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Abstract 

Attempts have been made to prepare new polymer supported and maleimide functionalised 

ruthenium catalysts for asymmetric transfer hydrogenation. Synthetic approaches were 

found to be challenging but did lead to the development of a series of complexes containing 

the para-Iodobenzenesulfonyl group, which may potentially serve as a handle for future 

functionalisation. 

 

The arene exchange route to tethered complexes as previously published by Wills et. al. has 

been refined in an attempt to improve reliability. The practical challenges of carrying out 

the reaction and especially purifying the resulting complexes are discussed and the use of 

molecular sieves as a trap for free hydrogen chloride gas is recommended. 

 

 

 

Known tethered complexes reported by Wills have been applied to the reduction of electron 

rich ketones, containing oxygen or nitrogen substituents on their aromatic rings. Such 

ketones are relatively unreactive and require higher temperatures and extended reaction 

times, however in most cases the chiral alcohols could still be obtained with good yield and 

enantioselectivity. The choice of solvent/hydrogen donor is shown to be important and 

substrate dependant. 

. 

Finally, reduction of β-chloropropiophenone to the dehalogenated chiral alcohol prompted 

an investigation into the reductions of enones with tethered catalysts. Selectivity between 

1,4- and 1,2- reduction products is shown to be strongly substrate dependant but can also 

be influenced by the choice of catalyst, with the recently developed methoxy tethered 

catalyst demonstrating an increased preference for 1,4- reduction in all cases. 



4 

 

1 Introduction 

1.1 Chirality and Asymmetric Synthesis 

A chiral object is one that cannot be superimposed upon its own mirror image, such as a 

human hand. An achiral object has at least one plane of symmetry such that its mirror images 

are superimposable. Indeed chiral objects are often referred to as right or left handed to 

distinguish the otherwise identical mirror images. 

The most common form of chirality in organic chemistry is a chiral centre, an atom bound to 

four different atoms or functional groups. One chiral centre gives rise to two possible mirror-

image isomers, known as enantiomers. These may be identified using the Cahn-Ingold-Prelog 

(CIP) notation which is based on the relative priority of functional groups arranged around 

the chiral centre, as illustrated in Figure 1.4,5 

 

Figure 1: (R) and (S) enantiomers of salbutamol, a common asthma drug. CIP numbering 
shown. 

1.1.1 Chirality in Nature 

Chiral molecules are ubiquitous in nature; proteins, carbohydrates and DNA are all 

constructed from chiral building blocks such as those shown in Figure 2. Naturally occurring 

amino acids such as 2 exist in the L-configuration, and this means that the enzymes and 

receptors they form are all also chiral and of a single handedness in themselves. The chiral 5 

membered sugar in nucleosides such as 3 contributes to the highly organised overall 

structure of DNA. 

1 1 
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Figure 2: Chemical structures of chiral natural building blocks L-Leucine and 
Deoxyadenosine.*  

Binding sites in natural macromolecular structures formed from such chiral building blocks 

will interact optimally only with the correct configuration of substrate, in the same way that 

a left hand fits well only in a left handed glove. As a result pharmaceutical and agricultural 

chemicals generally need to be produced as one specific enantiomer. For example, (S,S)-

ethambutol 4 is an inexpensive drug for tuberculosis included on the World Health 

Organisation’s list of essential medicines, while its enantiomer (R,R)-4 is both 200 times less 

active and may cause blindness.6,7 

 

Figure 3: Structure of (S,S)-ethambutol 

1.1.2 Distinguishing Enantiomers 

Enantiomers consist of exactly the same set of atoms with identical connectivity, and as such 

have identical physical and chemical properties. However they can be distinguished by their 

interaction with plane polarised light traveling through a solution, which can be measured 

using a polarimeter. For each pair of enantiomeric molecules, one enantiomer will rotate the 

plane of polarisation clockwise (+), while the other will rotate the plane by the same amount 

anticlockwise (-). Equation 1 shows the equation for the calculation of specific rotation.  

                                                           

* D and L-configuration is an antiquated notation still in common use for saccharides and amino acids 
that refers to a compounds relative stereochemistry compared to L-Glyceraldehyde.4 

3 2 

4 
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[𝛼]𝜆
𝑇 =

𝛼

𝑙𝑐
 

Equation 1: Calculation of specific rotation from measured optical rotation. α = optical 
rotation, l= path length in dm, c=concentration in g cm-3. T = temperature in °C, λ = 

wavelength of plane polarised light. 

A molecule with n chiral centres may have up to 2 (n-1) distinguishable pairs of enantiomers, 

in which the relative configurations of chiral centres differ between each of these pairs. 

These pairs of stereoisomers are known as diastereomers and owing to their varied 

structures these may differ in their chemical and physical properties in much the same way 

as regioisomers.  

  

Figure 4: An example set of two diastereomeric pairs of enantiomers.  

1.1.3 Mixtures of Enantiomers 

While many compounds originating from biological sources are isolated as single 

enantiomers, it is more common for synthetic production of chemicals to produce a mixture. 

A racemic mixture contains a 1:1 ratio of enantiomers and induces no optical rotation; 

effectively the rotation due to each enantiomer is cancelled out by the other. Common 

reactions such as alkylation or reduction of achiral starting materials, whilst creating new 

chiral centres, will produce racemic products such as 7 when there is no chiral controlling 

influence in the reaction (Scheme 1). 
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Scheme 1: Chemical reactions commonly create a chiral centre but in racemic form 

A scalemic mixture is any mixture of enantiomers not in a 1:1 ratio. Most practical syntheses 

of chiral molecules produce a scalemic mixture rather than a pure enantiomer, and as such 

the ratio of enantiomers should be measured and reported. Historically this was done by 

measurement of the optical purity, which is the percentage ratio of specific optical rotation 

of the scalemic mixture with that of an enantiomerically pure sample. An optical purity of 

80% theoretically implies that 20% of the sample is racemic and 80% is a single enantiomer, 

i.e. there is an 80% enantiomeric excess (ee), or a 9:1 enantiomeric ratio (er). However 

optical purity is not a reliable measure of ee, as the specific optical rotations measured are 

highly sensitive to sample purity and often non-linear in their response to changes in 

concentration.8 Reference values reported in the literature often vary over a wide range for 

similar reasons. 

𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑃𝑢𝑟𝑖𝑡𝑦 = 100 ×
[𝛼]𝑠𝑎𝑚𝑝𝑙𝑒

[𝑎]𝑠𝑖𝑛𝑔𝑙𝑒 𝑒𝑛𝑎𝑛𝑡𝑖𝑜𝑚𝑒𝑟
 

Equation 2: Definition of Optical Purity. α = measurement of optical rotation. 

In the scientific literature, asymmetric preparations of compounds are often compared by 

the ee of the products produced. Expressed as a percentage, ee can be calculated from the 

mole fractions of major and minor enantiomers (Equation 3), which are directly measured 

by chiral chromatography or other analytical methods. 

𝑒𝑒 = 100 ×  
𝑥𝑚𝑎𝑗𝑜𝑟 − 𝑥𝑚𝑖𝑛𝑜𝑟

𝑥𝑚𝑎𝑗𝑜𝑟 + 𝑥𝑚𝑖𝑛𝑜𝑟
 

Equation 3: Calculation of enantiomeric excess from mole fractions of enantiomers. 

1.1.4 Separation of Enantiomers 

1.1.4.1 Resolution 

Single enantiomers may simply be isolated from their racemic mixture by resolution. 

Classically this is achieved by forming a pair of diastereomeric salts between the substrate 

5 6 7 
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enantiomers and a stereochemically pure resolving agent. These salts are separated by 

crystallization, taking advantage of the differing solubility of the diastereomeric pairs. 

Scheme 2 illustrates the resolution of racemic trans-diamine ligand 8, which was prepared 

by diastereoselective reductive amination of a benzil derivative. The desired (S,S) enantiomer 

was isolated by classical resolution using (R,R)-tartaric acid 9.9 

  

Scheme 2: Optical resolution of enantiomers of racemic trans-diamine 8 

Classical resolution may allow the use of cheap achiral reagents in the synthesis, but 

introduces up to three additional steps; reaction with the resolving agent, separation, and 

removal of the resolving agent. It also requires the substrate to have suitable acidic or basic 

functionality, or be modified in order to be able to react with the resolving agent.  

Kinetic resolution is a related method in which the difference between rates of reaction of 

enantiomers with a chiral reagent is exploited. One enantiomer of a mixture will react faster 

with the resolving agent, while under optimal reaction conditions and timing the other 

enantiomer will remain unchanged. Separation of the two enantiomers therefore becomes 

a question of separating two distinct compounds and can be done by any conventional 

method such as chromatography, crystallization, extraction etc.  

(R*,R*)-8 

(R,R)-9 
(R,R)-8 · (R,R)-9 

Soluble 

(S,S)-8 · (R,R)-9 

Crystalline 
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Scheme 3: Kinetic resolution of Davies iron acyl complexes with Camphor 

Scheme 3 illustrates an example. A racemic mixture of Davies iron acyl complex 

[FeAc(CO)Cp(PPh3)] 11 can be kinetically resolved by reaction with naturally occurring (R)-

camphor, yielding the (S)-camphor adduct 10 by aldol reaction and unreacted (R)-11.10 Pure 

(S)-11 can then be obtained by a reverse aldol reaction, allowing access to both enantiomers. 

Kinetic resolution is useful when diastereomeric salts cannot easily be formed due to a lack 

of acidic or basic functionality in the starting material. 

1.1.4.2 Chiral Chromatography 

An alternative to classical resolution on small scales is chiral chromatography. Here the 

stationary phase is coated with or covalently bonded to a chiral agent, commonly a 

carbohydrate derivative. As the mixture of enantiomers passes through the column, each 

will have a different interaction with the chiral stationary phase and hence their retention 

time on the column will differ. This approach is extremely common for analytical purposes, 

in order to quantify the ratio of enantiomers in an asymmetric mixture. However the chiral 

stationary phase is costly, and at large scale preparative chromatography requires very 

efficient solvent recycling processes to be economical.11 

Both resolution and chromatography are wasteful, at most half of a racemic mixture can be 

recovered as the desired enantiomer. However if both enantiomers are required in their pure 

form then separation becomes a very attractive option. 

11 

11 11 

10 
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1.1.5 Preparation of single Enantiomers 

1.1.5.1 Chiral Pool method 

An obvious alternative to racemic synthesis and separation is to directly prepare the desired 

product as a single enantiomer. This is often achieved by starting from a commonly available 

natural product that already has the correct stereochemistry present. Assuming the reaction 

conditions do not lead to racemisation this can be an extremely effective route and is often 

the first considered option for scale up synthesis. However the primary disadvantage is that 

the natural product starting material is frequently only available as a single enantiomer, 

meaning that only one enantiomer of final product may be accessible. For example the (S,S) 

configuration of ethambutol 4 described earlier can be prepared in four steps from naturally 

occurring amino acid L-methionine 12.12  

 

Scheme 4: Chiral pool synthesis of (S,S)-ethambutol with retention of chiral centres 

1.1.5.2 Stereoselective reactions. 

An initial chiral centre need not remain unchanged throughout a synthesis. In a 

stereoselective reaction, one chiral centre in a substrate controls the creation of one or more 

additional chiral centres in the reaction product. For example, in the Hoffman-La Roche 

industrial synthesis of oseltamivir 16, two of the three chiral centres in naturally occurring 

(R,S,R)-shikimic acid 15 are inverted in an absolute sense, giving the (R,S,S) configuration of 

16 selectively.13 

14 

13 12 

4 
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Scheme 5: Stereoselective chiral pool synthesis of oseltamivir (Tamiflu) from shikimic acid. 

1.1.5.3 Chiral auxiliaries 

Stereoselective synthesis can also be performed when there is no suitable chiral centre in 

the required starting substrate. Chiral auxiliaries are single enantiomers with a reactive 

functional group that allows addition to a substrate. The auxiliary-substrate complex 

undergoes a stereoselective transformation before the auxiliary is removed. Scheme 6 

demonstrates how a homologue of iron complex 11 described earlier can be used to control 

the synthesis of ACE inhibitor captopril 21.14 Auxiliary 17 controls an enolate alkylation to 

intermediate 18, after which it acts as a leaving group for amidation with proline derived 

ester 19. Amide 20 is then simply deprotected to yield 21. 

 

Scheme 6: Synthesis of Captopril using a chiral auxiliary approach. 

A theoretical alternative route to protected intermediate 20 via a stereoselective alkylation 

of amide 22 is explored in Scheme 7. While this route would bypass the need for a chiral 

auxiliary, it is not guaranteed to be effective. In practice the presence of a chiral centre of 

correct configuration is necessary but not sufficient for a stereoselective reaction. 

Conformational rigidity and size of substituents both strongly affect the ability of one chiral 

15 16 

21 20 

19 
18 17 
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centre to influence another; a chiral centre with small or flexible groups will not enforce a 

significant energy difference between diastereomeric transition states of reaction. This 

requirement for effective “transfer” of chirality requires careful design of chiral auxiliaries 

and limits the scope of stereoselective reactions.  

 

Scheme 7: Ineffective diastereoselective alkylation of intermediate amide. 

1.1.5.4 Chiral reagents. 

In some cases it is possible to use a chiral reagent, which performs a stereoselective reaction 

without its own chiral centre(s) being incorporated into the reaction product. Scheme 8 

illustrates an example of stereoselective deprotonation of prochiral cyclohexanone 23 with 

a chiral lithium amide base.15 The (R)-enolate formed is isolated immediately as the 

trimethylsilyl enol ether 24 to prevent racemisation. 

 

Scheme 8: Example of a chiral lithium amide mediated enolate formation 

1.1.6 Summary 

Preparation of stereochemically pure compounds and measurement of mixtures of 

stereoisomers are crucially important in organic chemistry, especially in the production of 

fine chemicals in the pharmaceutical and agrochemical industries. Several methods for 

20 22 

23 24 
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separation of enantiomers or production of single enantiomers via chiral pool and chiral 

auxiliary approaches exist, each of which may be appropriate in different circumstances.  

However, most research in asymmetric synthesis in recent times has been directed towards 

developing asymmetric catalysts, which have the advantage of being able to produce many 

equivalents of chiral product for each chiral precursor used.   

1.2 Asymmetric Catalysis 

IUPAC defines a catalyst as a substance that accelerates the rate of a chemical reaction 

without changing the overall standard Gibbs free energy change of the reaction.4 In principle 

the catalyst is both a product and reactant, and is not itself permanently changed during the 

course of the reaction. While this is not a fundamental part of the definition of a catalyst, 

frequently a single mole of catalyst is able to promote the reaction of many moles of 

reagents. The number of conversions achieved is defined as the Turnover Number (TON). 

Such catalysts are used at lower stoichiometry, with the catalyst loading being defined by 

the substrate : catalyst ratio (S/C). 

Figure 5: Example simplified free energy plot for uncatalysed and asymmetric 
hydrogenation of ketones. The energy difference between catalysed and uncatalysed 

barrier heights is not drawn to scale and would be much larger in reality. 

An asymmetric catalyst is enantiomerically pure, and when controlling a reaction between 

achiral substrates this leads to diastereomeric transition state complexes (F/G, Figure 5) that 

differ in energy for each of the possible product enantiomers (B/C). This results in a lower 

activation energy for formation of G and the difference in transition state free energies can 

be used to calculate the product distribution according to Equation 4. Crucially the free 
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energies of final products B and C are equal, therefore an asymmetric catalyst operates by 

kinetic rather than thermodynamic control. 

∆𝐺‡ = 𝑅𝑇 ln(𝐾) 

Equation 4: Relationship between free energy (ΔG‡) and ratio of reaction rates (K) for 
diastereomeric transition states.  

It can be seen that while small absolute energy differences will introduce moderate 

asymmetric induction, to increase the product ee close to 100% requires an exponential 

increase in the energy difference between the two transition states (Table 1). 

Table 1: Free energies and enantiomeric excesses for given ratios of enantiomers. 

er ee ΔG‡ / kJ mol-1 

1 : 1 0 0.00 

1 : 3 50 2.72 

1 : 9 80 5.45 

1 : 49 96 9.65 

1 : 199 99 13.12 

 

Figure 6: Relationship between ee and ΔG 
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1.2.1 Features of a Good Asymmetric Catalyst. 

Asymmetric catalysts at laboratory scale are primarily compared by the extent of asymmetric 

induction they produce; as measured by the ee or er of the final product. However other 

factors to be considered include cost, activity (often compared by the S/C ratio or TON at 

larger scale, and the reaction rate), selectivity (ability to discriminate between reactive sites 

in the substrate and react with the preferred site) and robustness (how sensitive the catalyst 

is to changes in reaction conditions, impurities, or contaminants such as air or water). These 

factors can become much more important when working on a large scale and result in the 

selection of a catalyst with lower asymmetric induction but otherwise superior properties, 

on the basis that the enantiopurity of the final product can often be upgraded through 

crystallization. 

1.2.2 Catalytic Hydrogenation. 

Heterogeneous racemic hydrogenation of organic compounds over metal catalysts has been 

known since the end of the 19th century, when Paul Sabatier discovered the catalytic 

properties of finely divided nickel.16 This was the first direct hydrogenation method and since 

then a wide variety of metals including nickel, iron, platinum, palladium and more have been 

used.17 However, the chirality required for an asymmetric hydrogenation (AH) is hard to 

incorporate into a heterogeneous catalyst. It would take until the mid-20th century for the 

first effective homogenous catalysts to be developed,18 such as Wilkinson’s rhodium complex 

25 which was effective for alkene reduction (Scheme 9).19 Loss of a labile PPh3 ligand is 

followed by oxidative addition of the Rh(I) complex into dihydrogen. Coordination to the 

alkene substrate forms a coordinatively saturated octahedral complex, and migratory 

insertion across the alkene double bond followed by reductive elimination recycles the 

catalyst and yields the reduced alkane. 
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Scheme 9: Catalytic cycle for alkene hydrogenation with Wilkinson’s catalyst. L = PPh3 

1.2.3 Asymmetric Hydrogenation 

A simple logical step in the design of an asymmetric reaction was to replace the achiral PPh3 

ligands in 25 with chiral phosphines. Scheme 10 illustrates an early example from Knowles 

utilising methylpropylphenylphosphine 28 was capable of a slight asymmetric induction in 

the reduction of 2-phenylacrylic acid 26.20 

 

Scheme 10: Asymmetric reduction with a chiral phosphine, product ee is 15% 

This served as proof of principle and gave rise to one of the key concepts in AH; the 

importance of matching chiral ligand and substrate to create significant asymmetric 

induction. A wide range of chiral phosphine ligands were developed shortly afterwards, 

leading to the discovery of the bidentate DiPAMP ligand 31 and its application to the 

Monsanto industrial synthesis of L-DOPA (Scheme 11).21,22 

28 

25 

26 27 
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Scheme 11: Key AH step in an industrial process for L-DOPA, used for treatment of 
Parkinson’s disease. S/C ratios up to 20,000:1. Global deprotection yields L-DOPA. 

Chelate ligands such as 31 have two key advantages for asymmetric catalysis. Their multi 

point attachment makes complexation more entropically favourable, making them less likely 

to dissociate. Secondly, they are much less conformationally flexible, being unable to rotate 

about their metal-ligand bonds, and this creates a well-defined chiral environment that 

increases the likelihood of a strong transfer of chirality from the ligand to the substrate in 

the transition state. 

1.2.3.1 AH: a Modern Example 

Asymmetric hydrogenation has been one of the most successful applications of asymmetric 

catalysis. A wide variety of unsaturated substrates including alkenes, ketones, imines etc. can 

be reduced selectively to give one enantiomer, and as AH can be optimised to perform at 

extremely high S/C ratios it can be suitable for large scale industrial processes.  

 

Scheme 12: Efficient asymmetric hydrogenation of imine 32 at 200,000:1 S/C 

One example from towards the end of the 20th century comes from the application of an 

iridium bis-phosphine catalyst to AH of imine 32 (Scheme 12).23 This process produces a key 

32 33 

31 

29 30 
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intermediate 33 in the production of (S)-Metolachlor at very low catalyst loading, such that 

0.05 mol of Ir is used to produce 10,000 mol of amine.  

1.2.4 Transfer Hydrogenation. 

Catalytic hydrogenation (CH) processes traditionally utilise pressurised hydrogen gas directly 

as the source of hydrogen for reduction. Greater pressures of H2 generally lead to faster 

reductions and allow lower catalyst loadings but require specialised equipment. In transfer 

hydrogenation (TH), use of a liquid or solid phase hydrogen donor in place of hydrogen gas 

can circumvent this problem. As with CH, a catalyst is required to remove hydrogen from the 

donor and transfer it to the substrate at reasonable rate, while the oxidised by-product from 

the donor must be easily separable and non-reactive. 

 

 

Scheme 13: Mechanism of the Meerwein-Ponndorf-Verley, the first example of a transfer 
hydrogenation reaction.   

In 1925 the first such TH was developed in the form of the Meerwein-Ponndorf-Verley (MPV) 

reaction, which utilised an aluminium isopropoxide catalyst 34 to transfer hydrogen from 

34 
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isopropanol (IPA) to ketones or aldehydes.24 The key step in the proposed catalytic cycle is 

hydride transfer from alcohol to ketone via a six membered cyclic transition state (Scheme 

13). 

A more recent asymmetric example of the MPV reduction replaces 34 with AlMe3 and a chiral 

bidentate BINOL ligand 35 (Scheme 14). This system achieves reasonable enantioselectivity 

in reduction of alpha-chloroacetophenone but is sensitive to the nature of the alpha 

functional group; acetophenone itself is reduced in only 30% ee.25  

 

Scheme 14: Asymmetric MPV reduction. X= Cl: 99% yield, 80% ee. X= H: 54% yield, 30% ee. 

MPV reduction was largely replaced in the mid-20th century by the development of the 

commonly used metal hydride reagents NaBH4 and LiAlH4. Though not catalytic, these 

reagents provide a simple and convenient method for racemic reduction of a wide variety of 

carbonyl and other unsaturated compounds.26 However they are not without their own 

disadvantages; often a large excess of hydride reagent must be used, the resulting salts 

(especially for aluminium hydrides) can cause difficulties during work-up, and crucially these 

reagents do not easily lend themselves to use in asymmetric reductions. 

1.2.5 Summary 

Hydrogenation has been one of the first and most successful applications of catalysis and 

many important advances were made in this area in the 20th century. The development of 

homogenous rhodium complexes allowed the first practical AH catalysts to be designed by 

ligand optimisation. Following this work, the discovery of several catalytically active Ru(II) 

complexes by Noyori had a significant further impact on the field.27 

35 
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1.3 Ru(II) Catalysis of AH and ATH 

Several of the following AH catalysts described in the next section are based on the axially 

chiral BINAP ligand (36) which was first synthesised in 1980. Preparation of a specific 

enantiomer would be challenging but both enantiomers of 36 are useful, so the original 

procedure was based on resolution by complexation with a chiral palladium complex.28 

 

Figure 7: Left: (S)-BINAP. Right the Pd complex used to resolve racemic BINAP. 

1.3.1 Asymmetric Hydrogenation with Ruthenium Catalysts 

1.3.1.1 Alkene Hydrogenation with [Ru(BINAP)Carboxylate]  

In 1986 Noyori et. al. reported the ruthenium carboxylate complex 38 was effective for AH 

of N-acyl-1-alkylidinetetrahydro-isoquinolines.29 For example (S)-salsolidine 40 could be 

prepared from enamide 39 by hydrogenation and deprotection (Scheme 15). 

 

Scheme 15: ATH of tetrahydroisoquinolines with Λ-(S)-38, ee 96% for 40. 

39 40 

38 

36 37 
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Shortly afterwards, complex 38 was found to be capable of AH of various functionalised 

olefins, such as allylic and homoallylic alcohols,30 and unsaturated carboxylic acids.31 In the 

latter case this was applied to the direct preparation of (S)-naproxen 42 from the alkene 

precursor 41 (Scheme 16). 

 

Scheme 16: Synthesis of (S)-naproxen by AH with Λ-(S)-38. 92% yield, 97% ee. 

1.3.1.2 Activated Ketone Hydrogenation with [Ru(BINAP)X2] 

In an attempt to extend this AH methodology to reduction of ketones, Noyori et. al. screened 

a variety of Ru complexes in the reduction of methyl-3-oxobutanoate.32 Carboxylate complex 

38 was ineffective, however replacing the carboxylate ligands with halides by reaction with 

HCl gave a poorly defined catalyst with the empirical formula [Ru(BINAP)Cl2] 43. This catalyst 

was found to be generally effective in AH of β-keto esters. Methyl 3-oxobutanoate 44 was 

reduced to the corresponding 3-hydroxybutanoate 45 in 99% ee with an S/C ratio of 2000 

(Scheme 17).  

 

Scheme 17: β-keto ester hydrogenation 

Both ketone and ester functionalities in 44 are required to bind to the catalyst before 

hydrogen transfer can take place.33 Enantioselectivity is controlled by delivery of hydride to 

one face of one of the possible diastereomers formed by substrate chelation. The mechanism 

is described in Scheme 18, assuming a monomeric catalyst formed by coordination of solvent 

molecules or similar. 

45 44 

41 42 
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Scheme 18: Mechanism of AH of β-keto esters by Ru(BINAP)carboxylate complex 38. L = 
unspecified solvent ligand. Atoms on the diphosphine ligand backbone have been omitted 

for clarity. 

1.3.1.3 Simple Ketone Hydrogenation with [Ru(BINAP)(Diamine)X2] 

Catalysts 38 and 43 were still ineffective for reduction of simple ketones, such as 

acetophenone 47, which lack an additional directing group. However combining the 

monomeric DMF complex of catalyst 43 with chiral diamines gave a new class of catalyst 

[RuCl2(BINAP)(diamine)] (46) capable of reducing 2-acetonapthone 48 in 95% ee and 

acetophenone 47 in 87% (Scheme 19).34 These transformations took place in basic 

isopropanol, although deuterium labelling experiments verified that H2 was the hydrogen 

source and not isopropanol. A variety of diamine ligands were effective, including (S)-DAIPEN 

51 and the C2 symmetric ligand (S,S)-DPEN 52 
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Scheme 19: Above: Reduction of simple aromatic ketones with Ru-BINAP-Diamine complex 
46. Below: Diamine ligands for Ru-BINAP-Diamine hydrogenation. 

The diamine ligand is crucial to the reactivity of this system. Scheme 20 shows the proposed 

mechanism for ketone reduction with catalyst 46.35 A nitrogen transfers a proton to the 

ketone oxygen atom, whilst the ruthenium transfers H- to the carbonyl carbon, all within a 

single concerted process. In contrast with the dihalide catalyst 43, hydrogenation takes place 

in acidic alcohol solvent generated during the catalyst activation stage. H+ is continually 

replenished in the system by heterolytic fission of H2 during catalyst regeneration. 

Importantly, the ketone substrate is never required to co-ordinate directly to ruthenium in 

this catalytic cycle. Instead hydrogen is transferred directly from the metal centre and the 

ligand amine group to a loosely associated substrate molecule. This “outer-sphere” 

mechanism allows the BINAP/diamine catalyst to reduce simple ketones without directing 

groups. 

51 52 

47: n=0 

48: n=1 

49: n=0 

50: n=1 
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Scheme 20: Catalytic cycle for ketone reduction by Ru-BINAP-Diamine complex 46. Atoms 
on the diphosphine and diamine ligand backbones omitted for clarity. 

Stereochemical control is dependent on the orientation of the ketone as it approaches the 

catalyst.36 The carbonyl carbon approaches directly above the ruthenium centre in line with 

the hydride. The oxygen then aligns above the amine group with an axial hydrogen aligned 

with the ruthenium hydride (e.g. Figure 8, red pair of hydrogens), thereby discriminating 

between the two amines and setting the orientation of the C=O bond. Finally selection 

between the two pro-chiral faces of the ketones is determined by steric repulsion between 

the substrate aromatic group and the diphosphine ligand backbone.  

 

Figure 8: C2 symmetry of hydrogen atoms in bifunctional catalyst 46 

46 
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1.3.2 Application to Asymmetric Transfer Hydrogenation. 

1.3.2.1 N-Tosylated Diamine and Amino-Alcohol Ligands 

The major breakthrough in the field of ATH came in 1995, when a new N-tosyl-1,2-

diaminodiphenylethane (TsDPEN, Figure 9) ligand 55 was combined with a dimeric 

ruthenium arene complex [Ru(C6H3Me3Cl2]2 (53).37 Use of (S,S) ligand lead to the production 

of (S)-1-phenylethanol 49 in 97% ee after 15 hours reaction in isopropanol (Scheme 21). 

 

Scheme 21: Asymmetric transfer hydrogenation of acetophenone with Ru complex. Results: 
Yield 95%, ee 97%. 

Other ligands that proved effective with this ruthenium arene precursor were chiral β-amino 

alcohols such as ephedrine 56 and 2-amino-1,2-diphenylethanol 54 (Figure 9).38 Both classes 

of ligand contain a neutral amine donor and a relatively acidic heteroatom (-OH or -NHTs) 

that is deprotonated on coordination to ruthenium, and it was demonstrated that tertiary 

amines without a free NH are ineffective ligands for the ATH reaction, indicating that the NH 

bond is directly involved in the reduction.  

 

Figure 9: New ligands used with arene/Ru complexes to create highly selective ATH 
catalysts. 

1.3.2.2 Formic Acid as Hydrogen Source. 

Most early work in the field used isopropanol as hydrogen source due to its low cost and 

ability to dissolve a wide range of compounds.39,40 The acetone by-product is also volatile and 

unreactive, making it simple to remove from the reduction products. 

47 49 

54 55 56 
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Further development revealed that for catalysts such as 58*, a 5:2 azeotrope of formic acid 

and triethylamine (FA/TEA) was also effective as a hydrogen donor. 41 The highly 

thermodynamically favourable decomposition of formic acid to carbon dioxide is assisted by 

the escape of gaseous CO2 from the reaction solution. This alleviates the requirement for 

large molar excess of hydrogen donor, allowing higher reaction concentrations of up to 2M 

to be used. By comparison reductions in isopropanol are commonly performed at substrate 

concentrations of ~0.1M. 

 

Scheme 22: Comparison of formic acid and isopropanol as hydrogen donors 

1.3.3 Catalyst Mechanism and Structure 

1.3.3.1 Structures of Active Species 

In 1997, Noyori obtained X-ray crystal structures for the active catalytic species and 

intermediate, derived from a monomeric ruthenium chloride precatalyst 58 isolated from 

reaction of [RuCl2(p-cymene)]2 57 and TsDPEN 55 (Figure 10).42 This complex has distorted 

octahedral coordination around the metal, and the diamine ligand and metal form a chiral 5 

membered ring. Because complex 58 is formed as a single diastereomer, the ligand 

stereochemistry determines the configuration at the metal centre, with (R,R)-55 forming (R)-

58. The ruthenium to nitrogen bond lengths are very similar for both the amine and amido 

portions of the ligand, 2.12 and 2.14 Å respectively. 

                                                           

* Catalysts containing amino alcohol ligands such as 54 and 56 are unsuitable for use with FA/TEA.190 
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Figure 10: [RuCl(arene)TsDPEN] precatalyst, commonly known as the Noyori catalyst. 

The active species is proposed to be a 16e planar intermediate 59 derived from the 

precatalyst 58 by elimination of HCl under basic conditions (Scheme 23). Complex 59 shows 

some double bond character between the amine and ruthenium, with the bond length 

shortened to 1.90 Å. This bond can be saturated by a hydrogen donor to form an 18e 

ruthenium hydride species 60, similar in geometry to 58. Both 59 and 60 have been shown 

to be active for the reduction of acetophenone in isopropanol in neutral conditions, implying 

that the KOH needed for use of 58 in ATH with IPA is simply required for catalyst activation. 

 

Scheme 23: Catalytic cycle for ATH of ketones with precatalyst 58 via intermediates 59 and 
60. 

60 59 

58 

58 
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The catalytic cycle therefore consists of catalyst activation in base, followed by 

dehydrogenation of the hydrogen source. Hydrogen transfer via an outer-sphere* 

mechanism to the substrate completes the cycle with the catalyst shuttling back and forth 

between 16 and 18 electron species 59 and 60 until the reaction reaches equilibrium or full 

conversion is achieved. 

 

Figure 11: Favoured transition state for enantioselective reduction of 47 

Product enantioselectivity is proposed to arise from the interaction of the ketone substrate 

with 60. Electrostatic edge to face interactions between the η6-arene ligand on ruthenium, 

and the electron-rich π cloud on the ketone aryl group, lead to a preferred transition state 

for hydrogen transfer that gives the (R) product in acetophenone reduction when using the 

(R,R) ligand (Scheme 23).40 

As both steps in the cycle are reversible, the reaction is driven by the equilibrium between 

hydrogen donor and substrate. It could be predicted that the same catalyst would be capable 

of oxidation, and indeed the 16e complex 59 can be formed and used for kinetic resolution 

of alcohols by selective oxidation of one enantiomer in the presence of acetone as hydrogen 

acceptor.39,43 

1.3.3.2 Synchronous Hydrogen Transfer 

Computational modelling soon provided further support for a catalytic cycle based on outer-

sphere hydrogen exchange with 59 and 60 as intermediates.44,45 Using a simplified catalyst 

with benzene and ethanolamine as ligands, the authors modelled the gas phase hydrogen 

transfer from 61 to formaldehyde and acetone (Scheme 24). 

                                                           

* There is no direct coordination of the substrate to the metal centre. 



29 

 

 

Scheme 24: Model ATH system for reduction of formaldehyde (reduction of acetone not 
included for clarity). 

The results support Noyori’s hypothesis of a two-step catalytic cycle between 16 and 18 

electron intermediates. Substrate binding to the metal centre in 61 is not required for 

hydrogen transfer. However alcohol to metal coordination is observed in the model as an 

unproductive equilibrium between species 62 and 63. 

 

Figure 12: Concerted mechanism for hydrogen transfer from 61 to formaldehyde 

The models also indicate that hydrogen transfer occurs synchronously via a 6 membered 

cyclic transition state (Figure 12). This compares favourably to a high energy β-elimination-

insertion route, which would require partial dissociation of the η6 arene ring in order to 

create additional coordination sites for both ketone and hydride. 

Evidence for the synchronous mechanism was reinforced by studies on the kinetic isotope 

effect (KIE) for stoichiometric hydrogen transfer from isopropanol and its deuterated 

derivatives 64, 65 and 66 to 16 electron complex 59.46 The KIE for bis-deuterated alcohol 66 

is approximately the product of the KIEs for each of the mono-deuterated alcohols. The 

authors argue that this can only be explained if hydrogen transfer occurs as a single step. 

63 62 61 



30 

 

Table 2: Measurement of KIEs in hydrogen transfer to 59, relative to its reaction with 
isopropanol.. 

 

Alcohol KH/KD 

64 1.79  

65 2.86 

66 4.88 

1.3.3.3 Asynchronous Hydrogen Transfer: Solution effects 

Detailed computational modelling by Dub and Ikariya explicitly includes the effect of 

isopropanol as solvent and a complete ligand structure.47 This appears to support a non-

concerted transition state for reduction of acetophenone by the mesitylene analogue of 60.  

Hydride transfer takes place first leading to a short lived ion-pair intermediate 67 (Figure 13). 

Solvent contributions assist protonation of the chiral alkoxide to generate the expected 

alcohol and 16e complex of type 59.* 

  

Figure 13: Proposed asynchronous transition states in isopropanol and aqueous reductions 

                                                           

* Very recent and extensive computational work by Dub and Gordon suggests that proton transfer 
takes place primarily from the solvent to the substrate, with the ligand N-H solely assisting through 
hydrogen bonding191,192 

64 65 66 

68 67 
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These results diverge from earlier kinetic evidence for a concerted reaction. The authors 

suggest this is due to the relatively slow 1H NMR timescale, and as they are able to probe 

much shorter timescales with their calculations they can present a rapid asynchronous 

mechanism which fits the experimental data. This expands upon computational work by Wu 

et. al., which suggested a water molecule may participate in transition state 68 for aqueous 

reductions using sodium formate.48 

1.3.3.4 Formate complexes: reversible CO2 formation. 

Ikariya has investigated the mechanism of hydrogen transfer from donor source to catalyst 

during ATH with formic acid.49 NMR experiments revealed that hydrogen transfer to 16e 

ruthenium species 59 was not taking place in a one step process as occurs for isopropanol, 

but instead occurs via ruthenium formate complex 69 (Scheme 25). 

 

Scheme 25: Catalytic cycle including ruthenium formate intermediate 69 

Another important observation made from this work is that this reaction is partially 

reversible; CO2 is able to insert into ruthenium hydride 60 to generate 69. This has 

69 
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implications for reactions performed on scale using formic acid as hydrogen source, as it 

implies that if CO2 is not effectively removed from the reaction mixture it could inhibit 

catalysis. 

During the course of a detailed mechanistic study into the Ru catalysed reductive amination 

of dialkyl ketone 70, further evidence confirmed Ikariya’s results regarding CO2 inhibition 

(Scheme 26).50 Deliberate addition of CO2 reduced the reaction rate by an order of 

magnitude, subsequently purging with nitrogen gas throughout the reaction lead to a 60% 

increase in reaction rate. 

 

Scheme 26: Asymmetric reductive amination of a dialkyl ketone. The reaction rate is highly 
dependent on [CO2]. 

1.3.4 Tethered Ru ATH Catalysts. 

In 2004-2005 Wills et al. introduced a new series of ‘tethered’ complexes (Figure 14) that 

contained a covalent linker between the arene and bidentate ligands.51 The goal was to 

create a complex that was more stable to ligand dissociation, as the chelate effect ensures 

that each of the ligand components is effectively bound more strongly. 

 

Figure 14: Early tethered complexes for ATH, based on the Noyori catalyst. 

74 73 

72 

70 71 
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The first developed complexes 73 and 74 contained a saturated alkyl chain linking an amino 

alcohol or sulfonylated diamine respectively to a phenyl ligand. Their synthesis first requires 

preparation of ligand precursors 76/78 containing a cyclohexadiene ring, which can then be 

dehydrogenated by the common ruthenium source [RuCl3 .xH2O] 75 to form substituted 

ruthenium arene chloride dimers 77/79 (Scheme 27). The dimers are isolated as 

hydrochloride salts, preventing decomposition by premature coordination of the free amine 

to ruthenium. Cyclisation in basic conditions splits the ruthenium dimer and forms the 

monomeric chloride complex.  

 

Scheme 27: Synthesis of first generation tethered complexes 73 and 74. a) i) HCl, Et2O, ii) 
75, EtOH, reflux. b) NEt3, IPA, reflux 

Dimer 79 was used directly for ATH of ketones in IPA/KOH, where it gave marginal 

improvements in ee relative to the analogous untethered [RuCl(C6H6)ephedrine] complex. It 

could also be used at a reduced S/C ratio of 1000:1. As found previously with complexes 

containing amino alcohol ligands, FA/TEA was not suitable as a hydrogen source. 

79 

78 

77 

76 

73 

74 
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Table 3: Reduction of acetophenone with first generation tethered catalyst dimers 77 and 
79 

 

Entry Catalyst S/C H-source % Yield % ee 

1 79 100 iPrOH 96 66 

2 79 1000 iPrOH 83 67 

3 77 100 FA/TEA 99 96 

4 77 1000 FA/TEA 99 93 

Sulfonamide tethered dimer 77 was more effective, reducing acetophenone 47 in 96% ee at 

28 °C. It was also effective at S/C ratio of 1000:1 and was used in an extended reaction trial, 

whereby after a complete reduction of 47 in FA/TEA over 24hr, further portions of ketone 

and solvent were added and fully consumed after 3 and 7 days. This indicates the catalyst 

remains active for a long period of time. 

 

Figure 15: 3C-tethered catalyst with improved activity. 

In 2005 a new tethered diamine variant 80 was reported, in which the alkyl chain is attached 

to the free amine as in 74 rather than through the sulfonyl group.52 The synthetic route was 

similar to that for 74, with reductive amination used to link the cyclohexadiene-aldehyde 81 

with TsDPEN before dimerization to 83. Again basic conditions lead to formation of the 

monomeric species 80.  

3C-teth (80) 
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Scheme 28: Synthetic approach to 2nd generation tethered catalyst 80.Conditions: a) i) 4Å 
MS, DCM; ii) LiAlH4, THF; b) i) HCl, Et2O, ii) 75, EtOH, reflux; c) NEt3, IPA, reflux 

This complex was significantly more active than 73 and 74, giving complete reduction of 

acetophenone 47 in 96% ee in only 3 hrs rather than the overnight reaction required for 

untethered complex 58. The increased activity allowed the use of the catalyst at loadings as 

low as 10,000:1, where 47 is reduced in 98% conv over three days. 

 

Scheme 29: ATH of acetophenone with 3C-teth (80). Results: at S/C 200:1, Conv 100%, ee 
96% in 3 hours; at S/C 10000:1, Conv 98%, ee 96% in 79 hours. 

Catalyst 80 has proven useful in several academic and industrial applications, and both 

enantiomers have been commercially produced by Johnson Matthey.53* 

                                                           

Further references and patents available from Impact case study REF3b, 2014 : 
https://impact.ref.ac.uk/CaseStudies/CaseStudy.aspx?Id=7263 

82 83 

80 

81 

47 49 

55 

https://impact.ref.ac.uk/CaseStudies/CaseStudy.aspx?Id=7263
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1.3.5 Further Tethered Ru ATH Catalysts 

1.3.5.1 Tether Length and Arene Substitution 

Wills et. al. have applied the same synthetic route to prepare a series of tethered complexes 

with varying tether length and substitution pattern on the aromatic ring.54  

 

 
 

Scheme 30: Structural variants of 3C-teth catalyst 80, with methyl substitution and differing 
tether length. 

The optimum tether length appears to be limited to 3 or 4 carbon atoms. The 5C complex 88 

forms very slowly from its corresponding dimer and cannot be isolated in large quantities. 

When tested in ATH of acetophenone in FA/TEA, catalyst 88 gives only 38% conversion, and 

the highly restricted 2C-complex 86 was even less active. However both catalysts maintain 

good enantioselectivity. The 4C-complex 87 is actually more active than the originally 

reported 3C-teth (80) complex, achieving full acetophenone reduction in 75 mins at 40 °C 

compared to 2 hr for 80 (Table 4). 

Table 4: Reduction of acetophenone with tethered catalysts 80 and 84-88 

 

84 85 86: n= 0 

87: n= 2 

88: n= 3 

47 49 
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Entry Catalyst Tether 
Arene 

Substituent 
t /hr % conv % ee 

1 86 2C H 15 19 92 

2 80 3C H 2 100 96 

3 87 4C H 1.25 100 96 

4 88 5C H 6 38 94 

5 84 3C Me 4 100 96 

6 85 3C Me2 5 100 93 

For the substituted 3C tethered catalysts, additional substitution on the arene ligand 

decreases the reaction rate. Complex 84 achieves complete acetophenone conversion in 4 

hours with good enantioselectivity (96%). Dimethyl complex 85 is marginally slower and the 

arene substitution results in a slight decrease in enantioselectivity (93%). However 85 

showed good enantioselectivity (90%) in the reduction of an alkyl-alkyl ketone, which is not 

suitable for reduction with the 3C-teth (80) complex (Scheme 31). 

 

Scheme 31: Reduction of alkyl-alkyl ketone with tethered catalyst 85. 100% Conv, 90% ee. 

1.3.5.2 Ether-Tethered Catalysts; Cycloaddition Approach 

In an attempt to improve upon the synthetic route to tethered complexes, Wills and Ikariya 

independently reported the oxo-tethered catalyst DENEB 97 in 2011-2012.55,56 Both groups 

adopted a similar synthetic strategy which bypassed the troublesome Birch reduction by 

starting with a 4+2 cycloaddition to isoprene 91 to prepare the cyclohexadiene component 

(Scheme 32 and Scheme 33) 

90 89 
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Scheme 32: Wills’ synthesis of DENEB 97  

Wills’ approach is linear on the ligand, whereby the cycloaddition product 93 is reduced and 

chain extended to an ethylene glycol 94, linked with TsDPEN by oxidation-reductive 

amination to form 95 and then converted to the complex 97 by dimerization and cyclisation 

as for the standard tethered complex synthesis. 

