A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/110800

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Integral forms for Weyl modules of GL(2,Q)

Perdita Emma Stevens

Doctor of Plilosophy
University of Warwick
Mathematics Institute
June 1992

Contents

Contents i
Acknowledgements ii
Declaration iii
Abstract iv
Chapter 1. Introduction and prelininaries 1
1.1 General background 1
1.2 Weyl modules 8
1.3 Specific background 13
1.4 Duality 23
1.5 p-locality 25
Chapter 2. Simplifying the problem. 28
2.1 Point scoring 28
2.2 A combinatorial reault. 31
2.3 Blocka. 39
2.3.1 44
2.3.2 44
2.3.3 $Q(B)$ 49
2.3.4 $P(B)$ 51
Chapter 3. The lattice of valid modules. 64
3.1 Weights and composition factors of X / V_{p}. 64
3.2 The lattice of acoreable acts: definition and propertien 72
3.3 The lntice of scoreable sets: its importence 78
3.4 Consequences for structure graphs. 82
3.5 How to use simple problema to solve complicated ones 87
Chapter 4. Applications to modular theory 97
4.1 Applying our theory 97
4.2 Connections with other work 102
Appendix A 106
Appendix B 112
References 117
List of Notation 118
Index 120

Acknowledgements

Foremost I thank my supervisor, Sandy Green, without whose help and encouragement this theais would not have been written. I cannot imagine a better aupervisor.

I have had helpful talks with various people whilst doing this work. I mention particularly Graham Weetman, whose talent and enthusiasm for mathematica were inspiring. Thanks to Roger Carter for an illuminating explanation of the work in [CarterCline].

I thank Julian Bradficld for moral support throughout, especially when it was most needed, and Ian Redfern for intelligent proof-reading.

I was supported financially by an SERC Research Studentship for the first two years of this work. 1 am grateful to the Laboratory for Foundations of Computer Science at Edinburgh, for kindly allowing me to use their computing facilities.

Graham Weetman did not live to see this work written up. It is dedicated to his memory.

Declaration

I declare that this thesis was composed by myself, and the work contained in it is my own except where otherwise stated.

Abstract

In this thesis we determine the integral forms in Weyl modules for $\mathbf{G L}(2, Q)$. We work with the Schur algebra exclusively; we do not use the Lie algebra of GL(2, Q).

In Chapter 1 we give the neceasary background. We begin to simplify the problem, using the known reduction of it to the problem of finding those integral forms which lie between certain limits X and V. Together with localisation at each prime p, this enables us to restrict our attention to the structure of X / V_{p}. We show that we can deduce the integral structure of nny Weyl module from that of Weyl modules with highest weight ($r, 0$) for an integer r. We deacribe a duality which arises on X / V_{p}. In Chapter 2 we prove a rather surprising number-theoretic result which allows us to simplify the problem further. In Chapter 3 we arrive at a very simple characterisation of the integral forms, namely that they can be represented as those integer labellings of a particular graph, the scoreable set lattice, which satisfy a certain criterion. We exploit this to prove various general results about the structure of X / V_{μ}. We show how it is possible, using our methods, to describe the structure of X / V in arbitrarily complicated cases in terms of simpler structures. In Chapter 4, we discuss the relevance of our work to the theory of modular Weyl modules, and we explain how our work relates to that of others.

Chapter 1

Introduction and preliminaries

1.1 General background

In this section we shall give the background to this thesis, briefly and largely without proof. For more detail, see [Green 1], [Green 2]. A great deal of terminology and notation is necessarily introduced; the reader is assured that only a small proportion of it will reappear in later chapters. The rest is used to explain and justify a reformulation, in elementary terms, of the question which is answered by this thesis.

The starting point for this work is the study of finite dimensional polynomial representations of general linear groups. By a representation of $\mathrm{GL}_{n}(\mathrm{C})$ is meant a group homomorphism

$$
\boldsymbol{R}: \mathrm{GL}_{n}(\mathrm{C}) \longrightarrow \mathrm{GL}_{N}(\mathrm{C})
$$

for a positive integer \boldsymbol{N}. In his doctoral dissertation of 1901, [Schur], Issai Schur found, for each integer n, all finite-dimensional polynomial representations of $\mathrm{GL}_{n}(\mathrm{C})$, in the following sense.

Definition 1.1.
Consider the representation R of $\mathrm{GL}_{\boldsymbol{n}}(\mathrm{C})$ defined by the set of equations

$$
R(g)=\left(r_{\mu v}(g)\right)_{1 \leq \mu, v \leq N}
$$

an g runs over $\mathrm{GL}_{\mathrm{n}}(\mathrm{C}) . R$ is polynomial if, for each pair (μ, ν), there is some complex polynomial in n^{2} variables (one variable for each place in the matrix g) such that the coefficient $r_{\mu \nu}(g)$ is the evaluation at g of this polynomial. \&

Moreover, Schur showed that every finite-dimensional polynomial representation of $\mathrm{GL}_{n}(\mathrm{C})$ is equivalent to a direct sum of homogeneous ones, where a polynomial representation is homageneous of degree r if earh of the corresponding polynomials in n^{2} variables is homogeneous of degree r.

A complex representation R of $\mathrm{GL}_{n}(\mathrm{C})$ may be obtained from a module for the group algehra $C_{G L}(C)$. The problem is that this algebra has infinite

C-dimension, and so ia hard to deal with. Schur's break-through was to show that any polynomial representation which is homogeneous of degree r may be obtained from a module over a certain finite-dimensional complex algebra, now known an the Schur algebra, and often denoted $S(n, r)$. Schur considered this as a complex algebra. However, it is easy to extend the definition to give an algebra $S_{\boldsymbol{K}}(n, r)$ for any field \boldsymbol{K}. It turn out that for fixed valuea of n and r, the family of algebras $S_{K}(n, r)$ is defined over Z, in the sense that
(i) there is a basia $\left\{\xi_{c}\right\}$ of $S_{C}(n, r)$ whose \mathbf{Z}-span $S_{\mathbf{Z}}(n, r)$ is multiplicatively cloaed, and which contains the identity element of $S_{c}(n, r)$;
(ii) for any field K there is a K-algebra isomorphism

$$
\begin{gathered}
S_{\mathbf{Z}}(n, r) \otimes_{\mathbf{Z}} K \longrightarrow S_{K}(n, r) \\
v_{\mathbf{Z}} \otimes 1_{K} \longmapsto v_{K}
\end{gathered}
$$

We choose to define the rational version $S_{\mathbf{Q}}(n, r)$ of the Schur algebra. The body of this thesis will be concerned with the \mathbf{Z}-latice $S_{\mathbf{Z}}(n, r)$.

There are several equivalent definitions of the Schur algebra; the one which will be useful for our purposes is approached an follows.

Let E be an n-dimensional $\mathrm{GL}_{\boldsymbol{n}}(\mathbb{Q})$-space with basis $\left\{e_{1}, \ldots, e_{n}\right\}$. In order to investigate the polynomial representations of $\mathrm{GL}_{n}(Q)$ which are homogeneous of degree r, we consider the r-fold tensor product $E^{\otimes r}$ which han basis

$$
\left\{e_{i_{1}} \otimes \ldots \otimes e_{i_{r}} \mid i=\left(i_{1}, \ldots, i_{r}\right) \in I(n, r)\right\}
$$

where

$$
I(n, r)=n^{r}=\{1, \ldots n\}^{\{1, \ldots, r \mid}
$$

We shall normally write $I(n, r)$ simply as I. The symmetric group of degree r, which we denote by P, acta on the right on I, and hence on $E^{\otimes r}$, by place permutation. That is,

$$
i \pi=\left(i_{1}, \ldots, i_{t}\right) \pi=\left(i_{r(1)}, \ldots, i_{\pi(r)}\right)
$$

80

$$
\left(e_{i}, \otimes \ldots \otimes c_{i}\right) \pi=e_{i=(1)} \otimes \ldots \otimes e_{i, 1,)}
$$

Definition 1.2.

The P-orbits on I are the weights, denoted

$$
\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda \in \Lambda(n, r)
$$

where λ_{μ} is the number of occurrences of the natural number μ in any element i of I which is in the P-orbit λ. Then the weights form the set

$$
\Lambda(n, r)=\left\{\lambda \in \mathbf{N}^{\mathbf{n}} \mid \lambda_{1}+\ldots \lambda_{n}=r\right\}
$$

The size of the orbit λ is written $|\lambda|$, and we see that

$$
|\lambda|=\frac{r!}{\lambda_{1}!\ldots \lambda_{n}!}
$$

Definition 1.3.

The weight λ is dominant if

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}
$$

The set of dominant weights is written $\Lambda^{\dagger}(n, r)$.
Example 1.4.
Let $n=2$ and $r=5$. Then the following are elements of $I(n, r)$:

$$
\begin{aligned}
& 1=(1,1,1,2,1) \\
& j=(2,1,2,1,2) .
\end{aligned}
$$

Then i is in the weight $\alpha=(4,1)$, as is, for example, $i^{\prime}=(2,1,1,1,1)$. Similarly $j \in(2,3)=\beta$. Notice that α is a dominant weight whilst β is not.

We have given the right-action on $I(n, r)$ of P, the symmetric group of degree r. We now define a left-action on l which is equally important.

Deflnition 1.5.

Let the symmetric group of degree n be W, so that W acte naturally on n and hence on the basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of E. Then W acts on the left on $I(n, r)$ by

$$
w(i)=w\left(i_{1}, \ldots, i_{r}\right)=\left(w\left(i_{1}\right), \ldots, w\left(i_{r}\right)\right)
$$

and hence on $E^{\otimes r}$, by extending linearly the action on the basis of $E^{\otimes r}$ which is given by

$$
\begin{aligned}
w\left(e_{i}\right) & =w\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{r}}\right) \\
& =w\left(e_{i_{1}}\right) \otimes \ldots \otimes u\left(e_{i_{1}}\right) \\
& =e_{w\left(i_{1}\right)} \otimes \ldots \otimes e_{w\left(i_{+1}\right)} \\
& =c_{w(0)} .
\end{aligned}
$$

The actions of P and W on I commute. Therefore the following action of W on $\Lambda(n, r)$ is well-defined:

$$
w(\alpha)=\left(\alpha_{w-1}(1), \ldots, \alpha_{w-1}(n)\right) .
$$

W is so-called because it is the Weyl group of $\mathrm{GL}_{\mathbf{n}}$ considered as algebraic group.

Deflnition 1.6.

We define a partial order \geq on $\Lambda(n, r)$ by saying that $a \geq \beta$ if and only if, for all integers ρ,

$$
\sum_{\nu=1}^{\nu=p} \alpha_{\nu} \geq \sum_{\nu=1}^{\nu=p} \beta_{\nu}
$$

If $\alpha \geq \beta$ and $\alpha \neq \beta$ we say that α is higher than β.
4
Then it is easy to see that if α is dominant then $\alpha \geq w(\alpha)$ for every $w \in$ W, and that every W-orbit on $\Lambda(n, r)$ contains exactly one dominant weight. Moreover, if $n=2$ then \geq is a total order on $\Lambda(n, r)$, and $\lambda=(r, 0)$ is higher than any other weight.

Definition 1.7.

The Schur algebra $S_{\mathbf{Q}}(\boldsymbol{n}, r)$ is the \mathbf{Q}-algebra of all P-invariant Q-module endomorphisms of the r-fold tensor product of E :

$$
S_{\mathbf{Q}}(n, r)=\operatorname{End}_{\mathbf{Q}} p\left(E^{\ominus r}\right)
$$

Definition 1.8.

The action of P on I can be extended to maction of P on $I \times I$ by setting

$$
(i, j) \pi=(i \pi, j \pi)
$$

We write $(i, j) \sim(k, l)$ if (t, j) and (k, l) fall in the same P-orbit under this action, that is, if there is some clement π of P surh that $1 \pi=k$ and $j \pi=t$. We shall use Ω to denote a transversal of the set of P-arhita on $I \times I$.

We may define an element X of Endq $\left(E^{8 r}\right)$ by ita matrix $\left(X_{i j}\right)_{i, j \in J(n, r)}$ over Q, with respect to the hasin $\left\{e_{i} \mid: \in I(n, r)\right\}$ of $E^{\mathbb{Q r}}$. Then the condition

$$
\left(X\left(e_{i}\right)\right) \pi=X(e, \pi)
$$

that is,

$$
\sum_{\nu \in l(n, r)} X_{v i} \epsilon_{\nu \pi}=\sum_{v \in J(n, r)} X_{v, i \pi} \epsilon_{\psi} .
$$

Summing the left-hand aide over $\mu=\nu \pi^{-1}$ instead of over ν, and comparing coefficients, we see that this is equivalent to the simple condition that $X_{i j}=X_{\mathbf{k}}$ whenever $(i, j) \sim(k, l)$.

We use this to define a Q basis

$$
\left\{\xi_{i j} \mid i, j \in I\right\}
$$

of the Schur algebra $S_{\mathbf{Q}}(n, r)$ in which the element $\xi_{1,}$ is most pasily visualised as an $n^{r} \times n^{r}$ matrix (over Q) in which the (k, I) coefficient is 1 if $(i, j) \sim(k, I)$ and 0 otherwise. From this we see that the elements $\xi_{1 j}$ and ξ_{k} are equal if and only if $(2, j) \sim(k, l)$. Therefore ([Green 1] page 19) the dimension of the Schur algebra is

$$
\binom{n^{2}+r-1}{r} .
$$

We derive the multiplication rule for basis elements:

$$
\xi_{i j} \xi_{k i}=\sum_{(p, q) \in \Omega}|\{s \mid((i, j) \sim(p, s)) \wedge((k, l) \sim(s, q))\}| \xi_{p q}
$$

of which we shall use mostly the following special cases:

Lemma 1.9.

For any elements i and j of $I(n, r)$,
(i) $\xi_{i j} \xi_{k!}=0$ unless $j \sim k$;
(ii) $\xi_{i j} \xi_{j j}=\xi_{1 j}=\xi_{i u} \xi_{i j i}$
(iii) $\xi_{w(0)} \xi_{i j}=\xi_{w(1) j}$ and $\xi_{i j} \xi_{j v(j)}=\xi_{i v(j)}$ where u, and v are any elements of \boldsymbol{W}.

Proof.

We prove only the firat part of (iii). Suppose that (p, q) and a are auch that $(w(i), i) \sim(p, s)$ and $(i, j) \sim(s, q)$. That is, there are clements π and ϕ of P such that

$$
\begin{aligned}
w i \pi & =p \\
i \pi & =s \\
i \phi & =s \\
j \phi & =q ;
\end{aligned}
$$

that ia, using the fact that the actions of P and W commute,

$$
w: \phi=w s=u i \pi=\boldsymbol{p}
$$

so $(p, q)=(u(i), j) \phi$ and $s=i \phi$. The result follows, since the summation in the multiplication rule is only over Ω, so it will include exactly one such pair (p, q).

The clements ξ_{n} and $\xi_{j j}$ are equal if and only if i and j occur in the same P-orbit, or weight, α. In this case we shall write the element as ξ_{a}. Then we see that
(i) for any weight $\alpha, \xi_{a} \xi_{a}=\boldsymbol{\xi}_{\alpha}$;
(ii) for any weights $a \neq \beta, \xi_{0} \xi_{\theta}=0$,
giving an orthogonal idempotent decomposition

$$
1_{S_{q}(n, r)}=\sum_{\alpha \in A(n, r)} \xi_{\alpha}
$$

which is easy to see in matrix terms. This decomposition induces a decomposition of any left $S_{\mathbf{Q}}(n, r)$ module M,

$$
M=\bigoplus_{a \in A(n, r)} \xi_{\alpha} M
$$

In fact, since for any α we have $\boldsymbol{\xi}_{\alpha} M=M^{\alpha}$, (see [Green 1] page 37) this decomposition coinciden with the weight space decomposition of M.

We next define a map from $G L_{n}(Q)$ to End $P_{p}\left(E^{\otimes r}\right)$ which will enable us to explain Schur's crucial result.

Definition 1.10.
Let $g \in \mathrm{GL}_{n}(\mathbf{Q})$. Then define $T(g)$ by

$$
T(g)=\sum_{(i, j) \in \Omega} g_{i, j} \xi_{i j}
$$

where $g_{i, j}$ is defined to be $g_{i_{1} j_{1}} g_{i_{2} h_{2}} \ldots g_{i, j+1}$ and extend this linearly to give a map

$$
\boldsymbol{T}: \mathbf{Q G L} L_{n}(\mathbf{Q}) \longrightarrow \operatorname{End}_{\mathbf{Q}}\left(E^{\ominus \mathbf{r}}\right)
$$

The map T turns out to be a surjective Q-algehra homomorphism. ([Green 1] page 23). Schur'm realt may then be stnted:

Theorem 1.11.

The category of left $S_{\mathbf{Q}}(n, r)$-modules is equivalent to the category of polynomial representations of $G L_{\boldsymbol{n}}(\mathbb{Q})$ which are homogencous of degree r. In fact if V is any object from either category, it may be turned into an object of the other by the rule

$$
\kappa v=T(\kappa) v
$$

where $\kappa \in Q_{G L}(Q)$.
Let w and v be elements of W. Using the natural action of W on the basis of E, we find a matrix n_{ω} in $\mathrm{GL}_{\boldsymbol{n}}(\mathbb{Q})$ for w, given by

$$
\left(n_{w}\right)_{i j}=\delta_{i, w(j)}
$$

and a corresponding element $1 . n_{\mathbf{w}}$ of the group algebra $Q \mathcal{Q L}_{\mathbf{n}}(\mathbb{Q})$. Then define the element of $S_{\mathbf{Q}}(\boldsymbol{n}, \mathrm{r})$

$$
\Gamma_{\omega}=\mathcal{T}\left(1 n_{w}\right)
$$

and define Γ_{0} similarly.

Lemma 1.12.

For any : and j in $I(n, r)$,

$$
\Gamma_{w} \xi_{i, j} \Gamma_{v}^{-1}=\xi_{w(0), v(t)}
$$

Proof.

In fact, from the definition of T,

$$
\begin{aligned}
\Gamma_{w} & =\sum_{(i, j \in \Theta}\left(n_{w}\right)_{i, j} \xi_{i j} \\
& =\sum_{(n, j) \in \Omega}\left(n_{w}\right)_{i, j,}\left(n_{w}\right)_{i_{2}, j_{2}} \ldots\left(n_{w}\right)_{i, j} \xi_{i j} \\
& =\sum_{(0, j) \in \Omega} \delta_{i, w} \\
& =\sum_{j \in \Pi} \xi_{w(j)} \delta_{i v, w},(j), \ldots \delta_{i, w}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\Gamma_{w} \xi_{i, j} \Gamma_{v}^{-1} & =\Gamma_{w} \xi_{i, 2} \Gamma_{v-1} \\
& =\left(\sum_{k \in \Pi} \xi_{w(A), h}\right) \xi_{k, j}\left(\sum_{k \in \Pi} \varepsilon_{v-1}(t), k\right) \\
& =\left(\sum_{k \in \Pi} \xi_{w(k), k}\right) \xi_{k, j}\left(\sum_{k \in \Pi} \xi_{k, v(k)}\right) \\
& =\xi_{w(h), h} \xi_{1, j} \xi_{k, w(t)}
\end{aligned}
$$

where $h \sim$ i and $j \sim k$. Suppose $h \pi=i$ and $j=k \phi$. Then

$$
\begin{aligned}
\xi_{\infty(h), \Delta} \xi_{1, j} \xi_{k, v(t)} & =\xi_{\omega(h)=h, h} \xi_{1, j} \xi_{t \phi, v(t)} \\
& =\xi_{w(1), i} \xi_{i, j} \xi_{j, v(j)}
\end{aligned}
$$

since the actions of P and W commute. Then by Lemma 1.9 , we get

$$
\Gamma_{*} \xi_{1, j} \Gamma_{*}^{-1}=\xi_{w(0),-(j)}
$$

as required.
Corollary 1.13.
For $a n y \in W, \alpha \in \Lambda(n, r)$ and $V \in \bmod S_{z}(n, r)$,

$$
\Gamma_{ \pm} V^{a}=V^{\omega(a)}
$$

Proof.
Pick any $i \in \alpha$. We have $\Gamma_{w} \xi_{i, i}=\varepsilon_{w(i), w(i)} \Gamma_{w}$, so applying each side to V gives

$$
\Gamma_{\omega} V^{o}=\Gamma_{\omega} \xi_{a} V=\Gamma_{\omega} \xi_{\mathrm{a}, 1} V=\xi_{\omega(\mathrm{p}), \omega(1)} \Gamma_{\omega} V^{\prime} \subseteq \xi_{v^{\prime}(a)} V=V^{\omega(a)}
$$

1.2 Weyl modules

In [CarterLuaztig] R. Carter and G. Lusztig alefined, for infinite fields K, the $S_{K}(n, r)$-modulea $V_{\lambda, K}$ for dominant weights λ, calling them Weyl modulea. These modules are submodules of $E^{\text {br }}$. They are important because cach has a unique maximal $S_{K}(n, r)$-submodule $V_{\lambda, K}^{m a n}$, nuch that $V_{\lambda, N} / V_{\lambda, K}^{m a x}=L_{\lambda}$ is a simple $S_{K}(n, r)$-module of highest weight λ. As λ runs over the set Λ^{+}of dominant weights every simple $S_{\boldsymbol{h}}(n, r)$-module occurs once. Moreover, when K has characteristic 0 , an in our case when we consider $K^{*}=Q$, the Weyl modules are themselves irreducible.

Carter and Luaztig gave a basis $\left\{b_{1} \mid: \in I\right\}$ for each $V_{A, Q}$ which can be partitioned to give bases for the weight spaces

$$
v_{\lambda, Q}=\bigoplus_{o \in A} v_{\lambda, \mathbf{Q}}^{n}
$$

In order to explain what thin basia is, we nred to introduce some more machinery.

Definition 1.14.

Given a weight $\lambda \in \Lambda(n, r)$, the shape of λ, written $[\lambda]$, is the get of integer paira

$$
[\lambda]=\left\{(s, t) \mid 1 \leq s \leq n, 1 \leq t \leq \lambda_{1}\right\}
$$

This aet may be regarded as the set of r mquares in a dingram like:

in which the $i^{\text {th }}$ row has length λ_{1}, and the element (a, i) is in row s and column t.

Definition 1.15.

A λ-tableau is a map from $[\lambda]$ to any set. The map may be used to label the squares of the diagram with elements of the set.

The basic λ-tableau $T^{(\lambda)}$ in an arbitrarily chosen bijection from [λ] to r. We shall normally omit the superscript. When we use T to label the squares of the diagram with the integers $1, \ldots, r$, each of the integers between 1 and r appeara exactly once. From now on we shall assume that T in an hown:

1	2	3	$\ldots \ldots \ldots$		
$\lambda_{1}+1$	\ldots	λ_{1}			

π

Definition 1.16.

The symmetric group of degree r, P, acts on the elements of $[\lambda]$ in a way determined by the choice of basic λ-tableau T :

$$
(s, t) \pi \stackrel{\text { def }}{=} T^{-1}(T(s, t) \pi)
$$

in words, the image, under π, of the square labelled with integer ν is the square labelled with $\nu \pi$.

Then the column stabiliser $C(T)$ is defined in the intuitive way, by

$$
C(T)=\{\pi \in P \mid(\forall(s, t) \in[\lambda])(\exists u \in \mathbf{n})((s, t) \pi=(u, t))\}
$$

and the row stabiliser $R(T)$ is defined analogously.
Now, for any $i \in I(n, r)$ we form the composite λ-tableau T_{i}, a map from [λ] to n, by:

$$
[\lambda] \xrightarrow{T} \mathbf{r} \xrightarrow{i} \mathbf{n}
$$

This may be seen as a labelling of the diagram with integers between 1 and n, in which the square (s, t) is labelled with $T_{i}(s, t)$.

Example 1.17.

Consider again the case $n=2$ and $r=5$, and take $\lambda=(4,1)$. A possible basic λ-tableau is

1	2	3	4
5			
y			

Then if $i=(2,1,2,1,2)$ the λ-tableau T_{i} is

2	1	2	1
2			
$y y y n n$			

Definition 1.18.

The λ-tableau T_{i} is standard if the entries in each row are weakly increasing from left to right and the entries in each column are strictly increasing from top to bottom.

An important example of a standard tableau is T_{1} in the following definition.

Definition 1.19.

The element $l \in I(n, r)$ is that whose λ-tableau T_{l} is given by:

13

that is, such that for cach (s, t), we have $I_{T(s, t)}=s$.
Deflnition 1.20.
If Q is any subgroup of P, the element $\{Q\}$ of $Z P$ is

$$
\sum_{q \in Q} \operatorname{sign}(q) q .
$$

Deflnition 1.21.
Let

$$
f_{1}=e_{1}\{C(T)\}
$$

and for each $: \in I(n, r)$ let

$$
b_{1}=\varepsilon_{1} f_{1} .
$$

One can show ([Green 1] page 68) that $f_{i} \in V_{\lambda .9}^{\lambda}$. The same reference gives another expreasion for b_{1}, which can be more convenient:

$$
b_{i}=\sum_{A \in 1 R(T)} e_{h}\{C(T)\} .
$$

We can now finally state the Carter-Lusztig basis theorem.
Theorem 1.22.
The aet

$$
\left\{b_{1} \mid \text { the } \lambda \text {-tablenu } T_{1} \text { in standard }\right\}
$$

in a basis for $V_{\lambda, Q}$. Moreover, for each weight $\alpha \in \Lambda(n, r)$, the set

$$
\text { \{ } \left.b, \mid: \in \alpha \text { and the } \lambda \text {-tableau } T_{1} \text { in standard }\right\}
$$

is a basis for $V_{A . Q}^{a}$.
For a proof, see [CarterLusztig] or [Green 1] page 69.
Corollary 1.23.
(i) $V_{\lambda, Q}$ is generated over $S_{Q}(n, r)$ by f_{f};
(ii) Since I is the only element of λ auch that T_{1} is standard, $V_{\lambda, q}$ is always one-dimensional, with basis

$$
b_{1}=\xi_{11} f_{1}=f_{1}
$$

We now come to consider the Z-version of these conceptr, which are all defined over \mathbf{Z} in the sense given earlier; see [Green 1] for details. Taking the \mathbf{Z}-ppan of the basis $\left\{e_{i} \mid i \in I(n, r)\right\}$ of E_{Q} gives a free Z-lattice in $E_{Q}{ }^{r}$, which we call $E_{\mathbf{Z}}^{(H)}$. Taking the \mathbf{Z}-span of the basis for $S_{\mathbf{Q}}(n, r)$ gives $n \mathbf{Z}$-form in $S_{\mathbf{Q}}(n, r)$ which we denote by $S_{\mathbf{Z}}(n, r)$. We define the $S_{\mathbf{Z}}(n, r)$-module $V_{\lambda, \mathbf{z}}$ to be $E_{\mathbf{2}}^{\infty r} \cap V_{\lambda, Q_{1}}$ and it can be shown that the Carter-Lusztig basia for $V_{\lambda, q}$ is also a 2 -basis for $V_{\lambda, 2}$ the partition into bases of the weight spaces is also preserved.

