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Synopsis

A steady increase of research within the field of digital systems has resulted ip a
wide acceptance of the discrete approach to system design. Research has produced
discrete techniques that complement those already in use in the analogue domain
A rapid improvement in the performance and availability of digital hardware has
prompted a move from analogue to digital systems, especially within the field of
signal processing.

This thesis considers the design of Wave Digital Filters (WDF's) to satisfy arbitrary
magnitude and phase specifications with finite wordlength coefficients. It
describes the structures and properties of ladder and lattice WDF's related to linear
phase design through coefficient sensitivity and nonminimum-phase.

The initial part of this thesis concentrates upon the design and comparison of
optimization techniques to satisfy magnitude-only and simultaneous lowpass
frequency specifications upon ladder and lattice WDF's. Experiments confirm the
unsuitability of the ladder WDF for simultaneous designs because of their
minimum-phase characteristics. Successful simultaneous lowpass designs upon
lattice  WDF's were achieved through quasi-Newton algorithms using a dual line
template scheme and a weighted Lp-metric error function

The AIll Pass Sections(APS's) used to construct the lowpass lattice WDF were
investigated and a range of APS's considered that would allow the lattice WDF
structure to satisfy highpass, single bandpass and dual bandpass frequency
specifications. Special case APS's for singleand dual bandpass designs were
generated by applying frequency transformationsto the 1st and 2nd order lowpass
APS's. Equations and characteristics for these APS's are detailed along with a
number of examples of filter deigns.

The final area of this thesis concerns the design of finite wordlcngth solutions to
magnitude-only  and simultaneousfrequency specifications, ranging from
lowpass to dual bandpass type responses. Using the large wordlcngth solutions
generated through the quasi-Newton optimization techniques as starting
coefficients, a Hookc-Jceves direct search algorithm was implemented to generate
finite wordlength solutions.

Techniques detailed in this thesis provide a method for the generation of finite

wordlength coefficients that satisfy arbitrary magnitude-only and simultaneous
frequency specifications through optimization for the lattice WDF's.
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Chapter 1

Introduction

Digital filters may be found in a large range of digital systems, from domestic
compact disc players to missile guidance systems. Although the principles of a
digital filter are common across each application, the properties and performance
of a specific digital filler will depend upon the operation and requirement of the
overall system. A digital filter is designed to alter the frequency components of an
input signal to a given specification. For a number of applications, this
specification is only concerned with the magnitude characteristics of a signal.
However, applications that also require the phase relationship between the
frequency components of a signal to remain undistorted, are constrained to using
digital filters that exhibit a linear phase characteristic.

1.1 Discrete System Properties

Any system may be defined as an operator or transformation, acting upon an
input to produce a corresponding output. The nature of a transformation is
determined by these inputs and outputs. A discrete system uses inputs and outputs
that are a sequence of samples, representing a particular signal. Any discrete
transform would therefore be constrained to produce a discrete output from a
discrete input. An input sequence {.., x(i), x(i+l), x(i+2).... x(j),...} may be considered
as a vector, x, of which the "n,h sample” is x(n). This may be formally written as

x» {x(n) } , -00<n<o0

A digital system would represent these signals through a sequence built up from
samples of the signal taken at a regular time interval. This time interval is known
as the sampling period, T, and is related to the sampling frequency, Fs. by the
equation T = 1/FS. If a sequence represents a time varying signal then it is usual to
define the sequences as having a finite number of elements, N. taken from when

time equals zero. Under these definitions, a sequence can be written as,
x » (x(0), x(1), X(2)...x(n)......x(N-I)) . OsnS N-I

For every input sequence, x. there will be a corresponding output sequence, y. The
operation of a discrete system is therefore to use a set of rules or transformations
to convert an input sequence tothe appropriate output sequence. A
transformation can entail a large number of operations, either acting upon each
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element of a sequence in isolation or about previous input and/or output samples.
Examples of these types of operations are given in Eq.(l.I), where Eq.(l.la) shows
a squaring function, Eq.(l.Ib) generates an output element from a number of
input elements and Eq.(l.Ic) combines both input and output elements to calculate

the next output element.
y(n) = (x(n)2, -00 < n < 00 (1.1a)

So ifx * (.., x(i-1), x(i), x(i+1)....) -> y a {., (x(i-1))2, (x(i))2, (x(i+1))2, ...)

y() = x(n) + x(n-I) - x(n-2) , -00<,<00 (1.1b)
So ifx = {.., x(i-3), x(i-2), x(i-1), x(i), ...) then

y(i-l) = x(i-1) + x(i-2) - x(i-3) and y(i) = x(i) + x(i-1) - x(i-2)

y(n) = x(n+l) - 2 x(n) +4 y(n-1) , -<»<n<o00 (1.1c)
So if x = {.., x(i-), x(i), x(i+1), .J and 'y a {., y(i-1), y(), y(i+l), ..}
then y(i) = x(i+l) - 2 x(i) + 4 y(i-)
If the input represents a sequence of samples separated in time, then the present
output sample, y(i), must correspond in time to the present input sample, x(i). In
this way, a transform is non-causal if the present output. y(i), requires an input

value, x(i-fl), that, as yet, does not exist. Therefore, the transform of Eq.(l.Ic) is

non-causal.
The basic structure of a discrete system is shown by Fig.(1.1), where the output
sequence, y, EQ.(1.2), is related to the input sequence, x, and the transformation, Ol.

r—— 0 oy

Figure 1.1 Discrete system with transformation, O01.
y«*[x] (1.2)

A transformation can be characterised by a number of properties such as
linearity, shift-invariance, stability and causality.
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1.1.1 Linearity

This property describes the relationship between the input signal and the
corresponding output signal. Linearity may be defined using the principles of
superposition and scaling. A system is linear, if a linear combination of input
sequences maps to a linear combination of output sequences. Therefore, if yi(n)
and y2(n) are the responses to input samples X)(n) and X2(n), through a

transformation, 91. respectively, then a system will be linear if and only if
9I[ axj(n) + b X2(n)] = a 9t[ xi<n>] + b 9t[ X2(n)] m a yj(n) + b y2(n)
for arbitrary constants a and b.

1.1.2 Shift*Invariance

This characteristic describes how the input/output relationship varies as the
input sequence is shifted. A system s shift-invariant if the response to a shifted
version of the input sequence, is identical to a shifted version of the response
based upon the unshifted input. This can be described as, if y(n) = 9I[x(n)| then 91 is
shift-invariant when y(n - nQ) = 9t(x(n - no)] for all nD. Where the index n is

associated with time, then shift-invariance is described as time-invariance.

1.1.3 Stability

The stability of a transformation indicates how a system will behave to a given
input. A transformation is stable if it produces a bounded output sequence for
every bounded input sequence. This is referred to as bounded input bounded
output (BIBO) stable.

1.1.4 Causality

Causality indicates whether a transformation can be realised. A causal
transformation is one whose present output depends only on past inputs and
outputs and the present input. Therefore the transformation of Eq.(1.3) is causal

y(m) m {ai x(n) + 82 x(n-I) ¢ 83 x(n-2) +
+ bi y(k) ® b2 y(k-I)+ b3y(k-2) & ...] (1.3)

if and only if m 2 n and m > k, for arbitrary constants a; and bi. i = 1,2, ..
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Transformations that meet the linearity and time-invariance requirements,
satisfy a broad class of Digital Signal Processing(DSP) operations. A digital filter is
an example of a Linear Time-Invariant(LTI) structure and can be described by the
transformation, 91. of Fig.(1.1) and Eqg.(1.2). A transformation can be completely
characterised by its response to the unit impulse sequence. 5. defined as

n

otherwise

The unit impulse response, h, is the output sequence of a system when the input
sequence is the unit impulse, 5. Therefore for a transformation. 91, its unit impulse
response is defined as

h(n) » 9L[ 5(n)] -e0»< Nn<00 (1.4)

Any sequence can be described as a sequence of scaled unit impulses delayed by
one sample period with respect to each other. Applying the properties of LTI
structures, an output sequence, y, can be constructed by summing the system's
scaled wunit impulse responses for each element of the input sequence, x. This
process is described in Eq.(l.S).

n
y(n) « X x<k>h<n-k). -00 < N <00 (1.5)
k-0

Eq.(I.S) represents the convolution of the input signal with the system's unit
impulse response. Using the convolution operator. *, and the wunit impulse
response, h. then the output signal, y, of a system to an input sequence, x. can be
expressed as

y(n) = x(n) * h(n) (1.6)

With the description of a LTI structure given by Eq.(1.6), the basic discrete
structure of Fig.(1.1), can be redrawn for a LTI structure and is illustrated by
Fig.(1.2).

Figure 1.2 Discrete system in terms of the
unit impulse response, h.
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A continuous signal or waveform described in the time domain, may be redefined
in the frequency domain though the Fourier transform. A time domain waveform
and the corresponding frequency domain waveform, form a Fourier transform
pair. The nature and properties of Fourier transform pairs are well known and
can be extended to include discrete signals[3]. Using the Discrete Fourier
Transform(DFT), a time domain sequence, x. may be defined as a series. X, in the

frequency domain.

The discrete frequency domain is commonly known as the z domain, where z is a
complex variable. Conversion of a time domain sequence, x, into a z domain
sequence. X . is performed through the z transform. The general forms of the z
transform and the inverse z transform are given by Eg.(1.7) and Eq.(1.8)

respectively.

(1.7)

(18)

where ¢ represents a circular contour centred at the origin of the z domain, lying

in the region of convergence of the function, X(z).

If the complex variable, z. is defined in its polar form as. z * r eJ®. then when r = 1
or Izl = 1, the z transformation is equal to the DFT. Using this idea, Eq.(1.8) can be
modified to define the inverse z transform when Izl a 1, as
X
(1.9)

The properties of the z transform can be used to describe the function of a discrete
system in the discrete frequency domain. Fig.(1.3) shows a basic discrete system in
terms of the z transforms of an input sequence, x, the output sequence, y. and the

unit impulse response, h.

@) H@) VN

Figure 1.3 General discrete system in the z domain.
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The z transform of the unit impulse response, h, is the transfer function. H(z). The
relationship of the transfer function to the input and output sequences is given
by Eq.(.10).

Y(@) « X(2) H(2) (1.10)

The system equation of Eq.(l.10) is the frequency domain equivalent of the time
domain system equation given by Eq.(1.6). From these equations it can be seen that
multiplication in the frequency domain is equivalent to convolution in the time
domain.

The system equations of Eq.(1.6) and Eq.(I.10) can be rewritten in terms of the
operations that occur within the functions of h and H(z), as Eq.(l.Il) and Eqg.(1.12)
respectively.

n2
y(n) * Y4 i x(n-e) * X biy(n-i)
i-0 i-1

n2 {u
Y@ X bizi * X(z) 2- *i ***
i-0 i-0

ni number of samples in x

n2 number of samples in y

aj arbitrary constants, i = 0. 1. 2..... ni

bi arbitrary constants, i = 1, 2, ti2 and bo -

Equation(l. 11) shows the general difference equation for a discrete system, while
Eq.(1.12) is the equivalent general transfer function. Eq.(I.10) and Egq.(1.12) can
be combined to express the transfer function, H(z), as.

H(z) é('f) (1.13)
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1.2 Phase and Group Delay

Functions defined within the z domain are complex in nature. Therefore any

function, G(z), may be represented as
G(z2) =Re[ G(2) ] + j Im[ G(2) ] (1.14)

or in polar co-ordinates given in Eq.(L.IS).

G(z) = 1G(z) I(cos Q +j sin B (115a)
G(z) = 1G(z) ley* (1.15b)
where
«30)1 =V Re[G(2))2 + ImM[G(,)]2 »id 0 » un >( j

The action of a digital filter is to accept or reject the frequency components of an
input sequence by retaining or reducing the amplitude of each component. A
digital filter will also effect the phase relationship between the frequency
components of the input signal. A typical phase response of a lowpass filter is

shown in Fig.(1.4).

Figure 1.4 Typical lowpass phase response.

Each frequency component of a steady state input sequence passes through a
system in an equal time period, tSys- This system time delay, tsys> will cause each
frequency component of the input signal to experience a different phase change
as it passes through the filter. It can be shown]12,36] that LTI structures do not

effect the shape of a sinusoidal function, only its amplitude and phase.
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Therefore, if an input function of the form
x(t) = C sin(o> t)
was applied to a LTI structure, then the output would be
y(t) = D sin(o) (t - tsys)) = D sin(iot - <

where the ratio of D to C indicates the change in amplitude of the sine function
and the phase difference between the input and output versions of the sine
waveform. For a LTI structure to retain the phase information of an input signal,
the phase relationship between the frequency components of that signal must be
preserved. Consider the input function,

x(t) = Ci sin(coi t) + C2 sin(0>2 t) + C3 sin(0>3 t) (1.16)
and the corresponding output function

y(t) = Di sin(0)1(t-tsys)) + D2 sin(0>2(t-tsys)) + D3 sin((03(t-tsys)) (1.17)

Using the principles of superposition, the effect on each frequency component of
the function in Eg.(1.16) can be considered in isolation and then recombined to
produce Eq.(1.17). The individual input frequency components of Eq.(1.16), along
with their corresponding output components from Eq.(1.17), are illustrated in
Fig.(1.S). Each output frequency component has been delayed by an equal time
delay, tsys. due to the system.
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Figure 1.5 Frequency components (a) ©i, (b) ©2 and (c) ©3 of the

input and output functions given in Eqg.(1.16) and (1.17).
the frequency components of the input
relationship, the
to be in phase.

From Fig.(1.5), it should be noted that all
in phase. For the system to preserve this phase

function are
of the output function are also required

frequency components
From Eq.(1.17), this will only occur when,

©1 t*y, - @2 ttys “ “ 3 ttys m 0 ttys
linearity will be preserved if a phase change, <95 at a frequency

Therefore, phase
is shown in Fig.(1.6).

©i. lies along the straight line, © tSy5. This relationship
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A linear phase LTI structure will therefore have the characteristic
<>W) = totsys

Linear phase can be defined in terms of the phase delay, a(0o>), or the group delay,
t(<0). Phase delay is defined as.

his)

a(a) * - —— A<to< Tl

A structure will therefore exhibit exactly linear phase if a is constant, illustrated
in Fig.(1.6). Group delay is defined as the negative derivative of the phase with
respect to the frequency, so

do (to)

T@) = o

(118)
Using Eq.(1.15b) and Eq.(1.18) the group delay can be expressed in terms of the
transfer function, H(z).

In(H(z) ) = In( IH(2) I) +]j ()

dH@) __ 1 JdjH (2)1 dn)
du IH(z) 1 dto * ] do>
T(o) d F('j(uz)j (119)

Again, if T(0>) is constant, the system will exhibit an exactly linear phase response.
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1.2.1 Characteristics of Linear Phase

For exactly linear phase,
4w a -at) -icStoSx

where a is a constant phase delay. To determine the nature of a transfer function
that satisfies this condition, H(z) needs to be expressed in terms of a. This can be
achieved by combining Eq.(1.15a) and Eq.(1.7).
N
Hei“) = £ h(") eJ*n = [ H(e*) | (cos(aoi) + j sin(aco) ) (1.20)
n*l

Taking the real and imaginary parts of Eq.(1.20),

N
Re[ H(ei*) ] m IHe>*) Icos(aco) = ~ h(n) cos(con)

N

Im[ H(ei“) ) = IH(ej*) I'sin(aco) = £ h<n>sin(a>n)
=1
then !

sin(ao))
cos(au)

and where a * 0, then
N

y h(n) sin[(a -n)to) = 0 (121)

Therefore, in order for a system described by h to possess a constant phase delay,
or exactly linear phase. Eq.(1.21) must be satisfied for all of the sequence n = 1, N.

A possible solution to this problem is.

a * ~Y~ and h(n) m h(N-n) 1 $nS N (1.22)

For the unit impulse response to satisfy Eq.(1.22), it must be symmetrical about the
sample (N+1)/2 or a. The term, a, in Eq.(1.22) represents the constant angle of the
phase response or the phase delay. Consider a typical impulse response, shown by
Fig.(1.7), which has an odd number of samples. N, and which satisfies Eq.(1.22).
The phase delay, a, will be an integer and the symmetry associated with linear

phase, will occur around a sample point equal to the value of a.
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i centre of symmetry

Figure 1.7 Symmetric impulse response with an odd number of samples.

If the number of samples of the unit impulse response is even, then a is no longer
an integer and the symmetry point for a linear phase response will exist between
two sample points. This is illustrated by Fig.(1.8).

Figure 1.8 Symmetric impulse response with an even number of samples.

The impulse response symmetry, indicated by Fig.(1.7) and Fig.(1.8), relates to a
condition when the function exhibits both constant phase delay and constant
group delay. However, a full definition of the transfer function,

H(eJ-) - H*(ei°) ei*®> or H(ei®) - =+ |H(ei«*) | Clo<e>

shows that the impulse response will still possess linear phase if it exhibits either
symmetry or anti-symmetry. The anti-symmetry case relates to a ‘'piece-wise
linear' function, which has constant group delay but not constant phase delay. In
most practical design cases, phase delay is of no interest. Where the filter's
impulse response cannot be defined by a finite number of samples, exactly linear
phase is impossible to obtain and the best that can be achieved is approximately
linear phase.
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Using the information about the wunit impulse response symmetry, the position of
the poles and zeros of a function exhibiting phase linearity can be determined.
The position and relationship of the zeros of an exactly linear phase transfer
function can be observed by considering a FIR filter. In order to exhibit linear
phase a transfer function. H(z), must possess a symmetry or anti-symmetry of its

unit impulse response, so

N
H@z) = X h(°) z'n = h(l) + h(2) z"1 + h(3) z-2 + ...
n=1

+ 1(3)2-(N%2) £ h(2)z*(N-») £ h(1)z-N

The plus sign corresponds to a symmetric response, while the minus sign indicates
anti-symmetry. Because of the symmetry of the wunit impulse response, the
transfer function. H(z) and its inverse, H(z-') may be related by Eq.(1.23)

H(r') - 1 xN H(D <1.23)

Eq.(1.23) shows that the functions H(z) and H(z'*) are identical, except for a delay of
N samples and + 1 factor. Under these conditions the two functions must posses
identical zeros. Therefore to satisfy Eq.(1.23), the zeros of an exactly linear phase
system must exist in sets that comprise a zero and its reciprocal about the unit

circle, so H(z‘*) will possess the same set of zeros.

This property can be illustrated if H(z) has a factor. Hj(z), which is a complex
conjugate zero pair at r exJ® when r * 1 and 0 * 0 or n, shown in Fig.(1.9) by points
A and C. The function H(z-) will have a corresponding function Hi(z-1). with a
complex conjugate zero pair at 1/r e*.I*, shown by points B and D in Fig.(1.9). To
satisfy EQ.(1.23), H(z) and H(z-") must possess the same zeros and so both functions
must contain factors to produce the zeros at A. B. C and O of Fig.(1.9). If a factor
Hj(z) produces the zeros B and D, then Hj(z") will generate the zeros A and C.
Therefore Eq.(1.23) will only be satisfied if H(z) contains both factors Hj(z) and
Hj(z), where Hj(z) = 1/Hj(z). An exactly linear transfer function must therefore

contain zeros that exist in reciprocal complex conjugate groups.
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Figure 1.9 Reciprocal complex conjugate zero positions for linear phase.

Fig.(1.10) shows the typical zero positions of linear phase FIR filters for the four
possible cases of linear phase design, odd or even filter order, N, with symmetrical
or anti-symmetrical unit impulse responses.

(©) (d)
Figure 1.10 Zero positions for the four possible exactly linear phase
FIR design cases; (a) odd symmetric, (b) even symmetric, (c) odd anti-
symmetric and (d) even anti-symmetric.
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1.2.2 Minimum- and Nonminimum-Phase

Fig.(1.10) indicates the relationship between zeros for exactly linear phase FIR
structures. All linear phase systems should possess zeros in these types of
positions, whether FIR or IIR in nature. IIR structures also possess poles within
their transfer functions that constrain the possible positions for its zeros. For
some IIR structures these constraints make it impossible to place zeros in
reciprocal complex conjugate sets. The concept of minimum- and nonminimum-
phase can be applied to a structure to determine if its zeros can be arranged into
required positions. A formal definition of minimum-phase can be generated
through the Hilbert Transform[29], or for discrete systems, the Discrete Hilbert
Transform(DHT).

The DHT provides a method of relating the real part of a frequency response in the
discrete domain to its imaginary part and vice versa. These two relationships form

a DHT pair. If the z transform, X(z), of a causal sequence x(n), is described as
X(ei-) « XR(ei-) + j Xi(ej-)
then it has the Hilbert transform pair
n

xIW“>=~ P JX r(»>CO. (~d *
-1t

xrfw) - X0 - 2 ftxi<«») ot

where P denotes the Cauchy principle value of the integral! 18].

For a system. H(ej“), to exhibit minimum-phase then the components of its transfer
functions, In[IH(ei“)l] and arg[H(ei“)]. must form a Hilbert transform pair. This may

be re-expressed as
J

In| IHE* 1 -t(0) - jL P\]argl H(.J-) Jcol ~~d*
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and
it

argt H(eJ-) ]= £ P \] In[ IH(e*)l ] col
-1t
where tf(z) = In(H(z)) and li is the Fourier transform pair of ft(z). Alternatively a
system, H(z), will exhibit minimum-phase if a causal stable inverse system, H**(z),
exists such that
H(z)H 'U) » 1

Since H-'(z) = 1/H(z), the transfer function, H(z), must have all its poles and zeros

inside the unit circle in order for a stable and causal inverse system to exist.

The requirements for minimum-phase are contrary to those for linear phase and
therefore, an exactly linear phase system requires an overall nonminimum-phase
structure. This however does not eliminate minimum-phase structures from linear
phase design as any rational function, G(z), may be expressed in the form

G(z) = Gniin(z) Gap(z)

where Gmin(z) < a minimum-phase function and Gap(z) is an all-pass function for
which has IGap(ej“)l - 1 for all <o.

The nature of Gap(z) is nonminimum-phase and the poles and zeros of this
function can be used to produce an overall function that meets the linear phase
requirements. A minimum-phase function can therefore be used in a linear phase
design provided the overall phase response is modified by a phase equaliser.
Gap(z). Linear phase designs through phase equalisation are discussed in Chapter
2.

1.3 Finite Wordlength Effects

A large amount of research has been directed at the effects of finite wordlength
on digital systems, especially for digital filters. Initial work by Jackson(14]
outlined a systematic approach to these finite wordlength effects by determining
the relationship between roundoff noise and dynamic range. This approach of
using uncorrelated noise sources to model rounding errors and other finite
wordlength effects is detailed in a number of DSP text books[4,22,29,33|.
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Finite wordlength effects may be collected under four main headings;

(i)

(ii)

(iii)

(iv)

Conversion of an analogue signal to and from a digital equivalent.

This is wusually known as conversion noise and will depend upon the
quantization step, being the difference between consecutive
representable numbers and the type of quantization wused; rounding,
value truncation or magnitude truncation.

Uncorrelatcd roundoff noise.

This is a generic term for the noise introduced to a signal within a Filter
due to arithmetic operations. The main calculation to cause this effect is
multiplication. The bit length to accurately represent the product of two
b bit numbers is 2b bits. This 2b bit number cannot be represented
within a system limited to b bits so the number has to be reduced either
through rounding or truncation. This introduces a certain amount of
uncorrelated noise into the operation of the filter. The variance of this
uncorrelatcd noise source will depend upon the type of arithmetic used,
floating or fixed point, the signal limitation scheme and the type of
number system used; I's or 2’s complement or signed-magnitude.

Inaccuracies in the filter response.

This noise source results from an inability to accurately reproduce a
filter's frequency response using a finite number of bits for the filter
coefficients. This results in a non-ideal transfer function. This effect
can be offset if filter coefficients are designed to a finite wordlength,
resulting in an acceptable Finite wordlength transfer function.

Correlated roundoff noise (limit cycles).

Two types of correlated roundoff noiseor parasitic oscillation exist,
small scale (granular) and large scale (overflow). These effects are most
apparent in fixed point recursive digital filters, where internal
rounding errors for a constant input are  highly correlated.
Quantization causes the non-linear mapping of the lowest order bits of
an internal signal under constant input. This generates limit cycles. For
a recursive filter using rounding this means that there is no unique
steady state output for a constant input. A so called deadband region
exists containing a number of steady state outputs, the precise one
being used depends on where the boundary of the dead band region was

encountered.
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Limit cycles are dependent upon a number of factors, mainly the filter realisation
or structure and the quantization step. Signal quantization through rounding is
most susceptible to limit cycle effects. Magnitude truncation provides a better
alternative quantization procedure, however, it does not always eliminate
deadband limit cycles.

Factors (ii)-(iv) are the only finite wordlength effects that relate directly to the
digital filter's operation. In turn, each of these effects depends on the filter's
structure and configuration. A great deal of work has been directed at ways to
implement a given transfer function. H(z). Each digital filter structure proposed
corresponds to a different method of expressing the transfer function. A general
function, G(z), may be divided into smaller functions, Gj(z) and Hj(z), such the
their combination equals G(z). The general form for the combination of these

functions, or a Lagrange structure, is shown in Fig.(1.11).

Figure 1.11 General Lagrange Structure.
The overall transfer function of the structure in Fig.(1.11) is,

G(2) = Gi(z) G2(z) G3U) ( Hi(z) + H2U) + H3U))

The Gi(z) functions of Fig.(I.1l) arc connected in cascade, while the Hi(z) functions
are connected in parallel. Each modification of the Lagrange structure will
possess the same performance under large accuracy calculations. It is their finite
wordlength  performance, however, which is of interest. The form of the
individual functions Gj(z) and Hi(z) is arbitrary, and a wide range of combinations
exists for a given transfer function. A desire to analyse the overall structure for
fi
functions. These individual functions tend to be simple to analyse, having a first

te wordlength effects prompts to a break down of a response into small regular

or second order nature.
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A cascade structure may be represented as

1+ aij z'1l +a2iz'2

and H2I@ = L b ael 4 b2i 2

The cascade of these sections also allows them to be defined in terms of functions
which represent the numerators. Nj(z) and denominators. Di(z). of each section, so

that H(z) could be expressed as

(1.24)

Eq.(1.24) allows a cascaded structure to be constructed from first and second order

sections with arbitrary numerator and denominator orderings and pairings.

A structure which has a parallel form, may be expressed as,

where Hj(z) is either a first or second order section of the form.

The noise properties of these 1st and 2nd order sections are relatively easy to
analyse[29] and the overall performance of filter structures using these elements
can be determined. An important observation from this analysis is that the order
and pairing of cascaded second order sections can greatly effect the overall finite
wordlength performance, because of overflow within the structure.

A large number of filter structures exist, each using a derivative of the general
Lagrange structure, including the Direct forms that implement a transfer
function without partitioning it into smaller functions. A large amount of
research has been directed at analysing and comparing these various structures
and their performance under finite wordlength conditions[23,16,5). The main
thrust of this research was to determine which properties of each structure
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improved the finite wordlength performance. A property suggested to measure
finite wordlength performance concerned the sensitivity of the structure to
changes in its parameters. Bode defined a sensitivity function, S, to determine this
property by measuring how a function,F, changes with respect to one of its
parameters, x. This property, defined in Eq.(1.25), s concerned with small
parameter changes and as a result, small scale sensitivities.

F dF
SFx) - s =p ¢

(1.23)
Analogue structures known to possess low parameter sensitivity include Doubly
Terminated Lossless(DTL) networks. These structures suffer only a small amount of
distortion of their magnitude resppnses as the components' values are varied. This
property is related to the ability of the DTL structure to deliver maximum power at

points across its passband.

At these points of Maximum Available Power(MAP), the derivatives of the
attenuation with respect to reactive components within the structure are zero.
Therefore, at these MAP points the magnitude sensitivity to reactive components
is zero and because the sensitivity is a smooth continuous function, the sensitivity
in the region around these points is also likely to be low. This effect, together with
a mathematical explanation, has been referred to as Orchard's
argument[26,27,37.24.25].

In an attempt to reproduce the properties of the analogue DTL network in a digital
circuit, Fettweis investigated a number of methods of converting a DTL structure
into the discrete domain. The method adopted by Fettweis concentrated upon
creating digital equivalents of analogue components such as an inductor, resistor,
voltage source and transformer. First by describing the analogue components in
terms of wave parameters and then converting them into the digital domain. A
digital equivalent of the DTL structure was then constructed using these digital

components

The resulting Wave Digital Filters(WDF’s) has been widely researched and have
been shown to possess a superior roundoff noise performance compared to
existing digital filter structures[17,38,13,8,42]. The sensitivities of WDF's and their
reference analogue DTL filters have also been compared[43,28] and shown to bear
a close correlation. Further work by Fettweis[7,6,10.2] and Jackson[13) has
advanced a relationship between roundoff noise and attenuation coefficient

sensitivity.
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An alternative approach suggested by Vaidyanathan and Mitra[39,40,411J
concerned deriving digital structures independent of analogue equivalents. The
objective of this approach was to define a class of function based on the
requirements for low coefficient sensitivity and then derive structures based
upon these functions. The result consisted of two-port chain matrices which
describing Lossless Bounded Real(LBR) functions. A WDF structure satisfies a LBR
function and the results from the two design methods are similar in nature.

A comparison of various filter structures by Matharu[21] under a number of finite
wordlength effects, has also been carried out. The structures under consideration
were the ladder WDF, lattice WDF, unit element WDF, Gray-Markel lattice, direct
form 1 and II. cascaded and parallel 2nd order sections. The results suggest that
choice of filter structure is not clear cut and is dependant upon the filter
arithmetic and numbering system. However, in all tests, the performance of WDF

structures placed them at or near the top of each comparison list.
1.4 Wave Digital Filter (WDF)

1.4.1 Circuit Descriptions

ts

Using a DTL analogue filter as a reference, Fettweis broke the filter into
constituent elements and modelled the circuit as a connection of one-port blocks.
A digital equivalent of each analogue component was then generated and a
structure constructed using these digital elements. Fettweis tried a number of
different transforms to produce digital filters that retained the properties of their
references. A successful transform adopted by Fettweis was to replace the voltage
and current description of an element with an incident and reflected voltage wave
s given

notation. This notation is illustrated in Fig.(1.12) and their relationship
by Eq.(1.26).
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(1.26)

In the equations of Eq.(1.26), the parameter. A, represents the incident voltage
wave, B the reflected voltage wave and R the port resistance of the circuit.
Application of this wave notation allows analogue components to be described in
terms of incident and reflected waves. Applying the z transform to analogue
component described in terms of wave parameters, generates a set of digital
elements that can be wused to construct digital structures that possess the

properties of their DTL reference networks.

Consider the one-port element in Fig.(1.13). Using Eq.(1.26) the reflected voltage
wave, B, can be described in terms of the incident voltage wave. A, port resistance.

R, and branch impedance, Z. This relationship is given in Eq.(1.27).

Figure 1.13 One-port circuit of impedance, Z, in terms of
voltage and current and incident and reflected voltage waves.

A =1(Z +R) _ L RZA_RI
B=1(z-R) or B_AL(Z+R)J (1.27)

If the one-port branch impedance. Z, represents a capacitor, C, then

ro»c - *)i
Jc u,u ' L(1/«C * R)J
The bilinear transform is defined as
2('m) (129)
T («oome)

where T is the sampling period.

Combining Eg.(1.28) and (1.29) then

(T/2C - R) + z-»(T/2C & R)1

B=A
(TI2C + R) + 2 I(T/2C - R)J

The factor 2/T is a scalar that varies the value of the capacitor for different

sampling frequencies.
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If the capacitance value is redefined as

then

b= a I/C -R) ¢ z=-'NT + ri-
(I/C; + R) + z-*(1/C "+ R).

If the port resistance, R, is set so R m 1/C, then
B = Az*

Therefore the digital equivalent of a capacitor, C. under the wave parameter
method suggested by Fettweis, is a unit delay, with a port resistance, T/2C. A list of
digital building blocks and their equations is given in a review paper by
Fettweis[l 1]. The port resistance places a constraint upon how the digital elements
may be connected. To use an element within a circuit, the port resistance of
connected one-ports must be identical. However, the port resistance is predefined
by the modelled component value. To eliminate this problem, Fettweis also created
adaptors to equalise the port resistance between two or more dissimilar one-port
elements.

Figure 1.14 General DTL network with series capacitor, C.

Consider the series capacitor of the DTL network shown in Fig.(l.14). To model this
component in a WDF, a simple delay is required. However, to use this element it
needs to be connected to the rest of the network. To this end a 3-port series adapter
is required and is shown in Fig.(I.1S). The general equations describing a series
connected capacitor, expressed in its wave chain matrix format, is given by
£q.(1.S0).

Figure 1.15 WDF including 3-port series adapter to model a capacitor, C.
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A f ro<l oel'ki-ri)) (L-Y1-Yi = 2-7(1-Y )1 ‘A3
(3-Ti-Ta)o-i-1 (2-Y.-Yi)(1-2-1)
O r, ma-"d-Yi Yi)) UYL - 2%

LbiJ L (2-y,-t2)(1-2-2) <2-v|-v2)(1-2-1)  J Lb 3]

It should be noted that the port resistance R2. of Fig.(l.IS), equals T/2C, while Ri
and R3 will be set by the surrounding circuit. When the circuit is designed,
however, the actual values of Ri or R3 may not be pre-set and could be chosen
arbitrarily. In this case, these values may be used to eliminate yi or 72- Three

cases arise for this 3-port series adapter.

ifyl * 1.Y2* 1and R2 » 1/C. then yw=R"+ R v+ 1/c, . v- 12
or

ifYi - land R2 - 1/C. then R1mR3+ 1/C. Ri

m R3+ 1/C

or

) . Ri

ifY2m 1land R2 * 1/C. then R3 - Rl ¢ 1/C. TL m Ri e 1/C-
where c =%

Using this technique, the overall complexity of a WDF circuit may be reduced.
chain matrices for the design cases when vyj = 1orY2 = 1 can be determined
substitution into Eq.(1.30). A detailed explanation of these design procedures is
given in the review paper by Fettweis. The final description of the one-port
capacitor element and a 3-port series adapter, given by Eq.(1.30), was in the form
of the wave chain matrix. Therefore, the original one-port approach was

implemented within the circuit as a two-port element.

The necessity of using a separate adapter circuit can be avoided if a two-port
approach is used from the start. This technique was described by Lawson[19]. An
impedance. Z, illustrated by Fig.(1.16), is considered in terms of its chain matrix,
shown by Eq.(1.31) and through the voltage wave notation, a digital equivalent
can be derived and is given by Eq.(1.32).
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(> (b)
Figure 1.16 Two-port circuit of series impedance, Z; (a)
voltage and current parameters, (b) voltage wave parameters.

[;/m 65| c[;,’] (131

[em ][] —
therefore

(1.32)

Consider again, a series capacitor. C. The chain matrix for this analogue
component in terms of s, is given by Eqg.(1.33). It may be converted into a digital
wave chain matrix equivalent, shown by Eq.(1.34), using the voltage wave

descriptions and the bilinear transform of Egq.(1.29).

(1.33)
"Af fPi-0 -P1+P2) I- 1-Bl x'1 1 A
(1 ep2)(i -« (1 & P2)(1 = =)
(134)
01 - z*1 (1 -01+02) -02 z-1
Lb.J L (1l s p2)(i (i +p2)(i -i-i) J Lb2

Again, as with the one-port and adapter method, the selection of Rj or R2 of
Fig.(1.16), may not be pre-set by the surrounding circuit and either Pi or P2 may

be eliminated.
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provides three design options

if Ri and R2 are . R2 + R1 - 1/C* R2 - R1 - 1/C’
independent then Pi mR2 + Rj + 1/C* * P2 ., R2 + Ri + 1l/C’
if R2 =Rj + 1/C then i S P2 =0
if Ri = R2 + 1/C then i = lep2 or?

= Pi = pz. PZu1hcr2

where C = 2C/T and T is the sampling period. A full description of these design
procedures and their effects on realisation are discussed in Chapter 3.

Both the one-port and two-port design techniques rely upon the use of voltage
wave notation and the bilinear transform. Although this method is widely used, it
is not the only method to provide a viable solution. Other methods were
investigated by Lawson, who proposed a general WDF concept using a chain

matrix of the form

[:;]-m-i;
where P and Q are 2 by 2 matrices, that represent a number of different

transformations”, including voltage, current and power waves

1.4.2 Structures

DTL networks, which form the reference filters for WDF designs, may be defined
within two groups; ladder and lattice structures. The general DTL ladder network,
shown by Fig.(1.17), is widely used in analogue circuits for radio and television as
no element is more than one node away from the ground line and is therefore less
susceptible to stray capacitance.

Figure 1.17 General Ladder Network.

* A comparison of a wide range of transforms is given by Lawson[20]
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The single input-output path through a ladder circuit determines that the
structure has a minimum-phase characteristic.

A general lattice circuit, shown by Fig.(1.18), possesses more than one input-
output path, and may therefore be classed as having a nonminimum-phase
characteristic. The lattice structure is more generally reduced to a balanced
symmetric form, where Za m Zc and Zb = Zj.

Figure 1.18 General Lattice Network.

Both ladder and lattice structures can be used as references for WDF's. These
designs can be approached through the one or two-port techniques by reducing
each impedance, Zz\, into a simple element, like a capacitor or an inductor, and

then generating the appropriatt WDF component. The symmetrical lattice

structure, shown in Fig.(1.19), because of its nonminimum-phase characteristic, is
ideal for implementing allpass functions and is widely used as phase equalisers in
analogue designs. Lattice structures present practical design problems, however,
because the pairs of branch impedances have to be matched within a high
tolerance. This is a difficult task as analogue components are hard to adjust, and
age and cycle with temperature. These effects are not evident in digital designs

and the lattice WDF has been the subject of a great deal of research.



Chapter 1. Introduction page 1/28

The symmetrical lattice of Fig.(1.19), is given in terms of its canonic impedances.
Za and Zb- If the corresponding canonic reflectances for a symmetric WDF lattice
are defined as S' and S", then

Zh *R
‘Z, ¢+ R

where R, because the structure is symmetrical, represents the port resistance of
each end of the lattice. Using these canonic reflectances, a general WDF lattice
structure can be constructed and is shown by Fig.(1.20).

Figure 1.20 General discrete symmetrical lattice with
canonic reflectances.

If the second input. A2. is set to zero and Bi or B2 ignored, then this lattice
structure can be simplified to produce a structure shown by Fig.(1.21). The
transfer function of this structure will then be the sum or difference of the
canonic reflectances.

s"+ S
B1

B2

Figure 1.21 Simplified symmetrical lattice with
canonic reflectances.

The actual implementation of S' and S" is a design parameter. Bartlett! 12] devised a
method of generating a lattice structure from a symmetric ladder network. The
resulting lattice branches were cascade in structure, terminated by an open or
short circuit. The functions S' and S" can be broken into a large number cascaded
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or parallel functions, typically first or second order sections. These sections may
be designed through the one or two-port techniques.

All the structures considered have been derived from Iumped element models. A
WDF equivalent of distributed component structure has also been derived. The unit
element is based upon a section of a transmission line of characteristic impedance,
Z0. Using the two-port approach, these unit element sections can be connected in
cascade to produce a unit element WDF. One of the benefits of using distributed
element models, is that the filter retains its analogue magnitude and phase
relationships through an analogue to digital transformation. Thus, unit element
filters designed to posses linear phase in the analogue domain also exhibits linear
phase in the digital domain. This property allows the work by Rhodes[30,31,32],
Scanlan[34,35] and Abele[l] into linear phase microwave filters to be applied to
the design of linear phase unit element WDF's.

1.5 Research Objectives

The main purpose of this research was to investigate digital filters that could be
used within a bcamforming system. Any beamforming application, whether radar
or sonar, consists of a fixed transmitter and receiver array. The phase of the
signal transmitted from the array is varied so that the beam is swept over an angle
about the array. Consequently, the range and bearing information of any signal
received by the array will be contained within both the magnitude and phase

frequency responses.

Therefore, any digital filteF designed for this application must retain the phase
information of the signal through any filtering. Current systems perform this
function with an exactly linear phase FIR filter. The FIR filter requires a larger
filter order to meet a magnitude-only specification than an IIR filter. In many
practical design cases this difference in filter order, despite additions to an IIR

filter order to achieve approximately linear phase, is still appreciable

This large difference prompted the research to be concentrated on IR filters
which can be designed to have approximately linear phase to within a given
specified tolerance. Beamforming application operate in real-time so speed is also
an important factor. This narrowed the research to filter structures that exhibit
an efficient use of hardware components, like multipliers and adders, as well as
demonstrating small susceptibility to finite wordlength effects.
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As mentioned in previoussections of this Chapter, the WDF offers a possible
solution to this problem. At the start of the research project, no work had been
published into the field of linear phase WDF's. The main objective of this thesis is
to investigate approximately linear phase WDF's, their structures, designs and

limitations.

The final stage of research is to generate finite wordlength linear phase WDF's to
meet dual bandpass specifications and implement the resulting designs. This was
to be either through existing DSP chips or some dedicated hardware design.

1.6 Summary

This Chapter has provided a brief introduction and review of the theory behind
digital filter structures and the effects of finite wordlengths. Coefficient
sensitivity has been introduced in relation to finite wordlength performance and
the WDF. The characteristics of exactly linear phase have also been illustrated and

related to the properties of nonminimum-phase structures.

The nature of FIR and HR filter structures has been discussed in terms of linear
phase. FIR filters possess a non-recursive structure and can therefore be designed
to exhibit exactly linear phase. Recursive HR filters, however, can only possess
approximately linear phase. This thesis is concerned with WDF structures. WDF’s
are recursive in nature and can therefore only exhibit approximately linear
phase. For the remainder of this thesis the term linear phase will represent
approximately linear phase. If the phase response is exactly linear it will be stated
as such.

Finally WDF structures and the design methodologies behind the one and two-port
approaches, have been introduced. The purpose of this thesis is to examine the
design options for linear phase WDF structures and procedures for their design.

Chapter 2 will develop and discuss a large number of these design options, while
Chapter 3 and 4 will relate these design options to ladder and lattice WDF
structures. Chapter 5 will outline the frequency translation techniques required
to generate a dual bandpass response, while Chapter 6 discusses the design
procedures and effects of finite wordlength lattice WDF's. A practical design
example required to meet a linear phase dual bandpass filter specification under
finite wordlength conditions is illustrated in Chapter 7. The discussion and
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conclusions of the thesis are provided in Chapter 8, along with a number of
suggestions for further work.
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Chapter 2

Design Approaches
2.1 Existing Methods

The first step in the design of a digital filter is to determine the specification, not
just in terms of its frequency response, but also implementation and operational
performance. These performance criteria become important when high sampling
rates and short wordlength are required. WDF's, as mentioned in the previous
Chapter, are considered to possess good operational performance under finite
wordlength conditions. These filters are recursive in nature and cannot be
designed tomeet a magnitude and exactly linear phase specification
simultaneously. FIR filters, although their non-recursive nature requires a larger
filter order to fulfil a given magnitude specification than a recursive filter, can
be designed to exhibit simultaneous magnitude and exactly linear phase responses.

Therefore the first design decision is based upon the tolerance placed upon the
phase linearity. For a system requiring an exactly linear phase response, the FIR
filter is the only solution. A moregeneral phase linearity tolerance is usually

expressed as a percentage deviation of the group delay about a nominal value. For
wider linearity tolerances, recursive filter designs may be more efficient.
However, as the tolerance becomes narrower, the difference in orders between
these twofilter types will decrease, until the required recursive filter order is
higher than the non-recursive case. This places an upper limit on the efficiency
and practically of recursive filters for simultaneous magnitude and linear phase

designs.

There are three basic decisions in the design of a digital filter :-

(i) What filter structure ?
This decision concerns the nature of the filter, recursive or non-
recursive and how the filter is to be constructed. For recursive filters,
construction methods vary from the direct form, through cascaded or
parallel second order sections, to WDF structures.
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(ii) In which domain is the filter to be designed and simulated ?

Here the domain is a general description of a number of design
approaches, such as design in frequency or time domains, or using
discrete or continuous parameters. Modelling a Filter could be fixed to
finite wordlengths or allowed to use the full accuracy of the modelling
system, producing an ‘infinite’ wordlength situation. Other factors in
this domain decision concern how to represent the filter's response in
each domain, as magnitude and phase frequency responses, pole/zero
positions or as a time domain waveform.

(iii) How to calculate the filter parameters ?
For a digital filter, this decision concerns the filter's coefficient values.
Methods include using analytical formulae based upon polynomials or
through optimization techniques, such as the Remez exchange
algorithm wused for linear phase FIR filter designs.

It should be noted that each decision is related and dependant upon the filter
specification. The elements of each of these decisions are discussed in the
following sections.

2.2 Filter Structures

Classically, digital filter structures have been described as recursive or non-

recursive. A better definition when dealing with linear phase designs iswhether

thestructures exhibit minimum- or nonminimum-phase characteristics. This type
of classification presents three options for the choice of structure for a filter to

meet a simultaneous magnitude and phase specification :-

(i) Minimum-phase structure.
(ii) Connected minimum-phase andnonminimum-phase structures.
(iii) Nonminimum-phase structure.

Carlin[6,7]considered the use of a minimum-phase structure, being a DTL ladder
network, to meet a simultaneous magnitude and phase specification. The
conclusions of this work were that for minimum-phase structures the magnitude
and phase requirements form reciprocal properties, such that one property had to
be traded off against the other. Results showed a tight compromise between the
two halves of the specification.

A great deal of work has been directed at the design of phase equalisers for
analogue circuits. This technique, as mentioned in Chapter 1. consists of
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connecting a minimum-phase structure with a transfer function. Gmin(z). to a
nonminimum-phase structure, which has a unity magnitude characteristic or an
allpass nature. The phase of the nonminimum-phase circuit would be varied to
linearize that of the minimum-phase structure. The overall transfer function,
G(z), given by

G(z) = Gmin(z) Gap(z)

has a magnitude characteristic provided by Gmjn(z) and a linear phase frequency

response produced through the allpass equaliser transfer function, Gap(z).

Deczky[13,14) and Vlach[48] extended this work into the digital domain to consider
recursive cascaded second order sections. This type of section, through
appropriate parameter values, can exhibit a minimum- or nonminimum-phase
characteristic. Deczky grouped these ideas into a computer program to design
digital filters based on cascaded second order sections to meet specifications
simultaneous or through phase equalisation. Another structure that satisfies a
simultaneous magnitude and phase specification is the FIR filter. The exactly
linear phase FIR structure, shown byFig.(2.1), has a non-recursive and

nonminimum-phase characteristic.

The performance of this structure is determined by a large number of constraints
that are imposed by the linear phase requirement. These constraints lead to a high
order filter. The most notable constraint is that the structure exhibits exactly
linear phase across all the frequency band. As a result, some of the degrees of
freedom of the structure are used to enforce linear phase across the stopband of
the Filter.

If this constraint across the stopband can be removed, then the resulting FIR
Alter should have a lower order. This idea was proposed by Leeb and Henk[30]. The
authors suggested that linear phase FIR filters and minimum-phase structures
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represent the extreme ends of possible solutions to a simultaneous magnitude and
phase specification. The objective of their research was to produce a “nearly
linear phase” FIR filter by moving the zeros from their reciprocal complex
conjugate positions. The resulting filters would then exhibit linear phase across
their pass bands only. As predicted, these filters required a lower order to meet the
same specification than the exactly linear phase equivalents.

The next step in considering a filter structure is how to implement the various
minimum- and nonminimum-phase circuits. For a digital filter the finite
wordlength performance is of prime importance. To take advantage of structures
known to posses good finite wordlength performance, filter designs should be
based on WDF's. The main minimum-phase WDF structure is derived from an
analogue DTL ladder network. The equivalent ladder WDF can be produced using
the one or two port techniques discussed in Chapter 1. An example of a DTL ladder
network is given in Fig.(2.2)(a), with the equivalent one-port WDF ladder circuit
in Fig.(2.2)(b) and two-port model in Fig.(2.2)(c).

R

(v

X o X o X

(c)
Figure 2.2 (a) 7th order DTL ladder network, with (b) one-port
WDF equivalent and (c) two-port WDF model.

3

The main nonminimum-phase WDF structure is based upon a DTL lattice network.
A digital lattice may be described in terms of its canonic impedances. The
equivalent canonic reflectances for the WDF model may be derived through the
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one or two port techniques. This process can be illustrated by the DTL lattice
structure of Fig.(2.3)(a) which acts as a reference for the one-port equivalent of
Fig.(2.3)(b) and two-port circuit of Fig.(2.3)(c).

(b) (c)
Figure 2.3 (a) Symmetric DTL lattice structure showing canonic
impedances, with (b) one-port equivalent WDF and (c) two-port
equivalent WDF in terms of canonic reflectances.

The lattice structure represents a parallel connection of functions. These
functions are allpass in nature and it is their combination which produces an
overall transfer function that is not allpass. Although the lattice structure only
contains two branches, more allpass functions can be added in parallel, to form
the general polyphase systems[37,11,12,47] used for interpolation and decimation.

The more general description of a lattice WDF, shown by Fig.(2.4), is in terms of
cascaded first and second order sections. A number of variations on this structure
have also been suggested. One variation is to set one branch of the lattice as a pure
delay, equal to the overall delay of the other branch. This circuit is given by
Fig.(2.3).
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Figure 2.4 General lattice WDF Figure 2.5 Lattice WDF with a
using I*1 and 2nd order sections. pure delay branch.

The choice of filter structures that have good finite wordlength properties and
minimum- or nonminimum-phase characteristics, can be reduced to the ladder or
lattice  WDF's. Simultaneous magnitude and phase design can then be approached
on the minimum-phase ladder WDF and nonminimum-phase lattice WDF. Equaliser
designs would consist of using both structures, the ladder for magnitude response

and the lattice to perform the phase equalisation.

2.3 Domain Options

With the selection of a filter structure a transfer function can be generated. The
form of this transfer function and what its parameters represent, will depend
upon the filter structure and the design domain. For most applications a filter
specification will be defined in terms of limits set upon its magnitude and phase
frequency responses. The most common design technique is to start with a
frequency response specification and then model and simulate the appropriate

transfer function through the frequency domain.

This approach may not always be appropriate, especially for linear phase design,
where the desired characteristics are defined as zero positions or unit impulse
response symmetry. These linear phase characteristics may either be transferred
into equivalent properties for the frequency response or the filter specification

may be redefined into the same domain as these characteristics.

This possibility leads to a number of design options based upon which domain the
filter specification is modelled and simulated. The time and frequency domain
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represent the two main possibilities, while within each domain a number of
variations exist.

These domains may be characterised by the nature of the signal and how
accurately it is represented. The main design domains are

(i) Time Domain;
(a) Continuous signals to full accuracy
(b) Discrete signals to full accuracy
(c) Discrete signals with finite wordlength

(ii) Frequency Domain;
(a) Continuous signals to full accuracy
(b) Discrete signals to full accuracy
(c) Discrete signals with finite wordlength

The Filter specification, defined in the time domain, relates to a real signal, while
the same specification in the frequency domain relates to a complex signal. A time
domain signal can only be described in terms of amplitude. A frequency domain
signal, however, can be described in anumber of formats. Common format types
include

(i) Complex signal

(ii) Magnitude and Phase (or Group Delay)

(iii) Real and Imaginary Components

(iv) Polc/Zero positions

Using a combination of these options,a large number of design domains exist.
Selection of domain depends upon anumber of parameters, most notably the
frequency specification and filter performance. The output of a digital filter is a
quantized discrete sequence of samples separated in time. The finite precision
discrete time domain offers the most accurate modelling of the filter. This domain
also allows a comparison of different rounding, overflow and scaling strategies
for various wordlengths. Results from this domain should therefore bear a close
correlation to the response of any actual hardware implementation.

The practicality of this and other time domain designs is limited by the availability
of design equations and representation of a frequency domain specification.
When the shape of the magnitude response is closely defined then an appropriate
time domain waveform can be calculated. An example of this is the raised cosine
filter, whose corresponding time domain waveform can be calculated through the
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Fourier transform. Linear phase raised cosine filter design would consist of
calculating the filter parameters to produce symmetry in the corresponding time
domain function. Concerned with the design of linear phase raised cosine filters,
Lind[32) proposed an optimization technique for these parameter calculations.

For the most common filter response specification, however, the shape of the
magnitude is not defined, but given in terms of a tolerance upon its value at
particular frequencies. This tolerance scheme is based wupon the magnitude
characteristics, using the concept of passbands and stopbands. A specification is
expressed as limits or a tolerance upon the performance of the filter within these
passbands and stopbands. For a magnitude specification, the tolerance scheme is
defined as a maximum attenuation, ap, in the passhand and a minimum
attenuation, as, in the stopband. A lowpass filter magnitude specification is shown

in Fig.(2.6)

Figure 2.6 Tolerance scheme for a general

digital lowpass filter

(2.6) can be expressed as,

The magnitude specification of Fi

1S IGl S ap over the region 0OEf £ fp
as £ IGI £ 0 over the region fs £ f £ Fs/2

where the passband is the frequency region O -» fp and the stopband is the
frequency region fs-» Fs/2, in which Fs is the sampling frequency.

Under this general type of specification, the actual value of the magnitude
characteristic is not defined, only a tolerance wupon its value at a particular
frequency. It is very difficult to express this type of tolerance scheme in the time
domain. An additional disadvantage of using the time domain is the lack of design
equations, especially for linear phase. Extending Lind's ideas to general filter
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response designs is limited by an inability to define a general specification as a

target function in the time domain.

These problems lead to a preference of the frequency domain for filter designs,
despite the inability to accurately simulate finite wordlength elfects. The major
advantage of the frequency domain is the analytical formulae that exist for
analogue magnitude-only designs. These formulae, based upon polynomials such
as the Butterworth, Chebyshev and elliptic functions, can be extended to direct
calculation of digital filter parameters for a discrete magnitude specification. The
accuracy with which the magnitude response of a filter is modelled in the
frequency domain, is dependant upon the filter structure and how close the filter
parameters are to the ideal values. Differences between the ideal and actual values
for the filter parameters are due to quantization when a digital filter is implement
upon a finite wordlength system. The major result of this parameter quantization
is to degrade the system's response characteristics from the ideal. The scale of this
degradation will depend on the coefficient wordlength and filter structure. The
effects of this process can be offset through optimization, producing finite
wordlength coefficients that generate an acceptable filter response.

However, any finite wordlength optimization procedures based in the frequency
domain cannot accurately model all the finite wordlength effects, such as
overflow and quantization strategies. Any results are therefore only an
approximation to the time domain performance. The accuracy of this approach
will again depend upon the filter structure, the particular rounding and overflow
strategies and system wordlengths. A more detailed discussion of these ideas is

provided in Chapter 6

When linear phase becomes a requirement of the frequency response, the
number of design formulae becomes very limited. Linear phase analogue filter
designs are most usually approached with phase equalisers[35]. A number of
strategies for simultaneous design also exist. ldeas vary from a novel equaliser

structure to explicit polynomial formulae

Equaliser techniques range from embedding a bridged-T network within the
analogue filter[28], to reducing the overall order of an equalised circuit through
moving and cancelling the poles and zeros of the transfer function! 19,39). The
polynomial approach starts from a number of objectives, either an all pole
circuit[33,4S], minimum-phase characteristics®1] or to calculate a polynomial to
approximate the magnitude and phase rcsponse[40,15,44,46,25,38). Each design
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method also has to compensate for the non-linear mapping of the phase response
from the continuous to the discrete domain. Again, both equaliser and polynomial
methods generate filter parameters that have an ideal value and so the discrete
frequency responses will suffer distortion upon their gquantization.

Complex signal and pole/zero position formats represent alternatives to the
magnitude and phase descriptions for a filter's transfer function. Each format has
advantages and disadvantages for filter design. Although the frequency response
of a particular transfer function can be described as a complex signal, real and
imaginary responses, magnitude and phase responses or as pole and zero
positions, it is very difficult to describe a tolerance specification into each format
from the general magnitude and phase definition. This is especially true for the
complex and real and imaginary response formats.

The characteristics of linear phase, outlined in Chapter 1. were described in terms
of unit impulse response symmetry or the position of the zeros of the transfer
function. The pole and zero position format therefore offers the best method of
describing the phase requirements in the frequency domain. The exact position of
these zeros is not defined, only that they occur in reciprocal complex conjugate
sets. The positions of the poles of the transfer function are determined by the
magnitude response required from the filter's specification. Deczky[13] illustrated
that a complex pole of the form r cJ0. exhibits magnitude and group delay
responses with a resonance-type characteristic. The sharpness of the peak will
depend upon the value of r and its position in the frequency response will be a
function of 0. The effects of these resonance-type characteristics can be combined
so that the turning points of the filter's responses can be adjusted by moving the
appropriate poles and zeros. An example of a lowpass magnitude specification

mapped onto a complex plane is illustrated by Fig.(2.7).

A zero on the unit circle indicates the position where the magnitude response
approaches a value of zero. The magnitude response will also be determined by the
position of the poles of the transfer function. The position of the poles for a given
magnitude response, such as elliptic or Butterworth, is detailed in a number of

analogue filter design text books[48,5).

The actual position of the poles and zeros of a transfer function will be derived
from an ideal evaluation of a polynomial equation. The effect of quantizing these
ideal coefficient values can readily be illustrated on pole/zero plots[34). The main
effect is to move the poles and zeros to a grid point next to their ideal positions.
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Size and shape of the grid is determined by the structure of the filter and the
quantizing step.

Figure 2.7 Tolerance scheme for a general digital lowpass
filter given in the complex domain.

Techniques using pole and zero positions as design criteria, such as the program
developed by Deczky, used structures in which the poles and zeros of the transfer
function are independent of each other. This restriction makes this type of

method unsuitable for the WDF structures considered.

Real and imaginary frequency responses are of little interest, as two templates are
required to define the transfer function without the ability to accurately show the
specification. When the transfer function is defined as a complex signal, as real
and imaginary components, then although it is a single function, it  becomes

difficult to define the magnitude and phase targets.

In conclusion, for a digital filter specification with a magnitude response given as
a tolerance scheme, the most appropriate design option isto use the discrete
frequency domain. Finite wordlength effects are very difficult to model in the
frequency domain except for coefficient quantization and as a result the finite
wordlength coefficient responses calculated in the frequency domain should only
be used as an estimate of the actual finite wordlength characteristics. Finally, the
transfer function should be modelled and interpreted in terms of its magnitude

and phase(or group delay) frequency responses.
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2.4 Coerricient Generation

The coefficients form the heart of a digital Filter and as such their calculation is a
vital part of a digital filter design. Formulae exist which can be used to generate
the filter coefficients to meet a prescribed magnitude specification. These
formulae however, do not encompass a phase requirement directly. A polynomial
can be constructed to possess high magnitude selectivity, like the elliptic
function, or phase linearity, like the Bessel or synchronous functions”]. The
opposing nature of the amplitude selectivity and phase linearity in these
polynomials makes them unsatisfactory for simultaneous magnitude and phase
designs. This presents a number of design options

(i) derive formulae to describe and calculate the multipliers of a WDF

for simultaneous or equaliser structure designs.

