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ABSTRACT

The method of coadjoint orbits was introduced by Kirillov to study the unitary
irreducible representations of a nilpotent Lie groups. Afterwards Kazhdan adapted this
method to determine the irreducible complex characters of a finite unipotent group. We
use this method to study the irreducible complex characters of any finite unitriangular
group.

In chapters 2 and 5 we established an orthogonal decomposition of the regular
character of any finite unitriangular group.

Chapters 3 and 4 are concerned with coadjoint orbits of any unitriangular group
defined over an algebraically closed field. Chapter 3 is essentially the orbit version of
chapter 2. In fact we obtain a decomposition of the dual space of the niltriangular Lie
algebra as a disjoint union of invariant subvarieties. In a certain sense this decomposition

corresponds to the one obtained in chapter 2 and 5.



INTRODUCTION

The main purpose of this thesis is the study of the irreducible (complex) characters

of the finite group Un(q) consisting of all upper unitriangular matrices of size n with
coefficients in the finite field Fq (throughout the thesis q will denote a power of a prime
number p). Our approach is based on Kirillov’s method of coadjoint orbits (see [Kil],
[Ki2] or [CG]). This method was introduced in the context of nilpotent Lie groups and

was adapted by Kazhdan to the context of finite unipotent groups (see [Ka]). It gives a

"mery useful way of constructing the irreducible characters of Un(q) and it runs as follows.

Let K be the algebraic closure of Fg. Then we may realize the finite group Un(q) as
a subgroup of Un(K). In fact Un(q) is canonically isomorphic to the subgroup of Un(K)
which consists of all fixed elements of the Frobenius map F:Un(K)-*U,(AT) - by
definition F(x)=0c,/) for all x=(x,y)e Un(K). The linear algebraic group Un(K) acts on its
Lie algebra Un(K) via the adjoint representation - we recall that the Lie algebra Un{K)
consists of all upper niltriangular matrices of size n over Al Therefore (/,,(AT) acts on the
dual vector space un(K)* of un(K) via the contragradient representation. This
representation is called the coadjoint representation and its (/,,(AT)-orbits are the coadjoint
Un(K)-orbits.

A similar rule to the one above defines a Frobenius map on Un(Af) which we denote
also by F. Then (using a basis of un(K) consisting of F-fixed elements) we may define in
a natural way the Frobenius map on Un{K)* and we may consider F-stable coadjoint
(/,,(AO-orbits. In order to define the exponential map exp: un{fC)-* Un(K) we assume that
p”~n (we note that with this assumption the Campbell-Hausdorf formula holds). Then any
F-stable coadjoint i/n(AT)-orbit 0<zUn(K)* determines a character %o °f UHq) which is

defin?d by
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where y/0 is an arbitrary (but fixed) non-trivial linear (complex) character of the additive
group Fa+(we note that any coadjoint i/,,(K)-orbit is an irreducible algebraic variety of
even dimension). This character is irreducible and so we obtain a correspondence 0-* X o
from the set of all F-stable coadjoint i/,,(K)-orbits to the set of all irreducible characters of
Un(q). The irreducible character Xo was defined by Kazhdan in his paper [Ka] (see also
[Sr, chapter 7]). It was also proved by Kazhdan that any irreducible character of Un(q)
has the form Xo for some F-stable coadjoint i/,,(Af)-orbit Oc U,(AT)* and that two F-stable
coadjoint i/n(K>orbits are distinct if and only if the corresponding irreducible characters
of Un(q) are distinct. Therefore the above correspondence 0-> X 0 one-to-one and so
we have a parametrization of all irreducible characters of Un(q) in terms of F-stable

coadjoint i/,,(K)-orbits.

Another approach (which is. clo#er to the original construction of Kirillov) to
the characters Xo of Un(q) (here O is an F-stable coadjoint £/,,(AO-orbit) is as follows. Let
/<=Un(K)* be an arbitrary F-fixed element. Then we may define a skew-symmetric
AT-bilinear form Bjon U{K) by B¢a,b)=f([ab]) for all a,be Un(K). Hence we may
consider maximal isotropic subspaces of Un(K) (with respect to that skew-symmetric
form). A general result asserts that there exists at least one maximal isotropic subspace
t)n(K) of un(K) which is also a (Lie) subalgebra of un(K) and which is F-stable.
Therefore defines (via the exponential map) a subgroup Hn(K) of Un(K) which is
also F-stable, hence the finite set of all its F-fixed elements Hn(q) is a subgroup of Un(q).
Then the correspondence a -» y/of[a), ae un(JC), defines a linear character ofHn(q) and
we may obtain the irreducible character Xo which corresponds to the F-stable Un(K)-ochit
of/as the induced character Therefore we conclude that any irreducible character
of Un(q) is induced from a linear character of some “admissible” subgroup of Un(q). This

result was proved independently by Gutkin [Gu] for an arbitrary prime p. In particular we

deduce that each irreducible character of Un(g) has degree gn for some integer ni¢ 0 (see



[Gu]). In fact (by definition) we see that %0 (1)w qdimO for all F-stable (/,,(AO-orbit
OcUjK)*.

Although Kazhdan's results reduce the classification of the irreducible characters of
UJq) to the classification of coadjoint [/,,(Af)-orbits they do not give a constructive
method to obtain those characters. In fact they do not allow a systematic method to
construct those characters. In the paper [Le] Lehrer used a different method which is
based on Clifford theory and which is valid for an arbitrary prime numberp. This method

was also used by Lambert and Dijk [LD] in the context of real Lie groups. Itis completely

constructive and it allows the construction of all irreducible characters of UJq) once we
know the irreducible characters of Un.x(q) and of some of its subgroups. In fact the
group Un.x(q) is canonically isomorphic to a subgroup of Un(g) which has a normal
complement AJq). Therefore (by Clifford theory - see theorem 2.1.1) each irreducible
character %of Un(q) is determined by a linear character X of An(q) and by an irreducible
character <pof centralizer Cy ~X) of Xin UnA(qQ) - we note that Un x(q) acts in a natural
way on the set of all characters of its normal complement An(g). This correspondence is
not one-to-one because the irreducible character %°f Un(q) is also determined by any pair
(Xx,g9x) for xe Un.x(q). However the Un.t(AT)-orbit of X contains a certain
canonical character for which the subgroup AJq)Cv i<)(A) is the subgroup
U Jq)=Un(q)r\OiluJqg)co where coeSn is a permutation of the form o*(n-1... i+1i) for
someic{ 1 1 } (ifi=n-1then £0=1). Therefore we conclude that each irreducible
character of Un(q) is induced by some irreducible character of UJiq). If we restrict our
attention to the linear characters of UJiq) then we obtain a family of irreducible characters
of Un(q) for which the Lie algebra U jK)-un(K)r\<o'lun(K)a) is a maximal isotropic
subspace of UJK) with respect to a certain (F-fixed) element/« UJK)*. This family
includes all the irreducible characters of UJqg) which correspond to the (F-stable)
£/,,(Af)-orbit Oin(a) of the element ae"*« UJK)* for ax Fq - here «**s Un(K)* is the
linear map defined by eiB<(a)«niltfor all a=(a,,)« UJK). These orbits lie in a larger family

of orbits which we will call the elementary orbits. In general if (ij) is any pair in the set
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<D(n)={(a,by, 1<ab<.n} we may define the (ij)-th elementary Un(K)-orbit associated
with an element oteK to be the i/,,(Af)-orbit 0 ixa) of the element aejj*e Un{K)* - here
ejj*e Un(K)* is the linear map defined by ejj*(@)=aiji for all a=(arj)« Un(K). If <XeFqthen
the orbit 0,-,((*) is F-stable and so it determines an irreducible character ¢~(a) of Un{g). A
character with this form will be called an elementary character of Un(q). They are the
characters of the irreducible representations defined by Lehrer in [Le]. Their construction
is described in section 2.1 where we also prove that each elementary character £y<a),
(ij)e <2>(n), ae Fq, is induced by the linear character Xjj(a) of the subgroup

Ua)q)=Un(g)r\(olUn(g)a>, a>=(j-\... i+1i)«Sn - this linear character is defined by
Xij(a)(x) =axij for all x=(xrs)e Ua(q). In particular the Lie algebra
UG(K)=Uni,K)n\coAun(K)a\s an (F-stable) maximal isotropic subspace of U,AT) (with

respect to the element aejj*e un(.K)*).

Following Lehrer's work we consider products of elementary characters. In fact, in
[Le], Lehrer obtained a decomposition of restriction of any irreducible discrete series
complex representation of the general linear group GLn(q) to Un(qg) as sum of certain
tensor products of irreducible representations whose characters are elementary. This
decomposition can be improved if we apply our results of section 2.2. In fact we will
prove that any product of elementary characters can be decomposed as a sum of basic
characters (proposition 2.2.13). By definition a basic subset D of <O(n) is any subset of
the form <P(n)n(o(A) where 4= {(1,2), (2,3),...,(n-1,n)} and to is any element of Sn.
Then we define the basic character ¢jp(<p) associated with a basic subset D of <tkn) and a
map p:D-»Fg*=Fqd[0} to be product of all the elementary characters £ij(<p(ij)) for
(W)« <tKn). The main result of this thesis asserts that any irreducible character x of Un(q)
is a component of a unique basic character (see theorem 2.2.1). Moreover the regular
character of Un(q) decomposes as the sum of all basic characters of Un(q), and the
multiplicity of a given basic character 4dW *sa component of the regular character is a

power of g which depends only on the basic subset D (see theorem 5.2.1).



On the other hand we consider the closely related problem of describing the

coadjoint t/,,(AQ-orbits. Our results in this direction are established for an arbitrary

algebraically closed field (with the restriction pin if K has prime characteristic p). In this

more general context we consider sums of elementary (/,,(AQ-orbits. In fact a general
result (corollary 1.3.11) asserts that (if K has characteristic pin) the irreducible
components of a product of irreducible characters %\semeeXr 31-6 *n one-to-one
correspondence with the F-stable i/,,(Af)-orbits which are contained in the sum Ofi..W r
where 0 €is the/-stable (/,,(/O-orbits which corresponds to the irreducible character Xi
(ISi~r). Therefore we consider basic sums of elementary i/,,(AO-orbits. If D is a basic
subset of 0{n) and <p:D-* K*=K\{0} is a map then we define the subset O D) of
u,,(/0* to be the sum of all the elementary orbits Oy(<pOV)) for (iJ)eD. The orbit version
of the result mentioned above states that Un(K)* is the disjoint union of all basic sums
0 D(<p) where D is any map (see theorem 3.1.7). Moreover each 0 D(<p) is a
(/,,(/0-invariant irreducible subvariety of U,,(Af)*, hence there should exist a finite set

of (/,,(AT)-invariant polynomial functions defined on tf,,(AT)* such that
O[L.(<p)={fe Un{K)*\ Pi(f)=ki, 1<i<m} where kx,...,kmeK. These functions are defined in
section 3.2 and they are indexed by a certain subset of <P(n). This subset depends only on
the set D and it will be denoted by R(D). Its definition is purely combinatorial. In fact a
pair (ij)tO(n) lies in the set R(D) if and only if (iJc)eD for all k=={/+1,...,n} and
(1)*D forall U{1..../-1} - in particular we have DcR(D). For each (iJ)*R(D) the

C/,,(/0-invariant polynomial function corresponding to (ij) will be denoted by A?. Their

definition was motivated by the work of Dixmier [Di] - in fact the functions Ax,...,Ar

(where n=2r or n»2r+1) defined in [Di] are our functions AG where

D={(l,n),(2,n-1),(3,/i-2),...} (in this case /?(D)»D).

In general the subvariety 0 D((p) of Un(K)* is not a single (/,,(AT)-orbit and its

decomposition as a union of orbits seems to be very difficult to obtain. An attempt is



made in chapter 4 where we give a decomposition of certain varieties 0 D(g® which
depend on the pairs (a,i)e 4>(n) where (i,n)eD for someie{ } . This
decomposition suggests also that it might be possible to find an algorithm to describe the
coadjoint £/,,(Af)-orbits once we know the coadjoint ;/,,(AO-orbits. In fact using the
permutation 0>=(n-l... t+1 f) one may define a certain basic subset of Un(K)* and a
map (PoiDa -*K* which depend on the initial pair (D,g>) and which satisfy (n-1,n)€D (.
Hence the variety Opjig)” of Un(K)* is canonically isomorphic to the subvariety
°D a0(<P<06) where DU* = D (n-1,n)} and gm0 is the restriction of <m to D mO.
Unfortunately the pair depends on a particular elementfeO D() (which satisfy
firean)-Aeiai- 0 f°r all ae {i+1,...,«-1}) and in many cases different elements in 0 D(<)
(satisfying that condition) may determine different pairs (D”cpJ. In fact (D"q)" is the
unique pair such thatf (fiODJ(pat w h e re Un(K)* is defined byfj.eab)=f{e)iriia)ari(ft}
for all (a,b)ed>(n) with £1(a)<tu'l(b), and if (aJ>)e<D(n) with £¥1(a)>0Q1'1(h).
The pair (D”q)” can be also defined step-by-step applying the simple reflections (i
i+1),... ,(n-2n-1) (in this order) to the element/. At each stage we define a pair (D*qtJ
(Isa”rt-i-1) such that (D@q}a=(Dn.i.lygn iA). The pair (Di,”) (corresponding to the
reflection (i i+1)) is determined in section 5.1 (see theorem 5.1.7), and in section 5.2 we

give an application of this method to the character theory of Un(q) (see the proof of

proposition 5.2.2).

More precisely our work in this thesis is organized in the following way.

Chapter 1is an introductory chapter. It consists of three sections. The first contains
the basic notation and definitions which will be used throughout this thesis. In the second
we describe Kazhdan's parametrization of the irreducible complex characters of Un(q).
Finally the third section is concerned with the operations of induction and restriction of
irreducible characters.

In chapter 2 we define elementary characters and elementary coadjoint orbits. Then

we study products of elementary characters and we prove the main result of this thesis.

We also describe the irreducible characters of Un(q) for n&5.
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Chapter 3 is dedicated to the study of basic sums of elementary orbits. It has three

sections. In the first we define certain subvarieties VD() of Un(K)* and we prove that
they coincide with the sum of elementary orbits. In this section we also prove the orbit
version of our main result. In the second we determine the dimension of each variety
VD(<p) and we derive some number-theoretical consequences. Finally in the third section
we determine the pairs (D,<p) for which VD((p) is a single coadjoint orbit.

Chapter 4 is mainly concerned with a certain decomposition of VD(<p). Finally in

chapter 5 we use this decomposition to describe a certain inductive process which is used

to obtain an additive decomposition of the regular character of Un(q).

As far as we know all the results presented in this thesis are original with exception
of the major part of the results of the chapter 1. Section 1.2 follows [Sr; chapter 7] and
section 1.3 is an adaptation of Kirillov theory as it can be found in [Ki2] and [CG]
(however some of our proofs are different). The applications to the character theory in
section 1.3 (namely theorems 1.3.8, 1.3.9 and 1.3.10 and corollary 1.3.11) are also

original.



CHAPTER 1

GENERAL THEORY

This chapter is concerned with the general background of our thesis.

In section 1.1 we introduce the basic notation and we discuss briefly a certain
family of unipotent algebraic groups. These groups can be obtained as exponential images
of nilpotent Lie algebras and so they will be called exponential (unipotent) groups.

In section 1.2 we construct the irreducible characters of the finite exponential
groups. In particular we prove that these characters are induced by linear characters of
some subgroups which depend on the existence of certain maximal isotropic subspaces of
the Lie algebra associated with the given unipotent group. We also establish the
one-to-one correspondence between the irreducible characters of this unipotent group and
the orbits of its coadjoint representation (on the dual space of its Lie algebra).

Finally in section 1.3 we translate to the orbit language the well-known operations
of restriction and induction of characters. In particular we will consider subgroups of
"codimension” one. Since these subgroups are normal this section is closely related with
the Gifford theory of finite groups.

Although the major pan of the results of this chapter can be found in the literature
(except as far as we know the applications to the finite groups in section 1.3) we will give
a detailed proofof each result. This is done for the convenience of the reader and in order
to make this thesis the most self-contained it can be. However a reference will be given

for all non-original results and proofs.



1.1. Generalities

Let ATbe any field and let n be a positive integer. Throughout this work we will

denote by Un(K) the (upper) unitriangular group of degree n over Al By definition this
group consists of all square matrices *<(w*,;/) of size n with coefficients in the l.'eld K
satisfying xu=1 (I£i£n) and j&*-0 (1¢j<if£n). If ATis the finite field Fqwith g elements
(where q=p&€, >0, is the e-th power of the prime number p) we will write Un(q) instead
of Un(Fq). It is well-known that Un(q) is a finite group of order qn<-123 For our
purposes it is convenient to realize the finite group Un(q) as a subgroup of the infinite
group Un(K) where ATis the algebraic closure of Fq. For we use the Frobenius map
F=Fq:Un(K) -* Un(K) which is defined by
(1.1.1) FQcMtf)
for all x=(Xij)e Un(K). The set

Un{IOF=[ xtU n(Af); F(x)=x)
consisting of all the F-fixed elements of Un(K) is a finite subgroup of Un(K) and we have
a canonical isomorphism

Un(K)p=Un(q).

For the basic properties of the Frobenius map we refer to Carter’s book [Ca]. We note
that, if the field ATis algebraically closed, the group Un{K) has a structure of affine
algebraic variety (*)* In fact it is isomorphic to the affine space A'¢'1)2 of dimension

(2). Since the multiplication and the inversion maps are morphisms of algebraic

varieties (3) we conelude that U,,(K) is an algebraic group.

1For the basic theory of affine algebraic varieties and of algebraic groups we refer to Humphreys' book
[Hull.

2 The coordinate ring of U,(K) is the polynomial ring AT[TV, 1 in indeterminates Tq
(1Si</£Eli) over K.

3 The expression “algebraic variety” abbreviates “affine algebraic variety” . This abbreviation will be kept
throughout our thesis.



Our main goal is the study of the (complex) character theory of the finite group
Un(g). The starting point of our work is Kazhdan’s construction (see [Ka] or [Sr; pg.
114-118]) of the irreducible characters of the finite groups consisting of all the fixed
elements of a Frobenius map defined on a unipotent algebraic group over an algebraically
closed field of prime characteristic p. This construction uses the method of coadjoint
orbits developed by Kirillov to study the unitary representations of nilpotent Lie groups
(see [Kil], [Ki2] or [CG]). Therefore a restriction has to be imposed on the primep in
order to realize our algebraic group as the exponential image of its Lie algebra (even
though not all unipotent algebraic groups can be obtained by this process). In the
following we discuss this general situation. Since any unipotent algebraic group is

isomorphic to a closed subgroup of some unitriangular group (see [Hul; corollary 17.5])

we may define a unipotent group to be a closed subgoup of some Un{K). Then the Lie
algebra of a unipotent group is a subalgebra (*) of Lie algebra of Un(K). This Lie algebra
consists of all square matrices x=Qc{) of size n over K satisfying z,y=0 (0;/¢jEn). It is
called the (upper) niltriangular Lie algebra and it will be denoted by Un(K). It can also be
defined for an arbitrary field K. In particular if K is the finite field Fqwe will write Un(q)
instead of un(Fqg). As in the case of the unitriangular group we may identify Un(q) with
the subalgebra

Un(K)F=[ae Un(K)\ F(a)=a}
of Un(K) where K is the algebraic closure of Fq and F=Fqg:Un(K) -» U,,(K) is the
Frobenius map. As before F is defined by
(1.1.2) Fia~af)
for all a=(a,y)« Un(K). We note that u,,(q) is a vector space over Fqand that we have a

canonical isomorphism of vector spaces

(1.1.3) Un(K)s Un(q)®r K.

Now we assume that pin whenever K has prime characteristic p. Then we may

1By a subalgebra we understand a Lie subalgebra.



define the exponential map exp: Uh(K)->Un(K) by

(1.1.4) expa-EjI[aIS

»-N
for all ae un(K) - we note that a"=0 for all ae U,,(X). exp is bijective and its inverse is the

logarithm map In:UHK)-+ Un(K) which is defined by
(1.1.5)

for all x<Un(K) - since x-1* Un(K) we have Inxe Un(K) for all xe [/,,(AT). Moreover let
6:Un(K)xun(K) -* Un(K) be the map defined by

EIFSa>S|O (%(TépaK?a))pik?i!...p M
where [aia2...a))=[ai[d2” -[a»-HiaiJ]-"] for all ur{K). This equality is known
as the Campbell-Hausdorfformula (').

As a consequence of the Campbell-Hausdorf formula we deduce that the

exponential image exp U of any subalgebra U of U,(Af) is a subgroup of Un(K). A

subgroup of this form will be called an exponential group (*).

The “smallest” examples of exponential groups are obtained when we consider

subalgebras of Un{K) of dimension one. Leta be an arbitrary non-zero element of U{K).

Then the subspace Ka of U,(AT) is a subalgebra of Un{K) and we may consider the
exponential group

1For die proof of the Campbell-Hausdorf formula (as well as for the proofs of the properties of the maps
exp and In) we refer to Jacobson [Ja; pg. 170-174] where this formula is established in the ring of formal
power series AT(Xy] in two nor-commutative variables over a field of characteristic aero (we calculate the
sum of all homogeneous components of degree less than a of the formal power series In(expXexpY) and
then we specialise X toa and Y to b). The result for a field K of prime characteristic pin can be obtained
starting with the polynomial ring U (X.T) over the Held B, then reducing to the polynomial ring
B[X,Y) over the ring 2 and finally tensoring (over 2) with K. This process establishes the
Campbell-Hausdorf formula in the polynomial ring 2(X,T} over K. (1.1.6) is deduced specialising X to a

3 A more general definition of exponential group can be found in KirilWj book [Kil].



exp(Ka)={exp(aa); cteK).
Itis easy to verify that
(1.1.7) exp(aa)exp(Pa)=exp((a+p)a)
for all a,peK.

In particular we obtain the root subgroups of UHJC). These are defined as follows.
Throughout this work a pair (ij) with I£i</E/t will be called a root (*) and the set of all
roots will be denoted by <DO(n) f2). Let (iV)e <P(n). Then the (ijyth root vector eq of Un(K)
is the matrix
(118 eijm8ai&bj)I£ajrEn
(here $a> IEckfb”ny is the usual Kronecker symbol). The (ij)-th root subalgebra of
WUn(K) is the subspace
(1.1.9) SijuO eij
of Un(K). Finally the (ijyth rootsubgroup of Un(K) is the exponential group

(1110 XyifO”exp Xij<K).

As usual for each ate Arthe element expiate™) of XK will be denoted by x*a) and we
have

(1.1.11) *<,<00-1+0«,;.

It is obvious that
xi.a)xi(p)=xi(.a+p)

for all a,PeK (we note that this is precisely the equality (1.1.7) with a-««). IfK is the
finite field Fqwe will write tiJiQ) and instead of X*K) and;<,{£) respectively.

Other examples of exponential groups are the subgroups of (/,,(AT) associated with
elements of the symmetric group S,, of degree n. In fact for any aitSHwe define the
subset O Jji) of <P(#) by

oKO«*/)).

We denote by Un(K) the vector subspace of UHK) generated by the set
Uij, (ij)* } Thenl

1Inthe standard terminology our expression “root” means “positive root”.
2 This notation simplifies the standard notation 4*(n) for the set of positive roots.



(L112) uj*)« . X  Sijifo-
We have also
(1.1.13) uJK)-uHK)nP(@flunlCP<.a»

where /,(a))=(5k-))lsigs,,aGLN(K) (>) is the permutation matrix associated with co*Sn.

Usually we write ' luh(K)adinstead of P(,0fl)Uj.fC)P(a)).
We denote by UjiK) the exponential group exp UJJC). If ATis the finite field Fq
we will write Ua(q) and Ujiq) instead of UJJC) and UJJC) respectively. In the general

situation we have

(1.1.14) UJ.K)- Il X,<K)
(v>*,(«)

and also

(1.1.15) UJK)=Un(K)rJ>(a)l)Un(K)P(.0>).

Usually we write ailun(K)ooinstead of P (afl)Un(K)P(co).
In particular if 0”leS,, then
UAK)~URK) and UJIC)=Un{K).
On the other extreme let (OgeSn be defined by

(1.1.16) (In)(Zn-1)...(rr+1) if n=2r is an even number
- (In)(2n-1)...(rr+2) if n=2r+I is an odd number

Then
tfAAO-fO} and i/*"K M I}.

Moreover for each a>nfh we have
t>(0><0()}

and so 4(n) is the disjoint union
0(n)-0fi(n)'-'04MMnN).

Thus
UNO-UjiloQUAJIIO

andl

1 We denote by GLHK) the general linear group of degree n over K. This group coneiita of all
non-iingular nut matrices with coefflcienu in K.



UnVOAMUjtFOUNK)
(although UJA O™ i/@BJ[A0={1} in general this product is not semidirect).

Now we assume that the field K is algebraically closed. Then both Un(K) and
Un(K) are algebraic varieties (both isomorphic to the affine space of dimension

Moreover the exponential map exp: Un(K)-» Un(K) is a morphism of algebraic varieties.
Since its inverse In:U,,(K) -» Un(K) is also a morphism exp is in fact an isomorphism. It
follows that the exponential image of any subalgebra Uof Un(K) is a closed subgroup of
Un(K), hence a unipotent (algebraic) group (see [Hul]). On the other hand exp u is a
connected group because U is an irreducible variety (see [Hul; proposition 1.3.A]).
Finally (by the usual derivation rules for the exponential map) the Lie algebra of exp Uis
u itself. Therefore any nilpotent Lie algebra determines a connected unipotent group.
However it is not true that all connected unipotent algebraic groups are exponential
groups. For example let K have characteristic p*2 and let U be the subgroup of £/3(AT)
consisting of all matrices x=(xy)e U”K) satisfying
Q(*12.¥13.*23)=(*12),,-*23=0-

A generic element of U has the form

(\xy'

0 1xp

100 1J

where x,yK. U is connected closed subgroup of U$(K) and its Lie algebra u consists of
all matrices a>(a,y)e U”K) satisfying

/,(a12)P’a23="a235'0-
Therefore a generic element of u has the form

rox y >

000
~000;

where xy K . However the exponential group expU determined by the Lie algebra U is
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expi j 010 ;XymK -
I\o 011 -

As a final remark we note that the exponential map exp:U-*U (where U is a

subalgebra of Un(K) and U~exp U) may sowetimei. be defined if K has prime

characteristic p<n. In fact it is enough to assume thatp2m where m is the smallest integer
such that am=0 for all amU. However for the purposes of this work (where we are mainly

interested in the case i/=(/,,(Af)) we will always assume that p2n.



1.2. Coadjoint orbits and irreducible characters

Let K be any field and let U be a nilpotent Lie algebra. We assume that U is a
subalgebra of un(K) for some n. For the results of this section we refer either to [CG] or
to [Sr]. Although the results in [CG] are stated for nilpotent Lie groups they can be

adapted to our situation.

Let
U*=Homi((UjC)
be the dual vector space of U. For each fe U* we define a  bilinear form BAlUU-"K on
Uby
(1.2.1) BfiaJ>)=A[ab\)
for all a,be u. By the axioms of the Lie product flyis a skew-symmetric bilinear form.
Hence U has the structure of a symplecdc space (I)- Thus we may consider isotropic
subspaces of U. By definition a subspace Vof u is called isotropic (with respect to fly) if
Bj(aJ>)=A[ab])=0
forall a,beV. To simplify the notation we will say that a subspace Vof Uis/ -isotropic if
itis isotropic with respect to fly By Witt’s theorem (see [Ar, theorems 3.10 and 3.11]) all
maximal/-isotropic subspaces of u have the same dimension
Adim U/ f(f)+dim r(f)="dim u+dimr(/))
where
(1.2.2) - _ r(h={a*it, fi/a,fl)=0 for all be u)
is the radical of fly
Let Obe a subalgebra of U. We say that Ois subordinate tofit it is an/-isotropic
subspace of U. If 0 is a maximal/-isotropic subspace of u then o is called apolarization

forf.

1For the basic notions of sympiectic spaces we refer to Artin’s book (Ar).
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We now establish the existence of a polarization for any element of u*. The

construction of this polarization is due to M. Vergne (see [Ve]).

Proposition 1.2.1. ([CG; theorem 1.3.5]) LetfeU*. Let m=dimu and let
U=ana...allaU0=(0) be a chain of ideals of U such that dimU”i (0<i<m). For each
ia{l,...m} let
t={ae lIfi Bfaj>)=0for all belli).
Then
0=91+i?2+-+0m

is apolarization t)forf

Proof. Firstly we note that the given chain of ideals of U exists by Engel’s theorem on
nilpotent Lie algebras (see [Hu2; theorem 3.2]).
Letije {l,....m) and let ae 1), be f)j be arbitrary. Without loss of generality we
may assume that ISJ. Then ae Ujand so
/([a*])=0
(by definition of t)j). It follows that 1) is/-isotropic. To prove that I) is a subalgebra of U
we claim that [ab]« ft. Since U-is an ideal of U we have [ab]e Ur Let ce ut be arbitrary.
Then (by Jacobi's identity)
mab]c))=macm)+A[a[bc\\).

Since [ac]m U/zllj and be I)j we have

/H[ac]b])-0.
On the other hand ae 1), and [bc]e ¢/¢(because  is an ideal). Thus

/Mbcl])-0.
It follows that

/([[ab]c])-0
and s>0 [ab]e ty (because ca s arbitrary).

Finally we consider the dimension of t). We claim that



dim f}=j (dim U+dim r(f)).
For we proceed by induction on m. If m=1 then t)=u=r(f) and the claim is trivial. Now

suppose that the result is proved for all nilpotent Lie algebras of dimension less than m.

We consider the ideal Um.I and we define
0" 0i+02+—+ 9«i-i*
By induction we have
dimt)'=j (dim Um.x+dim rtf'))
where/ is the restriction o ff to Um.x
Now let (elt...,em) be a AT-basis of U such that is a basis of UnA. Let

M=(fi[ei,ej]))iiijSm be the mxm matrix which represents the bilinear form Bf with
respect to the basis Then M is skew-symmetric, i.e.
M=-Mt (i).
Therefore M has even rank (see [Co; theorem 8.6.1]) and in fact
rankM=dim U-dim r(/).
Consider the (m-l)x(m-I) submatrix Af'=(/([ele]]))iS* mi of M. Then M" represents
the bilinearf o rom K. Then
rankM '=dim UmA-dim C(f).
Since rankM and rankM' are even, either rankM-rankM" or rankM=rankM 1. It follows
that either dim r(f)=dimr(/>t-1 or dimC(f)=dimr (f)-1 (because dimU"*dimU -I).
Now suppose that dimt(f)**dimr(f)-\. Then
dim 1)'="(dim U-1+dim/)+1  (dim U+dim

Thus t)'is a maximal/-isotropic subspace of U. Since tf'ct) we conclude that and

our claim follows.

On the other hand suppose that dim r(f)~dim t(f)+\. Then
dimt) (dimU-l+dimr()-1  (dimU+dimr(/))-I-

Since O'cO we have dimt)'Edimt). If dimt)'—dimt) then /)'m!) and so r(/)cO cUmi. Inl

11fA isany matrix we denote by Ar the transpose of A.
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this case we must have r(/)c r(f) and so dim r(f)Edim t(f), a contradiction. It follows
that
dimt)'<dimt).
Since 1) is an/-isotropic subspace of It we deduce that
dimt)<dimt)-1S j {dimU~+dimr (/))-1=dimt)".

Our claim follows and the proofof the proposition is complete. .

Subsequently we assume thatp”n if the field K has prime characteristic p. Then we

may consider the exponential group U=expU (*).

Let ad:U-> gl{U) be the adjoint representation of the Lie algebra U (as usual QI{U)
is the general linear algebra consisting of all endomorphisms of u (as a vector space over
K)). This representation is defined by

ada(b)=[ab\
forall ajbt u. Let at Ube arbitrary. Since {ada)n=0 the element
(1.2.3) exp(ada)=1+ada+jrfada)2+... A (ada)*'1
is a well-defined element of QI(U) and in fact it is an element of GL(U) (here GL(U) is the
general linear group consisting of all non-singular endomorphisms of U). Moreover we
have
(1.2.4) exp(ada)(b)-(expa)Ab(expa)
forall bt U. Therefore the map Ad:U-—»GL(U) defined by
Ad(exp a)=exp(ada)

forall a« Uis a representation of U over u. Ad is called the adjoint representation of U.
Since U is a subgroup of Un(K) we have
(1.2.5) Adx(b)-xxx
for all XmU and all bmU.

Now we consider the contragradient representation of Ad. This is (by definition) the

1We note that (J is a subgroup of U,(K) because u isa subalgebraof uNK).
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homomorphism Ad*:U-* GL(U*) defined by
(1.2.6) (Ad*x(f))(b)-f(Adxx(b))-f(xbxl)
for all x* U, allft U* and all b* u. Ad* is called the coadjoint representation of U. For

simplicity we will write ¢ /instead of Ad*x(f) for all xt Un(K) and all/« un(K)*.

The coadjoint U-orbits (i.e. the orbits of the coadjoint representation) will be
fundamental for our work. Let/« U*. Then the (/-orbit of/will be denoted by 0(f). By
definition

0<f)-{xftU*- xtU).

UK is algebraically closed then 0(f) is a locally closed subset of the algebraic variety u*
(see [Hul; proposition 8.3]). Moreover since U is a unipotent algebraic group we
conclude that 0(f) is a closed subset of u* (see [St; proposition 2.5]). Since U is
connected (because it is the image of a morphism of irreducible algebraic varieties) and
since it acts transitively on 0(f) we conclude that O(f) is an irreducible algebraic variety
(see [Hul; proposition 8.2(d)]). Hence we may consider the dimension of Oif). It is
well-known that
dimO(f)=dimU-dimCij(f)
where
C(j(f)~[xtU\xM)

is the centralizer o ffin U - the equality above follows easily from [Hul; theorem 4.3]
applied to the morphism &.U-*0(f), & (x)=xf(;«(/), because all the fibres of this

morphism have the same dimension. However dimO(f) can be expressed in terms of the

bilinear form Bp InTact: -

Proposition 1.2.2. ([CG; lemma 1.3.1]) Letft U*. Then
C(j(f)~expr(f).

Hence Cuff) is an exponential subgroup ofU . Inparticular Cf/f) is connected.
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Proof. Let aj>c Ube arbitrary. Since Ad(exp a)=exp(ada) we have
f(Ad(expa)(b))zEO" ffrw>
t= *

where (ada)®(b)=b and (ada)l(b)=(ada)11([ab]) for all «{l,...,n-1}.

Now suppose that ae r(f). Then

fl(adanb)W[aXadaf\b)])=0
forallis {l,...,n-1}. It follows that
f(Ad(exp a)(b))=f(b).
Since be tf is arbitrary we conclude that expaeC (/f). This implies that
expr(f)cCf/f).
Conversely let xeC(j(f) be arbitrary and let ae u be such that x=expa. Lett be an

indeterminate over K and let be Ube arbitrary. We consider the polynomial
P(t)=(exp(ta))-f)(b)M~ df Kb ree K[t].

Since C (/f) is a subgroup of i/ we have
x?—{exp a)*e C(j{f).
Since (exp a)k=exp(ka) we deduce that
(exp(ka))-f)(b)-f(b)
for all/fee {0,1,2,3,...}. Therefore the elements 0,1,2,... of K are roots of the polynomial
P(t)~f(b)eK[t\. If K has characteristic zero this implies immediately that
P(t)=m -
On the other hand suppose that K has characteristic p. Then the integers 0,1,2,...¢>-1
define p distinct elements of K. Thus P(t)-fif>) has at leastp distinct roots. Since P(t)-fif>)
has degree n and p'Zn (by-assumption) we also conclude that
P«<HW).
In particular we obtain

Alab])~0
- we note that f([ab]) is the coefficient of t in the polynomial P(t)-f(b). Since ba uQis

arbitrary it follows that amr(f) and the proof is complete. .
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Corollary 1.2.3. ([CG; lemma 1.3.2]) Letft U*. Then the U-orbit OIf) off has even

dimension. Moreover if fell is a polarizationforf then

dimt)=dimU-~dimO(f).

Proof. The first assertion is clear because dimu-dim r(f) is even (see [Ar, theorem

3.11]). Now let I) be any polarization for/. Then
dim t)=~(dim U+dim C{f))**(dim U+dimlt-dimO(f))=dim ll1-*dim O (f)

as required. .

Henceforth we assume that K is algebraically closed of characteristic pkn. Let g=p*
(e>0) and let F be the Frobenius map on Un{K) as defined in (1.1.1). We assume that the
exponential group U-expu is F-stable, i.e. F((/)«*(/. As usual we denote by UF the
subgroup of U consisting of all F-fixed elements in U. Then i f is a finite group of order

(see below).

Our aim is to construct the irreducible characters of the finite group i f. These will
depend on certain coadjoint (/-orbits. As one should expect the relevant orbits must be
F-stable for a suitable action of F. Moreover the set of F-fixed elements of a given orbit
should be itself an orbit under the action of UJ!(In the following we will define the
“Frobenius” map F:U*-*U*. We recall that a Frobenius map F can be defined on the Lie
algebra Un(K) so that

expF (a)-F(expa)
for all an un(K) (see (1.1.2)). It follows that U~expU is F-stable if and only if u is
F-stable. Therefore we may consider the subalgebra i f of Uconsisting of all F-fixed
elements of u - then UF is the exponential subgroup exp i f of Un(q)~UHK)F. The
subalgebra uF is finite and it has cardinality qdimU (hence the finite group UF has

cardinality ¢fiimU). In fact i f is a vector space over the finite field Fq and we have a

(") Wt WW+e HVvAt OW, U-0724- to-AWw» A* W -t QA

R O’ . i
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canonical isomorphism
Ubi/ 9F K.
«

In particular U has a AT-basis consisting of F-stable elements. Let (ei,...,em) be such a

basis (hence m=dimU). Then we define the Frobenius map F*=Fqg*: U*-» U* by

(1.2.7) F*W.ejHi*j/

forallfe u* and all ie {1,.,.,/n}. Ifa=axex+...+ament U (ajeK, L i;m) then
F(a)=alel+...+ctm<em

and F*(f)(F(a))=aldf(el)'+...+amgfie j g, therefore

(1.2.8) F*(fKF(a))=fla)q

for all oeu*. In particular

FWHYVT
forall ae tZ. It follows that the map F* is independent of the choice of the F-fixed basis

for u. Moreover the set
(usf=[u*;F ()=}

is finite (of cardinality qdimU=gdimU) and we have

- in fact U* can be regarded as the tensor product (I/)*&F K. Since there is no ambiguity

we will write F instead of F*.

We now prove the following:

Proposition 1.2.4. ([Ka; lemma 1]) Letfe(U*)F. Then U contains an F-stable

polarization t)forf. -

Proof. Let tf<-uma...aU 1aUOB(0) be a chain of F-stable ideals of u such that
dimUf-dimU”+I (ldidam) and let t)~t)i+t)2+-.-+f)mbcthc polarization for/defined as
in proposition 1.2.1. We claim that 1) is F-stable. For it is enough to show that l)j is

F-stable forall ie {I,...,m}. Letie {l,....m} and let ae t)j. Then
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Alab\>0
for all be Wt. Let be utbe F-fixed. Then

[F(a).b]«F([a&])
and so
K[F{amWF([ab\))=A{ab\f-0
(by (1.2.8) because/is F-fixed). Since utcontains a basis consisting of F-fixed elements

we conclude that F{a)e t)t and this implies that t)tis F-stable. .

Next we construct an irreducible character of i f associated with a given element
fe(U*)F. We start with an F-stable polarization f)clt for/and we let H-exp t) be the

exponential subgroup of U defined by f). Then H is an F-stable connected closed

subgroup of U.
We denote by K* the additive group of the field K and we define the function

4:HAK* by
(12.9) <lI>/,expa)=Aa)
forall oet). Then
fyexp aexp b)=$%$fcxp 9(a,b))=f(d(aJ>))

for all a,be f) - here 0(aj>)1 1) is the element defined by the Campbell-Hausdorf formula
(1.1.6). Since/([/)/)])=0 this formula shows that

MaJ>))=Aa+b)
for all a,be I). Thus fy-is an homomorphism from H into AT (of course fy(1)=0).

Now we choose (and fix) an arbitrary non-trivial linear character w0:K* -* G* of

K* and we define the function yy//-* <* by

y/(expa)-yrO(Aa))

for all ae t). Since Y~Yofy *he function Yfis a linear character of H. Therefore the
restriction (YfiHr of Yfto the (finite) subgroup HF of H is a linear character of HF. We
denote this character by Xf. Then X f I f -» <T*is the linear character of H Fdefined by

(1.2.1,0) X/.expa)mY~Aa))



forallam” (*).

Finally we define X jd f -> <M to be the induced character

(1.2.11) X rn -

We will prove several properties of the characters namely that they are

irreducible, independent of the choice of the (/-conjugate of/and that they exhaust the set
of irreducible characters of UF (hence we will get a parametrization of the irreducible
characters of i f by means of F-stable coadjoint (/-orbits on U*). Firstly for any F-stable

(/-orbit O*U* we define the function X o 'rf by

(1.2.12) 2b(«Pa)=-r== X,Vb(«(a))
-0

for all amUF. Since I=expO we have

X0M) = -p = -\0 A=~fiOR
Wi

We have the following rule:

Proposition 1.2.5. ([Ka; propositions 1 and 2], [Sr, theorem 7.7]) Letfm(u*)F. Then
the U-orbit OIf) is F-stable and
XI(*)mZo(T)<*)
forallxmif. Inparticular we have
0
(@) Xg-XfM all gmOlIrf;
Cm) Z fk independentofthepolarization t)cUforf

Proof. Let xmU and let (elt...,em) be a Af-basis of u consisting of F-fixed elements.
Then for each im{l,...,m}

F(x/)(elX™)(«™-1UejX-Di-FW (F(xepc-,))-/(F(x)e™(x))-(FCx)./)(ei)
-we note that (by (1.2.8)) F(O(F(a)H (a)* for all anU. It follows that

1Wenotediat/(<i)aFf Uxmdamf and that the restriction of y;, to W* isa linear character of F*.
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(1.2.13) F(jch)-F(x)/
for all xe U. This implies that Oif) is F-stable. Thus it makes sense to consider the set

Oif)F of all F-fixed elements of O(f). This set is finite and its cardinality is

Now let 5¢c U be a polarization for/ and and let H=exp ). We define the function
Vplf-»<*hy

a) ifa»tf
otherwise

Then (by definition of induced characters)
(1.2.14)

forall aeif - we note thatx(expa)x'l=exp(xax'l) forallxei f and all aeif.
Let | be the affine subspace of U* consisting of all ge u* such that g(a)=f{a) for all

ae l). Then

where
5+={Ae U*; A(a)=0 for all ae 5}
is the annihilator of t) in U*. We claim that

(1.2.15) X', VIO(£(a))

forall ae fi*. Ifa* t f then g(a)-J(a) for all g* IFand the equality is clear in this case. On

the other hand suppose that ae I)F and let (ex,...,es) be a AT-basis of t) consisting of

F-fixed elements. Then the system of vectors is lineariy independent and we

can extend it to a basis (ex...,erafl,...f,) of Uwherefx,...fr Uare F-fixed elements

(since dimu-m we have f=m-r-1). Let (ex*,...,e*ji*fx*,...ft*) be the dual basis of li*

(9. Then (a*f x* . isabasis of and any elementgmf can be written as a sum
gni+aamt fifx*+,

where 0,/j,. are uniquely determined. Therefore IFis the disjoint union

1If(m«. . isaAT-hesisof u then, foreach M I,...s},the dual vector u,** U* I*defined by
forall;« {1,.../}. The system is called the dual basis of
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t« u  X(fix...fid
Pi....pfi*

where
X{pX....p, )~{Fraa*+phx+.. Hi/,*;a*FQq).
forall px...,Pfl Fq. It follows that

Now let px,...,pfiF qbe arbitrary. Then
(fraa*+p]f\*+... +Pf *)(a)=fl.a)+a
for all oce Fg. Moreover the correspondence a-*fla)+a defines a bijective map from Fq
onto itself. Therefore
X Vo(«(a))=X Yoitf-

A

Since Vvis a non-trivial character of Fqwe have
0=(Vo.lf>.=rtr X VbO)

where 1F is the unit character of Fq and (...) is the Frobenius scalar product of
characters. It follows that

X, Yo(g(a))=0
Fr

and this completes the proof of the equality (1.2.15).
Now by (1.2.14) and (1.2.15) we obtain
1 1

In other words
(1.2.16) ~ zt*xpa)r*t]*"EYotosM ).

