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ABSTRACT

The method of coadjoint orbits was introduced by Kirillov to study the unitary 

irreducible representations of a nilpotent Lie groups. Afterwards Kazhdan adapted this 

method to determine the irreducible complex characters of a finite unipotent group. We 

use this method to study the irreducible complex characters of any finite unitriangular 

group.

In chapters 2 and 5 we established an orthogonal decomposition of the regular 

character of any finite unitriangular group.

Chapters 3 and 4 are concerned with coadjoint orbits of any unitriangular group 

defined over an algebraically closed field. Chapter 3 is essentially the orbit version of 

chapter 2. In fact we obtain a decomposition of the dual space of the niltriangular Lie 

algebra as a disjoint union of invariant subvarieties. In a certain sense this decomposition 

corresponds to the one obtained in chapter 2 and 5.

;
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INTRODUCTION

The main purpose of this thesis is the study of the irreducible (complex) characters 

of the finite group Un(q) consisting of all upper unitriangular matrices of size n with 

coefficients in the finite field Fq (throughout the thesis q will denote a power of a prime 

number p). Our approach is based on Kirillov’s method of coadjoint orbits (see [Kil], 

[Ki2] or [CG]). This method was introduced in the context of nilpotent Lie groups and 

was adapted by Kazhdan to the context of finite unipotent groups (see [Ka]). It gives a 

’■ery useful way of constructing the irreducible characters of Un(q) and it runs as follows.

Let K be the algebraic closure of Fq. Then we may realize the finite group Un(q) as 

a subgroup of Un(K). In fact Un(q) is canonically isomorphic to the subgroup of Un(K) 

which consists of all fixed elements of the Frobenius map F:Un(K )-* U „(AT) - by 

definition F(x)=0c,/) for all x=(x,y)e Un(K). The linear algebraic group Un(K) acts on its 

Lie algebra Un(K) via the adjoint representation - we recall that the Lie algebra Un{K) 

consists of all upper niltriangular matrices of size n over AT. Therefore (/„(AT) acts on the 

dual vector space u n(K)* of u n(K) via the contragradient representation. This 

representation is called the coadjoint representation and its (/„(AT)-orbits are the coadjoint 

Un(K)-orbits.

A similar rule to the one above defines a Frobenius map on Un(Af) which we denote 

also by F. Then (using a basis of un(K) consisting of F-fixed elements) we may define in 

a natural way the Frobenius map on Un{K)* and we may consider F-stable coadjoint 

(/„(AO-orbits. In order to define the exponential map exp: un{fC) -* Un(K) we assume that

p^n  (we note that with this assumption the Campbell-Hausdorf formula holds). Then any 

F-stable coadjoint i/n(AT)-orbit 0<zUn(K)* determines a character %o ° f  UH(q) which is 

defined byI
t
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Zo(expa)= J —  X  botóte»
W l  *m°^

where y/0 is an arbitrary (but fixed) non-trivial linear (complex) character of the additive 

group Fq+ (we note that any coadjoint i/„(K)-orbit is an irreducible algebraic variety of 

even dimension). This character is irreducible and so we obtain a correspondence 0-*X o  

from the set of all F-stable coadjoint i/„(K)-orbits to the set of all irreducible characters of 

Un(q). The irreducible character Xo was defined by Kazhdan in his paper [Ka] (see also 

[Sr, chapter 7]). It was also proved by Kazhdan that any irreducible character of Un(q) 

has the form Xo for some F-stable coadjoint i/„(Af)-orbit Oc U„(AT)* and that two F-stable 

coadjoint i/n(K>orbits are distinct if and only if the corresponding irreducible characters 

of Un(q) are distinct. Therefore the above correspondence 0 -> X o >s one-to-one and so 

we have a parametrization of all irreducible characters of Un(q) in terms of F-stable 

coadjoint i/„(K)-orbits.

Another approach (which i s . c lo # e r  to the original construction of Kirillov) to 

the characters Xo of Un(q) (here O is an F-stable coadjoint £/„(A0-orbit) is as follows. Let 

/<= Un(K)* be an arbitrary F-fixed element. Then we may define a skew-symmetric 

AT-bilinear form B¡ on Un{K) by B¿a,b)=f([ab]) for all a,be Un(K). Hence we may 

consider maximal isotropic subspaces of Un(K) (with respect to that skew-symmetric 

form). A general result asserts that there exists at least one maximal isotropic subspace 

t)n(K) of u n(K) which is also a (Lie) subalgebra of u n(K) and which is F-stable. 

Therefore defines (via the exponential map) a subgroup Hn(K) of Un(K) which is 

also F-stable, hence the finite set of all its F-fixed elements Hn(q) is a subgroup of Un(q). 

Then the correspondence a -» y/of[a), ae un(JC), defines a linear character of Hn(q) and 

we may obtain the irreducible character Xo which corresponds to the F-stable Un(K)-ocbit 

o f/a s  the induced character Therefore we conclude that any irreducible character

of Un(q) is induced from a linear character of some “admissible” subgroup of Un(q). This

result was proved independently by Gutkin [Gu] for an arbitrary prime p. In particular we 

deduce that each irreducible character of Un(q) has degree qn  for some integer ni¿ 0 (see
/
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[Gu]). In fact (by definition) we see that %o ( 1 ) W  qdim0 for all F-stable (/„(AO-orbit 

OcUjK)*.

Although Kazhdan's results reduce the classification of the irreducible characters of 

U Jq) to the classification of coadjoint [/„(Af)-orbits they do not give a constructive

method to obtain those characters. In fact they do not allow a systematic method to 

construct those characters. In the paper [Le] Lehrer used a different method which is 

based on Clifford theory and which is valid for an arbitrary prime number p. This method 

was also used by Lambert and Dijk [LD] in the context of real Lie groups. It is completely 

constructive and it allows the construction of all irreducible characters of UJq) once we 

know the irreducible characters of Un.x(q) and of some of its subgroups. In fact the 

group Un.x(q) is canonically isomorphic to a subgroup of Un(q) which has a normal 

complement A Jq). Therefore (by Clifford theory - see theorem 2.1.1) each irreducible 

character % o f Un(q) is determined by a linear character X of An(q) and by an irreducible 

character <pof centralizer Cy ^ X )  of X in UnA(q) - we note that Un_x(q) acts in a natural

way on the set of all characters of its normal complement An(q). This correspondence is 

not one-to-one because the irreducible character % ° f  Un(q) is also determined by any pair 

(Xx,<px) for xe  U n. x(q). However the U n. t (AT)-orbit of X contains a certain 

canonical character for which the subgroup A J q ) C v  i(<?)(A) is the subgroup

U Jq)=Un(q)r\Oi1 UJq)co where coeSn is a permutation of the form o^(n -1 ... i+1 i) for 

some ic { 1 1 }  (if i=n-1 then £0=1). Therefore we conclude that each irreducible 

character of Un(q) is induced by some irreducible character of UJiq). If we restrict our 

attention to the linear characters of UJiq) then we obtain a family of irreducible characters 

of Un(q) for which the Lie algebra U jK ) - u n(K)r\<o'1 u n(K)a) is a maximal isotropic 

subspace of UJK) with respect to a certain (F-fixed) element/« UJK)*. This family 

includes all the irreducible characters of U Jq) which correspond to the (F-stable) 

£/„(Af)-orbit O in(a) of the element ae^*« UJK)* for a« Fq - here «*,*• Un(K)* is the 

linear map defined by eiB*(a)«nilt for all a=(a„)« UJK). These orbits lie in a larger family 

of orbits which we will call the elementary orbits. In general if (i j )  is any pair in the set
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<D(n)= {(a,by, 1 <a,b<.n} we may deñne the (ij)-th  elementary Un(K)-orbit associated 

with an element ote K  to be the í/„(Af)-orbit 0 iy<a) of the element ae¡j*e Un{K)* - here 

e¡j*e Un(K)* is the linear map defined by e¡¡*(a)=a¡¡ for all a=(arj)« Un(K). If <XeFq then 

the orbit 0,-,((*) is F-stable and so it determines an irreducible character ¿^(a) of Un{q). A 

character with this form will be called an elementary character of Un(q). They are the

characters of the irreducible representations defined by Lehrer in [Le]. Their construction 

is described in section 2.1 where we also prove that each elementary character £y<a), 

(i j ) e  <2>(n), ae F  q, is induced by the linear character X¡j(a) of the subgroup 

Ua)(q)=Un(q)r\(ol Un(q)a>, a>=(j-\... i+1 i)«Sn - this linear character is defined by 

X ij ( a ) ( x )  = a x ij  for all x = (x rs)e U a (q ) .  In particular the Lie algebra 

U0i(K)=Uni,K)r\coA un(K )a\s  an (F-stable) maximal isotropic subspace of U„(AT) (with 

respect to the element ae¡j*e un(.K)*).

Following Lehrer's work we consider products of elementary characters. In fact, in 

[Le], Lehrer obtained a decomposition of restriction of any irreducible discrete series 

complex representation of the general linear group GLn(q) to Un(q) as sum of certain

tensor products of irreducible representations whose characters are elementary. This 

decomposition can be improved if we apply our results of section 2.2. In fact we will 

prove that any product of elementary characters can be decomposed as a sum of basic 

characters (proposition 2.2.13). By definition a basic subset D of <D(n) is any subset of 

the form <P(n)n(o(A) where 4= {(1,2), (2,3),...,(n-l,n)} and to is any element of Sn. 

Then we define the basic character ¿¡p(<p) associated with a basic subset D of <tKn) and a 

map <p:D -» F q*=Fq\[0}  to be product of all the elementary characters £¡j(<p(ij)) for 

(<V)« <tK,n). The main result of this thesis asserts that any irreducible character x  of Un(q)

is a component of a unique basic character (see theorem 2.2.1). Moreover the regular 

character of Un(q) decomposes as the sum of all basic characters of Un(q), and the 

multiplicity of a given basic character 4dW  *ls a component of the regular character is a 

power of q which depends only on the basic subset D (see theorem 5.2.1).

f
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On the other hand we consider the closely related problem of describing the 

coadjoint t/„(AQ-orbits. Our results in this direction are established for an arbitrary

algebraically closed field (with the restriction p in  if K has prime characteristic p). In this 

more general context we consider sums of elementary (/„(AQ-orbits. In fact a general

result (corollary 1.3.11) asserts that (if K has characteristic p in )  the irreducible 

components of a product of irreducible characters %\••■••Xr 31-6 *n one-to-one 

correspondence with the F-stable i/„(Af)-orbits which are contained in the sum Ofi.. W r 

where 0 (- is the /-stable (/„(/O-orbits which corresponds to the irreducible character Xi 

(lS i^r). Therefore we consider basic sums of elementary i/„(AO-orbits. If D is a basic 

subset of 0{n) and <p:D-* K* =K\{0} is a map then we define the subset O D(q>) of 

u„(/0* to be the sum of all the elementary orbits Oy(<pOV)) for (iJ)eD . The orbit version 

of the result mentioned above states that Un(K)* is the disjoint union of all basic sums 

0 D(<p) where D is any map (see theorem 3.1.7). M oreover each 0 D(<p) is a 

(/„(/0-invariant irreducible subvariety of U„(Af)*, hence there should exist a finite set 

of (/„(AT)-invariant polynomial functions defined on  tf„(AT)* such that 

0[,(<p)={fe Un{K)*\ Pi(f)=ki, 1 <i<m} where kx,...,kmeK. These functions are defined in 

section 3.2 and they are indexed by a certain subset of <P(n). This subset depends only on 

the set D and it will be denoted by R(D). Its definition is purely combinatorial. In fact a 

pair ( i j) t  O(n) lies in the set R(D) if and only if (iJc)eD  for all k<= { /+ l,...,n}  and 

(IJ)*D  for all U {1 .. . . / -1 } - in particular we have DcR(D). For each (iJ)*R(D) the 

C/„(/0-invariant polynomial function corresponding to (ij) will be denoted by A?. Their

definition was motivated by the work of Dixmier [Di] - in fact the functions Ax,...,Ar 

(where n = 2 r  or n » 2 r + l )  defined in [Di] are our functions A0̂  where 

D ={(l,n),(2 ,n-l),(3 ,/i-2),...} (in this case /?(D)»D).

In general the subvariety 0 D((p) of Un(K)* is not a single (/„(AT)-orbit and its 

decomposition as a union of orbits seems to be very difficult to obtain. An attempt is
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made in chapter 4 where we give a decomposition o f certain varieties 0 D(q>) which 

depend on the pairs (a,i)e 4>(n) where (i,n)eD for some ie { } .  This 

decomposition suggests also that it might be possible to find an algorithm to describe the 

coadjoint £/„(Af)-orbits once we know the coadjoint ¿/„^(AO-orbits. In fact using the 

permutation o>=(n-l... t+1 f) one may define a certain basic subset of Un(K)* and a 

map (PoiDa -*K* which depend on the initial pair (D,q>) and which satisfy (n-l,n)€D(a . 

Hence the variety O p jiq )^  of Un(K)* is canonically isomorphic to the subvariety 

°D a0(<P<o,6) where D Û = D (n -1 ,n) } and <pm0 is the restriction of <pm to D m0. 

Unfortunately the pair depends on a particular element feO D(q>) (which satisfy

fi~ean)-Aeiai- 0 f°r all ae { i+ l,. .. ,« - l}) and in many cases different elements in 0 D(<p) 

(satisfying that condition) may determine different pairs (D^cpJ. In fact (D ^q)^  is the 

unique pair such that f (lfiODJ(pa}  w h e r e Un(K)* is defined b y fj.e ab)=f{e)iriia)ari(ft}  

for all (a,b)ed>(n) with £t>'1(a)<tu'1(b), and if (aJ>)e<D(,n) with £0‘1(a)>0J'1(h).

The pair (D ^q )^  can be also defined step-by-step applying the simple reflections (i 

i+ l) ,... ,(n-2n-l) (in this order) to the element/. At each stage we define a pair (D^qtJ 

(lSa^rt-i-l) such that (D(a,q}â =(Dn.i.lyq>n_iA). The pair (D i,^ )  (corresponding to the

reflection (i i+l)) is determined in section 5.1 (see theorem 5.1.7), and in section 5.2 we 

give an application of this method to the character theory of Un(q) (see the proof of

proposition 5.2.2).

More precisely our work in this thesis is organized in the following way.

Chapter 1 is an introductory chapter. It consists of three sections. The first contains 

the basic notation and definitions which will be used throughout this thesis. In the second 

we describe Kazhdan's parametrization of the irreducible complex characters of Un(q).

Finally the third section is concerned with the operations of induction and restriction of 

irreducible characters.

In chapter 2 we define elementary characters and elementary coadjoint orbits. Then 

we study products of elementary characters and we prove the main result of this thesis. 

We also describe the irreducible characters of Un(q) for n&5.
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Chapter 3 is dedicated to the study of basic sums of elementary orbits. It has three 

sections. In the first we define certain subvarieties VD(q>) of Un(K)* and we prove that

they coincide with the sum of elementary orbits. In this section we also prove the orbit 

version of our main result. In the second we determine the dimension of each variety 

VD(<p) and we derive some number-theoretical consequences. Finally in the third section 

we determine the pairs (D,<p) for which VD((p) is a single coadjoint orbit.

Chapter 4 is mainly concerned with a certain decomposition of VD(<p). Finally in

chapter 5 we use this decomposition to describe a certain inductive process which is used 

to obtain an additive decomposition of the regular character of Un(q).

As far as we know all the results presented in this thesis are original with exception 

of the major part of the results of the chapter 1. Section 1.2 follows [Sr; chapter 7] and 

section 1.3 is an adaptation of Kirillov theory as it can be found in [Ki2] and [CG] 

(however some of our proofs are different). The applications to the character theory in 

section 1.3 (namely theorems 1.3.8, 1.3.9 and 1.3.10 and corollary 1.3.11) are also 

original.

a
!
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CHAPTER 1 

GENERAL THEORY

This chapter is concerned with the general background of our thesis.

In section 1.1 we introduce the basic notation and we discuss briefly a certain 

family of unipotent algebraic groups. These groups can be obtained as exponential images 

of nilpotent Lie algebras and so they will be called exponential (unipotent) groups.

In section 1.2 we construct the irreducible characters of the finite exponential 

groups. In particular we prove that these characters are induced by linear characters of 

some subgroups which depend on the existence of certain maximal isotropic subspaces of 

the Lie algebra associated with the given unipotent group. We also establish the 

one-to-one correspondence between the irreducible characters of this unipotent group and 

the orbits of its coadjoint representation (on the dual space of its Lie algebra).

Finally in section 1.3 we translate to the orbit language the well-known operations 

of restriction and induction of characters. In particular we will consider subgroups of 

"codimension" one. Since these subgroups are normal this section is closely related with 

the Gifford theory of finite groups.

Although the major pan of the results of this chapter can be found in the literature 

(except as far as we know the applications to the finite groups in section 1.3) we will give 

a detailed proof of each result. This is done for the convenience of the reader and in order 

to make this thesis the most self-contained it can be. However a reference will be given 

for all non-original results and proofs.

;



1.1. G eneralities

Let AT be any field and let n be a positive integer. Throughout this work we will 

denote by Un(K) the (upper) unitriangular group of degree n over AT. By definition this 

group consists of all square matrices *=(■*,;/) of size n with coefficients in the l.'eld K  

satisfying xu= l (l£i£n) and jĉ -0  (1 ¿j<i£n). If AT is the finite field Fq with q elements 

(where q=p€, e>0, is the e-th power of the prime number p) we will write Un(q) instead 

of Un(F q). It is well-known that Un(q) is a finite group o f  order qn<n-l '>f2 3. For our 

purposes it is convenient to realize the finite group Un(q) as a  subgroup of the infinite 

group Un(K) where AT is the algebraic closure of F q. For we use the Frobenius map 

F=Fq:Un(K) -* Un(K) which is defined by

(1.1.1) F Q c M tf)

for all x=(Xij)e Un(K). The set

Un{IC)F= [xtU n(Af); F(x)=x)

consisting of all the F-fixed elements of Un(K) is a finite subgroup of Un(K) and we have 

a canonical isomorphism

Un(K)p =Un(q).

For the basic properties of the Frobenius map we refer to Carter’s book [Ca]. We note 

that, if the field AT is algebraically closed, the group Un{K) has a structure of affine

algebraic variety (*)• In fact it is isomorphic to the affine space Af"<',' 1)/2 of dimension 

(2). Since the multiplication and the inversion maps are morphisms of algebraic 

varieties (3) we conelude that U„(K) is an algebraic group.

1 For the basic theory of affine algebraic varieties and of algebraic groups we refer to Humphreys' book 
[Hull.
2 The coordinate ring of U,(K) is the polynomial ring AT[TV; 1 in indeterminates Tq
(1 Si</£/i) over K.

3 The expression “algebraic variety” abbreviates “affine algebraic variety” . This abbreviation will be kept 
throughout our thesis.
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Our main goal is the study of the (complex) character theory of the finite group 

Un(q). The starting point o f  our work is Kazhdan’s construction (see [Ka] or [Sr; pg. 

114-118]) of the irreducible characters of the finite groups consisting of all the fixed 

elements of a Frobenius map defined on a unipotent algebraic group over an algebraically 

closed field of prime characteristic p. This construction uses the method of coadjoint 

orbits developed by Kirillov to study the unitary representations o f nilpotent Lie groups 

(see [Kil], [Ki2] or [CG]). Therefore a restriction has to be imposed on the prime p  in 

order to realize our algebraic group as the exponential image o f its Lie algebra (even 

though not all unipotent algebraic groups can be obtained by this process). In the 

following we discuss this general situation. Since any unipotent algebraic group is 

isomorphic to a closed subgroup of some unitriangular group (see [Hul; corollary 17.5]) 

we may define a unipotent group to be a closed subgoup of some Un{K). Then the Lie 

algebra of a unipotent group is a subalgebra (*) of Lie algebra of Un(K). This Lie algebra 

consists of all square matrices x=Qctj) of size n over K  satisfying z,y=0 (0¿/¿j£n). It is 

called the (upper) niltriangular Lie algebra and it will be denoted by Un(K). It can also be 

defined for an arbitrary field K. In particular if K is the finite field Fq we will write Un(q) 

instead of un(Fq). As in the case of the unitriangular group we may identify Un(q) with 

the subalgebra

Un(K)F=[ae Un(K)\ F(a)=a}

of Un(K) where K  is the algebraic closure of F q and F=Fq: Un(K) -» U„(K) is the

Frobenius map. As before F  is defined by

(1.1.2) F i a ^ a f )

for all a=(a,y)« Un(K). We note that u„(q) is a vector space over F q and that we have a 

canonical isomorphism of vector spaces

(1.1.3) Uh(K )s  Un(q)®r K.

Now we assume that p in  whenever K  has prime characteristic p. Then we may 

1 By a subalgebra we understand a Lie subalgebra.
I
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define the exponential map exp: Un(K) -> Un(K) by 

(1.1.4) e x p a - £ j r a l * 3
»-n 11

for all ae un(K) - we note that a"=0 for all ae U„(X). exp is bijective and its inverse is the 

logarithm map ln:UH(K)-+ Un(K) which is defined by

for all x < Un(K) - since x-1* Un(K) we have Inxe Un(K) for all xe [/„(AT). Moreover let 

6:Un(K )xun(K) -* Un(K) be the map defined by

where [aia2...a)J=[ai[d2” -[a»i-iaiJ]-"] for all un{K). This equality is known

as the Campbell-Hausdorfformula (').

As a consequence of the Campbell-Hausdorf formula we deduce that the 

exponential image exp U of any subalgebra U of U„(Af) is a subgroup of Un(K). A

subgroup of this form will be called an exponential group (*).

The “smallest” examples of exponential groups are obtained when we consider 

subalgebras of Un{K) of dimension one. Let a be an arbitrary non-zero element of Un{K). 

Then the subspace Ka of U„(AT) is a subalgebra of Un{K) and we may consider the 

exponential group

1 For die proof of the Campbell-Hausdorf formula (as well as for the proofs of the properties of the maps 
exp and In) we refer to Jacobson [Ja; pg. 170-174] where this formula is established in the ring of formal 
power series AT(X,y] in two nor-commutative variables over a field of characteristic aero (we calculate the 
sum of all homogeneous components of degree less than a of the formal power series ln(expX expY) and 
then we specialise X to a and Y to b). The result for a field K of prime characteristic p in  can be obtained 
starting with the polynomial ring U (X.T) over the Held B , then reducing to the polynomial ring
B [X ,Y) over the ring 2  and finally tensoring (over 2 )  with K. This process establishes the 
Campbell-Hausdorf formula in the polynomial ring 2(X,T} over K. (1.1.6) is deduced specialising X to a

(1.1.5)

££> 0  ( X ( p a+<7a))pi!<7i!. . . p MISaSi am 1

3 A more general definition of exponential group can be found in KirilWj book [Kil].
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exp(Ka)={exp(aa); cteK).

It is easy to verify that

(1.1.7) exp(aa)exp(Pa)=exp((a+p)a) 

for all a,peK.

In particular we obtain the root subgroups of UH(JC). These are defined as follows. 

Throughout this work a pair (ij) with l£i</£/t will be called a root (*) and the set of all 

roots will be denoted by <D(n) f2). Let (i\/)e <P(n). Then the (ijy th  root vector eq of Un(K)

is the matrix

( 1. 1. 8)  e ijm(8ai&bj)l£ajr£n

(here $ab> l£,ck.fb^ny  is the usual Kronecker symbol). The (ij)-th  root subalgebra of 

Un(K) is the subspace

(1.1.9) S ijU O ^eij

o f Un(K). Finally the (ijy th  root subgroup of Un(K) is the exponential group

( 1. 1. 10) XyifO^exp Xij<K).

As usual for each ate AT the element expiate^) o f X ^K )  will be denoted by x ^ a )  and we 

have

(1.1.11) *<,<00-1+0«,;.

It is obvious that

x i/.a )x ij(p)=xij(.a+p)

for all a,PeK  (we note that this is precisely the equality (1.1.7) with a-««). If K is the 

finite field Fq we will write tiJiQ) and instead of X ^K )  and ;<,{£) respectively.

Other examples of exponential groups are the subgroups of (/„(AT) associated with 

elements of the symmetric group S„ of degree n. In fact for any aitSH we define the 

subset O Jji) o f <P(#i) by

oKO « * / ) ) .

We denote by Un (K ) the vector subspace of UH(K )  generated by the set 

Uij, (ij)* }. Then 1

1 In the standard terminology our expression “root” means “positive root”. 
i 1 2 This notation simplifies the standard notation 4*(n) for the set of positive roots.
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( 1.1.12) u j* )«  . X  SijifO-

We have also

(1.1.13) uJK )-uH(K)nP(afl)un(IC)P<.a»

where / ,(a))=(5l<u(/-))lsi<ys„aGLn(K) (>) is the permutation matrix associated with co*Sn. 

Usually we write <d' 1uh(K)cd instead of P(,ofl)Uj.fC)P(a)).

We denote by U jiK ) the exponential group exp UJJC). If AT is the finite field F q 

we will write Ua(q) and Ujiq) instead of UJJC) and UJJC) respectively. In the general 

situation we have

1 We denote by GLH(K) the general linear group of degree n over K. This group coneiita of all

(1.1.14) U J.K )- I I  X,<K)
(v> *„(«)

and also

(1.1.15) UJK)=Un(K)rJ>(a)l)Un(K)P(.o>).

Usually we write a i1 Un(K) co instead of P(afl)Un(K)P(co). 

In particular if o^leS,, then

U^K)~Uh(K) and UJJC)=Un{K).

On the other extreme let (OqeSn be defined by

(1.1.16)
(ln )(2 n -l)...(rr+ l) if n=2r is  an even number 

(ln)(2n-l)...(rr+2) if n=2r+l is an odd number

Then
tf^AO-fO} and i / ^ K M l } .

Moreover for each a>mSn we have

t»(0><0(/)}

and so 4(n) is the disjoint union
0 (n ) -0 ffl(n)'-'0#VM(n).

Thus
U ^/O-Uji/OQ U^JilO

and 1

non-iingular nut matrices with coefflcienu in K.
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U nVO^UjtfOU ^jtK)

(although U JA 0^i/(BbJ[A0= {1} in general this product is not semidirect).

Now we assume that the field K  is algebraically closed. Then both Un(K) and 

Un(K) are algebraic varieties (both isomorphic to the affine space o f dimension

Moreover the exponential map exp: Un(K) -»Un(K) is a morphism of algebraic varieties. 

Since its inverse ln:U„(K) -» Un(K) is also a morphism exp is in fact an isomorphism. It 

follows that the exponential image of any subalgebra U of Un(K) is a closed subgroup of 

Un(K), hence a unipotent (algebraic) group (see [Hul]). On the other hand exp u  is a 

connected group because U is an irreducible variety (see [Hul; proposition 1.3.A]). 

Finally (by the usual derivation rules for the exponential map) the Lie algebra of exp U is 

u  itself. Therefore any nilpotent Lie algebra determines a connected unipotent group. 

However it is not true that all connected unipotent algebraic groups are exponential 

groups. For example let K have characteristic p*2 and let U be the subgroup of £/3(AT) 

consisting of all matrices x=(xy)e U^K) satisfying

Q (*12.*13.*23)=(*12),,-*23=0-

A generic element o f U has the form

( \ x  y  '

.0 1 xP

l 00 1 J
where x ,yK . U is connected closed subgroup of U$(K) and its Lie algebra u  consists of 

all matrices a>(a,y)e U^K) satisfying

/, (a 12)P”a23="a23s‘0-

Therefore a generic element of u  has the form

r0 x  y  >
00 0 

^000;
where x y K .  However the exponential group expU determined by the Lie algebra U is
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exp i

«1

j 0 1 0 ;x,ym K -
l \ o  0 1 J -

As a final remark we note that the exponential map exp:U -*U  (where U is a 

subalgebra of Un(K) and U ~exp U) may sowetimei. be defined if K  has prime 

characteristic p<n. In fact it is enough to assume that p2m where m is the smallest integer 

such that am=0 for all am U. However for the purposes of this work (where we are mainly 

interested in the case i/=(/„(Af)) we will always assume that p2n.

*
t #
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1.2. Coadjoint orbits and irreducible characters

Let K  be any field and let U be a nilpotent Lie algebra. We assume that U is a 

subalgebra of un(K) for some n. For the results of this section we refer either to [CG] or 

to [Sr]. Although the results in [CG] are stated for nilpotent Lie groups they can be 

adapted to our situation.

Let

U*=Homi((UjC)

be the dual vector space of U. For each fe U* we define a bilinear form B^IUU-^K  on 

Uby

(1.2.1) BfiaJ>)=A[ab\)

for all a,be u. By the axioms of the Lie product fly is a skew-symmetric bilinear form. 

Hence U has the structure of a symplecdc space (l)- Thus we may consider isotropic 

subspaces of U. By definition a subspace V of u  is called isotropic (with respect to fly) if

Bj(aJ>)=A[ab])=0

for all a,beV. To simplify the notation we will say that a subspace Vof U is/ -isotropic if 

it is isotropic with respect to fly By Witt’s theorem (see [Ar, theorems 3.10 and 3.11]) all 

maximal/-isotropic subspaces of u  have the same dimension

^dim U/ f(f)+dim r(f)=^dim  u+dim r(/))

where

(1.2.2) -  _ r(/)={a* it, fi/a,fl)=0 for all be u)

is the radical of fly

Let O be a subalgebra of U. We say that O is subordinate to f i t  it is an /-isotropic 

subspace of U. If 0 is a maximal/-isotropic subspace of u  then o is called a polarization 

fo r f.

1 For the basic notions of sympiectic spaces we refer to Artin’s book (Ar).
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We now establish the existence of a polarization for any element of u*. The 

construction of this polarization is due to M. Vergne (see [Ve]).

P ro p o sitio n  1.2.1. ([CG; theorem 1.3.5]) L et fe U * . Let m = dim u and let 

U=ama . . . a ü laU0=( 0) be a chain o f ideals o f  U such that dim U ^i (0 <i<m). For each 

ia{l,...,m } let

t)~= {ae llfi Bfaj>)=0 fo r  all belli).

Then

0=9 l+i?2+-+0m

is a polarization t) for f

Proof. Firstly we note that the given chain of ideals of U exists by Engel’s theorem on 

nilpotent Lie algebras (see [Hu2; theorem 3.2]).

Let i je  {l,...,m ) and let ae 1),, be f)j be arbitrary. Without loss of generality we 

may assume that ISJ. Then ae Uj and so

/([a*])=0

(by definition of t)j). It follows that l) is /-isotropic. To prove that l) is a subalgebra of U 

we claim that [ab]« ft. Since U,- is an ideal of U we have [ab]e Ur Let ce ut be arbitrary. 

Then (by Jacobi's identity)

mab]c))=macm)+A[a[bc\\).

Since [ac]m U/zllj and be l)j we have

/H[ac]b])-0.

On the other hand ae 1), and [bc]e ¿/¿(because is an ideal). Thus

It follows that

/M b c ]])-0 .

/([[ab]c])-0

and so [ab]e ty  (because ca is arbitrary).
>

Finally we consider the dimension of t). We claim that
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dim f}=j (dim U+dim r (f)).

For we proceed by induction on m. If m=l then t)=u=r(f) and the claim is trivial. Now 

suppose that the result is proved for all nilpotent Lie algebras of dimension less than m. 

We consider the ideal Um.l and we define

0 '* 0 i+ 02+—+ 9«i-i*

By induction we have

dimt)'=j (dim Um.x+dim rtf')) 

w here/ is the restriction o f f  to Um.x.

Now let (elt...,em) be a AT-basis of U such that is a basis of UmA. Let

M=(fi[ei,ej]))ii ijSm be the mxm  matrix which represents the bilinear form B f with 

respect to the basis Then M  is skew-symmetric, i.e.

M=-Mt  (i).

Therefore M  has even rank (see [Co; theorem 8.6.1]) and in fact

rankM=dim U-dim r (/).

Consider the (m-l)x(m-l) submatrix Af'=(/([e1,eJ]))iSl̂ m.i of M. Then M" represents 

the bilinear f o r m K. Then

rankM '=dim UmA-dim C(f).

Since rankM and rankM' are even, either rankM-rankM' or rankM=ra n k M 1. It follows 

that either dim r(f)=dimr(/>t-l or dimC(f)=dim r ( f)-1 (because dim U ^^dim U -l).

Now suppose that dimt(f)**dimr(f)-\. Then

dim 1)'=^ (dim U- 1 +dim C (/)+1 (dim U+dim

Thus t)' is a maximal /-isotropic subspace of U. Since tf'ct) we conclude that and 

our claim follows.

On the other hand suppose that dim r(f)~dim t(f)+ \. Then

dim t) (dim U-l+dim r  (/)-1 (dim U+dim r(/))-l-

Since O'cO we have dimt)'£dimt). If dim t)'—dimt) then /)'■!) and so r(/)cO cUm.i. In 1

t 1 If A is any matrix we denote by Ar  the transpose of A.
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this case we must have r(/)c r (f) and so dim r(f)£dim t(f) , a contradiction. It follows 

that

dimt)'<dimt).

Since l) is an /-isotropic subspace of It we deduce that

dim t)‘<dim t)- lS j  {dim U+dim r  (/))-1 =dim t)'.

Our claim follows and the proof of the proposition is complete. ♦

Subsequently we assume that p ^n  if the field K  has prime characteristic p. Then we 

may consider the exponential group U=expU (*).

Let ad:U-> gl{U) be the adjoint representation of the Lie algebra U (as usual Ql{U) 

is the general linear algebra consisting of all endomorphisms of u  (as a vector space over 

K)). This representation is defined by

ada(b)=[ab\

for all ajbt u. Let at U be arbitrary. Since {ada)n=0 the element

(1.2.3) exp(ad a)=1 +ad a+jrfad a)2+... ^  (ad a)*'1

is a well-defined element of Ql(U) and in fact it is an element of GL(U) (here GL(U) is the 

general linear group consisting of all non-singular endomorphisms of U). Moreover we 

have

(1.2.4) exp(ada)(b)-(expa)Ab(expa) 

for all bt U. Therefore the map Ad:U —» GL(U) defined by

Ad(exp a)=exp(ad a)

for all a« U is a representation of U over u. Ad is called the adjoint representation of U. 

Since U is a subgroup of Un(K) we have

(1.2.5) A d x (b ) -x xbx  

for all Xm U and all bm U.

Now we consider the contragradient representation of Ad. This is (by definition) the

/ t 1 We note that (J is a subgroup of U,(K) because u is a subalgebra of uM(K).
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homomorphism Ad*:U-* GL(U*) defined by

(1.2.6) (A d*x(f))(b)-f(A dxx(b))-f(xbxl)

for all x* U, all f t  U* and all b* u. Ad* is called the coadjoint representation o f U. For 

simplicity we will write ¿/instead  of Ad*x(f) for all x t Un(K) and all/« un(K)*.

The coadjoint U-orbits (i.e. the orbits of the coadjoint representation) will be 

fundamental for our work. Let/« U*. Then the (/-orbit o f/w ill be denoted by 0(f). By 

definition

0 < f)-{x ftU * -,x tU ).

U K  is algebraically closed then 0(f) is a locally closed subset of the algebraic variety u* 

(see [Hul; proposition 8.3]). Moreover since U is a unipotent algebraic group we 

conclude that 0 (f)  is a closed subset of u*  (see [St; proposition 2.5]). Since U is 

connected (because it is the image of a morphism of irreducible algebraic varieties) and 

since it acts transitively on 0(f) we conclude that 0(f) is an irreducible algebraic variety 

(see [Hul; proposition 8.2(d)]). Hence we may consider the dimension of Oif). It is 

well-known that

dimO(f)=dimU-dimCij(f)

where

C (j( f)~ [ x tU \x M )

is the centralizer o f f  in U - the equality above follows easily from [Hul; theorem 4.3] 

applied to the morphism &.U -* 0 (f), & (x)=xf (¿« (/), because all the fibres of this

morphism have the same dimension. However dimO(f) can be expressed in terms of the 

bilinear form Bp In Tact: -

Proposition 1.2.2. ([CG; lemma 1.3.1]) Let f t  U*. Then

C(j(f)~expr(f).

Hence Cuff) is an exponential subgroup o fU . In particular C f/f) is connected.

t



14

I •

Proof. Let aj>c U be arbitrary. Since Ad(exp a)=exp(ada) we have

f(Ad(exp a )(b ))= £ ^ f f ' W >
t=0 *

where (ada)°(b)=b and (ada)l(b)=(ada)1'1 ([ab]) for all <« {l ,. .. ,n - l}. 

Now suppose that ae r(f). Then

fl(a d a n b )W [a X a d a f\b )])= 0  

for all is { l,... ,n - l}. It follows that

f(Ad(exp a)(b))=f(b).

Since be tf is arbitrary we conclude that expaeC(/f). This implies that

expr(f)cC f/f).

Conversely let xeC(j(f) be arbitrary and let ae u  be such that x=expa. Let t be an 

indeterminate over K  and let be U be arbitrary. We consider the polynomial

P(t)=(exp(ta))-f)(b)^f ^ d-f l{b)̂  r* •  K[t].

Since C (/f)  is a subgroup of i/  we have

x?—(exp a)*e C(j{f).

Since (exp a)k=exp(ka) we deduce that

(exp(ka))-f)(b)-f(b)

for all/fee {0,1,2,3,...}. Therefore the elements 0,1,2,... of K  are roots of the polynomial 

P(t)~f(b)eK[t\. If K has characteristic zero this implies immediately that

P (t )=m -
On the other hand suppose that K  has characteristic p. Then the integers 0,1,2,. ..¿>-1 

define p  distinct elements of K. Thus P(t)-fif>) has at least p  distinct roots. Since P(t)-fif>) 

has degree n and p'Zn (by-assumption) we also conclude that

P « H W ).

In particular we obtain

Alab])~0

- we note that f([ab]) is the coefficient of t  in the polynomial P(t)-f(b). Since ba u0 is 

arbitrary it follows that am r(f) and the proof is complete. ♦
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Corollary 1.2.3. ([CG; lemma 1.3.2]) Let f t  U*. Then the U-orbit Olf) o f f  has even 

dimension. Moreover i f  f e l l  is a polarization for f  then

dimt)=dimU-^dimO(f).

Proof. The first assertion is clear because dim u-dim  r(f) is even (see [Ar, theorem

3.11]). Now let l) be any polarization for/. Then

dim t)=^(dim U+dim C{f))*^(dim U+dimlt-dimO(f))=dim ll-^dimO(f)

as required. ♦

Henceforth we assume that K  is algebraically closed of characteristic pkn. Let q=p* 

(e>0) and let F  be the Frobenius map on Un{K) as defined in (1.1.1). We assume that the 

exponential group U -exp u  is F-stable, i.e. F((/)«*(/. As usual we denote by UF the 

subgroup o f U consisting of all F-fixed elements in U. Then i f  is a finite group of order 

(see below).

Our aim is to construct the irreducible characters of the finite group i f .  These will 

depend on certain coadjoint (/-orbits. As one should expect the relevant orbits must be

F-stable for a suitable action of F. Moreover the set of F-fixed elements of a given orbit
J k

should be itself an orbit under the action of U . In the following we will define the 

“Frobenius” map F:U*-*U*. We recall that a Frobenius map F  can be defined on the Lie 

algebra Un(K) so that

expF (a)-F(expa)

for all an u n(K) (see (1.1.2)). It follows that U~expU  is F-stable if and only if u  is 

F-stable. Therefore we may consider the subalgebra i f  o f U consisting of all F-fixed 

elements o f u  - then UF is the exponential subgroup exp i f  of Un(q)~UH(K)F. The 

subalgebra u F is finite and it has cardinality qdlmU (hence the finite group UF has 

cardinality q/iimU). In fact i f  is a vector space over the finite field F q and we have a 

__________________ _
( ' )  W t WW+e H v A t OW, U - 0 ^ 4 -  t o - A W w »  A * W - t  «WA.

CA**- C&O ’ . i
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canonical isomorphism
U b i/ 9 f K.

«

In particular U has a AT-basis consisting of F-stable elements. Let (ei,...,em) be such a 

basis (hence m=dimU). Then we defíne the Frobenius map F*=Fq*: U* -» U* by

(1.2.7) F *W .e¡H i*¡/

for all fe  u* and all ie {1,.,.,/n}. If a=ax ex+...+amemt  U (a¡eK, 1 ¿i¿m) then

F(a)=a1<el+...+ctm<em

and F*(f)(F(a))=alqf(e l)‘,+.. .+amqf i e j q, therefore

( 1.2.8) F*(fKF(a))=fla)q

for all oe u*. In particular

F W H V f

for all ae tZ . It follows that the map F* is independent of the choice of the F-fixed basis 

for u. Moreover the set

(u* f= [f*u*;F *(j)= f}

is finite (of cardinality qdimU,=qdimU) and we have

- in fact U* can be regarded as the tensor product (l/)*&F K. Since there is no ambiguity 

we will write F instead of F*.

We now prove the following:

Proposition 1.2.4. ([Ka; lemma 1]) Let fe (U *)F. Then U contains an F-stable 

polarization t) for f .  -

P ro o f. Let tf<-uma . . . a U 1aU0B(0) be a chain of F-stable ideals of u  such that 

dimUf-dimU^+l (láiám ) and let t)~t)i+t)2+-.-+f)mbcthc polarization for/defined as 

in proposition 1.2.1. We claim that l) is F-stable. For it is enough to show that l)¡ is 

F-stable for all ie {l,...,m }. Let ie {l,...,m} and let ae t)¡. Then
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A la b \> 0
for all be Ut. Let be ut be F-fixed. Then

[F(a),b]«F([a&])

and so

K [F {am W F ([ab\))= A {ab\f-0

(by (1.2.8) because/is F-fixed). Since ut contains a basis consisting of F-fixed elements 

we conclude that F{a)e t)t and this implies that t)t is F-stable. ♦

Next we construct an irreducible character of i f  associated with a given element 

fe(U *)F. We start with an F-stable polarization f)clt fo r /a n d  we let H -exp  t) be the 

exponential subgroup of U defined by f). Then H is an F-stable connected closed 

subgroup of U.

We denote by K* the additive group o f the field K  and we define the function 

<pf :H ^ K *  by

(12.9) <l>/,expa)=Aa)

for all oe t). Then

.  fyexp  a exp b)=$fcxp 9(a,b))=f(d(aJ>))

for all a,be f) - here 0(aj>)1 1) is the element defined by the Campbell-Hausdorf formula 

(1.1.6). Since/([/)/)])=0 this formula shows that

MaJ>))=Aa+b)

for all a,be l). Thus fy-is an homomorphism from H  into AT* (of course fy(l)=0).

Now we choose (and fix) an arbitrary non-trivial linear character yr0:K* -* G* of 

K* and we define the function yy//-*  <T* by

y/(expa)-yr0(Aa))

for all ae t). Since Y ^ Y o fy  *he function Y f  is a linear character of H. Therefore the 

restriction (YfiHr of Yf to the (finite) subgroup HF of H  is a linear character o f HF. We 

denote this character by Xf. Then X f l f  -» <T* is the linear character of HF defined by 

(1.2.1,0) X/.expa)mY^Aa))
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for all a m ^  (*).

Finally we define X jd f  -> <T* to be the induced character

(1.2.11) x r ^ -

We will prove several properties of the characters namely that they are

irreducible, independent of the choice of the (/-conjugate of /and  that they exhaust the set 

of irreducible characters of UF (hence we will get a parametrization of the irreducible 

characters of i f  by means of F-stable coadjoint (/-orbits on U*). Firstly for any F-stable 

(/-orbit O^U* we define the function X o 'r f  by

(1.2.12) 2 b (« P a )= - r= =  X,Vb(«(a))
- o '

for all am UF. Since l=expO we have

X0^ ) = - p = - \ 0 F\=^fiÔF\
w i

We have the following rule:

Proposition 1.2.5. ([Ka; propositions 1 and 2], [Sr, theorem 7.7]) Let fm(u*)F. Then 

the U-orbit Olf) is F-stable and

X/(*)mZo(T)<*)

for all xm i f .  In particular we have

(0
(ü) X g-X fM  all gmOlrf;

Cm) Z fk  independent o f the polarization t)cU fo r  f

Proof. Let xm U and let (elt...,em) be a Af-basis of u  consisting of F-fixed elements. 

Then for each im {l,...,m}

F (x /)(e lX ^/)(« ^-/U ejX -1)i -FW(F(xepc-, ))-/(F (x )e^ (x )‘)-(FCx)./)(ei)

-w e note that (by (1.2.8)) F(0(F(a)H(a)* for all am U. It follows that

1 Wenotediat/(<i)aFf Uxmdamf and that the restriction of y;, to W* is a linear character of F*.
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( 1 . 2 . 1 3 ) F (jc /)-F (x )/

for all xe U. This implies that Oif) is F-stable. Thus it makes sense to consider the set 

Oif)F of all F-fixed elements of 0(f). This set is finite and its cardinality is

Now let 5c U be a polarization for /  and and let H=exp l). We define the function 

V p lf  - » <L* by

for all ae i f  - we note that x(exp a)x'1=exp(xax'1) for all xe i f  and all ae i f .

Let l be the affine subspace of U* consisting of all ge u* such that g(a)=f{a) for all 

ae l). Then

F-fixed elements. Then the system of vectors is lineariy independent and we

can extend it to a basis ([ex,...,er a f l , . . . f , ) of U where f x, . . . f r  U are F-fixed elements 

(since dim u-m  we have f=m-r-l). Let (ex* ,.. .,e * ji* fx* ,.. . f t*) be the dual basis of li* 

(1). Then (a* f x* . is a basis of and any element gm f  can be written as a sum

gmf+ aam+ fifx*+.

where 0 ,/Jj,. are uniquely determined. Therefore lF is the disjoint union

1 If (m,«.. . is a AT-hasis of u then, for each M l,...s} ,the  dual vector u,** U* 1* defined by 
for all;« {1,.../}. The system is called the dual basis of

a) if a » t f
otherwise

Then (by definition of induced characters)

( 1 . 2 . 1 4 )

where

5±={Ae U*; A(a)=0 for all ae 5}

is the annihilator of t) in U*. We claim that

( 1 . 2 . 1 5 ) X , V/0(£(a))

for all ae fi^. If a* t f  then g(a)-J(a) for all g* lF and the equality is clear in this case. On 

the other hand suppose that ae l)F and let (ex,...,e s) be a AT-basis of t) consisting of
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t

t « u  X(fix......fid
Pi....pfi*'

where

X{px.....p,)~{f+aa*+pxfx*+... +fi/,*‘, a*Fq).

for all p x,...,Pfl Fq. It follows that

Now let p x,...,p fiF q be arbitrary. Then

(f+aa*+p]f\*+... +Pf,*)(a)=fl.a)+a

for all oce Fq. Moreover the correspondence a-*fla)+ a  defines a bijective map from F q 

onto itself. Therefore

X  Vo(«(a))=X Yoitf-
rtf,....P.)g.X(

Since V̂o is a non-trivial character of Fq we have

0 = (V o .lf> .= rtr  X  VbO)

where 1F is the unit character of F q and (...) is the Frobenius scalar product of 

characters. It follows that

X „ Yo(g(a))=0
F r

and this completes the proof of the equality (1.2.15).

Now by (1.2.14) and (1.2.15) we obtain

1 1

In other words

(1.2.16) ~ z t * x p a ) ^ ± ] ^ £ Y o t o s M ) .

Next we will prove that HF acts transitively on lF. We start by proving that H  acts 

transitively on l. For let ajbm l) and let ga l. Then

g((«P  aYlb(exp a))-g(exp(.ada ) ( h ) ) - ^  M™1*) W ).
im 0 •*

Since (ada)\b )c t) we have
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g{{ada)im = A W a ) im

for all i€ {0 ,l,...,n -l}. On the other hand

f{(adanb))= fllaAadafxm )= Q

for any <e {l,... ,n - l} - we recall that t) is a maximal/-isotropic subspace of U. Therefore

g((exp a)'lb(exp a))=f{b).

