1 Parts

The type :Part is defined to represent a section of track in the network. Each
part has an identification number, an associated track circuit (except buffers) and
a single atomic track component which may be any clasB of components listed in
Table 3.1. A track circuit may be shared by more than one part.

HOL Definition 60 (Part.Axiom)

‘Part m BPART nun |
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TPART nua Tcir |
DPART nun Tcir (aoatnua) (nuatnua) |
PPART nua Tcir Point (nun«nun«nun)*

Since there are four kinds of atomic components, the definition of type :part has four
cases. A part constructed by BPART represents a buffer, and by TPART represents
a section of plain track. They are simple and do not deserve more explanation.

A diamond crossing is represented by a DPART part. The last two fields, of type
:nun*nun are the identification numbers of the adjacent parts. A movement through
the diamond crossing can only be made between the parts indicated in the same
pair.

Since all three kind of parts mentioned above contains no moving elements, they
are static. In contrast, a PPART represents a section containing a point which may
change state according to its position. The current state of a point is returned by
the state function in the third field. The last field, a triple of identification numbers,
pointing to the adjacent parts which should on the trailing, normal and reverse ends
of the point, respectively.

Projection operators are defined for accessing the various fields of a part, and
discriminator are defined for testing what kind of part an object of this type is.

They are listed in Table 5.1.

5.3.2 Edge labels

The adjacent parts are connected by edges which is labelled by the join between the
parts, and possibly a signal. The type :Blbl is defined to represent the edge label.

It has two cases: either a join with attached signal or simply a join.
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PARTID returns the identification number of a part
PART.CIRCUIT returns the track circuit associated with a part
PART.POINT returns the point of a part

PART.PNT-TRAILING returns the ID number of the part at the trailing end

PART.PNT.NORMAL returns the ID number of the part at the normal end

PART.PNT.REVERSE returns the ID number of the part at the reverse end

PART.DIAL returns the first pair of ID numbers of the adjacent
part

PART.DIA2 returns the second pair of 1D numbers of the adjacent
part

I1S.BPART T if the part is a buffer

ISTPART T if the part is a section of plain track

IS.DPART T if the part is a diamond crossing

ISI»PART T if the part is a point

Table 5.1: Projection operators and predicates for :Part.
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HOL Definition 70 (Elbl-Axiom)

‘Elbl = ELBLSIG Join Signal | ELBL Join*

Projection operators are defined to access the join and signal field, and a predi-
cate returning T ifan edge has a signal attached is also defined.
HOL Definition 71 (ELBL.JOIN-DEF)

"(ELBL.JOII (ELBLSIG j a) *j) A
(ELBL.JOII (ELBL j) - J)"

HOL Definition 72 (ELBL-SIGNAL.DEF)
"ELBLSIGIAL (ELBLSIG j a) m «"
HOL Definition 73 (IS-ELBL-SIGNAL-DEF)

"IS.ELBL.SIGIAL (ELBLSIG j a) > T"

Now, the basic building blocks of railway track network have been defined. The

rules for building ‘legal” networks will be described in the next chapter.



Chapter 6
The network model

This chapter describes the model for complete railway track networks
which is specified in the HOL theory NETWORK Networks are modelled
using a class of directed graphs. Some basic properties of such network
are explained.

Having created the specifications of the parts, signals and a generic graph theory,
the model of a complete track network can be specified based on these building
blocks. A network is modelled by a constrained, labelled directed graph whose
vertices are labelled by track component parts and whose edges are labelled by joins
and signals.

The basic procedures of creating a model of a track layout are:

1. construct an object of type :Part for each atomic track component with its

associated track circuit—these will become the vertices;

N

. construct an object of type :Elbl for each signal and join—these will become

the labels of the edges;

w

. connect the adjacent parts with two antiparallel edges to represent possible

traffic running in two directions—the edges are labelled by the appropriate
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objects of type :Elbl.

The resulting network model is an abstract representation of the track layout. It
preserves the topological relation between the adjacent parts and between the parts
and signals in the original layout. The physical dimensions, such as the length of
each section of track, are ignored. The specification of this model will be described
in Section 6.1 and examples of track network be shown in Section 6.2. Some basic
properties of the network model will be discussed in the last section of this chapter.
The specification of the network model and the theorems are stored in the HOL
theory NETWORK which is listed in Appendix A.8 and the ML source creating this

theory is listed in Appendix B.9.

6.1 Specification of railway track networks

Recall that the type of a generic graph is polymorphic and is abbreviated in ML as
:“Graph which stands for the type :(*)*e« 0 (*0*0**)aat. An instance of :‘Graph
chosen to represent track layouts is defined as an abbreviated type :Network in the
HOL logic. This is possible, in contrast to the type of generic graph, because it is

not a polymorphic type. The complete specification of the type :Natvork is

(Part)aat 0 (Part 0 Part 0 ElbDsat.

The type variable :+ appeared in :‘Graph is instantiated by the type :Part. and :**
by :ElIbl. With this type, the vertices of the network represent the track components
and the edges are labelled either simply by a join or by a combination of a join and
a signal. The edges represent the connection between the parts and the possible

direction of the traffic moving between them.
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However, not all objects of this type are proper networks according to the rules
of designing track layout. A predicate NETWORK is required to distinguish the
real railway track networks from those which, although properly typed, violate the
rules. It defines a subset of the objects of type -.Network to be proper railway track
networks. This is to say that if any object of type iNetwork satisfies the predicate
NETWORK, it is a representation of a physical track layout which can be constructed
following the rules of a railway authority. The rules used in this study are taken
from British Rail's current practice[54]. These rules are embedded in the definition
of NETWORK which is defined inductively, i.e., a network can be built up by adding
component parts to an existing network.

HOL Definition 74 (NEMORK_DEF)
"NEWORK (IiNetwork) =
IN.((la. P((BPART n)>, <))) A
(lat. P{(TPART a t)>, {») A
(In't pn3. P(PPART n't p n3)> <») A
In t al n2. P{(DPART n t nl n2)>, <») A
IN pi p2. (PI"A (pi ISVERTEX1) A
gz; - p2) A (NFC 1 pi) A (NNCNp2))
(111 s2. P(NJOIN | pi si p2 s2))))
* P H'

The body of this definition is an implication, which specifies that a single track
component (a part) on its own is a legal network (the first four conjuncts in the
antecedent), and there is only one way of building up larger networks (the last con-
junct which is itself an implication). To construct a larger network, one can add a
vertex into an existing network and connect this new vertex with a existing vertex

by a pair of antiparallel edges. To apply this network building operation, certain

conditions have to be met in order to preserve the basic network properties in the



CHAPTER 6. THE NETWORK MODEL

results. These conditions are specified as the antecedent of the implication corre-

sponding to the specification of the operation. The meanings of this specification

[

the vertex p\ with which the newly added edges are incident must be a vertex

in the existing network;

2. the new vertex p? must not be identical to p\;

©w

both of them must satisfy the predicate NFC with respect to the network JV.

The name NFC stands for Not-Fully-Connected. Its definition specifies that the in-
degree of a vertex must be less than a limit. The maximum number of edges which
are incident to a vertex depends on the kind of parts in the vertex. The limits reflect
the topological characteristic of the parts. For example, at most two connections
can be made to a TPART which represents a plain track because parts can only be
connected to it at both ends.

HOL Definition 75 (NFC.DEF)

“(MFC (I:l«<tcork) (BPARTN) - («DEGREE | (BPART n) < 1)) A

(MFC (I:l«tcork) (TPARTn t) m («.DEGREE | (TPART nt) <2)) A
(IFC (l:l«tvork) (PPARTn tP n3) - («<.DEGREE B (PPART ntPn3) <3)) A
(IFC (1:me«work) (DPARTRt nl n2) > («.DEGREE | (DPART n tnl n2) <4))"

Here, the out-degree of vertex is not mentioned. It has been ignored deliberately
since the way a network is constructed requires that edges are added always as an
antiparallel pair, which guarantees that the in-degree of each vertex is equal to its
out-degree, therefore, specifying only one of them would be sufficient.

The operations carried out in the construction of a network are the general

graph operations INSERT.EDGE and INSERT-VERTEX defined in the theory graph.
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Figure 6.1: A simple network.

To make the network specification more concise, a function NJOIN is defined to
abbreviate these graph operations.
HOL Definition 76 (NJOIM-DEF)
13011 (I:l«t«ork) (nl:Part) (si:Edge) n2 s2 -
((nl.n2.sl) IISERT.EOGE ((n2.nl.s2) IISERT.EDGE (n2 IISERT.EDGE m)))"

The pre-conditions of the network construction operation NJOIN do not specify
whether pa must not be a vertex of the existing network N . This implies that it
may also be one of the vertices already in N. This is necessary because models for
a class of layouts cannot be constructed without this lack of restriction on p?. This

class of layouts contains one or more loops, as will be shown in the next section.

6.2 Examples of networks

Let us now study some examples of railway track networks. The first example
shown in Figure 6.1 is a very simple network to illustrate the concept of Not-Fully-
Connected and the placement of signals. Suppose that all vertices in this network
are of TPART, then the middle one, namely T2, is fully connected, i.e., NFCT2 N = F,
while the other two parts, 7T and T3, are not fully connected. Another point which
should be mentioned here is that there is a signal attached to the edge from T 1 to

T2. A train moves from T 1to T2 follows this edge and is under the control of the
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Figure 6.2: Another simple network.

signal. While a train moves along the reverse direction will follow the other edge
and not be controlled by the signal.

The second example illustrates the operation NJOIN. In Figure 6.2, the net-
work N has a not-fully-connected PPART P and the separate part T2 is a TPART.
T2 is clearly not-fully-connected just after it is added into N. The conditions for
constructing a larger network are satisfied so the following operation can be carried
out:

NJOINNPIjIT2jl

where j 1has been defined to be a simple insulated join, i.e., j 1 = EDGE J-insulate.
The result of this is the network shown in Figure 6.3(a), and the corresponding track
layout is shown in Figure 6.3(b).

The third example illustrates the situation in which the second vertex of the
NJOIN operation is already in the existing network. The track layout shown in
Figure 6.4(a) contains a passing loop. Suppose that a network model containing all
the vertices and edges except the pair of edges labelled j 6 has been created, and it
is bound to the name N. The NJOIN operation can be used to insert only a pair of

edges into JV by taking P12 as the first vertex and T4 as the second. This can be
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Figure 6.3: A network formed using NJOIN.

$104 HOO

Figure 6.4: A track layout containing a passing loop.
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written as

N' = NJOINJVP125104T4./6

The effect of this operation is
(P12,T4,.76) INSERT-EDGE ((T4,.P12,5104) INSERT.EDGE JV)

because T4 is already a vertex of N, the operation T4 INSERT-VERTEX N is
redundant. This shows that the function NJOIN does provide the means to close a
loop in a network model. Without this flexibility, it will be impossible to build any
network containing a passing loop.

The complete specification of this network is:

<T1, T2, T3, T* H 1, P12},

{(T1.P11.5100), (PIL.T1.jlI), (PI.T2,j2). (T2,P11,5103),
(T2.P12.5102), (P12,T2,j3), (P12.T3.j4), (T3.P12.5101),
(P11.T4,jS), (T4.P11.5105). (T4.P12.5104), (P12,T4,J6)>

1t will be shown in Chapter 7 how this network specification is verified against the
generic network definition.

The last example is more extensive and realistic. It is a network model of
the double left-hand junction layout shown in Figure 3.4. Its graph is shown in
Figure 6.5. The specification of this network can be written in HOL in a canonical
form as:

i

<
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S14

Figure 6.5: A network model representing the track layout in Figure 3.4.



CHAPTER 6. THE NETWORK MODEL 95

where Tn for all n appeared above has been defined as (TPART n ncir), and similarly,
the points (P201, P202) and the diamond crossing (D300) have been defined as the

appropriate kind of parts, ncir is the track circuit number associated with the part.

6.3 Inductive reasoning on networks

Induction is a very powerful tool of reasoning. One of the reasons that the network
specification has been defined as show in HOL Definition 74 is to take advantage
of this reasoning method. The way that induction is carried out with networks is
explained below.

First of all, the base cases of induction are identified. They are the single part
networks. The following four theorems state that a single part of any kind is a legal

network. They follow from the definition NETACRKDEF immediately.

HOL Theorem 55 (NETWORK-BUFFER)
1-Vn. NETWORK ({BPART «} {})

HOL Theorem 56 (NETWORK-TRACK)
I-Vn. NETWORK ({TPARTn1) ,{})

HOL Theorem 57 (NETWORK-POINT)
h Vntpn3. NETWORK ({PPART n<pn3} {))

HOL Theorem 58 (NETWORKDIAH)
h Vnfn, na. NETWORK({DPARTnin, n3},{ })
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The induction step is the network construction operation involving NJOIN. The
theorem NETWORK-NJOIN asserts that the result of this operation is also a network
providing the pre-conditions specified in the definition are met.

HOL Theorem 50 (NETWORKIIJOIN)
KVW. NETWORK N 0
(VpiPa Pi ISVERTEX N A-'(pi = P2) ANFC ATpi ANFC JVpa D

(Ve, e2. NETWORK (NJOIN Vp, e, pae2)))

The induction theorem for networks is NETWORK-INDUCT. This states that ifall the
simple networks have the property P (the base cases), and if the property P holds
for the results of the network building operation providing it holds for the networks
being operated on (the step cases), then the property P holds for all networks. This

theorem also follows from the network definition directly.

HOL Theorem 60 (NETWORKINDUCT)
h VP,

(Vn. P{BPART »}.{})) A
(Vnt. P ((TPART nt}.{})) A
(Vntpn3.P({PPARTNtpn3} ,{»)A
(Vnin, n2.P{DPART ntn1n2} { })) A
(MVp,p,.P N A-(p, = pa) Ap, ISVERTEX VANFCN p, ANFC .Vpj D
(Vs, s2-P (NJOIN N p\»\P2*3))) 3
(VIV. NETWORK .V D PN)



CHAPTER 6. THE NETWORK MODEL 97

Structural induction based on this theorem can be carried out. To facilitate this
in the goal directed proof style, a tactic METWORK_IMDUCT_TAC has been written to
automate the generation of subgoals and management of the proof. The goal to

which this tactic is applied should be in the following form:

»1. HETVORK | —> PCI]

where P[I] is a term stating some property of N. It should be of type :bool. For
example,"!!. IETVORK | m»> GRAPH I" isa goal inthe correct form for the induction
tactic. When applying the induction tactic to a properly formed goal, it generates

five subgoals:

P[BPART...] P[TPART...] P[PPART..] P[OPART...3 P[1JO1I...]

Suppose the network induction tactic is applied to the goal

M»1. IETVORK | mm> GRAPH ",

the following five subgoals will be generated:

*MI pi p2. GRAPHI A *(pl m p2) A pi ISVERTEX | A
wFC | pi A IFC | p2 —>

(lal «2. GRAPHAIOXI I pi al p2 a2))H

Mca t nl n2. GRAPH{OPART n t nl n2},{»M

“Mb t p n3. GRAPH{PPART n t p n3>,{»M

*Mb t. GRAPH({TPART n «).{»"

*Mb . GRAPH({BPAAT n>,{»"

They corresponds to the five conjuncts in the antecedent of the induction theo-
rem. The justification of this tactic is modus pontns. that is if all conjuncts of the

antecedent in the induction theorem is true, then the conclusion must also be true.
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6.4 Some properties of networks

One of the reasons for using Higher Order Logic in the modelling of railway signalling
is its generality. This means that it is able to deduce general properties of the model
such that all instances of networks created following the specification will possess
the same properties. Some of the more important properties of the network model

are described in this section.

Networks are graphs Although the definition of network does not explicitly
specify that a network must be a graph, this is indeed always true. This is because
the type :Network is an instance of : “Graph, the base cases (single part networks)
are trivial single vertex graphs, and all networks are built using only those graph
operations that preserve the abstract property of graph. This fact is stated by the
theorem NETWORK-GRAPH

HOL Theorem 01 (NETWORK-GRAPH)

VIV. NETWORK AT D GRAPH N

After this fact has been established, all graph operations can be applied to networks
safely, and all theorems about graphs also hold for networks. The hierarchy of the
theories reflects this as well. Since the theory graph is an ancestor of NETWORK all
functions defined in the theory graph are available to networks and all theorems

proved about graphs hold for networks as well.

Networks are finite The theorem NETWORK-FINITE asserts that all networks are

finite, that is both the vertex set and the edge set of any network are finite.
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HOL Theorem 62 (NETWORK-FINITE)

h VOV.NETWORK N D FINITE(VS JV) A FINITE(ES AT)

This theorem has been proved by induction using NETWORKINDUCT.TAC. The base
cases are trivial. A single vertex graph is clearly finite. The results of the network
building operation are finite can be deduced from the fact that adding a finite
number of elements into a finite set results a finite set (more precisely, two edges
are added to the edge set and possibly one vertex is added to the vertex set in each
operation).

Combining the theorems NETWORKGRAPH and NETWORK-FINITE, one can state

that all networks are finite graphs.

HOL Theorem 63 (NETWORKFINITE-GRAPH)

VAT. NETWORK AT D FINITE-GRAPH N

Thus, all infinite sets are excluded from networks. The practical significance of this
is that there exists an upper bound on the number of components in a network.
Therefore, search algorithms operated on networks should terminate eventually.
This is also significant when considering the storage required for the database of
the geographic data and the time required in each iteration of the control loop in

the interlocking software.

Networks are connected Recall the definition CONNECTEDJ)EF in Chapter 4
which specifies that there exists a path between any two different vertices in a
connected graph. This implies that no part of a connected graph is separated. The

theorem NETWORK.CONNECTED asserts that all networks are connected.
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HOL Theorem 64 (NETWORK-CONNECTED)

HVW. NETWORK N D CONNECTED N

This theorem has been proved by induction using NETWORKINDUCT-TAC as well.
The base cases are trivial since there is only one vertex in each of graph. For
the induction step, what required to be proved is that by adding a vertex into a
connected graph, and at the same time, adding a pair of edges connecting it to a
vertex already in the existing graph, the resulting graph will still be connected. The
subgoal corresponding to this is:

“11 pi p2. COIBCTED | /\ '(pi - p2) A

pi ISVERTEX | A (MFC | pi) A (IFC | p2) -m>
111 «2. COIECTED (HOXR I pi si p2 s2)M

By rewriting with the definitions of CONNECTED, this is further divided into two

subgoals. The first is in the form

GRAPE (13011 | pi si P2 s2)

where the antecedent has been abbreviated as .... These are essentially the subgoals
corresponding to the induction step in the proof of the theorem NETWORKGRAPH
which means that the result of the NJOIN operation must always be a graph. The
same tactic used in proving the corresponding subgoal in NETWORKGRAPH can be
applied to solve this.

The second subgoal is also an implication, but more complex.

"»vl v2.
vl ISVERTEX (IJOIN | pi si p2 s2) A
V2 ISVERTEX (1JO1I | pi si p2s2) A

(vl mv2) mm>
21

PATEdJOXI | pi si p2 s2)l A
(vl m PATH-EITRY 1) A
(V2 W PATH-EXIT 1))M
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In essence, what required to be shown is that there exists a path between any two
different vertices in the resulting network (1JOI* Rpi al p2 »2) given that V is
connected.

To solve this, case analysis on the location of pj can be considered (pi is already

a vertex in JV from the definition of NETWORK). There are two cases:
. paisin )V,
1I. pa is outside JV.

In case 1, the operation NJOIN will insert into N only two edges but no new vertex.
Since JV is connected, the result of adding two edges to it will clearly be connected.

The situation of case Il is more complicated. Further case analysis on the lo-
cations of the variable vertices vj and v2 can be considered. There are four cases

according to whether i and v2is in M

1. both t;i and v2 are outside jV;

2. tq is in JV and v2 is outside JV,

3. v2isin Vand ti is outside V.

4. both i and v2 are in JV;

The first case is trivial since there is only one vertex outside JV, namely pj.
If both t'i and v2 are outside JV, they must both equal pj. This contrasts with

= v2) in the antecedent of the subgoal. Case 4 is simple since V is already

connected, there is a path between any two vertices in it.

The cases 2 and 3 are reciprocal with the locations of the variable vertices

and v2 transposed. The situation of case 2 is illustrated in Figure 6.6. These two
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Figure 6.6: Location of vertices: case 2.

cases require further case analysis according to whether t> and v2 are identical to
the vertices pi and p2. There are again four cases. Taking case 2 as example, the
subcase can be listed as:

(a) ti = pi and v2=P2;

(b) ti = pi and -u* = p2\

(c) <vi = p, and v2=p2\

(d) >ti = pi and <2 =p2\
There will be no path from i>ito v2 in cases (b) and (d) because v2 is outside N

and not equal to p2, which implies that t2is not a vertex of the resulting network.

These situations contrast with the antecedent of the subgoal, so they can be solved

by contradiction.

To prove each of the remaining two subcases requires an appropriate evident to

be supplied to the theorem prover. The evident for subcase (a) is the single edge
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path

which is one of the newly added edges connecting the two vertices. This is clearly a

path in the new network. The evident for subcase (c) is the path
APPEND/[(pi,p3,«I)]

where | is a path in N and ri = PATH-ENTRY/Apj = PATH.EXIT/. Since the lisa
path in AT, it must be a path in a larger network containing N. Appending another
path [(pl,p2,s1)] in the larger network should results a path providing that the
conditions of combining paths specified in the theorem PATHAPPEND are satisfied.
In this case, these conditions are satisfied because the newly inserted edge (pi,P2,*i)
is not equal to any of the edges in /, and the new vertex pj is not equal to any of
the vertices passed by /. Thus, this subcase can be resolved. Case 3 can be solved
using the same method.

Following the analysis, appropriate tactic can be built to solve the subgoals,
thus to prove the theorem NETWORKGONNECTED The complete proof can be found
in Appendix B.9.

The theorem NETWORKGONNECTED is very important in practice. It implies that
from any point in a network, any other point can be reached. This does not mean
that a single route can be set up for a train to move between any parts in a network.
Routes have not been formally defined yet.

Following the approach explained above, other general properties of the network
model can be deduced. This network model and its properties provide a formal

foundation on which reasoning about routes and interlocking can be carried out.
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The following chapters will explain how to use the theories described in this part
to help design and implement Computer Aided Design (CAD) tools and possible

operational software for the signalling engineers.
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Applications

In this part, three applications are presented which use the formal model of

railway track network described in Part Il. They are:

1. verification of track layout;

2. generation of control table;

3. interlocking of routes.
Each of these will be described in a separate chapter. The first two applications are
in the area of CAD tools for signalling scheme design. The last one concerns the
modelling of the logical operations of interlocking systems.

These applications can be viewed as a case study of applying the theories into

practice. In the concluding chapter of the thesis, discussions of further use of the

theories will be given.
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Chapter 7

Verification of track layout

This chapter describes a railway track layout verifier. It accepts specifi-
cations of track layouts generated by CAD tools and verifies them against
the formal model of track network. It deduces a theorem for each specifi-
cation asserting the conformity of the specification to the formal network
model if this is true.

As described in Section 3.3.2, the first step in the design of a signalling scheme
is the specification of the track and signal layout. The result of this step is a speci-
fication for the required layout. The process of producing this specification usually
involves designers and engineers from many disciplines. One of the tasks of the
signalling engineers is to ensure that the new scheme will conform to all safety
regulations. In order to apply rigorous methods in later stages of the design and
implementation of signalling schemes, in addition to the traditional layout drawings
and descriptions in natural language, a formal specification of the layout is indis-
pensable. Formal reasoning can be carried out using this abstract representation.
First of all, verification of this formal specification of track layout against the formal
model of track network should be performed. This ensures that the specification

conforms to the rules of creating track network, and hence it is a representation of
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Network theorem Layout drawing

Figure 7.1: Generation and verification of track layout.

a ‘legal’ layout. Here, legal means conforming to the formal definition of a track
network. Figure 7.1 illustrates the process of generating and verifying a formal
specification. The layout compiler will be described in Section 7.1 while the subject
of this chapter, the network verifier, will be described in detail in the subsequent

sections.
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7.1 Layout compiler

Although the subject of this chapter is the verifier, some comments on the layout
compiler will help to understand the motivation, necessity and usefulness of the
verifier. The layout compiler is a CAD tool acting as the front end for track layout
design. A prototype compiler has been developed by Cullyer [25]. It consists of
three parts: a graphical user interface, an input checker and a compiler.

The graphical user interface handles the interaction between the designer and
the computer system. It shows the track layout in a symbolic form which resembles
the conventional drawings, and allows the user to insert, delete or modify objects
in the layout. The user interface utilizes the interactive graphics capabilities which
have become standard features of personal computers and workstations. The entire
layout is conceptually divided into a grid of cells. Each cell contains only a single
track component. The internal representation of the layout and the rules for checking
input are based on the formal track network model described in Chapter 6. When
the user inserts a component into a cell, the input checker validates the component
using the rules defined in the formal model. For example, a point (or PPART) can
have at most three pairs of connections to the adjacent cells. The input checker also
displays a list of components which are ‘legal’ in the current cell via the graphical
interface to help the user choose the correct one. When the layout is completed,
the compiler translates the internal representation to a formal specification in the
format to be described in Section 7.3.

The layout compiler can also generate files in another format, known as Railway

Layout Graphics language (RLG for short). This format has been defined based on
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the internal representation of the layout compiler, and it is graphics output oriented.
Files in RLG format are used to produce hard copy of the layout, such as the one
shown in Figure 3.4.1

Certainly, formal software development methods, such as structured system de-
sign and static code analysis, can be applied in the development of the layout com-
piler. However, current technologies are still not capable of verifying the correctness
of the complete compiler due to the complex interactions between the graphics
libraries and system libraries involved. Therefore, verification of the formal specifi-

cation generated by the compiler is necessary.

7.2 The network verifier

The task of the network verifier is to take the formal specification generated by the
layout compiler as its input, and to deduce a theorem asserting that the specification
is an instance of a legal network according to the definition of the network model if
and only if this is true.

This approach represents an isomorphism between the conventional engineering
design and formal theorem proving. A commutative diagram illustrating this iso-
morphism is shown in Figure 7.2. In the diagram, a downward arrow indicates an
abstraction, while an upward arrow indicates an interpretation. The upper path
shows the conventional design process. To approve a layout scheme, the designers
and engineers perform a large amount of checking against the current regulations

'A PostScript printer driver which accepts files in RLG format has been implemented by the

author. The railway track diagrams throughout this thesis have been produced by this driver.
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Track layout --------—- w-------*- Approved
requirements Regulations scheme

1

Formal model
Formal T e «.  Network

specification theorem

Figure 7.2: Isomorphism between engineering design and theorem proving.

and their experience, maybe with some assistance from CAD tools. The lower path
shows the use of a verifier based on the HOL theorem prover. This process works on
an abstract model of the real layout. It verifies the specification against the formal
model of generic networks. The result is a theorem stating that the specification is
an instance of generic networks.

This lower path based on formal reasoning can be used to replace a large pro-
portion of the manual process in the upper path, and help the engineers to improve
their designs, but it will never completely replace the upper path. Caution must
be applied when interpreting the theorems because they are deduced based on the
formal specification rooted in the generic theory, both of which have been derived
by abstracting the engineering drawings and regulations. These descriptions are
only as good as the model designer's understanding of the real world. However,
abstraction is a very powerful tool. By creating an abstract model, the designer can
gain greater insight into the problem.

There is an analogy with hardware verification. A VLSI device fabricated
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a silicon wafer will never be verified, even if low level formal proofs have been
carried out. What can be verified is the formal design specification. However,
this does not mean that formal verification does not have a significant role, since
it helps to discover many design errors and misunderstandings. As hardware and
system become even more complex, formal specification and verification will be more
important.

The use of the verifier is simple. It appears to the user as an ML function in
a HOL library. It takes the file name of the formal specification file generated by
the compiler as its sole argument and returns a value of type :thm if verification is
successful. Suppose that a specification of a layout has been saved in a file named
layout.rla, the session below shows how it is verified:

t load.library ‘rail.varifiar';;
() : void

« verify ‘layout.r I a ;

I- «ETWORK ({--->, {---»

: tha
The library rail.varifi«r is first loaded into HOL. Then, the verifier is called with
the name of the file containing the specification. If this specification conforms to
the formal network model, a theorem is returned. Otherwise, the evaluation fails.
The verifier automates and encapsulates the difficult, and sometimes very tedious,
process of discovering a proof for each specification. This provides an easy-to-use

tool to the signalling engineers.
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7.3 Formal specification of track layout

Formal specifications of track layouts are written in a language called the Railway
Layout Specification Language, RLS for short. It is the target language of the layout
compiler and the source language of the network verifier. The RLS language is based
on the formal model of track components and networks. The syntax and semantic

of RLS will be described in separate subsections below.

7.3.1 Syntax
The syntax of the RLS language is defined in an augmented BNF form in Figure 7.3.
The following rules are used in the syntax definition:

1 all non-terminal symbols are in lower case characters;

2. all terminal symbols appear as literal character strings enclosed in single quotes
except the end of specification marker which is a single character indicated as

[EOF] meaning the end of file;

3. the start symbol is spec.

7.3.2 Semantics

A complete layout specification is divided into two parts. The first is the definition
part which begins with the keyword DEFINITIONand it is ended by the start of the
second part which is introduced by the keyword CONSTRUCTION The construction

part extends to the end of the file.
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spsc :* d«finition_part construction.part [EOF] ;;

¢=Finition.part “DEFIHITION* d«f_list ;;

¢=F.list c«Fi

tion d«f_list ;;

¢eFinition "TCIR" nua 1 “BPART” nua 1
“TPART” nua nua i
ZPPART hua nua nua *(” nua nygnua*)” I
ART”  nua nua “(» nua nua‘? *C*nua nua ** 1
*SIGIAL* nua sig-typ« | “POUT" nua 1
"EDGESIG ” nua join.typ« nua | "EDGEJOII” nua join.typ« ;;

in.typ« “COIDUCT™ I “IISULATE” I ‘OVERLAP” I TERMINATE” ;;

~ig-typ* “MAH 1 NAIL.JUIC” I “NAIL.SUB” 1
MAIL.SUB.JUIC” I “SBU

construction.part *COISTRUCTION” “SIMP” part op.list ;;
op.list op op.list;;

op "1J0Z1” part part «dg« edge 1
*EDGE ” part part *dg* edge ;

part “Bhwual "Thua FPhua | DMua ;;

edge "jhual “shua ;;

igit 1

git nua;;

digit ol ol B Sl Ao IR B | L7 1 '8 1 '9*

Figure 7.3: Syntax of Railway Layout Specification language.
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The definition part The DEFINITION part contains definitions of all the track
components, signals and joins appeared in the layout. Each definition associates an
identification number to the object being defined and specifies the types or other
sub-objects required to fully define such an object in the HOL logic.

There are nine different definitions allowed in the definition part. The keywords
which introduce the definitions and the meanings of their associated fields are listed
below:

TCIR(C) Track circuit. The only field is the track circuit number.

POINT(N) Point. The only field is the 1D number.

BPART(B) Buffer part. The only field is the part ID number.

TPART(T) Plain track part. The first field is the part ID number and the second is
the ID number of the associated track circuit.

PPART(P) Point part. The first two fields have the same meaning as TPART. The
third field is the ID number of the point which must be defined previously by
a POINT definition. The three field enclosed in parentheses are the 1D numbers
of the trailing, normal and reverse parts, respectively.

DPART(D) Diamond crossing part. The first two fields have the same meaning as
TPART. The two pairs of num fields are the ID numbers of the adjacent parts.
Each pair identifies the parts connecting to the same leg.

SIGNAL(S) Compound signal. The first field is the ID number and the second is
the class.

EDGEJOIN(j) Simple edge label. The first field is the ID number, the second the

type of join.
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EDGDSIG(s) Edge label containing a signal. The first two fields have the same
meaning as EDGEJOIN. The last field is the ID number of the attached signal
which has been defined by a SIGNAL definition.

The action for each definition is to define a constant in the HOL logic. The name
of the constant is the 1D number prefixed by a single letter indicating the type of the
object. The prefix letters for each type of object is enclosed in parentheses following
the keywords in the list above. All the information necessary for creating constants
of various types is provided by the fields in the definition. Note that all of the state
functions of circuits, points and signals have been omitted. This is because, when
verifying the layout, the states of these components are not important; only the
static topological relations between the components are being considered. Dummy
functions of the appropriate types are supplied by the verifier to satisfy the type

checker when defining logical constants.

The construction part This part contains information about how to build the
network using the objects defined in the definition part. This information is neces-
sary to guide the verifier in the deduction of the network theorem. It appears as a
list of network operations. Each operation adds some objects into the network built
by previous operations in the list except the first one. The first operation must be a
SIMP operation which means to construct a simple network containing only a single
part. This corresponds to the base case in the definition of network NETWORK-DEF.

In addition to the SIMP operation, there are two more operations allowed:

NJOIN adds a vertex and a pair of edges into the network. The first part indicates

the vertex in the existing network to which new connections are being made.
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The second part is a new vertex to be inserted into the network. The two

edge fields specify the labels of the edges connecting the two parts.

EDGE adds only a pair of edges. The fields in this operation have the same meaning

as in NJOIN except that the second part is also a vertex in the existing network.
For each operation, the verifier attempts to prove a theorem in the form:
NETWORK (NJOIN Npipaet ea)

where N is the network built by the operations so far, pi and P2 are the parts, e\
and ea are the edge labels. If the attempt fails, the operation violates the rules of

the formal network model, thus no theorem can be deduced.

Example A specification of the layout of a passing loop shown in Figure 6.4 can

be written as below:

DEFINITION

TCIR1 TCIR2 TCIR3 TCIR* TCIR 6 TCIR 6
POINT 11 POINT 12

TPART 1 1

PPART 11 6 1 (1 2 4)

TPART 2 2

PPART 12 6 2 (3 2 4)

TPART 3 3

TPART 4 4

EDGEJOIN 1 INSULATE

SIGNAL 100 MAIN SIGNAL 101 MAIN  SIGNAL 102 MAIN
SIGNAL 103 MAIN SIGNAL 104 MAIN  SIGNAL 108 MAIN
EDGESIG 100 INSULATE 100

EDGESIG 101 INSULATE 101

EDGESIG 102 INSULATE 102

EDGESIG 103 INSULATE 103

EDGESIG 104 INSULATE 104

EDGESIG 105 INSULATE 108

CONSTRUCTION

SIMP T1

NJOIN T1 PI >100 jI

NJOIN P11 T2 jI >103
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1JO 11 T2 P12 »102 jl
mJOII P12 T3 jl »101
1JO11 PII T4 jl »105
EDGE T4 P12 »104 jl

[EOF]

Note that different lists can create identical networks, since the order of the opera-

tions in the construction part is not unique.

7.4 The implementation of the verifier

The verifier can be divided into two parts: the parser and the prover. The parser
is the front end of the verifier. Its functions are to recognize the input and to
call appropriate functions in the prover. The prover is a suite of ML functions
which together carry out proofs and deliver theorems if the specification is correct

according to the formal model defined in the network theory.

7.4.1 The parser

The parser is implemented using the parser generator in the standard collection of
HOL libraries. This parser generator accepts grammar specification with embedded
actions in a syntax similar to the BNF. It generates a parser in the form of an
ML function, named PARSE-f11«. When this function is called, it will read the
input, and attempt to match the production rules specified as the syntax of the
RLS language in Figure 7.3. If a production rule is matched, the associate action
is invoked. This parser function is called by the function verify mentioned in the
example at the end of Section 7.2 as the entry point to the parser.

To illustrate the implementation of the parser, two production rules with associ-
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ated actions as part of the input grammar specification to the parser generator are
described in detail below. The complete ML source of the verifier can be found in
Appendix C.

The first rule is the plain track definition rule. The syntax for a plain track
part is TPART num num (see Figure 7.3). The production rule for parsing this syntax
required by the parser generator is written as:
tpart —> [TPART] idsf.tpart (TOKEl, TOKEI)>.

This specifies that the definition starts with a literal string “TPART’. When the parser
sees such a string, it will read the next two tokens from the input stream and pass

them to the function def-tpart. This function is defined as below:
1st def.tpart (id, tc) m 7 (string * string) -> (string list * thn) 7.
if ((is.nua id) ft (is.nua tc))
than
(st ptnaas * ‘T “ id in
1st tcir m mk_const((*C'*tc), M:Tcir") in
1st t w Bk_sq(«k_var(ptnaas, ":Part"),
nk_coab( ak.conbi"TPART", (nk.nua id)), tcir)) in
(Cptnaas], nss.dsfinition(ptnans, t)))
SISS tailvith 'expecting two nwshsrs as 10‘s (def.tpart);

It validates the tokens by calling the function is_num which returns true if the token
string contains only digits. If the tokens are valid, it proceeds to create a new logical
constant for this plain track part. Suppose that the tokens are the strings '123"
and '201* the effect of evaluating dsf-tpart is equivalent to making the following

HOL definition:
HOL Definition 77

"T123 = TPART 123 C201"

where Q01 has been defined as a track circuit with 1D number 201. Actions associ-

ated with other production rules in the definition part carry out similar definitions.
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The next production rule to be described is the NJOIN construction rule. The

syntax of this rule is NJOIN part part edg« edge. The input to the parser gener-
ator is written as below:

njoin —> CNOZI] {mk_njoin(p&rt_nums, edge_nums)}

The function mk_njoin is defined as below:

let Bk.njoin ((Cptl; pt2], tl:thn), (Cedi; ed2],t2:thm))
X 1 (string list 0 thm) O (string list 0 thn) -> .
: (string list 0 thn) =
1st pi * nk_const(ptl,
1st p2 = mk.const(pt2,
1st si m nk_const(sdl,
1st s2 = mk_const(sd2, ")
1st th = provs_nst«ork_njoin rail.tnp.thn pi p2 si s2 |n
(Ipt2], (rail.tnp.thn * savs_thn((pt2* TBN'), th))) ;

The arguments ptl and pt2 are the parts to be connected and the arguments sd|
and sd2 are the edge labels. They have been validated by the production rules
partmums and edgemums. The global identifier rail.tmp.thm is bound to the
theorem returned as the result of the previous step of building network. The function
provsmstwork-njoin in the prover is called to deduce a theorem for the current
step. If this successes, the new theorem is saved in the current theory and also
bound to rail_tmp_thm to pass to the next step. This process continues until the

entire specification file is exhausted.

7.4.2 The prover

The prover automates the process of proving theorems about instances of networks.

The theorems it deduces are in the form

I- NETWORK (7.1)
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where the actual element of the vertex set and edge set have been abbreviated. This
theorem asserts that ({..{...}) is an instance of a generic network as defined in
NETWORK DEF. There are three ML functions at the top level which are called by the
parser action functions. The function prove.simple-network delivers a theorem as
an instance of the general theorem NETWORK-SIVP. This corresponds to the base cases
of the network induction theorem. The other two functions, prove.netuork-njoin
and prove_network_edge, deduce theorems which are instances of the network in-
duction step theorem NETWORKIIJOIN. The difference between these two functions
is that prove-network.njoin takes advantage of the fact that the second operand
of the NJOIN operation is not a vertex in the network so the prove is simpler.
The proof strategy used by these two function is modus ponens with the theorem
NETWORK-NIOIN. The function prova-netvork-njoin is listed in Figure 7.4 and it is
described in detail below.

To deduce a theorem of the following form
NETWORK (NJOIN JVn,naa,*a), (7.2)

one can prove the antecedent of the theorem NETWORK.NJOIN, then apply modus po-
nens rule. Taking N as the network created so far, the theorem I- NETWORK N
will be returned as the result of the previous production rule and supplied to
prova-natwork-njoin as its first argument thml. Using modus ponens rule with

NETWORKIIJOIN and thml results in an implicative theorem 7.3:

h Vp, pj. p, ISVERTEX ATA -.(p, =p,) ANFCNpi A NFC.vp, D
(7.3)
(Ve, e3. NETWORK (NJOIN N p, exp,e3)

Since the conclusion of this theorem matches 7.2, modus ponens rule can be used
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lit provi.nitwork.njoin thal pi p2j| j2 *

let p,nl * (dnt.coab (conci timi)) in
if (not(*IETVORK' * (fit (dost.const p)))) thin
failwith ‘not NETWORK thioria* else
lit In « (SPEC "“nl" NETVORK.NIOIN) in
lit tha2 * provi.in.nitwork pi nl in
lit th*3 = EQF.ELIM (PartEQ.CONV "*pl * *p2") in
lit that = provi.NFC pi nl in
lit thaS’* provi.not.in.mtvork p2 nl in
lit thaS » NP (MP (SPECLCnl;p2] NOT.VER_IMP.NFC) thal) thaS’ in
lit inti = COl thin2 (COIJ tha3 (CONJ tha4 tha5)) in
lit la' = SPECL Cpl;p2] (MP la thal) in
lit mtvork.canon tha =
lit njointha * MP (SPECL [nl;pl;JI;p2;j2] NJOILEXP)
(COW tha2 thaS’) in
lit th * PURE.OHCE.REVRITE.RULE[VERTICES;EDGES]
(PURE.OICE.REWRITE.RULB[njointha] tha) in
(COIV.RULE (DEPTH_CONV (UNION.CONV Pnrt.BQ.CONV)) th) in
lit nth - (SPECL [JI; j2] (MATCHMP la® anti)) in
mtwork.canon nth ?
failvith ‘provi.nitvork.njoin* ;;

Figure 7.4: Listing of proviJiitworkjijoin.
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again to deduce a theorem in the form of 7.2 if the four conjuncts of the antecedent
of 7.3 can be proved. The strategy for solving these four subgoals is as follows (the

line numbers refer to the listing in Figure 7.4):

Subgoal 1 tii ISVERTEXN . The function prove-in.n«twork is used to prove this
subgoal(line 6). It returns a theorem matching the subgoal if ni is a vertex
of N. It uses the conversion IHCONV in the sets library which returns a
theorem h x IN{xj,..., x,.} = T ifand only if x is equal to x< for some i where

1< *<n.

Subgoal 2 ->(ni = n2). This subgoal is proved using the conversion Part-EQ-CONV
(line 7). This conversion returns a theorem I- (pi = Pa) = T if and only if
pi and p2 are syntactically equal or all their sub-fields are equal. Otherwise,
the theorem h (pi = pa) = Fis returned. The function EQFELIM transforms a

theorem h-f[x] = F to —i[x).

Subgoal 3 NFCN n\. This subgoal is proved using the function proveJIFC (line 8)
which returns a theorem of the form h NFCJVpi if the vertex pi is not fully

connected.

Subgoal 4 NFCJVnj. The last subgoal is proved using the fact that p? is not a
vertex of N. The function provejiot.in-network (line 9) returns a theorem of
the form I- ->(palS.VERTEX N ). Then, modus ponens is applied to the theorem
MOT-VERIMPJIFC to deduce I- NFCN pa (line 10).

Details of the lower level functions mentioned above can be found in Appendix C.4.
The modus ponens rule is applied to the conjunction of the above four subgoals and

an instance of 7.3 to deduce a theorem in the form of 7.2 (line 19). This theorem is
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again to deduce a theorem in the form of 7.2 if the four conjuncts of the antecedent
of 7.3 can be proved. The strategy for solving these four subgoals is as follows (the

line numbers refer to the listing in Figure 7.4):

Subgoal 1 nj ISVERTEX N. The function prov«_in_natvork is used to prove this
subgoal(line 6). It returns a theorem matching the subgoal if mi is a vertex
of N. It uses the conversion IRCOMV in the sets library which returns a
theorem I-x IN{xi,..., xn] = T ifand only if x isequal to n for some i where

l<»<n

Subgoal 2 —{rii = n2). This subgoal is proved using the conversion Part-EQ-CONV
(line 7). This conversion returns a theorem t- (pi = pi) = T if and only if
Pi and pi are syntactically equal or all their sub-fields are equal. Otherwise,
the theorem V (pi = pi) = F is returned. The function EQF.ELIM transforms a
theorem I- <[7] = Fto

Subgoal 3 NFCAfnj. This subgoal is proved using the function prove_NFC (line 8)
which returns a theorem of the form h NFCN px if the vertex p\ is not fully

connected.

Subgoal 4 NFCiVnj. The last subgoal is proved using the fact that pi is not a
vertex of N . The function prova_not-in-natvork (line 9) returns a theorem of
the form —"(pjIS-VERTEX N). Then, modus ponens is applied to the theorem
NOT-VER-IMP-NFC to deduce |- NFC N pi (line 10).

Details of the lower level functions mentioned above can be found in Appendix C.4.
The modus ponens rule is applied to the conjunction of the above four subgoals and

an instance of 7.3 to deduce a theorem in the form of 7.2 (line 19). This theorem is
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then converted into a canonical form by expanding the operation NJOIN using the
function netvork-canon (line 20). The resulting theorem is in the form matching 7.1

as shown below
NETWORK ({..., n2}, {..., («1,na, s»), (na,n,,«a)})

where the new vertex and the new edges are added to the vertex set and edge set
of the network, and they are in pure set syntax and free of any network operators.

To conclude this chapter, the verification of the specification of the passing loop
layout listed on page 116 in Section 7.3, with some intermediate results, is shown
in Figure 7.5. This session shows how the network expands when new vertices
and edges are added. It also shows that there are large number of intermediate
theorems being generated in each step: the total number of intermediate theorems
is 28419. The verifier does integrate the theorem proving process and makes theorem
prover easier to use. The timing information is obtained in a Sun3 with 12Mbyte
of memory. The time can be further reduced since the current implementation has

not been optimized. The final result is the network theorem in its canonical form.
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0 verify ‘loop*;;

(C'TI¥], 1- IETVORK({TI>,0))

: (string list 0 tha)

Run tias: 0.0s

Interasdiste thsorsas generated: 1

(CPU'3. I- IERYORK({P11,T1}{(T1,P11,5100),(PII.T1,jl)>))
: (string list 'tha)

Run tias: 11.7s

Gsrbngs collsction tias: 21.2s

Intsrasdists thsorsas gsnsrstsd: 1179

(C*n(3.

1* IETWORK
({T2.P11,T1}R{(P11,T2,j1),(T2.P11,5103),(T1,P11.s100).(PIL.T1,jI)}))

: (string list 'tha)

Run tias: 26.7s

Gsrbsgs collsction tins: 64.3s

Intsrasdists thsorsas gsnsrstsd: 2288

... (deleted)

(C'P12*3,
I- IETVORX
«T4.T3.P12.T2.P11.T1}.
«T4,P12,5104),(P12.T4,jl),(P11,T4,jl),(T4,PI11,5106),(P12.T3.jl),
(T3.P12,5101),(T2.P12,5102),(P12.T2,jl),(P11,T2,31),(T2,PU .5103)
(T1,P11.5100), (PIL.TLj1))))
: (string list 0 tha)
Run tias: 126.1s
Gsrbsgs collsction tins: 230.3s
Intsrasdists thsorsas gsnsrstsd: 10020

Figure 7.5: A HOL session of verifying network specification.



Chapter 8
Generation of control tables

This chapter describes a method for automatic generation of control ta-
bles. This method utilizes well-known graph search algorithms to find out
routes in a network and then works out the entries in the control table
based on the formalized interlocking regulations.

The second step in the design of an SSI controlled signalling scheme is the gen-
eration of control tables, whose format has been shown in Chapter 3. Information is
extracted from the layout and filled into the control tables. This is probably the most
important step in the design process, with respect to ensuring the safe operation
of the system. If any incorrect information is left in the table unnoticed, erroneous
geographic data would be generated, and the interlocking may become unsafe. It
is therefore, necessary to automate the generation of control tables by employing
verified software and then to formally verify of the contents of the resulting tables.

Since all the topological information about a layout is encompassed in its formal
specification, the data required to fill the control table can be extracted from this
specification. This chapter describes a method for finding routes, deriving infor-
mation to fill control tables and verifying the results. This method uses the formal

specification ofa layout generated by the layout compiler and verified by the verifier.
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The definition of routes is described in Section 8.1 and the algorithms for finding
routes are discussed in Section 8.2. The last section of the chapter describe how to

generate and verify the control tables.

8.1 Definition of routes

In Section 3.2, a route is described as a section of railway track starting and ending
at signals. In the framework of the formal network model, a route is a path starting
at a signal and terminating at another signal, but extra rules are required to restrict
the paths which can be considered as routes. These rules are due to the physical

nature of the track component parts. They are:

1. when passing a point, i.e., @ PPART, a route cannot enter from a normal edge

and continue to a reverse edge or vice versa;

2. when passing a diamond crossing, i.e., a DPART, a route cannot move from an

edge of one leg to an edge of another leg.

Referring to the example layout of double lefthand junction shown in Figure 3.4,
a train cannot move from T104 to D300 through P200 following a single route, nor
can a train move from T108 to P200 through D300 in a single manoeuvre.

A route from the signal S10 to the signal S12 is the following list of edges:
S10S12 m C

(T100, T101, S10); (T101, P200, j2);

(P200, D300, j4); (D300, T102, 17) (T102, T103, S12) ]
By convention, the name of a route is the string formed by concatenating the names

of the entry signal and the exit signals. Notice that the entry of the route is the
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vertex before the entry signal, and the exit of the route is the vertex after the exit
signal.
Based on the above discussion, a predicate ROUTE is defined in the HOL logic

to specify what a route is.
HOL Definition 78 (ROUTE-DER)
"ROUTE (l:l«t«ork) (r:(Part#Part#EIbl)lint) *

(NETWORK N) A (PATH m r) A (ROUTETAIL ) A

(ISBLBL.SIGHAL (elb (HD r))) A (IS.ELBL.SIGHAL («Ib (LAST r)))"
A list of edges r is a route in the network N if and only if it is a path in N, and it
satisfies the predicate ROUTE-TAIL which is defined below, and both its first and
last edges have a signal attached.
HOL Definition 79 (ROUTE-TAILJ)EF)

“(ROUTE-TAIL O - T) A
(ROUTE-TAIL (CONS (h:Part#Part#Edge) t) =
(t - o)\
((1IS.PPART («-des h)) =>
((TRAILING.EDGE h) »
(NORMAL-EDGE (HD t) V REVERSE-EDGE (HD t)) |
TRAILING.EDGE (HD t)) |
((IS-DPART («—des h)) -> (SAMELEG h (HD t)) | T)) A
(ROUTE-TAIL t))) H

The function ROUTE-TAIL verifies whether the two restrictions listed at the begin-
ning of this section are satisfied by the list of edges. The meanings of the functions
used in its definition have been given in Table 5.1.

Note that, in some cases, a route may not terminate at a signal, for example, the
last section at a terminal station will end with a buffer, and sometimesm a partial
route which does not starts from a signal nor ends at a signal may be required for

certain manoeuvre. These are considered to be a subroute. Predicate can be defined
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for subroutes which will be syntactically identical to the definition of ROUTE except
the last two conjuncts are absent. In the following discussion, only complete routes
are being considered.

The functions ROUTE.EDGES and ROUTE-PARTS are defined for extracting
edges and parts along the route. They are used in the specifications described in

Section 8.3.
HOL Definition 80 (ROUTE-EDGES-DEF)

“ROUTE-EDGES (r:(Part#Part#EIbl1)li*t) * (BUTLAST r)M

Given a route r as its argument, the function ROUTE-EDGES returns a list of all
the edges through which r passes except the last one. A train cannot pass through
this edge if the signal attached to it is ON, therefore, when considering the required

points for a route, this edge can be ignored.
HOL Definition 81 (ROUTEPARTS DEF)

"ROUTE-PARTS (r:(Part#Part#EIbl)lint) - VER.LIST (BUTLAST (TL r))M

The function ROUTE-PARTS returns a list of the parts through which the route r
passes, except the part in the source vertex of the first edge and the part in the
destination vertex of the last edge. The former is before the entry signal and the
latter is ahead of the exit signal, therefore, they should not be considered to be in
the route.

If two routes share one or more parts, they are said to be conflicting routes. This
property is modelled by the predicate CONFLICTING-ROUTES.
HOL Definition 82 (CONFLICTING-ROUTES-DEF)

"COIFLICTHG-RQUTES (N:Network) rl r2 m

(ROUTE I rl) /\ (ROUTE I r2) A
*(DISI-LXST (ROUTE-PARTS r1) (ROUTE-PARTS r2))M
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This predicate is true if and only if both rt and rj are routes in the network N and
their vertex lists are not disjoint. For example, in the network shown in Figure 3.4,
the routes S10S12 and S11S15 are conflicting routes because they share the vertex
D300, i.e.,

CONFLICTING-ROUTES N S10S12 S11S15 = T.

8.2 Finding routes

After defining what routes are, one can proceed to search for routes in a network.
Since networks are graphs, many well-known graph searching algorithms can be used
to find routes in a network. Amongst them, two are very suitable for finding routes:
Murchland’s all paths algorithm and depth-first search algorithm. However, these
algorithms need to be augmented, because routes are not merely paths, there are
extra constraints as specified by ROUTE-TAIL-DEF.

Murchland’s algorithm[53][56] finds all possible paths between two specific ver-
tices. An algebra is used to describe the paths in this algorithm. A path consists of
the edge a followed by the edge b is written as ab. If there are two paths ab and cd
between the vertices v and w, then they can be written as ab+cd. To avoid looping,
an expression, such as (abc)(ade), which has a common factor is defined to be 0.
These expressions can well be represented by a tree. For computational purpose,
the actual algorithm is described with the aid of an n x n matrix where n is the
number of vertices. The elements of the matrix represent the path or paths between
any two given vertices. Initially, the elements contain only single edge path connect-

ing adjacent vertices. On each iteration, the expressions representing the current
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known paths between the starting vertex and any other vertices are updated by
adding new edges to extend the paths. When the algorithm terminates, the ele-
ments corresponding to the path(s) between the starting and ending vertices will
contain an expression representing all the possible paths. To adopt this algorithm
for finding routes, tests corresponding to the specification in ROUTE.TAIL.DEF should
be incorporated in the iteration to pick out the appropriate edges. This algorithm
is suitable for networks which contain larger number of possible routes between the
specific vertices.

The depth-first search algorithm is described in many textbooks of elementary
graph theory and of computer algorithms. Aho et al in [1] give a concise description
of the algorithm in imperative programming style, while Paulson in [55] demon-
strates an effective implementation of the algorithm in a functional programming
language — Standard ML. When adopting this algorithm, tests corresponding to the
specification in ROUTE-TAIL-DEF should also be incorporated in the search procedure
to avoid going down the illegal edges.

A program implementing a suitable algorithm can be developed without too
much difficulty. It will read in a specification of a network and generate a list of
all possible routes in this network. Using a method similar to the one described in
Chapter 7, the list of routes can be verified to show the conformity to the specifica-
tion of ROUTE.DEF. The discussion in the next section assumes such a route finding

program exists, and that it produces a list of all possible routes.
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8.3 Automatic control table generation

The problem of generating control tables can now be considered. The first task
is to codify the safety rules which specify the interlocking requirements for setting
up a route. Considering only the simple and most common situations, the safety

requirements for setting up a route [54] are the followings:
1. all track circuits on the route must be clear (column 2);

2. all points on the route must be set, locked and detected at the correct position

according to the travelling direction of the route (column 4 and 5);

w

. the exit signal must be in working order, i.e., showing either ON or OFF aspect

(column 6);

~

. the entry signal to the conflicting routes must be proved ON (column 7);

o

the track circuits from the entry signals of the conflicting routes to the point

of conflict must be clear (column 2).

The column numbers enclosed in parentheses refer to the control table shown in
Table 3.2. In that table, column 1lists the name of routes. Column 2 lists the track
circuits required by the route, and is corresponding to the requirement specified by
rule 1 and 5. The correspondence between the other columns and the rules is as
indicated above.

Each of these requirements can be specified in HOL by a function which returns
a list of objects that are required by the rule. A null list indicates that nothing is

required by the route.
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Rule 1 The specification for rule 1is TCIRCUITS.
HOL Definition 85 (TCIRCUITSJ)EF)
"TCIRCUITS (r:(Part«Part#EIbl)list) m
NAP PART.CIRCUIT (ROUTEPARTS r)H
Since ROUTE-PARTS returns a list of all parts in the route, the higher-order function
MAP applies PART-CIRCUIT to these parts, the result of this function is a list of all

track circuits in the route.

Rule 2 This rule can be specified by two functions NORM-POINTS which returns
a list of points required NORMAL and REV-POINTS which returns a list of points
required REVERSE.