91 92 

97 96 

95 

94 93 
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Scheme 33: Ikariya’s synthesis of DENEB 97 

Ikariya’s approach is more convergent. The cycloaddition takes place with propargyl alcohol 

98 to form the alcohol cycloaddition product directly. Dehydrogenation with 75 and 

bromination forms the required ruthenium dimer 100. The alkoxy substituted ligand 102 is 

prepared by alkylation and deprotection of TsDPEN 55. Finally the ligand and dimer undergo 

substitution and cyclisation in one step to form the 16e complex 103, which can be converted 

to DENEB 97 by reaction with HCl.  

1.3.5.3 Methoxy Substituted tethered Catalysts 

The methods described thus far for tethered catalyst synthesis have only dealt with alkyl 

substitutions on the ruthenium arene. In order to prepare a tethered methoxy functionalised 

complex a different approach has been taken.  

Scheme 34 first illustrates a potential synthesis of a non-tethered OMe-functionalised 

complex 107 and its simple precursor dimer 106. While the Birch reduction works well for 

anisole, the dehydrogenation reaction of cyclohexadiene 105 with ruthenium trichloride 75 

is challenging and requires a 6-fold excess of diene.57  

102 

103 

101 

100 99 91 

97 

98 

55 

91 + 

102 
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Scheme 34: Theoretical synthetic route for preparation of methoxy functionalised non-
tethered catalyst. 

However this would be an unacceptable route to tethered complexes as the required 

diamine-functionalised diene is complex and requires at least a two-step synthesis in its own 

right from expensive chiral starting materials, therefore using it in 6-fold excess is unlikely to 

be practical. 

1.3.5.4 Arene exchange as a Synthetic Route to Tethered Catalysts 

An alternative route to a tethered form of complex 107 would be the direct exchange of a 

ligand aromatic group with a more easily prepared ruthenium dimer such as 57 (Scheme 35). 

Such arene exchange has been known for some time in the literature for simple half 

sandwich complexes such as [RuCl2(p-Cymene)PBu3] 108, and typically takes place by heating 

the precursor complex in an aromatic solvent.58 

105 104 

107 106 
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Scheme 35: Preparation of hexamethylbenzene ruthenium complexes by arene exchange. 

It was found that electron poor solvents will not displace ruthenium arene complexes, while 

electron rich ones will. For example, the hexamethylbenzene (HMB) complex 109 can be 

prepared in 21% yield by heating 108 with HMB at 170 °C. The low yield represents an 

improvement on the Birch reduction approach, which is intractable for hexamethylbenzene. 

Bennett has also prepared the corresponding dimer complex  110 in 80% yield in a similar 

fashion.59 

Table 5: Successful examples of arene exchange with simple monodentate amine ligands. 

 

Complex R= Solvent t /hr T /°C % Yield 

111 H DCE, THF 90 85 42 

112 Me x5 Chlorobenzene 2 140 32 

Sadler has demonstrated a successful example of intramolecular arene exchange using 

simple monodentate amine and chloride ligands (Table 5).60 Complex 111 is prepared by 

heating in DCE, and a small quantity of THF was added in an attempt to accelerate the 

108 109 

110 57 
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reaction.* Ikariya has also published a similar example with a pentamethylated arene ligand, 

in which the exchange occurs at a higher temperature in chlorobenzene.61 Ethyl benzoate 

(C6H5CO2Et: 113) was used in both cases as the aromatic ligand due to its electron poor 

nature. 

Wills et. al. attempted to prepare OMe-teth (115) via arene exchange from the half sandwich 

precursor 114 (Scheme 36).62 Complex 114 was resistant to arene exchange however, 

yielding only 15% of the desired product and extensive decomposition of the starting 

materials.  

 

Scheme 36: Unsuccessful arene exchange reaction for diamine co-ordinated ruthenium 
complex. Conversion < 15% 

This problem was resolved by an adjustment of reaction conditions (Scheme 37). A 

methoxyphenyl substituted diamine ligand 116 was reacted with [RuCl2(C6H5CO2Et)]2 117 at 

high temperature and in the absence of base. The proposed mechanism involves initial 

complexation between ruthenium and the free amine on the ligand gives monomeric 

intermediate 118. The monodentate amine and chlorine ligands on ruthenium resemble the 

structure of Error! Reference source not found., and the conditions encourage rapid arene 

exchange to intermediate 119. Finally the tosylated amine bonds to ruthenium with loss of 

HCl.  

                                                           

* Based on work by Bennet et. al. on monophosphine tethered complexes.193 

114 OMe-teth (115) 
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Scheme 37: Arene exchange synthetic route to tethered complex 115 

Catalyst 115 proved to be highly active in ATH of a variety of ketones, some of which will be 

detailed further in section 1.4. 

1.3.6 Summary 

Ru(II) half sandwich compounds such as 58 have proven themselves as highly efficient ATH 

catalysts for ketone reduction. The development of tethered versions of these complexes 

such as 80, 97 and 115 has further improved the catalytic activity and selectivity available. 

However these tethered complexes introduce extra complexity into the synthesis, especially 

the Birch reduction in the synthesis of complex 80 which is particularly challenging on scale. 

Complexes 97 and 115 offer an alternative to this particular step but still have difficulties in 

their own synthesis. DENEB 97 requires seven steps, while 115 takes five but the final 

complexation is practically challenging and yields are limited. For these catalysts to compete 

with 58, which is available in one high yielding step from TsDPEN and commercially available 

ruthenium dimer, their synthesis must be optimised. In particular the final arene exchange 

step to form 115 represents an area for possible improvement and efforts to this end will be 

described in the results section 2.2. 

116 117 

119 118 

115 
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1.4 Substrates for ATH 

While original AH catalysts were first developed for olefin reduction, the most common 

substrate class for ATH with Ru(II) catalysts are the aryl-alkyl ketones, such as acetophenone 

47.39 This is due to the effective enantioface discrimination provided by the stabilising edge 

to face interaction between catalyst and substrate aromatic rings (Figure 16). 

 

Figure 16: Stereochemistry in transition state for acetophenone reduction. 

New catalysts are often compared by their performance in the reduction of acetophenone, 

the simplest alkyl-aryl ketone. New catalysts strive for the highest possible ee and full 

conversion at moderate temperature, short reaction times and high concentrations. 

Ru(II)Arene ATH catalysts are also particularly selective for ketone reduction, and hence 

tolerant of many other functionalities in more complex substrates, including halides, 

alcohols, amines, esters, amides, alkenes and alkynes, heterocycles, and nitriles. For 

example, the ketone functionality in 120 can be reduced selectively by the Noyori catalyst 58 

without affecting the halide, quinolone, alkene or ester functionalities.41 

  

Figure 17: Multifunctional ketone substrate. The corresponding alcohol is formed in 68% 
yield, 92% ee. 

However the scope of ATH is not simply limited to acetophenones. Other directing groups 

capable of engaging in the stabilising edge to face interaction with the 6-arene ring protons 

of the catalyst have been used in the reduction of ketones, such as alkynes (Figure 18).63 

120 
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Figure 18: Proposed transition state for asymmetric alkyne reduction 

Alternatively, aryl-aryl ketones can also be reduced asymmetrically based on a difference in 

electron density on the aromatic rings; the electron rich ring will have a stronger edge to face 

interaction with the positive aromatic hydrogen of the catalyst.41 For example 4-(4-

methoxybenzoyl)benzonitrile is reduced with moderate enantioselectivity (~70%) by a 

mesitylene analogue of complex 60, although this is still impressive for a substrate with such 

similar functional groups to discriminate between (Figure 19). 

  

Figure 19: Proposed transition state for asymmetric benzophenone reduction 

Imines have also been reduced.64 For example, salsolidine 40 was prepared in 95% ee by ATH 

of imine 121 with catalyst 58. It was also found that the imine is much more reactive in a 

competition reaction than a structurally related ketone 122. Section 1.4.1 discusses the 

difficulties inherent in reduction of such electron rich ketones in more detail. 
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Scheme 38: Reduction of salsolidine and its ketone analogue with Noyori catalyst 58. Imine 
reduction: Yield 99%, ee 95%. 

Cyclic imines are more suited to these reduction conditions, as the imine is more stable and 

less likely to hydrolyse before reduction. The reduction of acyclic imine 123 with a related 

catalyst derivative containing the bulkier mesitylene sulfonyl group and a benzene ligand on 

ruthenium delivers the chiral amine 124 in only 77% ee and 77% yield. The reduced 

enantioselectivity in this instance may also be due to competition between the benzyl and 

phenyl groups to direct the asymmetric reduction. 

 

Scheme 39: Reduction of acyclic imine with Noyori catalyst 58. Yield 72%, ee 77%. 

Some examples of ATH of alkenes conjugated to strongly electron-withdrawing groups have 

been reported and are described in more detail in section 1.4.2 

122 

40 121 

124 123 
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1.4.1 Electron Rich Ketones 

Ketones with electron donating substituents bonded to the aromatic ring are more 

challenging substrates for ATH. Reductions tend to be sluggish and require more forceful 

conditions, which leads to reduced enantioselectivity. 

 

Scheme 40: Electron-rich substrates with slow reaction time  

The reason for the lack of reactivity is clear when considering the resonance structures for 

such ketones. Electron donation into the ring is encouraged in a push-pull effect up into the 

ketone, leading to a resonance structure with substantial single bond character for the 

carbon-oxygen bond and an increase in electron density at the carbonyl carbon. Oxygen is a 

less powerful electron donor than nitrogen and asymmetric reduction of oxygen-substituted 

ketones has been more thoroughly explored in the literature.  

 

Figure 20: Ketone stabilising resonance structure for para-substituted ketones  

1.4.1.1 Effect of Oxygen Substitution Position on ATH 

Indeed the stabilising effect of oxygen is most pronounced for 2’ and 4’ substituted ketones, 

as has been shown in the reduction of isomers of methoxy-acetophenone (126, 127, 128) by 

a Ru(II) half-sandwich catalyst formed in situ with an amino acid derived ligand 125 (Table 

6).65 Reduction of the 2’ and 4’ isomers in isopropanol was low yielding but selective (94% 

ee), while the 3’ isomer was more reactive. 
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Table 6: Reduction of isomers of methoxyacetophenone. 

 

Substrate Isomer % Conv % ee 

126 2’ 49 94 

127 3’ 85 97 

128 4’ 59 94 

The relative effect of substituent position will depend on the catalyst. Another amino acid 

ligand 129 derived from proline was again most effective at reducing 127 in isopropanol, in 

85% conversion and 75% ee (Table 7).66 However reduction of 126 suffered from low ee 

(34%) and 128 from poor conversion (24%). 

Table 7: ATH of isomers of methoxyacetophenone. 

 

Substrate Isomer % Conv % ee 

126  2’ 94 34 

127 3’ 85 75 

128 4’ 24 71 

1.4.1.2 ATH: Further Examples of Ru(II) Catalysis 

Other reports include the Ru(II) catalysed ATH of 4-chromanone 132 in FA/TEA in 100% conv 

and 99% ee (Table 8).67 The γ-sultam ligand 130 appears to be primarily suited to reduction 

125 

129 
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of cyclic ketones, as it gives similar results for the reduction of tetralone 131 but is less 

effective for reduction of acetophenone 47. 

Table 8: ATH of cyclic ketones with Ru- γ-sultam system. 

 

Substrate X= % Conv % ee 

131 CH2 99 99 

132 O 100 99 

Acetophenone 47   100 85 

Ikariya has applied the DENEB catalyst (97) described in section 1.3.5 to the reduction of 126 

and 132, giving complete conversions and 93 and 99% ee respectively (Table 9).55 These 

reductions take place at an impressively low catalyst loading of 1000:1 S/C.  

Table 9: Reduction of electron rich ketones with oxo-tethered catalyst 97 

 

97 

130 
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Substrate R % Conv % ee 

126 Me 99 99 

132 (CH2CH2) 100 99 

Finally Wills et. al. have applied catalyst 115 to the ATH of ortho-methoxy and ortho-hydroxy 

acetophenone. Both substrates are reduced effectively at low catalyst loading (Table 10) 

Table 10: ATH of ortho-substituted ketones with 115 

 

Substrate X = % Conv % ee 

126 OMe 100 96 

133 OH 100 99 

Conditions: S/C 1000:1, 60°C. 

1.4.1.3 ATH: Supported Ru Catalysts 

Two examples of ATH of methoxyacetophenones are from reports of immobilised catalysts 

under aqueous conditions (more examples of polymer supported catalysts are discussed in 

section 1.5.1). Itsuno uses a polystyrene sulfonate support in the reduction of 126, and 

although conversion is reduced relative to acetophenone 47, the ee remains reasonably high 

at 91% (Table 11).68 The results of reduction with catalyst 134 also appear to be better than 

those obtained for the unsupported monomeric catalyst 58 (85% conv, 95% ee), although 

the latter reaction was only run for 0.5 hours and may have been stopped before complete 

conversion was achieved. 
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 Table 11: ATH of 47 and 126 with polymer supported catalyst. 

 

Substrate R % Conv % ee 

47 H 100 98 

126 OMe 79 91 

Rahman et. al. employ a silica-immobilised supported catalyst for reduction of both 126 and 

127 (Table 12).69 Surprisingly they found no significant difference in reactivity or selectivity 

between the two isomers and actually achieved better conversion in both cases than in ATH 

of acetophenone. 

Table 12: ATH with MCM-41 silica supported catalyst 135 

 

135 

134: X=Bu3NBn+ 
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Substrate Isomer R % Yield % ee 

47  H 85 86 

126 2’ OMe 93 83 

127 3’ OMe 94 85 

1.4.1.4 ATH: Other Metal Catalysts 

An Ir catalyst 136 containing a tridentate spiro-amino-phosphine ligand has been shown to 

be effective for the reduction of substituted acetophenones in EtOH/tBuOK, including 126 

and 128 (Table 13).70 This catalyst system shows little variation in performance across the 

range of halide, alkyl and alkoxy substituents tested. 

Table 13: Example reduction of electron rich ketones with Ir catalyst 136 

 

Substrate Isomer % Yield % ee 

126 2’ 99 96 

128 4’ 93 95 

Iron catalysts are much sought after as an inexpensive alternative to platinum group 

metals.71 Recently an Iron macrocyclic complex 137 was applied to a simple series of ketones 

for reduction in isopropanol, including 126, giving the product in 99% ee (cf. 96% ee for 

reduction of 47).72 Complex 137 does require handling under strict inert conditions, but has 

been demonstrated to be practical at a reasonable scale of 100 mmol and the selectivity and 

yield of this reduction are impressive.  

136 
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Scheme 41: ATH of 126 using an Iron macrocyclic complex. Yield 99%, ee 99%. 

Aside from ATH, CBS reduction, AH and enzymatic reduction have all been applied in the 

reduction of oxygen substituted acetophenones. Some relevant literature examples are 

described below. 

1.4.1.5 CBS reduction 

CBS reduction uses a chiral oxazaborolidine catalyst to promote the borane reduction of 

ketones.73 The method was developed in the late 1980s and has found broad application 

across a range of substrates.74 Typical conditions involve a catalyst loading of 10% and use of 

anhydrous THF as solvent. 

CBS conditions using 139 have been effectively applied at 100 mmol scale to the reduction 

of 126.75 The chiral alcohol was obtained in good yield and 96% ee, although a very high 

catalyst loading was required (Scheme 42). 

 

Scheme 42: CBS reduction of 126. 40 mol% catalyst, Yield 99%, ee 96% 

139 

138 

137 
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A related bench stable spiroborate ester 140 has been applied to reduction of a variety of 

substrates, including chroman-4-one 132 with 10% catalyst loading.76 The smaller ring in 141 

results in a slightly higher yielding but less selective reaction, while sulfur in substrate 142 

has less of a detrimental effect on reaction rate, giving a good yield of alcohol at lower 

catalyst loading. 

Table 14: CBS Reduction of electron rich ketones and heterocycles with spiroborate 140 

 

Substrate X= n= S/C % yield % ee 

132 O 1 10 82 99 

141 O 0 10 86 92 

142 S 1 100 92 99 

 

1.4.1.6 Enzymatic reduction 

Enzymatic reduction can be an extremely efficient alternative to ATH in certain cases. 

Enzymes are extremely specific in their reactivity and are often only suitable for a narrow 

range of substrates. However they can be very efficient, with high TON under mild 

conditions. 

For example, Zheng compares a set of 3 recombinant alcohol dehydrogenase enzymes 

(BgADH1 (143), BgADH2 (144), BgADH5, (145)) derived from the Burkholderia gladioli 

bacteria strain and expressed in Lactobacillus brevis.77 This system was designed for the 

selective DKR of an α-alkylamino-β-keto ester 147 to the (2S, 3R) product (Scheme 43). The 

reduction uses NAD+ as co-enzyme, which is regenerated in situ using glucose dehydrogenase 

(GDH) and glucose as the overall hydrogen source.  

140 
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Scheme 43: Enzymatic DKR and co-catalyst regeneration 

Enzymes 143-145 were applied to the reduction of a range of simple ketones to observe the 

substrate specificity (Scheme 44). Reduction of the hindered ortho-substituted 126 was less 

selective than reduction of acetophenone but could still be prepared with 90-95% ee. 

Interestingly the para-isomer 128 was reduced with higher ee than 126 for each of the 3 

enzymes. Activity was reduced in both cases. Reduction of the 3,5-dimethoxy substrate 148 

gives intermediate activities but results in a complete reversal of selectivity for just one of 

the enzymes tested, an unexpected result. 

Scheme 44: Enzymatic reduction of ketones 

 

Substrate R= BgADH1 143 BgADH2 144 BgADH5 145 

  
Activity  

/ U mg-1 
% ee 

Activity 

/ U mg-1 
% ee 

Activity 

/ U mg-1 
% ee 

47 H 6.13 99 6.35 99 4.51 90 

126 2’-OMe 4.18 93 4.83 95 3.64 90 

128 4’-OMe 6.29 99 6.57 99 4.63 95 

148 3’,5’-OMe 5.11 99 5.19 99 (S) 4.03 99 

All alcohols (R) configuration except where noted. 

A recombinant alcohol dehydrogenase (PFADH) derived from Pseudomonas fluorescens was 

expressed in Escherichia coli by Bornscheuer.78 With NAD+ as cofactor and isopropanol as 

147 146 
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hydrogen source the catalytic system was applied to a small set of substituted 

acetophenones (Table 15). Unexpectedly electron rich 126 is the most selective substrate, 

being reduced in 99% ee compared to 47 (92% ee), however the conversion is much worse 

so reduced reactivity is still an issue for this system. The 3’ and 4’ isomers are also reduced 

and a similar pattern of reactivity is displayed as found by Adolfsson65, with 127 being 

reduced efficiently while 128 is both unreactive and unselective. 

Table 15: Enzymatic reduction of ketones with PFADH 

 

Substrate R= t /hr % Conv % ee 

47 H 21 95 92 

126 2’-OMe 21 31 99 

127 3’-OMe 19 89 92 

128 4’-OMe 20 38 45 

An unusual example of whole cell biocatalysis using clementine (Citrus reticulata) as source 

of both enzyme and reducing sugar has been reported.79 The fruit is heated in water at 30 °C 

for 20 mins before the ketone is added as a DMF solution, then after the reaction filtration, 

extraction into organic solvent and purification by chromatography gave the asymmetric 

alcohols. Acetophenone 47 was not reactive under these conditions, while the cyclic ketone 

tetralone 131 was reduced to the (R) alcohol in 99% ee. Oxygen substituted chroman-4-one 

132 was less selective, forming the (S) alcohol in only 31% ee. Yields were low in both 

successful cases, indicating that this is not a reliable method for preparation of such alcohols. 
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Table 16: Whole cell enzymatic reduction of ketones with Citrus reticulata 

 

Substrate X= % Yield % ee 

149 CH2 30 99 

150 O 35 31 

Acetophenone 47  - - - 

The authors do perform a comparison with aqueous ATH by Ru catalysis with a series of 

amino-amide ligands, for which the optimal ligand in each case was superior to the 

biocatalytic method: (82% yield, 94% ee for 131, 90% yield, 98% ee for 132). However the 

ruthenium loading was 5 mol%, which is unusually high. 

1.4.1.7 Asymmetric Hydrogenation 

The triflate complex 151 derived from reaction of 16 e complex 59 with triflic acid (CF3SO3H), 

is easily ionisable in methanol solution and can be used for AH. Catalyst 151 was first applied 

in the reduction of 132, as before this point no effective conditions existed for AH of this 

substrate.80 The hydrogenation was carried out in neutral conditions with methanol as 

solvent at up to 2.4 kg scale and yielded the (S) alcohol in excellent yield and ee.  

 

Scheme 45: AH of 132 with triflate complex. 99% yield, 98% ee. 

The OMe-teth (115) catalyst is capable of AH without exchange of the chloride ligand. Wills 

et. al. also achieve a similar result in reduction of substrate 132. (98% Conv, 99% ee).62 

151 
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1.4.1.8 Summary 

A range of methods for reduction of oxygen substituted ketones have been explored. Ortho-

substituted compounds such as 126 and 132 have been focused on especially as they provide 

a double challenge of electron donation and steric hindrance about the ketone, although the 

later factor may increase the reduction potential of such ketones.72  

Of the 8 ATH and 6 alternative methods explored, the best results came from ATH with the 

Ir and Fe catalysts 137 and 136. In general the results came from substrate screening on a 

range of ketones, and so the effect of further ring substitution or larger substituents on 

oxygen have not been systematically explored.  

Tethered catalyst 115 has similarly been tested before in the reduction of simple substrates 

126 and 133 but have not been systematically applied to a wider range of electron rich 

substrates. This will be explored in results section 2.1. 

1.4.2 α,β-Unsaturated Ketones 

1.4.2.1 Conjugate Addition 

While alkenes are normally unreactive under ATH conditions, α,β-Unsaturated ketones 

(enones) are an important exception. The conjugated electron withdrawing group polarises 

the alkene π system and nucleophilic reagents are able to attack both the carbonyl and β 

carbons. The latter results in an enolate, which after protonation will usually revert to the 

more stable ketone form. Scheme 46 illustrates an example of an organocatalyzed conjugate 

addition of an aldehyde 153 to enone 154.81 

 

Scheme 46: Organocatalysed 1,4- addition 

Deng has undertaken a detailed study of TH and ATH of various α,β-unsaturated ketones.82 

Methyl ketones 156-159 are reduced with the Noyori catalyst system 58 to the 

corresponding allylic alcohols in high yield (>90%, Table 17). Enantioselectivity is mixed, 

153 154 155 

152 
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ranging from 30-70% depending on exact substitution pattern on the alkene, though it is not 

expected to be high for reduction of a non-aromatic ketone. Ketone 156 is also reduced 

under TH conditions using the achiral TsEN ligand, and the conversion and reaction time are 

very similar. 

Table 17: 1,2-reduction of para-substituted benzylideneacetone derivatives 

 

Substrate R= X= % Yield % ee 

156 H H 89 39 

157 Me H 85 76 

158 Me NO2 98 38 

159 Me OMe 61 69 

156a H H 90 0 

a) Reduced using NH2CH2CH2NHTs as ligand instead of TsDPEN 

However when subjecting the bis-aromatic compound chalcone 160 to TH conditions with 

an achiral ligand, they find the reduction product to be an approximately 3:1 mixture of 

saturated ketone 161 and the saturated alcohol 162. 

 

Scheme 47: 1,4-reduction of chalcone. Results: 161 Yield: 75%; 162 Yield: 23%, ee 93%. 
Overall Yield 98%. 

160 

161 

162 
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This TH of the alkene functionality can be promoted further by incorporating an additional 

electron withdrawing group at the α position. For these substrates the achiral TsEN catalyst 

is highly selective for C=C reduction and over 90% of the saturated ketone product can be 

isolated (Scheme 48). Notably this occurs even for the bis-methyl ketone 163 where the 

methyl group promotes carbonyl reduction relative to the stabilising phenyl group in 164 and 

165. 

 

Scheme 48: α-EWG substituted enones that undergo alkene reduction exclusively under TH 
conditions. Yield from 163: 90%. Yield from 164: 94%. Yield from 165: 91%. 

Further substrate scope investigation shows that the effect is generic for alkenes with 

conjugated electron withdrawing substituents such as nitro, ester, nitrile and carboxylic acid 

functionalities (Table 18). Compounds 169-172 were all reduced to the corresponding 

alkanes conditional on the other alkene substituents being H or Aromatic. When an 

additional alkene stabilising β-methyl substituent was included on the double bond, only the 

malonitrile derivative 172 was reactive. From these results it seems apparent that 

polarisation of the double bond through conjugation is crucial to its reactivity. 

163 

164 

165 

166-168  
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Table 18: Conjugated substrates with non-ketone EWGs tested in ATH of alkenes. 

 

Substrate R1 R2 X1 X2 % Yield 

169 Ph H NO2 Ph 89 

170 H H CO2H Ph 99 

171 Ph H CN CO2Et 97 

172 Me Ph CN CN 93 

In an attempt to produce the sp3 centres asymmetrically, the asymmetric Noyori catalyst 58 

gives very low or zero enantioselectivities for alkene reduction on these substrates, with the 

exception the malonitrile derivative 172 which is reduced in 49% ee. 

A marginal improvement was found in reduction of the related cyclic substrate 173, which 

was reduced in 54% ee (Scheme 49). Further optimisation on this substrate increased the ee 

for alkene reduction of 173 to 85%, by use of THF as co-solvent and a bulky 

triethylbenzenesulfonic acid derivative 175 as ligand. 

 

Scheme 49: ATH of malonitrile derivative 173, preferred substrate for asymmetric alkene 
reduction. With ligand 55: Yield= 98%, ee=54%. With ligand 175: Yield = 98%, ee=85%. 

174 173 
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However the fused 6 membered ring structure is essential, malonitrile derivatives 176 and 

178 formed from 1-indanone or acyclic ketones were more challenging and reduced to the 

corresponding alkanes in lower ee (Table 19). 

 

Scheme 50: Less effective indanone/acyclic ketone derived substrates for alkene ATH. 
Results: From 176, Yield: 37%, ee=58%. From 178, Yield: 95%, ee=27%. 

Wills et. al. have also investigated the ATH of enones with ruthenium catalysts.83 A series of 

α-substituted cyclic α,β-unsaturated ketones are reduced selectively with the Noyori 

complex 58 to the corresponding cycloalkenols in the case of 181 and 182, while carbamate 

substituted 183 also yields a small amount of the 1,4- reduction product 180. 

Table 19: 1,2- reduction of cyclic enones 

 

Substrate R= % Yield % ee 

181 Ph 47 72 

182 OBn 78 99 

183 NHCO2Me 54a 99 

a) 20% of the by-product 180 observed in crude product mixture before purification. 

179 178 

177 176 

180 
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Amino-alkenone 184 was prepared as an acyclic analogue of 183 and reduced under the 

same conditions. Complete 1,4-alkene reduction was observed, yielding a mixture of 

saturated ketone 185 and alcohol 186. 

 

Scheme 51: 1,4- reduction of 184. Results: Saturated Ketone 185 conv: 33%. Saturated 
Alcohol 186 conv: 67%. Overall conv: 100% 

While Deng found primarily 1,2 selectivity for reduction of benzylideneacetone derivatives 

with an achiral catalyst, Wills et. al. demonstrated that increasing the steric bulk of the alkyl 

substituent on benzylideneacetone 156 through the series ethyl, isopropyl and tert-butyl had 

a complicated effect on the reduction selectivity with the chiral catalyst 58 (Table 20): 

Table 20: Variation between 1,2- and 1,4- reduction of alkyl-benzylideneacetone 
derivatives 

 

186 

185 

184 

A B 
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Substrate R= 
% Total 

Conv 
% A % B % C % ee 

156 Me 100 75 0 25 30 

187 Et 100 90 4 6 6 

188 i-Pr 94 48 30 16 28 

189 t-Bu 87 13 71 3 57 

The ethyl substituent in 187 leads to increased 1,2 selectivity with 100% conversion. The 

larger isopropyl group in 188 results in slightly decreased overall conversion and gives equal 

proportions of 1,2- and 1,4- reduction products. The tert-butyl substituent strongly 

disfavours all ketone reduction, leading primarily to the saturated ketone product B and 

reducing the overall conversion to 87% 

These results show that the product selectivity in ATH of enones is highly substrate 

dependant, with a balance of factors tipping selectivity towards 1,2- or 1,4- reduction. The 

later can sometimes be stopped after addition of hydrogen to the alkene only to give a 

saturated ketone as the end product. The next sections contain some further literature 

examples of TH and ATH of these substrates. 

1.4.2.2 Racemic Transfer Hydrogenation of C=C double bonds 

Cadierno and Gimeno report a ruthenium catalysed transfer hydrogenation of allylic alcohols 

into the corresponding saturated alcohols using [RuCl2(HMB)]2 110 or a bisallylruthenium 

chloride monomer 190 as catalyst (Table 21).84 The reduction takes place at high 

temperatures in isopropanol or water/sodium formate, however unlike the previous 

examples the reduction occurs via isomerisation to the corresponding carbonyl compound, 

followed by TH of the aldehyde/ketone. 

 

Figure 21: Catalysts for allylic alcohol isomerisation 

190 110 
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Reduction is found to be the rate limiting step for all substrates, hence primary allylic alcohols 

such as 191 are particularly well suited to this process as the aldehyde intermediates are 

highly reactive and easier to reduce. However the reaction works well with a range of 

secondary alcohol substrates, although large alkyl groups such as n-pentyl in substrate 192 

hinder reduction of the ketone intermediate and result in a low yield of desired alcohol, with 

the remainder of converted material remaining as ketone. 

Table 21: Example substrates for Ru-catalysed one-pot isomerisation-transfer 
hydrogenation 

 

Substrate R1 R2 Catalyst: 110 Catalyst: 190 

   % Conv % Yield % Conv % Yield 

191 H H 99 99 99 99 

192 n-C5H11 H 99 79 99 82 

193 Ph H 99 23 99 67 

194 Me Ph 93 93 99 98 

Recently Cai reported a simple iridium dimer catalyst [IrCl2(Cp*)]2 that was capable of a 

controllable 1,4 reduction of enones to either the saturated ketone or to the alcohol, by use 

of K2CO3 or KOH as base respectively.85 Chalcone 160, as well as a variety of enones including 

the 1,2 favouring methyl-ketone 156 are all reduced at the alkene (Table 22). Electron 

donating para-methoxy (196) and para-methyl (195) substituents on the ketone side slow 

down the reduction and require increased catalyst loading from 1 to 2 mol%, while the 

electron withdrawing p-chloro (197) substrate is very reactive and the yield of saturated 

alcohol 197B is high. 
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Table 22: Switchable 1,4 reduction of enones to ketones or alcohols with Ir catalysed TH. 

 

Substrate Base S/C A B 

   % Conv % Conv 

156 Me 100 : 1 95 92 

160 Ph 100 : 1 97 88 

195 p-MeC6H4 50 : 1 90 83 

196 p-OMeC6H4 50 : 1 85 78 

197 p-ClC6H4 100 : 1 98 91 

1.4.2.3 Asymmetric Transfer Hydrogenation of Conjugated Ketones 

The Noyori catalyst has been applied to ATH of β-alkyl β-trifluoromethyl α,β-unsaturated 

ketones.86 These substrates are very hindered at the β carbon and the electron withdrawing 

CF3 group will partly counteract the polarisation caused by the ketone. Indeed all of the 

substrates tested were selectively reduced 1,2 in the ATH reaction.  

A 

B 
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Table 23: Selective 1,2- reduction of β-trifluoromethyl enones 

 

Substrate R1= R2= % Yield % ee 

198 Ph Ph 97 97 

199 Ph p-BrC6H4 93 97 

200 Me Ph 93 24 

201 Me Benzyl 67 99 

202 t-Bu Ph 75 99 

The aryl-ketone substrates 198 and 199 are reduced in high ee as expected, while methyl 

ketone 200 gives poor enantioselectivity (Table 23). Interestingly the authors also 

successfully reduce β alkyl methyl ketone 201 and tert-butyl ketone 202, in very good ee, 

albeit with moderate yields (67-75%). 

The previously described literature results would have suggested 201 to have poor 

enantioselectivity as a methyl-alkenyl ketone, and 202 to be hindered in ketone reduction 

by the large tert-butyl group. It is clear that although the trifluoromethyl group is a large 

distance from the ketone it has a significant effect on the balance of ketone and alkene 

reactivity in the conjugated system.  

 

Scheme 52: Unusual substrates for 1,2 reduction 

The asymmetric alcohols obtained were then isomerised stereospecifically by another 

ruthenium catalyst, [RuCl2(PPh3)3] (203) to produce chiral β-trifluoromethylated ketones 

(Scheme 53). 

201 202 
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Scheme 53: Stereospecific isomerisation of chiral allylic alcohols to β-trifluoromethyl 
ketones 

Asymmetric hydrogenation with a variant on the Noyori hydrogenation catalyst [RuCl2{(S)-

tol-BINAP}{(R)-DMAPEN}] (204) is found to be an effective way to perform selective 1,2- 

reduction with good enantioselectivity without relying on substrate control.87 Chalcone is 

hydrogenated to the corresponding allylic alcohol 205 in 97% ee. Hydrogenations were 

performed on ice, raising the temperature to 30 °C lead to increased quantities of saturated 

ketone 161 and saturated alcohol 162 as by-products. 

 

Scheme 54: 1,2-selective AH of chalcone with Ru(II) catalyst at 0°C. Yield: 99%, ee: 97%. At 
30°C: Yield 82%, ee 96%. 

1.4.2.4 In-Situ Enone reduction 

In some cases an enone can be formed in situ and directly reduced. For example, Adolfsson’s  

α-amino acid hydroxyamide 125 ligand has been applied to ATH of allylic alcohols by 

oxidation to the corresponding enone, followed by complete reduction of alkene and 

carbonyl functionalities.88 Initially the conditions lead only to ketone 207, however use of the 

stronger base potassium tert-butoxide allowed ketone reduction to take place, giving the 

asymmetric alcohol 208. Control experiments performed without the ligand showed that the 

isomerisation step will still occur but no ketone reduction takes place. 

204 

160 205 
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Scheme 55: Isomerisation and reduction of benzyl-vinyl alcohol. Optimised conditions give 
saturated alcohol 208 in 99% conv, 85% yield, 93% ee.  

Kosmalski applied the standard Noyori catalyst 58 to the reduction of β-dimethylamino-

acetophenone 209 but found the main product was the partially reduced elimination product 

207.89 Elimination of the usually stable NMe2 group is surprising, presumably this occurs 

through a protonated intermediate but no mechanistic investigation is given. 

 

Scheme 56: In-situ elimination and partial reduction of a β-(dimethylamino)ketone. Yield: 
71% ketone 207, 16% alcohol 210 (95% ee), 13 % alcohol 208 (95% ee) 

1.4.2.5 Summary 

The balance between 1,4 -and 1,2- reduction is affected by both substrate and catalyst 

control. For example, AH with catalyst 204 has been shown to be highly selective for 1,2- 

reduction even on substrates that favour 1,4- reduction such as 160, while ATH with catalyst 

58 is highly selective for 1,2- reduction when applied to trifluoromethylated enones such as 

198. Cyclic ketones such as 181 favour 1,2- reduction under similar conditions, as do alkyl-

206 

207 

208 

125 

209 

208 

207 

210 
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alkenyl ketones such as 156, but varying substituents can lead both to favour 1,4- reduction. 

Furthermore, other electron withdrawing groups such as CN (as in 172) can activate the 

normally unreactive alkene group towards TH/ATH. 

Therefore while there is a reasonable body of literature on the topic, there is still scope for 

increased understanding of the subtle effects of substrate structure on the regioselectivity 

of enone reduction. Furthermore, tethered catalysts such as 80 and 115 have not been 

systematically studied in the reduction of enones and they may display a different pattern of 

reactivity. This will be explored further in results section 2.4. 

1.5 Improving on Ru(II) Catalysis 

Homogenous Ru(II) catalysts for ATH reaction therefore enjoy simple and relatively safe 

reaction conditions, low catalyst loadings, excellent chemoselectivity within their substrate 

scope and high enantioselectivity in reductions. However they suffer from some 

disadvantages that limit their application. 

Firstly use of transition metal catalysts results in strict regulations for product purity in order 

to prevent metal contamination in active pharmaceutical ingredients (API). If the ATH step 

occurs late in the synthesis it is not unusual for traces of ruthenium to be carried through 

into the final product, requiring a lengthier and expensive purification process that will 

inevitably reduce the final yield.  

Additionally materials for the catalyst are expensive, both the ruthenium source itself and 

the chiral ligand which generally requires a multi-step synthesis. In a conventional ATH 

reaction the catalyst is removed by filtration through silica and is not recoverable. The 

catalyst therefore represents a significant portion of the cost of performing an ATH process 

at scale. 

1.5.1 Polymer-Supported Catalysts 

Both of these issues can in theory be ameliorated by finding a way to recycle the catalyst, 

reducing the environmental impact of reactions and potentially increasing the economy. A 

common approach is to anchor a ligand to a solid support, followed by complexation with 

ruthenium. The catalyst is then easily removed from the reaction medium by a simple 

physical process such as filtration, and may be recycled.  
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1.5.1.1 Literature examples of polymer supported catalysts 

Several examples exist in the literature of potential polymer supported catalysts where a 

monomer has been co-polymerised with a functionalised ligand. 

 

Figure 22: Vinyl-substituted ligand and selection of co-monomers for incorporation into a 
polymeric ligand support. 

Itsuno reported polystyrene sulfonate supported ligands 211 and 134 for application to ATH 

of ketones in water.90 Reaction of ketones such as acetophenone 47 with a combination of 

the ligand and [RuCl2(p-Cymene)]2 57 as metal source gave the chiral alcohol 49 in good ee 

(91-98%) when crosslinked polymer supports were used (Scheme 57). The larger organic 

tributylbenzylammonium anion in 134 promoted better polymer swelling in aqueous 

solution and lead to higher conversions and enantioselectivity. 
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Scheme 57: Reduction of acetophenone with hydrophilic polymer supported ligands. 

Ma and Peng report another hydrophilic polymer suitable for ATH in water by using a 

phosphonate substituted polymer backbone (Scheme 58).91 The catalyst was isolated in solid 

form by reaction of the polymer with 57, and extensively characterised by a range of 

spectroscopic techniques. ATH of acetophenone 47 is performed at relatively low catalyst 

loadings (660:1 S/C), where the loading is determined by the wt. % of ruthenium in the 

isolated polymer (~1.5%). The reduction is sensitive to pH and can be tuned by varying the 

ratio of formic acid and trimethylamine used, with the optimum being a 1:3 ratio.  

211: X=Na+ 

134: X=Bu3NBn+ 

47 49 
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Scheme 58: Aqueous phase reduction of acetophenone with phosphonated hydrophilic 
polymer 212 

Itsuno has also reported hydrophobic polystyrene based catalyst 213.92 It was applied to ATH 

of a range of imines including acyclic substrate 123 in FA/TEA and organic solvents, as 

illustrated in Scheme 59. The result represents a marginal improvement on the unsupported 

reaction discussed earlier in section 1.4 with the equivalent unsupported Noyori catalyst 58, 

which gave the product in 77% ee.  

 

Scheme 59: Reduction of acyclic imine with polymer supported catalyst. Conversion 95%, 
ee 84%. 

213 

123 124 

212 

49 47 
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Alternatively the polymer may be pre-formed and simply reacted directly with the 

functionalised ligand. One of the first reported examples features a ligand derived from 

meta-benzyloxy TsDPEN derivative 214 and a monomesylated PEG chain (Scheme 60).93 One 

advantage of this approach is that the PEG polymer is soluble in polar solvents required for 

reduction and precipitates in non-polar solvents that can extract the low molecular weight 

products.  

 

Scheme 60: Synthesis of PEGylated ligand 215. Steps include Boc protection of the free 
amine, deprotection of the OBn groups by hydrogenolysis, ether formation and amine 

deprotection. 

The hydrophilic PEG groups mean ligand 215 can be used for ATH of acetophenone in 

water.94 The catalyst is very active and has reasonable enantioselectivity, close to that of the 

homogeneous Noyori catalyst 58. 

 

Scheme 61: ATH of acetophenone in water with PEG supported catalyst. 99% conv, 98% 
yield, 92% ee. 

Naturally occurring polymers have been used in place of synthetic ones. An interesting 

example uses a modified polysaccharide biopolymer (chitosan), which acts both as support 

215 

214 

215, 
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and chiral ligand (Scheme 62).95 However in this case the monodentate ligand is not as active 

or selective for ketone reduction as the TsDPEN complexes in common usage.  

 

Scheme 62: Reduction of acetophenone with chiral biopolymer ligand 216. Yield 70%, ee 
63%,  

Wang has described a polystyrene supported ligand prepared from DPEN 52.96 The ligand is 

bound to aminomethylated polystyrene via a DCC amide coupling to give polymer supported 

ligand 217, which is combined with Ru source 57 in situ for ketone reduction.  

216 

47 49 
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Scheme 63: Synthesis of (S)-Fluoxetine with polymer supported ATH as key step. 

217 is applied in the reduction of alpha-EWG substituted ketones such as 218 that serve as 

intermediates to the synthesis of Fluoxetine (Prozac, 220). However the synthesis of 217 is 

very linear and requires several protecting group transformations, making it less cost 

effective as a ligand. 

1.5.1.2 Recycling experiments 

Many of the above polymer supported ligands/catalysts were tested in recycling 

experiments, whereby the catalyst was separated by a physical process such as filtration (for 

catalysts bound to macroscopic polymer solids) or precipitation (for catalysts bound to 

soluble polymers). Washing, followed by addition of a fresh charge of solvent, hydrogen 

donor and substrate allows the re-use of the same catalyst for further reduction. Some of 

these results are summarised in Table 24. 

217 

220 

218 219 
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Table 24: Summary of catalyst recycling results for reduction of acetophenone. 

Catalyst  First Cycle Nth Cycle 
 No uses % Conv % ee % Conv % ee 

134 5 100 98 * 97 

212 5 99 98 90 97 

215 14 99 92 87 92 

217 3 98 97 81 93 

* Data on conversion after 2nd recycle is not provided in the paper. 

Frustratingly not all of the literature reviewed includes data on catalyst recycling 

experiments, even though it is universally described as a key potential benefit in the 

introductory sections of papers describing polymer supported catalysts. 

1.5.1.3 Disadvantages of polymer supported catalysts 

However these approaches have not yet overcome enough practical limitations to become 

superior to the classical homogenous reduction yet. As each approach requires a custom, 

often complex ligand synthesis catalyst itself is made much more expensive. Loading of 

ruthenium is variable and difficult to monitor. Frequently analysis by methods such as (ICP-

OES) is used to determine a ruthenium loading per gram of support, but it is difficult to know 

how much of this ruthenium is actively bound into the desired chiral ligand sites, and how 

much is adsorbed non-specifically onto the substrate. Variation between batches of 

supported catalysts will therefore be higher, reducing process robustness. Metal leaching is 

frequently observed, with some ruthenium escaping into the reaction solvent, and a small 

mechanical loss of the support during filtration and washing in each cycle results in a reduced 

catalyst loading and loss of activity.* Therefore improved supported catalysts will aim to 

minimise activity decay, minimise metal leaching and mechanical losses, and have a simple 

cost effective ligand synthesis.  

1.5.2 Non-Organic Solvents 

A high proportion of the costs and hazards associated with fine chemical processes are often 

related to the solvents used.97 Formic acid/triethylamine and isopropanol are convenient 

organic solvents for use on a lab scale and easier to handle than pressurised hydrogen gas 

                                                           

* McGowen et. al. report a physical loss of 40% of their resin after 26 decantation cycles. 194 



78 

 

and methanol, however if the quantity of organic solvent required for ATH could be reduced 

the process might be made safer and more environmentally friendly. 

1.5.2.1 Ionic Liquids 

Room temperature ionic liquids (ILs) have been explored as a potential alternative solvent. 