Since H=expt) we conclude that l  is //-invariant Now we define -* l  by

ti(x)= xf

for all xeH. n  is a morphism of algebraic varieties and it induces an injective morphism 

_» [ where H 0 is the centralizer C(j(f) o f f -  we note that Hq is a subgroup of H 

because H0=€xpC(f) (by proposition 1.2.2) and (we recall that t) is a maximal

/-isotropic subspace). Now we have

dim / / /  HQ=dimH-dimH0=dim U-^dimO(f)-dim U+dimO(f) 

=^dimO(f)=dimU-dim ty=dim t}*-=dim 1

(using corollary 1.2.3). Therefore H is surjective and this implies that H  acts transitively 

on i.

Now we consider the //^-orbits o f elements of lF. Let x*H  be such that x-fe lF.

Then

x f= F {x f) -F {x ) f

(by (1.2.13)) so x ' lF(x)eH0. Let O' be the / / F-orbit of x-f and let ymH  be such that 

yfe  lFnO‘. Then there exists zeHF such that

y / - 2*(x/)-(zx)/.

We have y 'lzxtH0 and

y*Izx(X*1F(x))F(x*,z '1y)^y'1zF(z*1)F(y)-y‘1F(y)

(because z'x*HF, hence FU*1)-!*1). This means that the elements x‘lF(x) and y'xF(y) of 

H0 are F-conjugate (>). Therefore we have a bijective map between //^-orbits on lF and 

F-conjugacy classes of H 0. But F-conjugacy classes of H 0 are in one-to-one 

correspondence with F-conjugacy classes of the quotient group where (//0)° is

/ 1 For die definition o f f-conjugacy we refer to [Sr] or to [Ca].
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the connected component of H0 (see [Sr; lemma 2.5]). Since H0 is connected we 

conclude that there exists a unique F-conjugacy class in H<y Hence there exists a unique 

Hf -orbit on lF, i.e. HF acts transitively on lF. It follows that

Now we can prove the main result of this section:

T heorem  1.2.6. ([Ka; proposition 2]; [Sr, theorem 7.7]) Let x  be an arbitrary 

(complex) character o f i f .  Then X is irreducible if  and only i f  there exists an F-stable 

U-orbit Ocll* such that X=Xo- Moreover ifO.O'zU* are F-stable U-orbits then Xo=Xo‘ 

i f  and only i f  O^O’.

Proof. Let OcU* be any F-stable (/-orbit. We claim that Xo *s irreducible. For it is 

enough to prove that (Xo>Xo)m 1 where (...) is the Frobenius product of characters. In fact** V
(by proposition 1.2.5)

for all x e l f  (we note that H f  is a subgroup of HF). Therefore (by (1.2.16))

Since Hq is the centralizer o f/in  i f  we conclude that

^ ‘xpa', i k

The result follows because diml=jdimO(f) and

I \0(f)F\. ♦

1 ic^i \ i f \  ¿ 1 , ^
i

(Zo’Xo> Ytteia))

lyo(i(a))l2

>>
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Since Yog'.if -* <T* is a linear character of the finite abelian group u F (under addition) we 

have
(V o 8 'V o t)j~ l-

The claim follows.

Now suppose that Z o * X o ‘ where O 'eU *  is an F -stable U -orbit. Since 

(expa)A=exp(-a) for all ae U, we have

(Xo’Xo) =j^F| J L fX o k x p  a)Xo<exp(-a))

VlO^I •yi

>

>

If geO and g'eO' are distinct the characters %£ and yog' (of the additive group ¿ /)  are 

orthogonal, i.e.

(V'og.V'ogV=0

- in fact since y0 is a non-trivial character of there exists ae t f  such that g(a)*g\a) 

and \ffo(g(a))*y/Q(g'(a)). It follows that

(V o g ^Y o 8 ')^S u :

Since Zo~Xo' we have CCo,^oO=l. Therefore the intersection OnO' is non-empty, hence

O -O '.

Finally by proposition 1.2.5 we have ^ o ( l)W  10̂ 1 and this implies that

S 2 to O )2- X lO f l-IO,rl
o o

where the sum is over all F-stable (/-orbits OcU*. The proof is complete. ♦

;
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1.3. Subgroups of codimension one

In this section we keep the notation of section 1.2. K  will denote an algebraically 

closed field and u  a nilpotent Lie algebra (regarded as a subalgebra o f un(K) for some

n). Moreover if K  has prime characteristic p we will assume that p2n. Then U will denote 

the exponential subgroup expU (U is a subgroup of Un(K)). In this section we refer to

[CG] or to [Ki2]. The results in both references are proved for nilpotent Lie groups but 

they can be adapted to the context of our thesis.

Let U0 be a subalgebra of U with codimension 1, i.e.

dim UQ=dim U-\.

Then U0 is an ideal of U and [UU]gUq (see [CG; lemma 1.1.8] - the proof of this lemma 

does not depend on the characteristic of the field).

Let u 0* be the natural projection. By definition

nM aW La)

for all fm u* and all am u. The kernel of a: is the subspace

UoX*{g« «*; g(a)=0 for all am Uq]

of U. On the other hand for any fm U* the fibre of the idf)* Uq* is the subset

t(f)= {«« M*; g(a)-f{a) for all am Uq)

of U*. It is clear that

h, V )

for all/e u*. Moreover 1(f) (fm u*) is an ineducible algebraic variety o f dimension one 

(because Uq has codimension one, hence d i m u ^ l ) .

In the following we will fix the element/« U* and we will denote b y /0 the image 

x(f)m Uq*. We consider the intersection l(f)r\0(f) of the fibre 1(f) with the coadjoint 

(/-orbit 0(f). Since/« 1(f) it is obvious that

f(/)nO (/>0.
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Let

Then

and we have:

C/= {jc« U ,xfe  1(f)}-

l{f)nO {f)=[xf,xeU '}

Lemma 1.3.1. ([Ki2; pg. 76-77]) U'=C(j(f0) is a closed connected subgroup o f U. In 

fact U'=exp U' where

U‘= {ae W,f{[ab])=0 for all be Uq}.

t

Proof. Since Uq is an ideal of U we have me*1« u0 for all xe U and all ae Uq. Therefore 

U acts on Uq (via the adjoint representation), hence it acts on Uq*. This action is defined 

by

(x-g0Xa)=goCxax1)

for all xe U, all g0c Uq* and all ae Uq. Moreover we have 

( 1 . 3 . 1 )  7t{X-g)=XJC{g)

for all xe U and all ge U*. It follows that, for all xe U,

x f e  1(f) <=* JC-/o=/o-

Thus

U - [ x .  £/; x /0=/0}=Cy(/b).

Therefore U' is a closed subgroup o f U (see [Hul; proposition 8.2(b)]).

Now we claim that U'^exp U'. Let ae U' and let be Uq. Then

{{exp a)-f){b7±f{{exp a)b{exp a) l)-f{exp{ada){b))rf{b)+2f ('(&d •
Cl *'

Since Uq is an ideal of U and ae U' we have

f{{ada)l{b))-0

for all ie {l , . . . ,n - l}. Hence

{{exp a)f){b)~f{b).

Since be Uq is arbitrary we conclude that



26

{exp a)/o-/o-

Therefore exp am U'. Conversely let xm U' and let am U be such that x~exp a (we recall that 

U^explX). Let t be an indeterminate over K  and let bm %  We consider the polynomial

P{t)~{exp{taMo>{b)^Lm a d fim 0 **

The argument used in the proof of proposition 1.2.2 may be repeated to show that

P {t)~ m -

In particular we obtain

/([ab])«0.

Since be Uq is arbitrary it follows that am I f  and the proof is complete. ♦

Now let h be a non-zero element of Uq1- Since dimU^^X  we have

U o-^ ta /i; <xmK).

Since x-fm ((/)=/+UoX for all xmU', we may define a map qr.U’-*K  by

x M+<p(x)h

for all xm U'.

Let xm U. Since Uq is (/-invariant we have xaxAm Uq for all am Uq. Hence

Oc-h)(a)=h{xax'l)=0 

for all ae %  Therefore x-hm U0X and so

x-h^ah

for some amK, i.e. o  is an eigenvalue of the linear map A<f*x:UoX-» U0\  Since Ad*x is 

unipotent all its eigenvalues are equal to UK. Hence we must have 0*1 and so

x h —h.

Since this equality holds for all xm U  we deduce that

(xy>f-x-(y-f)-x-(f+<p(y)h)-x-f+<p(y){x-h)-f+<pOc)h+<p(y)h-f+(<p(f)+<p(y))h

for all xym U'. It follows that

<p{xy)-<p{x)+<p(y)

for all xym U', i.e. is an homomorphism from U' into the additive group K* of the field 

K. Moreover p  is a morphism of algebraic varieties. Therefore <p is an homomorphism of
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algebraic groups. Since (/ ' is connected the image tpf.U’) is also connected (see [Hul; 

proposition 1.3.A]). So either <p is identically zero or <p(U’)-K . It follows that

A
[f] if <p is identically zero

[1(f) if flKi/O-AT

This completes the proof of the first assertion of the following:

Lem m a 1.3.2. ([Ki2; lemma 6.2]; [CG; lemma 3.1.3]) Let f t  U*. Then either 

l(f)nO(f)=[f} or l(f)cO(f). Moreover let g tO (f). Then l(f)r>0(/)={/} if  and only if  

t(g)r\0(f)={g}. Hence UffcCHf) i f  and only if l(g)cO(f).

Proof. Let x tU  be such that g=xf. Then l(g)=x- 1(f) and

l(g)r.O(f)=x(l(f)cO(j)) (1).

The result follows. ♦

This lemma allows us to say that a (/-orbit 0<^U* is of the first kind with respect to 

U0 if i(f)r\0= {/} for all f tO .  Otherwise we will say that O is of the second kind with 

respect to Uq.

Let O be a (/-orbit in U* and consider the image k(0)g Uq*. Since it is (/-invariant 

(see (1.3.1)) 7t(0) is a (/-invariant subset of Uq*. Moreover U acts transitively on it(0). 

Since U is unipotent we conclude that M.O) is a closed subset of Uq* (see [St; proposition 

2.5]). Since O is an irreducible closed subset of U* and a  is a morphism of algebraic 

varieties we deduce that n (0 )  is an irreducible closed subset of U0* (see [Hul; 

proposition 1.3A]). Therefore ic.O-*it(0) is a surjective morphism between irreducible 

algebraic varieties. It follows that

dimtdPysdimO.

Let r-dimO-dimnUP). Then there exists a non-empty open subset A of x(0) such that

n 1
i 1 By definition X‘Am[x-g;g*A} for all subsets AsU*.
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dimXx(d)=r

for all aeA (see (Hul; theorem 4.3]). LetfmO. Then

x \id f))-l(f)r> 0 .

It follows that

{f } if O is of the first kind
1(f) if  O is of the second kind

Thus

dim K1
if O is of the first kind 
if O is of the second kind

Since feO  is arbitrary we obtain:

Proposition 1.3.3. Let OcU* be a U-orbit. Then:

(i) dimJt(0)=dimO i f  and only ifO  is o f the first kind (with respect to Uq);

(ii) dimid.O)=dimO-1 i f  and only i fO is  o f the second kind (with respect to Uq).

Now let UQ=expu0. Then Uq is a connected closed subgroup o f  U. Since idO) is 

(/-invariant U0 acts on n(O). Therefore n(O) is a disjoint union o f i /0-orbits. Our 

purpose is to obtain this decomposition of n(0). Firstly we relate the dimension of O with 

the dimension of any C/0-orbit in x(0).

Let feO  and let O0 be the C/0-orbit of fa td f)*  Uq*. Then O0 is an irreducible closed 

subset of tdO) and so

(1.3.2) dimO^Sdimn(0)<UiimO.

Now let (ey,...,em) be a -basis of U and let M(f) be the mxm matrix which 

represents the If-bilinear form By with respect to the basis (ex, . . . x ^  For ije  {l,...,m} 

the (ij)-th entry of M(f) is f i ie ^ j f) .  Then M(f) is skew-symmetric matrix and so it has 

even rank (see [Co; theorem 8.6.1]). In fact

rankM(f)—dim u-dim r  (f).



29

By lemma 1.2.2 dim r(f)=dimC(/f), hence

(1.3.3) rankM (f)=dimO(f)

(we note that 0=0(f)).

Since u0 is a subspace of U with codimension one we may choose the basis 

(elt...,en ) such that efiU0 for all ie {l,...,m -l}. Then (with respect to this basis) the 

matrix M(f) has the form

where M(f0) is the (m-l)x(m-l) matrix which represents the /f-bilinear form Bfo with 

respect to the basis (elt...,em.i) of U0 and v is the row vector

Since O0 is the i/0-orbit o f/0 we have

dimO0=rankM (/g)

(by (1.3.3)). Since M(f) and M(f0) are skew-symmetric they have even ranks and so 

rankM(f)* {rankM(f0),rankM(f0)+2}.

It follows that

(1.3.4) dimO* [dimOfydimOo+l].

We now prove the following:

Proposition 1.3.4. Let Ocll* be a U-orbit and let Oç^M.0) be a U0-orbit. Then:

(i) dimO=dimO0 if and only i fO  is of the first kind (with respect to %);

(ii) dimO=dimO0+2 i f  and only ifO is o f the second kind (with respect to Uq).

Proof. It is enough to prove (i).

Suppose that dimO^dimOfy Then

dimJt(0)^dimO

t
(by (1.3.2)) and so O is of the first kind (by proposition 1.3.3).
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Conversely suppose that O is of the first kind. Then (by proposition 1.3.3)

dimit(0)*dimO.

Since Cuo(f(d-U<yCu(fo) we have

dimCo'ffàidtmCiAfà.

Since U acts transitively on MO) we deduce that
dimT^O)^mU-dimCu(f(^SdimU-dintCUo(f(^dim U 0+l-dimCuo(fo)=dim00+l.

Thus

dimO=dim7V(0)£dimOo+1.

(i) follows by (1.3.4). ♦

The following result gives morecharacterizations of the orbit O (with respect to the 

subalgebra Uq):

Lem m a 1.3.5. ([CG; proposition 1.3.4]) Let OçU* be a U-orbit and let feO . Let 

fo=7C(f)e Uq* and let OqzUq* be the U0-orbit o ffo  Then:

(i) The following conditions are equivalent:

(a) O is of the first kind (with respect to Uq);

(b) r(f)nüo#r(f).'

(c) r ( f^ r ( f ) ;

(d) dim r(f)=dim r(/o)+l;

(ii) The following conditons are equivalent:

(a) O is of the second kind (with respect to Uq);

(b) r(f)nüo-r(0;

(c) r(f)cr(fô);

(d) dim T(f)~dlm tif^y-1.

Proof. Let V be a subspace of Uq such that

«o-V'o r(f0)

and suppose that dimV-r. Let (et,...,«,*.!) be a if-basis of Uq such that (e,* i....•£*.{) is
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a AT-basis for r(/"0). Then (with respect to this basis) the matrix M(f0) has the form

where A is an rxr non-singular skew-symmetric matrix.

Suppose that O is of the first kind. Then (by proposition 1.3.4) dimO=dimO0 and

so

(by (1.3.3)). Therefore the m-th row of M(f) is a linear combination of the remaining 

rows. In particular we must have

fi[eM,ei))=0

for all ie {r+ l,...,m -l}. Since is a basis of r(f0) we conclude that

rtfokrtf).
On the other hand consider the subspace V®Kem of U. The restriction of B f to this 

subspace determines a bilinear form which is represented (with respect to the basis

(«!......enem)) by a skew-symmetric matrix of odd size r+1 (we note that r is an even

number because r= ra n kM (f)= ra n kM Therefore there exists a vector

B/a,e,)=B/Z>,e,)+aS/em,e,)-0

for all it { 1 , . Since for all it  { r+ l,...,m -l} we conclude that

a t  r(f). Since a t Uq we deduce that t(f) is not contained in %  i.e.

r(/)nUo»*r(/).

Moreover ( e ^ i , . . . ^ , . ^ )  is a basis of r(f). Hence

dim C(f)~dim r(f0)+1.

We have proved that (a) implies (b), (c) and (d) in (i). The equivalencies in (i) and 

in (ii) will follow once we have proved that (a) implies (b), (c) and (d) in (ii). For 

suppose that O is of the second kind. Then (by proposition 1.3.4) dimO-dimO0+2 and so

rankM(f)-rankM (fo)+2

(by (1.3.3)). In this case the m-th row of the matrix M(f) is linearly independent of the

rankM(f)=rankM (/Ö)

a=b+aemtVoKe„ (btV, octKm)

such that

t
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remaining rows. If f([em,e,])=0 for all ie { r+ l,.. .,m -l} then the previous argument 

shows that
rankM (f)-rankM

This contradiction implies that there exists at least one ia { r+ l , . . . ,m - l} such that 

f([em,ej}y*Q. Without loss of generality we may assume

Then for each/« {r+2,...^n-l} we define the vector

Since ««.I,«,* r(/J)) we have

for all je  {l,...,m -l} . Also

B /«m>n,)=yi:[em,er+1])/i:[em,e1])-y([em,et]l/([em,e,+1])=0.

It follows that ate  r  (f) for all ie {r+2,...,m -l}. Moreover age Uq for all ie [r+ 2,...jn-l]. 

Since (ar+2-"»am-i)is linearly independent and rankM(f)=r+2, (a„.2- ” A»-i) >s a basis 

of r(f). This implies that

r(/)c r% )cü 0-

Moreover

dim  r(f)=dim V(f0)-1.

The proof of the lemma is complete.. ♦

We are now able to give the required decomposition of idQ) into I/0-orbits.

Proposition 1.3.6._([Ki2; lemma 6.2(a),(b)]; [CC; theorem 2.5.1]) Let OcU* be a 

U-orbit, letfeO  and let OozUq* be the Uporbit o ff0*njf)e Uq*. Then

(i) I f  O is o f the first kind (with respect to Uq), Uq acts transitively on x(0)  

■ hence ti(0 ) - 0 q.

(ii) I f  O is o f the second kind (with respect to Uq), *HP) is the disjoint union

t
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where, for each cteK, O ^ U q* is the U0-orbit o f the element (exp(aa))f0e Uq* and ae u  

is an arbitrary vector such that a* %  In fact

Ocf*(exp(aa))O0= {(exp(ati-g& gge O0} 

for all cuK. Moreover we have

dimOapdimO-l

fora li CteK.

Proof, (i) follows from propositions 1.3.3 and 1.3.4 (we recall that Oq is an irreducible 

subvariety of MO)).

Suppose that O is of the second kind and let ae iMIq be arbitrary. We consider the 

one-dimensional subgroup

X=[exp(.aa); aeK}cU .

Since ae Uq we have

On the other hand U0 is a normal subgroup of U - because dimUa=dimU-1 (see [Hul; 

proposition 17.4]). Therefore UqX is a subgroup of U. Since U0 and X  are connected 

UqX is also connected (see [Hul; corollary 7.5]). Since we have

dimU0<dim(U^X)idimU.

Since U is connected and dimU(y=dimU-l we conclude that

(1.3.5) U=UoX

(moreover this product is semidirect).

Now let gm O and let xe U be such that f=x g. Since U=UqX there exist Xqc U0 and 

CteK such that x~Xoexp(aa). Then

fo-M fl-xoM lexpiaafi-g)

(because Tis i/-invariant).This implies that

{exp(aa))n(g)~M.(.exp(,aa))-g)e 0&

so
Mg)* (exp(-oa))0o-0.a
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(because exp(aa)'l=exp(-aa)). Since g *0  is arbitrary we conclude that

Conversely let aetC and let ge u* be such that (exp(ota))-7C(g)eOo (i.e. 7i(g)e0.a). 

Then there exists Xq< U0 such that

f 0=x0 ((exp(aa))-x(g))=x((x0(exp(aa))-g).

Hence

(xb(exp(aa))g€ 1(f).

Since O is of the second kind we have l(f)tiO so

(x0(exp(aa))geO.

It follows that geO and this completes the proof of the inclusion O.apMO). Since aeK  is

arbitrary we conclude that

To conclude the proof we claim that for all a,/3eK

Oa=Op <=> oc={5.

In fact let a,(5eK be two distinct elements and suppose that OapOp. Then the elements 

x=exp(aa) and y=exp(pa) of X are distinct So

z=xy_1* l

and we have
z-0 a=z-(xOo)=zO a=zO p=z(yOo)=(zy)-00’* x 0 0=0 a.

Let goeOa. Since Oa is a U0-orbit (because U0 is a normal subgroup of U) and z g^tOg, 

there exists Xq* U0 such that

Therefore

z-io“ *o*o-

XQlznC(j(g(j).

Now let bu U be such that XqAz*expb and consider the subgroup

Y -{ e x p (a b ) \  a m K )d U .

Since Xqc U0 and zmX we have Xo'lz#l, hence M ).  Let gmO be such that £<)**(£)■ The*1 

(by lemma 1.3.1) Cu(g0)~exp u ' where
t
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u'-{c« tfcg([cd])«0 for all d* u0}.

Since x Q' lz=expb *Cu(g0) we have bm W. Therefore [ab; cuK )c.W  and this implies 

that

YcCyCgo).

On the other hand we have

U=U0Y

(since bm u 0 (because x0'lzmU0) this equality has exactly the same proof as (1.3.5)). 

Since Y  centralizes g0 and Oa is the C/0-orbit of g0 we conclude that Oa is (/-invariant and

this implies that
0«=x(0)

(we recall that U acts transitively on Jt(0)). Finally we have

dim7t(O)=dim0-1

(by proposition 1.3.3 because O is of the second kind).Therefore

dimOosdimO-1.

This is impossible because both O and Oa have even dimension (corollary 1.2.3). This 

contradiction completes the proof of our claim and also the proof of the lemma. ♦

Next we consider the inverse image }fl(.O0) of the (/(j-orbit OqcUq* of/o-Mf). Let 

gm 7fl(.Oa). Then Mg)« O0 so there exists xc U0 such that

rtf)=f0=xMg)=Mx-g).

It follows that

x  gm ((/)«/+U0X.

Let A be a non-zero vector of Uq ~. Then

x-g~f+ah

for some amK, i.e. gtO(f+ah). Therefore

( 1 . 3 . 6 )  ^ ‘ ( O o ) c  U ^ O V + a A ) .

Since f+ahm for all amK we have

O (f+ ah)n*\O 0)*a.
t



36

On the other hand let O’ be. a [/-orbit such that 0'< îCx(Oq)WZ. Then the above argument 

shows that there exists etc AT such that 0 ’=0(f+ah). However in general the inclusion

(1.3.6) is not an equality. In fact suppose that O is o f the second kind (with respect to 

Uq). Then Uf)dO(f) and so f+ahsO  for all aeAf. Hence

0(f+ah)=0

for all <XeK. On the other hand we have

Jcnl(OQ)=O0

(because tc.U* -* U0* is sutjective) and the previous proposition implies that

n \ 0 Q)*0

(we note that in this case 7C'x(O0)cO). However the next result shows that n'x(O0) is 

[/-invariant whenever O is of the first kind (with respect to Uq).

Proposition 1.3.7. ([Ki2; lemma 6.2(c),(d)]; [CG; theorem 2.5.1]) Let OqU* be a 

U-orbit, let fe  O and let O0c  Uq* be the U0-orbit o ff0=7df). Then:

(i) I f  O is o f the first kind (with respect to UQ) the inverse image Jt'x(O0) is the 

disjoint union

*r\O 0)= U O (f+ a h )OmK

where h is any non-zero vector o f Uq1. Moreover fo r  each a tK  the U-orbit Off+ah) is o f 

the first kind (with respect to Uq) and we have

dimO(f+ah)=dimO=dimOQ.

Also

n(0(f+ah)-0Q

fo r all a*K.

(ii) I f  O is o f the second kind (with respect to Uq)  O is the unique U-orbit which

intersects (hence Jfl(Oo)eO and this inclusion is proper).

Proof, (ii) have been proved above.

Suppose that O is of the > irsf kind and let otmK. Let (ej, ...¿ ¿ )  be a basis of U
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and consider the skew-symmetric matrix M(f+ah) which represents the bilinear form 

Bf+ah with respect to this basis. Since [UU]c Uq, we have

for all aj>t u. Therefore

(f+oh)aab])=fl{ab])

By (1.3.3) we get

dimO(f+<xh)=dimO.

On the other hand we have dimO=dimO0 (by proposition 1.3.4). Therefore

dimO(f+ah)=dimO0

and this implies that 0(f+ah) is of the first kind (again by proposition 1.3.4). Now we 

apply the previous proposition to conclude that

s(0(/+a/i))=0o-

We have justified above that each element ge tt' 1(O0) lies in O(f+oh) for some œ K. 

Conversely the equality 7t(O(/+a/i))=0o implies that

Otf+ah)c.jf\O0)

for all OeK. Therefore

* \ O 0)=UKO(f+ah).

To prove that this union is disjoint let a ,fkK  and suppose that 0(f+ah)=0(f+/3h). Then 

(f+ah)+(P-a)h=f+ph* 0<f+Ph)=0(f+ah).

Since O(f+och) is of the {irst- kind we have

l(f+ah)r,0(f+cth)■ {f+ah)

so a - ]M , i.e. or«/).

The proof is complete. ♦

Subsequently we assume that AT is the algebraic closure of Fq and we consider the 

Frobenius map F»Fq:Un(K)-* U„(K). We also assume that U and Uq (hence U  and t/0) 

are F-stable.
If

t
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Let fe(U*)F and let 0=O(f) be the i/-orbit of/. Since/is F-fixed O is F-stable. As 

before we let OgcU0* be the i/0-orbit of the element fo=it(f). If we choose a Af-basis

(el..... of U such that (ex.................... emA) is a basis of u0 and such that Fie,)®«,- for all

ie {l,...,m} then we can easily verify that/oeiüo*)^ Hence O0 is an F-stable f/0-orbiL

Theorem 1.3.8. L et Oq U* be an F-stable U-orbit, let fmOF and let O0e UQ* be the 

(F-stable) U(¡-orbit o f f 0-ic(f). Let x -X o  be *be irreducible character o f UF which 

corresponds to the U-orbit O and let Zo=Zo0 be the irreducible character o f U f  which

corresponds to the U0-orbit O0.

(i) I f  O is o f the first kind (with respect o f Uq) then Oqf=tt(Of ). Hence

Xvf X o

is an irreducible character of U0F.

(ii) IfO  is o f the second ¡and (with respect to Uq) then fl(0F) is the disjoint union

id O F)=  U  O f
a»r.

where, for each ote F q,

Oa=(exp aa)O 0

and aeU is an arbitrary F-fixed element such that a* U0. On the other hand r  . i s  the
uo

direct sum

Xv r ‘ 2i  Xa uo

where, for each am F a, XcrXo is ttie irreducible character which corresponds to the 

U(forbit 0 V Moreover

X d -iX o )* * ^

for all a t Fq.

Proof, (i) By proposition 1.3.6 we have tr(O)*O0. Thus the map it.O -* O 0 is 

suijective. On the other hand let g g 'tO  be such that idg)~idgt). Then g'm 1(g). Since O
i

is of the first kind we have and so g'-g. It follows that jr0 - » 0 o- x(O)
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is injective, hence it is bijective. Therefore

\x(0F)MOFU f ,m0.

Since dimO=dimO0 (by proposition 1.3.4) we conclude that

l*(0F) l V i’”Oo*l<Vil.

' Finally we get

n o F y - o f

because jc(OF)&i(.O),r*4)0F.

Now we consider that character %. By definition (see (1.2.12)) we have

X (e x p b )= ^ =  X  Yo(gW)
#  f 0'

for all be u. Since 7r.O-*O0=n(O) is bijective we deduce that

X,Vo(«(W)= X  r ¥o(go(b)) fO *  t0.o 0'

for all be Uq (we note that x(g)(b)=g(b) for all be Uq). Since IOFl=IO0Fl we obtain (1I-12S)

X(exp b)m f 1 X  Vo(go(b))=Zo(expb)
^ \O 0F\ t * 0»

for a lt ¿ e  £to.  (i) follows because U0=expU^.

(ii) Let a  be an F-fixed element in Lt\u0. Then the element (exp aa)-f0e u 0* is 

F-fixed for all oce Fq. Hence the C/0-orbit Oa is F-stable for all oce Fq. Now it is clear that

t*oF)c m o f .

Since O is of the second kind we have dimit(0)=dimO-l (by proposition 1.3.3) and so

l«(OF)W »(0)Fl V ^ O>- 9 ^ * 1-
On the other hand the element (exp aa) feO  is F-fixed for all a* Fq (we recall that a an d / 

are F-fixed). Hence ~

(exp oca)fo~x((exp aa)-f)e x ( 0 F).

Since x(Of ) is i f  -invariant and OaF is the l/0F-orbit of (exp <w)/0 we conclude that

O /cM C f)

for all am Fr  Therefore

* X  to aF«JK O F) l ^ tt"01
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(we recall that the union LJ.Oa is disjoint). Now

dimOtf=dimO0=dimO-2

(by proposition 1.3.4 because O is of the second kind). Thus

1 10/ 1= x
a,F , o .F f

It follows that

J t iO 'V U  O f

(and this union is disjoint).

Now we consider the irreducible character % of i f -  As before we have

f t e x p b ) = ^ =  X„W b(i(*))
# 1

for all be li. Suppose that be u0. Since O is of the second kind we have f(g)cO for all 

ge O. Therefore there exist glt.. .¿}re ( f  such that C f  is the disjoint union

C f+ J llg if
im 1

(we note that each f(g,) is F-stable because g, is F-fixed). It follows that
r

X  Vo(«(*))=X X  ,¥o(g(b)).
» « O ' ¿ - I f .  i d /

Since bell0 we have

g(b)=g{b)

for all ga f(g,) and all <• {l,.../*}. Therefore
r

X  Vb(*(*))-X l f ( f / l  ,<*»•
(• (r  ¡»1

Since

I i ( g / l  *<7diml(Si>mq

for all <« {l,...,r} (we recall that dimt(g)ml for all g« i f )  we conclude that

geO' ¡ml

Now we clearly have

MO^j-itKg,); lS iS r).
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Since the elements Mg) (1 <i<s) are all distinct we deduce that

X ,  W t i t o x '  X  .  Vo(So(b))-f O '  to* n o ')

By the first assertion of (ii) we have

X ^  Vo(So(b))m X  X  ,  v'oteotf»))-l0.«(O0 a .F 'g^O j'

On the other hand (by (1.2.12))

X  ,V b (io (* ))* V i0 /U a(« p b ) .

Therefore

X texpb)*= -i=  X  ^ \ O j \ x aiexpb).
y k f \ a,F<

Since k / W o / l f  we conclude that

*(«/>&)= X  Xatexpb)-

Since be Uq is arbitrary and U0=expUQ it follows that

v - 2 * .

as required.

Finally let cm F ?, let x-exp(aa) and let be %  Then

Za(expb)-—~ = -  X  ,  V^oCg(*»- 
V i o / i

Since O ^ x-Oq we obtain

Za{e x p b ) -—̂ = _  X  ,  V odxg){b ))
Vio7 i ' ,0#

= = -  X .  wo(f w « '1))
V tooFl , , 0 /

-^ (« P ix b x '1)).

Since expixbx' 1 )-x(expb)x-1 we conclude that

Z a -iZ o f

and the proof of the theorem is complete. ♦
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We now consider induction of characters from Uq to i f .  We let the notation be as 

in the previous theorem.

Firstly suppose that O is of the second kind. Then (by proposition 1.3.6) O is the 

unique (/-orbit which intersects the inverse image (in fact K~l(O0)cO and this

inclusion is proper). Therefore 0  is the unique F-stable (/-orbit such that

o W l« V V 0 .

Hence

nr\O0F)cOF

and this inclusion is proper.

Now consider the character X=Zo- Let cte F q be arbitrary. Then (by the previous 

theorem) the irreducible character %a of Uq is a component of Xu r- Hence (by 

Frobenius reciprocity) £  is an irreducible component of the induced character (£a)c/<r. 

Since

^D=92Ta(l)=C(a)^a).

we conclude that

Z=(Xd)U'

for all OeFq.

On the other hand suppose that O is of the first kind. For each osc K  we consider the 

element f+ahe u*  where he u0L is an arbitrary non-zero F-fixed element (this element 

exists because Uq is F-stable). Then (by proposition 1.3.7) the inverse image i f l(.Oa) is 

the disjoint union

nr\O 0) -  U O (f+ a h )

where 0(f+ah) is the (/-orbit o f f+ah. Now if ae F q then the element f+ah  is F-fixed, 

hence the (/-orbit Oif+ah) is F-stable. We claim that

* \ O 0F) -  U  O tf+ ahf.

In fact since 0(/+cd«)c*'l(0 o) we have

• O<f+ah)Fc * l(.O0p)
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forali oe Fq. Thus

(1.3.7) U  O(f+ah)F& r \O 0F).o*F,

To prove that the equality holds we observe that

(1.3.8) j r 1(0 o)»0+iloL-

In fact let gtx 'iO o). Then n(g)«0o. Since O is of the first kind we have n(O)=O0 (by 

proposition 1.3.6). Thus there exists g'eO  such that x(g)=x(g’). It follows that

g t l(g ")=g'+ U0±qO+Uq1.

Conversely if geO+U0x  then g* Kg') for some g'eO. Hence n(g)=n(g’)€O0 because 

O0=M.O). N o w  the equality (1.3.8) implies that

* \ 0 0F)=0FHUoLf - 0 F+Ftfh

(we note that U0x=Kh). Since O is of the first land its intersection with the fibre of any 

ggeO0 consists of a unique element (we recall that the fibre of g0=n(g) (ge U*) is ((g)). It 

follows that

\ i f \O 0F)\*‘\OF+Fqh\=q\OF\.

Finally we have

dimO(f+ah)=dimO

for all oceK (by proposition 1.3.6). So

X  \O(f+ah)F\=q\OF\=\nl(O0F)\

and the inclusion (1.3.7) is in fact an equality as claimed.

Now we consider the induced character (Xo> • Since r  .^Xo (by theorem 1.3.9)
uo

we have

( X ' ( X o ) * ) ^ ^ u rZo)U',-(Xo'Xo)u r 1 •

i.e. x  occurs with multiplicity 1 as a component of the induced character Cfo)1̂ . On the 

other hand let a* Fq and let x(a ) denote the irreducible character Xotf+ak) ° f  t/^ which 

corresponds to the (F-stable) (/-orbit 0(f+ah). By proposition 1.3.7 0(f+ah) is of the 

first kind (with respect to U0) and iK.O(f+(xh))»0^. If we replace O by 0(f+ah) in the

;
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above argument we conclude that 

Moreover

X (a)(l)~ i\0 (f+ ah)F\ = ^[k)F\ -*(1) 

because dimO(f+ah)=dimO (by proposition 1.3.7). It follows that

X  Z (a )0  )=4Z( 1 )=i^o( 1 MZo) 1 )•

Hence

*(«)■
OmF.

We have finished the proof of the following:

Theorem 1.3.9. Ler O ^u* be an F-stable U-orbit, letf*Op and let O0 be the U0-orbit 

o f the element f 0=7t(f)t U0*. Then:

(i) I f O is o f the first kind (with respect to Uq) ,  tCx(Oq ) is the disjoint union

nr\O 0F)-K J  0(f+ ah)F
«.F,

where he ( Uq)1 is an arbitrary non-zero F-fixed element. On the other hand

(Zo>L a*r. *«*>

where for each a& Fq

tirt-Zotf+ah)

is the irreducible character o f i f  which corresponds to the (F-stable) U-orbit Oif+ah).

(ii) I f  O is o f the second kind (with respect to Uq) then O is the unique U-orbit 

such that OfcX ï(,OqF)f<D (hence iC1(Oq )cP f  and this inclusion is proper). Moreover

(Z'ïF '-Z-

t

Now we use theorems 1.3.8 and 1.3.9 to prove the following result:
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Theorem 1.3.10. Let O be an F-stable subalgebra o f U and let V=exp o. Let x  be an 

irreducible character o f UF and let $ be an irreducible character ofVF. Let O^U* be the 

F-stable U-orbit such that X=Xo aru  ̂ êt O* be the F-stable V-orbit such that <b=Xo‘- 

Finally let jc.U*~* V* be the natural projection (i.e. idf){a)=fia) for all /e  i f  and all ae o). 

Then:
(i) <p is a component o f the restriction Xyr o f X if and only i f  O'adG).

(ii) x  is a component o f the induced character <f>u'  i f  and only if Or\7tx{O)*0.

Proof, (i) We proceed by induction on dimU=dimU. If dimU= 1 then either V={ 1} or 

V=U and the result is trivial in this case. Suppose that dimU>\ and let Uq be an F-stable 

subalgebra o f  U such that Oc Uq and dimU^dimlt^-l ('). Let K<y U*-* U0* be the natural 

projection and let (0,; i*/} b* a complete set of F-stable C/0-orbits satisfying O^n^iQ) 

for all iml. Then (by theorem 1.3.9)

Therefore (.faXy^y,*0 if and only if there exists i t l  such that (.trHXo)yr)yr*Q- Now let 

jC-.Uq* -> 0* be the natural projection. Then (by induction) (falXo^yJyr^O if and only if

The result follows because K=Ttn§.

(ii) By Frobenius reciprocity

wtp
Therefore (by (i)) (X>0 )y,*0 if and only if 0 ’ctr(0). The result follows because 

O'cJT(0) if and only if let O ntrl(LO ’)*0. In fa«  suppose that O n jt1(O’)* 0  and let 

Then M f)eO ‘. Since x{f)mic{0), we conclude that O'r\tt(O)*0. The 

inclusion O ’ctt(.0 )  follows because tr(O) is V-invariant. The implication 

0 'cJi(0) =* O'r\it(O)*0 is clear. ♦

1 The subalgebra exists. In fact let (tif<gC<iC<^...c<aa ti be a chain of F-stable ideals of u such that 
dimlm, l*dimla+1 for all a* (0,l,...^i-l). Since o is F-stable, the subspace P,«u+1, is an F-stable 
subalgebra of U foralla« (0,l,...jn-l). Leta« (l,...^i-l) be such that m i o,+u.

t Then dim £**dwiOa+l so we may take Uo“ Da-
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Finally we prove the following corollary which is of great importance for our work.

Corollary 1.3.11. Let Oy,...jO^.U* be F-stable U-orbits and define 

0 1+ ...+ 0 r- l / i+ .. .+ /r« ISiSr}.

For each im {l,...,r}  letXrXo, be die irreducible character o f i f  which corresponds to 

0 ; and let x  be an irreducible character o f i f .  Let O^U* be the F-stable U-orbit such that 

X=Xo- Then ̂ i s a  component o f the character X\--X, (l) i f  and only ifOcPi+. • *+0»-

Proof. We consider the direct product

Ur={(xl ,...jcr); Xfi U, 1S /S r}.

Then

lf=exp(lf)

where

i f ■{ (<*!,....a,); «¡a U, l£f£r}

(we note that i f  can be regarded as a subalgebra of Urn(K) and it is clear that the 

exponential map exp:lf -*Ur can be defined component-by-component). The dual space 

(if)*  o f i f  is naturally isomorphic to

/ , ) ; /> U*. l£ iSr}.

Moreover O xx...xO r is an F-stable (/'-orbit of ( if)* .  It corresponds the irreducible 

character Xi*- ■ *Xr o f ( I f f  (2).

Now we identify the group U with the diagonal subgroup 

-  _ l/ '» { (x ,...jr)  \x e U )e U r.

This subgroup is exponential. In fact

U’-expU '

where

1 The chancier i* defined by ( * , . . . for aU x»lf.
2 The character (of (Iff)  is defined by Onx..xZ,K*,....Jtr)-iriC*i)—ZrC*3 for all xp lf  (we
noie that ( I f f  •llff) .
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Then the character %\•••Xris identified with the restriction (£tx..■xXr)u-r of X ix-• *Xr10 

if*and the sum Oi+...+Or is identified with the subset x(0\*...* .0r) of (£/*)* where 

jc(tf*)r -*(«0* is the natural projection. The result follows from the previous theorem. ♦

/
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CHAPTER 2 

BASIC CHARACTERS

The main goal of this chapter is to establish the existence of a certain equivalence 

relation on the set Irr(Un(q)) of all the irreducible complex characters of Un(q) (as before 

q a power of a prime number p). The equivalence classes of this relation are parametrized 

by pairs (D,<p) where D is a basic subset o f <&,n) and qr.D -> F ?*=F?\{0} is a map. By 

definition a subset Dc<D(n) is basic if it contains at most one root from each row and at 

most one root from each column (!).

Our work was motivated by Lehrer’s decomposition of the restriction to Un(q) of 

any irreducible discrete series representation of the general linear group GLn(q) (see 

[Le]). This decomposition envolves tensor products of certain irreducible representations 

of Un(q) which are associated with the roots 0V)e <D(n) and with the non-zero elements 

ae F q (see [Le; theorem 4.6]). We will denote by &,<a) the character of the irreducible 

representation associated with (ij)t <D(n) and with cte Fr  In the notation of [Le] §y(a) is 

the character of the representation a¡¡(x) where % is the linear character of Fq defined by

Z(P)=Va(ap)

for all )3e Fq and %  is as in section 1.2. A rigorous definition of thectaracters is 

given in section 2.1. Then in section 2.2 we will define, for each basic subset D  of <D(n) 

and each map qr.D -> F q*, the character £d (<P) to be the product of all the irreducible 

characters £¡j(<p(ij)) with (iJ)*D. We denote by Ip(<p) the set consisting o f all the 

irreducible components of | D(̂ >). Then we will prove that the family of all the sets Ip(<p) 

is a partition of Irr(Un(q)) (see theorem 2.1.1). Therefore each set ¡o(.<p) is an equivalence 

class of a well-determined relation defined on ¡rr(Un(q)).

1 For each U the <-th row of is the subset ((U+l),...,(!»} and the i-th column of «(a) is
the subset [(U),...,(MJ)J.
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2.1. Elem entary characters and elem entary orbits

In this section we construct for each root ( i j)< <D(n) and each non-zero element 

oce F q the irreducible character ^¡fa) o f Un(q) mentioned in the introduction. First we 

analyse the roots in the n-th column {(i,n); lS/Sn-1}. Our construction is independent of 

the orbit language, hence it is valid for any prime p. We follow very closely the work of 

Lehrer [Le], Independently Lambert and van Dijk [LD] have used a similar construction to 

describe the characters of the Lie group Un(R )  over the field JB of real numbers.

We denote by An{q) the subgroup of Un(q) consisting of all matrices having zeros 

in all non-diagonal entries except in the last column. An{q) is an abelian normal subgroup 

of Un(q) and it has a complement H consisting of all matrices in Un(q) whose 

non-diagonal entries in the last column are zero. This group H is clearly isomorphic to 

UnA(q) so we will identify these two groups. Then we obtain a decomposition

Un{q>An{q)U ^(q)

o f Un(q) as a semidirect product. We now apply Clifford’s theory to conclude the 

following:

Theorem 2.1.1. (i) Let y  be a linear character ofAn(q), let <p be an irreducible character 

o f the centralizer Cy o f yr in UnAf.q) and let ynpbe the irreducible character of

d^ ined &

-  - (v^)(ox)-v<a)^U)

for all a»An(q) and all x* Then the induced character is an irreducible

character qfU n(q).

(ii) Let x  be an irreducible character ofU n(q). Then there exist a linear character yf 

of An{q) and an irreducible character $ o f such that
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(iii)  Let yand <p be as in (i). Let xm U ^lq) and let 1 /= * ^  be the linear character of 

An(q) defined by

y*(a)-yKxax1)

for all aeAn(q). Then

where <t>'=<tf is the character of Cq defined by

W lyx)=<t*y)
for all y e C u ^ iy ) .

Proof, (i) and (ii) are applications of [CR; theorem 11.5]) and of ([CR; proposition 

11.8]) (respectively) and (iii) can be proved easily using the definition of induced 

characters. ♦

Now we consider the irreducible characters of A„(q). This group is isomorphic to a 

direct sum of n-1 copies of the additive group F q* of the field F q. Therefore the 

irreducible characters o f An{q) correspond to sequences y K y 1»...»V'’».i) ° f  «-1 linear 

characters of Fq+ where

for all x - (x rs)e A„(q). Let y 0 be a (fixed) non-trivial linear character of Fq*. Then any 

irreducible character of Fq* is of the form a y0 for some cts Fq where a y 0 is defined by

(a y 0)(p )-y0(ap)

for all pm Fq . Thus the irreducible characters of An(q) are in one-to-one correspondence 

with sequences (a j“ . . ,^ ! ) «  Fqn‘l. If an irreducible character y o f  An{q) corresponds to 

the sequence ( a l ..... « « .1)« F qn' 1 then we will identify y  with the row vector

( a t ... a ^ j) .  As a trivial example the unit character lx>((f) of An(q) corresponds to the 

sequence (0..... 0), hence

••• 0).
0

t
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Lemma 2.1.2. Let v^=(a, ... a*.,) ( a ^  Fq, l£*5n-l,) be a non-trivial linear character 

o f An(q) and let ie { l , . . . , n - l } be the smallest integer such that a ,*0 . Then the 

Un.\(q)-orbit o f y/ consists o f  all row vectors (0 ... 0 a , A+i ... Pnml) where P t*Fq 

for all ke { i+ l,...,n -l}. In particular this orbit contains a unique character with the form  

(0  ... 0 a,- 0 ... 0 ).

Proof. Let x=(x„)e UKJfi) and let a^{a„)*An{q). Then

\l?(d)=\iKxaxl)

=(<*1 VoK(.xaxA) i J . .. yt0) ( ( x a x \ .ln)
/«-I \  /n-1 \

Therefore

V^=(aj . . .a » , , ) ?  

where y  is a unitriangular matrix of order n-1 such that

Now let A+1. ..-A -1«Fq and 1«x=(xrt)tC fjq )  be the matrix defined by

f a^lpj-ct}) if r - i  and s+n 
rs 10 otherwise

if rmi and i# /i 
otherwise

for all (rj)e  <Hn). Then

(«1 -  a » - i)y « (0 ... 0 a , p M ... p ^ )

where y  is as above. The lemma follows. ♦

n
t



52

In the notation of the previous lemma the character (0 ... 0 0 . . .  0) will be called

the canonical character in the C/„.1(?)-orbit of yrand the index i will be referred to as the 

type o f ip. It is clear that all (^-conjugates of y  have the same type. The unit 

character of An(yf) will be called the canonical character o f type 0.

Lemma 2.1.3. Let y=(0 ... 0 aO  ... 0) be a canonical character o f A n{q) o f type i. 

Then the centralizer ,(*)(V) o f y in  Un.\(q) consists o f  all matrices x=(.xrs)eUn.i(q) 

which satisfy xiM=...=xin.1=0. Therefore

c U„i(<,)W=Un.i(q)^°>lUH.l(q)a>

where (OeSn is the permutation (n-1... i+li).

Proof. The first assertion follows easily because y f= y if  and only if 

(0 . . .  0 a O ... 0 )y = (0 ... 0 a O ... 0)

for all;
■K i ? ) 0" -

,(<?). The second assertion is a consequence of the decomposition

U ^ q ^ a r 'U ' .M a ) -  I I  X„(q)
ISk iSh-I 
<u(r)«a(i)

(cf (1.1.14) and (1.1.15)).

Let x  be an arbitrary irreducible character of UH(q). Then (by theorem 2.1.1) 

where

V * = (0 ...0 a0 ... 0)

is a canonical character of A n(q) of type i and l  is an irreducible character of 

<U"(«-1... i+li)mSn (if i*0 then y “ ( 0 ... 0 ) and we put

a^lm SJ. Since

/
H AHmU^cO^<olU^(q)a))~Un(q)na)lU^q)a^UJiq)
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(cf. (1.1.14) and (1.1.15)) we conclude that % is induced by the irreducible character \fKp 

o f Ujiq).

Now suppose that ^ is  the unit character lp  (fy»of Un.i(Q)na>'lUn.\(q)c».