(ii) useoptimization techniques to determine WDF multipliers for a

given structure to meet some arbitrary specification.
(iii) use a combination of (i) and (ii) above.

Derivation of any design formulae would be based upon existing polynomials for
the magnitude response and the pole/zero position required for linear
phase[22,24]. These equations, if possible, would produce an accurate transfer
function if its coefficients have infinite precision. The final step in generating a
finite wordlength response would still require a certain amount of optimization to
achieve acceptable response with finite wordlength coefficients.

An alternative is to use optimization for the whole design process. This is
especially wuseful for showing relatively quickly, if design options are viable.
Work towards the design of linear phase filters has been based upon the use of
optimization techniques[41,8,3,2], both for equaliser and simultaneous approaches.

2.4.1 Optimization Considerations

In order to approach thedesign of digital filters through optimization three areas

must be considered : -

(i) How to define the problem as a function to be minimised in

relation to some arbitrary goal.

(ii) How to generate an error function which reflects the difference
between the actual function and an ideal function.
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(iii) Which type of optimization routine is appropriate to the problem
and what information about the function it requires

The first design area is concerned with how the problem is stated, both in terms of
its parameters and goals. The final goals or targets of the problem will be
determined by the design domain of the filter and what its parameters represent.
For a general filter specification, the targets would be described by the magnitude
and phase (or group delay) frequency responses. This is not the only method of
describing the targets for this problem, as discussed in the previous section.
However, magnitude and phase frequency responses are the most straightforward
method for defining a general filter tolerance specification.

Describing the targets of the problem in terms of its magnitude and phase
frequency responses, requires the simultaneous optimization of two functions.
Both these functions are required to satisfy an ideal solution or target. For a linear
phase specification, this target is a straight line of some angle, 0, while the
magnitude target may have a number of forms based upon the same tolerance
specification. These forms range from a brick wall target to defining an
individual magnitude response at each frequency point, as with the raised cosine
filter. General filters, however, have magnitude responses described with a
maximum passband attenuation, ap, and minimum stopband attenuation, a$.
Possible straight line targets for a lowpass filter specification are shown by
Fig.(2.8).
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Figure 2.8 Possible straight line magnitude targets, (a) brick
wall of 1 and 0, (b) tolerance values of ap and a$. (c) mean value
targets of (1 + ap)/2 and as/2 and (d) dual line target scheme.

In Fig.(2.8). the diagrams (a)-(c) have a single target acrossthe passband and
stopband regions. Optimization would be required to minimise the deviation of the
actual response from these straight lines. Although the filter specification allows
a deviation in both the passband and stopbands, using these target ideas there
would be no way to constrain the deviations to a prescribed limit. Fig.(2.8)(d) uses
a dual target scheme, such that an optimization routine would only be required to

minimise deviations outside the enclosed regions.

Although this type of dual target description is more accurate, it is
computationally more expensive than the single line targetsbecause, at each
frequency point, the response has to be compared to the target and an error

generated only if it lies outside the target band.

In all the target schemes of Fig.(2.8), the transition band has remained
unspecified. This can affect the overall response and the ideas of single and dual
line targets can be extended into the transition band. The practical implications of
using these target designs for magnitude and phase responses are discussed in
Chapter 3 and Chapter 4.

The final consideration within this area of problem definition is what the filter
parameters represent and the limits upon their values.For digital filters these
limits are due to stability constraints, forcing the filter coefficients to be limited to
a prescribed range. For WDF structures a requirement to remain pseudopassivet

also constrains the range of coefficient values.

t Pseudopassitivity[ 16] is the WDF equivalent of losslessness in analogue DTL networks.
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Having defined the ideal response through the ideas of target templates, the next
stage is to evaluate an error function that indicates the difference between the
actual functions and the ideals. Error functions for filter design are usually based
upon an approximation to the transfer function, generated by sampling the
function at a number of frequency points. The larger the number of sample
points, the greater the accuracy of the approximation but the higher the
computational expense. Using this idea, the difference between the actual
response and the appropriate target can be calculated at a number of frequency
points. An overall error function can then use these individual differences in a
number of ways. Existing error functions use the maximum individual difference
as the overall error, a sum of the differences or a sum of the squares of the
differences. Each method can be derived from a general form of the Lp-norm,

given in Eqg.(2.1).
(2.1

The Lp-norm of a vector v can be generated from Eq.(2.1). This equation can be
extended to the difference between two functions, defined as Lp-metrics. This
function in given by Eg.(2.2), for two vectors x and y.

w
pe {1.2,3,..) u {ooj (2.2)

The error function based upon the largest difference is associated with the L«-
metric, given by Eq.(2.3), while the sum of differences is the Li-norm of Eqg.(2.4).
The sum of squares of individual errors is related to the L2-norm of Eq.(2.5)

=lIx-ylIL = ;:T.Ef.n fllxl - ylll (2.3)

n
(2.4)

(2.5)
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An error function using n points to approximate the transfer function, may need
to emphasise the error at some frequency points, especially when the passband
performance is more important than the stopband performance. The Lp-metrics
can be modified to include a weighting vector. X. which contains a weight for each
frequency point. The weighted Lp-metric is given by Eq.(2.6)

As mentioned earlier this design technique must simultaneously optimize a
transfer function against two targets, representing the magnitude and phase
frequency responses. To do this any error function must include both target
errors. A method used by Deczky entailed the weighted Lp-metrics of each target
and a ratio factor to combine these two errors. The general form of this equation

in given by Eq.(2.7).
1 m

P
Error = 3 o « (wfidi-GiiT ¢+ 0-3) 2* fw f'di - DiI'T
i-1 v ) " \ )

where 3 is a factor 1
n points in gain response m points in phase response
W gain weight vector wd ph.se weight vector
6 ideal gain target vector 6 ideal phase target vector
G actual gain vector D actual phase vector

If Eq.(2.7) is used as the basis of an error function, there are a number of
modifications that can be introduced to increase the versatility of the function.
The major element of these possible changes is the total number, distribution and
spacing of the frequency points at which the actual response is sampled. The
nature and value of these options provide the designer with a finer control over
the error function and consequently the optimization procedure. The range and
implications of these modifications to the error function of Eq.(2.7) are discussed
for practical design examples in Chapter 3 and Chapter 4.

The final area of concern within this design decision is the actual optimization
routine itself. A large number of techniques and procedures have been developed
and the performance of each one is dependant upon the nature of the problem
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and information available. Each optimization algorithm is created to exploit a
particular property of a function or its constraints.

The heart of any optimization procedure s its search direction and the
information wused to generate it. An optimization routine may therefore be
classified in terms of the information required to calculate its search direction,
using first derivatives (Jacobian) or second derivatives (Hessian) and the limits it
places upon the search direction from parameter constraints. The three main

optimization categories are : -

(i) Newton-type Methods.
These algorithms use the Hessian matrix, or a finite difference
approximation to the Hessian, to define the search direction. These types
of algorithms are among the most powerful for general problems.

(ii) Quasi-Newton Method.
Algorithms of this type approximate the Hessian matrix with a matrix
that is modified at each iteration, to include information obtained about
the curvature of the function along with the latest search direction.
Although not as robust as Newton-type methods, they are
computationally more efficient.

(iii) Conjugate-Gradient Methods.
These methods calculate the search direction without storing the
information within Hessian or Jacobian matrices. These algorithms are
ideally suited to large problems but are not wusually as reliable or
efficient as Newton-type or Quasi-Newton methods

A more detailed explanation and comparison of optimization algorithms can be
found in text books[l,18,20]. A large number of refinements of these procedures
have been developed including Hooke-Jeeves[23], Fletcher-Powellf17] and
Simulated Annealing[9,26] and then applied to the field of digital filter design
Examples include the finite wordlength program developed by Steiglitz[42], a
program by Dcczky using the Fletcher-Powell algorithm and Benvenuto[4] with

simulated annealing technigues.

A more formal method of combining simultaneous magnitude and phase
frequency responses into a single function is through the ideas of Multiple
Criteria Optimization(MCO). Using this technique, the problem is not considered as
two combined functions, but as a large single function, each element of which
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corresponds to a frequency point of either response. The ideas behind MCO are
discussed by Steuer(43) and Osyczka[36). while their application to simultaneous

magnitude and phase filters is considered by Lightner[10,31].

Overall selection of an optimization routine is based upon the properties of the
problem and the information available. An error function based upon Lp-metrics
using single line targets will be smooth, with continuous first and second order
derivatives. If the filtermultipliers are calculated to the  full possible accuracy,
then the bounds on the optimization routine will be simple, being bounds on the
range of multiplier values. If finite wordlength constraints are imposed, then the
optimization algorithm will be required to accept non-linear constraints. If the
error function is based upondual line targets then the first and second order
derivatives become discontinuous. In conclusion, the choice of optimization
routine will vary depending on how the problem is specified and what

information is available.

2.5 Design Choice - Summary

The purpose of this Chapter was to illustrate and discuss the options available for
the design of linear phase digital filters. These options centre upon selecting a
filter structure, a design domain and a method of generating the filter

coefficients.

The low coefficient sensitivity and as a consequence good finite wordlength
performance of WDF structures, impliesthat theyare the most suitable structure
for filter designs. Two of the basic WDF structures are the lattice and the ladder.
Overall the ladder network has a better performance than the lattice.

This is mainly due to the superior stopband properties of the ladder network,
shown by the lower gain coefficient sensitivities in the stopband. Linear phase
requirements indicate structures that have nonminimum-phase characteristics.
This constraint suggests the lattice structure over the ladder network. Both
structures were investigated for linear phase performance, concerning the
tradeoff between amplitude selectivity and phase linearity forladder networks
and the stopband coefficient sensitivity in lattice structures.

The design and simulation of a digital filter can be approached through a number
of domains, such as the time and frequency domains. Although this offers a
greater design flexibility, the practicality of each approach is limited by an
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ability to define a general tolerance specification in that particular domain. This
constraint limits general filter designs to the continuous or discrete frequency
domains, describing the responses in terms of magnitude and phase. Non-linear
mapping from the continuous to discrete frequency domain, due to the bilinear
transform further limits the practical choice to the discrete frequency domain.

The final output of a digital filter design will be a set of quantized filter
coefficients. A number of methods may be used to generate the infinite precision
coefficient values but to produce an acceptable performance, the final step of
finite wordlength coefficient design must involve some amount of optimization.
Due to the lack of analytical formulae for the design of linear phase digital filters,
the whole design process should be approached through optimization.
Optimization techniques could then be applied to both ladder and lattice WDF
linear phase designs under simultaneous or equaliser procedures.
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Chapter 3

Ladder WDF's

A large number of modifications have been proposed for the ladder WDF since
Fettweis first developed it in 1971(4,5]. Each modification was directed at
improving the performance and efficiency of the structure. Sedlmeyer extended
Fettweis' ideas to a structure with a true ladder configuration!13,3], while other
research concerned overflow stability criteria and design techniques. For
practical considerations, the design and analysis of a ladder WDF needs to be
automated through a computer program. The efficiency and speed of any program
will depend upon the possible design approaches

This Chapter considers the design of linear phase ladder WDF's. The research
outlined ranges from the choice of circuit configuration and components to
design procedures. The Chapter discusses the ladder WDF design approach
suggested by Lawson and provides system equations for the ladder structure along
with two-port chain matrices of a number of possible circuit elements. The
operation of a computer program, called WAVE, written to implement this design
approach, is also explained. Simultaneous magnitude and phase ladder WDF
specifications were approached with optimization using the WAVE program. The
optimization techniques follow the ideas discussed in Chapter 2. Finally the
Chapter details a number of experimental results from the use of the program and
the performance of various optimization strategies. The Chapter concludes with a
number of observations about the compromise between magnitude and phase
requirements in minimum-phase structures and the efficiency of quasi-Newton

optimization techniques.

3.1 Design Choices

Following the conclusions of Chapter 2, the designs for linear phase ladder WDF
were based upon the simultaneous solution of a magnitude and phase specification
through optimization. Within this approach a large number of design options

exist, each of which can be used to enhance this procedure
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3.1.1 Reference circuit options

Design options for ladder WDF structures are very limited, only allowing the
combination of lossless elements. These elements may include a series capacitor, a
parallel inductor, a tuned circuit or a unit element. Within these options, the most
obvious choice is to construct a ladder WDF based solely on lumped elements or a
circuit built from a cascade of distributed components. An additional option would

be to mix the types of components within a single structure.

The ladder WDF structure, based upon lumped components, can have a wide variety
of combinations, each well known to analogue design theory. A number of
possible ladder WDF reference circuits are illustrated in Fig.(3.1).

HR1
(a)

n M n .

T 1

(c)

Figure 3.1 General DTL analogue circuits.

The DTL circuits of Fig.(3.1) may all be used as reference structures for the design
of a ladder WDF. Although these circuits have the same order, the tuned circuits of
Fig.(3.1)(b) and (c) can be designed to possess higher magnitude selectivity.
Consequently, the circuits of Fig.(3.1)(b) and (c) are used to implement elliptic
functions, while the circuit of Fig.(3.1)(a) can be used to produce Butterworth or

Chebyshev type responses.

A typical analogue circuit constructed from distributed elements is shown by
Fig.(3.2)(a), along with equivalent digital circuit based wupon the unit element.
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Design of this unit element may be approached through the techniques suggested
by Fettweis or Lawson. The Unit Element Wave Digital Filter(UEWDF) derived
through the Fettweis procedure from the analogue circuit of Fig.(3.2)(a) is
illustrated by Fig.(3.2)(b), while the appropriate Lawson circuit is shown by
Fig.(3.2)(c).

(c)
Figure 3.2 (a) DTL network using distributed elements with
equivalent (b) Fettweis circuit and (c) Lawson model.

Although the structures of Fig.(3.2)(b) and (c) arc generated through different
design techniques, they have a similar performance. The circuit of Fig.(3.2)(b)
was used by Renner[12] and Hyder[8] to illustrate the principles and properties of
the unit element WDF.

Authors who have used the unit element within WDF designs include Thiran[14],
Denton[ 15] and Reekie et al.[11]. These designs were based upon reference filters
which contained both distributed and lumped elements. An example of a mixed
component reference circuit is shown by Fig.(3.3), along with the equivalent
WDF's constructed through the Fettweis and Lawson design approaches.

(a)
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(c)
Figure 3.3 (a) Mixed component DTL network with (b) equivalent
Fettweis WDF and (c) Lawson WDF equivalent.

The work by Thiran was directed at developing structures with the unit element
that would require a lower number of multipliers than an equivalent circuit with
a true ladder configuration, such as those of Fig.(3.1). The objective of Denton and
Carlin was to apply existing microwave theory to the design of selective, constant
group delay WDF's based upon the reference circuit of Fig.(3.3)(a). Although these
WDF's could be designed to achieve a constant group delay within a given limit,
the frequency selectivity and stop band attenuation was poor. The poor stopband
performance is also a limitation of the pure unit element WDF of Fig.(3.2).

One of the main research objectives of this project concerned designing WDF's
that have linear phase and good frequency selectivity. Under this direction the
research was concentrated upon reference structures known to possess high
frequency selectivity, such as the circuits of Fig.(3.1)(b) and (c).

3.1.2 Optimization considerations

As outlined in Chapter 2, there are a large number of parameters that have to be
considered when optimization is applied to filter design. The conclusions of
Chapter 2 suggested that optimization should be carried out in the discrete
frequency domain. The selection of an optimization algorithm would depend upon
the nature of the error function and what information about this error function
was available. The error function would, in turn, depend upon how the filter
specification was defined and how any differences between the actual and desired

responses were measured.

Following the suggestions of Chapter 2, the filter specification can be expressed as
a set of straight line targets. These target lines could indicate the mean values of
the function or define limits for an acceptable response. These ideas relate to the
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simple single and dual line templates, shown for a lowpass filter specification by
Fig.(3.4).

Frequency
(d)
Figure 3.4 Target templates based upon single line (a) gain and (b) group
delay values and dual line (c) gain and (d) group delay values.

The error function derived in Chapter 2 is based upon a weighted Lp-metric, being
the sum of the weighted differences between two vectors. For an error function,
one of these vectors would represent the actual frequency response, either the
gain or group delay, while the other would contain the ideal values. These vectors
would be described as a set of frequencies points within a target template. For
lowpass templates, such as those illustrate by Fig.(3.4), the gain error vector could
consist of ni points in the region 0 £ f£ fp, n2 points for fp i f£ fs and n3 points
across f, i f£ Fs/2. A group delay error vector may consist of mi points within the
region 0 £ f£ fp’. For the templates of Fig.(3.4), the frequency specification for the
gain and group delay responses are not identical. This represents a general design
situation, where the width of a particular frequency band may differ for gain and
group delay specifications.
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The number and relative position of the points within each error template can be
used to alter the overall error function and therefore possible solutions. The
relative spacing of these points can be arbitrary, but it is more usual to arrange
them according to some analytical expression. Possible spacing formulae include
linear, sine, cosine and double cosine. These spacing types are illustrated in
Fig.(3.5).

Double
Cosine —
=21 aa, . > «—.—&— - cos(AB)
Sine VoX — e x . cev = sinA9)
Linear
AO - ic/n
J
' '

Figure 3.5 Possible template point spacing.

The point spacing is usually chosen sothat more points are clustered around the
regions of the function that change the most. Therefore in filter designs, points
tend to be clustered around the transition band edges. In this way, for the lowpass
filter specification shown by Fig.(3.4), the sine spacing would be wused for the
passband region and the cosine spacing for the stopband. The double cosine

spacing would be appropriate for bandpass or bandstop designs.

Other factors that effect the choice ofan optimization routine are its efficiency
and convergencerate. Algorithms that offer a high convergencerate require a
large amount of information about the function, such as first and second order
derivatives. This information can be very computationally expensive, especially if
the filter order is high. Although algorithms that require less information about
the function, converge slower, they may operate faster because of the removal of
derivative calculations.

Computational expense is not only a function of the filter's structure but also the
parameters that the optimization routine is acting upon. If the final value of these
parameters is to conform to a finite wordlength specification, then the
optimization routine would be required to satisfy non-linear constraints upon the
multiplier coefficients. Filter designs that do not specify finite wordlength
conditions may use basic algorithms with simple bounds uponthe optimized
parameters. These boundsare determined by stability conditions and will vary
depending upon what the parameters represent. The parameterscould be the
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reference filter component values or the ladder WDF multiplier values. Both
methods, each with the same number of variables, introduce a certain amount of
extra calculation into the process of determining the transfer function of the
ladder WDF and consequently the error function. Optimization on the reference
filter component values requires calculating the equivalent ladder WDF multiplier
values for each iteration. The extra calculation introduced by optimizing the
multipliers directly is due to the dependent nature of some of multipliers. To
ensure the structure retains its WDF properties, dependant multiplier values must
be determined at each iteration of the optimization process.

To increase the efficiency and versatility of this simultaneous magnitude and
phase ladder WDF approach, all design options must be considered. A comparison
of these options will then provide an indication of their contributions to the

overall design problem.

3.2 Ladder WDF equations

The ladder WDF consists of a cascade connection ofblocks, which represent
equivalent analogue components. For an automated design process, the nature and
ease with which these blocks can be calculated and interconnected plays a vital
role. The most obvious design method is to describe each block in terms of its two-
port chain matrix, so that the overall ladder WDF is the product of the appropriate
chain matrices. These chain matrices can be derived from analogue components,
either through the one-port and adaptor techniques proposed by Fettweis, or the

two-port approach suggested by Lawson

3.2.1 Interconnection

A major constraint on the use of digital blocks to describe a ladder WDF, is their
interconnection. For the reference analogue DTL network, all connections must
obey Kirchhoffs laws, so for Fig.(3.6), Vi= Vj, lj=1lj and Zj = Zj = Z.

Figure 3.6 A voltage/current node within a circuit.

The equivalent connection using voltage wave notation of Fig.(3.6), is shown by
Fig.(3.7). For a direct connection of the two blocks in Fig.(3.7), Aj = Bj and Aj m Bj. To
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ensure that KirchhofFs laws are still satisfied. Rj = Rj = R. A wave notation of
Kirchhoffs laws may be expressed by stating that connected ports must have the

same wave parameter orientation and equal port resistances.

Figure 3.7 An incident/reflected wave node within a circuit.

The other major constraint for the design of a digital system is the existence of
delay free loops. These limit the realization of a design, as the filter cannot reach a
stable state at the end of each sampling period. This problem can be illustrated by
the signal flow graph of Fig.(3.8), which shows the interconnection of three two-
port elements given in terms of their scattering matrices, o(z), 5(z) and A.(2).

Figure 3.8 Interconnection of three two-port sections.

A delay free path will only exist if the equation of a loop contains a constant term.
Therefore, the first interconnection of Fig.(3.8). will only contain a delay free
path if both 022 and 511 have constant terms. For the second interconnection, a
delay free loop will only exist if 622 and k11 both contain constant terms. To
eliminate these possible delay free paths, it is only necessary to ensure that one
element of a loop does not contain a constant term, not both. This condition

presents three main design options for Fig.(3.8) :-

(i) Remove constant terms from O||,5n and X|1 elements.
(ii) Remove constant terms from «22» $22 and X22 elements.
(iii) Remove the constant terms from 022 and elements

The ladder WDF is derived from a DTL ladder network, an example of which is
shown by Fig.(3.9). To accurately model this structure, digital equivalents for the
voltage source and the load and source resistances are also required.
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Figure 3.9 General ladder DTL network of two-port sections.

The resistive source and resistive load of Fig.(3.9) are illustrated in Fig.(3.10).
Using the relationship between voltage and current to incident and reflected
waves, the source voltage VO can be expressed with voltage waves, Aj and Bj and
the port resistance. Ri. The load resistance can also be defined in voltage wave

notation.
N Rs B
rFVWWV— o — > A, d
k R R
' R
C J > B, A c*—
1
and load circuits of a 1
V » VO-IRs m V = IRL.
therefore

Rs -k B .
B' Bj

I(1-a) VO + a Bj

The complete digital equivalent structure of the analogue circuit of Fig.(3.9) is
given by Fig.(3.11). The action of the external multipliers is to modify the port
resistance values Ra and Rg m Interconnection constraints require that for
Fig.(3.11). Ra = Ri. R2=r3-r4 =r5 and R6 = rb However, the actual values of these
port resistances are not set and this allows a degree of freedom in the design of the

ladder structure.

Figure 3.11 Equivalent general ladder WDF using two-port sections.

Having ensured that connected ports have equal port resistances, the next design

criterion requires the removal of any delay free loops. For Fig.(3.11). if the
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sections A, B and C have the scattering matrices o. 6 and A respectively, then four
possible delay free loops exist, between a » on. 022 «* 811.822 ** M| and A22 0.
The process for removing these delay free paths follows the ideas outlined for
Fig.(3.8). The first procedure concerns removing any constant terms from a
circuit connected to the input port of an element and is known as source design, as
the design process moves from the source of thestructure. Thesecond process
removes any constant terms from a circuit connected to the output port of an
element. This is called load design, again because the design process moves from
the load. The final design approach removesdelay free loops, moving
simultaneously from the source and the load, to reach the middle of the circuit.

This design approach is known as middle design.

Applying the source design procedure to the circuit in Fig.(3.11), the first step is
to remove the constant term in the loop connected to the input port of A. This
entails setting the multiplier a to zero, so

R*-ra

_R* =0
~Rs + Ra
Ra — Rs
and because of the connectivity constraints, then Ri = Rs. The next step is to

remove any constant terms of the circuit connected to the input of port B. This
involves the removal of any constant terms from a22- The action of this step
reduces the complexity of the overall chain matrix by making the values of the
port resistances, previously independent, related to each other. Within this
relationship between the port resistances and the modelled component values, the
only free parameter for this design method is the output port, R2. The value of this
resistance is adjusted to remove any constant terms within the 022 element. This
value of R2 is passed to R3, because they are directly connected. Using this new
value for R3 and the modelled component within section B, the port resistance R4
is made dependent upon R3 and R4 is adjusted then to remove any constant terms
in the 522 element. This process continues until the final port resistance value. Rb

is determined and the external multiplier, (3, can be calculated.

The operation of the source design method may be summarized as moving from the
source of the structure, using the undefined values of a section’s output port
resistance to remove any delay free loops. Through this process the output port
resistance of a section is made dependent upon the input port resistance and the
modelled components within that section.
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Conversely, the load design procedure starts at the load of the structure and works
toward the source. If this process is applied to Fig.(3.11). then the first step is to
remove any constant terms in the path connected to the output port of the last
section, C. To do this, the load multiplier, |), must equal zero, so.

Rb = R1

The value for the port resistance Rb is passed to R6 because they are directly
connected. Elimination of any delay free paths between C and B with this design
procedure entails the removal of any constant terms from X u. This process makes
the two-port resistances dependent upon each other and then adjusts the value of
R5 to remove any constant terms in Xu. This value for R5 in turn determines the
value for R4. The design process continues removing constant terms from the 811
and on elements of the circuit's scattering matrices by defining an appropriate
value for the input port resistance of each section, until the source multiplier is
reached. The calculated value of Ra can then be used to determine a.

The middle design procedure uses the ideas of both source and load design
processes. This procedure moves simultaneously from the source and load ends of
the structure to meet at some arbitrary point within the network. If the middle
design procedure is applied to Fig.(3.11) and section B is chosen as its arbitrary
point, the first step is to follow the source design procedure until section B is
reached. This requires the removal of a and eliminating constant terms from 022-
The next is to move from the load of the circuit, removing p and any constant
terms from Xu. This design procedure leaves the scattering matrixof B unaffected

and may possess constantterms in both its 5ji and 622 elements.

Although the middle design procedure removes both external multipliers, the
resulting circuit requiresthe same number of multipliers as the source and load
design cases. This is due to the nature of the section chosen as the arbitrary point
for the design procedure. This section has both port resistance values set by the
surrounding circuit and therefore cannot be simplified by making the port
resistances dependent. Under this criterion, the section contains an extra
multiplier compared to an equivalent section modified for the load or source
design procedures. Although the middle design procedure could be implemented
around sections A. B or C, Fetlweis[6] noted that the dynamic range of the ladder

WDF structure was improved if this arbitrary point was near the centre of the
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3.2.2 Overall system equations

The general ladder WDF, illustrated by Fig.(3.12), has the chain matrix of Eq.(3.1)
and the transfer function, H(z), given by Eq.(3.2).

Figure 3.12 Overall ladder WDF two-port structure.

(3.1)

(3.2)

with

where Rs and R represent the source and load resistance values of the reference
analogue DTL circuit respectively. Each of the three design procedures modifies
the overall transfer function of the general ladder WDF circuit of Fig.(3.12) by
removing o or P or both. This in turn alters Eq.(3.2) to give a different transfer
function for each design method.

Source design ;

a = 0, so Ra = Rs and using Eg.(3.2) then

where

Load design ;

P = 0, so Rb = RrI and using Eq.(3.2) then

-a
HIU) = yi2 .2 x22
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Middle design ;

a =0 and f) = 0,s0 R* » Rs and Rg = RI and using Eq.(3.2) then

(3.5)

Each design method simplifies the structure of Fig.(3.12) and by using the
appropriate transfer function, the performance of a filter under each design
method can be determined. The performance can be measured in terms of the
magnitude, phase and group delay frequency responses and coefficient
sensitivities. All of these calculations depend on the overall system chain matrix,
X, given by Eg.(3.1). This chain matrix is the product of the chain matrices of each
digital component within the circuit. It is these components that determine the
coefficient sensitivities of the overall structure. The equations to calculate X and
its derivatives are therefore required in terms of individual component's chain

matrices.

Consider Fig.(3.13), and the individual chain matrices, given in Eqg.(3.6), for its
elements.

Al2) B@) C(2)

Figure 3.13 Ladder WDF two-port structure.

(3.6)

To calculate the overall transfer function of this structure under the three design
procedures detailed by Eq.(3.3-5). the product of the individual chain matrices to
determine X, must be found. The direct connection of these blocks means that A2 =
B3. A3 = B2. A4 = B5 and A$ = 84. Therefore, the overall transfer function is not
simply the product of chain matrices themselves, but modified chain matrices,
which have their columns swapped. The overall chain matrix of the structure of
Fig.(3.13), in terms of the modified chain matrices, is given by Eq.(3.7).



Chapter 3. Ladder WDF's page 3/14



Chapter 3. Ladder WDF’s page 3/15

To calculate the derivative of the overall chain matrix with respect to o> it is
necessary to differentiate each chain matrix in turn. However, because matrices
are not commutative, i.e. A +B % B mA, then if

X' * A" B Cr (3.12)

the derivatives will be

The derivative of an overall chain matrix can therefore be defined as.

(3.13)

where X'0 and Xp+i are equal to the identity matrix, I.

Eq.(3.13) may be simplified if natural logs of Eq.(3.12) are taken before it is
differentiated. If this technique is applied to Eq.(3.12), the derivative with respect

to to is.

Using the form of Eq.(3.14), the differential of a general chain matrix. X'. with

respect to the frequency, to, may be defined as.

(3.15)

Coefficient sensitivity frequency responses are a function of the filler's
multipliers, particular to each element's chain matrix, and the property being
calculated, such as gain, phase or group delay. The sensitivities of the gain, IHI.
with respect to a multiplier value. ai(, is defined as

while the group delay sensitivities are,

T Sk .AL
<k ~ ot dak @17
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If the transfer function. H(z), is expressed in its polar form, the gain coefficient

sensitivities may be expressed as.

(3.18)

Using Eq.(3.18), equations for the gain coefficient sensitivities of each ladder
design procedure can be generated from Eq.(3.3-5).

Source design ;

d(*11)
dak

Load design ;

Middle design

Following the same procedure used for the differential with respect to to.
expressed by Eg.(3.13). then differentiated with respect to the multiplier, ai,. can

be written as.

However, the multiplier ait, will only exist in one element matrix and will be
unrelated to any multipliers in another element. Therefore, if the multiplier
only exists in the matrix X|n, then the derivatives of the other matrices will be zero

and Eq.(3.19) will reduce to.

The group delay coefficient sensitivity equation of Eg.(3.17) may be expressed as.

(3.21)
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Again, for each of the design procedures the group delay coefficient sensitivities
can be derived in terms of the overall chain matrix. Using Eq.(3.21). Eq.(3.3-5) and
Eq.(3.9-11), the equations for the group delay coefficient sensitivities can be
determined for each of the design procedures

Source design ;

(*12 + B M 1)

e (A41%12) + B ATF NI ( KF12) L oa <(»11) Nl
P d“k ) \ da)

(x12+R *11)2 V d“k p di) N
Load design
| . (d(M2) d(x22) \ ﬁd(xiZ) d(x22) 'l
(xiZ—c X22)2 V dotk dak dw di) 3
Middle design

d(M2)

(*1:)2 ( dak

The derivatives of an overall chain mi x. X' with respect to o and then
multiplier ak. can be expressed as.

dXJa 1 dCi |
du :|_ir1 Xi°odo) 1
where ak only exist in Xjn and n is the of elements in the ladder structure.

3.2.3 Building Blocks

Digital circuits that model equivalent analogue components can be considered as
building block with which a ladder WDF can be constructed. Following the design
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that model various analogue elements.

elements that are

required are the basic
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building blocks would be two-port sections
For general ladder WDF designs, the only
lumped components of the inductor and

capacitor and a distributed component based upon a section of transmission line,
also known as a unit element. Using these lumped and distributed components,
seven primitive building blocks can be designed tocover most filter
requirements.
These primitives are
(i) Series Elements (a) inductor.
(b) capacitor.
(c) tuned LC circuit.
(ii) Parallel Elements ; (a) inductor.
(b) capacitor.
(c) tuned LC circuit.
(iii) Unit Element.
Using the generalised WDF design technique suggested by Lawson, a wave chain

matrix of an analogue
matrix, C,

produce the wave chain matrix

chain

[p'] -
The two-port series
known in
given by Eq.(3.23).

two-port

Figure 3.14 General scries

component can be
and a set of transformations defined by P and Q. The equation to
is given by Eq.(3.22).

lumped clement of
theory!1) and has

derived from

two-port element of

its voltage and

current

IP1-(CI-[Q[*-[b2] ‘3'22>
impedance, Zs, shown by Fig.(3.14), it well
a voltage and current chain matrix, Cs,

impedance Zs.
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[*,*]m tc.]-[;2] (3.23)

where

If the matrices P and Q are the voltage wave transformations, then
(3.24)

and the wave chain matrix of a series impedance, Zs, using Eq.(3.22-24) is given by

P R2 + RI + Zs |
rAii 2R JRo r Azi

. (3.25)
R2+ Ri-Zs R2-Rl+1zs
Lb,J . '

2R2 2R2 J Lbd

Applying these ideas to the parallel lumped element of Fig.(3.15), which has a
voltage/current chain matrix, Cp, given by Eq.(3.26), then the wave chain matrix
for this element is given by Eq.(3.27).

Figure 3.15 General parallel two-port element of impedance Zp.

(3.26)

where

Al r Rj-Rii (RIR2Zn) r2* RI + (RiR2Zg) 1 "a2°
2R2 2R2

R2+ Ri - (RIR2Zp) «2 *J « (rlr2z,)
-B, L 2R2 2R2 J -b2

(3.27)
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The lumped impedances Zs and Zp are functions of the continuous frequency
variable, s. To convert s-domain chain matrices into the z-domain, the bilinear
transform is used. If the series impedance. Zs, represents a capacitor, C, then

s ¢ (3.28)

Combining Eq.(3.25), Eg.(3.28) and the bilinear transform, then the chain matrix
of a series capacitor can be expressed as.

rail P2- (1 -P1+P2) z* 1-312- razci
A +P2<L -2-9 (I 32)0 - 2-3)
Pi -z <1 -01 +32) - 32 2-'
Lb,J L (1 »32(i m2-) < +32)11 -2-1) J Lb2J
with
R2- Ri - 1/C 2¢
R2+Ri + 1/c ™ C ¢

If the scattering matrix of the series capacitor is o, then delay free loops can be
eliminated if constant terms from on or 022 are removed. The scattering matrix, o.
of a series capacitor element generated from the chain matrix of Eq.(3.29), is
given by Eq.(3.30).

- bk~

r<i -pi +32) -32 21 <31-82)0-2-1) -
(1 -3121) <31 @)
(3.30)
(1 - 82x1 -2-) /P2 - <1 - 81 +32) z"I")
La(] L (i -Pi z-1 v @ -8l 2-1) 13
 R2+ R1- 1/C R2- Ri - 1/C 2¢C
Pi Ra+ri+ic M 32=gpyperisac ™M C 7

The chain matrix of Eq.(3.29) relates to the middle design approach. For this design
technique, constant terms exist in both the on and 022 elements of its scattering
matrix. Delay free loops are eliminated by ensuring that the appropriate constant
terms of connected elements are removed.

To wuse a series capacitor within a circuit generated through the source design
procedure, its chain matrix of Eq.(3.29) must be modified so that constant terms in
the 022 element of its scattering matrix, given by EQq.(3.30) are removed. Referring
to the scattering matrix of Eq.(3.30), the constant term in the 022 element can be
removed if P2~ 0- For p2 * 0, then
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RI-RI-g:-0 (3.31)

Through the condition P2 = 0* the two port resistances, previously independent, are
now related to each other by the Eq.(3.31). The value of C is defined by the
reference circuit and using the source design approach, the input port resistance
is determined by the previous section. Therefore, the only free parameter is R2.
Expressing EQ.(3.31) in terms of R2 and substituting it into Eq.(3.29), the source

design chain matrix for a series capacitor is shown by Eq.(3.32).

TAL Ii -ei) I-1) L-Pazn "A2"
1121 ) 1-1n
Pge -1 ' - P3
.B, - L 1-1> 1-z> . .B2-
whe re
P'- 1fc'Ri "d R2*Rl+c

Although the design process reduces the complexity of the section, from Eq.(3.29)
to EQ.(3.32), the port resistance values are made dependent upon each other. Under
the source design procedure, the value of the input port resistance of the first
section is set equal to the source resistor of the reference circuit. A dependence
between the input and output port resistances, similar to Eq.(3.31), determines the
value of the output resistance and consequently the input port resistance value of
the next section.

The load design procedure uses elements that have the constant terms removed
from the on elements of their scattering matrices. Applying this rule to the series
capacitor scattering matrix of Eq.(3.30), requires that 1 + Pi - P2 =* 0. In order to

allow this condition then 1+ Pi -P2 = 0 and therefore
m-r2 -0 (333

For the load design procedure, the only free parameter in EQq.(3.33), is Ri.
Rearranging Eq(3.33) in terms of Ri and substituting it into EQq.(3.29), results in

the chain matrix for a series capacitor, Eq.(3.34).
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roail . " :
ai r ro1e 14 1-04 Z1 1 r A2i
141 - ) 04 (1 - z-1)
04 - Z"1 <1 - 04) z1

LBjJ L pa<i-=*'> Pa@ -2%) 1 Lb2J
W - j-~ (R2R2 and RI =R2+"

Again the complexity of the chain matrix is reduced but the port resistances are
made dependent upon each other. With the load design procedure, the value of the
output port resistance of the last section is set equal to the load resistor of the
reference circuit. Using equations similar to Eq.(3.33), the input port resistance
value of a section may be determined to remove any delay free paths and passed

back to the output port resistance of the previous section.

To evaluate the overall system equations the derivatives of the chain matrix for
each component are required. The derivatives required are with respect to the
frequency, to. the section's multipliers and the double derivative of the chain

matrices with respect to the frequency and then the section's multipliers.

The chain matrices for each of the six Iumped elements considered, calculated for
each of the three design procedures, are detailed in Appendix A1-A6. Included in
these equations are the matrices required to calculate the group delay and the
coefficient sensitivities for gain and group delay responses. The unit element
chain  matrix is derived from the equations describing the commensurate
transmission lines[2] with characteristic impedance. ZQ. The equations for this
section are illustrated in Appendix A7. Appendix A8 provides design examples
using lumped component filters for each of the three design techniques discussed.

3.3 WAVE : two-port WDF design program

This is a menu driven program written in C upon a UNIX based Sun Workstation,
which uses the GHOST[7) routines to generate a graphical output and the NAG[10]
routines to provide the optimization algorithms. The program is based upon the
two-port approach to WDF designs. It is capable of simulating and analysing a
ladder or lattice structure using the two-port building blocks illustrated in

Appendix A1-7.

The operation of the program may be divided into the three areas of design,
analysis and coefficient generation. The first area concerns the generation and
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storage of filter designs in data files. These designs may have a ladder or lattice
structure and through the program the user may alter the type and value of the
elements within these structures. The Filter designs are constructed as cascaded
two-port sections. As each building block is added, the modelled component value
is recorded, along with its position in the chain. For a lattice filter there are two
branches, terminated by an open or short circuit, and therefore two cascaded two-
port circuits. Modification of these structures can be approached by alteration of
the position or type of the two-port section, or the modelled component values.

Design of a highpass or bandpass filters is achieved with an appropriate selection
and combination of elements within a structure. The theory and design of filter
structures to achieve various frequency transformations is covered in standard
analogue design books[15]. The main principle of a lowpass to highpass or
bandpass to bandstop frequency transformation is to replace a capacitor with an
inductor and vice versa. The objective of a lowpass to bandpass frequency
transformation is to increase the degrees of freedom of an element by converting
it into a tuned circuit. These procedures are illustrated in Fig.(3.16). where the
lowpass structure of Fig.(3.16)(a) has an equivalent highpass circuit given by
Fig.(3.16)(b) and an equivalent bandpass structure illustrated by Fig.(3.16)(c).

(b)

(c)
Figure 3.16 (a) Lowpass ladder structure with (b) equivalent
highpass and (c) bandpass circuits.

The design of single bandstop and dual band structures can be approached using

similar ideas.
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Having completed the design of a reference DTL network, the digital multipliers
for the structure can be calculated. This calculation may follow one of the three
design techniques outlined in the previous section. Each process selects the
appropriate elements’ chain matrices and multiplier equations for that design
procedure. The final step of the design process is to enter the frequency response
specification for the filter. This specification may cover lowpass, highpass, single
and dual bandpass and bandstop filter types. Having selected a filter response
type, cut-off frequencies are entered for both magnitude and group delay
specifications. The magnitude tolerances are enteredas limits in dBs over the
passband(s) and stopband(s), while the group delay is specified as a maximum
deviation only over the passband(s). All of this information about the structure,
filter specification and its parameter values can then be saved to a data file for
subsequent wuse. This information can also be displayed in a textual form and

printed.

The analysis side of the program is responsible for calculation of the various
frequency responses of the ladder and lattice structures. The program calculates
each response at 1024 points. This number producesa high degree of resolution
within each response and allows the FFT to be used to generate a time domain
response if required. Using an old or new data file, a menu within the program
allows the user to specify the frequency range required. The program will then
calculate the gain, magnitude, phase and group delay responses at 1024 points
over the specified frequency region. Another menu provides for the calculation
of the gain coefficient sensitivities, again allowing the frequency range to be
specified. The sensitivity response for each multiplier coefficient can then be

displayed individually or as a set.

Each of these responses is displayed on the screen through the use of a GHOST
routine. Users have the option to record these graphs for later output to a printer.

The final area of the program is the coefficient generation. This process is
approached through the use of optimization and the ideas discussed in Chapter 2.
The main elements within this part of the program are the optimization
algorithms and the error function with its target templates. The optimization
process is based upon the error function discussed in Chapter 2, using a weighted
Lp-mctric. The error function implemented in the program is given by Eq.(3.33).
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n i m

Error = 0 N (WFldi -Gjld P+ @-0) 2 (wfldi-DilJ

where 0is a factor0 S0S 1
n points in gain response m points in delay response
Wg gain weight vector Wd delay weight vector
G ideal gain target vector D ideal delay target vector
G actual gain vector D actual delay vector

The program has a menu devoted to defining various parameters within this error
function, the targettemplates and possible optimization routines. The target
templates are generated as a pair of vectors that describe the gain and group delay
responses. The filter's magnitude response is described in terms of its gain as this
limits the response to the range 1 and O which in turn simplifies the design of the
template. The phase linearity requirement is specified in terms ofa constant
group delay because the phase response is a discontinuous signal varying
between -it and it. Using the group delay response also allows a simplification of
the target templates. Each element within thetarget template vectors contains a
frequency value, a target response value and a weighting. The target values
themselves can be based upon a straight line approximation using a single line to
specify the mean value required or two lines to define the limits of an acceptable
response. An alternative to the straight line approximation is to specify the actual
response  required ateach particular frequency. This would representan “ideal"
template situation, where the magnitude response would be based upon an elliptic
or Chebyshev type function and the group delay would be based on some

equiripple shape.

The final area of consideration within the target template definitions, are the
transition band(s). If the concept of ideal target values is used, then the transition
band(s) will be directly determined by the desired magnitude response. However,
if straight line approximations are used, then a number of options exist about how
the transition band should be specified. Fig.(3.17) illustrates a number of
possibilities for both single and dual line template definitions.
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Figure 3.17 Lowpass transition band targets for (a)-(b) single
line templates and (c)-(d) dual line templates.

The number and position of the elements within the target vectors can be altered
directly through a program menu, along with the weighting factors for each
frequency region. The value of the ratio that determines the contribution of the
gain and group delay errors to the overall error may also be directly set through
the program. Using this parameter, the optimization routines can be applied to
gain only, group delay only or simultaneous gain and group delay design

problems.

The program offers a number of optimization routines, although their suitability
to a filter designproblem will depend upon the type of target definitions used. The
optimization routines implemented in this program are quasi-Newton functions
that can operate with or without derivatives and with simple boundsupon the
coefficient values. The routines E04JAF and EO4KCF are linked fromthe NAG
library. The optimization routine E04JAF does not require derivatives while E04KCF
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expects continuous first order derivatives which makes it unsuitable for designs

specified using dual line target templates.

3.4 Experimental Results

The objective of the experimental part of the research was to determine the
performance of the ladder WDF for simultaneous magnitude and phase
specification and various optimization strategies. The initial area of this work was
concerned with testing the optimization techniques against problems with known
solutions. This involved designs of magnitude-only specifications, where the
phase linearity was ignored. Using information gained about the optimization
strategies, the design examples were expanded to include phase linearity.

3.4.1 Magnitude-only design

The magnitude-only filter design tests were based upon a suite of lowpass
specifications. These specifications were chosen to include a wide variation of
attenuations, cut-off frequencies and filter orders. The equivalent ladder WDF for
each specification was constructed through both the source and load design
techniques. The example specifications, which are just satisfied by an elliptic
function, are given by Table(3.1). Data files for each specification of Table(3.1)
were generated using values from the appropriate reference table entries!IS].

The optimization techniques discussed in Chapter 2 were implemented within the
computer program and applied to the various specifications of Table(3.1). The first
optimization strategy to be investigated was the template structures. Three basic
template types were tried, the single and dual straight line approximations and the
ideal line templates. The error function was based upon measuring the difference
between the actual and ideal values of the magnitude responses at certain
frequencies. The number and distribution of the points at which the response was
measured was also an optimization parameter and will be discussed later in this
section. Because the error function only requires the magnitude response at
certain frequencies, the target templates need only to be defined at these points
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Spec filter passband stopband passband stopband sampling
number order att (dB) att (dB) freq (Hz) freq (Hz) freq (Hz)

1 3 0.2 30 0.1 0.2 1
2 5 0.01 70 0.1 0.26 1
3 5 0.01 50 0.2 0.32 1
4 5 0.1 100 0.15 0.39 1
5 7 0.002 60 0.05 0.08 1
6 7 0.05 90 0.3 0.39 1
7 7 0.0005 40 0.1 0.13 1

Table 3.1 Lowpass filter specification examples.

The straight line templates were generated from the filter specification where
each frequency point in the same filter band, would have identical template
values. The ideal line template was produced by calculating the magnitude
response of a filter that had component values taken from tables, recording it at
the required frequency points and then wusing these values as the ideal line

template.

For an equal number of frequency points, with a linear spacing, a typical set of
passhand template values for the single line, dual line and ideal line approaches
are shown by Fig.(3.18).

V -single line template points
A-dual line template points
ffi- idéal line template points

Figure 3.18 Typical passband template values for the three

template approaches.

The ideal line template provides the greatest amount of control over the final
solution. The final magnitude response can be directed toward an equiripple
Chebyshev/elliptic shape or a monotonic Butterworth type shape. The dual line
templates provide slightly more control than the single line templates, as the
response can be encouraged to exist with a specific tolerance region. However, it
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is not as versatile as the ideal line scheme, as it cannot define the required shape
of the response, only its limits.

For the design examples considered, the specification can only just be met by an
elliptic function of the given order and therefore, the elliptic function represents
a goal for the optimization process. The basic quasi-Newton optimization routine
E04JAF was applied to a number of filter specifications of Table(3.1) using each of
the template types. An elliptic function with the reference table component
values represents a global solution for a particular problem and therefore
template schemes that most closely described that function should cause the
quickest convergence.

To demonstrate this hypothesis, the filter's parameters were optimized under each
template type and the convergence rates, using the same optimization algorithm,
compared. The initial position for the filter's parameter values was varied,
starting with the goal solution values, then varying each parameter individually
about its viable limits and finally varying the parameters as sets, moving them
from their lower bound values to their upper limit. For the ladder WDF multiplier
values these bounds are -1 < x < 1, while for the component of the reference DTL
network, the bounds are 0 < y < <~

In all filter specifications tried the optimization procedure based upon the ideal
line templates always converged to the solution and invariably managed to do so
with a number of iterations less than 200 times the order of the filter. Under the
straight line template systems, the dual line scheme converged more frequently
than the single line scheme. Convergence, however, was very slow and some times
failed to reduce the error to an acceptable value. This may have been due to the
optimization routine being stuck in a local minimum because of a poor set of
weights or frequency points. It was noticed that using the straight line schemes,
if a multiplier value was started or was moved to a boundary value it tended to
remain there. This resulted in a non-optimum solution.

An additional factor that seemed to limit the convergence of examples based upon
the straight line templates, was how the transition band was specified. The
previous section has already mentioned a number of possible schemes for both the
single and dual line template systems. The effect on convergence of a wide variety
of transition band schemes was compared for a number of filter specifications
using identical weightings and error points. Schemes that proved to be the most
successful where those that encouraged a sharper cut-off rate than a direct line
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between the passband edge and stopband edge. This was especially true for filter
specification that had wide transition bands. These sharp cut-off schemes were
constructed from two ‘hinged' lines. Examples of this type of line for the two
straight line template schemes are shown in Fig.(3.19).

Figure 3.19 Examples of transition band specifications for
(a) single and (b) dual line templates.

Because of the nature of the dual line template system, the overall error can
become zero if the response lies within the region defined by the template. Using
this fact the position of the transition band templates, shown by Fig.(3.19), can be
determined by applying the ideal response to the template. When the initial error
function is zero then the transition band targets have the correct
the optimization routine is applied to an error function based upon dual line
templates set up this way, the convergence rate was much quicker than using
alternative transition band schemes. The performance of the optimization routine
using the hinged single line transition band targets of Fig.(3.19)(a) was also

greater than other straight line possibilities.

In all transition band target schemes of Fig.(3.19). the lines are defined from the
lower passband tolerance edge to the upper stopband tolerance edge. The targets
are constructed in this way to ensure that the overall transition band width is not
narrower than the specification and the template most closely reflect the ideal

solution.

Having determined the best type of shaped transition band targets, the effects of
the number andposition of the error frequency points were investigated. As
mentioned in Section 3.1.2, the number and distribution of the error points can be
arbitrary but wusually follow some analytical formulae. These formulae are
structured so that it groups the error points around a transition edge of the filter's
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specification. From Fig.(3.5), it can be seen that a sine function congregates points
to its right hand end, while the cosine function groups points about its left hand
end. If points are specified in the transition band, then under what distribution
should they be arranged. The effects of different distribution wupon the
convergence rate of an optimization routine are difficult to quantify, but the

linear or double cosine functions appear to be the most appropriate.

More important than the distribution of the error points, is their actual number.
An obvious initial rule would be to use an equal number of points in each band of
the specification. The total number of points presents a compromise between the
accuracy with which the response is measured and the time taken to generate the
error function at each iteration. From a large number of tests this compromise
settled into a range of 15 - 40 error points per band. Tests in which no error points
were specified in the transition band tended not to converge to an acceptable
solution when the transition band was wide compared to the passband width and

using straight line templates.

The next optimization parameter to be considered for the magnitude-only design
involved the error function weights and how they should be defined. A number of

possibilities exist, from defining an individual weight for each error point, using

the same weight for a specification band, to equal weights forevery error point.

Each error point can also be associated with an upper and lower weight, so that if
the difference between the actual and target responses is positive then one weight

value is applied and another if the difference is negative.

For ideal line templates the error at a particular point has an equal significance
whether it is positive or negative and whether it is in the pass, stop or transition
band. For a problem defined using the ideal line template system, the most
appropriate weighting scheme uses an equal weight value for eacherror point.
However, under this template system, weights have a limited affect on the
convergence rate of the optimization routine due to the efficiency of the template

system itself.

For the straight line templates, the weights play a vital role in ensuring that the
filter response meets the specification. This is especially true for the stopband
performance when the templates are defined in terms of gain. Here a percentage
deviation of the actual response from the targets in the stopband has a lower value
than the same percentage deviation in the passband. Therefore,if no weights are
used, the error due to the passband will contribute disproportionately to the
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overall error function. This results in filter responses that have a poor stopband
performance, especially when single line templates are used. A weighting scheme
that would provide the best results is one that ensures that a percentage deviation
in each band generates the same error. Using this rule, if a lowpass filter has a
passband width of 0.1 (approximately 1 dB) and a stopband width of 0.001
(approximately 40 dB), then the weight ratio of passband to stopband should be
1:100.

The final parameter within the error function implemented, is the Lp-metric that
is calculated. The range of possible value for p is 1 Sp£ . A general error
function was written into the computer program, allowing any integer value of p
to be used. A special function was included to determine the Ln -metric situation. A
wide variation of values for p was investigated on a number of lowpass filter
specifications under a dual line template system using the weighting rule outlined
earlier. For most tests the examples using high p values failed to converge, while
lower values, especially p = 2, proved to be the most successful.

The last variable to be tested within the optimization process was the optimization
algorithms themselves. Using the derivatives generated to determine the
coefficient sensitivities for the ladder structure, the Jacobian matrix can be
calculated. With this information, algorithms that require derivative could be
applied to the problem, such as E04KCF from the NAG library. This algorithm is a
quasi-Newton function similar to EO04JAF. Quasi-Newton algorithms were chosen
because of the quicker speed of operation than Newton type methods and a higher
stability and accuracy than conjugate-gradient based algorithms.

Applying E0O4KCF to a number of lowpass specifications with error functions based
upon L2-metrics and the three template types, a number of properties became
apparent. One of the main feature was its inability to work with the discontinuous
derivatives of the dual line templates. The other main feature was the time taken
to converge compared to the simple EO04JAF algorithms which does not require
derivatives. In most cases for problems based upon the ideal line templates,
although the algorithm converged in fewer iterations, the overall time taken to
solve the problem was about the same, especially for higher order structures. This
may be due to the efficiency of the ideal line template scheme. This type of
algorithm could not be applied to the dual line template system and although the
performance of the single line scheme improved, the actual solutions produced
using this template system were always poor.
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The experience and knowledge gained of the optimization routines through the
magnitude only design of the filter specifications of Table(3.1), was extended to
higher order filters. This however highlighted an advantage of the dual line
system over the ideal line template scheme. The ideal line scheme requires the
target optimization parameters to generate the template targets. Therefore when
design tables do not include the desired passband attenuations or filter order, then
the ideal line templates cannot be used. The main part of the experimentation was
based upon 13th and 13th order structures using the dual line template scheme
with the EO04JAF optimization routine. These tests confirmed earlier observations
about the selection of weighting schemes and the number and distribution of

error points.

3.4.2 Simultaneous designs

This area of the experimental work forms the heart of the two-port ladder WDF
research. No previous work had been published about the design of simultaneous
magnitude and phase ladder WDF's based purely upon lumped elements. This initial
part of this research was to construct ladder WDF's from DTL reference networks
that are known to possess low coefficient sensitivity and high frequency
selectivity. Using these filters and the optimization techniques developed for the
magnitude only designs, the simultaneous specifications were addressed. The goal
of the research was to produce a set of guidelines for both the optimization
techniques involved and the filter order required for a given simultaneous

specification.

The design approach adopted involved selecting one of the lowpass filter
specifications of Table(3.1), constructing the appropriate target templates and
then introducing a wide group delay tolerance.The filter's parameters were then
optimized, starting from different initial values, until a solution was found. If no
solution could be found, then the overall filter order would be increased and the

process repeated.

The error function variables were set based upon the knowledge gained from the
magnitude only designs. Each of the target template types was also applied to the
problem. For the ideal line templates, the magnitude template was determined
from a filter satisfying the magnitude only specification, while the group delay
template was constructed from a raised sine function. The amplitude and number
of cycles of the sine function over the width of the template was determined from
the specification. The amplitude of the function was defined by the group delay
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tolerance, as a percentage of the mean group delay value, while the number of
cycles of the function was the overall order of the filter minus the order required
to meet the magnitude specification. The straight line templates were constructed
from the filter specification and based upon the ideas illustrated in Fig.(3.4) and
Fig.(3.18).

Following the idea suggested by Lightner[9], the number of optimization
parameters was increased for the simultaneous designs to include the group delay
value about which the template was defined. With filter designs, the actual value
of the group delay is not too important only that its value is not too large. Using
this mean group delay value as an optimization parameter, the group delay
tolerance template can be moved up or down to reduce the error function

The ratio factor, p, of the error function given in Eq.(3.35), which determines the
contributions of the gain and groupdelay errors to the overall error, are the only
variable not considered so far. The valid rangeof values for p isO £ P£ 1. The
condition p = 0 relates to a group delay only design, while P = 1 produces a
magnitude-only design. The true effect of P can be masked by the weightings used
on the gain and group delay error points. To remove these possible effects, the
weighting scheme of the group delay error points should follow that suggested for
the gain error points. With this rule a percentage deviation in each band of a
template would generate an equal error. Under this scheme,if a lowpass
specification has a gain passband width of 0.1, a gain stopband width of 0.001 and a
group delay passband width of 0.1 (this is a 1% tolerance at a group delay value of
10 seconds) then  the total error is 0.201. The weights for the gain passband, gain
stopband and group delay passband would then be 2.01 : 201 : 2.01 or 1 : 100 : 1
respectively. However, because the groupdelay only contributes an error  from
one band as opposed to the gain template which has two, or three if the transition
band is defined, then the weightings should be adjusted.In the case considered,

the new weighting ratio would be 1 : 100 : 2.

Using a weighting scheme that ensures that equal deviations in the gain and
group delay templates contribute equal errors to the overall error function, then
a P value of 0.3 should balance the two responses. However, the requirements for
constant group delay are contrary to sharp changes in the gain response. In this
case it is very difficult to obtain constant group delay around the region of the
transition band. Therefore if too much emphasis is placed upon the group delay
response, then the gain will fail to achieve the required stopband performance
and the design solutions will not represent useful filter solutions. For a number of
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design examples the values of (3 that caused this effect to occur are around O.S. In
these cases values of p between 0.6 and 0.9 were required to force the optimization

routine to approach acceptable simultaneous gain and group delay responses.

in Fig.(3.20), where the value of P for
It can be seen that the gain

The effect of the variation of p can be seen
the same lowpass specification is varied from 0.1 to 0.9.
and group delay responses do not form an acceptable filter shape until the value
of P is greater than 0.6. Another observation of the filter responses, produced
using a number of different optimization settings, is a tendency to place poles
within the transition and stopbands of gain response. This can be seen in

Fig.(3.20)(b) and (c).
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(f -0 (fF - i0
Figure 3.20 Simultaneous design solutions showing (i) gain and
(ii) group delay responses for ; (a) 3 = 0.1, (b) 3 m 0.3, (c) 3 =0.3,
(d) p=06()3=0.8, (03=09.

A wide variation of error function parameters was tried for the optimization of a
simultaneous magnitude and phase specification. AIll the tests followed the
procedures outlined for the magnitude only designs. However, despite increasing
the order of the filter a number of times, the optimization routine failed to find
solutions to the given problems. These results tend to support the theory that for
minimum-phase structures, the gain and group delay requirements form a
reciprocal pair. In this way, a move to improve the gain performance of a filter
causes the group delay response to be degraded. AIll the examples tried indicate
that the compromise between the gain and group delay performance is so tight

that no simultaneous designs are possible using this structure.