Due to their high boiling points, exposure to vapours is less of an issue for workers. If an ion-

functionalised catalyst is used it may be immobilised in the ionic liquid. Extraction with 

organic solvents allows the product and remaining substrate to be removed while in principle 

the catalyst remains bound in the IL phase. 

1.5.2.2 Literature examples of IL supported catalysts. 

Ohta describes an imidazolium functionalised ligand 221 that can be used with a ruthenium 

source for the ATH of acetophenone in IL solvent 222.98 FA/TEA is used as hydrogen source 

and the catalyst can be recycled up to 5 times, though after the third cycle performance is 

substantially poorer. 

 

Scheme 64: ATH of acetophenone in ionic liquid solvent. Results: conv 96%, ee 93%. 
Activity on 5th cycle: conv 75%, ee 90% 

Interestingly the authors also describe the recycling of a conventional Noyori-type catalyst 

[RuCl(benzene)TsDPEN], which is also soluble in the ionic liquid and can be recycled 

effectively 3 times. 

Dyson has also prepared an imidazolium functionalised catalyst 223, in this case with the 

additional group attached through the ruthenium arene rather than the diamine ligand 

221 

222 

49 47 
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(Scheme 65). They isolate the ruthenium complex and use this directly in ATH of 

acetophenone in IL 224. Recycling is performed by extraction of product into hexane or 

ether, and then spent hydrogen donor is washed out with water. However 223 is too 

hydrophilic and is washed out of the ionic liquid phase after the second cycle. 

 

Scheme 65: ATH of acetophenone in IL with cationic Ru complex 223.  
Results: conv 99%, ee 99%. After 2nd cycle: conv 68%, ee 99%. 

Again the authors also perform recycling on the conventional Noyori catalyst 58 which in this 

case outperforms the modified complex 223. Catalyst 58 is usable over 4 cycles, and although 

the activity remains high in this case it is the selectivity that degrades, down to 45% ee on 

the 4th cycle. 

1.5.2.3 Disadvantages of IL supported catalysts. 

There are some significant disadvantages to use of IL solvents for ATH. The IL solvents 

themselves are generally based on the imidazolium structure, which has some safety 

concerns as a potential carcinogen. IL solvents are extremely hydrophilic and require 

extensive drying to remove water, which is energy intensive. Finally, organic solvent is 

generally required for extraction and the volume of this is far greater than the reaction 

volume, meaning that only a small portion of the total organic solvent usage is being replaced 

by the IL. 

1.5.2.4 ATH in water. 

Water has also been explored as an alternative solvent. There are several examples in the 

literature of reactions that are accelerated in aqueous media compared to their conventional 

223 

224 

 

49 47 



80 

 

solvent based protocols, most famously the Diels Alder reaction.99 The theory is that reagents 

are forced into dense highly concentrated pockets due to their hydrophobic repulsion from 

the bulk water phase. This effect has been extensively explored for ATH catalysts by Wu et. 

al., who originally reported a very fast reduction of acetophenone with the Noyori catalyst 

58 in 2004.100 

 

Scheme 66: Accelerated ATH of acetophenone in water. Reaction time: 30 mins, 76% conv, 
95% ee. 

Wu has published several papers in this area including detailed investigations on the effects 

of pH, and mechanistic investigations into rate acceleration effect which as described 

previously propose a solvent assisted protonation of the substrate.48,101  

1.5.3 Rh and Ir Cp* Complexes 

Another option to improve the performance of transition metal catalysts is changing the 

metal source. Between 1998 and 1999 several research groups independently reported the 

use of [Cp*MCl(diamine)] complexes for ATH of ketones and imines, where M = Rh or Ir.102–

104 These group 9 transition metal complexes are isoelectronic with the Noyori complex 58. 

 

 

Figure 23: Early rhodium and iridium Cp* complexes for ATH 

Comparison of their performance in acetophenone reduction showed that Rh was more 

reactive than Ir, and that the mono-tosylated cyclohexyldiamine ligand gave better reactivity 

225: M = Rh 226: M = Rh 
227: M = Ir 

 

49 47 
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than TsDPEN (Table 25). In comparison to the Noyori catalyst 58, Cp* complex 226 was less 

active but slightly more enantioselective, giving the chiral alcohol product in 97 % ee 

compared to 94% for the ruthenium catalyst. 

Table 25: Comparison of simple Ru, Rh and Ir catalysts in ATH of acetophenone 

 

Catalyst M Arene Ligand % Conv % ee 

58 Ru p-Cymene TsDPEN 92 94 

225 Rh Cp* TsDPEN 14 90 

226 Rh Cp* TsCYDEN* 85 97 

227 Ir Cp* TsCYDEN 36 96 

Conditions: 12hr reaction time, 30 °C, 200:1 S/C. 

In certain cases the Rh complexes are able to achieve significantly better results than their 

Ru counterparts. For example, complex 225 has found application in the reduction of 2-

chloroacetophenones where it can be used in a two-step, one pot reaction to prepare the 

corresponding chiral styrene oxides very efficiently (Scheme 67).105 

 

Scheme 67: ATH and cyclisation of 2-chloroacetophenone with Rh catalyst 225 at S/C: 
1000/1. Yield 83%, ee 97%. 

                                                           

* Also referred to in later literature as TsDAC: N-tosyl-1,2-diaminocyclohexane 

47 49 
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1.5.3.1 Tethered Rh Cp* complexes 

 

Figure 24: Tethered Rh Cp* catalysts for ATH of ketones. 

Wills et al have prepared tethered forms of the Rh Cp* catalysts.106,107 Both TsDPEN and 

TsDPEN were used as chiral diamines, but mirroring the results found in the literature for 

non-tethered catalysts the diaminocyclohexane complex 231 was found to be more active, 

reducing acetophenone in 100% conversion in 2 hours compared to 10 for TsDPEN complex 

230 (Table 26). This result is comparable to that achieved by the 3C-teth (80) complex, which 

reduces acetophenone in 3 hours under similar conditions. 

Table 26: Reduction of acetophenones with tethered Rh Cp* Catalysts 

 

Catalyst X= Temp /°C Time /hr % Conv % ee 

80 H 28 3 100 96 

230 H 25 10 100 98 

231 H 28 2 100 96 

230 Cl 25 28 100 77 

231 Cl 28 8 100 85 

230 OMe 25 48 93 90 

231 OMe 28 22 100 94 

Conditions: S/C 200:1, [Substrate] = 2M in FA/TEA 

The synthesis of these benzyl tethered complexes is somewhat more challenging than that 

required for 3C-teth (80) and is illustrated for the TsCYDEN complex in Scheme 68. Ortho-

Lithiation and addition of 233 to cyclopentenone 232 gave a tertiary alcohol 234, which could 

230 

 

231 
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be eliminated under acidic conditions to produce a mixture of cyclopentadiene isomers. 

Reductive amination of the resulting aldehyde with a chiral diamine followed by reaction 

with rhodium trichloride gave the tethered Rh catalyst 231. 

 

Scheme 68: Synthetic approach to tethered Rh Cp* catalyst 231 

Rh Cp* catalysts therefore provide an alternative to the Ru (II) catalysts for ATH of ketones. 

In certain cases they may provide superior activity or selectivity, and according to a review 

by Xiao et. al. they are also less air sensitive during reductions in aqueous conditions.108  

A primary disadvantage of Rh complexes is the cost of the metal itself; at the time of writing 

Rh metal is 10 times more expensive than Ru.* This means that successful application of a Rh 

complex requires that it be several times more efficient, either due to increased activity or 

selectivity that cannot be achieved with the Ru complex.  

1.6 Summary 

Air stable, highly selective and versatile Ru(II) catalysts for ATH and AH have been developed 

over the last 30 years. The original Noyori type catalyst for ATH still finds widespread 

                                                           

* As determined by the JM price chart at http://www.platinum.matthey.com/prices/price-charts  
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applications in the literature, but has been improved upon by the development of tethered 

variants with increased activity. 

The synchronous, two step mechanism for ATH was originally described with some certainty 

and detail shortly after the discovery of the Noyori catalyst 58, but gradually more evidence 

has accumulated to question this original proposal. The development of computational 

methods capable of including solvation effects have played a major part in this 

reinterpretation of the original mechanism. 

The substrate scope for such catalysts is broadly limited to alkyl-aryl ketones, but in certain 

cases and with modification of the ligand steric effects more challenging substrates can be 

reduced. Electron rich ketones and α,β-unsaturated ketones present a particular challenge 

of reactivity and selectivity respectively. 

While there is a reasonable body of literature showing examples of both substrate classes, 

this tends to be in the form of substrate screens presenting a fairly broad array of products, 

generally to showcase the versatility of new catalysts or ligands. Some interpretation is 

required for those substrates not investigated in such publications, which may simply have 

not been tested, or may have performed poorly and not been included. 

Polymer catalysts can greatly simplify product separation during ATH reactions, as well as 

offering a potential advantage of reusability over a small number of reaction cycles. However 

degradation or leaching of the catalyst is a frequent issue. Additionally there are serious 

practical difficulties of lengthy multi-step syntheses of polymer supported ligands that will 

reduce the uptake of such catalysts among other research groups. While it is relatively quick 

to test commercially available metal sources and ligands in new applications, custom 

synthesis of catalyst components is a much slower process. 
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2 Results and Discussion 

An initial goal of the project was the development of new polymer supported catalysts, as 

the majority of literature reports so far have not yet conclusively demonstrated a decisive 

advantage over their homogenous parent compounds. 

2.1 Synthetic Approaches to Supported or Functionalised 
Catalysts 

2.1.1 Maleimide Catalyst.  

Incorporating a maleimide functional group was an early objective in the project. This would 

in principle allow easy attachment of a ligand or preformed ruthenium catalyst onto a protein 

scaffold. Either an existing free cysteine residue is required, or a disulphide bond can be 

reduced to produce two available sites. The resulting free thiol would then react rapidly with 

maleimide in a Michael addition.109–111 

 

Scheme 69: Theoretical procedure for protein conjugation of maleimide functionalised 
catalysts. 

Initial attempts to prepare a non-tethered functionalised catalyst were made using 

commercially available maleimide 237. Two approaches were tried; alkylation of the 
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maleimide with hydroxy-propyl halides 242/243, or direct conjugate addition with acrolein 

238 or cinnamaldehyde 239 

 

Scheme 70: Attempted Michael reaction and alkylation of maleimide. 
a) MeONa, MeOH, rt, 2.5 hr. b) 242, KOH, DMF, rt to 90°C, 24 hr. c) 243, KOH, DMF, 4Å MS, 

rt to 80°C, 24 hr. d) 243, K2CO3, THF, 65°C, 24hr. e) 243, K2CO3, Acetone, rt, 24hr. f) 243, 
K2CO3, MeCN, rt, 24hr. 

All attempts to functionalise 237 in this way were unsuccessful, either failing to react or 

causing decomposition of the starting material. 

2.1.1.1 Furan protection and synthesis  

A protecting group approach to the alkylated product 241 was adopted based on the Diels-

Alder cycloaddition between furan 244 and imide 237, which was easily carried out following 

a literature procedure.112 With the reactive double bond protected, room temperature 

alkylation then becomes possible under mild conditions, giving good yields of the alcohol 246 

over two steps. 

242: X=Br 

243: X=I 

237 

238: R=H 

239: R=Ph 

240 

241 
237 



87 

 

 

Scheme 71: Protection and N-alkylation of 237. 
a) Et2O, 100°C sealed tube, 20 hr, 50-82%. b) 242, K2CO3, Acetone, rt, 4 days, 90-99%. 

Performing the Diels-Alder reaction at room temperature yields a mixture of exo and endo 

isomers of 245, which can be distinguished by 1H NMR. However by using a pressure vessel 

and increasing the reaction temperature to 90 °C, the thermodynamically favoured exo 

isomer could be formed selectively. 

Table 27: Structure of endo/exo isomers of the maleimide-furan adduct 245 and NMR data 
(2:1 mixture shown in diagram) 
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Entry T /°C Time NMR Integral for Alpha Protons Endo : Exo 

   (dd, J=1.7, 3.5Hz) (s)  

1 25 4 days 1.30 0.65 2:1 

2 90  12 hours 0.02 2.00 1:100 

Coupling with TsDPEN 55 was performed in a two-step process. Swern oxidation to aldehyde 

247 followed by reductive amination gives the desired ligand 248 cleanly. Over the four steps 

only one chromatographic purification was required (Scheme 72). 

  
Scheme 72: Synthetic approach to maleimide functionalised non-tethered complex. 
a) C2O2Cl2, DMSO, NEt3, DCM, -78 °C to rt, 10-57%. b) (R,R)-TsDPEN 55, AcOH, 4Å MS, 

MeOH, rt, 3 hr then NaBH3CN, rt 45 hr, 79-97%. c) Toluene, 110 °C, 3 hr. d) Xylene, 150 °C, 
15 min. e) [RuCl2(C6H6)]2, NEt3, IPA, 80 °C, 24% (impure). 

Attempts to deprotect ligand 248 by thermal decomposition in refluxing toluene or xylene 

appeared to yield a complex mixture of structurally related products. A possibility is that the 

amines are interfering with the maleimide group at the high temperatures required for 

deprotection. 

A crude sample of complex 250 was prepared by reaction of 248 with benzeneruthenium 

chloride dimer. Although NMR and LCMS evidenced the formation of the desired orange 

complex, even after chromatography the product obtained was contaminated with several 

250 

249 248 

247 246 
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unknown impurities and the mass recovery was poor. No further experiments were 

performed using this material.  

2.1.1.2 Dibromomaleimide 

Dibromomaleimides can be utilised without protection,113,114 and have a different pattern of 

reactivity in their reaction with thiols, giving substitution instead of addition products. 

However, attempting to alkylate 251 did not yield the desired product (Scheme 73). 

 

Scheme 73: Attempted alkylation of dibromomaleimide. a) K2CO3, Acetone, rt, 6 days. 

On the basis that this synthetic approach only leads to non-tethered catalysts, and owing to 

the practical difficulties encountered, the project did not continue further in this direction. 

2.1.2 Ring-Opening Metathesis Polymerisation  

The maleimide-furan cycloadduct 245 had been prepared earlier as an intermediate in the 

attempts to access a maleimide functionalised ruthenium complex. Although thermal 

deprotection to reveal the maleimide group had not been successful, a new approach was 

considered utilising the cycloadduct as a strained cycloalkane substrate for ring opening 

metathesis polymerisation (ROMP). The polymerisation occurs under mild and neutral 

conditions and may offer a way to incorporate a preformed Ru complex into a polymeric 

network. 

2.1.2.1 Monomer Validation 

The monomers 245 and 254 (prepared from N-methylmaleimide and furan as for 245) were 

subjected to transfer hydrogenation with (S,S)-80 (Scheme 74). The imide carbonyls in these 

substrates were found to be inert in FA/TEA at 40 °C, an important prerequisite to the use of 

this structure as a polymeric catalyst support.  

251 242 
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Scheme 74: ATH of monomers 245 and 254 with catalyst 80. Conditions: (S,S)-80 (1%), 
FA/TEA, 40 °C, 22 hr. No reaction observed. 

2.1.2.2 Polymerisation 

ROMP was investigated using the Generation I Grubbs catalyst. The NH containing monomer 

245 is unreactive, but the N-methyl variant 254 polymerises successfully to give the 

polyoxanorbornene 255 with a mixture of cis and trans double bonds (Scheme 75). The 

polymer was sufficiently soluble for NMR analysis and showed the expected peak 

broadening, however analysis of MW etc. was not performed at this stage as this reaction 

was simply for proof of concept.  

 

Scheme 75:  ROMP of maleimide-furan Diels Alder products 245 and 254. Mass recovery of 
255: 122%. 

The more usefully functionalised N-propargyl 256 and TsDPEN 248 substituted monomers 

did not co-polymerise with 254 under the same conditions, and only starting materials were 

recovered (Scheme 76).  

245 254 252/253 

255 

245 

254 
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Scheme 76: Attempted co-polymerisations of functionalised monomers with 254. 

 The TMS protected substrate 257 could be easily prepared by alkylation of 245 with 

(CH3)3SiCCCH2Br and successfully polymerised (Scheme 77).  

 

Scheme 77: Polymerisation and attempted deprotection of TMS protected monomer. 

Deprotection of 258 with TBAF or K2CO3/MeOH was attempted, however on work up the 

polymer violently exothermically degraded, forming a highly insoluble brown material 

formed which defied further analysis. It is possible that some traces of ruthenium catalyst 

remained trapped within 258 after the polymerisation, and once the free alkyne groups were 

revealed these reacted immediately. At this point in the project it was decided not to pursue 

the maleimide strategy any further. 

256 

248 

254 

257 258 
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2.1.3 Cross-Coupling Strategy  

Instead a new synthetic approach to functionalise complexes via Pd catalysed cross-coupling 

was considered. The synthesis simply requires incorporating an aryl iodide functionality in 

place of the usual tosylate methyl group of TsDPEN 55. This functional group is in a remote 

position that does not preclude the possibility of tethering the amine and arene ligands 

(Figure 25).  

 

Figure 25: Proposed cross-coupling strategy for introducing new functional groups in 
tethered or non-tethered Ru catalysts. 

2.1.3.1 Synthesis of para-Iodo Substituted Ligands 

To test conditions for preparation of required ligand 263 a model reaction was performed. 

Commercially available para-iodosulfonyl chloride 259 (IpsCl) was reacted with benzylamine 

260 in DCM using either triethylamine or aqueous sodium hydroxide as base (Scheme 78). 

Triethylamine could be removed by washing with HCl, however this approach would not be 

compatible with the free amino group in DPEN derived ligand 263. 



93 

 

 

Scheme 78: Model reaction for sulfonylation.  
a) NEt3, DCM, 0 °C to rt, 42 hr. b) 2M NaOH, DCM, 0 °C to rt, 42 hr, 54%. 

The Schotten-Baumann biphasic conditions gave a slightly higher proportion of di 

sulfonylated side product 262 in the crude product mixture, however the base was much 

more easily removed during workup. Recrystallization from diisopropyl ether effectively 

separated the desired mono sulfonylated product 261. Application of these conditions to 259 

and (S,S)-52 gave the desired monosulfonylated ligand 263. 

 

 

Scheme 79: Synthesis of aryl iodide containing sulfonamide ligand.  
a) 2M NaOH, DCM, 0 °C to rt, 45 hr, 52%; b) K2CO3, DCM, 0 °C to rt, 4 days, 84% 

As the reaction was scaled up in further experiments replacing NaOH with K2CO3 and 

extending the reaction time improved the reliability of the sulfonylation process. 

Recrystallization from toluene allowed efficient preparation of 263 on 2g scale (Scheme 79). 

In order to prepare Ips containing ligands for tethered complex synthesis, two approaches 

were used. Alcohols 264 and 265 underwent a one pot triflation/substitution reaction with 

diamine 263 to produce ligands 266 and 267. (Scheme 80). 

259 

260 

261 

262 

259 (S,S)-52 (S,S)-263 
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Scheme 80: Preparation of Ips- (p-IC6H4SO2-) substituted ligands. a) 1) Alcohol, Tf2O, 2,6-
lutidine, DCM, 0°C, rt. 2) 263 , NEt3, DCM, 0°C to rt, 24hr. 

Ligand 269.could be prepared more easily by reductive amination of aldehyde 268 with 

diamine 263. 

 

Scheme 81: Preparation of Ips substituted benzyl bridged ligand. a) AcOH, 4Å MS, MeOH, 
rt, 6 hr then NaBH3CN, rt, 3 days. 82% Yield. 

2.1.3.2 Synthesis of para-Iodo Substituted Complexes 

 

Scheme 82: Preparation of untethered Iodine containing complex 270. Yield 70% 

Ligand 263 has been used to prepare the untethered complex 270. This reaction is usually 

performed at 80°C in the literature, however it was found that the complexation occurs 

cleanly at 40°C and pure 270  is isolated easily by filtration. 

270 263 

264: R= R1 

265: R= R2 

266: R= R1 (65%) 

267: R= R2 (33%) 

269 268 

263 

263 



95 

 

 The X-ray structure of 270 confirms that the (R,R)-ligand imparts (R) geometry at ruthenium, 

and that the bond angles and distances around the ruthenium centre are comparable with 

those reported by Noyori for [RuCl(p-cymene)TsDPEN].42 

.  

Figure 26: X-ray crystal structure of [RuCl(IpsDPEN)(p-cymene)] 

The cyclohexadiene ligand 266 could be converted to tethered complex 272 via dimer 271, 

in a synthesis that is analogous to that used for 3C-teth (80), however only test arene 

exchange reactions were performed with the other ligands 267 and 269 and fully 

characterised samples of their respective complexes have not been obtained. 
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Scheme 83: Synthesis of tethered Ips functionalised catalyst. 12% Yield over two steps.  

The objective of preparing these complexes was to utilise the aryl iodide group as a site for 

further functionalization of either ligands or complexes. An initial attempt to perform a 

Sonogashira coupling on both 263 and 270 with a test alkyne 273 gave mixed results. The 

free amino group in 263 appeared to inhibit coupling, with no trace of reaction visible by 

NMR or mass spectrometry, possibly due to coordination of basic amine to the palladium or 

copper catalysts. However 270 appears to have reacted completely by mass spectrometry, 

as inferred by a shift in the [M-Cl]+ peak in the product from 713 to 722, consistent with 

replacing -I for -C7H6NO2. However, the resulting product was impure even after column 

chromatography and no other data was obtained to prove that the product is complex 274. 

271 

272 

266 
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Scheme 84: Attempted coupling of alkyne with para-iodo compounds. No reaction with R = 
DPEN. Possible reaction with R = [RuCl(DPEN)(p-cymene)]. a) Pd(PPh3)2Cl2, CuI, NEt3, THF, rt, 

2 days.  

From practical experience it appears to be a general rule that purification of monomeric 

ruthenium complexes is low yielding and difficult*, normally requiring either crystallization, 

purification on silica or both. Therefore, coupling to form another monomeric compound is 

likely to be inefficient, and the coupling strategy will only be of value if used to attach the 

complex to a new group that allows for simple purification. For example, coupling to a solid 

support allows purification by washing and filtration. 

2.1.4 Chapter Summary 

At this point in the project there was no clear indication of success. Preparation of the 

maleimide functionalised ligand 248 was achieved, as well as an impure sample of complex 

250, however the issue of deprotection or polymerisation of the maleimide group to 

incorporate it into a support has not been successfully addressed.  

Iodine substituted complexes were prepared that may provide more promise for future 

consideration. The cross coupling reaction between untethered complex 270 has shown 

                                                           

* See Chapter 2.2 for a more detailed discussion with relation to purification of tethered complexes 
formed by arene exchange 

273 274 263: R= R1 

270: R= R2 
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some potential, although clearly much more work is required to prove formation of pure, 

coupled monomeric complex and apply this methodology to coupling to any polymeric 

support. 

The synthesis of IpsDPEN 263 and several complexes derived from it, resulting from 

continued work by members of the Wills group in this area, have now been published.115 

These include complex 275 derived from ligand 267, and benzyl-bridged complex 276 that is 

derived from a methoxy analogue of ligand 269. (Figure 27) 

 

Figure 27: New Ips functionalised complexes developed in further work. Results for 
reduction of acetophenone (100 : 1 S/C, FA/TEA, 40 °C). 275: 99% Conv, 97% ee in 24 hr. 

276: 99% Conv, 97% ee in 7 hr. 

These results demonstrate that the iodine substitution does not appear to affect the 

activity/selectivity of these complexes in ATH of ketones. This is encouraging as it indicates 

that cross coupling to support through this site is unlikely to interfere with the active part of 

the catalyst. However at the time of the project, with mixed indications of future success, it 

was decided to change the direction of the research project towards the use of known 

catalysts with new substrates. 

2.2 Optimisation of Arene Exchange Methods 

During this project it became necessary to prepare further quantities of OMe-teth (115) for 

use in substrate reductions. As discussed in introduction section 1.3.6 , the arene exchange 

reaction used for preparation of 115 is particularly challenging and not yet optimised. Some 

efforts at better understanding the practical aspects of this reaction and to improve its 

robustness are described in this section. 

2.2.1 Synthetic Preparation of Ligand and Metal Source 

The approach used previously within the group for preparation of ruthenium dimer 117 was 

followed without modification.116 High pressure Diels-Alder cycloaddition of butadiene and 

275 276 
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propiolic acid gave the cyclic acid 278, which decomposes within a few days at room 

temperature and must be stored in the freezer. Esterification with sulfuric acid and ethanol 

gave the stable ethyl ester 279. Dehydrogenation with ruthenium trichloride was carried out 

by refluxing in ethanol. Dimer 117 could be easily isolated by filtration and no purification 

was required. The overall yield for the process was 57% for 0.9 g of dimer.  

 

Scheme 85: Preparation of ruthenium dimer 117. Conditions: a) neat, -78°C to 110°C, 110 
mbar, 78%; b) H2SO4, EtOH, 80°C, 79%; c) 75, EtOH, 80°C, 93%.  

Ligand 116 was prepared using a published procedure from within the group.62 One pot 

triflation of commercially available alcohol 280, followed by SN2 amination with TsDPEN gave 

the desired ligand on 5g scale in 66% yield. The aqueous workup was simplified by solvent 

switching from DCM to EtOAc, and product isolation achieved by recrystallization of the 

crude amine from ethanol, rather than by chromatography. While the resulting yield was 

somewhat lower than the literature reports (66 vs 89%),62 this reaction was carried out at 10 

times the scale of the reported procedure, and the crystallization process represents a more 

attractive option for future scale up. 

277 92 278 

279 117 
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Scheme 86: Preparation of Ts-DPEN-3C-OMe ligand.  
Conditons: i) Tf2O, 2,6 lutidine, DCM, 0°C to rt, 2hr; ii) (R,R)-TsDPEN, NEt3, DCM, 0°C to rt, 

24hr. Yield 66% 

2.2.2 Arene Exchange Reaction 

With both ligand and metal source in hand, the arene exchange reaction was attempted. In 

the initial test reaction at 0.2 mmol scale. Initial mass recovery after concentration of the 

reaction mixture was 135% of theoretical. 1H NMR showed a characteristic doublet at ~8.02 

ppm that is characteristic of ethylbenzoate. 

 

Scheme 87: Initial attempt at arene exchange reaction to form OMe-teth (115). Mass 
recovery of crude product: 135%. Mass recovery of impure product after chromatography: 

62%. 

Test chromatography on ~20% of the crude material with DCM/MeOH as eluent successfully 

separated three components; ethylbenzoate 113 in the solvent front, unreacted ligand 116, 

and the target complex. However both ligand and complex fractions are contaminated with 

an unidentified brown material, which streaks extensively during chromatography. Dark 

coloured impurities resulting from the arene exchange reaction are known from the previous 

116 280 

116 115 
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work and observation of their presence during TLC was used as a proxy for gauging impurity 

formation during reaction optimisation (the original diagram illustrating this is reproduced 

in Figure 28). 

 

Figure 28: TLC visualisation of dark coloured impurity. Image taken from Wills et. al.62 

The remaining crude was treated with diethyl ether to form a red precipitate, which was 

recovered by filtration. The NMR of the precipitate contained the desired peaks, and the 

mass recovery of the process was ~50%. NMR analysis of the filtrate showed the presence of 

ethylbenzoate (as expected), as well as peaks characteristic of the target complex, and 

diethyl ether. Both sets of spectra were again significantly broadened and distorted 
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Figure 29: Poor quality 1H NMR spectrum of 115. 

None of the material obtained in this first reaction was of sufficient quality to be 

characterised fully or used in ATH reactions. The brown impurity was of particular concern 

on the basis of its known attributes (NMR distortion, no assignable peaks in 1H or 13C NMR, 

streaking during chromatography, dark colour and staining). These may well indicate the 

presence of a metallic impurity which would impede accurate assessment of the catalytic 

properties of 115. Therefore further method optimisation was required.  

2.2.2.1 Varying Dimer to Ligand Ratio 

The ligand to metal ratio was varied in small scale tests, with 0.1 mmol dimer and between 

0.1 and 0.4 mmol of ligand in a fixed solvent volume of 5 ml chlorobenzene. The reactions 

were carried out under N2 in a parallel synthesis kit rather than the usual pressure tube 

apparatus that had been used before, in order to allow reaction sampling over time. The 

reaction was followed by LC-MS as described previously by the group.62,116 Once complete, 

the crude was concentrated and precipitated from diethyl ether before being passed through 

a short silica plug with a mixture of ethyl acetate and ethanol (3:1). 
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Figure 30: Comparison of 1H NMR spectra for crude products of arene exchange reactions 

at varying ratios. D = dimer, L = Ligand. 

1H NMR analysis of these crude products showed that in all three cases the spectra of the 

crude products are of poor quality. The characteristic 4H ruthenium arene system from 

complex 115 is visible between 5.1-5.6 ppm in all cases, though peak positions are slightly 

variable and coupling constants are not visible. Despite the workup which involved 

precipitation from diethyl ether, the ethylbenzoate peak at ~8.1 ppm is clearly visible in the 

1:1 and 1:2 ratio reactions. Interestingly the reaction with excess ligand does not show any 

trace of ethylbenzoate 113. Despite a slightly cleaner NMR spectrum in the 1:1 case, there 

was not enough clear evidence of improvement to justify the inefficient stoichiometry, which 

would waste one atom of ruthenium metal per molecule of complex formed.   

2.2.2.2 HCl Gas as a Potential Contaminant. 

During reaction monitoring white fumes were observed when the hot reaction mixture was 

disturbed by a syringe for withdrawing aliquots. As the reaction is performed in the absence 

of base and elimination of HCl is required for ligation of the sulfonamide to ruthenium, it is 

highly likely that these fumes are gaseous HCl. While this will be partially removed during 

concentration at the end of the reaction, there is also a possibility that the HCl gas is reacting 

with the various amine bases and forming hydrochloride salts that are interfering with the 

purification and spectral analysis. 
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Scheme 88: Micro-scale (0.02 mmol) reaction of ligand 116 and complex 115 with HCl. 

A small experiment was performed to test this hypothesis. Standard samples of pure ligand 

116 and complex 115 were prepared in CDCl3 and the 1H NMR spectra recorded. The samples 

were then evaporated, dissolved in DCM and stirred with 0.5 eq of ethereal HCl for 3 hours, 

before being evaporated again (Scheme 88). The full sample was re-dissolved in CDCl3 and 

the 1H NMR spectra recorded and compared. 

116 

115 
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Figure 31: 1H NMR spectra of ligand 116 before (lower) and after (upper) treatment with 

HCl 

In the case of ligand 116, treatment with HCl had a small effect (Figure 31). The ligand tertiary 

CH protons at ~4.25 and 3.59 ppm have shifted downfield by 0.17 and 0.24 ppm respectively, 

and are so broadened that the coupling pattern is no longer visible. The sulphonamide NH 

peak is no longer visible, and the diastereotopic CH2 proton at 2.28 ppm is also no longer 

visible to the right of the large tosyl CH3 signal at 2.31 ppm. Finally the remaining aromatic 

and alkyl multiplets are somewhat broadened and couplings are not clearly visible. 
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Figure 32: 1H NMR spectra of complex 115 before (lower) and after (upper) treatment with 
HCl 

For complex 115, HCl treatment was also detrimental (Figure 32). The ruthenium arene 

protons between 5.5 and 5.2 ppm, which had been clearly visible as doublets or doublets of 

doublets were now broadened into two indistinct doublets and two broad singlets. 

Additionally many of the peaks in the alkyl region have partially coalesced. Unlike the spectra 

of ligand 116, there were no major shifts in peak position. 

While the spectra display some adverse effects as a result of HCl treatment, the peak 

broadening is not as severe as that observed in crude reaction mixtures. Therefore while it 

was considered prudent to attempt to remove HCl residues from the reaction mixture in 

some form before analysis, the severe spectrum degradation is more likely to be a result of 

contamination with the dark coloured impurities noted previously. 

The arene exchange reaction was repeated on test scale, incorporating an aqueous workup 

with DCM and NaHCO3 in an effort to remove HCl residue from the crude product. Crude 

filtration through a silica plug* achieved a rough separation between ligand and complex. 

                                                           

* Solvent mixture: 1): 70% petroleum ether, 22.5% ethyl acetate, 7.5% ethanol; 2): 40% petroleum 
ether, 45% ethyl acetate, 15% ethanol. Solvent mixture choice based on work by Taygerly et. al.195 
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Column chromatography with DCM/EtOAc/EtOH then gave a relatively pure sample of 

complex, however the overall yield for this process was poor (18%). 

2.2.2.3 Final Reaction Conditions 

While at the outset of this project improving on the reported literature yields of 40-50% for 

arene exchange reactions had been considered a useful goal, experimentation thus far had 

shown that it would be an achievement to simply replicate the literature results. The final 

conditions chosen for a 1.5 mmol scale synthesis of OMe-teth (115) were a result of the 

experience acquired thus far. 

 

Scheme 89: Literature conditions for use of molecular sieves as HCl scavenger.117 

One change made was the incorporation of 4Å Molecular sieves to the reaction mixture as 

HCl scavenger. This was inspired by a literature reference to a successful amide acylation 

performed in neutral conditions where amine bases had proven ineffective (Scheme 89).117 

Thus the arene exchange reaction was carried out at 90°C in chlorobenzene, under N2 and 

monitored by LCMS (Scheme 90). Crucially, during monitoring no white fumes were 

observed, indicating that the molecular sieves were fulfilling their role. After an extended 

reaction time of 10 hours, filtration through a bed of Celite with a thin band of silica in the 

middle gave the crude complex with some of the brown colouration removed. 
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Scheme 90: Optimised conditions for arene exchange. 330 mg isolated, 34% yield. 

Column chromatography was then used with careful selection of conditions to minimise 

streaking of impurities. The crude was dry loaded and eluted isocratically with a mixture of 

petroleum ether, DCM and isopropanol (5:4:1). This finally yielded clean product, with most 

of the brown colouration removed in an early band (with the ligand) and a trailing band that 

follows on from the pure catalyst. The 1H NMR spectra of this purified material were now 

acceptable, with a flat baseline and well defined peaks that matched the reported literature 

values.  

 
Figure 33: 1H NMR spectrum of pure complex 115. 
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2.2.3 Chapter Summary 

Some of the complexities of the arene exchange route to tethered complexes have been 

explored in detail. While the absence of base helps promote the desired arene exchange 

reaction, this results in the release of free HCl as the condensation between the ligand 

sulfonamide and ruthenium progresses. This was shown to potentially degrade the quality 

of the 1H NMR spectra of crude products from the reaction, which makes analysis of 

conversion more challenging. 

The use of molecular sieves as a HCl trap, while not resulting in an improvement on the 

reported literature yield, simplified the operation and allowed preparation of a batch of 

catalyst on sufficient scale to perform several of the reductions in the remainder of this 

project. 
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2.3 ATH of Electron Rich Ketones: 

As discussed in the introduction, electron rich aromatic ketones are challenging substrates 

for reduction due to a lack of reactivity.65,118 This makes them a prime target for exploring 

the applications of tethered catalysts, which show enhanced activity compared to their non-

tethered counterparts.  

2.3.1 Initial Substrates for Investigation 

Ortho-hydroxy (133) and ortho-methoxy (126) acetophenones were chosen as simple 

starting substrates for investigation. Both substrates were reduced with 3C-teth (80) and 

OMe-teth (115) catalysts under standard (FA/TEA) conditions and slightly elevated 

temperature (40 °C). All four reactions progressed at a reasonable rate, giving high to 

complete conversions in ~4 hours (Table 28) Conversion was determined by 1H NMR 

spectroscopy and the ee’s were determined by chiral GC or HPLC as appropriate.  

 

Figure 34: Catalysts (S,S)-80 and (R,R)-115 used for reduction of electron rich ketones. 

Racemic standards were obtained by sodium borohydride reduction where possible, or peak 

positions of enantiomers were confirmed by observing switching of positions in products 

formed using the pseudo-enantiomeric catalysts (S,S)-80 and (R,R)-115. 

115 80 
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Table 28: Initial reductions of electron-rich ketones 

 

Substrate Catalyst: (R,R)-115  (S,S)-80  
 R = t / hr % Conv % ee t / hr % Conv % ee 

133 H 3.5 99 99 (R) 4 99 99 (S) 

126 Me 3.75 98 96 (R) 3.75 95 68 (S) 

Standard conditions: S/C = 100, T = 40 °C. Configuration determined by sign of optical 
rotation. 

Both catalysts are extremely effective in reduction of 133, giving the product in 99% ee. 115 

was also effective in reducing the O-methylated substrate 126, with a slight drop in ee to 

96%, however the 3C-teth catalyst performed unexpectedly poorly, giving the product in 68% 

ee. 

It was considered possible that the different ortho substituents were enforcing a different 

conformation of the carbonyl group relative to the phenyl ring. Intuitively it was expected 

that 133 would adopt a simple planar conformation stabilised by hydrogen bonding, while 

the methoxy group in 126 might be large enough to force the phenyl ring to rotate out of 

plane and hence disfavour the edge to face interaction expected in the transition state for 

ATH (Figure 35). 

 

Figure 35: Proposed conformations of ketones 133 and 126. 

2.3.2 Conformational Calculations 

Gas phase quantum chemical calculations at the B3LYP/6-31G* level showed that both 133 

and 126 appear to prefer planar conformations. Plots of the conformational energy change 

against dihedral angle for both ketones show two stable conformers with O=C-C-C(OR) 
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dihedral angles of 0° and 180°, although the lowest energy conformer is different between 

the two ketones. The barrier to rotation is approximately three times higher for 133 at ~70 

kJ mol-1, compared to ~25 kJ mol-1 for 126 (Figure 36) 

 

 
Figure 36: Calculated conformational energy diagram for top: 133, bottom: 126 
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Both minima and the transition state structure for 133 and 126 were re-optimised without 

constraints at the B3LYP/6-31G* level and the structures verified by frequency calculations. 

Single point calculations at the MPW1B95/maug-cc-pVTZ level were performed to obtain 

more accurate energies, which are summarised in Table 29 

Table 29: MPW1B95/maug-cc-PVTZ//B3LYP/6-31G* calculated relative energies for 
conformers of ketones 133 and 126. 

Substrate R= Min 1 Min 2 TS 

133 OH 0 46.28 61.37 

126 OMe 0 13.07 18.03 

Min 1 = lowest energy conformer, Min 2 = second lowest energy conformer, TS = transition 
state 

Figure 37 shows the calculated lowest energy minima for both ketones. The expected 

hydrogen bonded structure can be seen in 133, while for 126 the ketone-aromatic bond has 

rotated 180 degrees. Surprisingly the largest deviation from 120° of any bond is the C(OMe)-

C-CO angle. At 126.2°, this is a significant bend away from the methyl group. The equivalent 

C(OH)-C-CO bond angle in 133 is 119.5°. 

Therefore in both substrates the aromatic group lies co-planar with the ketone and is able to 

participate in the usual edge to face interaction with the catalyst.40 The hydrogen bond in 

133 might be expected to activate this substrate towards reduction by increasing polarisation 

of the carbonyl  bond, and indeed the conversion is slightly higher (99 vs 98-95%) with both 

catalysts given similar reaction times. 

  

Figure 37: Preferred conformations of ketones 133 and 126 
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The difference in selectivity for methylated substrate 126 in ATH with catalysts 80 and 115 

may therefore be due to a difference in steric interactions between aromatic rings in the 

transition state for reduction, but a more conclusive explanation cannot be reached without 

further investigations that are beyond the scope of this study. 

2.3.3 Meta-Substituted Ketones: 

An expanded set of commercially available substrates with substituents in the meta position 

was then reduced with both catalysts (Table 30). Peak positions in GC/HPLC were confirmed 

by the switch in intensity when reduced with different enantiomers of catalyst. The order of 

elution for R or S enantiomers was assumed to be consistent for the varying meta-substituted 

products. 

Table 30: ATH of meta-substituted ketones. 

  

Substrate Catalyst: (R,R)-115 (S,S)-80 
 R = X = % Conv % ee % Conv % ee 

281 H Br 98 94 (R) 99 91 (S) 

282 H Cl 97 93 (R) 99 90 (S) 

133 H H 99 99 (R) 99 99 (S) 

283 H Me 100 95 (R) 99 94 (S) 

284 H OMe 91 92 (R) 92 91 (S) 

126 Me H 98 96 (R) 95 68 (S) 

285 Me OMe 99 90 (R) 99 69 (S) 

Standard conditions: S/C = 100, T = 40 °C 

All OH-containing compounds were reduced in high ee, with OMe-teth (115) generally giving 

marginally better results than 3C-teth (80). The electron donating or withdrawing effects of 

the meta- substituent had very little effect save for a slight drop in conversion for the 

electron donating 5’-OMe substrate 284, though all substituents slightly lowered the ee 

relative to parent compound 133. 

A second O-methylated substrate, 2’,5’-dimethoxyacetophenone 285, showed a similar 

trend to that observed with the parent compounds 126 and 133 , being reduced in 90% ee 
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by 115 but only 69% ee by 80. Conversions in both cases were essentially complete, this 

result reinforces the earlier finding that catalyst 115 is substantially better at reducing ortho-

methoxy substituted ketones. 

2.3.4 Aqueous Reductions of meta-Substituted Ketones 

The same set of 7 ketones was also reduced under aqueous conditions with both catalysts, 

using sodium formate as the hydrogen source and increasing the temperature to 60 °C as is 

standard for this type of ATH reaction in the literature (Table 31).119 

Table 31: ATH of meta-substituted ketones using sodium formate in water. 

 

Substrate  Catalyst: (R,R)-115 (S,S)-80 
 R = X = % Conv % ee % Conv % ee 

282 H Cl 10 63 (R) 100 24 (S) 

133 H H 33 63 (R) 99 22 (S) 

283 H Me 80 87 (R) 15 61 (S) 

284 H OMe 35 61 (R) 89 38 (S) 

126 Me Me 92 96 (R) 89 55 (S) 

285 Me OMe 52 97 (R) 47 70 (S) 

Standard conditions: S/C = 100, T = 60 °C 

The results were extremely variable with no consistent trend observed in conversions. 

Enantioselectivities were moderate to low, and catalyst 80 gave a lower ee in each case than 

115. In general the aqueous conditions appeared to be slower and less robust than reduction 

in FA/TEA. This may be to do with practical elements of the reaction set up; the aqueous 

reduction is biphasic and the substrate and catalyst form a concentrated oil on top of the 

sodium formate solution. Good stirring is needed to mix the phases to bring the catalyst in 

contact with the hydrogen source but this combined with high temperatures leading to the 

aqueous phase partially evaporating could leave parts of the organic phase scattered onto 

the walls of the flask and unable to react further. However for the purposes of this study it 

was concluded that aqueous conditions would not be effective without further detailed 

optimisation of mixing and reaction set up.  
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2.3.5 Increasing ortho-Substituent Size: 

Next the OMe-teth (115) catalyst was applied to a larger scope of substituted 

hydroxyacetophenones with increasing steric hindrance at the ortho position. Ethyl, 

isopropyl, allyl, benzyl and acetyl substituted ketones were prepared from 133 by 

alkylation/acylation under standard conditions. 

Table 32: Ortho-substituted ketone synthesis by nucleophilic substitution 

 

Product R= X= Base Solvent % Yield 

286 Et I K2CO3 MeCN 85 

287 iPr OMs K2CO3 DMF 85 

288 Allyl Br K2CO3 MeCN 96 

289 Bn Br K2CO3 MeCN 89 

290 Ac Cl Pyridine DCM 69 

The ketones were subjected to ATH conditions using catalyst 115. Racemic standards were 

prepared on micro scale (~0.1 mmol) by sodium borohydride reduction and used to confirm 

peak position in GC/HPLC.  
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Table 33: ATH of alkoxy acetophenones. 

  

Substrate R= t /hr %  Conv % ee 

133 H 3.5 99 99 

126 Me 3.75 98 96 

286 Et 6 100 99 

288 Allyl 4.5 100 98 

289 Bn 5 100 95 

290 Ac 48 - - 

Standard conditions: S/C = 100, T = 40 °C, (R,R)-115. All products assumed to be (R) 
configuration by analogy to substrates 133 and 126. 