Next we will prove that HF acts transitively on IF. We start by proving that H acts

transitively on I. For let ajom|) and letga I. Then
g((«P aYlb(expa))-g(exp(.ada) (h)) '_rr/;) M™ 1.::) W).
i

Since (ada)\b)c t) we have
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g{{ada)im=AW a)im
forall i€ {0,1,...,n-1}. On the other hand
f{(adanb))=fllaAadafxm)=Q
forany < {l,...,n-1} - we recall that t) is a maximal/-isotropic subspace of U. Therefore
g((expa)'lb(exp a))=f{b).
Since H=expt) we conclude that | is //-invariant Now we define -* | by
ti(x)=xf
for all xeH. n is a morphism of algebraic varieties and it induces an injective morphism
_» [ where HOis the centralizer C(j(f) o ff- we note that Hqgis a subgroup of H
because HO=€xpC(f) (by proposition 1.2.2) and (we recall that t) is a maximal
/-isotropic subspace). Now we have
dim///H@EdimH-dimHO0=dim U-*dimO(f)-dim U+dimO(f)
="dimO(f)=dimU-dim ty=dimt}*-=dim1

(using corollary 1.2.3). Therefore H is surjective and this implies that H acts transitively
on i.

Now we consider the //*-orbits of elements of IF. Let x*H be such that x-fe IF.
Then

xf=F{xf)-F{x)f
(by (1.2.13)) so x'IF(x)eHO. Let O' be the //F-orbit of x-fand let ymH be such that
yfe IFNO*“ Then there exists zeHF such that
y [-2*(x/)-(zx)/.
We have y'lzxtHO and
YOI (X)F(x*, 2"y )Ny IZRHZ*)F (y)-y “IF(y)

(because z'x*HF, hence FU*1)-1*1). This means that the elements x‘IF(x) and y'xF(y) of

HO are F-conjugate (>). Therefore we have a bijective map between //*-orbits on IFand

F-conjugacy classes of HO. But F-conjugacy classes of HO are in one-to-one

correspondence with F-conjugacy classes of the quotient group where (//0)° is

1For die definition o f f-conjugacy we refer to [Sr] or to [Ca].
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the connected component of HO (see [Sr; lemma 2.5]). Since HOis connected we
conclude that there exists a unique F-conjugacy class in H<y Hence there exists a unique

Hf -orbit on IF, i.e. HF acts transitively on IF. It follows that

for all x e If (we note that H f is a subgroup of HF). Therefore (by (1.2.16))

Since Hq is the centralizer of/in i f we conclude that

N ofxpagi k
The result follows because diml=jdimO (f) and

| \O(f)R. .
Now we can prove the main result of this section:

Theorem 1.2.6. ([Ka; proposition 2]; [Sr, theorem 7.7]) Let x be an arbitrary
(complex) character of if. Then X is irreducible ifand only if there exists an F-stable
U-orbit Ocll* such that X=Xo- Moreover ifO.0'zU* are F-stable U-orbits then Xo=Xo*
ifand only if O*O".

Proof. Let OcU™* be any F-stable (/-orbit. We claim that Xo % irreducible. For it is
enough to prove thaf, (Xo>Xo)mlwhere (...) is the Frobeniu§/product of characters. In fact

(by proposition 1.2.5)

) i
(Zo’>(0>1 Ytteia))

ichi \if\ g 1, A

lyo(i(a))l2
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Since Yog'.if-* <T*is a linear character of the finite abelian group uF (under addition) we

have
(Vo8'Vot)j~I-

The claim follows.
Now suppose that Zo*Xo*‘where O'eU* is an F-stable U-orbit. Since

(expa)A=exp(-a) for all ae U, we have

(XoX0)=j~F| JLfX okxp a)Xo<exp(-a))

VIOAL eyi >

IfgeO and g'eO" are distinct the characters %£ and yog' (of the additive group ¢ /) are
orthogonal, i.e.
(V'og.V'ogV=0
- in fact since y0is a non-trivial character of there exists ae t f such thatg(a)*g\a)
and \ffo(g(a))*y/@g'(a)). It follows that
(Vog”Yo8")"Su :
Since Zo~Xo' we have CCo,”00=l. Therefore the intersection OnQO' is non-empty, hence
0-0".
Finally by proposition 1.2.5 we have ~o (1)W 10" and this implies that

$2t00)2-X 10 f1-101l
0 0

where the sum is over all F-stable (/-orbits OcU*. The proofis complete. .
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1.3. Subgroups of codimension one

In this section we keep the notation of section 1.2. K will denote an algebraically

closed field and u a nilpotent Lie algebra (regarded as a subalgebra of un(K) for some
n). Moreover if K has prime characteristic p we will assume thatp2n. Then U will denote
the exponential subgroup expU (U is a subgroup of Un(K)). In this section we refer to
[CG] or to [Ki2]. The results in both references are proved for nilpotent Lie groups but

they can be adapted to the context of our thesis.

Let WO be a subalgebra of Uwith codimension 1, i.e.
dim UQ=dimU-\.
Then Wois an ideal of Uand [UU]gUq (see [CG; lemma 1.1.8] - the proof of this lemma
does not depend on the characteristic of the field).
Let u 0* be the natural projection. By definition
nMaWLa)
forallfm u* and all amu. The kernel of a:is the subspace
Uox*{g« «*; g(a)=0 for all amUq]
of U. On the other hand for any fm U* the fibre of the idf)* Ug* is the subset
t(f)={«« M*, g(a)-f{a) for all amUq)
of U*. Itis clear that
h,V)
for all/e u*. Moreover 1(f) fmu*) is an ineducible algebraic variety of dimension one

(because Ughas codimension one, hencedim u”l).

In the following we will fix the element/« U* and we will denote by/0 the image
x((m Ug*. We consider the intersection I(f)r\0(f) of the fibre 1(f) with the coadjoint
(/-orbit 0(f). Since/« 1(f) it is obvious that
f(/)nO (/>0.
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Let
C/= {jcU ,xfe 1(f)}-
Then
H{f)nO{f)=[xf,xeU"}

and we have:

Lemma 1.3.1. ([Ki2; pg. 76-77]) U'=C(j(f0) is a closed connected subgroup of U. In

fact U'=exp U' where

U={ae W,f{[ab])=0for all be Ug}.

Proof. Since Ugis an ideal of Uwe have me*Xku0 for all xe U and all ae Ug. Therefore
U acts on Ug (via the adjoint representation), hence it acts on Ug*. This action is defined
by

(x-g0Xa)=goCxax)

for all xe U, all gOc Ug* and all ae Ug. Moreover we have
(1.3.1) 7t{X-g)=XJC{g)
for all xe U and all ge U*. It follows that, for all xe U,
xfe 1(f) < JClovo
Thus
U -[x. £/; x/0=/0}=Cy(/b).

Therefore U'is a closed subgroup of U (see [Hul; proposition 8.2(b)]).
Now we claim that U'*exp U'. Let ae U'and let be Ug. Then

{{exp a)-H){b7+f{{expa)b{exp a) I)-f{exp{ada){b))rf{b)+é{ (E&d .
Since Wgis an ideal of Uand ae U'we have
f{{ada)Kb))-0
forallie {l,...,n-1}. Hence

{{exp a)f){b)~{b).

Since be Ugis arbitrary we conclude that
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{expa)/o-/o-
Therefore expamU'. Conversely letxmU' and let anU be such that x~exp a (we recall that

U”explX). Let t be an indeterminate over K and let bm% We consider the polynomial

P{t)~{exp{taM 0>{b)/i\n|ﬂn adf

The argument used in the proof of proposition 1.2.2 may be repeated to show that

P{t)~m-
In particular we obtain
/([ab])«0.
Since be Ugis arbitrary it follows that am1f and the proofis complete. .

Now let h be a non-zero element of Uql- Since dimU” "X we have
Uo-"tal/i; <xmK).
Since x-fm ((/)=/+UoXfor all xmU'’, we may define a map qr.U’-*K by
XM+<p(x)h
for all xmU'.
LetxmU. Since Ugis (/-invariant we have xaxAmUg for all anUg. Hence
Oc-h)(a)=h{xax'l)=0
for all ae % Therefore x-hmUOXand so
x-h*ah
for some amK, i.e. 0 is an eigenvalue of the linear map A<f*x:UoX-» U0\ Since Ad*x is
unipotent all its eigenvalues are equal to UK. Hence we must have 0*1 and so
xh—h.
Since this equality holdsfor all xmU we deduce that
(xy>f-x-(y-)-x-(f+<p(y)h)-x-f+<p(y){x-h)-f+<pOc)h+<p(y)h-f+(<p(f) +<p(y))h
for all xym U'". It follows that
PiY)-<PH+<P()
forallxymU',i.e. isan homomorphism from U" into the additive group K* of the field

K. Moreover p is a morphism of algebraic varieties. Therefore <pis an homomorphism of
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algebraic groups. Since (/' is connected the image tpf.U) is also connected (see [Hul;
proposition 1.3.A]). So either <pis identically zero or <p(U)-K. It follows that
[f] if is identically zero
A [1(f) if fIKI/O-AT

This completes the proof of the first assertion of the following:

Lemma 1.3.2. ([Ki2; lemma 6.2]; [CG; lemma 3.1.3]) Letft U*. Then either
I()nO(H=[f} or I(f)cO(f). Moreover let gtO(f). Then I(f)r>0(/)={/} ifand only if
t(g)r\0(f)={g}. Hence UffcCHf) ifand only if 1(g)cO(f).

Proof. LetxtU be such that g=xf. Then I(g)=x- 1(f) and
I(@)r.0(H)=x(I(HcO() Q).

The result follows. ¢

This lemma allows us to say that a (/-orbit 0<U* is of thefirst kind with respect to
Uoif i(f)r\O= {/} for allftO . Otherwise we will say that O is of the second kind with
respect to Ug.

Let O be a (/-orbit in U* and consider the image k(0)g Ug*. Since itis (/-invariant
(see (1.3.1)) 7t(0) is a (/-invariant subset of Ug*. Moreover U acts transitively on it(0).
Since U is unipotent we conclude that M.O) is a closed subset of Ug* (see [St; proposition
2.5]). Since O is an irreducible closed subset of U* and a is a morphism of algebraic
varieties we deduce that n(0) is an irreducible closed subset of U0* (see [Hul;
proposition 1.3A]). Therefore ic.O-*it(0) is a surjective morphism between irreducible
algebraic varieties. It follows that

dimtdPysdimO.

Let r-dimO-dimnUP). Then there exists a non-empty open subset A of x(0) such that

n
1 By definition XAm[x-g;g*A} for all subsets AsU*.
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dimXx(d)=r
for all aeA (see (Hul; theorem 4.3]). LetfmO. Then
x\idf))-I(f)r>0.
It follows that

f} ifO is ofthe first kind
1(f) if O is of the second kind

Thus

if O is of the first kind

dimK1 if O is of the second kind

SincefeO is arbitrary we obtain:

Proposition 1.3.3. Let OcU* be a U-orbit. Then:
(i) dimJt(0)=dimO ifandonly ifO is ofthefirst kind (with respect to Ug);
(i) dimid.O)=dimO-1ifandonly ifOis ofthe second kind (with respectto Uq).

Now let UGexpu0. Then Ugis a connected closed subgroup of U. Since idO) is
(/~-invariant UO acts on n(O). Therefore n(O) is a disjoint union of i/0-orbits. Our

purpose is to obtain this decomposition of n(0). Firstly we relate the dimension of O with

the dimension of any Q0-orbit in x(0).

LetfeO and let OO0 be the Q0-orbit offatdf)* Ug*. Then O0is an irreducible closed
subset of tdO) and so
(1.3.2) dimO”Sdimn(0)<UiimO.

Now let (ey,...,em) be a -basis of U and let M(f) be the mxm matrix which
represents the If-bilinear form Bywith respect to the basis (ex ...x * Forije {l,...m}
the (ij)-th entry of M(f) isfiie”?jf). Then M(f) is skew-symmetric matrix and so it has
even rank (see [Co; theorem 8.6.1]). In fact

rankM(f)—dim u-dim r (f).
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By lemma 1.2.2 dim r(f)=dimC(/f), hence

(1.3.3) rankM (f)=dimO(f)
(we note that 0=0(f)).

Since u0 is a subspace of U with codimension one we may choose the basis

(elt...,en) such that efiuO0 for all ie {I,...,m-1}. Then (with respect to this basis) the

matrix M(f) has the form

where M(f0) is the (m-1)x(m-1) matrix which represents the /f-bilinear form Bfo with

respect to the basis (elt...,em.i) of U0 and v is the row vector

Since OO0is the i/0-orbit of/0 we have
dimO0=rankM(/g)
(by (1.3.3)). Since M(f) and M(f0) are skew-symmetric they have even ranks and so
rankM(f)* {rankM(f0),rankM(f0)+2}.

It follows that
(1.3.4) dimO* [dimOfydimOo-+I].

We now prove the following:

Proposition 1.3.4. Let Ocll* be a U-orbit and let O¢*M.0) be a UO-orbit. Then:
(i) dimO=dimOQifand only ifO isofthefirstkind (with respectto %);
(if) dimO=dimO0+2 ifand only ifOis ofthe second kind (with respectto Uq).

Proof. It is enough to prove (i).
Suppose that dimO*dimOfy Then

dimJt(0)*dimO
(by (1.3.2)) and so O is of the first kind (by proposition 1.3.3).
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Conversely suppose that O is of the first kind. Then (by proposition 1.3.3)

dimit(0)*dimO.
Since Cud(f(d-U<yCu(fo) we have
dimCo'ffaidtmCiAfa.

Since U acts transitively on MO) we deduce that

dimT20)*mU-dimCu(f(*"SdimU-dintCUx(f(*dim U 0+I-dimCudfo)=dim00+I.

Thus
dimO=dim7V(0)£dimOo+L1.
(i) follows by (1.3.4).

The following result gives morecharacterizations of the orbit O (with respect to the

subalgebra Uq):

Lemma 1.3.5. ([CG; proposition 1.3.4]) Let OcU* be a U-orbit and letfeO. Let

fo=7C(fle Ug* and let OgzUg* be the UG-orbitoffo Then:

(i) Thefollowing conditions are equivalent:
(@) O isofthefirstkind (with respectto Uy);

(b) r(Hndotr(f)."
© r(frr(f);
(d) dim r(f)=dim r(/o)+l;
(ii) Thefollowing conditons are equivalent:
(@) O isofthe second kind (with respect to Ug);
(b) r(fndo-r(o;
(© r(fcr(fo);
(d) dim T(f)~dImtifry-1

Proof. Let V be a subspace of Uq such that
«0-V'or(f0)
and suppose that dimV-r. Let (et,...,.«,*.1) be a if-basis of Uq such that (e, *i

oEx ) is
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a AT-basis for r(/"0). Then (with respect to this basis) the matrix M(f0) has the form

where A is an rxr non-singular skew-symmetric matrix.
Suppose that O is of the first kind. Then (by proposition 1.3.4) dimO=dimO0 and

S0
rankM(f)=rankM(/O)
(by (1.3.3)). Therefore the m-th row of M(f) is a linear combination of the remaining
rows. In particular we must have
fi[eMei))=0
forall ie {r+l,...,m-I}. Since is a basis of r(f0) we conclude that
rtfokrtf).
On the other hand consider the subspace V®Kem of U. The restriction of Bf to this
subspace determines a bilinear form which is represented (with respect to the basis
(«!.....enem)) by a skew-symmetric matrix of odd size r+1 (we note that r is an even
number because r=rankM (f)=rankM Therefore there exists a vector
a=b+aemtVoKe,, (btV, octkKm
such that
B/a,e,)=B/Z>e,)+aS/eme,)-0
forallit{ 1 , . Since forall it {r+1,...,m-1} we conclude that
at r(f). Since at Ugwe deduce that t(f) is not contained in % i.e.
r()nUo»*r(/).
Moreover (e ™i,...",.™) is a basis of r(f). Hence
dim C(f)~dim r(f0)+1.

We have proved that (a) implies (b), (c) and (d) in (i). The equivalencies in (i) and
in (ii) will follow once we have proved that (a) implies (b), (c) and (d) in (ii). For
suppose that O is of the second kind. Then (by proposition 1.3.4) dimO-dimO0+2 and so

rankM (f)-rankM (fo)+2

(by (2.3.3)). In this case the m-th row of the matrix M(f) is linearly independent of the
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remaining rows. If f([eme,])=0 for all ie {r+1,...,m-1} then the previous argument

shows that
rankM(f)-rankM

This contradiction implies that there exists at least one ia {r+1,...,m -1} such that

f([emej}y*Q. Without loss of generality we may assume

Then foreach/« {r+2,... n-1} we define the vector

Since ««.l,«,* r(/J)) we have

forallje {I,...,m-1}. Also
B/«nn,)=yi:[emer+1])/i:[eme])-y([emet]l/([em,e,+1])=0.
It follows that ae r(f) for all ie {r+2,...,m-1}. Moreover age Uq for all ie [r+2,...jn-1].
Since (ar+2-"»am-i)is linearly independent and rankM(f)=r+2, (a,,.2- ” A»-i) > a basis
of r(f). This implies that
r(/)cr%)cio-
Moreover
dim r(f)=dim V(f0)- 1.

The proofofthe lemma is complete.. .

We are now able to give the required decomposition of idQ) into 1/0-orbits.

Proposition 1.3.6._([Ki2; lemma 6.2(a),(b)]; [CC; theorem 2.5.1]) Let OcU* be a
U-orbit, letfeO and let 0ozUg* be the Uporbit o ff0*njf)e Ug*. Then

(i) If O is ofthefirst kind (with respect to Uqg), Uq acts transitively on x(0)
mhence 4(0)-0q

(ii) 1fOis ofthe secondkind (with respectto Uq), *HP) is the disjoint union
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where,for each cteK, O ~U g* is the UO-orbit ofthe element (exp(aa))fOe Ug* and ae u
isan arbitrary vector such thata*% Infact
Od™*(exp(aa))O0={(exp(ati-g& gge O0}
for all cuK. Moreover we have
dimOapdimO-I

forali CteK.

Proof, (i) follows from propositions 1.3.3 and 1.3.4 (we recall that Ogis an irreducible
subvariety of MQ)).
Suppose that O is of the second kind and let ae iMIq be arbitrary. We consider the
one-dimensional subgroup
X=[exp(.aa); aeK}cU.

Since ae Uqwe have

On the other hand U0 is a normal subgroup of U - because dimUa=dimU-1 (see [Hul,;
proposition 17.4]). Therefore UgX is a subgroup of U. Since U0 and X are connected
UgX is also connected (see [Hul; corollary 7.5]). Since we have

dimUO0<dim(U”X)idimU.
Since U is connected and dimU(y=dimU-I we conclude that
(1.3.5) U=UoX
(moreover this product is semidirect).

Now let gmO and let xe U be such thatf=x g. Since U=UgX there exist XgcUO and

CteK such that x~Xoexp(aa). Then

fo-Mfl-xoMlexpiaafi-g)
(because Tis i/-invariant).This implies that

{exp(aa))n(g)~M.(.exp(,aa))-g)e 0 &
S0
Mg)* (exp(-0a))00-0.a
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(because exp(aa)'l=exp(-aa)). Since g*0 is arbitrary we conclude that

Conversely let aetC and let ge u* be such that (exp(ota))-7C(g)eQo (i.e. 7i(g)e0.a).
Then there exists Xq<UO such that
f0=x0 ((exp(aa))-x(9))=x((x0(exp(aa))-g).
Hence
(xb(exp(aa))g€ 1(f).
Since O is of the second kind we have I(f)tiO so
(xO(exp(aa))geO.

It follows that geO and this completes the proof of the inclusion O.apMO). Since aeK is

arbitrary we conclude that

To conclude the proofwe claim that for all a,/3eK
Oa=0p < o=H.
In fact let a,(5eK be two distinct elements and suppose that OgpOp. Then the elements
x=exp(aa) and y=exp(pa) of X are distinct So
z=xy _I*|
and we have
z-0a=z-(x00)=z0a=z0p=z(y0o0)=(zy)-00*x00=0a.
Let goeOa. Since Oa is a UO-orbit (because UQis a normal subgroup of U) and z g"tOg,
there exists Xg*UO such that
z-i0“*0*0-
Therefore
XQIznC(j(a(j).
Now let bu U be such that XgAz*expb and consider the subgroup
Y -{exp(ab)\ amK)dU.
Since XgcUO and zmX we have Xo'lz#1, hence M ). Let gmO be such that £<)**(£)m The*1
(by lemma 1.3.1) Cu(g0)~exp u' where
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u'-{c« tfcg([cd])«0 for all d* u0}.
Since xQlz=expb *Cu(g0) we have bmW. Therefore [ab; cuK)c.W and this implies
that
YcCyCgo).
On the other hand we have
uU=uoy
(since bmuO (because x0'lzmUO0) this equality has exactly the same proof as (1.3.5)).

Since Y centralizes g0 and Oa is the Q0-orbit of g0we conclude that Oa is (/-invariant and

this implies that
0«=x(0)
(we recall that U acts transitively on Jt(0)). Finally we have
dim7t(0)=dim0-1
(by proposition 1.3.3 because O is of the second kind).Therefore
dimOosdimO-1.

This is impossible because both O and Oa have even dimension (corollary 1.2.3). This

contradiction completes the proof of our claim and also the proof of the lemma. .

Next we consider the inverse image }fl(.Q0) of the (/(j-orbit OgcUq* of/o-Mf). Let

gm7fl(.0a). Then Mg)« OO0 so there exists xc U0 such that

rtf)=f0=xMg)=Mx-q).
It follows that

X gm ((/)«/+U0X.
Let Abe a non-zero vector of Ug~Then
x-g~f+ah

for some amK, i.e. gtO(f+ah). Therefore

(1.3.6) A f(0o)c UMOV +aA).

Sincef+ahm for all amK we have

O (f+ah)n*\0O0)*a.
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On the other hand let O’be a [/-orbit such that 0'<'iCx{OqWZ. Then the above argument
shows that there exists etc Arsuch that 0 '=0(f+ah). However in general the inclusion
(1.3.6) is not an equality. In fact suppose that O is of the second kind (with respect to
Uqg). Then Uf)dO(f) and sof+ahsO for all aeAf. Hence

0(f+ah)=0
for all <xek. On the other hand we have

Jenl (0Q=00
(because wU* -* U0* is sutjective) and the previous proposition implies that

n\0 Q*0

(we note that in this case TCx(O0)cO). However the next result shows that n'x(O0) is

[/-invariant whenever O is of the first kind (with respect to Ug).

Proposition 1.3.7. ([Ki2; lemma 6.2(c),(d)]; [CG; theorem 2.5.1]) Let OqU* be a
U-orbit, letfe O and let O0c Ug* be the UC-orbit o ff0=7df). Then:

(i) 1fO is ofthefirst kind (with respect to UQ the inverse image Jt'’x(O0) is the
disjoint union

*no0= YR (f+ah)
where h is any non-zero vector of Ugl. Moreoverfor each atK the U-orbit Off+ah) is of
thefirst kind (with respect to Uqg) and we have
dimO(f+ah)=dimO=dimOQ.
Also
n(0(f+ah)-0Q

for all a*K.

(if) 1f O is of the second kind (with respect to Uq) O is the unique U-orbit which

intersects (hence Jfl(00)eO and this inclusion is proper).

Proof, (ii) have been proved above.

Suppose that O is of the >irsf kind and let otmK. Let (ej,...¢ ¢,) be a basis of U
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and consider the skew-symmetric matrix M(f+ah) which represents the bilinear form
Bf+ah with respect to this basis. Since [UU]c Ug we have
(f+oh)aab])=fl{ab])

for all aj>t u. Therefore

By (1.3.3) we get
dimO(f+<xh)=dimO.
On the other hand we have dimO=dimOO0 (by proposition 1.3.4). Therefore
dimO(f+ah)=dimO0
and this implies that 0(f+ah) is of the first kind (again by proposition 1.3.4). Now we
apply the previous proposition to conclude that
s(0(/+ali))=00-
We have justified above that each element ge @ 1(O0) lies in O(f+oh) for some e K.
Conversely the equality 7t(O(/+a/i))=00 implies that
Otf+ah)c.jf\0O0)
for all OeK. Therefore

*\0 0)=UKO(f+ah).

To prove that this union is disjoint let a,fkK and suppose that 0(f+ah)=0(f+/3h). Then
(f+ah)+(P-a)h=f+ph* 0<f+Ph)=0(f+ah).
Since O(f+och) is of the {irst- kind we have
I(f+ah)r,0(f+cth)m {f+ah)
so a-]1M, i.e. or«/).

The proofis complete. .

Subsequently we assume that ATis the algebraic closure of Fgand we consider the
Frobenius map F»Fq:Un(K)-* U,,(K). We also assume that Uand Ug (hence U and t/0)

are F-stable.
If
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Letfe(U*)Fand let 0=0(f) be the i/-orbit of/. Since/is F-fixed O is F-stable. As
before we let OgcUO* be the i/0-orbit of the elementfo=it(f). If we choose a Af-basis
(el.....of U such that (€X....c.cccururrennne emA) is a basis of u0 and such that Fie,)®«,- for all

ie {l,...,m} then we can easily verify that/oeitio*)” Hence OO0 is an F-stable f/0-orbiL

Theorem 1.3.8. Let OgU* be an F-stable U-orbit, letfmOF and let O0e UG be the
(F-stable) U(j-orbit offO-ic(f). Let x-Xo be *be irreducible character of UF which

corresponds to the U-orbit O and let Zo=Zo0be the irreducible character of U f which
corresponds to the UO-orbit OO.
(i) 1fOisofthefirstkind (with respectof Ug) then Ogf=u(Of ). Hence
XvfX o
isan irreducible character of UOR
(i) 1fO is ofthe second jand (with respect to Ug) then fI(OF) is the disjoint union

idOF)=u O f
arr.

where,for each oteF g,
Oa=(expaa)00
and aeU is an arbitrary F-fixed element such that a* U0. On the other hand r .is the
uo
direct sum
Xvr‘2i Xa
uo

where, for each amFa, XcrXo is ttie irreducible character which corresponds to the
U(forbit 0 V Moreover

Xd-iXo)*=*n
forall at Fq.

Proof, (i) By proposition 1.3.6 we have tr(O)*00. Thus the map it.O -*0O0 is

suijectiive. On the other hand let gg'tO be such that idg)~idgt). Then g'm 1(g). Since O
is of the first kind we have and so g'-g. It follows that jr0 -» 0 o x(O)
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is injective, hence it is bijective. Therefore
\x(OMMOFU f,mo0.
Since dimO=dimO0 (by proposition 1.3.4) we conclude that
I*(0F) 1V i"Qo*I<Vil.
" Finally we get
noFy-of
because jc(OF)&i(.0),r*4)0F.

Now we consider that character % By definition (see (1.2.12)) we have

X(expb)="= X Yo(gW)
# fo

for all be u. Since 7r.0-*00=n(O) is bijective we deduce that
BV O(«(W)=, X, J ¥o(go(b))
for all be Ug(we note that x(g)(b)=g(b) for all be Ug). Since IOFI=IO0FI we obtain (11-12S)

X(expb)m f1 X Vo(go(b))=Zo(expb)
MO OR t* 0»

forai . fo. (i) follows because UO=expU~.
(ii) Let a be an F-fixed element in Lt\u0. Then the element (exp aa)-f0e u0* is
F-fixed forall aeFg. Hence the G0-orbit Oais F-stable for all oce Fg. Now it is clear that
t*oFcm of.
Since O is of the second kind we have dimit(0)=dimO-I (by proposition 1.3.3) and so
I«(OFW»(0)FIV ~ O~9 " * 1-
On the other hand the element (exp aa)feO is F-fixed for all a* Fq (we recall thata and/
are F-fixed). Hence ~
(exp oca)fo~x((exp aa)-fle x (0 F).
Since x(Of) is i f -invariant and OaFis the I/0Forbit of (exp <w)/0 we conclude that
O/cMCf)

forall amFr Therefore

* X toaF«JKOF) I~ tt"01
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(we recall that the union LJ.Oa is disjoint). Now
dimOtf=dimO0=dimO-2
(by proposition 1.3.4 because O is of the second kind). Thus

1 10/ Ex
o.Ff

a,F,

It follows that

Jtio'vU O f

(and this union is disjoint).
Now we consider the irreducible character %of if- As before we have
ftexpb)="= X,Wb(i(*))
# 1
for all be li. Suppose that be u0. Since O is of the second kind we have f(g)cO for all

geO. Therefore there exist glt...;}re( f such that C f is the disjoint union

C f-li-mi] llg if
(we note that each f(g,) is F-stable because g, is F-fixed). It follows that
r
X Vo(«(*)=X X ,¥o(g(h)).
SIfid /

»«0"’ 1A

Since bellOwe have

g(b)=g{b)
for all ga f(g,) and all < {l,.../*}. Therefore

r

X VRCCNR (1 <o

Since
li(g /1 *<fdiml(Si>mg

for all «{l,...,r} (we recall that dimt(g)ml for all g« i f) we conclude that

geQ’ iml
Now we clearly have
MO”j-itKg,); ISiSr).



Since the elements Mg) (1<i<s) are all distinct we deduce that
f{) W titox to")éo‘) Vo(So(b))-
By the first assertion of (ii) we have

I0.2<((OAO Vo(So(b))m a%.(F ' 2(01., V'oteotf»))-

On the other hand (by (1.2.12))

X \Vb(io(*))*Vi0/Ua(«pb).

Therefore

Xtexpb)*=-i= X "\O j\xaiexpbh).
y k flaF<

Since k /W o /1f we conclude that
*(«/>&)=X Xatexpb)-
Since be Ugis arbitrary and UG=expUQ it follows that
v -2 * .

as required.
Finally let cmF?, letx-exp(aa) and letbe % Then
Za(expbh)-— = - X , V7oCg(*»-
Violi
Since O " x-Oqwe obtain

Za{expb)-— = _ X , Vodxg){b))
Vio7i' 04

==- X . wo(fw «'1))
VtooFl ,,0/
-M«Pixbx'D).
Since expixbx')-x(expb)x-1we conclude that
Za-iZof

and the proof of the theorem is complete.
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We now consider induction of characters from Uqg to i f. We let the notation be as

inthe previous theorem.
Firstly suppose that O is of the second kind. Then (by proposition 1.3.6) O is the

unique (/-orbit which intersects the inverse image (in fact K4(O0)cO and this
inclusion is proper). Therefore 0 is the unique F-stable (/-orbit such that
oW I«VVO.

Hence
nr\OO0FcOF

and this inclusion is proper.

Now consider the character X=Zo- Let cte Fq be arbitrary. Then (by the previous
theorem) the irreducible character %a of Ug is a component of Xu r- Hence (by
Frobenius reciprocity) £ is an irreducible component of the induced character (£a)o<.
Since

AD=92Ta(l)=C(a)"a).
we conclude that
Z=(Xd)U
for all OeFq.

On the other hand suppose that O is of the first kind. For each oscK we consider the
elementf+ahe u* where he uOL is an arbitrary non-zero F-fixed element (this element

exists because Uqis F-stable). Then (by proposition 1.3.7) the inverse image ifl(.Ca) is
the disjoint union

nr\00)- UO (f+ah)
where 0(f+ah) is the (/-orbit off+ah. Now if ae Fq then the elementf+ah is F-fixed,
hence the (/-orbit Oif+ah) is F-stable. We claim that

*\0 0F)- U Otf+ahf.

In fact since 0(/+cd«)c*'1(00) we have

. O<f+ah)Fc * 1(.O0p)
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forali oe Fg Thus
(1.3.7) OQF O(f+ah)R& r\O OF).

To prove that the equality holds we observe that
(1.3.8) jr1(00)»0+ilol:
In fact let gtx'iO0). Then n(g)«0o. Since O is of the first kind we have n(0)=00 (by

proposition 1.3.6). Thus there exists g'eO such that x(g)=x(g?. It follows that
gt 1(g")=g'+WtgO+Udl.
Conversely if geO+UO0Ox then g* Kg") for some g'eO. Hence n(g)=n(g)€00 because
00=M.O). Now the equality (1.3.8) implies that
*\0 0F)=0FHUoLf - 0 F+Fth
(we note that U0x=Kh). Since O is of the first land its intersection with the fibre of any
ggeO0 consists of a unique element (we recall that the fibre of g0=n(g) (ge U*) is ((g)). It

follows that
\if\O OF)\*\OF+Fgh\=g\OR.

Finally we have
dimO(f+ah)=dimO
for all oceK (by proposition 1.3.6). So

X \O(f+ah)P=q\OR\=\nI (O0F)\

and the inclusion (1.3.7) is in fact an equality as claimed.
Now we consider the induced character (Xo> Since r .*Xo (by theorem 1.3.9)
we have "
(X'(X0)*)*urzZo)U,-(Xo'Xo)ur 1e
i.e. x occurs with multiplicity 1as a component of the induced character Cfo)¥*. On the
other hand let a* Fgand let x(a) denote the irreducible character Xotf+ak) °f t/* which

corresponds to the (F-stable) (/-orbit 0(f+ah). By proposition 1.3.7 0(f+ah) is of the
first kind (with respect to W0) and iK.O(f+(xh))»0". If we replace O by 0(f+ah) in the
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above argument we conclude that

Moreover
X(a)()~i\o(f+ah)R=~[k)R\-*(1)
because dimO(f+ah)=dimO (by proposition 1.3.7). It follows that

X Z(a)0)=4Z(1)=i*0(1MZo) 1)

Hence

omr. ()"

We have finished the proof of the following:

Theorem 1.3.9. Ler O*u* be an F-stable U-orbit, letf*Op and let O0be the UG-orbit
ofthe elementf 0=7t(f)t UO*. Then:
(i) 1fOisofthefirstkind (with respectto uqg), tC{Oq ) is the disjoint union

nr\O0F-KJ 0(f+ah)F
«.F,
where he (L)1 is an arbitrary non-zero F-fixed element. On the other hand
(ZO>L . FGF>
a*r.

wherefor each a&Fq
tirt-Zotf+ah)
is the irreducible character ofi f which corresponds to the (F-stable) U-orbit Oif+ah).
(i) If O is of the second kind (with respect to Ug) then O is the unique U-orbit
such that OfcX i(,Od=)F<D(hence iC1(Oq )cP £ and this inclusion is proper). Moreover

(Z"F'-2-

Now we use theorems 1.3.8 and 1.3.9 to prove the following result:



Theorem 1.3.10. Let Obe an F-stable subalgebra of Uand let V=expo. Let x be an
irreducible character of UFand let $ be an irreducible character ofVF. Let O*U* be the
F-stable U-orbit such that X=Xo aru* et O* be the F-stable V-orbit such that <v=X0"-

Finally let jcU*~* VV* be the naturalprojection (i.e. idf){a)=fia)for all/e i f and all ae 0).

Then:
(i) <pis a component ofthe restriction Xyr ofX ifand only if O'adG).

(ii) x is a component ofthe induced character 44" ifand only if Or\7tx{O)*0.

Proof, (i) We proceed by induction on dimU=dimU. If dimU=1 then either V={ 1} or
V=U and the result is trivial in this case. Suppose that dimU>\ and let Ugbe an F-stable
subalgebra of U such that Oc Ugand dimU~dimIt®-1 ('). Let kgyU*-* UO* be the natural
projection and let (0,; i*/} b* a complete set of F-stable G0-orbits satisfying O*n*iQ)

forall iml. Then (by theorem 1.3.9)

Therefore (.faXy”y,*0 if and only if there exists itl such that (.trHXo)yr)yr*Q- Now let
JG.Ug*-> 0* be the natural projection. Then (by induction) (falXo”yJyr~O if and only if
The result follows because K=Ttn8.

(ii) By Frobenius reciprocity

Therefore (by (i)) (X>0Wp)y,*0 if and only if 0 ctr(0). The result follows because

O'cJT(0) if and only if let OntrlI(©”)*0. In fa« suppose that Onjt1(O’)*0 and let

Then Mf)eO" Since x{f)mic{0), we conclude that O'r\tt(O)*0. The
inclusion O ’ctt(.0) follows because tr(O) is V-invariant. The implication
0'cJi(0) =* O'N\it(0)*0 is clear. .
1Thesubalgebra  exists. In fact let (tif<gC<iC<”...c<aafti be a chain of F-stable ideals of u such that
dimimI*dimla+ 1 for all &~ (0,1,...~i-1). Since o is F-stable, the subspace P,«u+1, is an F-stable

subalgebra of U foralla« (0,1,...jn-1). Leta« (I,...~i-1) be such that mi o+
ThendimE£**dwiOa+| sowe may take W B
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Finally we prove the following corollary which is of great importance for our work.

Corollary 1.3.11. Let Oy,...jO*.U* be F-stable U-orbits and define
01+..+0r-l/i+...+/r« ISiSr}.

Foreach im{l,...,r} letXrXo, be die irreducible character ofi f which corresponds to

0;and letx bean irreducible character ofif. Let O"U* be the F-stable U-orbit such that

X=Xo- Then~isa componentofthe character X\--X, (I) ifand only ifOcPi+. «*+0»-

Proof. We consider the direct product
Ur={(xl,...jcr); XfiU, 1S/Sr}.
Then
If=exp(If)
where
ifm{(<*..a,); «aU, IEfEr}
(we note that if can be regarded as a subalgebra of Umn(K) and it is clear that the
exponential map exp:If-*Urcan be defined component-by-component). The dual space
(if)* of if is naturally isomorphic to
1,);1>U* I£iSr}.
Moreover Oxx...xOr is an F-stable (/'-orbit of (if)*. It corresponds the irreducible
character Xi*-m*Xrof (1ff (2.
Now we identify the group U with the diagonal subgroup
- I/'»{(x,...jr) \xeU)eUr.

This subgroup is exponential. In fact

U-expU’
where
1The chancier i*definedby ( * , . . . foraUx»lf.
2 The character (of (1) is defined by Onx..xZ,K*,...Jt)-iriC*i)—ZrC*3 for all x p I f (we

noie that (1 ffelIff).
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Then the character %\ee«Xris identified with the restriction (£tx..mXr)u-+of X ix-+ *Xr10
if*and the sum Oi+...+Or is identified with the subset x(0\*...*.0r) of (E/*)* where

je(tf*)r-*(«0* is the natural projection. The result follows from the previous theorem. ¢
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CHAPTER 2

BASIC CHARACTERS

The main goal of this chapter is to establish the existence of a certain equivalence
relation on the set Irr(Un(q)) of all the irreducible complex characters of Un(q) (as before
g a power of a prime numberp). The equivalence classes of this relation are parametrized
by pairs (D,<p) where D is a basic subset of <&n) and gr.D->F ?*=F2A{0} is a map. By
definition a subset Dc<D(n) is basic if it contains at most one root from each row and at
most one root from each column (!).

Our work was motivated by Lehrer’s decomposition of the restriction to Un(q) of
any irreducible discrete series representation of the general linear group GLn(q) (see
[Le]). This decomposition envolves tensor products of certain irreducible representations
of Un(q) which are associated with the roots 0V)e <D(n) and with the non-zero elements
ae Fq (see [Le; theorem 4.6]). We will denote by &,<a) the character of the irreducible
representation associated with (ij)t <D(n) and with cte Fr In the notation of [Le] 8y(a) is
the character of the representation ajj(x) where %is the linear character of Fq defined by

Z(P)=Va(ap)
for all )3eFgand % is as in section 1.2. A rigorous definition of thectaracters is
given in section 2.1. Then in section 2.2 we will define, for each basic subset D of <Dn)
and each map qr.D->F g*, the character £d (<P) to be the product of all the irreducible
characters £jj(<p(ij)) with (iJ)*D. We denote by Ip(<p) the set consisting of all the
irreducible components of | D(™>). Then we will prove that the family of all the sets Ip(<p)
is a partition of Irr(Un(q)) (see theorem 2.1.1). Therefore each set jo(<p) is an equivalence

class of a well-determined relation defined on jrr(Un(q)).

1Foreachu the <th row of is the subset ((U+l),...,(!»} and the i-th column of «(a) is
the subset [(U),...,(MJ)J.
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2.1. Elementary characters and elementary orbits

In this section we construct for each root (ij)<<D(n) and each non-zero element

oceF g the irreducible character ~jfa) of Un(q) mentioned in the introduction. First we

analyse the roots in the n-th column {(i,n); IS/Sn-1}. Our construction is independent of
the orbit language, hence it is valid for any primep. We follow very closely the work of
Lehrer [Le], Independently Lambert and van Dijk [LD] have used a similar construction to

describe the characters of the Lie group Un(R) over the field JBof real numbers.

We denote by An{q) the subgroup of Un(q) consisting of all matrices having zeros
in all non-diagonal entries except in the last column. An{q) is an abelian normal subgroup

of Un(g) and it has a complement H consisting of all matrices in Un(q) whose
non-diagonal entries in the last column are zero. This group H is clearly isomorphic to
UnA(q) so we will identify these two groups. Then we obtain a decomposition

Un{g>An{q)U"(q)

of Un(gq) as a semidirect product. We now apply Clifford’s theory to conclude the

following:

Theorem 2.1.1. (i) Let y be a linear character ofAn(q), let <pbe an irreducible character
ofthe centralizer Cy of yrin UnAf.q) and let ynpbe the irreducible character of

d" ined &
- - (vM)(ox)-v<a)*U)
for alla»An(g) and all x* Then the induced character is an irreducible
character qfUn(q).

(ii) Letx beanirreducible character ofUn(q). Then there exist a linear character yf

ofAn{g) and an irreducible character $ of such that
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(iii) Letyand <pbe asin (i). Let xnU *lq) and let 1/=*~ be the linear character of
An(q) defined by

y*(a)-yKxax1)
for all aeAn(g). Then

where <t=fis the character ofCq defined by

W lyx)=<t*y)
forallyeC u”iy).

Proof, (i) and (ii) are applications of [CR; theorem 11.5]) and of ([CR; proposition

11.8]) (respectively) and (iii) can be proved easily using the definition of induced

characters. ¢

Now we consider the irreducible characters of A,,(g). This group is isomorphic to a
direct sum of n-1 copies of the additive group Fg* of the field Fqg. Therefore the
irreducible characters of An{qg) correspond to sequences y Ky »..»V%.i) °f «-1 linear

characters of Fo+where

for all x-(xrs)eA,,(q). Let y0 be a (fixed) non-trivial linear character of Fg*. Then any

irreducible character of Fg* is of the form ay 0 for some cts Fqwhere ayQis defined by
(ay0)(p)-yO(ap)

for all pmFq. Thus the irreducible characters of An(q) are in one-to-one correspondence

with sequences (aj“..,"!)« Fo'l. If an irreducible character y o f An{q) corresponds to

the sequence (al....««.D)« Fgn'l then we will identify y with the row vector

(at... a”j). As a trivial example the unit character Ixx((f) of An(q) corresponds to the

sequence (0..... 0), hence

- 0).
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Lemma 2.1.2. Let v*=(a, ... a*.,) (a” Fq, I£E*5n-1,) be a non-trivial linear character
of An(q) and let ie {I,...,n-1} be the smallest integer such that a,*0. Then the
un.\(q)-orbit of y/ consists of all row vectors (0 ... 0 a, A+i ... Pnml) where Pt*Fq
for all ke {i+1,...,n-1}. In particular this orbit contains a unique character with theform

(0 .. 0a-0..0).

Proof. Letx=(x,,)e WKIfi) and let a™{a,,)*Ar{q). Then
\I?(d)=\iKxaxl)

=(<*1 VoK (xaxA)iJ . .. yti0) ((xax\.In)

\ /n-1 \

[«-1

Therefore
VAr=(aj ...a»,,)?

wherey is a unitriangular matrix of order n-1 such that

Now let A+L...-A-1«Fq and 1«x=(xrt)tCfjq) be the matrix defined by
farlpj-ct}) if rmi and #Hh
rs 10 otherwise
for all (rj)e <Hn). Then
(«1- a»-i)y«(0...0a,pM ...p")

wherey is as above. The lemma follows. .

n
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In the notation of the previous lemma the character (0...0 0... 0) will be called
the canonical character in the C/,,.1(?)-orbit of yrand the index i will be referred to as the
type of ip. It is clear that all (“-conjugates of y have the same type. The unit

character of An(yf) will be called the canonical character of type 0.