Then we obtain a linear character

^ ( a ) “  yrt £/„,(?)«>

of UJq). By definidon we have

(2.1.1) AiB(a)U)»(aVb)(Jcm)“ Vo(«r«)
for all x=(xrs)e Ujiq). Then the induced character

(2.1.2)

is an irreducible character of UJq) (by theorem 2.1.1). This character will be referred to 

as the (i,n)-th elementary character o f U Jq) associated with ae Fq*. We have:

Proposition 2.1.4. Let U { l , . . . ,n - l}, let co=(n-l... i+ li)*Sn and let ae F q*. Then 

the function X ^ay .U Jq)  -> <L* defined by (2.1.1) is a linear character o f U J q )  and the 

induced character &B(a)=(A6l(a))t,*(,) is an irreducible character o fU n(q).

In general we may associate with any root (ij)e <D(n) and any element ae Fq an 

irreducible character f j a )  of Un(q) as follows:

Proposition 2.1.5. Let (ij)e<t>(n), let co=(J-l... i+ li)*Sn and le ta * F * .  Then the 

function X ja ):U Jq ) -* (L* defined by

(2.1.3) Ai/a)(jc)-V'o(£«y)
for all UJq) is alinear character o fU Jq) and the induced character

(2.1.4) t y a ) - a v«*))t'«(,) 

is an irreducible character afUJq).

Proof. We apply proposition 2.1.4 to the group UJq). This group may be identified 

with the subgroup of UJq) consisting of all matrices whose non-diagonal entries of the

I*s* n-j‘ 1 cdwwivvs OAt • Sinct way be convaA*rtcA aii an «-U-utewf oj
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tAiMc
V group Sj we have

U Jq)nU Jq)~U Jq)naflUJq)at.

By propositon 2.1.4 the restriction of X j a )  to UJq)r>UJq) is a linear character of 

U Jq)nU Jq). We denote this character by /*,-,< a). Now the subgroup UJq)r*UJq) of 

U Jq )  has a normal complement, namely the subgroup

where for each ke {1 ,...,/>} A J q )  denotes the subgroup of U Jq )  consisting of all 

matrices whose non-diagonal entries are zero except in the /fc-th col umn. Therefore we 

may consider the lifting H ja )*  of ) i j a )  from U Jq)nU Jq) to UJiq). By definition we 

have

H ja)*(xa)= nij(a)(x)= Xja)(x) 

for all xe UJq)nUJq) and all aeAj+Jq). It follows that

Hja)m-Xja)
so Xij(.a) is a linear character of U Jq).

On the other hand the induced character

C ja)~ Q tJa))UW

is an irreducible character of U Jq) (proposition 2.1.4). Since Aj+1(q) is a normal 

complement of UJq) in U Jq) the lifting £ ja )*  from UJq) to U Jq) is an irreducible 

character of UJq). Since lifting commutes with induction we deduce that

Cy<<x)*^<a)*)V*w HXja))u* )

is an irreducible character of UJq) as required. ♦

For each root (ij)m <t>(n) and each element a t Fq+ the irreducible character ^¡Ja) of 

U Jq) defined in the previous proposition will be called the (ijy th  elementary character 

associated with a.

Next we prove that the elementary characters are all distinct Therefore UJq) has 

(<7-11 gfrr.1? distinct elementary characters.

ii

i
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Lemma 2.1.6. Let (ij),(k,l)e<P(n) and let a , fk F q*. Then <J,y<a)=£u 03) i f  and only if  

(ij)=(k,[) and ce=p.

Proof. Suppose that <{;(y(a)=£u(/f). Without loss of generality we may assume that 

l^/'-n. Then the irreducible character ¿¡¡„(a) is uniquely determined by the canonical 

character

y>=(0... O a O ... 0)

of An(q) of type i. Suppose that l<n. Then (in the notation of the previous proof)

6u(0)=5u(j9)*.

It follows that the unit character l ^ )  is the unique component of the restriction of £u(P) 

to An(q). On the other hand is a component of the restriction of ^ „ (a )  to An(q) (see 

[CR; proposition 11.8]). So y /^1 ,^ ). This contradiction implies that l=j=n. Hence 

& .(/» is uniquely determined by the canonical character

0=(O... 0 /3 0 ... 0)

of An(q) of type k. Therefore 0 is a component of the restriction of | ta(^) to An(q) and so 

<(> is ¿/„(^conjugate to iff. By lemma 2.1.3 we conclude that k=i and /3=a. ♦

Now we let K  be the algebraic closure of the field F q and we realize the group 

Un{q) as the group Un(K)F consisting of all fixed elements of the Frobenius map 

F=Fq:Un( K )^ U n(K).

Let 0\/> <Z>(n) and let a t Fq*. Since the elementary character £y(a) is an irreducible 

character of Un(q) there exists an F-stable Un(K)-orbit O^Un(K)* such that

$ij«x)-Xo
(see (1.2.12)). We will prove that O is the (/„(AQ-orbit of the element a e ^ t  Un(K)* 

where e,j*:Un(K)-*K  is the dual vector of the root vector e^ t Un(K). In general for any 

amK the t/„(Af)-orbit of the element a e f  will be denoted by O ^a )  and it will be referred 

to as the (ijy th  elementary Un(K)-orbit associated with a. We note that
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Since a*0 the matrix X  is non-singular and so M(oce^*) has rank 2(j-i-\). It follows that

dimOjjia)“  2(j-i-1)

(by (1.3.3)). By corollary 1.2.3 we conclude that U jK )  is an (ae,;,*)-maximal isotropic of 

Un(K) as required. ♦

Proposition 2.1.8. Let (ij)e  d>(n) and let ate F q*. Then the U JK )-orbit O ja )  is 

F-stable and it corresponds to the irreducible character £ ja )  ofU n(q), i.e.

Zij<a)=Zo.<ay

The correspondence £ ja ) - * O J a )  is one-to-one between elementary characters o f  

Un(q) and non-trivial elementary F-stable Un(K)-orbits on UJK)*.

Proof. Since ate. Fq* the element ae,y*6 O ja )  is F-fixed and the (/„(AT)-orbit is F-stable. 

Now let c*=(/'-l... i+U)eSn. Then U JK )= expU jK )  is F-stable and U Jq )= exp u jq ). 

Since UJK) is a polarization for cee,-,* and $ Ja )  is induced by the linear character X ja )  

of U j q )  it is enough to show that this linear character is defined by the element 

ae,y*s UJK)*. In fact the homomorphism ty .U JK )-*K *  is defined by

tJexpa 'H {a)*aaij

for all a=(arj)e UJK) (cf. (1.2.9)). However

.a2(.exp a) |<>“ ( 1 +a+3T+■ ■ ■ +(^T)Tj ‘j

because

( A y -  %rmi+l

and Oj,*0 for all re {/+1....J-1}. Therefore

f y x ^ a x i j

far all x-(xrj)e UJJC). It follows that the character XfXJJq) -» C* is given by

t ty x )mY o t/to mYit<*Xu>
t
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for all x=(x„)« UJ^q) (cf. (1.2.10)). So

X ^X y(a)

and the lemma follows. ♦

Let (ij)e <Hn). Then the previous proposition allows the definition of the (ij)-th  

elementary character &,<0) associated with 0« F q to be the irreducible character which 

corresponds to the F-stable i/„(Af)-orbit 0 iy<0). Since Oiy<0)={0} we have

(2.1.5) ^ ° ) - l w

t $
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2.2. Products of elem entary characters

We recall that a subset D of <D(n) is basic if it has at most one root from each 

column and one root from each row. More precisely D<zGKn) is basic if  it has the form

D=otA)n4>(n)

where 0)eSn and

d={(l,2),...,(n-l,n)}

is the set of simple roots. In particular the empty set is a basic subset of <P(n). In fact

0=a^)(d)nd>(n)

where (D0eS n is the permutation defined in (1.1.16). On the other hand if D is a 

non-empty basic subset of <P(n) then

D= {( i iJ iW iJ i) ......(W r)))

where 0'i J O X iiJ i) - - -  XirJr)e & (*) are such that j xe.j2e....£ .jr and i ,* is- for all 

s j 'e  { Conversely any subset of <D(n) with this form is basic.

Let D  be a non-empty basic subset of <P(/t) and let qr.D -» F q* be a map. Then we 

denote by the character of Un(q) defined by

(2-2.D

On the other hand if Dc<P(n) is the empty subset then qr.D -> F q* is the empty function (*) 

and we define £D(qj) to be the unit character 1 of Un(q).

The main goal of this section is the proof the following result*

Theorem  2.2.1. Let % be an irreducible character o f U„(q). Then there existta unique 

basic subset D o f d>(n) and a unique map qr.D -» F q* such that X  i J  a component o f 

& (?)•

1 We note th a t if X and Y are two sets, a  function <f.X -»  Y may be considered as a subset o f the 
t Cartesian product XxY.
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This theorem will be proved later in the section. Firstly we will discuss some 

examples which illustrate the general situation and which will be useful in some steps of 

our proof. As one should expect our arguments are based on the general results of chapter 

1. In particular corollary 1.3.11 is fundamental for the study of the characters £0(?>). In 

fact it implies that for any non-empty basic subset D of dtyi) and any map qrD -* F q* the 

irreducible components of | 0 (qj) are in one-to-one correspondence with the F-stable 

i/„(A0-orbits which are contained in the sum

(2.2.2) 0 D(q>)= X  OijiqKiJ)).

If D=0 then we define 0£>(<p) (<p is the empty function) to be the orbit {0 } of the element 

0e u n(K)*. The (irreducible) varieties 0 D(<p) will be described in section 3.1 where we 

will obtain a decomposition of Un(K)* which generalizes theorem 2.2.1 (cf. theorem 

3.1.7).

Our first example is trivial. We describe the linear characters of Un(q) in terms of 

products of the form (2.2.1). It is well-known that the commutator subgroup Un(q)' of 

UH(q) consists of all matrices x=(Xij)s Un(q) which satisfy x 12= ..=xB. ln=0. Moreover

the quotient group ^ n^ l u n(q)’ >s isomorphic to a direct sum of n-1 copies of the 

additive group F q+. Therefore Un(q) has qnA distinct linear characters which are in 

one-to-one correspondence with sequences of elements a,+ F q (l£i£n-l).

These characters can also described as follows:

Lem m a 2.2.2. Let a 1(. . . , a n.i« F q. Then the linear character o f  UK(q) which 

corresponds to the sequence is Therefore the linear

characters o f Un{q) are in one-to-one correspondence with pairs (D,<p) where D is a 

subset o f and qrD -> F q* is a map.

Proof. It is clear that the character ^i2(cei)---^n-i^^it-i) is linear. Therefore it is
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irreducible and it corresponds to an F-stable I/„(Af)-orbit O of dimension zero. By

corollary 1.3.11 we must have

0 = 0 x2(ctx)+...+0nAn(anA).

Hence 0  contains the element

a , + < V , uh(K)*.

Since 0  is connected it contains only this element Thus

whenever ( a t......(<*¡,0(tF r  lS/Sn-1). The lemma follows. ♦

In the next lemma we identify some irreducible characters which have the form 

(2.2.1). This result was proved by Lehrer (see [Le; theorem 5.2]) using Mackey’s 

theorem on the decomposition of tensor products. We give a different proof which can be 

extended to establish that (with the same conditions on the set D) the variety 0 D(<p) is a 

single £/„(A0-orbit (cf. theorem 3.3.3).

Lem m a 2.2.3. Let D={(ilJ 1),...,( irJr)} be a basic subset o f  &(n) and suppose that 

, i<i2<-• •<*>• ond that j\>ji> .. ->jr. Let <piD -> F q* be any map. Then the character £D(q>) is 

irreducible.

Proof. We consider the sum 0 D(<p). Let a s=<p(isJs) (1 £s£r). Since O ij ( a s) is the 

C/„(A> orbit of a£ i j*  (l£rSr), the element

lies in 0 D(<p). Thus“

0(f)cOD(<p)

(we recall that 0(f)  denotes the i/„(F>orbit of /). Since /  is F-fixed 0 (f)  is F-stable. 

Therefore (by corollary 1.3.11) the irreducible character X“Xo<f) of Un(q) is a component 

of {¿>(p). We claim that

t
t « *-& (*)•
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For we compare the degrees of these two characters. On the one hand we have
r

&>(?)( 1 W " . m =X  (/,-»> 1).
J*1

because ^ ( a , )  has degree í/»*1»'1 (l^sár). On the other hand (by proposition 1.2.5)

Z iD -V lO W 'lW f* " 0 .

By (1.3.3) we have

dimO(f)=rankM (f)

where Af(/) is the matrix which represents the bilinear form fly with respect to the basis 

(e¡j, (ij)e <b(n)). Now for each se {1,...,/•} and each ke {i,+l^..j,-l} the plane

Hsk=Ke¡tk+Kekji

is non-singular because

f&e¡1k’ekiU=ñeij)= a s*Q.

Moreover the subspace
r i r j

I  H ,k
J«1 l

is an orthogonal sum of non-singular planes. It follows that V is non-singular so

rankM{f)<uiimV.

Since dimV=2m we deduce that

X 1 )-V  4 “”°  W  qrankM̂  qdimV=<r.

Finally since ̂  is a component of <J0((p) we conclude that

t f l K o W D

so “  claimed. The lemma is proved. ♦

Corollary 2.2.4. Let D *{(l^ i),(2 ,/i-l),...,(r,n -r+ l)}  where either n=2r or n«2r+l. 

Let qr.D -» F q* be any map. Then the character £o(<p) is irreducible. It has degree 

q ^ n) where pin)** (n-2)+(n-4)+... 0). Moreover i f  n-2r is even, the characters &>(4>)

where £)- {(1 ,n),(2,n-1),... ,(r-1 ,n-r+2)} and tprJ) -» F f* is any map have degree qf*^. 

Therefore UH(q) has at least (q~ I f  irreducible characters <4 degree q*n\  (fn-2r+l is odd,
t • '

C) W i p . ( w )  = r* -r Vi^2r Co |u(M)cr* m odd
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and at least q(q- 1)M irreducible characters o f  degree if  n ^ lr  is even.

Proof. It remains only to prove that the given characters are distinct. For we let 

a!,...,<̂ .6 Fq be arbitrary and we consider the element

Then

txf)(a)=foax l) * a l(zax~l)ln+...+artxax'l)rn^+l.

Let fix,.. .,/3re Fq and suppose that the element

S = A « u * + - + f t ^ i * «  W

lies in the i/„(iO-orbit of /. Then there exists xe Un(K) such that

g(a)=fixaxA)

for all a<= Un(K). In particular let a= e^M  (l<J<r). Then 

for all;« { 1 , . Therefore we get

Pi=g(ein-i+i)=Axcin.M xA)=ai

for all U { 1 , . The lemma follows. ♦

It was proved by Lehrer ([Le; corollary 3.2']) that is the maximal degree of the 

irreducible characters of Un(q). This result will follow as a corollary o f theorem 2.2.1

(see corollary 2.2.13). Moreover theorem 2.2.1 implies also that any irreducible character 

of Un(q) of maximal degree has the form £d(4>) where D and cp are as in previous

corollary.

In the next lemmas we study the decomposition of the products &,<«)!«(/?) where 

(lj),(.k,l)e <D(n) and a,/J■ Fq*. It will turn out that this decomposition depends on the 

relative position of the two roots (if) and (kj).
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By the previous lemma ^ifo i)^u {p) is 

irreducible whenever i<k<l<j. The adjacent 

diagram illustrates this situation - the symbol 

■ represents a root in D (this symbology will

be used throughout the thesis).

Other possibilities are illustrated by the following pictures.

Our next result asserts that in both situations any character ^ < a ) |u(/3) is irreducible (its 

proof is an immitation of the proof of lemma 2.23).

Lem m a 2.2.5. Let (/ J),(.k,l)e <P(n) and suppose that j£k . Let a ,p e  F q*. Then 

!y(tt)5«0?) «  tut irreducible character ofU n(q).

Our next example shows that in general the character £p(ç>) is not irreducible.

Lemma 2.2.6. Let (ij) ,(k ,l)• <t>(n) and suppose that i<k<j<l. Let a ,p « F q. Then 

Çijia )4kt(P) *s a reducible character o f  Un(q). In fact let yu Fq and let ftilfth e  irreducible 

character o f  Un(qT which corresponds to the F-stable Un{K)-orbit o f the element 

a e ii*-¥Peu *+yeik*n un(K)*. Then x(Y) a component o f Çij(a)Çu (p) o f  degree 

(̂i+*H/+o-3 Moreover the correspondence is one-to-one between the elements

o f Fq and the irreducible components o f  ̂ ¡ fa ^ ^ p ) .

i I
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Proof. The adjacent diagram illustrates the 

situation of the lemma. Here the symbol □ 

means that the root (ijc) is associated with any 

element of the field (this root determines the 

irreducible components of the given character).

In order to use corollary 1.3.11 we consider the sum O ¡j(a)+0 U(/J) of the 

elementary i/n(Ar>orbits O ^a) and O ^p ). Let ymK and let

x=xkj(-aAY)eXkj(q).

Then

(x-(aeij*))(a)=aeij*(.xaxA)=a(xax'1)ij=a(,aij+ a'1}aû =(,aeij*+yeu *)(.a) 

for all a=(ars)e un(K). Since O ^a)  is the Un(JC)~orbit of ae^m un(K)* we conclude that

a e f+ y titU O y ia ).

On the other hand Ou(JJ) is the (/„(AO-orbit of fiea * e Un(K)*. Thus

aeij*+‘)eik*+Peu** Oij<.a)+Ou(kp).
Since Oij(.a)+Okif.p) is (/„(AO-invariant we conclude that

O(tfc<tya)+0*O3)

where 0(>) is the i/„(A0-orbit of

Now let y,y« F q and suppose that 0(y)= 0(Y). Then there exists x=(x„)m UH(JC) 

such that

aey*+y'eu*+peu*-x{aeu*+Tieu*+peu*).

Applying this function to an arbitrary aM.a„)m un(K) we obtain

aaif+yaik+pau^a(.xaxl)ij+yXxaxA)U[+POcaxl)kl.

In particular let where mm {¿+1......M }. Then we get

Q -< nim (x\i+ y‘xim( x \ k+pxim(.x-l)vr P x km 

because j<l and *</. Since /W) it follows that

XkmmO

for all mm }. On the other hand if UjjK) we obtain

, y - a ( x \ + y .
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Since (x'l )/y=0 we conclude that y'-y. Therefore the i/„(JC)-orbits O(y) (7* K) are all 

distinct

Finally we consider the dimension of the {/„(Af)-orbits 0 (7) for 7% F q. For each 

7% F q we denote by the matrix M (aeij*+yeik*+Peu m). The system of vectors 

(ekr>eri, k+1 £r£l- 1 ̂ ( e ^ e ^ ;  i+1 £r<.j-1, r*k) span a non-singular subspace V of u n{K). 

Therefore

dimO(y=rankM(ffZ.2(l-k-1 )+2(/-i-2)

and so

It follows that 

Since

we conclude that

and the lemma is proved. ♦

The next lemma will be fundamental for the proof of theorem 2.2.1. We note that in 

the situation of this lemma (as well as in the subsequent lemmas) the roots involved do 

not constitute a basic set

Lemma 2.2.7. L et ( j j ),(/,/)« 0(n) and suppose thatj<l. Let a,Pm F q*. Then

Sij<a)$u(P)-$u(P)+ *L £  6*076/08)«■¡+1 )*Ff*

is the decomposition into irreducible components. Therefore £iy{a)&/(/J) has

one irreducible component o f degree <f'iA and, for each an { /+ l,...,/-l} , ^-1 irreducible 

components o f  degree

7 I
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P ro o f .  The situation o f this lemma is 

illustrated by the adjacent diagram The symbol 

■ represents the initial root (which does not

occur in the decomposition) and the arrow 

means that there exists a certain “dislocation” 

of this TOOL

In the proof of the previous lemma we have justified that

jfea*-oetf*«Oa03).

Therefore

p e f - p e f - a e f + a e f ,  O ^ fi+ O ^a ).

This proves that the irreducible character £/(£) is a component of

On the other hand let ae {/+1....J-1} and let yt Fq*. By lemma 2.2.3 the character 

SajCflSuiP) is irreducible. This character corresponds to the F-stable i/„(AT)-orbit 

O aj(Y)+Oit(p). Let us consider the element Yeaj m+PeiL* tO aj{y)+ O u(p). Let 

x=xia(a 'l ifreXUt(q). Then aeij*+yc^*=x (aeij*) (see the proof of the previous lemma) 

and so

aef+ ytqU O ijia ).

It follows that

7*4*+fcij*=<Mij*+ie4*+Peu*-aeij m*Oij(,a)+Ou(p)

- we recall that f i e f - a c f*  0^(/J). Therefore

OJV+OiAficOifiay+Ouip).

By corollary 1.3.11 the character is an irreducible component of &,{a)&/(/i)-

Finally we consider character degrees. We have 

f i K f l i W * 1 and

for all am {/+l f... } and all Fq*. On the other hand

a-1+1 V. a-»+l )

The lemma follows because
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(£>< a ) ^ j 3 ) ) ( W - ,' V i-1

and because the characters (i+l£aS/-l, jmFq*) are all distinct (this can be

proved using a similar argument to the one used in the proof of lemma 2.1.6; we note that

A similar proof can be used to obtain the following:

Lemma 2.2.8. Let (.ij),(.kj)e <P(n) and suppose that i<k. Let a,fie F q*. Then

is the decomposition into irreducible characters. Therefore has

one irreducible component o f degree and, for each ae {)fc+l,...,/-l}, q-\ irreducible 

components o f degree

As in the previous cases we illustrate the 

situation of the lemma by the adjacent diagram.

The symbology is as in the previous case.

Finally we consider the products &,{a)&/(j8) where {if)* d>(n) and a,/3e F q*. We 

stan with the case

Lemma 2.2.9. Let (i j )«<b(n) and let am Fq*. Then

Therefore each irreducible component o f  £ occurs with multiplicity one (l).

1 We note that the characters appearing in the given sum are not (in general) the irreducible components

whenever a*b because they have different degrees). ♦

, oftyoW -a).
I
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Proof. Here the situation is as in the adjacent 

diagram. The arrows mean that the root (iJ)

“dislocates” in the directions indicated. The 

root (/.a) determines the decomposition of any 

com ponent (c -̂ lemma 2.2.6).

The equality oh-/M) means that the root (ij) is 

associated with two elementary characters which correspond to a ,fk  Fq* satisfying that 

equality.

Since

0=cceij*-aeij*e Oÿ(o)+Oÿ(-a),

the unit character 1 °f Un(,q) is a component of y{a)£ÿ(-<z). On the other hand let 

am { i+1,...J-l} and let )3*Fq*. Then

aef+ pefm O fld )

(see the proof of lemma 2.2.7). Thus

peqj*=cceij*+l3eqj*-aeij*mOij(.a)+Oij(.-a)

and this implies that Çaj(p) is a component of | l̂ (a )^ iy(-a). Similarly for each 

bm } and each Fq* the character ZuJLfS) is a component of &,<a){ÿ(-a).

Now let a,be {i+1,... J - l } and let p,y*Fq*. If b<a the character Çv {.p)Çn(l/) is 

irreducible (by lemma 2.2.5) and it corresponds to the orbit of the element

Pca*+ysib*=aei/ f+Peaf-OKi*+ye&*t0^a)+Oij{-a).

It follows that is a component of {^(a){^(-a). On the other hand suppose

that a<b. Then (by lemma 2.2.6) the character i a;(/î)$ (i(7) is reducible and its 

components are parametrized by the elements of F q. For each &  F q the irreducible 

component associated with S  corresponds to the i/„(A0-oibit of the element 

peJ+yeuf+SeiSm

Since

aelj*+Peqi*mOij(.a) and -ceeÿ*+)eifc*+& il*« O ^-a)

(see proof of lemma 2.2.6) we deduce that
I
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Therefore each irreducible component of <^{$£¿¿(7) is also a component of £y<a){g(-a). 

Since £aj(P)£u>(fl is multiplicity free we conclude that £q/{/9)€ifr(?) is a component of

Finally we consider character degrees (we note that the characters involved have no 

components in common as we can prove using the argument of the previous cases). If we 

denote by # the character o f the rigth hand side of the required identity then we have

The next two lemmas will be used to decompose the character ¿¡¡Jia )£ ij(,ß) where 

OV)« <£(n) and a,ße Fq*, ß*-a. The first will also be used in the proof of theorem 2.2.1. 

Here we consider U ^ iq )  as a subgroup of Un(q) (cf. section 2.1).

Proof. Let ic {l l. . . ln - l} and let a* Fq*. By Frobenius reciprocity ^ ( a )  is a component

restriction Let icmh(K)*-> u n.i(K)*  be the map sending/« Un(K)* to its

restriction rtf) to U ^ K )  and consider the image rtP J^a)) of the (Ln)-th elementary 

orbit Oilt(a). Since O iH(a )  is the (/„(HO-orbit of the element a e ^ m  u n(K) and

mqi-UqH-i

-«v«*)i(,<-a)X 1)
i-i-lJ-i-l

and the result follows. ♦

of the induced character O t/_1(e))i/*<,) if and only if l y ^ ^ j  is a component of the

/
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Æ(aeù,»)=0« UnA(/C)* wc have

OotfO*«*)).

Since {0}cU„(Af)* is the i/*.i(g)-orbit which corresponds to and Ofa(a) is the

£/n(Af)-orbit which corresponds to ¿„(a) (by proposition 2.1.8) we conclude

(by theorem 1.3.10). It follows that

Finally we consider character degrees. It is clear that

On the other hand
n-1 n-1

li/.W ÎD + J J Ç  .  ̂ ( a ) ( l ) = l + J  (<7-l) <r‘-l =cin-1 

and the proof is complete (we note that the characters ^¿,(a), cfc F q, are all distinct). ♦

On the other hand we have:

Lemma 2.2.11. Let ic {l , . . . ,n - l} and let etc Fq*. Then
n-1

C*(0>

«  f/te decomposition o f the restriction ° f  4in(a ) to 0*.i(<7) into irreducible

components. Here {¡¡(fi) denotes the (ij)-th elementary character o f U ^{q ) associated 

with p.

P roof. Let j r  Un(K)* -> Un.x(K)* be the natural projection. By theorem 1.3.10 the 

irreducible components of a™ *n one-to-one correspondence with the

(/„.I(AT)-orbits which are contained in the image x(O iH(a)). Since 0 te(a ) is the 

(/„(AO-orbit of the element ae te*a UH(K )*,  we have 

* Omtt(eiS)e}i(OiH(a)).
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Therefore

On the other hand let Jm { i+ l,...,n -l} and let PeFq*. Then

<X‘ in*+fcij* 'O u,(a)

(see the proof of lemma 2.2.6). Hence

p e if^ r tM iS + P eiP *  icÇO^a)).

Since CifP) corresponds to the £/*.i(A0-orbit of p e fe  Un.t(AO*. we conclude that

(Cÿ(^)»5m(a )t/^1(i))t/^,(i)^0-

Since

l+(fl-D X  q>'iA~qn'iA ,
jmi+l

the lemma follows because the characters Çÿifî), fle Fq, are all distinct. ♦

Finally we may prove the following:

Lemma 2.2.12. Let (ij)« ®{n) and let a,/3e F *  be such that ¡3*a. Then

'  W '  a -i+ l tma+l j* F f» ’

is the decomposition o f £¡¿0) ^ 0 ) into irreducible components.

Proof. Here the situation is as in the adjacent 

picture. The arrows and the inequality a+/fc*0 

have the same meaning as in lemma 2.2.9. We 

note that the root (i j ) occurs in the final 

situation.

First we prove that the irreducible characters iy la+ ff)  and iij(.ot+p)Çab(f) 

(/+lSfl<b^-l, p  Fq*) occur as components of £,■,{«)£,{/}). In fact (by corollary 1.3.11)

(Sif.<x+P)<iij<a)Çij<P))*0



73

because

a e f + p e f e  O ^a fa O ^p ).

On the other hand let aj><= {/+1,...,/-1}, a<b, and let Fq*. As in the proof of lemma 

2.2.6 we have

OBij*+eib*eOij{a).

Let x=xi<fa)sX ia{q). Then the element

x-(aeij*+eu *)=aeij*+eib*+ayeqi*+-jeab* 

lies in the i/rt(A0-orbit O ^a). Since P e ^ -e ^ e O ^ p )  we conclude that 

(a+p)eij*+cqeaj*+y!ab*eOij(a)+Oij(li).

But {a+foef+cqKafe. OtJ{a+p), so

(.a+p)egm+ay!q*+yeabm* Oij(a+p)+Oab̂ .

Since Oijicb+OijifS) is £/„(AO-invariant we deduce that

Oij{a+p)+Oab(TfcOij{a)+Oij(.p)

- we note that Oij-(a+p)+Oab('p is the Un(K)-orbit of (tt+p)eij ¥+aycaj*+'Yeab*. Finally 

corollary 1.3.11 implies that

(Sijia+frSabM&jiCQSijiP))!*).

Next we consider the multiplicities of the irreducible characters <Jiy(a+/J) and 

| iy(a+/J)£j4(7) (i+l£trcb£/-l, T^Fq*) as components of §^(a)£,•,</)). If j<n then all the 

elementary characters involved are the lifting from U fa )  C1) to U fa )  of the 

corresponding elementary characters of Ufa). Therefore those multiplicities may be 

calculated in the group Ufa). Hence without loss of generality we may assume that j=n.

Firstly we consider the character ^(a+ fJ). We calculate the multiplicity of this 

character as a component of the product | iB(a)(ly^i((f))£/*<,). By lemma 2.2.10 we have

n -l

&,(«)( 1 X  i« (a )ir» (v ') .
f»l v«Ff*

Since j9k0  the irreducible characters ^(a + p )  and ¿¿,(a) are distinct. Therefore

(5m (a+0>.6»(a»-O-

On the other hand we have (by lemmas 2.2.7 and 2.2.8)

1 Ufa) is identified with • subgroup of Ufa) as in section 2.1.t
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( 5«(a+0).6«(a)<5r,.( v))=0

for all re { l , . . . , /» - l} ,  r* i, and all v » F q*. Finally let v * F qm, v* fl, and let 

/€O il(a)+Oi)l(v). Then

/ [ e j - a + v .

Also

i(««)=a+/3

for all gtOj^CH-P). Since v*/3 we conclude that

Oin{a+p)n{pin{a)+Oin{v))^ei.

Therefore

(&»(«+/*).£»(«)&.( v ))-0

(by corollary 1.3.11). It follows that

(§i»(a+i3).5m(a)iii.03))=(im(«+^ ).l« (a )O  

Now we have

By Frobenius reciprocity we conclude that 

Hence

By lemma 2.2.11 (applied to the characters ^¿,(a) and &/i(®+/3)) we have

^ a ) ^ 1(i)“ ^«<0H- ^ l(i)“ 1t/*,W)+f5 1 ^ (V)‘

Since the charactersin this sum are all irreducible and distinct we conclude that

(U a+ /3 ).{« (« )U i9 ))t/.(,)-l+ (» -M )(i-l).

Now let a,bm { l , . . . ,n - l  }*ca<b£and let F q*. We use a similar argument to 

calculate the multiplicity of the (irreducible) character &"(<*t-/9)£4(# as a component of 

A* before we obtain
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we note that £*(?)=£,*(#* =°

By lemma 2.2.11, we have
n-1

$in«*)u^(qrZin«x+P)v^<,r1 ^ (v)*

Therefore £in(o»-p)li^ ^ C af.(y> has the decomposition
H-1

U Aq)Cab(y)~Cab(Y)̂ ~ X  X  CoiCl)~l j-i+1 i!»t*

where the characters CuWCabW are not in general irreducible (however, since a>i, all of 

them are multiplicity free). By lemmas 2.2.3,2.2.5 and 2.2.6 we have

On the other hand, let re {i+ l,...,«-l} and let ve Fq*. Then

(Ci,(vUin«x+f i v ^ ( q)Cab(Y))*0

if and only if

(Uv)>C«(M)CabM)*0

for some se { i+ l ,. . . ,n - l} and some H*Fq* (we note that a><). By lemma 2.2.8 this 

happens if and only if s=r=b and fi=v and, if this is the case, we have

( Cifc( V) • CU>( C06( 7$ ) ,(f)“  1 •

It follows that

v  Fq*

To conclude the proof we calculate the degree of the character of the right hand side 

of the required equality. W e denote this character by 0. Then

K lW l+(q-l)(»-M ))U<w0)(l)+ £  X  X  (<7-l)(&.(0H-/J)&*(tf)(l)
a-i+l 6-a+l y* F*

-aM.q-lKn-i-DXf4-1* X  X  X  ( q - l ) ^ 1̂ 1
« ■i+ 1  b-a+\

f  ii-2 i^l
(l+(q-lK«-M))+(i-l)2 X  X  < t~ x

V  1 b-a+l
t
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V

Since
M-l

(<7-l) £  f + ' - t T ' - l
6-04-1

for all ae {/+!,...,n-2), wc obtain
/ it-2 \

= ( U « ) ^ ) ( D -

The lemma is proved. ♦

Using the previous lemmas we now prove the following result:

Proposition 2.2.13. Let <p be a character o f Un(q) which can be expressed as a 

product o f elementary characters. Then $ can be decomposed as a sum o f characters with 

the form (22.1).

Proof. We define the total order < on the set of roots 0(h) as follows. If (ij),(kJ)e <P(n) 

then (ij)<(k,l) if and only if either j>l or j=l and i<k. Hence we may define a total order 

in the seti ,̂(Afc) consisting of all matrices a=(aÿ)ls/(/Sn satisfying atj=0 if (ij)e 0(n), and 

if (ij)e  0(h) - hereto denotes the set of all non-negative integers. This order is 

defined as follows. Let a,be«„(Afc), a-(ay)i < i bm(by)liiJSa- Then a<b if and only if 

there exists (ij)e  0 (h )  such that au - b u  for all (k,l)e 0(h )  with (k,l)<(ij), and aycby. 

This order allows us to prove the proposition by induction on the set %<Hq). In fact the 

character <p determines a matrix a^=(a,y)e as follows. By hypothesis there exists a 

non-empty subset A o f 0(h) such that

where, for each (iJ)eA  and each ke {l,...,ty}, ctyk is a non-zero element of the field Fq. 

Then for any (ij)e 0(h) the (ijy th  coefficient of aq is

0 otherwise
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Suppose that 0 corresponds to the smallest matrix in Un(f^), i.e. all the entries of 

a^=(ûÿ) is such that a,y=0 for all (ij)e  #(n)\{(l,2)}, and a 12=l- Then ^ ^ ( a )  for some 

ae!Fq and the result is trivial. Now let 0 be such that a^is not the smallest element of 

Un(Jrto) and suppose that the result has been proved for all character iff (as in the 

proposition) such that a v <a^. Let (ij)  be the smallest root of A. Without loss of 

generality we may assume that j=n - otherwise 0=y/* for some character y  of Uj(q) and 

we may prove the proposition in this “smaller” group. Then

where t=tin, ak=aink (lSa£r,„) and ¿40=A\{(/,«)} (possibly A0 is empty). Suppose that 

f> l. Then after a finite number of applications of either lemma 2.2.9 or lemma 2.2.12 we 

obtain a decomposition of 0 as a sum

0=0!+...+0r

where for each se {l,...,r} there exists a subset As of CKn) such that (i,n)*As and

for some (1 (iJ)eAs) - we note that we may have <*!+...+a,=0. Since

r>l we have <aq for all se {l,. .. ,r} . Thus (by induction) the result is true for each 

character 0,  (l£y£r), hence it is also true for the character 0.

Now suppose that r=l. Then

for some as/F?*. If i40 is empty then 0 is an elementary character and the result is trivial. 

Suppose that A0 is non-empty and let

We have <a$, hence (by induction) the character <Pq decomposes as a sum of characters 

with the form (2.2.1). If £p(0) is one of these components (hence D is a basic subset of 

0 (n )  and <p:D -*IFq* is a map) then the character Zi„(a)$D(q>) is a component of 0. 

Moreover 0 decomposes as a sum o f characters with this form. Let 0O denote the 

component i,„(o)^o (0) of 0. If D u {(i,n )) is basic then 0O is one of the required
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components of ft. On the other hand suppose that D u { ( /» }  is not basic. Suppose also

that there exists ;e  {1......n-1} such that (j,n)eD. Then (j,n)eA0 - we note that (by the

argument above applied to the character ft,) the smallest root of D is greater or equal than 

the smallest root of A0. It follows that (j,n)eA and so i<j. Now (by lemma 2.2.8) we 

obtain
n-1

0D =&.(«)&>(?)=&,(«)& (<Po)+ X X Çin(aKjk(P)ÇDA<Po)
KSJ+ 1 /*€/Ç* ü

where D0=D\{ (/',«)} and ft, is the restriction of (p to D0. Since (J,n)eA and (J,n)eD0 the 

characters & ,(a)& 0(fli) and ^ ( a )^ * (P)ÇDo(<po) (j+l<Jc£n-\, PeFq*) determine matrices 

in W„(*(,) which are smaller than a^. By induction we the proposition is true for these 

characters, hence it is true for the character ft>.

Finally suppose that (j,n)*D  for all je  {1 ...... n - l } .  Then (.i,k)sD for some

ke {i+l,...,n-l} and (by lemma 2.2.7)
* - t

fto =£m(a)£D(<P)=&n(a)SD0(<Pb)+ X  X  Sin(,a)Sik(P)ZD0(<Po)/■i+1 p4Fq

where D0=D\[(iJc)} and ft, is the restriction of <p to D0. The result follows by induction 

because the characters £IB(a)ÉD0(Po) ancl &ii(a ){tt(/?)€D4(9b) (f+lS/Sn-1, ¡5*fq*) 

determine matrices in which are smaller than a^. In fact our construction shows that

at each stage we are constructing a family of characters which determine matrices in 

U„(i/0) which are smaller than the previous one. In particular the matrix determined by 

€d(?>) is smaller than the matrix determined by ft,.

The proof is complete. ♦

As a corollary we obtain:



79

Corollary 2.2.14. Let x  be an irreducible character o f Un(q). Then there exists a basic 

subset D o f <H.n) and a map qrD -» F  * such that

Proof. Let Oc.Un{K)* be the F-stable (/„(AO-orbit which corresponds to % and let feO F. 

Then
f~  X

(since/is F-fixed we have/foy)« Fq for all (»V> ®(/t)). Let

A={OV)€dKn);/:eÿ)^0}.

Then

/* X  Oijifieij))
Oj)*A

and (by corollary 1.3.11) we conclude that

a ,  n  su«Xij))*o.

Since X Is irreducible the result follows by the previous proposition. ♦

Corollary 2.2.15. Let ¿i(n)=(n-2)+(n-4)+...+l (cf. corollary 22.4). Then qf^n  ̂is the 

maximal degree o f the irreducible characters ofUn(q). Moreover if  n=2r+\ is odd, Un(q) 

has exactly (q-l)r irreducible characters o f degree qt*H\  whereas if  n -2 r is even, Un{q) 

has exactly q(q- 1)M irreducible characters o f degree q*n\

Proof. Let £  be an arbitrary irreducible character of Un(q). By the previous corollary 

there exist a basic subset D of 4(n) and a map <frd) -» F *  such that

(X.ZdW ) * o.

Therefore

^ i)s& (? » (i)-n
VJ*D

Since D contains at most one root of each column and at most one root o f each row we 

conclude that

X  (J-i-DSlKn)
t > 0J*D
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and the corollary follows. ♦

The proof of theorem 2.2.1 will be complete with the following:

Proposition 2.2.16. Let D and D ' be basic subsets o f <&(n) and let <p:D -> F q* and 

<p’:D'~* F  q* be maps. Then i f  and only if  D -D ’ and <p=<p'.

Proof. We proceed by induction on n. If n=2 then all irreducible characters of U2(q) are 

linear and the result is obvious. Hence let n>2 and assume that the result is proved for 

n-1. We consider UnA(q) as a subgroup of Un(q). For each (ij)e &(n) such that j<n we 

denote by (¡¡fa) the (if)-th elementary character of U ^fq )  associated with Cfe F q and for 

each basic subset D c[(iJ)e <tKn); 1 <.i<j<.n-1} and any map qr.D —> F q* we denote by 

£o(<p) the character of U ^ fq )  which is the product of the elementary characters CifW J)) 

for (ij)*D. Then

&(?»=&(?>)*

is the lifting of fo(flj) from U ^ fq )  to Un(K).

Now let D J)',tp  and <p' be as given in the proposition and suppose that 

Let (ij)eD  be smallest root of D. If j<n then 

Dc[(iJ); l£i<j£n-l).

We claim that D ‘̂ [(iJ)\ 1£j</£ji- 1 }. For suppose that (k,n)mD' for some km { }  

and let x  be an irreducible character of Un(q) such that

(x £ d(<P))*0 and

Let OcUn(K)* be the F-stable i/B(AT)-orbit which corresponds to %• Then

OtO[)(<p)nOD̂ <pf).

LetfmO. Then

/« 3)

where P-<p’(k,n), D ‘$ * ti\{ (k,n)} and <p'0 is the restriction of <p' to D ’q. Since 0^,(0) is 

the i/*(Af)-orbit of /fc*** and OD-Jiç’0) is (/„(AO-invariant, there exists xmUH(K) such that

t



for some f a O D-(<p'<p. Since ©D*#(9 o)cU^.i(ff)* we have

/o« «„-!(*)*.

On the other hand 0 D(q>)cUn_l(,K)m. <1̂  Od(^ ) <•= o b W n

x 'f*  Un.i(K)*.

It follows that /3=0 and this contradiction implies that

D ’z{(ijy,lZ i< jZn-l}

as required. Therefore we have

£d(<P)=Cd(<P)* and ÇD<(p’)=ÇD<<p')*.

It follows that

(Cd(?,)*Îd '(î ,'))î/^1(î )=(<5o(ç>)iI d '(9,'))î/<((7)’é:0- 

By induction we conclude that

( D . v W . i p r

Now suppose that j - n  (hence (i,n)*D). By the above argument we conclude that 

(k,n)*D‘ for some ke { 1 . .  j i - 1}. Moreover let

f tO D(<p)r>0D<<p').

TTien j .  ,»  ÜM (K ) (o  “'«.n ~*u< fo

where a=<p(i,n), p=<p(k,n) and f 0,g0» u„.i(K)*. It follows that i=*k and that 

Therefore

£d(?»“ 5«(®)£d0(?*>> and | 0< 9 > £ « (a )fo '0(?o) 

where D0-D \[  ( iji) }, Z)'0«D' \{ (i,n) }, <pg is the restriction of 9 to D0 and 9'0 is the 

restriction of 9'  to D'q. We have

(& (^ ) .4 o < ^ )K io #(9B ).lii(a)ii»(a)fe'0(^'o))

where ^ ( a )  is the character o f UH(q) defined by

fiTSfoO-CtaiaOC*'1)

for all x* Un(q). We claim that

£ Ô * K m (-a )-
n

We recall that (by definition)
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§«(a>=^»(a)y*(,)
where Xjia) is the character of UJiq) (a>=(/i-l...i+1 OeS^) defined by

AiM(a)U)=vr0(ca:in)

for all x=(xrs)e UJq). Since 

we must prove that
Xin(a)=Xin(-a).

In fact let x=(x„)e UJiq). Then

4 (a )(r)= A ill(o)(x-1) = f t ( a ( x 1) J .

Sincex ii+i=...=xin.i=0 we have (x'1)^-*;«- Therefore

Xin(<x)ix)=YQ((-a)xin)=Xin(-a)ix).

Our claim follows. Hence

(‘5D(<P)^o<<!’'))=('5o0(<Pb).^(-a)<5«(a)<*D-o(<Po)).

By lemma 2.2.9, ^¿,(a)&„(-a) has the following components:

(a) 1 £/.(<?>:

(b) ^,03) for all ae {i+1,...^i-l} and all pe Fq*\

(c) Su,(D for all be {i+1..... n-1} and all *  F,*;

(d) for all a,be {i+1.....n-1} and all A *  F,*.

Since Doc {(ij); 1 <i<j£n-1} we must have

(I90#(9*o)*ian(^)l5o-O(9, o))“ 0 

for all ae {i+l,...,n-l} and all /3c Ff*. Also

(lo 0(^).^05)fo(tf& >'0(Po))=0

for all a j*  {i+1..... n-1} and all A)* F,*.

Now let be {i+1 ,... , n - l } and let y*F q*. Suppose that (/,b)«D '0 for all 

]• {l , . . . ,b - l}. Then the subset D'0u{(i,b)} of 4>(n) is basic (because D'0'~>{(i,/i)} is 

basic). Moreover

(otherwise (i,b)cD0 and this is impossible because Dqu {(i,n)} is basic). By induction we



83

conclude tW»t

(5o0W .& fc(tf& r0(Po))=0-

On the other hand suppose that there exists j* {l,. .. ,h - l} with ijJ))*D‘çy If i<j then 

(by lemma 2.2.9)
b-1

tib(y>tjb(v)=Sib(Y)+ Z Z ̂  SibCflSjkfM)
km j+ liuF *

where v-<p'(jj?). Therefore
¿-i

l«.(î)Îo'0(9>o)=4a,OÎ$D”0(̂ "o)+ Z Z £»(tf4;y*(M)&-0(P'o)
k-j+l f u F *

where D"0=D'0\{(/,6)} and q>“0 is the restriction of <p'0 to D "0. Since D"0«j{(i^>)} is 

basic we have

(SD0«P o).U rtD -0«P“o))=0

(by induction because (i,b)tD). On the other hand let fce } and let /ie Fq*. By

proposition 2.2.13 there exists a set of basic subsets of <D(n) such that
i

S ib M S jk M S o "0(9>"o)=Z <?o,(%)Sm 1
where for each se { l,...,r}  <ps:Ds~* F q* is a map. For each se { l , . . . , t}  the set D , is 

obtained after a finite number of applications of lemma 2.2.8. At each stage we obtain a 

decomposition of the character Çu>(.TfrÇjiUi)ÇD~tty'o) ®s a sum of products of the form

5*0) EL Çri(a rt)

where A is a subset o f <®(«) such that each root (rj)*A  is in the same row of some root of 

D 'o and a r,m F q+. Since D ‘0 does not contain roots of the i-th row, we conclude that 

for all s t  {1,...,/}. It follows that

for all m  {1,...^}. Therefore

(ÎD0(%).ÎiaO)Î>*(M)Îo'0(9”o))-0- 

Now suppose thaty<i. Then (by lemma 2.2.8)

Çib(Y)4jb(v)-Çjb(v)+  S Z S jb M S ik M
;
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where v=<p'(J,b). Therefore in this case
fr-i

îb(y)^D-a(<P'o)-^D-a((P'o)+ X  X° ■ *««+1 Jia "

Now we repeat either the argument of the previous paragraph or of this paragraph to 

study the scalar products

(£o0(««d).&*(M)$d'0(?>o))

for each ke { i+ l,...,6 -l} and each ¡¿e Fq*. After a finite number o f steps we eventually 

obtain

where mb is a positive integer which depends of b but not of y.

Finally we conclude that

(2.2.3) (§D(^),lo<i>'))=m(|0o(% ),|0 .0(fl»o))

where m is a positive integer (in fact m= 1 +(<?-1 )(m1+1+... +mH.!)). Since

(SdW ’SdW ) * 0,

we deduce that

($d0(<Po)’$d-0W o>)*0

and so (by induction)

(Dq,<Pq)=(D q, <p'o).

The result follows. ♦

The proof of theorem 2.2.1 is now complete. The existence of the pair (D,q>) is 

given by corollary 2.2.14 and its unicity by the previous proposition.

The last result of this section is a corollary of the proof of the previous proposition. 

It is concerned with the scalar product (&)(?),¿o(?)) where D  is a basic subset of 9(n) 

and qr.D -» F q* is a map. This value can be expressed as a power of q where the 

exponent depends only on the set D. Firstly we give some definitions.

t
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For each root 0V> <P we define the set

(2.2.4) 

where

S,e\iJ)-{(kJ);i< k< i) and S<'\iJ)={(Ucy,i<Jc<j).