It was expected that a bulky ortho substituent would hinder reduction and possibly reduce 

the ee, but the results do not show such a trend (Table 33). On increasing the substituent 

size from methyl to ethyl or allyl, the enantioselectivity increased to 99 and 98% respectively. 

Substrate 289 containing the larger benzyl group was less selective but was still reduced in 

95% ee, and there was no indication of hydrogenolysis of the benzyl group. 

The acetyl containing substrate 290 appeared to be resistant to conversion by TLC, and when 

worked up and analysed after two days an impure mixture was obtained. 1H NMR analysis 

revealed some peaks corresponding to starting material, as well as a phenolic proton that 

indicates partial hydrolysis of the acetyl group and secondary alcohol protons that indicate 

some reduction has taken place, but a clear distinction could not be made between 

components and measurements of conversion or ee were not obtained.  

2.3.6 Other O-Substituted Ketones 

Commercially available para-hydroxy acetophenone and chromanone were also reduced 

with OMe-teth (115) (Table 34). 
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Table 34: ATH of Chromanone and p-hydroxyacetophenone 

  

Substrate t / hr % Conv % ee 

132 6 100 99 

291 22 100 96 

Standard conditions: S/C = 100, T = 40 °C, (R,R)-115. Configurations determined by optical 
rotation. 

Consistent with literature results, chromanone 132 is an extremely good substrate for ATH 

and is easily reduced in >99% ee, while para-hydroxy acetophenone 291 is much slower to 

react than its ortho-substituted isomer 133, requiring 22 hours to reach full conversion and 

in a reduced ee of 96%. 

2.3.7 Nitrogen Substituted Compounds 

Reductions of nitrogen substituted ketones as described in this section were carried out by 

final year MChem student Ben Mitchell, supervised in the lab by myself and published in 

2015.119 Experimental details can be found in the literature. 

Nitrogen is a superior electron donor to oxygen, due to its lower electronegativity. As a 

result, para-amino substituted ketones are even more electron rich and will be even less 

reactive in transfer hydrogenation reactions. In order to scope the limit of applicability of 

tethered catalysts to the reduction of this class of ketones, several primary, secondary and 

tertiary amino-ketones were reduced. 

As expected, the amino-ketone substrates were unreactive and required harsher conditions 

to force conversion, typically temperatures of 40-60°C and 5-70 hours reaction time. 

132 

291 



119 

 

The commercially available para-amino substrate 292 could not be reduced in FA/TEA using 

3C-teth (80). No conversion to alcohol product was observed and the starting material 

decomposes to a gummy precipitate. This was not unexpected based on the potential for 

acid-catalysed intermolecular side reactions between the free amine and ketone, leading to 

imine intermediates that could then be reduced or react further. 

 

Scheme 91: Para-amino acetophenone dimerization and reduction under FA/TEA ATH 
conditions 

It was anticipated that this side reaction could be prevented by carrying out the reduction in 

non-acidic conditions. Indeed reduction of 292 in isopropanol gave some clean conversion 

to the alcohol, however the reaction was extremely sluggish and conversion was poor at only 

50% after six days at room temperature. Aqueous conditions gave far superior results. Using 

a 1:1 water : methanol mix, complete reduction was achieved in 4.5 hours at 60 °C with both 

80 and 115 giving good enantioselectivity (Table 35). 

292 
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Table 35: ATH of para-amino acetophenone 

 

Entry Catalyst Solvent T /°C t /hr % Conv % ee 

1 80 FA/TEA 60 24 - - 

2 80 iPrOH 28 144 50 - 

3 80 MeOH/H2O 60 4.5 99 94 

4 115 MeOH/H2O 60 4.5 99 94 

Owing to the high cost of 292, substituted aminoketones were prepared by a SNAr approach 

from the corresponding secondary amine and readily available p-fluoroacetophenone. 

Ketone was added to an aqueous solution of amine and the mixture heated in a sealed 

pressure tube at 150-180 °C. The amine products precipitated as crystalline solids and were 

easily purified by crystallization 

 

Scheme 92: Synthesis of substituted p-aminoacetophenones. 

p-Dimethylaminoacetophenone 296 was tested next as a simple tertiary aminoketone. The 

same reaction conditions remained effective, with conversions of 97-99% and ee of 91-92%. 

However due to the lack of free NH protons, this substrate can also be reduced in FA/TEA, 

with similar conversion and ee, although the reduction was extremely slow. Reduction in 

Isopropanol is still too slow to be useful (Table 36). 

293 292 

294 
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Table 36: ATH of para-dimethylaminoacetophenone 

 

Entry Catalyst Solvent T /°C t /hr % Conv % ee 

1 80 FA/TEA 40 45 95 93 

2 80 iPrOH 28 26 35 - 

3 80 MeOH/H2O 40 5 99 92 

4 115 MeOH/H2O 60 4.5 97 91 

The scope of tertiary aminoketones was extended to include a few cyclic substituents, 

including pyrrolidine, piperidine and morpholine. The substituent effect was minimal, with 

good conversions achieved in both aqueous and FA/TEA solvents, and ee’s ranging from 87-

95%, although the reaction is somewhat quicker with the piperidyl substrate 298. 

Table 37: ATH of para-dimethylamino acetophenone 

 

Substrate t /hr % Conv % ee 

297 70 98 89 

298 24 99 95 

299 45 100 91 

Conditions: (S,S)-80, NaHCO2, MeOH/H2O, 40 °C 

2.3.8 Chapter Summary 

The reduction of several oxygen and nitrogen substituted compounds has been studied with 

tethered ruthenium complexes. As was expected from the previous literature, reduction of 

oxygen containing ketones was somewhat sluggish, requiring slightly forcing conditions. The 

effect of the oxygen substituent on reactivity and selectivity was also highly dependent on 

296 295 

297 298 299 
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whether it was alkylated. ortho-Phenols such as 133 appear to activate their ketone 

substituent via intramolecular hydrogen bonding, and are reducible in high enantiomeric 

excess with both 3C-teth (80) and OMe-teth (115). Methylated derivatives such as 126 adopt 

the opposite planar conformation and are surprisingly unselective when reduced with 80, 

but are reduced in high ee by the methoxy substituted complex 115. Increasing the size of 

the alkyl substituent can have a further positive effect on selectivity for this catalyst. 

Nitrogen substituted ketones can also be effectively reduced and Ben Mitchell has 

demonstrated several useful examples of this reaction primarily using 80. 

In summary a useful synthetic method has been developed for the reduction of electron rich 

ketones with oxygen or nitrogen substituents. This method is complementary to those in the 

literature and extends current examples by exploring the range of substituents beyond 

simple monosubstituted amino, hydroxyl and methoxy ketones. 
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2.4 ATH of α,β-Unsaturated Ketones. 

2.4.1 ATH of β-chloro ketones 

Initially this section of the project began by attempting the ATH of β-chloroacetophenone 

300 as a typical β-halo ketone. There are many published examples of reductions of α-

haloacetophenones but for this particular substrate there are very few examples, including 

a hydrosilylation with a Cu(II) catalyst (Scheme 93).120  

 

Scheme 93: Literature example of hydrosilylation of β-chloroacetophenone 

In principle the chiral halohydrin could be a useful building block for further reactions, such 

as oxetane formation, substitution or cross coupling. (Scheme 94).  

300 301 
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Scheme 94: Potential further applications reactions of chiral beta-chlorohydrin 301 

Initially unexpectedly, reduction of β-chloropropiophenone 300 with 3C-teth (80) in formic 

acid/triethylamine at 60 °C gave complete conversion to 1-phenylpropan-1-ol 302, with high 

stereoselectivity. The initial hypothesis was that the β relationship between chlorine and the 

ketone activates this particular substrate to elimination of HCl, promoted by triethylamine 

(Scheme 95).  

 

Scheme 95: Reduction of β-chloropropiophenone 300. Yield of dehalogenated alcohol: 
72%, 100% conv and 97% ee 

This was confirmed through some simple control experiments. Vinyl ketone 303 could be 

prepared from the starting substrate by elimination with NEt3. Subjecting this intermediate 

to the same ATH conditions also gives the saturated reaction product 302, with identical 

enantiomeric excess as measured by chiral GC. This indicates 303 could be the common 

intermediate in formation of 302.  

302 300 

300 301 
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Scheme 96:  Reduction of dehalogenated intermediates with (S,S)-3C-teth (80).  

The commercially available vinyl alcohol 206 is inert under the same conditions. This 

demonstrates that complete elimination of chlorine must occur before ketone reduction 

occurs, as no trace of 206 is observed in the product mixture in reduction of 300 or 303. 

 

Scheme 97: Non-reactive potential vinyl alcohol intermediate 206.  

The literature is relatively scarce when searching for asymmetric examples of the 

transformation from 300 to 302, spare a few examples of enzymatic reduction in which a 

mixture of ketone reduction and dehalogenation products are obtained.121,122 There have 

however been examples of successful conversion of 300 to the chlorinated product 301 via 

ATH123,124, hydrosillyation120 and borane reduction125. 

 

Figure 38: Classification of 1,4 and 1,2 reduction products. 

Of the two possible modes of reduction of vinyl ketone 303, 1,4- reduction is expected to be 

favourable due to high reactivity of the unhindered mono-substituted vinyl group. As 

discussed in the introduction previously, there are many examples of both 1,2- and 1,4- 

300 
303 

206 

207 

302 
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reductions of enones, that the degree of 1,4- selectivity strongly depended on the exact 

structure of substrates chosen. These results prompted further investigation. 

2.4.2 ATH of Chalcone: Optimisation of 1,4- Reduction Conditions  

Commercially available trans-benzylideneacetophenone (Chalcone, 160) was used as a 

simple model substrate. Racemic standards of both possible alcohol products were prepared 

using sodium borohydride (Scheme 98). Alcohol 205 could be easily prepared by Luche 

reduction, while 162 was produced by a one pot reduction in the presence of palladium on 

carbon, acetic acid, isopropanol, and sodium borohydride.126 HPLC conditions were found 

that allowed separation of the enantiomers of 162 and 205 simultaneously. 

 

Scheme 98: Preparation of racemic standards of alcohols 162 and 205 

Following this, 160 was reduced with both 3C-teth (80) and OMe-teth (115) catalysts under 

a variety of conditions. The product ratio was determined by 1H NMR spectroscopy and the 

results are illustrated in Table 38. 

160 

205 

162 
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Table 38: ATH of Chalcone and its reduction products. 

 

 

Entry Catalyst  t / hr % Conv 161 : 162 : 205 
% ee 
162 

% ee 
205 

R/S 

1a (S,S)-80  1.5 100 2.1 : 90.9 : 7.0 96 73 S 

2a (R,R)-115 4 100 1.7 : 96.2 : 2.1 98 84 R 

3b (S,S)-80 20 100 0.1 : 88.5 : 11.4 95 79 S 

4b (R,R)-115 22 100 0 : 96.3 : 3.7 98 85 R 

5c (S,S)-80 5.5 100 2.0 : 88.3 : 9.8 95 78 S 

6d (R,R)-115 45 100 6.3 : 93.7 : 0 86 -  R 

Standard conditions: a) 2M in FA/TEA, 100:1 S/C, 40 °C. b) 0.5M in 1:1 FA/TEA : MeOH, 
100:1 S/C, 40 °C. c) as a) with CeCl3 additive (0.5 eq). d) 0.5M in 1:1 H2O/MeOH, NaHCO2, 

100:1 S/C, 60 °C. 

Initially, standard conditions (2M substrate concentration) were used with both 80 and 115 

as the catalyst (Table 38, entries 1 and 2). In both cases complete consumption of starting 

material was observed, however ~2% of the product mixture was observed to be the 

saturated ketone intermediate 161.  

1,4-reduction is highly favoured, especially by catalyst 115 which was 98% selective for the 

saturated products 161 and 162. Alcohol 162 is produced with consistently good ee, 95-98% 

in FA/TEA for both catalysts. The unsaturated alcohol 205 is formed with a lower ee (73-

85%), which is consistent with the fact that it has two π systems that could compete as 

directing groups for reduction, one on either side of the ketone. OMe-teth (115) delivers 

higher enantioselectivity than 3C-teth (80) under the same conditions, especially for allylic 

alcohol 205. 

During the course of the reaction, ketone 161 is formed rapidly and then slowly converted 

to saturated alcohol 162. This could be observed by TLC of the reaction mixture. Therefore 

although the conversion is 100% in all the entries in Table 38, it is the total conversion to 

alcohol products 162 and 205  that accurately describes the extent of completion of the 

160 

205 

162 

161 
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reaction. Where this is less than 100%, 1,4 selectivity can be calculated as the proportion of 

161 and 162 in the final product mixture. 

Given the well documented effect of cerium trichloride in the Luche reduction127 it was 

tested as an additive in reduction with catalyst 80 in order to see if the proportion of 205 

could be increased (Table 38, entry 5). Methanol was chosen as co-solvent due to its common 

usage in Luche reductions. The Ce additive had only a marginal effect, increasing the 

proportion of 205 from 7 to 10%. However the additional co-solvent was a practically 

convenient, as substrate 160 was poorly soluble in FA/TEA at the small scales used for 

screening (0.5-1.0 mmol), there was sometimes difficulty in stirring the reaction mass. 

Further reactions using equal quantities of FA/TEA and MeOH at lower concentration (0.5 M 

instead of 2 M) were more reliable to run and had the advantage of ensuring there was 

sufficient hydrogen donor available for two consecutive reductions. (Table 38, entries 3 and 

4).  

Aqueous conditions were also investigated, using H2O/MeOH as solvent system and sodium 

formate as hydrogen donor (Table 38, entry 6). Under these biphasic conditions with OMe-

teth (115) the reduction was completely 1,4 selective, with no trace of 205 detected by NMR 

spectroscopy. However the reaction is much slower, with 6% of saturated ketone 161 

remaining in the product mixture after two days at 60 °C. The ee of alcohol 162 is reduced to 

85%. 

As a result of these initial experiments, conditions from entries 3 and 4, Table 38 were taken 

forwards for use in further reactions. 

2.4.2.1 Variation of Conditions 

The effect of varying temperature was investigated next (Table 39). As the 1,4-selectivity 

depends on the relative rate of two competing reaction pathways, temperature is often an 

effective method for adjusting the product ratio in partially selective reactions. Increasing 

temperature to 60 °C lowers the ee of both alcohol products and increases the 1,4-selectivity 

(Table 39, entry 3). Decreasing the reaction temperature to 25 °C has minimal effect on 

enantioselectivity and slightly increases the proportion of 205. Total conversion to alcohols 

is also reduced despite increased reaction time. 
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Table 39: Effect of temperature variation on chalcone reduction 

 

Entry T / °C t / hr % Conv 161 : 162 : 205 
% ee 
162 

% ee 
205 

1 25 25 100 4.1 : 91.3 : 4.6 98 83 

2 40 22 100 0 : 96.3 : 3.7 98 85 

3 60 18 100 1.1 : 96.4 : 2.6 96 77 

Conditions: 0.5M in 1:1 FA/TEA : MeOH, 100:1 S/C, (R,R)-115. R product produced. 

Screening of co-solvents in the reduction of 160 shows some small effects on reaction rate, 

selectivity and ee, but no major changes (Table 40). All of the aprotic solvents tested perform 

similarly, giving similar or slightly improved 1,4- selectivity and ee compared to reactions 

with MeOH as co-solvent. Notably all of these solvents increase the reaction rate by a factor 

of ~4. Water was also tested as a co-solvent with FA/TEA; unlike the aqueous biphasic 

reaction in Table 38 entry 6, this reaction occurs in a single phase. However the solubility of 

160 in the aqueous FA/TEA mixture is poor, and the enantioselectivity of both products 

substantially poorer than for the other solvents tested.  

160 

205 

162 

161 
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Table 40: Effect of co-solvent in ATH of chalcone 

 

Entry Co-Solvent t / hr 
% Conv 161 : 162 : 205 

% ee 
162 

% ee 
205 

1 MeOH 22 100 0 : 96.3 : 3.7 98 85 

2 EtOAc 4 100 0 : 96.7 : 3.3 96 83 

3 THF 4.5 100 0 : 97.8 : 2.2 96 88 

4 MeCN 4.5 100 0 : 97.3 : 2.7 96 86 

5 Toluene 6.5 100 0 : 97.8 : 2.2 96 87 

6 DCM 6.5 100 0 : 96.9 : 3.1 96 87 

7 H2O 23 100 0 : 96.4 : 3.6 92 75 

8 AcOH 96 100 27 : 65.9 : 7.1 93 76 

9 NEt3 5.5 100 0 : 99.4 : 0.6 98 92 

10a MeCN 6 100 0 : 98.3 : 1.7 94 86 

11a Toluene 6 100 0 : 96.3 : 3.7 98 88 

Standard conditions: 0.5M in 1:1 FA/TEA : Co-Solvent, 100:1 S/C, (R,R)-115. R product 
produced. a) ScOTf3 additive, 5 mol % 

The effect of pH was crudely investigated by use of acidic and basic co-solvents, AcOH and 

trimethylamine. (Table 40, entries 8 and 9) AcOH has a more dramatic effect than the other 

protic co-solvents, leading to incomplete conversion to alcohols even after four days and 

leading to a slight increase in proportion of 205. This change in 1,4 selectivity was expected 

on the basis that acidic conditions could help activate the ketone group in 160, increasing 

the nucleophilicity of the carbonyl carbon (Figure 39). The large decrease in reaction rate is 

presumed to be likely due to acidic inhibition of the catalytic cycle and precludes any practical 

use of acidic conditions to modify selectivity. The ee of both products is also impaired (93% 

for 162, 76% for 205), giving a similar result to that obtained with water as co-solvent. 

160 

205 
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Figure 39: Acidic activation of ketone group of chalcone 160 

The addition of triethylamine conversely leads to highly selective 1,4 reduction in a similar 

reaction time to the aprotic solvents. It is assumed that the increased 1,4 selectivity in this 

scenario is due to simply a reduction of the acid promoted effect shown in Figure 39 relative 

to that occurring in stock 5:2 FA/TEA, rather than a specific involvement of trimethylamine 

in the reaction mechanism. 

Scandium triflate was tested as an additive in acetonitrile and toluene, however the effects 

on 1,4-selectivity and reaction rate were negligible (Table 40, entries 10 and 11). 

2.4.2.2 Selection of Conditions for Further Reactions 

Initial investigations with MeOH as co-solvent (See Table 38) were performed to solve 

practical issues, whereby the volume of solvent was insufficient to stir and cover the poorly 

soluble starting material. While the rate of reduction was observed to decrease, at the time 

this was assumed to be simply due to a decrease in substrate concentration. Hence MeOH 

was used as co-solvent in following reactions. Even after it became apparent that other co-

solvents allowed for faster reactions (Table 40), MeOH was still used to allow for comparison 

to previous results. 

The optimal conditions for 1,4-reduction of chalcone 160 appear to be use OMe-teth (115) 

as catalyst, NEt3 co-solvent at 40 °C. For 1,2 reduction, 3C-teth (80) and any of the aprotic 

solvents at 25 °C or less would give the highest proportion of unsaturated alcohol 205, 

though for this substrate it appears that ATH with tethered catalysts is not suitable for 

selective 1,2 reduction and AH may be a better choice. 

2.4.2.3 Enantioselectivity and configuration of reduction. 

In general 162 is usually formed with greater enantioselectivity than 205. The steric 

hindrance associated with both ketones 160 and 161 are very similar, therefore the 

difference in enantioselectivity may be a result of the alkene in 205 competing with the 

phenyl group in C-H  interactions with the catalyst.  
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Fortunately, 205 is formed in small quantities and can be hydrogenated to 162 with a simple 

metal catalyst without any effect on the alcohol chiral centre. Therefore reaction conditions 

that can both minimise formation of 205 and increase its ee are favourable for preparative 

production of the 162 if followed by alkene hydrogenation, on the condition that the sense 

of induction of both chiral products is similar (Table 41). 

Table 41: Reduction of a product mixture to a single saturated product, ee analysis. 

 

Expected results if 

configuration: 
Is the same Is Opposite 

  R S R S 

er by HPLC  
162 98.8 1.2 98.8 1.2 

205 92.3 7.7 7.7 92.3 

Normalised 

ratio: 

162 95.2 1.1 95.2 1.1 

205 3.5 0.3 0.3 3.5 

After PtO2 

reduction: 

162 er 98.6 1.4 95.4 4.6 

162 %  

ee 
97.2 90.9 

This was expected to be the case and was proved by hydrogenating the product mixture from 

Table 38 entry 4 with Pt2O. Given the ratio of alcohols 162 and 205, the predicted ee of 162 

after racemic alkene hydrogenation is 97.2% if the configuration of both alcohols is the same, 

90.9% if it is different. The experimental measurement of ee after hydrogenation was exactly 

97.2%, proving that 162 and 205 have the same configuration. On this basis it has been 

assumed that both saturated and unsaturated alcohols have the same configuration for all 

of the aryl-ketone substrates tested. 

205 

162 

162 
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2.4.3 ATH of Para-Substituted Chalcones: 

Following these initial results it was expected that the electronic nature of the ketone 

aromatic ring could influence the 1,4- vs 1,2- selectivity of reduction. Indeed previous work 

within the group in a different project had already suggested that ATH of 304, derived from 

297 gave only the 1,4- product 305 in what was at the time an unexpected result.  

 

Scheme 99: Reduction of p-pyrrolidinyl substituted chalcone to 1,4- product.  

A small series of substrates was prepared via Claisen-Schmitt aldol condensation of the 

appropriate para-substituted acetophenone with benzaldehyde 306 in basic aqueous 

alcohol, followed by recrystallization. Either NaOH/EtOH or NaOMe/MeOH were suitable for 

this transformation, and the base could be used in a catalytic quantity (10-50%) (Table 42). 

As described earlier in Scheme 92, dimethyl amino ketone 296 is itself prepared from p-

fluoroacetophenone by a SNAr substitution. 

Table 42: Preparation of para-substituted chalcones  

 

Acetophenone: X = t / hr % Yield 

307 Cl 24 100 

47 H 22 100 

128 OMe 22 100 

296 NMe2 24 93 

Conditions: 0.1-0.5 eq NaOMe, EtOH, 40°C. Recrystallization from aqueous EtOH 

304 305 

306 
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These substrates were reduced with OMe-teth (115) using the screening conditions derived 

for chalcone 160 (Table 43).  

Table 43: ATH of para-substituted chalcones 

 

Substrate X = t / hr % Conv A : B : C % ee B % ee C R/S 

308 Cl 24 100 0 : 96.4 : 3.6 94 69 R 

160 H 22 100 0 : 96.3 : 3.7 98 84 R 

196 OMe 22 100 0 : 98.7 : 1.3 98 n/d R 

309 NMe2 24 100 6.6 : 93.4 : 0 97 n/d R 

Standard Conditions: 0.5M in FA/TEA, MeOH (1:1), 100:1 S/C, (R,R)-OMe-teth (115) catalyst. 
Assumed R product is formed by analogy with chalcone and same order of elution in HPLC. 

As expected, electron donating substituents increase the 1,4- selectivity. The proportion of 

1,2-product C was so low for the para-methoxy and para-dimethylamino substrates that the 

ee was not determined. The strongly electron donating NMe2 substituent resulted in a 

sluggish reaction, with 6% of the saturated ketone product A remaining in the reaction 

mixture after 24 hours. A mildly electron withdrawing chloro group had minimal effect on 

regioselectivity but did lead to lower enantioselectivity in the reduction products. 

A 

B 

C 
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2.4.4 Computational Calculations 

A theoretical study was performed in order to try and better understand the electronic 

structural effects behind the influence of para-substituents on the reactivity of these 

chalcones.  

2.4.4.1 Benchmarking with a Model System 

Chalcone does not have useful experimental heats of formation so acrolein 238 and its 

reduction products (191, 310, 311) were chosen as a simple representative set of compounds 

containing similar functionality, for which accurate experimental enthalpies of formation of 

were available. 

 

 

 

Figure 40: Chemical structures of acrolein and its reduction products for use in test 

calculations. 

In order to balance the chemical equations of hydrogenation, the simplest H source to use 

would be H2. However the electronic environment that hydrogen atoms in organic molecules 

experience is very different to the environment in dihydrogen, and calculations involving 

species with similar functional groups are expected to benefit from a greater degree of error 

cancellation. By using HCO2H and CO2 to balance the reactions the results are likely to be 

more accurate and also better reflect the conditions used experimentally.  

 

∆𝐻𝑅1 = (𝐸𝑆𝐾 +  𝐸𝐶𝑂2
) − (𝐸𝑈𝐾 + 𝐸𝐻𝐶𝑂2𝐻) 

∆𝐻𝑅2 = (𝐸𝑈𝐴 +  𝐸𝐶𝑂2
) − (𝐸𝑈𝐾 + 𝐸𝐻𝐶𝑂2𝐻) 

∆𝐻𝑅3 = (𝐸𝑆𝐴 +  𝐸𝐶𝑂2
) − (𝐸𝑆𝐾  + 𝐸𝐻𝐶𝑂2𝐻) 

∆𝐻𝑅4 = (𝐸𝑆𝐴 +  𝐸𝐶𝑂2
) − (𝐸𝑈𝐴 + 𝐸𝐻𝐶𝑂2𝐻) 

238 

(SK) 
191 

(UA) 
311 

(SK) 
310 

(SA) 
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Equation 5: Use of formic acid and carbon dioxide to balance hydrogenation reactions. Two 

letter abbreviations refer to substrate enone and reduction products, the corresponding 

structures for acrolein can be found in Figure 40. 

As well as the four enthalpies of reaction calculated from experimental data, two further 

quantities are defined. ∆𝐻𝑅5 Is calculated from the difference in enthalpies of alkene or 

ketone reduction for 238, which is simply the enthalpy difference between the two isomeric 

partially reduced products 191 and 311 

 

∆𝐻𝑅5  =  ∆𝐻𝑅1 – ∆𝐻𝑅2 

Equation 6: Definition of isomer enthalpy for an enone and its reduction products 

∆𝐻𝑅6 is the difference in enthalpies for alkene reduction of 238 and 191 (or the difference in 

enthalpy of ketone reduction of 238 and 311). It gives an indication of the stabilisation 

provided by conjugation between the double bonds and is equivalent to the enthalpy of 

partial transfer hydrogenation of 238  with 310. 

 

∆𝐻𝑅6  =  ∆𝐻𝑅4 – ∆𝐻𝑅1  ==  ∆𝐻𝑅3 – ∆𝐻𝑅2 

Equation 7: definition of resonance enthalpy for an enone and its reduction products 

Both of these quantities are independent of the choice of hydrogen source used for the 

reduction reactions. As a result they are expected to better benefit from error cancellation 

and be even easier to predict computationally. The experimental values for ΔH R1 to R6 are 

displayed graphically in Figure 41. 
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Figure 41: Graphical representation of the experimental enthalpy changes for reduction of 
238 

The gas phase geometries of the four possible unsaturated and saturated, ketones and 

alcohols were optimised at the B3LYP/6-31G* level of theory and frequencies calculated to 

verify that they were true minima. Conformational scans about the OC-CC bond were carried 

out at this level in order to find the lowest energy conformers to use for comparison. Thermal 

corrections to enthalpy at 298K were taken and used to create an enthalpy correction factor 

for each of R1 to R6. 

The values of enthalpy changes R1 to R6 were then calculated from a range of single point 

calculations using HF, MP2 and DFT methods, with different basis sets. These values were 

compared to the experimental data and the absolute differences tabulated in Table 44 
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Table 44: Differences from experimental values for enthalpy changes R1-R6. 

 Method Basis R1 R2 R3 R4 R5 R6 MUE 

1 b3lyp 6-31G(d) 13.73 19.20 13.90 19.03 32.93 5.30 17.35 

2 b3lyp cc-pVTZ 1.90 7.08 5.31 0.13 5.18 1.76 3.56 

3 pbe1pbe cc-pVTZ 6.83 0.68 0.02 6.17 6.15 0.66 3.42 

4 mpw1pw91 cc-pVTZ 6.24 0.02 0.32 5.91 6.23 0.33 3.17 

5 MPW1B95 cc-pVTZ 5.64 1.02 0.44 4.18 4.61 1.46 2.89 

6 HF cc-pVTZ 4.41 2.92 3.85 3.48 7.33 0.93 3.82 

7 MP2 cc-pVTZ 19.73 12.43 14.16 21.46 7.30 1.73 12.80 

8 SCS-MP2 cc-pVTZ 15.86 7.69 9.43 17.60 8.16 1.74 10.08 

9 MP3 cc-pVTZ 2.16 0.31 0.35 2.82 2.47 0.66 1.46 

10 MP4(SDQ) cc-pVTZ 8.25 1.49 0.72 7.48 6.76 0.77 4.24 

11 MPW1B95 cc-pVDZ 12.27 2.79 5.41 9.66 15.06 2.62 7.97 

12 MPW1B95 cc-pVQZ 3.92 1.40 0.02 2.55 2.53 1.38 1.97 

13 MPW1B95 aug-cc-pVDZ 2.80 3.19 4.43 4.04 0.39 1.25 2.68 

14 MPW1B95 may-cc-pVTZ 0.90 0.04 1.04 0.10 0.94 1.00 0.67 

15 MPW1B95 jun-cc-pVTZ 0.92 0.17 1.05 0.30 0.75 1.22 0.73 

16 MPW1B95 jul-cc-pVTZ 0.82 0.15 1.07 0.39 0.67 1.22 0.72 

17 MPW1B95 aug-cc-pVTZ 0.72 0.25 0.99 0.52 0.48 1.24 0.70 

18 MPW1B95 apr-cc-pVQZ 2.23 1.17 0.11 0.94 1.05 1.29 1.13 

19 MPW1B95 aug-cc-pVQZ 1.90 1.06 0.27 0.57 0.84 1.33 1.00 

MUE: Mean Unsigned Error. 

On comparing the errors it can be seen that the 6-31G(d) basis used for geometry 

optimisation is far too small for accurate energies. The performance of B3LYP is poor even at 

a larger cc-pVTZ basis, though it does better for C=C reduction (Table 44, entries 1 and 2). 

Of the ab-initio methods HF theory is inadequate, producing consistent large errors (entry 

6). MP2 unexpectedly performs even worse, even with the SCS corrected method,128 while 

MP3 gives similar results to HF. MP4(SDQ) performs somewhat worse again. All of the ab-

initio struggle to describe the C=C reductions accurately. 

More DFT methods were tested using the pbe1pbe, mpw1pw91 and MPW1B95 functional 

(entries 3-5). Of the three, MPW1B95 performs best, though all three are particularly good 

at describing the ketone reductions R2 and R3.  

The MPW1B95 functional was then used to explore the effect of varying basis sets. The DZ 

basis was too small to give reliable results (entry 11), significant improvement to a mean 

error of less than 3 KJ/mol is found at TZ level (entry 5) and the significantly larger QZ basis 

set gives a small further improvement (entry 12). 
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Augmentation with diffuse functions significantly improves the results in general, though full 

augmentation is not required, with the first set of diffuse functions (may-TZ, apr-QZ) 

accounting for almost the entire effect at much lower computational cost.2 

The best DFT results come from use of partially augmented TZ and QZ basis sets and 

consistently come to within 1  kJ mol-1 of the experimental values. This indicates that the 

system is well described at the level of theory used. MPW1B95/maug-cc-pVTZ was chosen 

as the method of choice for further calculations due to its combination of high accuracy and 

moderate computational cost.  

2.4.4.2 Application to para-Substituted Chalcones 

Using the low energy conformations as a starting point, geometries of chalcone and its 

reduction products were taken through a similar process of optimisation and frequency 

calculation at the B3LYP/6-31G* level. 

The geometries were used for single point calculations at the MPW1B95/maug-cc-pVTZ level 

of theory. These energies were finally combined with zero point and enthalpy corrections 

taken from the frequency calculations. The results are summarised in Table 45. 

Table 45: Calculated enthalpies of reaction for series of para-substituted chalcones 

Substrate R1 R2 R3 R4 R5 R6 

pCl -117.19 -53.72 -60.90 -124.38 -63.48 -7.19 

pH -117.58 -53.12 -61.21 -125.68 -64.47 -8.10 

pOMe -117.58 -47.03 -54.67 -125.22 -70.55 -7.65 

pNMe2 -117.71 -40.94 -49.58 -126.35 -76.77 -8.64 

It can be seen that for all para substituents, the enthalpy of reduction of the alkene in the 

starting material is similar, at around -117.5 kJ/mol (Table 45, R1). It is the reactivity of the 

ketone that varies within a 14  kJ mol-1 range, with ketone reduction becoming less 

favourable for the strongly electron donating methoxy and dimethylamino substituents 

(Table 45, R2). In all cases, reduction of the second double bond after the first has been 

saturated is more exothermic by ~7-8 KJ/mol, consistent with the fact that the two double 

bonds are conjugated and hence stabilised by resonance (Table 45, R4). 

The 1,4- reduction preference of catalysts 80 and 115 is therefore well borne out by the 

thermodynamic preference for alkene reduction. However if thermodynamic control was the 

only distinguishing factor then no 1,2- product would be expected in any of the cases. This 

thermodynamic control is therefore tempered by a kinetic preference for carbonyl 



140 

 

reduction. Further conclusions cannot be drawn from this simple analysis, more detailed 

calculations of possible transition states would be required. 

2.4.5 Alkyl Substituted Enones 

With the electronic effect on reduction selectivity relatively well understood, more diverse 

substrates were studied. First the effect of removing aromaticity at either end of the 

substrate was investigated; in order to keep a similar steric bulk and molecular mass the 

corresponding cyclohexyl substituted substrates 312 and 313 were prepared (Figure 42).  

 

Figure 42: Target cyclohexyl substituted enones 

Surprisingly the classic Claisen-Schmidt aldol condensation conditions were effective for 

preparing 313 from cyclohexyl methyl ketone 90 and benzaldehyde 306, despite the starting 

material containing enolizable protons on both sides (Scheme 100). However a by-product 

314 was observed by NMR that appears to result from dimerization of the enone product. 

The by-product was isolated during a second crystallization of the mother liquors from 

purification of 313, and was identified by its increased melting point, mass spectroscopy and 

NMR spectra.  

312 313 
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Scheme 100: Synthesis of enone 313 and associated by-product which was isolated. 

For the alkene-cyclohexyl isomer 312 the corresponding aldol reaction between 

acetophenone 47 and aldehyde 315 was not suitable (Scheme 101). Complete 

decomposition of the reactive aldehyde was observed, while 47 was recovered unreacted. 

 

Scheme 101: Failed synthesis of enone 312 by aldol reaction 

An alternative two-step route required conversion of commercially available alpha-

bromoacetophenone 316 into its di-ethylphosphonate 318 via a Michaelis-Arbuzov reaction 

(Scheme 102). The enol-phosphate by-product 319 was separated during aqueous workup 

using a literature procedure; 318 was deprotonated with KOH and taken up as the potassium 

enolate in the aqueous phase while 319 was washed out in organic solvent.129 Protonation 

with HCl gave 318. 

90 313 

314 

315 47 312 
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Scheme 102: Preparation of keto-phosphonate 318. Yield 57%. 

The target enone was then prepared by Horner-Wadsworth-Emmons olefination of 318 with 

aldehyde 315. Formation of the E isomer was confirmed by the large trans coupling constant 

(15.6 Hz) for the alpha alkene proton, no signals corresponding to the Z isomer were 

detected. Purification by low temperature crystallization from methanol gave 312 in 

acceptable quality for reduction (Scheme 103). 

 

 

Scheme 103: Synthesis of β-cyclohexyl enone 312 by HWE olefination. Yield 45% (26% over 
two steps from 316) 

Reduction of substrates 312 and 313 with tethered catalysts 80 and 115 gave very different 

results (Table 46). Ketone 312 reacted with similar selectivity to chalcone 160, with a slight 

increase in 1,4 selectivity that can be attributed to reduced resonance stabilisation of the 

alkene and hence increased reactivity. The 1,4 product was formed with excellent 

enantioselectivity, with an ee of 97%.   

318 

315 312 

316 317 

318 

319 
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Table 46: ATH of cyclohexyl substituted enones 

 

Entry Substrate X= Y= t / hr % Conv A : B : C 
% ee 

B 

% ee 

C 
R/S 

1 313 Cy Ph 2 100 18.9 : 8.0: 73.1 36 59 Nd 

2a 313 Cy Ph 23 100 0 : 58.6 : 41.4 21 76 Nd 

3b 313 Cy Ph 19 100 2.2 : 66.6 : 31.2 49 82 Nd 

4 312 Ph Cy 3 100 0 : 97.5 : 2.5 97 Nd S 

Standard conditions: 0.5M in 1:1 FA/TEA : MeOH, 100:1 S/C, (S,S)-80, 40 °C. a) With (R,R)-
115 as catalyst. b) 0.5M in 1:1 H2O : MeOH, NaHCO2, 100:1 S/C, (R,R)-115, 60 °C. 
Configuration for the product in entry 4 assumed by analogy to substrate 160. 

Reduction of 313 gave very different results to those observed with previous substrates. In 

general it gave a high product of 1,2- product C when reduced with either catalyst in FA/TEA, 

but 3C-teth (80) promotes much more 1,2 reduction, leading to 73% of product B compared 

to 41% for OMe-teth (115). Use of the later catalyst under aqueous conditions with sodium 

formate as hydrogen source further increases the 1,4 selectivity, however unsaturated 

product C still accounted for approximately 1/3 of the product mixture.   

The ee of reduction was poor in most cases, though still better than that for purely aliphatic 

substrates such as cyclohexyl methyl ketone. Interestingly the use of aqueous conditions 

improved the enantioselectivity for both alcohol products of reduction of 313. Also the 

unsaturated product C is formed more enantioselectively than the saturated product B, 

which contrasts with the results found for the aryl-ketone 160. This may indicate that the 

alkene is acting as a directing group in reduction and since there is no arene to compete with 

it leads to greater enantioselectivity.  

2.4.6 Further Variants 

Several enones bearing different structure and functionality around the alkene were then 

synthesised and subjected to ATH conditions. In many cases the reduction is no longer 

selective and produces a complex mixture of products, in these cases the product 

A 

B 

C 
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distribution has been analysed in order to gain an insight into the reaction selectivity, 

however the products have not always been isolated or fully characterised. 

 

Figure 43: Further varied structures of α,β-unsaturated ketones 

2.4.6.1 β,β-Dialkyl Unsaturated Ketone 320 

First the β,β-cyclohexylidene acetophenone derivative 320 was prepared by a two-step 

synthesis (Scheme 104). Mukaiyama aldol condensation between commercially available silyl 

enol ether 324 and cyclohexanone 325 gave the crystalline tertiary alcohol 326. Acid 

catalysed dehydration yields an inseparable mixture of desired alkene 320 and side product 

327. The isomeric impurity was quantified at ~13% by 1H NMR and the mixture carried 

forwards. 

 

Scheme 104: Synthesis of 320 by alcohol dehydrogenation. Yield 41% over two steps, 
product contains 13% isomeric impurity 327. 

322 323 

321 320 

327 320 

326 325 324 

326 
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The literature indicates that tertiary alkenes such as 327 are sometimes formed instead of 

the expected conjugated quaternary alkene due to allylic strain.130,131 In 320 there is 

significant strain between one arm of the cyclohexyl group and the ketone substituent, which 

are forced into the same plane by the conjugated system. In 327, allylic strain between the 

alkene hydrogen and the more flexible -CH2COPh group is much reduced. 

 

Figure 44: Allylic strain in 320 and its relief in isomer 327. 

ATH of 320/327 with tethered catalysts gives results similar to those obtained from chalcone 

160 and mono β-alkyl substrate 312 (Table 47). 1,4 Selectivity remains high despite the 

increased steric hindrance and electron donation around the alkene. The non-conjugated 

impurity 327 was reduced to alcohol 330 in the product mixture from reduction with 80 with 

no reduction of the alkene, as expected. However reduction with 115 yields a product 

mixture with a substantially increased proportion of product 330. The reason for this 

increase is not clear, but indicates some specific interaction with the catalyst as the reaction 

times in both cases are similar.  
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Table 47: ATH of β,β-cyclohexylidene substrate 320 

 

 

Entry Catalyst t / hr % Conv 328 : 329 : 330 
% ee 
328  

% ee 
329 

1 (S,S)-80 23 100 80.0 : 7.1 : 13.9 97 Nd 

2 (R,R)-115 25 100 74.1 : 3.7 : 22.2 97 Nd 

Standard conditions: 0.5M in 1:1 FA/TEA : MeOH, 100:1 S/C, 40 °C. Configuration of 
products not determined but estimated to be (S) for entry 1 and (R) for entry 2 by analogy 

to reduction of 160. 

Alcohol 328 is the primary product and is obtained with high enantioselectivity, while the ee 

of the minor product 329 was not determined. This was partly due to its low abundance in 

the reaction mixture, but also the fact that the prepared racemic standard of this material 

decomposed before suitable conditions for separation in chiral chromatography could be 

found. 

2.4.6.2 Cyclic Exo-Unsaturated Ketone 321 

Next the tetralone derivative 321 was very easily prepared by Claisen-Schmidt condensation 

of tetralone and benzaldehyde. The product is very crystalline and precipitates out of the 

reaction mixture, purification by recrystallization provided 321 in 81% yield.  

320 

327 330 

329 

328 
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Scheme 105: Synthesis of cyclic α-substituted enone 321 

Reduction of 321 with tethered catalysts introduces additional complication as the α-carbon 

is pro-chiral, meaning that the 1,4- reduction product could form either cis or trans 

diastereomers. In both cases a mixture of all three products was obtained and the ratios 

determined by 1H NMR and comparison to literature values.132,133 

 

Figure 45: Partial 1H NMR spectrum of product mixture from 321 showing resonances used 
to calculate product ratios. 

ATH using 3C-teth (80) catalyst gives approximately 75% 1,4- reduction products with the 

remainder being converted to the unsaturated alcohol 332, a small but significant reduction 

in 1,4-selectivity relative to chalcone. The 1.23 : 1 ratio of cis (331) to trans (333) products 

represents quite a low diastereoselectivity in 1,4 reduction. Use of OMe-teth (115) catalyst 

gives an improvement on both counts, with 95% 1,4-selectivity and increasing the dr to 

2.35 : 1.  
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Table 48: ATH of benzylidine-tetralone substrate 321 

 

 

Entry Catalyst T / °C t / hr % Conv 331 : 333 : 332 

1 (S,S)-80 40 24 100 43 : 35 : 22 

2 (R,R)-115 40 27 100 66 : 28 : 6 

Standard conditions: 0.5M in 1:1 FA/TEA : MeOH, 100:1 S/C, 40 °C. Relative 
stereochemistry shown, in configuration as might be assumed for reduction with (S,S) 

catalyst, but no evidence collected for assignment. 

It is not known at this point what factors influence the configuration of the alkane chiral 

centre. Given that the alkene will likely be reduced first in the ATH reaction, control of 

configuration at the α position may be due to catalyst control, substrate control, or 

racemisation of the saturated ketone intermediate. However as the ee of 1,4- products 331 

and 333 has not been determined* there is not sufficient evidence to comment on the 

mechanism of alkene reduction in this case. 

2.4.6.3 Ene-yne ketone 322 

It is known in the literature that alkynes are usually unreactive under ATH conditions, and 

are in fact capable of acting as directing groups when conjugated with ketones.63,134 To test 

whether this still applies when also considering conjugation to an alkene, the cross 

conjugated substrate 322 was synthesised in two steps from cinnamoyl chloride, via the 

                                                           

* Due to experimental difficulties in separating the chiral alcohol products by HPLC. 

321 

331 

332 

333 
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Weinreb amide 335. The amide substitution was low yielding but was sufficient to supply 

enough substrate for testing. 

  

Scheme 106: Synthesis of alkyne-alkene cross-conjugated ketone 322. Step 1: 79% yield, 
Step 2: 21% yield. 

Racemic standards could be efficiently prepared by addition of the same phenylacetylenyl 

lithium reagent to aldehydes. 

 

 

Scheme 107: Addition of lithiated 336 to aldehydes for preparation of racemic standards. 
With CHO(CH2)2Ph (337): 66% yield. With CHO(CH)2Ph (239): 71% yield. 