Lemma 2.1.3. Let y=(0 ... 0 aO ... 0) be a canonical character of An{q) of type i.
Then the centralizer *)(V)of yin Un\(q) consists ofall matrices x=(.xrs)eUn.i(q)
which satisfy xiM=...=xin.1=0. Therefore

¢ U,,i(<,)W=Un.i(q)*°>1UHI(g)a>

where (CeSn is the permutation (n-1... i+li).

Proof. The first assertion follows easily because yf=yif and only if
(0...0a0...0)y=(0...0a0... 0)

for all; (). The second assertion is a consequence of the decomposition
K i?)0"-

Uu~rgqrar'u'.M a)-lsliilsmx,,(q)
<u(r)«ai)

(cf (1.1.14) and (1.1.15)).

Letx be an arbitrary irreducible character of UHg). Then (by theorem 2.1.1)

where
V*=(0...0a0... 0)
is a canonical character of An(q) of type i and | is an irreducible character of
<U"(«-1... i+li)mSn (if i*0 then y“(0... 0) and we put
a*rImSJ. Since

H AHNMU~cO<olUN(g)a))~Urnqg)na)lu~g)a~udiq)
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(cf. (1.1.14) and (1.1.15)) we conclude that %is induced by the irreducible character \fip
of Ujiq).
Now suppose that ~is the unit character Ip (Fy»of Un.i(Q)na>'1Un.\(g)c».

Then we obtain a linear character

N(a)*“yrt £,
of UJq). By definidon we have

(2.1.1) AiBa)U)»(aVhb)(Jam)“ Vo(«r«)
for all x=(xrs)e Ujiq). Then the induced character
(2.12)

is an irreducible character of UJq) (by theorem 2.1.1). This character will be referred to

as the (i,n)-th elementary character ofUJq) associated with ae Fg*. We have:

Proposition 2.1.4. Let U {l,...,n-1}, let co=(n-l... i+1i)*Sn and let ae Fg*. Then
thefunction X*ay.UJq) -> <d*defined by (2.1.1) is a linear character of UJq) and the

induced character &Ra)=(A6l(a))t,X,) is an irreducible character ofU n(g).

In general we may associate with any root (ij)e <D(n) and any element ae Fqan

irreducible character fja ) of Un(q) as follows:

Proposition 2.1.5. Let (ij)e<t>(n), let co=(J-I... i+li)*Snand leta*F*. Then the
function Xja):UJq) -* (L* defined by

(2.1.3) Aia)(jc)-V'o(&y)
forall UJq) isalinear character ofU Jq) and the induced character
(2.1.4) ty a)-aw*))t«,)

isan irreducible character afUuJq).

Proof. We apply proposition 2.1.4 to the group UJq). This group may be identified
with the subgroup of UJq) consisting of all matrices whose non-diagonal entries of the
I*s* n-j* 1 cdawnivs QAL * Sinct way be comnvaAMCA aii an «U-utewf oj
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tAiMc
Vgroup Sj we have

UJg)nUJqg)~UJg)naflulg)at.
By propositon 2.1.4 the restriction of Xja) to UJq)r>UJq) is a linear character of
UJg)nUJq). We denote this character by *-<a). Now the subgroup UJq)r*UJq) of

U Jq) has a normal complement, namely the subgroup

where for each ke {1,...,/>} AJq) denotes the subgroup of UJqg) consisting of all
matrices whose non-diagonal entries are zero except in the ffcth col umn. Therefore we
may consider the lifting Hja)* of)ija) from UJq)nUJq) to UJiq). By definition we
have
Hja)*(xa)=nij(a)(x)=Xja)(x)
for all xe UJg)nUJq) and all aeAj+Jq). It follows that
Hja)m-Xja)
so Xij(.a) is a linear character of UJq).
On the other hand the induced character
Cja)~QtJa))w
is an irreducible character of UJq) (proposition 2.1.4). Since Aj+1(q) is a normal
complement of UJq) in UJq) the lifting £ja)* from UJq) to UJq) is an irreducible
character of UJq). Since lifting commutes with induction we deduce that
Cy<<x)*<a)y )V HXja))u* )

is an irreducible character of UJq) as required. .

For each root (ij)m <t>(n) and each element at Fg+the irreducible character *jJa) of
U Jq) defined in the previous proposition will be called the (ijyth elementary character
associated with a.

Next we prove that the elementary characters are all distinct Therefore UJq) has
(&-11 gfrr.1? distinct elementary characters.
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Lemma 2.1.6. Let (ij),(k,)e<P(n) and let a,fk F g*. Then <Jy<a)=£u03) if and only if
(i))=(k,[) and ce=p.

Proof. Suppose that €y(a)=£u(/f). Without loss of generality we may assume that
I°/'-n. Then the irreducible character ¢ji,,(@) is uniquely determined by the canonical
character
y>=(0... 0a0... 0)
of An(qg) of type i. Suppose that I<n. Then (in the notation of the previous proof)
6u(0)=5u(j9)™.

It follows that the unit character | ~ ) is the unique component of the restriction of £u(P)
to An(g). On the other hand is a component of the restriction of ~,,(a) to An(q) (see
[CR; proposition 11.8]). So y/~1,”). This contradiction implies that I=j=n. Hence

&.(/» is uniquely determined by the canonical character

0=(0... 0/30... 0)
of An(q) of type k. Therefore 0 is a component of the restriction of | ta(*) to An(q) and so

<€is ¢/,,(“conjugate to iff. By lemma 2.1.3 we conclude that k=i and /3=a. .

Now we let K be the algebraic closure of the field Fq and we realize the group
Un{q) as the group Un(K)F consisting of all fixed elements of the Frobenius map

F=Fg:Un(K )" U n(K).

Let 0\/> <Z{)and let at Fg*. Since the elementary character £y(a) is an irreducible
character of Un(q) there exists an F-stable Un(K)-orbit O*Un(K)* such that
$ij«x)-Xo
(see (1.2.12)). We will prove that O is the (/,,(AQ-orbit of the element a et Un(K)*
where e,j*:Un(K)-*K is the dual vector of the root vector et Un(K). In general for any
amK the t/,,(Af)-orbit of the element a e f will be denoted by O”a) and it will be referred

to as the (ijyth elementary Un(K)-orbit associated with a. We note that
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Since a*0 the matrix X is non-singular and so M(oce™*) has rank 2(j-i-\). It follows that
dimOjjia)*“ 2(j-i-1)

(by (1.3.3)). By corollary 1.2.3 we conclude that U jK) is an (ae,;,*)-maximal isotropic of

Un(K) as required. .

Proposition 2.1.8. Let (ij)e d>(n) and let ate Fg*. Then the UJK)-orbit O ja) is
F-stable and it corresponds to the irreducible character £ja) ofUn(q), i.e.

Zij<a)=Zo.<ay
The correspondence £ja)-*0 Ja) is one-to-one between elementary characters of

Un(g) and non-trivial elementary F-stable Un(K)-orbits on UJK)*.

Proof. Since ae Fg* the element ae,y*60 ja) is F-fixed and the (/,,(AT)-orbit is F-stable.

Now let c*=(/"-I... i+U)eSn. Then UJK)=expUjK) is F-stable and UJq)=expujq).

Since UJK) is a polarization for cee-*and $Ja) is induced by the linear character Xja)

of Ujq) it is enough to show that this linear character is defined by the element

ae,y*s UJK)*. In fact the homomorphism ty.UJK)-*K* is defined by
tlexpa'H{a)*aai

for all a=(arj)e UJK) (cf. (1.2.9)). However

(expa) lé‘( l+a+.g$'+ mm-("T)Tj  §
because
(AY-
and Oj,*0 for all re {/+1....J-1}. Therefore
fyx™axij
far all x-(xrj)e UJJC). It follows that the character XfXJJq) -» C* is given by

t tyx)mY ot/tomYit<*Xu>
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for all x=(x,,)« UJ"q) (cf. (1.2.10)). So
X"Xy(a)

and the lemma follows. *

Let (ij)e <Hn). Then the previous proposition allows the definition of the (ij)-th

elementary character &<0) associated with O« Fqto be the irreducible character which

corresponds to the F-stable i/,,(Af)-orbit 0 i<0). Since Oix0)={0} we have

(2.1.5) AeYolw
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2.2. Products of elementary characters

We recall that a subset D of <D(n) is basic if it has at most one root from each
column and one root from each row. More precisely D<zGKn) is basic if it has the form
D=0tA)n4>(n)
where QeSnand
d={(l1,2),...,(n-1,n)}
is the set of simple roots. In particular the empty set is a basic subset of <P(n). In fact
0=a")(d)nd>(n)
where (D0eSn is the permutation defined in (1.1.16). On the other hand if D is a
non-empty basic subset of <P(n) then
D={(iiJiWiJi).....(Wr)))
where 0'1JO XiiJi)--- XirJr)e &(*) are such that j xe.j2e....£.jr and i,*is- for all

sj'e { Conversely any subset of <D(n) with this form is basic.

Let D be a non-empty basic subset of <P(/t) and let qr.D-»F g* be a map. Then we
denote by the character of Un(q) defined by

(22D

On the other hand if Dc<P(n) is the empty subset then gr.D->F g* is the empty function (*)
and we define £D(qj) to be the unit character 1 of Un(q).

The main goal of this section is the proof the following result*

Theorem 2.2.1. Let %be an irreducible character of U,,(q). Then there existta unique
basic subset D of d>(n) and a unique map gr.D-»F g* such that X iJ a component of
&(?)e

1 We note that if X and Y are two sets, a function <fX-» Y may be considered as a subset of the
Cartesian product XxY.
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This theorem will be proved later in the section. Firstly we will discuss some
examples which illustrate the general situation and which will be useful in some steps of

our proof. As one should expect our arguments are based on the general results of chapter

1. In particular corollary 1.3.11 is fundamental for the study of the characters £0(?>). In
fact it implies that for any non-empty basic subset D of dtyi) and any map qrD-* F g* the
irreducible components of | 0(qgj) are in one-to-one correspondence with the F-stable

i/,,(A0-orbits which are contained in the sum
(2.2.2) 0D(= X QijigKid)).

1fD=0 then we define 0EX(<p) (pis the empty function) to be the orbit {0} of the element
Oe un(K)*. The (irreducible) varieties 0 D(<) will be described in section 3.1 where we

will obtain a decomposition of Un(K)* which generalizes theorem 2.2.1 (cf. theorem

3.1.7).

Our first example is trivial. We describe the linear characters of Un(q) in terms of
products of the form (2.2.1). It is well-known that the commutator subgroup Un(q)' of

UHQq) consists of all matrices x=(Xij)s Un(q) which satisfy x12= ..=xBIn=0. Moreover
the quotient group » n* 1u n(q)’ > isomorphic to a direct sum of n-1 copies of the
additive group Fqa+ Therefore Un(q) has qnA distinct linear characters which are in
one-to-one correspondence with sequences of elements a,+ Fq (IEiEn-I).

These characters can also described as follows:

Lemma 2.2.2. Let al(...,an.i«x Fg. Then the linear character of UK(q) which
corresponds to the sequence is Therefore the linear
characters of Un{q) are in one-to-one correspondence with pairs (D,<p) where D is a

subsetof and qrD ->F g* isa map.

Proof. It is clear that the character ~i2(cei)---"n-i""it-i) is linear. Therefore it is
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irreducible and it corresponds to an F-stable I/,,(Af)-orbit O of dimension zero. By

corollary 1.3.11 we must have
0=0x2(ctX)+...+0nAn(anA).

Hence 0 contains the element
a , + < V , unK)*

Since 0 is connected it contains only this element Thus

whenever (at......(<%j,0(tFr 1S/Sn-1). The lemma follows. .

In the next lemma we identify some irreducible characters which have the form

(2.2.1). This result was proved by Lehrer (see [Le; theorem 5.2]) using Mackey’s

theorem on the decomposition of tensor products. We give a different proof which can be

extended to establish that (with the same conditions on the set D) the variety 0 D(<) is a

single £/,,(AO-orbit (cf. theorem 3.3.3).

Lemma 2.2.3. LetD={(ilJ1),...,(irJr)} be a basic subset of &(n) and suppose that

,i<i2<-esc>0nd thatj\>ji>..->jr. Let <piD->F g* be any map. Then the character £D(¢p) is

irreducible.

Proof. We consider the sum 0 D(<p). Let as=<(isJs) (LEs£r). Since Oij(as) is the

Cl(A>orbitofafij* (I£rSr), the element

lies in 0 D(<). Thus*
0(f)cOD=

(we recall that 0(f) denotes the i/,,(F>orbit of/). Since/ is F-fixed 0(f) is F-stable.

Therefore (by corollary 1.3.11) the irreducible character X*“Xo<f) of Un(q) is a component

of {¢;>(p). We claim that

t *_& (*)e
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For we compare the degrees of these two characters. On the one hand we have

r
&>(?(LW". m :\]2% (/,-»>1).

because ” (a,) has degree i»*»1(I"sar). On the other hand (by proposition 1.2.5)

ZiD-VIOW'IW f*"0.
By (1.3.3) we have
dimO(f)=rankM(f)
where Af(/) is the matrix which represents the bilinear form fly with respect to the basis

(eij, (ij)e <b(n)). Now for each se {1,...,/*} and each ke {i,+I"..j,-1} the plane

Hsk=Ke jtk+Keki
is non-singular because

f&eKekiU=fieij) = as*Q.
Moreover the subspace
rooirj
J«l |

is an orthogonal sum of non-singular planes. It follows that Vis non-singular so

rankM{f)<uiimV.
Since dimV=2m we deduce that

X 1)-V 4*° W grankM  qdimv=<r.
Finally since ™ is a component of <D((p) we conclude that
tfIK oW D

13

o} claimed. The lemma is proved. .
Corollary 2.2.4. Let D*{(1*i),(2,/i-1),...,(r,n-r+1)} where either n=2r or n«2r+l.
Let gr.D-»F g* be any map. Then the character £o(<p) is irreducible. It has degree
g”n) where pin)** (n-2)+(n-4)+... 0). Moreoverifn-2riseven, the characters &{(4>)
where £)-{(1,n),(2,n-1),...,(r-1,n-r+2)} and tprd) -» F f* is any map have degree gf*~.
Therefore UHq) has at least (q~1 f irreducible characters <ddegree g*n\ (fn-2r+1 is odd,

C)Wip.(w) =r*-r ViN2r co u(M)cr* m

odd
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and at leastq(g-1)M irreducible characters o fdegree ifn™lIr is even.

Proof. It remains only to prove that the given characters are distinct. For we let

al,...,<*6Fgbe arbitrary and we consider the element

Then
txf)(a)=foax I) *al(zax~l)In+...+artxax')m+I.
Let fix,.../3re Fgand suppose that the element
S=ZA«U*+-+ftri*« W
lies in the i/,,(i0-orbit of/. Then there exists xe Un(K) such that
g(a)=fixaxA)
for all a=Un(K). In particular leta=e™M (I<J<r). Then

forall;« { 1 , . Therefore we get
Pi=g(ein-i+H)=AxcinM xA)=ai

forallU{ 1 , . The lemma follows. 3

It was proved by Lehrer ([Le; corollary 3.21) that is the maximal degree of the

irreducible characters of Un(q). This result will follow as a corollary of theorem 2.2.1

(see corollary 2.2.13). Moreover theorem 2.2.1 implies also that any irreducible character

of Un(q) of maximal degree has the form £d(4> where D and @ are as in previous

corollary.

In the next lemmas we study the decomposition of the products &,<«)!«(/?) where

(17),(k,he <O(n) and a,/JmFg*. It will turn out that this decomposition depends on the

relative position of the two roots (if) and (kj).
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By the previous lemma *ifoi)*u{p) is
irreducible whenever i<k<l<j. The adjacent

diagram illustrates this situation - the symbol

m represents a root in D (this symbology will

be used throughout the thesis).

Other possibilities are illustrated by the following pictures.

Our next result asserts that in both situations any character < a)|u(/3) is irreducible (its

proof is an immitation of the proof of lemma 2.23).

Lemma 2.2.5. Let (/J),(.k,l)e <P(n) and suppose that jEk. Let a,pe Fg*. Then
ly(tt)5«0?) « tut irreducible character ofU n(g).

Our next example shows that in general the character £p(¢>) is not irreducible.

Lemma 2.2.6. Let (ij),(k,I)» t>(n) and suppose that i<k<j<l. Let a,p«Fqg. Then
Cijia )4kt(P) *s a reducible character of Un(qg). Infact let yuFgand letftilfthe irreducible
character of Un(gT which corresponds to the F-stable Un{K)-orbit of the element
aeii*-¥Peu *+yeik*n un(K)*. Then x(Y) a component of Cij(@)Cu(p) of degree
Ni+*H/+0-3 Moreover the correspondence is one-to-one between the elements

ofFgand the irreducible components of*jfa”"p).
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Proof. The adjacent diagram illustrates the
situation of the lemma. Here the symbol O
means that the root (ijc) is associated with any
element of the field (this root determines the

irreducible components of the given character).

In order to use corollary 1.3.11 we consider the sum Ojj(a)+0U(J) of the
elementary i/n(Ar>orbits O*a) and O"p). Let ynKand let
x=xkj(-aAY)eXkj(q).
Then
(x-(aeij*))(a)=aej*(xaxA)=a(xax'Dij=a(,aj+a'LJau'=(,aej*+yeu*)(.a)
for all a=(ars)e un(K). Since O"a) is the UnJO~orbit of ae*m un(K)* we conclude that
aef+ytitUOyia).
On the other hand Ou (JJ) is the (/,,(AO-orbit of fiea*e Un(K)*. Thus
aeij*+Heik*+Peu** 0 K.a)+0u ).
Since Oij(.a)+0Kkif.p) is (/,,(AO-invariant we conclude that
O(tfc<tya)+0*03)
where 0(>) is the i/,,(A0-orbit of
Now let y,y«Fq and suppose that 0(y)=0(Y). Then there exists x=(x,,)m UHJIC)
such that
aey*+y"eu*+peu*-x{aeutTieu*+peu™).
Applying this function to an arbitrary aM.a,,)mun(K) we obtain
aaif+yaik+pau”a(.xaxl)j+yXxaxA)U+POcaxl)kI.
In particular let where nm {¢+1......M }. Then we get
Q-<nim(x\i+yxim( x \ k+pxim(.x-1)w P xkm
because j<l and *</. Since /W) it follows that
XkmmO
for all mm }. On the other hand if UjjK) we obtain

y-a(x\+y.
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Since (x'l)/y=0 we conclude that y'-y. Therefore the i/,,(JC)-orbits O(y) (7 K) are all

distinct
Finally we consider the dimension of the {/,,(Af)-orbits O (7) for PoFqg. For each

P6F g we denote by the matrix M (aej*+yeik*+Peum). The system of vectors
(ekr>eri, K+1£r£Il- 1" (e e ; i+1Er<j-1, r*k) span a non-singular subspace V of un{K).

Therefore
dimO(y=rankM (ffZ.2(I-k-1)+2(/-i-2)

and so

It follows that

Since

we conclude that

and the lemma is proved. .

The next lemma will be fundamental for the proof of theorem 2.2.1. We note that in
the situation of this lemma (as well as in the subsequent lemmas) the roots involved do

not constitute a basic set

Lemma 2.2.7. Let (jj),(/,/)« 0(n) and suppose thatj<l. Let a,PmFg*. Then

Sij<a)f]5u(P)-$u(P)+«’.<!jrl )ﬁFf* 6*076/8)

is the decomposition into irreducible components. Therefore £i{a)&/(/J) has
one irreducible componentofdegree <fiA and,for each an {/+1,...,/-1}, ~-1 irreducible

components ofdegree
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Proof. The situation of this lemma is
illustrated by the adjacent diagram The symbol
m represents the initial root (which does not
occur in the decomposition) and the arrow
means that there exists a certain “dislocation”
of this TOCL

In the proofof the previous lemma we have justified that

jfea*-oetf*«0a03).
Therefore
pef-pef-aef+aef, ONMi+0O"a).

This proves that the irreducible character £/(£) is a component of

On the other hand let ae {/+1....J-1} and let yt Fg*. By lemma 2.2.3 the character
SajCfISuiP) is irreducible. This character corresponds to the F-stable i/,,(AT)-orbit
Oaqj(Y)+Oit(p). Let us consider the element Yegm+Peil*tO g{y)+Ou(p). Let
x=xia(a'lifreXU(q). Then aej*+yc"*=x (aej*) (see the proof of the previous lemma)
and so

aef+ytqU Oijia).
It follows that
T*4*+fcij*=<Mij*+ied*+Peu*-aej n0ij(,a)+Ou(p)
- we recall that fief-acf* 0~(/J). Therefore
OJV+OiAficOifiay+Ouip).

By corollary 1.3.11 the character is an irreducible component of & {a)&/(/i)-

Finally we consider character degrees. We have

fikK fliw *1 and
forall an{/+If... }andall Fg* Onthe other hand

a-1+1 V. a-»+| )

The lemma follows because
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(Exa)nj3))(W -V il
and because the characters (i+1£aS/-1, jmFg*) are all distinct (this can be

proved using a similar argument to the one used in the proof of lemma 2.1.6; we note that

whenever a*b because they have different degrees). 3

A similar proof can be used to obtain the following:

Lemma 2.2.8. Let (.ij),(-kj)e <P(h) and suppose that i<k. Let a,fie F g*. Then

is the decomposition into irreducible characters. Therefore has
one irreducible componentofdegree and,for each ae {)fc+l,...,/-1}, g-\ irreducible

components ofdegree

As in the previous cases we illustrate the
situation of the lemma by the adjacent diagram.

The symbology is as in the previous case.

Finally we consider the products &,{a)&/(j8) where {if)* d>(n) and a,/3e Fg*. We

stan with the case

Lemma 2.2.9. Let (ij)«<b(n) and let amFqg*. Then

Therefore each irreducible component of £ occurs with multiplicity one (I).

1¥Ve note thz;t the characters appearing in the given sum are not (in general) the irreducible components
oftyoW-a).
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Proof. Here the situation is as in the adjacent
diagram. The arrows mean that the root (iJ)
“dislocates” in the directions indicated. The
root (/.a) determines the decomposition of any
component (c™~ lemma 2.2.6).
The equality oh-/M) meansthat the root (ij) is
associated with two elementary characters which correspond to a,fk Fg* satisfying that
equality.
Since
O=ccej*-aei*e Oy(0)+0OYy(-a),
the unit character 1 °f Un(,q) is a component of y{a)£y(-<z). On the other hand let
am{i+1,...J-1} and let }3*Fqg*. Then
aef+pefmOfld)
(see the proofof lemma 2.2.7). Thus
peg*=ccej*+I3eg*-aej*mOij(.a)+0i(.-a)
and this implies that Cg(p) is a component of | "(a)"iy(-a). Similarly for each
bm }and each  Fg* the character ZULfS) is a component of & <a){y(-a).

Now let a,be {i+1,...J-1} and let p,y*Fg*. If b<a the character Q/{.p)Cn(l/) is
irreducible (by lemma 2.2.5) and it corresponds to the orbit of the element
Pca*+ysib*=aei f+Ped-OKi*+ye&*t0"a)+0if-a).

It follows that is a component of {*(a){"(-a). On the other hand suppose
that a<b. Then (by lemma 2.2.6) the character ia;(/1)$(i(7) is reducible and its
components are parametrized by the elements of Fq. For each & Fq the irreducible
component associated with S corresponds to the i/,,(A0-oibit of the element
peJ+yeuf+SeiSm
Since
aef*+Pegi*mOij(.a) and -ceey*+)eifc*+ & il*« O"-a)

(see proof of lemma 2.2.6) we deduce that
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Therefore each irreducible component of < {$£.:(7) is also a component of £y<a){g(-a).

Since £aj(P)Eu>(fl is multiplicity free we conclude that £g/{/9)€ifr(?) is a component of

Finally we consider character degrees (we note that the characters involved have no
components in common as we can prove using the argument of the previous cases). If we

denote by # the character of the rigth hand side of the required identity then we have

mdrdgH-|
-«v«di(,<-a)X])

and the result follows. *

The next two lemmas will be used to decompose the character ¢jila)£ j(,8) where
OV)«<£(n) and a,Re Fg*, B*-a. The first will also be used in the proof of theorem 2.2.1.

Here we consider Uiq) as a subgroup of Un(q) (cf. section 2.1).

Proof. Letic {ll...In-1}and let a* Fg*. By Frobenius reciprocity ~ (a) is a component

of the induced character Ot/_1(e))i/%) if and only if ly~”"j is a component of the
restriction Let icmh(K)*->un.i(K)* be the map sending/« Un(K)* to its
restriction rtf) to U ~K) and consider the image rtPJ"a)) of the (Ln)-th elementary
orbit Oilt(a). Since OiHa) is the (/,,(HO-orbit of the element ae”m un(K) and



1

/E(aeu,»)=0« UnA(/C)* wc have
OotfO*«*)).
Since {0}cU,,(Af)* is the i/*.i(g)-orbit which corresponds to and Ofa(a) is the

£/n(Af)-orbit which corresponds to ¢,,,(a) (by proposition 2.1.8) we conclude

(by theorem 1.3.10). It follows that

Finally we consider character degrees. It is clear that

On the other hand
n-1 n-1
li/WID+JJC .~ (a) ()= 1+ (<7-h<r-I=cin-1

and the proof is complete (we note that the characters ~¢,(a), cfc F g, are all distinct). .

On the other hand we have:

Lemma 2.2.11. Letic{l,...,n-1}and let etc Fg*. Then
n-1
C*(0>
« flte decomposition of the restriction °f 4in(a) to 0*.i(<7) into irreducible
components. Here {ji(fi) denotes the (ij)-th elementary character of U~{q) associated

with p.

Proof. Let jr Un(K)* -> Un.x(K)* be the natural projection. By theorem 1.3.10 the
irreducible components of a™ *h one-to-one correspondence with the
(/,,.-1(AT)-orbits which are contained in the image x(OiHa)). Since 0 te(a) is the

(/,,(AO-orbit of the element aete*a UHK)™*, we have

* ontteB)e}i OHD))-
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Therefore

On the other hand letdm{i+1,...,n-1}and let PeFg*. Then
Kin*+cij*'Ou,(a)
(see the proofof lemma 2.2.6). Hence
peifrrtMiS+PeiP* icCO"a)).
Since CifP) corresponds to the £/*.i(AO-orbit of p e fe Un.t(AO*. we conclude that
(CYy(")»5m(a)t/ " Ki)u™,(i)~0-

Since
I+(fI-Djn)i(Hq>|A~qn iA

the lemma follows because the characters Cyifi), fle Fq, are all distinct. .

Finally we may prove the following:

Lemma 2.2.12. Let (ij)«®{n) and let a,/3e F * be such that j3*a. Then

w ! a-i+l tmaH j*Ff» ’

is the decomposition of£j¢0)”* 0 ) into irreducible components.

Proof. Here the situation is as in the adjacent
picture. The arrows and the inequality a+/fc*0
have the same meaning as in lemma 2.2.9. We
note that the root (ij) occurs in the final

situation.

First we prove that the irreducible characters iyla+ff) and iij(.ot+p)Cab(f)
(/+1Sfl<b”-1, p Fg*) occur as components of £m{«)£{/}). In fact (by corollary 1.3.11)
(Sif.<x+P)<iij<a)Ci<P))*0
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because
aef+pefe O*afaO”p).

On the other hand let g><={/+1,...,/-1}, a<b, and let Fg*. As in the proof of lemma
2.2.6 we have
OBij*+eib*eQij{a).
Letx=xia)sXia{q). Then the element
X-(aej*+eu *)=aeij*+eib*+ayeqi*+-jeab*
lies in the i/(AQ0-orbit O"a). Since Pe”-e”e O *p) we conclude that
(a+p)ei*+cqeg*+ylab*eOj(a)+Oi(li).
But {a+foef+cgKafe. Otfa+p), so
(.a+p)egm+ay!q*+yeabnt Oij(a+p)+0ab" .
Since Oijich+QijifS) is £/,,(AO-invariant we deduce that
Oifa+p)+0aTfcOifa)+QOi(.p)
- we note that Oij-(a+p)+0ab('p is the Un(K)-orbit of (tt+p)ej¥+aycg*+'Yeab*. Finally
corollary 1.3.11 implies that
(Sijia+frSabM&jiCQSijiP))!*).

Next we consider the multiplicities of the irreducible characters <ly(a+/J) and
| y(a+/0)EjA(T) (i+1£trcb£/-1, TAFg*) as components of §M(a)£,,</)). Ifj<n then all the
elementary characters involved are the lifting from Ufa) Cl) to U fa) of the
corresponding elementary characters of Ufa). Therefore those multiplicities may be
calculated inthe group Ufa). Hence without loss of generality we may assume thatj=n.

Firstly we consider the character ~(a+fJ). We calculate the multiplicity of this
character as a component of the product | iBa) (ly”i((f))£%<). By lemma 2.2.10 we have
n-1
&, («)(1 ool V2((':](*i«(a)ir»(v').
Since j9KO the irreducible characters ~(a+p) and ¢¢,(a) are distinct. Therefore
(5m(a+0>.6»(a»-O-

On the other hand we have (by lemmas 2.2.7 and 2.2.8)

1 Ufa) is identified with « subgroup of Ufa) as in section 2.1.
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for all re {I,...,/»-1}, r*i, and all v»Fqg*. Finally let v*Fgm, v*fl, and let

/€0il(a)+0i)l(v). Then

/[ej-a+v.
Also

i(««)=a+/3
for all gtOj*CH-P). Since v*/3we conclude that

Oin{a+p)n{pin{a)+0Oir{v))"ei.
Therefore
(&»(«t/*).£»(«)&.(V))-0

(by corollary 1.3.11). It follows that

(8i»(a+i3).5m(a)iii.03))=(im(«+").l«(a)O

Now we have

By Frobenius reciprocity we conclude that

Hence

By lemma 2.2.11 (applied to the characters ~¢,(a) and &/i(®+/3)) we have

Aa) M i) M<OH- A IG) W)+ 1 N (V)
Since the charactersin this sum are all irreducible and distinct we conclude that

(Ua+/3).{«(«)Uin)tl.(,)-1+(»-M)(i-1).

Now let a,om {l,...,n-1 }*ca<bfand let Fqg*. We use a similar argument to

calculate the multiplicity of the (irreducible) character &"(<*t-/9)£4(# as a component of

A* before we obtain
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we note that £*(?)=£,*(#* °

By lemma 2.2.11, we have
nl
Sin«*)urM(grZin«x+P)vi< rl No(v)*

Therefore £in(o»-p)li* A C & (> has the decomposition
H1

~ .
U~10q)Cab(y)~Cab(Y) i -)i<+ 1 i!>>§t* CoiCl)
where the characters CuWCabW are not in general irreducible (however, since a>i, all of

them are multiplicity free). By lemmas 2.2.3,2.2.5 and 2.2.6 we have

On the other hand, letre {i+l,...,«-1}and let ve Fg*. Then

(Ci,(vUin«x+fiv " (g)Cab(Y))*0
if and only if
(Uv)>C«(M)CabM)*0
for some se {i+1,...,n-1} and some H*Fg* (we note that a><). By lemma 2.2.8 this

happens if and only if s=r=b and fi=v and, if this is the case, we have

(AR(V)eQX Q0E(7$) ,(f)* 1o
It follows that

v Fo*
To conclude the proof we calculate the degree of the character of the right hand side

of the required equality. W e denote this character by 0. Then

KIWI+(@--M)U<wO) )+ £ X yZ(F  (ST)(&.(OH-)&*(t)(1)

-aM.q-IKn-i-DXfA- X (X0 X (q-D~ 1 1

«ni+1
¢ i-2 i
SIH(@-IKeM)+(I-N2 X X <t~x
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Since
MH

<) £ f+ '-tT '-1
6-04-1

forall ae {/+!,...,n-2), wc obt?in

it-2 \

= (U «)™)(D -

The lemma is proved. .

Using the previous lemmas we now prove the following result:

Proposition 2.2.13. Let pbe a character of Un(q) which can be expressed as a
productofelementary characters. Then $ can be decomposed as a sum ofcharacters with

theform (22.1).

Proof. We define the total order < on the set of roots 0(h) as follows. If (ij),(kJ)e <P(n)
then (ij)<(k,I) if and only if eitherj>I orj=I and i<k. Hence we may define a total order
in the seti®,(Afc) consisting of all matrices a=(ay)ls/(/Sn satisfying atj=0 if (ij)e 0(n), and

if (ij)e 0(h) - hereto denotes the set of all non-negative integers. This order is
defined as follows. Let a,be«,(Afc), a-(ay)i < i bm(by)liiJSa- Then a<b if and only if
there exists (ij)e 0(h) such that au-bu for all (k,I)e 0(h) with (k,1)<(ij), and aycby.
This order allows us to prove the proposition by induction on the set %<Hg). In fact the
character <pdetermines a matrix a*=(a,y)e as follows. By hypothesis there exists a

non-empty subset A of 0(h) such that

where, for each (iJ)eA and each ke {l,...,ty}, ctyk is a non-zero element of the field Fg.
Then for any (ij)e 0(h) the (ijyth coefficientofaqis

0  otherwise
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Suppose that 0 corresponds to the smallest matrix in Un(f"), i.e. all the entries of
a™=(0y) is such that a,y=0for all (ij)e #(n)\{(l1,2)}, and al2=I- Then** (a ) for some
ae!Fq and the result is trivial. Now let O be such that a®is not the smallest element of
Un(rto) and suppose that the result has been proved for all character iff (as in the
proposition) such that av<a”. Let (ij) be the smallest root of A. Without loss of
generality we may assume thatj=n - otherwise 0=y/* for some character y of Uj(q) and

we may prove the proposition in this “smaller” group. Then

where t=tin, ak=aink (ISafr,,,) and (A0=A\{(/,«)} (possibly A0 is empty). Suppose that
f>1. Then after a finite number of applications of either lemma 2.2.9 or lemma 2.2.12 we
obtain a decomposition of Oas a sum

0=0!+...+0r

where for each se {l,...,r} there exists a subset As of CKn) such that (i,n)*As and

for some (1 (iJ)eAs) - we note that we may have <*!+...+a,=0. Since

r>| we have  <aqforall se {l,...,r}. Thus (by induction) the result is true for each
character O, (IEy£r), hence itis also true for the character O.

Now suppose that r=1. Then

for some as/F?*. Ifi40is empty then O is an elementary character and the result is trivial.

Suppose that AOis non-empty and let

We have  <a$, hence (by induction) the character ®decomposes as a sum of characters

with the form (2.2.1). If £p(0) is one of these components (hence D is a basic subset of
0(n) and <:D-*IFg* is a map) then the character Zi,,(a)$D(¢>) is a component of 0.
Moreover 0 decomposes as a sum of characters with this form. Let 0O denote the

component i,,(0)*0(0) of 0. IFDu{(i,n)) is basic then 00 is one of the required
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components of ft. On the other hand suppose that Du{(/»} is not basic. Suppose also
that there exists ;e {1.....n-1} such that (j,n)eD. Then (j,n)eA0 - we note that (by the
argument above applied to the character ft,) the smallest root of D is greater or equal than
the smallest root of AO. It follows that (j,n)eA and so i<j. Now (by lemma 2.2.8) we

obtain

n1
BUIEH P& IEePom ., . Cin(akik(PICDASPo)

where D0=DY{(/',«)} and ft, is the restriction of (pto DO. Since (J,n)eA and (J,n)eDO0 the
characters &,(a)&Q(fli) and ” (a)” * (P)CDo(o) (j+I<JcEn-\, PeFg*) determine matrices

in W,(*(,) which are smaller than a”*. By induction we the proposition is true for these
characters, hence it is true for the character ft>
Finally suppose that (j,n)*D for all je {1.....n-1}. Then (.i,k)sD for some
ke {i+l,...,n-1} and (by lemma 2.2.7)
fto:£m(a)£D(<P):&n(a)SD(I<F’o)+/zI(;1 pzllgq Sin(,a)Sik(P)ZD0<Po)
where DO=D\[(iJc)} and ft, is the restriction of pto DO. The result follows by induction
because the characters £IRa)EDOPo) ancl &ii(a ){tt(/?)£€D49b) (f+IS/Sn-1, 5*fq*)

determine matrices in which are smaller than a”. In fact our construction shows that

at each stage we are constructing a family of characters which determine matrices in

U,,(i/0) which are smaller than the previous one. In particular the matrix determined by
€d(?>) is smaller than the matrix determined by ft,.

The proofis complete. .

As a corollary we obtain:
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Corollary 2.2.14. Letx be an irreducible character of Un(g). Then there exists a basic

subsetD of <Hn)and a map qrD-»F * such that

Proof. Let Oc.U{K)* be the F-stable (/,,(AO-orbit which corresponds to %and letfeOF.
Then

f~ X
(sincelis F-fixed we have/foy)« Fqfor all (»V>®(/t)). Let

A={0OV)€dKn);/:ey))"0}.

Then

/* X OQOijifieij

o jifieif))

and (by corollary 1.3.11) we conclude that

a, N su«Xij))*o.

Since X Is irreducible the result follows by the previous proposition. .

Corollary 2.2.15. Let ¢i(n)=(n-2)+(n-4)+...+1 (cf. corollary 22.4). Then gf*m\is the
maximal degree ofthe irreducible characters ofUn(qg). Moreover if n=2r+\ is odd, Un(q)

has exactly (g-1)rirreducible characters of degree gt*H whereas ifn-2r is even, Un{q)

has exactly q(g- )M irreducible characters o fdegree g*n\

Proof. Let £ be an arbitrary irreducible character of Un(q). By the previous corollary
there exist a basic subset D of 4(n) and a map <frd)-» F * such that

(X.ZdW )* 0.

Therefore
A .
Ns&(?»(i)-n
)s&(?»(i)-n_
Since D contains at most one root of each column and at most one root of each row we

conclude that

X (3-i-DSIKn)
0J*D
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and the corollary follows. .

The proofof theorem 2.2.1 will be complete with the following:

Proposition 2.2.16. Let D and D' be basic subsets of <&n) and let <p:D-> F g* and
:D'~* F g* be maps. Then ifand only ifD-D’and g=F.

Proof. We proceed by induction on n. If n=2 then all irreducible characters of U2(q) are
linear and the result is obvious. Hence let n>2 and assume that the result is proved for
n-1. We consider UnA(q) as a subgroup of Un(g). For each (ij)e &(n) such thatj<n we
denote by (jifa) the (if)-th elementary character of U ~fq) associated with CfeF qand for
each basic subset Dc[(iJ)e <tKn); 1<i<j<.n-1} and any map qr.D—F gq* we denote by
£o(<p) the character of U ~fq) which is the product of the elementary characters CifwJ))
for (ij)*D. Then
&(»=&(?>)*

is the lifting of fo(flj) from U ~fq) to Un(K).

Now let DJ)',tp and <g be as given in the proposition and suppose that

Let (ij)eD be smallestroot of D. Ifj<n then
Dc[(id); IEi<jEn-I).
We claim that D *[(iJ)\ 1£j</£ji- 1}. For suppose that (k,n)mD' for some kn{ }
and let x be an irreducible character of Un(qg) such that
(x £ d(<P))*0 and
Let OcUn(K)* be the F-stable i/B/AT)-orbit which corresponds to % Then
OtO[)(<p)nOD ).
LetfmO. Then
I« 3

where P-<p’(k,n), D $*ti\{ (k,n)} and <0 is the restriction of jto D 'q. Since 0~,(0) is
the i/*(Af)-orbit of /fc*** and OD-JicD) is (/,,(AO-invariant, there exists xmUHK) such that



for somefa O D{(<p<p. Since €D*(9 o)cUN.i(ff)* we have
Jo« «,,-1(*)*.
On the other hand 0 D(g=)cUn I (,K)m < od(") == obWn
x 'f* Un.i(K)*.
It follows that /3=0 and this contradiction implies that
D z{(ijy,l1Zi<jZn-I}
as required. Therefore we have
£d(P)=Cd(®)* and (D<(P)=CD<P)*
It follows that
(Cd(?)*1d"(1,))1™M G )HSBo (il d'(9,)) /<) -
By induction we conclude that
(D .vW .ipr
Now suppose thatj-n (hence (i,n)*D). By the above argument we conclude that
(k,n)*D*for some ke {1.. ji-1}. Moreover let
ftO (Pr=0D<)).

TTien j. ,» UM(K) (0 “«.n ~*y< fo

where a=<p(i,n), p=<p(k,n) and f0,g0» u,,.i(K)*. It follows that i=* and that
Therefore

£d(?»“ 5«(®)EdO(?*> and |0<9>£«(a)fo'qQ?0)
where DO-D\[ (iji)}, 2)'0«D'\{ (i,n) }, qmis the restriction of 9 to DOand 9'0is the

restriction of 9' to D'q We have
(& (N).40<M)Kio#9B).lii(a)ii»(a)fe'q™'0))
where ~ (a) is the character of UHq) defined by

fiTSfoO-CtaiaOC*'])
for all x* Un(g). We claim that
£0*Km(-a)-
n
We recall that (by definition)
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§«(a>="»(a)y*()
where Xjia) is the character of UJiq) (a>=(/i-l...i+1 OeS") defined by

AiMa)U)=vr0(ca:in)
for all x=(xrs)e UJq). Since

we must prove that
Xin(a)=Xin(-a).
In fact let x=(x,,)e UJig). Then
4(a)(r)=Ailllo)(x-)=ft(a(xDJ.
SincexiiHi=...=xini=0 we have (X')"-*;«- Therefore
Xin(<x)ix)=YQ((-a)xin)=Xin(-a)ix).
Our claim follows. Hence
(5D(<P)*0<¢"))=("500(<Pb)."(-a)<5«(a)<*Do(<P0)).

By lemma 2.2.9, ~¢,(a)&,,(-a) has the following components:

() 18>

(b) ~,03) forall ae {i+1,...Mi-1} and all pe Fg*\

(c) Su,(D forall be {i+1....n-1}and all * F,*;

(d) for all a,be {i+1....n-1}and all A * F,*.
Since Doc {(ij); 1<i<jEn-1} we must have

(BO#(9*0)*ian(™)bo-@9, 0))“ 0
forall ae {i+l,...,n-1} and all /cFf*. Also
(loQ”).~05)fo(tf&>'QP0))=0

forall aj* {i+1....n-1} and all A)* F,*.

Now let be {i+1,... ,n-1} and let y*Fqg*. Suppose that (/,b)«D'0 for all
1= {1,..., b-13}. Then the subset D'0u{(i,b)} of 4>(n) is basic (because D'0~>{(i,/i)} is

basic). Moreover

(otherwise (i,b)cDO0 and this is impossible because Dqu{(i,n)} is basic). By induction we
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conclude tWx»t
(500W .& fc(tf&ro(Po))=0-

On the other hand suppose that there existsj* {l,...,h-1} with ijJ))*D ¢y If i<j then

(by lemma 2.2.9)

b=
N

tib(y>tjb(v)=Sib(Y Z Z SibCfISjkfM

ib(y>tjb(v) I()+kmj+lqu* I jktM)

where v-<p'(jj?). Therefore

~~ .-i
KOlo@LAL Y2, 7. Sy IVERP)
where D"0=D'0{(/,6)} and 0 is the restriction of g0 to D"0. Since D"O«j{(i"*>)} is

basic we have
(SDO<P 0).U rtD -0«P*D))=0
(by induction because (i,b)tD). On the other hand let fce } and let/ie Fg*. By

proposition 2.2.13 there exists a set of basic subsets of <D(n) such that
i
SibM SjkM 50"(@50;—%@/))
where for each se {l,...,r} :Ds~*F g* is a map. For each se {l,...,t} the setD, is
obtained after a finite number of applications of lemma 2.2.8. At each stage we obtain a
decomposition of the character QU TrGiU)CD~ty'o) ®a sum of products of the form
5*0) EL Cri(art)
where A is a subset of <®(«) such that each root (rj)*A is in the same row of some root of

D'o and armF g+ Since D0 does not contain roots of the i-th row, we conclude that

forall st {1,...,/}. It follows that

forall m {1,...”}. Therefore
(TDA%).1ia0)1>*(M)10'0(9 "0))-0-
Now suppose thaty<i. Then (by lemma 2.2.8)

Cib(Y)4jb(v)-Cjb(v)+ S Z SjbM SikM
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where v=<p'(Jb). Therefore in this case
fr-i
"ib(y)"D—a(@‘o)-AD-gPo)+*X&1 J%( "

KK

Now we repeat either the argument of the previous paragraph or of this paragraph to
study the scalar products

(£ 00«q.&*(M)$d'A(?>0))
for each ke {i+l,...,6-1} and each j¢e Fg*. After a finite number of steps we eventually

obtain

where mb is a positive integer which depends ofb but notof y.
Finally we conclude that
(2.2.3) (8D ("),lo<i>"))=m(]0o(% ),|0 (fl»0))
where m is a positive integer (in fact m=1H<>1)(mLt+... +mH!)). Since
(SdW 'SdW )* 0,
we deduce that
($d0<R) '$d- OV >)*0
and so (by induction)
(DaRj=(D g .

