A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/110793

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Design and Implementation of
 Linear Phase Wave Digital Filters

By
A. P. S. Jones

A thesis submitted for the Degree of
Doctor of Philosophy

Department of Engineering
University of Warwick

October 1992

To my wife Sarah
..... patience and encouragement

Synopsis

A steady increase of research within the field of digital systems has resulted in a wide acceplance of the discrete approach to system design. Research has produced discrete techniques that complement those already in use in the analogue domain. A rapid improvement in the performance and availability of digital hardware has prompted a move from analogue to digital systems. especially within the field of signal processing.

This thesis considers the design of Wave Digital Filters (WDF's) to satisfy arbitrary magnitude and phase specifications with finite wordength coefficients. It describes the structures and properties of ladder and lattice WDF's selated to linear phase design through coefficient sensitivity and nonminimum-phase.

The initial part of this thesis concentrates upon the design and comparison of opitmization techniques to satisfy magnitude-only and simultaneous lowpass frequency specifications upon ladder and latlice WDFs. Experiments confirm the unsuitability of the ladder WDF for simultaneaus designs because of their minimum-phase characteristics. Successful simultaneous lowpass designs upon lattice WDF's were achieved through quasi-Newion algorithms using a dual line template scheme and a weighted \mathbf{L}_{p}-metric error function.

The All Pass Sections(APS's) used to construct the lowpass lattice WDF were investigated and range of APS's considered that would allow the latlice WDF structure to satisfy highpass, single bandpass and dual bandpass frequency specifications. Special case APS's for single and dual bandpass designs were generated by applying frequency 1 ransformations to the $1^{\text {st }}$ and $2^{\text {nd }}$ order lowpass APS's. Equations and characteristics for these APS's are detailed along with a number of examples of filter deigns.

The final area of this thesis concerns the design of finite wordengith solutions to magnitude-only and simulianeous frequency specifications, ranging from lowpass to dual bandpass lype responses. Using the large wordengih solutions generated thrugh the quasi-Newton optimization techniques as starting coefficients, a Hooke-Jeeves direct search algorithm was implemented to generate finite wordength solutions.

Techniques detailed in this thesis provide method for the generation of finite wordlength coefficients that satisfy arbitrary magnitudeconly and simultancous frequency specifications through optimization for the lattice WDF's.

Contents

Title Page i
Dedication ii
Synopsis. iii
Contents iv
Acknowledgements ix
Declaration x
Abbrevialions x i
Chapter 1 Iniroduction 1/1
1.I Discrete System Properies 1/1
1.1.1 Linearily 1/2
1.1.2 Shifi-Invariance 1/3
1,1,3 Stability 1/3
1.1.4 Causality 1/3
1.2 Phase and Group Delay 1/6
1.2.1 Characteristics of Linear Phase 1/10
1.2.2 Minimum- and Nonminimum-Phase 1/14
1.3 Finite Wordlength Effects 1/16
1.4 Wave Digital Filter (WDF) 1/20
1.4.1 Circuit Descriptions $1 / 20$
1.4.2 Siructures 1/25
1.5 Research Objectives 1/28
1.6 Summary 1/29
References /30
Chapter 2 Design Approaches 2/1
2.1 Existing Methods $2 / 1$
2.2 Filter Structures $2 / 2$
2.3 Domain Options $2 / 6$
2.4 Coefficient Gencration 2/11
2.4.1 Oplimization Considerations 2/12
2.5 Design Choice . Summary $2 / 18$
References $2 / 19$

Chapter 3 Ladder WDFs $3 / 1$
3.I Desien Choices 3/1
3.1.1 Reference circuit options 3/2
3.1.2 Oplimization considerations 3/4
3.2 Ladder WDF equations. 3/7
3.2.1 Intercontection 3/7
3.2.2 Overall system equations 3/12
3.2.3 Building Blocks. $3 / 1$
3.3 WAVE: iwo-port WDF design program $3 / 22$
3.4 Experimenial Resulis. 3/27
3.4.1 Magnitude-only design. 3/27
3.42 Simuliancous designs $3 / 33$
3.5 Two-port design conclusions 3/41
References 3/43
Chapter 4 Lattice WDFs $4 / 1$
4.1 Design Options 4/1
4.1.1 Lattice WDF structures 4/1
4.1.2 Optimization considerations 4/8
4.2 Lattice WDF equations. $4 / 1$
4.2.1 Overall system equations $4 / 12$
4.2.2 Building Blocks 4/18
4.3 Lattice WDF design and analysis software $4 / 21$
4.4 Experimerial Kesulle $4 / 24$
4.4.1 Magnitude-only design $4 / 24$
4.4.2 Simulaneaus designs. $4 / 26$
4.5 Lattice WDF design conclusions 4/43
References. 4/45
Chapter 5 WDF Frequency Tiansformations. 5/I
5.1 Frequency Transforms 5/1
5.2 Frequency transformed lattice WDF elements $5 / 6$
S. 3 Characteristics of frequency transformations $5 / 10$
5.4 Design considerations with frequency transforms $5 / 22$
5.4.1 Desiyn approaches 5/22
5.4.2 Optimization considerations $5 / 24$
5.5 Design examples 5/26
5.5.1 Magnitude-only design 5/26
5.5.2 Simultaneous designs 5/36
5.6 Conclusions 5/42
References 5/45
Chapter 6 Finite Wordlength Designs $6 / 1$
6.1 Finute Wordiength Effects $6 / 1$
6.1.1 Frequency domain simulation 6/2
6.1.2 Time domain simulations 6/14
6.1.3 Lattice WDF implementation 6/20
6.2 Design for finite wordength $6 / 25$
6.2.1 Optimization considerations 6/25
6.2.2 Design Iechniques $6 / 27$
6.3 Design examples 6/29
6.4 Conclusions $6 / 37$
References. 6/39
Chapter 7 Lattice WDF Design Example $7 / 1$
7.1 Introduction $7 / 1$
7.2 Filter Specification 7/2
7.3 Magnitude-Only Design (Ideal) 716
7.4 Magnitude-Only Design (Finite). 7/10
7.5 Simultancous Design (Ideal) 7/12
7.6 Simultancous Design (Finite) 7/16
7.7 Design Summary 7/19
Chapter 8 Discussion and Conclusions 8/1
8.1 Project Ourline $8 / 1$
8.2 Summary of WDF structures and properties $8 / 2$
8.2.1 WDF struclures. $8 / 2$
8.2.2 Frequency Transforms $8 / 3$
8.2.3 Finite Wordlengih Effects $8 / 3$
8.3 Summary of Design Options $8 / 4$
8.3.1 Optimization Techniques $8 / 4$
8.3.2 WDF Design Methodologies $8 / 7$
8.4 Conclusions $8 / 9$
8.4.1 WDF's for Linear Phase Design $8 / 9$
8.4.2 Design Technique Performance. $8 / 12$
8.5 Fulure Work. $8 / 13$
Appendix A Two-pon Building Blocks A/1
Al Series Inductor A/2
A2 Series Capacitor A/7
A3 Series Tuned Inductor/Capacitor A/12
A4 Parallel Inductor A/I7
As Parallel Capacitor A/22
A6 Parallel Tuned Inductor/Capacitor A/27
A7 Unit Element A/3 2
Ag Design Examples A/34
A8. 1 Source Design A/34
A8. 2 Load Design A/38
A8.3 Middle Design A/4 1
Appendix B Design Program Descriptions B/I
B1 Design Program 'ellip' B/2
B2 Design Program 'wdf' B/7
B3 Analysis Program 'mliwdf' B/IS
Appendix C Lattice WDF APS Models (Frequency Domain). C/I
CI Highpass APS Models C/2
Cl.1 lsi order Highpass APS C/2
C1.2 2nd order Highpass APS C/3
C2 Single Bandpass APS Models C/4
C2.1 2nd order Single Bandpass APS C/4
C2.2 4th order Single Bandpass APS C/S
C3 Single Bandstop APS Models C/8
C3.1 2nd order Single Bandstop APS C/8
C3.2 4ith order Single Bandstop APS C/9
C4 Dual Bandpass APS Models C/ 12
C4.1 4th order Dual Bandpass APS C/12
C4.2 8ih order Dual Bandpass APS C/15
CS Dual Bandstop APS Models. C/18
CS. 1 4th order Dual Bandstop APS C/18
C5. 2 8ih order Dual Bandstop APS C/21
Appendix D Lattice WDF APS Models (Time domain) D/1
DI Twa-port Adapior Model D/2
D2 Lowpass APS Models D/6
D2.1 1sı order Lowpass APS Model D/6
D2.2 2nd order Lowpass APS Model D/7
D3 Highpass APS Models D/8
D3.1 Isi order Highpass APS Model D/8
D3. 2 2nd order Highpass APS Model D/9
D4 Single Bandpass APS Models D/10
D4.1 2nd order Single Bandpass APS Model D/10
D4. 2 Ath order Single Bandpass APS Model. D/11
D5 Single Bandstop APS Models D/13
D5. 1 2nd order Single Bandstop APS Model. D/ 13
D5. 2 4ih order Single Bandstop APS Model.. D/14
D6 Dual Bandpass APS Models D/16
D6. 1 Ith order Dual Bandpass APS Model D/ 16
D6. 2 Sih order Dual Bandpass APS Model D/18
D7 Dual Bandstop APS Models D/21
D7.1 4th order Dual Bandstop APS Mode! D/21
D7.2 8th order Dual Bandstop APS Model D/23

Acknowledgements

The author would like 10 acknowledge the help and support of the following people:

Dr Stuari Lawson for ideas. discussion and encouragement as my supervisor on all aspects of my thesis.

Richard Green for research ideas and CASE award with Marconi.

Tony Wicks for TMS32010 coding of my latice WDF structure and APS's.

The author would also like to acknowledge the financial support of the following bodies:

```
    Scientific and Engineering Research Council
    Marconi Underwater Systems Lid
Warwick University
```


Declaration

The work in this thesis has been discussed in the following conference papers;

Lawson. S. S. and Jones, A. P. S. "Design of Wave Digilal Filters with Prescribed Magnitude and Phase Requirements", Proc ECCTD '89. No. 308. February 1989, ppl5.

Jones, A. P. S. and Lawson, S. S., "An Approach to the design of Digital Filters with Prescribed Magnitude and Linear Phase Characterisics". IOih Saraga Colloquium 'Digital and Analogue Filters and Filters Systems', May 1990. pp3/1-4

Jones, A. P. S. Lawson, S. S. and Wicks, A., "Design of Cascaded Allpass Siruciures with Magnitude and Delay Constraints using Simulated Annealing and QuasiNewton Meihods". Proc. ISCAS-91, Singapore, IEEE.

Lawson, S. S., Wicks. A. and Jones A. P. S., "Design and Implementation of Cascaded Allpass Digital Filter Siructures with Magnilude and Delay Consiraints". [EE Proc. 6th Int. Conf on DSP in Communications, Loughborough, 1991. pp31-35

Within these conference papers the author would like to acknowledge the collabnration. ideas and discussions held with Dr Lawson concerning the nature and characteristics of the Wave Digital Filter and A. Wicks involving Simulated Annealing opimizalion techniques

Abbreviations

The following this abbreviations are used within this thesis

WDF	Wave Digital Filier
DSP	Digital Signal Processing
LTI	L.incar Time Invarient
DFT	Discrete Fouricr Tansform
FFT	Fast Fourier Transform
LBR	Lossless Bounded Real
MAP	Maximum Available Power
APS	All Pass Scction
DTL	Doubly Terminated Lossless
FIR	Finite Impulse Respense
IIR	Infinite Impulse Response

Chapter 1

Introduction

Digital filters may be found in a large range of digital systems, from domestic compact disc players to missile guidance systems. Although the principles of a digital filter are common across each application, the properties and performance of a specific digital filter will depend upon the operation and requirement of the overall system. A digital filter is designed to alter the frequency components of an input signal to a given specification. For a number of applications, this specification is only concerned with the magnitude characteristics of a signal. However, applications that also require the phase relationship between the frequency components of a signal to remain undistorted, are constrained to using digital filters that exhibit a linear phase characteristic.

1.1 Discrete System Properties

Any system may be defined as an operator or transformation, acting upon an input to produce a corresponding output. The nature of a Iransformation is determined by these inputs and outputs. A discrete system uses inputs and outputs that are a sequence of samples, representing a particular signal. Any discrete transform would therefore be constrained to produce a discrete output from a discrete input. An input sequence $\mid \ldots, x(i), x(i+1), x(i+2), \ldots, x(j), \ldots\}$ may be considered as a vector, x. of which the " $n^{\text {in }}$ sample" is $x(n)$. This may be formally written as

$$
y=\{x(n)\} . \quad-\infty<n<\infty
$$

A digital system would represent these signals through a sequence built up from samples of the signal taken al a regular time interval. This time interval is known as the sampling period. T. and is related to the sampling frequency, F_{s}, by the equation $T=1 / F_{s}$. If a sequence represents a time varying signal then it is usual to define the sequences as having a finite number of elements. N, taken from when time equals zero. Under these defínitions, a sequence can be written as,

$$
x=\{x(0), x(1), x(2), \ldots, x(n), \ldots, x(N-1)\}, 0 \leq n \leq N-1
$$

For every input sequence, x. there will be a corresponding output sequence, y. The operation of a discrete system is therefore to use a set of rules or transformations to convert an input sequence to the appropriate output sequence. A transformation can entail a large number of operations, either acting upon each
element of a sequence in isolation or about previous input and/or output samples. Examples of these types of operations are given in Eq.(1.1). where Eq.(1.ta) shows - squaring function, Eq.(1.1b) gencrates an output element from a number of input elements and Eq.(1.1c) combines both input and output elements io calculate the next output element.

$$
y(n)=(x(n))^{2}
$$

$-\infty<n<\infty$
(1.1a)

So if $x=\{\ldots, x(i-1), x(i), x(i+1), \ldots\} \rightarrow y=\left\{\ldots(x(i-1))^{2},(x(1))^{2},(x(i+1))^{2}, \ldots\right\}$

$$
\begin{equation*}
y(n)=x(n)+x(n-1)-x(n-2), \quad-\infty<n<\infty \tag{1.1~b}
\end{equation*}
$$

So if $x=\{\ldots, x(i-3), x(i-2), x(i-1), x(i), \ldots\}$ then

$$
\begin{array}{r}
y(i-1)=x(i-1)+x(i-2)-x(i-3) \text { and } y(i)=x(i)+x(i-1)-x(i-2) \\
y(n)=x(n+1)-2 x(n)+4 y(n-1), \quad-\infty<n<\infty \tag{1.1c}
\end{array}
$$

So if $x=\{\ldots, x(i-1), x(i), x(i+1), \ldots\}$ and $y=\{\ldots, y(i-1), y(i), y(i+1), \ldots\}$,
then $y(i)=x(i+1)-2 x(i)+4 y(i-1)$

If the input represents a sequence of samples separated in time. then the present output sample, $y(i)$, muss correspond in time to the present input sample, $x(i)$. In this way, a transform is non-causal if the present output, y (i). requires an input value, $x(i+1)$, that, as yet, does not exist. Therefore. the transform of Eq.(1.1c) is non-causal.

The basic structure of discrete system is shown by Fig.(1.1), where the output sequence, Y. Eq.(1.2), is related to the input sequence, y, and the transformation, g.

Figure 1.1 Discrete system with transformation. و.

$$
\begin{equation*}
y=5[y] \tag{1.2}
\end{equation*}
$$

A transfarmation can be characterised by aumber of properties such as linesrity, shift-invariance, stability and causality.

1.1.1 Linear:ty

This property describes the relationship berween the input signal and the corresponding output signal. Linearity may be defined using the principles of superposition and scaling. A system is linear. if a linear combination of inpui sequences maps to a linear combination of output sequences. Therefore, if yi(n) and $V_{2}(n)$ are the responses to input samples $x_{1}(n)$ and $x_{2}(n)$, through a transformation, T, respectively, then a system will be linear if and only if

$$
M\left[a x_{1}(n)+b x_{2}(n)\right]=a x\left[x_{1}(n)\right]+b x_{1}\left[x_{2}(n)\right]=a y_{1}(n)+b y_{2}(n)
$$

for arbitrary constants and b.

1.1.2 Shifi-Invariance

This characteristic describes how the inpul/output relationship varies as the input sequence is shified. A system is shift-invariant if the response to shifted version of the input sequence, is identical 10 a shifted version of the response based upon the unshufted input. This can be described as. if $y(n)=9[y(n)]$ then g is shift-invariant when $y\left(n \cdot n_{0}\right)=\mathbb{R}\left[x\left(n-n_{0}\right)\right]$ for all n_{0}. Where the inder n is associated with lime. then shift-invariance is described as time-invariance.

1.1.3 Stability

The stability of a transformation indicates how a system will behave 10 a given input. A transformation is stable if it produces a bounded output sequence for every bounded inpui sequence. This is referred 10 as bounded inpui bounded output (BIBO) stable.

1.1.4 Causality

Causality indicates whether a transformation can be realised. A casal transformation is one whose present output depends only on past inputs and outputs and the present inpu:. Therefore the Iransformation of Eq.(1.3) is causal

$$
\begin{array}{rl}
y(m)=\mid a_{1} & x(n)+a_{2} x(n-1)+a_{3} x(n-2)+\ldots \\
& \left.+b_{1} y(k)+b_{2} y(k-1)+b_{3} y(k-2)+\ldots .\right\} \tag{1.3}
\end{array}
$$

Transformations that meet the linearity and time-invariance requirements, satisfy a broad class of Digital Signal Processing(DSP) operations. A digital filter is an example of a Linear Time-Invarians(LTI) saructure and can be described by the transformation, \boldsymbol{R}^{2}, of Fig.(1.1) and Eq.(1.2). A transformation can be completely characterised by its response to the unit impulse sequence. δ. defined as

$$
\delta(n)= \begin{cases}1 & n=0 \\ 0 & \text { otherwise }\end{cases}
$$

The unit impulse response, h, is the output sequence of a system when the input sequence is the unit impulse, δ. Therefore for a transformation. \mathbb{R}, its unit impulse response is defined as

$$
\begin{equation*}
h(n)=9[\delta(n)] \quad . \infty \quad \infty \quad n<\infty \tag{1.4}
\end{equation*}
$$

Any sequence can be described as a sequence of scaled unit impulses delayed by one sample period with respect to each other. Applying the properties of LTI structures, an output sequence, y, can be constructed by summing the system's sealed unit impulse responses for each element of the input sequence, \mathbf{x}. This process is described in Eq.(1.5).

$$
\begin{equation*}
y(n)=\sum_{k=0}^{n} x(k) h(n-k) . \quad-\infty<n<\infty \tag{1.5}
\end{equation*}
$$

Eq.(1.5) represents the convolution of the input signal with the system's unit impulse response. Using the convolution operator. . and the unit impulse response, h, then the output signal, y, of a system to an input sequence, x, can be expressed as

$$
\begin{equation*}
y(n)=x(n) * h(n) \tag{1.6}
\end{equation*}
$$

With the description of LTI structure given by Eq.(1.6), the basic discrete structure of Fig.(1.1), can be redrawn for a LTI structure and is illustrated by Fig. (1.2).

Figure 1.2 Discrete system in terms of the unit impulse response, h.

A continuous signal or waveform described in the lime domain, may be redefined in the frequency domain though the Fourier transform. A lime domain waveform and the corresponding frequency domain waveform, form a Fourier transform pair. The nature and properties of Fourier transform pairs are well known and can be extended to include discrete signals[3]. Using the Discrete Fourier Transform(DFT), a time domain sequence. x. may be defined as a series. X, in the frequency domain.

The discrete frequency domain is commonly known as the z domain, where z is a complex variable. Conversion of a lime domain sequence. x. inio z domain sequence. X, is performed through the z transform. The general forms of the z Iransform and the inverse z transform are given by Eq.(1.7) and Eq.(1.8) respectively.

$$
\begin{gather*}
x(z)=\sum_{n=-\infty}^{\infty} x(n) z^{\cdot n} \tag{1.7}\\
x(n)=\frac{1}{2 \pi j} \oint_{c} x(z) z^{n-1} d z \tag{1.8}
\end{gather*}
$$

where c represents a circular contour centred the origin of the z domain. lying in the region of convergence of the function, $X(z)$.

If the complex variable, z, is defined in its polar form $a s, z=r e^{\omega}$, then when $r=1$ or $|z|=1$, the z transformation is equal to the DFT. Using this idea, Eq.(1.8) can be modified to define the inverse z transform when $|z|=1$, as

$$
\begin{equation*}
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \tag{1.9}
\end{equation*}
$$

The properties of the z transform can be used to describe the function of discrete system in the discrete frequency domain. Fig.(1.3) shows a basic discrete system in terms of the z iransforms of an input sequence, x, the output sequence, y, and the unit impulse response, h.

Flgure 1.3 General discrete system in the z domain.

The 2 iransform of the unit impulse response. h, is the transfer function, $H(z)$. The relationship of the transfer function to the input and output sequences is given by Eq.(1.10).

$$
\begin{equation*}
Y(z)=X(z) H(z) \tag{1.10}
\end{equation*}
$$

The system equation of Eq.(1.10) is the frequency domain equivalent of the time domain system equation given by Eq.(1.6). From these equations it can be seen that multiplication in the frequency domain is equivalent to convolution in the time domain.

The system equations of Eq.(1.6) and Eq.(1.10) can be rewritten in terms of the operations that occur within the functions of h and $H(z)$, as Eq.(1.11) and Eq.(1.12) respectively.

$$
\begin{equation*}
y(n)=\sum_{i=0}^{n_{1}} a_{i} x(n-1)-\sum_{i=1}^{n_{2}} b_{i} y(n-i) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
Y(z) \sum_{i=0}^{n_{2}} b_{i} z^{\prime \cdot}=x(z) \sum_{i=0}^{n_{1}} a_{i} z \cdot i \tag{1.12}
\end{equation*}
$$

where n! number of samples in r
n_{2} number of samples in V
$\mathrm{a}_{\mathrm{i}} \quad$ arbitrary constanis. $\mathrm{i}=0,1,2, \ldots, \mathrm{n}_{\mathrm{l}}$
$b_{i} \quad$ arbitrary constants, $i=1,2, \ldots, n_{2}$ and $b_{0}-1$

Equation(1.11) shows the general difference equation for a discrete system, while Eq.(1.12) is the equivalent general transfer function. Eq.(1.10) and Eq.(1.t2) can be combined to express the iransfer function. $H(z)$, as.

$$
\begin{equation*}
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{i=0}^{n_{1}} a_{i} z^{-i}}{1+\sum_{i=1}^{n_{2}} b_{i} z^{-i}} \tag{1.13}
\end{equation*}
$$

1.2 Phase and Group Delay

Functions defined within the z domain are complex in nature. Therefore any function, $\mathbf{Q (z)}$, may be represented as

$$
\begin{equation*}
G(z)=\operatorname{Re}[G(z)]+j \operatorname{lm} \mid G(z)] \tag{1.14}
\end{equation*}
$$

or in polar co-ordinates given in Eq.(1.15).

$$
\begin{gather*}
G(z)=|G(z)|(\cos \phi+j \sin \phi) \tag{115a}\\
G(z)=|G(z)| e j \tag{1.15b}
\end{gather*}
$$

where

$$
|G(z)|=\sqrt{\operatorname{Re} \mid G(z)]^{2}+\operatorname{lm}[G(z)]^{2}} \quad \text { and } \quad \phi=\tan ^{-1}\left(\frac{\operatorname{lm}|G(z)|}{\operatorname{Re}[G(z)]}\right)
$$

The action of digital filter is to accept of reject the frequency components of an inpur sequence by retaining or reducing the amplitude of each component. A digital filter will also effect the phase relationship between the frequency components of the input signal. A typical phase response of a lowpass filter is shown in Fig.(1.4).

FIgure 1.4 Typical lowpass phase reaponse.
Each frequency component of a steady state input sequence passes through a system in an equal time period, isys. This system lime delay, lays, will cause each frequency component of the input signal to experience a different phase change at it passes through the filter. It can be ahown[12.36] that LTI structures do not effect the shape of a sinusoidal function, only its amplitude and phase.

Therefore, if an input function of the form

$$
x(t)=C \sin (\omega t)
$$

was applied to a LTI structure. then the output would be

$$
y(t)=D \sin \left(\omega\left(t-t_{s} y_{s}\right)\right)=D \sin (\omega t-\phi)
$$

where the ratio of D to C indicates the change in amplitude of the sine function and ϕ. the phase difference between the input and output versions of the sine waveform. For LTI structure to retain the phase information of an input signal, the phase relationship between the frequency components of that signal must be preserved. Consider the input function.

$$
\begin{equation*}
x(t)=C_{1} \sin \left(\omega_{1} t\right)+C_{2} \sin \left(\omega_{2} t\right)+C_{3} \sin \left(\omega_{3} t\right) \tag{1.16}
\end{equation*}
$$

and the corresponding output function

$$
\begin{equation*}
y(t)=D_{1} \sin \left(\omega_{1}\left(t-t_{s y a}\right)\right)+D_{2} \sin \left(\omega_{2}\left(t-t_{3} y_{s}\right)\right)+D_{3} \sin \left(\omega_{3}\left(1-t_{3} y_{1}\right)\right) \tag{1.17}
\end{equation*}
$$

Using the principles of superposition, the effect on each frequency component of the function in Eq.(1.16) can be considered in isolation and then recombined to produce Eq.(1.17). The individual inpus frequency components of Eq.(1.16). along with their corresponding output components from Eq.(1.17), are illustrated in Fig.(1.5). Each output frequency component has been delayed by an equal time delay, thya. due to the system.

(a)

Figure 1.5 Frequency components (a) ω_{1}. (b) ω_{2} and (c) ω_{3} of the input and output functions given in Eq.(1.16) and (1.17).

From Fig.(1.5), it should be noted that all the frequency components of the input function are in phase. For the system to preserve this phase relationship, the frequency components of the oulpul function are also required to be in phase. From Eq.(1.17). this will only occur when.

$$
\omega_{1} t_{\text {ays }}=\omega_{2} t_{s y s}=\omega_{3} t_{\text {ayi }} \equiv \omega_{\text {sys }}
$$

Therefore, phase linearity will be preserved if a phase change. ϕ_{i}. at frequency, ω_{i}, lies along the straight line, ω tsy. This relationship is shown in Fig. (1.6)

Figure 1.6 Linear phase response.

A linear phase LTI structure will therefore have the characteristic

$$
\phi(\omega)=\omega \mathrm{I}_{\mathrm{sy}}
$$

Linear phase can be defined in terms of the phase delay, $a(\infty)$, or the group delay. $t(\infty)$. Phase delay is defined as.

$$
\alpha(\omega)=-\frac{\phi(\omega)}{t \omega} \quad-\pi<\omega<\pi
$$

A simerure will therefore exhibit exactly linear phase if α is constant, illustrated in Fig.(1.6). Group delay is defined as the negative derivative of the phase with respect to the frequency, so

$$
\begin{equation*}
\tau(\omega)=-\frac{d \varphi(\omega)}{d \omega} \tag{1.18}
\end{equation*}
$$

Using Eq.(1.15b) and Eq.(1.18) the group delay can be expressed in terms of the Itansfer function. $H(x)$.

$$
\begin{gather*}
\ln (H(z))=\ln (|H(z)|)+j \phi(\omega) \\
\frac{1}{H(z)} \frac{d H(z)}{d \omega}=\frac{1}{|H(z)|} \frac{d|H(z)|}{d \omega}+J \frac{d \phi(\omega)}{d \omega} \\
T(\omega)=-\operatorname{Im}\left[\frac{1}{H(z)} \frac{d H(z)}{d \omega}\right] \tag{1,19}
\end{gather*}
$$

Again, if $\mathrm{t}(\infty)$ is constant. The system will exhibit an exactly linear phase response.

1.2.1 Characteristics of Linear Phase

For exacily linear phase.

$$
\phi(\omega)=-\alpha \omega \quad-\pi \leq \omega \leq \pi
$$

where α is constant phase delay. To determine the nature of a transfer function that satisfies this condition. $H(z)$ needs to be expressed in terms of α. This can be achieved by combining Eq.(1.15a) and Eq.(1.7).

$$
\begin{equation*}
H\left(e^{\omega \omega}\right)=\sum_{n=1}^{N} h(n) e^{\cdot j \omega n}=\left|H\left(e^{j \omega}\right)\right|(\cos (\alpha \omega)+j \sin (\alpha \omega)) \tag{1.20}
\end{equation*}
$$

Taking the real and imaginary pars of Eq.(1.20).

$$
\begin{aligned}
& \operatorname{Re}\left[H\left(e^{j \omega}\right)\right]=\left|H\left(e^{j \omega}\right)\right| \cos (\alpha \omega)=\sum_{n=1}^{N} h(n) \cos (\omega n) \\
& \operatorname{lm}\left[H\left(e^{j \omega}\right)\right]=\left|H\left(e^{j \omega}\right)\right| \sin (\alpha \omega)=\sum_{n=1}^{N} h(n) \sin (\omega n)
\end{aligned}
$$

then

$$
\frac{\sin (\alpha \omega)}{\cos (\alpha \omega)}=\frac{\sum_{n=1}^{N} h(n) \sin (\omega n)}{\sum_{n=1}^{N} h(n) \cos (\omega n)}
$$

and where $\alpha \neq 0$, then

$$
\begin{equation*}
\sum_{n=1}^{N} h(n) \sin [(a-n) \omega]=0 \tag{1,21}
\end{equation*}
$$

Therefore, in order for a system described by h to possess a constam phase delay, or exactly linear phase. Eq.(1.21) must be satisfied for all of the sequence $n=1, N$. A possible solution to this problem is.

$$
\begin{equation*}
a=\frac{N+1}{2} \text { and } h(n)=h(N-n) \quad 1 \leq n \leq N \tag{1.22}
\end{equation*}
$$

For the unit impulse response to satisfy Eq.(1.22). it must be symmetrical about the sample $(\mathrm{N}+1) / 2$ or α. The term, α, in Eq.(1.22) represents the constant angle of the phase response or the phase delay. Consider typical impulse response, shown by Fig.(1.7). which has an odd number of samples, N, and which satisfies Eq.(1.22). The phase delay, a, will be an integer and the symmetry associated with linear phase, will occur around a sample point equal to the value of α.

Figure 1.7 Symmetric impulse response with an add number of samples.

If the number of samples of the unit impulse response is even, then α is no longer an integer and the symmetry point for a linear phase response will exisi between two sample points. This is illustrated by Fig.(1.8).

Figure 1.8 Symmetric impulse response with an even number of samples.

The impulse response symmetry, indicated by Fig.(1.7) and Fig.(1.8), relates to a condition when the function exhibits both constant phase delay and constant group delay. However, a full definition of the transfer function,

$$
H\left(e^{\omega}\right)=H^{*}\left(e^{j \omega}\right) e^{j(\omega)} \text { or } H\left(e^{j \infty}\right)= \pm I H\left(e^{j \omega}\right) \mid e^{j \theta(\infty)}
$$

shows that the impulse response will still possess linear phase if if exhibits either symmeiry or anti-aymmetry. The ani-aymmetry case relates to a 'piece-wise linear' function, which has constant group delay but not constant phase delay. In most practical design cases, phase delay is of no interest. Where the filter's impulse response cansor be defined by finite number of samples, exacily linear phase is impossible to obtain and the best that can be achieved is approximately linear phase.

Using the information about the unit impulse response symmetry, the position of the poles and zeros of a function exhibiting phase linearity can be determined. The position and relationship of the zeros of an exacily linear phase transfer function can be observed by considering alR filter. In order to exhibit linear phase transfer function, $H(z)$. must possess a symmetry or anti-symmetry of its unit impulse response, so

$$
\begin{aligned}
H(z)=\sum_{n=1}^{N} h(n) z^{-n} & =h(1) * h(2) z^{-1}+h(3) z^{-2}+\ldots \\
& \pm h(3) z^{-(N \cdot 2)} \pm h(2) z^{-(N-1)} \pm h(1) z^{-N}
\end{aligned}
$$

The plus sign corresponds to symmetric response, while the minus sign indicates anti-symmetry. Because of the symmetry of the unit impulse response, the transfer function, $H(z)$ and its inverse, $H\left(z^{-1}\right)$ may be related by Eq.(1.23).

$$
\begin{equation*}
H\left(z^{-1}\right)= \pm z^{N} H(z) \tag{1.23}
\end{equation*}
$$

Eq.(1.23) shows that the functions $H(x)$ and $H\left(z^{-1}\right)$ are identical, cencept for a delay of N samples and ± 1 factor. Under these conditions the two functions must posses identical zeros. Therefore to satisfy Eq.(1.23). the zeros of an exacily linear phase system must exist in sets that comprise zero and its reciprocal about the unit circle. so $\mathrm{H}\left(\mathrm{z}^{-1}\right)$ will possess the same set of zeros.

This properiy can be illustrated if $H(z)$ has a factor. $H_{i}(z)$, which is a complex conjugate zero pair atren when $\mathrm{r}=1$ and $* 0$ or π, shown in Fig.(1.9) by points A and C. The function $H\left(z^{-1}\right)$ will have a corresponding function $H_{i}\left(z^{-1}\right)$, with a complex conjugate zero pair at $1 / r e^{ \pm} \mathrm{J} \phi$, shown by points B and D in Fig.(1.9). To satisfy Eq.(1.23). $H(z)$ and $H\left(z^{-1}\right)$ must possess the same zeros and so both functions muss contain factors to produce the zeros at A. B, C and D of Fig.(1.9). If a factor $H_{j}(x)$ produces the zeros B and D, then $H_{j}\left(z^{-1}\right)$ will generate the zeros A and C. Therefore Eq.(1.23) will only be satisfied if $H(z)$ contains both factors $H_{i}(z)$ and $H_{j}(z)$, where $H_{i}(z)=1 / M_{j}(z)$. An exactly linear transfer function must therefore contain zeros that exist in reciprocal complex conjugate groups.

Figure 1.9 Reciprocal complex conjugate zero positions for linear phase.

Fig.(1.10) shows the typical zero positions of linear phase FIR filiers for the four possible cases of linear phase design, odd or even filter order. N. with symmetrical or anti-symmetrical unit impulse responses.

(a)

(c)

(b)

(d)

Figure 1.10 Zero positions for the four possible exactly lincar phase
FIR design cascs: (a) odd symmetric, (b) even symmetric, (c) odd anti. symmetric and (d) even anti-symmetric.

1.2.2 Minimum- and Nonminimum-Phase

Fis.(1.10) indicates the relationship between zeros for exactly linear phase FIR siructures. All linear phase systems should possess zeros in these typea of positions, whether FIR or IIR in nature. JIR suructures also possess poles within their transfer functions that constrain the possible positions for its zeros. For some JIR structures these constraints make it impossible to place zeros in reciprocal complex conjugate sets. The concept of minimum- and nonminimumphase can be applied to structure to determine if its zeros can be arranged into required positiona. A formal definition of minimum-phase can be generated through the Hilbert Transform[29], or for discrete systems, the Discrete Hilbert Transform(DHT).

The DHT provides a method of relating the real part of frequency response in the discrete domain to its imaginary part and vice versa. These two relationships form a DHT pair. If the z iransform. $X(z)$, of a causal sequence $Z(n)$, is described as

$$
X\left(e^{j v}\right)=X_{R}\left(e^{j}\right)+j X_{I}\left(e^{\mu}\right)
$$

then it has the Hilbert transform pair

$$
x_{j}\left(\theta^{\mu}\right)=\frac{1}{2 \pi} P \int_{-\pi}^{\pi} x_{R}\left(e^{j \varphi}\right) \cot \left(\frac{(-\omega}{2}\right) d \phi
$$

and

$$
x_{R}\left(e^{j \omega}\right)=x(0)-\frac{1}{2 \pi} P \int_{-\pi}^{\pi} x_{I\left(e^{j \omega}\right)} \cot \left(\frac{\phi-\omega}{2}\right) d \phi
$$

where P denotes the Cauchy principle value of the integral[18].

For system, $H\left(e^{j 凶}\right)$, to exhibit minimum-phase then the components of its iransfer functions, la[lH(ej")] and arglH(elm)]. must form ailbert transform pair. This may be re-expressed as

$$
\operatorname{In}\left[H\left(e^{(\omega)}\right) \|\right]=h(0)=\frac{1}{2 \pi} P \int_{-\pi}^{\pi} \arg \left[H\left(e^{j \theta}\right)\right] \cot \left(\frac{\mu+0 \theta}{2}\right) d \theta
$$

and

$$
\arg \left(H\left(e^{J \varphi}\right)\right]=\frac{1}{2 \pi} P \int_{-\pi}^{\pi} I n\left[I H\left(e^{J 凶}\right) \|\right] \cot \left(\frac{\phi-\theta}{2}\right) d \phi
$$

where $\hat{H}(x)=\ln (H(x))$ and \hat{h} is the Fourier transform pair of $\hat{A}(z)$. Altematively a system. H(z), will exhibit minimum-phase if a causal stable inverse system, $H-1(z)$. exista such that

$$
H(z) H^{\prime}(z)=1
$$

Since $H^{-1}(z)=1 / H(z)$, the tranafer function, $H(z)$, must have all its poles and zeros inside the unit circle in order for stable and causal inverse system to exist.

The requirements for minimum-phase are contrary to those for linear phase and therefore, an exactly linear phase system requires an overall nonminimum-phase structure. This however does not eliminate minimum-phase structures from linear phase design as any rational function. $G(2)$, may be expressed in the form

$$
G(z)=\mathbf{G}_{\min }(z) \mathbf{G}_{\mathrm{sp}}(z)
$$

where $G_{m i n}(z)$ is minimum-phase function and $G_{a p}(z)$ is an all-pass function for which hes $\left|G_{a p}\left(e^{j=}\right)\right|-1$ for all ω.

The nature of $G_{a p(z)}$ is nonminimum-phase and the poles and zeros of this function can be used to produce an overall function that meets the lincar phase requirements. A minimum-phase function can therefore be used in a lincar phase design provided the overall phase response is modified by phase equaliser, Gap(z). Linear phase designs through phase equalisation are discussed in Chapler 2.

1.3 Finite Wordlength Effects

A large amount of rescarch has been directed at the effects of finite wordiength on digital systems, especially for digital filters. Initial work by fackson[14] outlined systematic approach to these finite wordlength effects by determining the relationship between roundoff noise and dynamic range. This appraach of using uncorrelated noise sources to model rounding errors and other finite wordength effects is detailed in a number of DSP text books $4,22,29,33$].

Finite wordlength effects may be collected under four main headings;
(i) Conversion of an analogue signal to and from a digital equivalent. This is usually known as conversion noise and will depend upan the quantization step. being the difference between consecutive represeniable numbers and the lype of quantization used; rounding. value truncation or magnitude truncation,
(ii) Uncorrelated roundoff noise.

This is a generic term for the noise introduced to a signal within a filter due to arithmetic operations. The main calculation to cause this effect is multiplication. The bit length to accurately represent the product of two b bit numbers is 2 b bils. This $\mathbf{2 b}$ bit number cannot be represented within a system limited to b bits so the number has to be reduced either through rounding or iruncation. This introduces a certain amount of uncorrelated noise into the operation of the filter. The variance of this uncorrelated noise source will depend upon the type of arithmetic used, floating or fixed point. the signal limitation scheme and the type of number system used; 1 's or 2 's complement or signed-magnitude.
(dii) Inaccuracics in the filter response.

This noise source resulis from an inability to accurately reproduce a filter's frequency response using a finite number of bits for the filter coefficients. This results in a non-ideal transfer function. This effect can be offset if filter coefficients are designed to finite wordiength. resulting in an acceptable finite wordlength transfer function.
(iv) Correlated roundoff noise (limit cycles).

Two types of correlated roundoff naise or parasitic oscillation exist, small scale (granular) and large scale (overfow). These effects are mosi apparent in fixed point recursive digital filters. where internal rounding errors for a constant input are highly correlated. Quantization causes the non-linear mapping of the lowest order bita of an internal signal under constant input. This generates limit cycles. For a recursive filter using rounding this means that there is no unique steady state output for a constant input. A so called deadband region exists containing a number of steady state outputs, the precise one being used depends on where the boundary of the dead band region was encouniered.

Limit cycles are dependent upon number of factors, mainly the filter realisation or structure and the quantization step. Signal quantization through rounding is most susceptible to limit cycle effects. Magnitude truncation provides better alternative quantization procedure. however. it does not always eliminate deadband limit cycles.

Factors (ii)-(iv) are the only finite wordlength effects that relate directly to the digital filter's operation. In turn, each of these effects depends on the filter's structure and configuration. A great deal of work has been directed at ways to implement a given transfer function. H(z). Each digital filter structure proposed corresponds 10 a different method of expressing the transfer function. A general function, $G(z)$, may be divided into smaller functions, $G_{i}(z)$ and $H_{i}(z)$, such the their combination equals $\mathbf{G}(\mathbf{z})$. The general form for the combination of these functions, or a Lagrange struclure. is shown in Fig(1.11).

Figure 1.11 General Lagrange Siructure.
The overall transfer function of the structure in Fig.(1.11) is,

$$
G(z)=G_{1}(z) G_{2}(z) G_{3}(z)\left(H_{1}(z)+H_{2}(z)+H_{3}(z)\right)
$$

The $\boldsymbol{Q}_{\mathrm{i}}(\mathrm{z})$ functions of Fig.(1.11) are connected in cascade. while the $\mathrm{H}_{\mathrm{i}}(\mathrm{z})$ functions are connected in parallel. Each modification of the Lagrange siructure will possess the same performance under large accuracy calculations. It is their finite wordlength performance, however, which is of interest. The form of the individual functions $\mathrm{G}_{\mathrm{i}(\mathrm{z})}$ and $\mathrm{H}_{\mathrm{i}}(\mathrm{z})$ is arbitrary, and a wide range of combinations exists for agiven transfer function. A desire to analyse the overall structure for finite wordength effects prompts to a break down of a response into small regular functions. These individual functions tend to the simple to analyse, having a first or second order mature.

A cascade structure may be represented as

$$
H(z)=a_{0}\left[\prod_{i=1}^{k_{1}} H_{1 i}(z)\right]\left[\prod_{i=1}^{k_{2}} H_{2 i}(z)\right]
$$

where

$$
H_{1 i}(z)=\frac{1+a_{1 i} z^{-1}}{1+b_{1 i} z^{-1}} \text { and } H_{2 i(z)}=\frac{1+a_{1 i} z^{-1}+a_{2 i} z^{-2}}{1+b_{1 i} z^{-1}+b_{2 i} z^{-2}}
$$

The cascade of these sections also sllows them to be defined in terms of functions which represent the numerators. $N_{1}(z)$ and denominators. $D_{i}(z)$, of each section, so that $H(z)$ could be expressed as

$$
H(z)=\frac{\prod_{i=1}^{k_{1}} N_{i}(z)}{\prod_{i=1}^{k_{2}} D_{i}(z)}
$$

Eq.(1.24) allows a cascaded structure to be constructed from first and second order sections with arbitrary numerator and denominator orderings and pairings.

A structure which has arallel form, may be expressed as,

$$
H(z)=\frac{a_{n}}{b_{n}}+\left[\sum_{i=1}^{k} H_{i}(z)\right]
$$

where $H_{j}(z)$ is either a firat or second order section of the form,

$$
H_{1 i}(z)=\frac{a_{a i}}{1+b_{1 i} z^{-1}} \text { and } H_{2 i}(z)=\frac{a_{a i}+a_{i 1} z^{-1}}{1+b_{1 i} z^{+i}+b_{2 i} z^{-2}}
$$

The moise properties of these $1^{\text {st }}$ and $2^{\text {nd }}$ order sections are relalively easy to analyaei291 and the overall performance of filter structures using these elements can be determined. An important observation from this analysis is that the order and pairing of cascaded second order sections can greaty effect the overall finite wordlength performance, because of overflow within the structure.

A large number of filier structures exist, each using derivative of the general Lagrange structure, including the Direct forms that implement a transfer function without partitioning it into amaller functions. A large amount of research has been direcied at analysing and comparing these various structures and their performance under finite wordlength conditions\{23,16.51. The main thrust of this research was to determine which properifes of each structure
improved the finite wordlength performance. A property suggested to measure finite wordength performance concerned the sensitivity of the structure to changes in its parameters. Bode defined sensitivity function, S, to determine this property by messuring how function. F, charges with respect to one of its parameters. x. This property, defined in Eq.(1.25), is concerned with small parameter changes and as result, small scale sensitivities.

$$
\begin{equation*}
S(F, x)=S_{x}^{F}=\frac{k}{F} \frac{\partial F}{\partial x} \tag{1.25}
\end{equation*}
$$

Analogue structures known to possess low parameter senaitivity include Doubly Terminated Lossless(DTL) networks. These structures suffer only a small amount of distortion of their magnitude respọnses as the componens' values are varied. This property is related to the ability of the DTL structure to deliver maximum power at points across its passband.

At these points of Maximum Available Power(MAP), the derivatives of the attenuation with respect to reactive components within the structure are zero. Therefore, at these MAP points the magnitude sensitivity to reactive components is zero and because the sensitivity is a smooth continuous function, the sensitivity in the region around these points is also likely to be low. This effect. logether with a mathematical explanation, has been referred to as Orchard's atgument(26,27,37,24,25).

In an attempt to reproduce the properties of the analogue DTL network in digital circuit. Fettweis investigated number of methods of converting a DTL sinucture into the discrete domain. The method adopted by Fettweis concentrated upon creating digital equivalents of analogue components such as an inductor, resistor, voltage source and transformer. First by describing the analogue components in terms of wave parameters and then converting them into the digital domain. A digital equivalent of the DTL structure was then constructed using these digital componenis.

The resulting Wave Digital Filters(WDF's) has been widely researched and have been shown to possess a superior roundoff noise performance compared to existing digital filter structures[17,38,13,8,42]. The sensitivities of WDF's and their reference analogue DTL filters have also been compared[43.28] and shown to bear a close correlation. Furiher work by Fetiweis[7.6.10.2] and Jackson[15] has adyanced relationship belween roundoff noise and attenuation coefficient sensilivity.

An alternative appraach suggested by Vaidyanathan and Mitra[39,40,41] concerned deriving digital structures independent of analogue equivalents. The objective of this approach was to define a class of function based on the requirements for low coefficient sensitivity and then derive structures based upon these functions. The result consisted of two-port chain matrices which describing Lossless Bounded Real(LBR) functions. A WDF structure satisfies LBR function and the results from the two design methods are similar in nature.

A comparison of various filter structures by Matharu[21] under number of finite wordlength effects, has also been carried out. The structures under consideration were the ladder WDF. lattice WDF, unit element WDF, Gray-Markel latice, direct form 1 and II. cascaded and parallel $2^{\text {nd }}$ order sections. The results suggesa that choice of filter structure is not clear cut and is dependant upon the filter arithmetic and numbering system. However, in all tests, the performance of WDF structures placed them at or near the top of each comparison list.

1.4 Wave Digital Filter (WDF)

1.4.1 Circuit Descriptions

Using a DTL analogue filter as reference, Fettwais brote the filter into its constituent elements and modelled the circuit as connection of one-port blocks. A digital equivalent of each analogue component was then generated and a structure constructed using these digital elements. Fettweis tried a number of different transforms to produce digital filters that retained the properties of their references. A successful ransform adopted by Fettweis was to replace the voltage and current description of an element with an incident and reflected voltage wave notation. This notation is illustrated in Fig.(1.12) and their relationship ia given by Eq-(1.26).

(a)

(b)

Figure 1.12 General one-port circuit in terms of (a) voltage and current parameters and (b) voltage wave parameters.

$$
\left.\begin{array}{l}
\mathrm{A}=\mathrm{V}+1 \mathrm{R} \tag{1.26}\\
\mathrm{~B}=\mathrm{V} \cdot \mathrm{I} \mathrm{R}
\end{array}\right\}
$$

In the equations of Eq.(1.26), the parameter. A. represents the incident voltage wave, B the reflected voltage wave and R the port resistance of the circuit. Application of this wave notation allows analogue components to be described in terms of incident and reflected waves. Applying the z transform to analogue component described in terms of wave parameters. generates a set of digital elements that can be used to construct digital structures that possess the properties of their DTL reference networks.

Consider the one-pon element in Fig (1.13). Using Eq.(1.26) the reflecied valtage wave, B, can be described in terms of the incident voltage wave, A, port resistance. R, and branch impedance, Z. This relationship is given in Eq.(1.27).

Figure 1.13 One-port circuit of impedance, Z, in terms of voliage and current and incident and reflected voliage waves.

$$
V=1 Z, \quad \begin{align*}
& A=1(Z+R) \tag{1.27}\\
& B=1(Z-R)
\end{align*} \quad \text { or } \quad B=A\left[\frac{(Z-R)}{(Z+R)}\right]
$$

If the one-port branch impedance, Z, represents capacitor, C, then

$$
\begin{equation*}
Z=\frac{1}{s C} \quad \text { ain } \quad B=A \cdot\left[\frac{(1 / s C-R)}{(1 / s C+R)}\right] \tag{1.28}
\end{equation*}
$$

The bilinear teansform is defined as

$$
\begin{equation*}
s \rightarrow \frac{2}{T} \frac{\left(1-z^{-1}\right)}{\left(1+z^{-1}\right)} \tag{1.29}
\end{equation*}
$$

where T is the sampling period.

Combining Eq.(1.28) and (1.29) then

$$
B=A\left[\frac{(T / 2 C-R)+z^{-1}(T / 2 C+R)}{(T / 2 C+R)+z^{-1}(T / 2 C-R)}\right]
$$

The factor $2 / T$ is scalar that varies the value of the capacitor for different sampling frequencies.

If the capacitance value is redefined as

$$
C^{\prime}=\frac{2 C}{T}
$$

then

$$
B=A\left[\frac{\left(1 / C^{\prime}-R\right)+z^{-1}\left(1 / C^{\prime}+R\right)}{\left(1 / C^{\prime}+R\right)+z^{-1}\left(1 / C^{\prime}-R\right)}\right]
$$

If the port resistance, R, is set so $R=1 / C^{n}$, then

$$
\mathbf{B}=\mathbf{A} z^{-1}
$$

Therefore the digital equivalent of a capacitor, C. under the wave parameter method suggested by Fettweis, is a unit delay, with a port resistance. T/2C. A list of digital building blocks and their equations is given in review paper by Fettweis[11]. The port resistance places a constraint upon how the digital elements may be connected. To use an element within a circuit. the port resistance of connected one-ports must be identical. However, the port resistance is predefined by the modelled component value. To climinate this problem, Fettweis also created adaptors to equalise the port resistance between two or more dissimilar one-port elemenis.

Figure 1.14 General DTL network with series capacitor, C.

Consider the series capacitor of the DTL network shown in Fig-(1.14). To model this component in a WDF, a simple delay is required. However. to use this element it needs to be connected to the rest of the network. To this end a 3 -port series adapter is required and is shown in Fig.(1.15). The gencral equations describing a series connected capacitor, expressed in its wave chain matrix format, is given by Eq.(1.30).

Figure 1.15 WDF including 3-port series adapter to model a capacitor. C.

$$
\left[\begin{array}{l}
A_{1} \tag{1.30}\\
B_{1}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\left(1-z^{-1}\left(1-\gamma_{2}\right)\right)}{\left(2-\gamma_{1}-\gamma_{2}\right)\left(1-z^{-1}\right)} & \frac{\left(1-\gamma_{1}-\gamma_{2}-z^{-1}\left(1-\gamma_{1}\right)\right)}{\left(2-\gamma_{1}-\gamma_{2}\right)\left(1-z^{-1}\right)} \\
\frac{\left(1-\gamma_{1}-z^{-1}\left(1-\gamma_{1}-\gamma_{2}\right)\right)}{\left(2-\gamma_{1}-\gamma_{2}\right)\left(1-z^{-1}\right)} & \frac{\left(1-\gamma_{2}-z^{-1}\right)}{\left(2-\gamma_{1}-\gamma_{2}\right)\left(1-z^{-1}\right)}
\end{array}\right] \cdot\left[\begin{array}{l}
A_{3}^{-} \\
\\
B_{3}
\end{array}\right]
$$

It should be noted that the port resistance R_{2}, of Fig.(1.15), equals $T / 2 C$, while R_{1} and R_{3} will be set by the surrounding circuit. When the circuit is designed, however, the actual values of R_{l} or R_{3} may not be pre-set and could be chosen arbitrarily. In this case. these values may be used to eliminate V_{1} or Y_{2}. Three cases arise for this $\mathbf{3}$-port series adapter.

$$
\text { if } \gamma_{1} \neq 1, \gamma_{2} \neq 1 \text { and } R_{2}=1 / C, \quad \text { then } \quad \gamma_{v}=\frac{2 R_{v}}{R_{1}+R_{3}+1 / C^{\prime}}, v=1.2
$$

0.1

$$
\text { if } r_{1}=1 \text { and } R_{2}=1 / C, \quad \text { iten } \quad R_{1}=R_{3}+1 / C, r_{2}=\frac{R_{3}}{R_{3}+1 / \bar{C}}
$$

0 r

$$
\text { if } r_{2}=1 \text { and } R_{2}=1 / C . \quad \text { then } \quad R_{3} \equiv R_{1}+1 / C, r_{1}=\frac{R_{1}}{R_{1}+1 / C^{1}}
$$

where $C=\frac{2 C}{T}$
Using this technique, the overall complexity of WDF circuit may be reduced. The chain matrices for the design cases when $\gamma_{1}=1$ or $\gamma_{2}=1$ can be determined by substitution into Eq(1.30). A detailed explanation of these design procedures is given in the review paper by Fectweis. The final description of the one-part capacitor element and a 3 -port series adapter, given by Eq.(1.30). was in the form of the wave chain matrix. Therefore, the original one-port approach was implemented within the circuit as a two-port element.

The mecessity of using a separate adapter circuit can be avoided if a two-port approach is used from the start. This technique was described by Lawsonilg]. An impedance, Z, illustrated by Fig-(1.16), is considered in terms of its chain matrix, shown by Eq.(1.31) and through the voltgege wave notation. a digital equivalent can be derived and is given by Eq.(1.32).

Figure 1.16 Two-port circuit of series impedance, \mathbf{Z}; (a) voltage and current parameters, (b) voltage wave parameters

$$
\begin{align*}
& {\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \cdot\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]} \tag{1.31}\\
& {\left[\begin{array}{l}
A_{i} \\
B_{i}
\end{array}\right]=\left[\begin{array}{ll}
1 & R_{i} \\
1 & -R_{i}
\end{array}\right]=\left[\begin{array}{l}
V_{i} \\
I_{i}
\end{array}\right] \quad i=1,2}
\end{align*}
$$

therefore

$$
\left[\begin{array}{l}
A_{1} \tag{1.32}\\
B_{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & R_{1} \\
1 & -R_{1}
\end{array}\right] \cdot\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & R_{2} \\
1 & -R_{2}
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]
$$

Consider again, a series capacitor, C. The chain matrix for this analogue component in terms of s, is given by Eq.(1.33). It may be converted into a digital wave chain matrix equivalent. shown by Eq.(1.34), using the voltage wave descriptions and the bilinear transform of Eq.(1.29).

$$
\begin{align*}
& {\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & -\frac{1}{s C} \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]} \tag{1,33}\\
& {\left[\begin{array}{c}
A_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{cc}
\frac{B_{2}-\left(1 \cdot \beta_{1}+\beta_{2}\right) z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{1 \cdot \beta_{1} z^{-1}}{\left(1+\beta_{2}\right)\left(1 \cdot z^{-1}\right)} \\
\frac{\beta_{1}-z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{\left(1-\beta_{1}+\beta_{2}\right)-\beta_{2} z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)}
\end{array}\right]+\left[\begin{array}{l}
A_{2^{-}} \\
B_{2}
\end{array}\right]} \tag{134}
\end{align*}
$$

Again, ss with the one-port and adapter method. the selection of R_{1} or R_{2} of Fig.(1.16). may not be presel by the surrounding circuit and either β_{1} or β_{2} may be eliminated.

This provides three design options.
jf R1 and R2 are
independent then
or
if $\mathbf{R}_{2}=\mathbf{R}_{1}+1 / C^{1}$ then
or
if $\mathbf{R}_{1}=\mathbf{R}_{2}+1 / C^{*}$ then
$\beta_{1}=1+\beta_{2}$,
$\beta_{1}-\frac{R_{2}+R_{1}-1 / C^{\prime}}{R_{2}+R_{1}+1 / C^{\prime}}, \quad B_{2}=\frac{R_{2}-R_{1}-1 / C^{\prime}}{R_{2}+R_{1}+1 / C^{\prime}}$
$\beta_{1}=\frac{C^{\prime} R_{1}}{1+C^{\prime} R_{1}} . \quad \boldsymbol{\beta}_{2}=0$
where $C^{\prime}=2 C / T$ and T is the sampling period. A fufl description of these design procedures and their effects on realisation are discussed in Chapter 3 .

Both the one-port and two-port design techniques rely upon the use of voltage wave notation and the bilinear transform. Although this method is widely used. it is not the only method to provide a viable solution. Other methods were investigated by Lawson, who proposed a general WDF concept using a chain matrix of the form

$$
\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=[P] \cdot\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \cdot[Q]^{-1} \cdot\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]
$$

where P and Q are 2 by 2 matrices, that represent a number of different transformations ${ }^{\dagger}$, including voliage, current and power waves.

1.4.2 Structures

DTL networks, which form the reference filters for WDF designs, may be defined within two groups; ladder and lattice structures. The general DTL ladder network, shown by Fig.(1.17), is widely used in analogue circuits for radio and television as no element is more than one node away from the ground line and is therefore less susceptible 10 stray capacitance.

Figure 1.17 General Ladder Network.

[^0]The single input-output path through a ladder circuit determines that the structure has a minimum-phase characieristic.

A general latice circuit, shown by Fig.(1.18), possesses more than one inputoutpui path. and may therefore be classed as having a nonminimum-phase characteristic. The latice siructure is more generally reduced to balanced symmetric form, where $Z_{d}=Z_{c}$ and $Z_{b}=Z_{d}$.

Figure 1.18 General Lattice Network.

Both ladder and lattice siruciures can be used as references for WDF's. These designs can be approached through the one or two-port techniques by reducing each impedance, Z_{1}, into a simple element. like a capacitor or an inductor, and then generating the appropriate WDF component. The symmetrical latice structure, shown in Fig.(1.19), because of its nonminimum-phase characteristic, is ideal for implementing allpass functions and is widely used as phase equalisers in analoguc designs. Lattice structures present practical design problems, however, because the pairs of branch impedances have to be matched within a high tolerance. This is a difficult task as analogue components are hard to adjust. and age and cycle with temperature. These effects are not evident in digital designs and the lattice WDF has been the subject of a great deal of research.

Figure 1.19 Balanced Symmetric Lattice Network.

The symmetrical lattice of Fig.(1.19). is given in terms of ita canonic impedances. $\mathrm{Z}_{\mathbf{a}}$ and Z_{b}. If the corresponding canonic reflectances for a symmetric WDF latice are defined as S^{*} and $S^{\prime \prime}$, then

$$
S^{\prime}=\frac{Z_{a}-R}{Z_{a}+R} \text { and } S^{\prime \prime}=\frac{Z_{n}-R}{Z_{b}-R}
$$

where R, because the structure is symmetrical, represents the port resistance of each end of the lattice. Using these canonic reflectances, general WDF latice structure can be constructed and is shown by Fig.(1.20).

If the second input, A_{2}, is set to zero and B_{2} or B_{2} ignored, then this latice structure can be simplified to produce a structure shown by Fig.(1.21). The transfer function of this structure will then be the sum or difference of the canonic reflectances.

Figure 1.21 Simplified symmetrical lattice with canonic reflectances.

The actual implementation of \mathbf{S}^{\prime} and $\mathbf{S ' ~}^{\prime \prime}$ is a design parameter. Bantent12| devised a method of generating a lettice structure from a symmetric ladder network. The resulting lattice branches were cascade in structure, terminated by an open or short circuit. The functions \mathbf{S}^{\prime} and $\mathbf{S}^{\prime \prime}$ can be broken inoo a large number cascaded
or parallel functions, typically first or second order sections. These sections may be designed through the one or (wo-port techniques.

All the structures considered have been derived from lumped element models. A WDF equivalent of distributed component structure has also been derived. The unit clement is based upon a section of transmission line of characteristic impedance. Z_{0}. Using the two-por approach, these unit element sections can be connected in cascade to produce anit element WDF. One of the benefits of using distributed element modela, is that the filter retains its analogue magnitude and phase relationships through an analogue to digital transformation. Thus, unit element filters designed to posses linear phase in the analogue domain also exhibits linear phase in the digital domain. This property allows the work by Rhodes[30,31,32]. Scanlan[34,35] and Abele[1] into linear phase microwave filters to be applied to the design of linear phase unit element WDF's.

1.5 Research Objectives

The main purpose of this research was to investigate digital filters that could be used within a beamforming system. Any beamforming application, whether radar or sonar, consists of fixed transmitter and receiver array. The phase of the signal transmitted from the array is varied so that the beam is swept over an angle about the array. Consequently, the range and bearing information of any signal received by the array will be contained within both the magnitude and phase frequency responses.

Therefore, any digital filter designed for this application must retain the phase information of the signal through any filtering. Current systems perform this function with an exactly linear phase FIR filter. The FIR filter requires a larger filter order to meet a magnitude-only specification than an IIR filter. In many practical design cases this difference in filter order, despite additions to an $\| \mathbb{R}$ filter order to achieve approximately linear phase. is still appreciable.

This large difference prompted the reagarch to be concentrated on IIR filters which can be designed to have approximately linear phase to within given specified tolerance. Beamforming application operate in real-time so speed is also an important factor. This narrowed the research to filter structures that exhibit an efficient use of hardware components, like multipliers and adders, as well as demonstrating small susceptibility to finite wordlength effects.

As mentioned in previous sections of this Chapter, the WDF offers a posible solution to this problem. At the start of the research project, no work had been published into the field of linear phase WDF's. The main objective of thia thesia is to investigate approximately linear phase WDF's, their structures, designs and limitations

The final stage of research is to generate finite wordiength linear phase WDF's to meet dual bandpass specifications and implement the resulting designs. This was to be either through existing DSP chips or some dedicated hardware design.

1.6 Summary

This Chapter has provided a brief introduction and review of the theory behind digital filter structures and the effects of finite wordlengths. Coefficient sensitivity has been introduced in relation to finite wordlength performance and the WDF. The characteristics of exactly linear phase have also been illusirated and related to the properties of nonminimum-phase structures.

The nuture of FIR and IIR filter structures has been discussed in terms of linear phase. FIR filiers possess a non-recursive structure and can therefore be designed to exhibit exacily linear phase. Recursive IIR filters, however, can only possess approximately linear phase. This thesis is concerned with WDF structures. WDF'a are recursive in nature and con therefore only exhibit approximately linear phase. For the remainder of this thesis the term linear phase will represent approximately linear phase. If the phase response is exactly linear it wilt be stated as such.

Finally WDF structures and the design methodologies behind the one and two-port approaches, have been introduced. The purpose of this thesis is to examine the design options for linear phase WDF structures and procedures for their design.

Chapter 2 will develop and discuss a large number of these design options, while Chapter 3 and 4 will relate these design options to ladder and lattice WDF structures. Chapter 5 will oulline the frequency translation techniques required to generate a dual bandpass response, while Chapter 6 discusses the design procedures and effecta of finite wordlength lattice WDF'a. A practical design example required to meet a linear phase dual bandpass filter specification under finite wordlength conditions is illustrated in Chapter 7. The discussion and
conclusions of the thesis are provided in Chapier 8, along with a number of suggestions for further work.

References

1) Abele, T. A., Transmission Line Filiers Approximating a Constant Delay in amimally Flat Sense". IEEE Trans. Circuit Theory, Vol CT-14. No. 3, September 1967, pp298-306.
2) Bonzanigo, F., "Comment on 'Roundoff Noise and Atteruation Sensitivity in Digital Filters with Fixed-Point Arithmetic' ". IEEE Trans. Circuit and Systems, Vol CAS-21. No. 11. November 1974, pp809-810.
3) Brigham, E. O., The Fart Fourier Tranaform, Prentice-Hall, New Jersey, 1972.
4) DeFata, D. J., Lucas. J. G. and Hodgkiss. W. S., Digital gignal Proceselng: A syatem Dealgh Approach, Wiley. New York, 1988.
5) Ebert. P. M.. Mazo, J. E. and Taylor, M. Q., "Overflow Oscillations in Digial Filters", The Bell Sysiem Technical Journal, Vol 48, No. 11. November 1969, pp2999.3020.
6) Fettweis. A., "On Sensitivity and Roundoff Noise in Wave Digital Filters". [EEE Trans. Acoustics, Speech and Signal Processing. Vol ASSP-22. No. 5. October 1984, pp383-384.
7) Fettweis, A.. "On the Connection Between Multıplier Word Length Limitation and Roundoff Noise in Digital Filters". IEEE Trans. Circuit Theory. Vol CT-19, No. S, September 1972. pp486-491.
8) Fetweis, A., "Reduction of Roundoff Noise in Wave Digital Filtera". IEEE Trans. Circuit and Systems, Vol CAS-21. No. 3. March 1974, pp305-310.
9) Fettweis, A.- "Relay to F. Bonzanigo's Comment on "Roundoff Noise and Attenuation Sensitivity in Digital Filters with Fixed-Point Arithmetic". IEEE Trans. Circuit and Systems, Vol CAS-21, No. 11, November 1974, pp810-811.
10) Fetweis, A. "Roundoff Noise and Attenuation Sensitıvity in Digital Filters with FixedPoint Arihmetic". IEEE Trans. Circuil Theory, Vol CT-20. No. 3. March 1973. ppli4. 175.
11) Fetrweis, A., Wave Digital Filters: Theory and Practice", Proc IEEE, Vol 74, No. 2. February 1986, pp270-327.
12) Guillemin, E. A., syntheala of pasaive networka, John Wiley and Sons, London, 1957.
13) Hwang, S. Y. "Comments on 'Reduction of 'Roundoff Noise in Wave Digital Filters'. IEEE Trans. Circuit and Syatema, Vol CAS-22, No. 9. Seprember 1975, pp764-764.
14) Jackion. L. B.. On the Inieraction of Raundoff Noise and Dynamic Range in Digital Filters". The Bell System Technical Journal, Vol 49. No. 2. Februay 1970. ppl59-184.
15) Jackson, L. B.. "Roundoff Noise Bounds Derived from Coefficient Sensitivities for Digjul Filters", IEEE Trans. Circuit and Systems, Vol CAS-23, No. 8, August 1976, ppa81-485.
16) Knowlet, J. B. and Olcayto. E. M.. "Coefficient Accuracy and Digital Filter Reaponse". IEEE Trans. Circuit Theory, Vol CT-15, No. I. March 1968. pp31-41.
17) Ku. W. H. and Ng. S-M., ${ }^{\top}$ Floating-Point Coefficient Sensitivity and Roundaff Noise of Recursive Digital Filers Realized in Ladder Structures'. IEEE Trans. Circuit and Systems, Vol CAS.22, No. 12. December 1975. pp927-936.
18) Lathi, B. P., Modern Digltal and Analog Communcation syacame, Holt-Saunders International. New York, 1983.
19) Lawson, S. S., "Digital fitter structures from clasaical malogue networks". Ph. D. Thesis. University of London, 1975.
20) Lawson, S. S.. "On a Generalization of the Wave Digital Filter Concept", Int. J. Circuit The ory Appl., Vol 6. No. 2. April 1978. ppl07-120.
21) Matharu, P. S., "Architectures for the VLSI Implementation of Digital Filteri". Ph. D. Thesis, The City University, 1988.
22) Oppenheim. A. V. and Schafer, R. W., Digital gignal proconalng. Prentice-Hall Internacional. London, 1975.
23) Oppenheim, A. V. and Weinstein, C. J., "Effects of Finite Register Length in Digital Filtering and the Fast Fourier Transform". Proc IEEE, Vol 60, No. G, Augusi 1972, pp957-976.
24) Orchard. H. J., "Computing the Envelope Delay of Ladder Networks", Electronics Letters. 21at July 1988. Vol 24, No. 15, pp976-977.
25) Orchard, H. J., "Filter Design by terated Analysis", iEEE Trans. Circuit and Systems, Vol CAS-32. No. 11, November 1985, ppl089-1096.
26) Orchard, H. J., "Loss Sensitivities in Singly and Doubly Terminated Filters", [EEE Trans. Circuit and Systeris, Vol CAS-26. No. 5, May 1979, pp293-297.
27) Orchard. H. J.. Temes. G. C. and Catalepe. T.. "Sensitivity Formulas for Terminated Lossless Two-Ports". JEEE Trans. Circuit and Systems, Vol CAS-32. No. 3. May 1985. pp459.466.
28) Owenicr. K-A.. "A General Method for the Efficient Computation of Sensitivities in Wave Digital Filters". [EEE Trans. Circuit and Systems, Vol CAS-30. No. 10. October 1983. pp750-757.
29) Rabiner, L. R. and Gold, B., theory and Application of Digital signal proceasing. Prentice-Hall, New Jersey, 1975.
30) Rhodes, J. D. "A Low-Pass Prototype Network for Microwave Linear Phase Filters", IEEE Trani. Mierowave Theory and Techniques. Vol MTT-18. No. 6. June 1970, pp290-307.
31) Rhodes, J. D., ${ }^{n}$ Filters Approximating Ideal Amplitude and Arbitrary Phase Characieristics", IEEE Trans. Circuit Theory. Vol CT.20. No. 2. March 1973. ppl20-124.
32) Rhodes.]. D. and Ismail. M. Z., "In-Line Waveguide Selective Linear Phase Filteri", IEEE Trans. Microwave Theory and Techniques. Vol MTT-22. No. I, Jenuary 1974, ppl-s.
33) Roberts, R. A. and Mullis, C. T., Digital signal proeeaaing. Addison-Wealey. Messachusetts, 1987.
34) Scanlan, S. O. and Baher. H., "Filters with Maximally Flat Amplitude and Contralled Delay Responses". IEEE Trans. Circuits and Systems. Vol CAS-23. No. 5. May 1976. pp270-278.
35) Scanlan, S. O. and Rhodes, f. D. "Microwave Networks with Constant Delay", IEEE Trans. Circuit Theory. Vol CT-14, Na. 3. September 1967, pp290-297.
36) Scott, R. E., Linaar Cireults, Addison-Wesley, Massachusetis, 1960.
37) Temes, O. C. and Orchard, H. J., "Firat-Order Scnsitivity and Warat Case Analyais of Doubly Terminated Reactance Two-Poris", JEEE Trans. Circuit Theory, Vol CT-20. No. S. September 1973. pp567-571.
38) Ullrich. U., "Roundoff Noige and Dynamic Range of Wave Digital Filters", Signal Processing. Val I, pp45-64.
39) Vaidyanthan, P. P. and Mitra, S. K., "Low Passband Sensitivity Digilal Filiera: A Generalized Viewpoint and Synthesis Procedures". Proc IEEE, Vol 72, No. 4. April 1986. pp404-423.
40) Vaidyanthan, P. P., "A Unified Approach to Orthogonal Digital Filiers and Wave Digital Filters. Based on LBR Two-Pair Extraction", [EEE Trans. Circuit and Systems, Vol CAS. 32. No. 7. July 1985. pp673-686.
41) Vaidyanthan, P. P., Mitra, S. K. and Neuvo, Y., A New Approach to the Realization of Low-Senailivity IIR Digital Filiers", [EEE Trans. Acourtici, Speech and Signal Processing. Vol ASSP.34. No. 2, April 1986. pp350-36I.
42) Van Haften, D. and Chislian, P. M.. "An Analysis of Errors in Wave Digital Filterı". IEEE Trans. Circuit and Systems, Vol CAS-28. No. 2, February 1981. pp154-160.
43) Yang, S. M., "On the Sensitivity of a Clasa of Wave Digital Filters", IEEE Trana. Circuit and Systems. Vol CAS-28, No. 12. December 1981. ppl158-1164.

Chapter 2

Design Approaches

2.1 Existing Methods

The first step in the design of a digital filter is 10 determine the specification, not just in tems of its frequency response. but also implementation and operational performance. These performance criteria become imporiant when high sampling rates and short wordlength are required. WDF's, as mentioned in the previous Chapter, are considered to possess good operational performance under finite wordength conditions. These filters are recursive in nature and cannot be designed to meet a magnitude and exacily linear phase specification simultaneously. F1R filters, although their non-recursive nature requires a larger filter order $t 0$ fulfil a given magnitude specification than a recursive filter, can be designed to exhibit simultaneous magnitude and exactiy linear phase responses

Therefore the first design decision is based upon the tolerance placed upon the phase linearity. For a system requiring an exactly lincar phase response, the FIR filter is the only solution. A more general phase linearity tolerance is usually expressed as a percentage deviation of the group delay about a nominal value. For wider linearity tolerances, recursive filter designs may be more efficient. However, as the tolerance becomes narrower, the difference in orders between these two filter types will decrease, until the required recursive filter order is higher than the non-recursive case. This places an upper limit on the efficiency and practically of recursive filters for simultaneous magnitude and linear phase designs.

There are three basic decisions in the design of a digital filter :-
(i) What filter structure ?

This decision concerns the nature of the filter, recursive or nonrecursive and how the filter is to be constructed. For recursive filters. construction methods vary from the direct form, through cascaded or parallel second order sections. to WDF structures.
(ii) In which domain is the filter to be designed and simulated ?

Here the domain is a general description of a number of design approaches, such as design in frequency or time domains. or uging discrete or continuous parameters. Modelling a filter could be fixed to finite wordlengths or allowed to use the full accuracy of the modelling system, producing an 'infinite' wordlength situation. Other factors in this domain decision concem how to represent the filier's response in each domain, as magnitude and phase frequency responses, pole/zero positions or as a lime domain waveform.
(iii) How to calculate the filter parameters ? For a digital filter, this decision concerns the filter's coefficient values. Methods include using analytical formulac based upon polynomials or through optimization techniques. such as the Remez exchange algorithm used for linear phase FIR filter designs.

It should be noted that each decision is related and dependant upon the filter specification. The elements of each of these decisions are discussed in the following sections.

2.2 Filter Structures

Classically, digital filter structures have been described as recursive or nonrecursive. A better definition when dealing with linear phase designs is whether the structures exhibit minimum- or nonminimum-phase characteristics. This type of classification presents three options for the choice of structure for a filter to meet a simultaneous magnitude and phase specification :-
(i) Minimum-phase structure.
(ii) Connected minimum-phase and nonminimum-phase structures.
(iii) Nonminimum-phase structure.

Carlin[6.7] considered the use of minimum-phase structure, being a DTL ladder network. to meet a simultancous magnitude and phase specification. The conclusions of this work were that for minimum-phase structures the magnitude and phase requirements form reciprocal properties, such that one property had to be traded off against the other. Results showed a tight compromise between the two halves of the specification.

A great deal of work has been directed at the design of phase equalisers for analogue circuits. This technique, as mentioned in Chapter 1 . consists of
connecting a minimum-phase structure with a transfer function. $G_{m i n}(z)$, to a nonminimum phase structure, which has a unity magnitude characteristic or an allpass nature. The phase of the nonminimum-phase circuit would be varied to linearize that of the minimum-phase structure. The overall transfer function, G(z), given by

$$
G(z)=G_{\min }(z) G_{\mathrm{ap}}(z)
$$

has magnitude characteristic provided by $G_{m i n}(z)$ and a linear phase frequency response produced through the allpass equaliser transfer function. Gap(z).

Deczky[13,14] and Vlach[48] extended this work into the digital domain to consider recursive cascaded second order sections. This type of section, through appropriate parameter values, can exhibit a minimum- or nonminimum-phase characteristic. Deczky grouped these ideas into a computer program to design digital filters based on cascaded second order sections to meet specifications simultaneous or through phase equalisation. Another structure that satisfies a simultaneous magnitude and phase specification is the FIR filter. The exactly linear phase FIR structure, shown by Fig.(2.1), has a non-recursive and nonminimum-phase characteristic

Figure 2.1 General structure of an exactly linear phase FIR filter.

The performance of this structure is determined by a large number of constraints that are imposed by the linear phase requirement. These constraints lead to a high order filter. The most notable constraint is that the structure exhibits exactly linear phase across all the frequency band. As a result. some of the degrees of freedom of the structure are used to enforce linear phase across the stopband of the filter.

If this constraint across the stopband can be removed. then the resulting flR filter should have lower order. This idea was proposed by Leeb and Henki30]. The authors suggested that linear phase FIR filters and minimum-phase siructures
represent the extreme ends of possible solutions to a simultaneous magnitude and phase apecification. The objective of their research was to produce mearly linear phase" FIR filter by moving the zeros from their reciprocal complex conjugate positions. The resulting filters would then exhibit linear phase across their pass bands only. As predicted, these filters required a lower order to meet the same specification than the exactly linear phase equivalents.

The next step in considering a filter structure in how to implement the various minimum- and nonminimum-phase circuits. For digital filter the finite wordlength performance is of prime importance. To take advantage of siructures known to posses good finite wordlength performance, filter designs should be based on WDF's. The main minimum-phase WDF structure is derived from an analogue DTL ladder netwark. The equivalent ladder WDF can be produced using the one or two port techniques discussed in Chapter 1. An example of $:$ DTL ladder network is given in Fig.(2.2)(a), with the equivalent one-port WDF Iadder circuit in Fig.(2.2)(b) and two-pon model in Fig.(2.2)(c).

Flgure 2.2 (a) 7th order DTL ladder network, with (b) one-part WDF equivalent and (c) Iwo-port WDF model.

The main nonminimum-phase WDF sIructure is based upon DTL lattice network. A digital lattice may be described in terms of its canonic impedances. The equivalent canonic reflectances for the WDF model may be derived through the
one of two port techniques. This process can be illustrated by the DTL lattice structure of Fig.(2.3)(a) which acts as a reference for the one-port equivalent of Fig.(2.3)(b) and two-port circuit of Fig.(2.3)(c).

(a)

(b)

(c)

Flgure 2.3 (a) Symmerric DTL latice structure showing canonic impedances, with (b) one-port cquivalent WDF and (c) two-port equivalent WDF in terms of canonic reflectances.

The latice structure represents a parattel connection of functions. These functions are allpass in nature and it is their combination which produces an overall transfer function that is not allpass. Although the lattice structure only contains two branches, more allpass functions can be added in parallel, to form the general polyphase systems $37,11,12,47]$ used for interpolation and decimation.

The more general description of a lattice WDF. shown by Fig.(2.4), is in terms of cascaded first and second order sections. A number of variations on this structure have also been suggested. One variation is to set one branch of the latice as a pure delay, equal to the overall delay of the other branch. This circuit is given by Fig.(2.5).

Figure 2.4 General latice WDF using $1^{\text {si }}$ and $2^{\text {nd }}$ order sections.

Figure 2.5 Lattice WDF with a pure delay branch.

The choice of filter structures that have good finite wordlength properties and minimum- or nonminimum-phase characteristics, can be reduced to the ladder or lattice WDF's. Simultaneous magnitude and phase design can then be approached on the minimum-phase ladder WDF and nonminimum-phase latice WDF. Equaliser designs would consist of using boih structures, the ladder for magnitude response and the lattice 10 perform the phase equalisation.

2.3 Domain Options

With the selection of a filter structure a Iransfer function can be generated. The form of this transfer function and what its parameters represent, will depend upon the filter structure and the design domain. For most applications a filter specification will be defined in terms of limits set upon its magnitude and phase frequency responses. The mosi common design technique is to start with a frequency response specification and then model and simulate the appropriate transfer function through the frequency domain.

This approach may not always be appropriate, especially for linear phase design, where the desired characteristics are defined as zero positions or unit impulse response symmetry. These linear phase characteristics may either be transferred into equivalent properties for the frequency response or the filter specification may be redefined into the same domain as these characteristics.

This possibility leads to a number of design options based upon which domain the filter specification is modelled and simulated. The time and frequency domain
represent the two main possibilities, while within each domain a number of variations exist.

These domains may be characterised by the nature of the gignal and how accurately it is represented. The main design domains are z-
(i) Time Domain:
(a) Continuous signals to full accuracy
(b) Discrete signals to full accuracy
(c) Discrete signals with finite wordlength
(ii) Frequency Domain;
(a) Continuous signals to full accuracy
(b) Discrete signals to full accuracy
(c) Discrete signals with finite wordiengit

The filter specification, defined in the time domain, relates to a real signal. while the same specification in the frequency domain relates to a complex signal. A time domain signal can only be described in terms of amplitude. A frequency domain signal, however, can be described in a number of fomats. Common format types include :-
(i) Complex signal
(ii) Magnitude and Phase (or Group Delay)
(iii) Real and Imaginary Components
(iv) Pole/Zero positions

Using a combination of these options, a large number of design domains exist. Selection of domain depends upon a number of parameters, mosi notably the frequency specification and filter performance. The output of a digital filier is a quantized discrete sequence of samples separated in time. The finite precision discrete time domain offers the most accurate modelting of the filter. This domain also allows a comparison of different rounding, overflow and scaling slrategies for various wordlengths. Results from this domain should therefore bear a close correlation to the response of any actual hardware implementation.

The practicality of this and other time domain designs is limited by the availability of design equations and representation of a frequency domain specification. When the shape of the magnitude response is closely defined then an appropriate time domain waveform can be calculated. An example of this is the saised cosine filter. whose corresponding time domain waveform can be calculated through the

Fourier transform. Linear phase raised cosine filter design would consist of calculating the filter parameters to produce symmerry in the correspanding lime domain function. Concemed with the design of linear phase raised cosine filters. Lind(32| proposed an optimization technique for these parameter calculations.

For the most common fitter response specification, however, the shape of the magnitude is not defined, but given in terma of tolerance upon ita value at particular frequencies. This tolerance scheme in based upon the magnitude characteristics, using the concept of passbands and stopbands. A specification is expressed limits or a lolerance upon the performance of the filter within these passbands and stopbands. For a magnitude specification, the talerance scheme is defined as maximum attenuation, a_{p}, in the passband and a minimum attenuation, α_{a}. in the stopband. A lowpass filter magnitude specification is shown in Fig.(2.6).

Flgure 2.6 Tolerance scheme for a general digital lowpass filter

The magnitude specification of Fig.(2.6) can be expressed as,

$$
\begin{array}{rlr}
1 \leq|G| \leq a_{p} & \text { over the region } & 0 \leq f \leq f_{p} \\
a_{\mathrm{g}} \leq|G| \leq 0 & \text { over the region } & f_{1} \leq f \leq f_{1} / 2
\end{array}
$$

where the passband is the frequency region $0 \rightarrow f_{p}$ and the stopband is the frequency region $f_{3} \rightarrow F_{1} / 2$, in which F_{1} is the sampling frequency

Under this general type of apecification, the actual value of the magnitude characteristic is not defined, only a tolerance upon its value at a particular frequency. It in very difficult to express this type of tolerance scheme in the time domain. An additional disadvantage of using the time domain is the lack of design equations. especially for linear phase. Extending Lind'z ideas to general filier
response designs is limited by an inability to define a general specification as a target function in the time domain.

These problems lead to preference of the frequency domain for filter designs, despite the inability to accurately simulate finite wordiength effecis. The major advantage of the frequency domain is the analytical formulae that exiat for analogue magnitude-only designs. These formulac, based upon polynomials such 85 the Butterworth. Chebyshev and elliptic functions, can be extended to direct calculation of digital filter parameters for a discrete magnitude specification. The accuracy with which the magnitude response of a fitter is modelled in the frequency domain, is dependant upon the filter structure and how close the filter parameters are to the ideal values. Differences between the ideal and actual values for the filter parameters are duc to quantization when a digital filfer is implement upon finite wordlength system. The major result of this parameter quantization if to degrade the system's response characteristics from the ideal. The scale of this degradation will depend on the coefficient wordlength and filter structure. The effects of this process can be offset through optimization, producing finite wordlength coefficients that gencrate an acceptable filter response.

However, any finite wordlengit optimization procedures based in the frequency domain cannot accurately model all the finite wordlength effects, such as overflow and quantization strategies. Any resulta are thercfore anly an approximation to the time domain performance. The accuracy of this approach will again depend upon the filter structure, the particular rounding and overflow strategies and system wordlengits. A more detailed discussion of these ideas is provided in Chapter 6.

When linear phase becomes a requirement of the frequency response, the number of design formulae becomes very limited. Linear phase analogue filter deaigns are most usually approached with phase equalisersi351. A number of strategies for simulianeous design also exist. ldeas vary from a novel equaliser structure to explicit polynomial formulae.

Equaliser techniques range from embedding bridged-T network within the analogue filteri28], to reducing the overall order of an equalised circuit through movint and cancelling the poles and zeros of the transfer functionf19.39]. The polynomial approach starts from a number of objectives, either an all pole circuit[33.4\$], minimum-phase characteristics[21] of to calculate a polynomial to approximate the magnitude and phase response[40,15,44,46,25,38]. Each design
method also has to compensate for the non-linear mapping of the phase response from the continuous to the discrete domain. Again. both equaliser and polynomial methods generate filter parameters that have an ideal value and so the discrete frequency responses will suffer distortion upon their quantization.

Complex signal and pole/zero position formats represent alternatives to the magnitude and phase descriptions for a filter's transfer function. Each format has advantages and disadvantages for filter design. Although the frequency response of a particular transfer function can be described as a complex signal, real and imaginary responses. magnitude and phase responses or as pole and zero positions, it is very difficult to describe a tolerance specification into each formal from the general magnitude and phase definition. This is especially true for the complex and real and imaginary response formats.

The characteristics of linear phase, outlined in Chapter 1, were described in terms of unit impulse response symmetry or the position of the zeros of the transfer function. The pole and zero position format therefore offers the best method of describing the phase requirements in the frequency domain. The exact position of these zeros is not defined, only that they occur in reciprocal complex conjugate sets. The positions of the poles of the transfer function are determined by the magnitude response required from the filter's specification. Deczky[13] illustrated that complex pole of the form $r e^{-1}$. exhibis magnitude and group delay responses with a resonance-type characteristic. The sharpness of the peak will depend upon the value of r and its position in the frequency response will be a function of θ. The effects of these resonance-type characteristics can be combined so that the tuming points of the filter's responses can be adjusted by moving the appropriate poles and zeros. An example of a lowpass magnitude specification mapped onto a complex plane is illustrated by Fig.(2.7).

A zero on the unit circle indicates the position where the magnitude response approaches a value of zero. The magnitude response will also be determined by the position of the poles of the transfer function. The position of the poles for a given magnitude response, such as elliptic or Butterworth, is detailed in a number of analogue filter design text books[48.5].