The elements of S(iJ) are called the singular roots. It is clear that the

elementary £•,{<*) of UH(q) associated with a» Fq* has degree

«i ( a K l W WMW>

where

(2.2.5) s(iJ)=\S(ij)\ and KiJ)=\S(c\iJ)\=\S(r\iJ )\.

Now let D be a basic subset of Q(n). Then we define the set

(2.2.6) S(D)= U  S (ij)
Hjy>D

where

S(C\D)=  U  SFHfJ) and & '\D)=  U  & r\iJ ) .
(*V)«o (¿v>D

A root (a,b)€ <Kjn) is called a D-singuiar root if (aJ>)cS(D). We have 

where

(2.2.7) j(D)=LS(D)l and /(D)=l5<c>(£>)l=lS<r>(Z>)l.

Finally a root (a,b)t <P(n) is called a D-regular root if ([a,b)eS(D). We denote by 

R{D) the set of all D-regular roots, i.e.

(2.2.8) R(D)=<IKn)\S(D).

Therefore <D(n) is the disjoint union

-  .  <®(/t)-5(£»)uR(0).

Moreover

DcR(D).

Corollary 2.2.17. Let D be a basic subset o f <b{n) and let qr.D -* F q*. Then

I
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Proof. We proceed by induction on n. The result is clear if n=2. So we assume that n>2 

and that the result is proved forn-1. If {(ij)\ lSi</Sn-l} then

& (*)-& (*)•

( here the notation is as before). Therefore

and the result follows by induction. On the other hand, assume that (i,n)eD for some 

<e {1,...,«-1} and let D0=ZA{(j»}. Then (by (2.2.3))

( & ( ? ) .& ( P ) W & 0(#o).&0(fl>))

where

m= 1+X X
brnBynF/

B= { b; i<b<n, (i,b)e S<r)(itn)nS<c>(£>)} 

and for each b*B and each yk Fq*

(SD0(.<Po)’$u>M$D0(<Po))=nbM($D0(<Pb ) . ^ ( « ) ) .

Since mb(D is independent of y* Fq* we have

m= 1+ X  (<f-l)mb 
bmB

where mb=mb(tf for all Fq*. Let 

where b \< .. .<b,. We claim that

mb -<f'x

for all j « {1,...,/}. In fact we see from the previous proof that 

so

On the other hand if s« [2,...,/} we get (using the argument of the previous proof) 

£d0W M £ d0W » £ d0(% ))+^- X  ({d0(9 d)>{» (v)(o (9 d)).I ■ p»l a /  * • r  «
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Hence

so

£o0(?*>))-(l+Ìj («7-1 )«6,)(&>0(* d).£d0(*[>))

^ (< 7 -1mb = l+ 2j(q -l)m b .
'  rml r

By induction we have mb =<f'x for all re {l,...,r-l} . Therefore

mb = 1+& (q -D < T
r » l

1-^-1

as required.

It follows that

Now

and (by induction) 

Therefore

m =l+S (<7-l)<7, '1=<7i.
5 * 1

f=ISw (/,n)nS<<:)(D )l 

(&„(*>>•&.(*b))=i2/(0°>‘,<0o).

because l(D)=l(Dri)+l(itn) and (Do)+j(i»-f. The proof is complete.

;
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2.3. The irreducible charac ters of Um(q) for n £ 5

Let D be a basic subset o f 0(/t) and let qrD -* F  * be a map. Then an irreducible 

character % of Un(q) such that (£,&>(?>))*0 will be referred to as an irreducible character 

of type D. The type D of the irreducible character % may be represented by a “matrix” with 

entries (ij)  (1 £ij£n )  which are occupied by the symbols •  or o as follows: if 

OV)« <b(n) then the (ij)-th  entry is occupied by •; if (iJ)eD  then the (ij)-th entry is 

occupied by ■ ; if (iJ)*S(D) then the (i,/)-th entry is occupied by •; finally if (ij)eR(D)

then the 0V)-th entry is occupied by o. For example if n=6 then the irreducible characters 

of U6(?) of maximal degree have types
' • •  •  •  • ■  > ’ . •  •  • • ■  \

• •  • ■ •
• or . . . 0 • •

• • . . . . • •

V............. • J 1 • • • •  )

In this section we describe the irreducible characters of Un(q) for nSS.

Example 2.3.1. Let n*2. Then all irreducible characters of U2(q) are linear. In fact 

U2(q) is isomorphic to the additive group Fq+, so the irreducible characters of U2(q) are 

in one-to-one correspondence with the elements of F q. For each eta Fq the irreducible 

character associated with a  is the (1 ̂ -elementary character <J12(a) - we recall that §12(0) 

is the unit character o f U2(q).

Example 2 3 £ .  We determine the irreducible characters of the group U2(q).

By lemma 2.2.2 U3(q)  has q2 linear characters which are in one-to-one 

correspondence with pairs of elements of F q. For a ,paF q the linear character 

which corresponds to (a./9) is {aioOfeji/J).

On the other hand for each non-zero element am F q the (l,3)-th  elementary
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character <J13(a) is irreducible and has degree q. Therefore U2(q) has q-1 irreduducible

characters of degree q. These characters have type
f  • •  ■ '

/  j

Example 23.3. Here we consider the irreducible characters of the group UA(q).

By lemma 2.2.2 UA(q)  has q3 linear characters, namely the products 

<5i2(a )<523($'»34(tf where <x,p,yare arbitrary elements of Fq.

Now consider the irreducible characters of degree q. The following types

f o 'N
o
o

f O o O
• •  ■

o 'N 
o and

o 0 >\

v  • • • A 1 • • • y V1 • • ' j  • j

give (?-1 )+(<?-1 )+{q-1 )2Hq-1 )2=2<7(<7-1) irreducible characters of degree q. On the other 

hand consider the type
f \

V  * • •

By lemma 2.2.6 the character F q*) has q distinct irreducible

components of degree q. Therefore we obtain q(q-1)2 irreducible characters of degree q 

of type D={(1,3),(2,4)}.

Finally UA(q) has q(q-1) irreducible characters of maximal degree q2. These 

characters have one of the types

( .  .  . ■ > f  . •  •  ■ \
• • ■ • or • • 0 •
. . • • •

v -  • • • > • )

Example 2.3.4. We now consider the irreducible characters of U2(q).

By lemma 2.2.2 U2(q) has q* linear characters, namely the characters where
11

D is a subset of 4= {(1,2),(2,3),(3,4),(4,5)} and <frH -* F q* is a map.
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U5(q) has ‘hep’iq-l) distinct irreducible characters of degree q corresponding to the 

following types

■ o o \  if

\

Q  o o  o \

>

and

□  o o o
□  o o

V y

where the symbol □  in an entry (ij) means that that entry may be occupied either by 

or by o.

On the other hand consider the irreducible characters of type 

f  • •  ■ o o ^

V y
Let a,pe F *  be arbitrary. By lemma 2.2.6 the character ^13(a)^24(/3) has q distinct 

irreducible components of degree q. Thus for any ye Fq the character 

has q  distinct irreducible components (because £45(7) is linear). Therefore we obtain 

f y q - 1)2 distinct irreducible characters of the given type. All these characters have degree

9-
Similarly U$(q) have (fiq -1)2 irreducible characters of degree q of type 

/  • □  o o o

V
So far we have obtained 3q2(q-1 )+2q1(q- 1 )2^ { q - 1 )(2<7+ 1) irreducible characters 

of degree q. We will see that these are all the irreducible characters of degree q.

Now we consider the irreducible characters of degree q2. The types

• • ■ 0

0□ 0 0 \
. . □ •  0 • • ■
• . •  0 and • • □ •
• • • Q . • •

v ............................ ) ^  • • • • )
give 2<72(<jr-l) irreducible characters of degree q2. Using lemma 2.2.6 we conclude that
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t

the types
r

\

r
and

•  •  ■  o ^
□ •  o

•  ■

y v ........y
determine Icp'iq-lj1 irreducible characters of degree q2. On the other hand we obtain 

another set consisting of (q-1)2 irreducible characters of degree q2 if we consider the type
f  • •  ■  o o \

v....... y
Finally let D={ (1,3),(2,4),(3,5)} - this type corresponds to the diagram

f  • •  ■  o o \

V y
We claim that for each map <p:D -*K *  the character €o(?) has a unique irreducible 

component which occurs with multiplicity q. In fact let a,/9,ye F q* and consider the 

element

/=ae13*+/3e24*+ie3S*« us(K)*.

The matrix M (f) which represents the bilinear form B f with respect to the basis 

(ei2.«23»*34>«4sM « 0; lSi<y^5,y-i^2) has the form

* « - ( 3 8 )

where
< 0 a  0 0 \  

A - a  0 p  0 
0 -p  0 y '

^ 0  0 -y 0  j

It is clear that this matrix is non-singular. Thus

rankM(J)~4

and (by (1.3.3))
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dimO(f)=4

where Oif) is the U^K)-orbit of/. It follows that

where Xo(f) is the irreducible character of U5(q) which corresponds to the orbit 0(f). Now 

we consider the irreducible character Xo of which corresponds to the t/4(A0-orbit 

of the element

oe13*+/3e24*« W * -
By theorem 1.3.10 is a component of the restriction Xujq) of X *° U*(<!)• We claim that

X~Xo*t3s(ti-
Since the U s (^)-orbit which corresponds to Xo* contains the element 

ae13*+/3̂ 24*« u5(A0* we conclude that x  is a component of Xo*Ç3s(ÏÏ (by corollary

1.3.11). On the other hand the character Xo* >s an irreducible component of 

l i3(a)^24(^)- Thus it has degree q. Since §3s())(l)=ÿ we get

a r tW -C fo  *Î3sW )a)

and the claim follows. Finally we have

Oi.5l3(«)524(A5350))=CCo*.$13(«)524(j3)53sO)^50))- 
Since $35())=§«(-)) (see the proof of proposition 2.2.16) we may use lemma 2.2.9 to

obtain the decomposition

£35(tf'S35(-tf=li/5(,)+ X  § 3 4 ( v ) +  X  $ 4 s 0 i ) +  X  X  ¿ m (  V ) & s ( M ) -  

Since is a component of ¿i3(a)£24(£) we have

(*oMi3(«)É24(0)É45(H))” O

for all /r« F ?*. On the other hand (by lemma 2.2.8)

^2«(^)Î34( v)mÇu(P)

for all v« Fq*. It follows that

CC.Îl3(«)Î2403)4330Î)“ 9(2;o*.Îl3(«)Î24(/3))-<7

and so

ii3(«)&4(£)43j(tf-<M:
as required. Therefore Us(q) has (q-1)3 irreducible characters of type
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f o \
•  ■ o

•  ■

v........y
All these characters have degree q1.

Now we consider the irreducible characters of (/¡(q) of degree q3. On one hand the

set of all irreducible characters of type

r . .  . \
•  •  ■  

•  •

v .................. j

contains q(q-1)2 elements. All these characters have degree q3. On the other hand there 

are q*(q-1) irreducible characters of type

f .  .  .  .  ■  A
□  o •

. . Q •
•

V ........y
These characters have also degree q3.

Finally (by corollary 2.2.13) U5(q) has (?-l)2 irreducible characters of maximal 

degree q4. They are of type

f  • •  •  •  ■  'N
• •  ■ •

•  •

V y
Now it is Sasy to conclude (calculating the sum of the squares of the character 

degrees) that we have obtained all the irreducible characters of U5(q).

>
t
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CHAPTER 3

BASIC SUMS OF ORBITS

In this chapter we generalize the results of chapter 2. In fact we will define for each 

basic subset D of CH.n) and each map <p:D -> K* an irreducible subvariety VD(<p) of 

Un(K)* which will turn out to be the sum 0 D(<p) of all the elementary i/„(iQ-orbits 

Od<p(iJ)) for (ij)*D. We will also prove that the family consisting of all these varieties 

defines a partition of Un{K)*. This is the purpose of section 3.1.

In section 3.2 we determine the dimensioned« variety VD(<p). By definition the 

dimension of an irreducible algebraic variety is the transcendence degree over K  o f its 

field of rational functions, i.e. the Held of fractions of the ring of polynomial functions 

defined on the given variety. Since VD(q>) is defined by certain polynomial functions 

which are parametrized by the D-regular roots the dimension of VD((p) is related to the 

cardinality s(D) of the set S(D) consisting of all D-singular roots. In fact we will prove 

that the dimension of VD((p) is exactly s(D). Then (using this knowledge of dimensions) 

we will be able to decide about the transitivity of the t/„(A0-action on VD(tp). This will be 

done in section 3.3 where we will give a necessary and sufficient condition for VD(<p) to 

be a single f/„(K>orbit. This condition is purely combinatorial and depends on the

existence of some special chains of roots in D. If K  has characteristic pSn, we will 

translate these results to decide about the irreducibility of the character of the finite 

group Un(q) (cf. chapter 2).

i)

t
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3.1. Sums of elem entary orbits

Throughout this section K  will denote an algebraically closed field either of 

characteristic zero or of prime characteristic p i n. We will consider the sum

(3.1.1) 0 D(<p)= X  OfAtpVJ))

where D is a basic subset of <t>(n) and -»Af*=K\{0} is a map (cf. (2.2.2)). Since 

0 D(q>) is an algebraic subvariety of un(K)*, there should exist polynomial functions 

such that

0 D«p)= [fm Un(K)*; P ff)= 0,1 Stem }.

Our purpose is to identify these functions. We will see that m is the cardinality of the set 

R(D) consisting of all ¿7-rcgular roots (*). In fact we will define a polynomial function

$ M h(K)*-+K

for each ¿7-regular root (ij)*R(D) C2).

Let (ij)« <P(n) be any root. We say that a 

root (rj)e  <P(n) is dominated by (ij)  if r<i and 

j<s. Therefore the roots which are dominated 

by (ij) lie in the dotted region of the adjacent 

picture.

Now let ¿7 be a basic subset of <Hn) and let (ij)* <t>(n). Then we denote by D(ij) the 

subset of dtyi) consisting of all roots in D which are dominated by (IJ), Le.

(3.1.2) D(ij)m {(rj)*  o  :lZr<i,j<siZn).

It is clear that D(ij) is a basic subset of $(n). Let

‘ We recall that a root (ij). <h(") is called D-iegular if (iJk).D (jn&fn) and (kj).D (lsfcsi-l).
2 In section 3.2, we will prove that these functions are algebraically independent. Then it will follow that 

has dimension dim u,(K)*-r(P)ms(D) where KDHA(Z>)I and s(D) is the cardinality of the set of all 
¿>-singular roots. This is the natural conjecture.
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D U j y - i d l J l ) ........O 'n/r)}

and suppose that j\<...< jr  Let aeSr be the permutation such that ig(i)<io(2) < - <ia(ty

for aU fe  Un(K)*.

Our first result describes the (ij)-th elementary i/B(AT)-orbit associated Ov{a) with a 

non-zero element oteK.

Lemma 3.1.1. L et (ij)e  <t>(n) and let a s  K*. Then O^ioc) consistsof all elements 

fe  Un(K )*  which satisfy the equations

for all (,aJb)eR(D) (>).

Proof. Let V be the subset of Un(K)* consisting of all matrices which satisfy (3.1.5). 

We claim that V e O ^ a ) .  Let f e V  and consider the element ae»*« 0  »(a). Let 

x“ Qcrs)eUn(K) be the element defined by

1 We note that if (aj>) dominates (ij) then MSa<bSj-l, so the roots (aj) and (ijb) are O-singular.

Then we define the function A?: Un(K)* -»K by

i Mi*,,/) Mi*,y,) •" Mi*,,/,) \

(3.1.3)

v M#> My,) ... M*)

a  if  (a,b)=(ij)
.0 if (a,b)*(ij)

for all (aJ?)eR(iJ). In particular fe O ^ a )  if and only if

a if(a,b)=(ij)

(3.1.5) M j*)=1 “  Vtea/iMh) i f  (ajb) dominates i f  J)

.0 otherwise

-«"'/(«ir) i<r<j and s - j

(3.1.6)
a 'lfle ,j) if r» i and i<s<j

p“

<0 otherwise
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Then

(j:(ceeÿ*))(ea^= (oei>*)Cj:ea^ ‘l)=a(Jceafrr '1),y=oai<1(^'1)6> 

for all (aj>)e <®(n). This value is non-zero only if i£a<b£j. If we have

Oc(aeij*))(eab)=oc=f{eij).

If i<Jtxj then

(x (a e ij*))(eib)=a(x'l)bj=-axbj= aa-lf(eit>) =/{£&).

On the other hand

(x (aeij*))(eaj)=oocia=aoL' 1f ( e ^ ) = / fe«P  

whenever i<a<j. Finally suppose that (a,b)e <D(n) dominates (ij). Then

U (aeij*))(eab)-oocJx\~ci* i:1f(e«i) oc 'f le ^

It follows that

f=x-{aeij f)t  O y<a).

Since fe  Vis arbitrary we conclude

Vc 0 , /a ) .

Now the map defined by

W )=(rt*«+i).. • • ■ ■ A tj-ij))

for all fe V, is an isomorphism of algebraic varieties. Therefore V  is an irreducible variety 

of dimension 2(/-i-1). Since d im O ^a ^X j- i-1), we conclude that

V-O ijia).

The lemma follows. ♦

Proposition 3.1.2. Let D be a basic subset o f <&(n) and let q>:D -*K* be a map. Let 

/ • 0 D(<p) and let (iJ)eR(D). Then

(3.1.7)
0

i* r
(-1 Ysgn(.<f)<p(iJ) F I <P(U,) 

!■!

if( ij)* D

M J ) 'D

where O(iJ)—{(ij J i)..... (lrJr) ) j \ <  -<Jn and & S , is such that ia l̂)<...<ia(ry

Proof. LetD'-EbD(iJ) and let <p‘be the restriction of ç»toD'. Then

I *
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0 D(<p)=OD<<p')+ £  O ij(a ,)
i- i  y*

where (l£r£r). Therefore the element feOD(<p) can be written in the form

/ = / + £ / '>

where/e 0 Diqi) and/*5*«Otj ( a s) for all se {l,...,r} . By the previous lemma we have
r r

f leab)= f(eab) + 'L f , \ e ab)=f(eab)+ 1  a ; lf ’\ e ajSm 1 i»l * ^

for all (a,A)e <P(n). Now suppose that (a,b)e <D(n) is dominated by (ij). Then

/V o * ) = °  a n d  f i eab)=uavb 

where ua is the row vector of length r

••• ar Y r\ eaj))

and vb is the column vector of length r

On the other hand we have

v6=

V J

Therefore

0

<f*ij)=a

if (iJ)*D 

if UJ)*D

uv

a+uv

if (fJUD  

if (iJ)mD

where u is the row vector of length r
~ -  u - C a f 1/ 1̂ , ) ... a,-l/r i(e Ur))

and v is the column vector of length r

> ( « , /

v-

t
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Now suppose that (iJ)*D. Let A be the square matrix of size r

i Ui\

\ Ui'J

and let fl be the square matrix of size r

-  v0 -

Then

d?(f)=det f /»(o'1) 0 '
0 1

rAv A B j  
[u v  uB )

*sgn(<f)det(A’B')

where /»(o'1) is the permutation matrix (of order r) associated with <fltS r (hence the 

(a,b)-th entry of /»(o'1) is 8aa-\b) (lSa,bSr)), A' is the matrix of type (r+l)xr

and B' is the matrix of type rx(r+l)

B '- ( v B ) .

Since A' and B' have rank less or equal than r, we deduce that 

rankiA'B^im in  {rankA'.rankB’} Sr.

It follows that

d e r(A 'f l>  0

and so

°-

On the other hand suppose that (ij)*D. In this case

where / ’(o '1), A' and B' are as above. Since

\ u v  uB )
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(by the argument above) we conclude that

¿/¡¡(f)=sgn(o)det^ ^  'j*(-l)rsgn(o)adet(AB)=(-l)rsgn (o)adetA detB . 

Consider the matrix B. For r,r* { the (r,i)-th entry of B  is

S in ce /J)e O ij(as), we have

/ s\ e itb)=0

for all be t/,+1 ,...^}  (by the previous lemma). Therefore

/ ^ « y P - 0

whenever s c  (we recall that It follows that B is lower-triangular. Moreover the

diagonal entries of B are
bss=fs\ e i j > a s

for all se {l,...,r} . Hence
r

d e tB =  I I  «i-

Finally we consider the matrix A. For s,te {l,...,r} the (r,r)-th entry of A is 

Therefore the (r^)-th entry of P(<Xl)AP(<f) is 

Now (by the previous lemma) 

for all a* {1 ,., ., /^ j- l} and

for all te {1... .,/•}_ Since io(i)<*. -<ia(r)>we conclude that the j-th row o f P(<fl)AP(&) is

... ■ w ' / oW>><«w«.„>10 -  »)■
Therefore

detA-det(P«r')AP(ct))^\

and the result follows. +

;
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If D is a basic subset of <D(n) and <p:D -*K* is a map we denote by VD(<p) the 

subvariety of Un(K)* consisting of all /«  Un(K)* which satisfy the equations (3.1.7) for 

all (iJ)eR(D). By the previous proposition we have

O o d D c W ).

Our next result asserts that this inclusion is in fact an equality.

Proposition 3.1.3. Let D be a basic subset o f <D(n), let <p:D -*K* be a map and let

feVD(<p). ThenfeOD(<p), hence VD(<p)=0D(<p).

Proof. We proceed by induction on iDl. If lDl=l the result folows by lemma 3.1.1.

Thus we suppose that D contains at least two elements and that the result is proved for all 

basic subsets D0 of <tK.n) such that IZ)0l<lDl.

LetfeV D(<p) be arbitrary and let (iJ)eD be such that l<j for all (ij)} . We

put oc=<p(ij) and we define/e Un(K)* by

a 'A e J K e t i
L0

if a - i  and i<b<j 
if b - j  and i<a<j

if i<a<b<j 
otherwise

for all (af>)s <D(n). Then

f* O ifa )

and

f- f+ fo

for some/0« Un(K)*. We claim that

(3.1.8) .  faVoJitpo)

where D0«D-{(i\/)} and ^  is the restriction of <p to Dq. For let (aJ>)mR(Dd). If (ajb) does

not dominate (ij) then (by definition)
if a+i or b+j 

if ami or b - j

• we note that
> i

;
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^ o W b i « « ) - 0 and ^ t°(/b)=0

because / 0(«;t)=0 for all ¿a {/+1,...,«}. Since /a  V0 ($>) we conclude that the equations

(3.1.7) (for the pair (Do>9b)) hold in this case.

Now suppose that (,a,b) dominates (ij) (i.e. i<a<Ixf). Let

D(aJ))= [ (fiJ 0.....(W ,) } J l < -  <Jn
and let oeSr be the permutation such that « o ( l ) < - T h e n  (iJM W r) (by choice of

0V)) and

¿&,(f)=sgn{x<f)det “ *  j

where Te5r is the permutation t*=(l 2 . . .  r) (we note that />(<r1)/>(T'1)=/>((TO)'1)), u is the 

row vector (of length r)

«“ ( / ( « » ) / f y , )  ■ f l eijr.l))> 

v is the column vector (of length r)

V*ew > y

and A is the rxr matrix

Since

we conclude that

-  a w N

 ̂flfiab) A eaJt ) ... ^

“ Vi 1 0>
r u a |

v J \  a'*v / y A-cClvu 0 J

( j . . .  : h

Now let A -c fxvu~(aJ)Hr ̂  Then

lYsgn(T&)adet(A~cClvu ).

i I
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a„=*<

■A^ab)-« ' «*)=/o(«<2t>)

if r=l and lS j^ r-1  

if  s - r  and 2£ /£ r 

if  l irS r-1  and 2£/£r 

if (j,r)=(r,l)

Since

D0(a,b)= {(ijJ i) ......(ir-lJr-O )

we conclude that
det(A-a'lvu)=sgn( a^A DJ ( fQ)

where o<)eSM is such that ia^^<...<ig^r.1y Hence

^ ,( /)= (- l) r asgn(za) sgn(a0) 4^(/b).

Now suppose that (a,6)«£o- Then (aJ>)*D and
¿&(/)=0

(by equation ( 3.1.7) So
^ (/o )= 0 -

On the other hand suppose that (aJ>)eD0. Then (a,b)eD and (by ' (3.1.7))
r

d^(f)=(-l)rsg n (o )^ a ^ )I l« ,J»1
where as=<piisJs) ( l£ iS r-l)  and ar-OL Since r^n(T)=(-l)r‘1 and sgn(T&)=sgn(z)sgn(a) 

we conclude that

^ ( f o M - i r ' s g n & o W a M n a , .
j-t

This completes the proof of (3.1.8).

Finally (by induction) we have

/o»°D0(?b)-

Hence
f - f+ fa  Oij{a)+0Do(<p0) -0 D(<p)

and the proof of the proposition is complete. ♦

i $

Our next result generalizes the corollary 2.2.14. It asserts that UH(K)* is the union
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of the subvarieties VD(<p) for all basic subsets D of <D(n) and all maps qrD -*K*.

Proposition 3.I.H. Let /e  u n(K)*. Then there exists a basic subset D o f <P(n) and a 

map <frD -+K* such thatfsVD(ç>).

Proof. In order to construct the set D and the map <p we proceed by recursion on the set 

of all roots <b(n) endowed with the total order < defined in the proof of proposition

Iff=0 then we let D be the empty set On the other hand suppose f*Q. Then the set

for all (ij)tR(D ^) such that (ij)£t,iiJj). Hence the proof is complete if/ •  On the

other hand if /»  VDj(9>2) we use the functions AD.hU n(K )m -* K  ,  (iJ)mR(D 2),

2.2.13.

* 1« {«,/>*»/(*,>)*>}

* 2 - { ( ^ ^ ( D i); 0V)X«Wi) and

K h J i*
I if) if V iJ i)  dominates

Al)  ( f t - f ie j j )  if (iiJ i)  does not dominate (i\J \)

It is clear that D2 is a basic subset of <tK.n) and that

I
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(/,/■)>(i2^2). to define a new basic subset D3 of <P(n) which includes D2 and a new map 

(foiD3->K* whose restriction to D 2 is q>2-

In general let r>2 and suppose that we have constructed a basic subset 

0*1 • * »O'r-1 Jr-1) ) C ^ (s ) i Jr-l**' • *^/l*

and a map <pr.\.D r.x -» K* such that f  satisfies the equation (3.1.7) (for the pair 

(Dr-i'Vr-d) whenever (ij)eR(Dr.j) is such that (iJ)£(ir-iJr-i)- Then eitherfe V D (̂,<pr.{) 

(and the proof is complete) or the set

/?,= {(/,/)«*(£>,_,); ( / J X W m ) and A°rl(f)*0}

is non-empty. We assume that this situation happens and we let (irJr) be the first element 

of Rr  Then j r<jr.\ so D=Dr_xu{(irj r)} is a basic set of roots. We define <prj ) r -*K* by

?r-l(W j)
t D

(-l)'sgn(a) I l  <Pdi J , r XA i^ ( f )
ami

l^sSr-1

if  s=r

where £>,(/„/,)= {( \ J Sl)......} • J*x<- ••</,, and cfe 5, is such that » ^ c . . .<i,( '•KO
Now we consider the variety VD (<pr). Since O,.i0r»/r)“ {(i^ j . ) , . . . ,(is,Jt) } we

have
AD'(f)=AD'-'(f)‘j  y

for all (iJ)eR(Dr) such that (/J)<0Wr)- If.’/« Vp/fV) * e proof is complete. On the other 

hand iff*V D (<pr) we continue the construction until we eventually get a basic »subset 

£>=D, of <P(n) and a map <p=<p,.D —»IT* such that/ e V0(<p). ♦

Now we generalize proposition 2.2.16.

Proposition 3.1.5. Ler D and D ' be basic subsets o f <t>(n) and let <p:D -* AT* and 

<p'D‘-*K* be maps. Then VD( <p)r\VDi  q>r)*<d if  and only if D=D' and <p=<p'.

t

Proof. Suppose that V,D(p)nV'o < p V 0  and let/a VD(<p)c\VD{<fT). Let (IJ) be the smallest 
root in D  (the order in $ ( n )  is the same as in the previous proof). Then
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and for 111 (a.*)« ^ 0 0  such * a t  (a,b)<(ij). It

follows that

;

¿£(/)=4L(/>

for all (a,b)t <P(n) such that (a,b)£(ij). Hence (ij)  is the smallest element in D ' and 

<fKij)=<pVJ)-

Now we proceed by induction on \D\. Suppose that lDl=l and that \D‘\z2. Let 

(ia,b)eD' be the smallest root in D' such that (aj>)>(ij) (this root exists because (ij) is the 

smallest root in D '). Since D'zR(D') (a,b) is a D'-regular root. If (ajb) does not dominate 

( i j )  then

d^(/)=y(ea6)=4^i)(/)=0

so <p'(a,b)=0, a contradiction. Therefore (a,b) dominates (ij). In this case we have

/
& (f)=det

Aiab)
A'ij)

Ataj)

By proposition 3.1.2 we conclude that (a,b)*D’, another contradiction. It follows that 

ID'1=1 and so (D,<p)=(D',<p').

Now suppose that lDl>l and let D0= D -{(ij)}. Since VD((p)=0D(<p), there exist 

feO ijia )  and/o«Do0(9b) such that

f-f+fio
(here &*<p(ij) and <Po is the restriction of <pto Dq). On the other hand since 

/« VD<9>')=00<(p')” 0 1y(a)+0D-0(9)o)

(where D'q~D'- {( i j ) } and <p'0 is the restriction of <f>' to D '0) there exists xmU„(K) such 

tint

x f-a e f+ x - fo .

Moreover
x fa O D(i(<fo)

because 0 Do(fla) is i/B(A>invariant. Since (a,n)«D0 for all <m {l t. ...n -l} we deduce that

*/o« «„.!(*)*•
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On the other hand since 0 D{qf) is (/„(AO-invariant we have
xf= aeij*+xfQeOD-(<p')=Oij{a)+OD-0(<p,0).

Since x f 0e un_i(K)* it follows that

x-foe OD-o(<p'0).

Hence
/ 0e OD-0(<p'Q)

because OD-0(<p'0) is (/„(AO-invariant. This proves that

o)*0 -

By proposition 3.1.3 we deduce that
VD0(<Po)f'VDo(.<p'0y*e>

and so (by induction) (D0,<p0)=(D'0,<p’0). Therefore (D,q>)=(D',<pr) as required. ♦

We have just finished the proof of the following:

Theorem 3.1.6. Let D be a basic subset o f d>(n) and let <p:D -> K* be a map. Then 

0 D(<p)=VD(<p) where VD(<p) is the algebraic variety consisting o f allfe Un(K)* satisfying 

the equations (3.1.7) for all (iJ)eR(D). Moreover we have a decomposition o f Un(K)* 

into disjoint subvarieties
Un(K)*=KJ 0 D(?))=U VD(<p)

D.ip D,q>

where the unions are over all basic subsets D o f <D(n) and all maps qr.D -»AT*.

Now suppose that AT has prime characteristic p in  and let F» Fq:Un(K)* -* Un(K)* 

(iq is a power of p) be the usual Frobenius map . Let D be a basic subset of <t>(n) and let 

<pT)-*K* be a map such that <p(D)cFqm. Then the variety VD(<p) is F-stable. In fact (by

(3.1.7))

for all/ •  VD(<p) and all (ij)uR(D) (we note that Fq because <p(D)cFq+). Therefore 

we may consider the (finite) set

i
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(3.1.9) VuLqff=0D(.<pf

consisting of all F-fixed elements ofVD(<p)=0D(<p). By the previous theorem we get

(3.1.10) U„(q)*=U 0 D(< p f^ J  VD(<pf
D.9 D.f

where the unions are over all basic subsets D of <&{n) and all maps <fnD -* F q*. On the 

other hand since 0 D(<p) is (/„(AO-invariant we have

0 D(< p f^J  < f 
o

where the union is over all F-stable (/„(AO-orbits O such that O^Opltp). Applying 

corollary 1.3.11 we obtain theorem 2.2.1 as a corollary of the previous theorem.

Corollary 3.1.7. Let x  be an irreducible character o f UH{q). Then there exist a unique 

basic set o f roots D and a unique map qxD -» F q* such that Ct,§o(^))*0.

it
t
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3.2. The dimension of VD(<p)

In this section we determine the dimension of the irreducible subvarieties VD(<p) of 

Un(K)* (!)• Our results are independent of the characteristic of the field AT so we will 

assume that AT is an algebraically closed field of arbitrary characteristic. We also fix an 

arbitrary basic subset D of <P(n) and an arbitrary map qr.D -» AT*. We start the section 

with some generalities about polynomial functions defined on an arbitrary 

finite-dimensional vector space over K.

Let V be a vector space over K  of dimension m and let (ex,...,em) be a basis of V. 

Let P :V -* K  be a polynomial function on V. Then there exists a polynomial

in m indeterminates T x......Tm over K  such that

P{v)-P(vx......v j  (2)

for all v=v1e 1+ ...+ v meme V (v l t ... ,vm*K). For each <e { l,...,m }  we denote by

<?i/>(7'1,...,Tm) the i-thpartial derivative of i.e.

W i ......T J - j j r P < T X..... T J ,  AT[T,...... T J

and we consider the polynomial function d-JP:V-*K associated with the polynomial

d f{ T x......T J .  Then for each vs V  we define the differential of the polynomial function

P:V-*K  at the vector v as follows. Let V*=Homg(yjC) be the dual space of V and for 

each <e { 1 let efeV *  be defined by

«<*(«/)-$!/

for all jm [ l ,. .. ,m } . Then (e i* ,.. .,e m*) is a basis of V* and we define the map 

dP:V-*V* by

(dP)(.v)-(dxP)(v)ex* + ..M d J >)iv)em* 

for all v« V. The vector (dP)(v)m V* is called the differential a fP a tv V .

1 We note that VD(<p)*0D(,v) (by theorem 3.1.7) and that 00(f>) is an irreducible variety because it is the 
image of an irreducible variety under a morphism of algebraic varieties (cf. corollary 13.11)
2 We abuse the notation and use the symbol P to denote both the polynomial function and the 
polynomial associated with it
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Now we prove the following general result:

Proposition 3.2.1. Let the notation be as above and let be r im  polynomial

functions defined on V. Suppose that there exists a non-empty open set t/cV such that for 

each ve t/ the vectors (dPl)(v),...,(dPr)(v) are linearly independent. Then the functions 

P1„. ,P r are algebraically independent.

Proof. Let Y1,...,Yr be r  indeterminates over K  and suppose that there exists a non-zero 

polynomial FeK[Y^...,Y^\ such that

Without loss of generality we may assume that F has minimal degree among all the 

polynomials with this property. Let P:V-*Kr be the function defined by

for all vcV.

Now suppose that vet/. Then (by hypothesis) the vectors (dP^fv),... ,(dPr)(v) are 

linearly independent Thus

F(Pu ...J>r)=0.

/>(v)=(P1(v)....A (v))

for all ve V. Then the composite function F»P:V-*K is identically zero and so

for all je  { 1 .  ,,/n} and all ve V. By the chain rule

for all ve V. Therefore

^ > ( v » - 0

for all is {1,.. .,/•}. So U  is contained in the closed subset
w -  { ve V; j£ (P (v ))« o . l i t e r  }

of V. Since U is dense we conclude that W-V, hence
|£ (P (v ) ) -0
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for all ve V and all it { It follows that for each /« { l , . . . ,r }  the polynomial
dF-2y  eK[Ylt...,Yr] is such that

Since these polynomials have degree smaller than F we conclude that

£ - i Y l ,...,Y r)=0

for all it  {1,.../•}.

If AT has characteristic zero this implies that

F(YX......Yr)=aeK

is a constant. Since F(Pl ,. . .J >r)*0 we conclude that ct=0. This is in contradiction with 

the choice of F. Hence the functions Py,...J*r are algebraically independent

Finally suppose that K has prime characteristic p. Then the polynomial F has the

form

F = S  ... I  al i Ylpi'...Y rpi' (a, .,« * )
I , -  0  imO 1 1

for some non-negative integers n lt...,nr. Now for each sequence (ij,...ir) (0 

l^tSr) there exists an elementb ^ i t K such that

(we recall that K is algebraically closed). It follows that

F=GP

for some polynomial GeAT[y1,...,l'r]. Since G has degree smaller than F we conclude 

that G=0, hence F=0. As before this contradiction implies that the functions P 1,...,/>r are 

algebraically independent and the proof is complete. ♦

Now we consider the functions A^: un(K)* -> K for (iJ)tR(D). These functions are 

polynomial. In fact for each (ij)tR(D) A? is associated with the polynomial
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/  T■ ■ 1 W r ■ , 1 Wt T- • \"• •‘»dOVr
tf(TabAa,b)e<t>(n))=det

T . . ‘‘aWJ T■ ■ T .
1 *otrVr

K T‘J
T-MVl -  J

(3.2.1)

in indeterminates Tab, (a,b)e<P(n), over K  (here D (iJ)~  {(ii«/j).... .(W r)} »

<jr)and OeSn is such that ¡ ^ < . . .< 1^ ) .  We note that for each (a,b)e &(n) the 

indeterminate T& determines the polynomial function T^iU^K)* -*K  defined by

Tab(f)=f{eab)

for all/c

Let (aj>)e <P(n) and consider the (a^t)-th partial derivative 

aP
dA°v

datAif* -gf^eK[Tabl (a,b)e <P(n)].

For simplicity we introduce the following notation.

Let A=(aav)iSB>vSm be any square matrix (with coeffic dents in any ring) and let
f 1 it  ...i_iu ...,irJ ,,. ..J r6 {1,.,.,/n}. Then we denote by A. . (A) die determinant

J l—Jr

A

(3.2.2)

In particular let

(3.2.3)

A x r(A)=det

f O  Tn  

0 0
T'ln-l ^1» 

Tln-\ T2n

aUr ^

V,

\

0 0

V o o

o

0
^«•1«

0 J

Then for all it ,...,/n/ |,. . .^ rc { l,...,/t}  the determinant 4 .' '(A) is a polynomial in the
it—>r

indeterminates T+, (ajb)* <D(n), and we will write

(3.2.4)
I

A j l Z j y * {aJb)'  ¿W )
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This polynomial determines a polynomial function A 1 ‘r:Un(.K)* -*K  which is defined by
J l — Jr

( M y ,)  ... \

(3.2.5) A V r (f)=det
J\—Jr

for all/e un(K)* (we whenever \<Jb<a.<ji).

Now let (ajb)e <P(ri). Then

(3.2.6)

(-i)r4 oM); ‘ow(o
J l — Jr

if (a,b)=(ij)

( _ i ) j + i  4 W ~ » « r t> W “W w
j \—ir if {aJfiMiawj) (1^ rSr)

(-l)r+,+1 d ‘.,*,)'."‘aW . .(/) if (a,b)=(ijt) (l^r^r)

if (a,6)=(i0(, )J,) (l^ i.tir)

LO otherwise

for all fe  Un(K)*.

Next we consider the differential of the polynomial function A?: Un(K)* -* K. Since 

we have a canonical identification

the differential of d? at an element/« un(K)* is the vector (dA^)(f)e Un(K) defined by

r r r r
(3.2.7) (¿4)(/)= ciy(/)*i:/+ 1 ,  cigiJ f ) e ig(ff r  S  cij(f)e ij  + X

Jm I  lm 1  J * l  1

where for any (aj>)*$(n) C a b ^ d ^ J i f ) .

W .

Finally let A\Un(K)* -»AT be the polynomial function defined by

n  ¿«(A

for all /« Un(K)*- Then

; i
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U= {/« Un(K)*; A(f)*0}

is a non-empty dense open subset of Un(K)m. Moreover (by (3.1.7))

(3.2.8) VD«p)zU.

We claim that for all f e l l  the vectors (dA^)(f), (iJ)sR(D), are linearly independent 

For let fmU be arbitrary and consider the matrix

(we consider the order in dfyi) introduced in the proof of proposition 2.2.13). By (3.2.7) 

this matrix is upper-triangular. On the other hand let (i J ) e R ( D ), let 

......(Mr)} 3,1(1 let be such that »<xd<...<»o(,). Then

(see the proof of proposition 3.1.2). It follows that the diagonal entries of B are 

non-zero. Thus

and this implies that the vectors (dA^)(f), (iJ)eR(D), are linearly independent. By 

proposition 3.2.1 we conclude that:

P roposition  3.2.2. The polynomial functions A?j.un(K)* -* K, (ij)*R (D ), are 

algebraically independent over K.

In the next result we determine the dimension of the varieties VD(«p).

Theorem  3.23. Let D be a  basic subset o f  <D(n) and let qr.D -*K* be any map. Then 

dimVD(q»~s(D)0).

Proof. We define the map Û: UH(K)* -» K «D) (2) by 1 2

B={(dabA^)(f))(aJ,),(iJ),mD)

r

( / ) = ( - 1 )" 1 i g « ( 0 ) Î I  <P(isJs) * 0

detB *  0

t •
1 We recall that j(DH5(D)I.
2 We recall that KD)-I*(£>)I.
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W )=(A°(f)AiJ)eR(D)) <»)

for all /e  Un(K)*. t? is a morphism of algebraic varieties. We claim that it is dominant, 

i.e. the image

Y=-d(Un(K)*)

is dense in K * ° \  In fact if y  is not dense there exists a non-zero polynomial function 

P such that

yc {o€r<o>;P(û)=0}.

Then

P (W )= P (tf( f) \ Vj)eR(D ))=0

for a ll/e  Un(K)*. Therefore
P(A?;(ij)eR(D))=0

where P(Tp (ij)eR(D)) is a polynomial in the indeterminates Ty, (ij)eR(D). Since the 

functions £ ,  (iJ)eR(D), are algebraically independent (by the previous proposition), we
v

conclude that

P(Ty;(iJ),R(D))~0.

Hence P(a)=0 for all ae K*D\  This contradiction implies that the morphism û  is 

dominant. By [Hul;Theorem 4.1] we conclude that for any aeY  and any irreducible 

component X  of ti'Ha)

dimXZdimllH(.K)*-r(D)=s(D).

Since VD(q>) is irreducible and

VD(q»=i3r\a)

for a well-determihed amX (by (3.1.7)) we obtain

(3.2.9) dimVD(q>)Zs{D).

To prove that the equality holds we consider the ring K[VD(q>)] of all polynomial 

functions defined on VD(q>). For each (<J)«0(r) let ty:Vo(q>)-*K be the polynomial 

function defined by

1 We order the toots as in the proof o f proposition 2.2.13.
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hft)=Reij)

for all /« VD(q>). Then

KlVD«p)]-K[t$(iJ)*<Hn)]

is the K-algebra generated by the functions ty, (i j >€ &(n). Since VD(q>) is an irreducible 

variety the ring AT[riy-; (ij)e <P(n)] is an integral domain (see [Hul; proposition 1.3C]). 

Hence we may form its field of fractions K(jy, ( ij>  <P(/i)). We claim that

tr.degK K(jty\ (i j )* <1\n))£s(D)

(here tr.degKK{ty, (ij)e <&(«)) is the transcendence degree of (ij)e  <®(n)) over K). 

For we fix an arbitrary element/c VD(q>). Then

where D(ij)-[(ilJl),...,(irJr)],jl<...<jn  and O eSr is such that ¡o (i)< — <io(r)- L e t  

YipYab, (aJ>)eS(.D), be s(D)+l indeterminates over K  and consider the polynomial

the polynomial function (aJb)*S(D)):VD{<p) -+K determined by the polynomial

r V- is identically zero. In fact let g* VD(<p). Then

r

r

where

r

0*1

^  *(«</) 8(% )  — g(*y) j

(f)*0 the row vectors (1 £a£r) are linearly
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independent. Moreover the vector space (over AT) generated by these vectors is also 

generated by the row vectors (g(«,y) g(ei j t) — (1 SaSr) (because g*VD(<p),

hence A *1*. ,<w(g)*0). Now suppose that (iJ)eD. Then
J l — Jr

4 ^ ) = °

so the row vector (g(etj) i(Cy,) ... £(«;;,)) is a linear combination of the vectors 

(g te ij) g(ei j ,) ••• g (* ij))  (l^aS r), hence it is a linear combination of the vectors 

j ) f ( ei j x) - f c i jP i )  (1 SaSr). It follows that

* % ,* >  • • • ^  

det ' '' : =0.

^  «(«,>) *(««>•,) — *(*</,) y

Since A?(f)=0 we conclude that

*£(*)=<).

On the other hand suppose that (iJ)eD. Then (as in the proof of proposition 3.1.2) 

the row vector (g ie^-fp iij) g(tijx) ... g(Cij)) is a linear combination of the vectors 

(g(fiij) giC jj,)... g te ij})  (1 £a£r) and the argument above shows that

/ * eW > * eW .>  • • • M -* .* ) \

der
* W >  fcianjx) • • •

\  ft«#) ft«#,) ft«#,) y
=(-i / ? ko ')a o<1>;‘J \ — Jr

'(f).

Since

(see the proof ofproposition 3.1.2) we deduce that 

Our claim follows.

Finally since /?y«AT[TlytKa*,(a^>)«S(D)] is a non-zero polynomial we conclude
i



118

that the polynomial function ty is algebraically dependent of the functions t ^ ,

(a,b)eS(D). Since (iJ)eR{D) is arbitrary this means that

tr.degKK(tij, (i,/)e <f(»))£r(D)

as required. It follows that

dimVD{<p)-tr.degK K(ty, (ij)e  4>(n))£s(D)

By (3.2.9) we deduce that

dimVD(<p)=s(D)

and the proof is complete. ♦

Now we assume that K  is the algebraic closure of Fq where q is a power of a prime 

number pSn. We let F=Fq: Un(K)* -* Un(K)* be the usual Frobenius map. Moreover we 

assume that <pi.D)cFq. Then (by (3.1.7Jthe variety VD(<p) is F-stable and the (finite) set 

VD« p f  is the disjoint union

VD(<pf’A J O F
o

where O runs over all F-stable Un(K)-orbits which are contained in VD(q>). Since

WD(<p)F\=qdimVD̂ = q ^ D)

(by the previous theorem) and

%q( \  )= 'f \(p r\ =V qdim£>

(by proposition 1.2.5) for all F-stable i /n(AT)-orbit OzUn(K)* (*) we conclude the 

following:

Corollary 3.2.4. Let D be a basic subset o f <b(n) and let qr.D -» F q* be a map. Then

1  * a ) 2V 0)
X»1dW

where /D(q») is the set consisting o f all irreducible components o f the character £0(ç>) of

Vnlq).

Another corollary is the following number-theoretical equality: 1

1 We recall that is the irreducible character of UJ,q) which corresponds to O.
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Corollary 3.2.5. Let t be an indeterminate over the ring 2  and let n be a positive 

integer. Then the identity
X  (f-1)101 f*0 W*"*11/2

Dc*0>)
D basic

holds in the polynomial ring 2[t].

Proof. Let p in  be any prime number and consider the finite group Un(p). Then 

p"<"-1>/2- l i / )|(p)l -  X  t f l ) 2
XairriUJp))

where lrr\Un{p)) is the set of all the irreducible characters of Un(p). By theorem 2.2.1 

Irr(Un(p)) is the disjoint union

In iU n(p))=^JlD«p)
D,<f

where the union is over all basic subsets D of <P(«) and all maps qrD —> F p*. Therefore

p* - l) /2 _ X  X  ^T(l)2

where the sum is over all basic subsets D of <P(n) and all maps <p:D -» F p*. By the

previous corollary we obtain

D.9

where the sum is as above. Finally, for each basic subset D of 0(n), there are exactly 

(p-l)101 distinct maps qrD-*Fp*. Hence

p*"-»/2-  X  (p -l)lzV (i,),
Dc#00 
D basic

and the result follows because the set of all prime numbers is infinite. ♦

We will give a different proof of this result which is independent of the varieties 

VD(cp). In fact we will establish a more general identity. Firstly we introduce some 

notation and we recall some well-known facts. Let omS„ and consider the set

to(/)>«(/)}
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where co0eSn is the permutation defined in (1.1.16). It is well-known that

where J(a>) is the length of co 0). Moreover is the unique permutation of maximal 

length and we have

Finally let D be a basic subset of <Kji) and suppose that Dc&^ i ri). Then we define 

Proposition 3.2.6. Let t be an indeterminate over Z  and let (OeSn. Then the identity

I  (t-l)'D'Js' v P W »

D basic

holds in the polynomial ring Z[r]. In particular if co=a  ̂we obtain the identity o f corollary 

3.2.5.