Deflition 1.24.

The $S_{\mathbf{Z}}(n, r)$-submodule M of $V_{\lambda, Q}$ is an admissible \mathbf{Z}-lattice if it is a free \mathbf{Z}-module with a $\mathbf{2}$-basis which is also a \mathbf{Q}-basis of $V_{\lambda, \mathbf{Q}}$, so that

$$
M \otimes_{\mathbf{z}} \mathbf{Q}=V_{\lambda . \mathbf{q}} .
$$

We have a weight space clecomposition

$$
M=\bigoplus_{\alpha \in A} M^{\alpha}
$$

in which each M^{α} is contained in the corresponding $V_{i, Q}^{a}$.
If M is an admissible Z-lattice then so is any rational multiple of M. Therefore we introduce a normalisution condition

$$
M^{\lambda}=2 f_{i}
$$

which implies that

$$
M^{\lambda}=V_{\lambda, 2}^{\lambda}
$$

We now state a theorem which greatly reatricta the set of possibilities for normalised admissible \mathbf{Z}-lattices. The definition of the lattice $X_{\lambda .2}$ which appears in the statement will follow. For a proof of this theorem, see [Green 1] page 78.

Theorem 1.25.

Let M be any normalised admissible \mathbf{Z}-lattice. Then

$$
V_{\lambda, 2} \subseteq M \subseteq X_{\lambda, \mathbf{z}}
$$

Definition 1.28.

The bilinear form $<,>$ on $E^{\& r}$ is defined on basis elementa by

$$
\left\langle e_{i}, e_{j}\right\rangle=\delta_{i},
$$

It in easy to show that $\langle x, y \pi\rangle=\langle x \pi, y\rangle$ for any x and y in $E^{8 r}$ and for any π in P. This enables the following definition to be made:

Deffition 1.27.

The bilinear form \langle,$\rangle on E^{\otimes r}\{C(T)\}$ is defined by

$$
\langle\langle x\{C(T)\}, y\{C(T)\}\rangle)=\langle x\{C(T)\}, y)=\{x, y\{C(T)\}\rangle
$$

Finally we can define $\boldsymbol{X}_{\lambda, z}$.
Definition 1.28.

$$
X_{\lambda, z}=\left\{x \in V_{\lambda, \mathbf{q}} \mid\left\langle\left(r, V_{\lambda, z}\right\rangle\right) \subseteq \mathbf{Z}\right\}
$$

We have now introduced all of the general background material that we shall need. In the next section we introduce the special case with which this thesis is concerned, and show how the restrictions we sliall impose affect the problem.

1.3 Speciflc background

In this thesir we show how to find all normalised admissible \mathbf{Z}-lattices for $\boldsymbol{n}=\mathbf{2}$ and $\lambda=(r, 0)$. Thus we appear to have made two restrictions from the general case which we have so far bern discussing. We have restricted to the case $n=2$, and then further limited the cases we have to consider by setting $\lambda=(r, 0)$. In fact, only the reatriction to $n=2$ has any real subatance. The next result deals with the case that $n=2$, with no restriction on λ.

Lemma 1.29.

Let α and λ be in $\Lambda^{+}(2, r)$. Then

$$
\operatorname{dim}\left(V_{\lambda}^{\infty}\right)= \begin{cases}1 & \text { if } \alpha \leq \lambda \\ 0 & \text { otherwise }\end{cases}
$$

Proof.

Consider the possible standard tableaux T_{s}. The entries in auch a tableau come from n, so here the only possible entries are 1 and 2. Moreover, if T_{1} is standard then the entries in each column increase atrictly; so any standard tableau looks like

where the first λ_{2} entries in the first row are 1 , and all entries in the second row are 2. Moreover, since the entries in each row must increase weakly, if any entry in the first row is 2 then every entry to its right is also 2 . Therefore the poasible number of 18 which occur in the standard tableau T_{1} - that is, α_{1} where $: \in a$ must satisfy

$$
\lambda_{2} \leq \alpha_{1} \leq \lambda_{1}
$$

and conversely, for any α_{1} in this range there is exactly one $i \in a=\left(\alpha_{1}, \alpha_{2}\right)$ such that T_{i} is standard. The α which satisfy the condition are precisely those $\alpha \leq \lambda$, and the Carter-Lusztig basis theorem gives the result.

Remark 1.30.

Notice that the partial order \geq on Λ is in fart a total order when $n=2$. When $a \leq \lambda$ we write the single basis clement of $V_{A, Q}^{\circ}$ as b_{o}.
Remark 1.31.
By combining Corollary 1.13 with Lemma 1.20 we get the dimension of any weight space V_{λ}^{o}, dropping the requirement that a be dominant.

Example 1.32.

Let $r=n=2$ and consider $V_{(1,1)}$. By Lemma 1.29 the ouly non-zero weight space is $V_{(1,1)}^{(1,1)}$, and this has the single basis element

$$
\begin{aligned}
b_{(12)} & =\sum_{A \in(12) H(T)} e_{A}\{C(T)\} \\
& =e_{12}-e_{21}
\end{aligned}
$$

since here the row stabiliser is trivial and the column stabiliser consists of the identity and the single transposition. Next, consider the action of $\mathbf{G L}_{2}$ on this Weyl module.

$$
\begin{aligned}
\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right) b_{12} & =\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right) e_{12}-\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right) e_{21} \\
& =\sum_{1 \in J(2,2)}\left(g_{i, 2} g_{i_{2} 1}-g_{1,22} g_{i_{1} 1}\right) e_{i} \\
& =\left(g_{11} g_{22}-g_{12} g_{21}\right) e_{12}-\left(g_{11} g_{22}-g_{12} g_{21}\right) e_{21} \\
& =\operatorname{det}(q) b_{12} .
\end{aligned}
$$

That in, any element of GL_{2} acts on $V_{(1,1)}$ as multiplication by its determinant. $\boldsymbol{V}_{(1,1)}$ is referred to as the determinant representation of GL_{2}.

Next we use this example to help show that the restriction that we wish to make, to considering weights $\lambda=(r, 0)$, is not a serious restriction.

Proposition 1.33.

Any normalised admissible Z-lattice for $n=2$ and $\lambda=(r, s)(r \geq s)$ is equal to the tensor product of a normalised admissible Z-lattice for $n=2$ and $\lambda=(r-s, 0)$ with , copies of the determinant representation, namely the one-dimensional ZGL \mathbf{L}_{2}-module which maps each element g of GL_{2} (\mathbf{Z}) to its determinant.

Proof.

In this result we find it convenient to use the basic λ-tableau T in which the labele increase down columins, then across rows.

Recall that a Weyl module V_{a}, where $a \in \Lambda(n, r)$, is a submodule of $E^{\otimes r}$. Recall also (Lemma 1.29) that each non-zero weight space V^{a} of a Weyl module \boldsymbol{V} for GL_{2} is 1 -dimensional, with basis b_{1} where \boldsymbol{i} is the unique element of α such that T_{1} is standard. Suppose that $: \in \alpha \in \mathbf{A}(2,2)$ and that $j \in \beta \in \mathbf{A}(2, r+s)$, Then $b_{1} \in E^{\otimes 2}$ and $b_{j} \in E^{\otimes(r+a)}$. Then

$$
b_{1} \otimes b_{1} \in E^{\Leftrightarrow(r+e+2)}
$$

We define a bijection

$$
\begin{aligned}
M: I(2,2) \times I(2, r) & \longrightarrow I(2, r+2) \\
\left(\left(i_{1}, i_{2}\right),\left(j_{1}, \ldots j_{r}\right)\right) & \longmapsto\left(i_{1}, i_{2}, j_{1}, \ldots, j_{r}\right)
\end{aligned}
$$

and we consider the induced 'concatenation' of tableaux:

$$
T_{i}^{(1,1)} \otimes T_{1}^{(r, a)} \longrightarrow T_{\Delta(1, j)}^{(r+1,+1)}
$$

i_{1}		j_{1}	. . .	jr+a	11	j_{1}	. . .	Jras
i_{3}		j_{2}	\cdots		12	j_{2}	- \cdot.	

The effect of M on an element of $I(2, r+s)$ is essentially to add 2 to the subacript of each element in the tuple $s=\left(i_{1}, \ldots, l_{r+a}\right)$. This has a corresponding effect on the group P which permutes the placea in such a tuple. We define a renumbering map

$$
\begin{aligned}
N:\{1, \ldots r+s\} & \longrightarrow\{3, \ldots r+s+2\} \\
\nu & \longmapsto \nu+2
\end{aligned}
$$

and use the same aymbol for the maps which it induces from $\operatorname{Sym}\{1, \ldots, r+s\}$ to $\operatorname{Sym}\{3, \ldots, r+s+2\}$ and from $\mathbf{1 S y m}\{1, \ldots, r+a\}$ to $\mathbf{Z S y m}\{3, \ldots, r+s+2\}$. Of course, applying this map has no effect on the structure of the Weyl module.

Notice that the tableau $T_{M(1, j)}$ ia standard if and only if both T_{4} and T_{3} are atandard, and that all standard ($r+1, s+1$)-tableaux are obtained in this way. If T_{i} is atandard then of course $a=(1,1)$ nud $i=(1,2)$. If T_{j} is standard then $\beta \leq(r+1, s+1)$. We assume that this in the case, nnd show that

$$
b_{i} \otimes b_{N}(j)=b_{M(1, j)}
$$

from which it will follow that

$$
V_{(1,1)}^{\alpha} \otimes V_{(r, s)}^{\beta}=V_{(r+1, s+1)}^{\left(\beta_{1}+1, \beta_{2}+1\right)}
$$

hence

$$
V_{(1,1)} \otimes V_{(r, a)}=V_{(r+1,0+1)}
$$

and the reault claimed follows by induction, using Example 1.32.
Now,

$$
b_{M(t, \lambda)} \stackrel{d+1}{=} \sum_{k}\left(e_{k_{1}} \otimes e_{k_{1}} \otimes \cdots \otimes e_{k_{r+\infty+1}}\right)\left\{C\left(T^{(r+1++1)}\right)\right\}
$$

where the sum in over k in the subnet of $I(2, r+a+2)$ defined by

$$
k \in M(i, j) R\left(T^{(r+1, s+1)}\right)
$$

This in not as complicated an it lookn. Fur we know, by the reatriction to atandard tableaux, that $(M(i, j))_{1}=1$ and that all entries in the bottom row
of the composite tableau, including $(M(i, j))_{2}$, are 2. Therefore $k_{2}=2$ for any k occurring in the aummation. Suppose that $k_{1}=2=k_{2}$. Then

$$
\begin{aligned}
e_{\hbar}\left\{C\left(T^{(r+1, \alpha+1)}\right)\right\} & =e_{k}(1-(12)) N\left(C\left(T^{(r, s)}\right)\right) \\
& =0
\end{aligned}
$$

The point is that auch a k makes no contribution to the sum, so we deduce that the summation may be taken over k such that $k_{1}=1$ and $k_{2}=2$. Therefore the summation is over the subset of $I(2, r+s+2)$ defined by

$$
k \in M(i, j) R\left(T^{(r, s)}\right) .
$$

Then the sum becomes

$$
\begin{aligned}
b_{M(i, j)} & =\sum_{k}\left(e_{k_{1}} \otimes \epsilon_{k_{3}}\right)(1-(12)) \otimes\left(e_{k_{\mathrm{a}}} \otimes \varepsilon_{k_{++\cdots}}\right) N\left(\left(C\left(T^{\left(n, \theta^{\prime}\right)}\right)\right\}\right) \\
& =\sum_{k}\left(\epsilon_{12}-\varepsilon_{21}\right) \otimes\left(e_{N\left(k_{1}\right)} \otimes \epsilon_{N\left(k_{r+\prime}\right)}\right) N\left(\left\{C\left(T^{(r, *)}\right)\right\}\right) \\
& =\left(e_{12}-e_{21}\right) \otimes b_{N}(j) \\
& =b_{i} \otimes b_{N}(j)
\end{aligned}
$$

as claimed.
Next we atart to show what simplifications are possible when we assume that $n=2$ and that $\lambda=(r, 0)$. The proof of each part of the following lemma is immediate.

Lemma 1.34.

Let $\lambda=(r, 0)$. Then
(i) The column stabiliser $C(T)$ is trivial.
(ii) $f_{i}=e_{i}\{C(T)\}=e_{i}$
(iii) Let $\alpha \in \Lambda(n, r)$. Then

$$
b_{a}=\sum_{h \in a} e_{h} .
$$

(iv) The two forms \langle,$\rangle and \langle\langle$,$\rangle are identical.$
(v) $\left(b_{a}, b_{s}\right\rangle=|a| \delta_{a \beta}$

Next, we deacribe the normalised admissible Z-lattices $X_{\lambda .2}$ and $V_{1,2}$, and show how we can make use of Theorem 1.25. We introduce the following piece of shorthand:

Deflnition 1.35.

The $S_{\mathbf{Z}}(n, r)$-submodule M of $V_{\lambda, q}$ is valid if and only if it is a normalised admissible Z-lattice.

Lemma 1.36.

Let $n=2$ and let $\lambda=(r, 0)$. Then
(i)

$$
V_{\lambda, \mathbf{z}}^{a}=b_{a} \mathbf{Z}
$$

(ii)

$$
X_{\lambda, \mathbf{z}}^{\alpha}=\frac{1}{|\alpha|} b_{\alpha} \mathbf{z}
$$

(iii) If M is any valid module then

$$
M^{\circ}=\frac{m_{a}}{|a|} b_{a} Z
$$

for some positive integer m_{α}.

Proof.

We have already shown that (i) holds when $n=2$, whatever the value of λ. Any element x of $V_{\lambda, Q}$ can be written as

$$
x=\sum_{a \in A} x_{\alpha} b_{o}
$$

for some elements x_{a} of Q, using the basis theorem. Using this, part (i) and Lemma 1.34 on the definition of $X_{\lambda, 2}$, we see see that x is in $X_{\lambda, 2}$ if and only if for every weight β the quantity

$$
\begin{aligned}
\left\langle\left\langle\sum_{\alpha \in \Lambda} x_{\alpha} b_{\alpha}, b_{\beta}\right\rangle\right\rangle & =\sum_{\alpha \in \Lambda} x_{\alpha}\left\langle\left\langle b_{\alpha}, b_{\beta}\right\rangle\right\rangle \\
& =\sum_{\alpha \in \Lambda} x_{a}|\sigma| \delta_{\alpha \beta} \\
& =x_{\beta}|\beta|
\end{aligned}
$$

is in 2. Therefore $\boldsymbol{X}_{\boldsymbol{\lambda} \boldsymbol{a}}^{\boldsymbol{a}}$ has the form clamed in part (ii). Part (iii) follows from these deacriptions of X and V and Theorem 1.25.

Therefore we may identify the valid module M by the tuple $\left\{m_{a}\right\}_{o \in A}$, and may inveatigate the conditions on this tuple which ensure that M is valid. We shall ary that the tuple $\left\{m_{a}\right\}_{a \in A}$ corresponds to the module M. Notice that the tuple $(1,1, \ldots, 1)$ corresponds to X and that the tuple $\{|\alpha|\}$ corresponds to V.

Now M is valid, if and only if for all 3 and j

$$
\xi_{1}, M \subseteq M
$$

We can simplify this using the weight space decomposition of M and Lemma 1.9 (ii). For if $i \in \alpha$ and $j \in \beta$ we see that

$$
\xi_{i j} V_{\mathbf{Q}}^{a}=\xi_{1,} \xi_{y,} V_{\mathbf{Q}}=\xi_{u t} \xi_{u j} V_{\mathbf{Q}} \subseteq \xi_{11} V_{\mathbf{Q}}=V_{Q}^{o}
$$

so the condition which we need to check is that for all weights α and β in A and for all elements $:$ of α and j of β,

$$
\xi_{i j} M^{a} \subseteq M^{a}
$$

which says that the Z-lattice is not denser in some parts of M than in others. Checking this is greatly simplified in our case, since all the weight spares have dimension 1. Rather surprisingly, it suffices to consider dominant weights a and β, as we shall now show.

Lemma 1.37.

Let the valid module $M \leq V_{(r, 0)}$ be given by

$$
M^{\alpha}=\frac{m_{o}}{|a|} b_{o} Z
$$

where for each weight a, m_{a} is a positive integer, as previously explained. Then for any $w \in W$ and $\alpha \in \Lambda(2, r)$,

$$
m_{a}=m_{u}(a)
$$

Proof.

Corollary 1.13 gives

$$
\Gamma_{\omega} M^{\alpha}=M^{u(a)}
$$

that is,

$$
\frac{m_{\alpha}}{|\alpha|} \Gamma_{w} b_{\alpha} \mathbf{Z}=\frac{m_{w(\alpha)}}{|w(\alpha)|} b_{w(\alpha)} \mathbf{Z}
$$

Now, $|\boldsymbol{w}(\boldsymbol{\alpha})|=|\alpha|$ and

$$
\Gamma_{w} b_{\mu}=\Gamma_{\omega} \sum_{h \in \mathrm{o}} e_{h}=\sum_{h \in \mathrm{o}} \Gamma_{m} \epsilon_{h}=\sum_{h \in a} e_{\omega(h)}=b_{\omega(h)}
$$

so $m_{a}=m_{w(a)}$ as claimed.

Proposition 1.38.

Consider the conditions
(i)

$$
\xi_{i j} M^{\beta} \subseteq M^{\alpha}
$$

for all weights α and β in $\Lambda(n, r)$ and for all elements i of α and j of β;
(ii) for all weights α and all $w \in W, m_{\alpha}=m_{w(\alpha)}$;
(iii) for all weights α and β in $\Lambda^{+}(n, r)$ and for all elements i of α and j of β,

$$
\xi_{i j} M^{\beta} \subseteq M^{\alpha}
$$

Condition (i) holds if and only if (ii) and (iii) both hold.

Proof.

Certainly (i) implies (iii), and we have shown in Lemma 1.37 that (i) implies (ii). Suppose that (ii) and (iii) both hold. Then take any α and β in $\Lambda(n, r)$ and any elements i of α and j of β. Pick w and v from W such that $w(\alpha)$ and $v(\beta)$ are in $\Lambda^{+}(n, r)$. Then $w(i) \in w(\alpha)$ and $v(j) \in v(\beta)$, and applying (iii) we get

$$
\xi_{w(i), v(j)} M^{v(\beta)} \subseteq M^{w(\alpha)}
$$

Notice that the proof of Lemma 1.37 shows that condition (ii) implies that

$$
\Gamma_{w} M^{\alpha}=M^{w(\alpha)} \quad \text { and } \quad \Gamma_{v} M^{\beta}=M^{v(\beta)}
$$

so

$$
\xi_{w(i), v(j)} M^{v(\beta)}=\Gamma_{w} \xi_{i j} \Gamma_{v-1} M^{v(\beta)}=\Gamma_{w} \xi_{i j} M^{\beta}
$$

so we have

$$
\Gamma_{w} \xi_{i j} M^{\beta} \subseteq M^{w(\alpha)}=\Gamma_{w} M^{\alpha}
$$

that is,

$$
\xi_{i j} M^{j} \subseteq M^{\alpha}
$$

so (i) holds, as required.

Lemma 1.39.

Let $i \in \alpha$ and $j \in \beta$. Then

$$
\xi_{i j} b_{\beta}=\left|P_{i}: P_{i} \cap P_{j}\right| b_{\alpha}
$$

where by P_{i} we mean the stabiliser of i.

Proof.

$$
\xi_{v j} b_{j}=\xi_{i j} \xi_{j}|e|
$$

Now

$$
\xi_{i j} \xi_{j i}=\sum_{(p, v) \in \Omega}|\{s \mid((i, j) \sim(p, s)) \wedge((j, l) \sim(s, q))\}| \xi_{p q}
$$

and, for any $\phi \in P$ we have $l \phi=1$, so if the coefficient of $\varepsilon_{p q}$ is to be non-zero we must have $q=l$ as well as $p \sim i$. Since the summation is over Ω this menns that it contains only one non-zero term, which we may assume to be when $(p, q)=(i, l)$. The coefficient of ξ_{a} in this case is

$$
\begin{aligned}
|\{s \mid((1, j) \sim(1, s)) \wedge((j, l) \sim(s, l))\}| & =\mid \text { orbit of } j \text { under action of } P_{i} \mid \\
& =\left|P_{i}: P_{i} \cap P_{j}\right|
\end{aligned}
$$

so that

$$
\xi_{i j} b_{s}=\left|P_{1}: P_{i} \cap P_{j}\right| \xi_{i} e\left|=\left|P_{i}: P_{1} \cap P_{j}\right| b_{a}\right.
$$

as claimed
Next we calculate $\left|P_{1}: P_{1} \cap P_{1}\right|$.

Lemms 1.40.

If $: \in \alpha$ and $j \in \beta$ and α and β are both dominant, then

$$
\begin{equation*}
\left|P_{1}: P_{1} \cap P_{j}\right|=\frac{\alpha_{1}!\alpha_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\alpha_{2}-\beta_{1}+A\right)} \tag{*}
\end{equation*}
$$

for some integer value of A such that

$$
\beta_{2}-\alpha_{1} \leq A \leq \min \left(\alpha_{1}, \beta_{1}\right)
$$

Moreover, for each value of A within this range there exista some pair (t, j) with $t \in a$ and $j \in \mathcal{B}$ such that (*) holds.

Proof.

For any $\pi \in P$ we have

$$
\left|P_{i}: P_{1} \cap P_{j}\right|=\left|P_{1 \pi}: P_{1 \pi} \cap P_{j \pi}\right|
$$

so we may assume without loss of gencrality that i is asch that T_{i} in standard. Then for any $\phi \in P_{1}$ we have

$$
\left|P_{1}: P_{i} \cap P_{j}\right|=\left|P_{1}: P_{1} \cap P_{j}\right|
$$

so we may assume that the tableatix T_{1} and T_{j} look like

and it is plain that to any value of A within the bounda given in the statement there corresponds such a diagram. Then we see that

$$
\left|P_{i}\right|=\alpha_{1}!\alpha_{2}!
$$

and that

$$
\left|P, \cap P_{3}\right|=A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\alpha_{2}-\beta_{1}+A\right)!
$$

from which the result follows.
Finally we may use these results to show that necessary and sufficient conditions for the tuple $\left\{m_{a}\right.$ \} to correspond to a valid module are that

$$
\frac{m_{g}}{m_{a}} \frac{\beta_{1}!\beta_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\beta_{2}-\alpha_{1}+A\right)!} \in Z
$$

for every pair (α, β) of dominant weights, and for every integer value of A satiafying

$$
\alpha_{1}-\beta_{2} \leq A \leq \min \left(\alpha_{1}, \beta_{1}\right)
$$

We shall refer to these conditions as the validity conditions $V(\alpha, \beta)$.
Setting α and β in turn to be λ, and remembering that $m_{\lambda}=1$, shows that in this case we may rephrase the conditions as:
(i) For all weights $\beta, m_{B} \in \mathbf{Z}_{\text {; }}$
(ii) For all weights a, m_{a} divides $|a|$.

Therefore we shall restrict ourselvea to begin with to such tuples, and shall need to consider the validity conditions $V(\alpha, \beta)$ only for a and β not λ.

Remark 1.41.

The condition that m_{a} should divide $|\alpha|$ is a conserguence of our normalisation condition $m_{\lambda}=1$. If (and when) we drop the normalisation condition, we may allow m_{a} not to divide $|a|$.

Remark 1.42.

Of courae, if M and N are valid modules then so are $M \cap N$ and $M+N$. If the tuple corresponding to M is $\left\{m_{\mathrm{a}}\right\}$ and that corresponding to N is $\left\{n_{\mathrm{a}}\right\}$, then
(i) the tuple correaponding to $M \cap N$ is $\left\{\operatorname{lcm}\left(m_{a}, n_{a}\right)\right\}$;
(ii) the tuple corresponding to $M+N$ is $\left\{\right.$ hef $\left.\left(m_{a}, n_{a}\right)\right\}$;

Example 1.43.

The easieat non-trivial example is that in which $r=5$. In this case the dominant weights are $\lambda=(5,0), \alpha=(4,1)$ and $\beta=(3,2)$, with sizes 1,5 and 10 reapectively. We insist that m_{a} be a positive integer dividing 5 , i.e. 1 or 5 , and that m_{β} be a positive integer dividing 10 , i.e. $1,2,5$ or 10 . The only ordered pairs of weights to be considered are (α, β) and (β, α) and in either case the condition on A becomes $2 \leq A \leq 3$. Therefore the quantities which have to be integral are

$$
\frac{3 m_{A}}{m_{a}}, \quad \frac{2 m_{\theta}}{m_{a}}, \quad \frac{6 m_{a}}{m_{\beta}} \quad \text { and } \quad \frac{4 m_{a}}{m_{A}}
$$

By considering the two possibilition for m_{a} in turn one may see that the possibilities for the tuple (m_{a}, m_{g}) are

$$
(1,1) \quad(1,2) \quad(5,5) \quad \text { and } \quad(5,10)
$$

so that the structure dingram for X / V is

It is eany to see that there are very fow examples small enough for manual calculation to be a feasible way of finding all valid modules.

1.4 Duality

It was aignificant that the structure diagram for X / V in the example just given had a degree of symmetry; kuch diugrams will always do so. We shall not really use this fact, but an it seeme interenting we give it anyway.

Definition 1.44.

$$
\overline{m_{a}}=|\alpha| / m_{a}
$$

Lemma 1.45 .

If $\Theta\left(m_{a} b_{a} /|\alpha|\right) Z$ is a valid lattice then so is $\Theta\left(\boldsymbol{m}_{a}^{-} b_{\alpha} /|\alpha|\right) Z$.

Prool.

$$
\begin{aligned}
\frac{\overline{m_{\beta}}}{\bar{m}_{\alpha}^{-}}\binom{\beta_{1}}{A}\binom{\beta_{2}}{\alpha_{1}-A} & =\frac{\overline{m_{\beta}}}{\overline{m_{\alpha}^{-}}} \frac{\beta_{1}!\beta_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\beta_{2}-\alpha_{1}+A\right)!} \\
& =\frac{m_{o}}{m_{g}} \frac{\alpha_{1}!\alpha_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\beta_{2}-\alpha_{1}+A\right)!}
\end{aligned}
$$

This justifies

Definition 1.46.

Lemma 1.47.