The result follows. .

The proof of theorem 2.2.1 is now complete. The existence of the pair (D,g>) is

given by corollary 2.2.14 and its unicity by the previous proposition.

The last result of this section is a corollary of the proof of the previous proposition.

It is concerned with the scalar product (&)(?),;0(?)) where D is a basic subset of 9(n)

and gr.D-» Fg* is a map. This value can be expressed as a power of g where the

exponent depends only on the set D. Firstly we give some definitions.



For each root 0V> <Pwe define the set

(2.2.4)
where
S,e\id)-{(kJ);i<k<i) and S<\iJ)={(Ucy,i<Jc<j).
The elements of S(iJ) are called the singular roots. It is clear that the

elementary £2{<*) of UHq) associated with a» Fg* has degree
«i(aK IW WMwW>
where
(2.2.5) s(iJ)=\S(ij)\ and KiJ)=\S(iI)\=\S(NiJI)\.
Now let D be a basic subset of Q(n). Then we define the set
(2.2.6) S(D):HUPDS(IJ)
where

SGD)= U SFHf)) and &\D)= U &RiJ).
(*Vxo (ev>D

A root (a,b)€ <Kjn) is called a D-singuiar root if (aJ>)cS(D). We have

where

(2.2.7) i(D)=LS(D)l and /(D)=I5<HE>)I=ISAZ).
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Finally a root (a,b)t <P(n) is called a D-regular root if (a,b)eS(D). We denote by

R{D) the set of all D-regular roots, i.e.
(2.2.8) R(D)=<IKn)\\S(D).
Therefore <D(n) is the disjoint union

- <®(/t)-5(E»)uR(0).
Moreover

DcR(D).

Corollary 2.2.17. Let D be a basic subset of <b{n) and let gr.D-* F g*. Then
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Proof. We proceed by induction on n. The result is clear if n=2. So we assume that n>2
and that the result is proved forn-1. If  {(ij)\ ISi</Sn-I} then
& (*)-&(*)*

(' here the notation is as before). Therefore

and the result follows by induction. On the other hand, assume that (i,n)eD for some
<{1,...,«-1} and let D=ZA{(j»}. Then (by (2.2.3))

(& (?).& (P)W & Q#0).&Qfl>))
where

m=1+X X
brnBynF/

B={b; i<b<n, (i,b)e S)(itn)nS<c>(£>)}
and for each b*B and each yk Fg*

(SDO(<PO)'$u>M$DO(<P0))=nbM($DOD ) . ~ («)).

Since mb(D is independent of y* Fg* we have
m=1+X (<f-I)mb
bmB

where mb=mb(tf forall Fg*. Let

where b\<...<b,. We claim that
mb -<f'x

forall j« {1,...,/}. In fact we see from the previous proof that

SO

On the other hand if s« [2,...,/} we get (using the argument of the previous proof)

| EdON M £ dQW »£dU(%))+A3 X ({a(9d>( (V) (0 (9).
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Hence
£00(?%>))-(1+1j («7-1)«6,)(&>0(* J.£d0(*[>))
50
mb=14+@jta1)mb

By induction we have mb=<f'x for all re {I,...,r-1}. Therefore

mb=18& gq-D<T1'A'1

r»
as required.

It follows that
m= I+5 S1 (<H)<7, " 1=<4.
Now
f=1Sw (/,n)nS<)D)I
and (by induction)
(&, (*>>&.(*b))=i2/(0°*,<00).

Therefore

because I(D)=I(Dri)+I(itn) and (Do)+j(i»-f. The proofis complete.
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2.3. The irreducible characters of Un(q) for n£5

Let D be a basic subset of 0(/t) and let qrD -*F * be a map. Then an irreducible
character %0f Un(q) such that (£,&>(?>))*0 will be referred to as an irreducible character
oftype D. The type D of the irreducible character %may be represented by a “matrix” with
entries (ij) (L£ijEn) which are occupied by the symbols » oro as follows: if
OV)«<b(n) then the (ij)-th entry is occupied by ¢ if (iJ)eD then the (ij)-th entry is
occupied by m; if (iJ)*S(D) then the (i,/)-th entry is occupied by ; finally if (ij)eR(D)
then the 0V)-th entry is occupied by o. For example if n=6 then the irreducible characters

of U6(?) of maximal degree have types

e o o . . > ’ e o o . m \
. . u .
. or A .

In this section we describe the irreducible characters of Un(qg) for nSS.

Example 2.3.1. Let n*2. Then all irreducible characters of U2(q) are linear. In fact
U2(q) is isomorphic to the additive group Fa+ so the irreducible characters of U2(q) are
in one-to-one correspondence with the elements of Fq. For each eta Fq the irreducible
character associated with a is the (1*-elementary character <1Xa) - we recall that §120)

is the unit character of U2(q).

Example 23£. We determine the irreducible characters of the group U2(q).

By lemma 2.2.2 U3(q) has g2 linear characters which are in one-to-one
correspondence with pairs of elements of Fq. For a,paFq the linear character
which corresponds to (a./9) is {aioOfeji/J).

On the other hand for each non-zero element amFq the (I,3)-th elementary
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character <I13(a) is irreducible and has degree q. Therefore U2(q) has g-1 irreduducible

characters of degree g. These characters have type
feoeo m'

Example 23.3. Here we consider the irreducible characters of the group UA(Qq).
By lemma 2.2.2 UA(q) has q3 linear characters, namely the products
&i2(a ) 823($'» 3(tf where <x,p,yare arbitrary elements of Fq.

Now consider the irreducible characters of degree g. The following types

f oNf ©Oo0 O o N 0 0 A
0 T 0 and
0

V .Q.A 1oooyV1oo 'j -j

give (?-1)+<?-1)+{g-1)2H q-1)2=2<7(<7-1) irreducible characters of degree g. On the other

hand consider the type
f \

By lemma 2.2.6 the character Fg*) has q distinct irreducible
components of degree g. Therefore we obtain q(qg-1)2irreducible characters of degree g
of type D={(1,3),(2,4)}.

Finally UA(q) has q(qg-1) irreducible characters of maximal degree q2. These

characters have one of the types

Example 2.3.4. We now consider the irreducible characters of U2(q).
By lemma 2.2.2 U2(q) has g* linear characters, namely the characters where

il
D is a subset of 4={(1,2),(2,3),(3,4),(4,5)} and <frH-* F g* is a map.
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U5(q) has heplig-1) distinct irreducible characters of degree q corresponding to the

following types
f m 0o o\i Qo o ol =

0o
(o]

and

\ > \ y
where the symbol O in an entry (ij) means that that entry may be occupied either by
or by o.

On the other hand consider the irreducible characters of type

feeo m o0 oM

\ y
Let a,pe F* be arbitrary. By lemma 2.2.6 the character ~13(a)"24(/3) has q distinct

irreducible components of degree g. Thus for any ye Fqthe character
has q distinct irreducible components (because £457) is linear). Therefore we obtain
fy q - 1)2distinct irreducible characters of the given type. All these characters have degree
O-
Similarly U$(q) have (fiq-1)2 irreducible characters of degree q of type
/[« OO0 0o o

\%
So far we have obtained 3q2(g-1)+2q1(q- 1)2* { q -1)(29+1) irreducible characters
of degree g. We will see that these are all the irreducible characters of degree q.

Now we consider the irreducible characters of degree g2. The types

° . [ ] o O o 0 0 \
D . 0 L] (] .
. e« 0 and o o o -
L] L] L] Q L] L]

V ) B

give 22(<jr-) irreducible characters of degree g2. Using lemma 2.2.6 we conclude that
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the types
r r . . [ ] 0 N
0 e 0
and . n

\ Y Voeeoo.... y

determine Icp'ig-1j1irreducible characters of degree q2. On the other hand we obtain

another set consisting of (g-1)2 irreducible characters of degree g2 if we consider the type
f ee m 0 0\

Finally let D={(1,3),(2,4),(3,5)} - this type corresponds to the diagram
fee m o0 o0\

v y
We claim that for each map <p:D-*K* the character €o0(?) has a unique irreducible
component which occurs with multiplicity g. In fact let a,/9,ye Fg* and consider the
element
/=ae 13*+/3e24*+ie3S*« us(K)*.
The matrix M(f) which represents the bilinear form Bf with respect to the basis

(ei2.«2334>xdsM «O; ISi<y”5,y-i*2) has the form

*«-(38)

where
<0 a 00\
A -a0Opo
0O-pOy
A0 0 -y0j

Itis clear that this matrix is non-singular. Thus
rankM(J)~4
and (by (1.3.3))
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dimO(f)=4
where Oif) is the U”K)-orbit of/. It follows that

where Xo(f) is the irreducible character of U5(g) which corresponds to the orbit O(f). Now
we consider the irreducible character Xo of which corresponds to the t/4(A0-orbit
of the element
0e13*+/3e24*«W * -
By theorem 1.3.10 is a component of the restriction Xujqg) of X ** UX<l)}» We claim that
X~X0*t3s(ti-

Since the Us(")-orbit which corresponds to Xo* contains the element
ae 13*+/3"24*« u5(A0* we conclude that x is a component of Xo*Cas(iT (by corollary
1.3.11). On the other hand the character Xo* > an irreducible component of
1i3(a)"24(")- Thus it has degree g. Since 83())(1)=y we get

artw -C fo*13sW)a)
and the claim follows. Finally we have

0i.513(«)524(A5350))=CCo*.$13(«)524(j3)5350)"50))-

Since $35())=8«(-)) (see the proof of proposition 2.2.16) we may use lemma 2.2.9 to

obtain the decomposition
£35(tF'S35(-tf=1i/F )+ X  ssaq)+ x  sasoinn+ X X ¢ (V)as(m)-

Since is acomponent of ;i3(a)£24(£) we have
(*oMi3(«)E24(0)E45(H))” O
for all /r« F?*. On the other hand (by lemma 2.2.8)
~2«(M134(v)mCu(P)

for all v« Fg*. It follows that

CC.113(«)12403)43301)* 9(2;0*.113(«)124(/3))-<7
and so

113(«)&4(£)43)(tf-<M:

asrequired. Therefore Us(q) has (g-1)3irreducible characters of type



All these characters have degree ql.

Now we consider the irreducible characters of (/j(q) of degree q3. On one hand the

set of all irreducible characters of type

contains q(g-1)2 elements. All these characters have degree g3. On the other hand there
are q*(g-1) irreducible characters of type

f . m A
O o -«
. Q .

These characters have also degree 3.

Finally (by corollary 2.2.13) U5(q) has (?-1)2 irreducible characters of maximal
degree q4. They are of type

v y
Now it is Sasy to conclude (calculating the sum of the squares of the character
degrees) that we have obtained all the irreducible characters of U5(q).

93
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CHAPTER 3

BASIC SUMS OF ORBITS

In this chapter we generalize the results of chapter 2. In fact we will define for each

basic subset D of CH.n) and each map <uD->K* an irreducible subvariety VD(<p) of
Un(K)* which will turn out to be the sum 0 D(<p) of all the elementary i/,,(iQ-orbits
Od<p(iJ)) for (ij)*D. We will also prove that the family consisting of all these varieties
defines a partition of Un{K)*. This is the purpose of section 3.1.

In section 3.2 we determine the dimensioned« variety VD(<p). By definition the
dimension of an irreducible algebraic variety is the transcendence degree over K of its

field of rational functions, i.e. the Held of fractions of the ring of polynomial functions

defined on the given variety. Since VD( is defined by certain polynomial functions
which are parametrized by the D-regular roots the dimension of VD((p) is related to the
cardinality s(D) of the set S(D) consisting of all D-singular roots. In fact we will prove
that the dimension of VD((p) is exactly s(D). Then (using this knowledge of dimensions)
we will be able to decide about the transitivity of the t/,,(A0-action on VD(tp). This will be
done in section 3.3 where we will give a necessary and sufficient condition for VD(<p) to
be a single f/,,(K>orbit. This condition is purely combinatorial and depends on the
existence of some special chains of roots in D. If K has characteristic pSn, we will
translate these results to decide about the irreducibility of the character of the finite

group Un(q) (cf. chapter 2).
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3.1. Sums of elementary orbits

Throughout this section K will denote an algebraically closed field either of

characteristic zero or of prime characteristic p in. We will consider the sum
(3.1.1) 0D(= X OfAtpVI))

where D is a basic subset of <t>(n) and -» Af*=K\{0} is a map (cf. (2.2.2)). Since
0 D(@y is an algebraic subvariety of un(K)*, there should exist polynomial functions
such that
0 D«p)=[fm Un(K)*; Pff)=0,1Stem }.
Our purpose is to identify these functions. We will see that m is the cardinality of the set

R(D) consisting of all ¢ 7-rcgular roots (*). In fact we will define a polynomial function
$M n(K)*-+K

for each ¢ 7-regular root (ij)*R(D) Q).

Let (ij)«<P(n) be any root. We say that a
root (rj)e <P(n) is dominated by (ij) if r<i and
j<s. Therefore the roots which are dominated
by (ij) lie in the dotted region of the adjacent

picture.

Now let ;7 be a basic subset of <Hn) and let (ij)* <t=(n). Then we denote by D (ij) the
subset of dtyi) consisting of all roots in D which are dominated by (1J), Le.
(3.1.2) D(ij)m{(rj)* o :lZr<i,j<sizn).
Itis clear that D (ij) is a basic subset of $(n). Let

“ We recall that a root (ij). <h(") is called D-iegular if (iJk).D (jn&fn) and (kj).D (Isfcsi-I).

2 Insection 3.2, we will prove that these functions are algebraically independent. Then it will follow that
has dimension dimu, (K)*-r(P)ms(D) where KDHA(Z>)I and s(D) is the cardinality of the set ofall

¢>-singular roots. This is the natural conjecture.
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DUjy-idIJl)...0nin}
and suppose that j\<...<jr Let aeSr be the permutation such that ig(i)<io(2) < - <ia(ty
Then we define the function A?: Un(K)* -»K by

i Mi*,)) Mi*y,) " Mi*,/)\
(3.1.3)

v ME M) .. M*)
for aUfe Un(K)*.

Our first result describes the (ij)-th elementary i/BAT)-orbit associated Oa) with a

non-zero element oteK.

Lemma 3.1.1. Let (ij)e <t>(n) and let as K*. Then O"ioc) consistsof all elements

fe un(k)* which satisfy the equations
a if(a,b)=(ij)
0 if (a,b)*(ij)
for all @J?)eR(iJ). In particularfe O *a) ifand only if

a if(a,b)=(ij)
(3.1.5) M j*)=1* Vtea/iMh) if (ajb) dominates ifJ)
0 otherwise

for all (,aJb)eR(D) (>).

Proof. Let V be the subset of Un(K)* consisting of all matrices which satisfy (3.1.5).
We claim that VeO™a). LetfeV and consider the element ae»*« 0 »(a). Let

x““ @rs)eUn(K) be the element defined by

-«"'(«ir) i<r<jand s-j
a'lfle,j) if r»i and i<s<j
(3.1.6)
<0 otherwise

1We note that if (aj>) dominates (ij) then MSa<bSj-I, so the roots (aj) and (ijb) are O-singular.
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Then
(j:(ceey*))(ea=(0e*)Cjea* ‘lI)=a(Jceafrr'l),y=0ak("'1)6>
for all (aj>)e <®(n). This value is non-zero only if ifa<bfj. If we have
Oc(aeij*))(eab)=oc=f{ej).
If i<Jtxj then
(x(aeij*))(eib)=a(x'Ng=-axf=aa-Ilf(eitd ={£&).
On the other hand
(x(aei*))(eg)=oocia=aolL'f(e") = /fe«P
whenever i<a<j. Finally suppose that (a,b)e <On) dominates (ij). Then
U (aei*))(edy)-oocIx\~ci*i:f(e«i) oc'fle™
It follows that
f=x-{aej f)tOy<a).
Sincefe Vis arbitrary we conclude
Vc0,/a).
Now the map defined by
W)=(rt*«+i).. e mAtj-ij))
for allfe V, is an isomorphism of algebraic varieties. Therefore V is an irreducible variety
of dimension 2(/-i-1). Since dim O *a”Xj-i-1), we conclude that
V-QOijia).

The lemma follows. ¢

Proposition 3.1.2. Let D be a basic subset of <&n) and let ¢>D-*K* be a map. Let
/+0 D(<p and let (iJ)eR(D). Then

0 if(ij)*D
(3.1.7) P r

(-1 Ysgn(.<f)<p(iJ) F.I <P(U,) MJ)'D

where O(iJ)—{(ijJi)..... (IrdJr))j\< -<Jnand &S, is such that ia)<...<ia(ry

Proof. LetD'-EbD(iJ) and let <f be the restriction of ¢»toD'. Then
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0 D(<p):OD<<p')+i€_i O i);’ga,)
where (IEr£r). Therefore the elementfe O D(<p) can be written in the form
[=1+£]'>

where/e 0 Digi) and/*5*Qt (a s) for all se {l,...,r}. By the previous lemma we have
r r

fleab):f(eab)+9'1|1_1f,\e ab)=f(eab)+i})| a; I "\eaj

N
for all (a,A)e <P(n). Now suppose that (a,b)e <D(n) is dominated by (ij). Then

/Vo*)=° and fieab)=uavb

where ua is the row vector of length r
e ArY r\ eaj))

and vbis the column vector of length r

On the other hand we have

0 if (i2)*D
<frij)=a  if UJ)*D

Therefore
uv if (fJUD
a+uv if (iIJ)mD

where u is the row vector of length r
~ - u-Caff 1™ ) .. a,-lri(el)

and v is the column vector of length r

> («,/



9

Now suppose that (iJ)*D. Let A be the square matrix of size r

i Ui\

\Ui'd

and let fl be the square matrix of size r

Then

d2(f)=det TP 0" TAV ABI ooh hiet(aBY)
0 1 [uv uB)

where /»(0']) is the permutation matrix (of order r) associated with <fltSr (hence the

(a,b)-th entry of /»(0']) is 8aa-\b) (ISa,bSr)), A" is the matrix of type (r+I)xr

and B" is the matrix of type rx(r+1)
B'-(vB).
Since A'and B" have rank less or equal than r, we deduce that
rankiA'BAimin {rankA'.rankB’}Sr.
It follows that
der(A'fl>0

and so

o

On the other hand suppose that (ij)*D. In this case

where /’(0'1), A'and B are as above. Since

\uv uB)
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(by the argument above) we conclude that
lii(f)=sgn(o)det* »  'j*(-I)rsgn(o)adet(AB)=(-l)rsgn(o)adetAdetB.

Consider the matrix B. For r,r* { the (r,i)-th entry of B is

Since/JeOij(as), we have
/ s\eitb)=0
for all bet/,+1,...”} (by the previous lemma). Therefore
/"«yP-0
whenever s ¢ (we recall that It follows that B is lower-triangular. Moreover the

diagonal entries of B are
bss=fs\eij>as
forall se {l,...,r}. Hence

r
detB= 1| «i-

Finally we consider the matrix A. Fors,te {l,...,r} the (r,r)-th entry ofA is

Therefore the (r*)-th entry of P(<XI)AP(<f) is

Now (by the previous lemma)

forall a* {1,.,.,/*j-1}and

for all te {1....,/e}_Since io(i)<*.-<ia(r)>we conclude that the j-th row of P(<fl)AP(&) is

W OB «W«.,,>10 - »i
Therefore
detA-det(P«r')AP(ct))™\

and the result follows. +
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If D is a basic subset of <D(n) and <p:D-*K* is a map we denote by VD(<p) the
subvariety of Un(K)* consisting of all /« Un(K)* which satisfy the equations (3.1.7) for
all (iJ)eR(D). By the previous proposition we have

OodDcW).

Our next result asserts that this inclusion is in fact an equality.

Proposition 3.1.3. Let D be a basic subset of <D(n), let @:D-*K* be a map and let
feVD(<p). ThenfeO D(<), hence VD(<p)=0D(<).

Proof. We proceed by induction on iDI. If IDI=I the result folows by lemma 3.1.1.
Thus we suppose that D contains at least two elements and that the result is proved for all
basic subsets DO of <tKn) such that 12)0I<IDI.
LetfeV D(<) be arbitrary and let (iJ)eD be such that I<j for all (i)} We
put oc=<(ij) and we define/e Un(K)* by
ifa-i and i<b<j
ifb-j and i<a<j
a‘AelJKeti ifi<a<b<j
LO otherwise
for all (af>)s<D(n). Then
f*Oifa)
and
f-f+fo
for some/0« Un(K)*. We claim that
(3.1.8) . faVoJitpo)

where DO«D-{(i\)} and ~ is the restriction of pto Dg For let (aJ>)mR(Dd). If (ajb) does

not dominate (ij) then (by definition)
if a+i or b+j
ifamior b-j

* we note that
>i
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NoW bi«k«)-0 and " £(/b)=0

because / 0(«;t)=0 for all ¢a {/+1,...,«}. Since/a VO ($) we conclude that the equations
(3.1.7) (for the pair (Do>9h)) hold in this case.

Now suppose that (,a,b) dominates (ij) (i.e. i<a<Ixf). Let
DED)=[AD....(W,)}II<-<In
and let oeSr be the permutation such that«o (1) <-Then (iJMWr) (by choice of

0V)) and

(& (f=sgn{x<fydet * * j

where Teb5r is the permutation t*=(12 ... r) (we note that /X<r1)/XT'D)=/%(TO)'D), u is the

row vector (of length r)
«*“(I(«»)Ify,) n fleijrl)=

v is the column vector (of length r)

V*ew >y
and A is the rxr matrix
- aw N
ffiab) Aeal) ... A
Since
u a|

W r
V}{\I a';l\/ P>y AcClvu 0 J

we conclude that

(i ‘h 1Ysgn(T&)adet(A~cClvu).

Now let A-cfxwu~(aJ)Hr* Then
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ifr=1 and ISj~r-1

ifs-r and 2£/Er
a=<

if lirSr-1 and 2£/£r

mA"ab)-«' «F)=fo(«<2t>) if (j,r)=(r.1)
Since
DO(a,b)={(ijJi)......(ir-Jr-0)

we conclude that
det(A-a'lvu)=sgn(a”AD(fQ

where 0<)eSM is such that ia**<...<ig”r.ly Hence
N (N=(-Drasgn(za) sgn(a0)4~(/b).
Now suppose that (a,6)«£0- Then (aJ>)*D and
¢&()=0
(by equation ( 3.1.7) So
~(lo0)=0-

On the other hand suppose that (aJ>)eDO0. Then (a,b)eD and (by' (3.1.7))

r

d™(f)=(-Drsgn (o)"a"}»&l«,
where as=<piisJs) (I£iSr-1) and ar-OL Since r*n(T)=(-1)r‘land sgn(T&)=sgn(z)sgn(a)
we conclude that
AfoM -ir'sgn& oW aM_r{a,.

J_

This completes the proof of (3.1.8).

Finally (by induction) we have

/o»°DQ(?b)-
Hence
f-f+ fa Oj{a)+0Do<0) -0 D<)
and the proof of the proposition is complete. .

Our next result generalizes the corollary 2.2.14. It asserts that LHK)* is the union
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of the subvarieties VD(<) for all basic subsets D of <0(n) and all maps qrD -*K*.

Proposition 3.1.H. Let/e un(K)*. Then there exists a basic subset D of <P(n) and a

map <frD-+K* such thatfsVD(¢>).

Proof. In order to construct the set D and the map <pwe proceed by recursion on the set
of all roots <b(n) endowed with the total order < defined in the proof of proposition
2.2.13.
I1ff=0 then we let D be the empty set On the other hand supposef*Q. Then the set
* L > 1(* 2)>})

*2-{ (*~(D i); OV)X«Wi) and

Al) (ft-fiejj) if (iiJi) does not dominate (i\J\)
Khli*
lif) if ViJi) dominates

Itis clear that D2 is a basic subset of <tKn) and that

forall (ij)tR(D") such that (ij)£t,iiJj). Hence the proofis complete if/e On the
other hand if /» VDj(92) we use the functions ADhUn(K)m-*K , (iJ)mR(D 2),
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(/,/m)>(i2"2). to define a new basic subset D3 of <P(n) which includes D2 and a new map
(foiD3->K* whose restriction to D 2 is ¢2-
In general let r>2 and suppose that we have constructed a basic subset
0% o*0r-1Jr-1)) C A (s) i Jr-**" &1+
and a map gr.\.Dr.x-» K* such that f satisfies the equation (3.1.7) (for the pair
(Dr-i'Vr-d) whenever (ij)eR(Dr.j) is such that (iJ)£(ir-iJr-i)- Then eitherfe V D(,<pr.{)

(and the proofis complete) or the set

12,={()<*(E>_); (13X W m ) and A°rI(f)*0}

is non-empty. We assume that this situation happens and we let (irJr) be the first element

of Rr Thenjr<jr\ soD=Drxu{(irjn} isabasic set of roots. We define 4rj) r-*K* by

2r-1(Wj) I"sSr-1
t D
(-I)'sgn(a)lanli<Ri J,rXAinN(f) ifs=r

where £>,(/,/,)={(\J 9)......}sJ*x-ee</, and cfe5, is such that» * ¢ ...<i,( e
Now we consider the variety VD (qx). Since O,.i0r»/r)“ {(i"j.),...,(is,Jt) } we

have
Alij (f):A>[/)‘-‘(f)

for all (iJ)eR(Dr) such that (/J)<0Wr)- If7« Vp/fV) * e proof is complete. On the other

hand iff*V D (gx) we continue the construction until we eventually get a basic»subset

£>=D, of <P(n) and a map <p=x.D—»IT* such that/ e VO (). .

Now we generalize proposition 2.2.16.

Proposition 3.1.5.Ler D and D' be basic subsets of <t>(n) and let <p:D-* AT* and
<p'D*-*K* be maps. Then VD(<p)AVDi (*<d ifand only if D=D" and <p=g.

Proof. Suppose that VD(p)nV'o<pV 0 and let/a VD(<p)oWD{T). Let (1J) be the smallest
root in D (the order in $(n) is the same as in the previous proof). Then
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and for 111 (a.*)« 200 such *at (a,b)<(ij). It

follows that

CE(N=4L(/>

for all (a,b)t <P(n) such that (a,b)£(ij). Hence (ij) is the smallest element in D' and
<fKij)=<pVJ)-

Now we proceed by induction on \D\. Suppose that IDI=I and that \D\z2. Let
(ia,b)eD' be the smallest root in D' such that (aj>)>(ij) (this root exists because (ij) is the
smallestrootin D "). Since D'zR(D") (a,b) is a D'-regular root. If (ajb) does not dominate
(ij) then

d”(/)=y(ea6)=4"iX/)=0
so <p'(ab)=0, a contradiction. Therefore (a,b) dominates (ij). In this case we have

V)
Aiab) Ataj)

& (f)=det

By proposition 3.1.2 we conclude that (a,b)*D’, another contradiction. It follows that
ID'1=1 and so (D,<p)=(D',<p").

Now suppose that IDI>l and let DO=D-{(ij)}. Since VD((p)=0D(<p), there exist
feOijia) and/o«DoQ(9b) such that

f-f+fio
(here &*<p(ij) and <Pvis the restriction of <ptoDg). On the other hand since
[« VD<9>)=00<(p)” 0 ¥(a)+0DA9)0)
(where D'g~D'-{(ij)} and 50 is the restriction of $*to D'0) there exists xmU,,(K) such
tint
xf-aef+x-fo.

Moreover
xfa O O(<fo)

because 0 Do(fla) is i/BA>invariant. Since (a,n)«DO0 forall «n {It....n-1} we deduce that

*[0« «,, 1(*)*e
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On the other hand since 0 D{qf) is (/,,(AO-invariant we have
xf=aeij*+xf@O D-(<")=0ifa)+ O DA<0).
Since xf0e un_i(K)* it follows that
x-foe O Do(<p0).

Hence
/0e ODAPQ
because ODY0) is (/,,(AO-invariant. This proves that

0)*0 -
By proposition 3.1.3 we deduce that
VDO<Po)f'VDo(<p0y*e>
and so (by induction) (DO0)=(D'0,50). Therefore (D,g>)=(D',<p as required. .

We have just finished the proof of the following:

Theorem 3.1.6. Let D be a basic subset of d>(n) and let <p:D->K* be a map. Then
0 D(<p)=VD(<p) where VD() is the algebraic variety consisting ofallfe Un(K)* satisfying
the equations (3.1.7)for all (iJ)eR(D). Moreover we have a decomposition of Un(K)*
into disjoint subvarieties

Un(K)*:gin 0 D(?))Bla‘J> V()

where the unions are over all basic subsets D of <) and all maps gr.D-»AT*.

Now suppose that AThas prime characteristic pin and let F» Fg:Un(K)* -* Un(K)*

(iq is a power of p) be the usual Frobenius map . Let D be a basic subset of <t>() and let

<pT)-*K* be a map such that <p(D)cFgm Then the variety VD(<) is F-stable. In fact (by
(3.1.7)

for all/e VD(<p) and all (ij)uR(D) (we note that Fq because <p(D)cFg+). Therefore

we may consider the (finite) set
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(3.1.9) VuLqff=0D(.<pf
consisting of all F-fixed elements ofV D(<p)=0D(<p). By the previous theorem we get
(3.1.10) U,,(q)*=U 0D(< pfrJ VD(<pf

D.9 D.f

where the unions are over all basic subsets D of <&fn) and all maps <fnD-*F g*. On the
other hand since 0 D(<)is (/,,(AO-invariant we have

0D(< pf"OJ <f
where the union is over all F-stable (/,,(AO-orbits O such that O*Opltp). Applying

corollary 1.3.11 we obtain theorem 2.2.1 as a corollary of the previous theorem.

Corollary 3.1.7. Letx be an irreducible character of UHq). Then there exist a unique

basic set ofroots D and a unique map gxD -» F g* such that Ct,§0("))*0.
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3.2. The dimension of VD(<)

In this section we determine the dimension of the irreducible subvarieties VD(<p) of
Un(K)* (1) Our results are independent of the characteristic of the field Arso we will
assume that ATis an algebraically closed field of arbitrary characteristic. We also fix an
arbitrary basic subset D of <P(n) and an arbitrary map gr.D -» AT* We start the section
with some generalities about polynomial functions defined on an arbitrary

finite-dimensional vector space over K.

Let V be a vector space over K of dimension m and let (ex...,em) be a basis of V.
Let P:V-*K be a polynomial function on V. Then there exists a polynomial
in m indeterminates Tx.....Tmover K such that
P{V)-P(vX...vj (2
for all v=vlel+...+vmemeV (vit... ,vm*K). For each < {l,...,m} we denote by

AX71,...,Tm the i-thpartial derivative of i.e.
W ... TJ-jjrP<TX...TJ, AT[T,.....TJ

and we consider the polynomial function d-JP:V-*K associated with the polynomial
df{Tx....TJ. Then for each vs V we define the differential of the polynomial function
P:V-*K at the vector v as follows. Let V*=Homg(yjC) be the dual space of V and for
each<e{ 1 letefeV* bedefined by
«<*(«f)-$!/
for all jm [1,...,m}. Then (ei*,...,em*) is a basis of V* and we define the map
dP:V-*V* by
(dP)(.v)-(dxP)(v)ex* + ..M dJ Jiv)em*

for all v«V. The vector (dP)(v)mV* is called the differentialafP atvV .

1We note that VD(<p)*0D(,v) (by theorem 3.1.7) and that 00(f>) is an irreducible variety because it is the

image of an irreducible variety under a morphism of algebraic varieties (cf. corollary 13.11)
2 We abuse the notation and use the symbol P to denote both the polynomial function and the
polynomial associated with it
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Now we prove the following general result:

Proposition 3.2.1. Let the notation be as above and let be rim polynomial

functions defined on V. Suppose that there exists a non-empty open set t/cV such thatfor

each vet/ the vectors (dPI1)(v),...,(dPr)(v) are linearly independent. Then thefunctions

P1L,.,Prare algebraically independent.

Proof. Let Y1,...,Yrbe r indeterminates over K and suppose that there exists a non-zero
polynomial FeK[Y”...,Y”\ such that
F(Pu...J>n=0.
Without loss of generality we may assume that F has minimal degree among all the
polynomials with this property. Let P:V-*Kr be the function defined by
IXV)=(PLv)....A(v))

for all veV. Then the composite function F»P:V-*K is identically zero and so

forallje {1.,/n}and all veV. By the chain rule

for all ve V. Therefore

for all veV.

Now suppose that vet/. Then (by hypothesis) the vectors (dP"fv),...,(dPr)(v) are
linearly independent Thus
N> (v»-0
forallis {1,...,/*}. So U is contained in the closed subset

w - {veV;jE(P(v))«o. liter }

of V. Since U is dense we conclude that W-V, hence
|E(P(v))-0



for all veV and all it { It follows that for each /« {l,...,r} the polynomial

éj)'/: eK[YIt...,Yr] is such that

Since these polynomials have degree smaller than F we conclude that
£-iY1,..,Yr=0

forall it {1,.../+}.
If AThas characteristic zero this implies that
F(YX....Yr)=aeK
is a constant. Since F(PI,...J*)*0 we conclude that ct=0. This is in contradiction with
the choice of F. Hence the functions Py,...J*r are algebraically independent
Finally suppose that K has prime characteristic p. Then the polynomial F has the

form

F=S ... 1 al iYlpi'...Ypi" (a, .,«*)
1,-0 imO 1 1

for some non-negative integers nlt...,nr. Now for each sequence (ij,...ir) (0

I7Sr) there exists an elementb * itK such that

(we recall that K is algebraically closed). It follows that
F=GP
for some polynomial GeAT[yl...,I'r]. Since G has degree smaller than F we conclude

that G=0, hence F=0. As before this contradiction implies that the functions P1,...,/> are

algebraically independent and the proof is complete. .

Now we consider the functions A*: un(K)* ->K for (iJ)tR(D). These functions are

polynomial. In fact for each (ij)tR(D) A? is associated with the polynomial
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I e " S

(3.2.1) (T sbAab)e<t>{r)=det
T‘a/\l T I'*otrVr

KTo MW - )
in indeterminates Tab, (a,b)e<P(n), over K (here D (iJ)~ {(ii«/j).....(Wr)}»

<jr)and OeSn is such that j*<...<1*). We note that for each (a,b)e &(n) the
indeterminate T& determines the polynomial function TAIU”K)* -*K defined by
Tab(f)=f{eah)
forall/c

Let (aj>)e <P(n) and consider the (a”t)-th partial derivative
N
dat&if*-gfreK[Tabl (a,b)e <P(n)].

For simplicity we introduce the following notation.

Let A=(aav)iBx»ambe any square matrix (with coeffic dents in any ring) and let
iu...,ird,,...Jr6 El,.,.,/n]l. Then we denote by A“.I'"ii (A) die determinant
JI—=Jr
A aUr »
3.2.2) A X rA)=det
\

In particular let
fO Tn Tind 215 \

00 TIn-\ T2n
(3.2.3)

00 0 Ngel«
Vo o 0 0 J
Then for all it,...,/n/|,...~rc {l,...,/t} the determinant 4i'|[~>lr(A) is a polynomial in the
indeterminates T+, (ajb)* <D(n), and we will write

(3|-2-4) AJIZ jy* {alby ¢W)
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This polynomial determines apolynomial function A I1 ‘r:Un(.K)* -*K which isdefined by
JI—=Jr

(My,)) .. \
(3.2.5) AJHr(f):det
for all/e un(K)* (we whenever \<Jb<a<j).
Now let (ajb)e <P(ri). Then
(-i)rd (IJM; ‘ow(o if (a,b)=(ij)
JI—=Jr
CDj+i AW ~»«rt>W “W w . T,
j\—ir if {aJfiMiawj) (1"rSr)
(3.2.6) (-Dre#1dox).maw . .() if (a,b)=(ijt) (I"r~r)
if (a,6)=(i0(,J,) (I1™i.tir)
LO otherwise

for allfe Un(K)*.

Next we consider the differential of the polynomial function A?: Un(K)* -* K. Since

we have a canonical identification

the differential ofd? at an element/« un(K)* is the vector (dA")(f)e Un(K) defined by

r r r r
3.2.7) (4)(N=ci)*i+ 1, ciglf)eigffr S ci(fej +X W
Jmi Im I .

where for any (aj>)*$(n) Cab*d"Jif).

Finally let AAUn(K)* -»AT be the polynomial function defined by
n o i«(A

for all/« Un(K)*- Then
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U={/« Un(K)*; A(f)*0}
is a non-empty dense open subset of Un(K)m Moreover (by (3.1.7))
(3.2.8) VD«p)zU.
We claim that for allfe |1 the vectors (dA")(f), (iJ)sR(D), are linearly independent

For letfmU be arbitrary and consider the matrix

B={(dabA")(f))(aJ,).(iJ),mD)

(we consider the order in dfyi) introduced in the proof of proposition 2.2.13). By (3.2.7)
this matrix is upper-triangular. On the other hand let (iJ)eR (D), let
...... (Mr)} 311 let be such that »xd<...<»d()). Then
r

(N=(-1)"1ig« (0)T1 <P(isJs)* 0

(see the proof of proposition 3.1.2). It follows that the diagonal entries of B are

non-zero. Thus
detB*0

and this implies that the vectors (dA%)(f), (iJ)eR(D), are linearly independent. By

proposition 3.2.1 we conclude that:

Proposition 3.2.2. The polynomial functions A?j.un(K)* -*K, (ij)*R(D), are

algebraically independent over K.

In the next result we determine the dimension of the varieties VD(«p).

Theorem 3.23. Let D be a basic subset of <D(n) and let gr.D-*K* be any map. Then
dimVD(g»~s(D)0).
Proof. We define the map U: UHK)* -» K «D) (2) by2

1We recall that j(DH5(D)I.
2We recall that KD)-I*(£>)1.
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W)=(A°(f)AiJ)eR(D)) <»)
for all/e Un(K)*. t? is a morphism of algebraic varieties. We claim that it is dominant,

i.e. the image
Y=-d(Un(K)*)

is dense in K*°\ In fact if y is not dense there exists a non-zero polynomial function
P such that

yc {o€r<o>;P(0)=0}.
Then

P (W)=P (tf(f)\ Vj)eR(D))=0

for all/e Un(K)*. Therefore

P(A?;(ij)eR(D))=0
where P(Tp (ij)eR(D)) is a polynomial in the indeterminates Ty, (ij)eR(D). Since the
functions £, (i2)eR(D), are algebraically independent (by the previous proposition), we
conclude that

P(Ty;(iJ),R(D))~0.
Hence P(a)=0 for all ae K*D\ This contradiction implies that the morphism 0 is
dominant. By [Hul;Theorem 4.1] we conclude that for any aeY and any irreducible
component X of ti'Ha)

dimXZzdimlIH.K)*-r(D)=s(D).
Since VD(@ is irreducible and
VD(g»=i3r\a)
for a well-determihed amX (by (3.1.7)) we obtain
(3.2.9) dimVD(g>)Zs{D).
To prove that the equality holds we consider the ring K[VD()] of all polynomial

functions defined on VD(@). For each (<J)«0(r) let ty:Vo(g>)-*K be the polynomial

function defined by

1We order the toots as in the proof of proposition 2.2.13.
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for all/« VD(@. Then
KIVD«p)]-K[t$(iJ)*<Hn)]
is the K-algebra generated by the functions ty, (ij>€&(n). Since VD(@) is an irreducible
variety the ring AT[ri; (ij)e <P(n)] is an integral domain (see [Hul; proposition 1.3C]).
Hence we may form its field of fractions K(jy, (ij> <P(/i)). We claim that
tr.degKK(jty\ (ij)* €n))£s(D)
(here tr.degKK{ty, (ij)e <&«)) is the transcendence degree of (ij)e <®(n)) over K).

For we fix an arbitrary element/c VD(g>). Then
r

where D(-[AB),...,@dN],jK...<jn and OeSr is such that jo(i)<— <io(r)- Let
YipYab, (aJ>)eS(.D), be s(D)+I indeterminates over K and consider the polynomial
r

where

the polynomial function (aJb)*S(D)):VD{<p)-+K determined by the polynomial
r \£ is identically zero. In fact let g* VD(<). Then

N« 8(%) — g(ty) ]

(f)*0 the row vectors (L£afr) are linearly
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independent. Moreover the vector space (over Al) generated by these vectors is also

generated by the row vectors (g(«,y) g(eijt) — (1SaSr) (because g*VD(<p),
hence AI*I". ,(g)*0). Now suppose that (iJ)eD. Then
JI—=Jr

4n)="°
so the row vector (g(ef) i(Cy,) ... £(«;;,)) is a linear combination of the vectors

(gteij) g(eij,) =g (*ij)) (I*aSr), hence it is a linear combination of the vectors

j)f(eijX -fcijPi) (1SaSr). It follows that
*% ’*> YY) AN
det ! " : =0.
N«>) Haes) — *(<) y

Since A?(f)=0 we conclude that
*£(*)=<).
On the other hand suppose that (iJ)eD. Then (as in the proof of proposition 3.1.2)

the row vector (gie”-fpiij) g(tijx ... g(Cij)) is a linear combination of the vectors

(g(fiij) giCjj,)... gteij}) (1£a£r) and the argument above shows that

[* eW >*eW .> seeM-* %) \

der . . o
*\W > fCiaan) coe —(-I/? ko)a‘]p%r (f)

\ fted) i) ) y

Since

(see the proof ofproposition 3.1.2) we deduce that

Our claim follows.

Finally since ?y«AT[ThtKa*,(a">)«S(D)] is a non-zero polynomial we conclude
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that the polynomial function ty is algebraically dependent of the functions t*,
(a,b)eS(D). Since (iJ)eR{D) is arbitrary this means that
tr.degKK(tij, (i,/))e <f(»))£r(D)
as required. It follows that
dimVD{<p)-tr.degKK(ty, (ij) e 4>(n))Es(D)
By (3.2.9) we deduce that
dimVD(<p)=s(D)

and the proofis complete. .

Now we assume that K is the algebraic closure of Fqwhere q is a power of a prime
number pSn. We let F=Fg:Un(K)* -* Un(K)* be the usual Frobenius map. Moreover we
assume that <pi.D)cFq. Then (by (3.1.7Jthe variety VD(<) is F-stable and the (finite) set
VDx p f is the disjoint union

VD(<pf’A 6] OF
where O runs over all F-stable Un(K)-orbits which are contained in VD(). Since
WD(pR=qdimvD* = ¢ D)
(by the previous theorem) and
%q(\)="f\(p A=V qdime>
(by proposition 1.2.5) for all F-stable i/n(AT)-orbit OzUn(K)* (*) we conclude the

following:

Corollary 3.2.4. Let D be a basic subset of <b(n) and let qr.D-» F g* be a map. Then
1 *a)2v 0)
XoldW

where /D(g») is the set consisting ofall irreducible components ofthe character £0(¢>) of

Vnlq).

Another corollary is the following number-theoretical equality:1

1Werecall that  is the irreducible character of UJ,q) which corresponds to O.
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Corollary 3.2.5. Let t be an indeterminate over the ring 2 and let n be a positive

integer. Then the identity
X (f-1)1fx0 w*"*11/2
Dc*0>)
D basic

holds in the polynomial ring 2[t].

Proof. Letpin be any prime number and consider the finite group Un(p). Then

PR NE)- X )2

where Irr\Un{p)) is the set of all the irreducible characters of Un(p). By theorem 2.2.1

Irr(Un(p)) is the disjoint union

Iniun(p))="J1D«
() Do <p)
where the union is over all basic subsets D of <P(«) and all maps qrD —F p*. Therefore
p*-)/2_X X ~T(1)2

where the sum is over all basic subsets D of <P(n) and all maps <p:D-» Fp*. By the

previous corollary we obtain

D.9

where the sum is as above. Finally, for each basic subset D of 0(n), there are exactly

(p-D1Ldistinct maps qrD-*Fp*. Hence

*onl2- X -Dv - (),
p Dc#OO(p ) @i,)
D basic

and the result follows because the set of all prime numbers is infinite. .