Proof. We proceed by induction on the length J(co) o f 0). If J(co)=0 then <o=l. In this 

case

4>01a(f n'>=®

and (obviously) the empty set is the unique basic subset of 4>.̂ J n). The required identity 

is trivial. If J(co)= 1 then co is a simple reflection, i.e. co=(it'+l) for some ie { 1 , . In 

this case
< ^ > ) = ( ( u + i) }

and there exist two basic subsets o f namely the empty set and the set

^ 0*0f.n). Since

the required identity reads

l-KMW.
Now suppose that -f(co)>l and assume that the result is proved for all <o’*Sn such 1

1 By definition J (a )  is the minimal length of an expression of a  as product of simple reflections, i.e. 
transpositions of the form (ff+1) (ISiS/i).



1 2 1

/

that A.co')<J{a>). Let T=(ii+l)eSn (l£i£/i-l) be a simple reflection such that 

Then
((W+l)} vi(& %aAn))

where eo'=cox. Let D be a basic subset of &a>0a>(n)- Then (i,t'+l)«D if and only if 

X(D)cQ^r t(n). On the other hand if (iJ+l)aD then D={(i\i+l)}uD0 where D0 is a basic 

subset of («) such that and (i,i+l)«S(D0). Moreover for any basic

subset of roots D' of such that (i,i+l)*S(x(Dr)) the subset {(i,i+l)}vjt(f?') of

4>%ai(n) is basic. It follows that

I  ( t - lP P 'v W L  X  (r-l)IDIrls<v ^ t<D))l+ I  (M ) ^ 1
0 = ® ^ « )  De<b^J.n)

0  basic 0  basic 0  basic
( i , i + l ) « S ( T ( 0 ) )

Now let D be a basic subset of Suppose that (m+1)«S(i (Z>)). Then

ft(S(D)) if (i,t+l)«S(D)

[KS(D))\{ 0+1,0} if (i,i+l)*S(D)

In both cases we have

S ^ J i x iD ^ x i S ^ D ) ) ,

hence

IS ^ K D ))W S ^ (D )L

On the other hand suppose that (iJ+l)aS(x(D)). Then

ft(S(£>))u{ (W+l)} if (U+l)*S(D)
5(KZ)))-j

[(t(S(D))\{ 0+l,0})u{0,i+ l)} if (i,i+l)«S(D)

In this case we obtain

SiyudCD))- {(W+l) Ju -K S ^ D )),

hence
^ • i ^ ) ) l - l S ^ (/D )l+ l.

It follows that
I  (M)101̂ ^ -  1  I  (M)U),rlŝ ^ 1

O s*.^») D eG ^n)
0  basic D basic 0  basic

(U*\)aS(HD)) (i.i+l). 5(t(0))
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whereas
X  (M )101*1

D basic 
(M + l) .S ( t(0 ))

D e * ^n )
D basic 

(i,»+ l).S (t(D ))

Therefore

X  (M )

D basic

1DI

V  D basic J

.t tA.<o')=rK<o)

X  (r-l)“>lilV < DV ,«*>

D basic

(by induction because The proof is complete. ♦

t
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3.3. Homogeneous V D(q>ys

This section is concerned with the transitivity of the action of Un(K) on the varieties 

VD(<p) (as usual D is a basic subset of $(/t) and qrD-*K* is a map). To be more specific 

we will determine all the pairs (P,<p) for which the variety VD(<p) is a single Un(K)-otbit. 

The answer to this problem is purely combinatorial and it depends only on the 

“geometrical configuration” of the basic set D. As a consequence we will also obtain a 

necessary and sufficient conditon to decide about the pairs (D,<p) for which the character 

of Un(q) has a unique irreducible component (here the image of the map <p has to be 

a subset of Fq*). In general the homogeneity of an F-stable variety VD(<p) does not imply 

that the corresponding character £D(<p) is irreducible. In fact the unique irreducible 

component of §0(9)) may occur with multiplicity greater than one. However it is not very 

difficult to calculate this multiplicity (cf. corollary 2.2.17).

A subset C of <P(n) is called a chain if

C={(M 2)’0'2-‘3)...... (W e)} -

Since 0'a,t'a+i)e 4Kn) for all ae {1......r -1 }, we

have ¿i<i2<...<ir  The cardinality ICl of C will 

be referred to as the length ofC. In the adjacent 

picture we show a chain of length 4 (as usual 

the symbol ■ represents a root in the chain).

It is clear that a chain C is a basic subset of $(n). Hence the variety V^tp) is defined for 

all maps <pr.C-*K*. We have:

Lemma 3.3.1. Let Cs<t>(n) be a chain and let q>:C -*K* be a map. Then Vc (<p) is a 

single Un(K)-orbit.

1)

t
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Proof. Let C={(i1,/2),0V3).....(*r-i >*V)) - By theorem 3.2.3
r-1

dimVc(q»=s( C )= X  2(ia+ria-l)=2(ir-/l)-2(r-l).
a = l

On the other hand the element
r-l

/= X  «PO'^o+i) « ¿^ , *{ «,.(*)*0*1
lies in Vc(ip). By (1.3.3) we have

dimO(f)=rankM (f)

where CHf) is the £/„(AT)-orbit of /  and M(f) is the skew-symmetric matrix which 

represents the bilinear form By with respect to the canonical basis o f Un(K). A similar 

argument to the one used in the proof of lemma 2.2.3 shows that

rankM(f)^2(ir-ix)-2(r-1).

Therefore

dimO(f)=dimVc(q>).

Since CHf) and V^ip) are irreducible varieties we conclude that V(f<p)=0(f) and the result 

follows. 4

Let C— { *(tr-i*tr)} and C = {Oix/2)’0'2*/3)»• • • »O'j-i*/j)} he two 

chains in <D(n) and suppose that i\<j\- We say that the chains C and C ' intertwine if one

(and only one) of the following conditions is satisfied:

(a) r=s and i\<ji<iz<h<- ■ ■<ir<Jn

(b) r=s+l andil<j\<i2<j2<---<ir.i<Jr-i<̂ r

In the adjacent picture we show a pair of 

intertwining chains (with r=3 and r=2) (as 

before the roots in both chains are represented 

by the symbol ■ ).

It is clear that the union of two 

intertwinning chains is a basic set of roots. We

have:
n



125

P roposition  3.3.2. Let C,C'c<P(») be a pair o f intertwining chains. We pu t

0{(M2).(*2.»'3)...... (W r)}  and C '»{0W 2).0W3)...... (J+i J J )  and we suppose that

i\<j\. Let D=C\jC' and let qnD-*K*. Then:

(i) Ifr=s+1 VD(tp) is a single Un(K)-orbit and we have 

dimV0(9>)=2(/r-i1)+2(/r.r y1)-6(r-l)+4.

(u) Ifr=s

VD( 0 = U  0 (a )
a*K

is a disjoint union ofUn(K)-orbits 0 (a )  (aeK). Moreover

dimOM=2(ir-i! )+2(jr-jl )-6(r-1)

fo ra li aeK.

Proof. In both cases let
r - l  j - l

fCW«.i)««V«,*+ ?  Un(K)*.<2=1 0=1

It is clear that feV D(<p). We consider the dimension of the (/„(AT)-orbit 0(/). 

On the one hand let (ij)eR(D). Then

f d e i j . e j ^ A e ^ O

for all ke {/+!,...,n} (otherwise (iJc)eD and (ij)eS(D)). Similarly

/([««.«#] W<«¥>-0

for all ke {1....4-1} (otherwise (kJ)eD  and (ij)eS(D)). Therefore the subspace
r= Z K eij

of un(K) is contained in the radical of the bilinear form Bp 

On the other hand let

and let 

Let

...... U r . l J r M . l J r ) )

{(ÌlJl).(/l.f2).- ■ 'H r.lJr .l) 'U r .lJM iJr))

if r-j+1 

if r«j

Z Keu.0 "  ¿4 rwc;/.
OJ)eHDhS’

v" Z aifiij* o
UJ)eS{D1*- 1 J
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/

be an arbitrary non-zero vector and let fij)aS(D )\S' be such that Cfy-̂ O. Then either 

ie {ia; lSn^/--l}o{yb; IS b ir- l}  or ye {ia; 2<a<>r}u{jb; 2£b£s}. Suppose that i=ia for

some ae {1,.. . ,r - l}. Then

M v,eji^ l])=aiJf{eî i)=aij <p(ia,ia+i ) ^ -

Similarly we h a v e X K e ^ lM )  (if i - jb, lS b S r-lX /d v .e^ jlM ) (if j=ia, 2¿a£r) and 

J)^0 (if j=jh, 2¿bis). Since v is arbitrary we conclude that V is a non-degenerate

subspace of Un(K). Its dimension is

dim 0=2fir-i! )+20Wi )-4(r+r-2).

Moreover 0 is orthogonal to the subspace
0 =  X  Key.

WJeJ*
In fact consider a root (ial/)e5(D)\S' (ISaSr-l). Then for all (r,s)e <P(n)/([«, ..«rj]),i:0 if

and only if either j=r and s=ia+l or s=ia and (rJ)eD. Suppose thaty=r and s=ia+i. Then 

(r,s)=(j,ia+x)eS ' if and only if j - j a. This is impossible because (iaj a)eS ' (hence 

(iaJ)*S(D)\S'). On the other hand suppose that s=ia and fr j) - fib,iM ) (l^bSr-1). Then 

fr j)= fib,ia)*S' (in fact (¿6,ia)«S(Z>)). Finally if r=ia and (rJ)*OW*+t) (l^b^t-1) then 

(r^ )-(jb,if)eS' if and only if b=a-l (so a>l). This is impossible because 0'a>/)=0a>/a)*S’ 

(hence (iaJ)*S(D)'S'). The other possibilities for the root (ij)eS(D )\S' are discussed

similarly. Therefore in order to determine the dimension of the orbit Off) it is enough to 

determine the rank of the skew-symmetric submatrix M0(f) of M(f) whose entries 

correspond to the pairs ( ( ) )  where (ij),(.kJ)«S' - the ((ij),(k,[))-th entry of M^ff) 

is/([e,;,««])• Now for a suitable ordering of these roots, the matrix M0(f) has the form

where

^ a ,  0  •

oo

^  a x 0  •

oo

■Pi <*2 • • 0  0 •P i  « 2  ‘ • 0  0

A  =

i ©
 

©
 

o
 

© • <*r-2 0

‘ mPr- 1 ° r - l  >

( i f  r » 5 + l )  o r  A =

0  0  • 

^  0  0  •

• -Pr-l «r -1

• 0  -j9M >
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In the first case the matrix A is non-singular and in the second case it has rank r-l. 

Therefore in both cases

dimO(f)=2(ir-i, )+2(js-j\ )-4(r+s-2)+2(r-1 )=2(ir-il)+2(jt-jx )-2(r+2r-3) 

as required in our statement.

Now if r=r+l dien

dimVD(<p)~2(ir-il)+2(jr.l-Jl)-6(r-\)+4 

so VD(tp)=0(f). On the other hand suppose that r=s. Then

dimVD(<p)=2(ir-il)+2(jr-ji )-6(r-1)+1

so 0(f) is a proper subvariety of VD(<p). However for each cteK the element

f+ a e itiU U n(K)*

lies in VD((p). We denote by 0 (a )  the £/„(A0-orbit of f+ ae^j*  (then O(0)=O(f)). We 

claim that 0(a)*0Q 3) whenever a,pmK are distinct. Suppose that 0(a)= 0(p) and let 

X6 Un(K) be such that

*-(/r+/fe,y1*)=/+0K»V *•
Then

=feeijX'X)+fcxeijX%j=f(xeijxx'L)+p.

On the other hand
r-l i-l

A x e u X A) ^ L  ^ g w i ) i u ( x ' V .  + Z
ami 5*1

Now for l£a£r-l 0 only if i ^ i x and this happens if and only if n= l. Since j l̂ j l>il 

for all bm { }  we conclude that

A similar argument shows that

-  .0 m(f+aeij* ) ( e iit)~f(xeiitx'l)m<p(ilJ2)(lx'l )Ui

for all km l / i+ l, . . . ti2- l }. Hence (x'1) « ^  for all km [jx+l,...,i2- l } and this implies that 

Now let sm { 2 ,...,r- l}. Then

- we note that for l£a£r-l i £ i ,  and j ^ i ^ i  if and only if u«j; also for \£b£s-\,jySi, and
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if and only if b=s-l. As before we can prove that 

Finally we have
0=(f+<^ij * K e ij )= A x e ij rx l)=<p(Jr.iJr)Xj^ir.

Hence we have obtained the equations

'  c^-q thJdX j^+ p

< 0 ~ -q K iJ^ )X j^ t ( 2 ^ - 1 )

J=<p(jr.uir)Xj^ir
This system has a solution if and only if ct=/3. Therefore 0(a)=0(P) if and only if a=p.

Now consider the dimension of any Un(K)-orbit 0(a) (aeK). The argument used 

above shows that the space V is non-degenerate of dimension

dim 0=2(ir-i, )+2(/Wi )*7 (r‘1 )•
Moreover dim o’-r -1. Therefore

dimO(a)^2(ir-il)+2(jr-jl)-6(r-l).

On the other hand
dimVD(<p)=2(ir-ix)+2(jr-jxy(*,r-\yr\.

Since dimO(a)£dimVD(q>) and O (a) is even-dimensional (by corollary 1.2.3) we

conclude that

dimO(a)-2(ir-il)+2(jr-jx)-6(r-1)

as required.

Finally we consider the disjoint union of all the (/„(AO-orbits O (a) (a*K ). This 

union is a subvariety V of VD(<p). To prove that V=VD(q>) let V' be an irreducible 

component of V. Since the algebraic group Un(K) is connected V' is (/n(£)-invariant (see 

[Hul ; proposition 8.2]). Hence V  is a union of some of the orbits O(a) (ocK). Let

a tK  be such that
O(a) S V .

Since O(a), V  and VD(<p) are irreducible varieties we have

dimO(a)<UiimV‘£dimVD(q>).

It follows that either V » 0 (a ) or V'=VD(f). Since there are finitely many irreducible 

components of V we may allways assume that V' includes at least two orbits O(a) and
t
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O(p) where ¡kK, p*a. It follows that V'=VD(<p), hence V-VD{<p).

The proof is complete. ♦

Let C={(/1,i2)......OV-it'r)} and C ■ {OW2) - • -.Or-ix/V) 1 be two intertwining chains

of the same length and suppose that Then the root is called the

(CyO-derived root. More generally we may define the D-derived roots for any basic 

subset D of <P(n) as follows.

Let C= {0'i¿2) ,... ,(ir.iJr) } and C'={(jiJ2) ......be two chains in D. Then

the pair (C,O  is called special if the following four conditions are satisfied:

(i) C and C‘ have the same length, i.e. r=s.

(ii) C and C'intertwine, i.e. i1</1<i2< / ••<*r<Jr

(iii) If there exists j 0e {l .- . - J j - l} such that (Joj\)eD then i\<jo-

(iv) If there exists i ^ e  {ir+ l , . ..,/»} such that then /r+i<7r.

The root U iJ\) is an example o f a D -derived root (we note that this root is the 

(C,CO-derived root). In general a root (//)«<D(n) is called a D-derived root if there exists 

a special pair of chains (C,C0 in D  such that ( ij)  is a (C,CO-derived roo t The set of all 

D-derived roots is called the derived set of D and it will be denoted by D". It is clear that 

(3.3.1) DcS(D).

In the adjacent picture we show a special 

pair o f  chains of length 2 (the roots represented 

by ■  and by ■ are in D and the chains C and

C' correspond to the roots represented by ■ ; 

the symbol □ represents a derived root).

The main result of this section is the 

following:

1
t
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Theorem 3.3.3. Let D^<P{n) be a basic subset o f <&(n) and let <p:D -*K* be a map. 

Then VD{q>) is a single Un(K)-orbit i f  and only if the derived set D ' ofD  is empty.

Proof. We will use the argument suggested by the proof of proposition 3.3.2. We 

consider the element
f=  X  V d J ie f*  Un(K)*.

It is clear that this element lies in VD{<p). Therefore VD(<p) is a single i/„(K>orbit if and 

only if VD(tp)=0(f). Since VD(<p) and Off) are irreducible varieties we have

Vo(<p)=0(f) <=> dimO(f)=s(D)

(by theorem 3.2.3). Now (by (1.3.3))

dimO(J)=rankM (f)

where Mif) is the skew-symmetric matrix which represents B f  with respect to the 

canonical basis of Un(K). Therefore

VD(.q>)=0(f) *=> rankM(f)=s{D).

Since e,ye r (/) for all (if)eR(D ) we have

rankM(f)£dimUn(K)-r(P)=s(P).

To prove that the equality holds we consider the matrix

Af-(A[«i/.e«]))(jj),(W)€S(D)-

Then there exists a permutation matrix P (of size l0(n)l) such that

H ' : )
Therefore

rankM (f)=rankM '.

Hence -

rankM(f)=s(D) <=> M' is non-singular

and so

V|)(9>)” 0(/) <=> M' is non-singular.

Now we define an equivalence relation ~  on the set 5(D) as follows. Let 

(iJ),(.kf)*S(D). Then (ij)~ (k j)  if and only if either (ij)-(,k,l) or there exists a sequence

t
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O'J J 1 X i M h J l )  ■ ■ ■ *0'r-l Jr-l).(‘Wr)“ (*0)

of D-singular roots such that

for all se { l , . . . ,r - l}. Let C1,...,C ^5(D ) be all the equivalence classes of this relation.

Then 5(D) is the disjoint union

(3.3.2) 5(D )«C |U ...vjC r

By definition of the relation ~  we have

whenever (iJ)eCr  (k,l)eCs■ and s*s' (lSs^'Sr). Therefore the partition (3.3.2) of 5(D) 

implies that there exists a permutation matrix Q (of size s(D)=l5(D)l) such that

0 ... 0 ^

Q lM ’Q=
0 m 2 ... 0
• • • .

0 ... M , J
where for each r« {1,...,/} Ms is the matrix (of size IC,I)

It follows that

rankM'-rankM t+ ... +rankM„

hence

VD(<p)=0(f) <=> are non-singular.

Now let se {1......r) and consider the equivalence class Cr  We claim that C, is a

chain. For let (flti2) be the largest root in C, (we consider the order < introduced in the 

proof of proposition 2.2.13). Since C&S(,D) the root is D-singular. Therefore at 

least one of the following cases occurs:

(i) there exists am {1......i r  1} such that (,aJj)mD;

(ii) there exists bm {/2+ l , ...,«} such that (ij,b)mD.

If case (i) occurs then (a,/i)e5(D) and

t
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(because (a,/2)« 0 ). So (a,<tM M 2 )  m d (aJOmCr  Sincc ‘i<J2 we have d M < aA )  

which is in contradiction with the choice of (¡1^2)- Thus case (ii) occurs. In this case the 

root (i2^ )  is D-singular and

b)*0-

Therefore (ixJb)*Cp  hence we have constructed a chain 

(where i3=b) such that

c , (2)=c,.

If C ,-C ,<2) then the claim is proved. On the other hand suppose that C,\C,(2)* 0 . By 

induction we assume that r"22 and that we have constructed a chain

C1<° =  {(i,,^),. ~.0V.V+i)}

such that

C ^ c Cr

If Cs=Cj-r^ our claim is proved. On the other hand suppose that C ,\C /rV 0  and let 

Then (by definition of ~) there exists a sequence 

(W >+i).(«iA).- ■■Xau,bu)=(iJ)

such that

.A , 6„,*̂ <«,6 J  (2£v£u).

Without loss of generality we may assume that the roots in this sequence are all distinct 

For simplicity we write (a,b)=(a1,b1). S i n c e e i t h e r  a=ir +l and (ir Jb)*D 

or b=ir- and (a.tV +i)* D . If the second case occurs then a = i r'-1 (because 

^>««0, so OV.^iVOaD). Thus (a ,b )« (v .1,t>) and an inductive argument

shows that

“ - UJ)XiM
(because (/,/)« C,(r\  This is contrary to the choice of (iiJj), hence we conclude that

a«ir +i and (ir Jb)*D.

Now we put b—ir +2 and

C,(r+1)-  { (i, Jj)......U r M M r+ lM  } •

t
It'is clear that
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Moreover is a proper subchain of Ci(r +1). Therefore (repeating this process a finite 

number of steps) we eventually get

for some r£2. This proves our claim. Moreover Cs determines a pair of intertwinning 

chains CA ,Cj2&D where

The adjacent picture illustrates this 

situation (here the roots in C, correspond to

■  and the roots in Cj2 to the symbol ■ ; 

we note that all the roots in Csl and in Cs2 lie 

in D). We note that either IC^M C^I (if r  is 

even) or ICj1I=ICj2I+1 (if r is odd). By the 

previous proposition we conclude that:

M, is non-singular e* IC^MC^I+1 <=> Cs has even length.

Finally if C, (l£s£r) has odd length (hence r is even) the pair (Csl,C ^) is special 

and the root (¡¡,¡2) is D-derived, i.e. In fact we have

Conversely if then (ij)cS(D) and so (ij)*C ,fo r  some s* {1,...,/}. Moreover (in

the above notation) (ij)—(/lPi2) and the pair (C,X,C,2) is the unique special pair in D 

which determines (ij). It follows that

Ci=CJ(r-1)={(i1,i2)....,0V.1,ir) }

(ij >13).(13,15),• • • ■(,r-3>,r-l) 1 

Cj2= {(¿2>i4)>(i4>i6)’- • * >0"r-2>ir) }
(if r is even)

or

C ,i - {  ( t j ,¿3) ,(1*3,13) , . .  • }

Cj2= { (l2'i4)>(i4.i6) , ■ • ■ > (lr-3 1 ) }
(if r  is odd)

the symbol □ , the roots in C,i to the symbol

C, has odd length

t
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Hence

Ci„..,C, have even lengths <=> D'=0. 

VD(<p)=0(f) e* D '=0

and the proof is complete. ♦

Next we translate the previous theorem to the character theory of the finite group 

Un(q) (as usual q is a power of the prime number p^n). We let AT be the algebraic closure 

o f the finite field F q and we realize Un(q) as the subgroup of Un(K) consisting of all 

fixed elements of the Frobenius map F=Fq.Un(K) -»Un(K).

Theorem 3-3.4. Let D be a basic subset o f <b(n) and let qr.D -» F *  be a map. Then the

character ¿;0(<p) o f Un(q) has a unique irreducible component if and only i f  the derived set
J(D)

D ' is empty. Moreover this component has multiplicity * ..— where 1(D) and s(D) are

as in (2.2.7).

Proof. The first part follows from theorem 3.3.3 and the second part follows from 

corollary 2.2.17. ♦
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CHAPTER 4

A DECOMPOSITION OF VD(<p)

In this chapter we discuss a certain decomposition of the variety VD(q>) into 

I/„(/Q-invariant subvarieties (as usual D is a basic subset of <£(n) and qr.D -*K* is any 

map). By theorem 3.3.3 VD(<p) is a single i/B(AT)-orbit if and only if the derived set D' is 

empty. Therefore we may assume that D ' contains at least one element. The construction 

of the required subvarieties is similar to the construction of the varieties VD(<p). Firstly we 

define certain (/„(AO-invariant polynomial functions on the variety VD(<p) (instead of 

Un(K)*). These functions are associated with some D-singular roots (in fact with 

D -derived roots) and their definition is recursive as in the case of the functions 

4-M n(K)* -*K  ((ij)eR(D )). However a different method is used to prove that the new 

functions are i/n(AT)-in variant.

The decomposition of VD(<p) will be obtained in section 4.2. Firstly in section 4.1

we discuss some examples which suggest the use of permutation matrices to study the 

variety VD(<p). They suggest also that a knowledge of the coadjoint orbits of the groups 

UJiK), OteSn, could be of fundamental importance for the understanding of the coadjoint 

orbits of Un(K). In fact the conjugation by a certain permutation matrix allows the 

“reduction” of our problem to the same problem in the smaller group U ^ K ) .  A similar 

method will be used in chapter 5 to establish the decomposition of the regular character of 

Un(q) as the sum of all the basic characters <£0(ç>) (see theorem 5.2.1).
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4.1. Some examples

In this section we discuss some examples which will motívate our subsequent 

work. We denote by AT an algebraically closed field of arbitrary characteristic. We let n be 

a positive integer and we suppose that n=2r is even.

Let /«= Un(K)* be such that

A1-"  (f)*0.r+\ ...i»v

Let D be the (unique) basic subset of <£(n) and let qr.D -*K* be the (unique) map such 

that/« VD(<p). Then (by proposition 3.1.2) we must have

£» = {( l . t ( l ) ) ......(r.T(r))}

for some permutation teSr

We consider the t/n(AT)-orbit 0 (f) o ff .  For pratical reasons we define for each

ge Un(K)* the upper triangular matrix i4 (g )= ( a y { g ) )b y

e <&(«) 
otherwise

for all i js  (1 . Let x=(Xij)eUn(K) be arbitrary. Then

10 otherwis

(* /)(«¿y)-/C *^1) -  X X * « ,<m\ b~j

for all ( i j ) t  <P(n). Therefore

(4.1.1) A 0cf)-pn(xTA(f)0cl)T)-p n(xTA (f)(xTYl)

where for any-matrix XmMn(K) (>) p n(X)-(yrf»M n(K) is the upper triangular matrix

defined by

y  m\ x V if (iJ)*Q(n)
lJ 10 otherwise

for all ijm ( l,...n ). SincexT is lower triangular we conclude the following:

t
1 We denote by Mm(K) the set o f all square matrices of size n with coefficients in the field K.
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Lem m a 4.1.1. Let ge lln(K )* and let x e U n(K). Then g - x - f  i f  and only if  

p n(xTA(f))=pn(A(g)xr ).

Using this lemma one can show that:

Lemma 4.1.2. The Un(K)-orbit o f f  contains an element ge Un(K)* such that

where AsMr(K) is upper triangular, H ^h^eM ^K ) is the diagonal matrix such that

hu=<p(irti))

fo r  all ie {1,.. ./■}, and P(f) is the permutation matrix associated with XeSr.
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Consider the equation (ii). Since

we have A12*GLr(J0. By Bruhat’s decomposition of GLn(K) there exist a*Sr such that

A i2« Ur{K)-Hr(.K)P«f)Ur{K)-

where Hr(K) is the subgroup of GLfJC) consisting of all non-singular diagonal matrices 

and Ur(K)~ is the subgroup of GLr(K) consisting of all lower unitriangular matrices. 

Therefore there exist H’*Hr(K) and yjeU/JC)' such that

A n =yH'P«f)z.

We now claim that H'-H  and 0*=T. In fact the element
f  T1 y't°tW

O r1 /
(AO

transforms the element/« Un(K)* into an element g'e ün(K) such that

A (g> A ' H'P(a) \
B ' )

where A’J)'eM r(K) are upper triangular. It follows that g'*0(f). S ince/«VD(<p) we 

conclude that g'eVD(<p). Finally proposition 3.1.2 (see also its proof) implies that H'=H 

and that <t=t.

Now equation (ii) is satisfied if we take *n=(y‘l)T and Xj2=zT. Finally equation

(iii) is clearly satisfied if we define x n *GLr(K) by

JCi2T=-X22TA22^12*1-

The lemma follows. ♦

Now we may assume that/« Un(K)* is such that

A(f)
r A(f) HP(X) ^

0 0

w here/« Ur(K)*. We have:

Lemma 4.1.3. VD(q>)~0(f) i f  and only i f u S r is the element defined by (1.1.16).

t
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Proof. By theorem 3.3.3 VD(<p)-0(f) if and only if the derived set D ' is empty. The 

lemma is clear because D' =0 if and only if

f o  ... 0 1 ^

0 ... 1 0P(D= i GLr(K).

V ...oo J

Next we consider particular elements XeSr

Lemma 4.1.4. Let T=leSr and let ge Ur(K)* be such that

where g'e Ur(K)* (we note that P(x)=lr). Then geO(f) i f  and only ifg 'eO (fr) • here 0 ( f )  

is the Ur(K)-orbit o f f e  Ur(K)*.

Proof. Let x{
*11 *12 

0 x22

\

€ Un(K) (X\\>X22* Ur(K),X\2* Mr(K)). Then g = * /ifan d o n ly
j

if

(i) p r{xn 'rA(f'))=pXA(g’)xu T+Hxx̂ )

( i i )  xutH.Hx22t
(iii) pr(xl2TH)=0.

Suppose that these equations are satisfied (hence g*0(f)). Since H  is diagonal we 

have p ,(jc12t //)*=0 if and only if jc12t is lower triangular. Therefore H x X2 is lower 

triangular and

Pr(x i \TA (f))-P r(A (g ')xl iT).

It follows that g’mx n - f ,  so g \ 0 ( f ) .

Conversely suppose that g'mx n f .  Then equations (i), (ii) and (iii) are satisfied 

with 'xi xt H and *i2T*0. Thus g< Olf) and the lemma is proved. ♦

/
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By this lemma (and by lemma 4.1.2) we deduce that:

Corollary 4.1.5. Let t* l« S r . Then the UJK)-orbits in VD(<p) are in one-to-one 

correspondence with the Ur{K)-orbits in Ur(K)*.

This corollary might suggest that a decomposition of VD(<p) may be obtained by 

arguments analogous to the ones used in the previous chapter. However in general this is 

“impossible” as the next example shows.

Let r=st, s,tZ2, and consider the element u S r such that /*(t) has the form

\

P{ T)=

where J^M S{K) is the matrix

J f

oo

0  Js . . .  0

^ 0  0 . . . ] ,

r o ... 0 1 ^
o . . . 1 0

V ... 0 O y

We have:

Lemma 4.1.6. Let n*st and let x»Sr be as above. Let where A ^ M ^ K )

(IZiJit) and Ay*0for all ije  {1,...,/} such that i>j. Let geOlf) and suppose that

~ - A ( g J *  ™  Ì
l o  0

where BmMr(K) is upper triangular. Suppose also that IMftyJisj,/*» BifiMJJK) 

(1 ZiJZt) and B ifO  fo r  all ije  {l,...,r} such that i>j. Then A ^ B U.

i
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i

Proof. Let xJ x n  * 12 '
{  0 *22>

e Un(K) (xn jc22eUr(K)<Xi2*Mr(lc)) be arbitrary. Then g=x f

if and only if the following equalities hold 

(i) pr(xx XTA)=pr(Bxx 1t+P(t)*12T)

(ii) *u tP(t)-P(t)*22T

(iii) p r(xx?P(X))=Q.

Consider the equation (iii). Let *i?T=(y.y)i<;j<, where y ^ M ^ K )  (1 £ij£t). Then

We have pr{x\2TP(.x))=0 if and only if * 12tP(t) is lower triangular. Thus ytjJs=0 and this 

implies thatytf=0 for all i>j (because Js is non-singular). On the other hand

P i0 '. / i)=0

for all ie ( l,...,f). Therefore y^J, is lower triangular for all U {1,...^}.

Now we consider the equation (i). Let * n T= ( z y ) w h e r e  z^eM,{K) 

( l£ ij£ t)  - since * n T is lower triangular we have zi;=0 (1 &<j£t) and ¿¡¡e US(K)~ 

L et*11Ti4=(«I>)lsi^s< where u ^M ^ K ) (\<dj<d). Then

u\r *\iiAk= 1 kt~z \ \A li-

On the other hand let fl*nT=(vi/)is<v$i where (1 Then
t

Vw= *L> B \kzkt=B \tzt f1

Since P W j ^ J j i j ) ^ '  and y u=0, we conclude that

z n A u=Buz„.

Finally consider the equation (ii). We have X n TP(T)m(zijJ s) l i i j s , and 

^ ( t)* 2 2 where * 22T=(Wi;) i Sg s „ wyEM jili:) ( lS iJS r) . Since 

JCi iT/ >(t>-/>(‘t)xTiT w.® obtain

zuI,mJ,” u

for all im (1,...,/). Since z-ti and wu are lower unitriangular we conclude that

ziT " u mli

for all f«{l,...,r).

I The lemma follows. ♦
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The previous lemma shows that in general a decomposition of VD(«p) cannot be 

obtained using the methods of chapter 3. In fact the eventual definition of a new subset of 

roots (which corresponds to the notion of basic subset of 4(n)) has to include a general 

condition allowing the existence of more than one root from each row and more than one 

root from each column (in the example above the columns r-s+ may contain more

than one root (ij) such that/fe^^O). In the general case it seems to be very difficult to

guess what condition has to be imposed. The natural conjecture is that it envolves the 

rank o f  certain matrices whose entries are elements /(«,-,) for some roots (ij)  in the 

required set. In the previous example the orbits which are contained in VD(q>) depend on 

the rank of the matrix Au  (the notation is as in lemma 4.1.6)-we note that (by lemma 

4.1.6) this rank is an invariant for the action of Un(K) on VD(<p). In fact:

Lemma 4.1.7. Let the notation be as in lemma 4.1.6.

(i) For each im {1,...^} we denote by Cj(A1M) (resp. Ci(Bu.x)) the i-th column o f 

the matrix (resp.BXt.x). Then the vector Cj(A1M)-Cj(Blf_i) is a linear combination 

of the columns o f the matrix Alr

(ii) For each ie {l,. .. ,r )  we denote by r^A ^ ) (resp. riiB ^)) the i-th row o f the 

matrix Aj, (resp 3 ^ -  Then the vector r^A ^) - ’’¡(Bn) is a linear combination o f the rows 

of the matrix A u.

Proof. We keep the notation of the proof of the lemma 4.1.6. Let xm U„(K) be such that 

gmx f  and consider the equation

P & \ ) mPr(Bxx?+P(x)xx? )= pr(Bxx ,T).

Since K iM ^ tA  “ d viM"®l»-t+dtA M  w* havc

*11-1 *®ll-l*d

and (i) follows immediately.

Similarly we have

* 2 » - * 2 l “ * 2 1 * l l

i
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because u2j=z2i'4n+'42j and v2/=S2/- (ii) follows. ♦

Another attempt to find the condition mentioned above is to consider the coadjoint 

orbits of the subgroups U JK ) of UJK) for an arbitrary ooeS„. In fact in the case r=l the 

orbits contained in VD(<p) axe in one-to-one correspondence with the orbits of UJJC) for 

<OeSn such that

-we note that UJK)=UJK)nP(a>l)UJK)P(aj) (see (1.1.15)).

On the other hand we have:

Lemma 4.1.8. Let teSr be as in lemmas 4.1.6 a n d 4.1.7. Then the UJK)-orbits in 

VD(q>) are in one-to-one correspondence with the UJK)-orbits in U JK)* where coeSHis 

such that

where

( o  ... 0 1

0 ... 1 0

v  . . . o o  y

P ro o f. We note that U J K )  consists of all matrices U J K )  such that

x n *Ur(K)nP{.f)UJ.K)P(‘e l) ( h e n c e h a s  the form

\ o  o ... i ,  y

1
I
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where the symbol * means that the corresponding block is any matrix in MS(K).

Now for this proof we keep the notation of the proof of the lemma 4.1.6. We claim 

that there exists g* (Xf) such that

y j B  Pit) 'A(g
io ° ;

where (B^-cM^K), IZiJZt) satisfies fl;,=0 for all is {l,. .. ,t} . In

fact consider the equation

p r(xu TA)=pr(Bx1 ,T+P( t)x12t ).

Let ic {1,. •••*}• Then
t

uii~ S  zuAkî tilA\i+..- + z u - l i^ i - U + i^ i i
it® 1

(we recall that 2U=IJ and
i

V|i= S  B ikZM—B a+B 11+1 z,-+1 ,•+... +B
* - l

On the other hand y j s is lower triangular so is upper triangular. It follows

that

P,(*nA u+— +zü-iA¡-i ¡A"A u)=p,(B ¡¡+B¡¡+1 z(+i i+ •. • ^  a- 

Since Js is non-singular we can allways choose y¡pM s(K) such that this equation is 

satisfied with B¡¡=0 (for any choice of Our claim follows.

Now let us assume that/is  such that

A(f) '  A P( t) '
10  0

where A *(A ij) l i i j i l  where A ^ M , { K )  (1 £ ij£ t)  and 0  for all im 

g* uh(K)* and suppose that 4(g) has the form

{ I f . .»}. Let

4 ( g J  b  m '
1 ° 0

where B ^ ( B ij ) l fl j i l , B y M , ( K )  (1 Z i j i t )  is upper triangular and 0  for all 

1« { l , . . . , r ) .  Then g*0 ( f )  if and only if the equalities (i), (ii) and (iii) hold with

/



■f Xu *12 LC/„(Ar) such that g=xf. In particular we have for all ijm {l,...,r} , 
[ 0  x22 f

i>j. This means that the element xn c Un(K) satisfies

g ' - x n - r

w h e r e UjiK)* arc defined by

f - n j f )  and g '^ tc jg )

where K ^ u n{K)* -* UJJC)* is the natural projection (i.e.t for any f t  UJJC)*, i t j f )  is 

the restriction o f /to  UJJK)). We conclude that g ' is U„/AO-conjugate to / .

Conversely let f ,g ' t  UjiK)* and suppose that g' is ^„(AO-conjugate t o / .  Then 

there exists x xxtUJJC) such that g'=xxxf .  By the argument of the first paragraph of this 

proof we can allways choose xx2eMr(JC) such that the equality

Finally we define x12* Ur(K) by

The lemma follows because any i/„(Af)-orbit on Vp(q>) contains an element 

/«  uh(K)* such that

pr(xx / A  )=Pr(,Bxx !T+P(T)Xi2T)

is satisfied. Moreover x12 can be choosed so that

Prixx2P{t))=Q.

for some upper triangular matrix AtM r{fC). ♦

In general case we have:

Proposition 4.1.9. Let XtSr and suppose that fo r  all (i J ) t D . Then the

Un(K)-orbits in VD(<p) are in one-to-one correspondence with the U JiK)-orbits in 

UJJO* where (OtSH is such that
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Proof. In this general case U JiK) consists of all matrices
‘“ ‘ ( ' i '  ° } K

„(AT) such that

x u *Ur(K)rJ>WUr(K )P (fl).

Letfe  VD(<p). Then (by lemma 4.1.2) we may assume that

A(f)= P (x )'

0
where AeMr(K) is upper triangular. We claim that there exists geCHf) such that

J  B P ( t ) 'A (g)
1,0 0

where Be U£K)rJ>(‘t)UjJC)P('Cl). In fact let ge Un(K)* be such that ¿4(g) has this form

and let J
•*11 -*12 eU„(K) (xu jc22e Ur(K), Xi2eMr(K)) be arbitrary. Then (as in the
 ̂ 0  X22>

previous cases g = x /if  and only if the following equalities hold

(i) P M \iTA)=pr(Bxx1t+ /,(t)x12t )

(ii) Xn TP(t)-P(t)X22T

(iii) p,(x12TP(T))=0.

The equation (iii) is satisfied if and only if the matrix x 12TP(t) is lower triangular. 

On the other hand the equation (ii) is satisfied if and only if

xu T-P(T)x22TP ( r 1).£/r(A0nP(T)£/r(AD-p(r1)

where Ur(K)~ is the subgroup of GLr(K) consisting of all lower unitriangular matrices.

Now consider the equation (i). Since A m U r( K)  there exist 

Be Ur(K)nP(t)U,(K)P(f 1) and Cm U/K)nP{ri)UjiK)-p{tl) such that

A “B+C

(see pg. 6). Now the equation (i) is trivially satisfied if we define

xn T»/r and x 12T» P (f1)C.

Since Cm ur(K)nP(t) U ^K )'P (fx) we conclude that

x 12TP (t) -P (r 1)P(t)x12TP (t) -P (r 1)C P (t).P (r , )P(t)«r(AO'/,(trIV,( t ) - W . .  

Hence x12T/*(i) is lower triangular and (iii) is satisfied. Finally (ii) is trivially satisfied if

i I
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' a P{T) '  
0 0

we define x2 2 =lr. Our claim follows.

Now we assume that

A(fl-

where Ae u r(K)nP(t) u £ K ) P { 1 ). Let xe (/„(£) be as above and suppose that

A(x./)=f*  W  
<° 0

where Be Ur(K)rJ,('t)Uj.K)P(.-fl). Then the above equations (i), (ii) and (iii) are satisfied.

Let Un(K)* -* Ua (K)* be the natural projection (i.e. for any f e  Un(K)*, i t j f )  is 

the restriction of / t o  UJJC))- We denote by u n(K) -» UJJK) the canonical projection 

(we recall that UJJC) is a direct summand of U„(K)). Then, for any f ‘,g’e UJJC)* , we 

have g ' - y f  if and only if p a/yTA(g'))=p<ü(A(/').yT).

Now consider the equation (i), i.e.

pr(xu TA)=pr(BXi iT+P('C)xn T)=Pr(Bx1 ?)+Pr(P{T)X i2T).

Then

P tC*i iTA)=p^Bx1 iT)+p^P(i:)xn T)

where p+ Ur[K) -» U ^K ) is the canonical projection. Since p r(x 12TP(T))=0 (by the 

equation (iii)) the matrix x l2TP(t) is lower triangular. Hence

P(t)x12T^P(t)xn TP(.t)P(rl )eP{t)Ur(K)-P{rl)

and

pr(P{X)Xl2T)e Ur(Kyj>(T)Ur(K)-P(fl).

It follows that

p£P ( t)x12t )-0  

so

Pt(-*iiTA)-Pt(flJCn T).

Since xn T.  ur(K)nP(t)Ur(K)~P(.jf 1) (see the first pan of the proof) we have

x n eUr(K)nP(Dur(K)P{'ex).

It follows that

»
Kj<g)my n j f )
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where

Conversely suppose that K jig)=y-njf) for some y* UJJC). Then

where jcn e Ur{K)rJ>('t)ur{K)P{fx). Then

P t(* iiT*H>tCB*iiT)-

Hence there exists C* Ur(K)rP(t)UjK)~P(fl) such that

P r ( *  1 1T^  )= P ,( f i* i  1T)+ C .

Then we may define x  12T= P ( t ' 1) C  and (i) is clearly satisfied. Moreover (as before) 

*12TP (* )e Ur{K)~ and (iii) is also satisfied. Finally (ii) holds because 

jcn Te Ur(K)rP('i)Ur(KyP(?1). It follows that geO(f).

Corollary 4.1.10. Let teSr and let tp:D -*K* be arbitrary. Then the UJK)-orbits in 

VD(<p) are in one-to-one correspondence with the UJKyorbits in UJK)* where <OeSH is

such that

Proof. Let yr.D-*K* be the map defined by for all (ij)*D . We define the map

&'Vd(Y) -* Vd(<P) as follows. If/«V0(y/) then d(f)eVD(<p) is the element such that

where xmGLJK) isjhe diagonal matrix whose diagonal entries are

Then ri is an isomorphism of algebraic varieties. The result follows by the previous 

proposition because

The proposition is proved. ♦

0)
1

if l£ /£ r 
otherwise

< H y f) -0 c y x ') -w

for all ym UJK) and a l l I n  fact
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M W y f)) -x A (y f)x i-x p n(y TA(f)(yTy l)x 'l*'pl,(xyTA(f)(yTy lx A)

-p H(w Tx lxA(fa'lx(yr y lx l)~pH(xyTx lA(i)(f))xlx(yTr lx’1)

- P , ( ^ l)TxA(/)x-1((x y r1)T)-, )-A((xyx-1)-i>(/))

for all y« Un(K) and all fm VD(ÿ). ♦

I I
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4.2. A decomposition o f VD(cp)

In this section we fix a basic subset D of <P(n) and a map <fr.D-+K*. As usual K  is 

an algebraically closed field either of characteristic zero or of prime characteristic pZn. We 

assume that the smallest root of D lies in the n-th column, i.e. there exists /* {1,...,«} 

such that (i,n)eD. Moreover we assume that i<n-2 and that the set

D '(i>0 'fi {(a,i); 1 <a<i-1}

is non-empty (here D' is the derived set of D). Then (by theorem 3.3.3) the variety VD(<p) 

contains at least two (/„(AO-orbits.

Our aim is to obtain a decomposition of the variety VD(<p). This decomposition

depends on the roots which lie in the set D\C). In fact we will associate to each root in 

D \i ) a certain polynomial function (defined on Un(K)*). Moreover if the root is chosen 

conveniently we will show that the function is i/n(AT)-invariant (hence it can be used to 

define a proper subvariety of VD(<p)). In the following we motivate the introduction of 

these functions.

Let/« vd(<P) be arbitrary and let UJK) be the element defined by

if i<a<n and b=n

J  <p0»'!/0?£«) if and i<b<n
1 if a*b

-0 otherwise

(cf. (3.1.6)). Then the element x  f* VD(q>) satisfies

(,xf){eiJ ’*<p(i,n) and (X'/Xe^MX'/XCfeM) (i<aj><n).

We let g * x / .  Since VD(<p) is i/„(AT)-invariant we have g * V D(q>). Now let 

a>*(/i-l... i+1 Then the matrix A(g) (as defined in section 4.1) lies in the 

subalgebra UJJQ=un(lC)nafx un(K)o) (cf. (1.1.13)). We define the matrix A Jig) by

AJg)~P«o)A(g)P(,o)1)

1
I
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where P{(o) is the permutation matrix associated with comSn. Then 

AJg)m UjK)nO)Un(K)<u ’x̂ u„ i{K ).

Let

where Am UiA(K), Bm Un_iA(K), C is a matrix of type (M )x(n-i-l), a  is a row vector of

lenght t'-l and a=(p(i,n). Since
0 0 > 
1 0 
0 0 
0 1 >

we have
i  A C a 0 A 

O H O  

0 0 0 a  
V^O 0 0 0 J

Therefore A Jig) defines an element e Un(K)*, i.e.

A Jg >

A t J g ) = A ( g J ) .

By theorem 3.1.7 there exists a unique basic subset D m of 0{n) and a unique map 

<p,j.Du -*K* such that VDJi<pJ). It is clear that the smallest root in D„  is (n-l,/i). 

Therefore the variety VDJ,<pJ is canonically isomorphic to the variety VD 0) where 

D ^o^aP ^C /i-l) and qf^o is the restriction of <pa  to

Now we consider the set D m0. For simplicity we write D imDn0  and o- Let

(r^)a be the smallest root in D x and suppose that j» n -l. Then we must have r<i-\ 

and g j e r»-\)mg(erd- We know that the function t :VDi(q>x)-* K  is £/„(AO-invariant

(we note that this function is defined by d ^ x(f)mf ( e rn. l)-q>l(r,n-1) for a ll /«  

Moreover for any am {1 .....M } the function d ^  ,:Vd (9 i)  -* AT is U „(AO-invariant and

we have ¿ ^ ( 0 - 0  for a ll /s  V0i(p,). Therefore J - 0. Next we

I
will prove that for any am {l,...,r}  there exists a {/„(AO-invariant polynomial function
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f 'ai:VD((p)-*K such that KPai(h)=g(eai) for all heVD(<p). In particular we must have 

<P„(A)=<p1 (r,n-1 )*0 and tPJ<h)=0 for all ae ( 1 ,...,M } and all heVD(<p).