This is a special case of the duality given by

$$
\mathbf{M}^{*}=\left\{v \in V_{\lambda, \mathbf{Q}}|\langle v, M\rangle\rangle \subseteq \mathbf{Z}\right\}
$$

Proof.

$$
M^{*}=\left\{v=\sum \lambda_{\beta} b_{\beta}, \lambda \in \mathbb{Q} \left\lvert\,\left\langle\left\langle\sum \lambda_{\beta} b_{\beta}, \frac{m_{\alpha} b_{\alpha}}{|a|}\right\rangle\right\rangle \in \mathbf{Z} \forall \alpha\right.\right\}
$$

Recalling, from Lemma 1.34, that
(i) $C(T)=1$ so $\langle\langle x, y\rangle\rangle=\langle x, y\rangle \forall x, y$ and
(ii) $\left(b_{a}, b_{\beta}\right)=|\alpha| \delta_{\alpha g}$,
we have

$$
\begin{aligned}
M^{*} & =\left\{v=\sum \lambda_{\beta} b_{s}, \lambda \in \mathrm{Q} \mid m_{o} \lambda_{\alpha} \in \mathbf{Z} \forall \mathrm{a}\right\} \\
& =\bigoplus_{\alpha} \frac{1}{m_{\alpha}} b_{\alpha} \mathbf{Z}
\end{aligned}
$$

as required.
Notice that $\bar{X}=V$.

1.5 p-locality

This section, unlike the last, is essentinl to our treatment of the problem. We show that to find the valid modules for $\lambda=(r, 0)$ it suffices, in fact, to consider the primes no bigger than r one at a time.

If p is a prime number and x is an integer, we denote by x, the p-part of x, that is, the largest power of p which divides x. By $\nu_{p}(x)$ we mean the exponent of p in x_{p}. That is,

$$
x=x_{p} k=p^{v_{v}(*)} k
$$

for some integer k such that p does not divide k.
Definition 1.48.
Let p be some fixed prime, and let M and N be widid modules with corresponding tuples $\left\{m_{a}\right\}$ and $\left\{n_{a}\right\}$. Then we write

$$
M \sim N
$$

if and only if for each weight α,

$$
\nu_{p}\left(m_{\sigma}\right)=\nu_{p}\left(n_{\alpha}\right) .
$$

This is an equivalence relation. We show that we may take as a set of representatives of the equivalence classes those M such that m_{o} is a power of p for all a; this entails showing that every valid module is equivalent to some valid module the entries in whose tuple are powers of μ.
Deflinition 1.49.
Let M be a valid module with corresponding tuple $\left\{m_{a}\right\}$. For some fixed prime p, let the p-envelope of M be M_{p} with corrosponding tuple $\left\{\left(m_{o}\right)_{p}\right\}$; that is, $M_{p}=\bigoplus\left(\left|m_{a}\right|_{p} b_{a} /|\alpha|\right) \mathbf{Z}$.

Lemma 1.50 .

If M is a valid lattice with basis $\left\{m_{a} b_{a} /|a|\right\}$ and $M f_{p}$ with basis $\left\{m_{a, p} b_{a} /|a|\right\}$ is its p-envelope, then M_{μ} is a valid lattice.

Proof.

It is certainly a \mathbf{Z}-module. Because M is a valid lattice, we know that for all α, β,

$$
\frac{m_{d}}{m_{\mathrm{a}}} \frac{\beta_{1}!\beta_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\beta_{2}-o_{1}+A\right)!} \in \mathbf{Z}
$$

Taking p-parta, we see that

$$
\frac{m_{\beta_{1}}}{m_{\alpha_{1}, p}}\left(\frac{\beta_{1}!\beta_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\beta_{2}-\alpha_{1}+A\right)!}\right)_{p} \in \mathbf{Z}
$$

so certainly

$$
\frac{m_{\rho, p}}{m_{a, p}} \frac{\beta_{1}!\beta_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\beta_{2}-\alpha_{1}+A\right)!} \in \mathbf{Z}
$$

as required.

Lemma 1.51.

M_{p} can be characterised as the smallest valid lattice containing M such that X / M_{p} is a $\mathbf{Z} / p^{\mu} \mathbf{Z}$-module, where p^{μ} is the highest power of p dividing r.

Proof.

Let the tuple corresponding to $M H_{p}$ be $\left\{m_{o}\right\}$, where each m_{a} is a power of p. Certainly $m_{a} \mid r$, so for each a we have $m_{o} \mid \mu^{\mu}$. We must show that X / M_{p} is a $\mathbf{Z} / p^{\mu} \mathbf{Z}$-module, in other words that $p^{\mu} \mathbf{Z}$ annihilates K / M, . Now $p^{\mu} \mathbf{Z X}$ has basis $\left\{p^{\mu} h_{\alpha} /|a|\right\} p^{\mu} Z X \subseteq M_{p}$ as required.

In fact, X / M is a $\mathbf{Z} / p^{\mu} \mathbf{Z}$-module if and only if $M=M_{p}$, that is, all coefficients m_{a} are powers of $p . M_{p}$ is the smallest such module containing M.

Lemma 1.62.

M is the interspetion over all primest of its p-enveloper,

Proof.

Let the tuple corresponding to M_{p} be $\left\{m_{a}\right\}$. Let $\left\{n_{a}\right\}$ be the tuple corresponding to $\bigcap_{p} M_{p}$. Then

$$
\forall o \forall p n_{a, p}=m_{a, p}
$$

by Remark 1.42
Since Lemma 1.50 shows that any penvelope im a valid lattice in ita own right, any intersection of p-lattices is also a valid lattice. We thave shown that any valid lattice in an intersection of \boldsymbol{p}-anvelopes. Therefore it sufficea to study the poasible p-envelopes for each prine p in turn, and from here on we nhall do so. We shall fixa prime p, and whall mensume that the \boldsymbol{m}_{a} are powers of p. Therefore we shall often talk ulout the tuple $\left\{\nu_{p}\left(m_{a}\right)\right\}$, rather than $\left\{m_{a}\right\}$. We shall attempt to make it clear at each atage what is meant by 'the tuple'!

Notice that, for each $p, X=X_{p}$, but that $V \neq V_{p}$ except in trivial cases, and that for any valid module M we lanve

$$
V_{p} \subseteq M_{p} \subseteq X
$$

Thua we shall be considering the inclusion diagram of valid modules which lie between X and V_{p}, which we refer to as the p-diagram.

We may combine the notions of p-locality and duality to give a duality on the p-diagram.

Deflnition 1.53.

Given a valid module M, with tuple $\left\{m_{a}\right\}$, such that

$$
V_{F} \subseteq M \subseteq X
$$

define $\overline{m_{\alpha}}=|a|_{p} / m_{p}$, and write \bar{M}_{p} for $\Theta_{a} \bar{m}_{a} b_{\alpha} /|\alpha| Z$. Then $\bar{M}=(\bar{M})_{p}$, aince $\left(|\alpha| / m_{\alpha}\right)_{p}=|\alpha| /\left(m_{a}\right)_{p}$.

Lemma 1.64.

\bar{M}_{p} is a valid lattice.
Proof.
The maps $M \mapsto \bar{M}$ and $M f, M_{1}$ each preaerve validity, by Lemma 1.45 and Lemma 1.50. Therefore their composition $M \mapsto \bar{M}$ must also preserve validity.

Notice that $\bar{X}=V_{p}$.
Lemma 1.55.
There in no valid lattice M such that $M=\bar{M}$, except in the trivial case where $X=V_{s}$.

It is possible to prove this directly uring a small amount of number theory; however, in Chapter 3 we shall be able to give a very simple proof using the theory that we shall have developed, we lenve the proof until then.

Corollary 1.56.

Except in the trivial case where $X=V$, there is no valid latice M auch that $M=\bar{M}$.

Proof.
$M=\bar{M}$ if and only if $M=\bar{M}$ for every prime p.

Chapter 2

Simplifying the problem.

In this chapter we shall greatly simplify the problem of finding all valid modulea for given values of r, with the aid of a combinatorial result whose proof occupies most of the chapter. We shall take advantage of the resulta in the previous chapter, which showed that we may consider one prime p at a time, and from here on we shall do so. Thus all copfficients m_{0} are to be considered to be powers of p, for anme arbitrary but locally fixed value of p.

The concept of 'point scoring' is important throughout this chapter:

2.1 Point acoring.

Definition 2.1.

If \boldsymbol{x} and \boldsymbol{y} have \boldsymbol{p}-adic expansions

$$
\begin{aligned}
& x=x_{n} p^{n}+\cdots+x_{1} p+x_{0} \\
& y=y_{n} p^{n}+\cdots+y_{1} p+y_{0}
\end{aligned}
$$

and is an integer, we say that y scores the $i^{\text {th }}$ point in x when

$$
x_{i} p^{\prime}+\cdots+x_{0}<y_{i} p^{\prime}+\cdots+y_{0}
$$

in other words, when there is some integer $j \leq i$ such that $y,>x$, and such that for all k with $j<k \leq t, y_{k}=x_{k}$.

Remark 2.2.

We use the convention that if $i<0$ then y does not score the $i^{\text {th }}$ point in x, whatever the values of x and y, 'becanse the ith point does not exist'. Notice $^{\text {th }}$, that if $t>n$ then y acores the $t^{\text {th }}$ point in x if and only if y scores the $n^{\text {th }}$ point in x.

Deflnition 2.3.

We shall write

$$
x_{p}(i)=x_{1} p^{\prime}+\cdots+x_{v}
$$

and ahall omit the aubscript p when no confusion can result.

We shall need some miscellanfous facts alwout p-adic expansions, which we collect here.

Lemma 2.4.

Whenever $0 \leq y \leq x$ and x, y and $x-y$ have padic expansions

$$
\begin{aligned}
x & =x_{n} p^{n}+\cdots+x_{1} p+x_{0} \\
y & =y_{n} p^{n}+\cdots+y_{1} p+y_{0} \\
(x-y) & =(x-y)_{n} p^{n}+\cdots+(x-y)_{1} p+(x-y)_{0}
\end{aligned}
$$

we have for each ;
$(x-y)_{i}+y_{i}= \begin{cases}x_{i}+p & \text { if } y \text { scores the } i^{10} \text { but not the }(i-1)^{\text {th }} \text { point in } x ; \\ x_{i}-1 & \text { if } y \text { scores the }(i-1)^{\text {th }} \text { but not the } i^{1 / 2} \text { point; } \\ x_{i} & \text { if } y \text { scores neither point; } \\ x_{i}+p-1 & \text { if } y \text { scores both points. }\end{cases}$
and

$$
(x-y)(i)+y(i)= \begin{cases}x(i)+p^{t+1} & \text { if } y \text { scores the } i^{t h} \text { point in } x \\ x(i) & \text { otherwise. }\end{cases}
$$

Deflnition 2.5.

For integers x and y where $y \leq r$, define $\gamma_{p}(x, y)$ as the exponent of p in $\binom{$ a }{ g } .

Lemma 2.6.

$\gamma_{p}(x, y)$ is the number of points scored by y in r.

Proof.

Consider the number of multiplen of p^{\prime} betwern 1 and x inclusive, where $i \geq 0$. This is $\sum_{\nu \geq i} x_{\imath} p^{\mu-1}$; let us write it $n(i, x)$. Now

$$
\begin{aligned}
& n(i, x-y)+n(i, y)=\sum_{\nu \geq 1}(x-y)_{\nu} p^{\nu-1}+\sum_{\nu \geq 1} y_{\nu} p^{\nu-1} \\
& =\sum_{\nu \geq 1}\left((x-y)_{\nu}+y_{\nu}\right) \nu^{\nu-1} \\
& = \begin{cases}n(i, x) & \text { if } y \text { нcores the }(i-1)^{\text {th }} \text { point in } x ; \\
n(i, x)-1 & \text { otherwise, }\end{cases}
\end{aligned}
$$

using Lemma 2.4 and noticing that all wher points scored by y in x are irrelevant, aince they either make no contribution to the exprension or they make two cancelling contributions.

Now $\gamma_{\mu}(x, y)$ is the number of i such thit the second case above holds. For

$$
\gamma_{p}(x, y)=v_{p}(x!)-\nu_{p}(y!)-\nu_{p}((x-y)!)
$$

and for any integer m,

$$
\nu_{P}(m!)=\sum_{i \geq 1} n(t, m)
$$

80

$$
\begin{aligned}
\gamma_{p}(x, y) & =\sum_{i \geq 1}(n(i, x)-n(i, y)-n(i, x-y)) \\
& =\sum_{i \geq 0}(n(i, x)-n(i, y)-n(i, x-y))
\end{aligned}
$$

since y cannot score the $(-1)^{\text {th }}$ point in x, berause this point does not exist, or by inspection.

Definition 2.7.

For integers x and y where $y \leq x$, define $\Gamma_{p}(x, y)$ to be the set of points scored by y in x, so that $: \in \Gamma_{P}(x, y)$ if and only if y scores the $i^{\text {th }}$ point in x, and $\gamma_{p}(x, y)=\left|\Gamma_{y}(x, y)\right|$.

Remark 2.8.

Lemma 2.6 implies that y and $x-y$ score the same pointa in x, that is, that $\Gamma_{p}(x, y)=\Gamma_{p}(x, x-y)$. In fact, it is easy to sce that

$$
y_{1} p^{\prime}+\cdots+y_{0}>x_{0} p^{\prime}+\cdots+x_{0}
$$

if and only if

$$
(x-y)_{i} p^{4}+\cdots+(x-y)_{0}>x_{i} p^{4}+\cdots+x_{0} .
$$

In particular, when we have a weight $a=\left(\alpha_{1}, \alpha_{2}\right)$ where $\sigma_{1}+\alpha_{2}=r$, we see that σ_{1} scores the $i^{\text {th }}$ point in r if and only if σ_{2} does. In this case, we shall often say simply ' a scores the $i^{\text {th }}$ point in r ', and write $i \in \Gamma_{P}(r, a)$.

Lemme 2.9.

$$
\begin{aligned}
& \text { If } r=r_{n} p^{n}+\cdots r_{1} p+r_{u} \text { let } \\
& \qquad \gamma_{p}(r)=\operatorname{man}\{0, n-t\}
\end{aligned}
$$

where t ia the number of confficienten at the right-hand end of the \boldsymbol{p}-adic expanaion which are $p-1$, that ia,

$$
t= \begin{cases}\max \left\{s \mid(\forall u \leq s)\left(r_{s}=p-1\right)\right\}+1 & \text { if } r_{0}=p-1 \\ 0 & \text { otherwise }\end{cases}
$$

or more simply, $t=\nu_{p}(r+1)$. Then there is some weight $\alpha=(r-i, i)$ for which the exponent of p in $|\alpha|$, that is, $\gamma_{p}\left(r, \alpha_{1}\right)=\gamma_{p}\left(r, \alpha_{2}\right)$, is $\gamma_{p}(r)$, and this is the highest exponent of p in the size of any weight, i.e.

$$
\forall \beta \in A \quad|\beta|_{P} \leq|\alpha|_{F}
$$

Proof.

By Lemma 2.6, $\nu_{p}(|\alpha|)=\gamma_{p}\left(r, \alpha_{1}\right)$ is the number of integers m such that $r(m)<\alpha_{1}(m)$. Any such m must be at least t. Moreover, n cannot be such an m_{1} aince $\alpha_{1}<r$. Therefore, $\gamma_{p}\left(r, \alpha_{1}\right) \leq n-t$.

Now if $n-t \leq 0$ then $\gamma_{\mu}(r)=0$, so, for example, $\alpha_{2}=1$ will do. Assume that $n-t>0$, and set

$$
\left(\alpha_{1}\right)_{i}= \begin{cases}p-1 & 0 \leq i<n \\ r_{n}-1 & i=n\end{cases}
$$

Then $\gamma_{p}\left(r, \alpha_{1}\right)=n-1$ as required. In fact, this value of α_{1} is the largest which satisfies the condition.

Informally, then, $\gamma_{\boldsymbol{f}}(r)$ is the largest number of points which can be scored in r by any weight a. We write $\Gamma_{r}(r)$ for the set of all points which can be scored in r, so that $\left|\Gamma_{p}(r)\right|=\boldsymbol{\gamma}_{p}(r)$.

2.2 A combinatorial result.

Take some fixed values of r nad p. For every pair of weights, a and β, there is a certain set of points, that in, a certain subset of $\{0, \ldots, n\}$ where $r=$ $r_{n} p^{n}+\cdots+r_{0}$, which turns out to have great importance.

Definition 2.10.

For any weights a and β, let $K_{p}(\alpha, \beta)$ be the set of points scored in r by β but not by α. That is,

$$
\begin{align*}
K_{p}(\alpha, \beta) & =\Gamma_{p}(r, \beta) \backslash \Gamma_{p}(r, \alpha) \\
& =\left\{: \mid \alpha_{1}(i) \leq r(1)<\beta_{1}(1)\right\} \tag{CF}
\end{align*}
$$

Denote the size of thin set by $h_{p}(\sigma, \beta)$. As usual, we shall omit the aubacript p when no confusion can result.

Of course, the expression in ($C F$) is by no menns unique; Lemma 2.4 shows us that either aubscript 1 , or both, may be replared by 2 without altering the set.

The motivation for this definition is the following rather unlikely-looking combinatorial reault, to whose proof and consequencea the remainder of this chapter is devoted. Notice that only the size $k(\alpha, \beta)$ of $K(\alpha, \beta)$ occurs in the statement; however, the set $K(\alpha, \beta)$ will be important in the proof. Other sets of points will also appear.

Theorem 2.11.

Whenever $a_{1}-\beta_{2} \leq A \leq \min \left(a_{1}, \beta_{1}\right)$,

$$
\begin{aligned}
p(A) & \stackrel{\text { def }}{=} \nu_{p}\left(\frac{\alpha_{1}!\alpha_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\beta_{2}-\alpha_{1}+A\right)!}\right) \\
& \geq k(\alpha, \beta)
\end{aligned}
$$

Moreover, there is some value of A within these limits such that

$$
p(A)=k(\alpha, \beta)
$$

Remark 2.12.
Notice that

$$
p(A)=\nu_{p}\binom{\alpha_{1}}{A}+\nu_{p}\binom{\alpha_{2}}{\beta_{1}-A}
$$

and that

$$
\binom{\alpha_{2}}{\beta_{1}-A}=\binom{\alpha_{2}}{\alpha_{2}-\beta_{1}+A}
$$

By Lemma 2.6,

$$
\begin{aligned}
p(A) & =\gamma_{p}\left(\alpha_{1}, A\right)+\gamma_{p}\left(\alpha_{2}, \alpha_{3}-\beta_{1}+A\right) \\
& =\gamma_{p}\left(\alpha_{1}, A\right)+\gamma_{p}\left(\alpha_{2}, s\right)
\end{aligned}
$$

where we have set $A=\alpha_{2}-\beta_{1}+A=\beta_{2}-\alpha_{1}+A$. Then when A is $\alpha_{1}-\beta_{2}$, its minimal value, s, is 0 , and thercafter s increnses by 1 whenever A docs. We shall consider starting with $s=0$ and increasing s to find the value of s and hence A which the lemma requires.

Lemma 2.13.

Whenever $\alpha_{1}-\beta_{2} \leq A \leq \min \left(a_{1}, \beta_{1}\right)$,
(i)

$$
p(A) \geq k(\alpha, \beta)
$$

(ii)

$$
h^{\prime}(\alpha, \beta) \subseteq \Gamma_{p}\left(\alpha_{1}, A\right) \cup \Gamma_{p}\left(\alpha_{2}, s\right)
$$

Proof.

In view of Remark 2.12, we ser that our clain is that for each A in the required range, and for the corresponding s,

$$
k(\alpha, \beta) \leq \gamma_{p}\left(\alpha_{1}, A\right)+\gamma_{p}\left(\alpha_{2}, s\right) .
$$

We shall prove the apparently stronger set theoretic result, part (ii), that

$$
K(\alpha, \beta) \subseteq \Gamma_{p}\left(\alpha_{1}, A\right) \cup \Gamma_{p}\left(\alpha_{2}, s\right)
$$

then we shall have

$$
\begin{aligned}
k(\alpha, \beta) & =\left|K\left(\alpha_{1}, \beta\right)\right| \\
& \leq\left|\Gamma_{p}\left(\alpha_{1}, A\right) \cup \Gamma_{P}\left(\alpha_{2}, s\right)\right| \\
& \leq\left|\Gamma_{p}\left(\alpha_{1}, A\right)\right|+\left|\Gamma_{p}\left(\alpha_{2}, s\right)\right| \\
& =\gamma_{p}\left(\alpha_{1},-A\right)+\gamma_{p}\left(\alpha_{2}, s\right)
\end{aligned}
$$

which gives part (i), as tequired.
Suppose that,$\in K(\alpha, \beta)$, that is, that the $i^{t^{t h}}$ point is scored in r by β and not by α, and suppose that $i \notin \Gamma_{p}\left(\alpha_{1}, A\right)$, that is, that A does not score the $i^{i t h}$ point in α_{1}. We show that in this case $1 \in \Gamma_{p}\left(\alpha_{2}, s\right)$, that is, that s must score the ${ }^{\text {th }}$ point in α_{2}.

We have

$$
\begin{equation*}
A(i) \leq \alpha_{1}(i) \leq r(i)<\beta_{1}(i) . \tag{*}
\end{equation*}
$$

Then

$$
\begin{aligned}
s(i) & =\left(A-\beta_{1}+\alpha_{2}\right)(i) \\
& = \begin{cases}I\left(A+\alpha_{2}\right)(i)-\beta_{1}(i)+p^{i+1} & \text { if } \beta_{1} \text { scores the } i^{i t h} \text { point in } A+\alpha_{2} \\
\left(A+\alpha_{2}\right)(i)-\beta_{1}(i) & \text { otherwise }\end{cases}
\end{aligned}
$$

and, expanding further,

$$
\left(A+\alpha_{2}\right)(i)= \begin{cases}A(i)+\alpha_{2}(i)-p^{1+1} & \text { if } \alpha_{2} \text { scores the } i^{\text {th }} \text { point in } A+\alpha_{2} \\ A(i)+\alpha_{2}(i) & \text { otherwise. }\end{cases}
$$

We need to show that scores the $i^{\text {th }}$ point in α_{2}, which is ao if and only if $s(i)-\sigma_{2}(i)>0$. Now

$$
s(i)-\alpha_{2}(i)= \begin{cases}A(i)-\beta_{1}(i)+p^{i+1} & \text { if } i \in \Gamma_{P}\left(A+\alpha_{2}, \beta_{1}\right) \backslash \Gamma_{p}\left(A+\alpha_{2}, \alpha_{2}\right) ; \\ A(i)-\beta_{1}(i)-p^{i+1} & \text { if } i \in \Gamma_{P}\left(A+\alpha_{2}, a_{2}\right) \backslash \Gamma_{P}\left(A+\alpha_{2}, \beta_{1}\right) \\ A(i)-\beta_{1}(i) & \text { otherwise. }\end{cases}
$$

Since by equation (*) we know that

$$
-p^{1+1}<A(i)-\beta_{1}(1)<0
$$

we need to show that the first case holds, that is, that

$$
i \in \Gamma_{p}\left(A+\alpha_{2}, \beta_{1}\right) \backslash \Gamma_{p}\left(A+\alpha_{2}, \alpha_{2}\right) .
$$

We show first that $: \notin \Gamma_{p}\left(A+\alpha_{2}, \alpha_{2}\right)$, that is, that α_{1} does not score the $z^{\text {th }}$ point in $A+\sigma_{\mathbf{2}}$. Now by equation (*) $A(i) \leq \alpha_{1}(i)$ so

$$
\begin{equation*}
A(i)+\alpha_{2}(i) \leq \alpha_{1}(i)+\alpha_{2}(i)=\Gamma(i)<p^{i+1} \tag{**}
\end{equation*}
$$

by the asaumption that $i \notin \Gamma_{p}(r, o)$. Therefore

$$
\begin{equation*}
\alpha_{2}(i) \leq A(i)+\alpha_{2}(i)=\left(A+\alpha_{2}\right)(i) \tag{***}
\end{equation*}
$$

as required. To see that $: \in \Gamma_{p}\left(A+\alpha_{2}, \beta_{1}\right)$ notice that we have shown that

$$
\begin{aligned}
\left(A+\alpha_{2}\right)(i) & =A(i)+\alpha_{2}(i) \quad \text { by }(++*) \\
& \leq r(i) \quad \text { by }(* *) \\
& <B_{1}(i) \quad \text { by }(*) .
\end{aligned}
$$

All that we have to do now, in order to prove Theorem 2.11, is to construct some value of A in the given range surh that $p(A)=k(\alpha, \beta)$. In view of the set containment

$$
K(\alpha, \beta) \subseteq \Gamma_{p}\left(\alpha_{1}, A\right) \cup \Gamma_{p}\left(\alpha_{2}, s\right)
$$

which we have just established, this is equivalent to constructing an A in the given range such that

$$
K\left(\alpha_{1}, \beta\right)=\Gamma_{p}\left(\alpha_{1}, A\right) \cup \Gamma_{p}\left(\alpha_{2}, s\right) .
$$

We must now introduce the next set of points.
Definition 2.14.
Denote by i($\alpha, \beta)$ the initial value of

$$
\nu_{P}\left(\frac{\alpha_{1}!\alpha_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\beta_{2}-\alpha_{1}+\bar{A}\right)!}\right)
$$

that is, the value of thin expression when $A=\alpha_{1}-\beta_{2}$ and $s=0$. Thus $i(\alpha, \beta)=p\left(\alpha_{1}-\beta_{2}\right)$. By Remark 2.12,

$$
I(\alpha, \beta)=\gamma_{p}\left(\alpha_{1}, \alpha_{1}-\beta_{2}\right)+\gamma_{p}\left(\alpha_{2}, 0\right)
$$

and so we may regard $i(\alpha, \beta)$ as $|I(\alpha, \beta)|$ where

$$
I(\alpha, \beta)=\Gamma_{p}\left(\alpha_{1}, \alpha_{1}-\beta_{2}\right) \cup \Gamma_{7}\left(\alpha_{1}, 0\right),
$$

the union being guaranteed to be disjoint since $\Gamma_{p}\left(a_{2}, 0\right)=\varnothing!$
The reason for writing $I(\alpha, \beta)$ in this apparently perverse way is that it shows that it is the set of points initially seored either by A in σ_{1} or by s in a_{2}. We may informally regard $a_{1}-\beta_{2}, 0$ and the set I as our first approximation to the required values of A_{1}, s and the set K. We have $p\left(\alpha_{1}-\beta_{2}\right)=I$, we require $p(A)=K$. We also know, ns a special case of Lemma 2.13 that $K \subseteq I$. If we are lucky enough to find that $K=I$, then $A=\alpha_{1}-\beta_{2}$ (and hence $s=0$) satiafy (\dagger), and we are done.

Of course, we shall also require the more straightforward expressions for I(α, β), namely

$$
I(\alpha, \beta)=\Gamma_{p}\left(\alpha_{1}, \alpha_{1}-\beta_{2}\right)=\Gamma_{p}\left(\alpha_{1}, \beta_{2}\right)
$$

Defnition 2.15.