HOL Definition 84 (NORM.POINTS-DEF)

"NORM-POINTS r = FLAT (NAP NORN (ROUTE-EDGES r))M

HOL Definition 85 (REV.POINTS-DEF)

"REV-POINTS r * FLAT (NAP REV (ROUTE-EDGES r)>"

The functions NORM and REV take an edge as their argument, and return a list
of points required NORMAL and REVERSE, respectively, if a movement from the
source vertex to the destination vertex is made.
HOL Definition 86 (NORM-DEF)
"NORN (pi,p2,(a:Edge)) *
((IS-PPART pi) A (PART.PNTNORMAL pi = PART-ID p2)) *>
[PART-POINT pi] | 0"
HOL Definition 87 (REV-DEF)
"REV (pi,p2,(+:Edga)) >

((IS-PPART pi) A (PART-PNT-REVERSE pi - PART-ID p2)) »
[PART-POINT pi] 1 []"
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Rule 3 The specification for rule 3 is EXIT_SIG which returns the signal attached
to the last edge of the list. If there is no signal attached to this edge, an empty list
is the result. This situation may arise when partial route is being considered.
HOL Definition 88 (EXIT-SIG.DEF)
"EXIT.SIGIAL (r:(Part«Part#EIbl)list) *

let e - elb (LAST r) in

(ISELBL.SIGIAL e) » [ELBLSIGIAL e] | O"
Finding conflicting routes The handling of rules 4 and 5 is more complicated
because they require the search for conflicting routes. Since all possible routes in
a network can be found by the program mentioned in Section 8.2, all conflicting
routes of a given route r can be found using the function CONFLICT-ROUTES. It
takes two arguments: the list of all routes in the network, and the given route
r. CONFLICT-ROUTES r/sfr delivers a list of routes which are in rist and are in

conflict with r.
HOL Definition 8® (CONFLICT ROUTES_DEF)
" (COIFLICTROUTES O r - 0O) A
(COIFLICT.ROUTES (COIS h t) r *

((D1SJ.LIST (ROUTEPARTS r) (ROUTEPARTS h)) /\

<h-1)> >

(COIS h (COIFLICT.ROUTES t 1)) | (COIFLICT.ROUTES t r))"

Rule 4 The function specifying rule 4 can now be defined. This function takes two
arguments: the current route and the list of all routes in the network. It picks the
entry signal from each route returned by CONFLICT.ROUTES using the function
ENTRY_SIG which returns the signal attached to the first edge of the list.
HOL Definition 00 (ENTRY.SIGNALS-DEF)

"BITRY.SIGIALS r rlst m NAP EITRY.SIG (COIFLICT.ROUTES rist r)"
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HOL Definition 01 (ENTRY-SIG.DEF)

“EXTRY_SIG (r: (Part#Part#Elbl)list) mlet » m«lb (HD r) in
(ISELBLSIGIAL *) » [ELBLSIGIAL+] IO *

Rule 5 Let r be the route under consideration. The strategy of computing the

list of all track circuits specified by this rule is:

1. work out a list, say crlist, containing all routes which are in conflict with r;

2. for each vertex p on the route r which is either a PPART or a DPART, work out
a list pll containing all routes which are in conflict with r at p, i.e., share the
part in p;

3. for each route | in pll, take the initial segment of | up to the vertex p; the track
circuits associated with the the elements in this segment are those required by

Rule 5.

Several auxiliary functions are needed in specifying the function for this strategy.

Their names have CR_ as prefix. The first is CR.TAKE. Its specification is

CR.TAKE[p,;...;r ;...ip.p, = (p,;-..; Pi-i]

i.e., it returns the initial segment of the list up to but not including the part given
as its second argument.
HOL Definition 02 (CRTAKEJ)EF)

“(CRTAKE O (p:Part) m 0) A
(CRTAKE (COIS h t) p =
(h >p) » O I (COIS h (CRTAKEt p)))"
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If no element in the list is equal to p,, CR.TAKE returns the whole list. The next

function is CR-PRS. which stands for Partial RouteS, with the following specification:

CR.PRSp [[pit;.. .;pi,;.. .;pi,];.. .[pmi; eoe;Pmi; ees;Pmn]] =

[[pu;..-;piil;-..lIpki;-;pw])

where pji = p for all 1 <j < k. This function takes a part p and a list of lists
of parts pll, it returns a list of lists of parts which are the initial segments of the
argument lists pll. The local value crlat contains the lists which are in pll and have
p as one of their elements.

HOL Definition 93 (CR-PRS.DEF)

“"CR.PRS (p:Part) pll =

1st crilst - FILTER pIl (\1. (ELEN 1 p)) in
M (\1. CRTAKE 1 p) crlst"

The function CR.PTS, which stands for ParTS, takes two arguments: the first is the
list of parts forming the current route, and the second is a list of lists of parts which
are obtained from the list of all routes in the network. It returns a list of lists of
parts in the initial segments of all the conflicting routes.

HOL Definition 94 (CRI>TSJ)EF)

“(CRPTS O (pll:((Part)list)list) * O) A

(CRPTS (COIS (p:Part) t) pll *

((IS.PPART p) \/ (ISDPART p)) «
(APPERD (CR.PRS p pll) (CRPTS t pll))
I (CRPTS t plI))"
Now, the top level function for Rule 5 can be specified as CR-TCIRCUITS. It takes

two arguments similar to ENTRY-SIGS, the first, r is the current route and the
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second rlst is the list of all routes in the network. It delivers a list containing all
track circuits in the conflicting routes between the entry signals and the points of
conflict.
HOL Definition 05 (CR.TCIRCUITS.DEF)
"CR.TCIRCUITS r rlst »

1st crist m COIFLICT.ROUTES rist r in

1st ptlst * FLAT (CRPTS (ROUTEPARTS r) (MAP ROUTEPARTS rlst)) in
(MAP PART.CIRCUIT ptist)”

The local value crlst contains all routes which are in conflict with r, and ptlst is the
list of all parts formed by flattening the initial segments of all the conflicting routes
returned by CR.PTS. Alist of track circuits is obtained by applying PART.CIRCUIT
to ptlst.

The specification of the rules has now been written as HOL functions. These
functions form the core of the specification of a program which generates the control
tables. Such a program can be implemented in a verifiable subset of high-level
programming language, such as SPADE-PASCAL[11] or SPARK Ada[12]. If the
program is verified and validated to correctly implement the safety rules, the control
tables generated by it should be free of errors. However, it is still possible to
verify the contents of the control tables generated by such automated procedures
to demonstrate the correctness of the data. This can be carried out by proving
theorems asserting the validity of the data in the control table. This process of
theorem proving can be automated in a similar way as the network verifier described

in Chapter 7.



Chapter 9

Interlockings and state

machines

This chapter describes the dynamic states of track networks and a method
of modelling interlockings using deterministic finite state machines.

9.1 States of a network

Recall from Chapter 5, the type :Tcir representing track circuits, the type :Point
representing points and the type jSignal representing compound signals contain
functions returning the states of the components. The network model of a track
layout has these state functions embedded in it, thus it is a dynamic representation.
At any given time t, the state of a network N, denoted by S(N,t) is completely
determined by the states of its constituent components, i.e., the values returned by
their state functions. For example, the state of the network shown in Figure 6.4 is
determined by the states of its six track circuits, six signals and two points.

For any given network N. there are three sets of state functions, denoted by

137
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tc(N) the set of track circuit state functions, pnt(N) the set of point state functions
and aig(N) the set of signal state functions. The set tc(N) can be written as the

following expression
IMAGE(TC-SFUNCOPART_CIRCUIT)(VSJV) 9.1)

This expression represents the image set obtained by applying the compound func-
tion (TC-SFUNCo PART-CIRCUIT) to the elements of the vertex set.1 This function
lifts the track circuit state function from each part. Each element of tc(N) is a
state function ftQ of the track circuit i. The type of the function is :num -> Tntate.
Then, the state of the network at time t can be obtained by applying these functions
to t. However, the results cannot be represented in sets. For example, a network N
contains three track circuits, i.e, tc(N)={/tenSuppose that, attimet,
the track circuit tci is occupied and the others are clear. If the results of applying
fte's to t are stored in a set, it will be {occupied.dear). This does not uniquely
represent the state of the network. Therefore, a list has to be used. The state of
the network N at t will be the list [occupied; clear; dear].

An abbreviated type :Net«orkState is defined to represent the state of a net-

work. It is a compound of states of three kinds of dynamic components:

:(Tatate)liat t (PolIntState)liat « (SignalState)list

where the type :PointStata is an abbreviation for the pair consisting of the position
and locking state of points and the type :SignalState represents the state of a
compound signal. Their definitions are listed in Table 9.1.

‘The image act of a function / on a aet a, i.e., the expression IMAGE/.«, is equal to the set

{/*17€.)-
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Abbreviation Definition

:NstworkStata :(Tstats)list =« (PointStats)list = (SignalStats)list
tPointState Ppoa = Ploc

:PointStatsFunc  :(nun -> Ppoa) # (nua -> Ploc)

:SignalStata z(HAspect « bool = SubAapect) + ShAapact

:SignalStataFunc  :(nua -> NAspect) # (nua -> bool) = (nua -> SubAapsct)

+ (nua -> SnAapsct)

Table 9.1: Abbreviated types for states and state functions.

State functions Functions can be defined to lift the state functions from the
respective components using expressions similar to 9.1. Three such functions are
defined for obtaining lists of state functions of the three kinds of components. They
are TC-STATE.FUNCS, PNT-STATE.FUNCS and SIG-STATE.FUNCS, and their def-
inition are listed below.

HOL Definition 90 (TC STATE-FUMCS DEF)

"TC.STATE.FUICS (l:lotsork) «
SET.LIST (IMAGE (TC.SFUIC o PART.CIRCUIT) (VS m))"

HOL Definition 97 (PMT-STATE-FUIICS-DEF)

“PIT_STATE_FUICS (I:lotwork) -

1st plat - SET.LIST (IMAGE PART.POIIT (VS 1)) in
(MAP (\p. (PIT.POS p, PIT.LOC p)) plst)M

HOL Definition 98 (SIGI3TATE.FUNCSJ)EF)

“SIG.STATE.FUICS (I:l«taork) «
1st siglst m SET.LIST (IMAGE (ELBL.SIGIAL o sib) (BS 1)) in
(MAP SIG.SFUIC siglat)”
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In the definition PNT_STATE.FUNCS.DEF, the local value plat is a list of points. The
lambda expression (Ap.(PNT_POS p, PNT.LOCp)) is a anonymous function. When
applying to a point, it extracts the position and locking state functions. Similarly,
in the definition SIG_STATE FUNCS_DEF, the local value aiglat is a list of signals. The
function SIG.SFUNC returns the state function of the signal.

In all three functions, the polymorphic function SET.LIST is used to convert a
set to a list. This set-to-list conversion function is characterized by the following

theorem:

HOL Theorem 65 (SET_LIST_THN)
h Vs. FINITEa D

(V. (x INa= ELEM(SET.LISTa) *) A(CARDa = LENGTH (SET-LISTa)))

This theorem asserts that the function SET-LIST delivers a list containing all ele-
ments of a finite set and the length of this list is equal to the cardinal number of the
set. The use of such conversion function in networks is justified because all networks

are finite.

Instantaneous state Combining the above functions, a function delivering the
instantaneous state of a network can be defined.
HOL Definition 99 (N\ETWORK STATE-DEF)

"IBTVORK STATE (I:Network) t »
lot cfist m TCSTATEFUNCS N in
lot pilot m PNT.STATB.FUICS N in
lot silst m SIG.STATEFUNCS N in
((APPLY (\f t. f t) cfist t),
(APPLY (\(f1,12) t. (fl t, f2 1)) pilot ).
(APPLY APPLY_SIG_FUIC sflst t))M
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Thus, the state of a network AT at a given time t is specified by the expression
NETWORK-STATE TVt. The function APPLY used in NETWORK-STATE requires
some explanation. Its definition is as below.

HOL Definition 100 (APPLY_DEF)

"APPLY f O x m (O :(**)lict)) A

*reek > (e->ee hd tl *) *
(Appogs((f hd ;)( (;PPIE)Y foﬁsx))"‘ ) 6

The purpose of this function is to provide a uniform conversion function for convert-
ing the dynamic structure—the structure of time varying functions—to the static
structure representing the instantaneous state.

The second argument of APPLY is a list of dynamic structures [yi;...;yn], For
different kinds of components, their structures of state functions are different. The
structure for track circuits is just a simple state function, i.e, each y, is a tract
circuit state function. The structure for points is a pair, i.e., y, = (fpot,-, floe,)- The
structure for signals is rather complicated, and the detail of this can be found in the
ML source listed in Appendix F.

The last argument x of APPLY is the common argument to be supplied to the
state functions in the structures. The first argument / is a higher-order function
which applies the state functions in the structures gi to x. This functional takes
care of the difference in the structures.

By using appropriate functionals with APPLY, as seen in the NETWORK-STATE.DEF,
the conversion from the dynamic structures of state functions to the static structures

of instantaneous state can be written concisely and uniformly.
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Example Using the naming convention described in Chapter 7, the passing loop

network shown in Figure 6.4 has the following state function structure lists:

(ICI; C2 cs; ¢4 C6; C8]. [1I; 112],
[S100; $101; S102; $103; 3104 ' 5106])

Suppose that, at time f, this network is in a state in which:

« all the track circuits are clear, i.e., C,t: clear for all t;

« the point JVU is at its NORMAL position while NlZ is at REVERSE and
both are free to move, i.e., (/po«/jj 0 = (normal,freejnove) and
(/po*n i2 0 = (reverse, freejnove);

« the entry signals to the network, namely S100 and S101, are OFF but all
other signals are ON, i.e., Sjt: (green. ARB, ARB) for t = 100 or 101 and

S, t: (green, ARB, ARB) for other signals;3

where ARB indicates an arbitrary value of an appropriate type. Then, the state of

the network is the triple below:

([clear; clear; clear; clear; clear; clear],

[(normal, freejnove); (reverse, freejnove)],

[(green, ARB, ARB); (green, ARB. ARB); (red. ARB, ARB);
(red, ARB, ARB); (red, ARB, ARB); (red, ARB. ARB)])

JUnlike the points, the structure of signal state functions has not been shown explicitly due to
its complexity. The expression S, t is used to indicate that | is supplied as a common argument to

the state functions in the structure S,
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Dynamic network The topology of a network N at a given time t is based on
the position of the points, i.eMthe values returned by the list of point position
functions. If a point p is at NORMAL position, effectively the reverse edges which
connect the part containing p to its reverse successor are disconnected, because no
movement along these edges can be made. Thus, the dynamic connectivity of a
network, D (N ,t) is a graph obtained by deleting all the edges which represent the
impossible movement to/from a point. The specification of D(N,t) in HOL is the

function DNETWORK.
HOL Definition 101 (DNETWORK_DEF)

“DIETVORK (1:Network) t m (VS 1),

<« | (+ ISEDGE I) A
(IS.PPART (a.arc ) m>
((PNT.IORMAL (PART.PONT («.arc +)) t) A
(PART.ID («.das a) m PARTPIT.IORNAL (a.arc a)) \/
(PNT.REVERSE (PART.PONT (a.arc a)) t) A
(PART.ID (a.daa a) m PART.PIT.REVERSE (a.arc a)) \/
(PART.ID (a.daa a) m PART.PRT.TRAILIIG (a.arc a))) |
(IS.PPART (a.daa a) »
((PIT.IORMAL (PART.POIIT (a.daa a)) t) A
(PART.ID (a.arc a) m PART.PIT.IORNAL (a.daa a)) \/
(PIT.REVERSE (PART.POIIT (a.daa a)) t) A
(PART.ID (a.arc a) - PART.PIT.REVERSE (a.daa a)) \/
(PART.ID (a.arc a) - PART.PIT.TRAILIIO (a.daa a))) |
T)) >

The D(N,t) of the passing loop network at the time i described above is as shown
in Figure 9.1. Obviously, D(N,t) is a subgraph of the underlying network N. but

it may not still be a network.
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S100

S103 s101

Figure 9.1: A graph representing the passing loop at t.
9.2 Proving routes
One typical task of an interlocking is to set up or prove a route. A route is proved if
the required functions as specified in the control table are all satisfied. Recall from

Chapter 8, that these required functions are specified by a set of functions which

corresponds to the safety rules. These functions are:

TCIRCUITS for the required track circuits,

NORM-POINTS for the points required NORMAL,
REV-POINTS for the points required REVERSE,

EXIT-SIGNAL for the exit signal,

ENTRY.SIGNALS for the entry signals of the conflicting routes,
CR.TCIRCUITS for the track circuits along the conflicting routes.

The specification for a route being proved will be a predicate asserting that the
components returned by the above functions are at the required states. The HOL

function ROUTE-PROVED is defined for this purpose.
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HOL Definition 102 (ROUTE>ROVEDI)ER)

“ROUTE-PROVED rl r t m
let rlst « COIFLICTROUTES rl r in
((EVERY (\x. TC.CLEAR x t) (TCIRCUITS r)) /\
(EVERY (\p. PIT-IORMAL p t) (*ORM_POI*TS r)) A
(EVERY (\p. PIT-REVERSE p t) (REV-PONTS r)) A
(EVERY (\». ' (SIGIALFAULT it)) (EXIT-SIGIAL r)) A
(EVERY (\s. 01 s t) (EITRY.SIGIALS r rist)) A
(EVERY (\r. TC.CLEAR x t) (CR.TCIRCUITS r rlst)))"

In the above definition, the first argument rl is the list of all routes in the network.
It is required to work out the conflicting routes. EVERY is a pre-defined constant
in HOL. The expression EVERY P [*i;...;x,,] evaluates to T if and only if Par, are
true for 1< t<n.

The action of setting up a route is usually initiated by the signalman, or by
another system, such as the ARS system mentioned in Section 3.3.3, sending a
request to the interlocking. The interlocking then checks the states of the required
functions, and if any required points are not in the right position or if the required
signals do not display the correct aspects, it will attempt to change their positions or
aspects to the required states. If this succeeds the route is proved, and the predicate
ROUTE-PROVED returns true. This procedure of route setting can be modelled as

a state machine which is discussed in the next section.

9.3 Interlockings

Based on the discussion in the previous two sections, interlocking systems can be
modelled by a finite deterministic automaton or finite state machine. The formaliza-
tion of state machines in HOL is described first, then a method of using this formal

theory in the modelling of interlockings is described.
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9.3.1 State machine theories

Theories of deterministic and non-deterministic finite state machines in HOL have
been developed by Loewenstein[47][46]. In his theory LSA, a labelled state automaton
is represented by the predicates LSA or PLSA

HOL Definition 103 (LSA)

"LSA @Q,I) = > Tsmua->**.Q (= 0:*,s 0) A
ac 1 (et,s ) (= (LD, a(SUC HHH

HOL Definition 104 (PLSA)
"1(Q:C*=**)->bool) P I a. PLSA (Q,P,I) a «

(. Q@ 0. a0) A
(t. P@at. a) A (It I@t, a HE@ELC t),a(Sc D))"

In the definition of LSA, Q is a predicate asserting a set of possible initial states, N
is a predicate asserting a set of next states, and e is the external signals including
all the inputs and outputs. LSA specifies that there exists a state function s such
that ¢(0) is an initial state and, given any time t, the state transition from s(t) to
s(t + 1) satisfies the next state function. The definition of PLSA is similar except
that a predicate P asserting some properties of the machine is explicitly stated.
This theory can be used in reasoning about properties of a given machine based

on the theorem LSA.eq.PLSA.

HOL Theorem 60 (LSA.eq.PLSA)
h VQPN.

(Ves.Q (e,a) D P (e, *)) A(Veat's'. N (e,s) («',#) AP (e,*) DP (e\ *)) D

(Ve".LSA(g,AT)ew= PLSA(g, P, JV)e")
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This theorem states that, if the machine has property P at its initial state, and if
the machine has property P at a state a implies the property also holds at the next
state s', then the machine has the property P. This theory can also be used in

verifying the implementation of a machine by virtue of the theorem LSA.imp.LSA

HOL Theorem 67 (LSA.impJ.SA)
t-vg,g2Nin2.
(3R. (Vesj. Qi (e,sj) D(3s3.Qi (c,s3) ARes\ s3)) A
(Vet'si a\a2.Reaxa2 ANx(e,si) (e;s") D
(3s2.Re's\ s2 AMB(e,52)(e\s'3)))) 3

(Ve. LSATQi, iV,)e D LSA(QZN Ze)

This states that, if there exists a mapping R between the states of the machine
specified by (Qi,Nx) and the machine specified by (Qi,N 2), then the two machines
are equivalent.

A pilot study of using this theory in the modelling of a level crossing protection
has been carried out[26]. In this study, the control system of the barrier and signals
was specified as an LSA machine with initial states INIT and next state function
NEXT. The major safety property of this machine was specified such that not both
railway traffic and road traffic is allowed to proceed at the same time. A theorem
stating that the crossing control machine has such safety property was derived.

Some details of the definitions and theorems mentioned are listed in Appendix E.
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L 1 Interlocking

Sinter o«,

Figure 9.2: An interlocking state machine.
9.3.2 Interlocking as state machine

Using the theory described in above, an interlocking can be modelled by a determin-
istic finite state machine LSA. Shown in Figure 9.2 is a generic interlocking state
machine consisting of two input streams, frm and /ten, a list of outputs, Oact, and
a list of states 5,nter.

The input stream Ireq feeds requests to the interlocking to perform some actions,
such as setting up a route. Suppose that the only possible requests are to set up or
to clear a route. A request can then be represented by a pair (action, route) where
action is either mat or clear and route is the name of the route, e.g, $100S102

The input stream Iten consists of the inputs from all the sensors of network
components, such as track circuits and signal proving circuits. These reflect the
current state of the network as described in Section 9.1.

The outputs in Oact drives the actuators, such as point machines and signals.

The LSA machine combines all the external signals into a single argument e. For
the generic interlocking machine, e would be a triple (Oact</re«/«en)-

The states Sinter is the current internal states of the interlocking. The generic
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interlocking state machine may have the following internal states:

init is the initial state, in which no routes have been set up, all track circuits

are CLEAR, all points are at their NORMAL position and all signals are ON;

all-dear is the state in which no routes have been set up;

proving is the state the interlocking performs the tasks of proving a route;

clearing is the state the interlocking performs the tasks of clearing a route;

routejet is the state in which at least one route has been set up.

As part of the internal state, a set routeaet containing all the routes which have
been set up should be included in Sinter- Clearly, in the state all-dear, routeaet
must be empty. Thus, the state function ain the LSA machine should return a pair
(atate, routeaet). The state transition diagram for this generic interlocking machine
is shown in Figure 9.3.

Based on this state transition diagram and the above discussion, the initial state
predicate can be expressed in HOL as the definition IMIT-DEF.
HOL Definition 105 (INITJ)EF)

“HIT ((O.act. l.req. l.sen), S) -
(S - (init. {»>
EVERY (\t. t - clear) (FST l.sen;) /\
(EVERY (\(pl,p2). pi - normal) (FST(SID X.sen))) A
(EVERY SI0.1S.01 (SID(SID 1.sen)))"

Similarly, the next state function can be specified as function NEXT shown below:

"IEXT ((0_act, l.raq, l.san), (stats, routeset))
((O.act’, l.req’, l.sen'), (stats', routesat’)) m
((stats minit) \/ (stats « all.clear)) «
(((FST I.req) m set) m> (state* m proving) | (stats’ m state)) |
(stats m proving) m>
(PROVE.ROUTE routssst (SID I.req)) A (stats’ mrouts.sst) A
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Figure 9.3: A state transition diagram of generic interlocking machine.

(routssat’ = ((SID l.raq) IISERT routssst)) |
(stats = route.sat) m>
(((FST l.raq) = sat) »> (state’ = proving) | (state’ m clearing))
Xstate = clearing X
(((SID 1.rsq) Il routeaet) m>
(?r. (routeset m <r>) »>
(CLEARROUTE routeset (SID l.req)) /\ (state’ - all.clear) /\
(routeset’ m {» |
(CLEARROUTE routeset (SID l.req)) A (state’ * route.set)) A
(routeset’ m (routeset DELETE (SID I.req)))
(state’ m state) A (routeset’ * routeset))

In this definition, the functions PROVE.ROUTE and CLEAR.ROUTE are called to
perform the tasks of proving and clearing a route. Their specifications depend on:
1 the topology of the network, i.e., how complex is the network, how many routes

are there and so on;

N

. the safety rules, i.e., what are the required functions for each route;

w

the control algorithms, i.e., what are the possible requests and how to achieve

them.
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PROVE.ROUTE can use the predicate ROUTE.PROVED described in Section 9.2 and
the functions for working out required track components described in Chapter 8 to
check the conditions for setting up routes. The actions taken to prove a route will be
to move and lock the points at the required position, to mark all the track circuit to
be booked to prevent them from being included in a conflicting route and to instruct
the signals to display the correct aspect. Note that PROVE.ROUTE proves a route
in the context of routeset, which is passed as an argument, so that the route cannot
be proved if it is in conflict with any one of the route already set up.

Now, properties of the generic interlocking machine can then be derived using
the method described in Section 9.3.1., i.e., by defining predicates expressing the
required properties and proving theorems asserting the equivalence of LSA and PLSA
machines. The most important properties of an interlocking are safety and liveness.

One of the desired safety properties that any interlocking should possesses is that
no conflicting routes can be set up at any time. This statement can be expressed in

HOL as

IIrl r2. (ROUTEI rl) A (ROUTEI r2) A ’(rl mr2) A
(COIFLICTIIG.ROUTE | rl r2) ==
It. *((PROVED.ROUTE | rl t) A (PROVEROUTE | r2 t))

A predicate NO.CONFLICTING.ROUTES can be define to have this property. To
show the generic interlocking machine has this property, the following goal can be
set up:

e, LSA(IIIT, NEXT) « m PLSA(I«IT, 10.COIFLICTIRG.ROUTES, IEXT) *

Induction can be used to solve this goal. The induction principle for the deterministic
state machine has been encoded in the theorem LSA«q PLSA. Modus ponens can be

used with this theorem to solve the goal if the following two subgoals can be solved:
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1. the base case:

la a. XIXT («. a) -m> I0.COIFLICTXIG.ROUTES <s, *)

2. the induction step:
le @ o* o* |EXT(«a) /\ mO_COIFLICTI*G_ROUTES (e, a) mm>
10_COIFLICTIIG_ROUTES (+', m’)
The base case is clearly true because no route is proved in the initial state. The
induction step is also true because the route proving functions called in NEXT require
all the track circuits along the route to be CLEAR. Other desired properties can be
deduced in the same way. Implementation of this generic interlocking machine can
then be specified, and verification can be carried out by proving theorems of the
form

*e. LSA(INIT_INP, IEXT.INP) » —> LSA(XIXT. IBXT) »

where IMIT-IMP and NEXT.IMP are the initial and next state functions of the imple-
mentation.

The method of modelling interlocking using state machine has been described.
This generic interlocking state machine is only the top-level. A large amount of
research effort is still required to refine this model and to develop practical imple-

mentation.



Chapter 10

Conclusions and future

research

To conclude this dissertation, a general discussion of the creation of a
generic abstract model, the applications of such a model, the suitability
of HOL and issues in the method of the research is given in this chapter.
Possible future researches are indicated.

10.1 A generic abstract model

The NnETWORK theory is a generic abstract model of railway track networks based on
well-founded mathematics. This model is abstract because it only captures the es-
sential topological relations of the network components and disregards any physical
constrains and implementation technology. The model is primarily used for writing
top-level specifications of interlocking systems and reasoning about their logical op-
erations. The networks being modelled are assumed to satisfy all physical constrains
specified by regulations of the railway authorities, for example the distance between

successive signals is not less than the service braking distance.
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Because of this abstraction, the theory is general enough to be used to model
railway track networks of railway authorities with different standards. Although the
terminology, interpretations, regulations and implementations may vary between
different railway authorities, the basic principles of fixed block interlockings are

essentially the same. These are:

« division of tracks into block sections;
« detection of trains by track circuit or other means;

« regulation of traffic by signal aspects.

All these principles are expressed and modelled in the theory. The sectioning of the
track leads to track component parts and the representation of parts by vertices of
graphs. The notion of a train has not been explicitly modelled, but by the occupied
state of track circuits. The modelling of signal has contained a fair amount of detail,
but the importance of the ON and OFF aspects has been stressed.

The theory has been developed in a rigorous manner, i.e., using only definitional
extensions without introducing new axioms. It is based on the set theory and graph
theory within the framework of HOL logic, therefore it is consistent. To improve
the readability of the theories, the names of the logical constants are generally quite

long.

10.2 Applications of the model

The safety record of the railway industry has been very good. This is achieved by

the rigorous regulations developed through decades of working experience. As more
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and more new technology is being adopted by the industry, especially the use of
microprocessors in controlling vital safety functions, it is very important to ensure
that the high integrity and reliability of the interlocking systems are maintained.
Due to the complexity of the new technology, more rigorous methods should be
employed in the analysis, development and implementation of signalling systems.

Three case studies of applying the NETWORKtheory have been described in Part 111
The first two are in the area of signalling scheme design. The model is used in the
CAD tools which help the signalling engineers in designing interlocking systems.
This is certainly not the most critical part of an interlocking system. The reason for
applying the network model in this area first is because the theory is new, and even
the whole approach to signalling system design using formal methods is itself new.
It would not be wise to apply it in the most critical functions, such as the hardware
and software of the interlocking processors, before more experience has been gained.
This does not means that there is lack of confidence on the abstract modelling of
the track networks, but just to be more cautious in introducing new technology in
safety-critical systems so that to minimize the risk of introducing unsafe factors into
the systems.

Nevertheless, the generation and verification of formal specifications of railway
track layout, and creation of control tables are very important steps in the process
of signalling scheme design. By using more rigorous methods, more mistakes can be
discovered in earlier stage, thus, it leads to better design and reduces costs.

Chapter 9 indicates a possible method of modelling, specifying and reasoning
the vital safety functions of interlocking systems using the dynamic state of the

network model and finite state machines. There are still many difficult issues which
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need to be solved before practical systems can be implemented, thus, more research
is required. The example interlocking state machine shown in that chapter may
have been oversimplified because many important features have been ignored, such
as approach lockings. The actions for setting up and clearing routes have not been
completely specified. These have to be solved in order to model and to formally
specify a real interlocking system.

Safety is the paramount requirement of any interlocking system. Ultimately, an
interlocking system is safe if it never allows any traffic which may lead to potential
collision, even if there is equipment failure. The goal, stating that no conflicting
routes can be proved at the same time, shown in Section 9.3.2 is only one of many
properties a safe interlocking system should possess. Examples of propositions con-

tributing to the total safety of a interlocking system include:

« a route cannot be set up until all required functions are satisfied;

« an approach locked point cannot be switched.

The ultimate goal of liveness of a railway network can be expressed as the ability
of running the timetable. Some of provable liveness statements are:

« there is a route from A to B for some specific A and B;

« there exists a time, the required route from A to B can be set up.

When using a state machine to model the control loop of interlockings, the
eventual occurrence of the transition to the next state and the maximum time

required for this transition to happen are two key properties contributing to the

total safety and liveness of the system.
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Traditionally, the concept of liveness is not treated as being important and ex-
plicit as safety. This is probably because there is always provision for overriding
the system, such as giving authority to a driver to pass a signal displaying the ON
aspect in situations arisen from faulty equipment. This prompts a theory of abnor-
mal operations, i.e., a theory modelling the regulations and procedures for recovery
from equipment failure.

The properties discussed in the previous paragraphs imply that a full temporal
logic may be required in the modelling of the interlocking. Furthermore, the generic
interlocking state machine specified in Section 9.3.2 is only a top-level specification.
To develop a practical interlocking system still requires a large amount of research
effort to refine this top-level model down to some detail levels before an implemen-
tation can be developed. The verifications between these levels have to be carried

out to show the implementation model possesses the same safety properties.

10.3 The HOL system

The application of formal methods in the design of railway signalling systems is
still a new subject. From the experience of the current research carried out by
the author, HOL has the following four major advantages: generality, conciseness,
consistence and extensibility.

Generality is due to the underlying logic which is a general higher-order math-
ematic logic. Although, HOL was initially used for hardware verification, it has
not been designed for any specific application, its generality making it well suited

for many diverse applications areas. It is certainly suitable for railway signalling
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application. Because of its generality, one can deduce general properties for all
networks.

Conciseness is due to the fact that the underlying logic is higher-order. This
allows very compact expressions being written. In addition, higher-order functions
provides a very suitable way of modelling time-varying states of the system and
components.

Consistence is guaranteed by the strongly typed meta-language and the ways a
theory can be extended. By using only definitional extensions to theories, no logical
contradiction will be introduced.

Extensibility provides a powerful means of adapting the system for different
application areas. Since the user is able to add new libraries and new theories,
a sub-system with interface more convenient for the application at hand can be
developed.

The HOL system is an integrated system for developing system specifications
at various levels and for reasoning and verifying them. However, there are some
drawbacks. The learning curve is very steep, and demands considerable skill if the
theorem prover is used efficiently. This hinders its use by practicing engineers and
designers who are usually not familiar with formal logic and theorem proving. This
can be remedied by providing better interface to the system, such as a windowing
environment, and by providing more automatic tools for specific applications, such

as the network verifier.



CHAPTER 10. CONCLUSIONS AND FUTURE RESEARCH 159
10.4 Methodology issues

The approach of this research is to develop a general theory and then apply it to
more specific problem. The advantage of this approach is that the general theory,
namely the graph theory, provides a sound mathematical structure as a foundation
on which more specific arguments can be based. Railway track networks are fairly
complicated, an abstract model of them must rely on some well-founded structures.
They are intrinsically well suited to be represented by graphs. Adopting graphs
as the structure of track networks allows many well known algorithms on graphs
to be used; particularly important are the algorithms for finding paths. Without
a properly defined data structure, it would be very difficult to specify and model
track networks and to derive their useful properties.

Graph theory has been applied in numerous practical problems in very diverse
scientific and engineering fields. In addition to its use in railway signalling, the
graph theory developed in HOL can provide a starting point for other applications.
For example in the transport industry, the problem of finding the most economical
route of delivering goods and the problem of maximizing the network capacity can
be solved using graphs.

Verification by automatic theorem proving is a method developed in this research
for verifying railway layout designs (described in Chapter 7). This approach to
verifications relies on the development of a generic abstract model, and a proof
strategy based on this model. Each specific design is then verified against this generic
model, and specific instances of the general theorem are automatically deduced using

the proof strategy. This approach can be used in other application areas as well.
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The major advantages of this approach are that it automates the theorem proving
process and it provides an easy-to-use tool for practicing engineers and designers.
Since there is a misconception that formal methods are very difficult to use, the

second point is very important in persuading industry to adopt them.

The research presented in this dissertation is a small step towards the appli-
cations of formal methods in practical safety-critical system design. The author
hopes that this will spark off more research effort in applying formal methods in
system analysis and design in the signalling industry and other industries which use

safety-critical systems.
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Appendix A
HOL theories

This appendix lists all the theories described in Part Il in the format similar to
the output of the HOL utility function print-theory. Each theory is listed in a
separate section. There are possibly six subsections in each theory: parents lists
the parent theories, types lists the names of types defined in the current theory,
constants lists the names and types of all constants defined in the current theory,
infix lists the name of those constants which have infix syntactic status, definitions
lists all theorems associated with constant definitions and theorems lists all theorem
saved in the current theory.

A.l The theory fune

Parents
HOL sets
—> (*)set -> ((**)set -> (( -> **) -> bool))"
—>» (*)set -> ((**)set -> «e -> **) -> bool))"
>—> "i(*)set -> ((**)set -> «e -> **) -> bool))"
<=> (*)set -> ((**)set -> ((= -> **) -> bool))"

FUNJINV  ":(*)set -> ((**)set -> o -> %) -> (¥ -> <)»>

FUN.PINVERSE ":(*)set 0 (*e)set ->
((* > *) > ((** -> *) -> bool))"

169
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FUN-INVERSE ":(*)s«t = (se)esc ->
(X => **) -> ((** -> *) -> bool))"

Infixes

—> Ti(f)sat > ((F*)s«t -> ((* -> **) ->bool))"
- (F)eat -> ((F*)s«t -> ((* -> **) ->bool))"
>—> "i(*)s«t -> ((**)sat -> ((* -> **) ->bool))"
<—> "i(*)s«t > ((**)set -> ((* -> **) ->bool))"
Definitions

FUI-DEF KVAO/.*~> AO/ = (Vx.xIN A D /xIN fi)
FUN.ONTO.DEF K V A fi/.loy» ABf = (V**INA DJx INB) A
(Vy.yINB D (3.)( INAA(y =1*)))

FUN-ONE-ONEJ>EF I-VA /[.$>—> ABf = (Vx.x INA D fx INB) A
(Vxy.xIN AAYyINAA(/x =fy)D(x =1y))
FUN.ISO-DEF KVAB /.%<—> ABf = $>--> ABf AS—» ABJ
FUN-INV-DEF KVAB f y. FUNJNVAB fy= ((yINB A(3.x INAA

(* = /%)) = (ex. x INA A(y = /x)) | (ex. x IN A))

FUN.PINVERSE-DEF KVAB fg. FUN-PINVERSE (A,B) fg = $—>ABf A
t—>B Ag A (VX.XxINA D (loy/* = *))

FUN-INVERSEJIiF
\-aB fg. FUN-INVERSE (A, # )/s = FUN.PINVERSE (A,B) fg A

FUN.PINVERSE(UA )y/

Theorems
FUN.ONTO-0 KVABC fg. $—» ABfAt—» BCg D$--» AC(yo/)
FUN-ONEONE-o VABC fg.*>~> ABfM>—> BCgD I>—> AC(yo/)
FUN-1SO-0 hVABC fg.t<—> ABf A$<--> BCgDt<—> AC(gof)
FUN.TY KVAH/t>—> AB/V I—» ABf DI—> AU/
FUN-INV.TY KVA /. -«(A = {})D$--> fIA(FUNINV ABT)
LEFTFINV KVA /. >A= {})A

«>—> ABfD FUN.PINVERSE (A, f?) /(FUNJNV ABf)
RIGHT-FINV KVA /. >A = {})A

I—» ABf D FUN.PINVERSE(B,A) (FUNJNV A B f) f



APPENDIX A. HOL THEORIES 171

LEFT.RIGHT-PIMV I-VAB fg.t—> ABfAS$--> BAgA
FUN.PINVERSE(A,B)/j>D $>— > ABfAt—» BAy

ISO-INVERSE hVAB/y.$~> ABf At—> BAgA

FUNJNVERSE(A,B)/y D $<— > ABfA«<--> BAy
FUN-EMPTY-LEFT h(VB/.t~> {} B/) A (VB/.$>--> {}B/)A

(VB/.= -» {}B/ = (B ={}))A(VB/.$<-> {}B/ = (B = {}))
FUN-EMPTY-RIGHT h (VA/.1—> A{}/ = (A= {})A

(VAZ.8>-> A{}/ = (A={})A

(VA/.S—» A{}/ = (A={})A(VB/.S<--> A{}/ = (A=(})
FUN-I H(VA.$—> AAIA(VA.S>— > AAIDA(VA.t—» AAI)A

(VA.$<— > A Al)
ISO-FINV 1-VAB/.$<--> ABf D $<—> B A(FUNJINV ABf)

End of theory func

A.2 The theory graph

Parents

HOL sets fune

Constants

IS.EDGE o (* e oee) > ((*)s«t e (*e(*e ee))sst -> bool)"
IS-VERTEX > ((+)me » (o (%o *e))mec -> bool)"

DELETE-EDGE ":(*)s«t « (* o (*+ **))sst ->
(Fe(xe ®%) > (F)set o (F e (e *H))se)”
DELETE-VERTEX ":(*)s«t » (*« (*+ s*))sot ->
* > (*)sot e (Fe(*e *F))s«t)H
INSERT.VERTEX > <(*)s0t e (Ko (* e F))sat >
(DSOE = (%= (»= =*))sot)"
INSERT-EDGE o (e R > ((a)sat e (Ko (Ko e¥))ee >
(*)s«t o (* o (* o **))s«t)"
G-INTER  (*)sst o (% o (* « **))sct >
((*)set = (*+ (
GUNION  ":(*)s*t » (* » (= i **))sct ->
<(*)s«t o (o0 1
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ejrc e (o= ) > *M
e.de* Vie e (Yo Ye) > et
elb o (o o *e) -3 etn
GRAPH ":(*)aat < (** (*= **))aat -> bool"
NULL.GRAPH ":(*)aat = (* = (*e **))aat"
Vs "i(M)a#t e (* e (*= *¥))aat ->(*)aat"
ES ":(*)aat « (*e (*e **))aat->

(= (*= *aat’
IGRAPH ":(*)aat « (* = (*e **))aat ->bool"
LOOP ":*e(ee *e) -> bool"

HAS.LOOP ":(*)aat < (e < (*= **))aat -> bool"
MULTI.EDGE ":(*)aat = (*= (*e <*))aat -> bool"
SIMPLE.GRAPH ":(*)aat = (*e= (*e *»))aat -> bool"
FINITE-GRAPH ":(*)aat = (*e (*e **))aat -> bool"
VER.ADJA ":(*)aat » (* e (*e **))aat ->

(* -> (= -> bool))"
E.ADJA ":(*)aat « (*e (*e **))aat ->

(*=(*= ) > (*=(*= =) -> bool))"
INCIDENT.FROM ":(«)aat « (* e (*e **)aat ->

(o -> (== (*= ee))aat)"
OUT.DEGREE ":(*)aat » (* e (*e **))aat -> (= -> nua)"
INCIDENT.TO ":(*)aat = (== (*= **))aat ->

(* > (»e(*= **))aat)"
IN.DEGREE ":(*)aat < (*e (*e **))aat -> (* -> nua)"
INCIDENT.WITH ":(*)aat = (*e (*e *%))aat ->

(» -> <ee<ee **))aat)"
DEGREE ":(*)aat ¢ (* e (*e **))aat -> (* -> nua)"
IS-SUC.VER ":(*)aat * (« =+ (*+ **))aat ->

(* -> (* -> bool))"
IS-PRE.VER ":(*)aat = (* e (*e **))aat ->

(* -> (* -> bool))"
SUC.VERS ":(*)aat = (*e (*e= **))aat ->

¢ -> (Mant)"

PRE.VERS ":(*)aat = (== (*e= *%))aat ->
<e -> (¥aat)"

172
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EDGES.BETWEEN "(=)e=« = (* e (* = aa))sat ->
(> (> (e (*e FH)OML)”
SUBGRAPH ":(*)sat e (* e (* e *e)mec ->
(C*)set = (* = (* e **))sat -> bool)"
PSUBGRAPH ": (*)sat = ( (* - >
((=)sat = (* = (*= **)set -> bool)"
MK.SUBGRAPH ":<*)sat « (* e (* e *e))eec -> ((= -> bool) ->
((* 1 (* =**) -> bool) -> (*)sat = (*«(*= **))sat))"
GRAPH.ISO ":(a)sat = (* = (*= ee)mec ->
C(*)sot = (* = (*§ **))sat ->
((* > %)= (*=(*= *) ->*«(*§ **) > bool)"

Infixes

IS.EOGE e (* «**) > ((*)set = (* e (*e **)sat -> bool)"
IS.VERTEX -> <(*)sat = (== (== a*))sat -> bool)"
DELETE-EDGE ":(*)sat = (* = (* = **)set ->

(Fe(*e *%) -> (¥)sat « (¥ e (* e e))sa)”

DELETE.VERTEX ":(*)sat = (* e (*e *e)mec->
(* > (*)sat = (*=(*= **)sat)”

INSERT.VERTEX > ((a)sat =(==<== **)sat ->
(*)set = (» = (* = **))sat)"
INSERT.EDGE o (o o =) >

(*)set = (*=(*= **))sat -> (¥)sat = (*=(*= **)sat)"
GINTER ":(*)sat = (* = (* e **)sat ->

(*)set = (*=(*= **))sat -> (¥)set = (*=(*= **)sat)"
G.UNION ":(*)sat =

(*)set =(

* e ee)meq ->
e **)sat -> (*)set e (* e (* e **))sat)"

Definitions

ajrc_DEF |-Ve.e_srce = FSTe

a_das_DEF |- Ve.e.dese = FST (SNDe)

albJ)EF I-Vr.elbr = SND(SNDe)

GRAPHJ)EF hVV E. GRAPH (V,E) = (Ve.aINE D asrceINV Aadas INV)
NULL.GRAPH |- NULL-GRAPH = {},{}

VS.DEF hVG.VSG = FSTG
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ES.DEF VG.ESG = SNDG
ISEGE.DFF H\eG.elS.EGEG =eINESG
ISMRTEXDE \~VvG.v IS.VERTEXG = ©INVSG

IGRAHIEEF hVW E. IGRAPH(V, E)= IMAGEe *rce SUBSETV A
IMAGEe_de«£ SUBSET v

LOP.CEF  H\e.LOOP e= @goe= ede)

HIS-LOP-CEF h\G. HAS-LOOPG = (.e INESG A LOOP &)

MATIHDGE.CFF FVG. MULTI-EDGEG = (B, ene, INESG AaINESG A
<€ = A @I, = eSTA)A ([ ke, = e texH)

SINPLE.GREFH-DEF K VG. SIMPLE.GRAPHG = GRAPH G AHAS.LOOPG A
—MULTI-EDGEG

FINI E—G?AH—&LF
HG. FINITE-GRAPHG = GRAPH G A FINITE (VSG) A FINITEESG)
VER-ADIA.CH- hVG &\va VER-ADJAG twj = GRAPHG Aw, IS.VERTEXG A
walS-VERTEXG A Be.eIS.HGEG A (ea®= t)A @ t'e= )V
€1e= B)A @dR=»,)
e-apJa.oer  FVGe, ea.E-ADJAGe, ea= GRAPHG Ae, IS.EDGEG A
ealS-HEG A (ede, = e )V e = egw,))
INCIDENT-FROVMCE-
hVG & INCIDENT-FROMGV = {e [e IS.EDEG A 9= »)}
OQUT .DEREDE- hVG v. OUT -DEGREE Ge = CARD (INCIDENT.FROMG W)
INCIDENT-TO.DEF hVG & INCIDENT.TOG = (e |eIS.EDGEG A e dse= t)}
IN-DERE.H- h VG w. IN-DEGREEG w= CARD (INCIDENT-TOGW)
INCIDENT.WMITH-DE- h VG v. INCIDENT-WITHG v =
€ |elS.EGEG A((gjree=v) V etee= )}
DEREEDH- h VG W.DEGREEG »= IN.DEGREEG v+ OUT.DEGREEG r
ISSCMRI)F hVG r, \a ISSICMRG v, 3 = Be.e ISEGEG A
(ege=t)A edFe=r9)
ISFREMRIF BVGw,w,. IS.FREMERG v, 3 * @2.e ISHGEG A
(k== B)A (gjree=va)
B HVGv. SUC.VERSG v={v'\v' ISVERTEXG A IS-SUIC.VERG »}
PRE \VERS-DH-
hVGWPRE.VERSG v = {v1\v' IS/VERTEXG A ISPRE.MERG W}

-0 FVG & raEDGES. BETWEENG vt v2 =
@€ |eISHGEG A @gte= B)A dse= @)}
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DELETE-EDGE-DEF I- vc?t. G DELETE.EDGEe = VSG,ESG DELETE e

DELETE-VERTEX_DEF h VG V. G DELETE-VERTEX v =
VS G DELETE w,ESG DIFF INCIDENT.WITH G v

INSERT.VERTEX-DEF h Vt>G.v INSERT.VERTEX G = V INSERT VSG,ESG

INSERT-EDGE-DEF h Ve G.e INSERT-EDGE G = VS G, ((eJrCc IS-VERTEX G A
e-dese IS-VERTEX G) =>e INSERT ESG |ESG)

G.INTER.DEF I-VGiGa.G, GINTERGa= VSG\ INTERVS Ga, ESGXINTER ESGa

G.UNION.DEF
H VG, Ga.G, G.UNION Ga = VSG, UNION VSGa,ESG, UNION ESGa

SUBGRAPH-DEF h VffG.SUBGRAPH //G = GRAPH // AGRAPHG A
VS H SUBSET VS G AES H SUBSET ESG

PSUBGRAPH.DEF h V//G.PSUBGRAPH fic = SUBGRAPH H G A
(VS 7/ PSUBSET VSG v ESH PSUBSET ESG)

MCSUBGRAPH-DEF  h VG /t>fe. MK-SUBGRAPH Gfvfe =
{t> |VIS-VERTEX G A fvv],
{« |eIS.EDGE G A fee A /v(cjrce) A /r (e.desf)}

GRAPH-ISODEF hvG f g. GRAPH.ISOG H(/,y) = GRAPH G AGRAPH tfA
$<-> (VSG) (VStf) / A$<-> (ESG) (ES )j

Theorems
e_src h Vp, pas.e.src(pi,p2,s) = pt
e-dss HVp, a.e.des(pi,p2,*) —Pi

«lb VpiP2* *fo(Pi,P2,a) = »
VERTICES |-W E.VS(V,E)=V
EDGES \-W E.ES(V,E)= E

GRAPHEQUIV h W E£. GRAPH (V, £) = IGRAPH (V, E)
GRAPH.EX1STS |- 3G. GRAPHG

GRAPH-PAIR h VG.GRAPHGD(G = VSG,ESG)
GRAPHDECOVP h VG. GRAPH G = GRAPH (VSG, ESG)

GRAPH.EQ h VGH.GRAPHG AGRAPHH D ((G= )= (VSG=VS H)A
(ESG = ESH))

NOT-VERTEX.NOT-EDGE h VGt, t* X. GRAPHG D (->Pi IS-VERTEX G V
-it* IS-VERTEX G D ->(t»iw3,*) IS.EDGE G)

GRAPH-NOT-VERTEX J10T-EDGE
h VGt GRAPH (» A -'ti ISVERTEX G D (Vu*. -(t> ti,x)IS.EDGEG)
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GRAPH-NOT.VERTEX-NOT-EDGE2
1-VG r. GRAPH G A->V IS-VERTEX G D (Vu*. --(I»,r, z) IS-EDGE G)
EDGEEQ Ve, e2.(e, = e2) = (e_srce, = e_srce2) A (e.dese, = eJe*e2) A
(elbe, = elbe2)
GRAPHDIRECTED h VG. SIMPLE-GRAPH G D (Ve, e2.e, INESG Ae2INESG A
(e_*rce, = e.dese2) A (e.dese, = e_srce2) D ->(e, = €2))
VER INCIDENT.NOT-EMPTY
1-VG r. GRAPH G A -.(INCIDENT-WITHG r = {}) D rIS-VERTEX G

NOT-VER-INCIDENT.EMPTY
I-VG r. GRAPH G D (-r IS-VERTEX G D (INCIDENT-WITHG r = {}))

GRAPHEDGE-VERTEX h VGe. GRAPH G At IS.EDGE G D e_»rce IS-VERTEX G A
e-dcse IS-VERTEX G

NOT-INSAME-SET h Vxys.yINaA =xINaD -.(x = y)
NOT-INSAVE-GRAPH h VG re. GRAPH G A->VIS-VERTEX G A

eIS-EDGE G D ->(e_srce = r) A ->(e_dese = r)
VERTEXEDGE |- VG re. GRAPH G A r IS-VERTEX G A

eIN INCIDENT.WITHGVD («_*rce=r) V (eJ«se = r)
E.DELETE-ABSORP h VGe. GRAPH G A <elS-EDGE G D (G DELETE-EDGE e = G)
V.DELETE-ABSORP

b VG r.GRAPH G A ->r IS-VERTEX G d (G DELETE.VERTEX r = G)
GRAPH-DELETE-EDGE h VGe. GRAPH G D GRAPH (G DELETE-EDGE e)
GRAPHDELETEVEATEX h VGr. GRAPH G D GRAPH (G DELETE-VERTEX r)

DELETE-VERTEXCOMM h VG, r2.(G DELETE-VERTEX r,) DELETE-VERTEX V3=
(G DELETE.VERTEX r,) DELETE.VERTEX r,

DELETEEDGE-COVM h VGe, €2.(G DELETE-EDGE e,) DELETE.EDGE e2 =
(G DELETE-EDGE e2) DELETE-EDGE e,

GRAPH-INSERT-VERTEX |- VC r. GRAPH G D GRAPH (r INSERT.VERTEX G)
GRAPH-INSERT-EDGE |- VGe. GRAPH G D GRAPH (e INSERT-EDGE G)

INSERT-VERTEX-COMM |- V G r,rj.r, INSERT-VERTEX (r, INSERT.VERTEX G) &
r, INSERT.VERTEX (r, INSERT.VERTEX G)

INSERT-EDGECOMM h VG e, e2.e, INSERT-EDGE (e2 INSERT .EDGE G) =
e2INSERT.EDGE (e, INSERT .EDGE G)

IN-INSERT.VERTEX |- VerG. elS-EDGE G D e IS-EDGE (r INSERT-VERTEX G)
IN.INSERT.EDGE h Vee'G.elS-EDGE G D elIS-EDGE (e' INSERT.EDGE G)

INCIDENT-HITH-INSERT.VERTEX h VG r. GRAPHG D
(~rIS.VERTEXG D (INCIDENT.WITH (rINSERT.VERTEXG) r = {}))
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DELETE-IMSERT.EDGE h vGe. GRAPHG A
¢ IS.EDGE G D (e INSERT.EDGE (G DELETE-EDGE &) = G)

INSERTJ>ELETE VERTEX I- VG V. GRAPH G A
-i>IS-VERTEX G D ((» INSERT.VERTEX G) DELETE-VERTEX v * G)

VERTICES-INSERT.EDGE h VGe. VS(e INSERT.EDGE G) = VSG
EDGES.INSERT-VERTEX h VG t,. ES (r INSERT-VERTEX G) = ESG

VERTEX-INSERT-VERTEX h VGx y.xIS-VERTEX (Y INSERT-VERTEX G) = (x= y)V
i IS-VERTEX G

EDGE-INSERT-EDGE h VG e.e_srcc IS-VERTEX G A
e.d«*f IS-VERTEX G D e IS.EDGE (e INSERT.EDGE G)

EDGE-IN-INSERT h v Ge.ejrce IS-VERTEXG A
e.dctr IS-VERTEX G D e IS.EDGE (e INSERT.EDGE G)

EDGE-IN.INSERT2 1-v G t),t)j *. t>, IS-VERTEX G A

wa IS-VERTEX G D (»,, »a,x) IS.EDGE ((»»,»a.x) INSERT-EDGE G)
VERTEX-IN-INS-VERTEX h vG wo.VIS-VERTEX (u INSERT.VERTEX G) = (b= «) V
tIS-VERTEX 6

V-INSERT-ABSORP
I-vG ©.GRAPH G A » IS-VERTEX G D (w INSERT.VERTEX G = G)
E-INSERT-ABSORP |- vG €. GRAPH G Ae IS.EDGE G D (e INSERT.EDGE G = G)

FINITE-GRAPH-INSERT-EDGE
HVGe. FINITE-GRAPH G D FINITE-GRAPH (e INSERT.EDGE G)

GRAPHINTER h VG, Ga. GRAPH G, A GRAPH Ga D GRAPH (G, GINTER Ga)
G-INTERIDENT HVvG.G GINTERG = G
GINTERSYH HvG,Ga.G, G-INTERGa = Ga GINTER G,

GINTER-ASSOC hV G ,G aG3.
(G, G-INTERGa)G-INTERG3 = G, G-INTER (Ga G-INTER G 3)

VERTEX-ININTER h VG, Ga » @IS-VERTEX (G, G-INTERGa) = r IS-VERTEXG, A
»IS-VERTEX G a

EDGE-IN-INTER
I-VG, Gae.e IS.EDGE (G, G-INTERGa) = *IS.EDGEG, Ae IS.EDGEGa

GRAPHUNION H VG, Ga.GRAPH G, A GRAPH Ga D GRAPH (G, G-UNION G a)
G.UNION.IDENT h vG.G G-UNION G = 6
G-UNIONSYM |-vG,Ga.G, G-UNION Ga = Ga G-UNION G,