The actual position of the poles and zeras of anafer function will be derived from an ideal evaluation of a polynomial equation. The effect of quantizing these ideal coefficient values can readily be illustrated on pole/zero plots|34|. The main effect is to move the poles and zeros to a grid point next to their ideal positions.

Size and shape of the grid is determined by the structure of the filter and the quantizing step.

Figure 2.7 Tolerance scheme for a general digital lowpass filter given in the complex domain.

Techniques using pole and zero positions as design criteria, such as the program developed by Deczky, used structures in which the poles and zeros of the transfer function are independent of each other. This restriction makes this type of method unsuitable for the WDF structures considered.

Real and imaginary frequency responses are of little interest, as iwo templates are required to define the iransfer function without the ability to accurately show the specification. When the transfer function is defined as complex signal. as real and imaginary componens, then although it is a single function, it becomes difficult to define the magnitude and phase targets.

In conclusion, for a digital filter specification with a magnitude response given as a tolerance scheme, the most appropriate design option is to use the discrete frequency domain. Finite wordlength effects are very difficult to model in the frequency domain except for cocfficient quantization and as result the finite wordlength coefficient responses calculated in the frequency domain should only be used as an estimate of the actual finite wordlength characteristics. Finally, the transfer function should be modelled and interpreted in terms of its magnitude and phase(or group delay) frequency responses.

2.4 Coefficient Generation

The coefficients form the heart of a digital filter and as such their calculation is a vital part of digital filter design. Formulae exist which can be used to generate the filter coefficients to meet a prescribed magnitude specification. These formulae however, do not encompass a phase requirement direcily. A polynomial can be constructed to possess high magnitude selectivity, like the elliptic function, or phase linearity, like the Bessel or synchronous functions[5]. The opposing nature of the amplitude selectivity and phase linearity in these polynomials makes them unsatisfactory for simultancous magnitude and phase designs. This presents a number of design options :-
(i) derive formulac to describe and calculate the mulipliers of a WDF for simultaneous or equaliser structure designs.
(ii) use optimization techniques to determine WDF multipliers for a given structure to meet some arbitrary specification.
(iii) use combination of (i) and (ii) above.

Derivation of any design formulae would be based upon existing polynomiala for the magnitude response and the pole/zero position required for linear phase[22,24]. These equations. if possible, would produce an accurate iransfer function if its coefficients have infinite precision. The final step in generating a finite wordlength responge would still require a certain amount of optimization to achicve acceptable response with linite wordlength coefficients.

An alternative is to use optimization for the whole design process. This is especially useful for showing relatively quickly, if design options are viable. Work towards the design of linear phase filters has been based upon the use of optimization techniques $[41,8,3,2]$, both for equaliser and simultaneous approaches.

2.4.1 Optimization Considerations

In order to approach the design of digital filtera through optimization three areas must be considered, -
(i) How to define the problem as function 10 be minimised in relation to some arbitrazy goal.
(Ii) How to denerate an error function which reflecti the difference between the actual function and an ideal function.

(iii) Which type of optimization routine is appropriate to the problem and what information about the function it requires.

The first design area is concerned with how the problem is stated, both in terms of it parameters and goals. The final goals or targets of the problem will be determined by the design domain of the filter and what its parameters represent. For a general filter specification. the targets would be described by the magnitude and phase (or group delay) frequency responses. This is not the only method of describing the targets for this problem, as discussed in the previous section. However, magnitude and phase frequency responses are the most straightforward method for defining a general filter tolerance specification.

Describing the targets of the problem in terms of its magnitude and phase frequency responses, requires the simultaneous optimization of two functions. Both these functions are required to satisfy an ideal solution or target. For linear phase specification, this rarget is a straight line of some angle, t. while the magnitude target may have a number of forms based upon the same tolerance specification. These forms range from a brick wall target to defining an individual magnitude response at each frequency point, as with the raised cosine filter. General filters, however, have magnitude responses described with a maximum passband allenuation. ap, and minimum stopband attenuation. as. Possible straight line largets for a lowpass filter specification art shown by Fig.(2.8).

(c)

(d)

Figure 2.8 Possible straight line magnitude targets. (a) brick wall of 1 and 0 , (b) tolerance values of α_{p} and α_{s}. (c) mean value targets of ($\left.1+\alpha_{p}\right) / 2$ and $\alpha_{s} / 2$ and (d) dual line larget scheme.

In Fig. (2.8), the diagrams (a)-(c) have a single larget across the passband and stopband regions. Optimization would be required to minimise the deviation of the actual response from these siraight lines. Although the filter specification allows a deviation in both the passband and stopbands, using these target ideas there would be no way to constrain the deviations to a prescribed limit. Fig. (2.8)(d) uses a dual target scheme, such that an optimization routine would only be required 10 minimise deviations outside the enclosed regions.

Although this type of dual target description is more accurate. it is computationally more expensive than the single line targets because, at each frequency point, the response has 10 be compared to the target and an error generated only if it lies outside the targel band.

In all the target schemes of Fig. (2.8). the transition band has remained unspecified. This can affect the overall response and the ideas of single and dual line targets can be extended into the transition band. The practical implications of using these larget designs for magnitude and phase responses are discussed in Chapter 3 and Chapier 4.

The final consideration within this area of problem definition is what the filter parameters represent and the limits upon their values. For digital filters these limits are due to stability constraints, forcing the filter coefficients to be limited to a prescribed range. For WDF structures a requirement to remain pseudopassive" also constrains the range of coefficient values.

[^1]Having defined the ideal response through the ideas of target templates, the next stage if to evaluate an error function that indicates the difference between the actulal functions and the ideals. Error functions for filter design are usually based upon an approximation to the transfer function, generated by sampling the function at a number of frequency points. The larger the number of sample points. the greater the accuracy of the approximation but the higher the compurstional expense. Using this idea. the difference between the actual response and the appropriate larget can be calculated at a number of frequency points. An overall error function can then use these individual differences in a number of ways. Existing error functions use the maximum individual difference as the overall error, sum of the differences or a sum of the squares of the differences. Each meihod can be derived from a general form of the $L_{p} \cdot n o r m$. given in Eq.(2.1).

$$
\begin{equation*}
\|v\|_{p}=\left[\left.\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right|^{1 / p} p \in[1,2,3, \ldots] \cup[\infty]\right. \tag{2.1}
\end{equation*}
$$

The L_{p}-norm of vector v can be generated from Eq.(2.1). This equation can be extended to the difference between two functions, defined as Lp-metrics. This function in given by Eq.(2.2). for two vectors x and y.

$$
\begin{equation*}
\|x \cdot y\|_{p}=\left[\left.\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right|^{1 / p} p \in\{1.2,3, \ldots\} \cup\{\infty\}\right. \tag{2.2}
\end{equation*}
$$

The error function based upon the largest difference is associated with the Lemetric. given by Eq.(2.3), while the sum of differences is the $L_{1-n o r m}$ of Eq.(2.4). The sum of squares of individual errors is related to the \mathbf{L}_{2}-norm of Eq.(2.5)

$$
\begin{gather*}
L_{-}=\|x-y\|_{=}=\operatorname{man}_{i=1.2 \ldots n}\left\{\left|x_{i}-y_{i}\right|\right\} \tag{2.3}\\
L_{1}=\|x-y\|_{1}=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \tag{2.4}\\
L_{2}=\|x-y\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}} \tag{2.5}
\end{gather*}
$$

An error function using a points to approximate the transfer function, may need to emphasise the error at some frequency points, especially when the passband performance ia more imporiant than the stopband performance. The L_{p}-metrica can be modified to include a weighting vector. 2 . which contains a weight for each frequency point. The weighted \mathbf{L}_{p}-metric is given by Eq.(2.6)

$$
\begin{equation*}
\|x-y\|_{p}^{\lambda}=\left[\sum_{i=1}^{n}\left(\lambda_{i}\left|x_{i}-y_{i}\right|\right)^{p}\right]^{1 / p} \quad p \in(1,2,3, \ldots) \cup(\infty) \tag{2.6}
\end{equation*}
$$

As mentioned earlier this design technique must simultaneously optimize a tranafer function against two targets, representing the magnitude and phase frequency responses. To do this any error function must include both target efrors. A method used by Deczky entailed the weighted L_{p}-metrics of each target and a ratio factor to combine these two errors. The general form of this equation in given by Eq.(2.7).

$$
\begin{equation*}
\text { Error }-\beta\left[\sum_{i=1}^{n}\left(w_{i}^{n}\left|G_{i}-G_{i}\right|\right)^{p}+(1-\beta)\left[\sum_{i=1}^{\frac{1}{p}}\left(w_{i}^{d}\left|0_{i}-D_{i}\right|\right)^{p}\right]^{\frac{1}{p}}\right. \tag{2,7}
\end{equation*}
$$

where $\quad \beta$ is afactor $0 \leq \beta \leq 1$

n	points in gain response	m	points in phase response
$\mathbf{w}^{\text {a }}$	gain weight vector	$w^{\text {d }}$	phase weight vector
A	ideal gain target vector	b	deal phase targer vector
0	actual gain vector	0	actual phase vector

If Eq.(2.7) is used as the basis of an error function, there are number of modifications that can be introduced to increase the versatility of the function. The major element of these possible changes is the total number, distribution and spacing of the frequency points at which the actual response is sampled. The nature and value of these options provide the designer with finer control over the error function and consequently the optimization procedure. The range and implications of these modifications to the error function of $\mathbf{E q}$.(2.7) are discussed for practical design examples in Chapter 3 and Chapter 4.

The final area of concern within this design decision is the aciual optimization routine itself. A large number of techniquea and procedurea have been developed and the performance of each one is dependant upon the nature of the problem
and information available. Each optimization algorithm is created to exploit a particular property of a function or its constraints.

The beart of any optimization procedure is its search direction and the information used to generate it. An optimization routine may therefore be classified in terms of the information required to calculate its search direction. using first derivatives (Jacobian) or second derivarives (Hessian) and the limits it places upon the scarch direction from parameter constraints. The three main optimization categories are : -
(i) Newton-type Methods.

These algorithms use the Hessian matrix, or a finite difference approximation to the Hessian, to define the search direction. These types of algorithms are among the most powerful for general problems.
(ii) Quasi-Newton Method.

Algorithms of this type approximate the Hessian matrix with a matrix that is modified at each iteration, to include information obtained about the curvature of the function along with the latest search direction. Although not as robust as Newton-type methods, they are computationally more efficient.
(iii) Conjugate-Gradient Methods.

These methods calculate the search direction without storing the information within Hessian or Jacobian matrices. These algorithme are ideally suited to large problems but are not usually as reliable or efficient as Newton-lype or Quasi-Newton methods.

A more detailed explanation and comparison of optimization algorithms can be found in text books[1.18.201. A large number of refinements of these procedures have been developed including Hooke-Jeevesi231. Fletcher-Powellilil and Simulated Annealing 9,26$]$ and then applied to the field of digital filter design. Examples include the finite wordlengih program developed by Steiglizz[42], a program by Deczky using the Fletcher-Powell algorithm and Benvenutol4l with simulated annealing techniques.

A more formal method of combining simultaneous magnitude and phase frequency responses into t single function is through the ideas of Multiple Criteria Optimization(MCO), Using this technique, the problem it not considered as two combined functions, but as large single function. each element of which
corresponds to a frequency paint of either response. The ideas behind MCO are discussed by Steuer(43] and Osyczka[36], while their application to simultaneous magnitude and phase filters is considered by Lightner(10,31).

Overall selection of an optimizalion routine is based upon the properties of the problem and the information available. An error function based upon L_{p}-metrics using single line targets will be smooth, with continuous first and second order derivatives. If the filter multipliers are calculated to the full possible accuracy, then the bounds on the optimization routine will be simple, being bounds on the range of multiplier values. If finite wordlength constraints are imposed, then the optimization algorithm will be required 10 accept non-linear constraints. If the error function is based upon dual line targets then the first and second order derivatives become discontinuous. In conclusion, the choice of optimization routine will vary depending on how the problem is specified and what information is available.

2.5 Design Choice - Summary

The purpose of this Chapter was to illustrate and discuss the options available for the design of linear phase digital filters. These options centre upon selecting a filter structure, design domain and a method of generating the filter coefficients.

The low coefficient sensitivity and as consequence gaod finite wardlength performance of WDF structures, implies that they are the most suitable structure for filter designs. Two of the basic WDF structures are the lattice and the ladder. Overall the Iadder network has a better performance than the Iattice.

This is mainly due to the superior stopband properties of the ladder nerwork. shown by the lower gain coefficient sensitivities in the stopband Linear phase requirements indicate structures that have nonminimum-phase characteristica. This constraint suggests the latice structure over the ladder network. Both structures were investigated for linear phase performance, concerning the iradeoff between amplitude selectivity and phase linearity for ladder networks and the stopband coefficient aensitivity in Iettice structures.

The design and simulation of a digital filter can be approached through number of domains. such as the lime and frequency domains. Although this offers a greater design nemibility, the practicality of each approach ia limited by an
bbility to define a general tolerance specification in that particular domain. This constraint limita general filter designs to the continuous or discrete frequency domains, describing the responses in terms of magnitude and phase. Non-linear mapping from the continuous to discrete frequency domain, due to the bilinear transform further limits the practical choice to the discrete frequency domain.

The final output of a digital filter design will be act of quantized filter cocfficients. A number of methods may be used to generate the infinite precision caefficient values but to produce an acceptable performance, the final step of finite wordlength coefficient design must invalve some amount of optimization. Due to the lack of analytical formulae for the design of linear phase digital filtert, the whole design process should be approached through optimization. Optimization techniques could then be applied 10 both Iadder and lattice WDF linear phase designs under simultaneous or equaliser procedures.

References

1) Adby, P. R. and Dempster, M. A. H., Ineroduction ro opeimization Mathade, Chapman and Hall, London, 1974.
2) Baher. H. and O'Malley, M., "On the Design of Selective Linear Phase Wave Digital Fiters", [EEE Pacific Rim Conf. Comm., Comp and Signal Processing. June 1987. pp228230.
3) Bed Bachir, M. F, and Caelen, J., "Recursive Digital Filter Design with Linear Fhase". IEEE Pacific Rim Conf. Comm., Comp and Signal Proceasing. Iune 1987. pp243-247.
4) Benvenuto. N. and Marchesi, M., "Digizal Filıer Denign by Simulated Annealing", IEEE Trans. Circuit and Systems, Val CAS-36. No. 3. March 1989. ppd59-460.
5) Blinchikoff, H, J. and Zverev, A, I. Filtering in the Time and Frequency Domalna, J. Wiley and Sons, New Yark, 1976.
6) Carlin, H. J. and Wu, J-L. C., "Amplitude Selectivity Versuः Consunt Delay in MinimumPhane Lassleat Filters". IEEE Trans. Circuits and Syatems, Vol CAS.23, No. 7, July 1976, pp447-45S.
7) Carlin, H. J. and W_{u} J-L. C., Linear Phase Commenaurate Line Nerworka with Amplitude Selectivity". IEEE Proc. Int. Conf. Circuits and Syitemi, 1976, pp536-539.
8) Chottera. A. T. and Jullien, Q. A., A Linear Programming Approach to Recursive Digital Filter Design with Linear Phase", IEEE Trani. Circuita and Syatemi, Val CAS-29, No. 3, March 1982, ppl39-149.
9) Corann, A.. Marchesi. M., Martini, C. and Ridella, S., Minimizing Multimodal Functions of Continuous Variables with the 'Simulated Annealing' Algorithm", ACM Trans. Math. Softewere. Vol 13, No. 3. September 1978, pp262-280.
10) Cortelazzo, G. and Lightaer, M. R., -Simultancoun Design in both Magnitude and GroupDelay of IIR and FIR Filters based on Multiple Criterion Optimization", LEEE Trans. Acoustics. Speech and Sitnal Procenring. Vol ASSP-32. No. 5. Octaber 1984, pp949.967.

1I) Crochiere, R. E. and Rabiner, L. R. "Further Considerations in the Design of Decimatora and Interpolators". IEEE Trans. Acoustics. Speech and Signal Procersing. Vol ASSP-24. No. 4, August 1976, pp296-311.
12) Crochiere, R. E. and Rabiner, L. R., "Interpolation and Decimation of Digital Signals - A Tutorial Review". Proc. IEEE, Vol 69, No. 3, March 1981. pp300-331.
13) Deczky, A. G.. "Recursive Digital Filtera Having Equipipple Group Delay", IEEE Trans. Circuits and Systemg. Vol CAS-21, No. 1, January 1974, pp131-1349.
14) Deczky, A. G., "Synthesis of Recursive Digital Filtert Using the Minimum p-Error Criterion". IEEE Trans. Audio Electroacoustic., Vol AU-20, Ociober 1972, pp257-263.
15) Fettweis. A.. "A Simple Design of Maximally Flat Delay Digital Filters", IEEE Trans. Audio Electroacoustic., Vol AU-20, June 1972, ppli2-114.
16) Fettweis, A., "Pseudopassivity, Sensitivity and Stability of Wave Digital Filters". IEEE Trans. Circuit Theory, Vol CT-19, No. 11. November 1972, pp668-673.
17) Fletcher. R. and Powell. M. J. D., "A Rapid Convergens Descent Method for Minimization", Computer Journal, Vol 6, No. 2, July 1963, pp163-168.
18) Fletcher, R., pracelcal Mathoda of Oprimization, Wiley, New York, 1987.
19) Foldvari-Oros, J.. Henk. T. and Simonyi. E., "Simulianeous Amplitude and Phase Approximation for Lumped and IIR-Filters". JEEE Int. Conf. Circuita and Systems 1988, pp2501-2504.
20) Gill, P. E., Murray, W. and Wright, M. H., practical optimization, Academic Press, London. 1981.
21) Haykin, S. S. "Gain-Phase Analysis of Digital Filters with Applications", Int J. Cir Theory and Applications, Vol 1, 1973. pp305-311.
22) Henk. T.. "The Generation of Arbitrary Phase Polynomials by Recurrence Formulae". Int J. Cir. Theory and Applications, Vol 9, 1981, pp461-478.
23) Hooke, R. and Jeeves, F. A., 'Direct Search' Solution of Numerical and Statistical Problems", Jour. Assoc. Comput. Mach., Vol 8, No. 2. April 1961. pp212-229.
24) Jarcy, P.. Garault. Y. and Clapeau. M., Generalized Linear Phase Polynomials . Application in Filter Synthesis'. Int J. Cir. Theory and Applications, Vol 4. 1976. pp381.398.
25) Johnson, T. J. "Simultaneous Magnitude and Phase Equalization using Digital Filters", IEEE Trans. Circuit and Systems, Vol CAS-25. No. 5. May 1978. pp319-321.
26) Kirkpatrick, S.. Oclatt. C. D. and Vechi, M. P., "Oplimization by Simulated Annealing", Science, Vol 220. No. 4598. 13th May 1983, pp671-680.
27) Kunold, I., 'Linear Phase Realization of Wave Digital Latice Filtera', IEEE Trans. Circuits and Systems. Vol CAS-34. No. 4. March 1986. ppl31-1349.
28) Kwan. R. K. and Bach, Q. G., "Simultaneous Approximations in Filter Design", IEEE Trans. Circuit Theory, Vol CT.16, No. 1, March 1969. ppli7-121.
29) Leeb, F. and Henk. T., "Simultaneous Amplitude and Phase Approximation for FiR Filter:". Int J. Cir. Theory and Applications, Vol 17, 1989, pp363-374.
30) Leeb, F. and Henk. T., "Simultaneous Approximation for Bireciprocal Lattice Wave Digital Filters", IEE Euro. Conf, Cir. Theory and Design. 5-8 September 1989. ppa72476.
31) Lightner, M. R. and Director, S. W., "Multiple Criterion Optimization for the Design of Electronic Circuits". IEEE Trans. Circuits and Systems, Vol CAS-28, No. 3. March 1981. pp169-179.
32) Lind, L. F., "Linear Phase Filter Design in the Time Domain", IEE Tenth Saraga Colloquium on 'Digital and Analogue Filters and Filtering Systems'. 25 th May 1990. Pp1/1-1/4.
33) Maria, O. A. and Fahmy, M. M., "A New Design Technique for Recursive Digiral Filtera", IEEE Trans. Circuit and Systems, Vol CAS-23, No. 5. May 1976. pp323-325.
34) Mitra, S. K. and Sherwood, R. J., Estimation of Pole-Zero Displacements of a Digital Filter due to Coefficient Quantization". IEEE Trans. Circuit and Systems, Vol CAS-21, No. 1. January 1974. pp116-124.
35) Nedunuri, R. Synthesia of Recursive Digital Filsers with Prescribed Attenuation and Group-Delay Characteristics". JEEE Trans, Circuit and Systems, Vol CAS-23. No. 11. November 1976. pp686-688.
36) Osyczka, A., Multictitarion Optimization in Engineering wich fortran programs, J. Wiley and Sons, New York, 1984.
37) Renfors, M. and Saramaki, T:, "Recursive Nth-Band Digilal Filters - Part I: Design and Properties, Part II: Design of Mulistage Decimators and Interpolators". IEEE Trans. Circuit and Sysicms. Vol CAS-34. No. 1. January 1987, pp24-39/pp40-51.
38) Rhodes, J. D. and Fahmy, M. 1. F., "Digital Filters with Maximally Flat Amplitude and Delay Characteristics". Int J. Cir. Theory and Applications, Vol 2, 1974, pg3-i1.
39) Sadughi, S. and Kim, H. K., An Approximation Procedure for Selective Linear Phase Filters", IEEE Trans. Circuit and Syatems, Vol CAS-34, No, 8, August 1987. pp967-969.
40) Saramiki. T. and Neuvo, Y., "An Implıcit Solution for IIR Filters with Equiripple Group Delay". IEEE Trans. Circuit and Syslema, Vol CAS-32. No. 5, May 1985. pp476-478.
41) Saramiki, T. and Neuvo. Y., "Digital Filters with Equiripple Magnitude and Group Delay". IEEE Trans. Acoustics, Speech and Signal Processing, Val ASSP-32. No. 6. December 1984. ppl194-1200.
42) Steiglitz, K.. "Designing Short-Word Recursive Digital Filters". Proc. 9th Annual Allerion Conf. Cir, and Sysiem Theory. October 1971. pp778-788.
43) Steuer, R. E., Mulziple Czitaria optimization: Theory, Computation and Application, Wiley. New York, 1986.
44) Thajchayapong. P. and Lomtong. P.. A Maximally Flat Group Delay Recursive Digital Filter with Controllable Magnitude". IEEE Trans. Circuil and Systems, Vol CAS-25, No. 1. January 1978, pp51-53.
45) Thiran, J-P., "Equal-Ripple Delay Recursive Digital Filtera", IEEE Trans. Circuit Theory, Val CT-18. No. 3. November 197!. pp664-669.
46) Unbehauen, R. "Recursive Digital Low-Pass Filters with Predetermined Phase of Group Delay and Chebyghev Stopband Attenuation", IEEE Trans. Circuit and Sysems, Val CAS28. No. 9. September 1981. pp905-912.
47) Valenzuela, R. A. and Constantinides, A. O., "Digatal Signal Processing Schemes for Efficient Interpalation and Decimation". Proc. IEE, Voi 130, Pi. G. No. 6, December 1983. pp225-235.
48) Vlach, J., compucerized Appraximacion and syntheaia of Linaar Nateorka, Wiley, New York, 1969.

Chapter 3

Ladder WDF's

A large number of modifications have been proposed for the ladder WDF since Fettweis first developed it in 1971[4.5]. Each modification was directed at improving the performance and efficiency of the structure. Sedmeyer extended Fettweis' ideas to a structure with a true ladder configuration[13,3]. while other research concerned overflow stability criteria and design techniques. For practical considerations. the design and analysis of ladder WDF needs to be automated through a computer program. The efficiency and speed of any program will depend upon the possible design approaches.

This Chapter considers the design of linear phase ladder WDF's. The research outined ranges from the choice of circuit configuration and components to design procedures. The Chapter discusses the ladder WDF design approach suggested by Lawson and provides system equations for the ladder structure along with two-pon chain matrices of a number of possible circuit elements. The operation of a computer program, called WAVE, written to implement this design approach, is also explained. Simultancous magnitude and phase ladder WDF specifications were approached with optimization using the WAVE program. The optimization techniques follow the ideas discussed in Chapter 2. Finally the Chapter details a number of experimental results from the use of the program and the performance of various optimization strategies. The Chapter concludes with a number of observations about the compromise between magnitude and phase requirements in minimum-phase structures and the efficiency of quasi-Newton optimization rechniques.

3.1 Design Choices

Following the conclusions of Chapter 2. the designs for linear phase ladder WDF were based upon the simultaneous solution of a magnitude and phase specification through optimization. Within this approach a large number of design options exist, each of which can be used to enhance this procedure.

3.1.1 Reference circuit options

Design optiong for ladder WDF structures are very limited, only allowing the combination of lossless elements. These elements may include a series capacitor, a parallel inductor, a tuned circuit or a unit element. Within these options. the most obvious choice is to construct a ladder WDF based solely on lumped elements or a circuit built from a cascade of disiribuled components. An additional option would be $t 0$ mix the types of components within a single structure.

The ladder WDF structure, based upon lumped components, can have a wide variety of combinations, each well known to analogue design theory. A number of possible ladder WDF reference circuits are illustrated in Fig.(3.1).

(b)

(c)

Figure 3.1 General DTL analogue circuits.

The DTL circuits of Fig.(3.1) may all be used as reference structures for the design of ladder WDF. Although these circuits have the same order, the tuned circuits of Fig(3.1)(b) and (c) can be designed 10 possess higher magnitude selectivity. Consequently. the circuits of Fig.(3.1)(b) and (c) are used to implement ellipric functions, while the circuit of Fig.(3.1)(a) can be used to produce Butterworth or Chebyshev type responses.

A typical analogue circuit constructed from distributed elements is shown by Fig.(3.2)(a), along with equivalent digital circuit based upon the unit element.

Design of this unit element may be approached through the rechniques suggested by Feltweis or Lawson. The Unit Element Wave Digital Filter(UEWDF) derived through the Feltweis procedure from the analogue circuit of Fig.(3.2)(a) is illustrated by Fig.(3.2)(b), while the appropriate Lawson circuit is shown by Fig.(3.2)(c).

(a)

(b)

(c)

Figure 3.2 (a) DTL network using distributed elements with equivalent (b) Fettweis circuit and (c) Lawson model.

Alihough the structures of Fig.(3.2)(b) and (c) are generated through different design techniques, they have aimilar performance. The circuit of Fig.(3.2)(b) was used by Renner[12] and Hyder[8] to illusirate the principles and properties of the unit element WDF.

Authors who have used the unit element within WDF designs include Thiran[14], Dentonl15] and Reckie et al.[11]. These designs were based upon reference filters which contained both distributed and lumped elements. An example of aixed component reference circuit is shown by Fig.(3.3). slong with the equivalent WDF's constructed through the Fettweis and Lawson design apprashes.

(a)

Figure 3.3 (a) Mixed component DTL network with (b) equivalent Fellweis WDF and (c) Lawson WDF equivalent.

The work by Thiran was directed at developing structures with the unit element that would require a lower number of multipliers than an equivalent circuit with a true ladder configuration, such as those of Fig.(3.1). The objective of Denton and Carlin was to apply existing microwave theory to the design of selective, constant group delay WDF's based upon the reference circuit of Fig.(3.3)(a). Although these WDF's could be designed to achieve a constant group delay within a given limit, the frequency selectivily and slop band altenuation was poor. The poor stopband performance is also a limitation of the pure unit element WDF of Fig.(3.2).

One of the main research objectives of this project concemed designing WDF's that have linear phase and good frequency selectivity. Under this direction the research was concentrated upon reference structures known to possess high frequency selectivity, such as the circuits of Fig. (3.1)(b) and (c).

3.1.2 Optimization considerations

As outlined in Chapter 2, there are a large number of parameters that have to be considered when optimization is applied to filter design. The conclusions of Chapter 2 suggesied that optimization should be carried out in the discrete frequency domain. The selection of an optimization algorithm would depend upon the nature of the error function and what information about this error function was available. The error function would, in turn, depend upon how the filter specification was defined and how any differences between the actual and desired responses were measured.

Following the suggestions of Chapter 2, the filter specification can be expressed as a set of straight line targes. These target lines could indicate the mean values of the function or define limits for an acceplable response. These ideas relate to the
simple single and dual line templates, shown for a lowpass filter specification by Fig.(3.4).

Figure 3.4 Targel templates based upon single line (a) gain and (b) group delay values and dual line (c) gain and (d) group delay values.

The error function derived in Chapter 2 is based upon weighted Lp-meiric. being the sum of the weighted differences between two vectors. For an crror function. one of these vectors would represent the actual frequency response. either the gain or group delay. while the other would conain the ideal values. These vectors would be described as a set of frequencies points within a target template. For lowpass templates. such as those illustrate by Fig.(3.4). the gain error vector could consist of n_{1} points in the region $0 \leq f \leq f_{p}, n_{2}$ points for $f_{p} \leq f \leq f_{1}$ and n_{3} points across $f_{3} \leq f \leq F_{s} / 2$. A group delay efror vector may consist of m_{1} points within the region $0 \leq f \leq f_{p}$. For the templates of Fig.(3.4), the frequency specification for the gain and group delay responses are not identical. This represents a general design situation, where the width of a particular frequency band may differ for gain and group delay specifications.

The number and relative position of the points within each error template can be used to alter the overall error function and therefore possible solutions. The relative spacing of these points can be arbitrary, but it is more usual to arrange them according to some analytical expression. Possible spacing formulae include linear, sinc, cosine and double cosine. These spacing types are illustrated in Fig.(3.5).

The point spacing is usually chosen so that more poinis are clustered around the regions of the function that change the most. Therefore in filter designs. points tend to be clustered around the Iransition band edges. In this way, for the lowpass filter specification shown by Fig.(3.4), the sine spacing would be used for the passband region and the cosine spacing for the stopband. The double cosine spacing would be appropriate for bandpass or bandstop designs.

Other factors that effect the choice of an optimization routine are its efficiency and convergence rate. Algorithms that offer a high convergence rate require a large amount of information about the function. such as first and second order derivatives. This information can be very computationally expensive, especially if the filter order is high. Alrhough algorithms that require less information about the function. converge slower, they may operate faster because of the removal of derivative calculations.

Computational expense is not only function of the filter's structure but also the parameters that the optimization routine is acting upon. If the final value of these parameters is to conform to a finite wordiength specification. then the optimization routine would be required to satisfy non-linear constraints upon the multiplier coefficients. Filter designs that do not specify finite wordlengih conditions may use basic algorithms with simple bounds upon the optimized parameters. These bounds are determined by stability conditions and will vary depending upon what the parameters represent. The parameters could be the
reference filter component values or the ladder WDF multiplier values. Both methods, each with the same number of variables. introduce a certain amount of extra calculation into the process of determining the transfer function of the ladder WDF and consequently the error function. Optimization on the reference filter component values requires calculating the equivalent ladder WDF multiplier values for each iteration. The extra calculation introduced by optimizing the multipliers directly is due to the dependent nature of some of multipliers. Ta ensure the structure retains its WDF propenies, dependant multiplier values must be determined at each itcration of the oplimization process.

To increase the efficiency and versatility of this simultaneous magnitude and phase ladder WDF approach, all design opions must be considered. A comparison of these options wilt then provide an indication of their contributions to the overall design problem.

3.2 Ladder WDF equations

The ladder WDF consisis of a cascade connection of blocks. which represent equivalent analogue components. For an aviomated design process, the nature and case with which these blocks can be calculated and interconnected plays a vital role. The most obvious design method is to describe each block in terms of its two. port chain matrix, so that the overall ladder WDF is the product of the appropriate chain matrices. These chain matrices can be derived from analogue components. either through the one-port and adaptor techniques proposed by Fettweis, or the two-port approach suggested by Lawson.

3.2.1 Interconnection

A major constraint on the use of digital blocks 10 describe ladder WDF, is their interconnection. For the reference analogue DTL network, all connections must obey Kirchhoffs laws, so for Fig.(3.6), $V_{i}=V_{j}, I_{i}=\mathbf{I}_{j}$ and $Z_{i}=\mathbf{Z}_{j}=\mathbf{Z}$.

Figure 3.6 A voltagefcurrent nade within circuit.

The equivalent connection using voliage wave noiation of Fig.(3.6), is shown by Fig.(3.7). For a direct connection of the two blocks in Fig.(3.7), $A_{j}=B_{1}$ and $A_{i}=B_{j}$. To
ensure that Kirchhoff's laws are stilt satisfied, $\mathbf{R}_{\mathrm{i}}=\mathbf{R}_{\mathrm{j}}=\mathbf{R}$. A wave notation of Kirchhoff's laws may be expressed by sfating that connected ports must have the same wave parameter orientation and equal port resistances.

Figure 3.7 An incidentreflected wave node within a circuit.

The other major constraint for the design of a digital system is the existence of delay free loops. These limit the realization of a design, as the filter cannot reach a stable state at the end of each sampling period. This problem can be illustrated by the signal flow graph of Fig-(3.8), which shows the interconncction of three twoport elements given in terms of their scattering matrices. $\sigma(z), \delta(z)$ and $\boldsymbol{\lambda}(z)$.

Figure 3.8 Interconnection of three two-port sections.

A delay free path will only exist if the equation of a loop contains a constant term. Therefore. the first interconnection of Fig.(3.8). will only contain a delay free path if both σ_{22} and 811 have constant terms. For the second interconncction, a delay free loop will only exist if 822 and $\lambda_{1} \mid$ both contain constant terms. To eliminate these possible delay free paths, it is only necessary to ensure that one element of loop does not contain a constant lerm, not both. This condition presents three main design options for Fig.(3.8) :-
(i) Remove constant tems from σ_{11}, δ_{11} and λ_{11} elements.
(ii) Remove constant terms from σ_{22}, δ_{22} and λ_{22} elements.
(iii) Remove the constant terms from σ_{22} and λ_{11} elements

The ladder WDF is derived from a DTL ladder network, an example of which is shown by Fig.(3.9). To accurately model this structure. digital equivalents for the voltage source and the load and source resistances are also required.

The resistive source and resistive load of Fig.(3.9) are illustrated in Fig.(3.10). Using the relationship between voltage and current to incident and reflected waves, the source voltage V_{0} can be expressed with voltage waves. A_{i} and B_{i} and the port resistance. \mathbf{R}_{i}. The load resistance can also be defined in voltage wave notation.

(a)

(b)

Figure $\mathbf{3 . 1 0}$ Sourc: and load circuits of a DTL network.

$$
V=V_{0}-I R_{s}+\left[\begin{array}{l}
A_{i} \\
B_{i}
\end{array}\right]=\left[\begin{array}{cc}
1 & R_{i} \\
1 & -R_{i}
\end{array}\right] \cdot\left[\begin{array}{l}
V \\
I
\end{array}\right] \quad V=I R_{L} \cdot\left[\begin{array}{l}
A_{j} \\
B_{j}
\end{array}\right]=\left[\begin{array}{ll}
1 & R_{j} \\
1 & -R_{j}
\end{array}\right] \cdot\left[\begin{array}{l}
V \\
1
\end{array}\right]
$$

therefore

$$
A_{i}=\frac{2 R_{i}}{R_{s}+R_{i}} V_{0}+\frac{R_{s}-R_{i}}{R_{s}+R_{i}} B_{i} \quad B_{j}=\frac{R_{1}-R_{i}}{R_{L}+R_{j}} A_{i}
$$

or

$$
A_{i}=(1-\alpha) V_{0}+\alpha B_{i} \quad B_{j}=\beta A_{j}
$$

The complete digital equivalent structure of the analogue circuit of Fig.(3.9) is given by Fig.(3.11). The action of the external multipliers is to modify the port resistance values R_{A} and R_{B} - Interconnection constraints require that for Fig.(3.11). $\mathbf{R}_{\mathbf{A}}=\mathbf{R}_{1}, \mathbf{R}_{2}=\mathbf{R}_{\mathbf{3}}, \mathbf{R}_{\mathbf{4}}=\mathbf{R}_{\mathbf{S}}$ and $\mathbf{R}_{6}=\mathbf{R}_{\mathbf{B}}$. However. the actual values of these port resistances are not set and this allows a degree of freedom in the design of the ladder structure.

Figure 3.11 Equivalent general ladder WDF using two-port sections.
Having ensured that connected ports have equal port resistances. the next design criterion requires the removal of any delay free loops. For Fig.(3.11). if the
sections A, B and C have the scatsering matrices σ, δ and λ respectively, then four possible delay free loops exist, between $\alpha \Leftrightarrow \sigma_{11}, \sigma_{22} \Leftrightarrow \delta_{11}, \delta_{22} \Leftrightarrow \lambda_{11}$ and $\lambda_{22} \Leftrightarrow \beta$. The process for removing these delay free paths follows the ideas outlined for Fig.(3.8). The first procedure concerns removing any constant terms from a circuit connected to the input port of an element and is known as sumer design. as the design process moves from the source of the structure. The second process removes any constant terms from a circuit connected to the output port of an element. This is called load design, again because the design process moves from the load. The final design approach removes delay free loops. moving simultaneously from the source and the load, to reach the middle of the circuit. This design approach is known as middle design.

Applying the source design procedure to the circuit in Fig.(3.11), the first siep is to remove the constant term in the loop connected to the input port of A. This entails setting the multiplier a to zero. so

$$
\begin{aligned}
a= & \frac{R_{s}-\mathbf{R}_{A}}{\mathbf{R}_{s}+\mathbf{R}_{A}}=0 \\
\therefore \quad & \mathbf{R}_{A}-\mathbf{R}_{s}
\end{aligned}
$$

and because of the connectivity constraints, then $R_{1}=R_{A}$. The next step is to remove any constant lerms of the circuit connected to the input of por B. This involves the removal of any constant terms from d 22 . The action of this step reduces the complexity of the overall chain matrix by making the values of the port resistances, previously independent, related to each other. Within this relationship between the port resistances and the modelled component values, the only free parameter for this design method is the output port. R_{2}. The value of this resistance is adjusted to remove any constant terms within the σ_{22} element. This value of R_{2} is passed to R_{3}, because they are directly connected. Using this new value for R_{3} and the modelled component within section B, the port resistance R_{4} is made dependent upon R_{3} and R_{4} is adjusted then $t 0$ remove any constant terms in the $\mathbf{\delta}_{22}$ element, This process continues until the final port resistance value. R_{B}. is determined and the exiernal multiplier, β, can be calculated.

The operation of the source design method may be summarized as moving from the source of the structure, using the undefined values of aection's autput port resistance 10 remove any delay free loops. Through this process the output port resistance of a section is made dependent upon the input port resistance and the modelled components within that section.

Conversely, the load design procedure starts at the load of the structure and works toward the source. If this process is applied to Fig.(3.1I), then the first step is to remove any constant terms in the path connected to the output port of the last section, C. To do this, the load multiplier, β, must equal zero, so,

$$
\begin{aligned}
& \beta=\frac{\mathbf{R}_{L}-\mathbf{R}_{B}}{\mathbf{R}_{\mathrm{L}}+\mathbf{R}_{B}}=0 \\
\therefore \quad & \mathbf{R}_{\mathrm{B}}=\mathbf{R}_{\mathrm{L}}
\end{aligned}
$$

The value for the pon resistance R_{B} is passed to R_{6} because they are directly connected. Elimination of any delay free paths between C and B with this design procedure entails the removal of any constant terms from λ_{11}. This process makes the two-port resistances dependent upon each other and then adjusts the value of R_{5} to remove any constant terms in λ_{11}. This value for R_{s} in turn determines the value for R_{4}. The design process continues removing constant terms from the $\delta_{1,}$ and $\sigma 11$ elements of the circuit's scattering matrices by defining an appropriate value for the input port resistance of each section, until the source multiplier is reached. The calculated value of \mathbf{R}_{A} can then be used to determine a.

The middle design procedure uses the ideas of both source and load design processes. This procedure moves simultaneously from the source and load ends of the structure to meet at some arbitrary point within the network. if the middle design procedure is applied to Fig.(3.11) and section B is chosen as its arbitrary point. the first step is to follow the source design procedure until section B is reached. This requires the removal of a and eliminating constant terms from 022 . The next is to move from the load of the circuit, removing B and any constant terms from λ_{11}. This design procedure leaves the scattering matrix of B unaffected and may possess constant terms in both its δ_{11} and δ_{22} elements.

Although the middle design procedure removes both external multipliers, the resulting circuit requires the same number of multipliers as the source and load design cases. This is due to the nature of the section chosen as the arbitrary point for the design procedure. This section has both port resistance values set by the surrounding circuit and therefore cannot be simplified by making the port resistances dependent. Under this criterion, the section contains an extea multiplier compared to an equivalent section modified for the load or source design procedures. Although the middle design procedure could be implemented around sections A, B or C. Fentweis[6] noted that the dynamic range of the ladder WDF structure was improved if this arbitrary point was near the centre of the circuit.

3.2.2 Overall system equations

The general ladder WDF. illustrated by Fig.(3.12), has the chain matrix of Eq.(3.1) and the transfer function, $H(z)$, given by Eq.(3.2).

Figure 3.12 Overall ladder WDF iwo-port structure.

$$
\left[\begin{array}{l}
A_{1} \tag{3.1}\\
B_{1}
\end{array}\right]=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]
$$

$$
\begin{equation*}
H(z)=\frac{A_{2}+B_{2}}{2 V_{0}}=\frac{1-\alpha}{\left(x_{12}-\alpha x_{22}+\beta\left(x_{11}-\alpha x_{21}\right)\right)} \tag{3.2}
\end{equation*}
$$

with

$$
\alpha=\frac{R_{\mathrm{S}}-\mathbf{R}_{\mathrm{A}}}{\mathbf{R}_{\mathrm{s}}+\mathbf{R}_{A}} \text { and } \beta=\frac{\mathbf{R}_{\mathrm{L}}-R_{B}}{\mathbf{R}_{\mathrm{L}}+\mathbf{R}_{B}}
$$

where R_{s} and \mathbf{R}_{L} represent the source and load resistance values of the reference analogue DTL circuit respectively. Each of the three design procedures modifies the overall transfer function of the general ladder WDF circuit of Fig.(3.12) by removing α or β or both. This in turn alters Eq.(3.2) to give different transfer function for each design method.

Source design :
$a=0$. so $R_{A}=R_{s}$ and using $E q$ (3.2) then

$$
\begin{equation*}
H_{s}(z)=\frac{1}{x_{12}+\beta x_{11}}, \quad \text { where } \quad \beta=\frac{R_{L}-R_{B}}{R_{L}+R_{B}} \tag{3.3}
\end{equation*}
$$

Load design
$\beta=0$, so $R_{G}=R_{L}$ and using Eq. (3.2) then

$$
\begin{equation*}
H_{L}(z)=\frac{1 \cdot a}{\times 12 \cdot \alpha \times 22} \quad \text { where } \quad \alpha=\frac{R_{S} \cdot R_{A}}{R_{s}+R_{A}} \tag{3.4}
\end{equation*}
$$

Middle design ;

$$
\begin{align*}
& a=0 \text { and } \beta=0 \text {. so } R_{A}=R_{s} \text { and } R_{B}=R_{L} \text { and using Eq.(3.2) then } \\
& \tag{3.5}\\
& H_{m}(z)=\frac{1}{x_{12}}
\end{align*}
$$

Each design method simplifies the structure of Fig.(3.12) and by using the appropriate transfer function. the performance of a filter under each design method can be determined. The performance can be measured in terms of the magnitude. phase and group delay frequency responses and coefficient sensitivities. All of these calculations depend on the overall system chain matrix. X, given by Eq.(3.1). This chain matrix is the product of the chain matrices of each digital component within the circuit. It is these components that determine the coefficient sensitivities of the overall structure. The equations to calculate \mathbf{X} and its derivatives are therefore required in terms of individual component's chain matrices

Consider Fig.(3.13), and the individual chain matrices, given in Eq.(3.6), for its clements.

Figure 3.13 Ladder WDF two-port structure.

$$
\begin{gather*}
{\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
A_{3} \\
B_{3}
\end{array}\right]=\left[\begin{array}{lll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
A_{4} \\
B_{4}
\end{array}\right]} \\
{\left[\begin{array}{l}
A_{5} \\
B_{5}
\end{array}\right]=\left[\begin{array}{lll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
A_{6} \\
B_{6}
\end{array}\right]} \tag{3.6}
\end{gather*}
$$

To calculate the overall transfer function of this structure under the three design procedures detailed by Eq.(3.3-5). the product of the individual chain marrices to determine X. musi be found. The direct connection of these blocks means that $A_{2}=$ $B_{3}, A_{3}=B_{2}, A_{4}=B_{5}$ and $A_{5}=B_{4}$. Therefore. the overall trangfer function is not simply the product of chain matrices themselves. but modified chain matrices. which have their columns swapped. The overall chain matrix of the structure of Fig.(3.13), in terms of the modified chain matrices. is given by Eq.(3.7).

$$
\begin{gather*}
{\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=\left[A^{\prime}\right] \cdot\left[B^{\prime}\right] \cdot\left[C^{\prime}\right] \cdot\left[\begin{array}{l}
B_{6} \\
A_{6}
\end{array}\right]} \tag{3.7}\\
{\left[A^{\prime}\right]=\left[\begin{array}{lll}
a_{12} & a_{11} \\
a_{22} & a_{21}
\end{array}\right]}
\end{gather*}
$$

where

Using these ideas, the properties of the overall ladder structure may be described in terms of the individual components through their chain matrices. The product of the modified individual chain matrices to generate the overall modified chain matrix, \mathbf{X} ', of the structure may be defined as,

$$
\begin{equation*}
\mathbf{x}^{\prime}=\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{x}_{\mathrm{i}} \tag{3.8}
\end{equation*}
$$

where n is the number of chain matrices within the structure. The gain and phase response of the appropriate ladder WDF circuit can therefore be calculated from the transfer functions given by Eq.(3.3-5).

The group delay response of a circuit may be defined as,

$$
\tau(\omega)=-\operatorname{Im}\left[\frac{1}{H(z)} \frac{d H(z)}{d \omega}\right]
$$

To calculate this function for the ladder structure, the derivative of $\mathbf{H}(\mathrm{z})$ with respect to the frequency, ω, is required. For the source, load and middle design cases mentioned, this results in three equations for the group delay, derived from Eq.(3.3-5) respectively.

Source design ;

$$
\begin{equation*}
\tau_{s}(\omega)=\operatorname{lm}\left[\frac{1}{\left(x_{12}+\beta x_{11}\right)} \cdot\left(\frac{d\left(x_{12}\right)}{d \omega}+\beta \frac{d\left(x_{11}\right)}{d \omega}\right)\right] \tag{3.9}
\end{equation*}
$$

Load design ;

$$
\begin{equation*}
\tau_{\mathrm{L}}(\omega)=\operatorname{Im}\left[\frac{1}{\left(\mathrm{x}_{12} \cdot \alpha \times 22\right)} \cdot\left(\frac{\mathrm{d}\left(\mathrm{x}_{12}\right)}{\mathrm{d} \mathrm{\omega}} \cdot \alpha \frac{\mathrm{~d}\left(\mathrm{x}_{22}\right)}{\mathrm{d} \omega}\right)\right] \tag{3.10}
\end{equation*}
$$

Middle design :

$$
\begin{equation*}
\tau_{\mathrm{m}}(\omega)=\operatorname{Im}\left[\frac{1}{\left(\mathrm{x}_{12}\right)} \cdot\left(\frac{\mathrm{d}\left(\mathrm{x}_{12}\right)}{\mathrm{d} \omega}\right)\right] \tag{3.11}
\end{equation*}
$$

To calcutate the derivative of the overall chain matrix with respect $t a(\omega$, it is necessary to differentiate each chain matrix in turn. However, because matrices are not commutative, i.e. $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$, then if

$$
\begin{equation*}
\mathbf{X}^{\prime}=\mathbf{A}^{\prime}-\mathbf{B}^{\prime}-\mathbf{C}^{\prime} \tag{3.12}
\end{equation*}
$$

the derivatives will be

$$
\frac{d X^{\prime}}{d \omega}=\frac{d A^{\prime}}{d \omega} \cdot \mathbf{B} \cdot \mathbf{C}+\mathbf{A} \cdot \frac{d B^{\prime}}{d \omega} \cdot \mathbf{C}+\mathbf{A} \cdot \mathbf{B} \cdot \frac{d C^{\prime}}{d \omega}
$$

The derivative of an overall chain matrix can therefore be defined as,

$$
\begin{equation*}
\frac{d X^{\prime}}{d \omega}=\sum_{i=1}^{n}\left[\prod_{k=0}^{i-1} X_{k} \cdot \frac{d X_{i}}{d \omega} \cdot \prod_{k=i+1}^{n+1} X_{k}\right] \tag{3.13}
\end{equation*}
$$

where X_{o} and X_{n+1} are equal to the identity matrix, I

Eq.(3.13) may be simplified if natural logs of Eq.(3.12) are taken before it is differentiated. If this technique is applied to Eq.(3.12), the derivative with respect to ω is.

$$
\begin{equation*}
\frac{1}{X^{\prime}} \cdot \frac{d X^{\prime}}{d \omega}=\frac{1}{A^{\prime}} \cdot \frac{d A^{\prime}}{d \omega}+\frac{1}{B^{\prime}} \cdot \frac{d B^{\prime}}{d \omega}+\frac{1}{C^{\prime}} \cdot \frac{d C^{\prime}}{d \omega} \tag{3,14}
\end{equation*}
$$

Using the form of Eq.(3.14). the differential of a gencral chain matrix. X, with respect to the frequency. ω, may be defined as.

$$
\begin{equation*}
\frac{1}{X^{\prime}} \cdot \frac{d X^{\prime}}{d \omega}=\sum_{i=1}^{n} \frac{1}{X_{i}^{\prime}} \cdot \frac{d X_{i}^{\prime}}{d \omega} \tag{3.15}
\end{equation*}
$$

Coefficient sensitivity frequency responses are a function of the filter's multipliers, particular to each element's chain matrix, and the property being calculated, such as gain. phase or group delay. The sensitivities of the gain, $I H V_{\text {, }}$ with respect to multiplier value. ok. is defined as

$$
\begin{equation*}
S_{a_{k}}^{|H|}=\frac{a_{k}}{|H|} \cdot \frac{d|H|}{d a_{k}} \tag{3,16}
\end{equation*}
$$

while the group delay sensitivities are,

$$
\begin{equation*}
s_{\alpha_{k}}^{t}=\frac{\alpha_{k}}{t} \cdot \frac{d t}{d a_{k}} \tag{3.17}
\end{equation*}
$$

If the transfer function. $H(z)$, is expressed in its polar form, the gain coefficient sensitivities may be expressed as,

$$
\begin{equation*}
S_{\alpha_{k}}^{I H I}=\alpha_{k} \cdot \operatorname{Re}\left[\frac{1}{H} \cdot \frac{d H}{d \alpha_{k}}\right] \tag{3.18}
\end{equation*}
$$

Using Eq.(3.18), equations for the gain coefficient sensitivities of cach ladder design procedure can be generated from Eq.(3.3-5).

Source design :

$$
S_{s_{\alpha_{k}}}^{I H I}=\alpha_{k}, \operatorname{Re}\left[\frac{-1}{\left(x_{12}+\beta x_{11}\right)} \cdot\left(\frac{d\left(x_{12}\right)}{d \alpha_{k}}+\beta \frac{d\left(x_{1}\right)}{d \alpha_{k}}\right)\right]
$$

Load design :

$$
\mathrm{S}_{\mathrm{L}_{\alpha_{k}}}^{[\mathrm{HI}}=\alpha_{\mathrm{k}} \cdot \operatorname{Re}\left[\frac { - 1 } { (x _ { 1 2 } - \alpha \times 2 2) } \cdot \left(\frac{\mathrm{~d}\left(\mathrm{x}_{12}\right)}{d \alpha_{k}} \cdot \alpha^{\left.\left.\frac{d\left(x_{22}\right)}{d \alpha_{k}}\right)\right]}\right.\right.
$$

Middle design :

$$
S_{m_{\alpha_{k}}}^{|H|}=\alpha_{k} \cdot \operatorname{Re}\left[\frac{-1}{\left(x_{12}\right)} \cdot\left(\frac{d\left(x_{12}\right)}{d \alpha_{k}}\right)\right]
$$

Following the same procedure used for the differential with respect to ω expressed by Eq.(3.15), then differentiated with respect to the multiplier, ak. can be written as.

$$
\begin{equation*}
\frac{1}{X^{\prime}} \cdot \frac{d X^{\prime}}{d \alpha_{k}}=\sum_{i=1}^{n} \frac{1}{X_{i}^{\prime}} \cdot \frac{d X_{i}^{\prime}}{d \alpha_{k}} \tag{3.19}
\end{equation*}
$$

However, the multiplier a_{k}, will only exist in one element matrix and will be unrelated to any multipliers in another element. Therefore, if the multiplier α_{k} only exists in the matrix X_{m}. then the derivatives of the other matrices will be zero and Eq.(3.19) will reduce to,

$$
\begin{equation*}
\frac{1}{X^{\prime}} \cdot \frac{d X^{\prime}}{d a_{k}}=\frac{1}{X_{m}} \cdot \frac{d X_{m}^{\prime}}{d \alpha_{k}} \tag{3,20}
\end{equation*}
$$

The group delay coefficient sensitivity equation of Eq.(3.17) may be expressed as,

$$
\begin{equation*}
S_{\alpha_{k}}^{\tau}=\frac{\alpha_{k}}{\tau} \cdot \operatorname{lm}\left[\frac{1}{H} \cdot \frac{d H}{d \alpha_{k}} \cdot \frac{1}{H} \cdot \frac{d H}{d \omega} \cdot \frac{1}{H} \cdot \frac{d\left(\frac{d H}{d \omega}\right)}{d \alpha_{k}}\right] \tag{3.21}
\end{equation*}
$$

Again, for each of the design procedures the group delay coefficient sensitivities can be derived in terms of the overall chain matrix. Using Eq.(3.21), Eq.(3.3-5) and Eq.(3.9-11), the equations for the group delay coefficient sensitivities can be determined for each of the design procedures.

Source design :

$$
\begin{aligned}
& S_{\mathrm{s}_{\alpha_{k}}}^{\mathrm{k}}=\frac{\alpha_{k}}{\tau} \\
& \operatorname{lm}\left[\frac{1}{\left(x_{12}+\beta x_{11}\right)} \cdot\left(\frac{d\left(\frac{d\left(x_{12}\right)}{d \omega}\right)}{d \alpha_{k}}+\beta \frac{d\left(\frac{d\left(x_{11}\right)}{d \omega}\right)}{d \alpha_{k}}\right)\right. \\
&\left.-\frac{1}{\left(x_{12}+\beta x_{11}\right)^{2}} \cdot\left(\frac{d\left(x_{12}\right)}{d \alpha_{k}}+\beta \frac{d\left(x_{11}\right)}{d \alpha_{k}}\right) \cdot\left(\frac{d\left(x_{12}\right)}{d \omega}+\beta \frac{d\left(x_{1} 11\right)}{d(\omega)}\right)\right]
\end{aligned}
$$

Load design :

$$
\begin{aligned}
S_{L_{\alpha_{k}}}^{\tau}=\frac{\alpha_{k}}{\tau} \cdot & \operatorname{Im}\left[\frac{1}{\left(x_{12}-\alpha x_{22}\right)} \cdot\left(\frac{d\left(\frac{d\left(x_{12}\right)}{d \omega}\right)}{d \alpha_{k}}-\alpha \frac{d\left(\frac{d\left(x_{22}\right)}{d \omega}\right)}{d \alpha_{k}}\right)\right. \\
& \left.-\frac{1}{\left(x_{12}-\alpha \times 22\right)^{2}} \cdot\left(\frac{d\left(x_{12}\right)}{d \alpha_{k}}-\alpha \frac{d\left(x_{22}\right)}{d \alpha_{k}}\right) \cdot\left(\frac{d\left(x_{12}\right)}{d \omega}-\alpha \frac{d\left(x_{22}\right)}{d \omega}\right)\right]
\end{aligned}
$$

Middle design

$$
S_{m_{\alpha_{k}}}^{\tau}=\frac{\alpha_{k}}{\tau} \cdot \operatorname{lm}\left[\frac{1}{\left(x_{12}\right)} \cdot\left(\frac{d\left(\frac{d(x, 2)}{d \omega}\right)}{d \alpha_{k}}\right) \cdot \frac{1}{(\pi / 2)^{2}} \cdot\left(\frac{d\left(x_{12}\right)}{d \alpha_{k}}\right),\left(\frac{d(x 12)}{d \omega_{2}}\right)\right]
$$

The derivatives of an overall chain mitrix, X : with respeci 10 w and then a multiplier α_{k}, can be expressed as,

$$
\frac{1}{X^{\prime}} \cdot \frac{d\left(\frac{d X^{\prime}}{d \omega}\right)}{d \alpha_{k}}=\frac{1}{X_{m}^{\prime}} \cdot\left[\frac{d\left(\frac{d X_{m}^{\prime}}{d \omega}\right)}{d \alpha_{k}} \cdot \frac{d X_{m}}{d \alpha_{k}} \cdot\left(\frac{1}{X_{m}} \cdot \frac{d X_{m}^{\prime}}{d \omega}-\sum_{i=1}^{n} \frac{1}{X_{i}^{\prime}} \cdot \frac{d X_{i}}{d \omega}\right]\right]
$$

where a_{k} only exist in X_{m}^{\prime} and n is the number of elements in the ladder siructure.

3.2.3 Building Blocks

Digial circuits that model equivalent analogue components can be considered as building block with which a ladder WDF can be constructed. Following the design
methods proposed by Lawson, these building blocks would be two-port sections that model various analoguc elements. For general ladder WDF designs, the only elements that are required are the basic lumped components of the inductor and capacitor and a distributed component based upon a section of transmisaion line. also known as unit element. Using these lumped and distributed components. seven primitive building blocks can be designed to cover most filter requirements.

These primitives are :-
(1) Series Elements : (a) inductor.
(b) capacitor.
(c) tuned LC circuit.
(ii) Parallel Elements : (a) inductor.
(b) capacitor.
(c) tuned LC circuit.
(iii) Unit Element.

Using the generalised WDF design technique suggesied by Lawson, wave chain matrix of an analogue component can be derived from its voltage and current chain matrix, C, and a sel of Iransformations defined by P and Q. The equation io produce the wave chain malrix is given by Eq.(3.22).

$$
\left[\begin{array}{l}
A_{1} \tag{3.22}\\
B_{1}
\end{array}\right]=[P] \cdot[C] \cdot[Q]^{-1} \cdot\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]
$$

The two-port series lumped element of impedance. Z_{g}, shown by Fig. 3.14). it well known in two-port theoryll] and has a voliage and current chain matrix. C. given by Eq.(3.23).

Figure 3.14 General series two-port element of impedance Z_{1}.

$$
\left[\begin{array}{l}
V_{1} \tag{3.23}\\
I_{1}
\end{array}\right]=\left[C_{5}\right] \cdot\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

where

$$
C_{5}=\left[\begin{array}{cc}
1 & -Z_{3} \\
0 & -1
\end{array}\right]
$$

If the matrices \mathbf{P} and \mathbf{O} are the voliage wave transformations. then

$$
\mathbf{P}=\left[\begin{array}{cc}
1 & \mathbf{R}_{1} \tag{3.24}\\
1 & -R_{1}
\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{cc}
1 & \mathbf{R}_{2} \\
1 & -R_{2}
\end{array}\right]
$$

and the wave chain matrix of a series impedance, Z_{s}, using Eq.(3.22-24) is given by

$$
\left[\begin{array}{l}
A_{1} \tag{3.25}\\
B_{1}
\end{array}\right]=\left[\begin{array}{cc}
\frac{R_{2}+R_{1}-Z_{2}}{2 R_{2}} & \frac{R_{2}+R_{1}+Z_{5}}{2 R_{2}} \\
\frac{R_{2}+R_{1}-Z_{s}}{2 R_{2}} & \frac{R_{2} \cdot R_{1}+Z_{5}}{2 R_{2}}
\end{array}\right]=\left[\begin{array}{l}
A_{2} \\
\\
B_{2}
\end{array}\right]
$$

Applying these ideas to the parallel lumped element of Fig.(3.15), which has a voltage/current chain matrix, C_{p}, given by Eq. $\mathbf{3 . 2 6}$), then the wave chain matrix for this element is given by Eq.(3.27).

Figure 3.15 General parallel two-pon element of impedance $\mathbf{Z}_{\mathbf{p}}$

$$
\left[\begin{array}{l}
\mathrm{V}_{1} \tag{3.26}\\
\mathrm{I}_{1}
\end{array}\right]=\left[\mathrm{C}_{\mathrm{p}}\right] \cdot\left[\begin{array}{l}
\mathrm{V}_{2} \\
\mathrm{I}_{2}
\end{array}\right]
$$

where

$$
\begin{gather*}
C_{p}=\left[\begin{array}{cc}
1 & 0 \\
1 / Z_{p} & -1
\end{array}\right] \\
{\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{ll}
\frac{R_{2}-R_{1}+\left(R_{1} R_{2} / Z_{p}\right)}{2 R_{2}} \frac{R_{2}+R_{1}+\left(R_{1} R_{2} / Z_{n}\right)}{2 R_{2}} \\
\frac{R_{2}+R_{1}-\left(R_{1} R_{2} / Z_{p}\right)}{2 R_{2}} & \frac{R_{2}-R_{1}-\left(R_{1} R_{2} / Z_{n}\right)}{2 R_{2}}
\end{array}\right] \cdot\left[\begin{array}{c}
A_{2} \\
B_{2}
\end{array}\right]} \tag{3.27}
\end{gather*}
$$

The lumped impedances Z_{3} and Z_{p} are functions of the continuous frequency variable, s. To convert s-domain chain matrices into the z-domain, the bilinear transform is used. If the serics impedance. Z_{s}. represents a capacitor, C, then

$$
\begin{equation*}
Z_{s}=\frac{1}{s C} \tag{3.28}
\end{equation*}
$$

Combining Eq.(3.25). Eq.(3.28) and the bilinear transform, then the chain matrix of a series capacior can be expressed as,

$$
\left[\begin{array}{l}
A_{1} \tag{3.29}\\
B_{1}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\beta_{2} \cdot\left(1 \cdot \beta_{1}+\beta_{2}\right) z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{1 \cdot \beta_{1} z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} \\
\frac{\beta_{1}-z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{\left(1 \cdot \beta_{1}+\beta_{2}\right)-\beta_{2} z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)}
\end{array}\right] \cdot\left[\begin{array}{l}
A_{2} \\
\\
B_{2}
\end{array}\right]
$$

with

$$
\beta_{1}=\frac{\mathbf{R}_{2}+\mathbf{R}_{1}-1 / C^{\prime}}{\mathbf{R}_{2}+\mathbf{R}_{1}+1 / \mathbf{C}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{2} \cdot \mathbf{R}_{1} \cdot 1 / \mathbf{C}^{\prime}}{\mathbf{R}_{2}+\mathbf{R}_{1}+1 / \mathbf{C}^{\prime}} \text { and } \mathbf{C}^{\prime}=\frac{2 \mathbf{C}}{T}
$$

If the scattering marix of the series capacitor is σ, then delay free loops can be eliminated if constant terms from σ_{11} or σ_{22} are removed. The scatiering matrix, a. of a series capacitor element generated from the chain matrix of Eq.(3.29). is given by Eq.(3,30).

$$
\left[\begin{array}{l}
B_{x} \tag{3.30}\\
B_{y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\left(1-\beta_{1}+\beta_{2}\right)-\beta_{2} z^{-1}}{\left(1-\beta_{1} z^{-1}\right)} & \frac{\left(\beta_{1}-\beta_{2}\right)\left(1-z^{-1}\right)}{\left(1-\beta_{1} z^{-1}\right)} \\
\frac{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)}{\left(1-\beta_{1} z^{-1}\right)} & \left(\frac{\beta_{2} \cdot\left(1-\beta_{1}+\beta_{2}\right) z^{-1}}{\left(1-\beta_{1} z^{-1}\right)}\right.
\end{array}\right] \cdot\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right]
$$

with

$$
\beta_{1}=\frac{R_{2}+R_{1}-1 / C^{\prime}}{R_{2}+R_{1}+1 / C^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{R_{2}-R_{1}-1 / C^{\prime}}{R_{2}+R_{1}+1 / C^{\prime}} \text { and } C^{\prime}=\frac{2 C}{T}
$$

The chain matrix of Eq.(3.29) relates to the middle design approach. For this design technique. constant terms exist in both the σ_{11} and σ_{22} elements of its scattering matrix. Delay free loops are eliminated by ensuring that the appropriate constant terms of connected elements are removed.

To use aseries capacitor within a circuit generated through the source design procedure, its chain matrix of Eq.(3.29) must be modified so that constant terms in the σ_{22} element of its scallering matrix, given by Eq.(3.30) are removed. Referring to the scattering matrix of Eq.(3.30), the constant term in the 022 clement can be removed if $\beta_{2} \Rightarrow 0$. For $\beta_{2}=0$. then

$$
\begin{equation*}
R_{2}-R_{1}-\frac{1}{C^{1}}=0 \tag{3.3t}
\end{equation*}
$$

Through the condition $\beta_{2}=0$, the two port resistances, previously independent. are now related to each other by the Eq.(3.31). The value of C is defined by the reference circuit and using the source design approach, the input port resistance is detemined by the previous section. Therefore, the only free parameter is $\mathbf{R}_{\mathbf{2}}$. Expressing Eq.(3.31) in terms of R_{2} and substituting is into Eq.(3.29). the source design chain matrix for a series capacitor is shown by Eq.(3.32).

$$
\left[\begin{array}{l}
A_{1} \tag{3.32}\\
B_{1}
\end{array}\right]=\left[\begin{array}{cc}
-\left(\frac{\left(1-\beta_{3}\right) z^{-1}}{1-z^{-1}}\right) & \frac{1-\beta_{3} z^{-1}}{1-z^{-1}} \\
\frac{B 3-z^{-1}}{1-z^{-1}} & \frac{1-B_{3}}{1-z^{-1}}
\end{array}\right] *\left[\begin{array}{|l}
A_{2} \\
-B_{2}
\end{array}\right]
$$

where

$$
\beta_{3}=\frac{C^{\prime} R_{1}}{1+C^{\prime} R_{1}} \quad \text { and } \quad R_{2}=R_{1}+\frac{1}{C}
$$

Although the design process reduces the complexity of the section, from Eq.(3.29) to Eq.(3.32), the port resistance values are made dependent upon each other. Under the source design procedure, the value of the input port resistance of the first section is set equal to the source resistor of the reference circuit. A dependence between the input and output port resistances. similar to Eq.(3.31). determines the value of the output resistance and consequently the input port resistance value of the next section.

The load design procedure uses elements that have the constant terms removed from the σ_{11} elements of their scatering matrices. Applying this rule to the series capacitor scattering matrix of Eq.(3.30), requires that $1+\beta_{1}-\beta_{2} \Rightarrow 0$. In order to allow this condition then $1+\beta_{1}-\beta_{2}=0$ and therefore

$$
\begin{equation*}
\mathbf{R}_{1}-\mathbf{R}_{2}-\frac{1}{C}=0 \tag{3.33}
\end{equation*}
$$

For the load design procedure, the only free parameter in Eq.(3.33), is R:. Rearranging Eq(3.33) in terms of R_{1} and substituting it into Eq.(3.29). results in the chain matrix for a series capacitor. Eq. (3,34).

$$
\left[\begin{array}{l}
A_{1} \tag{3.34}\\
B_{1}
\end{array}\right]=\left[\begin{array}{cc}
-\left(\frac{1-\beta_{4}}{\beta_{4}\left(1-z^{-1}\right)}\right) & \frac{1-\beta_{4} z^{-1}}{\beta_{4}\left(1-z^{-1}\right)} \\
\frac{\beta_{4}-z^{-1}}{\beta_{4}\left(1-z^{-1}\right)} & \frac{\left(1-\beta_{4}\right) z^{-1}}{\beta_{4}\left(1-z^{-1}\right)}
\end{array}\right] \cdot\left[\begin{array}{l}
A_{2} \\
\\
B_{2}
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{C^{1} R_{2}}{1+C R_{2}} \text { and } R_{1}=R_{2}+\frac{1}{C}
$$

Again the complexity of the chain matrix is reduced but the port resistances are made dependent upon each other. With the load design procedure, the value of the output port resistance of the last section is set equal to the load resistor of the reference circuit. Using equations similar to Eq. 3.33). the input port resistance value of a section may be determined to remove any delay free paths and passed back to the oulpul port resistance of the previous section.

To evaluate the overall system equations the derivatives of the chain matrix for each component are required. The derivatives required are with respect to the frequency, ω, the section's multipliers and the double derivative of the chain matrices with respect to the frequency and then the section's multipliers.

The chain matrices for each of the six lumped elements considered. calculated for each of the three design procedures, are detailed in Appendix Al-A6. Included in these equations are the matrices required to calculate the group delay and the coefficient sensitivities for gain and group delay responses. The unit element chain matrix is derived from the equations describing the commensurate transmission lines[2] with characteristic impedance. Z_{0}. The equations for this section are illustrated in Appendix A7. Appendix A8 provides design eramples using lumped component filters for each of the three design techniques discussed.

3.3 WAVE : two-port WDF design program

This is a menu driven program written in C upon a UNX based Sun Workstation, which uses the GHOST[7] routines to generate a graphical output and the NAGIIO] routines to provide the optimiation algorithms. The program is based upon the two-port approach to WDF designs. It is capable of simulating and analysing a ladder or lattice structure using the Iwo-port building blocks illustrated in Appendis Al-7.

The operation of the program may be divided into the three areas of design, analysis and coefficient generation. The first area concerns the generation and
storage of filter designs in data files. These designs may have a ladder or latice structure and through the program the user may alter the type and value of the elements within these structures. The filter designs are constructed as cascaded two-port sections. As each building block is added. the modelled component value is recorded, along with its position in the chain. For a lattice filter there are two branches, terminated by an open or short circuit, and therefore two cascaded twoport circuits. Modification of these structures can be approached by alteration of the position or type of the two-port section. or the modelled component values.

Design of a highpass or bandpass filiers is achieved with an appropriate selection and combination of elements within a structure. The theory and design of filter structures to achieve various frequency transformations is covered in standard analogue design books[15]. The main principle of a lowpass to highpass or bandpass to bandstop frequency uansformation is to replace a capacitor with an inductor and vice versa. The objective of a lowpass to bandpass frequency transformation is to increase the degrees of freedom of an element by converting it into a tuned sircuit. These procedures are illustrated in Fig.(3.16). where the lowpass structure of Fig.(3.16)(a) has an equivalent highpass circuit given by Fig.(3.16)(b) and an equivalent bandpass structure illustrated by Fig.(3.16)(c).

(a)

(b)

(c)

Flgure 3.16 (a) Lowpass ladder structure with (b) equivalent highpass and (c) bandpass circuits.

The design of single bandstop and dual band structures can be approached using similar ideas.

Having completed the design of a reference DTL network, the digital multipliers for the structure can be calculated. This calculation may follow one of the three design techniques outlined in the previous section. Each process selecta the appropriate elements' chain matrices and multiplier equations for that design procedure. The final step of the design process is to enter the frequency response specification for the filter. This specification may cover lowpass. highpass, single and dual bandpass and bandstop filter types. Having selected filter response type. cut-off frequencies are entered for both magnitude and group delay specifications. The magnitude tolerances are entered as limits in dBs aver the passband(s) and stopband(s), while the group delay is specified as maximum deviation only over the passband(s). All of this information about the siructure. filter specification and its parameter values can then be saved to a date file for subsequent use. This information can also be displayed in a rextual form and printed.

The analysis side of the program is responsible for calculation of the various frequency responses of the ladder and latice structures. The program calculates each response at 1024 points. This number produces high degree of resolution within each response and allows the FFT to be used to generate a time domain response if required. Using an old or new data file, a menu within the program allow: the user to specify the frequency range required. The program will then calculate the gain. magnitude. phase and group delay responses at 1024 points over the specified frequency region. Another menu provides for the calculation of the gain coefficient sensitivities, again allowing the frequency range to be specified. The sensitivity response for each multiplier coefficient can then be displayed individually or as set.

Each of these responses is displayed on the screcn through the use of GHOST routine. Users have the option to record these graphs for later output to printer.

The final area of the program is the coefficient generation. This process is approached through the use of optimization and the ideas discussed in Chapter 2 . The mein elements within this part of the program are the optimization algorithms and the error function with its target templates. The optimization process is based upon the error function discussed in Chapter 2. using weighted L_{p}-metric. The error function implemented in the program is given by Eq-(3.35).

$$
\text { Error }=\beta\left[\sum_{i=1}^{n}\left(w_{i}^{s}\left|G_{i}-G_{i}\right|\right)^{p} \frac{\frac{1}{p}}{n}(1-\beta)\left[\sum_{i=1}^{m}\left(w_{i}^{d}\left|\hat{S}_{i}-D_{j}\right|\right)^{p}\right]_{(3,35)}^{\frac{1}{p}}\right.
$$

where
β is a factor $0 \leq \beta \leq 1$
n points in gain response
Ws gain weight vector
G ideal gain larget vector
G actual gain vector
m points in delay response
Wd delay weight vector
D ideal delay target vector
D aciual delay vector

The program has a menu devoted to defining various parameters within this error function, the target templates and possible oplimization routines. The target templates are generated as a pair of vectors that describe the gain and group delay responses. The filter's magnitude response is described in terms of its gain as this limits the response to range 1 and 0 which in tum simplifies the design of the template. The phase linearity requirement is specified in terms of a constant group delay because the phase response is a discontinuous signal varying between $-\pi$ and π. Using the group delay response also allows a simplification of the target templates. Each clement within the target template vectors contains a frequency value, a larget response value and a weighting. The larget values themselves can be based upon straight line approximation using a single line to specify the mean value required or two lines to define the limits of an acceptable response. An altemative to the straight line approximation is to specify the actual response required at each particular frequency. This would represent an "ideal" template situation, where the magnitude response would be based upon an elliptic or Chebyshev type function and the group delay would be based on some equiripple shape.

The final area of consideration within the target template definitions, are the transition band(s). If the concept of ideal target values is used, then the transition bands) will be directly determined by the desired magnitude response. However, if straight line approximations are used. then a number of options exist about how the iransition band should be specified. Fig.(3.17) illustrates a number of possibilities for both single and dual line template definitions.

Flgure 3.17 Lowpass transition band largets for (a)-(b) single line templates and (c)-(d) dual line templates.

The number and position of the elements within the target vectors can be altered directly through a program menu, along with the weighting factors for each frequency region. The value of the ratio that determines the contribution of the gain and group delay errors to the overall error may also be directly set through the program. Using this parameter, the optimization routines can be applied to gain only. group delay only or simultaneous gain and group delay design problems.

The program offers a number of optimization routines, although their suitability to alter design problem will depend upon the type of target definitions used. The optimization routines implemented in this program are quasi-Newton functions that can operate with or without derivatives and with simple bounds upon the coefficient values. The routines EO4JAF and EO4KCF are linked from the NAG library. The optimization routine EO4JAF does not require derivatives while EO4KCF
cxpects continnous first order derivatives which makes it unsuitable for designs specified using dual line target templates.

3.4 Experimental Results

The objective of the experimental part of the research was 10 determine the performance of the ladder WDF for simulancous magnitude and phase specification and various optimization strategies. The initial area of this work was concemed with testing the optimization techniques against problems with known solutions. This invalved designs of magnitude-only specifications, where the phase linearity was ignored. Using information gained about the optimization strategies, the design examples were expanded to include phase linearity.

3.4.1 Magnitude-only design

The magnitude-only filter design tests were based upon a suite of lowpass specifications. These specifications were chosen to include a wide variation of attenuations, cut-off frequencies and filter orders. The equivalent ladder WDF for each specification was constructed through both the source and load design techniques. The example specifications, which are just satisfied by an elliptic function, are given by Table(3.1). Data files for each specification of Table(3.1) were generated using values from the appropriate reference table entriesilis].

The optimization techniques discussed in Chapter 2 were implemented within the computer program and applied to the various specifications of Table(3.1). The first optimization strategy to be investigated was the template structures. Three basic template types were tried, the single and dual straight line approximations and the ideal line templates. The crror function was based upon measuring the difference between the actual and ideal values of the magnitude responses at certain frequencies. The number and distribution of the poinis at which the response was measured was also an optimization parameter and will be discussed later in this section. Because the error function only requires the magnitude response at certain frequencies, the target templates need only to be defined at these points.

Spec number	filter order	passband $111 \text { (dB) }$	stopband all (dB)	passband fred (Hz)	$\begin{aligned} & \text { stopband } \\ & \text { freq (Hz) } \end{aligned}$	$\begin{aligned} & \text { sampling } \\ & \text { freq }\left(\mathrm{Hz}_{2}\right) \\ & \hline \end{aligned}$
1	3	0.2	30	0.1	0.2	1
2	5	0.01	70	0.1	0.26	1
3	5	0.01	50	0.2	0.32	1
4	5	0.1	100	0.15	0.39	1
1	7	0.002	60	0.05	0.08	1
6	7	0.05	90	0.3	0.39	1
7	7	0.0005	40	0.1	0.13	1

Table 3.1 Lowpass filter specification examples.

The straight line templates were generated from the filer specification where each frequency point in the same filter band. would have identical template values. The ideal line template was produced by calculating the magnitude response of a filter that had component values taken from tables. recording it at the required frequency points and then using these values as the ideal line template.

For an equal number of frequency poins. with a linear spacing. a lypical set of passband template values for the single line, dual line and ideal line approaches are shown by Fig.(3.18).

Figure 3.18 Typical passband template values for the three template approaches.

The ideal line template provides the greatest amount of control over the final solution. The final magnitude response can be directed loward an equiripple Chebyshev/elliptic shape or a monotonic Butterworth type shape. The dual line templates provide slightly more control than the single line templates, as the response can be encouraged to exist with a specific tolerance region. However, it
is not as versatile as the ideal line scheme, as it cannot define the required shape of the response, only its limits.

For the design examples considered, the specification can only just be met by an elliptic function of the given order and therefore, the elliptic function represents - goal for the optimization process. The basic quasi-Newton optimization routine EO4JAF was applied to a number of filter specifications of Table(3.1) using each of the template types. An elliptic function with the reference table component values represents a global solution for a particular problem and therefore template schemes that most closely described that function should cause the quickest convergence.

To demonstrate this hypothesis. the filter's parameters were optimized under each template type and the convergence rates, using the same optimization algorithm. compared. The initial position for the filter's parameter values was varied, starting with the goal solution values, then varying each parameter individually about its viable limits and finally varying the parameters as sets, moving them from their lower bound values to their upper limit. For the ladder WDF multiplier values these bounds are $-1<x<1$. while for the component of the reference DTL network. the bounds are $0<y<\infty$.

In alt filter specifications tried the optimization procedure based upon the ideal line templates always converged to the solution and invariably managed to do so with a number of iterations less than 200 times the order of the filter. Under the straight line template systems, the dual line scheme converged more frequently than the single line scheme. Convergence, however, was very slow and some times failed to reduce the error to an acceptable value. This may have been due to the optimization routine being sluck in local minimum because of poor set of weights or frequency points. It was noticed that using the straight line schemes. if a multiplier value was slarted or was moved to a houndary value it tended to remain there. This resulted in a non-optimum solution.

An additional factor that seemed to limit the convergence of examples based upon the straight line templates, was how the transition band was specified. The previous section has already mentioned a number of possible schemes for both the single and dual line template systems. The effect on convergence of a wide variety of transition band schemes was compared for a number of filter specifications using identical weightings and error points. Schemes that proved to be the mont successful where those that encouraged a sharper cut-off rate than a direct line
between the passband edge and stopband edge. This was especially true for filter specification that had wide transition bands. These sharp cut-off schemea were constructed from two 'hinged' lines. Examples of this type of line for the two straight line template schemes are shown in Fig.(3.19).

(a)

(b)

Figure 3.19 Examples of Iransition band specifications for
(a) single and (b) dual line templates.

Because of the nature of the dual line template system, the overall error can become zero if the response lies within the region defined by the template. Using this fact the position of the transition band templates, shown by Fig.(3.19), can be determined by applying the ideal response to the template. When the initial error function is zero then the Iransition band targels have the correct settings. When the aptimization routine is applied to an error function based upon dual line templates sei up this way. the convergence rate was much quicker than using altemative transition band schemes. The performance of the optimization routine using the hinged single line transition band largets of Fig.(3.19)(a) was also greater than other straight line possibilities.

In all transition band target schemes of Fig.(3.19), the lines are defined from the lower passband tolerance edge to the upper stopband tolerance edge. The targets are constructed in this way to ensure that the overall transition band width is not narrower than the specification and the template most closely reflect the ideal solution.

Having determined the best lype of shaped transition band targets, the effectis of the number and position of the error frequency points were investigated. As mentioned in Section 3.1.2, the number and distribution of the error points can be arbitrary but usually follow some analytical formulae. These formulae are structured so that it groups the error points around a transition edge of the filter's
specification. From Fig.(3.5), it can be seen that a sine function congregates points to its right hand end. while the cosine function groups points about ils lefi hand end. If points are specified in the transition band, then under what distribution should they be arranged. The effects of different distribution upon the convergence rate of an optimization routinc are difficult to quantify, but the linear or double cosine functions appear to be the most appropriate.

More important than the distribution of the error points, is their actual number. An obvious initial rule would be to use an equal number of points in each band of the specification. The total number of points presents compromise between the accuracy with which the response is measured and the time taken to generate the error function at each iteration. From a large number of tests this compromise settled into a range of 15 - 40 error points per band. Tests in which no error points were specified in the transition band tended not to converge to an acceptable solution when the transition band was wide compared 10 the passband width and using straight line templates.

The next optimization parameter 10 be considered for the magnitude-only design involved the error function weights and how they should be defined. A number of possibilities exist, from defining an individual weight for each error point, using the same weight for a specification band, to equal weights for every error point. Each error point can also be associaled with an upper and lower weight, so that if the difference between the actual and target responses is positive then one weight value is applied and another if the difference is negative.

For ideal line templates the error at a particular point has an equal significance whether it is positive or negative and whether it is in the pass, stop or transition band. For a problem defined using the ideal line template system, the most appropriate weighting scheme uses an equal weight value for each error point. However, under this template system. weights have a limited affect on the convergence rate of the optimization routine due to the efficiency of the template system itself.

For the straght line templates, the weights play a vital role in ensuring that the filter response meets the specification. This is especially true for the stopband performance when the templates are defined in terms of gain. Here percentage deviation of the actual response from the targets in the stopband has lower value than the same percentage deviation in the passband. Therefore, if no weights are used. the error due to the passband will contribute disproportionately to the
overall error function. This results in fliter responses that have a poor stopband performance, especially when single line templates are used. A weighting scheme that would provide the best results is one that ensures that a percenage deviation in each band generates the same crror. Using this rule, if a lowpass filter has a passband width of 0.1 (approximately $1 d B$) and stopband widih of 0.001 (approximately 40 dB), then the weight ratio of passband 10 stopband should be 1:100.

The final parameter within the error function implemented. is the L_{p}-metric that is calculated. The range of possible value for p is $1 \leq p \leq m$. A general error function was written into the computer program, allowing any integer value of p to be used. A special function was included to determine the Lo-metric situation. A wide variation of values for p was investigated on number of lowpass filter specifications under a dual line cemplate system using the weighting rule outlined carlier. For most tesis the examples using high p values failed to converge, while lawer values, especially $p=2$, proved to be the mosi successful.

The last variable to be iested within the optimization process was the optimization algorithms themselves. Using the derivatives generated to determine the confficient sensitivities for the ladder structure, the Jacobian matrix can be calculated. With this information, algorithms that require derivative could be applied to the problem, such as E04KCF from the NAG library. This algorithm is a quasi-Newton function similar to E04JAF. Quasi-Newton algorithms were chosen because of the quicker speed of operation than Newton type methods and higher stability and accuracy than conjugute-gradient based algorithms.

Applying EO4KCF to number of lowpass specifications with error functions based upon L_{2}-metrics and the three template types. a number of properties became apparent. One of the main feature was its inability to work with the discontinuous derivatives of the dual line templates. The other main faature was the time taken to converge compared to the simple E04JAF algorithms which does not require derivatives. In most cases for problems based upon the ideal line templates. although the algorithm converged in fewer iterations, the overall time taken to solve the problem was about the same. especially for higher order siructures. This may be due to the efficiency of the ideal line template acheme. This type of algorithm could not be applied to the dual line template system and alithough the perfarmance of the single line scheme improved, the actual solutions produced using this template system were always poor.

The experience and knowledge gained of the optimization routines through the magnitude only design of the filter specifications of Table(3.1), was extended to higher order filters. This however highlighted an advantage of the dual line system over the ideal line template scheme. The ideal line scheme requires the target optimization parameters to generate the template targets. Therefore when design tables do not include the desired passband amenuations or filer order, then the ideal line templates cannot be used. The main part of the experimentation was based upon $13^{\text {th }}$ and $15^{\text {th }}$ order structures using the dual line template scheme with the E04JAF optimization routine. These tests confirmed earlier observations about the selection of weighting schemes and the number and distribution of error points.

3.4.2 Simultaneous designs

This area of the experimental work forms the heart of the two-port ladder WDF research. No previous work had been published about the design of simultaneous magnitude and phase ladder WDF's based purely upon lumped elements. This initial part of this research was to construct ladder WDF's from DTL reference networks that are known to possess law coefficient sensitivity and high frequency selectivity. Using these filters and the optimization techniques developed for the magnitude only designs, the simultaneous specifications were addressed. The goal of the research was to produce a set of guidelines for both the optimization techniques involved and the filter order required for a given simultaneous specification.

The design approach adopted involved selecting one of the lowpass filter specifications of Table(3.1). constructing the appropriate target templates and then introducing a wide group delay tolerance. The filter's parameters were then optimized, starting from different initial values. until solution was found. If no solution could be found, then the overall filter order would be increased and the process repeated.

The error function variables were set based upon the knowledge gained from the magnitude only designs. Each of the target template types was also applied to the problem. For the ideal line templates. the magnitude template was determined from a filter satisfying the magnitude only specification. while the group delay template was constructed from a raised sine function. The amplitude and number of cycles of the sine function over the width of the template was determined from the specification. The amplitude of the function was defined by the group delay
tolerance, as a percentage of the mean group delay value, while the number of cycles of the function was the overall order of the filter minus the order required to meet the magnitude specification. The straight line templates were constructed from the filter specification and based upon the idess illustrated in Fig.(3.4) and Fig.(3.18).