Denote by $R L(\alpha, \beta)$ the set $I(\alpha, \beta) \backslash \hbar(\alpha, \beta)$, and let $r(\alpha, \beta)=|R L(\alpha, \beta)|$, In other words, $i \in R L$ if and only if cither

$$
r(2)<\alpha_{1}(\theta)<\beta_{2}(1)
$$

or

$$
\alpha_{1}(i)<\beta_{2}(i) \leq r(i) .
$$

This is the set of points which are required losses; for, since $K \subseteq I$,

$$
I=K^{\prime} \cup R L .
$$

Notice that $R L=\varnothing$ if and only if $I=\boldsymbol{K}$; that is, our initial value of \boldsymbol{A} satisfies (t) if and only if there are no required losses. In gencral, we must tinker with our value of A (and hence s) in such a way as to produce a net lose of $r l(a, \beta)$ points. In other words, if A satisfies (\dagger) then

$$
p(A)=p\left(\alpha_{1}-\beta_{2}\right)-r l(\alpha . \beta) .
$$

Remark 2.16.

Notice that we cannot kerp matirely to set notation beranse in general

$$
\Gamma_{p}\left(\alpha_{1}, A\right) \cap \Gamma_{p}\left(\kappa_{2}, s\right) \neq \varnothing .
$$

although we have seen that this intersection in empty both for $A=\alpha_{1}-\beta_{2}$ and for any value of A which satisfies (\dagger). There is no generally useful notion of a set $P(A)$ which would have size $p(A)$; the obvinus candidste would have been

$$
\Gamma_{p}\left(\alpha_{1}, A\right) \cup \Gamma_{p}\left(\alpha_{2}, s\right)
$$

but this will have the right size $(p(A))$ only if

$$
\Gamma_{p}\left(\alpha_{1}, A\right) \cap \Gamma_{p}\left(\alpha_{2}, s\right)=\varnothing .
$$

Now let us consider how to construct a value of A which satisfies (\dagger). The obvious approach, aince $R L \subseteq I=\Gamma_{p}\left(\alpha_{1}, \alpha_{1}-\beta_{2}\right)$ and $\Gamma_{p}\left(\alpha_{2}, 0\right)=\emptyset_{1}$, is to look for values of A and s such that

1) $\Gamma_{p}\left(\alpha_{1}, A\right)=I \backslash R L$, and
2) $\Gamma_{P}\left(\alpha_{2}, s\right)=\varnothing$.

Such values would have

$$
\Gamma_{p}\left(\alpha_{1}, A\right) \cup \Gamma_{p}\left(\alpha_{2}, s\right)=I \backslash R L=K
$$

and would therefore atisfy (\dagger). This approach has the merit of merming to disturb our initial situntion as little as powsible. Unfortunately, however, auch a value of A within the required limita will not always exist. We give a aimple example.

Example 2.17.

Let $r=6$ and $p=2$, and consider the weights $a=(4,2)$ and $\theta=(5,1)$. Then, writing in base 2 ,

$$
\begin{aligned}
r & =110 \\
\alpha_{1} & =100 \\
\alpha_{2} & =010 \\
\beta_{2} & =001
\end{aligned}
$$

so we have $I=\{0,1\}$, since β_{2} acoren the zrroth and firat points in o_{1}, and $K=\{0\}$, since β acorea the zeroth paint in r and a acores no points in r; that is,

$$
\Gamma_{p}\left(r_{1} \beta\right) \backslash \Gamma_{p}(r, \alpha)=\{0\} \backslash \varnothing=\{0\}
$$

Therefore $R L=\{1\}$; in particular, it is not empty, so the initial value, 3, of A will not do. Now the range condition on A is

$$
\alpha_{1}-\beta_{2} \leq A \leq \min \left\{\alpha_{1}, \beta_{1}\right\}
$$

which here becomes $3 \leq A \leq 4$, so we can only consider $A=4$. Then $\Gamma_{p}\left(\alpha_{1}, 4\right)=\Omega$ and $\Gamma_{p}\left(a_{2}, s\right)=\{0\}$, so $p(4)=\{0\}=K$ as required (that is, this is not a counter-example to Theorem 2.11!) but not in the obvious way just described.

Therefore we must be alightly less ambitious. Notice that

$$
\begin{aligned}
\{0, \ldots, n-1\} & =I \cup(\{0, \ldots, n-1\} \backslash I) \\
& =K \cup R L \cup(\{0, \ldots, n-1\} \backslash I)
\end{aligned}
$$

We shall ensure that for every point 2 , that is, for every $i \in\{0, \ldots, n-1\}$, exactly one of the following holds: (Conditions A)

A1) $i \in K$ and either $i \in \Gamma_{p}\left(\alpha_{1}, A\right)$ or $i \in \Gamma_{p}\left(\alpha_{2}, s\right)$, but not both;
A2) $i \in R L$ and $i \notin \Gamma_{p}\left(\alpha_{1}, A\right) \cup \Gamma_{p}\left(\alpha_{2}, s\right)$; or
A3) $: \in\{0, \ldots, n-1\} \backslash I$ and $i \notin \Gamma_{p}\left(\sigma_{1}, A\right) \cup \Gamma_{p}\left(\alpha_{2}, s\right)$.
Then we shall have ensured that

$$
K(a, \beta)=\Gamma_{p}\left(\alpha_{1}, A\right) \uplus \Gamma_{p}\left(\alpha_{2}, s\right),
$$

which is (\dagger), as required. Notice that with $A=\alpha_{1}-\beta_{2}$ and $s=0$, points in \mathbb{K} satisfy $\mathbf{A} 1$ and points in $\{0, \ldots, n-1\} \backslash I$ sntisfy $A 3$; the problem ia that points in RL do not satisfy A2.

Our procedure will be to inctease A, had lience A, in an attempt to find values which aatisfy Conditions A. We sladl only check that $A \leq r$, not that $A \leq \min \left\{\alpha_{1}, \beta_{1}\right\}$. It so happras that A will then automatically lie in the correct range. It will be at least $n_{1}-\beta_{2}$ since it is found by adding a, at least 0 , to $\alpha_{1}-\beta_{2}$. Now, $A>\alpha_{1}$ if and only if A acores the $n^{\text {th }}$ point in α_{1} (recall that the $n^{\text {t/ }}$ is the leading coefficient of r, and since we do insist that $A \leq r$ we ace that $A(n)=A)$. Similarly, $A>\beta_{1}$ if aud only if $s=A-\left(\alpha_{1}-\beta_{2}\right)>\sigma_{2}$, which is true if and only if s scores the $n^{\prime \prime}$ point in σ_{2}. For either of these to be true, given that A satiafies the conditions above, the $n^{\text {th }}$ point must be acored in r by β and not by a. But thia implier that ϕ_{1} aud β_{2} are greater than r, which in not true.

In order to work with practical examples, we alanll nerel to be able to identify the seta I, K, and $R L$. We slanll nevd only limited extra information about the p-adic expansions of the integere involved. We know that $I=\Gamma_{\rho}\left(\alpha_{1}, \beta_{2}\right)$, that $K=\Gamma_{p}(r, \theta) \backslash \Gamma_{p}\left(r_{1}, \alpha\right)$, and that $R L=I \backslash K$. Therefore we shall need to be able to identify the three mety of points $\Gamma_{p}\left(\sigma_{1}, \beta_{2}\right), \Gamma_{p}(r, n)$, and $\Gamma_{p}(r, \beta)$. In
other words, for every,$\in\{0, \ldots, n\}$ we need to be able to answer the following three questions:

1) Is $i \in \Gamma_{j}\left(\alpha_{1}, \beta_{7}\right)$, that is, is iscored by β_{2} in α_{1} ?
2) Is $i \in \Gamma_{p}(r, a)$, that in, is iscored by a_{1} in r ?
3) Is $i \in \Gamma_{p}(r, \beta)$, that is, is a scored by β_{2} in r ?

We deacribe $\Gamma_{p}(r, \alpha)$ as the set of points scored by α_{1} (rather than α_{2}) in r, and $\Gamma_{p}\left(r_{1} \beta\right)$ as the set of points acored by β_{2} (rather than β_{1}) in r in order to make it plain that we can deduce this set of information from the p-adic expansions of r, α_{1} and β_{2} alone. Recall that Lemma 2.4 showed that $\Gamma_{p}\left(r, \alpha_{1}\right)=\Gamma_{p}\left(r, \alpha_{2}\right)$ for any r, a and p, so this is legitimate.

We shall use the nutation

$$
\begin{aligned}
& \checkmark \\
& \text { : } \times \\
& \checkmark
\end{aligned}
$$

to indicate that β_{2} scoren the $;^{\text {th }}$ point in $\alpha_{1}(\operatorname{top} \sqrt{ })$, α_{1} does not score the $i^{\text {th }}$ point in r (middle \times) and β_{2} scores the $i^{\text {tit }}$ paint in r (bottom \checkmark). Notice that the patterns

\checkmark		\times
i) $\sqrt{ }$	And	$i: \times$
\times		\checkmark

cannot occur. For example, if the first of these held then we would have

$$
\begin{array}{ll}
\beta_{2}(i)>\alpha_{1}(i) & \text { since } i \in \Gamma_{p}\left(\alpha_{1}, \beta_{2}\right) \\
a_{1}(i)>r(1) & \text { mince } i \in \Gamma_{p}(r, \alpha)=\Gamma_{p}\left(r, \alpha_{1}\right)=\Gamma_{p}\left(r, \alpha_{2}\right) \\
\beta_{1}(i) \leq r(1) & \text { since }: \in \Gamma_{p}(r, \beta)=\Gamma_{p}\left(r, \beta_{1}\right)=\Gamma_{p}\left(r, \beta_{2}\right) \tag{3}
\end{array}
$$

These atatements are inconsiatent, for example, in that from (1) and (2) we may deduce that $\beta_{2}(t)>r(i)$, contradicting (3). The other case is nimilar.

It is easy to see that the patterna which show that $i \in R L$, that is, that the $\mathrm{t}^{\text {th }}$ point is a required losm, are

that the patterns which nhow that $i \notin I$, that is, that the $\mathrm{I}^{\text {th }}$ point in not acored initially are

and that the pattern

$$
\begin{array}{r}
\downarrow \\
\mathbf{V}: \begin{array}{l}
\text { ® }
\end{array} \\
\sqrt{2}
\end{array}
$$

shown that $t \in K$, that is, that the $\boldsymbol{s}^{\text {th }}$ point is initially scored, but is not a required losa.

2.3 Blocks.

We look at the p-adic expansion of $\alpha_{1}-\beta_{2}$, our initial value of A, and split it into blocks where the left-hand end of each block (except the leftmost block, that which includea the $n^{\text {ath }}$ point) is a required loss, and the block contains no other required loss, thmigh it may include points i $\in \boldsymbol{K}$, where the pattern is

$$
\begin{aligned}
& i: x \\
& \\
& \sqrt{\prime}
\end{aligned}
$$

that in, where a point is initially scored, but is not a required loss. More formally:

Definition 2.18.
The subsequence $B=\{k, k-1, \ldots, j+1\} \subseteq\{n, \ldots, 0\}$ is a block if and only if

1) $B \cap R \subset=\{k\}$ unless $k=n$, in which case $B \cap R L=\theta_{\text {; }}$ and
2) $j=-1$ or $j \in R L$.

Plainly, then, the blocks partition $\{n, \ldots, 0\}$. Because the block which includes \boldsymbol{n} is the only one which doen not contain any required loss, that in, which has empty interaction with $R L$, we shall refer to this block as the improper block, and to any other block: as proper blocks.

Notice that if there in no proper block then $R L=\varnothing$, that is, the initial value $\alpha_{1}-\beta_{2}$ of A itaelf satisfies (1). From now on, we shall assume that this is not the case; we shall assume that the improper black in not the first block

We now introduce an exnmple which we shall follow for the remainder of the proof of Theorem 2.11, since it illustrates mont of the points that we shall discuas.

Example 2.19.

Let $p=2$ and let $r=42$. Consider the weighta $a=(33,9)$ and $\beta=(36,6)$. Then we need to know the p-adic expmanions of r, of α_{1} and of β_{2}. In base 2,

$1=$	5	4	3	2	1	0
=	1	0	1	0	1	0
$\alpha_{1}=$	1	0	0	0	0	1
$\beta_{2}=$	0	0	0	1	1	0
Is $i \in \Gamma_{p}\left(\alpha_{1}, \beta_{2}\right)$?	\times	\checkmark			\checkmark	\times
Is,$\in \Gamma_{F}(r, \alpha)$?	\times	\times			\times	\checkmark
Is i $\in \Gamma_{p}\left(r_{1}, \beta\right)$?	\times	\times	\times	\checkmark	\times	\times

We show the information, which is easy to check, that

$$
\begin{aligned}
I & =\{4,3,2,1\} \\
R L & =\{4,3,1\} \\
K & =\{2\} .
\end{aligned}
$$

The vertical lines aeparate the blocks from one another; thus in this case the improper block is $\{5\}$ and there are three proper blocks, nanely $\{4\},\{3,2\}$ and $\{1,0\}$.

We shall deal with each block in turn, sterting from the right hand end.

Definition 2.20.

We shall consider a block $B=\{k, \ldots j+1\}$ dealt with by coefficients A_{k}, \ldots, A_{0} and s_{i}, \ldots, s_{0} if when we define $A^{(B)}$ by

$$
A_{i}^{(B)}= \begin{cases}A_{i} & \text { if } 0 \leq i \leq k \\ \left(\alpha_{1}-\beta_{2}\right)_{i} & \text { if } k<i \leq n\end{cases}
$$

and $s^{(B)}$ by

$$
A^{(B)}(i)= \begin{cases}A(1)-\left(\alpha_{1}-\beta_{2}\right)(2)\left(\bmod p^{1+1}\right) & \text { if } 0 \leq i \leq k \\ 0 & \text { if } k<i \leq n\end{cases}
$$

then for all i with $0 \leq i \leq k$ exactly one of Conditions A holds.
Notice that, when the block B is dealt with, so, too, is every block to the right of it; thim ia implied by our definiaion of 'dealt with', ws well as our declared intention. If we can successfully follow this procedure and deal with every block, when we have dealt with the improper block we shall have found a value of A to satiafy (t).

As the notation we have used suggests, we shall, in fact, never need to backtrack beyond the limits of the block with which we are currently dealing; once we have decided on coffficients of A and s in a particular block, we shall never need to alter our deciaion. More formally, let B_{1} and B_{2} be blocks, say
$B_{1}=\left\{k_{1} \ldots j_{1}+1\right\}$ and $B_{2}=\left\{k_{2}, \ldots j_{2}+1\right\}$, where $k_{2}<j_{1}+1$, that in, where B_{2} lies to the right of B_{1}. Then our procedure will have the property that $A_{j}^{\left(B_{1}\right)}=A_{j}^{\left(B_{2}\right)}$ for all j such that $0 \leq j \leq k_{2}$.

We now have the vocabulary to describe an algorithm to give the required values of A and s. Given values of r, p, α and β,

1) Write out the p-adic expansions of r, a_{1} and β_{2}.
2) Work out the tick/cross patterns for each point.
3) Find the partition into blocks.
4) Identify any block $B=\{k, \ldots j+1\}$ which satisfies the following conditions:
(a) $\beta_{1 t}=r_{k}$;
(b) $k-1>j$ and the patterns in places k and $k-1$ are

$\sqrt{2}$	\times
\times	$k-1:$$\times$ \times
\times	

and label any such blocks 'Problem Type 1'.
5) Identify any block $B=\{k, \ldots, j+1\}$ which satisfies the following conditions:
(a) $\alpha_{1 k}=0$;
(b) $k-1>j$ and the patterns in places k and $k-1$ are

and label any such blocks 'Problem Type 2'
Notice that no block can be of both Problem Type 1 and Problem Type 2, and that the improper block is of neither problem type, since $n \notin R L$.
6) Write out the p-adic expansion of $\sigma_{1}-\beta_{2}$.
7) Look at each block in turn from the right. Let the furrent block be $B=$ $\{k, \ldots j+1\}$. Define the coefficients A_{k}, \ldots, A_{j+1} as follows, according to the type of the block.
7(i) If B is of neither problem type, then wet

$$
A_{i}= \begin{cases}\left(\alpha_{1}-\beta_{2}\right)_{i}+1 & \text { if } t=j+1 \neq k, \text { or if } i=j+1=k=n \\ 0 & \text { if } i=k \neq n \\ \left(\alpha_{1}-\beta_{2}\right)_{i} & \text { otherwise }\end{cases}
$$

7(ii) If B is of Problem Type 1, then
a) find the largest $\nu \leq k$ such that pither $\beta_{2 \nu} \neq r_{\nu}$, or the pattern in not

$$
\nu-1: \sqrt{i}
$$

\times
call this value $\nu(B)$. Notice that such a value of ν will alwnye exist and will be in B, aince $\nu=j+1$ will always satisfy the second condition. For if $j=0$ then there is no $(j-1)^{\text {at }}$ point, and if $j>0$ then by the block definition $j \in R L$, and cannot have the given pattern.
b) Set

$$
A_{i}= \begin{cases}\left(\alpha_{1}-\beta_{2}\right)_{i}+1 & \text { if } i=j+1 \neq \nu \\ 0 & \text { if } \nu \leq i \leq k \\ \left(\alpha_{1}-\beta_{2}\right)_{i} & \text { otherwise } i\end{cases}
$$

7 (iii) If \boldsymbol{B} is of Problem Type 2, then
a) find the largest $\nu \leq k$ such that cither $0_{1 \nu} \neq 0$, or the pattern is not

$$
\nu-1: \frac{\sqrt{x}}{\sqrt{2}}
$$

call this value $u(B)$.
Notice, again, that such a value of ν will always exist and will be in B, since $\nu=j+1$ will always atisfy the second condition. For if $j=0$ then there is no $(j-1)^{\text {at }}$ point. and if $)>0$ then by the block definition $j \in R L$, and cannot have the given pattern.
b) Set

$$
A_{i}= \begin{cases}\left(\alpha_{1}-\beta_{2}\right)_{1}+1 & \text { if } 1=j+1 \neq \nu(B) \\ 0 & \text { if } \nu(B) \leq i \leq k \\ \left(\alpha_{1}-\beta_{2}\right)_{1} & \text { otherwise. }\end{cases}
$$

Then define the other coefficients of $A^{(m)}$ by actting any copfficients to the right of B to the values already found in previous iterations, and any to the left of B to the corresponding roefficient of $\sigma_{1}-\beta_{2}$. That is, if B is the firat block, $(j=-1)$, define

$$
A_{1}^{(B)}= \begin{cases}A_{1}, & \text { if } i \in B \\ \left(O_{1}-A_{2}\right), & \text { otherwise }\end{cases}
$$

Otherwise, recursively define

$$
A_{i}^{(B)}= \begin{cases}A_{1} & \text { if } i \in B \\ A_{i}^{\left(B^{-}\right)} & \text {otherwise }\end{cases}
$$

where B^{-}is the block to the right of B

Example 2.21.

We have already carried out steps 1 to 3 of the algorithm. We now demonstrate the rest.
4) The only block of Problem Type 1 is $\{1,0\}$.
5) The only block of Problem Type 2 is $\{3,2\}$.
6) $\alpha_{1}-\beta_{2}=27=011011 \mathrm{in}$ base 2.
7) In the block $\{1,0\}$, we have $\nu(B)=0$; in block $\{3,2\}$ we have $\nu(B)=2$. Therefore the algorithm given

$i=$	5	4	32	1	0
$r=$	1	0	10	1	0
$\alpha_{1}=$	1	0	00	0	1
$\beta_{2}=$	0	0	01	1	0
Is $: \in \Gamma_{p}\left(\alpha_{1}, \beta_{3}\right)$?	\times	\checkmark	$\checkmark \checkmark$	\checkmark	\times
Is $i \in \Gamma_{p}(r, a)$?	\times	\times	\times	\times	\checkmark
Ls $i \in \Gamma_{p}(r, \beta)$?	\times	\times	$\times \sqrt{ }$	\times	\times
$\alpha_{1}-\beta_{2}=$	0	1	10	1	1
$A^{(0,0))}=$	0	1		0	0
$A^{(\{3,2\})}=$	0	1		0	0
$A^{(f a t)}=$	0	0		0	0
$A=A^{(8])}=$	1	0		0	0
$s=$	0	0	01	0	1

It in now easy to check that $\Gamma_{p}\left(\alpha_{1}, A\right)=\varnothing$ and $\Gamma_{p}\left(\alpha_{2}, s\right)=\{2\}$, so that

$$
K\left(\alpha_{1}, \beta\right)=\Gamma_{p}\left(\alpha_{1}, A\right) \cup \Gamma_{p}\left(\alpha_{2}, a\right),
$$

which is (\dagger), as required.
The reader may eare to try other examplex. Observe that following the agorithm is a purely tuechanieal procedure, which ran be done for any example; we have done what little was necersary to show it well-defined. It remaina to prove that it works, that is, that the value of A which it produrea does antiafy (\dagger).

Our proof is by induction. We whall take ne our induction hypothesis that every block (possibly there are nour) to the right of the current block, B, has been dealt with by chonsing cocffrimets accorcling to the mgorithm, and we shall show that applying the algorithm to B given in value $A^{(B)}$ which renders B dealt with. Becnume we shall at every ntage consider the posaibility that the
current block is the first, the same aet of proofs will found the induction and build it.

2.5.1

The easiest part of the procedure is to show that once n block has been dealt with, it stays dealt with.

Lemma 2.22.

Suppose that the block $B=\{i, \ldots, j+1\}$ has been dealt with by coefficients A_{4}, \ldots, A_{0} and s_{k}, \ldots, s_{0}. Then, whatever the valuen of s_{1} in the definition

$$
A_{i}^{\prime}=\left\{\begin{array}{ll}
A_{i} & \text { if } 0 \leq 1 \leq k \\
x_{i} & \text { if } k<1 \leq n
\end{array},\right.
$$

the two conditiona in the definition of 'dealt with' ntill hold.

Proof.

The first condition refers only to the values of A, and s, where $0 \leq i \leq k$, so ita truth in independent of higher coefficients. The same is true, albeit with a level of indirection, of the second condition, sinee for earh of Conditions A one can check whether isatisfies it without referring to corfficients higher than t.

Since applying atep 7 of the algorithm to a block doen not involve altering any coefficient to the right of that block, it will rewult in the block being dealt with if we can show that each proint in the block natinfien the two conditions of the definition. There ia no nerd to cherk that pointa to the right of the block still do so.

2.9.2

In order to prove the induction hypothesim, we now liave to cherk, for every point in the current block, whether it ia true that it natinfles exartly one of Conditions A with $A=A^{(t)}$, the valur given by the nlgorithm. However, we may have changed only n few of the coctficiente A_{1} in the blork fron their initial values, $\left(\alpha_{1}-\beta_{2}\right)$. We ran thke malvantage of thin fact.

We separate the pointen to be checked intorwor seta; thone; at the left-handend of the block auch that A_{1} in ert to 0 hy the algorithin ($P(B)$), nucl the reat ($Q(B)$). More precierly,
(1) If B is proper and of neither Problem Type then $P(B)=\{k\}$, and $Q(B)=$ $B \backslash P(B)$.
(ii) If B is of Problen Type 1 or 2 then $P(B)=\{k, \ldots, \nu(B)\}$ and $Q(B)=$ $B \backslash P(B)$.
(iii) If B is improper then $P(B)=\emptyset$ and $Q(B)=B$

Of course, $Q(B)$ may be empty, provided that B is proper; indeed, since in this case $k \in P(B)$, we see that if the proper block B comprises just one point, then $Q(B)$ must be empty.

We may rephrase our definition of $A^{(B)}$ to take advantage of the new notation.

Whatever the problem type of B (Problem Type 1,2 or neither), set

$$
A_{i}^{(B)}= \begin{cases}\left(\alpha_{1}-\beta_{2}\right)_{i}+1 & \text { if } j+1=i \in Q(B) \\ \left(\alpha_{1}-\beta_{2}\right)_{i} & \text { if } j+1 \neq i \in Q(B) \\ 0 & \text { if }: \in P(B)\end{cases}
$$

It ia easy to check that this agreen with the provioun version of the algorithm. The previous version is more convenient for practical purponen; however, this version is more convenient for the purposes of our proof. since it gocs some way towards unifying the consideration of the problem types.

For the same reason of convenience, we sliall act $\nu(B)=k$ in the case that B in a proper block of neither problem type. Then whenever B is a proper hlock, of whatever prohlem type, $\nu(B)=\min (P(B))$. Notice that there is still no value of ν defined for the improper block; nor will there be.

We shall require a couple of preliminary lemana, which we place here.

Lemme 2.23.

Let $B=\{k, \ldots, j+1\}$ be a proper block, and let $A^{(\theta)}$ be the value given by the algorithm. Then
(i) $A^{(B)}(\nu(D))<\left(\alpha_{1}-\beta_{2}\right)(\nu(B))$;
(ii) $A^{(B)}(k)<\left(\alpha_{1}-\beta_{2}\right)(k)$.

Proof.

We shall prove (i) by indurtion, in the shane why that wr prove the nain renult of this chapter. Therefore wr tuke an induction liypothenis that if B is not the firat block then all hlocken to the right of \boldsymbol{D} antinfy this remult.

We see from the algorithm that $A_{v(m)}^{(m)}=0$. Therrfore if $\left(n_{1}-A_{2}\right)_{v(B)}>0$ we are done. Suppome $\left(\sigma_{1}-b_{2} l_{\nu(A)}=0\right.$. Whe conkicler the canen $\nu(B) \in I$ and $\nu(B) \notin I$ erparately.

First, suppose that $\nu(B) \in I$. Then since $\left(\alpha_{1}-\beta_{2}\right)_{\nu(B)}=0$ we must have $\alpha_{1 m(B)}=0$ and $\nu(B)-1 \in I$. Either $\nu-1 \in R L$ or $\nu \in K$.

If $\nu-1 \in R L$ then B is not the first blork, so by the induction hypothesis

$$
A^{(B)}(\nu(D)-1)<\left(\alpha_{1}-\beta_{2}\right)(\nu(B)-1)
$$

Therefore since $A_{v(B)}^{(B)}=0$ we are done.
If $\nu-1 \in K$ then since $\alpha_{1 \nu \mid}(\theta)=0$ and $\nu-1 \notin \Gamma_{p}(r, a)$ we see that $\nu \notin \Gamma_{7}(r, a)$. Therefore the pattern must be either
$\nu: \begin{array}{cc}\checkmark \\ \times & \nu-1: \times\end{array}$
$\checkmark \checkmark$
or
$\nu: \times$

However, each of these is impossible. For in the first case D must be of Problem Type 2, and $\nu-1 \in P(B)$, and in the second case by the pattern in place ν, B must be of neither problem type, but the situation is exactly that of Problem Type 2.