GUNION-ASSOC hv G, GaG3.
(G, G-UNION Ga) G-UNION G 3 = G, G-UNION (G a G-UNION G 3)
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VERTICESIN.UNION h VGiG2v, V2.GRAPH G, AGRAPH Gj Aw, IS.VERTEXGi A
Vj IS.VERTEX GaD ©, IS.VERTEX (G, G.UNION G2)A
talS.VERTEX (G, G.UNION Ga)
VERTEXJM.UIIOM |- VGi Ga». »IS.VERTEX (G, G.UNION Ga) = PIS.VERTEXG, V
PIS.VERTEX Ga
EDGE.I1I-UNION
HVG,Gae.elS.EDGE (G, G.UNIONG2) = «IS.EDGEGi ve IS.EDGEGa
VERTEX-INSERT .EDGE
1-V G tie.e IS.VERTEX (e INSERT.EDGE G) = VIS.VERTEX G
GRAPH.INSERT.EDGES h VG t>,V2.GRAPHG A v, IS.VERTEXG A
talS.VERTEX G D (VX,. GRAPH ((»,,V2,x,) INSERT .EDGE G)) A
(VX2.GRAPH ((»a, t>,,x2) INSERT.EDGE G))
G.UNION.INSERT-EDGES h VGi G2t »a.
GRAPH G, AGRAPH G2A B, IS.VERTEX G, A P®2IS.VERTEX G20
(VX,. GRAPH ((vi, t2,x,) INSERT.EDGE (6. G.UNION G a))) A
(VX2.GRAPH ((»a, v,,x2) INSERT.EDGE (G, G.UNION G ,)))
G.INS-INS-E I-VGcj e2.
GRAPH (e, INSERT.EDGE G) A GRAPH (ea INSERT.EDGE G) D
GRAPH (e, INSERT.EDGE (e2 INSERT.EDGE G)) A
GRAPH (e2 INSERT.EDGE (e, INSERT.EDGE G))
G.UNION.INSEDGES nh vG, Gau, V2.GRAPH G, AGRAPH G2 A
», IS.VERTEX G, AtalS.VERTEX Ga D
(Vxax,. GRAPH ((«a, va.*i) INSERT .EDGE
((»a, INSERT.EDGE (G, G.UNION G 2))) A
GRAPH ((rj, v,,xa) INSERT.EDGE
((»i, a,x,) INSERT.EDGE (G, G.UNION G a))))
SUBGRAPHREFL 1- vG. GRAPH G 3 SUBGRAPH G G

SUBGRAPH.TRANS K vG,GaC 3. SUBGRAPHG ,Ga A
SUBGRAPH Ga G3 D SUBGRAPH G, G3

SUBGRAPH-ANTISYM h VG, G 3. SUBGRAPH G, GaASUBGRAPH G2G, 2 (G, = G2)
SUBGRAPH.GRAPH I- vG 7/. SUBGRAPH G D GRAPH G A GRAPH //
PSUBGRAPHSUBGRAPH h vG //.PSUBGRAPH H G D SUBGRAPH H G
PSUBGRAPH_IRREFL h vG.GRAPH G D -.PSUBGRAPH G G

PSUBGRAPHTRANS h VG, G 2G3. PSUBGRAPH G, Ga A
PSUBGRAPH G2G3 D PSUBGRAPH G, G3

PSUBGRAPH.DELETE.EDGE
HVGe. GRAPH GAelS.EDGEG D PSUBGRAPH (GDELETE.EDGEe)G

SUBGRAPH.DELETE-EDGE hvV G f. GRAPHG D SUBGRAPH (G DELETE.EDGE e)G
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SUBGRAPH-DELETE-VERTEX
I-VG . GRAPH 6 3 SUBGRAPH (G DELETE-VERTEX v)G

PSUBGRAPH-DELETE-VERTEX h VG w.GRAPH G A
©IS.VERTEX G 3 PSUBGRAPH (¢ DELETE-VERTEX V)G

MK.SUBGRAPH-GRAPH h VG /v /e. GRAPH G 3 GRAPH (MK.SUBGRAPH Gfvfe)

HK-SUBGRAPH-SUBGRAPH
1-V G /»/c. GRAPH G 3 SUBGRAPH (MK-SUBGRAPH G /w /e)G

GRAPH-ISO-AUTO h vG.GRAPH G 3 GRAPH.ISOGG(U)

GRAPH-ISO-TRANS h VGi G 2G3T\gi /a$2. GRAPH.ISO Gi G2(/i.fli) A
GRAPH.ISOG 26 3(/2,f12) 3 GRAPH.ISO G, G3((/207,), (y2051))

GRAPH-ISO-SYM

PVGHTg. GRAPHJSO G H (F,0) 3 (3/'s'. GRAPH.ISO G (A fO)
GRAPH-ISO-SYM-INV' - VG ff /$. GRAPHJSO G 3

GRAPH.ISO //G(FUNJINV(VSG) (VS H)F, FUNINV(ESG)(ES i/)y)

End of theory graph

A.3 The theory «list

Parents

HOL sots graph

Constants

ELEM "1 (*)list -> (= -> bool)"
UNIQUE-EL (*)list -> bool"

EL.SET  *=t(*)list -> (=)aat"

DISJ-LIST ":(*)IIst -> «e)list -> bool)"
V.L "r(«e(*e **))list -> (*)list"
VER.LIST ":<*e (*e **))[Ist -> (=)list"
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Definitions

ELEMIEF  N(v* ELEM[I* = F)A(VAiZ ELEM(CONS At)* = (* - A)ELEM/X)
UNIQUE-EL UNIQUE-EL[] = T)

.UNI%E-EL(CONSPd:I)Z EVERY (A*. -(* = h))ﬂA

UNIQUE-EL

EL-SET.DEF {(ELSET()={}) A
Mﬂi tLtr (cons hitl) = Flinserr e-ser )

ist-LisT-0erF h i, [3piss-Listy, I3=pisioNTEL.SET/)EL-SETI)
VLOEF  h(v.L[ = D) AMwtlvL cons hol) = cons (taes v+ )

VER-LIST_DEF h (YER-LIST (]*
T (vAd .VER-LIS‘(I'](CEJ)I\zs :CONS(t_wchj(VJ.(CONS rdﬂ)))

Theorems

MULLJIL - VZ. NULL/ = (/»[))

MUL-MOTELEM h V/. NULL/D (V*.-ELEM/*)

ELEMQONS |-V/*y. ELEM/z =ELEM (CONSy/)z

ELEMAPPEMD HV/j/az. ELEM (APPEND/,/,)* = ELEM /, z VELEM /, X
ELEMEL hV/z.ELEM/* D(3n.* = ELn/)

IMELEM  h Va. FINITE aDBJ. (V*. X IN a = ELEM /X))

UNIQUE-ELTL h V/ft. UNIQUE.EL(CONShI) D UNIQUE.EL/
UNIQUE.EL-SIMP h Vz. UNIQUE.EL [Z]

ELEMIMOT-UMIQUE-EL-COMS h V/A. ELEM/ A D -UNIQUE.EL(CONS A/)

NOT-ELEM-UNIQUE-EL-CONS
1-V/A. UNIQUE-EL/A -ELEM /A D UNIQUE.EL (CONS A/)

EL-SET.APPEND HV/, /,. EL.SET (APPEND /,/a) = EL-SET /, UNION EL.SET/,
ELEMHIMFEL-SET |- V/z. ELEM /* = z IN EL.SET/

DISK-LIST-EMPTY h V/. DISI-LIST (J/ ADISJI-LIST/ (]

DISJ-LIST.CONS h V/,/, A DISJ-LIST (CONS A/,) /, = DISJ-LIST/,/aA-ELEM /aA

DISJ-LIST-APPEND
I-V/, /a/3.DISJ-LIST (APPEND /, /a) 3 = DISJ-LIST /,/3a DISJ.UST /,13

DISJ-LIST-COMM t-V/, I2DISJ—LIST/, |2: DISJ-LIST/,/,
V-L-APPEVD |-VplPa.V.L(APPENDp,p,) = APPEND (VJ.p,)(V-Lp,)
NOT-MULL-VER-LIST KVp.-NULLp D (VER-LISTp = CONS (#-»rc(HD p)) (V-Lp))
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VER-LIST.CONS
H Vp/». VER.LIST (CONS h p) = CONS (e_irc/i) (CONS (eJe* h) (V_Lp))

NOT-NULL.VER-LIST.CONS h V//». -.NULL/ A (e_desh = e_src(HD/)) 3
(VER.LIST (CONS hi) = CONS (tmc h) (VERJ.IST/)

TL-VER-LIST h Vp. -NULLp 3 (TL (VER.LISTp) = V.Lp)

VERLIST.APPEND H Vp, pa.-NULLp, A-NULLpj 3 (VERJ.IST(APPEND p, p,) =
APPEND (VER.LISTp,)(TL(VER.LIST p,)))

UNIQUE-EL-CONS h V//». UNIQUE.EL/ A -/»IN EL.SET/3 UNIQUE.EL (CONS hi)
NOT-UNIQUE-EL-CONS h 'ith.h IN EL.SET/ 3 (UNIQUE.EL (CONShi) = F)

UNIQUE-EL-APPEND h V/,UNIQUE.EL (APPEND/,/a) = UNIQUE.EL/, A
UNIQUE.EL/j A DISJ.LIST/, /a

UNIQUEV_LCONS h Vph. UNIQUE.EL (V-Lp) A
->ELEM (V.Lp) (e.des/i) 3 UNIQUE.EL (V.L (CONS h p))

UNIQUE.VER-LIST.CONS h Vp/». -«NULLp A UNIQUE.EL(VER.LISTp) A
(e-src(HDp) = e.des/i) A -«LOQR/» A
-ELEM (VER.LIST p) (+jrc A) OQUNIQUE.EL (VER.LIST (CONS h p))

UNIQUE-EL.VER LIST_TL h Vp. -.NULLp 3 (UNIQUE.EL(VER.LISTp) 3
UNIQUEEL (TL(VER.UST p)))

UNIQUEVER-LIST-APPEND h Vp, p&. -.NULLp, A ->NULLp3 3
(UNIQUE.EL(VER.LISTp,) A UNIQUE.EL (VER.LISTpa) A
DISJ.LIST(V.Lp,)(VJI.pa) A -<ELEM (VER.LISTpa)(e_src(HDp,)) 3
UNIQUE.EL (VER.LIST (APPEND p, pa)))

End of theory «list

A.4 The theory path

Parents

HOL sets graph elist
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Constants
WALK-TAIL “:(*e(*e **))list ->

((*)s«t = (*8(*§ **))s«t -> bool)"
WALK "1 C*)sot e <*§(ee *F))s*t ->

((* = (*i **))list -> bool)"
WALK.ENTRY ":<ee(*§ ee))list -> "
WALK-EXIT “:(ee(*e **))list -> "

TRAIL "I(*)s«t o (*e (*e *¥))sat ->
((* = C* < **))list -> bool)"
PATH si(f)sst e (P00 (0 *N))s«t >

((* = (* # *«))list -> bool)"
PATH-ENTRY ":(=#(*§ **))list -> "
PATH.EXIT ":(ee(** ee»list -> "
CONNECTED ":(*)sst « (*e (*e **))sst -> bool"

DISJ.PATH ":(*)sst = (* = (*= **))s*t ->
(<o @ (= =«»list -> ((* = <0 *e))list -> bool)"

HAS.PATH ":(«)S«t = (* = (* e ee)s*t -> (= -> (= -> bool))"

Definitions

UALK-TAIL.DE- h (VG.WALK-TAIL[]G = T) A
(YGhdtl. WALK.TAIL (CONS hdtl)G = GRAPH G Ahd IS.EDGEG A
(NULL tl VWALK.TAIL UG A @Bshd = e rottDiY))))

HAK.DEF KYG  WALKGw = -NULL TDAWALK.TAIL WG
WALK ENTRY CH- h V/.WALK-ENTRY /=e_*rc(HD/)

WALK-EXIT.DEF h vhdtl. WALK-EXIT (CONS hdtl) =
(NULL tl » edeshd |WALK-EXIT (/)

TRAIL.DEF h YG/.TRAILG/ = WALK G /A UNIQUE.EL /

PATH.DB hYG/.PATHG/ = TRAILG/AUNIQUE-EL(VER.LIST/)
PATHHENTRY CH- h Y/.PATH .ENTRY /= a-«re(HD/)

PATHEXITDEF |- Vp. PATH.EXITp = WALK-EXITp

CONNECTED DHF 1- vG. CONNECTED G = HG A (Vr,r,. 1, IS.VERTEX G A
IS.VERTEX G A -<(>i = 0j) O(D PATHG/A
(&, = PATH-ENTRY/) A(0j = PATH.EXIT/)))

DISIHPATH.DEF 1-vGp! pa. DISJ.PATH Gpipa = PATHG pi APATH Gpa A
DISJ.LIST p, pa A DISJ.LIST (V.Lp,)(V.Lp,)
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HAS_PATHCH- 1-VGt>, v,. HAS.PATH G t,1rj = @.PATHGp A
(PATH-ENTRYP= v,) A (PATH-EXITP= t*))

Theorems

PATH-TRAIL h viG.PATH GI O TRAILG
TRAILMALK h v/G. TRAILG / 0 WALKG/
PATHWALK Kvic. paTH 6 /D waLkG /
PATH-GRAPH h VG /. PATH G / D GRAPH G

PATH-MOT-MULL I-VpG.PATHG/ D ->NULL/

PATHANALK-BMTRY h vp. PATH-ENTRY p =WALK-ENTRY p

PAl

I- VsG. PATHG (QOONY/ip) A =>NULLP D (e.des/i = ejre(HDp))
CQONNECTED .GRAH h ve. CONNECTEDG o GRAPHG
QONNECTED .SING h . CONNECTED (&3.{ D
WALK ENTRY-OONS 1- vp/»G. WALK-ENTRY (CcONs M = e*Th
WALK-ENTRY-APPEND H vp, p. G.WALKG p, A

WALKGpa 0 (WALK-ENTRY (APPEND p,pa) = WALK-ENTRYp,)
WALKIEXIT.APPEND h vp, paG. WALK G p, A

WALKGpa D (WALK-EXIT(APPENDp, pa) = WALK-EXIT pa)
PATHENTRY.SIVP 1- vu vx. PATH-ENTRY 5] =u
PATHEXITIIMP 1- vu r *.PATH.EXIT [u, v, X]= &
PATH.ENTRY_CONS h Vp/» PATH.ENTRY(CONSh)): «crel»
PATH-EXITJOONS h vp/».-NULLPD (PATH.EXIT(CONS Ap) = PATH-EXITp)
PATH-ENTRY-APPEND 1 v/, ApaTH G /0

(PATH.ENTRY(APPEND//,) * PATH.ENTRY/)
PATHEXIT-APPEND

I-V/, /a.-NULL/a O (PATH.EXIT (APPEND/, 12) = PATH-EXIT/2)

WALK-CONS K Vp/»G.WALK G p Al» IS.EDGEG A
2 P
(e-des/i = WALK-ENTRYp) O WALKG (CONS Ap)
WALK-APPEND H Vp, pa G.WALK G p, AWALK G pa A
(WALK-EXITp, = WALK-ENTRY pa) D WALKG(APPENDp, p,)
WALK-CAT 1-vGp, pasWALK G p, AWALKG p, A
(WALK.EXITp, = WALK.ENTRY pa) 0 Opa. WALKGps A
(WALK-ENTRYP, = WALK.ENTRY p,)A
(WALK-EXITpa = WALK-EXIT pa) A(p, = APPEND p,pj))
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PATH.EDGEJIO-LOOP |- VPAG. PATH G (CONS f‘p)s - (e_srcA —e.de*A)
PATH.SIMP hVGtGRAPHGAElS—EDGE -.LOOP e3 PATH
PATH.COMS h Vp A GGRAPH G PATH G p A A IS-EDGE

(PATH.ENTRYp = e_d«* A) A -«LOOP AA

-ELEM (VER-LISTp)(e_srcA) A -ELEMpA 3 PATH \JCONS AD

PATH-CAT h VG pip,. GRAPH DISJ-PATH Gp, pa A
(PATH-EXIT pi = PATH-ENTRY pa) A
-ELEM (VER.LISTpj)(PATH.ENTRYp,) D (Bpa.PATHGpaA
(PATH.ENTRYgs = PATH.ENTRYp,) A
(PATH.EXIT P& PATH-EXITpa) A (pa = APPEND P 1p4)

PATH_APPEND |- VG pxpa-GRAPH G A DISJ.PATH GpipaA
(PATH.EXIT pi = PATH.ENTRY pa) A
-ELEM (VER-LISTpaMPATH-ENTRYp,) 3 PATH G(APPENDpP, p,)

PATH.NOT.NIL HVG.-PATH G ()

WALK-TAIL.G-UNION 1-V/Gi G2.GRAPH Gi A GRAPH GZA
WALK-TAIL/G, 3 WALK-TAIL/(Gi G.UNION Ga)

PATH.G-UNION h V/G, Ga.GRAPH G, A GRAPH Gj A
PATH Gi /3 PATH (G, G.UNION Ga)/

WALK-TAIL_INS_VERTEX
I-V/wG.WALK.TAIL/G 3 WALK.TAIL/(t> INSERT.VERTEX G)

WALK-TAIL-INS-EDGE h V/« G.WALK-TAIL /G 3 WALK-TAIL/ (« INSERT.EDGE G)
PATH-INS-VERTEX h V/ PATH 3 PATH (» INSERT.VERTEX G)/
PATH-INS-EDGE h V/eG.PATHG/ 3 PATH (e INSERT-EDGE G)/

PATH.INS.EDGE2 h V, +3GRAPH G A vgi.VERTEx G A DDS.VERTEX G A
S(vj = 3(\/.. PATH ((r., »O1l) INSERT.EDGE G) (»i,va,i])
PATH-IS.EDGE h VG A/ PATH G (CONS A l)3 AIS.EDGE G
PATH-ELEM-IS.EDGE I-VG /. PATHG /3 (v*. ELEM /13 * IS.EDGE G)

PATH_IS .WVERTEX h VG A/ PATH G(CONS A/) 3 tjrc AIS.VERTEX 0 A
*.dM A IS.VERTEX G

PATH-ELEM-VER-LI ST.I S-VERTEX
hVG/.PATHG/ 3 (.

ELEM (VER.LIST/)i 31IS.VERTEX G)
PATH-INS-INS-CON VG /i \z.

H 3 A, ISVERTEX G A IS.VERTEX G A
OO= PATH.ENTRY/)A-(», = t*) 3§ TH ((»..uj.i ) INSERT.EDGE
(». INSERT-VERTEX G)) (CONS (i, »Q1)7)

CONNECTED-INS-EDGE
h VG.CONNECTED G 3(\/6. CONNECTED(e INSERT.EDGE G))

End of theory path
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A.5 The theory SIGNAL

Parents
HOL

Type«

":ShAspect" ":Shsig" ":SubAspect" ":Subsig" ":Jsig" ":MAspect"
“iMtype" ":Msig" "iSignal"

Constants

REP-ShAspect "jShAspect -> (one ¢+ (one ¢+ one))ltree”
ABS-ShAspect “j(one ¢ (one ¢+ one))ltree -> ShAepect”
sh_on "iShAspect"

sh.off "iShAspect"

sh.faulty "iShAspect"”

REP-Shsig "jShsig -> (num -> ShAspect)ltree”
ABS-Shsig ":(num -> ShAspect)ltree -> Shsig"
SHUNTSIG " i(nun -> ShAspect) -> Shsig"
SHUNT.FUNC "iShsig -> (num -> ShAspect)"
SHUNT.ON "jShsig -> (num -> bool)"
SHUNT.OFF "jShsig -> (num -> bool)"
SHUNT.FAULT Shsig -> (num -> bool)"
REP.SubAspect "jSubAspect -> (one ¢+ one)ltree”
ABS-SubAspect "j(one ¢+ one)ltree -> SubAspect"
sub.not.show "jSubAspect”

sub.ofF "iSubAspect”

REP-Subsig "jSubsig -> (num -> SubAspect)ltree"
ABS-Subsig "j(num -> SubAspect)ltree -> Subsig"
SUBSIG “:(num -> SubAspect) -> Subsig"
SUB.FUNC "iSubsig -> (num -> SubAspect)"
SUB.OFF  "jSubsig -> (num -> bool)"
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REPJsig "jJsig -> (nun -> bool)ltree"
ABSJsig ":(num -> bool)ltree -> Jsig"
JSIG “:(num -> bool) -> Jsig"
J.FUNC ":Jsig -> (num -> bool)"

REP.MAspect ":MAspect -> (one ¢ (on* + (one ¢

(on* + (on* ¢+ (one ¢ (one ¢ one)))))))ltree"
ABS.MAspect ": (one ¢+ (one ¢ (one ¢+ (one + (one ¢

(one + (one ¢+ one)))))))ltree -> MAspect”

green ":MAspect"
double-yellow ":MAspect"
yellow MAspect"”
red ":MAspect"
green-flash "iMAspect”

double-yellowJlash "jMAspect"
yellow-flash "iMAspect"
faulty.aspect "jMAspect”

REP.Mtype "iMtype -> (one ¢+ (one ¢+ (one ¢+ (one ¢ one))))ltree”
ABS.Mtype "j(one ¢+ (one * (one ¢ (one * one))))ltree -> Mtype"

two.aspect

three-aspect
four-aspect "iMtype"
two-repeat "jMtype"
three-repeat "jMtype"
REP.Msig ":Msig -> (Mtype < (num -> MAspect))ltree"
ABS.Msig "j(Mtype = (num -> MAspect))ltree -> Msig"

MSIG "iMtype -> ((num -> MAspect) -> Msig)"
M.TYPE "iMsig -> Mtype"

M.FUNC "iMsig -> (num -> MAspect)"

M.ASPECT "iMsig -> (num -> MAspect)"

MAIN.ON "iMsig -> (num -> bool)"

MAIN.FAULTY -jMsig -> (num -> bool)"
MAIN-OFF "iMsig -> (num -> bool)"

186
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RED "iNsig -> (num -> bool)"
YELLOW  ":Msig -> (num -> bool)"
REP-Signal “iSignal -> (num < Nsig +
(num < (Nsig = Jsig) ¢+ (num  (Nsig < Subsig) ¢
(num = (Nsig i (Subsig = Jsig)) * numi Shsig))))ltreo"
ABS-Signal ": (num e Nsig ¢ (num « (Nsig § Jsig) ¢
(num « (Hsig < Subsig) ¢ (num < (Nsig = (Subsig = Jsig)) ¢
num < Shsig))))ltree -> Signal”

SIGNALM  ":num -> (Nsig -> Signal)"

SIGNALMJ ":num -> (Nsig -> (Jsig -> Signal))"

SIGNALMS ":num -> (Nsig -> (Subsig -> Signal))"
SIGNALMSJ ":num -> (Nsig -> (Subsig -> (Jsig -> Signal)))"
SIGNALS  ":num -> (Shsig -> Signal)"

SIGNAL-ID "jSignal -> num"

SIGNAL.MAIN "jSignal -> Nsig"

SIGNALJUNC "jSignal -> Jsig"

SIGNAL-SUB "jSignal -> Subsig"

SIGNAL-SHUNT *“iSignal -> Shsig"

SIG.SFUNC "iSignal -> (num -> NAspsct) = ((num -> bool) <
(num -> SubAspect)) ¢+ (num -> ShAspact)”

ON “jsignal -> (num -> bool)"
OFF "jSignal -> (num -> bool)"
SIGNAL-FAULT "ijSignal -> (mm -> bool)"

Definitions
ShAspsct.TY-DEF h 3rep.TYPE-DEFINITION(TRP (» = INLons) A
(LENGTH ti= 0) V (» = INR(INLone)) A (LENGTH 1= 0) V
(o = INR (INRone)) A (LENGTH t = 0)))rep
ShAspsct-1ISO-DEF H (Va. ABS-ShAspect (REP-ShAspect a) = a) A
(Vr. TRP(A»</.(v = INLons) A (LENGTH d= 0) V
(= INR (INLons)) A (LENGTH!/ = 0) V (v = INR(INRons)) A
(LENGTH = 0))r = (REP-ShAipsct (ABS.ShA*psct r) = r))
sh.onJ)EF |- sh.on = ABS-ShAspect (Node(INLone) [])
sh.off-DEF |- sh.off = ABS-ShAspect (Nods(INR(INLons))[])
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sh_faulty-DEF I- sh.faulty = ABS.ShAspect (Node(INR(INRone))[])

Shsig.TY_DEF 1- 3rep. TYPE-DEFINITION (TRP(At»«. (3/.» = /) A
(LENGTH tI - 0))) rep

Shsig_ISO_DEF |- (Va. ABS-Sh*ig(REP-Shsiga) = a) A (V. TRP(At>«. (3/. b= /) A
(LENGTH « = 0))r = (REP-Shsig(ABS-Shsigr) = r))

SHUMTSIG_DEF h V/. SHUNTSIG / = ABS-Shsig(Node 7 (])
SHUNT-FUNC-DEF |- V«. SHUNT.FUNC (SHUNTSIG a) = s

SHUNT_ON DEF h Vj I.SHUNT.ON (SHUNTSIGa) t= (at = show)
SHUNT-OFF-DEF h V« t. SHUNT.OFF (SHUNTSIG i) t= (st = «h.ofF)
SHUNT.FAULTJ)EF h Vii.SHUNT-FAULT (SHUNTSIG i)t = (il = sh_feulty)

SubAspect-TY_DEF h 3rep. TYPE-DEFINITION (TRP (Xvtl. (»= INLone) A
(LENGTH « = 0) V(= INRone) A(LENGTH tl = 0))) rep

SubAspect-1ISO-OEF |- (Va. ABS-SubAspect (REP-SubAspect a) = a) A
(Vr. TRP(At»«.(t> = INLone) A (LENGTH tl = 0) v(» = INRone) A
(LENGTH tl = 0)) r = (REP-SubAspect (ABS-SubAspect r) = r))

sub.not-show_DEF I- sub.not.show = ABS-SubAspect (Node(INLone) [])
sub_off-DEF |- sub.off = ABS-SubAspect (Node (INRone) (])

Subsig-TYJ)EF |- 3rep. TYPE-DEFINITION (TRP (Xvtl. 3/.v* /) A
(LENGTH « = 0))) rep

Subsig_ISO0J>EF
h (Va. ABS-Subsig (REP-Subsiga) = a) A (Vr. TRP (Art/. (3/.v=1/) A
(LENGTH tl = 0)) r = (REP-Subsig (ABS-Subsigr) = r))

SUBSIG.DEF h V/.SUBSIG / = ABS-Subsig (Node /[ ])
SUB-FUNC.DEF h Vi. SUB.FUNC (SUBSIG O}* i
SUB.OFF-DEF h Vit.SUB.OFF (SUBSIG i) t= (=t= sub.off)

Jsig-TY-DEF h 3rep. TYPE-DEFINITION (TRP (A>«. (3/.v=J) A
(LENGTH« = 0))) rep

Jsig.ISO-DEF h (Va.ABSJsig(REPJsiga) = a) A (Vr. TRP(At». (3/.v=/)A
(LENGTH « = 0))r = (REPJsig(ABSJsigr) = r))

JSIG.DEF  h V/. JSIG/ = ABSJsig (Node/())
J.FUNC-DEF K Vj. J-FUNC(JSIG]) m j
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MAspect_TY_DEF h 3rep. TYPE.DEFINITION (TRP (AV¥. (&= INLone) A
(LENGTH tl = 0) V (r = INR(INLone)) A (LENGTH &= 0) V
(r = INRCINR(INLone))) A (LENGTHI/ = Q) V
@= INRCINRCINR(INLOne))A (LENGTH tl = o) v
(v = INR (INR (INR (INRC INLON€))))) A (LENGTH tl = 0) v
@@= INRCINRCINRCINRCINR(INLONE)))))) A (LENGTH«/ = O)V
(v = INR (INR (INR (INR (INR (INR (INLOn€))))))) A (LENGTH tl = 0) v
(v = INR (INR (INR (INRCINRCINR (INRONe)M))) A
(LENGTH tl = 0)))rep
MAepect-1SO-DEF  (Va. ABS.MAspect (REP.MAspecta) = a) A
(. TRP(At</.. @= INLone) A (LENGTH tl = 0) V
(&= INR(INLone)) A (LENGTH tl = 0)V (> = INR(INR(INLone))) A
(LENGTH ¥= 0)V (> = INR (INR (INR (INLone)))) A
(LENGTH ¥= 0)V (v= INR (INR (INR (INR(INLON€))))) A
(LENGTH ¥=0)V (v= INR (INR (INR (INR (INR (INLONE)))))) A
(LENGTH tl = 0) V(> = INR (INR (INR (INR (INR (INR (INLONE)))))) A
(LENGTH tl = 0) V(> = INR (INR (INR (INR (INR (INR (INRCrE)))))) A
(LENGTH tl = 0))r = (REP-MAspect (ABS.MAspect r) = r))
green DEF Igreen = ABS.MAspect (Node(INLone) [D
double_yellow _DEF I double-yellov = ABS.MAspect (Node(INR(INLone)) [D
yellowd)EF h yellov = ABS-MA.pect (Node(INRCINR(INLone))) [D
red-DEF h red = ABS-MAspect (Node (INR (INR (INR (INLone)))) (D
green_flash_DEF
t-green-flash = ABS M Aspect (Node (INR (INR (INR (INR (INLare))))) [D
double.yellow.flaeh.DEF h double.yellordlash =
ABS .MAspect (Node (INR (INR (INR (INR (INR (INLone)))))) [D
yellow_flash-DEF h yellow-flash =
ABS .MAspect (Node(INRCINRCINRCINRCINRCINRCINLone)D)ID
faulty .aspectJ)EF Ffaultyaspect =
ABS .MAspect (Node (INR (INR (INR (INR (INR (INR (INRone))))))) [D
Mtype.TY.DEF h 3rep.TYPE.DEFINITION(TRP(At>//. (v = INLone) A
(LENGTH = 0)V(v = INR (INLone)) A (LENGTH tl = )V
(v m INRCINR(INLone))) A (LENGTH«/ = Q) V
(v m INRCINRCINRCINLONE)))) A (LENGTH tl = 0)V
@@= INR(INR (INR (INRone)))) A (LENGTH tl = Q)))rep
Mtype_I1SO_DEF h (Va. ABS-Mtype (REP.Mtype«) = a) A
(Vr.TRP(Aoi/.(e = INLone) A (LENGTH*/ = 0) V
(v=INR (INLone)) A (LENGTH*/ = 0)V (w = INRCINR (INLone))) A
(LENGTH tl = 0)V (e = INR (INR(INR (INLone)))) A
(LENGTH «/= 0)V (r = INRCINRCINR(INRONe)))) A
(LENGTH #”~0))r = (REP.Mtype@BS-Mtype r) = r))
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two_aspect.DEF |- two_aspect = ABS.Mtype(Node(INLone)[])
three_aspect_DEF h three_a$pect = ABS.Mtype (Node(INR (INLone)) [])
four.aspect-DEF |- four-aspect = ABS.Mtype (Node(INR(INR(INLone))) [1)
tbo .repeat-DEF |- two-repeat = ABS.Mtype(Node(INR(INR(INR(INLone))))[])
three.repeat-0EF
h three-repeat = ABS.Mtype (Node (INR(INR(INR (INRone)))) [I)
Msig.TY.DEF I- 3rep. TYPE-DEFINITION (TRP (\v tl.(3Mf.v = M ,f) A
(LENGTH t/ = 0))) rep
Msig-1SO-DEF
I- (Vo. ABS.Msig (REP.Msiga) = a) A(vr. TRP (Xvtl. (3Aff. v = Af,/)A
(LENGTH tl = 0))r = (REP.Msig(ABS.Msigr) = r))
MSIG-DEF  h VAf /. MSIG Aff = ABS.Msig(Node (Af, /) ())
M-TYPE.DEF h Vtypeaf. M. TYPE (MSIG type af) = type
M-FUNC.DEF h Vtype af. MAUNC (MSIG type af) = af
N-ASPECT.DEF h Vtype af t. M-ASPECT (MSIG typeaf) t= aft
MAIN-ON.DEF h Vat.MAIN.ON at+ (M-ASPECT at = red)
MAII-FAULTY-DEF |- Vat.MAIN-FAULTY at = (M .ASPECT at = faulty.aspect)
MAIH-OFF.DEF I-Vat. MAIN.OFFat= -MAIN.ON at A-MAIN-FAULTYat
RED-DEF h vat. RED at = (M-ASPECT at = red)
YELLOWDEF I-Vat.YELLOW at- (M-ASPECT at = yellow)
Signal-TY-DEF h 3rep. TYPE-DEFINITION (TRP (Art/. (3n M.V = INL(n, A#)) A
(LENGTH tl= 0) V(3n M J.v = INR (INL(n, Af,1))) A
(LENGTH t/= 0) V (3n Af S.5= INR (INR(INL(n, Af,5%))) A
(LENGTH tl = 0)V(3n M s'J.v = INR (INR(INR(INL(n, AZ.S",.7)))))A
(LENGTH tl = 0) V (3nS". = INR (INR (INR(INR(n, SON)A
(LENGTH t/= 0))) rep
Signal-1S0.DEF h (Va. ABS-Signal(REP.Signala) = a)A
(Vr. TRP(A«»t/. (3n Af. &= INL(n, Af)) A (LENGTHtl = 0) V
(3n M J.v=INR(INL(n, M.J))) A(LENGTHt/ = 0) V
(3n AFS'. = INR(INR(INL(n, Af,5)))) A (LENGTH tl = 0) V.
(3nM s J.v=INR(NR(INR(INL(n,AZ.S",.7)) A
(LENGTH /= 0) V(3ns', V= INR (INR (INR (INR (n,5%)))) A
(LENGTH tl = 0))r = (REP-Signal(ABS-Signalr) = r))
SIGNALM-DEF h Vn M. SIGNALM nAf = ABS-Signal(Node(INL(n. .V/)[])
SIGNALMJ-DEF h Vn Af J. SIGNALMJ n AfJ =
ABS-Signal (Node (INR(INL(n, Af,./Z)))[])
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SIGNALMS.DEF h Vn A#s'. SIGNALMSn M S ' =

ABS-Signal (Node (INR(INR (INL(n, M, s")))) D)
SIGNALMSJ-DEF h VnMm s'J. SIGNALMSInM s'J =

ABS-Signal (Node(INR(INR (INR(INL(n, M, 5°, 3))))) [I)
SIGNALS.DEF h Vns'. SIGNALSns' =

ABS-Signal (Node(INR(INR (INR(INR(n,5')))))(1)
SIGNAL-ID-DEF h (Vidm. SIGNALID (SIGNALMidm) * id) A

(Vidmj. SIGNALID (SIGNALMJ idm j) = id) A

(Vtdm * SIGNALJD (SIGNALMS idms) = id) A

(Vidm sj. SIGNALID (SIGNALMSJidmsj)= id) A

(VidaA SIGNALID (SIGNALS id'sh) = id)
SIGNAL-NAIN-DEF h (Vidm. SIGNAL-MAIN (SIGNALM id m) = m)A

(VidmJ. SIGNAL-MAIN (SIGNALMJidmj) = m) A

(Vidm 5. SIGNAL-MAIN (SIGNALMS id m «) = m) A

(Vidmsj. SIGNAL-MAIN (SIGNALMSJidmsj) = m)
SIGNALJUNC.DEF h (Vidm>. SIGNALJUNC (SIGNALMJidmj) = j) A

(Vidmaj. SIGNALJUNC (SIGNALMSJidmsj) s j)

SIGNAL-SUBDEF h (Vidm a. SIGNAL-SUB (SIGNALMS idm a) = a) A
(Vidmaj. SIGNAL-SUB (SIGNALMSJ idm aj)=s)

SIGNAL .SHUNT-DEF K Vid a/t. SIGNAL-SHUNT (SIGNALS id @A) « ah

SIG-SFUNCJJEF
h (Vidm. SIG-SFUNC (SIGNALM id m) = INL(M.FUNC m, ARB. ARB))A
(Vidmj. SIG-SFUNC (SIGNALMJ idm j) =
INL(M.FUNCm,JJUNC>, ARB)) A
(Vidma. SIG-SFUNC (SIGNALMS id m a) =
INL(M-FUNC m, ARB.SUB-FUNC.-*)) A
(Vidmaj. SIG-SFUNC (SIGNALMSJidmaj) =
INL (M.FUNC m, JFUNC j, SUB-FUNCa)) A
(Vid ah. SIG-SFUNC (SIGNALS id ah) = INR (SHUNT.FUNC ah))

ONDEF  h (VidmI. ON(SIGNALM id m) | = MAIN.ONmi) A
(Vidmijt. ON (SIGNALMJ tdm j)t= MAIN.ONmi) A
(Vidmal.ON (SIGNALMS idma)t = MAIN.ON m1)A
(Vidmajt. ON (SIGNALMSJ tdmaj)t= MAIN.ONmi) A
(vidah t. ON (SIGNALSid aA) t = SHUNT.ON aAt)

OFF-DEF  h (Vidm i. OFF (SIGNALM idm )t = MAIN-OFF m i) A
(Vidmj,OFF(SIGNALMJ idm j)t = MAIN.OFFmi) A
(Vidm 3L OFF (SIGNALMS idma)t = MAIN.OFF mi) A
(Vidma;t. OFF (SIGNALMSJidmaj)t = MAIN.OFF mi) A
(VidaAi. OFF (SIGNALS idah)t * SHUNT.OFFaA i)

SIGNAL-FAULT-DEF I- Vat. SIGNAL-FAULTat * -(ONai v OFFai)
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Theorems
ShAspact-Axiom h VeOeiea.(3V/n.(/nshjon = e0) A (/nsh_off = e\) A
(/nsh faulty = ea))
ShAspact.const_dist
h ->(sh_on = sh.ofF) A -«(sh-on = sh.faulty) A -«(sh-off = sh.faulty)
ShAspact.INDUCT h VP.Psh.on APsh.off APsh-faulty D (VS.PS")
ShAspact-casas I-V5'.(5"' = sh.on) V(5' = $h_off) V (S' = sh.faulty)
Shsig-Axiom h V/. (3V/n.(V /'./n (SHUNTSIG/') = / I'))
Shaig-ona.ona h V /'/". (SHUNTSIG/' = SHUNTSIG /") = (f = /")
ShsigJMDUCT h VP.(V/. P (SHUNTSIGf')) D (VS.PS")
Shsignrasas I-VS'.(HZ.S' = SHUNTSIG/')
SubAspact.Axiom I- VeO«i- (3V /n. (/nsub.not-show = e0) A (/nsub.ofF = ei))
SubAspact.constjdist I- -«(sub.not.show = sub.off)
SubAspact.INDUCT |- VP. P sub.not.show APsub.ofF D (VS.PS")
SubAspact-casas h VS'.(S' = sub.not.show) V (S' = sub_off)
Subsig.Axiom KV/.(3V/n.(V/'./n (SUBSIG/') =/ ['))
Subsigjona.ona h V/'/"- (SUBSIG /' = SUBSIG /") « (/'m [*)
SubsigdHDUCT 1-VP.(V/. P(SUBSIG/')) 3 (VS.PS")
Subsig”hasas KVS'.(3/.S'> SUBSIG/")
Jsig-Axiom h V/. (3V/n.(V/'.fn (JSIG/") = [ f))
Jsig.ona.ona I-V/'/". (JSIG /" =JSIG/") = (f =[")
JsigINDUCT h VP.(V/./>(JSIG /")) 3 (VI.PZ)
Jsig.casas h VJ.(3/.y = JSIG/*)

NAspactJtxiom |- Ve\di ea e4567(3vln. (/n green = e0) A
(/n double.yellow = *i)A(/n yellow = ea) A (/n red = e3) A
(/n green .flash = e4) A (fn double.yellow flasho= e$)A
(/n yellow.flash = ea) A(fn faulty.aspect - «f))

M Aspect.const.dist h -<(green = double.yellow) A -«(green = yellow) A
~«(green = red) A -«(green = green_flash) A
~«(green = double.yellow .flash) A -«(green = yellowJlash) A
-«(green = faulty .aspect) A ->(double.yellow = yellow) A
->(double.yellow = red) A -<(double.yellow = green flash) A
<(double.yellow = double.yellowJlash) A
-«(double.yellow = yellow flash) A -«(double.yellow = faulty.aspect) A
~(yellow = red) A -«(yellow = green-flash) A



APPENDIX A. HOL THEORIES 193

-1(yellow = double.yellowJlash) A -1(yellow = yellow.flash) A

-1(yellow = faulty.aspect) A -<(red = green.flash) A

-1(red = double-yellow.flash) A ->(red = yellow.flash) A

-(red = faulty.aspect) A -1(green.flash = double-yellow.flash) A
-=(green-flash = yellow.flash) A -1(green.flash = faulty.aspect) A
-<(double_yellowJlash = yellowJlash) A

-=(double-yellowJlash = faulty.aspect) A -+(yellowJlash = faulty.aspect)

MAspect-INDUCT h VP. P green A P double.yellow A P yellowA P red A P green.flash A
P double.yellowJlash A P yellowdlash A P faulty.aspect D (VAf. P Af)

MAspect.cases h VM. (M = green) V (Af = double-yellow) V (Af = yellow) V
(Af = red) V (Af = green.flash) V (Af = double.yellowJlash) V
(Af = yellow .flash) v (A# = faulty.aspect)

NtypelJtxiom
Veoe\ e2 e3 e4_(3V/n. (/n twoaspect = eo) A (fn three.aspect = e\)A
(/n four-aspect = e2) A (/ntwoj-epeat = €3) A (fn three.repeat = e4))

Mtype-const-dist  >(two.aspect = three.aspect) A ->(two-aspect = four-aspect) A
-1 (two.aspect = two.repeat) A ->(two_aspect = three.repeat) A
-(three-aspect = fouraspect) A -«(three.aspect = two.repeat) A
-(three-aspect = three.repeat) A -1 (four-aspect = two.repeat) A
-=(four-aspect = three.repeat) A -<(two_repeat = three.repeat)

Mtype-IMDUCT I- VP. P two.aspect A P three.aspect A P four.aspect A P two.repeat A
Pthree.repeat D (VAf. PAf)

Mtype.cases h VAf. (Af = two-aspect) V (Af = threeaspect) V (Af = four-aspect)V
(Af = two_repeat) V (Af = three-repeat)

Nsig-Axioa h V/. (3V/n.(VAf/'. In (MSIGAf/') = | Af/*¥))

Nsig.one.one h VAf/' Af/". (MSIGAf/' = MSIGM" f") = (Af = AfrAt/1=/")
Msig-INDUCT h VP. (VAF/'. P(MSIG Af/')) 3 (VAF. PAf)

Nsig-cases I-VAf. (3Af /. Af = MSIGAf /")

Signal-Axiom I-V/0fx /a/3/4.(3V/n. (Vn Af./n (SIGNALMn Af) « /0n Af)A
(VnAfJ. fn (SIGNALMIn Afy) =/, n Afy) A
(VnAf5". fn (SIGNALMSnNM s*) = f2n Afs') A
(VnAf5'3. fn (SIGNALMSIn Afs' ) =/3nAfs'J) A
(Vns', fn (SIGNALSNS') - /4n5'))

Signaljone-one |- (Vn Afn' Af. (SIGNALMn Af = SIGNALMn' Af) =
(n =n") A(Af = Af))A
(VnMJIn'M" P. (SIGNALMJn Afs = SIGNALMJn'Af'P) =
(nen)A(Af=ANAQJ =J))A
(VnAf5'n" Af 5". (SIGNALMSn AfS' = SIGNALMS n* Af' S") =
(n=n") AAf = AF)A(5'=S")A



APPENDIX A. HOL THEORIES 194

(VA M s in M s 3. (SIGNALMSInM s*3 =
SIGNALMSJn' M'S"J") =
(n=»)A(AE= M)A(S'=S)A(J =J))A
(Vn's'n'S (SIGNALSnS' = SIGNALSn's") * (n = n) A (S' = 57))
Signal_INDUCT I-VP. (VnM. P (SIGNALMnm ))A
(vn M J. »SIGNALMIn M 3)) A (Vvn M S'. /»(SIGNALMSn ™ S')) A
(Vn M $'J. P (SIGNALMSIn M S'J)) A
(Vn S'. P (SIGNALSn S)) D (Vs'. PS")
signal .cases
h VS'. (BnM.S' = SIGNALMn M) V(Bn MJ.S" = SIGNALMInm J) V
(Bn A/s". s = SIGNALMSnM s") V
(3n'M S '3.5" « SIGNALMSIn U $"J) V(3ns’.5' = SIGNALSns")

smj«TJIIOT-O»JirF |-V.l. SHUNT.ON.IA SHUNT.OFF al)
SIGNAL.STATE HV»l.ON3 ]v OFF uv SIGNAL-FAULT! 1
SIGNALJIOT-UN-QFF I- V«I.-.(ONJI A OFFal)

End of theory SIGNAL-------------mmmem oo

A6 The theory TRAK

Parents
SIGNAL

Types

":Ppos” ":Ploc" "jPoint" ":Tstate" ":Tcir" ":Join"

Constants

REP.Ppo* “:Ppos -> (one ¢ (one ¢ one))ltree”
ABSPpos ":(one ¢ (one ¢ one))ltree -> Ppos"

normal " :Ppos”
reverse " :Ppos”
moving " :Ppos"”
REP.Ploc " :Ploc -> (one ¢ (one ¢ (one ¢ one)))ltree”

ABS.Ploc ":(one ¢ (one ¢ (one ¢ one)))ltree -> Ploc"
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free_move ":Ploc”

free_nor_rev ":Ploc"

free_rew_nor ":Ploc”

remoteJocked "jPloc'

REP.Point "jPoint -> (num ¢ ((num -> Ppoa) i (hum -> Ploc)))ltree”
ABS.Point "j(num ¢ ((num -> Ppos) i (num -> Ploc)))ltree -> Point"
POINT ‘inum -> ((num -> Ppos) -> ((num -> Ploc) -> Point))"
PNTJD 'iPoint -> num"

PNT.POS ™jPoint -> (num -> Ppos)"

PNT.LOC *"jPoint -> (nun -> Ploc)"

PNT.RLOCKED "iPoint -> (num -> bool)1

PNT.NORMAL "jPoint -> (num -> bool)"

PNT.REVERSE "jPoint -> (nun -> bool)"

REP-Tstate "jTstate -> (one ¢ (one ¢ one))ltree”

ABS.Tstate ":(one ¢ (one ¢ one))ltree -> Tstate"

occupied "iTstate"

locked "iTstate"

dear "iTstate"

REP.Tcir  "jTcir -> (num ¢ (num -> Tstate))ltree"
ABS-Tcir ~ "j(num < (num -> Tstate))ltree -> Tcir"
TCIR “:num -> ((num -> Tstate) -> Tcir)"
TCJD "iTcir -> num"

TC.SFUNC "jTcir -> (num -> Tstate)"

TC.ST "iTcir -> (num -> Tstate)"

TC.OCCUPIED "iTcir -> (nun -> bool)'
TC.CLEAR "iTcir -> (num -> bool)"
TC-LOCKED "jTcir -> (num -> bool)"

REPJoin  "jJoin -> (one ¢ (one ¢ (one ¢ one)))ltree”
ABSJoin  "j(one ¢ (one ¢ (one ¢ one)))ltree -> Join"
J.conduct ":Join"
J-insulate  ":Join"

Joverlap  "jJoin"
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J.terminate " :Join"

ISJICOND " :Join -> bool"
ISJINSU "iJoin -> bool"
ISJOVER "jJoin -> bool"
ISJTERM "jJoin -> bool"

Definitions

Ppos.TY.DEF K 3rep. TYPE-DEFINITION (TRP (A t.(» = INLoo«) A
(LENGTH t= 0) V (» = INR(INLone)) A (LENGTH ti= 0) V
(v = INR (INR one)) A (LENGTH d = 0))) rep

Ppos.I1SO0.DEF |- (Va. ABS.Ppos (REP.Pposa) = a) A
(Vr. TRP (At></.(« = INLone) A (LENGTH«/ = 0)V
(r = INR (INLone)) A (LENGTH « = 0) V (» = INR (INR on«)) A
(LENGTH«/ = 0))r = (REP_Ppos(ABS.Pposr) = r))

normal_DEF |- normal = ABS.Ppos(Node (INLone) [])

reverse_DEF h reverse = ABS.Ppos(Node (INR (INL one)) [])

aoving-DEF h moving = ABS.Ppos(Node(INR(INRone))[])

Ploc-TY_DEF H 3rep. TYPE.DEFINITION (TRP (Awtl. (v= INLone) A
(LENGTH«/ = 0) V(r = INR (INLone)) A (LENGTH«/ = 0)V
(= INR (INR (INL one))) A (LENGTH«/ = 0) V
(e = INR(INR(INRone))) A (LENGTH«/ = 0)))rep
Ploc.ISO.DEF 1*(Va. ABS.Ploc (REP.Ploca) = a) A (Vr. TRP (Xvtl. (t>= INLone) A
(LENGTH ti= 0) V (>= INR (INLone)) A (LENGTH ti= 0) V
(» = INR(INR(INLone))) A (LENGTH«/ = 0)V
(t-= INR (INR(INRone))) A
(LENGTH«/ = 0))r = (REP.Phc(ABS.Plocr) =r))

free-move-DEF |- freejnove = ABS.Ploc (Node (INLone) [])

frea-nor_rev_DEF h free_nor_rev = ABS.Ploc (Node (INR (INLone)) [))
free-rev.norJ)EF |-free_rev_nor = ABS.Ploc(Node(INR(INR(INLone)))(1)
remote .locked _DEF h remoteJocked = ABS.Ploc (Node (INR (INR (INR one))) [1)

Point-TY-DEF h 3rep. TYPE-DEFINITION (TRP(At></. (3n/</,. t* n,/0,/i) A
(LENGTH tim0))) rep

PointJSOJJEF h (Va.ABS.Point (REP.Pointa) = a) A
(Vr. TRP(Awt/. (3n/0/i. v= n,fo,fi) A
(LENGTH«/ = 0))r = (REP.Point (ABS.Pointr) = r))

POIMTJJEF hVn/o/].POINT n/o/i = ABS.Point (Node (n,/0,/,)[))
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PUT_ID_DEF F Vnpoaloc. PNTID (POINT npoaloc) = n

PNTJ»0S_DEF k-Vnpoa loc. PNTI*OS(POINT n poa loc) = poa

PMT-LOC-DEF k-Vnpoa loc. PNT_LOC(POINT npoaloc) = loc
PHT-RLOCKED.DEF F Vpt. PNT.RLOCKEDpt = (PNT.LOCpt = remote-locked)
PNTJiORMALI)EF F Vpt. PNT.NORMAL pt = (PNT-POSpi = nomal)
PNT-REVERSE-DEF F Vpt. PNT.REVERSEpt = (PNT.POSpt = reverse)

Tatate_TY-DEF F 3rep. TYPE.DEFINITION (TRP (xvtl. W= INLone) A
(LENGTH t1 = 0)V @= INR (INLone)) A (LENGTH t1 = 0)V
(v = INR (INRone)) A (LENGTH tI = Q)))rep

TstateJSO-DEF I (Va. ABS.Tstate(REP.Tstatea) = a) A
(. TRP(AVE/. (»= INLone) A (LENGTH tI = O) V.
@= INR(INLone)) A (LENGTH /= 0) V (» = INR (INRone)) A
(LENGTH t1 = 0))r = (REP.Tstate(ABS.Tstater) = r))
occupied-DEF h occupied = ABS-Tstate(Node (INLone) [D
lockadJ)EF F locked = ABS.Tstate (Node (INR (INLone)) [D
clear_DEF h clear = ABS.Tstate (Node (INR (INRone)) [D

Tcir.TYJ)EF h 3rep. TYPE-DEFINITION (TRP (Awtl. (3n/Z.w= n,/) A
(LENGTH tI = O)))rep

Tcir-1S0_DEF
h (Va. ABS.Tcir(REP.Tcira) = a) A (r. TRP(AWL/. (3n/. w= n,/)A
(LENGTH// = 0))r = (REP.Tcir(ABS.Tcirr) = r))

TCIR.DEF  hVn/.TCIRn/ = ABS.Tcir (Node (0, /) D)

TC-ID.DEF hVna.TCJID(TCIRns) = n

TCJISFUNC-DEF kVna. TC-SFUNC(TCIRNna) = a

TC-ST.DEF hVnat. TC-ST (TCIRna)t = at

TC-OCCUPIED-DEF FVct. TC.OCCUPIEDct = (TC-STc! = occupied)

TC.CLEAR.DEF FVct. TC-CLEARct = (TC-STct * clear)

TC-LOCKED_DEF F Vet. TC-LOCKED ct = (TC-STct = locked)

JoIn.TY.DEF F 3rep. TYPE-DEFINITION (TRP (At/. (W= INLone) A
(LENGTH// = 0)v(t>= INR (INLone)) A (LENGTH # = Q) V
(w= INRCINR(INLone)))A (LENGTH// = O)V
= INRCINR(INRone))) A (LENGTHtl » 0)))rep
Join_ISO-DEF F (Va. ABS Join (REPJoina) = a) A (W.TRP (Aw1/.(v = INLone) A
(LENGTH tI = 0) V W= INR (INLone)) A (LENGTH #= Q) V
W= INR(INR(INLOne))) A (LENGTH// = 0)V
@= INR (INR (INRONE))) A
(LENGTH// = 0))r* (REP Join (ABSJoinr) = r))
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J.conduct_DEF h J-conduct = ABSJoin (Node(INLone)[])
J_insulate_DEF I- J-insulate = ABSJoin (Node (INR(INIone)) [])
J.overlapJ)EF h J.overlap = ABSJoin (Node (INR(INR (INLone))) [1)
J-terminateJsEF h J.terminate = ABSJoin (Node (INR (INR (INRone))) [])
ISJCONDJJEF h V>, ISJCOND_J = \J = J.conduct)

ISIIMSU-DEF h Vj. ISJINSU ] = (i = J.insulate)

ISJOVERISEF h V> ISIOVER| = (j = J.overlap)

ISITEJURDEF HV5 ISITERM | =(j = terminate)

Theorems
Ppos-Axiom h Ve «i «3.(3v/n. (/nnormal = e0) A (/nreverse = «i) A

(/n moving = «))
Ppos.const.dist

h -»(normal = reverse) A -»(normal = moving) A -»(reverse = moving)
Ppoa.INDUCT I VP. P normal A P reverse A P moving 3 (VP/.P P/)
Ppoa.cases hVP. (P = normal) V(P = reverse) V(P = moving)

Ploc-Axiom h V«oei «3«3. (3V/n.(/nfreejnove = «0) A (/nfree_norjev = «1) A
(/nfree-rev-nor = e3)A (/n remoteJocked = c3))

Ploc.const_dist h -»(free_move = free_norjev) A -»(free.move = free.revjior) A
-1(free.move = remoteJocked) A -»(free.nor.rev = free_rev.nor) A
-»(free_nor_rev = remoteJocked) A -»(freejev-nor = remoteJocked)

Ploc.INDUCT HVP. P freejnove A Pfree_norjev A Pfreejevjior A
P remoteJocked 3 (VP.PP)

Ploc.cases I-VP. (P = free.move) V(P = free_norjev) V(P = free.rev.nor) V
(P = remoteJocked)

PointJIxio« hV/.(3v/n. (vnso/, ./n (POINTn/,/1)=1/nsol1))

Point.one.on# I-Vnso/s1n'/J /. (POINTnf(ﬁ = POINTNn'/¢/i)>(ns n)A
(lo=1)A(l. = 1)

Point.INDUCT h VP.(Vnso/1.P (POINTn/o J()) 3 (VP.PP)

Point.cases hVP.(3n/<>/.P = POINTn/o/i)

Tstate-Axioa FVe«o «l ej. (3V/n. (/noccupied = QA (/nlocked = ej) A
(/n clear = e2))

Tstate.const.dist
K -»(occupied = locked) A -»(occupied = clear) A -»(locked = clear)
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Tstate .INDUCT h VP. P occupied A P locked AP clear D (VT'.P V)

Tittttx U

Tcir.Axiom

M hyYT. (v = occupied) V (r = locked) V (r = clear)
hV/.(3V/n.(Vn/'./n(TCIRn/") = /n/")

Tcir.one.one 1+Vn/'n'f". (TCIRn/'= TCIRn'/")=(n* n)A(f
TcirJMDUCT I-VP.(Vn /. P (TCIRn/")) D (YT.P V)

Tcir.cMee

Join-Axiom

hyTt. (3n/'.v = TCIRn/")
I- Veoexe23(3vln. (/n J.conduct = eg (/nJ.insulate

(/n J-overlap = e2) A (/n J.terminate =

= /"

= ei)A

Join.const.dist h -i(J_conduct = J.insulate) A ->(J.conduct = J.overlap) A

->(J.conduct = J.terminate) A -<(Jjnsulate = J.overlap) A
->(J.insulate = J.terminate) A -i(J.overlap = J.terminate)

JoinJNDUCT
I-VP. P J.conduct AP J.insulate AP J.overlapA P J-terminate D (VJ. P J)

Join.cases

I-VJ. (3 = J.conduct) V (J = JJnsulate) V (J = J.overlap) V
(J = J-terminate)