Let feVD(<p) be our initial element and letxeUn(K) be as in (4.2.1). Then x-f=g and
(n-l

g(eai)=(jr-/)(eai)=- «pO»'1] Y j ( e ab)j{ebJ
\bmi

for all ae {1,...,/-1}. Therefore we may define 'Fai:VD(<p)-*Kby
r . ,  \
Y iW eakM etJ
b*i

'Fai(h)=-qK i,ny

for all heVD(<p). However we will consider the polynomial function O^iU^K)* -*K

which is determined by the polynomial
n-1

e j J r t  (jrj)e <Hn))=Z,TaJ lme K[Tr*  (r ,j). d>(«)]
b**i

where Trs, {rj)e 0(n), arc n(n~^  indctcrminatcs over K. Then we have

e atih)-<lKiji)'Fat<h)

for all heV D(<p). It follows that &ai:VD((p)-* K  is (/„(/O-invariant if  and only if 

^¡-.Voiv) -»K  is U„(AO-invariant.

In order to prove that the function &ai:VD(<p)-*K is (/„(10-invariant we establish a 

general Jesuit which can be applied in later cases. Let V be (/„(AO-invariant subvariety of 

Un(K)* and let P :V -*K  be a polynomial function. Then there exists a polynomial 

PiTaifi (ajf)t $(n)) in indeterminates (ajj)e such that

/,(AW>(/(ea6); (a,««<*«)).

Therefore we may define the differential map dP:V -* Un(K) by the rule, i.e.
-  _ (dP)(f)~ Z

(**)•«0») JjD
for all /a  V (we recall that denotes the (a,b)-th partial derivative of the 

polynomial P).

i I
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Theorem 4.2.1. Let V be any Un(K)-invariant subvariety o f Un(K)* and let P:V —> AT 

be a polynomial function. For each (ij)e <P(n) let n# be the degree o f the polynomial 

Pij<t)=P(Aeab)+tA[eij,eab]y, {ajb)e *(n))e K[t].

I f  K has prime characteristic p, we assume that p^.max{nij\ ( ij)e  <P(n) }. Then P is 

Un{K)-invariant if  and only if(dP)(f)e r(f) for all fe  V (').

Since every element of Un(K) can be written as a product of elements

x1>(a )= l+ a e 1>

where 0V)«<P(n) and aeK, the function P:V-*K  is i/„(Af)-invariant if and only if

P(Xij«X)f)-P{f)

for all (ij)e <P(n), all aeK  and all fe  V. In other words P is {/„(AO-invariant if and only if 

P is ^(AO-invariant for all (/J)e ®(n) (we recall that X ^K )  denotes the (ij)-th  root 

subgroup of Un(K)). Therefore the theorem is a consequence of the following:

Proposition 4.2.2. Let (ij)e  <D(n) be arbitrary. Let V be a X^IQ-invariant subvariety 

of Un(K) and let P:V -*K be a polynomial function. For each (ij)e  <P(n) we let n¡j be as 

in the theorem and we assume that p^m ax  { (ij)e  <b{n) } whenever K has prime 

characteristic p. Then P is X^K)- invariant if and only i//([Cy.(d/>)(/)])=0 for all f t  V.

Proof. Let t be an indeterminate over K. For each fe  V and each (a,b)e <I>{n) we define the 

polynomial ^(i)eAT[/] by

i& iO - A e ^ + t fa e i j ^ ) .

Then

for all cceK and all (a,b)e <Hn). Therefore

P U y < a ) /) -P (^ (a ) ;  (aj»e  <P(n))

for all a tK . Let ^(t)eK [t]  be the polynomial

^ ( t^ P ^ tY A a M e U K n ) ) .  1

1 We recall that for any/« u„(Af)* tif) denotes the radical of the bilinear form Bf
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It follows that

P  is Xy{Af>in variant <=> 0^(a)=0^)(O)=/>(/) for allf t  V.

Since K  is infinite we conclude that

P is X,/AT)-invariant <=> <p®(i)=P(f) for all f t  V.
(»

Now suppose that P is X^AO-invariant (hence 0(0 is constant) and let f t  V be 
arbitrary. For simplicity we will write 0(0 and 0 ^ (0  instead of 0*^(0 and of 0*2(0

respectively. We also denote by 0'(O and by (0a*)'(O ((n^>)« dtyi)) the derivatives of 0(0

and o f  ̂ ( O  ((a,b)t <D(n)) respectively. Then (by the chain rule) we have

0'(O= X  (<?a^)(0ai(f); (aj>)e <Hn)) (0ai)'(O
(0,6). <*n)

= X  ( ^ > ( ^ ( 0 ;  (a,*)« «Oi))/a«0. «<*]).
(a.*),««») 7

Since 0(0 is constant we have 0'(O=O and so

O=0'(O)= X  (<?o^)(^(0); (a,b)t * 0 0 )m * u * * i)(o,i).«(n)
= X  (3*P)<K««*>; (af>)t <Pin))/([«i,,«ai])

X  dabP(f)eab
/

=/([«,>, (dP)(0]>-

Conversely suppose that

/U«(,,(dP)(A])=0

for all/«  V. We let/« V be arbitrary and we define

0(O-0w(O«Atfr]

as above. We claim that 0'(O=O- By the chain rule we have
0'(O- X  (5fli/ ') (0 a6(O;(a,6)«<P(«))/([ei.,ea*])(«,*)• «(n)

where for each (ajb)t Q(n) the polynomial

is defined above. Now let ct»K be arbitrary. Then

(JUPXXfM)-» ««a

-  X  (<3^X006(0; ( ^ « ( n ) ) « ^

and
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(JCy<a)-/)([«,y.v])=/([ey,v] )+af(leij,[eij,v]\)=f(\eij,v]) 

for all ve Un(K). In particular consider the vector

(dP)(Xij(ayf)*Un(K).

Then

Since V is X,y(AO-invariant we have

*;/<*)/« V.
Therefore (by hypothesis)

(x^ayf)([eij.(dP)0cij<a)f)])~0.

It follows that

*'(«)= Z  ( ^ ) ( ^ ( a ) ; ( a ^ ) €  <Hn))meij,eab\)
(a.b)* *(n)

-AieijXdPXXijiayf) ])=0.

Since oseAT is arbitrary and AT is an infinite field we conclude that <p\t)=0 as claimed. This 

implies that the polynomial <p(t)mK[t] is constant - we note that (by our assumption) p  is 

larger than the degree of <p(t) whenever K  has prime characteristic p.

The result follows. ♦

Now we consider the differential

d e ai:Un(K)*-+Un(K)

of the polynomial map 0 ai: U„(AT)* -» AT (l£a< i). For any fm tf„(Af)* and any 

am {1....U-1} we have

(d B a iX A ^L A e a b ^ lm + ^A e b n ^a b -imi bmi

Lemma 4.23. Letfm VD(<p). Then

A U r r i d e ^ m ) ^ ' 1̂
i f  s=a 
otherwise

for all am {l ,. .. ,i - l} and all (rj)m tf(n).



156

Proof. Let ae {1,_u-1} and (rj)e  &(n) be arbitrary. Then
n-l n-1

A [ers,{ d e j( f) \ )= Y j{ e^ m ‘ r ^ ) + L A e b n m e r , ,e ab\')-b**i b=i

Suppose that sc [a J ,...ji- l}. If rc {<*,....n}, it is clear that

A\.ert,{d 9 J (f)]> 0.

If re { }  then we must have s=n (because i£r<s). Hence r<n and

A [em.(d0aim ] h -J ie rnif{e<m)=O

(because a<i and f<= VD((p)). On the other hand suppose that se { i , . . . ,n - l }. Then 

rc {¿,...,«} (because r<s<i) so

i d i j d e j O l H U l i j - o

(because r<i and fe  VD(qj)). Finally suppose that s=a. Then rc (because a<i) and
«-1

A[era X d 0 J ( f) ] )^ lA e bnif{erb)= eri(f).bmi

The lemma is proved. ♦

For each ae {l ,. .. ,i- l} we define the subvariety Va of VD(<p) by

(4.2.2) v a=[fe v D(<py, e ]i( f ) - e 2i( f ) - . . . - e j f ) - o ) .

We claim that Va is (/„(AO-invariant for all ae {l , . . . j - l }. Since

Vi.1c...cV '1cV,0=V/D(^),

this claim is a corollary of the following:

Lemma 4.2.4. Let ae {1 ,... , i - l } be arbitrary. Then the polynomial function  

&ai'-Va-i -*K  is U n{K)-invariant.

Proof. By the previous lemma we have

(d e j( f)e x ( f)

for a ll/c  Va. t . If K  has characteristic zero this is enough to conclude the proof (by

theorem 4.2.1). On the other hand suppose that K  has prime characteristic p. Then in 

order to apply theorem 4.2.1 we must prove that for all feV bA and all ( r ,j ) i0 (n )  the 

polynomial
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W ) = e j f ( e m)+tf([ers,emY)\ (u,v)« <P(rt))eAT[r] 

has degree less than p. In fact for each be } the monomial

has degree at most one (because either/[[e,J,eaiJ)=0 or/l[[eri,e6J)=0). Since

b»i

we conclude that 0(0 has degree at most one. The lemma follows. ♦

C oro llary  4.2.5. Let ae {1...... i - 1 } be arbitrary. Then the variety Vac V D(<p)is

Un(K)-invariant. Moreover suppose that the function &u,:Va.x -*K  is not identically zero 

(here V0=VD(<p)). Then for each aeK, the subvariety

V'a(a)={/eVa.1; e j f l - a )  

o fV aA is Un(K)-invariant (we note that Va(0)=VJ.

Next we consider the minimum number of equations necessary to describe the 

variety Va (lSaci). In fact there could exist ae {1 .....M } such that ©ai(/)=0 for all 

fe  Va.\. For example if ( \,i)eR(D ) we clearly have ©;,•(/)=0 for all fe V D(<p). More 

generally we have:

Lemma 4.2.6. Let ae {l , . . . , i - l} and suppose that (a,i)eR(D). Then

Proof. Let/« Va-1 be arbitrary and let x* Un(K) be such that the element g~ xfe  Un(K)* 

satisfies ¿(«¿J-O for all be {i+ l , . . . ,n - l}. Then

8ci(8)m8(eci)8 (eJm8(ect)<P<.l>n)

for all c* {l , . . . , i - l}. Since Va.x is £/„(AfHnvariant we have ge Va.x so ©C1(g)=0 for all 

ce {l,...^ i-l} . Since <p(iji)*G we deduce that 

( 4 - 2 . 3 )  g ( « ci ) - 0

J 0  if (a,i)eD
a {Vm.x if  (a,i)eD1={(

1 I
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fo ra llc E { l,.../i- l} .
Now we consider the polynom ial function A°ai:Un(K )* -* K . Let 

D (a J )^[(iiJ i) ......(W r)}.>i<— and let <r*Sr be such that ¡a(i)<— <ia(ry Then (by

(4.2.3) )

(4.2.4) ^ ( i W - i r i i i J ^ ' S ) .

Suppose that (a,t)*D. Then A^(g)=0. Hence g ie^^C  and

©<u(i)=«(«ai)«(ein)=0.

Since &ai:Va.\ —> AT is C/„(AT)-invariant we deduce that

0aitf)=&at(x -f)=6ai(8)=°-

Since / i s  arbitrary we conclude that Va=Va.i as required.

On the other hand suppose that (a,i)eD. Then

Thus (by (4.2.4)) g(ej)=<p(aj) and so &ai{g)=<p(a,i)<p(i,ny^O. As before we deduce that 

and this implies that Va=0.

The proof is complete. ♦

Lem m a 4.2.7. Let ac {1,...,/-1} such that (a,i)*D\i). Suppose that Va.x is non-empty. 

Then fo r  each aeK the variety Va(a) is non-empty and Vfl.j is the disjoint union

V V i - U  V a ( a ) .
CtmK

Proof. Let <x*K and \ex.fmVaA be such that/ie^J-O  for all bm { i+ l,. ..^ i- l}. Then the 

element

g-f+ iqtijt)-1 a-f(eaij ) e ai. *

satisfies

6 ate)-g (eJg (e^M f(eJ+ (p (l,n )Aa-f{eai))<p(.iji)-<x.
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Hence ge Va(a) and so the variety Va(a) is non-empty. The remaining assertions are clear 

because is (/„(AfHnvariant. ♦

The following result is an obvious consequence of the previous results (its proof 

uses an easy argument of induction):

Theorem 4.2.8. Let D  be a basic subset o f  roots and  le t <p:D -» K *. Suppose that 

(t» eD  and th a tD \i)= D 'n {(k ,i); \<Jc<i}*<2. Let

D  '(0= {(*i,0.....(*„0 },*!<...<*,.

Let se {1, Then
Vk = [fe V D(tp); 0 kxi( f )= .. .= 0 kii(f)=O}.

On the other hand let OeK. Then the set

Vk (a ) - { f .V k̂ 0 k/ f ) - a }

is a non-empty Un(K)-invariant subvariety o fV k (we p u t V ^ V o ltp )) . M oreover Vk̂  is 

the disjoint union

Finally suppose that there exists ae {1,...,/-1} such that (a,i)eD. Then

(0  i f  cat<p(a,i)<p(i,n)

Vki if  a=tp(a,i)<p(i,n)

for all aeK. In particular Va=0.

Since V^cVjfcjC.-.cVfccVo^) (the notation is as in the theorem) we conclude the 

following:

1

Corollary 4.2.9. Let the notation be as in the previous theorem. Then the variety 

VD(<p) is the disjoint union

i
VD(.<P)-Vky U  U  V (aj) .

sm 1 aj*K* *\ r /
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Now let feV D(<p) and suppose that there exists a« { }  such that/* Va(a) for 

some aeK*. Then we have (1 <b<a) and

Hence a is the smallest integer be { l,...,j-l}  such that Moreover (by theorem

4.2.8) either (aj)mD or (ia j)e D '(0 c P If (aj)*D  then

a=qta,i)<p(i,n).

On the other hand suppose that (a,i)eD\i). For convenience we put a=al and a= al .

Since (a x,i)eD ’ there exists b xe {i+1...... n -1} such that {ax,bx)eD . Our aim is to

decompose the variety V ^ a j)  as a disjoint union of £/„(Af)-invariant subvarieties. For

we define a new set of polynomial functions on Un(K)* and we imitate the arguments 

used before.

Let geV D((p) be such that g(ejn)= Q . (lSySn-1) and g(ein)=<p(i,n)=a. Let 

<B=(n-l... i+1 i)eSn and define g ^  un(K)*, D xt<D(n-\) and <px.Dx -*K*  as before. Let 

ae { a j+ lf. . . , i - l} and suppose that the root (a .^ - l)  is D r regular (we note that the root 

(a i.b j-1 ) is D j -singular because ( a j .n - l jc D i;  however there does not exist 

ce { l , . . . ,a 1- l } such that (c^>i-l) e  D x). We consider the function 

This function is i/B(AT)-invariant and we have

: : :
* W  *(eW .> -

^  gai g ^ a j )  ••• 

w hen (ixJ x)m(axJ>x), D x(a,br l ) " i (<2^2)..... (W r).(«i^-D"W i,« -!)} .

and <JeSn is such that «ad )<ia(2)<- • • As in the previous case this suggests the

definition of a polynomial function A ^U ^K )*  -*K  as follows.

Let am {a1+ l,...,/- l}. Let

D t a f r i - l H C f n t o .........( t r J r ) ) J l < — <Jn

(we note that (ixJ x)m(aXfb x)) and let <JmSr be such that io(i)<---<io(ry We define the 

polynomial function A^: Un(K)m ~*K by
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(4.2.5) AJf)~det

^  ©0.(0 *«*,) ... /(««/,) y

for all /e  Un(K)*.

As in the previous case the first step is to show that for each ae { a j+ l.- .-J -l} the 

function A r f Un(K)* -* K  is i/„(A0-invariant when restricted to a certain subvariety of 

Va,(a i)- This subvariety is defined by

whenever (aJb^sA^iD). We have:

Proposition 4.2.10. Let ae { a1+ 2 , . . . , a - l } be such that (a,bi)«S^r\D )  and let 

/eV V i< a i)-Tften th* vector (.dAJ)(f)e Un(K)* lies in the radical r(/) o f the bilinear form

Bf, i.e.

fo r  all (r^)* dtyt).

Proof. For each root (rj)m &(n), we define the polynomial function tirs:un(K)* -»AT by

for all/« Un(K)*. Then we obtain a morphism of algebraic varieties &.Un{K)+ -* Un(K)* 

if we define

<Hf)(CrJ-*rJf)

for all/« U„(A0* and all (rj)*<P(n). Moreover if D(a^»r l ) -{ (ixJi)„ ..,(/„/,.)} ,> |< ...</,,

1 We note that the condition (bJ>l)tS'(D) corresponds to the condition (fr,b,)•£(£,).

Vaia(o,)= t/« Vat(a j); Afcl(/)=0, a ,+ l£ô£a , (W»,)«S<'>(D)}

(for the definition of the set &r\D )  see pg. 85) C1). We note that

V,a,a(«l)=V'aia-l(«1)

A [e rAd<t>J(f)])=0

*,,(/) if i - i  
> „) otherwise
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and if OeS, is such that ¿a(i)<---<1a(r)>we have

V l— Jr

fo r all / e u „(K)*. For simplicity we will denote by 4  the polynomial function

‘J l —Jr

Let/« un(K)*. Then (by the chain rule)

(drlAai)(f)= X  (<?BVd)(t
(u,v)m<P(n)

for all (rj)eG(ft). Therefore

X  (drsAai)(f)e„=  E  X
('■-»)« *(«) (r^).«(n)l(u,»)€*(/i)

= X  (^v4)(tX/))i X(u,v)« «(n)

i.e .

Since

(dAJ(f)=  X  {duvA ) ( W ) W uv)<f).
(U,v)m *(il)

if v=i 
otherwise

we conclude that
r r r r

(d d J (/)^ m</)(d0J(/)+X c.a0l)i</)(d3 aW»)</)+X c ^ , +X  X

where for each ¿s and each h  { }  cu (f)e K is the rxr minor of A JJ)

“complementary” to the position (*,/).

Now let /§  V ^ icC i)  and let (r,s)e <J>(n). We compute the “scalar” product 

X[«rrW^ai)(/)])- By lemma 4.2.3 we have

A [er„(d© *)(/)]M ,*©„</)

for each be { l,...¿ -I} .

Suppose that s i [a,ii......ir }. Then

A[«rrW©K)W])-0

for all be If r« it is obvious that
i

4
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Now let r=/v for some v« {l,...,r} . Then
r

T  ,< * /» .r/v*i "vr

We claim that this determinant is zero. For we will show that the column-vector 

is a linear combination of the column-vectors

for U6 {v+l,...,r} (we note that j v=r<s). This is obvious if for some us {v+l,...,r}. 

On the other hand if j r<s we have

(we note that (a ,b i)sS(r\D )  so (a,s)sR(D)\D) and the claim is obvious. Finally let 

us {v+1,...,/•} be such that j u.\<s<ju. Then

D(aj)*= {(iuJ J ..... (U r))
and

(M > ..... (/„.I j)sR (D ).
By theorem 3.1.7 we have

r
V'D(<P)=Z O niqK U ,)) + VDa(Vo)

on ■
where is the (i„/,)-th elementary (/„(AO-orbit associated with <p(Ut)sK*

(uSxir), £>0=ZA{ ( i„ JJ ,.. .,(Wr)} snd ft) is the restriction of 9  to Z)0. Therefore

fr fu +---+fr+f
w h e r e 0 ^ ( <fKiJ,)) (uSrSr) and/« VDo(ft)). Thus for each ¿x {r^M,...^ r } the vector wfc 

is a linear combination of the vectors

-  f t (* i^ b ) f t ( ‘ ab))T

for r« {u,.../-} (we note that (a,s)«/?(D)\£>). On the other hand (by lemma 3.1.1) for each 

r« {u,...,/•} and each bs {sJu,...Jr } the vector is a scalar multiple of . It follows 

that

i
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r  r

Wfc« X  K K wtjf

for all b t { s jH,.--Jr}- Thus

where

l*U t=U

dimV<jr-u+l

r

V=Kws+ £  K w j .

Since A '(fy*0 (see the proof of proposition 3.1.2), the vectors w ; a r e  linearly 

independent. So

dimV=r-u+ 1

and this implies that ws is a linear combination of the vectors as required. It

follows that

A ?0" ' *? . (tf(/))=0

so

Now suppose that s=a. Then r<s=a<i<ju (lS u ir), so rt { j\,...Jr) and
r

K[eraXdAai)(f)])=cai<f)eri(f)+ X  Caj W f i r j )
V»1

(we recall that (by lemma 4.2.3)). Therefore

VvJr

As before we claim that this determinant is zero. This is obvious if re { /i,...,fr} so we 

assume that rt {ilt...U,}. I f »<*,.)</• then

because r<s-a  and (r,bx) t& r\D )  (otherwise r t  { /j ,...^ )} ) . On the other extreme if 

r<ioii) then/(eri,)=0 for all 6« and

O nW -fariW uJ-O -
Therefore we clearly have

/* ,,"W(0</))«O.Vf-/r

1 I
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Finally we suppose that i 0(ii)<r<io(«+t) for some uc { l ,. . . ,r - l}  and we consider

the matrix

~ * w i >

^  ©r«(A .*«,>,) ... / f y , )  y

We claim that A has rank u. Since 

we have

4 ‘<*n . ' o (scg ti,e proof of proposition 3.1.2)
ArtlvAjM

rankAe { u ,u+ l}.

Suppose that rankA=u+1. Then there exists a non-singular submatrix A' of A of size 

14+1. Since (rJv)eR(D) for all v* {l,...,r}\{  o ( l),...,o(u)}, the column-vector

••••«“ « < ^ h » t

is a linear combination of the vectors

wi« r< * e w « « ,) -

for re {1......u} (see the previous paragraph). Thus the submatrix A ' (if it exists) has to be

"• ^ W « o o ) ^

< ©«(/) /<«„*,,) -  A«**,) >

Now if r<ax then

■=e ia(l,)i f )m eriV)=0

(by definition of Ot - we note that i0(v)<r for all v* {1,...,«}). Therefore detA '~0 and we 

must have ax<r. Then

{(*<xi)«/<xi>)..... (̂ <k«)</ck«)) ) “  {(ai^»i) }vjD(r^>t)
Thus

d e tA ’~ ± A ri(f)mQ

because r<a and (rJt\)*SP\D). We conclude that the non-singular submatrix A' of A
1
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does not exist and so rankA=u as required. This implies that 

as it was also required. Therefore

Finally suppose that s=i<xu) for some uc {l,... ,r} . Since r<s=iH<a<i<jv (lSvSr), 

we have r t  Therefore

U l- J r

and we may repeat the above argument to conclude that this determinant is zero.

The proof is complete. ♦
m.

As a corollary we obtain:

Lemma 4.2.11. Let ae {a1+ 2 ,...,i- l} be such that (a,bi)tS^r\D ). Then the polynomial 

function -d«: va,a-i(a i) -*K is Un(K)-invariant.

Proof. If K  has characteristic zero the lemma follows immediately from the previous 

proposition and from theorem 4.2.1.

On the other hand suppose that K  has prime characteristic and let us determine the 

maximal degree of the polynomials

*t)-AJJ{eM)+tfl{e„.eM\)-, (p,q), d > (/i)).tf[r]

where/« V'<li<J. 1( a 1) and (rj)*  0(n) are arbitrary. By definition we have 

# 0 -  X  X  M6tt(/(eM)+r/i[[erj,eM]); (p^)« &(n))

where for each bm { i,...,n -l} and each VeS^. 1

Mb.^Tp r  (pj)m  <P(n)]

is the monomial (in the indeterminates Tpqy (p#)* <tK,ri))
' f
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Mb,x(Tm ; (p,q)e O in ^ sg n iD T h J i^ p T

where D(aJ>l- l ) - [ ( i lJ l),...,(irJr)]fJi< — <Jn 4,1(1 ir*ima- L« b* U......«*1} and let

T»Sr+l. Then the polynomial Mb j j pq; (p,q)e <b(n)) is not constant if and only if there 

exists (p,q)t [(b,n),(i^i)J>),(i^2)Ji),---MT(.r+i)Jr)} such that/([er„eM]M ) and this is 

possible only if s* [b4^iy,...4^^.\)} or rc [b jx,...J r) (we note that r<iSn).

Suppose that sc {¿Ui(i).<--.<t(r+i)} and that rc [bJ\,...Jr). Then the polynomial

(P^)« <P(«))«^t]

is not constant and its degree is less or equal to two. Suppose that it has degree two. Then 

r=b=ju for some ue {1,.. .,r} and the coefficient of I2 is

On the other hand let tube the transposition (1 M+l)eSr+1 and consider the polynomial 

M j^JJiepJ+ tf& ej^epjy, (p,q) c < (̂/*))e AT[r].

This polynomial has degree two and the coefficient of r2 is 

sg n (

Now suppose that se {i>,it(i) ,...^ 1<,+1)}. If s=»t(B) for some uc { l , . . . , r + l}, then 

rc [b j\ ,. ..J r] (because r<s=i^u)<a<i, iS£>S/i-l and i<jx<...<jr) and the polynomial

Mb.M eM)+tA l‘ r i^y e M]); (P#)* <P(n))cAr[r] 

has degree at most one. On the other hand suppose that s=b and that 

Mb. ^ p<l)+tfi\.erb,eM\)\ (p,q) c <P(n))c K[t\

has degree two. Then we must have n*ju for some uc {l,...,r} , and the coefficient of t2 in

Mb.t(fieM)+tf[[ejj,,eM]); (p,q)t d>(rt))c AT[r] 

is

As before we may consider the transposition « H I u+1) and the polynomial 

This polynomial has degree two and the coefficient of t2 is
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It follows that the polynomial ftr) has degree at most one. Finally since the root 

(r^s)« <P(n) is arbitrary we may apply the previous proposition and theorem 4.2.1 to

whenever (a,f)*R(D)\D. In fact:

Lemma 4.2.12. Let ae [a i+ 2 ,...,i- l]  and suppose that (a,i) is D-regular (hence 

(aJbx)eS^\D )). Letf^VaaA(a{). Then A JJ)*0  i f  and only if(a,i)eD.

Proof. As before letD (a ,h i-l)={(i1J 1)......(irJr)}J\<---<jn  and 1« oeSr be such that

,o(i)<...<itKr). Then (by definition)

where &.Un(K)* -* ltn(K)* is defined as in the proof of proposition 4.2.10.

We claim that there exists an element x=(xuv)e Un(K) such that x f  satisfies

In fact let D (a,0={(r!4i)......(rpj p) ) , sx<...<sp, let u S p be such that r1(1)< ...<rt(/,) and

consider the system of linear equations

conclude the proof.

As in the initial situation the next step is to show that

♦

' V a i>“ vV i < a i>

(xf)(eaju)=Q
for all ue { and

0*1 ••• ^ y ) )

where
'M ,« ,)  ••• A ‘rts )  >

^ ev , )  '** >
Since

detA-sgn(f)A
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this system has a unique solution (/3t ... ¡5p). We define x**(jcm)*Un{K) by

if (u,v)«(rfta), l£q£p
if u*v
otherwise

Then

for all ba { a + 1 , . T h e r e f o r e

(*•/)(««*)-<>

for all 6e { slf ... ,j^ } . If be then we consider the function

4d,:VD(<P) ~*K  (we note * at (a,b)eR(D)). The last row of the determinant A ^ x  f)  is

((*•/)(««*) (*•/)(«„,) — (xj)(eas) )=( (*•/)(«,*) 0 ... 0 )

where and s0=i. So

V ">

where T'eSp_i+1 is such that rT.(?)<...<rT.(p). Now suppose that i<b. Then (a,b)*D and

4 * (* /> -o .

Since A«*y '« ' )(faO we conclude that 
V"1>

(jc/)(«a*)'0 .

The same argument justifies that

U / X « a i ) ” °

whenever (aJ)«D. Finally suppose that (a,i)*D. Then

^ C * /) - ( - iy '9 i ( a ^ /yo,' r*w (/)-  *rnv
(by proposition 3.1.2) and (x-/K.eJ)»f(.aJ).

Now (by the previous proposition) the function A ai:Vaia. x( a x) -* K  is

(/„(AO-invariant. Therefore

1 t
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By definition of the polynomial function &ai:Un(K)*-*K  we have

qtaJ)<p(.iji) if (a,i)eD
0 if (a,i)eD

Since d ,o0>. "loW(x-/M) the proof is complete.
J l —Jr

This lemma allows us to write a similar version of theorem 4.2.8:

Theorem 4.2.13. Let D be a basic subset o f <tX,n) and suppose that (i,n),(a1,bl)eD  

where ax<i<bx. Suppose that the setX ^[(k ,i)eD '\a l<k, (bltjfc)«S<r)(Z>)} is non-empty 

and let

X -tO fc jA - .iV )}

where kx<...<kt. Let c^eK*. Then for all se { l,...,f} and all peK  we have

v *  I/« V « ! ) ;  • • = A t/f)= 0 }

for all se {1,.. .,t) . Moreover fo r  each fieK and each se [ l, .. .j t)  the subvariety 

Vaxk(Otx.P )-\fe  VaxtJ a x)\ A ks li(f)=p] 

ofVat(ax) is non-empty and U„(K)-invariant, and ̂ ,*„,(**1) is the disjoint union

(here Vaxk£-a \)-V ax(a \))- Finally suppose that there exists ae {*,+1...... i-1 } such that

(a,i)eD. Let D (a ,b i-l)= [(ix Jx)...... (W r)} »J\<— <jr> an£i igt o*Sr i>e such tb**

ig(\)<.. .<fo(r). Then
r

A v axk,(<Xi) if  P = (-i)rign(a)(p(a,i)(p(i,n)ri<p(ikJk)

0  otherwise
« V

for all oteK. In particular Z.

Proof. Let se { l,...,r} and let peK. We claim that the variety Vaxk(a x,fJ) is non-empty. 

By induction we suppose that the variety Vaik̂ ( a x) is non-empty. Let/« V a ^ ia j )  be an 

element such that/fe;)1)-0  for ally* {l . . .^ i - l}. Then the element f+yekj*e un(K) lies in
1
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the variety V«,* ,(®i) f°r  all T^K. Since we may choose /su ch  that A kj xf f ) ^ P  we 

conclude that V ^ J ia ^ p )  is non-empty. The remaining assertions of the theorem are 

consequences of the previous lemmas except the statement about Vdia( a 1(/3) when

(a,i)sD . However this follows from the fJroof of the lemma 4.2.12 and also from the 

proof of proposition 3.1.2. In fact
r

Aa07' **(.x-f)=sgn(o)Tl<P(ikJ J
h —l r  jfc-1

for all fe  VD(q>). ♦

Next we will describe the situation on the whole of the i-th column. As before we 

assume that (i,n)eD for some ie {1,.. .,n -l}. We suppose also that the set

D'(i)=D-n{(a,iy, l£a<j}

has at least (¿2 elements and that there exists a sequence with the following

properties:

(i) lSa1<02<...<at<f.

(ii) (af,/)eZ )'forallse {l,...,r}.

(iii) If b,€ { l,...^ t}  is such that (a,,bJ)«D (ISsSr) then bl>b2>...>br

We note that (by (ii)) we have b^<n, i<b, and a,<a whenever (a,i)*D  for some

ae {1......i - l }. A sequence satisfying properties (i)-(iii) will be referred to as a special

sequence (with respect to the basic subset D of <£(«) and to the root (i»«D ).

In the adjacent diagram we show a special 

sequence with 3 elements. The roots in thts 

sequence are represented by the symbol □  (as 

usual the symbol ■ represents a root in D). If 

we apply the element aH o -l ■■■i+U)»Sn to an

element corresponding to this diagram we 

obtain the diagram shown below on the left.

The diagram on the rigfct corresponds to the

i  n
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situation in Da . In this diagram the symbol ■ indicates that the corresponding root was 

“transformed” in the root of D a  which lies in the same column (the roots in D m are 

represented by the symbol ■).
n-l n n-1 n

Now let (a,i)eD ' (l£a<i) and let be { » + l,.. .,n - l} be such that (a,b)eD . Let 

ce { a + l,.. ., i - l}, let D(c,b-1 )= { . . . .(«rJ r) }, j \<-■ ■ <jn  and let oeSr be such that 

t'od)<.. -<ia(ry Then we define the polynomial function Un(K)* -* K  by

(4.2.6)

for all /« Un(K)*.

- t e w )

\  e ci(f) A ecjx) ... fiecJr) J

Now we consider a special sequence (a lta 2<* •••o,) as above. For simplicity we

write A'?  instead of for all (c,i)eD ' such that a,<c (1 £r£r). Let be

non-zero elements-of K. Then we define the variety Va]aj <, ( a i , . . . ,a f) recursively as 

follows. If r« l then V^ i c t j )  is defined as before. If se { 2 ,. . .  ,r} then

va1...«,(<*it<*2..... a s) is *he variety consisting of all/« V-i_ -<>i( a 1,...,a* 1) which satisfy

the equations

A $ (f)-0

i
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for all ce [as_l+ \,...j is) such that (c,t>D ' and (cJ>s)*&r\D ), and

By induction wc assume that the varieties Va,«,...«#(a i ...... « ,)  (l^ iS f) are

C/n(AT)-invariant.

For each ae {a,+l....i-1} we define the subvariety Va x. . .a p ( a \ .......a t) ° f

• • *^t) by

Vav ..ap.((xi ’--- 'a t)= { / *  v/« 1...a, (a i - - - . O r ) ;  4 ‘f r ) - 0 ,  a,< b*a , ( c ^ e ^ f D ) }

(as above simplifies r i j j’®).

In order to prove the similar version of proposition 4.2.10 we define for each 

ft« {1 ,... ,a ,-l } a new polynomial function r\bi:un(K)* -* K  as follows. We let 

D(bJ?,)- {(ixJx).....(U r)}. 7i<-• .</„ and let S , be such that l ^ y c . . .<i<try Then

(4.2.7) »?«(/)- : : :

^  ® 6i(/) )  ••• ffcbj} J

for all /« un(K)m. This function has the following property:

Lemma 4.2.14. ft« {1...... a ,-1} and suppose that (b,bt)eR(D ) (lSft<a,). Tften

r]bi(f)~0for all f t  V a ^ .a ^ O h . ......«»)•

Proof. We proceed by induction on ft. LetD(ft,ftf)s {(ii'/i)....>(Wr)}>./i<"<</r< and let 

o tSr be such that ¡^< ...< 1^ .

Firstly we suppose that there is no ce ( 1} with (,cJ>^eR(P). We claim that
i
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4

-  1 (dTlbùV* rtf)
for ail /■ Vaiai...at(a i’a 2” "<a t)- F °r  we have (using the argument of the proof of 

proposition 4.2.10)
r r r r

(¿ % i)tf)= c«tfXd ew) t f) + X  C yJ ifie ti+ jL  X

where, for each pe {¿Mlt...,ir } and each qe [ i j \ , . . . j r } ,c pq(f)eK  is the rxr minor of 

TJd(f) “complementary” to the position (p,q). Now let (k,l)e <D(n) be arbitrary. If 

k*U l'—Jr) and/«{6,ij,...,ir } then

A U u^dT\bi){f)])=0.

If k=js for some se {l,...»r} then ip<b<i<j,=k<l for allp* { l,...,r} , so

where &.Un(K)*-+ Un(K)* is the morphism defined in the proof of proposition 4.2.10 

Since the column

( * W >  ~ * w > * ,«>)T

is a linear combination of the columns

f c b j )  )T

for ue {$,...,/•} (see the proof of proposition 4.2.10), we conclude that

i.e.

AU jj,{dribi)(f)])=Q.

Suppose that A:« and that l=b. Then

A [« to .W n « )(/)])-4 ^ ;"<a<,)*(iH/)).

By choice o f  b the root (b,br) is the smallest D-regular root in the ¿>,-th column. So 

(,kjbr)*S(D) and this implies that k t {/1,...^ r}. It follows that

i.e.

A[«».W»]n)(/)])-0.

The same argument applies to the case k~i, (1 is£r). This concludes the proof of our



175

claim.

Now the argument of the proof of lemma 4.2.11 shows that the function
tlbi:Vala2...a,(Oi,ce2......«»)-►* is ( /„(/O-invariant.

Finally let ..al(a i’a 2»"->a i) be arbitrary. Then (as in the proof of lemma

4.2.12) there exists x* Un(K) such that the element x •/« UH(K)* satisfies

(x-fKebJ)-0

for all tie {1,.../■}. Since the variety ^ (a i ,« * .••.<*») is (/„(/O-invariant we have

xfm v ala2...a,(a u a 2......a») and so

Since 0c-f)(ebj)=0  for all Me {1 we conclude that

(4.2.8) T l d f M A y e b i f l A ^ ^ W x f ) ) .
JvJr

We claim that

e bi(.xf)=o.
If f x a x this follows because Va^a {)  is i/„(/0-invariant and fe V a^ a x). So suppose that 

ax<b and let Me {l , . . . , r - l } be such that au<b<au+x (we cannot have b* {a!,...,a ,}  

because (b„b)eR(D) and bx>...>bt). We consider the function Un(K)* ->K. Since

x f e V ala2...aJia l ’( x (*)  w c  h a v e

A%(x-f)=0.

But (x -f){fibj)~0 for all Me {l,...,r}  so

^ (x f )~ e b i( f ) c ( f)

where c(f)mK is non-zero. It follows that &M(ft<-0 as required. By (4.2.8) we conclude 

that

and the first step of the induction is complete.

Now let (bJjr)*R(D) (1 Ztxa,) be arbitrary and assume that

T]b{f)m 0

1 We note thM - .s„(0 l*«2......««) >* (/.(/O-invariant „ ^ (a j .O j......a j  (because

■.. a,(®l •al>• • • .. «„i®! '®2** • • •*«))•
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for all/ •V aia2...a (.0Ci,al ,...,a t) and all b'* { l , . . . ,b - l} such that (b',br)eR(D). As before 

we claim that

(dr\b$(f)eV{f)

for a ll/e  Vaia2. . ••.<*»)• Let (*,/)« <P(n) be arbitrary and consider the scalar 

product (dtjw)(/)]). We keep the notation of the first step of the induction. If

km U i f J r )  we may repeat the previous argument to conclude that

X[*«,(dT/w)<fl])=0.

Now suppose that ke [j\,...Jr] and that l=b. Then

A [ea XdTlbm ) = d * ' r ''‘*')\ m i
V I •••Jr

We claim that the row-vector (©*,(/) ••• is a linear combination of the

remaining rows. This is clearly true if either ke {i1(...ur } or If k>i^r) then

(by induction because *</=& and (k,b,)eR(D) - otherwise £c {ij,...,/,}). On the other 

hand, suppose that i0(«)<*<i’o(iH-i) f°r  some ue { l,... ,M } . We consider the matrix

A= ‘
- ^ W - )

^  ©«(/) / f y , )  — /(««,) y

The argument used in the proof of proposition 4.2.10 shows that this matrix has rank

u+l if and only if the matrix

f + m P  — ^ aay « w ) ^

A'» : :

is non-singular. Since (kJ>,)uR(D) (because fa [iu ...J r}) and 

D(k,b,)~ {(iotD^od))»-• *>Cio(a)i/o(ap )
we have

I
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d e tA ‘=±r]ii(f).

Since 7J*,(/)=0 (by induction because k<b) we conclude that detA '=0 and this implies

that rankA=u. It follows that the row-vector
(© «(/)/ i e Vi) ... K e y ) )

is a linear combination of the rows

for vs {l,...,u} as required. The case l=js for some se {l,...,r} is discussed similarly.

Finally we repeat the proof o f lemma 4.2.11 to show that the function 

1lbi:V ala2...a l( a i>a 2’--->a t ) - * K  is U „(AT )-in v a rian t. Then fo r each 

we choose the element xe Un(K) as in the first step of the

induction and we imitate that argument to complete the proof. ♦

We are now able to establish the similar version of proposition 4.2.10:

Proposition 4.2.15. Let ae {a ,+ 2 ,... , i - 1} be such that (a ,b ,)*S^(.D ) and let 

f*  ̂ 'a1a2...ala- i(a i .®2.....«,)• Then
A le u,(dA%)<f)])=0

for all (kj)m <P(n).

P roof. Let D (a ,b t■ l)«{(i1 J{) ...... (.irJ r) )  and let a * S r be such that

‘o(i)<•••<*&)• I*1 this case we have
r r  r  r

(d A ^)(f)~ cJ f)(d 9 J(f)+l ,  c j l f r ' j ,+ Z  I  cW ,(0eW ,

where, for each p* and each qm cM(f)*K  is the rxr minor of

“complementary” to the position (pxf).

Let (kj)e <P(n) be arbitrary. We claim that

A le u ,m < 2)(f)))-0 .

The argument used in the proof of proposition 4.2.10 applies here (with obvious minor
1i
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1

changes) except in the case le [ a , i x, . . .  , ir ] . Then k t  J r } (because

k< l£a< i< j\< .. .<jr). Suppose that /=a. We have

where the morphism &.Un(K)* -* Un{K)* is as before. We claim that the row-vector 

(£&(/)/I*# ,) ■••Kekj))) is a linear combination of the remaining rows. This is clearly

true if either ke {ilt. , . j r) or kd g ^y  If l o i ^ ^ a ,  then

vi

(because f ^ V aiat ...afi-i(a u a2......a t)» k<l=a and (kJ),)sR(D) - otherwise ke {I,,...,/,.}).

Now suppose that t’o(«)<*<i<j(ii+i) for some u* { l , . . . , r - l }. As before, we consider the

matrix

•••

K /(«*,,) — f o k j )  j

This matrix has rank u-t-1 if and only if the matrix 

/T=

is non-singular (the justification of this assertion is the same as in the proof of 

proposition 4.2.10). If k>a, then

D(kJ},-1)“ { Vo(i)Jo(i)),-••fOa(u)Ja(u)) }
and we have that

d e tA '-± A lfi( f)

(we note that (kJ>,)e/t(D) because ke ..i,}). S i n c e / « . . . a(a. t( a lf02......a,) and

k<lma we have 0. Finally suppose that k<a,. Then

D(k,bt)i* {(io( i>«/o(i))*. ••*(^o(«)»/o(«)))
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and so

detA'^ilti(f)=0
(by the previous lemma). It follows that

rankA=u
and (as before) this implies that

The case l=j, for some se {l,...,r}  is discussed similarly. ♦

The next result has the “same” proof as lemma 4.2.11.

Lemma 4.2.16. Let ae [a, + } be such that (a,bt)eS^r\D ). Then the function

whenever (af)eR(Df&. In fact we have the similar version of lemma 4.2.12:

Lemma 4.2.17. Let ae [a,+2..... /-1} be such that (a,b,)eSir\D )  and suppose that

(aJ)eR(D). Let fe  Va^  ......a,). Then A (£(f)*Q if  and only if(aJ)eD.

Finally we state the generalization of theorem 4.2.13 (its proof is similar to the 

proof of that theorem).

T heorem  4.2 .18 . Let D be a basic subset o f  4>{n) and suppose that 

(i,n),laiJ>{),.. .,(apb,)eD are such that (alt. . . j i t) is a special sequence (with respect to D 

and to (/,«)). Suppose that the set X=D'n{(k,i);at<k<i, (k,b,)eS(r)(D)) is non-empty 

and let

i (< X x ,(& i>. . . ,< x t ) - * K  is Un(K)-invariant.

This lemma implies that

1 (a j.a* ......a,)

X -{(*i.0 .(*2.0 ...... < M )i
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where kx<Jc2<...<Jcr. Let Then

for all se {l , . . . ,r}  (here V-[ ......^ (a , ......................g.)). Moreover fo r  each f k K

and each s* {l,...,r}  the set

is a non-em pty U n(K )-invariant subvariety o f  V * , . . . , ( ®  .........a ,)  a n d

V~i „ ^ (Cti......f t)  «  the disjoint union

r***

Finally suppose that there exists a* { a ,+ l ....... f -1 } such that (a ,i)eD . Let

D(aJ)rl)={(iiJi),---Xinir) }. j\<-■ <ir> and let oeSr be such that ¿0(1)<...<u0(r). Then
r

Va....oJ.a l ......<*vP)*0 <=> )3=(-1 )ri«n(o)<p(a,0<)5(»»ri<P(iWt)-
1 b > l

Moreover

r
where fr*(-l)rsgn(,&)<p(.a,i)<p(i,n)T[<P(ikJk)-k* 1

Now let a=(ai.---A) be a special sequence. We define the subset Z)(*) of tf(n) by 

D<-)»£)u{(a^-); lSrSt}

and we consider maps which satisfy

qta\u,v)*tp(u,v)

for all (u,v)*D. Then we will denote by

V p » ^

the i/„(A0-invariant subvariety V^ ^ c t x ..... a,) o f VD(q>) w hen

a r £ f < f )  ( 1 ^ )

endfmVpitp) is such that/U ^-O  for a ll>  {f+ l,...^ i-l} and

fi.eia)m<taXixid ( lir^ r) .

Wc have:
i
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Theorem 4.2.19. Let D be a basic subset o f <D(n) and let <fr.D -* K  be a map. Suppose 

that D \i) is non-empty and let a^(ai,...xt,) be a special sequence. Then is a

non-empty Un(K)-\nvariant proper subvariety ofVD(.q>).

Finally theorem 4.2.19 implies the following:

Theorem  4.2.20. Let D be a basic subset o f <&(n) and let <p:D -*K  be a map. Let

/« VD(q>). Then there exists a unique special sequence a=(ax......at) and a unique map

such t h a t f e V ^ t p ^ .
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CHAPTER 5

A DECOMPOSITION OF THE REGULAR CHARACTER

In this chapter we establish the decomposition of the regular character p  of Un(q) as 

the sum of all basic characters £D(p) (as usual D is a basic subset of <P(n) and qr.D-*K* 

is a map). We prove this result using an inductive argument suggested by the methods of 

chapter 4. In fact we may define a total order on the set of all basic subsets of <P(/i) (see 

next page) and the “action” of a convenient element of Sn allows the definition of a basic 

subset D x of <P(n) which is smaller than a given subset D. In section 5.1 we construct 

this basic subset. Then in section 5.2 we prove the result mentioned above. For this 

proof we establish a series of lemmas which relate the multiplicity of any irreducible 

component of £d(<P) and the multiplicity of a corresponding irreducible component of 

¿j0l(?>i) where <P\.DX -> F q* is a map which depends on a given map <p:D -» F q*. Each 

lemma is concerned with a different case depending on the relative position of the roots 

in D (and in Dx).

i



183

5.1. Weyl conjugation of orbits

In this section we fix a basic subset D of <D(n) and a map <piD -*K* (n and AT are as 

before). Without loss of generality we assume that (i,n)cD for some ie { l,. .. ,n - l} . 

Moreover we assume that i£n-2 (*).

Our aim is to describe an inductive process which allows us to get information 

about a given C/„(Af)-orbit 0<zVD(<p) once we have some knowledge about the

i/„(Af)-orbits 0 \  which are contained in a “smaller” variety We consider the

total order < on the set of roots <P(n) as defined in the proof of proposition 2.2.13. Then 

the set of all subsets of <f(n) is totally ordered as follows. Let A={(a1,h1),...,(ar,hr)},

(a lJ>i)<...<(arJ>r), and S={(c1.d1)..... (cJ,d ,)},(c1.d1)<...<(c^d,). be arbitrary subsets

of $(/t). Then we define A<B if one of the following conditions is satisfied:

(i) r<s and (a1,61)=(c1,d1)......(ar,hr)=(cr^ r);

(ii) there exists te {1..... r } such that (a1,61)=(c1̂ f!>,... ,(ar.i,b,.1)=(£:f.1,d,.1) and

Now we consider the simple reflection <»=(»'/+ l)eS B. Let O cVD(<p) be any 

£/„(Af)-orbit and let feO  be an element satisfying

(the existence of this element was justified in the proof of lemma 3.1.1). Then we define 

the element f„n un(K)* by

(cf. section 4.2).By theorem 3.1.7 there exists a unique basic set o f roots D ^ ^ / i )  and a

1 If imn-l then the variety VD(p) is the sum of the zero-dimensional orbit and the variety
VogCfb) where (n- l,n) J and % is the restriction to D0 of the map pi Therefore the {/„(JO-arbits on
t y p )  are in one-to-one correspondence with the i/_,(K>crbiti on V0 (p,).