Next suppose that $\nu(B) \notin I$. Then B must be of Problem Type 1, so the pattern is

$$
\nu: \sqrt{\sqrt{2}}
$$

Either $\nu-1 \in I$ or $\nu-1 \notin I$.
If $\nu-1 \in I$ then

$$
0=\left(\alpha_{1}-\beta_{2}\right)_{\nu}=\alpha_{1 \nu}-\alpha_{2 \nu}-1
$$

so using the pattern

$$
r_{\nu} \leq \alpha_{1 \nu}=\beta_{2 \nu}+1 \leq r_{\nu}+1
$$

so either $r_{\nu}=\alpha_{1 \nu}$ or $r_{\nu}=\beta_{2 \nu}$ or both. Therefore recalling that the pattern

$$
v-1: \begin{array}{r}
\sqrt{ } \\
\sqrt{ } \\
\times
\end{array}
$$

is impossible, the pattern must be

\times	\checkmark		\times	\checkmark
$\boldsymbol{v}: \sqrt{ }$	$\nu-1: \sqrt{ }$	or	$\nu: \sqrt{ }$	$v-1: \times$
\times	\checkmark		\times	\times

In either case, since by the induction hypothesis

$$
A^{(B)}(\nu(B)-1)<\left(\sigma_{1}-\beta_{2}\right)(\nu(B)-1)
$$

and aince $A_{v(B)}^{(B)}=0$ we are done.
If $\nu-1 \notin I$ then

$$
0=\left(\alpha_{1}-\beta_{2}\right)_{n}=\alpha_{1}-\beta_{2 n}
$$

so using the pattern, $\alpha_{1 \nu}=\beta_{2 \nu}=r_{\nu}$ and the pattern is

$$
\nu-1: \begin{gathered}
\times \\
\sqrt{x} \\
\times
\end{gathered}
$$

But this is impossible, since it implies that $\nu-1 \in P$.
Part (ii) followa immediately, remembering that

$$
A_{k}=\ldots=A_{k}=0
$$

Lemma 2.24.

Let $B=\{k, \ldots, j+1\}$ be a bluck, and let $s^{(B)}$ be the value given by the algorithm. Then for each $i \in Q(B)$, we have $s_{i}^{(B)}=0$.

Proof.

We shall have to consider separately the cases
(i) B is a proper block and $|B|>1$;
(ii) B is the improper block.

However, the proof will be almost identical in each case. Notice that we do not have to conaider the case in which B is a proper block of size 1 , since in this case $Q(B)=\varnothing$ and the proposition is vacuously true.

Consider case (i) first. It is equivalent to whow that $s(\nu-1)=s(j)$, where we define $s(j)$ as 0 if $j<0$, that is, if B is the first block.

If B is the first block then by the algorithm

$$
A(\nu-1)=\left(\alpha_{1}-\alpha_{2}\right)(v-1)
$$

so

$$
a(\nu-1)=A(\nu-1)-\left(\alpha_{1}-\beta_{2}\right)(\nu-1)=0
$$

as required.

Now suppose that B is not the first block. Then from the algorithm

$$
\begin{equation*}
A(\nu-1)=A(j)+\sum_{\mu=j+1}^{\nu-1}\left(\alpha_{1}-\beta_{2}\right)_{\mu} p^{\mu}+p^{j+1} \tag{1}
\end{equation*}
$$

in particular

$$
A(\nu-1)>\left(\alpha_{1}-\beta_{2}\right)(\nu-1) .
$$

Also, by Lemma 2.23,

$$
A(j)<\left(\alpha_{1}-\beta_{3}\right)(j),
$$

sо

$$
\begin{equation*}
A(j)=s(j)+\left(\alpha_{1}-\beta_{2}\right)(j)-p^{j+1} . \tag{2}
\end{equation*}
$$

Therefore combining (1) and (2),

$$
\begin{aligned}
s(\nu-1) & =A(\nu-1)-\left(\alpha_{1}-\beta_{2}\right)(\nu-1) \\
& =s(j)
\end{aligned}
$$

as required.
Now consider case (ii). It is equivalent to show that $s(n)=s(j)$. Recall that we may assume that B is not the first block. From the algorithm

$$
\begin{equation*}
A(n)=A(j)+\sum_{\mu=j+1}^{n}\left(\alpha_{1}-\beta_{2}\right)_{\mu} p^{\mu}+p^{\prime+1} \tag{3}
\end{equation*}
$$

in particular

$$
A(n)>\left(\alpha_{1}-\beta_{2}\right)(n) .
$$

Also, by Lemma 2.23,

$$
A(j)<\left(\alpha_{1}-\beta_{2}\right)(j),
$$

so

$$
\begin{equation*}
A(j)=s(j)+\left(\alpha_{1}-\beta_{2}\right)(j)-p^{j+1} \tag{4}
\end{equation*}
$$

Therefore combining (3) and (4),

$$
\begin{aligned}
s(n) & =A(n)-\left(\alpha_{1}-\beta_{2}\right)(n) \\
& =s(j)
\end{aligned}
$$

as required

2.9.9 Q(B)

We shall consider points in $Q(D)$ first, and wr may manume that $Q(D) \neq \varnothing$, or equivalently that $j+1 \notin P(B)$. This implien that rither B is improper or $|B|>1$.

We have remarked earlicr that points not in $R L$ antinfy exactly one of Conditions A when $A=\alpha_{1}-\beta_{2}$ in particular, points in $Q(B)$ do so. Therefore, the following result will suffice to show dat points in $Q(B)$ natiafy exactly one of Conditions A with $A=A^{(\boldsymbol{H})}$, the value given by the algarithm:

Lemma 2.25.

If $: \in Q(B)$ then
(i) $i \in \Gamma_{p}\left(\alpha_{1}, A\right)$ if and only if $i \in I=\Gamma_{p}\left(\alpha_{1}, \beta_{2}\right)$ i
(ii) $1 \notin \Gamma_{p}\left(\alpha_{2}, s\right)$;
(iii) isatisfies A1 (respectively A2, A3) with $A=A^{(B)}$ if and only if a satinfies A1 (respectively A2, A3) with $A=\alpha_{1}-\beta_{2}$.

It is only part (iii) of this lemma that we require now; but reference to Conditions A makes it clear that part (iii) follown immediately from parts (i) and (ii), and we shall later require theye parta.

We shall see that the came where $\left(\alpha_{1}-\beta_{2}\right)_{1+1}=p-1$ in slightly tricky; we shall need the following lemma in order to deal with it, before wre can prove Lemma 2.25. Notice that it applien to the improper block as well as to proper blocks.

Lemma 2.26.

Let $B=\{k, \ldots j+1\}$ bee a block other than the first, mo that $j \geq 0$. If $\left(\alpha_{1}-\beta_{2}\right)_{\jmath+1}=p-1$ then $\jmath+1 \in R L_{1}$, в $|B|=1$ and $Q(D)=\varnothing$.

Proof.

By hypothesis the $j^{\text {th }}$ point in a required lows. Thum $\boldsymbol{o}_{1}-j_{2}$ scorea the $j^{\text {th }}$ point in α_{1}, since $j \in R L \subseteq 1$. Then since $\left(\alpha_{1}-\beta_{2}\right)_{j+1}=p-1, \alpha_{1}-\beta_{2}$ cantiot fail to score the $(j+1)^{\text {th }}$ point in $r_{1} ;$ so $j+1 \in I$. We must climinate the possibility that $j+1 \in K$; that thin point, although scormal, is not a required loas. That is, we must show that the puttern cannot be

$$
j+1:
$$

Now

$$
\left(\alpha_{1}-\beta_{2}\right)_{,+1}=a_{(1,+1)}-\beta_{21,+1 \mid}+p-1
$$

which is $p-1$ if and only if $\alpha_{1(j+1)}=\beta_{2(j+1)}$. So the only way for $j+1$ to be in \boldsymbol{K} is for $r_{\rho+1}$ to be equal to $a_{1(\jmath+1)}=\beta_{2(\jmath+1)}$, and for j to be in $\Gamma_{p}(r, \beta)$ but not in $\Gamma_{p}(r, \alpha)$. However, this is incompatible with the atatement that $j \in R L$.

We now prove Lemma 2.25:

Proof.

In order to check whether a point t is in $\Gamma_{\rho}\left(\sigma_{1}, A\right)$ we need to know (at moat) the coefficients α_{1}, and A_{1} and whether $:-1 \in \Gamma_{p}\left(\alpha_{1}, A\right)$. So if we have two different values of A, any A^{\prime} and $A^{\prime \prime}$, but, for a given $i, A^{\prime}{ }_{i}=A^{\prime \prime}$, and $i-1$ is in both or neither of $\Gamma_{p}\left(\alpha_{1}, A^{\prime}\right)$ and $\Gamma_{p}\left(\alpha_{1}, A^{\prime \prime}\right)$, then $: \in \Gamma_{p}\left(\alpha_{1}, A^{\prime}\right)$ if and only if,$\in \Gamma_{p}\left(a_{1}, A^{\prime \prime}\right)$

Similarly, in order to check whether a point t is in $\Gamma_{p}\left(a_{\mathrm{a}}, s\right)$ we need to know (at moat) the coefficients ε_{3}, and s_{1} and whether $:-1 \in \Gamma_{y}\left(\alpha_{2}, s\right)$.
(i) Suppoae that B is the first bluck $(j+1=0)$. Then for each $\mu \in Q(B)$ we have $A_{\mu}=\left(\alpha_{1}-\beta_{2}\right)_{\mu}$. Suppose that 2 is the 'least criminal'; that is, that

$$
\{1-1, \ldots, j+1\} \cap \Gamma_{p}\left(\alpha_{1}, A\right)=\{1-1, \ldots, j+1\} \cap \Gamma_{p}\left(\alpha_{1}, \beta_{2}\right) .
$$

Then none of the information needed to decide the question of whether $: \in$ $\Gamma_{p}\left(\alpha_{1}, A\right)$ has changed with the replacement of $\alpha_{1}-\beta_{2}$ by A; in particular 1-1 $\in \Gamma_{p}\left(\alpha_{1}, A\right)$ if and only if $1-1 \in \Gamma_{p}\left(\alpha_{1}, \beta_{2}\right)$, mo it is absurd to say that the answer to the question has changed. This is the required contradiction. Now auppose that B in not the first block. If $Q(B)=\varnothing$ the claim is vacuously true, aco nuppose that $Q(B) \neq \varnothing$. By Lemman $2.26\left(\alpha_{1}-\beta_{2}\right)_{j+1} \neq$ $p-1$. Then either B is improper or $|B|>1$. In cither case, $A_{j+1}=$ $\left(\alpha_{1}-\beta_{2}\right)_{j+1}+1$. For all $i \neq j+1 \in Q(B), A_{1}=\left(\alpha_{1}-\beta_{2}\right)_{\text {i }}$. Alno $j \in I \backslash \Gamma_{p}\left(\alpha_{1}, A\right)$, by the induction hypothesis.
Suppoae that $j+1 \in I$. Then $\left(\alpha_{1}-\beta_{2}\right)_{,+1} \geq \alpha_{1(\jmath+1)}$, so $A_{j+1}>\alpha_{1(\jmath+1)}$, во $j+1 \in \Gamma_{p}\left(\alpha_{1}, A\right)$.
Conversely, suppose that $j+1 \in \Gamma_{p}\left(\alpha_{1}, A\right)$. Then since $j \notin \Gamma_{p}\left(\alpha_{1}, A\right)$, we must have that $A_{j+1}>\alpha_{1(\jmath+1)}$. Therefore ($\left.\alpha_{1}-\beta_{2}\right)_{\jmath+1} \geq \alpha_{1(j+1)}$, so since $j \in I, j+1 \in I$.
For all pointa higher than $j+1$, therefore, the name argument as for the firat block applies; nothing germane to the question has altered.
(ii) Notice that, by Lemmin 2.24, $s_{1}=0$ for $A l l, ~ \in Q(B)$, and $j \notin \Gamma_{p}\left(\alpha_{2}, s\right)$ by the induction hypothemiк, so $\Gamma_{p}\left(\alpha_{3}, s\right) \cap Q(B)=\Omega$.
(iii) This follows from parts (i) and (ii) and the definitions of Conditions \mathbf{A}.

This completes our proof that, given the induction hypothesis if B is not the first block, every point in $Q(B)$ satisfies exactly one of Conditions A when $A=A^{(B)}$

$2.9 .4 P(B)$

We now have to prove that every point in $P(B)$ satisfies exactly one of Conditions A. We may assume the result of Lemma 2.25 , and that either B is the first block, or by the induction hypothesis all previous blorks have been dealt with by the algorithm.

We shall give the proof first with the assumption that B is of neither problem type, and then for each problem type. We shall need a preliminary lemms to express the duality between α and β, which follows.

Lemma 2.27.

(i) $R L=I \cap\left\{i \mid \alpha_{1}(i)+\alpha_{2}(i)=\beta_{1}(i)+\beta_{3}(\mathrm{i})\right\}$;
(ii) $\Gamma_{P}\left(\beta_{1}, \alpha_{2}\right) \cap I=\Gamma_{P}\left(\beta_{1}, \alpha_{2}\right) \cap \Gamma_{P}\left(\alpha_{1}, \beta_{2}\right)=R L$;
(iii) $\Gamma_{p}\left(\beta_{1}, \alpha_{2}\right) \backslash \Gamma_{p}\left(\alpha_{1}, \beta_{3}\right)=\{i \mid$ i: $\sqrt{ }\}$
\times
This can be represented diagrammatically thas:

Proof.

(i) Notice that

$$
\alpha_{1}(i)+\alpha_{2}(i)=\beta_{1}(i)+\beta_{2}(i)
$$

if and only if either

$$
i \in \Gamma_{p}(r, \alpha) \cap \Gamma_{p}(r, \beta)
$$

in which case

$$
\alpha_{1}(i)+\alpha_{2}(i)=\beta_{1}(i)+\beta_{2}(i)=r(i)+p^{1+1}
$$

or

$$
\not \& \Gamma_{p}(r, \alpha) \cup \Gamma_{p}(r, \beta)
$$

in which case

$$
\alpha_{1}(1)+\alpha_{2}(i)=\beta_{1}(1)+\beta_{2}(i)=\Gamma(3) .
$$

Therefore

$$
i \in I \cap\left\{i \mid \alpha_{1}(i)+\alpha_{2}(2)=\beta_{1}(i)+\beta_{7}(z)\right\}
$$

if and only if

$$
\begin{aligned}
& : \in\left(\Gamma_{p}\left(\alpha_{1}, \beta_{2}\right) \cap \Gamma_{p}(r, \alpha) \cap \Gamma_{p}\left(r_{1} \beta\right)\right) \\
& \quad \cup\left(\left(\Gamma_{p}\left(\alpha_{1}, \beta_{2}\right) \backslash \Gamma_{p}(r, \alpha)\right) \backslash \Gamma_{p}(r, \beta)\right)
\end{aligned}
$$

if and only if the pattern is

$$
i=\begin{array}{rrr}
\checkmark \\
\checkmark & \text { or } & i: \begin{array}{r}
\checkmark \\
V
\end{array} \\
\times
\end{array}
$$

if and only if $i \in R L$.
(ii) We show first that

$$
\Gamma_{F}\left(\beta_{1}, \alpha_{2}\right) \cap \Gamma_{p}\left(\alpha_{1}, \beta_{2}\right) \subseteq R L
$$

Suppose that

$$
i \in \Gamma_{P}\left(\beta_{1}, \alpha_{2}\right) \cap \Gamma_{P}\left(\alpha_{1}, \beta_{2}\right)=\Gamma_{p}\left(\beta_{1}, \alpha_{2}\right) \cap I .
$$

Then certainly $: \in I$; wo have to show that $i \notin K$. Suppose that $i \in K$. Then $i \in \Gamma_{\mu}(r, \beta)$. Therefore

$$
a_{3}(i)>\beta_{1}(i)>r(i)
$$

so $i \in \Gamma_{p}(r, a)$, which contradicts the rasertion that $i \in K$. Therefore i $\in I \backslash K=R L$ as required. We must now show that

$$
R L \subseteq \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right) \cap \Gamma_{P}\left(\alpha_{1}, \beta_{2}\right)
$$

Suppose that $: \in R L$. Then certainly $: \in I=\Gamma_{\mu}\left(\alpha_{1}, \beta_{2}\right)$, so

$$
H_{2}(1)>\sigma_{1}(i) .
$$

We have to show that $: \in \Gamma_{p}\left(\beta_{1}, a_{2}\right)$. By part (i),

$$
\alpha_{1}(i)+\alpha_{2}(i)=\beta_{1}(i)+\beta_{2}(i)
$$

so combining this with rquation (*) we have

$$
a_{2}(i)>\beta_{1}(s)
$$

as required.
(iii) We show first that if the pattern is

$$
i: \begin{gathered}
\times \\
\sqrt{\vee} \\
\times
\end{gathered}
$$

then

$$
: \in \Gamma_{P}\left(\beta_{1}, \alpha_{2}\right) \backslash \Gamma_{P}\left(\alpha_{1}, \beta_{2}\right)
$$

It is immediate from the pattern that $\notin \Gamma_{p}\left(\alpha_{1}, \beta_{2}\right)$. Also, since : \in $\Gamma_{p}(r, \alpha) \backslash \Gamma_{p}(r, \beta)$

$$
\alpha_{2}(i)>r(i) \geq \beta_{1}(i)
$$

so $i \in \Gamma_{p}\left(\beta_{1}, \alpha_{a}\right)$ as required. We must now show that if

$$
: \in \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right) \backslash \Gamma_{p}\left(\alpha_{1}, \beta_{2}\right)
$$

then the pattern is

$$
i: \begin{gathered}
x \\
\sqrt{x}
\end{gathered}
$$

It is immediate that the pattern is

$$
\begin{gathered}
\times \\
t: ~ ? ~ \\
?
\end{gathered}
$$

moreover $\alpha_{2}(i)>\beta_{1}(i)$ and $\alpha_{1}(i) \geq \beta_{2}(i)$ so

$$
\alpha_{1}(i)+\alpha_{2}(i)>\beta_{1}(i)+\beta_{2}(i)
$$

so $i \in \Gamma_{p}(r, a) \backslash \Gamma_{p}(r, \beta)$ and the pattern is as required.

Lemma 2.28.

If B is of neither prohlem type and $A^{(B)}$ is the value given by the algorithm, then

$$
P(B) \cap \Gamma_{p}\left(\alpha_{1}, A^{(B)}\right) \subseteq K
$$

Proof.

Since B is of neither problem type, $P(B)=\{k\}$. We know that $k \notin \mathbb{K}$, so we have to prove that $k \notin \Gamma_{p}\left(\alpha_{1}, A^{(B)}\right)$. Suppose that this assertion is false. Then $\alpha_{1}(k)<A^{(B)}(k)$. From the algorithm, $A_{j}^{(B)}=0$, so this impliea that $\alpha_{1 k}=0$ and $\alpha_{1}(k-1)<A^{(B)}(k-1)$. If $k-1=j$, that is, if $|B|=1$, this contradicts the induction hypothesis, since it says that $k-1 \in R L \cap \Gamma_{p}\left(\alpha_{1}, A\right)^{(B)}$, which should be empty. Suppose that $k-1>j$. If B is the first block, we have

$$
\sum_{i=j+1}^{k-1} A_{i} p^{\prime}>\sum_{i=j+1}^{k-1} \alpha_{1 i} p^{\prime}
$$

Otherwise, we use the induction hypothesis:

$$
\begin{aligned}
\sum_{k=j+1}^{k-1} A_{4} p^{\prime}+A(j) & >\sum_{i=j+1}^{k-1} a_{1} p^{\prime}+\alpha_{1}(j) \\
& \geq \sum_{i=j+1}^{k-1} a_{1,} p^{\prime}+A(j)
\end{aligned}
$$

so

$$
\sum_{1=j+1}^{k-1} A_{i} p^{\prime}>\sum_{1=j+1}^{k-1} \alpha_{1,} p^{k}
$$

Referring to the algorithm, we see that the left-hand side differs from

$$
\sum_{1=j+1}^{k-1}\left(\alpha_{1}-\beta_{2}\right)_{1} p^{\prime}
$$

only in that if B is not the first block then

$$
A_{\jmath+1}=\left(\alpha_{1}-\beta_{2}\right)_{\jmath+1}+1 \quad \bmod p
$$

Therefore

$$
\sum_{i=j+1}^{k-1}\left(\alpha_{1}-\beta_{2}\right)_{, ~} p^{\prime} \geq \sum_{i=j+1}^{k-1} \alpha_{1} p^{\prime}
$$

if B is the first block then in fact

$$
\sum_{1=j+1}^{k-1}\left(\alpha_{1}-\beta_{2}\right), p^{\prime}>\sum_{i=j+1}^{k-1} \alpha_{1}, p^{\prime} .
$$

(Notice that the case $\left(\alpha_{1}-\beta_{2}\right)_{j+1}=p-1$ presents no difficulty here.) Now if B is not the first block then since $j \in R L$,

$$
\left(\alpha_{1}-\beta_{2}\right)(j)>\alpha_{1}(j)
$$

Therefore whether or not B is the first block, we see by combining the mums that

$$
\left(\alpha_{1}-\beta_{2}\right)(k-1)>\alpha_{1}(k-1)
$$

that in, that $k-1 \in I$. We are assuming that $k-1>j$, so $k-1 \notin R L$ Therefore $k-1 \in K$.

In aummary, whether B is the first block or not, $\sigma_{1 k}=0$ and

$$
\begin{array}{r}
\checkmark \\
k-1: \\
\times
\end{array}
$$

This implies that $k \notin \Gamma_{p}(r, a)$, so since $k \in R L$ the pattern must be

But this is Problem Type 2, so we have the necessary contradiction.

Lemma 2.29.

If B is of neither problem type and $A^{(B)}$ is the value given by the algorithm, then

$$
P(B) \cap \Gamma_{p}\left(\alpha_{2}, s^{(\Delta)}\right)=\varnothing
$$

Proof.

Since B is of neither problem type, $P(B)=\{k\}$. We have to show that $k \notin \Gamma_{p}\left(\alpha_{2}, s^{(B)}\right)$. Suppose that $k \in \Gamma_{p}\left(\alpha_{2}, s^{(B)}\right)$. Then

$$
s(k)=\sum_{j+1}^{k} s_{1} p^{\prime}+s(j)>\sum_{j+1}^{k} \alpha_{2 i} p^{\prime}+\alpha_{2}(j)=\alpha_{2}(k) .
$$

By the induction hypothesis,

$$
s(j) \leq \alpha_{2}(j)
$$

and by Lemma 2.24 the only non-zero term of $\sum_{y+1}^{t} s_{1} p^{\text {i }}$ is $s_{k} p^{k}$. Moreover

$$
A_{k} \leq p-\left(\alpha_{1}-\beta_{2}\right)_{k}
$$

so $a(k)>a_{3}(k)$ implies

$$
p-\left(\alpha_{1}-\beta_{2}\right)_{k}=p-\left(\beta_{1}-\alpha_{2}\right)_{k}>\sigma_{2 k} .
$$

We know that $k \in R L=I \cap \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right)$, so

$$
\begin{aligned}
p-\left(\beta_{1}-\alpha_{2}\right)_{k} & = \begin{cases}p-\beta_{1 k}+\alpha_{2 k}-p+1 & \text { if } k-1 \in \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right) \\
p-\beta_{1 k}+\alpha_{2 k}-p & \text { otherwise }\end{cases} \\
& = \begin{cases}\alpha_{2 k}-\beta_{1 k}+1 & \text { if } k-1 \in \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right) \\
\alpha_{2 k}-\beta_{1 k} & \text { otherwise }\end{cases}
\end{aligned}
$$

Therefore $s(k)>\alpha_{2}(k)$ implies that either
(i) $k-1 \in \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right)$ and $\beta_{1 k}-1<0$; or
(ii) $k-1 \notin \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right)$ and $\beta_{1 k}<0$.

The latter is impossible. The former implies that $\beta_{1 k}=0$, so since

$$
k-1 \notin R L=I \cap \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right),
$$

we must have

$$
k-1 \in \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right) \backslash I,
$$

so by Lemma 2.27 (ii) the pattern must be

$$
\begin{array}{r}
\times \\
k-1: \\
\times \\
\times
\end{array}
$$

Then since $k-1 \notin \Gamma_{p}(r, \beta)$ and $\beta_{1 k}=0, k \notin \Gamma_{p}(r, \beta)$ so the pattern is

$\sqrt{ }$	\times
\times	$k-1:$$\sqrt{2}$ \times
\times	

which is Problem Type 1. This is the required contradiction.
We next consider the case that the current block B is of Problem Type 1.

Lemma 2.30.

If B is of Problem Type 1 and $A^{(B)}$ is the value given by the algorithm, then

$$
P(B) \cap \Gamma_{p}\left(\alpha_{1}, A^{(B)}\right) \subseteq K .
$$

Proof.

From the definition of Problem Type 1 we see that

$$
P(B) \cap K=\varnothing
$$

so we have to show that

$$
P(B) \cap \Gamma_{p}\left(\alpha_{1}, A^{(B)}\right)=\varnothing
$$

Suppose that $i \in P(B)$, that is, that $k \geq i \geq \nu(B)$. Then

$$
A_{1}=\ldots=A_{\nu}(D)=0
$$

s_{0} if $: \in \Gamma_{p}\left(\alpha_{1}, A^{(B)}\right)$ then

$$
\alpha_{1 i}=\ldots=\alpha_{1 v(B)}=0
$$

and $\nu(B)-1 \in \Gamma_{p}\left(\alpha_{1}, A^{(B)}\right)$. There are three possibilities:
(i) $\nu(B)-1 \in Q(B)$;
(ii) $\nu(B)-1=j \geq 0$;
(iii) $\nu(B)-1=\jmath=-1$.

In case (i) we have shown that $\nu(B)-1 \in \Gamma_{,}\left(\alpha_{1}, A^{(B)}\right)$ if and ouly if $\nu(B)-1 \in$ K. Since B is of Problem Type 1 this means that the pattern must be

$$
\begin{array}{rr}
\times & \sqrt{ } \\
\nu(B): \begin{aligned}
\sqrt{2} & \nu(B)-1: \\
\times & \sqrt{ }
\end{aligned} .
\end{array}
$$

However, if $\alpha_{1 \nu(B)}=0$ aud $\nu(B)-1 \not \ddagger \Gamma_{\rho}(r, a)$ then it is impossible that $\nu(B) \in \Gamma_{j}(r, a)$, so we have the desired contradiction.

In case (ii) by the induction hypothesis $\nu(B)-1 \& \Gamma_{P}\left(\alpha_{1}, A^{(B)}\right)$, so we have the deaired contradiction. In case (iii) certainly $\nu(B)-1 \notin \Gamma_{y}\left(\alpha_{1}, A^{(B)}\right)$, since $\nu(B)-1<0$.

Lemma 2.31.

If B is of Problem Type 1 and $4^{(t)}$ is the value given by the algorithm, then

$$
P(D) \cap \Gamma_{p}\left(\alpha_{2}, s^{(D)}\right)=\varnothing
$$

Praof.