199

End of theory TRACK

A.7 The theory PART

Parents

TRACK SIGNAL

Types
":Part" ":ElbI"
Constants
REP.Part ":Part -> (num ¢ (num e Tcir ¢
(num < (Tcir = ((num * num) = (num < num))) +
num « (Tcir 0 (Point = (num = (num = num))))))) Itree"
ABS.Part ":(num * (num e Tcir * (num 0 (Tcir O
((hum 0 num) O (num O num))) ¢+ num O (Tcir 0 (Point O
(num 0 (hum 0 num)))))))ltree -> Part"
BPART :num -> Part”
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TPART
DPART
PPART
PART-ID

“:nvuB -> (Tcir -> Part)"

num -> (Tcir -> (num < num -> (hum < num -> Part)))"

200

:num -> (Tcir -> (Point -> (num < (num < num) -> Part)))"”

":Part -> num"

PART.CIRCUIT ":Part -> Tcir"
PART.POINT " :Part -> Point"

PART.PNT.TRAILING

art -> num"

PART.PNT.NORMAL ":Part -> num"
PART.PNT.REVERSE ":Part -> num"

PART.DIAL
PART.DIA2

IS-BPART
IS-TPART
IS-DPART
IS.PPART
REP.EIbl
ABS.Elbl
ELBLSIG
ELBL

":Part -> num < num"

":Part -> num < num"

“:Part -> bool"

":Part -> bool"

":Part -> bool"

"iPart -> bool"

":Elbl -> (Join = Signal ¢ Join)ltroa"

"i(Join < Signal ¢ Join)ltraa -> ElbI"

"iJoin -> (Signal -> Elbl)"
"iJoin -> Elbl"

IS-ELBL.SIGNAL "jElbl -> bool"
ELBL.SIGNAL "jElbl -> Signal"

ELBLJOIN

"iElbl -> Join"

Definitions
Part-TYJDEF F3rep. TYPE-DEFINITION(TRP(Ari/.(3n. v = INLn) A

(LENGTH t1 = 0)V 30 r. v = INR(INL(N,7v))) A (LENGTH u

0V

(InT*popi-v - INR(INR(INL(n,r,po,Pi)))) A (LENGTH t1 = 0) V
(3nTpPp.v= INR(NR(INR(N,r, P .p)))) A (LENGTH!/ = 0)))rcp
Part.ISO-DEF
(-(va.ABS-Part(REP-Parta) = a) A (Vr. TRP(At></.(3n. ;= INLn) A
(LENGTH t1= 0) V(3nV . v = INR(INL(n, 7¥))) A (LENGTH*/ = 0) V
(SNT'poPi.v = INR(INR(INL(n,r.po,Pi))))A(LENGTHH = 0) V

(Bi»rpPp.v= INR(INR(INR(N,r,P.p))))A
(LENGTH * 0))r * (REP-Part(ABS.Partr) = r))
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BPART.DEF I-Vn. BPART n = ABS.Part(Node(INL n) [])

TPART-DEF I-VnT'. TPART nT' = ABS.Part(Node (INR(INL(n,:r')))[])

DPART_DEF h VnV PoPi®DPART nV poPi =
ABS.Part (Node (INR(INR(INL(n,r",po, Pi))))[1)

PPARTISEF h VnT'P p. PPARTnT' Pp =
ABS.Part (Node (INR(INR(INR(n,r,P,p)))[1)

PARTIDJ)EF h (Vn. PARTJD (BPART n) = n) A (Vn t. PARTJID (TPART nt) = n) A
(Vntn, n2. PART.ID (DPART ntn, nj) = n) A
(Vntpn3.PART_ID(PPART ntpn3) = n)

PART-CIRCUIT-DEF h (Vn tc. PART .CIRCUIT (TPART nte) = tc) A
(Vnten, n2.PART-CIRCUIT (DPART nicn, n2) = tc) A
(Vn tcpn3.PART.CIRCUIT (PPART ntcpn3) = tc)

PART-POINTJ)EF h Vntcpn3.PART-POINT (PPART ntcpn3) = p

PART-PNT. TRAILING-DEF
1-Vntcpn3.PART.PNT.TRAILING(PPART ntcpn3) = FSTn3

PART-PNT-NORVAL-DEF
h Vntcpn3.PART.PNT.NORMAL (PPART ntcpn3) = FST(SND n3)

DART PVT RFVFR«F npr
h Vntcpn3.PART.PNT.REVERSE (PPART ntcpn3) = SND (SND n3)

PART-DIADEF h Vn tcn, n2.PART-DIAL (DPART ntcm n2) = n,

PART-DIA2.DEF h Vntcn, n2.PART.DIA2(DPART nten, n2) = n2

IS-BPART.DEF
h (Vn.1S.BPART (BPART n) = T) A(Vn t.IS.BPART (TPART nt) = F)A
(Vntn, n2.1S.BPART (DPART ntn, n2) = F) A
(Vntpn3.1S.BPART(PPARTNtpn3) = F)

IS-TPART.DEF
K (Vn.IS-TPART(BPART n) = F)A(Vnt. IS.TPART(TPART nt) = T)A
(Vntn, n2.1S.TPART (DPART ntn, n2) = F) A
(Vntpn3.IS.TPART(PPART ntpn3) = F)

ISTPART.DEF
H (VNn.IS.DPART(BPART n) = F)A(Vnt. IS.DPART (TPART nt) = F)A
(Vntn, n2.1S.DPART(DPART ntn,n2)= T)A
(Vntpn3.1S.DPART (PPART ntpn3) = F)

IS-PPART.DEF
I- (Vn. IS.PPART (BPART n) = F) A (Vn f.IS.PPART (TPART nt) = F)A
(Vntn, n2.1S.PPART (DPART ntn, n2) = F) A
(Vntpn3.I1S.PPART(PPART ntpn3) =T)
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ElbI-TY-DEF h 3rep. TYPE-DEFINITION (TRP(Aw tl.{3JS. v=INL( S'))A
(LENGTH tl = 0) V (3.7.t; = INRJ) A (LENGTH tl = 0))) rep

EIbIJSOJ>EF h (Vo. ABS.Elbl (REP-EIblo) = 0) A

(Vr. TRP (At tl. (33 S".v = INL (J,S')) A (LENGTH tl = 0) V

(37.« = INRJ) A (LENGTH ¥/ = 0)) r = (REP-EIbI (ABS.Elblr) = r))
ELBLSIG-DEF h VJ S'. ELBLSIGJ S' = ABS.ElbI(Node(INL(7,5%) [])
ELBL.DEF  h VJ. ELBL./ = ABS.EIbl (Node (INR 7)[])
IS-ELBLJSIGMAL.DEF |- ij s.1S.ELBL.SIGNAL (ELBLSIGj &) = T
ELBL-SIGMAL-DEF |- Vjs. ELBL.SIGNAL(ELBLSIGjs) = j

ELBL-JOIN.DEF
h (Vj ELBLJOIN (ELBLSIG] @) = j) A (Vj. ELBLJOIN (ELBLj) = j)

Theorems

Part-Axiom h Vv/0/i /afa. (3V/n. (Vn.fn (BPART n) = /0n) A
(VnV. fn (TPARTNV) = /,nV) A
(Vnrpop,./n(DPARTnrpopl) = /2n r Popl)A
(VnT'P p./n(PPARTNnT'Pp) = f3nT'Pp))

PartJnduct hVP.(Vn.P (BPARTn)) A (VnT. P (TPARTNT')) A
(Vnr poP!.P (OPART nr pop!))A
(VnV Plp. P (PPART nT'P'p)) D (VP*. P P")

Part_on«_on« h (Vnn'. (BPART n= BPARTN') = (n=n")A
(VnVn'T". (TPARTNT' = TPARTn'T") = (n = n) A(T = T")) A
(Vnr pop, n'T"p(,p{.-(DPART nV pop, = DPART n'T"p&pj) =
(n=n)A(r =T")A(po= P&A(p, = pji)) A
(VnV Ppn'T"P'p. (PPARTNV Pp= PPART n'P" P*p>) =
(n=n)A(T*=T")A(P = PHA(p=p))

Part-distinct h (Vnn'P'.~(BPART n = TPARTN'T")) A
(Vnn'P'pop,.--(BPART n = DPART n'P'popi)) A
(Vnn'V Pp.-i(BPART n = PPARTN'V Pp)) A
(VnP'n'T"poPi.--(TPART nP' = DPART n'T" pop,)) A
(inT'n'T'Pp. --(TPARTNnT' = PPART n'P"Pp))A
(VnT'poPin'P"Pp.--(DPART nP'poPi = PPART n'P" P p))

Part-cases hVP/.(3n.P/= BPART n) V (3nP'. P'= TPARTn f) V
(3nT/p0pi.P DPARTnNnrpoPi)V
(3nV P"p.P, =PPARTnV P"p)

Elbl-Axiom h V/0/j.(3V/n. (V3 S'. fn (ELBLSIGJ S') =f0J S') A
(V././n(ELBLY) = /,1))

Elbl-Induct h VP. (iJ S'. P(ELBLSIG7 5')) A (VJ. P(ELBLJ)) D{iE.PE)
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KIbIjOMjOM h (V7S'V S".(ELBLSIGY S' = ELBLSIGJ'S") = (J = y') A
($'=s"))a(vyy.(EiBLy = ELBLY) = (y = ¥))

Elbl-distinct I-Vy5'y'. —(ELBLSIGJS' = ELBLY")

Elbl.casas hVE.(J S £ = ELBLSIGy S) V (By. £ = ELBLJ)

End of theory PART

A.8 The theory NEWORK

Parents
HOL sats func graph alist path PART

Constants
NFC ":(Part)sat « (Part « (Part « Elbl))sat -> (Part -> bool)"
NJOIN "i(Part)sot « (Part < (Part « Elbl))set ->

(Part -> (Elbl -> (Part -> (Elbl ->
(Part)sat i (Part = (Part « Elbl))sat))>)"

NETWORK ":(Part)sat < (Part = (Part = Elbl))sat -> bool"

Definitions

NFC.DEF  h (VJVn. NFC AT(BPARTN) = IN.DEGREE AV(BPARTN) < 1)A
(WV ni. NFC Ar(TPART nt) = IN.DEGREE N (TPART nt) < 2) A
(VATntP n3.NFC JV(PPART n*Pn3) =
IN.DEGREE N (PPART ntP n3) < 3) A(VATntn, na.
NFC .V(DPART ntntna) = IN.DEGREE A (DPART ntn, na) < 4)

NJOINJ)EF h VAT misj nasa.NJOIN N rta«i naaa = (nj, na,«i) INSERT.EDGE
((na,ni,s3) INSERT.EDGE (naINSERT.VERTEX AT))

NETWORKJ)EF h VW. NETWORK .V = (VP. (Vn. P({BPART n),{ })) A
(Vnt.P{TPART n<},{})) A(Vnlpn3.P({PPART nfpn3},{})) A
(Vntn, n2.P ({DPART ntn, n,},{ })) A (VATp, ft. P AT A
-(p, = Pi)APi IS.VERTEX N'ANFCS 'p, A
NFC AT'pj 0 (Vs, a2.P(NJOIN N'p\ a\ pa*a))) D P N)
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Theorems

NETWORK.BUFFER hVh. NETWORK ({BPART n} ,{D
NETWORK.TRAK hVnt. NETWORK {TPARTNS ,{D
NETWORKJOINT hVntpn3. NETWORK ({PPARTntpr3} P
NETAWCRK-DIAM h Vint m n2.NETWORK ({OPART nt n, na} .{ })
NETWORK.SIVP h\h. NETWORK i D

NETWORK-NIOIN 1-\AT.NETWORK N D (1, ri2n, IS.VERTEXN A -, =
NFCIVn, ANFCiVInj D (U, % NETWORK(NJOIN ATn, s,mm))

INlCT hVP %{Fﬁﬁg {}))A Oht. PETPART N .{)A

tn na_ {DPARTmn {}))
TP1P2 PNA mpxz)lﬁul\%\ngIE)))()r\éANFCAfp,A
N P\ «
ETWO KA >PA) P

NFCIIVP KVn. NFen} AHn
NDIN-BP hVATIn , 3, nazan, I1S.VERTEXATA " IS. VERTEX ATD
%MTWA (0, .re.a) INSERT ((2,n, 28) INSERT ESAT))

NIOIN-EXP2 h\ATn, 8, n2aan, IS.VERTEXAFAna IS VERTEXAT D
\%LDIN ATn, 8, nae2=

AT, (0, ,re.i,) INSERT (8., ,a8) INSERT ESAT))
NETWORK GRAFH h\AT_NETWORK JV D GRAPH N
NOT MR.IMPJIFC VVATP.NETWORK N D (-p IS.VERTEXN 3 NFCAfp)
NETWORK_FINITE h VA. NETWORK AT D FINITE(VSADA FINITEESA)
NETWORK-FINITE-GRAPH h VAL NETWORK N D FINITE.GRAPHN
NETWORK .CONNECTED HVA. NETWORK N O CONNECTED A

End of theory NETWORK————————————————



Appendix B

ML source listings

This appendix lists all the ML source files which create the theories in Appendix A
Each file is listed in a separate section.

B.l The file mk_func.ml

naa.thaary'fune*; ;
load.library's=c

nan.apacial.symbol '—» ' ;;
naa.apacial.ayiabol <—>;;
nsw.spacial.symbol

lat FULDEF - nss.infix.dsfinition (' FULDEF',
ee$> % = (Fe>ee) - (la. (@ f) —>cf a) 11 »>>">0

lat FULOITO.Dir- naa.infia.dafinitlon (FULOSTO.DEF ,
-==- (A:(a)aat> (B:(aa)aat) f -
(Ix. (@all & —> (fa)ll mAa
(ly. (y 1l =—>(Ta. @Il A)A (y-fa)))s

lat FUT.011.0IL.DEF- naa.infia.dafiitioa<,FUL.01<011.D¢F' .
"e>-> (A:(a)aat) (Bi(aa)aat) f =
(Ix. (@1l A>—» (fa)ll B>A
(la'y. @U A)A (yI1A)A ((fa)- (fy>—>(@a- y>>">;

lat FULISO.DIF m naa.infii.dafinitioni'FUS.ISO.DBF',
“<-> (A:(a)aat) (I(aa)aat> f m
(A >=>m 1) A (A —» 1) f>")il

lat FULOITO.0 m prava.thaCFULOITO.0",
“1(A:(a)aat) 1C (f:— >aa) (g:ss->sss>.
(A --> B)) A ((I--» Cg) —>(A—» C) (| af>)\
PU1I.AEWAITE_TACCFU1.0ITO.DIF ;0.THS] T ill AEPEAT OE1.TAC THES STEIP.TAC
THE! CO1J.TAC THE! OEIL.TAC THE! STKIP.TAC THES 1ES.TAC THE! RES.TAC
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TU I EXISTS.T4C

THES SUBSTLTAC (ASSUME "y - ( f -> =
THES SUBSTLTAC (ASSUME "X » (f:0 -> &

THE! COIJ.TAC THULC FIEST.ASSUN ACCEPT.TAC; UFL.TAC]>;;

3

FUS.OSE.OIE.0 - prova.thaCFUS.0SE.OSE.0',

“I(A(*)Mt> B C (f:a->aa> (giaa->aaa).

(A >=> B> ) A ((B >->C) g) ~> ((A>>C> (gof)"
PUU.BEVBITE.TACCFUI_OBE_OSE.DEF ;0_THV] THU BEPEAT OU.TAC THU STBIP.TAC

THIS COI.TAC THU BEPEAT OU.TAC THU STBIP.TAC TMU BU.TAC THE! BES.TAC);;

5

FULISO.0 - prove_tha('FUB.ISO.0"

FIAI(Oe) = C (Kmwe) (gree'Swes).

(A <—» 3f) /\ (B <=>C>g) == ((A <-->C) (g of)>",
PUU_UWBITE_TAC[FUB_ISO_DEF;0_THM] THU BEPEAT OU.TAC THU STBIP.TAC
THU INP.BES.TAC FUB.OBTO.0 THES IMP.BIS.TAC FUB.OBE.OSE.0

TMU COHJ.TAC THEM FIBST.ASSUM ACCEPT.TAC) ;;

la* FULIBV.DEF - nao.dafinition(‘FUl. \SV DEF'
"FUMIMV (A:(=>==*) (B (--)--*)
((y 11 B> A <7 (x 1B A) <y-fx>>>l>
(=x. (X IBA) A (y-fx)) I (Ox xIBA

t FUB.PIBVEME.DU - n«x d«lmmon( FUB.PIBVEBSE.DEF' ,
“FUH.PIBVEBSE (A.B) (*:
(A—>B)f A (B—>A)gA (\x (x B A) —><@=fx -x)))J;

lat FUB.IBVEBSE.DEF - naa.dafinition (*FUH.IBVEBSE.DEF1,
"FUH.IHVEBSE (A,B) (*:=->e=) g -
(FUHPIBVEME (A.B) t g) A (FUB.PIBVEUE (B.A) g

L FUB.TT m pre*.thy(‘FUBTT
TIAB (<ie->ee). (A>->Bf \/ (A—» B>1->(A—>B)f",
PUU.OBCE.BnBITB.TAC CFUB.OBE.OBB.DUi FUB.OBTO.DU; FUB.DEF]
THEB UPEAT OEH.TAC THEH DISCH.TMU STBIP.ASSUHE.TAC
TMU FIUT.ASSUN ACCEPT.TAC):;

UB FUH.IHV.TT -

lot lex - OBCE.UHBITE.BULE [EQ.STM.EQ] HEHBEB HOT EMPTT in
prove.tha(FUH BV TTL

“IAB (f: ‘(A m<» " >(B—>AXFUH.IHV A Bf)”,
BEPEAT OU.TAC TMU BnBITE.TAC[FUH.DU;FUB.IBV.DU;l]
TMU DISCM.TAC TNEB BEPEAT STBIP.TAC TMEB COBD.CASU.TAC
THEILC

POP.ASSUN (\'t. 8TBIP.ASSUNE.TAC ((SELECT.BULE o COBJUBCT2) t))s
FIBST.ASSUM (\t. NATCN.ACCEPT.TAC (SELECT.BULE t))])u

let LEFT FIBY a proca.tka('LEFTFIBV*,
"14 B (f (A - () A (A>>B)f —>
Fus.wsvsass (A.B) f (FUBIBV A B «)",
PUU.BUBITE TACCFUB.PIBVEUE.DU] TNU BEPEAT OU.TAC TMU STBIP.TAC
THU IHP.US.TAC FUB.TT TMU IHP.US.TAC FUB.IBV.TY
THEM UPEAT COBJ.TAC THEB (FIUT.ASSUM MATCH.ACCEPT.TAC OULSE ALL.TAC >
TMEB PUBE.BEHBITE.TACCFUB.IHV.DBFio.TMN]
THEH UBDISCN.TAC "(A >"> BXf:*->ao)
TNEB PUU.OBCE BUBITE.TACCFUB.OBE.OBE.DEF]
TMEB UPEAT STBIP.TAC TNU US.TAC
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lot

lot

THE! SUBQOAL.TKEI “<?*>. *e Il A /\ ((*:e->==) * - T *">)" ASSUHE.TAC

EXISTS.TAC THE! COIJ.TAC THEIL[FIAST.ASSUH ACCEPT.TAC; EEFL.TAC] ;

ASH.REMRITE.TACQ THAI POP.ASSUH <\t. STRIP.ASSUHE.TAC (SELECT.RULE t)>
THE! RES.TAC TIE! FIRST.ASSUH <\t. ACCEPT.TAC (STB «>]>; I

EIOHT.FIIV - prove. thaCRIOHT.FII
“MA B (Fie—>ee). —(Am{» N\ (A - Bf <>

FUL.PIIVEASE (B,A> (FUL.IIV A

PURB_REMRITE_TAC[FUI_PI VEBSEJJEFJ THE‘ KEPEAT OEI.TAC THEE STBIP.TAC
THEI 1BP.AES.TAC FULLTT TIE! 1BP.BES.TAC FUL. IIF.TT
THE! EEPEAT COIJ.TAC THEE (FIBST.A3SUB BATCH.ACCEPT.TAC OBELSB ALL.TAC )
THEI PURE_EEMBITE. TACCFUI_I IV.DEF;0_THB]
THEI UIDI3CH.TAC “(A —-» 1>(
THEN PURE.OICE. REHRITE. TACCFU|
THE! REPEAT STR
THE! SUBOOAL.TKEI
THEILC

EXI8TS.TAC emozess THEI CO1J.TAC THEI FIR3T.ASSUH ACCEPT.TAC;

FILTER.ABH.REVRITE.TAC (\t .not<ft(:trip.coBb t) m = »bool "))
THEI POP.ASSUH (\t. STRIP.ASSUHB.TAC <SELECT.RULE >

THEI FIRBT.ASSUH <\t. HATCH.ACCEPT.TAC (STB »)D)i:

LEFT_RIOHT.PI1V * prove. that“LEPT_RICHT_PIIV*,

“IBB <fre>es)

A-> B)f/\ (Bf>A)g/\FUI PIIVERSE (A.B) g - >
U > >B)f A\ B --» Ag",

REPEAT OEI.TAC THE! REMRITE.TAC

CFUI .DEF U1 .OIE.OIE.DEFFUI . OITO DEFFUI PIIVERSE .DBF;0.THB]

THU REPEAT STRIP.TAC THE! AES. RLL

UIDISCH.TAC "'<gz00->0)(f y) =
THE! DISCH.THEI <\t. SUBBTL.TAC (STB >
THEI UIDISCH.TAC *(g:00->0>(f %) —

THE« DISCH.THEI <\*. SUBST1.TAC (STB t)>
TAC THU FIRST.ASSUH ACCEPT.TAC;

THEI COIJ TAC THU (COIV.TAC STH.COIV ORELSE ALL.TAC>
THEI FIRST.ASSUH ACCEPT.TAC]);:

150. IIVERSE * pruw tha “1S0. IIVERSE",
“1* B (Siem>es
@* —> BFf N\ (57 » A)g /\ FULLTIVERSE (AB>* 1 *
(A <= >B)f A\ (B <> A)",
REPEAT OEI.TAC THEI REMRITE.TFC[FUI . 1S0.DEF; FUI . IIVERSE . DEF]
THEI REPEAT STRIP.TAC THEI IHP.RES.TAC LEFT.RIOHT.PIIV);;

FUILEHPTT.LEFT —

Tot loal m TAC.PROOFC(D , "B (F:= >-), «} —>B)f>,
REVRITE.TAC[FUI .DEF; 10T. 11.EHP

Tot lea2 m TAC.PROOFC (] » “1B (F: 0h00). @ > >B)f>,
REMRITI_TAC[FUI_OIE_OIE_DEF{10T.11.1HPTY]> la

Tot loa3 - TAC PROOF<<[], "1B (f: >oc) - » BFf - (B - M),
REMRITE.TAC [FUI.OITO.DEF i
THEI OEI.TAC THEI COIV.TAC (OICE DEPTH.COIV FORALL . 10T.COIV)
THEI REHRITE.TACCHIHII OT.BHPTV]) la

Tot 1ob4 m TAC_PROOF(([] . 1B (f:0500). ({> «-> BYf - B - {»))").
REPEAT OEI.TAC THEI
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REURITE.TACCFOT.IS0.DEF;I*a2;laa3]) la
aava.thaC ‘FOT.EHPTY.LEFT', LIST.COIJ Claal;I*a2;laa3;laa«]>;i

FUH.EHPTY.RIOHT -
1#1 laa - COBV.RULE (OECE.DEPTH.COST «OT.KXISTS.COIV)

COU.ALI (PUKK_O«CS_EKVIITK.10LK[<OT.CLAUSES]

CCOHTMPOSCSNdCEQ.IHP.RULE (SPKC.ALL HEHBER.HOT.EHPTY))))) > la
la* laal - TACPROOPCCD . "IA (f:#->aa). (A --> <»f m (A - <>)").
«KHTE.TACCFOT.DEF; EOT.ILEMPTY]

THEE EEPEAT OEI.TAC THEE COBV.TAC (OICK.DEPTH.COEV FORALL.EOT.COb)
THU REMRITE.TACtHEHBKR.EOT.EMPTY] ) la

la* laa2 ® TACPROOF((D . "IA <f*->aa). (A >-> <»f - (A m<»'>,
«URITE_TACCFOT_OEE.OEE.DEF;EOT. IBEMPTY]

TIKE EEPEAT OEB.TAC THEE EQ.TAC THU STRIP.TAC

THULC IMP.RES.TAC la.

ASM.REHRITE. TAC[EOT IEEMPTY]) la
la* 1aa3 - TACPROOFCCL . "IA Clie>**>. (A --» <>)f - (A = {»)"),
UURITE.TACCFOT_OITO.DEF;EOT. IEEMPTY]

THU OU.TAC THU EQ.TAC
THULC MATCHACCEPT.IAC laa;

DIECH.TH« (\t. SUBSTLTAC t) THEE AEWRITE.TACCEOT.IH.EHPTY]]) la
lat laac - TACPROOFCQT . -MB <F;*->**>. ((A <--> <>>* - (A - <»>"),
REPEAT OU.TAC THEE

REURITE.TACCFOT.ISO.DEF;laa2;Ita3]) la
aa*a_tha<'FOT.EMPTY.RIGHT , LIST.COBI Claal;laa2:laas;laac]);i

FUB.I a
lat laal - TACPROOFCCH, "lA:<a)aat. (A — > A) <l:a->a>">,
REURITE.TACCFOT.DEF; L.THM] > la
lat laa2 - TACPROOFC(DI. “IA:(*)*at. (A >-> A) <l:a->*>"),
REURITE.TAC[FOT.OEE Ore.DEF;|_THV]
THU «PEAT STRIP.TAC THU FIMT.ASSWM ACCEPT.TAC) la
lat laaS m TACPROOFCCI, "IA:(*)iat. (A —» A)
REURITE TACCFOT OHTO.DEF; | ]
THEE REPUT STRIP.TAC THU EXIETS.TAC ‘=»:*" THEE
ABM.RURITE.TACC]> In
lat laac - TACPROOFC(C , "A:C*>aat. CA «-> A) <lia->a)e,
«RITE.TACCFOT_ISO.DEF; L.THM]
THU REPEAT STRIP.TAC THULC

MATCHACCEPT.TAC laa2; HATCH.ACCEPT.TAC laa3]) la
aava.thaC'FOT.I', LIST.COE) Claal;laa2;laa3;laad]);;

ISO FIBV L] prova maC]JSO FIE»1,
*> CA <--> B)f —> CB<--> AMFOT.IEV A B f>*
REPUT QU TAC THU RURITE.TACCFOT.IS0.DU]
THU ASH.CASES.TAC "CA;Ca)aat> m <)"
THEE ASM.REURITE.TACCFOT.EHPTY.LEFT; FUE.EHPTY.RIOHT]
THEE ASN.CASES.TAC "CB:.C*>a*t> - {>"
THEE ASH.MHRITE.TACCFOT.EMPTY.LEFT;FUH.EMPTY.RIGHT]
THEE REPEAT STRIP.TAC THU NAP.EVERY IMP.RES.TAC
[FUE.TY;FOT.IHV.TY;LEFT.FIBY:RIOKT.FIH' |
THEE FIUT.ASSUH HATCH.HP.TAC THEE FIUT.ASSUH HATCH ACCEPT.TAC) |i

elosa.thaoryC):;
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B.2 The file ink-graph.ml

PILI: akgraph.al *ar:0.3

AUTHOR: Hall Hong DATE: 1 AUO 1990 aodafiad Jun 91
ass.tkaory ‘graph* ;

Toad. lbrary*aats* i;

«e».parant‘fune*
autoload.all'fune’

sst.flagC sticky* .trua) -

X- Qaaaral thaoraaa and tactic» neded In this thaory -S

Tot PAIR.EQ.Eq - TAC.PROOF(((] -
“lI(ae=>y. (@my) - (PSTa-PSTy) A (SEDa = SID y>'>,
REPEAT QEE.T/
THU PURE.OECE_REHRITE_TAC[SYH(SPEC_ALL PAIR)]
THEE PURE.OECE.REHRITE. TACCFST;SID]
THEE PURE_OBCE. REHRITE_TACCPAIR.EQ]
THEE PURS_OICE. REHRITE_TAC[PAIR.EQ]
THEE REFL.TAC)::

Tot PAIR.EOT.EQ — TAC.PROOF((C .
“Iie> (bie) ay. —<<a,b> m @) » *<a = a) V *b - y)').
REPEAT QEE.TAC THEE EQ.TAC

THEE COBV.TAC COETRAPOS.COEV

THU OECE.RBHRITE. TAC[DE.HORGAE.

Tin OBCE.REFRITE.TACCPAIR.EQ] |

THU OHCE.REHRITE.TACC] ) 33

1st BOT.HULL.APPEBD - TAC PROOFC(C]
—tanze list) 13 — > "HULL (APPEED 11 13)*).
LIET. IBDUCT . TAC THEE (REHRITE TACCAPPEHD;BULLT)) !

1st BULL.EIL ** TAC_PROOF(<[I.
MIzC>11St. BULL 1w (1 m CB*),
LIST-XHDUCT.TAC THEE (REHRITE.TACCEULL jEOT.COES. 11L]))Ji

Ut HD_APPEBD = TAC.PROOF( (I ,

p3:(=)list. ("BULL pi) -=> (HD (APPEBD pi p3> m HD pI)H>.
IT. IHDUCT . TAC THEELC

REHRITE. TACCAPPEHD; EULL]

OHCE.REHRITE. TACCAPPEBD:BULL] THEE REHRITE.TACCHD]])::

1st ETOT.APPEED - TAC.PROOF(<[]
“1(llze i
LIST. IHDUCT . TAC THEHLC
REHRITE. TACCAPPEED £VERY .DEF]
OHCE..REHRITE. TACCAPPEHD EVERY_DEF] THEE OHCE.REHRITE. TACCEVERY .DEF]
THEE ASH.REHRITE.TACC] THEE REHRITE.TACCCOE].ASSOC]] >i:

) 13 P. EVERY P iAPPEHD 11 13) = (EVERY P 11) A (EVERY P 13)"),
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let DISJDIIT HISUT.IHP - TAC_PIOOF((C ,
*:e) o t. Disjoin (s iisert «> t mo>
(Dls]nln 1) A (< id t>")
UWRITE.TAC(DISIOIIT.DEF ; IISEBT. | ITER]
THU REPEAT QELTAC THU COID.CASU.TAC
THU UWIITE.TACCIOT.ISUT.EHPTY]);

ut IHHPHUHOI'TACPROOF(([]
Kb st (x I« —
UW1\TEJAC[II7UIIOI m,uuo,mHzn I

X Vortex, Edga and Graph ara daflaad aa abbraviationa for tha tjrpaa aaadX
X to represent vertices, edges and graphs. X

lat Vortex m and
Edga = *i(a | a | aa)* and
Graph a ":(a)aat = (a = a = aa)aat'n

X Tha fallaaiag thraa dafinitiona ara raqaied by tha definition af graphx
X a.are(a) la tha soarca of an adgo a X

X a.daa(a) la tha daatination of an adga a X

X alb(a) la tha labal of an adgo a

1
lat e.arc.DEF m noa.dafinltion('e.src.DEF’,
"a.arc (a:'Edga) - FST a*);;
lat o.des.DEF m nas.daflnltion (le.des.DEF’,
"a.das (a-Edga) - FST (SID a)*);:
lat alb.DEF - nas.dafinltioni‘alb.DEF’,
“alb (a:'Mgs) m SID (SID a)");;
1st a.are m prova.tha(‘a.src*, "Ipl p2 a. s.are((pl,p2,a)*Edga) mpi*,
UPEAT QELTAC THE! PUU.OICE.UUIITE.TACCs.src.DEF]
THU PUU.OICE_UU1ITS.TACCFST] THU UFL.TAC) i
1st a.das - proas.thaiCa.das’ . “Ipl p2s. s_dss((pl p2.s) I*Mga> m p2*,
UPEAT QU.TAC THU PUU.OICE.UUIITE.TACCs.das.DU]
THU PUREREULITETAC[FST:SID] THU UFL.TAC):|
1st alb - prora.thniCalb’. *1p| p2 s. alb((pl p2.s>:'Edgo) - s
REPEAT QU.TAC THU PUU_OICE.UWRITE.TAC[alb_DEF]
THU PUU.UWIITE.TACCFST;SID] THU UFL.TAC):;
X- A graph, by definition, Is a pair of sots, ahora -X
X- Vs tha rartax sat, which can bo a sat of any typo and X
X- E la tha adgo sot shich Is a sat of wartax pairs and labals. -X
X* Tha ceastraint on graph Is that all wartlcas appaarad Ix -X
X* tho vartax pairs In ths adga sat ara naabars of tha vartax sat. -X
X

lat QIAPH.DEF m nss.dafinitlon(QRAPH.DEF',
"OLAPH ((V:(*Vartax>sat>, (E :(* Edgessat)) -
la. all E* > (((a.src a) 11 V) A ((s.das s) 11 V)>">is
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X- A special graph ia tha aapty graph -X
lat IUU.GAAPH ® naa.dafinitlon ("lULL.GRAPH'
YIULL.GRAPH = ((EMPTY : (*Vartaz)sat), (EMPTY:(*Edga)sat))’)::

X Tha varticas aat og a graph X
lat VS.DEF m nea.definitionC VS.DEF*, *VS <O:*Oraph) m FST 0");;

X Tha adga aat af a graph X
lat ES.DEF - nas.daflnitiont'S.DEF", 'BS (G:"Graph) m SID 0"):;

lat VEBTICBS m prove.that‘VERTICES"
“1(f:(*Vartaa)aat) (B:(Bdga)aat). VS(V.E)
REWRITE.TAC [VS.DEF ;FST])i;

lat EDGES - prove.that'EDGES',
“1(V:("Vertez)set) (E:(*Edga>aat). ES(VE) - E",
REVAITE.TAC[ES.DEF;SID] ) ;;

-a ISEDGEG iff a ia In (ESG) X
lat ISEDGE.DEF » naa.iafiz.dafinitiant +ISEDGE.DEFL,
"ISEDGE a (0:‘Graph) - a Il (ES Q");;

X- * ISVERTEX a iff a la la (VS 0> -X
lat ISVERTEXDEF - nas.infiz.dafinitiant *IS.VEKTU.DEF,
“ISVERTEX » (0: "Graph) ®* II (VS G)"

X" Sana baaic facts absut graph X

X- Thara azlsts a graph -X
lat GRAPLEXISTS - prava_tha(‘GRAPHEXISTSL,

raph). GRAPH 0,
EXISTS.TAC "HULL.GRAPH: "Graph"
THE! REHRITE. TAC[IULL GAAPM; GRAPHDEF; 10T ILEMPTY]) ; ;

lat GRAPHPAIR m prove.that‘GRAPH.PAIR,
"KO:"Graph). ORAPH 0 —> (Q m (VS G, ES G))1,
REHRITE. TACCVS.DEF,ES.DEF]) ; ;

lat GRAPHDECOHP - prera.that GRAPH.DECOMP' ,
“1(0:-Graph). (GRAPH 0) m (GRAPH (VS 0, ES «))*,
REHRITE.TAC[VS.DEF ; ES.DEF] >} ;

lat GRAPHEQ - prava_tha( ‘GRAPHEG ,
“1(G:'Graph) H. GRAPH 0 A GRAPHH —>
((0 - Hy - (((VS 0) m (VSH)> A ((ES 0) - (EI H>>>>",
REHRITE.TAC[VS.DEF {ES.DEF]
THU REPEAT STRIP.TAC THU HATCHACCEPT.TAC PAIREG.EQ) ;;

lat 10T_VnTEX.IOT.EDGE * prova.that ‘IOT.VERTEX.IOT.EDGE' .
G:"Graph) vl v2 z. (ORAPH 0) me>

("vI ISVERTEX 0 \/ *V2 »VERTEX 0) -=» “(vi.v3,R> »EDGE G",
PURE.OICE.REVRITE. TAC[GRAPH.DECOHP] THE!
PURE.RURITE.TAC[ORAPH.DEF;».EDOE.DEF; IS.VERTEX.DEF]

THEI REPUT GEL.TAC THE! STRIP.TAC THU COIV.TAC COITRAP08.COIV
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TIE! EEHBITE.TACCDE.HOEQALTKH] THE! DISCH.TAC THE! IES.THEI IP.TAC
THU MMITB.TACCa.arele.dea] THE! aepeat STEIP.TAC
THE! FIMT.ASSUH ACCEPT.TAC) ;;

@

aUPH.IOT.VEETEX.EOT.EDaE- prove_tha(‘aUPH_IOT_VEBTEX_IOT.BDOB\
"I (a:-Qraph) V. (OUPH 0> A '<* IS.VEETEX 0) —

la a. '((*»,x) IS.EDOEa)",
PUM.OICE.EEHEITE.TACCaEAPH.DECOHP]
THE! MHEITE.TACCOBAPH.DEF;|8.EDOE.DEF;I8.VEETEX.DEF]
Tin UPEAT OELTAC Till STEIP.TAC TIES EEPEAT OEE.TAC
Tin ASSUH.LIST (\ul. ASSURE.TAC

(COETUPOS (ISPEC = (*.n,x):-Edg.’ (at 3 asl>>>)

THEE POPASSUH (\t. ASSUHE.TAC (MHEITE.EULE[DE.HOBaALTHH:a.daa a_arc] t)>
THU EES.TAC)::

la* aEAPH_IOT_VKETEX_EOT_EDCE2 - prove_tha(‘aBAPH_EOT_VEBTEX_I0T_EDOE2" ,
“1(0: *araph) v. (OUPM 0) A *(v ISVEETEX 0) — >
la a. *((a.v.l) ISEDOE 0)",
PUM.OICE.EEHEITE. TAC[OUPH.DECONP]
Tin EEHEITE.TACCOEAPI.DEF: IS.EDOB.DEF; IS.VMTEX.DEF]
THU EEPEAT an.TAC THEI STEIP.TAC Tin REPEAT OELTAC
THU ASSUH.LIST (aal. ASSUHETAC
(COETMPOS (ISPBC "(u v.x>:"Edge" (
THEI POPASSUH <\t. ASSUHE.TAC (EEHEITE_f EULE[DE HOEOALTHH;e.dee:a.arc] *))
THU EES.TAC):

X- Loopa and aultiple edges X

X- A loop la aa adga having identical end paints -X
let LOOP.DBF m nes.deflaitioaCLOOP.DEF",
"LOOP <erEdge) - (e.sre e - e.daa e>'>j|

let IAS.LOOP.DEF - nee.deflaltioni‘IAS.LOOP.
"IAS.LOOP 0 - Tie:'Edge), (a IE (U 0)) . (LOOP e))is

X* Hultiple edges ars distinct edges but having the saae end pointn -X
1st HULTI.EDOE.DEF - nev.definitioni ‘HULTL.EDOE.DEF* ,
"HULTLEDOE 0 - T(ali*Edga> e3
(al IE (ES0>> A (@3 IE (ES 0)) A '<al - a3> A
(a.src el - asrc e3> A (adaa al - e.das a3>">;;

X- Staple graphs X

X A staple graph is a graph sithout loop and sithout aultiplo edgos X
let SIHPLE.OUPH.DEF - nev.defin it ion (*SIHPLE.QBAPH.DEF' .
"SIHPLE.OEAPH (0:* Oraph) -
(OUPH 0) A *(IAS.LOOP 0) A =(HULTLEDOE 0)*) i

lot laaaal - TAC.PEOOF((C1.
"1(0: *Oraph) a. HASLOOP 0 A a IE (ES 0) — > '(0.arc a me.daa a>">,
UPEAT OU.TAC TIES EEHEITE.TACCHAS.LOOP.DEF{LOOP.DBF]
THU COSV_TAC(OSCE.DEPTH.COSV I0T.EXISTS.COEV)
THU STEIP.TAC THU EES.TAC THEI IHP.BES.TAC IHP.F);;

lot SIHPLE.IO.LOOP - TAC.PEOOF <([]
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*1Q* Graph.

sirple.osape a We> (t*. (= |1 (is G>> " >'(a.arc = mcda* =)>"),
{EHIITB_TAC[BIEPLE_OtAPt_DtF]

Tin UPUT STHP.TAC TEES IRP.IES.TAC 1 «M » 1l

X- 1 Is p. '(PST s *PSTy) \/ ‘BED | m lit T) > ~mey> X
Id* palr.laaM - OEB.ALL (SEESITE.SULEIDE.EOSOAS.TEE]
(COSTSAPOK fat(EQ.IRP.tULE (SPEC.ALL PAILIQ.BQ>>>>):

la* ag.laau - TAC.PtOOP((1 .
MU*A> b <ce>d (amd> A <hEC> Y > <KX Eb> me>(a B *>>'>,
SEPEAT OEB.TAC TEES STtIP.TAC TEES ASR.tBEtITB.TACQ>:!

la* EDOBEQ m prova.that'EDQE.EQL,
“I(al:Edga) at. (al m *2> =
aarc al waarc a2> A (a.daa al madaaa2> A (alb al malb +1)>*,
tBVBITE.TAC[a.arc.DEP;a.daa.DEF;alb.DCF;PAIt BQ.EQ)):

X- Aatl-parallai adgaa la a alapla graph ara dlatlact, aa
alapla graph la diractad X
lat OtAPR.DIUCTBO * prova.that ' OtAPtDIIECTBD*.
"1(0:Graph). (SIRPLE.GIAPH G> me>
(lat a2. (al IB (U 0>> A (*2 1B (BB > A
(a.arc al madaaa2> A (adaa al maarc &> —» "(al m a2>>",
OSCB.tBEBITB.TAC[EDGE.EQ] TEES OEB.TAC TEES STtIP.TAC
TEES SEPEAT an.TAC TRES STtIP.TAC
TEES IRP.IBB.TAC SIRPLB.BO.LOOP TEES ASH.tBVIITLTACH) :;

X- Agraph la flatta Iff bath vartaa aat aad adga aat ara flatta X
X

lat PIBITB.OtAPR.DBP m aaa.daflaitioa('FISITE.QtAPE.DEF",
PISITE.OSAPE (G:*Grapb> - (OtAPE G) A
PISITB (VB 0> A PISITE (BS 0>">ii

X- Adjacaacy ralatlaaa -X

X- varticaa ara adjacaat If thara la aa adga caaaactlag thaa -X
lat VELADJADCF - aaa.daflaltlaa(=VBt.ADJA.DBF*.
"VBLADJA O *1 (*2:a) a
(OtAPE 0> /\ (*1 ILVESTE! 0) A (*2 IB.VBTBE 0> A
(T(a:*Bdga>. (a ISEDOE G) A «(a.arc a+ al) A (adaa a = 25> V
((a.arc a > «2> A (adaa a- vi»»">si

X* taa adgaa ara adjacaat If thap lacldaat altb a ceaaca vartaa -X
lat EADJADBF - aaa.daflaltiaa(wE.ADJA.DBP™,

"B.ADJA O al (a2:*Bdga> *

(OAPE 0> A (al IS.BDOB 0> A (a2 IS.EDOE 0) A

((a.daa al ma.arc al) \/ (a.daa a2 m a.arc al))")!!

X
X- lacldaat ralatlaaa af vartaa -X

X- A aabaat af adgaa af graph O ahlch la lacldaat fraa v -X
lat IBCIDBBT.FIOH.OBP - aaa.daflnltlaa(=(SCIDEST.PtOR.DEP* .
“IICIDBST.PtOR (0:'Graph>v a
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<= | (= iSEDGE Q) A (e.arc a mv)

X- the out degree of v la tha cardinal of tho sot IICIDEIT.FROH -X
lot OUT.DEaREE.DEF - noo.doflnitlon (‘OUT.DEGREE.DEF1,
"OUT.DEGREE <0:-Graph) » - CatO (IICIDEIT.FKOR G v>*

X- Stoiler for Incldaat to a vartos -X

lat IICIDEBT.TO.DEF - noo.dofinltlon(*ICIDEET.TO.DEF* .
“IICIDEIT.TO (0:Graph) * -
{a | (0 ISEDGE 0) A (s.dasa- *)>")i

t- tho In dogroo of v la tho cardinal of tho aot IICIDEIT.TO -X
lot II.LDEGUE.DEF - naa.dafiaitlonC1I.DEGREE.DEF1.
“Il.DEOKEE (0:'Graph) « - CARD (lICIDEIT.TO 0 v>">;;

X- A subsat of adgos of graph 0 ohich is incldant oith » -X

lot IICIDEIT.HITH.DEF * nao.dofinitionC«ICIDEIT.IITH_DEF*,
“IICIDEIT.WITH (0:-Graph) * m
(s I (0 ISEDGE 0) /\ ((0.src a m») \/ (0.das a * *)>}">:;

X- Tha total dograa of a verte* is tha sub of tha abova too -X
lot DEOKEEDEF - nas.doflnitionCDEGREE DEF',
"DEGREE (G:-Graph) V - (I.LDEOEEE 0 *> # (OUT.DEGREE 0 0)")iJ

X* Saccassor and predecessor relations of vortaa -X

X IS.SUCVER 0 vl «2 iff 02 is a successor of vl X

lot 18.SUC_VER.DEF " nas.daflnltion (' IS.SUC.VER.DEF*,
"IS.SUC.VER (0:'Graph) *1 *2 -
Ta. (a ISEDGE 0) A (0.src amol> A (o.dos a - *2)");;

X ISPREVER G vl v2 iff v2 is a predecessor of vI X

lot IS.FIE.VER.DEF m aao.daflaltlon( «S.PRE.VER.DEF'.
IS.PRE.VER (0:Graph) vl v2 m

To. (a ISEDGE G) A (a.daaamvl) A (a.srca® v2)'>n

X SUC.VERS 0 v delivers a sot of all vortices shich are succassars of v X
lot SUC.VERS.DEF m nao.deflnltion (‘SUC.VERS.DBF1.

“SUC.VERS (G:-Graph) V m

<> | (v> ISVERTEX G>A (IS.SUCVER a V V»)>")j]

X PREVERS G v delivers a sat of all vortices shich are prsdacossors of v X
lot PREVERS.DEF - nos.dafinitioni' PREVERS.DEF=.

"PREVERS (G :'Graph) v -

Q5 | (V ISVERTEX 0) A (IS.PU.Vna VV»)>")

X EDGES.BETVEEI G vI v2 dolivars a sat of odgo(s)

all of shich are froa vl to v2 X

lot EDOES.BETVEEI.DEF m noo.dafinitlon( ‘EDOES.BETVEU.DEF'.
"EDGES.BETVEEI (0:‘Graph) vI v2 -
<al (a ISEDGE 0) A (a.sic a mvl) A (a.dos a m v2)}'>i;

lat g.laaacl - TAC.PROOF((OI ,
"K G:*Graph). (GRAPE 0) — >
la. (a Il (ES 0)) —> ((a.src a) Il (VS 0)) A



APPENDIX B. ML SOURCE LISTINGS

(=am= => 11 (VS 0))").
D K i.uniit.nc iorapi_decomp]
THE! REWRITE.TAC(ORAPHIDEF -VEIT ICES :EDGES]) ;

lot VER.ICIDEIT.IOT.EHPTY - provo.th«( ‘VER.IICIDUT.IOT.EMPTY ",
“+(0 :*Graph) V.
(ORAFI 0) A “((IICIDEIT.VITH O *) < EMPTY) mm> (v IS.VERTEX 0)"
RHIRITLTAC[IICIOCIT.MITI.Dir; IS.VERTEX.DEF; IS.EDOB.DEF]
Till REWRITE.TAC[OESALL <8YB (SPEC.ALL RRRBRR.IOT.ERPTY)>]
THE! COIV.TAC (DEPTH.COLV SET.SPEC.COIV)
THE! COIV.TAC (OICE.DEPTH.COIV SYB.COIV)
TIE! REPEAT OELTAC TIBI STRIP.TAC
THE! IBP.RES.TAC | .1«M | Till ASH.REWRITETACI]) ;;

lot IOT.VER.IICIDEIT.EMPTY m prova.tha(‘IOT_VER_IICIDEBT_EHPTY*,
“1(0:'0roph) V.
(ORAFI 0) — > -<v ISVERTEX 0) — > ((IICIOEIT.IITH O v) m EMPTY)",
REPEAT OELTAC TIE! STRIP.TAC TIE! COIV.TAC COITRAPOS.COIV

THE! REVRITE.TACI] TIE! DISCIL.TAC THE! IMP.RES.TAC VBR.IICIDEIT.IOT.BMPTY);;

10t ORAPM.EDOEVERTEX - provo_thn('QRAPHEDGE. vsmsx‘

1(0:~Oroph) 0. (ORAFI 0) A (o IS.EDGE 0) —
((=.mre => ISVERTEX 0) A ((0.doa =) IS) VERTEX 0)",
REWRITE.TACIIS.VERTEX.DEF;IS.EDOE.DEF] THIS REPEAT OBITAC TIES STRIP.TAC
TIES IMP.RES.TAC g.laonal TIE! ASM.REWRITE.TAC[]) ;;

lot IDT 1l SAHE SET - provo lhn( IOT Im_SAHE_SET, ,
y « 1l - m
REPEAT OEI TAC TIBI ASH. CASES TAC
TEH ASI.REVRITE.TAC110T.UD]>;;

lot 10T.IL.SAME.ORAP| ® provo.tha(110T.IL.SUE.ORAPH' ,
"1(0;"Graph) v 0
(GRAPH 0) A~ - <v ISVERTEX 0) A <= ISEDOE 0) — >
“(0.0re = mv) /\ "(0.doo = m»)"
REWRITE.TACIIS VERTEX.DEF ;IS EDOE.DEF]
TIE! REPEAT OELTAC THE! STRIP.TAC
TISI INP.RES.TAC (REVRITB.RUUCIS.VERTEX.DEF;IS EDOE.DEF]
ORAPI.EDOE VERTEX)
TIES IMP.RES.TAC I0T.ILSANE.SET
TIES COIV.TAC (OICE.DEPTI.COIV SYB.COIV) TIBI ASMREWRITETACI]) ;s

lot VERTEXEDOE - provo.thn(‘VERTEX.EDOE',
" 1(0:*Oroph) v 0
(ORAFI 0) A (v ISVERTEX 0) A (* Il (UCIDUT.WITH 0 v>> —>
((=.ore 0 mv> \/ (0.do0 = = v>>",
REHRITE.TACLIICIDUT.WITLDEF]
THU COIV.TAC (DEPTH.COIV SET.SPEC.COIV)
Tin REPUT OU.TAC Tin STRIP.TAC THE! ASH.REWRITE.TAC]) ::

t- DELETIOI-—DELETE.EDOE dolotoo on odgo fron tho graph -X
I- DELITE.VERTEX dolotoo = vortoo and oil odgoo incidont with It -X

lot DELETI.EDOE.DEF - nov.infla.doflnitlon (‘DELETE.EDGE.DEF1,
"DELETE.EDOE (0;*Oroph) o - ((VS 0), ((IS 0) DELETE =>>");
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((a.daa => 1 (15 0)**),

lct VER.ISCIDEIT.BOT.EHPTY - th*(*YEA.IICIDUT.IOT.EHPTY"
“1(0 : *Oraph) *
(aura 0> /A =((BW 1JW 0% - ram) —> < is.vertex o>".
REWAITE TACCIHCIDEBT WITH.DEF; IS VEITEX DEF; IS.EDOE.DEF]
THU UWAITE.TACCOU.ALL (SYH (SPEC.ALL HEHBU.BOT.EHPTY >3]
TKEI COIV.TAC (DEPTH.CO1V SET.SPEC.COIV)
Till COIV.TAC (OICE.DEPTH.COW STH.COIY)
THE! REPEAT OEI.TAC THEE STEIP.TAC
THE! IHP.RES.TAC (.Itaatl THEE ASH.REVAITE.TACC])::

lat BOT.VEE_IICIDEIT.EHm - pro*a_thw(I0T.VEA.IBCIDEIT.EHPTY".
"1<0:-Graph) *.
(ORAPH 0) " > -(* IS.VERTEX 0> --> ((IBCIDEIT.WITH 0 *> - EHPTY)",
REPEAT On.TAC THE! STEIP.TAC THEE COIV.TAC COBTRAPOS.COIV
THU REWRITE.TACU THEE DISCH.TAC THEE IHP.RES.TAC VIA.IICIDEIT.IOT.EHPTY);;

lat ORAPH.EDQE.VERTEX - prava_tha(‘ORAPH.EDQE.VERTEX',
*1(0:~Qraph) a. (ORAPH0) A (a IS.EDOE 0) —>
((m m a) ISVERTEX 0) A ((a.daa a) IS.VERTEX 0)",
REWRITE.TAC[IS.VEETEX.DBF; IS.EDOE.DEF] THEE REPEAT OELTAC THEE STRIP.TAC
Till IHP.RES.TAC g.laaBal THEE ASH.REWRITE.TACC]>;

lat I0T.I.SAHE.SET  prova_thm('EQT.ILSAHE.SET',
) FILFM LA -« B a -m> (*y>
REPEAT QEE.TAC THEE ASH.CASES.TAC "a:a m
TREE ASR_AEWRITE_TAC[BOT.ABD]) :;

lat EOT.I.SAHE.ORAPH m prova_tha( I0T.I.SAHE.ORAPH" ,
“£(0:"Graph) * a
(ORAPH 0> A "'(* IS.VERTEX 0) A (a IS.EDOE 0> —>
*@_#cas v) A '(a.daaas v>'.
REWRITE.TACCIS.VERTEI.DEF;S.EDOE.DEF]
TNEI REPEAT OEL.TAC THEE STEIP.TAC
THU IHP.RES.TAC (REWEITE_RULE[IS_VERTEX.DEF:S.EDOE.DEF]
ORAPM.EDOE.VERTEX)
TIES IHP.RES.TAC IOT.ILSAHE.SET
THU COIV.TAC (OICE.DEPTH_COIV SYH.COIV) THU ASH.AEVAITE.TACC]):;

®

VERTEX.EDOE - prova.thaK ‘VERTEX.EDGE' ,

*1(0:*Oraph) * a

(ORAPH0) A (» IS.VERTEX 0) A (a Il (IICIDUT.WITI 0 *>> —>
((a.arc amv>\/ (a.daa a m*))",
RURITE.TACCIICIDUT.WITH.DU]

THU COIV.TAC (DUTH.COIV SET.SPEC.COIV,

THU REPEAT OU.TAC THU STEIP.TAC THU ASH.EURITE.TACC]>: i

X- - -
X- DELETIOI DELETE.EDOE ficei tha graph X
X= DELETE.VERTEI dalataa a vartaa and all adfaa incidant with it -X

X-
lat DELETE.EDOE.DEF m naa.Infia.dafinition('DELETE.EDOE.DEF .
*DELETE.EDOE (0~Oraph) a m (VS 0), ((ES 0) DELETE a))");;
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l«t DELETE.VERTEX.DEF m H i.ilfla.dofl»itlon (‘DELETE.VERTEX.DEF* ,

"DELETE.VEETEX (O :"Graph) V
«(VS 0) DELETE *>. (IS 0) DIFF (IICIDEBT.WITH 0 v))>*>i

l«t EDELETEABSORP -  pro»«_the('E_DELETI_ABSORP',

5

" 1<0:* Graph>

(G?PPHO)DA -<+ IBEDOE 0) —> <(DELETEEDO(0 =) - 0)",

AEMAITE TACCI3 EDOE DEF; DELETEEDOE DSF]

THEE AEPEAT OEI.TAC THE! 8TEIP.TAC

TRES IHP.RES.TAC DELETE.IOL.ELEHEIT TREE ASREEMLITE.TACCI

THE! IRP.RES.THEI (\ui. HATCH.ACCEPT.TAC (STH em>) OAAPH.PAIR);;

Y.DELETEABSORP - preve.tha (1 . DELETEABSOAP* ,

*1(0:* Graph) *.