Reduction of ketone 322 with OMe-teth (115) gave primarily the 1,4- product 338, with no 

indication of reduction at the alkyne (Table 49). Comparing the result with 322 to reduction 

of chalcone 160, the alkyne substituent appears to be less effective at stabilising the ketone, 

resulting in a decrease in 1,4-selectivity. However the enantioselectivity for both modes of 

reduction is high, with 338 formed in 98% ee and even the unsaturated alcohol 339 is formed 

in 89% ee.  

334 335 

336 322 

335 

336 
337: X = CH2 

239: X = CH 
338: X = CH2 

339: X = CH 
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Table 49: ATH of cross conjugated substrate 322 

 

Entry Catalyst t / hr % Conv 338 : 339 
% ee 
338 

% ee 
339 

R/S 

1 (R,R)-115 25 100 86.9 : 13.1 98 89 R 

Standard conditions: 0.5M in 1:1 FA/TEA : MeOH, 100:1 S/C, 40 °C. Configuration of 
product determined by comparison to literature optical rotation.  

2.4.6.4 αβγδ- Unsaturated Ketone 323 

Extended conjugated ketone 323 contains three possible bonds for reduction and was 

prepared in order to further probe the mechanism of alkene reduction. While following a 

literature procedure for Claisen-Schmitt aldol condensation between 47 and 

cinnamaldehyde 239 did yield the desired product, it was very impure as assessed by 1H NMR 

spectroscopy.135 

 

Scheme 108: Preparation of extended conjugated substrate 323 by aldol method. Mass 
recovery of impure product: 98% 

Instead, the keto-phosphonate 318 prepared previously for synthesis of β-alkyl substrate 312 

was used in a HWE olefination of aldehyde 239. The product was isolated in moderate yield 

and purified by crystallisation. 

239 47 323 

322 

338 

339 



151 

 

 

Scheme 109: HWE-olefination approach to synthesis of 323. Yield 41%.   

Ketone 323 was subjected to ATH with 3C-teth (80) as catalyst, and an inseparable mixture 

of alcohol products was obtained. Analysis of the mixture by 1H NMR and comparison with 

reported literature values allowed determination of the ratio of products (Table 50).136–138 

Table 50: Product distribution from ATH of conjugated ketone 323. 

 

Product Label 
Product Ratio by 

1H NMR 

340 A 62 

341 B 25 

342 C 13 

Configuration of product alcohols assumed by analogy to substrate 160 and usual mode of 
reactivity of catalyst 80, however the mixture was not separated by chiral chromatography 

and therefore no analysis of enantioselectivity can take place. 

 

239 323 318 

323 

340 

341 

342 
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Figure 46: Combined NMR Analysis of product mixture 340-342 between 4 and 7 ppm. 

Three major products can be observed in the reaction mixture. The majority of substrate 323 

has undergone 1,4- reduction followed by further ketone reduction to yield the partially 

saturated alcohol 340. The 1,2- reduction product 341 is also observed, as is ~15% of the full 

1,6- reduction product 342. The last of these is very interesting as it provides a useful 

mechanistic insight into alkene reduction in conjugated systems. 
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Scheme 110: Theoretical products expected to arise from 5,6-alkene reduction of 
conjugated substrate 323. 

Scheme 110 elaborates further. If the γ,δ-alkene were to be reduced 5,6- in a cyclic 6-

membered transition state as is usually invoked for ketones, the expected product would be 

the α,β- unsaturated ketone 343. Based on the behaviour of chalcone and other substrates 

investigated thus far, this would be expected to be reduced further to yield 1,4- and 1,2- 

reduction products 344 and 345. However neither of these are observed in the product 

mixture. Furthermore formation of product 342 in this scenario requires an alkene migration 

from partially saturated ketone 346, followed by ketone reduction of the rearranged β,γ-

unsaturated ketone 347. (Scheme 111). 

 

Scheme 111: Proposed partial alkene migration route to observed products 340 and 342 
following 1,4 reduction of substrate 323. There is little precedent to suggest catalyst 80 

would promote the migration of the alkene bond out of conjugation under normal reaction 
conditions. 

345 

344 

343 

346 

347 

340 

342 
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The observed product distribution can be more simply explained if a 1,6- reduction 

mechanism is invoked. Hydride is transferred from the catalyst to the δ carbon of substrate 

323 with protonation of the oxygen leading to enol product 348. Keto-enol tautomerism to 

347 followed by ketone reduction gives the observed side product 342 (Scheme 112). 

 

Scheme 112: Explanation of observed product 342 via a 1,6-reduction mechanism. 

A question that remains to be answered is where the proton comes from in this 1,6 reduction 

step. Protonation by solvent (black arrows, Scheme 112) appears more feasible, as concerted 

proton transfer from the catalyst amine would require a 10-membered cyclic transition state, 

of which a significant portion is held in a rigid planar conformation by the π-system of the 

substrate.* 

2.4.7 Chapter Summary 

A β-Chlorinated ketone was shown to undergo elimination and 1,4- reduction in one pot to 

form a saturated alcohol intermediate. Further investigation of a range of enone substrates 

showed that this 1,4- reactivity is common with tethered catalysts, and the majority of 

aromatic-ketone substrates are reduced to their saturated alcohols with 75-95% 1,4- 

selectivity. Enantioselectivity was generally high, especially for the 1,4- reduction products. 

Electron donating para-substituents on the ketone favour 1,4- reduction even more and yield 

exclusively the saturated alcohol products. Reduction of an alkyl-ketone lead to a mixture of 

products with low enantioselectivity. 

                                                           

* See Hoveyda et. al. for an example of a Cu catalysed 1,6 conjugate addition with a planar substrate 
in the transition state and for more background on the difficulties of 1,6 addition reactions.196 

348 347 
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3 Conclusions and Future Work 

3.1 Supported and Functionalised Complexes 

Attempts at preparing polymer supported catalysts did not yield any useful supported 

complexes. Various synthetic issues were encountered throughout the routes explored, 

however ultimately it is also the case that the author did not have the practical experience 

or knowledge to prepare or manipulate polymers experimentally. However the Iodo-

substituted ligands and complexes that were successfully prepared may present an 

opportunity for future work in preparing functionalised catalysts. Some limited evidence for 

successful Pd coupling of a monomeric Ips complex and an alkyne was collected that may be 

worth further investigation. 

Attempts at optimising the arene exchange route to catalyst synthesis hints at a possible 

improvement by absorbing HCl with molecular sieves. However the reaction remains 

temperamental and apparently depends strongly on the “hands-factor”; great skill and 

patience are required of the chemist in the workup and purification to obtain a good yield of 

pure catalyst. 

 

 

Scheme 113: Ips substituted complexes for further investigation. 

Some further work in this area has already occurred, as discussed in section 2.1.4. Specifically 

complexes 275 and 276 have been prepared and tested in the reduction of acetophenone 

and other ketones. Although some further testing could be performed with Ips complexes 

270 and 272 it appears reasonably clear already that the Iodo functional group does not 

interfere with the selectivity or activity of the catalysts. Further work could therefore focus 

on completing the Pd catalysed coupling of monomeric complexes onto solid supports. The 

preparation of a polymeric support containing a suitable functional group for cross coupling 

270 272 275 276 
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with an aryl iodide should be achievable and would be a good opportunity for collaboration 

with a research group with expertise in polymer synthesis. 

3.2 Applications of Tethered Catalysts 

Tethered catalysts 3C-teth (80) and OMe-teth (115) have been used to undertake more 

detailed investigation of challenging substrates for ATH. These substrates cause issues of 

reactivity or selectivity. In several cases chiral alcohols could be obtained with good 

conversions and enantiomeric excesses.  

3.2.1 Mechanism of Reduction in FA/TEA 

Many of the results found relate to subtle differences in reactivity and selectivity between 

80 and 115. Direct experiments to probe the mechanism of action of these catalysts have 

not been performed but some attempt can be made to rationalise their differences by 

considering their structure and the mechanism of ketone reduction in FA/TEA. 

Scheme 114 describes a simple three step catalytic cycle. In principle each of these steps are 

reversible, including loss of CO2 from the formate complex 350.  The insertion of CO2 into 

the hydride complex 351 has been demonstrated in the literature by NMR experiments at 

low temperatures,41,49 and removal of CO2 by trapping with an amine or by purging of the 

reaction mixture has been shown to accelerate the reduction of acetophenone.50 However, 

the influence of CO2 inhibition will be strongly dependant on the scale of the reaction, as the 

available surface area for loss of gas scales slower than the reaction volume. 
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Scheme 114: Catalytic cycle for ketone reduction in FA/TEA with tethered catalysts. 

Even without the presence of substrate the cycle above can still progress. Formic acid is 

decomposed into H2 and CO2 by the presence of ATH catalysts, presumably hydrogen 

elimination from 351. This can be observed in the laboratory as effervescence on addition of 

the catalyst to FA/TEA. 

An attempt can now be made to rationalise some of the beneficial effects of electron 

donating substituents on the ruthenium arene. Increased electron density on the arene, due 

to the carbon tether or a methoxy substituent could be expected to promote step 3 in the 

cycle above, where the metal becomes coordinatively unsaturated and the hydride acts as a 

nucleophile. The same effect may retard step 1, but the addition of formic acid to the 16e 

complex 349 is known to be rapid and is unlikely to be the rate limiting step, especially as 

under the catalytic reaction conditions [FA] > [Sub]. Therefore increasing electron density on 

the aromatic ring could promote the hydrogen transfer step. 

349 

350 

351 
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3.2.2 Selectivity in Reduction of ortho- Substituted Ketones 

Significant and unexpected differences in selectivity in the reduction of electron rich ortho-

oxy-ketones was observed, that appears to be dependent on a specific match between the 

catalyst structure and the substrates substitution pattern. Both 3C-teth (80) and OMe-teth 

(115) are excellent catalysts for ortho-hydroxyacetophenones such as 133, producing the 

chiral diol products in high ee’s and conversions. This result is especially pleasing given the 

potential of such products to act as catalyst inhibitors, and indeed there are few examples 

of ATH of these compounds in the literature. 

Table 51: Summary of results for reduction of ketones 133 and 126 

 

 

 
 

Catalyst 80: 99% Conv, 99% ee 95% Conv, 68% ee 

Catalyst 115: 99% Conv, 99% ee 98% Conv, 96% ee 

However ortho-methoxyacetophenone 126 is reduced selectively only by catalyst 115, while 

catalyst 80 is much less selective. Conclusive results to explain this change in selectivity were 

not obtained, nor was it possible to model the relevant transition states computationally 

using the equipment available. However at this point some potential explanations can be 

explored, building on the results obtained in this thesis. 

Firstly, computational results in the literature indicate that a destabilising SO2/π interaction 

between the ligand sulfonyl group and the aromatic ring of the substrate disfavours the 

transition state leading to the minor enantiomer and therefore contributes significantly to 

the selectivity of catalyst 58.47 
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Figure 47: Potential interactions in the transition states for reduction of 133 (OH) and 126 
(OMe) with tethered complexes 80 or 115.  

Figure 47 considers some of the possibilities that this effect might have when taking into 

account the different conformations of substrates 133 and 126. For comparison both 

substrates are represented as a single compound with their corresponding ortho functional 

group shown in brackets in the orientation it would exist in in their preferred ground state 

conformation. Clearly the major transition state for both substrates includes the classic 

stabilising CH/π interaction between the ruthenium arene and the substrates aromatic ring, 

while the minor transition state lacks this interaction.  

The ortho hydroxy group of 133 in both transition states seems unlikely to engage in any 

specific interaction with the catalyst. However the ortho methoxy group of 126 is close in 

space to the SO2 group of the catalyst, and therefore it is possible that there are some 

additional interactions in both major and minor transition states. While it is not possible to 

quantify these interactions without detailed further investigation, it is plausible that they 

could account for some of the reduced enantioselectivity in reduction of 126 if the 

interactions are relatively less favourable in the major transition state. This balance of 

interactions may also explain why there is not a clear trend in enantioselectivity with 

substituent size in ortho-alkoxy ketones.  

As to why OMe-teth (115) is more effective in reduction of 126 than 3C-teth (80) in the 

reduction of 126, there is not a clear explanation. The arene methoxy group is relatively close 

in space to the sulfonyl and substrate methoxy group, and could potentially exert its 

influence via steric, electronic or solvent mediated hydrogen bonding effects. Much more 

detailed mechanistic investigation through both experiment and computation would be 

required to give a definitive answer.  

Future work could include reduction of the hindered ortho-substituted oxo-ketones 

prepared in section 2.3.5 with 3C-teth (80), to observe whether the low enantioselectivity 

found in reduction of methoxy substrate 126 is a general trend. Higher level computational 
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modelling of the transition states may then illuminate some of the specific factors that 

influence the changes in reactivity and selectivity between catalysts 80 and 115 in reduction 

of this substrate class. 

3.2.3 Selectivity in Reduction of α,β-Unsaturated Ketones 

Tethered Ru catalysts were shown to be effective for the 1,4 reduction of α,β-unsaturated 

ketones. This selectivity appears to rely on a fine balance between the thermodynamic drive 

for 1,4 reduction and the catalysts own kinetic preference for ketone reduction. For aromatic 

ketones such as chalcone 160 and its derivatives the OMe-teth (115) catalyst is particularly 

effective.  

In order to consider the overall effect of substrate structure on reaction selectivity, several 

substrates have been ranked by the total proportion of 1,4 reduction products obtained in 

the reaction mixture during their reduction with 115 (Table 52). 
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Table 52: Summary of results for reduction of α,β-unsaturated ketones with OMe-teth 

(115) 

Substrate 
Compound 

Number 

% of 1,4 reduction products in product 

mixture 

 

313 58.6 

 

323 75 

 

322 86.9 

 

320 95.2 

 

160 97.9 

 

312 97.5* 

 

308,196,309 96.4-100 

* Result from reduction with 3C-teth (80) as reduction not performed with 115. The 
expected proportion of 1,4 products for reduction with OMe-teth (115) would be higher. 

It can be seen that the type of substituent on the ketone has the biggest impact on reaction 

selectivity. The two non-aromatic ketones 313 and 322 show a strong tendency towards 

ketone reduction, which suggests that the aromatic ring in substrates such as 160 stabilises 

the ketone and hinders direct reduction. Substitution on the alkene is less significant, except 

in the case of 323 where the additional alkene group leads to further possibilities such as 1,6- 

reduction, but also appears to promote additional 1,2 reduction. Electron donating groups 



162 

 

on the ketone further hinder ketone reduction, leading to increased 1,4 selectivity at the cost 

of reactivity.  

The exact mechanism of 1,4 reduction has not been investigated, and further study in the 

area could be illuminating. Specifically computational calculations of transition states for 1,2 

and 1,4 reduction could provide additional insight into the effects of catalyst structure, 

solvent and substrate structure on selectivity of reduction. 



163 

 

4 Experimental 

4.1 General Experimental 

All reagents and solvents were used as purchased and without further purification, with the 

exception of cyclohexane carboxaldehyde which was redistilled for storage. 

All reactions were carried out under a nitrogen atmosphere unless otherwise specified. 

Reactions at elevated temperature were maintained by thermostatically controlled oil-baths 

or aluminium heating blocks. A temperature of 0 °C refers to an ice slush bath, -78 °C to a dry 

ice acetone bath.  

NMR spectra were recorded on a Bruker AV (250 MHz), Bruker DPX (300 or 400MHz), Bruker 

DRX (500 MHz) or Bruker AV-II. (700 MHz). All chemical shifts are rounded to the nearest 

0.01ppm for 1H spectra and the nearest 0.1 ppm for 13C spectra, and are referenced to the 

solvent chemical shift. Coupling constants are rounded to the nearest 0.1 Hz. Mass spectra 

were recorded on an Esquire 2000 and high resolution mass spectra were recorded on a 

Bruker Micro ToF or MaXis. IR spectra were recorded on a PerkinElmer spectrum100 and 

peaks are reported in wavenumbers. Optical rotations were measured on an Optical Activity 

Ltd. AA-1000 Polarimeter and are reported in deg cm2 g−1. 

The chiral GC measurements were performed using a Perkin-Elmer 8500 or Hewlett-Packard 

1050 instrument linked to a PC running DataApex Clarity software. HPLC measurements were 

performed out using a Hewlett Packard 1050 Series with a quaternary pump, autosampler 

and variable wavelength detector linked to a PC running DataApex Clarity software. 

Melting points were determined on a Stuart scientific melting point apparatus and are 

uncorrected. Flash column chromatography was performed using silica gel of mesh size 230-

400, Thin layer chromatography was carried out on aluminium backed silica gel 60(F254) 

plates, visualised using 254nm UV light, potassium permanganate, iodine stains or cerium 

ammonium molybdate (CAM) as appropriate. 

Column chromatography was performed either by gradient elution (reported as a range, e.g. 

EtOAc/Petroleum ether (2-12%)), or by isocratic elution. In the later case retention times and 

mass loadings of silica were often simulated using the spreadsheet provided by Fair and 

Kormos.139 
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4.2 Preparation of Compounds, Arene Exchange:  

4.2.1 OMe-Tethered Complex: Preparation of Materials 

Cyclohexa-1,4-diene-1-carboxylic acid 

 

278 

This compound is known.140 

Propiolic acid (8.60 g, 123 mmol, 1 eq) was poured into an open glass insert with stirrer bar, 

cooled to -78 °C and covered. Butadiene (~11g, 203 mmol, 1.65 eq) was condensed from a 

gas cylinder into a nitrogen filled sealed RBF cooled to -78 oC, and then poured into the glass 

insert. The insert was then assembled into a Parr hydrogenator apparatus, which was sealed 

and allowed to warm to rt with stirring in an aluminium heating block. The temperature of 

the block was increased by 10 oC every half hour until it reached 110°C, after which it was 

left overnight. The pressure reached a maximum of 12 bar during heating. After 24 hours 

reaction time the pressure had decreased to 10 bar, the block was allowed to cool fully to rt 

and vented. The yellow crystalline solid product was scraped out from the insert and carried 

directly into the next step (11.83 g, 78%) 

Mp 113-121 °C; H (250 MHz, CDCl3): 11.78 (1H, br. s., COOH), 7.17 - 6.94 (1H, m, CC=CH), 

5.87 - 5.73 (1H, d, J = 10.5 Hz, HC=CH), 5.73 - 5.59 (1H, d, J = 10.5 Hz, HC=CH), 2.91 (4H, s, 

CH2); C (101 MHz, CDCl3): 172.7 (CO), 139.2 (CH), 127.2 (C), 124.3 (CH), 122.1 (CH), 27.2 

(CH2), 24.7 (CH2). 

Ethyl cyclohexa-1,4-diene-1-carboxylate 

 

279 

This compound is known.141 

To a solution of 278 (11.83 g, 95.3 mmol, 1.0 eq) in Ethanol (66 mL) was added conc sulphuric 

acid (4.4 ml) and the reaction mixture was heated to reflux (80 oC) and stirred for 18 hours. 
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The dark red solution was cooled to rt and diluted with brine (40 mL) and DCM (40 mL), 

before neutralising with NaOH (3 g in 25 mL water). The aqueous phase was extracted with 

DCM (2 x 40 mL) and the combined organic extracts dried over Na2SO4 and concentrated to 

give an orange oil (14.11 g). The crude product was purified by distillation to give a clear oil 

(12.60 g, 75.0 mmol, 79%). 

Bp 74-76°C at 3 mbar; H (400 MHz, CDCl3): 7.07 - 6.80 (1H, m, CC=CH), 5.86 - 5.71 (1H, m, 

HC=CH), 5.69 - 5.58 (1H, m, HC=CH), 4.27 - 4.11 (2H, m, OCH2), 3.03 - 2.68 (4H, m, CH2), 1.35 

- 1.17 (3H, m, CH3); C (101 MHz, CDCl3): 167.0 (CO), 136.1 (CH), 127.8 (C), 124.4 (CH), 122.3 

(CH), 60.3 (CH2), 27.0 (CH2), 25.1 (CH2), 14.3 (CH3). 

Dichloro(ethylbenzoate)ruthenium(II) dimer 

 

117 

This compound is known.142  

A solution of 279 (2.10 g, 12.5 mmol, 4.2 eq) and RuCl3 . xH2O (788 mg, 3 mmol, 1 eq assuming 

x = 3) in Ethanol was heated to reflux (100 oC). After 27 hours, the brown suspension was 

filtered and the brick red solid was washed with ethanol and diethyl ether to yield the dimeric 

product with no purification required (901 mg, 93%). 

H (400 MHz, (CD3)2SO): 6.69 (2H, d, J = 5.9 Hz, o-ArH), 6.29 (1H, t, J = 5.9 Hz, p-ArH), 6.04 

(2H, t, J = 5.9 Hz, m-ArH), 4.33 (2H, q, J = 7.0 Hz, CH2), 1.31 (3H, t, J = 7.0 Hz, CH3); C (101 

MHz, CDCl3): 163.9 (CO), 92.4 (CH), 91.8 (CH), 85.2 (CH), 82.5 (C), 62.1 (CH2), 14.2 (CH3). 
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N-((1R,2R)-2-((3-(4-methoxyphenyl)propyl)amino)-1,2-diphenylethyl)-

4-methylbenzenesulfonamide 

 

116 

This compound is known.62 

To a stirred solution of 3-(4-methoxyphenyl)-1-propanol (4.11 g, 25 mmol, 1.6 eq) and 2,6-

lutidine (3.65 ml, 32 mmol, 2.1 eq) in dry DCM (100 ml) at 0°C was added by a dropping 

funnel a solution of triflic anhydride in DCM (1M, 25 ml, 25 mmol, 1.7 eq), maintaining the 

solution temperature below 3 oC as measured by an internal thermometer. The dropping 

funnel was rinsed in with 10 ml dry DCM and removed. The resulting yellow solution was 

stirred for 30 mins at 0oC and 1 hour at rt. To the reaction mixture a separate solution of 

(R,R)-TsDPEN (5.45 g, 15 mmol, 1 eq) and triethylamine (5.0 ml, 36 mmol, 2.4 eq) in dry DCM 

(50 ml) was added dropwise by cannula at 0oC, maintaining the reaction temperature below 

3 oC. The flask and cannula were rinsed in with dry DCM (10ml) The reaction was stirred for 

22 hours at room temperature, then solvent switched to ethyl acetate by repeated dilution 

(100, 50, 50 ml) and concentration to ~100 ml volume. The resulting suspension was washed 

with sat. NaHCO3 solution (2x 100 ml, 2x 50 ml), water (2x 50 ml) and brine (50 ml), dried 

(Na2SO4) and concentrated to give a yellow oil. (10.45 g) that solidifies on standing in the 

freezer. 

The crude product was taken up hot EtOH and concentrated to a saturated solution. No solids 

formed after standing on ice. Addition of hexanes (~10 ml) and rapid stirring gave a fine 

slurry. This was left in the freezer overnight, and the resulting crystalline solid collected by 

filtration and washed with ice cold ethanol to yield the pure product as fine white crystals 

(5.08 g, 66%). 

TLC: 50% EtOAc : Petroleum ether, silica, Rf =0.5, I2 and UV; Mp 104 °C; H (500 MHz, CDCl3): 

7.37 (2H, d, J = 8.2 Hz, ar-H), 7.15 - 7.10 (3H, m, ar-H), 7.09 - 6.97 (7H, m, ar-H), 6.96 - 6.92 

(2H, m, ar-H), 6.91 - 6.87 (2H, m, ar-H), 6.82 - 6.77 (2H, m, ar-H), 6.26 (1H, br. s., NH), 4.25 

(1H, d, J = 7.9 Hz, CH), 3.78 (3H, s, OCH3), 3.59 (1H, d, J = 7.8 Hz, CH), 2.55 - 2.38 (3H, m, CHH 

and CH2), 2.33 (3H, s, ArCH3), 2.28 (1H, dt, J = 11.6, 6.8 Hz, CHH), 1.75 - 1.59 (2H, m, CH2-CH2-

CH2)  1.51 (1H, br. s., NH); C (126 MHz, CDCl3): 157.8 (C), 142.7 (C), 139.3 (C), 138.4 (C), 137.1 

(C), 133.8 (C), 129.2 (2* ar-CH), 129.1 (2* ar-CH), 128.3 (2* ar-CH), 127.9 (2* ar-CH), 127.6 
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(2* ar-CH), 127.5 (2* ar-CH), 127.4 (ar-CH), 127.3 (2* ar-CH), 127.1 (ar-CH), 113.8 (2* ar-CH), 

67.8 (CH), 63.1 (CH), 55.3 (OCH3), 46.4 (NCH2), 32.4 (CH2), 31.7 (CH2), 21.4 (CH3). 

{N-((1R,2R)-2-((3-(4-methoxyphenyl)propyl)amino)-1,2-diphenylethyl)-

4-methylbenzenesulfonamide} ruthenium chloride 

 

115 

This compound is known. 62 

116 (780 mg, 1.52 mmol, 1 eq), 117 (483 mg, 0.75 mmol, 0.5 eq) and 4Å molecular sieves 

(752 mg, 100 wt% relative to ligand) were dissolved in chlorobenzene (30 ml). The mixture 

was degassed 3 times with vacuum and nitrogen, then heated to 90 oC with stirring. No HCl 

fumes were observed. The reaction was monitored by the ratio of Complex to Ligand peaks 

in LC-MS, which steadily increased up to ~2:1. After 10 hours reaction time, the mixture was 

cooled to rt and filtered through a short layered pad of Celite (25g), silica (5g) and Celite (25g) 

with a 10% mixture of isopropanol in chloroform (200 ml), to yield the crude product as a 

dark brown residue (1.41 g). 

This crude was dry loaded onto silica (5 g) and purified by column chromatography (silica, 

60g), with 10% isopropanol, 40% DCM and 50% hexane (1 L) as eluent. Fractions were 

assessed by LC-MS. Contaminated ligand was eluted within the first 50-200 ml of eluent as a 

dark brown band. Clean fractions of the target complex were obtained between 350 and 500 

ml of eluent, concentration under reduced pressure yielded the purified product as a free 

flowing orange-brown powder (400 mg, 41%). 

The product thus obtained appeared clean by NMR and pure enough for use, however an 

attempt to further purify it and remove non-NMR visible impurities was made. The solid was 

suspended in hot isopropanol (50 ml) and refluxed for a few minutes. The suspension was 

cooled and filtered to yield the product as a slightly brighter orange powder (331 mg, 34%). 

TLC: 10% MeOH/DCM, silica, Rf, = 0.2, I2; H (400 MHz, CDCl3): 7.28 (2H, d, J = 8.1 Hz, ar-H), 

7.18 - 7.08 (3H, m, ar-H), 6.81 (2H, br. s., ar-H), 6.78 - 6.70 (3H, m, ar-H), 6.62 (2H, t, J = 7.6 

Hz, ar-H), 6.57 - 6.51 (2H, m, ar-H), 5.56 (1H, d, J = 5.3 Hz, Ru-ArH), 5.47 (1H, d, J = 5.7 Hz, Ru-

ArH), 5.34 (1H, d, J = 5.1 Hz, Ru-ArH), 5.21 (1H, d, J = 6.0 Hz, Ru-ArH), 4.33 (1H, d, J = 10.9 Hz, 
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CHPh), 4.13 - 4.02 (1H, m, NH), 4.00 (3H, s, OCH3), 3.55 (1H, t, J = 11.6 Hz, NHCHPh), 2.85 - 

2.73 (1H, m, CH2), 2.52 - 2.36 (2H, m, CH2), 2.34 - 2.23 (1H, m, CH2), 2.21 (3H, s, ArCH3), 2.14 

- 1.97 (2H, m, CH2); C (101 MHz, CDCl3): 143.8 (C), 138.7 (C), 138.4 (C), 136.3 (C), 134.6 (C), 

128.7 (CH), 128.6 (CH), 128.3 (CH), 127.7 (CH), 127.0 (CH), 126.8 (CH), 126.0 (CH), 91.1 (C), 

84.7 (CH), 81.5 (CH), 78.6 (CH), 72.2 (CH), 68.9 (CH), 65.5 (CH), 56.8 (CH3), 49.4 (CH2), 30.2 

(CH2), 27.3 (CH2), 21.1 (CH3); m/z (ESI): 615.1 ([M - Cl]+), top peak of Ru Isotope pattern. 

4.2.2 OMe-Tethered Complex: Arene Exchange Optimisation 

NMR Degradation tests 

Pure standards of Ligand 116 and Complex 115 (0.02 mmol) were taken up in CDCl3 (0.5 ml) 

and the NMR spectra obtained. The NMR sample was then concentrated into vial, dissolved 

in DCM (1 ml) and anhydrous HCl (2M in diethyl ether, 10 µL) was added at 0°C and the 

mixture stirred for 3 hrs at rt. After this time the DCM had evaporated under the flow of 

nitrogen, so the remaining solid was taken up in CDCl3 (0.5ml) and re-analysed. Comparisons 

of spectra are included in the main results on pages 105 and 106. 

Ligand to Ru Ratio 

General procedure: Ligand 116 (0.1, 0.2 or 0.4 mmol) and Dimer 117 (64 mg, 0.1 mmol, 1 eq) 

were dissolved in chlorobenzene (5 ml) under N2 in a Radleys parallel synthesis reaction tube 

(~20 ml volume). The mixture was immediately heated to 90°C and stirred for 24 hours. 

~10uL Samples were withdrawn by syringe and diluted in MeOH for analysis by LCMS 

throughout the reaction. On completion the reaction mixture was concentrated under 

vacuum to give a dark brown residue, which was triturated with diethyl ether (~5 ml). Excess 

solvent was removed by pipette. The remaining residue was then filtered through a short 

silica plug with EtOAc/EtOH (3:1) as eluent and concentrated to give the crude product 

mixture for analysis. 
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4.3 Preparation of Compounds, Supported Catalysts: 

4.3.1 Untethered Ips Complex 

N-benzyl-4-iodobenzenesulfonamide. 

 

261 

This compound has been reported but not fully characterised.143 

Method 1: Benzylamine (218 µL, 2 mmol, 1 eq) was dissolved in DCM (13 ml) and cooled to 

0 °C. 4-iodobenzenesulfonyl chloride (604 mg, 2 mmol, 1 eq) in DCM (2 ml) was added 

dropwise over 10 minutes and the reaction mixture stirred for 42 hours and monitored by 

TLC. The reaction was neutralised with NH4Cl (sat., 15 ml) and extracted with DCM (30 ml). 

The combined organic layers were dried (Na2SO4) and concentrated to give the impure 

product as an off white powder. (728 mg). 

1H NMR signals corresponding to trimethylamine could be removed by suspending this crude 

product in DCM (~15 ml) and washing with HCl (2M, 2* 10 ml). The organic layer was dried 

(Na2SO4) and concentrated to give the purified product (432 mg, 58%) 

Method 2: Benzylamine (218 µL, 2 mmol, 1 eq) was suspended in a mixture of DCM (8 ml) 

and NaOH (2M, 5 ml) and cooled to 0 °C. 4-iodobenzenesulfonyl chloride (604 mg, 2 mmol, 

1 eq) in DCM (2 ml) was added dropwise over 10 minutes and the resulting suspension stirred 

for 42 hours and monitored by TLC. The reaction was acidified to pH 2 with HCl (2M) and 

extracted with DCM (15 ml). The combined organic layers were dried (Na2SO4) and 

concentrated to give the crude product as a white powder (764 mg). 

Recrystallization of the crude material from method 2 with hot diisopropyl ether gave the 

purified product as transparent needles (405 mg, 54%). 

TLC: 30% EtOAc/Petroleum ether, silica, Rf = 0.4, I2 and KMNO4; Mp 130-131 °C; HRMS: found 

(ESI): [M + Na]+, 395.9521. (C13H12INNaO2S requires 395.9526); max: 3263, 3061, 2856, 1567, 

1324, 1156, 729, 523 cm−1; H (400 MHz, CDCl3): 7.85 (2H, d, J = 8.5 Hz, SO2Ar-H), 7.55 (2H, d, 

J = 8.5 Hz, SO2Ar-H), 7.32 - 7.25 (3H, m, Ar-H), 7.20 - 7.16 (2H, m, Ar-H), 4.78 (1H, br. s., NH), 

4.15 (2H, d, J = 6.0 Hz, CH2);C (75 MHz, CDCl3): 139.1 (C), 137.7 (CH), 135.3 (C), 128.1 (CH), 



170 

 

127.9 (CH), 127.4 (CH), 127.3 (CH), 99.4 (CI), 46.7 (CH2); m/z (ESI): 371.9 ([M - H]-), 395.9 ([M 

+ Na]+). 

N-((1S,2S)-2-amino-1,2-diphenylethyl)-4-iodobenzenesulfonamide 

 

263 

This compound is novel. 

(S,S)-DPEN (1.03 g, 4.85 mmol, 1.0 eq) and potassium carbonate (0.69 g, 5 mmol, 1.0 eq) 

were suspended in a mixture of DCM (20 mL) and water (12.5 mL) and the mixture was 

cooled to 0 °C. 4-Iodobenzenesulfonyl chloride (1.51 g, 4.99 mmol, 1.0 eq) in DCM (5 mL) was 

added dropwise over 15 minutes and the resulting suspension stirred for 4 days at room 

temperature and monitored by TLC. The reaction was neutralised with NH4Cl (sat., 12.5 mL) 

and stirred overnight. The aqueous phase was then extracted with DCM (50 mL portions) 

until clear. The combined organic layers were dried (Na2SO4) and concentrated to give the 

crude product as a white powder (2.20 g). Recrystallization from boiling toluene gave the 

product as white flaky crystals (1.91 g, 84%) 

TLC details: 30% EtOAc/Petroleum ether, silica, Rf =0.1, I2; Mp 180-181 °C; []D
22 -26.1 (c 

0.435 in CHCl3); HRMS: found (ESI): [M + H]+, 479.0288. (C20H20IN2O2S requires 479.0285); 

max: 3335, 3163, 3022, 2853, 1570, 1451, 1318, 1148, 695, 543 cm−1; 7.60 (2H, d, J = 8.6 Hz, 

o-I ArH), 7.14 (2H, d, J = 8.6 Hz, o-SO2 ArH), 7.12 - 7.05 (5H, m, ArH), 7.03 - 6.96 (3H, m, ArH), 

6.96 - 6.90 (2H, m, ArH), 4.32 (1H, d, J = 7.2 Hz, SO2NCH), 4.04 (2H, br. s., NH2), 3.96 (1H, d, J 

= 7.2 Hz, NCH); C (101 MHz, (CD3)2SO): 142.4 (Cn), 140.8 (C), 139.6 (C), 137.3 (CH), 127.8 

(CH), 127.6 (CH), 127.5 (CH), 127.3 (CH), 127.2 (CH), 126.5 (CH), 126.4 (CH), 99.5 (CI), 64.8 

(CH), 60.5 (CH); m/z (ESI-): 476.9 ([M - H]-); (ESI+): 478.9 ([M + H]+ , 100%), 500.9 ([M + Na]+ , 

27%). 
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N-((1R,2R)-2-amino-1,2-diphenylethyl)-4-iodobenzenesulfonamide p-
cymeneruthenium chloride. 

 

270 

This compound is novel. 

(R,R)-263 (196 mg, 0.41 mmol, 1.0 eq) and p-cymeneruthenium chloride dimer (122 mg, 0.20 

mmol, 0.50 eq) were suspended in dry isopropanol (7 ml). Triethylamine (41 mg, 0.80 mmol, 

2.0 eq) was added and the reaction mixture was heated to 40°C for 4.25 hours and monitored 

by TLC and LCMS. The brown precipitate was isolated by vacuum filtration and washed with 

isopropanol and water. Drying under high vacuum gave the product as an orange powder 

(210 mg, 70%). 

TLC: 100% EtOAc, silica, Rf =0.1, I2; Mp 230°C, decomposed; []D
22 -87.0 (c 0.022 in CHCl3); 

HRMS: found (ESI): [M - Cl]+, 713.0276. (C30H32IN2O2
102RuS requires 713.0275); max: 3293, 

3212, 2954, 1568, 1472, 1382, 1275, 1132, 923, 816, 695 cm−1; H (500 MHz, methanol-d4): 

7.40 (2H, d, J = 8.4 Hz, o-I ArH), 7.16 - 7.08 (3H, m, Ph), 7.02 (2H, d, J = 8.5 Hz, o-SO2 ArH), 

6.92 (2H, dd, J = 2.7, 6.1 Hz, Ph), 6.86 (1H, t, J = 7.5 Hz, Ph), 6.72 (2H, t, J = 7.5 Hz, Ph), 6.62 

(2H, d, J = 7.5 Hz, Ph), 5.73 (2H, s, Ru ArH), 5.66 (2H, s, Ru ArH), 3.94 (1H, d, J = 11.0 Hz, 

SO2NCH), 3.71 (1H, d, J = 11.0 Hz, NHCH), 3.10 (1H, quin, J = 7.0 Hz, CH(CH3)2), 2.39 (3H, s, 

ArMe), 1.42 (3H, d, J = 6.9 Hz, CH(CH3)2), 1.42 (3H, d, J = 6.9 Hz, CH(CH3)2); C (126 MHz, 

METHANOL-d4): 145.5 (C), 139.3 (C), 138.2 (C), 136.4 (CH), 129.1 (CH), 128.4 (CH), 128.1 (CH), 

127.7 (CH), 126.9 (CH), 126.9 (CH), 126.3 (CH), 104.3 (C), 95.3 (C or CI), 95.2 (C or CI), 85.0 

(CH), 81.3 (CH), 81.2 (CH), 79.2 (CH), 71.8 (CH), 68.8 (CH), 30.5 (CH), 22.0 (CH3), 20.6 (CH3), 

17.7 (CH3); m/z (ESI): 713 ([M - Cl]+), top peak of Ru Isotope pattern. 
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Crystal Data for C30H34ClIN2O3RuS (M =766.07 g/mol): orthorhombic, space group P212121 

(no. 19), a = 6.10796(15) Å, b = 19.9093(6) Å, c = 25.1125(7) Å, V = 3053.80(14) Å3, Z = 4, T = 

150.01(10) K, μ(MoKα) = 1.714 mm-1, Dcalc = 1.666 g/cm3, 87583 reflections measured 

(5.222° ≤ 2Θ ≤ 63.088°), 9769 unique (Rint = 0.0902, Rsigma = 0.0631) which were used in all 

calculations. The final R1 was 0.0493 (I > 2σ(I)) and wR2 was 0.0956 (all data). 

N-((1S,2S)-2-amino-1,2-diphenylethyl)-4-(3-(2,5-dioxopyrrolidin-1-
yl)prop-1-yn-1-yl)benzenesulfonamide p-cymeneruthenium chloride 

 

274 

To a degassed suspension of 270 (187 mg, 0.25 mmol, 1.0 eq), [PdCl2(PPh3)2] (8.8 mg, 12.5 

µmol, 5%), and CuI (4.8 mg, 25 µmol, 10%) in triethylamine (0.7 ml, 5 mmol, 20 eq) and THF 

(2.5 ml) was added 273 (103 mg, 0.75 mmol, 3.0 eq) in THF (1.7  ml). The reaction mixture 

was stirred at room temperature for 2 days, then filtered through Celite with acetonitrile (20 
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ml). The crude product was precipitated by the addition of diethyl ether and the excess 

solvent decanted. The remaining residue was dissolved in DCM (15 ml) and washed with 

water (2 x 15 ml) and NaHCO3 (sat., 15 ml), dried over Na2SO4 and concentrated to give the 

crude product as a red solid (170 mg, 90%) 

m/z (ESI): 722.2 ([M - Cl]+), top peak of Ru Isotope pattern. 

4.3.2 3C-Tethered Ips Complex 

N-((1S,2S)-2-((3-(cyclohexa-1,4-dien-1-yl)propyl)amino)-1,2-
diphenylethyl)-4-iodobenzenesulfonamide. 

 

352 

This compound is novel. 

To a stirred solution of 3-cyclohexa-1,4-dienylpropan-1-ol (663 mg, 4.8 mmol) and 2,6-

lutidine (675 mg, 6.3 mmol) in DCM (30 mL) at 0oC was added dropwise a 1M solution of 

triflic anhydride in DCM (5.1 mL, 5.1 mmol). The resulting yellow solution was stirred for 30 

mins at 0oC and 1 hour at rt. To this a separate solution of 263 (1430 mg, 3.0 mmol) and 

triethylamine (729 mg, 7.2 mmol) in DCM (15 mL) was added dropwise at 0oC. The reaction 

was stirred for 21 hours at room temperature, then diluted with EtOAc (30 ml) and 

concentrated to ~30 ml volume. The organic phase was washed with sat. NaHCO3 solution (4 

x 30 ml), water (2 x 30 ml) and brine (30 ml), dried (Na2SO4) and concentrated to give a yellow 

solid (1.81 g). The crude product was taken up in DCM (~10 ml) and hot EtOH, filtered through 

activated charcoal and concentrated by boiling until saturated. On cooling the product was 

isolated as white crystals by filtration. (1.16 g, 65%).  

TLC: 50% EtOAc : Petroleum ether, silica, Rf =0.55 I2 and CAM; Mp 141-142 °C; []D
25 -7.09 (c 

0.55 in CHCl3); HRMS: found (ESI): [M + H]+, 599.1235. (C29H32IN2O2S requires 599.1224); max: 

3291, 2819, 1568, 1428, 1327, 1160, 1051, 811, 698 cm−1; H (300 MHz, CDCl3): 7.57 - 7.50 

(2H, app d, J = 8.7 Hz, ArH, o-I ArH), 7.19 - 7.03 (8H, m, ArH), 7.02 - 6.93 (4H, m, ArH), 6.40 

(1H, br. s., SO2NH), 5.74 - 5.66 (2H, m, HC=CH), 5.30 (1H, br. s., CC=CH), 4.31 (1H, d, J = 7.5 

Hz, SO2NCH), 3.65 (1H, d, J = 7.3 Hz, CH2NCH), 2.71 - 2.59 (2H, m, diene CH2), 2.57 - 2.47 (2H, 

m, diene CH2), 2.47 - 2.36 (1H, m, NCHH), 2.32 - 2.23 (1H, m, NCHH), 1.94 - 1.81 (2H, m, 2H, 

m, =CCH2CH2), 1.62 - 1.39 (2H, m, CH2); C (126 MHz, CDCl3): 139.8 (C), 139.1 (C), 138.0 (C), 
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137.6 (CH), 134.2 (C), 128.4 (CH), 128.1 (CH), 127.6 (CH), 127.5 (CH), 127.2 (CH), 124.2 (CH), 

124.2 (CH), 118.7 (CH), 99.3 (CI), 67.5 (CH), 63.1 (CH), 46.6 (CH2), 34.8 (CH2), 28.8 (CH2), 27.4 

(CH2), 26.7 (CH2); m/z (ESI): 599.0 ([M + H]+), 600.0 (M+1, 33%), 601.0 (M+2, 10%). 

N-((1S,2S)-1,2-diphenyl-2-((3-phenylpropyl)amino)ethyl)-4-
iodobenzenesulfonamide ruthenium(II) chloride dimer 

 

353 

This compound is novel. 

To an ice-cold degassed solution of 352 (748 mg, 1.25 mmol, 1.25 eq) in DCM (25 mL) was 

added dry HCl (1M in diethyl ether, 5 mL, 5 mmol, 5 eq). The reaction mixture was allowed 

to warm to rt and stirred for 30 minutes before being concentrated to dryness. RuCl3 . xH2O 

(261 mg, 1 mmol, 1 eq assuming x = 3) was added and the solids suspended in dry ethanol 

(30 ml). The reaction mixture was degassed and heated to reflux (80oC) for 19 hours before 

being concentrated to dryness. The resulting green residue was triturated in diethyl ether 

and filtered to collect the dimer as a dark green powder (964 mg, 96% from ligand). No 

further purification was attempted at this stage, the crude dimer was carried forwards 

directly to the next step. 