Suppose that $: \in P(B)$, that i, that $k \geq i \geq \nu(B)$. We have to show that $i \notin \Gamma_{p}\left(\alpha_{2}, s^{(B)}\right)$. Since using Lemma 2.23

$$
A(i)=A(\nu(B))<\left(a_{1}-\beta_{2}\right)(\nu(B)) \leq\left(\alpha_{1}-\beta_{2}\right)(i)
$$

we see that

$$
\begin{align*}
s(i) & =A^{(B)}(i)-\left(\alpha_{1}-\beta_{2}\right)(i)+p^{1+1} \\
& =A^{(B)}(v(B)-1)-\left(\alpha_{1}-\beta_{2}\right)(i)+p^{i+1} \tag{*}
\end{align*}
$$

We consider aeparately the two casen
(i) $\nu(B)-1=j$ (possibly $j=-1$);
(ii) $\nu(B)-1>j$.

In case (i)

$$
s(2) \leq \beta_{1}(j)-\left(\beta_{1}-\alpha_{2}\right)(1)+p^{1+1}
$$

using Lemma 2.23 and the fact that $\alpha_{1}-\beta_{2}=\beta_{1}-\alpha_{2}$

$$
\begin{aligned}
& \leq \beta_{1}(i)-\left(\beta_{1}-\alpha_{2}\right)(i)+p^{+1} \\
& =\alpha_{2}(i)
\end{aligned}
$$

since i $\in \Gamma_{p}\left(\theta_{1}, \alpha_{2}\right)$ by Lemma 2.27. Therefore $: \notin \Gamma_{p}\left(\alpha_{2}, s^{(B)}\right)$, as required.
In case (ii), recall that according to the algorithm

$$
A_{j+1} \geq\left(\alpha_{1}-\beta_{2}\right)_{j+1}
$$

and that for all $j+1<\mu \leq \nu(B)$

$$
A_{p}=\left(\alpha_{1}-\beta_{2}\right)_{\mu} .
$$

Therefore

$$
s(\nu(B)-1)=A^{(B)}(\nu(D)-1)-\left(\alpha_{1}-\beta_{2}\right)(\nu(B)-1)
$$

and since $\nu(B)-1 \in Q(B)$, using Lemma 2.25

$$
s(\nu(B)-1) \leq \alpha_{2}(\nu(B)-1)
$$

so

$$
\begin{aligned}
A^{(B)}(\nu(B)-1) & \leq \alpha_{2}(\nu(B)-1)+\left(\beta_{1}-\alpha_{2}\right)(\nu(B)-1) \\
& = \begin{cases}\beta_{1}(\nu(B)-1)+p^{\nu}(B) & \text { if } \nu(B)-1 \in \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right) \\
\beta_{1}(\nu(B)-1) & \text { otherwise }\end{cases}
\end{aligned}
$$

If $\nu(B)-1 \in \Gamma_{P}\left(\beta_{1}, \alpha_{2}\right)$ then since $\nu(B)-1 \in Q(B)$ the pattern must be

$$
\nu(B)-1: \stackrel{\times}{\sqrt{ }} .
$$

Then by definition of $\nu(B), \beta_{2 \nu(B)} \neq \Gamma_{\nu}(B)$, and since $\nu(B) \notin \Gamma_{p}\left(r_{v} \beta\right)$ this must mean that $\beta_{3 \nu(B)}<r_{\nu}(B)$. Moreover, since $\nu(B)-1 \notin \Gamma_{p}\left(r_{,}, \beta\right), \beta_{1 \nu(B)}+$ $\beta_{2 \nu(B)} \geq r_{\nu}(B)$, so $\beta_{1 \nu(B)}>0$. The point of this manipulation is to show that whether $\nu(B)-1 \in \Gamma_{g}\left(\beta_{1}, \sigma_{a}\right)$ or not,

$$
A^{(B)}(\nu(B)-1) \leq \beta_{1}(\nu(D)) \leq \beta_{1}(1)
$$

Therefore by equation (*)

$$
\begin{aligned}
s^{(B)}(i) & \leq \beta_{1}(i)-\left(\alpha_{1}-\beta_{2}\right)(i)+p^{1+1} \\
& =\beta_{1}(i)-\left(\beta_{1}-\alpha_{2}\right)(i)+p^{1+1} \\
& =\alpha_{2}(i)
\end{aligned}
$$

since $i \in \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right)$. Thus i $\notin \Gamma_{p}\left(\alpha_{2}, s^{(B)}\right)$, as required.
Finally, we consider the rase that the current block B is of Problem Type 2.

Lemma 2.32.

If B is of Problem Type 2 and $A^{(B)}$ is the value given by the algorithm, then

$$
P(B) \cap \Gamma_{p}\left(\alpha_{1}, A^{(\beta)}\right)=\varnothing .
$$

Proof.

Suppose that $z \in P(B)$, that is, that $k \geq i \geq \nu(B)$. We have to show that $i \notin \Gamma_{p}\left(\alpha_{1}, A^{(B)}\right)$. We suppose the contrary. From the elgorithm,

$$
A_{1}=\ldots=A_{\nu}(B)=0
$$

so if $: \in \Gamma_{p}\left(\alpha_{1}, A^{(B)}\right)$ then

$$
\alpha_{\mathbb{L}_{i}}=\ldots=\alpha_{1 \nu(B)}=0
$$

and $\nu(B)-1 \in \Gamma_{F}\left(\alpha_{1}, A^{(B)}\right)$. There ure three possibilities:
(i) $\nu(B)-1 \in Q(B)$;
(ii) $\nu(B)-1=j \geq 0$;
(iii) $\nu(B)-1=j=-1$.

In case (i) we have shown that $\nu(B)-1 \in \Gamma_{p}\left(\kappa_{1}, A^{(B)}\right)$ if and only if $\nu(B)-1 \in$ K. Since we must also have $\alpha_{1 \nu(B)}=0$, this is impossible, for it contradicts the definition of $\nu(B)$.

In case (ii) by the induction hypothesis $\nu(B)-1 \notin \Gamma_{p}\left(\sigma_{1}, A^{(B)}\right)$, so we have the desired contradiction. In case (iii) certainly $\nu(B)-1 \notin \Gamma_{p}\left(\alpha_{1}, A^{(B)}\right)$, since $\nu(B)-1<0$.

Lemma 2.33.

If B is of Problem Type 2 and $\boldsymbol{A}^{(\boldsymbol{B})}$ is the value given by the algorithm, then

$$
P(B) \cap \Gamma_{\mu}\left(\alpha_{2}, s^{(B)}\right) \subseteq K
$$

Proof.

Since $P(B) \cap K=\{k\}$, we only have to show that $k \notin \Gamma_{p}\left(\alpha_{2}, s^{(B)}\right)$. By Lemma 2.23(ii),

$$
s(k)=A(k)-\left(\alpha_{1}-\beta_{2}\right)(k)+p^{k+1}
$$

and

$$
s(j)=A(j)-\left(\alpha_{1}-\beta_{2}\right)(j)+p^{+1}
$$

From the algorithm

$$
\begin{aligned}
A(k) & =A(j)+\sum_{\mu=j+1}^{k-1}\left(\alpha_{1}-\beta_{2}\right)_{\mu} p^{\mu}+p^{j+1} \\
& =s(j)-\sum_{\mu=\nu}^{k}\left(\alpha_{1}-\beta_{2}\right)_{\mu} p^{\mu}+p^{k+1} \\
& \leq \alpha_{2}(\nu-1)-\left(\beta_{1}-\alpha_{2}\right)(k)+\left(\beta_{1}-\alpha_{2}\right)(\nu-1)+p^{k+1} \\
& =\alpha_{2}(\nu-1)-\beta_{1}(k)+\alpha_{2}(k)+\left(\beta_{1}-\alpha_{2}\right)(\nu-1)
\end{aligned}
$$

since we know that $k \in \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right)$

$$
= \begin{cases}\alpha_{2}(k)-\beta_{1}(k)+\beta_{1}(\nu-1)+p^{v} & \text { if } \nu-1 \in \Gamma_{p}\left(\beta_{1}, \alpha_{2}\right) \\ \alpha_{2}(k)-\beta_{1}(k)+\beta_{1}(\nu-1) & \text { otherwise. }\end{cases}
$$

Thus the right-hand side is at most $\alpha_{2}(k)$ unless $\nu-1 \in \Gamma_{p}\left(\beta_{1}, a_{2}\right)$ and

$$
\beta_{1 k}=\ldots=\beta_{1 \mu}=0 .
$$

In this case, since $k-1, \ldots \nu \in \Gamma_{p}(r, \beta)$, we must have

$$
r_{k}=\ldots=r_{\nu}=0
$$

and that $v-1 \in \Gamma_{\rho}(r, \beta)$. By Lemma 2.27 this implies that the pattern must be

$$
\begin{array}{r}
V \\
\nu-1: \begin{array}{r}
V \\
V
\end{array}
\end{array}
$$

Then

$$
\alpha_{1}(\nu) \geq \sigma_{1}(\nu-1)>r(\nu-1)=r(\nu)
$$

во $\nu \in \Gamma_{p}(r, a)$, which contradicts the definition of ν in Problem Type 2. Therefore in all casea $s(k) \leq \boldsymbol{O}_{2}(k)$ as required.

Combining theae realta, we have proved that, whatever the problem type of the current block B, provided that either B in the firnt block or all previous
blocks have been dealt with by the algorithm, applying the algorithm to B deals with B.

We promised to check that $A \leq r$. The leading coefficient of A is n (at most) so it suffices to check that $A(n) \leq r$. Now $n \in Q\left(B^{\prime}\right)$ where B^{\prime} is the improper block, and since $\alpha_{1}-\beta_{2} \leq \alpha_{1}, n \notin I$. Therefore, by Lemma 2.25, $n \notin \Gamma_{p}\left(\alpha_{1}, A\right)$, so $A \leq \alpha_{1} \leq r$ as required.

By induction, this proves Theorem 2.11.
We record some easy but important consequences of this result.
Corollary 2.34. For all weights α, β and γ,
(i) $k(\alpha, \beta)=k(\beta, \alpha)=0$ if and only if α and β score the same points in r. In this case, m_{α} / m_{β} and m_{β} / m_{α} are both integers; that is, $m_{\alpha}=m_{\beta}$ for all valid modules.
(ii) $k(\beta, \alpha)=k(\alpha, \beta)+\nu_{p}(|\alpha|)-\nu_{p}(|\beta|)$
(iii) $k(\alpha, \gamma) \leq k(\alpha, \beta)+k(\beta, \gamma)$
(iv) If α scores all possible points in r, in the sense of Lemma 2.9 that is, $\gamma_{p}\left(r, \alpha_{1}\right)=\gamma_{p}(r)$, then $k \cdot(\alpha, \beta)=0$ for all β.

We use this last remark to prove our first result on the structure of X / V_{p}. Proposition 2.35.

Given r and a prime $p \leq r$, let

$$
\mathcal{A}=\left\{\left.\alpha \in \Lambda|\forall \beta \in \Lambda \quad| \beta\right|_{p} \leq|\alpha|_{p}\right\}
$$

(i) Then for any valid lattice M,

$$
\alpha \in \mathcal{A} \Rightarrow \forall \beta \in \Lambda \quad m_{\alpha} \geq m_{\beta}
$$

(ii) This implies in particular that X / V_{p} has a unique maximal submodule $M_{\text {max }} / V_{p}$ where the coefficients of $M_{\text {max }}$ are

$$
m_{\alpha}= \begin{cases}p, & \text { if } \alpha \in \mathcal{A} \\ 1, & \text { otherwise }\end{cases}
$$

(iii) The highest weight α of the simple head of X / V_{p} is $\left(\alpha_{1}, \alpha_{2}\right)$ where

$$
\left(\alpha_{1}\right)_{i}= \begin{cases}p-1 & 0 \leq i<n \\ r_{n}-1 & i=n\end{cases}
$$

Proof.
(i) By Corollary 2.34

$$
\alpha \in \mathcal{A} \Rightarrow \forall \beta \in \Lambda \quad k(\alpha, \beta)=0
$$

Then m_{a} / m_{g} is an integer for ench β, at each valid module. The first part follows.
(ii) We first check that $M_{\text {max }}$ is a valid module. If it fails to be valid, there must be some α and β such that

$$
\nu_{p}\left(m_{a}\right)>\nu_{p}\left(m_{\beta}\right)+k(\boldsymbol{\beta}, \boldsymbol{\alpha})
$$

which can only happen if $m_{a}=p, m_{a}=1$ and $k(\beta, \alpha)=0$, so $\alpha \in A, \beta \notin$ A. By Corollary 2.34(iv), $k(\alpha, \beta)=0$, so by Corollary 2.34(i), $k(\beta, \alpha)=0$ implies $\beta \in \mathcal{A}$, which is the required contradiction. To show that $M_{\text {max }}$ is the unique maximal submodule, it suffices to show that any non-zero valid module M is contained in $M_{\text {max }}$. Pick aome β such that $m_{g}^{(M)}>1$. Then by part (i), $m_{a}^{(M)} \geq m_{\beta}^{(M)}>1$ for all $a \in \mathcal{A}$, so in particular $M \subseteq M_{\text {max }}$.
(iii) $a_{1 n}$ must be atrictly less than r_{n} since a, which must score the $(n-1)^{\text {th }}$ point in r, would otherwise score the $n^{\text {th }}$ point in r. This would inply that $\alpha_{\mathfrak{l}}>\boldsymbol{r}^{\text {, which }}$ is impossible. The rest is clear.

Remark 2.36.

We may consider possible generalisntions of this result. Plainly it is not true that

$$
|\alpha|_{P} \geq|\beta|_{\rho} \Rightarrow m_{a} \geq m_{\beta},
$$

but what about the property

$$
|\alpha|_{p}>|\beta|_{p} \Rightarrow m_{\alpha} \geq m_{\beta} ?
$$

In fact even this weaker assertion is false; a counter-example is $r=30, p=3$, $\alpha=(15,15), \beta=(29,1)$, in which $\nu_{p}(|a|)=2$ and $\nu_{p}(|\beta|)=1$, and there is a valid module in which $\nu_{p}\left(m_{a}\right)=0$ whilst $\nu_{p}\left(m_{B}\right)=1$. In the next chapter we shall see why, and under what circumatances, this can happen.

The reader will see that we have now greatly simplified the problem of finding all valid modulea for particular values of r and p. We began by describing this as the problem of finding all natural number solutions $\left\{m_{a}\right\}$ to the validity conditions $V(a, \beta)$:

$$
\frac{m_{a}}{m_{\alpha}} \frac{\beta_{1}!\beta_{2}!}{A!\left(\alpha_{1}-A\right)!\left(\beta_{1}-A\right)!\left(\beta_{2}-\alpha_{1}+A\right)!} \in \bar{Z}
$$

for every pair ($0, \beta$) of dominant weights, and for every integer value of A satisfying

$$
\alpha_{1}-\beta_{2} \leq A \leq \min \left(\alpha_{1}, \beta_{1}\right),
$$

and have reduced it to that of finding all integer solutions $\left\{\nu_{p}\left(m_{0}\right)\right\}$ to the following two conditions.

V1) for all α and β,

$$
\nu_{p}\left(m_{a}\right)-\nu_{p}\left(m_{\beta}\right)+k(\alpha, \beta) \geq 0 .
$$

This is the malidity condition, whichensures that M is an admissible lattice. V2) for all a,

$$
0 \leq v_{p}\left(m_{a}\right) \leq \nu_{p}(|\alpha|)
$$

This is the normalisation condition, which ensures that $X \geq M \geq V_{p}$.
Given the relative simplicity of calculating $\boldsymbol{k}(\boldsymbol{\alpha}, \boldsymbol{\beta})$, this set of inequalitiea is a great deal more tractable than the origimal. We arr still forced to consider every pair of dominant weights in turn, and for all but the smallest problems this makes the task too large to be done by hand. However, anyone attempting to find all solutions by hand will notice that most of the inequalities are redundant, and will begin to suspect that the problem can be simplified still further. In the next chapter we shall show that this is so.

Chapter 3

The lattice of valid modules.

In this chapter we show that the information required to find the lattice of valid modulea for particular values of r and p is encapsulated in a much more economical structure then the set of all pairs of dominant weights. We give a method for drawing the lattice that is computationally easy enough to enable comparatively large problems to he tackled by hand. Moreover, we uae the knowledge we have gained to deduce some general facts about the structure of the lattice, and to give techniques which may be used to deduce others.

3.1 Weights and composition factors of X / V_{F}.

In this section we describe the composition factors of X / V, in terms of the points acored by weights occurring in them, in the following sense.
Definition 3.1.
We say that a weight a occurs in a composition factor F of X / V, if and only if the weight space $F^{\circ} \neq 0$.

Lemma 3.2.

If M and N are valid modules with $M>N$, and M / N is simple, then for each weight a, either $m_{a}^{(N)}=m_{a}^{(M)}$ or $m_{a}^{(N)}=p m_{a}^{(M)}$. The latter case occurs if and only if a is a weight of M / N.

Proof.

Certaninly if M and N are valid modules then so is $p M+N$, and we have

$$
M \geq p M+N \geq N
$$

Our claim in that if M / N is simple then $M \neq p M+N$, so that $N=p M+N$. Now the fact that M / N is non-trivial implies that there is some weight a such that $M^{\circ}>N^{\infty}$, so that $N^{0} \leq p M^{\infty}$. In any such case

$$
(p M+N)^{a}=p M^{a}+N^{a}=p M^{a}<M^{a}
$$

and aince any valid module is the direct sum of ita weight apaces the reault followe.

We shall want to identify a composition factor by giving any weight which occurs in it, and later just by giving the set of points scored in r by such a weight. The result which allows us to do the first part is the following:

Theorem 3.3.

For any weight α^{\prime} there is at most one isomorphiam class of composition factors F of X / V_{p} such that $F^{\circ} \neq 0$.

We prove this result in several stages.
Consider A given by

$$
m_{\alpha}^{(A)}= \begin{cases}p & \text { if } v_{p}(|a|)>0 \\ 1 & \text { if } v_{p}(|\alpha|)=0\end{cases}
$$

Lemma 3.4.

A is a valid module.

Proof.

This is equivalent to saying that for all a and β,

$$
\nu_{p}\left(m_{\alpha}\right)-\nu_{p}\left(m_{d}\right)+k(\alpha, \beta) \geq 0 .
$$

This is certainly true if $m_{0} \geq m_{A}$, so we only noed to clieck the case where $\nu_{p}(|\alpha|)=0$ and $\nu_{p}(|\beta|) \neq 0$. In this case we need to show that $0-1+k(\alpha, \beta) \geq 0$, that is, that $k(\alpha, \beta)>0$. Bue

$$
k(\alpha, \beta)=k(\beta, \alpha)+\nu_{p}(|\beta|)-\nu_{p}(|\alpha|)>0
$$

as required.
In fact we may also see this, more casily, by noticing that $A=p x+V$.
Now consider any composition scries of X / A. Because $m_{a}^{(A)} \leq p$ for all α, there is at most one composition factor F of X / A such that $F^{\alpha^{\prime}} \neq 0$. Also any weight α^{\prime} for which $\nu_{p}\left(\left|\alpha^{\prime}\right|\right) \neq 0$, that is, for which there is any composition factor F of $X / V_{\text {, }}$ for which $F^{\alpha^{*}} \neq 0$, does occur in some composition factor of X / A, since otherwise we could not have $m_{a^{\prime}}^{(4)}=p$.

We show that any composition factor of X / V_{y} is isomorphic to some composition factor of X / A. This will complete the proof of Theoren 3.3. It is poasible to prove this in a more general context than we have here, using the JordanHoblder theorem. However, it is useful to demonatrate here some techniques that we shall need later. We need a further piece of notation.

Definition 3.s.

Suppose M / N is a composition factor of X / V. Let

$$
J(M / N)=\left\{a \mid m_{\alpha}^{(N)}=p m_{\alpha}^{(M)}\right\}
$$

the set of weights 'genuinely affected' by this compasition factor. Then we may also deacribe $J(M / N)$ as the met of weights such that the weight apace

$$
(M / N)^{\alpha}=M^{\alpha} / N^{\omega} \neq 0
$$

Notice that $J(M / N)$ determines the inotuorphism class of M / N.
Lemma 3.6.
If a and β are in $J(M / N)$, then $m_{o}^{(M)}=m^{(M)}$,
Proof.
Suppoae not. Then let I be the proper suliset of $J(M / N)$ defined by

$$
I=\left\{a \in J(M / N) \mid m_{a}^{(M)} \leq m_{\beta}^{(M)} \quad \forall \beta \in J(M / N)\right\}
$$

and consider the module P given by

$$
m_{a}^{(P)}= \begin{cases}p m_{a}^{(M)} & \text { if } \alpha \in I \\ m_{a}^{(M)} & \text { otherwise }\end{cases}
$$

so that $\boldsymbol{N}<\boldsymbol{P}<\boldsymbol{M}$. We clain that P is a salid module, which will contradict the simplicity of M / N. By the validity of M and N, we need only check pairs (α, β) where $\beta \in I$ and $\propto \in J(M / N) \backslash I$. Then

$$
\nu_{p}\left(m_{a}^{(P)}\right)-\nu_{p}\left(m_{\beta}^{(P)}\right)+k(\alpha, \beta)=\nu_{p}\left(m_{\theta}^{(M)}\right)-\nu_{p}\left(m_{\beta}^{(M)}\right)-1+k(o, \beta)
$$

But by hypotheais $\nu_{p}\left(m_{a}^{(M)}\right)>\nu_{p}\left(m_{j}^{(1 / 1)}\right)$ so the right-hand side is at least zero, and so P in a valid module and we have the desired contradiction.

Now let B / C be any composition factor of X / A. Recall that

$$
J(B / C)=\left\{a \mid m_{\alpha}^{(C)}=p m_{\infty}^{(m)}\right\}
$$

and note that if $\alpha \in J(B / C)$ then $m_{\alpha}^{(B)}=1$ and $m_{\alpha}^{(C)}=p$.
Lemma 3.7.
If α and β are in $J(B / C)$ then $k(\alpha, \beta)=0=k(\beta, \alpha)$.

Proof.

If $|J(B / C)|=1$ there in nothing to prove. We show first that $\nu_{p}(|\alpha|)=$ $\nu_{p}(|\beta|)$ and ao $k(\alpha, \beta)=k(\beta, \alpha)$. Suppose not. Then let I^{\prime} be the proper subset of $J(B / C)$ defined by

$$
J^{\prime}=\left\{\alpha \in J(B / C) \mid \nu_{p}(|\alpha|) \geq \nu_{r}(|\beta|) \quad \forall \beta \in J(B / C)\right\}
$$

and consider the module Q given by

$$
m_{o}^{(Q)}= \begin{cases}m_{a}^{(B)} & \text { if } a \in I^{\prime} \\ m_{a}^{(B)} & \text { otherwige }\end{cases}
$$

so that $C<Q<B$. We claim that Q is a valid module. By the validity of B and C, we need only check pairs (α, β) where $\beta \in I^{\prime}$ and $\alpha \in J(B / C) \backslash I^{\prime}$. Then

$$
\nu_{p}\left(m_{\alpha}^{(Q)}\right)-\nu_{p}\left(m_{\beta}^{(Q)}\right)+k\left(\alpha_{,} \beta\right)=1-0+k(\kappa, \beta)
$$

which is at least zero, so Q is a valid module and we have the desired contradiction. Thus for all and β in $J(B / C), \nu_{p}(|\alpha|)=\nu_{p}(|\beta|)$. Now

$$
k(\beta, a)=k(\alpha, \beta)+v_{p}(|a|)-\nu_{p}(|\beta|)=k(\alpha, \beta)
$$

an claimed.
We now show that $k(\alpha, \beta)=k(\beta, \alpha)=0$ using the fact that $k(\alpha, \beta)$ is the number of points in r scored by β and not by a.

We define a subset $I^{\prime \prime}$ of $J(B / C)$ for an arbitrary fixed clement of of $J(B / C)$ by

$$
r^{\prime \prime}=\{\beta \in J(B / C) \mid k(\alpha, \beta)=0\}
$$

Then if β in in $I^{\prime \prime}, \gamma$ in in $J(B / C)$ and $\boldsymbol{\lambda}(\beta, \gamma)=0$ then by Corollary 2.34(iii)

$$
k(\alpha, \gamma) \leq k(\alpha, \beta)+k(\beta, \gamma)=0
$$

so γ is in $I^{\prime \prime}$. Thus if β is in $I^{\prime \prime}$ nnd γ is in $J(B / C) \backslash I^{\prime \prime}$ then $k(\beta, \gamma)>0$.
We would like to show that this situation cannot arise, that is, that

$$
J(B / C)=I^{\prime \prime}
$$

Firat we show that $I^{\prime \prime} \neq \varnothing$.
We have assumed $|J(B / C)| \neq 1$, so by simplicity of B / C the module D defined by

$$
m_{\beta}^{(D)}= \begin{cases}p m_{\beta}^{(B)} & \text { if } A=a \\ m_{\beta}^{(B)} & \text { otherwise }\end{cases}
$$

must fail to be valid. By validity of B this menns that there is some β in $J(B / C), \beta \neq a$, , uch that

$$
\nu_{p}\left(m_{\beta}^{(D)}\right)-\nu_{p}\left(m_{\alpha}^{(D)}\right)+k(\beta, a)<0
$$

that in, such that $0-1+k(\beta, \alpha)<0$, so $k(\alpha, \beta)=k(\beta, n)=0$, so $I^{\prime \prime}$ is non-empty, as required.

Now consider the module E given by

$$
m_{\Delta}^{(E)}= \begin{cases}p m_{g}^{(B)} & \text { if } \beta \in I^{\prime \prime} \\ m_{j}^{(b)} & \text { otherwise }\end{cases}
$$

so that $C \leq E<B$. We claim that E in a valid module. For we need only check pairs (β, γ) where $q \in I^{\prime \prime}$ and $\beta \in J(B / C) \backslash I^{\prime \prime}$. Then

$$
\nu_{p}\left(m_{\beta}^{(E)}\right)-\nu_{p}\left(m_{\gamma}^{(E)}\right)+k(\beta, \gamma)=\nu_{p}\left(m_{\beta}^{(B)}\right)-\nu_{p}\left(m_{\gamma}^{(B)}\right)-1+k(\beta, \gamma)
$$

which in $k(\beta, \gamma)-1$ which is at lenat zero since $\gamma \in I^{\prime \prime}$ and $\beta \in J(B / C) \backslash I^{\prime \prime}$. Therefore E is a valid module as claimed. an by simplicity of B / C we have $E=C$, that is $I^{\prime \prime}=J(B / C)$ at required.
Corollary 3.8. By Corollary 2.34 (i), thim implies that if M is any valid module and and β are any wrights in $J(B / C)$ then $m_{a}^{M A}=m_{\beta}^{A f}$.