(QMPH 0) A "(* IS.TEBTEX 0) —> ((DELETE.VERTEX Qv) - 0)",
REMRITE_TACCIS.VERTEX. DEF ; DELETE.VERTEX.DEF]

THE! REPEAT GES.TAC THU STRIP.TAC

THE! IHP.RES.TAC DELETE.BOB.ELEHEET

TIER IHP.RES.TAC (AEWRITE.AULEHS.VUTU.DEF] BOT.VER.IBCIDKBT.EHPTT)
THIS ASH.REMRITE.TACCDIFF.EHPTT]

TREE IHP.RES.THEB (\aaa. HATCH.ACCEPT.TAC (8VH mm>) QRAPR.PAIR)i;

aRAPH.DELETE.EDEE « pro»«_th»(‘ORAPH.DELETEEDAIEL,
*10:COreph) (ai'ldfa)

(ORAPH 0) — > (ORAPH (0 DELETE.EDOE =)>",

REHRITE.TAC [DELETE.EDOE.DEF]

THE! OBCE.REWRITE.TACCORAPR.DECOHP]

TREE REMRITE.TAC [VERTICES {EDOES :0RAPH.DEF ; IB.DELETE]

THE! REPEAT STRIP.TAC THES RES.TAC TRES ASH.RXMRITE.TACC]) Si

GRAPH.DELETE.VERTEX « pro»«_the(* ORAPR.DELETE.VERTEXL,
“10: ("Graph) <v:"VarteK>.
(GRAPH 0) — > (GRAPH (a DELETE.VERTEX V>>",
PYRX.OBCE_REHRITE.TACCDELETE.VERTRX.DRF]
THEH PURE_OBCE.REMRITE.TAC [GRAPH.DECOHP]
TREE REMRITE.TAC [VERTICES {EDGES;
GRAPH.DEF ; IB . DELITE ; IB.DIFF ;1BCI DEBT.WITH.DEF]
THEB COBV.TAC (DBPTR.COBV SET.SPEC.COBV)
THEB REMRITE.TAC[IS.EDGE DEF; DEHORGAB.THH]
THEB REPEAT GELTAC THEB STRIP.TAC THU GU.TAC THU STRIP.TAC
THU RES.TAC THE! ASH.REWRITETAC]) ::

DELETE.VERTEX.COHH - pro»«.tlui(* DELETEVERTEX.COHR',
“1(G:"Graph) vI *2
((0 DELETE.VERTEX *1) DELETE.VERTEX *2> =
(6 DELETE.VIRTU *2) DELETEVERTEX *1)".
REMRITE.TAC[DELETE.VUTU.DEF ; VERTICES ; EDGES :PAIR.EQ]
THEI REPEAT OEB.TAC TREI COBJ.TAC TNIBLC
HATCH.ACCEPT.TAC DELETE.COHH;
REMRITE.TAC [DIFF.DEF ;IBCIDUT.MITR.DEF ;IS.EDQE.DEF ; EDGES]
Tin COBV.TAC (DEPTH.COBV SET.SPEC.COBV)
THEB REMRITE.TACCEXTUSIOB] THU COBV.TAC (DEPTH.COBV SET.SPEC.COBV)
THU REMRITE.TAC[DE.HORaAB.THH] THEI GU.TAC THEI IQ.TAC
THU STRIP.TAC THU RU.TAC THEI ASH.REMRITE.TACQ] >i ;

DELETE.EDGE.COHH m pro«.th«( ‘DELETE.EDGE.COHHL.
"1(0:'Graph) «1 «2
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(<a DELETE.EDGE at) DELITS.EDO! *2) m

((Q DELETE.EDGE *2) DELETE.EDGE = !

SnEITE.TAC [DELETE. EDGE. DEF; VESTI CSS; EDGES ,PAIB.EQ]
THEE HATCH.ACCEPT.TAC DELETE.CONN); ;

X- IISEETX01-—adding Tartar nr ndgn to = graph -X

X ISSEET.TESTEZ adds a Tartar lata a graph
1st IISEST.TESTEZ.DEF m nss.laflx. da'laman(-{lSEST TESTEZDEF',
“1SSEST.TESTEZ * (G:'Graph) - <T NISEBT (TS 0), (ES 0>>**:

1st GSAPh.IISEBT.TESTEZ - proaa.thal ‘OBAPH.IISEBT.TESTEZ' ,

"1(0: ' Graph) T. (GSAPN 0) — > QBAPKV ISSEST.TESTEZ 0)",
SETSITE.TAC[IISEST.TESTEZ.DEF] THE! OICE.BEWBITE.TACCOBAPH.DECOHP]
TIE| EEHSITE.TAC[QEAPI.DEF:ES.DEF;TS_DEF;IS.IISEBT]
ran DEFEAT STEIP.TAC TMEI SES.TAC TUI ASNBEVSITETACC] >

1st ISEBT.EDGE.DEF - naa.laflr.daflaltlaa (' ISSEST.EDGE.DEF',
"IHSEBT.EDGE a (0:'Graph) - <<TS 0)
(( ((a.arc a) IS.TESTEZ Q) A «a.dss a) IS.TESTEZ 0>> »
(= IISEBT (IS 0>) | (ES 0>>>">;

is« OEAPM.IISEST.EDGE - proYa.thaCOSAPH.IISEST.EDGE1.
**|(0:" Graph) a. (GSAPH 0) — > OSAPH(a IISEST.EDGE G)-
SEVSITE.TACAISEST.EDGE.DEF] TIBI OKE_EEHIITE_TAC[OBAPI.DBCONF]
T in BEWEITE_TAC[QBAPHDEF IS. TESTEZ.DEF: TESTICES ;
ran SEPEAT OELTAC THU STSIP.TAC THU COID.CASES.TAC THEILI
EEMEITE TAC[II ISSEET] THEI OU.TAC TIES STEIF.TAC
asn. echeite. tac[]
FIESTASSUR HATCHACCEPT. TAC]):

lat IBSUT.TESTEZ.COM - prava.tha('ISEST.TEBTEZ.COHH *,
~*1(0:" Graph) vI *2
(T1' XISEST.TESTEZ (v2 IISEST.TESTEZ 0)> «
(v2 IISEBT.TESTEZ (*1 IISEST.TESTEZ G))**,
EENBITE.TAC[|ISEST.TESTEZ.DEF ; TESTICEI :EDGES: | S.TESTEZ.DIF :PAIB.EQ)
Tin sepeat QEITAC THU HATCH.ACCEPT.TAC IISnT.COHN) :;

lat 11SnT.EDOB.com- praTa_thaClISEET_IDOE.com',
«*(0:‘Graphl al a2.

(at IISEST.EDGE (a3 IISEST.EDOE 0)) - (a2 IISEBT.EDOE (al IISEET.EDOE 0)>".

BEKSITE.TAC [IISEST.EDGE.DEF : TESTICES :EDGES; IS_TIETEZ.DEF.PAIL.EQ]
THU EEPEAT OESTAC THEI COID.CASES.TAC ran COED.CAIES.TAC

THU PVES.EEHEITE.TAC[COID.CLAUSEI]

THU (HATCH.ACCEPT.TAC IISEST.com OSELSE EEFL.TAO):;

lat EOOE ILIISEST.TESTEZ - prava.thaC II.IISEST.TESTEZ' ,
a:*Edga> Y 0. (a ISEDGE 0) — > (a ISEDGE (t IISEBT TEETH 0>>",
EEMEITE.TACtILEDOE.DEF ;EDGES; I IEET.TESTEZ.DEF] THU SEPEAT OU.TAC
ran COU.CASU.TAC THU BEHBITE_TAC[IHISnT:0E_IITHO_THir2]>; ;

lat EME.II.lIimT. EDOE prava.thaC ILIISUT.EDOE
“I(a:'Edga) a' 0. (a ISEDGE 0) -» (a IS.EDOE (a‘ IISEST.EDOE 0))",
BEHIITE.TACIIS EDGE DEF :EDGES . IISEBT.IDOE.DEF] THU SEPEAT OU.TAC
ran con.cAiu.TAc ran imiTE.TACdi.iisBETIOE.iino.Tnn]):i
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lat

El

1st

lat

1st

IHCIDEHT.WITH.IHSUT.VNTEX - prova_tha('lHCIDEHT.WITH.ISSnT.VERTEX",
“I(0:Graph> *. (GRAPH 0 ) — >'(* IS.VUTEX 0> — >
((IHCIDEHT.WITH <» IHSERT.VERTEX 0) ») m { » *,
REPEAT GELTAC THE! REPEAT STEIP.TRC
TNBL IHP.RES.TAC HOT.VER.IECIDEHT.EHPTY
THEE AEWAITE.TACCIHSEAT.VERTEX.DEF; IECIDEHT.WITH.DEF;
1S EDGE DEF; EDGES; EATERSIOB]
TEH COSV.TAC (DEPTH.CORY SET.SPEC.COB*>
THEE OEH.TAC TEEB EQ.TAC TEEBLC
STRIP.TAC TEEE IHP.RES.TAC (REERITE.RULECIS.EDOE.DEF] EOT.IB.SRHE.ORAPE);
REWRITE.TAC[IOT_I_EHPTT]])

1st = - (QSCE.REWRITE.RULE[EQSYH.EQ] IS.EDOE.DEF) in
(RURITERULECa] (SPEC *(ES 0): (Edga)aaf’
(SPEC dga’ (IBST.TTPE C'*Edga’

“] IBSERT.DELETE)))>;:

DELETE.IBSERT.EDGE = prova.thaCDELETE.IHSnT.EME',

"1(0:'Graph) a. (GRAPH 0) A (a IS.EDGE 0) — >

(= IESERT.EDGE (G DELETE.EDGE =>) ® G)",

REWRITE.TACCIHSERT.EDGE.DEF {DELETE.EDAE.DEF; VERTICES; EDGES]

THU REPEAT GEH.TAC THEE STRIP.TAC

THU IHP.RU.TKEH HP.TAC ORAPH.EDOE.VERTEX

THU REWRITE.TAC I S.VERTEX.DEF {VERTICES [EDGES]

THU REPEAT STRIP.TAC THU RES.TAC TEU ASH.RURITE.TACC]

THU IHP.RES.THES (\t. REWRITE.TAC[t]> IM U |

TEU COHT.TAC STH.COHV THU |HP.RES.THU HATCH.ACCEPT.TAC GRAPH PAIR);;

|IESERT.DELETE.VERTEX - prova.tha(‘I1SERT.DELETE.VERTEX1,

"1(0:'Graph) w. (GRAPH 0) A '(* IS.VERTEX 0) — >

(((* IESERT.VERTEX 0) DELETE.VERTEX *> - 0)"

REPEAT QU.TAC THU STRIP.TAC

THU IHP.RES.TAC IBCIDUT.WITH.IBSnT.vUm

THU REHRITE.TACCIBSnT.VERTEX.DEF:DELETE.VERTEX.DEF; VERTICES:EDGES]

THU IHP.RES.THEH (\'t. COHV.TAC (OHCE.DEPTH.COHV (RURITE.COSV t>>>
GRAPH.PAIR

THU RURITE.TACCPAIR.EQ:VERTICES;EDGES] THU COHJ.TAC THEHLC
REWRITE.TAC [DELETE. IHSUT
THU ASSUH.LIST (Vasal. HP.TAC (REWRITERULECIS.VERTEX.DEF] (al 2 aaal>>)
THU REWRITE.TAC CDELETE.EOE.ELEHEBT] |
POP.ASSUH (\t. REWRITE.TAC[(REWRITE.RULE[IISERT.VERTEX.DEF: VERTICES {EDOES] = )])
THU HATCHACCEPT.TAC DIFF.EHPTT] >;;

VERTICES.IBSERT.EDGE - pro»a.ths(‘VERTICES.IHSERT.EDGE",
*1(0: ‘Graph) a. VS(a IHSERT.EDGE 0) m VS 0"
REPEAT GU.TAC THEE REWRITI.TAC[ISSERT.EDOE.DEF {VERTICES]) i i

EDGES.ISERT.VERTEX - prova.that' EDOES. \ESERT VERTEX',
“1(0:'Graph) *. ES(v_IHSERT.VERTEX 0) m
REPEAT GU.TAC THU REWRITE.TAC[IHSERT. VERTEX DEF:EDGES]) |;

VUTEX.IBSERT.VUTEX - prova.tha( ‘VERTEX.IHSERT.VERTEX' ,
"1(0:'Graph) a y

(a IS.VERTEX (y IHSERT.VERTEX 0)> - ((a - y) V/ (a »VERTEX a))",
REWRITE TACCIHSERT.VERTEX DEF: IS VERTEX DEF: VERTICES /IS IHSERT] ) ;

EDGE.IBSnT.EME - prova.tha(' EDGE.ISSERT.EDGE1,
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&

*1(0 : ~Qreph) .

«e.arc *) ISVERTEX @ A ((«.da« *>IS.VOTE! 0) —>

(= IS.EDGE (= ISSERT.EDGE 0))".

REPEAT STRIP.TAC TIE!

ASH.REHRITE.TAC[»SERT EDGE.DEF; | S EDOE.DEF;EDGES;» »SER T >{ |

EDGE».»SERT - pro*«tha('EDGE»»SERT",

"1(0:*Graph) a. ((a.are a> ».VERTEX 0) A ((a.daa a) »VERTEX 0)
—> (a »EDGE (a NISERT.EDOE 0))”,

REPEAT STRIP.TAC THEI PURE.OICE.REHRITE.TAC[»SERT.EDGE.DEF]

THEE ASH.REMRITE.TAC[».EME.DEF ;EDGES;» »SERTI>;;

EDGE.IR.IBSERT2 - «a*a_thi»(‘EDaE_»_»SERT2",
PURE.OICE.REHRITE.RULE[«.arc ja.daa]

(GEIL ("0:*Graph®; " * 1 ; "*2:a
(ISPEC *(*1,v2,a) "Edga” (SPEC

-0raph” EDGE.»»SERT) 3>

VERTEX.I 1. 1ER.VERTEX - prova.thaK «/ERTEX.».IBS.VERTEXL,
K G :*Graph) * u.

(* 18.VERTEX (u IBSERT.VERTEX @>> - (v - u) \/ (¢ »VERTEX G)1,
REHRITE.TACCIBSERT.VERTEX.DEP; IS .VERTEX.DEF; VERTICES ; IB .IBSERT] > ;

1B.IBSBRT.ARSORP - TAC.PROOFUQ ,

-Ma <ca>. (a Il a) — > <(c IBSERT a) - a)"),

P'tK_REWRITE.TAC [IBSERT.DEF ; EXTEBSIOB]

TIEB REPEAT STRIP.TAC TREB COBV.TAC (OBCE.DEPTH.COBV SET.SPEC.COBV)
THES EQ.TAC TRES STRIP.TAC THES ASH.REHRITE.TACa i

V.IBSERT.ABSORP - prova.tha('V.IBSERT.ABSORPL,
"KG:'Graph) v. (GRAPHG) A (¢ ISVERTEX G) -u>
<(* »SERT.VERTEX 0) m
REMRITE. TACCIHSERT.VERTEX.DEP IS.VERTEX.DEF]
THEI REPEAT STRIP.TAC THES IHP.RES.THSS SURSTL.TAC GRAPH.PAIR
TIEB PURE.UVRITR.TACCVXRTICRS {EDGES]
THES IHP.RES.TREB SUBSTLTAC IB.IBSERT.ABSORP THU REFL.TAC) :;

BBSERT.ABSORP - prova.tha(E.IBSERT.ABSORP<.
"KG:'Graph) a. (GRAPHG) A (a »EDGE 0) — >
((a IRSERT.EDOE G) - G)",
REHRITE.TACCIBSERT_EDGE | DEP] THEB REPEAT STRIP.TAC
THEB IHP.RES.TAC GRAPH.EIME.VERTEX THEB ASH.REHRITE.TACC]
THEB IHP.RES.TAC IS.EIMI.DEF THEB IHP.RES.TREB SUBSTL.TAC IB.IHSERT.ABSORP
THEB COBV.TAC (OSCS.DEPTH.COBV STR.COBV) THEB IHP.RES.TAC GRAPH.PAIR);;

FIHITE.aMPN.IHSERT.EDGE m prova.th«( ‘FIBITE.ORAPH.IISERT.EDOE' ,
“*(0:*Graph) a. FIBITE.GRAPH G — > FIHITE.ORAPHU »SERT.EDGE 0)",
PURE.OHCE.REHRITE.TACCPIBITE.GMPH.DEP]
THEB REPMT STRIP.TAC THEBLC
IHP.RES.THEB (\t. HATCH.ACCEPT.TAC t) GMPH.IISERT.EDOE;
PURE.REHRITE . TACCVERTICES ; »SER T .EDGE.DEP]
THEB FIRST.ASSUH ACCEPT.TAC;
PURE.REHRITE.TACCEDGES; IBSERT.EDGE.DEF]
THEB COHD.CASES.TAC THEB PURE.ASH.REHRITE.TACCPIBITE.IBSERT]]) i i

S G.TER —Intaraactioa af tae graph« S
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1st O.ITER.DEF - ass.iafis.dsflaitisa('Q.IITER.DEF",
"0.IBTU (01 :-Graph) 02 =
(((vS 01) ism (VS 02>). ((ES 01) ISTBS (ES 92)))*)::

1st OSAPM.ISm - provs_tha(‘OEAPM.ISTEB1,
*1(01:* Graph) 02
(aura oi> A (aurs 02) — > (oupe (01 0.ism 02>>",
PUEE.OBCE.REHITE.T<C[aUPH.DECOHP]
TIU PUU.OBCE.EEHBITE.TACCa.IBm.DEF]
TEES PUU.OBCE.EEHEITE.TACCVEBTICES ;EDOES]
THU PUU.OBCE.EnEITE.TAC[aUPH.DEF]
THU REPEAT CEL.TAC THU STELP.TAC THU EUEITE.TACCIB.ISm]
THU aU.TAC THU STEIP.TAC THU EU.TAC THU ASH.EEHEITE.TACQ >:

1st a.lBTU.IDEET - provs_ lha(‘O IETtt.IDUT"
»1(0:*Oraph). (0 O.IBTEE 0> - 0"
OU.TAC THU EURITE.TACCa.IBTU. DEF IBTER.IDEHPOT ;VS.DEF.ES.DEF]) ; ;

15t 0.I1Sm.STR - prsvs.thaCa.[ETU.STH1.
*1(01:*0raph) 02. (01 0.HTO 02) = (02 a.lHTU 01)".
REPEAT OU.TAC THU RURITE_TACCO.IBm_DEF;PAIR_EQ]
THU COBJ.TAC THU HATCH.ACCEPT.TAC IHTEE.CONH)::

1sta.ism.usoc - pro*s_thy(‘0.BTERASSOCL,
"1 (01 :*Qraph) 02 03,
((0i 0.ism 02) o.iim as) - (01 a.iitee (02 o.istee 05>>
REPEAT OU.TAC THU REVRITE_TAC[a_IETXA_DEF:PAIR EQ :EATICES ; EDOES]
THU COEJL.TAC THU HATCH.ACCEPT.TAC IBm.ASSOC);

1st VUTU.IB.IBTU m prsvs.tha(‘VERTEX.IB.IITER",
*1(01 :*Orsph) 02 v.

(> IS.VERTEX (01 O .1im 02)) - ((* ISVERTEX 01) A (* IS.VUTEX 02))",

REPEAT OU.TAC
THU UVRITE.TACCO. IETER.DSF,».VERTEX.DCF,VERTICES, IB.IBTER]> ;

1st EDOE.IS.lim - prsvs.tha('EDOE.IB.ETER',
"1(01:*Oraph> 02 s.
(s ISEDQE (01 O.ism 02)) m ((s ISEDOE 01) A (s IS.EDOE 02))".
REPEAT OU.TAC
THU REHRITE.TACCO.ISTU.DEF ;IS.EDOE.DEFEDOU; IS IETU] >;;

X O.UBIOB - salsa of tas graphs X

1st O.UBIOS.DEF - ass mle usflamsa('o.usma DBF',
"0.UBIOB (01 :*Graph) O
(((VS 01) UHIOB (VS 02>> ((ES 01) UBIOB (U 02)>)">II

1st ORAPN.UBIOB - prsvs_tha( ' ORAPH.UHIOH' ,
"1(01 : *Oraph> 02.
(OUPH 01) A (ORAPH 02) — > (ORAPH (01 O.UBIOB 02)>",
OICE.REHRITE.TACCORAPH.DECOHP] THU 0aCE.RURITE.TACCa.UBIOS.DEF]
m s OBCE.REHRITE.TACCVERTICES ;EDOES] THU OBCE.REWRITE.TACCOUPH.DEF]
THU REPEAT OU.TAC THEB STRIP.TAC THU REVRITE.TACCILUIIOI]
THU OU.TAC THU STRIP.TAC THEB UB.TAC THU ABH.RURITE.TACa) 11

1st O.UBIOB.IDEBT - prsvs.tha( ‘0.UBIOB.IDUTL,
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la*

la*

la*

la*

5

*1(0:*Oraph). (0 0.UBIOI 0)
OU.TAC THU UMBITE_TAC[O.UHIOB_DEF ;UIIOI_IDEHPOT,VS.DEFES.DEF)); ;

O.UHIOH.STH - prova.that'0.UHIOH.SYH" ,

*1(01:‘Graph) 02. <01 0.UBIOB 02) m (02 Q.UHIOB 01)".
UTUT OEBTACn 0 EnAITB_TAC[O.UHIOH.DBFIPAIB_E<U
THU COHLTAC THU HATCHACCKPT.TAC UIIOL.COHH) ;;

0.UIIOLASSOC - prow.that0.UBIOB.ASSOC' ,
*1(01 :*Oraph) 02 09.

((0i o.ubioh 02> o.uaioa 03> - (0i 0.uaios <02 0.uaioa 03>>",
UPEAT OU.TAC THU AnAITE_TAC[a_USIOS_DEF;PAIB Eq:VnTICESEDOES]
THU COBJ.TAC THU HATCaACCEPT.TAC UBIOA.ASSCC) : 5

VEBTICES.IB.UBIOB - prova.that'VEATICES.IB.UBIOB' ,

*1(01:-Graph) 02 vI v2

(OEAPH 01) A (OBAPH 02) A

(v1 IS.VUTU 01) A (v2 ISVEATEX 02) B>

((vI 1S.VUTU <01 O.UBIOB 02)>A (v2 ISVEATEX (01 O.UBIOB 02)))"
SEPEAT OEB.TAC THU UHAITI_TAC[O_UIIOI.DEF;IS.VEATIX.DEF ;VISTICES ;EDCES]
THU STAIP.TAC THU ASH.AEHAITE.TACCIB.UHIOH]) ;;

VEATEX.IB.UHIOH - prova.that ‘VEATEX.ILUHIOB®,
"1<01:'Graph) 02 V.
(V IS.VEATEX (01 0.UBIOB 02)) - <(v IS.VEATEX 01) V (v IS.VEATEX Q2)>",
EEPEAT OU.TAC
THU EUAITE.TACCO.UHIOH.DEF :1S.VEATEX.DEF ; VEATICES ; IH.UBIOB] > ;

EDOE.IB.UHIOH - prova.tha('EOOE.IB.UBIOB’,

"=(01:'Qraph) 02 a.

(a IS.EDOE (01 O.UBIOB 02)) m ((a IS.EDOE 01) \/ (a IS.EDOE 02)>",
UPEAT OU.TAC THU ERtAITE.TAC[O_USIOS.DEF; IS.EDOE.DEF :EDOES ;IB.UBIOB]) ; ;

VEATEX.ISEAT.EDOE m provo.thatIVEATEX.|IS EAT. EDGEm.
"1(0:'Graph) v a. (v IS.VEATEX (a IISEAT.EDOE 0)) m (v IS.VEATEX 0)",
UPEAT OU.TAC THU AEUAITE.TAC[IBSEAT.EDOE_DEF ;IS.VEATEX.DEF ;VEATICES] ) ; ;

X laaaal - |- 10 vl v2

lot

la*

OAAPH O A vI IB (VS 0) A v2 IB (VS 0) —>

OHAPKtvl v2,A> IHSEAT.EDOE 0) X

laaaal w AEWAITE_AULE[a_arc_DEF;0.doa.DEF ;FST:SBD] (an.ALL
(SPEC "(v1.v2 .Al) *Edgo” (SPEC'O:*Oraph” OAAPH.IHSUT.EDOE))>i|

laaaal w UHAITE.AULE[a.arc.DEF :a.daa.DEF :FST:SBD] (O U.ALL
(SPEC "(v2,v1,a2): ~Edga" (SPEC' O:"Oraph" OAAPH.IHSEBT.EDOE))) +;

OAAPH_IHSEAT.EDGES m pros«.that 'OAAPH.IBSEAT.EDOES *,

*1(0:"Oraph) vI v2

(OAAPH 0) A (VI IS.VUTU 0) A (v2 IS.VEATEX 0) »&>

(111. OAAPH((vI,v2 Al> ISEAT.EDOE 0)) A

(1*2. OAAPH((v2,vl 2> IISEAT.EDOE 0))",

UP EAT OU.TAC THU STEIP.TAC THU COIJ.TAC THU OU.TAC

THU IRP.US.TAC laaaal THU IHP.EU.TAC laaaal THU ASH.UHBITE.TAC[]>:;

laaaal - OU.ALL ( SPEC “(01 0.UIIOI 02):'Oraph” OUPH.IBSnT.EMES) ;i

0.UBIOB.IBBUT.EOOU m prow.that '0.UBIOLIBSEAT.EDOES' ,
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* £(01:*0raph> 02 v1 *2.
(GRAPH OD A (ORAPH 02) A
(vI ISVERTEX 01) A (v2 ISVERTEX 02) — >
(0'si. ORAPH ((vi v2,il> ISERT.KOQE (GI QUHIOH 02)>> A
(1*2 GRAPH ((v2,vl.s2> IHSERT.EDGI (01 O.UHIOS 02))))",
REPEAT OES.TAC TIES STRIP.TAC THE! HATCHHP.TAC 1 m |
THIS COBLTAC THEHL C
IHP.RES.TAC GRAPH.UIION;
HATCH.HP.TAC VERTICES.IB.UBIOH THE! ASH.REHRITE.TACH]] >

0.1SS.ISS.E m provo.tha(‘0.IBS.IHS.E",
"1(0:*Oraph) «1 2.
((GRAPH (<1 IBSERT.EDGE 0)> A (GRAPH <*2 ISSERT.EDOE 0))) — >
((GRAPH (vi IBSERT.EDOE (<2 ISSEST.EDGE G))) A
(GRAPH (a2 IBSERT.EDGE (<1 IHSERT.EDGE 0)>))",
REPEAT STRIP.TAC THES IHP.RES.TAC aRAPH.IBSERT.EDQE
THES FIRST.ASSIRI HATCHACCEPT.TAC); ;

GRAPH.IISERT.EDOES2 m TACPROOFi( a.

"1(0:" Graph) vI v2 «1 *2.

(ORAPH 0) A (VI IS.VERTEX 0) A (v2 IS.VERTEX 0) — >
(QRAPH((vl.v2,xI) IBSERTEDGE G>> A

(GRAPH!(v2,v1 *2) ISSERT.EDOE 0))"),

REPEAT OU.TAC THES STRIP.TAC THE! IHP.RES.TAC Im |
THES IHP.RES.TAC lama2 THU ASH.REHRITE.TACQ) : ;

lam i mOESALL ( SPEC "(01 O.UHIOH 02):'Graph" GRAPH.ISSERT.EDOES2), ;

0.UBIOB.ISSHRT.EDOES2 - TAC.PROOF!([]
*5(01:'Graph) 02 vI v2 *1 *2
(ORAPH 01) A" (GRAPH 02) A
(vI ».VERTEX 01) A (v2 ».VERTEX 02) — >
((ORAPH ((VI,v2.zI> IBSERT.EDOE (01 O.UBIOH 02))> A
(ORAPH ((v2.v1.x2) »BERT.EDGE (01 O.UHIOH 02>>>)'>.
REPEAT QES.TAC THE! STRIP.TAC THES HATCH.HP.TAC loaaal
THES COSJ.TAC THEBL [
IHP.RES.TAC ORAPH.UHIOH|
HATCH.HP.TAC VTICBS.IH.UBIOH THES ASH.REHRITE.TACH]]) i:

X O.UHIOH.ISS.EDOES - |-
D(OL: Graph) 02 v1 v2. (GRAPH O1) A (ORAPH 02) A

(vl

(111 m2. ORAPH ((v1.v2 .x1) IHSRRT.EDOE ((vz v1.x2) IHSERT.EDOE (01 O.UHIOS 02)>)>"X

lot

B

IS.VERTEX 01) A (v2 ».VERTEX 02) —

0.UBIOH.IBS.BDORS ® *av#.tha(*0.|

OEHALL (DISCH.AU. (OBl "x2:00" (

(UHDISCH (IHP.TRASS (SPBC.ALL O.UHIOS.ISSERT EDOES2)
(SPEC "(v2,vI,x2>:*EO(0" (SPEC “(vI ,v2 xI):*Edga"
(SPEC *((01 :*Oraph> 0.UBIOH 02)" O.IHS.IHS.E)))))))))ii

USIOS.IIS.EDGES".

B "*lee"

.3 The file mk-subgraph.ml

X PILE: ah.aabgraph.al
X DESCRIPTIOS: daflnitloa of aabgraph and asm thooroM X
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X AUTHOR: Uni Hong DATE: 1 AUO 1990 nodlIfiod Jun 91 X

X

X- Definition of n oubgrnph X

X- H in n subgraph of O iff H In n graph and its surtax not la a aubsat X

X- of that of 0 and Ita odgo ant la nlao a aubaat of tha adga aat of 0. X
X

lot SUBGRAPH.DEF - nev.definition (' SUBGRAPH.DEF .
"SUBGRAPH (H:'Graph) (0~Oraph) m
(GRAPH H> A (GRAPH G) A
((VS H) SUBSET (VS G> A ((ES H> SUBSET (ES G>>">;;

lot SUBGRAPH.REFL m prove.thaK ‘SUBGRAPH.REFL',
“10:-Graph. GRAPH G mm> SUBGRAPH 0 0"
REWRITE.TAC[SUBGRAPH.DEF: SUBSET.REFL]>; ;

lot SUBGRAPH.TRAIS - prove.tha(‘SUBGRAPH.TRAIS ‘,
“1(01:-Graph) 02 03.
(SUBGRAPH 01 02) /\ (SUBGRAPH 02 G3> — > (SUBGRAPH 01 03)".
REHRITE.TAC [SUBGRAPH.DEF] THES REPEAT GEH.TAC THES STRIP.TAC
THE! IHP.RES.TAC SUBSET.TRASS THE! ASH.REWRITE.TACU>; ;

let SUBGRAPH.AHTISYH m prove.thnCSUBGRAPH ARTISTS',
KO :*Graph) 02
(SUBORAPH 01 02) A (SUBGRAPH 02 GI) —-> (01 - 02)",
RIHRITE.TAC[SUBORAPH.DEF] THE! REPEAT GEB.TAC THEE STRIP.TAC
THE! IHP.RES.TAC SUBSET.AITISTH THE! IHP.RES.TAC ORAPH.EQ); ;

let SUBORAPHORAPH - prove.thn (' SUBGRAPHGRAPH' ,
M(0:*Oraph) H. (SUBGRAPH H G) mm> (GRAPH G) A (ORAPH H>",
REWRITE. TAC[SUBORAPH.DEF] THE! REPEAT STRIP.TAC
THEI FIRSTASSUH ACCEPT.TAC) ::

X
X" Definition of a proper anbgraph X

X- Hla a proper aubgraph of 0 iff H la a graph and Ita vertex aet la a -X
X- proper aubaet of that of 0 and ita edge aet la alao a proper aubaet -X
X* of the edge aet of 0.

let PSUBGRAPH.DEF - aea.definitlon (' PSUBGRAPH.DEF* ,
"PSUBORAPH (H :* Oraph> (0 Graph)

(SUBGRAPH H 0) A (((VS H) PSUBéH (VS 0)) \/ ((IS H) PSUBSET (ES 0)))*

let PSUBGRAPH.SUBGRAPH - prove.thni ‘PSUBORAPH.SUBORAP!
=M(0: Graph) (H:-Oraph) . (PSUBGRAPH H 0) — > (SUEGRAPH HO)"
PURE.OICE.REWRITE.TAC[PSUBORAPH.DEF]
THEB REPEAT STRIP.TAC THEI FIRST.ASSUR ACCEPT.TAC)!i

let PSUEGRAPH IRREFL m prove.thn( «PSUBGRAPH.IRREFL* ,
. Gray GRAPH 0 -»> '(PSUBORAPH G 0)",
REWR\TE TAC [PSUBGRAPH.DEF {SUBORAPH_DEF;DE.HOBOAH.THH: PSUBSET.IRREFL]) ; ;

let SUBSET.CASES m
let leal - OICE.REWAITE_AULE(DISJ_SYHJEXCLUDED.RIDDLE la
TAC_PROOF((OI ,
“I(a:(e)aet>t. (a SUBSET t> - (a PSUBSET t) V (a mt>"),
REPEAT OEH.TAC THU REWRITE.TAC[PSUBSET.DEF:RIOHT.OR_OVER.AID:lea]
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Tin EI).TAC THEILC

DISCH.THEH <\t. PURE.REWRITE.TAC [t ;OR.CLAUSES]) ;
PURE.REWRITE.TAC[EXTEISIOI; SUBSET.DEF

THEI STRIP.TAC THE! GEL.TAC T ill PURE.ASH. IITE.TACCIMP.CLAUSES]])

1st SUB.PSUB.TRASS - TAC_PROOF((C] ,
"I(=:(=)meq) t V. (W SUBSET t> A (t PSUBSET u) mm> (= PSUBSET u>">,

IHP.RES.TAC PSUBSET.TRABS; ASH.REHRITE.TACC]]) !;

lct PSUBSUB.TRABS - TAC.  r((D
“I(m:(<)ect) t @ (a PSUBSET t) A <« SUBSET @) — > (= PSUBSET a>">,
PUAE.DICE_AEBAITE.TAC[SUBSET.CASES] THEI REPEAT STRIP.TAC THEBLC
IHP AES.TAC PSUBSET.TRABS;
UIDISCH.TAC "a PSUBSET (t:(*>B«t>" THEE ASH.REWRITE.'ACN])i!

1*t PSUBGRAPH.TRASS - pro*«.tha('PSUBGAAPH TRASS =,
*1(01:'Graph) 02 03,
(PSUBGRAPH 01 02) A (PSUBORAPH 02 03) m=> (PSUBGRAPH 01 03)" .
PURE.REHRITE. TACCPSUBORAPH.DEF SUBGRAPH.DEF]
TIBI REPEAT OEB.TAC THEB STRIP.TAC THIS IHP.RES.TAC PSUBSET.TRABS
THEB IHP.RES.TAC SUBSET.TRASS THEB IHP.RES.TAC PSUB.SUB.TRABS
THEB ASH.REHRITB.TACC]) ;1

lot low | - TACPROOF<(C]=
‘==(0-Graph). (ORAPH 0) — >
(lo. 0 IB (ES 0) — > (care a) IB (VS0) A (o.doa a) IB (VS 0))">,
OSCE.REWRITE.TACCGRAPH.DECOHP]
THEI REHRITE.TACCORAPH.DEF;VERTICES ;EDOES]) i ;

lot DELETE.PSUBSET - TAC.PROOFi <CI .
*I(s:(¢)sot> a. (a IB a) —> (a DELETE ) PSUBSET a*),
PURB.REHRITE.TACCPSUBSET.DBFIEXTESSIOB] THEB REPEAT GEB.TAC
TUB STRIP.TAC THEB COBJ.TAC THEBLC
HATCH.ACCEPT.TAC DELETE.SUBSET;
COBV.TAC BOT.FORALL.COIV THU EXISTS.TAC “a:**
TIES ASH.REHRITE.TACCIB.DELETE])) ;

3

PSUBORAPH.DELETE.EDGE - pro*«_tha(* PSUBGRAPH.DELETE.EDGEL,
"KG:-Graph) «

(ORAPH 0 /\ (= IS.EDOE 0)> — » (PSUBORAPH (0 DELETE.EDGE =) 0)"

REHRITE.TAC[SUBGRAPH.DEF; PSUBQRAPH.DEF ; DELETE.EDOE.DEF;
VERTICES; EDGES; IS.EDOE.DEF]

THEB REPEAT OEB.TAC THEB STRIP.TAC THEB IHP.RES.TAC DELETE.PSUBSET

THEI ASH.REHRITE.TACCSUBSET.REFL; DELETE. SUESET]

THEI ASH.CASES.TAC "(ES (0:*OrapR>> - ()" THEBL
ASH_REWRITE_TACCBHPTY_DELBTE;ORAPH_DBF;HOT.. EMPTV]
ASH.REHRITE.TACCDELETE.SUBSET :0RAPH.DEF;» DELETE]

THEB OEB.TAC THEB STRIP.TAC THEB IHP.RES.TAC lcaa*|
TSEB ASH.REHRITE.TACC]) i =

5

SUBGRAPH.DELETE.EDaE m prove.tha('SUBQRAPH.DELETE.EDOE' ,
*I(0:*0raph> «.

(GRAPH 0) »> (SUBGRAPH (0 DELETEEDGE => 0>",

REWRITE. TACCSUBORAPH.DEF; DELETE EDOE DEF; VERTICES EDGES]
THEB REPEAT OEB.TAC THEB STRIP.TAC
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THU ASRCASES.TAC "(IS <0:'Graph)) m (}" THEILC
ASH.AEWAITE_TAC[EHPTY.SUBSET; EMPTY.DELETE; SUBSET.AEFL;
QBAPH_DEF;IOTH_ENPTY];
ASH.AEWRITE.TAC [SUBSET.AEFL ;DELETE_SUBSET;0BAPH_DEF;». DELETE]
TMEE OEE.TAC THU STAIP.TAC THU IMP.HU.TAC Im m |
THU ASM.AEWAITE.T4Cn] >;;

t DIFF.SUBSET m TAC.PAOOFi (I .
"1(«:(a)@*> t. (= DIPT t) SUBSET a"),
AEPEAT OU.TAC THU AEWAITE.TACtSUBSET.DEF ; IE.DIFF ;ABDLTHH]) :;

lot SUBOBAPH.DELETE.mnX - pro»a_tha(‘SUBQAAPH.DELETE.VERTEX' ,

*1(0:"Graph) v
(OBAPH 0) --> (SUBOBAPH (0 DELETE.VERTEX ») 0>",
UWBITE.TAC [SUBOAAPH.DEF; DELETE.VEBTEX.DEF; VEBTICES; EDGES;
IS.VEBTEX.DEF; IS.EDGE.DEF]
THU BEPUT STBIP.TAC THEHLt
BEWBITE_TAC[4BAPH.DEF ; I1.D IFF ;».DELETE ; IIC IDEBT.WITH.DEF i IS EDGE.DEF]
THU COEY.TAC (DEPTHCOBV SET.SPEC.COEY)
THU BEHBITE_TAC[DE_ROBOAH.THM; EDGES]
THU GU.TAC THU SntP.TAC THEILC
BU.TAC;
INP.BES.TAC |h m | THEE 4SH.AEWAITE.TAC[]] ;
POP.ASSUM ACCEPT.TAC;
HATCH.ACCEPT.TAC DELETE.SUBSET;
HATCH.ACCEPT.TAC DIFF.SUBSET]>:;

«t PSUBABAPH. DELEn VnUX - pro*»_tha(' PSUBOMPH.DELETE.VERTEI',
++KO:-ar«ph)
(0BAPH 0 A (* 1S.VUTEX 0)) —> (PSUBOBAPH (0 DELETE.VERTEX V) O)H
BEWBin. TACCSUBOBAPH.DEF: PSUBOBAPH.DBF; DELETE.VEBTEX.DEF;
VEBTICES ;EDOES; IS.VEBUX.DEF; IS.EDGE.DEF]
THU BIPEAT OU.TAC THEE STBIP.TAC THU IHP.BU.TAC DELETE.PSUBSET
THAI ASR.BEWBITE.TAOCSUBSR.BEFL ; DELETE.SUBSR ; DIFF.SUBSET]
TMU BUBITE.TACCOBAPH.DEF;11.D IFF;IE.DELENIlICIDUT.Win.DEFilS.EDOE.DEF]
THU COHV.TAC (DUTH.COIV SET.SPEC.COIV)
THU BHBITE.TACCDE.noBOAETHM] THU OEI.TAC THU STBIP.TAC THULC
BU.TAC;
IHP.BU.TAC INM1 THU ASH.BHBin.TACCV8.DU]]1)::

- HK.SUBOBAPH croata» = lubgnph tram a grapk glriag tao pradicataa
ahich aalact tha »artica» and adga» froa tha eriginal grapk.
Thara ara aa additional conatrait tkat tka and potata of tka
adgaa la tha aubgrapk auat ba tha varticaa la cha« aubgraph, thua
«ha folloalng tao thooroaa

lat HLSUBOBAPH.DEF - naa.daflaltloa( ‘HE.SUBOBAPH.DUS.
"HI.SUBOBAPH (0 ;*Oraph> f* «a -
{« 1 vIsVEBTEX 0 A fv «>,
{a | alISEDGE 0 A fa a A f* (o.sre a) A «a (a.daca»");;

U't HLSUBOBAPH.OBAPH m prava.thai( 'HE.SUBOBAPN.OBAPH' ,
M <0:Graph) «V «a.
(OBAPH 0) --> GRAPH (HLSUBOBAPH 0 fv fa)".
REWRITE. TACCHE.SUBGAAPH.DEF ;0BAPH.DEF: VERTICES ;EDOES]
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THU PURE_REWRITE.TAC[I8_VERTEX_DEF;IS.EDOE.DEF]
TIKI REPEAT OE1.TAC THE! 8TRIP.TAC THE! OE8.TAC THEE STRIP.TAC
THE! IHP.RES.TAC In u | TREE ASH.AEWAITB.TACQ) ;;

lat HE.SUBGRAPH.SUBQRAPH - prova.thai‘HE.SUBORAPH.SUBGRAPH' ,

"= (0:"Graph) #* f=.
GRAPH 0) — > SUBGRAPH (HI.SUBGRAPH G fv fa) O

REHRITE TACCSUBORAPH.DEF] THEE REPEAT GEB.TAC THEE STRIP.TAC

THEE IHP.RES.TAC HE.SUBGRAPH.GRAPH

THU PURE.ASH.REHRITE.TAC [AED.CLAUSES]

THEE REWRITE.TAC [HE.SUBGRAPH.DEF ; VERTICES ; EDGES ; SUBSET.DEF ;
|1S.EDGE.DEF; IS.VERTEX.DEF]

THEE COBV.TAC (DEPTH.COBV SET.SPEC.COBV) THEE COBI.TAC

THEE REPEAT STRIP.TAC THEE FIRST.ASSUH HATCH.ACCEPT.TAC) ;;

X GRAPH.ISO —  Graph iaoaorphlaa X

naa.apacial.ayabol *—» *Js
naa.apaclal.ayabol =>-»*;;
naa.apacial.ayabol =< >*:;

lat GRAPH.ISO.DEF - naa.dafinitlon(‘ORAPH.ISO.DEF* .
"ORAPH.ISO (0:'Graph) (H:'Graph) (f.g) -
(GRAPH 0) /\ (ORAPH H) A" <(VS 0) <--> <VSE))f A «ES 0) <--> (ES H>>g">55

lat GRAPH.ISO.AUTO - prova.thaCGRAPH.ISO.AUTO* .
"10:'Graph. GRAPH 0 > GRAPHISO G G (1.1)",
REWRITE.TAC[GRAPH_ISO_DEF :FUE_I] >;

lat GRAPH ISO.TRABS - prova.tha(‘GRAPH.ISO.TRAES',
*1(01: Graph) (02:Graph) (03:*Oraph> f1 gl 2 g
(ORAPH.ISO 01 02 (fl,gl>> A (ORAPH.ISO 02 03 («2 92)) - >
(GRAPH.180 01 03 ((f2 a ft), (g2 0 g1)))"
PURE_OBCE REWRITE.TAC[GRAPH.ISO.DEF] THEE REPEAT STRIP.TAC THEBL[
ALL.TAC; AIX.TAC;
IHP.RES.TAC FUB.ISO.0; IHP.RES.TAC FUR.ISO.0]
THES FIRSTASSUH (\th g. ACCEPT.TAC th g>)i:

lat GRAPH.ISO.SYH a prova.thaCORAPH.ISO.SYH' ,
*1(0: Graph) (H:'Oraph) f g. (ORAPH.ISO G H (f.g)) me>
(Tf> g>. (ORAPHISO H 0 (f'.g")))"
PURE.OHCE.REWRITE.TAC[ORAPH.ISO. DEF] THEE REPEAT STRIP.TAC
THEE EIISTS.TAC *(FUE.IBV (VS (0:'Graph)) (VS (H: Graph)) t>"
THEE EZISTS.TAC "(FUB.IBV (ES (0:'araph)> (ES (H:'Oraph)> g>"
THEE IHP.RES.TAC ISO.FIBV TRES ASH_REWRITE_TAC[)): :

lat GRAPH.ISO.SYH.IEV - prava.thaCORAPH.ISO.SVH.IBV* .
“KG:'Graph) (H*Graph> f g. (ORAPHISO G H (f,g>> *m>
(ORAPH.ISO H G ((FUB.IBV (VS 0> (VS H) f). (FUB.IBV (ES 0) (ES H) 9)))".
PURB.OBCE.REWRITE.TAC[ORAPH.ISO.DBF] THEE REPEAT STRIP.TAC
THEE IHP.RES.TAC ISO.FIBV THEE FIRST.ASSUH ACCEPT.TAC); :

cloaa.thaoryo :;
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B.4 The file mk.elist.ml

an.tktorji‘iliitl;
load.library‘aata';;
naa.parentigraph*;;
autoload.all'graph';
aat.flagCatichyltruo>:;

lot Vertex
Edge -

(0 s 0 =00)" and

Graph = “;(*)eet = (a = 0 = oa)oat";;

lot IULL.IIL - provo.thaCIULL.IIL*,
"11:(a)liot. IULL 1m (1 m []>",
LIST.IDUCT.TAC THU AEWAITE_TAC[IULL;10T.COIS.IIL] >;;

lot ILINP.ILUIOI - TAC_PyOOF<<[],
s> a t. (x 1mt) > x 11 (@ ULIOI &),
SCR.HTRO.THH2] ) 33

X Roabarahip of list—— la analogy with aot aanbarahip (11) X
X ELEH 1 X la TRUE Iff X la an olaaant of tho Hat 1 X

lot ELEH.DEF ® noa.llat.roc.dofInltion (‘ELER.DEF',
“(ELEH [] (x:0) - P) A
(ELEH (COIS h t> (X!0) a (x - h) \/ (BLER t «»"));

X Soso thaorosa about ELER and other Hat oparatora X

lot IULL.IOT.ELm - preva.th»(4ULL.IOT_ELn*,
"11. BULL 1 — > Ix. '(BUM 1x)*.
OICB.EEWITE.TACNVLL.IIL]
THEE OEI.TAC TEE! DISCN.THEI (\t.EEWITE_TAC[t ;ELEH.DEF]));;

lot ELER.COIS - prove.thn(' ELEH.COISL.
“11 X y. (ELER 1 x> — > (ELEH (COIS y 1) )",
LIST.IDUCT.TAC TNEI REWRITE.TACtELEN.DEF ;IULL]
THE! REPEAT GEI.TAC THU STRIP.TAC THEI ASH.REWRITE_TAC[])::

lot ELEH.APPEID * prova.tha(ELERAPPEIDL,
"111 12 X. (ELER (APPEID 11 12) x) * ((ELER 11x) \/ (ELEH 12 x>>",
LIST.IIDUCT.TAC TRES REWRITE.TAC[APPEID ;ELER DEF]
TXEI REPEAT GEI.TAC THE! ASH.REWRITE.TACCDISIASSOC)) ;;

lot ELEREL m prove.ths<'ELER.EL',
“I(1t(o)llst) x. ELEH 1 x ==> (Tn
LIST.IDUCT.TAC TNEI RENRITE, TAC[ELEH DEF]
TNEI REPEAT STRIP.TAC TNEIL[
EXISTS.TAC "0* THU ASH.REWRITE.TAC[EL ;HD] ;
RES.TAC TNU EXISTS.TAC "SUC n" TNEI ASR.REWITE.TAC[EL;TL]]>i;

X Prove tho ogalvale of aot soshorahlp (I1) and Hat =rahip (ILEH)X
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lot ILELEH m proyo_thn(UI.ELEN',
aat. FIIITE = ~> Tho Hat. la. (a Il a) -
SET.IIDUCT.TAC THEIL[
EXISTS.TAC Hat* THE! REWRITE_TAC[ELEH.DEF;IOT.ILEMPTY] ;
EXISTS.TAC “(COBS a («1. la. a Il a m ELBE 1 a)):* Hat"
THE! REWRITE.TACtELEH.DEF;II.IISERT
TIE! QELTAC THE! EQ.TAC THE! STEIP.TAC THESLC
DISJI.TAC TIEI FIUTASSUH ACCEPT.TAC;
DISJ2.TAC T in FIUT.ASSini (ASSUMETAC O SELECTRULE)
Tin uidisci.TAC "(a:a> 11 a"
Tin FIESTASSUM (\t. MATCH.ACCEPT.TAC
((«at 0 EQINP.RULE = SPECALL) t>);
DISJIL.TAC TU I FIST.ASSUM ACCIPT.TAC

DISJ2.TAC THE! FIISTASSUM (SUBSTLTAC o SPECALL o SELECTRULE)
THE! FIRSTASSUM ACCEPT.TAC])) i :

(KLIM X ",

t- UIIQUELEL la traa 1« all alaaaata of tho Hat ara distinct -X

X
lot UIIQUE.EL.DEF m naa.llat.roc.docinition (‘UIIQUE.EL.DEF',
“(UIIQUEEL [] =T) A

(UIIQUE.EL (COBS (kd:0) tI
(BVUY (\a. *(a = kd>> t1) A

(UIQUE EL t1))")i

lot UNIQULEL.TL - provo.thaCUIIQUB.EL.TL' .
wll (k:*). UIQUE.EL (COIS k 1) — > UIIQUE.EL 1".
OICE.REWRITE.TAC[UNIQUE.EL.DEF] THU REWRITE.TAC[AID2_THM]) ;;

lot USIQUE.EL.SIMP - pro*o_tka(' UIQUE_EL_SINP‘,
Hla:o. UIIQUE.E

L [a]",
an.TAC TMEI REWRITE. TAC(U\IQUE EL.DEF ;EVERY.DBF] >;

lot ELn.IOT.UIIQUE EL.COIS - pro»«.that ELBM.SOT. UIlQUE EL.COM-,
"1

(k:0>. (ELU 1k) — > ~(UIIQUE.EL (COIS k 1))"
LIST.IDUCT.TAC THUL[

RIWRITE.TACCELEH.DIF] ;

OICE RBWRITE.TACCELN.DEF ;UIIQUE.EL.DEF]

Tin REPEAT an.TAC Tin STRIP.TAC

Tin OICE.mRITE.TACCEVNT.OIF] THEIL[
COIT.TAC (OSCE.DEPTH.COIV IETA.COIW)
THU_ASH.RNRITE.TACCDE.NOROALTMH] ;
RES.THEI HP.TAC THU RnRITE.TAC[DE.HOROALTMH;UIIQUI.EL.DEF]
THE! STRIP.TAC THU ASH.REWRITE.TACCI]])::

lot SOT.ELn.UIIQUE.EL.COIS m pro*o.thm(‘IOT.ELEM.UIIQUE.EL.CO1S",
“Il (k:0). (UNIQUEEL 1) A *(ILn 1 k> — > (UIIQUEEL (COIS k 1>>"
LIST.IIDUCT.TAC TRULC
REWRITE.TACCELEH.DEF jUIIQUE.EL.DEF ;EVERT.DEF] ;
PURE. DICE. REWRITE.TAC[ELEH.DEF ; UIIQUE.EL.DEF]
THU PUN.OICE_REWRITE.TACCDE_NOROAS.THR{UIIQUE.EL.DEF;EVNT_DEF]
THU UPIAT OU.TAC THU STRIP.TAC
THU COIV.TAC (OICE.DEPTH.COIV BETA.COIT) THU RES.TAC
THEI POP.ASSUR (\t. STRIP.ASSUMETAC
(OICE.REWRITE.RULE[UIIQUE.EL.DEF]t))
THU ASH.UWRITE.TACC] THU COIV.TAC (OICE.DEPTM.COIV SYH.COIV)
THU FIRST.ASSUH ACCEPT.TAC]>; i
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X- ELSET coaatrncta a sat containing all aloaoata of a Hat -X

lat EL.SET.DEF = aaa. \Iat rac_daflaitloa<'EL.SETJ>Er,
“(BL.UBT [] - {»
(EL.SET (COES hd «1 o* liat) - I1SEBT hd (EL.SET tI>)">;;

lot EL.SETAPPESD - prov«_ttua(EL.SET.APPEID' ,
“I(1l:0 Hat) 12. EL.SET(APPEID 11 12) -
(EL.SET 11) UBIOI (EL.SET 12)",
LIST.IDUCT.TAC TREBLE
REWRITE TACE APPEBD ;EL.SET.DEF UBIOLEHPTT] ;
OBCE.REVRITE.TACEAPPEBD; EL.SET.DEF]
THEB obce. rewrite_taceel_set. def] TRES asn.rewrite. taceibsert.ubiob]
THEB REPEAT OEB.TAC THEB COBD.CASES.TAC TREBLE
POP.ASSUN (ASSUHE.TAC 0 REWRITE.RULE[] )
THEB ASSUHE.TAC (SPEC "(EL.SET 12):(«>act"
(SPEC "(EL.SET 11):<o0)aot" (SPEC “(h:0)" IB.IHP.IB.UBIOB)>)
THEB RES.TAC THEB IHP.RES.TAC ABSORPTIOB;
REFL.TAC]]);

lot ELEH.IB.EL.SET - proco_tha('ELEH_IB.EL.SET*,
“Il a. ELEH 1 ama IB (EL.SET 1)*,
LIST.IBDOCT.TAC TREBLE
REWRITE.TACEELEH_DEF;EL_SET.DEF:BOT_IB.EHPTT] ;
REWRITE.TACEELEH.DEF ;EL.SET.DEF : IB.IBSERT]
THEB REPEAT OEB.TAC THEB ASH.REWRITE.TACE]]>: ;

X DISJ.L1ST-—too Hats ara disjoint if tha sota of tholr alaaaats X
ars disjoint.