The relationship between the gain and group delay responses can be illustrated by
a number of simultaneous design examples. For these filter designs, the value of 3
was varied to enhance either the gain or group delay side of the specification. The
examples shown have the lowpass specifications given in Table(3.2) and solutions
for various 3 values shown by Fig.(3.21), Fig.(3.22) and Fig.(3.23).

Figure filter passband stopband passband stopband Fs g. delay
number order att (dB) all (dB) freo (Hz) frea (Hz) (Hz) dev (%)

3.21 7 1 40 0.1 0.3 1 0.7
3.22 9 1 60 0.1 0.3 1 0.8
3.23 9 1 40 0.1 0.3 1 0.8

Table 3.2 Lowpass gain and group delay specification examples.
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Figure 3.21 Simultaneous design solutions showing (i) gain and
(ii) group delay responses for ; (a) P « 0.4, (b) p = 0.3, (c) p * 0.6.
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Figure 3.22 Simultaneous design solutions showing (i) gain and
(ii) group delay responses for ; (a) P = 0.4, (b) P = 0.5, (c) P = 0.6.
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In each of these design examples the optimization wused the dual line template
scheme, with a total of 56 error points distributed according to the sine/cosine
functions. These examplesalso use a dual weighting scheme so that errors above
the top template line and below thebottom template line, were subject to different
weights. Each test was performed using the EO4JAF routine and the multiplier

values were started at their upper boundary conditions.
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The compromise between the gain and group delay specifications is best shown by
Fig.(3.21). With P = 0.4, the responses of Fig.(3.21)(a) satisfy the group delay
template, just fail the gain passband specification but badly violate the gain
stopband criteria. As the P value is increased to 0.3, the passband gain and group
delay responses, shown by Fig.(3.21)(b), just fails specification, while the gain
stopband performance has improved. Finally with p = 0.6, shown in Fig.(3.21)(c),
the gain passband response lies within the template, while the gain stopband
performance just fails specification. The group delay passband response, however,
lies well outside the targets. Although the responses of Fig.(3.21)(b), where p = 0.5,
represent the best solution to the problem, none of these solutions actually satisfy

the simultaneous specification.

3.5 Two-port design conclusions

The objective of this Chapter has been to detail the design approaches for
simultaneous magnitude and phase ladder WDF's. The design approach of using
two-port blocks to simulate circuit elements and construct ladder WDF's has been
shown to be effective and straight forward. However, a wide variety of
optimization tests have shown that a ladder WDF based upon a purely lumped
component reference network is incapable of satisfying a simultaneous
magnitude and phase specification. This work confirms the idea that minimum-
phase structures suffer a tight compromise between their gain and group delay
responses. As such, simultaneous ladder WDF designs are very difficult to achieve,

if not impossible for severe filter specifications.

Other ladder WDF circuits, based on reference networks using distributed or a
mixture of distributed and Ilumped elements, were also considered. These filters,
despite the possibility of selective gain and group delay designs, are limited by
poor frequency selectivity. This results in designs requiring a higher filter order
to achieve a magnitude specification than ladder WDF's based upon lumped

elements only.

Despite the lack of success in designing simultaneous magnitude and phase ladder
WDF's, a great deal of practical knowledge was gained in the use of optimization
techniques for filter designs. These optimization strategies cover a range of target
template schemes, error functions, their parameter settings and the performance
of various optimization algorithms.
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Of the target templates considered, the ideal line scheme provides the most
accurate representation of the desired response and ensures a relatively quick
convergence rate for magnitude only designs. The main disadvantage of this
template system is the necessity of defining an' individual value for each error
point of the target. A more convenient template scheme is the dual line system.
Although the desired response cannot be modelled as accurately as with the ideal
line system, the dual line templates are very easy to construct from a general
filter specification. Finally the single line templates proved the least successful
target scheme for these filter design problems. Despite their ease of construction,
their inability to represent a tolerance region proved to make any filter solutions

unsuitable

A sampling error function based upon a weighted Lp-metric and quasi-Newton

optimization algorithms seemed well suited to the design problem. Each parameter

of the error function was considered and their most efficient values determined.
The weighting scheme followed a rule that an equal deviation in each band of a
template generates an equal contribution to the overall error. The error points
should number 15 - 40 per band of a template and be distributed under a scheme
that clusters points around a transition edge. Finally the value of p used for the
Lp-metric in the error function, which proved to be the most successful was

around 2.

The results of this Chapter have shown that minimum-phase structures are
unsuitable for simultaneous magnitude and phase designs. Although programs
written to simulate and design ladder WDF's cannot achieve simultaneous
specifications, they can still be wused for magnitude-only or group delay only
specifications. An alternative would be to investigate nonminimum-phase
structures, such as the lattice WDF. Although all the optimization strategies
developed could be applied to a lattice structure constructed from two-port
elements, this option was not followed. This was for a number of reasons, of which
the main one concerned the complexity and variety of element blocks. From
hardware design considerations, the preferred filter structure would be
constructed from a small number of simple and regular blocks. A lattice WDF can
be designed from one-port first and second order allpass sections. These blocks are
very simple in structure and are based upon the two-port adaptor developed by
Fettweis. Because of the large differences in design approaches and structure
requirements, research was turned to a new program devoted to lattice WDF's. The
theory and results from this work are outlined in Chapter 4.
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Chapter 4

Lattice WDF's

This Chapter outlines the design of lattice WDF's and a discussion of their
application to simultaneous magnitude and phase specifications. The Chapter
starts with a comparison of various lattice WDF structures and a detailed
description of a simplified lattice WDF. This lattice structure is constructed from
first and second order AIll Pass Sections(APS's) and the equations for this structure
and the APS's are provided. Computer programs written to design and analyse the
lattice WDF structure are outlined, along with simultaneous filter designs
generated with these programs. The Chapter concludes with a discussion of
optimization techniques developed to approach this design problem and the
suitability of the lattice WDF for simultaneous filter specifications.

4.1 Design Options

Design of a lattice WDF may be considered within two main areas. The first area
entails the form of the lattice structure, its elements and how it is implemented
The other concerns the generation of the multiplier coefficients for a particular
lattice structure. Each design area involves a number of options that are discussed
within this section.

4.1.1 Lattice WDF structures

The reference structure of a lattice WDF is based upon the symmetric DTL circuit
of Fig.(4.1) using canonic impedances, Za and Zb- Canonic impedances can be
determined directly from a lattice DTL network or from a symmetric ladder DTL
circuit through Bartlett's bisection theorem[5]. Design of a lattice WDF from a
symmetric ladder DTL network using this bisection method was illustrated by

Fettweis et al.[2).



Chapter 4. Lattice WDF's

Figure 4.1 Lattice DTL networks with canonic impedances, Za and Zb-

The canonic impedances of the reference lattice circuit of Fig.(4.1) can be
modelled in the discrete frequency domain by canonic reflectances. S' and S". The
first step of this procedure is to describe the lattice DTL network in terms of its
voltage wave scattering matrix and canonic impedances. This scattering matrix is
then converted into the discrete frequency domain through the bilinear
transform to produce a discrete wave scattering matrix. S. Symmetry of the lattice
structure results in Sjj = S22 and Sj2 = S21. The canonic reflectances. S' and S", of
the lattice WDF can be determined from the scattering matrix, S, using Eq.(4.1) and
Eq.(4.2) respectively.

S = St, - Si2 (4.1)

S" « S, + SI2 (4.2)

With the canonic reflectances, a general lattice WDF can be constructed and is
illustrated by Fig.(4.2).
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A more usual description of the general lattice WDF of Fig.(4.2) is to set the second
input parameter. A2. to zero and then ignore either Bi or B2. The resulting
structure is shown by Fig.(4.3), with its two system equations given by Eq.(4.3) and
Eq.(4.4).

Figure 4.3 Simplified lattice WDF structure.

al

At (4.3)
BL S"+S

At " 2 44

The primary design consideration for the lattice structure is the construction of
the canonic reflectances. S' and S". These circuits can be implemented using the
one- or two-port techniques outlined in Chapter 1 Two-port designs use the ideas
and models discussed in Chapter 3. where S' and S" would be constructed as a
cascade of two-port elements and terminated by an open or short circuit. The
resulting circuits would have a one-port nature and could be implemented as the
branches of the lattice WDF structure of Fig.(4.3). An example of a symmetric
lattice DTL network is illustrated in Fig.(4.4), along with an equivalent lattice WDF
circuit designed through the two-port design approach.

(a)
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(b)
Figure 4.4 (a) Lattice DTL network with (b) equivalent
two-port design lattice WDF circuit.

The main disadvantage of this design approach is the large number of different
sections required to model a lattice arm. Following the two-port design techniques
of Chapter 3, a lattice arm may involve, typically, two or three of the six primitive
lumped building block elements considered. A hardware implementation of this
design approach would therefore require physical models for each of the two-port
building blocks. This is a large drawback for any VLS| implementation where a

circuit should consist of a small number of simple and regular elements

The one-port lattice design approach follows that applied to general IIR filter
designs, where a function is simulated by a cascade of first and second order
sections. For the lattice WDF structure, its canonic reflectances would be designed
from allpass one-port sections. This design technique is preferred from a VLSI
point of view as the overall filter has a regular structure and the APS's are simple

elements, making them ideal building blocks.

First and secondorder APS's may have a number of forms, such asthe direct form,
a WDF basis or the Mitra-Hirano[ 10] structures. A comparison of the performance
of these APS's was provided by Rcnfors and Zigouris[12] for roundoff noise,
dynamic range and scaling. The conclusions of this work demonstrated that
although the WDF structures operated at a lower maximum sampling rate than the
direct forms, they had superior roundoff performance for very wide-band and

very narrow-band filter specifications and good stability properties.

The WDF APS's are based upon the two-port adaptor developed by Fettweis[l,3]. The
two-port adaptor hasthe symbol illustrated by Fig.(4.5) and a possible circuit
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diagram shown in Fig.(4.6). The scattering matrix of the two-port adaptor is given
by Eq.(4.5).

Figure 4.5 Two-port Figure 4.6 Possible circuit
adaptor symbol. diagram for a two-port adaptor.

Limits for the value of a within the two-port adaptor ensure that the structure is
stable and retains the WDF properties of the overall network. The circuit of
Fig.(4.6) is not the only interpretation of the scattering matrix of Eq.(4.5). Gazsi[4]
investigated a number of different circuits to describe the two-port adaptor
against a range of performance criteria, such as dynamic range and scaling for
sinusoidal excitation. Conclusions from this work indicated that the optimum
selection of a two-port adaptor circuit depended upon the value of the multiplier
within that section. Different circuits were developed for multiplier values in the
ranges -1 < a <-1/2,-1/2<a<0,0<a< 1/2and 1/2<a < 1L

A first order APS. constructed using the two-port adaptor, is illustrated in Fig.(4.7),
while examples of second order APS's are given in Fig.(4.8). Each of these second
order sections has the same transfer function wunder infinite precision
calculations and therefore the selection of a particular model as a reference, is

arbitrary.

Ai B

Figure 4.7 First order APS using two-port adaptor.
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Ai B, A; B, A. B,
(a) (b) (c)
Figure 4.8 Examples of second order APS's using
two-port adaptors.

An implementation of the simplified lattice WDF structure of Fig.(4.3) using the
first order APS of Fig.(4.7) and the second order APS of Fig.(4.8)(a), is illustrated in
Fig.(4.9). In this structure the position of the single first order section, at the start
or end of a lattice arm and in the upper or lower arm, is again arbitrary. Practical
hardware designs may however impose scaling problems that require an
appropriate ordering of the first and second order APS's dependent upon their
multiplier values.

Figure 4.9 Lattice WDF structure using cascaded
first and second order APS's.
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An alternative structure to that shown by Fig.(4.9), is to replace one of the lattice
arms by a pure delay. The value of the delay used would equal the overall delay of
the other arm. This structure, shown by Fig.(4.10), was proposed by Kunold[6] for
simultaneous magnitude and phase designs. A limitation of this type of lattice WDF
circuit is that the degrees of freedom and efficiency of the network have been
reduced by using one of the lattice arms as a pure delay. It is therefore less likely
to satisfy an arbitrary magnitude and phase specification than the type of circuit
shown by Fig.(4.9).

Figure 4.10 Lattice WDF structure with a pure delay arm.

Another possibility is the bircciprocal structure, where the delays within the first
and second order sections are doubled. This structure would have the same form as
the circuit of Fig.(4.9), but use the first and second order APS's illustrated by
Fig.(4.11).

(a) (b)
Figure 4.11 Bircciprocal (a) first and (b) second order APS's.

The main feature of this bircciprocal structure is that the magnitude response is
constrained to a cut-off frequency of half the sampling frequency. Recent work



Chapter 4. Lattice WDF's page 4/8

by Lccb and Henk[7J has shown that through a Rcmcz type optimization
algorithm, simultaneous bireciprocal magnitude and linear phase designs are
possible using this type of structure. Their work also considered linear phase
design with phase equalizers. These equalizer circuits were based upon the lattice
WDF of Fig.(4.10) with a pure delay lattice branch. Magnitude and phase designs
approached through phase equalization use a separate circuit to satisfy the
magnitude response and a lattice structure to ensure the overall network meets
the phase requirements. The magnitude circuit may be a lattice WDF itself or a
ladder WDF. Equalization techniques, however, require an overall filter order that
is higher than that needed for simultaneous designs.

Of the structures considered, the lattice WDF of Fig.(4.9) represents the most
efficient network. It is this circuit, therefore, upon which arbitrary simultaneous
magnitude and phase designs were initiated. Definition of this structure placed the
single first order section, when required, at the end of the upper lattice arm. The
form of the second order APS's followed that illustrated by Fig.(4.8)(a) and where
arranged so that the overall order of the branches of the lattice did not differ by

more than two.

4.1.2 Optimization considerations

The objective of this research was to determine the multiplier coefficients of a
WDF structure that satisfied an arbitrary magnitude and phase specification.
Following the design ideas discussed in Chapter 2, conclusions suggested
optimization for the coefficient generation. Optimization techniques outlined in
Chapter 2 and implemented on ladder WDF designs, were based upon target
templates and a weighted Lp-metric error function. The target templates were
constructed from the filter specification wusing the gain and/or group delay
frequency responses. Because the goal of the optimization process was determined
from these templates, the optimization procedure was independent of the filter
structure and its elements. These optimization techniques may therefore be
applied to both the ladder and lattice WDF structures, as well as other filter types.

With optimization procedures based upon target templates the only elements that
are filter dependent are the frequency responses for a given set of multiplier
values and the valid range for these multiplier values. To determine a set of
coefficients for a lattice WDF through optimization, the frequency response for a
given lattice structure must be calculated. The transfer function for the lattice
WDF structure illustrated by Fig.(4.9) is detailed in Section 4.2.1, along with
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equations to determine the group delay response and the coefficient sensitivity
functions. The structure of Fig.(4.9) is based upon first and second order APS's and
therefore the overall equations for this structure are dependent upon the
formulae of these sections. AIll the required design equations for these first and
second order APS's are provided in Section 4.2.2.

Following the experience gained from applying the template based optimization
procedures to the ladder WDF structure, the most effective techniques and
parameter settings were applied to lattice  WDF designs. These optimization
techniques included the three template types, the error function of Eq.(2.7) and
the number and distribution of the error points.

The target templates provide a method of describing the desired response. These
descriptions may entail an approximation by a single straight line, a set of
boundary conditions defined by a dual set of straight lines or an ideal line that
exactly specifies the desired response at each frequency point. The versatility and
convenience of the ideal line template schemes for use on the lattice WDF's was
improved due to the explicit formulae developed by Gazsi[4], With these equations
the ideal line magnitude templates for Butterworth, Chebyshev and elliptic type
responses could be generated for any lowpass specifications. These equations
avoid a limitation encountered for ladder WDF designs based upon the ideal line
templates of only havinga restricted number of responses defined in reference
tables. Definition of the ideal line group delay templates followed the sine
function procedures detailed for the ladder WDF designs. The convergence rates
achieved for magnitude-only designs withthe ideal line template schemes on
ladder designs proved the importance of accurately representing the target
function. Following this observation, modifications to the optimization techniques
applied to the lattice WDF were centered upon the accuracy with which the desired

responses were modelled.

The high degree of accuracy achieved with the ideal line template scheme is not
possible using the straight line templates. In an attempt to improve the accuracy
of the straight line templates, the positions of the last error points of a template
band were adjusted. A frequency specification defines a maximum attenuation
across the passband and a minimum attenuation across a stopband. A response that
just meets a specification should therefore leave the passband with a value of the
maximum attenuation and enter the stopband with the minimum attenuation
value. To encourage the optimization routine to adjust the frequency response to
pass through these points, the error points at the edge of a template were moved to
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these positions. This procedure is illustrated in Fig.(4.12) for the single and dual
line template schemes.

Figure 4.12 Examples of passband error point movement for
(a) single and (b) dual line template schemes.

Another step to improve the performance of the straight line template schemes
concerned the transition band descriptions. Ladder WDF magnitude specifications
approached through the straight line templates when the transition band was not
defined, invariably failed to provide an acceptable solution. Experimentation with
various transition band schemes showed methods with a steep initial cut-off rate
followed by a shallower cut-off rate were most successful. The principle behind
this idea is that two asymptotic lines can more accurately model the typical gain
response over the transition band than a single straight line. The method
implemented in the ladder WDF designs involved a ‘hinged' line. The start and
finish of a template line was fixed to the edges of the passband and stopband and
the hinge of the line moved around the transition band. This idea was discussed in
Section 3.41 of Chapter 3.

The hinged line transition band technique requires vertical and horizontal
displacement information to determine the position of each hinge, increasing the
complexity of the template and its definition. An alternative to this method was to
replace the hinged line by an angled line. For a dual line template scheme each
transition band would require two angled lines, shown by Fig.(4.13). Using this
type of transition band definition scheme, the gain response can be encouraged to
cut-off at a quicker rale by increasing the angle of the template line. With a dual
line template scheme this type of angled line definition can cause problems if the
angle is very steep. In this situation the upper template line can move below the
lower template line. To avoid this, when the upper template line passes below the
highest value of the lower template line, the angle of the upper line from that
point is altered so that it meets the edge of the next template band. This process is
illustrated by Fig.(4.13)(b) and (d).
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Figure 4.13 Modified transition band definitions
for the dual line template scheme

The efficiency of the modifications to the straight line templates and the
repositioning of the edge error points was considered with reference to the
convergence rate of the optimization routine and the shape of any filter solutions.

4.2 Lattice WDF equations

The design and analysis of the lattice structure requires equations to determine
the gain, phase and group delay frequency responses as well as the derivatives of
these responses for the coefficient sensitivity calculations. The sensitivity
properties of the lattice structure arc a function of its components, being the first
and second order APS's. The system equations are therefore required in terms of
these building blocks and their derivatives.



Chapter 4. Lattice WDF's page 4/12

4.2.1 Overall system equations

Using the circuit illustrated in Fig.(4.3) as a basis for the lattice structure and the
relationship defined by Eq(4.4), the transfer function of the simplified lattice

structure can be written as
Hz) =S2 S (4.6)

The general form of the canonic reflectances. S' and S", is in terms of a cascade of
first and second order APS's. If Hj(z) represents the transfer function of a first
order section and H2U) the transfer function of a second order section, then the

canonic reflectances. S' and S", can be expressed by Eq.(4.7)

sio= h Hlk(o ﬁ H 2k(z) i=1land2 (4.7)
k=1 k=1
Si upper branch. §' S2 lower branch, S"
nil 1st order sections in S n2 1st order sections in S"
mi 2nd order sections in S' m?2 2nd order sections in S”

However, the order of the lattice arms should not differ by more than two. Under

this rule only one first order APS would exist in one arm of the lattice structure. If
the overall filter order is odd and the first order section occurs in the upper
branch S', then Eq(4.6) and Eq(4.7) can be combined to define the transfer

function of an odd order lattice WDF as

)10 n )

H(i) S (4.8)
where
mi 2nd order sections in S' branchm2 2nd order sections in S" branch
Hi(z) 1storder APS transfer function H2U) 2nd order APS transfer function

If the filter order is even, then the transfer function of Eq.(4.8) simplifies to

Eq.(4.9).
NHiQ) + N KXy

H@) 72“! (4.9)
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Using the principle of first and second order sections, values for mi and m2 of
Eq.(4.8) and Eq.(4.9) can be determined very easily for any filter order, N.
Equations to evaluate mj and m2 arc given by Eq.(4.10) and Eq.(4.11) respectively.

(4.10)

(4.11)

If the filter order, N = 11, then mj =2 andm2 = 3. For this example, the upper
lattice arm would contain two second order sections, while the lower arm would
possess three. Because the filter order is odd. a first order section is required. This
would be placed in the upper arm so that the order of each lattice arm did not
differ by more than two. With values for mj and m2, the gain and phase
frequency responses for any filter order can be determined through either
Eq.(4.8) or Eq.(4.9)and expressions for the transfer functions. Hi(z) and H2(z).
Equations for the transfer functions of the first and second order APS's are
detailed in Section 4.2.2.

To determine the performance of the lattice WDF, the group delay and coefficient
sensitivity responses are also required. These calculations follow the techniques
outlined for the ladder WDF circuit in Section 3.3.2 of Chapter 3 of using natural
logs. The group delay can be defined as

Using the definition of the transfer function. H(z), given by Eq.(4.6) the group
delay for the lattice structure can be written as

(4.12)

Group delay evaluation requires the derivatives of the canonic reflectances with
respect to the frequency, to. If one of the canonic reflectances is described as

Sj = A(2) .B(z) .C(z2) .D(2) (4.13)
then taking natural logs of Eq.(4.13), the derivative of Sj with respect to <0 can be
expressed as

1 dsj 1 dA(2) 1 dB(z) 1 dc(z) 1 dD(z)
Sj deo“ A(z) dco + B(z) dto + C(z) dto * D(z) du
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Using the general form of the transfer function of a lattice arm given by Eq.(4.7),
the derivative of a lattice arm, Sj, with respect to the frequency, to, can be

determined from Eq.(4.14).

dsi_y ”l d Hiic(z) y 1 dH 2k (i) (4.1
do) k—lf Hiit(z) do> K=l H2k(z) dee
where
Si lattice branch §' S2  lattice branch S"
ni 1st order APS's in S' branch n2 1st order APS's in S" branch
mi 2nd order APS's in S' branch m2 2nd order APS's in S" branch
Hi(z) 1st order APS transfer function H2(z) 2nd order APS transfer function

The group delay response of the lattice WDF can be determined from Eq.(4.12) and
the appropriate evaluation of Eq.(4.14) for each branch of the lattice structure.
Eq.(4.14) is a sum of the terms that represent the derivative of a section's transfer
function with respect to to divided by its transfer function. Therefore in order to
determine a value for Eq.(4.14) and in turn Eq.(4.12), the parameter

1 dG(2)
G(z) do)

is required, where G(z) is the transfer function of a first or second order APS.
Expressions for this parameter for both first and second order APS's arc provided
in Section 4.2.2.

The gain and phase coefficient sensitivities for the lattice structure require the
derivatives of each first and section order section with respect to the filter's
multipliers. The group delay coefficient sensitivity requires the derivatives of
each section, first with respect to to and then with respect to the multiplier
coefficients. The gain. phase and group delay coefficient sensitivities for a
multiplier, ctk> are given by Eq.(4.15), Eq.(4.16) and Eq.(4.17) respectively.

JHI | 2k, aiHi

I dak (4.15)
N, de

4 9 gk .16

4 dak (4.17)
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If the overall transfer function is expressed in its polar form then
HU) - IH@)I ei® (4.18)

Taking natural logs of Eq.(4.18) and differentiating with respect to a multiplier.
Ok, produces Eq.(4.19).

1 dH(2) J dIHU) . d9

Hz) dak - H@I dak + dak (4.19)

From Eq.(4.19), the gain and phase coefficient sensitivities of Eq.(4.15) and
Eq.(4.16) can be redefined to give Eq.(4.20) and Eq.(4.21) respectively

c - ek Rc[it_ ‘”('ﬁ()h (4.20)
4 Ko |m[it_ ’”(':g()h (4.21)

Both Eq.(4.20) and Eq.(4.21) require the derivatives of the overall transfer
function with respect to the structure's individual multipliers. These multipliers
only existin onesection of the structure andare independent of each other.
Therefore, differentiating the overall transfer function of Eq.(4.6)with respect to
a multiplier will produce two different results, depending upon in which branch
of the lattice that particular multiplier is contained. The differentiation of each
lattice arm with respect to single multiplier also simplifies because the derivatives
of the sections that do not contain a particular multiplier will also be zero. This
information can be used to simplify the gain and phase coefficient sensitivity
equations. Differentiating Eq.(4.6) with respect to a multiplier ak. produces

dH(z) 1 (dsz dsi\
dak 2 ~dak + dakl]

and because ak will only exist in S' or S", then

dH(z) _ i dSj
dak ~ 2 dak (4.22)

whe re
i=1lor2 , Si =S and S2=
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A general transfer function of a branch of a lattice is given in Eq.(4.23)

$=nxw w3

i I or 2 for each lattice arm (with Sj = S'and S2 * S”).

Lj 1st and 2nd order APS's in branch Sj.

Xk transfer function of k,h section of the branch.
(Xk being a 1st or 2nd order APS transfer function)

Taking natural logs of Eq.(4.23) and differentiating it with respect to a multiplier.
a|(, which is contained within that branch, gives

If all the multipliers are independent and a* only exists in the section Xm, then
the derivative of a branch. Si, with respect to a multiplier, a*, is given in Eq.(4.24).

Combining Eq.(4.22) and Eq.(4.24), the differential of the overall transfer function
with respect to a multiplier, at. can be expressed as

where i = 1 or 2 for the relevant lattice branch that contains the section Xm which
possess the multiplier. otk- Using the derivative of the overall transfer function
with respect to ak. Eq.(4.25), the gain and phase coefficient sensitivities of

Eq.(4.20) and Eq.(4.21) can be written as Eq.(4.26) and Eq.(4.27) respectively.

(4.26)
(4.27)

Evaluation of the gain and phase coefficient sensitivities requires the term shown
by Eq.(4.28) for each multiplier within the lattice, where Gm(z) is the transfer

function of the section that contains ak-
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Gm@  dak (4.28)
Calculation of the factor of Eq.(4.28) can be approached as an evaluation of the
inverse of Gm(z) multiplied by the derivative of Gm(z) with respect to ak or as an
analytical expression for the first and second order APS's. Because the explicit
value of the derivative of each section is not required, the second approach is a
more efficient calculation process. Formulae to determine the parameter given by
Eq.(4.28) for first and second order APS's are provided in Section 4.2.2.

The final system performance equation to be evaluated is the group delay
coefficient sensitivities. Differentiating the group delay, given by Eq.(4.12), with
respect to a multiplier, ak. modifies the group delay coefficient sensitivity

equation of Eq.(4.17) so that it can be written as

s
<s" » §)2 Adak dak) da))

However, ak only exists in one section of one branch of the lattice structure.
Therefore, the derivatives of the lattice arm and sections with respect to ak that do
not containing that particular multiplier, will be zero. Using this property, the
group delay sensitivity equation of EQq.(4.29) reduces to

where i = 1 or 2 (4.30)
with

, 9 Xy / a . +

dak (Xm  dak (Si du) dak

where Xm is the transfer function of the only section of lattice arm, Si, that
contains the multiplier, ak. For Eq.(4.30), the parameter given by Eq.(4.31) can be
evaluated directly or expanded to the form shown by Eq.(4.32).

dak (4.31)
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ri dXm\ f1 dXm\

X dak ' [xm' da)\ (Xm dakJ (4.32)

Calculation of this term would be more efficientif an analytical expression of
Eq.(4.31) was derived for the first and second order section rather than the
combination of the terms of Eq.(4.32).Equations to determine Eq.(4.31) for the first
and second order APS’s are provided in Section 4.2.2.

4.2.2 Building Blocks

To determine the properties of the lattice WDF using the equations derived for the
frequency and sensitivity responses, the transfer functions and derivatives for
the first and second order APS's are required. The transfer function of the first
order APS, illustrated by Fig.(4.14), can be determined from the scattering matrix
for the two-port adaptor and the relationship between the wave parameters given
in Eq.(4.33).

Figure 4.14 First order APS with wave parameters.

(4.33)

Combining the equations of Eq.(4.33), the transfer function of the first order
section can be derived and is given by Eq.(4.34).

The allpass nature of this first order section can be seen from its transfer
function, where if the numerator is G(z) then the denominator has the function
G(z"') and Hi(z) has a pole at a and a zero at 1/a. The stability of this transfer

function is dependent upon the position of its pole within the unit circle in the z
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domain. To ensure that the pole lies within the unit circle, then the section's
multiplier must be limited to the range -1 < a < 1

Evaluation of the group delay is based upon an expression for the derivative of the
transfer function with respect to o> divided by that transfei function. This
parameter for the first order section is given by Eq.(4.35).

(4.35)

The gain and phase coefficient sensitivities of Eq.(4.26) and Eq.(4.27) are based
upon an expression for the differential of each section with respect to its
multiplier(s). This term for the first order APS of Fig.(4.14), which has a
multiplier a, is given by Eq.(4.36).
B 4.36
Hi(z) da (-a +z lys-az'l) ( )
The Final expression for the first order section is the one required to evaluate the
group delay coefficient sensitivities. This parameter can be determined from
Eq.(4.37).

d Jol (4az-1 - (1 +an)(l +1tr))
da (4.37)
(-a +z°*)2(1-a zv')2

The transfer function. H2(z). of the second order APS illustrated by Fig.(4.13), can
be determined from the relationship between the equations of Eq.(4.38) and is
given by Eq.(4.39).

A4 = z*1.B4 , A3 - z'1.B2 and A2 * B3 (4.38)

B| at (I «a)P z'1z'2

. (4.39)
QA Aji -1+ (1 -a)Pz*l+a z*2
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A, B,

Figure 4.15 Second order APS with wave parameters.

The stability of this allpass function is determined by the position of its complex
conjugate poles. The stability criteria of this second order APS can be determined
by comparing its denominator to the denominator of a standard second order
section, given by Eq.(4.40).

z2 + 2rcos(0)z +r2 (4.40)

For the standard second order section it is known(ll] stability requires Il < 1.
Applying this limit to the appropriate parameters of Eq.(3.39) results in the
stability conditions -1 < a <0 and -1 < p < 1 for the second order APS of Fig.(4.15).

The equation of the second order section required to determine the group delay
response is shown by Eq.(4.41).

1 dH2U) _ Z-1 (I wa»)(g - 2z-1 + 8 z-2)
H2(z) do (a + (l-a)Pz'1-2z'2)(-1 ¢ (I-a)Pz*1+az'2)

The terms required for the calculation of the gain and phase coefficient
sensitivities, provided for the two multipliers a and p, are given by Eq.(4.42) and
Eq.(4.43) respectively.

1 dH2(z) a (z-2 - 1H1 -2B z-U z'2) (4.42)
H2(x) da (a + (lra)Pz™ - z'2)(-1 + (l-a)Pz*1+ az*2) :
1 dH2U) z'1(i = g2)(z:?_-u (4.43)

H2(z) dp (a ¢ (1-a)Pz'1-2z*2)(-1 + (l-a)Pz*1 az'2)
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The final expressions for this section are those required to determine the group
delay coefficient sensitivities. These terms for the multipliers a and p, are given
by Eq.(4.44) and Eq.(4.45) respectively

tj z*(p -2z*1+Pz'2)(a + (l-a)Pz'1-2°2)"'2
(2‘2((1— a)2p2 - 2a) - 2pz*>(l -a)2(l ¢ z*2)

+ (1 +a2)(l +z4))(-1 +(l-a)Pz*1+ az'2)*2 (4.44)

PN
IHEZ)d; i z'(a2 - 1)(a + (I-a)Pz'1-2%2) 2
(a(l +2'6)+z*2(1+ z*2)(1+a(a -3) + P2(1-a)2)
Capz'3(l -a)2) (-1 + (l-a)Pz'l+az'2) 2 (4.45)

4.3 Lattice WDF design and analysis software

Software written to implement simultaneous magnitude and phase designs on the
lattice  WDF structure falls into the two areas of design and analysis. The design
side of the software is provided through a menu driven program called "WDF”. This
program is based upon the optimization techniques and algorithms discussed for
the ladder WDF program. A menu within this program allows the user to enter the
order of the lattice, its initial multiplier values and frequency specification. The
position and number of first and second order APS's are calculated automatically
from the filter order. Frequency specifications are entered as a set of vectors that
contain the frequency edge and attenuation values. Under this vector scheme any
filter type can be defined from a lowpass to a dual bandpass specification.
Frequency specifications can also be defined with different frequency edges for
the gain and group delay responses. The information about the lattice structure,
its parameters and frequency specification can then be recorded into a data file.

All optimization parameters of this lattice WDF program are contained within a
single menu. This menu allows one of the single, dual or ideal line template
schemes to be selected, along with the number and position of the error points at
which the templates arc defined. The weights for the gain and group delay
templates may be set individually or calculated automatically through an option
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within the menu that ensures that an equal deviation in each template contributes
an equal error to the overall function. Other options in this menu allow the value
of the angled line for transition band definitions to be altered, the optimization
algorithm to be changed and variation of the ratio that determines the relative
contributions of the gain and group delay errors to the overall function. A menu
walk-through of this program is provided in Appendix BIl. along with an example

to illustrate the design procedure and optimization options.

A limitation of the ladder WDF program was imposed by the GHOST routines used
for graphical output. The GHOST routines required an environment which could
support a window system, typically a graphics window within Suntools. This meant
that the ladder WDF program could not be run on different systems even when
graphics were not required. For this reason the analytical and graphical elements
of the lattice WDF software were not included within the "WDF" design program. A
more versatile graphical system than the GHOST approach was provided through a
program called MatLab|9]. Within MatLab a wide range of analytical and graphical
procedures can be achieved through built-in functions. A program called
“mltwdf was written in the MalLab procedural language to provide an analysis of
any lattice WDF solutions generated from the "WDF" program.

The program “mltwdf* has three elements. The first concerns the entry of data
files. These data files arc stored in the MatLab format and are created by the
design program “"WDF". These data files may be loaded into "mltwdf" either
individually or as a set. This allows the performance of lattice WDF solutions under
slightly different optimization parameters to be compared directly. The other two
elements of this program relate directly to the analysis and display of a lattice WDF
in the frequency and time domains. The frequency domain side of the program
calculates the magnitude, gain, phase and group delay responses over an
arbitrary frequency range. Gain, phase and group delay coefficient sensitivities
can be evaluated for individual or sets of multipliers within the lattice structure,
again over an arbitrary frequency range. The final element within the
frequency domain part of the program is concerned with the calculation of the
poles and zeros of the structure. The program highlights the poles of each lattice
arm along with the zeros of the overall structure. The poles and zeros of the lattice
WDF structure can be determined from the overall transfer function given by
Eq.(4.6).
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Expressing the transfer function of each branch of the lattice in terms of a
numerator and denominator polynomial. Eq.(4.6) can be expressed as

m ii D\*i. + N'(z) D"(zj

H@ = 2 2 D7) D)

(4.46)
The poles of Eq.(4.46) are the roots of the two denominator polynomials D'(z) and
D"(z)- The zeros can be determined from the roots of the numerator of Eq.(4.46)
This means that the zeros of the structure cannot be associated with a single lattice

arm in the way the poles of the lattice can.

Each of the responses calculated is displayed to the screen through MatLab and the

user is given the option of printing the graphs to a file or laser printer.

While the frequency domain side of the software program calculates the filter
responses to the full accuracy of the system, the time domain calculations are
performed to finite wordlength criterion. The impulse response of the lattice
structure can be determined with arbitrary wordlengths for the input, output and
internal signals and for the multiplier coefficients. A finite wordlength impulse
response  can then be converted into the frequency domain with a FFT routine
provided byMatLab. This process allows the user to analyse the response of a
lattice structure to different rounding, finite wordlength and overflow strategies.
The time domain side of the program also allows a user to determine the time
domain response of a lattice filter to a number of different input functions such as

the step, ramp and square wave. Again all responses generated by this part of the
program are displayed to the screen and can be recorded for output to a laser
printer. A menu walk through for this program is provided in Appendix B2 along
with a frequency and time domain analysis of the example considered in Appendix

BI.

Ancillary software written to aid in the investigation of the lattice WDF included

an implementation of the Gazsi formulae called “ellip® and a linear phase FIR

program called The program “ellip® was written in C++ and allows a user
to define an arbitrary lowpass magnitude specification. From this specification
the order of a lattice WDF required to satisfy a Butterworth, Chebyshev and elliptic
response can be calculated along with the appropriate multiplier values. A
demonstration of the “cllip” program is provided in Appendix Bl where it is used
to generate the lattice multiplier coefficients for the lowpass design example. The
linear phase FIR program was written to implement a Remez exchange algorithm
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routine provided within MaiLab. With this software the order of a FIR filter to
satisfy an arbitrary magnitude and exactly linear phase specification could be
determined and compared with the filter orders of simultaneous lattice WDF

solutions.

4.4 Experimental Results

The experimental work for the designs of lattice WDF's followed the procedures
laid down for the ladder WDF designs. These procedures entailed the investigation
of various optimization techniques and strategies on magnitude-only
specifications with known solutions. With these specifications the convergence
rates and the shapes of filler solutions for a wide combination of different target
templates, transition band definitions, error points and optimization algorithms
were compared. With the experience gained from magnitude-only designs, the
research was extended to include simultaneous magnitude and phase
specifications.

4.4.1 Magnitude-only  design

As with the ladder WDF research, the lattice magnitude-only investigations were
based upon a suite of lowpass specifications with a range of filter orders and
attenuations. These specifications, which were just satisfied by an elliptic
function, are given in Tablc(4.1).

Spec Filter Gain passhand Gain s opband Samp
number order atl <dB) freu (Hz) all (dB) frea (Hz) freq (Hz)
1 5 1 0.05 50 0.07 1
2 7 1 0.1 50 0.11 1
3 9 0.1 0.02 100 0.04 1
4 11 0.5 0.075 100 0.09 1

Table 4.1 Lowpass filter specification examples.

Each of the lowpass specifications of Table(4.1) was investigated using the three
target templates, the two quasi-Newton algorithms and different starting positions
for the multiplier values. Results supported the theories outlined for the ladder
WDF designs, in that the more accurately the target function can be modelled, the
quicker the convergence rate. For identical specifications and the same
optimization settings, the convergence rate of tests based upon the ideal, dual and
single line template schemes fell roughly into a ratio of 4n~ : 2n*-5 ;

respectively, where n was the number of variables. This shows that as the number
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of variables to be optimized increases, target templates that do not accurately
model the magnitude response required an increasingnumber of iterations to
converge. This imposes a severe limitation upon the use of the single line template
scheme for high filter orders.

Another observation with the use of the single line template scheme is the shape

of the final solutions, especially across the passband. Thesesolutions tend to ripple
from the unity gain line to just below thetemplate line. A typical example of this

type of response across a passband is shown by Fig.(4.16).

Figure 4.16 Typical gain passband response with single line template.

The single line templates are calculated to pass along the centre of the tolerance
specification for each band in an attempt to encourage the function to equiripple
about these template lines. The gain is prevented from achieving a value greater
than one by limiting the valid range of the multiplier values so that the structure
remains pseudopassive and retains its WDF properties. The nature of the lattice
structure forces some turning points of the function to move to the zero or unity
gain limits. With reference to Fig.(4.16), the optimization routine cannot minimize
the response above the template line as the turning points on the unity gain line
cannot be moved down. The optimization routine can however minimize the
response below the template line. The response of Fig.(4.16) is typical of a single
line template solution where the weighting values were too high.

This effect was noticed inboth the passband and stopband regions of the gain
response and highlights a disadvantage of the single line template scheme
because of their reliance upon correct weighting values. These weighting values,
which were the same across a template band, do not follow the equal
deviation/equal error rule derived for ladder WDF designs and a trial and error
process is required to determine the correct values.The speed penalty this
introduces into the design process can be offset by optimization algorithms that
use derivatives. Switching from the NAG quasi-Newton algorithm EO04JAF to EO04KCF
decrease the number of iterations required by a factor of ten. Despite the extra
derivative calculations required at each iteration, in most cases the actual time
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taken for a problem to converge was noticeably quicker. Overall the single line
templates, while being very simple, arc limited by their susceptibility to weights
and a slow convergence rate for higher order filter specifications.

The dual line templates, although unsuitable for use with the E04KCF algorithm,
are not as susceptible to weighting values and the equal deviation/equal error
weighting rule appears to be satisfactory. This is partly due to the nature of the
template scheme because the error function can approach zero when the
response lies within the template limits. Therefore even if a very large weighting
value is applied to a region of the dual line template, its effects will be eliminated
when the response lies within the bounds of that region. Using this property the
passband or stopband regions of afilter can be emphasized with large weight

values.

Other results from the lattice magnitude-only designs confirmed earlier
observations from ladder designs. These included the number and distribution of
error points and starting position for the multiplier values. The number of error
points to balance the criteria of accuracy and speed fell into the range of 20-40
points per band with an equal number of points in each band. Equal numbers of
error points were used in order not to offset the overall effects of the weighting
values. The magnitude-only designsconverged quicker when more error points
were clustered about the transition edges of the template. This follows the
sine/cosine spacing ideas discussed in Chapter 3. The idea of moving error points
to the boundary positions of a template, illustrated by Fig.(4.12), also improved the
convergence rate and shape of the magnitude-only responses. Each of the
optimization tests was performed with the multiplier values starting at different
points within their valid bounds. Positions were varied from the ideal values, first
by moving a single multiplier to its boundary values and then by movingall the
multiplier values to their lower, middle and upper boundary limits. Results tended
to show that convergence rates were improved if the multiplier values were
started in the middle of their boundary limits, nominally at a value of zero. This
placed each multiplier within the bounds of any solution and avoided them being

stuck at local minima around the edges of the function.

4.4.2 Simultaneous designs

The objective of this area of research was to optimize lattice coefficient values to
satisfy an arbitrary magnitude and phase specifications. The optimization process
centered upon starting with a lattice filter order that satisfied an elliptic lowpass
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magnitude specification and then increasing the width of the group delay
tolerance until a simultaneous solution was found for that filter order. From this
solution, the group delay tolerance was halved and the filter order increased until
a new solution was generated. Under this method a family of solutions could be
tabulated for filter order and passband group delay deviation.

This design procedure wasimplemented on the three template schemes with the
optimization techniques and settings developed for the lattice magnitude-only
designs. Each test was performed with 31 error points in each band of the lowpass
specification using a sine spacing for the passband, linear spacing for the
transition band and cosine spacing for the stopband. The optimization variables
for each test contained the lattice WDF multipliers and a parameter that
represented the value about which the group delay passband template was
generated. Errors between the actual and template values were combined under
the weighted Lp-metric error function of EQq.(2.7). Although the error function
implemented in the "WDF" program could determine any integer norm value,tests
were performed with low norm values typically, p=2. This followed experience
from the simultaneous ladder WDF tests.

The initial simultaneous design investigations were carried out on single line
templates with the NAG EO04JAF optimization routine. Difficulties in determi
the appropriate weighting values and an inability to impose different group delay
tolerances soon lead to this template type being eliminated from the investigation.

The next area ofinterest concentrated upon the ideal line templates. The gain
templates were determined by calculating the filter coefficient values to satisfy a
particular lowpass specification from the Gazsi formulae and then equating the
ideal line gain templates to the lattice's frequency response with these coefficient
values. The group delay ideal line templates were based upon a sine function with
an amplitude determined by the group delay tolerance and whose period was an
optimization parameter. The general nature of the optimization routine considered
allowed the gain and group delay responses to possess different frequency edges.
This generality meant that the error points in the passband of the gain and group
delay templates could differ in number and distribution. Initial tests used a sine
spacing for the error points across the group delay passband template, although
this was later switched to a linear spacing. The gain within the passband of a WDF
filter cannot move above unity and so the only concern for the gain template was
that the response did not move below the maximum attenuation specification. This
was most likely to occur at a transition edge and so more points were clustered
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around these regions. This reasoning was not true for the group delay response
and it was as equally likely to ripple above or below its templates. To compensate
for this fact, the error point spacing was altered from a sine spacing to a linear

format.

Research using optimization techniques based upon the ideal line templates
investigated a number of parameters and their values. The main optimization
parameter for simultaneous designs is the P factor within the error function that
determines the relative contributions of the gain and group delay errors. From
ladder WDF designsa range for this parameter to ensure an acceptable filter
response fell within the range 0.6 < p < 0.9. This range of values for p was also true
for the lattice WDF designs. However, despite a wide combination of error point
numbers, weights and P values, optimization through the ideal line templates
failed to satisfy a magnitude and phase specification completely. This, in part, may
be due to the shape of the ideal targets. For the examples considered the target
magnitude response had an elliptic form while the group delay target was an
equi-spaced, cqui-ripplc function. The characteristics of wide and rapid changes
in gain are contrary to phase linearity for a filter's response and it may therefore
be impossible to achieve an elliptic type magnitude response with an equi-spaced.

equi-ripple group delay.

Research into the implications of this theory is limited with the ideal line
templates and outlines a major disadvantage of the ideal line templates compared
to dual line schemes. The ideal line templates cannot be generated unless the
desired responses are known at each frequency point. However,no research has

produced a polynomial that can exhibit arbitrary magnitude and phase properties.
Therefore, the shape of a magnitude response that permits phase linearity is very
difficult to define. As a consequence, the ideal line gain templates cannot be
defined. This problem is also true for the group delay templates, where an equi-
spaced and equi-ripple response may be detrimental to a desired gain response. To
determine the nature and shape of filter responses that can possess an arbitrary
magnitude and phase characteristic, research was altered to designs based upon

the dual line template schemes.

The dual line template scheme proved to be the most successful design technique
for simultaneous magnitude and phase designs. A large range and combination of
optimization parameters were investigated from weights to the angles of the
transition band templates. Experimental results showed that the most successful
optimization settings had (3 values in the range 0.7 < p < 0.8 and weights that
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followed the equal deviation/cqual error rule. For a lowpass specification the gain
points followed the sinc/lincar/cosinc spacing, while the group delay error
was linear over the passband. An equal number of error points, in

error
point spacing
the range of 25 -45 for eachtemplate region, was also found toprovide solutions

relatively accurately and quickly.

A design example can be used to illustrate how the overall order of a filter and its

frequency responses were modified to meet an identical gain specification with

The orders of this suite of solutions can then be
elliptic function that satisfies the magnitude

various group delay tolerances.
compared to the order of an
specification and the order of a FIR filter satisfying the same magnitude

specification but with exactly linear phase.

Consider the lowpass filler specification shown in Table(4.2).

Gain jassband Gain  topband Delay passhand
att (dB) edge (Hz) an (dB) edge (Hz) dev (%) edge (Hz) freq (Hz)
0.1 0.08 34 0.16 10 - 0.005 0.09 1

Table 4.2 Lowpass filter specification.
Using the “ellip® program the order of Bulterworth, Chebyshev and elliptic
satisfy the magnitude specification of Table(4.2) can be determined.
“linfir*, the order of a FIR filter required to satisfy the same
These

functions to
Through the program
magnitude specification and exactly linear phase can also be evaluated.

filter orders arc detailed in Tablc(4.3).

Filter Lattice WDF Linear
type Butterworth Chebyshev Elliptic Phase FIR
Filter 9 5 5 26
order

Table 4.3 Filter orders to satisfy the magnitude

part of the specification from Table(4.2).
Under the design procedure outlined at the start of this section, the initial
optimization was performed on a lattice WDF with the order of an elliptic function
that satisfied the magnitude specification. For the example considered, this order
was five. The frequency responses of a 5th order lattice WDF that satisfies the

magnitude part of the specification of Tablc(4.2) using the elliptic function are

shown by Fig.(4.17).



(€) (d)
Figure 4.17 Frequency responses of a 5lh order lattice WDF, (a) overall
magnitude, (b) passband magnitude, (c) overall group delay and
(d) polc/zero plot.

Characteristic of the elliptic function, shown in Fig.(4.17), is an equal number of
turning points in both the passband and stopband, an equi-ripple gain format and
a high frequency selectivity. The elliptic function also exhibits a very poor phase
linearity or non-constant group delay response. A Bessel polynomial, on the other
hand, is constructed to possess good phase linearity. Its linear phase is achieved at
the expense of frequency selectivity. Both these polynomials and the others
considered within filler designs were constructed to possess a minimum-phase
characteristic. The tradeoff between frequency selectively and phase linearity
was clearly highlighted by designs on the minimum-phase ladder WDF structure
in Chapter 3.

The nonminimum-phasc lattice structure can also implement the classic
minimum-phase polynomials, demonstrated in Fig.(4.17). However a more
efficient procedure would be to consider nonminimum-phase polynomials. If a
lattice  WDF is to satisfy an arbitrary magnitude and linear phase specification
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then it must follow a nonminimum-phase polynomial that contains the
characteristics of high frequency selectivity and phase linearity. These would
include a ripple in both gain passbands and stopbands, similar to the elliptic
polynomial and zeros that exist in reciprocal complex conjugate sets.

The specification of Table(4.2) requires a group delay tolerance between 10% and
0.005%. From a simultaneous solution for the 5lh order lattice WDF with a very wide
group delay tolerance, the order of the filter was increased until a solution with a
10% group delay deviation was produced. The order of a lattice WDF to satisfy this
specification was seven and its frequency responses are illustrated by Fig.(4.18).
The frequency responses of filter solutions that satisfied the 0.1% and 0.005%
group delay tolerances are illustrated by Fig.(4.19) and Fig.(4.20) respectively.

Planner <cH>  Optarror0 Qp T>(aa DAL
(«) (b)
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(e)
Figure 4.18 7th order lattice WDF with 10% group delay tolerance
showing, (a) overall and (b) passband magnitude and (c) overall and
(d) passband delay frequency responses and (e) pole/zero plot.

(c) (d)
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(e)
Figure 4.19 11th order lattice WDF with 0.1% group delay tolerance
showing, (a) overall and (b) passband magnitude and (c) overall and
(d) passband delay frequency responses and (e) pole/zero plot.

(c) <d)
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(e)
Figure 4.20 15th order lattice WDF with 0.005% group delay tolerance
showing, (a) overall and (b) passband magnitude and (c) overall and

(d) passband delay frequency responses and (e) pole/zero plot.

The filter orders of the design solutions to the specification given in Table(4.2) are
detailed in Table(4.5), along with the order of the elliptic function that satisfies
the magnitude part of the specification and the order of the equivalent exactly
linear phase FIR filter.

Lattice WDF FIR
Elliptic Group delay deviati M (%) linear
function 10 5 1 0.5 0.1 0.05 0.01 0.005 phase
filter 5 7 7 7 9 11 11 15 15 26
order

Table 4.5 Filter order of solutions satisfying the specification of Table(4.2).

A number of properties from various solutions can be observed when the filter
responses are compared. These properties concern the increasing filter order
required to satisfy a narrowing group delay tolerance and how these extra degrees
of freedom are distributed within the gain and group delay responses. From
Table(4.5) it can be seen that halving the group delay tolerance requires
approximately an increase of two in the overall filter order. This increase in filter
order does not increase the turning points across the passhand of the gain
response but instead places more turning points in the gain stopband and the
group delay passband. The distribution of these turning point across the various
group delay tolerance solutions is detailed in Tablc(4.6).
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Group delay deviati 3n (%)

10 5 1 0.5 0.1 0.05 0.01 0.005
filter order 7 7 7 9 1 11 15 15
gain 15 15 15 15 15 15 15 15
passband
turning gain 2 2 2 2 3 3 4 3
points stopband
delay 11 2 2 2 25 25 3
passhand

Table 4.6 Turning points of solutions satisfying the specification of Table(4.2).

The characteristic of the optimization routine of wusing the extra filter orders
within the gain stopband and delay passband responses can also be demonstrated
through a second lowpass filler example. The specification of this example uses
the same group delay tolerance range as the first example and is detailed in
Table(4.7). The orders of the solutions to this specification are given by Table(4.8),
along with the orders of the appropriate Butterworth. Chebyshev and elliptic
functions and the equivalent exactly linear phase FIR filter.

Gain passhand Gain stopband Delay passband Samp
att (dB) cdsc (Hi) ait (dB) edge (Hz) % dev edge (Hz) freq (Hz)

0.17 500 40 750 10 - 0.005 550 2500

Table 4.7 Specification of second lowpass filter example.

Lattice WDF Linear
Butt Chcb Ellip Group delay deviation phase
fun  fun fun 10 5 1 05 01 0.05 0.01 0.005 FIR
filter 4, 5 5 11 18 18 13 15 15 17 17 22
Table 4.8 Filter orders satisfying the specification of Table(4.7).

The turning points of these filter solutions across the gain and group delay
responses arc illustrated by Tablc(4.9).



Chapter 4. Lattice WDF's page 4/36

Group delay deviatian (%)

10 5 1 0.5 0.1 0.05 0.01 0.005
filter order n 13 13 13 15 15 17 17
gain 15 15 15 15 25 15 15 15
passband
turning gain 3 2 2 3 3 3 2 2
points  stopband
delay 15 2 3 3 4 4 55 55
passband

Table 4.9 Turning points of solutions satisfying the
specification of Table(4.7).

Frequency responses of the solutions to the design example of Table(4.7) with the
10%. 1% and 0.01% group delay tolerances arc shown by Fig.(4.21), Fig.(4.22) and
Fig.(4.23) respectively.
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showing, (a) overall and (b) passband magnitude and (c) overall and
(d) passband delay frequency responses and (e) polc/zero plot.

(c) (d)
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(e)
Figure 4.22 13th order lattice WDF with 1% group delay tolerance
showing, (a) overall and (b) passband magnitude and (c) overall and
(d) passband delay Frequency responses and (e) pole/zero plot.

(b)
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(e)
Figure 4.23 17th order lattice WDF with 0.01% group delay tolerance
showing, (a) overall and (b) passband magnitude and (c) overall and

(d) passband delay frequency responses and (e) pole/zero plot.

The frequency responses of the simultaneous design solutions shown by Fig.(4.18)
to Fig.(4.23) indicate the nature of the function required to satisfy an arbitrary
magnitude and linear phase specification. Gain responses ripple in both the
passhand and the stopband. The gain response should therefore possess the
frequency selectivity of an elliptic type function. The group delay response also
ripples across the passband. Narrowing the width of the group delay tolerance
increases the order of filler required and results in a larger number of ripples
over its group delay passband region. The zeros of the lattice structure for these
solutions lie in reciprocal complex conjugate sets while the poles of the two lattice
arms are interlaced upon an arc within the unit circle. The position of the zeros
follows the patterns predicted for linear phase requirements within Chapter 1.
The interlacing of the poles from each lattice arm is consistent with the ideas

outlined by Gazsi[4] for the canonic polynomials of the lattice structure.

Other features of the simultaneous solutions that can be seen from the frequency
responses include the distribution of turning points or degrees of freedom of the
structure. For the range of design examples investigated, an increase of the filter
order and therefore its degrees of freedom were not used to increase the number
of turning points in the gain passband region. This feature is not necessarily a
prerequisite for a simultaneous solution but a property of the optimization
procedure and the dual line template scheme. This was shown through magnitude-
only designs based on the dual line templates. Solutions were achieved with the
same filter order as the elliptic function but which did not possess the same
number of turning points in the passband and stopband. Optimization tended to
limit the number of turning points within the passband in favour of the

transition band and stopband.
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The distribution of the turning points within the frequency responses of the
solutions of the two design examples considered are listed by Table(4.6) and
Table(4.9). Calculating the possible number of turning points for a given filter
order and those listed in the two tables reveals a discrepancy. The turning points
that make up the difference between these two values have been placed in the
transition band by the optimization routine. Their presents cannot usually be
noticed unless the angles of the transition band templates are not set correctly.
The magnitude response of Fig.(4.22)(a) illustrates the effect of an inappropriate
template definition and shows a turning point in the transition band.

The use of turning points in a transition band is typical of filter specifications
with unequal gain and group delay passband widths. The transition band is a
region of rapid change for the gain response. However, rapid changes in gain are
detrimental to phase linearity. If the group delay passband is wider than the gain
passband then the optimization routine will find it very difficult to remain within
the template bounds at the edge of the group delay passband when the gain starts
to drop off from a frequency point within that region. To avoid this difficulty the
optimization routine tends to move the gain cut-off point into the transition band
past the group delay passband edge. This is achieved by placing some of the
available turning points of the structure in the transition band. This process was
hindered by the error point repositioning ideas illustrated in Fig.(4.12). With
unequal gain and group delay passband widths, the gain will not necessarily have
the maximum attenuation at the edge of its passband. Therefore this modification
to the optimization templates was no longer applied for simultaneous design tests.

The final area of research within the lowpass simultaneous design stage involved
a comparison with linear phase FIR filters and equalized elliptic HR filters. Work
by Rabiner and Gold[Il] tabulated the filler order, mean group delay value and the
number of multiplication per sample for a wide range of lowpass specifications
for linear phase FIR filters and HR filters with an elliptic magnitude response and
equalizer. Each table listed the results for lowpass specifications with identical
attenuation characteristics and different cut-off frequencies. The equalizer
method was tabulated for a number of group delay tolerances over a passbhand that
had the same width as the gain passbhand.

Conclusions from this work indicate that to equalize an elliptic function to a group
delay deviation of about 3% requires an increase of approximately 30% in the
number of multiplications per sample compared to FIR filter design. It was also
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noticed that the mean passband group delay value of the equalized circuit was
always higher than the FIR cases. The authors make a number of observations
about the wuse of a cascaded second order section HR filter for simultaneous
designs. They suggest that the extra multipliers required to implement the second
order section as nonminimum-phasc elements for simultaneous designs offsets a
reduction in the overall filter order required. From this assumption they found it
unlikely that any advantage could be gained from the use of simultaneous designs

compared to an equalizer approach.

Results from optimization tests of the lattice WDF to satisfy a number of the
Rabiner and Gold lowpass specifications, given in Table(4.10), are tabulated in
Table(4.11) along with the equivalent FIR and equalized elliptic parameters.

Spec Gain assband Gain  topband Samp
No. all (dB) edge (Hz) alt (dB) edge (Hz) freq (Hz)
1 0.1746 0.0502 80 0.20273 1

2 0.1746 0.09846 80 0.25119 1

3 0.3546 0.25 60 0.34153 1

4 0.3546 0.25 60 0.30689 1

Table 4.10 Specifications for comparisons of simultaneous

designs with linear phase FIR and equalized elliptic solutions.

In Table(4.11), N represent the order of each filter (in the equalizer case N’ is the
order of the elliptic filler and N" the equalizer order), M s the number of
multiplications required per sample and xg is the group delay value. The term x%

indicates group delay tolerance acrossthe passband for that specification.