Following the idea suggested by Lighiner[9], the number of optimization parameters was increased for the simultaneous designs to include the group delay value about which the template was defined. With filter designs, the actual value of the group delay is not too important only that its value is not too large. Using this mean group delay value as an optimization parameter, the group delay tolerance template can be moved up or down to reduce the error function.

The ratio factor. β, of the error function given in Eq.(3.35), which determines the contributions of the gain and group delay errors to the overall error, are the only variable not considered so far. The valid range of values for β is $0 \leq \beta \leq 1$. The condition $\beta=0$ relates to group delay only design, while $\beta=1$ produces a magnitude-only design. The true effect of β can be masked by the weightings used on the gain and group delay error points. To remove these possible effects, the weighting scheme of the group delay error points should follow that suggested for the gain error points. With this rule percentage deviation in each band of a template would generate an equal error. Under this scheme. if a lowpass specification has a gain passband width of 0.1 . a gain stopband width of 0.001 and a group delay passband width of 0.1 (this is a 1% tolerance at group delay value of 10 seconds) then the total error is 0.201 . The weights for the gain passband. gain stopband and group delay passband would then be 2.01 : 201 : 2.01 or $1: 100: 1$ respectively. However, because the group delay only contributes an error from ane band as opposed to the gain template which has two, or three if the transition band is defined, then the weightings should be adjusted. In the case considered, the new weighting ratio would be 1: 100: 2 .

Using a weighting scheme that ensures that equal deviations in the gain and group delay templates contribute equal errors to the overall error function, then a β value of 0.5 should balance the two responses. However, the requirements for constant group delay are contrary to sharp changes in the gain response. In this case it is very difficult to obtain constant group delay around the region of the transition band. Therefore if too much emphasia is placed upon the group delay response. then the gain will fail to achieve the required stopband performance and the design solutions will nat represent useful filter solutions. For a number of
design examples the values of β that caused this effect to occur are around 0.5. In these cases values of B between 0.6 and 0.9 were required to force the optimization routine to approach acceptable simultancous gain and group delay responses.

The effect of the variation of β can be seen in Fig.(3.20). where the value of β for the same lowpass specification is varicd from 0.1 to 0.9 . It can be seen that the gain and group delay responses do not form an acceptable filier shape until the value of A is greater than 0.6. Another observation of the filter responses, produced using a number of different optimizution setings. is a tendency to place poles within the transition and stopbands of the gain response. This can be seen in Fig.(3.20)(b) and (c).

Chapter 3. Ladder WDF's

(c - i)

 (c - ii)

(d - ii)

Figure 3.20 Simultaneous design solutions showing (i) gain and (ii) group delay responses for: (a) $\beta=0.1$. (b) $\beta=0.3$. (c) $\beta=0.5$.

$$
\text { (d) } \beta=0.6 \text {, (e) } \beta=0.8 \text {, (} \cap=0.9 \text {. }
$$

A wide variation of error function parameters was tried for the optimization of a simultaneous magnitude and phase specification. All the rests followed the procedures outlined for the magnitude only designs. However. despite increasing the order of the filter a number of times, the optimization routine failed to find solutions to the given problems These results tend to suppon the theory that for minimum-phase structures, the gain and group delay requirements form a reciprocal pair. In this way, a move to improve the gain performance of a filter causes the group delay response to be degraded. All the examples tried indicate that the compromise between the gain and group delay performance is so light that no simultaneous designs are possible using this structure.

The relationship between the gain and group delay responses can be illustrated by a number of simultaneous design examples. For these filter designs. the value of β was varied to enhance either the gain or group delay side of the specification. The examples shown have the lowpass specifications given in Table(3.2) and solutions for various β values shown by Fig.(3.21), Fig.(3.22) and Fig.(3.23).

Figure number	filter grder	passband $241(\mathrm{~dB})$	$\begin{gathered} \text { stopband } \\ \text { all (dB) } \end{gathered}$	passband freg (Hz_{2})	$\begin{aligned} & \text { siopband } \\ & \text { freg (} \mathrm{Hz} \text {) } \end{aligned}$	$\begin{gathered} F_{1} \\ \left(\mathrm{~Hz}_{\mathrm{z}}\right) \end{gathered}$	$\begin{aligned} & \text { g. delay } \\ & \text { dev }(\%) \end{aligned}$
3.21	7	1	40	0.1	0.3	1	0.7
1.22	9	1	60	0.1	0.3	1	0.8
3.23	9	1	40	0.1	0.3	1	0.8

Table 3.2 Lowpass gain and group delay specification examples.

Figure $\mathbf{3 . 2 1}$ Simulaneous design solutions showing (i) gain and (ii) group delay responses for ; (a) $\beta=0.4$. (b) $\beta=0.5$, (c) $\beta=0.6$.

Figure 3.22 Simuliancous design solutions showing (1) gain and
(ii) group delay responses for : (a) $\beta=0.4$, (b) $\beta=0.5$. (c) $\beta=0.6$.

Figure 3.23 Simultaneous design solutions showing (i) gain and (ii) group delay responses for : (a) $\beta=0.4$, (b) $\beta=0.5$, (c) $\beta=0.6$.

In each of these design examples the optimization used the dual line template scheme. with a total of 56 error points distributed according to the sine/cosine functions. These examples also use a dual weighting scheme so that errora above the top template line and below the bottom template line, were subject to different weights. Each test was performed using the E04JAF routine and the multiplier values were started at their upper boundary conditions.

The compromise between the gain and group delay specifications is best shown by Fig-(3.21). With $\beta=0.4$. the responses of Fig.(3.21)(a) satisfy the group delay template. just fail the gain passband specification but badly violate the gain stopband criteria. As the β value is increased to 0.5 . the passband gain and group delay responses, shown by Fig. 3.21)(b), just fails specification, while the gain stopband performance has improved. Finally with $\beta=0.6$, shown in Fig.(3.21)(c), the gain passband response lies within the template, while the gain stopband performance just fails specification. The group delay passband response, however. lies well outside the targets. Although the responses of Fig (3.21)(b), where $\beta=0.5$, represent the best solution to the problem. none of these solutions actually satisfy the simultaneous specification.

3.5 Two-port design conclusions

The objective of this Chapter has been to detail the design approaches for simulianeous magnitude and phase ladder WDF's. The design approach of using two-port blocks to simulate circuit elements and construct ladder WDF's has been shown to be effective and straight forward. However, a wide variety of optimization tests have shown that a ladder WDF based upon a purely lumped component reference neiwork is incapable of satisfying a simultaneous magnitude and phase specification. This work confirms the idea that minimumphase structures suffer a ught compromise between their gain and group delay responses. As such, simultaneous ladder WDF designs are very difficult to achieve. if not impossible for severe filter specifications.

Other ladder WDF circuits, based on reference networks using distributed or a mixture of distributed and lumped elements, were also considered. These filters, despite the possibility of selective gain and group delay designs, are limited by poor frequency selectivity. This results in designs requiring a higher filter order to achieve a magnitude specification than ladder WDF's based upon lumped elements only.

Despite the lack of success in designing simultaneaus magnitude and phase ladder WDF's, a great deal of practical knowledge was gained in the use of optimization techniques for filter designs. These optimization strategiea cover a range of target template schemes. error functions, their parameter settings and the performance of various optimization algorithms.

Of the target templates considered, the ideal line scheme provides the most accurate representation of the desired response and ensures a relatively quick convergence rate for magnitude only designs. The main disadvantage of this template system is the necessity of defining an individual value for each error point of the larget. A more convenient template scheme is the dual line system. Although the desired responge cannot be modelled as accurately as with the ideal line system, the dual line templates are very easy to construct from a general filter specification. Finally the single line templates proved the least successfut target scheme for these filter design problems. Despite their ease of construction, their inability to represent a tolerance region proved to make any filter solutions unsuitable.

A sampling error funcion based upon a weighted L_{p}-metric and quasi-Newion optimization algorithms seemed well suited to the design problem. Each parameter of the error function was considered and their most efficient values determined. The weighting scheme followed a rulc that an equal deviation in each band of a template generates an equal contribution to the overall error. The error points should number 15-40 per band of a iemplate and be distributed under acheme that clusters points around a transition edge. Finally the value of p used for the L_{p}-metric in the error function, which proved to be the most successful was around 2 .

The results of this Chapter have shown that minimum-phase structures are unsuitable for simultaneous magnitude and phase designs. Although programs written to simulate and design ladder WDF's cannot achieve simulianeous specifications. they can still be used for magnitude-only or group delay only specifications. An alternative would be 10 investigate nonminimum-phase structures, such as the latice WDF. Although all the opimization strategies developed could be applied to a lattice structure constructed from two-port elements. this option was not followed. This was for number of ressons, of which the main one concerned the complexity and variety of element blocks. From hardware design considerations. the preferred filter structure would be constructed from a small number of simple and regular blacks. A lattice wDF can be designed from one-port firsi and second order allpass sections. These blocka are very simple in structure and are based upon the iwo-port adaptor developed by Fettweis. Because of the large differences in design approaches and structure requirements, research was turned to a new program devoted to latice WDF's. The theory and results from this work are outlined in Chapter 4

References

1) Adby, P. R., Applied Circule theory - Mazzix and Computer Marhode, Ellin Horwood, J. Wiley and Sonm, New York, 1980.
2) Denton, O, and Carin, H. J., "Selective. Constant Deiay Wave Digital Filtera", Int J. Cir. Theory and Applications, Vol 7, 1979, ppl71-178.
3) Fetiweis, A., "Canonic Realization of Ladder Wave Digial Filters". Int J. Cir. Theory and Applications, Vol 3. 1975. pp321.332.
4) Fetiweis. A.. "Digital Filter Structures Related to Classical Filter Network", Arch. Elek. Ubertrag. Vol 25. 1971, pp79-89.
5) Fettweis, A., "Some Principles of Designing Digital Filters Imitating Classical Filter Siructures", tEEE Trans. Circuit Theory, Vol CT-18, No. 1, March 1971, pp314-316.
6) Fettweis. A., "Wave Digital Filters: Theary and Practice", Proc IEEE, Vol 74, No. 2, February 1986, pp270-327.
7) GHOST-80. Oraphic routines, UKAEA Culham Laboratory, Oxon 1985.
8) Hyder Ali. M and Yarlagadda, R., "A note on the Unit Elemens Symihesis", IEEE Trans. Circuits and Systems. Vol CAS-25. No. 3. March 1978. ppl72-174.
9) Lightner, M. R. and Director, S. W., "Multiple Criterion Optimization for the Design of Electronic Circuita", IEEE Trans, Circuils and Syatems, Vol CAS-28. No. 3, March 19月1. pp169-179.
10) Numerical Algorithma Group, cod - Minimizing or Maximizing anction, Mark 11, Vol 3. January 1984.

1I) Reckie. H. M., Peiric, N., Mavar, J., Denyer, P. B. and Lau, C. H., Deaign and Implementation of Digital Wave Filters using Universal Adaptor Structures". Proc. IEE, Vol 131, Pt. F, No. 6. Ociober 1984, pp615-622.
12) Renner, K, and Gupia, S. C., "On the Design of Wave Digital Filtera with Minimal Number of Multipliers", IEEE Trans. Circuit und Syarems, Vol CAS-21, No. 1, January 1974. pp137.145.
13) Sedmeyer, A. and Fertweis, A., "Digital Filters wht True Ladder Configuration". Int J. Cir. Theory and Applications. Vol 1. 1973. pps-10.
14) Thiren, J.-P., "On Unia Element Structures for Wave Digital Filters", IEEE Trani. Circuit and Systerns. Vol CAS-24, No. I, January 1977, pp20-2
15) Zuerev, A. J., Handbook of Flicer Synchmela. J. Wiley and Sons, New York, 1967.

Chapter 4

Lattice WDF's

This Chapter outlines the design of latice WDF's and a discussion of their application to simultaneous magnitude and phase specifications. The Chapter starts with a comparison of various lattice WDF structures and a detailed description of a simplified lattice WDF. This latice structure is constructed from first and second order All Pass Sections(APS's) and the equations for this structure and the APS's are provided. Computer programs writien to design and analyse the Iattice WDF structure are outined, along with simultaneous filter designs generated with these programs. The Chapter concludes with a discussion of optimization techniques developed to spproach this design problem and the suitability of the lattice $W D F$ for simuliancous filter specifications.

4.1 Design Options

Design of a lattice WDF may be considered within two main areas. The first area entails the form of the latice structure, its elements and how it is implemented. The other concerns the generation of the multiplier coefficients for a particular lattice structure. Each design area invalves a number of options that are discussed within this section.

4.1.1 Lattice WDF structures

The reference structure of a latice WDF is based upon the symmetric DTL circuit of Fig.(4.1) using canonic impedances, Z_{a} and Z_{b}. Canonic impedances can be determined directly from a latlice DTL network or from a symmetric ladder DTL circuit through Barileti's bisection theorem[5/. Design of a latice wDF from a symmetric ladder DTL network using this bisection method was illustrated by Fettweis et al.[2].

The canonic impedances of the reference latice circuit of Fig.(4.1) can be modelled in the discrete irequency domain by canonic reflectances, S^{\prime} and $S^{\prime \prime}$. The first step of this procedure is to describe the latice DTL network in terms of its voltage wave scattering matrix and canonic impedances. This scattering matrix is then converted into the discrete frequency domain through the bilinear transform to produce a discrete wave scattering matrix, S. Symmerry of the latice structure results in $S_{11}=S_{22}$ and $S_{12}=S_{21}$. The canonic reflectances. S^{\prime} and $S^{\prime \prime}$, of the lattice WDF can be determined from the scattering matrix, S. using Eq.(4.1) and Eq.(4.2) respectively.

$$
\begin{align*}
& S^{\prime}=S_{11} \cdot S_{12} \tag{4.1}\\
& S^{\prime \prime}=S_{11}+S_{12} \tag{4.2}
\end{align*}
$$

With the canonic reflectances, a general lattice WDF can be constructed and is illustrated by Fig.(4.2).

Figure 4.2 General lattice WDF with canonic reflectances. S^{\prime} and $S^{\prime \prime}$.

A more usual description of the general latice WDF of Fig.(4.2) is to set the second input parameter, A_{2}. to zero and then ignore either B_{1} or B_{2}. The resulting structure is shown by Fig. (4.3), with its two system equations given by Eq.(4.3) and Eq. (4.4).

Figure 4.3 Simplified latice WDF structure.

$$
\begin{align*}
& \frac{B_{2}}{A_{1}}=\frac{S^{\prime \prime}-S^{\prime}}{2} \tag{4.3}\\
& \frac{B_{1}}{A_{1}}=\frac{S^{\prime \prime}+S^{\prime}}{2} \tag{4.4}
\end{align*}
$$

The primary design consideration for the latlice structure is the construction of the canonic reflectances, S^{*} and $S^{\prime \prime}$. These circuits can be implemented using the one- of two-port techniques outlined in Chapter 1 . Two-port designs use the ideas and models discussed in Chapter 3. where S^{\prime} and $S^{\prime \prime}$ would be constructed as a cascade of two-port elements and terminated by an open or shon circuit. The resulting circuits would have a one-port nature and could be implemented as the branches of the latice WDF structure of Fig.(4.3). An example of aymmetric lattice DTL network is illustrated in Fig.(4.4), along with an equivalent latice WDF circuit designed through the two-pori design approach.

(a)

(b)

Figure 4.4 (a) Lattice DTL nctwork with (b) equivalent two-port design lattice WDF circuit.

The main disadvantage of this design approach is the large number of different sections required to model a lattice arm. Following the two-port design techniques of Chapter 3, latice arm may involve. lypically, two or three of the six primitive lumped building block elements considered. A hardware implementation of this design approach would therefore require physical models for each of the two-port building blocks. This is a large drawback for any VLSI implementation where a circuit should consist of a small number of simple and regular elements.

The one-port lattice design approach follows that applied to general IIR filter designs, where function is simulated by a cascade of first and second order sections. For the latice WDF structure, its canonic reflectances would be designed from allpass one-port sections. This design technique is preferred from a VLSI point of view as the overall filter has a regular structure and the APS's are simple elements, making them ideal building blocks.

First and second order APS's may have a number of forms. such as the direct form, a WDF basis or the Mitra-Hiranoll0] structures. A comparison of the performance of these APS's was provided by Renfors and Zigouris[12] for roundoff noise, dynamic range and scaling. The conclusions of this work demonstrated that although the WDF structures operated at a lower maximum sampling rate than the direct forms. they had superior roundoff performance for very wide-band and very narrow-band filter specifications and good stability properties.

The WDF APS's are based upon the Iwo-port adaptor developed by Feltweis[1.3]. The two-port adaptor has the symbol illusirated by Fig.(4.5) and a possible circuit
diagram shown in Fig.(4.6). The scattering matrix of the two-por adaptor is given by Eq.(4.5).

Flgure 4.5 Two-port
adaptor symbol.

Figure 4.6 Possible circuit diagram for awo-port adaptor.

$$
\left[\begin{array}{l}
B_{1} \tag{4.5}\\
B_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\alpha & 1+\alpha \\
1-\alpha & \alpha
\end{array}\right] \cdot\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right] \quad-1<\alpha<1
$$

Limits for the value of α within the two-port adaptor ensure that the structure is stable and retains the WDF properties of the overall network. The circuit of Fig.(4.6) is not the only interpretation of the scattering matrix of Eq.(4.5). Gazsi[4] investigated a number of different circuits to describe the two-port adaptor against a range of performance criteria, such as dynamic range and scaling for sinusoidal excitation. Conclusions from this work indicsted that the optimum selection of a two-port adaptor circuit depended upon the value of the multiplier within that section. Different circuits were developed for multiplief values in the ranges $-1<\alpha<-1 / 2,-1 / 2<\alpha<0,0<\alpha<1 / 2$ and $1 / 2<\alpha<1$.

A first order APS, constructed using the two-port adaptor. is illustrated in Fig.(4.7), while examples of second order APS's are given in Fig.(4.8). Each of these second order sections has the same transfer function under infinite precision calculations and therefore the selection of a particular model as a reference. is arbitrary.

FIgure 4.7 First order APS using two-port adaptor.

(a)

(b)

(c)

Flgure 4.8 Examples of second order APS's using two-port adaptors.

An implementation of the simplificd latice WDF structure of Fig.(4.3) using the first order APS of Fig.(4.7) and the second order APS of Fig-(4.8)(a), is illustrated in Fig.(4.9). In this structure the position of the single first order section, at the start or end of a lattice arm and in the upper or lower arm, is again arbilrary. Practical hardware designs may however impose scaling problems that require an appropriate ordering of the first and second order APS's dependent upon their multiplier values.

Flgure 4.9 Lattice WDF siructure using cascaded firsi and second order APS's.

An altemative structure to that shown by Fig.(4.9), is to replace one of the lattice arms by a pure delay. The value of the delay used would equal the overall delay of the other am. This struciure, shown by Fig.(4.10). was proposed by Kunoldi6] for simultaneous magnitude and phase designs. A limitation of this type of latice WDF circuit is that the degrecs of Ireedom and efficiency of the network have been reduced by using one of the latlice arms as a pure delay. It is therefore less likely to satisfy an arbitrary magnitude and phase specification than the type of circuit shown by Fig.(4.9).

Figure 4.10 Lattice WDF structure with a pure delay arm.

Another possibility is the bireciprocal structure, where the delays within the firsi and second order sections are doubled. This structure would have the same form as the circuit of Fig. (4.9), but use the first and second order APS's illustrated by Fig.(4,11).

(a)

(b)

Flgure 4.11 Eireciprucal (a) firsi and (b) second order APS's.

The main feature of this bireciprocal struciure is that the magnitude response is constrained to at-off frequency of half the sampling frequency. Recent work
by Leeb and Henk[7] has shown that through a Remez lype optimization algorithm. simultaneous bireciprocal magnitude and linear phase designs are possible using this type of structure. Their work also considered linear phase design with phase equalizers. These equalizer circuits were based upon the latice WDF of Fig. (4.10) with a pure delay latice branch. Magnitude and phase designs approached through phase equalization use a separate circuit to satisfy the magnitude response and a lattice structure to ensure the overall network meets the phase requirements. The magnitude circuit may be a latice WDF itself or a ladder WDF. Equalization techniques, however, require an overall filter order that ia higher than that needed for simultancous designs.

Of the structures considered, the latlice WDF of Fig(4.9) represents the most efficient network It is this circuit, therefore, upon which arbitrary simultancous magnitude and phase designs were initiated. Definition of this stracture placed the single first order section, when required, at the end of the upper latice arm. The form of the second order APS's followed that illustrated by Fig.(4.8)(a) and where arranged so that the overall order of the branches of the lattice did not differ by more than two.

4.1.2 Optimization considerations

The objective of this rescarch was to determine the multiplier coefficients of a WDF structure that salisfied an arbitrary magnitude and phase specification. Following the design ideas discussed in Chapter 2, conclusions suggested optimization for the coefficient generation. Optimization techniques oullined in Chapter 2 and implemented on ladder WDF designs. were based upon target templates and a weighted L_{p}-metric error function. The target templates were constructed from the filter specification using the gain and/or group delay frequency responses. Because the goal of the optimization process was determined from these templates. the optimization procedure was independent of the filter structure and its elements. These optimization techniques may therefore be applied to both the ladder and lattice WDF structures, as well as other filter types.

With optimization procedures based upon larget templates the only elements that are filter dependent are the frequency responses for a given set of multiplier values and the valid range for these multiplier values. To determine at of coefficients for lattice WDF through optimization, the frequency response for a given latice structure must be calculated. The transfer function for the latice WDF structure illustrated by Fig.(4.9) is deiailed in Section 4.2.1. along with
equations to determine the group delay response and the coefficient sensitivity functions. The structure of Fig.(4.9) is based upon first and second order APS's and therefore the overall equations for this structure are dependent upon the formulae of these sections. All the required design equations for these first and second order APS's are provided in Section 4.2.2.

Following the experience gained from applying the template based optimization procedures to the ladder WDF structure, the most effective techniques and parameter settings were applied to lattice WDF designs. These optimization techniques included the three template types, the error function of Eq.(2.7) and the number and distribution of the error points.

The target templates provide method of describing the desired response. These descriptions may entail an approximation by a single straight line, a ser of boundary conditiong defined by a dual set of straight lines or an ideal line that exactly specifies the desired respanse at each frequency point. The versatility and convenience of the ideal line template schemes for use on the lattice WDF's was improved due to the explicit formulae developed by Gazsi|4|. Wish these equations the ideal line magnitude templates for Butterworth. Chebyshev and elliptic type responses could be generated for any lowpass specifications. These equations avoid a limitation encountered for ladder WDF designs based upon the ideal line templates of only having a restricted number of responses defined in reference tables. Definition of the ideal line group delay templates followed the sine function procedures detailed for the ladder WDF designs. The convergence rates achieved for magnitude-only designs with the ideal line template schemes on ladder designs proved the importance of accurately representing the larget function. Following this observation, modifications to the optimization techniques applied to the lattice WDF were centered upon the accuracy with which the desired responses were modelied.

The high degree of accuracy achieved with the ideal line template scheme is not possible using the straight line templates. In an attempt to improve the accuracy of the straight line templates, the positions of the last error points of template band were adjusted. A frequency specification definea a maximum attenuation across the passband and a minimum attenuation across a stopband. A response that just meets apecification should therefore leave the passband with a value of the maximum attenuation and enter the stopband with the minimum attenuation value. To encourage the optimization routine to adjust the frequency response to pass through these points, the error points at the edge of template were moved to
these positions. This procedure is illustrated in Fig.(4.12) for the single and dual line template schemes.

Figure 4.12 Examples of passband error point movement for (a) single and (b) dual line template schemes.

Another step to improve the performance of the straight line template schemes concemed the transition band descriptions. Ladder WDF magnitude specifications approached through the straight line templates when the transition band was not defined, invariably failed to provide an acceptable solution. Experimentation with various transition band schemes showed methods with a steep initial cut-off rate followed by a shallower cui-off rate were mosi successful. The principle behind this idea is that two asymptatic lines can more accurately model the typical gain response over the transition band than single straight line. The method implemented in the ladder WDF designs involved a 'hinged' line. The start and finish of template line was fixed to the edges of the passband and stopband and the hinge of the line moved around the transition band. This idea was discussed in Section 3.4.1 of Chapter 3.

The hinged line transition band technique requires vertical and horizontal displacement information to determine the position of each hinge, increasing the complexity of the template and its definition. An altemative to this method was to replace the hinged line by an angled line. For a dual line template scheme each transition band would require two angled lines, shown by Fig.(4.13). Using this type of transition band definition scheme, the gain response can be encouraged to cut-off at a quicker rate by increasing the angle of the template line. With dual line template scheme this type of angled line definition can cause problems if the angle is very steep. In this situation the upper template line can move below the lower template line. To avoid this, when the upper template line passes below the highest value of the lower template line, the angle of the upper line from that point is altered so that it meets the edge of the next template band. This process is illustrated by Fig.(4.13)(b) and (d).

Figure 4.13 Modified Iransition band definitions for the dual line template scheme.

The efficiency of the modifications to the straight line templates and the repositioning of the edge error points was considered with reference to the convergence rate of the optimization routine and the shape of any filter solutions.

4.2 Lattice WDF equations

The design and analysis of the latice structure requires equations to determine the gain, phase and group delay frequency responses as well as the derivatives of these responses for the coefficient sensitivity calculations. The sensitivity properties of the latlice structure are a function of its components, being the first and second order APS's. The system equations are therefore required in terms of these building blocks and their derivatives.

4.2.1 Overall system equations

Using the circuit illustrated in Fig.(4.3) as a basis for the latice structure and the relationship defined by Eq(4.4), the transfer function of the simplified Jattice stmacture can be writien as

$$
\begin{equation*}
H(z)=\frac{S^{-1}+S}{2} \tag{4.6}
\end{equation*}
$$

The general form of the canonic reflectances, S^{\prime} and $S^{\prime \prime}$, is in terms of cascade of first and second order APS's. If $H_{1}(z)$ represents the transfer function of arst order section and $H_{2}(z)$ the iransfer function of a second order section, then the canonic reflectances, S^{\prime} and $S^{\prime \prime}$, can be expressed by Eq.(4.7).

$$
\begin{equation*}
S_{1}=\prod_{k=1}^{n_{1}} H_{1 k(z)} \quad \prod_{k=1}^{m_{1}} H_{2 k}(z) \quad i=1 \text { and } 2 \tag{4.7}
\end{equation*}
$$

where

S_{1}	upper branch. S^{\prime}	S_{2}	lower branch. $S^{\prime \prime}$
n_{1}	$1^{s i}$ order sections in S^{\prime}	n_{2}	$1^{\text {st }}$ order sections in $S^{\prime \prime}$
m_{1}	$2^{n d}$ order sections in S^{\prime}	m_{2}	$2^{n d}$ order sections in $S^{\prime \prime}$

However, the order of the latice arms should not differ by more than two. Under this rule only one first order APS would exist in one arm of the lattice structure. If the overall filter order is odd and the first order section occurs in the upper branch S^{\prime}, then Eq(4.6) and Eq(4.7) can be combined to define the transfer function of an odd order latice WDF as

where

If the filter order is even, then the transfer function of Eq.(4.8) simplifies 10 Eq.(4.9).

Using the principle of first and second order sections, values for m_{1} and m_{2} of Eq.(4.8) and Eq.(4.9) can be determined very easily for any filter order. N. Equations to evaluate m_{1} and m_{2} are given by Eq.(4.10) and Eq.(4.11) respectively.

$$
\begin{gather*}
\mathrm{m}_{1}=\operatorname{Int}\left(\frac{\mathrm{N}}{4}\right) \tag{4.10}\\
\mathrm{m}_{2}=\operatorname{lnt}\left(\frac{\mathrm{N}+2}{4}\right) \tag{4.11}
\end{gather*}
$$

If the filter order, $N=11$, then $m_{1}=2$ and $m_{2}=3$. For this example, the upper lattice am would contain two second order sections, while the lower arm would possess three. Because the filter order is odd, a first order section is required. This would be placed in the upper arm so that the order of each lattice arm did not differ by more than 1 wo. With values for m_{1} and m_{2}. the gain and phase frequency responses for any filter order can be determined through either Eq.(4.8) or Eq.(4.9) and expressions for the transfer functions. $H_{1}(x)$ and $H_{2}(z)$. Equations for the transfer functions of the first and second order APS's are detailed in Section 4.2.2.

To determine the performance of the lattice WDF, the group delay and coefficient sensitivity responses are also required. These calculations follow the techniques outlined for the ladder WDF circuit in Section 3.3.2 of Chapter 3 of using natural logs. The group delay can be defined as

$$
\tau(\omega)=-\operatorname{lm}\left[\frac{1}{H(z)}, \frac{d H(z)}{d \omega}\right]
$$

Using the definition of the transfer function. H(z), given by Eq.(4.6) the group delay for the lattice structure can be written as

$$
\begin{equation*}
\tau(\omega)=-\operatorname{Im}\left[\frac{1}{S^{\prime \prime}+S^{\prime}} \cdot\left(\frac{d S^{\prime \prime}}{d \omega}+\frac{d S^{\prime}}{d \omega}\right)\right] \tag{4.12}
\end{equation*}
$$

Group delay evaluation requires the derivatives of the canonic reflectances with respect to the frequency, ω. If one of the canonic reflectances is described as

$$
\begin{equation*}
S_{i}=\mathbf{A}(z) \cdot \mathbf{B}(z) \cdot C(z) \cdot D(z) \tag{4.13}
\end{equation*}
$$

then taking natural logs of Eq.(4.13). the derivative of S_{i} with respect to ω can be expressed as

$$
\frac{1}{S_{i}} \cdot \frac{d S_{i}}{d \omega}-\frac{1}{A(z)} \cdot \frac{d A(z)}{d \omega}+\frac{1}{B(z)} \cdot \frac{d B(z)}{d \omega}+\frac{1}{C(z)} \cdot \frac{d C(z)}{d \omega}+\frac{1}{D(z)} \cdot \frac{d D(z)}{d \omega}
$$

Using the general form of the transfer function of s lattice arm given by Eq. (4.7), the derivative of antice arm, $S_{i,}$ with respect to the frequency, w, can be determined from Eq.(4.14).

$$
\frac{1}{S_{i}} \cdot \frac{d S_{i}}{d \omega}=\sum_{k=1}^{n_{1}} \frac{1}{H_{1 k}(z)}, \frac{d H_{1 k}(z)}{d \omega}+\sum_{k=1}^{m_{i}} \frac{1}{H_{2 k}(z)} \cdot \frac{d H_{2 k}(z)}{d \omega} \quad i=1.2 \quad \text { (4.14) }
$$

where

S_{1}	Iatice branch $S^{\text {' }}$	52	lattice branch $S^{\prime \prime}$
$n 1$	$1^{\text {st }}$ order APS's in S' branch	$n 2$	1 st order APS's in $S^{\prime \prime}$ branch
m1	$2^{\text {nd }}$ order APS's in S^{\prime} branch	In 2	$2^{\text {nd }}$ order APS's in $S^{\text {" }}$ branch
$H_{1}(\mathrm{x})$	$1^{\text {t }}$ order APS transfer function	$\mathrm{H}_{2}(2)$	$2^{\text {nd }}$ order APS transfer function

The group delay response of the latice WDF can be determined from Eq.(4.12) and the appropriate evaluation of Eq.(4.14) for each branch of the lattice structure. Eq.(4.14) is sum of the terms that represent the derivative of a section's transfer function with respect to ω divided by its transfer function. Therefore in order to determine a value for Eq.(4.14) and in tum Eq.(4.12), the parameter

$$
\frac{1}{G(z)}, \frac{d G(z)}{d \omega}
$$

is required, where $G(z)$ is the transfer function of a first or second order APS. Expressions for this parameter for both first and second order APS's are provided In Section 4.2.2.

The gain and phase coefficient sensitivities for the latice structure require the derivatives of each first and section order section with respect to the filter's multipliers. The group delay coefficient sensitivity requires the derivatives of each section, first with respect to ω and then with respect to the multiplier coefficients. The gain, phese and group delay coefficient sensitivities for a multiplier, ok, are given by Eq.(4.15). Eq.(4.16) and Eq.(4.17) respectively.

$$
\begin{align*}
& s_{\alpha_{k}}^{|H|}=\frac{a_{k}}{|H|} \cdot \frac{\partial I H I}{\partial a_{k}} \tag{4.15}\\
& S_{\alpha_{k}}^{\theta}=\frac{\alpha_{k}}{\theta} \cdot \frac{\partial a_{k}}{\partial \alpha_{k}} \tag{4.16}\\
& S_{\alpha_{k}}^{t}=\frac{a_{k}}{\tau} \cdot \frac{\partial \tau}{\partial \alpha_{k}} \tag{4.17}
\end{align*}
$$

If the overall transfer function is expressed in its polar form then

$$
\begin{equation*}
H(z)=|H(z)| e^{j \theta} \tag{4.18}
\end{equation*}
$$

Taking natural logs of Eq.(4.18) and differentiating with respect to a multiplier. α_{k}, produces Eq.(4.19).

$$
\begin{equation*}
\frac{1}{H(z)}+\frac{d H(z)}{d \alpha_{k}}=\frac{1}{|H(z)|} \frac{d|H(z)|}{d \alpha_{k}}+j \frac{d \theta}{d \alpha_{k}} \tag{4.19}
\end{equation*}
$$

where

$$
j=\sqrt{-1}
$$

From Eq.(4.19), the gain and phase cocfficient sensitivities of Eq.(4.15) and Eq.(4.16) can be redefined to give Eq.(4.20) and Eq.(4.21) respectively.

$$
\begin{align*}
& s_{\alpha_{k}}^{|H|}=\alpha_{k} \quad \operatorname{Re}\left[\frac{1}{H(z)} \cdot \frac{d H(z)}{d \alpha_{k}}\right] \tag{4.20}\\
& S_{\alpha_{k}}^{\theta}=\frac{\alpha_{k}}{\theta}, \quad \ln \left[\frac{1}{H(z)}, \frac{d H(z)}{d \alpha_{k}}\right] \tag{4.21}
\end{align*}
$$

Both Eq.(4.20) and Eq.(4.21) require the derivatives of the overall transfer function with respect 10 the structure's individual multipliers. These multipliers only exist in one section of the structure and are independent of each other. Therefore, differentiating the overall uransfer function of Eq.(4.6) with respect to - multiplier will produce two different results, depending upon in which branch of the latice that particular multiplier is contained. The differentiation of each lattice am with respect to single multiplier also simplifies because the derivatives of the sections that do not contain a particular multiplier will also be zero. This information can be used to simplify the gain and phase coefficient sensitivity equations. Differentiating $E q$. (4.6) with respect to multiplier α_{k}, produces

$$
\frac{d H(z)}{d a_{k}}=\frac{1}{2}\left(\frac{d S^{\prime \prime}}{d a_{k}}+\frac{d S^{\prime}}{d a_{k}}\right)
$$

and because α_{k} will only exist in S^{\prime} or $S^{\prime \prime}$, then

$$
\begin{equation*}
\frac{d H(z)}{d \alpha_{k}}=\frac{1}{2} \cdot \frac{d S_{1}}{d \alpha_{k}} \tag{4.22}
\end{equation*}
$$

where

$$
i=1 \text { or } 2, S_{1}=S^{\prime} \text { and } S_{2}=S^{\prime \prime}
$$

A general transfer function of a branch of a lattice is given in Eq.(4.23)

$$
\begin{equation*}
S_{i}=\prod_{k=1}^{L_{4}} X_{k} \tag{4.23}
\end{equation*}
$$

where
i 1 or 2 for each latice arm (with $S_{1}=S^{\prime}$ and $S_{2}=S^{\prime}$).
$L_{i} 1^{11}$ and $2^{\text {nd }}$ order APS's in branch S_{1}.
X_{k} transfer function of $k^{\text {th }}$ section of the branch.
(X_{k} being a $1^{5 t}$ or $2^{\text {nd }}$ order APS transfer function)
Taking natural logs of Eq.(4.23) and differentiating it with respect to a multiplier, ak. which is contained within that branch, gives

$$
\frac{1}{S_{i}} \cdot \frac{d S_{i}}{d \alpha_{k}}=\sum_{k=1}^{L_{i}} \frac{1}{X_{k}} \cdot \frac{d X_{k}}{d \alpha_{k}}
$$

If all the multipliers are independent and α_{k} only exists in the section X_{m}, then the derivative of a branch. S_{i}, with respect to a multiplier, α_{k}, is given in Eq.(4.24).

$$
\begin{equation*}
\frac{1}{S_{i}} \cdot \frac{d S_{i}}{d \alpha_{k}}=\frac{1}{X_{m}} \cdot \frac{d X_{m}}{d \alpha_{k}} \tag{4.24}
\end{equation*}
$$

Combining Eq.(4.22) and Eq.(4.24). The differential of the overall transfer function with respect to a multiplier, α_{k}, can be expressed as

$$
\begin{equation*}
\frac{d H(z)}{d \alpha_{k}}=\frac{1}{2} \cdot S_{i} \cdot \frac{1}{X_{m}} \cdot \frac{X_{m}}{d \alpha_{k}} \tag{4.25}
\end{equation*}
$$

where $\mathrm{i}=\mathrm{t}$ or 2 for the relevant latice branch that contains the section X_{m} which possess the multiplier, ak. Using the derivative of the overall transfer function with respect to α_{k}. Eq.(4.25), the gain and phase coefficient sensitivities of Eq.(4.20) and Eq.(4.21) can be written as Eq.(4.26) and Eq.(4.27) respectively.

$$
\begin{align*}
& S_{\alpha_{k}}^{|H(z)|}=\alpha_{k} \cdot \operatorname{Re}\left[\frac{S_{i}}{S^{\prime \prime}+S^{\prime}} \cdot \frac{1}{X_{m}} \cdot \frac{d X_{m}}{d \alpha_{k}}\right] \tag{4.26}\\
& S_{\alpha_{k}}^{\theta}=\frac{\alpha_{k}}{\theta} \cdot \operatorname{Im}\left[\frac{S_{i}}{S^{\prime \prime}+S^{\prime}} \cdot \frac{1}{X_{m}} \cdot \frac{d X_{m}}{d \alpha_{k}}\right] \tag{4.27}
\end{align*}
$$

Evaluation of the gain and phase coafficient sensitivities requires the term shown by Eq. (4.28) for each multiplier within the lattice, where $G_{m}(x)$ is the transfer function of the section that coniains ak.

$$
\begin{equation*}
\frac{1}{G_{m}(z)} \cdot \frac{d G_{m}(z)}{d \alpha_{k}} \tag{4.28}
\end{equation*}
$$

Calculation of the factor of Eq.(4.28) can be approached as an evaluation of the inverse of $G_{m}(z)$ multiplied by the derivative of $\mathrm{G}_{\mathrm{m}}(\mathrm{z})$ with respect to α_{k} or as an analytical expression for the first and second order APS's. Because the explicit value of the derivative of each section is not required, the second approach is a more efficient calculation process. Formulac to determine the parameter given by Eq.(4.28) for first and second order APS's are provided in Section 4.2.2.

The final sysiem performance equation to be evaluated is the group delay coefficient sengitivities. Differentiating the group delay. given by Eq.(4.12). with respect to a multiplier, α_{k}, modifies the group delay coefficient sensitivity equation of Eq.(4.17) so that it can be written as

$$
\begin{align*}
& S_{\alpha_{k}}^{\tau}=\frac{\alpha_{k}}{\tau} \cdot \operatorname{Im}\left[\frac{1}{\left(S^{\prime \prime}+S^{\prime}\right)^{2}} \cdot\left(\frac{d S^{\prime \prime}}{d \alpha_{k}}+\frac{d S^{\prime}}{d \alpha_{k}}\right) \cdot\left(\frac{d S^{\prime \prime}}{d \omega}+\frac{d S^{\prime}}{d \omega}\right)\right. \\
&\left.-\frac{1}{S^{\prime \prime}+S^{\prime}} \cdot\left(\frac{d\left(\frac{d S^{\prime \prime}}{d \omega}\right)}{d \alpha_{k}}+\frac{d\left(\frac{d S^{\prime}}{d \omega}\right)}{d \alpha_{k}}\right)\right] \tag{4.29}
\end{align*}
$$

However, α_{k} only exists in one section of one branch of the latlice structure. Therefore. the derivatives of the lattice arm and sections with respect to ak that do not containing that particular multiplier. will be zero. Using this property. the group delay sensitivity equation of Eq.(4.29) reduces to

$$
S_{\alpha_{k}}^{\tau}=\frac{\alpha_{k}}{\tau} \cdot \operatorname{Im}\left[\frac{1}{\left(S^{\prime \prime}+S^{\prime}\right)^{2}} \cdot S_{i} \cdot\left(\frac{1}{X_{m}} \cdot \frac{d X_{m}}{d \alpha_{k}}\right) \cdot\left(\frac{d S^{\prime \prime}}{d \omega}+\frac{d S^{\prime}}{d \omega}\right)\right.
$$

with

$$
\begin{equation*}
\left.\frac{1}{S^{\prime \prime}+S^{\prime}} \cdot\left(\frac{d\left(\frac{d S_{i}}{d \omega}\right)}{d \alpha_{k}}\right)\right] \text { where } i=1 \text { or } 2 \tag{4.30}
\end{equation*}
$$

$$
d a_{k}=S_{i} \cdot\left[\left(\frac{1}{x_{m}} \cdot \frac{d X_{m}}{d \alpha_{k}}\right) \cdot\left(\frac{1}{S_{i}} \cdot \frac{d S_{i}}{d \omega}\right)+\frac{d\left(\frac{1}{X_{m}} \cdot \frac{d X_{m}}{d \omega}\right)}{d a_{k}}\right]
$$

where X_{m} is the transfer function of the only section of lattice arm, S_{i}. that contains the multiplier, ak. For Eq.(430), the parameter given by Eq.(4.31) can be evaluated direcily or expanded to the form shown by Eq.(4.32).

$$
\begin{equation*}
\frac{d\left(\frac{1}{X_{m}} \cdot \frac{d X_{m}}{d \omega}\right)}{d \alpha_{k}} \tag{4.31}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{X_{m}} \cdot \frac{d\left(\frac{d X_{m}}{d \omega}\right)}{d \alpha_{k}}-\left(\frac{1}{X_{m}} \cdot \frac{d X_{m}}{d \omega}\right) \cdot\left(\frac{1}{x_{m}} \cdot \frac{d X_{m}}{d \alpha_{k}}\right) \tag{4.32}
\end{equation*}
$$

Calcutation of this term would be more efficient if an analytical expression of Eq.(4.31) was derived for the first and second order section rather than the combination of the terms of Eq.(4.32). Equations to determine Eq.(4.31) for the first and second order APS's are provided in Section 4.2.2.

4.2.2 Building Blocks

To determine the properties of the lattice WDF using the equations derived for the frequency and sensitivity responses, the transfer functions and derivatives for the first and second order APS's are required. The transfer function of the first order APS. illustrated by Fig.(4.14). can be determined from the scattering matrix for the two-port adaptor and the relationship between the wave parameters given in Eq.(4.33).

Figure 4.14 First order APS with wave parameters.

$$
\left[\begin{array}{l}
B_{1} \tag{4.33}\\
B_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\alpha & 1+\alpha \\
1-\alpha & \alpha
\end{array}\right] \cdot\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right] \quad A_{2}=z^{-1} \cdot B_{2}
$$

Combining the equations of Eq.(4.33), the transfer [unction of the first order section can be derived and is given by Eq.(4.34).

$$
\begin{equation*}
H_{1}(z)=\frac{B_{1}}{A_{1}}=\frac{-\alpha+z^{+1}}{1-\alpha z^{+1}} \tag{4.34}
\end{equation*}
$$

The allpass nature of this first order section can be seen from its trangfer function, where if the numerator is $G(z)$ then the denominator has the function $\mathrm{O}\left(z^{\prime}\right)$ and $H_{1}(z)$ has a pole $a t a$ and a zero at I / a. The stability of this transfer function is dependent upon the position of its pole within the unit circle in the z
domain. To ensure that the pole lies within the unit circle, then the section's multiptier must be limited to the range $-1<a<1$.

Evaluation of the group delay is based upon an expression for the derivative of the transfer function with respect to ω, divided by that trangfet function. This parameter for the firsi order section is given by Eq. (4,35).

$$
\begin{equation*}
\frac{1}{H_{1}(z)} \cdot \frac{d H_{1}(z)}{d \omega}=j \frac{z^{-1}\left(\alpha^{2}-1\right)}{\left(-\alpha+z^{-1}\right)\left(1-\alpha z^{-1}\right)} \tag{4.35}
\end{equation*}
$$

The gain and phase coeffictent sensitivities of Eq.(4.26) and Eq.(4.27) are based upon an expression for the differential of each section with respect io its multiplier(s). This term for the first order APS of fig.(4.14), which has a mulsiplier α, is given by Eq.(4.36).

$$
\begin{equation*}
\frac{1}{H_{1}(z)}-\frac{d H_{1}(z)}{d a}=\frac{z^{-2}-1}{\left(-a+z^{-1}\right)\left(1-\alpha z^{-1}\right)} \tag{4.36}
\end{equation*}
$$

The final expression for the first order section is the one required to evaluate the group delay coefficient sensitivities. This parameter can be determined from Eq-(4.37).

$$
\begin{equation*}
\frac{d\left(\frac{1}{H_{1}(z)} \cdot \frac{d H_{1}(z)}{d \omega}\right)}{d \alpha}=j \frac{z^{-1}\left(4 \alpha z^{-1}-\left(1+\alpha^{2}\right)\left(1+z^{-2}\right)\right)}{\left(-\alpha+z^{-1}\right)^{2}\left(1-\alpha z^{-1}\right)^{2}} \tag{4.37}
\end{equation*}
$$

The Iransfer function. $\mathrm{H}_{2}(\mathrm{z})$, of the sccond order APS illustrated by Fig.(4.15). can be determined from the relationship between the equations of Eq.(4.38) and is given by Eq.(4.39).

$$
\begin{gather*}
{\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\alpha & 1+\alpha \\
1-\alpha & \alpha
\end{array}\right] \cdot\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]\left[\begin{array}{l}
B_{3} \\
B_{4}
\end{array}\right]=\left[\begin{array}{cc}
-\beta & 1+\beta \\
1-\beta & \beta
\end{array}\right] \cdot\left[\begin{array}{l}
A_{3} \\
A_{4}
\end{array}\right]} \\
A_{4}=z^{-1} \cdot B_{4}, A_{3}-z^{-1} \cdot B_{2} \text { and } A_{2}=B_{3} \tag{4.38}\\
H_{2}(z)=\frac{B_{1}}{A_{1}}=\frac{\alpha+(1-\alpha) \beta z^{-1}-z^{-2}}{-1+(1-\alpha) \beta z^{-1}+\alpha z^{-2}} \tag{4.39}
\end{gather*}
$$

Figure 4.15 Second order APS with wave parameters.

The stability of this allpass function is determined by the position of its complex conjugate poles. The stability criteria of this second order APS can be determined by comparing its denominator to the denominator of a standard second order section, given by Eq.(4.40).

$$
\begin{equation*}
z^{2}+2 r \cos (\theta) z+r^{2} \tag{4.40}
\end{equation*}
$$

For the standard second order section it is knownill] stability requires \mid r| < 1. Applying this limit to the appropriate parameters of Eq.(3.39) results in the stability conditions $-1<\alpha<0$ and $-I<\beta<1$ for the second order APS of Fig.(4.15).

The equation of the second order section required to determine the group delay response is shown by Eq. (4.41).

$$
\begin{equation*}
\frac{1}{H_{2}(z)}-\frac{d H_{2}(z)}{d \omega}=j \frac{z^{-1}\left(1-\alpha^{2}\right)\left(\beta-2 z^{-1}+\beta z^{-2}\right)}{\left(\alpha+(1-\alpha) \beta z^{-1} \cdot z^{-2}\right)\left(-1+(1-\alpha) \beta z^{-1}+\alpha z^{-2}\right)} \tag{4.41}
\end{equation*}
$$

The terms required for the calculation of the gain and phase coefficient sensitivities, provided for the iwo multipliers α and β, are given by Eq.(4.42) and Eq.(4.43) respectively.

$$
\begin{align*}
& \frac{1}{H_{2}(z)}=\frac{d H_{2(z)}}{d \alpha}=\frac{\left(z^{-2}-1\right)\left(1-2 B z^{-1}+z^{-2}\right)}{\left(\alpha+(1-\alpha) \beta z^{-1}-z^{-2}\right)\left(-1+(1-\alpha) \beta z^{-1}+\alpha z^{-2}\right)} \tag{4.42}\\
& \frac{1}{H_{2}(z)} \cdot \frac{d H_{2}(z)}{d \beta}=\frac{z^{-1}\left(1-\alpha^{2}\right)\left(z^{-2}-1\right)}{\left(\alpha+(1-\alpha) \beta z^{-1}-z^{-2}\right)\left(-1+(1-\alpha) \beta z^{-1}+\alpha z^{-2}\right)} \tag{4.43}
\end{align*}
$$

The final expressions for this section are those required to determine the group delay coefficient sensitivities. These terms for the multipliers a and β, are given by Eq.(4.44) and Eq.(4.45) respectively.

$$
\begin{align*}
&\left.\frac{d\left(\frac{1}{H}(z)\right.}{} \cdot \frac{d H_{2}(z)}{d \omega}\right) \\
& d \alpha=j z^{-1}\left(\beta-2 z^{-1}+\beta z^{-2}\right)\left(\alpha+(1-\alpha) \beta z^{-1}-z^{-2}\right)^{-2} \\
&\left(2 z^{-2}\left((1-\alpha)^{2} \beta^{2}-2 \alpha\right)-2 \beta z^{-1}(1-\alpha)^{2}\left(1+z^{-2}\right)\right. \tag{4.44}\\
&\left.+\left(1+\alpha^{2}\right)\left(1+z^{-4}\right)\right)\left(-1+(1-\alpha) \beta z^{-1}+\alpha z^{-2}\right)^{-2}
\end{align*}
$$

$$
\begin{align*}
\frac{d\left(\frac{1}{H_{2}(z)} \cdot \frac{d H_{2}(z)}{d \omega}\right)}{d \beta}= & j z^{-1}\left(\alpha^{2}-1\right)\left(\alpha+(1-\alpha) \beta z^{-1}-z^{-2}\right)^{-2} \\
& \left(\alpha\left(1+z^{-6}\right)+z^{-2}\left(1+z^{-2}\right)\left(1+\alpha(\alpha-3)+\beta^{2}(1-\alpha)^{2}\right)\right. \\
& \left..4 \beta z^{-3}(1-\alpha)^{2}\right)\left(-1+(1-\alpha) \beta z^{-1}+\alpha z^{-2}\right)^{-2} \tag{4.45}
\end{align*}
$$

4.3 Lattice WDF design and analysis software

Software written to implement simultaneous magnitude and phase designs on the lattice WDF structure falls into the two areas of design and analysis. The design side of the sofiware is provided through a menu driven program called "WDF". This program is based upon the optimizalion lechniques and algorithms discussed for the ladder WDF program. A menu within this program allows the user to enter the order of the latice, its initial mulifitier values and frequency specification. The position and number of first and second order APS's are calculated automatically from the filter order. Frequency specifications are entered as set of vectors that contain the frequency edge and altenation values. Under this vector scheme any filter type can be defined from a lowpass to a dual bandpass specification. Frequency specifications can also be defined with different frequency edges for the gain and group delay responses. The information about the lattice structure, its parameters and frequency specification can then be recorded into a data file.

All optimization parameters of this lastice WDF program are contained within a single menu. This menu allows one of the single, dual or ideal line template schemes to be selected, along with the number and position of the crror points at which the templates are defined. The weights for the gain and aroup delay templates may be set individually or calculaled automatically through an option
within the menu that ensures that an equal deviation in each template contributes an equal error the overall function. Other options in this menu allow the value of the angled line for transition band definitions to be altered, the optimization algorithm to be changed and variation of the ratio that determines the relative contributions of the gatn and group delay errors to the overall function. A menu walk-through of this program is provided in Appendix BI, along with an example to illustrate the design procedure and optimization options.

A limitation of the ladder WDF program was imposed by the GHOST routines used for graphical oulput. The GHOST routines required an environment which could suppor a window system, typically a graphics window within Suntools. This meant that the ladder WDF program could nol be run on different systems even when graphics were not required. For this reason the analytical and graphical elements of the latice WDF software were not included within the "WDF" design program. A more versatile graphical system than the GHOST approach was provided through a program called MatLab[9]. Within MatLab a wide range of analytical and graphical procedures can be achicved lhrough built-in functions. A program called "mitwdf" was writien in the Mallab procedural language to provide an analysis of any lattice WDF solutions generated from the "WDF" program.

The program "mliwdf" has threc elements. The first concerns the entry of data files. These data files are stored in the MatLab format and are created by the design program "WDF". These data files may be loaded into "mltwdf" either individually or as a set. This allows the performance of lattice WDF solutions under slightly different optimization parameters to be compared directly. The other two elements of this program relate directly to the analysis and display of a latice WDF in the frequency and time domains. The frequency domain side of the program calculates the magnitude, gain, phase and group delay responses over an arbitary frequency range. Garn, phase and group delay coefficient sensitivities can be evaluated for individual or sets of multipliers withon the lattice structure. again over an arbitrary frequency range. The final element within the frequency domain part of the program is concerned with the calculation of the poles and zeros of the structure. The program highlights the poles of each lattice arm slong with the zeros of the overall structure. The poies and zeros of the lattice WDF structure can be determined from the overall uransfer function given by Eq.(4.6).

Expressing the transfer function of each branch of the lattice in terms of a numerator and denominator polynomial, Eq.(4.6) can be expressed as

$$
\begin{equation*}
H(z)=\frac{\left(\frac{N^{\prime \prime}(z)}{D^{\prime \prime}(z)}+\frac{N^{\prime}(z)}{D^{\prime}(z)}\right)}{2}=\frac{N^{\prime \prime}(z) D^{\prime}(z)+N^{\prime}(z) D^{\prime \prime}(z)}{2 D^{\prime}(z) D^{\prime \prime}(z)} \tag{4.46}
\end{equation*}
$$

The poles of Eq.(4.46) are the roots of the two denominator polynomials $D^{\prime}(z)$ and $D "(z)$. The zeros can be determined from the roots of the numerator of Eq.(4.46). This means that the zeros of the structure cannot be associated with a single latice arm in the way the poles of the latice can.

Each of the responses calculated is displayed to the screen through MatLab and the user is given the option of printing the graphs to a file or laser printer.

While the frequency domain side of the software program calculates the filter responses to the full accuracy of the system, the time domain calculations are performed to finite wordlengith critcrion. The impulse response of the lattice structure can be determined with arbitrary wordlengihs for the input, output and internal signals and for the multiplier coefficients. A finite wordength impulse response can then be converted into the frequency domain with a FFT routine provided by MatLab. This process allows the user to analyse the response of a lattice structure to different rounding, finite wordlength and overflow strategies. The time domain side of the program also allows a user to determine the time domain response of a latice filter to a number of different input functions such as the step, ramp and square wave. Again all responses generated by this part of the program are displayed to the screen and can be recorded for output to a laser printer. A menu walk through for this program is provided in Appendix $\mathbf{B 2}$ along with a frequency and time domain analysis of the example considered in Appendix BI.

Ancillary software written to aid in the investigation of the lattice WDF included an implementation of the Gazsi formulac called "ellip" and a linear phase Fir program called "linfir". The program "ellip" was written in C+t and allows aser to define an arbitrary lowpass maynitude specification. From this specification the order of a lattice WDF required to sallsfy a Butterworth. Chebyshev and elliptic response can be calculated along with the appropriate multiplier values. A demonstration of the "ellip" program is provided in Appendin Bl where it is used to gencrate the lattice multiplier coeflicients for the lowpass design example. The linear phase FIR program was written to implement a Remez exchange algorishm
routine provided within MatLab. With this sofiware the order of a FIR filter to satisfy an arbitrary magnitude and exacily linear phase specification could be determined and compared with the filter orders of simultaneous lattice WDF solutions.

4.4 Experimental Results

The experimental work for the designs of latice WDF's followed the procedures laid down for the ladder WDF designs. These procedures entailed the investigation of various optimization techniques and strategies on magnitude-only specifications with known solutions. With these specifications the convergence rates and the shapes of filter solutions for a wide combination of different target templates, transition band definitions, error poins and optimization algorithms were compared. With the experience gained from magnitude-only designs, the research was extended to include simuliancous magnitude and phase specifications.

4.4.1 Magnituderonly design

As with the ladder WDF research, the lattice magnitude-only investigations were based upon a suite of lowpass specifications with a range of filter orders and attenuations. These specifications, which were just salisfied by an elliptic function, are given in Table(4.1).

$\begin{gathered} \text { Spec } \\ \text { number } \\ \hline \end{gathered}$	Filier order	Gain passband		Gain siopband		$\begin{gathered} \text { Samp } \\ \text { freq }\left(\mathrm{H}_{\mathrm{z}}\right) \\ \hline \end{gathered}$
		all (dB)	fred (Hz)	311 (dB)	freq ($\mathrm{Hz}^{\text {) }}$	
1	5	1	0.05	50	0.07	1
2	7	1	0.1	50	0.11	1
3	9	0.1	0.02	100	0.04	1
4	11	0.5	0.075	100	0.09	1

Table 4.1 Lowpass filter specification enamples.

Each of the lowpass specifications of Table(4.1) was investigated using the three target templates. the two quasi-Newion algorithms and different starting positions for the multiplier values. Results supported the theories outined for the ladder WDF designs, in that the more accurately the target function can be modelled, the quicker the convergence rate. For identical specifications and the same optimization settings. the convergence rate of lests based upon the ideal, dual and single line template schemes fell roughly into a ratio of $\mathbf{4 n} \mathbf{n}^{2}: \mathbf{2} \mathbf{n}^{\mathbf{2} .5}: \mathbf{n}^{\mathbf{3}}$ respectively, where n was the number of variables. This shows that as the number
of variables to be optimized increases. target tempiates that do not accurately model the magnitude response required an increasing number of iterations to converge. This imposes a severe limitation upon the use of the single line template scheme for high filter orders.

Another observation with the use of the single line template scheme is the shape of the final solutions, especially across the passband. These solutions tend to ripple from the unity gain line to just below the template line. A typical example of this type of response across a passband is shown by Fig.(4.16).

Figure 4.16 Typical gain passband responsc with single line template.
The single line templates are calculated to pass along the centre of the tolerance specification for each band in an attempt to encourage the function to equiripple about these template lines. The gain is prevented from achieving a value greater than one by limiting the valid range of the multiplier values so that the structure remains pseudopassive and retains its WDF properties. The nature of the lattice structure forces some lurning points of the function to move to the zero or unity gain limits. With reference to Fig.(4.16). the optimization routine cannot minimize the response above the template line as the turning points on the unity gain line cannot be moved down. The optimizalion routine can however minimize the response below the template line. The response of Fig.(4.16) is typical of a single line template solution where the weighting valucs were too high.

This effect was nuticed in buth the passband and stopband regions of the gain response and highlights a disadvantage of the single line template scheme because of their reliance upon correct weighting values. These weighting values, which were the same across a template band. do not follow the equal deviation/equal error rule derived for ladder WDF designs and a trial and error process is required to determine the correct values. The speed penalty this introduces into the design process can be offset by optimization algorithms that use derivatives. Switching from the NAG qussi-Newton algorithm EO4JAF to E04KCF decrease the number of itcrations required by a factor of ten. Despite the extra derivative calculations required at each iteration, in most eases the actual lime
taken for problem 10 converge was noticeably quicker. Overall the single line templates. while being very simple, are limited by their susceptibility to weights and a slow convergence rate for higher order filter specifications.

The dual line templates, although unsuitable for use with the E04KCF algorithm. are not as susceptible to weighting values and the equal deviation/equal error weighting rule appears to be satisfactory This is panty due to the nature of the template scheme because the cror function can apprach zero when the response lies within the template limits. Therefore even if a very large weighting value is applied to a region of the dual line template, its effects will be eliminated when the response lies within the bounds of that region. Using this property the passband or stopband regions of a filter can be emphasized with large weight values.

Oiher results from the lattice magnitude-only designs confirmed earlier observations from ladder designs These included the number and distribution of error points and starting position for the multiplier values. The number of error points 10 balance the criteria of accuracy and speed fell into the range of $20-40$ points per band with an equal number of points in each band. Equal numbers of error points were used in order nat to offset the overall effects of the weighting values. The magnitude-only designs converged quicker when more error points were clustered about the transition edges of the template. This follows the sine/cosine spacing ideas discussed in Chapter 3. The idea of moving error points to the boundary positions of a template, illusirated by Fig.(4.12), also improved the convergence fate and shape of the magnitudeonly responses. Each of the optimization tests was performed with the multiplier values starting at different points within their valid bounds. Positions were varied from the ideal values. first by moving a single multiplier to its boundary values and then by moving all the multiplier values to their lower. middle and upper boundary limits. Results tended to show that convergence rates were improved if the multiplier values were stared in the middle of their boundary limits. nominally at a value of zero. This placed each multiplier within the bounds of any solution and avoided them being stuck at local minima around the edges of the function.

4.4.2 Simultaneous designs

The objective of this area of rescarch was to optimize latice coefficient values 10 satisfy an arbitrary magnitude and phase specifications. The optimization process centered upon starting with a latlice filter order that satisfied an elliptic lowpass
magnitude specification and then increasing the widh of the group delay tolerance until a simultancous solution was found for that filter order. From this solution. the group delay tolefance was halved and the filter order increased until - new solution was generated. Under this method a family of solutions could be labulated for filter order and passband group delay deviation.

This design procedure was implemented on the three template schemes with the optimization rechniques and settings developed for the lattice magnitude-only designs. Each test was performed with 31 crror points in each band of the lowpass specification using a sine spacing for the passband, linear spacing for the transition band and cosine spacing for the stopband. The optimization variables for each test contained the latice WDF multipliers and a parameter that represented the value about which the group delay passband template was generated. Errors between the actual and template values were combined under the weighted L_{p}-metric error function of Eq. (2.7). Although the error function implemented in the "WDF" program could determine any integer norm value, tests were performed with low norm values lypically, $p=2$. This followed experience from the simultaneous ladder WDF tesis.

The initial simultancous design investigalions were carried out on single line templates with the NAG E04JAF optimization routine Difficulties in determining the appropriate weighting values and an inability to impose different group delay tolerances soon lead to this template type being eliminated from the investigetion.

The next area of interest concentrated upon the ideal line templates. The gain templates were determincd by calculating the filter coefficient values to satisfy a particular lowpass specification from the Gazsi formulae and then equating the ideal line gain templates to the latice's frequency response with these coefficient values. The group delay ideal line templates were based upon a sine function with an amplitude determined by the sroup delay olerance and whose period was an optimization parameter. The general nature of the optimization routine considered allowed the gain and group delay responses to possess different frequency edges. This generality meant that the error points in the passband of the gain and group delay templates could differ in number and distribution. Initial tests used aine spacing for the crror points across the yroup delay passband template, although this was later switched to a linear spacing. The gain within the passband of a WDF filter cannot move above unity and so the only concern for the gain template was that the response did not move below the maximum atsenuation specification. This was most likely to occur at a Iransition edge and so more points were clustered
around these regions. This reasoning was not true for the group delay response and it was as equally likely to ripple above or below its templates. To compensate for this fact, the error point spacing was altered from a sine spacing to a linear format.

Research using optimization techniques based upon the ideal line templates investigated number of parameters and their values. The main optimization parameter for simultaneous designs is the $\boldsymbol{\beta}$ factor within the efror function that determines the relative contributions of the gain and group delay errors. From ladder WDF designs a range for this parameter to ensure an acceptable filter response fell within the range $06<\beta<0.9$. This range of values for β was also true for the lattice WDF designs. However, despite wide combination of error point numbers, weights and β values, oplimization through the ideal line templates failed to satisfy a magnitude and phase specification completely. This, in part. may be due to the shape of the ideal targets. For the examples considered the target magnitude response had an elliptic form while the group delay iarget was an equi-spaced. equi-ripple function. The characteristics of wide and rapid changes in gain are contrary to phase linearity for a filter's response and it may therefore be impossible to achieve an elliptic type magnitude response with an equi-spaced. equi-ripple group delay.

Research into the implications of this theory is limited with the ideal line templates and outlines a major disadvantage of the ideal line templates compared to dual line schemes. The ideal line templates cannot be generated unless the desired responses are known at each frequency point. However, no research has produced a polynomial that can exhibit arbitrary magnitude and phase properties, Therefore, the shape of magnitude response that permits phase linearity is very difficult $t 0$ define. As a consequence. the ideal line gain templates cannot be defined. This problem is also true for the group delay templates. where an equispaced and equi-ripple response may be detrimental to a desired gain response. To determine the nature and shape of filier responses that can possess an arbitrary magnitude and phase characteristic, research was altered to designs based upon the dual line template schemes.

The dual line template scheme proved 10 be the most successful design technique for simultaneous maynitude and phase desiyns. A large range and combination of optimization parameters were investigated from weights to the angles of the transition band templates. Experimental results showed that the most succesaful optimization settings had β values in the range $0.7<\beta<0.8$ and weights that
followed the equal deviation/equal error rule. For a lowpass specification the gain error points followed the sine/lincar/cosine spacing, while the group delay error point spacing was linear over the passbind. An equal number of error points. in the range of 25 - 45 for each icmplate region, was also found $t 0$ provide solutions relatively accurately and quickly.

A design example can be used to illusirate how the overall order of a filter and ita frequency respanses were modified to mect an identical gain specification with various group delay tolerances. The orders of this suite of solutions can then be compared to the order of an elliplic function that satisfies the magnitude specification and the order of a FIR filter satisfying the same magnitude specification but with exacily linear phase.

Consider the lowpass filter specification shown in Table(4.2).

Gain	gassand	Gain sopband		Delay passband		Samp
att (dB)	edge (Hz)	att (dB)	edge $\left(\mathrm{Hz}_{2}\right)$	dev (\%)	edge (Hz)	freg (Hz)
0.1	0.08	34	0.16	$10-0.005$	0.09	1

Table 4.2 Lowpass filter specification.

Using the "ellip" program the order of Butterworth. Chebyshev and elliptic functions to satisfy the maynitude specification of Table(4.2) can be determined. Through the program "linfir", the order of a FIR filter required to satisfy the same magnitude specification and exactly linear phase can also be evaluated. These filter orders are detailed in Table(4.3).

Filter lype	Lattice WDF			Linear Phase FIR
	Buiterworih	Chebyshev	Elliptic	
Filter order	9	5	5	26

Table 4.3 Filter orders to satisfy the magnitude part of the specification from Table(4,2).

Under the design procedure outlined at the start of this section, the initial optimization was performed on 4 lattice WDF with the order of an elliptic function that satisfied the magnitude specification. For the example considered. this ordep was five. The frequency responses of a $5^{\text {th }}$ order latice WDF that satisfies the magnitude part of the specification of Tuble(4.2) using the elliplic function are shown by Fig.(4.17).

Chapter 4. Lattice WDF's

Figure 4.17 Frequency responses of a $5^{\text {th }}$ order latice WDF. (a) overall magnitude, (b) passband magnitude, (c) overall group delay and
(d) pole/zero plat.

Characteristic of the elliptic function, shown in Fig.(4.17). is an equal number of turning points in both the passband and stopband, an equi-ripple gain format and a hish frequency selectivity. The elliptic function also exhibits very poor phase linearity or non-consiant yroup delay response. A Bessel polynomial, on the other hand, if constructed to possess good phase linearity. Its linear phase is achieved at the expense of frequency selecivity. Both these polynomials and the others considered within filter designs were constructed to possess minimum-phase cheracteristic. The tradeoff betwecn frequency selectively and phase linearity was clearly highlighted by designs on the minimum-phase Iadder WDF structure in Chapter 3.

The nonminimum-phase latice structure can also implement the clasic minimum-phase polynumials. demonstrated in Fig.(4.17). However a more efficient procedure would be to consider nonminimum-phase polynomials. If a latice WDF is to satisfy an arbitrary magnitude and linear phase specification
then it must follow a nonminimum-phase polynomial that contains the characteristics of high frequency selectivity and phase linearity. These would include a ripple in both gain passbands and stopbands, similar to the elliptic polynomial and zeros that exist in reciprocal complex conjugate sets.

The specification of Table(4.2) requires a group delay tolerance between 10% and 0.005%. From a simultaneous solution for the $5^{\text {th }}$ order lattice WDF with a very wide group delay tolerance, the order of the filter was increased until a solution with a 10% group delay deviation was produced The order of a latice WDF to satisfy this specification was seven and its frequency responses are illustrated by Fig.(4.18). The frequency responses of filter solutions that satisfied the 0.1% and 0.005% group delay tolerances are illustrated by Fig.(4.19) and Fig.(4.20) respectively.

(c)
(d)

Figure $4.187^{\text {th }}$ order Iatice WDF with 10% group delay tolerance showing, (a) overall and (b) passband magnitude and (c) overall and (d) passband delay frequency responses and (e) pole/zero plat.

(a)

(b)

Figure $4.1911^{\text {th }}$ order latice WDF with 0.1% group delay tolerance showing, (a) overall and (b) passband magnitude and (c) overall and (d) passband delay frequency responses and (e) pole/zero plot

 Opi Rouane e ealai
Opi Tugea: DUAL
(b)

Figure $4.2015^{\text {th }}$ order lattice WDF with 0.005% group delay tolerance showing. (a) overall and (b) passband magnitude and (c) overall and
(d) passband delay frequency responses and (e) pole/zero plot.

The filter orders of the design solutions to the specification given in Table(4.2) are detailed in Table(45). along with the order of the elliptic function that satisfies the magnitude part of the specification and the order of the equivalent exactly linear phase FIR filter.

	Lattice WDF									FIR linear phase
	Elliptic funclion	Group delay deviation (\%)								
		10	5	1	0.5	0.1	0.05	0.01	0.005	
filter order	5	7	7	7	9	11	11	15	15	26

Table 4.5 Filter order of solutions satisfying the specification of Table(4.2),

A number of properties from various solutions c an be observed when the filier responses are compared. These properties concern the increasing filter order required to satisfy a narrowing group delay tolerance and how these extra degrees of freedom are disiributed within the gin and group delay responses. From Table(4.5) it can be secn that halving the group delay lolerance requires approximately an increase of two in the overall filier order. This increase in filter order does not increase the turning points across the passband of the gain response but instead places more turning points in the gain stopband and the group delay passband. The distribution of these turning point across the various group delay tolerance solutions is detailed in Table(4,6).

		Group delay deviation (\%)							
		10	5	1	0.5	0.1	0.05	0.01	0.005
filter	order	7	7	7	9	11	11	15	15
turning points	$\begin{gathered} \text { gain } \\ \text { Dassband } \\ \hline \end{gathered}$	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	gain stopband	2	2	2	2	3	3	4	3
	$\begin{gathered} \text { delay } \\ \text { nassband } \end{gathered}$	1	1	2	2	2	2.5	2.5	3

Table 4.6 Tuming points of solutions satisfying the specification of Table(4.2).

The characteristic of the optimization routine of using the exira filter orders within the gain stopband and delay passband responses can also be demonstrated through a second lowpass filter example. The specification of this example uses the same group delay talerance range as the first example and is detailed in Table(4.7). The orders of the solutions to this specification are given by Table(4.8). along with the orders of the appropriate Butterworth, Chebysher and elliptic functions and the cquivalent exacily linear phase FIR filter.

Gain	passband	Gain	stopband	Delay	passband	$\begin{gathered} \text { Samp } \\ \text { freq (Hz) } \end{gathered}$
all (dB)	edse (Hz)	all (dB)	edre (Hz)	易 dev	edre (Hz)	
0.17	500	40	750	10-0.005	550	2500

Table 4.7 Specification of second lowpass filter example.

	Latice WDF											Linear phase FIR
	$\begin{aligned} & \text { Bunt } \\ & \text { fun } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cheb } \\ & \text { run } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ellip } \\ & \text { fun } \\ & \hline \end{aligned}$	Groun delay deviation (\%)								
				10	5	1.	0.9	0.1	0.05	0.01	0.005	
filter	11	7	5	11	13	13	13	15	15	17	17	22

Table 4.8 Filter orders satisfying the specification of Table(4.7).

The turning points of thesc filter sulutions across the gain and group delay responses are illustrated by Table(4.9)

Table 4.9 Turning points of solutions satisfying the specification of Table(4.7).

Frequency responses of the solutions to the design example of Table(4.7) with the 10%, I\% and 0.01% group delay tolerances are shown by Fig.(4.21). Fig.(4.22) and Fig.(4.23) respectively.

(b)

(c)

(d)

(e)

Figure $4.2111^{\text {th }}$ order lattice WDF with 10% group delay tolerance showing, (a) overall and (b) passband magnitude and (c) overall and
(d) passband delay freguency responses and (e) pole/zero plot.

Flgure $4.2213^{\text {th }}$ order datice WDF with 1% group delay tolerance showing. (a) overall and (b) passbund magnitude and (c) overall and (d) passband delay frequency responses and (e) pole/zero plot.

(c)

Figure $4.2317^{\text {th }}$ order latice WDF with 0.01% group delay tolerance showing. (a) overall and (b) passband magnitude and (c) overall and (d) passband delay frequency responses and (e) polefzero plot.

The frequency responses of the simultancous design solutions shown by Fig.(4.18) 10 Fig(4.23) indicate the nature of the function required to satisfy an arbitary magnitude and linear phase specification. Gain responses ripple in both the passband and the slopband. The gain response should therefore possess the frequency selectivity of an elliptic lype function. The group delay response also ripples across the passband. Narrowing the width of the group delay tolerance increases the order of filter required and results in larger number of ripples over its group delay passband region. The zeros of the latice structure for these solutions lic in reciprocal complex curjugate sets while the poles of the two lattice arms are interlaced upon an arc within the unit circle. The position af the zeros follows the paterns predicted for linear phase requirements within Chapter 1. The interlacing of the poles from each lattice arm is consistent with the ideas outlined by Gazsil4] for the canonic polynomials of the latice stracture.

Other features of the simulameous solutions that can be seen from the frequency responses include the distribution of turning points or degrees of freedom of the siructure. For the range of design examples investigated, an increase of the filter order and therefore its degrees of freedom were not uged to increase the number of turning points in the gain passband region. This feature is not necessarily a prerequisite for a simultaneous solution but a property of the optimization procedure and the dual line template scheme. This was shown through magnitudeonly designs based on the dual line semplates. Solutions were achieved with the same filter order as the elliplic function but which did not possess the same number of turning points in the pasyband and stopband. Optimization tended to limit the number of turning points within the passband in favour of the trangition band and stopband.

The distribution of the turning points within the frequency responses of the solutions of the two design examples considered are listed by Table(4.6) and Table(4.9). Calculating the possible number of iurning points for given filter order and those listed in the lwo tables reveals a discrepancy. The turning points that make up the difference between these two values have been placed in the Irensition band by the optimization routinc. Their presents cannot usually be noticed unless the angles of the transition band templates are not set correctly. The magnitude response of Fig.(4.22)(a) illusirates the effect of an inappropriate template definition and shows a turning point in the transition band

The use of turning points in a transition band is lypical of filter specifications with unequal gain and group delay passband widths. The transition band is a region of rapid change for the gain response. However, rapid changes in gain are detrimental to phase linearity. If the group delay passband is wider than the gain passband then the optimization routine will find it very difficult to remain within the template bounds at the edge of the group delay passband when the gain starts to drop off from a frequency point within that region. To avoid this difficulty the optimization routine tends to move the gain cut-off point into the transition band past the group delay passband edge. This is achieved by placing some of the available turning points of the structure in the transition band. This process was hindered by the error point repositioning ideas Illusarated in Fig.(4,12). With unequal gain and group delay passband widths, the gain will not necessarily have the maximum attenuation at the edye of its passband. Therefore this modification to the optimization templates was no longer applied for simultaneous design tests.

The final area of rescarch within the lowpass simultancous design stage involved - comparison with linear phase FIR filters and equalized elliplic IIR filters. Work by Rabiner and Gold[ll] labulated the filter order, mean group delay value and the number of multiplication per simple for a wide range of lowpass specifications for linear phase FJR filters and IIR filters with an elliptic magnitude response and equalizer. Each table listed the resulis for lowpass specifications with identical atienuation characteristics and different cut-off frequencies. The equalizer method was tabulated for a number of group delay tolerances over a pasaband that had the same width as the gain passband.

Conclusions from this work indicale that to equalize an elliptic function to group delay deviation of about 3% requires an increase of approximately 30% in the number of multiplications per sumple compared 10 FIR filter design. It was also
noticed that the mean passband group delay value of the equalized circuit was always higher than the FiR cascs. The authors make a number of observations about the use of a cascaded second order seceion liR filier for simulianeous designs. They suggest that the exifa multipliers required to implement the second order section as nonminimum-phase elements for simultaneous designs offets a reduction in the overall filter urder required. From this assumption they found it unlikely that any advantage could be gained from the use of simultaneous designs compared to an equalizer approach.

Results from optimization tesis of the latice WDF to satisfy a number of the Rabiner and Gold lowpass specilications, given in Table(4.10), are rabulated in Table(4.11) along with the equivalent $F I R$ and equalized elliptic parameters.

Spec No.	Gain inssband		Gain stopband		$\begin{gathered} \text { Samp } \\ \text { freg }\left(\mathrm{Hz}_{2}\right) \end{gathered}$
	3 tl (dB)	edre (H_{2})	all (dB)	cdre ($\mathrm{Hz}_{\text {) }}$	
1	0.1746	0.0502	80	0.20273	1
2	0.1746	0.09846	80	0.25119	1
3	0.3546	0.25	60	0.34153	1
4	0.3546	0.25	60	0.30689	1

Table 4.10 Specifications for comparisons of simultaneous designs with linear phase FIR and equalized elliptic solutions.

In Table(4.11), N represent the urder of each filter (in the equalizer case N^{\prime} is the order of the elliptic filicr and N " the equalizer order), M is the number of multiplications required per sample and t is the group delay value. The term to indicates group delay tolerance across the passband for that specification.

From the results shown in Table(4.11), it can be seen that the simultancous latice WDF solutions have a lower group delay value than the equivalent FIR and equalized filter solusions. The order and number of multiplications per sample of the simultaneous designs are also lower than the FIR cases. This however does not appear to be truc for the performance of the simultaneous designs against the equalizer solutions. Although the method of defining the group delay error as a percenage deviation can compensate for different sampling frequencies, it does not accurately reflect the actual widih of the group delay error in itself.

Spec No.	FIR filler			Equalized filier					Lattice WDF			
	N	M	ta	1\%	N	N^{-}	M	T_{2}	2\%	N	M	T_{2}
1	21	11	10	12.1	5	2	11	28.7	12.1	9	9	903
				3.4	5	4	13	42.7	3.4	9	9	13.29
2	21	11	10	116	5	2	11	14.5	11.6	9	9	8.14
				4.1	5	4	13	22.2	4.1	11	11	6.69
				0.8	5	6	15	294	0.8	11	11	951
3	29	15	14	37.4	5	2	11	8.4	37.4	9	9	5.47
				21.6	5	4	13	10.6	21.6	11	11	5.37
				11.6	5	6	15	13.7	11.6	11	11	4.78
				5.6	5	8	17	16.9	5.6	13	13	4.51
				2.4	5	10	19	203	2.4	13	13	7.85
4	45	23	22	347	6	4	14	13.8	34.7	11	11	5.84
				25.0	6	6	16	16.0	25.0	13	13	5.37
				16.9	6	8	18	18.7	16.9	15	15	7.28
				11.7	6	10	20	22.0	117	15	15	6.99
				7.9	6	12	22	25.5	7.9	17	17	886
				5.2	6	14	24	29.4	5.2	17	17	8.71
				3.2	6	16.	26	32.8	3.2	19	19	12.16
				1.8	6	18	28	36.3	1.8	19	19	11.98

Table 4.11 Performance parameters of equivalent simultaneous latice WDF. linear phase FIR and equalized elliptic structures.

To accurately compare the simultancous and equalizer design results of Table(4.11) the actual group delay errors need to be determined. All the equalizer solutions possess mean passband group delay values that are approximately three times larger than the equivalent simultancous values. Therefore despite achieving identical group delay percentage deviations, the performance of the simultaneous solutions is better because they have narrower group delay error widths. Under these conditions the filter orders of Table(4.11) cannot be direcaly compared but in most cases the simultancous solutions require a lower filter order than the equalizer designs despite of more stringent group delay tolerances.

Although Table(4.11) docs not allow a direct comparison of simultaneous and equalizer designs. it does highlight the differences in group delay values produced under each design approach. In most design examples the mean passband group delay value under the simultancous approach was lower than the FIR solutions. This fealure was especially true for narrow passband widahs since
the lattice WDF is only concemed with the lincarity of the group delay across the passband, while the FJR filter exhibits exactly linear phase over the whole frequency range. The efficiency of the latice WDF over the FIR filter design reduces as the passband width is increased or lie group delay tolerance is very narrow.

Another [eature that varied the performance of the simulaneous latice WDF over the FIR filier was the width of the ransition band. Specifications with narrow Iransition bands required high order F1R filters because of their poor frequency selectivity and exactly linear phase over the whole frequency range. This feature can be seen in Table(4.11). Where the relative performance of the latice WDF increases compared to the FIR filter approach when the width of the transition band of a frequency specification is decreases.

4.5 Lattice WDF design conclusions

The conclusions of this part of the rescarch fall into two areas. The performance of various optimization techniques directed at lattice WDF designs and the suitability of the latice WDF for simultancous magnitude and phase designs.

Through computer programs writien to design and analyse the lattice WDF a wide range and combination of optimization lechniques were investigated. These techniques included different target definitions, weighting procedures, number and distributed of error points, mulliplier starting positions and optimization algorithms. Results from both magnitude-only and simultancous specifications have shown that the more accurately the desired function can be described, the faster the problem will converge. In this way, magnitude-only designs opimized with the ideal line templates converged very quickly. These templates can only be used when the form of the solution is already known and are of little practical use for magnitude-only designs. For simuitancous specifications they offer the best approach of generating the magnitude and group delay responses 10 desired shape. However, simultancous tests using an elliptic function for the ideal gain larget and an equi-ripple. equi-spaced group delay target, failed to find any acceptable solutions. These results lead 10 a conclusion that the characteristics of the elliptic polynomial are contrary to an equi-ripple. equi-spaced group delay response for the latice structure.

Lack of information about minintum- and nonminimum-phase functions capable of satisfying an arbitrary magnitude and phase specification meant that no ideal
line templates could be defined. This reason prompted a more detailed investigation with the straight line templates. Although the single line template scheme proved to be of little practical use for simultancous designs, the dual line templates performed very well under most filter specifications. With the dual line templates as basis for further lesis, uptimization procedures and their parameter values were compared. Or the optimization procedures considered, the most effective for simultancous designs concerned the introduction of variable that represented the mean value of a group delay passband template. Optimizing this parameter along with the lattice multiplier values allowed the optimization routines to move the group delay template up and down to find alution.

Other optimization parameter settings that contributed $t a$ an improved convergence rate and filter response shape involve a weighting scheme that worked on an equal deviation/equal error rule, a technique that clustered error points around the region of the template with the most activity. an error function based upon weighted L_{p}-metric and yuasi-Newton optimization algorithms. From a large number of tess. the importance of defining the transition band accurately also became apparent, even with very narrow transition band widths.

The suitability of the latice WDF for simultaneous magnitude and phase designs depends on a number of factors. The most important factor is that the structure can be designed $t 0$ meet an arbitrary simultaneaus specification. From the theary outlined in Chapter 1, linear phase can only be achieved with a structure that has a nonminimum-phase characteristic and can place its zeros in reciprocal complex conjugate sets. The results of Section 4.4 .2 have shown that this is possible with the latice WDF structure. The other suitability criteria concern practical design and hardware implementalion properties. Other structures. notably the cascaded section order section IIR filter can be designed to satisfy a simultaneaus specification. It is therefore the finite wordlength performance and physical hardware models that are of interest in selecting the lattice WDF over any other filter structure

The lattice WDF considered in this rescarch is constructed from first and secand order APS's. These sections, detailed in Section 4.2 , are very simple in structure and possess good dynamic range and scaling properics. The regular nature of the latice structure means that any hardware implementation need only construct a aingle section and then data and multiplier values multiplexed into lt. A more detailed discussion of these hardware ideas and the VLSI implications for the Iattice WDF was provided by Matharul8]. Conclusions of this research indicate that
the lattice WDF is a very efficient structure from a hardware implementation point of view.

The final consideration with the use of the lattice WDF is that simultancous designs represent the most efficient method of satisfying a magnirude and phase specification. Designs requiring exactly linear phase can only be satisfied by FIR filters. However, a small tolerance in the phase linearity can allow a large reduction in the filter order and its operation speed. Use of a WF structure ensures a good finite wordength performance and results have confirmed that a simulaneous design approach requires a lower order than with equalizer techniques.

From all the propertics considered, simultaneous designs on the lattice WDF structure based upon first and second order APS's does represent the most effective method of satisfying an arbitrary magnitude and phase specification. Research up to this point has been directed at generating lowpass filter lattice coefficient values that have a large accuracy. Work deteiled in Chepter 5 concems the methods of achieving highpass, bandpass and bandstop versions of the latice WDF, while Chapter 6 details the optimization procedures and performance of lattice WDF's satisfying finite wordlength constraints.

References

1) Fettweis, A. "Digital Filter Structures Related to Classical Filier Network", Arch, Elek. Uberitag., Vol 25. 1971, pp79.89.
2) Fetueis, A., Levin, H. and Sedimeyer, A., "Wave Digital Latige Filters". Int J. Cir. Theory and Applications, Vol 2, 1974, pp203-21t.
3) Fettweis. A., "Wave Digital Filters: Theory and Practice", Proc IEEE, Vol 74. No. 2. February 1986. pp270-327.
4) Oazsi, L.. "Explicit Formulas for Lattice Wave Digital Fittery". IEEE Trana. Circuits and Syitems, Vol CAS-32, No. 1, January 1985, pp68-88.
5) Guillemin. E. A., synthenia of pasaive networke, John Wiley and Sona, London, 1957.
6) Kunold. I., "Linear Phase Realization of Wave Digital Lattice Filteri". Proc. Euro. Conf. Circuit Theory and Design, No. 308. Sepiember 1989. pp512-516.
7) Leeb. F, and Henk, T.. "Simultaneous Appronimation for Bireciprocal Lattice Wave Digital Filters", Proc. Euro. Conf. Circuit Theory and Design, No. 308, September 1989. pp473-476
g) Matharu, P. S., "Architecturea for the VLSJ Implementation of Digital Filtera". Ph. D. Thesir, The City Univerity, 1988.
8) Maclab, MathWorks Inc, Purtola Valley, California, 1985.
9) Mitra, S. K. and Hirano, K., "Digital All-Pass Networks", IEEE Trans. Circuita and Syatems, Vol CAS-21, No. 9, Sepiember 1974, pp688-700.
10) Rabiner, L. R. and Gold, B, Theory and Applicacton of Digical slgnal proceaning. Prentice-Hall. New Jersey, 1975
11) Renfors, M. and Zigouris, E., "Signal Procetsur Implementation of Digital All-Pasa Filtera", IEEE Trans. Acoustics, Specch and Signal Processing, Vol ASSP-36. No. S. May 1988. pp714-729.