1st DISLLIST.DEF - nas.dofinition('DISI.LIST.DEF*,
"DISILIST (H:(o)llst> 12 - DISIOIST (EL.SET H) (EL.SET 12)*):;

1st DISILIST.EHPTT - prova.tha('DISLLIST.EHPTTL.
“11:(0)list. (DISLLIST [] 1) A (DISLLIST 1 EP*
REWRITE.TACEDISJ.LIST.DEF :EL.SET.DEFiDISJOIBT.DEF : IBTER.EHPTT]) : !

lat DISJ.LIST.COBS - pro*a.tha(‘DISJ.LIST.COIS*,
"111 (12:(o)liat) h. (DISI.LIST (COBS h 11) 12) -
((DISJ.LIST 11 12) A -(ELEH 12 k>>",
LIST.IBDOCT.TAC THEB

REWRITE_TACEDISJ.LIST.DEF jEL.SET.DEF :ELEH.IB.EL.SET: DISJOIST.IBSERT]) : ;

lot DISL.LIST.APPEBD ® pro»«.th»(IDISJLIST.APPEID"
“111 (12:(0)Hst> 13. (DISJ.LIST (APPEBD 11 12) 13) m
((DISJ.LIST 11 13) A (DISJ.LIST 12 13))",
LIST.IBDUCT.TAC
TRES PURE.REWRITE. TACEAPPEID ;DISJ.LIST.COSS ¢ DISJ.LIST.ERPTY)
TRES REPEAT OEB.TAC THEB ASHREWRITE.TACE
TIER EQ.TAC THEB STRIP.TAC THU ASH.REWRITETACN) :;

lot DISJ.LIST.com - pro»a_tha(‘DISJ.LIST.com1.
“I(Il:(o)Uat> 12. DISJ.LIST 11 12 - DISJ.LIST 12 11*.
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BEVEITE.TACCDISJ.LIST.DEF] THBI HATCH.ACCEPT.TAC DISJOIBT.SYH)  ;

X- Oiaan » path p, VEE.LIST raturai a H it if all aarticai p alilti -X
X- V.L raturai a Hat of all aarticai axcapt tka laltlal aaa.

lat V.L.DEF w naa_liit.rac.dafin itial( V.L.DEF,
“(v.o - o)A
(V.L (COBS <hd:~Edga) tI> m COBS (a.dai hd) (V.L t1))*)i

lat VU.LIST.OEF - naa_liat.rac.daflaitiaa(‘Vn.LIST.DEF',
"VNLIST [] - [1) A

(vn.LIST (COES (hd'Edga) tI> m COES (a.ire hd) (V.L (COBS hd tl1)))”):;

lat V.LAPPEBD -proaa.thaCV.L.APPnD- .
“Ipl (p2:(Edga)llit).
(V.L (APPND pi p2)> m (APPESD (V.L pl> (V.L p2>>",
LIST.ISDUCT.TAC THEE OSCEKEMKITE.TAC(APPEID ;V.L.DEF]
THU OBCE.EEMEI TE.TAC[APPEID;V.L.DEF] THEI
on.TAC THU EEFLTAC;
OBCE.ASE.EEMEITE.TACC] THE! UP EAT OU.TAC THU EEFL.TAC]) 11

lat EOTEULLVNLLIST - prava.tha(‘EOTFULLVELLIST ,
1(p:(‘Edgalllit ).
BULL p =m> ((Vn.LIST p) m (COBS (a.irc (ID p>) (V.L p>>>",
QELTAC THEE STEIP.TAC
THES IHP.EESTHEE (\tk. OBCE.EEMEITE.TACCHH]>
(OECE.EEMEITE.EULECEO.SVHEQ] COBS)
THU EEMEITE. TACCVEE.LIST.DEFHD;TL.V.L.DEF]) ;;

lat Vn.LIST.COBS - proaa.thaCVn.LIST.COIS* ,
“Ip (h:(Edga>>.
(vn.LIST (COBS h p)> m (COBS (a.irc h) (COBS (a.dai h> (V.L p>)>",
LIST.IBDUCT.TAC THU EEHEITE.TACCvn.LIST.DEF;V.L.DEF])»;

lit BOT.BULL.Vn_LIST.COBS m pro»u.thai( ‘SOT.BULL.vN.LIST.COBS' ,
"1 (h:'Edga>. BULL 1A (a.dai h - a.irc (HD 1>) — >
(vn.LIST (COBS hi) - COBS (a.irc k> (VU.LIST 1))",
BEPEAT STEIP.TAC THU IHP.AES.THU SUUTI.TAC BOT.8ULL.Vn.LIST
THU ASH.EEMHITE.TAC [Vn.LIST.COM]); ;

lit TL.VU.LIST - proaa.tha('TL.vn.LIST',
"I (p: (-Edga)liit). BULL p — > ((TL (VU.LIST p>> - (V.L p))".
OEH.TAC THU STEIP.TAC
THU IHP.EES.TMEB (\th. OBCEEEMEITETACCH]> SOT.BULL.VU.LIST
THU EEMEITE.TACCTLI);

lat VU.LIST.APPUD - praaa.th>(‘Vn.LIST.APPEBD".
“1(pi:(*Edga)lilt) p2. (BULL pi) A (HULL p2> — >
((Vn.LIST (APPEBD pi p2>) > (APPEID (VU.LIST pi) (TL (VU.LIST p2))>>
LIST.IBDUCT.TAC TMULC
BEHAITE.TAC[BULL];
AEPEAT OU.TAC THIS STEIP.TAC THU EEMEITB.TACCVn.LIST.DBF;APPOD]
THIS IHP.EES.THES (\th .EEMEITE.TACCth]) TL.VU.LIST
Till OBCE.UMEITE.TAC [(OBCE.EEMEITE.EULECEQ.STR.EQ]V.LAPPEBD)]
THU EEMEITE.TACCAPPEHD]]) ,;
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lat UBIQUE.EL.COIS m prova_tha('U1IQUE.EL.COIS =,

“11 (h:a). (ULIQUEEL 1) /\ *(h Il (EL.SET 1)) --> (UIIQUE.EL (COIS h 1)),

LIST.IIDUCT.TAC THEIL[
RUBITE_TAC[BL_SET_DBF;UIIQUE_EL_DEF;BOT_Il_EHPTY ;EVEAT.DEF]
OBCB.UHBITE_TAC[UBIQUE_EL_DEF]
TUB UHBITB.TACtEL.SBT.DBP ;IB. IBSEBT ; DE_NOBQAB_TMH; BUBT.DBF]
THEB BBPEAT STBIP.TAC THULt
BETA.TAC THU COBT.TAC (OICE.DEPTH.COIV STN.COBV)
THEB ASH.UHBITB.TAC] i
BES.THEB HP.TAC THEB BEHBITE.TACtUIIQUE_EL.DBF]
THEB BEPEAT STBIP.TAC THEB US.TAC:
ASH.UHBITE_TAC[UIQUE_EL.DEF]]]) ::

lat BOT.UBIQUB_BL.COBS - prova_tha(*BOT.UBIQUE.EL.COIS' ,
“Il (h:a>. (h IB (ELSET 1)> — > (UIIQUE.EL (COBS h 1) - F>",
BBHBITE.TACtUBiqUB_BL.DSF :DE_HOBOAB.THH]

THEB LIST.IIDUCT.TAC THULt

REVRITE.TACtEL SET.DEF :UBIQUE.EL_DEF;HOT_Il_EHPTY] ;
OBCB.BEHBITB.TACBL_SET.DSF]

THU OBCE_UHBITE_TACtUBIQUE.EL.DEF]

THU BBHBITB.TACtIB.IBSEBT]

THEB UPBAT OBB.TAC THEB STBIP.TAC THEBLt
BEUBITE.TACEVEHY.DEF] THEB BETA.TAC THU ASH.UHBITB.TACH] ;
REHBITE.TAC [EVERY.DEF ; DBHORQAB.THH]
THU US.TAC THBB ASH.REWRITETAC]]]) i i

lat UHIQUB.BL.APPBBD -
lat tha > "111 (12:* Hat). UIIQUE.EL (APPBBD 11 12) -
(UIIQUE EL 11) A (UIIQUEEL 12) A (DISJ.LIST 11 12)"

Iat UUT.APPBBD - TAC PROOFUQ ,
"I(11:= Hat) 12

EVERY P (APPBBD 1_1 12) - (UUT P11) A (UUT P 12)")
LIST.IBDUCT.TAC THU

ASH.UHBITE TACtAPPEBD :EVERY_DEFiCOBJ.ASSOC])

la
lat laa - TAC.PROOFUY].

mKUC m —) h EVERYAX. -(* - h))1- BLU 1 h").
LIST.IBDUCT.TAC TUB REWRITE.TACIEVERY.DEF;ELEH.DEF]

THU COBT.TAC (OBCB.DEPU.COBT BBTA.COBV) THE! UPEAT QU.TAC

THU PUU.OBCB.ASH.BBHBIN.TACtDB.HOBOU.THH

THU BQ.TAC THU miP.TAC THU COBT.TAC (OBCE.DEPTH.COBT STH.COBT)
THU CON.TAC THU FIUT.ASSUH ACCBPT.TAC)

prova.tha('UHIQUB.EL.APPEBD', tha,
LIST.IBDUCT.TAC THULt

RBHBITB.TACtAPPUD iEL.SET.DEF;UBIQUE.EL.DEF,DISJ.LIST.DEF ;

DISJOIBT.DEF; IBTEB.EHPTY] ;

OBCE.BEHRin.TACtAPPBBD;EL.SET.DEF]

THU OICB.UHRITE.TAC[UBIQUE.EL.DBF]

THU PURE.O1CE.ASH.REWRITE.TACtDISJ.L IST.COBS ;EVERY. APPEID]
THU PUBE.OICE.ASH.REWRITE.TAC[laa] THU REPEAT OU.TAC

THU BQ.TAC THU BTBIP.TAC THU ASH.BBHBITB.TACt]]);:

lat UBIQUE.V.L.COI» - prova.tha(‘UBIQUE.V.L.COBS',
“!(p:("Edga)1llst>h. UBIQUE.EL(V_L p> /A '(BLU (V.L p) (a.daa h)>
— > UBIQUE.EL(V.L (COBI h p>>",
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REWRITE.TACCV.L.DEF]
THE! HATCH.ACCEPT.TAC IOT.ELEH_UIIQUE_EL.COIS) : ;

ot UIIQUE.VEB.LIST.COIS » prore.thm(‘UHIQUS.VER.LIST.COIS® ,
"Kp: (Edge)liet) h “(HULL p)
UIIQUE_KL(VE»_LIST p) A ((- ere (HD p)> m (a dea h>> A
*(LOOP h) A S(EL« (VEH LIST p> («.«re h)>
UHI QUE EL(VEH.LIST (COIS h p>)*.
PURE_OHCE_REWRITE_T»C[VER_LIST_DEF] THE! REPEAT STRIP.TAC
THE! IHP.RES.TAC IOT.ELEH.UEIQUE.EL.COHS
THEE POP.ASSUH HP.TAC THEE IHP.RES.THEI SUBSTLTAC I0T.EULL.VEH.LIST
THEE ASH_REURITE.TAC[V_L.DEF] >} ;

let UHIQUE.EL.VER.LIST.TL m prore.thm (' UHIQUE.EL.VER_LIST_TL',
“tp: (‘Edge)list. -(HULL p) —
UHIQUE EL (VER.LIST p) — > UIIQUE.EL (TL (VER.LIST p)>",
OEH.TAC THEE STRIP.TAC
THEE IHP.RES.TKEE (\th. REURITE.TACCth]) SOT.SULLVER.LIST
THEH REWRITE.TACCUIIQUE.EL.DEF ;TL ;ABD2.THH] >: ;

Xat UBIQUE.VER.LIST.APPEBD m prore.thmi ‘UBIQUE_VER.LIST.APPEBD* ,
“I(pl:(-Edga)U*t> p2 (0:-Orepfc). 'BULL pi /\ ‘BULL p2 —>
UIIQUE.EL (VER.LIST pi) A UHIQUEEL(VER.LIST p2> A
DISJ.LIST(V.L pIXV.L p2) A "(ELEH (VER.LIST p2) (».rre (HD pl))>
-=> UHIQUE.EL(VER LIST(APPEBD pi p2))*
REPEAT OEB.TAC THEB STRIP.TAC
THEH IHP.RES.TAC VER.LIST.APPEBD THEH STRIP.TAC
THEB ASH.REHRITE.TACCUHIQUE.ELAPPEBD]
THEB COHJ.TAC THEHLC
IHP.RES.TAC UBIQUE.EL.VER_LIST.TL;
IHP.RES.THEB SUBSTL.TAC TL.VER.LIST
THEB UBDISCH.TAC "BLBH(VER_LIST(p2:(-Bdga)li»t> >(a_arc(HD(pl: (*Edga)lict> ==
THEH IHP.RES.THEB SURSTILTAC HOT.HULL.VER.LIST
THEH PURE.OHCE.REWRITE.TACCDISJ.LIST.COHS{ELEH.DBF]
THEH PURE.OBCE.REWRITE.TACCDE.HOROAB.THH]
THEH STRIP.TAC THEH ASH.REWRITE.TACQ] )

clo«*.theory()::

B.5 The file mk-path.ml

X FILE: Bk.path.BI X

X DESCRIPTION definition of paths and aoaa theorome X

X AUTHOR: Wal Wong DATE: 1 AUQ 1990 modified Jun 91 X
X

nae.theory'path’;j

load.library'aata';
. paraat*graph* i |
autoload.all'graph
nee.parentlallati:
autoload.all'dist’;
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X Vortax, Edga and Graph ara dafinad aa abbraviatlona for tha typaa uaadX
X to rapraaaat varticaa, adgaa and graph*

X
lot vartan m and

*e*e aa)' and

i(a)aot = (= #* = a*)oat’;;

Graph »

lot HD.APPEED m TAC_PAOOF(([],
“Ipl p2:(a)liat. (‘BULL pi) — > (HD (APPBID pi p2> - HD pi)*),
LISTIEDUCT.TAC THE
REWRITE.TAC[APPEID;KILL;HD]);;

X
X- A oalk in a graph la a liat of adgaa in which tha EXIT of aach alaaont.
axcapt tho laat, la aqual to tha EITET of tha following alaaant.-X

lot WALE.TAIL.DEF - aaw_llat.rac. daflnlllon(‘wALE TAIL_DBF" .
“(WALE.TAIL 1L (G Graph) -
(I(hd:*Edga) t1. HALE.TAIL (co&s hd tl) Gm
(GAAPH 0) A\ (hd IS.EDGE G) A
(WULL t1) \/ (HALE.TAIL t1 G) A (a.daa hd - o.arc (HDt1))))")::

lot HALE.DEF m nao.daflnition (‘ UALE.DEF*.
"HALE O (w:(‘Edga)llat) - *(TOLL @) A (HALE.TAIL a «)");:

lot HALEEETET.DEF - naw.dafinition (' WALXEETRY.DEF1,
"HALX.EITRY (1:(*Edga)llat) - a.arc (HD 1)"):

lot HALE.BXIT.DEF - naw.llat.rac.dafinltlon(‘HALE.EXIT.DEF* .

"HALE.EXIT (COES (hd:'Edga) tl) -
(BULL t1) » (a.doa hd) I (HALE.EXIT t1)*);;

X- Atrail In agraph la a walk whoaa odgaa ara all dlatinct X

lot TEAIL.DEF m aao.dafinition (' TRAIL.DEFL,
“TRAIL (0:-Graph) (1:(*Edgo)llat> - (HALE G 1) A (UEIQUE.EL 1)");;

X- A path In agraph la a trail whoaa varticaa aro all dlatinct X

lot PATH.DEF m naw.dafInition(1PATH.DEF',
"PATH (0:'Graph) (1:(*Edga)llat> -
(TRAIL Q1) A (UEIQUE.EL (VER.LIST 1))"):;

lot PATR.EETRT.DEF> aao.dafinItioa('PATH.EETRT.DEF',
“PATH.EITRY (1:(*Edga)liat) - a.arc (HD 1)");:

lot PATH.EXIT.DEF m nao.daflnltloni' PATH.EXIT.DBF*,
"PATH.EXIT (p:(*Edgo)llat) m HALK.EXIT p*):;

lot EOT.EULLLIST - TAC.PROOF(([]
“11:(a)liat. *HULL 1 — > (?h t. 1 W (COES h «>)">,
LIST.IDUCT.TAC THEILt REWRITE.TAC[EULL];
REPEAT STRIP.TAC THEE EXISTS.TAC "h:0"
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THE! EXISTS.TAC “I:(o)list” THE! XEFL.TAC]);;:

X- Soa* facts about MALL. TRAIL and PATH -X

1st PAT«TRAIL - prova_tha(‘PATH.TRAIL',
"1(1:(*Edga)list>0. PATH 0 | — > TRAIL 0 1*.
RIHRITLTACIPATM.DIFIARDLTHN]>; ;

-

st TRAILWALK m prova.tha(' TRAILWALE'
"1(1:(Edga)llst) 0. TRAIL 0 1— > HALE 0 1",
REWRITE.TAC[TRAIL.DEF; AID1.THH]>i ;

15t PATHWALE - prova.tha ( PATHWALE,
Edga)list) 0. PATHO 1 — > HALE 0 1*,
REPEAT STRIP.TAC THE! INP.RES.TAC PATH. TFAIL THU IHP.RES.TAC TRAIL.WALE); ;

lot PATM.ORAPN - prova.tha(‘PATH.GRAPH' .
"1(0:Graph) 1. PATH O 1— > Gi
PURE.REWRITE.TAC [PATH.DEF ; TRAIL.DEF IWALE Di
THU UPEAT STRIP.TAC THU UHDISCH.TAC "HALE.TAIL 1 (0:'Oraph)"
THU IHP.RES.TAC IOT.HULL.LIST THE! POPASSUH SUBSTLTAC
THE! PURE_OICE.REHRITE.TACCUALR_TAIL.DEF]
THU STRIP.TAC THE! FIRST.ASSUH ACCEPT.TAC) : ;

=

t PATH.HOTHULL - prova.tha(‘PATHHOTHULL'
“Ip (0:~Qraph). PATH 0 1 — > 'BULL 1",
REPEAT QU.TAC THU DISCH.TAC THU IHP.RU.THU HP.TAC PATHWALE
THU RURITE.TAC[WALE.DEF] THEE STRIP.TAC )::

S

t PATH.WALLEBTRY m prova.tha(PATH.WALE.UTRT*,
“Ip:(*Edga)list. PATH.EITRT p - WALEEITRT p".
RURITE.TAC [PATH.RETRY.DEF,WALE_EBTRT_DEF]); ;

lat PATM.COIIECTED - prova.th«('PATH.CO1ISCTED"
“Ip (h:'tdga> 0.
(PATH 0 (COIS k p>) A ‘(HULL p> -m> ((0.dos h) - (s.src (HD p)>)",
RURITE.TAC[PATH.DEF; TRAIL.DEF iWALE.DEF]
THU OSCE.REWRITE.TAC[HALE.TAIL.DEF] THU REPEAT OU.TAC THU STRIP.TAC
THU UHDISCH.TAC “BULL (p:(-Edgo)llst)" THU ASH.RURITE.TACD ) ;

X- A graph Is connactad if thars Is a path la It botsosa any pair
of vortlcss X

1st CORRECTED.DBF - aas.dafiait loa(* COSIECTED.DEFL,
"COE1BCTED (0 :'Oraph) -
(GRAPH 0) A
(Iv1 va. (vt ISVERTEX 0) A <va ISVERTEX 0) A *(v| » V3> —>
(TI. (PATH 0 1) A (VI m PATH.ESTAT 1) A (v2 m PATN.EXIT 1)))")ii

1st COUECTED.ORAPH - provs.tha( ‘COSBECTED.ORAPH' .
“1(0 :*Oraph). COSEECTED O — > ORAPH 0",

THU UPEAT STRIP.TAC THU FIMT.ASSUH ACCEPT.TAC) |:

1st COIEECTED.SIIO - prova.tha(‘COSHECTED.SISO" .
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'I*. COBBECTED («*>. <»:'Or*ph>",
THE! REPUT OEE.TAC THE! STRIP.TAC TREE POP.ASSUH HP.TAC TEE! ASR.RURITE.TAC[]>;;

v 3
X- Two path«* ara disjoint iff thalr adga aata ara disjoint and thoir  -X
X- vortiz sots ozpoct ths ontrlas art disjoint. i((
lot DISJLPATH.DEF - nos.dtfinitionCDISJ.PATH.DEF1,
"DISJLPATH (Gi'Graph) (pi;(‘Edgo)list) (p2:(‘Edgo)list) -
(PATH O pi) A (PATH G p2) /\ (DISJ.LIST pi p2) /\
(DISILIST (V.L pi) (V.L p3>>">;

-X
X- HAS.PATH 0 «1 *2 if thora is a path in G froa vl to »
X

lot NAS.PATH.DEP - noo.dofinltion(*HAS.PATH.DEF*,
"HAS.PATH (0:'Graph) vt v3 m ?p:(‘Edga)list. PATH 0 p A
(PATHEBTRY p m vi> /\ (PATH.EXIT p m 0a)">ii

lot HAU.EETRT.COIS - provo.thn('WALE.EBTRY.COBSL,
“I(p:(‘Edga)list) h a. (UALEEITRT (COIS h p>> m (0.0rc h>"
REWRITE_TAC[WAU.EETRY_DEF;HD]):;

lot HALLUTRY.APPEED - provo.thn(‘UALE.EITRY.APPEID' ,
“Ipl (p2:(Edgs)list) G. (MALIO pi) A (HALE O p2> »>
(HALE.EETRY (APPEED pi p2> - HALE.EETRY pi)“,
REHRITE.TACCHAU.DU; WAU.EBTRY.DEF] TREE REPUT OEB.TAC
THEE STRIP.TAC THEE INP.RES.TAC HD.APPEED THU A8H.REHRITE.TACC]);;

lot HALEEXITAPPEBD.losm -
lot BOT.EULLAPPEED - TAC.PROOK (O .
“Kpl:(Edgo)list) p2m ‘BULL p2 — > ‘BULL (APPEED pi p2>">,
LIST.IBDUCT.TAC THEE (REWRITE.TAC[APPEED;BOLL])) in
TAC.PROOF (([],
“Ipl (p2: (‘Edgo)list). * (BULL p2> me>
(HALEEXIT(APPEED pi p2> - HALE.EXIT p2)*),
LIST.IBDUCT.TAC THU UHRITE.TAC[APPUD
THU OBCE.RURITE.TACCHALE.UIT.DEr] THU REPUT STRIP.TAC THU RES.TAC
THU IHP.RU.TAC EOT.BULLAPPEED THU ASH.REHRITE.TACC));;

1st HALE.EEITAPPEBD m provo_thn(HALE.EXIT.APPEBD*.
“«pi (p2:("Edge)1lst) 0. (HALE O pi) A (HALE O p2> — >
(HALE.EXIT(APPEED pi p2> - HALEEXIT p2>",
REHRITE. TACCHALE.DEF] THU REPUT STRIP.TAC
THU IHP.RES.TAC HAU.EEIT.APPUD.1osm THU ASH.REHRITE.TACC]);

Iot PATHEBTRY.SIHP - provo.thn('PATH.EHTRY.SIHP1,
“f(n:0) v (»;cc>. PATHRETRY[(uv,*)] - u"
REWRITE.TAC[PATH.EETRY.DEF:s.src jHD])::

lot PATH.EEIT. S\HP - pro*o.th»CPATE.UIT.SIHP" .
~=i(n:0) » (c:==). PATH.EXIT[(u v »)] =
REWRITE. TAC[PATH.EXIT.DEF:HAU.EXIT.DEF;0.dos HD:EULL] > ;

lot PATHEETRY.COHS - provo.tha(‘PATHEBTRY.COBS*,
“Ip (hi'Edgo). PATH.EBTRY(COBS h p) m O.sre h",
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o

U

PUBB_OBCE_RURITE_TAC[PATH_HALE_EITAY]
THE! HATCH.ACCEPT.TAC HALE.EETET.COIS);;

PATH.EXIT.COIS - pro*«_thB(‘PATH_EXIT_COIS',

“Ip (hr'Edgo). 'BULL p — > (PATH_BXIT(COIS k p) = PATH.EXIT p)".
PUU.EEiraiTE.TAC [PATH.EXIT.DEF jHAU.EXIT.DU]

THE! REPEAT OE1.TAC THU DISCH.TAC THU ASH.UHRITE.TACC]>;;

PATH.EITRY.APPEID m pros«.the( ‘PATH.KXTRr.APPEID' ,
“111 (12:(*Edgqlist). PATH 0 11 -»>
(PATH.EITRT(APPEID 11 12) m PATH.EITRY 11),
REPEAT STBIP.TAC THU IHP.RU.TAC PATH.HOTHULL
THU IHP.RU.TAC HOT.IULL.LIST THE! POPASSUH SUMT1.TAC
THEE RURITE.TAC[APPUD:PATH.EHTRT.DEP;HD]) i 5

IHP.APPEHD.IOT.IULL - TAC.PROOP(( I ,
111 (12:(0)lict>. ‘HULL 11 V "HULL 12 --> ‘HULL (APPEHD 11 12)"),
LIST.IHDUCT.TAC THU RCTRITE.TAC[IULL;APPEID]);;

PATH.EXITAPPEID m pro*«.tha(*PATH.UIT.APPUD" ,
"111 (12:(~Edgq)list). HULL 12 me

(PATH.EXIT(APPEID 11 12) - PATH.EXIT 12)",
PURE.OICE.RURITE.TACCPATH.UIT.DEF] THE!
LIST.IIDUCT.TAC THU UURITE.TAC[APPUD;MALK.UIT. DEF]
THU REPEAT STRIP.TAC THU IHP.RU.TAC IHP.APPEID.IOT.EULL
THU ASH.REHRITETAC[] THU RU.TAC);;

HALE.COBS - prove_tha('UAU.COSS".
“Ip h (0:'Graph)
(HALE 0 p) A (h ISEDGE 0) A ((«<loe h> - HALEEITRY p) —>
(WALK O (COBS b p)>"
RURITE . TAC [HALE DEF; HALE.EITRY. DEF]
THU LIST.IDUCT.TAC THULC
REWRITE.TAC(HULL),
OHCE.RURITLTACCHALLTAIL.DU] THU RURITE.TAC[BULL;HD]
THU REPEAT QEH.TAC THE! STRIP.TAC THEIL[
PUU.OICE.RURITE.TAC[HAU.TAIL.DEF] ;
ASH.CASES.TAC "HULL (p:(‘Edge> llet>" THEIL[
PUU.OICE.RURITE.TACCHAU.TAIL.DU] ; US.TAC]]
THU ASH.UHRITE.TACC]>::

HALEAPPUD m prosc.tius< ‘HAU.APPUD',
“Ipi p2 (0:*OrRph) .
(HALE 0 pi) A (HAU 0 p2> A (HALEEXIT pi - HALE.EITRY p2>— >
(HALK O(APPUD pi p2>>",
EEHRITE.TAC [HAU.DEF] THU LIST.IDUCT.TAC THU UHRITE.TACCAPPEID ;BULL]
THU OICE_RURITE.TACCHAU.TAIL.DU] THU OHCE.RURITE.TACCHAU.UIT.DU]
THU ASH.CASU.TAC "BULL (pi : (*Edg«)lIRt>" THULC
IHP.RU.TAC IULL.IIL
THU ASH.RURITE.TACCAPPUD ;BULL;HAU.UTRY.DU]
THU UPEAT OELTAC THEE STRIP.TAC THU ASH.REHRITE.TACC];
ASH.REHRITE.TAC[] THEI REPEAT OEB.TAC THU STRIP.TAC
THU RU.TAC THU IHP.US.TAC HD.APPEID THU ASH.REHRITE.TACC]]);;

Ut HAU.CAT - pro*«.ch» CHAU.CAT',

”1(0:'Graph) pi p2. (HAU 0 pl> A (HAU G p2> A
(HAU.EXIT pi m (HAU.UTRY p2>:c> *m>
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2p3. (MALI O p3> A (MALLBITIT p3 - MALLEITAY pi) A

(MALLENT p3 - MALLEXIT p2) /\ (p3 = APPKID pi p2>"
BKPIAT QBITAC THE! STEIP.TAC THE! EIISTS.TAC "APPELD pi (p2:(*Edga>liat>"
THE! CON.TAC THEIL[

IHP.RES.TAC MALLAPPEID;

IHP.RES.TAC MALIEITBT.APPEID

THE! IHP.RES.TAC MALE.EXITAPPEID THE! ASH.REMRITE.TACD]>!!

lat PATH.EDOE.IO.LOOP - pro»«.th«(*PATH.EDOE.IO.LOOP' ,
Ip (h:(*Edge>) 0. (PATM 0 (CO1S h p)) — > (‘(«.are h - adaal))",
IEMIITE_TAC[PATH_DEF:TRAIL_DEF;MALI.DEF]
THE! OICE_IEHBITE.TACCMALE_TAIL.DEF ;UIIQUE.BL_DEF; VEL.LIST.DEF]
TIE! OICEIEMIITE_TACCV_L.DEF] THE! OICE.UMIITE.TACCUliQUE.EL.DEF]
TU I OICLIEMIITE-TACCEVNT.DEF] THE! BETA.TAC
TIE! UPEAT 00.TAC THEI STRIP.TAC
TIE! COIV.TAC (OICE.DEPTH.COIV (IEMIITE.CO1V EQ.STH.EQ))
THE! ABH.UMBITE.TACC] )

Ict PATH.SIHP m prove.tha('PATH.SIHP*,
“1(0:"Qrph>«. (OBAPH 0) A (= IS.EDOE 0) A '(LOOP => —> (PATH 0 C«])*.
PUU.UMBITE.TACCPATH.DEF {TRAIL.DEF; MALLDEF ;MALI_TAIL_DEF]
THEI BEMBITE.TACCIULL DEF-UBIQUE _EL_DEF; VEB.LIST.DEF:V_L_DIFEVEBT_DEF;LOOP.DEF)
THEI COIV.TAC (OICE.DIPTH.COIV BETA.COIV)
TU | BEPEAT OELTAC THEI STBIP.TAC
THE! COIV.TAC (OICLDEPTH.COIV STH.COIV)
TU | BEPEAT COLL.TAC THEI FIUT.ASSUH ACCEPT.TAC) ::

let PATH.COIS « prove_tha(' PATM.COIS*,
“Ip B (0:Graph) .
(QBAPH 0) A (PATHO p> A (R IS.EDOE 0> A
((PATH.EITBT p) - (c<le= h>) A
(LOOP ) A -(BLIH (VU.LIST p> (care 1> A
~(ELEN p'h) — > (PATH 0 (COIS h p>>
LIST.IDUCT.TAC THEILC
UPEAT STBIP.TAC THEI IHP.BES.TAC PATH.SIHP;
UMBITE.TACCPATH.DEF ;TRAIL.DEF: PATH.MALLEITBY]
TMEI UPEAT STBIP.TAC THEILC
IHP.BES.TAC (COIV.BULE (OICE.DEPTH.COIV 8TH.COIV) MALLCOIS);
IHP.AES.TAC I0T.ELEH.UliqULIL.COIS
HATCH.HP.TAC UliqUE.VEB LIST.COIS THEI PUU.OICEIEMBITLTACCHD]
THEI ABH.UMBITE.TAC[HILL]
THEI FIBST_ASSUH(\t.ACCEPT.TAC(BEMBITE_BULECMALI_EITBY_COI]t) )]]) i;

PATH.CAT -

let tha m

“10 pi (p2:(*Edga)liat). (OBAPH 0) A

(DISIPATM 0 pi p2) /\ (PATH.EIIT pi - PATHEITBY p2> A
(ELBH (VU.LIST p2) (PATHEITBT pl>> — >

(?p3. (PATI 0 p3> A (PATH.EITBT p3 « PATH.EITBT pl> A
(PATH.EXIT p3 - PATHEXIT p2) A (p3 - APPEID pi p2>>"

la

lat laal - TAC.PROOFUD.
“10 (p: (‘Edga)liat). PATH O p mm> UliqUE.EL p*),
REMAITE.TAC[PATH.DEF;TAAIL_DEF]
THU UPEAT STBIP.TAC THEH FIRSTASSUH ACCEPT.TAC)
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l«t IM | - PURE_OBCEREWRITE.RULE[
(COBV.BULB (OHCE.DEPTH.COHV SYH.COHV) WALE.EETRY.DEF)]
UHIQUE.VU.LIST.APPEHD

pro»._th«<' PATHCAT'. tka,
PURE REWRITE. TAC[PATH. DEF; TRAIL.DEF ; DISJ . PATH.DBF; PATH.EXIT.DEF ; PATH.HALE EBTRT]
THE! REPEAT STRIP.TAC THEB EXISTS.TAC "APPEBD pi (p2: CEdgo)li«t)"
THE! REPEAT COBJ.TAC THELL[
IHP.RES.TAC PATH.KALI TREE IHP.RES.TAC UALEAPPEED;
XRPRESTAC lu i TIE! IHP.RES.TAC UBIQUE.EL.APPEED;
IHP.RES.TAC VALXDEF THEE IHP.RES.TAC l«u2;
IHP.RES.TAC HALE.EETRT.APPEBD;
IHP.RES.TAC WALE EXITAPPEBD;
REFLTAC)): ;

1st PATHAPPEED m pro*«.thu(‘PATHAPPEED' .
10 pi (p2:(*Edge)list). (ORAPHO) A
(DISLPATH 0 pi p2> A (PATHEXIT pi - PATHEITRY p2> A
(ELEH (VERLIST p2) (PATHEBTRY pl>) -->
(PATH O (APPUD pi p2>>",
REPEAT STRIP.TAC THEI IHP.RES.TAC PATH.CAT
THEB UHDISCH.TAC "PATH (Oi'Orsph) p3" THEE ASH_REHRITE.TAC[)); ;

X 1- 101 02 *1 *2 >1 *2
ORAPHOL A ORAPH 02 A *1 ISVERTEX 01 A *2 ISVERTEX 02 —>
ORAPH

((vI.v2.sl) IISERT.EDOE ((v2.vl.s2) IHSERT.EDOE (01 O.UHIOE 02))) X
U't loamsl - OEEALL (DISCHALL (COEJUHCTL (SPEC.ALL
(UIDISCHALL(SPEC.ALL O.UBIOB.IES.EDOES)))>) ; ;

l«t repeat m (m
lotroc rip mf 1+ I1f 1 + 0 thon : oloo (f . (rap (s-1) « 1) is
(r<p mt Q>||

It PATHEOT.IIL - provo.th«(*PATH.BOTHILL,
“1(0:*Qrsph). '(PATH 0 [])",
REWRITE TACCPATH DEF ;TRAIL_DEF jHALE.DEFEULL]>; ;

l<t WALETAILO.UEIOB - provo.tha( ‘WALETAILO.UHIOB',
"1(1:("Edgo)li»t) 01 02
(ORAPH 01) /\ (ORAPH02) A (WALETAIL 101) «>
WALETAIL 1 (01 O.UHIOE 02)",
LIST.IBDUCT.TAC THEE REHRITE.TACCHALE TAIL.DE!
THEE REPEAT OEB.TAC THU STRIP.TAC THU REPEAT COHJ.TAC THEBLC
1HP.RES.TAC ORAPH.UEIOB;
ASHREWRITE. TAC[EDOE. IE.UEIOH] ;
ASH.REWRITE.TAC[];
1HP.RES.TAC ORAPH.UHIOE;
ASH.REWRITE. TAC[EDOE.IE.UEIOE] ;
RES.TAC THU ASH.REHRITETACI]) ;;

1st PATHO.UHIOE m provo.tha(‘PATH.O.UHIOH',
"1(1:(*Edfe)llct>01 02. (ORAPHO1) A (ORAPH 02) A
(PATH 01 1) —> PATH (01 O.UHIOB 02) 1",
REWRITE. TAC[PATH.DBF; TEAI L.DEF \WALE. DBF] THU LIST.IBDUCT.TAC
THEE ABAVAITE TAC[BULL ;WALETAIL.DEF) THU REPUT OEETAC THU STRIP.TAC
THEE REPEAT COBJ.TAC THU ASH.REWRITE.TAC[] THEELI
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IHP.RU.TAC ORAPH.U1I01; ASN.RURITK.TACCKDOK.IL.UIIOI] ;
IHP.US.TAC GRAPK.UIIOI; ABN.UHBITE.TACCKIMB.ILU1IB];
IHP.BES.TAC HALK.TAIL.0.UIIOI THU ASH.BEHBITK.TACC]])::

lct UAU.TAILIIS.TEZ - prove_thic(*UAU. TAIL 1IS.VERTEX1,
"L CEdgOIbY * 0. (VALKTAIL | 0) -
(HALE.TAIL 1 (v IISEBT.VERTEX 0>

LIST.IDUCT.TAC TKEL BEUBITE_ TACCUALK.TAL DEF]

THE! REPEAT STRIP.TAC THEILC
IHP.KES.THEI HATCH.ACCEPT.TAC GRAPH.IISEBT.VERTEX ;
IHP.RES.THEL HATCHACCEPT.TAC IH.IHSUT.m TU;
ASH.REURITE.TACD ;
1HP.RES.THEH HATCH.ACCEPT.TAC aRAPH.IHSERT.VERTEX ;
IHP.RES.THEI HATCHACCEPT.TAC IH.IHSUT.m TU ;
RES.TAC THU ASH.REURITE.TACC]]>::

l«t UALK.TAIL.IHS.EDOE - pro»«.th«<‘UALK.TAIL.US.KDOE',

“1(L: (*Kdgelict) =0. (UALK.TAIL 10) > (UALK.TAIL 1 (= IHSUT.EDOE 0))".

LIST.IDUCT.TAC THU RURITE.TACCUAU.TAIL.DEF]

THU REPEAT STRIP.TAC THULC
IHP.RES.THU HATCH.ACCEPT.TAC aRAPH.IHSUT.EDOE;
IHP.RES.THU HATCH.ACCEPT.TAC IH.IHSUT.EDOE;
ASH.RURITE.TACa ;
IHP.RKS.THU HATCH.ACCEPT.TAC aUPH.IHSUT.EDOE;
IHP.RES.THEI HATCH.ACCEPT.TAC IH.IHSERT.1IME;
US.TAC THU ASH.UURITE.TACC]]>:;

et PATH 11S .VERTEX - pro»«_Hu«( ‘PATH.IKS .VERTEX1,
1(1: CEdg«)llpt) * 0. (PATH O X) —» (PATH (v IHSERT.VKBTEX 1) i>"
LIST.IIDUCT.TAC THEILC
RURITE_TACCPATH.IOT.1IL] ;
RURITE.TACCPATI.DEF ;TRAIL_DEF; UAU.DEF]
THU UPEAT QEH.TAC THE! STRIP.TAC THU ASH.UURITE.TACC]
THU IHP.RES.THU HATCH.ACCEPT.TAC UALE.TAIL_IISmTEX]):;

let PATH.IIS EDGE - prove_t(m(<PATH.US.EDOK'
“I(1:('Kdgq)lbt) =a. (PATH 4 1) mm> (PATH (= USUT.EDOE 0) 1>",
LIST.IDUCT.TAC T1ULC
KEUKITE_TACCPATH.IOT.11L] ;
RURITE.TACCPATI.DEF ;TRAIL.DEF ; UAU.DEF]
TU | REPEAT QU.TAC THE! STRIP.TAC THU ASH.RURITE.TACC]
THU IHP.RES.THU HATCH.ACCEPT.TAC UAU.TAIL_I1S.EDOE]) : ;

lct PATHI1S.EDGE2 m prov.tha( ' PATH.ISEDGE2" .
(0 :"0rph> »1 *2.
(GRAPH 0) A (»1 IS.VERTEX 0> /\ (»2 ISVEKTEX 0) /\ '(*1 mv2> ee»
IS. PATI ((»1.V2.1) 11SUT.ED4E 0) [(»1 .v2.*)]".
PUKE.KEURITE. TAC[PATH.DKF ; TRAIL.DEF ; UALK.DEF]
THU RURITE.TACCUAU.TAIL.DEF ; HULL]
THU REPEAT STRIP.TAC THULC
HATCH.HP.TAC GRAPH.USERT.EDaE THEI FIRSTASSUH ACCEPT.TAC;
IHP.RES.TAC EDQE.ILIISUTG THE! FIRSTASSUH HATCH.ACCEPT.TAC
HATCH.ACCEPT.TAC ULIQUE EL.SIRP:
PUU_UURITE.TACCVU_LIST.DEF ;V.L.DEF c.crc
THEH REURITE_TACCU1IQUE EL.DEF ; EVERY.DEF]
THU HETATAC THU CO1V.TAC (01CE.DEPTH.COB>
THU FLUTASSUH ACCEPT.TAC] >:;
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1

« PATHIS.EDQE m prova_tha('PATH.IS.EDQE',
“1(0:"Graph) h 1. PATI 0 (COIS h 1) — > h IS.EDQE 0".
PURE.REUEITE.TAC [PATH.DEF TIAIL.DEF ;UALI.DEF ; UALX.TAIL.DEF]
THE! REPEAT STEIP.TAC THE! FIRSTASSUH ACCEPT.TAC) ;i

lat PATH.ELEE.IS.EDOE - prova.thaC 'PATH.ELEH.ISEDGE',

“I(0:*Oraph> 1. (PATI 0 1) — > !z. ELEE 11 — > Z ISEDQE 0",
REURITE.TACCPATH DEF ;TRAIL.DEF ;UALI.DEF]
TRE! QELTAC THEE LIST.IIDUCT.TAC
THE! REUEITE.TAC [HULL ;UALI.TAIL.DEF ;ELEE DEF]
TAXI QELTAC THE! STEIP.TAC THEILC
IEP.EES.THEI SUBSTL.TAC SULL.IIL THE! EEUEITE.TAC[ELEE.DBF]
TEE! QELTAC TEE! STEIP.TAC THE! ASE.REHEITE.TACU ;
ASE.CASBS.TAC "BULL (1:(*EdgaHiat>" THEILC
IEP.EES.THEI SUBSTLTAC SULL.IIL THEI REHEITE.TAC[ELEE.DEF]
TMEI QELTAC THEI STEIP.TAC THEI ASH.EEHEITE.TACU ;
IHP.EES.TAC UHIQUE.EL.TL
THEI UHDISCLI.TAC "UIIQUE_EL(VER_LIST(COIS (h:*Ed(a) Lve=
THEI PUEE.OICE_REUHITE.TAC [VEE.LIST.COIS]
THEI PUEE.OICE_REUEITI_TACCUIIQUE.EL.DBF]
THEI SUBITI_TAC (ASSUEI "a.dao_(h:*ldga> - a.src(HD (1:(*Edga)liat>)">
THIS IEP.EES.THEI (\t. SUBSTLTAC
(COBI.EULE (OICE.DEPTH.COIV STH.COH») *>» IOT.IULL.VER.LIST
THEI STEIP.TAC THEI RES.TAC THEB REPEAT STEIP.TAC THEILC
ASH.EEHEITE.TACU; US.TAC]I])::

®

t PATH.IS.VERTEX - prova.thaCPATH.IS.VERTEX'
“1(Q:'Graph) h 1. PATI 0 (COIS h 1) — >
((a.arc h) IS.VEETEX Q) A\ ((a.daa h) ISVERTEX 0)",
REPEAT QELTAC THEI STEIP.TAC THEI IHP.EES.TAC PATH.IS EDOE
THE! IHP.EES.TAC PATH.QEAPH THE! IHP.EES.TAC ORAPH.IDOE.VERTEX
THE! C0».TAC THE! FIESTASSUH ACCEPT.TAC)

at PATH.ELEH_VEE.LIBT.IS.VERTEX - prova.tha('PATH.ELEH.VER.LIST.IS.VERTEX' .
~=t(0:Qraph) 1. (PATH 0 1) — > 1z. ELEI (VEE.LIST 1) z > z IS.VEETEX Q",
REUEITE.TAC CPATH.DEP :TEAIL. DEF ; UALE.DEP]

THU QELTAC TIH LIST.IDUCT.TAC
Tin REUEITETACCIULL;HALX TAIL.DEP;ELEH.DEP]
THEI ASH.CASES.TAC "SULL (1:CEdga)liat)"
THE! QELTAC THEI STEIP.TAC THEILC
IHP.EES. T iN SUISTL.TAC SULL.IIL
Tin REUEITE.TACCELEH.DEF,VEE.LIST.DEF;V.L.DEF] THU an.TAC
THU STEIP.TAC THE! POP.ASSUH SUBSTL.TAC TIRI IHP.EES.TAC QEAPH.EDQEVNTEX ;
IHP.EES.THEI SUBSTLTAC IULL.IIL
THEI REUEITE TAC [ELEH_DEF;Vn.LIST.DEF;V.L_DEP] THU QELTAC THU STEIP.TAC
THU POP.ASSUH SUBITLTAC THU IHP.EES.TAC QEAPHEDQE.VERTEX
RES.TAC;
IHP.EU.TAC UIIQUE.EL.DEP
THEI IHP.EES.THEI HP.TAC (OELALL (EIURITE.EULE[IULL]
(SPEC "COIS (h :~Edga) 1" UIIQUE.EL.VEE.LIST.TL)))
Tin IHP.EES.TAC IOT.IULL.m.LIST.COIS
THU PUEE.AIH.IEUEITE.TACCTL ;ELEH.DEF] T in REPEAT STEIP.TAC THEILC
POPASSUH SUBITLTAC THU IHP.EES.TAC QEAPH.EDQE.mTEX;
US.TACI])::

lat PATH.IIS.IIS.COIS - prova.tha('PATH.IIS.IIS.COSS".
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'M(0:~Oraph) 1 *1 *2's.
(PATH 0 1> /\ (v2 IS.VERTEX 0) /\ (*1 IS.VEATEX a) /\
(v2 - PATHEHTRT 1) A ’<*1 m *2)
PATE «vl.v2,s> IESUT.HDOE (vl ISERT VERTEX 0)> (COES (vlv2,I> 1)",
REPEAT OU.TAC THII STRIP.TAC TREE HATCH.HP.TAC PATE.COES
TU | REPEAT COH).TAC TREBLE
HATCH.HP.TAC OAAPH.IHSERT.EDGE THU RATCH.HP.TAC GRAPH.IRSERT.VERTEX
THEE IRP.RES.TAC PATH.ORAPH;
HATCH.RP.TAC PATH.IES.EME THEE HATCH.HP.TAC PATH.I*8.VERTEX
THEE FIRSTASSUH ACCEPT.TAC;
HATCH.HP.TAC EOOE.IE.IBSERT
THEE PURE.REWRITE.TACteore j«.dec VERTEX.IE.IBS.VERTEX]
THEE COBJ.TAC THEEL[
DISIL.TAC THU REFL.TAC.
DISI2.TAC THU FIRSTASSUH ACCEPT.TAC];
ASH.REHRITE.TAC[s.des] ;
PURE.REHRITE.TACCLOOP.DEF=.mre;s_dss] THU FIRST.ASSUH ACCEPT.TAC;
PUU_UWRITE_TAC[o_src] THEE IHP.RES.TAC PATH.ELEH VER.LIST.IS.VERTEX
THEE POP.ASSUH <\t. IHP.RES.TAC (COETRAPOS (ISPEC "VI:*" t> i
IHP.RES.TAC PATH.ELEH.IS.EDQE
THEE POP.ASSUH (\t. HATCH.HP.TAC (COHTRAPOS (ISPEC "(v1 v2,s):’Edge" t>)>
THU IHP.RES.TAC PATH.ORAPH THEE IHP.US.TAC EOT.VERTEX_EOT.EDOE
THU FIRST.ASSUH HATCH.ACCEPT.TAC]) i

CORRECTED. |1S.EDGE m provs.thn| *CORRECTED. IRS.EDGEL,
10 :'Graph . CORRECTED O — > <ia. CORRECTED (a IRSERT.EDGE 0))",
PUU.OECE_REWRITE.TAC [COBHECTED.DEF]
THEE PURE.OECE.REWRITE.TAC [VERTEX.| ISERT.EDGE]
THEE UPEAT STRIP.TAC THEBL[
IHP RES.THEB HATCH.ACCEPT.TAC ORAPH.IBSERT.EDOE;
RES.TAC THEE EXISTS.TAC "1; <*Edgs>list"
THEE IHP.US.TAC PATH.IBS.EDOE
THU REPUT COEJ.TAC THU FIUT.ASSUH HATCH.ACCEPT.TAC]):;

i< .thaoryO :;

B.6 The file mk_signal.ini
X< File: signalai——Theory of signala
Version: 3.1 Data: 2S Bov 1991

Anther: W Hang >X

theory ‘SIOIALL;;

X- Definition of shunting signal aspects X
let ShAspact.Aaloa - dsflna.typa 'ShAspact.Alisa*
‘ShAspect - sh.on | sh.off | sh.faulty*

1st ShAspact.const.dist m sava_tha('ShAspact.const.diste,
prova.constructors.distinct ShAspact.Asion);;

1st ShAspactIBDUCT - sa*a.tha(‘ShAspact.BDUCT* ,
prove.induction.ths ShAspact.Alloa); ;
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lot ShAspact.cases = sava.thol'SkAspoct.cases',
prove.cases.thn ShAspect.IDUCT);;

Definition of a (hunting signal —
:nuo->ShAspect fonction returning carrent aspect of tke signal

lot Shslg.Axioo - define.type ‘Shslg.Axioo’
‘Bhslg m SHUITSIQ (nuo->ShAspect>" ;i

lot Shaig.ona.ono - savo_tho('Shsig.ons.ons*
prove.constractors_ono.ono Shsig.Axioo) ;;

lot Shaig.IIDUCT * save.thnC*Shsig.IBDUCT" .
prove.induction.thn Shsig.Axioo);;

lot Shslg.casas = savo.thmCShsig.cases',
prove.cases.tho Shslg.IIDUCT);;

lot SIUIT.FUIC.DSF - nos.recurslve.définition
false Shsig.Axioo ‘SHUT.FUSC.DBF'
"SHUIT.FUIC (SHUITSIQ a> m SM;j

lot SHUIT.OI.DEF - nes.rscarslve.deflnition
false Skslg.Axioo 'SHUIT.OI.DEF*
"SHUBT.0I (SHUITSIQ s) t = (s t =ah.on)";;

lot SKULT.OFF.DEF * nos.recursive.deflnition
falso Shsig.Axioo ‘SHUIT.OFF.DEF'
"SHULT.OFF (SHULTSIQ =>t > Is t msh.off)"

lot SHUITFAULT.DEF m nos.rscurslvs.dafinitios
falsa Shsig.Axioo ‘3HUIT.FAULT.DEF
"SHUBT.FAULT (SHUITSIO S> t m (s t = sk.faalty)"jj

X- Dofinltion of subsidiary signal aspacts -X
lot SubAspact.Axloo - dofina.typs ‘SubAspect.Axioo’
‘SabAspect W sub.not.shos | sab.off4i;

lot SubAspect.const.dist - savo.thol'SubAspect.coast.dist' ,
prove.constructors.distinct SubAspsct.Axloo); ;

lot SubAspect.lIDUCT m savs.thail * SubAspect.IDUCT' ,
prove.Induction.this SubAspoct.Axioai) ; ;

Suby cases " save.tkn('Sub ca
prove.casos.tho SubAspact.IDUCT); :

Doflnition of a subsidiary signal —
‘nuo->SubAspact function rsturning currant aspect of ths signal

lot Subsig.Axion - defina.type 'Subslg.Axloo"
‘Subslg m SUBSIQ (auo*>SubAspsct)' : i

lot Subsig.ona.ons m save.tho(‘Subslg.one.one’,
prove_constructors.one.ona Subsig.Axloo);;
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U't Subeig.IDUCT - eave_thn(' Subeig.lIDUCT",
proccinduction.tka Subeig.Axion):;

prove.caaaa.tha Subeig.lIDUCT);;

lct SUB.FUIC.DEF - M L.tK Itih «.M illtiMm
falaa Subaig.Axion ‘SUB.FUIC.DEF*
“SUB.FUIC (SUBSIO a) m a"||

lat SUB.OFF.DEF - nao.recaraiva.daflnition
falaa Suboig.Axioo ‘SUB.OFF.DEF'
"SUB.OFF (SUBSIO a) t m (a t = aub.off)";¢

Definition of a junction Indicator —
‘naB->bool function returning currant atata of tka Indicator
T — > proved 01. F — not O1 or faulty

lat Jaig.Axioa - define.type ‘Jeig.Axioa’
*Jaig - JSI0 <nun->bool)* :;

lat Jalg.ono.oaa » eava_tha(‘Jaig.ona.ona’ .
prove.conetruetore.one.one Jeig.Axioa);;

lat Jaig.UDUCT * aava.thaCleig.lDUCT",
prove, induction. the: Jeig.Axion);;

lot Jaig.caaoa * aave.tkaClaig.caaea’,
prove.caaaa.thn Jeig.IIDUCT);;

lot J.FUIC.DEF - nov.recuraivo.dofinition
falee Jeig Axion <.FUIC.DEF
"JFTIC (IBIQ j) nj"i;

Define Enuaeration type for aala algnal aapecta -X
lot HAapact.Axloa - defiaa.typa ‘NAepect.Axion’
‘NAepact m groan | doable.yalloo | yalloo | rod

I green.fleoh | double.yelloe.flaah | yallov.flaah | faulty.aepect';;

lot NAapact.couat.diat m eave.thni'HAapect.conet.diet =,
provo.conatruetore.dietinct NAepect.Axioo):;

lat NAapect.IDUCT m eeve.thnl‘NAapect.IDUCT',
prove. Induction .tka NAapect.Axiea) ;;

let HAapactcaaoa m aave.tha('Mapoct.caaea’,
provo.caaaa.tha NAapect.IDUCT);

X* Define tka aaln algnal typea -X

lot Ntypa.Aalaa = define.type ‘Ntypo.Axloa’
‘Ntypa m too.aapact | threo.aapect | four.aapect
I too.repeat | tkree.repeat :;

lat Htypo.conat.diat m eave.that Ntype.conet.diet' ,
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prove.coaatructors.distinct Htypo.Axioa) ;:

l«t Rtypo.IBDUCT = savs_tha(‘ Rtypo.ISDUCT* ,
prove.induction.tha Htypo.Axloa) ;;

lot Htjrpe.easel - save_thn( Htype.cases,
prove.cases.tha Ntype.lIDUCT) ;;

Definition of t nein signal *
:Htype typo of Min signal
HAspect function returning currant aspect of the signal

1st Haig.Axiom m define.typo *Hsig.Axion1
‘Haig « HSia Htyps (nssi->HAspect)L;

1st Hslg.ono.ons m save_thn( *Hsig_one.ons' ,
provo_constructors.ono.ono Hsig.Axion) ;;

-
2

Hslg.IBDUCT - save_tha(*Heig_ISDUCT",
prove.induction.thn Hsig.Axion);;

lot Hslg.casos m save.thmCHslg.casesl,
provo.casss.thn Hslg.IDOCT) ;

lot H.TTPE.DIF m nes.recursive.definition
false Hsig.Axloa ‘H.TYPE.DEF*
"H.TYPE (HSIQ typo af) - typo";;

lot H.FUIC.DIP m nes.recursive.definition
faino Hslg.Axioo ‘H.FUIC.DEF*
"H.FUIC (HSLO typo af) m nf*;

lot HASPECT m nee.recursive.definition
false Hsig.Axion ‘HASPECT.DEFL
“H.ASPECT (HSIO typo nf) t m nf t*ii

Dsfinitions of signal OL or OFF as seen at Control Contra
01 - RED aspect ssloctod and proved.

OFF - Any other aspect and proved.

-t

1st RALEOE.DEF - nes.definition (‘HAILOS.DEF,
"HAIL.OE S (t:nun) m (HASPECT s t)- rod");

1st HAILFAULTT.DEF - nss.dofinition (‘HAIS.FAULTY.DBF',
“RAISFAULTY s (tnua> - (HASPECTst) - faalty.aspoct):;

lot HA1B.OFF.DEF m nes.definition (‘HAIS.OFF.DEFL,
"HAIB.OFF s (taea> - ' (HAIB.OB s t) A ~HAISFAULTY s t>");

1st RED.DEF - nss.dsfinition (‘RED.DEFL,
'RED s t - (HASPECT s t) m rod");;

1st YELLOW.DEF - nss.dsfinition (‘YELLOH.DEF*
"YELLOW s t - (HASPECT s t) - yollos®);;
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Doflaltioa of typo of Signal—
BUM tko naao Undos) of tko signal
Nsig Bala signal
:Jsig junction indicator
:Sholg shunting signal
Subsig subsidiary signal
lot Signal.Axioa m dafins.typo 'Signal.lrion’
*Signal - SIGIALH nun Nsig
SIGIALH) nun Nsig Jsig |
SIOIALHS nun Nsig Subsig |
SIQIALNSJ nun Nsig Subsig Jsig |
SIOIALS nun Shsig* ;!

lot Signal.ono.ono m savo_thn(‘Signal.ono.onol,
provo.coastructors.ono.ons Signal.Arion);;

lot SignalIDUCT m savo.thn(‘Signal.lBDUCT',
provo.induction.thn Signal.Axiom):;

lot Signal.casss m sa»o.thn(‘Signal.casts',
provo.casos.thn Signal.llDUCT):|

Doclaration of projsction opsrators for signal

lot SIQIAL.ID.Dir m noo.rocursivo.dofinitios
false Signal.Axlon ‘SIQIAL.ID.DEF"
*(S101AL.ID (SIGIALN id r> mid) A
(SIGIAL.ID (SIGIALNI id nj) - id) A
(SIGIAL.ID (SIGIALNS id | 5) = id) A
(SIGNAL.ID (SIGIALHS) id ¥ S J) » id) A
(SIGIAL.ID (SIOIALS id sh> m id)";;

lot SIGIALHAILDIr - noo.rocursivo.dofinitioa
«also Signal.Arion ' SIGIAL.HAILDEF1
"(SIGIALHAII (SIGIALN id n) - n> /A
(SIOIALHAII (SIGIALNJ id n J) mn) A
(SIGIAL.HAIl (SIGIALHS id a s> mn) 1\
(SIGIAL.HAIl (SIGALHS) id n s J) mm>

lot SIGIALJUICDIr - nos.rocurslvo.dofinition
falsa Signal.Axion *SiaiALJUIC.DEF
“(SIOIAL.JUIC (SiaiALNJ id n j) - j) A
(SIGIALJUIC (SIGIALHS] id n's J) =) Il

lot SIOIAL.SULDIr - noo.rocursivo.dofinitioa
false Signal.Arion ‘SIGIAL.SUL.DErl
“(SIOIAL.SUB (SiaiALHS idB s) = S A
(SIGIAL.SUB (SIOIALNS) id m S j) « S>“Il

lot SIGIAL.SHUIT.DEF m nos.rscursivo.dofinition
falsa Signal.Arion ‘SIOIAL.SHUIT.DEF1
“(SIOIAL.SIUIT (SIOIALS id sh> - Sh)"u

245



APPENDIX B. ML SOURCE LISTINGS 246

let SIO.SFUIC.DEF - M I.nciriln .ilflaltloa
falsa Signal.Axloa ‘SIO.SFUIC.DEF'
*(S10.SFUIC (SIQIALH Id M -
in.dl.ruic n,(AU:nuB->bool>,(AU:noa->SubAspect>)) A
(SIQ.SFUIC (SIQIALHJ id a J) -
IIL(H_FUICa, J.FUIC J, (AU:nua->SubAspect)>) A
(SI0.SFULC (SIQIALHS 1d | 1) =
IILCD.rUIC a, (AAB:nun->bool). SUB.FUIC s)> A
(SIQ.SPUIC (SiaiALMJ id m 1 }) =
iiLd.ruiCB, j.ruic j, sub.fuic s> a
(SI0.SFUIC (SIQIALS id sh) - |11 (SHULT.FULC oh))";

Dofliltions of signal 01 or OFF as sssa at Control Contro
01 - RED aspect soloctod and provsd.