We will give adifferent proof of this result which is independent of the varieties
VD(cp). In fact we will establish a more general identity. Firstly we introduce some
notation and we recall some well-known facts. Let omS,, and consider the set

to(/)>«(/)}



where odleSn is the permutation defined in (1.1.16). It is well-known that

where J(@>) is the length of c0o0). Moreover is the unique permutation of maximal

length and we have

Finally letD be a basic subset of <Kji) and suppose that Dc&” i ri). Then we define

Proposition 3.2.6. Lett be an indeterminate over Z and let (OeSn. Then the identity
| (t-)'DJIs'VP W »
D basic
holds in the polynomial ring Z[r]. In particular if co=a" we obtain the identity o fcorollary

3.2.5.

Proof. We proceed by induction on the length J(co) of 0). If J(co)=0 then <o=l. In this

case
0 n=®

and (obviously) the empty set is the unique basic subset of 4> J n). The required identity

is trivial. If J(co)=1then cois a simple reflection, i.e. co=(it'+l) forsomeie{ 1 , . In

this case

<7>)=((u+i)}
and there exist two basic subsets of namely the empty set and the set

A Ox(.n). Since

the required identity reads

I-KMW.
Now suppose that -f(co)>l and assume that the result is proved for all <G*Sn suchl

1 By definition J(a) is the minimal length of an expression of a as product of simple reflections, i.e.
transpositions of the form (ff+1) (1SiS/i).



that A.co)<Xa>). Let T=(ii+1)eSn (I£i£/i-1) be a simple reflection such that

Then
((W+D)}vi(& %aAn))

where eo'=cox. Let D be a basic subset of &=0a>n)- Then (i,t'+1)«D if and only if
X(D)cQ”rt(n). On the other hand if (iJ+1)aD then D={(i\i+1)}uDOwhere DOis a basic

subset of («) such that and (i,i+1)«S(D0). Moreover for any basic
subset of roots D' of such that (i,i+1)*S(x(Dn) the subset {(i,i+I)}vjt(f?") of
4%ai(n) is basic. It follows that
| t-IPP'VWL X r-1) IDirsv ~ t<D)) 1+ | M) N1
( O:®A«)( ) ) De<blr) (M)
o basic o basic o basic
(i,i+1)«S(T(0))
Now let D be a basic subset of Suppose that (m+1)«S(i (Z>)). Then
ft(S(D)) if (i,t+1)«S(D)

[KS(D)\{0+1,0} if (i,i+)*S(D)

In both cases we have
SAJixiD *xiS~D)),

hence
ISPAKD))W S™M(D)L

On the other hand suppose that (iJ+1)aS(x(D)). Then

fH(SE>))u{ (W+I)} if (U+1)*S(D)
5(K2)))-j
(SN 0+1,01)u{0,i+D)}  if (i,i+1)«S(D)

In this case we obtain
SiyudCD))- {(W+I)Ju-KS~D)),

hence
Neinr))I-IS A (D)L

It follows that A 1 | A 1
Os*.’\_»)ﬂ a ) DeG"n) . 3 3 ;I
o kedc Dixsc o keEC

(U™\)aS(HD)) (i.i+1).5(t(0))



whereas
X M) 101
(M) De*"n)
D basic D basic
(M +1).5(t(0)) (i,»+1).S(t(D))
Therefore
x T
D basic v D basic

X (r-D)SliV <DV >

Dbasic

(by induction because The proofis complete.

1tA<O)=rk<0)

122
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3.3. Homogeneous VD(g>ys

This section is concerned with the transitivity of the action of Un(K) on the varieties
VD(<) (as usual D is a basic subset of $(/t) and qrD-*K* is a map). To be more specific
we will determine all the pairs (P,<p) for which the variety VD(<) is a single Un(K)-otbit.
The answer to this problem is purely combinatorial and it depends only on the
“geometrical configuration” of the basic set D. As a consequence we will also obtain a
necessary and sufficient conditon to decide about the pairs (D<) for which the character

of Un(q) has a unique irreducible component (here the image of the map <phas to be
a subset of Fg*). In general the homogeneity of an F-stable variety VD(<p) does not imply
that the corresponding character £D(<p) is irreducible. In fact the unique irreducible

component of 80(9) may occur with multiplicity greater than one. However it is not very

difficult to calculate this multiplicity (cf. corollary 2.2.17).

A subset C of <P(n) is called a chain if
C={(M2)02-3)......(We)}-
Since O'ata+i)e 4Kn) for all ae {1......r-1%}, we
have ¢i<i2<...<ir The cardinality ICl of C will
be referred to as the length ofC. In the adjacent
picture we show a chain of length 4 (as usual

the symbol m represents a root in the chain).

Itis clear that a chain C is a basic subset of $(n). Hence the variety V*tp) is defined for

all maps <pr.C-*K*. We have:

Lemma 3.3.1. Let Cs<t>(n) be a chain and let g=C-*K* be a map. Then Vc (<) is a
single Un(K)-orbit.
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dich(q»zs(C)z)_( 2(ia+ria-N)=2(ir-/1)-2(r-1).

On the other hand the element
r-l
/= é’l «PO"™oH) « ¢, *{«,.(*)*
lies in Vc(ip). By (1.3.3) we have
dimO(f)=rankM(f)

where CHf) is the £/,,(AT)-orbit of / and M(f) is the skew-symmetric matrix which
represents the bilinear form By with respect to the canonical basis of Un(K). A similar
argument to the one used in the proof of lemma 2.2.3 shows that
rankM (f)2(ir-ix-2(r-1).
Therefore
dimO(f)=dimVc (.
Since CHf) and V*ip) are irreducible varieties we conclude that V(f<p)=0(f) and the result

follows. 4

Let CH{ *(tr-i*tr)} and C ={0ix/2)’02*/3)»*++»O'j-i*/j)} he two
chains in <D(n) and suppose that i\<j\- We say that the chains C and C" intertwine if one
(and only one) of the following conditions is satisfied:

(@) r=sand i\<ji<iz<h<-m<ir<In

(b) r=s+l andil<j\<i2<j2<---<ir.i<Jr-i<r

In the adjacent picture we show a pair of
intertwining chains (with r=3 and r=2) (as
before the roots in both chains are represented
by the symbol m).

It is clear that the union of two
intertwinning chains is a basic set of roots. We

have:
n
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Proposition 3.3.2. Let C,C'c<P(») be a pair of intertwining chains. We put
0{(M2).(*2.»'3).....(Wr)} and C'»{0W 2).0W3)......(J+iJJ) and we suppose that
i\<j\. Let D=C\jC" and let gnD-*K*. Then:

(i) Ifr=s+1VD(tp) is a single Un(K)-orbitand we have

dimVO (9>)=2(/r-iD)+2(/r.r y)-6(r-1)+4.
(u) Ifr=s
VWD(0=U 0(a)
a*K

is a disjoint union ofUn(K)-orbits 0 (a) (aeK). Moreover
dimOM=2(ir-i1)+2(jr-j1)-6(r-1)

forali aeK.

Proof. In both cases let
r-l j-1

<2;:LfCW«_i)««V«,*+ Un(K)*.

&
It is clear thatfeV D(<p). We consider the dimension of the (/,,(AT)-orbit 0(/).
On the one hand let (ij)eR(D). Then
fdeij.ej*Ae”O
for all ke {/+!,...,n} (otherwise (iJc)eD and (ij)eS(D)). Similarly
[(Je«.«#]W<«¥>-0

for all ke {1....4-1} (otherwise (kJ)eD andZij)eS(D)). Therefore the subspace
Keij

of un(K) is contained in the radical of the bilinear form Bp

On the other hand let

...... Ur.1drM .1r)) if r+1
{352 wrrryuriamiaryy  Ifrg]
and let
0"
03)eHDhS
Let

V' Z aifiij* O

W)eS{D1*-
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be an arbitrary non-zero vector and let fij)aS(D)\S' be such that Ciy"\O. Then either
ie {ia; ISn™/--1}o{yb; ISbir-1} orye {ia;2<a<>r}u{jb; 2£b£s}. Suppose that i=ia for
some ae {1,...,r-1}. Then
Mv,ejir])=ailf{ei* i)=aij p(iaiat)"-

Similarly we haveX Ke~IM ) (if i-jb, ISbSr-1X/dv.e?jIM) (ifj=ia, 2¢a£r) and

J)"0 (ifj=jh, 2¢ bis). Since v is arbitrary we conclude that Vis a non-degenerate
subspace of Un(K). Its dimension is

dim 0=2fir-i1)+20Wi)-4(r+r-2).

Moreover 0 is orthogonal to the subspace
0:W)J(eJ*Key'

In fact consider a root (ial/)e5(D)\S' (1SaSr-I). Then for all (r,s)e <P(n)/([«, ..«r]]),i0 if
and only if either j=r and s=iaH or s=iaand (rJ)eD. Suppose thaty=r and s=ia+i. Then
(r,s)=(j,iar)eS" if and only ifj-ja. This is impossible because (iaj a)eS"' (hence
(iaJ)*S(D)\S'). On the other hand suppose that s=ia and frj)-fib,iM ) (I*"bSr-1). Then
frj)=fib,ia)*S"' (in fact (¢6,ia)«S(Z>)). Finally if r=ia and (rJ))*OW*+t) (I"b"t-1) then
(r™)-(jb,if)eS"if and only if b=a-1 (so a>l). This is impossible because 0'a>)=0a>/a)*S’
(hence (iaJ)*S(D)'S"). The other possibilities for the root (ij)eS(D)\S" are discussed
similarly. Therefore in order to determine the dimension of the orbit Off) it is enough to
determine the rank of the skew-symmetric submatrix MO(f) of M(f) whose entries
correspond to the pairs ( () ) where (ij),(.kJ)«S" - the ((ij),(k,[))-th entry of M~ff)

is/([e,;,««])* Now for a suitable ordering of these roots, the matrix MO(f) has the form

where
~a, 0 °© © Aax 0 e e °
mpi <2.+ 0 0 Pi«2 O 0
A= (ifr»5+1) or A=
© o e <2 0 0 0 * ¢ Pr-l «r-1

i © =} ‘CnPr-1 °r-1 > ~ 0 0 o« 0 *ng >
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In the first case the matrix A is non-singular and in the second case it has rank r-I.
Therefore in both cases
dimO(f)=2(ir-i,)+2(js-j\)-4(r+s-2)+2(r- )=2(ir-il)+2(jt-jx)-2(r+2r-3)
as required in our statement.
Now if r=r+I dien
dimVD(<p)~2(ir-il)+2(jr.1-1)-6(r-\)+4
so VD(tp)=0(f). On the other hand suppose that r=s. Then
dimVD(<p)=2(ir-il)+2(jr-ji)-6(r-1)+1
so 0(f) is a proper subvariety of VD(<p). However for each cteK the element
f+aeitiUUn(K)*
lies in VD((p). We denote by 0(a) the £/,,(AO-orbit off+ae”j* (then O(0)=0O(f)). We
claim that 0(a)*0Q 3) whenever a,pmK are distinct. Suppose that 0(a)=0(p) and let
X6 Un(K) be such that

*_(JFIfe,y T¥)=I+0KN *s

Then
=feei jX"X)+Fcxeij X% j=F (xe i x"D+p.
On the other hand | -
r- i-
AxeuXA)"L Mg wi)iu(x'V .+Z
ami 5*1
Now for IEa£r-I 0 only if i ixand this happens if and only if n=1. SincejIjI>il

forallbm{ } we conclude that

A similar argument shows that

- .0m(F+aeij*) (eiit)~F(xeiitx )msp(il 2)(x'1 Vi

forall kml/i+1,...ti2- 1 }. Hence (x']) « A forall km[jx+I,...,i2-1} and this implies that

Now letsm{2,...,r-1}. Then

- we note that for IEa£r-1 i£i, andj~i”i ifandonly if u«j; also for \Eb£s-\,jySi, and
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if and only if b=s-1. As before we can prove that

Finally we have
O=(f+<Mij*K e ij)=Axeij x I)=<p@Ar.idnXj"ir.
Hence we have obtained the equations

'cM-qthJdXjr+p
< 0~-gKiJM)Xj (2n-1)

J=<p(jr.uir)Xjrir
This system has a solution if and only if ct=/3. Therefore 0(a)=0(P) if and only if a=p.
Now consider the dimension of any Un(K)-orbit 0(a) (aeK). The argument used

above shows that the space Vis non-degenerate of dimension

dim 0=2(ir-i,)+2(/Wi)*7(r* 1)
Moreover dimo -r-1 Therefore

dimO(a)*2(ir-il)+2(jr-jl)-6(r-1).
On the other hand
dimVD(<p)=2(ir-iX)+2(jr-jxy (*,r-\yr\.
Since dimO(a)£dimVD(@) and O(a) is even-dimensional (by corollary 1.2.3) we
conclude that
dimO(a)-2(ir-il)+2(jr-jx)-6(r-1)
as required.

Finally we consider the disjoint union of all the (/,,(AO-orbits O(a) (a*K). This
union is a subvariety V of VD(<p). To prove that V=VD(@) let V' be an irreducible
component of V. Since the algebraic group Un(K) is connected V' is (/n(£)-invariant (see
[Hul ; proposition 8.2]). Hence V is a union of some of the orbits O(a) (ocK). Let

atK be such that
O(a)sV.

Since O(a), V and VD(<p) are irreducible varieties we have
dimO(a)<UiimVEdimVD(@.
It follows that either V»0(a) or V'=VD(f). Since there are finitely many irreducible

components of V we may allways assume that V' includes at least two orbits O(a) and
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O(p) where jkK, p*a. It follows that V'=VD(<p), hence V-V D{<).

The proofis complete. .

Let C={(/1,i2)......0V-itn} and C m{OW2) - »-O-ix’\)) 1 be two intertwining chains
of the same length and suppose that Then the root is called the
(CyO-derived root. More generally we may define the D-derived roots for any basic
subset D of <P(n) as follows.

Let C={0'i¢2),...,(ir.iJr) } and C'={(jiJ2)......be two chains in D. Then
the pair (C,O is called special if the following four conditions are satisfied:

(i) Cand C*have the same length, i.e. r=s.

(i) Cand C'intertwine, i.e. i1</I<i2< [ eo<r<Jr

(iii)  If there existsjOe {I.-.-Jj-1} such that (Joj\)eD then i\<jo-

(iv) [Ifthereexistsi®e {ir+1,.../»} such that then /r+i<7r.

The root UiJ\) is an example of a D-derived root (we note that this root is the
(C,CO-derived root). In general aroot (//)«<D(n) is called a D-derived root if there exists
a special pair of chains (C,C0 in D such that (ij) is a (C,CO-derived root The set of all
D-derived roots is called the derived set of D and it will be denoted by D". It is clear that

(3.3.1) DcS(D).

In the adjacent picture we show a special

pair of chains of length 2 (the roots represented

by m and by m are in D and the chains C and
C' correspond to the roots represented by m;

the symbol O represents a derived root).

The main result of this section is the

following:
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Theorem 3.3.3. Let D"<P{n) be a basic subset of <&n) and let p:D-*K* be a map.
Then VD{@ is a single Un(K)-orbit ifand only ifthe derivedsetD' ofD is empty.

Proof. We will use the argument suggested by the proof of proposition 3.3.2. We
consider the element
f= X VvdJief* Un(K)*.
It is clear that this element lies in VD{<p). Therefore VD(<p) is a single i/,,(K>orbit if and
only if VD(tp)=0(f). Since VD(<p) and Off) are irreducible varieties we have
Vo(<p)=0(f) <> dimO(f)=s(D)
(by theorem 3.2.3). Now (by (1.3.3))
dimO(J)=rankM(f)
where Mif) is the skew-symmetric matrix which represents Bf with respect to the
canonical basis of Un(K). Therefore
VD(.g>)=0() *= rankM(f)=s{D).
Since e,ye r(/) for all (if)eR(D) we have
rankM (f)E£dimUn(K)-r(P)=s(P).
To prove that the equality holds we consider the matrix
Af-(A[«i/.e«]))(0]),(W)ES(D)-

Then there exists a permutation matrix P (of size 10(n)I) such that

H ')

Therefore
rankM (f)=rankM".
Hence -
rankM(f)=s(D) <= M'is non-singular
and so

W)(©@>)"0(/) <> M'is non-singular.
Now we define an equivalence relation ~ on the set 5(D) as follows. Let

(13),(.kP*S(D). Then (ij)~(kj) if and only if either (ij)-(,k,l) or there exists a sequence
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OCUIXiM hJIl) meOr-lJr-1).(Wr)“ (*0)

of D-singular roots such that

forall se {I,...,r-1}. Let CL...,C”5(D) be all the equivalence classes of this relation.

Then 5(D) is the disjoint union
(3.3.2 5(D)«C|U..vjCr

By definition of the relation ~ we have

whenever (iJ)eCr (k,I)eCsmand s*s' (ISs”'Sr). Therefore the partition (3.3.2) of 5(D)

implies that there exists a permutation matrix Q (of size s(D)=15(D)I) such that

o .. o0~
0Om2.. 0
Q IMQ=
0 ..M,

where for each r« {1,...,/} Msis the matrix (of size IC,I)

It follows that
rankM'-rankMt+... +rankM,,
hence
VD(<p)=0(f) <> are non-singular.

Now let se {1......r) and consider the equivalence class Cr We claim that C, is a
chain. For let (flti2) be the largest root in C, (we consider the order < introduced in the
proof of proposition 2.2.13). Since C&S(,D) the root is D-singular. Therefore at
least one of the following cases occurs:

(i) thereexists an{l......ir 1} such that (,aJjjmD;

(i)  there exists bm{/2+1,...,«} such that (ij,b)mD.

If case (i) occurs then (a,/i)e5(D) and
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(because (a,/2)«0). So (a,<tM M 2) md (aJOmCr Sincc ‘i<J2we have d M < aA)
which is in contradiction with the choice of (j1"2)- Thus case (ii) occurs. In this case the
root (i2) is D-singular and

b)*0-

Therefore (ixJb)*Cp hence we have constructed a chain

(where i3=b) such that

c,@=c,.
If C,-C,< then the claim is proved. On the other hand suppose that C\C,(2*0. By
induction we assume that r"22 and that we have constructed a chain

Cx = {(i,,"),.~.0V.V+i)}

such that

C ~cCr
If Cs=Cj-r* our claim is proved. On the other hand suppose that C \C/rV 0 and let

Then (by definition of ~) there exists a sequence
(W>+i).(«iA).- mXau,bu)=(iJ)
such that
A 6,70 (2EVEU).

Without loss of generality we may assume that the roots in this sequence are all distinct
For simplicity we write (a,b)=(albl). S i n c e e i t h e r a=irHand (irJb)*D
or b=ir- and (atV +i)*D . If the second case occurs then a=ir'-l (because

>, s0 OV.AiVOaD). Thus (a,b)«(v.Lt>) and an inductive argument

shows that
“ o UJ)XiM
(because (/,/)«C,(r\ This is contrary to the choice of (iiJj), hence we conclude that
a«ir+i and (irJb)*D.
Now we put b—r+2 and
C,(r+1)- {(i,3j).. UrMMr+IM 3}«

It'is clear that
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Moreover is a proper subchain of Ci(r+1). Therefore (repeating this process a finite
number of steps) we eventually get

Ci=CJ(r-D)={(i%i2)....,0V.%ir) }
for some r£2. This proves our claim. Moreover Cs determines a pair of intertwinning

chains CA,Cj2&D where

(ij 23).(13,15), eom(,r-3>r-1) 1 (if r is even)
Cj2={(214)>(i456)’-+*>0"r-2>ir) }

or

Ci-{ (tj.¢3).(18,13),.. *
i-{ (tj.¢3),(18,13) ¥ (if r is odd)

Cj2={(12'i4>(i4.i6),mm(Ir-3 1)}

The adjacent picture illustrates this

situation (here the roots in C, correspond to
the symbol O, the roots in C,i to the symbol
m and the roots in Cj2 to the symbol m ;
we note that all the roots in Csl and in Cs2lie
in D). We note that either IC*M C”I (ifr is
even) or ICjU=ICj2I+1 (if r is odd). By the

previous proposition we conclude that:

M, is non-singular e* IC"MC”I+1 <> Cshas even length.
Finally if C, (IEs£r) has odd length (hence r is even) the pair (Csl,C") is special
and the root (jj,j2) is D-derived, i.e. In fact we have
C, has odd length
Conversely if then (ij)cS(D) and so (ij)*C,for some s* {1,...,/}. Moreover (in
the above notation) (ij)—/IPi2) and the pair (C,XC,2) is the unique special pairin D

which determines (ij). It follows that
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Ci,,..,C, have even lengths <> D'=0.
Hence

VD(<p)=0() e* D'=0

and the proofis complete. .

Next we translate the previous theorem to the character theory of the finite group
un(q) (as usual g is a power of the prime numberp”n). We let ATbe the algebraic closure
of the finite field Fqand we realize Un(q) as the subgroup of Un(K) consisting of all
fixed elements of the Frobenius map F=Fg.Un(K) -» Un(K).

Theorem 3-3.4. Let D be a basic subset of <b(n) and let gr.D-»F * be a map. Then the
character ¢0(<p) of Un(q) has a unique irreducible component ifand only if the derived set

J(D)
D' is empty. Moreover this component has multiplicity *..— where 1(D) and s(D) are

as in (2.2.7).

Proof. The first part follows from theorem 3.3.3 and the second part follows from

corollary 2.2.17. .
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CHAPTER 4

A DECOMPOSITION OF VD(<p)

In this chapter we discuss a certain decomposition of the variety VD(@>) into
1/,,(/Q-invariant subvarieties (as usual D is a basic subset of <€(n) and gr.D-*K* is any
map). By theorem 3.3.3 VD(<) is a single i/BAT)-orbit if and only if the derived set D" is
empty. Therefore we may assume that D ' contains at least one element. The construction
of the required subvarieties is similar to the construction of the varieties VD(<). Firstly we

define certain (/,,(AO-invariant polynomial functions on the variety VD(<) (instead of
Un(K)*). These functions are associated with some D-singular roots (in fact with

D-derived roots) and their definition is recursive as in the case of the functions
4-Mn(K)*-*K ((ij)eR(D)). However a different method is used to prove that the new
functions are i/n(AT)-invariant.

The decomposition of VD(<p) will be obtained in section 4.2. Firstly in section 4.1
we discuss some examples which suggest the use of permutation matrices to study the
variety VD(<p). They suggest also that a knowledge of the coadjoint orbits of the groups
UJiK), OteSn, could be of fundamental importance for the understanding of the coadjoint
orbits of Un(K). In fact the conjugation by a certain permutation matrix allows the
“reduction” of our problem to the same problem in the smaller group U ~K). A similar

method will be used in chapter 5 to establish the decomposition of the regular character of

Un(qg) as the sum of all the basic characters € (¢>) (see theorem 5.2.1).
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4.1. Some examples

In this section we discuss some examples which will motivate our subsequent
work. We denote by ATan algebraically closed field of arbitrary characteristic. We let n be

a positive integer and we suppose that n=2r is even.

Let/ke=Un(K)* be such that

AR A0
Let D be the (unique) basic subset of <E(n) and let qr.D-*K* be the (unique) map such
that/« VD(<p). Then (by proposition 3.1.2) we must have
Ex={(l.t(1))...(r.T(N)}

for some permutation teSr

We consider the t/n(AT)-orbit 0 (f) off. For pratical reasons we define for each

ge Un(K)* the upper triangular matrixi4(g)=(ay{g))by

e<&()
10 otherwise
forall ijs (1 . Let x=(Xij)eUn(K) be arbitrary. Then

(*D(y)-1C* Y- K%

for all (ij)t <P(n). Therefore

(4.1.1) AO0cf)-pn(xTA(f)0cT)-pn(xTA (F)(XTYI)

where for any-matrix XmMn(K) (>) pn(X)-(yrf»Mn(K) is the upper triangular matrix
defined by

y mixV if (iJ)*Q(n)
1 10 otherwise

forall ijm (I,...n). SincexT is lower triangular we conclude the following:

1We denote by Mn{K) the setof all square matrices of size n with coefficients in the field K.
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Lemma 4.1.1. Let ge lIn(K)* and let xeUn(K). Then g-x-f if and only if
pN(XTA(f))=pn(A(g)xr).
Using this lemma one can show that:
Lemma 4.1.2. The Un(K)-orbit o ff contains an element ge Un(K)* such that
where AsMr(K) is upper triangular, H*h”~eM ~K) is the diagonal matrix such that

hu=<p(irti))

forallie{1,.../m}, and P(f) is the permutation matrix associated with XeSr.
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Consider the equation (ii). Since

we have A12*GLr(J0. By Bruhat’s decomposition of GLn(K) there exist a*Sr such that
Ai2«Ur{K)-Hr( K)P«f)Ur{K)-
where Hr(K) is the subgroup of GLfJC) consisting of all non-singular diagonal matrices
and Ur(K)~ is the subgroup of GLr(K) consisting of all lower unitriangular matrices.
Therefore there exist H*Hr(K) and yjeU/JC)" such that
An =yH'P«f)z.
We now claim thatH'-H and 0*T. In fact the element

T
T o

or1/
transforms the element/« Un(K)* into an element g'e iin(K) such that
A(g> A'H'P(a)\
B' )
where A’J)'eMr(K) are upper triangular. It follows that g'*0(f). Since/«VD(<p) we
conclude that g'eVD(<p). Finally proposition 3.1.2 (see also its proof) implies that H'=H
and that €¢=t.
Now equation (ii) is satisfied if we take *n=(y‘l)T and Xj2=zT. Finally equation
(iii) is clearly satisfied if we define xn *GLr(K) by
JOZT=-X22TA22\12*1-

The lemma follows. ¢

Now we may assume that/« Un(K)* is such that
r A(f) HP(X) »
0

A(f)

where/« Ur(K)*. We have:

Lemma 4.1.3. VD(g>)~0(f) ifand only ifu S ris the element defined by (1.1.16).
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Proof. By theorem 3.3.3 VD(<p)-0(f) if and only if the derived set D' is empty. The

lemma is clear because D' =0 if and only if

fo ...0 1~
po= ° 10 iGLrk).
V ...003

Next we consider particular elements XeSr

Lemma 4.1.4. Let T=leSrand let ge Ur(K)* be such that

where g'e Ur(K)* (we note that P(x)=Ir). Then geO(f) ifand only ifg'eO (1) « here 0 (f)
is the Ur(K)-orbit o ffe Ur(K)*.

\
Proof. Letx , *1 ™12 gun(K) (x\>X22* Ur(K),X\2*Mr(K)). Then g=*/ifandonly

{0x22J

(i) pr{xn'TA(f'))=pXA(g")xu T+Hxx")
iy xutH.HxZx
(iii) pr(xI2TH)=0.

if

Suppose that these equations are satisfied (hence g*0(f)). Since H is diagonal we
have p,(jcl2 //)*=0 if and only if jcl2t is lower triangular. Therefore HxX2 is lower
triangular and

Pr(xi\TA(f))-Pr(A(g")xIiT).
It follows that g’'mxn -f, so g\0 (f).
Conversely suppose that g'mxn f. Then equations (i), (ii) and (iii) are satisfied

with 'xi®x H and*i21*0. Thus g<OIf) and the lemma is proved. .
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By this lemma (and by lemma 4.1.2) we deduce that:

Corollary 4.1.5. Let t*1«Sr. Then the UJK)-orbits in VD(<p) are in one-to-one
correspondence with the Ur{K)-orbits in Ur(K)*.

This corollary might suggest that a decomposition of VD(<p) may be obtained by

arguments analogous to the ones used in the previous chapter. However in general this is

“impossible” as the next example shows.

Let r=st, s,tZ2, and consider the element u S rsuch that /*(t) has the form

o O\
0Js...0

P{T)=
A0 0 ...],

where JAM §K) is the matrix

ro..o1 "N

O0..10
Jf
V .00y
We have:
Lemma 4.1.6. Let n*st and let x»Sr be as above. Let where AMM AK)

(1ZiJit) and Ay*0for all ije {1,...,/} such thati>j. Let geOIf) and suppose that
~ _ A (g J* ™
lo 0
where BmMr(K) is upper triangular. Suppose also that IMftyJisj,/*» BifiMJJK)
(1ziJzt) and BifOfor all ije {l,...,r} such thati>j. Then A*B U.
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Ixn *12% 6 yn(k) (xn jezeUr(K)<@2=Mrlc)) be arbitrary. Then g=xf
0 *22>

Proof. Let x

if and only if the following equalities hold
(i) pr(xxXA)=pr(Bxxit+P(t)*12T)
(ii) *utP(v)-P(9*22T
(iii) pr(x>P(X))=Q.
Consider the equation (iii). Let *i?T=(y.y)i<j< where y*M ~K) (1£ij£t). Then

We have pr{x\2TP(.x))=0 if and only if * 12¢P(¢) is lower triangular. Thus y§Js=0and this
implies thatyf=0 for all i>] (because Js is non-singular). On the other hand
Pi0"./i)=0

forall ie (I,...,f). Thereforey*J, is lower triangular for all U {1,..."}.

Now we consider the equation (i). Let *n T=(zy)where z*eM({K)
(I£ij£t) -since *n T is lower triangular we have zi=0 (1&<j£t) and ¢jje USK)~
Let* 1Tid=(«Blsi"s<where uM *K) (\<dj<d). Then

u\r kzl*\iiAkt~Z\\A li-

On the other hand let fI*nT=(vi/)is<v$i where (1 Then
t

Vvv=*L>lB\kzkt:B\tztf

SinceP W j~Jjij)”" andyu=0, we conclude that
zn Au=Buz,,.
Finally consider the equation (ii). We have XnTP(T)m(zijJs)liijs, and
NE)*2 2 where *22T=(Wi;)iSgs, wyEMjili:) (ISiJSr). Since
JiT/ Xt>-/X)XTiT w®obtain
zul,ml,”u

forall im(1,...,/). Since ziand wu are lower unitriangular we conclude that
zZiT"umli

forall f«{l,...,r).

I The lemma follows. .
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The previous lemma shows that in general a decomposition of VD(«p) cannot be
obtained using the methods of chapter 3. In fact the eventual definition of a new subset of
roots (which corresponds to the notion of basic subset of 4(n)) has to include a general
condition allowing the existence of more than one root from each row and more than one
root from each column (in the example above the columns r-s+ may contain more
than one root (ij) such that/fe*"0). In the general case it seems to be very difficult to

guess what condition has to be imposed. The natural conjecture is that it envolves the
rank of certain matrices whose entries are elements /(«,-,) for some roots (ij) in the
required set. In the previous example the orbits which are contained in VD(g>) depend on
the rank of the matrix Au (the notation is as in lemma 4.1.6)-we note that (by lemma

4.1.6) this rank is an invariant for the action of Un(K) on VD(<). In fact:

Lemma 4.1.7. Let the notation be as in lemma 4.1.6.
(i) Foreach im{1,..~} we denote by Cj(A1M) (resp. Ci(Bu.x)) the i-th column of
the matrix (resp.BXX. Then the vector Cj(A1M)-Cj(BIf_i) is a linear combination

ofthe columns ofthe matrix Alr
(i) For each ie {l,...,r) we denote by r*A”*) (resp. riiB”)) the i-th row of the
matrix Aj, (resp3 - Then the vector r*A”) - ”j(Bn) is a linear combination of the rows

ofthe matrix Au.

Proof. We keep the notation of the proof of the lemma 4.1.6. Let xmU,,(K) be such that
gnx f and consider the equation
P & \)nmPr(Bxx?+P(x)xx?)=pr(Bxx,T).
Since KiM *"tA “ d viM"®I»-t+dtAM w* havc
*11-1 *®ll-1*d
and (i) follows immediately.
Similarly we have

*2»-*2 1% *21 %]
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because u2j=z2i'4n+'42 and v2/=S2- (ii) follows. .

Another attempt to find the condition mentioned above is to consider the coadjoint

orbits of the subgroups UJK) of UJK) for an arbitrary ooeS,,. In fact in the case r=I the

orbits contained in VD(<) axe in one-to-one correspondence with the orbits of UJJC) for

<Ceh such that
where
(o ...01
0..10
V ...o0Y

-we note that UJK)=UJK)nP(a>1)UJK)P(aj) (see (1.1.15)).

On the other hand we have:

Lemma 4.1.8. Let teSrbe as in lemmas 4.1.6 and4.1.7. Then the UJK)-orbits in

VD(g are in one-to-one correspondence with the UJK)-orbits in UJK)* where coeSHis

such that

Proof. We note that UJK) consists of all matrices UJK) such that

xn*Ur(K)nP{.HiUJ.K)P(el) (hencehas the form



144

where the symbol * means that the corresponding block is any matrix in MYK).
Now for this proof we keep the notation of the proof of the lemma 4.1.6. We claim
that there exists g* (Xf) such that
A(gyj B Pit)"
io ° ;
where (BA-cM”K), 1ZiJZt) satisfies fl;,=0 for all is {l,...,t}. In
fact consider the equation
pr(xuTA)=pr(Bx1,T+P(t)x1 ).

Letic {1,.»=*} Then
t

Ll-i~,t%lZlJAki’\ti|A\i+..-+zu-|iAi-u +inii
I
(we recall that 2U=1J and
i
Vi=S BikZM-Ba+BllHzq+1,+...+B

o
On the other handyj sis lower triangular so is upper triangular. It follows
that

P,(*nAu+—+zU-iAj-i BAU)=p,(B ji+Bijj+lz(+ii+e.* N a-

Since Js is non-singular we can allways choose yjpMs(K) such that this equation is

satisfied with Bjj=0 (for any choice of Our claim follows.

Now let us assume that/is such that
10 0
where A*(Aj)liijil where A*M ,{K) (LEijEt) and 0 forall im{|f. »} Let
g* un(K)* and suppose that4(g) has the form
4(gJbm
1° 0
where B*(Bij)lfljil,ByM,(K) (LZijit) is upper triangular and 0 for all

1< {l,...,r). Then g*0(f) if and only if the equalities (i), (ii) and (iii) hold with



i[)éu *z%fLC/”(Ar) such that g=xf. In particular we have for all ijm {l,...,r},
X

i>j. This means that the element xn ¢ Un(K) satisfies
g'-xn-r
w h e re UjiK)* arc defined by
f-njf) and g'~tcjg)
where K*un{K)* -* UJJC)* is the natural projection (i.e.t for anyft UJJC)*, itjf) is
the restriction o f/to UJJK)). We conclude that g' is U,,/JAO-conjugate to/.

Conversely letf,g't UjiK)* and suppose that g' is /,,(AO-conjugate to/. Then
there exists x xxtUJJC) such that g'=xxxf. By the argument of the first paragraph of this
proof we can allways choose xx2Mr(JC) such that the equality

pr(xx/ A )=Pr(,BxxIT+P(T)Xi2T)
is satisfied. Moreoverx12can be choosed so that
Prixx2P{t))=Q.
Finally we define x12*Ur(K) by

The lemma follows because any i/, (Af)-orbit on Vp(g>) contains an element

[« un(K)* such that

for some upper triangular matrix AtM r{fC). .

In general case we have:

Proposition 4.1.9. Let XtSrand suppose that for all (iJ)tD. Then the
Un(K)-orbits in VD(<p) are in one-to-one correspondence with the UJiK)-orbits in

UJJO* where (OtSHis such that
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Proof. In this general case UJiK) consists of all matrices

Cit © 3 K,,(A'I) such that

xu *Ur(K)rd>Wur(K)P (fl).
Letfe VD(<p). Then (by lemma 4.1.2) we may assume that
Af= PX)

0
where AeMr(K) is upper triangular. We claim that there exists geCHf) such that

J B P(1)
10 0
where Be UEK)rJx(t)UjJC)P('Cl). In fact let ge Un(K)* be such that ;4(g) has this form

A(9)

and let 3 ,\.’31 ;Zli eU,,(K) (xu jc22e Ur(K), Xi2eMr(K)) be arbitrary. Then (as in the
previous cases g=x/if and only if the following equalities hold
(i) PMVITA)=pr(Bxxtt+/,(t)x12t)
(i) XnTP(t)-P(t)X22T
(iii) p,(x12TP(T))=0.
The equation (iii) is satisfied if and only if the matrix x 12TP (t) is lower triangular.
On the other hand the equation (ii) is satisfied if and only if
XU T-P(T)x22TP (r1).£/r(AOnP(T)E/r(AD-p(rd)
where Ur(K)~ is the subgroup of GLr(K) consisting of all lower unitriangular matrices.
Now consider the -equation (i). Since AmUr(K) there exist
Be Ur(K)nP(t) U,(K)P(f J) and CmU/K)nP{ri)UjiK)-p{tl) such that
A“B+C
(see pg. 6). Now the equation (i) is trivially satisfied if we define
xnT»/r and x12T»P (f1)C.
Since Cmur(K)nP(t) U"K)'P (fX) we conclude that
X 1ZTP (t)-P (r DP (t)x12TP (t)-P (r)CP (t).P (r,)P(t)«r(AO"/,(trlV,(t) - W

Hence x12T/*(i) is lower triangular and (iii) is satisfied. Finally (ii) is trivially satisfied if
|
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we define x2 2 =Ir. Our claim follows.
Now we assume that

af-a P’
0 0

where Ae ur(K)nP(9Qu£K )P {1). Letxe (/,,(£) be as above and suppose that
A(x.)=f* W
<° 0

where Be Ur(K)rJ,('t)Uj.K)P(.-fl). Then the above equations (i), (ii) and (iii) are satisfied.

Let Un(K)* -* Ua(K)* be the natural projection (i.e. for anyfe Un(K)*, itjf) is
the restriction of/to UJJC))- We denote by  un(K) -» UJJK) the canonical projection
(we recall that UJJC) is a direct summand of U,,(K)). Then, for anyf ‘,g’e UJJC)* , we
have g '-y f if and only if paly TA(g"))=p<UA(/").yT).

Now consider the equation (i), i.e.

pr(xuTA)=pr(BXiiT+P('C)xn T)=Pr(Bx1?)+Pr(P{T)XiZ2T).
Then
PtCHIiTA)=p BxLT)+p P(i:)xnT)
where p+ Ur[K) -» U”K) is the canonical projection. Since pr(x12TP(T))=0 (by the
equation (iii)) the matrix x I2TP(t) is lower triangular. Hence
P (t)x22T"P (t)xn TP (.t)P (r1)eP{t)Ur(K)-P{rl)
and
pr(P{X)XI2T)e Ur(Kyj>(T)Ur(K)-P (fl).
It follows that
pPEP (H)x1x)-0
o)
Pt(-*iiTA)-Pt(flICn T).
Since xn T. ur(K)nP(t)Ur(K)~P(jf I (see the first pan of the proof) we have
xn eUr(K)nP(Dur(K)P{'eX).

It follows that

Kj<g)nyn jf)
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where

Conversely suppose that Kjig)=y-njf) for some y*UJJC). Then

where jen e U{K)rdX't)ur{ K)P{fx). Then
Pt(*iiT*H>tCB*iiT)-
Hence there exists C* Ur(K)rP (t)UjK)~P (fl) such that
Pr(*11T~ )=P,(fi*i1T)+C.
Then we may define x12T1=P (t'1)C and (i) is clearly satisfied. Moreover (as before)
*12TP (*)e Ur{K)~ and (iii) is also satisfied. Finally (ii) holds because
jen Te Ur(K)rP("i)Ur(KyP (?1). It follows that geO(f).

The proposition is proved. .

Corollary 4.1.10. Let teSrand let tp:D -*K* be arbitrary. Then the UJK)-orbits in
VD(<p) are in one-to-one correspondence with the UJKyorbits in UJK)* where <GeSHis

such that

Proof. Let yr.D-*K* be the map defined by forall (ij)*D. We define the map
&Vd(Y) -* Vd(<P as follows. 1f/«V0(y/) then d(f)eVD(<) is the element such that

wherexmGLJK) isjhe diagonal matrix whose diagonal entries are
0) IiflE/Er
1 otherwise

Then riis an isomorphism of algebraic varieties. The result follows by the previous
proposition because

<Hyf)-0cyx")-w
forallynUJK)anda | | I n fact



MW yf))-xA (yH)xi-xpn(y TA(F)(yTy Dx'1*'pl,(xyTA(f)(yTy IxA)
-pHw TX IxA(fa'lIx(yry Ix I~pHxyTx 1A (i) (f))xIx(yTr Ix’1)

-P (N DTXADX-U(xyr)T)-,)-A((xyx-D-i>(/))
for all y« Un(K) and allfmVD(y).
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4.2. A decomposition of VD(cp)

In this section we fix a basic subset D of <P(n) and a map <fr.D-+K*. As usual K is
an algebraically closed field either of characteristic zero or of prime characteristic pZn. We
assume that the smallest root of D lies in the n-th column, i.e. there exists /* {1,...,«}
such that (i,n)eD. Moreover we assume that i<n-2 and that the set

D'(i>0'fi{(a,i); l<a<i-1}
is non-empty (here D' is the derived set of D). Then (by theorem 3.3.3) the variety VD(<p)

contains at least two (/,,(AO-orbits.

Our aim is to obtain a decomposition of the variety VD(<p). This decomposition
depends on the roots which lie in the set D\C). In fact we will associate to each root in
D \i) a certain polynomial function (defined on Un(K)*). Moreover if the root is chosen
conveniently we will show that the function is i/n(AT)-invariant (hence it can be used to
define a proper subvariety of VD(<)). In the following we motivate the introduction of

these functions.

Let/« vd(<P) be arbitrary and let UJK) be the element defined by
if i<a<n and b=n
J <p0»'1/0?£«)  if and i<b<n
1 ifa*b
-0 otherwise
(cf. (3.1.6)). Then the element x f* VD(op satisfies
(,xf){eid *<p(i,n) and (X'/Xe*MX'/XCfeM) (i<aj><n).
We let g*x/. Since VD(<p) is i/,,(AT)-invariant we have g*VD(g>). Now let
a>*(fi-l... i+1 Then the matrix A(g) (as defined in section 4.1) lies in the

subalgebra UJJQ=un(IC)nafxun(K)o) (cf. (1.1.13)). We define the matrix AJig) by
AJg)~P«0)A(g)P(,0))
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where P{(0) is the permutation matrix associated with comSn. Then

AJg)m UjK)nO)Un(K)<u 'X*u,, i{K).

Let

where Am UIA(K), Bm UniA(K), C is a matrix of type (M)x(n-i-1), a is a row vector of

lenght t'-1 and a=(p(i,n). Since

00>
10
00
01>
we have
iACaol0A
OHO
Alg>
000a
vvO0O0OO0lJ

Therefore AJig) defines an element e Un(K)*, i.e.
Atlg)=A(gJ).
By theorem 3.1.7 there exists a unique basic subset Dmof 0{n) and a unique map

<p,j.Du -*K* such that VDJi<pJ). It is clear that the smallest root in D,, is (n-1,/i).
Therefore the variety VDJ,<pJ is canonically isomorphic to the variety VD 0) where
D~o”aP~C/i-I) and gf*o is the restriction of €& to

Now we consider the set D m0. For simplicity we write DinDn0 and o Let

(rMa be the smallest root in D xand suppose that j»n-1. Then we must have r<i-\
and g je m-\)rg(erd- We know that the function t:VDi()-*K is £/,,(AO-invariant

(we note that this function is defined by d » x(f)nf(e m.I)-g>I(r,n-1) for all/«
Moreover for any am{1..... M } the functiond  ,:Vd (9i) -* ATis U,,(AO-invariant and

we have¢ ™ (0 -0 forall/s Wi(p,). Therefore J - 0. Next we

will prove that for any am{l,...,r} there exists a {/,,(AO-invariant polynomial function
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f'ai:VD((p)-*K such that Rai(h)=g(eai) for all heVD(<p). In particular we must have
®,,(A)=<pl(r,n-1)*0 and P J)=0forall ae (1,...,M }and all heVD(<).

LetfeV D(<) be our initial element and letxeUn(K) be as in (4.2.1). Then x-f=g and
(n-l
g(eai):(jr-/)(eai):-«pO»']{Yj(e ah)j{ehJ
bmi

forall ae {1,...,/-1}. Therefore we may define 'Fai:VD(<p)-*Kby
r., \

'Fai(h)=-qKi,ny g*iiWeakMetJ
for all heVD(<p). However we will consider the polynomial function O"iU/MK)* -*K
which is determined by the polynomial
ejlrt(jrje <Hn)):UZd1,TaJ Ime K[Tr* (r,]). d>(«)]
where Trs,{rj)e 0(n), arc n(n~" indctcrminatcs over K. Then we have
e aih)-<IKiji)'Fa<h)
for all heVD(<p). It follows that &ai:VD((p)-*K is (/,,(/O-invariant if and only if

Ai-.Voiv) -»K is U ,(AO-invariant.