Chapter 5

WDF Frequency Transformations

The object of this Chapter is 10 oulline the theory and design procedures behind WDF frequency uransformations and lattice WDF structures that can exhibit highpass. bandpass, bandstop, dual bandpass and dual bandstop type respanses The equations and models for these transformed WDF structures are developed and related to the original lowpass structurc. The characteristics of the various frequency transforms are detailed through a design example that converts a lowpass solution into the various filter types considered. The Chapter ends with a discussion of the design and optimization considerations for these iransformed latlice WDF structures in satisfying magnitude-only and simultancous specifications. The implicalions of these design and optimization considerations are highlighted through a number of examples.

5.1 Frequency Transforms

The purpose of a frequency transform is to alter the transfer function of a lowpass filter to produce circuit with highpass, bandpass or bandstop type response. The principle of a frequency fransform is to shift and/or scale the frequency axis of a filter's response. The action of modifying the frequency axis of lowpass responsc can be seen through Fig.(5.1) and Fig.(5.2).

Flgure 5.1 Gencral digital lowpass gain response.
A shift of half the sampling frequency, F_{s}, transforms the lowpass response of Fig.(5.1) into the highpass response shown in Fig.(5.2)(a). The bandstop response, shown by Fig.(5.2)(b), is achieved by doubling the sampling frequency of the lowpass response. while the bandpass response of Fig.(5.2)(c) is produced through a frequency shift and scaling.

(a)

(b)

(c$)$
FIgure 5.2 Frequency transformations applied to a lowpass response to produce equivalent (a) highpass, (b) bandstop and (c) bandpass responses.

A frequency Iransform is applied to the transfer function of filter by replacing each frequency dependent variable with a new frequency dependent function. The frequency shift of $0.5 F_{1}$ that produces a lowpass-highpass transformation corresponds to the substitution shown by Eq.(5.1),

$$
\begin{equation*}
z^{-1} \Rightarrow-z^{-1} \tag{5.1}
\end{equation*}
$$

The lowpass-bandsiop transform can be described as

$$
\begin{equation*}
x^{-1} \Rightarrow x^{-2} \tag{5.2}
\end{equation*}
$$

while the lowpass-bandpass transform can be expressed as

$$
\begin{equation*}
z^{-1} \Rightarrow-z^{-2} \tag{5.3}
\end{equation*}
$$

All the transforms described by Eq.(5.1) - Eq.(5.3) are very simple functions that do not alter the relative passband and stopband widths and generate symmetric bandpass and bandstop lype responses. Modifying the width and cut-off frequencies of alter's response requires a more complicated set of frequency uransformations.

The general specification for a lowpass-highpass transform is illustrated by Fig.(5.3).

(a)

(b)

Flgure 5.3 General lowpass-highpass ransform specification.

The equation of a lowpass-highpass transformation able to achieve the conversion shown by Fig.(5.3), is well known in analogue filter designs(6) and has been adapted to digital designs by Constantinides/2|. This 1ransform is given in Eq.(5.4).

$$
\begin{equation*}
z^{-1} \Rightarrow-\left(\frac{z^{-1}+\alpha}{1+\alpha z^{-1}}\right) \tag{5.4}
\end{equation*}
$$

where

$$
\alpha=-\left(\frac{\cos \left(\pi\left(f_{p}-f_{p}^{\prime}\right) T\right)}{\cos \left(\pi\left(f_{p}+f_{p}^{\prime}\right) T\right)}\right)
$$

If the desired highpass response has the same passhand width as the reference lowpass response, such that for Fig-(5.3) $w_{p}=w^{\prime} p$, then $a=0$ and Eq.(5.4) reduces to the simple transform of Eq.(5.1).

The general lowpass-bandpass transformation specification is illustrated by Fig.(5.4) and can be produced through the Iransform shown in Eq.(5.5).

(a)

(b)

Figure S.4 Gencral lowpass-bandpass transform specification.

$$
\begin{equation*}
z^{-1} \Rightarrow\left(\frac{z^{-2} \cdot\left(\frac{2 \alpha k}{k+1}\right) z^{-1}+\left(\frac{k-1}{k+1}\right)}{\left(\frac{k-1}{k+1}\right) z^{-2}-\left(\frac{2 \alpha k}{k+1}\right) z^{-1}+1}\right) \tag{5.5}
\end{equation*}
$$

where

$$
\alpha=\left(\frac{\cos \left(\pi\left(f_{u p}-f_{1 p}\right) T\right)}{\cos \left(\pi\left(f_{u p}+f_{1 p}\right) T\right)}\right) \text { and } k=\cot \left(\pi\left(f_{u p}-f_{1 p}\right) T\right) \tan \left(\pi f_{p} T\right)
$$

Within the transform of Eq.(9.5). the parameter α is responsible for moving the centre of the passband, shown by the frequency point f_{0} in Fig. (5,4)(b), while k varies the width of the passband, $w^{\prime} p$. If the required passband width for the bandpass response, w'p, is equal to the passband width of the lowpass prototype, ${ }^{w} p$, then $k \Rightarrow 1$ and Eq.(5.5) reduces to Eq.(5.6).

$$
\begin{equation*}
z^{-1} \Rightarrow \quad-z^{-1}\left(\frac{z^{-1}-\alpha}{1-\alpha z^{-1}}\right) \tag{5.6}
\end{equation*}
$$

where

$$
\alpha=\cos \left(2 \pi f_{0} T\right)=\left(\frac{\cos \left(\pi\left(f_{u p}-f_{i p}\right) T\right)}{\cos \left(\pi\left(f_{u p}+f_{\mid p}\right) T\right)}\right)
$$

If aymmetric bandpass response is required. the centre frequency fo $1 / 4 \mathrm{~T}$ so a * 0 and Eq.(5.6) will simplify to the frequency Iransform of Eq.(5.3).

The general lowpass-bandstop frequency transformation, shown by Fig.(5.5), has equations that are detailed in Eq.(5.7) and Eq.(5.8).

(a)

(b)

Figure 5.5 General lowpass-bandstop transform specification.

$$
\begin{equation*}
z^{-1} \Rightarrow\left(\frac{z^{-2}-\left(\frac{2 a k}{k+1}\right) z^{-1}+\left(\frac{1-1}{1!+1}\right)}{\left(\frac{k-1}{k+1}\right) z^{-2}-\left(\frac{2 a k}{k+1}\right) z^{-1}+1}\right) \tag{5,7}
\end{equation*}
$$

where

$$
\alpha=\left(\frac{\cos \left(\pi\left(f_{u n}-f_{l_{n}}\right) T\right)}{\cos \left(\pi\left(f_{u p}+f_{l_{p}}\right) T j\right.}\right) \text { and } k=\tan \left(\pi\left(f_{u p}-f_{1 p}\right) T\right) \tan \left(\pi f_{p} T\right)
$$

Within Fig.(5.5). when $w_{1 p}+w_{u p}=w_{p}$ then $k \Rightarrow 1$ and the transform of Eq.(5.7) reduces to Eq. (5.8).

$$
\begin{equation*}
z^{-1} \Rightarrow z^{-1}\left(\frac{z^{-1} \cdot \alpha}{1-\alpha z^{-1}}\right) \tag{5.8}
\end{equation*}
$$

where

$$
\alpha=\cos \left(2 \pi f_{0} T\right)=\left(\frac{\cos \left(\pi\left(f_{u p}-f_{I_{p}}\right) T\right)}{\cos \left(\pi\left(f_{u p}+f_{l_{p}}\right) T\right)}\right)
$$

Again when the centre frequency of the bandsiop response is such that $f_{0}=1 / 4 T$, then $\alpha \Rightarrow 0$ and the frequency transform of Eq.(5.8) simplifies to Eq.(5.2).

The objective of this area of rescarch was to derive WDF structures that can exhibit various filter response types. Authors have approached WDF frequency transformations from a number of different angles. These methods may be grouped into three main approaches. The first method staris with an analogue lowpass DTL network, generates an equivalent highpass, bandpass or bandstop analogue DTL circuit and then derives a WDF circuit from this reference structure.

This approach was discussed in Chapter 3 for highpass and bandpass ladder WDF designs. The next method also slarts with an analogue lowpass DTL network but applies the appropriate frequency fransformation in conjunction with the WDF equations to the elements of the circuit to produce transformed WDF component. With these elements a transformed WDF structure could be constructed. This technique was outlined by Alilll and Swamy and Thyagarajan[?].

The final design method entails describing frevuency transformations in terms of WDF elements. This approach, followed by Lawson[4] and Gilliloglu[3], is possible because of the form of the frequency transforms given in Eq.(5.1). Eq.(5.6) and Eq.(5.8). With this design technique a lowpass WDF structure can be converted into a highpass WDF structure by adding a -1 multiplier to each delay unit because the Iransform of Eq.(5.1) replaces z^{-1} with $-z^{-1}$. The frequency transforms of Eq.(5.6) and Eq.(5.8) represent the transfer function of a two-port adaptor connected to a single delay element. Therefore bandpass and bandstop designs are possible by replacing every unit delay of the lowpass prototype with a first order APS and a unit delay. The difference between the bandpass and bandstop transforms of Eq.(5.6) and Eq.(5.8) means that all bandpass modifications would also have to include a -1 multiplier.

Of the frequency transformation method considered, the one proposed by Lawson offers the most versatile approach as it removes the need for the design of a reference DTL circuit. With this technique it is also very easy to generate the components for multiple band filter specifications, especially the APS's required for lattice WDF structures.

5.2 Frequency transformed lattice WDF elements.

The research into frequency transforms and finite wordlength effects was based upon the latice WDF structure. This structure, shown by Fig.(5.6), has its canonic reflectances constructed as a cascade of first and second order APS's.

The lowpass lattice WDF structure considered in Chapter 4 used the first and second order APS's that were detailed in Section 4.2.2. Latice WDF structures that would be capable of exhibiting highpass, bandpass or bandstop type responses would have the same structure as that shown in Fig.(5.6) but would be constructed from APS's that were the appropriate frequency transformed versions of the first and second order APS's of the lowpass circuit.

Figure 5.6 Latice WDF structure.

Any Iattice WDF structures derived would have their mulsiplier values determined through optimization. The optimization targets used to generate these values would be defined by the cut-aff frequencies and passband widiths of the filter's response. Therefore because the passband widihs for a particular specification would be calculated directly, frequency transfurmations that alier passband widths would not be required. Under this condition Eq.(5.1) is sufficient for lowpass-highpass transformations. while Eq.(5.6) und Eq.(5.8) are adequate for bandpass and bandstop transforms as they move the centre frequency point but do not alter the passband widihs.

Using the lowpass-highpass Iransform of Eq.(S.1) it is easy to develop the first and second order APS's of a highpass latice WDF structure. The lowpass APS's are shown by Fig.(5.7). while the cquivalent highpass APS's are illugtrated by Fig. (5.8).

(a)

(b)

Figure 5.7 Lowpass (a) firsi and (b) second order APS's.

(4)

(b)

Figure 5.8 Highpass (a) firsi and (b) second order APS's.

The lowpass-bandpass transform of Eq.(5.6) and lowpass-bandstop transform of Eq.(5.8) only differ by a minus sign and therefore the equivalent first and second order APS's will only differ by the inclusion or exclusion of a -1 multiplier. The action of the two frequency transforms of Eq.(5.6) and Eq.(5.8) is to replace each unit delay of an APS with a two-port adaptor and a unit delay. Applying this procedure to the first and second order APS's of Fig.(5.7) results in the bandpass and bandstop APS's shown by Fig.(3.9). For these APS's. the bandpass models require the extra - 1 multipliers while the bandstop elements do not.

(1.)

Flaure 5.9 Bandpass and bandstop (a) $2^{\text {nd }}$ and (b) $4^{\text {th }}$ order APS's.

The APS's of Fig.(5.9) are second and fourth order elements where parameters x_{1}. x_{2} and x_{3} represent the section's multipliers and α an element that moves the centre point of the bandpass or bandstop response. This factor, defined in Eq.(5.6) and Eq.(5.8), would be delermined for a given frequency specification and then the same value applied to esch APS of a circuit.

The frequency transformation ideas of Eq.(5.6) and Eq.(5.8) can be used to extend the latice WDF structure to multiple band type responses. Therefore if Eq.(5.6) and Eq.(5.8) were applied to the bandpass and bandstop APS's of Fig.(9.9). then dual handpass and dual bandstop APS's could be designed. These dual bandpass and dual bandstop APS's will, again, only differ by the inclusion or exclusion of -1 multipliers. The transformed APS's for these dual band latice WDF structures are shown by Fig.(5.10), where the parameters α and B are caiculated to independently shift the position of the two bands of the response.

Dual bandpass lattice WDF structures will be based upon the fourth and eighth order APS's of Fig (5.10) which include the -1 multipliers, while the dual bandstop circuit will use the APS's of Fig.(5.10) without these exira multipliers.

In all design cases the lattice WDF structure is based upon the circuit of Fig.(9.6) with the appropriate transformed first and second order APS's. Because of this. each circuit can be described by the overall lattice WDF equations derived in Section $\mathbf{4 . 2 . 1}$ of the Chapter 4 The only parameters that will differ are the transfep functions and derivatives of the various APS's. To evaluate the gain, phase and group delay responses of the highpass, bandpass and bandstop structures, the parameters derived for the lowpass first and second order APS's in Section 4.2.2 must be determined for the APS's of Fig.(5.8), Fig.(5.9) and Fig.(5.10).

The transfer function of the various APS's $c a n$ be derived from the scattering matrix of the two-pon adaptor and wave parameter relationships. An altemative to this design approach is to use the Iransforms of Eq.(5.1), Eq.(5.6) and Eq.(5.8) on the transfer functions of the APS of the lowpass structure. Both methods produce identical results.

The design equations of the APS's for the highpass and single and dual bandpass and bandstop lattice WDF structures were determined through aymbolic mathematical computer program called Mathematical5l. These equations are detailed in Appendix Cl - CS.

Flgure 5.10 Dual bandpass and bandstop (a) $4^{\text {th }}$ and (b) $8^{\text {th }}$ order APS's.

5.3 Characteristics of frequency transformations

To investigate the behaviour and propertics of the various transformed lattice WDF structures, their equelions were included within the design program. "WDF". This design program automatically calls the appropriate APS's for a given frequency specificalion, allowing highpass, single and dual bandpass and bandsiop filters to be created and analysed.

To illusirate the characteristics of the various frequency transforms, the multiplier values of a lowpass filter, Fiy.(5.11), that satisfied the simulaneous speciflcation of Table(5.1), were applied to equivalent highpass and single and dual bandpass and bundsiop lattice WDF structures. This set of multipliers is given in Table(5.2).

Figure $5.119^{\text {th }}$ order lowpass latlice WDF structure.

Gain passband		Gain slopband		Dclay passband		$\begin{gathered} \text { Samp. } \\ \text { freq }(\mathrm{Hz}) \end{gathered}$
aft (dB)	edge (Hz_{2})	all (dB)	edze (H_{2})	dev (\%)	edge (Hz_{2})	
0.1	0.08	34	0.16	0.5	0.09	I

Table 5.1 Simultancous lowpass filter specification.

Upper lattice arm			Lower Iattice arm			
APS No.	APS type	multiplier values	$\begin{aligned} & \text { APS } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { APS } \\ & \text { type } \end{aligned}$	multiplier	values
I	$2^{\text {nd }}$	$\begin{aligned} & x_{1}=-0.8828314045 \\ & x_{2}=0.6172207384 \\ & \hline \end{aligned}$	4	$2^{\text {nd }}$	$\begin{aligned} & x_{6}=-0.71 \\ & x_{7}=0.63 \\ & \hline \end{aligned}$	$\begin{array}{r} 52976626 \\ 70727390 \\ \hline \end{array}$
2	2nd	$\begin{aligned} & x_{3}=-0.5456894656 \\ & x_{4}=0.8245115507 \\ & \hline \end{aligned}$	5	2nd	$\begin{aligned} & x \mathrm{x}= \\ & \mathrm{x} 9 \end{aligned} \quad-0.47 .$	$\begin{aligned} & 59607014 \\ & 79765957 \\ & \hline \end{aligned}$
3	1st	$\mathrm{x}_{5}=0.6571687539$				

Table 5.2 Lowpass latlice WDF multiplier values that satisfy the specification of Table(5.1).

The first step of the investigation concerned the simple frequency transforms shown in Table(5.3). The magnitude response of the $9^{\text {th }}$ order lowpass latice WDF, using the multiplier values from Table(5.2), is shown in Fig.(5.12)(a). Fig.(5.12) also shows the magnitude response of the equivalent filter structures that were generated with the transforms of Table(s.3) and using the multiplicrs of Table(5.2).

Lowpass responsic to	Simple frequency iranaform
Highpass	$z^{-1} \Rightarrow-z^{-1}$
Bandpass (single)	$z^{-1} \Rightarrow-z^{-2}$
Bandsiop (sinule)	$z^{-1} \Rightarrow z^{-2}$
Bandoass (dual)	$z^{-1} \Rightarrow-z^{-4}$
Bandsiop (dual)	$z^{-1} \Rightarrow z^{-4}$

Table 5.3 Simple frequency transforms.

From Fig.(5.12) it can be seen that the frequency transformations of Table(5.3) retain the amplitude characteristics of the original lowpass response, erhibiting identical passband and stopband widihs and attenuations. The phase linearity of these frequency iransformations can be observed through the group delay responses. The group delay responses for the original lowpass lattice WDF and the five structures construcied through the iransforms of Table(5.3) are illustrated in Fig.(5.13). The poles and ceros of these WDF structures are shown in Fig.(5.14).

(b)

Figure 5.12 Magnitude responses of equivalent (a) lowpass, (b) highpass,
(c) bandpass, (d) bandstop, (c) dual bandpass and (f) dual bandstop filters.

(c)
(d)

Figure 5.13 Group delay responses of equivalent (a) lowpass. (b) highpass (c) bandpass. (d) bandstop. (e) dual bindpass and (f) dual bandstop filiers.

(c)

Chapler 5. WDF Frequency Transtormations
page 5/15

(e)

(f)

Figure 5.14 Pole/zero plois of equivalent (a) lowpass, (b) highpass,
(c) bandpass, (d) bandstop, (e) dual bandpass and (I) dual bandstop filters.

From the responses shown in Fig(5.13) and Fig.(5.14), it can be seen that the frequency mansforms of Table(5.3) are linear in their effect upon the phase of the structure. Therefore a latice WDF derived from a linear phase lowpass prototype through the transforms of Table(5.3), will also exhibit linear phase.

The next stage of the investigation involved frequency transformations that moved the centre point of a bandpass or bandstop type response. Using the lowpass prototype of Fig.(5.11), equivalent single and dual band lattice WDF siructures were constructed from the various APS's described in Section S.2. Each Jatice structure was then implemented with the multiplier values contained in Table(5.2). Along with the asymmetric frequency transformations. Table(5.4) contains the transformation values applied to the eample structures and the Figure numbers associated with the frequency responses of these examples.

Lowpass 10	Frequency transforms		$\begin{gathered} \beta \\ \text { value } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Fig } \\ & \text { No. } \end{aligned}$
$\begin{aligned} & \text { Bandpass } \\ & (\sin g l e) \end{aligned}$	$z^{-1} \Rightarrow \quad-z^{-1}\left(\frac{-\alpha+z^{* 1}}{1-\alpha z^{* 1}}\right)$	0.8090	1	5.17
B andstop (single)	$z^{+1} \Rightarrow z^{-1}\left(\frac{-\alpha+z^{-1}}{1-\alpha z^{-1}}\right)$	-0.1874	/	5.18
Bandpass (dual)	$z^{-1}=-z^{-1}\left(\frac{\alpha \beta+\left(\alpha+\beta^{2}(1+\alpha)\right) z^{-1}-\beta(2+\alpha) z^{-2}+z^{-3}}{1-\beta(2+\alpha) z^{-1}+\left(\alpha+\beta^{2}(1+\alpha)\right) z^{-2}-\alpha \beta z^{-3}}\right)$	0.8090	-0.5878	5.19
$\begin{gathered} \text { Bandstop } \\ \text { (dusl) } \end{gathered}$	$z^{-1} \Rightarrow z^{-1}\left(\frac{\alpha \beta-\left(\alpha-\beta^{2}(1-\alpha)\right) z^{-1}-\beta(2-\alpha) z^{-2}+z^{-3}}{1-\beta(2-\alpha) z^{-1} \cdot\left(\alpha-\beta^{2}(1-\alpha)\right) z^{-2}+\alpha \beta z^{-3}}\right)$	0.3090	-0.3090	5.20

Table 5.4 Single and multiple band frequency transforms.

(a)

Figure 5.16 Asymmetric single bandstop (a) magnitude and
(b) group delay responses with (c) pole/zero plot.

Chapter 5. WDF Frequency Translormalions
page $5 / 18$

Figure 5.18 Asymmetric dual bandsiop (a) magnitude and (b) group delay respunses with (c) pole/zero plot.

Comparing the magnitude response of the symmetric bandpass filter of Fig.(5.12)(c) with the asymmetric response of Fig.(5.15)(a), then it can be seen that the frequency transformation of Table(5.4) relains the passband width and attenumtion levels of the response but alters the widits of the transition bands and stopbands. This effect is also noticeable in the magnitude responses of the other asymmetric filters. shown by Fig(5.16)(a), Fig.(5.17)(a) and Fig(5.18)(a).

Comparing the frequency responses of the symmetric and asymmetric bandpass and bandstop cxamples, it can be ubserved that the transforms of Table(5.4) also distort the group delay responses. The main effect of this distortion can be observed by comparing the single bandpass symmetric and asymmetric group delay responses, shown by Fig.(5.13)(c) and Fig.(5.17)(b) respectively. In these group delay responses, the asymmetric frequency transformations have introduced an incline to the passtand region of the response. The angle of this incline increases as the centre of the passtund is moved away from the centre of
the responses. Therefore the more asymmetric the response, the larger the group delay distortion due to the frequency iransformation.

The effects of the asymmetric frequency transformations can also be observed in the position of a filter's poles and zeros. To illustrate these effects the pole/zero plots of the single bandpass WDF under the symmetric and asymmetric frequency transformations are shown in Fig (5.19) with their frequency specifications. Both examples were implemented with identical multiplier values and exhibis equivalent frequency responses except that the cenire of the asymmetric

Figure 5.19 Polefzero plot of equivalent asymmetric and symmetric bandpass filiers.

The zeros of the lincar phase symmetric bandpass filier, shown by Fig.(5.19)(a), exist in reciprocal comples conjugate sets. This feature was expected from lowpass linear phase designs. The zeros also possess a symmetry about the centre of the passband, which is the imaginary axis for the symmetric bandpass response. Observations of the non-linear phase asymmetric bandpass filter. Fig.(5.19)(b), revealed that the zeros also exist in reciprocal complex conjugate sets. This feature ia contrary to expectasion as the structure does not exhibit linear phase. Another observation about the zeros of Fig.(5.19)(b) is that they were no longer symmetric about the centre of the passband.

From these observations the requirements for linear phase bandpass filters cannot be expressed in terms of ensuring zeros exisi in reciprocal complex conjugate sets but as reciprocal sels that are symmetric about the centre of the passband(s) of the response. This lack of zero symmetry and phase non-linearily can also be seen in the pole/zero ploss of the other asymmetric filter eamples. shown by Fig.(5.16)(c), Fig.(5.17)(c) and Fiy.(5.18)(c).

The final stage of the asymmetric frequency Iransformation investigation was 10 characterise the movement of frequency points under the transforms. Fig. (5.20) shows the passband magnitude response of the symmetric and asymmetric single bandpass filter considered previously.

Figure 5.20 Passband magnitude response of the asymmetric and symmetric bandpass filecrs.

The action of the asymmetric Iransforms of Table(5.4) is not to shift a response along the frequency axis but to compress one half the response and expand the other half. The effect of this compression and expansion can be seen in Fig.(5.20) and between Fig.(5.12)(c) and Fig.(5.15)(a). For the asymmetric bandpass example considered, the centre of the response is moved to a frequency of 0.1 Kz , while the centre of the symmetric response is at 0.25 Hz . From the passband magnitude responses of Fig.(5.20)(b) it can be seen that the distances from the centre of the response to the edges of the passband are unequal. This is the result of compressing the $0-0.25 \mathrm{~Hz}$ region of the symmetric bandpass response into the 0 0.1 Hz range and expanding the $0.25-0.5 \mathrm{~Hz}$ region to fit the $0.1-0.5 \mathrm{~Hz}$ area of the asymmetric bandpass response.

The nature of the asymmerric lowpass-bandpass frequency transformation can be determined if the frequency mapping is described analytically. This can be achieved by expressing the tfansform in terms of a lowpass frequency variable and an equivalent bandpass frequency variable. This procedure is illustrated in Eq.(5.9), where the z transform within the lowpass-bandpass transform of Table(5.4), is represented in terms of its complex exponential.

$$
\begin{equation*}
e^{-j \omega}=-e^{-j \omega^{\prime}}\left(\frac{-\alpha+e^{-j \omega^{\prime}}}{1-\alpha e^{-j \omega^{\prime}}}\right) \tag{5.9}
\end{equation*}
$$

where

$$
\alpha=\cos \left(\omega_{0} T\right) \quad \omega_{0} \quad \operatorname{centre} \text { frequency value }
$$

ω lowpass protolype frequency $\quad \omega^{\prime}$ asymmetric bandpass frequency

Eq.(5.9) cannot be solved analytically for ω^{\prime} but simplifying it to Eq.(5.10) allows ω. to be found iteralively for a paricular value of ω and iransformation value, α.

$$
\begin{equation*}
\cos (\omega T)=\frac{2 \sin ^{2}\left(\omega^{\prime} T\right)}{1-2 a \cos \left(\omega^{\prime} T\right)+a^{2}}=1 \tag{5.10}
\end{equation*}
$$

Using Eq. (5.10) the equivalent frequency specification for the asymmetric bandpass filter can be determined along with the symmetric specification by seting $\alpha=0$. The filter specifications for the symmetric and asymmetric bandpass examples considered are detailed in Table(5.5), logether with the original lowpass specification.

filter IYpe	Alten	(dB)	$\begin{gathered} a \\ \text { value } \\ \hline \end{gathered}$	Frequency edges (H)	$\begin{gathered} \mathrm{f}_{0} \\ \left(\mathrm{~Hz}_{2}\right) \end{gathered}$
	pass	stop			
lowpass	0.1	34	I	$0 \rightarrow 0.08 \rightarrow 0.16 \rightarrow 0.5$	7
bandpass (symmeric)	0.1	34	0	$0 \rightarrow 0.17 \rightarrow 0.21 \rightarrow 0.29 \rightarrow 0.33 \rightarrow 0.5$	0.25
bandpass (asymmetric)	0.1	34	0.809	$0 \rightarrow 0.044 \rightarrow 0.066 \rightarrow 0.146 \rightarrow 0.203 \rightarrow 0.5$	0.1

Table 5.5 Filter specification for a lowpass filter with symmetric and asymmetric bandpass equivalents.

The frequency mapping of the other asymmetric frequency transformations of Table(5.4) can be determined in a similar manner as the bandpass transform by expressing the lowpass frequency variable in terms of the transformed frequency variable.

The characteristics of the frequency transformations considered can be grouped by their effects on the magnitude and phase responses. The simple transforms of Table(5.3) are linear in their modification of the magnitude and phase responses. The transformed magnitude responses retain their passband and stopband attenuetions and maintarn the widths of the various passbands, stopbands and transition bands. The linearity of these simple transforms also ensures that a linear phase lowpass response will produce a transformed filter with linear phase.

The frequency transformations of Table(5.4), which allow asymmetric filter responses, produce non-linear effects on boih the magaitude and group delay responses. Under the asymmetric frequency Iranslormations the magnitude response retains their passband and stopband attenuations and passband widihs but experience distortion of the width of each transition band. The mosi severe effect of the asymmetric frequency Iransforms is the distortion introduced to the group delay response. Therefore a linear phase lowpass response will not mansform into tinear phase asymmetric band type response.

The mon-linear characteristics of the asymmelric frequency transformations of Table(5.4) impose a design limitation upon arbitrary magnitude and linear phase specilications. Due to these limitations an asymmerric band type response thet requires equal Iransition band widths and linear phase cannot be derived from a lowpass prototype. Two design methods can be implemented to counteract the nonlines effects af the frequency iransforms. The first design meihod wauld be based upon a lowpass prototype opimized io saisfy the magnitude and a predistorted group delay response. To ensure the sain response possessed equal transition band widths the transformation value for cach section would also be optimized. The alternative method would be to optimize the multiplier and mangformation values directly on the appropriaie filter structure. The implications of these twa design approsehes are discussed in Section 5.4.

5.4 Design considerations with frequency transforms

The initisl part of this research investigated the design options invoived in satisfying arbirery megnitude and phase specifications. Conclusions of this work suggested a Iatice wDF structure whose muliplicr values were determined through optimizetion. The optimizgion techniques devaloped for this problem were based upon dual line templates, a weighted Lp-metric error function and quasi-Newton elgorithma. The general nature of the dual line tempiates and the error function allowed them to be extended from lowpass specifications to cover highpass, bandpass and bandstop type responses. It was therefore upon the latice WDF structufe and the duel lime optimizetion Icchniqucs that the desien of frequency Iransformed siructures was approsched.

5.4.1 Design approaches

Using the dual line templates and aeighted L_{p}-metric error function meant that the only design parameter that needed to be addressed was the use of the frequency uransformations. Of main concern was the non-linearity of the general
frequency transformations and a method under which they should be applied. Two methods exist, either incorporate the non-linearities of a particular fransform into a lowpass specification and then convert the lowpass solution into the appropriate response, or design the required frequency specification directly on the iransformed lattice structure.

The direct design approach is a more efficient technique as it eliminates the need to determine the distortion effects of each possible frequency transformation. This method also allows the effects of finite wordlength criteria to be measured directly, a factor that will become important when finite wordiength designs are considered.

The final design consideration with the frequency iransformations is the actual values applied to the APS's of the lattice structure. The APS's and frequency iransformations considered use the same transformation value for each APS within the lattice structure. Applying a different transformation value to each APS may improve the versalility of the structure. This procedure would allow the cutoff point of each APS of a transformed structure to be adjusted to satisfy on asymmetric frequency specification with equal transition band widihs. Following this idea a ransformed bandpass structure would contain a number of independent multipliers equal to the order of the equivalent lowpass structure plus an extra multiplier per APS. Therefore the single bandpass $2^{n d}$ order APS. shown by Fig (2.21)(a) would contain two independent multipliers while the fourth order APS of Fig.(2.21)(b) would possess three independent multipliers.

If a $7^{\text {th }}$ order lowpass latice WDF was Iransformed into a single bandpass structure then its order would be $14^{\text {th }}$ with three $4^{\text {th }}$ order APS's and one $2^{n d}$ order APS. When the same frequency transformation value is used within the bandpass structure, there would only be seven independent multipliers. If a different Iransformation value was applied to cach APS then the number of independent multipliers would increase to eleven since there are four APS's within the structure.

Extending this idea from single band to dual band structures, then an gith order APS would only contain four independent multipliers, two coefficient values, $x 2$ and $x 3$ and two frequency Iransforms, α and β. shown in Fig.(5.10). Transforming a $7^{\text {th }}$ order lowpass filter into a $28^{\text {th }}$ order dual bandpass/bandstop structure would only require seven independent multipliers if the same frequency transformation value was applied to each APS. However when different iransformation values
were applied 10 each APS. the lotal number of independent multipliers would increase to fiftern.

(a)

Figure 5.21 General bandpass (a) $2^{\text {nd }}$ and (b) $4^{\text {th }}$ order APS's.

5.4.2 Optimization considerations

The lowpass optimization icehniques based upon weighted L_{p}-metric and dual line templates were very easy to extend to an arbitrary frequency response type. The only extra parameters required for these optimization procedures involved the transformed lattice WDF seructures, the transformation values for these structures and the valid bounds for these values. The frequency responses and derivatives for the transformed sifuctures can be determined from the design equations detailed in Section 4.2 .1 and the properties of the various APS's are outlined in Appendix C1-C5. The limits on the multiplier values 10 ensure the stability and pseudopassivity of these transformed structures are also detailed in Appendix Cl-C5.

Other optimization considerations concern filter responses that have multiple bands. If this lype of filter response is required to possess constant group delay across each of its passbands, then a general design specification should allow different group delay deviations across each passband. A very effective optimization technique introduced into the simultaneous lowpass solutions involved a parameter that represented the position about which the group delay
passband templates were generated. The value of this parmmeter could be varied by the optimization routinc to alter the position of the group delay template dynamically, Extending this idea to mulifle band type response could involve applying the same group delay template position to each passband of the response or the use of a separate variable for each delay passband template. Allowing each delay passband template to move independently increases the degrees of freedom available to the optimization routine and the possibility of producing a salution.

The final optimization consideration entails the performance of the optimization techniques and the various transformed latice structures. The first part of this concern involved the effectiveness of the dual line templates, error function settings and optimization algorithms on the frequency transformed lattice structures. To discover the most effective optimization seltings for these transformed lattice WDF structures a number of magnitude-only and simultaneous specifications were investigated.

The other area of concern eniailed the introduction of estra optimization parameters in the form of different uansformation values and individual group delay passband template variables. The introduction of a separate variable for each group delay passband template was minor in comparison to the use of independent frequency transformation values. Under the most basic design approach the value(s) of the [requency transformalions would be determined analyidealty for a filter specification and the value(s) applied to each APS of the structure. Although this approach limits the frequency responses achievable, it reduces the number of optimization variables required to that required by an equivalent lowpass specification.

The other approach entailed a different frequency teansformation value for each APS of a structure. With this approach the performance of the frequency response of the structure would be increased at the expense of extra optimization variables, one for each APS of the siructure.

The incressed frequency response performance of each of these design techniques needs to be measured against extra computational cost. Implementing the APS design equations within the computer program "WDF", the properties of these design techniques were compared through an appropriate selection of frequency transformation values. Tesis to determine the relative merits of these design procedures were carried out in conjunction with investigations into the most efficient optimization routine settings. The main features of these
investigations are highlighted through a number of design examples in the next section.

5.5 Design examples

A wide combination of settings was investigated to determine the 'best' values of the optimization parameters for various lattice wDF filter types using identical frequency transformation values for each APS Tests were then extended to structures with different Iransformation values for each APS. These tests were performed using magnitude-only and simultaneous specifications on bandpass and bandstop type latice WDF structures.

5.5.1 Magnitude-only design

The objective of the magnitude-only designs was $t 0$ confirm the optimization techniques developed for lowpass structures would work under any filter type and magnitude specification. The first step of this research concerned bandpass and bandstop specifications that could be ransformed from a lowpass solution with a single transformation value. This transformation value was determined analytically for a specification and not included as an optimization variable.

Testing under this procedure required the definition of a lowpass filter specification and calculation of the order of an elliptic function that could satisfy that specification. From this lowpass specification an equivalent symmetric and two asymmetric bandpass specifications were constructed and the appropriate frequency transformation vialues calculated. The multiplier values of the bandpass structure were then optimized to satisfy the frequency specifications. These bandpass multiplier values should then converge to a similar set of values as the equivalent lowpass solution.

To illustrate this process consider the lowpass filier and equivalent symmetric and asymmetric bandpass filicr specifications shown in Table(5.6). A $7^{\text {th }}$ order elliptic Iunction was found to satisly the lowpass specification of Table(5.6) and the multiplier values for this function are given in Table(5.7). The frequency responses of a lowpass lutlice WDF structure using the multipliers of Table(5.7) are shown in Fig.(5.22).

Filter type	Allen (dB)		$\begin{gathered} a \\ \text { value } \\ \hline \end{gathered}$	Frequency edges (Hz)	$f_{0}$$\left(\mathrm{H}_{2}\right)$
	pas:	310 p			
Lowpass	0.1	50	1	$0 \rightarrow 0.1 \rightarrow 0.15 \rightarrow 0.5$	1
Bandpass (symmetric)	0.1	50	0	$0 \rightarrow 0.175 \rightarrow 0.2 \rightarrow 0.3 \rightarrow 0.325 \rightarrow 0.5$	0.25
$\begin{gathered} \text { Bandpass } \\ \text { (asymmetric) } \end{gathered}$	0.1	50	0.618	$0 \rightarrow 0.082 \rightarrow 0.1 \rightarrow 0.2 \rightarrow 0.232 \rightarrow 0.5$	0.144
$\begin{gathered} \text { Bandpass } \\ \text { (asymmelric) } \end{gathered}$	0.1	50	-0.326	$0 \rightarrow 0.222 \rightarrow 0.25 \rightarrow 0.35 \rightarrow 0.372 \rightarrow 0.5$	0.303

Table 5.6 Filter specification.for lowpass filter with symmetric and asymmetric bandpass equivalents.

Upger latlice arm			Lower lattice arm		
APS No.	APS iype	multiplier values	APS Na.	APS IYDE	multiplicrs value
1	$2^{\text {nd }}$	$\begin{array}{rr} x_{1}= & -0.783992 \\ x_{2}=0.840820 \\ \hline \end{array}$	3	2 nd	$\begin{array}{r} \mathrm{x}=-0.635752 \\ \mathrm{x5}= \\ \hline \end{array}$
2	151	$x_{3}=0.751907$	4	2лd	$\begin{aligned} & x_{6}=-0.930190 \\ & x_{7}=0.796660 \end{aligned}$

Table 5.7 Lowpass lattice WDF multiplier values that satisfy the lowpass specification of Table(5.6) with an elliptic function.

(a)

Chapter 5. WDF Frequency Transformations
page 5/28

(c)

(d)

Figure 5.22 Lowpass $7^{1 h}$ order latlice responscs: (a) overall and (b) passband magnitudes, (c) overall group delay and (d) pole/zero responses.

Zeroing the initial multiplier valucs, optimiziny with the dual line templates set to the lowpass frequency specification of Table(5.6) and the optimization procedures discussed in Chapter 4, resulted in the multipliers of Table(5.8). With these multipliers. the 7 th order lowpass lattice filter possessed the frequency responses shown in Fig.(5.23).

Upper lallice arm			Lower lattice arm			
APS No.	APS 1 yde	multiplier values	APS No.	APS Ivne	multiplier	values
1	2nd	$\begin{aligned} & x_{1}=-0.553318 \\ & x_{2}=0.827318 \\ & \hline \end{aligned}$	3	$2^{\text {nd }}$	$\begin{array}{ll} x_{4}= & -0.86 \\ x_{5}= & 0.78 \\ \hline \end{array}$	$\begin{aligned} & 7729 \\ & 0335 \\ & \hline \end{aligned}$
2	131	$\pm 3=-0.028986$	4	$2^{\text {nd }}$	$\begin{aligned} & x_{6}=-0.00 \\ & x_{7}=0.55 \end{aligned}$	$\begin{aligned} & 1459 \\ & 5476 \\ & \hline \end{aligned}$

Table 5.8 Lowpass latlice WDF multiplicr values that satisfy the
lowpass specification of Table(5.6) under optimization.

(ม)

(c)

(d)

Flgure 5.23 Lowpass $7^{\text {th }}$ order frequency; (a) overall and (b) passband magnitude, (c) overall group delay and (d) polefzero responses.

With the optimization settings for weights, error points and transition band template angles determined from the lowpass design, the bandpass specifications of Table(5.6) were apprathed with a $14^{\text {th }}$ order bandpass structure. The multiplier values designed $t 0$ satisfy the symmetric bandpass specification are given in Table(5.9) along with frequency responses that are detailed in Fig.(5.24).

$\begin{gathered} \text { latice } \\ \text { arm } \\ \hline \end{gathered}$	APS Nos	APS typo	APS multipliers						
Upper	1	4th	$\mathrm{XI}_{1}=-0.49493$	$\times 2=$	0.77795	83 $=$	0.0	$x_{4}=$	0.0
	2	$2^{\text {nd }}$	$x 5=0.26279$	$\times 6 \pm$	0.0				
Lower	3	4th	$\times 7=-0.85634$	$x \mathrm{x}=$	0.77329	$\times 9=$	0.0	$\times 10=$	0.0
	4	4ih	$\mathrm{x}_{11}=-0.17252$	$\times 12=$	0.63186	$\times 11=$	0.0	$\mathrm{X}_{14}=$	0.0

Table 5.9 Bandpass lattice WDF multiplier values that satisfy the
symmerric specification of Table(5.6) under optimization.

(a)

(c)

(d)

Flgure 5.24 Symmeric bandpass frequency: (a) overall and (b) passband magnitude, (c) overall group delay and
(d) pole/zero responses.

The multiplier values for the $14^{\text {th }}$ order bandpass filter that satisfied the first and second asymmetric bandpass specifications of Table(5.6) are lisied in Table(5.10) and Table(5.11) respectively. The frequency responses of these two asymmetric examples are given by Fig.(5.25) and Fig.(5.26).

Iatice	APS	APS	APS multipliers						
arm	Nos	lype							
Upper	1	$4^{\text {th }}$	$\mathrm{x}_{1}=-0.49612$	$\mathrm{x}_{2}=$	0.77376	$x_{1}=$	0.618	$\mathrm{X}_{4}=$	0.618
	2	$2^{\text {nd }}$	$\mathrm{X} 5=0.30323$	$\mathrm{x}_{6}=$	0.618				
Lower	3	$4{ }^{\text {lh }}$	$\pi 7=-0.85689$		0.77359	X9 ${ }^{\text {a }}$	0.618	$\times 10=$	0.618
	4	$4^{1 / \mathrm{h}}$	$\mathrm{EH}_{1}=-0.19585$	$\mathrm{K}_{12}=$	0.64808	$\mathrm{x}_{13}=$	0.618	\% 14.	0.618

Tuble 5.10 Bandpass lutuce WDF multiplier values that satisfy the
first asymmetric specification of Table(5.6) under oplimization.

(a)

(b)

Chapter 5. WDF Frequency Transformations
page 5/31

(c)

(d)

Flgure 5.25 First asymmetric bandpass specification; (a) overall and (b) passband magnitude. (c) overall group delay and (d) pole/zero responses.

latice arm	APS Nos.	APS Iype	APS multipliers				
Upper	1	$4^{\text {th }}$	$x_{1}=-0.50159$	$x_{2}=$	0.77789	$x 3=-0.326$	$\mathrm{x}_{4}=-0.326$
	2	2nd	$x g=0.28259$	$\mathrm{x}_{6}=$. 0.326		
Lower	3	4th	$\mathrm{x}_{7}=-0.18526$	$\mathrm{X}_{8}=$	0.64554	$x g=-0.326$	$\mathrm{x}_{10}=-0.326$
	4	41h	$\mathrm{x}_{11}=-0.85835$	$517=$	0.77240	$\mathrm{x}_{13}=-0.326$	$x_{14}=-0.326$

Table 5.11 Bandpass iallice WDF multiplier values that satisfy the second asymmetric specification of Table(5.6) under optimization.

(a)

Figure 5.26 Second asymmetric bandpass specification: (a) overall and (b) passband magnitude. (c) uverall group delay and (d) pole/zero responses.

The frequency responses shown in Fig.(5.24). Fig(5.25) and Fig(5.26) illustrate that the optimization techniques have produced solutions 10 the frequency specifications of Table(5.6). Compasing the multiplier values of Table(5.9-11) with the equivalent lowpass values of Table(5.8) indicates that the bandpass responses are similar to a transformed lowpass solution.

The next part in this area of research entailed bandpess and bandstop specifications that could not be satisfied by a transformed lowpass solution, such as asmmetric responses that had equal Iransition band widths and different attenuation levels for passband(s) or stopband(s). This procedure involved applying a different transformation value to each APS of the structure, where the values for lhese individual Iranstormations were determined by optimization. With this technique the total number of multipliers that required optimization was less than the order of the filter. This is due to the nature of the bandpass and bandstop fourth order APS's. Although these sections contain four multipliers, Iwo of them are constrained to be cqual and so only threc values needed to be optimized.

The first step in the use of different frequency iransformation values as optimization variables was ic ensure that the oplimization routines would find solutions 10 the bandpass filter specifications of Table(5.6). For these specifications the optimized valuc for the frequency transformation within each APS should all be equal.

Optimization with independent frequency transformation values to satisfy the bandpass specifications of Tuble(5.6) produced the multiplier sers shown in

Table(5.12). The overall and passband magnitude frequency responses for these three solutions are delailed by Fig.(9.27).

Table 5.12 Randpass lattice WDF multiplier values that satisfy the specifications of Table(5.6) with different Iransformation values.

(a)

(b)

Figure 5.27 Magnitude responses of bandpass filters that satisfy Table(5.6) specifications; symmetric (a) overall and (b) passband. at $^{\text {at }}$ asymmetric (c) overall and (d) passband and $2^{n d}$ asymmetric (c) overall and (f) passband.

Having confirmed that this independent frequency Iransformation technique was capable of solving specifications that have lowpass equivalents, the next step was to consider specifications that have no lowpass equivalent. Two asymmetrical bandpass specificalions considered are shown in Table(5.13). Frequency specifications that cannot be satisfied by a transformed lowpass solution are characterised by asymmetric responses with equal transition band widths and different passband and stopband attenuations.

Example	Spec.	lower slopband	passband	upper stopband
1	Ait (dB)	50	0.1	50
	Freg (Hz)	$0 \rightarrow 0.075$	$0.1 \rightarrow 0.2$	$0.225 \rightarrow 0.5$
2	Alt $(d B)$	50	0.5	40
	Frea (dB)	$0 \rightarrow 0.22$	$0.26 \rightarrow 0.34$	$0.38 \rightarrow 0.5$

Table 5.13 Asymmerric bandpass latice WDF frequency specifications.

The multiplier values for the bandpass siruciures that satisfy the frequency specifications of Table(5.13) are given in Table(5.14), while the overall and passband magnitude frequency responses of these solutions are shown by Fig.(5.28).

The design procedure upplicd to the singlc bandpass and bandstop filter structures was then implemented upon the dual bandpass and bandstop specifications.

Table 5.14 Bandpass Iatice WDF multiplier values that satisfy the specifications of Table(5.13).

(c)

(d)

Figure 5.28 Magnitude responses that satisfy the specifications of Table(5.13); example 1 (a) overall and (b) passband and example 2 (c) overall and (d) passband.

Results from these tesis proved the versatility and efficiency of optimization procedures based upon the dual linc template scheme and the quasi-Newion algorithms. Results also supported mosi of the optimization parameter rules and setings developed for lowpasy designs based upon the dual line remplate scheme. These setings concerned the weighting values. the number and distribution of error points and the transition band descriptions.

Tests were mosi successlul with weighting values that followed the equal deviation/equal error rule described in Chapter 3 and an error point distribulion technique that group more points around the regions of greatest change. The number of error poinss per band used for the single and dual band responses was lower than for lowpass specifications. The number of error point represents a compromise between the time laken to calculate the error function at each iteration and the accuracy with which the actual response was measured. Because of the increased number of biands within the response and consequently the total number of error points, the number of points per band was limited to the range 10 $<x<35$.

5.5.2 Simultaneous designs

Having shown that the ideas of optimization and frequency transformations can be applied to arbitrary magnitude-only designs, the investigation was extended to incorporate simultancous specifications The work within this area of research followed the procedures used for the maynitude-only designs of firat satisfying symmetric bandpass responses thall cuuld be transformed from simultaneaus

Jowpass solutions and then moving to specifications that cannot be produced from Iransformed lowpass solutions.

Using the specification of Table(5.15), the multipliers of a $13^{\text {th }}$ order lowpass latice WDF were generated through optimization and are given in Table(5.16).

Specificalion		Dassband	slooband
Gain	alten (dB)	0.1	50
	Frea ($\left.\mathrm{H}_{2}\right)$	$0 \rightarrow 01$	$0.15 \rightarrow 0.5$
Group	dev $(\%)$	5	$/$
	Freq ($\left.\mathrm{H}_{4}\right)$	$0 \rightarrow 0.1$	$0.15 \rightarrow 0.5$

Table 5.15 Simulaneous lowpass latice WDF frequency specification.

Upper latice arm				Lower lattice arm			
APS No.	APS type	multiplier values		APS No.	APS type	multiplier value	
1	2nd	$\begin{aligned} & x_{1}= \\ & x_{2}= \end{aligned}$	$\begin{array}{r} -0.617480 \\ 0.842052 \\ \hline \end{array}$	5	$2^{\text {nd }}$	$\begin{aligned} & x 8= \\ & x 9= \end{aligned}$	$\begin{array}{r} -0.706464 \\ 0.718120 \\ \hline \end{array}$
2	20d	$\begin{aligned} & x 3= \\ & \times 4= \end{aligned}$	$\begin{array}{r} -0.347365 \\ 0.839724 \\ \hline \end{array}$	6	$2^{\text {nd }}$	$\begin{aligned} & x_{10}= \\ & x_{11}= \end{aligned}$	$\begin{array}{r} -0.302902 \\ 0.880970 \\ \hline \end{array}$
3	$2^{\text {nd }}$	$\begin{aligned} & x_{5}= \\ & x_{6}= \end{aligned}$	$\begin{array}{r} -0.878290 \\ 0.711525 \\ \hline \end{array}$	7	2nd	$\begin{aligned} & x_{12}= \\ & \times 13= \end{aligned}$	$\begin{array}{r} -0.630416 \\ 0.914474 \\ \hline \end{array}$
4	131	$\mathrm{x}_{7}=$	0.758694				

Table 5.16 Multiplier values that satisfy the specification of Table(5.15).
The equivalent symmetric bandpass response to the lowpass specification of Table(5.15) was determined and is shown in Table(5.17). The design of a filter to satisfy the specification of Table(5.17) was first approached with a $26^{\text {th }}$ order bandpass structure that had cqual frequency transformation values, all set to zero as the specification is symmetric. The multipliers of this structure were then optimized using the rechniques discussed for the magnitude-only design and are shown in Table(5.18). with frequency responses illustrated by Fig.(5.29).

Specification		luwer stopband	passband	upoer slopband
Gain	atren (dB)	50	0.1	50
	Fred (Hz)	$0 \rightarrow 0.175$	$0.2 \rightarrow 0.3$	$0.325 \rightarrow 0.5$
Graup Delay	$\operatorname{dev}(\%)$	1	5	1
	Frey $(\mathrm{H} 2)$	$0 \rightarrow 0.175$	$0.2 \rightarrow 0.3$	$0.325 \rightarrow 0.5$

Table 5.17 Symmetric bandpass latice WDF frequency specification.

Table 5.18 Bandpass lutlice WDF multiplier values that satisfy the specificuans of Table(5.17).

Figure 5.29 Frequency responses of symmetric bandpass filter: magnitude (a) overall and (b) passband and sroup delay (c) overall and (d) passband.

The specification of Table(5.17) was then approached with $26^{\text {th }}$ order bandpass alructure where the fresucncy fransformation values for each APS were optimization parameters. This was to cnsure that for the symmetric specification
the solutions with and without the frequency transformation values as optimization parameters were equivalent. The multipliers from this bandpass filter are shown in Table(5.19) while its frequency respenses given in Fig.(3.30).

lattice 1 fm	APS Nos.	APS type	APS mulıipliers						
Upper	1	4 h	$x_{1}=-0.52561$	$\times 2=$	0.84669	$\mathrm{x}_{3}=$	-0.04464	$x_{4}=$	-0.04464
	2	41 h	$\mathrm{x}_{5}=-0.532 .16$	$16=$	0.82934	$\times 7=$	0.04543	1过 $=$	0.04543
	3	4th	$x y=-087453$	$\times 10=$	0.70422	111 =	0.00179	K12 $=$	0.00175
	4	$2^{\text {nd }}$	$x_{13}=0.75564$	$\mathrm{X}_{14}=$	0.02427				
Lower	5	41 h	$\pi_{15}=-0.49930$	$\mathrm{x}_{16}=$	0.94488	$\mathrm{K}_{17}=$	-0.13618	118 $=$	-0.13618
	6	4th	$x 19=-0.49872$	$x_{20}=$	0.93975	$\times 21=$	0.14387	122 =	0.14387
	7	4ih	$x 23=-0.71434$	$\mathrm{x}_{2} \mathbf{4}=$	0.69962	$\mathrm{x} 25=$	0.00239	$\times 26=$	0.00239

Table 5.19 Multiplicr values that satisfy the specifications of Table(5.17) using the frequency iransformation values as opimization parameters.

(c)

(d)

Figure 5.30 Frequency responses of symmetric bandpass filter: magnitude (a) overall and (b) passband and group delay (c) overall and (d) passband.

The next step in the simultancous design investigation involved the esmmetric bandpass specifications of Table(5.6). Alithough the magnitude side of these specifications can be satisfied by a transformed lowpass solution. the fransformation process distorts the phase lincarity. As a result the simultaneous specifications can only bc approached with structures that use the frequency transformation values as optimization parameters. Results confirmed the design assumptions by generating linear phase solutions to various asymmetric specifications.

The last area of concern with simultaneous specificaicons involved magnitude responses that could not be satiyfied by Iransformed lowpass solutions. This entailed finding simultancous solutions to the asymmetric bandpass specifications with equal uransition band widths. such as those given in Table(5.20).

Examole	Spec	ficalion	luwer siopband	passband	upger stopband
1	Gain	日ll (dB)	50	0.1	50
		freg (Hz)	$0 \rightarrow 0075$	$0.1 \rightarrow 0.2$	$0.225 \rightarrow 0.5$
	Group Delay	dev (\%)	1	10	1
		frey (H_{6})	$0 \rightarrow 0.075$	$01 \rightarrow 0.2$	$0.225 \rightarrow 0.5$
2	Gain	att (dB)	50	0.5	40
		frea (Ha)	$0 \rightarrow 0.22$	$0.26 \rightarrow 0.34$	$0.38 \rightarrow 0.5$
	Group Delay	dev (\%)	1	1	1
		fred (Hz_{2}	$0 \rightarrow 0.22$	$0.26 \rightarrow 0.34$	$0.38 \rightarrow 0.5$

Table 5.20 Asymmetric bandpass Jatice WDF frequency specifications.

Frequency responses for the solution to the second specification of Table(5.20) are shown in Fig.(5.31) and Fiy (5.32) respectively. The multiplier values for these siructures gre given in Table(5.21).

(a)
(b)

Chaplar 5. WDF Frequency Transtormalions
page 5/41

(c)

(d)

Figure $\mathbf{5 . 3 1}$ Frequency responses of first usymmetric bandpass filter from Table(5.20); magnitude (a) overall and (b) passband and group delay (c) overall and (d) passband.

(b)

(c)
(d)

Figure 5.32 Frequency responses of second asymmetric bandpass filter from Table(s.20); magnitude (a) overall and (b) passband and yroup delisy (c) overall and (d) passband.

Solution for second asymmetric bandpass specification from Table(5.20)

Upper	1	$4^{\text {th }}$	$\mathrm{x}_{1}=-0.75288$	$\mathrm{x}_{2}=$	0.70138	$\mathrm{x}_{3}=$	-0.36515	$\mathrm{x}_{4}=$	-0.36515
	2	4ih	$x_{5}=-0.30943$	$\mathrm{x}_{6}=$	0.88422	x $7=$.0.14055	$\mathrm{X}_{8}=$	-0.14055
	3	4th	$x g=-0.11397$	$\mathrm{K}_{110}=$	0.63292	111 $=$	-0.42628	$x_{12}=$	-0.42628
	4	$2^{\text {nd }}$	$\mathrm{K}_{13}=0.70898$	$\times 14=$	-0.51125				
Lower	5	4/h	$\mathrm{x}_{15}=-0.14717$	$\mathrm{x}_{16}=$	0.72472	$\mathrm{x}_{17}=$	-0.37688	$x 18=$	-0.37688
	6	$4^{1 / h}$	$x 19=-0.20425$	$\times 20=$	0.81318	$\times 21=$	-0.31070	K22 $2 \times$	-0.31070
	7	4th	$x 23=-0.58097$	$\times_{24}=$	0.66856	$\times 25=$	-0.35744	2.76 =	-0.35744

Table 5.21 Bandpass lattice WDF multiplier values that satisfy the specifications of Table(5.20).

5.6 Conclusions

This Chapter has discussed the ideas of frequency transformations and how they can be applied $t o$ lattice WDF structures to produce highpass. bandpass and bandstop type responses. Experiments have shown that simple frequency transformations that do not alter the widih of passbands or move the centre frequency point, are linear in their effects upon gain and group delay. Frequency Iransformations that create asymmetric bandpass or bandstop type responses. diston the phase and the relative widths of transition bands in the process.

To counteract the non-linearities of the frequency transformations. optimization was applied to the bandpass and bandstop latice structures directly A further technique to compensale for the transforms' non-linearities was to consider the frequency transformation value of each APS of a structure as an optimization variable. This technique follows the ideas used in analogue filter designs where the regonant frequency of a section within the filter is tuned to a slightly different point to achieve the desired cut-off tate Different frequency
transformation values for each APS within the latice WDF structure allows the same principle to be applied within the digial domain.

The performance of this technique and the optimization procedures was verified through a large number of design examples. These examples included symmetric specifications that required the frequency Iransformation value for each APS 10 be zero, symmetric specifications that required the frequency iransformation value of each APS to be equal and asymmetric specifications that possessed equal transition band widits and unequal stopband attenuations that could only be satisfied with different transformation value for each APS.

The procedure of applying a different [requency transformation value to each APS of a structure increases the degrees of freedom of the structure as a whoie. An increase in the degrees of freedom of the latice WDF improves the versatility and performance of the structure, allowing it to satisfy a wider range of arbitrary magnitude and phase specifications. The transformed APS's suggested in this Chapter do not exploit all the degrees of freedom available, determined by the number of independent multipliers in an APS. Therefore, although the 4 th order bandpass and bandstop APS's contain four multipliers, only three are independent while the gth order dual bandpass and bandsiop APS's only possess four independent multipliers

Maximizing the degrees of freedom available to the overall strucrure requires APS's that do not contain dependent multipliers, such as the $1^{3 t}$ and $2^{\text {nd }}$ order Jowpass APS's of more general $4^{1 \text { h }}$ and $8^{\text {th }}$ order APS's. Designs involving lowpass APS's would entail applying single and multi-band frequency specifications directly to the lowpass lattice WDF detailed in Chapter 4. For the range of examples considered. the limited degrees of freedom of the $2^{\text {nd }}$ and $4^{1 / h}$ order bandpass and bandstop APS's did not hinder the design process. However. this was not irue for the $4^{\text {th }}$ and $8^{\text {th }}$ order dual band APS's which imposed severe limitation upon the performance of the lattice structure.

Optimization of the highpass, bandpass and bandstop lype magnitude and simultaneous specifications confirmed the effectiveness of the ideas and procedures developed for lowpass designs. These optimization techniques included the dual line templates. the weighted Lp-metric error function and the quasiNewton algorithms. A number of the optimization settings developed for the lowpass designs held true for these arbitrary specifications.

These settings included an equal deviation/equal error weighting scheme and the clustering of error points in regions of greatest change. Error points were spaced under the ideas outlined in Chapter 4, where for gain templates they were placed around the edge(s) of a template band. Within group delay templates the error points were spaced evenly over the passband(s). The ratio, β, controls the contributions of gain and group delay errors to the overall error function. Its value was limited to the range $0.6<\beta<0.9$ so that for simultaneous designs more emphasis was placed upon the gain response to ensure it was established before trying to satisfy the group delay specification. This procedure follows the ideas discussed in Chapter 3. In all optimization tests the initial multiplier values were started from zero

In most design cases the number of error points per band was reduced to $15<x<35$ to decrease the time taken to calculate the error at each iteration and as a result improves the speed of the design process. However. low densities of error points made bandpass specifications with very wide stopbands more susceptible to spikes. To avoid this possibility the density of error points in narrower stopbands was reduced in favour of higher densities in the wider stopbands. Repositioning the crror points within the stopbands of a specification allows the total number of error points to be kept to a minimum. Use of the transition band templates within arbitrary magnitude and phase specifications confirmed the ideas developed for lowpass design in Chapter 4, where the more closely the goal response could be modelled. the more acceptable any design solutions. The shape of the ransition band template. defined through an upper and lower angle, was varied to encouraging apid cut-off around the edge of a passband and a slower cut-off toward the edge of a stopband.

The purpose of this Chapter has been 10 outine the ideas and models for frequency transformations of the latice WDF and its application to arbitary magnitude and phase specifications. Examples provided in this Chapter show that the transformed APS's detailed are capable of satisfying a wide range of frequency specification. Although the dual band APS's can be implemented to achieve selective magnitude-only frequency specificstions, their limited degrees of frecdom and the introduction of linear phase prompted dual band specifications 10 be addressed using lattice structures with the simpler $1^{\text {ti }}$ and $2^{\text {nd }}$ order lowpass and highpass APS's.

With descriptions and equations for all the APS's considered, the next asea of research entailed producing finite wordlength designs for arbitrary magnitude
and phase specifications. An oulline and discussion of the techniques involved in the finite wordlength design process is provided in Chapter 6.

References

1) Ali. A. M.. -Design of Low-Sensitivity Digital Filters by Linear Transformasions", IEEE Trans. Circuits and Systems. Vol CAS-27, No. 6, June 198, pp435-444.
2) Conatantinides, A. O., "Spectral Transformations for Digital Filtera". Proc. IEE, Vol 117. No. 8. August 1970, pp1585-1590.
3) Gulluoglu, S. N. "Frequency Transformations for Wave Digial Filera", Signal Processine III: Theoriet and Applications. Vol C3II. No. 11, November 1986, ppl99. 202.
4) Lawson, S. S., Frequency Transformations for the simple 2-port Wave Digital Filter Adaptor Chain", Proc. IEE. Vol 132, Pr. O, No. 5. October 1985. pp237-240.
5) Mathamatica, Wolfram, S., Addison-Wesley. California. 1988.
6) Drchard. H. J. and Temes, G. C., "Filter Design using Transformed Variablea". IEEE Trana. Circuit Theory. Vol CT-15. No. 5, December 1968, pp385-408.
7) Swamy. M. N. S. and Thyagarajan, K. S. "Digital Bandpan and Bandatop Filters with Variable Center Frequency and Bandwidih". Proc. [EEE, Vol 123. No. 11. November 1976. pp1632-1634.

Chapter 6

Finite Wordlength Designs

The final objective of any digital filter design is a set of finite wordlength coefficients that satisfy a given specification. The main thrust of this research has been to investigate and develop techniques for the design of WDF's capable of salisfying arbitrary magnitude and phase designs. These rechniques have been based upon lattice WDF's and oplimization. Initial designs have provided solutions to arbitrary specifications with coefficient values that require a high degree of accuracy. The next step in the design process entails starting with these high accuracy or ideal coefficicnt values and producing equivalent finite wordtength solutions.

The first part of this Chapter details the effects of finite wordlength constraints upon the responses of the lattice WDF determined in both the frequency and time domains. The Chapter then outlines the options for finite wordength designs and the opimization techniques adopied. The Chapter concludes with a number of finite wordlength designs for magnitude-only and simultaneous frequency specifications and a discussion of the effects of finite wordength constraints upon digital filter designs.

6.1 Finite Wordlength Effects

The crrors introduced by finite wordlength criterion may be grouped into two areas. The first area relates to the transfer function of the filter and with what accuracy its coefficient values are represented. The other area concerns the hardware upon which a digital filter is implemented.

The frequency response of a transfer function may be calculated analytically for an arbitrary set of filter coefficients with a large degree of accuracy. The filter coefficients may themseives be represented with a large degree of accuracy or limited to a specific wordlengit. Calculating the response of the transfer function analytically with finite wordength coefficicnt values provides an indication of their effects in isolation to the finite wordlength effects introduced by any hardware implementation. To consider the effects of quantizing the filter coefficient values on the lattice WDF, the responses of a filter were determined in
the frequency domain with a range of finite coefficient wordlengths quantized under a range of procedures.

Finite wordlength errors due to hardware implementation relate to the accuracy with which the transfer function cun be determined. This is limited by the wardlength of the hardware, in the form of multiplier, adder, input and autput data wordlengits and the rounding. overflow and scaling techniques applied. Hardware limitations can only be simuluted in the lime domain and the filter's response must be evaluated by applying a FFT to the impulse response. Using this technique the effects of different rounding, overflow and scaling procedures can be modelled and related to a filter's frequency responses.

The only method of confirming the accuracy of these simulated resulis involves generating the lattice WDF upon a DSP chip and measuring the actual frequency responses with a spectrum analyser. Results from implementing latice WDF's upon aSP chip are detailed later on in this Chapter.

6.1.1 Frequency domain simulation

Frequency domain calculations are based upon an analytical evaluation of the transfer function of a filter. Thesc calculations are performed to the full accuracy of a computer system and do not allow the effects of rounding and overflow to be modelled. As consequence the only finite wordlength effect that can be modelled in the frequency domain is the distortion of the frequency response resulting from quantizing the filter coefficient values.

The low coefficient sensitivity properties of WDF structures enable them to retain a desired frequency response with low coefficient wordengihs. This can be illustrated through the 7 th order latice WDF of Fig.(6.1) which satisfies the lowpass specification of Table(6.1) with the coefficient values given in Table(6.2).

Gain asaband	Gain gropband	Samp.		
all (dB)	edre ($\left.\mathrm{H}_{2}\right)$	alt (dB)	edre (Hz)	freq (Hz)
0.1	0.1	50	0.15	1

Table 6.1 Lowpass filter specification.

For this enample, the multiplicr values of T able(6.2) were treated as ideal and then used to produce $16,12,8,7,6$ and 5 bits quantized versions. In all the design considered the bit length specified includes alen bit. The magnitude frequency
response of this $7^{\text {th }}$ order latice WDF was then determined for each set of quantized coefficients. Distortion of the filter's frequency response due to coefficient quantization can be seen in Fig.(6.2), showing the frequency responses for each different cuefficient set.

Figure $6.17^{\text {th }}$ order lowpass latice WDF structure.

Upper latice arm				Lower lattice arm			
APS No.	APS lype	multiplier values		APS No.	APS Iype	multiplier values	
1	2Id	$\begin{aligned} & x_{1}= \\ & x_{2}= \end{aligned}$	$\begin{array}{r} -0.783992 \\ 0.840820 \\ \hline \end{array}$	3	$2^{\text {nd }}$	$\begin{aligned} & \mathrm{K}_{4}=-0.63 \\ & 15=0.91 \end{aligned}$	$\begin{aligned} & 5752 \\ & 6427 \\ & \hline \end{aligned}$
2	$1 \leq 1$	$\times 3=$	0.751907	4	$2^{\text {nd }}$	$\begin{aligned} & x_{6}=-0.93 \\ & x_{7}=0.79 \end{aligned}$	190 6660

Table 6.2 Lowpass lattice WDF multiplier values that satisfy the lowpass specification of Table(6.1) with an eiliplic function.

(c)

(d)

Figure 6.2 (a)-(b) overall and (c)-(d) passband magnitude frequency responses using quantized versions of the multipliers of Table(6.2).

The frequency responses of Fig. (6.2) clearly show that the lattice structure is less sensitive to coefficient changes in the passband region of its response than the stopband region. This leature is a property of the latice structure and can be further illusirated if the coefficient sensitivities for this structure are calculated. Fig.(6.3) shows the gain coefficient sensitivities for the upper and lower lattice arm multipliers.

The gain coefficient sensitivities of Fig.(6.3) show a higher sensitivity acrosi fis stopband region. This properiy is a feature of the lattice structure. Across the stopband region the action of the lattice is to subtract two virtually identical numbers, generating a very smalt number that is susceptible to noise. Despite the higher sensitivity in the stopband, the latiice structure is still able to retain an acceptable frequency response under very short coefficient wordengigs.

(a)

(b)

Figure 6.3 Gain coefficient sensitivities for upper arm (a) overall and (c) passband and lower arm (b) overall and (d) passband responses.

Research to date has only considered the effects of finite wordength coefficients upon the magnitude response of WDF's and the corresponding gain coefficient sensitivities. The addition of group delay constraints into a specification, dramatically alters the minimum wordengith that can be achieved before frequency responses become unacceptable. The presence of finite wordlength coefficients in simultaneous specifications can be illustrated through a number of examples iniroduced in Chapter 4 and Chapter 5.

First consider the $11^{\text {th }}$ order latlice WDF of Fig.(6.4). Using a filter of this order the design programs and optimizution techniques discussed in Chapter 4 were applied $t 0$ produce a solution that satisfied the simultancous lowpass specification of Table(6.3). The coefficient values of this solution are given in Table(6.4). These coefficient values were calculated with the full 64 bit accuracy of the computer system. The coefficients of Table(6.4) therefore represent an ideal set of values that can only be reproduced with a large wordlength system.

Figure $6.411^{\text {th }}$ order lowpass latice WDF structure.

Gain zassband		Gain stopband		Delay passband		$\begin{gathered} \text { Samp. } \\ \text { frea }(\mathrm{Hz}) \\ \hline \end{gathered}$
alt (dB)	edge (Hz)	all (dB)	cdge (H_{2})	dev (\%)	edee ($\mathrm{Hz}^{\text {2 }}$	
0.1	0.1	50	0.15	10	0.1	1

Table 6.3 Simultancous lowpass filter specification.

Upper lallice arm				Lower lattice arm			
APS No.	APS iype	multiplier values		APS No.		multiplier values	
1	2nd	$\begin{aligned} & x_{1}= \\ & x_{2}= \end{aligned}$	$\begin{array}{r} -0.716631 \\ 0.938000 \\ \hline \end{array}$	4	$2^{\text {nd }}$	$\begin{array}{lr} x_{6}= & -0.66 \\ x_{7}= & 0.97 \\ \hline \end{array}$	982 1084
2	2 nd	$\begin{aligned} & x_{3}= \\ & x_{4}= \end{aligned}$	$\begin{array}{r} -0.753809 \\ 0.793809 \\ \hline \end{array}$	5	2nd	$\begin{aligned} & x 8=-0.74 \\ & x g=0.88 \\ & \hline \end{aligned}$	$\begin{aligned} & 8782 \\ & 6975 \\ & \hline \end{aligned}$
3	131	$\times 5=$	0.848703	6	2nd	$\begin{aligned} & x_{10}=-0.89 \\ & x_{11}=0.74 \end{aligned}$	$\begin{aligned} & 8191 \\ & 8912 \end{aligned}$

Table 6.4 Lowpass latice WDF multiplier values that satisfy the simultaneous lowpass specification of Table(6.3).

Fig.(6.5) shows the magnitude response of the lattice WDF of Fig.(6.4) under different sets of coefficient values. Each coefficient set represents a quantized version of the 'ideal' multipliers of Table(6.4). The coefficient sets used for this comparison were generated by quantizing the multiplier values to 16. $12.10,9,8$ and 7 bis. Fig.(6.6) shows a comparison of the corresponding group delay responses using the same set of finite wordlength coefficient values.

Figure 6.5 Magnitude responses for different coefficients wordlengths showing (a)-(b) overall and (c)-(d) passband responses.

(a)

Figure 6.6 Group delay responses for different coefficients wordengthy showing (a)-(b) overall and (c)-(d) passband responses.

The magnitude responses of Fig.(6.5) confirm the low coefficient sensitivity properties of the lattice structure. It is the group delay responses of Fig.(6.6) that are of interest. Reducing the cocfficient wordlengih has areater effect upon the
group delay response. An indication of the effects of reducing the coefficient wordlength can be provided by calculating the gain and group delay coefficient sensitivities. The passband region of the gain coefficient sensitivities for the multipliers of Table(6.4) is shown in Fig.(6.7), while the corresponding group delay coefficient sensitivities are illustrated in Fig. (6.8).

(c)

Figure $6.711^{\text {th }}$ order lattice gain coefficient sensitivity responses across the passband with respect to (a)-(b) upper arm and (c)-(d) lower arm multipliers.

Figure $6.81^{\text {th }}$ order lauice delay coefficient sensitivity responses across the passband with respect to (a)-(b) upper arm and (c)-(d) lower arm multipliers.

The group delay coefficient sensitivity of a particular muliplier is higher than the corresponding gain sensitivity. This indicales that the group delay response of A Iatice WDF is mare susceptible to changes in coefficient values than the gain response. As a result simultancous designs require a higher minimum coefficient wordlength $t o$ saligfy a fiaite wordengih specification than equivalent megnitude-only designs This higher group delay coefficient sensitivity whs also eshibited by highpass, bandpass and bandstop lype structures. The effecis of finite wordength constraints upon a bandpass structure can be iliustrated by comparing the frequency responses of a solution to a simultancous specification under different coefficients wordlengths and then calculating itg gain and group delay coefficient sensitivities.

Consider the $26^{\text {th }}$ order bandpass latice WDF of Fig.(6.9) which satisfies the simultaneous specification of Table(6.5) with the coefficient of Table(6.6).

Figure $6.926^{\text {lh }}$ urder bandpasy latice WDF structure.

Specification		lower slopband	passband	upper stopband
Gain	atien (dB)	50	0.5	40
	freu (Hz)	$0 \rightarrow 0.22$	$0.26 \rightarrow 0.34$	$0.38 \rightarrow 0.5$
Group Delay	dev $(\%)$	1	1	1
	freg $(H z)$	$0 \rightarrow 022$	$0.26 \rightarrow 0.34$	$0.38 \rightarrow 0.5$

Table 6.5 Simullaneous bandpass lattice WDF frequency specification.

$\begin{gathered} \text { Iattice } \\ \text { arm } \\ \hline \end{gathered}$	APS Nos	APS type	APS multipliers						
Upper	1	4 h	$x_{1}=-0.75288$	$x_{2}=$	0.70138	$\mathrm{x}_{3}=$	-0.36515	$x_{4}=$	-0.36515
	2	$4^{\text {th }}$	$\mathrm{x}_{5}=-0.30943$	$\mathrm{x}_{6}=$	0.88422	$\mathrm{K}_{7}=$	-0.14055	$\mathrm{x}_{\mathrm{g}}=$	-0.14055
	3	$4{ }^{\text {th }}$	ng $=-0.11397$	$\times 10=$	0.63292	$\times 11=$	-0.42628	$\times 12=$	-042628
	4	$2^{\text {nd }}$	$x_{13}=0.70898$	$814=$	-0.51125				
Lower	5	4ih	$\mathrm{x}_{15}=-014717$	$\times 16=$	0.72472	$\mathrm{K}_{17}=$. 0.37688	$\mathrm{x}_{18}=$	-0.37688
	6	41 h	$\mathrm{x}_{19}=-0.20425$	$\times 20=$	0.81318	$\times 21=$.0.31070	$\times 22=$	-0.31070
	7	41 h	$x_{23}=-0.58097$	$\times 24=$	0.66856	$\times 25=$	-0.35744	$\times 26$	-0.35744

Table 6.6 Bandpass latice WDF mulioplier values that satisfy the simultancous specification of Table(6.5).

The magnitude responses of the lattice WDF of Fig.(6.9) using 16, 12, 10. 9. 8 and 7 bit quantized versions of the multipliers of Table(6.6) are shown in Fig.(6.10). The corresponding group delay responses are detailed in Fig.(6.11). In both Fig.(6.10) and Fig.(6.11) the ideal responses were generated using the multipliers of Table(6.6) unquantized.

(c)

(d)

Figure 6.10 Magnitude responses with different coefficients wordlengths showing (a)-(b) overall and (c)-(d) passband responses.

(b)

Figure 6.11 Group delay responses with different coefficients wordengths showing (a)-(b) overall and (c)-(d) passband responses.

The gain and group delay coclficient sensitivities of the bandpass lattice WDF of Fig-(6.9) can be calculated for each multiplier. Gain and group delay coefficient sensitivity responses across the passband region for the multipliers in the first
$4^{\text {th }}$ order APS of the upper arm, the $2^{n d}$ order APS and the first $4^{\text {th }}$ order APS of the lower arm, are shown in Fig.(6.12), Fig(6.13) and Fig.(6.14) respectively.

Figure 6.12 Passband (a) gain and (b) group delay coefficient sensitivities of the first $4^{\text {th }}$ order APS in the upper arm of Fig.(6.9).

(a)

(b)

Figure 6.13 Passband (a) gain and (b) group delay cocfficient sensitivities of the $2^{\text {nd }}$ order APS in the upper arm of Fig.(6.9).

(a)

(b)

Figure 6.14 Passband (a) gain and (b) group delay coefficient sensitivities of the first $4^{\text {th }}$ order APS in the lower arm of Fig.(6.9).

Group delay coefficient sensitivities provide an indication of the effects on phase linearity by showing how the gradicnt of the phase response would alter under finite wordlength conditions. As a conscquence the values for gain and group delay sensilivity cannot be compared directiy. However the group delay sensitivities of a wide range of examples indicated that tinite wordlength distortion of simultancous responses was more pronounced within the phase specification. As a result, the minimum coefficient wordlenglh for a filter order and frequency specification would be constrained by the desired phase linearity.

The coefficient quantization applicd in the examples considered so far has been rounding. This is not the only method of quantizing however and the effects of rounding, value truncation and magnitude truncation can be determined if each method is applied to the sume set of cocflicient values and the responses using these multipliers compared. To illustrate these effects the multiplier values of the lowpass structure of Fig.(6.4), given in Table(6.4), were quantized 108 and 10 bits under rounding, value truncation and magnitude truncation. The resulaing magnitude and group delay responses are given in Fig.(6.15).

(b)

(c)

Figure 6.15 Frequency responses showing passband (a) 8 and (b) 10 bit and overall (c) 8 and (d) 10 bit magnitude and passband (c) 8 and (0) 10 bit delay responses under different quantization procedures.

Comparing the various quantizing procedures for a number of different filter specifications and wordlengths showed that no one procedure was better for all occasions. Results from a range of comparisons of different quantization procedures led to the conclusion that the performance of various finite wordength solutions could be improved if the coefficient quantization was replaced by some form of optimization that applied rounding or truncation to the coefficient values that best retained the desired frequency responses.

6.1.2 Time domain simulations

To simulate the lattice WDF in the time domain it is necessary to model the action of the lattice arms and the APS's to determine the transfer function. The first step in simulating the lattice WDF in the time domain is to generate a mathematical model for the two-pon adaptor that forms the basis of all APS's. The equation for the twoport adaptor is given by Eq.(6.I) with a possible signal flow graph shown by Fig.(6.16).

FIgure 6.16 Possible signal flow graph for a Iwo-port adaptor.

$$
\left[\begin{array}{l}
B_{i} \tag{6.1}\\
B_{j}
\end{array}\right]=\left[\begin{array}{cc}
-\alpha & 1+\alpha \\
1-\alpha & \alpha
\end{array}\right] \cdot\left[\begin{array}{l}
A_{i} \\
A_{j}
\end{array}\right] \quad-1<\alpha<1
$$

Any software model of the two-port adaptor would require that the calculationa for B_{i} and B_{j} were carried out using values of A_{i}, A_{j} and a limited to a particular wordength. Therefore the fixed point operations of the multiplier and adders within the two-port aduptor must be modelled. The action of a fixed point multiplier is 10 multiply two b bit numbers and then quantize the $2 b$ bit result to b bits. As result any signal multiplication within the modelled two-por adaptor must be associated with a quantization to reduce the accuracy of the result to the limit of the modelled hardware system. Within a digital hardware system, the number range would be limited to $-1.0<x<1.0-2 \cdot(b-1)$ and b is wordength of the system. Therefore if an adder wis to sum two positive or negative numbers close to this limit. then an overflow would occur. To ensure that this operation was modelled accurately all idd operation must be monitored to flag the occurrence of an overflow and the result altered according 10 a defined overflow strategy.

Any time domain simulation must also limit the wordlength of input and output data, the coefficients and the internal storage registers. Software modelling allows these various wordengits to be specified individually. Quantizing procedures, such as rounding or truncation, arithmetic operations, such as 1 's or 2 's complement and overflow procedures. such as reset of saturation can also be included to produce a more versatile time domain simulation program,

Following the time domain requirements uutined, mathernatical model for the two-port adaptor was gencrated and is shown in Fig(6.17).

```
READ "A}\mp@subsup{\mathbf{j}}{|}{\prime},"\mp@subsup{A}{j}{\prime\prime}\quad\mathrm{ (quantized to internal data wordlength)
READ "a" (quantized to caefficient wordlength)
"sum inputs" = "A}\mp@subsup{\mathbf{A}}{}{\prime\prime}\cdot"\mp@subsup{"}{i}{\prime}\mp@subsup{}{}{\prime
if "sum inputs" > overllow limit, apply overflow strategy to "temp"
"sum inputs" = "sum inputy" * "a"
Quantize "temp" }10\mathrm{ inicrnal data wordlength
" Bi" = "A';" + "sum inpuls"
if " }\mp@subsup{B}{i}{\prime\prime}>>\mathrm{ overflow limif, apply overflow strategy to " Bi"
" }\mp@subsup{\mathbf{B}}{\mathbf{j}}{
```


WRITE " $B_{i}{ }^{\text {" }}$, " $B_{j}{ }^{\text {" }}$

Fluure 6.17 Mathematical model of iwo-port adaptor.

Using the model for the Iwo-purt adaptor given in Fig(6.17), it was easy to generate models for the APS's used in the lowpass, highpass and band lype lattice WDF structures. Computer code written in fortran to implement the two-port adaptor and the various APS's required is delailed in Appendix D1-7. With software models of the latice WDF structure and the various APS's it was possible to investigate the effects of different quantizing, overflow and scaling strategies on the latife structure through lime domain simulation.

Three standard time domain responses are generated by applying an impulse, step and ramp function to system. Applying these functions to a time domain model of the lattice WDF of Fig.(6.4) with the multiplicrs of Table(6.4), produced an ideal sel of time domsin responses when all system wordengihs were modelled as 64 bits long. A more realistic set of wordlengits would be to limit the input and output data wordlengit 1012 bits. restrict the internal data wordiength to 16 bits and reduce the coefficient wordtength to 8 bits. The impulse, step and ramp responses under these reduced wordlength conditions are shown in Fig.(6.18). Differences between the responses of Fig.(6.18) are solely due to the quantization of the filter coefficients.

(b)

Flgure 6.18 Time domuin simulations showing (a) overall and (b) initial impulse response, (c) overall and (d) initial step response and (c) overall and ($)$ initial ramp response with ideal and finite wordength coefficients.

Through the FFT the impulse response of a latice WDF structure can be converted into the frequency domain and displayed in terms of its gain and group delay. By altering the wordength of the various parameters within the time domain simulation, the effects of cosfficient quantization can be determined in isolation to finite wordlength hardware effects. Fig.(6.19) shows the magnitude and group delay responses generated from the impulse response of the lattice WDF of Fig.(6.4) using 64 bits for the input, output and internal signal wordiengits. Responses of Fig (6.19) therefore illusirate the frequency response distorion due solely 10 cocfficient quantization. These frequency responses, calculated from a time domain simulation, coincide with the finite wordlength coefficient responses determined within the frequency domain, illusirated in Fig.(6.5) and Fig.(6.6).

(1)

(d)

Figure 6.19 Time domian calculations for magnitude (a) passband and (b) overall and delay (c) passbund and (d) overall frequency responses with ideal hardware and finite wordlength coefficients.

Although the FFT allows the various finite wordlength effects to be related to frequency response distorion, it must be remembered that the FFT itself introduces noise to the frequency responses as the DFT is only an approximation to the Fourier transform. The amount of noise introduced will depend upon the frequency resolution of the FFT that is determined by the number of points used to sample the impulse response.

A more detailed investigation of the properties of the FFT is provided by Brigham[1]. All the frequency responses shown in this Chapter were generated through FFT's that used 2048 points. An explanation of the FFT and its characteristics can also be found in a number of DSP text books[7,6,8].

Introducing finite wordlengits tor the input, output and internal signals but applying the filter coefficients unquantiecd within a time domain simulation allowed just the effects of hardware implementation to be displayed in terms of frequency response distortion. Using this lechnique the distoftion to the frequency responses of the filter of Fig.(6.4), with the input and output wordengths set to 12 bits and the internal signal wardlength set to 16 bits, can be determined and are shown in Fig.(6.20).

Figure 6.20 Time domain simulations showing magnitude (a) passband and (b) overall and delay (c) passband and (d) overall frequency responses under ideal coefficient and finite wordicngth hardware conditions.

The effects of scaling on a latice WDF are more difficult to establish. An ideal hardware implementation would require that the signal at each point within the structure is at a level that produces the best possible signal to noise ratio. This ideal signal level would vary ucross the structure due to the size of the coefficients. Therefore if an internal signal was multiplied by a small coefficient value then a higher overall accuracy could be achieved if the signal before that multiplier was scaled up.

This process could also be applied around large coefficient values, where to prevent overflows the signal level before an adder would be scaled down. This scaling process would not effect the overall signal level if the result of all these scaling factors was unity, To reduce the complexity introduced by these scaling techniques all scaling values should be a power of two so that the scaling action could be performed through a register shift in physical hardware.

The practical effects of scaling upon the dynamic range and performance of the latice WDF are very difficult to simulate through software. To determine the actual impulse response of the lattice WDF under different wordlength and scaling strategies the structure was implemented upon a DSP chip.

6.1.3 Lattice WDF implementation

Implementation of a lattice WDF capable of exhibiting various lowpass, highpass and band lype responses was spproached upon a Loughborough boardl4] using the TMS32010 DSP chipl10]. This board was plugged into an 1BM compatible machıne and the lattice WDF produced under the Texas instruments development tools.

To test the performance of the latice WDF, the coefficients of a solution to the simultaneous lowpass design example of Table(6.7) were rounded to 16 biss and are shown in Table(6.8). Using the symmetric frequency transformations discussed in Chapter 5. this simultaneous lowpass example was converted into equivalent single and dual bandpass structures with the same set of multiplier values.