Mp >200 °C (decomposed, melts at >250 oC); []D
 Not determined; absorbance too high; max: 

3062, 2880, 1567, 1457, 1383, 1159, 734, 697, 599, 552 cm−1; H (500 MHz, (CD3)2SO): 9.73 

(1H, br. s., NHH), 9.16 (1H, br. s., NHH), 9.05 - 8.88 (1H, m, SO2NH), 7.55 (2H, d, J = 8.4 Hz, o-

I ArH), 7.30 (2H, s, Ph), 7.23 - 7.17 (3H, m, Ph), 7.13 (2H, d, J = 8.4 Hz, o-SO2 ArH), 6.92 - 6.87 

(1H, m, Ph), 6.86 - 6.78 (4H, m, Ph), 5.99 (2H, q, J = 5.7 Hz, Ru ArH), 5.77 (2H, q, J = 5.7 Hz, Ru 

ArH), 5.70 (1H, d, J = 5.7 Hz, Ru ArH), 4.85 - 4.75 (1H, m, SO2NCH), 4.58 (1H, m, CH2NCH), 2.90 

- 2.77 (1H, m, NCHH), 2.76 - 2.66 (1H, m, NCHH), 2.45 - 2.34 (1H, m, ArCH2, overlaps with 

DMSO), 2.12 - 1.93 (2H, m, CH2); C (126 MHz, CDCl3): 157.7 (C-OMe), 139.8 (C), 139.1 (C), 

137.9 (C), 137.6 (CH), 133.9 (C), 129.2 (CH), 128.4 (CH), 128.4 (CH), 128.1 (CH), 127.6 (CH), 

127.5 (CH), 127.2 (CH), 113.8 (CH), 99.2 (C-I), 67.5 (CH), 63.1 (CH), 55.2 (OCH3), 46.3 (CH2), 

32.4 (CH2), 31.5 (CH2); m/z (ESI): 627.1 ([1/2M -2H -3Cl]+). 
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N-((1S,2S)-1,2-diphenyl-2-((3-phenylpropyl)amino)ethyl)-4-
iodobenzenesulfonamide ruthenium (II) chloride complex. 

 

354 

This compound is novel. 

To a suspension of dimer 353 (800 mg, 0.5 mmol, 0.5 eq) in dry isopropanol (25 ml) was 

added triethylamine (0.42 mL, 3 mmol, 3 eq). The reaction mixture was degassed, heated to 

40 oC and stirred for 6 hours before the isopropanol was removed under vacuum. The residue 

was dissolved in DCM (50 ml) and washed with water (3 x 100 ml), dried over Na2SO4 and 

concentrated. The crude product was partially purified by column chromatography on silica 

(gradient elution, methanol/DCM, 0-10%) to give a brown/orange residue. This was dissolved 

in a minimum volume of DCM, diluted with ~4 volumes of ethanol and heated to 60 oC with 

nitrogen bubbling through the solution for 4 hours. The resulting saturated ethanolic solution 

was then kept in the fridge for several days and the orange crystalline solid was filtered off 

to yield the pure product (93 mg, 13%). 

TLC: 60% (3:1 EtOAc/EtOH)/Petroluem ether, silica, Rf, = 0.2, I2; Mp 200 °C (decomposed, 

slow melt up to 230 °C); []D
29 216 (c 0.022 in CHCl3); HRMS: found (ESI): [M - Cl]+, 696.9983. 

(C29H28IN2O2
102RuS requires 696.9961); max: 3191, 3059, 3027, 2935, 1567, 1453, 1280, 1265, 

1131, 1081, 937, 905, 835, 697 cm−1; 7.38 (2H, d, J = 8.3 Hz, o-I ArH), 7.13 - 7.08 (3H, m, Ph), 

7.07 (2H, d, J = 8.3 Hz, o-SO2 ArH), 6.87 (1H, t, J = 7.4 Hz, Ph), 6.77 (2H, d, J = 6.7 Hz, Ph), 6.73 

(2H, t, J = 7.4 Hz. Ph), 6.59 (2H, d, J = 7.4 Hz, Ph), 6.23 (1H, t, J = 5.3 Hz, Ru ArH), 6.21 - 6.15 

(2H, m, Ru ArH), 5.26 (1H, d, J = 4.9 Hz, Ru ArH), 5.06 (1H, d, J = 5.2 Hz, Ru ArH), 4.49 - 4.40 

(1H, m, NH), 4.05 (1H, d, J = 11.3 Hz, SO2NCH), 3.67 (1H, t, J = 11.3 Hz, CH2NCH), 2.84 (1H, 

ddd, J = 4.1, 9.1, 13.1 Hz, NCHH), 2.68 (1H, td, J = 6.6, 13.1 Hz, NCHH), 2.54 (1H, ddd, J = 3.6, 

6.9, 13.0 Hz), 2.31 (1H, ddd, J = 3.4, 9.1, 13.0 Hz, ArCHH), 2.25 - 2.11 (1H, m, CHH), 2.03 - 1.93 

(1H, CHH); C (126 MHz, CDCl3): 144.8 (C), 138.6 (C), 136.4 (CH), 136.3 (C), 129.0 (CH), 129.0 

(CH), 128.7 (CH), 128.4 (CH), 127.5 (CH), 127.0 (CH), 126.6 (CH), 99.3 (C), 96.0 (CI), 93.1 (CH), 
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91.6 (CH), 82.5 (CH), 78.8 (CHN), 78.1 (CH), 73.4 (CH), 69.0 (CHN), 48.6 (CH2), 29.6 (CH2), 26.7 

(CH2); m/z (ESI): 697.0 ([M - Cl]+), top peak of Ru Isotope pattern. 

4.3.3 OMe-Tethered Ips Complex 

4-iodo-N-((1S,2S)-2-((3-(4-methoxyphenyl)propyl)amino)-1,2-
diphenylethyl)benzenesulfonamide 

 

355 

This compound is novel 

To a stirred solution of 3-(4-methoxyphenyl)-propan-1-ol (798 mg, 4.8 mmol) and 2,6-

lutidine (675 mg, 6.3 mmol) in DCM (30 mL) at 0 oC was added dropwise a 1M solution of 

triflic anhydride in DCM (5.5 mL, 5.5 mmol). The resulting pink solution was stirred for 30 

mins at 0 oC and 1 hour at rt. To this a separate solution of 263 1430 mg, 3.0 mmol) and 

triethylamine (729 mg, 7.2 mmol) in DCM (15 mL) was added dropwise at 0oC. The reaction 

was stirred for 21 hours at room temperature, then diluted with EtOAc (30 mL) and 

concentrated to ~30 ml volume. The organic phase was washed with sat. NaHCO3 solution 

(4x 30 mL), water (2x 30 mL) and brine (30 mL), dried (Na2SO4) and concentrated to give a 

yellow solid (1.73 g). The crude product was taken up in DCM (~10 ml) and hot EtOH, filtered 

through activated charcoal and concentrated by boiling until saturated. On cooling the 

product was isolated as white crystals by filtration. (625 mg, 33%).  

TLC: 50% EtOAc : Petroleum ether, silica, Rf =0.55 I2 and CAM; Mp 122-124 °C; []D
26 -4.56 (c 

0.44 in CHCl3); HRMS: found (ESI): [M + H]+, 627.1176. (C30H32IN2O3S requires 627.1173); max: 

3305 (br), 2926, 1567, 1510, 1242, 1161, 1036, 811, 701 cm−1; H (300 MHz, CDCl3):7.54 (2H, 

d, J = 8.5 Hz, o-I ArH), 7.20 - 7.04 (8H, m, o-SO2 ArH + Ph), 7.03 - 6.92 (6H, m, o-CH2 ArH + Ph), 

6.86 - 6.78 (2H, d, J = 8.5 Hz, o-OMe ArH), 6.62 - 6.13 (1H, br.s, SO2NH), 4.33 (1H, d, J = 7.3 

Hz, SO2NCH), 3.80 (3H, s, OCH3), 3.64 (1H, d, J = 7.5 Hz, CH2NCH), 2.56 - 2.40 (3H, m, ArCH2 + 

NHCHH), 2.36 - 2.23 (1H, m, NHCHH), 1.76 - 1.59 (2H, m, CH2);C (126 MHz, CDCl3): 157.7 (C-

OMe), 139.8 (C), 139.1 (C), 137.9 (C), 137.6 (CH), 133.9 (C), 129.2 (CH), 128.4 (CH), 128.4 (CH), 

128.1 (CH), 127.6 (CH), 127.5 (CH), 127.2 (CH), 113.8 (CH), 99.2 (C-I), 67.5 (CH), 63.1 (CH), 
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55.2 (OCH3), 46.3 (CH2), 32.4 (CH2), 31.5 (CH2); m/z (ESI): 627.1 ([M + H]+), 628.1 (M+1, 34%), 

629.1 (M+2, 10%). 

 

N-((1S,2S)-2-(([1,1'-biphenyl]-2-ylmethyl)amino)-1,2-diphenylethyl)-
4-iodobenzenesulfonamide 

 

356 

This compound is novel. 

To 263 (475 mg, 0.99 mmol, 1.0 eq) and 4Å molecular sieves (500 mg) was added a solution 

of biphenyl-2-carboxaldehyde (214 mg, 1.17 mmol, 1.15 eq) in dry methanol (20 ml). Acetic 

acid (60 mg, 1.00 mmol, 1.0 eq) was added and the reaction mixture stirred at room 

temperature under nitrogen for 6 hours and monitored by TLC. Then sodium 

cyanoborohydride (261 mg, 4.15 mmol, 4.15 eq) was added in one portion and the reaction 

mixture stirred for 3 days. The mixture was filtered through Celite, concentrated and 

suspended in NaOH (1M, 40 mL) and extracted with DCM (3x 40 mL). The combined organic 

layers were washed with brine, dried (Na2SO4) and concentrated to give the crude product 

as a clear oil. This was suspended in pentane and stirred, decanting off the pentane gave the 

product as a white solid (526 mg, 82%).  

Mp 131-133 °C; []D
26 +13.5 (c 0.46 in CHCl3); HRMS: found (ESI): [M + H]+, 645.1067. 

(C33H30IN2O2S requires 645.1067); max: 3275, 3058, 1570, 1411, 1325, 1162, 1087, 760, 731, 

701 cm−1; H (400 MHz, CDCl3): 7.49 (2H, d, J = 8.0 Hz, o-I ArH), 7.38 - 7.29 (5H, m, ArH), 7.22 

- 7.12 (4H, m, ArH), 7.12 - 7.04 (8H, m, ArH), 6.90 (2H, d, J = 7.3 Hz, ArH), 6.77 (2H, d, J = 7.3 

Hz, ArH), 5.98 (1H, br. s., SO2NH) 4.21 (1H, d, J = 5.8 Hz, SO2NCH), 3.59 - 3.51 (1H, d, J = 5.8 

Hz, CH2NCH, + 1H, d, J = 12.5 Hz, CHH), 3.29 (1H, d, J = 12.5 Hz, CHH), 1.38 (1H, br. s. RNH); 

C (126 MHz, CDCl3): 142.2 (C), 141.1 (C), 139.8 (C), 138.6 (C), 138.1 (C), 137.6 (2* CH), 136.6 

(C), 130.3 (CH), 129.7 (CH), 128.8 (2* CH), 128.4 (2* CH), 128.3 (2* CH), 128.2 (2* CH), 127.5 

(CH), 127.5 (CH), 127.5 (CH), 127.3 (CH), 127.3 (2* CH), 127.3 (2* CH), 127.0 (CH), 99.3 (C-I), 
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67.0 (CH), 63.1 (CH), 49.0 (CH2); m/z (ESI): 645.1 ([M + H]+), 646.1 (M+1, 37%), 647.1 (M+2, 

11%). 

4.3.4 N-TsDPEN furan maleimide adducts 

3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione 

 

245 

This compound is known.112 

To a solution of maleimide (1.94 g, 20 mmol, 1.0 eq) in dry diethyl ether (15 mL) was added 

Furan (2.04 g, 30 mmol, 1.5 eq) in a pressure tube under nitrogen flow. The tube was sealed 

and heated to 100 °C, and stirred for 20 hours. After cooling to room temperature, the white 

precipitate was collected by filtration, washed with cold diethyl ether and dried to give the 

product as a white powder (2.72 g, 82%).  

TLC: 80% EtOAc/Pet Ether, silica, Rf = 0.45, I2; Mp 163-164 °C; HRMS: (found (ESI): [M - H]-, 

164.0342. C8H6NO3 requires 164.0353); max 3145, 3062, 1700, 1187, 633cm−1; H (300 MHz, 

CDCl3): 7.93 (1H, br. s., NH), 6.50 (2H, s, HC=CH), 5.30 (2H, s, O-CH), 2.87 (2H, s, COCH); H 

(300 MHz, D2O): 6.56 (2H, s, HC=CH), 5.27 (2H, s, O-CH), 3.07 (2H, s, COCH); C (75 MHz, D2O): 

180.6 (C), 136.3 (CH), 80.8 (CH), 48.6 (CH); m/z (ESI) 164 ([M - H]- ). 

2-(3-hydroxypropyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-
1,3(2H)-dione. 

 

246  

This compound is known.144 

To a stirred solution of 245 (500 mg, 3.03 mmol, 1 eq) and potassium carbonate (502 mg, 

3.63 mmol, 1.2 eq) in acetone (30 ml) was added 3-bromo-1-propanol (504 mg, 3.65 mmol, 
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1.2 eq) dropwise at room temperature. The reaction mixture was stirred for 5 days under 

nitrogen and monitored by TLC. The mixture was filtered, concentrated and suspended in 

pentane (25 ml) and stirred for 45 mins. The pentane was decanted and the remaining solid 

dried under vacuum to give the product as a white free flowing powder (670 mg, 3.00 mmol, 

99%). 

TLC: 80% EtOAc/Pet Ether, silica, Rf = 0.20, I2 and KMNO4; Mp 107-111 °C (melt then 

decomposed); HRMS found (ESI): [M + Na]+, 246.0735. (C11H13NNaO4 requires 246.0737); max 

3505 (br), 2946, 1684, 1155, cm−1; H (250 MHz, CDCl3): 6.52 (2H, t, J = 1 Hz, HC=CH), 5.27 

(2H, t, J = 1 Hz, O-CH), 3.65 (2H, t, J = 6.5 Hz, NCH2), 3.52 (2H, q, J = 6.5 Hz, CH2), 2.87 (2H, s, 

COCH), 2.47 (1H, t, J = 6.5 Hz, OH), 1.77 (2H, m, CH2); C (101 MHz, CDCl3): 177.0 (C=O), 136.5 

(CH), 81.0 (CH), 58.6 (CH2), 47.5 (CH), 35.2 (CH2), 30.3 (CH2); m/z (ESI): 246 ([M + Na]+). 

3-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-
yl)propanal. 

  

247 

This compound is novel. 

To a 2 neck rbf fitted with dropping funnel and septum was added oxalyl chloride (2M in 

DCM, 2.5 ml, 5 mmol, 2.5 eq). The flask was cooled to -78 °C and DMSO (0.35 ml, 5 mmol, 

2.5 eq) in DCM (3 ml) was added dropwise over 5 minutes and the reaction stirred for 15 

minutes. Compound 246 (440 mg, 1.97 mmol, 1 eq) in DCM (2 ml) was then added dropwise 

over 10 minutes and the reaction mixture stirred for 1 hour. Triethylamine (1.65 ml, 12 mmol, 

6 eq) was added dropwise over 10 minutes and the reaction mixture was then warmed to 

room temperature and stirred for 1.25 hours before quenching with water (5 ml). The 

mixture was extracted with DCM (15 ml), dried (Na2SO4) and concentrated to give the crude 

product as a yellow solid. Flash chromatography on silica gel using ethyl acetate/petroleum 

ether (60-75%) gave the purified product as a white crystalline solid (251 mg, 1.13 mmol, 

57%). 

TLC: 100% EtOAc, silica, Rf = 0.4, I2 and KMNO4; Mp 114-118 °C (melted then decomposed); 

HRMS found (ESI): [M + Na]+, 244.0583. (C11H11NNaO4 requires 244.0580); max 2852, 1716, 

1690, 1169, cm−1; H (300 MHz, CDCl3): 9.70 (1H, t, J = 1.2 Hz, CHO), 6.48 (2H, s, C=CH), 5.23 
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(2H, s, O-CH), 3.78 (2H, t, J = 7.1 Hz, NCH2), 2.82 (2H, s, COCH), 2.72 (2H, td, J = 7.2, 1.1 Hz, 

CH2CHO); C (75 MHz, CDCl3): 198.5 (CHO), 175.3 (C=O), 135.9 (CH), 80.3 (CH), 46.8 (CH), 40.8 

(CH2), 31.9 (CH2); m/z (ESI) 244 ([M + Na]+). 

N-((1R,2R)-2-((3-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-
epoxyisoindol-2-yl)propyl)amino)-1,2-diphenylethyl)-4-

methylbenzenesulfonamide. 

 

248 

This compound is novel. 

To (R,R) TsDPEN (187 mg, 0.51 mmol, 1 eq) and 4Å molecular sieves (480 mg) was added a 

solution of 247 (127 mg, 0.575 mmol, 1.15 eq) in dry methanol (10 ml). Acetic acid (0.05 ml, 

0.87 mmol, 1.75 eq) was added and the reaction mixture stirred at room temperature under 

nitrogen for 3 hours and monitored by TLC. Then sodium cyanoborohydride (135 mg, 2.15 

mmol, 4 eq) was added in one portion and the reaction mixture stirred for 45 hours and 

monitored by TLC. The mixture was filtered through Celite, concentrated and partitioned 

between DCM (20 ml) and NaOH (1M, 10 ml), followed by extraction with DCM (20 ml). The 

combined organic layers were washed with brine, dried (Na2SO4) and concentrated to give 

the crude product as a white solid. This was suspended in pentane and stirred, decanting off 

the pentane gave the product as a white solid (282 mg, 0.49 mmol, 97%). 

TLC: 100% EtOAc, silica, Rf = 0.5, I2; Mp 135 °C (dec); []D
25 = -12.5 (c 0.51 in CHCl3); HRMS 

found (ESI): [M + H]+, 572.2212. C32H34N3O4S requires 572.2214); max 3505 (br), 2946, 1684, 

1155 cm−1; H (300 MHz, CDCl3): 7.44 (2H, d, J = 8.5 Hz, ArH), 7.15 - 7.08 (3H, m, ArH), 7.08 - 

6.94 (5H, m, ArH), 6.93 - 6.83 (4H, m, ArH), 6.51 (2H, s, HC=CH), 5.25 (1H, s, OCH), 5.20 (1H, 

s, OCH), 4.24 (1H, d, J = 8.5 Hz, NCHPh), 3.65 - 3.39 (3H, m, NCHPh and NCH2), 2.84 (2H, s, 

COCH), 2.34 (4H, m, ArCH3 and NHCHH’), 2.29 - 2.13 (1H, m, J = 8.5 Hz, NHCHH’), 1.65 (2H, 

m, CH2) C (176 MHz, CDCl3): 176.6 (C=O), 176.5 (C=O), 142.7 (C), 139.1 (C), 138.3 (C), 137.2 

(C), 136.5 (CH), 129.1 (CH), 128.2 (CH), 127.8 (CH), 127.7 (CH), 127.7 (CH), 127.5 (CH), 127.4 

(CH), 127.2 (CH), 81.0 (CH), 80.9 (CH), 68.0 (CH), 63.2 (CH), 47.4 (CH), 47.4 (CH), 43.5 (CH2), 

36.4 (CH2), 27.5 (CH2), 21.5 (CH3); m/z (ESI): 572 ([M + H]+).  
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N-((1R,2R)-2-((3-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-
epoxyisoindol-2-yl)propyl)amino)-1,2-diphenylethyl)-4-
methylbenzenesulfonamide benzeneruthenium chloride. 

 

250 

This compound is novel. 

Compound 248 (117 mg, 0.2 mmol, 1 eq) and benzeneruthenium chloride dimer (51 mg, 0.2 

mmol, 0.5 eq) were dissolved in dry isopropanol (7 ml). Triethylamine (41 mg, 0.41 mmol, 2 

eq) was added and the reaction mixture was heated to 80 °C for 22 hours and monitored by 

TLC. The reaction mixture was concentrated to give the crude product as a brown residue. 

Flash chromatography on silica gel using methanol/ethyl acetate (2-10% gradient) gave an 

impure product as an orange solid (37 mg). The product was too impure to be fully 

characterised but evidence for its formation occurs in LCMS and 1H NMR 

Selected 1H peaks: H (400 MHz, CDCl3): 7.30 (2H, d, J = 8.0 Hz, ArH), 7.15 - 7.09 (4H, m, ArH), 

6.84 (3H, d, J = 8.0 Hz, ArH), 6.76 (2H, t, J = 7.5 Hz, ArH), 6.68 (2H, d, J = 6.8 Hz, ArH), 6.58 

(2H, d, J = 7.5 Hz, ArH), 6.54 - 6.48 (2H, m, HC=CH), 5.88 - 5.84 (6H, s, RuC6H6), 5.22 (2H, d, J 

= 6.8 Hz, OCH), 3.98 (1H, d, J = 11.0 Hz, NCHPh), 3.85 (1H, t, J = 11.0 Hz, NCHPh), 3.56 (2H, t, 

J = 11.0 Hz, CH2), 2.89 - 2.82 (2H, m, CH2), 2.23 (3H, s, CH3); m/z (ESI): 750 ([M - Cl]+). 

2-methyl-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione 

 

254 

This compound is known.145 

To a solution of N-methyl maleimide (2.22 g, 20 mmol, 1.0 eq) in dry diethyl ether (15  mL) 

was added furan (2.04 g, 30 mmol, 1.5 eq) in a pressure tube under nitrogen flow. The tube 

was sealed and heated to 100 °C, and stirred for 20 hours. After cooling to room 
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temperature, the white precipitate was collected by filtration, washed with cold diethyl ether 

and dried to give the product as a white powder (2.72 g, 82%).  

Mp 144-145 °C; max: 3013, 1759, 1685, 1440, 1378, 1283, 1139, 1017, 877 cm−1; H (400 MHz, 

CDCl3): 6.52 (2H, s, HC=CH), 5.27 (2H, s, 2x OCH), 2.98 (3H, s, NCH3), 2.88 - 2.82 (2H, s, 2x 

COCH); C (75 MHz, (CD3)2SO): 176.6 (C=O), 136.4 (CH), 80.2 (CH), 47.3 (CH), 24.3 (CH3). 

2-(prop-2-yn-1-yl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-
1,3(2H)-dione 

 

256  

This compound is known.146 

To a stirred solution of 245 (448 mg, 2.71 mmol, 1.0 eq) and potassium carbonate (454 mg, 

3.28 mmol, 1.2 eq) in acetone (27 ml) was added propargyl bromide (80 wt. % in toluene) 

(449 mg, 3.02 mmol, 1.1 eq) dropwise at room temperature. The reaction mixture was stirred 

for 3 days under nitrogen and monitored by TLC. The mixture was filtered, concentrated, and 

dried to give the product as an off-white free flowing powder (550 mg, 100%). 

TLC: 80% EtOAc/Pet Ether, silica, Rf = 0.55, I2; Mp 153-154 °C; max: 3255, 1775, 1698, 1411, 

1335, 1182, 875cm−1; H (250 MHz, CDCl3): 6.53 (2H, t, J = 0.9 Hz, C=CH), 5.30 (2H, t, J = 0.9 

Hz, OCH), 4.24 (2H, d, J = 2.6 Hz, CH2), 2.91 (2H, s, COCH), 2.20 (1H, t, J = 2.6 Hz, C≡CH);C (75 

MHz, CDCl3): 174.2 (C=O), 136.0 (CH), 80.3 (CH), 75.8 (CH), 70.8 (C), 47.0 (CH), 27.9 (CH2). 

2-(3-(trimethylsilyl)prop-2-yn-1-yl)-3a,4,7,7a-tetrahydro-1H-4,7-
epoxyisoindole-1,3(2H)-dione 

 

257 

This compound is known.147 
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To a stirred solution of 245 (658 mg, 3.99 mmol, 1.0 eq) and potassium carbonate (659 mg, 

4.77 mmol, 1.2 eq) in acetone (40 mL) was added 3-bromo-1-(trimethylsilyl)-1-propyne (910 

mg, 4.76 mmol, 1.2 eq) dropwise at room temperature. The reaction mixture was stirred for 

3 days under nitrogen, then filtered through Celite, concentrated, and dried to give the 

product as a white crystalline powder (1067 mg, 97%). 

H (300 MHz, CDCl3): 6.53 (2H, s, HC=CH), 5.30 (2H, s, 2 x OCH), 4.24 (2H, s, CH2), 2.91 (2H, s, 

COCH), 0.14 (9H, s, Si(CH3)3); C (101 MHz, CDCl3): 174.8 (C=O), 136.6 (CH), 97.7 (C), 88.2 (C), 

80.9 (CH), 47.6 (CH), 28.9 (CH2), -0.3 (SiCH3) 

1-(prop-2-yn-1-yl)pyrrolidine-2,5-dione. 

 

273 

This compound is known.148 

Succinimide (1.00 g, 10.1 mmol, 1.0 eq) and potassium carbonate (1.66 g, 12.0 mmol, 1.2 eq) 

were suspended in acetone (50 ml) under N2. Propargyl bromide (80 wt.% in toluene) (1.85 

g, 12.0 mmol, 1.2 eq) was added dropwise at room temperature and the reaction mixture 

was stirred for 3 days. The mixture was filtered through Celite with 100 ml acetone and 

concentrated to give the crude product as an orange oil (1.00 g, 73%). Combining multiple 

batches, Kugelrohr distillation at 160-165 oC, 1 mbar, gave 2.525 g from 3.022 g of crude 

(91% assay, final yield 66%) 

TLC: 60% EtOAc/Petroleum ether, silica, Rf = 0.35, I2 and KMNO4; H (300 MHz, CDCl3): 4.25 

(2H, d, J = 2.5 Hz, NCH2), 2.74 (4H, s, CH2CH2), 2.17 (1H, t, J = 2.5 Hz, CH); C (75 MHz, CDCl3): 

173.9 (C=O), 74.7 (CH), 69.5 (C), 26.3 (CH2), 25.8 (CH2) 
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Poly(2-methyl-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-
dione) 

 

255 

This compound is known145 

To a solution of 254 (90 mg, 0.5 mmol, 100 eq) in DCM (1 ml) was added a solution of Grubbs 

1st generation catalyst (4.1 mg, 0.005 mmol, 1.0 eq) in DCM (1 ml). The reaction mixture was 

stirred under nitrogen for 1.5 hours, then quenched by the addition of ethyl vinyl ether (0.1 

ml) and stirred for 3 hours. Hexane (5 ml) was added and the volatiles removed by rotary 

evaporation to give the polymer as a grey powder (111 mg, 122%). Ratio of cis/trans double 

bonds by 1H NMR is 0.25:0.75 

H (400 MHz, (CD3)2SO): 5.96 (1.5H, br. s., trans-HC=CH), 5.73 (0.5H, br. s., cis-HC=CH), 4.86 

(0.5H, br. s., cis-OCH), 4.45 (1.5H, br. s., trans-OCH), 3.39 (2H, br. s., COCH), 2.83 (3H, br. s., 

CH3) 

Poly(2-(3-(trimethylsilyl)prop-2-yn-1-yl)-3a,4,7,7a-tetrahydro-1H-4,7-
epoxyisoindole-1,3(2H)-dione) 

 

258 

This compound is unknown but related compounds have been prepared.146 

To a solution of 257 (275 mg, 1 mmol, 200 eq) in DCM (2 ml) was added a solution of Grubbs 

1st generation catalyst (4.1 mg, 0.005 mmol, 1.0 eq) in DCM (1 ml). The reaction mixture was 

stirred under nitrogen for 3 hours, then quenched by the addition of ethyl vinyl ether (0.1 
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ml) and stirred for 3 hours. Hexane (5 ml) was added and the volatiles removed by rotary 

evaporation to give the polymer as a grey powder (274 mg, 99%). Ratio of cis/trans double 

bonds by 1H NMR is 0.3:0.7. 

H (400 MHz, (CD3)2SO): 5.96 (1.4H, br. s., trans-HC=CH), 5.75 (0.6H, br. s., cis-HC=CH), 4.83 

(0.6H, br. s., cis-OCH), 4.42 (1.4H, br. s., trans-OCH), 4.19 (2H, br. s., NCH2), 3.49 (2H, br. s., 

COCH), 0.12 (9H, br. s., Si(CH3)3) 

4.4 Preparation of Compounds, Electron Rich Ketones: 

4.4.1 Formic Acid and Aqueous Reductions 

All reductions were carried out with 3C-teth (80) or OMe-teth (115) catalysts. 

 

4.4.1.1 General Method 1: FA/TEA Reductions 

Catalyst (5 μmol, 200:1 S/C) was dissolved in FA/TEA (5:2, 0.5 ml) and stirred at 40°C for 30 

mins. Substrate (1 mmol, 1.0 eq) was added and the reaction monitored by TLC. On 

completion the reaction mixture was filtered through a silica plug with 50 % EtOAc in 

petroleum ether. The organic phase was washed with NaHCO3 (sat.), dried (Na2SO4) and 

concentrated to yield the crude alcohol. Conversion was determined by NMR, ee by chiral 

GC or HPLC. If required the crude product was purified by flash chromatography. 

4.4.1.2 General Method 2: Aqueous Reduction 

Sodium formate (340 mg, 5.0 mmol, 5.0 eq), catalyst (0.005 μmol, 200:1 S/C) and substrate 

(1.0 mmol, 1.0 eq) were suspended in water (1 mL), degassed and heated to 60 °C with fast 

stirring. On completion, the reaction mixture was diluted with water (2 mL) and extracted 

with ethyl acetate (3 x 2 mL), and the organic extracts dried over Na2SO4 and concentrated. 

The crude was dissolved in diethyl ether and passed through a short silica plug to yield the 

product. Conversion was determined by NMR, ee by chiral GC or HPLC. 
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4.4.1.3 General Method 3: Racemic Reductions 

To a solution of Ketone (0.1 mmol, 1.0 eq) in methanol (0.5 ml) was added in one portion 

sodium borohydride (7-14 mg, 2-4 eq). The mixture was stirred in a vial until complete 

conversion by TLC, or overnight. On completion the mixture was partitioned between ethyl 

acetate and water. An aliquot of the organic phase filtered through a short silica plug in a 

pipette and taken directly for analysis by chiral chromatography. The product was not 

isolated. 

(S)-2-(1-hydroxyethyl)phenol 

 

357 

This compound is known62.  

FA/TEA reduction: See general method 1. With (S,S)-3C-teth (80); 4 hours reaction time, 

>99% conversion and 99% ee. With (R,R)-OMe-teth (115); 5.5 hours reaction time, >99% 

conversion and 99% ee. 

Aqueous reduction: See general method 2. With (S,S)-3C-teth (80); 4.5 hours reaction time, 

99% conversion and 23% ee. With (R,R)-OMe-teth (115);4.25 hours reaction time, 33% 

conversion and 63% ee. 

(S) Configuration for product from reduction with (S,S)-80 assigned by comparison with 

literature optical rotation. The opposite enantiomer is produced by reduction with (R,R)-115. 

TLC: 50% EtOAc/Pet Ether, silica, Rf = 0.5, I2 and KMNO4 ; []D
32 -20.9 (S), 99% ee (c 0.42 in 

CHCl3); lit []D
32 +22.3 (R), 99% ee (c 0.65 in solvent); H (300 MHz, CDCl3): 7.91 (1H, s, ArOH), 

7.21 - 7.12 (1H, m, ArH), 6.97 (1H, dd, J = 1.6, 7.4 Hz, ArH), 6.90 - 6.78 (2H, m, ArH), 5.07 (1H, 

dq, J = 4.0, 6.6 Hz, CHOH), 2.43 (1H, d, J = 4.0 Hz, CHOH), 1.58 (3H, d, J = 6.6 Hz, CHCH3); C 

(101 MHz, CDCl3): 155.3 (C), 128.9 (CH), 128.5 (C), 126.5 (CH), 119.9 (CH), 117.0 (CH), 71.5 

(CH), 23.4 (CH3); Chiral HPLC (Chiralpak IA Column: (0.46 x 25 cm), 1 ml/min, 10% IPA : 90% 

Hexane; 256 nm UV, 30 °C), retention times: 7.18 (S) and 7.42 (R) minutes.  
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(R)-2-(1-Hydroxyethyl)-4-methylphenol. 

 

358 

This compound has been reported in racemic form.144 The optical rotation for the 

asymmetric form has not been reported.149 

FA/TEA reduction: See general method 1. With (S,S)-3C-teth (80); 5.5 hours reaction time, 

99% conversion and 94% ee. With (R,R)-OMe-teth (115); 23 hours reaction time, >99% 

conversion and 95% ee.  

Aqueous reduction: See general method 2. With (S,S)-3C-teth (80); 6 hours reaction time, 

15% conversion and 61% ee. With (R,R)-OMe-teth (115); 6 hours reaction time, 80% 

conversion and 87% ee.  

(R) Configuration for product from reduction with (R,R)-115  assumed by analogy to parent 

compound 357. The order of elution of peaks in HPLC is the same. The opposite enantiomer 

is produced by reduction with (S,S)-80. 

TLC: 50% EtOAc/Pet Ether, silica, Rf = 0.5, I2 and KMNO4 ; []D
32 +24.1 (R), 95% ee (c 0.36 in 

CHCl3); H (300 MHz, CDCl3): 6.98 (1H, dd, J = 1.8, 8.4 Hz, ArH), 6.83 - 6.67 (2H, m, ArH), 5.03 

(1H, q, J = 6.6 Hz, CHOH), 2.42 (1H, br. s., CHOH), 2.25 (3H, s, ArCH3), 1.59 (3H, d, J = 6.6 Hz, 

CHCH3); C (75 MHz, CDCl3): 152.5 (C), 128.7 (CH), 128.4 (C), 127.5 (C), 126.4 (CH), 116.3 (CH), 

71.1 (CH), 22.9 (CH3), 19.9 (CH3); Chiral HPLC (Chiralpak IA Column: (0.46 x 25 cm), 1 ml/min, 

10% IPA : 90% Hexane; 256 nm UV, 30 °C), retention times: 7.83 (S) and 8.53 (R) minutes.  

(R)-4-Chloro-2-(1-hydroxyethyl)phenol. 

 

359 

This compound has been reported in racemic form.150 The asymmetric form has not been 

reported. 
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FA/TEA reduction: See general method 1. With (S,S)-3C-teth (80); 4.75 hours reaction time, 

>99% conversion and 90% ee. With (R,R)-OMe-teth (115); 23 hours reaction time, 97% 

conversion and 93% ee.  

Aqueous reduction: See general method 2. With (S,S)-3C-teth (80); 24 hours reaction time, 

>99% conversion and 24% ee. With (R,R)-OMe-teth (115); 24 hours reaction time, 10% 

conversion and 63% ee.  

(R) Configuration for product from reduction with (R,R)-115  assumed by analogy to parent 

compound 357. The order of elution of peaks in HPLC is the same. The opposite enantiomer 

is produced by reduction with (S,S)-80 

TLC: 50% EtOAc/Pet Ether, silica, Rf = 0.5, I2 and KMNO4; []D
30 +18.5 (R), 93% ee (c 0.46 in 

CHCl3); H (300 MHz, CDCl3): 7.93 (1H, s, ArOH), 7.10 (1H, dd, J = 2.6, 8.7 Hz, ArH), 6.94 (1H, 

d, J = 2.6 Hz, ArH), 6.79 (1H, d, J = 8.7 Hz, ArH),5.03 (1H, dq, J = 3.5, 6.6 Hz, CHOH), 2.42 (1H, 

d, J = 3.5 Hz, CHOH), 1.57 (3H, d, J = 6.6 Hz, CHCH3); C (75 MHz, CDCl3): 153.9 (C), 129.8 (C), 

128.7 (CH), 126.3 (CH), 124.6 (C), 118.4 (CH), 71.1 (CH), 23.4 (CH3); Chiral HPLC (Chiralpak IA 

Column: (0.46 x 25 cm), 1 ml/min, 10% IPA : 90% Hexane; 256 nm UV, 30 °C), retention times: 

7.52 (S) and 8.10 (R) minutes. 

(R)-2-(1-hydroxyethyl)-4-methoxyphenol.  

 

360 

This compound has been reported in racemic form.151 The optical rotation for the 

asymmetric form has not been reported. 

FA/TEA reduction: See general method 1. With (S,S)--3C-teth (80); 5.5 hours reaction time, 

92% conversion and 91% ee. With (R,R)-OMe-teth (115); 6.5 hours reaction time, 91% 

conversion and 92% ee. 

Aqueous reduction: See general method 2. With (S,S)-3C-teth (80); 24 hours reaction time, 

89% conversion and 38% ee. With (R,R)-OMe-teth (115); 24 hours reaction time, 35% 

conversion and 61% ee. 

(R) Configuration for product from reduction with (R,R)-115  assumed by analogy to parent 

compound 357. The order of elution of peaks in HPLC is the same. The opposite enantiomer 

is produced by reduction with (S,S)-80 
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TLC: 50% EtOAc/Pet Ether, silica, Rf = 0.4, I2 and KMNO4; []D
30 +9.26 (R), 92% ee (c 0.55 in 

CHCl3); H (300 MHz, CDCl3): 7.42 (1H, br. s., ArOH), 6.79 (1H, d, J = 8.8 Hz, ArH), 6.71 (1H, dd, 

J = 2.8, 8.8 Hz, ArH), 6.54 (1H, d, J = 2.8 Hz, ArH), 5.01 (1H, q, J = 6.7 Hz, CHOH), 3.73 (3H, s, 

OCH3), 2.39 (1H, br. s., CHOH), 1.57 (3H, d, J = 6.7 Hz, CHCH3); C (101 MHz, CDCl3): 153.0, (C) 

149.2, (C) 129.2, (C) 117.6, (CH) 113.7, (CH) 112.3, (CH) 71.6, (CH) 55.8, (OCH3) 23.3 (CH3); 

Chiral HPLC (Chiralpak IA Column: (0.46 x 25 cm), 1 ml/min, 10% IPA : 90% Hexane; 256 nm 

UV, 30 °C), retention times: 11.16 (S) and 12.16 (R) minutes. 

(S)-4-bromo-2-(1-hydroxyethyl)phenol 

 

361 

This compound is known in racemic form.151 The optical rotation for the asymmetric form 

has not been reported. 

FA/TEA reduction: See general method 1. With (S,S)-3C-teth (80); 4 hours reaction time, 99% 

conversion and 91% ee. With (R,R)-OMe-teth (115); 5.5 hours reaction time, 98% conversion 

and 94% ee. 

(S) Configuration for product from reduction with (S,S)-80 assumed by analogy to parent 

compound 357. The order of elution of peaks in HPLC is the same. The opposite enantiomer 

is produced by reduction with (R,R)-115. 

TLC: 50% EtOAc/Pet Ether, silica, Rf = 0.5, I2 and KMNO4 ; []D
30 -23.60 (S), 91% ee (c 0.68 in 

CHCl3); H (300 MHz, CDCl3): 7.97 (1H, br. s., ArOH), 7.26 (1H, dd, J = 2.4, 8.6 Hz, ArH), 7.10 

(1H, d, J = 2.4 Hz, ArH), 6.76 (1H, d, J = 8.6 Hz, ArH), 5.04 (1H, q, J = 6.7 Hz, CHOH), 2.45 (1H, 

br. s., CHOH), 1.59 (3H, d, J = 6.6 Hz, CHCH3); C (101 MHz, CDCl3): 154.6 (C), 131.6 (CH), 130.4 

(C), 129.2 (CH), 119.0 (CH), 111.8 (C), 71.1 (CH), 23.4 (CH3); Chiral HPLC (Chiralpak IA Column: 

(0.46 x 25 cm), 1 ml/min, 10% IPA : 90% Hexane; 256 nm UV, 30 °C), retention times: 7.95 (S) 

and 8.75 (R) minutes.  
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(S)-1-(2-Methoxyphenyl)ethan-1-ol. 

 

362 

This compound is known.62  

FA/TEA reduction: See general method 1. With (S,S)--3C-teth (80); 3.75 hours reaction time, 

95% conversion and 68% ee. With (R,R)-OMe-teth (115); 3.75 hours reaction time, 98% 

conversion and 96% ee. 

Aqueous reduction: See general method 2. With (S,S)-3C-teth (80); 4 hours reaction time, 

89% conversion and 55% ee. With (R,R)-OMe-teth (115); 3.5 hours reaction time, 92% 

conversion and 96% ee. 

(S) Configuration for product from reduction with (S,S)-80 assigned by comparison with 

literature optical rotation. The opposite enantiomer is produced by reduction with (R,R)-115. 

TLC: 40% EtOAc/Pet Ether, silica, Rf = 0.45, I2; []D
32 -13.9 (S), 68% ee (c 0.39 in CHCl3); lit 

[]D
32 +26.3 (R), 95.5% ee (c 1.23 in CHCl3); H (400 MHz, CDCl3): 7.33 (1H, d, J = 7.5 Hz, ArH), 

7.28 - 7.20 (1H, m, ArH), 6.95 (1H, t, J = 7.4 Hz, ArH), 6.87 (1H, d, J = 8.3 Hz, ArH), 5.09 (1H, 

quin, J = 6.0 Hz, CHOH), 3.85 (3H, s, OCH3), 2.74 (1H, d, J = 4.3 Hz, OH), 1.50 (3H, d, J = 6.5 Hz, 

CH3); C (101 MHz, CDCl3): 156.5 (C), 133.5 (C), 128.3 (CH), 126.1 (CH), 120.8 (CH), 110.4 (CH), 

66.5 (CH), 55.3 (OCH3), 22.9 (CH3); Chiral G.C; (CP-Chirasil-Dex-Cβ, 25m x 0.25mm x 0.25µm 

column, oven temperature 150 ºC, inj.: split 220 ºC, det.: FID 250 ºC, 18Psi He), retention 

times: 5.84 (S) and 6.30 (R) minutes. 

(S)-1-(2,5-Dimethoxyphenyl)ethan-1-ol. 

 

363 

This compound is known.152  
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FA/TEA reduction: See general method 1. With (S,S)-3C-teth (80); 3.75 hours reaction time, 

>99% conversion and 69% ee. With (R,R)-OMe-teth (115); 3.75 hours reaction time, >99% 

conversion and 90% ee. 

Aqueous reduction: See general method 2. With (S,S)-3C-teth (80); 9.25 hours reaction time, 

47% conversion and 70% ee. With (R,R)-OMe-teth (115); 9.25 hours reaction time, 52% 

conversion and 97% ee. 

(S) Configuration for product from reduction with (S,S)-80 assigned by comparison with 

literature optical rotation. The opposite enantiomer is produced by reduction with (R,R)-115. 

TLC: 40% EtOAc/Pet Ether, silica, Rf = 0.35, I2; []D
32 -15.8 (S), 69% ee (c 0.60 in CHCl3); lit 

[α]D
27 23.6 (S), 76% ee (c 1.4 in CHCl3); H (300 MHz, CDCl3): 6.92 (1H, d, J = 2.8 Hz, ArH), 

6.79 (1H, d, J = 8.9 Hz, ArH), 6.73 (1H, dd, J = 2.8, 8.9 Hz, ArH), 5.04 (1H, dq, J = 5.5, 6.4 Hz, 

CHOH), 3.81 (3H, s, OCH3), 3.76 (3H, s, OCH3), 2.60 (1H, d, J = 5.5 Hz, CHOH), 1.47 (3H, d, J = 

6.4 Hz, CHCH3); C (101 MHz, CDCl3): 153.8 (C), 150.6 (C), 134.8 (CH), 112.4 (C), 112.3 (CH), 

111.4 (CH), 66.4 (CH), 55.8 (OCH3), 55.7 (OCH3), 23.0 (CH3); Chiral G.C; (CP-Chirasil-Dex-Cβ, 

25m x 0.25mm x 0.25µm column, oven temperature 150 ºC, inj.: split 220 ºC, det.: FID 250 

ºC, 18Psi He), retention times: 15.72 (R) and 16.93 (S) minutes. 