In order to prove that the function &ai:VD(<p)-*K is (/,,(10-invariant we establish a
generalJesuit which can be applied in later cases. Let V be (/,,(AO-invariant subvariety of
Un(K)* and let P:V-*K be a polynomial function. Then there exists a polynomial
PiTaifi (ajf)t $(n)) in indeterminates (ajj)e such that

1,(AW>(/(eaB); (a,««<*«)).

Therefore we may define the differential map dP:V -* Un(K) by the rule, i.e.

- dP)(f)~  Z
- P02

JD
for all /a V (we recall that denotes the (a,b)-th partial derivative : of the

polynomial P).
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Theorem 4.2.1. Let V be any Un(K)-invariant subvariety of Un(K)* and let P:V—=A"

be apolynomialfunction. For each (ij)e <P(n) let n# be the degree ofthe polynomial
Pij<t)=P(Aeab)+tA[eij,eably, {ajb)e *(n))e K[t].

If K has prime characteristic p, we assume that p*.max{ni\ (ij)e <P(n) }. Then P is

Un{K)-invariant ifand only if(dP)(f)e r(f)forallfe V ().

Since every element of Un(K) can be written as a product of elements
xXa)=Il+ael
where 0V)«<P(n) and aeK, the function P:V-*K is i/,,(Af)-invariant if and only if
P(Xij«X)f)-P{f)
for all (ij)e <P(n), all aeK and allfe V. In other words P is {/,,(AO-invariant if and only if
P is*(AO-invariant for all (/J)e ®(n) (we recall that X"K) denotes the (ij)-th root

subgroup of Un(K)). Therefore the theorem is a consequence of the following:

Proposition 4.2.2. Let (ij)e <D(n) be arbitrary. Let V be a X*1Q-invariant subvariety
of Un(K) and let P:V-*K be a polynomialfunction. For each (ij)e <P(n) we let njj be as
in the theorem and we assume that p*max{ (ij)e <b{n)} whenever K has prime

characteristic p. Then P is X*K)-invariant ifand only i//([Cy.(d/3(/)])=0for allft V.

Proof. Let t be an indeterminate over K. For eachfe V and each (a,b)e <>fn) we define the
polynomial ~(i)eAT[/] by

i&iO-Aer+tfaeij”).
Then

for all cceK and all (a,b)e <Hn). Therefore
PUy<a)/)-P("(a); (aj»e <P(n))

forall atK. Let *(t)eK[t] be the polynomial
ANtr"PAMYAaMeUKn)).1

1We recall that for any/« u,(Af)* tif) denotes the radical of the bilinear form Bf
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It follows that
P is Xy{Af>invariant <> 07(a)=0")(0)=/X/) for allft V.

Since K is infinite we conclude that
P is X,/AT)-invariant <> <p®(i)=P(f) for allft V.

»

Now suppose that P is X*AO-invariant (hence 0&0 is constant) and letft V be
arbitrary. For simplicity we will write 0(0 and 07 (0 instead of 0**(0 and of 0*2(0

respectively. We also denote by 0'(O and by (0a*)'(O ((n">)«dtyi)) the derivatives of 0(0
and of 2 (O ((a,b)t <D(n)) respectively. Then (by the chain rule) we have

0'(0= (<?a™)(0ai(f); (@j>)e <Hn)) (0ai)'(O

08.<n)
:(a,*gf««»)

Since 0(0 is constant we have 0'(0O=0 and so
O:O'(O):(o,&«(n) (<?20M)(™(0); (a,b)t*00)m*u**i)
= X (3P)<Kw«*>; (af>)t <Pin))/([«i,«ai])

(N> (" (0 (a*)« «Oi))/a«(},«<*])_

X dabP(feab
/

=/([«,>(dP)(0]>-
Conversely suppose that
IU«(,,(dP)(A])=0
forall/« V. We let/« V be arbitrary and we define
0(O-0w/(O«AtfT]
as above. We claim that 0'(O=0- By the chain rule we have

0'(0= K oy (BT (026(0:(2.6)c<P () (e )

where for each (ajb)t Q(n) the polynomial

is defined above. Now let ct»K be arbitrary. Then
(JUPXXTM)-» «@
- X (<3MX006(0; (M« (n))«n

and



155

(ICy<a)-/)([«y-v])=/([ey.v])+af(leij.[eij,v]\)=f(\eij,v])
for all ve Un(K). In particular consider the vector
(dP)(Xij(ayf)* U n(K).

Then

Since V is X,y(AO-invariant we have

*:[<*) ]« V.
Therefore (by hypothesis)

(x*ayf)([ei.(dP)0cij<a)f)])~0.

It follows that

()= Z, o (@) (a%)€ <Hmeij )

-AieijXdPXXijiayf)])=0.
Since a=eATis arbitrary and ATis an infinite field we conclude that <p\t)=0 as claimed. This
implies that the polynomial <p(t)mK[t] is constant - we note that (by our assumption) p is
larger than the degree of <) whenever K has prime characteristic p.

The result follows. 3

Now we consider the differential
d e ai:Un(K)*-+Un(K)
of the polynomial map 0 ai:U,(AT)* -» AT (I£a<i). For any fm tf,,(Af)* and any

am{l....U-1} we have

(dBaiXA"i’n"-\eab"lm +h"ﬁebn"ab-

Lemma 4.23. Letfm VD(<p). Then
ifs=a

H N AN
AUrride*m)~'? otherwise

forallam{l,...,i-1}and all (rj)mtf(n).



156

Proof. Letae {1,__u-1}and (rj)e &(n) be arbitrary. Then
n-1 n-1
A[ers,{dej(f)\):bxh’{e" m ‘rh)+ Lbﬂ\:iebn mer,,eah\)-

Suppose thatsc [aJ,...ji-1}. If rc {<*...n}, it is clear that
Alert,{d9J(f)]>0.
Ifre{ } then we musthave s=n (because i£r<s). Hence r<nand
A[em.(dOaim Jh-Jiemif{es)=0
(because a<i and f<=VD((p)). On the other hand suppose that se {i,...,n-1}. Then
rc {¢,...,«} (because r<s<i) so
idijdejO IH U lij-o

(because r<iandfe VD(qj)). Finally suppose that s=a. Then rc (because a<i) and
((-1

AleraXd0J (f)1)}lA ebriffert) = eri(f).

The lemma is proved. .
Foreach ae {l,...,i-1} we define the subvariety Vaof VD(<p) by
(4.2.2) va=[fevD(<y, e Ji(f)-e2i(f)-...-ejf)-0).

We claim that Vais (/,,(AO-invariant for all ae {I,...j-1}. Since
Vi.lc...cV'IeV,0=VID(M),

this claim is a corollary of the following:

Lemma 4.2.4. Let ae {1,...,i-1} be arbitrary. Then the polynomial function

&ai'-Va-i -*K is Un{K)-invariant.

Proof. By the previous lemma we have
(dej(f)ex(f)

for all/c Va.t. If K has characteristic zero this is enough to conclude the proof (by

theorem 4.2.1). On the other hand suppose that K has prime characteristic p. Then in

order to apply theorem 4.2.1 we must prove that for allfeVbA and all (r,j)i0O(n) the

polynomial



157

W) =ejf(em)+tf([ers,emY)\ (u,v)« <P(rt))eAT]r]

has degree less than p. In fact foreach be } the monomial

has degree at most one (because either/[[e,J,eaid)=0 or/I[[eri,e6])=0). Since

(o]

we conclude that 0(0 has degree at most one. The lemma follows. .

Corollary 4.2.5.Let ae {1......i-1} be arbitrary. Then the variety VacV D(<p)is
Un(K)-invariant. Moreover suppose that thefunction &u,:Va.x-*K is notidentically zero
(here VO=VD(<p)). Thenfor each aeK, the subvariety

Va(a)={/eVa.lejfl-a)
ofVaA is Un(K)-invariant (we note that Va(0)=VJ.

Next we consider the minimum number of equations necessary to describe the

variety Va (ISaci). In fact there could exist ae {1.....M} such that ©ai(/)=0 for all
fe Va.\. For example if (\,i)eR(D) we clearly have ©;,»(/)=0 for all fe V D(<p). More

generally we have:

Lemma 4.2.6. Let ae {l,...,i-1} and suppose that (a,i)eR(D). Then

JO if (a,i)eD

at((/mx if (a,i)eD

Proof. Let/« Va1l be arbitrary and let x* Un(K) be such that the element g~xfe Un(K)*
satisfies ¢ («¢J-O forall be {i+1,...,n-1}. Then

8ci(8)mB(eci)8 (e JmBlect)<P<I>n)
forall c* {l,...,i-1}. Since Vaxis £/,,(AfHnvariant we have ge Va.xso ©Q(g)=0 for all
ce {l,...~i-1}. Since <p(iji)*G we deduce that

(4-2.3) g(«ci)-0
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forallcE{l,.../i-1}.
Now we consider the polynomial function A°ai:Un(K)* -*K. Let

D (ad) [ (iidi).....(Wr)}.>i<—  and let <r*Sr be such that ja(i)<— <ia(ry Then (by
(4.2.3) )
(4.2.4) AW -iriiidn~'s ).

Suppose that (a,t)*D. Then A*(g)=0. Hence gie**C and
Gu(i)=«(«ai)«(ein)=0.
Since &ai:Va\ —=ATis C/,,(AT)-invariant we deduce that

Qaitf)=&at(x -f)=6ai(8)="-

Since/is arbitrary we conclude that Va=Va.i as required.

On the other hand suppose that (a,i)eD. Then

Thus (by (4.2.4)) g(ej)=<p(aj) and so &a{g)=<p(a,i)<p(i,ny"O. As before we deduce that

and this implies that Va=0.

The proofis complete. 3

Lemma 4.2.7. Letac {1,...,/-1} such that (a,i)*D\i). Suppose that Va.x is non-empty.
Thenfor each aeK the variety Va(a) is non-empty and \Al.j is the disjoint union

VVi-U Va(a).
ankK

Proof. Let <c*K and \ex.fmVaA be such that/ie~J-O for all bm{i+1,...~i-1}. Then the

element
g-f+iqtijt)-1a-f(eaij)eai.*
satisfies
6ate)-g(eJg(e”Mf(ed+ (p(l,n)Aa-f{ea))<p(iji)-<x.
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Hence ge Va(a) and so the variety Va(a) is non-empty. The remaining assertions are clear

because is (/,,(AfHnvariant. .

The following result is an obvious consequence of the previous results (its proof

uses an easy argument of induction):

Theorem 4.2.8. Let D be a basic subset of roots and let <p:D-» K*. Suppose that
(t»eD and thatD\i)=D'n{(k,i); \<Jc<i}*<2. Let
D'(0={(*i,0....(*,0 },*I<..<* .

Letse {1, Then
Vk =[feV D(tp); 0 kxi(f)=...= 0kii(f)=0}.

On the other hand let OeK. Then the set
Vk(a)-{f.vkr 0 Kf)-a}

is a non-empty Un(K)-invariant subvariety ofVk (weputV~Voltp)). Moreover VK" is

the disjoint union

Finally suppose that there exists ae {1,...,/-1} such that (a,i)eD. Then

0 if cat<p(a,i)<p(i,n)
Vki if a=tp(a,i)<p(i,n)

for all aeK. In particular Va=0.

Since VcVijfcjC.-.cVfeccVo) (the notation is as in the theorem) we conclude the

following:

Corollary 4.2.9. Let the notation be as in the previous theorem. Then the variety

VD(<) is the disjoint union

. VD(<P)-Wy U -Li *V *(aj) .
1 \smla;rK /



160

Now letfeV D(<) and suppose that there existsa«  { }  such that/* Va(a) for
some aeK*. Then we have (1<b<a) and
Hence a is the smallest integer be {l,...,j-1} such that Moreover (by theorem
4.2.8) either (aj)ymD or @j)eD '(0cP If (aj)*D then

a=qta,i)<p(i,n).

On the other hand suppose that (a,i)eD\i). For convenience we put a=al and a=al.
Since (ax,i)eD’ there exists bxe {i+1.....n-1} such that {ax,bx)eD. Our aim is to
decompose the variety V ~aj) as a disjoint union of £/,,(Af)-invariant subvarieties. For
we define a new set of polynomial functions on Un(K)* and we imitate the arguments
used before.

Let geVD((p) be such that g(ejn)=Q . (ISySn-1) and g(ein)=<p(i,n)=a. Let
<B=(n-l... i+1i)eSnand define g * un(K)*, Dx<D(n-\) and gx.Dx-*K* as before. Let
ae {aj+If...,i-1} and suppose that the root (a.”-I) is D r regular (we note that the root

(ai.bj-1) is D j-singular because (aj.n-ljcDi; however there does not exist

ce{l,...,al- 1} such that (c*>i-I) e Dx). We consider the function

This function is i/BAT)-invariant and we have

*W *(eW.> -
~ gai  ghaj)
when (ixJX)m(ax>>), Dx(a,br 1)"i("2)....(Wr).(«i*-D"Wi,«-1)}.
and <JeSn is such that «ad)<ia(2)<-ee As in the previous case this suggests the

definition of a polynomial function AAU”K)* -*K as follows.

Letam{al+l,...,/-1}. Let

D tafri-IH C fnto ... (trdr))Jl<—<Jn
(we note that (ixJ XYm(aX X)) and let <JnBr be such that io(i)<---<io(ry We define the

polynomial function A*: Un(K)m~*K by
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(4.2.5) AJf)~det

N 0.0 *«*) L. (x«l) Yy

for all/e Un(K)*.

As in the previous case the first step is to show that for each ae {aj+1.-.-J-1} the
function ArfUn(K)* -*K is i/,,(AO-invariant when restricted to a certain subvariety of
Va,(a i)- This subvariety is defined by

Vaia(o,)=t/« Vat(aj); Afd(/)=0,a,+1£0£a, (W»,)«S<">(D)}
(for the definition of the set &\D) see pg. 85) ). We note that
Va,a(«l)=\Vaia-1(«1)

whenever (aJb”sA”iD). We have:

Proposition 4.2.10. Let ae {al+2,...,a-1} be such that (a,bi)«S*r\D ) and let
/eV Vi<ai)-Tften th* vector (.dAJ)(f)e Un(K)* lies in the radical r(/) ofthe bilinearform

Bf, i.e.

AlerAd<t>J(f)])=0
for all (r*)* dtyt).

Proof. For each root (rj)m &(n), we define the polynomial function tirs:un(K)* -»AT by

*.( ifi-i
> otherwise

for all/« Uh(K)*. Then we obtain a morphism of algebraic varieties &Un{K)+-* Un(K)*

if we define
<Hf)(CrJ-*rJf)
for all/« U,,(A0* and all (rj)*<P(n). Moreover if D(@"»r 1)-{(ixJi),,...(/.,/,.)},>|<...</,,

1We note that the condition (bJ>1)tS'(D) corresponds to the condition (fr,b,)*£(£,).
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and if OeS, is such that ¢a(i)<---<la(r)>we have

VI—Jr

for all /e u,(K)*. For simplicity we will denote by 4 the polynomial function

J1—=Jr
Let/« un(K)*. Then (by the chain rule)
(drIAai)(f)=( )X " )(<Bd)(t

for all (rj)eG(ft). Therefore

(drsAai)(f)e,,=

X E X
(mkc*(«) (r).«(n)l(u,»)e*(/)

= e CVAAXD) X

(@AIH= | X, o (WA ) (W)W )

u,v)m *(I|)
Since
if v=i
otherwise
we conclude that
r r ror

(dd I ()~ me/)(d0I(/)+X cali<)(d3 ab)</+Xc ~ , +X X

where for each ¢s andeachh { } cu(f)e K is the rxr minor of AJJ)
“complementary” to the position (*/).

Now let/8 V~icCi) and let (r,s)e <>n). We compute the “scalar” product

X[«rrW”ai)(N])- By lemma 4.2.3 we have
Aler,(dO©*)(/)]M ,*©,</)
for each be {I,...;-1}.
Suppose that si [a,ii......ir}. Then
A[«rTWOK)W])-0

for a.II be If r« it is obvious that
i
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Now let r=/vfor some v« {l,...,r}. Then
r

B <> >

We claim that this determinant is zero. For we will show that the column-vector

is a linear combination of the column-vectors

for B {v+l,....,r} (we note thatjv=r<s). This is obvious if for some us {v+I,...,r}.

On the other hand ifjr<s we have

(we note that (a,bi)sS("\D) so (a,s)sR(D)\D) and the claim is obvious. Finally let
us {v+1,...,/s} be such thatju\<s<ju Then

D(@j)*={(iwdJ.....(Ur))
and

(M>....(/.1))sR (D).

By theorem 3.1.7 we have
r

VD(<P)E%On|qKU )+ VD%VO)
where is the (i,,/,)-th elementary (/,,(AO-orbit associated with <p(Ut)sK*
(uSxir), B0=ZA{(i,,JJ,...,(Wr)} snd ft) is the restriction of 9 to 2)0. Therefore

friu-+---+fr+f
where0”(<fKil,)) (uSrSr) and/« VDo(ft)). Thus for each ¢x {r*M...”r} the vector wic

is a linear combination of the vectors

- ft(*irb)ft(*ab))T
for r«{u,.../-} (we note that (a,s)«/?(D)\E>). On the other hand (by lemma 3.1.1) for each
r«{u,...,/*} and each bs {sJu,...Jr} the vector is a scalar multiple of . It follows

that
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r r
V\fo«?,gu K t=UK wijf
forall bt {sjH.--Jr}- Thus
dimvV<jr-u+l
where

r

V=Kws+ £ Kwj.

Since A '(fy*0 (see the proof of proposition 3.1.2), the vectorsw ; a r e linearly

independent. So

dimV=r-u+1
and this implies that ws is a linear combination of the vectors as required. It
follows that
A?0" *?  (tf(/))=0
S0

Now suppose that s=a. Then r<s=a<i<ju(ISuir), so rt {j\,...Jr) and
r

K[eraXdAai)(f)])=cai<f)eri(f)+ x 1 Caj W firj)
A4

(we recall that (by lemma 4.2.3)). Therefore

Vvir
As before we claim that this determinant is zero. This is obvious if re {/i,...,fr} so we

assume thatrt {ilt...U,}. | f»<*)<fethen

because r<s-a and (r,bX)t& n\D) (otherwise rt {/j,...*)}). On the other extreme if

r<ioii) then/(eri,)=0 for all 6« and

OonW-fariwuJ-O-
Therefore we clearly have

W 0))}Q
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Finally we suppose that iO(ii)<r<io(«+t) for some uc {l,...,r-1} and we consider

the matrix

~*wi>
NOrA F«>) L Ify) y
We claim that A has rank u. Since 4°<n . ' o0 (scg ti,e proof of proposition 3.1.2)
ArtivAM
we have
rankAe {u,u+I}.

Suppose that rankA=u+1 Then there exists a non-singular submatrix A' of A of size
14+1. Since (rJveR(D) forall v* {l,...,r}\{ o(l),...,0(u)}, the column-vector

ssee“ «<N h »t

is a linear combination of the vectors

wikr<*ew«,) -

forre {1......u} (see the previous paragraph). Thus the submatrix A" (if it exists) has to be

"e AW «o00)

< O«(f) I<«,* - A«**) >

Now if r<axthen
m=¢ igl,)if)meriV)=0
(by definition of Ot - we note that iO(v)<r for all v* {1,...,«}). Therefore detA'~0 and we

must have ax<r. Then

{(*=N)/<A>)...... (K<) ) “ {(ai”*»i) JvjD(r*>t)
Thus
detA~xAri(mQ

because r<a and (rJt\)*SP\D). We conclude that the non-singular submatrix A' of A
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does not exist and so rankA=u as required. This implies that

as it was also required. Therefore

Finally suppose that s=i<xu) for some uc {l,...,r}. Since r<s=iH<a<i<jv (ISvSr),

we have rt Therefore

Ul-Jr
and we may repeat the above argument to conclude that this determinant is zero.

The proofis complete. .
m

As acorollary we obtain:

Lemma 4.2.11. Let ae {al+2,...,i-1} be such that (a,bi)tS*r\D). Then the polynomial

function -d«:va,a-i(a i) -*K is Un(K)-invariant.

Proof. IfK has characteristic zero the lemma follows immediately from the previous

proposition and from theorem 4.2.1.

On the other hand suppose that K has prime characteristic and let us determine the
maximal degree of the polynomials
*1)-AJJI{eM)+tfl{e,,.eM\), (p,q), d>(/i)).tf[r]

where/« Vil I(a 1) and (rj)* 0(n) are arbitrary. By definition we have
#0- X X M6tt(/(eM)+r/i[[erj,eM]); (p")« &(n))
where for each bm{i,...,n-1} and each VeS*.1

Mb.ATpr (pi)m <P(n)]

is the monomial (in the indeterminates Tpoy (p#)* <tKn))
i
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MbxX(Tm; (p,q)e O in*sgniD ThJi*pT
where D(@J>1-1)-[(ilJl),...,(irdr)]fJi<—<JIn 4L ir*ima- L« b* U....«*1} and let
T»Sr+l. Then the polynomial Mbj j pg; (p,q)e <b(n)) is not constant if and only if there
exists (p,q)t [(b,n),(i*i)J>),(i"2)Ji),---MT(.r+i)Jr)} such that/([er,,eM]M) and this is
possible only if s* [b4*iy,...4"\)} orrc [bjx...Jr) (we note that r<iSn).
Suppose that sc {;Ui(i).<--.<t(r+i)} and that rc [bJ\,...Jr). Then the polynomial
(PN« <P(«))«]
is not constant and its degree is less or equal to two. Suppose that it has degree two. Then

r=b=ju for some ue {1,...,r} and the coefficient of 12 is

On the other hand let tube the transposition (1 M+l)eSr+1 and consider the polynomial
MjrJJiepJ+tf&ejrepjy, (p,q)c <N/*)eATlr.

This polynomial has degree two and the coefficient of r2is

sgn(
Now suppose that se {i>it(i),...* k+1)}. If s=»t(B for some uc {I,...,r+ 1}, then

rc [bj\,...Jr] (because r<s=i*u<a<i, iSE>S/i-l and i<jx<...<jr) and the polynomial
Mb.MeM)+HA“riryeM]); (P#)* <P(n))cAr[r]

has degree at most one. On the other hand suppose that s=b and that

Mb. A pd)+tfil.erb,eM\)\ (p,g)c <P(n))cK[t\
has degree two. Then we must have n*ju for some uc {l,...,r}, and the coefficient of t2in

Mb.t(fieM)+tf[[ejj..eM]); (p.q)t d>(rt))c AT[]

As before we may consider the transposition «H | u+1) and the polynomial

This polynomial has degree two and the coefficient of t2 is
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It follows that the polynomial ftr) has degree at most one. Finally since the root
(r"s)« <P(n) is arbitrary we may apply the previous proposition and theorem 4.2.1 to
conclude the proof. .

As in the initial situation the next step is to show that

'V aid*Wi<ai
whenever (a,f)*R(D)\D. In fact:

Lemma 4.2.12. Let ae [ai+2,...,i-1] and suppose that (a,i) is D-regular (hence

(aJbx)eSMD)). LetfA*VaaA(af{). Then AJJ)*0 ifand only if(a,i)eD.

Proof. As before letD (a,hi-1)={(i1J 1)......(irdJ)}J\<---<jn and 1« oeSr be such that
,0()<...<itKr). Then (by definition)

where &.Un(K)* -* Itn(K)* is defined as in the proof of proposition 4.2.10.

We claim that there exists an element x=(xw)e Un(K) such thatx f satisfies

(xf)(eaju=Q

for all ue { and

In fact let D (a,0={(r!4i)......(rpj p)), Sx<...<sp, let uS p be such that r1(1)<...<rt(/,) and

consider the system of linear equations

0*1 “y))
where
'M ,«,) e A‘rts) >
A ev,) vk >
Since

detA-sgn(f)A
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this system has a unique solution (/3t ... ). We define x**(jcm)*Un{K) by

if (u,v)«(rfta), IEq£€p
if u*v
otherwise

Then

forallba{a+1,.Therefore
(*of)(«e*)-<>

for all 6e {slf...,j*}. If be then we consider the function
4d,:-VD<P)~*K (we note * at (a,b)eR(D)). The last row of the determinant A ~ x f) is

(D) (*+D)() — (x])(eaS) )=( (“e)(«*) O ... 0)

where and sC=i. So

V">
where T'eSp.i+1 is such that rT(?<...<rT(p). Now suppose that i<b. Then (a,b)*D and
4*(*[>-0.
Since A«*X "« ")(faO we conclude that
V1>
(je/)(«a*)'0.
The same argument justifies that
U/X «a i)" °
whenever (aJ)«D. Finally suppose that (a,i)*D. Then
ANC*/\_(_iv'Oi N '
C*/)-(-iy'9i(a /yr%vr’w(/)
(by proposition 3.1.2) and (x-/K.eJ)»f(.aJ).
Now (by the previous proposition) the function Aai:Vaia.x(ax)-* K is

(/.,(AO-invariant. Therefore
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By definition of the polynomial function &ai:Un(K)*-*K we have
gtad)<p(.iji) if(a,i)eD
0 if (a,i)eD

Since d 03> "loWx-/M) the proof is complete.

J1—=Jr

This lemma allows us to write a similar version of theorem 4.2.8:

Theorem 4.2.13. Let D be a basic subset of <tXn) and suppose that (i,n),(albl)eD
where ax<i<bx. Suppose that the setX"[(k,i)eD "\al<k, (bltjfc)«S<)(Z>)} is non-empty
and let
X-tOfcjA-.iV)}
where kx<...<kt. Let c*eK*. Thenfor all se {l,...,f} and all peK we have
v* l/«V «1); = At/f)=0}
for allse {1,...,t). Moreoverfor each fieK and each se[l,...jt) the subvariety

Vaxk(Otx.P)-\fe Vaxt] a x)\ Aks li(f)=p]

ofVat(ax) is non-empty and U,,(K)-invariant, and ~,*,,,(**1) is the disjoint union

(here Va€-a\)-Vaxa\))- Finally suppose that there exists ae {*,+1......i-1} such that

(a,i)eD. Let D(a,bi-D=[(ixJIX)...... (W r)}»)\<— <jr> anfi igt 0*Sr e such tb**

ig(\)<...<fo(r). Then
r

A vak(<Xi) ifP=(-i)rign(a)(p(a,i)(p(i,n)ri<p(ikJk)

0 otherwise
« V
for all oteK. In particular Z

Proof. Letse {lI,...,r} and let peK. We claim that the variety Vaxk(ax,£J) is non-empty.
By induction we suppose that the variety Vaik® (a x) is non-empty. Let/« V a”iaj) be an

element such that/fe;))-0 for ally* {l...~i-1}. Then the elementf+yekj*e un(K) lies in
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the variety V«* ,(®i) f°r all T"K. Since we may choose /such that Akj Xff)"P we
conclude that V~Jia”p) is non-empty. The remaining assertions of the theorem are

consequences of the previous lemmas except the statement about Vdia(a 1(/3) when

(@a,i)sD. However this follows from the flroof of the lemma 4.2.12 and also from the

proof of proposition 3.1.2. In fact
r

AﬁaOTr' **(.x-f)=sgn(o)II<P(ik.] J
— jfe-1
for allfe VD(). .

Next we will describe the situation on the whole of the i-th column. As before we

assume that (i,n)eD for some ie {1,...,n-1}. We suppose also that the set
D'(i)=D-n{(a,iy, I£a<j}

has at least (¢2 elements and that there exists a sequence with the following
properties:

(i) I1Sal<02<...<at<f.

(i) (af,/)ez)'forallse {l,...,r}.

(iii) 1fb,€{l,...~t} is such that (a,,bJ)«D (ISsSr) then b1>b2>...>br
We note that (by (ii)) we have b”<n, i<b, and a,<a whenever (a,i)*D for some
ae {1.....i-1}. A sequence satisfying properties (i)-(iii) will be referred to as a special

sequence (with respect to the basic subset D of <£(«) and to the root (i»«D).

In the adjacent diagram we show a special
sequence with 3 elements. The roots in thts
sequence are represented by the symbol O (as
usual the symbol m represents a root in D). If
we apply the element aH o-1 mmmi+U)»Sn to an
element corresponding to this diagram we
obtain the diagram shown below on the left.

The diagram on the rigfct corresponds to the
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situation in Da . In this diagram the symbol m indicates that the corresponding root was

“transformed” in the root of Da which lies in the same column (the roots in D mare

represented by the symbol m).
n-ln n-1n

Now let (a,i)eD"' (I£a<i) and let be {»+1,...,n-1} be such that (a,b)eD. Let
ce{a+l,...,i-1}, letD(c,b-)={ . . . .(«Jr)}, j\<-m<jn and let oeSr be such that

t'od)<.. -<ia(ry Then we define the polynomial function Un(K)* -*K by

(4.2.6)
-tew )

\' eci(f) Aecx ... fieck) J

for all /« Un(K)*.

Now we consider a special sequence (alta2<ses0,) as above. For simplicity we
write A'? instead of for all (c,i)eD" such that a,<c (1£r£r). Let be

non-zero elements-of K. Then we define the variety Valaj <(ai,...,af) recursively as
follows. If r«l then V7ictj) is defined as before. If se {2,... ,r} then
val.«,(<Hit<!2.... as) is *he variety consisting of all/« V-i_ <i(al,...,a* 1) which satisfy

the equations
AS(f)-0



for all ce [as 1+\,...jis) such that (c,t>D"and (cJ>5)*&r\D), and

By induction wc assume that the varieties Va,«,..«#ai...... «,) (I™iSf) are

Qn(AT)-invariant.

For each ae {a,+|....i-1} we define the subvariety Vax..ap(a\...... at) °f
oo*/\t) by
Vav..ap.((xi’---'at)={/* vi«l..a,(ai---.0r); 4 ‘fr)-0,a,<b*a,(c e ~fD )}

(as above simplifiesrijj ®).

In order to prove the similar version of proposition 4.2.10 we define for each

ft« {1,... ,a,-1 } a new polynomial function rbi:un(K)* -*K as follows. We let

D(bJ?))-{(ixJx).....(Ur)}.7i<-e.</,, and let S, be such thatI*yc...<i<try Then

(4.2.7) »?2«(/)-

A ®6i(/) ) e ffcbj} J

for all/« un(K)m This function has the following property:

Lemma 4.2.14. ft« {1......a,-1} and suppose that (b,bt)eR(D) (ISft<a,). Tften

r]bi(f)~Ofor allft Va~.a”Oh....... w)e

Proof. We proceed by induction on ft. LetD(ft,ftf)s {(ii'/i)....XWr)}>./i<"<</r< and let
otSrbe such that j*<...<1" .

Firstly we suppose that there is no ce ( 1} with (,cJ>"eR(P). We claim that
i
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- 1 (dTIbUV* rtf)
for ail /m Vaiai...at(ai’a2”"<at)- F°r we have (using the argument of the proof of

proposition 4.2.10)
r r r r

(¢ %i)tf)=c«tfXdew)tf)+X CylJifieti+jL X
where, for each pe {{Mlt...,ir} and each qe [ij\,...jr},cpq(f)eK is the rxr minor of
TJA(f) “complementary” to the position (p,q). Now let (k,I)e <D(n) be arbitrary. If
k*Ul'—Jr) and/«{6,ij,...,ir} then
AU u”dT\bi){f)])=0.

If k=js for some se {l,...»r} then ip<b<i<j,=k<l for allp* {l,...,r}, so

where & Un(K)*-+ Un(K)* is the morphism defined in the proof of proposition 4.2.10

Since the column
(*W > ~*w > * «>)T
is a linear combination of the columns

fcbj) )T
for ue {$,...,/*} (see the proof of proposition 4.2.10), we conclude that

AUjj{dribi)(H])=Q.
Suppose that A« and that I=h. Then
Af«to.Wn«)(/)])-47;"<x)*(iH/)).

By choice of b the root (b,br) is the smallest D-regular root in the ¢>-th column. So

(kjbr)*S(D) and this implies that kt {/1,...~r}. It follows that

Alw».W»]n)(/)])-0.

The same argument applies to the case k~i, (Lis£r). This concludes the proof of our
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claim.

Now the argument of the proof of lemma 4.2.11 shows that the function
tlbi:Vala2..a,(Oi,ce2......«»)-» * is (/,,(/O-invariant.

Finally let .al(ai’a2»"->ai) be arbitrary. Then (as in the proof of lemma

4.2.12) there exists x* Un(K) such that the element x «/« U{K)* satisfies
(x-fKebJ)-0
for all tie {1,.../m}. Since the variety Nai,«* <) is (/,,(/O-invariant we have

xfmvala2..a,(aua2....a») and so

Since Oc-f)(elf)=0 for all Me {1 we conclude that
(4.2.8) TldfM Ayebif]IVA‘\]r""W xf)).
We claim that
e bi(.xf)=o.
If fx a x this follows because Vata{) is i/,,(/0-invariant andfeV a*ax). So suppose that
ax<b and let Me {I,...,r-1} be such that au<b<autx (we cannot have b* {a!,...,a,}

because (b,,b)eR(D) and bx>...>bt). We consider the function Un(K)* ->K. Since

xfeVala2...aJial’( X (*) wc have

A%(x-f)=0.
But (x-f){fibj)~0 for all Me {l,...,r} so
NMxf)~ebi(f)c(f)

where ¢(f)mK is non-zero. It follows that &Mft<-0 as required. By (4.2.8) we conclude

that

and the first step of the induction is complete.

Now let (bJjn)*R(D) (1Ztxa,) be arbitrary and assume that

Tp{f)mo

1 We note thM -8, (0 1*«2......««) > (/.(/O-invariant »"(aj.0j.....aj (because
.3, (®lsal>ee . & IR BD<Fees*())e
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for all/«V aia2..a((Ci,al,...,at) and all b'* {I,...,b -1} such that (b',br)eR(D). As before

we claim that

(dr\b$(f)eV{f)
for all/e Vaia2 . oo ) Let (*,/)« <P(n) be arbitrary and consider the scalar
product (dtjw)(N]). We keep the notation of the first step of the induction. If

knUifJr) we may repeat the previous argument to conclude that
X[*«,(dT/w)<fl])=0.
Now suppose that ke [j\,...Jr] and that I=b. Then
AleaXdTlbm )=d*'r'=)\m i
We claim that the row-vector (©*,(/) oee is a linear combination of the

remaining rows. This is clearly true if either ke {il(...ur} or Ifk>i"r) then

(by induction because *</=& and (k,b,)eR(D) - otherwise £c {ij,...,/,}). On the other
hand, suppose that i0(«)<*<i'o(iHH) f°r some ue {l,...,M }. We consider the matrix

A= ‘
AW -)

No(l) Ify,) — (<) y
The argument used in the proof of proposition 4.2.10 shows that this matrix has rank
u+l ifand only if the matrix

f+mP — Maay«w)

A'»

is non-singular. Since (kJ>,)uR(D) (because fa [iu...Jr}) and

D(k,b,)~ {(iotD"od))»-+*>Cio(a)i/o(ap)
we have
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detA ==rlii(f).
Since 7J*,(/)=0 (by induction because k<b) we conclude that detA'=0 and this implies

that rankA=u. It follows that the row-vector
(©«(N/ieVi) ... Key))

is a linear combination of the rows

forvs {l,...,u} asrequired. The case I=js for some se {l,...,r} isdiscussed similarly.

Finally we repeat the proof of lemma 4.2.11 to show that the function
Ibi:Vala2..al(a ia2’--->at)-*K is U ,(AT)-invariant. Then for each

we choose the element xe Un(K) as in the first step of the

induction and we imitate that argument to complete the proof. .

We are now able to establish the similar version of proposition 4.2.10:

Proposition 4.2.15. Let ae {a,+2,...,i-1} be such that (a,b,)*S*(.D) and let
f* Nal2..ab-i(ai.®2.....«,)* Then

Aleu,(dA%)<f])=0
for all (kj)m <P(n).

Proof. Let D(a,btmD)«{(ilJ{)...... (irJr)) and let a*Sr be such that
‘o(i)<ees<*&)e I*1this case we have
r r r r
(dAM)(f)~cIf)(d9J(f)+H, cjlfr'j,+Z 1 cwW ,(0eW ,
where, for each p* and each gm cM(f)*K is the rxr minor of

“complementary” to the position (pxf).

Let (kj)e <P(n) be arbitrary. We claim that
Aleu,m<2)(f)))-0.

The argument used in the proof of proposition 4.2.10 applies here (with obvious minor
li
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changes) except in the case le [a,iX,... ,ir]. Then kt Jr} (because

k<lfa<i<j\<...<jr). Suppose that /=a. We have

where the morphism &.Un(K)* -* Un{K)* is as before. We claim that the row-vector

(E&(/)/1*#,) meKekj))) is a linear combination of the remaining rows. This is clearly

true if either ke {ilt.,.jr) orkdg”y Ifloi*"a, then

Vi
(because fAV aia ...afi-i(aua2....atp»k<l=a and (kJ),)sR(D) - otherwise ke {l,,...,/,.}).

Now suppose that to(«)<*<i<j(ii+) for some u* {l,...,r-1}. As before, we consider the

matrix

K I(«*,) — fokj) ]

This matrix has rank -1 if and only if the matrix

IT=

is non-singular (the justification of this assertion is the same as in the proof of

proposition 4.2.10). If k>a, then

D(kJ},-1)* {Vo(i)Jo(i)),-**fOa(u)Ja(u)) }
and we have that
detA'-£Afi(f)

(we note that (kK3>,)e/t{D) because ke .i,}). Since/«...a@t(alf02....a,) and
k<Imawe have 0. Finally suppose that k<a,. Then

D (K, bt)i* {(io(i><l0i))*. **("0()»/0(<)))
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and so
detA"ilti(f)=0
(by the previous lemma). It follows that

rankA=u
and (as before) this implies that

The case I=j, for some se {l,...,r} is discussed similarly. .

The next result has the “same” proof as lemma 4.2.11.

Lemma 4.2.16. Let ae [a, + } be such that (a,bt)eS*r\D). Then the function

i (<xx,(&i>..,<xt)-* k IS Un(K)-invariant.

This lemma implies that

whenever (af)eR(Df&. In fact we have the similar version of lemma 4.2.12:

Lemma 4.2.17. Let ae [a,+2...../-1} be such that (a,b,)eSin\D ) and suppose that
(@J)eR(D). Letfeva® ... a,). Then AE(H)*Q ifand only if(aJ)eD.

Finally we state the generalization of theorem 4.2.13 (its proof is similar to the

proofof that theorem).

Theorem 4.2.18. Let D be a basic subset of 4>{n) and suppose that
(i,n),1aiJ>{),.. .,(apb,)eD are such that (alt...jit) is a special sequence (with respectto D
and to (/,«)). Suppose that the set X=D'n{(k,i);at<k<i, (k,b,)eS(r)(D)) is non-empty

and let

X-{(*1.0.(*2.0.....<M)i



180
where kx<I2<...<Jcr. Let Then

forallse {l,....,r} c(here V-[ ... LAY € P g.)). Moreoverfor each fk K

andeachs* {l,...,r} theset

is a non-empty Un(K)-invariant subvariety of V*, ... (® ...... a,) and

V~i ,, " (Cli......ft) « the disjoint union

r)b\*
Finally suppose that there exists a* {a,+I....... f-13} such that (a,i)eD. Let

D(aJd)rl)={(iidi),---Xinir) }.j\<-m<ir>and let oeSr be such that {0(2)<...<u0(r). Then
r
Val....oJ.aI ...... <*P)*0 <> )3:(-1)ri«n(o)<p(a,0<)5(»>t)ri|<P(th)-

Moreover

r
where fr* (-I)rsgn(,&)<p(.a,i)<p(i,nkITP(ika)-

Now leta=(ai.---A) be a special sequence. We define the subset 2)(*) of tf(n) by
D<)»E)u{(a™-); ISrSt}
and we consider maps which satisfy
gtalu,v)*tp(u,v)
for all (u,v)*D. Then we will denote by
Vp»?
the i/,,(AO-invariant subvariety VA “~ctx....a,) of VD@ when
aref<f) (17n)
endfmVpitp) is such that/U~-0O forall> {f+l,...%i-1}and
fi.,eia)m<taXixid (lir"r).

Wc have:
i
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Theorem 4.2.19. Let D be a basic subset of <DO(n) and let <frD-*K be a map. Suppose

that D\i) is non-empty and let a”(ai,...xt,) be a special sequence. Then isa

non-empty Un(K)-\nvariant proper subvariety ofVD(¢®.
Finally theorem 4.2.19 implies the following:

Theorem 4.2.20. Let D be a basic subset of <&n) and let p:D-*K be a map. Let
I« VD(@). Then there exists a unique special sequence a=(ax......at) and a unique map

such thatfeVv ~tp~.
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CHAPTER 5

A DECOMPOSITION OF THE REGULAR CHARACTER

In this chapter we establish the decomposition of the regular character p of Un(q) as
the sum of all basic characters £D(p) (as usual D is a basic subset of <P(n) and qr.D-*K*
is a map). We prove this result using an inductive argument suggested by the methods of
chapter 4. In fact we may define a total order on the set of all basic subsets of <P(/i) (see
next page) and the “action” of a convenient element of Sn allows the definition of a basic
subset Dx of <P(n) which is smaller than a given subset D. In section 5.1 we construct
this basic subset. Then in section 5.2 we prove the result mentioned above. For this
proof we establish a series of lemmas which relate the multiplicity of any irreducible

component of £d(<P) and the multiplicity of a corresponding irreducible component of
Jol(?>) where <P.DX-> F g* is a map which depends on a given map <p:D-» F g*. Each

lemma is concerned with a different case depending on the relative position of the roots

inD (and in Dx).
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5.1. Weyl conjugation of orbits

In this section we fix a basic subset D of <D(n) and a map <piD-*K* (n and ATare as

before). Without loss of generality we assume that (i,n)cD for some ie {l,...,n-1}.

Moreover we assume that i£n-2 (*).

Our aim is to describe an inductive process which allows us to get information

about a given C/, (Af)-orbit 0<zVD(<p) once we have some knowledge about the
i/,,(Af)-orbits 0\ which are contained in a “smaller” variety We consider the
total order < on the set of roots <P(n) as defined in the proof of proposition 2.2.13. Then
the set of all subsets of <f(n) is totally ordered as follows. Let A={(al,hd),...,(ar,hr)},
(ald=i)<..<(ardx), and S={(c1d).....(cJ,d,)},(cLldD<...<(c"d,). be arbitrary subsets
of $(/t). Then we define A<B if one of the following conditions is satisfied:

(i) r<sand (al6)=(cLd)......(ar,hr)=(cr™ r);

(i) there exists te {1.....r} such that (a162)=(cI!>,...,(ari,b,.)=(£:f. 1d,.1) and

Now we consider the simple reflection <»=(»/+1)eSB Let OcVD(<) be any
£/,,(Af)-orbit and letfeO be an element satisfying
AeMH)-0

(the existence of this element was justified in the proof of lemma 3.1.1). Then we define

the elementf,,n un(K)* by

(5.1.1)

(cf. section 4.2).By theorem 3.1.7 there exists a unique basic setofroots D /i) and a

11f imn-I then the variety VI(p) is the sum of the zero-dimensional orbit and the variety
VogCfb) where (n-1,n) J and % is the restriction to DO of the map pi Therefore the {/,,(JO-arbits on

ty p) are in one-to-one correspondence with the i/_,(K>crbition V0 (p,).
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unique map (p"D”-iK* such that
fat VdJ.Viy-

In the next lemmas we will determine the set Dmand the map qv Since the setDa

depends on the choice of the elementfeO we will fix this element throughout the section.
The set Dm is closely related with the set
<u(iD)={(<u(u),tu(ft); (a,A)sD}

and the map gmwith the map <°(0:(o(D) -»AT* - in fact in many cases D a=a)(D) and
(pa"gjoco.