A e MH)-0

(5.1.1)

1
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unique map (p^D ^-iK*  such that

fa£ VdJ.Viu)-

In the next lemmas we will determine the set D m and the map q v  Since the set D a  

depends on the choice of the element feO  we will fix this element throughout the section. 

The set Dm is closely related with the set

<u(jD)={(<u(u),tu(ft); (a,A)sD}

and the map <pm with the map <p°(0:(o(D) -»AT* - in fact in many cases D a=a)(D) and 

(pa^qjoco.

Lemma 5.1.1. Let (a,b)e <fi(n) be such that i+\<b. Then

(aJtteD,,, <=> otaJ})eD.

Moreover

whenever {aJb^D^

<pJiaJ>)=<poa(aJ>)

P ro o f . We proceed by recursion on the set {(a ,b ) t  d>(n); i+ l< b } . We have 

/a/«on)=/ican)=0 for all as {l , . . . , i - l} and fJ ,e ^ f{ .e M ^)=0 (by the choice off). On the 

other hand f m(ei+ln)=f{ein)=<p(i,n)*0. Hence the lemma is true whenever b=n. Now let 

(a,b)s 0(n) be such that i+l<b<n and assume that the result is proved for all (a'.b'Js <D(n) 

with (a',b')<(.a,b).

Firstly we claim that

(aJ>)eR(PJ »  (w(a)J>)mR(D).

For we will prove that

(a^ )s5 (D J  »  (<o(.a)J>)mSfD)

(this statement is equivalent to the previous one).

Suppose that (co(a),b)eS(D). If (©{a),b')*D  fo r some ft's {¿>+1,...,/»} then 

(tu(a),b')<(a^>) (because b'>b). By induction we obtain {a Jb ^D ^  Thus (a,b)*S(D

On the other hand suppose that (a'Jb)eD for some a a {l,...,<u(a)-l}. If aKaOxt^oxute) 

then (a',tu(a))«(/,j+l). Since (i,n)*D we conclude that b~n. This contradiction implies
M1
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that <u(a')<a. Since (a'Jj)eD we obtain (by induction) m So S{D ^.

Conversely suppose that (a , b ) e S ( D If for some b'm {¿H-l,...,n} then

(atfi)Jbr)eD (by induction) so (co(a)J})sS(D). On the other hand suppose that 

for some a « { } .  Then (by induction) (aj^a^Jb^D. Now if ai(a')>a=oxi)(a) then 

(a’,co(a))=(U+l). Thus a'=i=a. This contradiction implies that aiia')<a so (a,b)eS(D). 

Our claim is proved.

Now we consider the functions 4 ^ a)fc:U„(8T)* -* K  and A^£-.Un(K)* -* K. If 

(a,b)uD(i,i+l) then <u(a)-a. Moreover D at(a,b)=D(a,b) and f <0(.ers)=f(ers) for all 

(rj)*DJ,aJ>). Therefore

It follows that

0  ~
and this implies that

(aJ>)eDa <=> (aJ))eD.

Moreover (by (3.1.7)) we have

<pJaJ))=<p(.aJ>)=<poĉ aJ})

for all (aJ>)eD„.

Now suppose that a-i. By induction we have D(i+ 1 J>y=DJ,iJb)^> {(i,n) } and so 

Since we conclude that

«• d?+i6(/)*0,

i.e.

(/^)«DW «  (i+l,i>)«D.

Suppose that (hence (f+1^»)*/)). Then (by (3.1.7)) we have

^ « M - l Y t j m d f j  and ^ 16W - ( - i r V i + U ) c ( 0  

where r>lf)M(/,6)UlD(/+ 1,6)1-1 and c:ltn(K)* -* K  is a well-determined polynomial 

function which satisfies c(fj~cif). It follows that

9jiU ))-< lK i+ U > )~< pow (U > ).

1
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Finally suppose that ax'. Then we must have ax '+ l (otherwise b=n). In this case

DJiaJ>)=atD(aJ>)).

If there is no b’m {¿> + l,...,/t-l} with (hence there is no b't {¿H -l,...^ t-l} with

(i+ U t^D )  then

and (as before) we conclude that

( a ^ D , , ,  <=* (a,b)eD.

Moreover

<pJa,b)-<p(aJ))-<p°oj(aJ>)

for all (d ^e D g y  On the other hand if (i.fOe^m  f°r some b ’e { b + l, .. ., / i- l} (hence 

( i + l , b ' ) e D  for some b 'e  { b+  1 , . . .  , n -1 } ) then the determ inan t 

is obtained from A ^(f) by permuting the columns corresponding to the roots 

0 »  and (i+l,h) ofD. Therefore

As before, we deduce that

(aJ?)*Dm <=> (a,b)eD.

Suppose that (aJj^D ^. Then (by (3.1.7)) we have

and A^(f)=(-l)r<p(a,b)c(f)

where r=lDa)(a,b)l=lD(a,b)l and c:Un(K)*-*K  is a polynomial function which satisfy 

c(fj=-c(f). It follows

q>Jii,b)*‘<p(i+l,b)=<PoaX.i,b).

The proof is complete. ♦

Next we consider the roots in the i-th and in the (i+l)-th columns. By theorem 

4.2.20 there exists a unique special sequence a~(ax,...jid  (with respect to D  and to ( j» )  

and a unique map -> K* such that

For each 1« {1,...^} we let bt« { / + ! , . . }  be such that (ai9b{)*D.
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Lemma 5.1.2. Let the notation be as above.

(i) Ifb,m +l then (a,j+\)eD „and

pJiarJ+ iy-q f^aJ).

(ii) I fb f i+ l  then, for all ae { } ,

(a,i+l)eDl0 <=> (af)*D.

Moreover i f  (aj+\)eD „we have a,<a and

<pj.aj+l)-<p(.aj).

Proof. Firstly we suppose that (b,i+\)eD  for all be { l , . . . , j - l }. Let ae {l , . . . , i - l } be 

arbitrary. We claim

(aJ+ \)eR(PJ  <=> (a,i)eR(D).

For we will prove that

(a,i+l)eS(.DJ <=> (a,t>S(D).

We proceed by induction on a.

Suppose that (1,1+1)65(0^. Then (UcJeDm for some ce {»+2,...,«}. By the 

previous lemma we have (1 ,b)eD. Since b>i+\>i, we conclude that (1,/+I)e5(£)). 

Conversely suppose that (l,/+l)aS(D). Then (l,c)eD  for some ce {j+ l,...,/i} . Since 

( l ,/+ l)a D  (by our hypothesis), we have c>i'+l. By the previous lemma we have 

(1,c)€D#> and so (U + l)eS(D J.

Now we assume that a> l and that the claim is proved for all a'* { l , . . . ,a - l} .  

Suppose that ( a , i + \ ) e S ( D If (a,c)eD„ for some ca {i+2,...,«} then we repeat the 

argument above to conclude that (a,i)eS(D). On the other hand suppose that (a\/+ l)sD w 

for some a  a {l , . . . ,a - l}. Then (o',i)a/?(£)) (by induction and by the previous lemma) we 

have

(because there is no be {1,...,/-1} with (bJ+l)mD). Since (a’J+l)eD„  we have

fJ * o

Therefore (a’J)*D and this implies that (a,i)eS(D).

' I
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Conversely suppose that (a,i)*S(D). If (a,c)eD  for some ce {i+l,...,n} we must 

have c>i+2 (by our hypothesis). Hence (by the previous lemma) (a ,c )« 0 „ , so 

(a,i+l)eS(DJ). On the other hand suppose that (a',<>D for some a'e {l,...,u -l} . Then 

(a'j+l)cR(DaJ  (by induction) and we have

Now an imitation of the argument used in the previous paragraph justifies that 

(a',H-l)eD<0and this implies that (flj+ l)eS(P J. This completes the proof of the claim.

Now we may use the equality 

to conclude that
(a,i+l)eDa, o  (aJ)eD.

Moreover (by (3.1.7)) we obtain
<pj,a,i+l)=<p(aj)

whenever (a,i+l)eD<B. The assertion a,<a follows from the definition of special sequence.

Now we suppose that there exists be {l , . . . , i - l} such that (fM+1)«D. Then we have 

b=a, if and only ifb^i+ l. Let ae {l , . . . ,b - l}. Then the argument of the previous case can 

be repeated to prove that

(aJ+DeRiDJ (a,i)*R(P).

Moreover we have 

and so
(aJ+DeDa  <=» (aj)eD.

If this is the case then a,<a (by definition of special sequence) and

(by (3.1.7».
On the other hand suppose that (a,i+l)eDm (hence (a,l)eD) for all a« {

We claim that (b,i+ l)eR(D  J .  In fact if (b ,i+ l)«S(D - ) then (b ,c)eD m for some 

ce {i+2......n -1 ). By lemma 5.1.1 we have (b,c)eD  and this is in contradiction with
i
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(¿M+1)«.D. Now let D J.b J+ l)-[(llJ l),...,(irJr)}>ji<' ” <jr “ d lct °* s r be such that

i0(i)<---<J0(r)- Tben

Since VD(<p)=0D(<p) (theorem 3.1.7) we have

f~g+h
where geObM(a), <x=(p(bj+l), Ae VD̂ <p )̂, Z)0=ZA{(6,t+l)} and <Pq is the restriction of 

<p to D0. TherefOTe we get

(5.1.2) A^+l(fJ=ADb°.(h)+dei
— * ‘w ,>

^  *(«w) 0 ... 0 )

Since (&,t>/î(f?o)NDo we bave

i “(h)=0.

On the other hand

JfJr

(see the proof of proposition 3.1.2). Thus

~  8(‘bi)*0.
and (by (3.1.7)) this means that

(bj+VeDu  <=> gtebi)*0.

Now we claim that

(b4+l)*D0J «  b=at.

Firstly we assume that b*at. Then b^i+ 1. To prove that (bJ+l)éD0  we must show that 

8(««W). For we consider the function &bi:UH(K)*-*K. We have
rt-1

&b,<fl-LA‘bc)fî.ecn)emi
#1-1

-gtebùKeJ+WebiWuù+ X  fobcW cJCmi+1

-*(*«)/(«»)+©*(*)•

If b<a\ then

i
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©6«(/)“ 0

(we recall that a=(aj,...,af)). On the other hand the sequence a ^ a x, . . . ^  is special with 

respect to D0 (and to (i,n)). Moreover it is clear that

where <Pq (a) is the restriction of <p(m) to D 0 (we note that D0 (a)=D(a\ {  (b,i+l)]). 

Since (bJ)eR(D<$ we have

©w(A)=0

(by lemma 4.2.6). Since /(«¿,)*0 we conclude that

g(ebi)=0.

Now we suppose that as<b<as+l for some se { l,...,r}  (if s=r we put al+l=a, if 

(a,i)eD for some ae {a,+l,.. .¿ -I} and aI+1=i, otherwise). We note that

......a,)

because (b,i'+l)eD and b*a,. We consider the function Un(K)* -*K  (the notation

is as in section 4.2, pg. 172). LetD<u(h,b,-l)={(i1J i ) ......{ ij,)} ,] \< ...< jn  and let <JeSr

be such that /0<1)<...<i0(r). Then

(5.1.3) < •*  t o - A Î ^ W M . )  det

(  ^ ‘<K1 •" ^ * ‘«1 i )  ^

^  *(««) 0 ... 0 J

As above
™  o W ( ^ (- )).0̂.

Since (bj)tR(D(d we have
0

(by lemma 4.2.12). Since A ^ 'ty W ) (because b + a ^ f ie ^ iQ  and 0 we

conclude that

*(«6,)“0-

1 n
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We have proved that

(¿M’+ l)«^®  =* b=at.

Conversely suppose that b=a,. Then we repeat the above argument to conclude that

where D J,atJ>t.l-\)= [(ixj x)......Vnir) ) J i< — <Jn 30(1 <**•$, is such that i(K1)<...<ia(r).

Since we deduce that g(eap # 0, so (Upi+l)«/)^ This completes the proof of

our claim, i.e.

(¿M+1^0,,, <=> 6=ut.

Now suppose that b=a,. Then By (5.1.2) we have <pjflt,i+l)=g(eap

and by (5.1.3) g(eâ m\a„i). So

<pj.api+1

and pan (i) of the lemma is proved.

Finally we suppose that b*a, (we note that by assumption (¿>,i+l)eD). We consider 

the roots (a,i+l) for an arbitrary ae {¿H-l,...,i-l}. An inductive argument (analogous to 

the one used in the first pan of the proof) shows that

(a,/+l)«/?(Z)0>) « • (a,i>/?(D0).
On the other hand we have

(see lemma 3.1.1) Since g(ebi)=0 we deduce that J{eai)=h(eai)+g(eai)=h(eai). Moreover 

(by (5.1.2))

This implies that

(aJ+l)*Da  <=> (a,0*D0.

Since Dq«/A{ (6./+1)} we conclude that

0aJ+l)mD„ « •  (aJ)*D.

Finally if (aJ+l)*Da  (hence (aJ)*D) we must have a>a, and

<pj.aj+1)- <£1#).

ii

The proof of the lemma is complete. ♦
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Rem ark 5.1.3. Let the notation be as above and suppose that (i,i+l)eR(DJ). Then 

(iJ+l)eDlu if and only If this is the case then there exists a unique a*K*

such that

(in fact a=-<p(i,i+l)). Moreover we have

fm+aeii* l*6 ̂ D,\{(ii+l)| ((9>iu)o) 
where (<pjo is the restricdon of <pa  to (i,i+l)}.

In the next result we consider the roots in the j-th column.

Lemma 5.1.4. Let the notation be as above.

(i) Ifb ,-i+ \ then, fo r  all ae {1,... j -1 },

(a,i)*Dm <=> (aj)eD.
If(aS)eDm then coat and

<pjiaj)—  ̂ W ) * 1 <p(a,r)<p(at,i+1).

(ii) I fb ^ i+ l then, fo r  all ae {1....J-1},

(a,i>D<a <=> (a,i'+l)«D.
I f  (.aJ^Dfn, then

<pjia,[)-<p(aj+l).

Proof. Suppose that h,*i+l.

We claim that (aJ)*Dn for all am {1,.. .,0,-1}. In fact let am {1,.. .,0,-1} and suppose 

that (o,i)cR(DJ. Since a<a, and (a,J+l)mD there is no a’m {l , . . . ,a - l} with (a'J+l)eD. 

On the other hand since (afaRiDJ there is no b’m {i+l,...,/i} with (aJt'UD (otherwise 

(aJb̂ mD,, - by lemma 5.1.1). Therefore (a,i+l)«R(D). Since (a,,i+l)mD„ (by the 

previous lemma) we have (a'.i+l)*Da for all a'e {1.....0-1}. Thus

t I
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Since (a,i+l)«D (because a<a,) we obtain

and this implies that (.aJ)mDm as required. On the other hand we have (apî)*Dm because 

(dpi+ l^Da  (by the previous lemma).

Finally let ae { a ,+ l,...,/- l} and suppose that (a,/)«/)<„. We claim that (a,î)eR(D). 

In fact suppose that (a,C)eS(D). If (a,b)eD for some be {i+ l,...,n} then ¿»i+1 (because 

a>a, and (a„i+l)eD) and {a,b)eDa (by lemma 5.1.1). This is in contradiction with

(a.Oe-Dor On the other hand suppose that there exists a'e {1._^»-1} such that (a',i)eD.

Then a,<a' (by definition of special sequence). If (o’,i)<S(Z)a) then there exists 

b'e {i+1,...,«} such that (a'Jj^eD,,, (we note that (a ,i)eD J . Since (a ^ + ^ e D ^  (by the 

previous lemma) we have b">i+l, so (a'Jj^eD  (by lemma 5.1.1). This contradicts the 

assumption (a’,i)eD. Therefore (a',i)eR(D J). Now the determinant is obtained

from the determinant ¿¿¡(f) by permuting the columns corresponding to the roots (a',i) 

and (dpi+l). It follows that

Since (a',i)eD we obtain

This implies that { a '^ e D ^  which is in contradiction with (a,<)«£>ar I* follows that 

(a,i)eR(D) as required.

Now we have (as above)

Since (aj)eDm we conclude that

“ - o

and so (a,i)eD. Moreover (using (3.1.7)) we deduce that

<pj,aj)<pj<ani+l)—(p(a.i)<p(arj+ l).

By the previous lemma we have

1
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Thus
q>Jajy=-<ifa\a r,îr l<fi(a,ï)qi(arJ+l).

To conclude the proof of part (i) it remains to show that for any œ  { l , . . . , i - l } 

(ia,i)eD => (a.OsDdy For suppose that (a,t)eD. As before we claim that (a,î)eR(D J .  In 

fact if (aJ))eDm for some be { i + 1 , t h e n  b>i+2 (because (a^i+l)«/?^ and (by lemma 

5.1.1) (aJ?)eD which contradicts the assumption (a,i)*D. On the other hand, if (a'j)eDm 

for some a'e {l , . . . ,a - l} then (a',i)eD (by the first part Of the proof) and this is also in 

contradiction with (a,ï)eD . It follows that (afieR iPg) as claimed. Finally we use the 

equality

(see above) to conclude that {aj^eD^

Now we assume that b,*i+1 and we let ae {1 .....M }. We have two distinct cases: 

either (h,/+l)c O^for all be { l ,. .„ a - l} or(b,i+l)* Dm for some he {1,...,a - l}.

Firstly we assume that (bj+l)e Da for all he {l,...,a -l} . Suppose that {aj^eD ^  As 

in the previous cases we claim that (a,i+l)eR(D). For suppose that (a,i+l)eS(D). If 

(a .b^eD  for some b'e {i+2,...,n} then (a .fO eO » (by lemma 5.1.1) which is in 

contradiction with { a ^ e D ^  On the other hand suppose that (a ',i+ l)sD  for some

a'e {l , . . . ,a - l}. If (.a’4)eS(,DJ then there exists b'e {i+1......n} such that (a'Jb^eD^ By

our hypothesis b">i+2, so {a'J}")eD (by lemma 5.1.1) and this is in contradiction with 

(a',i+l)«D. It follows that (a'j)eR(D,J. Now we have

(/)•

Since (a'J+l)eD we obtain
,(/)* )

and this implies that (a'jL)eDn which is in contradiction with (a,Q«Dv  It follows that 

(aJ+l)eR(D).

Finally we have

Since (aj)eDa  we obtain
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4L i<n - S r v j t o

and so (aJ+l)eD. Moreover (3.1.7) implies that

<pjiaj)m<p^aj+l).

To complete the proof in this case suppose that (a,i+l)eD and suppose also that 

(a ,i)eS(D J. If (a.hOeO» for some ft's { i+ l,...,n}  then b'>i+l (by hypothesis) and 

( (by lemma 5.1.1) which contradicts the assumption (a,i+l)eZ>. On the other 

hand if (a\i)«f>o> for some a « {l , . . . ,a - l} then (a',i+l)«D (by the reverse implication) 

and this is also in contradiction with (a,i+l)eD. Thus (aj)eR(DJ). Now the equality

implies that (a,î)eD(û and the proof is complete in this case.

On the other hand suppose that there exists be {1,—^>-1} such that (b J + l^ D ^  

Suppose that ( a ^ e D ^  As before we have (a,i+1 )€$(/)) if and only if (<j\i+l)eD for

some a g {1..... a-1}. Suppose that this is so. Then

(a’,i)eS(D J  « • (aV+DaD«.

In fact if (a'.fOeOo»for some b e  {i+2,...,n} then (a'Jb^eD (by lemma 5.1.1) and this is 

impossible because (a'4+l)eD. By lemma 5.1.2 we have

(ay + l)mD„ <=> (a'J)eD.

Since (a',i+l)eD we conclude that (a',i)eR(Da). If a'<b then

and we deduce that because (a\i+l)eD. This is in contradiction with

Therefore b<a'. Since (bj+l)*D(r  we have (b,i)eD (by lemma 5.1.2) so

where ii ■

* W * t >  ^

•••
f o a - M )  f a a j j  ••• f a a j )

= b, D(a\/+1) = D(0(a'4+l) -  {(«W^* ••• .(Wr)J and o * S r is such that 

g(ry Since (b,i),(a\i+l)tD  we conclude that

1 /
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o

(see the proof of proposition 3.1.2). It follows that which is in contradiction

with This contradiction implies that (a,i+l)«/?(D).

Finally to conclude that (aj+l)*D we use the equality

which is in contradiction with ( Thus  (a,i+l)eD.

Now the determinant of the rigth hand side of the equality (5.1.4) is equal to 

sgn(<jœ)<p(bJ)<p(a4+DqAhJi) • • • Ç*Wr)

(see the proof of proposition 3.1.2) whereas

A^ f t ^ s8n( O) <P<a(a.O <pjb,i+1 ) <pC.i2J2> •

(by (3.1.7) and by lemma 5.1.1). Since sgn(o)=-sgn(<jœ) we deduce that 

<PjiaJ) <Pjt>4+1 )~<p(bj) <p(aj+1 ) .

Since <pj,bj+ l)~<p(b,i) (by lemma 5.1.2) we obtain

<pjiaj)mqtaj+1).

To finish the proof we must justify that
(a,i+l)«D => (a,i)tDa

In fact suppose that (a ,/+ l)« D  and that ( a , i ) * S ( D  M). If (a,b ')«D  for some 

b'« (1+2,...,«} then (a .b ')«#  (by lemma 5.1.1) which contradicts ( a , i+ l ) * D .  If 

(a J + l)* D lt then (aJ )*D  (by lemma 5.1.2) which is also in contradiction with (<M+l)eZ). 

Finally if (ja‘J)mDn  for some a'c {1,_^z-1} then (a',f)*D  (by the reverse implication) and

»/
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this is again in contradiction with (aj+\)eD. It follows that Now we use the

equality (5.1.4) to conclude that (a,i)eDm as required.

The proof of the lemma is complete. ♦

Finally we consider roots (aj>)e <D(n) with Ix i.

i

Lemma 5.1.5. Let the notation be as before and let (aj>)e <P(n) be such that b<i. Then

(a.b'fcD,,, <=> (a,b)eD.
If(.a,b)eDmthen

<pjiaj})=<p(a,b).

Proof. We proceed by induction on the set {(a,b)e <P(n); b<i}. The smallest root in this 

set is (U - l) .  Suppose that ( l . i- l le S iD ^ . Then there exists b'e  { /,... ,«} such that 

(1 ¿ O e /V  If * ’>i+1 then (1,b ^ D  (by lemma 5.1.2) so (U -l)eS(D ). If ¿W +l then (by 

lemma 5.1.2) either (1 ,ï)*D (if ¿>,=¿+1) or (l,i+ l)ef> (if ¿>,*¿+1). In both cases we 

conclude that (l,/-l)eS(D). Finally if b'=i then (by lemma 5.1.3) either (l,i+ l)eD  (if 

bf*i+l) or ( 1 ,z)eD (if bt=i+l). In both cases we also conclude that (U-1)«5(D). The 

implication (l,i-l)sS(D) => (l,i-l)eS(D a)) is proved similarly. It follows that

(U -l)e R (D J  <=> (U-l)eK(£>).

Now we have ( l , i - l ) e D a  if and only i f /« (« l ,)=•.• =/(«t„)=0 and / „ ( ¿ j m ) ^ .

fJ<e ib)xAfioKb)) f°r all be {2......«} we conclude that

(U-DaD«, »  (U-1)«D.

Moreover

(pJiU-D-fJLeu.O-fieMy-HU.l)

and the lemma is proved for the root (U -l).

Suppose that (a^>)>(l,/-l) and that the lemma is proved for all {a'Jb')*Æ(n) such 

that (U - l )£(a'Jb")<(aJb). A similar argument to the one used above shows that

(aJ})tS(D J  »  (a,b)mS(D)

(we note that (by induction) for all a'e {l , . . . ,a - l} (a‘Jj)mDa  if and only if (a’Jb)mD ). It
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follows that

(aJ>)*R(DJ »  (aJ>)mR(D).

Now we assume that bf*i+1.

On the one hand suppose that there exist a'Jb'« {l , . . . , a - l } such that (a \0  and 

(b'4+1) lie in DJpJb). Then (a\i+ l),(b\0«D  (by lemmas 5.1.2 and 5.1.3) and we have

A fo fJ - A ° , ( f )

because the determinant is obtained from A^Jf) by permuting the columns which

correspond to the roots (a',i+l),(b',0«D. This implies that

(aJfeD n  <=> (aJ>)*D.

By (3.1.7) (and by the previous lemmas) we conclude that
<pj,ajb)=<p(a,b)

whenever

On the other hand suppose that at least one of the following cases occurs:

(i) (a',i)*Dm for all a s  { l , . . . ,a - l } - hence (by lemma 5.1.4) (a\i+l)«£> for all 

a « {l , . . . ,a - l};

(ii) (b',i+\)*Da for all b ’t  {l , . . . ,a - l} - hence (by lemma 5.1.2) (b'J) mD for all

¿>'e{l.....a*l}-
Then we have (in both cases)

AD̂ f ^ A Dabif)

and the conclusion of the proof is as in the previous case.

Finally suppose that 6,*i+l. Then (by lemma 5.1.2) (at,i+l)*Dar 

If a<a, then we have

ADJ ( f J - A Dab(f)

and the lemma follows as above. On the other hand suppose that a>a(. Then one (and 

only one) of the following cases occurs:

(i) (u',0«£)ttlfor some a  •  {a,+ l,...J-l} - hence (by lemma 5.1.V) (a'j)*D\

(ii) (a ',/)aD M for all a'm { 1 . . . . .M } • hence (by lemma 5.1.V) (a',i)«D for all

)



a'« { } .

If case (i) occurs and a>a’ then

and the result follows as before. Finally suppose that either the first case occurs and a<a' 

or the second case occurs. Let D , ji<,...<jr, and let a«Sr be

such that iail)<...<ia(ry  Then (api+l)=(/^/,) for some re { 1 , . Since (aj)eR(D)\D  

the column-vector

is a linear combination of the vectors

••• flfiai+l)

and
cj.< K e‘« ^  — )T

for r e  {r+1,...,/•} (see the proof of proposition 4.2.10). Therefore the vector space 

spanned by the vectors c^j x— Ĉjr is also spanned by the vectors cM ,Cj^...,Cj- It 

follows that

and this implies that

(aJ})^Da  <=> (aJ))*D.

To conclude the proof let <x,aŝ .l .....a ^ K  be such that

cix°eci+l+at*\cj^l + .. •+«rC;V

We claim that

a=qtat,M ) -W m\a„i).

For let Do-D\{(a,U+l)} and and let is the restriction of ?  to D0. Then there exist 

/ f)*Oâ .iW a tJ+1)) and/«V0#(flo) such that

Therefore

cM-c w+c'

199
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where

cw= (0 ... O « 4 J+  1 ) / \ 41)W) . . . / 0(«lawI+i) /° (« a ,+i ) ) T. 

j  and

c =(/(tfio(1),+1) ••• /(« i^ i+ l)  /(¿ai+ l) )T.

Now we have

for all a'e {1....4-1}. It follows that

ci=çj(a„i+l)'1/ 0(efl(i)c(')+c'=ç)(ai,i+l)'l/ 0(«a )̂Cx+i+i3c'

where
^ l-ç K a ^ + l)-1/ 0^ .

Since (a',/+l)«D0 for all a e {l,...,i} the vector c ' is a linear combination of the vectors 

Cj^...,Cjr (see the proof of proposition 4.2.10). Since the vectors cM ,Cj^...,Cjt are

linearly independent we conclude that

tt= (p (a t , i + \ ) Af i X e ap .

Our claim follows because

/ V a ^ ' W )

(see the proof of lemma 5.1.2).

Now we conclude that

Finally suppose that ( a ^ D ^  (hence (aJ))*D). Then (by (3.1.7))
r

A ° r V t)=(-lYsgn(<f)<pJiaJ>)<pJ,atJ + l )  Ü  P j f + I J
s '- \ .s ‘*s

and
r

-  l / i* n (0 # aJ» 4 X V + l>  F I

By the previous lemmas (and also by induction) we have 

for all 5 • {1,...,/} with j W . Moreover (by lemma 5.1.2)
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It follows that
<pJjaJb)=<p(aJ>)

as required. ♦

To finish this section we collect our lemmas in the following:

Theorem 5.1.7. Let D be a basic subset of<I>(n) and suppose that (i,n)eD for some 

je  { 1 ,... , n - 2 } . Let (p:D -» K* be any map and let f e V  D(<p) be such that

f ( ei+in)=f(eu+i)=Q- Let a=(ax......a, ) be the (unique) special sequence such that

f* V0(«)(^a))-U t and define f a  Un(K)* by

for all (a,b)e dX,n). Let D m be the basic subset o f <D(n) and let tp ^D ^-iK *  be the map 

such thatf„fiVDt((pJ. Then:

(i) I f  either a=0  or (atj+l)*D,

<pJiu,v)=<p(a)(u)Mv))

for all (u,v)e©(D)cDar I f  (i,i+l)e£>„¡then <pj.i,i+1) is well-determined by the value

fia(a)Cti(6)) if(a ,bM i,i+ l)  
1 if  (a,b)=(i,i+1)

D
©(D)w{(m +1)} if(i,i+\)mR(w(D)) and ^ ¡ ( f j * 0

oKD) otherwise

and

A<u?\Vo) andthere exist* a unique oeK such that

A?+iV«>+«  ««*1 *)-o.

(ii) If(a,4+l)*D and there is no am {1,...,M } such that (af)*D, 

~ - Dar(a tD )\{(a ,J))yj{(a l,i+l))

and

I



(iii) I f  (a„i+l)eD and there exists ae { } such that (aJ)*D,

D ^ a K D M  (api),(aj+ l) } M  (V + l) ,(a ,0 }

and
V B)(at»0
-(¿a\a tj y x<ft,aS)<F(at,i+\)

.qKoKu)Mv))

i f  (u,v)=(a„i+1) 

i f  (u,v)=(a,i) 

otherwise

for all if  (u,v)eD
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5.2. A decomposition of the regular character

The aim of this section is to prove the following result

Theorem 5.2.1. Let p  be the regular character o f UH(q). For each basic subset D of 

Gtn) we define the character
§o=X &>(?>)

V

where the sum is over all maps (fr.D -* F q*. Then

0c4(n)
D basic

where fo r  each basic subset D o f  <D(n) s(D)=IS(D)l and l(D)=\S<-c\D)\=\S<-r\D )\  (see 

(2.2.7)).

Here q=pe, eS l, is the e-th power of the prime number p. As usual we let AT be the 

algebraic closure of the finite Held F q and we realize the finite group Un(q) as the 

subgroup of U n(K ) consisting of all fixed elements of the Frobenius map 

F -F q.Un(K) -* Un(K) (see (1.1.1)).

Theorem 5.2.1 will be a consequence of the following result (which is in fact 

equivalent to it):

Proposition 5.2.2. Let D be a basic subset o f (¡Hn) and let <p:D -» F q* be any map. 

Let z b *  an irreducible component of£D(q>). Then

where (...) denotes the Frobenius product between characters.

To prove this proposition we will use induction on the set of all basic subsets of 

<P(n) (with the order introduced in section 5.1). If Dc<0(«) is the empty set then

4 ! *
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qrD -» F q* is the empty map and

is the unit character of Un(q). The result is obvious because r(0)=/(0)=0.

If D= {( fj) } consists only of one root (ij)e <®(n) then for any map qrD -» Fq*

is the 0V)-th elementary character associated with a=<p(ij)e F q*. By definition this 

character is irreducible and

The result is also clear because s(D)-l(D)=2(j-i-l)-(j-i-1 )=j-i-1.

Now suppose that LDl£2 and let (ij)  be the smallest root in D (hence fx i whenever 

(a,b)eD). If j<n then the proposition follows by induction on n. On the other hand 

suppose that (i,n)eD  for some U { l , . . . , / t - l }. If t=n-1 then there exists a unique 

irreducible character Z\ of Un(q) such that

where In fact since <£„.i„(-a) is linear the character

Zl-tn-lm<-«)*

is irreducible. By lemma 2.2.9 we have

6.-i»(-a)&,.i»(a)=l £/.(,)•

On the other hand let D 1=D\{(n-l,/i)} and let q>\ be the restriction of <p to D x. Since 

4n.i„(ot) is linear and

(see the proof of proposition 2.2.16) we have

The result follows by induction on n because s iD ^s iD )  and l(D{)ml(,D).

Finally suppose that I<n-1. Let fmVD(<p) be an F-fixed element such that the 

irreducible character z  corresponds to the (F-stable) (/„(10-orbit 0(f), i.e. ZmXo(f)- Let 

coiSn be the transposition û^(n+ l)  and l e t un(K)m be the element defined by (5.1.1).

I I
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Let (PafiPa) be the pair defined as in theorem 5.1.7. Then f^k  VoJ-Vad- Moreover/ „  is an 

F-fixed element hence its C/„(A0-orbit OffJ) is F-stable (we note that VDJ.tp^) is also 

F-stable because <pJiD^cFq* - in fact for faJ>)mD„ the value <pj,ajb) is a function of the 

entries of the element f „  Let

X<omXo(fj

be the irreducible character of UHfq) which corresponds to Off^). Since 0 (fa) c y DJ.q>(J  

(because VD {q>^ is i/„(K)-invariant,f ,j t  Vp (f>^) and

a)

(by theorem 3.1.7) we have

(Xv ZdJ v J ) * 0

(see corollary 1.3.11). Since D a<D, we may assume (by induction) that the result is

proved for the basic subset Dm of <h(«). Therefore

(5.2.1)

Now we prove the following:

Lemma 5.2.3. The Un{K)-orbit Off) is of the second kind with respect to the normal 

subgroup UJ.K).

Proof. By definition Off) is of the second kind iff+aeM *tOff)  for all a*K. Let aeK  

be arbitrary and consider the element

W -cftfitjr'y-l-eneJ-'etH+UJtn.

Then
\ffe„) i f  f r j M U + l )

(«ii+O+a if (w K U + 1 )

and the lemma follows.

1
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Since the subgroup U J K )  is F-stable we conclude that there exists a unique 

irreducible character 9 of UJq)  such that

(5.2.2) x=eU'(q)

(see theorem 1.3.9). Therefore (by Frobenius reciprocity) we deduce that

where

is the restriction of ¿;D(<p) to UJiq). Since

&(?>)= I I  ZobWaM)
(a,b)*D

we have
Co(<P)= FI CobWa.b))

(a,b)*D

where for each (rj)e <D(n) and each Cfe F q

® )= “v-jC ® ) U Jiq)

is the restriction of Çrs(a)to UJq).

Next we consider the decomposition (into irreducible components) of any character 

f„ (a )  where (rj)e <P(n) and a t  Fq. Since |„(0)=1 v^ q) we have

{ r » (0 )*  1 u jq y

On the other hand we have the following:

Lemma 5.2.4. Let (rj)e <D(n) and let cte F * . Then:

(i) lfr* i and s*i+1, f„ (a) is an irreducible character o f UJq).

(ii) Ifs*i+J,

JL  Ç ja ,p )

where fo r  each j3« F q Ç j a , p )  denotes the irreducible character o f U J q )  which  

corresponds to the (F-stable) U JK )-orbit o f the element a e ilm+PeM tm* UJK)+.

Moreover
n
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Çis(a,p)*Çis(a,P’)

whenever fi, fie Fq are distinct.

(iii) Ifr+i,

fri+l(®)a X  Cri+l(®»$)

where fo r  each fie F q £r M (a,p) denotes the irreducible character o f Um(q) which 

corresponds to the (F-stable) Um(K)-orbit o f the element aeri+]*+{5eri*9 UJ^K)*. 

Moreover

whenever Fq are distinct.

(iv) Cu+i(«)=l{;j<?) is the unit character ofUJq) .

Proof. By proposition 2.1.8

Srs(<X)=Xo„(a)

is the irreducible character of Un(q) corresponds to the i/„(A0-orbit 0„ (a) of the element

ae ,,**  u n(K)*.

Let ic.Un(K)* -* u  JJC)* be the natural projection. Then (by theorem 1.3.10) an 

irreducible character of Ujtq)  is an irreducible component of ÇrJ(a) if  and only if it 

corresponds to an (F-stable) (/„(AO-orbit which is contained in the image z(Ors(a)). 

Since O u+i(a)= {aeu+J* } we have

*(0ih.,(<*))-{O}.

Therefore the unit character l u j q) of UJ.q) is the unique (irreducible) component of 

f,)+i(a). (iv) follows because

Now suppose that (/\r)*(i,i+l). Then

n(cter *)maer *t UJJO*.

For an arbitrary fie Fq we consider the element

®en*+Æeii+/*€ tt(i(A0*.

By lemma 3.1.1 this element is (/„(AO-conjugate to aert* if and only if either r» i or

4
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s=i+l. By definition we conclude that the Un(K)-orbit Orl(a) is of the second kind (with 

respect to UJJCf) if and only if either m i  or r=i+l. By theorem 1.3.8 we deduce that the 

character £rj(a )  is reducible if and only if either r=i or s= /+ l. The proof of (i) is 

complete.

On the other hand suppose that either r=i or r=i+l. Then (by theorem 1.3.8)

. where xu+l(p)=l+peu+l for all pe Fq. Moreover for each )3e Fq the irreducible character 

Ç„(a,0)***'^ of UJiq) corresponds to the i/^^O-orbit of the element

xu+l(p)-(aer *)t UJ.K)*.

The lemma follows because

- We note that (by theorem 2.2.1) the characters £„(a!)<Jll+1(/3), pe Fq, are all distinct. 

(ii) I f  (rj)*(i,i+1) and either m i or sm+1,

Proof. Suppose that m i  and s+i+l. Then (by the previous lemma) fri(a ) is irreducible 

and Cu+iOSMiy,). Therefore (by Frobenius reciprocity) we have

f„(«)=I c

for all Pe Fq. ♦

On the other hand we have:

Corollary 5.2.5. Let (rj )e  <D(n) and let ae Fq*. Then: 

0) I f  m i and 5*4+1,

i„(«)5«+,03).
1

for all Pe Fq.

(iü) (1
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(C„(a)i/”(‘7),̂ rj(a)^ 1+103))y(|(?)=(C„(a),C„(a)Ci,+i03))£/j?)=(C«(a).?«(«)){/-(?)=l

for all fie Fq. The pnx>f of (i) is complete.

For (ii) by the previous lemma we have

(i„ (o .0 )t,*(,), $„(«»{/„(, )=(?r,(a ,^ ),f„ (a ))i/^ )= l 

for all /k  Hence £rj(a) is an irreducible component of £.,(a,/3)t/"(,) for all fie Fq. The 

result follows because

$ „ ( a ) ( lW * M  and C „ ( a ,/3 ) = ^ '-2  O fe F ? ).

The proof of (iii) is analogous to the proof of (i). ♦

In order to complete the proof of proposition 5.2.2 we establish a series of lemmas 

relating the multiplicity (£,&>(?>)) with the multiplicity (Xa»%Dj.<Pa>))- Each lemma 

depends on the “type” of the root (z,/+l). Firstly we prove the following:

Lemma 5.2.6. Let &° be the irreducible character o f UJq)  defined by

«“CO-eiOttm1)
for all xe UJiq). Then

{Zar<.<nU'W >  1

and Xm & the unique irreducible component o f with the property

(Xo>SdJ<PJ)*0-
In fact we have:

(i) I f  the UJK)-orbit O f f J  o f fm is o f the first kind with respect to UJK) then

i X J u j g ) - ^ 0
a n d

(ii) I f  the UJK)-orbit 0(fj> o ff ,w is o f the second kind with respect to UJK) then 

and
(XJujq)m Z  0“(«)

G* "f

t
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where

0 " (a )= (O Z“*,(a>.

Proof. We claim that 9“ corresponds to the (F-stable) U^/AO-orbit 0(7c(fJ)) of the 

element Ji(fj)e UJK)*  (here tt.uJK)* -* UJK)* is the natural projection). For we shall 

use proposition 1.2.5. In fact let ge UJK)* and define a /lgcoe UJiK)* by

(ûïxgCû)(a)=g(cûaoïl)
for all ae U JK ). We note that

7tifJ)=CÙA 7C(f)(Û.

Then it is not difficult to show that

geO (l*f))  <=> 0 fXg(OeO{7l(fJ)

where denotes the UJK)-orbii of the element n(f)e UJK)*. It follows that

X V0(g(.axico'x))= X .Vo((<»'l*ffl)(a))
gmCHMfif a r 'gm O W jf

for all ae U jK )= üJK )r\O ix uJ K ) cû (here %  is a non-trivial irreducible character of 

Fq*). By proposition 1.2.5 we conclude that

&°(exp a)=9(œ(exp a)cûx)=d(.exp(,cüaùix))

y/0((,o)Aga»(a))

and our claim follows because

\CKn(f))MCKi«fJ)\.

Now suppose that the C/„(Af)-orbit 0 ( f j )  is o f the first kind (with respect to 

Utt(.K)). Then (by theorem 1.3.8) the character (JCmhj (q) is irreducible. Since 

n t f je  n (0(fji) we conclude that

On the other hand we have (by lemma 5.2.4)

for all ae Fr  Therefore (by Frobenius reciprocity)

I
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for all ose Fq. (i) follows by degree considerations.

Now for each Oe Fq we have

because

§¡«+1 (®)=5m'+1

(see the proof of the proposition 2.2.16).

Suppose that (i,i+\)*Da and that ate Fq is non-zero. Then

(XvSoJiVJSih- i(-a )H )

(by theorem 2.2.1 because (ft^VO). Hence

On the other hand suppose that (iJ+l)mDir First we consider a=<pjii,i+1). Then 

(by lemma 2.2.9)

SdJ p J & m-i (-«)=^(db )0((^ca)o)

where (D(0)o=D0)\{ (i,i+ l)} and (<p^0 is the restriction of q>a  to (D J q. It follows that

(Xa>ÇDj<PjÇü+i(-a))=0 

(by theorem 2.2.1 because D ^ D ^ q), hence

(Zo>Su+i(a).lD,.(9>J)=0-

Finally suppose that Oe F ?\{ 0,(pj,ij+1 )}. Then (by lemma 2.2.12)

^ o J< P J4 +i(-a)='5(Dj0(('Pa>)o)'5ü+i(<Pû/'.»+I)-«) 

where (D ^ q and ( ^ o  arc 35 above. By theorem 2.2.1 we conclude that

(because q>J,U+iy*<pj,ij+1 )-a), hence

This completes the proof of the lemma in case (i).

Now suppose that 0{f^) is of the second kind (with respect to UJJC)). Then (by 

theorem 1.3.9) the character ( f l ^ ^  is irreducible so
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The statement about the decomposition o f (Xo^ujq) follows from theorem 1.3.8. The 

remaining assertion of the lemma is obvious in this case.

The proof is complete. ♦

Corollary 5.2.7. Let the notation be as before.

(i) I f  O ff a) is o f the first kind with respect to UJJC) then

z j x x ' t i i x i

(ii) I f  O ff  ̂  is o f the second kind with respect to UJJC) then

¿JCD -Zd)-

P roof. Suppose that O ffm) is of the first kind. Then (by the previous lemma) 

& 4D -0K 1). (0 follows because 0"(1)-6(1) and ^(1)=^©(1) (by (5.2.2)).

On the other hand suppose that O(f0 J  is of the second kind. Then

* J l) -q e n iH 7 0 ( l )« * ( l )

(by the previous lemma and by (5.2.2)). ♦

Lemma 5.2.8. Suppose that fi,i+l)eR(DJ) and that (i,i+ l)t& c\D ). Then

and

(Z.$D(<P))=(.Xo,$Dm(<Po>)-

Proof. In this lemma we are concerned with the following situation

D D„
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The first assertion follows because the i/„(A0-orbit 0 ( f j  is of the first kind with respect 

to Ua(K). In fact let a s  AT* be arbitrary and consider the element / a)+aeil+i*6 Un(K)*.

Since

(because (i,i+l)eR(DJ)) we have

Since VD is (/„(AO-invariant we conclude that
to

fa>+aeiM** O ffJ

for all cceK*.

Now (by theorem 5.1.7)

ro*D)

<a(D)u {(/,/+1)}

i f d “^ V j = 0

if

Moreover (a ,/) ,(a \i+ 1 ), (i+1 ,&)« £  for all ae { l , . . . , i - l } ,  all a'e {1 ,...,/}  and all 

be {i+2,. Therefore

where ce=<p(i,n), D0=D\{ (j,n)} and (fo is the restriction of <pto D0. On the other hand

Si+m(°04Do(<Po)

Sü+l(<PjiU+1 ))&-Hn«*)SD0(<Po)

if D^OKD) 

ifD (a=£U(DMO\i+l)}

Next we consider the multiplicity Of,§p(ç>)). By Frobenius reciprocity 

By lemma 5.2.4 we have
£«(<*)= X Cu>(a,P)

where for each fie F f .ÇiH(a,fi) is the irreducible character of U Jq) which corresponds to 

the (F-stable) (/„/AQ-orbit of the element oei(l*+/3el>1(l*« UJJC)+. Therefore

Co(9)-G»(«)Cd0(*>)- X  Cin«x&iDa(<Po)
per.

Let fie Fq be arbitrary. Then

(9>Çin(a ’P)ÇD0(<Po))ujq)m(8al>(.Cin(a >P)**D0(<Po))")ujiq)

I
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=(#“  •Cm(a <P>°>̂D0(<Po)<a)uj<f)-

Since Çm(<x,p) corresponds to the i/^/Q-orbit o f the element <xeùt*+P^i+in** UaAK)* the 

character Çin( a ,P ) “ corresponds to the i / a)(AT)-orbit of the element 

p e ^ + a e ^  i**« UJJC)* (see the first paragraph o f the proof of lemma 5.2.6). It follows

that

Since co(D(d=DQ we have

for all (a,h)eZ>Q -because Çab((p(a,b)) and Ca6(<p(a,h))" both correspond to the 

(/^AD-orbit of the element <p(a^)eaA*e UJJC)*. Therefore

and

( i in(A a)io0(% ))t/"(i)=Ci„(A «)£/-(?)^ 0(«Pb)

- because £D0(<Po)uj,<,)=CDa(<Po)- Since we conclude that

(0*»Cm(a >/ft“Coo(%)a>)(/.1(<7)=:(0<0•C«(AO!)Çd0(9\)))i/<1i(î )

=(X<* Cin(P,a)U"(<l)̂ D0(<Pa>h^y

If P is non-zero the character Cui(P,cc)Û q) is irreducible (by corollary 5.2.5) and in fact

( M c o W - t d / i ) .

Since (X op̂ d^ P J VO and (/,/»)« theorem 2.2.1 implies that

( Z w Ü J M ^ tD j i r tÙ u j t i r Q '

On the other hand we have

C«(0,a)-flVlB(a)

because i fu+i(cOm^m+i(a hj<f) is irreducible (by lemma 5.2.4) and it corresponds to the 

i/a/iO-orbit of aeMlt*9 UJJC)*. By corollary 5.2.5 we conclude that 

&1(Ofa )t/«<f>- I  iii+i(7)ii+u(o).
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(Za*C«(0*®) * >̂D0(<Po)){/lt(i)=: 2 ' Of<a» î(+l(7i5i+lii(®)^D0(<Po))i/ll(i)‘

If (m+ I)« ^ ^  then (by theorem 2.2.1)

for all ytFq*. On the other hand suppose that (/,i+l >€£><„. Then (by lemmas 2.2.9 and

2.2. 12)

6 w W fth .i( f^ W « - l) )^ » r t(m » d tW * l))

for all 7« Fq. As before theorem 2.2.1 implies that

(jla>Zu+\M Z M n (« K D 0(<Po))u.(q)=0 

for all 7% Fq*. Therefore (in both cases) we conclude that

(Za*Ci/i(0>a > " £d 0( (P ^ U li(q)=^Xap^Dj^<P(o^Ult(q) 

because |„+1 (0)=1 a ^q).