4.4.2 Ortho-Substituted ketones 

1-(2-ethoxyphenyl)ethan-1-one 

 

286 

This compound is known.153,154 

To a stirred suspension of 2’hydroxyacetophenone (831 mg, 6.11 mmol, 1 eq) and potassium 

carbonate (1609 mg, 11.64 mmol, 1.9 eq) in acetonitrile (30 ml) was added dropwise at room 

temperature ethyl iodide (1240 mg, 7.97 mmol, 1.3 eq). The resulting suspension was stirred 

at rt for 5 days, then filtered through Celite and concentrated to yield the crude product in 

only 50% conversion. 

The crude was reacted with a further portion of potassium carbonate (0.8 g), ethyl iodide 

(0.65 g) in acetonitrile (20 ml) at 60 oC for 20 hours and concentrated to a residue. This was 

suspended in 5% NaOH solution (30 ml) and extracted with ethyl acetate (40 ml). The organic 
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layer was dried (Na2SO4) and concentrated to yield the product as a yellow solid (848 mg, 

85%) 

H (300 MHz, CDCl3): 7.74 (1H, d, J = 7.6 Hz, ArH), 7.44 (1H, t, J = 7.8 Hz, ArH), 7.02 - 6.89 (2H, 

m, ArH), 4.14 (2H, q, J = 6.8 Hz, CH2), 2.64 (3H, s, COCH3), 1.48 (3H, t, J = 6.8 Hz, CH3); C (75 

MHz, CDCl3): 200.0 (CO), 158.4 (C), 133.6 (C), 130.3 (CH), 128.3 (CH), 120.4 (CH), 112.3 (CH), 

64.0 (CH2), 32.0 (CH3), 14.7 (CH3);  

(R)-1-(2-ethoxyphenyl)ethan-1-ol 

 

364 

This compound is known but not characterised.155 

See general method 1. With (R,R)-OMe-teth (115); 5.5 hours reaction time, 100% conversion 

and 99% ee. 

(R) Configuration for product from reduction with (R,R)-115 assumed by analogy to parent 

compounds 357 and 362. 

[]D
26 +47.8 (R), 99% ee (c 0.52 in MeOH); HRMS: found (ESI): [M + Na]+, 189.0887. 

(C10H14NaO2 requires 189.0886); max: 3374, 2976, 1600, 1450, 1243, 751 cm−1; H (300 MHz, 

CDCl3): 7.39 - 7.31 (1H, m, ArH), 7.30 - 7.19 (1H, m, ArH), 7.02 - 6.93 (1H, m, ArH), 6.92 - 6.85 

(1H, m, ArH), 5.11 (1H, quin, J = 6.0 Hz, CH), 4.12 (2H, q, J = 6.9 Hz, CH2), 2.82 (1H, d, J = 5.0 

Hz, OH), 1.55 (3H, d, J = 6.5 Hz, CHCH3), 1.47 (3H, t, J = 6.9 Hz, CH2CH3); C (75 MHz, CDCl3): 

156.0 (C), 133.4 (C), 128.2 (CH), 126.2 (CH), 120.6 (CH), 111.3 (CH), 66.9 (CH), 63.5 (CH2), 22.8 

(CH3), 14.9 (CH3); m/z (ESI): 189.4 ([M + Na]+). 

Chiral G.C; (CP-Chirasil-Dex-Cβ, 25m x 0.25mm x 0.25µm column, oven temperature 135 ºC, 

inj.: split 220 ºC, det.: FID 250 ºC, 18Psi H2), retention times: 5.3 (S) and 6.1 (R) minutes  
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1-(2-(benzyloxy)phenyl)ethan-1-one 

 

289 

This compound is known.156 

To a stirred suspension of 2’hydroxyacetophenone (530 mg, 3.89 mmol, 1 eq) and potassium 

carbonate (1090 mg, 7.86 mmol, 2 eq) in acetonitrile (20 ml) was added dropwise at room 

temperature benzyl bromide (881 mg, 5.15 mmol, 1.3 eq). The resulting suspension was 

stirred at rt for 2 days, then filtered through Celite and concentrated to yield the crude 

product. Excess benzyl bromide was removed by addition of triethylamine (202 mg, 2 mmol) 

and stirring in acetonitrile (2ml) overnight. The mixture was diluted with diethyl ether and 

washed with water, dried over Na2SO4 and concentrated to yield the purified product as a 

pale yellow oil (810 mg, 89%) 

H (300 MHz, CDCl3): 7.76 (1H, d, J = 7.6 Hz, ArH), 7.51 - 7.32 (6H, m, ArH), 7.08 - 6.98 (2H, m, 

ArH), 5.18 (2H, s, CH2), 2.61 (3H, s, CH3); C (75 MHz, CDCl3): 200.0 (CO), 158.0 (C), 136.2 (C), 

133.6 (CH), 130.5 (CH), 128.7 (CH), 128.2 (CH), 127.5 (CH), 120.9 (CH), 112.8 (CH), 70.7 (CH2), 

32.1 (CH3); 

(R)-1-(2-(benzyloxy)phenyl)ethan-1-ol 

 

365 

This compound is known.157,158 

See general method 1. With (R,R)-OMe-teth (115); 5.5 hours reaction time, 100% conversion 

and 95% ee. 

(R) Configuration for product from reduction with (R,R)-115 assigned by comparison with 

literature optical rotation. 

[]D
26 +14.9 (R), 95% ee (c 0.65 in CHCl3) ; lit158 []D

20 +26.1 (R), 95% ee (c 1.44 in CHCl3); H 

(300 MHz, CDCl3): 7.53 - 7.33 (6H, m, ArH), 7.32 - 7.22 (1H, m, ArH), 7.09 - 6.95 (2H, m, ArH), 
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5.26 - 5.17 (1H, m, CH), 5.15 (2H, s, CH2), 2.64 (1H, br. s., OH), 1.56 (3H, d, J = 6.4 Hz, CH3); C 

(75 MHz, CDCl3): 155.6 (C), 136.7 (C), 133.8 (C), 128.7 (CH), 128.3 (CH), 128.1 (CH), 127.3 (CH), 

126.2 (CH), 121.1 (CH), 111.7 (CH), 70.1 (CH), 66.4 (CH2), 22.9 (CH3);  

Chiral HPLC (Chiralpak IA Column: (0.46 x 25 cm), 1 ml/min, 10% IPA : 90% Hexane; 220 nm 

UV, 30 °C), retention times: 7.6 (R) and 9.5 (S) minutes.  

1-(2-(allyloxy)phenyl)ethan-1-one 

 

288 

This compound is known.159 

To a stirred suspension of 2’hydroxyacetophenone (542 mg, 3.98 mmol, 1 eq) and potassium 

carbonate (1118 mg, 8.08 mmol, 2 eq) in acetonitrile (8 ml) was added dropwise at room 

temperature allyl bromide (748 mg, 6.18 mmol, 1.6 eq) in acetonitrile (2 ml). The resulting 

suspension was stirred at rt for two days and concentrated to a residue. This was suspended 

in 5% NaOH solution (20 ml) and extracted with ethyl acetate (25 ml). The organic layer was 

dried (Na2SO4) and concentrated to yield the product as a pale yellow oil (676 mg, 96%) 

TLC: 10% EtOAc/Pet ether, silica, Rf = 0.26, UV; H (300 MHz, CDCl3): 7.74 (1H, d, J = 7.6 Hz, 

ArH), 7.44 (1H, t, J = 7.7 Hz, ArH), 7.06 - 6.87 (2H, m, ArH), 6.09 (1H, ddt, J = 17.3, 10.5, 5.0 

Hz, =CHCH2), 5.44 (1H, d, J = 17.3 Hz, =CHH), 5.33 (1H, d, J = 10.5 Hz, =CHH), 4.65 (2H, d, J = 

5.0 Hz, OCH2), 2.64 (3H, s, CH3); C (101 MHz, CDCl3): 199.9 (CO), 157.9 (C), 133.5 (CH), 132.6 

(CH), 130.4 (CH), 128.6 (C), 120.8 (CH), 118.2 (CH2), 112.7 (CH), 69.4 (CH2), 32.0 (CH3);  

(R)-1-(2-(allyloxy)phenyl)ethan-1-ol  

 

366 

This compound is known in racemic form.160 

See general method 1. With (R,R)-OMe-teth (115); 5.5 hours reaction time, 100% conversion 

and 98% ee. 
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(R) Configuration for product from reduction with (R,R)-115 assumed by analogy to parent 

compounds 357 and 362. 

[α]D
22 = +49.9 (R), 98% ee (c 0.09 in MeOH); H (400 MHz, CDCl3): 7.37 (1H, dd, J = 7.5, 1.3 Hz, 

ArH), 7.23 (1H, td, J = 7.8, 1.6 Hz, ArH), 6.98 (1H, td, J = 7.5, 0.6 Hz, ArH), 6.88 (1H, d, J = 8.2 

Hz, ArH), 6.08 (1H, ddt, J = 17.2, 10.6, 5.2 Hz, CH=CH2), 5.44 (1H, dd, J = 17.2, 1.5 Hz, =CHH), 

5.31 (1H, dd, J = 10.5, 1.3 Hz, =CHH), 5.15 (1H, quin, J = 6.2 Hz, CHOH), 4.63 - 4.56 (2H, m, 

OCH2), 2.67 (1H, d, J = 5.3 Hz, OH), 1.54 (3H, d, J = 6.6 Hz, CH3); C (101 MHz, CDCl3): 155.5 

(C), 133.7 (C), 133.0 (CH), 128.2 (CH), 126.2 (CH), 121.0 (CH), 117.6 (CH2), 111.6 (CH), 68.7 

(CH2), 66.6 (CH), 22.9 (CH3); Chiral HPLC (Chiralpak IC Column: (0.46 x 25 cm), 0.5 ml/min, 2% 

IPA : 98% Hexane; 254 nm UV, 30 °C), retention times: 27.3 (S) and 28.9 (R) minutes. 

1-(2-isopropoxyphenyl)ethan-1-one 

 

287 

This compound is known.156 

To a stirred suspension of 2’hydroxyacetophenone (540 mg, 3.9 mmol, 1 eq) and potassium 

carbonate (1110 mg, 8.0 mmol, 2 eq) in acetonitrile (9 ml) was added dropwise at room 

temperature isopropyl mesylate (828 mg, 6.0 mmol, 1.5 eq), which was washed in with 

acetonitrile (1 ml). The resulting suspension was heated to 60oC under a condenser for 18 

hours. The dark brown suspension was concentrated to remove excess acetonitrile, taken up 

in ethyl acetate (30 ml) and washed with NaOH (2M, 20 ml) and brine (sat. 20 ml). The organic 

extract was dried (Na2SO4) and concentrated to yield a mixture of phenol, mesylate and 

crude product with only 10% conversion. 

The crude was reacted with a further portion of potassium carbonate (1.1 g) and isopropyl 

mesylate (0.65 g) in DMF (10 ml) at 70 oC for 2 days. The reaction was quenched while hot 

with NaOH (2M, 20 ml) and stirred for 30 mins to encourage hydrolysis of i-PrOMs. The 

aqueous suspension was allowed to cool to room temperature, extracted with ethyl acetate 

(40 ml, 2x 10 ml) and washed with water (3x 5ml) and NaHCO3 (sat., 3x 15 ml). The organic 

extracts were dried (Na2SO4) and concentrated to yield the product as a brown oil (620 mg, 

85%) 
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H (400 MHz, CDCl3): 7.71 (1H, dd, J = 7.9, 1.7 Hz, ArH), 7.47 - 7.35 (1H, m, ArH), 7.00 - 6.88 

(2H, m, ArH), 4.69 (1H, dt, J = 12.1, 6.1 Hz, CH(CH3)2), 2.62 (3H, s, CH3), 1.40 (6H, d, J = 6.1 Hz, 

CH(CH3)2); C (101 MHz, CDCl3): 200.4 (C=O), 157.3 (C), 133.4 (CH), 130.5 (CH), 129.3 (C), 

120.2 (CH), 113.5 (CH), 70.6 (CH), 32.1 (CH3), 22.3 (CH3), 22.1 (CH3). 

 2-acetylphenyl acetate  

 

290 

This compound is known.161 

To a solution of 2’hydroxyacetophenone (550 mg, 4.0 mmol, 1 eq) and pyridine (0.64 ml, 8.0 

mmol, 2 eq) in dichloromethane (4 ml) was added dropwise at 0oC acetyl chloride (487 mg, 

6.2 mmol, 1.6 eq). The resulting suspension was warmed to rt, and stirred for 20 hours. The 

mixture was diluted with ethyl acetate (15 ml), washed with 1M HCl (10 ml) and sat. NaHCO3 

soln (10 ml). The organic layer was dried (Na2SO4) and concentrated to yield the product as 

a yellow residue. This was redissolved in ethyl acetate (6 ml) and hexane (6 ml) and slow 

concentrated until saturated, then cooled to 0oC. The resulting off-white crystalline solid was 

isolated by filtration (493 mg, 69%) 

H (300 MHz, CDCl3): 7.82 (1H, d, J = 7.8 Hz, ArH), 7.60 - 7.50 (1H, m, ArH), 7.39 - 7.29 (1H, m, 

ArH), 7.13 (1H, d, J = 8.1 Hz, ArH), 2.57 (3H, s, ArCOCH3), 2.36 (3H, s, OCOCH3);  

C (101 MHz, CDCl3): 197.6 (CO), 169.5 (CO), 149.0 (C), 133.4 (CH), 130.7 (C), 130.3 (CH), 126.0 

(CH), 123.8 (CH), 29.3 (CH3), 21.2 (CH3). 

4.4.2.1 Attempted reduction of 2-acetylphenyl acetate 290 

See general method 1. With (R,R)-OMe-teth (115); 48 hours reaction time. Conversion 

unknown, mixture of products obtained. 
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4.4.3 Other Ketones 

(R)-chroman-4-ol 

 

367 

This compound is known.76 

See general method 1. With (R,R)-OMe-teth (115); 6 hours reaction time, 100% conversion 

and 99% ee. 

(R) Configuration for product from reduction with (R,R)-115 assigned by comparison with 

literature optical rotation. 

[]D
25 +77.7 (R), 99%ee (c 0.46 in CHCl3) ; lit []D

20 +61 (R), 99% ee (c 0.45 in CHCl3); H (300 

MHz, CDCl3): 7.32 (1H, d, J = 7.5 Hz, ArH), 7.26 - 7.17 (1H, m, ArH), 6.99 - 6.89 (1H, m, ArH), 

6.86 (1H, d, J = 8.2 Hz, ArH), 4.85 - 4.75 (1H, m, CH), 4.33 - 4.23 (2H, m, OCH2), 2.22 - 1.98 

(2H, m, CH2), 1.86 (1H, d, J = 4.6 Hz, OH); C (75 MHz, CDCl3): 154.6 (C), 129.7 (CH), 129.6 (C), 

124.3 (CH), 120.6 (CH), 117.1 (CH), 63.2 (CH), 61.9 (CH2), 30.8 (CH2); Chiral HPLC (CHIRALPAK 

IB column: (0.46 x 25 cm), 1 ml/min, 7% IPA : 93% Hexane; 254 nm UV, 30 oC): retention 

times: 10.3 (S) and 11.3 (R) minutes. 

(R)-4-(1-hydroxyethyl)phenol 

 

368 

This compound is known.162 

See general method 1. With (R,R)-OMe-teth (115); 22 hours reaction time, 100% conversion 

and 96% ee. 

(R) Configuration for product from reduction with (R,R)-115 assigned by comparison with 

literature optical rotation. 

[]D
26 +41.5 (R), 96% ee (c 0.44 in MeOH); lit []D

23 -47.6 (S), 99% ee (c 1.0 in EtOH); H (300 

MHz, (CD3)2SO): 9.16 (1H, s, OH), 7.18 - 7.03 (2H, m, ArH), 6.76 - 6.59 (2H, m, ArH), 4.90 (1H, 
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d, J = 3.7 Hz, OH), 4.66 - 4.54 (1H, m, CH), 1.26 (3H, d, J = 6.2 Hz, CH3); C (75 MHz, (CD3)2SO): 

155.9 (C), 137.7 (C), 126.4 (CH), 114.6 (CH), 67.7 (CH), 25.9 (CH3); Chiral HPLC (Chiralpak IA 

Column: (0.46 x 25 cm), 1 ml/min, 7% IPA : 93% Hexane; 220 nm UV, 30 °C), retention times: 

25.6 (R) and 27.1 (S) minutes. 

4.5 Preparation of Compounds, α,β-Unsaturated Ketones:  

4.5.1 β-Chloro Ketones 

1-phenylprop-2-en-1-one. 

 

303 

This compound is known.163 

To a solution of 3-chloropropiophenone (844 mg, 5 mmol, 1.0 eq) in chloroform (10 mL) was 

added triethylamine (1214 mg, 12 mmol, 2.4 eq). The resulting clear solution was stirred at 

rt for 48 hours, diluted with chloroform (5 mL) and washed with HCl (1M, 2 x 5 mL) and 

NaHCO3 (sat., 10 mL). The organic layer was dried over Na2SO4 and concentrated to give the 

product as a yellow oil (625 mg, 95%). If desired the coloured impurity could be removed on 

activated carbon, however the colour returns on standing for ~1 week at 4 oC. The product 

decomposes within ~3 months at 4 oC. 

H (300 MHz, CDCl3): 8.02 - 7.89 (2H, m, Ph), 7.64 - 7.54 (1H, m, p-Ph), 7.53 - 7.45 (2H, m, Ph), 

7.17 (1H, dd, J = 10.5, 17.1 Hz, COCH=C), 6.45 (1H, dd, J = 1.7, 17.1 Hz trans-CO=CHH), 5.94 

(1H, dd, J = 1.7, 10.5 Hz cis-CO=CHH). 

1-phenylpropan-1-ol 

 

208 

This compound is known.164 
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To a solution of propiophenone (66 mg, 0.49 mmol, 1 eq) in methanol (0.9 ml) and water (0.1 

ml) was added sodium borohydride (41 mg, 1.08 mmol, 2 eq) as a solid in one portion. The 

reaction was monitored by TLC. After stirring for 6 hours, the reaction mixture was 

concentrated under vacuum, the residue suspended in water (1 ml) and extracted with Et2O 

(3 ml total). The organic layer was dried (Na2SO4) and concentrated to give the product as a 

clear oil (35 mg, 52 %) 

The spectral data were consistent with those observed for the asymmetric product. 

(S)-1-phenylpropan-1-ol 

 

302 

This compound is known.164 

A degassed solution of 3-chloropropiophenone (170 mg, 1.01 mmol, 1.0 eq) and (S,S)-3C-

teth (80) (3.1 mg, 0.005 mmol, 0.5%) in FA/TEA (5:2, 0.5 mL) was stirred at 60 oC for 1.5 hours. 

The mixture was diluted with ethyl acetate (5 mL) and quenched with NaHCO3 (sat., 5 mL), 

the aqueous layer is extracted further with ethyl acetate (2 x 5 mL) and the organic extracts 

dried over Na2SO4 and concentrated to give a brown oil. The crude was dissolved in diethyl 

ether and passed through a silica plug to yield the product as a red oil (123 mg, 72%) in 100% 

conv and 97% ee as measured by GC. 

(S) Configuration for product from reduction with (S,S)-80 assigned by comparison with 

literature optical rotation. 

[]D
22 -43.5 (S), 97% ee (c 0.35 in CHCl3); lit164 []D

22 -43.6 (S) (c 1.0 in CHCl3); H (300 MHz, 

CDCl3): 7.41 - 7.22 (5H, m, Ph), 4.58 (1H, dt, J = 3.2, 6.6 Hz, CHOH), 1.99 - 1.89 (1H, m, OH), 

1.88 - 1.66 (2H, m, CH2), 0.91 (3H, t, J = 7.4 Hz, CH3); C (75 MHz, CDCl3): 144.6 (C), 128.4 (CH), 

127.5 (CH), 125.9 (CH), 76.0 (CH), 31.8 (CH2), 10.1 (CH3); Chiral G.C; (CP-Chirasil-Dex-Cβ, 25m 

x 0.25mm x 0.25µm column, oven: hold 12 mins at 125 ºC, then ramp 1 oC/min, final temp 

145 ºC, inj.: split 220 ºC, det.: FID 250 ºC, 18 Psi He), retention times: 11.2 (R) and 11.4 (S) 

minutes. 

The compound could also be prepared with 100% conversion and 97 % ee with the same 

method, starting from 303 (126 mg, 0.95 mmol, 1 eq), (S,S)-3C-teth (80) (3.5 mg, 0.006 mmol, 

0.5%) and FA/TEA (5:2, 0.5 ml). The product was isolated as a clear oil (103 mg, 79%). 
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4.5.1.1 Attempted reduction of 1-phenylprop-2-en-1-ol 

 

Application of the same method to commercially available α-vinylbenzyl alcohol 206 (134 

mg) and (S,S)-3C-teth (80) (3.3 mg, 5 µmol, 0.5%) in FA/TEA (5:2. 0.5 ml) gave no reaction in 

1.5 hr at 60oC.  

4.5.2 Chalcones 

4.5.2.1 General Method 4: FA/TEA/MeOH Reductions 

A degassed suspension of enone (0.5 mmol, 1 eq) and catalyst (5 µmol, 100:1 S/C) in FA/TEA 

(5:2, 0.5 ml) and methanol (0.5 ml) was stirred at 40oC for 2-24 hours. On completion the 

reaction mixture is homogenous. The mixture was diluted with diethyl ether (2 ml) and 

quenched with NaHCO3 (sat., 2 ml), the aqueous layer is extracted further with ether (2x 2 

ml) and the organic extracts dried over Na2SO4 and passed through a silica plug to yield the 

product. 

1,3-diphenylpropan-1-ol 

 

162 

This compound is known.133,165 

To a suspension of chalcone (212 mg, 1.02 mmol, 1 eq) and Pd/C (5% w/w, 52 mg, 24 µmol, 

2.5 % Pd) in isopropanol (5 ml) was added acetic acid (124 mg, 2.06 mmol, 2 eq) followed by 

sodium borohydride (160 mg, 4.23 mmol, 4 eq), with vigorous effervescence. The reaction 

mixture was stirred at rt for 2 hours and quenched slowly with HCl (0.2M, 2.5 mL). The 

resulting suspension was neutralised with NaOH (2M, ~1.5 ml) and filtered through Celite 

with isopropanol to remove Pd/C. The mixture was concentrated to remove excess 

isopropanol and then the aqueous layer was extracted with diethyl ether (3 x 20 mL), dried 
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over Na2SO4 and concentrated to give the saturated alcohol as a clear oil that solidifies on 

standing. (183 mg, 85%)  

H (400 MHz, CDCl3): 7.34 (4H, br. s., Ph), 7.30 - 7.23 (3H, m, Ph), 7.22 - 7.14 (3H, m, Ph), 4.67 

(1H, br. s., CHOH), 2.82 - 2.55 (2H, m, PhCH2), 2.20 - 1.96 (2H, m, CHCH2), 1.92 (1H, br. s., OH);  

C (101 MHz, CDCl3): 144.5 (C), 141.7 (C), 128.5 (CH), 128.4 (CH), 128.4 (CH), 127.6 (CH), 125.9 

(CH), 125.8 (CH), 73.8 (CH), 40.4 (CH2), 32.0 (CH2);  

Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 7% IPA : 93% Hexane; 256 nm 

UV, 30 oC): retention times: 9.4 (S) and 10.4 (R) minutes  

(E)-1,3-diphenylprop-2-en-1-ol 

 

205 

This compound is known. 166,167 

To a suspension of chalcone (625 mg, 3.0 mmol, 1 eq) and cerium trichloride heptahydrate 

(1120 mg, 3.0 mmol, 1 eq) in methanol (6 mL) was added sodium borohydride (113 mg, 3.0 

mmol, 1 eq) at 0 oC. The reaction was stirred for 1 hour, quenched with NH4Cl (sat., 10 mL) 

and extracted with diethyl ether (3x 10 mL). The organic layers were dried over Na2SO4 and 

concentrated to give the unsaturated alcohol as a clear oil that solidifies on standing (532 

mg, 84%). 

H (400 MHz, CDCl3): 7.48 - 7.19 (10H, m, Ph), 6.69 (1H, d, J = 15.8 Hz, =CHPh), 6.38 (1H, dd, 

J = 6.4, 15.8 Hz CHCH=), 5.39 (1H, d, J = 6.4 Hz, CHOH), 2.08 (1H, br. s., OH); C (101 MHz, 

CDCl3): 142.7 (C), 136.4 (C), 131.4 (CH), 130.4 (CH), 128.5 (CH), 128.5 (CH), 127.7 (CH), 126.5 

(CH), 126.3 (CH), 74.9 (CH). 

Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 7% IPA : 93% Hexane; 256 nm 

UV, 30 oC): retention times: 13.4 (S) and 16.9 (R) minutes.  
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(S)-1,3-diphenylpropan-1-ol and (S,E)-1,3-diphenylprop-2-en-1-ol 

 

162 and 205 

These compounds are known.165,166 

A degassed suspension of trans-chalcone (208 mg, 1 mmol, 1 eq) and (S,S)-3C-teth (80) (6.2 

mg, 0.01 mmol, 1%) in FA/TEA (5:2, 0.5 ml) was stirred at 40oC for 1.5 hours. On completion 

the reaction mixture is homogenous. The mixture was diluted with diethyl ether (2 ml) and 

quenched with NaHCO3 (sat., 2 ml), the aqueous layer is extracted further with ether (2x 2 

ml) and the organic extracts dried over Na2SO4 and passed through a silica plug to yield the 

product as an off white solid (203 mg, 96%).The product is obtained as a mixture of saturated 

and unsaturated alcohols, ratio 93:7 by 1H NMR. Total conv 98%, major product ee was 96% 

as determined by HPLC, minor product ee was 73% as determined by HPLC. 

The opposite enantiomer was obtained using (R,R)-OMe-teth (115) (3.3 mg, 1%), trans-

chalcone (104 mg), FA/TEA (0.5 ml) and methanol (0.5 ml), to give a mixture of saturated and 

unsaturated alcohols (102 mg, 96%), ratio 97:3 by 1H NMR. Total conversion 100%, major 

product ee was 98% as determined by HPLC, minor product ee was 85% as determined by 

HPLC. 

Spectral data for asymmetric product is consistent with the prepared standards. (R) 

Configuration for major product from reduction with (R,R)-115 assigned by comparison with 

literature optical rotation. (R) Configuration for minor product demonstrated by reduction 

with PtO2, see Table 41, page 132. 

Mp 52 °C; []D
27 + 29.4 (R), 98% ee (c 0.425 in CHCl3); lit165 []D

22 +27.3 (R), 93% ee (c 0.51 in 

CHCl3); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 7% IPA : 93% Hexane; 

256 nm UV, 30 oC): retention times: 10.0 (S)-saturated, 11.0 (R)-saturated, 13.4 (S)-

unsaturated and 16.8 (R)-unsaturated minutes.  
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4.5.3 Para-Substituted Chalcones 

(E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one 

 

308 

This compound is known.168 

4’-chloroacetophenone (1.54 g, 10.0 mmol, 1 eq) was dissolved in a solution of sodium 

methoxide (25 wt % in MeOH, 1.11 g, 5.1 mmol, 0.5 eq) and MeOH (20 ml) and cooled to 0 

oC. Benzaldehyde (1.59 g, 15.0 mmol, 1.5 eq) in MeOH (5 ml) was added and the suspension 

was warmed to 40 oC. The resulting solution was stirred for 18 hours, THF (10 ml) was added 

to dissolve solids and the reaction was then quenched by dropwise addition of HCl (0.25M, 

20 ml). The resulting yellow crystalline precipitate was isolated by filtration and purified by 

recrystallization from hot ethanol and water. The pure product was isolated as an off white 

crystalline solid (2.08 g, 86%) 

Mp 93-96 °C; H (400 MHz, CDCl3): 7.98 (2H, d, J = 8.3 Hz, o-CO ArH), 7.83 (1H, d, J = 15.8 Hz, 

CH=), 7.71 - 7.61 (2H, m, J = 3.8 Hz, Ph), 7.49 (2H, d, J = 8.8 Hz, o-Cl ArH), 7.50 (1H, d, J = 14.8 

Hz, CH=Hn), 7.45 - 7.41 (3H, m, Ph). C (126 MHz, CDCl3): 189.2 (CO), 145.3 (CH), 139.2 (C), 

136.5 (C), 134.7 (C), 130.7 (CH), 129.9 (CH), 129.0 (CH), 128.9 (CH), 128.5 (CH), 121.5 (CH) 

1-(4-chlorophenyl)-3-phenylpropan-1-ol 

 

369 

This compound is known.169 

To a solution of 4-chlorobenzaldehyde (141 mg, 1.0 mmol, 1 eq) in THF (1 ml) at -78 oC was 

added phenethyl magnesium chloride (1M in THF, 1 ml, 1 eq). The reaction was allowed to 

warm to rt over 2.5 hours, quenched with sat. NH4Cl (2 ml) and extracted with Et2O (2x 2.5 

ml). The organic extract was dried over MgSO4 and concentrated to give the product as a 
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pale yellow oil. Purification by column chromatography (5 g silica, 30% Et2O:Petroleum 

ether) gave the pure product as a white solid (192 mg, 78%) 

H (400 MHz, CDCl3): 7.35 - 7.24 (6H, m, Ph), 7.23 - 7.14 (3H, m, Ph), 4.70 - 4.62 (1H, m, CHOH), 

2.78 - 2.60 (2H, m, PhCH2), 2.15 - 1.93 (2H, m, CHCH2), 1.91 - 1.84 (1H, m, OH); C (101 MHz, 

CDCl3): 143.0 (C), 141.5 (C), 133.2 (C), 128.6 (CH), 128.4 (CH), 128.4 (CH), 127.3 (CH), 125.9 

(CH), 73.1 (CH), 40.5 (CH2), 31.9 (CH2); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 

ml/min, 7% IPA : 93% Hexane; 210 nm UV, 30 oC): retention times: 9.3 (S) and 10.6 (R) 

minutes.  

(E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-ol 

 

370 

This compound is known.166,170 

To a suspension of 308 (242 mg, 1.0 mmol, 1 eq) and cerium trichloride heptahydrate (392 

mg, 1.1 mmol, 1 eq) in methanol (2 mL) was added sodium borohydride (43 mg, 1.1 mmol, 1 

eq) at 0 oC. The reaction was stirred for 1 hour and quenched with NH4Cl (sat., 5 mL) and 

extracted with diethyl ether (3x 5 mL) and passed through a plug of activated carbon/Celite. 

The filtrate was concentrated to give the unsaturated alcohol as a clear oil that solidifies on 

standing in the freezer for 3 days (239 mg) 

Trituration from water gave a sticky white solid that was dried under hi vacuum to yield pure 

compound as a grey solid. (174 mg, 71%).  

H (400 MHz, CDCl3): 7.59 - 7.06 (9H, m, ArH), 6.67 (1H, d, J = 15.8 Hz, =CHPh), 6.32 (1H, dd, 

J = 15.9, 6.7 Hz, CHCH=), 5.36 (1H, d, J = 6.3 Hz, CHOH), 2.10 (1H, br. s., OH); C (101 MHz, 

CDCl3): 141.1 (C), 136.2 (C), 133.5 (C), 131.0 (CH), 131.0 (CH), 128.7 (2* CH), 128.6 (2* CH), 

128.0 (CH), 127.7 (2* CH), 126.6 (2* CH), 74.5 (CH); Chiral HPLC (CHIRALPAK IB column: (0.46 

x 25 cm), 1 ml/min, 7% IPA : 93% Hexane; 210 nm UV, 30 oC): retention times: 12.5 (S) and 

17.9 (R) minutes. 
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(R)-1-(4-chlorophenyl)-3-phenylpropan-1-ol and (R,E)-1-(4-
chlorophenyl)-3-phenylprop-2-en-1-ol 

  

370 and 369 

The major compound is known in racemic form.169 The asymmetric form has not been 

reported. The minor compound is known.171  

A degassed suspension of 308 (120 mg, 0.49 mmol, 1 eq) and (R,R)-OMe-teth (115) (3.3 mg, 

0.005 mmol, 1%) in FA/TEA (5:2, 0.5 ml) and methanol (0.5 ml) was stirred at 40oC for 22 

hours. The mixture was quenched with NaHCO3 (sat., 2 ml), extracted into diethyl ether (2 

ml) and dry loaded onto silica (~200 mg). Filtration with 40% Et2O/Hexane through a silica 

plug (~200 mg) gave the crude product as a sticky red film (114 mg). Purification by column 

chromatography (15% EtOAc in petroleum ether) gave the pure mixture of alcohols as a clear 

oil. (98 mg, 80%) 

The product is obtained as a mixture of saturated and unsaturated alcohols, ratio 96:4 by 1H 

NMR. Total conv 100%, major product ee was 94% as determined by HPLC, minor product ee 

was 69% as determined by HPLC. 

Spectral data matched those of the racemic compounds. (R) Configuration for products from 

reduction with (R,R)-115 assumed by analogy to parent compounds 370 and 369. The order 

of elution of peaks in HPLC is the same. 

[]D
27 +12.8 (R), 96% ee (c 0.375 in CHCl3); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 

1 ml/min, 7% IPA : 93% Hexane; 210 nm UV, 30 oC): retention times: 9.6 (S)-saturated, 10.8 

(R)-saturated, 13.0 (S)-unsaturated and 16.1 (R)-unsaturated minutes. 

(E)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one 

 

196 

This compound is known.168 
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4’-methoxyacetophenone (1.51 g, 10.1 mmol, 1 eq) was dissolved in a solution of sodium 

methoxide (25 wt % in MeOH, 0.43 g, 2.0 mmol, 0.2 eq) and MeOH (20 ml) and cooled to 0 

oC. Benzaldehyde (1.50 g, 14.1 mmol, 1.4 eq) in MeOH (5 ml) was added and the suspension 

was warmed to 40 oC. The resulting solution was stirred for 48 hours, then quenched by 

dropwise addition of HCl (0.25M, 20 ml). The resulting white crystalline solid was isolated by 

filtration (2.20 g, 92%) 

H (500 MHz, CDCl3): 8.09 - 8.02 (2H, m, ArH), 7.81 (1H, d, J = 15.7 Hz, =CH), 7.65 (2H, dd, J = 

7.2, 2.1 Hz, ArH), 7.55 (1H, d, J = 15.7 Hz, =CH), 7.45 - 7.36 (3H, m, ArH), 7.02 - 6.96 (2H, m, 

ArH), 3.89 (3H, s, OCH3); C (126 MHz, CDCl3): 188.7 (C), 163.5 (C), 144.0 (CH), 135.1 (C), 131.1 

(C), 130.8 (CH), 130.3 (CH), 128.9 (CH), 128.4 (CH), 121.9 (CH), 113.9 (CH), 55.5 (CH3). 

1-(4-methoxyphenyl)-3-phenylpropan-1-ol 

 

371 

This compound is known.133 

To a suspension of 196 (240 mg, 1.0 mmol, 1 eq) and Pd/C (5% w/w, 54 mg, 25 µmol, 2.5 % 

Pd) in isopropanol (5 ml)was added acetic acid (120 mg, 2.0 mmol, 2 eq) followed by sodium 

borohydride (152 mg, 4.0 mmol, 4 eq), with vigorous effervescence. The reaction mixture 

was stirred at rt for 2.5 hours, then additional sodium borohydride was added (76 mg, 2.0 

mmol, 2 eq). The suspension was stirred for another hour, then filtered through Celite with 

isopropanol (40 ml) and water (10 ml). The filtrate was partially concentrated under vacuum 

but continued to evolve gas, so was quenched with NH4Cl (sat. soln, 10 ml) and concentrated 

at 50oC. The concentrated residue was partitioned between diethyl ether (10 ml) and NaOH 

(2M soln, 5 ml). The aqueous layer was extracted with further portions of ether (2x 5 ml), 

and the combined organic layers were dried (Na2SO4) and concentrated under vacuum to 

give the crude product as a clear oil that solidifies into a sticky solid on standing (218 mg) 

This material was dissolved in a minimum quantity of methanol and water was added until a 

white emulsion formed. Concentrating the emulsion gave a the pure product as a white 

crystalline solid (206 mg, 84%) 

Mp 52-53 °C; H (400 MHz, CDCl3): 7.32 - 7.23 (4H, m, Ph), 7.22 - 7.13 (3H, m, Ph), 6.88 (2H, 

d, J = 8.3 Hz, o-O Ph), 4.78 - 4.53 (1H, m, CHOH), 3.80 (3H, s, OCH3), 2.79 - 2.58 (2H, m, PhCH2), 
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2.20 - 1.94 (2H, m, CHCH2), 1.83 (1H, br. s., OH); C (101 MHz, CDCl3): 159.1 (C), 141.9 (C), 

136.7 (C), 128.5 (CH), 128.4 (CH), 127.2 (CH), 125.9 (CH), 113.9 (CH), 73.5 (CH), 55.3 (CH3), 

40.4 (CH2), 32.2 (CH2); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 7% IPA : 

93% Hexane; 210 nm UV, 30 oC): retention times: 11.9 (S) and 13.1 (R) minutes. 

(R)-1-(4-methoxyphenyl)-3-phenylpropan-1-ol 

 

371 

This compound is known.172 

A degassed suspension of 196 (121 mg, 0.51 mmol, 1 eq) and (R,R)-OMe-teth (115) (3.3 mg, 

0.005 mmol, 1%) in FA/TEA (5:2, 0.5 ml) and methanol (0.5 ml) was stirred at 40oC for 22 

hours. The mixture was quenched with NaHCO3 (sat., 2 ml), extracted into diethyl ether (2 

ml) and dry loaded onto silica (~200 mg). Filtration with 20% Et2O/Hexane (10 ml) through a 

silica plug (~0.2 g) gave the pure product as a white solid (110 mg, 89%) in 99% ee. 

Spectral data matched those of the racemic compound. (R) Configuration for product from 

reduction with (R,R)-115 assigned by comparison to literature optical rotation. The order of 

elution of peaks in HPLC is the same as for 162. 

[]D
22 +19.4 (R), 99% ee (c 0.24 in CHCl3); lit172 []D

22 +10.3 (R), 88% ee (c 0.86 in CHCl3); Chiral 

HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 7% IPA : 93% Hexane; 210 nm UV, 30 

oC): retention times: 11.7 (S) and 13.1 (R) minutes. 

1-(4-(dimethylamino)phenyl)ethan-1-one 

 

296 

This compound is known.173 

4’-fluoroacetophenone (691 mg, 5.0 mmol, 1 eq) was placed into a pressure tube and purged 

with nitrogen through a septum. An aqueous solution of dimethylamine (40% wt/wt, 2.2 ml, 

17.5 mmol, 3.5 eq) was added, the reaction vessel was sealed and the clear mixture heated 
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to 100 oC and stirred for 23 hours. The mixture was cooled over ice and the yellow/green 

precipitate formed was isolated by filtration, washed with water and dried under vacuum. 

Recrystallization from 5 ml of hot heptane gives the product as a yellow crystalline solid (609 

mg, 75%) 

H (400 MHz, CDCl3): 7.90 - 7.84 (2H, m, J = 8.5 Hz, o-COR ArH), 6.67 - 6.62 (2H, m, J = 8.5 Hz, 

o-NMe2 ArH), 3.06 (6H, s, NMe2), 2.51 (3H, s, N(CH3)2); C (101 MHz, CDCl3): 196.5 (CO), 153.4 

(CN), 130.5 (CH), 125.3 (C), 110.6 (CH), 40.1 (2* CH3), 26.0 (CH3). 

 (E)-1-(4-(dimethylamino)phenyl)-3-phenylprop-2-en-1-one 

 

309 

This compound is known. 168 

296 (1.63 g, 10 mmol, 1 eq) was dissolved in a solution of sodium methoxide (25 wt % in 

MeOH, 1.08 g, 5 mmol, 0.5 eq) and MeOH (20 ml) and cooled to 0 oC. Benzaldehyde (1.59 g, 

15 mmol, 1.5 eq) in MeOH (5 ml) was added and the suspension was warmed to 40 oC. The 

resulting yellow solution was stirred for 48 hours, then quenched with HCl (0.25M, 20 ml). 

The resulting yellow precipitate was filtered and washed with aqueous methanol. 

The crude solid was purified by recrystallization from hot ethanol, to give the pure chalcone 

as a fluffy yellow solid, (884 mg, 35%*) 

Mp 168-170 °C; H (500 MHz, CDCl3): 8.02 (2H, d, J = 9.0 Hz, o-CO ArH), 7.80 (1H, d, J = 15.6 

Hz, CH=), 7.65 (2H, dd, J = 1.3, 7.7 Hz, Ph), 7.60 (1H, d, J = 15.6 Hz, CH=), 7.45 - 7.37 (3H, m, 

Ph), 6.71 (2H, d, J = 9.0 Hz, o-NMe2 ArH), 3.09 (6H, s, N(CH3)2); C (126 MHz, CDCl3): 187.7 

(CO), 153.4 (C), 142.5 (CH), 135.5 (C), 130.8 (CH), 129.9 (CH), 128.8 (CH), 128.2 (CH), 125.9 

(C), 122.2 (CH), 110.8 (CH), 40.0 (CH3); 

                                                           

* some material lost to spillage 
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1-(4-(dimethylamino)phenyl)-3-phenylpropan-1-ol 

 

372 

This compound is known but not fully characterised.174 

To a solution of 4-(dimethylamino)benzaldehyde (152 mg, 1.02 mmol, 1 eq) in THF (1 ml) at 

-78 oC was added phenethyl magnesium chloride (1M in THF, 1 ml, 1 eq). The reaction was 

allowed to warm to rt over 5.5 hours and quenched with sat. NH4Cl (1 ml), diluted with water 

(1 ml) and extracted with Et2O (3x 3 ml). The organic extract was dried over MgSO4 and 

concentrated to give the product as a white solid (266 mg, 102%). No purification was 

necessary. 

Mp 67-68 °C; HRMS: found (ESI): [M + H]+, 256.1692. (C17H22NO requires 256.1696); H (300 

MHz, CDCl3): 7.32 - 7.11 (8H, m, Ph), 6.73 (2H, d, J = 7.5 Hz, o-N Ph), 4.59 (1H, t, J = 6.5 Hz, 

CHOH), 2.95 (6H, s, NMe2), 2.79 - 2.56 (2H, m, PhCH2), 2.24 - 1.93 (2H, m, CHCH2), 1.69 (1H, 

br. s., OH); C (75 MHz, CDCl3): 150.3 (C), 142.0 (C), 132.3 (C), 128.5 (CH), 128.3 (CH), 127.0 

(CH), 125.7 (CH), 112.5 (CH), 73.7 (CH), 40.6 (CH3), 40.0 (CH2), 32.3 (CH2); m/z (ESI): 256.2 ([M 

+ H]+)); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 10% IPA : 90% Hexane; 

210 nm UV, 30 oC): retention times: 10.6 (S) and 11.3 (R) minutes.  

(R)-1-(4-(dimethylamino)phenyl)-3-phenylpropan-1-ol 

  

372 

The asymmetric form of this compound has not been reported. 

A degassed suspension of 309 (129 mg, 0.51 mmol, 1 eq) and (R,R)-OMe-teth (115) (3.3 mg, 

0.005 mmol, 1%) in FA/TEA (5:2, 0.5 ml) and methanol (0.5 ml) was stirred at 40oC for 24 

hours. The mixture was quenched with NaHCO3 (sat., 2 ml), extracted into diethyl ether (2 

ml) and dry loaded onto silica (~200 mg). Filtration with 20% EtOAc/petroleum ether (10 ml) 

through a silica plug (~0.75 g) gave the crude alcohol containing 7% saturated ketone (121 
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mg). Purification by column chromatography (20% EtOAc in petroleum ether) gave the pure 

product as a white solid (98 mg, 75%). in 97% ee as determined by HPLC. 

Spectral data matched those of the racemic compound. (R) Configuration for product from 

reduction with (R,R)-115 assumed by analogy to parent compound 162. The order of elution 

of peaks in HPLC is the same. 

TLC: 30% EtOAc in petroleum ether, silica, Rf = 0.22 (SM 0.28); []D
24 +18.8 (R), 97% ee (c 

0.295 in CHCl3); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 10% IPA : 90% 

Hexane; 210 nm UV, 30 oC): retention times: 10.6 (S) and 11.2 (R) minutes.  