OFF - Any other aspect and proved

let OL.DEF m nee.recursive.definition
false Signal.Axloa ‘OLDEF*
“(01 (SIQIALII id b) t - (HAILOL a t)> A
(01 (SIOIALHI id a J) t m (HALLOL a t>> A
(01 (SIOBALHS id a s) t m (HAIL.OI B t>> A
(01 (SIQIALHSJ id a s j) t - (HAILO1 a t)> A
(01 (SIOIALS id sh> t - (SKUIT.OI sh t)>

let OFF.DBF m aes.recarslvo.deflaitiea
false Signal.Axioa ‘OFF.DEF*
"(OFF (S1OIALH id @) t - (HAILOFF a t>) A
(OFF (SIOIAUU id a j) t = (HAILOFF a t)> A
(OFF (SIOLALHS id a 5) t = (HAILOFF at)) A
(OFF (SIQIALHSJ id a s J) t - (HAILOFF a t)> A
(OFF (SIQIALS id Sh) t - (SHUIT.OFF sh > *
X- Thus, shun a signal is neither 01 nor OFF, it is faulty -X
lot SIQIAL.FAULT.DEF * nes.dofinition ('SIQIAL.FAULT.DEF*,
"SIQIAL.FAULT s t - (01 s t) \/ (OFF s t))");

let repeata f m

letrec rep mf 1 = if n=0than lelse (f . (rep (n-1) f 1)> in
(rep n f 0>

let SHUIT.IOT.OL.OFF m prove.tha(‘SHUIT.IOT.OL.OFF* .
*Mst. ‘((SHUIT.Ol' s t) /\ (SIUIT.OFF s t>>"
AEPEAT OU.TAC THU HP.TAC (SPEC “s:lhnig*“ Shsig.cases)
THU COIV.TAC LEFT.IHP.EXISTS.COIV THU OELTAC
THU OISCH.THEI SUSSTLTAC THIS AEHHITE.TAC[SHUIT.OL.DEF :SHUIT.OFF_DEF]
THU DISJ.CASES.THEIL (repeat 3 SUBSTL.TAC)
(SPEC " (f1t) :ShAspect” ShAspect.cases)
TIU UIEITLTAC[DI.LHOEQAIL.Tm;ShAspect.const.diot]
THU COIV.TAC (OICE.DEPTH.COIV STH.COU)
THU AEHAITE.TACtShAspact.const.diet]) ; ;

SIOIAL.STATB m prove.tha( ‘SIQIAL.STATE*,
“IS t. (01 s t> \/ (OFF at> \/ (SIOIAL.FAULT s t)",
AEPEAT QU.TAC TIU DISJ.CASES.TIUL (repeat S HP.TAC) (SPEC "s" Signal
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THn COU.TAC (TOP.DEPTICOIV LEFT.IHP.EXISTS.COIi) THU REPEAT QU.TAC
THU DISCH.THU (\t. AEVRITI_TAC[t:0l.DKFIOFf.DKF:SiaiAL.FAULT.DIF; HAIIl.OFF.DEF])
THU OICE.UMRITE.TAC[DISJ.ASSOC] THE! HATCH.ACEPT.TAC IXCLUDKD.HIDOLE): ;

1st SiaiAL_10T.01.0FF- prove_thn(*SiaiAL.IOT.OLOFF*
"le t. -<(01 mt) A (OFF * t>>",
REPEAT OEI.TAC THE! DISJ.CASES.TKEIL (repeat S HP.TAC) (SPEC  Signal.cases)
THE! COIV.TAC (TOP.DEPTH.COIT LEFT_IHP.EXISTS.CO1V) THEL REPEAT QEL.TAC
THU DISCH.THEI (\t. REWRITE.TACCt ;01.DEF ;OFF.DEF HAI1.OFF DEF ; DE.HOROAL.THH])
THE! ((01CE.REMRITE.TACCDIS)ASSOC] THE! DISJ1.TAC
THU 01CE.UHRITB.TACCDISJ.SYH] THE! HATCHACCEPT.TAC E1CLUDED.HIDDLE)

OULSE
(HATCH.ACCEPT.TAC (POU.OHCE.R»RITB.RULI[DI.HOROA1.THH] SHOIT.HOT.OLOFF))» ;;

close.theoryO :;

B.7 Thefilemk_track.ini

X< Fils: track.al  thaory of track coapononta
Data: 38 Hay IM1
Aathor:  H Hoag >X

noa.theory ‘TRACEL;]
Potato la the typo representing tho atatoa of a point

tho poaitioa of the point
tha renote locking atata

t Typo of tha poaltiona of pointa X
lot' Ppos.Axloa - define.typo ‘PpoaAzloa*
‘Ppoa - noraal | raaoraa | aoving*;!

lot Ppoa.conat.dlat m save_thn(‘Ppoa.conat.dint’,
prove.construetors.distinct Ppos.Axioa); ;

lot Ppoa.llDUCT - save.tha(‘Ppos.lIDUCT*,
prove.induction.thn Ppoa.Aaloa);;

lot Ppoa.caaaa - aa*a_tha(‘Ppoa.caaaa*,
prova.caaos.tha Ppoa.lIDUCT) ;;

X Typo of the ranota locking atataa of pointa X
lot Ploc.Axloa - daflna.typa ‘Ploc.Axloa*
‘Ploc - free.nova | free.nor.rav | fraa.rav.nor | reerate.locked*;

lot Ploc.conat.dist m aava.thaCPloc.conat.dlat*.
prove.conatructora.dlatinct Ploc.Axioa);;

lot Ploc.UDUCT m save.tha(‘Ploc.IDUCT* ,
prove.induction.tha Ploc.Aaloa) ¢+

lot Ploc.cessa * save.tha(‘Ploc.cases’.
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prove.coses.tha Ploc.IIDUCT);;

lot Point.Axioa m define.type ‘Point.Axioal
~Point m POIIT nua (nua->Ppos) <nua->Ploc)';

lot Point.ono.ono " 0o*o.tha(*Point.ono.ono’,
prove,constructors.ono.ono Point.Axioa);;

lot Point.IIDUCT = sove.tka(*Point.IDUCT*,
proscinduction.thn Point.Axioa):;

lot Point.cnsoo = savo.thaCPoint.casss*,
prove.coses.tha Point.IDUCT);

lot PIT.ID * neo.recurslve.deflnitioa
folso Point.Axioa ‘PIT.ID.DBF*
“PIT.ID (POIT n poo loe) on";;

lot PIT.POS * nss.rocuroivo.dsfinition
folso Point.Axioa ‘PIT.POS.DEF*
"PIT.POS (POIIT n poo loc) - poo”;;

lot PIT.LOC * noo.rocnrsliro.dofinition
folso Point.Axioa <PIT.LOC.DEF*
"PIT.LOC (POIIT n pos loc) m loc*

lot PITRLOCIED * neo.definitionCPIT.RLOCIED.DBF",
PITRLOCIED p t - ((PIT.LOC p t) m reaote.locked)"):;

lot PIT.IOMAL - nso.dsfinition (PIT.OMAL.DEF".
“PITIOMAL p t - ((PIT.POS p t) - noraol)") :;

lot PIT.UVEISE m nso.dsfinition (PIT.UVEASE.DEF
"PITREVEKSE p t m ((PIT.POS p t) m ro00rso)*);

Tho typo Tstoto roprosonts trock circnlt stotos shich any bo ono
of tko follosing
OCCUPIED — tko trock clrcolt is occupied or faulty
CLEAR — tho trock circuit is door of obstruction and it
aay bo includod la o routa.
LOCIED — it is raaots lockod, 1.0., it hot boon includod
la a routs and o train is approaching.

lot Tstats.Axloa m dafins.typo 'Tstots.Axioa*
~Tstots m occupisd | locked | clearl;;

lot Tstata.const.dist m oa*o.tha<'Tstats.const.dist’,
provs.constructors.distinct Tstats.Axloa):;

lot Tstato.IDUCT m sous.tha(‘Tstoto.IIDUCT",
provo.Induction.tha Tstota.Axloa) ;

lot Tstoto.casss m savs.thaCTstota.cases*,
provs.cosss.tha Tstats.IIDUCT);;
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Tho type Telr roproaonts track circuit:

Tstata — tha track circuit «tata

lat Tclr.Axloa - dofiao.typa =Teir.Axioa*
‘Tcir » TCIE ana <nua->Tstata)l;

lat Tclr.ono.ono “ aava.tka(‘Tclr.ono.ona*,
prova.conatructora_ona.ona Tclr.Axioai) ;;

lat Tclr.lIDUCT m savs_thaCTcir.lIDUCT',
prava.induction.tka Tclr.Axloa) i;

lat Tdr.caaaa * aava.tha( ‘Tcir.caaaa*,
prava.caaaa.tha Tcir.lIDUCT);;

lat TC.ID.DEF w aaa.racuralva.dafluition
falaa Tcir.Aaioai ‘TC.ID.DEF*
“TC.ID (TCIE na) mn*j;

lot TC.SFUIC.DEF m noa.racuralvo.dofinltion
falaa Tcir.Axioa ‘TC.SFUIC.DEF*
“TC.SFUEC (TCIE n a) - I"jj

lat TC.ST.DEF m aau.racuraivo.daflaition
falaa Tclr.Axloa ‘TC.ST.DEF*
“TCST (TCIEaa) t mat";;

lat TC.OCCUPIED.DEF - nav.dafinitlon<‘TC.OCCUPIED.DEF*.
“TC.OCCUPIED ¢ t - (TC.ST e) t m occupiad”)||

lot TC.CLEAE.DEF - naa.dafinition« TC.CLEAE.DEF=,
“TCCLEAB ¢ t - (TC.ST ¢) t - claar'>j;

lat TC.LOCEED.DEF - nav.dafinitionC*TC.LOCIKD.DEF',
“TC.LOCIEDc t - (TC.ST c) t - lockad”):;

Tha typo Join rapraaata track circuit Joiaa. Tkaro ara four
typaa of tkoa:

J.conduct-
Jinaulata
J.ovarlap-
J.toralnato-

conductinf Jolna
inaulatod joins
ovarlap Jolna
taralnation joins

1st Join.Axioa * dafina.typa ‘Join.Axioa*
*Join - Jconduct | J.lasulato | J.ovarlap | J.taralaata*;

lot Jala.const.dist ® sava.thaCJola.coast.dist’,
prova.canstructora.distinct Joln.Axlea) ;:

lot Join.IIDUCT m savo.thaC Join.IIDUCT",
prova.inductlon.th» Join.Axioa) ii

lat Joia.casas m sava.thaCJoin.casas’,
prova.caaaa.tha Join.lIDUCT): :
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lot 1S.JCOID.DBF - nas.daflnition(*1S.JCOID.DEF" ,
"I18.JCOID J = (J m J.conduct)’>;;

B

IS.JILSU.DKF - nas.daflnltion('IS.JIISU.DEF".
“1IS.JIISU J - (J - Jl.insulata)")

1« 1S.J0m.DEF - aaa.daflaltiaaCi8.J0m.DBr"
"IS.JOVEh J m (j m J.ovarlap)") ;i

lat ISJTBM.DBF - aaa.daflaltlaa('IS.JTBM.DBF',
"ISJTBM j - (j - J.taralnata)’) :;

cloaa.thaory0:;

B.8 The file mk.part.ml

X-rila: partal —- thaory af parta
Data: Hay 1991
Author Hal Hoag -X

aaa.thaary ‘PUT';;
aaa.paraat ' TKACE *|:
aaa.paraat 'SIQPALL;

Tha typa Part rapraaata Individual aactlaa af track an
tka rallaay track aataark. Tkara ara faar diffaraat klada
af parts:

mPAST-

ka last placa af track sa tka aataark l.a. baffar
nua — Part Idaatly nuabar
TPABT — a placa af plain track
nua — Part Idaatly naabar
Tcir—tha track drcalt
PPABT-—a Janetlen aaaally cantain a paint
Part Idaatly aaabar
tka track clrcalt
— tka point la tkia part
(naasnuaSaua) tka part nuabars of tho adjacaat parta
tha first Is tka trailing part
tka sacand is tko noraal and tko third rovorsa plart
a diaaond crassiag
Part Idantly nuabar
tha track clrcait
Id's sf tha parts on first log
tka Id's of tka parts oa sacaad lag

lat Part.Axlaa m daflaa.typa ‘Part.Axlaa’
‘Part m BPABT nua | TPAAT nua Tclr |

DPAKT nua Tcir (nuatnua) (nuatnua) |

PPAIT nua Tcir Point (nuatnuatnua)' ;

X Prova soaa thaeraa for Part X
lot Part.Induct - save.tha
(‘Part.Induct* . prava.induction.tha Part.Axlaa):;
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let Part.one.one m aave.tha

<Part.oncon«, prova.conatructora_ona.ona Part.Axioa);
lat Part.dietinct - aavathia

(‘Part.distinct* , prova.conatructora.diatinct Part.Axioa);;
lot Part.casas - aava.tha

(‘Partcaaaa* , prova.caaaa.tha Part.Induct):;

X- projection oporator on Part -X
lot PART.ID.DEF - naa.racureiva.definition
falao Part.Axioa ‘PART.ID.DEF"
“(PABT.ID (BPART n) = n> A
(PART.ID (TPART n't) a n> /A
(PART.ID (OPART n t nl n2> - n) A
(PART.ID (PPART n t p i3) = n>";;

lot PART.CIRCOIT.DEF - nao.racuraiva.dafinition
falaa Part.Axioa 'PART.CIBCUIT.DEF’
"(PART.CIRCUIT (TPART n tc> * tc) A
(PART.CIRCTIT (DPART n tc nl n2> - tc) A
(PART.CIRCCIT (PPART n tc p n3) m te)";;

lot PARTPOIRT.DEF a naa.raeuraiva.dafinition
falao Part.Axioa ‘PART.POIT.DBF*
“(PART.POIRT (PPART n tc p a3> - p)*i;

lat PART_PIT.TRAILIIQ.DEF m nao.racuralva.daflnition
falaa Part.Axioa ‘PART.P«T.TRAILIL0.DEF*
"PART.PIT.TRAILIM (PPART n tc p n3> - (FST n3|

lot PART.PIT.RORIUL.DEF - nao.racuralva.dafialtion
falaa Part.Axioa ‘PABT.PIT.IORIIAL.DEF"
“PART.PIT.IORDAL (PPART a tc p a3) - FST (SID a3>";;

lot PART.PIT.REVERSE.DEF - nao.rocuralva.dafiaition
falaa Part.Axioa 'PART.PIT.REVERSE.DBF'
"PART.PIT.REVERSE (PPART n tc p n3) - SID (SID n3)";;

lot PART.DIAL.DEF m nao.racuralva.dafinition
falaa Part.Axioa 'PART.DIA.DEF*
“(PART.DIAL (DPART n tc nl n2) - nl)*:;

lat PART.DIA2.DEF - noo.racuralva.dofinition
falaa Part.Axioa ‘PART.DIA2.DEF*
“(PART.DIA2 (DPART n tc nl n2) m n2>";;

X- prodicataa on Parta -X
lot IS.IPART.DBF - nao.racuralva.dofinition
falao Part.Axioa 'IS.BPART.DEF1
“(ILIPART (BPART n> m T)/\
(IS.BPART (TPART n t) m F) A
(IS.BPART (DPART n t ni n2> - F> A
(IS.IPART (PPART n t p n3> m F>*%;

lot IS.TPART.DEF m nao.rocoralva.doflnition
falsa Part.Axioa 1IS.TPART.DEF'
“(ILTPART (BPART n> - F>/\
(IS.TPART (TPART n t) =T) A
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(IS.TPABT (DPAITn il a2) mp) A
(IS.TPAIT (PPAIT I t p |3) m M*I|

1« IS.DPAIT.DEF - nss.racursiva.dafinition
falsa Part.Axiom ‘IS.DPAIT.DEF'
{(IS.DPAIT (BPAIT =) - P>/\

(1S.DPAAT (TPAIT B *) mP> A
(IS.DPAIT (DPAIT s t St n2) mT) A
(IS.DPAIT (PPAIT m | pli) = P>*;;

1st IS.PPAIT.DEF - aoo.rocarsivo.doflaities
fais* Part.Axiom 1S.PPAIT.DEF1
‘(IS.PPAIT (BPAIT a) m F)/\
(IS.PPABT (TPAITa't) m P) A
(IS.PPAIT (DPAIT a 't al a2) - P) A
(IS.PPAIT (PPAIT a t p s3> - T>~;

X Ths typo EIbl coabiass sigaals sad Joins for ussd as sdga labals

1st IIbl.Axiom - dafins.typs <Elbl.Axiom"
‘Blbl - ELBLSIQ Jala Sigaal | ELBL Join'll

lot Elbl.Induct m savo.thm
(‘Elbl.Induct’, prova.iadactloa.thm Elbl.Axiom);;

lot Elbl.oaa.oao m savo.thm
('1181.080.080", provo.coastractors.oBo.oao Elbl.Axiom): ;

('Blbl.dlIstlact’, provo.coastractors.distiact Elbl.Axlorn) ;;

CBlbl.caaos* , provo.casoa.thm Ilbl.ladact);:

1st IS.ELBL.SIOIAL.DEF m Boa.rocarslvo.dofinitios
falsa Ilbl.Axlom *IS.ELBL_SIO1AL.DKF'
*IS.ELBL.SIQBAL (ELBLSIO J =) m T"i

lot ELBL.SIOBALDEP m nos.rocarsiva.dofinition
falsa Elbl.Axiom ‘ELBL.SIOBAL.DEF'
"ELBL.SIQBAL (ELBLSIO J s) - S"i:

lot ELBL.JOIB.DEF - aao.rocarslva.dafiaitiaa
falsa Elbl.Axiom ‘ELBL.JOIB.DEF"
“(ELBL.JOIB (ELBLSIO j s) * j) A
(ELBL.JOIE (ELBL j) a j)»;;

clesa.thaarjr (>;:

B.9 The file mk.network.ml

Vs

FILE: Batsarh.ml
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Version 2.0 Data: 16 lovoabor 1991

>|
nes.theory 'LETVOAI';
load.llbrary'graph’;;

add.to.search.patk 4. /signal/';;
ati.ptnatPuT’
autoload.all’PART4i;
Xautoload.all'signal’;
autoload.all'track’;l

aes.type.abbrevClatsork’, " :(Part)satS(PartSPartSElbl)sat"> ;5

X
X IPC (1st Pally Connsctad) la trua If aara conaactloa caa ba aada taX
X a aada

la* IPC.DBP - naa.racurslva.dafinltioa falsa Part.Axioa '|PC.DBP"
"(IPC (I:lataark> (BPART a) - (ILDKOUB m (BPAIT a) < 1> A
(IPC (I:latasrk> (TPAIT a *) = (ILDEGREE | (TPAAT a «) < 2)>
(wPC (I:la*aark) (PPABT a t P a3) = (ILDEQUE | (PPABT a t P a3> < 3>) A
(IPC (I:lataark) (DPAIT a « al a2> m (ILDIQAEE | (DPABT a t al a2> < 4))"jj

X 13011 oparstion
X Tao adgas al aas s2 and possibly «as varias a2 caa ba addad to aa
X axlstlag aatsork using this oparstion Thay aust satisfy ths

X pra-coadltions givaa in tha definition

lot OILDIF - naa.dafinition (‘1JOI.DEF",
‘uou (1:lotsorb) (ai:Part) (slillbl) a2 s2 -
al.a2.sl> IISEBT.BMI ((a2.al.s2) IISBRT.KDOI
(aZ IISEAT.VERTEX m>>>">I|

X A Wall Fonsed lotsork (WPI) is a fialta graph of typa lataark X
X sith tho follaslag rastrictioas spoclfiad by IITVOU X
X

lot IITWORI.DIP m naa.dafinition(‘ IETWORK.DEF" ,
“ITWORK (1 :lataorl
IP.((»a. P({(BPART @)>, ( »> A
(la t. P((TPART aty». { >)) /\
(la t pnj. P(((ppartat pa3d» <»> A
(la t al a2. ART a t a|a2>>(»>A
(1 pi p2. (P ®>A (pi IBVIBIIX®>
‘(pi - p2> A (IPC | pi) A (|PC| p2>

(Is1 s2. PAIOII | pi si p2 s2)>)>
—>Pw>i

X A slagla part of all kinds is a network
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a*

=3

=3

SETHORK.BUFFER - provo.thaK «IETHORI_BUFFER' ,
"1y, SEMWORK ({(BPART n)>, { >)",
REHRITE.TACCSETVORK.DEF]

TEH REPEAT OEB.TAC TEE! STRIP.TAC

TREE ASN.REHRITE.TACC] > ;

IBTVORE.TRACE = prova.tha (‘IETWORK.TRACK' ,
“la «. BETVORE ({(TPART a «)>, ( »",
REVRITE.TACCBETHORE.DEF]

TEEH REPEAT OEB.TAC THEE 8TRIP.TAC

THEE ABH.REHRITE.TACC]) ; i

EETHORK_POI VT - prova.tha( ‘BETHORR.POIIT',
“la t p a3. IETHORK ({(PPART at pb3)>, { » *,
REHRITE.TACCIETVORK.DEF]

TEEB REPEAT OEL.TAC THEB STRIP.TAC

TREE ASH.REWRITE.TAC[]): ;

BETHORX.DIAH - prova.tha(‘BETVORI.DIAH',

“IB t nl m2. BETHORS ({((OPART a t al B2». { »".
REHRITE.TACCIETHORE .DEF]

TEEH REPEAT OKX.TAC THEB STRIP.TAC

THEE ASH.REHRITE.TACC)); ;

BETHORLSINP - provo.tha(' BETHORI.SIHP'
"IB* EETHORE ({a>. {»=",

QEB.TAC THEB HP.TAC (SPEC "a" Part.casoa) THEE
STRIP.TAC THEB POP.ASSUH (\t. PURR.OICE_RSHRITE.TACtt])

HATCH.ACCEPT.TAC BETVORE.BUFFD ;
HATCH.ACCEPT.TAC BETHORE.TRACK ;
HATCH.ACCEPT.TAC BETHORE.DIAH ;
HATCH.ACCEPT.TAC EETHORE.POIIT]); ;

BETHORR.BIOIH W prova.thaCHETWORE.SJOIR" ,
“11. (EETUORI |) mm>
(lal m2, (al ISVERTEX M) A *(al mn2) A
(EFC 1 al) A (IFC Ha2> — >
(1st 02. BETHORK (HJOIE m nl at a2 s2>>>",
OBCE.REHRITE.TACCIETUORI_DBF] THE! REPEAT STRIP.TAC
THES FIRSTASSUH HATCH.HP.TAC
THES PURE.ASH.REHRITE.TAC CABD.CUUSES ; BOT.CLAUSES]
TEES FIRSTASSUH HATCH.HP.TAC
THEH REPEAT COLJ.TAC THEE FIRSTASSUH HATCH.ACCEPT.TAC); ;

BETVORE. IBDUCT - provo.tluaCHETHOU.IHDUCT*.
=IP.(la. P({(BPART n)>, { »)
(la t. P((TPART a t)}, { »> A
(la t pa3. P{(PPART a t pb3>), { ») A
(la t al a2. P(DPART n t at a2)). { ») A
(IE pi p2. (P = A “(pi mwp2> A

<pl ISVERTEX B) A (EFC B pi) /\ (BFC B p2>
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PUU.OICK.UHRITE.TACCIETHORK.DKF] THE! REPEAT STRIP.TAC
THU FIRST.ASSUH HATCH.HP.TAC
THU UPEAT COIJ.TAC THU FIRST.ASSUH HATCH.ACCEPT_TAC) ; ;

induction on notoork. It rodacon a goal of tko
fora Il. HKTHOU m mm> PCS] to fivo oubgoals which ara tho kypothaaia of tko
thooroa IKTHOU.IIDUCT, i.0.
11. HETHOU | -> PCI]
1IHDUCT.TAC
PCI] PCT] PCD] PCPoInt] PCIIOI]
X

1ot HKTHOU. IHDUCT.TAC (A& —
(lot («body) m doot_for.il t in
lot pro - and (doat.iap body) in
lot tyi - snd(aatch (fnt (doot.forall (concl HETHOU.UDUCT)) "\*x.T"> in
lot apoc - SPEC (ak.abs (a.pro)) (IHST.TTPK tyi HETHOU.IHDUCT) in
lot apoc’ - DISCS.ALL (COEV.RULK (OEH.ALPHA.COHV x) (UIDISCH spoc)) in
lot tka - COHV_RULK(TOP.DKPTH.COHV BETA.COIV) apoc’ la
lot tnc - (HATCHHP.TAC tha THU REPEAT COIJ.TAC) in
(tac (A.t))) Tfallaitk 'HETHOU.IHDUCT.TAC':;

lot HFC.SIHP -
lot LEHHAL - TAC_PROOF(([] .
“Ip. 1ICIDUT.TO (({p>.{}) :Hotnork) p m 0*),
OU.TAC THU PUU_REHRITE. TACCIIC\DEHT TO.DEF ;1S EDQE.DEF ; EDOES; EXTUSIOH]
THU COHV.TAC (DEPTH.COIV SET.SPKC.COIV)
THU REHRITK.TACCHOT.IFEHPTT])

la
proaa.thaCHFC.SIHP* . “la. HFC ({n>.{>> a",
OU.TAC THU HP.TAC (SPEC “n" Part.caaaa) THU

THU COBV.TAC (OSCE.DEPTH.COIV nua.COHV)
THU RKHRITK.TACCCARD.UPTYiLKSS.0] >;

=l

IH.IHSERT.AHSORP - TAC.PROOFC( C].

11 (lit), (x IS a) m> «X IHSUT a) ma>"),

PURE.REHRITE.TAC CliSERT.DEF;EXTESSIOI]

THU RKPKAT STRIP.TAC THU COIV.TAC (OHCK.DKPTI.COIV SKT.SPKC.COIV)
THU KQ.TAC THU STRIP.TAC THU ASH.RURITE.TACQ)::

lot HIOILUP - provo.tha(‘lJOIH.EXP' .
“t(HiBatoork) ai al n2 «3.
(Nl IS.VERTEX m) /\ (n2 ISVERTEX W) — >
((wJOIE m ni si n2 a
((n2 HSERT (VS m)),
((n1.n2,ai > HSERT ((n2,al.a2> IHSERT ((ES m>>)>))",
RUSAT OEH.TAC THE! STRIP.TAC
THU PUU.OHCE_REHRITE_TACCHJOIH.DU]
THU PURE.OHCE.RURITE.TACCIHSUT.EDaE.DEF]
THU PUU.OHCE.RURITE.TAC[VERTEX.| HSUT.EDOE]
THE! PUU_OHCE.RURITE.TACCo.arc ;0.daa
THU PUUOHCE.RURITE TACCVUTEX.IH.IHS.VUTU]
THU ASN.RURITE.TACCVUTICES ;EDOU]
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Tiro

puik.oact.uuBin_T*c[mDT.KDai_DKr]

THU PUU_O8CE_AEHHITE_TAC[VEHTEX_IHSEST_EDQE]
TITO PUU.OHCB.BUBITE_TACCa.src

THU
THU

PUU.OBCE.BUBITB.TACCVUTEX.18 .1HS .VUTEX]
ASH.UVBITE.TACCVUTICES ;EDGES ;

IBSUT.VUTU.DBr;EDGES. IHSUT.VEHTEX] >; i

1st HIOIH.UP2 - provs.tha(*HJOIH.EXP2',

(e

latvorh) ni «1 n2 *2.

(W1 IS.VUTU B>A (»2 IS.VUTU 8) — >
((BIOIB 841 si n2 *2)
(VS 8). ((11,12,* 1) IBSBBT ((n2.n1,52) IBSUT (ES a))))))".
UPBAT OU.TAC TMEB STBIP.TAC
THU PUU_OBCB.UHBITB.TACCBIOI8.DEr]

THU
THU
THU
TUB
THU
THU

PUU.OBCB.UHBITB.TACCIBSUT.BDOB.DBr]
PUU.OBCB.BUBITB.TACCVUTBZ.IHSnT.BDQB]
PUU.OHCS.BUBITB.TACCs.src ;a.das]
PUU.OBCB.BUBITB.TACCVUTBX.18.1BS.VUTU]
ASH.BUBITB.TACCVUTICU ;EDGES]
PUU.0BCB.BUBITB.TACCIBSUT.BDQB.DU]

THU PUU.OHCB.BUBITE.TACCVNTEZ.IHSUT.EDQB]

THU

PUU.OBCE_BUBITE_TACCa.src ;s.das]

THU PUU.OBCB.BUBXTB.TACCVUTU.IH.IBS. _VnTU]

THU
THU

POP.ASSUH (\t. ASSUHE.TAC (PUU.OBCB.HBHBITB.BUUCIS.VUTU.DU] *>)
ASH.BUBITB.TACCVUTICBSiBDan ;

IBSUT.VUTBZ.DEr ;EDOES. IHSUT.VERTEX]

THU

1
I HP.BBS.THU SUBST1.TAC IB.IHSKBT.ABSOAP THBB BBPL.TAC) ;;

SETWOAES ar* graphs t
lat BBTHOU.QBAPH - prova.tha(‘BBTHOBK.QBAPH' ,

“IB.

HETHOAZ B * > OAAPH 8

BBTHOU. IBDUCT.TAC THEBLC
BUBITE.TACCQBAPH.DU;BOT.IB_UPTT] ;

HU
UH

BITE.TACCQUPH.DU;BOT.IH.UPTV] ;
BITE.TACCQAAPH.DEF{HOT.IB.UPTV] ;

BUBITE.TACCOAAPH.DEP ;HOT_IH_EHPTT] ;

PUU_OHCE.UMAITH TACCHJOTH.DEr] THU UTEAI STBIP.TAC
THU HATCH.HP.TAC QBAPH.IBSUT.EDaE

THU HATCH.HP.TAC QBAPH.IBSnT.EDaB

THU HATCH.HP.TAC OUPH.IBSUT.VUTU

la* lam

THU PIAST.ASSUH ACCEPT.TAC]) ;:

a - TAC.PAOOP<< .

(Q:*Qraph> v. (QBAPH

<IH{

Q)
CIDEBT.MITH Q V - ()> -> (IHCIDUT TOOva <}>">.

BEPEAT QEB.TAC THU STBIP.TAC

THU
THU
THU
THU
THU
THU
THU
THU

la* BOT

PUU.OBCB.BUBITB.TACCIHCIDBBT.HITH.DBr ; IHCIDUT.TO.DEF]
PUU.OBCB.BUBITB.TACCBZTUSIOB]

COBV.TAC (DEPTH.COBV SBT.SPBC.COBV>

BUBITE.TACCBOT.IH.EHPTT]

DISCH.THU (\t. HP.TAC (BEHBITE.BULBCDE.| HOEQAH THH] «))

COBV.TAC AIQHT.IHP.FOAALL.COHV THU OEB.T/

DISCH.THU (\t. STHIP.ASSUHE.TAC (BUBITB BUUCLBIT 0B.OVBB.UD] «»
ASH.BUBITB.TACCDB.HOBQU.THH] >;;

VBB.IHP.HrC m prova.thaii 'IOT.VEA.IHP.HFC*,

"1(BHatvork) p. (BETWOAZ B) — > (p IS.VEBTEZ m) — > (HFC B p>".
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REPUT OU.TIC THKL STRIP.TAC

TMU 8TRIP.RSSUM.TRC <SPBC "p :P»rf Pul.cutl)

TRI« POP.RSSUH SURSTLTRC THES PUU_OHCE_RURITR_TRCCNC_DU]
TIRI STRIP.TRC

THER HRP.IYERT IRP.RIS.TRC [BETWOREQRRPH ;BOT.TER.IICIDERT.ERPTT]
TRRB PURB.OICI.RIMRITI.TRCCIR.DRaRU.DRr]

TBEB INP.RES.TRC Im m TREB POP.RSSUH SUBST1.TRC

TRU COBV.TRC (ORCB.DBPTH.CORV nua.COSV)

TREB RBMRITB.TRC[CRRD.HIPTT;LESS.0] >;;

lot FIBITE.IBSERT.EDOB m TRC.PROOFC(C].
“1(0:*Qroph) +. FIBITE (BS (» IBSERTEDQE 0)> » FINTE(ES «>"),
EB.TRC TREB PUU.REWRITE_TRCCIBSERT.EDaE. DEF;EDOES]
TREB COBD.CRSES.TRC
TRU PUU.REMRITE.TRCCFIBITE.IBSERT] TRU REFLTRC):;

Ut IETMOU.FIBITE m prova. the(‘BETMOU FIBITE',
<ME. BETMOU B — > FIBITE (*S B> A FIBITE (U 1)".
BETMOU.IBDUCT.TRC THEBLC
RBMRITE.TRCCRBRTICES ;EDOES ;FIBITE.EHPTT ;FIBITE.SIBO] ;
REWRITE_TAC[VEITICES ;EDOES .FIBITE.ERPTT ;FIBITE.SIBO] ;
REMRITE.TRCCVERTICE! ;EDOES .FIBITE.ERPTT, FIBITE.SIBO] ;
REMRITE.TRC [VERTICE! ; EDOES ;FIBITE.ERPTT :FIBITE.S IBO] ;
REPERT STRIP.TRC TRU PUU_REMRITE.TRCCBJOIB.DBF] THEBLC
RSM.REMRITE.TRCCFIBITE.IBSUT; VERTICE!.
VERTICES.IISERT.EDOE; IBSERT.VERTER.DEF] ;
RSH_REMRITE. TRCCFIBITE_IBSERT.EDOE ;EDOES. IBSERT.VERTRI]]]) i

lot BETMOU.FIBITB.ORRPN - provo.tha('BETMOU.FIBITE.aRRPH'
<MB. BETMOU B — > FIBITE.aRRPH B".
an.TRC TRU DISCR.TRC
TRU PUU.OBCE.REMRITE_’ TRCCFIEITE aRRPR.DU]
TRU IHP.RU.TRC BETMORt.aRRPI
TRU IHP.RU.TRC BETMOU F\BITE
TRU PUU.RSH.REMRITE.TRCCRBD.CLRUSES] >||

lot COBBECTLEHHR - TRC.PROOF((C].

ropti) p. (CORRECTED 0) A <P IS.VUTU 0)
Iv. (v IS.VUTU 0) A *<* m p> mm>

(TI. (PRTB 0 1) A (v - PRTHEBTRT 1) A <P = PRTB.UIT 1))*).
UMRITE.TRCCCOUECTEC.DEF] TREB UPUT OEB.TRC TRU STRIP.TRC
TRU an.TRC TRU STRIP.TRC TREB US.TRC

TRU EXISTS.TRC "1:(-Ed (0)lIsf THU RUERT COBL.TRC

TREB FIUT.RSSUH HATCHACCEPT.TRC) ;;

>

lot COBBECT.LEHHR2 m TAC.PROOF«( C].

"M (0:~aropti> p. (COBBECTED 0> A (p IS. VERTEX 0) -
V. <V IS.VUTU a> A *<v - p) —
(TI. (PRTHO 1) A (p m PRTH VTRT 1> A (v - PRTB.UIT 1>>">,
REVEIT E . TRCCCOBBECTED. DEF] TRES REPUT OU.TRC TRU STRIP.TRC
TRU OEB.TRC TRU STRIP.TRC

TRU POP.RSSUH (\ooa. ASSURE.TAC (COBV.RULE (OSCE.DEPTH.COBV SVH.COBV) ooa>>

TRU ASSUH.LIST (\ool. IHP.US.TRC (SPEC "v" (SPEC "p" (ol 4 001)>>
TRU EXISTS.TRC "1:(*U | o)liot" THEB REPERT COBJ.TRC
TRU FIUT.RSSUH HRTCR.RCCEPT.TRC) ; ;
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lat mOT.IL.DI8JO0IN.8BT8 - TAC_PHOOF(([] .
“Im (*:()e=*) DISIOILT mt - (la. (<c» =>A (¢« IB*»>">,
POBB.0SCB_BBVBITB.TACtDISIOIn.DEF] THEI
PUBE.OBCE.BEWBITE.TAC[BXTEBSIOB] THE!
POBB.OBCB.BBVBITB.TAC[IBTBB.DBF] THEI
COBV.TAC (OICB.DEPTH.COBY 8n.SPBC.C08») THE!
BEHBITE.TAC[BOT.ILEMPTY]>; ;

lct DISIOIBT.BO.COMOB - TAC.PHOOF((t]
mpe (ti<=)e=*>. DISIOin m t — >
Isy. amiB =) A (» IBt) —> <« my)“),
POBE.OICB.BBVBITE.TACtBOT.IB.DI8J0IN.Sn8] TUB
BEPEAT OEB.TAC THEI DISCB.TAC THE! BEPEAT OEB.TAC THU
DISCB.TAC THU STBIP.TAC THU OBDISCH.TAC *a IB a A » IB t*
THU ASH.BEVBITE.TACt]>11

X 1= DISJONTIVS B1XVS 12) — >
(IMF- « IS.VUTEX 11 A F IS.VEHTEX 12 — > *<a m y>> X

lat BJOIB.VEBTICU -
1« * = COBV.BOLE (OHCE.DEPTH.COHV SYN.COBV) IS.VEBTEX.DEF in
POU.OBCE.HEVHITE.HOLEtV] (ISPEC "(VS (B2:Bntvnrk>>"
<ISPEC "VS (1| :me«mark)” DISJOIBT.B0.COHHOB)): j

Xat Q.INH - TAC.PBOOFf([] ,
“101 02. (QBAPB O1>A (OUPH 02) — >
»> *2 >1 m2 OBAPB ((vlv2,rnl) IISEBT.EDOE <(v2.vl.a2) IISEBT.EDOE
(<1 0.0BIOB 02)))"),
BEPEAT STBIP.TAC THU HATCH.HP.TAC QBAPH.ISEBT.EDOE
THU HATCH.HP.TAC OBAPH.IISUT.EDOE THEI IHP.BU.TAC OBAPH.UIIOB) ; ;

lat P .l«w - TACPBOOFX[],

“101 02 1. (OBAPH 01) A (OUPB 02) A
((PATH 01 1) \/ (PATH 02 1» — >
Ivl v2 xt m2 PATH ((vl,v2,Bi) IBSEBT.EDOE ((v2.vt.m2) IBSUT.EDOE
(01 O.UBIOB 02)>> 1%),

BEPEAT STBIP.TAC THU HATCH.HP.TAC PATH.IIS .EDCE

THEI HATCH.HP.TAC PATR.IIS.EDOE THULt
ALL.TAC; POU.OBCE.IEVBITE.TACCO.UBIOB.STH]]

THU IHP.BU.TAC PATH.0.0BIOB)

lat BETVOBI.COBNCTED - prava.tha(‘HETHOU.COIECTED ,
“»m- IETHOU m “ > COBBECTED B".

mETVOU.IIDOCT.TAC THULt

X1.2.3.4X

HATCH.ACCEPT.TAC COBBECTED.SIBO,

HATCH.ACCEPT.TAC COBBECTED.8IBO;

HATCH.ACCEPT.TAC COBBECTED.81B0;

HATCH.ACCEPT.TAC COBBECTED.SIBO;

XSX

BSPSAT OU.TAC THU STBIP.TAC THEB PUBE.OICE.BEVBITE.TACCCOIIECTED.DEF]
THU BUEAT OU.TAC THU COBJ.TAC THU POU.OBCE.BUBITE.TACtBJOIB.DU]
THULt XS-1X

HATCH.HP.TAC OBAPH.IISUT.EDOE THU HATCH.HP.TAC OUPH.IBSUT.EDOE
THU HATCH.HP.TAC OUPH.IBSUT.VUTU THU IHP.U8.TAC COIBECTED.OBAPH;
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ASH.CASES.T4C "p2 IS.VEETEX (H:S«tvork>" TMEIL[

X 5.2 1pi IS.VUTU | A p2 IS.VEETEX mX

IHP.BES.TAC COHRECTED.GBAPH THE! IHP.EES.TAC V.IISEET.ABSOEP
THEE ASH.HEWHITE.TACtVEETELIISERT.EDGE

THEE EEPEAT STEIP.TAC TEEI IHP.US.TAC CQIECTED.DEF

Tin EXISTS.TAC "1:(Part«PartEEIbI>llat" TREE EEPEAT COEJ.TAC

TMEB ((EEPEAT (PATCH.BP.TAC PATH.IBS.EDOE)) OEELSE ALL.TAC)
THEE FIEST.ASSUH ACCEPT.TAC;

X 6.2.2 pi ISVEBTEX E A p2 IS.VEETEX E X
PUEE.EEHEITE_TACtVEETEX_IBSEET.EDQE;VEETEX.IB.IES.VEETEX]
TEEB EEPEAT STBIP.TAC THEBLt

X 6.221*1 «p2A *2mp2X

POP.ASSUN HP.TAC THEE ASH.EEUEITE.TACH] ;

X 6.22.2 vl - p2 A «2 ISVEETEX B X

ASH.CASES.TAC "v2 - (pl Part)" THEBLt

X 6.2.2.2.1 v

EXISTS.TAC " [(p2 ,pl #2) PartSPartSEIbl]" THEE EEPEAT COHJ.TAC THEBLt
X62221.1X

HATCH.HP.TAC PATH.IIS.EDGE THEE HATCH.HP.TAC PATE.IES.EDQE2
THEE COBJ.TAC THEBLt

HATCH.HP.TAC OEAPH.IESDT.VEBTEX THEE IHP.EES.TAC COBEECTED.QEAPH;
ASH.EEHBITE.TACtVEETEX.IB.IES.VEETEX] THE

EE
COBV.TAC (OBCE.DEPTB.COBV STH.COBV) THU FIUT.ASSUH ACCEPT.TAC] ;
X6.2.2.21.2 X

ASH.EnBITE.TACtPATH.EBTEr.SIHP] H
X 6.2.2.2.13

ASH.EnEITE TAC[PATE UIT.SIHP]] ;
X 6.2.2.2.2 *2 - pi

POP.ASSUH (\t ASSUHE TAC (COBV.EULE(OBCE.DEPTE.COHV STH.COBV) t)>
THEE IHP.EES.TAC COBBECT.LEHHA

THEE EXISTS.TAC "COBS (v1.pla2) (1:(PartSPartSElbl)liat)"
THEE EEPEAT COBJ.TAC TEULt

X 5.22.2.2.1 X

SUEST1.TAC (ASSUHE "vI| = (p2:Part>">

THU HATCH.HP.TAC PATH.IES.EDQE THEE HATCH.HP.TAC PATH.IBS.IBS.COBS
THEE EEPEAT COBJ.TAC THU (FIEST.ASSUH ACCEPT.TAC OBELSE ALL.TAC)
THU COBV.TAC (OBCE.DEPTH.COHV STH.COEV) THU FIUT.ASSUH ACCEPT.TAC;
X 8.2

2222 X
PUEE.EEHEITE_TACtPATH_EETET.COHS

arc] THU EEFL.TAC;
X 6.2.2.2.2.3 X

HAP.EVUV IHP.EES.TAC IPATH.HOT.HULLIPATH.UIT.COHS]
THU SUESTLTAC (ISPBC "(vI,pl.a2) PartSPartSEIbI"
(ASSUHE “ fh:PartSPartSEIbl. PATH.EXIT(COHS E | ) « PATH.EXIT 1">)
THU FIUT.ASSUH ACCEPT.TAC]];
X 6.223 vl ISVUTU | /A »2 - p2 X
ASH.CASU.TAC "vI - (pi:Part)" THEELt
X 8.2.2.3.1 vl - pi X
UISTS.TAC "Kpl ,p2,al):ParttPartSEIbI]" THU EEPEAT COEJ.TAC THULt
HATCH.HP.TAC PATE.IBS.EDQE2 THU COBJ.TAC THULt
HAP.EVUV HATCH.HP.TAC tQUPH.IBSUT.EDOE :QEAPH.IISUT.VUTU]
THU IRP.EU.TAC COHBECTED. H
ASH.EEHEITE.TACtVEETEX.IB.IES.VEBTEX ;VEETEX.IBSEET.EDQE]] ;
ASH.ENEITE.TACtPATH.EHTET.SIHP] ;
ASH.EnEITE.TACtPATH.EXIT.DEF;HALE.EXIT.DEF;a.daa;BULL]] ;
X6.2.2.3.2 Vi -

POP.ASSUH (\t. ASSUHE.TAC (COHV.EULE(OHCB.DEPTH.COHV STH.COBV) t>>
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ran EXISTS.TAC “APPEBD I [(pi,p2,(I) :PrrisPorell
THU REPEAT COBJ.TAC TMELL[

X i.a.a.3.2.1 X

H;(TCH HP.TAC PATHXAPPEID TEE! REPEAT COEJ.TAC THEELLX4X

REPEAT (HATCE.HP.TAC ORAPE. | (SEAT EDGE)
THEE HATCE.HP.TAC QRAPE.IBSERT.VERTEX
TREE_IHP.RES.TAC_COIIECTED.GRAPH,

XS.223212X
PURE_REWRITE_TACCDISJ.PATH.DEF] THEE REPEAT COBJ.TAC THEBLCXAX

REPEAT (HATCH.HP.TAC PATE.IIS.EDGE)

THEE HATCE.HP.TAC PATH.IBS.VERTEX THEE FIRST.ASSUH ACCEPT.TAC:

HATCH.HP.TAC PATH.IIS.EDOE2 THEE COELTAC THIEL[

HAP.EVERY HATCE.HP.TAC [ORAPH.IESERT_EDOE:QRAPH_IESERT.VERTEX]
THEE IHP.RES.TAC COIEECTED.GRAPH;
ASH.REWRITE.TAC[VERTEX.IE. IBS.VERTEX ; VERTEX. IESERT.EDaE]] ;

PURE.OECE.REWRITE.TAC[DISJ.L | ST.COHH]

THEE REWRITE.TAC[DISJ_LIST_COBS, DISJ.LIST.EHPTT]

THEE IHP.RES.TAC PATH.ELEH.IS EDGE

THEE POP.ASSUH (\t.ASSURB.TAC

(COBTRAPOS (I SPEC " (pi.p2.21) :PortsPertSRIbI" t>)>

THEE POP.ASSUH HATCH.HP. TAC

THEE HAP.EVEBV IHP.RES.TAC [COEEECTED.GRAPH.ORAPH.EOT.VERTEX.BOT.EDGEZ]

TREE POP.ASSUH HATCH.ACCEPT.TAC;

PURE_OBCE_REWRITE.TACCDISJ.LIST.COHH]

THEE REWRITE.TAC[DISJ.LIST.COES ; DISJ.LIST.EHPTT ;V.L.DEF jc.4m ]

THEE IHP.RES.TAC PATH.ELBE.VER.LIST.IS.VERTEX

THEE POP.ASSUH (\LHP.TAC (COBTRAPOS (ISPEC "p2:Pirt" t>>>

THEE HAP.EVERT IHP.RES.TAC [PATH.BOT.BULL I0T_EULL_VIR_LIST]

THEI SUBSTL.TAC (ASSURE

“VBRLLIST (I:(P>rttP*rttEIbl slist >- COIK»..re<KD [IK V.1 D*)

THEE PURE_REWRITB_TAC[ELEH_DEF;DE_HOROALTHH]

THEE DISCH.THEH IHP.RES.TAC] ;

...... X
PURE.OECE.REWRITE.TAC[PATH.EETRT.SIHP]
THEH COBV.TAC (OECE.DEPTH.COST STH.COBV)
THEI FIRSTASSUH ACCEPT.TAC-.
X12.2.1.1.1.4 X
PURE.REWRITE.TAC[VEfc.LIST.COBS i«.»re j«.4 M iV.L.DEF]
THEE SUBSTL.TAC (COIV.RULE (OECE.DEPTH.COIV STH.COIV)
(ASSURE "V m PATH.EETRT (1:(P«rtrPrrtVIibI>llt>")>
THEI REWRITE.TAC[ELEH_DEF:DE.HOROALTHH]
THEE COBJ.TAC THEELC
COBV.TAC (OICLDEPTH.COIV STH.COIV);
SUBSTL_TAC (COIV.RULE (OICE.DEPTH.COIV STH.COIV)
(ASSURE "v2 - <p2:Psrt)"))]
THEI FI RET.ASSUH ACCEPT.TAC] ;
XS8.22322X
IHP.RES.TAC PATH.EITRT.APPEED
THU POP.ASSUH (\* .PURE.OECE.REWRITE.TAC[t] )
THEI FIRSTASSUR ACCEPT.TAC;
X122.121x

SUBST1.TAC (REWRITE.RULE[BULL] (ISPEC “[(pi.p2,SI):PartIP»rtiEIDbI]"
(ISPEC I1ffM I— 1- m iW PATH.EXIT.APPEID)))
THEE REWRITE.TAC[PATH.EXIT.DIF ;WALE.EXIT.DEF;i .4m ;HULL]
THEI FIRST.ASSIM ACCEPT.TAC]]:
X * 2.2.4 «1 ISVERTEX | A «2 ISVERTEX | X
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IHP.RtS.TAC COL11ECTED.DEF THU EXISTS.TAC "1 :(P»rt*Part*EIbI>1Int"

THU REPEAT CORJ.TAC THEE ((HAP.EVERT <\th.REPEAT (HATCH.RP.TAC th>)
[PATH.1RSEDQE;PATH_IIS.VERTEX]) ORELSE ALL.TAC)

THE! FIRSTAHSUII ACCEPT.TACII]]) i

closa.thaoryO :,
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Appendix C

Listings of the verifier

This appendix Lists the ML source files of the network verifier which consists of the
following files:

rail.grm the input grammar of the parser

rail-decls.ml  declarations of the parser generated by the parser generator

rail.ml functions of the parser generated by the parser generator
rail.help, ml functions used by the parser
rail-load. bl loader of the verifier

var.natwork.al verifier functions
ak.varifiar.m| source for creating the base theory in which the verifier works
Makefile makefile for compiling the verifier

Since the files rail.ad and railjdacla.ad are generated automatically and very
long, they are not listed.

C.l The file r&il.grm

FUST.CHARS, 1IIDIFOII]KII\lOP«ISTUIIlT 10415l TlIL
chars 'iiiDim i JiuiaopqRiTiimrtoi m it

HAIR.LOOP --> dofinition.part construction.part CROP].
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defiBitioa_part > [DEFIITION M .1U .
dof.llot — >def daf.liot | []

dif > bpart | tpart | ppart | dpart
I teir | point | signal I odgajoin | odgoaig

bpart — > [BPART] (dof.bpart(TORE!)>

tpart — > [TPART] {daf.tpart(TORI!, TORE).

ppart — > [PPART] {dof.ppart(TOED. TOIEI TOIER, point.coan>>.
dpart --> [OPART] {dof.dpnrt(TORSI, TOUR, dian.conn, dlan.conn))
point.conn --> [(] {(at.point(TORSI. TORSL TOSH)} )] .
dian.conn — > (<] <got.diaa(TOIEI, TORSh [)].

teir —> [TCIR] {dof.tcir(TOSD>>.

point — > [POIIT] {dof.point(TOSS!>)

oignal —» [SIOIAL] (dof.signal(TOREL TORSb.

odgojoin * > [EDOSION] {dof.¢join(TORSI, TORSI».

odgooig *> [KDOSSia] {dof.onig(TOSH, TOREI. TORSI)

construction.part — > [COISTRUCTION slop.op aot.op.Xlat
not.op.liat —> notop not.op.liat 1[].

not.op --» njoin.op | odgo.op.

oiap.op —J [SIIP] {nk.slap(TORSI)

njoia.op - > [13011] (sdi.nJoin(part.nuno, odga.aoan)
odgo.op — ) [B0OB] {nk.odgo(part.nuns, odgo.nuno))
partnuns --> {gat.parts(TOEEI, TORSI).

~dge.nuno --> (gst.odgosiTORSI, TORSI).