The lemma is proved. ♦

Lemma 5.2.9. Suppose that (iJ+^eR^DJ) and that (i,i+l)*S<c)(0). Then

t f l > - « « ( l >
and

(x .ZdW M x ^ dJ v J ) -

Proof. In this lemma we are concerned with the following situation 

D D a

As in the previous lemma the C/„(Af)-orbit 0 ( f ^  is of the first kind with respect to UJJC). 

This implies that

I i
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(by corollary 5.2.7).

Now (by theorem 5.1.7)

a*D)

ûj(Z))u {(m +1)}

Also for all am {l , . . . , i - l } and all b* { / + 2 , . H o w e v e r  there exists

am {1....U-1} such that (a,i+l)eD (hence (o,/)«Da>). Therefore

where cc=<p(,iji), f}=<p(a,i+l), D0=D\{(i,n),(a,i+l)} and <po is the restriction of <p to D<y 

On the other hand

f Îi*.u(a)&u(i8)&0(flo) if Du=aKD)

* [4«+l( ^ M + l) ) l .+l»(«)§<a(/3)lD0(fl\)) ifD ^fiX D JuiiM +l)}

As before we have

(2. £d( *P) ) ü.(<f)=( a ) C<u+i Co0( ) ÜJ?)

= X  X  (®.Cin(a >a ')Sai+l(A^')Co0(Ç>o)){/Ji )
a*« Ff P'm F' 0 *

-X X  (0‘“>Ua,a')“C„'+i(A/3')a,CDo(%)‘u)£/j,) 
“X X (^.^(a'.a)^,^^^))^,)

Let a ',/J« F ? and suppose that a '  is non-zero. Let 0 be an irreducible component of 

{¡¿.a',a)£„+1(/J',/3)fo„(<Pb) and let O be the (F-stable) (/„/AO-orbit which corresponds

to 4>. Then (by corollary 1.3.11)

O c O ,II( a ' , a ) + O ai+1(^ ' ,/3 )+ « (V o # (ç>0) )

where Ote(a ',a )  is the (/„/AO-orbit which corresponds to ^ ( a ' . a ) ,  Oai+l(f5',p) is the 

i/^AO-orbit which corresponds to Cai+i(0*»0) and jr.Un(K)*~* UJ.K)* is the natural 

projection. Moreover M.Vd0(<Po)) is the sum of all (/»(AO-orbits of the elements 

9 (r ,s )e r,*m UgfiK)* with ( r , j ) « D 0. Therefore any element fm O 0 satisfies 

Â €1h)“ - " “/[«Mii)“ 0 and/(ein)«a'#0. Since 6 "  corresponds to the (/^AO-orbit of the 

element UJ^K)* a n d 0 we conclude that

1
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4

Since

(X jv j.q )~ ^°  31,(1 ^D ^V^-^D ^^U J.q)

we obtain

CC.‘5o(<P))c/.(?)= 5-i •Cm(0>a )Cai+l(^*>ftCo0(<Po))t/a(i)
P 'F<

= X
F«F, 0 *

Since

Cm(0*®)=Ci+ln(®)=5»+ln(®)t/,l(i)

we have

( Cui(0.«) Co«+l (̂ '.̂ ))t/*(,)-,»i+ln(0:) Cai+1 (/J'./J)t/"<,)
for all p e  Fq. Let /fa F ,  be non-zero. Then (by corollary 5.2.5)

is an irreducible character of Un(q). Since (a,i+l)«Z)(B we conclude that 

^ ( f » ( O ,a ) { ai. 103',/3))t'«(% o(?b))i/ii(, )-0 .

Thus

Oc.<5o(<P))c/„(?)=OK<u.(?in(0,a)Cu+i(0.)3))C/"(‘?)̂ D0(9\)))t/.(,)-

Since

fm(0,a)=C,+in(a)='5.+i»(«)£/.(i ) and C«+i(0,P)~U.P)

we have 

Since
C»03)c'-i*)-  X  i(D

i*F*
(by corollary 5.2.5) we conclude that

Cfc&(*))l/.<«)- X  Cf<o.li+M(«)‘5<U(/3)'iii+l(7)5D0(?>0))£/.(i )-

Finally we may repeat the argument of the final paragraph of the previous proof to 

conclude that

Cr*{h.i«(a)&<03)i^i())io0(W)))c/.(f)-0

for a l l F , .  Therefore
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and the proof is complete. *

Lemma 5.2.10. Suppose that (iJ+l)*&r\D ^ ),  (i,j+l)«S<c)(D(B) and (i,i+l)«S(c)(D).

Then

(z .S o W )
0X»SdJÌ<PJ)

d l( Z ^ D m« P j) i /Z (  D=*«,a)

Proof. In this lemma we are concerned with the following situation 

D D m
b n  b n

By theorem 5.1.7 the condition ( / , / + implies that there is no ae {l , . . . , i - l} 

such that (a,i)eD. Moreover the condition (j,/+ l)«S(r)(D<0) implies that there exists

he [i+2......n-1} such that (i+l,h)eD. Therefore

£o(P)=l«(«)li+it>O3>6>o(0o)

where a=<p(i,rt), P=cp(i+\,b) and £>o=D\{ (i,n),(i+l ,6)}. On the other hand

Now the argument of the previous proof shows that

(2.5d(<?)){/„(*)”  S  (0®>iin(Y>a )Cib(P>Q)£D0(<Po))uji<i)

• we note that Cm ^P )  is the irreducible character of UJiq) (by lemma 5.2.4) which 

corresponds to the UJJC)-otbii of PeMb*u uJjfC)*, hence Ci+iaOS)“  corresponds to the 

UJJC)-orbit of peu»** UJJC)*, i.e.

C<+i*03>"-Ca<ftO).

/
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Let Fq be non-zero, let 0 be an irreducible component of Cm(y<a )Ca>(A0)6)o(ft)) 

and let O be the (/„(¿O-orbit which corresponds to 0. Then we may use corollary 

1.3.11 to conclude that any feO  satisfies/(«;„)=... =./(«;. i„)=0 and/te^sy^O . Therefore

((T ,U Y ,a )M P .0 K D o(<Pa)hj<l)-O

(because Since

f in(0 ,a)= f1+1(,(a)
we obtain

Ci.5o(<P))t/.(<?)=(®<u•Ci+i»(a )fa>(AO)Co0(?\)))u111(i )- 

Now suppose that Xl\)=<lXot\)- Then (by corollary 5.2.7) the (/„(¿O-orbit 0 ( f ^  is 

of the first kind with respect to UJJC). Thus

(Xa)uj<i)=&0

and
C):.'5D('P))£/.(9)=CK<u.'51>i„(a)Cii,(AO)£/"<,)̂ o0(<Po))t/.(?)

because

( ^ +i«(a)<5o0('PD))t/o>(9)=C+i„(a)CD0(<Pb)-

Since

u m u'{q)= u p )

(by corollary 5.2.5) we conclude that

(x 4 D(<P))u.iqr ( X ^ D m(<PJ)u,w

as required.

On the other hand suppose that 2(l)=;ta>(l). Then (by corollary 5.2.7) the 

(/„(¿0-orbit 0(f^) is of the second kind with respect to UJJC) so

In this case we calculate the multiplicity (’x»% D j.9j)uj,qy  By lemma 5.2.4 we have

X  (0®Ci+11.(a ) Ci*( A Y)Co0( J v ) '
!•*«

Now we claim that

C M n& K ibtf'V -C M nU xK fiW )

for all F r  Let >  F? be arbitrary. Since

1 f
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and ^¡bW,T)U"W^ib(.P)

(by lemma 5.2.4 and by corollary 5.2.5 respectively) we have

By lemma 2.2.6 (we note that i<i+l<b<n) the character l;M Ja)4u,(P) has q irreducible 

components which correspond to the (/„(10-orbits of the q distinct elements

<»i+u*+0«K*+/“ tf+i*« «»(*)*
where fie  Fq. All these components have the same restriction <f> to U Jq). Moreover tp is 

an irreducible character of UJiq) (because the £/„(JO-orbit of otei+ln*+Pebi*+fUiM * is 

of the first kind with respect to U U(K )  - otherwise oteM n m+pebi*+fieiM * is 

i/„(10-conjugate to a^¡+̂ „*+/few,,,). It follows that

C §i+ln(® ) ii(̂ ) )lljq  )~Q4*-
Since

(ii+l n(a )Gib(P))uj.q)= X Gi+lJa Kib(P'?)
^  F1

(by lemma 5.2.4) we conclude that

Ci+m « x K M = < P

and our claim is proved.

Finally we deduce that

(Xar%Dc(<Pj)u.(q)=el(&a>'’Ci+lnWZutfMZD^Voftujq) 

^ (X 'Z o W h jiq )-

The proof of the lemma is complete. ♦

Lemma 5.2.11. Suppose that (i,i+l)eS<r\DJ. (U+l)eS<e\ D J  and (U+l)eSie)(D). 

Then

C&&<*»)•I
(Xc SdJ V cJ ) i fx W -d X jL V

i fX iU - X J D

t i



2 2 1

Proof. In this lemma we are concerned with the following situation 

D D u
b n  b n

We follow the proof of the previous lemma. In this case there exists ae {1....J-1} 

such that (aJ+l)eD and

& (9)-5« (a)Î.+i6(P)Î«+iO )& 0(flo)

where a=<p(i,n), f}=<p(i+l,b), -¡^(p(a,i+1), D0=O\{(i,n),(/+l,Z>),(a,i+1 )} and <p0 is the 

restriction of <pto Dq. On the other hand

SDj<Pj=SMn(<X)Sib(ft&uMSDJi<Po)-
We have

ct% Ff /«  F f
As before

( 0“ . iw (« '- «) £¿¿(0.0) Ca,+i ( / '.  7) io 0( <Po>)£/0|(i )=0 
for all a *  F ?*. Thus

(X.$D(<P))ujiqF ^  (̂ ".?.+ln(«)C.6(AO)Cal+l(r'.)i)Coo(Vo))t/41(?)-

Let / 'a  F ?* be arbitrary and let 0 be any irreducible component of 

fi+i<»(«)fib(/3.0)Cai+i(7'.y)fo0(<l,o)- By corollary 1.3.11 the If „(JO-orbit 0  which 

corresponds to l  is contained in the sum of the C/^ÆO-orbits of the elements aeMn*, 

fieu,*, y'«a»+i*+7*ai* and <p{u,v)em* for all (u,v)«Z)0. It follows that any element gmO

satisfies the equation

(cf. proposition 3.1.2). Since f j i  Vp (9^  and (aJ+l)*R(.DtlJ\D lf  we have

(by (3.1.7)). Therefore
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( ^ u. i 1+i„ (a )iii(AO)C<u+1(y',y»Co0(9>o))c/M(,)=0- 

Since f t  Fq* is arbitrary and

C»vi(0.tf«GuOi
we conclude that

(x 4 o (<P))u,(<if:(&0’Ci+ln(a )Gib(P’Q)Cat(tfCD0((Po))uj<iy 

Now suppose that XfXi^XaP-)- Then (by corollary 5.2.7) the UJK)-orbit 0 ( f j  is 

of the first kind with respect to UJJC). So (by lemma 5.2.6)

and
te£D(V))uM=tea,l+ln(<xKib(P$f'(q)$ai(rtZDa(<Po))u.(<,)

because

Since

we conclude that

t e ^ D ^ U ^ f t e ^ D ^ V ^ u . w

On the other hand suppose that X^)=XJ~^)- Then 0 ( f j)  is of the first kind with 

respect to UJJC) so

x n * ? » .

In this case we repeat the proof of the previous lemma to conclude that

teap^D^^Pioi) ®il>> Ci+1 n( Cifc( A^) D0( ̂ Po)) UJil)

=?CX'ZdW ) u„w

The proof of the lemma is complete. ♦

Lemma 5.2.12. Suppose that (/,/+ l).S <c)(D(U), (i,i+l)«S(,)(D J  and (i,i+ l)tS (c\D ). 

Then

Xfi)-X j<V

a id

I I

te.ZD(<P))m(Xa>ZDji<P«))-
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Proof. In this lemma we are concerned with the following situation 

D D u

Since (i,/+l)«S<c)(D) there is no a'e ( l , . . . ,M }  such that (a'J+l)eD. Therefore 

(/,i‘+1)«S(c)(D (B) if and only if there exists a e {1 ,...,/-1} such that (a ,i+ l)« 0 „  and 

(a ,i)e D . Moreover the condition (U+l)e&r\D„) implies that there is no be [i+2,...,n-l} 

such that (i+lJ))eD. It follows that

6>(P)=6»(a)6»03)So0(ft>)

where as=y(i,/*), P=(p(a,i), D0=D\{ } and (fo is the restriction of <p to D0. On the

other hand

$DjiVj=$Mn(a)$ai+l(P)ZD0(<Po)-

To prove the first assertion of the lemma we claim that the (/„(AO-orbit 0 ( f j  is of 

the second kind with respect to U JK ). For we suppose that 0 ( f j )  is of the first kind. 

Then (by proposition 1.3.6) the image M.O(fJ)) is a single UJK)-OTbit in UJK)* (here 

ic .u JK )* -* U JK )*  is the natural projection). Let A« AT* and consider the element 

xii+i(A)*l+i<iitli  UJK). Then

i«(A)-*(*a+i(A)-/J
is C/a/AO-conjugate to Thus o f lgjX)<u is (/«(AO-conjugate to o)'xgao>*ic(f)

(for the definition of (o xh(o, he U jK )m, see the proof of lemma 5.2.6). Let fi.X)e UJK)* 

be the (unique) element satisfying

n(f{X))-aylgjL\)a> and /W)(ea+,)-0 .

Since the (/„(AO-orbit 0(f) is o f the second kind with respect to UJJC) we conclude that 

/(A) is (/„(AO-conjugate to f  (by proposition 1.3.7). Since

xu+i(X)erjcu+l(-X)-ers+M.eu+i,eri\

1
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we have

(fers)

g o fe r s )* '

if r* i+ l and s*i

f e i s ) + ^ i e i+ls) i f  r= /+ l

\ferM > *ferÙ  if i-«'

for all (r^)e<P(rt)\{(»,/+l)}. It follows that

f e r s )

A^)<,ers)={(nAgJ,X)cù)(er,)=gJ,X){e(̂ r)o^s))-

if r*i+ l and r* i 

y(«ù)+V(«,+i,) if r=i

f e r M > * f e r i )  i f  s = i + 1

for all (r^)ed>(n)\{(i,i+l)}. Now we consider the function A^i+1:Un(K)* -*K. Since 

(a,i+l)eR(D)\D we have

¿ £ +1(/tt))= z£+1(/)=o

(we recall that feV D(.q>)). On the other hand

^ +jtfW )=d*+1tf)+Ad2(/)

so
XADJf)= 0 .

This is a contradiction because 2*0 and (a,i)eD (hence d^(/)*0). It follows that 0 ( f ^  is 

of the second kind with respect to UJJC) and this implies that

X M -X JX )
(by corollary 5.2.7).

Now we have (repeating the usual argument)

C ■ ii+ ln (  ®) Cai+l (A O ) Co0( lPo))(/J<ry 

On the other hand (by lemma 5.2.6)

Z s r C f n W
So

(Xa>ÇDm(.<Paî))ujii)m(&0¿Dm(<Pj)uj<i)

■ 2  ( 0 * . f i + l » ( a ) f f l i + 1  ( f l* F ) Ç D j tà Ü u ja Y
'•*1

To conclude the proof of the lemma we claim that

> f i+ t  » (  “ )  C ii+ i ( A Æ * ) C d 0(  4V)) ) { / j f l) * 0
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for all p e  F * .  Let p e  Fq* be arbitrary. Then

Let 0 be any irreducible component of Cm(o 'O)Ca«+i(/i'./J)?0o(0o) and let O be the 

{/„(AO-orbit which corresponds to 0. Let ge Un(K)* be such that K(g)eO. Then 

g ( e in ) - - - - =g ( e i-in )S!0  and g ( e iJ = a * 0. Thus the {/„(AO-orbit 0 ( g )  is of the second kind 

with respect to UJJC) (see lemma 5.2.3). Therefore 0t/*(,) is an irreducible character of 

U,(q) (by theorem 1.3.9). Since

(see the proof of the previous lemma) and

%D'f.<Po)tJJ.<i)mZD'>(<Pb) 

we conclude that 0 is an irreducible component of

(Ci/,(a.O)Cai+,(^ ',^)fDo(0o))£,’(,>= ^ ( « ) ^ +i(j5O^o(%)-
It follows that

<*>*>
for all geO. Since

4L t(/M >

(because (a,i+l)eR(D)\D) we conclude that

( ®. £in(a fi)Gai+i(P'<P> Cd0(

(because 9 corresponds to the i/^/AO-orbit of the element Jt(f)t UjiK)*). It follows that

(Xar^D^-Vtu^UJiq)=( Ci+1 #»(**) Cu’+l ( )

and the proof of the lemma is complete. ♦

Lemma 5.2.13. Suppose that (i,i+l)*S<c\ D J ,  (i,i+ l)*S(r\ D J  and (i,i+l)»SM(D). 

Suppose also that there is no ¿x {1,.. .4-1} such that (b,i)*D. Then

X V - x J i i )

a n d

(xA D(<p))m( x ^ D m(<PJl

l #
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Proof. In this lemma we are concerned with the following situation (the symbol ■ 

represents a £>-derived root)

D Dm

In this case there exists as {1....J-1} such that (a,i+l)sD and

SD(<P)=Sm«X)Sai+l(P)SDo(<Po)

where a=<p(iji), fi=<p(a,i+\), D0=D\{(i,n),(a,i+l)} and <p̂ is the restriction of <p to D0. 

On the other hand

&.(9»<0)“ ^ +in (a )iu+i(î)-5D0(<Pb)

where T^<pjia,i+1) (we note that (a,/+l)*DnDa> (see theorem 5.1.7)).

To prove the first assertion we claim that the £/„(Af)-orbit 0(f^> is of the second 

kind with respect to UJ.K). For we suppose that 0 (fj)  is of the first kind and we repeat 

the construction of the previous proof to obtain for each As K* the element f{A)s 0(f). 

Then

d£+t( / t t ) ) -d ° +1(/)*0

(we note that (aj+l)*D). On the other hand

Therefore

This is a contradiction because AsK* and

I /

(we note that (aJ+l'faDJ. This contradiction implies that 0(fg) is of the second kind 

with respect to UJJC). By corollary 5.2.7 we conclude that
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Z M -Z JX )-
Now (by the usual argument)

0 ZAdW Ï uJA T  ^  >C « >  1  n ( ® ) C a i +  l(P ’’P) Î d #( *Po) ) UJlq)'

Let j3e F ? be arbitrary. Let 0 be any irreducible component of Ci+i»(«)Cai+i(/F>Æ)£bo(0b) 

and let <7 be the i/^ iO -orbit which corresponds to 0. Then there exists a constant 

c(/J> Fq such that

d ^ i(g )-c 0 3 0

for all geO (see (3.1.7)). Moreover for all /^./Te F ?

c()3>c(j3") »  P=P".
Since

we conclude that

(0<”.C,+i»(a)C„+i(j8'.i3)?Do(^)))t/ai(,)=O 

for all P'e F ?\{ /)}. Therefore

On the other hand (by lemma 3.2.6)

Thus

To conclude the proof of the lemma we claim that

(^“ .ii+ini^Cai+iCr.rOCDoC^))^,)^

for all Y* F ?\{ y}. In fact

(0 * >Ci+lii(®)Cai+l(i'*70fD0(9o ))t/t((i)“ (®»f«»i(«*0)Cu+l(y' • T h tD ^ V o f iu j .q )  

and an argument similar to the one used in the previous paragraph (using the function 

^ai+O shows that

(e,Cu,(a,0)& M iY .M Do(<Po))ujq)mO

for all
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The proof of the lemma is complete. ♦

Lemma 5.2.14. Suppose that (¿,/+l)«S*r)(Z>^ and (i,i+l)eSic\D ).

Suppose also that (Jb,i)eDnD„for some be {1,.. .J-1}. Then

x t \ ) - z j x )
an d

Proof. In this lemma we are concerned with the following situation 

D Da

. b

¡ ' L i

In this case there exists ae {1......i-1 }

must have a<b). Hence

(o d ’K b .U ’O&h-i03)6»<tfSo0(?>b)

where a=<p(i,n), P=(p(a,i+\), y=<p(b,i), D 0= D \[(i,n),(a ,i+ l),(b ,i)]  and <p0 is the 

restriction of <p to D0. On the other hand

SDjVj=4Mn(a)$ai+lMSb,<V)$D0(<Po) 

where p=<pjia,i+l) and v=<pjjb,i) (we note that (a,i+l)eDi^DJ.

An imitation of the previous proof shows that the C/n(AT)-orbit which corresponds 

to the character is of the second kind with respect to UJJC). Thus (by corollary 5.2.7)

*(1)«**(1 )•

Now (by the usual argument)

i X > ^ <P))vjiq)m S  (0®.Ci+l«(a ) C a i+ l(^ C « + l(T<0)fo0(Wd) )u jq )-

As in the previous case we have

n

such that (a,/+l)e£> (by theorem 5.1.7 we
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for all /3*e F J\[n). Hence

On the other hand consider the character ZdJ^Vo)- We claim that

^ < p J = (C .+i«(a)Cu+i(p.^C«-t.i(r.0)io0(9b))£/,,(,)-

Since

^ +u(«)£/jC,)=C+i»(a) and SDo(<Po)uj.<,rCD0(<Po)

the iigth hand side of that equality is equal to

&+in(a )(iffl+i(/i»/ftCw+i(y.O))ü*(,)5D0(?\))-

Therefore our claim will follow once we prove the equality

( Cai+i(M<P) Ci,+i (r.0))£/”(,?)=<5aj+i v).

Since a<b, the character 4ai+i(M)4bi(v) ° f  Un{q) is irreducible (by lemma 2.2.3). 

Moreover (by corollary 1.3.11) it corresponds to the i/„(AT)-orbit Oai+i(p)+Ob̂ v) of the 

element l^ai+i*+vebi*e U„(if)*. By lemma 3.1.1 this orbit consists of all the elements 

ge Un(K)* which satisfy g(euv)=0 for all (u,v)e0(n) such that u<a or i+l<v, g(ea,+\)-H

det *-SubSvin v

and

/  S(«av) «(«ai+l) \
\  *(««*) $(<Wi) J

for all (u,v)eD(a,i+l). Let <p be the irreducible component of f<u+i(/t»/î)fw+i(y.O) which 

corresponds to the UJifQ-orbit O of the element

Since fiy* -n v (by theorem 5.1.7) the element f^eaM *+Peai*+yebM*u satisfies

the above equations. Therefore

~M*ah.i*+/3c«*+7««+i*««rl(0 )r.(0ah.1(/i)+0N(v)).

By theorem 1.3.9 we conclude that

( i a i + l O ^ V ) ,* ^ ) * ) .

Since 4ai+i(M)4bi(v) >s irreducible and 0 is a component of Coi+i Ol /J)C«+1(7.0) we 

deduce that
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(5ai+iOt)««(v).CCai+iOi,/3)?«+i(r.o))t/*(,)> ^ .

On the other hand

(Ca,+i0i.^)C«+i(r.0))t/-(,)(i)=? C*+,(m./3)(1) C«+1(y.0)(i)

=qqi-aqi-b̂ - <,qib-1

- Ì m WXD&CvXI)

which completes the proof of the required equality.

Finally

Cy<a»io<„(^a»))£/<(i)=(2r<a»(C«+ln(®)Cai+l(A^>^)Cw+l(7»0)fD0(^\)))

= ((X a> ) U J iq ) 'G i+ ln ( & ) G a i+ l ( M 'P ) G b M ( y f i )  U J ,q ) ‘

Since ©(/o,) is of the second kind with respect to UJJC) we have (by lemma 5.2.6)

( x J u ^ r Z ^ a )

where

0"(A )=(O Z“*l(X)

for all Ag Fq. Hence
0 (q)~ S  (6a,(A),{i+i#l(o)^ii+i(/x,^)fjf4.i(7i0)55 

XtF

To conclude thè proof of thè lemma we claim that

(0“(A),C1+u(a)C<2i+1(^./Ì)Cw+i(r.O)Coo(<Po))t/- (9)=O

for all Ag F ?*. Since

e(A)=(0"(A))<"
this equivalent to prove that

(6(A), C J  a,0) (/J,)i) CiXtf Co#( ?>b) ) t/jfa)“0

for all Ae J^*. Let 0 be an irreducible component of ^ ( 0 , 0 ) Y Ci»(7)Co0( Wo) “ d 

let 0  be the £f„(£)-orbit which corresponds to <f>. Then (by (3.1.7)) there exists an 

element c(JS)q Fq such that

4 L i (g)-c(P)

for all guO. On the other hand let A* F q be arbitrary and let 0(A) be the UJJC)-orbit 

which corresponds to the irreducible character 0(A). Then (by (3.1.7)) there exists an 

element c'(A)a Fq (depending on A) such that
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d £ +1(*)-c'(A)

for all g*0(X). Moreover cXX)*c\X') for all X’* F ^{X '} .  Our claim follows because 

c(p)=cX0) (as one can easily check). Since 0(O)=0 the proof of the lemma is complete. ♦

Lemma 5.2.15. Suppose that (i,i+l)eS^c\D  (f,/+l)«S^(D «) and  (i,/+l)«5<c)(D). 

Suppose also that there exists be { l , . . . , i - l } such that (b,i)*D and (b,i)*D„. Let 

ae {1,.. ..i-1} be such that (a,i+l)«D and assume that a<b. Then

< (Xo ZdJ v J ) i f z W = q z J .i )

[ f 'G ta p tD jV j)  ifZU)=Za>W
(z £ d(<p)>

I 1

Proof. In this lemma we are concerned with the following situation 

D D„

In this case we have

where a=q>(i,/i), /3=<p(a,/'+l), y=<p(b,i), D 0-D \{(/,/i),(a,J+ l),(h ,i)}  and <Po is the 

restriction of qj to Dq. On the other hand

S D jV JmSMn(a)Sa,<P)Sbi+i<.1>SD0(<Po) 

because D ^co (©) and tp^tpcoiby theorem 5.1.7).

As usual we have

Cf.io(^))i/,(e)“ J S  *f*+i»i(a )fai+i(^*<P>fw+i(7>0)fo0(

Since ( a ^ D ^ a  similar argument to the one used in the previous proof shows that

(0*<Ci+i/i(a)Cai+i(0* •£) fw+i (r.0)fDo( <Po))uj.<i)m0
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for all /3"e Fq*. Therefore

(X>€o(<P))uj;<i)“(Qa>.f«+ln(a )Ca(^)Cw+l(7>0)CD0(?\)))t/j(i)
because

Now suppose that Xf^)=Zt^\)- Then

z + « r > a j*
and so

( Xaf^Dj-(Po^)uj.q)s  ^  C i + 1  n (  ® )  C o i  ( / ^ )  Cbi+ 1  (  T * T * )  C d 0 ( * P o )  )  £/j ( f  )•
7«*f

An argument similar to the one used in the proof of lemma 3.2.10 shows that

C<u(P)Cbi+i(r.7>Cai<P)CbM(.Y'0)

for all y'e Fr  Therefore

( 2 : » ^ D j < p J ) { / . ( ? ) = <? ( 0 " . i . + i n ( a ) C a i ( / J ) C * < + i ( r . o ) C D o ( < P b ) ) £ / j : ? )

-q(x4D(<P))u.i<,)

as required.

On the other hand suppose that ̂ j(l)=^^0/ l ) .  Then

( x J u j o r 00’
and so

(jC^D(<P))u.{q)= (Xoy.(C M n(a)C JI^C bM (rM D a(<Po)f’{q)h , ( liy

Since

Ci+t»(o)Cu</3)Ct>0(?>b)=(5i+u(«)5B.(/3)&0(flo))t/- (i )

we have

(C +u ( a ) C - ( ^ a <+i(r.O)f0o( ^ ) ) t,*(’)- i , +i „ ( a ) U ^ ^ +i(r.O)t,*<f){0#(fh).

The result follows because

(by corollary 3.Z3). - ♦

Lemma 5.2.16. Suppose that (i,/+l)«S<c)(D J ,  </,i+l)«S(r)( D J  and (i,i+l)«S(c)(D). 

Suppose also that there exists be { 1 ...../-1 } such that (b,l)mD and  (b,i)mD„. Let 

am {1,_.i-1} be such that (a,M)mD and assume thatbca. Then

I
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x a > x j u
and

I

Proof. In this lemma we are concerned with the following situation

As in the previous lemma we have

£D(<P)=4in(<*)la+l(0)ilH<rt£Do(<Po)

where a=<p(i,n), 0=<p(a,i+1), y=<p(b,i), D 0=D \[(i,n),(a,i+ l),(b,i)} and <pQ is the 

restriction of <p to D& On the other hand

because D ^c d D )  and (pa^qxo (by theorem 3.1.7).

The same argument used in the first pan of the proof of lemma 3.2.12 shows that 

the i/„(AO-orbit 0 ( f j  is of the second kind with respect to U JK ). Therefore

X t \ ) - X jD  and Zd-(0*)U,{1)

(by corollary 3.2.7 and by lemma 5.2.6 respectively).

Now we have

C (0*•Ci+i<«(a )Cu+t (/*'•£)Cbi+i

We claim that

Cai+l(̂ '.̂ )fw+l(y.O)"{al05)Cwt-l(y»O)
for all p ‘m F q. This is clear if /)’*0. Let p *  F ?* and let O be the U J K )-orbit of the 

element

*+)&,,*• UJiK)*.

I
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Since O ^ M + O a ip )  is the (/„(AO-orbit of P’e ^ + y s ^ i*+/feai*« Un(K)* (see lemma 

3.1.1) we have

* 1(O r tO bn.i(ti+O Jfi))*0

where ic. un(K)* -» UJ,K)* is the usual projection. Therefore

((?ai+i(j8'./3)Cw+1(r.0))t/«(,),la ,< ^ l« +i(^ )y 11(,)’60-

By Frobenius reciprocity we conclude that

( Cai+l (P'<P) Cw+t(7.0)»( £ai(P)£bi+\(?>)ujiq))ujkq)*Q-

Now (by lemma 5.2.4)

( ls a i ( ^ ) l»6 i + l ( ^ ) ( / <u(<7)=  ^  Cai(P) Cbi+1 ( 7*7*) •

For each 7  e let 0 (7 0  be the (/„(AO-orbit which corresponds to the irreducible 

character Co,</))Gm+i(7»7') of £/&>(<?)■ The*1 g(ebi)=Y  for all geO  and so 

(  C ai+ l (P 'yp )  C w + 1  (7.0). C a i ( ^ )  C ii+ l  (7.70)t/- (?)=O 

for all 7*6 F ’i *. It follows that

(Cai+l(P >P) Cii'+l(7*0)• Gai(p) Cbi+l (7*0))ujiq)*®' 

i.e. the irreducible character £„,(/)) C*,+i (7*0) of U m(q) is a component of 

Cu+i(/)'.$) Cw+i (7*0)- Finally we consider character degrees. On the one hand we have

(Cu(/3)Cw+i<7.o))( 1 )^ »y*»-M ^ v*1.
On the other hand

(C«i+i(^./3)f6,+i(7.0))(l)-<7i+,-a*V +1'* - V ’a'V '* '1.

The required equality follows. Therefore

(X'̂ V^Ujiq) ^ ^ > C i+1 n (  ® ) C a i(^ ) Cw+ 1 (7*0) Cd o(  9 t)) )  UJqY
Now

X  (®“.C«+l(i(«)Cai(^)fw+l(7*70fD#(iy»))uj(i )-

Since the UJJC)-aMt associated with the character 0 contains the element «(/"„)« UJJC)* 

(ir.Un(K)* - » UjJO m is * e  usual projection) and

we have
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(®.i«(ot.°)fa<+l(A0)iiM+l(y'>i)Co0(<Po)){/Ji)=' 0 

for all Y* *q*- Hence

Ci<a>l5o-(9,J)£/.(7)=(®<n> C+1 (|( a) Cto-t-1 (7>0) Co0( ̂

and the lemma follows. ♦

Lemma 5.2.17. Suppose that (i,i+l)*S^c\D ay S ^ r\ D â  and (i,i+l)*S^c\D ). Then

* 1 )= Z JV
and

Proof. In this lemma we are concerned with the following situation 

D Dm

We follow the proof of lemma 5.2.12. The proof of the first assertion is precisely 

the same. For the second we have

$D(V)=Si«(<*)$Mj<fr$bi(y>>ZD0(<Po)

where j •  {i+ 2 ,... , n - l } is such that (i+1 J)mD , a=qj(i,n), /3*<p(i+ 1J), T^<p(.b,i), 

D0=D\{ (i,n),(i+lj),(b,i)} and <Po is the restriction of q> to Dq. On the other hand

By the usual kind of argument

On the other hand we have

(by the first assertion of the lemma). Hence

I f
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^  ( ®**» Cm- 1 It( ®) Cijffi'P") Cbi+1 (Y'Y^ £d 0(*Po) )  U Ja)‘
r  » 7  *

Using the function A^i+l:Un(K)*-*K  we may conclude that

(6,Ci„(a,0)Ci,</3',i8)fw+1(y',r)Co#(?b))t / J , )=0 

for all Y*F q*. Therefore

(0".Ci+in(a)fi/< ^ ') i w +i(r-rO iDo(9>o))t/j?)=O

for all Y*Fq*‘ I* follows that

(Xa>£DM(<Pa))um(qys 'E  ° 0 C t o + l  (7.0)CD^Vofiujq)-
FmFi

As in the proof of lemma 5.2.10 we have

6*1 n W W M W M n W t y P f i )

for all /3*€ F ?. Therefore

(Xa*€Dot(<PJ)ujLq)=<l ( ea>¿M n(a Kij0'OKbM (Y’OKDo(<Po))uj.q) 

and the proof of the lemma is complete. ♦

Lemma 5.2.18. Suppose f/tar (i,/+l)«S<e)(0  J n S ^ D J  and  (/,i+l)*S(c)(D). Suppose 

also r/iar {b,i)*D fo r  all be [ l , . . . , i - l}. Then

and

(z £ d(<P))=4'1(Xc*$dJ (PJ)-

Proof. In this lemma we are concerned with the following situation 

D Dm

We follow the proof of lemma 5.2.13. The first assertion is a repetition o f the
' i ' '
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corresponding proof of that lemma. For the second we have

where jm {i+2,...,/i- 1 } is such that (i+ lj)e D , am [ l , . . . , f - l } is such that (a,i+l)«Z), 

oc=<p(i,n), p=<p(i+lj), y=qKa,i+1), £>o=£>\{(i,/»),(i+lJ),(a,i+l)} and ft, is the restriction 

of qjto Da. On the other hand

<Pa>)=l»i+iii(a )iiy(^) £ai+i^M) £o0( Vo)
where p=<pjia,i+1).

As in the proof of lemma 3.2.13

On the other hand we have

x o > « n u*q)

(by the first assertion of the lemma). Hence

(Xa>SD.(<Pa))u.(<,rfj. 'L F (^ " .i,+ln(«)Cy<A/3')ia«+l(Ai.M')Coo(9>o))t/i/ ?)-

Using the function A%i+1:Un(K)*-*K  we may conclude that

(© ,C„,(a,0)?^',)3)fai+1( M » & 0(^ ) ) t / j ,)= 0  
for all ¡i’m F ^{  y ) . Therefore

for all ¡i'm F ,\{ y) . It follows that

( ^ ( * J W X  >Zi+\n(a Kij<PfflCat+\(JJ-'?>CD0(<Po))uji<iy
P*r i

As in the proof of lemma 5.2.10 we have

C,+u(a)i^A /3 ')=C ,+i„(a)Ci/<A0)
for all pm F r  Therefore

and the proof of the lemma is complete. ♦

Lemma 5.2.19. Suppose that (i,i+1)«S^C\D aj)n5<r)( D and (W+l)«S<c)(D). Suppose 

also that (b,f)mDnD„for some bm {1....J-1}. Then
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and
tf l)-* « * !)

(*.& (*)

Proof. In this lemma we are concerned with the following situation

D Da
_______ j n

We follow the proof of lemma 5.2.14. The first assertion has the same proof. For 

the second we have

$DW=$inWSi+lj<frS*i+lW4bi(®$D0<.<Po)

where jm {i+ 2 ,... ,n - l} is such that (i+1 J)eD , ae {1,...,/-1} is such that (a,i+l)eD, 

a=<p(i,n), 0=<p(,i+lJ), r=qKa,i+1), 8=<p(b,i), Z>0=Z>\{ (.¡,n),(i+lj)Aa,i+\),(b,i) } and <Pq 

is the restriction of g> to D0. On the other hand

where n=<pjia,i+l) and v=<f>JJb,i) (we note that (ayi+l)eDrDor 

As in the proof of lemma 5.2.14 we have

To calculate the Frobenius product we ^rst prove the equality

By lemma 2.2.6 the character £i+\n(.<x)Gij(.P) has q distinct ineducible components which 

are parametrized by the elements of the field Fr  For each Xu Fq let 0(A) be the ineducible 

component of ii+in(a)i,y03) which corresponds to A. Then

and
«(A).

f
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Therefore
X  ta& tiO O C w C v tt^ ta ,).

to tn

The required equality will follow once we prove the equalities

«(A)i<IJ+1(M )U v )|Do(9>b)=(Ci+i„(a)C #.0)C »+i(^^C ^i(5 ,0 )C o0( ^ ) ) l/‘(,> 

where X runs over Fq. Let Xe Fq be arbitrary. Since

(see lemma 2.2.6) and

^O0(flb)t/ji)=Co0(fl%)

the rigth hand side of the equality above is equal to 

As in the proof of lemma 5.2.14 we have

The proof of the lemma now follows as in lemma 5.2.14. ♦

Lemma 5.2.20. Suppose that (U + l^ S ^ iD ^ r S ^ iD J )  and (i,i+ l)«5(c)(£>). Suppose 

also that there exists be {1,...,/-1} such that (bJ)eD and (b ^ e D ^  Let ae {l , . . . , i - l} be 

such that (aJ+l)*D and assume that a<b. Then

,  „ \ JV O & P & jC fJ) i f # . D - i2 « 0 )

W  (Xo*SdJ<PJ) ¡fZU)=Xm(l)

Proof. In this lemma we are concerned with the following situation 

D Du

>
We follow the proof of lemma 5.2.15. We have
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where jm { i+ 2 ,.. . tn-l}  is such that (i+ lJ)*D , a=<p{i,n), fi=<p(i+\J), T^<p(a,i+l), 

5=<p(b,i), D0=D\{ (i,n)Ai+lJ),(aJ+l),(bJ) } and <Po is the restriction of q> to D& On the

other hand

because D ^caiD ).

As in the proof of lemma 5.2.15

G )“( » Ci+li»(a) Cÿ(AO) Coi( Cw+i (M) CD„(<Po))uj.qy

Now suppose that Then

Z * * ? *
so

Cfô'sO (<Pa>))l/ (<?)= (0*>Ci+ ln(a)Çt/.P’P')£ai(rtCbi+1 (& 5")Co0(<Po))tJJiqy* * P.S'*F'
Now we have

^ < a ( * ( M H f U ( « 9 W 0 )

for all /F* F ? (see the proof of lemma 5.2.10). On the other hand

for all 5e F ? (see the proof of lemma 5.2.15). Therefore

(Z » & jC fJ)v jw V (Z & (f0 )v j(« )
as required.

On the other hand suppose that 2J(1)=<7XtJXi- Then

(X ju jq )m8“

to

0:.5D(^))t/.(i )-Ct<0.(Ci+i«(«)fi,(AO)Cu())Cw+1(5.0)f0o( ^ ) ) t,*(,>){/.(,).

The result will follow once we prove the equality

ÎoJV J^(^ t« (a)fv< A 0)C u(îif6 .v t(fi.0 )fD#( ^ ) ) l,-(,).

Since

Car()iCD0(9\))“ (ioi<7iio0(?h)){/.(f)» 

the rigth hand side of the equality above is equal to

(fi+u(a)C«<A0)fw+l(5.0))t'-<,)U ? ) f o o(W))-
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By theorem 3.3.3 the character i 1+i„(a)<5ly</3)̂ il+i(5) has a unique irreducible component 

which appears with multiplicity q. We denote this component by <p and we claim that 

*=(?,+!„(«) (8,0))u-(q\

In fact <t> corresponds to the i/„(/0-orbit of the element

aej+i<. * + / V +& «+i*«
The image of this element under the projecdon tc. Un(K)* -> U JilC)* lies in a U JiK)-orbit 

which corresponds to an irreducible component of i^u(o0Cj/(AO)£'(M+1(S,O). Therefore 

(by theorem 1.3.9)

Now we have

0( 1 )=<7'1 qn'(i+11 qf'1' 1 q<-i+l'>-b-l=qn+j-i'b-A

whereas

(C+i„(a)Ci,(i3.0)fW+i(5.0))U«<,>( l)^ q " - (i+1)- V ‘,'‘V ,'+1)'6‘2= in+>'i'i’‘4-

The desired equalities follow and the proof of the lemma is complete. ♦

Lemma 5.2.21 .Suppose that (ij+ \)*SicXDldci&r\D J ) and (i,i+l)*SM(D). Suppose

also that there exists be {1......i-1} such that (b,i)*D and ( b ^ s D ^  Let as { }  be

such that (o,i+l)eD and assume that fxa . Then

and
(X'Sd(<p) X x <i>ZdiS <pJ ) -

Proof. In this lemma we are concerned with the following situation 

D Da
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As in the previous lemma we have 

and

where {¿+ 2 ,...,n -l} is such that (/+ lJ )u D , a =  <p(i,n), f}=<p(i+lj), f=q>(a,i+l), 

ih<p(bj), Dg=D\[ (iji),(i+lj),(a4+l),(bj) } and is the restriction of <p to Dq.

The first assertion is proved exactly as in lemma 5.2.16. In particular

For the second we have

(x 4 d(<p))u (*)= X  (e a,.f i.M (« )f(^ .0 )fai+i ( r ' ^ f « +i(5,0)Co0(?>d))i,J(,).
* /« F ,

As in the proof of lemma 5.2.16

?«+i(r'.7)?«+i(5.0)=i(»(y)C6,+i(5.0)
for all y e F .  Therefore

(2:.io(^))t/.(i )=i(^U.i.-t-u(a)fi/(AO)Cai(^?6.+l(5.0)CD0(<Po))t/M(?)-

On the other hand

C J L  ( ^ ,. i1+l„(«)?y(A^')C<u())CW+l(«5.50COo(9>o)){/Ji )-
r

As in the previous cases

Ci+i , ( « W . / n < +i»(a)C^/J.O)

for all /)'« F ?. On the other hand (repeating the argument in the proof of lemma 5.2.16) 

we have

( ^ . f ,+i«(a)fy(AO)Cai(y)fw+1(5.5')f0o(<Pb))£/-(i)-0

for all 5« F  Hence

0 .Ci+l«(a)fi/(AO)C1i(7)fiN+i(fi.O)f0o(9V)))£/j:,)

and the lemma follows. 4

Now we complete the proof of proposition 5.2.2. For a* {1,2......14}, case (a)

corresponds to the situation of lemma 5.2.(7+a).

# ' '
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Case 1. We have & \)= qzJ.\)  and Since

we conclude that

s(D)=s(DJ+2 and /(D)=/(D<0)+1 

)=<72aX i ) ^ d j 'k d j(x ^ dJ  <P<J)

mq<l*D> W D »l^t£D(lp))m{ii<PW>)(x£ D(9y)'

Case 2. As in the previous case )=qxJ.V  and (x 0,€ dJ .<Po>))=(X’£d(<P)1)- Since

we obtain

s(D)=s(DJ+3 and l(D)=l(DJ+2 

X( 1 )~<lXji 1 ) ^ ( ^ DJJKDJÌ X ^ dS  V eti

Case 3. In this case we have

s(D)=s(DJ+l and /(D)=/(DJ.

Therefore either

Xt 1 )=<IXji 1 )=<;4*DJ'KDJ(Xa,$Dj- <PJ)

^ ( ^ D>Um(jC^D(V))=^DyKD)(X^D(<P))
or

Case 4. We have
s(D)=s(Da)+2 and /(D W ID J+ l.

Therefore either

or

2* 1 1  )m̂ DJ'KDJ(Xa»^Dm(<P j )

1 /
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Case 5. In this case * (1 )-Z »(D  and (Xa>^Dm(<PJ)=iX^D(<P))- Proposition 5.2.2 

follows immediately because

s(D)=s(D0)  and l(D)=l(D(̂ .

Case 6. We have ;£( !)=*„( 1) and ( x ^ D ^ V j ^ i X ^ û W ) -  Since

we obtain

s(,D)^s(DJ+l and /(D)=/(Da>)+l

Xf. 1 )-* « ( 1 )=4*DJ4(DJ(Xa>SDji<PcJ)

r n r fW * * » '  C t.& (9»)W <DH(|»Cr.&(f»))-

Case 7. This case has the same justification as the previous case.

Case 8. We have
s(D)=s(Da)+2 and /(D)=/(DJ+l.

Therefore either
2< 1 )=4Xji 1 )=4<1*DJ'KDJ(Xo,S dJ<PJ) 

^ o y w o + r x
or

rti)-xJii)-<i*DJH(PJ(x<*SDm(<pJ)

1 q(x4D«P))^D)m(x4D«P))-

Case 9. We have xf, 1)=Z<b(1) and Since

we conclude that

s(D)=s(DJ and l(D)=l(DJ+l 

X l D - X j i i y ^ ^ ^ i X w S D j V J )

Case 10. W e h a v e ^ l ) * ^ ! )  and (x <o£ d (V a ti^ tX ^ D W )-  Since

we conclude that

s (D )s (D J  and /(D)-/(DJ-1

q (x £ D(<p))mtf*DW D)(x£ D(<p)).
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Case 11. In this case we have
j(D)=i (D J+ 1 and

Therefore

X 1 )=*«,<  1 )=4*DJ4{D“>(Xo.$Dji<P<J )

Case 12. This case has the same justification as the previous one.

Case 13. We have
s(D)=s(DJ+2 and /(£>)=/(£ J .

Therefore either
X (  1 )= 4 X ji  1 )=^QsiDa>'‘(D J( X ^ D a(<PJ)

^ d> ^ % ( x 4 dW ) ^ d u w (x , M ) )
or

*  1 ) - * .<  1 )=<is(D‘J -l(DJ( X ^ D j i (P J )

^ d™ d\ * ( x ,1;d(<p))-<i«D)* d)(x .Sd(<P))-

C ase 14. We have X ( D = X M )  and ( . X ^ dJ V J X x ^ oW ) -  Proposition 5.2.2 

follows immediately because

s(D)=s(DJ and /(D)=/(DU).

The proof of proposition 5.2.2 is complete.

Proof of theorem 5.2.1. Let D be any basic subset of $(n). Then

<?o-X (X,$o)X 
z*tD

where ID denotes the set of all irreducible components of £0. Let x*fa  “ d let V** -»P ’,* 

be the unique map such that

0&&(P)V0-
Then (by proposidon 5.2.2)

Hence
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f W ' V Ï  XWX.
X*ID

By theorem 2.2.1 we conclude that

p= X 20)2= X X *0)2= X <f(OHiD)SD
DC*(») %*1d D basic

Oc«(n) D basic
as required.

Corollary 5.2.22. Let xe Un(q). Then

X /0).«D)̂ (x)=5iW«(n-1)/2
D cW  D basic

where 5xl is t/ie Kronecker symbol.

Proof. This is an immediate consequence of theorem 5.2.1 and of the properties of the 

regular character p. 4

Finally we note that proposition 3.2.15 is a consequence o f the previous corollary. 

In fact

Corollary 5.2.23. The following equality holds

I  (q-i)“V0>=*"<»-i>/2 
Dc«(n)D basic

Proof. This is clear from the previous corollary because

& (1 )-X $ d(< P )0 )= X /D)=(<7-1)IZV (D)
* *

where <p runs over all maps from D to F *. ♦
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