Lemma 5.1.1. Let (a,b)e <fi(n) be such that i+\<b. Then

(altteD,,, <> otaJ})eD.
Moreover

<plial>)=<poa(al>)

whenever {aJb D"

Proof. We proceed by recursion on the set {(a,b)td>(n);i+I<b}. We have
/al«on)=/ican)=0 for all as {l,...,i-1} andfJ,e”f{.e M *)=0 (by the choice off). On the
other hand f m(eiHn)=f{ein)=<p(i,n)*0. Hence the lemma is true whenever b=n. Now let
(a,b)s 0(n) be such that i+I<b<n and assume that the result is proved for all (a'.b'Js <D(n)
with (a',b")<(.a,b).
Firstly we claim that
(aJ=)eR(PJ » (w(@)J>)mR(D).
For we will prove that
(a™)s5(DJ »  (<o(.a)J>)mSfD)
(this statement is equivalent to the previous one).
Suppose that (co(a),b)eS(D). If (©{a),b")*D for some ft's {;>+1,...,/»} then
(tu(a),b")<(a™>) (because b'>b). By induction we obtain {aJb”"D” Thus (a,b)*S(D
On the other hand suppose that (a'Jb)eD for some a a {l,...,<u(a)-1}. If aKaOxt"oxute)

then (a',tu(a))«(/,j+1). Since (i,n)*D we conclude that b~n. This contradiction implies
M



that <u(a’)<a. Since (a'Jj)eD we obtain (by induction) m So S{D".

Conversely suppose that (a,b)eS (D If for some b'm {¢H-I,...,n} then
(atfi)JbneD (by induction) so (co(a)J})sS(D). On the other hand suppose that
forsomea« { } . Then (by induction) (aj*a”Jb”D. Now if ai(a")>a=oxi)(a) then
(a’,co(a))=(U+l). Thus a'=i=a. This contradiction implies that aiia')<a so (a,b)eS(D).
Our claim is proved.

Now we consider the functions 4 ~ afcU,,(8T)* -* K and A*E-.Un(K)* -* K. If
(a,b)uD(i,i+1) then <u(a)-a. Moreover Dat(a,b)=D(a,b) andf ers)=f(ers) for all

(rj)*DJ,aJ>). Therefore

It follows that

and this implies that
(@J>)eDa <> (aJ))eD.

Moreover (by (3.1.7)) we have
<pJal))=<p(.a)>)=<poc"al})
for all (aJ>)eD,,.

Now suppose that a-i. By induction we have D(i+ 1J>y=DJ,iJb)">{(i,n) } and so

Since we conclude that

«e d?+i6(/)*0,

(M) «DW «  (i+l,i>)«D.
Suppose that (hence (f+1™»)*/)). Then (by (3.1.7)) we have
N«M -lYtimdfj and A 16W -(-irVi+U)c(0
where r>If)M/,6)UID (/+1,6)1-1 and c:Itn(K)* -* K is a well-determined polynomial
function which satisfies c(fj~cif). It follows that

9jiV))-<IKi+U>)~<pow(U>).



Finally suppose that ax'. Then we must have ax'+1 (otherwise b=n). In this case
DlJiaJ>)=atD(aJ>)).
If there isno b’'m{¢>+1,...,/t-1} with (hence there is no b't {¢H-I,...~t-1} with

(i+Ut"D) then

and (as before) we conclude that
(a”D,,, < (a,b)eD.
Moreover
<pJa,b)-<p(al))-<p°oj(al>)
for all (d*eDgy On the other hand if (i.fOe™m f°r some b’e {b+1,...,/i-1} (hence
(i+1,b"eD for some b'e {b+1,... ,n-13}) then the determinant

is obtained from A~ (f) by permuting the columns corresponding to the roots

0 » and (i+l,h) ofD. Therefore

As before, we deduce that
(aJ?)*Dm <> (a,b)eD.
Suppose that (aJj*D”". Then (by (3.1.7)) we have
and ANf)=(-1)r<p(ab)c(f)
where r=IDd)(a,b)I1=1D(a,b)l and c:Un(K)*-*K is a polynomial function which satisfy
c(fj=-c(f). It follows
g>Jii,b)** <p(i-H,b)=<PoaX.i,b).

The proofis complete. .

Next we consider the roots in the i-th and in the (i+1)-th columns. By theorem

4.2.20 there exists a unique special sequence a~(ax,...jid (with respectto D and to (j»)

and a unique map ->K* such that

Foreach 1« {1,...”} we letbt« {/+!,..} be such that (aib{)*D.



Lemma 5.1.2. Let the notation be as above.
(i) Ifb,m+1 then (a,j+\)eD,,and

pJiarJ+iy-qftald).
@ii) Ifbfi+ 1 then,forallae{ 3} ,
(a,i+)eDI0 <= (af)*D.
Moreover if (aj+\)eD,,we have a,<aand

<pj.aj+)-<p(.aqj).
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Proof. Firstly we suppose that (b,i+\)eD for all be {I,...,j-1}. Letae {I,...,i-1} be

arbitrary. We claim

(aJ+\)eR(PJ <> (a,i)eR(D).
For we will prove that

(a,i+)eS(.DJ <> (a,t>S(D).

We proceed by induction on a.

Suppose that (1,1+1)65(0”~. Then (UcJeDm for some ce {»+2,...,«}. By the

previous lemma we have (1,b)eD. Since b>i+\>i, we conclude that (1,/+1)e5(£)).

Conversely suppose that (I,/+1)aS(D). Then (l,c)eD for some ce {j+1,...,/i}. Since

(I,/+1aD (by our hypothesis), we have c>i'+l. By the previous lemma we have

(1,c)€D#band so (U+1)eS(DJ.

Now we assume that a>| and that the claim is proved for all a™* {l,...,a-1}.

Suppose that (a,i+\)eS (D If (a,c)eD,, for some ca {i+2,...,«} then we repeat the

argument above to conclude that (a,i)eS(D). On the other hand suppose that (a\/+1)sDw

forsomeaad{l,...,a-1} Then (0',i)a/?(£)) (by induction and by the previous lemma) we

have

(because there is no be {1,...,/-1} with (bJ+1)mD). Since (aJ+1)eD,, we have

fi*o
Therefore (a’J)*D and this implies that (a,i)eS(D).
"
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Conversely suppose that (a,i)*S(D). If (a,c)eD for some ce {i+l,...,n} we must
have c¢>i+2 (by our hypothesis). Hence (by the previous lemma) (a,c)«0,,, so
(a,i+1)eS(DJ). On the other hand suppose that (a',<>D for some a'e {l,...,u-1}. Then
(a'j+1)cR(Da (by induction) and we have

Now an imitation of the argument used in the previous paragraph justifies that
(@',H-1)eD<tand this implies that (flj+1)eS(PJ. This completes the proof of the claim.

Now we may use the equality

to conclude that
(a,i+eDa, o (aJd)eD.
Moreover (by (3.1.7)) we obtain
<pj.a,i+l)=<p(aj)

whenever (a,i+1)eD BThe assertion a,<a follows from the definition of special sequence.

Now we suppose that there exists be {l,...,i-1} such that (fM+1)«D. Then we have
b=a, if and only ifb”i+1I. Letae {l,...,b-1}. Then the argument of the previous case can
be repeated to prove that

(aJ+DeRiDJ (a,i)*R(P).

Moreover we have

and so

(aJ+DeDa <» (aj)eD.

If this is the case then a,<a (by definition of special sequence) and

(by (3.1.7».
On the other hand suppose that (a,i+I)eDm(hence (a,l)eD) for all a« {

We claim that (b,i+1)eR(D J. In fact if (b,i+)«S(D-) then (b,c)eDm for some

ce {i+2....n-1). By lemma 5.1.1 we have (b,c)eD and this is in contradiction with
i
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(¢(M+L)«.D. Now let DJ.bJI+)-[(113I),...,(irdr)}>ji<"”gr “ d Ict °*sr be such that

i0f<—<Tf) T

Since VD(<p)=0D(<) (theorem 3.1.7) we have
f~g+h
where geObM (a), <x=(p(bj+l), AeVD'<p"), 20=ZA{(6,t+1)} and R is the restriction of

<pto DO. TherefOTe we get

(5.1.2) ANH(fI=ADPR.(h)+dei

Axaew) 0 o 00)
Since (&,t>/i(f?0)NDo we bave

i “(h)=0.
On the other hand

JfJr
(see the proof of proposition 3.1.2). Thus
- 8 biy0.
and (by (3.1.7)) this means that
(bj+VeDu <> gtebi)*0.
Now we claim that
(b4+)*DQ « b=at.
Firstly we assume that b*at. Then b~i+ 1 To prove that (bJ+1)éD0 we must show that

8(««W). For we consider the function &bi:UHK)*-*K. We have
-1
&b,<fléh-A‘ bc)fi.ecn)
#-1
-gtebuK eJ+Webiwui+X, fobcw cJ

S* () («»)+O*(*)e
If b<al\ then
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©6«(/)“ 0

(we recall thata=(aj,...,af)). On the other hand the sequencea”ax,...” is special with

respect to DO (and to (i,n)). Moreover it is clear that

where < (a) is the restriction of g(m)to DO  (we note that DO (@=D@\{ (b,i+D]).
Since (bJ)eR(D<$ we have
©w(A)=0
(by lemma 4.2.6). Since/(«¢,)*0 we conclude that
g(ebi)=0.
Now we suppose that as<b<as+l for some se {l,...,r} (if s=r we put al+l=a, if

(a,i)eD for some ae {a,+l,...¢ -1} and al+l=i, otherwise). We note that

because (b,i'+l)eD and b*a,. We consider the function Un(K)* -*K (the notation

is as in section 4.2, pg. 172). LetD<uh,b,-)={(iVi)....{ij,)},]\<...<jn and let <JeSr
be such that /0<D<...<i0(r). Then

( N ‘44_ o' N% ‘«1i) N

(5.1.3) <e*to-A T W M .) det

N*(«k) 0 0 J

As above
™AW (N C).
Since (bj)tR(D(d we have
0

(by lemma 4.2.12). Since A™'tyW ) (because b+ a”fie®iQ and 0 we
conclude that

*(«6,)“0-
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We have proved that
M+« "® =* b=at.

Conversely suppose that b=a,. Then we repeat the above argument to conclude that

where D J,atBt.1-\)=[(iX X)......Vnir)) Ji< —<Jn 30(1 <**$, is such that i(K)<...<ia(r).
Since we deduce that g(eap#0, so (Upi+1)«/)™ This completes the proof of
our claim, i.e.
(¢M+170,,, <> 6=ut.

Now suppose that b=a,. Then By (5.1.2) we have <pjflt,i+l)=g(eap

and by (5.1.3) g(ea®  ma,,i). So
<pj.api+1

and pan (i) of the lemma is proved.

Finally we suppose that b*a, (we note that by assumption (;>,i+l)eD). We consider
the roots (a,i+1) for an arbitrary ae {¢{H-I,...,i-I}. An inductive argument (analogous to
the one used in the first pan of the proof) shows that

(a,/+D)«/?(2)® «e (a,i>/?(DO0).

On the other hand we have

(see lemma 3.1.1) Since g(ebi)=0 we deduce thatJ{eai)=h(eai)+g(eai)=h(eai). Moreover

(by (5.1.2))

This implies that

(aJ+hH*Da <> (a,0*D0.
Since Dgd/A{ (6./+1)} we conclude that

0aJ+I)mD,, «e+ (aJ)*D.
Finally if (aJ+I)*Da (hence (aJ)*D) we must have a>a, and

<pj.aj+1)- <tl#).

The proofofthe lemma is complete. .
i
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Remark 5.1.3. Let the notation be as above and suppose that (i,i+1)eR(DJ). Then

(iJ+1)eDluifand only If this is the case then there exists a unique a*K*

such that

(in fact a=-<p(i,i+l)). Moreover we have

fmaeii 6 D) (S0

where (<pjo is the restricdon of ga to (i,i+DH}

In the next result we consider the roots in the j-th column.

Lemma 5.1.4. Let the notation be as above.

(i) Ifb,-i+\ then,for all ae {1,...j-1},

(a,i)*Dm <> (aj)eD.
If(aS)eDmthen coatand
<pjiaj)—" W ) * 1<p@@n<p(a,i+1).
(ii) Ifb~i+1 then,for all ae {1....J-1},
(a,i>Da <> (a,i'+l)«D.

If (.aJ"Dfn, then

<pjia,))-<p(aj+l).

Proof. Suppose that h,*i+l.

We claim that (@J)*Dn for all an{1,...,0,-1}. In fact let an{1,...,0,-1} and suppose
that (0,i)cR(DJ. Since a<a, and (@,J+DmD there isno am{l,...,a-1} with @"3H1)eD.
On the other hand since (afaRiDJ there is no bm{i+l,...,/i} with (@Jt"UD (otherwise
@ID,, - by lemma 5.1.1). Therefore (a,i+1)«R(D). Since (a,,i+)mD,, (by the

previous lemma) we have @".i+l)*Daforall a’e{1.....0-1}. Thus

tl
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Since (a,i+l)«D (because a<a,) we obtain

and this implies that (.aJ)ymDmas required. On the other hand we have (api)*Dmbecause
(dpi+I*Da (by the previous lemma).

Finally let ae {a,+1,...,/-1} and suppose that (a,/)«/)<,,. We claim that (a,7)eR(D).
In fact suppose that (a,C)eS(D). If (a,b)eD for some be {i+l,...,n} then ;»i+1 (because
a>a, and (a,,i+l)eD) and {a,b)eDa (by lemma 5.1.1). This is in contradiction with
(a.0e-Dor On the other hand suppose that there exists a'e {1._ *»-1} such that (@',i)eD.
Then a,<a' (by definition of special sequence). If (0’,i)<S(Z)a) then there exists
b'e {i+1,...,«} such that (a'Jj*eD,,, (we note that (a,i)eD J. Since (a*+"eD" (by the
previous lemma) we have b">i+l, so (a'Jj*eD (by lemma 5.1.1). This contradicts the
assumption (a’,i)eD. Therefore (a',i)eR(DJ). Now the determinant is obtained

from the determinant ¢,¢,j(f) by permuting the columns corresponding to the roots (a',i)

and (dpi+l). It follows that

Since (a',i)eD we obtain

This implies that {a'*eD * which is in contradiction with (a,<)«E>ar I* follows that
(a,i)eR(D) as required.

Now we have (as above)

Since (aj)eD mwe conclude that

13

- 0
and so (a,i)eD. Moreover (using (3.1.7)) we deduce that
<pj,aj)<pjani+)—(p@i)<p@rj+1).

By the previous lemma we have
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Thus
g>Jajy=-<ifa\ar,Tr 1 <fi(a,i)gi(ard+1).

To conclude the proof of part (i) it remains to show that for any e {l,...,i-1}
(la,i)eD => (a.OsDdy For suppose that (a,t)eD. As before we claim that (a,7)eR(DJ. In
factif (aJ))eDmforsome be {i+1,then b>i+2 (because (a”i+1)«/?” and (by lemma
5.1.1) (aJ?)eD which contradicts the assumption (a,i)*D. On the other hand, if (a'j)eDm
for some a'e {l,...,a-1} then (@',i)eD (by the first part Of the proof) and this is also in
contradiction with (a,i)eD. It follows that (afieRiPg) as claimed. Finally we use the

equality

(see above) to conclude that {aj*eD"

Now we assume that b,*i+1and we letae {1.....M }. We have two distinct cases:
either (h,/+l)c O~for all be {l,..,,a-1}or(b,i+l)* Dmfor some he {1,...,a-1}.

Firstly we assume that (bj+1)e Da for all he {l,...,a-1}. Suppose that {aj*eD" As
in the previous cases we claim that (a,i+1)eR(D). For suppose that (a,i+1)eS(D). If
(a.b”eD for some b'e {i+2,...,n} then (a.fOeO» (by lemma 5.1.1) which is in
contradiction with {a”~eD ”~ On the other hand suppose that (a',i+1)sD for some
a'e{l,...,a-1}. If (a4)eS(,DJ then there exists b'e {i+1......n} such that (a'Jb”eD” By
our hypothesis b">i+2, so {a'J}")eD (by lemma 5.1.1) and this is in contradiction with

(a',i+)«D. It follows that (a'j)eR(D,J. Now we have

(e
Since (a'J+1)eD we obtain

(N*)

and this implies that (a'jL)eDn which is in contradiction with (a,Q«Dv It follows that
(aJ+eR(D).

Finally we have

Since (aj)eDa we obtain



1/

195

4Li<n-Srvjto
and so (aJ+1)eD. Moreover (3.1.7) implies that
<pjiaj)m<praj+l).

To complete the proof in this case suppose that (a,i+l)eD and suppose also that
(a,i)eS(DJ. If (a.hOeO» for some ft's {i+l,...,n} then b'>i+I (by hypothesis) and
( (by lemma 5.1.1) which contradicts the assumption (a,i+l)eZ>. On the other
hand if (a\i)«f>0> for some a « {l,...,a-1} then (a',i+1)«D (by the reverse implication)

and this is also in contradiction with (a,i+l)eD. Thus (aj)eR(DJ). Now the equality

implies that (a,)eD(0and the proofis complete in this case.

On the other hand suppose that there exists be {1,—”">-1} such that (bJ+I*D "
Suppose that (a“eD ™ As before we have (a,i+1)€$(/)) if and only if (<j\i+1)eD for
some a g {1.....a-1}. Suppose that this is so. Then

(a’i)eS(DJ «e (aV+DaD«.
In fact if (a'.fOeOox»for some be {i+2,...,n} then (a'Jb”eD (by lemma 5.1.1) and this is
impossible because (a'4+1)eD. By lemma 5.1.2 we have
(ay+1)mD,, <> (a'J)eD.

Since (a',i+1)eD we conclude that (a',i)eR(Da). Ifa'<b then

and we deduce that because (a\i+1)eD. This is in contradiction with

Therefore b<a'. Since (bj+1)*D ¢ we have (b,i)eD (by lemma5.1.2) so

foa-M) faajj e faaj)
where ii mb, D(a\/+1) =D(0(a'4+1) - {(«W"* eee (Wr)J and 0*Sr is such that
g(ry Since (b,i),(a\i+1)tD we conclude that
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0
(see the proof of proposition 3.1.2). It follows that which is in contradiction
with This contradiction implies that (a,i+1)«/?(D).

Finally to conclude that (aj+1)*D we use the equality

which is in contradiction with ( Thus (a,i+l)eD.

Now the determinant of the rigth hand side of the equality (5.1.4) is equal to
sgn(<jee)<p(bJ)<p(ad+DgAhJi)eesC*Wr)
(see the proof of proposition 3.1.2) whereas
AN 17 s8n(O)<P<a@O<pjb,i+ 1) gi2)2>e
(by (3.1.7) and by lemma 5.1.1). Since sgn(o)=-sgn(<je) we deduce that
<PjiaJ) <Pjt>4+1D~<p(bj)<p(aj+).
Since <pj,bj+I)~<p(b,i) (by lemma5.1.2) we obtain
<piiaj)ntaj+l).
To finish the proof we mustjustify that
(a,i+)«D => (a,i)tDa
In fact suppose that (a,/+1)«D and that (a,i)*S(D M. If (a,b)«D  for some
b'« (1+2,...,«} then (a.b')«# (by lemma 5.1.1) which contradicts (a,i+1)*D. If
(aJ+1)*DItthen (aJ)*D (by lemma 5.1.2) which is also in contradiction with (<M+l)ez).

Finally if (aJ)mDn for somea'c {1, "~z-1} then (a’,f)*D (by the reverse implication) and

#*
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i
this is again in contradiction with (aj+\)eD. It follows that Now we use the

equality (5.1.4) to conclude that (a,i)eDmas required.

The proof of the lemma is complete. .

Finally we consider roots (aj>)e <D(n) with Ixi.

Lemma 5.1.5. Let the notation be as before and let (aj>)e <P(n) be such that b<i. Then

(a.b'fcD,,, <> (a,b)eD.
If(.a,b)eDmthen
<piiaj})=<p(a.b).

Proof. We proceed by induction on the set {(a,b)e <P(n); b<i}. The smallest root in this
set is (U-1). Suppose that (l.i-1leSiD”. Then there exists b'e {/,...,«} such that

1¢0e/V If*>i+1lthen (1,b"D (by lemma5.1.2) so (U-1)eS(D). If¢W+I then (by
lemma 5.1.2) either (1,)*D (if ¢>=¢+1) or (l,i+D)ef> (if ;>*;+1). In both cases we
conclude that (I,/-1)eS(D). Finally if b'=i then (by lemma 5.1.3) either (l,i+l)eD (if
bf*i+1) or (1,2)eD (if bt=i+l). In both cases we also conclude that (U-1)«5(D). The
implication (1,i-1)sS(D) => (l,i-1)eS(D4d) is proved similarly. It follows that
(U-DeR(DJ <> (U-DeK(E>).
Now we have (l,i-1)eD a if and only if/«(«l,)=e.¢ =/(«t,,)=0 and/, (¢jm)".
fl<eib)xAfioKb)) f°r all be {2......«} we conclude that
(U-DaD«, » (U-1)«D.
Moreover
(pJiU-D-fILeu.O-fieMy-HU.I)
and the lemma is proved for the root (U-I).
Suppose that (a”>)>(l,/-1) and that the lemma is proved for all {a'Jb")*4(n) such
that (U -1)£(a'Jb™)<(aJb). A similar argument to the one used above shows that
(aINtS(DJI »  (ab)mS(D)
(we note that (by induction) for all a'e {I,...,a-1} (aJj)mDa if and only if (a’Jb)mD). It
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follows that
(aJ>)*R(DJ » (aJ>)mR(D).
Now we assume that bf*i+1.

On the one hand suppose that there exist a'Jb'« {l,...,a-1} such that (a\0 and
(b'4+1) lie in DJpJb). Then (a\i+1),(b\0«D (by lemmas 5.1.2 and 5.1.3) and we have
Afofl-A°,(f)
because the determinant is obtained from A”*Jf) by permuting the columns which
correspond to the roots (a',i+1),(b',0«D. This implies that

(aJfeDn <> (aJ>)*D.
By (3.1.7) (and by the previous lemmas) we conclude that
<pj.ajb)=<p(a,)
whenever

On the other hand suppose that at least one of the following cases occurs:
(i) (@',))*Dmforall as {I,...,a-1} - hence (by lemma 5.1.4) (a\i+l)«£> for all

a«{l,...,a-1}
(ii)y (bi+\)*Daforallbt {l,...,a-1}- hence (by lemma5.1.2) (b'J) mD for all
¢>'e{l....a*l}-
Then we have (in both cases)
ADf™ A Bhif)
and the conclusion of the proof is as in the previous case.
Finally suppose that 6,*i+I. Then (by lemma 5.1.2) (at,i+1)*Dar
If a<a, then we have
AD(fJ-A B(f)
and the lemma follows as above. On the other hand suppose that a>a(. Then one (and
only one) of the following cases occurs:
(i) (u',0«£)ttlifor some a « {a,+1,...J-1} - hence (by lemma 5.1.V) (a'j)*D\
(ii) (a',/))aDMfor all am {1..... M } < hence (by lemma 5.1.V) (a',i)«D for all
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ac{ }

If case (i) occurs and a>a’then

and the result follows as before. Finally suppose that either the first case occurs and a<a'

or the second case occurs. Let D Ji<,...<jr, and let a«Sr be
such that iail)<...<ia(ry Then (api+1)=(/*/,) forsomere { 1 , . Since (aj)eR(D)\D

the column-vector

is a linear combination of the vectors
oo flfiai+l)
and
g.<Ke« M — )T
forre {r+1,.../} (see the proof of proposition 4.2.10). Therefore the vector space

spanned by the vectors cj x—"gris also spanned by the vectors cM ,Cj*...,Cj- It

follows that

and this implies that
(aJh)"Da <> (aJ))*D.
To conclude the proof let <xas"l.....a"K be such that
cix °ed+I+at*\cj™ +.. «+«C;V
We claim that
a=qtat,M )-W na,,i).
For let Do-D\{(a,U+1)} and and let s the restriction of ? to DO. Then there exist

[ f*Oa .iW at)+1)) and/«V 0#(flo) such that

Therefore

cM-cw+c'
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where
cw=(0 ... O« 4J+1 ) / \ 4YW) .../ O(«lawl+i)/°(«a,+i))T.
j and
c =(/(tfiaQ)+1) eee /(«i™i+ 1) /(¢ai+]) )T.

Now we have

forall a'e {1....4-1}. It follows that

ci=¢j(a,,i+1)'Y 0(efif)c()+c'=c)(ai,i+I)'V O(«@™)Cx+i+i3c'
where
NM-gKan+1)-1 00
Since (a',/+l)«DO0for alla e {l,...,i} the vectorc'is a linear combination of the vectors

Cj™...,Cjr (see the proof of proposition 4.2.10). Since the vectors cM ,Cj*...,Cjt are

linearly independent we conclude that
tt=(p(at,i+\)AfiXeap.
Our claim follows because
IV a™'W )
(see the proof of lemma 5.1.2).

Now we conclude that

Finally suppose that (a”~ D ~ (hence (aJ))*D). Then (by (3.1.7))
r

AcrvVi)=(-IYsgn(<f)<pliad>)<pJ,ati+1) U P jf+1J
s'-\.s*s

and
r

- I/i*n(0#al»4XV+I> FI

By the previous lemmas (and also by induction) we have

forall 5+ {1,...,/} with jW. Moreover (by lemma 5.1.2)
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It follows that
<PJjalh)=<p(al>)

as required. .

To finish this section we collect our lemmas in the following:

Theorem 5.1.7. Let D be a basic subset of<I>(n) and suppose that (i,n)eD for some
je {1,...,n-2}. Let (p:D -» K* be any map and let feV D(<p) be such that
f(ei+in)=f(eu+i)=Q Let a=(ax......a,) be the (unique) special sequence such that
f*\W0(«)("a))-U t and definefa Wn(K)* by

fia@ai@) if(a,bMi,i+1)
1 if (a,b)=(i,i+1)

for all (a,b)e dX,n). Let Dmbe the basic subset of <D(n) and let tp~D *-iK* be the map
such thatf,,fivDt((pJ. Then:
(i) Ifeithera=0 or (atj+1)*D,
ODWwW{(m+1)} if(i,i+\)mR(w(D))and i (fj* 0

oKD) otherwise

and
<pJiu,v)=<p(a)(u)Mv))
for all (u,v)e©(D)cDar If (i,i+l)e£>,,jthen <pj.i,i+1) is well-determined by the value
Au?\Vo) andthere exist* a unique oeK such that
Ao+« «l *)-0,
(i) If(a,4+1)*D and there isnoam{1,...,M } such that (af)*D,
~ - Dar(atD)\{(a,d))yj{(ali+l))

and



(iii) If (a,,i+1)eD and there exists ae { } such that (aJ)*D,
D”aKDM (api),(aj+ )M (V+1),(a,0}

and
V By(at»0 if (uv)=(a,,i+1)
-(¢a\a tjy x<taS)<Hat,i+\) if (u,v)=(a,i)
.gKoKu)Mv)) otherwise

forall if (u,v)eD
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5.2. A decomposition of the regular character

The aim of this section is to prove the following result

Theorem 5.2.1. Let p be the regular character of UHq). For each basic subset D of
Gtn) we define the character

§0=6 &)

where the sum is over all maps (fr.D-* F g*. Then

0c4
Bhe

where for each basic subset D of <D(n) s(D)=IS(D)I and 1(D)=\S<\D)\=\S<«\D )\ (see
(2.2.7)).

Here g=pe, eS|, is the e-th power of the prime numberp. As usual we let ATbe the

algebraic closure of the finite Held Fq and we realize the finite group Un(q) as the
subgroup of Un(K) consisting of all fixed elements of the Frobenius map

F-Fg.Un(K) -* Un(K) (see (1.1.1)).

Theorem 5.2.1 will be a consequence of the following result (which is in fact

equivalent to it):

Proposition 5.2.2. Let D be a basic subset of (jHn) and let @D-» F g* be any map.
Letzb™* an irreducible component ofED(. Then

where (...) denotes the Frobenius product between characters.

To prove this proposition we will use induction on the set of all basic subsets of
<P(n) (with the order introduced in section 5.1). If Dc<0(«) is the empty set then

*
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grD -» F g* is the empty map and

is the unit character of Un(qg). The result is obvious because r(0)=/(0)=0.

If D={(fj) } consists only of one root (ij)e <®(n) then for any map qrD-» Fg*

is the OV)-th elementary character associated with a=<p(ij)e F g*. By definition this

character is irreducible and

The result is also clear because s(D)-1(D)=2(j-i-I)-(j-i- 1)=j-i-1

Now suppose that LDIE2 and let (ij) be the smallest root in D (hence fxi whenever
(a,b)eD). Ifj<n then the proposition follows by induction on n. On the other hand
suppose that (i,n)eD for some U {l,...,/t-1}. If t=n-1 then there exists a unique

irreducible character Z\ of Un(q) such that

where In fact since <£,,.i,,(-a) is linear the character

Zl-tn-Im<-«)*
is irreducible. By lemma 2.2.9 we have
6.-i»(-a)&,.i»(a)=1£.(,)
On the other hand let D 1=D\{(n-1,/i)} and let g® be the restriction of spto D x. Since

4n.i,,(ot) is linear and

(see the proof of proposition 2.2.16) we have

The result follows by induction on n becausesiD *siD) and [(D{)ml(,D).
Finally suppose that I<n-1. LetfmVD(<p) be an F-fixed element such that the

irreducible character z corresponds to the (F-stable) (/,,(10-orbit 0(f), i.e. ZmXo(f)- Let
coiSn be the transposition G~(n+1) and I e t un(K)mbe the element defined by (5.1.1).
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Let (PafiPa) be the pair defined as in theorem 5.1.7. Thenf~k VoJ-Vad- Moreover/,, is an
F-fixed element hence its C/,,(AO-orbit OffJ) is F-stable (we note that VDJ.tp") is also
F-stable because <pJiD"cFg* - in fact for faJ>)mD,, the value <pj,ajb) is a function of the
entries of the elementf,, Let
XX o (fj
be the irreducible character of UHq) which corresponds to Off?). Since 0(fg cy Dl.g>{
(because VD {g>"is i/,,(K)-invariant,f,jt Vp (f>") and
a)

(by theorem 3.1.7) we have

(Xv ZdJ v3)*0
(see corollary 1.3.11). Since Da<D, we may assume (by induction) that the result is

proved for the basic subset Dmof <h(«). Therefore

(5.2.1)

Now we prove the following:

Lemma 5.2.3. The Un{K)-orbit Off) is of the second kind with respect to the normal
subgroup UJ.K).

Proof. By definition Off) is of the second kind iff+aeM *tOff) for all a*K. Let aeK
be arbitrary and consider the element
W -cftfitjr'y-l-eneJ-'etH+UJtn.

Then
\ffe,,) iffriMU+1)

(«ii+O+a if(wWKU+1)

and the lemma follows.
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Since the subgroup UJK) is F-stable we conclude that there exists a unique

irreducible character 9 of UJq) such that
(5.2.2) x=eu(

(see theorem 1.3.9). Therefore (by Frobenius reciprocity) we deduce that

where

is the restriction of zD(<p) to UJiq). Since
r)>_
& )—(a’lb)l*D ZobWaM)

we have

QP=F | cobwaby)
(aby*D
where for each (rj)e <On) and each CleFq

®)=v-jc®)UJiq)

is the restriction of Qs(a)to UJQq).

Next we consider the decomposition (into irreducible components) of any character

f,,(a) where (rj)e <P(n)and at Fg. Since |,,(0)=1v”"qg) we have

{r»(0)*1ujqy

On the other hand we have the following:

Lemma 5.2.4. Let (rj)e <Dn) and let cte F*. Then:
(i) IMr*iands*i+1, f,(a) is an irreducible character ofUJq).
(i) Ifs*i+J,
JL Cja,p)
where for each j3«FqCja,p) denotes the irreducible character of UJq) which
corresponds to the (F-stable) UJK)-orbit of the element aeilm+PeM tn* UJK)+.

Moreover
n
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Qs(a,p)*Cis(a,P’)
whenever fi,fie Fqare distinct.
(i) Mfr+i,
fri+l(®)a X  Cri+(®»$)
where for each fie Fq £rM(a,p) denotes the irreducible character of Um(q) which
corresponds to the (F-stable) Um(K)-orbit of the element aeri+]*+{5eri*9 UJ"K)*.

Moreover

whenever Fgare distinct.

(iv) Qri(«)=I1{;j9 s the unitcharacter ofUJq).

Proof. By proposition 2.1.8

Srs(<X)=Xo,,(a)
is the irreducible character of Un(q) corresponds to the i/,,(A0-orbit 0,,(a) of the element
ae,,** un(K)*.

Let ic.Un(K)* -* uJJC)* be the natural projection. Then (by theorem 1.3.10) an
irreducible character of Ujtq) is an irreducible component of GtJ(a) if and only if it
corresponds to an (F-stable) (/,,(AO-orbit which is contained in the image z(Ors(a)).
Since O u+i(a)={aeu+J*} we have

*(0ih.,(<*))-{O}.
Therefore the unit character lujqg)of UJ.q) is the unique (irreducible) component of

f)+(a). (iv) follows because

Now suppose that (/\r)*(i,i+I). Then
n(cter *)maer *t UJJO*.
For an arbitrary fie Fq we consider the element
®en*+Aeii+/*€ tt(i(A0*.

By lemma 3.1.1 this element is (/,,(AO-conjugate to aert* if and only if either r»i or
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s=i+l. By definition we conclude that the Un(K)-orbit Orl(a) is of the second kind (with
respect to UJJCT) if and only if either mi or r=i+l. By theorem 1.3.8 we deduce that the

character £rj(a) is reducible if and only if either r=i or s=/+I. The proof of (i) is

complete.

On the other hand suppose that either r=i or r=i+1. Then (by theorem 1.3.8)
£l C

.where xu+l(p)=I+peu+l for all pe Fg. Moreover for each )3 Fq the irreducible character
C,,(a,0)***'~ of UJiq) corresponds to the i/*O-orbit of the element
xu+l(p)-(aer *)t UJ.K)*.

The lemma follows because

forall PeFq. .

On the other hand we have:

Corollary 5.2.5. Let (rj)e €dn) and let ae Fg*. Then:
0) Ifmiand5*4+1,
i, («)5«+,03).
1

- We note that (by theorem 2.2.1) the characters £,,(a!)<JII+1(/3), pe Fq, are all distinct.

@iy 1f(rj)*(i,i+1) and eithermi or sm+1,

for all PeFq.

(in) @

Proof. Suppose that mi and s+i+1. Then (by the previous lemma) fri(a) is irreducible

and Cu+iOSMiy,). Therefore (by Frobenius reciprocity) we have
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(C..()ir (7 rj(a)™ 1#103))y((?)=(C.,(a).C..(a)Ci,+i03))£/j?)=(C«(a).?«(«)){/- () =1
for all fie Fg. The pnx>fof (i) is complete.
For (ii) by the previous lemma we have
(1,,(0.0)t().3,.(«{/,()=(?r,(a,") . F..(a))i/") =1
forall /k Hence £rj(a) is an irreducible component of £.,(a,/3)t/(,) for all fie Fg. The
result follows because
$,(a)(IW*M and C,(a,/3)=""-2 OfeF?).

The proofof (iii) is analogous to the proof of (i). .

In order to complete the proof of proposition 5.2.2 we establish a series of lemmas
relating the multiplicity (£,&>(?>)) with the multiplicity (Xa»%Dj.€a>) Each lemma

depends on the “type” of the root (z,/+l). Firstly we prove the following:

Lemma 5.2.6. Let &° be the irreducible character ofUJq) defined by

«“CO-ei0Ottm))
for all xe UJiqg). Then

{Zar<<nUW> 1

and Xm & the unique irreducible component of with the property

(Xo>SdJ<PJ)*0-
Infact we have:

(i) Ifthe UJK)-orbit OffJ offmis ofthefirst kind with respectto UJK) then
iXJujg)-"0

and

(ii) 1fthe UJK)-orbit O(fj> o ffwis ofthe second kind with respect to UJK) then

and

xaujgmZ O«
G
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where

0"(a)=(0 Z*(a>.

Proof. We claim that 9* corresponds to the (F-stable) U”~/AO-orbit 0(7c(fJ)) of the
element Ji(fj)e UJK)* (here w.uJK)* -* UJK)* is the natural projection). For we shall
use proposition 1.2.5. In fact let ge UJK)* and define a/lgcoe UJiK)* by
(01gCa)(a)=g(chaoil)
for all ae UJK). We note that
7tifJ)=CUA 7C()(C.
Then it is not difficult to show that
geO(I*f)) <> 0fX(0eO{71(fJ)
where denotes the UJK)-orbii of the element n(f)e UJK)*. It follows that

v @)= X oA i)E)
for all ae U jK)=0JK)r\OixuJK)ai(here % is a non-trivial irreducible character of
Fag*). By proposition 1.2.5 we conclude that

&°(exp a)=9(e(exp a)cixX)=d(.exp(,ciiauix))

yl0((;0)Agax(a))

and our claim follows because
\CKn(f))MCKi«fI)\.
Now suppose that the C/,(Af)-orbit 0(fj) is of the first kind (with respect to

Utt(.K)). Then (by theorem 1.3.8) the character (JCmhj (g) is irreducible. Since
ntfje n(0(fji) we conclude that

On the other hand we have (by lemma 5.2.4)

for all ae Fr Therefore (by Frobenius reciprocity)



for all ose Fq. (i) follows by degree considerations.

Now for each OeFqwe have

because
§ict1(®)=5mHL
(see the proof of the proposition 2.2.16).
Suppose that (i,i+\)*Da and that ate Fq is non-zero. Then
(XvSoJivJSih-i(-a)H)

(by theorem 2.2.1 because (ft*VO). Hence

On the other hand suppose that (iJ+I)mDir First we consider a=<pjii,i+1). Then
(by lemma 2.2.9)
SdJ pJ& mi(-«)="(db))(("ca)o)
where (DQo=DQ\{ (i,i+1)} and (<p™0is the restriction of qga to (D Jq It follows that
(Xa>CDj<PjCli+(-a))=0
(by theorem 2.2.1 because D » D * g), hence
(Zo>Suti(a).1D,.(9>J)=0-
Finally suppose that Oe FA{0,(pj,ij+1)}. Then (by lemma 2.2.12)
N0J<PJ4+i(-a)="5(Dj0((Pa>)0) 5iHi(<Pd/ »+ 1)-«)

where (D"gand (”~ o arc 35 above. By theorem 2.2.1 we conclude that

(because g>J,U+iy*<pj,ij+1)-a), hence

This completes the proof of the lemma in case (i).

Now suppose that 0{f") is of the second kind (with respect to UJJC)). Then (by

theorem 1.3.9) the character (f 1~ ~ isirreducible so
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The statement about the decomposition of (Xo”ujq) follows from theorem 1.3.8. The

remaining assertion of the lemma is obvious in this case.

The proofis complete. .

Corollary 5.2.7. Let the notation be as before.
(i) 1fOffa) is ofthefirst kind with respect to UJJC) then

Zjxx'tiixi
(i) IfOff~ is ofthe second kind with respect to UJJC) then

,JCD-Zd)-

Proof. Suppose that Offm) is of the first kind. Then (by the previous lemma)
&4D-0K1). (0 follows because 0"(1)-6(1) and ~(1)="©(1) (by (5.2.2)).
On the other hand suppose that O(fQ) is of the second kind. Then
*J1)-geniH70(1)«*(I)

(by the previous lemma and by (5.2.2)). .

Lemma 5.2.8. Suppose that fi,i+I)eR(DJ) and that (i,i+1)t&c\D). Then

and
(Z.$D(<P))=(.X0,$Dn(<Po>)-

Proof. In this lemma we are concerned with the following situation

D D.,
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The first assertion follows because the i/,,(A0-orbit 0 (fj is of the first kind with respect

to Ua(K). In fact let as AT be arbitrary and consider the element/ a+aeil+*6 Un(K)*.

Since

(because (i,i+l)eR(DJ)) we have

Since VDIo is (/,,(AO-invariant we conclude that
fa>+aeiM** O ffJ
for all cceK*.
Now (by theorem 5.1.7)

ro*D) ifd“rVj=0

<aDu{(//+1)} if
Moreover (a,/),(a\i+1),(i+1,&«£ for all ae {l,...,i-1}, all a'e {1,...,/} and all
be {i+2,. Therefore

where ce=<p(i,n), DO=D\{ (j,n)} and (fo is the restriction of <pto D0. On the other hand
Si+m(°04Do(<R) ifD"OKD)
Sti+I(<PjiU+ 1))&Hn«*)SDoR) 1D @EU(DMONi+1)}

Next we consider the multiplicity Of,8p(¢>)). By Frobenius reciprocity

By lemma 5.2.4 we have
E=X cu>(@ap)

where for each fie Ff.CiHa,fi) is the irreducible character of UJq) which corresponds to

the (F-stable) (/,,/AQ-orbit of the element oei(*+/3eb 1*« UJIC)+. Therefore
@O CinoiDaR)

Let fie Fqbe arbitrary. Then
(9>Cin(a 'P)CDA(R0))ujaq)m(8 a>(An@ >A=0(R0))")ujia)
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=(#" «Cm(a <D0 €0)<9uj<f)-
Since gn(<x,p) corresponds to the i/*/Q-orbit of the element <xelt*+Pi+in** UaAK)* the
character Cin(a,P)*“ corresponds to the i/a)(AT)-orbit of the element

pet+ae”i**« UJJC)* (see the first paragraph of the proof of lemma 5.2.6). It follows

that

Since co(D(d=DQwe have

for all (a,h)ez>Q -because Gab((p(a,b)) and Ca6(<p(a,h))" both correspond to the
(/"AD-orbit of the element <p(a”)ea&e UJJC)*. Therefore

and
(iin(Aa)io0(%))t/"(i)=Ci,, (A «)8-(?* O«Ph)

- because £D0(<Po)uj,<)=CDa(<Ry- Since we conclude that

(0»Qmia >/t Coo(%6 )a) (/. K=(0 BC«(AQCAA(9)))i/4()

=(X<*Cin(P,a)U'dy'D0(<Pa>h"y

If P is non-zero the character Cui(P,cc)Uq) is irreducible (by corollary 5.2.5) and in fact

(M coW -td/i).
Since Xgp*d" P J VO and (/,/»)«  theorem 2.2.1 implies that

(ZwU JIMAtD jirtU ujtirQ
On the other hand we have
C«(0,a)-fIMB(a)

because ifu+i(cOm"m+i(ahj<f) is irreducible (by lemma 5.2.4) and it corresponds to the

i/a/iO-orbit of aeMIt*9 UJJC)*. By corollary 5.2.5 we conclude that

&YOfa)thet> | iii+i(7)ii+u(0).
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(Za*C(0*®) * I LO){/I(i)= 2 ' Of<arni(+H(7i5iHii(®)*DO(L0))i/lli)*

If (m+1)«"” then (by theorem 2.2.1)

for all ytFg*. On the other hand suppose that (/,i+|>£<, Then (by lemmas 2.2.9 and

2.2.12)
BWW fth.i(FAW «-1))A» rt(m »dtW *1))
for all %< Fq. As before theorem 2.2.1 implies that
(jla>Zu+\M Z M n («K D 0(<Po))u.(q)=0
for all ®a-qg*. Therefore (in both cases) we conclude that
(Za*Cifi(0>a> " £d0( *U li{@)="Xap”Dj (0 Ul(q)

because |,,+1(0)=1a"q).

The lemma is proved. .

Lemma 5.2.9. Suppose that (iJ+”eR”*DJ) and that (i,i+1)*S<g)(0). Then

tfl>-«« (1>
and

(x.ZdW M x™ dJ vJ)-

Proof. In this lemma we are concerned with the following situation
D Da

As in the previous lemma the C/,,(Af)-orbit 0 (f* is of the first kind with respect to UJJC).

This implies that
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(by corollary 5.2.7).
Now (by theorem 5.1.7)

a*D)
G {(m+1)}
Also forall am{l,...,i-1}andallb*{/+2,.However there exists

am{1...U-1} such that (a,i+l)eD (hence (0,/)«D&). Therefore

where cc=<p(,iji), f}=<p(a,i+l), DO=D\{(i,n),(a,i+1)} and <wis the restriction of $pto D<y
On the other hand

fTi*.u(a)&u(i8)&(flo) if Du=aKD)
* [A«H (MM +1)) 1. +HIx(«)8<a(/3)IDO(f\))  ifDAfiXDJuiiM +1)}
As before we have
QEd(P)UE=(  a)cwi  Cod( )UI?)