C.2 The file rail_help.ini

Xload.theory *vorifior'ti X

Iot teir.fine m “tefn
lot pntpoo.func m “patpoo”;
lot pntloc.func m "patloc’i
Tot loig.fuac m “H.sig";
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let Jii|.
1st Subair func
lat Shalg.fuac - "

lat ae.tka - TRUH ;

lat Is.sppor a mt : atring -> boat X
lat cada * aacil.cada a la
lat cadaA - (aacli.ceda **>- | and cada.Z - (ascii.ceda m*+)#» la
((cada > cada.A) A (cada < cada.Z));;

lat la.laser a m X : atrlag -> beol X

lat cade - aacli.cada 2 Ia

lat csda.a « (ascii.co - | aad coda.a - (aacil.cada ‘a> a 1 la
((cada > cada.a) A(cade < csde a))ll

lat talaaar a m X : atrlag -> atrlag X
If (la.apper a)
tkaa

lat cade - il.cada a) - (aacli.cada ‘A'>la
(aacll ((as oda *a‘) ¢ cada))
alea a;;

lat IaapFar a mX: atrlag -> atrlag X
If ( a.laser a)

Iat cade m (ascii.coda a) - (ascii.cods ‘a‘) la
iaacll ((ascii.cade *A>+ cada))

a;;

1st lesar.striag a m iapleda (aap tslassr (tapiada a
lat uppar.striag a m tapiada (aap teupper (espiada a

1st la.digit a « X : strlag -> bael X
Iat cads m ascii.cads a la

cods.O - (ascii.cods ‘0‘>- 1 aad cada.» - (ascii.cods *+') a 1la
((cade > c0ds.0) A (cads < coda »));i

1st Is.aua a a X : strlag > bool X
farall la.diglt (osploda a);;

lot Is.part a m Xstring «> bool X

1st si m (espiada a) la

(aaa (kd al) [=&=; *T'; *0*; =»=J> A (farall Is.digit (tl si»;;
lot is.adga a m Xatriag -> bool X

lot si m (ssploda a) la
(aaa (bd el) t<3+; *s']) A(farall Is.digit (tl al»;;

1st ak.auaa s X: slnag -> tara X
ak.coast(a, ":aaa");;

1st daf.palat Id m Xstring -> atrlag list « tka X
If (|s aaa id)

(1st taaaa m *1d 1.
lot 1 m ak.eq(ak_\ var(ptaaae “:Pelat">,
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“:nua“>>

ah_coab( uh.coabi ah.eoub0’POUT". ah.coast(ld,
pntpos.func), pntloc.func)) In
(Iptnaaal, nou.dafinitioniptnano, t))>

-la* fallaith ‘axpacting a nuabar aa point ID (daf.point)'; |

>

daf.tclr Id m X atrlag -> atrlag Hat = tha 1
If (ia.aaa Id)
thaa
(lat ptnaaa m ‘C* * 1d In
lat t m ah_ag(ah.var(ptnaaa, ":Telr">,
ah.coab(ah.coab(*TCIB", ah.coastdd, ":naa")), tclr.faac)) la
(Iptnaaa), naa.dafinltion(ptaaaa, t)>
alsa fallalth ‘azpactlag a nuabar aa clrcalt ID (daf.tclr)’;

lat gat.point (si, s2, a3) m X :(string = string = string) -> (string list = tha) X

If (Is.a0a si) » (Is.nua s2) » (Is.aaa s3>
thaa ([si; s2; s3], no.tha)
alsa fallaith ‘azpactlag throa nuabars as adjacaat part ID'S (gst.polat)’ ;
lat gatdlaa (si, s2) mX i(string = string) -> (string list = tha) X
If (is.nua si) B (Is.nua s2)
thaa ([si; s2], no.tha)
slsa fallaith ‘axpacting two nuabars as adjacsat part ID'S (gat.dlaa)*;

lat daf.bpart s m X istring -> string list = tha X
If (Is.nua s)
than
(lat ptnaaa - *B'*s la
lat t m ah.ag(ah_*ar(ptnaaa, “iPart”),
ah.coabC'BPIBT", (ah.aaa s>>) la
(Iptaaaa] , nas.dafinitioniptnaan, t))>
alsa fallsith ‘axpacting a nuabar as part ID (daf.bpart)’;;

lat daf.tpart (id, tc) » X (string = string) -> (string list = tha) X
if ((is.nua Id) B (is.nua tc>>
than
(lat ptnaaa m ‘T* * id in
lat tcir m ah_eonot(('C* tc>. *iTcir") la
lat t m ah.aq(ah_var(ptnaaa, "iPart"),
nh.coab( ah.coabCTPABT". (nh.nua id)). tdr>> la
(Iptaaaa), naa_dafiaition(ptaaaa, t>)>
alsa failuith ‘axpactlag tao nuabars as ID'S (daf.tpart)';

&

daf.ppart (Id, cld, pld, ([trail; aora; rav], th)) =
X i(string = string = string = (string list = tha)> -> (string list = tha) X
If (is.nua id) B (Is.nua cld) B (Is.nua pld)
thaa
(lat ptnaaa m 'P' * Id In
lat teir - ah.ceast(('C'*cld), “:Tcir") la
lat pnt m ak.caast(('l '*pld), “iPoint") la
lat tri - ah_palr( (ah.nua trail),
ah.palr( (ah.nua non), (ah.nua ra*))> la
lat t - ak_aq( aiitvar(ptnaaa, "iPart"),
ah.coab( ah.coabi ah.coab(
ak.coabCPPABT", (ah.aua id)), tcir), pat), tri)) la
(Iptnaaa), naa.daflnition(ptnaaa. t)>>
alsa fallalth ‘axpacting thraa nuabars as ID'S (daf.ppart)
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1st dof.dpart (Id, eld, ([palpa2], thl), <[pbl;pb2], th2>> -
X :string » string = (string list = thn) = (string list = thn) ->
(string list = tbs) X
1c (is.noB id) = (Is.nua eld)
thsn
(1st ptaaas - *D' * Id In
1st telr m ak.const(<‘C' *cid>, ":Telr") In
1st 11 m sdi.palr((ak.nua psl), (nk.nun ps2)) In
1st 12 - ak.pair((nk.nua pbl), (sk.nua pb2>) In
1st t m ak_sq( nk_var(ptnaao, ":Part"),
ak_coab( ndi.eosb( nk conbt Bk_conb("DPALT", (ak.aua id)),
telr), 11), 12)
(Iptaaao] , nss dsvmmon(pmsM >>)
slss failsith ‘sxpscting tso nusbsvs as ID'S (dst.dpart)* i

1st dsf.signal (1d, styps) -
X : (string = string) -> string list = tbs X
1e (Is.nusi id)
thsn
(1st ptnsas m  *id in
1st rbs * csss stjrps of
‘MU' . (mk_conb( mb.cosbC'SiaiALH", (sk.nas id)). Hslg_fanc>> |
‘HLILJUIC . ( sb.cosb( sk.cosb(
nk.c'mbC'SiaiALbJ*, (sk.nas id)), msig.func). Jsig.fsnc)) |
'RAID.SUB' . ( sh.cosbi sk.cosb(
mb.cosibC'SiaiAllIS", (sb.nus Id)), Rsig.fanc). Subsig.func)) |
‘NAILSUB.JUIC® . ( nb_conb( sk.cosbC nk.coch<
sdt.eoBbC'SIOIAUIS", (sk.nus id)), Hsig.fnne). Subsig.func), Jsig.func)) |
'SHUIT' . (ab.e0*b( sb.cosb(*SIOgALS", (sb.nus id)), Sbslg.func))

in
1st t m mb_sq( sb.*ar(ptnaas, ":Signal’), rhs) la
(IptnasM], nas.dsfinltion(ptnasa, ))>

siss fallsitb ‘smpsetlag s nuabsr as ID (dsf.slgnal)* i

Ist dsf.ajoln (id. jtyps) -
X : string = string => string list = thn X
If (Is.nua id)
thsa
(1st ptnaas - *J* ' id in
1st jtp m nk.coast<Cl.' * (lossr.string jtjrpo)), “iJola”) la
lot t m Bb.sq( mk.variptnsMs, " :11b I"),
nb.cosib( *KLBL", Jtp)) In
(IptassM], nss.dsfinitlon(ptnsns . t)>)
olss fallsitb ‘axpseting a nunbar as ID (dof.sjoln)* I

1st dof.sslg (id, Jtyps, slg) -
X : string = string = string -> string list = thn X
If (Is.nuai id) A (is.nun slg)
than
(1st ptnsaa m ‘s~ * id
lot Jtp - Bb cor\sl(('l* * (lossr.string Jjrpo)),  Join®) in
lot t m Bh.og( nb.var(ptnasM, ":H b1"),
mk.coab( Bk.coabCELBLSIQ", Jtp). mk.conste*« *slg).  Signal*))) In
([ptnsas] , nos.dofinitlon(ptnasM,
olso fallsith ‘axpocting a nuabor as ID (dof.oslg)* ij
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X functions for construction port X
lotrof rail.tap.the - TIUTH::

lot «k.ainp pt :(string list = thsi) =

lot t mok.const(pt, " :Psrt") in

lot th m pro*e_oicple_network t in

<Cpt], (railtnp.tha  sa*o_th«((pt* THIF), th))> &
X ([pt]. sa*e_the((pt-"Tol'>, th) ) iiX

lot «k njoin (([ptl: pt2]. tilth«), ([odi; sd2] ,t2:the>
: (string list = tlus) t (string list = the) > X
: (string list t th *
lot pi - «k.const(ptl, *iPort") in
lot p2 = «k.const(pt2, "iPart") in
lot ol - ah.const(sdl, ":<Ib1") in
lot «2 - Bh.const(od2, "ilibi") in
lot th - pros#.notsorh.nloin roil.tap.th« pi p2 »1 02 in
([pt2], (rsil.tBp.the :m ss*o.the((pt2-THH'), th))> &
X ([pt2]. ssvo_th«((pt2*'THH'), th)) & X

lot «k odgo (([ptl pt2], tilth«), ([odi; #d2],t2:tho))
: (string list = the) = (string list = the) -
i (string list = thq) m
lot pi *«k.const(ptl. *iPnrt") in
lot p2 m k.const(pt2, "iPart") in
lot ol - <k.const(odi, "illb1") in
lot 02 m ck.const(od2, "illb I*) in
lot th m provo.notsork.odgo roil_tep.the pi p2 ol 02 in
([pt2]. (rslltBp.the :« sovo_tha((pt2*"nm>"), th))) i:

lot got.pnrts (si, s2) * X ‘(slrlng t string) -> (string list  th«) X
if (Is.pnrt si k (Is port s2
than § si; s2]. 1<
olos friloith oxpccllng too ports (gst.ports)’;;
lot got.sdgss (si, s2) mX ‘(smng « string) -> (string list t th«) X
s2)

thon $[s| s2],
also fallolth sspscllng too edges (get.odgos)*;;

C.3  The file rail-load.ml
X Oanaratod psrssr load fils

First load som basic de ons! X
Toadf */hol/qual 1/hol/Library/parser/general *;;

Xnsort any other filas you want loaded boro: X
add_to.ssarch.path '. ./signal/";
add_to.soarch.path ' _Inetwork/';; I
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load.library'graph*

load.theory ‘verifier*:;
autoload.all ‘EETHOKE'; ;

loadf ‘ver.network™;;
loadf ‘rnil_help*; |

X Bow load tko declaration»: X
loadf ‘rail.dacla’;;

X Finally load ia tka function definition»: X
loadf ‘raill;

lot SEPS - [ C(*. O); [ lit

lot verify flle.nauo m
(aoa.tkoory flla.naaa
lot [naaa], th - PABSE.fib(<fib_nare *<.rb*), [1, SEPS) In
( cloao.theoryO ; »ave_tha(naBo,th) )) ;;

C.4 The file ver_network.ini

X FILE: ver.network.ul
A railoay network verifier
AUTNOB: Hai Hong DATE: 8 Jan 1992 X

X prove.einple.netvork » -
prove.elnple.network p returns a thoorau
1~ IETHOBE <{P>, <»
iff p 1 apart, i.0. of typo :Part. X

lot prove.siaphb_net*ork p -
SPEC p BETHOBE SINP 2 failw itk ‘prove.aiuple.notvork*;;

X prove.in.network m - : (tor* -> conv)
prove.ia.network p n return» a theoreu
I- p ISVEBTEX n

iff p 1 apart in the nextwork n

»_in.notwork p n + TACPROOF (([].

THEE PUKE_OBCE_REHBITE_TAC[VERTICES]
THEE COBV.TAC (IB.COBV ALL.COBV)) T failwitk (‘not in natwork*)ii

%
X pair.£Q.COB»
pair EQ.COBV conv (oY) = >
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.yl. oo BTiff <«i® fi> for *11 i

B ) - i,.m)> mr othorslaa
conv is used to prove (si - ft), typically, it sill bo NBEQCOLV
for fields of typo :bsb sad bool.EQ.COLV for typo :bool X

lot psir.EQ.CO1V conv ta m

lot ., (Ihs;rhe] - strip.coM ta is

if (iks - rks) tksa (imin.coni«f

also

(lot lal a TOP.DEPTL.COIV (BEMLITE.CONV PKILEQ) to ia
(PUIE.IEMITE.IULECAID.CLAUSES ;1EPL_CLAUSE]
(01T.COLV.IIOL« (DEPTH.COLV conv) lai>)> T

fsilsith ‘palr.EQ.COLV ;;

clausc ta>

XPartEQ.CO1V - - :
PSr(KQCDlV (XPAIT . ) - (I'PAIT ...

) W (XPAET ...)) - T
iff Ioo pans ars symactically identical
|- ((XPALT ...) m(I'PAIT ...))m y otkarsiso X

lot Part.EQ.COIV ts -
lot ., [Iks;rks] - strip.coak to la
lot fiad.dof t = if (is.const t> tksa
dsfiaitioa (carroat.tkaory()) (fst (dost.const t>) also TOT1 la
if (ks - rks) tksn (BEHBITK.COIV kEFLCLAUSE ta)
slss
(1st Iksdof - flad.dof Iks in
lot rksdof - find.dsf rks la
1st sabl m filter (\th.t. aotith - TtUTI)
[(Iksdof.Ihs)i(rhsdaf.rhs)] in
lot asp a L« not(null subl) than
SULIT.CO1V snbl "lks a *rksMto slss (kEFL ta) ia
lot Iks’,rks’ m desteq (snd(dsstsq (concl asp))) in
if (Iks’ - rhs’) tkan
(PUIE.OICE.imiTE.IULB [RXFL.CLAUSE] sap)
also
(lot snbl" mfilter (\t. not(t - TEVTH)) [Ihsdof;rksdof] in
lot Part.distlact m tksoraa 'PAST* ‘Part.disttact' la
lot Part.alldlistinct = append (COLIULCTS Part.dIstinct)
(Bap (CO1V.EULE (01CE.DEPTH.CO1V SYB.CO1V))
(COLIUICTS Part.distlact)) la
lot Part.oao.oas m tkaoraa ‘PAST% 'Part.eaa.onella
lot tka - TAC.P«OOP(([], =" -tB">,
SUBST.TAC snbl' THE!
<(IUP.PIAST ATCLACCEPT.TAC Part.all.dIstiact)
OKELSE
(PULE.OICI_1EH1ITE.TAC[Part.one.one]
Tin coIV.TAC (DEPTH.COIV nna.EQ.CO1V)
THIS PULE_1EMTE.TAC[AID.CLAUSES €OT.CLAUSES1))) ia
EQP.IT10 than
T failnith 'Part.EQ.COIV1;;

Xpreve.aot.ia.aotoork m - : (tors -> coav)
prove.not.ia.notvork p a returns a theoren
I~ pISVELTEX a
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iff p la not = part in tho noxtoork n

lot provo_not.in.natsort p a - TACPROOF < ([],
— *pIS.VUTRI *a"),
PURE_ORCE_KEVRITE.TAC[IS.VERTEX_DEF]
THU PUAE.OICI.RIVIITIL.TAC[VERTICES]
THE! COHV.TAC (DEPTH.COHV (11.CO1Y Part.IQ.COHV>>
THU PURH.OHCI_REHRITI_TAC[HOT_CLAUSE3]>
Tfallaith Op is In notoork b')sj

X provo.finita - - : conv
provo.finito *{ ... >" > I- PIHITI{ ... >X

lot provo.finito tn -
lot flat* w nk.conb(nk.const<'PIUTE
nk.typoCfun', [(typo.of tn); “:bool]>>, tn) in
IQTELIH (FINTE.COIV fintn) T
falloith ‘provo.finita: not afinite aet

X 8UC.COHV :conv
SUCCOHV "8UC n“ —>|- SUCn - n>okoro 1» ma ¢ 1 X

lot 8UC.COHV -
lot chock at m assart(\c. fat(doat.const c> - at) la
\ta.
lot  nta m (chock ‘8UC' = 1) (dost.conb ta) In
1st nstr - string.of.Int (int_of_string((fat o doat.const) nta) ¢ 1) in
STH (nua.COHV (ak.const(nstr, "jana"))) T
failalth ‘SUC.COHV' ;;

X CAHD.CQHV - - : conv -> conv
CAR.COV conv “CUD <>0,...n (a-I»H=—> |- CARD («0......k(a-i>> m a
fails I tho sot cannot bo proved to bo finito
canv is usod by IH.COHV to chock shatkar the nos olaaent is already
la tha sot, a.g.,
CARD.COHV nuaEQ.CO8V "CAU <1,2,3>" " > |- CARD(12:3> - 3

and
CARD.COIV noaEQ.COHV “CARD (1,3.3)" "> |- CARD{1.2.2) - 2 X

1st CARD.COHV conv ta -

lot coap m theorem 'sets1 ‘CARD.UPTV In
1st cins - thsoraa ‘sots’ 'CARD.IHSUT' In
lot chock at m assort(\c. fst(dost.const c> - at) in
lotroc strip.sat ta -

(lot ..[kit] - (chock ‘IHBUT* = IXstrip.coab ta) in
h . strip.sot t)

(fst(dost.const ta) - ‘EHPTY > [] | fall) In
lot provs.finite ta m
lot flata - ak.conbink.const(‘FI1ITE1,

ak.typoCfun’, [(typo.of ta); ":bool"])), ta) in

KQT.EL1H (FIHITE.COHV finta) T
falloith ‘provo.finito: not a finite sat* in
lot _,ols - (chock ‘CARD' = strlp.sot) (dost.coab ta) in
1st -, [aty] - dost_typo(typo.of (rand ta)> in
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**ty)aatn) la

1 aapty m ak.conatO EMPTY*
*y>(**ty>a*t>(**ty)a*t’) la

lat Ina mak.conati'lISERT",
lat itfa cith a (laat.Ith) -
(ak.coabC ak.coabdna, a), iaat),
(lat ifth m prova.flait* Isat la
lat th - COIV.EULE ((OICE.DEPTH.COW (II.COIV (coat)))
THEIC (OICE.DEPTH.COW COID.COIV)> (SPEC a (HITCHHP elth Ifth>> la
lat th> - PURE.OICEREWRITERULECith] th la
COIVKULE (OICE.DEPTH.COW SUC.COIY) th1) la
aad (Itllat (Itfa elaa) ala (aapty,caap>) T
fallalth 'CARD.COHV ;;

X ak.aatllata - : ((tana -> bool) -> tana > tana Hat)
ak.aat.llat f aa raturaa a Hat of alaaanta which aatiafloa tha
pradicata f, i.a.. [ al] ahara ai la aa aad f ai. X

lat ak.aat.llat « aam
lat chack at - aaaart(\c. fat(daat.coaat c) m at) la
latrac atrlp.aat ta m
(lat _,[h;t] - (chack ‘ISEHT* a IHatrip.coab to) la
h . atrip.aatt) T
(fat(daat.conat ta) » EHPTY* ®> [] | fail) la

lat _,[aty] = daat.typa(typa.of aa) ia

lat itfa Paamif (Pa)thaa (a.a)
alaa a la

itllat (itfa f> ala [] ?

failwith ‘ak.aat.liat';

X ak.iacidaat.aatliat * - : (atrlag -> tara -> tara -> tara Hat)
ak.iacidaat.aat.liat atr aa * raturn» a Hat of adgaa which ara la
tha aat aa aad ara lacidaat TO/FEOH/HITH th* glwan wartaa w. X

lat ak.lacidaat.aat.liat atr aa wm
lat Pfroa - (\t. fat(d*atpair t> mw) la
lat Pto - (\t. fat(daat.pair(aad (daat.pair t>>> m w> la
lat Palth m (\t. (fat(daat.pair t) = w> or
(fat(daat.pair(aad (daat.pair t))> = w>) la
lat P mif (atr m ‘FtOH') thaa Pfroa ala*
if (atr m ‘TO’) thaa Pto ala*
if (atr - ‘WITH1) than Paith ala*
failaith ‘adiiacldaataat.llat: unhnoaa typ* atriag' ia
(ah.aatliat P aa) T failwith ‘ak.incldantaatHatl;

X prowa.ia.IBcidaat = - : tara -> taro -> com
prow*.la.lacidaat a 0 w 1-i 11 (ICIDEET.TO 0») X

lat prow*.ia.iacldaat * 0 * - T»C_PHOOF<<[] ,
“*k Il IICIDEET.TO -0 -w">,
PUEE.OICE.REHKITE.TAC[IICIDEET.TO.DEF]
THU PURI.OECE.REHEITE.TACCIS.EDOE.DEF]
THEE PURE.OECE.REWRITE.TAC[EDOES]

THEE COW.TAC SET.SPEC.COW
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TIE! PUU.tmiT1.TIC[a.daa.DEF;FST;SID;EIFL.CLAUSI; AID.CLAUSKS]
TUI COIV.TAC (I.COIY ALL.COIY));:

X llat.to.aat m tan liat -> tan
Xlat.to.aa« ["1i"] —-> "< al > X

lat llat.ta.aa* «l « -
if aall «1 than “<}<*c?>" alaa
lat aty = typa.ofihd al) In
lat aapty a aak.conat( EHPTY', *: (*aty)aat’> la
lat laa - ah.conat(' lISUT1, “:*«ty->Caty)ant->Cnty>aaf> la
lat Itfa a a - akcoaab( akcoabdna, a), a) la
(Itllat itfa al aapty) T fallalth ‘llat.ta.aaclit

X prova.laeldaataabaat = - : tan > tan -> con*
prava.incidaat.aabaat 0 * I- (IICIDUT.TO O *> SUBSET a X

lat prava.lacidaataabaat 0 * a =
lat iap3 - OKIALL (al 3 (COWUICT3 (SPEC, ALL HP.CLAUSKS)>> la
TAC.PtOOF( (L. "(IIC1DKIT.TO ‘0 **) SUBSET -
PUUJS\/\ITKJAC[IIC\DULTO DEF; IS.EDOE. DEF :KDOKS ;SUBSET.DIF]
Tin COIV.TAC (OICLDEPTH_COIV SET.SPEC.COIV)
THU OU.TAC
Tin PUIE_AIHEITI_TAC[ILIISELT; BIGHT.AID.OVEB.OB]
THU STHP.TAC
Tin POPASSUH HP.TAC T ill ASH.UHIITLTACD
Tin PUU_imiTB.TAC[a.daa.DIF;FST;SID]
Tin COIV.TAC (IATOB.COIV (OICLDEPTM.CON Part.1Q.COIV))
Tin PUU.tmiTB_TAC[lap3]> T
fallalth ‘pro»*.lacldaat.aabaat;

X IICIDUT.TO.COIV m - : tan -> can*
IICIDEIT.TO.COIV 0 » —» (- (IICIDEIT.TO 0 *) 1 {
It norha ont tha aat of adgaa ahlch nra lacldaat to * 2ad raturna
a thaoraa aaaartlag tbla fact. X

lot 1ICIDIIT.TO_CONV a * -
lat 1SO mand fdaat.palr 0) la
lat all = Bk_lacidaat.aat.liat ‘T01ESQ * la
lat aty m typa.of IM la
lat ala mliat.ta.aa« all aty la
lat Cith - OELALL(aad (EQ_IIP.RULE (SPECALL IISERT.SUBSET)) la
lat ath - ISPEC "IICIDHT.TO ‘0 «* EHPTT.SUBSET la
lat Itfa elth a ith m
HATCHHP elth (COIJ (pra*a.in.laeldaat i 0 *> ith) la
lat thl m prava.lacideac.aabaat 0 « ala la
lat th2 m (Itliat (itfa clth) all ath) la
(HATCH.HP SUISET.AITISni (COW thl th2)> T
fallalth ‘IICIDEIT.TO.COIV*; |

X prora.fC a - tan -> con*
prava.lFC p
Iff pla anadala | aad It la a#c fully caaaactad. X
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1
let prove.BFCp | m
lot inth* m IICIDKIT.TO.COb m p in
let pdef m 1c (li.conit p> than
definition (currant.theory0) (fat (daat.canst p>> alaa TKUTK la
lat lath = if (la.caaat p> than
SUBS [pdaf] Inth' alaa inth' In
TAC_PBOOF(([], “IFC -m -p"),
(SUBST.TAC [pdaf] OULSI ALL.TAC) THIS PUBB_OBCB.BBMBITB.TAC[BFC.DEF]
THIS PUBE.OSCE.BEHBITE.TACCIS.DEQBEE.DEF]
ran PUBE.OICB.BBIniTE.TAC[Inth]
Tin ((PUBE_OSCE.AEmTE_TAC[CAAD.EMPTY]
THU COSV.TAC (OSCE.DEPTH.COSY nun.COb) THU HATCH.ACCEPT.TAC LESS.0)
OAILSE
(COSV.TAC (OSCE.DEPTH.COIV (CAAD.COSV (pnir.BQ.COST Part.EQ.COS»)))
THU COSV.TAC (BKDKPTH.COB* nua.COSV)
THU PUBE BEMBITB_TAC[LKSS, HOSOEQ LESS.THH ; HEFL.CLAUSE; OHCLAUSES]) ))
Tfallalth ‘preve.BFC* ;

prove.neteorh.njoin - - : tha->tera->tara->tarn->tera->tha X
prava.nataorh.nloin that pi p2 jl J2 —>X
I- EETWOAE (BIOIB nl pi jI «p2).(» p2 2> X
I- BBTHOU ((p2 ISSEST (VS nl)). X
((nl.n3.jl) IBSUT (n3.nl JZ) 1BSEST (BS nl))) X
that — BETHONI nl
pi is a vartan la al X
p2 la a Tartar ta ba addad ta tha aataarh X
il la tha jala af tha edge (plp2> X
2 la tha jaln af tha edge (p2.pl) X

at prava.nataarh.njala that pi p2 jl j2 =
lat p.nl m (daat.caab (caacl that)) in
If (nat(*SETWOHI' m (fat (daat.canat p))>) than
fallalth ‘nat BBTHOBB thaeraa' alaa
lat la * (SPEC "*nl* HKTWOBE.HJOIB) in
lat tha2 - prove.in.nataerh pi nl in
lat tha3 - EQF.ELIH (PartEQ.COB» "*pl - *p3"> In
lat thad - prava.BFC pi nl In
lat thas’a prava.net.in.nataark p2 al in
lat thaé - HP (HP (SPBCL[al:p2] BOT.VBB.IHP.BFC) thal) tha6' la
lat ante - COBJ tha2 (COS) tha3 (COBJ thad tha6>> in
lat la’ - SPECL [pl:p2] (HP la that) In
lat nataarh.caaen tha =
lat njelntha - HP (SPBCL [nlipi:jlip2;j2] BJOIB.B1P)
(COBJ tha2 thafi’) la
lat th - PUHE.OBCE_AEHAITE AULE[VEHTICES ; BOOKS]
(PUHE.OBCK.HEHHITB.BULB[nJointha] tha) In
(COB*BULB (DEPTH.COBV (UBIOB.COBV Part.EQ.COH»)) th) In
lat nth - (SPBCL [j1; j2] (HATCHHP la' ante)) in
nataerh.caaan nth ?
fallnith ‘preve.netverh.ajoin’;

X prove.netvorh.edge m - : tha->tara->tara->tarn->tarn->tha
prava.nataerh.adga thal pi p2 jI j2 —>
I- SETMOBB <(p2.pl.j2) IBSBBT.EDOB ((pl.p2.jl) IBSUT.BOB ni)>
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I- IETUORK ((VS nl), ((p2.pl.j2) ISERT <pl,p2.jl) UISERT (IS nl)>)

that — BETUORI nl

pi 1*a virtu in nl

p2 In another tart« in nl

jl In th. join of tko edge (pl,p2)
12 is tko join of tko odgo (p2.pl) I

prove.notoork.edge thal pi p2 jI j2 -
lot p.nl - (deot.coab (concl thnl)) in
if (not('BETHORX' - (fat (dont.count p)>)> tkon
fnilnitk ‘not BETMORI theorealalso
lot Im - (SPEC "*n|" mETHOU.SJOII) in
lot tka2 * provo.ia.nataork pi al in
lot tka3 - EQF.ELIH (PartBfL.COBV —pi m *p2’> in
lot thad m provo.BFC pi al la
lot tkaS' - prova.in.notnork p2 al in
lot tkaS - provo.SFC p2 al la
lot onto - COU tha2 (COU tka3 (COSJ tkad tka6>> la
lot la=- SPECL [pi;p2] (HP la that) In
lot notaork.canon tha -
lot njolntha - HP (SPECL [nlipi:dl;p2;j2] SIOIS.EXP2)
(Col tha2 thas*) la
lot tk - PURE.OSCE.REVRITE.RULE [VERTICES ;EDGES]
(PURE_OBCB_REVRITS.RULE[njointha] tha) la
(COIV.RULE (OEPTH.COBV (UBIOB.COBV Part.EQ.COBV)) th) ia
lot nth - (SPECL [J1; J2] (HRTCHHP la> onto)) la
notoork.canon nth ?
fallolth ‘provo.notoork.odgo’s;

C.5 The file mk_verifier.ini

noo.theory ‘verifierL;

odd.to.ooarch.patk *../oigaal
add_to.saarch.path *../notoork/

load.library ‘graph* ;;
noo.paront * SETWORE®;;
nao.parant ‘SIOBAL*;;
noo.parent ‘PART*;;

lot tef - nao.doflaitioa(*tcf*,“tcf - (\t:aaa. clear)™);;

lot pntpoo m nes.definltion(pntpoo’,‘pntpoa = (\t:aaa. normal)’);:
lot patloc mnoo.dofialtloa(‘patioc*, ‘pntioc m (\t:aua. free.move)");:

lot Hoig mnoo.dofinition(Haig*,
Tot Joig m non.defInltloaCJolg*
Tot Subolg - nan.doflaltlonCSuba
lot Shoig m noo.deflaltioaCSkoig

“H.oig m HSIO tno.aopoct (\a:a:

3 = JSIQ (\nznua. T)');;
‘Sub.olg - subsio (\n;naa.

Sh.aig m SHUBTSIO (\n:nua

clooo.tkaory0 ;;

aa. groan)’);:

oab.aot.aboo>">'

ah.off)"):;
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C.6  The file Makefile

- Generated parser Makefile

= Version of 10L to be seed:
NOL-hol

- General definitions for all generated parsers:
antBAWhoae/quall/hol/Llbrary/parser/general

= Insert entries for user-defined stuff here
= keaeaber to Insert the appropriate dependencies and “load"'s below,
ver.network.al.o: ver.network.al
ecko 'set.flag('abort.when fall .true);; >\

‘load.library ‘graph';i*\

‘add.to.search.path *../network/L;; >\

‘add.to_searck.path *../signal/*;i'\

‘load.theory ‘lITVOKI' ;;

‘autoload.all 'im iOkI'j >\

‘coapllet *ver.network*j ;>\

quito;;= | t(mol)

rall.help_al.o: rail.help.el ver.netvork.al.o verlfler.tk
ecko 'set.flag(‘abort.when.fail'.true): i 3\
‘loadf 'tOKISKAL)m ;3\
‘load.library ‘graph’ ;>\
*add.to_search.path =../network/";
‘add.to.search.path =../signal/’;i’\
‘load.theory KTUOUmj*\
‘autoload.all ‘IETUOAI=j '\
‘loadf ‘ver.network’j i\
*load.theory ‘verifier’ ||'\
‘coapilet ‘rail.help';
'qulto ;i» | I(HOL)

verifier.th: ak.verifler al

rs -f verifier.tk

echo 'sot.flagoabort.wh
‘loadf ‘ak.verifier’
>quit(); ;> | t(KOL)

fall’.true): i\
N

- low coapile the declarations:

rall.decls®al.o: rall.decls.al rall.helpjnl o

echo 'set.flag(‘abort.when.fall' .true):; \
‘loadf ‘t(OUBIAL)"
‘load.library ‘graph’ ;i\
‘add.to.soarch.path = /network/';; \
‘add.to.search.path =../signal/’ jj’\
‘load.theory *IITWOKI'
‘autoload.all ‘aiTHOU ji’\
‘loadf ‘ver.network’ i 'V
*load.theory ‘verifier ;'\
‘loadf ‘rall.help’j:>\
‘coapilet 'rall.decls’i;
‘quito :; + | «(MOL)

= Finally do the actual functions
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reil_al.o: ralX.aX ralX.dacXa_aX .o
~cho ‘aat.fXag(‘abortahan.faix' trua);: >\

all

Xoadf ‘t(aillRAL)L;
*Xoad.Xibrary ‘graph*
‘add.to.aaarch.path « ./iMwtk/"i;>\
*add.to.aaarch.path «../aignaX/1;; >\
‘Xead.thaory ‘mETWOU' ;;
*auteXoad.aXX ‘IETWOU *u >\
Xeadf lvar.nataerk’;; A
*Xead.thaory Werifler'; s\
*Xoadf ‘raiX.heXp';; ®\
*Xoadf ‘ralX.dacXa*
‘ceapiXat ‘ratX'u’'N
'qUito ;; * | t(HOL)

raixX.ax.o

~acho '"m> Paraar “rail” bniIXt.>
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Routes and control tables

This appendix lists the ML source of the definitions described in Chapter 8.

add.to.saarch.path '../graph/=;
add.to.soarch.path 1 ./signal/';;
load.library ‘graph';;
load.thaory *IETWORIL:;
autoload.all *SETWORK';
autoload.all ‘graph’;|

noa.thoory 'tOUTB";
load.library ‘aoro.llsts";;

t Functions for finding rontss X

XTif ols atrailing odga, i.s.. (0.dss &> is a facing point or X
(0.srs o) is atralllno point X

lot TRAILTIga.UXILDKr m nan.dofinition(‘TRAILIO.gDOK.DEF' ,
*TRAILIO.IDai (s:PartSPartSElbl> -
((IS.PPART (a.dos a>> A
(PART.ID (a.src =) > PART.PIT.TRAILIIO (s.dos a))) V/
((IS.PPART (a.sre a)>
(PART.ID (0.dos s) - PART.PIT.TRAILIIO (o.sre 0>>>">1}

X T if ois anorail odgo, i.0., (0.dos a) is a facing point or X
X (a.src o) is a traillns point
lot IDRHALEDGE.DIF - nos.doflnitlon ( \ORXAL EDGE.DEF',
"IORRALEDOK (0.PartlPartW Ibl) -
(IS.PPART (a.dos s>) A
(PART.ID (s.sre 0> m PART.PIT.IORHAL (s.dss 0>>) \/
(IS.PPART (s.ste =)> A
(PART.ID (s.dss s> - PART.PITIORRAL (s.5re =>>>>(;

X T if s is arsvsrso sdgs, i.0.. (a.dos o) is a facing point or X

(s.sre 0) la a trallina point X
RIVKRS.IDi.DKr- nos.dsfinitlon(‘REVERSI.EDAE.DEF',
"REVERSEEDOE (.P.rtSP .rtSEIbI) -

lo
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((IS.PPART (e.des

(PART.ID (c.arc a> m PARTPBT.REVEASE (a.das a>)> \/
((IS.PPART (a.src a» A

(PART.ID (a.das a) m PART.PBTRIVERSE (a.arc a)))*):;

* T if al aaa a3 ara tha 5aaa lag af a dlaaond crossing |
1st SAHELEQDEF - sas.daflaltloa (' SAKE.LEDL,
"SANE.LEQ (at:PartOPartSBIbl) (s2:PartfPartSElbl) m
((1S.DPABT (a.daa at)) A (IS.DPAET (s.src s2>> A
((a.daa al) W (a.sre a2)> A
(lat dp w a.daa al and
idl - PAET.ID (a.sre at) sad id2 - PAST.ID (a.das a2) la
(((1d1,1d2) - (PART.DIAI dp)) \/ <(id2.id1> - (PABT.DIAL dp)> \/
((!d\ td2> - (PAET.DIA2 dp)) \/ ((Id2.tdt) m (PAIT.DIA2 dp>))>

((|s DPAST (a.sre at)) A (s OPART (a.daa a2)) A
((a.sre al) - (a.das s2>>
(lat dp w a.sre al aad
idl - PART.ID (a.dss al) aad id2 - PART.ID (a.das a2> la
(UId1idT) = (PART.DIAI dp)) \/ ((IdT.idl) - (PART.DIAL dp)) V/
((1d1.1d0) - (PART.DIA2 dp)) \/ ((Id2.id|) m (PART.DIA2 dp))))) “)ii

X Daflaitlaa sf reatas —— a rents is a path and tha saceesslve X
¥_edge_af 2 PPART or OPART asst satisfy tha felleslag conditions]

1st ROUTR.TAIL.Dir m nes. hst rac.definition (‘ROUTE.TAIL.DEF*,
"(ROUTETAIL [] -
(ROUTLTAIL (CORE (h PartsParttelbl) t) m
<+ 0
(((1.PPART (a.das hy> ->
((TRAILIRO.EDOE h) ->
((IORHAL.IDOB (HD t>> \/ (REVERSEEDOE (HD t>>) |
(TRAILIIQ.EOOE (HD t))> |
((IS.OPART (a.das h)> -> (SARELEO h (HD t)> | T>> A
(ROUTLTAIL t>>)c*>:

@

ROUTE.DEF m nse.dafin tie n (*ROUTE.DEF' ,
=ROUT! (I Ratsorh) (r:(PartSPartfElbl>list) m
(RETHORE 1) /\ (PATH mr) A (ROUTETAIL r) A
(IS.ELRL.SIO1AL (alb (HD r>>) A (IS.ELRL.SIOSAL (alb (UST r)))-)j|

&

ROUTE.EDQRS.DBF - nas.daflnition ( "ROUTE.EDQES.DEF"
"ROUTE.EDORS (r:(PartSPartORIbIUIst>a (RUTLAST l)”)]|

&

ROUTE.PARTS.DRP - nas.dafinitlon("ROUTE.PARTS .DEF",
“ROUTE.PARTS (r:(PartSPartSElbl)liat) a
VBRLIST (RUTLAST (TL r))-)jj

X Canflicing raatae X
*

X
lat COSFLICTIBO.ROUTRS.DIF m naa.dsflnltlsa(‘COBFLICTISO.ROUTES.DEF" ,
"COIFLICTIBO.ROUTES (S:Sataarh> rl r2 a
(ROUT! mrl) A (ROUT! m r2> A
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X Functions for proving reatos X

X TCIRCUITS rotaras a list of track circalt la tko route 1X
lot TCIRCUITS.DEF - noa.dofinitloaCTCIkCUITS.DtF1.
“TCIECUITS (r:<PartSPartSEIbl)list) -
HAP PART.CIRCUIT (ROUTE.PARTS )"

X IORR roturas a list of points required IORHAL if a aovaaant X
X froa pi to p2 is Bade. [] is raturnad if none is rsquirad X
lot I0RH.DEF - nos.definition (' EORH.DEFL,
“IORII (pi,p2.CSEIbI)) -
WS.PPRIT pi) /\ (PART PITIORHAL pi - PART.ID p2)>=>
[PART.POIIT pi] |

X IOAH.POIITS roturas a list of points roqulrod MAHAL in tks routs 1 X
lot IORH.POIETS.DEF - nas.dsfinitionC ‘IORH.POIITS.DEF" .
“EOAH.PONITS r - FLAT (HAP 10EH (ROUTE.EDGES r»"> ;;

X REV returns a list of points raqulrad REVERSE if a aovesont X
X iron pi to p2 is Bade. [] is raturnsd if nono is rsquirod X
lot REV.DEF m nos.dofIn Itlon (‘REV.DEF*,
“REV (pi,p2.(0:EIbI)>-
(ISPPART pi) /\ (PARTPITREVERSE pi b PART.D p2) =
[PART.PORT pi] | 0"

X REV.POUTS roturas a list of points rsqulred REVERSE in tho routs 1 X
lot REV.POIITS.DEF m nsu.dafinitionCREV.POIITS.DEF1,
“REV.POIETS r - FLAT (HAP REV (ROUTE.EDGES r>>">jj

X EXIT.SIQSAL roturas tko oslt signal of a rento X

Iot EEIST.SIGEAL.DEF - nos.dsfinitionC'EEIT.SIOIAL.DEFL,
"EXIT.SIGIAL (r:(PartSPartSEIbl)list) =
1st 0- alb (LAST r) in
(IS.ELBL.SIOIAL e> m> [ELBL.SIOIAL 0] | []">:;

X COIFLICT.ROUTES rist r returns a list of routes skick ars in rist and
ars conflicting routes sith r X

lot COIFLICT.ROUTES.DEF m nas_list.roc.dsflnltlon (‘COIFLICT.ROUTES.DEF1.

WCOIFLICT.ROUTES [] r - [1) A

(COIFLICT.ROUTES (COES h t) r -

(‘(DISJ.LIST (ROUTE.PARTS ) (ROUTE.PARTS h>) /\

*<k - >> m>
(COES h (COIFLICT.ROUTES t r)) | (COEFLICT.ROOTES t r) ;

X EITRT.SIQ r rsturns tho osigaal attacked at the first edge of tha routs X
1st EETRT.SIG.DEF - aas.dofinitioaCBBTRT.SI0.DEF',
“BETRT.SIO (r:(PartSPartSElbl)list) = lot s malb (ND 1) ia
(IS.ELBL.SIGEAL a) -> [ELBLSIOIAL a] | O -)j]

lot EETRT.SIGIALS.DEF - nos.dofinitionC BOTRY.SIOEALS.DEF' .
"EETY.SIQBALS r rist - HAP EITRT.SIG CCOIFLICT.ROUTES rist r>")jj

1st FILTER.DEF m nas.list.rsc.dsfinitionC'FILTER.DEF' ,
“(FILTER tl <fa->bool) m []) A
(FILTER (COIS h t) f =
(f h> m> (COES h (FILTER t f)> | (FILTER t f»")j|
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l«t CRTAKE.DEF m aaa.llat.rac. daﬂaltloa( CRTAEE DEF,
“(CRTAEE [] (p:Part) - O) /
(Ct.mi (COESkt)p>
<k- p) > 1] | (COIS h (CRTAEEt p)))">::

lat CRPRS.DEP m aaa.dafInitloa(‘CRPRS.DEFL,
"CRPRS (p:Part) pll -
I#t crlat - FILTER pll <\IN(ELEH 1 p)> la
RAP <\1. CRTARE 1 p) crlat )y

e

CR.PTS.DEE m aaa t.rac.daflaltloa R.PT8.DEF.
“(CR-PTS E] (pll t Part)liat)Hat) - ([53 R
(CRPTS (COIR (p:Part) 1) pll -
((IS.PPART p) \/ (I3.0PART p>) ->

(APPEEO (CRPRS p pll) (CRPTS t pll))
I (CRPTSt pll))")::

lat CRTCIRCUITSDEP - naa.dafialtioa(‘CRTCIRCDITS.DEF' .
"CRTCIRCUITS r rlat -
lat erlat m COIFLICTROUTES rlat r la
lat ptlat - FLAT (CRPTS (ROUTEPARTS r) (HAP ROUTEPARTS rlat)) la
(HAP PART.CIRCUIT ptlat)"):;

cloaa.thaoryO;;



Appendix E

Level crossing—a case study

This appendix lists the ML source files of the level crossing case study. A level
crossing is represented by an object of type :Cross consisting of five state functions:
Highway whether highway traffic is occupying the crossing, Track whether rail traf-
fic is occupying the crossing, Approaching whether there is a train approaching,
HighwaySignal whether the highway stop signal is ON, and RailSignal whether
the rail stop signal is ON. All of these functions return value of type :bool with
the value T representing active state, e.g., in the case of Highway and Track state,
T indicates the crossing is occupied by the traffic of the respective kind.

The state machine controlling the level crossing can be in one of the following
internal states:

Road-Proc highway traffic can proceed;

Rail-App a train is approaching;

Road.Clr the crossing is clear of traffic;

Rail-Sot rail signal is set;

Rail_Proc rail traffic can proceed;

All-Lock both rail and highway traffic are stopped.

Initially, the machine is in the All-Lock state with both highway and rail signals
proved ON. This is defined as the predicate INIT. The function NEXT specifies the
possible state transitions. The crossing is safe if not both rail and highway traffics
are allowed to proceed, i.e., not both the rail and highway signals are turned OFF.
This is defined as the predicated SAFETY.

The theorem INIT-SAFE asserts that the initial state of the machine is safe.
The theorem NEXT.SAFE asserts that, if the current state is safe, the next state of
the machine is also safe. The theorem STATE-HACHIHESAFE asserts that the state
machine specified by INIT and NEXT possesses the safety property SAFETY.
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mem.theory'CROSS';
aot.flag('sticky’, truo):;
naa.parentVSA®
autoload.all*L8A%;

lot Croas.Axioa + defino.typo ‘Croas.Axioa’
Croaa - CROSS bool> ( bool bool, bool> bool) ©

X Highway Track Approaching HighoaySignal RailSignal X

lot HIQHVAY.DEF - noa.rocuraivo.dofiaition falao Croas.Axioa IHIGHWAY.DIF
"HIOHHAT (CROSS h t app SH ot) - h"j

lot TRACEDKF * noo.rocuraivo.definition falao Cross.Axioa ‘TRACE.DBF
“TRACE (CROSS k t app ah at) - t"i;

lot APPROACHDEF m noa.rocuraivo doflnllmn falao Croaa.Axioa *APPROACHOEFL
"APPROACH (CROSS Kk t app ah at) - ap.

lot H.SIOSAL.OEF - noa.rocuraivo.dofinition falao Croaa.Axioa 'H.SIOSAL.DEF'
“"HSIOIAL (CROSS h t app ah at) - ah“;;

lot R.SIOHAL.DEF m noa.rocuraivo.dofinition falao Croaa.Axioa ' R.SIOIAL.DEF'
“RSIOSAL (CROSS h t app ah at) - at";;

moa.typo.abbrov (‘EStato*. " :boolShool«boolSboolSbhool”) ;;

lot Stato.Axloa m dofino.typo 'Stato.axloa’
‘Stato - Road.Proc | Rall.App | Road.Clr | Rall.Sot I Rail.Proc | All.Lockl;;

lot Stato.conat.diat m aavo_tha(‘Stato.coaat.diat* ,
provo.conatructora.diatinct Stato.Axioa); ;

lot Stato.Induct m aavo.tha(‘Stat«.Induct’, provo.Induction.tka Stato.Axioa) ;;
lot Stato.caaoa m aavo.tka('Stato.caaoa’, provo.caaoa.thm Stato.Induct);;
lot CROSB8TATE - noa.rocuraivo duflnlllon

falao Croaa.Axloa ‘CROSSSTA

“CROSS.STATE (CROSS h tr a ah a() t-(ht, trt, at aht, at hHMm;

lot SHSTATE - noa.dofinition(' SH.STATE,
“SH.STATE ((ht:bool), (trt:bool), (at:bool>, (ahtibool>, (attibool)> a aht"):;

lot ST.STAT* - noa.doflnitioa(‘ST.STATE', "ST.STATE (ht, trt. at, aht. att) mett");;
lot HSTATE - noa.dofinition(H.STATE', “HSTATE (ht. trt, at. aht. att) mht“);;

lot TRSTATE - m

_doflaitloa(‘TR_STATE<, "TR.STATE (ht. trt. at. aht. att) - trt");;

lot ASTATE - noa.dofinitioni ‘ASTATE', "ASTATE (ht, trt. at, aht, att) mat");;

lot IBIT - noa.dofinition(‘HIT"
SXEIT («, @) m (SHSTATEc) mT) A (STSTATEc) mT) A <a- All.Loch)=)::

lot SAFETY m i.dofinitionC SAFETY*,
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lat »EXT - naa.daflaitioaCHEXT*,
“TOT (e. > <c', *>) -
((+ - »11.Lock) ->
(CTH.STATE ¢ A ».STATE c) -> <<a> - Road.Proc) /\ "SH.STATE &> A ST.STATE ¢>) |
(».STATE e -> «B 1m Eail.App) /\ SH.STATE c> A 'ST.STATE c>> |
(>me) A («-0)> |
(<a = Road.Proc) =
(».STATE C -> (xs' - Eail.App) A SH.STATE C* A ST.STATE C> |
(» ma) Ee>me)) |
((a - Eail.App) ©
("«.STATE € w> ((alm Eoad.CIr) A SHSTATE C> A STSTATE C) |
(a* - a) A (o me)) |
((a = Eoad.Clr) =
((-«.STATE C A ».STATE C) >
((a’ - Bail.Sat) A SH.STATE C> A ‘ST.STATE ) |
(a* =a) A (c*mc>)
((a wEail.Sat) =
(TE.STATE C -> ((a* m Bail.Proe) /\ SH.STATE €* /\ ST.STATE €>) |
(+’ma) A (e*»e)) |
((a - Eail.Proe) =
('TE.STATE e m> da’ » All.Lock) A SHSTATE c* A ST.STATE ¢') |
(a* ma) A (elmc)) |
(a> ma) A (e¥- e>>>>>3>;

lat I1IT.SAPE - prova.tha(' ISLT.SAFE" .
“(lc a. 1T (c, a) mm> SAFETY(c, a))M
EEHBITE_TAC[IHIT ;SAFETY] THEE EEPEAT QELTAC THEH STEIP.TAC
THEI ASH.EEHELTE.TACC)): ;

lat «EIT.SAFE m prova.thaa(BEXT.SAFE',
“Meae*a'. SEIT (C.a) (€*. e>> A SAFETT (e, a) — > SAFETY (C>, a*>",
PUBE_OBCE_BEWBITE_TAC[EEITSAFETY] THEE REPEAT OEB.TAC
THEE EEPEAT COED.CASES.TAC THEE STEIP.TAC THEE ASH.BLVBITE.TACC])::

lat CBOSS.HACHIEB m prova.tha(‘CROSSHACHIE® ,
“(le a. IHIT(c, a) mm> SAFETY(c, a)) A\
Oc aera
TOT (e, a) (c>, a») /\ SAFETY (e. a) — > SAFETY (e*. a*>)

d(a:aua->BStata>. LSA (IHXT, HEXT) a - PLSAdIIT. SAFETY. HEXT) a )",
STEIP.TAC THEE POP.ASSUH (EP.TAC 0 QEEALL = (SPECL ["(c:nua->EStato) t";
"(a:aua-Stata) t"i “(c:a<Mi->EStata> (SUC t)"i "(a:aaa-St* a> (SUC t)"]))
THEE POPASSUH (HP.TAC 0 QEE.ALL o (SPECL C'(c:aaa->EStata) t*i "(a:aaa->Stato) t']))
THEE BEWEITE.TACCLSAIPLSA] THEE EEPEAT STEIP.TAC THEE EQ.TAC
THEE STEIP.TAC THEE EXISTS.TAC "a:aaamStata” THEE ASH BEHEITE TAC[J
THEE IIDUCT.TAC THEBL (EES.TAC;
ASSUH.LIST (\thl. ASSUMETAC (SPEC "t :aua (al 2 thl))> THEE EES.TAC]); ;

X |- la. LSAOEIT,HEXT)a m PLSA(HIT,SAFETY BEXT)a X
lat CEOSS.HACHIEE.SAFE - aava.tha(‘CEOSS.HACEIEE.SAFEL,
EP CBOSS.HACHIEB (COEJ IBIT.SAFE BEIT.SAFE));;

cleaa.thaorjr0 ;;



Appendix F

Dynamic networks and state

machines

The following ML source listing contains the definitions described in Chapter 9.

F.l  The file dnetwork.ml

*N.IkHry ‘MRT'il

m-m-typa.abbrav <'SignalStatal. ": (RAapact = bool = SubAapact) ¢ SkAapact):;
naw.tjrpa.abbra*<'SignalStatafunc' .
"<mmm > HAapac) = ((aaa -> baal) = (aaai > SubAapacl)) + (aw > SkAapact)"):
aaa.typa.abbrav(‘PointStata’, “Ppaa m Plac*
aaa.typa_abbra*(‘lataorkStata’,

":(Tatata)liat = (PeintStata)liat = (SlgaalStata)ilat':;

lat TC.STAT1.POTCS.0IT - aaa.dafiaitioa(‘TC.STAT1.PU1CS.D1P=,
“TC.STATS.FUICS (Slataork) m
SIT.LIST (IHAOB (TC.SPU1C a PAST.CUCUIT) (VS m>>**>;

la* PITSTATEPULCS.DKP - aaa.daflaitioai'PST.STATE ruses_DEF',
"PST.STATS Fuses (l:Sataark) =
lat plat - SIT.LIST (IRAQI PAST.POIST (SS m)> la
(RAP (\p. (PIT.POS p, PST.LOC p>> plat)"):;

lat SIO.STATLPUICS.DRP - naa.dafinitionl'Sia.STATI.FUSS.DtFL,
"SIQ.STATE.Fuses (I:lats* rk> -
lat alglat - SBT.LIST (IRAQI (ILIL.SIQIAL a alb) (IS w)) la
(HAP SIQ.SFUIC alglat)"):;

®

APPLT.D1P m naa.llat.rac.daflnltlon(‘APPLT.DEF1,
“(APPLY f t] a - (Cli(aa)iiat)) A
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(APPLY (f >(=->==)) (COIS hd tl) <*:
OIS (f hd a) (APPLY f tI >))"):;

l«t APPLY.SIO.FUIC.DEF - naw.dafinltlon(‘APPLY.SIO.FUIC.DEF*,
“APPLY.SIO.FUIC m (\af t. 18L (af:SignalStataFunc) m>
11L (((FIT (0OTL of>> t),
((PST (SID (OUTL =()>) t).
((SID (SID (OUTL of>>) t>>
11 ((QUTE =) *3)">5;

lat IETMOAASTATE.DBF m naa.dafinltiont'SETwnar_TT*T5.08F" ,
"IETVORX.STATE (lilataorR) t -
lat cflct - TC.STATEFUICS | la
lat pflat - PIT.STATE.FUICS | la
lat aflat - SIO.STATEFUICS | la
((APPLY (\f t. f t) cflat t>,
(APPLY (\(fI,f2) t. (fl t. «2 t)> pflat t),
(APPLY APPLY.SIO.PUIC aflat t))*):;
lat DIETVOU.DEF - naa.daflaitlon ( ‘DIETWORE.DEF*,
“DIETUORI (I:lataork) t m (YS m>, ({a | (a IS.EDOE ®> A
(IS.PPAAT (a.arc a) -
((PIT.IOMAL (PAST.POUT (a.arc a>) t> A
(PAET.ID (a.daa a) - PAET.PIT.IOMAL (a arc a)> VV
(PIT.REVERSE (PAST.POIIT (a.arc a)) t) A
(PAST.ID (a.daa a) - PARTPITREVERSE (a.arc a)) \V/
(PAET.ID (a.daa a) - PART.PIT.TRAILIM (a.arc a))) |
(IS.PPART (a.daa a) -
((PIT.IOMAL (PART.POIIT (a.daa a» t) A
(PART.ID (a.arc a) - PART.PITIORML (a.daa a>) \/
(PITREVERSE (PART.POIIT (a.daa a>> t> A
(PART.ID (a.arc a> - PART.PITREVERSE (a.daa a>> \/

(PART.D (a.arc a) - PART.PIT.TRAILIIO (a.daa a))) |
T>) >

t ROUTEPROVED la T If thara la a rosta fro* pito p2la | and X
I at tlao t, It can ba prorad

lat ROUTEPROVED.DEF m naa.daflnltion<*ROUTE.PROVED.DEF,
"ROUTEPROVED rl 1 t =
lat rlat - CORFLICTROUTES rl r In

((EVERY (\a. TC.CLEAR a t) (TCIRCUITS r)) A

(EVERY (\p. PIT.IORHAL p t> (IORLPOIITS r>) A
(EVERY (\p. PIT.REVERSE p t) (REV.POIITS r>> /\
(EVERY (\a. *(SIOIAL.FAULT a t>) (BRIT.SIOIAL 1)> A
(EVERY (\a. O1 at) (EITRV.SIOIALS r rlat)) A
(EVERY (\*. TC.CLEAR a t) <CR.TCIRCUITS r rlat)))"):;

F.2 The file setlist.m |
aao.thaory'aatllat’;

lat ELEH.EL.IIX - prova.tha(‘ELEI.EL.II".
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“Ilx. ELEH 1x —>Tb. (a <LEIOTH 1) A\ (x mELa 1),
LIST.IDUCT.TAC THEE RURITE.TAC[ELEH.DEF]
THEE EEPEAT OEI.TAC THEE STEIP.TAC THEELC

EXISTS.TAC "0* THEE POP.ASSUH SUBSTLTAC

THEE EEURITE.TAC[LEBOTH;EL;LESS.O;HD];

EIS.TAC THEE EXISTS.TAC “SOC a”

THU ASH.REMRITE.TACCLUOTH ;EL:TL;LESS.HOBO.EQ]) : i

lat LEHHAL m TAC PROOF(([]
“la. (FIEITE a) —
(T (Ix:a. (x IB a - ELEH (¢ a) x)> A (CAED a - LEBOTR (f a»)*“)
SBT.IHDUCT.TAC TREBLE
EXISTS.TAC “\e:(*)eat. 0:(a)llat”
THEE COBV.TAC (OBCE.DEPTH.COEV BETA.COHV)
THU REHRITE.TACEBOT.IB.EHPTT;ELEH.DEF ;CARD.EHPTT;LEBOTH] ;
FIRST.ASSUH CHOOSE.TAC THEB
BXISTS.TAC “\a>:(*)aat. (a> - a IHSERT a) > COBS a (f a) | f a>"
THEB COBV.TAC (OHCE.DEPTH.COHV BETA.COBV) THEB COBJ.TAC TREBLE
RNRITE.TACEIH_IBSUTIELU.DEF] THEH ASH.REURITE.TACE] i
la« la.aet « m (fat(daat.coat *> m"S™) T falaa in
IHP.RES.THEB (\t. FILTER_ASH.REMRITE.TAC la.BOt Et]) CAU.IBSUT
THU PUU_OSCE_ASH_RNRITE_TACELEBQTH] THEH REFL.TAC]]) i i

lat TOLIST.DRP -
X 1* la. FIHITE a =»>
(IX. (XIB a - ELEH(TOLIST a a>X> A (CARD a - LUOTH(TOLIST a a>)> X
lat law - COHV.RULE ((OHCE.DEPTH.COHV RIQHT.IHP.UISTS.COBV)
THEBC SKOLEH.COHV> LEHHAL
la
aaa.apacifleation ‘TOLIST.DEF1 [*conataat* ‘TOLIST*] law n

lat SET.LIST.DEF m aaa.daflaltlon(' SET.LIST.DEF*,
"SET.LIST (a:(a)aat) - TOLIST a a*)ii

lat SBT.LIST.THH m
X 1- la. FIHITE a
(IX. (x 1B a- ELU(SET.LIST a)X> A (CARD a - LESOTK(SET.LIST a>>> X
lat la - COHV.RULE (OHCE.DEPTH.COHV STH.CDBV) (SPEC.ALL SET.LIST.DEF)

la
aava_tha(' SET.LIST.THH*, PURE_OHCE.REMRITERULE Ela] TOLIST.DEF);;

lat ELEH.SET.LIST - pro»a.tha('ELU.SET.LIST®
“la:(a)aat. FIHITE a -->
I ELU (SET.LIST a) x —> Tn. (a <CARD a) A (x - (EL a (SRT.LIST a)))",
OEH.TAC THEH DISCH.TAC THU IHP.US.TAC SET.LIST
THEB POP.ASSUH SUBSTL.TAC
THEB OEH.TAC THEB DISCH.TAC THEB IHP.US.TAC BLU.EL.IHX
THEH EXISTS_TAC"n:aaa” THU COBJ.TAC THU FIMT.ASSUH ACCEPT.TAC):

lat ELU.SET.LIST.IHSUT - prava.tha(‘ELU.SET.LIST.IBSUTL.
“I(a:(a)aat> a. FIHITE a —
Ix. X 1B (a IHSERT a) - ELEH (SET.LIST (a IBSUT a>> X".
REPEAT OEH.TAC THU STRIP.TAC THU IHP.RU.TAC FIHITE.IBSERT
THU POP.ASSUH (\t. ASSURE.TAC (SPEC "a:a“ t>>
THIS IHP.RU.TAC SBT.LIST)i;

lat ELU.SET.LIST.EQ - prava.tha(‘ELU.SET.LIST.BQ’

286
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e t. (FILITB =« A fllIT« ©) ——>
* «) - (Ix. ELEU (SET.LIST m) X - ELEU (SET.LIST t) x>".
REPEAT 8TIIP.TAC THE« IHP.AIS.TAC SET.LIST
THEI ASH.tmtITE.TAC[UTIISIO1]):;
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