From the results shown in Table(4.11), it can be seen that the simultaneous lattice
WDF solutions have a lower group delay value than theequivalent FIR and
equalized filler solutions. The order and number of multiplications per sample of
the simultaneous designs arc also lower than the FIR cases. This however does not
appear to be true for the performance of the simultaneous designs against the
equalizer solutions. Although the method of defining the group delay error as a
percentage deviation cancompensate for different sampling frequencies, it does
not accurately reflect the actual width of the group delay error in itself.
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Spec F R filer Equalized filter Lattice WDF

No. N M tK X% N’ N M T% N M AV
1 21 11 10 121 5 2 11 287 121 9 9 9.03
3.4 5 4 13 427 3.4 9 9 13.29

2 21 11 10 116 5 2 1 145 116 9 9 8.14
4.1 5 4 13 22.2 4.1 1 1 6.69

0.8 5 6 15 29.4 0.8 11 11 9.51

3 29 15 14 374 5 2 11 8.4 374 9 9 5.47
21.6 5 4 13 106 21.6 1 1 5.37

116 5 6 15 137 116 11 1 4.78

5.6 5 8 17 16.9 5.6 13 13 451

2.4 5 10 19 203 24 13 13 7.85

4 45 23 22 34.7 6 4 14 138 347 11 11 5.84
25.0 6 6 16 160 250 13 13 5.37

16.9 6 8 18 187 169 15 15 7.28

117 6 10 20 220 117 15 15 6.99

7.9 6 12 22 25.5 79 17 17 8.86

5.2 6 14 24 29.4 5.2 17 17 8.71

3.2 6 16 26 32.8 32 19 19 1216

18 6 18 28 36.3 18 19 19 11.98

Table 4.11 Performance parameters of equivalent simultaneous lattice
WDF, linear phase FIR and equalized elliptic structures

To accurately compare the simultaneous and equalizer design results of Table(4.11)
the actual group delay errors need to be determined. All the equalizer solutions
possess mean passhand group delay values that arc approximately three times
larger than the equivalent simultaneous values. Therefore despite achieving
identical group delay percentage deviations, the performance of the simultaneous
solutions is better because they have narrower group delay error widths. Under
these conditions the filter orders of Table(4.1) cannot be directly compared but in
most cases the simultaneous solutions require a lower filter order than the
equalizer designs despite of more stringent group delay tolerances.

Although Tablc(4.11) docs not allow a direct comparison of simultaneous and
equalizer designs, it does highlight the differences in group delay values
produced wunder each design approach. In most design examples the mean
passband group delay value under the simultaneous approach was lower than the
FIR solutions. This feature was especially true for narrow passband widths since
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the lattice WDF is only concerned with the linearity of the group delay across the
passband, while the FIR filler exhibits exactly linear phase over the whole
frequency range. The efficiency of the lattice WDF over the FIR filter design
reduces as the passband width is increased orthe group delay tolerance is very

narrow.

Another feature that varied the performance of the simultaneous lattice WDF over
the FIR filter was the width of the transition band. Specifications with narrow
transition bands required high order FIR filters because of their poor frequency
selectivity and exactly linear phase over the whole frequency range. This feature
can be seen in Table(4.11). where the relative performance of the lattice WDF
increases compared to the FIR filter approach when the width of the transition

band of a frequency specification is decreases.

4.5 Lattice WDF design conclusions

The conclusions of this part of the research fall into two areas. The performance
of various optimization techniques directed at lattice WDF designs and the
suitability of the lattice WDF for simultaneous magnitude and phase designs.

Through computer programs written to design and analyse the lattice WDF a wide
range and combination of optimization techniques were investigated. These
techniques included different target definitions, weighting procedures, number
and distributed of error points, multiplier starting positions and optimization
algorithms. Results from both magnitude-only and simultaneous specifications
have shown that the more accurately the desired function can be described, the
faster the problem will converge. In this way, magnitude-only designs optimized
with the ideal line templates converged very quickly. These templates can only be
used when the form of the solution is already known and are of little practical use
for magnitude-only designs. For simultaneous specifications they offer the best
approach of generating the magnitude and group delay responses to a desired
shape. However, simultaneous tests using an elliptic function for the ideal gain
target and an equi-ripple, equi-spaced group delay target, failed to find any
acceptable solutions. These results lead to a conclusion that the characteristics of
the elliptic polynomial are contrary to an cqui-ripple, equi-spaced group delay
response for the lattice structure.

Lack of information about minimum- and nonminimum-phase functions capable
of satisfying an arbitrary magnitude and phase specification meant that no ideal



Chapter 4. Lattice WDF's page 4/44

line templates could be defined. This reason prompted a more detailed
investigation with the straight line templates. Although the single line template
scheme proved to be of little practical use for simultaneous designs, the dual line
templates performed very well under most filter specifications. With the dual line
templates as a basis for further tests, optimization procedures and their parameter
values were compared. Of the optimization procedures considered, the most
effective for simultaneous designs concerned the introduction of a variable that
represented the mean value of a group delay passband template. Optimizing this
parameter along with the lattice multiplier values allowed the optimization
routines to move the group delay template up and down to find a solution.

Other optimization parameter settings that contributed to an improved
convergence rate andfilter response shape involve a weighting scheme that
worked on an equal devialion/cqual error rule, a technique that clustered error
points around the region of the template with the most activity, an error function
based upon a weighted Lp-metric and quasi-Newton optimization algorithms. From
a large number of tests, the importance of defining the transition band accurately
also became apparent, even with very narrow transition band widths.

The suitability of the lattice WDF for simultaneous magnitude and phase designs
depends on a number of factors. The most important factor is that the structure
can be designed to meet an arbitrary simultaneous specification. From the theory
outlined in Chapter 1, linear phase can only be achieved with a structure that has
a nonminimum-phase characteristic and can place its zeros in reciprocal complex
conjugate sets. The results of Section 4.4.2 have shown that this is possible with
the lattice WDF structure. The other suitability criteria concern practical design
and hardware implementation properties. Other structures, notably the cascaded
section order section HR filter can be designed to satisfy a simultaneous
specification. It is therefore the finite wordlength performance and physical
hardware models that are of interest in selecting the lattice WDF over any other

filter structure.

The lattice WDF considered in this research is constructed from first and second
order APS's. These sections, detailed in Section 4.2, are very simple in structure
and possess good dynamic range and scaling properties. The regular nature of the
lattice structure means that any hardware implementation need only construct a
single section and then data and multiplier values multiplexed into it. A more
detailed discussion of these hardware ideas and the VLSI implications for the
lattice  WDF was provided by Matharu[8]. Conclusions of this research indicate that
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the lattice WDF is a very efficient structure from a hardware implementation

point of view

The final consideration with the use of the lattice WDF is that simultaneous designs
represent the most efficient method of satisfying a magnitude and phase
specification. Designs requiring exactly linear phase can only be satisfied by FIR
filters. However, a small tolerance in the phase linearity can allow a large
reduction in the filter order and its operation speed. Use of a WDF structure
ensures a good finite wordlength performance and results have confirmed that a
simultaneous design approach requires a lowerorder than with equalizer

techniques.

From all the properties considered, simultaneous designs on the lattice WDF
structure based wupon first and second order APS's does represent the most
effective method of satisfying an arbitrary magnitude and phase specification.
Research up to this point has been directed at generating lowpass filter lattice
coefficient values that have a large accuracy. Work detailed in Chapter 5 concerns
the methods of achieving highpass, bandpass and bandstop versions of the lattice
WDF, while Chapter 6 details the optimization procedures and performance of

lattice  WDF's satisfying finite wordlcngth constraints.

References

1) Fettweis, A., "Digital Filter Structures Related to Classical Filter Network”, Arch. Elek.
Ubertrag., Vol 25. 1971, pp79-89.

2) Fettweis, A., Levin, H. and Sedlmeyer, A., “"Wave Digital Lattice Filters”, Int J. Cir.
Theory and Applications, Vol 2, 1974, pp203-211.

3) Fettweis, A., "Wave Digital Fillers: Theory and Practice”, Proc IEEE, Vol 74, No. 2,
February 1986, pp270-327.

4) Gazsi, L., "Explicit Formulas for Lattice Wave Digital Filters”, IEEE Trans. Circuits and
Systems, Vol CAS-32, No. 1, January 1985, pp68-88.

5) Guillemin, E. A, Synthesis of passive networks, John Wiley and Sons, London, 1957.

6) Kunold, 1., “Linear Phase Realization of Wave Digital Lattice Filters”, Proc. Euro. Conf.
Circuit Theory and Design, No. 308, September 1989, pp512-516.

7) Leeb, F. and Henk, T.. “"Simultaneous Approximation for Bireciprocal Lattice Wave
Digital Filters". Proc. Euro. Conf. Circuit Theory and Design, No. 308, September 1989,
pp473*476

8) Matharu, P. S., "Architectures for the VLS| Implementation of Digital Filters", Ph. D.
Thesis. The City University, 1988.

9) MatLab, MaihWorks Inc, Portola Valley, California, 1985.



Chapter 4. Lattice WDF’s

10)

11)

12)

page 4/46

Mitra, S. K. and Hirano, K., "Digital All-Pass Networks". IEEE Trans. Circuits and
Systems, Vol CAS-21, No. 9. September 1974, pp688-700.

Rabiner, L. R. and Gold, B,, Theory and Application of Digital Signal Proceaaing.
Prentice-Hall, New Jersey, 1975.

Renfors, M. and Zigouris. E.. “"Signal Processor Implementation of Digital All-Pass
Filters", IEEE Trans. Acoustics, Speech and Signal Processing, Vol ASSP-36, No. 5 May
1988, pp714-729.



Chapter 5

WDF Frequency Transformations

The object of this Chapter is to outline the theory and design procedures behind
WDF frequency transformations and lattice WDF structures that can exhibit
highpass, bandpass, bandstop. dual bandpass and dual bandstop type responses
The equations and models for these transformed WDF structures are developed and
related to the original lowpass structure. The characteristics of the various
frequency transforms are detailed through a design example that converts a
lowpass solution into the various filter types considered. The Chapter ends with a
discussion of the design and optimization considerations for these transformed
latticet  WDF  structures in satisfying magnitude-only and simultaneous
specifications. The implications of these design and optimization considerations
are highlighted through a number of examples.

5.1 Frequency Transforms

The purpose of a frequency transform is to alter the transfer function of a
lowpass filter to produce a circuit with a highpass. bandpass or bandstop type
response. The principle of a frequency transform s to shift and/or scale the
frequency axis of a filter's response. The action of modifying the frequency axis

of a lowpass response can be seen through Fig.(S.I) and Fig.(5.2)

Figure 5.1 General digital lowpass gain response.

A shift of half the sampling frequency, Fs, transforms the lowpass response of
Fig.(5.1) into the highpass response shown in Fig.(5.2)(a). The bandstop response,
shown by Fig.(5.2)(b). is achieved by doubling the sampling frequency of the
lowpass response, while the bandpass response of Fig.(5.2)(c) is produced through

a frequency shift and scaling
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Figure 5.2 Frequency transformations applied to a lowpass response to

produce equivalent (a) highpass, (b) bandstop and (c) bandpass responses.

A frequency transform is applied to the transfer function of a filter by replacing
each frequency dependent variable with a new frequency dependent function.
The frequency shift of 0.3FS that produces a lowpass-highpass transformation
corresponds to the substitution shown by Eq.(5.1).

(5.1)
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The lowpass-bandstop transform can be described as

(5.2)
while the lowpass-bandpass transform can be expressed as

(5.3)

All the transforms described by Eq.(S.I) - Eq.(5.3) are very simple functions that
do not alter the relative passband and stopband widths and generate symmetric
bandpass and bandstop type responses. Modifying the width and cut-off
frequencies of a filter's response requires a more complicated set of frequency
transformations.

The general specification for a lowpass-highpass transform is illustrated by
Fig.(5.3).
i
0 Frequency 0.5F, " rp Frequency 05F,
(a) (b)

Figure 5.3 General lowpass-highpass transform specification.

The equation of a lowpass-highpass transformation able to achieve the conversion
shown by Fig.(5.3), is well known in analogue filter designs[6] and has been
adapted to digital designs by Constantinides[2]. This transform is given in Eq.(5.4).

(5.4)

where

If the desired highpass response has the same passband width as the reference
lowpass response, such that for Fig.(5.3) wp = w'p, then a = 0 and Eq.(5.4) reduces

to the simple transform of Eq.(S.I).
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The general lowpass-bandpass transformation specification is illustrated by
Fig.(5.4) and can be produced through the transform shown in Eq.(5.5).

[ fo Frequency 0 fb fipf, fuw f, Frequency 0.5Ff
(a) (b)

Figure 5.4 General lowpass-bandpass transform specification.

(5.5)

where

Within the transform of Eq.(5.5), the parameter a is responsible for moving the
centre of the passband, shown by the frequency point fO in Fig.(5.4)(b), while k
varies the width of the passband, w’p. If the required passband width for the
bandpass response. w'p, is equal to the passband width of the lowpass prototype,
wp, then k => 1 and Eq.(5.5) reduces to Eq.(5.6).

(5.6)

where

If a symmetric bandpass response is required, the centre frequency fQ » 1/4T so a

=* 0 and EQq.(5.6) will simplify to the frequency transform of Eq.(5.3).
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The general lowpass-bandslop frequency transformation, shown by Fig.(5.5), has
equations that are detailed in Eq.(3.7) and Eq.(5.8).

‘2 - fiTTH)*- - fIhHP

M

f COS(jt(fnn - fin) T) \ B v r \%
“ = (cos(jt(fup + f|p)T) J and k » tan(n(fup - fip)T) ian(>i fp T)

-1

Within Fig.(5.5),

reduces to EQ.(5.8).

when wjp + wup = wp then k ~ 1 and the transform of Eq.(5.7)

(5.8)

where
cos(it(fup - fip)T)
= Ceos(jt(fup + fip)T) )

a = cos(2 *f0oT)

Again when the centre frequency of the bandstop response is such that fQ = 1/4T.

then a =9 0 and the frequency transform of Eq.(5.8) simplifies to Eq.(3.2)

The objective of this area of research was to derive WDF structures that can
exhibit various filler response types. Authors have approached WDF frequency
transformations from a number of different angles. These methods may be
grouped into three main approaches. The first method starts with an analogue
lowpass DTL network, generates an equivalent highpass, bandpass or bandstop
analogue DTL circuit and then derives a WDF circuit from this reference structure.
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This approach was discussed in Chapter 3 for highpass and bandpass ladder WDF
designs. The next method also starts with an analogue lowpass DTL network but
applies the appropriate frequency transformation in conjunction with the WDF
equations to the elements of the circuit to produce a transformed WDF component.
With these elements a transformed WDF structure could be constructed. This
technique was outlined by Ali(l) and Swamy and Thyagarajan[7],

The final design method entails describing frequency transformations in terms of
WDF elements. This approach, followed by Lawson[4] and GUIllUoglu[3], is possible
because of the form of the frequency transforms given in Eq.(5.1), Eq.(5.6) and
Eq.(5.8). With this design technique a lowpass WDF structure can be converted into
a highpass WDF structure by adding a -1 multiplier to each delay unit because the
transform of Eq.(5.1) replaces z'l with -z"1. The frequency transforms of Eq.(5.6)
and Eq.(5.8) represent the transfer function of a two-port adaptor connected to a
single delay element. Therefore bandpass and bandstop designs are possible by
replacing every unit delay of the lowpass prototype with a first order APS and a
unit delay. The difference between the bandpass and bandstop transforms of
Eq.(5.6) and Eq.(5.8) means that all bandpass modifications would also have to

include a -1 multiplier.

Of the frequency transformation method considered, the one proposed by Lawson
offers the most versatile approach as it removes the need for the design of a
reference DTL circuit. With this technique it is also very easy to generate the
components for multiple band filter specifications, especially the APS’s required

for lattice WDF structures.

5.2 Frequency transformed lattice WDF elements.

The research into frequency transforms and finite wordlength effects was based
upon the lattice WDF structure. This structure, shown by Fig.(5.6), has its canonic

reflectances constructed as a cascade of first and second order APS's.

The lowpass lattice WDF structure considered in Chapter 4 used the first and second
order APS's that were detailed in Section 4.2.2. Lattice WDF structures that would be
capable of exhibiting highpass, bandpass or bandstop type responses would have
the same structure as that shown in Fig.(3.6) but would be constructed from APS's
that were the appropriate frequency transformed versions of the first and second

order APS's of the lowpass circuit.
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2nd 2nd 2nd st
order order order order
APS APS APS APS
©-0-0Y
ia
2nd 2nd 2nd
order order order
APS APS APS

Figure 5.6 Lattice WDF structure.

Any lattice  WDF structures derived would have their multiplier values determined
through optimization. The optimization targets used to generate these values would
be defined by the cut-off frequencies and passband widths of the filter's response.
Therefore because the passband widths for a particular specification would be
calculated directly, frequency transformations that alter passband widths would
not be required. Under this condition Eq.(S.I) is sufficient for lowpass-highpass
transformations, while Eqg.(5.6) and Eq.(5.8) are adequate for bandpass and
bandstop transforms as they move the centre frequency point but do not alter the
passband widths.

Using the lowpass-highpass transform of Eq.(5.1) it is easy to develop the first and
second order APS's of a highpass lattice WDF structure. The lowpass APS's are
shown by Fig.(5.7), while the equivalent highpass APS's are illustrated by
Fig.(3.8).

(») (b)
Figure 5.7 Lowpass (a) first and (b) second order APS's.
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+h
grf
+h

A B, Aj B,

(a) (b)
Figure 5.8 Highpass (a) first and (b) second order APS's.

The lowpass-bandpass transform of Eq.(5.6) and lowpass-bandstop transform of
Eq.(5.8) only differ by a minus sign and therefore the equivalent first and second
order APS's will only differ by the inclusion or exclusion of a -1 multiplier. The
action of the two frequency transforms of Eq.(5.6) and Eq.(5.8) is to replace each
unit delay of an APS with a two-port adaptor and a unit delay. Applying this
procedure to the first and second order APS's of Fig.(3.7) results in the bandpass
and bandstop APS's shown by Fig.(5.9). For these APS's. the bandpass models
require the extra -1 multipliers while the bandstop elements do not.

A, B, A, B,

(a) (b)
Figure 5.9 Bandpass and bandstop (a) 2nd and (b) 4,h order APS's.
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The APS's of Fig.(5.9) are second and fourth order elements where parameters xj,
X2 and X3 represent the section's multipliers and o an element that moves the
centre point of the bandpass or bandstop response. This factor, defined in Eq.(5.6)
and Eq.(5.8), would be determined for agiven frequency specification and then
the same value applied to each APS of a circuit.

The frequency transformation ideas of Eq.(5.6) and Eq.(5.8) can be used to extend
the lattice WDF structure to multiple band type responses. Therefore if Eq.(5.6) and
Eq.(3.8) were applied tothe bandpass and bandstop APS's of Fig.(5.9), then dual
bandpass and dual bandstop APS's could be designed. These dual bandpass and dual
bandstop APS's will, again, only differ by the inclusion or exclusion of -1
multipliers. The transformed APS's for these dual band lattice WDF structures are
shown by Fig.(5.10), where the parameters a and p are calculated to independently
shift the position of the two bands of the response.

Dual bandpass lattice WDF structures will be based upon the fourth and eighth
order APS's of Fig.(5.10) which include the -1 multipliers, while the dual bandstop
circuit will use the APS's of Fig.(5.10) without these extra multipliers.

In all design cases the lattice WDF structure is based upon the circuit of Fig.(5.6)
with the appropriate transformed first and second order APS's. Because of this,
each circuit can be described by the overall lattice WDF equations derived in
Section 4.2.1 of the Chapter 4. The only parameters that will differ are the transfer
functions and derivativesof the variousAPS's. To evaluate the gain, phase and
group delay responses of the highpass, bandpass and bandstop structures, the
parameters derived for the lowpass first and second order APS's in Section 4.2.2
must be determined for the APS's of Fig.(5.8), Fig.(5.9) and Fig.(5.10)

The transfer function of the various APS’s can be derived from the scattering
matrix of the two-port adaptor and wave parameter relationships. An alternative
to this design approach is to use the transforms of Eq.(S.I), Eq.(5.6) and Eq.(5.8) on
the transfer functions of the APS of the lowpass structure. Both methods produce

identical results.

The design equations of the APS's for the highpass and single and dual bandpass
and bandstop lattice WDF structures were determined through a symbolic
mathematical computer program called Mathematical]. These equations arc
detailed in Appendix Cl - C5.
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Figure 5.10 Dual bandpass and bandstop (a) 4th and (b) 8th order APS's.

5.3 Characteristics of frequency transformations

To investigate the behaviour and properties of the various transformed lattice
WDF structures, their equations were included within the design program, “WDF".
This design program automatically calls the appropriate APS's for a given
frequency specification, allowing highpass, single and dual bandpass and

bandstop filters to be created and analysed.

To illustrate the characteristics of the various frequency transforms, the
multiplier values of a lowpass filter. Fig.(5.11), that satisfied the simultaneous
specification of Table(5.1), were applied to equivalent highpass and single and
dual bandpass and bandstop lattice WDF structures. This set of multipliers is given
in Table(3.2).
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Figure 5.11 9th order lowpass lattice WDF structure.

Gain passband Gain  topband Delay passband Samp,
att (dB) edge (Hz) alt (dB) cdsc (Hz) dev (%) edge (Hz) freq (Hz)
0.1 0.08 34 0.16 0.5 0.09 1

Table 5.1 Simultaneous lowpass filter specification.

Upper lattice arm Lower lattice arm
APS APS multiplier values APS APS multiplier values
No. type No. type
1 2nd xi m -0.8828314045 4  2nd  Xg= -0.7152976626
X2=  0.6172207384 X7= 0.6370727390
2 2nd = -0.5456894656 5 2nd  x8= -0.4759607014
X4=  0.8245115507 X9= 0.9079765957
3 1** x5 = 0.6571687539

Table 5.2 Lowpass lattice WDF multiplier values
that satisfy the specification of Table(5.1).

The first step of the investigation concerned the simple frequency transforms
shown in Table(3.3). The magnitude response of the 9th order lowpass lattice WDF.
using the multiplier values from Table(5.2), is shown in Fig.(5.12)(a). Fig.(5.12)
also shows the magnitude response of the equivalent filter structures that were
generated with the transforms of Table(5.3) and wusing the multipliers of
Table(5.2).
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Lowpass response to Simple frequency transform
Hinhpass z> = -z-l

Bandpass (single) *oy > -z-2

Bandstop (single) z> =* 72
Bandpass (dual) > = -z *
Bandstop (dual) «> = *-«

Table 5.3 Simple frequency transforms

From Fig.(5.12) it can be seen that the frequency transformations of Table(5.3)
retain the amplitude characteristics of the original lowpass response, exhibiting
identical passband and stopband widths and attenuations. The phase linearity of
these frequency transformations can be observed through the group delay
responses. The group delay responses for the original lowpass lattice WDF and the
five structures constructed through the transforms of Tab!e(5.3) are illustrated in
Fig.(5.13). The poles and zeros of these WDF structures are shown in Fig.(5.14).

(a) (b)
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L J u
(e) o (f>

Figure 5.13 Group delay

(c) bandpass, (d) bandstop,

responses of equivalent (a) lowpass. (b) highpass,

(e) dual bandpass and (O dual bandstop filters
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(e) (f)

Figure 5.14 Pole/zero plots of equivalent (a) lowpass. (b) highpass.
(c) bandpass, (d) bandstop, (e) dual bandpass and (O dual bandstop filters.

From the responses shown in Fig.(5.13) and Fig.(5.14). it can be seen that the
frequency transforms of Tablc(5.3) arc linear in their effect upon the phase of
the structure. Therefore a lattice WDF derived from a linear phase lowpass
prototype through the transforms of Table(5.3), will also exhibit linear phase.

The next stage of the investigation involved frequency transformations that
moved the centre point of a bandpass or bandstop type response. Using the
lowpass prototype of Fig.(5.11). equivalent single and dual band lattice WDF
structures were constructed from the various APS's described in Section 5.2. Each
lattice structure was then implemented with the multiplier values contained in
Table(5.2). Along with the asymmetric frequency transformations, Table(5.4)
contains the transformation values applied to the example structures and the
Figure numbers associated with the frequency responses of these examples.

Lowpass Frequency transforms a P Fig
to value value No.
Bandpass 0.8090 / 5.17
Bandstop -0.1874 / 5.18
Bandpass ' | — ] /-a0+(a+02(1+a))z'1-0(2+a)2'2+2"3\ .g090 -0.5878 5.19
R R *2.aPz-
(dual) Id-P(2+0)z-'+(a+p2(l+a))z*2-aPz-3J
Bandstop ' ! , faP-(a-B2(I-a))z**-B(2-a)z-2+2-3\ (3090 -0.3090 5.20
i,I-P(2-0)z'1-(a-P2(l-0))z’2+apz'3)
am

Table 5.4 Single and multiple band frequency transforms.



(c)
Figure 5.15 Asymmetric single bandpass (a) magnitude and
(b) group delay responses with (c) pole/zero plot.

(a) (b)
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(c)
Figure 5.16 Asymmetric single bandstop (a) magnitude and
(b) group delay responses with (c) pole/zcro plot.

(c)
Figure 5.17 Asymmetric dual bandpass (a) magnitude and
(b) group delay responses with (c) pole/zero plot.
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(c)
Figure 5.18 Asymmetric dual bandstop (a) magnitude and
(b) group delay responses with (c) pole/zero plot.

Comparing the magnitude response of the symmetric bandpass filter of
Fig.(5.12)(c) with the asymmetric response of Fig.(5.15)(a), then it can be seen
that the frequency transformation of Tablc(S.4) retains the passband width and
attenuation levels of the response but alters the widths of the transition bands and
stopbands. This effect is also noticeable in the magnitude responses of the other
asymmetric filters, shown by Fig.(5.16)(a), Fig.(5.17)(a) and Fig.(5.18)(a).

Comparing the frequency responses of the symmetric and asymmetric bandpass
and bandstop examples, it can be observed that the transforms of Table(5.4) also
distort the group delay responses. The main effect of this distortion can be
observed by comparing the single bandpass symmetric and asymmetric group
delay responses, shown by Fig.(5.13)(c) and Fig.(5.17)(b) respectively. In these
group delay responses, the asymmetric frequency transformations have
introduced an incline to the passband region of the response. The angle of this
incline increases as the centre of the passband is moved away from the centre of
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the responses. Therefore the more asymmetric the response, the larger the group
delay distortion due to the frequency transformation.

The effects of the asymmetric frequency transformations can also be observed in
the position of a filler's poles and zeros. To illustrate these effects the pole/zero
plots of the single bandpass WDF under the symmetric and asymmetric frequency
transformations are shown in Fig.(5.19) with their frequency specifications. Both
examples were implemented with identical multiplier values and exhibit
equivalent frequency responses except that the centre of the asymmetric
bandpass response has been shifted to a frequency of 0.1 Hz.

Figure 5.19 Pole/zcro plot of equivalent asymmetric and
symmetric bandpass filters.

The zeros ofthe linear phase symmetric bandpass filter, shown by Fig.(5.19)(a),
exist in reciprocal complex conjugate sets. This feature was expected from lowpass
linear phase designs. The zeros also possess a symmetry about the centre of the
passband, which is the imaginary axis for the symmetric bandpass response.
Observations of the non-linear phase asymmetric bandpass filter. Fig.(5.19)(b),
revealed that the zeros also exist in reciprocal complex conjugate sets. This feature
is contrary toexpectation as the structure does notexhibit linear phase. Another

observation about the zeros of Fig.(5.19)(b) is that they were no longer symmetric

about the centre of the passband.

From these observations the requirements for linear phase bandpass filters
cannot be expressed in terms of ensuring zeros exist in reciprocal complex
conjugate sets but as reciprocal sets that are symmetric about the centre of the
passband(s) of the response. This lack of zero symmetryand
can also be seen in the polc/zcro plots of the other asymmetric filter examples,
shown by Fig.(5.16)(c), Fig.(5.17)(c) and Fig.(5.18)(c).

phase

non-linearity
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The final stage of the asymmetric frequency transformation investigation was to
characterise the movement of frequency points under the transforms. Fig.(5.20)
shows the passband magnitude response of the symmetric and asymmetric single
bandpass filter considered previously.

and symmetric bandpass filters.

The action of the asymmetric transforms of Table(5.4) is not to shift a response
along the frequency axis but to compress one half the response and expand the
other half. The effect of this compression and expansion can be seen in Fig.(5.20)
and between Fig.(5.12)(c) and Fig.(5.15)(a). For the asymmetric bandpass example
considered, the centre of the response is moved to a frequency of 0.1 Hz, while the
centre of the symmetric response is at 0.25 Hz. From the passband magnitude
responses of Fig.(5.20)(b) it can be seen that the distances from the centre of the
response to the edges of the passhand are wunequal. This is the result of
compressing the 0 - 0.25 Hz region of the symmetric bandpass response into the 0 -
0.1 Hz range and expanding the 0.25 - 0.5 Hz region to fit the 0.1 - 0.5 Hz area of the

asymmetric bandpass response.

The nature of the asymmetric lowpass-bandpass frequency transformation can be
determined if the frequency mapping is described analytically. This can be
achieved by expressing the transform in terms of a lowpass frequency variable
and an equivalent bandpass frequency variable. This procedure is illustrated in
Eq.(5.9), where the =z transform within the lowpass-bandpass transform of

Table(5.4), is represented in terms of its complex exponential.
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(5.9)

where
a = costalo T) <0 centre frequency value

@® lowpass prototype frequency o' asymmetric bandpass frequency

Eq.(5.9) cannot be solved analytically for co' but simplifying it to Eq.(S.I0) allows (o'
to be found iteratively for a particular value of (0 and transformation value, a.

2 sinico' T)

1 5.10
1-2a cos(co'T) + a2 ( )

cos(co T)
Using Eqg.(S.10) the equivalent frequency specification for the asymmetric
bandpass filter can be determined along with the symmetric specification by
setting a = 0. The filter specifications for the symmetric and asymmetric bandpass
examples considered are detailed in Table(S.5). together with the original lowpass

specification.

filter Atten (dB) a Frequency edges (Hz) fo

type pass stop value (Hz)
lowpass 0.1 34 ! 0 -4 0.08 -+ 0.16 -¢ 0.5 /
bandpass 0.1 34 0 0-*0.17 -» 0.21 -» 0.29 -* 0.33 -» 0.5 0.25

(symmetric)
bandpass 0.1 34 0.809 0 -» 0.044 -» 0.066 -> 0.146 -> 0.203 -» 0.5 0.1
(asymmetric)

Table 5.5 Filter specification for a lowpass filter with

symmetric and asymmetric bandpass equivalents.

The frequency mapping of the other asymmetric frequency transformations of
Table(5.4) can be determined in a similar manner as the bandpass transform by
expressing the lowpass frequency variable in terms of the transformed frequency

variable.

The characteristics of the frequency transformations considered can be grouped
by their effects on the magnitude and phase responses. The simple transforms of
Table(5.3) are linear in their modification of the magnitude and phase responses.
The transformed magnitude responses retain their passband and stopband
attenuations and maintain the widths of the various passbands. stopbands and
transition bands. The linearity of these simple transforms also ensures that a
linear phase lowpass response will produce a transformed filter with linear phase.
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The frequency transformations of Table(5.4), which allow asymmetric filter
responses, produce non-linear effects on both the magnitude and group delay
responses. Under the asymmetric frequency transformations the magnitude
response retains their passband and stopband attenuations and passband widths
but experience distortion of the width of each transition band. The most severe
effect of the asymmetric frequency transforms is the distortion introduced to the
group delay response. Therefore a linear phase lowpass response will not

transform into a linear phase asymmetric bandtype response.

The non-linear characteristics of the asymmetric frequency transformations of
Table(3.4) impose a design limitation upon arbitrary magnitude and linear phase
specifications. Due to these limitations an asymmetric band type response that
requires equal transition band widths and linear phase cannot be derived from a
lowpass prototype. Two design methods can be implemented to counteract the non-
linear effects of the frequency transforms. The first design method would be
based upon a lowpass prototype optimized tosatisfy the magnitude and a pre-
distorted group delay response. To ensure the gain response possessed equal
transition band widths the transformation value foreach section would also be
optimized. The alternative method would be to optimize the multiplier and
transformation values directly on the appropriate filter structure. The
implications of these two design approaches are discussed in Section S.4.

5.4 Design considerations with frequency transforms

The initial part of this research investigated the design options involved in

satisfying arbitrary magnitude and phase specifications. Conclusions of this work

suggested a lattice WDF structure whose multiplier values were determined
through optimization. The optimization techniques developed for this problem
were based upon dual line templates, a weighted Lp-metric error function and
quasi-Newton algorithms. The general nature of thedual line templates and the
error function allowed them to be extended from lowpass specifications to cover
highpass, bandpass and bandstop type responses. It was therefore upon the lattice
WDF structure and the dual line optimizationtechniques that the design of

frequency transformed structures was approached.

5.4.1 Design approaches

Using the dual line templates and a weighted Lp-mctric error function meant that
the only design parameter that needed to be addressed was the use of the
frequency transformations. Of main concern was the non-linearity of the general
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frequency transformations and a method under which they should be applied. Two
methods exist, either incorporate the non-linearities of a particular transform
into a lowpass specification and then convert the lowpass solution into the
appropriate response, or design the required frequency specification directly on
the transformed lattice structure.

The direct design approach is a more efficient technique as it eliminates the need
to determine the distortion effects of each possible frequency transformation.
This method also allows the effects of finite wordlength criteria to be measured
directly, a factor that will become important when finite wordlength designs are

considered.

The final design consideration with the frequency transformations is the actual
values applied to the APS'sof the lattice structure. The APS's and frequency
transformations considered use the same transformation value for each APS
within the lattice structure. Applying a different transformation value to each
APS may improve the versatility of the structure. Thisprocedure would allow the
cut-off point of each APS of a transformed structure to be adjusted to satisfy an
asymmetric frequency specification with equal transition band widths. Following
this idea a transformed bandpass structure would contain a number of
independent multipliers equal to the order of the equivalent lowpass structure
plus an extra multiplier per APS.Therefore the single bandpass 2nd order APS.
shown by Fig.(2.21)(a) would contain two independent multipliers while the
fourth order APS of Fig.(2.21)(b) would possess three independent multipliers

If a 7th order lowpass lattice WDF was transformed into a single bandpass structure
then its order would be 14lh with three 4lh order APS's and one 2nd order APS.
When the same frequency transformation value is used within the bandpass
structure, there would only be seven independent multipliers. If a different
transformation value was applied to each APS then the number of independent
multipliers would increase to eleven since there are four APS's within the

structure.

Extending this idea from single band to dual band structures, then an 8th order
APS would only contain four independent multipliers, two coefficient values. X2
and X3 and two frequency transforms, a and 3. shown in Fig.(5.10). Transforming a
7th order lowpass filter into a 28th order dual bandpass/bandstop structure would
only require seven independent multipliers if the same frequency transformation
value was applied to each APS. However when different transformation values
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were applied to each APS, the total number of independent multipliers would

increase to fifteen.

Ai B Aj B,

(2) (b)

Figure 5.21 General bandpass (a) 2nd and (b) 4th order APS's.

5.4.2 Optimization considerations

The lowpass optimization techniques based upon a weighted Lp-metric and dual
line templates were very easy to extend to an arbitrary frequency response type.
The only extra parameters required for these optimization procedures involved
the transformed lattice WDF structures, the transformation values for these
structures and the valid bounds for these values. The frequency responses and
derivatives for the transformed structures can be determined from the design
equations detailed in Section 4.2.1 and the properties of the various APS's are
outlined in Appendix C1-C5. The limits on the multiplier values to ensure the
stability and pseudopassivity of these transformed structures are also detailed in
Appendix C1-C5.

Other optimization considerations concern filter responses that have multiple
bands. If this type of filler response is required to possess constant group delay
across each of its passbands, then a general design specification should allow
different group delay deviations across each passhand. A very effective
optimization technique introduced into the simultaneous lowpass solutions
involved a parameter that represented the position about which the group delay
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passband templates were generated. The value of thisparameter could be varied
by the optimization routine to alter the position of the group delay template
dynamically. Extending this idea to multiple band type response could involve
applying the same group delay template position to each passband of the response
or the use of a separate variable for each delay passhand template. Allowing each
delay passband template to move independently increases the degrees of freedom
available to the optimization routine and the possibility of producing a solution.

The final optimization consideration entails the performance of the optimization
techniques and the various transformed lattice structures. The first part of this
concern involved the effectiveness of the dual line templates, error function
settings and optimization algorithms on the frequency transformed Ilattice
structures. To discover the most effective optimization settings for these
transformed lattice ~ WDF structures a number of magnitude-only and simultaneous

specifications were investigated.

The other area of concern entailed the introduction of extra optimization
parameters in the form of different transformation values and individual group
delay passband template variables. The introduction of a separate variable for
each group delay passband template was minor in comparison to the use of
independent frequency transformation values. Under the most basic design
approach the value(s) of the frequency transformations would be determined
analytically for a filter specification and the value(s) applied to each APS of the
structure. Although this approach limits the frequency responses achievable, it
reduces the number of optimization variables required to that required by an
equivalent lowpass specification.

The other approach entailed a different frequency transformation value for each
APS of a structure. With this approach the performance of the frequency
response of the structure would be increased at the expense of extra optimization
variables, one for each APS of the structure

The increased frequency response performance of each of these design
techniques needs to be measured against extra computational cost. Implementing
the APS design equations within the computer program “WDF". the properties of
these design techniques were compared through an appropriate selection of
frequency transformation values. Tests to determine the relative merits of these
design procedures were carried out in conjunction with investigations into the
most efficient optimization routine settings. The main features of these
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investigations are highlighted through a number of design examples in the next

section.

5.5 Design examples

A wide combination of settings was investigated to determine the ‘best’ values of
the optimization parameters for various lattice WDF filter types using identical
frequency transformation values for each APS. Tests were then extended to
structures with different transformationvalues for eachAPS. These tests  were
performed using magnitude-only and simultaneous specifications on bandpass
and bandstop type lattice WDF structures.

5.5.1 Magnitude-only  design

The objective of the magnitude-only designs was to confirm the optimization
techniques developed for lowpass structures would work under any filter type and
magnitude specification. The first step of this research concerned bandpass and
bandstop specifications that could be transformed from a lowpass solution with a
single transformation value. This transformation value was determined
analytically for a specification and not included as an optimization variable.

Testing under this procedure required the definition of a lowpass filter
specification and calculation of the order of an elliptic function that could satisfy
that specification. From this lowpass specification an equivalent symmetric and
two asymmetric bandpass specifications were constructed and the appropriate
frequency transformation values calculated. The multiplier values of the bandpass
structure were then optimized to satisfy the frequency specifications. These
bandpass multiplier values should then converge to a similar set of values as the

equivalent lowpass solution.

To illustrate this process consider the lowpass filter and equivalent symmetric and
asymmetric bandpass filter specifications shown in Table(5.6). A 7th order elliptic
function was found to satisfy the lowpass specification of Table(5.6) and the
multiplier values for this function are given in Table(5.7). The frequency
responses of a lowpass lattice WDF structure using the multipliers of Table(3.7) are
shown in Fig.(3.22).
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Filter Alien (dB) a Frequency edges (Hz)

type pass stop value (Hz)
Lowpass 0.1 50 / 0-»0.1-»0.15 -* 05 /
Bandpass 0.1 50 0 0 -» 0.175 -» 0.2 -* 0.3 -> 0.325 -» 0.5 0.25

(symmetric)
Bandpass 0.1 50 0.618
(asymmetric)

0 -» 0.082 -» 0.1 -* 0.2 -* 0.232 -4 0.5 0.144

Bandpass 0.1 50 -0.326 0 -» 0.222 -* 0.25 -» 0.35 -> 0.372 -» 0.5 0.303
(asymmetric)
Table 5.6 Filter specification.for lowpass filter with

symmetric and asymmetric bandpass equivalents.

Upper lattice arm Lower lattice arm
APS APS multiplier values APS APS multipliers  value
No. type No. type
1 2nd = -0.783992 3 2nd x4* -0.635752 !
X2* 0.840820 X5=0.916427
2 X3=  0.751907 4 2nd xe= -0.930190
X7= 0.796660

Table 5.7 Lowpass lattice WDF multiplier values that satisfy the
lowpass specification of Table(5.6) with an elliptic function.



(C) * (d)
Figure 5.22 Lowpass 7lh order lailicc responses; (a) overall and (b) passband
magnitudes, (c) overall group delay and (d) pole/zero responses.

Zeroing the initial multiplier values, optimizing with the dual line templates set to
the lowpass frequency specification of Table(5.6) and the optimization procedures
discussed in Chapter 4, resulted in the multipliers of Table(5.8). With these
multipliers, the 7th order lowpass lattice filter possessed the frequency responses

shown in Fig.(5.23).

Udper lattice arm Lower lattice arm
APS APS multiplier values APS APS multiplier values
No. type No.
1 2nd xi = -0.553318 3 2nd 4= .0.868729
X = 0.827318 xsm 0.780335
21 X3= -0.028986 4 2nd x6= -0.001459

X7 — 0.556476

Table 5.8 Lowpass lattice WDF multiplier values that satisfy the
lowpass specification of Tablc(5.6) under optimization.

(a) (b)
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(C) (d)
Figure 5.23 Lowpass 7lh order frequency; (a) overall and (b) passband
magnitude, (c) overall group delay and (d) pole/zero responses.

With the optimization settings for weights, error points and transition band
template angles determined from the lowpass design, the bandpass specifications
of Table(5.6) were approached with a 14T order bandpass structure. The multiplier
values designed to satisfy the symmetric bandpass specification are given in
Table(5.9) along with frequency responses that are detailed in Fig.(5.24).

lattice APS APS APS multipliers

arm Nos type

Upper 1 4th xi = -0.49493 x2= 0.77795 xt= 0.0 x4= 0.0
2 2nd xs= 026279 X6= 0.0

Lower 3 4t 7= 085634 xs= 077329 x9= 0.0 xio = 0.0
4 4th il = -0.17252 x12= 0.63186 xn= 0.0 xi4d = 0.0

Table 5.9 Bandpass lattice WDF multiplier values that satisfy the
symmetric specification of Table(5.6) under optimization.

(») (b)
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Figure 5.24 Symmetric bandpass frequency; (a) overall and (b) passband
magnitude, (c) overall group delay and (d) pole/zero responses.

The multiplier values for the 14th order bandpass filler that satisfied the first and
second asymmetric bandpass specifications of Table(5.6) are listed in Table(5.10)
and Table(5.11) respectively. The frequency responses of these two asymmetric
examples are given by Fig.(5.25) and Fig.(5.26).

lattice APS APS APS  multipliers

arm Nos type

1 At yi= 049612 x2= 077376 xi= 0.618 x4= 0618

2 2nd yxs= 030323 x6= 0.618

Lower 3 4th X7= -0.85689 x«= 0.77359 xg= 0.618 xio= 0.618
4 4 yij= 019585 x12= 064808 xi3= 0618 xi4= 0618

Upper

Table 5.10 Bandpass lattice WDF multiplier values that satisfy the
first asymmetric specification of Table(5.6) under optimization.

nviaacr (tH)  QEMar0 OpTVpK DUAL

(=) (b)



5.25 First asymmetric bandpass specification; (a) overall and

(c) overall group delay and (d) pole/zero responses

Figure
(b) passband magnitude,
lattice APS APS APS  multipliers

arm Nos. lype
Ath iz -0.50159 «p« 0.77789 )= -0.326 *4m -0.326

Upper 1
2 2nd X5= 0.28259 = -0.326
Lower 3 4th . . 018526 = 064554 =*9= -0.326 *10= -0.326
4th o . .
4 oW i 085835 0.77240 ;,, -0.326 0.326

Table 5.11 Bandpass lattice WDF multiplier values that satisfy the second

asymmetric specification of Tablc(5.6) under optimization.

1 i

(a) (b)



Figure 5.26 Second asymmciric bandpass specification; (a) overall and
(b) passband magnitude, (c) overall group delay and (d) pole/zero responses.

The frequency responses shown in Fig.(5.24), Fig(5.25) and Fig(5.26) illustrate that
the optimization techniques have produced solutions to the frequency
specifications of Tablc(5.6). Comparing the multiplier values of Table(5.9-11) with
the equivalent lowpass values of Table(5.8) indicates that the bandpass responses

are similar to a transformed lowpass solution.

The next part in this area of research entailed bandpass and bandstop
specifications that could not be satisfied by a transformed lowpass solution, such
as asymmetric responses that had equal transition band widths and different
attenuation levels for passband(s) or stopband(s). This procedure involved
applying a different transformation value to each APS of the structure, where the
values for these individual transformations were determined by optimization.
With this technique the total number of multipliers that required optimization was
less than the order of the filter. This is due to the nature of the bandpass and
bandstop fourth order APS's. Although these sections contain four multipliers, two
of them are constrained to be equal and so only three values needed to be

optimized.

The first step in the wuse of different frequency transformation values as
optimization variables was to ensure that the optimization routines would find
solutions to the bandpass filter specifications of Table(5.6). For these
specifications the optimized value for the frequency transformation within each

APS should all be equal.

Optimization with independent frequency transformation values to satisfy the
bandpass specifications of Tablc(5.6) produced the multiplier sets shown in



Chapter 5. WDF Frequency Transformations page 5/33

Table(5.12). The overall and passband magnitude frequency responses for these
three solutions arc detailed by Fig.(5.27).

lattice APS APS APS multipliers
arm Nos type

Sol tion for symmetric bandpass specification from Table(5.6)

Upper 1 4th = 056349 x2= 082848 x"= 0.00029 x4= 0.00029
2 2nd %= -0.02835 x6= 0.00769
Lower 3 4t x7- 087043 x8= 077751 x9= -0.00171 X[0= -0.00171

4 4t yi1= -0.00001 x12= 0.57016 xn = 0.00515 xi4= 0.00515

Solution for first asymmetric bandpass specification from Table(5.6)

Upper 1 4t yi= .060435 X2= 081773 = 061574 x4= 061574
2 2nd 5= 041679 x6= 0.65283

Lower 3 4th  x7- 028928 xg= 0.80159 x9= 0.63673 xio = 0.63673
4 Ath yi1= .0.87891 XI2* 0.77316 *11* 061361 M4> 061361

Solution ccond asymmetric bandpass specification from Table(5.6)

Upper 1 4t yi« .056351 X2® 0.77078 x”» -0.33805 x4 * -.033805
2 2nd xs=  0.48690 x6= -0.38872

Lower 3 4th 7= 086453 x8= 0.76334 x9= -0.33000 xio= -0.33000
4 4th yi1= .0.32571 xi2= 0.76399 xn= -0.36426 x]4 = -0.36426

Table 5.12 Bandpass lattice WDF multiplier values that satisfy the
specifications of Table(5.6) with different transformation values.

(a) (b)



(e) n (f)
Figure 5.27 Magnitude responses of bandpass filters that satisfy Table(5.6)
specifications; symmetric (a) overall and (b) passband, 1st asymmetric
(c) overall and (d) passband and 2nd asymmetric (e) overall and (O passhand.

Having confirmed that this independent frequency transformation technique was
capable of solving specifications that have lowpass equivalents, the next step was
to consider specifications that have no lowpass equivalent. Two asymmetrical
bandpass specifications considered are shown in Table(5.13). Frequency
specifications that cannot be satisfied by a transformed lowpass solution are
characterised by asymmetric responses with equal transition band widths and

different passband and stopband attenuations.

Example Spec. lower stopband passband upper stopband
1 Alt (dB) 50 0.1 50
Frcq (Hz) 0 -» 0.075 0.1 -¢02 0.225 -¢ 0.5
2 Att (dB) 50 0.5 40
0-» 0.22 0.26 -» 0-34 038 0.3

Table 5.13 Asymmetric bandpass lattice WDF frequency specifications.
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The multiplier values for the bandpass structures that satisfy the frequency
specifications of Table(5.13) are given in Table(5.14), while the overall and
passband magnitude frequency responses of these solutions are shown by
Fig.(S.28).

The design procedure applied to the single bandpass and bandstop filter structures

was then implemented upon the dual bandpass and bandstop specifications.

lattice APS APS APS multipliers
arm Nos. type
S)lutior for first asymmetric bandpass specification from Table(5.13)

Upper 1 4th xi = -0.43929 X2= 0.89926 «xi= 0.30252 x4= 0.30252
2 2nd 6= 0.83177 x6= 0.77833
Lower 3 4th x7= -0.42034 xg= 0.78190 xg= 0.44439 xjo = 0.44439

4 A4t il = .0.87554 xi2= 0.78063 xn = 0.61582 xi4= 0.61582
Solution for second asymmetric bandpass specification from Table(5.13)
Upper 1 4t yi= .012300 X = 0.75314 xi= -0.29057 x4= -0.29057
2 2nd 5= .0.08425 x6= -0.38170
Lower 3 4t x7- .0.05054 xg= 0.90045 xg= -0.54704 xio= -0.54704
4 Ath yjj = .0.03810 x12= 0.90682 xij» -0.05533 x]4 = -0.05533
T

able 5.14 Bandpass lattice WDF multiplier values that satisfy
the specifications of Table(5.13).

(u) (b)



<> (d)
Figure 5.28 Magnitude responses that satisfy the specifications of
Table(5.13); example 1 (a) overall and (b) passband and example 2
(c) overall and (d) passbhand.

Results from these tests proved the versatility and efficiency of optimization
procedures based upon the dual line template scheme and the quasi-Newton
algorithms. Results also supported most of the optimization parameter rules and
settings developed for lowpass designs based upon the dual line template scheme.
These settings concerned the weighting values, the number and distribution of

error points and the transition band descriptions.

Tests were most successful with weighting values that followed the equal
deviation/equal error rule described in Chapter 3 and an error point distribution
technique that group more points around the regions of greatest change. The
number of error points per band used for the single and dual band responses was
lower than for lowpass specifications. The number of error point represents a
compromise between the lime taken to calculate the error function at each
iteration and the accuracy with which the actual response was measured. Because
of the increased number of bands within the response and consequently the total
number of error points, the number of points per band was limited to the range 10

<x<35.

5.5.2 Simultaneous designs

Having shown that the ideas of optimization and frequency transformations can
be applied to arbitrary magnitude-only designs, the investigation was extended to
incorporate simultaneous specifications. The work within this area of research
followed the procedures used for the magnitude-only designs of first satisfying
symmetric bandpass responses that could be transformed from simultaneous
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lowpass solutions and then moving to specifications that cannot be produced from
transformed lowpass solutions.

Using the specification of Tablc(S.IS), the multipliers of a 13th order lowpass
lattice  WDF were generated through optimization and are given in Table(5.16).

Speci fication Dassband stopband
Gain atten (dB) 0.1 50
Frcq (Hz) o .—o 0.15 -» 0.5
Group dev (%) 5 /
Delay Freq (Hz) 0-» 0.1 0.15 -» 0.5

Table 5.15 Simultaneous lowpass lattice WDF frequency specification.

Upper lattice arm Lower lattice arm
APS APS multiplier values APS APS multiplier value
No. type No. type
1 2nd xi = -0.617480 5 2nd xg= -0.706464
X = 0.842052 X9= 0.718120
2 2nd x3» -0.347365 6 2nd  xio« -0.302902
X4*  0.839724 xil= 0.880970
3 2nd X6 = -0.878290 7 2nd xi2 = -0.630416
X6 = 0.711525 Xxi3 — 0.914474

4 Ist X7= 0.758694
Table 5.16 Multiplier values that satisfy the specification of Table(5.13).

The equivalent symmetric bandpass response to the lowpass specification of
Table(5.15) was determined and is shown in Tablc(3.17). The design of a filter to
satisfy the specification of Tablc(5.17) was first approached with a 26lh order
bandpass structure that had equal frequency transformation values, all set to zero
as the specification is symmetric. The multipliers of this structure were then
optimized using the techniques discussed for the magnitude-only design and are
shown in Table(5.18), with frequency responses illustrated by Fig.(5.29).

Speci fication lower stopband passhband upper stopband
Gain atten (dB) 50 0.1 50
Frcu (Hz) 0 -» 0.175 a -—a 0.325 - 05
Group dev (%) / 5 /
_Dglav Frcq (Hz) 0 -» 0.175 0.2 -» 0.3 0.325 -» 0.5

Table 5.17 Symmetric bandpass lattice WDF frequency specification.
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lattice APS APS APS maltipliers

arm Nos. type

Upper 1 4th  xi= 086796 p» 072104 w3« 0.0 x4= 0.0
2 Ath o 063142 x6= 088310 x7= 00 x8= 0.0
3 4th  xg= 038430 wpy« 073722 1 x 0.0 *12*% 0.0
4 2"d w3 0.82093 Xl4= 0.0

Lower 5 4t yi5- .0.43064 «1g+ 0.86135 x17= 0.0 *18= 0.0
6 4t y19= .0.58006 xpg« 0.93014 %21 = 0.0 *22» 0.0
7 4th -0.65916 0.72048 0.0 0.0

Table 5.18 Bandpass lattice WDF multiplier values that satisfy
the specifications of Tablc(5.17).

(c) (d)
Figure 5.29 Frequency responses of symmetric bandpass filter; magnitude
(a) overall and (b) passband and group delay (c) overall and (d) passband.

The specification of Tablc(S.17) was then approached with a 26th order bandpass
structure where the frequency transformation values for each APS were
optimization parameters. This was to ensure that for the symmetric specification
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the solutions with and without the frequency transformation values as
optimization parameters were equivalent. The multipliers from this bandpass
filter are shown in Tablc(5.19) while its frequency responses given in Fig.(3.30).

lattice APS APS APS  multipliers
arm Nos. type
4th xi = -0.52561 x2= 0.84669 X3 = -0.04464 x4 = -0.04464

Upper 1
2 A4t ys= 053216 xfi= 0.82934 x7= 0.04543 xr= 0.04543
3 A4t «9- 087453 xio = 0.70422 xn= 0.00175 xj2= 0.00175
4 2nd i3 = 075564 xi4 = 0.02427

Lower 5 4t w15, .049930 xi6 = 0.94488 xi7 = -0.13618 xis =-0.13618
6 4t x19= 049872 x20= 0.93975 x2i= 0.14387 x22 = 0.14387
7 A4t %3 % 071434 x24= 0.69962 x25- 0.00239 x26= 0.00239

Table 5.19 Multiplier values that satisfy the specifications of Table(5.17)
using the frequency transformation values as optimization parameters.

(c) (d)
Figure 5.30 Frequency responses of symmetric bandpass filter; magnitude
(a) overall and (b) passband and group delay (c) overall and (d) passbhand.
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The next step in the simultaneous design investigation involved the asymmetric
bandpass specifications of Tablc(5.6). Although the magnitude side of these
specifications can be satisfied by a transformed lowpass solution, the
transformation process distorts the phase linearity. As a result the simultaneous
specifications can only be approached with structures that use the frequency
transformation values as optimization parameters. Results confirmed the design
assumptions by generating linear phase solutions to various asymmetric
specifications.
The last area of concern with simultaneous specifications involved magnitude
responses that could not be satisfied by transformed lowpass solutions. This
entailed finding simultaneous solutions to the asymmetric bandpass specifications
with equal transition band widths, such as those given in Table(5.20).
Example Spec fication lower stopband passband upper stopband
1 Gain  att (dB) 50 0.1 50
freq (Hz) 0 -» 0.075 0.1 -+ 0.2 0.225 -» 0.5
Group dev (%) / 10 /
Delay freq (Hz) 0 -> 0.075 0.1 -» 0.2 0.225 -> 05
2 Gain ait (dB) 50 0.5 40
freq (Hz) 0-» 0.22 0.26 -» 0.34 0.38 -» 0.5
Group dev (%) / 1 /
Delay freq (Hz) 0 -+ 0.22 0.26 -» 0.34 0.38 -+ 0.5
Table 5.20 Asymmetric bandpass lattice WDF frequency specifications.
Frequency responses for the solution to the second specification of Table(5.20) are
shown in Fig.(5.31) and Fig.(5.32) respectively. The multiplier values for these

structures are given in Tablc(5.21).
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(c) (d)
Figure 5.31 Frequency responses of first asymmetric bandpass filter
from Tablc(5.20); magnitude (a) overall and (b) passband and group
delay (c) overall and (d) passband.

Figure 5.32 Frequency responses of second asymmetric bandpass
filter from Tablc(5.20); magnitude (a) overall and (b) passband
and group delay (c) overall and (d) passband.
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lattice APS APS APS multipliers
arm Nos. type

S)lutior for first asymmetric bandpass specification from Table(5.20)

Upper 1 4th . _ 056014 x2= 064167 xi= 055382 *4= 055382
2 4th w5- 077667 X = 0.82524 x7= 0.68055 *3= 0.68055
3 4th  x9= 068855 *10= 0.96786 Xxii= 0.62429 M2 = 0.62429
4 2nd 3= 0093524 x14= 0.25619

Lower 5 4th M5 = .0.70454 xifi= 096762 xi7= 0.39553 M8= 0.39553
6 4th xi9= .0.58225 X20= 0.60327 Xi= 0.59594 *p2 = 0.59594

7 At wp3- 067877 X24= 0.96814 X2S= 0.68790 *26= 0.68790
Solution for second asymmetric bandpass specification from Table(5.20)
Upper 1 4th = 075288 > = 0.70138 xi= -0.36515 X4= -0.36515
2 4lh x5- -0.30943 xfi= 0.88422 x7= -0.14055 Xg= -0.14055
3 4th *9= -0.11397 xio = 0.63292 xil= -0.42628 *12 = -0.42628
4 2nd M3= 070898 x14 = -0.51125
Lower 5 4th M5 = .0.14717 xi6= 0.72472 x17 = -0.37688 *18 - -0.37688
6 4th Mg = -0.20425 X20= 0.81318 X2i = -0.31070 *22 = -0.31070
7 4th -0.58097 x24= 0.66856 X25= -0.35744 -0.35744
Table 5.21 Bandpass lattice WDF multiplier values that satisfy
the specifications of Table(5.20).

5.6 Conclusions

This Chapter has discussed the ideas of frequency transformations and how they
can be applied to lattice WDF structures to produce highpass. bandpass and
bandstop type responses. Experiments have shown that simple frequency
transformations that do notalter the width of passbands or move the centre
frequency point, are linear in their effects upon gain and group delay. Frequency
transformations that create asymmetric bandpass or bandstop type responses,
distort the phase and the relative widths of transition bands in the process.

To counteract the non-linearities of the frequency transformations, optimization
was applied to the bandpass and bandstop lattice structures directly. A further
technique to compensate for the transforms' non-linearities was to consider the
frequency transformation value of each APS of a structure as an optimization
variable. This technique follows the ideas used in analogue filter designs where
the resonant frequency ofa section within the filter is tuned to a slightly
different point to achieve the desired cut-off rate. Different frequency
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transformation values for each APS within the lattice WDF structure allows the

same principle to be applied within the digital domain.