Filter Tyne	Filter Spec		Frequency edges (Hz)	trans a / B	$\begin{gathered} \mathrm{f}_{0} \\ (\mathrm{~Hz}) \end{gathered}$
lowpass	Allen	dBs	$01 \rightarrow 34$	n / a	n/a
		Hz	$0 \rightarrow 0.08 \rightarrow 0.16 \rightarrow 0.5$		
	Delay	\%dev	$0.5 \rightarrow 1$		
		Hz	$0 \rightarrow 0.09 \rightarrow 0.16 \rightarrow 0.5$		
single bandpass	Alten	dBs	$34 \rightarrow 0.1 \rightarrow 34$	$\begin{gathered} \alpha= \\ 0 \end{gathered}$	$\begin{aligned} & f_{0}= \\ & 0.25 \end{aligned}$
		Hz	$0 \rightarrow 0.17 \rightarrow 0.21 \rightarrow 0.29 \rightarrow 0.33 \rightarrow 0.5$		
	Delay	贺dev	$1 \rightarrow 0.5 \rightarrow 1$		
		Hz	$0 \rightarrow 0.17 \rightarrow 0.21 \rightarrow 0.29 \rightarrow 0.33 \rightarrow 0.5$		
dual bandpass	Alten	dBs	$34 \rightarrow 0.1 \rightarrow 34 \rightarrow 0.1 \rightarrow 34$	$\begin{gathered} a= \\ 0 \end{gathered}$	$\begin{aligned} & f_{0.1}= \\ & 0.125 \end{aligned}$
		Hz			
	Delay	\%dev	$1 \rightarrow 0.5 \rightarrow 1 \rightarrow 0.5 \rightarrow 1$	$\begin{gathered} \beta= \\ 0 \end{gathered}$	$f_{0.2}=$ 0.375
		Hz	$\begin{aligned} & 0 \rightarrow 0.085 \rightarrow 0.105 \rightarrow 0.145 \rightarrow 0.165 \rightarrow \\ & 0.335 \rightarrow 0.355 \rightarrow 0.395 \rightarrow 0.415 \rightarrow 0.5 \end{aligned}$		

Table 6.7 Filter specifications for lowpass filter with cquivalent bandpass and dual bandpass specifications.

Upper lattice arm				Lower latice arm			
APS No	$\begin{gathered} \text { APS } \\ \text { tyoe } \end{gathered}$	mult	plier valucs	APS No.	APS 1yロe	muli	plier values
1	2 nd	$\begin{aligned} & x_{1}= \\ & x_{2}= \end{aligned}$	$\begin{array}{r} -0.8828314045 \\ 0.6172207384 \\ \hline \end{array}$	4	2nd	$\begin{aligned} & x_{6}= \\ & x_{7}= \end{aligned}$	$\begin{array}{r} -0.7152976626 \\ 0.6370727390 \\ \hline \end{array}$
2	2 nd	$\begin{aligned} & x_{3}= \\ & x_{4}= \end{aligned}$	$\begin{array}{r} -0.5456894656 \\ 0.8245115507 \\ \hline \end{array}$	5	$2^{\text {nd }}$	$\begin{aligned} & x_{8}= \\ & x 9= \\ & \hline \end{aligned}$	$\begin{array}{r} -0.4759607014 \\ 0.9079765957 \\ \hline \end{array}$
3	$15 t$	$\mathrm{x}_{5}=$	0.6571687539				

Table 6.8 Multiplicr values used for the lowpass, bandpass and dual bandpass latice WDF specifications of Table(6.7).

The gain and group delay responses of these three examples. generated through a software simulation of therr impulse responses and using the FFT, are illustrated in Fig.(6.21). In Fig.(6.21) the responses correspond to a time domain simulation with 16 bit wordlengiths for cocfficients and signals.

Figure 6.21 Frequency responses generated through lime domain simulations showing magnitude (a) lowpass, (c) bandpass and (c) dual bandpass and group delay (b) lowpass, (d) bundpass and (e) dual bandpass responses.

With the aid of a digital spectrum analyser performing a swept sine operation, the frequency response of the latuice WDF implemented on the TMS chip was measured directly for each of the design examples considered. The simulaneous specifications of Table(6.7) were based upon a sampling frequency of $\mathbf{I} \mathbf{H z}$. To utilise the resolution of the digital spectrum analyser, the sampling frequency of the filters implemented upon the DSP chip was increased to 10 kHz . The frequency responses of the three lattice WDF's considered were measured through the digital spectrum analyser and the results are shown by Fig.(6.22), Fig.(6.23) and Fif.(6.24).

Flgure 6.22 Frequency responses of lowpass latice WDF showing (a) magnitude and (b) group delay responses.

(b)

Figure 6.23 Frequency responses of single bandpass lattice WDF showing (a) magnilude ind (b) group delay responses.

Figure 6.24 Frequency responses of dual bandpass latice WDF showing (a) magnitude and (b) group delay responses.

The methods of scaling applied within the DSP sofiware entailed halving the input signal and then doubling the output signal, first to the overall structure and then to each arm of the latice. Both methods appeared to improve the performance of the sysiem compared with the unscaled version but it was felt that further research into the aspects of scaling on the lattice structure fell outside the bounds and time scales of this current research project.

Research into the effects of finite wordlength on the latice WDF structure has shown that its low gan cuefficient sensitivity is a clear indication of its performance under finite wordlengith conditions. This performance, however, only relates to the gain response and the inclusion of the group delay into filter specification reduces the amount of information that can be oblained from the gain coefficient sensitivities. Calculation of the group delay coefficient sensitivities provides a better indication to the performance of latice WDF to a finite wordengih simultaneous specificution. Several design examples have
shown that the minimum wordlength for an acceptable simultaneous solution was higher than for the magnitude-unly design. Further investigation into the effects of rounding and Iruncation upun group delay responses indicated that the performance could be improved if coefficients were selectively raunded or iruncated. A more systematic approach to this idea entailed optimization of the finite wordlength filter coeflicicnt values to satisfy an arbitrary magnitude and phase design.

6.2 Design for finite wordlength

6.2.1 Optimization considerations

Finite wordlength design of any digital filier siructure may be approached in a number of different ways. However each meihod must involve some optimization as there is no other method of determining the best set of finite wordength coefficients for a given frequency ypecification. The main optimization considerations for linite wordlength design parallel those discussed in Chapter 2 for general filter design. These include the domain in whith the filter response is simulased, how the problem is described in terms of a function to be minimized and the oplimization algorithm.

The first of these decisions concerns the domain in which the filter is simulated. Filter responses can either be generated analytically in the frequency domain with finite wordlength coeflicients or in the time domain with linite wordength criteria applied to all aspects of the response calculations. The purpose of generating the filter's frequency response is to use an error parameter based upon the sampled function concept. The principle of this idea is to determine the error between the actual and desired function at a number of sample points and then sum these errors under a weighted L_{p}-metric. Therefore the speed and accuracy of any optimization routine will depend on the number of sample points used and the lime laken 10 calculate the error at each sample point.

Simulation of the filter in the trequency or time domain represents a compromise between accuracy and speed. Although frequency domain simulations are unable 10 model the effects of finite wordlength signalg and different quantization procedures, it is able to evaluate the [requency response at given sample point quickly and with an accuracy that is independent of the total number of sample points. Simulation of a filter's frequency response through the time domain and the FFT represents a more comprehensive method of modelling all the finite wordength effects present in a digital structure. However, the accuracy with
which the frequency response at each sample point can be generated is dependant upon the total number of points used for the FFT. Ensuring that the FFT has enough points to generute an accurate frequency response to be sampled by the error function makes the method very slow.

Comparing the speed and modelling accuracy of the frequency domain and time domain approaches prompled the selection of the frequency domain. This decision was based upon the very large lime taken to generate accurate frequency responses through the FFT.

Using the frequency domain is a basis lor finite wordlength coefficient designs, the next design decision concerned the optimization routine, its error function and algorithm. Success with the duat line templates and weighted L_{p}-metric error function used for coefficient optimization in Chapters 4 and Chapter 5 made these techniques an obvious choice for linite wordlength designs. The selection of an optimization algorithm was more difficult. Oplimization of the filter coefficients with a very large accuracy for simultancous specifications only placed simple boundary constraints upun the uplimization algorithm. The addition of finite wordlength criteria upon the coefficient values increases the complexity of any consifaints. Increasing the complexity of the consiraints of the quasi-Newton type algorithms tends to limit their efficiency as more time is spent ensuring that the coefficients satisfy the wordlength critcria than searching the solution space. An alternative is to apply an optimization algorithm that only moves around the search space with a discrete incerval that corresponds to the finite wordength required. Under this techniquc the coefficients will always to limited to the desired wordlength and cxara calculations to ensure that the finite wordlengith constrains had not been violated would not be required.

Optimization algorithms that $c a n$ be applied to this discrete search problem include the methods sugecsicd by Fletcher \& Powell[2] and Hooke \& Jecves[3]. The direct search method of Hooke and Jeeves was adopted because of its success with finite wordlength designs for cascaded second order sections investigated by Steigliz[9] and becausc it could be easily modified to include boundary consiraints. Boundary constraints were essential to cnsure the stability and pseudopassivity of the WDF structure. Applicution of this uptimization algorithm to magnitude-only finite wordlength designs was considered by Mirzail5] with reference to the implementation of lattice WDF's upon systolic arrays.

6.2.2 Design techniques

Having decided to apply the Hooke-Jecves algorithm to the finite wordlength coefficient design problem, the next step is to consider the design options available. The main design option concerns the initial coelficient values and their wordengihs. The direct search nature of the Hooke-Jeeves algerithm tends 10 make it very slow for large numbers of variables. Therefore to speed the convergence rate, the initial coefficient values should be finite wordlengih versions of the solutions generated with the yuasi-Newton lechniques.

Under this technique a filter specification, simultaneous or magnitude-only, would be approached with the quasi-Newion algorithm and procedures discussed in Chapter 4. Having generated a solution for the specification. the ideal filter coefficients would be rounded or truncaicd to a particular wordlength and then applied to the Hooke-Jecves based finite wordength routine.

This design procedure suggests a further choice concerning the injtial wordlength for these ideal coefficients. Three options exist :-
(i) Quantize ideal coefficients to desired wordength and then optimize until a solution can be found within a given threshold.
(ii) Quantize the ideal cocllicients 10 a shorter wordiengith than that required and oplimize. If no solution can be found below a given threshold then the wordlength would be increased by one bit and optimization reapplied. Continue until a solution can be found.
(iii) Quantize the ideal coefficients to a larger wordlength than that required and optimize. When a solution has been found below a given theshold, reduce the wordlength by one bit and reapply optimization. Continue until a solution cannot be found.

Each optimization procedure has its merits but the first method would only confirm if a given wordengit was possible, not the minimum wordlengit for a given frequency specificution and filter order. Therefore the other two design procedures represeni a better approach for finding minimum finite wordlengith solutions.

The lirst of these two design techniques starts with a very shon wordength and as a consequence has a search sicp in the oplimization routine that would be quite large. This allows a large proportion of the solution space 10 be searched. If no
solution could be found below a given threshold. the wordlengit would be increased and as restlt the search step would be reduced. Starting from the best solution under the previous wordlength, the optimization routine would be reapplied. If no solution could be lound the wordlength would again be increased and the process continued unit d solution was generated. The increase in wordlength decreases the search step of the optimization routine, which in turn limits the solution space it can cover.

The process relies upon previous iterations, generating shorter wordlengths solutions, to move closer to a glubial sulution. For this procedure the loss of accuracy in quantizing the ideal sulution coefficients to very short wordlength is compensated by initially scarching a wider region of the solution space. Thiz approach would work better with lunctions that have relatively smooth surfaces. such as magnitude-only specifications.

The other design approach starts with the idcal coefficients quantized to a very large wordength. This large wordlengit would enforce a very smatl search step upon the Hooke•Jeeves algorithm. A small scarch step restricts the optimization routine to the region around the ideal solution and ensures that a solution would be found quickly. From a finite wordlength solution, the wordlength would be decreased and starting frons the previous sulution, the optimization routine would be reapplied. This process would be repeated until a solution could not be found under a given threshold. Reducing the wordlength at each stage would remove a number of coefficient values from the solution space and the corresponding increase in the search step would force the optimization routine to use finite wardlengith coefficient values remainong.

Simultaneous specifications approached using this technique showed that the best results were achieved by starung from a very large wordlengih, around $\mathbf{2 0 - 3 0}$ bits, so that there was litue difference between the ideal and initial finite wordengih design and then reducing the wordength by one bit at a time. With this technique, although the initial large wordlength solutions were achieved quickly, the overall design procedure can be slow.
laserting the modified Hooke-Jeeves alyorithm within design program "WDF" allowed a wide sange of lilter specificulions to be approached. Magnitude-only or simultaneous specifications could be destribed and solved through the quasiNewton techniques to produce an ideal solution. With this ideal solution the coefficients could then be applicd to the Hooke-Jeeves based optimization routine
and approached through either of the design procedures discussed to find the minimum wordlength for a given specificalion. The performance of any finite wordength solution could then be analysed in the time or frequency domains through the latice WDF analysis package written for MalLab and discussed in Chapter 4.

6.3 Design examples

The benefits of using the Hooke-Jecves algorithm 10 find a finite wordlengih solution can be illustrated through a number of design examples using magnitude-only and simultancous spccifications. These examples also show the effect of narrow group delay tolerances upon the minimum achievable coefficient wordlength.

The first example is a $5^{\text {th }}$ order lowpass WDF that satisfies the specification of Table(6.9) with the multiplers of Table(6.10).

Gain		Guisbund		Gapband		Samp
alt (dB)	edge (H/)	all (dB)	edge (Hz)	frea (Hz)		
0.1	0.08	34	0.16	1		

Table 6.9 Lowpass filter specification.

\left.| Upper lallice urm | | | Lower latice arm | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| APS | APS | multiplier values | APS | APS | multiplier values |
| No. | No. | iype | | | |$\right]$

Table 6.10 Lowpass latlice WDF muliplier values that satisfy the lowpass specification of Table(6.9) using an elliptic function.

By applying the Hooke-Jecves based oplimization routine to 4 bit quantized versions of the multipliers of Table(610) and increasing the bit lengit until a solution was found. generated the multipliers of Table(6.11). These multipliers have wordlength of 7 bits.

Table 6.11 Finite wordlength multuplies values that satisfy the towpass spectfication of Table(6.9).

The frequency responses of the $5^{\text {th }}$ order latice structure with quantized versions of the multipliers of Table(6.10) and the optimized coefficients of Table(6.11) can be evaluated to demonstrite the improvements possible. These frequency responses can be calculated analytically in the frequency domain or through an FFT conversion of the impulse response generated in the lime domain. Fig.(6.25) shows the magnitude response of the $5^{\text {th }}$ order lattice with the coefficients of Table(6.10) quantized to 7 bits through rounding and truncating and with the coefficiens of Table(6.11). These responses purely show the effects of finite wordlength coefficients because they are calculated in the frequency domain. Fig.(6.26) shows the corresponding magnitude responses simulated in the time domain with the input. output and internal data wordlengths set to 16 bits.

(a)

(b)

Figure 6.26 Frequency responses calculated from time domain simulations showing mognitude (a) passband and (b) overall responses under ideal and finite wordlength conditions.

The second example is a simultancous lowpass specification with a range of group delay tolerances. This specificition is given in Table(6.12). Ideal solutions to this specification were produced with the quist-Newton optimization echniques. The coefficient values of each solution were then quantized and then applied to the Hooke-Jeeves algorithn. Table(6 13) shows the minimum filters order that satisfied the specifications of Table(6.12) along with the minimum coefficient wordengths that could be achicved with that filter order.

Gain wassband		Gain stopband		Delay passband		$\begin{gathered} \text { Samp. } \\ \text { freq }(\mathrm{Hz}) \end{gathered}$
all (dB)	edse. (Hz)	all (dB)	cdye (H_{2})	dev (51	edge (Hz)	
0.1	0.1	50	0.15	20-0.005	0.1	1

Table 6.12 Simultancous lowpass filter specification.

	Lalice WDF										Linear phase FIR
	Ellip	Group delay deviation (\%)									
	fun	20	10	5	1	0.5	0.1	0.05	0.01	0.005	
$\begin{array}{\|c\|} \hline \text { filter } \\ \text { order } \\ \hline \end{array}$	7	11	11	13	15	17	19	19	23	23	52
$\begin{gathered} \text { min. } \\ \text { word } \\ \text { lengih } \end{gathered}$	10	15	12	18	18	17	15	17	17	19	1

Table 6.13 Filier orders satislying the specification of Table(6.12).

The wordlengths of Table(6.13) do nol represent the minimum wordlength that can be achieved for a purticular simultancous specification but the minimam wordiength for that specification and filter order. To reduce the wordength
required, especially for very narrow group delay tolerances, the filter order has to be increased. This entails finding a new ideal solution with the quasi-Newton routines and then reapplying this solution to the Hooke-Jeeves routine.

Frequency responses of the 10% group delay deviation example from Table(6.12) are shown by Fig. (627) and Fig.(6.28), while Fig.(6.29) and Fig.(6.30) show the frequency responses of the 1% deviation example. Fig.(6.27) and Fig.(6.29) illustrate the magnitude and group delay responses calculated analytically in the frequency domain and compare the responses produced when the ideal coefficients are optimized, rounded and truncated. The frequency responses shown in Fig.(6.28) and Fis.(6.30) are the result of applying a FFT 10 an impulse response generated in the time domuin with input, output and internal data wordlengths limited to 16 bits and the cocficients optimized, rounded and truncated to the same bit length.

(a)

(c)

(b)

(d)

Flgure 6.27 Frequency responses of 10% delay deviation showing (a) passband and (b) overull magnitude and (c) passband and (d) overall group delay responses under ideal and finite wordength conditions.

(c)

 Op Tereve DUAL

Avineng (miliv) Opterion: 0 (b)

(d)

Figure 6.28 Frequency responses of 10% delay deviation calculated from time domain simulation showing (a) passband and (b) overall magnitude and (c) passband and (d) overall group delay responscs under ideal and finite wordlength conditions.

(c)

(d)

Figure 6.29 Frequency responses of 1% delay deviation showing (a) passband and (b) overull magnitude and (c) passband and (d) overall group delay responses under ideal and finite wordength conditions.

(a)

(c)

(d)

Figure 6.30 Frequency responses of 1% delay deviation calculated from lime domain simulation showing (a) passband and (b) overall magnitude and (c) passband and (d) overall group delay responses under ideal and linite wordlength conditions.

The final example is a single bandpass simultaneous specification that is given in Table(6.14). This specification cannot be achieved by transforming a lawpass design and therefore must use a different transformation value for each APS within the structure. Using the quasi-Newion rotine and the procedures outlined in Chapter 5, set of filter orders and ideal coefficients was determined. With these coefficient values as a starting point. the Hooke-Jeeves procedures were applied to each specification to evaluate the minimum possible wordlengih. The resulis of these calculations are shown in Table(6.15).

Specification	lower stopband	passband	upper stopband	
Gain	alten (dB)	50	0.1	50
	frea $(H z)$	$0 \rightarrow 0.075$	$0.1 \rightarrow 0.2$	$0.225 \rightarrow 0.5$
Group Delay	dev $(\%)$	1	$20-0.005$	1

Table 6.14 Simultaneous single bandpass lattice WDF specifications.

	Bandoass Lallice WDF										Linear phase FIR
	Gain	Group delay deviation (\%)									
	only	20	10	5	1	0.3	0.1	0.09	0.01	0.005	
filter order	14	26	26	34	38	42	46	50	54	62	105
$\begin{gathered} \text { ming } \\ \text { word } \\ \text { lengin } \end{gathered}$	14	13	15	16	16	15	18	19	20	19	7

Table 6.15 Filter orders satisfying the specification of Table(6.15).

Frequency responses of the 5% group delay deviation example from Table(6.15) are shown in Fig.(6.31).

(a)

(b)

Chapter 6. Finite Wordlength Designs

(c)

(d)

Figure 6.31 Frequency responses of $S \%$ delay deviation showing (a) passband and (b) overall magnitude and (c) passband and (d) overall group delay responses under ideal and finite wordlength conditions.

6.4 Conclusions

The objective of this Chapter has been to illustrate the performance of the latice WDF under various finite wordlength conditions and then to outline a number of techniques to counteract these effects

Errors due to finite wordlength effecis within a digital filter may be atributed 10 distortion of the frequency response by finite wordength coefficients or the introduction of noise by digital hardware. An indication of the frequency response distortion can be obtained by calculating the frequency response of a filter anatyticaliy with finite wordiength coefficient values. The effect of digital hardware on the performance of a digilal filter can only be modelled through a lime domain simulation.

This Chapter has illustrated a number of different finite wordiength effects in terms of coefficient quantization and confirmed the validity of these resulis through simulation in the frequency and lime domains and actual implementation upon a DSP chip. The main techniques that can be used to improve the performance of a digial filter involve an appropriatc selection of finite wordlength filter coefficient values that best retain the desired frequency response(s) and a set of scaling factors that result in the greatest signal to moise ratio for a given hardware implementation. Research of this project has concentrated upon the finite wordength coefficient aspect of the problem although future work may be expanded to include the scaling and other hardware implementation considerations

Optimization is based upon the minmization of an error function, which for filter design is a sum of errors generated by sampling the frequency response(s) at a number of points. The frequency response(s) can be generated analytically in the frequency domain or produced through a FFT of an impulse response simulated in the time domain. Time domain simulations provide an ability to model a wide range of linite wordlengith effects such as quantization, overflow and scaling that are not possible in the frequency domain. However the time required to generate an accurate frequency response(s) from an impulse response through the FFT makes the techniques impractical for use within an optimization routine. Therefore the finite wordlength optimization routine(s) were concerned only with minimizing the frequency response distortion due to finite wordlengith coefficient values based in the frequency domain.

Design of finite wordlengih solutions to arbitrary frequency specifications was approached through the optimization techniques developed for the large precision solutions discussed in Chapter 4 and Chapter 5. Although the design templates and error functions from these techniques could be applied directly, the nature of the finite wordength constraints prompted the selection of a non-quasi-Newion algorithm. The optimization routine adopted was based upon a direct search technique, developed by Hooke-Jecves, where the search step was determined by the required coefficient bit length.

The nature of the direct search optimization algorithm made it very slow, so the procedure developed for linite wordlength designs involved first producing a solution to the frequency specification with large precision or ideal coefficient values and then using a quantized version of these coefficient values as a staning point for the finite wordiength optimization routine. This process suggested a number of options conceming the bit length of these initial coefficient values. Three methods exist, quantize the coefficients to the desired bit length, quantize coefficients to a bit length shorter than required and then increase until a solution is found, or quantize to a bit length larger than required and reduce until a solution cannoi be found. The first method only determines if a solution exists for that bit lengit while the other two methods produce the minimum bit length for a given specification.

Experiments have shown that the method of quantizing the ideal coefficient values to very low bit length and then increasing it until a solution is found worked best on magnitude-only frequency specifications with an initial bit length of 4.6 bits. The methad of quantizing the ideal coefficient values to a large
bit length and then decreasing the bit length was more efficient with simultaneous designs and very large initial bit lengths. around 24-30 bits. Both methods performed better when the bit lengith was incremented or decremented by one bit at each iteration.

Results from this Chapter have shown that the direct search based optimization routines provide a viable approach to finite wordlength digital filter designs. The lechniques suggesied also determined the minimum coefficient wordlength that can be achieved for a given frequency specification, filter order and error tolerance. Experiments have confirmed the low bit lengths achievable with the lattice WDF for magnatude-only designs. However, work on simultancous designs has shown that the inclusion of a group delay specification greatly increases the minimum wordlength possible, sometimes around 12.18 bits. This property may counter the advantages, such as lower filter order. gained against alternative filter designs. namely the exactly linear phase FIR filier.

Using the techniques developed and outlined in this Chapter for finite wordlengih designs. the final stage of this research project concerned the design and simulation of a simultancous dual bandposs frequency specification. The design procedures for this process are detailed in Chapter 7.

References

1) Brigham. E. O., the fant fourier Iran\#gorm. Prentice-Hall, New Jersey. 1972.
2) Fletcher, R. and Powell. M. J. D.. "A Rapid Convergent Descent Method for Minimization", Computer Journal. Vol 6. No. 2. July 1963. pp163-168.
3) Hooke, R. and Jeeves, T. A., "Direct Search' Solution of Numerical and Statistical Problems", Jour. Assoc. Comput. Mach.. Vol 8, No. 2. April 1961. pp212-229.
4) Loughborough Sound Images Lid., "TMS 320C10 System Baard". The Technology Cenire. Epinal Way, Loughborough.
5) Mirzai, A. R., "Finite Wordlength Design and VLSI Implementation of Wave Digital Filters", Ph D. Thesis, The City University, Landan. 1986.
6) Oppenieim, A. V. and Schafer, R. W., Dhqital 51 gnal procasahng. Prentice-Hall International, London, 1975.
7) Rabiner, L. R. and Gold, B. Thaory and Appilcation of Digital signai Proceaning. Prentice-Hall. New Jersey. 1975.
8) Roberis. R. A. and Mullis, C. T. Digital gignal pxacamang, Addison-Wesley, Massachusetis, 1987.
9) Steiglitz, K. "Designing Short-Word Recursive Digital Filters", Proc. 9ih Annual Allerton Conf. Cir, and Syitem Theory, Ociober 1971, pp778.788.
10) Texas Instruments Ltd., "DSP C compiler development Suite", Beffordis House, Prebend Street, Bedford.

Chapter 7

Lattice WDF Design Example

7.1 Introduction

The overall objective of this research project entailed the design of WDF's capable of satisfying a finite wordlength linear phase dual bandpass frequency specification. The previous Chapters have outlined the various WDF's structures considered and the design techniques investigated. Results of this research prompted the selection of the lattice WDF structure. Design techniques were based upon optimization using quasi-Newion algorithms to determine large precision solutions and a modified Hooke-Jeeves routine for finite wordlength solutions. The purpose of this Chapter is to detail the stages of the design process proposed through dual bandpass example.

The first step concerns the filter specification. detailing the cut-off frequencies, attenuation levels. group delay linearity and final coefficient wordiengihs. From the specification. the order of filter required to satisfy the magnitude-only part of the specification would be estimated. Starting with a lattice WDF of that order, the quasi-Newton based optimization routines. detailed in Chapter 4. would be applied in an attempt 10 generate a solution to the magnitude-only part of the specification.

With aptimization parameter values determined for the magnitude-only design, the group delay element of the specification would be introduced. The order of the filter would be retained and the group delay tolerance increased until a simultancous solution could be produced. Using the optimization sellings developed to produce this simultaneous solution, the group delay tolerance would be reduced, nominally by actor of two. and the filter order increased until a new simultaneous solution could be gencrated. This process would conimue until the desired group delay deviation was achieved.

Simultaneous solutions obtained with the quasi-Newton algorithms would be based upon coefficients specified to a large degree of accuracy. As a consequence the frequency response will distort when the coefficients are quantized. To offset the finite wordength effects, the coefficients' values would then be applied to the

Hooke-Jeeves routine detailed in Chapter 6. Using this algorithm and the 'ideal' coefficient values generated by the quazi-Newton routine as initial values. the best set of finite wordlength coefficients for a particular bit length or function error would be determined. For simultaneous specifications this finite wordlengith design process would begin with the ideal cocfficient values quantized to a very large bit length, nominally around 32 bits and applied to the Hooke-Jeeves routine. When a solution was found the bit length would be reduced and the resulting coefficient values reapplied to the optimization routine. The bit length would be reduced in this manner until the desired finite wordlength was achieved or the frequency response distortion becomes unacceptable. If the desired wordlength could not be achieved, a simultancous solution to higher order filter would be generated and the finite wordlength optimization process repeated until the desired wordength attained.

The steps involved in this design procedure can be better illustrated through a design example. The example chosen represents a design that cannot be achieved other than through optimization and details the stages in the design process.

7.2 Filter Specification

The frequency specification of the dual bandpass filter example considered is detailed by Table(7.1), while the templates for the response are shown in Fig.(7.1).

(a)

Figure 7.1 Graphical representation showing the attenuation (a) overall and (b) across the passband, for the frequency specification of Table(7.1).

Specifications			$1^{\text {st }}$ pess		$2^{\text {nd }}$ peas	3 dd ano
Auen	d	600	01	550	01	5 RO
	K H	$0 \Leftrightarrow 8.1$	$84 \Leftrightarrow 9.6$	$9.9 \Leftrightarrow 11.1$	$11.4 \Leftrightarrow 12.6$	$12.9 \Leftrightarrow 15$
Delay	dev(\%)	1	1	1	1	1
	$\mathbf{t H z}$	0 ¢ 81	$8.4 \Leftrightarrow 9.6$	9.9 $\Leftrightarrow 11.1$	$11.4 \Leftrightarrow 12.6$	12.9 $¢ 15$
Fs $=30 \mathrm{kHz}$			maximum coefficient bit lengih = 16			

Table 7.1 Simultaneous filter specification.

The first step in the design process is to establish limits for the filter order with this frequency specification. The lower value of the limit is set by the minimum filter order that satisfies the magnitude-only side of the specification. An upper limit is imposed to ensure the filter order for an approximately phase design using the lattice WDF does not exceed that of an equivalent FIR filter which possesses exactly linear phase.

A number of different software packages can be used to determine the filter order of an enacily linear phase FIR filter equivalent to the specification of Table(7.1). Using software written within MatLab especially for this purpose. the equivalent FIR filter ofder for this design was determined as 286 . The symmetric nature of an exactly linear phase FIR filter imposes a need for only ($N+I$)/2 independent multipliers, or for this design example 143 multipliers.

The operational speed of digital filter is limited by the mount of computation required within each sample period. By far the slowest component within any digital filter's operation is multiplication and as a result a more realistic comparison between a latice $W D F$ and an exacily linear phase FIR filier would
involve the number of multiplications per sample. Under this principle, the upper limit on the lattice filter order would be set to half the order of the equivalent exactly linear phase FIR filter.

The lower filter order limit is set by the minimum order that will satisfy the magnitude-only part of a specification. For lowpass specifications the minimum filter order can be calculated from standard polynomial equations widely used in filter designs. The most efficient polynomial for magnitude-only fitter designs is the elliptic polynomial. Standard polynomials can only be applied directly to lowpass specifications. To determine the filer order of highpass, bandpass or dual bandpass specifications requires an equivalent lowpass specification. The filter order of an equivalent lowpass specification may not be very accurate, but provide a good initial guess. With complex specifications, such as the dual bandpass example of Table(7.1). The only method of determining the minimum filter order is through optimization. Calculation of the minimum lattice WDF order that salisfied the magnitude-only part of the specification of Table(7.1) should therefore be approached through the quasi-Newton and dual line template ideas discussed in previous Chapters.

The final area of the specification is the filter structure. Ladder WDF structures have proved unsuitable for simultaneous frequency specifications because of their minimum-phase characteristics. Dual band designs upon the lattice WDF structure using the transformed APS's detailed in Chapter 5 . have also met with little success. For this reason dual bandpass and bandstop specification, such as Table(7.1), should be approached with the standard $1^{\text {st }}$ and $2^{\text {nd }}$ order APS's described in Chapter 4.

The latice WDF. Fig.(7.2), can be simplified if the second input, $A 2$, is set to zero. The resulting basic one-port structures are shown by Fig. (7.3). These simplified lattice WDF's are polyphase structures whose Iransfer functions are the sum or difference of the transfer functions of two branches. The structure of Fig.(7.3)(a) has the transfer function given by Eq.(7.1), while the structure of Fig.(7.3)(b) corresponds to Eq.(7.2).

Figure 7.2 Complete Lattice WDF Structure.

Figure 7.3 Simplified lattice WDF's structures using (a) output port B_{1} and (b) output port B_{2}.

$$
\begin{align*}
& G_{(z)}=\frac{B_{1}}{A_{1}}=\frac{S^{\prime \prime}+S^{\prime}}{2} \tag{7.1}\\
& G_{(z)}=\frac{B_{2}}{A_{1}}=\frac{S^{\prime \prime}-S^{\prime}}{2} \tag{7,2}
\end{align*}
$$

Due to the nature of the latice structure the transfer functions Eq.(7.1) and Eq.(7.2) are complementary, such that if the structure of Fig.(7.2)(a) has a lowpass frequency response, then with the same coefficients, the structure of Fig.(7.3)(b) will exhibit a highpass response.

Designs using the ransformed APS's described in Chapter 5 have been based upon the lattice structure of Fig.(7.3)(a), however, to satisly single and dual bandpass specifications using the standard 1^{14} and $2^{n d}$ order APS's. requires the latice structure of Fig.(7.3)(b).

7.3 Magnitude-Only Design (Ideal)

The main purpose of this design stage is to determine the minimum filter order and optimization settings for a simultaneous design. The magnitude-only solution to given filier specification provides a basis for the simultaneous case and initial coefficient values for finite wordlength magnitude-only designs. The software lools developed within in this research project allow for both magnitude-only and simultaneous finite wordlengih designs. Both procedures are outlined in this Chapter.

In order to apply oplimization to the magnitude-only part of the specification of Table(7.1), a number of parameters need to be evaluated or estimated. The main parameter is the initial filter order. This can be estimated by calculating the order of a polynomial that can satisfy an equivalent lowpass specification. An approximate method of converting a general specification inta a lowpass specification is 10 sum the widihs of the various passbands and stopbands io generate the edge frequencies and the most severe attenuation levels. The final step involves normalising the frequency edge values to coincide with a sampling frequency of 1 Hz. Applying this method 10 the magnitude-only part of the specification of Table(7.1), shown in Table(7.2). produces the lowpass specification of Table(7.3).

Suecification		$1 \leq 15100$	$1^{\text {st }}$ Dass	$2^{\text {nd }}$ siop	$2^{\text {nd }}$ pass	$3^{\text {rd }} \operatorname{stog}$
Atien	dB	60	0.1	55	0.1	58
	k Hz_{2}	$0 \Leftrightarrow 8.1$	$8.4 \Leftrightarrow 9.6$	$9.9 * 11.1$	$11.4-12.6$	$12.9 \Leftrightarrow 15$
$\mathrm{F}_{\mathrm{s}}=30 \mathrm{kHz}$			maximum coefficient bit lenth $=16$			

Table 7.2 Magnitude only part of the filter specification of Table(7.1).

Soceification		Passband	Stopband
Atten	$d B$	0.1	60
	Hz	$0 \Leftrightarrow 0.08$	$0.12 \Leftrightarrow 0.5$
$\mathrm{~F}_{\mathrm{g}}=1 \mathrm{~Hz}$		max. coefficient bit lenqth $=16$	

Table 7.3 Estimated lowpass equivalent of the specification of Table(7.2)

The minimum elliptic polynomial that can satisfy the apecification of Table(7.3) is 7th order. Applying the optimization techniques to this lowpass specification allows a range of weights, error point and transition and template angle to be investigated. Optimization parameters were varied until the optimization routine erenerated response that fitted within the design templates. Coefficient values
from this solution were then applied to the finite wordengih design procedures to determine the minimum coefficient wordlength for this specification. Responses from the large and finite wordength solution are shown in Fig(74).

(a)

(c)

(b)

(d)

Flgure 7.4 Magnitude (a) passband. (b) stophand and (c) overall frequency responses and (d) pole/zero plot of a solution to the specification of Table(7.3).

Transformation of a lowpass filter structure into a dual bandpass form. detailed in Chapter 5, requires the filter order to be doubled to produce a bandpass structure and then doubled again to generate dual bandpass response. A $28^{\text {th }}$ order lattice WDF of this type and the coefficient values from the lowpass solution can then be used to create an equivalent dual bandpasa response. If the frequency transformation values for each APS were set to 0.86 and -0.65 then the transformed response closely matched the magnitudeonly specification of Table(7.2). The frequency responses of a dual bandpass latice structure under these conditions are illustrated by Fig.(7.5).

Figure 7.5 Magnitude (a) lower passband, (b) upper passband and
(c) overall frequency responses and (d) pole/zero plot of a transformed solution from the lowpass specification to Table(7.3).

Due to the limited performance of the transformed APS'a for dual bandpass designs. an exact solution to the specification of Table(7.2) could not be generated even using the frequency iransformation values for each APS as an optimization parameter. Further designs were switched to the standard $1^{3 t}$ and $2^{\text {nd }}$ order APS's upon the lattice WDF structure shown by Fig.(7.3)(b). The filter order of the transformed APS design was used as an initial guess for this design method.

Optimization parameters that produced the equivalent lowpass solution were modified to incorporate changea in transition band width and attenuation levela. Experience gained through a number of filter designs has shown that the most effective optimization solution: were generated with an error function based upon an L_{2}-metric and error points that were clustered around the regions of greatest change. weights that produced an equal deviation/equal error effect and all the initial multiplier values set to zero. Paramerer values selected for the
design of dual bandpass filter to satisfy the apecification of Table(7.2) are detailed in Table(7.4).

Fitter order	28
Initial multiplier values	all zero
Lp-metric value	2
Beta ratio (i.e. magnitude-only design)	1

Parameters ner band	$\begin{gathered} 14 \\ 3 t o n \\ \hline \end{gathered}$	14 tran	$\begin{gathered} 111 \\ \text { pass } \end{gathered}$	$\begin{aligned} & 2^{\text {nd }} \\ & \text { 1ran } \end{aligned}$	$\begin{aligned} & 2^{\text {nd }} \\ & 3100 \\ & \hline \end{aligned}$	$\begin{gathered} \text { grd } \\ \text { tran } \end{gathered}$	$\begin{gathered} 2^{\text {nd }} \\ \text { Dasis } \end{gathered}$	$\begin{gathered} 4 \mathrm{th} \\ 184 \mathrm{n} \\ \hline \end{gathered}$	$\begin{aligned} & 3 \mathrm{rdt} \\ & 3100 \\ & \hline \end{aligned}$
Error ooints	37	11	21	11	21	11	21	11	15
Error point spacing	sine	linear	dual cos	linear	$\begin{gathered} \text { dual } \\ \text { cos } \end{gathered}$	linear	$\begin{gathered} \text { dual } \\ \text { cos } \end{gathered}$	linear	cos
weishts	5000	200	50	200	5000	200	10	200	5000

Table 7.4(a) Initial optimization parameter valucs.

Transition bands		$18 t$	2nd	3rd	41 h
template	unner	35	35	35	35
	angles (degs)	lower	30	30	30

Table 7.4(b) Initial opimization parameter values.
Using the initial parameter settings of Table(7.4). dual line template and quasiNewton based optimization was applied to the design specification. Results from the design process very closely approached the desired solution. but tended to spike at the edges of stopband. Spikes are most prominent when the filter order is 100 large for a specification. Other signs that the filter order was too high could be seen in the frequency response of the solution. Fig.(7.6), where the middle stopband attenuation was lower than necessary.

Figure 7.6 Overall magnitude responses of agth order solution to the specification of Table(7.2).

Following the results of the $281 h$ order design solution, the filier order was reduced to 26 and the optimization procesa re-applied with the same initial optimization parameter values. Solutions from this design process were more successful. The frequency responses of the solution are shown in Fig.(7.7).

Figure 7.7 Magnitude (a) lower passband, (b) upper passband and (c) overall frequency responses and (d) pole/zero plat of a $26^{\text {ih }}$ order solution to the specification to Table(7.2).

7.4 Magnitude-Only Design (Finite)

Siarting with the coefficient values generated in the previous section and the optimization parameter values of Table(7.4), the design example was applied to the finite wordength routine. This process would determine the minimum coefficient wordlength for this filter order and specification. The finite wordlengih coefficient values produced through the optimization procest were 16 bits in length and afe given in Table(7.5).

Upper latlice arm			Lower latlice arm		
APS No	APS tybe	multiplier values	APS No.	APS type	multiplier values
1	2nd	$\begin{aligned} & x_{1}=-0.93023681640625 \\ & x_{2}=-0.20568847656250 \end{aligned}$	7	$2^{\text {ad }}$	$\begin{aligned} & x_{13}=-0.86846923828125 \\ & x_{14}=-0.26959228515625 \\ & \hline \end{aligned}$
2	2 nd	$\begin{aligned} & x_{3}=-0.88696289062500 \\ & x_{4}=-0.45800781250000 \\ & \hline \end{aligned}$	8	2nd	$\begin{aligned} & x_{15}=-0.98004150390625 \\ & x_{16}=-0.18164062500000 \\ & \hline \end{aligned}$
3	$2^{\text {nd }}$	$\begin{aligned} & \mathrm{x}_{5}=-0.85473632812500 \\ & \mathrm{x}_{6}=-0.37414550781250 \end{aligned}$	9	$2^{\text {nd }}$	$\begin{aligned} & x_{17}=-0.96643066406250 \\ & x_{18}=-0.43701171875000 \\ & \hline \end{aligned}$
4	20d	$\begin{aligned} & x_{7}=-0.88385009765625 \\ & x_{8}=-0.77886962890625 \end{aligned}$	10	$2^{\text {nd }}$	$\begin{aligned} & \times 19=-0.86120605468750 \\ & \times 20=-0.45568847656250 \\ & \hline \end{aligned}$
5	$2^{\text {nd }}$	$\begin{aligned} x 9 & =-0.98028564453125 \\ x_{10} & =-0.72448730468750 \end{aligned}$	11	$2^{\text {nd }}$	$\begin{array}{r} \times 21=-0.93420410156250 \\ \times 22=-0.74029541015625 \end{array}$
6	$2^{\text {nd }}$	$\begin{aligned} & x_{11}=-0.93237304587500 \\ & x_{12}=-0.86633300781250 \end{aligned}$	12	$2^{\text {nd }}$	$\begin{aligned} & x_{23}=-0.88232421875000 \\ & x 24=-0.83197021484375 \end{aligned}$
			13	2 nd	$\begin{aligned} & \mathrm{K} 25=-0.98010253906250 \\ & \mathrm{x} 26=-0.87896728515625 \end{aligned}$

Table 7.516 bit coefficient values that satisfy the dual bandpass specification of Table(7.2).

Impulse responses of the $\mathbf{2 6}^{1 / h}$ order lattice WDF's with the ideal and finite wordlength coefficients are illustrated in Fig.(7.8), while the frequency responses are shown in Fig.(7.9).

Figure 7.8 (a) Initial and (b) overall impulse responses of a 26 th order solution to the specification to Table(7.2) under ideal and finite wordlength conditions.

(a)

(b)

Flgure 7.9 Magnitude (a) lower passband. (b) upper passband and (c) overall frequency responses of a $26^{1 \mathrm{~h}}$ order solution to the specification to Table(7.2) under ideal and finite wordlength conditions.

7.5 Simultaneous Design (Ideal)

The filter order for the magnitude-only part of the specification of Table(7.1) was determined to be 26 . Using a $26^{\text {th }}$ order solution as starting point, the group delay part of the specification was introduced. With the optimization parameter values of Table(7.6), the group delay tolerance was started at 200%.

Filter order	26
Initial multiplier values	Ideal
Lp-metric value	2
Beta ratio (i.e. magnitude-only design)	0.8
Group Delay tolerance	200%
Initial mean passband group delay value	0.0025 sec

Parameters per band	$\begin{gathered} 181 \\ \text { stop } \\ \hline \end{gathered}$	181 iran	$\begin{gathered} 131 \\ \text { gess } \end{gathered}$	2nd tran	2nd stob	$\begin{aligned} & 3^{\text {rdd }} \\ & \text { iran } \end{aligned}$	$\begin{aligned} & 2^{\text {nd }} \\ & 0.3 s \end{aligned}$	$\begin{gathered} 4^{\mathrm{h}} \\ 1 \mathrm{ran} \end{gathered}$	$\begin{aligned} & 3 \text { cod } \\ & \text { stop } \end{aligned}$
Gain temolate values									
Error doints	37	11	21	11	21	11	21	11	15
Pt spacing	sine	linear	dual \cos	linear	$\begin{aligned} & \text { dual } \\ & \text { cos } \\ & \hline \end{aligned}$	linear	dual \cos	linear	cos
Weighis	5000	200	50	200	5000	200	50	200	3000
Giouo Delay temolate values									
Error doints	1	1	19	1	1	1	19	1	1
P1 spacine	1	1	linear	1	1	1	linesr	1	1
Weights	1	1	60000	1	1	1	60000	1	1

Table 7.6(a) Initial optimization parameter values.

Transition bands		$19 t$	2 nd	3rd	4ith
template angles (degs)	upper	35	35	35	35
	lower	30	30	30	30

Table 7.6(b) Initial optimization parameter values.
When a solution was generated for this specification. the group delay tolerance was reduced until a $26^{\text {th }}$ order simultancous solution could not be created. For the specification of Table(7.1). the minimum group delay deviation for a $26^{\text {th }}$ order latice WDF was 90\%.

Having determined a set of optimization parameters from the initial simultaneous designs, the filter order was increased and the group delay tolerance again lowered until a solution could not be gencrated. The filter order was increased so that there was always a larger number of poles in the upper, $\mathrm{S}^{\prime \prime}$, branch of the lattice structure. Following this rule the next filter order considered was $\mathbf{3 0}$. Optimization determined that the minimum group delay deviation for the $30^{\text {th }}$ order lattice WDF example was 70%. Repealing this design process for a $34^{\text {th }}$ order example produced a minimum deviation of 50%. Using the reduction in group delay per filter order, as a rule of thumb, a 20% deviation example was considered upon a $42^{\text {nd }}$ order lattice WDF. The actual solution was achieved upon a $46^{\text {th }}$ order lattice structure.

The specification of Table(7.1) requires a group delay deviation of 1%. Applying the rule of thumb concerning fitier order. the 1% tolerance example was first considered upon a $54^{1 \mathrm{~h}}$ order lattice structure. Fig. 7.10) shows the responses of
the $54^{\text {th }}$ order solution generated through the quazi-Newion, dual line templates and optimization parameter settings of Table(7.6).

Figure 7.10 Passband (a) lower and (b) upper magnitude, passband (c) lower and (d) upper group delay and overall (e) magnilude and (f) group delay frequency responses of a $54^{\text {th }}$ order lattice WDF.

The responses of Fig.(7.10) fail to satisfy the specification of Table(7.1), although only just for the upper passband responses. Failure to satisfy any region of the specification suggests the filter order was loo low. Retaining the optimization parameter values from this solution, the filter order was increased until an acceptable solution was achieved.

A final solution was produced upon a $66^{\text {th }}$ order lattice structure. The frequency responses of this solution are illustrated in Fig.(7.11).

(a)

(c)

(b)

Figure 7.11 Passband (a) lower and (b) upper magnitude. passband (c) lower and (d) upper group delay and overalt (e) magnitude and (f) group delay frequency responses of a $66^{\text {th }}$ order lattice WDF.

7.6 Simultaneous Design (Finite)

The final step in the design process involved generating finite wordiengih solution to the specification. Using the ideal coefficients determined in the previous section as starting point, the modified Hooke-Jeeves optimization routine was applied to the problem. With the same optimization parameters used for the ideal coefficient solution and an initial wordlength of 32 bits, the optimization routine produced a solution with a minimum wordlength of 26 bits. This therefore represented the minimum coefficient wordlengit for the specification of Table(7.1) and a $66^{\text {th }}$ order lattice WDF.

Satisfying the 16 bit requirement of Table(7.1) involved increasing the filter order. finding an ideal coefficient simultaneous solution and reapplying the finite wordlength optimization routine. Each iteration of this process determined the minimum coefficient wordength for that order of filter. A solution was finally achieved with a $74^{\text {th }}$ order lattice WDF. Frequency responses of this solution using ideal and finite wordength coefficient values are illustrated in Fig.(7.12). As a comparison the frequency responses of the equivalent exactly linear phase FIR filter are shown by Fig.(7,13). The finite coefficient values are detailed in Table(7.7).
page $7 / 17$

(b)

(c)

(e)

(d)

Figure 7.12 Passband (a) lower and (b) upper magnitude, passband (c) lower
and (d) upper group delay and overall (e) magnitude and (f) group delay frequency reaponses of $74^{\text {th }}$ order latice WDF with ideal and 16 bit coefficients.

Figure 7.13 Overall (a) magnitude and (b) group delay frequency responses of a $286^{\text {th }}$ order exactly linear phase FIR filter.

Upper latice arm					
$\begin{array}{\|l\|} \hline \text { APS } \\ \mathrm{No} \\ \hline \end{array}$	$\begin{aligned} & \text { APS } \\ & \text { iyode } \end{aligned}$	multiplier valuea	$\begin{aligned} & \text { APS } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { APS } \\ & \text { type } \end{aligned}$	multiplier values
1	$2^{\text {nd }}$	$\begin{aligned} & x_{1}=-0.973602294921875 \\ & x_{2}=-0.146820068359375 \end{aligned}$	10	2 nd	$\begin{aligned} & x_{19}=-0.896209716796875 \\ & x_{20}=-0.804107666015625 \\ & \hline \end{aligned}$
2	$2^{\text {nd }}$	$\begin{aligned} & x_{3}=-0.929443359375000 \\ & x_{4}=-0.331054687500000 \end{aligned}$	11	2 nd	$\begin{aligned} & \times 21=-0.290618996484375 \\ & \times 22=-0.664215087890625 \\ & \hline \end{aligned}$
3	$2^{\text {nd }}$	$\begin{aligned} & x_{5}=-0.940582275390625 \\ & x_{6}=-0.203704833984375 \end{aligned}$	12	$2^{\text {nd }}$	$\begin{aligned} & x_{23}=-0.892364501953125 \\ & \mathrm{E}_{24}=-0.750670386718750 \\ & \hline \end{aligned}$
4	$2^{\text {nd }}$	$\begin{aligned} & x 7=-0.930328369140625 \\ & x g=-0.264984130859375 \end{aligned}$	13	20d	$\begin{aligned} & \times 25=-0.990173339843750 \\ & \times 26=-0.692535400390625 \\ & \hline \end{aligned}$
5	2 nd	$\begin{aligned} & x 9=-0.927276611328125 \\ & x_{10}=-0.396972696250000 \\ & \hline \end{aligned}$	14	2 nd	$\begin{aligned} & x_{27}=-0.940399169921875 \\ & \times 22=-0.721130371093750 \\ & \hline \end{aligned}$
6	$2^{\text {nd }}$	$\begin{aligned} & x_{11}=-0.633209228515625 \\ & x_{12}=-0.5028381347656625 \\ & \hline \end{aligned}$	15	2nd	$\begin{aligned} & \times 29=-0.859039306640625 \\ & \times 30=-0.816162109375000 \\ & \hline \end{aligned}$
7	$2^{\text {nd }}$	$\begin{aligned} & x_{13}=-0.682342529296875 \\ & x_{14}=-0.395141601562500 \\ & \hline \end{aligned}$	16	2nd	$\begin{aligned} & x 31=-0.908416748046875 \\ & 132=-0.898947753906250 \\ & \hline \end{aligned}$
8	27d	$\begin{aligned} & x_{15}=-0.971496582031250 \\ & x_{16}=-0.465240478515625 \\ & \hline \end{aligned}$	17	$2^{\text {nd }}$	$\begin{aligned} & 133=-0.794433593750000 \\ & 114=-0.855102539062500 \\ & \hline \end{aligned}$
9	2 nd	$\begin{aligned} & x_{17}=-0.402252197265625 \\ & x_{12}=-0.600219726562500 \end{aligned}$	18	2nd	$\begin{aligned} & x 35=-0.979400634765625 \\ & \times 36=-0.897888183593750 \end{aligned}$

Table 7.7(a) Upper latice arm coefficient values of the 74th order
filter that satisfies the dual bandpasa specification of Table(7.1).

Lower latice arm					
$\begin{array}{\|l\|} \hline \text { APS } \\ \hline \text { No } \\ \hline \end{array}$	$\begin{aligned} & \text { APS } \\ & \text { tyof } \end{aligned}$	multiplier values	$\begin{aligned} & \text { APS } \\ & \text { No } \end{aligned}$		muliplier values
19	$2^{\text {nd }}$	$\begin{aligned} & x_{37}=-0.987823486328125 \\ & x_{3} 3=-0.143890380859375 \\ & \hline \end{aligned}$	29	2Id	$\begin{aligned} & x_{57}=-0.476043701171875 \\ & x_{58}=-0.692962646484375 \\ & \hline \end{aligned}$
20	20d	$\begin{aligned} & x_{39}=-0.935546875000000 \\ & x_{40}=-0.233306884765625 \end{aligned}$	30	2nd	$\begin{aligned} & x_{59}=-0.583312988281250 \\ & x_{60}=-0.747924804687500 \end{aligned}$
21	$2^{\text {nd }}$	$\begin{aligned} & x_{41}=-0.934753417968750 \\ & x_{42}=-0.431701660156250 \\ & \hline \end{aligned}$	31	$2^{\text {nd }}$	$\begin{aligned} & x_{61}=-0.890014648437500 \\ & x_{62}=-0.860351562500000 \\ & \hline \end{aligned}$
22	$2^{\text {nd }}$	$\begin{aligned} & x_{43}=-0.951782226562500 \\ & x_{44}=-0.171783447265625 \\ & \hline \end{aligned}$	32	2 nd	$\begin{aligned} & x_{63}=-0.911865234375000 \\ & x_{64}=-0.781402587890625 \\ & \hline \end{aligned}$
23	$2^{\text {nd }}$	$\begin{aligned} & x_{45}=-0.930389404296875 \\ & x_{46}=-0.295989990234375 \\ & \hline \end{aligned}$	33	2nd	$\begin{aligned} & x_{65}=-0.907165527343750 \\ & x_{66}=-0.830352783203125 \\ & \hline \end{aligned}$
24	2nd	$\begin{aligned} & x_{47}=-0.986450195312500 \\ & 148=-0.467132568359375 \end{aligned}$	34	$2^{\text {nd }}$	$\begin{aligned} & x_{67}=-0.982116699218750 \\ & x_{88}=-0.693756103515625 \\ & \hline \end{aligned}$
25	2nd	$\begin{aligned} & k_{49}=-0.922424316406250 \\ & \mathrm{k} 90=-0.364593505859375 \\ & \hline \end{aligned}$	35	2 nd	$\begin{aligned} & \times 69=-0.938568115234375 \\ & \times 70=-0.881622314453125 \\ & \hline \end{aligned}$
26	2 nd	$\begin{aligned} & x_{51}=-0.779571533203125 \\ & x_{52}=-0.414459228515625 \\ & \hline \end{aligned}$	36	20d	$\begin{aligned} & \times 71=-0.912658691406250 \\ & 172=-0.749114990234375 \\ & \hline \end{aligned}$
27	$2^{\text {nd }}$	$\begin{aligned} & x_{53}=-0.439819335937500 \\ & x_{54}=-0.535522460937500 \\ & \hline \end{aligned}$	37	$2^{\text {nd }}$	$\begin{aligned} & x_{73}=-0.989349365234375 \\ & x_{74}=-0.898895263671875 \\ & \hline \end{aligned}$
28	2 nd	$\begin{aligned} & x_{55}=-0.423156738281250 \\ & x_{56}=-0.606597900390625 \end{aligned}$			

Table 7.7 (b) Lower lattice am coefficient values of the $74^{\text {th }}$ order
filter that satisfies the dual bandpass specification of Table(7.1).

7.7 Design Summary

The purpose of this Chapter was to demonstrate the design of linear phase dual bandpass filter with finite wordength coefficients and discuss of number of propenies of the proposed design techniques that have emerged though the wide range of designs considered during the period of this research project.

Principle among the reasons for exchanging the eract phase linearity of FIR filters to the approximately linear phase lattice WDF's was a possible reduction in filier order and increased operational performance. The compromise between filter order and phase linearity is heavily dependant upon the frequency specification of a filter design. Phase linearity it only required across the
passbands of a response and is sensilive to rapid changes in gain. FIR filiers, due to their non-recursive nature. have poor frequency selectivity and exacily linear phase designs possess phase linearity across the whole frequency band. Therefore the combination of phase linearity, narrow passbands and sharp cut-off rates in a design specification. such as the dual bandpass considered in this Chapter, resulis in a very large FIR filter order

The superior frequency selectivity of recursive filter structures and the linear phase techniques discussed in this thesis, allow solutions to be generated with considerably lower filter orders. However this improvement is dependent upon the phase linearity required and frequency specification of the example. Overall. the performance of a linear phase lattice WDF over an exactly linear phase FIR filter will depend upon the nature of the frequency specification.

Experience of the dual-iine template based optimization techniques proposed has highlighted a number of parameters that need to be considered to improve design process. Principle among these parameters is the transition band templates. For magnitude-only designs the transition band templates should force a rapid cut-off rate from the edge of the passband. However for simultancous designs, because rapid changes in gain distort the phase response, a sharp cut-off rate from the edge of the passband increases the constraints upon the group delay side of the problem. Therefore with simultaneous designs a more appropriate transition band template scheme involves a slow cut-off from the edge of the passband and then a rapid cut-off toward the edge of the stopband. This feature is especially true for very narrow transition bands.

Another property of the optimization techniques is due to the nature of the error function. Since the error is gencrated at a finite number of points, it is possible that the peak error of a particular region may fall between two error points and not register. To ensure this characteristic is reduced. a design solution should be re-run with a different arrangement of error poinss, usually achieved by increasing the points by 10% across the passbands and stopbands.

Chapter
 8

Discussion and Conclusions

8.1 Project Outline

The main objective of this research project entailed the design of linear phase multi-band digital filters that could operate at high sampling rates while maintaining the desired response under finite wordength conditions. Sampling rates and the finite wordlength performance of a digital filter are related and dependant upon hardware implementation. The maximum sampling rate of a digital filter is limited by a system's ability to perform basic operations, such as multiplication and addition and the maximum number of these operations a particular digital filter is required to perform in one sample period. For the basic FIR filter structure, sample period entails the multiplication and accumulation of N samples. where N is the order, while for the latice WDF structure, a sample period involves one multiplication and three additions for each iwo-port adaptor. The smmpling rate limit is therefore constrained by the structure of the filter and the speed of multiplication and addition operations. Of the hardware operations, the mosi computationally expensive is multiplication.

A technique for improving the performance of hardware multipliers involves reducing the number of operations required to generate the product by shortening the wordength of one of the multiplicands. In this way, a X by X bit multiplier producing a $2 X$ bit result, would be replaced by $X X$ by Y bit multiplier generating $(X+Y)$ bit answer. The increase in speed of operation of the modified multiplier is approximately X / Y. Maintaining system accuracy with this modified multiplier technique requires that the signal wordlength be kept as long as possible. Central to most DSP applications is the Multiply and Accumulate (MAC) function. where the input signal is mulijplied by a coefficient value and the result added to the contents of a register. Therefore the only filter wordiength that could be modified to incorporate the modified multiplier technique are those of the coefficient values.

Adopting this multiplier technique to improve the sampling rate performance of a system requires filter structures that can satisfy the desired frequency response
with short coefficient wordengihs. These limitations prompted research to consider the WDF and its properties.

Since the development of WDF's by Fettweis in 1972, very little research had been published regarding the design of linear phase WDF's. To this end, the research project was concerned with investigating the properties of ladder and latice WDF's in relation to linear phase and possible design techniques. The final goal of the project was to develop tools to design and analyse WDF's that satisfied dual bandpass magnitude specifications with an approzimately linear phase response across the passbands and finite wordengit coefficients.

8.2 Summary of WDF structures and properties.

The WDF was designed to possess low coefficient sensitivity by mimicing the properties of analogue DTL networks, such as LC ladder circuits. Under the techniques proposed by Fettweis. digital equivalents of analogue elements were modelled through wave parameters and a digital filter constructed using these components. The modelled digital components can be considered as one-port elements interconnected by special adaptors or as two-port elements cascaded logether. Using digital models for a range of analogue components, the analogue lossless ladder and lattice DTL networks can be constructed in the digital domain as ladder and lattice WDF't respectively.

8.2.1 WDF structures

Although both ladder and lattice WDF structures can satisly arbitrary magnitudeonly specifications, it is the property of minimum- or nonminimum-phase that dictates their performance with respect to linear phase. A linear phase response is dependent upon the position of its poles and zeros. Stability requires that the poles of asystem remain within the unit circle while the pole/zero plot of exactly linear phase FIR filters clearly shows that the zeros have to exist in complex conjugate pairs. Siructures that exhibit minimum-phase do so by forcing all zeros to remain on or within the unit circle. This is to ensure that a stable and causat inverse of the system exists. Of the two main WDF structures, the ladder WDF can only satisfy the minimum-phase criteria while the latsice WDF may be configured to possess minimum- or nonminimum-phase characteristics.

The property of minimum-phase suggesis that the ladder WDF is unsuitable for linear or arbitrary phase specifications, while the latice WDF provides a basis for
both simultancous and magnitude-only designs. The lattice WDF structure can be specified in a form that corresponds 10 a polyphase network, in which each branch is an allpass function. For the lattice WDF, these branches are a cascade of APS's, where the nature of the APS's will determine the overall frequency response of the filter.

8.2.2 Frequency Transforms

Lattice WDF's can be designed to satisfy lowpass. highpasg and bandpass type responses using the standard $1^{\text {st }}$ and $2^{\text {nd }}$ order APS's detailed in Chapter 4 or the transformed APS's described in Chapter 5. The altemative APS's were designed by describing frequency transformation equations in terms of WDF building blocks and then applying them to the standard 1 and $2^{\text {and }}$ order APS's. This design method created $1^{3 t}$ and $2^{n d}$ order APS's for highpass designs, $2^{\text {nd }}$ and $4^{1 / h}$ order APS's for bandpass designs. and $4^{\text {th }}$ and sth $^{\text {th }}$ order APS's for dual band designs that could be used as direct replacements for APS's in the lowpass latice structure. Their construction allowed the coefficient values from lowpass designs to be applied directly to the altemative APS's to create equivalent transformed solutions. However. this construction meihod imposed a restriction upon the $\mathbf{4}^{\text {h }}$ and g'h $^{\text {th }}$ order APS's by making a number of the multipliers within the APS dependent and reducing their degrees of freedom. This dependence limits the performance of the APS's and therefore the overall response of a latite structure using them.

A reduction in performance using the iransformed APS's did not present a problem for the range of single bandpass and bandstop magnitude-only and simultanecus specifications considered. Dual band designs, however, were severely limited by the performance of the transformed $4^{\text {th }}$ and gih $^{\text {ander }}$ APS's. To avoid these limitations dual band frequency designs were considered upon a latice structure using the standard $1^{\text {tt }}$ and $2^{\text {nd }}$ order APS's. For these designs, the overall equations for the latice structure had to be modified to implement the difference of the two lattice branch responses for single and dual bandpass specifications rather than their sum which had been used for the transformed APS:

8.2.3 Finite Wordiength Effects

Effects of finite wordlength upon ladder and lattice WDF structures can be observed by calculating their coefficient sensitivity responses and by comparing
the frequency responses determined with ideal and reduced accuracy coefficient values. Coefficient sensitivities illustrate the amount by which a filter's gain. phase and group delay responses will vary as coefficient values are altered. For DTL structures, this sensitivity can approach zero at its MAP points within the passband. Finite wordengih characterigtics illustrated in Chaptet 6 . demonstrate the high tolerance of the lattice WDF's magnitude response to changes in the coefficient wordlengths. This was also confirmed by the structure's low magnitude coefficient sensitivities across its passband. again reaching zero al MAP points within the passband(s) of lowpass, highpass and bandpass specifications. Extending the ideas of sensitivity to group delay allowed the variation of the group delay response to be determined with respect to coefficient changes. The coefficient sensitivities provide an indication of the distortion introduced into the frequency response as the coefficient wardlengths are reduced.

8.3 Summary of Design Options

With the ladder and lattice WDF structures as a basis for this research project. the main design decision concerned the method of generating the filter coefficients. Ultimately. these filter coefficients would satisfy simultancous magnitude and phase specifications with finite wordlengths. A number of design options are available but the three main methods consist of using analytical equations. optimization or a combination of both rechniques. Magnitude-only designs can be solved by minimum-phase polynomials. such as the elliptic or Butterworth functions and be implemented directly upon lattice or ladder WDF's. Calculating these polynomials for magnitude-only frequency specifications results in a set of large wordlength coefficients. However, the frequency responses of ladder and lattice WDF's with these coefficients may become unacceptably distorted if the coefficient wordlengths were reduced too far

To offset this effect some type of finite wordlength optimization should be applied $t 0$ achieve the desired frequency response with short wordlength coefficients. This mixed approach to magnitude-only frequency specifications cannot be applied to simultaneaus designs as nonminimum-phase polynamials do not exist which can astisfy arbitrary magnitude and phase specifications. For these design cases, oprimization must be applied from the start. Under these conditions. optimization techniques would be directed at generating set of large wordlengh. or ideal filter coefficients. that satisfy the simultancous frequency specification. These ideal simultancous solutions, along with large coefficient solutions from
magnitude-only designs. would then be applied to optimization techniques suited to finding finite wordiength solutions.

8.3.1 Optimization Techniques

The three main steps in applying optimization to a problem concern: describing the problem in a form that has agol, a process for measuring the difference between the current state and the goal, and method of moving from the current state to the goal. For filter design, the goal is a set of coefficients that generate the desired frequency responses. The error to be minimized is the difference between the frequency response with the current set of coefficients and the goal frequency response. The optimization algorithm is therefore responsible for altering the values of the filter coefficients to achieve the desired frequency response.

To determine an error function to minimise, the response of the system must be gauged against an ideal response. However. for wide range of design cases, the ideal response will not be specified as a continuous function, but as a piece-wise linear approximation or template. This is usually defined as maximum attenustion across the passband(s) and minimum attenuation across the stopband(s). Therefore, to determine an error function, the actual response musi be compared with a template function created from the frequency specification. Of the template functions considered in Chapter 2, and applied in both Chapters 3 and 4, the most effective template scheme used the frequency response apecification to determine an upper and lower limit line for each band of the response. Under these dual line template targets, the optimization routine would only be concerned with minimizing excursions of the frequency response outside the template limits. This also allowed the error function to reach zero if the frequency response fell within the template targets.

The format of the error function applied within the optimization process was to sum the differences between the template targets and the actual frequency response at various points over the frequency spectrum. The overall difference was generated using aeighted L_{p}-metric function. The dependent relationship between magnitude and group delay responses meant that both responses had to be considered simultaneously within the optimization problem. To cater for this. a weighted L_{p}-metric crror was generated for each frequency response iemplate and a ratio of the two errors summed together. Introducing a ratio of the two functions sllowed overall control of the contributions of the two errors into the
magnitude-only designs, would then be applied to optimization techniques suited to finding finite wordengith solutions.

8.3.1 Optimization Techniques

The three main steps in applying optimization to a problem concern; describing the problem in a form that has a goal. a process for measuring the difference between the current state and the goal, and a method of moving from the current state to the goal. For filter design, the goal is a set of coefficients that generate the desired frequency responses. The error to be minimized is the difference between the frequency response with the current set of coefficients and the goal frequency response. The optimization algorithm is therefore responsible for altering the values of the filter coefficients to achieve the desired frequency response.

To determine an error function to minimise, the response of the system must be gauged against an ideal response. However, for a wide range of design cases, the ideal response will not be specified as a continuous function, but as a piece-wise linear approximation or template. This is usually defined as a maximum attenustion across the passband(s) and minimum attenuation across the stopband(s). Therefore. to determine an error function, the actual response must be compared with a template function created from the frequency specification Of the template functions considered in Chapter 2, and applied in both Chapters 3 and 4, the moss effective template scheme used the frequency response specification to determine an upper and lower limit line for each band of the response. Under these dual line template targets, the optimization routine would only be concerned with minimizing excursions of the frequency response outside the template limits. This also allowed the error function to reach zero if the frequency response fell within the template targets.

The format of the error function applied within the optimization process was to sum the differences between the template targets and the actual frequency response at various points over the frequency spectrum. The overall difference was generated using a weighted L_{p}-metric function. The dependent relationship between magnitude and group delay responses meant that both responses had to be considered simultaneously within the optimization problem. To cater for this. a weighted L_{p}-metric error was generated for each frequency reaponse template and atio of the two errors summed together. Introducing a ratio of the two functions allowed overall control of the contributions of the two errors into the
optimization routine. Altering this factor also allowed magnitude and group delay anly problems to be addressed with the same error function and optimizatian routine.

The weighted L_{p}-metric error function forces the optimization routine to emphasize parts of the frequency response by increasing the weights on points within a specific region. However, the effects of the number and position of the points at which the L_{p}-metric function was determined are more difficult ta quantify. Calculating the L_{p}-metric funcion for a frequency response represents an approximation of the crror between the actual response and the ideal or target response. Increasing the number of frequency points with which the L_{p}-metric error was determined improves the accuracy of the error function. but also increased the time taken to gencrate the overall error for each iteration of the optimization routine. A method of reducing the number of error points, without unduly effecting the accuracy of the overall error function, was to place the error points around the regions of greatest activity within the frequency response. For filter designs, this was at the edge of the transition bands. Details of the selections of weights. error points and the L_{p}-metric error function adopted for these filter designs were detailed in Chapters 2. 3 and 4.

Central to applying optimization to a problem is the algorithm. The performance of any optimization algorithm will depend upon the nature of the problem to which it is applied and the information it requires to calculate its search directions. Of the types of algorithm considered, quasi-Newton techniques were best suited to an error function calculated against the dual line templates used in the simultancous filter designs. The availability of a wide range of optimization routines, through the NAG libraries, allowed the performance of a number of optimization algorithms to be compared for magnitude-only and simultaneous design examples. Of the algorithms considered, the simple quasi-Newton function, E04JAF, proved to be the most effective for large wardlengith coefficient simultaneous frequency specifications using the dual line template scheme.

Introducing finite wordlength conditions into an optimization problem imposes a sel of non-linear constraints upon the algorithm and a solution search space. Optimization algorithms can deal with these consıraints in aumber of ways. One method is to determine the next 'best' solution with ideal coefficients in the search space and then select set of coefficients that satisfy the finite wordlength constraints while remaining closest to this 'best' solution. Another meihod is to
only select finite wordlength coefficients and then search the solution space for the 'best' solution with those coefficients.

Although the first method is an extension of the techniques used for large wordlength coefficient solutions. it suffers a lime penalty as the algorithm is mot finding the 'best' solution with a given finite wordength but a finite wordength approximation to a large wordlengith solution. As result, for short wordengits. the 'best' finite wordlength solution may only bear a small correlation to the best large wordlength solution. To improve the optimization process for finite wordlength designs, direct search algorithm was adopled. This modified HookeJeeves method only increases or decreases the coefficient values corresponding to the finite wordength required. In this way, the algorithm always moved between the 'best' finite wordengit solutions within its search space until it found a global or local minimum.

8.3.2 WDF Design Methodologies

With the WDF structure as the basis for research into simultaneous filler designs, the two main design decisions concerned how best to describe and analyse the various WDF structures and how to achicve the final goal of finite wordlengith solutions to dual bandpass frequency specifications.

The design elements to construct WDF's may be considered as one-port or two-port components. The one-port approach represents the general case design technique, as any number of one-port elements may be interconnecied through N -port serial or parallel adaptors that can, in turn, be connected to other adaptors. However, the overall format of WDF structure is a iwo-port device and it is more appropriate to consider it as a cascade of two-port elements. Therefore. for the ladder WDF, the design process should consider cascading two-port building blocks. such as the parallel capacitor and series inductor described in Chapter 3. The lattice WDF, however, is more generally considered in its simplified one-port format. In this form. the lattice WDF is best described in terms of cascaded oneport APS's. described in Chapter 4.

The second design decision entailed developing techniques to move from the large wordength coefficient solutions of magnitude-only specifications using minimum-phase polynomial based formulae, to finite wordiengith solutions for simulaneous mulli-band frequency specifications.

Initially research concentrated upon investigating optimization techniques and algorithms that could generale solutions to known large wordiength lowpass magnitude-only examples. Techniques were adapted and madified until magnitade-only solutions could be gencrated quickly and accurately. The most effective of these optimization techniques were then expanded to include linear phase requirement. A wide range of simultaneous lowpass design examples were investigated using these techniques upon ladder and latice WDF's.

Although the minimum-phase properties of the ladder WDF prevented it from completely satisfying simultancous specifications. parial solutions highlighted a number of problems that could be addressed through better template definitions and error point distributions. Among these problems was a tendency of the optimized frequency response to spike within the transition band and at the edge of stop bands. These effects were counteracted by defining transition band templates that more closely mimicked the shape of the desired response and by placing more error points around the regions of the response susceptible to spiking.

Other properties of the simultaneous design techniques concerned the weights and relative contributions of the gain and group delay errors. Due to the nature of the target templates, each region of a template may possess a different width. This is especially true for the gain template. If a specification has passband attenuation of 0.1 dB and a stopband attenuation of 40 dB . then the gain template widths differ by approximately $230: 1$ passband to stopband. To counter this effect, weights were set so that an equal deviation relative to the width of template region, would generate an equal absolute error. Weights following this procedure were also applied to the group delay templates.

Using weighting scheme that placed equal importance upon each error point within the gain and group delay templates, simultaneous design examples upon the lattice WDF were considered. These provided an insight into successful initial seltinga for the coefficient values and the relative contributions of the gain and group delay errors. Large changes in gain are contrary to the requirements for linear phase design and it it difficult to achieve linear phase around the transition bands of the response. Therefore combining equal contributions of the gain and group delay errors to the overall error function tends to prohibit the optimization routine from establishing the desired shape of the gain response. This is mainly due the to group delay efrors overriding the effects to attain the stopband gain templates by limiting the cut-off rate in the transition band. To
offset this effect the relative contributions of the gain and group delay errors were set so that the shape of the gain response was established before the group delay error was considered. Experiments placed the ratio of the two error functions in the region of 1.8 to 5.6 . or in terms of the β factor of the L_{p}-metric function discussed, a ratio 0.65 to 0.85 .

Having successfully applied optimization techniques to generate simulaneous lowpass solutions upen the lattice WDF. the next slep involved creating lattice WDF structures capable of satisfying bandpass specifications. Using these siructures, the optimization techniques were again adapted until arbitrary magnitude-only and simultaneous frequency specifications could be satisfied.

Lattice WDF structures considered for these designs consisted of the transformed $2^{\text {nd }}$ and $4^{\text {th }}$ order APS's described in Chapter 5 . With these transformed APS's the optimization techniques were modified to include the frequency iransformation value for all or each APS, as an optimization parameter. Using this technique mimics the design procedure of adjusting the resonant frequencies of secand order sections in analogue filters to achieve the desired cut-off rates

With experience gained from singic band frequency designs, solutions to dual band apecifications were considered. Initial work concentrated upon the rranaformed $4^{\text {th }}$ and $8^{\text {th }}$ urder APS's delailed in Chaprer 5 and using the rrequency Iransformation values as optimization parameters. However the constrained characteristics of these $4^{\text {th }}$ and $8^{\text {th }}$ order APS's due to their dependent multipliers proved to be a severe limitation on the performance of the latice structure.

To avoid this limitation dual band frequency designs were considered upon an altemative latice structure using the standard $1^{\text {at }}$ and $2^{\text {nd }}$ order APS's. Using this siruciure a range of dual band magnitude-only and simultancous frequency specifications were considered and the performance of the optimization techniques investigated. For this design process the frequency transformation values were no longer required and the optimization techniques reverted to those used for lowpass designs. In addition a mean group delay value oplimization parameter was considered for each passband. Details of the overall design process were provided through a design example in Chapter 7.

The final step in the overall design process concemed developing techniques to determine accepiable finite wordength lowpass. single band and dual band frequency responses from large wordengths coefficient solutions. The nature of
the Hooke-Jeeves direct search algorithm made it very inefficient for locating the general area of a the global solution to a problem. Therefore, the first step of the finite wordlength design process was to stant close to the region of the large wordength coefficient solution. With the large wordiength coefficients as a starting point. the wordlength of the coefficients was reduced to the degired length. This process could be approached by reducing the coefficient wordiength to the final desired wordlengit and then looking for a solution or by moving the wordlength up and down by one bit until the desired wordlength or the 'best' finite wordlength solution was achieved. Some coefficient wordengits are too short for aiven frequency specification and filter order, and therefore the second approach of increasing or decreasing the coefficient wordength was more versatile.

8.4 Conclusions

The work carried out within this research project. and therefore its conclusions, relate directly to the investigation of WDF structures and their properties. or the design techniques and tools proposed to generate finite wordlength coefficient solutions to arbitrary magnitude and phase frequency specifications.

8.4.1 WDF's for Linear Phase Design

Recursive filter structures, such as the ladder and latice WDF, cannot possess exactly linear phase. This property therefore precludes theif use in applications that require this level of linearity and force the selection of a non-recursive filter structure. However. for wide range of design specifications, a small amount of non-linearity in the phase response is acceptable. Allowing this nonlinearity opens the door to recursive structures for linear phase design.

All digital systems suffer from finite wordength effects. When selecing recursive structures for finite coefficient designs it is imponant to compare their dynamic range and finite wordength properties. Discussion detailed in Chapters 1 and 2 prompled the selection of the WDF structures because of their low coefficient sensitivities and the canonic nature of the lattice WDF.

Investigations into the properties and requirements for linear phase design highlighted the need for nonminimum-phase structures so that the zeros of the transfer function could be arrange inio complex conjugate paira. Ladder WDF's, with their purely minimum-phase structures, were therefore unable to atisfy a
linear phase requirement. This property was confirmed through examples. detailed in Chapter 3, under a wide range of optimization techniques and frequency specifications.

Lattice WDF structures, however, can be designed to possess transfer functions that exhibit a minimum- or nonminimum-phase type response, prompting their selection for simultaneous frequency response designs. The ability of the latice WDF structure to satisfy simulameous frequency specification was illustrated in Chapter 4 through a wide range of lowpass design examples. Solutions from Chapter 4 allowed the actual pole and zero positions of lattice WDF to be calculated. In these pole/zero plots, the poles lay upon an arc within the unit circle that was symmetrical about the real axis, while the zeros occupied the predicted complex conjugate pairings. Within the z-domain an APS possesses poles and zeros that exist in reciprocal pairs. forcing the gain of the APS to be unity. Polefzero plots of the roots of the transfer function of the lattice $W D F$ revealed that the poles and zeros no longer conformed to this relationship. This was due to the structure of the Iattice WDF, where although the poles of the latice were the poles of the individual APS's, the zeros do not relate to the APS's directly, allowing the structure to exhibit a non allpass magnilude response.

Adapting the $1^{\text {st }}$ and $2^{\text {nd }}$ order APS's of the lowpass lattice WDF structure enabled highpass, single and dual band-type filter responses to be considered. Construction of the APS's through the application of frequency Iransformation techniques caused some of the multipliers within an APS to become dependent upon each other, reducing a section's degrees of freedom. The transformed APS's considered represent a set of special case APS's that can be applied as direct replecements for the standard 1^{21} and $2^{\text {nd }}$ order APS's and using the coefficient values from lowpass soluitons, create equivalent highpass, single and dual band type responses.

Although latice WDF siructures using these Iransformed APS's experienced a limitation in their possible performance, this did not prove a restriction for the bandpass and bandsiop frequency specifications considered. However the transformed APS's for dual band specifications severely limited the overall performance of latice structure and forced future designs to be addressed with a modified latice structure and the standard $1^{1 t}$ and $2^{\text {nd }}$ order APS's.

Selection of the format of the latice WDF structure and its' APS's is determined by their performance and flexibility. Under these conditions lattice WDF's using the
transformed APS's cannot compete with structures based upon the standard ist and 2nd order APS's. This is because the transformed APS's have lower degrees of freedom that their order due to dependent multipliers. Latice filter orders are limited by the smallest APS that can be added. For dual band designs using the Iransformed APS's this is the $4^{\text {th }}$ order APS, further limiting the flexibility of the structure. Selection of the standard $1^{1 t}$ and $2^{\text {nd }}$ order APS's over the transformed APS's becomes more certain when additions properties are considered. such the the ability of the sandard 1^{131} and $2^{\text {nd }}$ order APS's to be configured to satisfy highpass, single bandpass and bandstop designs along with any multi-band specifications.

The main purpose behind the transformed APS's was to combine existing frequency transformation techniques and WDF elements to produce a latice structure that could exhibit a wide range of frequency responses. Overall, future arbitrary magnitude-only and simultaneous would be considered with the standard $1^{\text {at }}$ and $2^{\text {nd }}$ order APS's upon a lattice structure an appropriate selection of the sum or difference of the lattice arm responses rather than the iransformed APS's considered in this thesis.

Examples of solutions to simuliancous bandpass frequency specifications are illustrated in Chapter 5 and Chapter 7. Pole/zero plots from these solutions can be compared to simultaneous lowpass solutions. As expected the zeros exist in complex conjugate sets, but the poles and zeros now lie in a symmetrical format about the centre of the passband, which for lowpass designs was the real axis.

Investigating the properties of the latice $W D F$ structure with relation to finite wordlength designs highlighted number of features concerning its phase response. Principle among these properties was iltustrated by the group delay caefficient sensitivities. The magnitude and group delay coefficient sensitivities for number of design examples were provided in Chapters 4 and 5. Magnitude coefficient sensitivities calculated for these exsmples confirm the low coefficient properties of the WDF structure. However, the group delay sensitivities for a particular coefficient tend to be higher, on average. than its magnitude sensitivity and for some coefficients. usually the end of a latice branch, the group delay sensitivity can be relatively large at the beginning or end of the passband. This property suggested that the group delay response of lattice WDF structure would be more prone to distortion than the magnitude response, as the coefficient values were changed.

The outcome of these coefficient sensitivity calculations was to suggest that the limit on the minimum achicvable coefficient wordlengih was imposed by the amount of group delay distortion that was acceplable. However, for both magnitude-only and simultaneous designs, the actual minimum achievable wordlength is constrained by the frequency specification and filter order. Finite wordlength coefficients distort the frequency response relative to its large wordlength solution and therefore if the large wordiength solution only just satisfied frequency specification, this may leave litte scope for coefficient wordiength reduction before the response became unacceptably distorted. The minimum acceptable coefficient wordength is therefore a minimum for given frequency specification and filter order and the minimum wordlength could be improved if the filter order was increased. Higher sensitivity of the group delay response to cocfficient changes also means that to achicve aiven simultaneous finite wordlength solution, the increase in filter order from the large coefficient solution would be larger than that for the magnitude-only design. especially for very narrow group delay tolerances.

Overall the lattice WDF has proved to be versatile and appropriate structure for the design of magnitude-only and simultaneous design specifications. A limitation on its use, as with all recursive structures capable of satisfying a simultancous specification, is that as the group delay tolerance is narrowed, the filter order required to satisfy the specification rises above that of an easaly linear phase FIR filter. With this limitation in mind, the lattice WDF has been successfully applied to the design of arbitrary magnitude-only and linear phase frequency specifications, including the linear phase dual bandpass designs that formed one of the objectives of this research project.

8.4.2 Design Technique Performance

The purpoae of the second area of the research project was to develop techniques for the design of digital filiers to satisfy simultaneous specifications. An optimization approach was adopted to speed the design process since it was not known if solutions existed for some of the filter structures and specifications.

A wide selection of optimization algorithms and error functions were considered for magnitude-only and simultaneous frequency specifications. The most successful optimization technique for general filier specifications was based upon - weighted L_{2}-metric crrar function using a dual line template scheme 10 define upper and lower limits for the desired response. The L_{2}-metric error function was
incorpormed into an oplimization routine allowing a direct comparison of optimization alogrithms for this problem. For large wordlength coefficient solutions a simple quasi-Newton algorithm was best suited to the dual line template scheme. Finite wordength solutions were better addressed with bounded HookeJeeves direct search algorithm.

Optimization techniques that have proved successful for simultaneous designs include the introduction of the mean passband group delay value an an optimization parameter, better defined transition band targets and error point positioning and spacing. All these modifications have been directed loward creating target templates that closer reflect the desired frequency response.

Other successful techniques included an equal deviation/equal error weighting scheme and the selection of the ratio of gain to group delay errors that forced the optimization routine $t o$ establish the shape of the gain response before introducing the group delay specification.

Overall the error functions and optimization techniques have proved successful in creating finite wordength solutions to simultancous frequency specification for a particular lattice WDF order. However, general finite wordtength filter designs are apecified as a frequency response and desired wordlength, leaving the filter order as parameter to be determined. This reveals a limitation of the optimization techniques discussed since they determine the minimum coefficient wordength for a frequency response and filter order, not the filter order for a coefficient wordlength and frequency response.

Another limitation of these optimization techniques is the need for two separate optimization algorithms, one to find the large wordlength solution and the other to find the finite wordlength solution using the large wordlengih solution as a starting point.

8.5 Future Work

Future work into the area of linear phase lattice WDF's, in line with the conclusions, may be divided into the areas concerning the clements of lattice WDF structure or alterations to the design/optimization techniques.

A lattice WDF structure is a basic polyphase atructure containing ascade of APS's. Future work on this structure may therefore entail wider comparison of

APS's 10 include general and bi-reciprocal $4^{\text {th }}$ and g th order sections or extending the design and linear phase optimization techniques to N-branch polyphase structures used in decimating and interpolation filters.

Design techniques provide a wide scope for investigation. particularly with respect to optimization algarithms to determine finite wordength solutions. Wark has already been directed into using simulated annealing to gencrate finite wordength solusions directly without the need for large wordlength solutions as a starting point. Such techniques would determine the minimum filter order for a given frequency specification and coefficient wordlengih. Another interesting design avenue would be to use the knowledge gained about polezero positions from existing simultancous frequency solutions to create better initial guesses to speed up the optimization process.

A final area of work could involve extending the recently published techniques for the design of linear phase microwave filters into the digital domain on Unit Element WDF's.