Now return to consideration of M / N and $J(M / N)$. Since every α lying in $J(M / N)$ must have non-zero weight space in sotne (unique) composition factor of X / A, we may fix an arbitrary composition series of X / A and choome the closest factor to X in which there in any o in $J(M / N)$ with non-zern weight space. Call this B / C. Then for every o in $J(M / N)$, by choice of B we have $m_{a}^{(B)}=1$ and ao

$$
a \in J(B / C) \Longleftrightarrow\left(m_{a}^{(H)}=1 \text { and } m_{a}^{(C)}=p\right)
$$

and, by choice of $B / C, J(M / N) \cap J(B / C) \neq \varnothing$. Therefore $J(B / C) \subseteq J(M / N)$, by Corollary 3.8, and we know that anne wright in $J(B / C)$ natinfira the criterion for mernhership of $J(M / N)$ so, since this dejetult only on valuen of m_{a} at valid modulen, all weighta of $J(B / C)$ must natisfy the criterion.

Connider the module Z given by

$$
m_{a}^{(Z)}= \begin{cases}p m_{a}^{(A)} & \text { if } \Omega \in J(B / C) \\ m_{a}^{(M)} & \text { otherwise }\end{cases}
$$

so that $N \leq Z<M$. We want to show that $Z=N$, which will show that $J(B / C)=J(M / N)$. Suppose not. Then by simplicity of $M / N, Z$ cannot be a valid module, so there is some α in $J(B / C)$ and β in $J(M / N) \backslash J(B / C)$ such that

$$
v_{p}\left(m_{\beta}^{(Z)}\right)-\nu_{p}\left(m_{\alpha}^{(Z)}\right)+k(\beta, \alpha)<0
$$

that is,

$$
\nu_{p}\left(m_{d}^{(M)}\right)-\nu_{p}\left(m_{a}^{(M)}\right)-1+k(\beta, \alpha)<0
$$

which impliee $k(\beta, \alpha)=0$ since we have proved that $\nu_{p}\left(m_{\alpha}^{(M)}\right)=\nu_{p}\left(m_{\beta}^{(M)}\right)$. However, by choice of B / C,

$$
m_{\beta}^{(B)}=m_{\beta}^{(C)}=1
$$

and $m_{\alpha}^{(C)}=p$, and by validity of C

$$
\nu_{p}\left(m_{\beta}^{(C)}\right)-\nu_{p}\left(m_{\alpha}^{(C)}\right)+k(\beta, \alpha) \geq 0
$$

that is, $k(\beta, \alpha) \geq 1$. This is the required contradiction, so $Z=N, J(B / C)=$ $J(M / N)$ and so M / N is isomorphic to B / C.

This completes the proof of Theorem 3.3.

Lemma 3.e.

(i) If α satisfies $|\alpha|_{p} \neq 1$ then α occurs in exactly one of the isomorphism classes of composition factors of N / V_{p}. If $|\alpha| p=1$ then a does not occur in any of them.
(ii) If the weight o occurs in composition factor F, then composition factors isomorphic to F occur $\nu_{p}(|a|)$ times in any composition series of X / V_{F}.
(iii) Two weights α and β occur in the same isomorphism class of composition factors of X / V_{p} only if $|\alpha|_{p}=|\beta|_{p}$, that is, only if they score the same number of points in r.

Proof.

(i) a occurs in at most one simple by Theorem 3.3. If $|a| \boldsymbol{p} \neq 1$ then it must occur in at least one since $V_{p}^{a}=|\alpha|_{p} X_{p}^{o}$, that is, since the α-weight spaces of X and V_{p} are not equal. Similarly, if $|a|,=1$ then the weight spaces are equal, so a cannot orcur.
(ii) By Lermma 3.2, in any composition series, a must occur in a total of $\nu_{p}\left(\left|X^{a} / V_{F}^{c}\right|\right)$ composition factors, that in, in $\nu_{p}(|a|)$ composition factors, which must all be isomorphic.
(iii) If α and β both occur in F then neither can occur in any other simple, so, using Lemma 3.2, $m_{a}=m_{A}$ for all valid modules. In particular,

$$
|\alpha|_{p}=m_{a}^{\left(v_{p}\right)}=m_{g}^{\left(V_{p}\right)}=|\beta|_{p} .
$$

Lemma 2.6 gives the result.
The next result is the one, advertised earlier, which allows us to identify any composition factor F by giving only the set of points scored in r by some weight which occurs in \boldsymbol{F}. This result extends Lemma 3.9.
Proposition 3.10.
Two weights α and β occur in the asme composition factor if and only if where

$$
\begin{aligned}
r & =r_{n} p^{n}+\cdots+r_{0} \\
\alpha_{1} & =\left(\alpha_{1}\right)_{n} p^{n}+\cdots+\left(\alpha_{1}\right)_{0} \\
\beta_{1} & =\left(\beta_{1}\right)_{n} p^{n}+\cdots+\left(\beta_{1}\right)_{0}
\end{aligned}
$$

we have for all $m, 0 \leq m \leq n-1$,

$$
a_{1}(m)>r(m)
$$

if and only if

$$
\beta_{1}(m)>r(m)
$$

in other words, not only do a and β score the same number of points in r, they also acore these points in the same positions in their p-adic expansions. That is, $\Gamma_{p}\left(r_{1} \alpha_{1}\right)=\Gamma_{p}\left(r_{1} \beta_{1}\right)$.

Proof.

If α and β score the same points then $k(\alpha, \beta)=k(\beta, \alpha)=0$ and we have already remarked in Corollary 2.34 that in this casc $m_{\mathrm{a}}=m_{g}$ at all valid modules, that is, the two weights occur in the same simple.

Conversely, suppose that a and β ocrur together, that is, $m_{a}=m_{\beta}$ at every valid module. Suppose both oceur in the composition factor M / N. We rlaim that if P is the module defined by

$$
m_{*}^{(P)}= \begin{cases}p_{0}^{(M)} & \text { if } \nu \text { scores the same points in } r \text { as a } \\ m_{a}^{(M)} & \text { otherwise }\end{cases}
$$

then P in a valid module, contradicting the hyputhenis that M / N in simple. For if P is not a valid module, there must be sume γ and δ auch that

$$
v_{p}\left(m_{\rho}^{(P)}\right)>v_{p}\left(m_{\gamma}^{(P)}\right)+k(\gamma, \delta)
$$

so by validity of $M, \nu_{p}\left(m^{(P)}\right)=\nu_{p}\left(m_{\gamma}^{(M)}\right)$ and $\nu_{p}\left(m_{\delta}^{(P)}\right)=\nu_{p}\left(m_{\beta}^{(M)}\right)+1$, that is, δ scores the same points in r as a whilst γ does not, and

$$
\begin{equation*}
\nu_{p}\left(m_{s}^{(M)}\right)=\nu_{p}\left(m_{\gamma}^{(M)}\right)+k(\gamma, \delta) . \tag{*}
\end{equation*}
$$

Now by validity of N,

$$
\nu_{p}\left(m_{\delta}^{(N)}\right) \leq \nu_{p}\left(m_{q}^{(N)}\right)+k(\gamma, \delta)
$$

so since $\nu_{p}\left(m_{\delta}^{(N)}\right)=\nu_{p}\left(m_{6}^{(P)}\right)=\nu_{p}\left(m_{\phi}^{(M)}\right)+1$ we have $\nu_{p}\left(m_{\gamma}^{(N)}\right)=v_{p}\left(m_{\gamma}^{(P)}\right)+$ $1=\nu_{p}\left(m_{\gamma}^{(M)}\right)+1$, that is, γ occurs in M / N together with α and δ, so γ scores the same number of points in r as α, although not in the same positions. But then $\nu_{p}\left(m_{\gamma}\right)=\nu_{p}\left(m_{s}\right)$ for all valid modules, so, by equation $(*), k(\gamma, \delta)=0$. Since γ and δ score the same number of points in r,

$$
k(\delta, \gamma)=\nu_{p}(\gamma)-\nu_{p}(\delta)+k(\gamma, \delta)=0
$$

so γ and δ score the same points in r, which is a contradiction.

Corollary 3.11.

This implies that the weights α, inentioned in the statement of Proposition 2.35, which setisfy

$$
\forall \beta \in \Lambda \quad|\beta|_{p} \leq|\alpha|_{\rho}
$$

must all occur in the same composition factor, since they score all possible pointa in r. Of course, we have already proved this directly in Proposition 2.35!

To summarise, we have shown that we can classify composition factors according to the sets of points which are scored by weights occurring in the composition factors. Hereafter we shall be primarily concerned with this description of the composition factors.

Example 3.12.

Let $r=10$ and $p=2$. Then

$$
r=10=1.2^{3}+0.2^{2}+1.2^{1}+0
$$

and the possibilities for α_{1} are

$$
\begin{aligned}
& 9=1.2^{3}+0.2^{2}+0.2^{1}+1 \\
& 8=1.2^{3}+0.2^{3}+0.2^{1}+0 \\
& 7=0.2^{3}+1.2^{2}+1.2^{1}+1 \\
& 6=0.2^{3}+1.2^{2}+1.2^{1}+0 \\
& 5=0.2^{3}+1.2^{2}+0.2^{1}+1
\end{aligned}
$$

Now $\gamma_{\rho}(10,9)=1$, and this point is scored in the unite place of the p-adic expansion. Also $\gamma_{p}(10,6)=1$, but in this case the point is scored in the 2^{2} place of the p-adic expansion, so weights $(9,1)$ and $(6,4)$ occur in different isomorphism classes of composition factors of X / V, . Since $\gamma_{p}(10,8)=0, \gamma_{p}(10,7)=3$ and $\boldsymbol{T}_{p}(10,5)=2$, and no two of these are the same, in this case in, each simple a unique weight occurs, and this weight ia also the highest weight for the simple module. Any composition series for X / V_{p} must contain three copies of the compoaition factor with highest weight (7,3), two copies of that with highest weight (5,5), one copy of that with highest weight $(9,1)$ and one copy of that with highest weight $(6,4)$. In fact, calculation (by hand or using the program in Appendix A, output from which is in Appendix B) shows that the submodule lattice of X / V_{P} in this case is the following, where vertices represent valid modulea and edgea represent composition factors, in the obvious way. The tuple shown on the diagram adjacent to any vertex M is

$$
\left(\nu_{2}\left(m_{(9,1)}^{(M)}\right), \nu_{2}\left(m_{(8,2)}^{(M)}\right), \nu_{2}\left(m_{(7,3)}^{(M)}\right), \nu_{2}\left(m_{(6,4)}^{(M)}\right), \nu_{2}\left(m_{(5,5)}^{(M)}\right)\right) .
$$

3.2 The lattice of acoreable aets: definition and properties

We know that the iamorphism clase of a composition factor is determined by the set of weights whose weight spaces in the composition factor are non-zero. We have shown that, aince a given wright lisa a non-zero weight apace in at most one isomorphism class of composition factors, the isomorphism class of a compoaition factor in determined by any one weight whose weight apace in
the composition factor is non-zero. In the previous gection we ahowed that the isomorphimm class, if any, of composition factors in which a given weight occurn in determined by the set of points which the weight seores in r. Therefore we may consider that we have defined an injective function from isomorphiam
 reasonable to study the image of this function; and in this section we ahall do so. In the next section, we shall show that this study is indeed profitable.

Recall the notation $\Gamma_{p}(x, y)$ for the set of points scored by y in x, with respect to the prime p, and $\mathcal{\gamma}_{p}(x, y)$ fur the size of this set. Recall also that $\Gamma_{p}\left(r, \alpha_{1}\right)=\Gamma_{p}\left(r, \alpha_{2}\right)$, and that we write this set $\Gamma_{p}(r, \alpha)$. Let r have the p-adic expanaion $r=r_{n} p^{n}+\cdots+r_{0}$ where $r_{n} \neq 0$.

Lemme 3.13.

Let $A \subseteq\{0, \ldots, n-1\}$. Then there is some weight α such that $\Gamma_{p}(r, a)=A$ if and only if both
(i) for each; auch that $r_{i}=p-1$, either $i \notin A$ or both i $\in A$ and $i-1 \in A$; and
(ii) for each t such that $r_{1}=0$, either $: \in A$ or both i $\& A$ and $:-1 \notin A$.

When these conditions are satisfied, the highest weight o such that $\Gamma_{p}(r, \alpha)=A$ is given by

$$
\alpha_{1 i}= \begin{cases}p-1 & \text { if } i \in A \\ r_{1}-1 & \text { if } i \notin A \text { and } i-1 \in A \\ r_{i} & \text { if }: \notin A \text { and } i-1 \notin A .\end{cases}
$$

Praof.

We show first that if conditions (i) and (ii) are satisfied then the weight deacribed in the atatement does satisfy $\Gamma_{p}(r, \alpha)=A$. Notice that condition (ii) ensures that $a_{1 i}$ is not set to be $r_{1}-1$ when $r_{i}=0$! Informally, condition (i) ensurea that acores all the points it is required to score, that is, that $A \subseteq \Gamma_{p}(r, a)$, whilat condition (ii) cnsures that it scores no more, that is, that $\Gamma_{j}(r, a) \subseteq A$. More formally, we use induction on the value of j such that, for all $k<j, k \in A$ if and only if $k \in \Gamma_{p}(r, a)$. If $0 \in A$ then $a_{10}=p-1$ so $0 \in \Gamma_{p}(r, a)$ unless $r_{0}=p-1$, which condition (i) forbids. Conversely, if $0 \notin A$ then $\alpha_{10}=r_{0}$, so $0 \notin \Gamma_{p}(r, o)$. Now suppose that, for all $j<i, j \in A$ if and only if $j \in \Gamma_{p}(r, a)$. If $i \in A$ then $a_{11}=p-1$ so if $r_{1}<p-1$ then $i \in \Gamma_{p}(r, a)$ certainly. If $r_{1}=p-1$ tien condition (i) applies, so i $-1 \in A$, hence $1-1 \in \Gamma_{p}(r, a)$ by the induction hypothesis, soi $\in \Gamma_{p}(r, a)$. Conversely, if $1 \& A$ then either $\alpha_{11}=r_{i}-1$, in which case certainly i\& $\Gamma_{p}(r, a)$, or $a_{11}=r_{i}$
and $:-1 \notin A$, in which case by induction $i-1 \notin \Gamma_{p}(r, a)$, so $\& \Gamma_{p}(r, a)$. This completes the inductive step, so $A=\Gamma_{p}(r, a)$ as required.

Now suppose that there is a weight θ, higher than a, satisfying $A=\Gamma_{p}(r, \beta)$. Then $\beta_{1}>\alpha_{1}$, so in particular there is some : auch that $\beta_{1},>\alpha_{1}$. Certainly \& A. Either $:-1 \in A$, so $:-1 \in \Gamma_{p}(r, \beta)$, and $\beta_{1 i} \geq r_{1}$, or i $-1 \notin A$ and $\beta_{1 i}>r_{i}$. In either case, $i \in \Gamma_{p}(r, \beta)$, contrary to the suppoaition. Hence a in the highest weight aatisfying $\Gamma_{F}(r, a)=A$, as claimed.

Definition 3.14.

The aubset A of $\{0, \ldots, n-1\}$ is a scoreable set of points when conditions (i) and (ii) of Lemma 3.13 hold.

Corollary 3.15.
Let α and β be weights with $\Gamma_{p}(r, a)=A$ and $\Gamma_{p}(r, \beta)=B$. Then
(i) There is a weight γ with $\Gamma_{p}(r, \gamma)=A \cup B$.
(ii) There is a weight δ with $\Gamma_{p}(r, \delta)=A \cap B$.
(iii) If $B \subset A$ then there is a weight ϵ with $B \subseteq \Gamma_{p}(r, e) \subset A$ and $\gamma_{p}(r, e)=$ $|A|-1$

Proof.

For the first two parts, we need to show that if A and B satisfy conditions (i) and (ii) of Lemma 3.13, then so do $A \cup B$ and $A \cap B$. To show that if A and B astiafy (i) then no doee $A \cup B$ notice that

$$
\begin{aligned}
& (i \notin A \vee(i \in A \wedge i-1 \in A)) \wedge(i \notin B \vee(i \in B \wedge:-1 \in B)) \\
\Rightarrow & (i \notin A \cup B \vee(i \in A \cup B \wedge i-1 \in A \cup B))
\end{aligned}
$$

the other parts are aimilar.
We prove the third part by contradiction. Suppose that there is no $j \in A \backslash B$ such that there is a weight e with $\Gamma_{p}(r, \epsilon)=A \backslash\{J\}$. That is, for every $j \in A \backslash B$ the set of pointr $A \backslash\{j\}$ fails either condition (i) or condition (ii) of Lemma 3.13. This implies

$$
(\forall j \in A \backslash B)\left(\left(j+1 \in A \wedge r_{j+1}=p-1\right) \vee\left(j-1 \in A \wedge r_{j}=0\right)\right)
$$

Let the elements of $A \backslash B$ be labelled fo.f..... where $j_{0}<j_{1}<\ldots$. Now $j_{0}-1 \notin A \backslash B$. If $j_{0}-1 \in A \cap B$ and $r_{j}=0$ thrn since $j_{0} \& A \cap B$ and by part (ii) $A \cap B$ ia scoreable, we have a contradiction. Hence $j_{0}-1 \notin A$ so $j_{0}+1 \in A$. If $j 0+1 \in A \cap B$ and $r_{n+1}=p-1$ we again derive a contradiction from the fact that $j_{0} \& A \cap B$. Therefore $j_{1}=j_{0}+1$, and $r_{n}=r_{j_{0}+1}=p-1$. Thus
$r_{j_{1}} \neq 0$ an $j_{1}+1 \in A \backslash B$, implying that $j_{2}=j_{1}+1$, and $r_{3}=r_{j_{1}+1}=p-1$. And so on; so $A \backslash B$ must be infinite! This is the required contradiction.

Remarl 3.16.

The third part of Corollary 3.15 has the interesting consequence that if there is a unique subset A of $\{0, \ldots, n-1\}$ having size m and satisfying conditions (i) and (ii) of Lemma 3.13 (that is, if there is a unique acorcalile set of size m, or, equivalently, a unique isomorphism class of simple modules occurring in X / V_{p} with multiplicity m) then any scoreable set B of size at least m must contain A. For repeated application of Corollary 3.15 (iii) shows that B must contain some subset of size m which satisfies conditions (i) and (ii) of Lemma 3.13, and by the uniqueness assumption this must be A.

Remark 3.17.

Any maximal contiguous subset of a scoreable set is scoreable. That in, if A is a scoreable set, and the subinterval $S=\{m, m+1, \ldots, m+r\}$ of $\{0, \ldots, n-1\}$ is contained in A, but neither $m-1$ nor $m+r+1$ is in A, then S muat be a scoreable set. For if either of the conditions of Lemma 3.13 failed for such a maximal contiguous subset, it must fail for the original set too.

We may consider how to calculate the mumber of different sets of positions in which it is possible to acore m points, that is, the number of scorcable sets of points of a given size m. One situation is particularly simple; it correaponda to Carter and Cline's non-degenerate case ([CarterCline],[Detiziotis]).

Lemma 3.18.

If no cofficient in the p-adic expansion of r is either 0 or $p-1$ then there are ($\begin{gathered}\mathrm{m} \\ \mathrm{m}\end{gathered}$) different ways of scoring m points in r, (recalling that the $n^{\text {tb }}$ is the higheat non-zero coefficient in the p-adic expansion of r) and an there are ($\left.\begin{array}{l}n \\ m\end{array}\right)$ isomorphiam classes of ample modules occurring m times in any composition seriea for X / V_{p}.

Proof.

Conditions (i) and (ii) of Lemma 3.13 are vacuously satisfird by any subset A of $\{0, \ldots, n-1\}$.

We whall have to examine the inclusion dingran whose vertices are the scoreable seta of pointa. Notice that this dingram, which we ahall refer to as the scoreable set lattice for r and p, or an $\mathcal{C}(r, p)$, han various rlemmenty properties, anflows:
(i) It is a lattice; that is it is connected, and closed under meets and joins, by Corollary 3.15.
(ii) It in complete, for earh scoreable set contains \varnothing and is contained by $\Gamma_{p}(r)$.
(iii) It is a sublattice of the $\gamma_{p}(r)$-dimensional Boolean algebra which would be the scoreable set latice if each of the points which can be scored in r were individually scoreable, so that every subset of this set of $\gamma_{p}(r)$ pointa were a scoreable set.
(iv) Adjacent vertices represent scoreable sets of points which differ in size only by 1, by Corollary 3.15.
Of course, Carter and Cline's non-degenerate case corresponds to the scoreable set lattice being the whole $\gamma_{p}(r)$-dimensional Docolean algebra, described in (iii). We shall return to the connection betwewn their work and ours in Chapter 4.

It is worth recording an casy and systematic method for drawing the scoreable set lattice for any given values of r and p.

1) Identify the set of points whirla occur in some scorpable set. This is the set $\{t, \ldots, n-1\}$ in the notation of Lemma 2.9 ; recall that this is the set of points whose corresponding confficients of r are neither the leading cofficient nor in the $p-1$-tail of r.
2) For each of these points k, identify the minimal scorenble set in which k occurs. Referring to Lemma 3.13, we ser that this is well-defined as the set

$$
\{j, \ldots, k, \ldots, 1\}
$$

where

$$
j=\max \left\{1 \leq k \mid r_{1} \neq p-1\right\}
$$

and

$$
l=\min \left\{i \geq k \mid r_{1+1} \neq 0\right\}
$$

which may, of course, consist of k Alone.
3) Form the latice of intermections and unions of these minimal seoreable sete. This is the entire lattice of scorcuble setm; for Corollary 3.15 showed that it is a sublatice of the lattice of scorenble sets, nud nny seoreable set is the union of the minimal scoreable sets containing cach of its members.

Remark 3.19.

This method exposes the fact that we can regned $\Gamma_{p}(r)$ an a topological space, by saying that a met is open if and only if it is scoreable. The aet of minimal acoreable aets contuining parh ncoreable joint, deweribed above, is then n base for the topology.

Example 3.20.

We illustrate this by continuing Example 3.12.

1) The points which occur are 0,1 and 2.
2) The minimal scoreable set including 0 is $\{0\}$, that including 1 in $\{0,1,2\}$ and that including 2 is \{2\}.
3) Therefore the scoreable set lattice is

In general it seems to be quite hard to clescribe which sublatticea of Boolean algebras can occur as scorcable set lattices, and in fact we shall not need such a general degcription. It is, however, conveniant to give a simple description of the acoreable set lattices which arise if therc is a unique scorcable singleton.

Lemma 3.21.

If there is a unique scoreable singleton then the scoreable set lattice has the form

for some values of m_{1} and m_{2}, with m_{1} aud m_{2} at Irast 1 . Morrover, any auch diagram in the acoreable met lation for some values of r and p.

Proof.

Combining Remark 3.16 and Remark 3.17, we see that any scoreable set in a subinterval of $\{0, \ldots, n-1\}$ and includea the singleton, say $\{k\}$. The maximal scoreable set is $\{t, \ldots, n-1\}$ as deacribed above; since there is a unique acoreable aingleton we must have

$$
r_{i}=\ldots=r_{k}=0
$$

unleas $t=k$, in which case there ia no restriction on the value of r_{k}, and

$$
r_{k+1}=\ldots=r_{m-1}=p-1
$$

unleas $n=k+1$, in which case there is no restriction on the value of r_{n}. This is most easily seen by considering the values of r_{m-1} and r_{1}, and working inwards. Therefore any aubinterval of $\{t, \ldots, n-1\}$ which includes k must be scoreable, and the result follows by setting $m_{1}=n-k$ and $m_{2}=k-t+1$.

Conversely, consider

$$
r=p^{m_{1}+m_{2}-1}+p^{m_{3}} \times\left(p^{m_{1}}-1\right)
$$

which has p-adic expansion

$$
r=p^{m_{1}+m_{1}-1}+(p-1) p^{m_{1}+m_{p}-2}+\ldots+(p-1) p^{m_{2}}+0 \cdot p^{m_{3}-1}+\ldots+0
$$

Plainly this has the scoreable aet latice indicated; the scoreable singleton is $\left\{m_{2}-1\right\}$ and the scoreable sets are the nuhintervals of $\left\{0, \ldots, m_{1}+m_{2}-2\right\}$ which include $m_{2}-1$.

3.3 The latice of acoreable sets: its importance

In this section we shall begin to use the scoreable set lattice for particular values of r and p to solve the original problem of fincling all valid modulem for those values. We shall be able to cease referring to weighta almost entirely, since all the information we require is encapsulated in the scoreable set latice.

Recall that $m_{o}=m_{\rho}$ at all valid modules if $\Gamma_{p}(r, a)=\Gamma_{p}(r, \beta)$, and that if alao $\Gamma_{p}(r, \gamma)=\Gamma_{p}(r, \delta)$ then

$$
k(\alpha, \gamma)=\lambda(\beta, \delta)=\left|\Gamma_{p}(\Gamma, \gamma) \backslash \Gamma_{p}(r, \alpha)\right|
$$

Therefore we may rephrase the probleln of finding all valid modules, which we deacribed in Chapter 2 as that of finding all integer molutions $\left\{\nu_{p}\left(m_{a}\right)\right\}_{a \in A}+$ to the conditions:

V1) (Validity) for all a and β,

$$
\nu_{p}\left(m_{\alpha}\right)-\nu_{p}\left(m_{d}\right)+k(\alpha, \beta) \geq 0 ;
$$

V2) (Normalisation) for all a,

$$
0 \leq \nu_{p}\left(m_{a}\right) \leq u_{p}(|\alpha|) ;
$$

an that of finding all integer solutions $\left\{\nu_{p}\left(m_{A}\right)\right\}_{A \in C(r, p)}$ solutions to the following (Conditions B):

B1) (Validity) for all scoreable sete of points A and B,

$$
\nu_{p}\left(m_{A}\right)-\nu_{p}\left(m_{B}\right)+|B \backslash A| \geq 0 ;
$$

B2) (Normalisation) for each scoreable set of points A,

$$
0 \leq \nu_{p}\left(m_{A}\right) \leq|A|,
$$

with the obvious notation. Having found all tuples atatisfying these conditions, we obtain all tuples $\left\{m_{a}\right.$) corresponding to valid modules in the old sense simply by setting $m_{a}=m_{\mathrm{r}_{p}(r, a)}$ for each weight α.

Plainly, every natural number tuple $\left\{\nu_{p}\left(m_{a}\right)\right\}$ may be regarded as a labelling of the vertices of the scoreable set lattice, where the vertex A is labelled with $\nu_{P}\left(m_{A}\right)$.

Here we may reconsider the duality $M \mapsto \bar{M}$, considered in Chapter 1, with our new language. If the scoreable aet A is lmbelled at M with $\nu_{p}\left(m_{A}\right)$, then at \bar{M} it in labelled with $|A|-\nu_{P}\left(m_{A}\right)$. We give here our short proof of Lemma 1.55.

Proof.