4.5.4 Alkyl Substituted Enones 

diethyl (2-oxo-2-phenylethyl)phosphonate 

 

318 

This compound is known. The Arbuzov (318) and Perkow (319) products were separated 

using a literature procedure.129 

Triethyl phosphite (1.83 g, 11 mmol, 1.1 eq) was heated to 90oC in an RBF open to air. 2-

bromoacetophenone (2.00 g, 10 mmol, 1.0 eq) was added portionwise over 1 minute with 

rapid bubbling observed. The reaction mixture was stirred for a further 15 minutes, then 

concentrated under vacuum. The residue was suspended in potassium hydroxide solution 

(2.0 g in 150 ml), and extracted with 19:1 petroleum ether : DCM (2 x 100 ml). The aqueous 

layer was acidified with conc HCl and extracted with DCM (2 x 50 ml). The DCM extracts were 

dried over Na2SO4 and concentrated to give the product as an orange oil (1.46 g, 57%). 

H (400 MHz, CDCl3): 8.02 (2H, d, J = 7.5 Hz, o-ArH), 7.60 (1H, t, J = 7.5 Hz, p-ArH), 7.49 (2H, t, 

J = 7.5 Hz, m-ArH), 4.14 (4H, quin, J = 7.4 Hz, OCH2), 3.64 (2H, d, J = 23.1 Hz, PCH2), 1.28 (6H, 

t, J = 7.3 Hz, CH3); C (101 MHz, CDCl3): 191.9 (d, J = 6.6 Hz), 136.4 (d, J = 1.5 Hz), 133.6, 128.9, 

128.5, 62.5 (d, J = 6.6 Hz), 38.3 (d, J = 130 Hz), 16.2 (d, J = 6.6 Hz). 
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(E)-3-cyclohexyl-1-phenylprop-2-en-1-one 

 

312 

This compound is known.175 

To a suspension of sodium hydride (60 wt % dispersion in mineral oil, 0.20 g, 5.0 mmol, 1.0 

eq) in THF (5 ml) at 0 oC was added dropwise a solution of 318 (1.25 g, 4.9 mmol, 1.0 eq) in 

THF (5 ml) and the resulting clear solution was stirred for 30 minutes at room temperature. 

Cyclohexanecarboxaldehyde (0.57 g, 5.1 mmol, 1.0 eq) was added neat and the reaction 

mixture stirred at room temperature overnight. The reaction was quenched with NH4Cl (half 

saturated, 30 ml) and extracted with ethyl acetate (3 x 15 ml), the organic extracts washed 

with brine (25 ml), dried over Na2SO4 and concentrated to give the crude product as a clear 

oil (1.13 g).  

The crude was taken up in methanol (50 ml) and cooled to -72 oC. The resulting white 

precipitate was filtered and dried to give the pure product as a white solid (492 mg, 45 %) 

Mp 46-48 °C; H (400 MHz, CDCl3): 7.92 (2H, d, J = 7.5 Hz, o-Ph), 7.57 - 7.51 (1H, m, p-Ph), 

7.49 - 7.42 (2H, m, m-Ph), 7.01 (1H, dd, J = 7.0, 15.6 Hz, =CHCH), 6.83 (1H, d, J = 15.6 Hz, 

COCH=), 2.32 - 2.18 (1H, m, Cy), 1.88 - 1.74 (4H, m, Cy), 1.70 (1H, d, J = 12.0 Hz, Cy), 1.43 - 

1.13 (6H, m, Cy); C (101 MHz, CDCl3): 191.4 (CO), 154.9 (CH), 138.2 (C), 132.6 (CH), 128.5 

(CH), 128.5 (CH), 123.4 (CH), 41.1 (CH), 31.9 (CH2), 26.0 (CH2), 25.8 (CH2). 

3-cyclohexyl-1-phenylpropan-1-ol 

 

373 

This compound is known.176 

To a suspension of 312 (215 mg, 1.0 mmol, 1 eq) and Pd/C (5% w/w, 55 mg, 26 µmol, 2.5 % 

Pd) in isopropanol (5 ml) was added acetic acid (121 mg, 2.0 mmol, 2 eq) followed by sodium 

borohydride (153 mg, 4.0 mmol, 4 eq), with vigorous effervescence. The reaction mixture 

was stirred at rt for 2.5 hours, then additional sodium borohydride was added (75 mg, 2.0 
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mmol, 2 eq). The reaction was stirred for an additional 2 hours and then quenched slowly 

with HCl (0.2M, 2.5 mL). The resulting suspension was neutralised with NaOH (2M, ~1.5 ml) 

and filtered through Celite with isopropanol to remove Pd/C. The mixture was concentrated 

to remove excess isopropanol and then the aqueous layer was extracted with diethyl ether 

(3 x 10 mL), dried over Na2SO4 and concentrated to give the product as a white solid (214 

mg, 98%) 

H (300 MHz, CDCl3): 7.39 - 7.31 (4H, m), 7.31 - 7.26 (1H, m), 4.63 (1H, ddd, J = 3.3, 5.9, 7.3 

Hz), 1.88 - 1.57 (8H, m), 1.39 - 1.06 (6H, m), 0.94 - 0.77 (2H, m); C (75 MHz, CDCl3): 162.3 (C), 

128.4 (CH), 127.5 (CH), 125.9 (CH), 75.1 (CH), 37.7 (CH), 36.5 (CH2), 33.5 (CH2), 33.4 (CH2), 

33.3 (CH2), 26.7 (CH2), 26.4 (CH2), (One CH2 not observed, must overlap. Consistent with 

literature). 

Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 4% IPA : 96% Hexane; 210 nm 

UV, 30 oC): retention times: 7.4 (S) and 7.9 (R) minutes. 

(S)-3-cyclohexyl-1-phenylpropan-1-ol 

 

373 

The asymmetric form of this compound has not been reported. 

FA/TEA/MEOH reduction: See general method 4.  

With 312 (107 mg) and (S,S)-3C-teth (80); 3 hours reaction time, total conversion 100%. 

Product obtained as a grey solid (55 mg, 50%) containing a mixture of saturated and 

unsaturated alcohols, ratio 97.5 : 2.5 by 1H NMR. Major product ee 97%. 

Spectral data matched those of the racemic compound. (S) Configuration for product from 

reduction with (S,S)-80 assumed by analogy to parent compound 162. The order of elution 

of peaks in HPLC is the same. 

[]D
24 -10.9 (c 0.245 in CHCl3); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 

4% IPA : 96% Hexane; 210 nm UV, 30 oC): retention times: 7.5 (S)-saturated and 7.9 (R)-

saturated minutes.  
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(E)-1-cyclohexyl-3-phenylprop-2-en-1-one 

 

313 

This compound is known.177 

Sodium methoxide solution (25% w/w, 5.96 g, 27.6 mmol, 1 eq) was diluted to 50 ml with 

methanol and added to cyclohexylmethyl ketone (3.33 g, 26.4 mmol, 1 eq). The mixture was 

cooled to 0 oC and a solution of benzaldehyde (2.81 g, 26,5 mmol, 1 eq) in methanol (15 ml) 

was added. The reaction mixture was warmed to 40 oC and stirred for 3 days. The reaction 

was quenched with 0.25M HCl (100 ml) and extracted with diethyl ether (4 x 100 ml), the 

organic layers were dried and concentrated to give the crude product as a yellow oil that 

solidifies slowly on standing. 

The oil was dissolved in ~150 ml of methanol and cooled to -78 oC, the resulting precipitate 

was filtered and washed once with cold methanol and dried to give the purified product as a 

white solid (2.78 g, 49%). 

Mp 54-58 °C; H (250 MHz, CDCl3): 7.60 (1H, d, J = 15.9 Hz, PhCH=), 7.60 - 7.52 (2H, m, o-Ph), 

7.43 - 7.35 (3H, m, m,p-Ph), 6.82 (1H, d, J = 15.9 Hz, COCH=), 2.75 - 2.57 (1H, m, CHCO), 2.01 

- 1.77 (4H, m), 1.77 - 1.65 (1H, m), 1.55 - 1.14 (5H, m).  

(E)-1-(1-(3-cyclohexyl-3-oxo-1-phenylpropyl)cyclohexyl)-3-
phenylprop-2-en-1-one 

 

314 

This compound is novel. Some evidence for its proposed structure is presented. 

Side product isolated from second crystallization of 313 

H (600 MHz, CDCl3): 7.65 (1H, d, J = 15.8 Hz, =CHPh), 7.53 - 7.48 (2H, m, ArH), 7.42 - 7.36 

(3H, m, ArH), 7.30 - 7.19 (3H, m, ArH), 7.16 (2H, d, J = 7.5 Hz, ArH), 6.93 (1H, d, J = 15.0 Hz, 
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=CHCOR), 3.48 (1H, dd, J = 10.5, 3.8 Hz, CHPh), 3.01 (1H, dd, J = 17.3, 9.8 Hz, RCOCHH), 2.78 

(1H, dd, J = 17.3, 3.8 Hz, RCOCHH), 2.29 (1H, d, J = 9.0 Hz, CH(CH2)5), 2.23 - 2.15 (2H, m, Cy), 

1.74 - 1.52 (8H, m, Cy), 1.41 - 0.99 (10H, m, Cy)C (151 MHz, CDCl3): 212.1 (C=O), 203.4 (C=O), 

142.5 (CH), 140.0 (C), 135.0 (C), 130.3 (CH), 129.8 (CH), 128.8 (CH), 128.4 (CH), 127.8 (CH), 

126.8 (CH), 122.3 (CH), 54.3 (C), 51.2 (CH), 47.9 (CH), 41.1 (CH2), 33.4 (CH2), 30.7 (CH2), 28.2 

(CH2), 28.1 (CH2), 25.8 (CH2), 25.8 (CH2), 25.6 (CH2), 25.5 (CH2), 23.5 (CH2), 23.2 (CH2). 

  

1-cyclohexyl-3-phenylpropan-1-ol 

 

374 

This compound is known.176 

To a solution of cyclohexane carboxaldehyde (128 mg, 1.14 mmol, 1 eq) in THF (1 ml) was 

added phenethyl magnesium chloride (1M in THF, 1 ml, 1 mmol, 1 eq) at -78 oC. The reaction 

was stirred for 2.75 hours while gradually warming to ~0 oC, then quenched with NH4Cl  (sat. 

soln, 2 ml) and water (1 ml). The suspension was extracted with Et2O (2 x 2.5 ml), the organic 

layers dried over MgSO4 and concentrated to give the crude product as a white solid. 

The crude was purified by column chromatography (10% EtOAc in petroleum ether) to give 

the pure product as a white powder (110 mg, 50%) 

TLC: 10% EtOAc in petroleum ether, silica, Rf 0.16, KMnO4; Mp 68-70 °C; H (300 MHz, CDCl3): 

7.33 - 7.26 (2H, m, Ph), 7.24 - 7.14 (3H, m, Ph), 3.39 (1H, dtd, J = 3.5, 5.3, 8.9 Hz, CHOH), 2.91 

- 2.78 (1H, m, CHCHH), 2.72 - 2.58 (1H, m, CHCHH), 1.89 - 1.60 (7H, m, CH2 and Cy), 1.37 - 

0.97 (7H, m, OH and Cy); C (75 MHz, CDCl3): 142.4 (C), 128.4 (CH), 128.4 (CH), 125.7 (CH), 

75.6 (CH), 43.8 (CH), 35.9 (CH2), 32.4 (CH2), 29.2 (CH2), 27.8 (CH2), 26.5 (CH2), 26.3 (CH2), 26.2 

(CH2); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 4% IPA : 96% Hexane; 

210 nm UV, 30 oC): retention times: 8.3 and 13.3 minutes. 
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(E)-1-cyclohexyl-3-phenylprop-2-en-1-ol 

 

375 

This compound is known.178 

To a suspension of 313 (211 mg, 1.0 mmol, 1 eq) and cerium trichloride heptahydrate (372 

mg, 1.0 mmol, 1 eq) in methanol (2 mL) was added sodium borohydride (43 mg, 1.1 mmol, 1 

eq) at 0 oC. The reaction was stirred for 1.5 hours, quenched with NH4Cl  (sat., 5 mL), diluted 

with water (3 ml), and extracted with diethyl ether (3x 5 mL). The organic layers were dried 

over Na2SO4 and concentrated to give the unsaturated alcohol as a white solid (168 mg, 79%). 

H (400 MHz, CDCl3): 7.43 - 7.36 (2H, m, o-Ph), 7.32 (2H, t, J = 7.5 Hz, m-Ph), 7.27 - 7.19 (1H, 

m, p-Ph), 6.55 (1H, d, J = 15.8 Hz, =CHPh), 6.23 (1H, dd, J = 7.2, 15.9 Hz, =CHCH), 4.02 (1H, br. 

s., CHOH), 1.92 (1H, d, J = 12.0 Hz, OH), 1.83 - 1.61 (4H, m, Cy), 1.60 - 1.42 (2H, m, Cy), 1.35 - 

0.90 (5H, m, Cy); C (101 MHz, CDCl3): 136.8 (C), 131.2 (CH), 131.1 (CH), 128.6 (CH), 127.6 

(CH), 126.5 (CH), 77.6 (CH), 44.0 (CH), 28.9 (CH2), 28.7 (CH2), 26.5 (CH2), 26.1 (CH2), 26.1 (CH2); 

Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 4% IPA : 96% Hexane; 210 nm 

UV, 30 oC): retention times: 9.9 and 14.4 minutes. 

(E)-1-cyclohexyl-3-phenylprop-2-en-1-ol and 1-cyclohexyl-3-
phenylpropan-1-ol 

 

374 and 375 

The asymmetric form of this compound has not been reported. 

FA/TEA/MEOH reduction: See general method 4.  

With 313 (97 mg) and (S,S)-3C-teth (80); 2.5 hours reaction time, total conversion to alcohols 

82%, with the remainder being the saturated ketone intermediate. Product obtained as a 

clear oil (78 mg, 80%) containing a mixture of saturated and unsaturated alcohols, ratio 9.9 : 

90.1 by 1H NMR. Major (1,2-) product ee 59%, minor (1,4-) product ee 36%. 
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With 313 (108 mg) and (R,R)-OMe-teth (115); 23 hours reaction time, total conversion 100%. 

Product obtained as a white solid (111 mg, 100%) containing a mixture of saturated and 

unsaturated alcohols, ratio 58.6 : 41.4 by 1H NMR. Major product ee 21%, minor product ee 

76%. 

Aqueous reduction: Sodium formate (170 mg, 2.5 mmol, 5 eq), 313 (110 mg, 1.0 mmol, 1 eq) 

and (R,R)-OMe-teth (115) (3.3 mg, 5 µmol, 1%) were suspended in water (1 ml) and methanol 

(0.5 ml) and heated to 60°C. The solids melt and form a brown oil on top of the aqueous 

phase. The mixture was stirred vigorously for 19 hours before being cooled to rt and diluted 

with diethyl ether (2 ml). The organic layer was separated, then concentrated directly onto 

silica. Elution through a short silica plug with 40% diethyl ether in petroleum ether gave the 

product in 98% conversion as a clear oil (103 mg, 90%) containing a mixture of saturated and 

unsaturated alcohols, ratio 68.1 : 31.9 by 1H NMR. Major product ee 49%, minor product ee 

82% by HPLC. 

HPLC peak positions were taken from racemic standards prepared above. Configuration of 

the product alcohols has not been determined. 

4.5.5 Structure variants 

2-(1-hydroxycyclohexyl)-1-phenylethan-1-one 

 

326 

This compound is known.179 

TiCl4 (1M in DCM, 12 ml, 12 mmol, 1.2 eq) was added dropwise at 0oC to a solution of 

cyclohexanone (1.23 g, 12.5 mmol, 1.25 eq) in DCM (20 ml) and stirred for 25 mins. To the 

resulting yellow suspension was added dropwise 1-phenyl-1-(trimethylsiloxy)ethylene (1.94 

g, 10 mmol, 1 eq). The resulting orange suspension was allowed to warm to rt and stirred for 

24 hours before being quenched with water (35 ml). The mixture was extracted with DCM (2 

x 20 ml), washed with brine (10 ml) and filtered through a plug of silica gel (~4 g) with DCM 

to give the crude product as a thick yellow oil that crystallises on standing (2.69 g).The crude 

was dissolved in hot methanol, concentrated to a thick oil and then crystallised by addition 

of hexane (~10 ml) to give the pure product as a white crystalline solid (0.95 g, 43%). A second 
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crop was isolated by concentration of the mother liquors and addition of hexane to give 

white plates (0.20 g, 9%). Combined yield (1.15 g, 52%). 

TLC: 20% EtOAc in petroleum ether, silica, Rf = 0.2, UV; Mp 78-79 °C; H (400 MHz, CDCl3): 

8.00 - 7.91 (2H, m, o-Ph), 7.63 - 7.56 (1H, m, p-Ph), 7.52 - 7.45 (2H, m, m-Ph), 3.98 (1H, s, OH), 

3.12 (2H, s, COCH2), 1.83 - 1.65 (5H, m, Cy), 1.58 (1H, dd, J = 2.9, 6.2 Hz, Cy), 1.52 - 1.41 (4H, 

m, Cy), 1.36 - 1.23 (1H, m, Cy); C (101 MHz, CDCl3): 202.0 (CO), 137.5 (C), 133.5 (CH), 128.7 

(CH), 128.1 (CH), 71.0 (C), 47.7 (CH2), 37.8 (CH2), 25.8 (CH2), 22.0 (CH2). 

2-cyclohexylidene-1-phenylethan-1-one and 2-(cyclohex-1-en-1-yl)-1-
phenylethan-1-one 

 

  

320 and 327 

This compound is known.180 

326 (868 mg, 3.9 mmol, 1 eq) and p-toluenesulfonic acid monohydrate (613 mg, 3.2 mmol, 

0.8 eq) were suspended in toluene (8 ml) and stirred at 40 oC for 4.5 hours, as monitored by 

TLC. Na2SO4 (~0.5 g) and petroleum ether (5 ml) were added, and the resulting suspension 

filtered through a silica plug (~1 g) with 10% EtOAc in petroleum ether to give the crude 

mixture of ketones as a yellow oil. 

The crude was purified by column chromatography (6% Et2O in pentane) to give the pure 

mixture as a pale yellow oil (616 mg, 77%), 87.1 : 12.9 ratio by 1H NMR 

TLC: 10% EtOAc / Pet ether, silica, Rf 0.38, UV; H (300 MHz, CDCl3): 8.03 - 7.89 (2H, m, o-Ph), 

7.57 - 7.49 (1H, m, p-Ph), 7.48 - 7.40 (2H, m, m-Ph), 6.60 (1H, s, =CH), 2.81 - 2.72 (2H, m, Cy), 

2.35 - 2.28 (2H, m, Cy), 1.80 - 1.50 (6H, m, Cy); C (75 MHz, CDCl3): 192.4 (C), 162.8 (C), 139.3 

(C), 132.3 (CH), 128.4 (CH), 128.3 (CH), 118.8 (CH), 38.4 (CH2), 30.7 (CH2), 28.9 (CH2), 28.0 

(CH2), 26.3 (CH2). 
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2-cyclohexyl-1-phenylethan-1-ol 

 

328 

This compound is known.181 

To a suspension of 320 (215 mg, 1.0 mmol, 1 eq) and Pd/C (5% w/w, 55 mg, 26 µmol, 2.5 % 

Pd) in isopropanol (5 ml) was added acetic acid (121 mg, 2.0 mmol, 2 eq) followed by sodium 

borohydride (153 mg, 4.0 mmol, 4 eq), with vigorous effervescence. The reaction mixture 

was stirred at rt for 2.5 hours, then additional sodium borohydride was added (75 mg, 2.0 

mmol, 2 eq). The reaction was stirred for an additional 2 hours and then quenched slowly 

with HCl (0.2M, 2.5 mL). The resulting suspension was neutralised with NaOH (2M, ~1.5 ml) 

and filtered through Celite with isopropanol to remove Pd/C. The mixture was concentrated 

to remove excess isopropanol and then the aqueous layer was extracted with diethyl ether 

(3 x 10 mL), dried over Na2SO4 and concentrated to give the product as a white solid (214 

mg, 98%) 

Mp 57-59 °C; HRMS: found (ESI): [M + Na]+, 227.1406 (C14H20NaO requires 227.1411); max: 

3240 (OH), 2920 (CH), 2847 (CH), 1446 (C-O), 1003, 697 (monosubstituted Ph) cm−1; H (400 

MHz, CDCl3): 7.38 - 7.31 (4H, m, Ph), 7.31 - 7.24 (1H, m, Ph), 4.79 (1H, ddd, J = 8.7, 4.9, 3.7 

Hz, CHOH), 1.91 - 1.59 (6H, m, CHH + Cy), 1.58 - 1.48 (2H, m, OH + CHH), 1.48 - 1.36 (1H, m, 

CH), 1.31 - 1.08 (3H, m), 1.04 - 0.87 (2H, m); C (126 MHz, CDCl3): 145.4 (C), 128.5 (CH), 127.5 

(CH), 125.8 (CH), 72.1 (CH), 47.1 (CH2), 34.2 (CH), 34.0 (CH2), 32.9 (CH2), 26.6 (CH2), 26.3 (CH2), 

26.2 (CH2); m/z (ESI): 227.1 ([M + Na]+); Chiral G.C; (CP-Chirasil-Dex-CB 25m x 0.25mm x 

0.25µm column, oven temperature 155 ºC, inj.: split 220 ºC, det.: FID 250 ºC, 100 Pa H2) 

retention times 13.1 (S?) and 13.8 (R?) minutes. 
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Alkene isomer evidence: 

 

330 

Peaks corresponding to isomer 330 were observed in the 1H NMR and chiral GC data obtained 

for racemic standard 328, as well as in the asymmetric reduction product mixtures. 

Selected data: H (300 MHz, CDCl3): 5.60 (1H, m., =CH), 4.74 (1H, dd, J = 4.5, 2.3 Hz, CHOH); 

m/z (ESI): 225.1 ([M’ + Na]+); Chiral G.C; (CP-Chirasil-Dex-CB 25m x 0.25mm x 0.25µm column, 

oven temperature 155 ºC, inj.: split 220 ºC, det.: FID 250 ºC, 100 Pa H2) retention times 12.9 

and 13.1 minutes. 

2-cyclohexylidene-1-phenylethan-1-ol 

 

329 

This compound has been reported as part of a mixture of isomers but has not been fully 

characterised.182 

To a suspension of 320 (101 mg, 0.5 mmol, 1 eq) and cerium trichloride heptahydrate (185 

mg, 0.5 mmol, 1 eq) in methanol (1 mL) was added sodium borohydride (29 mg, 0.8 mmol, 

1.5 eq) at 0 oC. The reaction was stirred for 2 hours and quenched with NH4Cl (sat., 0.5 mL), 

diluted with water (0.5 ml) and extracted with diethyl ether (3x 2 mL). The organic extracts 

were dried over Na2SO4 and concentrated to give the product as a clear oil (103mg). 

The crude product was purified by column chromatography on silica gel (2.6 g) with 10% 

diethyl ether in petroleum ether as eluent, to yield the pure product as a clear oil (65 mg, 

64%). The pure product decomposes at room temperature within a few days. 

HRMS: found (ESI): [M + H]+, 225.1251. (C14H18NaO requires 225.1250); max: 3374 (OH), 2928 

(CH), 2854 (CH), 1447 (CO), cm−1; H (400 MHz, CDCl3): 7.42 - 7.29 (4H, m, Ph), 7.27 - 7.19 (1H, 

m, Ph), 5.50 (1H, dd, J = 1.5, 8.9 Hz, CHOH), 5.33 (1H, d, J = 8.8 Hz, =CH), 2.41 - 2.21 (2H, m, 

Cy), 2.10 (2H, t, J = 4.5 Hz, Cy), 1.95 (1H, br. s., OH), 1.69 - 1.44 (6H, m, Cy); C (101 MHz, 
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CDCl3): 144.4 (C), 143.0 (C), 128.3 (CH), 127.1 (CH), 125.7 (CH), 124.4 (CH), 69.7 (CH), 37.0 

(CH2), 29.3 (CH2), 28.3 (CH2), 27.8 (CH2), 26.6 (CH2); m/z (ESI): 225.1 ([M + Na]+), 185.1 (30%, 

[M - OH]+). 

Chiral HPLC/GC not obtained, suitable conditions for separation were not found before the 

compound decomposed.  

 

Selected 1H NMR peaks for decomposed product, proposed structure. 

H (400 MHz, CDCl3): 7.55 - 7.07 (5H+, m, ArH), 6.63 (1H, d, J = 16.1 Hz, =CH), 6.34 (1H, d, J = 

16.1 Hz, =CH), 1.83 - 1.26 (10H+, m, Cy: CH2). 

2-cyclohexyl-1-phenylethan-1-ol and 2-cyclohexylidene-1-
phenylethan-1-ol 

 

328 and 329 

This compound is known in racemic form. 181,182 

A suspension of 320 (95 mg, 0.47 mmol, 1 eq) and (S,S)-3C-teth (80) (3.1 mg, 0.01 mmol, 1%) 

in FA/TEA (5:2, 0.5 ml) and MeOH (0.5 ml) was stirred at 40oC for 22.5 hours. The mixture 

was diluted with diethyl ether (2 ml) and quenched with NaHCO3 (sat., 2 ml), the aqueous 

layer was extracted further with ether (2x 2 ml) and the organic extracts dried over Na2SO4 

and passed through a silica plug to yield the product as an off white solid (92mg, 96%). The 

product was obtained in full conversion as a mixture of saturated and unsaturated alcohols, 

ratio 93:7 by 1H NMR. Major product ee was 97% as calculated by HPLC and GC. 

The opposite enantiomer was obtained using (R,R)-OMe-teth (115) (3.3 mg), 320 (101 mg), 

FA/TEA (0.5 ml) and methanol (0.5 ml), to give full conversion to a mixture of saturated and 

unsaturated alcohols (100 mg, 96%), ratio 96:4 by 1H NMR. Major product ee was ~97% as 

calculated by GC. 
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Purification by chromatography on silica (8% Et2O / Petroleum ether) separated the 

unsaturated alcohol and gave the purified product as a white solid (77 mg, 74%).  

Spectral data for asymmetric product is consistent with the prepared standards. The 

configuration was not determined, assuming the sense of reduction is consistent with that 

for 160 the optical rotation has been reported for the R isomer, however further evidence 

would be required to prove the configuration. 

Mp 52 °C; []D
26 +50.4, (R?) (c 0.245 in CHCl3); Chiral G.C; (CP-Chirasil-Dex-CB 25m x 0.25mm 

x 0.25µm column, oven temperature 155 ºC, inj.: split 220 ºC, det.: FID 250 ºC, 100 Pa H2) 

retention times 13.3 (S?) and 13.9 (R?) minutes. 

(E)-2-benzylidene-3,4-dihydronaphthalen-1(2H)-one 

 

321 

This compound is known.183 

A solution of α-Tetralone (2.98 g, 20.4 mmol, 1 eq) and benzaldehyde (3.20 g, 30.2 mmol, 1.5 

eq) in ethanol (5 ml) was cooled to 0oC. Sodium hydroxide solution (1M, 10 ml, 10 mmol, 0.5 

eq) was added in one portion and the resulting suspension was stirred for 24 hours. The 

reaction was quenched by addition of ethanol (5 ml) and HCl (2M, 5 ml). Initially the crude 

product oiled out but after stirring for 30 mins it precipitated cleanly as a brown solid, which 

was collected by filtration and stored in a desiccator overnight. (5.01 g). 

Recrystallization from hot ethanol (~20 ml, 90 oC) gave the pure product as pale yellow flaky 

crystals (3.88 g, 81%).TLC: solvent, solid phase, Rf, visualisation method; Mp 105-107 °C; H 

(500 MHz, CDCl3): 8.14 (1H, dd, J = 1.2, 7.9 Hz), 7.88 (1H, s), 7.49 (1H, dt, J = 1.5, 7.5 Hz), 7.46 

- 7.40 (4H, m), 7.39 - 7.33 (2H, m), 7.25 (1H, dd, J = 0.6, 7.6 Hz), 3.14 (2H, dt, J = 1.7, 6.6 Hz), 

2.95 (2H, t, J = 6.6 Hz); C (126 MHz, CDCl3): 187.9 (CO), 143.2 (C), 136.6 (CH), 135.8 (C), 135.4 

(C), 133.5 (C), 133.3 (CH), 129.9 (CH), 128.5 (CH), 128.4 (CH), 128.2 (CH), 128.2 (CH), 127.0 

(CH), 28.9 (CH2), 27.2 (CH2). 
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Analysis of ATH products of 321 

 

331, 333, 332 

FA/TEA/MEOH reduction: See general method 4.  

With 321 (115 mg) and (S,S)-3C-teth (80); 24 hours reaction time, total conversion 100%. 

Product obtained as a clear oil (87 mg, 74%) containing a mixture of cis : trans : 1 ,2- products 

in a  41 : 35 : 22 ratio. 

With 321 (117 mg) and (R,R)-OMe-teth (115); 27 hours reaction time, total conversion 100%. 

Product obtained as a clear oil (110 mg, 92%) containing a mixture of cis : trans : 1 ,2- 

products in a  66 : 28 : 6 ratio. 

Ratio of products determined by characteristic 1H NMR shifts in product mixtures and 

comparison to literature values.132,133 The 1,2- product could be clearly distinguished by its 

secondary alcohol proton at 5.19 (1H, d, J = 3.3 Hz); lit: 5.16 (s, 1H), while the 1,4 to 1,2 

selectivity could by calculated using the equivalent overlapping resonance for cis and trans 

at 4.58 - 4.41 (1H, m); lit (cis): 4.49 (s, 1H), lit (trans): 4.49 (t, J = 7.2 Hz, 1H). Finally there is 

then a pair of reasonably distinct resonances for the trans product that can be integrated at 

3.08 (1H, dd, J = 13.5, 5.0 Hz); lit: 3.07 (dd, J = 13.8, 5.2 Hz, 1H) and 2.50 (1H, dd, J = 13.5, 9.1 

Hz); lit: 2.51 (dd, J = 13.7, 8.9 Hz, 1H). Integrating these allows approximate calculation of the 

cis : trans ratio. 
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(2E,4E)-1,5-diphenylpenta-2,4-dien-1-one 

 

323 

This compound is known.135 

To a suspension of sodium hydride (60 wt % dispersion in mineral oil, 0.21 g, 5.3 mmol, 1.0 

eq) in THF (5 ml) at 0 oC was added dropwise a solution of 318 (1.29 g, 5.0 mmol, 1.0 eq) in 

THF (5 ml) and the resulting yellow solution was stirred for 30 minutes at room temperature. 

The mixture was again cooled to 0 oC, cinnamaldehyde (1.05 g, 7.9 mmol, 1.6 eq) was added 

neat and the reaction mixture stirred at room temperature overnight. The reaction mixture 

was filtered through paper with diethyl ether and concentrated to yield the crude product 

contaminated with starting aldehyde as an oily yellow solid (1.57 g).  

The crude was taken up in chloroform (25 ml), layered with methanol (25 ml) and left to 

stand for several days. The resulting green/yellow tinted precipitate was collected by 

filtration and dried under high vacuum to yield the purified product (478 mg, 41%). 

H (300 MHz, CDCl3): 8.01 - 7.95 (2H, m, ArH), 7.67 - 7.54 (2H, m, ArH and =CH), 7.54 - 7.46 

(4H, m, ArH), 7.42 - 7.28 (3H, m, ArH), 7.10 (1H, d, J = 14.9 Hz, =CH), 7.06 - 7.00 (2H, m, 

CH=CH). 

TH502-1 [1H, 300-, CDCl3] Aug30-2016.020.001.1r.esp
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Analysis of ATH products of 323 

 

340, 341, 342 

FA/TEA/MEOH reduction: See general method 4.  

With 323 (117 mg) and (S,S)-3C-teth (80); 5.25 hours reaction time, total conversion 100%. 

Product obtained as a clear oil (87 mg, 74%) containing a mixture of 1,4- : 1 ,2- : 1,6- products 

in a  61 : 23 : 15 ratio. 

(S) Configuration for products from reduction with (S,S)-80 assumed by analogy to compound 

162, although the product mixture was not separated by chromatography. 

Ratio of products determined by characteristic 1H NMR shifts in product mixtures and 

comparison to literature values.136–138 All of the products have reasonably distinct resonances 

between 4 and 7 ppm corresponding to alkene and secondary alcohol functionalities. 

Normalising the integrals such that the secondary alcohol resonances at ~5.3 and ~4.7 sum 

to 1 allows the ratio of products to be determined. All of the alkene shifts can then be 

assigned, and the observed coupling patterns match those found in the literature and 

support the proposed structures.  
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H (300 MHz, CDCl3): A (1,4-) B (1,2)- C (1,6-) 

 6.76 (1H, dd, J = 15.4, 10.3 Hz, PhCH=CH),  γ alkene  

 6.56 (1H, d, J = 15.8 Hz, PhCH=CH),  δ alkene  

 6.45 (1H, dd, J = 15.0, 10.5 Hz, 

C(OH)CH=CH), 

 β alkene  

 6.39 (1H, d, J = 15.6 Hz, =CHPh), γ alkene   

 6.21 (1H, dt, J = 16.0, 6.6 =CHCH2), δ alkene   

 5.98 (1H, dd, J = 15.0, 6.6 Hz, CH(OH)CH=),  α alkene  

 5.76 - 5.63 (1H, m, =CH),   β/γ alkene 

 5.59 - 5.41 (1H, m, =CH),   β/γ alkene 

 5.29 (1H, dd, J = 6.5, 2.8 Hz, CHOH),  sec-alcohol  

 4.77 - 4.65 (2H, m, 2* CHOH) sec-alcohol  sec-alcohol 

Sum Protons from 4-7ppm 3 5 3 
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N-methoxy-N-methylcinnamamide 

 

335 

This compound is known.184 

A solution of cinnamoyl chloride (1.96 g, 11.8 mmol, 1 eq) and N,O-dimethylhydroxylamine 

hydrochloride (1.17 g, 12.1 mmol, 1 eq) in DCM (24 ml) was cooled to 0 oC in an ice bath. 

Pyridine (1.9 ml, 24 mmol, 2 eq) was added dropwise over 5 minutes and the resulting white 

suspension was allowed to warm to rt and stirred for 18 hours. The reaction was diluted with 

diethyl ether (40 ml) and washed successively with HCl (1M, 2x 20 ml), water (20 ml) and Sat. 

NaHCO3 (20 ml). The organic phase was dried (Na2SO4) and concentrated to give the crude 

product as a clear oil (2.02 g) 

The product was crystallised from DCM and petroleum ether to give a white crystalline solid 

(1.77 g, 79%*). 

H (300 MHz, CDCl3): 7.74 (1H, d, J = 15.9 Hz, =CH), 7.61 - 7.52 (2H, m, ArH), 7.44 - 7.31 (3H, 

m, ArH), 7.04 (1H, d, J = 15.9 Hz, =CH), 3.76 (3H, s, OCH3), 3.31 (3H, s, NCH3); C (75 MHz, 

CDCl3): 166.9 (CO), 143.4 (CH), 135.1 (C), 129.8 (CH), 128.7 (CH), 128.0 (CH), 115.7 (CH), 61.8 

(CH3), 32.5 (CH3). 

4.5.5.1 Preparation of PhCCLi 

To a solution of phenylacetylene (844 mg, 8.3 mmol, 1 eq) in THF (6.5 ml) was added 

dropwise at -78oC nBuLi (2.5M in hexane, 3.5 ml, 8.75 mmol, x1.05 eq). The resulting 

suspension was stirred for 15 mins, warmed to 0oC and stirred for a further 15 mins. 3 ml 

portions of the resulting solution were used immediately. 

                                                           

* the starting material contained 15% cinnamic acid as an impurity, which was removed during the 
reaction. Accounting for this gives a 93% yield. 
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1,5-diphenylpent-1-yn-3-ol 

 

338 

This compound is known.185 

Lithiated phenylacetylene solution (3 ml, ~2.5 mmol alkyllithium, 1.25 eq) was added 

dropwise at -78oC to a precooled solution of 3-phenylpropanal (270 mg, 2.0 mmol, 1 eq) in 

THF (1 ml). The reaction mixture was stirred for 4.5 hours before being warmed to 0oC and 

quenched with NH4Cl (sat. soln, 1 ml) and diluted with water (1 ml). The aqueous phase was 

extracted with diethyl ether (2 ml), and the organic extracts dried (Na2SO4) and concentrated 

under vacuum to give a yellow oil. 

Purification by column chromatography on silica (6.6g, 100 ml of 10% ethyl acetate in 

petroleum ether) gave the pure alcohol as a yellow oil (313 mg, 66%). 

H (400 MHz, CDCl3): 7.49 - 7.40 (2H, m, ArH), 7.36 - 7.17 (9H, m, ArH), 4.60 (1H, q, J = 6.4 

Hz, CHOH), 2.87 (2H, t, J = 7.8 Hz, CH2), 2.21 - 2.07 (2H, m, CH2), 1.89 (1H, d, J = 5.6 Hz, OH); 

C (101 MHz, CDCl3): 141.3 (C), 131.7 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 126.0 (CH), 

122.6 (C), 89.8 (C), 85.3 (C), 62.3 (CH), 39.3 (CH2), 31.5 (CH2); Chiral HPLC (CHIRALPAK IB 

column: (0.46 x 25 cm), 1 ml/min, 20% IPA : 80% Hexane; 254 nm UV, 30 oC): retention times: 

5.9 and 8.5 minutes. 

(E)-1,5-diphenylpent-1-en-4-yn-3-ol 

 

339 

This compound is known.186 

Lithiated phenylacetylene solution (3 ml, ~2.5 mmol alkyllithium, 1.25 eq) was added 

dropwise at -78oC to a precooled solution of cinnamaldehyde (284 mg, 2.1 mmol, 1 eq) in 

THF (1 ml). The reaction mixture was stirred for 4.5 hours before being warmed to 0oC and 

quenched with NH4Cl (sat. soln, 1 ml) and diluted with water (1 ml). The aqueous phase was 
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extracted with diethyl ether (2 ml), and the organic extracts dried (Na2SO4) and concentrated 

under vacuum to give a yellow oil. 

The crude was taken up in a minimum volume of DCM (~0.5 ml) and layered with hexane (5 

ml). The resulting white crystalline solid was collected by filtration to give the pure alcohol 

(358 mg, 71%). 

H (400 MHz, CDCl3): 7.51 - 7.45 (2H, m, ArH), 7.45 - 7.40 (2H, m, ArH), 7.36 - 7.23 (6H, m, 

ArH), 6.84 (1H, d, J = 15.8 Hz, PhCH=), 6.39 (1H, dd, J = 15.8, 6.0 Hz, =CH), 5.28 (1H, t, J = 5.4 

Hz, CHOH), 2.15 (1H, d, J = 5.6 Hz, OH); C (101 MHz, CDCl3): 136.1 (C), 132.1 (CH), 131.8 (CH), 

128.7 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 126.9 (CH), 122.4 (C), 87.9 (C), 86.5 (C), 63.5 

(CH); Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 20% IPA : 80% Hexane; 

254 nm UV, 30 oC): retention times: 6.8 and 14.0 minutes. 

(E)-1,5-diphenylpent-1-en-4-yn-3-one 

 

322 

This compound is known.187 

To a solution of phenylacetylene (520 mg, 5.1 mmol, 1.15 eq) in THF (4 ml) was added 

dropwise at -78oC nBuLi (2.5M in hexane, 1.8 ml, 4.5 mmol, x1.05 eq). The resulting 

suspension was stirred for 15 mins, warmed to 0oC and stirred for a further 15 mins. This 

solution was then transferred dropwise by syringe to a precooled (-78oC) solution of 335 (832 

mg, 4.4 mmol, 1 eq) in dry THF (2 ml). The resulting yellow homogenous solution was stirred 

for 4.5 hours before being warmed to 0oC and quenched with NH4Cl (sat. soln, 4 ml) and 

diluted with water (2 ml). The aqueous phase was extracted with diethyl ether (2 ml), and 

the organic extracts dried (Na2SO4) and concentrated under vacuum to give a yellow oil. 

This oil was taken up in methanol (10 ml), concentrated to 1/3 of its volume and seeded with 

a sample of pure compound prepared previously. The resulting white crystalline solid was 

isolated by filtration (214 mg, 21%). 

Mp 73-74 °C; H (400 MHz, CDCl3): 7.93 (1H, d, J = 16.1 Hz, =CH), 7.67 (2H, d, J = 7.2 Hz, ArH), 

7.64 - 7.59 (2H, m, ArH), 7.54 - 7.38 (6H, m, ArH), 6.89 (1H, d, J = 16.1 Hz, =CH); C (101 MHz, 

CDCl3): 178.2 (CO), 148.3 (CH), 134.0 (C), 132.9 (CH), 131.1 (CH), 130.6 (CH), 129.1 (CH), 128.7 

(CH), 128.6 (CH), 128.5 (CH), 120.2 (C), 91.5 (C), 86.6 (C). 
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(R)-1,5-diphenylpent-1-yn-3-ol and (R,E)-1,5-diphenylpent-1-en-4-yn-
3-ol 

  

338 and 339 

The major product is known.188 

FA/TEA reduction: See general method 4. 

With 322 (116 mg) and (R,R)-OMe-teth (115); 25 hours reaction time, total conversion 100%. 

Product obtained as a yellow oil (104 mg, 89%) containing a mixture of alcohols, ratio 86.9 : 

13.1 by 1H NMR. Major product ee 98%, minor product ee 89%.  

(R) Configuration of major product determined by optical rotation. (R) Configuration of minor 

product assumed by analogy to the major product. 

[]D
30 -54.2, (R), 98% ee (c 0.365 in CHCl3); lit []D

22 +37.45, (S), 97% ee (c 0.5 in CHCl3) 

Chiral HPLC (CHIRALPAK IB column: (0.46 x 25 cm), 1 ml/min, 20% IPA : 80% Hexane; 254 nm 

UV, 30 oC): retention times: 5.9 (R)-saturated, 6.8 (R)-unsaturated, 8.6 (S)-saturated and 13.9 

(S)-unsaturated minutes. 

4.6 Electronic Structure Calculations 

Computational calculations were carried out with Gaussian 03 software (revision D.02). 

Structures were built using GaussView v3.09. Calculations were performed on the Warwick 

University Cluster of Workstations (COW) or the author’s personal laptop. DFT integration 

grids with 99 radial and 590 angular points (Ultrafine) were used for all DFT calculations. 

# int=ultra 

The Minnesota MPW1B95 hybrid-meta GGA method3 calculations were carried out by use of 

the mpwb95 method and setting the proportion of DFT and HF exchange to 0.69 and 0.31 

respectively. 

# mpwb95/basis IOp(3/76=0690003100) 

Partially augmented versions of Dunning’s correlation consistent basis sets were 

implemented using the corresponding cc-pVNZ parent basis set along with extrabasis 
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keyword.1,2,189 Basis information for the diffuse functions was taken from the EMSL basis set 

exchange at https://bse.pnl.gov/bse/portal then specified in a separate file. For example, to 

carry out a B3LYP/maug-cc-pVTZ calculation on a molecule containing only C,H,O atoms: 

# b3lyp/cc-pvtz extrabasis … 
… 
@C_O_ccpvtz_diffusebasis.gbs/N 

Where the basis set file contains all of the diffuse basis functions for the aug-cc-pVTZ 

method. The D and F diffuse functions are commented out to leave only the S and P functions 

for C and O atoms, as required by the specification.2 

C 0 
S   1   1.00 
      0.0440200              1.0000000 
P   1   1.00 
      0.0356900              1.0000000 
!D   1   1.00 
!      0.1000000              1.0000000 
!F   1   1.00 
!      0.2680000              1.0000000 
**** 
O 0 
S   1   1.00 
      0.0737600              1.0000000 
P   1   1.00 
      0.0597400              1.0000000 
!D   1   1.00 
!      0.2140000              1.0000000 
!F   1   1.00 
!      0.5000000              1.0000000 
**** 
!cc-pVTZ diffuse functions 

 

  

https://bse.pnl.gov/bse/portal
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