Appendix A

Two-port Building Blocks

This Appendix contains the design equations for seven building blocks for WDFs based upon two-port elements. Each set of equations can be used in the calculation of the gain. phase and group delay frequency responses of the overall structure. Equations for the calculation of the gain. phase and group delay coefficient sensitivities are also detailed. All the building blocks are considered under each of the three design approaches outlined in Chapter 3. Each building block conlains the three variations of the gencral equation for each design option. The final part of this Appendix details a number of examples using the three possible design appraaches for ladder WDF designs. The contents of this appendix are :-
(A1)..............Serics Inductor
(A2)..............Series Capacitor
(A3).............. Series Tuned LC circuit
(A4)............ Parallel Inductor
(A5)............. Parallel Capacitor
(A6).............. Parallel Tuned LC circuit
(A 7)........... Unit Element
(A8) $\ldots \ldots \ldots . .$. Design Examples - ladder WDF designs

A 1 Series Inductor

This two-pon element can be considered as :

The chain matrix, $X_{y}(L)$, of aeries inductor element, in terms of voltage and current, is given by Eq.(A1.1). The equivalent voltage wave chain matrix description, calculated from the voltage wave transforms of Eq.(At.2) and using the bilinear transform, is shown by Eq.(AI.3).

$$
\begin{gather*}
{\left[\begin{array}{l}
V_{x} \\
I_{x}
\end{array}\right]=\left[\begin{array}{ll}
X_{s}(L)
\end{array}\right] \cdot\left[\begin{array}{l}
V_{y} \\
I_{y}
\end{array}\right] \text { where } X_{s}(L)=\left[\begin{array}{cc}
1 & -3 \\
0 & -1
\end{array}\right]} \tag{A1.1}\\
P=\left[\begin{array}{ll}
1 & R_{x} \\
1 & -R_{s}
\end{array}\right] \quad Q=\left[\begin{array}{ll}
1 & R_{y} \\
1 & -R_{y}
\end{array}\right] \tag{A1.2}\\
{\left[\begin{array}{l}
A_{x} \\
B_{x}
\end{array}\right]=[P] \cdot\left[X_{s}(L)\right] \cdot[Q] \cdot 1\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]} \tag{A1.3a}
\end{gather*}
$$

$0 \quad 1$

$$
\left[\begin{array}{l}
A_{x} \tag{A1.3b}\\
B_{k}
\end{array}\right]=\left[C_{m_{z}}(L)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{m 3}(L)=\left[\begin{array}{cc}
\frac{\beta_{2}+\left(1-\beta_{1}+\beta_{2}\right) z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} & \frac{1+\beta_{1} z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} \\
\frac{\beta_{1}+z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} & \frac{\left(1-\beta_{1}+\beta_{2}\right)+\beta_{2} z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)}
\end{array}\right]
$$

and

$$
\boldsymbol{\beta}_{1}=\frac{\mathbf{R}_{x}+\mathbf{R}_{\mathrm{x}} \cdot \mathbf{L}^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{\mathrm{x}}+\mathbf{L}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{y}-\mathbf{R}_{\mathrm{z}}-\mathbf{L}^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{\mathrm{x}}+\mathbf{L}^{\prime}} \text { and } \mathbf{L}^{\prime}=\frac{2 \mathbf{L}}{T}
$$

Following the design procedures outlined in Chapter 3. delay free loops can be eliminated if the constant terms in the $S_{m a}(L)_{1!}$ element or $S_{m g}(L)_{22}$ element of the scattering matrices are removed. The scattering matrix for this element is given by Eq.(A1.4).

$$
\left[\begin{array}{l}
B_{x} \tag{A1.4}\\
B_{y}
\end{array}\right]=\left[S_{m s}(L)\right] \cdot\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right]
$$

where

$$
S_{m s}(L)=\left[\begin{array}{cc}
\frac{\left(1-\beta_{1}+\beta_{2}\right)+\beta_{2} z^{-1}}{\left(1+\beta_{1} z^{-1}\right)} & \frac{\left(\beta_{1}-\beta_{2}\right)\left(1+z^{-1}\right)}{\left(1+\beta_{1} z^{-1}\right)} \\
\frac{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)}{\left(1+\beta_{1} z^{-1}\right)} & \left(\frac{\beta_{2}+\left(1-\beta_{1}+\beta_{2}\right) z^{-1}}{\left(1+\beta_{1} z^{-1}\right)}\right)
\end{array}\right]
$$

Source Dasign

To remove the constant term from the $S_{m s}(L) 22$ element, then $\boldsymbol{f}_{2} \Rightarrow 0$ and the resulting source design chain matrix may be defined as ;

$$
\left[\begin{array}{l}
A_{x} \tag{Al.S}\\
B_{s}
\end{array}\right]=\left[C_{s s}(L)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{19}(L)=\left[\begin{array}{cc}
\frac{\left(1-\beta_{3}\right) z^{-1}}{1+z^{-1}} & \frac{1+\beta_{3} z^{-1}}{1+z^{-1}} \\
\frac{B_{3}+z^{-1}}{1+z^{-1}} & \frac{1-\beta_{3}}{1+z^{-1}}
\end{array}\right], B_{3}=\frac{R_{z}}{L^{+}+R_{x}} \quad \text { and } \quad R_{y}=R_{x}+L^{\prime}
$$

Load Desien

To remove the consiant term from the $S_{m g}(L) 11$ clement, then $I-\beta_{1}+\beta_{2} \Rightarrow 0$ and the resulting load design chain matrix may be defined as

$$
\left[\begin{array}{l}
A_{x} \tag{A1.6}\\
B_{x}
\end{array}\right]=\left[C_{1 s}(L)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where
$C_{i s}(L)=\left[\begin{array}{cc}-\left(\frac{1-\beta_{4}}{\beta_{4}\left(1+z^{-1}\right)}\right) & \frac{1+\beta_{4} z^{-1}}{\beta_{4}\left(1+z^{-1}\right)} \\ \frac{\beta_{4}+z^{-1}}{\beta_{4}\left(1+z^{-1}\right)} & \left(\frac{\left(1-\beta_{4}\right) z^{-1}}{\beta_{4}\left(1+z^{-1}\right)}\right)\end{array}\right] \cdot \beta_{4}=\frac{R_{y}}{L^{\prime}+R_{y}}$ and $R_{x}=R_{y}+L^{\prime}$

Appendix A

Two-port Building Blocks

This Appendix contains the design equations for seven building blocks for WDF's based upon two-port elements. Each set of equations can be used in the calculation of the gain, phase and group delay frequency responses of the overall structure. Equations for the calculation of the gain. phase and group delay coefficient sensitivities are also detailed. All the building blocks are considered under each of the three design approaches outlined in Chapter 3. Each building black contains the three variations of the general equation for each design option. The final part of this Appendix desails a mamer of examples using the three possible design approaches for ladder WDF designs. The contents of this appendix are :-
(A1)..............Series Inductor
(A2)............. Series Capacitor
(A3)............. Series Tuned LC circuit
(A4)............ Parallel Inductor
(A5)............ Parallel Capacitor
(A6)............. Parallel Tuned LC circuit
(A7)............ Unit Element
(A8)............ Design Examples - Iadder WDF designs

A 1 Series Inductor

This two-pon element can be considered as:

The chain matrix, $X,(L)$, of serics inductor elemens, in terms of valage and current. is given by Eq.(A1.1). The equivalent volage wave chain matrin description, calculated from the voliage wave transforms of Eq.(A1.2) and using the bilinear transform, is shown by Eq.(A1.3).

$$
\begin{gather*}
{\left[\begin{array}{l}
V_{x} \\
I_{x}
\end{array}\right]=\left[X_{s}(L)\right] \cdot\left[\begin{array}{l}
V_{y} \\
I_{y}
\end{array}\right] \quad \text { where } \quad \mathbf{X}_{s}(L)=\left[\begin{array}{ccc}
1 & -s & L \\
0 & -1
\end{array}\right]} \tag{A1.1}\\
P=\left[\begin{array}{cc}
1 & R_{x} \\
1 & -R_{x}
\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{cc}
1 & R_{y} \\
1 & -R_{y}
\end{array}\right] \tag{A1.2}\\
{\left[\begin{array}{l}
A_{x} \\
B_{x}
\end{array}\right]=[P] \cdot\left[\mathbf{X}_{s}(L)\right] \cdot[\mathbf{Q}]^{-1}\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]}
\end{gather*}
$$

(A1.3a)
or

$$
\left[\begin{array}{l}
A_{x} \tag{A1.3b}\\
B_{x}
\end{array}\right]=\left[C_{m s}(L)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{m s}(L)=\left[\begin{array}{cc}
\frac{\beta_{2}+\left(1-\beta_{1}+\beta_{2}\right) z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} & \frac{1+\beta_{1} z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} \\
\frac{\beta_{1}+z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} & \frac{\left(1-\beta_{1}+\beta_{2}\right)+\beta_{2} z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)}
\end{array}\right]
$$

and

$$
\beta_{1}=\frac{\mathbf{R}_{\mathrm{y}}+\mathbf{R}_{\mathrm{x}}-\mathbf{L}^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{L}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{\mathrm{y}}-\mathbf{R}_{\mathrm{x}}-L^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{L}^{\prime}} \text { and } \mathbf{L}^{\prime}=\frac{2 \mathbf{L}}{\mathbf{T}}
$$

PAGINATION ERROR A/2

Following the design procedures outlined in Chapter 3. delay free loops can be eliminated if the canstant terms in the $\left.S_{m a}(L) 1\right]$ element or $S_{m a}(L) 22$ element of the sattering matrices are removed. The scattering matrix for this element is given by Eq.(Al.4).

$$
\left[\begin{array}{l}
B_{s} \tag{A1.4}\\
B_{y}
\end{array}\right]=\left[\mathbf{S}_{\mathrm{ms}}(\mathrm{~L})\right] \cdot\left[\begin{array}{l}
\mathrm{A}_{\mathrm{x}} \\
\mathrm{~A}_{y}
\end{array}\right]
$$

where

$$
S_{m s}(L)=\left[\begin{array}{cc}
\frac{\left(1-\beta_{1}+\beta_{2}\right)+\beta_{2} z^{-1}}{\left(1+\beta_{1} z^{-1}\right)} & \frac{\left(\beta_{1}-\beta_{2}\right)\left(1+z^{-1}\right)}{\left(1+\beta_{1} z^{-1}\right)} \\
\frac{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)}{\left(1+\beta_{1} z^{-1}\right)} & \left(\frac{\left(\beta_{2}+\left(1-\beta_{1}+\beta_{2}\right) z^{-1}\right)}{\left(1+\beta_{1} z^{-1}\right)}\right)
\end{array}\right]
$$

Source Desien

To remove the consiant term from the $S_{\text {min }}(L)_{22}$ element, then $\boldsymbol{j}_{2} \Rightarrow 0$ and the resulting source design chain matrix may be defined an :

$$
\left[\begin{array}{l}
\mathrm{A}_{\mathrm{x}} \tag{A1.5}\\
\mathrm{~B}_{\mathrm{x}}
\end{array}\right]=\left[\mathrm{C}_{\mathrm{s}}(\mathrm{~L})\right] \cdot\left[\begin{array}{l}
\mathrm{A}_{\mathrm{y}} \\
\mathrm{~B}_{\mathrm{y}}
\end{array}\right]
$$

where

$$
C_{s 5}(L)=\left[\begin{array}{cc}
\frac{\left(1-\beta_{3}\right) z^{-1}}{1+z^{-1}} & \frac{1+\beta_{3} z^{-1}}{1+z^{-1}} \\
\frac{B_{3}+z^{-1}}{1+z^{-1}} & \frac{1-\beta_{3}}{1+z^{-1}}
\end{array}\right] \cdot \beta_{3} \Rightarrow \frac{R_{z}}{L^{\prime}+R_{x}} \text { and } R_{y}=R_{k}+L^{\prime}
$$

Lord Design

To remove the constant term from the $S_{m a}(L) 11$ element. then $\mid-\beta_{1}+\beta_{2}=0$ and the resulting load design chain matrix may be defined an :

$$
\left[\begin{array}{l}
A_{x} \tag{A1.6}\\
B_{x}
\end{array}\right]=\left[C_{1 s}(L)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where
$C_{1 s}(L)=\left[\begin{array}{cc}\cdot\left(\frac{1-\beta_{4}}{\beta_{4}\left(1+z^{-1}\right)}\right) & \frac{1+\beta_{4} z^{-1}}{\beta_{4}\left(1+z^{-1}\right)} \\ \frac{\beta_{4}+z^{-1}}{\beta_{4}\left(1+z^{-1}\right)} & \cdot\left(\frac{\left(1-\beta_{4}\right) z^{-1}}{\beta_{4}\left(1+z^{-1}\right)}\right)\end{array}\right], \beta_{4}=\frac{R_{y}}{L^{\prime}+R_{y}}$ and $R_{x}=R_{y}+L^{\prime}$

The group delay calculations require the derivatives of the chain matrices, C_{sa} (L) for the source design, $C_{m a}(L)$ for the middle design and $C_{l}(L)$ for the load design. with respect to the frequency. ω. Therefore, for the three design procedures the appropriate equations are :-

Middle Design

$$
\frac{d C_{\operatorname{man}}(L)}{d \omega}=j \frac{z^{-1}\left(1-B_{1}\right)}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & 1 \tag{A1.7}\\
-1 & 1
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\mathbf{R}_{y}+\mathbf{R}_{x}-L^{\prime}}{R_{y}+\mathbf{R}_{x}+L^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{R_{y}-R_{x}-L^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{x}+L^{\prime}}
$$

Source Design

$$
\frac{d C_{B}(L)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{3}\right)}{\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{rr}
-1 & 1 \tag{A1.8}\\
-1 & 1
\end{array}\right]
$$

where

$$
\mathrm{By}_{\mathrm{y}}=\frac{\mathbf{R}_{\mathrm{K}}}{\mathrm{~L}^{\prime}+\mathbf{R}_{\mathrm{I}}} \quad \text { and } \quad \mathbf{R}_{\mathrm{y}}=\mathrm{R}_{\mathrm{x}}+\mathrm{L}^{\prime}
$$

Lond Desien

$$
\frac{d C_{\lg }(L)}{d \omega}=j \frac{z^{-1}\left(1-B_{4}\right)}{\beta_{4}\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{R_{x}}{L^{\prime}+R_{y}} \text { and } R_{z}=R_{y}+L
$$

In the above equations, $j=\sqrt{-1}$

The coefficient sensitivities for the magnitude and phase response calculations. require the derivatives of the chain matrices, $C_{1 g}(L), C_{m g}(L)$ and $C_{1 g}(L)$. with respect to each of the multipliers within that section. For the three design procedures these equations are *-

Middle Desisn

$$
\frac{d C_{m s}(L)}{d \beta_{1}}=\frac{1}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} \cdot\left[\begin{array}{cc}
-z^{-1} & z^{-1} \tag{A1.10}\\
1 & -1
\end{array}\right]
$$

and

$$
\frac{d C_{m z}(L)}{d \beta_{2}}=\frac{1}{\left(1+\beta_{2}\right)^{2}\left(1+z^{-1}\right)} \cdot\left[\begin{array}{cc}
1+\beta_{1} z^{-1} & -\left(1+\beta_{1} z^{-1}\right) \tag{A1.11}\\
-\left(\beta_{1}+z^{-1}\right) & \beta_{1}+z^{-1}
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\mathbf{R}_{\mathrm{y}}+\mathbf{R}_{\mathrm{x}}-\mathbf{L}^{\prime}}{\mathbf{R}_{\mathrm{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{L}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{\mathrm{y}}-\mathbf{R}_{\mathrm{x}}-\mathbf{L}^{\prime}}{\mathbf{R}_{\mathrm{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{L}^{\prime}}
$$

Source Design

$$
\frac{d C_{s s}(L)}{d \beta_{3}}=\frac{1}{\left(1+z^{-1}\right)} \cdot\left[\begin{array}{cc}
-z^{-1} & z^{-1} \tag{A1.12}\\
1 & -1
\end{array}\right]
$$

where

$$
\beta_{3}=\frac{\mathbf{R}_{\mathrm{X}}}{\mathbf{L}^{\prime}+\mathbf{R}_{\mathrm{x}}} \text { and } \mathbf{R}_{\mathrm{y}}=\mathbf{R}_{\mathrm{x}}+\mathrm{L}^{\prime}
$$

Load Dexiyn

$$
\frac{d C_{15}(L)}{d \beta_{4}}=\frac{1}{\beta_{4}^{2}\left(1+z^{-1}\right)} \cdot\left[\begin{array}{cc}
1 & -1 \tag{A1.13}\\
-z^{-1} & z^{-1}
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{\mathbf{R}_{y}}{\mathbf{L}^{\prime}+\mathbf{R}_{\mathbf{y}}} \text { and } \mathbf{R}_{\mathrm{x}}=\mathrm{R}_{\mathbf{y}}+\mathrm{L}^{\prime}
$$

The group delay coefficient sensitivities require the derivatives of the chain matrices. $C_{11}(L), C_{m s}(L)$ and $C_{1,}(L)$, with respect to the frequency, ω and then each of the multipliers within that section. The three design procedures generate the following matrices :-

Middle Design

$$
\frac{d\left(\frac{d C_{m n}(L)}{d \omega}\right)}{d \beta_{1}}=j \frac{z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \tag{A1.14}\\
1 & -1
\end{array}\right]
$$

and

$$
\frac{d\left(\frac{d C_{m a}(L)}{d \omega}\right)}{d \beta_{2}}=1 \frac{z^{-1}\left(1-\beta_{1}\right)}{\left(1+\beta_{2}\right)^{2}\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \tag{A1.15}\\
1 & -1
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\mathbf{R}_{y}+\mathbf{R}_{x}-L^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{\mathbf{x}}+\mathbf{L}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{y}-\mathbf{R}_{x}-\mathbf{L}^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{x}+\mathbf{L}^{\prime}}
$$

Source Design

$$
\frac{d\left(\frac{d C_{s i}(L)}{(\omega}\right)}{d \beta_{3}}=j \frac{z^{-1}}{\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \tag{A1.16}\\
1 & -1
\end{array}\right]
$$

where

$$
\beta_{3}=\frac{R_{n}}{L^{\prime}+R_{x}} \text { and } R_{y}=R_{x}+L^{\prime}
$$

Lgad_Desien

$$
\frac{d\left(\frac{d C_{1}(L)}{d \theta}\right)}{d \beta_{4}}=j \frac{z^{-1}}{\beta_{4}^{2}\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \tag{A1.17}\\
1 & -1
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{R_{y}}{L^{\prime}+R_{y}} \text { and } R_{x}=R_{y}+L^{\prime}
$$

A 2 Series Capacitor

This two-port element can be considered as

The chain matrix. $X,(C)$. of a series capacitor element, in terms of voltage and current, is given by Eq.(A2.1). The equivalent voltage wave chain matrix description, calculated from the voltage wave transforms of Eq.(A2.2) and using the bilinear transform, is shown by Eq.(A2.3).

$$
\begin{align*}
& {\left[\begin{array}{l}
V_{x} \\
I_{x}
\end{array}\right]=\left[X_{s}(C)\right] \cdot\left[\begin{array}{l}
V_{y} \\
I_{y}
\end{array}\right] \text { where } X_{s}(C)=\left[\begin{array}{cc}
1 & -\frac{1}{s C} \\
0 & -1
\end{array}\right]} \tag{A2.1}\\
& \mathbf{P}=\left[\begin{array}{cc}
1 & \mathbf{R}_{\mathrm{x}} \\
1 & -\mathbf{R}_{\mathrm{x}}
\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{cc}
1 & \mathbf{R}_{\mathrm{y}} \\
1 & -\mathbf{R}_{\mathrm{y}}
\end{array}\right] \tag{A2.2}\\
& {\left[\begin{array}{l}
A_{x} \\
B_{x}
\end{array}\right]=[P] \cdot\left[X_{s}(C)\right] \cdot[Q]^{-1}\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]} \tag{A2.3a}
\end{align*}
$$

or

$$
\left[\begin{array}{l}
A_{x} \tag{A2.3b}\\
B_{x}
\end{array}\right]=\left[C_{m s}(C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{m s}(C)=\left[\begin{array}{cc}
\frac{\beta_{2}-\left(1-\beta_{1}+\beta_{2}\right) z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{1-\beta_{1} z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} \\
\frac{\beta_{1}-z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{\left(1-\beta_{1}+\beta_{2}\right)-\beta_{2} z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)}
\end{array}\right]
$$

and

$$
\beta_{1}=\frac{R_{y}+R_{x}-1 / C^{\prime}}{R_{y}+R_{x}+1 / C^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{R_{y}-R_{x}-1 / C^{\prime}}{R_{y}+R_{x}+1 / C^{\prime}} \text { and } C^{\prime}=\frac{2 C}{T}
$$

A 2 Series Capacitor

This two-port element can be considered as

The chain matrix, $X_{g}(C)$, of series capacitor element, in terms of voltage and current, is given by Eq.(A2.1). The equivalent voltage wave chain matrin description, calculated from the voltage wave transforms of Eq.(A2.2) and using the bilinear transform, is shown by Eq.(A2.3).

$$
\begin{align*}
& {\left[\begin{array}{l}
V_{k} \\
I_{s}
\end{array}\right]=\left[X_{1}(C)\right]=\left[\begin{array}{l}
V_{y} \\
l_{y}
\end{array}\right] \text { where } X_{s}(C)=\left[\begin{array}{ll}
1 & -\frac{1}{s C} \\
0 & -1
\end{array}\right]} \tag{A2.1}\\
& P=\left[\begin{array}{cc}
1 & R_{k} \\
1 & -R_{k}
\end{array}\right] \quad Q=\left[\begin{array}{cc}
1 & R_{y} \\
1 & -R_{y}
\end{array}\right] \tag{A2,2}\\
& {\left[\begin{array}{l}
A_{x} \\
B_{x}
\end{array}\right]=[P] \cdot\left[X_{y}(C)\right] \cdot[Q]^{-1}\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]} \tag{A2.3日}
\end{align*}
$$

O r

$$
\left[\begin{array}{l}
A_{x} \tag{A2.3b}\\
B_{x}
\end{array}\right]=\left[C_{m s}(C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{m a}(C)=\left[\begin{array}{cc}
\frac{\beta_{2} \cdot\left(1-\beta_{1}+\beta_{2}\right) z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{1-\beta_{1} z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} \\
\frac{\beta_{1}-z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{\left(1-\beta_{1}+\beta_{2}\right)-\beta_{2} z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)}
\end{array}\right]
$$

and

$$
\beta_{1}=\frac{R_{v}+R_{z}-1 / C^{\prime}}{R_{y}+R_{z}+1 / C^{\prime}} \quad \text { and } \quad B_{2}=\frac{R_{y}-R_{z}-1 / C^{\prime}}{R_{y}+R_{z}+1 / C^{\prime}} \quad \text { and } C^{\prime}=\frac{2 C}{T}
$$

Following the design procedures outined in Chapter 3, delay frec loops can be eliminated if the constant terms in the $S_{m s}(C) 11$ element or $S_{m s}(C) 22$ element of the scattering matrices are removed. The scatiering matrix for this element is given by Eq.(A2,4).
where

$$
\left[\begin{array}{l}
B_{x} \tag{A2.4}\\
B_{y}
\end{array}\right]=\left[S_{m s}(C)\right] \cdot\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right]
$$

$$
\left.S_{m s}(C)=\left[\begin{array}{cc}
\frac{\left(1-B_{1}+\beta_{2}\right)-B_{2} z^{-1}}{\left(1-\beta_{1} z^{-1}\right)} & \frac{\left(\beta_{1}-\beta_{2}\right)\left(1-z^{-1}\right)}{\left(1-\beta_{1} z^{-1}\right)} \\
\frac{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)}{\left(1-\beta_{1} z^{-1}\right)} & \left(\frac{\beta_{2}-\left(1-B_{1}+B_{2}\right) z^{-1}}{\left(1-\beta_{1} z^{-1}\right)}\right.
\end{array}\right)\right]
$$

Source Drsian

To remove the constant term from the $S_{m s}(C)_{22}$ element, then $B_{2} \Rightarrow 0$ and the resulting source design chain matrix may be defined as ;

$$
\left[\begin{array}{l}
\mathrm{A}_{x} \tag{A2.5}\\
\mathrm{~B}_{x}
\end{array}\right]=\left[\mathrm{C}_{s s}(\mathrm{C})\right] \cdot\left[\begin{array}{l}
\mathrm{A}_{y} \\
\mathrm{~B}_{y}
\end{array}\right]
$$

where

$$
C_{a n}(C)=\left[\begin{array}{cc}
-\left(\frac{\left(1-\beta_{3}\right) z^{-1}}{1-z^{-1}}\right) & \frac{1-\beta_{3} z^{-1}}{1-z^{-1}} \\
\frac{B_{3}-z^{-1}}{1-z^{-1}} & \frac{1-\beta_{3}}{1-z^{-1}}
\end{array}\right] \cdot B_{3}=\frac{C^{\prime} R_{x}}{1+C^{\prime} R_{x}} \text { and } R_{y}=R_{x}+\frac{1}{C}
$$

Lead Design

To remove the constant iem from the $S_{m g}(C)_{11}$ element, then $1-\beta_{1}+\beta_{2} \Rightarrow 0$ and the resulting laad design chain matrix may be defined as :

$$
\left[\begin{array}{l}
A_{x} \tag{A2.6}\\
B_{x}
\end{array}\right]=\left[C_{1 s}(C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{18}(C)=\left[\begin{array}{cc}
-\left(\left.\frac{1-\beta_{4}}{\beta_{4}\left(1-z^{-1}\right)} \right\rvert\,\right. & \frac{1-\beta_{4} z^{-1}}{\beta_{4}\left(1-z^{-1}\right)} \\
\frac{\beta_{4}-z^{-1}}{\beta_{4}\left(1-z^{-1}\right)} & \frac{\left(1-\beta_{4}\right) z^{-1}}{\beta_{4}\left(1-z^{-1}\right)}
\end{array}\right], \beta_{4}=\frac{C^{\prime} R_{y}}{1+C^{1} R_{y}} \quad \text { and } R_{x}=R_{y}+\frac{1}{C}
$$

The group delay calculations require the derivatives of the chain matrices, $C_{\text {as }}(C)$ for the source design. $C_{m s}(C)$ for the middle design and $C_{l s}(C)$ for the load design. with respect to the frequency, ω. Therefore. for the three design procedures the appropriate equations are :-

Middle Design

$$
\frac{d C_{m s}(C)}{d \omega}=\frac{z^{-1}\left(1-\beta_{1}\right)}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)^{2}}=\left[\begin{array}{ll}
1 & -1 \tag{A2.7}\\
1 & -1
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\mathbf{R}_{y}+\mathbf{R}_{x}-1 / C^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{x}+1 / C^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{y}-R_{z}-1 / C^{\prime}}{\mathbf{R}_{y}+R_{z}+1 / C^{\prime}}
$$

Source Design

$$
\frac{d C_{s s}(C)}{d \omega}=j \frac{z^{-1}(1-B \eta)}{\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{rr}
1 & -1 \tag{A2.8}\\
1 & -1
\end{array}\right]
$$

where

$$
B_{3}=\frac{C^{\prime} R_{x}}{1+C^{\prime} R_{x}} \text { and } R_{y}=R_{x}+\frac{1}{C}
$$

Load Design

$$
\frac{d C_{15}(C)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{4}\right)}{\beta_{4}\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \tag{A2.9}\\
1 & -1
\end{array}\right]
$$

where

$$
B_{4}=\frac{C^{\prime} R_{v}}{1+C^{\prime} R_{y}} \quad \text { and } \quad R_{x}=R_{y}+\frac{1}{C^{\prime}}
$$

In the above equations, $j=\sqrt{-1}$

The coefficient sensitivities for the magnitude and phase response calculations, require the derivatives of the chain matrices, $\mathrm{C}_{\mathrm{ss}}(\mathrm{C}), \mathrm{C}_{\mathrm{ms}}(\mathrm{C})$ and $\mathrm{C}_{\mathrm{Is}}(\mathrm{C})$, with respect to each of the multipliers within that section. For the three design procedures these equations are :-

Middle Design

$$
\frac{d C_{m s}(C)}{d \beta_{1}}=\frac{1}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} \cdot\left[\begin{array}{cc}
z^{-1} & -z^{-1} \tag{A2,10}\\
1 & -1
\end{array}\right]
$$

and

$$
\frac{d C_{m s}(C)}{d \beta_{2}}=\frac{1}{\left(1+\beta_{2}\right)^{2}\left(1-z^{-1}\right)} \cdot\left[\begin{array}{cc}
1-\beta_{1} z^{-1} & -\left(1-\beta_{1} z^{-1}\right) \tag{A2.11}\\
-\left(\beta_{1}-z^{-1}\right) & \beta_{1}-z^{-1}
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\mathbf{R}_{\mathrm{y}}+\mathbf{R}_{\mathrm{x}}-1 / \mathrm{C}^{\prime}}{\mathbf{R}_{\mathrm{y}}+\mathbf{R}_{\mathrm{x}}+1 / \mathrm{C}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{\mathrm{y}}-\mathbf{R}_{\mathrm{x}}-1 / C^{\prime}}{\mathbf{R}_{\mathrm{y}}+\mathbf{R}_{\mathrm{x}}+1 / \mathbf{C}^{\prime}}
$$

Source Design

$$
\frac{d C_{s s}(C)}{d \beta_{3}}=\frac{1}{\left(1-z^{-1}\right)} \cdot\left[\begin{array}{cc}
z^{-1} & -z^{-1} \tag{A2.12}\\
1 & -1
\end{array}\right]
$$

where

$$
\beta_{3}=\frac{C^{\prime} \mathbf{R}_{\mathrm{x}}}{1+C^{\prime} R_{x}} \quad \text { and } \quad R_{y}=R_{x}+\frac{1}{C^{\prime}}
$$

Load Design

$$
\frac{d C_{1 s}(C)}{d \beta_{4}}=\frac{1}{\beta_{4}^{2}\left(1-z^{-1}\right)} \cdot\left[\begin{array}{cc}
1 & -1 \tag{A2.13}\\
z^{-1} & -z^{-1}
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{C^{\prime} \mathbf{R}_{\mathrm{y}}}{1+C^{\prime} \mathbf{R}_{\mathrm{y}}} \quad \text { and } \quad \mathbf{R}_{\mathrm{x}}=\mathbf{R}_{\mathrm{y}}+\frac{1}{C^{\prime}}
$$

The group delay coefficient sensitivities require the derivatives of the chain matrices. $C_{18}(C), C_{m g}(C)$ and $C_{11}(C)$, with respect to the frequency, of and then each of the multipliers within that section. The three design procedures generate the following matrices :-

Middle Design

$$
\frac{d\left(\frac{d C_{m s}(C)}{d \omega}\right)}{d \beta_{1}}=j \frac{z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{rr}
-1 & 1 \tag{A2.14}\\
-1 & 1
\end{array}\right]
$$

and

$$
\frac{d\left(\frac{d C_{m s}(C)}{d \omega}\right)}{d \beta_{2}}=j \frac{z^{-1}\left(1-\beta_{1}\right)}{\left(1+\beta_{2}\right)^{2}\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{ll}
-1 & 1 \tag{A2.15}\\
-1 & 1
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{R_{y}+R_{x}-1 / C^{\prime}}{R_{y}+R_{x}+1 / C^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{R_{y}-R_{x}-1 / C^{\prime}}{R_{y}+R_{x}+1 / C^{\prime}}
$$

Source Desian

$$
\frac{d\left(\frac{d C_{s s}(C)}{d \omega}\right)}{d \beta_{3}}=j \frac{z^{-1}}{\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{ll}
-1 & 1 \tag{A2.16}\\
-1 & 1
\end{array}\right]
$$

where

$$
\beta_{3}=\frac{C^{\prime} R_{x}}{1+C^{\prime} R_{x}} \quad \text { and } \quad R_{y}=R_{x}+\frac{1}{C}
$$

Inad Desian

$$
\frac{d\left(\frac{d C_{1 s}(C)}{d \omega}\right)}{d \beta_{4}}=j \frac{z^{-1}}{\beta_{4}^{2}\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{ll}
-1 & 1 \tag{A2.17}\\
-1 & 1
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{C^{\prime} R_{y}}{1+C^{\prime} R_{y}} \text { and } R_{x}=R_{y}+\frac{1}{C}
$$

A 3 Series Tuned Inductor/Capacitor

This two-pori element can be considered as :

The chain matrix, $X_{g}(L C)$, of a series luned inductor/capacitor element, in terms of valiage and current, is given by Eq.(A3.1). The equivalent volege wave chain matrix description, calculated from the volage wave uralisforms of Eq.(A3.2) and using the bilinear transform, is shown by Eq.(A3.3).

$$
\begin{gather*}
{\left[\begin{array}{l}
V_{x} \\
I_{z}
\end{array}\right]=\left[X_{s}(L C)\right] \cdot\left[\begin{array}{l}
V_{y} \\
I_{y}
\end{array}\right] \text { where } X_{g}(L C)=\left[\begin{array}{cc}
1 & \frac{-L}{1+L C s^{2}} \\
0 & -1
\end{array}\right]} \tag{A3.1}\\
P=\left[\begin{array}{cc}
1 & R_{x} \\
1 & -R_{x}
\end{array}\right] \quad Q=\left[\begin{array}{ll}
1 & R_{y} \\
1 & -R_{y}
\end{array}\right] \tag{A3.2}\\
{\left[\begin{array}{c}
A_{x} \\
B_{x}
\end{array}\right]=[P] \cdot\left[X_{s}(L C)\right] \cdot[Q]^{-1}\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]} \tag{A3.3a}
\end{gather*}
$$

0%

$$
\left[\begin{array}{l}
A_{x} \tag{A3.3b}\\
B_{x}
\end{array}\right]=\left[C_{m s}(L C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
\begin{aligned}
& C_{m 1}(1 C)=\left[\begin{array}{cc}
\frac{\beta_{2}+\alpha\left(1-\beta_{1}+2 \beta_{2}\right) z^{-1}+\left(1-\beta_{1}+\beta_{2}\right) z^{-2}}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)} & \frac{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)} \\
\frac{\beta_{1}+\alpha\left(1+\beta_{1}\right) z^{-1}+z^{-2}}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)} & \frac{\left(1-\beta_{1}+\beta_{2}\right)+\alpha\left(1-\beta_{1}+2 \beta_{2}\right) z^{-1}+\beta_{2} z^{-2}}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)}
\end{array}\right] \\
& \bar{p}_{1}=\frac{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-L^{\prime}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+L^{\prime}} \cdot p_{2}=\frac{\left(R_{y}-R_{y}\right)\left(1+L^{\prime} C^{\prime}\right)-L^{\prime}}{\left(R_{y}+R_{z}\right)\left(1+L^{\prime} C^{\prime}\right)+L^{\prime}}, \alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}} \\
& L^{\prime}=\frac{2 L}{T} \text { and } C^{\prime}=\frac{2 C}{T}
\end{aligned}
$$

Following the design procedures outlined in Chapter 3. delay free loops can be eliminated if the constant terms in the $S_{m a}(L C)_{11}$ element or $S_{m g}(L C)_{22}$ element of the scattering matrices are removed. The scattering matrix for this element is given by Eq.(A3.4).

$$
\left[\begin{array}{l}
B_{x} \tag{A3-4}\\
B_{y}
\end{array}\right]=\left[\mathrm{S}_{\mathrm{ms}}(L C)\right] \cdot\left[\begin{array}{l}
\mathrm{A}_{\mathrm{x}} \\
\mathrm{~A}_{\mathrm{y}}
\end{array}\right]
$$

where

$$
\left.S_{\operatorname{ms}}(L C)=\left[\begin{array}{cc}
\frac{\left(1-\beta_{1}+\beta z\right)+\alpha\left(1-\beta_{1}+2 \beta_{2}\right) z^{-1}+\beta_{2} z^{-2}}{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}} & \frac{\left(\beta_{1}-\beta_{2}\right)\left(1+2 a z^{-1}+z^{-2}\right)}{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}} \\
\frac{\left(1+\beta_{2}\right)\left(1+2 a z^{-1}+z^{-2}\right)}{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}} & -\left(\frac{\left(\beta z+\alpha\left(1-\beta_{1}+2 \beta_{2}\right) z^{-1}+\left(1-\beta_{1}+\beta_{2}\right) z^{-2}\right.}{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}}\right.
\end{array}\right)\right]
$$

Source Design :- To remove the constant term from the $S_{m g}(L C) 22$ element, then \boldsymbol{f}_{2} $\Rightarrow 0$ and the resulting source design chain matrix may be defined as;

$$
\left[\begin{array}{l}
\mathrm{A}_{x} \tag{A3.5}\\
\mathrm{~B}_{x}
\end{array}\right]=\left[\mathrm{C}_{\mathrm{ss}}(\mathrm{LC})\right] \cdot\left[\begin{array}{l}
\mathrm{A}_{y} \\
\mathrm{~B}_{y}
\end{array}\right]
$$

where

$$
C_{31}(L C)=\left[\begin{array}{cc}
\left.\frac{(1-\beta}{1}\right) z^{-1}\left(\alpha+z^{-1}\right) \\
1+2 a z^{-1}+z^{-2} & \frac{1+a(1+\beta y) z^{-1}+\beta z^{-2}}{1+2 \alpha z^{-1}+z^{-2}} \\
\frac{B_{3}+\alpha(1+\beta y) z^{-1}+z^{-2}}{1+2 \alpha z^{-1}+z^{-2}} & \frac{(1-\beta y)\left(1+a z^{-1}\right)}{1+2 \alpha z^{-1}+z^{-2}}
\end{array}\right]
$$

and

$$
\alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}} \cdot \beta_{3}=\frac{R_{x}\left(1+L^{\prime} C^{\prime}\right)}{L^{\prime}+R_{x}\left(1+L^{\prime} C^{\prime}\right)} \quad \text { and } \quad R_{y}=R_{x}+\frac{L^{\prime}}{i+L^{\prime} C^{\prime}}
$$

Load Design : To remove the constant ierm from the $S_{m s}(L C) 11$ element, then 1 $\theta_{1}+\beta_{2}=0$ and the resulting load design chain matrix may be defined as :

$$
\left[\begin{array}{l}
A_{k} \tag{A3.6}\\
B_{k}
\end{array}\right]=\left[C_{1 s}(L C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
\left.C_{1}(L C)=\left[\begin{array}{l}
-\left(\frac{\left(1-\beta_{4}\right)\left(1+a z^{-1}\right)}{\beta_{4}\left(1+2 \alpha z^{-1}+z^{-2}\right)}\right) \\
\frac{1+\alpha\left(1+\beta_{4}\right) z^{-1}+\beta_{4} z^{-2}}{\beta_{4}\left(1+2 \alpha z^{-1}+z^{-2}\right)} \\
\frac{\beta_{4}+\alpha_{4}\left(1+\rho_{4}\right) z^{-1}+z^{-2}}{\beta_{4}\left(1+2 \alpha z^{-1}+z^{-2}\right)}
\end{array}\right]\left(\frac{\left(1-\beta_{4}\right) z^{-1}\left(\alpha+z^{-1}\right)}{\beta_{4}\left(1+2 \alpha z^{-1}+z^{-2}\right)}\right)\right]
$$

and

$$
a=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}, \bar{p}_{4}=\frac{R_{y}\left(1+L^{\prime} C^{\prime}\right)}{L^{\prime}+R_{y}\left(1+L^{\prime} C^{\prime}\right)} \quad \text {-1 } \boldsymbol{R}_{x}-n_{y} \div \frac{L^{\prime}}{1+L^{\prime} C^{\prime \prime}}
$$

The group delay calculations require the derivatives of the chain matrices, $C_{s g}$ (LC) for the source design, C_{m} (LC) for the middle design and $C_{\text {Is }}$ (LC) for the load design, with respect to the frequency, w. Therefore, for the three design procedures the appropriate equations are :-

Midतle Desien

$$
\frac{d C_{m}(L C)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{1}\right)\left(\alpha+2 z^{-1}+a z^{-2}\right)}{\left(1+\beta_{2}\right)\left(1+2 a z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & 1 \tag{A3.7}\\
-1 & 1
\end{array}\right]
$$

where

$$
B_{1}=\frac{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-L^{\prime}}{\left(R_{y}+R_{x}\right)\left(I+L^{\prime} C^{\prime}\right)+L^{\prime}} \cdot B_{2}=\frac{\left(R_{x}-R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-L^{\prime}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+L^{\prime}}, \alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}
$$

Source Dasign

$$
\frac{d C_{s s}(L C)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{3}\right)\left(\alpha+2 z^{-1}+\alpha z^{-2}\right)}{\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{rr}
-1 & 1 \tag{A3.8}\\
-1 & 1
\end{array}\right]
$$

where

$$
\alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}, \beta_{3}=\frac{\mathbf{R}_{x}\left(1+L^{\prime} C^{\prime}\right)}{L^{\prime}+R_{x}\left(1+L^{\prime} C^{\prime}\right)} \quad \text { and } \quad R_{y}=\mathbf{R}_{x}+\frac{L^{\prime}}{1+L^{\prime} C^{\prime}}
$$

Land Desion

$$
\frac{d C_{1 s}(L C)}{d s}=j \frac{z^{-1}\left(1-\beta_{4}\right)\left(\alpha+2 z^{-1}+\alpha z^{-2}\right)}{\beta_{4}\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & 1 \tag{A3.9}\\
-1 & 1
\end{array}\right]
$$

where

$$
\alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}, \beta_{4}=\frac{R_{y}\left(1+L^{\prime} C^{\prime}\right)}{L^{\prime}+R_{y}\left(1+L^{\prime} C^{\prime}\right)} \quad \text { and } \quad R_{x}=R_{y}+\frac{L^{\prime}}{1+L^{\prime} C^{\prime}}
$$

In the above equations, $j=\sqrt{-1}$

The coefficient sensitivities for the magnitude and phase response calculations require the derivatives of the chain matrices. $C_{B n}(L C), C_{m s}(L C)$ and C In(LC), with respect to each of the multiplicrs within that section. For the three design procedures these equations are :-

Middle Design

$$
\frac{d C_{z z 1}(L C)}{d \beta_{1}}=\frac{1}{(1+\beta z)\left(1+2 \alpha z^{-1}+z^{-2}\right)} \cdot\left[\begin{array}{cc}
-z^{-1}\left(\alpha+z^{-1}\right) & z^{-1}\left(\alpha+z^{-1}\right) \tag{A3.10}\\
1+\alpha z^{-1} & -\left(1+\alpha z^{-1}\right)
\end{array}\right]
$$

and

$$
\left.\left.\frac{d C_{m z}(L C)}{d \beta_{2}}=\left[\begin{array}{c}
\frac{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}}{\left(1+\beta_{2}\right)^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)} \tag{A3.11}\\
-\left(\frac{\beta_{1}+\alpha\left(1+\beta_{1}\right) z^{-1}+z^{-2}}{\left(1+\beta_{2}\right)^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)}\right.
\end{array}\right) \frac{\left(\frac{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}}{\left(1+\beta_{2}\right)^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)}\right)}{\left(1+\beta_{2}\right)^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)}\right)\right]
$$

and

$$
\frac{d C_{m z}(L C)}{d a}=\frac{z^{-1}\left(1-z^{-2}\right)\left(1-\beta_{1}\right)}{\left(1+\beta_{2}\right)\left(1+2 a z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \tag{A3.12}\\
1 & -1
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-L^{\prime}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+L^{\prime}}, \bar{p}_{2}-\frac{\left(\mathbf{R}_{y}-R_{x}\right)\left(1+L^{\prime} \mathbf{C}^{\prime}\right)-L^{\prime}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+L^{\prime}}, \alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}
$$

Source Design

$$
\begin{gather*}
\frac{\left.d C_{M(L C}\right)}{d \beta_{3}}=\frac{1}{\left(1+2 \alpha z^{-1}+z^{-2}\right)} \cdot\left[\begin{array}{cc}
-z^{-1}\left(\alpha+z^{-1}\right) & z^{-1}\left(\alpha+z^{-1}\right) \\
1+\alpha z^{-1} & -\left(1+\alpha z^{-1}\right)
\end{array}\right] \tag{A3.13}\\
\frac{d C_{3}(L C)}{d \alpha}=\frac{z^{-1}\left(1 \cdot z^{-2}\right)\left(1-\beta_{3}\right)}{\left(1+2 \alpha z^{-1}+z^{\cdot 2}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right] \tag{A3.14}
\end{gather*}
$$

where

$$
\alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}, \beta_{3}=\frac{R_{x}\left(1+L^{\prime} C^{\prime}\right)}{L^{\prime}+R_{k}\left(1+L^{\prime} C^{\prime}\right)} \text { and } R_{y}=R_{x}+\frac{L^{\prime}}{1+L^{\prime} C^{\prime}}
$$

Load_Design

$$
\begin{gather*}
\frac{d C_{1 \beta}(L C)}{d \beta_{4}}=\frac{1}{\beta_{4}^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)} \cdot\left[\begin{array}{cc}
1+\alpha z^{-1} & -\left(1+\alpha z^{-1}\right) \\
\cdot z^{-1}\left(\alpha+z^{-1}\right) & z^{-1}\left(\alpha+z^{-1}\right)
\end{array}\right] \tag{A3.15}\\
\frac{d C_{1 \Omega}(L C)}{d a}=\frac{z^{-1}\left(1-z^{-2}\right)\left(1-\beta_{4}\right)}{\beta_{4}\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right] \tag{A3.16}
\end{gather*}
$$

where
$a=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}} \cdot \beta_{d}=\frac{R_{u}\left(1+L^{\prime} C^{\prime}\right)}{L^{\prime}+R_{y}\left(I+L^{\prime} C^{\prime}\right)}$ and $R_{z}=R_{y}+\frac{L^{\prime}}{1+L^{\prime} \mathbf{C}^{\prime}}$

The group delay coefficient sensitivities require the derivatives of the chain matrices. $C_{i s}(L C) . C_{m a}(L C)$ and $C_{1 s}(L C)$, with respect to the frequency. ω and then each of the multipliers within that section. The three design procedures generate the following matrices :-

Middle Design

$$
\frac{d\left(\frac{d C_{m a}(L C)}{d \omega}\right)}{d \beta_{1}}=1 \frac{z^{-1}\left(\alpha+2 z^{-1}+a z^{-2}\right)}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

(A3.17)
and

$$
\frac{d\left(\frac{d C_{m a}(L C)}{d a}\right)}{d \beta_{2}}=j \frac{z^{-1}\left(1-\beta_{1}\right)\left(\alpha+2 z^{-1}+\alpha z^{-2}\right)}{\left(1+\beta_{2}\right)^{2}\left(1+2 a z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

(A3.18)
and

$$
\frac{d\left(\frac{d C_{m z}(L C)}{d \omega}\right)}{d a}=j \frac{z^{-1}\left(1-\beta_{1}\right)\left(1-2 a z^{-1}-6 z^{-2}-2 a z^{-3}+z^{-4}\right)}{\left(1+()_{z}\right)\left(1+2 a z^{-1}+z^{-2}\right)^{3}} \cdot\left[\begin{array}{cc}
-1 & 1 \tag{A.3.19}\\
-1 & 1
\end{array}\right]
$$

where

$$
\vec{p}_{1}=\frac{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-L^{\prime}}{\left(R_{y}+R_{x}\right)\left(I+L^{\prime} C^{\prime}\right)+L^{\prime}} \cdot p_{2}=\frac{\left(R_{y}-R_{x}\right)\left(I+L^{\prime} C^{\prime}\right)-L^{\prime}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+L^{\prime}}, \alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}
$$

Source Design

$$
\frac{6\left(\frac{d C_{M(}(L C)}{d \omega}\right)}{d \beta 3}=j \frac{z^{-1}\left(\alpha+2 z^{-1}+a z^{-2}\right)}{\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & -1 \tag{A3.20}\\
1 & -1
\end{array}\right]
$$

and

$$
\frac{d\left(\frac{d C_{m}(L C)}{d a}\right)}{d \alpha}=j \frac{z^{-1}(1-\beta y)\left(1-2 \alpha z^{-1} \cdot 6 z^{-2}-2 \alpha z^{-3}+z^{-4}\right)}{\left(1+2 a z^{-1}+z^{-2}\right)^{3}} \cdot\left[\begin{array}{cc}
-1 & 1 \\
-1 & 1
\end{array}\right]
$$

(A3.21)
where

$$
\alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}} \cdot \boldsymbol{B}_{3}=\frac{\mathbf{R}_{x}\left(1+L^{\prime} C^{\prime}\right)}{L^{\prime}+R_{x}\left(1+L^{\prime} C^{\prime}\right)} \text { and } \bar{K}_{y}=\overline{\mathbf{K}}_{x}+\frac{L^{\prime}}{1+L^{\prime} C^{\prime}}
$$

Lond Desien

$$
\frac{d\left(\frac{d C_{l}(L C)}{d \omega}\right)}{d \beta_{4}}=j \frac{z^{-1}\left(\alpha+2 z^{-1}+\alpha z^{-2}\right)}{\beta_{4}^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{ll}
1 & -1 \tag{A3.22}\\
1 & -1
\end{array}\right]
$$

and

$$
\frac{d\left(\frac{d C_{18}(L C)}{d \omega}\right)}{d a}=j \frac{z^{-1}\left(1-\beta_{4}\right)\left(1-2 a z^{-1}-6 z^{-2} \cdot 2 a z^{-3}+z^{-4}\right)}{\beta_{4}\left(1+2 a z^{-1}+z^{-2}\right)^{3}}=\left[\begin{array}{cc}
-1 & 1 \tag{A3.23}\\
+1 & 1
\end{array}\right]
$$

where

$$
=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}} \cdot \beta_{4}=\frac{R_{y}\left(1+L^{\prime} C^{\prime}\right)}{L^{\prime}+R_{y}\left(1+L^{\prime} C^{\prime}\right)} \quad \text { and } \quad R_{x}=R_{y}+\frac{L^{\prime}}{1+L^{\prime} C^{\prime}}
$$

A 4 Parallel Inductor

This two-port element can be considered as

The chain matrix, $X_{p}(L)$, of a parallel inductor element. in terms of voliage and current, ia given by Eq.(A4.I). The equivalent voltage wave chain matrix description, calculated from the voltage wave transforms of Eq.(A4.2) and using the bilinear transform, is shown by Eq.(A4.3).

$$
\begin{gather*}
{\left[\begin{array}{l}
V_{x} \\
I_{x}
\end{array}\right]=\left[\begin{array}{ll}
X_{p}(L)
\end{array}\right] \cdot\left[\begin{array}{l}
V_{y} \\
I_{y}
\end{array}\right] \text { wherr } \quad X_{p}(L)=\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{s L} & -1
\end{array}\right]} \tag{A4.1}\\
P=\left[\begin{array}{ll}
1 & R_{x} \\
1 & \cdot R_{x}
\end{array}\right] \quad Q=\left[\begin{array}{ll}
1 & R_{y} \\
1 & -R_{y}
\end{array}\right] \tag{A4.2}\\
{\left[\begin{array}{l}
A_{x} \\
B_{x}
\end{array}\right]=[P] \cdot\left[X_{p}(L)\right] \cdot[Q]^{-1}\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]}
\end{gather*}
$$

(A4.3a)
$0 r$

$$
\left[\begin{array}{l}
A_{x} \tag{A.4.3b}\\
B_{x}
\end{array}\right]=\left[C_{m p}(L)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{m p}(L)=\left[\begin{array}{cc}
\frac{\left(1 \cdot \beta_{1}+\beta_{2}\right)-\beta_{2} z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{1 \cdot \bar{p}_{1} z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} \\
\frac{\beta_{1} \cdot z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} & \frac{\beta_{2} \cdot\left(1 \cdot \beta_{1}+\beta_{2}\right) z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)}
\end{array}\right]
$$

and

$$
\beta_{1}=\frac{\mathbf{R}_{x}+\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} / \mathbf{L}^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{x}+\mathbf{R}_{y} \mathbf{R}_{x} / \mathbf{L}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{y}-\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} / \mathbf{L}^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{x}+\mathbf{R}_{y} \mathbf{R}_{x} \mathbf{L}^{\prime}} \quad \text { and } \quad \mathbf{L}^{\prime}=\frac{2 \mathbf{K}_{x}}{T}
$$

Following the design procedures outlined in Chapter 3, delay fres loops can be eliminated if the constant terms in the $S_{m p}(L) 11$ element or $S_{m p(L)} 22$ element of the scattering matrices are removed. The scattering matrix for this element is given by Eq.(A4.4).
where

$$
\left[\begin{array}{l}
\mathbf{B}_{\mathrm{x}} \tag{A4,4}\\
\mathbf{B}_{y}
\end{array}\right]=\left[\mathbf{S}_{\mathrm{mp}}(\mathrm{~L})\right] \cdot\left[\begin{array}{l}
\mathbf{A}_{\mathrm{x}} \\
\mathbf{A}_{y}
\end{array}\right]
$$

$$
S_{m p}(L)=\left[\begin{array}{cc}
\frac{\beta_{2}-\left(1-\beta_{1}+\beta_{2}\right) z^{-1}}{\left(1-\beta_{1} z^{-1}\right)} & \frac{\left(\beta_{1}-\beta_{2}\right)\left(1-z^{-1}\right)}{\left(1-\beta_{1} z^{-1}\right)} \\
\frac{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)}{\left(1-\beta_{1} z^{-1}\right)} & -\left(\frac{\left(1-\beta_{1}+\beta_{2}\right)-\beta_{2} z^{-1}}{\left(1-\beta_{1} z^{-1}\right)}\right.
\end{array}\right]
$$

Source Design

To remove the constamt term from the $S_{m p}(L) 22$ element, then $1-\beta_{1}+\beta_{2} \Rightarrow 0$ and the resulting source design chain matrix may be defined as ;

$$
\left[\begin{array}{l}
A_{x} \tag{A4.5}\\
B_{x}
\end{array}\right]=\left[C_{s p}(L)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{z p}(L)=\left[\begin{array}{cc}
\frac{\left(1-\beta_{3}\right) z^{-1}}{\beta_{3}\left(1-z^{-1}\right)} & \frac{1-\beta_{3} z^{-1}}{\beta_{3}\left(1 \cdot z^{-1}\right)} \\
\frac{\beta_{3} \cdot z^{-1}}{\beta_{3}\left(1-z^{-1}\right)} & -\left(\frac{1-\beta_{3}}{\beta_{3}\left(1-z^{-1}\right)}\right)
\end{array}\right], \beta_{3}=\frac{L^{\prime}}{L^{\prime}+R_{x}} \text { and } R_{y}=\frac{L^{\prime} R_{z}}{L^{\prime}+R_{x}}
$$

Load Desion

To remove the constant term from the $S_{m p}(L) 11$ element, then $\beta_{2} \Rightarrow 0$ and the resulting load design chain matrix may be defined as ;

$$
\left[\begin{array}{l}
A_{x} \tag{A4.6}\\
B_{x}
\end{array}\right]=\left[C_{l_{p}(L)}\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{1 p}(L)=\left[\begin{array}{cc}
\frac{1 \cdot \beta_{4}}{1 \cdot z^{-1}} & \frac{1 \cdot \beta_{4} z^{-1}}{1 \cdot z^{-1}} \\
\frac{\beta_{4}-z^{-1}}{1-z^{-1}} & -\left(\frac{\left(1-\beta_{4}\right) z^{-1}}{1 \cdot z^{-1}}\right)
\end{array}\right], \beta_{4}=\frac{L^{\prime}}{L^{\prime}+R_{y}} \text { and } R_{x}=\frac{L^{\prime} R_{y}}{L^{\prime}+R_{y}}
$$

The group delay calculations require the derivatives of the chain matrices. Cop(L) for the source design, $C_{m p}(L)$ for the middle design and $C_{I p}(L)$ for the laad design, with respect to the frequency, ω. Therefore, for the three design procedures the appropriate equations are f-

Middle Design

$$
\frac{d C_{m_{0}(L)}}{d \omega}=j \frac{z^{-1}\left(1-\beta_{1}\right)}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \tag{A4.7}\\
1 & 1
\end{array}\right]
$$

where

$$
\boldsymbol{\beta}_{1}=\frac{\mathbf{R}_{y}+\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} / L^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{x}+\mathbf{R}_{y} \mathbf{R}_{x} / \mathbf{L}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{y}-\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} / \mathbf{L}^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{x}+\mathbf{R}_{y} \mathbf{R}_{\mathbf{y}} / \mathbf{L}^{\prime}}
$$

Source Design

$$
\frac{d C_{3 p}(L)}{d \omega}=j \frac{z^{-1}\left(1 \cdot B_{3}\right)}{B_{3}\left(1 \cdot z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \tag{A4.8}\\
1 & 1
\end{array}\right]
$$

where

$$
\theta_{3}=\frac{L^{\prime}}{L^{\prime}+R_{x}} \quad \text { and } \quad R_{y}=\frac{L^{\prime} R_{z}}{L^{\prime}+R_{z}}
$$

Lad Design

$$
\frac{d C_{1 g}(L)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{4}\right)}{\left(1 \cdot z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \tag{A.4.9}\\
1 & 1
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{L^{\prime}}{L^{\prime}+R_{y}} \quad \text { and } \quad R_{z}=\frac{L^{\prime} \mathbf{R}_{\mathbf{y}}}{L^{\prime}+R_{y}}
$$

In the above equations, $j=\sqrt{-1}$

The coefficient sensitivities for the magnitude and phase response calculations require the derivatives of the chain matrices, $\mathrm{C}_{\mathrm{sp}}(\mathrm{L}), \mathrm{C}_{\mathrm{mp}}(\mathrm{L})$ and $\mathrm{C}_{1 \mathrm{p}}(\mathrm{L})$, with respect to each of the multipliers within that section. For the three design procedures these equations are :-

Middle Design

$$
\frac{d C_{m p}(L)}{d \beta_{1}}=\frac{1}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)} \cdot\left[\begin{array}{cc}
-1 & -z^{-1} \tag{A4.10}\\
1 & z^{-1}
\end{array}\right]
$$

and

$$
\frac{d C_{m p}(L)}{d \beta_{2}}=\frac{1}{\left(1+\beta_{2}\right)^{2}\left(1-z^{-1}\right)} \cdot\left[\begin{array}{cc}
\beta_{1}-z^{-1} & -\left(1-\beta_{1} z^{-1}\right) \tag{A4.11}\\
-\left(\beta_{1}-z^{-1}\right) & 1-\beta_{1} z^{-1}
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\mathbf{R}_{y}+\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} / \mathbf{L}^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{x}} / \mathbf{L}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{y}-\mathbf{R}_{x}-\mathbf{R}_{\mathrm{y}} \mathbf{R}_{x} / \mathbf{L}^{\prime}}{\mathbf{R}_{\mathrm{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{x}} / \mathbf{L}^{\prime}}
$$

Source Design

$$
\frac{d C_{s p}(L)}{d \beta_{3}}=\frac{1}{\beta_{3}^{2}\left(1-z^{-1}\right)} \cdot\left[\begin{array}{cc}
-z^{-1} & -1 \tag{A4.12}\\
z^{-1} & 1
\end{array}\right]
$$

where

$$
\beta_{3}=\frac{L^{\prime}}{L^{\prime}+R_{\mathbf{x}}} \text { and } \mathbf{R}_{\mathbf{y}}=\frac{\mathbf{L}^{\prime} \mathbf{R}_{\mathbf{x}}}{\mathbf{L}^{\prime}+\mathbf{R}_{\mathbf{x}}}
$$

Load Design

$$
\frac{d C_{1 p}(L)}{d \beta_{4}}=\frac{1}{\left(1-z^{-1}\right)} \cdot\left[\begin{array}{cc}
-1 & -z^{-1} \tag{A4.13}\\
1 & z^{-1}
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{L^{\prime}}{L^{\prime}+R_{y}} \quad \text { and } \quad R_{x}=\frac{L^{\prime} R_{y}}{L^{\prime}+R_{y}}
$$

The group delay coefficient sensitivities require the derivatives of the chain matrices, $C_{m p}(L), C_{m p}(L)$ and $C_{I p}(L)$, with respect to the frequency. as and then each of the multipliers within that section. The three design procedures generate the following matrices :-

Middle Desien

$$
\frac{d\left(\frac{d C_{m p}(L)}{d \omega}\right)}{d \beta_{1}}=j \frac{z^{-1}}{\left(1+\beta_{2}\right)\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

and

$$
\frac{d\left(\frac{d C_{m p}(L)}{d \omega}\right)}{d \beta_{2}}=j \frac{z^{-1}\left(1-\beta_{1}\right)}{\left(1+\beta_{2}\right)^{2}\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A4.15}\\
-1 & -1
\end{array}\right]
$$

where

$$
\boldsymbol{\beta}_{1}=\frac{\mathbf{R}_{y}+\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} / \mathbf{L}^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{R}_{\mathbf{y}} \mathbf{R}_{\mathrm{x}} / \mathbf{L}^{\prime}} \quad \text { and } \quad \boldsymbol{\beta}_{2}=\frac{\mathbf{R}_{y}-\mathbf{R}_{x}-\mathbf{R}_{\mathrm{y}} \mathbf{R}_{x} / \mathbf{L}^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{R}_{\mathrm{y}} \mathbf{R}_{x} / \mathbf{L}^{\prime}}
$$

Source Design

$$
\frac{d\left(\frac{d C_{s p}(L)}{d \omega}\right)}{d \beta_{3}}=j \frac{z^{-1}}{\beta_{3}^{2}\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A4.16}\\
-1 & -1
\end{array}\right]
$$

where

$$
\beta_{3}=\frac{\mathbf{L}^{\prime}}{\mathbf{L}^{\prime}+\mathbf{R}_{\mathrm{x}}} \quad \text { and } \quad \mathbf{R}_{y}=\frac{\mathbf{L}^{\prime} \mathbf{R}_{x}}{\mathbf{L}^{\prime}+\mathbf{R}_{\mathrm{x}}}
$$

Load Desion

$$
\frac{d\left(\frac{d C_{l p}(L)}{d \omega}\right)}{d \beta_{4}}=j \frac{z^{-1}}{\left(1-z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A4,17}\\
-1 & -1
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{\mathbf{L}^{\prime}}{\mathbf{L}^{\prime}+\mathbf{R}_{y}} \quad \text { and } \quad \mathbf{R}_{x}=\frac{\mathbf{L}^{\prime} \mathbf{R}_{\mathbf{y}}}{\mathbf{L}^{\prime}+\mathbf{R}_{\mathbf{y}}}
$$

A 5 Parallel Capacitor

This two-port element can be considered as ;

The chain matrix, $X_{p}(C)$, of parallel capacitor clement, in tems of voltage and current, is given by Eq.(AS.I). The equivalent voltage wave chaid matrix description, calculated from the voltage wave uransforms of Eq.(A5.2) and using the bilinear Iransform, is shown by Eq.(As.3).

$$
\begin{align*}
& {\left[\begin{array}{l}
\mathrm{V}_{\mathrm{x}} \\
\mathrm{I}_{\mathrm{x}}
\end{array}\right]=\left[\mathrm{X}_{\mathrm{p}(\mathrm{C})}\right] \cdot\left[\begin{array}{l}
\mathrm{V}_{\mathrm{y}} \\
\mathrm{I}_{\mathrm{y}}
\end{array}\right] \text { where } \quad \mathbf{X}_{\mathrm{p}}(\mathrm{C})=\left[\begin{array}{cc}
1 & 0 \\
\mathrm{~s} & \mathrm{C} \\
\hline
\end{array}\right]} \tag{A5.1}\\
& \mathbf{P}=\left[\begin{array}{cc}
1 & \mathbf{R}_{\mathrm{x}} \\
1 & -\mathbf{R}_{\mathrm{x}}
\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{cc}
1 & \mathbf{R}_{\mathrm{y}} \\
1 & -\mathbf{R}_{\mathrm{y}}
\end{array}\right] \tag{A5.2}\\
& {\left[\begin{array}{l}
A_{x} \\
B_{x}
\end{array}\right]=[P] \cdot\left[X_{p(C)}\right] \cdot[Q]^{-1}\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]} \tag{A5.3a}
\end{align*}
$$

or

$$
\left[\begin{array}{l}
A_{x} \tag{A5.3b}\\
B_{x}
\end{array}\right]=\left[C_{m p}(C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
\mathbf{C}_{\mathrm{mp}}(\mathrm{C})=\left[\begin{array}{cc}
\frac{\left(1-\beta_{1}+\beta_{2}\right)+\beta_{2} z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} & \frac{1+\beta_{1} z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} \\
\frac{\beta_{1}+z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} & \frac{\beta_{2}+\left(1-\beta_{1}+\beta_{2}\right) z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)}
\end{array}\right]
$$

and

$$
\beta_{1}=\frac{R_{y}+R_{x}-R_{y} R_{x} C^{\prime}}{R_{y}+R_{x}+R_{y} R_{x} C^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{R_{y}-R_{x}-R_{y} R_{x} C^{\prime}}{R_{y}+R_{x}+R_{y} R_{x} C^{\prime}} \quad \text { and } C^{\prime}=\frac{2 C}{T}
$$

Following the design procedures outlined in Chapter 3, delay free loops can be eliminated if the constant terms in the $S_{m p}(C) 1 \perp$ element or $S_{m p}(C) 22$ element of the scattering matrices are removed. The scattering matrix for this element is given by Eq.(AS.4).

$$
\left[\begin{array}{l}
B_{x} \tag{A5.4}\\
B_{y}
\end{array}\right]=\left[S_{m p}(C)\right] \cdot\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right]
$$

where

$$
\left.S_{m p}(C)=\left[\begin{array}{cc}
\frac{\beta_{2}+\frac{\left(1-\beta_{1}+\beta_{2}\right) z^{-4}}{\left(1+\beta_{1} z^{-1}\right)}}{} \frac{\left(\beta_{1}-\beta_{2}\right)\left(1+z^{-1}\right)}{\left(1+\beta_{1} z^{-1}\right)} \\
\frac{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)}{\left(1+\beta_{1} z^{-1}\right)}
\end{array}\right]\left(\frac{\left(1-\beta_{1}+\beta_{2}\right)+\beta_{2} z^{-1}}{\left(1+\beta_{1} z^{-1}\right)}\right)\right]
$$

Source Desien

To remove the constant term from the $S_{m p}(C)_{22}$ element, then $1-\beta_{1}+\beta_{2} \Rightarrow 0$ and the resulting source design chain matrix may be defined as :

$$
\left[\begin{array}{l}
A_{x} \tag{A5.5}\\
B_{k}
\end{array}\right]=\left[C_{s p}(C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{s p}(C)=\left[\begin{array}{cc}
-\left(\frac{\left(1-\beta_{y}\right) z^{-1}}{\beta_{3}\left(1+z^{-1}\right)}\right) & \frac{1+\beta_{3} z^{-1}}{\beta_{3}\left(1+z^{-1}\right)} \\
\frac{\beta_{3}+z^{-1}}{\beta_{3}\left(1+z^{-1}\right)} & -\left(\frac{1-\beta_{3}}{\beta_{3}\left(1+z^{-1}\right)}\right)
\end{array}\right], \beta_{3}=\frac{1}{1+C^{\prime} R_{x}} \quad \text { and } \quad R_{y}-\frac{R_{x}}{1+C^{\prime} R_{x}}
$$

Load Design

To remove the constant term from the $\left.S_{m p}(C)\right)_{11}$ element. then $\beta_{2} \Rightarrow 0$ and the resulting load design chain matrix may be defined as :

$$
\left[\begin{array}{l}
A_{x} \tag{A5.6}\\
B_{x}
\end{array}\right]=\left[C_{i p}(C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{\mid p}(C)=\left[\begin{array}{cc}
\frac{1-\beta_{4}}{1+z^{-1}} & \frac{1+\beta_{4} z^{-1}}{1+z^{-1}} \\
\frac{\beta_{4}+z^{-1}}{1+z^{-1}} & \frac{\left(1-\beta_{4}\right) z^{-1}}{1+z^{-1}}
\end{array}\right], \beta_{4}=\frac{1}{1+C^{\prime} R_{y}} \quad \text { and } \quad R_{z}=\frac{R_{v}}{1+C^{\prime} R_{y}}
$$

The group delay calculations require the derivatives of the chain matrices. Csp(C) for the source design. $C_{m p}(C)$ for the middle design and $C_{1 p}(C)$ for the load design, with respect to the frequency, *. Therefore, for the three design procedurea the appropriate equalions are :-

Middle_Design

$$
\frac{d C_{m p}(C)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{1}\right)}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A5.7}\\
-1 & -1
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\mathbf{R}_{y}+\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} \mathbf{C}^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{x}+\mathbf{R}_{y} \mathbf{R}_{x} \mathbf{C}^{\prime}} \quad \text { and } \quad \boldsymbol{\beta}_{2}=\frac{\mathbf{R}_{y}-\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} \mathbf{C}^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{x}+\mathbf{R}_{y} \mathbf{R}_{z} \mathbf{C}^{\prime}}
$$

Source Design

$$
\frac{d C_{s p}(C)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{3}\right)}{\beta_{3}\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A5.8}\\
-1 & -1
\end{array}\right]
$$

where

$$
B_{3}=\frac{1}{1+C R_{x}} \text { and } R_{y}=\frac{R_{x}}{1+C^{\prime} R_{x}}
$$

Lasd Degign

$$
\frac{d C_{\mathrm{Ip}}(C)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{4}\right)}{\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A5.9}\\
-1 & -1
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{1}{1+C^{\prime} R_{y}} \quad \text { and } \quad R_{x}=\frac{R_{y}}{1+C^{\prime} R_{y}}
$$

In the above equations, $j=\sqrt{-I}$

The coefficient sensitivitics for the magnitude and phase response calculations require the derivatives of the chain matrices, $C_{s p}(C), C_{m p}(C)$ and $C_{1 p}(C)$, with respect to each of the multipliers within that section. For the three design procedures these equations are i-

Midde Desien

$$
\frac{d C_{m p}(C)}{d \beta_{1}}=\frac{1}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)} \cdot\left[\begin{array}{cc}
-1 & z^{-1} \tag{A5.10}\\
1 & -z^{-1}
\end{array}\right]
$$

and

$$
\frac{d C_{m p}(C)}{d \beta_{2}}=\frac{1}{\left(1+\beta_{2}\right)^{2}\left(1+z^{-1}\right)} \cdot\left[\begin{array}{cc}
\beta_{1}+z^{-1} & -\left(1+\beta_{1} z^{-1}\right) \tag{A5.1t}\\
-\left(\beta_{1}+z^{-1}\right) & 1+\beta_{1} z^{-1}
\end{array}\right]
$$

where

$$
\boldsymbol{\beta}_{1}=\frac{\mathbf{R}_{y}+\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} \mathbf{C}^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{x}+\mathbf{R}_{y} \mathbf{R}_{x} \mathbf{C}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{y}-\mathbf{R}_{x}-\mathbf{R}_{y} \mathbf{R}_{x} \mathbf{C}^{\prime}}{\mathbf{R}_{y}+\mathbf{R}_{x}+\mathbf{R}_{y} \mathbf{R}_{x} \mathbf{C}^{\prime}}
$$

Source Desien

$$
\frac{d C_{s p}(C)}{d \beta_{3}}=\frac{1}{\beta_{3}^{2}\left(1+z^{-1}\right)} \cdot\left[\begin{array}{cc}
z^{-1} & -1 \tag{A5.12}\\
-z^{-1} & 1
\end{array}\right]
$$

where

$$
\beta_{3}=\frac{1}{1+C^{\prime} R_{x}} \quad \text { and } \quad R_{y}=\frac{R_{z}}{1+C^{\prime} R_{x}}
$$

Load Design

$$
\frac{d C_{\operatorname{lp}}(C)}{d \beta_{4}}=\frac{1}{\left(1+z^{-1}\right)} \cdot\left[\begin{array}{cc}
-1 & z^{-1} \tag{A5.13}\\
1 & -z^{-1}
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{1}{1+C^{\prime} R_{y}} \quad \text { and } \quad R_{x}=\frac{R_{y}}{1+C^{\prime} R_{y}}
$$

The group delay coefficient sensitivities response require the derivatives of the chain matrices. $\mathrm{C}_{\mathrm{sp}}(\mathrm{C}), \mathrm{C}_{\mathrm{mp}}(\mathrm{C})$ and $\mathrm{C}_{\mathrm{Ip}}(\mathrm{C})$, with respect to the frequency, ω and then each of the multipliers within that section. The three design procedures generate the following matrices :

Middle Design

$$
\frac{d\left(\frac{d C_{m p}(C)}{d \omega}\right)}{d \beta_{1}}=j \frac{z^{-1}}{\left(1+\beta_{2}\right)\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \tag{A5.14}\\
1 & 1
\end{array}\right]
$$

and

$$
\frac{d\left(\frac{d C_{m p}(C)}{d \omega}\right)}{d \beta_{2}}=j \frac{z^{-1}\left(1-\beta_{1}\right)}{\left(1+\beta_{2}\right)^{2}\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \tag{A5.15}\\
1 & 1
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\mathbf{R}_{\mathrm{y}}+\mathbf{R}_{\mathrm{x}}-\mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{x}} \mathbf{C}^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{R}_{\mathbf{y}} \mathbf{R}_{\mathrm{x}} \mathbf{C}^{\prime}} \quad \text { and } \quad \beta_{2}=\frac{\mathbf{R}_{\mathrm{y}}-\mathbf{R}_{\mathrm{x}}-\mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{x}} \mathbf{C}^{\prime}}{\mathbf{R}_{\mathbf{y}}+\mathbf{R}_{\mathrm{x}}+\mathbf{R}_{\mathbf{y}} \mathbf{R}_{\mathrm{x}} \mathbf{C}^{\prime}}
$$

Source Design

$$
\frac{d\left(\frac{d C_{s p}(C)}{d \omega}\right)}{d \beta_{3}}=j \frac{z^{-1}}{\beta_{3}^{2}\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \tag{A5.16}\\
1 & 1
\end{array}\right]
$$

where

$$
\beta_{3}=\frac{1}{1+C^{\prime} R_{\mathrm{x}}} \text { and } \mathrm{R}_{\mathrm{y}}=\frac{\mathrm{R}_{\mathrm{X}}}{1+\mathrm{C}^{\prime} \mathrm{R}_{\mathrm{x}}}
$$

Load Design

$$
\frac{d\left(\frac{d C_{j p}(C)}{d \omega}\right)}{d \beta_{4}}=j \frac{z^{-1}}{\left(1+z^{-1}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]
$$

where

$$
\beta_{4}=\frac{1}{1+C^{\prime} R_{y}} \text { and } R_{z}=\frac{R_{y}}{1+C^{2} R_{y}}
$$

A 6 Parallel Tuned Inductor/Capacitor

This two-port element can be considered as :

The chain matrix. $X_{p}(L C)$, of a parallel tuned inductor/capacitor element, in terms of voltage and current, is given by Eq.(A6.1). The cquivalent voltage wave chain matrix description, calculated from the voltage wave transforms of Eq.(A6.2) and using the bilinear Iransform is shown by Eq.(A6.3).

$$
\begin{gather*}
{\left[\begin{array}{c}
V_{x} \\
I_{x}
\end{array}\right]=\left[X_{p}(L C)\right] \cdot\left[\begin{array}{c}
V_{y} \\
I_{y}
\end{array}\right] \text { where } X_{p}(L C)=\left[\begin{array}{cc}
1 & 0 \\
\frac{s C}{1+L C s^{2}} & -1
\end{array}\right]} \\
P=\left[\begin{array}{cc}
1 & R_{x} \\
1 & -R_{x}
\end{array}\right] \quad Q=\left[\begin{array}{cc}
1 & R_{y} \\
1 & -R_{y}
\end{array}\right] \tag{A6.2}\\
{\left[\begin{array}{c}
A_{x} \\
B_{x}
\end{array}\right]=[P] \cdot\left[X_{p}(L C)\right] \cdot[Q]^{-1}\left[\begin{array}{c}
A_{y} \\
B_{y}
\end{array}\right]} \tag{A6.3a}
\end{gather*}
$$

0 r

$$
\left[\begin{array}{l}
A_{x} \tag{A6.3b}\\
B_{x}
\end{array}\right]=\left[C_{m p}(L C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
\begin{gathered}
C_{m p}(L C)=\left[\begin{array}{cc}
\frac{\left(1-\beta_{1}+\beta_{2}\right)+\alpha\left(1-\beta_{1}+2 \beta_{2}\right) z^{-1}+\beta_{2} z^{-2}}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)} & \frac{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)} \\
\frac{B_{1}+\alpha\left(1+\beta_{1}\right) z^{-1}+z^{-2}}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)} & \frac{\beta_{2}+\alpha\left(1-\beta_{1}+2 \beta_{z}\right) z^{-1}+\left(1-\beta_{1}+\beta_{z}\right) z^{-2}}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)}
\end{array}\right] \\
\mathbf{p}_{1}-\frac{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-C^{\prime} R_{y} R_{x}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+C^{\prime} R_{y} R_{x}}, P_{2}=\frac{\left(R_{y}-R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-C^{\prime} R_{y} R_{x}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+C^{\prime} R_{y} R_{x}} \cdot a=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}} \\
L^{\prime}=\frac{2 L}{T} \text { and } C=\frac{2 C}{T}
\end{gathered}
$$

Following the design procedures oullined in Chapter 3. delay free loops can be eliminated if the constant terms in the $S_{m p}(L C)_{11}$ element or $S_{m p}(L C)_{22}$ element of the scattering matrices are removed. The scattering matrix for this element is given by Eq-(A6.4).

$$
\left[\begin{array}{l}
B_{x} \tag{A6.4}\\
B_{y}
\end{array}\right]=\left[S_{m p}(L C)\right] \cdot\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right]
$$

where

$$
S_{m p}(L C)=\left[\begin{array}{cc}
\frac{\beta 2+\alpha\left(1-\beta_{1}+2 \beta_{2}\right) z^{-1}+\left(1-\beta_{1}+\beta_{2}\right) z^{-2}}{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}} & \frac{\left(\beta_{1}-\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)}{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}} \\
\frac{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)}{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}}
\end{array},\left(\frac{\left(1-\beta_{1}+\beta_{2}\right)+\alpha\left(1-\beta_{1}+2 \beta_{2}\right) z^{-1}+\beta_{2} z^{-2}}{1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}}\right)\right]
$$

Source Design :- To remove the constant tenm from the $\mathbf{S m p}_{\mathrm{mp}}$ (LC) 22 element, then I $\beta_{1}+\beta_{2} \Rightarrow 0$ and the resulting source design chain matrix may be defined a

$$
\left[\begin{array}{l}
A_{x} \tag{A6.5}\\
B_{x}
\end{array}\right]=\left[C_{s p}(L C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
\left.C_{s p}(L C)=\left[\begin{array}{l}
-\left(\frac{\left.11-\beta_{3}\right) z^{-1}\left(\alpha+z^{-1}\right)}{\beta_{3}\left(1+2 \alpha z^{-1}+z^{-2}\right)}\right) \frac{1+\alpha\left(1+\beta_{3}\right) z^{-1}+\beta_{3} z^{-2}}{\beta_{3}\left(1+2 a z^{-1}+z^{-2}\right)} \\
\frac{\beta_{3}+\alpha(1+\beta 4) z^{-1}+z^{-2}}{\beta_{3}\left(1+2 \alpha z^{-1}+z^{-2}\right)}
\end{array}\right]\left(\frac{\left(1-\beta_{y}\right)\left(1+\alpha z^{-1}\right)}{\beta_{4}\left(1+2 \alpha z^{-1}+z^{-2}\right)}\right)\right]
$$

and

$$
a=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}, \mathbf{R}_{3}=\frac{\left(1+L^{\prime} C\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{k}} \text { and } R_{y}=\frac{R_{z}\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{k}}
$$

Load_Design :- To remove the constant term from the $\mathbf{S}_{\text {mp }}$ (LC) 11 element, then $\boldsymbol{\beta}_{2} \Rightarrow$ 0 and the resulting load design chain matrix may be defined as:

$$
\left[\begin{array}{l}
A_{x} \tag{A6.6}\\
B_{x}
\end{array}\right]=\left[C_{l p}(L C)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{1 p}(L C)=\left[\begin{array}{cc}
\frac{\left(1-\beta_{3}\right)\left(1+\alpha z^{-1}\right)}{\left(1+2 \alpha z^{-1}+z^{-2}\right)} & \frac{1+\alpha\left(1+\beta_{3}\right) z^{-1}+\beta_{3} z^{-2}}{\left(1+2 \alpha z^{-1}+z^{-2}\right)} \\
\frac{\beta_{3}+\alpha\left(1+\beta_{3}\right) z^{-1}+z^{-2}}{\left(1+2 \alpha z^{-1}+z^{-2}\right)} & \frac{\left(1-\beta_{3}\right) z^{-1}\left(\alpha+z^{-1}\right)}{\left(1+2 \alpha z^{-1}+z^{-2}\right)}
\end{array}\right]
$$

and

The group delay calculations require the derivalives of the chain matrices, $\mathrm{C}_{1 \mathrm{p}}$ (LC) for the source design, $C_{m p}(L C)$ for the middle design and $C l p(L C)$ for the load design, with respect to the frequency, ω. Therefore. for the three design procedures the appropriate equations are :-

Middle Desien

$$
\frac{d C_{m n}(L C)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{1}\right)\left(\alpha+2 z^{-1}+\alpha z^{-2}\right)}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A6.7}\\
-1 & -1
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-C^{\prime} R_{y} R_{x}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+C^{\prime} R_{y} R_{x}}, \beta_{2}=\frac{\left(R_{y}-R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-C^{\prime} R_{y} R_{x}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+C^{\prime} R_{y} R_{x}}, \alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}
$$

Source Desien

$$
\frac{d C_{30}(L C)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{3}\right)\left(a+2 z^{-1}+\alpha z^{-2}\right)}{\beta_{3}\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A6.8}\\
-1 & -1
\end{array}\right]
$$

where

$$
\alpha=\frac{1 \cdot L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}, \beta_{3}=\frac{\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{x}} \quad \text { and } \quad R_{y}=\frac{R_{x}\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{x}}
$$

Load Design

$$
\frac{d C_{\ln }(L C)}{d \omega}=j \frac{z^{-1}\left(1-\beta_{4}\right)\left(a+2 z^{-1}+\alpha z^{-2}\right)}{\left(1+2 a z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A6.9}\\
-1 & -1
\end{array}\right]
$$

where

$$
\alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}, \beta_{4}=\frac{\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{y}} \quad \text { and } \quad R_{x}=\frac{R_{y}\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{y}}
$$

In the above equations, $j=\sqrt{-1}$

The coefficient sensitivitiea for the magnitude and phase response calculations require the derivatives of the chain matrices, $C_{s p}(L C), C_{m p}(L C)$ and $C_{l p}(L C)$. with respect to each of the multipliers within that section. For the three design procedures these equations are :-

Middle Design

$$
\frac{d C_{m n}(L C)}{d \beta_{1}}=\frac{1}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)} \cdot\left[\begin{array}{cc}
-\left(1+\alpha z^{-1}\right) & z^{-1}\left(\alpha+z^{-1}\right) \tag{A6.10}\\
1+\alpha z^{-1} & -z^{-1}\left(\alpha+z^{-1}\right)
\end{array}\right]
$$

and

$$
\frac{d C_{m p}(L C)}{d \beta_{2}}=\left[\begin{array}{c}
\frac{\beta_{1}+\alpha\left(1+\beta_{1}\right) z^{-1}+z^{-2}}{\left(1+\beta_{2}\right)^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)} \tag{A6.11}
\end{array}\binom{\left(1+\alpha\left(1+\beta_{1}\right) z^{-1}+\beta_{1} z^{-2}\right.}{\left(1+\beta_{2}\right)^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)}\right]
$$

and

$$
\frac{d C_{m p}(L C)}{d \alpha}=\frac{z^{-1}\left(1-z^{-2}\right)\left(1-\beta_{1}\right)}{\left(1+\beta_{2}\right)\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \tag{A6.12}\\
1 & 1
\end{array}\right]
$$

where

$$
P_{1}-\frac{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-C^{\prime} R_{y} R_{x}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+C^{\prime} R_{y} R_{x}}, B_{2}-\frac{\left(R_{y}-R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-C^{\prime} R_{y} R_{z}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+C^{\prime} R_{y} R_{x}}, a=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}
$$

Sonrce Desien

$$
\begin{align*}
& \frac{d C_{\operatorname{an}(L C)}}{d \beta 3}=\frac{1}{\beta_{3}^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)} \cdot\left[\begin{array}{cc}
z^{-1}\left(\alpha+z^{-1}\right) & -\left(1+\alpha z^{-1}\right) \\
-z^{-1}\left(\alpha+z^{-1}\right) & 1+\alpha z^{-1}
\end{array}\right] \tag{A6.13}\\
& \quad \frac{d C_{\operatorname{sn}}(L C)}{d \alpha}-\frac{z^{-1}\left(1-z^{-2}\right)(1-\beta 3)}{\beta_{3}\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \tag{A6.14}
\end{align*}
$$

where

$$
a=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}, \beta_{3}=\frac{\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{z}} \quad \text { and } \quad R_{y}=\frac{R_{z}\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{y}}
$$

Lond Design

$$
\begin{align*}
& \frac{d C_{\ln (L C)}}{d \beta_{4}}=\frac{1}{1+2 \alpha z^{-1}+z^{-2}} \cdot\left[\begin{array}{cc}
-\left(1+\alpha z^{-1}\right) & z^{-1}\left(\alpha+z^{-1}\right) \\
1+\alpha z^{-1} & -z^{-1}\left(\alpha+z^{-1}\right)
\end{array}\right] \tag{A6.15}\\
& \frac{d C_{\ln (L C)}}{d \alpha}=\frac{z^{-1}\left(1-z^{-2}\right)(1-\beta 4)}{\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right] \tag{A6.16}
\end{align*}
$$

where

$$
a=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}} \cdot \beta_{4}=\frac{\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{y}} \quad \text { and } \quad R_{x}=\frac{R_{y}\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{y}}
$$

The group delay coefficient sensitivisies require the derivatives of the chain matrices. $C_{1 p}(L C), C_{m p}(L C)$ and $C_{1 p}(L C)$, with respect to the frequency. ω and then each of the multipliers within that section. The three design procedures generate the following matrices :-

Middle Desian

$$
\frac{d\left(\frac{\left.d C_{m p(L C}\right)}{d \omega}\right)}{d \beta \mid}=j \frac{z^{-1}\left(a+2 z^{-1}+a z^{-2}\right)}{(1+\beta z)\left(1+2 a z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]
$$

(A6.17)
and

$$
\frac{d\left(\frac{d C_{m p(L C}}{d \omega}\right)}{d \beta_{2}}=j \frac{z^{-1}\left(1-\beta_{1}\right)\left(\alpha+2 z^{-1}+\alpha z^{-2}\right)}{\left(1+\beta_{2}\right)^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}} \cdot\left[\begin{array}{cc}
-1 & -1 \tag{A6.18}\\
1 & 1
\end{array}\right]
$$

and

$$
\frac{d\left(\frac{d C_{m p}(L C)}{d \omega}\right)}{d \alpha}+j \frac{z^{-1}\left(1-\beta_{1}\right)\left(1-2 \alpha z^{-1}-6 z^{-2}-2 \alpha z^{-3}+z^{-4}\right)}{(1+\beta 2)\left(1+2 \alpha z^{-1}+z^{-2}\right)^{3}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A6.19}\\
-1 & -1
\end{array}\right]
$$

where

$$
\beta_{1}=\frac{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)-C^{\prime} R_{y} R_{x}}{\left(R_{y}+R_{x}\right)\left(1+L^{\prime} C^{\prime}\right)+C^{\prime} R_{y} R_{x}} \cdot \beta_{2}=\frac{\left(R_{y}-R_{z}\right)\left(1+L^{\prime} C^{\prime}\right)-C^{\prime} R_{y} R_{z}}{\left(R_{y}+R_{z}\right)\left(1+L^{\prime} C^{\prime}\right)+C^{\prime} R_{y} R_{z}}, a=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}
$$

Source Design

$$
\frac{d\left(\frac{d C_{j p}(L C)}{d \omega}\right)}{d \beta 3}=J \frac{z^{-1}\left(\alpha+2 z^{-1}+\alpha z^{-2}\right)}{\beta_{3}^{2}\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}}=\left[\begin{array}{cc}
-1 & -1 \tag{A6.20}\\
1 & 1
\end{array}\right]
$$

and

$$
\frac{d\left(\frac{d C_{\operatorname{con}}(L C)}{d \omega}\right)}{d \alpha}=1 \frac{z^{-1}(1-\beta y)\left(1-2 \alpha z^{-1}-6 z^{-2} \cdot 2 a z^{-3}+z^{-4}\right)}{\beta 3\left(1+2 \alpha z^{-1}+z^{-2}\right)^{3}} \cdot\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

(A6.21)
where

$$
\alpha=\frac{1-L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}} \cdot \beta_{3}=\frac{\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{x}} \quad \text { and } \quad R_{y}=\frac{R_{x}\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{x}}
$$

Load Desien

$$
\frac{d\left(\frac{d C_{1 p}(L C)}{d \omega}\right)}{d \beta_{4}}=j \frac{z^{-1}\left(\alpha+2 z^{-1}+\frac{\left.a z^{-2}\right)}{\left(1+2 \alpha z^{-1}+z^{-2}\right)^{2}}\right.}{(1} \cdot\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]
$$

(A6.22)
and

$$
\frac{d\left(\frac{\left.d C_{\ln (L C}\right)}{d a}\right)}{d a}-j \frac{z^{-1}\left(1-\beta_{4}\right)\left(1-2 a z^{-1}-6 z^{-2}-2 \alpha z^{-3}+z^{-4}\right)}{\left(1+2 a z^{-1}+z^{-2}\right)^{3}} \cdot\left[\begin{array}{cc}
1 & 1 \tag{A6.23}\\
-1 & -1
\end{array}\right]
$$

where

$$
a=\frac{1 \cdot L^{\prime} C^{\prime}}{1+L^{\prime} C^{\prime}}, \beta_{4}=\frac{\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{y}} \quad \text { and } \quad R_{1}=\frac{R_{v}\left(1+L^{\prime} C^{\prime}\right)}{1+L^{\prime} C^{\prime}+C^{\prime} R_{y}}
$$

A 7 Unit Element

This iwo-pont element can be considered as ;

The chain matrix. X(UE). of lossless transmission line or unit element of characteristic impedance. Z_{o}. is given by Eq.(A7.1) in terms of voltage and current. The equivalent incident and reflected voltage wave chain matrix description, calculated from the voltage wave transforms of Eq.(A7.2) is shown by Eq.(A7.3).

$$
\left[\begin{array}{l}
V_{x} \tag{A7.1}\\
I_{x}
\end{array}\right]=[X(U E)] \cdot\left[\begin{array}{l}
V_{y} \\
I_{y}
\end{array}\right] \text { where } X(U E)=\left[\begin{array}{cc}
\cos \theta & -j Z_{0} \sin \theta \\
j Y_{0} \sin \theta & -\cos \theta
\end{array}\right]
$$

where
$Y_{0}=1 / Z_{0}, \theta=k \Omega, k$ is the line constant and Ω is the angular frequency.

$$
\begin{align*}
& P=\left[\begin{array}{ll}
1 & R_{k} \\
1 & -R_{k}
\end{array}\right] \quad Q=\left[\begin{array}{ll}
1 & R_{y} \\
1 & -R_{y}
\end{array}\right] \tag{A7.2}\\
& {\left[\begin{array}{l}
A_{x} \\
B_{x}
\end{array}\right]=[\mathbf{P}] \cdot[X(U E)] \cdot[Q]^{-1}\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]} \tag{A7.3n}
\end{align*}
$$

or

$$
\left[\begin{array}{l}
A_{x} \tag{A7.3b}\\
B_{x}
\end{array}\right]=\left[C_{m}(U E)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{m}(U E)=\frac{1}{2}\left[\begin{array}{ll}
\alpha \cos \theta+j \delta \sin \theta & \beta \cos \theta+j \gamma \sin \theta \\
\beta \cos \theta-j \gamma \sin \theta & \alpha \cos \theta \cdot j \delta \sin \theta
\end{array}\right]
$$

and

$$
a=\frac{\mathbf{R}_{2}-\mathbf{R}_{1}}{\mathbf{R}_{2}}, \beta=\frac{\mathbf{R}_{2}+\mathbf{R}_{1}}{\mathbf{R}_{2}}, \delta=\frac{\mathbf{R}_{1} \mathbf{R}_{2} \cdot \mathbf{Z}_{0}^{2}}{\mathbf{Z}_{0} \mathbf{R}_{2}} \text { and } \gamma=\frac{\mathbf{R}_{1} \mathbf{R}_{2}+\mathbf{Z}_{0}^{2}}{\mathbf{Z}_{0} \mathbf{R}_{2}}
$$

Following the design procedures outlined in Chapler 3, delay free loops can be eliminated if the constant terms in the S_{m} (UE) 11 element or S_{m} (UE) 22 element of the scattering matrices are removed. The scattering matrix for this element. generated through the transform $0=\omega T / 2$, is given by Eq.(A7.4).

$$
\left[\begin{array}{l}
B_{x} \tag{A7.4}\\
B_{y}
\end{array}\right]=\left[S_{m}(U E)\right] \cdot\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right]
$$

where

$$
S_{m}(U E)=\left[\begin{array}{cc}
\frac{\beta_{4}+\beta_{3} z^{-1}}{\beta_{1}+\beta_{2} z^{-1}} & \frac{4 R_{1} G_{2} z^{-1 / 2}}{\beta_{1}+\beta_{2} z^{-1}} \\
\frac{4 z^{-1 / 2}}{\left(1+\beta_{1} z^{-1}\right)} & \frac{-\beta_{3}+\beta_{4} z^{-1}}{\beta_{1}+\beta_{2} z^{-1}}
\end{array}\right]
$$

and

$$
\begin{aligned}
& \boldsymbol{\beta}_{1}=1+\mathbf{R}_{1} \mathbf{G}_{2}+\mathbf{R}_{1} \mathbf{Y}_{0}+\mathbf{G}_{2} Z_{0}, \boldsymbol{\beta}_{2}=1+\mathbf{R}_{1} \mathbf{G}_{2}-\mathbf{R}_{1} Y_{0}-G_{2} \mathbf{Z}_{0} \\
& \boldsymbol{B}_{3}=1-\mathbf{R}_{1} \mathbf{G}_{2}+\mathbf{R}_{1} \mathbf{Y}_{0}-\mathbf{G}_{2} Z_{0}, \boldsymbol{\beta}_{4}=1-\mathbf{R}_{1} \mathbf{G}_{2}-\mathbf{R}_{1} \mathbf{Y}_{0}-\mathbf{G}_{2} Z_{0}
\end{aligned}
$$

Source Design

To remove the consiant term from the S_{m} (UE) 22 element. then $\beta_{3} \Rightarrow 0$ and the resulting source design chain matrix may be defined as:

$$
\left[\begin{array}{l}
A_{x} \tag{A1.5}\\
B_{x}
\end{array}\right]=\left[C_{s}(U E)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{5}(U E)=\left[\begin{array}{cc}
\frac{\left(1-\beta_{1}\right) z^{-1}}{1+z^{-1}} & \frac{1+\beta_{3} z^{-1}}{1+z^{-1}} \\
\frac{\beta_{3}+z^{-1}}{1+z^{-1}} & \frac{1-\beta_{3}}{1+z^{-1}}
\end{array}\right], \beta=\frac{R_{3}-Z_{0}}{R_{x}+Z_{0}} \quad \text { and } R_{y}=Z_{0}
$$

Lond Desian

To remove the constant term from the S_{m} (UE) 11 element, then $\boldsymbol{\beta}_{4} \Rightarrow 0$ and the resulaing load design chain matrix may be defined as :

$$
\left[\begin{array}{l}
A_{x} \tag{A1.6}\\
B_{x}
\end{array}\right]=\left[C_{1}(U E)\right] \cdot\left[\begin{array}{l}
A_{y} \\
B_{y}
\end{array}\right]
$$

where

$$
C_{1}(U E)=\left[\begin{array}{cc}
-\left(\frac{1-\beta_{4}}{\beta_{4}\left(1+z^{-1}\right)}\right) & \frac{1+\beta_{4} z^{-1}}{\beta_{4}\left(1+z^{-1}\right)} \\
\frac{\beta_{4}+z^{-1}}{\beta_{4}\left(1+z^{-1}\right)} & \cdot\left(\frac{\left(1-\beta_{4}\right) z^{-1}}{\beta_{4}\left(1+z^{-1}\right)}\right)
\end{array}\right] \cdot \beta=\frac{R_{y}-Z_{0}}{R_{y}+Z_{0}} \quad \text { and } R_{x}=Z_{0}
$$

A 8 Design Examples

To illustrate the three design procedures outlined in the Chapter 3. consider the 7h h order ladder DTL circuit shown by Fig.(A8.1).