The performance of this technique and the optimization procedures was verified
through a large number of design examples. These examples included symmetric
specifications that required the frequency transformation value for each APS to
be zero, symmetric specifications that required the frequency transformation
value of each APS to be equal and asymmetric specifications that possessed equal
transition band widths and unequal stopband attenuations that could only be
satisfied with a different transformation value for each APS.

The procedure of applying a different frequency transformation value to each
APS of a structure increases the degrees of freedom of the structure as a whole. An
increase in the degrees of freedom of the lattice WDF improves the versatility and
performance of the structure, allowing it to satisfy a wider range of arbitrary
magnitude and phase specifications. The transformed APS's suggested in this
Chapter do not exploit all the degrees of freedom available, determined by the
number of independent multipliers in an APS. Therefore, although the 4th order
bandpass and bandstop APS's contain four multipliers, only three are independent
while the 8th order dual bandpass and bandstop APS's only possess four
independent multipliers.

Maximizing the degrees of freedom available to the overall structure requires
APS's that do not contain dependent multipliers, such as the 1st and 2nd order
lowpass APS's or more general 4th and 8th order APS's. Designs involving lowpass
APS's would entail applying single and multi-band frequency specifications
directly to the lowpass lattice WDF detailed in Chapter 4. For the range of examples
considered, the limited degrees of freedom of the 2nd and 4th order bandpass and
bandstop APS's did not hinder the design process. However, this was not true for
the 4th and 8th order dual band APS's which imposed a severe limitation upon the

performance of the lattice structure

Optimization of the highpass, bandpass and bandstop type magnitude and
simultaneous specifications confirmed the effectiveness of the ideas and
procedures developed for lowpass designs. These optimization techniques included
the dual line templates, the weighted Lp-metric error function and the quasi-
Newton algorithms. A number of the optimization settings developed for the
lowpass designs held true for these arbitrary specifications.
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These settings included an equal deviation/equal error weighting scheme and the
clustering of error points in regions of greatest change. Error points were spaced
under the ideas outlined in Chapter 4, where for gain templates they were placed
around the edge(s) of a template band. Within group delay templates the error
points were spaced evenly over the passband(s). The ratio, p. controls the
contributions of gain and group delay errors to the overall error function. Its
value was limited to the range 0.6 < p < 0.9 so that for simultaneous designs more
emphasis was placed upon the gain response to ensure it was established before
trying to satisfy the group delay specification. This procedure follows the ideas
discussed in Chapter 3. In all optimization tests the initial multiplier values were

started from zero.

In most design cases the number of error points per band was reduced to 15 < x < 35
to decrease the time taken to calculate the error at each iteration and as a result
improves the speed of the design process. However, low densities of error points
made bandpass specifications with very wide stopbands more susceptible to spikes.
To avoid this possibility the density of error points in narrower stopbands was
reduced in favour of higher densities inthe wider stopbands. Repositioning the
error points within the stopbands of a specification allows the total number of
error points to be kept to a minimum. Use of the transition band templates within
arbitrary magnitude and phase specifications confirmed the ideas developed for
lowpass design in Chapter 4, where the more closely the goal response could be
modelled, the more acceptable any design solutions. The shape of the transition
band template, defined through an wupper and lower angle, was varied to
encouraging a rapid cut-off around the edge of a passband and a slower cut-off

toward the edge of a stopband.

The purpose of this Chapter has been to outline the ideas and models for
frequency transformations of the lattice WDF and itsapplication to arbitrary
magnitude and phase specifications. Examples provided in this Chapter show that
the transformed APS's detailed are capable of satisfying a wide range of frequency
specification. Although the dual band APS's can be implemented to achieve
selective magnitude-only frequency specifications, their limited degrees of
freedom and the introduction of linear phase prompted dual band specifications to
be addressed using lattice structures with the simpler 1st and 2nd order lowpass
and highpass APS's.

With descriptions and equations for all the APS's considered, the next area of
research entailed producing finite wordlength designs for arbitrary magnitude
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and phase specifications. An outline and discussion of the techniques involved in
the finite wordlength design process is provided in Chapter 6.
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Chapter 6

Finite Wordlength Designs

The final objective of any digital filter design is a set of finite wordlength
coefficients that satisfy a given specification. The main thrust of this research
has been to investigate and develop techniques for the design of WDF's capable of
satisfying arbitrary magnitude and phase designs. These techniques have been
based upon lattice WDF's and optimization. Initial designs have provided solutions
to arbitrary specifications with coefficient values that require a high degree of
accuracy. The next step in the design process entails starting with these high
accuracy or ideal coefficient values and producing equivalent finite wordlength

solutions.

The first part of this Chapter details the effects of finite wordlength constraints
upon the responses of the lattice WDF determined in both the frequency and time
domains. The Chapter then outlines the options for finite wordlength designs and
the optimization techniques adopted. The Chapter concludes with a number of
finite wordlength designs for magnitude-only and simultaneous frequency
specifications and a discussion of the effects of finite wordlength constraints

upon digital filter designs.

6.1 Finite Wordlength Effects

The errors introduced by finite wordlength criterion may be grouped into two
areas. The first area relates to the transfer function of the filter and with what
accuracy its coefficient values arc represented. The other area concerns the

hardware upon which a digital filter is implemented

The frequency response of a transfer function may be calculated analytically for
an arbitrary set of filler coefficients with a large degree of accuracy. The filter
coefficients may themselves be represented with a large degree of accuracy or
limited to a specific wordlength. Calculating the response of the transfer function
analytically with finite wordlength coefficient values provides an indication of
their effects in isolation to the finite wordiength effects introduced by any
hardware implementation. To consider the effects of quantizing the filter
coefficient values on the lattice WDF, the responses of a filter were determined in
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the frequency domain with a range of finite coefficient wordlengths quantized
under a range of procedures.

Finite wordlength errors due to hardware implementation relate to the accuracy
with which the transfer function can be determined. This s limited by the
wordlength of the hardware, in the form of multiplier, adder, input and output
data wordlengths and the rounding, overflow and scaling techniques applied
Hardware limitations can only be simulated in the time domain and the filter's
response must be evaluated by applying a FFT to the impulse response. Using this
technique the effects of different rounding, overflow and scaling procedures can
be modelled and related to a filter's frequency responses.

The only method of confirming the accuracy of these simulated results involves
generating the lattice WDF upon a DSP chip and measuring the actual frequency
responses with a spectrum analyser. Results from implementing lattice WDF’s
upon a DSP chip are detailed later on in this Chapter.

6.1.1 Frequency domain simulation

Frequency domain calculations are based upon an analytical evaluation of the
transfer function of a filter. These calculations are performed to the full accuracy
of a computer system and do not allow the effects of rounding and overflow to be
modelled. As a consequence the only finite wordlength effect that can be modelled
in the frequency domain is the distortion of the frequency response resulting
from quantizing the filter coefficient values.

The low coefficient sensitivity properties of WDF structures enable them to retain
a desired frequency response with low coefficient wordlcngths. This can be
illustrated through the 7lh order lattice WDF of Fig.(6.1) which satisfies the
lowpass specification of Tablc(6.1) with the coefficient values given in Table(6.2).

Gain  jasshand Gain  topband Samp.
all (dB) cdKC (Hi) att (dB) edge (Hz) frea (Hz)
0.1 0.1 SO 0.15 1

Table 6.1 Lowpass filter specification.

For this example, the multiplier values of Tablc(6.2) were treated as ideal and then
used to produce 16, 12, 8, 7, 6 and S bits quantized versions. In all the design
considered the bit length specified includes a sign bit. The magnitude frequency
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response of this 7th order lattice WDF was then determined for each set of
quantized coefficients. Distortion of the filter's frequency response due to
coefficient quantization can be seen in Fig.(6.2), showing the frequency
responses for each different coefficient set.

Figure 6.1 7th order lowpass lattice WDF structure.

Upper lattice arm Lower lattice arm
APS  APS multiplier values APS APS multiplier values
No. type No.
1 2nd xi = -0.783992 3 2nd x4 .0.635752
X2 = 0.840820 X5=  0.916427
2 X3=  0.751907 4 2nd xe= -0.930190

x7= 0.796660
Table 6.2 Lowpass lattice WDF multiplier values that satisfy the

lowpass specification of Table(6.1) with an elliptic function.



(c) (d)
Figure 6.2 (a)-(b) overall and (c)-(d) passband magnitude frequency
responses using quantized versions of the multipliers of Table(6.2).

The frequency responses of Fig.(6.2) clearly show that the lattice structure is less
sensitive to coefficient changes in the passband region of its response than the
stopband region. This feature is a property of the lattice structure and can be
further illustrated if the coefficient sensitivities for this structure are calculated.
Fig.(6.3) shows the gain coefficient sensitivities for the upper and lower lattice

arm multipliers.

The gain coefficient sensitivities of Fig.(6.3) show a higher sensitivity across its
stopband region. This property is a feature of the lattice structure. Across the
stopband region the action of the lattice is to subtract two virtually identical
numbers, generating a very small number that is susceptible to noise. Despite the
higher sensitivity in the stopband, the lattice structure is still able to retain an
acceptable frequency response under very short coefficient wordlengths.

(b)
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Figure 6.3 Gain coefficient sensitivities for upper arm (a) overall and
(c) passband and lower arm (b) overall and (d) passband responses

Research to date has only considered the effects of finite wordlength coefficients
upon the magnitude response of WDF's and the corresponding gain coefficient
sensitivities. The addition of group delay constraints into a specification,
dramatically alters the minimum wordlength that can be achieved before
frequency responses become wunacceptable. The presence of finite wordlength
coefficients in simultaneous specifications can be illustrated through a number of
examples introduced in Chapter 4 and Chapter S.

First consider the 11th order lattice WDF of Fig.(6.4). Using a filter of this order the
design programs and optimization techniques discussed in Chapter 4 were applied
to produce a solution that satisfied the simultaneous lowpass specification of
Table(6.3). The coefficient values of this solution are given in Table(6.4). These
coefficient values were calculated with the full 64 bit accuracy of the computer
system. The coefficients of Table(6.4) therefore represent an ideal set of values

that can only be reproduced with a large wordlength system.

Figure 6.4 Ilth order lowpass lattice WDF structure.



Chapter 6. Finite Wordlength Designs page 6/6

Gain  >asshand Gain  topband Delay passband
att (dB) edge (Hz) ait (dB) edge (Hz) dev (%) frea (Hz)
0.1 0.1 50 0.15 10 0.1 1

Table 6.3 Simultaneous lowpass filter specification.

uzper lattice arm Lower lattice arm
APS APS multiplier values APS APS multiplier values
No. type No.
1 20d xi= -0.716631 4 2nd xg= .0.668982
X2 = 0.938000 X7= 0.971084
2 2nd x3. -0.753809 5 2nd  xg* -0.748782
X4= 0.793809 X9=  0.886975
3 X6 = 0.848703 6 2nd  xjo= -0.898101

x11 = 0.748912
Table 6.4 Lowpass lattice WDF multiplier values that satisfy the
simultaneous lowpass specification of Table(6.3).

Fig.(6.5) shows the magnitude response of the lattice WDF of Fig.(6.4) under
different sets of coefficient values. Each coefficient set represents a quantized
version of the ‘ideal' multipliers of Table(6.4). The coefficient sets used for this
comparison were generated by quantizing the multiplier values to 16, 12, 10, 9, 8
and 7 bits. Fig.(6.6) shows a comparison of the corresponding group delay

responses using the same set of fi

ite wordlcngth coefficient values.

e (s Opim M-It apTma>OUAL

(a) (b)
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(c) (d)
Figure 6.5 Magnitude responses Tor different coefficients wordlengths
showing (a)-(b) overall and (c)-(d) passband responses.

Figure 6.6 Group delay responses for different coefficients wordlengths
showing (a)-(b) overall and (c)-(d) passband responses.

The magnitude responses of Fig.(6.5) confirm the low coefficient sensitivity
properties of the lattice structure. It is the group delay responses of Fig.(6.6) that
are of interest. Reducing the coefficient wordlcngth has a greater effect upon the
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group delay response. An indication of the effects of reducing the coefficient
wordlength can be provided by calculating the gain and group delay coefficient
sensitivities. The passband region of the gain coefficient sensitivities for the
multipliers of Tablc(6.4) is shown in Fig.(6.7), while the corresponding group

delay coefficient sensitivities arc illustrated in Fig.(6.8).

passband with respect to (a)-(b) upper arm and (c)-(d) lower arm multipliers.



Figure 6.8 11th order lattice delay coefficient sensitivity responses across the
passband with respect to (a)-(b) upper arm and (c)-(d) lower arm multipliers.

The group delay coefficient sensitivity of a particular multiplier is higher than
the corresponding gain sensitivity. This indicates that the group delay response of
a lattice WDF is more susceptible to changes in coefficient values than the gain
response. As a result simultaneous designs require a higher minimum coefficient
wordlength to satisfy a finite wordlength specification than equivalent
magnitude-only designs. This higher group delay coefficient sensitivity was also
exhibited by highpass, bandpass and bandstop type structures. The effects of finite
wordlength constraints upon a bandpass structure can be illustrated by
comparing the frequency responses of a solution to a simultaneous specification
under different coefficients wordlengths and then calculating its gain and group
delay coefficient sensitivities.

Consider the 26th order bandpass lattice WDF of Fig.(6.9) which satisfies the
simultaneous specification of Table(6.5) with the coefficient of Tab!e(6.6).

Figure 6.9 26lh order bandpass lattice WDF structure.
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Specification lower stopband passband upper stopband
Gain atten (dB) 50 0.5 40
freo (Hz) 0-» 0.22 0.26 -» 0.34 0.38 -» 0.5
Group dev (%) / 1 /
Delay frea (Hz) 0-» 0.22 0.26 -» 0.34 0.38 -» 0.5

Table 6.5 Simultaneous bandpass lattice WDF frequency specification.

lattice APS APS APS multipliers
arm Nos. type

Upper 1 4th 4, _ 075288 ,,- 070138 *3= -0.36515 X4= -0.36515
2 At 5. 030943 yg= 0.88422 *7= -0.14055 xfi= -0.14055
3 4th  x9- 011397 MO = 0.63292 XI1= -0.42628 X|2 = -0.42628
4 2nd 3= 070898 yq14- -0.51125

Lower 5 4t M5= .014717 xig= 0.72472 yx17= -0.37688 x|, = -0.37688
6 A4t Vo 020425 xou= 081318 X2 = -0.31070 ) g -0.31070
7 A4 gy -0.58097 | 066856, -0.35744 <p6= -0.35744

Table 6.6 Bandpass lattice WDF multiplier values that satisfy the
simultaneous specification of Table(6.5).

The magnitude responses of the lattice WDF of Fig.(6.9) using 16. 12. 10, 9, 8 and 7
bit quantized versions of the multipliers of Table(6.6) are shown in Fig.(6.10). The
corresponding group delay responses arc detailed in Fig.(6.11). In both Fig.(6.10)
and Fig.(6.11) the ideal responses were generated using the multipliers of
Table(6.6) unquantized.
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(c) (d)
Figure 6.10 Magnitude responses with diiTcrent coefficients wordlengths
showing (a)-(b) overall and (c)-(d) passband responses.

(c) (d)
Figure 6.11 Group delay responses with different coefficients wordlengths
showing (a)-(b) overall and (c)-(d) passband responses.

The gain and group delay coefficient sensitivities of the bandpass lattice WDF of
Fig.(6.9) can be calculated for each multiplier. Gain and group delay coefficient
sensitivity responses across the passband region for the multipliers in the first



Chapter 6. Finite Wordlength Designs page 6/12

4th order APS of the upper arm, the 2nd order APS and the first 4th order APS of
the lower arm. are shown in Fig.(6.12). Fig.(6.13) and Fig.(6.14) respectively.

(a) (b)
Figure 6.13 Passband (a) gain and (b) group delay coefficient sensitivities
of the 2nd order APS in the upper arm of Fig.(6.9).

Figure 6.14 Passband (a) gain and (b) group delay coefficient sensitivities
of the first 4th order APS in the lower arm of Fig.(6.9).
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Group delay coefficient sensitivities provide an indication of the effects on phase
linearity by showing how the gradient of the phase response would alter under
finite wordlength conditions. As a consequence the values for gain and group
delay sensitivity cannot be compared directly. However the group delay
sensitivities of a wide range of examples indicated that finite wordlength
distortion of simultaneous responses was more pronounced within the phase
specification. As a result, the minimum coefficient wordlength for a filter order
and frequency specification would be constrained by the desired phase linearity.

The coefficient quantization applied in the examples considered so far has been
rounding. This is not the only method of quantizing however and the effects of
rounding, value truncation and magnitude truncation can be determined if each
method is applied to the same set of coefficient values and the responses using
these multipliers compared. To illustrate these effects the multiplier values of the
lowpass structure of Fig.(6.4), given in Tablc(6.4), were quantized to 8 and 10 bits
under rounding, value truncation and magnitude truncation. The resulting
magnitude and group delay responses arc given in Fig.(6.1S).

(c) (d)



Figure 6.15 Frequency responses showing passband (a) 8 and (b) 10 bit and
overall (c) 8 and (d) 10 bit magnitude and passband (e) 8 and (f) 10 bit delay
responses under diiTcreni quantization procedures.

Comparing the various quantizing procedures for a number of different filter
specifications and wordlcngths showed that no one procedure was better for all
occasions. Results from a range of comparisons of different quantization
procedures led to the conclusion that the performance of various finite
wordlength solutions could be improved if the coefficient quantization was
replaced by some form of optimization that applied rounding or truncation to the

coefficient values that best retained the desired frequency responses.

6.1.2 Time domain simulations

To simulate the lattice WDF in the lime domain it is necessary to model the action of
the lattice arms and the APS's to determine the transfer function. The first step in
simulating the lattice WDF in the time domain is to generate a mathematical model
for the two-port adaptor that forms the basis of all APS’s. The equation for the two-
port adaptor is given by Eq.(6.1) with a possible signal flow graph shown by
Fig.(6.16).

Figure 6.16 Possible signal flow graph for a two-port adaptor.
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ad<o< 1 (6.1)

Any software model of the two-port adaptor would require that the calculations for
Bi and Bj were carried out using values of A;, Aj and a limited to a particular
wordlength. Therefore the fixed point operations of the multiplier and adders
within the two-port adaptor must be modelled. The action of a fixed point
multiplier is to multiply two b bit numbers and then quantize the 2b bit result to b
bits. As a result any signal multiplication within the modelled two-port adaptor
must be associated with a quantization to reduce the accuracy of the result to the
limit of the modelled hardware system. Within a digital hardware system, the
number range would be limited to -1.0 < x < 1.0 - 2***) and b is wordlength of the
system. Therefore if an adder was to sum two positive or negative numbers close to
this limit, then an overflow would occur. To ensure that this operation was
modelled accurately all add operation must be monitored to flag the occurrence of
an overflow and the result altered according to a defined overflow strategy.

Any time domain simulation must also limit the wordlcnglh of input and output
data, the coefficients and the internal storage registers. Software modelling allows
these various wordlengths to be specified individually. Quantizing procedures,
such as rounding or truncation, arithmetic operations, such as 1’s or 2's
complement and overflow procedures, such as reset or saturation can also be
included to produce a more versatile lime domain simulation program.

Following the lime domain requirements outlined, a mathematical model for the

two-port adaptor was generated and is shown in Fig.(6.17).

READ "Aj". "Aj" (quantized to internal data wordlength)
READ "a" (quantized to coefficient wordlength)
“sum inputs" = Jj" - AT

if "sum inputs" > overflow limit. apply overflow strategy to “temp"

“sum inputs® = "sum inputs" * "a"
Quantize "temp" to internal data wordlcngth

“Ai" + "sum inputs”
* > overflow limit, apply overflow strategy to "Bi"

“Bj* » “"Aj" + “sum inputs"
if "Bj" > overflow limit. apply overflow strategy to "Bj"

WRITE "Bi", "Bj"
Figure 6.17 Mathematical model of two-port adaptor.
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Using the model Tor the two-port adaptor given in Fig.(6.17), it was easy to
generate models for the APS’s used in the lowpass, highpass and band type lattice
WDF structures. Computer code written in fortran to implement the two-port
adaptor and the various APS's required is detailed in Appendix DI-7. With software
models of the lattice WDF structure and the various APS's it was possible to
investigate the effects of different quantizing, overflow and scaling strategies on

the lattice structure through time domain simulation.

Three standard time domain responses are generated by applying an impulse, step
and ramp function to a system. Applying these functions to a time domain model of
the lattice WDF of Fig.(6.4) with the multipliers of Table(6.4), produced an ideal set
of time domain responses when all system wordlengths were modelled as 64 bits
long. A more realistic set of wordlcngths would be to limit the input and output
data wordlength to 12 bits, restrict the internal data wordlength to 16 bits and
reduce the coefficient wordlength to 8 bits. The impulse, step and ramp responses
under these reduced wordlcngth conditions are shown in Fig.(6.18). Differences
between the responses of Fig.(6.18) are solely due to the gquantization of the filter

coefficients.
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(e) (f)

Figure 6.18 Time domain simulations showing (a) overall and (b) initial
impulse response, (c) overall and (d) initial step response and (e) overall and
(0 initial ramp response with ideal and finite wordlength coeffi

ents.

Through the FIT the impulse response of a lattice WDF structure can be converted
into the frequency domain and displayed in terms of its gain and group delay. By
altering the wordlcngth of the various parameters within the time domain
simulation, the effects of coefficient quantization can be determined in isolation
to finite wordlength hardware effects. Fig.(6.19) shows the magnitude and group
delay responses generated from the impulse response of the lattice WDF of
Fig.(6.4) wusing 64 bits for the input, output and internal signal wordlengths.
Responses of Fig.(6.19) therefore illustrate the frequency response distortion due
solely to coefficient quantization. These frequency responses, calculated from a
time domain simulation, coincide with the finite wordlength coefficient responses
determined within the frequency domain, illustrated in Fig.(6.5) and Fig.(6.6).



(c) > o (d)
Figure 6.19 Time domain calculations for magnitude (a) passband and
(b) overall and delay (c) passband and (d) overall frequency responses
with ideal hardware and finite wordlength coefficients.

Although the FFT allows the various finite wordlength effects to be related to
frequency response distortion, it mustbe remembered that the FFT itself
introduces noise to the frequency responses as the DFT is only an approximation to
the Fourier transform. The amount of noise introduced will depend upon the
frequency resolution of the FFT that is determined by the number of points used to

sample the impulse response

A more detailed investigation of the properties of the FFT is provided by
Brigham[l], AIll the frequency responses shown in this Chapter were generated
through FFT’s that used 2048 points. An explanation of the FFT and its
characteristics can also be found in a number of DSP text books[7,6,8).

Introducing finite wordlcngths for the input, output and internal signals but
applying the filler coefficients unquantized within a time domain simulation
allowed just the effects of hardware implementation to be displayed in terms of
frequency response distortion. Using this technique the distortion to the
frequency responses of the filler of Fig.(6.4), with the input and output
wordlengths set to 12 bits and the internal signal wordlcngth set to 16 bits, can be
determined and arc shown in Fig.(6.20).
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(b)
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(c) (d)
Figure 6.20 Time domain simulations showing magnitude (a) passband and
(b) overall and delay (c) passband and (d) overall frequency responses under
ideal coefficient and finite wcirdlcngth hardware conditions.

The effects of scaling on a lattice WDF are more difficult to establish. An ideal
hardware implementation would require that the signal at each point within the
structure is at a level that produces the best possible signal to noise ratio. This
ideal signal level would vary across the structure due to the size of the
coefficients. Therefore if an internal signal was multiplied by a small coefficient
value then a higher overall accuracy could be achieved if the signal before that
multiplier was scaled up.

This process could also be applied around large coefficient values, where to
prevent overflows the signal level before an adder would be scaled down. This
scaling process would not effect the overall signal level if the result of all these
scaling factors was unity. To reduce the complexity introduced by these scaling
techniques all scaling values should be a power of two so that the scaling action
could be performed through a register shift in physical hardware.
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The practical effects of scaling upon the dynamic range and performance of the
lattice  WDF are very difficult to simulate through software. To determine the
actual impulse response of the lattice WDF under different wordlength and scaling
strategies the structure was implemented upon a DSP chip.

6.1.3 Lattice WDF implementation

Implementation of a lattice WDF capable of exhibiting various lowpass. highpass
and band type responses was approached upon a Loughborough board[4] using the
TMS32010 DSP chip!10]. This board was plugged into an IBM compatible machine
and the lattice WDF produced under the Texas Instruments development tools.

To test the performance of the lattice WDF, the coefficients of a solution to the
simultaneous lowpass design example of Table(6.7) were rounded to 16 bits and are
shown in Table(6.8). Using the symmetric frequency transformations discussed in
Chapter S. this simultaneous lowpass example was converted into equivalent single
and dual bandpass structures with the same set of multiplier values.

Filter Filter Frequency edges (Hz) trans fo
Spec alo (Hz)
lowpass Atten dBs @ o n/a nla
Hz 0->0.08 ->0.16 -> 0.5
Delay %dcv 05 -»/
Hz 0 ->0.09 -* 0.16 -» 05
single Atten dBs 34 »01 -» 34 a= fo=
bandpass Hz 0 -» 0.17 -» 0.21 -» 0.29 -» 0.33 -» 0.5 0 0.25
Delay %dev /- 05->/
Hz 0 _»0.17 -*0.21 -» 0.29 -» 0.33 -» 0.5
dual Atten  dBs 34 -» 0.1 -* 34 ->0.1 -» 34 a= fol=
bandpass Hz 0 -+ 0.085 -» 0.105 -» 0.145 -» 0.165 -» 0 0.125
0.335 -» 0.355 -> 0.395 -» 0.415 -# 0.5
Delay %dev /I -*05-»/-*05-*/ p= fo2=
Hz 0 -» 0.085 -» 0.105 -» 0.145 -» 0.165 0 0.375

0.335 -¢ 0.355 -4 0.395 -» 0.415 -» 0.5

Table 6.7 Filter specifications for a lowpass filter with
equivalent bandpass and dual bandpass specifications.
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Upper lattice arm Lower lattice arm
APS APS multiplier values APS APS multiplier values
No. No. type
1 2nd 1. .0.8828314045 4 2nd g = -0.7152976626
* = 0.6172207384 *7 = 0.6370727390
2 2nd *3= -0.5456894656 5 2nd +g = -0.4759607014
x4 = 0.8245115507 0.9079765957
3 1 0.6571687539 -

— i
Table 6.8 Multiplier values used for the lowpass. bandpass and
dual bandpass lattice WDF specifications of Table(6.7).

The gain and group delay responses of these three examples, generated through a
software simulation of their impulse responses and using the FFT, are illustrated
in Fig.(6.21). In Fig.(6.21) the responses correspond to a time domain simulation
with 16 bit wordlcngths for coefficients and signals.



Figure 6.21 Frequency responses generated through time domain simulations
showing magnitude (a) lowpass, (c) bandpass and (e) dual bandpass and group
delay (b) lowpass. (d) bandpass and (e) dual bandpass responses.

With the aid of a digital spectrum analyser performing a swept sine operation, the
frequency response of the lattice WDF implemented on the TMS chip was measured
directly for each of the design examples considered. The simultaneous

specifications of Table(6.7) were based upon a sampling frequency of 1 Hz. To

utilise the resolution of the digital spectrum analyser, the sampling frequency of
the filters implemented upon the DSP chip was increased to 10 kHz. The frequency

responses of the three lattice WDF's considered were measured through the digital
spectrum analyser and the results are shown by Fig.(6.22). Fig.(6.23)

Fig.(6.24).

and

(a)
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(b)
Figure 6.22 Frequency responses of lowpass lattice WDF showing
(a) magnitude and (b) group delay responses.

(b)
Figure 6.23 Frequency responses of single bandpass lattice WDF
showing (a) magnitude and (b) group delay responses.
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(b)
Figure 6.24 Frequency responses of dual bandpass lattice WDF
showing (a) magnitude and (b) group delay responses.

The methods of scaling applied within the DSP software entailed halving the input
signal and then doubling the output signal, first to the overall structure and then
to each arm of the lattice. Both methods appeared to improve the performance of
the system compared with the unsealed version but it was felt that further
research into the aspects of scaling on the lattice structure fell outside the bounds
and time scales of this current research project.

Research into the effects of finite wordlength on the lattice WDF structure has
shown that its low gain coefficient sensitivity is a clear indication of its
performance under finite wordlcngth conditions. This performance, however,
only relates to the gain response and the inclusion of the group delay into a filter
specification reduces the amount of information that can be obtained from the
gain coefficient sensitivities. Calculation of the group delay coefficient
sensitivities provides a better indication to the performance of a lattice WDF to a
finite wordlength simultaneous specification. Several design examples have
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shown that the minimum wordlength for an acceptable simultaneous solution was
higher than for the magnitude-only design. Further investigation into the effects
of rounding and truncation upon group delay responses indicated that the
performance could be improved if coefficients were selectively rounded or
truncated. A more systematic approach to this idea entailed optimization of the
finite wordlength filter coefficient values to satisfy an arbitrary magnitude and

phase design.

6.2 Design for finite vvordlength
6.2.1 Optimization considerations

Finite wordlength design of any digital filler structure may be approached in a
number of different ways. However each method must involve some optimization
as there is no other method of determining the best set of finite wordlength
coefficients for a given frequency specification. The main optimization
considerations for finite wordlcngih design parallel those discussed in Chapter 2
for general filler design. These include the domain in which the filter response is
simulated, how the problem is described in terms of a function to be minimized

and the optimization algorithm.

The first of these decisions concerns the domain in which the filter is simulated.
Filter responses can either be generated analytically in the frequency domain
with finite wordlcngth coefficients or in the lime domain with finite wordlength
criteria applied to all aspects of the response calculations. The purpose of
generating the filler’s frequency response is to wuse an error parameter based
upon the sampled function concept. The principle of this idea is to determine the
error between the actual and desired function at a number of sample points and
then sum these errors under a weighted Lp-metric. Therefore the speed and
accuracy of any optimization routine will depend on the number of sample points

used and the time taken to calculate the error at each sample point.

Simulation of the filter in the frequencyor time domainrepresents
between accuracy and speed. Although frequency domain simulations are unable
to model the effects of finite wordlcngth signals and different quantization
procedures, it is able to evaluate the frequency response at a given sample point
quickly and with an accuracythat is independent of the total number of sample
points. Simulation of a filter's frequency response through the time domain and
the FFT represents a more comprehensive method of modelling all the finite
wordlcngth effects present in a digital structure. However, the accuracy with

a compromise
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which the frequency response at each sample point can be generated is
dependant upon the total number of points used for the FFT. Ensuring that the FFT
has enough points to generate an accurate frequency response to be sampled by
the error function makes the method very slow.

Comparing the speed and modelling accuracy of the frequency domain and time
domain approaches prompted the selection of the frequency domain. This decision
was based upon the very large time taken togenerate accurate frequency
responses through the FFT.

Using the frequency domain asa basis for finite wordlength coefficient designs,
the next design decision concerned the optimization routine, its error function
and algorithm. Success with the dual line templatesand weighted Lp-metric error
function used for coefficient optimization in Chapters 4 and Chapter 5 made these
techniques an obvious choice for finite wordlcngth designs. The selection of an
optimization algorithm was more difficult. Optimization ofthe filter coefficients
with a very large accuracy for simultaneous specifications only placed simple
boundary constraints upon the optimization algorithm. The addition of finite
wordlength criteria upon the coefficient values increases the complexity of any
constraints.  Increasing the complexity of the constraints of the quasi-Newton
type algorithms tends to limit their efficiency as more time is spent ensuring that
the coefficients satisfy the wordlcngth criteria than searching the solutionspace.
An alternative is to apply an optimization algorithm that only moves around the
search space with a discrete interval that corresponds to the finite wordlength
required. Under this technique the coefficients will always to limited to the
desired wordlength and extra calculations to ensure that the finite wordlength

constraints had not been violated would not be required.

Optimization algorithms that can be applied to this discrete search problem
include the methods suggested by Fletcher & Powcll[2] and Hooke & Jeeves[3]. The
direct search method of Hooke and Jeeves was adopted because of its success with
finite wordlcngth designs lor cascaded second order sections investigated by
Steiglitz[9] and because it could be easily modified to include boundary constraints.
Boundary constraints were essential to ensure the stability and pseudopassivity of
the WDF structure. Application of this optimization algorithm to magnitude-only
finite wordlength designs was considered by Mirzai[5] with reference to the

implementation of lattice WDF's upon systolic arrays.
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6.2.2 Design techniques

Having decided to apply the Hooke-Jcevcs algorithm to the finite wordlength
coefficient design problem, the next step is to consider the design options
available. The main design option concerns the initial coefficient values and their
wordlengths. The direct search nature of the Hooke-Jeeves algorithm tends to
make it very slow for large numbers of variables. Therefore to speed the
convergence rate, the initial coefficient values should be finite wordlength
versions of the solutions generated with the quasi-Newton techniques.

Under this technique a filter specification, simultaneous or magnitude-only,
would be approached with the quasi-Newton algorithm and procedures discussed
in Chapter 4. Having generated a solution for the specification, the ideal filter
coefficients would be rounded or truncated to a particular wordlength and then
applied to the Hooke-Jcevcs based finite wordlength routine

This design procedure suggests a further choice concerning the initial
wordlength for these ideal coefficients. Three options exist :-

(i) Quantize ideal coefficients to desired wordlcngth and then optimize
until a solution can be found within a given threshold.

(ii) Quantize the ideal coefficients to a shorter wordlength than that
required and optimize. If no solution can be found below a given
threshold then the wordlcngth would be increased by one bit and

optimization reapplied. Continue until a solution can be found.

(iii) Quantize the ideal coefficients to a larger wordlength than that
required and optimize. When a solution has been found below a
given threshold, reduce the wordlcngth by one bit and reapply
optimization. Continue until a solution cannot be found.

Each optimization procedure has its merits but the first method would only
confirm if a given wordlcngth was possible, not the minimum wordlength for a
given frequency specification and filler order. Therefore the other two design
procedures represent a belterapproach for finding minimum finite wordlength
solutions.

The first of these two design techniques starts with a very short wordlength and
as a consequence has a search step in the optimization routine that would be quite
large. This allows a large proportion of the solution space to be searched. If no
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solution could be foundbelow a given threshold, the wordlength would be
increased and as a result the search step would be reduced. Starting from the best
solution under the previous wordlcngth, the optimization routine would be
reapplied. If no solution could be found the wordlength would again be increased
and the process continued until asolution was generated. Theincrease in
wordlength decreases the search step of the optimization routine, which in turn
limits the solution space it can cover.

The process relics upon previous iterations, generating shorter wordlengths
solutions, to move closer to a global solution. For this procedure the loss of
accuracy in quantizing theideal solution coefficients to avery short wordlength
is compensated by initially searching a wider region of the solution space. This
approach would work better with functions that have relatively smooth surfaces,
such as magnitude-only specifications.

The other design approach starts with the ideal coefficients quantized to a very
large wordlength. This largewordlcnglh would enforce a very smallsearch step
upon the Hooke-Jeevcs algorithm. A small searchstep restricts the optimization
routine to the region around the ideal solution and ensures that a solution would
be found quickly. From a finite wordlcnglh solution, the wordlcnglh would be
decreased and starting from the previous solution, the optimization routine would
be reapplied. This process would be repeated until a solution could not be found
under agiven threshold. Reducing the wordlcngth at each stage would remove a
number of coefficient values from the solution space and the corresponding
increase in the search step would force the optimization routine to wuse finite
wordlength coefficient values remaining.

Simultaneous specifications approached using this technique showed that the best
results were achieved by starting from a very large wordlength, around 20-30

bits, so that there was little differencebetween the ideal and initial finite

wordlength design and then reducing the wordlcngth by one bit at a time. With

this technique, although the in

al large wordlcngth solutions were achieved
quickly, the overall design procedure can be slow.

Inserting the modified Hookc-Jccves algorithm  within  design program “WDF"
allowed a wide range of filter specifications to be approached. Magnitude-only or
simultaneous specifications could be described and solved through the quasi-
Newton techniques to producean ideal solution. With this ideal solution the
coefficients could then be applied to the Hookc-Jccves based optimization routine
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and approached through cither of the design procedures discussed to find the
minimum wordlength for a given specification. The performance of any finite
wordlength solution could then be analysed in the lime or frequency domains
through the lattice WDF analysis package written for MatLab and discussed in
Chapter 4

6.3 Design examples

The benefits of using the Hookc-Jccves algorithm to find a finite wordlength
solution can be illustrated through a number of design examples using
magnitude-only and simultaneous specifications. These examples also show the
effect of narrow group delay tolerances upon the minimum achievable coefficient
wordlength.

The first example is a 5,h order lowpass WDF that satisfies the specification of
Table(6.9) with the multipliers of Tablc(6.10).

Gain asshand Gain  topband Samp
atl (dB) edge (Hz) ait (dB) edge (Hz) freq (Hz)
0.1 0.08 34 0.16 1

Table 6.9 Lowpass filter specification.

Upper lattice arm Lower lattice arm
APS  APS multiplier values APS APS multiplier values
No. tvpe No. type
1 20d xi= -0.8726701 3 2nd x4= -0.6510824
X2=  0.8562082 *5 = 0.9124413
2 1*t *3=  0.7395416
Table 6.10 Lowpass lattice WDF multiplier values that satisfy the
lowpass specification of Tablc(6.9) using an elliptic function.

By applying the Hooke-Jccves based optimization routine to 4 bit quantized
versions of the multipliers of Tablc(6.10) and increasing the bit length until a
solution was found, generated the multipliers of Table(6.11). These multipliers

have a wordlength of 7 bits.
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Upper lattice arm Lower lattice arm
APS APS multiplier values APS APS multiplier values
No. tvbc No. tvoe
1 2nd x1= .0.828125 3 2ud x4= .0.593750
X2=  0.843750 X5=0.906250
2 1* xt= 0.718750

Table 6.11 Finite wordlcngth multiplier values that satisfy the
lowpuss specification of Table(6.9).

The frequency responses of the 3th order lattice structure with quantized versions
of the multipliers of Table(6.10) and the optimized coefficients of Table(6.11) can
be evaluated to demonstrate the improvements possible. These frequency
responses can be calculated analytically in the frequency domain or through an
FFT conversion of the impulse response generated in the time domain. Fig.(6.25)
shows the magnitude response of the 3th order lattice with the coefficients of
Table(6.10) quantized to 7 bits through rounding and truncating and with the
coefficients of Tablc(6.11). These responses purely show the effects of finite
wordlength coefficients because they arc calculated in the frequency domain.
Fig.(6.26) shows the corresponding magnitude responses simulated in the time
domain with the input, output and internal data wordlengths set to 16 bits.

Figure 6.25 Frequency responses showing magnitude (a) passband and
(b) overall responses with ideal and finite wordlcngth coefficients.



(a) i (b)
Figure 6.26 Frequency responses calculated from time domain
simulations showing magnitude (a) passband and (b) overall responses
under ideal and Finite wordlength conditions.

The second example is a simultaneous lowpass specification with a range of group
delay tolerances. This specification is given in Table(6.12). Ideal solutions to this
specification were produced with the quasi-Newton optimization techniques. The
coefficient values of each solution were then quantized and then applied to the
Hooke-Jeeves algorithm. Tablc(6.13) shows the minimum filters order that
satisfied the specifications of Tablc(6.12) along with the minimum coefficient
wordlengths that could be achieved with that filter order.

Gain  assband Gain  topband Delay
att (dB) edite (Hz) atl (dB) cdjtc (Hz) dev (%) edite (Hz) frea (Hz)
0.1 0.1 50 0.15 20 - 0.005 0.1 1

Table 6.12 Simultaneous lowpass filter specification.

Lattice WDF Linear
Ellip Grot p delay deviatior phase
fun 20 10 5 1 0.5 0.1 0.05 001 0.005 FIR
filter
order 7 11 1 13 15 17 19 19 23 23 52
min.
word 10 Is 12 18 18 17 15 17 17 19 !

Table 6.13 Filter orders satisfying the specification of Tablc(6.12).

The wordlcngths of Tablc(6.13) do not represent the minimum wordlength that
can be achieved for a particular simultaneous specification but the minimum
wordlength for that specification and filter order. To reduce the wordlength
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required, especially for verynarrow group delay tolerances, the filter order has
to be increased. This entails finding a new ideal solution with the quasi-Newton
routines and then reapplying this solution to the Hooke-Jeeves routine.

Frequency responses of the 10% group delay deviation example from Table(6.12)
are shown by Fig.(6.27) and Fig.(6.28), while Fig.(6.29) and Fig.(6.30) show the
frequency responses of the 1% deviation example. Fig.(6.27) and Fig.(6.29)
illustrate the magnitude and group delay responses calculated analytically in the
frequency domain and compare the responses produced when the ideal
coefficients are optimized, rounded and truncated. The frequency responses
shown in Fig.(6.28) and Fig.(6.30) arc the result of applying a FFT to an impulse
response generated in the time domain with input, output and internal data
wordlengths limited to 16 bits and the coefficients optimized, rounded and

truncated to the same bit length.

Figure 6.27 Frequency responses of 10% delay deviation showing (a)
passband and (b) overall magnitude and (c) passband and (d) overall group
delay responses under ideal and finite wordlcngth conditions.
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Figure 6.28 Frequency responses of 10% delay deviation calculated from
time domain simulation showing (a) passband and (b) overall magnitude and
(c) passband and (d) overall group delay responses under ideal and finite
wordlength  conditions.
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Figure 6.29 Frequency responses or 1% delay deviation showing (a)
passband and (b) overall magnitude and (c) passband and (d) overall group
delay responses under ideal and finite wordlength conditions.

(c) (d)
Figure 6.30 Frequency responses of 1% delay deviation calculated from
time domain simulation showing (a) passband and (b) overall magnitude
and (c) passband and (d) overall group delay responses under ideal and
finite wordlcngth conditions.
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The final example is a single bandpass simultaneous specification that is given in
Table(6.14). This specification cannot be achieved by transforming a lowpass
design and therefore must use a different transformation value for each APS
within the structure. Using the quasi-Newton routine and the procedures outlined
in Chapter S. a set of filter orders and ideal coefficients was determined. With
these coefficient values as a starting point, the Hooke-Jeeves procedures were
applied to each specification to evaluate the minimum possible wordlength. The
results of these calculations are shown in Tablc(6.13).

Speci fication lower stopband passband upper stopband
Gain atten (dB) 50 0.1 50
frea (Hz) 0 -» 0.075 01 -» 0.2 0.225 -+ 0.5
Group dev (%) / 20 - 0.005 !
frca (Hz) 0 -» 0.075 01 -» 0.2 0.225 -» 0.5

Table 6.14 Simultaneous single bandpass lattice WDF specifications.

Bandpass Lattice WDF Linear
Gain Grotp delav deviation (%) phase
only 20 10 5 1 05 01 0.05 0.01 0.005 FIR
filter
14 26 26 34 38 42 46 50 54 62 105
order
min.
word 14 13 15 16 16 15 18 19 20 19 /
length

Table 6.15 Filter orders satisfying the specification of Table(6.15).

Frequency responses of the 5% group delay deviation example from Table(6.15)

are shown in Fig.(6.31).



(c) (d)
Figure 6.31 Frequency responses of 5% delay deviation showing (a)
passband and (b) overall magnitude and (c) passband and (d) overall group
delay responses under ideal and finite wordlength conditions.

6.4 Conclusions

The objective of this Chapter has been to illustrate the performance of the lattice
WDF under various finite wordlength conditions and then to outline a number of

techniques to counteract these effects.

Errors due to finite wordlength effects within a digital filter may be attributed to
distortion of the frequency response by finite wordlength coefficients or the
introduction of noise by digital hardware. An indication of the frequency
response distortion can be obtained by calculating the frequency response of a
filter analytically with finite wordlength coefficient values. The effect of digital
hardware on the performance of a digital filter can only be modelled through a

time domain simulation.

This Chapter has illustrated a number of different finite wordlength effects in
terms of coefficient quantization and confirmed the validity of these results
through simulation in the frequency and time domains and actual implementation
upon a DSP chip. The main techniques that can be used to improve the
performance of a digital filter involve an appropriate selection of finite
wordlength  filter coefficient values that best retain the desired frequency
response(s) and a set of scaling factors that result in the greatest signal to noise
ratio for a given hardware implementation. Research of this project has
concentrated upon the finite wordlength coefficient aspect of the problem
although future work may be expanded to include the scaling and other hardware

implementation considerations.
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Optimization is based upon the minimization of an error function, which for Alter
design is a sum of errors generated by sampling the frequency response(s) at a
number of points. The frequency response(s) can be generated analytically in the
frequency domain or produced through a FFT of an impulse response simulated in
the time domain. Time domain simulations provide an ability to model a wide range
of finite wordlength effects such as quantization, overflow and scaling that are
not possible in the frequency domain. However the time required to generate an
accurate frequency response(s) from an impulse response through the FFT makes
the techniques impractical for use within an optimization routine. Therefore the
finite wordlength optimization routine(s) were concerned only with minimizing
the frequency response distortion due to finite wordlength coefficient values
based in the frequency domain.

Design of finite wordlength solutions to arbitrary frequency specifications was
approached through the optimization techniques developed for the large
solutions discussed in Chapter 4 and Chapter 5. Although the design

templates and error functions from these techniques could be applied directly, the
nature of the finite wordlength constraints prompted the selection of a non-
quasi-Newton algorithm. The optimization routine adopted was based upon a direct
search technique, developed by Hooke-Jeeves. where the search step was
determined by the required coefficient bit length.

The nature of the direct search optimization algorithm made it very slow, so the
procedure developed for finite wordlength designs involved first producing a

on or ideal coefficient

solution to the frequency specification with large preci:
values and then using a quantized version of these coefAcient values as a starting
point for the finite wordlength optimizationroutine. This process suggested a
number of options concerning the bit length of these initial coefAcient values.
Three methods exist, quantize the coefficients to the desired bit length, quantize
coefficients to a bit length shorter than required and then increase until a
solution is  found, or quantize to a bit length larger than required and reduce until
a solution cannot be found. The Arst method only determines ifa solution exists
for that bit length while the other two methods produce theminimum bit length

for a given speciAcation.

Experiments have shown that the method of quantizing the ideal coefficient
values to a very low bit length and then increasing it until a solution is found
worked best on magnitude-only frequency specifications with an initial bit
length of 4-6 bits. The method of quantizing the ideal coefAcient values to a large
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bit length and then decreasing the bit length was more efficient with
simultaneous designs and very large initial bit lengths, around 24-30 bits. Both
methods performed better when the bit length was incremented or decremented

by one bit at each iteration.

Results from this Chapter have shown that the direct search based optimization
routines provide a viable approach to finite wordlength digital filter designs. The
techniques suggested also determined the minimum coefficient wordlength that
can be achieved for a given frequency specification, filter order and error
tolerance. Experiments have confirmed the low bit lengths achievable with the
lattice  WDF for magnitude-only designs. However, work on simultaneous designs
has shown that the inclusion of a group delay specification greatly increases the
minimum wordlength possible, sometimes around 12-18 bits. This property may
counter the advantages, such as lower filter order, gained against alternative
filter designs, namely the exactly linear phase FIR filter.

Using the techniques developed and outlined in this Chapter for finite wordlength
designs, the final stage of this research project concerned the design and
simulation of a simultaneous dual bandpass frequency specification. The design
procedures for this process are detailed in Chapter 7.
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Chapter 7

Lattice WDF Design Example

7.1 Introduction

The overall objective of this research project entailed the design of WDF’s capable
of satisfying a finite wordlength linear phase dual bandpass frequency
specification. The previous Chapters have outlined the various WDF's structures
considered and the design techniques investigated. Results of this research
prompted the selection of the lattice WDF structure. Design techniques were based
upon optimization wusing quasi-Newton algorithms to determine large precision
solutions and a modified Hooke-Jeeves routine for finite wordlength solutions. The
purpose of this Chapter is to detail the stages of the design process proposed

through a dual bandpass example.

The first step concerns the filter specification, detailing the cut-off frequencies,
attenuation levels, group delay linearity and final coefficient wordlengths. From
the specification, the order of filter required to satisfy the magnitude-only part of
the specification would be estimated. Starting with a lattice WDF of that order, the
quasi-Newton based optimization routines, detailed in Chapter 4. would be applied
in an attempt to generate a solution to the magnitude-only part of the

specification

With optimization parameter values determined for the magnitude-only design,
the group delay element of the specification would be introduced. The order of the
filter would be retained and the group delay tolerance increased until a
simultaneous solution could be produced. Using the optimization settings
developed to produce this simultaneous solution, the group delay tolerance would
be reduced, nominally by a factor of two, and the filter order increased until a
new simultaneous solution could be generated. This process would continue until

the desired group delay deviation was achieved.

Simultaneous solutions obtained with the quasi-Newton algorithms would be based
upon coefficients specified to a large degree of accuracy. As a consequence the
frequency response will distort when the coefficients are quantized. To offset the
finite wordlength effects, the coefficients’ values would then be applied to the
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Hooke-Jeeves routine detailed in Chapter 6. Using this algorithm and the ‘ideal’
coefficient values generated by the quazi-Newton routine as initial values, the
best set of finite wordlength coefficients for a particular bit length or function
error would be determined. For simultaneous specifications this finite wordlength
design process would begin with the ideal coefficient values quantized to a very
large bit length, nominally around 32 bits and applied to ‘'he Hooke-Jeeves
routine. When a solution was found the bit length would be reduced and the
resulting coefficient values reapplied to the optimization routine. The bit length
would be reduced in this manner until the desired finite wordlength was achieved
or the frequency response distortion becomes unacceptable. If the desired
wordlength could not be achieved, a simultaneous solution to a higher order filter
would be generated and the finite wordlength optimization process repeated until

the desired wordlength attained.

The steps involved in this design procedure can be better illustrated through a
design example. The example chosen represents a design that cannot be achieved

other than through optimization and details the stages in the design process.

7.2 Filter Specification

The frequency specification of the dual bandpass filter example considered is
detailed by Table(7.1), while the templates for the response are shown in Fig.(7.1).

Frequency (kHz)
(a)
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(b)
Figure 7.1 Graphical representation showing the attenuation (a) overall
and (b) across the passband, for the frequency specification of Table(7.1).

Specifications I®stop Isl pass 2nd3)D 2ndpa«
Atten cB 6Q0 Vil 550 01 580
kHz 0<>81 84» 9.6 99» 111 114 < 126 129« 15
Delay dev(%) / 1 / 1 /
kHz 0« 81 8.4 «9.6 99 « 111 114<>126 129« 15
Fs = 30 kHz maximum coefficient bit length = 16

Table 7.1 Simultaneous filter specification.

The first step in the design process is to establish limits for the filter order with
this frequency specification. The lower value of the limit is set by the minimum
filter order that satisfies the magnitude-only side of the specification. An upper
limit is imposed to ensure the filter order for an approximately phase design using
the lattice WDF does not exceed that of an equivalent FIR filter which possesses

exactly linear phase

A number of different software packages can be used to determine the filter order
of an exactly linear phase FIR filter equivalent to the specification of Table(7.1).
Using software written within MatLab especially for this purpose, the equivalent
FIR filter order for this design was determined as 286. The symmetric nature of an
exactly linear phase FIR filter imposes a need for only (N+I)/2 independent

multipliers, or for this design example 143 multipliers

The operational speed of a digital filter is limited by the amount of computation
required within each sample period. By far the slowest component within any
digital filter's operation is multiplication and as a result a more realistic
comparison between a lattice  WDF and an exactly linear phase FIR filter would
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involve the number of multiplications per sample. Under this principle, the upper
limit on the lattice filter order would be set to half the order of the equivalent

exactly linear phase FIR filter.

The lower filter order limit is set by the minimum order that will satisfy the
magnitude-only part of a specification. For lowpass specifications the minimum
filter order can be calculated from standard polynomial equations widely used in
filter designs. The most efficient polynomial for magnitude-only filter designs is
the elliptic polynomial. Standard polynomials can only be applied directly to
lowpass specifications. To determine the filer order of highpass, bandpass or dual
bandpass specifications requires an equivalent lowpass specification. The filter
order of an equivalent lowpass specification may not be very accurate, but
provide a good initial guess. With complex specifications, such asthe dual
bandpass example of Table(7.1), theonly method of determining the minimum
filter order is through optimization. Calculation of the minimum lattice WDF order
that satisfied the magnitude-only part of the specification of Table(7.1) should
therefore be approached through the quasi-Newton and dualline template ideas

discussed in previous Chapters.

The final area of the specification is the filter structure. Ladder WDF structures
have proved wunsuitable for simultaneous frequency specifications because of
their minimum-phase characteristics. Dual band designs wupon the lattice WDF
structure using the transformed APS's detailed in Chapter 5. have alsomet with
little success. For this reason dual bandpass and bandstop specification, such as
Table(7.1), should be approached with the standard 1st and 2nd order APS’s
described in Chapter 4.

The lattice WDF. Fig.(7.2), can be simplified if the second input. A2. is set to zero.
The resulting basic one-port structures are shown by Fig.(7.3). These simplified
lattice  WDF's are polyphase structures whose transfer functions are the sum or
difference of the transfer functions of two branches. The structure of Fig.(7.3)(a)
has the transfer function given by Eq.(7.1), while the structure of Fig.(7.3)(b)
corresponds to EQ.(7.2).
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(») (b)
Figure 7.3 Simplified lattice WDF's structures using (a)

output port B] and (b) output port B2-
<>*St -mr 2Li <D

<)
Due to the nature of the lattice structure the transfer functions Eq.(7.1) and
Eq.(7.2) are complementary, such that if the structure of Fig.(7.2)(a) has a lowpass

frequency response, then with the same coefficients, the structure of Fig.(7.3)(b)

will exhibit a highpass response.

Designs using the transformed APS's described in Chapter 3 have been based upon
the lattice structure of Fig.(7.3)(a), however, to satisfy single and dual bandpass
specifications using the standard 1st and 2nd order APS's. requires the lattice

structure of Fig.(7.3)(b).
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7.3 Magnitude-Only Design (ldeal)

The main purpose of this design stage is to determine the minimum filter order
and optimization settings for a simultaneous design. The magnitude-only solution
to a given filter specification provides a basis for the simultaneous case and initial
coefficient values for finite wordlength magnitude-only designs. The software
tools developed within in this research project allow for both magnitude-only and
simultaneous finite wordlcngth designs. Both procedures are outlined in this

Chapter.

In order to apply optimization to the magnitude-only part of the specification of
Table(7.1), a number of parameters need tobe evaluated or estimated. The main
parameter is the initial filter order. This canbe estimated by calculating the order
of a polynomial that can satisfy an equivalent lowpass specification. An
approximate method of converting a general specification into a lowpass
specification is to sum the widths of thevarious passbands and stopbands to
generate the edge frequencies and the most severe attenuation levels. The final
step involves normalising the frequency edge values to coincide with a sampling
frequency of 1 Hz. Applying this methodto the magnitude-only part of the
specification of Table(7.1), shown in Table(7.2), produces the lowpass specification
of Table(7.3).

Specification Lst stop Ist pass 2nd stop 2nd pass 3rd stop
Atten dB 60 0.1 55 0.1 58
kHz 0@ 81 84« 96 99 < 111 114« 126 129 <15
Fs = 30 kHz maximum coefficient bit length = 16

Table 7.2 Magnitude-only part of the filter specification of Table(7.1).

Specifica tion Passband Stopband
Atten dB 0.1 60

Hz 0« 0.08 0.12 « 0.5

Fs= 1Hz max. coefficient bit length = 16

Table 7.3 Estimated lowpass equivalent of the specification of Table(7.2).

The minimum elliptic polynomial that can satisfy the specification of Table(7.3) is
7th order. Applying the optimization techniques to this lowpass specification
allows a range of weights, error point and transition and template angle to be
investigated. Optimization parameters were varied until the optimization routine
generated a response that fitted within the design templates. Coefficient values
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from this solution were then applied to the Finite wordlength design procedures to
determine the minimum coefficient wordlength for this specification. Responses
from the large and finite wordlength solution are shown in Fig.(7.4).

(c) <d)
Figure 7.4 Magnitude (a) passband. (b) stopband and (c) overall frequency
responses and (d) pole/zero plot of a solution to the specification of Table(7.3).

Transformation of a lowpass filter structure into a dual bandpass form, detailed in
Chapter 5, requires the filter order to be doubled to produce a bandpass structure
and then doubled again to generate a dual bandpass response. A 28th order lattice
WDF of this type and the coefficient values from the lowpass solution can then be
used to create an equivalent dual bandpass response. If the frequency
transformation values for each APS were set to 0.86 and -0.65 then the
transformed response closely matched the magnitude-only specification of
Table(7.2). The frequency responses of a dual bandpass lattice structure under
these conditions are illustrated by Fig.(7.5).
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OfTle— Op-Temd

(c) overall frequency responses and (d) pole/zero plot of a
transformed solution from the lowpass specification to Table(7.3).

Due to the limited performance of the transformed APS's for dual bandpass
designs, an exact solution to the specification of Table(7.2) could not be generated
even using the frequency transformation values for each APS as an optimization
parameter. Further designs were switched to the standard 1st and 2nd order APS's
upon the lattice WDF structure shown by Fig.(7.3)(b). The filter order of the
transformed APS design was used as an initial guess for this design method.

Optimization parameters that produced the equivalent lowpass solution were
modified to incorporate changes in transition band width and attenuation levels.
Experience gained through a number of filter designs has shown that the most
effective optimization solutions were generated with an error function based
upon an L2-metric and error points that were clustered around the regions of
greatest change, weights that produced an equal deviation/equal error effect and
all the initial multiplier values set to zero. Parameter values selected for the
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design of a dual bandpass filter to satisfy the specification of Table(7.2) are
detailed in Table(7.4).

Filter order 28

Initial multiplier values all zero

Lp-metric value 2

Beta ratio (i.e. magnitude-only design) 1
Parameters I« pe g 2nd 2%id 3rd  2nd  4th 3rd
per band stop Iran  pass tran stop tran pass tran stop
Error points 37 11 21 11 21 11 21 11 15
Error point sine linear dual linear dual linear dual linear cos
spacing cos cos cos
weights 5000 200 50 200 5000 200 50 200 5000

Table 7.4(a) Initial optimization parameter values.

Transition bands 1st 2nd 3rd 4th
template 35 35 35 35
angles (degs) lower 30 30 30 30

Table 7.4(b) Initial optimization parameter values.

Using the initial parameter settings of Table(7.4), dual line template and quasi-
Newton based optimization was applied to the design specification. Results from
the design process very closely approached the desired solution, but tended to
spike at the edges of stopband. Spikes are most prominent when the filter order is
too large for a specification. Other signs that the filter order was too high could be
seen in the frequency response of the solution. Fig.(7.6). where the middle
stopband attenuation was lower than necessary.