=a>)*<<<Ff F’)r%F' (®Cin(a=a ')Sai+I(AA')C0(()X(;>o)){LJi )

-X X Oba) GipOpIp/Aj)

“X X (/\/\(a'a)A’/\/\A))/\,)
Let a',/J«F? and suppose that a' is non-zero. Let 0 be an irreducible component of
{i¢.a",a)£,,+1(/1J/3)fo,(<Pb) and let O be the (F-stable) (/,,/AO-orbit which corresponds
to 4> Then (by corollary 1.3.11)

0cO,li(a’,a)+ 0 ai+1("",/3)+«(V 0#(¢>0))
where Ote(a',a) is the (/,,/AO-orbit which corresponds to ~(a'.a), Oai+(f5',p) is the
i/*"AO-orbit which corresponds to Cai+i(0*»0) and jr.Un(K)*~* UJ.K)* is the natural
projection. Moreover M.VdOR)) is the sum of all (/»(AO-orbits of the elements
9(r,s)er,*m UgfiK)* with (r,j)«D 0. Therefore any element fmOO0 satisfies

A€l -"“[«Mii)“0 and/(ein)«a'#0. Since 6" corresponds to the (/*AO-orbit of the

element UJK)*a n d 0 we conclude that
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Since
Xjvj.q)~"° 3,1 "DAVA-ADAMUILQ)
we obtain
CC.50(®))cl.(?)= PS-Ii: «Cm(0>a )Cai+l("*>ftCoQ(®0))t/a(i)
'F<
=X

F«F, 0 *

Since
Cm(0*®)= Ci+HIn(®)=5»+In(®)t/,(i)

we have

(QIQY@HC™ L) AHNQ)GHT/IrS)

for all pe Fq. Let /fa F, be non-zero. Then (by corollary 5.2.5)

is an irreducible character of Un(q). Since (a,i+1)«Z)®Bwe conclude that

A(f» (O ,a){ai. 103 /3)t«®% of?b))ifii()-0.

Thus

Oc.<5o(<P))c/(?)=0K<u(?in(0,a) Cu+i(0.)3)) B (ADA)/.(,)-
Since

fm(0,a)=C,+in(a)="5.+i»(«)E/.(i) and C«+i(0,P)~U.P)
we have
Since

C»03)c-i»- 'XF i(D
=

(by corollary 5.2.5) we conclude that
Cfe&(*))l.<«)- X  Cali+M(«)SU/3)iii+(7)SDAZ>0)E (i )

Finally we may repeat the argument of the final paragraph of the previous proof to
conclude that
Cr*{h.i«(a)&<03)i?i())ioQW)))c/.(f)-0

forallF,. Therefore
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and the proofis complete. *

Lemma 5.2.10. Suppose that (iJ+1)*&nD "), (i,j+)«S<c(D@® and (i,i+1)«S(c)(D).

Then

0X»SdJI<PJ)

(z.SoW) )
dI(Z"D mPj) i/Z(D=*«,a)

Proof. In this lemma we are concerned with the following situation

D Dm
b n bn

By theorem 5.1.7 the condition ( / , / + inplies that there isno ae {l,...,i-1}
such that (a,i)eD. Moreover the condition (j,/+1)«S(r)(D< implies that there exists
he [i+2......n-1} such that (i+1,h)eD. Therefore

£0(P)=l«(«)li+it>03>6>0(00)
where a=<p(i,rt), P=cp(i+\,b) and £50=D\{ (i,n),(i+1,6)}. On the other hand

Now the argument of the previous proof shows that

2.5d(Qf” S (0®=iin(Y>a )Cib(P>Q)EDO(®0))uji)
« we note that Gn *P) is the irreducible character of UJiq) (by lemma 5.2.4) which
corresponds to the UJJC)-otbii of PeMb*u uJjfC)*, hence Ci+iaOS)“ corresponds to the
UJJC)-orbit of peu»** UJJIC)*, i.e.
C<+i*03>"-Ca<ftO).
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Let Fgbe non-zero, let 0 be an irreducible component of Om(y<a )Ca>(A0)6)q(ft))
and let O be the (/,,(;0-orbit which corresponds to 0. Then we may use corollary
1.3.11 to conclude that anyfeO satisfies/(«;,,)=...=/(«.i,,)=0 and/te*sy”O. Therefore

((T,UY,a)M P.0K D a<Pa)hj<l)-O
(because Since
fin(0,a)="f1#((a)
we obtain
Ci.50(P)t.(<?)=(®<uCitin(a )fa>(AO)Co0(?\)))ulli

Now suppose that XI\)=<IXot\)- Then (by corollary 5.2.7) the (/,,(¢O-orbit 0 (" is

of the first kind with respect to UJJC). Thus
(Xa)uj<i)=&0

and
C):.'5D('P))£/.(9=CKu'521,,(a) Cii,(AO) &'<Y o A<Po))/.(?)
because
(™ +i«(a)<500(PD))t/o€9)=C+i,,(a) CDO<P);-
Since

um u{g=up)
(by corollary 5.2.5) we conclude that
(x4 D(<P))u.igr (X * D nm{<PJ)u,w
as required.
On the other hand suppose that 2(I)=;ta>(l). Then (by corollary 5.2.7) the
(/,,(¢0-orbit 0(f*) is of the second kind with respect to UJJC) so

In this case we calculate the multiplicity (»% Dj.9j)uj,qy By lemma5.2.4 we have

X (0®C+L@)CG*AY)Co( J v ) '

le*«

Now we claim that
CMn&Kibtf'V-CMnUxKfiw)

forall Fr Let> F?be arbitrary. Since
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and bW, T)UW?2ib(.P)

(by lemma 5.2.4 and by corollary 5.2.5 respectively) we have

By lemma 2.2.6 (we note that i<i+I<b<n) the character ;M Ja)4u,(P) has q irreducible
components which correspond to the (/,,(10-orbits of the g distinct elements

iU HOK*+H/* tiH* < «» (*)*
where fie Fqg. All these components have the same restriction €to UJq). Moreover tpis
an irreducible character of UJiq) (because the £/,,(JO-orbit of otei+In*+Pebi*+fUiM * is
of the first kind with respect to UU(K) - otherwise oteM nm+pebi*+fieiM * is

i/,,(10-conjugate to a”j+",*+/few,,). It follows that
)i e

Gi—l-ln(a)Gib(P))uj.q):AXFlGi+|Ja Kib(P'?)

Since

(by lemma 5.2.4) we conclude that

Ofm«xKM=<P

and our claim is proved.

Finally we deduce that
(Xar%Dc(®j)u.(q)=d(&asCi+InWZutfMZD"Voftujq)
MX'ZoW hjiq)-

The proofof the lemma is complete. .

Lemma 5.2.11. Suppose that (i,i+DeSADJI. (U+1)eS<e\DJ and (U+1)eSEXD).
Then
(Xc SdIV d) ifxXW-dXjLV

C&&<*»)
o ifXiU-XJD
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Proof. In this lemma we are concerned with the following situation

D Du
b n b n

We follow the proof of the previous lemma. In this case there exists ae {1....J-1}

such that (aJ+1)eD and

& (9)-5«(a)1.+i6(P)T«+i0)& ((flo)
where a=<p(i,n), f}=<p(i+l,b), -i*(p(a,i+1), DC=O\{(i,n),(/+1,Z>),(a,i+1)} and O is the
restriction of <ptoDg On the other hand

SDj<Pj=SMn(<X)Sib(ft&uMSDJi<Fo)-
We have

a%Ff [« Ff
As before
(0.iw («-«) £4¢(0.0) Ca,+i(/'. 7)io O( Ro>)E/Q|(i)=0
forall a* F?*. Thus

(xsopyuiiar - (" 2ANYCHAQCHI( J)MO)I4D)-

Let /'a F?* be arbitrary and let 0 be any irreducible component of
fi+i<»(«)fib(/3.0)Cai+i(7'.y)foQ<lo)- By corollary 1.3.11 the If,,(JO-orbit 0 which
corresponds to | is contained in the sum of the C/*4£O-orbits of the elements aeMn*,
fieu,*, y'«a»+i*+7ai* and <p{u,v)em* for all (u,v)«2)0. It follows that any element gmO

satisfies the equation

(cf. proposition 3.1.2). Sincefji Vp (9* and (aJ+1)*R(.DW\D If we have

(by (3.1.7)). Therefore
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(Muild, (a)iii(AO)CUH(yY' y»Co0(@>0))c/N,)=0-
Since f t Fg* is arbitrary and

C»vi(0.tf«GuOi
we conclude that

(x40 (®))u,(<if:(&0CiHn(a)Gib(P’Q)Cat(tfCDJ (Po))uj<iy
Now suppose that XfXi*XaP-)- Then (by corollary 5.2.7) the UJK)-orbit 0 (fj is
of the first kind with respect to UJJC). So (by lemma 5.2.6)

and
teED(V))uM=tea,l+In(<xKib(P$f'(g)$ai(rtZDa(<Po))u.(<)
because

Since

we conclude that
te"D ~"U ~fte"D *V *u.w
On the other hand suppose that X*)=XJ~")- Then 0(fj) is of the first kind with
respect to UJJC) so
Xn*?x»,

In this case we repeat the proof of the previous lemmato conclude that

teap"D™'Pioi) @bC+In( AffA™) DO("Po))UJil)
=?CXZdW ) u,wv
The proof of the lemma is complete. .

Lemma 5.2.12. Suppose that (/,/+1).S<(DQ, (i,i+D)«S()(DJ and (i,i+1)tS(c\D).
Then
Xfi)-Xj<V
aid
te.ZD(<P))m(Xa>ZDji<P«))-
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Proof. In this lemma we are concerned with the following situation
D Du

Since (i,/+1)«S<c(D) there is no a'e (I,...,M } such that (a'J+1)eD. Therefore
(/,i+1)«S()(D@® if and only if there exists ae {1,...,/-1} such that (a,i+1)«0,, and
(a,i)eD . Moreover the condition (U+1)e&nND,,) implies that there is no be [i+2,...,n-1}
such that (i+1J))eD. It follows that

6>(P)=6»(a)6»03)So({ft>)
where as=y(i,/*), P=(p(a,i), DO=D\{ }and (fois the restriction of spto DO. On the
other hand
$DjiVij=$Mn(a)$aiH(P)ZDO<For

To prove the first assertion of the lemma we claim that the (/,,(AO-orbit 0 (fj is of
the second kind with respect to UJK). For we suppose that 0 (fj) is of the first kind.
Then (by proposition 1.3.6) the image M.O(fJ)) is a single UJK)-OTbit in UJK)* (here
ic.uJK)*-*UJK)* is the natural projection). Let A<AT* and consider the element
xiiH(A)*I+i<iitli UJK). Then

k(A CaH(A)I
is C/a/AO-conjugate to Thus oflgjX)<u is (/«(AO-conjugate to 0)'xgao>*ic(f)
(for the definition of (0xh(0, he U jK)m see the proof of lemma 5.2.6). Letfi.X)e UJK)*
be the (unique) element satisfying
n(f{X))-aylgjL\)a> and /W)(ea+,)-0.
Since the (/,,(AO-orbit 0(f) is of the second kind with respect to UJJC) we conclude that
I(A) is (/,,(AO-conjugate to f (by proposition 1.3.7). Since

xu+i(X)erjcuH (-X)-ers+M.eu-+i,eri\
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we have
(fers) if r*i+l and s*i
gofers)*’ feis)+ Miei+ls) if r=/+1
\ferM >*ferU ifi-«
for all (r)e<P(rt))\{(»,/+1)}. It follows that
fers) if rei+l and r*i
AN< ers)={(nAgJ, X)ct)(er,)=gJ,X){elr)ors))- Y(«u)+V(«,+i,) ifr=i
ferM > *feri) ifs=i+1
for all (r*)ed>(n)\{(i,i+1)}. Now we consider the function A*i+L:Un(K)* -*K. Since
(a,i+1)eR(D)\D we have
¢ EH(/tt))=z£+1(/)=0
(we recall thatfe V D(¢p). On the other hand
A HtfW)=d* +1tf)+Ad2(/)

SO
XADF)=0.

This is a contradiction because 2*0 and (a,i)eD (hence d*(/)*0). It follows that 0 (f* is
of the second kind with respect to UJJC) and this implies that

XM -XJIX)
(by corollary 5.2.7).

Now we have (repeating the usual argument)
c tii+ In (®) CaiH (A 0) Co((IPo))(/J<ry
On the other hand (by lemma 5.2.6)

ZsrCfnW
So

(Xa>CDn{®ai))ujii)m(&0¢, Dn{<Pj)uj<i)

v 2 (o* . fi+l»(a)fflis1 (fI*F)CDjtalujay
o]

To conclude the proof of the lemma we claim that

Sfi+ t»(“ ) Cii+ i (AE *)Cd0(4V))){/jf)*0
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forall pe F*. Let pe Fg* be arbitrary. Then

Let O be any irreducible component of Cm(o'O)Ca«+i(/i'./J)?00(00) and let O be the
{/,,(AO-orbit which corresponds to 0. Let ge Un(K)* be such that K(g)eO. Then
g(ein)----=g(ei-in)slo and g(eid=a*0. Thus the {/,,(AO-orbit 0(g) is of the second kind
with respect to UJJC) (see lemma 5.2.3). Therefore Ot/X,) is an irreducible character of

U,(q) (by theorem 1.3.9). Since

(see the proof of the previous lemma) and
YD R <MZD%<F)
we conclude that 0 is an irreducible component of

(Cil,(a.0)Cai+,("',)fDo(00))£’(>= ~ (« ) ™ +i(j50"(%)-
It follows that

<SF>
forall geO. Since
4Lt(/M>
(because (a,i+1)eR(D)\D) we conclude that
(®£in(a fi)Gai+(P'<P>G(Q

(because 9 corresponds to the i/*/AO-orbit of the element Jt(f)t UjiK)*). It follows that
Xar"DM-VturUdig)=(  G+I#(HCU+ )

and the proof of the lemma is complete. .

Lemma 5.2.13. Suppose that (i,i+1)*S<c\D J, (i,i+D)*S("\D J and (i,i+1)»SM(D).
Suppose also that there is no ¢x {1,...4-1} such that (b,i)*D. Then
XV -xJii)

and

(XAD(<p)m(x D n{<PJI
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Proof. In this lemma we are concerned with the following situation (the symbol m

represents a £>derived root)
D Dm

In this case there exists as {1....J-1} such that (a,i+1)sD and
SD(<P)=SmkX)Sai-H(P)SDo(<R)
where a=<p(iji), fi=<p(a,i+\), DO=D\{(i,n),(a,i+I)} and g"is the restriction of spto DO.
On the other hand
&.(I<Q)“ ™ +in(a) iu+i(i)-5D0(<Ph)
where T"<pjia,i+1) (we note that (a,/+1)*DnDa>(see theorem 5.1.7)).

To prove the first assertion we claim that the £/,,(Af)-orbit O(f*> is of the second
kind with respect to UJ.K). For we suppose that 0(fj) is of the first kind and we repeat
the construction of the previous proof to obtain for each AsK* the elementf{A)s0(f).
Then

dE+t(/tt))-d°+1(/)*0

(we note that (aj+1)*D). On the other hand

Therefore

This is a contradiction because AsK* and

(we note that (aJ+I'faDJ. This contradiction implies that 0(fg) is of the second kind

with respect to UJJC). By corollary 5.2.7 we conclude that
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ZM-ZJ3X)-
Now (by the usual argument)

0ZAdW TuJAT ~ sco>1n(®@)cai+ [(P7P)1 a #( o)) UJIg)’
Letj3e F? be arbitrary. Let 0 be any irreducible component of Ci+i»(«)Cai+i(/F>/)£ba(0Ob)
and let <7 be the i/*iO-orbit which corresponds to 0. Then there exists a constant
c(/J> Fgsuch that
d”i(g)-c030
forall geO (see (3.1.7)). Moreover for all /*./Te F?

c()3>c(j3") » P=P".
Since

we conclude that
(0&.C+i»(a)C,,+i(j8.i3)?Do(")))t/a(,)=0
for all P'e F A{/)}. Therefore

On the other hand (by lemma 3.2.6)

Thus

To conclude the proof of the lemma we claim that
(M“.ditinifCai+iCr.rOCDoCA))AM N
forall Y* FA{y}. In fact
(0* >Ci+lii(®)Cai+I(i*70fD0O(9.0) ) t/1((i)* (®»Fec»i(«*0)Cu+I(y'sThtD AV ofiuj.q)
and an argument similar to the one used in the previous paragraph (using the function
Aai+0 shows that
(e,Cu,(a,0)&M iY .M Do(<Po))ujgmO

forall
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The proofof the lemma is complete. .

Lemma 5.2.14. Suppose that (¢.,/+D)«S*r)(Z>" and (i,i+1)eSic\D).
Suppose also that (Jb,i)eDnD,,for some be {1,...J-1}. Then

xt\)-zjx)

and

Proof. In this lemma we are concerned with the following situation
D Da

i'Li

In this case there exists ae {1......i-1}  such that (a,/+1)e£> (by theorem 5.1.7 we

must have a<b). Hence
(0d’Kb.U 0&h-i03)6»<tfSo0(?h)

where a=<p(i,n), P=(p(a,i+\), y=<p(b,i), D0=D\[(i,n),(a,i+]I),(b,i)] and 90 is the
restriction of <pto D 0. On the other hand
SDjVj=4Mn(a)$ai-HMSh,<V)$DA<R)

where p=<pjia,i+l) and v=<pjjb,i) (we note that (a,i+I)eDi*"DJ.

An imitation of the previous proof shows that the Gn(AT)-orbit which corresponds
to the character s of the second kind with respect to UJJC). Thus (by corollary 5.2.7)

F(L)«** (L)
Now (by the usual argument)

iX>"R)vjiggm S (0®.Ci+lk(a)Cai+ (" C «+1(T<0)foO(Wd))ujq)-

As in the previous case we have
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forall /3*FJ\[n). Hence

On the other hand consider the character ZdJ"Vg- We claim that

AN<pJ=(C.+i«(a)Cu+i(p."C«-ti(r.0)ioQ9b))£/,()-
Since
" +U(«)E/jC,)=C+i»(a) and SDo(<Po)uj.<rCDU<R0)
the iigth hand side of that equality is equal to
&+in(a ) (iffl+i(/i»ftCwH+i(y.0))i*(,)5DA\))-
Therefore our claim will follow once we prove the equality
(CaiH(M<P)Ci,+i (r.0)) &' (?)=aj+i V).

Since a<b, the character 4ai+i(M)4bi(v) °f Un{q) is irreducible (by lemma 2.2.3).
Moreover (by corollary 1.3.11) it corresponds to the i/,,(AT)-orbit Oai+H(p)+Ob*v) of the
element I"ai+i*+vebi*e U,,(if)*. By lemma 3.1.1 this orbit consists of all the elements
ge Un(K)* which satisfy g(ew)=0 for all (u,v)e0(n) such that u<a or i+I<v, g(ea,+)-H

and

de < S(«av) «(«ai+l) \ *_SubSvin v

Hd®) AN J
for all (u,v)eD(a,i+I). Let spbe the irreducible component of f<uH(/t»/T)fw+i(y.O) which
corresponds to the UJifQ-orbit O of the element

Since fiy*-nv(by theorem 5.1.7) the element f*eaM * +Peai*+yebM*u satisfies
the above equations. Therefore
~M*ah.i*+/3c«*+ 7 ««+i*««rl(0)r.(0ah.1(/i)+ON(V)).
By theorem 1.3.9 we conclude that
(iai+ 10"V ), *ny*),
Since 4ai+i(M)4bi(v) >s irreducible and 0 is a component of Coi+iO1/J)C«+1(7.0) we
deduce that



(5ai+iOt)««(v).CCai+iOi,/3)?2«+i(r.0))t/}{(,)> .
On the other hand

(Ca+i0i.7) C+i(r.0))t/-()(i)=? C*+ (m./3)(1) Cetl(y.0)(i)

=qqi-agi-b" - sib-1
-1 m WXD&CvXI)
which completes the proof of the required equality.
Finally
Cy<arios,("a»))E/<(i)= (2r<a»(Ce+N(@)Cai+ (AN CwH(70)fDO(M)))

=((Xa>)UJiq)'Gi+In(&)Gai+I(M'P)GbM (yfi)

Since ©(/o,) is of the second kind with respect to UJJC) we have (by lemma5.2.6)

(xJu”™rrzna)
where
0"(A)=(0Z*1(RX
for all AgFq. Hence
0 @~S (6a(A){i+ifdo)ii+i(/x,N)fjf4.i(7i0)55
XtF

To conclude the proof of thé lemma we claim that
(0*(A),C1+u(@C2i+1(./T)Cw+i(r.O)Coo(<Po))t/- (9)=0
for all AgF ?*. Since
e(A)=(0"(A)%
this equivalent to prove that
(6(A),cJa,0)  (/J,)i)CixXtfCot(>h)t/jfa)“0

for all AeJ"*. Let 0 be an irreducible componentof~ (0 ,0 )Y
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Cin(7)CoqWb) “ d

let 0 be the £f,,(£)-orbit which corresponds to €>Then (by (3.1.7)) there exists an

element c¢(JS)q Fq such that
4 Li(g)-c(P)

for all guO. On the other hand let A*Fq be arbitrary and let 0(A) be the UJJC)-orbit

which corresponds to the irreducible character 0(A). Then (by (3.1.7)) there exists an

element c'(A)a Fq (depending on A) such that
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d £ +1(*)-c'(A)
for all g*0(X). Moreover cXX)*c\X") for all X*F~{X"'}. Our claim follows because

¢(p)=cXO0) (as one can easily check). Since0(0)=0the proofof the lemma is complete. ¢

Lemma 5.2.15. Suppose that (i,i+l)eS"c\D (f,/+)«S™(D«) and (i,/+1)«5<)(D).
Suppose also that there exists be {1,...,i-1} such that (b,i)*D and (b,i)*D,,. Let

ae {1,....i-1} be such that (a,i+1)«D and assume that a<h. Then

<(XoZdJ vJ) ifzW=qzJ.i)
(z£d®)>
[f'GtaptDjVj) ifzU)=Za>W

Proof. In this lemma we are concerned with the following situation
D D,,

In this case we have

where a=g>(i,/i), 13=<p(a,/'+l), y=<p(b,i), DO-D\{(/,/i),(a,J+1),(h,i)} and Rvis the
restriction of gjto Dg. On the other hand
S D jV JmSMn(a)Sa,<P)Shi+i<.1>SDO<R0)
because D *co(©) and tp~tpcoiby theorem 5.1.7).
As usual we have

Cf.io(n))il/,(e)“JS *imi(a ) fai+i("*<Pfw+i(7>0)foQ(

Since (a” D "a similar argument to the one used in the previous proof shows that

(0* <Ci+fi(a ) Cai+i(0*£) fw+i(r.0) fDo( ®0))uj.<i)mo
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for all /3"'eFg*. Therefore

(X>€o(R))uj;<i)“ (Qaxf«+In(a )Ca(™)Cw+I(7>0)CDO(?V))/j (i)
because

Now suppose that XfA)=Zt"\)- Then

Z+«r>aj*
and so

(Xaf*Dj-Po™)uj.q)s 7A«*f ci+1n(®)coi(/~)Chi+ 1(T*T*)Ca 0(*P0)) £/j (f)e

An argument similar to the one used in the proof of lemma 3.2.10 shows that
C<u(P)Chi+i(r.7>Cai<P)CbM(.Y'0)
forall y'e Fr Therefore
(2>7ADj<pld){/.(2)=<(0".i.+in (a)Cai(/I)C*<+i(r.0)C D o(<Pb))E/j:?)

-q(x4D(<P))u.i<,)
as required.

On the other hand suppose that ~j(I)=""Q1). Then

(xJujoroor
and so
(iCr"D(<P))uf{g)=(Xoy.(CMn(a)CJICbM (rMDa(<Po)f’{gh, (liy
Since
O+t»(0) Cu3)C(?>b)=(5i+u («) 5 B(/3) & (flo))t/- (i)
we have

(C+u(a)C-("a<t(r.O)f0o("))t,x()i,+i,, (a)U A" +i(r.O)t,<D{0#(fh).

The result follows because

(by corollary 3.23). - .

Lemma 5.2.16. Suppose that (i,/+1)«S<c)(DJ, </,i+1)«S(r)(D J and (i,i+1)«S(c)(D).
Suppose also that there exists be {1...../-1} such that (b,l)mD and (b,i)mD,,. Let

am{1, _.i-1}besuch that (a,M)mD and assume thatbca. Then
|
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xa>xju
and

Proof. In this lemma we are concerned with the following situation

As in the previous lemma we have
£D(<P)=4in(<*)la+(0)ilH<rt£EDo(<Po)
where a=<p(i,n), 0=<p(a,i+1), y=<p(b,i), D0=D\[(i,n),(a,i+I),(b,i)} and qQis the
restriction of spto D& On the other hand

because D*cdD) and (pa”gxo (by theorem 3.1.7).
The same argument used in the first pan of the proofof lemma 3.2.12 shows that
the i/,,(AO-orbit 0 (fj is of the second kind with respect to UJK). Therefore
Xt\)-XjD and Zd-(0*)U{)
(by corollary 3.2.7 and by lemma 5.2.6 respectively).
Now we have
C (0*ed+<q(a ) Cu+t (/*'s£)Chi+
We claim that
Gar("™ Yty FEBICAH(HO)
for all p mFq. This is clear if /)*0. Let p* F?* and let O be the U JK)-orbit of the
element

*+)&, * UJiK)*.
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Since OM + O aip) is the (/,,(AO-orbitof Pe * + y s i*+/feai*« Un(K)* (see lemma
3.1.1) we have
* YO rtO n.i(ti+0Jfi))*0
where ic. un(K)* -» UJ,K)* is the usual projection. Therefore
((?ai+(§8.13)Cw+1(r.0))t/«(,),1a, <M« +i (M) y I,) ®-
By Frobenius reciprocity we conclude that
( CaiH (P'<P) Cw+t(7.0)»(£ai(P)Ebi+\(?>)ujiq))ujlo)*Q-
Now (by lemma 5.2.4)
(bai(M)bsi+ 1(M) (/)= N Cai(P) Qoi+1(7%7%)e

Foreach 7e  let 0(70 be the (/,,(AO-orbit which corresponds to the irreducible
character Gg</))Gmti (7»7") of 8#&8&(<)mThe g(ebi)=Y forall geO and so

(cai+l(P'yp)cw+1 (7.0).cai(r) cii+1 (7.70)t/- (?)=0O
for all 76F1*. It follows that

(Cai+l(P >P)Cii'+H(7*0) Gai(p) CoiH (7*0))ujiq)*®"
i.e. the irreducible character £,,,(/)) C*+i(7*0) of Um(q) is a component of
Cu+i(/)'.$) Cw+ (7%0)- Finally we consider character degrees. On the one hand we have

(QBGAI<)(1) N »y*»-M V> 1
On the other hand

(Ci+i(~.13)16,+i(7.0))(D-<T7i+,-a*V+L'* -V 'V '*'1

The required equality follows. Therefore

(X'AVAUjiCI) Ao >Ci+ln(®)Cai(")Cw+l(7*0)Cdo(9t)))LW

Now

X (@ .Cetl(i(«)Cai(®)fw+(7*70fDHiy»))uj(i >

Since the UJJC)-aMt associated with the character 0 contains the element «(/",,)« UJJC)*

(ir.Un(K)* -» UjJOmis *e usual projection) and

we have
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(®.i«(ot.°)fa<+I(A0)iiM+I(y>i)Co0(€0)){/Ji)=0
for all Y**g*- Hence

G QIH( &A@ e

and the lemma follows. ¢

Lemma 5.2.17. Suppose that (i,i+1)*S*c\D ay S*AD & and (i,i+1)*S*c\D). Then

*1)=2JV

Proof. In this lemma we are concerned with the following situation
D Dm

We follow the proof of lemma 5.2.12. The proof of the first assertion is precisely

the same. For the second we have

$D(V)=Si«(<*)$Mj<frebi(y=>ZDU<Po)
where jeo {i+2,...,n-1} is such that (i+1J)mD, a=qj(i,n), /3*<(i+ 1J), T <p(.b,i),
D0=D\{(i,n),(i+1j),(b,i)} and <vis the restriction of g>to Dg On the other hand

By the usual kind of argument

On the other hand we have

(by the first assertion of the lemma). Hence
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N (EFSCY(®)Cijffi'P) Chi+1 (Y YA £d 0(*Po)) U Ja)*

ro»7*
Using the function A”i+l:Un(K)*-*K we may conclude that
(6,Ci,,(a,0)Ci,</3",i8)fw+1(y',r)Co#(?b))t/J, )=0

for all Y*Fg*. Therefore
(0".Ci+in(a)fik ~")iw +i(r-rOiDo(9>0))t/j?)=0

for all Y*Fqg** I*follows that

(Xa>£D|\4<E’a))ur(qysF‘rITEFI °0Cto+1 (7.00CD"Vofiujqg)-

As in the proof of lemma 5.2.10 we have

6*InW W MW M nW tyP fi)
for all 3F ?. Therefore

(Xa*€Dd(PJI)ujLg)=4(ee> M n(aKijo'OKbM (Y 'OKDd<Po))uj.q)

and the proof of the lemma is complete. .

Lemma 5.2.18. Suppose f/tar (i,/+1)«S<g(0Jn S~ D J and (/,i+1)*S(c)(D). Suppose

also rfiar {b,iy*Dfor all be [I,...,i-1}. Then

and
(z £ d(<P))=4'1(X&$dJ PJ)-

Proof. In this lemma we are concerned with the following situation
D Dm

We follow the proof of lemma 5.2.13. The first assertion is a repetition of the



237
corresponding proof of that lemma. For the second we have

where jm {i+2,...,/i-1} is such that (i+1j)eD,am[l,...,f-1} is such that (a,i+l)«Z),
oc=<(i,n), p=<p(i+lj), y=gKa,i+1), £>0=£>\{(i,/»),(i+1J),(a,i+1)} and ft, is the restriction
of gjto Da. On the other hand

®a=I»iiii(a)iiy (") £ai+H"M)EoQ(Vo)
where p=<pjia,i+1).

As in the proof of lemma 3.2.13

On the other hand we have

X0>«Nnu*q)
(by the first assertion of the lemma). Hence

(Xa>SD.(<Pa))u.(<,Hj."L F (*".i,+In(«)Cy<A/3")ia«+I(Ai.M)Coo(9>0))t/i/ ?)-
Using the function A%+1:Un(K)*-*K we may conclude that

(©,C,,,(a,0)?"')3)fai+1(M » & O(*))t/j,)=0
forall jimF~{y). Therefore

forall ji'mF \{y). It follows that

(~(*J W )Ig ) >Zi-An(a Kij<PfflCat+\(JJ}'?>>CD0(Lo))uji<iy
*ri
As in the proof of lemma 5.2.10 we have

C+u(a)i*rA/3")=C,+i,,(a)CikA0)
for all pmFr Therefore

and the proof of the lemma is complete. .

Lemma 5.2.19. Suppose that (i,i+1)«S"GD g)n5<)( D and (W+I)«S<(D). Suppose
also that (b,f)mbDnD,,for some bm{1....J-1}. Then
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tfl)-*«*1)
and
(*.&(*)

Proof. In this lemma we are concerned with the following situation
D Da

We follow the proof of lemma 5.2.14. The first assertion has the same proof. For
the second we have
$DW =$inWSi+lj<frS*i+IW4bi(®@$D0<R)
where jm {i+2,...,n-1} is such that (i+1J)eD, ae {1,...,/-1} is such that (a,i+1)eD,
a=<p(i,n), 0=<p(,i+lJ), r=gKa,i+1), 8=<p(b,i), Z0=2\{ (.i,n),(i+1j)Aa,i+\),(b,i) } and &
is the restriction of g=to D0. On the other hand

where n=<pjia,i+I) and v=<f=1lb,i) (we note that (ay+I)eDrDor

As in the proofof lemma 5.2.14 we have

To calculate the Frobenius product we rst prove the equality

By lemma 2.2.6 the character £i-\n(<x)Gj(.P) has q distinct ineducible components which
are parametrized by the elements of the field Fr For each XuFqlet 0(A) be the ineducible

component of ii+in(a)i,y03) which corresponds to A Then

and
«(A).
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Therefore
X ta&tiOOCwCvtt ta,).
totn
The required equality will follow once we prove the equalities
«(A)idH(M )U v)|Do(@>h)=(Ci+i,,(a)C#.0)C»+i(**C"i(5,0)CoQ( ™)) /(>

where Xruns over Fq. Let Xe Fqbe arbitrary. Since

(see lemma 2.2.6) and
AO(fIb)t/ji)=Co0(fl%)
the rigth hand side of the equality above is equal to

As in the proof of lemma 5.2.14 we have

The proof of the lemma now follows as in lemma 5.2.14. .

Lemma 5.2.20. Suppose that (U +I1*S*iDArS~iD J) and (i,i+1)«5(c)(E>). Suppose
also that there exists be {1,...,/-1} such that (bJ)eD and (b”*eD ”~ Letae {l,...,i-1} be
such that (aJ+1)*D and assume that a<b. Then

. » VIVO&P&CT)) if#.D-i2«0)
W (Xd&SdJ<PJ) ifzu)=Xm(l)

Proof. In this lemma we are concerned with the following situation
D Du

We follow the proof of lemma 5.2.15. We have
>
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where jm {i+2,...tn-1} is such that (i+1J)*D, a=<p{i,n), fi=<p(i+\J), T"<p(a,i+l),
5=<p(b,i), DO=D\{ (i,n)Ai+1J),(aJ+I),(bJ) } and <Pvis the restriction of ¢>to D& On the

other hand

because D”caiD).

As in the proofoflemma 5.2.15

G () GPO@( Gvi(M)@(Ro))jay

Now suppose that Then

Z**?*

| BQRYE: . OCH G e A8 osoyiy

Now we have

S

N<a(*(M HTfU («9W 0)
for all /F*F? (see the proof of lemma 5.2.10). On the other hand

for all 5e F? (see the proof of lemma 5.2.15). Therefore
(Z»&jCI)vjwV (Z& (fO)vj(«)
as required.

On the other hand suppose that 2J(1)=<7XtJXi- Then
(Xjujgq)mg*
to
0:.5D("))t/.(i)-CtQ(Ci+i«(«)fi,(AO)Cu())Cw+1(5.0)f0o( " ) ) t, (>){/.(.).
The result will follow once we prove the equality
ToJV M (M« (a)fv<A0)Cu(Tif6.vi(fi.0)fD¥ ")) 1,-(,).
Since

Car()iCDQ9V))“ (i0i<7iio0(?h)){/.(F)»
the rigth hand side of the equality above is equal to

(fi+u(a)C«<A0)fw+(5.0))t-<)U ?) fo o(W))-
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By theorem 3.3.3 the character i 1+,,(a)<5</3y\1+i(5) has a unique irreducible component
which appears with multiplicity g. We denote this component by <pand we claim that

*=(?,+1,(«) (8,0))u-(q\
In fact €eorresponds to the i/,,(/0-orbit of the element

aejHs* +/V +&«+i*«
The image of this element under the projecdon tc. Un(K)* -> UJIIC)* lies in a UJiK)-orbit

which corresponds to an irreducible component of i*u(o0Cj/(AO)£'(MH(S,0). Therefore

(by theorem 1.3.9)

Now we have
0(D)=<71gn'(i+11 gf'1 lg<4H>b-1=gnH-i'b-A
whereas
(CHi,,(@)Ci,(i3.0)fWH(5.0))U<(1) A g " - (i+D)- V )V +1) 62=ini'i"4-

The desired equalities follow and the proof of the lemma is complete. .

Lemma 5.2.21.Suppose that (ij+\)*SicXDldci&n\D J) and (i,i+I)*SM(D). Suppose
also that there exists be {1......i-1} such that (b,i)*D and (b*sD * Letas{ } be

such that (o,i+1)eD and assume that fxa. Then

and
(X'Sd () X x+ZdiS gJ)-

Proof. In this lemma we are concerned with the following situation
D Da
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As in the previous lemma we have

and

where  {¢{+2,...,n-1} is such that (/+1J)uD, a= <p(i,n), f}=<p(i+lj), f=g>(a,i+l),
ih<p(bj), Dg=D\[ (iji),(i+1j),(a4+1),(bj)}and is the restriction of to Dq

The first assertion is proved exactly as in lemma 5.2.16. In particular

For the second we have
(x4 d(<p))u*(*):/ XF (ea.fi.M («)f(™.0)fai+i (r'~ f« +i(5,0)Co0(?>d))i,J(,).
«F,

As in the proofof lemma 5.2.16
2«H(r'.7)?«+(5.0)=if(y)C6,+i(5.0)
for all yeF . Therefore
(2:.io("™)t/.(i1)=i("Ui.-tu(a)fi/(AO)Cai("?6.H(5.0)CDO(¥0))t/NP)-

On the other hand
C J L ("N 1T, («) ?2y(AN) CUY)) CWH («5.5000(9>0) {/Ji )

As in the previous cases
Citi,(« W ./n < +i»(a)C*J.0)
for all /y«F?. On the other hand (repeating the argument in the proof of lemma 5.2.16)
we have
(™., +i(@)fy(AO)Cai(y)fw+1(5.5") fOo(<Po))E/-(i)- 0
forall 5«F  Hence
0 .Q+l«(a)fi/(AO)CH(7)fiNH (fi.0)f00(9V)))E/j:,)

and the lemma follows. 4

Now we complete the proof of proposition 5.2.2. For a* {1,2......14}, case (a)

corresponds to the situation of lemma 5.2.(7+a).
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Case 1. We have &\)=qzJ.\) and Since
s(D)=s(DJ+2 and /(D)=/(D9Y+1
we conclude that
)=<r2aXi) N dj'kdjx”" dJ <)
mg<€* D> W D » I"ED(Ip))m{ii<PW=)(X£ D(9y)"

Case 2. As in the previous case  )=qxJ.V and (x Q€dJ.R)=(X"Ed(BD- Since
s(D)=s(DJ+3 and I(D)=I(DJ+2

we obtain

X(1)~<IXji1) * (* DIIKDJII X A dS Veti

Case 3. In this case we have
s(D)=s(DJ+Il and /(D)=/(DJ.

Therefore either
Xt1)=<IXji 1)=<;4*D J'KDJ(Xa,$Dj- <PJ)

A (~ D=>Um(jC"D(V))="DyKD)(X"D(<P))
or

Case 4. We have
s(D)=s(Da+2 and /(DWIDJ+I.

Therefore either

or

2*1 1 )m DJI'KDI(Xa»'Dn(® j)



244

Case 5. In this case *(1)-Z»(D and (Xa>"Dn(<PJ)=iX"D(<P))- Proposition 5.2.2

follows immediately because

s(D)=s(DQ and I(D)=I(D¢.

Case 6. We have ;£(1)=*,,(1) and (x*D *V jAiX "0 W )- Since
s(,D)*s(DJ+I and /(D)=/(Da&+I
we obtain

XF.1)-* « ( 1)=4*DJ4(DJ(Xa>SDji<Pc))

rnrfW **»'Ct.& (HW <DH(»Cr.&(f))-
Case 7. This case has the same justification as the previous case.

Case 8. We have
s(D)=s(Dg+2 and /(D)=/(DJ+I.
Therefore either
2<1)=4Xji )=<*DJ'KDJ(XqS dJ<PJ)
AOYyWw o+ rx
or

rti)-xJii)-<i* DIHPIx<*SDntpd)
19(x4 D«P))D)m (x4 D<P))-

Case 9. We have xf, 1)=7Z<y(1) and Since
s(D)=s(DJ and I(D)=I(DJ+I
we conclude that

X 1D -Xjiiy" A iXwsSDjVJ)

Case 10. W ehave”l)*~!1) and (x<Ed (Vati*tX*"DW)- Since

s(D)s(DJ and /(D)-/(DJ-1
we conclude that

q (x£ (<p))mtFDW D) (x £ D(<)).
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Case 11. In this case we have
ji(D)=i(DJ+1 and
Therefore

X 1)=*«<1)=4*DJI4{D“¥X0.$Dji<P2)

Case 12. This case has the same justification as the previous one.

Case 13. We have
s(D)=s(DJ+2 and /(E>)=/(EJ.
Therefore either

X(1)=4Xji1)="QsiDa>'(DJ(X " D a(<PJ)

AN d>M% (x4dW ) A duw (x,M ))
or

* 1)-* .< 1)=<is(DY-I(DI(X "D jiPJ)
A d™ d\* (x,LdE))-<i«Dy* d)(x .Sd(®))-
Case 14. We have X(D=XM) and (.X"dJ V J X x” oW)- Proposition 5.2.2

follows immediately because

s(D)=s(DJ and /(D)=/(DU).

The proof of proposition 5.2.2 is complete.

Proof of theorem 5.2.1. Let D be any basic subset of $(n). Then

<?0-X (X,$0)X
z*tD

where IDdenotes the set of all irreducible components of £0. Letx*fa “ d let V**-»P’*

be the unique map such that

0&&(P)VO-
Then (by proposidon 5.2.2)

Hence
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fw 'V I xwx.
X*ID
By theorem 2.2.1 we conclude that

= X 202=X (;d(qd *0)2=_X . <(OHD)D

as required.

Corollary 5.2.22. Let xe Un(q). Then
X 0).«DYMX)=5V\k{H)2
Difc

where 5xl is t/ie Kronecker symbol.

Proof. This is an immediate consequence of theorem 5.2.1 and of the properties of the

regular character p. 4

Finally we note that proposition 3.2.15 is a consequence of the previous corollary.

In fact

Corollary 5.2.23. The following equality holds
I (g-i)“VO0>=*"<»-i>/2

K

Proof. This is clear from the previous corollary because
& (1)-X$d(<P)0)=X/D=<7-)& (D)

where <pruns over all maps fromD to F *. .



[AT]
[Ca]

[CG]

[Co]

[CR]

[Oi]

[Gu]

[Hul]

[Hu2]

[a]
[Ka]

[Kil]
[Ki2]

REFERENCES

Artin, E., Geometric algebra. Interscience Publishers, New York (1957)

Carter, R.W., Finite groups of Lie type (conjugacy classes and complex
characters), Wiley-Interscience, New York (1985).

Corwin, L., Greenleaf, F.P., Representations of nilpotent Lie groups and their
applications (Part 1: Basic theory and examples), Cambridge Studies in
Advanced Studies, 18 (1990), Cambridge University Press.

Cohn, P.M., Algebra (vol 1, second edition), John Wiley & Sons (1988).
Curtis, C. W,, Reiner I,, Methods of representation theory (Vol. I. with
applications tofinite groups and orders), Wiley-Interscience, New York (1981).
Dixmier, J., Sur les représentations unitaires des groupes de Lie nilpotents IV,
Canad. J. Math., 11 (1959) 321-344.

Gutkin, E.A., Representations of algebraic unipotent groups over a sel-dual
field, Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 7, No. 4, p. 80 (1973).
Humphreys, J.E., Linear algebraic groups, Graduate Texts in Mathematics, 21
(1975), Springer.

Humphreys, J.E., Introduction to Lie algebras and representation theory.
Graduate Texts in Mathematics, 9 (1972), Springer.

Jacobson, N., Lie algebras. Interscience Publishers, New York (1962).
Kazhdan, D., Proof of Springer% hypothesis, Israel J. Math., 28 (1977),
272-2867

Kirillov, A., Eléments de la théorie des representations, Editions Mir (1974).
Kirillov, A., Unitary representations of nilpotent Lie groups, Russ. Math.

Surveys, 17 (1962), 53-104, Uspekhi Mat. Nauk, 17 (1962), 57-110.



[LD]

[Le]

[Sr]

[t]

[Vel

Lfeo]

248

Lambert, P.V., van Dijk, G., The irreducible unitary representations of the group
oftriangular matrices, Nederl. Akad. Wetensch. Proc. ser. A 77 = Indag. Math.
36 (1974), 168-185.

Lehrer, G.1., Discrete series and the unipotent subgroup, Composito Math., 28,
(1974), 9-19.

Srinivasan, B., Representations offinite Chevalley groups. Lecture Notes in
Mathematics, 764 (1979), Springer.

Steinberg, R., Conjugacy classes in algebraic groups. Lectures Notes in
Mathematics, 366 (1974), Springer.

Vergne, M., Construction de sous-algébres subordonnés a un élément du dual
d'une algébre de Lie résoluble, C. R. Acad. Sci. Paris, 270 (1970), 173-175,
270 (1970), 704-707.

Boref, /\, j ZMweA, (u-4.
YorK , 1*16¢] ,