Figure A8.1 A 7th order DTL filter
Using the two-pon design approach, suggested by Lawson, a general ladder WDF equivalent of this circuit can be constructed and is shown by Fig.(A8.2).

with

$$
\alpha=\frac{\mathbf{R}_{s}-\mathbf{R}_{\mathrm{a}}}{\mathbf{R}_{\mathrm{s}}+\mathbf{R}_{a}} \quad \text { and } \quad \beta=\frac{\mathbf{R}_{\mathrm{L}}-\mathbf{R}_{\mathrm{b}}}{\mathbf{R}_{\mathrm{L}}+\mathbf{R}_{b}}
$$

where R_{g} is the port resistance of the digital equivalent of a resistive voltage source, V_{0}, with resistance R_{s}. The port resistance R_{b} and external multiplier. β. correspond to a digital equivalent of the load resistor, R_{L}. of Fig.(A8.1).

A8.1 Source Design

Applying the source design procedure to the general ladder WDF circuit of Fig (A8.2), the first step is to remove the delay free path provided by the extemal multiplier, α. This can be achieved by setting $\alpha=0$ or $\mathbf{R}_{\mathbf{a}}=\mathbf{R}_{\mathrm{s}}$, and therefore $\mathbf{R}_{\mathbf{I}}=$ R_{1}. The first element of the circuit of Fig(A8.2) is parallel capacitor. This section has a source design chain matrix given by Eq.(A8.1).

$$
\left[\begin{array}{l}
A_{1} \tag{A8.1}\\
B_{1}
\end{array}\right]=\left[\begin{array}{ll}
\left(\frac{\left(1-\delta_{3}\right) z^{-1}}{\delta_{1}\left(1+z^{-1}\right)}\right) & \frac{1+\delta_{1} z^{-1}}{\delta_{1}\left(1+z^{-1}\right)} \\
\frac{\delta_{1}+z^{-1}}{\delta_{1}\left(1+z^{-1}\right)} & \left(\frac{1-\delta_{1}}{\delta_{1}\left(1+z^{-1}\right)}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]
$$

where

$$
\delta_{1}=\frac{1}{1+C_{1^{\prime}} R_{1}}, R_{2}=\frac{K_{1}}{1+C_{1^{\prime}} R_{1}} \text { and } C_{1^{\prime}}=\frac{2 C_{1}}{T}
$$

or

$$
\delta_{1}=\frac{1}{1+C_{1} R_{s}} \text { and } R_{2}=\frac{R_{s}}{1+C_{1} R_{s}}
$$

The next section is a series luned inductor/capacitor element. The source design chain matrix of this element is given by Eq.(A8.2).

$$
\left[\begin{array}{l}
A_{3} \tag{A8.2}\\
B_{3}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\left(1-\delta_{3}\right) z^{-1}\left(\delta_{2}+z^{-1}\right)}{1+2 \delta_{2} z^{-1}+z^{-2}} & \frac{1+\delta_{2}\left(1+\delta_{3}\right) z^{-1}+\delta_{3} z^{-2}}{1+2 \delta_{2} z^{-1}+z^{-2}} \\
\frac{\delta_{3}+\delta_{y}\left(1+\delta_{1}\right) z^{-1}+z^{-2}}{1+2 \delta_{2} z^{-1}+z^{-2}} & \frac{\left(1-\delta_{3}\right)\left(1+\delta_{2} z^{-1}\right)}{1+2 \delta_{2} z^{-1}+z^{-2}}
\end{array}\right] \cdot\left[\begin{array}{l}
A_{4} \\
B_{4}
\end{array}\right]
$$

where

$$
\delta_{2}=\frac{1-L_{2}^{\prime} C_{2}^{\prime}}{1+L_{2}^{\prime} C_{2}^{\prime}} \cdot \delta_{3}=\frac{R_{2}\left(1+L_{2}^{\prime} C_{2}^{\prime}\right)}{\mathbf{L}_{2}^{\prime}+R_{2}\left(\mathbf{1}^{\prime}+\mathbf{L}_{2}^{\prime} C_{2}^{\prime}\right)} \text { and } R_{3}=R_{2}+\frac{\mathbf{L}_{2}^{\prime}}{1+\mathbf{L}_{2^{\prime}}^{\prime} C_{2}^{\prime}}
$$

with

$$
\mathrm{C}_{2}^{\prime}=\frac{2 \mathrm{C}_{2}}{T} \text { and } \mathrm{L}_{2}^{\prime}=\frac{2 \mathrm{~L}_{2}}{T}
$$

Since the value of \mathbf{R}_{2} has been expressed in terms of $\mathbf{R}_{\mathbf{s}}$. then it can be substituted to express δ_{3} and R_{3} as,

$$
\delta_{3}=\frac{R_{8}\left(1+L_{2}^{\prime} C_{2}^{\prime}\right)}{L_{2}\left(1+C_{1^{\prime}} R_{3}\right)+R_{3}\left(1+L_{2}^{\prime} C_{2}^{\prime}\right)} \quad \text { and } \quad R_{3}=\frac{R_{8}}{1+C_{1}^{\prime} R_{8}}+\frac{L_{2}^{\prime}}{1+L_{2}^{\prime} C_{2}^{\prime}}
$$

Continuing the design process using the chain matrices of the form of Eq.(A8.1) and (A8.2). the multiplier values for the overall circuit can be determined and applied to the resulting siructure of Fig.(A8.3).

Figure A8.3 Ladder WDF circuit using source design procedure.

In the circuit of Fig.(AR.3) the parallel capacitor of the first section has the chain matrix. A. given by Eq.(A8.1), while the series tuned inductor/capacitor in the second section has a chain matrix. B, of Eq.(A8.2). The chain matrix \mathbf{C}, \mathbf{E} and \mathbf{G} have the same form as Eq. (A8.1) but in terms of $\delta_{4} \delta_{7}$ and δ_{10} respectively. Similarly, the matrices D and F have the form of Eq.(A8.2). but with multipliers δ_{5} / δ_{6} and $\delta_{\mathrm{g}} / \delta_{9}$ respectively. The mulitiplier equations for the source design ladder WDF circuit of Fig.(A8.3) are given in Table(A8.1).

$\delta_{1}=\frac{1}{1+C_{1} R_{1}}$	$R_{2}=\frac{R_{1}}{1+C_{1}^{\prime} R_{1}}$	
$\delta_{2}=\frac{1-L_{2}^{\prime}}{}{ }^{\prime} C_{2}^{\prime}{ }^{\prime} L_{2}^{\prime} C_{2}^{\prime}$	$\delta_{3}=\frac{R_{2}\left(1+L_{2}^{\prime} C_{2}^{\prime}\right)}{L_{2}^{\prime}+R_{2}\left(1+L_{2}^{\prime} C_{2}^{\prime}\right)}$	$\mathbf{R}_{3}=\mathbf{R}_{\mathbf{2}}+\frac{\mathbf{L}^{\prime}}{1+\mathbf{L}^{\prime} \mathbf{C}^{\prime}}{ }^{\prime}$
$\delta_{4}=\frac{1}{1+C_{3} R_{3}}$	$\mathbf{R}_{\mathbf{4}}=\frac{\mathbf{R}_{3}}{1+\mathbf{C}_{3}^{\prime} \mathbf{R}_{1}}$	
$\varepsilon_{5}=\frac{1-L_{4}{ }^{+} C_{4}{ }^{\prime}}{1+L_{4}{ }^{\prime} C_{4}{ }^{\prime}}$	$\delta_{5}=\frac{R_{4}\left(1+L_{4}{ }^{\prime} C_{4}^{\prime}\right)}{L_{4}^{\prime}+R_{4}\left(1+L_{4}^{\prime}{ }^{\prime} C_{4}{ }^{\prime}\right)}$	$R_{5}=R_{4}+\frac{L_{4}{ }^{\prime}}{1+L_{4} C_{4}}$
$\delta_{7}=\frac{1}{1+C_{5}^{\prime} R_{5}}$	$R_{6}=\frac{\bar{R}_{5}}{1+C_{5} R_{5}}$	
$\mathrm{g}_{8}=\frac{1-\mathrm{L}_{6}{ }^{\prime} \mathrm{C}_{6}{ }^{\prime}}{1+\mathrm{L}_{6} \mathrm{C}^{\prime}}$	$\delta_{9}=\frac{\left.R_{6(1}+L_{6}{ }^{\prime} C_{6}{ }^{\prime}\right)}{L_{6}{ }^{\prime}+R_{6}\left(1+L_{6^{\prime}} C_{6}{ }^{\prime}\right)}$	$\mathrm{R}_{7}=\mathrm{R}_{6}+\frac{\mathrm{L}^{\prime} \chi^{\prime}}{1+\mathrm{L}^{\prime} \mathbf{C}^{\prime} \mathrm{C}_{6}{ }^{\prime}}$
$\delta_{10}=\frac{1}{1+\mathrm{C}_{7} \mathrm{R}_{7}}$	$\mathbf{R}_{8}=\frac{\mathbf{R}_{7}}{1+\mathrm{C}_{7}^{\prime} \mathbf{R}_{7}}$	
$\beta=\frac{\mathbf{R}_{L}-R_{8}}{R_{I}+R_{g}}$		

Table A8.1 Multiplier equations for source design ladder WDF of Fig.(A8.3).

The transfer function for the circuit is given by Eq.(A8.3) where X represents a cascade of the chain matrices A to G, or a multiplication of the modified chain matrices A^{\prime} to \mathbf{G}^{\prime}.

$$
\begin{equation*}
H(z)=\frac{1}{x_{11}+\beta x_{12}} \tag{A8.3}
\end{equation*}
$$

and

$$
\mathbf{X}^{\prime}=A^{\prime} B^{\prime} \mathbf{C}^{\prime} D^{\prime} E^{\prime} F^{\prime} G^{\prime} \quad \text { when } X^{\prime}=\left[\begin{array}{llll}
x_{1} & 2 & \times 1 & 1 \\
x_{2} & 2 & 2 & \times 2
\end{array}\right]
$$

To simulate a given magnitude specification using a ladder WDF circuit then existing analogue design lables can be used. From tables a set of analogue DTL filter components can be found and used to determine the multiplier coefficients for ladder WDF. This lype of analogue design table is given in rerms of lowpass filter responses, such as elliptic, Butterworth and Chebyshev, with various pass and stopband tolerances.

A digital lowpass filter is to be designed from tables with an elliptic shape and the specification
$|G| \leq 0.1 \mathrm{~dB}$
$0 \leq f_{d p} \leq 0.1$
$|G| \geq 50 \mathrm{~dB}$
$0.12 \leq \mathrm{Ids}_{\mathrm{d}} \leq \mathrm{F}_{\mathbf{1}} / 2$
with sampling frequency, $F_{g}=1 \mathrm{~Hz}$. The first step is to convert the discrete frequencies into equivalent analogue values. Under the bilinear transform the frequencies are subject to non-linesr mapping, characterised by Eq.(A8.4).

$$
\omega_{\mathrm{d}}=\frac{2}{T} \tan ^{-1}\left(\frac{\omega_{\mathrm{a}} T}{2}\right) \quad \omega_{\mathrm{a}}=\frac{2}{T} \tan \left(\frac{\omega_{\mathrm{d}} T}{2}\right)
$$

(A8.4)
where ω_{d} discrete frequency in rad/s

$$
\text { wa analogue frequency in rad } / \mathrm{s}
$$

To compensate for this effect, the frequency values are prewarped. Using Eq.(A8.4) the specification, given in terms of a discrete frequency in $\mathbf{H z}$, can be converted in continuous frequency in rad/s. The modified specification becomes

$$
\begin{array}{ll}
|G| \leq 0.1 \mathrm{~dB} & 0 \leq \omega_{a p} \leq 0.64984 \\
|G| \geq 50 \mathrm{~dB} & 0.79186 \leq \omega_{a \mid} \leq m
\end{array}
$$

The Zverev tables are given in terms of a set of normalized magnitude responses which have passband edge at 1 rad/s. To use the values in the table, the specification needs to be divided by the required passband edge. The resulting specification would then be

$$
\begin{array}{cc}
\mathrm{GI} \leq 0.1 \mathrm{~dB} & 0 \leq \omega_{\mathrm{ap}} \leq 1 \\
\mathrm{KG\mid} \geq 50 \mathrm{~dB} & 1.2185 \leq \omega_{\mathrm{as}} \leq 0
\end{array}
$$

An entry in the Zverev ables which most closely matches this specification is CC_07_15_56. where CC denotes an elliptic shape and 07 is the order of the filter. The number 15 represents a reflection coefficient. The term indicates the passband attenuation, given as a reflection coefficient. م. which can be calculated from an attenuation in dBs through Eq.(A8.S).

$$
\begin{equation*}
p=\sqrt{1-10^{-\left(\frac{A_{d B}}{10}\right)}} \tag{A8.5}
\end{equation*}
$$

The final term in the catalogue reference is 56 , which is an angle indicating the sharpness of magnitude cut-off. This Isble entry corresponds to the specification

$$
\begin{array}{cr}
|G| \leq 0.098 \mathrm{~dB} & 0 \leq \omega_{\mathrm{ap}} \leq 1 \\
\mid \mathrm{GI} \geq 56.5 \mathrm{~dB} & 1.2062 \leq \omega_{\mathrm{as}} \leq 0
\end{array}
$$

To achieve the desired filter specification, the component values from this table entry need to be divided by the required passband frequency. in this case, the value is 0.64984 .

The resulting component elements are :-

R_{1}	$=1.0$	
C_{1}	$=1.61592$	
$C_{2}=0.24303$	$L_{2}=1.92723$	
$C_{3}=2.29469$		
$C_{4}=1.22503$	$L_{4}=1.29234$	
$C_{5}=1.99623$		
$C_{6}=0.88576$	$L_{6}=1.35875$	
$C_{7}=1.16738$		
$R_{1}=1.0$		

Table A8.2 Component values for a 7th order DTL filter.

Because the filter order of this specification is 7. then the design can be implemented through the ladder WDF of Fig.(Ag.3). The multipliers for this ladder WDF circuit. derived from the component values of Table(A8.2) and the equations of Table(A8.1), are illustrated in Table(A8.3).

$\mathbf{R}_{1}=$	1.0	$8_{1}=$	0.236304		
$R_{2}=$	0.236304	82. $=$	-0.303984	$\mathrm{E}_{3}=$	0.149779
$\mathrm{R}_{3}=$	1.577686	$8_{4}=$	0.121350		
$\mathbf{R}_{4}=$	0.191453	$\delta_{5}=$	-0.727246	$\delta_{6}=$	0.351972
$\mathrm{R}_{5}=$	0.543943	$67=$	0.315291		
$\mathrm{R}_{6}=$	0.171501	$8_{8 .}=$	-0.656009	89.	0.268432
$\mathrm{R}_{7}=$	0.638898	$810=$	0.401337		
$\mathrm{Re}_{\mathbf{8}}=$	0.256413	$\beta=$	0.591833		

Table A8. 3 Multiplier values for the ladder WDF using the source design procedure.

A8.2 Load Design

The first step of load design procedure using the general ladder WDF circuit of Fig.(A8.2), is to remove the delay free path provided through the load external multiplier. β. This can be achieved by setting $\beta=0$ or $R_{b}=R_{L}$, and therefore $\mathbf{R}_{8}=$ R_{L}. The last element of the circuit of Fig.(A8.2) is parallel capacitor. This section has load design chain marix given by Eq.(A8.6).

$$
\left[\begin{array}{l}
A_{13} \tag{A8.6}\\
A_{13}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1-\delta_{1}}{1+z^{-1}} & \frac{1+\delta_{1} z^{-1}}{1+z^{-1}} \\
\frac{\delta_{1}+z^{-1}}{1+z^{-1}} & \frac{\left(1-\delta_{1}\right) z^{-1}}{1+z^{-1}}
\end{array}\right] *\left[\begin{array}{l}
A_{14} \\
\\
B_{14}
\end{array}\right]
$$

where

$$
\delta_{1}=\frac{1}{1+C_{7}^{\prime} R_{8}} \quad, R_{7}=\frac{R_{8}}{1+C_{7}^{\prime} R_{8}} \quad \text { and } C_{7}^{\prime}=\frac{2 C_{7}}{T}
$$

0 t

$$
\delta_{1}=\frac{1}{1+C_{7}^{\prime} R_{L}} \text { and } R_{7}=\frac{R_{1}}{1+C_{7}^{\prime} R_{L}}
$$

The next section is a series tuned inductor/capacitor element. The laad design chain matrix of this element is given by Eq.(A8.7).
with

$$
\delta_{2}-\frac{1-L_{6^{\prime}} C_{6}^{\prime}}{1+L_{6}^{\prime} C_{6}^{\prime}} \cdot \delta_{3}=\frac{R_{7}\left(1+L_{6}^{\prime} C_{6}^{\prime}\right)}{L_{6}{ }^{\prime}+R_{7}\left(1+L_{6}{ }^{\prime} C_{6}{ }^{\prime}\right)} \quad \text { and } \quad R_{6}=R_{7}+\frac{L_{6}{ }^{\prime}}{1+L_{6}{ }^{\prime} C_{6}{ }^{\prime}}
$$

and

$$
C_{6}^{\prime}=\frac{2 C_{6}}{T} \text { and } L_{6}^{\prime}=\frac{2 L_{6}}{T}
$$

Since the value of R_{7} has been expressed in terms of R_{L}. then it can be substituted to express δ_{3} and R_{6} as.

$$
\delta_{3}=\frac{R_{L}\left(1+L_{6}^{\prime} C_{6}^{\prime}\right)}{L_{6}^{\prime}\left(1+C_{7}^{\prime} R_{L}\right)+R_{L}\left(1+L_{6}{ }^{\prime} C_{6}^{\prime}\right)} \quad \text { and } \quad R_{6}=\frac{R_{L}}{1+C_{7}^{\prime} R_{L}}+\frac{L_{6}^{\prime}}{1+L_{6}^{\prime} C_{6}}
$$

Continuing the design process using chain matrices of the form of Eq.(A8.6) and (A8.7), the multiplier values for the averall circuit can be determined and applied to the load design structure of Fig.(A8.4).

Figure A8.4 Ladder WDF circuit using load design procedure

In the circuit of Fig.(A8.4). the parallel capacitor of the last section has the chain
 second to last section has the chain matrix, F, of Eq. (A8.7). The chain matrix A, C and E have the same form as Eq.(A8.6) but in terms of $8_{10} 0_{7} \mathbf{5}_{7}$ and $8 \mathbf{8}$ respectively.

Similarly, the matrices B and D have the form of Eq.(A8.7) with multipliers $\mathbf{8 / 6 9}$ and $8_{2} / 8_{3}$ respectively. The multiplier equations for the load design ladder WDF circuit of Fig.(A8.4) are given in Table(A8.4).

$\delta_{1}=\frac{1}{1+C_{7}^{\prime} R_{8}}$	$R_{7}=\frac{R_{8}}{1+C_{7} R_{8}}$	
$\delta_{2}=\frac{1-L_{6}^{\prime} C_{6}^{\prime}}{1+L_{6}^{\prime} C_{6}^{\prime}}$	$\delta_{3}=\frac{R_{7}\left(1+L_{6} C_{6}{ }^{\prime}\right)}{L_{6}{ }^{\prime}+R_{7}\left(1+L_{6}^{\prime} C_{6}{ }^{\prime}\right)}$	$\mathrm{R}_{6}=\mathrm{R}_{7}+\frac{L_{6}{ }^{\prime}}{1+\mathrm{L}^{\prime} \mathrm{C}_{6}{ }^{\prime}}$
$8_{4}=\frac{1}{1+C_{5} \mathrm{R}_{6}}$	$\mathbf{R}_{5}=\frac{\mathbf{R}_{6}}{1+\mathrm{C}_{9^{\prime}} \mathbf{R}_{6}}$	
$\delta_{5}=\frac{1-L_{4}{ }^{\prime} \mathrm{C}_{4}{ }^{\prime}}{1+\mathrm{L}_{4}^{\prime} \mathrm{C}_{4}{ }^{\prime}}$	$\delta_{6}=\frac{R_{5}\left(1+L_{4}{ }^{\prime} C_{4}{ }^{\prime}\right)}{L_{4}^{\prime}+R_{5}\left(1+L_{4}^{\prime} C_{4}{ }^{\prime}\right)}$	$R_{4}=R_{5}+\frac{L_{4}}{1+L_{4}^{\prime} C_{4}}$
$8_{7}=\frac{1}{1+\mathrm{C}_{3} \mathrm{R}_{4}}$	$\mathbf{R}_{\mathbf{3}}=\mathbf{f}\left(\mathrm{R}_{4}, 1+\mathrm{C}_{3} \mathbf{R}_{\mathbf{4}}\right)$	
$\delta_{8}=\frac{1-L_{2}^{\prime} C_{2}^{\prime}}{1+L_{2}^{\prime} C_{2}^{\prime}}$	$\delta_{9}=\frac{R_{3}\left(1+L_{2}^{\prime} C_{2}^{\prime}\right)}{L_{2}^{\prime}+R_{3}\left(1+L_{2}^{\prime} C_{2}^{\prime}\right)}$	$\mathrm{R}_{2}=\mathrm{R}_{3}+\frac{\mathrm{L}_{2}^{\prime}}{1+\mathrm{L}_{2}^{\prime} \mathrm{C}_{2}^{\prime}}$
$\delta_{10}=\frac{1}{1+C_{1}^{\prime} R_{2}}$	$\mathbf{R}_{1}=\frac{\mathbf{R}_{2}}{1+\mathbf{C}_{1}^{\prime} \mathbf{R}_{2}}$	
$\alpha=\frac{\mathbf{R}_{s}-\mathbf{R}_{1}}{\mathbf{R}_{\mathrm{g}}+\mathbf{R}_{1}}$		

Table A8.4 Multiplier equations for load design ladder WDF of Fig.(A8.4),

The transfer function for the circuit is given by Eq.(A8.8) where X represents a cascade of the chain matrices A to G.

$$
\begin{equation*}
H(z)=\frac{1-a}{x_{11}-\alpha x_{22}} \tag{A8.8}
\end{equation*}
$$

and

$$
\mathbf{X}^{\prime}=\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime} \mathbf{E}^{\prime} \mathbf{F}^{\prime} \mathbf{G}^{\prime} \quad \text { when } \mathbf{X}^{*}=\left[\begin{array}{llll}
x_{1} & 2 & x_{1} & 1 \\
x_{2} & 2 & x_{2} & 1
\end{array}\right]
$$

If the load design procedure is applied to the same filter specification as that used for the source design example, then the lumped component value will be the same, shown in Table(A8.2). The resulting load design multipliers are given in Table(A8.5).

$\mathbf{R}_{\mathbf{1}}=$	1.0	$\delta_{\text {I }}=0.299872$	
$\mathrm{R}_{7}=$	0.299872	$\delta_{2}=-0.656009$	$\delta_{3}=0.390830$
$\mathrm{R}_{8}=$	0.767269	$\delta_{4}=0.246106$	
$\mathrm{R}_{5}=$	0.188829	$\delta_{5}=-0.727246$	$\delta_{6}=0.348831$
$\mathrm{R}_{4}=$	0.541320	$57=0.287000$	
$\mathrm{R}_{3}=$	0.159399	$8_{8}=-0.303984$	$\delta_{9}=0.103798$
$\mathrm{R}_{\mathbf{2}}=$	1.496741	$\delta_{10}=0171314$	
$\mathrm{R}_{1}=$	0.256413	$\alpha=0.591833$	

Table A8.5 Multiplier values for the ladder WDF using the load design procedure

A8.3 Middle Design

The objective of the middle design procedure is to use the ideas from the source and load design techniques simultaneously to meet at some port near the middle of the circuit. If the middle design approach is applied to the general ladder WDF circuit of Fig.(A8.2), then the middle of the circuit would be the second series tuned element. The first step of this design procedure would be to follow the source design approach, eliminating the constant terms from the circuit connected to the input port of each element, until the port tesistance $\mathbf{R}_{\mathbf{4}}$ has been determined. The next stage is to follow the load design procedure until the value of Rg has been calculated. The resulting middle design ladder WDF circuit is shown by Fig.(A8.5).

Figure A8.5 Ladder WDF circuit using middle design procedure.
Using the middle design procedure, sections A and C have chain matrices of the form of Eq.(A8.1), but in terms of δ_{1} and δ_{4} respectively, while the sections G and E have the form of Eq.(A8.6) in terms of 85 and 8 g respectively.

Section B has the source design chain marrix of Eq.(A8.2), while section F has the load chain matrix of Eq.(A8.7) in terms of δ_{6} and δ_{7}. The final section, D. has both its input and output port resistances determined by sections \mathbf{C} and \mathbf{E}. which ensure the removal of delay free loops. The chain matrix for the series tuned circuit. under the middle design procedure. is given by Eq.(A8.9).

$$
\left[\begin{array}{l}
\mathrm{A}_{7} \tag{A8.9}\\
\mathrm{~B}_{7}
\end{array}\right]=\left[\mathrm{C}_{\mathrm{ms}}(\mathrm{LC})\right] \cdot\left[\begin{array}{l}
\mathrm{A}_{8} \\
\mathrm{~B}_{8}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { where } \\
& C_{m s}(L C)=\left[\begin{array}{cc}
\frac{\delta_{11}+\delta_{g}\left(1-\delta_{10}+2 \delta_{11}\right) z^{-1}+\left(1-\delta_{10}+\delta_{11}\right) z^{-2}}{\left(1+\delta_{11}\right)\left(1+2 \delta_{9} z^{-1}+z^{-2}\right)} & \frac{1+\delta_{g}\left(1+\delta_{10}\right) z^{-1}+\delta_{10} z^{-2}}{\left(1+\delta_{11}\right)\left(1+2 \delta_{y} z^{-1}+z^{-2}\right)} \\
\frac{\delta_{10}+\delta_{g}\left(1+\delta_{10}\right) z^{-1}+z^{-2}}{\left(1+\delta_{11}\right)\left(1+2 \delta g z^{-1}+z^{-2}\right)} & \frac{\left(1-\delta_{10}+\delta_{11}\right)+\delta_{9}\left(1-\delta_{10}+2 \delta_{11}\right) z^{-1}+\delta_{11} z^{-2}}{\left(1+\delta_{11}\right)\left(1+2 \delta_{9} z^{-1}+z^{-2}\right)}
\end{array}\right] \\
& \delta 9=\frac{1-L_{4}^{\prime} C_{4}}{1+L_{4} C_{4}^{\prime}}, \delta_{10}=\frac{\left(R_{9}+R_{4}\right)\left(1+L_{4} C_{4}\right)-L_{4}{ }^{\prime}}{\left(R_{5}+R_{4}\right)\left(1+L_{4} C_{4}\right)+L_{4}{ }^{\prime}} \\
& \delta_{11}=\frac{\left(R_{5}-R_{4}\right)\left(1+L_{4}{ }^{\prime} C_{4}{ }^{\prime}\right)-L_{4^{\prime}}{ }^{\prime}}{\left(R_{5}+R_{4}\right)\left(1+L_{4} C_{4}\right)+L_{4}{ }^{\prime}}=\frac{2 L_{4}}{T} \text { and } C_{4}{ }^{\prime}=\frac{2 C_{4}}{T}
\end{aligned}
$$

The transfer function for this circuit is given by Eq.(A8.10), where X represents a cascade of the chain matrices $A 10 G$.

$$
\begin{equation*}
H(z)=\frac{1}{x_{11}} \tag{A8.10}
\end{equation*}
$$

The multiplier equations for the ladder WDF, shown by Fig.(A8.S), under the middle design procedure, are shown by Table(A8.6).

Table A8.6 Multiplier equations for middle design ladder WDF of Fig.(A8.5).
If the component value, given in Table(A8.2). used in the previous examples are applied to the ladder WDF of Fig.(A8.5). then the resulting multiplicr values can be determined are illusirated in Table(A8.7).

$\mathbf{R}_{1}=$	1.0	$\delta_{1}=$	0.236304	
$\mathbf{R}_{2}=$	0.236304	$\delta_{2}=$	-0.303984	$\delta_{3}=$
$\mathbf{R}_{1}=$	1.577686	$\delta_{4}=$	0.121350	
$\mathbf{R}_{4}=$	0.191453			
$\mathbf{R}_{8}=$	1.0	$\delta_{5}=0.149779$		
$\mathbf{R}_{7}=$	0.299872	$\delta_{4}=-0.656009$	$\delta_{7}=$	0.390830
$\mathbf{R}_{6}=$	0.767269	$\delta_{8}=0.246106$		
$\mathbf{R}_{5}=$	0.188829			
$\delta_{9}=$	-0.727246	$\delta_{10}=0.037926$	$\delta_{11}=$	-0.484618

Table A8.7 Multiplier values for the ladder WDF using the middle design procedure.

This whole design process can be performed through the computer program WAVE. This program also applies the optimization techniques discussed in Chapters 2 and 3 to the design of arbitary simultaneous magnitude and phase specifications.

Appendix B

Design Program Descriptions

This Appendix provides a menu walk through of the software tools developed within this research project for the design and analysis of lattice WDF's. The design and analysis functions are split into two separate programs. The design program is called 'wdE' and was written in Fortran. Lattice WDF analysis was provided through a program called 'mltwde' which was written for a package called MatLab. The final program. 'ellip', is an implementation of the design equations developed by Gazsi to calculate the order and multipliers values of latice WDF's that can satisfy lowpass magnitude only specifications using Elliptical. Butterworth and Chebyshev polynomials.

The options and operation of each program is illustrated through a menu walk through and a number of design examples. This contents of this Appendix is :-

B 1 Design Program 'ellip'

To illustrate the operation of the design program, '111p', consider the specification shown in Table(B1.1).

Gain masand		Gain mand		Samp	
an (dB)	edse (Hz)	all (dB)	edse (Hz)	fred (Hz)	
0.1	0.1	50	0.15	1	

The program. 'allip', can be used to determine the order of Elliptic. Butterworth and Chebyshev polynomial required to satisfy the specification of Table(B1.1). The program can then calculate the multiplier values for a lattice WDF 10 exhibit the desired polynomial response.

On entry, the program. 'alip', will display the menu structure shown by Fig.(BI.1).

```
Enear filcer apaciflcation t-
    1) Pame bund mttenuation, (din).
        Iprement value la not met।
    2) Stop band ctegmuigeion, {dial.
        ipresenc valus &s mek sec)
    1) Pame band adge frequency, {Hz!.
            iprasent valua la not a|tl
    4) Stop band adge ftequeney, {Hz}.
            fptesent value la nat cet!
    S) Sampling frequency. {Hzl.
        (present value la not net)
    6) Cabeulate Eilterer ordar,
                fprement order haa not baen calculatedi
    7) gult.
Enter choice requireds
```

Figure B1.1 Filter specification menu of ' 111 p'
By selecting the options 1 though 9 from the menu shown by Fig.(B1.1), the lowpass specification of Table(B1.1) can be entered into the program. While the specification is entered, the menu structure of Fig.(Bl.1) will alter to display the current values. The program menu with the apecification of Table(B1.1) entered, is shown by Fig.(B1.2).

```
Enter filter specification :-
    1) Pass band attenuation, (dB).
        (present value is 0.1)
    2) Stop band attenuation, (dB).
        (present value is 50)
    3) Pass band edge frequency, (Hz).
        (present value is 0.1)
    4) Stop band edge frequency, (Hz).
        (present value is 0.15)
    5) Sampling frequency, (Hz).
        (present value is 1)
    6) Calculate filter order.
        (present order has not been calculated)
    7) Quit.
Enter choice required;
```

Figure B1.2 Filter specification menu of 'ellip' with specification.

```
Enter fllter specification :-
    1) Pass band attenuation, (dB).
        (present value is 0.1)
    2) Stop band attenuation, (dB).
        (present value is 50)
    3) Pass band edge frequency, (Hz).
        (present value is 0.1)
    4) Stop band edge frequency, (Hz).
        (present value is 0.15)
    5) Sampling frequency, (Hz).
        (present value is 1)
    6) Calculate filter order.
        (present order for Butterworth is 17)
        (present order for Chebyshev is 9)
        (present order for Elliptical is 7)
    7) Quit.
Enter choice required;
```

Figure B1.3 Menu with specification and minimum polynomial orders.
Option '6' of the main menu will calculate the order of the Elliptic. Butherworth and Chebyshev polynomials for the current filter specification. This features allows the orders of a number of different specification to be found quickly. Selecting option '6' was for the specification of Table(Bi.t) resulis in the Butterworth. Chebyshev and Elliptic polynomial orders being added to the program menu, illustrated by Fig.(Bl.3).

Having completed the entry of the filter specification. the next step is the calculation of the multipliers for a latlice WDF. Selection of option '7' from the menu of Fig.(B1.3) moves the program onto the next menu. This menu structure allows the required filter order to be selected. shown in Fig.(B1.4).

```
Enter fliter reaponae required :-
    1] gane fllear ordar.
    2) Ducterwareh.
    3) Chebyahev.
    4) z111ptlcini.
    5) Quit.
Enter cholce requirad. 1-4 or quie(5):1
```



```
    9 ICnabyahev)
    } (Ell1pe1cal)
Enter the order of filzar raquired m= 3, %
```

Figure B1.4 Selection of lattice WDF orders.

With the filter order selected, the next step is to select the polynomial type required. A paricular filier ofder for a polynomial allows a small amount of freedom upon the frequency specification. This is expressed as a range of possible stopband edge frequencies and passband attenuations. If the elliptical polynomial is required and option '4' selected from the menu of Fig.(BI.4). then the program will provide the limits for the stopband edge frequencies and passband attenuations allowed for that particular filter order. passband edge frequency and stopband attenuation. This information will be presented in the format shown by Fig.(B1.5).

```
Enter fllter reaponae required z*
    1) Ser fllter order
        ipresent value is ?]
    2) #utteryarch.
    34 Chebyatey.
    41 El11ptleal.
    51 Qule,
Enter cholce requirad, i-4 or quit(5); &
Range of po|slble szopband cutote frequenclea are.117449<< < << 0.15
Enter value for atopband eutoti frequency, {Hz|: 0.15
Range of po|sible passband atcenuarlona ara.000271 << x<<-0.1
Enter valu* Eor pasaband accanuavion, (dB): 0.1
```

Flgure B1.3 Final selection of specification values for an elliptic polynomial response

With a final frequency specification, the program will calculate the latice WDF multiplier values for a particular polynomial type and display them in the form illustrated by Fig.(B1.6).

```
EnE#z I1|Lar response requizeal :-
    1) Sec tilter order.
            (present valu* l.f T)
    21 Bucterworth.
    3) Chabyehev.
    4) Ell1ptical, comfflelents ara:-
                    0.751906930712
                            -0.635352023959
                            0.926427379971
                            -0.783992284302
                            0.840820107759
                            -0.930190435346
                            0.796660491977
```

 5) Quit.
 Enter eholce required, $1-4$ ar quit $\{5$)

Figure B1.6 Display of filter coefficients for the desired elliptic polynomial response.

The multiplier values from the program. 'alip', are given in the format specified by Gazsi. so that the first multiplier value is that of the only $1^{\text {st }}$ order APS. the next two multipliers belong to the first $2^{\text {nd }}$ order APS of the lower arm and the nexi two for the first $2^{\text {nd }}$ order APS of the upper arm. Pairs of multipliers then alternate
between upper and lower arm $2^{\text {nd }}$ order APS's. On exit the program will convert the current set of multiplier values into the format used within the "udf " and 'mitwdf" prograns. Within this format first half of the multipliers belong to the upper arm and the other half for the lower arm. Where appropriate, the Iast multiplier for the upper latlice arm set will belong to the single $\mathrm{g}^{\text {tit }}$ order APS.

B 2 Design Program 'wdf'

The 'wdf' program has three main functions :-
(i) Entry and alteration of general filter specification.
(ii) Design through the application of optimization routines.
(iii) Retrieval and storage of filter/optimization parameters

The operation and structure of this program can be illustrated through the filter specifications of Table(B1.1) and Table(B2.1).

Gain massband		Gain slopband		Delay passband		$\begin{gathered} \text { Samp. } \\ \text { freq }\left(\mathrm{Hzz}^{2}\right) \end{gathered}$
218 (dB)	edge (Hz)	Ilt (dB)	eder (Hz)	dev (\%)	edge ($\mathrm{Hz}^{\text {) }}$	
0.1	0.1	50	0.15	1	0.1	1

Table B2.1 Simultaneous lowpass filter specification

The main menu of the 'wdf' program is shown by Fig.(B2.1).

```
    This is a desion frogram for
arblerary magnitude and llnaer phama wof'e
Proqram Maln Menu
1) Load an existing alata file.
            (no current flla)
2) Enter a fllter spaciflcation.
3) Filear coaftieiont optlmizaclon
4) Change Ellear seruecura/optimlzation paramatar
5) Craate a Matlab flle tor graphical rasulea.
6) Save preaent apeciflcatlon to a different ille.
OI Guit.
Enter option raquired (i-6) or quic (0) s=
```

Figure B2. 1 Main menu structure of the 'wdf' program.

The operation of the wdf program is controlled through the main menu structure of Fig.(B2.1). Frequency specifications can be entered into the program through option ' 2 '. With an initial frequency specification. option '4' can be used to amend the specification and optimization parameter values. These specification and optimization setings can then be saved to a plain ASCII data file though option '6'. Altematively an existing data file can be loaded into the program using option '1' and the appropriate parameter values changed to satisfy a new specification.

Analysis of the time and frequency domain responses of the various latice wDF designs is carried out within the program 'mItwdf'. This program was written to
operate within MatLab which possess ita own date file format. To utilise the efficiency of the MaiLeb file format the plain data files of the 'wdi'program can be converted into an equivalent MatLab format file through option ' 5 ' of the main menu of Fig.(B2.1).

The procedures under options ' 3 ' and '4' constitute the main features of the 'wdf' program. The menu structure and operation of each option will be considered in turn. Option '4' of the main menu, shown by Fig.(B2.1) provides the operator with the ability $t 0$ change all the parameters directly related 10 the design and opimization of a Imttice WDF. Selection of option '4' will invoke the alteration menu illustrated by Fig.(B2.2).

```
Fliter paramacer alcerarion menu
|) Alter {ilter atzucturevarlablea
2) Alter fraquency mpecificatian variablea
3) Alcer optlmization turget daflnition*
4) Alcer optimizacion roucine varlables
0) Quie.
Enter option required (1-\\ or quit(0) )=
```

Figure $\mathbf{B 2} 2$ Filter parameter alteration menu structure

The first two options of the menu of Fig.(B2.2) relate directly to the filter structure and specification parameters. These elements include filter order, frequency specification and desired finite wordlengit. If the magnitude-only filter specification of Table(B1.1) had been entered into the program, then selecting option 'I' from the menu of Fig.(B2.2) would show the 'rilear segucture menu', illustrated by Fig.(B2,3).

```
FLiter atructur* menb
1) Altar fliter ordar, premenc value ie 7,
2) Alter Indelad parameter valume.
    -0.783992 0.840820 0.75190)
    -0.635752 0.916427 -0.930190 0.796660
3) Alter coafflciant wordlength 164 = Intinite).
    ipresent valum lamel
01 Qulv.
Enter optdan requited {2-3| or Gult(0) :-
```

Figure B2.3 Filier structure menu options showing value from Table(B1.1).

The three options shown in Fig(82.3) gllow the user to change the filter order, initial coefficient values or desired filter coefficient wordlength. If the filter order is changed, using option ' 1 ', then all coefficient values will be set to zero.

The menu structure invoked by selecting option ' 2 ' from the 'Filter parameter alearation menu', Fig.(B2.2), is illustrated by Fig.(B2.4) containing the lowpass specification values from Table(B2.1).

Flgure B2.4 Filter frequency specification menu shown for the specification of Table($\mathbf{B 2} 2.1$).

Option '3' of the 'Filter pazametar alearazion menu'. Fig.(B2.2). allows the definition for the optimization targets to be altered between the single and dual line schemes described in Chapter 2. Finally option '4' from Fig.(B2.2) allows the operator control over all the oplimization parameters relevant to the quasiNewton and modified Hooke-Jeeves routines. Fig.(B2.5) shows a typical set of parameter values for aimultaneous lowpass specification.

The options within the menu structure of Fig.(B2.5) directy contral the optimization algorithm, templates and error function parameters. Selection of particular values for these various parameters requires amall amount of experimentation for a particular specification. A parameter which may not be obvious is the frequency iransformation procedure, option '15'. In the design of single and dual bandpass and bandstop lattice WDF's, the APS's contsin either one or two parameters which determine the movement of the frequency band(s). The value of these parameters may be common within all APS's of a filter or used as an optimization variable to increase the flesibility of bandpass and bandstop type deaigns.

```
Filtar optialzation pacameter menu
    Alear galin/group dalay ergor ratlo, beta.
        pramant value Le 0.agoo.
    Alcar Lp-norm, prement value i曾 2.
    Altar inltial group dalay value.
        praseant vaccor le 15.000 0. 0..
    Alear acceptable delay purcentage arrar, |b)
    present veceor 1m 1.0000 0. 0.
    Alter numbar of gain palnta paz trequency bind.
        prement veczor 1. }3
    Alvar quín poinc spacing par frequancy band.
        prement vector 1s 2 1 3.
    ALE| galm cmmplate wilgnes per fraquancy band.
        preament vector l界 100.000 20.000 160.000.
    miter numbar of delay polmta per frequancy band.
        pramanc vector 1a 31 0 0.
    Aleer delay polne mpacing per izequancy band.
        pzeasent vector &* l 1 1.
    Altar dalay template welghta par frequamey bund.
        prement vector 1a 50.000 1.000 1.000.
11) Alter opelmizacian routino.
        pzesent rout|na lo EO4jMF,
12) ALEar trandition band upper earget angia 10-go deasel.
    preasent vector 1费0. 15.000 0..
13| Alcar tranaition band LONER cargat angle 10 - 90 degaj.
    prament vector ls 0. 5.000 0.
14) Sac default wight yaluas for thle problem.
1S| Alter frequancy Eranmfarmerion procedure.
        tranatermatlon procedura sat required.
01 Ou\t.
Enzer option requleed {t=15) or quit(0) F
```

Figure B2．5 Filter optimization parameter menu showing a typical set of parameter values for a lowpass specification．

With the desired design specification entered into the program the next step is to retum the＇Program Main Manu＇．Fig．（B2．1），and either save these parameters to a data file under option＇6＇or begin optimization through option＇3＇．The various quasi－Newton optimization algorithms are implemented to produce filter coefficients values to the full accuracy of the computer system．These algorithms can therefore only be implemented when the desired wordlength，set in the ＇rilter atructure menu＇of Fig．（B2．4），is equal to the upper limit，i．e． 68 bits．If the wordlength is shorter than this value，then the program will automatically invoke the Hooke－Jeeves algorithm．Upon starting any optimization．the user will be asked for filename into which the design parameters will be stored．These results consist of＇．dat＇file which contains the filter structure information which can be loaded back into the＇wdf＇program，a＇res＇file which holds a list of all the initial optimization seltings．multipliers values and a history of error function values and a＇．mat＇file created in the Matab format．The＇．mat＇file contains virually the same information as the＇dat＇file expect that it is compressed and stored in a binary form that cannot be edited．This format allows a rapid loading
into the "mltudf' program and ensures that parameters within a solution data file cannot be accidentally altered.

The design process using a quasi-Newton algorithm is illusirated in Fig.(B2.6)(a-c) for the simultaneous specification of Table(B2.1). Having prompted the operator for a filename, the program will display the initial parameters values.

```
Entar name for optinization data flles
    fcraaclrg*.rma*. ".mat* and ".dac* fll#al
IIl_test
Ellter comfflelent wordlength is "1deal* = (64 blts)
Initial pptimizatian vector valume ara :-
    paramerer! 1] = 0.00000000000000000000
    paramater[ 2] - 0.00000000000000000000
    parameterl 3! - 0.00000000000000000000
    parameterl 4]=0.000000000000000000000
    parametar[ 5] = 0.00000000000000000000
    Paramater[ 6! - 0.00000000000000000000
    parameter[ 7]=0.00000000000000000000
    paramererl | a 0.00000000000000000000
    parametarl 91 = 0.00000000000000000000
    parameter[ 10]-0.00000000000000000000
    parameter[ 11] 0.00000000000000000000
    parametar[ 12]=0.00000000000000000000
    paramatar[ 13] - 0.00000000000000000000
    paramater[ 14]=0.000000000000000000000
    parametar[ 15]=0.00000000000000000000
    paramarer[ 16]=15.00000000000000000000
```

InIELial mean group delay value for paraband [1] ia 15.0000
Group delay arroz tolerance zor paseband \{2] Li L, OOOOOE
Initlal error value is $0.12644725 \mathrm{E}+05$
Optimlzing coeftletenta...

Function number	Function ertor	Function 1 mpravamenc (B)
100	0.46844741E*03	96.137145
200	0.22899577 E -03	33.117621
300	$0.21514542 \mathrm{E}+03$	6.048297
4180	0.19540717E*03	9.174179
500	0.99811552E-02	48.921243
600	$0.37994933 \mathrm{E} * 02$	61.931131
100	0.32677623E402	13.99471
800	0.26852314E+02	17.825986
900	0.21721900E+02	11.658542
1000	$0.16446858 \mathrm{E}+02$	30.668040
-	-	*
7	-	-
6200	0.02921716E-03	0.000002
6300	$0.82923859 \mathrm{E}-03$	-0.0.016266
6400	$0.029238615-03$	0.036163

Figure 82.6(a) Display of initial optimization parameter values.

If the routine exceeds 400 limes the number of optimization variables then the program will exist. display the results and restart the process using the values of
the parameters on exit as the initial starting values．This process in shown in Fig．（B2．6）（b）．

```
Ihare have been more than 6400 funcelon evaluatione!
The tocal number of calla of FUNCTI wala 6452
Final ercor valua 1*=0.82923007E-03
Flnal Fileer coeffloleat valuea are:-
    comfflciant [ 1)= -0.17796401859807935395
    comiflelmnt ( 2)=0.65790402402640719661
    coefficient ( |) = -0.55571274691139627944
    coefElelent [ 4| = 0.91645997804630030537
    co|FELClent [ 2 | - -0.0017014286955423951%
    coffflelent [ < = 0.66613095914806030973
    couf[tcient [ T] = 0.45739905009707237937
    coutileient \ \ = -0.54692256706829955881
    coaffledene [ M - 0.81958291154246675272
    caefflci|nt (10) = -0.1246185942046]97626
    co⿻fflciene | 11| = 0.81851396866370423:34
    coufflclent (12)=-0.92310761839609507494
    coufficient (131 = 0.65868350256143592458
    confElclent (34)=-0.45157䬺474贯474090226
    coerflelent [15] - 0.3423949414324334528&
Maan group dalay value for pasaband [1]=14.37Ba
Optim1zing cootflelents ...
```

Funcitan
number
6500
6600
$:$
\vdots
13300
13400
13500

Function ertar	Function improvemant（b）
$0.82923136 \mathrm{E}=03$	0.000447
$0.82844410 \mathrm{E}-03$	0.095300
－	＊
＊	＊
＊	＋
－	「．
$0.12247433 \mathrm{E}-10$	0．076863
0．457842925－11	62.617234
$0.15602575 \mathrm{E}-12$	96，592155

Figure B2．6（b）Typical optimization process

Optimization，using the NAG routines．will continue until the solution can no longer be improved or the number of iteration exceeds 400 limes the number of optimization variables．If the jteration limit is reached，the program will display the number of actual function evaluasion．the final error and coefficient values The program will then re－invoke the routine with the final coefficient values as initial settings．This process will allows occur if the iteration limit is reached．On exit a NAG routine will retum an error flag to indicate its reason for terminating． The program interprets this error flag for each NAG routine and uses it to re－ invoke the routine if the iteration limit has been reached or exit the optimization procedure if a solution has been found．Return error flags will also indicale if a solution could not be found or if there was some doubt about the solution produced．

The final steps of the design process for the example considered are shown in Fig.(B2.6)(c)

```
Optimlzation succesatul
Th* cozal number of calla of FUNCTl wan l3612
FInal ertor value ie = 0.37404932E-16
Final filtar canfficient valuea are :-
        comff1cimnt | 1| = -0.32103073100699393570
    confilciont | 21 * 0.71432227201151090252
    coaffleient | 31 - -0.59773372692825854635
    coefflcient I |I + 0.$11676485192j0091048
```



```
    confficisnt ( |] = 0.53506596893553544100
    coestleient | T] - 0.58848491613100039917
    co@eflgient | B = -0.626016475892662196j2
    cosfficient | 9! = 0.03$01601881|152501s]
```



```
    casffleient | 11| = 0.91625*61657206的s311
```



```
    con[{1Gimnt [ 13] - 0.62010s5066103661306]
    coe[flelanr [ 14]= -0.69070144394002258476
    com[{lelent [ 15]=0.67670067104936177485
maan group dalay valu* car pammbandl3| - 14.3867
Craarlng Maclab data Plia fil camt.mat
Crascing aaka file Ell_come.dac
Cloolng reault: Elle f11_tagt,rea
```

Figure B2.6(c) Final steps in optimization design process.

Finite wordlengih optimization designs expect to be stanted with an 'ideal" solution as its initial multiplier values. Before the optimization is started the user is asked for an initial wordlength to which the initial coefficient multipliers will be quantized. The program will then apply the Hooke-Jeeves optimization routine to the specification. If solution can be found the current wordength is campared to the desired wordlength defined within the specification. If it is larger, the current wordlength is reduced by one bit and the process repeated. If a solution cannot be found the wordlength is increased by one bit and reapplied. If the routine reaches a minimum limit three times without being able to achieve the desired wordiengih, the process in terminated. The optimization procedure will therefore exit with set of finite wordlength coefficients that satisfy the desired or shortest possible wordength conditions. A typical example of a finite wordlength design using the simultaneous specification of Table(B2.l) is illusirated by Fig.(B2.7).

```
Enter name tor oprimization data Pllae
    (creatlng *,r*a*. *,mat" and F,dat* lileal)
EInIt*_teat
Ideal Hilter coufflelent wordlength ls obita
```

Enter the initial value for the coutfleient bit length im 24

Initial optimization vitctor valuen are:
paramacer [$11=-0.52103073100699393678$
paramerer $\quad 21=0.71432227202357090252$
parameteri 3] $=-0.59773172692825954633$
parameter (4] - 0.93167698519230091048
parametarf Sl- -0.89226731966824678390
parametar $(6)=0.63106596193653544100$
paramerar[7] 0.58848491615300015917
paramater[] - 0.61601647589166219632
parameter 91 - 0.05501681881815250197
piramecer [101 $=-0.38335484425137844600$
paraneter (11] - 0.91625861657286955531
paramerer [12$]=-0.95816216097111160455$
paramerer [13] = 0.62810950661036613063
paramerer $[141=-0.69070144594002258476$ paramerer [131 = 0.67670067104956177403

1ntrial ector value is 0.49826624E-10
Optimizing coeifleiente for IInlte wordlengthe ...

Opeinlzation la succersiful
Ecror valua cor 24 bits is $5.97416 \mathrm{E}=13$, thriohold il,oeWordlength 1 g qreater than requlred valua of \quad bite Reducing coefticient wordlength co 23 bite

Optimization 1 a wcceanful
Efior value for 23 bita ie 3. T6521E-22, thzeshold \{l, oE-9] Nozdiengin it greater chan required value of b bit: Reducing coufficient wordlunsth to 22 blea

Optimizacion 1a muccendeul
Error value for 22 bice 1. 9.4eje6E-12, Ehreahold (1,0E-a) wordiangth is graacer than required value of biea Reducing coefilcient wordlangth to 21 bite
optimization is NOT ucceankul
 No eolucion for current wordlangth of 17 bite
Inceuding codreleiont wordlengeh to 18 blte

Figure B2.7 Display of finite wordlength optimization.

B 3 Analysis Program 'mltvds'

This program utilise the features and graphical procedures of MatLab to generate and display the results of a number of resporises of the lattice WDF. These responses can be calculated within the frequency domain through a set of analytical equations which describe the Jatice WDF's or detsrmined within the time domain by modelling the physical element of the two-port adaptor and lattice WDF APS's.

Frequency domain characteristics calculated by the 'mbewdf' program are :-
(i) Frequency response ;
(a) Gain vs. Frequency
(b) Magnitude vs. Frequency
(c) Phase vs. Frequency
(d) Group Delay vs. Frequency
(ii) Coefficient Sensitivity \ddagger
(a) Gain vs. Frequency
(b) Phase vs. Frequency
(c) Group Delay vs. Frequency
(iii) Pole/Zero Plots

Time domain characteristics calculated by the 'mlewdf' program are :-
(i) Time response :
(a) Impulse vs. Time
(b) Ramp vs. Time
(c) Step vs. Time
(d) Triangular vs. Time
(e) Pulse vs. Time
(f) Sine vs. Time
(g) Cosine vs. Time
(ii) Frequency response ;
(a) Gain vs. Frequency
(b) Magnitude vs. Frequency
(c) Phase vs. Frequency
(d) Group Delay vs. Frequency

The main menu of the 'mltwdf' MatLab program is illustrated by Fig.(B3.1).

```
Lincar Phama mDF Anasyale Program:-
1) Load a fet of eximking data filen from eurgent direcrory.
    (no preaent riltere)
2) Change curcenc directary
```



```
I) Analyme filter iraquency domaln reaponsas.
4) Analyae flltar time damain responees.
O) Oult,
Enter option raquired (1-4) or quit (0) :-
```

Flgure B3.1 Main menu siructure of the 'mliwdf program.

This software package does not generate any lattice WDF designs so all solutions must be load into the program from data files created by the 'wef program. The first two items of the main menu of Fig.(B3.1) are only concemed with loading data file(s) and moving around the system directories. Fig.(B3.2) shows the menu structure for changing directories. available through option '2' of the 'ifnaar Phase WDF Analysis Programimenu.

```
Prament Dlrectory 1a :-
    /homefasqla/eng/es01a/filtera/Praq2
Preament Data rilea are :-
    IS:ALEO
    fblAlcd
Diceccory Menu :=
1) Mova dawn a dlreceoty.
2) Hove up a diractory.
ol guif.
Enter optbon zaquired (1-2) or quit(0) :-
```

Fiacura B3.2 Change directory menu structure

Changing directory unil the file or files of interest are located, the next slep is to load them into the program. Data files can either be loaded individually or a family of solutions that have the same filter order and frequency response. This last feature allows a direct comparison of large and finite wordlengit coefficient solutions to the same problem.

Selecting option 'l' from the 'Lineaz Phase WDF Analysis Program' displays the menu shown by Fig.(B3.3). This menu will list the data files available in that
directory and prompt for the number of data files to be load into the program. Fig.(B3.3) illustrates the sequence for loading one data file. If more than one data file is loaded, the user is given the option of adding a label to each response that will be displayed in all frequency response plots.

```
Prasent Data FLlas are :-
    CllAlco
    f1lA1tc
Enter the number of fliters ln this *at t* 1
For daca flie 1
Enter the name of the data {lle 1- \ilameg
```

Figure B3.3 Menu for loading data file.
Having loaded a data file into the program the remaining two options of the main menu will become active, allowing the time or frequency responses of that particular lattice WDF to be determined. Frequency domain responses can be calculated through option ' $\mathbf{3}$ ' from the main program menu. Fig.(B3.4), while the time domain responses are available through option ' 4 '

```
L.Inear Phase WDF Analyala Program:-
1) Load a let of mxlatling data Ellag from curgent dizectory,
```



```
2) Chang* current directory.
    fhomefeaglefong/an0l|/Filtern/Prog2
3) Analyea flicar frequency domaln remponsma.
4) Analysal Eliter tlme domain mesponaes.
0) Quit.
Entar option required |\-4| or quit(0) 1-3
```

Figure B3.4 Main menu structure with loaded data file.

Selecting option ' $\mathbf{3}$ ' from the main program menu will move the user to the menu structure shown by Fig.(B3.5). The latice responses available through this menu include the magnitude, gain, phase and group delay frequency responses, option ' 1 ', the gain, phase and group delay sensitivity responses, option ' 2 ' and the pole/zero positions, option ' 4 '. The frequency and sensitivity responses can be calculated over an arbitary frequency range sei by option 7 and for an arbitrary number point specified with option ' 8 ',

```
WDF Fraquancy Domain analyala manu :=
1) Calculate frequancy ramponaes for prament ranga.
    (prasent ringe 0.0000 to 0.5000)
2) Calculate genaicivity reaponama for prement range.
    (prement range 0.0000 to 0.$000)
3) Dleplay Fileer Eontilelenza,
4) DLeplay Polem/2eran of che fliter.
5) Curve fle co polan/Zarom of chel filter.
6) Di&play Pale/Zero values,
7) Hitse frequancy ramponse range
8) Alter number of frequency calculecion polnta,
            {present numbur 1:1024)
0) Oult.
Encer option required {|=8) or quit(0) :-
```


Flgure B3.5 Main frequency domain menu structure

Selecting option ' 3 ' from the menu show by Fig.(B3.5) will display the filter coefficients of the data file or data files loaded. Filter cocfficients for the design example considered in Appendix BI are displayed in Fig.(B3.6). The final stage of this option is to provide the user with the option to generate a hard copy of these filter coefficients which can be to a file or a direct print.

```
TEh LIWDF: beta=1, Lp=2, inf coefricient woralenqtha
Flle data stoged Ln %- fllalco
    Uppar Lattlca arm 2nd ordar coufflclunts are :-
        -0.78399228430200 0.84082020775900
    Upper Lattica arm 2at ordar coufflelunta are :-
        0.75190673071200
```



```
    -0.63575202395900 0.91642737987100
    -0.91018043534600 0.79666049197700
```

Prean any kay to continue
Hard sopy of these fliter coeftleiente (yea or no)
FIgure B3.6 Example of filter cocfficient display.
Selecting option '4' from the 'wdF Frequency Domain analysis menu'. Fig.(B3.5). will prompt the program to calculate and display the roots of the transfer function of the lattice WDF on a pole/zero plot. The program displays the rools of the transfer function in set, first the upper lattice branch poles, then the lower lattice branch poles and finally the zeros of the overall transfer function. Option ' 5 ' of the same menu. 'Curve fit to Poles/Zeros of the filter' displays the same
information but allow the user to select roots from the pole/zero plots to apply to a curve fitting function. A pole/zero plot of the elliptic design example considered is shown in Fig. (B3.7)(a). while a plotzero plot with a curve fitted to the upper and lower branch poles is shown in Fig.(B3.7)(b).

Figure B3.7 Pole/zero plois showing (a) all poles and zeros of a latice WDF structure and (b) a curve fitted to the poles of the structure.

The numerical values of the pole and zero locations can be displayed and printed though option ' 6 ' of the 'WDF Frequency Domain analysis menu'. The values of the roots for the example considered are shown in Fig.(B3.8).

```
7th LTWDF; beta=1, Lp=2. Inf coef&lebene wordlengthe
File data Etorad In s= f11A2t0
Uppar Laccice arm polas aret :-
    0.7500082921440% & f 0.47061645284173
    0.71190673071200
Laver Lattelce arm palea are ;-
    0.74952397071772 & 10.27196G617941017
    0.76目3323091602 & 10.58221441903935
Overall Lattica zeran are 1-
    -1.00000000000000
    -0.05948802908953 士 1 0.99822901901069
    0.57485931378172 t 1 0.11823226511047
    0.44242263311198 m J 0.0964066757725%
Presi m\y key co cantinue
```


Fleare B3. Pole/zero valuea for deaign example.

Selecting option 'I' from the 'WDF Fraquency Domain analyaia manu' will cause the program to calculate the magnitude, gain, ghase and group delay frequency
responses al the number of paints and over the frequency region specified. Having determined the responses. the program will display the menu of Fig.(83.9).

```
Frequency Reaponae Manu :-
1) Plor Gain {dBe| va, Ftmg.
2) Plot Gain va, Fred.
3) Plot Phame vi. Freq.
4) Plat Group Delay va. Fred.
On Qule.
Errer opeton requirad (1-4) or quie(0) t-
```

Flature \quad B. 3 Frequency Response Menu for frequency domain calculations.

Through options 'I' - '4' the user can display the corresponding frequency responses to the screen. Again the option to generate a hard copy of the plot is offered to the user. Typical frequency response plots for the example loaded are shown in Fig.(B3.10).

Flgure B3.10 Frequency responses showing (a) overall and (b) passband magnitude and (c) overall group delay responses for the example considered.

Selecting option '2' from the 'wDF Frequency Domain analysis menu' will cause the program $t o$ calculate the gain. phase and group delay coefficient sensitivity responses at the number of points and over the frequency region specificd. When the sensitivity responses have been derermined for each multiplier. the program will show the menu illustrated by Fig.(B3.11).

```
Senmleivicy Responsa Manu :=
1) Plot Gain Sanalzlvity/Freg.
2) Plot Phase Seneitivity/Freq.
3) Plor Group Delay San⿻itivity/Freq.
4) Chamae fllter parmmetara displayed, prament paramacer(a)i=
0) quit.
EnEer opelon required (1-4) or quit(0) :-
```

Figure B3.11 Coefficient Sensilivity Response Menu

Option '4' of the 'Sensttivity Response Menu' allows the user to selectively display single or sets of coefficient sensitivity responses. In this way the responses for the coefficients of the upper or lower arm of the lattice WDF could be displayed together. This is illustrated in Fig.(B3.12), which shows the gain and group delay sensitivities for the upper lattice arm coefficient, Fig.(B3.12)(a-b), while those of the lower arm coefficients are shown by Fig.(B3.12)(c-d).

Figure B3.12 Upper arm multiplier (a) gain and (b).group delay sensitivities and lower arm multiplier (c) gain and (d) group delay sensitivities

Returning to the main program menu. Fig.(B3.1), the user can determine the finite wordlength responses of the latice WDF through the time domain menu. Selecting option ' 4 ' moves the user to the finite wordlength menu, illustrated by Fig(B3.13).

```
WDF Finlte Wordlangrh Analysls Manu t*
1) Galculate frequency domaln flnite wordlength raiponses
        fusing impulee reaponse tachniqual
2) Calculare tlme domain einite vardlengrh ramponsma
        (IOr presenc inpur function)
3) Calculate roundorg nodse.
    ({or present input furction)
4) Alter Input function
        {1mpulse with hgc 1.000, a\tau 0.000 secs and freq 1.000 Hz).
```



```
    luaing prasant wordiangthe and rounding procedureml
6) Altef tiltar woralangth aettinga.
```



```
7) Mlter coaftlefent quantization pzocedura.
    cpresent technlque is roundingl
B) Altar overilow procudurit.
        fpresanc recholque le no preceutional
9) Niter number of calcularion polnta.
        fpzeament numbar 1^ 2048!
O1 Oult
Enter opelon cequized ll=9) or quic(0) :=
```

Figure B3.13 Menu structure for lime domain analysis.

In line with the frequency domain analysis menu. Fig.(B3.4), this menu offers the user control over the settings under which the responses of the lattice is
calculated. Each parameter is accessed through a menu detailing the options available. Option '4' of the menu shown by Fig-(B3.13) defines the input ime function to be applied to the lattice WDF if the time domain responses was calculated. The menu structure of the available input functions is illustrated in Fig-(B3.14)

```
Input Function Menu i=
1) Selact impulam function.
    thgt 1.00, at 0.000 wecm and freq 1.000 Hz)
2) Selact pulae function.
3) Select equare funceton.
4| Select ramp function.
5) Solect triangular tunetion,
6) Salect ifinfoon function.
1) soleet malece functlon.
a) Quit.
Encer opeion required {1-1) or quiv(0) 1+
```

Fleture $\mathbf{B} 3.14$ Input Function Menu structure

For waveforms available through the 'Input function Menu', the user is prompted for the peak amplitude, the time at which the peak amplitude is to occur and the number of the waveforms required for the input function.

The time domain calculations are performed using simulated finite wordlength effects. This means that the finite wordlength effects on particular elements of the lattice WDF can be considered in isolation to the rest of system. Control over the wordlengths of the various elements of the system is provided by the 'rilter wordiengeh Manu'. available through option ' 6 ' from the main finite wordlength menu of Fig.(B3.13). The 'rileer Wordiengen Menu' structure is shown by Fig.(B3.15).

```
Fllter wordlengch Manm |*
```

2) Sac inpur aqial langen.
fpresenc value la 64 bital
3) Sat internal eignal lemgth.
(preasint value in 64 bical
$3)$ Set coattledant aignal langth,
fpraadint value la 64 blta)
4) Set output algnal langeh.
cpresent value in 64 bitel
a) QuIt.
Enter option raquired $(1-4)$ or quit (0) :-

Figure B3.15 Filter Wordiength Menu structure

Control over the type of quantization applied within the time domain calculations is provided through the menu illustrated by Fig.(B3.16), available with option ' 7 ' from the main finite wordlengih menu.

```
Filter Quantifation Method Monu :-
```

1) Mounding. (present option melaceed)
2) Magnltude TFuncetion,
3) Value Truncation.
of Ouit.
Enteer option requirad $11-31$ or quite(0) $1=$
Figure $\mathbf{8 . 1 6}$ Filter Quantization Menu struciure.

Finally the types of overflow procedures available to the time domain caiculations is detemined by the 'Filter overflov procedure Manu'. Fig.(B3.17). This is option ' 8 ' within the main finite wordlengih menu structure.

```
Fifter Overilav Prociduram Menv :-
```

1) No overflow precautionm. (preasent option salectad)
2) sacuration aEtehmatic.
3) Zeroing arlehatatic.
4) Twon complamenc arichmeric.
S) Alter ovarilow bound limit value.

$$
\text { fpreament valwe 1a } 1.0000 \text { נ }
$$

O1 Quic.
Entar optlon required $\{1-5\}$ or guit (0) 1-
Fisure D3.17 Pilter Overflaw Procedure Menu alruciure.

With the various parameters defined, the time domain response can be calculated. These responses invalved the time response for a given inpul function and the frequency responses determined through a FFT on the impulse response. If the frequency response option is selected then the program will calculate the values and display the menu shown by Fig.(B3.18).

```
Finite Woralength Frequency Reaponae Menu ;-
1)Plat Galn (dBal vi. Freq.
2) Plot Galn v:. Freq.
3) Plor PMalea Vi, Fred.
4) Plot Group Dalay va. Freq.
S) AlE&E frequency rempona| zange.
    (prement range de 0.0000 to 0.5000 Hzl
0) 0ule.
Entar optlon requlred (1-5| or qu\t{0} 5*
```

Pigure B3.18 Finite Wordength Frequency Response Menu.

Using this option the frequency responses calculated from analytical equation in the frequency domain can be directly compared to those from the time model of the latice WDF, if the filter wordlengths are all set to 'infinite' precision. Frequency responses determined through the time domain and a FFT for the design example considered are shown in Fig.(B3.19). These responses show a high correlation to those generated in the frequency domain and shown by Fig.(B3.10).

(1)

(e)

Figure B3.19 Frequency responses calculated through the time domain showing (a) overall and (b) passband magnitude and (c) overall group delay responses for the example considered.

Finally option ' 2 ' of the 'WDF Finite Wordlength Analysis Menu' calculates the lime domain response for an arbirary input signal. The input signal, selected through the menu shown by Fig.(B3.14), is applied to the model of the lattice using the current quantization. overflow and filter wordlength. When the calculations are complete the program enters the menu shown by Fig.(B3.20)

```
Einita Wordiangth Time Reaponee Menu :-
1) Plor Input Slonal ys. Tlmem.
2) Plot Output gignal va. Itme.
3) Altar Edm@ respanae range,
    (prement range is 0.0 to 2048.0 sec)
O) Quit.
Enter option requirad (1-3| or qu\ti0| s+
```

Figure B3.20 Time Response Menu siructure.

Selecting options ' 2 ' and '3', the output waveform can be displayed over any period. The output of the latice WDF using the coefficients from the design example considered to the unit impulse, are shown in Fig.(B3.21).

Figure B3.21 Unit impulse response of lattice WDF example showing (a) overall waveform and (b) initial part of response.

Appendix C

Lattice WDF APS Models
 (Frequency Domain)

This Appendix details the design equations for the various APS's required in the construction and analysis of the highpass and single and dual bandpass and bandsiop lattice WDFs. The design equations are given in terms of the parameters required by the overall lattice WDF equations outlined in Chapter 4. The APS's considered are :-
(C1) $\ldots \ldots \ldots \ldots \ldots 1^{\text {st }}$ and $2^{\text {nd }}$ order highpass APS equations.
(C2) $\ldots \ldots \ldots \ldots \ldots 2^{\text {nd }}$ and $4^{\text {th }}$ order single bandpass APS equations.
(C3) $\ldots \ldots \ldots \ldots \ldots 2^{\text {nd }}$ and $4^{\text {th }}$ order single bandstop APS equations.
(C4) $\ldots \ldots \ldots \ldots .4^{\text {th }}$ and $8^{\text {th }}$ order dual bandpass APS equations.
(C5) $\ldots \ldots \ldots \ldots 4^{\text {th }}$ and $8^{\text {th }}$ order dual bandstop APS equations.