Figure 7.6 Overall magnitude responses of a 28th order
solution to the specification of Table(7.2).
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Following the results of the 28th order design solution, the filter order was reduced
to 26 and the optimization process re-applied with the same initial optimization
parameter values. Solutions from this design process were more successful. The
frequency responses of the solution are shown in Fig.(7.7).

OpT«tm:DUAL ol (LHI OpTaf» DUAL FieiMBy(kHI  Operor 1619~
(a) (b)

Figure 7.7 Magnitude (a) lower passband, (b) upper passband and
(c) overall frequency responses and (d) pole/zero plot of a 26th order
solution to the specification to Table(7.2).

7.4 Magnitude-Only Design (Finite)

Starting with the coefficient values generated in the previous section and the
optimization parameter values of Table(7.4), the design example was applied to the
finite wordlength routine. This process would determine the minimum coefficient
wordiength  for this filter order and specification. The finite wordlength
coefficient values produced through the optimization process were 16 bits in

length and are given in Table(7.5).
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Upper lattice arm Lower lattice arm
APS APS multiplier values APS APS multiplier values
No. type No. type
1 2nd  yj= .0.93023681640625 7 2nd xn* -0.86846923828125
X2= -0.20568847656250 xu= -0.26959228515625
2 2nd 3= .0.88696289062500 8  2nd  xj5= .0.98004150390625
x4 = -0.45800781250000 xiis= -0.18164062500000
3 2nd  x5% .0.85473632812500 9  2nd  xj7. -0.96643066406250
Xfi= -0.37414550781250 xi8= -0.43701171875000
4 2nd  x7= .0.88385009765625 10 2Nd  xig* .0.86120605468750
8= -0.77886962890625 X20= -0.45568847656250
5 2nd  xg= .0.98028564453125 11 2nd  x01= -0.93420410156250
xio= -0.72448730468750 X22= -0.74029541015625
6 2nd  xn=* .0.93237304587500 12 2nd  X23= .0.88232421875000
xi2 = -0.86633300781250 X24= -0.83197021484375

13 2nd x5
X26 =

-0.98010253906250
-0.87896728515625

Table 7.5 16 bit coefficient values that satisfy the dual

Impulse responses

of

wordlength coefficients

are shown in Fig.(7.9).

Figure

7.8

(a)
(2)

the
are

specification of Table(7.2).

26th order lattice WDF's

with

the

bandpass

ideal

illustrated in Fig.(7.8). while the frequency

Op—-4MM»  OpTvpaDIAL

Te(m

(b)

and finite
responses

Initial and (b) overall impulse responses of a 26th

order solution to the specification to Table(7.2) under ideal and

finite wordlength conditions.
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[e}] I»..
(c)
Figure 7.9 Magnitude (a) lower passband.

page 7/12

ni» muni»

(b) upper passband and (c)

overall frequency responses of a 26** order solution to the specification to
Table(7.2) under ideal and finite wordlength conditions.

7.5 Simultaneous Design (ldeal)

The filter order for the magnitude-only part of the specification of Table(7.1) was

determined to be 26. Using a 26th order solution as a starting point, the group delay

part of the specification was introduced. With the optimization parameter values

of Table(7.6), the group delay tolerance was started

Filter order

Initial multiplier values

Lp-metric value

Beta ratio (i.e. magnitude-onlydesign)
Group Delay tolerance

I

tial mean passband groupdelay value

at 200%.

26

Ideal

2

0.8

200%
0.0025 sec
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Parameters I 1% B8 2nd 2nd 3rd 2nd 4th 3rd
per band stop tran  pass  tran stop  tran pass  tran stop

Gain template values

Error points 37 11 21 11 21 11 21 11 15
Pt spacing sine linear dual linear dual linear dual linear cos
cos cos cos
Weights 5000 200 50 200 5000 200 50 200 5000
G oup De ay temp late values
Error points / / 19 / / ! 19 ! /
Pt spacing / / linear / / / linear / /
Weights L L 60000 JL . L 60000 _ I -

Table 7.6(a) Initial optimization parameter values.

Transition bands st 2nd 3rd 4th
template upper 35 35 35 35
angles (degs) lower 30 30 30 30

Table 7.6(b) Initial optimization parameter values.

When a solution was generated for this specification, the group delay tolerance
was reduced until a 26th order simultaneous solution could not be created. For the
specification of Table(7.1), the minimum group delay deviation for a 26th order
lattice WDF was 90%.

Having determined a set of optimization parameters from the initial simultaneous
designs, the filter order was increased and the group delay tolerance again
lowered until a solution could not be generated. The filter order was increased so
that there was always a larger number of poles in the upper. S", branch of the
lattice structure. Following this rule the next filter order considered was 30.
Optimization determined that the minimum group delay deviation for the 30th
order lattice WDF example was 70%. Repeating this design process for a 34th order
example produced a minimum deviation of 30%. Using the reduction in group
delay per filter order, as a rule of thumb, a 20% deviation example was considered
upon a 42nd order lattice WDF. The actual solution was achieved upon a 46,h order

lattice  structure.

The specification of Table(7.1) requires a group delay deviation of 1%. Applying
the rule of thumb concerning filter order, the 1% tolerance example was first
considered upon a 54th order lattice structure. Fig.(7.10) shows the responses of
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the 34th order solution generated through the quazi-Newton. dual line templates
and optimization parameter settings of Table(7.6).

(e) (f)
Figure 7.10 Passband (a) lower and (b) upper magnitude, passband (c)
lower and (d) upper group delay and overall (e) magnitude and (O group
delay frequency responses of a 54th order lattice WDF.
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The responses of Fig.(7.10) fail to satisfy the specification of Table(7.1), although
only just for the upper passband responses. Failure to satisfy any region of the
specification suggests the filter order was too low. Retaining the optimization
parameter values from this solution, the filter order was increased until an
acceptable solution was achieved.

A final solution was produced upon a 66th order lattice structure. The frequency

responses of this solution are illustrated in Fig.(7.11).

(c) (d)
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Figure 7.11 Passband (a) lower and (b) upper magnitude, passband (c)
lower and (d) upper group delay and overall (e) magnitude and (0 group
delay frequency responses of a 66th order lattice WDF.

7.6 Simultaneous Design (Finite)

The final step in the design process involved generating a finite wordlength
solution to the specification. Using the ideal coefficients determined in the
previous section as a starting point, the modified Hooke-Jeeves optimization
routine was applied to the problem. With the same optimization parameters used
for the ideal coefficient solution and an initial wordlength of 32 bits, the
optimization routine produced a solution with a minimum wordlength of 26 bits.
This therefore represented the minimum coefficient wordlength for the
specification of Table(7.1) and a 66th order lattice WDF.

Satisfying the 16 bit requirement of Table(7.1) involved increasing the filter
order, finding an ideal coefficient simultaneous solution and reapplying the finite
wordlength optimization routine. Each iteration of this process determined the
minimum coefficient wordlength for that order of filter. A solution was finally
achieved with a 74th order lattice WDF. Frequency responses of this solution using
ideal and finite wordlength coefficient values are illustrated in Fig.(7.12). As a
comparison the frequency responses of the equivalent exactly linear phase FIR
filter are shown by Fig.(7.13). The finite coefficient values are detailed in
Table(7.7).



(a) (b)

(<) (f)
Figure 7.12 Passband (a) lower and (b) upper magnitude, passband (c) lower
and (d) upper group delay and overall (e) magnitude and (f) group delay
frequency responses of a 74th order lattice WDF with ideal and 16 bit coefficients.
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(*) (b)
Figure 7.13 Overall (a) magnitude and (b) group delay frequency
responses of a 286th order exactly linear phase FIR filter.

Upper latice arm

APS APS multiplier values APS APS multiplier values
No. tvoe No. type
1 2nd xj= .0.973602294921875 10 2Nnd  x19. .0.896209716796875
X2= -0.146820068359375 X20 = -0.804107666015625
2 2nd x3= .0.929443359375000 11 2Nd 01 . _0.290618896484375
X4= -0.331054687500000 *22 — -0.664215087890625
3 2nd 5= .0.940582275390625 12 2nd X23= -0.892364501953125
X6 = -0.203704833984375 X24 = -0.750670386718750
4 2nd *7* -0.930328369140625 13 2nd  «25 * .0.990173339843750
xg= -0.264984130859375 *26 = -0.692535400390625
5 2nd  x9= .0.927276611328125 14 2nd  X27 = -0.940399169921875
xio= -0.396972656250000 *28 = -0.721130371093750
6  2n< Xu« -0.633209228515625 15  2Nd 29« .0.859039306640625
*12 = -0.502838134765625 *30 — -0.816162109375000
7 2nd «13% .0682342529296875 16  2Nd %31 = .0.908416748046875
x14 ® -0.395141601562500 *32 - -0.858947753906250
8 2nd  x15, .0.971496582031250 17 2Nd  X33. .0.794433593750000
*16 = -0.465240478515625 *34 = -0.855102539062500
9 2nd  X17- -0.402252197265625 18 2Nd  x35. .0.979400634765625
*18 = -0.600219726562500 X36 - -0.897888183593750

Table 7.7(a) Upper lattice arm coefficient values of the 74th order
filter that satisfies the dual bandpass specification of Table(7.1).
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Lower lattice arm

APS APS multiplier values APS APS multiplier values
No. type No. type
19 2nd 37 % .0.987823486328125 29  2»d 57 = _0.476043701171875
*38 = -0.143890380859375 *58 = -0.692962646484375
20 2nd  x39, -0.935546875000000 30 2nd  «59= .0.583312088281250
X40= -0.233306884765625 *60 = -0.747924804687500
21 2nd w41 = .0.934753417968750 31 2N «g) = .0.890014648437500
*42 = -0.431701660156250 *62 = -0.860351562500000
22 2nd w43= .0.951782226562500 32 2Nd «g3 = .0.911865234375000
*44 = -0.171783447265625 *64 = -0.781402587890625
23 2nd w45 = .0.930389404296875 33 2Nd x5 = .0.907165527343750
*46 = -0.295989990234375 *66 = -0.830352783203125
24 2nd w47 = 0.986450195312500 34  2nd %67 = -0.982116699218750
*48 = -0.467132568359375 *68 = -0.693756103515625
25 2nd =49 = -0.922424316406250 35 2Nd  xgg = .0.938568115234375
X50 = -0.364593505859375 *70 = -0.881622314453125
26 2nd x5« 0.779571533203125 36 2Nnd 471 . .0.912658691406250
*52 = -0.414459228515625 *72 = -0.749114990234375
27 2nd w53 = .0.439819335937500 37 2Nd 73 = _0.989349365234375
*54 = -0.535522460937500 *74 = -0.898895263671875

28 2nd  x55, .0.423156738281250
*56 = -0.606597900390625
Table 7.7(b) Lower lattice arm coefficient values of the 74th order
filter that satisfies the dual bandpass specification of Table(7.1).

7.7 Design Summary

The purpose of this Chapter was to demonstrate the design of a linear phase dual
bandpass filter with finite wordlength coefficients and discuss of number of
properties of the proposed design techniques that have emerged though the wide
range of designs considered during the period of this research project.

Principle among the reasons for exchanging the exact phase linearity of FIR
filters to the approximately linear phase lattice WDF's was a possible reduction in
filter order and increased operational performance. The compromise between
filter order and phase linearity is heavily dependant upon the frequency

specification of a filter design. Phase linearity is only required across the
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passbands of a response and is sensitive to rapid changes in gain. FIR filters, due
to their non-recursive nature, have poor frequency selectivity and exactly linear
phase designs possess phase linearity across the whole frequency band. Therefore
the combination of phase linearity, narrow passbands and sharp cut-off ratesin a
design specification, such as the dual bandpass considered in this Chapter, results

in a very large FIR filter order.

The superior frequency selectivity of recursive filter structures and the linear
phase techniques discussed in this thesis, allow solutions to be generated with
considerably lower filter orders. However this improvement is dependent upon
the phase linearity required and frequency specification of theexample. Overall,
the performance ofa linear phase lattice WDF over an exactly linear phase FIR
filter will depend upon the nature of the frequency specification.

Experience of the dual-line template based optimization techniques proposed has
highlighted a number of parameters that need to be considered to improve design
process. Principle among these parameters is the transition band templates. For
magnitude-only designs the transition band templates should force a rapid cut-off
rate from the edge of the passband. However for simultaneous designs, because
rapid changes in gain distort the phase response, a sharp cut-off rate from the
edge of the passhband increases the constraints upon the groupdelay side of the
problem. Therefore with simultaneous designs a more appropriate transition band
template scheme involves a slow cut-off from the edge of the passband and then a
rapid cut-off  toward the edge of the stopband. This feature isespecially true for

very narrow transition bands.

Another property of the optimization techniques is due to the nature of the error
function. Since the error is generated at a finite number of points, it is possible
that the peak error of a particular region may fall between two error points and
not register. To ensure this characteristic is reduced, a design solution should be
re-run witha different arrangement of error points, usually achieved by
increasing the points by 10 % across the passbands and stopbands.



Chapter 8

Discussion and Conclusions

8.1 Project Outline

The main objective of this research project entailed the design of linear phase
multi-band digital filters that could operate at high sampling rates while
maintaining the desired response under finite wordlength conditions. Sampling
rates and the finite wordlength performance of a digital filter are related and
dependant upon hardware implementation. The maximum sampling rate of a
digital filter is limited by a system's ability to perform basic operations, such as
multiplication and addition and the maximum number of these operations a
particular digital filter is required to perform in one sample period. For the basic
FIR filter structure, a sample period entails the multiplication and accumulation of
N samples, where N is the order, while for the lattice WDF structure, a sample
period involves one multiplication and three additions for each two-port adaptor.
The sampling rate limit is therefore constrained by the structure of the filter and
the speed of multiplication and addition operations. Of the hardware operations,

the most computationally expensive is multiplication.

A technique for improving the performance of hardware multipliers involves
reducing the number of operations required to generate the product by
shortening the wordlengthof one of the multiplicands. In this way, a X by X bit
multiplier producing a 2Xbitresult, would be replaced by a X by Y bit multiplier
generating a (X + Y) bitanswer. The increase in speed of operation of the modified
multiplier is approximately X/Y. Maintaining system accuracy with this modified
multiplier technique requires that the signal wordlength be kept as long as
possible. Central to most DSP applications is the Multiply and Accumulate (MAC)
function, where the input signal is multiplied by a coefficient value and the result
added to the contents of a register. Therefore the only filter wordlength that could
be modified to incorporate the modified multiplier technique are those of the

coefficient values.

Adopting this multiplier technique to improve the sampling rate performance of a
system requires filter structures that can satisfy the desired frequency response
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with short coefficient wordlengths. These limitations prompted research to
consider the WDF and its properties.

Since the development of WDF's by Fettweis in 1972, very little research had been
published regarding the design of linear phase WDF's. To this end. the research
project was concerned with investigating the properties of ladder and lattice
WDF's in relation to linear phase and possible design techniques. The final goal of
the project was to develop tools to design and analyse WDF's that satisfied dual
bandpass magnitude specifications with an approximately linear phase response

across the passbands and finite wordlcngth coefficients.
8.2 Summary of WDF structures and properties.

The WDF was designed to possess low coefficient sensitivity by mimicing the
properties of analogue DTL networks, such as LC ladder circuits. Under the
techniques proposed by Fettweis. digital equivalents of analogue elements were
modelled through wave parameters and a digital filter constructed using these
components. The modelled digital components can be considered as one-port
elements interconnected by special adaptors or as two-port elements cascaded
together. Using digital models for a range of analogue components, the analogue
lossless ladder and lattice DTL networks can be constructed in the digital domain as
ladder and lattice WDF's respectively.

8.2.1 WDF structures

Although both ladder and lattice WDF structures can satisfy arbitrary magnitude-
only specifications, it is the property of minimum- or nonminimum-phase that
dictates their performance with respect to linear phase. A linear phase response
is dependent upon the position of its poles and zeros. Stability requires that the
poles of a system remain within the unit circle while the pole/zero plot of exactly
linear phase FIR filters clearly shows that the zeros have to exist in complex
conjugate pairs. Structures that exhibit minimum-phase do so by forcing all zeros
to remain on or within the unit circle. This is to ensure that a stable and causal
inverse of the system exists. Of the two main WDF structures, the ladder WDF can
only satisfy the minimum-phase criteria while the lattice WDF may be configured

to possess minimum- or nonminimum-phase characteristics.

The property of minimum-phase suggests that the ladder WDF is unsuitable for
linear or arbitrary phase specifications, while the lattice WDF provides a basis for
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both simultaneous and magnitude-only designs. The lattice WDF structure can be
specified in a form that corresponds to a polyphase network, in which each
branch is an allpass function. For the lattice WDF, these branches are a cascade of
APS's, where the nature of the APS's will determine the overall frequency

response of the filter.

8.2.2 Frequency Transforms

Lattice  WDF's can be designed to satisfy lowpass, highpass and bandpass type
responses using the standard 1st and 2nd order APS's detailed in Chapter 4 or the
transformed APS's described in Chapter 5. The alternative APS's were designed by
describing frequency transformation equations in terms of WDF building blocks
and then applying them to the standard 1st and 2nd order APS's. This design
method created 1st and 2nd order APS's for highpass designs, 2nd and 4th order
APS's for bandpass designs, and 4th and 8th order APS's for dual band designs that
could be used as direct replacements for APS's in the lowpass lattice structure
Their construction allowed the coefficient values from lowpass designs to be
applied directly to the alternative APS's to create equivalent transformed
solutions. However, this construction method imposed a restriction upon the 4th
and 8th order APS's by making a number of the multipliers within the APS
dependent and reducing their degrees of freedom. This dependence limits the
performance of the APS's and therefore the overall response of a lattice structure

using them.

A reduction in performance using the transformed APS's did not present a
problem for the range of single bandpass and bandstop magnitude-only and
simultaneous specifications considered. Dual band designs, however, were
severely limited by the performance of the transformed 4th and 8th order APS's. To
avoid these limitations dual band frequency designs were considered upon a
lattice structure using the standard 1st and 2nd order APS's. For these designs, the
overall equations for the lattice structure had to be modified to implement the
difference of the two lattice branch responses for single and dual bandpass
specifications rather than their sum which had been wused for the transformed
APS*.

8.2.3 Finite Wordlength Effects

Effects of finite wordlength upon ladder and lattice WDF structures can be
observed by calculating their coefficient sensitivity responses and by comparing
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the frequency responses determined with ideal and reduced accuracy coefficient
values. Coefficient sensitivities illustrate the amount by which a filter's gain,
phase and group delay responses will vary as coefficient values are altered. For
DTL structures, this sensitivity can approach zeio at its MAP points within the
passband. Finite wordlength characteristics illustrated in Chapter 6. demonstrate
the high tolerance of the lattice WDF's magnitude response to changes in the
coefficient  wordlengths. This was also confirmed by the structure's low magnitude
coefficient sensitivities across its passband, again reaching zero at MAP points
within the passband(s) of lowpass, highpass and bandpass specifications.
Extending the ideas of sensitivity to group delay allowed the variation of the group
delay response to be determined with respect to coefficient changes. The
coefficient sensitivities provide an indication of the distortion introduced into the
frequency response as the coefficient wordlengths are reduced.

8.3 Summary of Design Options

With the ladder and lattice WDF structures as a basis for this research project, the
main design decision concerned the method of generating the filter coefficients.
Ultimately, these filter coefficients would satisfy simultaneous magnitude and
cations with finite wordlengths. A number of design options are

phase spec
available but the three main methods consist of wusing analytical equations,
optimization or a combination of both techniques. Magnitude-only designs can be
solved by minimum-phase polynomials, such as the elliptic or Butterworth
functions and be implemented directly upon lattice or ladder WDF's. Calculating
these polynomials for magnitude-only frequency specifications results in a set of
large wordlength coefficients. However, the frequency responses of ladder and
lattice  WDF's with these coefficients may become unacceptably distorted if the

coefficient wordlengths were reduced too far.

To offset this effect some type of finite wordlength optimization should be applied
to achieve the desired frequency response with short wordlength coefficients.
This mixed approach to magnitude-only frequency specifications cannot be
applied to simultaneous designs as nonminimum-phase polynomials do not exist
which can satisfy arbitrary magnitude and phase specifications. For these design
cases, optimization must be applied from the start. Under these conditions,
optimization techniques would be directed at generating a set of large wordlcngth,
or ideal filter coefficients, that satisfy the simultaneous frequency specification.

These ideal simultaneous solutions, along with large coefficient solutions from
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magnitude-only designs, would then be applied to optimization techniques suited
to finding finite wordlcngth solutions.

8.3.1 Optimization Techniques

The three main steps in applying optimization to a problem concern; describing
the problem in a form that has a goal, a process for measuring the difference
between the current state and the goal, and a method of moving from the current
state to the goal. For filter design, the goal is a set of coefficients that generate the
desired frequency responses. The error to be minimized is the difference between
the frequency response with the current set of coefficients and the goal
frequency response. The optimization algorithm is therefore responsible for
altering the values of the filter coefficients to achieve the desired frequency

response.

To determine an error function to minimise, the response of the system must be
gauged against an ideal response. However, for a wide range of design cases, the
ideal response will not be specified as a continuous function, but as a piece-wise
linear approximation or template. This is wusually defined as a maximum
attenuation across the passband(s) and minimum attenuation across the
stopband(s). Therefore, to determine an error function, the actual response must
be compared with a template function created from the frequency specification.
Of the template functions considered in Chapter 2, and applied in both Chapters 3
and 4, the most effective template scheme used the frequency response
specification to determine an upper and lower limit line for each band of the
response. Under these dual line template targets, the optimization routine would
only be concerned with minimizing excursions of the frequency response outside
the template limits. This also allowed the error function to reach zero if the

frequency response fell within the template targets.

The format of the error function applied within the optimization process was to
sum the differences between the template targets and the actual frequency
response at various points over the frequency spectrum. The overall difference
was generated using a weighted Lp-metric function. The dependent relationship
between magnitude and group delay responses meant that both responses had to
be considered simultaneously within the optimization problem. To cater for this, a
weighted Lp-metric error was generated for each frequency response template
and a ratio of the two errors summed together. Introducing a ratio of the two
functions allowed overall control of the contributions of the two errors into the



Chapter 8. Discussion and Conclusions page 8/5

magnitude-only designs, would then be applied to optimization techniques suited

to finding finite wordlength solutions.
8.3.1 Optimization Techniques

The three main steps in applying optimization to a problem concern; describing
the problem in a form that has a goal, a process for measuring the difference
between the current state and the goal, and a method of moving from the current
state to the goal. For filter design, the goal is a set of coefficients that generate the
desired frequency responses. The error to be minimized is the difference between
the frequency response with the current set of coefficients and the goal
frequency response. The optimization algorithm is therefore responsible for
altering the values of the filter coefficients to achieve the desired frequency

response.

To determine an error function to minimise, the response of the system must be
gauged against an ideal response. However, for a wide range of design cases, the
ideal response will not be specified as a continuous function, but as a piece-wise
linear approximation or template. This is wusually defined as a maximum
attenuation across the passband(s) and minimum attenuation across the
stopband(s). Therefore, to determine an error function, the actual response must
be compared with a template function created from the frequency specification.
Of the template functions considered in Chapter 2, and applied in both Chapters 3
and 4, the most effective template scheme used the frequency response
specification to determine an upper and lower limit line for each band of the
response. Under these dual line template targets, the optimization routine would
ng excursions of the frequency response outside

only be concerned with minimi
the template limits. This also allowed the error function to reach zero if the

frequency response fell within the template targets.

The format of the error function applied within the optimization process was to
sum the differences between the template targets and the actual frequency
response at various points over the frequency spectrum. The overall difference
was generated using a weighted Lp-metric function. The dependent relationship
between magnitude and group delay responses meant that both responses had to
be considered simultaneously within the optimization problem. To cater for this, a
weighted Lp-metric error was generated for each frequency response template
and a ratio of the two errors summed together. Introducing a ratio of the two
functions allowed overall control of the contributions of the two errors into the



Chapter 8. Discussion and Conclusions page 8/6

optimization routine. Altering this factor also allowed magnitude and group delay
only problems to be addressed with the same error function and optimization

routine.

The weighted Lp-metric error function forces the optimization routine to
emphasize parts of the frequency response by increasing the weights on points
within a specific region. However, the effects of the number and position of the
points at which the Lp-metric function was determined are more difficult to
quantify. Calculating the Lp-metric function for a frequency response represents
an approximation of the error between the actual response and the ideal or target
response. Increasing the number of frequency points with which the Lp-metric
error was determined improves the accuracy of the error function, but also
increased the time taken to generate the overall error for each iteration of the
optimization routine. A method of reducing the number of error points, without
unduly effecting the accuracy of the overall error function, was to place the
error points around the regions of greatest activity within the frequency
response. For filter designs, this was at the edge of the transition bands. Details of
the selections of weights, error points and the Lp-metric error function adopted

for these filter designs were detailed in Chapters 2, 3 and 4.

Central to applying optimization to a problem is the algorithm. The performance
of any optimization algorithm will depend upon the nature of the problem to
which it is applied and the information it requires to calculate its search
directions. Of the types of algorithm considered, quasi-Newton techniques were
best suited to an error function calculated against the dual line templates used in
the simultaneous filter designs. The availability of a wide range of optimization
routines, through the NAG libraries, allowed the performance of a number of
optimization algorithms to be compared for magnitude-only and simultaneous
design examples. Of the algorithms considered, the simple quasi-Newton function,
EO04JAF, proved to be the most effective for large wordlength coefficient

simultaneous frequency specifications using the dual line template scheme.

Introducing finite wordlength conditions into an optimization problem imposes a
set of non-linear constraints upon the algorithm and a solution search space.
Optimization algorithms can deal with these constraints in a number of ways. One
method is to determine the next 'best’ solution with ideal coefficients in the search
space and then select a set of coefficients that satisfy the finite wordlength
constraints while remaining closest to this ‘best’ solution. Another method is to
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only select finite wordlength coefficients and then search the solution space for
the ‘'best' solution with those coefficients.

Although the first method is an extension of the techniques used for large
wordlength coefficient solutions, it suffers a time penalty as the algorithm is not
finding the ‘best’ solution with a given finite wordlength but a finite wordlength
approximation to a large wordlength solution. As a result, for short wordlengths.
the ‘best' finite wordlength solution may only bear a small correlation to the best
large wordlength solution. To improve the optimization process for finite
wordlength designs, a direct search algorithm was adopted. This modified Hooke-
Jeeves method only increases or decreases the coefficient values corresponding to
the finite wordlength required. In this way, the algorithm always moved between
the ‘best’ finite wordlength solutions within its search space until it found a

global or local minimum.
8.3.2 WDF Design Methodologies

With the WDF structure as the basis for research into simultaneous filter designs,
the two main design decisions concerned how best to describe and analyse the
various WDF structures and how to achieve the final goal of finite wordlength
solutions to dual bandpass frequency specifications.

The design elements to construct WDF's may be considered as one-port or two-port
components. The one-port approach represents the general case design
technique, as any number of one-port elements may be interconnected through
N-port serial or parallel adaptors that can, in turn, be connected to other adaptors.
However, the overall format of a WDF structure is a two-port device and it is more
appropriate to consider it as a cascade of two-port elements. Therefore, for the
ladder WDF. the design process should consider cascading two-port building
blocks, such as the parallel capacitor and series inductor described in Chapter 3.
The lattice WDF, however, is more generally considered in its simplified one-port
format. In this form, the lattice WDF is best described in terms of cascaded one-

port APS's, described in Chapter 4.

The second design decision entailed developing techniques to move from the large
wordlength  coefficient solutions of magnitude-only specifications using
minimum-phase polynomial based formulae, to finite wordlength solutions for

simultaneous multi-band frequency specifications.
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Initially research concentrated upon investigating optimization techniques and
algorithms that could generate solutions to known large wordlength lowpass
magnitude-only examples.Techniqgues were adapted and modified until
magnitude-only solutions could be generated quickly and accurately. The most
effective of these optimization techniques were then expanded to include a linear
phase requirement. A wide range of simultaneous lowpass design examples were
investigated using these techniques upon ladder and lattice WDF's.

Although the minimum-phase properties of the ladder WDF prevented it from
completely satisfying simultaneous specifications, partial solutions highlighted a
number of problems that could be addressed through better template definitions
and error point distributions. Among these problems was a tendency of the
optimized frequency response to spike within the transition band and at the edge
of stop bands.These effects were counteractedby defining transition band

templates that more closely mimicked the shape of the desired response and by
placing more error points around the regions of theresponse susceptible to

spiking.

Other properties of the simultaneous design techniques concerned the weights
and relative contributions of the gain and group delay errors. Due to the nature of
the target templates, each region of a template may possess a different width. This
is especially true for the gain template. Ifa specification has a passhand
attenuation of 0.1 dB and a stopband attenuation of 40 dB, then the gain template
widths differ by approximately 230:1 passband to stopband. To counter this effect,
weights were set so that an equal deviation relative to the width of atemplate
region, would generate an equal absolute error. Weights following this procedure

were also applied to the group delay templates.

Using a weighting scheme that placed equal importance upon each error point
within the gain and group delay templates, simultaneous design examples upon
the lattice WDF were considered. These provided an insight into successful initial
settings for the coefficient values and therelative contributions of the gain and
group delay errors. Large changes in gainare contrary to the requirements for
linear phase design and it is difficult to achieve linear phase around the
transition bands ofthe response. Therefore combining equal contributions of the
gain and group delay errors to the overall error function tends to prohibit the
optimization routine fromestablishing  the desired shape of the gain response.
This is mainly due the to group delay errors overriding the effects to attain the
stopband gain templates by limiting the cut-off rate in the transition band. To
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offset this effect the relative contributions of the gain and group delay errors
were set so that the shape of the gain response was established before the group
delay error was considered. Experiments placed the ratio of the two error
functions in the region of 1.8 to 5.6, or in terms of the p factor of the Lp-metric

function discussed, a ratio 0.65 to 0.85.

Having successfully applied optimization technigues to generate simultaneous
lowpass solutions upon the lattice WDF, the next step involved creating lattice WDF
structures capable of satisfying bandpass specifications. Using these structures,
the optimization techniques were again adapted until arbitrary magnitude-only
and simultaneous frequency specifications could be satisfied.

Lattice WDF structures considered for these designs consisted of the transformed
2nd and 4th order APS's described in Chapter 5. With these transformed APS's the
optimization techniques were modified to include the frequency transformation
value for all or each APS, as an optimization parameter. Using this technique
mimics the design procedure of adjusting the resonant frequencies of second

order sections in analogue filters to achieve the desired cut-off rates.

With experience gained from single band frequency designs, solutions to dual
band specifications were considered. Initial work concentrated upon the
transformed 4th and 8th order APS's detailed in Chapter 5 and using the frequency
transformation values as optimization parameters. However the constrained
characteristics of these 4th and 8th order APS's due to their dependent multipliers
proved to be a severe limitation on the performance of the lattice structure.

To avoid this limitation dual band frequency designs were considered upon an
alternative lattice structure using the standard 1st and 2nd order APS's. Using this
structure a range of dual band magnitude-only and simultaneous frequency
specifications were considered and the performance of the optimization
techniques investigated. For this design process the frequency transformation
values were no longer required and the optimization techniques reverted to those
used for lowpass designs. In addition a mean group delay value optimization
parameter was considered for each passband. Details of the overall design process

were provided through a design example in Chapter 7.

The final step in the overall design process concerned developing techniques to
determine acceptable finite wordlength lowpass. single band and dual band

frequency responses from large wordlengths coefficient solutions. The nature of
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the Hooke-Jeeves direct search algorithm made it very inefficient for locating the
general area of a the global solution to a problem. Therefore, the first step of the
finite wordlength design process was to start close to the region of the large
wordlength coefficient solution. With the large wordlength coefficients as a
starting point, the wordlcngth of thecoefficients was reduced to the desired
length. This process could beapproached by reducingthe coefficient wordlength
to the final desired wordlcngth and then looking for a solution or by moving the
wordlength up and down by one bit until the desired wordlength or the ‘'best'
finite wordlength solution was achieved. Some coefficient wordlengths are too
short for a given frequency specification and filter order, and therefore the
second approach of increasing or decreasing the coefficient wordlcngth was more

versatile.
8.4 Conclusions

The work carried out within this research project, and therefore its conclusions,
relate directly to the investigation of WDF structures and their properties, or the
design techniques and tools proposed to generate finite wordlength coefficient
solutions to arbitrary magnitude and phase frequency specifications.

8.4.1 WDF's for Linear Phase Design

Recursive filter structures, such as the ladder and lattice WDF, cannot possess
exactly linear phase. This property therefore precludes their use in applications
that require this level of linearity and force the selection of a non-recursive
filter structure. However, for a wide range of design specifications, a small
amount of non-linearity in the phase response is acceptable. Allowing this non-
linearity opens the door to recursive structures for linear phase design

All digital systems suffer from finite wordlength effects. When selecting
recursive structures for finite coefficient designs it is important to compare their
dynamic range and finite wordlength properties. Discussion detailed in Chapters 1
and 2 prompted the selection of the WDF structures because of their low

coefficient sensitivities and the canonic nature of the lattice WDF.

Investigations into the properties and requirements for linear phase design
highlighted the need for nonminimum-phase structures so that the zeros of the
transfer function could be arrange into complex conjugate pairs. Ladder WDF's,
with their purely minimum-phase structures, were therefore unable to satisfy a
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linear phase requirement. This property was confirmed through examples,
detailed in Chapter 3. under a wide range of optimization techniques and

frequency specifications.

Lattice WDF structures, however, can be designed to possess transfer functions
that exhibit a minimum- or nonminimum-phase type response, prompting their
selection for simultaneous frequency response designs. The ability of the lattice
WDF structure to satisfy simultaneous frequency specification was illustrated in
Chapter 4 through a wide range of lowpass design examples. Solutions from
Chapter 4 allowed the actual pole and zero positions of lattice WDF to be calculated.
In these pole/zero plots, the poles lay upon an arc within the unit circle that was
symmetrical about the real axis, while the zeros occupied the predicted complex
conjugate pairings. Within the z-domain an APS possesses poles and zeros that
exist in reciprocal pairs, forcing the gain of the APS to be unity. Pole/zero plots of
the roots of the transfer function of the lattice WDF revealed that the poles and
zeros no longer conformed to this relationship. This was due to the structure of the
lattice  WDF, where although the poles of the lattice were the poles of the
individual APS's, the zeros do not relate to the APS’ directly, allowing the
structure to exhibit a non allpass magnitude response

Adapting the 1st and 2nd order APS's of the lowpass lattice WDF structure enabled
highpass, single and dual band-type filter responses to be considered.
Construction of the APS's through the application of frequency transformation
techniques caused some of the multipliers within an APS to become dependent
upon each other, reducing a section’s degrees of freedom. The transformed APS's
considered represent a set of special case APS's that can be applied as direct
replacements for the standard 1st and 2nd order APS’s and using the coefficient
values from lowpass solutions, create equivalent highpass, single and dual band

type responses.

Although lattice  WDF structures using these transformed APS's experienced a
limitation in their possible performance, this did not prove a restriction for the
bandpass and bandstop frequency specifications considered. However the
transformed APS's for dual band specifications severely limited the overall
performance of lattice structure and forced future designs to be addressed with a
modified lattice structure and the standard Ist and 2nd order APS's.

Selection of the format of the lattice WDF structure and its' APS's is determined by
their performance and flexibility. Under these conditions lattice WDF's using the
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transformed APS's cannot compete with structures based upon the standard 1st and
2nd order APS's. This is because the transformed APS’s have lower degrees of
freedom that their order due to dependent multipliers. Lattice filter orders are
limited by the smallest APS that can be added. For dual band designs using the
transformed APS's this is the 4th order APS, further limiting the flexibility of the
structure. Selection of the standard 1st and 2nd order APS's over the transformed
APS's becomes more certain when additions properties are considered, such as the
ability of the standard 1st and 2nd order APS's to be configured to satisfy highpass,
single bandpass and bandstop designs along with any multi-band specifications.

The main purpose behind the transformed APS's was to combine existing
frequency transformation techniques and WDF elements to produce a lattice
structure that could exhibit a wide range of frequency responses. Overall, future
arbitrary magnitude-only and simultaneous would be considered with the
standard 1st and 2nd order APS's upon a lattice structure an appropriate selection
of the sum or difference of the lattice arm responses rather than the transformed

APS's considered in this thesis.

Examples of solutions to simultaneous bandpass frequency specifications are
illustrated in Chapter 5 and Chapter 7. Pole/zero plots from these solutions can be
compared to simultaneous lowpass solutions. As expected the zeros exist in complex
conjugate sets, but the poles and zeros now lie in a symmetrical format about the
centre of the passband, which for lowpass designs was the real axis.

Investigating the properties of the lattice WDF structure with relation to finite
wordlength designs highlighted a number of features concerning its phase
response. Principle among these properties was illustrated by the group delay
coefficient sensitivities. The magnitude and group delay coefficient sensitivities
for a number of design examples were provided in Chapters 4 and 5. Magnitude
coefficient sensitivities calculated for these examples confirm the low coefficient
properties of the WDF structure. However, the group delay sensitivities for a
particular coefficient tend to be higher, on average, than its magnitude
sensitivity and for some coefficients, usually the end of a lattice branch, the
group delay sensitivity can be relatively large at the beginning or end of the
passband. This property suggested that the group delay response of a lattice WDF
structure would be more prone to distortion than the magnitude response, as the

coefficient values were changed.
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The outcome of these coefficient sensitivity calculations was to suggest that the

limit on the minimum achievable coefficient wordlength was imposed by the

amount of group delay distortion that was acceptable. However, for both
magnitude-only and simultaneous designs, the actual minimum achievable
wordlength is constrained by the frequency specification and filter order. Finite
wordlength coefficients distort the frequency response relative to its large
wordlength solution and therefore if the large wordlength solution only just
satisfied a frequency specification, this may leave little scope for coefficient
wordlength reduction before the response became unacceptably distorted. The
minimum acceptable coefficient wordlength is therefore a minimum for a given
frequency specification and filter order and the minimum wordlength could be
improved if the filter order was increased. Higher sensitivity of the group delay
response to coefficient changes also means that to achieve a given simultaneous
finite wordlength solution, the increase in filter order from the large coefficient
solution would be larger than that for the magnitude-only design, especially for

very narrow group delay tolerances.

Overall the lattice WDF has proved to be a versatile and appropriate structure for
the design of magnitude-only and simultaneous design specifications. A limitation
on its use, as with all recursive structures capable of satisfying a simultaneous
specification, is that as the group delay tolerance is narrowed, the filter order
required to satisfy the specification rises above that of an exactly linear phase FIR
filter. With this limitation in mind, the lattice WDF has been successfully applied
to the design of arbitrary magnitude-only and linear phase frequency
specifications, including the linear phase dual bandpass designs that formed one
of the objectives of this research project.

8.4.2 Design Technique Performance

The purpose of the second area of the research project was to develop techniques
for the design of digital filters to satisfy simultaneous specifications. An
optimization approach was adopted to speed the design process since it was not
known if solutions existed for some of the filter structures and specifications.

A wide selection of optimization algorithms and error functions were considered
for magnitude-only and simultaneous frequency specifications. The most
successful optimization technique for general filter specifications was based upon
a weighted L2-metric error function using a dual line template scheme to define
upper and lower limits forthe desired response. The L2-metric error function was
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incorporated into an optimization routine allowing a direct comparison of
optimization alogrithms for this problem. For large wordlength coefficient
solutions a simple quasi-Newton algorithm was best suited to the dual line template
scheme. Finite wordlength solutions were better addressed with a bounded Hooke-

Jeeves direct search algorithm.

Optimization techniques that have proved successful for simultaneous designs
include the introduction of the mean passband group delay value as an
optimization parameter, better defined transition band targets and error point
ning and spacing. AIll these modifications have been directed toward

pos
creating target templates that closer reflect the desired frequency response.

Other successful techniques included an equal deviation/equal error weighting
scheme and the selection of the ratio of gain to group delay errors that forced the
optimization routine to establish the shape of the gain response before

introducing the group delay specification.

Overall the error functions and optimization techniques have proved successful in
creating finite wordlength solutions to simultaneous frequency specification for a
particular lattice WDF order.However, general finite wordlength filter designs
are specified as a frequency response and desired wordlength, leaving the filter
order as a parameter to be determined. This reveals a limitation of the optimization
techniques discussed since they determine the minimum coefficient wordlength
for a frequency response and filter order, not the filter order for a coefficient

wordlength and frequency response.

Another limitation of these optimization techniques is the need for two separate
optimization algorithms, one to find the large wordlength solution and the other
to find the finite wordlength solution using the large wordlength solution as a

starting point.
8.5 Future Work

Future work into the area of linear phase lattice WDF's, in line with the
conclusions, may be divided into the areas concerning the elements of lattice WDF

structure or alterations to the design/optimization techniques.

A lattice  WDF structure is a basic polyphase structure containing a cascade of
APS's. Future work on this structure may therefore entail a wider comparison of
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APS's to include general and bi-reciprocal 4th and 8th order sections or extending
the design and linear phase optimization techniqgues to N-branch polyphase
structures used in decimating and interpolation filters.

Design techniques provide a wide scope for investigation, particularly with
respect to optimization algorithms to determine finite wordlength solutions. Work
has already been directed into using simulated annealing to generate finite
wordlength solutions directly without the need for large wordlength solutions as a
starting point. Such techniques would determine the minimum filter order for a
given frequency specification and coefficient wordlength. Another interesting
design avenue would be to use the knowledge gained about pole/zero positions
from existing simultaneous frequency solutions to create better initial guesses to

speed up the optimization process.

A final area of work could involve extending the recently published techniques
for the design of linear phase microwave filters into the digital domain on Unit
Element WDF's.



Appendix A

Two-port Building Blocks

This Appendix contains the design equations for seven building blocks for WDF's
based upon two-port elements. Each set of equations can be used in the calculation
of the gain, phase and group delay frequency responses of the overall structure.
Equations for the calculation of the gain, phase and group delay coefficient
sensitivities are also detailed. All the building blocks are considered under each of
the three design approaches outlined in Chapter 3. Each building block contains
the three variations of the general equation for each design option. The final part
of this Appendix details a number of examples using the three possible design
approaches for ladder WDF designs. The contents of this appendix are

(Al)... ...Series Inductor
(A2)... ...Series Capacitor
(A3).... Series Tuned LC circuit

...Parallel Inductor

...Parallel Capacitor

...Parallel Tuned LC circuit

Unit Element

Design Examples - ladder WDF designs




A 1 Series Inductor

This two-port element can be considered as ;

The chain matrix, X S(L), of a series inductor element, in terms of voltage and
current, is given by Eq.(Al.l). The -equivalent voltage wave chain matrix
description, calculated from the voltage wave transforms of Eq.(A1.2) and using
the bilinear transform, is shown by Eq.(A1.3).
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Following the design procedures outlined

in Chapter 3, delay free loops
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Load. Design

To remove the constant term from the Sms(L)n element, then 1 - Pi +p2=> 0 and
the resulting

load design chain matrix may be defined as
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The group delay calculations require the derivatives of the chain matrices. C SS(L)
for the source design. Cms(L) for the middle design and Cis(L) for the load design,
with respect to the frequency, to. Therefore, for the three design procedures the
appropriate equations are
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The coefficient sensitivities for the magnitude and phase response calculations,
require the derivatives of the chain matrices. CSS(L), C ms(L) and Cis(L), with
respect to each of the multipliers within that section. For the three design
procedures these equations are

Middle Design
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The group delay coefficient sensitivities require the derivatives of the chain
matrices. CSS(L), Cms(L) and Cis(L), with respect to the frequency, to and then each
of the multipliers within that section. The three design procedures generate the

following matrices

Middle Design
i s ) 7’1 roe->i (Al14)
dpi T PRI a2 L - ’
and
Z'1(1-01) ri-11 (A1.15)
dp2 T id2<t +a2 L -U ’
where
” R, - L'
~- Ry + R, Ry + Rx + L'
Source Design
Rty 1-1 |
A .16
dP3 1+ Z-1)2 - ( )
where
R, .
*
P3- L* g g Rrzx RX*L
Load Pesien
doa 2 e (A1.17)
pa (1 +zp2 L1
where

Pa R+y,RY and R, Ry*l_'



A 2 series Capacitor

This two-port element can be considered as

The chain matrix, XS(C), of a series capacitor element, in terms of voltage and

current, is given by Eq.(A2.1). The equivalent voltage wave chain matrix
description, calculated from the voltage wave transforms of Eq.(A2.2) and

using
the bilinear transform, is shown by Eq.(A2.3).



A2 series Capacitor

This two-port clement can be considered as

The chain matrix, X S(C), of a series capacitor element, in terms of voltage and
current, is given by Eq.(A2.1). The equivalent voltage wave chain matrix
description, calculated from the voltage wave transforms of Eq.(A2.2) and using
the bilinear transform, is shown by Eq.(A2.3).

[, 1=[Xs(0]*[,y] where Xs(C) = (A2.1)
(A2.2)
(A2.3a)
(A2.3b)
p2-(1 -Pit P2)z*" 1-5si
@ e u)(l -z (I e 22)(1 - z-1)
ms(C) =
<L -Pi * P2) -P2
L @ +P2)(l -z @ +P2)(1 *z*)
. Ry+ R, - 1/C Rv - R, - 1/C 1C
Pi Ry+ Rk+ e @ P2 opuig 4ycr @ C Ty
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Following the design procedures outlined in Chapter 3, delay free loops can be
eliminated if the constant terms in the Sms(C)n element or Sms(C)22 element of
the scattering matrices are removed. The scattering matrix for this element is
given by Eq.(A2.4)
'
U-Bi+B».B22z'1 (B-B2)(L-
<l - Bi *-> @ - Bl 2-)
Sms(C) :
o+ BZu B fBi- (1 - Bi ¢ BiU 1"
LQesl i ( @-81 J.
Source Design
To remove the constant term from the Sms(C)22 element, then P2 =* 0 and the
resulting source design chain matrix may be defined as ;
[0 +B3)z"-4 1-B3!m'1
| - @ 1-27%
C.(C)
e e’ m-P3
L 1-7z1 1-2z1 1
Lgad-Dgsign

To remove the constant term from the Sms

the resulting load design chain matrix may

where
( 1-Bi 1mB4 z"
. iBid -i-I> 1P4(l -z 1)
Ci,(c>
Bi«i'l U - B4)4-*
B4(l - i-'>  BAO - 4™)

. P4 » and Rx = Ry+"r
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The group delay calculations require the derivatives of the chain matrices, C SS(C)
for the source design. Cms(C) for the middle design and Cjs(C) for the load design,
with respect to the frequency, to. Therefore, for the three design procedures the
appropriate equations are

Middle Design

dCm,<c> _ (1 - Pi)
do> (1 o+ 02)<l - z-1)2 (A27)
where
Rv+ R, - 1/C g Ry - R» - 1/C*
=Ry+ Rx+ ycx 9 P2 po gy b 1ce
Source Design
dc,(C) .t (I -B-) r1
dea J @1 -2z->)2 'L -1 (A2.8)
where
miT c«; and R>= R«+cC
Load Design
dCi<C) _ . z1(1 -Bz) . T1
do)  F1pA(l-z-D2 *L1 -1 (A2.9)
where

&Ry d Ry +
p4 1+ C*Ry an Rx Y*c

In the above equations, j = V -1
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The group delay coefficient sensitivities require the derivatives
matrices, C SS(C), Cms(C) and Cis(C), with respect to the frequency, (0
of the multipliers within that section. The three design procedures
following matrices

Middle Pcsign
(A2.14)
(A2.15)
(A2.16)
(A2.17)
where

04 =



A3 series Tuned Inductor/Capacitor

This two-port element can be considered as

The chain matrix. XS(LC), of a series tuned inductor/capacitor element, in terms of
voltage and current, is given by Eq.(A3.1). The equivalent voltage wave chain
matrix description, calculated from the voltage wave transforms of Eq.(A3.2) and
using the bilinear transform, is shown by Eq.(A3.3)

[1-Dx-1-[Tvmeces © TEE2

0 -1

P (A3.2)

A

) B (P1-x<10]-
[

[ B*] m [CIm<LC)] (A3.30)
P2—*—a(I—PM—2>22—| —*—(|*Pif922'2 ma(l+Pl)z
(1 +p2)0 & 2az* + z*%2) (1 +P2)(1+2az1+ 22
Cm,(LC) .
Pi+aU+PQz'l+ z=2 OPI+M + »m i» » !'1- 22
(1 +P2)(1 + 2az‘*+ z*2) (1 +P2)(1+ 2az*l + z"2)
(Ryf R)(I +LC-) - L (Ry - Rx)(I +LC) - L
Pl (Ry+ Rx)(l ¢ L'C) L'+P2 (RysRx)(I +LC)+L 2 1s+LcC



Appendix A:  Series tuned Inductor/Capacitor page A/13

Following the design procedures outlined in Chapter 3, delay free loops can be
eliminated if the constant terms in the Sms(LC)n element or Sms(LC)22 clement of
the scattering matrices are removed. The scattering matrix for this element is
given by Eq.(A3.4).

<a34>
where
(1-31+P2)+«(I-PI-t-232)z-1+p2 z'2 (Pi-P2)(lI + 2az-1+ z'2)
1+ a(l+Pi)z 1+ Pi z*2 1+a(l+Pi)z-1+ Pi z-2
Sm*(LC) =
(1+p2)(1 ¢ 2az‘“ ¢ z'2) _ I'p2»a(l-Pn-2P2)z-| -KI-Bi-»B?)z-2%
1+ofl+POz'1+ Pi z'2 " 1+a(l+Pi)z-1+ Pi z"2
Source Design - To remove the constant term from the Sms(LC)22 element, then P2
~ 0 and the resulting source design chain matrix may be defined as;
(1 -P3>z~* (a +2z'1) 1+a(l +p3)z't+P3 22"
1+ 2az'l+ 22 1+ 2az*1+ z°2
C..(LC)
P3» g(l + p3)z-> z'2 @ -p3)(l +a z'1)
1+2azl1+z'2 1+ 2az*1+ z'2
1.L'C Ri(1+L'C)
T.P3« gy R,(1¢ L* C¥) and Ry= Rx + ;
Load__Design To remove the constant term from the Sms(LC)u element, then 1 -
Pi + P2 = 0 and the resulting load design chain matrix may be defined as ;
(A3.6)
where
(a 1 04x1 ¢ a +a(l +P4)z" + 34 22
[P4 (1+ 20z'* + Z'Z)J P4 (1 +2az'l + z*2)
CISLC) =
34+ a(l +34)z-1+ z-2 f(l -P4) z*1(a + z*l)'J
P4(1+202'1+ 2°2) [24 (] +20x-> * fi) \]
and
a 1el + _ Ry(1e L'C) L’

"1+ L e "“L'+Ry(l #L-C) au r, "'>tUL,C
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The group delay calculations require the derivatives of the chain matrices. CSS(LC)
for the source design. Cms(LC) for the middle design and Cis(LC) for the load design,
with respect to the frequency, to. Therefore, for the three design procedures the

appropriate equations are

Middle Design

dCms(LC) _ . z'1(1 - Bl)(a + 2z'1+ 0tz'2)

d» "1 (1 *p2)(l * 20z-1 + 2'2)2 C[ (A3.7)
where
a (Rve Rx)(I +LC) - L (Rv-R,)(l +LC)-L
PL" (Ry+ Rx)(I +L'C) +L" "P2" (Ry+ Rx)(1+L'C) +Lf
Source Design
(A3.8)
where
and Ry= Rx + 1sLC
Load Pcsign
(1 - ft4)(ct + 2z-1+ az'2) 39
da) P4 (L +2az1+ 22)2 (A3.9)
where

In the above equations, j = V -1
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The coefficient sensitivities for the magnitude and phase response calculations
require the derivatives of the chain matrices, CSS(LC), Cms(LC) and Cis(LC), with

respect to each of the multipliers within that section. For the three design
procedures these equations are

Middle Design

dCms(LC) 1 -z'1(a+z‘l) z*1
dpPl “ 0+P2X1+2az*'+z%2) 1+az'l -(
1+aU+PQz'l+ Piz'2 A +a(l +Pi)z-1+Piz~2\
gt N «
dcmi(LC) (1+P2)2(1+2az'1+2'2) (1+P2)2(1+20z*1+2°2) J
72 (A3.11)

fPi +a(l + P1)zel+ z~2% Pi +a(l +Pi)z'> +2z'2
- N (1+P2)2(l+2az1+2'2) J (1+P2)2(1+202'142'2)

dCmi(LC) _  z» (1 + z'2)(l - Pi) [ 1 *1
do “(1L+p2)(1le2az> +2z%2)2 *L1 -1
where
_ (Ryf Rx)(I + C)-L' (Ry Rx)(I+ LC )mL-
(Ry + R*)(I + L'C)+L" «P2~ (Ry+ Rx)(1+ LC )+ L*
Source Design

dCss(LC) 1 I -Z'ko+z'1) z-"a+z-*)
<3 (1 ¢ 2ai-* + z'2) L 1+az-1 -(1+az'l)

dC,(LC) _ z< (1 mz*)(1-83) T 1 ->1

(1 + 2az-'+2z'22 'L | -1
l-L'c' . R.d +L'C) “m f
S1+L'C-' "L'+R,(l +L-C) Ri- R«* 1+ L-C
Load Design
dCls(LC) 1 T 1+az'l -(1+az') "
(A3.15)
P4 (1 + 2az-» + z-2) L -z'ka+z*1) z'Ma+z'l) ]
dCii(LC) _ z'1(1 mz'2)(l =P4) F1 -11
do =pd(l & 2az* +2z'22 L1 -1 (A3.16)
where

. 1-LC Ry(1+L'C)
1+ e tPA2 Ly Ry + L) Rye . +1xc:



Appendix A:  Series tuned Inductor/Capacitor page A/16

The group delay coefficient sensitivities require the derivatives of the chain
CSS(LC), Cms(LC) and C|S(LC), with respect to the frequency, to and then
The three design procedures generate

matrices,
each of the multipliers within that section.
the following matrices

Middle Design

+ I

1WA 22 (11)

fdCms(LC)\
V da ) _ .z*( - Bi)(a +2z-1+az'2 I"l-11
#2 =3 (1*P2)2(1 ¢ 2az-**2z'22 'Ll -11
/dcm,(LC)\
V dto ) _  z'(I-fli)(1-2az'1-62'2-2az'3+2'4) r-1 17
do 1 (Lep)(l +2az> 6 2722 *L-1 ij (A3.19)
vhere
(Rv+ Rx)(1 + LC) - L- (Ry mRx)(l +L'C)-L J-LG
+ Rx)(1 + LC') + L'

Pl g(Ry ¥ Rx}{l1 & LTC") + B**P2 = (R

Source. Design

Nt
z-(a + 2z~* + az~2) I"* **1 3.20
(@ +2az-1+ 222 L1-11J (A3.20)
fdCIL(LC)
V dm J_ . z'Yl-gM)(I-29z~1-62'2-2az~3+z~4) rii11
do “J (1 + 2az*> ¢ z-2)3 -1 1]
R«d » L1C)
F-P=LsRrxl +L7C) R R+ ULTC:
Load Pesien
/'dCi.o.cn
I d« J i-l(a , 2z-1 * Qz-2) r*o-e
( Qz-2) (A3.22)
di4 " (It 2<xz> + z-2)2 L1 -«
and
|'dCi,(LCA
I deo J z'Y1-B4)(I-20z'1-:62*2-2az_3+z*4) 1"'1 1 A3.23
d<* "] p4<l ¢« 20z-' ¢ 2'22 S | (A3.23)
where
1-L°C Rv(1e L*C) L'

"1+ L C «14* L' ¢ Ryl ¢L'C) d K*- KV+ e L*¥C



A 4 Parallel Inductor

This two-port element can be considered as ;

The chain matrix, Xp(L), of a parallel inductor element, in terms of voltage and

current, is given by Eq.(A4.1). The equivalent voltage wave chain matrix
description, calculated from the voltage wave transforms of Eq.(A4.2) and using

the bilinear transform, is shown by Eq.(A4.3).

AJodExpI* i Y] where XpL) =

m[!l.«*]

[B/1* [p] [XPL]' [QT'L[ ]

(A4.3b)
@-Pi p2y-P2z'1 _ u.r:
(1 ¢P2)d - *> (1 +P2)d - *ee)
-------- Piez'1 p2- (L + Pi ¢ P2)2
L (1 ep2(l - *>) (1 & p2)(1+**) 3
Ry + Rx - RyRx/L1 Ry - Rr - RyR«/L' it

Ry + Rx + RyRx/L’ Ry + Rx + RyRx/L
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Following the design procedures outlined in Chapter 3, delay free loops can be

in the Smp(L)n element or Smp(L element of
for this element is

eliminated if the constant terms
the scattering matrices are removed. The scattering matrix

given by Eq.(A4.4).

po-< - piepa1 Pi-pda -1

u - Pi *) 1 - Pi i-i)
Smp(L) :
<l ¢ B?Xi - »-) (1—31+ P2—P22—
L o -Pii) 1 -Pi 21 -

Source Design

To remove the constant term from the Smp(L)Z element, then 1 Pi + P2:» 0 and

the resulting source design chain matrix may be defined as ;

(m - P3) 1-Pa »e
P3(l - 2-* P3(l -1 1
Cp<l) ( ) ( ) -
P3 - »'* ( i-P3 3 '
L P3(I »** \P3(1-fl))

Load Design

To remove the constant term from the Smp(L)n clement, then P2:» 0 and the

resulting load design chain matrix may be defined as ;

Kl-m -i:] (A48)
where
o ind, Laili Li
15 1l LRy
Clp(L) e o'l =Ry R* L 4Ry

e W ).
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The group delay calculations require the derivatives of the chain matrices. Csp(L)
for the source design. Cmp(L) for the middle design and Cip(L) for the load design,
with respect to the frequency, to. Therefore, for the three design procedures the

appropriate equations are

Middle Design

dCmp(L> (1 =Pi)
do> (L +02)(1-2'12 (A4

Ry.t Rx - RyRx/L’ Ry- R, m RyRx/L'

oL Ry + Rx + RyRx/L’ and 02 Ry + Rx + RyRx/L'
Source Design
dGtiiiL) , . 0 -03) r*1-1 (A4.8)
dw 03d - z-1)2 L1 1 :
L
03 ypx MRy Ry
Load Design
dCipd) _ e »-'d -04) ,r -1«
du (1 - z-i)2 L1 (A4.9)
. L' R
L and Rx y

L + Ry

In the above equations, j
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The group delay coefficient sensitivities require the derivatives of the chain
matrices. Csp(L), Cmp(L) and Cip(L), with respect to the frequency, w and then each
of the multipliers within that section. The three design procedures generate the

following matrices

Middle Dcsiyn

(A4.14)
and
(A4.15)
where
Source Design
(A4.16)
where
L' Rx
3= L'+ Rx
Load Design
(A4.17)
where
L' Ry

L* + Ry



A5 Parallel Capacitor

This two-port element can be considered as

The chain matrix, Xp(C), of a parallel capacitor element, in terms of voltage and

current, is given by Eq.(AS.l). The equivalent voltage wave chain matrix
description, calculated from the voltage wave transforms of Eq.(A5.2)

and using
the bilinear transform, is shown by Eq.(A5.3).
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Following the design procedures outlined in Chapter 3. delay free loops can be
eliminated if the constant terms in the Smp(C)n element or Smp(C)22 element of
the scattering matrices are removed. The scattering matrix for this element is
given by Eq.(A5.4).

&+ (1 -Piao7)z- @Pij=P2)(1 - *m)
1aPiz) 61 & Pi z>)
Smp(C) :
0o a Buia a z-i) ((»-B it B2)a Paa'l)
<1 + Pi z>) ( (lap,a-i) J.

Source Pcsign

To remove the constant term from lhe Smp(C)22 element, then 1 - Pi a p2 =* 0 and
the resulting source design chain matrix may be defined as

[*1-M -c;] (55)

(1) *P3)z-1"i >»P32Z1
A3d o+ %9 P3d + Z€)

Csp(C;
sp(©) 1+CR* “.u - 1+CR,

* oz~ (1 -P3
- % +77) B +7h-
Load Design

To remove the constant term from the Smp(C)n element, then P2 = 0 and the
resulting load design chain matrix may be defined as ;

1+Pa la Paa-l

1+z-1 1+ z*1 RV

I
' 1 Pa -
P<<+ZlOrPa)a'l la C R, and mlaC Rv
1+2Z-1 la Z-l

Clp(C) -
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The group delay calculations require the derivatives of the chain matrices, Csp(C)
for the source design, Cmp(C) for the middle design and Cip(C) for the load design,
with respect to the frequency, co. Therefore, for the three design procedures the
appropriate equations are

Middle Pesign
(A5.7)
where
Ry ~Rx ~Ry Rx C
Ry + Rx + Ry Rx C'
Source Design
(A5.8)
where
383* 14¢c R, and Ry- 1+C Rx
Load Design
(A5.9)
where

In the above equations, j = V -1
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The coefficient sensitivities for the magnitude and phase response calculations
require the derivatives of the chain matrices, Csp(C), Cmp(C) and C |p(C), with
respect to each of the multipliers within that section. For the three design

procedures these equations are

Middle Design

(A5.10)
and
dcmp(C) | 0l + z-> -(1+01 z-1) (A1)
02 (1 +02)2(1 +2') O +2') 140021 :
where
o Ry - Rx - Ry Rx C
Ry + Rx + Ry Rx C'
Source Design
(AS. 12)
where
*1*c¢ R, and Ry- 1+ C Rx
Load Design
(AS.13)
whe re

M=14cr M RX=,,¢c R
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The group delay coefficient sensitivities response require the derivatives of the
chain matrices, CSp(C), C mp(C) and C|p(C), with respect to the frequency, to and
then each of the multipliers within that section. The three design procedures
generate the following matrices

1¢C R I+C R



A6 Parallel Tuned Inductor/Capacitor

This two-port element can be considered as ;

The chain matrix. Xp(LC), of a parallel tuned inductor/capacitor element, in terms

of voltage and current, is given by Eq.(A6.1). The equivalent voltage wave chain

matrix description, calculated from the voltage wave transforms of Eq.(A6.2) and

using the bilinear transform is shown by Eq.(A6.3).

|><l(t( jl *[ ] where X p(LC) s C
£ 1+LCs2

(A6.2)

[*:1=1Ipl-Ixp<le)]- [al" [*:] ex«.,

[=1-[= =[] 63>
e (I- PI+P2+a(I PI+2321 LPZZ"Z I+aU+PQz'W pi 2'2

or

+p2)(|+2)2>+22) +P4d + z—‘+z*2)
Cmp(f-C)
P|+cI(I+Pi PZ—a(I P|+2>21*+ 1P]+P
(I+ z*+22) (|+ 022)
(Ryf RX(UL C) -C RWRX (Ry- R,)(1+L’C") * C'R\RX 1-LC
P1“(Ry + R*)(1+L'C') + C'RyRx ’ P2 (Ry + RxKI+L'C) + C'RyR* * 1+ L'C'
., 2L 2C
L T and C T
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Following the design procedures outlined in Chapter 3, delay free loops can be
eliminated if the constant terms in the Smp(LC)n element or Smp(LC element of
the scattering matrices are removed. The scattering matrix for this element is
given by Eq.(A6.4).

[51-[= I=[] <noss

PZ—(X(I—PI+2’22'*+(I—3+P% '2 P lPZ( 1+2)tz~1¢-z~2)

"
1+ a(l+Pi)z** + Pi z 1+ tX(1+Pi)z'l + Pi z 2

Smp(LC) »
(I—fPZ(I—»?alszz—Z) f(I—Pi+P2+n(|—Pi+'2’2271+p‘21~2#
1+ 0il+POz 1+ Pi 2’2 n 1+ oil+p~z 1+ P122

where

Source Design To remove the constant term from the Smp(LC)Z element, then 1
*Pi +PL> and the resulting source design chain matrix may be defined as ;

G-83) Z'1(° F DI K g(l + &3)F'1e P3 o»e

P3(l + 20Z*1+ z2'2) P3(1+ 2az-1+ z'2)
C.p(LC) > [
P3 + a(l + P4z'1+ z 2
1+ 20z"" + 2'2) AP4 (1 + 2az'* + 2*2)\]_
L'c 1—n *l-c)_ R, 1 L'C)
SoPLITV L e W CTRF 1e L' C*+ C*Rx
Load Design To remove the constant term from the Smp(LC)n element, then P23>

and the resulting load design chain matrix may be defined as ;
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The group delay calculations require the derivatives of the chain matrices. Csp(LC)
for the source design, Cmp(LC) for the middle design and Cip(LC) for the load
design, with respect to the frequency, to. Therefore, for the three design
procedures the appropriate equations are

Middle Design

dCmn(LC) _ . z1(1 - BiKa » 2z-> + ai->) fr 1

dm "3 (L% P2)(I +2az- + R (A8.7)
where
Source Design
dCin(LC) . 2'1(1- &3)(a +2z-1 +az'2)
di > P3 (1 + 2az 1+ 2°2)2 (h6°8)
where
Load Design
dCip(LC) _ . z1(1 » P4)(a + 2z-» + az~2) A9
dw "1 (1 +20Z2'1+ z*2)2 (A6.9)
where

In the above equations, j



Appendix A:  Parallel tuned Inductor/Capacitor page A/30

The coefficient sensitivities for the magnitude and phase response calculations
require the derivatives of the chain matrices, Csp(LC), Cmp(LC) and Cip(LC), with
respect to each of the multipliers within that section. For the three design
procedures these equations are

Middle Pesign
dcmp(LC) 1 [d+az-1) zi(a+z-D 1 10
#1 WML 01 «ae>) I <A )
Pi+aQ+P0Oz"+z'2 ( 1+aCl+PQz-UPiz-2
dCmp(LC) (1+P2)2( 1+ 2az_1+z*2) iKl+p2)2(1+ 2azf»+z—2)\] (Ao
P2 f Pi+a%PBaz—l+z'2 |—>§|*Pi£—umi—i ’
- (0+P2 + z'l,z'Z)J (1+P Z|+ z',+2°2) _
dcmn(LC)_  z1q - z-2)(I - Pi) r-1 1] N
d« * (1 + P2)U ¢ 20z-1 + z-2)2 'L | 1 (A6.12)
where
(Rvf RnXIfL C) « C’'RyRx (Rv- R,)(1+L C) - C'RyRIi 1+L'C
Pl "(Ry + Rx)(1+L‘C’) + C'RyRx m(Ry + RX(1+L'C) ¢« C'RyRx "l +L'C'
Source Pesign
dC,n(LC) 1 Tz'Ma+z'l) -(1+az')
dP3 " =204 4 gaz1+ 2'2) L-zUa+z'l)  l+azl
dc,.(LC) _ z1(@ - z-2)(1 -p3) r-1
da P3(1+ 2az*l +2z'22 [ 1 11
__ U.+L-C)__ R , Cc)
F P70 1xc v C Rx y 1eLl*C +cC' Rx
Load Design
dCin(LC) _ 1 _r-d+oz-1) z-'(atz->) 1
dPz  “ | ¢ 20z-1 * z-2 * L l+0z-1 -z->(at+z->) ]
dClo«-C) , z-' (1 - z'2)(l - p4) )
da (i +2az-10 222 [0 Vi (A6.16)
a , J:X'C' n.U-——LL_+_Kk!_£Eli-— Rv(l +L'C)
° I+L-C "P4 1+L°C +C’'Ry leL*C*¢ C Ry
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The group delay coefficient sensitivities require the derivatives of tlte chain
matrices, Csp(LC), Cmp(LC) and Cip(LC), with respect to the frequency, to and then
each of the multipliers within that section. The three design procedures generate
the following matrices

Middle Design
fdCro|(LCA
vV  dto ) _ z-1 (a + 2z~* + ctz~2) T'1'11
dpi (1 +P2)dl+ 2az'l+ z'22 [ i i (AB.1T)
facmpLoift
y do 2 _ .z'1(1 -Pi)(a +2z-1+ az~2) (A6.18)
dp2 "1 (@ +P2)2(1 +2az'* +
mJS3 . 2-1(1-pi)(1-2az-»-62-2-2az-3+z-4) 1 1 1' (A6.19)
(1 +p2)(l ¢ 2az*» ¢ 2'2)3 *L-1 -1 ’
_(RYf Rg)(1+L'C") - C'RyRfl (Rv-R,)(1+L'C) - CRYR, -LG’
(Ry + RX(1+L'C') + C'RyRx PZZ(Ry+ Rg)(I+L’C") + C'RyRji "' +LC
Source Design
fdCAL C ft
| .. . ~ .
I d> 3_ 2z1(g » 2z *-,az'2) J 1w (A6.20)
dP3 1n (1 +20z-1+2z-22 L1 1
and
/dC n(LC)\
I do> _ z'YI-P3)(l-2az~1-6z~2-2az '3-fz~4) ri 1
(A6.21)
da ~1 P3(1 + 2az'™* + z'2)3 *1-1 -1
where
. L:L'C __@+vLcCcH__ «zd ¢ L' O
@i P Tilrcscirx M 1+L'C +C R
Load Design
fdClp(LC)\
' x . *p *
I dlo J_ .z'l(a + 2z~* + ttz'2) # T*1 *1 (A6.22)
dp4 ~1 (1 +2az-1+ z'2)2 L1 1
and
/dCip(LCA
1. Coar—1-67'9. P .
I dm J . z2'Y1-P4)(l-2az~1-62'2-2az"'3-*7'4) ri 1 (A6.23)
da ~1J (1 + 2az-> + z'2)3 *L-1 -1
where
-L'C" (ol Rv(l +L'C
a I-L'C @ »L'GY) and R, v ( )

T1+LvCH T+L'C +C'R 1+L'C +C R,



A7 Unit Element

This two-port element can be considered as

By

The chain matrix. X(UE), of a lossless transmission line or unit element of
characteristic impedance. ZO0, is given by Eq.(A7.1) in terms of voltage and
current. The equivalent incident and reflected voltage wave chain matrix
description, calculated from the voltage wave transforms of Eq.(A7.2) is shown by
Eq.(A7.3).

cos 0 -j Z0 sin
* where  X(UE AT.1
[E']_[ «»]'[U] e YO0 sin 0 -cos 0 ¢ )
where
YO0 = 1/Z20,0 =k Q. k is the line constant and Q is the angular frequency.
(A7.2)
[s:1m[P]" X" [Q 2w ] 7
or
. 11 AT7.3b
[lm [ i-i5] o
where
a cos 0 +j 5sin 0 B cos 0+jys>no0
Cm(UE)
B cos 0 -jysin 0 a cos 0 -j 5 sin0
and
R2 mR1 R2* RI RIR2-Z02 RIRJ ¢ Zn2

m R2 +P* R2 +5* ZR2 ZqR2
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Following the design procedures outlined in Chapter 3, delay free loops can be
eliminated if the constant terms in the Sni(UE)n element or Sm(UE)22 clement of
the scattering matrices are removed. The scattering matrix for this element,
generated through the transform e = toT/2, is given by Eq.(A7.4).

P4+ P37~ 4 R1G22 12
Bl + P2 z*1 Pi+ P22z’'1
Sm(UE) »
4 z-1/2 P3 + P4 z~
L (1 +Piz) Bi+ p2

Bl = 1+RIG2+ RiY0+G2Z0 , B2 = 1+RIG2-RiY0-G2Z0

B3 = 1-RIG2+ RIY0-G2Z0 , B4 = 1-RIG2-RiY0-G2Z0

Source Design

To remove the constant term from the Sm(UE)22 clement, then 33 = 0 and the

resulting source design chain matrix may be defined as

(A1.5)
where
(1 -83)z'1l 1+R3z'1
1+ z*1 1+ z*1
CYUE) RX-ZQ  ang Ry= Zq

P3+ » 1°p3 Rx + Za

1+ z2'1 1+ Z'1 -
Load Pesigli

To remove the constant term from the Sm(UE)ii element, then 34 =» 0 and the

resulting load design chain matrix may be defined as ;



A 8 Design Examples

To illustrate the three design procedures outlined in the Chapter 3. consider the
7th order ladder DTL circuit shown by Fig.(A8.1)

Figure A8.1 A 7th order DTL filter

Using the two-port design approach, suggested by Lawson, a general ladder WDF
equivalent of this circuit can be constructed and is shown by Fig.(A8.2)

Figure A8.2 General two-port ladder WDF
equivalent of the circuit of Fig.(A8.1).

with
Rs - Ra RL -Rb
d
Rs+Ra RL + Rb
where Ra is the port resistance of the digital equivalent of a resistive voltage
source, VO, with resistance Rs. The port resistance Rb and external multiplier, f).

correspond to a digital equivalent of the load resistor, R1. of Fig.(A8.1).
A8.1 Source Design

Applying the source design procedure to the general ladder WDF circuit of
Fig.(A8.2), the first step is to remove the delay free path provided by the external
multiplier, o. This can be achieved by setting a = 0 or Ra = Rs, and therefore Rj =
Rs. The first element of the circuit of Fig.(A8.2) is a parallel capacitor. This section

has a source design chain matrix given by Eg.(A8.1).

Ai ‘(1 m8-Q s-M 1e6iz-* Al
fit (1 +i->)J 8 (1 + z-9)
(A8.1)
»L e »* (L 1-»__ 4
L B! 6i (1+ 1) t5i (1 + L B2J
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P .o 2Ci
1+ Ci* Ri i+crei a c g
- Ri
1+Ci’Rs and R2’i+e,f rs

The next section is a series tuned inductor/capacitor element. The source design
chain matrix of this element is given by Eq.(A8.2).

" A3’ r<l-Si) zl (87+ z-*>1+ 821 +83)z'1+ 83 z'2 tA4T
1+282z-' + z-2 1+282z'1+ 22
83+ 82(1+83)zl + z'2 (1 -81MI + 87 z-1)
Lb3J 1+282z'1¢ 2'2 1+2822z*%1+ z2'2 L b4
where
1-L2 c2 R2(1 + L2°C2) and Li
82 4 L2 c2 'e3=L2+R2 +L2-C2) R3  r2+ 73 o7Co
with

Since the value of R2 has been expressed in terms of Rs, then it can be substituted
to express 8and R3as.

Re(1» L2 C2)

- _ R Li
8 [Z(0+Cl'rRs)+Rrs0 + L27C2) ™™ R T3cim,— T+L2CZ

Continuing the design process using the chain matrices of the form of Eg.(A8.1)
and (A8.2), the multiplier values for the overall circuit can be determined and
applied to the resulting structure of Fig.(A8.3).

In the circuit of Fig.(A8.3) the parallel capacitor of the first section has the chain
matrix, A. given by Eq.(A8.1), while the series tuned inductor/capacitor in the
second section has a chain matrix. B. of Eq.(A8.2). The chain matrix C.E and G
have the same form as Eq.(A8.1) but in terms of 84.87 and S10 respectively.
Similarly, the matrices D and F have the form of Eq.(A8.2), but with multipliers
85/66 and 88/89 respectively. The multiplier equations for the source design ladder
WDF circuit of Fig.(A8.3) are given in Table(A8.1).
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R2
' 1+Ci’Ri 1+C., R,
1-L2c2* ? r2(*+ L2 c2)
1+ L2 c2’ L2 +R2(l +L2"C2) 3 R2+ 1» L2'cH
54 = r4 = R,
1+C3 R1
_ r4(1 + L4 C4)
s 1+ L4 c4’ L4' + R4(l + L4 C4) 5 R4 + 1+ L4'Ca’
67 = RE - e —
_ L*1
1+ Lo co 7m R > LV cv
R8 -
6,0 = .4 eV or,
J 2L -r8

Table A8.1 Mulliplier equations for source design ladder WDF of Fig.(A8.3).

The transfer function for the circuit is given by Eq.(A8.3) where X represents a
cascade of the chain matrices A to G, or a multiplication of the modified chain
matrices A'to G

1
A83
R TIVPY (A8:3)

X1= AB'C'D'ETG"' when

*12 Kill
- [ X22*21)

To simulate a given magnitude specification using a ladder WDF circuit then
existing analogue design tables can be used. From tables a set of analogue DTL
filter components can be found and used to determine the multiplier coefficients
for ladder WDF. This type of analogue design table is given in terms of lowpass
filter responses, such as elliptic, Butterworth and Chebyshev, with various pass

and stopband tolerances.

A digital lowpass filter is to be designed from tables with an elliptic shape and the
specification

IGl $ 0.1 dB 0 £ fdp 5 01

IGl 2 50 dB 0.12 S fjs 5 Fs/2

with a sampling frequency. F$ m 1 Hz. The first step is to convert the discrete
frequencies into equivalent analogue values. Under the bilinear transform the

frequencies are subject to a non-linear mapping, characterised by Eq.(A8.4).
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(A8.4)

where o>d discrete frequency in rad/s
coa analogue frequency in rad/s

To compensate for this effect, the frequency values are pre-warped. Using
Eq.(A8.4) the specification, given in terms of a discrete frequency in Hz, can be
converted to a continuous frequency in rad/s. The modified specification becomes

IGI S 0.1dB 0 S tijlap S 0.64984
IGI £ 50 dB 0.79186 5 (oas * «*

The Zverev tables are given in terms of a set of normalized magnitude responses
which have a passband edge at 1 rad/s. To use the values in the table, the
specification needs to be divided by the required passband edge. The resulting
specification would then be

IGl S 0.1 dB Dsc%pg,l

IGI 2 50 dB 1.2185 S u'aS i-
An entry in the Zverev tables which most closely matches this specification is
CC_07_15_56. where CC denotes an elliptic shape and 07 is the order of the filter.
The number 15 represents a reflection coefficient. The term indicates the
passband attenuation, given as a reflection coefficient, p. which can be calculated
from an attenuation in dBs through Eq.(A8.5).

b (A8.5)

The final term in the catalogue reference is 56, which is an angle indicating the
sharpness of magnitude cut-off. This table entry corresponds to the specification

IGI S 0.098 dB 0s map Si
IGI 2 56.5 dB 1.2062 S wés S
To achieve the desired filter specification, the component values from this table

entry need to be divided by the required passband frequency, in this case, the
value is 0.64984.
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The resulting component elements are :-

R* » 1.0
Ci = 1.61592
C2 = 0.24303 L2 = 192723 j
C, = 229469
= 1.22503 U = 1.29234
C, = 1.99623
Cf = 0.88576 L6 » 135875
C7 = 116738
i RI = 10

Table AB8.2 Component values for a 7th order DTL filter.

Because the filter order of this specification is 7, then the design can be
implemented through the ladder WDF of Fig.(A8.3). The multipliers for this ladder
WDF circuit, derived from the component values of Table(A8.2) and the equations
of Table(A8.1), are illustrated in Table(A8.3).

Kl = 1.0 «l - 0.236304

= 0.236304 S2 = .0.303984 . 63 = 0.149779
Rt = 1577686 s, - 0.121350

R4 = 0.191453 65 = -0.727246 S6 » 0.351972
RS = 0.543943 & = 0.315291

R6 = 0.171501 $8 = -0.656009 69 = 0.268432
R? 0.638898 S10 - 0.401337
0.256413 . 0591833

»
Table A8.3 Multiplier values for the ladder WDF using the
source design procedure.

A8.2 Load Design

The first step of a load design procedure using the general ladder WDF circuit of
Fig.(A8.2), is to remove the delay free path provided through the load external
multiplier, [J. This can be achieved by setting 0 = 0 or Rb = R1. and therefore R8 =
R1- The last element of the circuit of Fig.(A8.2) is a parallel capacitor. This section

has a load design chain matrix given by Eq.(A8.6).
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"A13" 1-61 1+5121 "AL4 "
1+ z> 1+ 2z-1
(A8.6)
61, Z-1 (1 -si) z*
-Bn - Lo, o= 1+2z> J LbUJ
1 Rg ., 2cC7
8l 14C7'Rg 'R?* 1+C7'Rg 311 CI = T
oo=1+c7RL 31 R = 1+c7 RL
The next section is a series tuned inductor/capacitor element. The load design
chain matrix of this element is given by Eq.(A8.7).
(1-5-0(1+52 z'1) > 1+Sid+S~IzA+Siz2 “l n A1
53 (1+252 z-»+2z-2)J 53 (1+252 z"+z*2)
(A8.7)
53+52(1+53)z-1+z2 ' (1-53)z-1(52+z-1) >
63 (14202 z'1+2'2) 63 (14202 z*1+2'2)] - L B12 )
1- Lfi-Cfi . R7(1 + Lfi' Cft) . D _d 16°

82 m1l+ 16 c6' +8=L6"+R7(1 + LelC6’) and ** ~ R? 1+ L6"ch’
.\ 2Lg
c6' > and Lg T

Since the value of R7 has been expressed in terms of R1. then
to express 53 and Rg as,

it can be substituted

. RUl+rece) _— RI—  — til-—e
8 Lg(1+C7*R1)+Ri(1+L6°C6) d 6“ 1+C7TR1 1+L6 c6

Continuing the design process using chain matrices of the form of Eq.(A8.6) and

(A8.7), the multiplier values for the overall circuit can be determined and applied

to the load design structure of Fig.(A8.4).

Figure AB8.4 Ladder WDF circuit using load design procedure.

In the circuit of Fig.(A8.4). the parallel capacitor of the last section has the chain
matrix, G given by EQ.(A8.6), while the series tuned inductor/capacitor in the
second to last section has the chain matrix, F, of Eq.(A8.7). The chain matrix A.C

and E have the same form as Eq.(A8.6) but in terms of 5jo. $7 and 84 respectively.
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Similarly, the matrices

and $2/53

circuit of Fig.(A8.4) are given

« - l
1+C7 Rs
~16'C6
+ L6 C6'
8- 1.¢5r6
- L4’ c4’
+ L4' C4-
67 » 1
1+CY ra
g » 12 C2
+ 12" C2'
. 1
SO jecy r2
a = Rs * Ri
Rs+ R1
Table

The transfer

function for the circuit

Design Examples

multiplier equations for

in Table(A8.4)

R? Rs
1+ C7'Rs
R7(L+ L6C6")
83
Lo+ RI(l + 16 o)
6
R r
s 1+ Cs' Ri
86 Rs(1 + L4'C4)

L4+ Iﬂl + U C4')
R3 = (R4l +C3R4)
8 R + L2 c2)
L2'+ Ri(l + L2'C2)
. R2
leClr2

A8.4 Multiplier equations for load design

cascade of the chain matrices A to G .

>-«
H@ g2 %2
and
X'= ABC'D'E'F'G’ when
If the load design procedure

for the source design example,
Table(A8.2).

shown in
Table(A8.5).

then the

The resulting load

is given by Eq.(A8.8) where X

lumped component value will
design

page A/40

B and D have the form of Eq.(A8.7) with multipliers 68/S9
respectively. The

the load design ladder WDF
R6 =
+ L6' C6'
_ 14
I"4— + L4’ C4'

R2= g3+ 1 '2
»

ladder WDF of Fig.(A8.4).

represents a

(A8.8)

*12 » 111
*22*21)

is applied to the same filter specification as that used

be the same,

multipliers are given in
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Ry = 10 81 =  0.299872
R7 = 0.299872 82 = -0.656009  s3 =  0.390830
K, =  0.767269 84 = 0.246106
R5 - 0.188829 8 = .0.727246 & =  0.348831
r4 = 0541320 87 »  0.287000
R3 »  0.155359 @ » -0.303984 89 *  0.103798
r2 - 1.496741 810 - 0171314
R| » 0256413 a = 0591833

Table AB8.5 Multiplier values for the ladder WDF using the
load design procedure.

A8.3 Middle Design

The objective of the middle design procedure is to use the ideas from the source
and load design techniques simultaneously to meet at some port near the middle of
the circuit. If the middle design approach is applied to the general ladder WDF
circuit of Fig.(A8.2), then the middle of the circuit would be the second series
tuned element. The first step of this design procedure would be to follow the
source design approach, eliminating the constant terms from the circuit
connected to the input port of each element, until the port tesistance R4 has been
determined. The next stage is to follow the load design procedure until the value of
R5 has been calculated. The resulting middle design ladder WDF circuit is shown
by Fig.(A8.5).
Mo [4

A ,, B R ¢ R5»D5,, & E R F g o

S 26 8 -- —Sif - & 8. 5
Figure AB8.5 Ladder WDF circuit using middle design procedure.

Using the middle design procedure, sections A and C have chain matrices of the
form of Eq.(A8.1), but in terms of 6) and 64 respectively, while the sections G and E
have the form of Eq.(A8.6) in terms of 85 and 5g respectively.

Section B has the source design chain matrix of Eq.(A8.2), while section F has the
load chain matrix of Eq.(A8.7) in terms of 66 and 87. The final section, D, has both
its input and output port resistances determined by sections C and E. which ensure
the removal of delay free loops. The chain matrix for the series tuned circuit,
under the middle design procedure, is given by Eq.(A8.9)
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(A8.9)
where
Sii+S9(1-5i0+2Sii)z' 1+ (1-5iq+6ii)z'2 I-t-59(1-*-S1Q)z~1+8i0 z~2
(1+Sh)(1+289z 1+ 22) (1+8n)(1+2892-1+272)
Cms(LC) =
610+89(1+8i0)z'1+z2 (1-810+811)-fS9(1-Sig+28h)z~1+8iiz 2
(1+8h)(1+2892-,+22) (1+8ii) (1+ 28921+ 2 %2)
1-L4Cs _ (Rs+ R4)(I + L4'C4) - L4
09 =1+ L4C4 ’ 10 = (R5+ R4)(l + L4C4) + L4*
jo _ (Rs - R4)(1 +U'C4) - L4* . 2L
011 " (R5+ R4)(l + L4C4) + L4 « M “ T

The transfer function for this circuit is given by Eq.(A8.10), where X represents a

cascade of the chain matrices A to G.

(A8.10)

The multiplier equations for the ladder WDF, shown by Fig.(A8.5), under the
middle design procedure, are shown by Table(A8.6).

81 R2 *
1
R2(1 + L2'C2")
L2-+ R2(1 + 12-¢c2’) k1" 1+ L2 C
rd
84 1+ ¢33 r3
R, = PR p—
5 1+ C7'Rg 1+ C7'R8
g R7(1 + L6 Co)
1+ 16"¢c6" Ls'+ R7(1 + Li'Ci'> 6 ~ R’ + 1 + Lfi' Cfi’
r5o»
8® 1 * C5'Rs
1-L4"C4’ 5 _ (Rs-R4)(li-L4'C4’) - L4*
1+ 14 cd4* " (Rs+R4)(1+L4'Ca') + L4* " (Rs+R4)(l+L4c4’) + La-

Table AB8.6 Multiplier equations for middle design ladder WDF of Fig.(A8.5).

If the component value, given in Table(A8.2), used in the previous examples are
applied to the ladder WDF of Fig.(A8.5), then the resulting multiplier values can be
determined are illustrated in Table(A8.7).
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K, » 10 8 - 0.236304
R: = 0.236304 S2 = -0.303984 _ §3%__ 0.149779
K, = 1577686 S4 = 0121350
Rt - 0.191453
r8 - 1.0 85 = 0.209872
f7 = 0.299872 «6 = -0.656009 _ §7=__  0.390830
R6 * 0767269 __ g§g.  0.246106
R, = 0.188829

-0.727246 0.037926 -0.484618

Table A8.7 Multiplier values for the ladder WDF using the
middle design procedure.

This whole design process can be performed through the computer program
WAVE. This program also applies the optimization techniques discussed in
Chapters 2 and 3 to the design of arbitrary simultaneous magnitude and phase

specifications.
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Design Program Descriptions

This Appendix provides a menu walk through of the software tools developed
within this research project for the design and analysis of lattice WDF’s. The
design and analysis functions are split into two separate programs. The design
program is called 'wdf' and was written in Fortran. Lattice WDF analysis was
provided through a program called ‘mlt wdf’ which was written for a package
called MatLab. The final program, ‘e llip ', is an implementation of the design
equations developed by Gazsi to calculate the order and multipliers values of lattice
WDF’s that can satisfy lowpass magnitude only specifications using Elliptical.
Butterworth and Chebyshev polynomials.

The options and operation of each program is illustrated through a menu walk
through and a number of design examples. This contents of this Appendix is :e

..Lowpass lattice WDF design program, ‘ellip".
..General lattice WDF design program, ‘wdf".

..General lattice WDF analysis program, 'mltwdf".



B 1 Design Program ‘<« H ip
To illustrate the operation of the design program, ‘el lip ’, consider the
specification shown in Table(BI.I).
Gain assband Gain  topband Samp
att (dB) edge (Hz) att (dB) edge (Hz) freq (Hz)
0.1 0.1 50 0.15 1

Table BI.I Lowpass filter specification.

The program, ‘ell ip', can be used to determine the order of Elliptic, Butterworth
and Chebyshev polynomial required to satisfy the specification of Table(BI.I). The
program can then calculate the multiplier values for a lattice WDF to exhibit the
desired polynomial response.

On entry, the program, ‘el lip ', will display the menu structure shown by
Fig.(BLI).

Enter filter specification

1) Pass band attenuation, (dB).
(present value is not set)

2) Stop band attenuation, (dB).

Pass band edge frequency, (Hz)
(present value is not set)

4) stop band edge frequency, (Hz)
(present value is not set)

sampling frequency, (Hz).
(present value is not set)

Calculate filter order.
(present order has not been calculated)

7) Quit

Enter choice required;
Figure BI1.l1 Filter specification menu of ‘ellip’.

By selecting the options 1 though 5 from the menu shown by Fig.(BI.l), the
lowpass specification of Table(BI.I) can be entered into the program. While the
specification is entered, the menu structure of Fig.(BI.I) will alter to display the
current values. The program menu with the specification of Tablc(BI.lI) entered,
is shown by Fig.(B1.2).
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Option *6” of the main menu will calculate the order of the Elliptic. Butterworth
and Chebyshev polynomials for the current filter specification. This features
allows the orders of a number of different specification to be found quickly.
Selecting option ‘6* was for the specification of Table(BI.l) results in the
Butterworth. Chebyshev and Elliptic polynomial orders being added to the
program menu, illustrated by Fig.(B 1.3).
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Having completed the entry of the filter specification, the next step is the
calculation of the multipliers for a lattice WDF. Selection of option *7' from the
menu of Fig.(B1.3) moves the program onto the next menu. This menu structure
allows the required filter order to be selected, shown in Fig.(B1.4).

Enter filter response required :-
1) Set filter order
2) Butterworth
3) Chebyshev
4) E lliptical.
5) Quit
Enter choice required, 1-4 or quit(5); 1
Minimum filter order for this specification is 17 (Butterworth)
9 (Cnebyshev)
7 (E lliptical)

Enter the order of filter required >- 7 ; 7
Figure B1.4 Selection of lattice WDF orders.

With the filter order selected, the next step is to select the polynomial type
required. A particular filter order for a polynomial allows a small amount of
freedom upon the frequency specification. This is expressed as a range of possible
stopband edge frequencies and passband attenuations. If the elliptical polynomial
is required and option ‘4’ selected from the menu of Fig.(B1.4), then the program
will  provide the limits for the stopband edge frequencies and passbhand
attenuations allowed for that particular filter order, passband edge frequency and
stopband attenuation. This information will be presented in the formal shown by

Fig.(BI.S).
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Enter filter response required

1) set filter order.
(present value is 7)

Butterworth.

4) Elliptical.
5) Quit
Enter choice required, 1-4 or quit(s); 4

Range of possible stopband cutoff frequencies are .117449 <* x <- 0.15
Enter value for stopband cutoff frequency, (Hz); 0.1S

Range of possible passband attenuations are .000271 <- x <m 0.1
Enter value for passband attenuation, (dB); 0.1
Figure B1.5 Final selection of specification values for an elliptic

polynomial response.

With a final frequency specification, the program will calculate the lattice WDF
multiplier values for a particular polynomial type and display them
illustrated by Fig.(B1.6).

n the form

Enter filter response required :-

1) set filter order.
(present value is 7)

2) Butterworth
3) Chebyshev.

4) Elliptical, coefficients are:-
0.751906730712
-0.635752023959
0.916427379871
-0.783992284302
0.840820107759
-0.930190435346
0.796660491977

5) Quit

Enter choice required, 1-4 or quit(5);

Figure B1.6 Display of filter coefficients for the
desired elliptic polynomial response.

The multiplier values from the program, ‘el lip', are given in the format specified

by Gazsi, so that the first multiplier value is that of the only 1st order APS. the next

two multipliers belong to the first 2nd order APS of the lower arm and the next two

for the first 2nd order APS of the upper arm. Pairs of multipliers then alternate
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between upper and lower arm 2nd order APS’s. On exit the program will convert
the current set of multiplier values into the format used within the ‘wdf’ and
‘m Itw d f' programs. Within this format first half of the multipliers belong to the
upper arm and the other half for the lower arm. Where appropriate, the last

multiplier for the upper lattice arm set will belong to the single 1st order APS.



B 2 Design Program wdf

The ‘w df’ program has three main functions

(i) Entry and alteration of general filter specification.
(ii) Design through the application of optimization routines.
(iii) Retrieval and storage of filter/optimization parameters.

The operation and structure of this program can be illustrated through the filter
specifications of Table(BI.I) and Table(B2.1).

Gain assbhand Gain stopband Delay passhand Samp.
att (dB) edge (Hz) ait (dB) dev (%) edge (Hz) frea (Hz)
0.1 0.1 50 0.15 1 0.1 1

Table B2.1 Simultaneous lowpass filter specification.

The main menu of the ‘wdf’ program is shown by Fig.(B2.1).

This is a design program for
arbitrary magnitude and linear phase WDF's
Program Main Menu
1) Load an existing data file.
(no current file!
2) Enter a filter specification
3) Filter coefficient optim ization.
41 Change filter structure/optimization parameters
5) Create a MatLab file for graphical results
Sl save present specification to a different file
01 Quit

Enter option required (1-6) or quit(O)
Figure B2.1 Main menu structure of the 'wdf' program.

The operation of the wdf program is controlled through the main menu structure
of Fig.(B2.1). Frequency specifications can be entered into the program through
option ‘2’. With an initial frequency specification, option ‘4’ can be used to amend
the specification and optimization parameter values. These specification and
optimization settings can then be saved to a plain ASCIl data file though option ‘6°.
Alternatively an existing data file can be loaded into the program using option ‘I’
and the appropriate parameter values changed to satisfy a new specification.

Analysis of the time and frequency domain responses of the various lattice WDF
designs is carried out within the program 'mlt wdf'. This program was written to



Appendix B:  Design Program ‘wdf page B/8

operate within MatLab which possess its own data file format. To utilise the
efficiency of the MatLab file format the plain data files of the 'wdf' program can
be converted into an equivalent MatLab format file through option ‘S’ of the main
menu Of Fig.(B2.1).

The procedures under options ‘3* and ‘4’ constitute the main features of the ‘'wdf'
program. The menu structure and operation of each option will be considered in
turn. Option ‘4’ of the main menu, shown by Fig.(B2.1) provides the operator with
the ability to change all the parameters directly related to the design and
optimization of a lattice WDF. Selection of option ‘4‘ will invoke the alteration
menu illustrated by Fig.(B2.2).

Filter parameter alteration menu

1) Alter filter structure variables

2) Alter frequency specification variables
3) Alter optimization target definitions
4) Alter optimization routine variables
0) Quit.

Enter option required <i—4) or quit(O)
Figure B2.2 Filter parameter alteration menu structure.

The first two options of the menu of Fig.(B2.2) relate directly to the filter structure
and specification parameters. These elements include filter order, frequency
specification and desired finite wordlength. [If the magnitude-only filter
specification of Table(BI.I) had been entered into the program, then selecting
option T from the menu of Fig.(B2.2) would show the 'Filter structure menu’,
illustrated by Fig.(B2.3).

Filter structure menu

1) Alter filter order, present value is 7
2) Alter initial parameter values.
0.783992  0.840820 0.751907
-0.635752  0.916427 -0.930190 0.796660

3) Alter coefficient wordlength (64 - infinite).
(present value is 64)
0) Quit.

Enter option required (1-3) or quit(O)
Figure B2.3 Filter structure menu options showing value from Table(BLI).

The three options shown in Fig.(B2.3) allow the user to change the filter order,
initial coefficient values or desired filter coefficient wordlength. |If the filler
order is changed, using option ‘1’, then all coefficient values will be set to zero.




Appendix B Design Program ‘wdf’ page B/9

The menu structure invoked by selecting option ‘2’ from the ‘Filter parameter
alteration menu’, Fig.(B2.2), is illustrated by Fig.(B2.4) containing the lowpass
specification values from Table(B2.1).

Filter frequency specification menu

1) Alter number of frequency bands, present value is 3

2) Alter filter band response type(pass>l,tran-2,stop-3).
present vector 1 3

3) Alter filter gain response edge frequencies, (Hz)
present vector 0. 1.0000E-01 0.1500  0.5000

4) Alter ideal magnitude values for template, (dB).
present vector is 1.0000E-01 10.0000 $0.0000

5) Alter filter delay response edge frequencies, (Hz)
present vector 0. 1.0000E-01 0.1500  0.5000

0) Quit

Enter option required (1-5) or quit(0)

Figure B2.4 Filter frequency specification menu shown for the
specification of Table(B2.1).

Option ‘3° of the 'Filter parameter alteration menu', Fig.(B2.2), allows the
definition for the optimization targets to be altered between the single and dual
line schemes described in Chapter 2. Finally option ‘4’ from Fig.(B2.2) allows the
operator control over all the optimization parameters relevant to the quasi-
Newton and modified Hooke-Jeeves routines. Fig.(B2.5) shows a typical set of
parameter values for a simultaneous lowpass specification.

The options within the menu structure of Fig.(B2.5) directly control the
optimization algorithm, templates and error function parameters. Selection of
particular values for these various parameters requires a small amount of
experimentation for a particular specification. A parameter which may not be
obvious is the frequency transformation procedure, option ‘IS’. In the design of
single and dual bandpass and bandstop lattice WDF’s, the APS’s contain either one
or two parameters which determine the movement of the frequency band(s). The
value of these parameters may be common within all APS’s of a Filter or used as an
optimization variable to increase the flexibility of bandpass and bandstop type

designs.
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Filter optimization parameter menu

1) Alter gain/group delay error ratio, beta.
present value is 0.8000.

2)  Alter Lp-norm, present value is 2

3)  Alter initial group delay value.
present vector is 15,000 0. 0.

4)  Alter acceptable delay percentage error,(t).

present vector is  1.0000 0

5)  Alter number of gain points per frequency band
present vector is 31 31 31

6)  Alter gain point spacing per frequency band.
present vector is 2 1 3

7 Alter gam template weights per frequency band
present vector is 100.000 20.000 160.000

8)  Alter number of delay points per frequency band

present vector is 31 0

9)  Alter delay point spacing per frequency band
present vector is

10)  Alter delay template welghls per frequency band
present vector is 50.000 1.000 1.000

11)  Alter optimization routine
resent routine is EO4JAF

12)  Alter transition band UPPER target angle (0 - 90 degs)
present vector is 0. 15.000 0.

13)  Alter transition band LOWER target angle (0 - 90 degs)
present vector is 0. 5.000 0

14)  set default weight values for this problem.

15)  Alter frequency transformation procedure
transformation procedure not required.

0 Quit

Enter option required (1-15) or quit(0)

Figure B2.5 Filter optimization parameter menu showing a typical set
of parameter values for a lowpass specification.

With the desired design specification entered into the program the next step is to
return the '‘Program Main Menu', Fig.(B2.1), and either save these parameters to a

data file under option ‘6’ or begin optimization through option The various

quasi-Newton optimization algorithms are implemented to produce filter
coefficients values to the full accuracy of the computer system. These algorithms
can therefore only be implemented when the desired wordlength. set in the
‘Filter structure menu' of Fig.(B2.4), is equal to the upper limit, i.e. 64 bits. If the
wordlength is shorter than this value, then the program will automatically invoke
the Hooke-Jeeves algorithm. Upon starting any optimization, the user will be
asked for a filename into which the design parameters will be stored. These results
consist of a ‘.dat’ file which contains the filter structure information which can
be loaded back into the ‘wdf’ program, a ‘res’ file which holds a list of all the
initial optimization settings, multipliers values and a history of error function
values and a ‘.mat’ file created in the MalLab format. The ‘.mat’ file contains
virtually the same information as the .’dat’ file expect that it is compressed and
stored in a binary form that cannot be edited. This format allows a rapid loading
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into the ‘m Itw d f' program and ensures that parameters within a solution data file

cannot be accidentally altered.

The design process using a quasi-Newton algorithm is illustrated in Fig.(B2.6)(a-c)
for the simultaneous specification of Table(B2.1). Having prompted the operator

for a filename, the program will display the initial parameters values.

Enter name for optimization data files
(creating “.res”, ".mat” and ".dat” files)
fll_test

Filter coefficient wordlength is ‘ideal' - (64 bits)

vector values are :-
parameter) 1 -  0.00000000000000000000
- 0.00000000000000000000
parameter) 3 ¢ 0.00000000000000000000
parameter) 4 - 0.00000000000000000000
parameter) 5 -  0.00000000000000000000
0.00000000000000000000

parameter) 7 -  0.00000000000000000000
parameter) 8 -  0.00000000000000000000
parameter) 9 -  0.00000000000000000000
parameter) 10 -  0.00000000000000000000
parameter) 11 -  0.00000000000000000000
parameter) 12 -  0.00000000000000000000
parameter) 13 -  0.00000000000000000000
parameter) 14 -  0.00000000000000000000
parameter) IS - 0.00000000000000000000

parameter) 16 - 15.00000000000000000000
Initial mean group delay value for passband I1) 15.0000
Group delay error tolerance for passband 11) is 1.00000%
Initial error value is 0.12644725E*05

Optimizing coefficients

Function Function Function
improvem ent(%)

100 0.4 8844741E*03 96.137145
200 0.22899577E +03 53.117621
300 0.21514542E+03 6.048297
0.19540717E+03 9.174379

500 0.99811552E +02 48.921243
600 0.37994 933E+*02 61.933331
700 0.32677623E+02 13.994787
800 0.26852514E+02 17.825986
900 0.23721900E%02 11.658552
1000 0.16446858E +02 30.668040
6200 0.82923786E-03 0.000002
6300 0.82923859E-03 =0.036266
6400 0.82923861E-03 0.036163

Figure 82.6(a) Display of initial optimization parameter values.

If the routine exceeds 400 times the number of optimization variables then the

program will exist, display the results and restart the process using the values of
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the parameters on exit as the
Fig.(B2.6)(b).

| starting values. This process in shown in

Thar* have been mora than 6400 function avaiuations!
The total number of calls of FUNCT1 was 6451

Final error value is - 0.82923807E-03

Final filter coef values are :-
coefficient -0.17756401859007935395
coefficient 0.65790402482640719661
coefficient -0.55571274691139627944
coefficient 0.91645997804630030537
coefficient -0.80170142869554239518
coefficient 0.66613095914806030873
coefficient 0.45739905009707237937
coefficient -0.54692256706829955881
coefficient 0.81958293154246675272
coefficient -0.12461859420463976267
coefficient 0.81851396866378423134
coefficient -0.92330761839609587494
coefficient 0.65868350256143592958
coefficient -0.45157824748474090226
coefficient 0.74239494143243345281

Mean group delay value for passband (1] - 14.5788

Optimizing coefficients

Function Function
improvem ent(%)
6500 0.82 9234 36E-03 0.00044
6600 0.82844410E-03 0.095300
13300 0.12247433E-10 8.076863
13400 0.45784292E -II 62.617234
13500 0.15602575E-12 96.502155

Figure B2.6(b) Typical optimization process.

Optimization, using the NAG routines, will continue untilthe solution can no
longer be improved or the number of iteration exceeds 400 timesthe number of
optimization variables. If the iteration limit is reached, the program will display
the number of actual function evaluation, the final error and coefficient values.
The program will then re-invoke the routine with the final coefficient values as
initial settings. This process will allows occur if the iteration Ilimitis reached. On
exit a NAG routine will return an error flag to indicate its reason for terminating.
The program interprets this error flag for each NAG routine and uses it to re-
invoke the routine if the iteration limit has been reached or exit the optimization
procedure if a solution has been found. Return error flags will also indicate if a
solution could not be found or if there was some doubt about the solution produced.
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The final steps of the design process for the example considered are shown in
Fig.(B2.6)(c).

O ptim ization successful

The total number of calls of FUNCTL was 13612

Final error value is - 0.37404932E-16

Final filter coefficient values are :-
coefficient [ 1] - -0.52103073108699393678
coefficient [ 2] - 0.71432227201357090252
coefficient [ 3] - -0.59773372692825854635
coefficient ( 4] 0.93167698519230091048
coefficient ( 5) - -0.89226733966824678390
coefficient [ 6) - 0.63506596893653544100
coefficient [ 7) - 0.58848491615300035917
coefficient ( 8) - -0.61601647589166219632
coefficient [ 9] - 0.85501681881815250197
coefficient ( 10] - -0.38335484425137844600
coefficient ( 11] - 0.91625861657286955531
coefficient ( 12] - -0.95816216097113160455
coefficient [ 13] - 0.62810950661036613063
coefficient [ 14] - -0.69070144594002258476
coefficient [ 15] - 0.67670067104956177495

Mean group delay value for passbandflj - 14.3867
Creating MatLab data file fil_test.m at
Creating data file fil_test.dat

Closing results file fil_test.res
Figure B2.6(c) Final steps in optimization design process.

Finite wordlength optimization designs expect to be started with an ‘ideal' solution
as its initial multiplier values. Before the optimization is started the user is asked
for an initial wordlcngth to which the initial coefficient multipliers will be
quantized. The program will then apply the Hooke-Jeeves optimization routine to
the
to the desired wordlength defined within the specification. If it is larger, the
current wordlength is reduced by one bit and the process repeated. If a solution
cannot be found the wordlength is increased by one bit and reapplied. If the
routine reaches a minimum limit three times without being able to achieve the

If a solution can be found the current wordlength is compared

desired wordlength. the process is terminated. The optimization procedure will
therefore exit with a set of finite wordlength coefficients that satisfy the desired
or shortest possible wordlength conditions. A typical example of a finite
wordlength  design using the simultaneous specification of Table(B2.1) is

illustrated by Fig.(B2.7).
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Enter name for optimization data files
(creating ".res*, “.mat" and ".dat” files)

finite_test

Ideal filter coefficient wordlength is 8 bits

Enter the initial value for the coefficient bit length :-
24

Initial optimization wictor values are :-

parameter! 1) - -0.52103073108699393678
parameter! 2) e« 0.71432227201357090252
parameter! 3) - -0.59773372692825854635
parameter! 4] — 0.93167698519230091048
parameter! 5) - -0.89226733966824678390
parameter! 6) - 0.63506596893653544100
parameter! 7) - 0.58848491615300035917
parameter! 8) - -0.61601647589166219632
parameter! 9] - 0.85501681881815250197
parameter! 10] - -0.38335484425137844600
parameter! 11] " 0.91625861657286955531
parameter! 12] - -0.95816216097113160455
parameter! 13) - 0.62810950661036613063
parameter! 14] - -0.69070144594002258476
parameter! 1S] - 0.67670067104956177495
parameter! 16] - 14.38672268390655517578

Initial error value is 0.49826624E-10
Optimizing coefficients for finite wordlengths

O ptimization is successful

Error value for 24 bits is 5.97416E-13, threshold (1.0E-8)
Wordlength is greater than required value of 8 bits
Reducing coefficient wordlength to 23 bits

O ptimization is successful

Error value for 23 bits is 3.76521E-12, threshold (1.0E-8)
Wordlength is greater than required value of 8 bits
Reducing coefficient wordlength to 22 bits

O ptimization is successful

Error value for 22 bits is 9.48386E-12, threshold (1.0E-8)
Wordlength is greater than required value of 8 bits
Reducing coefficient wordlength to 21 bits

O ptimization is NOT successful
Error value for 17 bits is 2.49873E-8, threshold (1.0E-8)
No solution for current wordlength of 17 bits
Increasing coefficient wordlength to 18 bits

Figure B2.7 Display of finite wordlength optimization.



B 3 Analysis Program ‘mltwdf

This program utilise the features and graphical procedures of MatLab to generate
and display the results of a number of responses of the lattice WDF. These
responses can be calculated within the frequency domain through a set of
analytical equations which describe the Ilattice WDF's or determined within the
time domain by modelling the physical element of the two-port adaptor and lattice
WDF APS’s.

Frequency domain characteristics calculated by the 'm Itwdf' program are

(i) Frequency response ;

(a) Gain vs. Frequency

(b) Magnitude vs. Frequency

(c) Phase vs. Frequency

(d) Group Delay vs. Frequency
(ii) Coefficient Sensitivity

(a) Gain vs. Frequency

(b) Phase vs. Frequency

(c) Group Delay vs. Frequency
(iii) Pole/Zero Plots

Time domain characteristics calculated by the 'm Itw df' program are

(i) Time response
(a) Impulse vs. Time
(b) Ramp vs. Time
(c) Step vs. Time
<d) Triangular vs. Time
(c) Pulse vs. Time
) Sine vs. Time
(g) Cosine vs. Time
(ii) Frequency response ;

(a) Gain vs. Frequency
(b) Magnitude vs. Frequency
(c) Phase vs. Frequency
(d) Group Delay vs. Frequency
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The main menu of the 'm 1twdf MatLab program is illustrated by Fig.(B3.1).

Linear Phase HDF Analysis Program :-

1) Load a set of existing data files from current directory
(no present filters)

2) Change current directory.
/home/eagle/eng/es018/Filters/Prog2

3) Analyse filter frequency domain responses
4) Analyse filter time domain responses
0) Quit

Enter option required (1-4) or quit(0) :-

Figure B3.1 Main menu structure of the 'mllwdf program.

This software package does not generate any lattice WDF designs so all solutions
must be load into the program from data files created by the 'wdf' program. The
first two items of the main menu of Fig.(B3.l) are only concerned with loading
data file(s) and moving around the system directories. Fig.(B3.2) shows the menu
structure for changing directories, available through option '2' of the 'Linear

Phase WDF Analysis Program' menu.

Present Directory is -
/home/eagle/eng/es018/Filters/Prog2

Present Data Files are :-
filAIto
filA Itd
Directory Menu :-
1) Move down a directory.
2) Move up a directory.
0) Quit.

Enter option required (1-2) or quit(0) :-

Figure B3.2 Change directory menu structure.

Changing directory until the file or flies of interest are located, the next step is to
load them into the program. Data files can either be loaded individually or a family
of solutions that have the same filter order and frequency response. This last
feature allows a direct comparison of large and finite wordlength coefficient

solutions to the same problem.

Selecting option T from the 'Linear Phase WDF Analysis Program' displays the
menu shown by Fig.(B3.3). This menu will list the data files available in that
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directory and prompt for the number of data files to be load into the program.
Fig.(B3.3) illustrates the sequence for loading one data file. If more than one data
file is loaded, the user is given the option of adding a label to each response that

will be displayed in all frequency response plots.

Present Data Files are :-

filA ItO

filA Itd
Enter the number of filters in this set X
For data file 1

Enter the name of the data file filA Ito
Figure B3.3 Menu for loading data file.

Having loaded a data file into the program the remaining two options of the main
menu will become active, allowing the time or frequency responses of that
particular lattice  WDF to be determined. Frequency domain responses can be
calculated through option '3' from the main program menu. Fig.(B3.4), while the

time domain responses are available through option '4'.

Linear Phase WDF Analysis Program :-

1) Load a set of existing data files from current directory.
present filter<s) filA1to

2) Change current directory
/home/eagle/eng/esO 18/ F ilters/Prog2

3) Analyse filter frequency domain responses
4) Analyse filter time domain responses

0) Quit

Enter option required (1-4) or quit(0) 3

Figure B3.4 Main menu structure with loaded data file.

Selecting option '3' from the main program menu will move the user to the menu
structure shown by Fig.(B3.3). The lattice responses available through this menu
include the magnitude, gain, phase and group delay frequency responses, option
T, the gain, phase and group delay sensitivity responses, option '2' and the
pole/zero positions, option '4'. The frequency and sensitivity responses can be

calculated over an arbitrary frequency range set by option 'T and for an

arbitrary number point specified with option '8'.
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WOF Frequency Domain analysis menu t—

1) Calculate frequency responses for present range
(present range 0.0000 to 0.5000)

2) Calculate sensitivity responses for present range
(present range 0.0000 to 0.5000)

3) Display Filter coefficients

4) Display Poles/Zeros of the filter

5) Curve fit to Poles/Zeros of the filter.

6) Display Pole/Zero values.

7) Alter frequency response range

8) Alter number of frequency calculation points.
(present number is 1024)

0 Quit

Enter option required (1-8) or quit(0) 1-

Figure B3.5 Main frequency domain menu structure.

Selecting option '3' from the menu show by Fig.(B3.5) will display the filter
coefficients of the data file or data files loaded. Filter coefficients for the design
example considered in Appendix Bl are displayed in Fig.(B3.6). The final stage of
this option is to provide the user with the option to generate a hard copy of these
filter coefficients which can be to a file or a direct print.

7th LTWDF: beta-1, Lp-2, inf coefficient wordlengths
File data stored in  filAltO

Upper Lattice arm 2nd order coefficients are :-
-0.78399228430200 0.84082010775900

Upper Lattice arm 1st order coefficients are :-
0.75190673071200

Lower Lattice arm 2nd order coefficients are :-
-0.63575202395900 0.91642737987100
-0.93019043534600 0.79666049197700

Press any key to continue

Hard copy of these filter coefficients (yes or no)

Figure B3.6 Example of a filter coefficient display.

Selecting option '4' from the 'WDF Frequency Domain analysis menu', Fig.(B3.5),
will prompt the program to calculate and display the roots of the transfer function
of the lattice  WDF on a pole/zero plot. The program displays the roots of the
transfer function in set, first the wupper lattice branch poles, then the lower
lattice branch poles and finally the zeros of the overall transfer function. Option
'S’ of the same menu. 'Curve fit to Poles/Zeros of the filter' displays the same
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information but allow the user to select roots from the pole/zero plots to apply to a
curve fitting function. A pole/zero plot of the elliptic design example considered
is shown in Fig.(B3.7)(a), while a plot/zero plot with a curve fitted to the upper
and lower branch poles is shown in Fig.(B3.7)(b).

(a) (b)
B3.7 Pole/zero plots showing (a) all poles and zeros of a lattice WDF

structure and (b) a curve fitted to the poles of the structure.

Figure

locations can be displayed and printed

The numerical values of the pole and zero
analysis menu®. The values of the

though option '6' of the "WDF Frequency Domain
roots for the example considered are shown in Fig.(B3.8).

7th LTWDF: beta-1, Lp-2, inf coefficient wordlengths
File data stored in filAIto

Upper Lattice arm poles are :-
0.75000829236402 * J 0.47061645284373
0.75190673071200

Lower Lattice arm poles are :-
0.74952397071772 * j 0.27196661794887
0.76885323091602 * J 0.58228441903935

Overall Lattice zeros are
-1.00000000000000
-0.05948802908953 * J 0.99822901901069
0.57485931378171 * | 0.81825226511047
0.44242263311198 * | 0.89680667577258

Press any key to continue

Hard copy of these filter coefficients (yes or no)
Figure B3.8 Pole/zero values for design example.

Selecting option '1' from the "WDF Frequency Domain analysis menu” will cause the

calculate the magnitude, gain, phase and group delay frequency

program to
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responses at the number of points and over the frequency region specified.
Having determined the responses, the program will display the menu of Fig.(B3.9).

Frequency Response Menu : -

1

Plot Gain (dBs) vs. Freq
2) Plot Gain vs. Freq

3) Plot Phase vs. Freq

4) Plot Group Delay vs. Freq
0) Quit

Enter option required (1-4) or quit(0)

Figure B3.9 Frequency Response Menu for frequency domain calculations.

Through options T - '4'" the user can display the corresponding frequency
responses to the screen. Again the option to generate a hard copy of the plot is
offered to the user. Typical frequency response plots for the example loaded are
shown in Fig.(B3.10).

(c)
Figure B3.10 Frequency responses showing (a) overall and (b) passhand
magnitude and (c) overall group delay responses for the example considered.
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Selecting option 2' from the Wdf Frequency Domain analysis menu' will cause the
program to calculate the gain, phase and group delay coefficient sensitivity
responses at the number of points and over the frequency region specified. When
the sensitivity responses have been determined for each multiplier, the program
will show the menu illustrated by Fig.(B3.11).

Sensitivity Response Menu :-

1) Plot Gain Sensitivity/Freq.

21 Plot Phase Sensitivity/Freq

31 Plot Group Delay Sensitivity/Freq

4) Change filter parameters displayed, present parameter(s)
12 3 4 5 6 1

0)  Quit

Enter option required (1-4) or quit(0) :-

Figure B3.ll Coefficient Sens

vity Response Menu.

Option '4' of the "Sensit

ty Response Menu® allows the user to selectively display
single or sets of coefficient sensitivity responses. In this way the responses for
the coefficients of the upper or lower arm of the lattice WDF could be displayed
together. This is illustrated in Fig.(B3.12), which shows the gain and group delay
sensitivities for the upper lattice arm coefficient. Fig.(B3.12)(a-b). while those of
the lower arm coefficients arc shown by Fig.(B3.12)(c-d).

(b)
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(c) (d)
Figure B3.12 Upper arm multiplier (a) gain and (b).group delay sensitivities
and lower arm multiplier (c) gain and (d) group delay sensitivities

Returning to the main program menu. Fig.(B3.1). the user can determine the
finite wordlength responses of the lattice WDF through the time domain menu.
Selecting option ‘4" moves the user to the finite wordlength menu, illustrated by
Fig.(B3.13).