C1 Highpass APS Models

C1.1 1 st order Highpass APS

[^2]$$
\mathbf{z t}=-x_{1}-z^{-1}
$$
$$
z_{2}=1+x_{1} z^{-1}
$$

Overall transfer function :-

$$
H(z)=\frac{B_{i}}{A_{i}}=\frac{z t_{1}}{z t_{2}}
$$

Group delay parameter :-

$$
\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}=j z^{-1} \frac{\left(1-k 1^{2}\right)}{z 11_{1} 2}
$$

Gain/Phase coefficient sensitivity parameters :-

$$
\frac{1}{H(x)} \frac{d H(z)}{d x_{1}}=\frac{\left(x^{-2}-1\right)}{z t_{1} 2 t 2}
$$

Group delay coefficient sensitivity parameters :-

$$
\frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{1}}=-j z^{2} \cdot \frac{\left(1+z^{-2}\right)\left(1+81^{2}\right)}{\left(z 1_{1} z_{2}\right)^{2}}
$$

C1.2 2nd order Highpass APS

Limits :
 $-1<x_{1}<1$
 $-1<x_{2}<0$

$$
\begin{aligned}
& z_{1}=-x_{1}+\left(1-x_{1}\right) x_{2} z^{-1}+z^{-2} \\
& z_{2}=1+\left(1-x_{1}\right) x_{2} z^{-1}-x_{1} z^{-2}
\end{aligned}
$$

Overall transfer function :-

$$
H(z)=\frac{B_{i}}{A_{1}}=\frac{z t_{1}}{z t_{2}}
$$

Group delay parameter :-

$$
\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}=j z^{-1} \frac{\left(x_{1}^{2}-1\right)\left(x_{2}+2 z^{-1}+x z^{-2}\right)}{z 11212}
$$

Gain/Phase coefficient sensitivity parameters :-

$$
\begin{gathered}
\frac{1}{H(z)} \cdot \frac{d H(z)}{d x_{1}}=\frac{\left(z^{-2} \cdot 1\right)\left(1+2 \times 2 z^{-1}+z^{-2}\right)}{2 t_{1} z t_{2}} \\
\frac{1}{H(z)} \cdot \frac{d H(z)}{d x_{2}}=z^{-1} \frac{\left(z^{-2} \cdot 1\right)\left(x_{1}^{2}-1\right)}{z t_{1} z t_{2}}
\end{gathered}
$$

Group delay coefficient sensitivity parameters :-

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(x)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{1}}=-j z^{-1}\left(x 2+2 z^{-1}+x z^{-2}\right)\left(z 112(2)^{-2}\right. \\
& \left(2 z^{-2}\left(x_{2}^{2}\left(1-x_{1}\right)^{2}-2 x_{1}\right)+2 x_{2} z^{-1}\left(1+z^{-2}\right)\left(1-x_{1}\right)^{2}+\left(1+x_{1}^{2}\right)\left(1+z^{-4}\right)\right) \\
& \frac{d\left[\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d \times 2}=-j z^{-1}\left(\times 2^{2}-1\right)\left(z t_{1} z t_{2}\right)^{-2} \\
& \left(z^{-2}\left(1+z^{-2}\right)\left(x_{3}{ }^{2}\left(1-x_{2}\right)^{2}+x_{2}\left(x_{2}-3\right)+1\right)+x_{2}\left(1+z^{-6}\right)\right)
\end{aligned}
$$

C2 Single Bandpass APS Models

C2.1 2nd order Single Bandpass APS

Limits $3 \cdot$

$$
-1<x_{1}<1
$$

$$
-1<a<1
$$

$$
\begin{aligned}
& \mathbf{z t}_{1}=-\left(x_{1}-a\left(1+x_{1}\right) z^{-1}+z^{-2}\right) \\
& \mathbf{z t}_{2}=1-\alpha\left(1+x_{1}\right) z^{-1}+x_{1} z^{-2}
\end{aligned}
$$

Overall transfer function :-

$$
H(z)=\frac{B_{i}}{A_{i}}=\frac{z t_{1}}{z t_{2}}
$$

Group delay parameter :-

$$
\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}=j z^{-1} \frac{\left(x_{1}^{2}-1\right)\left(\alpha-2 z^{-1}+\alpha z^{-2}\right)}{z t_{1} z t_{2}}
$$

Gain/Phase coefficient sensitivity parameters s-

$$
\begin{gathered}
\frac{1}{H(z)} \cdot \frac{d H(z)}{d x_{1}}=\frac{\left(z^{-2} \cdot 1\right)\left(1-2 \alpha z^{-1}+z^{-2}\right)}{z t_{1} z t_{2}} \\
\frac{1}{H(z)} \cdot \frac{d H(z)}{d \alpha}=z^{-1} \frac{\left(z^{-2}-1\right)\left(x_{1}^{2}-1\right)}{z t_{1} z t_{2}}
\end{gathered}
$$

Group delay coefficient sensitivity parameters :-

$$
\begin{array}{r}
\begin{array}{r}
\frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{1}}=-j z^{-1}\left(\left(1+z^{-4}\right)\left(1+x_{1}^{2}\right)-2 \alpha z^{-1}\left(1+z^{-2}\right)\left(1+x_{1}\right)^{2}\right. \\
\\
\left.+2 z^{-2}\left(2 x_{1}\left(1+\alpha^{2}\right)+\alpha^{2}\left(1+x_{1}^{2}\right)\right)\right) \\
\\
\left(\alpha-2 z^{-1}+\alpha z^{-2}\right)\left(z t_{1} z_{2}\right)^{-2}
\end{array} \\
\begin{array}{r}
\frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d \alpha}=
\end{array} \quad-j z^{-1}\left(x_{1}^{2}-1\right)\left(z t_{1} z_{2}\right)^{-2}\left(x_{1}\left(1+z^{-6}\right)+4 \alpha z^{-3}\left(1+x_{1}\right)^{2}\right. \\
\left.-z^{-2}\left(1+z^{-2}\right)\left(\left(1+x_{1}\right)\left(1+\alpha^{2}\right)+x_{1}\left(3+2 \alpha^{2}\right)\right)\right)
\end{array}
$$

C2.2 4th order Single Bandpass APS

> Limits :$$
\begin{array}{l}-1<x_{1}<0 \\ -1\end{array}<x_{2}<1
$$ $-1<\alpha<1$

$$
\begin{aligned}
& n_{1}=-\alpha\left(2 x_{1}+x_{2}\left(x_{1}-1\right)\right), n_{2}=\left(x_{1}-1\right)\left(x_{2}+a^{2}\left(1+x_{2}\right)\right), n_{3}=\alpha\left(2-x_{2}\left(x_{1}-1\right)\right) \\
& z_{1}=x_{1}+n_{1} z^{-1}+n_{2} z^{-2}+n_{3} z^{-3}-z^{-4}, z_{2}=-1+n_{3} z^{-1}+n_{2} z^{-2}+n_{1} z^{-3}+x_{1} z^{-4}
\end{aligned}
$$

Overall transfer function :-

$$
H(z)=\frac{B_{i}}{A_{i}}=\frac{z t_{1}}{z t_{2}}
$$

Group delay parameter :-

$$
\begin{aligned}
& \frac{1}{H(x)} \cdot \frac{d H(z)}{d \omega}=-j z^{-1}\left(x 1^{2}-1\right) \\
&\left(\alpha-2 z^{-1}+\alpha z^{-2}\right) \\
&\left(1+z^{-4}\right) \times 2-2 \alpha z^{-1}\left(1+z^{-2}\right)\left(1+x_{2}\right) \\
&\left.+2 z^{-2}\left(1+\alpha^{2}(1+\times 2)\right)\right)\left(z 11 z(2)^{-1}\right.
\end{aligned}
$$

Gain/Phase coefficient sensitivity parameters :-

$$
\begin{aligned}
& \frac{1}{H(z)} \cdot \frac{d H(z)}{d x_{1}}=\left(z^{-2}-1\right)\left(1-2 \alpha z^{-1}+z^{-2}\right) \\
&\left(\left(1+z^{-4}\right)-2 \alpha z^{-1}\left(1+z^{-2}\right)\left(1+x_{2}\right)\right. \\
&\left.+2 z^{-2}\left(x_{2}+\alpha^{2}\left(1+x_{2}\right)\right)\right)\left(z t_{1} z t_{2}\right)^{-1}
\end{aligned} \quad \begin{aligned}
& \frac{1}{H(z)} \cdot \frac{d H(z)}{d x_{2}=} \quad z^{-1}\left(z^{-2}-1\right)\left(1-2 \alpha z^{-1}+z^{-2}\right) \\
&\left(z^{-1}-a\right)\left(1-a z^{-1}\right)\left(x_{1}^{2} \cdot 1\right)\left(z 1_{1} z t_{2}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \left(z^{(1+2 x}\right)_{2}(1-1 x)_{g}+ \\
& \left(z^{(1-1 x)(2 x t+6) \tau y+((1 x-E) I y-1) t)}+2+\right. \\
& \left.\left(z^{(1-1 x}\right)(Z x+E) Z x+(1 x-E) 1 x-I\right)_{z}^{D g}+ \\
& z^{(1-1 x)}(x \times 2)_{9.2}+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.z^{(1-I x}\right)(Z x z+\varepsilon) Z x+((1 x-\varepsilon) t x-I) z\right)(z-z+I)_{y}-20 z \\
& \left(\left(z^{(1-1 x}\right)\left(z x_{L}+21\right) 2 x+\left(1 x_{L}-9\right) 1 x-L\right)_{p^{0}+} \\
& (z(1-1 x)(2 x z+\varepsilon) Z x+((1 x-\varepsilon) 1 x-1) z)_{z} \delta+ \\
& \left.z^{(1-1 x)} z^{2 x}+(1 x-\varepsilon) 1 x-1\right)\left(y^{2}+1\right)_{1}-2+ \\
& \left.\left(\left(z^{(1-1 x}\right)(1+2 x) z y+z^{(t x}+1\right)\right) z^{n z+}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times(01-2+1)_{1-209-14(21-z+1))} \\
& z \cdot\left(Z_{12} 1, z\right)(z-20+1.2 z-0)\left(1-z^{I x}\right)_{1.2}=\frac{z \times p}{\left(\frac{m p}{(z) H p} \cdot \frac{(z) H}{1}\right) p} \\
& \left(z^{(1+2 x)} z^{(1}-I x\right)+0+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(z^{(1-1 x}\right) z x+\left(q^{I x}+1\right) z\right)(9 . z+1)_{1-2 D z} \cdot\left(z^{1 x+1)(g-z+1))}\right.
\end{aligned}
$$

$$
\begin{aligned}
& z^{-}(212 \mid 1 z)(z \cdot 20+1-2 z-\infty) 1-z r=\frac{1 x p}{\left(\frac{\infty p}{(z) H p} \cdot \frac{(z) H}{I}\right) p}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \cdot(z 12112)\left(\left({ }^{2} x+1\right)_{z} 0+1\right)_{z} \cdot 2 z+ \\
& (2 x+1)\left(z^{2}+1\right)_{1-202-2 \times(t-z+1))} \\
& \left(1-z^{1 x}\right)\left(1-z^{-z}\right)_{1 \cdot z}=\frac{n p}{(z) H p} \cdot \frac{(z) H}{I}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d a}=j z^{-1}\left(x_{1}^{2}-1\right)\left(2 t_{1} z t_{2}\right)^{-2} \\
& \left(\left(1+z^{-14}\right) x_{1} x_{2}-4 a z^{-1}\left(1+z^{-12}\right) z_{1}\left(1+x_{2}\right)\right. \\
& +z^{-2}\left(1+z^{-10}\right)\left(3 x_{1}\left(2-x_{2}\right)+x^{2}\left(x_{1}-1\right)^{2}\right. \\
& \left.+\alpha^{2}\left(14 x_{1} \cdot x_{2}\left(1-x_{1}\left(12-x_{1}\right)\right)+x_{2}^{2}\left(1+x_{2}\right)\left(x_{1}-1\right)^{2}\right)\right) \\
& 4 \mathrm{ma}^{-3}\left(1+z^{-8}\right)\left(4 x_{1}+x^{2}\left(2+x_{2}\right)\left(x_{1}-1\right)^{2}\right. \\
& \left.+a^{2}\left(1+x_{2}\right)\left(4 x_{1}+\kappa_{2}^{2}\left(x_{1}-1\right)^{2}\right)\right) \\
& +z^{-4}\left(1+z^{-6}\right)\left(-10 x_{1}+x_{2}\left(1+x_{1}\left(9+x_{1}\right)\right)+x_{2}^{2}\left(1+3 x_{2}\right)\left(x_{1}-1\right)^{2}\right. \\
& +\alpha^{2}\left(2\left(1+x_{1}\left(1+x_{1}\right)\right)+3 x_{2}\left(5-x_{1}\left(4-5 x_{1}\right)\right)+x_{2}^{2}\left(27+17 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& \left.+a^{4}\left(2\left(1+x_{1}\right)^{2}+x_{2}\left(7-x_{1}\left(6-7 x_{1}\right)\right)+5 x_{2}^{2}\left(2+x_{2}\right)\left(x_{1}-1\right)^{2}\right)\right) \\
& 4 \alpha_{z^{-5}}\left(1+x^{-4}\right)\left(1-x_{1}\left(11-x_{1}\right)+x_{2}\left(5-x_{1}\left(3-5 x_{1}\right)\right)+3 x_{2}^{2}\left(1+x_{2}\right)\left(x_{1}-1\right)^{2}\right. \\
& +2 a^{2}\left(2\left(x_{1}-1\right)^{2}+7 x_{2}\left(x_{1}-1\right)^{2}+x_{2}\left(8+3 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& \left.+a^{4}\left(x_{1}-1\right)^{2}\left(x_{2}+1\right)^{3}\right) \\
& +2 a z^{-6}\left(1+z^{-2}\right)\left(2\left(1+x_{1}{ }^{2}\right)+x_{2}\left(5-x_{1}\left(19-5 x_{1}\right)\right)+x_{2}^{2}\left(4-x_{2}\right)\left(x_{1}-1\right)^{2}\right. \\
& +2 \alpha^{2}\left(2\left(7-x_{1}\left(19-7 x_{1}\right)\right)+2 x_{2}\left(19-x_{1}\left(45-19 x_{1}\right)\right)+x_{2}^{2}\left(31+6 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& +a^{4}\left(4\left(7-x_{1}\left(16-7 x_{1}\right)\right)+x_{2}\left(83-x_{1}\left(174-83 x_{1}\right)\right)+5 x_{2}^{2}\left(16+5 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& \left.+2 \alpha^{6}\left(x_{1}-1\right)^{2}\left(x_{2}+1\right)^{3}\right) \\
& -8 \alpha z^{-7}\left(2\left(1+x_{1}{ }^{2}\right)+4 x_{2}\left(1-x_{1}\left(4-x_{1}\right)\right)+x_{2}^{2}\left(4-x_{2}\right)\left(x_{1}-1\right)^{2}\right. \\
& +\alpha^{2}\left(2\left(3-x_{1}\left(8-3 x_{1}\right)\right)+4 x_{2}\left(4-x_{1}\left(9-4 x_{1}\right)\right)+x_{2}^{2}\left(13+3 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& \left.\left.+2 \alpha^{4}\left(x_{1}-1\right)^{2}\left(x_{2}+1\right)^{3}\right) \quad\right)
\end{aligned}
$$

C 3 Single Bandstop APS Models

C3.1 2 nd order Single Randstop APS

Limits :-

$$
\begin{aligned}
& -1<x_{1}<1 \\
& -1<\alpha<1
\end{aligned}
$$

$$
z_{1}=x_{1}+\alpha\left(1-x_{1}\right) z^{-1}-z^{-2}, z_{2}=-1+\alpha\left(1-x_{1}\right) z^{-1}+x_{1} z^{-2}
$$

Overall transfer function :-

$$
H(z)=\frac{B_{i}}{A_{i}}=\frac{z I_{1}}{z t_{2}}
$$

Group delay parameter :-

$$
\frac{1}{H(z)}-\frac{d H(z)}{d \omega}=-j z^{-1} \frac{\left(x_{1}^{2}-1\right)\left(\alpha-2 z^{-1}+a z^{-2}\right)}{21_{1} z t_{2}}
$$

Gain/Phase coefficient sensilivity parameters :-

$$
\begin{aligned}
& \frac{1}{H(z)} \cdot \frac{d H(z)}{d x_{1}}=\frac{\left(z^{-2}-1\right)\left(1-2 \alpha z^{-1}+z^{-2}\right)}{z 11212} \\
& \frac{1}{H(z)}+\frac{d H(z)}{d a}=-z^{-1} \frac{\left(z^{-2} \cdot 1\right)\left(x_{1}^{2} \cdot 1\right)}{z 1!z 1_{2}}
\end{aligned}
$$

Group delay coefficient sensitivity parameters :-

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{1}}=j z^{-1}\left(\left(1+z^{-4}\right)(1\right.\left.+x_{1}^{2}\right) \cdot 2 \alpha z^{-1}\left(1+z^{-2}\right)\left(1-x_{1}\right)^{2} \\
&\left.+2 z^{-2}\left(\alpha^{2}\left(1-x_{1}\right)^{2}-2 x_{1}\right)\right) \\
&\left(\alpha-2 z^{-1}+\alpha z^{-2}\right)\left(z_{1} z_{12}\right)^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d \alpha}=j z^{-1}\left(x_{1}^{2}-1\right)\left(z t_{1} z_{2}\right)^{-2}\left(x_{1}\left(1+z^{-6}\right)-4 \alpha z^{-3}\left(1-x_{1}\right)^{2}\right. \\
&\left.+z^{-2}\left(1+z^{-2}\right)\left(1+x_{1}\left(x_{1}-3\right)+a^{2}\left(1-x_{1}\right)^{2}\right)\right)
\end{aligned}
$$

C3.2 $4^{\text {th }}$ order Single Bandstop APS

$$
\begin{aligned}
& n_{1}=\alpha\left(x_{2}\left(x_{1}-1\right)-2 x_{1}\right), n_{2}=-\left(x_{1}-1\right)\left(x_{2}+\alpha^{2}\left(x_{2}-1\right)\right), n_{3}=\alpha\left(2+x_{2}\left(x_{1}-1\right)\right) \\
& z_{1}=x_{1}+n_{1} z^{-1}+n_{2} z^{-2}+n_{3} z^{-3}-z^{-4}, z_{2}=-1+n_{3} z^{-1}+n_{2} z^{-2}+n_{1} z^{-3}+x_{1} z^{-4}
\end{aligned}
$$

Overall Iransfer function :-

$$
H(z)=\frac{B_{1}}{A_{i}}=\frac{2 t_{1}}{2 t_{2}}
$$

Group delay parameter --

$$
\begin{aligned}
\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}=\quad j z^{-1}(& \left(x_{1}^{2}-1\right)\left(\alpha-2 z^{-1}+\alpha z^{-2}\right) \\
& \left(\left(1+z^{-4}\right) x_{2}+2 \alpha z^{-1}\left(1+z^{-2}\right)\left(1-x_{2}\right)\right. \\
& \left.-2 z^{-2}\left(1-\alpha^{2}\left(x_{2}-1\right)\right)\right)\left(z t_{1} z t_{2}\right)^{-1}
\end{aligned}
$$

Gain/Phase cocfficient sensitivity parameters :-

$$
\begin{aligned}
\frac{1}{H(z)} \cdot \frac{d H(z)}{d x_{1}}= & \left(z^{-2}-1\right)\left(1-2 \alpha z^{-1}+z^{-2}\right) \\
& \left(\left(1+z^{-4}\right)+2 \alpha z^{-1}\left(1+z^{-2}\right)\right. \\
& \left.\cdot 2 z^{-2}\left(x_{2}+\alpha^{2}\left(x_{2}-1\right)\right)\right)\left(z 1_{1} z I_{2}\right)^{-1} \\
\frac{1}{H(z)}+\frac{d H(z)}{d x_{2}=} \quad & z^{-1}\left(z^{-2}-1\right)\left(1-2 \alpha z^{-1}+z^{-2}\right) \\
& \left(z^{-1}-a\right)\left(\alpha z^{-1}-1\right)\left(x_{1}^{2}-1\right)\left(z 1_{1} z_{2}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\mathrm{H}(\mathrm{z})} \cdot \frac{\mathrm{dH}(\mathrm{z})}{\mathrm{d} \alpha}=\mathrm{z}^{-1}\left(\mathrm{z}^{-2}-1\right)\left(\mathrm{x}_{1}{ }^{2}-1\right) \\
&\left(\left(1+\mathrm{z}^{-4}\right) \mathrm{x}_{2}-2 \alpha \mathrm{z}^{-1}\left(1+\mathrm{z}^{-2}\right)\left(\mathrm{x}_{2}-1\right)\right. \\
&\left.\quad-2 \mathrm{z}^{-2}\left(1-\alpha^{2}\left(\mathrm{x}_{2}-1\right)\right)\right)\left(\mathrm{zt}_{1} \mathrm{zt}_{2}\right)^{-1}
\end{aligned}
$$

Group delay coefficient sensitivity parameters :-

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{1}}=-j z^{-1}\left(\alpha-2 z^{-1}+\alpha z^{-2}\right)\left(z_{1} z_{1}\right)^{-2} \\
& \left(\left(1+z^{-4}\right) x_{2}-2 \alpha z^{-1}\left(1+z^{-2}\right)\left(x_{2}-1\right)-2 z^{-2}\left(1-\alpha^{2}\left(x_{2}-1\right)\right)\right) \\
& \left(\left(1+z^{-8}\right)\left(1+x_{1}{ }^{2}\right)\right. \\
& \quad-2 \alpha z^{-1}\left(1+z^{-6}\right)\left(2\left(1+x_{1}^{2}\right)-x_{2}\left(x_{1}-1\right)^{2}\right) \\
& \quad-2 z^{-2}\left(1+z^{-4}\right)\left(x_{2}\left(x_{1}-1\right)^{2}-\alpha^{2}\left(3-x_{1}\left(2-3 x_{1}\right)-x_{2}\left(3-x_{2}\right)\left(x_{1}-1\right)^{2}\right)\right) \\
& \quad+2 \alpha z^{-3}\left(1+z^{-2}\right)\left(4 x_{1}+x_{2}\left(3-2 x_{2}\right)\left(x_{1}-1\right)^{2}-2 \alpha^{2}\left(x_{1}-1\right)^{2}\left(x_{2}-1\right)^{2}\right) \\
& \quad+2 z^{-4}\left(x_{2}^{2}\left(x_{1}-1\right)^{2}-2 x_{1}-2 \alpha^{2}\left(x_{2}\left(3-2 x_{2}\right)\left(x_{1}-1\right)^{2}+4 x_{1}\right)\right. \\
& \left.\left.\quad+a^{4}\left(x_{1}-1\right)^{2}\left(x_{2}-1\right)^{2}\right)\right)
\end{aligned}
$$

$$
\frac{d\left(\frac{1}{H(x)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{2}}=j z^{-1}\left(x_{1}^{2}-1\right)\left(\alpha-2 z^{-1}+\alpha z^{-2}\right)\left(z t_{1} z t_{2}\right)^{-2}
$$

$$
\left(\left(1+z^{-12}\right) x_{1}-6 a z^{-1}\left(1+x^{-10}\right) x_{1}\right.
$$

$$
+a^{2} z^{-2}\left(1+z^{-8}\right)\left(1+x_{1}\left(12+x_{1}\right)+x_{2}^{2}\left(x_{1}-1\right)^{2}\right)
$$

$$
\cdot 2 \alpha_{2} \cdot 3\left(1+z^{-6}\right)\left(1-x_{1}\left(3-x_{1}\right)+x_{2}^{2}\left(x_{1}-1\right)^{2}\right.
$$

$$
\left.+2 \alpha^{2}\left(\left(1+x_{1}\right)^{2}+x_{2}\left(x_{2}-1\right)\left(x_{1}-1\right)^{2}\right)\right)
$$

$$
+2^{-4}\left(1+z^{-4}\right)\left(1-x_{1}\left(3-x_{1}\right)+x_{2}^{2}\left(x_{1}-1\right)^{2}\right.
$$

$$
+4 \alpha^{2}\left(2\left(1-x_{1}\left(3-x_{1}\right)\right)-x_{2}\left(3-2 x_{2}\right)\left(x_{1}-1\right)^{2}\right)
$$

$$
\left.+\alpha^{4}\left(7 \cdot x_{1}\left(6-7 x_{1}\right)-x_{2}\left(12-7 x_{2}\right)\left(x_{1}-1\right)^{2}\right)\right)
$$

$$
\cdot 2 \alpha z^{-5}\left(1+z^{-2}\right)\left(2\left(1-x_{1}\left(3-x_{1}\right)\right)-x_{2}\left(3-2 x_{2}\right)\left(x_{1}-1\right)^{2}\right.
$$

$$
+2 \alpha^{2}\left(4\left(1-x_{1}\left(3-x_{1}\right)\right)-x_{2}\left(9-4 x_{2}\right)\left(x_{1}-1\right)^{2}\right)
$$

$$
\left.+3 \alpha^{4}\left(x_{1}-1\right)^{2}\left(x_{2}-1\right)^{2}\right)
$$

$$
+2 z^{-6}\left(-2 x_{2}\left(x_{1}-1\right)^{2}\right.
$$

$$
+6 \alpha^{2}\left(1-x_{1}\left(3-x_{1}\right) \cdot x_{2}\left(3 \cdot x_{2}\right)\left(x_{1}-1\right)^{2}\right)
$$

$$
+2 \alpha^{4}\left(4\left(1-x_{1}\left(3-x_{1}\right)\right)-x_{2}\left(9-4 x_{2}\right)\left(x_{1}-1\right)^{2}\right)
$$

$$
\left.\left.+a^{6}\left(x_{1}-1\right)^{2}\left(x_{2}-1\right)^{2}\right)\right)
$$

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d \alpha}=j z^{-1}\left(x_{1}^{2}-1\right)\left(z t 1 z t_{2}\right)^{-2} \\
& \left(x_{1}+z^{-14}\right) x_{1} x_{2}-4 \mathrm{az}^{-1}\left(1+z^{-12}\right) x_{1}\left(x_{2}-1\right) \\
& -z^{-2}\left(1+z^{-10}\right)\left(3 x_{1}\left(2+x_{2}\right)+x_{2}^{2}\left(x_{1}-1\right)^{2}\right. \\
& \left.+\alpha^{2}\left(14 x_{1}+x_{2}\left(1-x_{1}\left(12-x_{1}\right)\right)-x_{2}^{2}\left(x_{2}-1\right)\left(x_{1}-1\right)^{2}\right)\right) \\
& +4 a z^{-3}\left(1+z^{-8}\right)\left(4 x_{1}+\kappa_{2}^{2}\left(2 \cdot x_{2}\right)\left(x_{1} \cdot 1\right)^{2}\right. \\
& \left.-a^{2}\left(x_{2}-1\right)\left(4 x_{1}+x_{2}^{2}\left(x_{1}-1\right)^{2}\right)\right) \\
& +z^{-4}\left(1+z^{-6}\right)\left(10 x_{1}+x_{2}\left(1+x_{1}\left(9+x_{1}\right)\right)-x_{2}^{2}\left(1-3 x_{2}\right)\left(x_{1}-1\right)^{2}\right. \\
& -\alpha^{2}\left(2\left(1+x_{1}\left(1+x_{1}\right)\right)-3 x_{2}\left(5-x_{1}\left(4-5 x_{1}\right)\right)+x_{2}^{2}\left(27-17 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& \left.+\alpha^{4}\left(x_{2}-1\right)\left(2\left(1+x_{1}\right)^{2}+5 x_{2}\left(x_{2}-1\right)\left(x_{1}-1\right)^{2}\right)\right) \\
& -4 a z^{-5}\left(1+z^{-4}\right)\left(1-x_{1}\left(11-x_{1}\right) \cdot x_{2}\left(5-x_{1}\left(3-5 x_{1}\right)\right) \cdot 3 x_{2}^{2}\left(x_{2}-1\right)\left(x_{1}-1\right)^{2}\right. \\
& \left.+2 \alpha^{2}\left(x_{2}-1\right)^{2}\left(2-3 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& \left.a^{4}\left(x_{1}-1\right)^{2}\left(x_{2}-1\right)^{3}\right) \\
& +z^{-6}\left(1+z^{-2}\right)\left(-2\left(1+x_{1}^{2}\right)+x_{2}\left(5-x_{1}\left(19-5 x_{1}\right)\right)-x_{2}{ }^{2}\left(4+x_{2}\right)\left(x_{1}-1\right)^{2}\right. \\
& +2 \alpha^{2}\left(-2\left(7-x_{1}\left(19-7 x_{1}\right)\right)+2 x_{2}\left(19-x_{1}\left(45-19 x_{1}\right)\right)-x_{2}^{2}\left(31-6 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& +a^{4}\left(x_{2}-1\right)\left(4\left(7-x_{1}\left(16-7 x_{1}\right)\right)-5 x_{2}\left(11-5 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& \left.+2 \alpha^{6}\left(x_{1}-1\right)^{2}\left(x_{2}-1\right)^{3}\right) \\
& +8 a_{2}^{-7}\left(2\left(1+x_{1}^{2}\right)-4 x_{2}\left(1-x_{1}\left(4-x_{1}\right)\right)+x_{2}^{2}\left(4-x_{2}\right)\left(x_{1}-1\right)^{2}\right. \\
& -\alpha^{2}\left(x_{2}-1\right)\left(2\left(3-x_{1}\left(8-3 x_{1}\right)\right)-x_{2}\left(10-3 x_{2}\right)\left(x_{1}-1\right)^{2}\right) \\
& \text { - } \left.\left.2 \alpha^{4}\left(x_{1}-1\right)^{2}\left(x_{2}-1\right)^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1-\left(z_{1 z} 1_{12}\right)(1-z x)(1-1.2 d)(8-1 . z) \\
& (z \cdot z+i \cdot x d z \cdot 1)(1-z \cdot z) ; z=\frac{\pi p}{(z) H P} \cdot \frac{(z) H}{1} \\
& { }_{1}\left(z_{1 z} 11 z\right)\left(\left((0+1)_{z} d+0\right)_{z} \cdot z z+\right. \\
& \left.(0+1)(z-z+1)_{1}-2 d z-(+2+1)\right) \\
& (z \cdot z+t \cdot z d z \cdot I)(1 \cdot z-z)=\frac{1 \times p}{(z) H \bar{p}} \cdot \frac{(z) H}{I}
\end{aligned}
$$

$$
\begin{aligned}
& 1\left(\tau_{1 z} l_{12}\right)\left(((0)+1)_{2} d+1\right)_{z} \cdot z \tau+ \\
& (0+1)(z \cdot z+1),-2 d z-n(* 2+1)) \\
& \left(z \cdot z d+t^{-2 z} \cdot d\right)\left(1 \cdot z^{I x}\right)_{1-2 I}=\frac{m p}{(z) H D} \cdot \frac{(z) H}{I} \\
& \text {-: sompurd kejop dnoso } \\
& \frac{z_{1 z}}{T_{12}}=\frac{!y}{!g}=(x) H \\
& \text { * Uollounj dejsuen ilipieno }
\end{aligned}
$$

$$
\begin{aligned}
& ((1 x+1) 0+2) g=\varepsilon u \cdot\left((0+1)_{2} g+0\right)(1 x+i)-=2 u \cdot((x+\tau)(x+D) g=1 u \\
& \text { - silu! } \\
& \text { SdV ssedpueg [eng dapso yit I'0. } \\
& \text { sןopow SdV ssedpueg IEnd to }
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{H(z)} \cdot \frac{d H(z)}{d \beta}=-z^{-1}\left(z^{-2}-1\right) & \left(x_{1}{ }^{2}-1\right) \\
& \left(\left(1+z^{-4}\right) \alpha-2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)\right. \\
& \left.+2 z^{-2}\left(1+\beta^{2}(1+\alpha)\right)\right)\left(\mathrm{zt}_{1} z_{2}\right)^{-1}
\end{aligned}
$$

Group delay coefficient sensitivity parameters :-

$$
\begin{aligned}
& \left.\frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{1}}=-j z^{-1}\left(\beta-2 z^{-1}+\beta z^{-2}\right)\left(z t_{1} z_{2}\right)\right)^{-2} \\
& \left(\left(1+z^{-4}\right) \alpha-2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)+2 z^{-2}\left(1+\beta^{2}(1+\alpha)\right)\right) \\
& \left(\left(1+z^{-8}\right)\left(1+x_{1}{ }^{2}\right)-2 \beta z^{-1}\left(1+z^{-6}\right)\left(2\left(1+x_{1}{ }^{2}\right)+\alpha\left(x_{1}-1\right)^{2}\right)\right. \\
& +2 z^{-2}\left(1+z^{-4}\right)\left(\alpha\left(x_{1}-1\right)^{2}+\beta^{2}\left(3\left(1+x_{1}{ }^{2}\right)+2 x_{1}+\alpha(3+\alpha)\left(1+x_{1}\right)^{2}\right)\right) \\
& -2 \beta z^{-3}\left(1+z^{-2}\right)\left(\alpha(3+2 \alpha)\left(1+x_{1}\right)^{2}+4 x_{1}+2 \beta^{2}\left(1+x_{1}\right)^{2}(1+\alpha)^{2}\right) \\
& +2 z^{-4}\left(\alpha^{2}\left(1+x_{1}\right)^{2}+2 x_{1}+2 \beta^{2}\left(\alpha(3+2 \alpha)\left(1+x_{1}\right)^{2}+4 x_{1}\right)\right. \\
& \left.\left.+\beta^{4}\left(1+x_{1}\right)^{2}(1+\alpha)^{2}\right)\right)
\end{aligned}
$$

$$
\frac{d\left(\frac{1}{H(x)} \cdot \frac{d H(z)}{d \omega}\right)}{d a}=-j x^{-1}\left(x 1^{2}-1\right)\left(\beta \cdot 2 z^{-1}+\beta z^{-2}\right)\left(z t_{1} z t_{2}\right)^{-2}
$$

$$
\left(\left(1+z^{-12}\right) x_{1}-6 \beta z^{-1}\left(1+z^{-10}\right) x_{1}\right.
$$

$$
\cdot \beta^{2} z^{-2}\left(1+z^{-8}\right)\left(1-x_{1}\left(12-x_{1}\right)+\alpha^{2}\left(1+x_{1}\right)^{2}\right)
$$

$$
+2 \beta z^{-3}\left(1+z^{-6}\right)\left(1+x_{1}\left(3+x_{1}\right)+\alpha^{2}\left(1+x_{1}\right)^{2}\right.
$$

$$
\left.+2 \beta^{2}\left(\left(x_{1}-1\right)^{2}+\alpha(\alpha+1)\left(1+x_{1}\right)^{2}\right)\right)
$$

$$
\cdot z^{-4}\left(1+z^{-4}\right)\left(1+x_{1}\left(3+x_{1}\right)+\alpha^{2}\left(1+x_{1}\right)^{2}\right.
$$

$$
+4 \beta^{2}\left(2\left(1+x_{1}\left(3+x_{1}\right)\right)+\alpha(3+2 \alpha)\left(1+x_{1}\right)^{2}\right)
$$

$$
\left.+\beta^{4}\left(7+x_{1}\left(6+7 x_{1}\right)+\alpha(12+7 \alpha)\left(1+x_{1}\right)^{2}\right)\right)
$$

$$
+2 \beta z^{-5}\left(1+z^{-2}\right)\left(2\left(1+x_{1}\left(3+x_{1}\right)\right)+\alpha(3+2 \alpha)\left(1+x_{1}\right)^{2}\right.
$$

$$
+2 \beta^{2}\left(4\left(1+x_{1}\left(3+x_{1}\right)\right)+\alpha(9+4 \alpha)\left(1+x_{1}\right)^{2}\right)
$$

$$
\left.+3 \beta^{4}(\alpha+1)^{2}\left(1+x_{1}\right)^{2}\right)
$$

$$
-2 z^{-6}\left(2 \alpha\left(1+x_{1}\right)^{2}\right.
$$

$$
+6 \beta^{2}\left(1+x_{1}\left(3+x_{1}\right)+\alpha(3+\alpha)\left(1+x_{1}\right)^{2}\right)
$$

$$
+2 \beta^{4}\left(4\left(1+x_{1}\left(3+x_{1}\right)\right)+\alpha(9+4 \alpha)\left(1+x_{1}\right)^{2}\right)
$$

$$
\left.\left.+\beta^{6}(1+\alpha)^{2}\left(1+x_{1}\right)^{2}\right)\right)
$$

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d \beta}=j z^{-1}\left(x 1^{2}-1\right)\left(z t_{1} z t 2\right)^{-2} \\
& \left(\left(1+z^{-14}\right) x_{1} \alpha-4 \beta z^{-1}\left(1+z^{-12}\right) x_{1}(1+a)\right. \\
& -z^{-2}\left(1+z^{-10}\right)\left(3 x_{1}(\alpha-2)+\alpha^{2}\left(1+x_{1}\right)^{2}\right. \\
& \left.\beta^{2}\left(14 x_{1}+\alpha\left(1+x_{1}\left(12+x_{1}\right)\right)-\alpha^{2}(1+\alpha)\left(1+x_{1}\right)^{2}\right)\right) \\
& +4 \beta z^{-3}\left(1+z^{-8}\right)\left(-4 x_{1}+\alpha^{2}(2+\alpha)\left(1+x_{1}\right)^{2}\right. \\
& \left.+\beta^{2}(1+\alpha)\left(-4 x_{1}+\alpha^{2}\left(1+x_{1}\right)^{2}\right)\right) \\
& -z^{-4}\left(1+z^{-6}\right)\left(10 x_{1}+\alpha\left(1-x_{1}\left(9-x_{1}\right)\right)+\alpha^{2}(1+3 \alpha)\left(1+x_{1}\right)^{2}\right. \\
& +\beta^{2}\left(2\left(1-x_{1}\left(1-x_{1}\right)\right)+3 \alpha\left(5+x_{1}\left(4+5 x_{1}\right)\right)+\alpha^{2}(27+17 \alpha)\left(1+x_{1}\right)^{2}\right) \\
& \left.+\beta^{4}(1+\alpha)\left(2\left(x_{1}-1\right)^{2}+5 \alpha(1+a)\left(1+x_{1}\right)^{2}\right)\right) \\
& +4 \beta z^{-5}\left(1+z^{-4}\right)\left(1+x_{1}\left(11+x_{1}\right)+\alpha\left(5+x_{1}\left(3+5 x_{1}\right)\right)+3 \alpha^{2}(1+\alpha)\left(1+x_{1}\right)^{2}\right. \\
& +2 \beta^{2}(1+\alpha)^{2}(2+3 \alpha)\left(1+x_{1}\right)^{2} \\
& \left.+\beta^{4}(1+\alpha)^{3}\left(1+x_{1}\right)^{2}\right) \\
& -\beta z^{-6}\left(1+z^{-2}\right)\left(2\left(1+x_{1}^{2}\right)+\alpha\left(5+x_{1}\left(19+5 x_{1}\right)\right)+\alpha^{2}(4-\alpha)\left(1+x_{1}\right)^{2}\right. \\
& +2 \beta^{2}\left(2\left(7+x_{1}\left(19+7 x_{1}\right)\right)+2 \alpha\left(19+x_{1}\left(45+19 x_{1}\right)\right)+\alpha^{2}(31+6 \alpha)\left(1+x_{1}\right)^{2}\right) \\
& +\beta^{4}(1+\alpha)\left(4\left(7+x_{1}\left(16+7 x_{1}\right)\right)+5 \alpha(11+5 \alpha)\left(+x_{1}\right)^{2}\right) \\
& \left.+2 \beta^{6}(1+\alpha)^{3}\left(1+k_{1}\right)^{2}\right) \\
& +8 \beta z^{-7}\left(2\left(1+x_{1}^{2}\right)+4 a\left(1+x_{1}\left(4+x_{1}\right)\right)+\alpha^{2}(4-\alpha)\left(1+x_{1}\right)^{2}\right. \\
& +\beta^{2}(1+\alpha)\left(2\left(3+x_{1}\left(8+3 x_{1}\right)\right)+\alpha(10+3 \alpha)\left(1+x_{1}\right)^{2}\right) \\
& \left.\left.+2 \beta^{4}(1+a)^{3}\left(1+x_{1}\right)^{2}\right) \quad\right)
\end{aligned}
$$

C4.2 8th order Dual Bandpass APS

Limits :
$-1<x_{1}<0$
$-1<x_{2}<1$
$-1<\alpha<1$
$-1<\beta<1$

$$
z_{1}=x_{1}+n_{1} z^{-1}+n_{2} z^{-2}+n_{3} z^{-3}+n_{4} z^{-4}+n_{5} z^{-5}+n_{6} z^{-6}+n_{7} z^{-7}-z^{-8}
$$ $z_{1}=-1+n_{7} z^{-1}+n_{6} z^{-2}+n_{5} z^{-3}+n_{4} z^{-4}+n_{3} z^{-5}+n_{2} z^{-6}+n_{1} z^{-7}+x_{1} z^{-8}$

$n_{1}=-\beta\left(4 x_{1}+\alpha\left(x_{1}\left(2+x_{2}\right)-x_{2}\right)\right)$
$n_{2}=a\left(x_{1}\left(2+x_{2}\right)-x_{2}\right)+\beta^{2}\left(x_{1}\left(6+x_{2}\right)-x_{2}\right.$
$\left.+3 \alpha\left(x_{1}\left(2+x_{2}\right)-x_{2}\right)+\alpha^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)\right)$
$\left.n_{3}=\beta\left(2 x_{2}\left(1-x_{1}\right) \cdot 3 \alpha_{(}\left(2+x_{2}\right) \cdot x_{2}\right) \cdot 2 \alpha^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)\right)$
$2 \beta^{3}(1+\alpha)\left(x_{1}\left(2+x_{2}\right)-x_{2}+a\left(x_{1}-1\right)\left(x_{2}+1\right)\right)$
$n_{4}=\left(x_{1}-1\right)\left(\beta^{4}+2 \alpha \beta^{2}\left(3+\beta^{2}\right)+\alpha^{2}\left(1+\beta^{2}\left(4+\beta^{2}\right)\right)\right.$
$\left.+x_{2}\left(\left(1+\alpha^{2}\right)\left(1+\beta^{2}\left(4+\beta^{2}\right)\right)+2 \alpha \beta^{2}\left(3+\beta^{2}\right)\right)\right)$
$n_{5}=-\beta\left(2 x_{2}\left(x_{1}-1\right)-3 a_{2}\left(x_{2}\left(1-x_{1}\right)+2\right)+2 \alpha^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)\right.$
$\left.+p^{2}\left(2 x_{2}\left(x_{1}-1\right)-4+2 a\left(2 x_{2}\left(x_{1}-1\right)+x_{1}-3\right)+2 a^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)\right)\right)$

$$
\begin{aligned}
n_{6}=\alpha & \left(x_{2}\left(x_{1}-1\right)-2\right) \\
& +\beta^{2}\left(x_{2}\left(x_{1}-1\right)-6+3 \alpha\left(x_{2}\left(x_{1}-1\right)-2\right)+\alpha^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)\right) \\
n_{7}= & \beta\left(4+\alpha\left(2-x_{2}\left(x_{1}-1\right)\right)\right)
\end{aligned}
$$

Overall transfer function :

$$
H(z)=\frac{B_{i}}{A_{i}}=\frac{z t_{1}}{z t_{2}}
$$

Group delay parameter :-

$$
\begin{aligned}
\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}=z^{-1}(& \left(x_{1}^{2}-1\right) \\
& \left(\beta-2 z^{-1}+\beta z^{-2}\right) \\
& \left(\left(1+z^{-4}\right) \alpha-2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)\right. \\
& \left.+2 z^{-2}\left(1+\beta^{2}(1+\alpha)\right)\right)\left(z t_{1} z(z)^{-1}\right.
\end{aligned}
$$

Gain/Phase coefficient sensitivity parameters :-

$$
\begin{aligned}
& \frac{1}{H(z)} \cdot \frac{d H(z)}{d x_{1}}=\left(z^{-2} \cdot 1\right)\left(1-2 \beta z^{-1}+z^{-2}\right)\left(z 11 z z_{2}\right)^{-1} \\
& \left(\left(1+z^{-4}\right)-2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)+2 z^{-2}\left(\alpha+\beta^{2}(1+\alpha)\right)\right) \\
& \left(\left(1+z^{-8}\right)-2 \beta z^{-1}\left(1+z^{-6}\right)(2+\alpha(1+\times z))\right. \\
& +2 z^{-2}\left(1+z^{-4}\right)\left(\alpha\left(1+x_{2}\right)+\beta^{2}\left(3+x_{2}+\alpha\left(1+x_{2}\right)(3+2 \alpha)\right)\right) \\
& -2 \beta z^{-3}\left(1+z^{-2}\right)\left(2 x_{2}+\alpha\left(1+x_{2}\right)(3+2 \alpha)+2 \beta^{2}\left(1+x_{2}\right)(1+\alpha) 2\right) \\
& \left.+2 z^{-4}\left(x_{2}+\alpha 2\left(1+x_{2}\right)+2 \beta^{2}\left(2 x_{2}+a\left(1+x_{2}\right)(3+2 \alpha)\right)+\beta^{4}\left(1+x_{2}\right)(1+\alpha)^{2}\right)\right) \\
& \begin{array}{l}
\frac{1}{H(z)} \cdot \frac{d H(z)}{d x_{2}}=\left(x 1^{2}-1\right) z^{-1}\left(\beta z^{-1}-1\right)\left(z^{-2}-1\right)\left(1-2 \beta z^{-1}+z^{-2}\right) \\
\left(\beta-z^{-1}\right)\left(\alpha \cdot \beta z^{-1}(1+\alpha)+z^{-2}\right)\left(1 \cdot \beta z^{-1}(1+\alpha)+\alpha z^{-2}\right) \\
\left(\left(1+z^{-4}\right)-2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)+2 z^{-2}\left(\alpha+\beta^{2}(1+\alpha)\right)\right)\left(z t_{1} z(2)\right)^{-1}
\end{array} \\
& \frac{1}{H(z)} \cdot \frac{d H(z)}{d \alpha}=\left(x 1^{2}-1\right)\left(\beta-z^{-1}\right) z^{-1}\left(z^{-2}-1\right)\left(\beta z^{-1}-1\right)\left(1-2 \beta z^{-1}+z^{-2}\right) \\
& \left(z 112 L_{2}\right)^{-1}\left(x_{2}\left(1+z^{-8}\right)\right. \\
& -2 \beta z^{-1}\left(1+z^{-6}\right)\left(\alpha+x_{2}(2+\alpha)\right) \\
& +2 z^{-2}\left(1+z^{-4}\right)\left(\alpha\left(1+x_{2}\right)+\beta^{2}\left(1+3 x_{2}+\alpha(3+\alpha)\left(1+x_{2}\right)\right)\right) \\
& -2 \beta z^{-3}\left(1+z^{-2}\right)\left(2+\alpha(3+2 \alpha)\left(1+x_{2}\right)+2 \beta^{2}\left(1+x_{2}\right)(1+\alpha)^{2}\right) \\
& \left.+2 z^{-4}\left(1+\alpha^{2}\left(1+x_{2}\right)+2 \beta^{2}\left(2+\alpha(3+2 \alpha)\left(1+x_{2}\right)\right)+\beta^{4}\left(1+x_{2}\right)(1+\alpha)^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{H(z)} \frac{d H(z)}{d \beta}=+z^{-1}\left(z^{-2}-1\right)\left(x_{1}^{2}-1\right)\left(z 11 z z_{2}\right)^{-1} \\
& \left(\alpha\left(1+z^{-4}\right)-2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)+2 z^{-2}\left(1+\beta^{2}(1+\alpha)\right)\right) \\
& \left(x_{2}\left(1+z^{-8}\right)-2 \beta z^{-1}\left(1+z^{-6}\right)\left(\alpha+x_{2}(2+\alpha)\right)\right. \\
& \quad+2 z^{-2}\left(1+z^{-4}\right)\left(\alpha\left(1+x_{2}\right)+\beta^{2}\left(1+3 \times 2+\alpha(3+\alpha)\left(1+x_{2}\right)\right)\right) \\
& \\
& -2 \beta z^{-3}\left(1+z^{-2}\right)\left(2+\alpha(3+2 \alpha)\left(1+x_{2}\right)+2 \beta^{2}\left(1+x_{2}\right)(1+\alpha)^{2}\right) \\
& \left.\quad+2 z^{-4}\left(1+\alpha^{2}\left(1+x_{2}\right)+2 \beta^{2}\left(2+\alpha(3+2 \alpha)\left(1+x_{2}\right)\right)+\beta^{4}\left(1+x_{2}\right)(1+\alpha)^{2}\right)\right)
\end{aligned}
$$

Group delay coefficient sensitivity parameters :-

$$
\frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{1}}, \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{z}}, \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d \alpha} \text { and } \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d \beta}
$$

have not been included within this Appendix due to their very large length and complexity. If the equations for these parameters is required please contact the author who will supply the Mathematica or Fortran code listings

C5 Dual Bandstop APS Models

C5.1 4th order Dual Bandstop APS

$$
\begin{gathered}
n_{1}=\beta\left(\alpha\left(x_{1}-1\right)-2 x_{1}\right), n_{2}=-\left(x_{1}-1\right)\left(\alpha+\beta^{2}(\alpha-1)\right), n_{3}=\beta\left(2+\alpha\left(x_{1}-1\right)\right) \\
z_{1}=x_{1}+n_{1} z^{-1}+n_{2} z^{-2}+n_{3} z^{-3}-z^{-4}, z_{2}=-1+n_{3} z^{-1}+n_{2} z^{-2}+n_{1} z^{-3}+x_{1} z^{-4}
\end{gathered}
$$

Overall transfer function :-

$$
H(z)=\frac{B_{i}}{A_{i}}=\frac{z t_{1}}{z t_{2}}
$$

Group delay parameter :-

$$
\begin{aligned}
& \frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}=\quad j z^{-i}(\left(x 1^{2}-1\right) \\
&\left(\beta-2 z^{-1}+\beta z^{-2}\right) \\
&\left(\left(1+z^{-4}\right) \alpha+2 \beta z^{-1}\left(1+z^{-2}\right)(1-\alpha)\right. \\
&\left.-2 z^{-2}\left(1-\beta^{2}(\alpha-1)\right)\right)\left(21_{1} z(2)^{-1}\right.
\end{aligned}
$$

Gain/Phase coefficient sensitivity parameters :-

$$
\begin{aligned}
& \frac{1}{H(z)} \cdot \frac{d H(z)}{d x 1}=\left(z^{-2}-1\right)\left(1-2 \beta z^{-1}+z^{-2}\right) \\
&\left(\left(1+z^{-4}\right)+2 \beta z^{-1}\left(1+z^{-2}\right)\right. \\
&\left.-2 z^{-2}\left(\alpha+\beta^{2}(\alpha \cdot 1)\right)\right)\left(z t_{1} z t_{2}\right)^{-1} \\
& \frac{1}{H(z)} \cdot \frac{d H(z)}{d \alpha}=\quad z^{-1}\left(z^{-2}-1\right)\left(1-2 \beta z^{-1}+z^{-2}\right) \\
&\left(z^{-1} \cdot \beta\right)\left(\beta z^{-1} \cdot 1\right)\left(x 1^{2} \cdot 1\right)\left(2 I_{1} z t_{2}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{H(z)} \cdot \frac{d H(z)}{d \beta}=\quad z^{-1}\left(z^{-2}-1\right)\left(x 1^{2}-1\right)
\end{aligned} \quad \begin{aligned}
& \left(\left(1+z^{-4}\right) \alpha \cdot 2 \beta z^{-1}\left(1+z^{-2}\right)(\alpha-1)\right. \\
& \\
&
\end{aligned}
$$

Group delay coefficient sensitivity parameters :-

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d x_{1}}=-j z^{-1}\left(\beta-2 z^{-1}+\beta z^{-2}\right)\left(z_{1} z_{1} t_{2}\right)^{-2} \\
& \left(\left(1+z^{-4}\right) \alpha \cdot 2 \beta z^{-1}\left(1+z^{-2}\right)(\alpha-1) \cdot 2 z^{-2}\left(1-\beta^{2}(\alpha-1)\right)\right) \\
& \left(\left(1+z^{-8}\right)\left(1+x_{1}^{2}\right)\right. \\
& \quad-2 \beta z^{-1}\left(1+z^{-6}\right)\left(2\left(1+x_{1}^{2}\right)-\alpha\left(x_{1}-1\right)^{2}\right) \\
& -2 z^{-2}\left(1+z^{-4}\right)\left(\alpha\left(x_{1}-1\right)^{2}-\beta^{2}\left(3-x_{1}\left(2-3 x_{1}\right)-\alpha(3-\alpha)\left(x_{1}-1\right)^{2}\right)\right) \\
& \quad+2 \beta z^{-3}\left(1+z^{-2}\right)\left(4 x_{1}+\alpha(3-2 \alpha)\left(x_{1}-1\right)^{2}-2 \beta^{2}\left(x_{1}-1\right)^{2}(\alpha-1)^{2}\right) \\
& \quad+2 z^{-4}\left(a^{2}\left(x_{1}-1\right)^{2}-2 x_{1}-2 \beta^{2}\left(\alpha(3-2 \alpha)\left(x_{1}-1\right)^{2}+4 x_{1}\right)\right. \\
& \left.\left.\quad+\beta^{4}\left(x_{1}-1\right)^{2}(\alpha \cdot 1)^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(z)} \frac{d H(z)}{d \omega}\right)}{d \alpha}=j z^{-1}\left(x 1^{2}-1\right)\left(\beta \cdot 2 z^{-1}+\beta z^{-2}\right)\left(2 t_{1} z z_{2}\right)^{-2} \\
& \left(\left(1+z^{-12}\right) x_{1}-6 \beta z^{-1}\left(1+z^{-10}\right) x_{1}\right. \\
& +\beta^{2} z^{-2}\left(1+z^{-8}\right)\left(1+x_{1}\left(12+x_{1}\right)+\alpha^{2}\left(x_{1}-1\right)^{2}\right) \\
& -2 \beta z^{-3}\left(1+z^{-6}\right)\left(1-x_{1}\left(3-x_{1}\right)+a^{2}\left(x_{1}-1\right)^{2}\right. \\
& \left.+2 \beta^{2}\left(\left(1+x_{1}\right)^{2}+\alpha(\alpha-1)\left(x_{1}-1\right)^{2}\right)\right) \\
& +x^{-4}\left(1+z^{-4}\right)\left(1-x_{1}\left(3-x_{1}\right)+\alpha^{2}\left(x_{1}-1\right)^{2}\right. \\
& +4 \beta^{2}\left(2\left(1-x_{1}\left(3-x_{1}\right)\right)-\alpha(3-2 \alpha)\left(x_{1}-1\right)^{2}\right) \\
& \left.+\beta^{4}\left(7-x_{1}\left(6-7 x_{1}\right)-\alpha(12-7 \alpha)\left(x_{1}-1\right)^{2}\right)\right) \\
& 2 \beta z^{-5}\left(1+z^{-2}\right)\left(2\left(1-x_{1}\left(3-x_{1}\right)\right)-\alpha(3-2 \alpha)\left(x_{1}-1\right)^{2}\right. \\
& +2 \beta^{2}\left(4\left(1-x_{1}\left(3-x_{1}\right)\right) \cdot \alpha(9-4 \alpha)\left(x_{1} \cdot 1\right)^{2}\right) \\
& \left.\left.+3 \beta^{4}(x)-1\right)^{2}(\alpha-1)^{2}\right) \\
& +2 z^{-6}\left(-2 \alpha\left(x_{1}-1\right)^{2}\right. \\
& +\sigma \beta^{2}\left(1-x_{1}\left(3-x_{1}\right)-\alpha(3-a)\left(x_{1} \cdot 1\right)^{2}\right) \\
& +2 \beta^{4}\left(4\left(1-x_{1}\left(3-x_{1}\right)\right)-\alpha(9-4 \alpha)\left(x_{1}-1\right)^{2}\right) \\
& \left.\left.+\beta^{6}\left(x_{1}-1\right)^{2}(\alpha-1)^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d\left(\frac{1}{H(z)} \cdot \frac{d H(z)}{d \omega}\right)}{d \beta}=1 z^{-1}\left(x_{1}^{2}-1\right)(z \operatorname{t} 1212)^{-2} \\
& \left(\mathrm{r}_{1}+z^{-14}\right) x_{1} \alpha-4 \beta z^{-1}\left(1+z^{-12}\right) x_{1}(\alpha-1) \\
& -z^{-2}\left(1+z^{-10}\right)\left(3 x_{1}(2+a)+\alpha^{2}\left(x_{1}-1\right)^{2}\right. \\
& \left.+\beta^{2}\left(14 x_{1}+\alpha\left(1-x_{1}\left(12-x_{1}\right)\right)-\alpha^{2}(\alpha-1)\left(x_{1} \cdot 1\right)^{2}\right)\right) \\
& +4 \beta z^{-3}\left(1+z^{-8}\right)\left(4 x_{1}+\alpha^{2}(2-\alpha)\left(x_{1}-1\right)^{2}\right. \\
& \left.-\beta^{2}(\alpha-1)\left(4 x_{1}+\alpha^{2}\left(x_{1}-1\right)^{2}\right)\right) \\
& +z^{-4}\left(1+z^{-6}\right)\left(10 x_{1}+\alpha\left(1+x_{1}\left(9+x_{1}\right)\right)-\alpha^{2}\left(1-3 \alpha_{1}\right)\left(x_{1}-1\right)^{2}\right. \\
& -\beta^{2}\left(2\left(1+x_{1}\left(1+x_{1}\right)\right)-3 \alpha\left(5-x_{1}\left(4-5 x_{1}\right)\right)+\alpha^{2}(27-17 \alpha)\left(x_{1}-1\right)^{2}\right) \\
& \left.+\beta^{4}(\alpha-1)\left(2\left(1+x_{1}\right)^{2}+5 \alpha(\alpha-1)\left(x_{1}-1\right)^{2}\right)\right) \\
& -4 \rho z^{-5}\left(1+z^{-4}\right)\left(1-x_{1}\left(11-x_{1}\right)-\alpha\left(5-x_{1}\left(3-5 x_{1}\right)\right)-3 \alpha^{2}(\alpha-1)\left(x_{1}-1\right)^{2}\right. \\
& \left.+2 \beta^{2}(\alpha-1)^{2}(2-3 \alpha)(x 1-1)^{2}\right) \\
& \left.-\beta^{4}\left(x_{1} \cdot 1\right)^{2}(\alpha-1)^{3}\right) \\
& +z^{-6}\left(1+z^{-2}\right)\left(-2\left(1+x_{1}^{2}\right)+\alpha\left(5-x_{1}\left(19-5 x_{1}\right)\right)-\alpha^{2}(4+\alpha)\left(x_{1}-1\right)^{2}\right. \\
& +2 \beta^{2}\left(-2\left(7-x_{1}\left(19-7 x_{1}\right)\right)+2 \alpha\left(19-x_{1}\left(45-19 x_{1}\right)\right)-\alpha^{2}(31-6 \alpha)\left(x_{1}-1\right)^{2}\right) \\
& \left.+\beta^{4}(\alpha-1)\left(4\left(7-x_{1}\left(16-7 x_{1}\right)\right)-5 \alpha_{(11}-5 \alpha\right)\left(x_{1}-1\right)^{2}\right) \\
& \left.+2 \beta^{6}\left(x_{1}-1\right)^{2}(\alpha-1)^{3}\right) \\
& +8 \beta z^{-7}\left(2\left(1+x_{1}^{2}\right)-4 \alpha\left(1-x_{1}\left(4-x_{1}\right)\right)+\alpha^{2}(4-\alpha)\left(x_{1}-1\right)^{2}\right. \\
& -\beta^{2}(\alpha \cdot 1)\left(2\left(3-x_{1}\left(8-3 x_{1}\right)\right)-\alpha(10-3 \alpha)\left(x_{1}-1\right)^{2}\right) \\
& \left.\left.-2 \beta^{4}\left(x_{1}-1\right)^{2}(\alpha \cdot 1)^{2}\right) \quad\right)
\end{aligned}
$$

C5.2 8th order Dual Bandstop APS

$z_{1}=x_{1}+n_{1} z^{-1}+n_{2} z^{-2}+n_{3} z^{-3}+n_{4} z^{-4}+n_{5} z^{-5}+n_{6} z^{-6}+n_{7} z^{-7}-z^{-8}$
$z_{2}=-1+n_{7} z^{-1}+n_{6} z^{-2}+n_{5} z^{-3}+n_{4} z^{-4}+n_{3} z^{-5}+n_{2} z^{-6}+n_{1} z^{-7}+x_{1} z^{-8}$
$n_{1}=-\beta\left(4 x_{1}+\alpha\left(x_{1}\left(2+x_{2}\right)-x_{2}\right)\right)$
$n_{2}=\alpha\left(x_{1}\left(2+x_{2}\right) \cdot x_{2}\right)+\beta^{2}\left(x_{1}\left(6+x_{2}\right)-x_{2}\right.$
$\left.+3 \alpha\left(x_{1}\left(2+x_{2}\right)-x_{2}\right)+\alpha^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)\right)$
$n_{3}=\beta\left(2 x_{2}\left(1-x_{1}\right)-3 \alpha_{(}\left(x_{1}\left(2+x_{2}\right)-x_{2}\right)-2 \alpha^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)\right)$
$-2 \beta^{3}(1+\alpha)\left(x_{1}\left(2+x_{2}\right)-x_{2}+\alpha\left(x_{1}-1\right)\left(x_{2}+1\right)\right)$
$n_{4}=\left(x_{1}-1\right)\left(\beta^{4}+2 \alpha \beta^{2}\left(3+\beta^{2}\right)+\alpha^{2}\left(1+\beta^{2}\left(4+\beta^{2}\right)\right)\right.$
$\left.+x_{2}\left(\left(1+\alpha^{2}\right)\left(1+\beta^{2}\left(4+\beta^{2}\right)\right)+2 \alpha \beta^{2}\left(3+\beta^{2}\right)\right)\right)$
$n_{5}=-\beta\left(2 x_{2}\left(x_{1}-1\right) \cdot 3 \alpha_{2}\left(1-x_{2}\right)+2\right)+2 \alpha^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)$

$$
\left.+\beta^{2}\left(2 x_{2}\left(x_{1}-1\right)-4+2 \alpha\left(2 x_{2}\left(x_{1}-1\right)+x_{1}-3\right)+2 \alpha^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)\right)\right)
$$

$$
\begin{aligned}
& n_{6}=a\left(x_{2}\left(x_{1}-1\right)-2\right) \\
& \quad \rightarrow \theta^{2}\left(x_{2}\left(x_{1}-1\right)-6+3 a\left(x_{2}\left(x_{1}-1\right)-2\right)+a^{2}\left(x_{1}-1\right)\left(x_{2}+1\right)\right) \\
& n_{7}=\beta\left(4+a\left(2-x_{2}\left(x_{1}-1\right)\right)\right) \\
& \text { Overall transfer function :- }
\end{aligned}
$$

$$
H(z)=\frac{B_{i}}{A_{1}}=\frac{z 1_{1}}{z t_{2}}
$$

Group delay parameter :-

$$
\begin{aligned}
& \frac{1}{H(x)} \cdot \frac{d H(z)}{d \omega}=j z^{-1}\left(x_{1}^{2}-1\right)\left(\beta-2 z^{-1}+\beta z \cdot 2\right) \\
&\left(\left(1+z^{-4}\right) \alpha-2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)\right. \\
&+2 z^{-2}\left(1+\beta^{2}(1+\alpha)\right)\left(2 t_{1} z(2)\right)^{-1}
\end{aligned}
$$

Gain/Phase coefficient sensitivity parameters :-

$$
\begin{aligned}
& \frac{1}{H(z)}, \frac{d H(z)}{d x_{1}}=\left(z^{-2}-1\right)\left(1-2 \beta z^{-1}+z^{-2}\right)\left(z t_{1} z_{2}\right)^{-1} \\
& \left(\left(1+z^{-4}\right) \cdot 2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)+2 z^{-2}\left(\alpha+\beta^{2}(1+\alpha)\right)\right) \\
& \left(\left(1+z^{-8}\right)-2 \beta z^{-1}\left(1+z^{-6}\right)\left(2+\alpha\left(1+x_{2}\right)\right)\right. \\
& \\
& +2 z^{-2}\left(1+z^{-4}\right)\left(\alpha\left(1+x_{2}\right)+\beta^{2}\left(3+x_{2}+\alpha\left(1+x_{2}\right)(3+2 \alpha)\right)\right) \\
& \\
& -2 \beta z^{-3}\left(1+z^{-2}\right)\left(2 x_{2}+\alpha\left(1+x_{2}\right)(3+2 \alpha)+2 \beta^{2}\left(1+x_{2}\right)(1+\alpha) 2\right) \\
& \\
& \left.\quad+2 z^{-4}\left(x_{2}+\alpha 2\left(1+x_{2}\right)+2 \beta 2\left(2 x_{2}+\alpha\left(1+x_{2}\right)(3+2 \alpha)\right)+\beta^{4}\left(1+x_{2}\right)(1+\alpha)^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{H(z)} \cdot \frac{d H(z)}{d x z}=\left(x 1^{2} \cdot 1\right) x^{-1}\left(\beta z^{-1} \cdot 1\right)\left(z^{-2} \cdot 1\right)\left(1-2 \beta z^{-1}+z^{-2}\right) \\
& \left(\beta-z^{-1}\right)\left(\alpha-\beta z^{-1}(1+\alpha)+z^{-2}\right)\left(1-\beta z^{-1}(1+\alpha)+\alpha z^{-2}\right) \\
& \left(\left(1+z^{-4}\right)-2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)+2 z^{-2}\left(\alpha+\beta^{2}(1+\alpha)\right)\right)\left(21_{1} z I_{2}\right)^{-1} \\
& \frac{1}{H(z)}, \frac{d H(z)}{d \alpha}=\left(x_{1}^{2}-1\right)\left(\beta-z^{-1}\right) z^{-1}\left(z^{-2} \cdot 1\right)\left(\beta z^{-1}-1\right)\left(1-2 \beta z^{-1}+z^{-2}\right) \\
& (z t 12 t 2)^{-1}\left(x_{2}\left(1+z^{-8}\right)\right. \\
& -2 \beta z^{-1}\left(1+z^{-6}\right)\left(\alpha+x_{2}(2+\alpha)\right) \\
& +2 z^{-2}\left(1+z^{-4}\right)\left(\alpha\left(1+x_{2}\right)+\beta^{2}\left(1+3 x_{2}+\alpha(3+\alpha)\left(1+x_{2}\right)\right)\right) \\
& -2 \beta z^{-3}\left(1+z^{-2}\right)\left(2+\alpha(3+2 a)\left(1+x_{2}\right)+2 \beta^{2}\left(1+x_{2}\right)(1+\alpha)^{2}\right) \\
& \left.+2 z^{-4}\left(1+\alpha^{2}\left(1+x_{2}\right)+2 \beta^{2}\left(2+\alpha(3+2 \alpha)\left(1+x_{2}\right)\right)+\beta^{4}\left(1+x_{2}\right)(1+\alpha)^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{H(z)} \frac{d H(z)}{d \beta}=-z^{-1}\left(z^{-2}-1\right)\left(x_{1}^{2}-1\right)\left(z 11 z_{2}\right)^{-1} \\
& \quad\left(\alpha\left(1+z^{-4}\right)-2 \beta z^{-1}\left(1+z^{-2}\right)(1+\alpha)+2 z^{-2}\left(1+\beta^{2}(1+\alpha)\right)\right) \\
& \quad\left(x_{2}\left(1+z^{-8}\right)-2 \beta z^{-1}\left(1+z^{-6}\right)\left(\alpha+x_{2}(2+\alpha)\right)\right. \\
& \\
& \quad+2 z^{-2}\left(1+z^{-4}\right)\left(\alpha\left(1+x_{2}\right)+\beta^{2}\left(1+3 x_{2}+\alpha(3+\alpha)\left(1+x_{2}\right)\right)\right) \\
& \\
& \quad-2 \beta z^{-3}\left(1+z^{-2}\right)\left(2+\alpha(3+2 \alpha)\left(1+x_{2}\right)+2 \beta^{2}\left(1+x_{2}\right)(1+\alpha)^{2}\right) \\
& \\
& \left.\quad+2 z^{-4}\left(1+\alpha^{2}\left(1+x_{2}\right)+2 \beta^{2}\left(2+\alpha(3+2 \alpha)\left(1+x_{2}\right)\right)+\beta^{4}\left(1+x_{2}\right)(1+\alpha)^{2}\right)\right)
\end{aligned}
$$

Group delay cocfficient sensitivity parameters :-

have not been included within this Appendix due to their very large length and complexity. If the equations for these parameters is required please consact the author who will supply the Mathematica or Forran code listings

Appendix D

Lattice WDF APS Models

(Time domain)

This Appendix details the various time domain software models for the APS's created for the design and analysis of the lattice WDF. Each APS is illustrated and provided with a fortran listing of its software model along with the model for the two-port adaptor upon which each APS is based. The time domain sofiware models contained in this Appendix are :-

D1 Two-port Adaptor Model

The source code for the two-port adaptor rouline and the overflow and quantization routines called within that routine are detailed within this section. Global parameters for the internal signal length, overflow and quantization strategies are defined within the supervisor program which calts the APS routines in order to determine the time response.
aubroutine twoport (A1, A2, coeff, 日1, B2)
C This routine mimics the action of a two-port adaptor. It accepts two input
C signals, A1 and A2 and a multiplier value, coeff, and then generates the
C corresponding outputs. B1 and B2.
C define common variables
C lenalg it the signed bit length of all internal signals within the model integer lansig
COMMON/gen3/ lensig
C define external varigbles
double precision A1, A2, cobff, B2, B2
C define local variables
double precision sumips
C
Step 1, subiract the two input wave parameters, check for overflow,
C multiply by the coefficient and then quantize to the value to $10 \mathrm{~m} \pm \mathrm{g}$ sumips = $\mathbf{~ 2 ~} 2$ - A1
call overflou(aumips, lensig)
sumips = sumips*coeff
call quantize(sumips, lunsig)
C Step 2. generate 82 and then check for overflows
B2 = A1 + sumips
call overtlou(B2, lenaig)
C Siep 3, generate a 1 and then check for overflows
B1 = A2 + amips
call ovezflow (B1, lensig)
return
and

subroutine overflou(sigualue, bitien)

C This routine mimics of overflow in a finite wordlength system by limiting C the signal level passed into the routine according to the overflow strategy
C defined and then returning this value.
C define common variables
C oflimit is the value above which an overflow is considered to have
C occurred, while the variable OEt 1 ag is used to indicate if an overnow
C has occurred. The parameter oftype is the overflow strategy desired.
C selected from the options :-
C $\quad 1=$ no precautions.
C $2=$ saturation arithmetic.
C $\quad 3=$ zeroing arithmetic.
C $4=2$'s complement arithmetic.

integer oftype, offlag

double precision oflimit
COMMON/gen2/ oftype, offlag, oflimit
C define exiernal variables
integer bitlen
double precision sigvalue
C define local variables
integer range
C Step 1, bitlan includes one bit for the sign so it must be removed for overflow
C calculations and the aciual range stored in the parameter zange.
range = bitlen - 1
C Siep 2, compare input signal value level with overflow limit.
if(abs(aigualue) . it abs (oflimit)) then
C Step 3a, signal is within limit, retum the original signal value.
else
C Step 3b, signal is ouside or on overflow limits, check if the signal is negative if((abs (aigualue). eq.abs (oflimit)) and. (sigualue.lt.0)) then

C Step 4a. signal is within timit, return the original signal value.
else
C Step 4b, signal has overflowed, apply the desired overflow strategy if (oftype.eq. 1) then

C Step 5a, no precautions, retum original signal value and set overflow flag. offlag $=1$

$$
\text { elseif(oftype eq. } 2 \text {) then }
$$

C Step 5b, saturation arithmetic, alter signal value and set overflow flag.
if (sigualue gt. 0) then
sigvalue - sigvalue $=0.5 *$ *anga
endif
offlag = 1

```
elseif( oftype.eq. 3) then
```

C Step 5c, zeroing arithmetic, alter signal value and set overflow flag.

$$
\text { sigualue - } 0
$$

offlag =1
elseif(oftype -eq. 4) chen
C Siep 5d, 2 's complement arithmetic, alter signal value and set overflow flagsigualue modisigualue, oflimiti offlag = 1

-1se

writef*, "'ERROR - no overflow type selected!" endif endif
andif
return
and
subroutine quantize (datavalue, datalen)
C This routine mimics of quantization in a finite wordlength sysiem by
C quantizing the value passed into the routine to the bit length passed
C into the routine with the specified quantization procedure. The
C resulting quantized value is then returned by this routine.
C define common variables
C qtype is the type of quantization required. The possible quantizing procedures
C are :-
C $\quad 1=$ rounding
C $\quad 2=$ magnilude truncation
$3=$ value truncation
integer atype
COMMON/geni/ qtype
C define external variables
integer datalen
double precision datavalue
C define local variables
double preciaion range
C Step 1, check bit length is not zero
If $($ dacalen .10 .0) then
write(*,*)'ERROR - data wordlength must be $>0^{*}$
-1se
C Step 2, since the bit length includes a sign bit it must be removed
C to calculate the maximum number range
range $=2.0$ * (datalen $=1$)
C Step 3, switch to the desired quantization procedure 1f(qtype.eq. 1) chen

C Step 41. rounding
datavalue $=\operatorname{sign}(1.0$, datavalue)

* *ant (abaldazavalue)"range + 0.50001)/range
elseifi qtype eq. 21 then
C Step 4b, magnitude Iruncation
datiavalue algnil.0.dactavaluel
*alnt (abs (datavalue) *ange)/range
alsaifi qtype eq. 3) chen
C Step 4c. value truncation
datavalue - - intifatavalue*range + 0.9999)/range
else
write(*,*)'ERROR - no quantization type selected!* endif
endif
return
end

D 2 Lowpass APS Models

D2.1 1 st order Lowpass APS Model.

subroutine tLPsecifvising, valout, delay, coeff\}

Integer MAXSIZEAPS, WRUESEC1
parameter (MAXSIZEAPS - A. WAVESEC1 - 21

C define external variables double preciaion valin, valout, coefe (MAXSIZEAPS), delay(MAXSIZEAPS)

C define internal variables
double precision a(WAVESEC1), b(WAVESEC1)

C Step 1, assign values from delay stack and valin 10 a parameters
$a(1)$ valin
a(2) - delay(1)
C Step 2, call twoport routine to determine 'b' for the two-por adaptor
C containing the multiplier x_{1} held in coeit (1) call twoport $\left\{\begin{array}{l}\text { (1), a(2), coeff(1), b(1), b(2)) }\end{array}\right.$

C Step 3, assign output values to delay stack and valout parameters delay(1) $=b(2)$
valout $=\mathrm{b}(1)$
return end

D2.2 2 nd order Lowpass APS Model.

subroutine tLPsec2 (vailn, valout, delay, coeff)
Integer MAXSIZEAPS: WAVESEC2
parameter (MAXSIZEAPS = 8. WAVESEC2 = 4)

C define external variables
double precigion valin, valout, coeff (MAXSIZEAPS), dalay (MAXSIZEAPS)

C define internal variables
double precision (HAVESEC2l, b(WAVESECZ)
C Step 1, assign values from delay slack 'a' parameters
a(3) = delay\{1
(4) = dalay (2)
C. Step 2, call twopore routinc to deteminc 'b' values for the two-port adaptor

C containing the multiplier 12 held in coaff(2)
call twopozt (a (3), (4), cosff(2),b(3),b(4))

C Step 3. assign values from new 'b' and valin paramelers
(1) - valin
(2) $-b(3)$

C Step 4, call twopozt routine to detemine 'b' values for the two-pon adaptor
C containing the multiplier x_{1} or $c o e f(1)$
call twoport (a (1), \&(2), coeff(1), b(1), b(2))
C Step 5, assign output values to dalay stack and valout parameters
dalay(1) $=b(2)$
dalay(2)-b(4)
yeleut - b(1)
raturn
and

D 3 Highpass APS Models

D3.1 $1^{\text {st }}$ order Highpass APS Model


```
aubroutina thPseci(valin, valout, delay, coeff)
integar MAXSIzEAPS, WAVESECi
parameter (MAXSIZEAPS = 6, WAVESECl - 2)
C define enternal variables
double praciaion valin, valour, coffimaxsizenpsj, dalayimaxsizears)
C define internal variables
double precision a (waveseci), b(WAVESECl)
C Siep 1, assign values from delay stack and valin to a' parameters
a(1) aviln
\(a(2)=-d a l a y(1)\)
```

C Step 2, call twoport routine to determine ' b ' values for the two-pon adaptor
C containing the multiplier x_{1} held in coeff(1)
call cmoport (a (1), a(2), coeff(1), b(1), b(2))
C Siep 3, assign outpul values to delay stack and valout parameiers delay (1) $=\mathrm{b}(2)$
valout -b(1)
return
end

D3.2 2nd order Highpass APS Model

subrautine tHPsec 2 (vilin, velout, dalay, coeff)
1nteger MAXSIZEAPS, WAVESEC2
parameter (MAXSIZEAPS = B, WAVESEC2 - 4)
C define external variables
double preciaion valing valout, coeff (Maxsizears), delay (maxsizeaps)
C define internal variables
double precision a(wavesecz), b(wavesec 2)
C Step 1. assign values from delay stack to 'a' parameters
-(3) $=$ delay (1)
a(4) = -delay(2)
C Step 2, call twoport routine to determine ' b ' values for the two-pon adaptor
C containing the multiplier x_{2} held in coeff(2)
call twoport (a (3), a(4), cooff(2), b(3), b(4))
C Siep 3. assign values from new 'b' and valin parameters
(1) $=$ valin
$a(2)=-b(3)$
C Step 4, call ewoport routine to detemine ' b ' values for the iwo-port adaptor
C containing the multiplier x_{1} held in coeft (1)
call twoport (a (1), a(2), coeff(1), b(1), b(2))
C Step 5. assign output values to delay stack and valout parameters
dalay(1) $=b(2)$
dalay(2) = b(4)
valout $=$ bil)
raturn
end

D 4 Single Bandpass APS Models

D4.1 2nd order Single Bandpass APS Model.

subroutine tBplsaci (visinevalout, delay, coaff)
Integer MAXSIZEAPS, WAVESEC2
parametar (MAXSIzEAPS - 0 , WAYESEC2-4)
C define external variables
double precision walin, valout, coeff(MAXSIZEAPS), delay (MAXSIZEAPS)
C define internal variables
double preciaion awAVESEC21, b (WAVESEC2)
C Step 1, assign values from dalay stack'a parameters
(3) = deley(I)
d(4) $=-\mathrm{d}$ (1)y (2)
C Step 2. call twoport routine to determine 'b' values for the two-por adaptor
C containing the multiplier a held in coaf $\{(2)$
call twoport (a (3), a (4), codff(2), b(3), b(4))
C Step 3, assign values from new 'b' and valin parameters
a(1) - vilin

- (2) -b(3)

C Step 4, call ewopart routine to determine 'b' values for the two-port adaptor
C containing the multiplier t_{1} held in caeff(1)
call ewoporef(1), a(2), conf(1), b(1), b\{21)
C Step 5, assign output values to delay stack and valout parameters
dalay(1) $=b(2)$
delay(2) = b(4)
valout $=b(1)$
return
end

D4.2 4 th order Single Bandpass APS Model.

gubroutine tBPl嗮c (valin, valout, delay, coaft)
integer MNXSIZEAPS, WRVESEC4
paramater (MAXStzEAPS - B, NAVESEC4-8)

C define exieragl variables
double precibion vailn, valout, coeft(MAXSIZEMPS), dalay (MAXSIZEAPS)
C define internal variables
double precision (WAVESEC4), b(شAVESEC4)

C Step 1. assign values from delay stack' ${ }^{\text {a }}$ ' parameters
(7) - delay (3)
a (8) = dalay (4)
C Step 2, call twoport routine to detemine 'b' values for the iwo-port adaptor
C containing the multiplier α held in coef $\mathbb{E}(4)$

C Step 3. assign values from new 'b" and valin parameters
a (3) = delay (1)

- (4) $=$ delay (2)

C Step 4, call tyoport routine to determine 'b' values for the two-por adaptor
C containing themultiplier a held in coeff(3)
call twoport (a (3), (4), coeff(3), b(3), b(4))
C Step 5. assign values from new 'b' and valin parameters
$a(5)=-b(3)$

- $(6)=-b(7)$

C Step 6, call twoport routine to determine ' b ' values for the two-port adaptor
C containing the multiplier x_{2} held in coeff(2)
call twoport (a (5), © (6), comf(2), b(5), b(6))
C Siep 7. assign values from new ' b ' and $v a 1$ in parameters
al1) = valin
-(2) $=b(5)$
C Step 8, call twopore routine to determine ' b ' values for the two-port adaptor
C containing the multiplier x_{1} held in coezf (1)
call twoport (a(1), a(2), coeff(1), b(1), b(2))
C Siep 9, assign output values to delay stack and valout parameters
dalay(1) $=b(2)$
dalay(2) $=b(4)$
dalay(3) $=b(6)$
delay (4) $=b(8)$
valout -b(1)
return
and

D5 Single Bandstop APS Models

D5.1 2nd order Single Bandstop APS Model.

subroutine tBSlsecl(valin, valout, dalay, coeff)
1nteger MAXSIZEAPS, WAVESEC2
parameter (MAXSIZEAPS = 0 , WAVESEC2 - 4)

C define external variables
double precision valin, valout, couff(MAXSIZEAPS), delay(MAXSIZEAPS)
C define internal variables
double preciaion a(WAVESEC2), b(WAVESEC2)

C Step 1, assign values from dulay slack 'a' parameters
a (3) - delay(1)
$a(4)=\operatorname{delay}(2)$
C Step 2, call twoport routine to determine 'b' values for the two-por adaptor
C containing the multiplier a held in coeff(2)
call twoport (a(3), a(4), coeff(2), b(3), b(4))
C Step 3. assign values from new 'b' and valin parameters
a(1) = valin
a(2) $=\mathrm{b}(3)$
C Step 4, call tuoport routine 10 determine ' b ' values for the two-pon adaptor
C containing the multiplier x_{1} held in coeff(1)
call twoport (a\{1), a(2), coeff(1), b(1), b(2))
C Siep 5, assign output values to delay stack and valout parameters
delay(1) = b(2)
delay(2) $=b(4)$
valout = b(1)
return
and

D5.2 4th order Single Bandstop APS Model

subrout ine t日P1 mec2(valin, valout, delay, coeff)
Integer MAXSIZEAPS, WAVESEC4
paramater (MAXSIZEAPS = 8, WAVESECA - 8)
C define external varisbles
double precialon vilin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)
C define internal variablea
double precision a(WAVESEC4), b(WAVESEC4)

C Step 1, assign values from delay stack to 'a' parameters
(7 ($)=\operatorname{del} \mathrm{B} y(3)$
(1) $=$ delay(4)

C Step 2, c舣 twopoxt routine 10 detemine 'b' values for the two-port adaptor
C containing the multiplier a heid in coeff(4)

C Sitep 3. assign values from new 'b' and vain parameters (3) = deley (1)
(4) $=$ delay(2)

C Step 4, call twopore routine to detemine 'b' yalues for the two-port adaptor
C consaining the mulsiplier a held in coefti3)
cill twoport $1 \mathrm{l}(3), \sin (4), \operatorname{coeff}(3), b(3), b(4))$
C Step S, assign values from new 'b' and vailn parameters
a(5) $=b(3)$
a (6) $=b(7)$

C Step 6, call twoport routine to determine 'b' values for the two-por adaptor
C containing the multiplier r_{2} held in coeff (2)
call troport $(a(5), 4(6)$, coeff(2),b(5), b(6))
C Step 7, assign values from new 'b' and valin parameters - (1) = valin -(2) $=b(5)$

C Step 8 , call twoport routine to detemine ' b ' values for the two-port adaptor
C containing the multiplier x_{1} held in coeff\{1\} $\mathrm{c}=11$ twoport $(\mathrm{a}(1), a(2), \operatorname{couf}(1), \mathrm{b}(1), \mathrm{b}(2))$

C Step 9. assign output values to delay slack and valout parameters delay(1) $=b(2)$ delay(2) - b(4) delay $(3)=b(6)$ delay(4) $=b(8)$ valaut $=\mathrm{b}(1)$
return
end

D6 Dual Bandpass APS Models

D6.1 Ath $^{\text {th }}$ order Dual Bandpass APS Model.

subroutine tep2seclivalin, valout, dalay, coaff)
integer MAXSIZEAPS, WAVESEC4
parametar (MAXSIZEAPS = 8, WAVESEC4-8)
C define external variables
double precision valin, valout, coeff (MAXSTZEAPS), delay (MAXSIZEAPS)
C define internal variables
double pracision a (WAVESEC4), b(WAVESECA)
C Siep 1. assign values from delay stack to 'a' parameters
-(7) = dalay(3)
(A) = delay\{4\}

C Step 2, call twoport routine to determine 'b' values for the two-port adaptor
C containing the multiplier β held in coef: (i)
calltwoport (a(7), a(8), cosff(4),b(7),b(8))
C Step 3, assign values from new ' b ' and valin parameters $a(3)=$ daley(1)
a 41 = delay(2)
C Step 4, call twopore routine to determine ' b ' values for the two-port adaptor
C containing the multiplier β held in coeff(3) calltwopozt (a(3), (4), codff(3),b(3), b(4))

C Step 5, assign values from new 'b' and valin parameters
者(5) $=-b(3)$
$-(6)=-b(7)$
C Siep 6. call twopoxt routine 10 determine 'b' values for the two-port adaptor
C containing the multiplier held in coeff(2) call twoport (a (5), © (6), coeff(2), b(5), b(6))

C Step 7. assign values from new 'b' and vailn parameters a(1) = valin
$a(2)=-b(3)$
C Step 8, call twoport routine to determine 'b' values for the two-port adaptor
C containing the multiplier x_{1} held in coeff $\{1\}$
call cwoporif(a), (2), coeff(2),b\{1\},b\{2\}\}
C Step 9. assign output values to delay stack and valout parameters dalay(1) -b\{2]
delay(2) $=b(4)$ delay(3) -b(6) delay (4) = b(8) valout $=b(1)$
return
and

D6.2 8th order Dual Bandpass APS Model.

subroutine t日P2sec 2 (valin, valout, delay, coeff)
integer MAXSIZEAFS, WAVESECB
pazameter (MAXSI2EAPS - 6, WAVESEC8 = 16)
C define external variables
double precigion valin, valour, coeff (MAXSIZEAPS), delay (MAXSIZEAPS)
C define internal variables
double precision a(wavesec8), b(Wavesecy)
C Step 1, assign values from delay stack to 'a' parameters
-(15) - dalay(7)
$a(16)=\operatorname{delay}(8)$
C Step 2, call twopozt routine to determine ' b ' values for the two-port adaptor
C containing the multiplier β held in $c o d f(B)$
call twoport (a\{15),a(16), coeff(9),b(15),b(16))

C Step 3, assign values from delay stack to 'a' parameters
-(11) = delay(5)

- (22) - delay(6)

C Step 4, call twopoze rouline to determine ' b ' values for the two-port adapior
C containing the multiplier β held in coef $E(7)$
call twoport (a (11), a(12), coeff(7), b(11), b(12))
C Step 5, assign values from delay stack to 'a' parameters
a (7) = delay (3)
$a(0)=\operatorname{delay}(4)$
C Step 6, call twoport routine lo determine ' b ' values for the two-port adaptor
C containing the multiplier β held in coeff(6) call twoport (a(7), a(8), coeff(6), b(7), b(a))

C Step 7, assign values from delay stack to 'a' parameters a(3) - delay(1)
$a(4)=\operatorname{delay}(2)$
C Step 8, call twoport routine to determine ' b ' values for the two-port adaptor
C containing the multiplier β heid in c oe $f(5)$
call twoport (a(3), a(4), coeff(5), b\{3),b(4)\}
C Step 9, assign values from new 'b' parameters $a(13)=-b(12\}$
$+(14)=-b(15)$
C Step 10. call twoport routine to determine ' b ' values for the two-port adaptor
C contmining the multiplier a held in coeff (4) call twoport (a(13), a(14), coet(f(4),b(13),b(14))

C Step 11. assign vatues from new 'b' parameters - (5) $=-b(3)$ $-(6)=-b(7)$

C Step 12, call zvoport routine to determine ' b ' values for the two-port adaptor
 call twoport $(a(5)$, (6), coeff $(3), b(5), b(6))$

C Step 13, assign values from new 'b' parameters $a(9)=-b(5)$ $a(10)=-b(13)$

C Step 14, call twoport rautine to determine ' b ' values for the two-port adaptor
C containing the multiplicr x_{2} held in coeft (2) call twoport (a(9), d(10), coff(2), b(9), b(10))

C Step 15. assign values from new 'b' and valin parameters a(1) = valin a(2) $=b(9)$

C Step 16, call twopore routine to determine ' b ' values for the two-port adaptor C containing the multiplier x_{1} held in coeff (1) call twopart (a (1), (2), coafe (1), b(2), b(2))

C Step 17, assign output values to dalay stack and valout parameters
delay(1) $=b(2)$
delay(2) $=b(4)$
delay (3) $=b(6)$
delay (4) $=b(8)$
delay(5) $=\mathrm{b}(10)$
delay $(6)=b(12)$
delay(7) $=\mathrm{b}$ (14)
$\mathrm{delay}(8)=\mathrm{b}(16)$
valout -b(1)
return
end

D 7 Dual Bandstop APS Models

D7.1 $4^{\text {th }}$ order Dual Bandstop APS Model.

subroutine tas2seci (valin, valout, dalay, coeff)
integer MAXSIZEAPS, WAVESEC4
parameter (MAXSIZEAPS = 日, WAVESEC4 - 日)
C define external variables doublepracision valin, valout, comff(MAXSIZEAPS), delay(MAXSIZEAPS)

C define internal variables
double pracision a(wavesect), b(wavesect)
C Step 1, assign values from delay stack to 'a' parameters a(7) = dolay(3)
a(8) = delay (4)
C Step 2, call twoport routine to detemine ' b ' values for the iwo-pon adaptor
C containing the multiplier β held in $\operatorname{cosef}(14)$ call twoport (a(7), a(8), coeff(4), b(7), b(8))

C Step 3, assign values from new 'b' and valin parameters (3) = delay (1)
a(4) = delay (2)
C Step 4. call twoport routine to detemine ' b ' values for the two-pon adaptor C containing the multiplier β held in $C O \in\{$ \{ 3) cs11 twoport (a (3), a(4), coeff(3),b(3),b(4))

C Siep 5, assign values from new 'b' and valin parameters $a(5)=b(3)$
$a(6)=b(7)$
C Step 6, call twopore routine to determine 'b' values for the two-port adaptor
C containing the multiplier a held in cooff(2) call twoport $(a(5), a(6)$, coeff(2), b(5), b(6))

C Step 7, assign values from new ' b ' and valin parameters
a(1) - valin
$a(2)=b(5)$
C Siep 8, call twoport routine to determine ' b ' values for the two-port adapior
C containing the multiplier x_{1} held in couff(1)
call t woport (a(1), a(2), coeff(1), b(1), b(2))
C Step 9. assign output values to dalay sack and valout parameters
delay(1) $=b(2)$
delay(2) $=b(4)$
delay $(3)=b(6)$
delay(4) $=b(8)$
valout -b(l)

end

D7.2 $8^{\text {th }}$ order Dual Bandstop APS Model.

subroutine t日S2sec2(valin, valout, delay, coeff)
Integer MAXSIZEAPS, WAVESECB
parameter (MAXSIZEAPS = 6 , wAVESECB $=16$)
C define external variables
double precigion valin, valout, coeff(mAxSIzEAPS), delay (MAXSIzEAPS)
C define internal variables
double precigion a(wAVESECA), b(WAVESECE)
C Step 1, assign values from delay stack to 'a' parameters $a(15)=$ delay(7) -(16) - dalay(8)

C Step 2, call twoport routine to determine ' b ' values for the two-port adapior
C containing the multiplier β held in coeff(θ) call twoport (a(15), a(16), coutf(8), b(15), b(16))

C Step 3, assign values from dolay stack to 'a' parameters
a(11) = delay(5)
a(12) = dalay (6)
C Step 4, call twoport routine to determine 'b' values for the two-port adaptor
C containing the multiplicr β held in coeff (7)
call twoport (a(11), a(12), coeff(7),b(11),b(12))
C Step 5, assign values from dalay stack to 'a' parameters
$a(7)=$ delay(3)
$a(8)=$ delay(4)
C Step 6, call twoport routine to determine ' b ' values for the two-port adaptor
C containing the multiplier β held in coeff(6)
call twoport (a(7), a(8), coeff $(6), b(7), b(8))$
C Step 7, assign values from dalay stack to 'a' parameters
$a(3)=$ delay(1)
a(4) = delay (2)
C Step 8. call t woport routine 10 determine ' b ' values for the two-port adaptor
C containing the multiplier β held in coeff (5)
call twoport (a(3), a(4), coeff(5),b(3), b(4))
C Step 9, assign values [rom new ' b ' parameters
$a(13)=b\{11\}$
$a(14)=b(15)$
C Step 10, call twoport routine to determine ' b ' values for the two-port adaptor
C containing the multiplier or held in coeff (4)
call twoport (a(13), a(14), co由f(14),b(13),b(14))
C Step 11, assign values from new 'b' parameters
$a(5)=b(3)$
$a(6)=b(7)$
C Step 12, call twoport rousine to detemine ' b ' values for the two-port adaptor
C consaining the multiplier a held in coeff (3)
call twoport (a(5), a(6), coeff (3), b(5), b(6))
C Step 13, assign values from new ' b ' parameters
$a(9)=b(5)$
a(10) $=b(13)$
C Step 14, call twoport routine to determine ' b ' values for the two-port adaptor
C containing the multiplicr x_{2} held in $c o \in f(2)$
call twoport $(a(9), a(10), \operatorname{coeff}(2), b(9), b(10))$
C Step 15, assign values from new ' b ' and valin parameters
$a(1)=v a l i n$
$a(2)=b(9)$
C Step 16. call twoport routine to determine ' b ' values for the two-port adaptor
C containing the multiplier x_{1} held in coeff $\{2\}$
call twoport (a (1), a (2), coeff(1), b(1), b(2))

C Siep 17, assign output values to dalay stack and valout parameters
delay (1) $=b(2)$
delay(2) $=b(4)$
delay (3) $=b(6)$
delay (4) - bic)
delay (5) $=b(10)$
delay (6) $=b(12)$
delay $(7)=b(14)$
dalay(8) $=b(16)$
valout
= b(1)
raturn
and

[^0]: 4 A comparison of a wide range of iransforms is given by Lawsonl20]

[^1]: Preudopastitivity[16] is the WDF equivalent of losslessnes in analogue DTL networks.

[^2]: Limits :-
 $-1<x_{1}<1$