WOF Finite Wordlength Analysis Menu

1) Calculate frequency domain finite wordlength responses
(using impulse response technigue)

2) Calculate time domain finite wordlength responses
(for present input function)

3) Calculate roundoff noise.
(for present input function)

4) Alter input function
(impulse with hgt 1.000, at 0.000 secs and freq 1.000 Hz).

5) Display filter coefficients
(using present wordlengths and rounding procedures)

6) Alter filter wordlength settings
(present values are i/p 64, sig 64, coeff 64 and o/p 64 bits)

7) Alter coefficient quantization procedure.
(present technique is rounding)

8) Alter overflow procedure
(present technique is no precautions)

9) Alter number of calculation points.
(present number is 2048)

0) Quit
Enter option required (1-9) or quit(0) :-

Figure B3.13 Menu structure for time domain analysis.

In line with the frequency domain analysis menu. Fig.(B3.4), this menu offers the
user control over the settings under which the responses of the lattice is
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calculated. Each parameter is accessed through a menu detailing the options
available. Option '4' of the menu shown by Fig.(B3.13) defines the input time
function to be applied to the lattice WDF if the time domain responses was
calculated. The menu structure of the available input functions is illustrated in
Fig.(B3.14)

Input Function Menu

1) Select impulse function.
(hgt 1.00. at 0.000 secs and freq 1.000 Hz)

2) Select pulse function.
3) Select square function.

4) select ramp function.

5) Select triangular function
6) Select sin/cos function.
7) Select noise function.

0)  Quit

Enter option required (1-7) or quit(0)

Figure B3.14 Input Function Menu structure.

For waveforms available through the ‘input function Menu', the user is prompted
for the peak amplitude, the time at which the peak amplitude is to occur and the
number of the waveforms required for the input function.

The time domain calculations are performed using simulated finite wordlength
effects. This means that the finite wordlength effects on particular elements of
the lattice WDF can be considered in isolation to the rest of system. Control over
the wordlengths of the various elements of the system is provided by the 'Filter
W ordlength Menu’, available through option '6' from the main Finite wordlength
menu of Fig.(B3.13). The 'Filter W ordlength Menu' structure is shown by
Fig.(B3.15).
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Filter Wordlength Menu
1) Set input signal length.
(present value is 64 bits)
2) set internal signal
(present value is

length.
64 bits)

3) Set coefficient signal length.
(present value is 64 bits)

4) Set output signal
(present value is

length
64 bits)

0) Quit

Enter option required (1-4) or quit(0) :-

Figure B3.15 Filter

Control
is provided through the menu

from the main Finite wordlength menu.

Filter Quantization Method Menu :-
1) Rounding.

2) Magnitude Truncation
3) Value Truncation.

0) Quit.
Enter option

required (1-3) or quit(0) !-

Figure B3.16 Filter Quantization
Finally the types of overflow procedures

is determined by the ter Overflow Procedure

‘8" within the main finite wordlength menu

Filter Overflow Procedures Menu i-
1) No overflow precautions.

2) Saturation arithm etic.

3) Zeroing arithm etic

4) Twos complement arithm etic.

5) Alter overflow bound lim it value.
(present value is 1.0

0) Quit.
Enter option required (1-5) or quit(0) :-
Figure B3.17 Filter Overflow Procedure

Wordlength Menu

page B/24

structure.

over the type of quantization applied within the time domain calculations
illustrated by Fig.(B3.16),

available with option '7"

(present option selected)

Menu structure.

available to the time domain calculations

Menu®, Fig.(B3.17). This is option

structure.

(present option selected)

Menu structure.
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With the various parameters defined, the time domain response can be calculated.
These responses involved the time response for a given input function and the
frequency responses determined through a FFT on the impulse response. If the
frequency response option is selected then the program will calculate the values
and display the menu shown by Fig.(B3.18).

Finite Wordlength Frequency Response Menu
1) Plot Gain (dBs) vs. Freg

2) Plot Gain vs. Freq

3) Plot Phase vs. Freq

4) Plot Group Delay vs. Freq

5) Alter frequency response range
(present range is 0.0000 to 0.5000 Hz)

0) Quit

Enter option required (1-5) or quit(O)

Figure B3.18 Finite Wordlength Frequency Response Menu.

Using this option the frequency responses calculated from analytical equation in
the frequency domain can be directly compared to those from the time model of
the lattice WDF, if the filter wordlengths are all set to ‘infinite' precision.
Frequency responses determined through the time domain and a FFT for the
design example considered are shown in Fig.(B3.19). These responses show a high
correlation to those generated in the frequency domain and shown by Fig.(B3.10).
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(c)
Figure B3.19 Frequency responses calculated through the time domain
showing (a) overall and (b) passband magnitude and (c) overall group delay
responses for the example considered.

Finally option 2' of the "WDF Finite Wordlength Analysis Menu~ calculates the time
domain response for an arbitrary input signal. The input signal, selected through
the menu shown by Fig.(B3.14), is applied tothe model of thelattice using the
current quantization, overflow and filter wordlength. When the calculations are

complete the program enters the menu shown by Fig.(B3.20)

Finite Wordlength Time Response Menu :-
1) Plot Input Signal vs. Time.
2) Plot Output Signal vs. Time.

3) Alter time response range
(present range is 0.0 to 2048.0 sec)

0) Quit

Enter option required (1-3) or quit(0)
Figure B3.20 Time Response Menu structure.
Selecting options ‘2' and ‘3', the output waveform can be displayed over any

period. The output of the lattice WDF using the coefficients from the design

example considered to the unit impulse, are shown in Fig.(B3.21).
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(@) (b)
Figure B3.21 Unit impulse response of lattice WDF example showing (a)
overall waveform and (b) initial part of response.



Appendix C

Lattice WDF APS Models

(Frequency Domain)

This Appendix details the design equations for the various APS's required in the
construction and analysis of the highpass and single and dual bandpass and
bandstop lattice WDF's. The design equations are given in terms of the parameters
required by the overall lattice WDF equations outlined in Chapter 4. The APS's

considered arc

1stand 2nd order highpass APS equations.

.2nd and 4th order single bandpass APS equations.
.2nd and 4th order single bandstop APS equations.
.4thand 8th order dual bandpass APS equations.
4thand 8th order dual bandstop APS equations.

(cly...
(C2)




c 1 Highpass APS Models

Cl.1 1st order Highpass APS

Ztl = X1 - Z-*
zt2 = 1+ xi z-1
Overall transfer function
B; zti
Aj “ zt2
Group delay parameter
U iHt , m (Y «12)
H(z) dm J zti z*2

Gain/Phase coefficient sensitivity parameters

1M 2o
H(z) dxi ztj z*2
Group delay coefficient sensitivity parameters
(1 dH(2)\
yH(z) ' do) J
dxi

d

(«1 «<2)2

Sl X< 1
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Cl.2 2nd order Highpass APS

zti = -xi + (1 -xi) R z"1+z'2
z»2 * 14 (1 - xi) X2z*1-xi z'2
Overall transfer function
i«
H@ - A = 22

Group delay parameter

1 dffizi Litr1: T)(X2+ 22+ X27%2)
H{)  d» J1 zti zt2

Gain/Phase coefficient sensitivity parameters

1 dHQ) _ (*'2 - 1) (1 * 2»2»-' ¢ Z 2)

H(z) dxi  ~ zti zt2
!t THM , - (* 2~1)(,i1-0
H(z) dx2 zti zt2

Group delay coefficient sensitivity parameters

d dH (2)\
MH@Z) ' dto )
dxi -jz'1(x2+22%+X2z2'2)(z ti zt2) 2

page C/3

(22*2(x22(1-x )2 - 2xi) + 2x2Z'1(1+z-2)(1-x i)2 + (1+ x i2)(1+2-4))

g Tl dH@N
AH(z) ' dot J
a2 Sjzfl(x 22 ¢ *)(zt! Zt2)'2

(z2*2(1+2°2)(x32(1-X2)2 + X21X2-3) + 1) ¢ X2(1+2'6))



C2 Single Bandpass aers mModers

Cc2.1 2nd order Single Bandpass APS

A

+h

zti * - (xi -a (1 +xi) z°*+2'2)
zt2 = 1-a (1 +xi) z*1+xi z*2
Overall transfer function
i o
HE@ - ai = 22
Group delay parameter
ifi .1 02 -

. . m
H(z) d(i) Je zti zt2

Gain/Phase coefficient sensitivity parameters

Limits

l<xi<l

-l<a< 1

I)(a -22z'1+a z*2)
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C2.2 4th order Single Bandpass APS

Limits -
-1<xi<0
Sl X2<1

-l <o< 1

Ni*o-a (2Xi 4 *2(FL K F) N2 = (Ml - IXR2 4+ <2(1 + *2» . n3=a (2- XR(xi - 1)

zti * xi + ni z*1 +n22z'2+n32'3-z-4 . zt2 =-1 + 113z-1 ¢n2z'2+nj z*3 +xj z'4
Overall transfer function
o = -5
Group delay parameter

H%Z) “;';)Z) _ ejz1(x12 - 1)(a -2z%1+02'2)

((1 + z*)x2 - 2az*1(l + z*2)(1 + X2)
+22%2(1 + a2(l + X2))) (zti z12)'1

Gain/Phase coefficient sensitivity parameters

sfc ‘diuf * (*J-0Cl-io,'*+2'2
((1 +z'4) -2az*1(l + z"2)(1+ X2)
+22%2(x2 ¢ 02(1 + X2))) (ztl zt2) *

1 dH(z) \ o .
H(2) dx2 z'1(z-2 - 1) (1- 2az *2*2)

(P* %) (1 -0z-1) (xi2 ml) (**1 *2)" *
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z (ziz I|lz)(z.z» j.Z) -n) ,.z f S Ixp
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dAI 1 UH(ZP
b .
da jz>(xi2 - 1)(ztl Xt2)2
((1 + z*,4)xiX2 - 4az** (1 + z712)xi(l + X2)

+ z°2(1 + z°10)(3xi(2 - X2) + X22(xi - 1)2
+a2(14x1 mX2(l - x1(12 - xj)) + X22(I + X2)(xi - D2))

- 4az3(1 + z'8)(4xi + X22(2 + X2)(xi - 1)2
+a2(l+ X2)(4xi + X22(x1-1)2))

+ z’4(1 + z'6)(-10xi + X2(I + x1(9 + xi)) + X22(1 + 3x2)(xi - 1)2
+a2(2(1+xi(1+xi)) + 3x2(5-xi (4-5x 1)) + x22(27+17x2)(x i-1)2)
+ad(2(l+xi)2 ¢ X2(7 - xi(6-7xi)) + 5x22(2+x2)(xi-1)2) )

- 4az‘5(1 + z"4)( 1mx1(11-xi) + x2(5-xi(3-5xi)) + 3x22(1+x2)(xi-1)2
+2a2(2(xi - 1)2 + 7x2(x1-1)2 + X22(8 + 3x2)(xi*1)2)
+ad(xi - 1)2(x2 + 1)3)

+ 2az < ¢ 2-2)(2(1 +xi2) + x2(5-xi(19-5xi)) ¢ x22(4-x2)(xi-1)2
+2a2(2(7-xi(19-7xi)) ¢ 2x2(19-xi(45-19x[)) ¢ x22(3 1+6x2)(xi-1)2)
+a4(4(7-xi(16-7xi)) + X2(83-xi(174-83x1i)) + 5x22(16+5x2>(xi-1)2)
+2a6(x1- 1)2(x2 + D3)

- 8az'7(2 (1 + xj2) + 4x2(1 - xi(4 - xi)) + X22(4-X2)(xi-1)2
+a2(2(3 - Xi(8-3x 1)) ¢ 4x2(4 - xi(9-4xi)) + x22(13+3x2)(xi-1)2)

+2a4(xi-1)2(x2+1)3) )



Cc3 Single Bandstop APS Models

C3.1 2nd order Single Bandstop APS

M1
+h

d

Sl X< 1

-1<o< 1

Ztlaxl +0 (1 -X1)Z1-Z2 ,Z2=-1+0 (1 -Xj) Z*1+ XI Z'<
Overall transfer function

"«-ft-g

Group delay parameter

1 dH(2) 1(xIM" 1)(a -22z"1+q z"2)
H(z) du>

Gain/Phase coefficient sensitivity parameters

1 dH@) _(*2-00 -2qz1 22

H(z) dxj * zti zt2
1 iHM |0 -2m0(»1* =0
H(z) da ztj zt2

Group delay coefficient sensitivity parameters
(1 dH(2)\
yH(z) »+ dto )
JZ5 (@ + Z-4)A + X12) -2 a z-> (@ + 222)( - xj)2
+2z*%2 (a2(l - xj)y2-2*i)»

(a -22z"1¢a z'2(zti zt2) 2
f 1 dH(z)\

AH<~da da) = jx*'(x>2 *0 (zt>x*2)"2( *IC1 + z-6) -4 a z*3(l - xi)2
+z2(1 +z22)( 1+ xi(xi -3)+az2(l -*1)2))



Appendix C: Single Bandsop APS models page C/9

C3.2 4th order Single Bandstop APS

Limits
-1 <xi <0
-1<X2<1
-1<o< 1

ni o« 0 (X2(xi - 1) - 2xi) , N2 = -(xj - 1X*2 ¢ <2(x2 - D) . W=a (2 + X2(xj - 1))
Zti » xi moni z'l +1i22°2 + 03 2'3-2°4 , 22 = -1 + 13z*1+ U222 + nj z*3 + X\ z'4

Overall transfer function

Bi = zti
RO A a2
Group delay parameter
H%z) d;)()z) - jzl(xi2-1)(o -2Z*1+02'2)

(1 +z4)x2  2az*1(l + z*2)(l - X)
-2z"2(1- 02(x2 - D)) (zt1zt2) *

Gain/Phase coefficient sens

vity parameters

1 dH(2)

H(z)  dxi C (z*2 * 1) (I *2az** +2'2)
(d + z-4) + 2az*I(l + z-2)
- 22%2(x2 + 02(*2 - D)) (zli zt2)
1 dH(z) , P R o «
He) o 2*1 (z'2 - 1) (1-2az** + z*2)

(z-> -0) (az*1-1) (xi2-1) (zti zt2)" "'
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Group delay coefficient sensitivity parameters

(1 + z2'*)x2 « 20z*I(l + z'2)(x2 - 1) - 2z*2(] - a2(x2 - 1)))

(a +i-)(i +«2
-2az'(l v i-6)(2(1 + *i2) - X2(x 1 - 1>2)
< 22°2(1 + z-4) (x2(m - 1)2 - 02(3 - xi<2 - 3xi) - x2(3 - x2)(xi
+ 2az*2(l + 2'2)(4xi + X2(3 - 2x2)(x i - 1)2 - 2a2(xi - 1)2(x2 -
+ 2x'4( x22(xi - 1)2 - 2xi 8 2a2(x2(3 ¥ 2x2)(xi = )2 + 4xi)

v oo4(xi - 1)2(X2 - 1)2) )

1 dHiin

dx2 S JX'L(»12 - 1)(a ¥2x1 <az-2)(zti Z12)"2

(1 2'12)Xj . 6az-1(1 + z**0)xi

+a2z-2(1 + z-*)(1 + xi(12 + xi) ¢ X22(xi - 1)2)

- 20z'3(1 + z*6)( 1 - xi(3 - xi) + X22(xi - 1)2
+2a2(( 1+ xi)2 + X2TX2 - 1)(xi - 1)2) ~

+ z*4(1 + z'4)(1- xi(3 - xj) +x22(xi -1)2
+402(2(1 - xi(3 - xi)) - X2(3 - 2x2)(xi - 1)2)
+04(7 - xi(6 - 7Txi) - x2(12 - 7x2)(xi - 1)2) )

- 2az'5(1 ¢ z*2) (2(1 - xi(3 - xj)) - X2(3 - 2x2)(xi - 1)2
+202(4(1 - xi(3 - xi)) - x2<9 - 4x2)(xi - 1)2)
+ 3a4d(xi - 1)2(x2-1)2)

v o22'6(-2x2(xi - 1)2
+6a2(1- xi(3 - xi) - X2(3 - X2)(xj - 1)2)
+2a4(4 (1 - xi(3 - xi)) - X2(9 - 4x2)(xi - 1)2)

+a*(xi - D2(x2-1)2) )

page C/10

- h2))
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N(zl] 22) 2

(u + re,4)xix2 -d4az*1d + z“12)xi (x2 - 1)

-z2(1 + z*,0)(3xi(2 + X2) + x22(xi - 2
+a2(l4xi @x2( -«1(12 - x0> - x22<x2 - Dxi -D 2) )

+ 4az'3(1 + z-»)(4x| + x22(2 - x2)(xi - )2
-a2(x2 - DExi + x22(xi - 132) )

+ Z"40 + z"4)(10xi + x2<1 + X¥(9 + X]1)) - X22(1 - 3x2)(xi - 1)2
—a2(2(1+ xi(l+xi)) - 3x2(5-xi(4-5% i)) + X22(27- 17x2)(xt-1)2)
+ <a<x2 1 DQUtXi)2 + 5x2(x2 - DO !-1)2) )

- 4az*3( + z*4)(1-xi<1l1l-xj) - x2(5-x 1(3-5xi)) - 3x22(x2 - Dxi-1)2
+ 22202 - RE - xDG&i * D)
S04(xi - 1)2<x2 - 1)3)

+ 26 + z'2)(-2(1 +x 12) + X2(5-x 1(19-5x 1)) - X22(4+x2)(x 1*1)2
+2a2(-2(7-xi(19-7xi)) + 2x2(19-x i(43-19x,)) - X22<31-6x2)(x i-1)2)
+ 24(X2 1 1)(4(7 - xi(16 - 7x0) - 3x2(11 - 3x2)(xi - 1)2)
+2n6(X| - 1)2(x2 - 1)3)

+ 8az-7(2(1 + xi2) -4x2(1 - xi<4 - x0) & x22(4 -x2)(xi - D2
—o2x2 - D2 - xi(8 -3x0) - x2(10 - 3x2)&xi - 1)2)

- 2a4(xi - 1)2(x2 * D 2) )
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Group delay coefficient sensitivity parameters

(d 4 z'4)a m2Rz-*(14 2'2)0 4 a) 4 2z°2(1 4 R2(] 4 a)))

(d 4z'8)(l 4xi2) -2Rz-1(14 z-6)(2(1 * xi2) 4 Q(xi - 1)2)
4 22772(1 4 z4)(a(xi - 124 R2( 3(14 X12) 4 2X1 4 a(3 4 a)(l 4 X])2))
- 2R8z'3(1 + z°2)(a(3 + 2a)(l 4 xi)2 4 4xi 4 2B2(14 xi)2(1+a)2)
+ 2z'47a2(l +x|)2+ 2x) + 2B2(a(3 4 2a)(l 4 xi)2 + 4xi)

4 B4d 4 Xi)2(14 a)2) )

1 dHun

(d 4 z>2)x, . 6Rz->(1 4 z-'0)z,

eB22°2(1 4 z-»)(1 - x|(12 - xi) 4 a2(14 xi)2)

+ 282-3(1 4 2'6)( 14 xi(3 4 xi) 4 a2(l 4 xi)2
+ 2Bz((xi -1)2 + a(a 4 1)(1 4 xi)2))

-z'4(1 4 2'4)( 1+ xi(3 4 xi)d4a2(l +X])2
448221 4 xi(3 4 xi)) 4 o(3 4 2a)(1 4 xi)2)
4 B4(7 4 x1(6 4 7X1) + a(12 4 7a)(1 4 xi)2))

4 28z-5(1 4 z°2)(2(1 4 xi(3 4 xi)) 4 a(3 + 20t)(l 4 x|)2
4 2R2(4(1 4 X](3 4 xI>+a(9 + 4a)(l + XP2)
4 3R4(a 4 1)2(1 4 xi)2)

*« 2z*6(2ad 4 x1)2
+6R2(1* xi(3 4 >[)44(i 4a)(l 4xi)2)
42B4(4(1 4 xi(3 4 X1» 4 0(9 4 4a)(14 Xi)2)

4 Bi(1 4 a)2(1 4 X1)2))
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"1 dH(2)

9 W@t da)

1) (-. «2)

((1 + z*14)xio - 4Bz *(1 + z*I2)xi(l + o)
- z72(1 + z*,0)(3xi(o -2) +a2(l + xi)2
SB2(14xj +o(l + xJ(12 + xi)) -a2(l +a)(l +*1)2))
+ 4Rz*3(1 + z*8)(-4xi + 02(2 + a)(l + xi)2
+R2(1+0)(-4xi +a2(l +*1)2))

z-4(1 + z'6)(10xi +o(l - xi(9 -xj)) +02(] +3a)(l + xi)2
+RB2(2(1 - x1(1-x1)) + 30(5+xi(4+5x 1)) + 02(27+17a)(l+xi)2)
+B4U +a)(2(x, - )2 +5a(l +a)u + xi)2))

+ 4Rz"5(1 + z-4) (I+xi (1 +xi) + a(5+xi(3+5xi)) + 302(1+a) (1+xi)2
+2B2(1 + 0)2(2 + 30XI + xi)2
+ R4 + a)2d + xi)2)

-Rz-6(1 + z"2)(2(1+xi2) + a(5+xi(19+5xi)) + a2(4-0)(1+xi)2
+ 2B2(2(7+xi(19+7xi)) + 20(19+xj(45+19x i)) + 0 2(31+60 )(L+xi)2)
+RB4(l +a)(4(7 + x1<16 + 7xi)) + 50(I 1+ 50)( + xi)2)
+ 2B86(1 + 0)3(1 + xi)2)

+ 8Rz72(1 + xi2) + 40( 1+ xi(4 + xi)) + 0 2(4 -a)(1 + xi)2
+ B2 + a)(2(3 + xi(8 + 3xi)) + 0(10 + 3a)(l + xi)2)

+2R4(1+a)3(l +xi)2) )
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C4.2 8*h order Dual Bandpass APS

zti = xj + ni z"1+ T2 *** +n3z2'3+ nd z2'4 +ns 2’3 + Z® +n72z"2-2'8
zt2 * -1+ n7 z*1+n$ z'2 + ns z*3 + nd z'4 +n3 z"3 + N2 z‘®+ nj z*2 + xjz'8

"1 -RB(4x 1+ a(xi(2 + X2) « X2>)
n2*o( xi(2 + X2) - X2) +B2(xi(6 + X2) - X2

+30(Xj(2 ¢ X2) - X2) ¢ 02(x1- 1)(X2 + 1)°
n3*RA2x2( 1 - *i) - 3a(xi(2 + X2) - X2) - 202(xi - 1)(X2 + 1)~
- 2B3(1 ¢ a)(x 1<2 + X2) - X2 + a(xi - 1)(X2 ¢ 1))

n4 - (*1 *1)(B4 +20R2(3 +R2)+02( 1+ B2(4 +R2))
+x2((1+a2)(1+ B2(4 + B2)) + 2aB2(3 ¢ B2)))

s » —B(2x2(x1- 1) *3a(x2(l -xi)  2) ¢ 20 2(xi - 1)(x2 + 1)
¢ B2(2x2(xi-1) -4 + 20(2x2(x1-1) + xi -3) +202(xi-1)(x2+1)))
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n6*a(x2(*l *0*2)
+R2X2(*] - O *6+ 3a(x2(xi -0%2) +02(xi - 1)(*2 ¢ O°
n7*R(4+a(2-x2(xi-0)"
Overall transfer function
Hz) = 81 =il
Aj  zt2

Group delay parameter

H(lz) d;'((oz) =zl (xi2 - 1)(R - 2z%1* Rz*2)
((1 + z*4)» - 2Bz*'(1 + z*2)(1+ a)

+ 227201 + B2(1 +a))) (zli Zt2)" *

Gain/Phase coefficient sensitivity parameters

1 dH(2)

HE) dxi (z'2 - 1) (I -2Bz*1+ z*2)(zti zt2) 1

((1 + z*4) - 2Bz*1(1 + z*2)(l + a)+ 2z*2(a + B2(1 +a)))
(d + z*8) -2Rz“1<1 + z6)(2 + o(l + X2))
+ 2z2@A + z4)(a(l + X2)+ B2@ + X2 + a(l + *2)(3 + 2a)))
— 2823 + 2-2)(2x2 + o(1 + X2)(3 + 20) + 2R2(1 + X2)(1 + a)2)

4 22%(x2 + 02(1+X2) + 282(2x2 + a(I+X2)(3+2a)) + B4 +X2)( 1+0)2) J

fife f f - («.2-1) -m(>,-m - .)(*2+0 (> - * . 2)
B -zc*)(a -Bz-1(1 + a) + z-2)(1 -B*-1(1 + a) + az*2)
((1 + z*4) - 2Bz-1(1 + z*2)(1 + 0) + 2z*2(0o + B2(l + 0))) (zti zt2)

iife «*5“ - («.2m1)(p -.-m) n (Xx-2 -0(M-" -0(1 m2Bz*> ¢ z-2)

(zti Zt2)"1(x2(l + **8)
—2Rz"*(1 * Z'6)(a + X2(2 + 0))
+ 2272 + z4)(o(1 + X2) ¢ B2(1 + 3x2 + o(3 + o)(1 + X2)))
- 282*3(1 ¢ 2*2)(2 + a(3 + 2a)( 1+ X2) + 2B2(1 & X2)(I + a)2)
+ 2z 1+ 02(+x2) + 2B2@2 + 0(3+20) (1+x2)) + R4 +x2)(1+a)2) )
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'
sfe A 0 1-OC'!2")(«> “0 1

(t(d + z-4) - 2Bz“1(d + z*72)(1 + a) + 2z2(1 + B2(1 + a)))
(x2@ + z'8) - 282"*(1 + z6)(a + X2(2 + a))
+ 222 + Z'4)(a(1+ X2) + B2(1 + 3x2 + a(3 + a)(l + X2)))
- 2Bz°3(1 + z-2)(2 + a(3 + 2a)(l + X2) + 2B2(1 + X2)(I +a)2)
+ 2z'4( 1+ a2(1+x2) + 2B2(2 + o(3+2a) (1+X2» + R4(1+x2) (1+a)2})

Group delay coefficient sensitivity parameters
1 ,dH(Z)] ( 1 ,dH(z)V (dH (i)V P ILION
tH(z)  do) AH(z)  da) AH(z)  da) AH(@) ¢ doy 3
and
dx1 ’ dx2 ' da dB

d

have not been included within this Appendix due to their very large length and
complexity. If the equations for these parameters is required please contact the
author who will supply the Mathematica or Fortran code listings



C5 Dual Bandstop APS Models

C5.1 4*h order Dual Bandstop APS

"I« 0 (a(xi - 1) - 2xj) . "2 = -(*1 - I)(a + P2(<-1)) . 13=0 (2 +a(xi - 1))
zti » xi + ni Z71+n22z2'2+1M372*3-24 , zt2=-1+n3z*1+n2 z’2+nj z'3+ xj z'4

Overall transfer function

i _in
HE@ A T ozt2
Group delay parameter
1 dH
e dk)()Z) W izl (xi2 - 1)(0 -22% +02°2)

((1 + z'4)o + 20z*1(1 + z*2)(1-a)
- 2z"2(1-02(a - 1)) (ztj zt2)

Gain/Phase coefficient sensitivity parameters

1 dH(2)
H(z)  dxi o - h (1 -2pZ> e z2)
o T+ Zt) 4 2Pz (1 e 2-2)
S2zr2(a 4 02(a - 1) (g 2
1 dH() .
W) dal e i (z-2wij0.202%%22)

(z 1-0) (0> - @M m 1 - g (z152t2)
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((1I +z-«)o -2pz'" (1 + z-2)(a - 1)
-2z72(1 -P2(a - 1))) (ztl zt2) **

Group delay coefncient sensitivity parameters

((1 + z'4)o -2pz»(l + z*2)(a - 1) - 2z'2(1 - p2(o - 1)))
(d +z8)(l + X12)
- 2pz->(1 + z6)(2(1 + XI12) - ct(xi - 1)2)
2272 + z'4)ha(xi - 1)2-P2(3 - xi(2 - 3xi) -a(3 -a)(xi - 1)2))
+2p273(1 + 2%2)(4x i + a(3 - 20)(xi - 1)2 - 2p2(xi - 1)2(0 - 1)2)
+ 27%M 02(xi - 1)2 - 2xi - 2P2( 0 (3 - 2a)(xi - 1)2 + 4xi)

+PA(xi - 1)2(a - 1)2) )

1 dH(D)\
HZda dt°” - jr1(xi2 - 1)(p -2z'1+pz’2)(zti zt2) ‘2

((1 & z 12)xi - 6pz-»(l + z-*0)xi
+P2z-2(1 ¢ z'8)(1 + xi(12 + xj) +a2(xi -1)2)
- 2pz*3(1 + z*6)( 1 - xi(3 - xi) + 02(xi -1)2
+2p2((1+ xi)2 +a(a - 1)(xi -1)2) )

+ z74(1 + z¢4)(1- xi(3 -xi) +a2(xi -1)2
+4p2(2(1 - xi(3 - xi)) - 0(3 - 2a)(xi - 1)2)
+PA(T - xi(6 - Txi) - «(12 - To)(xi - 1)2) )

< 2pz-5(1 + 2'2) (2(1 - xi(3 - xi)) - a(3 - 20)(xi - 1)2
+2P2(4(1 - xi (3 - xi)) - 0(9 - 4a)(xi - 1)2)
+ 3P4(xi - 1)2(0 - 1)2)

+ 22'6(-20(xi - 1)2
+6p2(1 - xi (3 - xi) - 0(3 -a)(xi - 1)2)
* 2P4(4(1 - xj (3 - xi)) - 0(9 - 4a)(xi - 1)2)

+ P6(xi - 1)2(a -1)2) )
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A L A x-2
----- Jij--">» j 221 (»12 - 1) («] «2)
(tl +z*14)xio -4pz'1(l +z'12)xi(o - 1)
- z-2(1 + z->0)(3xi(2 +0) +a2(xi -1)2
+P2(l4xi +a(l-xi(12 -xi)) -a2(o - 1)(x1-1)2) )
+4pz'3(l + 2'8)(4xi +a2(2 -o)(xi -1)2
- P2(a - 1)(4x1+a2(x1-1)2) )
+ z'4(1 & z'6)( 10xi +o(l & *I1(9 +*I)) *°20 -3o)(xi -1)2
- P2(2( 1+xi(1+x1)) - 3a(5-xi(4-5xi)) +a2(27-170)(xi-1)2)
+p4(o - 1)(2(1 +xi)2 + 50(0 - 1)(X]-1)2) ~
- 4pz*5(1 + z'4)( 1-xi(ll-xi) - 0o(5-xi(3-5xi)) - 3a2(o - 1)(x1-1)2
+2p2(a - 1)2(2 - 3a)(xi - 1)2)
-P4(xi - 1)2(0 -1)3)
+2z6( +z-2)(-2(1+xi2) +a(5-xi(19-5xi)) - a2(4+0)(xi-1)2
+2p2(-2(7-xi(19-7xi)) +20(19-xi(45-19xi)) - a2(31-6a)(xi-1)2)
+P4(a - 1)(4(7 - xi(16 - 7xi)) - 50(1 1 - 50)(xi - 1)2)
* 2p6(xi - 1)2(0 - 1)3)
+ 8pz'7(2(l & xi2)-40(1-x1(4-xi)) +a2(4-0)(xj-1)2
-p2(o - 1)(2(3 - x1(8 - 3xi)) -0(10 - 3a)(x1-1)2)
- 2p4(xi - 1)2(0 - 1)2) )
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C5.2 8th order Dual Bandstop APS

A2 1+ wit+ mer2tns 2’3+ na 24 +n3 25 + n2 Z0ni 27 + xjz'8
ni « -p(4x1 + a(x 1 + X2) - X2>)
n2*°( x1(2 ¢ x2) - X2) + P2(xi(6 + X2) - X2
+3a(xi(2 + X2) - X2) + 02(xi - 1)(X2 + 1))
n3*pr2x2(l - xj) - 3a(xi(2 + X2) - *2) - 2a2(xi - 1)(x2 + 1)~
—2p3@ + a)(Xi(2 + X2) - X2 + a(xi - D2 + 1))
4 (i - 1)(p4 + 2ap2(3 + p2) + a2(1 + p2(4 + p2))
+ X2((1 ¢ a2)(1+ p2(4 + P2)) + 2aP2(3 + P2)))
ns = -p(2x2(xl - 1) - 3a(x2(1- xj) ¢ 2) ¢ 2a2(xi - I)(x2 + 1)

+P2(2x2(xi-1) -4 + 2a(2X2(x1-1) ¢ xj - 3) ¢ 2a2(xJ-1)02+ 1)))
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nég =o(x2(xi - 1) -2)
+P2( x2(m -1)-6+3a(x2(xi -1)-2) +a2(xi-I)(x2+ 1

n7=p(4+o0(2 -x2(xi - 1)"

Overall transfer function
o8, «i
H@ - A" 0
Group delay parameter

1 dH(2)

H@z)  dio Jz1(xi2 - D(p -2z-* + pz-2)

(@ + z4)a -2pz"1(l + z*2)(1 + a)
+2z'2(1+ P2(1 +a))) (zti zt2) 1
Gain/Phasc coefficient sensitivity parameters

I dH(2)

W@ dxi (22 - 1) (1-2pz**+ z°2)(zii z)" *

@ + z*4) -2Pz-1(1 + z-2)(1 + a)+ 2z"2(a + p2(1 + a)))

AL + z"8) -2pz-*(1 + z2"6)(2 + o(l + X2))
+ 22201 + Z4)(o(l + X2) + P2@B + X2 + o(1 + X2)(3 + 2a)))
-2pz-3(1 ¢ 22)(2x2 ¢ a( 1 + X2)(3 + 20) ¢ 202(1L + X2)(A + a)2)
+ 224(x2+ 02(1+x2) + 202(2x2 + a(1+X2)(3+2a)) ¢ pa(1+x2)(1+a)2))

jihie*2? - -0 e 0 (“-2m>)(>m *yme ¥ * D)
(p -z_1)(a -pz_1(1+0) mz"2)(l -pz-*(1 + a) +az"2)
@ + z"4) e 2pz*, (1 + z22)(1 + @) + 2z2(c + P2(1 + a))) (ztj z2) *

ini n o2 m0(9 mrmy w2 e 0(% 0 w0 (200 n 2

(»11 »12) '(«2<1 ¢ »m*)
-2Pz-,(1 + z6)(a + X2(2 + a))
+ 227201 + z4)(o(1 + X2) + P2(1 + 3x2 + a(3 + a)(1 + X2)))
«20z-3(L ¢ 22)(2 + 0(3 ¢ 2a)(1 ¢ X2) + 202<1 + X2)(1 # 0)2)

+ 21-4(1 & 02(U»2) ¢ 212(1 * 0(3*20 )(1-x2>) + P4(I+»2)(1+°)2))
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sis T - (ee*m«>(2.2 )(*«.»0’1

(od ¢ «<)-2P1 >0 t z-2)(1 + 0) + 2z"2<1 + P2(1 ¢ 0)))

21 + z8) -2Pz**(1 + z'6)(a + *2(2 + a))
+ 222 + z74)(o(l + 22) + P2(1 + 3x2 + a(3 + a)(l + X2>))
* 2pz-3(1 +z2>(2 ¢ a(3 + 2a)( 1+ x2) + 2P2(1 + x2)(I +0)2)
f2z-° (1 + a2(1+x2) ¢ 2p2(2 * 0(3+20)< 1+x2)) + Pa(l+x2)d*0)2))

Group delay coefficient sensitivity parameters

ft p djup I_1— dHiiT, -
j a”H(z)m do) ) O0IH(z)+ do) J ° 1H(z) » doi J

dxi

have not been included within this Appendix due to their very large length and
complexity. If the equations for these parameters is required please contact the

author who will supply the Mathematica or Fortran code listings



Appendix D

Lattice WDF APS Models

(Time domain)

This Appendix details the various time domain software models for the APS's
created for the design and analysis of the lattice WDF. Each APS is illustrated and
provided with a fortran listing of its software model along with the model for the
two-port adaptor upon which each APS is based. The time domain software models

contained in this Appendix are

(D)o Two-port adaptor model.

(D2) s s 1st and 2nd order lowpass APS models.

1st and 2nd order highpass APS models.

nd and 4th order single bandpass APS models.
nd and 4th order single bandstop APS models.
[(21:) P 4.h and 8th order dual bandpass APS models.
(D7) e e 4th and 8th order dual bandstop APS models.




D1 Two-port Adaptor Model

The source code for the two-port adaptor routine and the overflow and
quantization routines called within that routine are detailed within this section.
Global parameters for the internal signal length, overflow and quantization
strategies are defined within the supervisor program which calls the APS routines
in order to determine the time response.

subroutine twoport(Al,A2,coeff,BI,B2)

This routine mimics the action of a two-port adaptor. It accepts two input
signals, Al and A2 and a multiplier value, coef f, and then generates the
corresponding outputs, Bl and B2.

define common variables

lens ig is the signed bit length of all internal signals within the model
integer lensig
COMMON/gen3/ lensig

o0 000

C define external variables
double precision Al, A2, coeff, BI, B2

C define local variables
double precision suxnips
C Step 1, subtract the two input wave parameters, check for overflow,
C multiply by the coefficient and then quantize to the value to lensig.
sumips - A2 - Al
call overflow(sumips,lensig)
sumips - sumips»coeff

call quantize(sumips,lensig)

C Step 2, generate B2 and then check for overflows
B2 1 Al + sumips
call overflow(B2,lensig)

C Step 3, generate Bl and then check for overflows
Bl - A2 + sumips
call overflow(Bl,lensig)

return
end
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subroutine overflow(sigvalue,bitlen)

C This routine mimics of overflow in a finite wordlength system by limiting
C the signal level passed into the routine according to the overflow strategy
C defined and then returning this value.
C define common variables
C oflim it is the value above which an overflow is considered to have
C occurred, while the variable off lag is used to indicate if an overflow
C has occurred. The parameter oftype is the overflow strategy desired,
C selected from the options
C I s no precautions
C 2 m saturation arithmetic.
C 3 = zeroing arithmetic.
C 4 = 2’s complement arithmetic
integer oftype, offlag
double precision ofl it
COMMON/gen2/ oftype, offlag, of
C define external variables
integer bitlen
double prec on sigvalue
C define local variables
integer range
C Step 1, bitlen includes one bit for the sign so it must be removed for overflow
C calculations and the actual range stored in the parameter range,

range - bitlen -

C Step 2. compare input signal value level with overflow limit,
if ( abs(sigvalue) _It. abs(oflimit) ) then

C Step 3a, signal is within limit, return the original signal value.

else

C Step 3b, signal is outside or on overflow
if((abs(sigvalue) .eq.abs(ofl

mits, check if the signal is negative
t)) .and. (sigvalue.l1t.0)) then

C Step 4a, signal is within limit, return the original signal value.
else

C Step 4b, signal has overflowed, apply the desired overflow strategy
if( oftype .eq. 1 ) then

C Step 5a. no precautions, return original signal value and set overflow flag,
offlag “ 1

elseif (oftype .eq. 2 ) then

C Step 5b, saturation arithmetic, alter signal value and set overflow flag,
if( sigvalue .gt. 0 ) then
sigvalue _ sigvalue - 0.5**range
endif
offlag - 1
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elseif( oftype .eq. 3 ) then

C Step Sc, zeroing arithmetic, alter signal value and set overflow flag,
sigvalue 0
offlag m 1

elseif ( oftype .eq. 4 ) then

C Step 5d. 2’s complement arithmetic, alter signal value and set overflow flag,
sigvalue - mod(sigvalue,oflimit)
1

offlag -
else
write(*,*)'ERROR - no overflow type selected!’
endi
endif
endif
return
end

subroutine gquantize(datavalue,datalen)

C This routine mimics of quantization in a finite wordlength system by
C quantizing the value passed into the routine to the bit length passed
C into the routine with the specified quantization procedure. The
C resulting quantized value is then returned by this routine.
C define common variables
C qtype is the type of quantization required. The possible quantizing procedures
C are
C 1» rounding
C 2 s magnitude truncation
C 3 s value truncation

integer qtype

COMMON(/genl/ qtype
C define external variables

integer datalen

double precision datavalue
C define local variables

double precision range
C Step 1. check bit length is not zero

if( datalen .le. 0 ) then

write(*,*)'ERROR - data wordlength must be > 0'
else

C Step 2, since the bit length includes a sign bit it must be removed
C to calculate the maximum number range

range - 2.0**(datalen - 1)

C Step 3, switch to the desired quantization procedure
if( qtype .eq. 1) then

C Step 4a, rounding
datavalue m sign(1.0,datavalue)
# *aint(abs(datavalue)»range + 0.50001)/range
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elseif ( qtype .eq. 2 ) then
C Step 4b, magnitude truncation
datavalue - sign(1.0,datavalue)
« «aint(abs(datavalue)*range)/range
elseif (qtype .eq. 3 ) then

C Step 4c, value truncation

datavalue - -aint(-datavalue*range + 0.9999)/range
else
write(*,*)"ERROR - no quantization type selectedl
endif
endif
return

end

page D/5



D2 Lowpass APS M odels

D2.1 1st order Lowpass APS Model.

subroutine tLPsecl(valin, valout, delay,coeff)

integer MAXSIZEAPS, WAVESEC1
parameter (MAXSIZEAPS - 8, WAVESEC1 - 2)

(9]

define external variables
double precision valin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)

o

define internal variables
double precision a(WAVESECI), b(WAVESECI)

C Step 1, assign values from delay stack and valin to'a’ parameters
a - valin
a(2) - delay(1)

Step 2, call twoport routine to determine "b" for the two-port adaptor
containing the multiplier xi held in coeff (1)
call twoport(a(l),a(?,coeff(l), b<),b<2))

[eXel

C Step 3. assign output values to delay stack and valout parameters
delay(1) - b(2)
valout - b(D)

return
end
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D2.2 2nd order Lowpass APS Model.

o

o

[eXe)

[eXel

subroutine tLPsec2(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC2
parameter(MAXSIZEAPS - 8, WAVESEC2 = 4)

define external variables
double precision valin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)

define internal variables
double precision a(WAVESEC2), b(WAVESEC2)

Step 1, assign values from delay stack 'a’ parameters
a(3) =delay(l)
a(4) - delay(2)

Step 2, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier X2 held in coeff (2)
call twoport(a (3),a(4),coeff(2),b(3),b(4))

Step 3. assign values from new 'b' and valin parameters
a(l) - valin
a@ - b@E)

Step 4, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier xi orcoeff (1)
call twoport(a (1),a(2).coeff(l).b(l).b(2))

Step S, assign output values to delay stack and valout parameters
delay (1) - b(2)
delay(2) - b(4)
valout =b(l)

return
end



D 3 Highpass APS Models

D3.1 1st order Highpass APS Model

subroutine tHPsecl(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC1
parameter (MAXSIZEAPS - 8, WAVESEC1 - 2)

C define external variables
double precision valin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)

C define internal variables
double precision a(WAVESECI), b(WAVESECI)

C Slep 1, assign values from delay stack and valin to'a' parameters
) - valin
a(2) - -delay (1)

Step 2 call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier xi held in coeff (1)
call twoport (@(l),aQ),coeff (1),b(1),b(2))

[eXe)

Step 3, assign output values to delay stack and valout parameters
delay(l) - b<2)
valout - b(l)

return
end
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D3.2 2nd order Highpass APS Model

SfQ i.A

A, B

subroutine tHPsec2(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC2
parameter (MAXSIZEAPS - 8, WAVESEC2 - 4)

o

define external variables
double precision valin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)

C define internal variables
double precision a(WAVESEC2), b(WAVESEC2)

o

Step 1, assijgn values from delay stack to 'a’ parameters
a(3) - delay(1l)
a(4) - -delay(2)

Step 2, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier X2 held in coef f (2)
call twoport (a (3).a (4) ,coeff (2) .b(3),b(4))

[eXe)

C Step 3, assign values from new V and valin parameters
a(l) - valin
a2 - -b(@®)

Step 4, call twoport routine to determine ‘b’ values for the two-port adaptor
containing the multiplier xj held in coeff (1)
call twoport(a (1),a(2).coeff(1).b(l).b(2))

[eXe}

C Step S, assign output values to delay stack and valout parameters
b(2)

delay(l) -
delay(® - b(4)
valout - b(l)
return

end



4 single Bandpass APS Models

D4.1 2nd order Single Bandpass APS Model.

(o]

o

[eXe]

[eXel

A, B

subroutine tBPIsecl(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC2
parameter (MAXSIZEAPS - 8, WAVESEC2 - 4)

define external variables
double precision valin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)

define internal variables
double precision a(WAVESEC2), b(WAVESEC2)

Step 1, assign values from delay stack 'a’ parameters
a(3) - delay(l)
a(4) - -delay(2)

Step 2, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier a held in coef f (2)
call twoport(a(3).a(4),coeff(2),b(3).,b(4))

Step 3, assign values from new ‘b’ and valin parameters
a - valin
a2 - b@E

Step 4, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier xi held in coeff (1)
call twoport(a(l),a(2),coeff(1),b(1).b(2))

Step S, assign output values to delay stack and valout parameters
delay(1) - b(2)
delay(2) - b(4)
valout - b(l)

return
end
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D4.2 4th order Single Bandpass APS Model.

subroutine tBPlsec2(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC4
parameter(MAXSIZEAPS - 8, WAVESEC4 - 8)

C define external variables
double precision valin, valout, coeff(MAXSIZEAPS) 6 delay(MAXSIZEAPS)

o

define internal variables
double precision a(WAVESEC4), b(WAVESEC4)

C Step 1, assign values from delay stack 'a’ parameters
a (7) - delay(3)
a(8) - delay(4)

Step 2, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier a held in coef f (4)
call twoport(a(7),a<8),coeff(4),b<7),b(8))

[eXel

C Step 3. assign values from new V and valin parameters
a(3) - delay(1)
a(4) - delay(2)

Step 4. call twoport routine to determine 'b' values for the two-port adaptor
containing themultiplier a held in coeff (3)
call twoport(a(3),a(4),coeff(3),b(3),b(4))

[eXel

C Step 5. assign values from new 'b' and valin parameters
a<5) - -b(3)
a<6) - -b(7)
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Step 6, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier X2 held in coeff (2)
call twoport(a(5),a(6),coeff(2),b(5),b(6))

[eXe}

C Step 7, assign values from new V and valin parameters
all) - valin
a(2) - b(d)

Step 8, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier xi held in coe ff (1)
call twoport(a(l),a(2),coeff(1),b(1),b(2))

[eXel

C Step 9, assign output values to delay stack and valout parameters
b(2>

delay(2) - b<4)
delay(3) - b(6)
delay(4) - b(8)
valout - b(l)

return
end



D5 Single Bandstop APS Models

DS.I 2n<* order Single Bandstop APS Model.

R lu

S
+h

subroutine tBSisecl(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC2
parameter (MAXSIZEAPS - 6, WAVESEC2 - 4)

C define external variables
double precision valin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)
C define internal variables

double precision a(WAVESEC2), b(WAVESEC2)

C Step 1, assign values from delay stack 'a’ parameters
a(3) - delay(1)
a(4) - delay(2)

Step 2, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier a held in coe ff (2)
call twoport(a(3),a(4), coeff(2),b(3),b(4))

[eXe)

- va
a2) - b@

C Step(IS), assign values from new 'b‘ and valin parameters
a

Step 4. call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier xi held in coeff (1)
call twoport(a(l),a(2),coeff(),b(1),b(2))

[eXe)

C Step S. assign output values to delay stack and valout parameters
delay(l) - b(2)
delay(2) - b(4)
valout - b(1)

return
end
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D5.2 4th order Single Bandstop APS Model

o

(o]

[eXel

[eXe)

subroutine tBPIsec2(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC4
parameter(MAXSIZEAPS - 8, WAVESEC4 - 8)

define external variables
double precision valin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)

define internal variables
double precision a(WAVESEC4), b(WAVESEC4)

Step 1, assign values from delay stack to 'a’ parameters
a(7) - delay(3)
a(8) - delay(4)

Step 2, call twoport routine to determine 'b* values for the two-port adaptor
containing the multiplier a held in coef f (4)
call twoport(a(7),a(8).,coeff(4),b(7),b(8))

Step 3, assign values from new 'b' and valin parameters
a(3) - delay(1)
a(4) - delay(2)

Step 4, call twoport routine to determine ‘b" values for the two-port adaptor
containing the multiplier a held in coe ff (3)
call twoport(a(3),a(4),coeff(3),b(3),b(4))

Step 5, asslgn values from new 'b' and valin parameters
a<5> -
a() - b(7)
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C Step 6, call twoport routine to determine 'b' values for the two-port adaptor
C containing the multiplier X2 held in coeff (2)
call twoport(a(5),a(6),coeff(2),b(5),b(6))

C Step 7, assign values from new V and valin parameters
a(l) - valin
a(2) - b()

Step 8, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier xj held in coeff (1)
call twoport(a(l),a(2),coeff(1),b(l) ,b(2))

[eXe)

C Step 9, assign output values to delay stack and valout parameters
delay (1) - b(2)
delay(2) - b(4)
delay(3) - b(6)
delay(4) - b(8)
valout - b(l)

return
end



D6 Dual Bandpass APS Models

D6.1 4*h order Dual Bandpass APS Model.

o

o

[eXe)

[eXel

subroutine tBP2secl(valin, valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC4
parameter(MAXSIZEAPS - 8, WAVESEC4 - 8)

define external variables
double precision valin, valout, coeff(MAXSIZEAPS),

define internal variables
double precision a(WAVESEC4), b(WAVESEC4)

Step 1, assign values from delay stack to 'a’ parameters
*(7) - delay(3)
a(8) - delay(4)

delay (MAXSIZEAPS)

Step 2. call twoport routine to determine V values for the two-port adaptor

containing the multiplier 0 held in coeff (4)
call twoport(a(7).a(8),coeff(4),b(7),b<8))

Step 3, assign values from new 'b' and valin parameters
a(3) - delay(l)
a(4) - delay(2)

Step 4, call twoport routine to determine 'b* values for the two-port adaptor

containing the multiplier |J held in coeff (3)
call twoport(a(3),a(4),coeff(3),b(3> b (4))



Appendix D: Dual bandpass APS models page D/17
C Step S, assign values from new 'b' and valin parameters

a (5 3
Step 6, call twoport routine to determine *b' values for the two-port adaptor

containing the multiplier a held in coeff (2)
call twoport(a(5),a(6),coeff(2),b(5),b(6))

[eXe)

C Step 7, assign values from new b’ and valin parameters
a(l) - valin
a<2) - -b(5)

Step 8, call twoport routine to determine ’b’ values for the two-port adaptor
containing the multiplier x\ held in coeff (1)
call twoport(a(l),a(2),coeff(l),b(1),b(2))

[eXel

C Step 9, assign oulpul values to delay stack and valout parameters
delay(l) - b<2)
delay(2) - b(4)
delay(3) - b(6)
delay(4) - b(8)
valout - b(l)

return
end
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D6.2 8th order Dual Bandpass APS Model.

subroutine tBP2sec2(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC8
parameter(MAXSIZEAPS - 8, WAVESECO - 16)

o

define external variables
double precision valin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)

(o]

define internal variables
double precision a(WAVESEC8), b(WAVESEC8)

C Step 1. assign values from delay stack to ‘a’ parameters
a(15) - delay(7)
a(16) - delay(8)

Step 2, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier 0 held in coeff (8)
call twoport(a(15),a(16),coeff(8),b(15),b(16))

o0
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C

[eXe)

[eXe)

[eXe)

(o] [eXe) o [eXe] (9] [eXe)

[eXel

Step 3, assign values from delay stack to 'a’ parameters

11) - delay(5)
a(12) - delay(6)
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Step 4. call twoport routine to determine 'b' values for the two-port adaptor

containing the multiplier p held in coeff (7)
call twoporc(a(ll),a(12),coeff(7),b(11),b<12))

Step 5, assign values from delay stack to 'a’ parameters
a(7) - delay(3)
a(8) - delay(4)

Step 6, call twoport routine to determine 'b* values for the two-port adaptor

containing the multiplier p held in coeff (6)
call twoport(a(7),a(8),coeff(6),b(7),b(8))

Step 7, assign values from delay stack to 'a’ parameters
a(3) - delay(1)
a(4) - delay(2)

Step 8, call twoport routine to deIermine ‘b’ values for the two-port adaptor

containing the multiplier p held in coeff (5)
call twoport(a(3),a (4),coeff(5), b(3) b(4))

Step 9. assign values from new 'b' parameters
a(13) - -b(l
a(14)-—b(15)

Step 10, call twoport routine to determine 'b' values for the
containing the multiplier a held in coeff (4)
call twoport(a(13),a(14),coeff (4),b(13),b<14))

a(6) - -b(7)

Step 11, assign values from new ’b' parameters
a(s) - -b(3)

Step 12, call twoport routine to determine 'b* values for the
containing the multiplier a held in coeff (3
call twoport(a(5),a(6),coeff(3),b(5),b(6))

Step 13, assign values from new 'b' parameters
a9 b (5

a(10) - -b (13)

Step 14, call twoport routine to determine 'b' values for the
containing the multiplier X held in coeff (2)
call twoport(a(9),a(10)»coeff(2),b(9),b(10))

Step 13, asslgn values from new 'b' and valin parameters
a(l) - valin
a(2) - b(9)

Step 16, call twoport routine to determine 'b' values for the
containing the multiplier xj held in coeff (1)
call twoport(a(l),a(2),coeff(1),b(1),b(2))

two-port

two-port

two-port

two-port

adaptor

adaptor

adaptor

adaptor
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C Step 17, assign

delay (1)
delay(2)
delay(3)
delay(4)
delay (5)
delay(6)
delay (7)
delay(8)
valout

return
end

output values to de ay stack and valout parameters
bit»

b(4)

b(6)

b (8)

b(10)

b(12)

b(14)

b (16)

© b()



D7 Dual Bandstop APS Models

D7.1 4th order Dual Bandstop APS Model.

subroutine tBS2secl(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC4
parameter(MAXSIZEAPS - 8, WAVESEC4 - 8)

C define external variables
double precision valin, valout, coeff(MAXSIZEAPS), delay(MAXSIZEAPS)
C define internal variables

double precision a(WAVESEC4), b(WAVESEC4)

C Step 1, assign values from delay stack to 'a’ parameters
a(7) - delay(3)
a(8) " delay(4)

Step 2, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier P held in coeff (4)
call twoport(a(7),a(8),coeff(4),b(7),b(8)>

[eXel

C Step 3, assign values from new ‘b’ and valin parameters
a(3) - delay(1)
a(4) - delay (2)

C Step 4, call twoport routine to determine 'b' values for the two-port adaptor
C containing the multiplier p held in coeff (3)
call twoport(a(3),a(4),coeff(3),b(3),b(4))
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C Step 5. assign values from new 'b' and valin parameters
a(s) - b(3)
a(6) - b(7)

Step 6. call twoport routine to determine ‘b* values for the two-port adaptor
containing the multiplier a held in coeff(2)
call twoport(a(5),a(6),coeff(2),b(5),b (6))

[eXel

C Step 7, assign values from new ‘b’ and valin parameters
a(l) _ valin

a(2) - b(s)

Step 8, call twoport routine to determine 'b' values for the two-port adaptor
containing the multiplier xi held incoeff (1)
call twoport(a(l),a(2),coeff(l),b(l),b(2>)

[eXel

C Step 9, assign oulpul values to delay stack and valout parameters
delay( ) - b<2)
delay(2) - b(4)
delay(3) - b(6)
delay(4) - b(8)
valout - b(l)

return
end
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D7.2 8th order Dual Bandstop APS Model.

o

oo

subroutine tBS2sec2(valin,valout,delay,coeff)

integer MAXSIZEAPS, WAVESEC8
parameter(MAXSIZEAPS - 8, WAVESEC8 - 16)

define external variables

double precision valin, valout, coeff(MAXSIZEAPS),

define internal variables
double precision a(WAVESEC8), b(WAVESEC8)

Step 1, assign values from delay stack to 'a’ parameters
a(15) - delay(7)
a(16) - delay(8)

page D/23

delay(MAXSIZEAPS)

Step 2, call twoport routine to determine 'h‘ values for the two-port adaptor

containing the multiplier f) held in coeff
call twoport(a(15),a(16),coeff(8), b(lS) b(16))
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C

o0

[eXel

[eXel

o o0 (o] [eXel o [eXel

[eXel

Step 3, assign values from delay stack to 'a' parameters
a(ll) - delay(5)
a(12) - delay(6)

page D/24

Step 4, call twoport routine to determine V values for the two-port adaptor

containing the multiplier [3 held in coeff (7)
call twoport(a(ll),a(12),coeff(7),b(I1),b(12))

Step S. assign values from delay stack to 'a’ parameters
a(7) - delay(3)
a(8) - delay(4)

Step 6, call twoport routine to determine 'b' values for the two-port adaptor

containing the multiplier p held in coeff (6)
call twoport(a(7),a(8),coeff(6),b(7),b(8))

Step 7, assign values from delay stack to 'a’ parameters
a(3) - delay(1)
a(4) - delay(2)

Step 8, call twoport routine to determine 'b' values for the two-port adaptor

containing the multiplier p held in coeff (5)
call twoport(a(3),a(4),coeff(5),b(3),b(4))

Step 9, assign values from new 'b' parameters
a(13) - b(11)
a(14) - b(15)

Step 10, call twoport routine to delermine 'b" values for the
containing the multiplier a held in coeff (4)
call twoport(a(13),a(14),coeff(4),b(13),b(14))

Step 11, assign values from new ‘b’ parameters
a(s) - b(3)
a(6) - b(7)

Step 12, call twoport routine to determine 'b' values for the
containing the multiplier a held in coeff (3)
call twoport(a(5),a(6),coeff(3),b(S),b(6))

Step 13, assign values from new 'b' parameters
a@ - b
a(10) - b (13)

Step 14, call twoport routine to determine 'b' values for the
containing the multiplier X2 held in coeff (2)
call twoport(a(9),a(10),coeff(2),b(9),b(10))

Step 1S. assign values from new 'b' and valin parameters
a(l) - vali
a(2) - b(9)

Step 16, call twoport routine to determine 'b' values for the
containing the multiplier xi held in coeff (1)
call twoport(a(l),a(2),coeff(l),b(l1),b(2))

two-port

two-port

two-port

two-port

adaptor

adaptor

adaptor

adaptor
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C Step 17, assign output values to delay stack and valout

delay (1)
delay(2)
delay(3)
delay(4)
delay(5)
delay (6)
delay(7)
delay (8)
valout

return
end

b (2)
b (4)
b (6)
b(8)
b (10)
b <12)
b (14)
b (16)
b (1)

parameters
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