Suppose that M is a valid module such that $M=\bar{M}$. That is, for every scoreable set A,

$$
\nu_{P}\left(m_{A}\right)=|A|-\nu_{p}\left(m_{A}\right)
$$

which impliea that the nize of every acoreable set is even. By Corollary 3.15 this is poasible only if \varnothing is the only scoreable set.

We next ahow that the tuples corresponding to valid modules are those which, regarded as labellings of the scureable net lattice, satiafy a rather simple criterion.

First, a weak reault.

Lemma 3.22.

If $D \subseteq C$ then at any valid module,

$$
\nu_{p}\left(m_{D}\right) \leq \nu_{p}\left(m_{C}\right) \leq|C|-|D|+\nu_{p}\left(m_{D}\right) .
$$

Proof.
We have $k(C, D)=0$ and $k(D, C)=|C|-|D|$. Rearranging

$$
\nu_{p}\left(m_{C}\right)-\nu_{p}\left(m_{D}\right)+k(C, D) \geq 0
$$

and

$$
\nu_{p}\left(m_{D}\right)-\nu_{p}\left(m_{C}\right)+L(D, C) \geq 0
$$

gives the result.
In fact we can prove a much stronger reault

Theorem 3.23.

The natural number tuple $\left\{\nu_{p}\left(m_{A}\right)\right\}$ is a solution to Conditions B, and therefore describes a valid morlule, if and only if
C1) (Validity) for every $B \subseteq C$ with $|B|+1=|C|$ we have

$$
\nu_{P}\left(m_{B}\right) \leq \nu_{p}\left(m_{C}\right) \leq 1+\nu_{p}\left(m_{B}\right)
$$

C2) (Normalisation) $\nu_{p}\left(m_{\curvearrowleft}\right)=0$

Proof.

From the previous Lemma we sec that if $\left\{m_{A}\right\}$ is a solution then the condition in satisfied. Conversely, asmume that the condition is satisfied for each such B and C, and consider any D and E such that $D \subseteq E$. Then by Corollary 3.15 (iii) there is a chain of sets

$$
D=D_{\mathrm{u}} \subset D_{1} \ldots \subset D_{m}=E
$$

such that each D_{1} is a scoreable art of points and, for each $i_{1}\left|D_{1}\right|=\left|D_{1-1}\right|+1$. Then

$$
\nu_{p}\left(m_{D}\right) \leq \nu_{p}\left(m_{J_{1}}\right) \leq \ldots \leq \nu_{p}\left(m_{E}\right)
$$

and

$$
\nu_{p}\left(m_{E}\right) \leq \nu_{p}\left(m_{D_{--1}}\right)+1 \leq \ldots \leq \nu_{p}\left(m_{D}\right)+|E \backslash D|
$$

Finally consider any D and E, dropping the requirement that $D \subseteq E$. Now because $D \subseteq(D \cup E)$ and $E \subseteq(D \cup E)$, we have nlown that

$$
\nu_{p}\left(m_{D}\right) \leq \nu_{p}\left(m_{D \cup E}\right) \leq|(D \cup E) \backslash D|+\nu_{p}\left(m_{n}\right)
$$

and that

$$
\nu_{P}\left(m_{E}\right) \leq \nu_{P}\left(m_{D \cup E}\right) \leq|(D \cup E) \backslash E|+\nu_{P}\left(m_{E}\right)
$$

Since $(D \cup E) \backslash D=E \backslash D$, we may deduce

$$
\nu_{p}\left(m_{E}\right) \leq \nu_{p}\left(m_{D \cup E}\right) \leq|E \backslash D|+\nu_{p}\left(m_{D}\right)
$$

so Condition B1 holds as required. Since the scoreable aet lattice is connected, $0 \leq \nu_{p}\left(m_{A}\right)$ for all A. Moreover, since adjacent vertices are scoreable sets that differ in aize only by 1 (Corollary $3.15(i i i)$) C 1 automatically ensures that $\nu_{r}\left(m_{A}\right) \leq|A|$ for all A.

That is, those labellinge of the scoreable set lattice which are valid are precisely those in which any two adjacent verticen cither have the same labelling or have the higher vertex labelled with the natural number one greater than the natural number label on the luwer vertex.

This providen us with men easy why to test whether a given module is valid. Moreover, we may use this result to draw the whole structure of X / V_{p}, as was our aim. For we may, in turn, label the vertices of the inclusion diagram of valid modulea by labellings of the scoreable set lattice. X is labelled with the acoreable set lattice labelled entirely with 0 A . Thereafter, given any valid module M one can tell what ita maximal valid submodules are by finding the poaitions in the labelling of the scoreable set lattice at which it is possible to increase a label, without violating the condition on adjacent labela. These will be those vertices of the scorcable met lattice such that. if the vertex (say A) is labelled with $m \in \mathbf{N}$, then each of its superior neighbours is labelled with $m+1$ and each of its inferior neighbours is labelled with m. lnereaning the label on such a scoreable net A by 1 yielda a now valid labelling of the acoreable set lattice. Thia corresponds to finding a new midid module, say N, surh that $J(M / N)=A$. An example many minke this clearer.

Example 3.24.

We continue with the example already tnckled na Example 3.12 and Example 3.20 We have found the acorerable aet lattice for $r=10$ and $p=2$. Labelling it in the way juat deacribed, we get:

3.4 Consequences for itructure graphs.

Although from the point of view of the reader who wished to know all integral Weyl modules for GL_{2} of homogeneous dagree r for some particular value of r we have done what we set out to do, there are other aims which require a different approach. In the next section we shall make some general observations about the high-level structure of K / V_{p} in certain special cases, and shall explain some techniques for exploring other cases.

Before we move on, however, we may extract a few interesting observations of the consequences of Conditions C for the structure of X / V_{p}. The reader may like to verify them in the particular case of the example we have been following, by referring to the lattice of valid modules shown in Example 3.24.

Although we are interested in the structure of X / V_{p}, the 'game' we play with integer lahellings of the scoreable set lattice has much wider applications. For the rest of this section the only property of the scoreable set lattice \mathcal{L} that we shall use is that it is a finite, connected, directed graph. Moreover, in playing the labelling gnme we shall not depend on the normalisation condition C2, but only on the validity condition C1. That is, we shall insist that no two labels on adjacent vertices differ by more than 1 , and that if $A \rightarrow B$ is an edge then, at any valid module $M, v_{p}\left(m_{A}^{\left.(\Delta)^{\prime}\right)}\right) \leq v_{p}\left(m_{m}^{(M)}\right)$, but we shall put no other restriction on the labels. The reason for pointing out this gromerality is that we shall later want to use these resulta in the eontext of the modular Weyl modules $M / p M$, where $p M$ does not atisfy the mormaliation condition.

For a start, the Ext groups of the simple modules may be of interest. This corresponds to thinking about which pairs of scoreable sets in a given labelling of the acoreable met latice can have their labels increased consecutively in one order but not in the other.

Lemma 3.25.

Suppose that $|\mathcal{L}|>1$. Then there is no composition series in which two isomorphic composition factors occur adjacently.

Proof.
Suppose M, N and P are valid modules such that

$$
M>N>P
$$

and M / N and N / P are isomorphic and simple. Then the labellings of \mathcal{C} which correspond to M, N and P differ in ouly one place; there is some $A \in \mathcal{L}$ such that $\nu_{p}\left(m_{A}^{(M)}\right)=m$, say, $v_{p}\left(m_{A}^{(N)}\right)=m-1$ and $\nu_{P}\left(m_{A}^{(P)}\right)=m-2$. Since $|\mathcal{L}|>1$ and \mathcal{L} is connected, there is some $B \in \mathcal{L}$ adjacent to A. It ia labelled with some fixed value, and there are only two compatible values for A 's label, namely the same value and a value differing by 1 in the appropriate direction. But we are hypothesising three different labels for A, all compatible with this fixed label for B; which is a contradiction.

In fact we may easily prove a stronger terult:

Lemma 3.26.

In any composition series, any two occurrences of the same composition factor, ary that corresponding to scormable set A, are separated by exactly one occurrence of the composition factor corresponding to each acoreable set adjacent to \boldsymbol{A} in \mathcal{C}, as well as, perhaps, by composition factors correaponding to acoreable seta not adjaront to \boldsymbol{A}.

Proof.

Consider the labels on \mathcal{L} before and after increasing the label on A for the firat time:

It will not be valid to increase the label on A again, to $m+2$, until this portion of the labelling has become

that is, until the label on each acoreable set adjacent to A has been increased by 1 .

Next we show that if composition factors correspond to adjarrnt vertices of \mathcal{L} then any extension of one by the other must be split.

Lemma 3.27.

Let A and B be non-adjacent vertices of \mathcal{C}, and let M, N and P be valid modules such that

$$
M>N>P
$$

whilat M / N is simple, corresponding to A, and N / P is simple, corresponding to B. Then there is some valid module N^{\prime} such that

$$
M>N^{\prime}>P
$$

whilat M / N^{\prime} is simple, corresponding to B, and N^{\prime} / P is simple, corresponding to A, as illustrated by the following dingram:

Proof.

Consider the labelling of \mathcal{L} that corresponds to M. Whether the label on B can be increased depends solely on the labels of B 's neighbours, relative to B 's Iabel. If A is not adjacent to D, then this siturtion is not altered by increasing A's label. So if it ia valid to increase B 's label after having increased A 's label,
an hypothesised, it must have been valid to increase B 's label in the first place.

The next lemma may be regarded as a converse, since it shows that if there in a mplit extenaion of two composition factors, they must correapond to nonadjacent vertices of \mathcal{L}.

Lemma 3.28.

Let A and B be acoreable seta, and let M, N and N^{\prime} be valid modules auch that

$$
M>N \quad \text { and } \quad M>N^{\prime}
$$

whilat M / N is simple, corresponding to A, and M / N^{\prime} is simple, corresponding to B. Then A and B are not adjacent in \mathcal{L}. The following dingram illustrates:

Proof.

Suppose that A and B are adjacent in $\mathcal{C}_{\text {, and }}$ (without loss of generality) that $A \supset B$. Then if at M the label on A is m. then in order for it to he valid to increase A 's label, the label on B at M must be m. Thercfore it is invalid to increase the label on B, which contradicts the hypothesin.

Notice that it was not necessary to state thesp resulta only for single vertices of \mathcal{L}. Let \mathcal{A} and B be sets of vertices of \mathcal{L} such that \mathcal{A} and B are disjoint, (but not necessarily connected). We any that \mathcal{A} and \mathcal{B} are adjacent if and only if there ia some pair of scorcable sets $A \in \mathcal{A}$ and $B \in B$ auch that A and B are adjacent. Then we immediately get generalisations of the preceding results. The generalisation of Leminn 3.25 is

Lemms 3.29.
Let M, N and P be valid modules with

$$
M>N>P
$$

and assume that there is some $A \in \mathcal{C}$ such that A 's lahel is not increased between M and $N_{\text {; }}$ that in, that the comporition factor corresponding to A does not occur in M / N. Then M / N is not isomorphie to N / P.

Proof.

The assumption provides un with an elenent $A \in \mathcal{L}$ which is not adjacent to the (multi) set of vertices \mathcal{A} which corresponds to M / N. Given this, the previous proof stands.

Clearly Lemma 3.26 can be generalised similarly. The generalisation of Lemma 3.27 is
Lemma 3.30.
Let \mathcal{A} and B be non-adjacent sets conthined in \mathcal{L}, and let \boldsymbol{M}, N and P be valid modules such that

$$
M>N>P
$$

whilat M / N corresponds to increasing by one the labels on verticess fron $\mathcal{A} \subseteq \mathcal{L}$, and N / P corresponds to increasing by one the labels on vertices from $\mathcal{B} \subseteq \mathcal{L}$. Then there in some valid module N^{\prime} such that

$$
M>N^{\prime}>P
$$

whilst $M / N^{\prime} \cong N / P$ and $N^{\prime} / P \cong M / N$.

Here \mathcal{A} and B may again be permitted to be multisets; that is, they may contain vertices of \mathcal{L} whose labels should be increased more than once. The generaliation of Lemma 3.28 reads

Lemma 3.31.

Let \mathcal{A} and \mathcal{B} be multisets of acorcable sets and let M, N mud N^{\prime} be valid modulea such that

$$
M>N \quad \text { and } \quad M>N^{\prime}
$$

whilat M / N correaponds to increasing by one cach label on vertices from \mathcal{A}, and N / P corresponds to increasing by one cach label on vertices from \mathcal{B}. Then \mathcal{A} and B are not adjacent.

To conclude this section, we show how to find the submodule generated by some aet, and we return to our apecific situation in which the vertices of \mathcal{C} are scoreable sets, and mon, except that wr do not reintroduce the normalimation condition. Then given $S_{z}(n, r)$ modulew M and N, we may consider the submodule of M / N gemerated by wotme wet of romets of N in M. That is,

Lemma 3.32.

Suppose that we are given a tuple $\left\{\nu_{p}\left(m_{\sigma}^{\left(\prime^{\prime \prime}\right)}\right) \mid\right.$ such that, for each weight α. we have

$$
\nu_{p}\left(m_{\alpha}^{(M)}\right) \leq \nu_{p}\left(m_{\alpha}^{(P)}\right) \leq \nu_{p}\left(m_{\alpha}^{(M)}\right)
$$

so that P is a Z-module between the $S_{\mathbf{z}}(n, r)$-modules M and N, but such that the tuple $\left\{\nu_{p}\left(m_{;}^{(P)}\right)\right\}$ does not necessarily define an $S_{1}(n, r)$-module. Then we may find P^{\prime}, the unique $S_{\mathbf{Z}}(n, r)$-module generated by P, as follows:

1) For each scoreable set A, consider the given values $\nu_{p}\left(m_{a}^{(P)}\right)$ for each weight a such that $\Gamma_{p}(r, o)=A$. Set the label on A, that is, $\nu_{P}\left(m_{A}\right)$, to the minimum of these values.
2) Consider the labelling of the scoreable sat lattice so obtained. For each pair of adjacent vertices $A \subset B$ where $\nu_{p}\left(m_{A}\right)>\nu_{p}\left(m_{B}\right)$ (if any), decrease $\nu_{p}\left(m_{A}\right)$ to $\nu_{p}\left(m_{B}\right)$.
3) For each pair of adjacent vertices $A \subset B$ where $\nu_{p}\left(m_{B}\right)>\nu_{p}\left(m_{A}\right)+1$ (if any), decrease $\nu_{y}\left(m_{B}\right)$ to $\nu_{p}\left(m_{A}\right)+1$.
4) Repeat ateps 2) and 3) until neither is applicable.

Proof.

This algorithm must terminate, since a finite number of steps will produce the labelling $\left\{\nu_{p}\left(m_{2}^{(M)}\right)\right\}$ which is known to be valid. Clearly when it does terminate, the final tuple is $\left\{\nu_{p}\left(m_{o}^{\left(p^{\prime}\right)}\right)\right\}$, the tuple defining the smallest $S_{\mathbf{z}}(n, r)$ module containing P.

3.5 How to use simple problems to solve complicated ones

Recall the module A defined in 'Weights and composition factors of X / V_{F} ' by

$$
m_{a}^{(A)}= \begin{cases}p & \text { if } \nu_{p}(|\alpha|)>0 \\ 1 & \text { if } \nu_{p}(|\alpha|)=0\end{cases}
$$

and notice that

$$
m_{a}^{\left(A^{*}\right)}= \begin{cases}|\alpha|_{p} / p & \text { if } \nu_{p}(|\alpha|)>0 \\ 1 & \text { if } \nu_{p}(|\alpha|)=0\end{cases}
$$

In our new notation this becomes

$$
\nu_{p}\left(m_{B}^{(A)}\right)= \begin{cases}1 & \text { if } B \neq \varnothing \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\nu_{p}\left(m_{B}^{\left(A^{*}\right)}\right)= \begin{cases}|B|-1 & \text { if } B \neq \varnothing \\ 0 & \text { otherwise }\end{cases}
$$

Thus a module M is contained in A if and only if every label on the scoreable set lattice, bar the empty aet's label, is at least 1 , and contains A^{*} if and only if every label on the scoreable oft lattice, bar the empty set's label, differs from its maximum value (the size of the scoreable set) by at least 1. Recall, from the same section, that every composition factor of X / V_{n} occurs exactly once in any composition series of X / A, and exactly once in every composition series of A^{*} / V. This is obvious fron our new point of view; for example, the occurrence of a composition factor in a composition serips of X / A corresponds to an increase by 1 in the label on the corrosponding scorcable set. Since each label on a non-empty acoreable set reaches exactly 1 at A, and started at 0 , each composition factor must have occurred exactly once.

Lemma 3.33.

$$
X / A^{*} \cong A / V_{p}
$$

Moreover, if there is a unique scoreable singleton, so that there is a unique isomorphism class of composition factors of X / V_{p} which occur with multiplicity one in any composition series, then every valid module M is contained in A or contains A^{*}

Proof.

It follows from the remarks above that a valid module M lies between X and A^{*} if and only if the label on every singleton is 0 , and that it lies between A and V_{p} if and only if the label on every singleton is 1 . Therefore to every valid module (say M) between X and A^{*} there corresponds one (say $f(M)$) between A and $V_{\text {p }}$ which is obtained by adding 1 to the label on every non-empty scoreable set. Clearly this correspondence preserver validity and inclusion. Also, whenever M and N lie between X and A^{*} and are adjacrnt, such that $M / N \cong F$, then $f(M) / f(N) \cong F$; for the quotiont is determined by which label(s) on the acoreable set lattice has (have) to be increased to move down the diagram from M to N, and this set of labels is unaffected by unformly adding 1 to all labela. The reverse procedure is equally valid.

Moreover, if there is a unigue acoreable singleton then at every valid module its label must be 0 (in which rese the valid module contains A^{*}) or 1 (in which cane the valid module is contnined in A).

Thus we have deduced some information about the lattice of valid modules in all casea in which there is a unique scoreable singleton; that it consists of two
identical parte, the atructure of each of waich may be found by finding the set of all poasible labellings of a rather smabler diagrann than the original scorcable set lattice, namely

Size of sets:

using the notation of Lemma 3.21. In fuct it is casy to see that this lattice is itself a scoreable set lattice for owme other problems; for example, it is the one that arises in the care ($p \neq 2$)

$$
r=p^{m_{1}+m_{2}-2}+p^{m_{3}} \times\left(p^{m_{1}-2}-1\right)+p^{m_{3}-1}
$$

which has p-adic expansion
$r=p^{m_{1}+m_{2}-2}+(p-1) p^{m_{1}+m_{2}-3}+\ldots+(p-1) p^{m_{2}}+1 p^{m_{2}-1}+0 p^{m_{2}-2}+\ldots+0$
This is a problem for which $\gamma_{p}(r)$ is one less than it was for the original, unigue scoreable singleton problem; that is, the height of the scoreable set latice has been decreased by 1 - we have chopped off the bottotn of it! This may be useful. For it in easy to draw the lattice of valid modules for the simplewt aroreable set lattices:

$$
\begin{gathered}
\text { scoreable set lattiees } \\
\text { valid modules } \\
\bullet
\end{gathered}
$$

and one may in this why procerd to build a list of all much dingrams, at each ntage using a rather aimple procedure to deduce the dingrament the next layer of complexity from those dingrame which have alrerdy bren found. Of course, we
shall have to show how to build diagrams corresponding to scoreable set lattices with multiple acoreable singletons from those with unique scoreable singletons Thun motivated, we give a couple of general results on deduction, of which we have just used a particular apecial case.

Remark 3.34.

Suppose that \mathcal{L} is any finite connected directed grapli with a bottom B, and that \mathcal{A} and B are aubgraphs each including B, such that any edge ($x \rightarrow y$) of \mathcal{C} occurs in at least one of \mathcal{A} and \mathcal{B}. Consider the set of all integer labellings of \mathcal{L} such that B is labelled with 0 and such that the vertices on any edge $(x \rightarrow y)$ are labelled $(n \rightarrow n)$ or ($n \rightarrow n+1$) for some integer n. The set of all such labellinge can be identified with the set of pairs of such labellings of \mathcal{A} and \mathcal{B} which agree on the intersection of \mathcal{A} and \mathcal{B}.
(The condition that \mathcal{A} and B include B is inessential; it is given solely in order to ensure that the sets of labellings we consider are finite.)

Remark 3.35.

Suppose that \mathcal{A} and B are finite connected directed graphs, each with a bottom B and a top T. Suppose that for each graph we know the set of valid labellings as described above. Then consider the composite graph in which the top of \mathcal{A} is identified with the bottom of B thus:

The set of its valid labellings may be identified with the set of pairs of valid labellings of \mathcal{A} and B by adding to each of the labels on the vertices of B the label on the top of \mathcal{A}.
(These remarka may be considered as perpendicular or identical, according to taste.)

It will now be apparent that the case of the unique scoreable singleton which we considered at the beginning of the section was just a special case of the second of theae Remarks. As a special case of that, we notice that it is particularly straightforward recursively to draw the lattices of valid modules for scoreable set lattices in which there is a unique scorcable set of any given size, up to some maximum aize:

0

Then we may, for example, ralso find the set of adl valid labellinge of a given graph of the form

even though (remembering our analysis of scoreable set lattices with a unique scoreable singleton) it is apparent that graphs of this forin are not in general scoreable set lattices. This provides a reasonalaly efficient way to use the first Remark to deal with an arbitrary scoreable set lattice in terms of simpler graphs, using, in particular, the knowlechge of the structure of lattices of valid modules for scoreable set lattices which have unifue scoreable singletons and height no greater than that of the general scoreable set lattice being considered. To conclude this aection, we give an example of how to doal with a moderately complicated scoreable set lattice.

Example 3.36.

Consider the example touched on in Remark 2.36 in which $r=30$ and $p=3$. We have

$$
r=1.3^{3}+0.3^{2}+1.3+0
$$

so the points which can be scored are 0,1 and 2.
The minimal scoreable set including 0 is $\{0\}$.
The minimal acoreable aet including 1 is $\{1,2\}$.
The minimal scoreable set including 2 is \{2\}.
Therefore the scoreable set luttice in
\{0\}

(0)
$\{0,1,2\}$
$\underset{\{1,2\}}{\substack{\{0,1,2\}}}$
an
\{2\}
\{2\}
$A B$
which we can aplit into two recognised bits in the manner of Remark 3.34 as shown. The first (\mathcal{A}) is that atudied in Example 3.12 , Example 3.20 and Example 3.24, , we know the corresponding lattice of valid modules, and the lattice of valid modules corresponding to the necond is shown on page 91. In order to identify all pairs of vertices from the two lattices of valid modules (μ and $\boldsymbol{\nu}$), we shall use the following procedure, which is pasily seen to be correct, and to be less hard to follow than it losiks in writing:

1) Draw the known lattices of valicl partial labellings, one on each side of the page.
2) For convenience, identify the edges in U which correspond to increasing an Inbel on a vertex of \mathcal{A} which also occurs in \boldsymbol{B}; mark these edges with double lines in U.
3) Do the same for V.

Then we build up the required lattice of valid modules from the top. At earh stage we consider what are the maximal valid submodules of the current module. We can do this either directly, considering the labelling of the whole scoreable set lattice at the current module, or by using the information in U and v, as follows. Take the current pair of partiel labellings, i.e. of vertices in \mathcal{U} and ν, ary (x, y). Consider the vertices below each of x and y. Wherever there in an ordinary edge $x \rightarrow u$ in U, it correxpomels immedintely to an edge $(x, y) \rightarrow(u, y)$ in the new lattice; for this says that it is ponsible to increase the label on a vertex of \mathcal{A} which does not occur in \boldsymbol{B}. The manmenplice to ordinary edges $y \rightarrow v$ in ν. Where there is a double edge $x \Rightarrow u$ in U. it will only correspond to an edge in the new lattice if there is a corremponding double edge $y \Rightarrow v$ in ν, where the label which is being incroased in the shane in carh case. For this anya that it is poasible to increase the label on a vertex of \mathcal{A} which also occurs in B. If we tried to draw an edge in the new latice where there wan a double arrow in one
of U and V but no corresponding double arrow in the other, we would be trying to put in a pair of partial labellings which did not agree on their intersection, which would be wrong.

The resulting dingram in follows, where dotted edgen in the new lattice correapond to edgea in U, dashed ones to edges in V. Notice thar, naturally, if the new lattice is collapsed along edges which are dotted but not dashed (reapectively dashed but not dotted) (which corresponds to ignoring labels on vertices of the acoreable set Inttice which occur in \mathcal{A} but not in \mathcal{B} (respectively in \boldsymbol{B} but not in \mathcal{A})) the reaulting diagram is ν (reapectively U).

The techniquea we have given for using simple problems to solve complicated onea become more valuable with even more complicated examplea; however, the above should give an idea of their application, and of the fact that it is possible to get an idea of the structure of the solution to the complicated problem by looking at the aolutions to the simple problems, even without calculating the whole solution. It is interesting to notice that, using the original method implemented (abeit nimplistically) in Program 1 of Appendix A, even this calculation takea about 10 minutes to run on a computer. The output from that program is given in Appendix \mathbf{B}, and will be found to agree with our calculation here.

This example was originally introduced to illustrate the existence of cases in which there is a valid module M and weights a and β for which, although $|\alpha|_{p}>|\beta|_{\rho}, m_{a}<m_{g}$. Now that we have studied the scoreable set lattice, it is easy to see why this can happen; we are saying that the labelling
\square
1
10
10
0
of the scoreable set lattice is valid, even though a label 0 occurs at a higher level in the diagram than the larger label 1.

Chapter 4

Applications to modular theory

Deflinition 4.1.

Let M be any velid module, and consider $M / p M$. This is the quotient of two $S_{\mathbf{2}}(n, r)$ modules, so it is certainly an $S_{\mathbf{2}}(n, r)$-module. Moreover it is annihilated by $p \mathbf{Z}$, so it is also an $S_{\mathbf{z / p}}(n, r)$-module. Such an $M / p M$ is a modular Weyl madule for GL_{2}.
\triangleleft
These modules have bern extensively studied in the special case $M=V_{p}$ and in the context of SL_{2} rather than GL_{2}, and their structure is known. The latter distinction is rather unimportant to us, since we have already restricted our attention to the Weyl modules $V_{(r, 0)}$ and shown in Proposition 1.33 that any other Weyl module is the tensor product of one of these with a number of copies of the determinant representation. When we work over SL_{2} the determinant representation is trivial.

4.1 Applying our theory

We first explain how to apply our mothods. In order to consider the submodule atructure of $M / p M$ where M is a valid module, we have to modify our normalisation condition

$$
M^{\lambda}=\mathbf{Z} f_{1}
$$

to read

$$
M^{\lambda}=p^{\prime} Z f_{1}
$$

where i may be 0 or 1 . That is, rather than lanving

$$
V_{p} \leq M \leq X
$$

we now have

$$
p V_{p} \leq M \leq X
$$

and hence 'enough room' to consider phifor any valid module M.
What this means for the scoremble set lattice theory in that we are relaxing the normalisation condition, $C 2$, that $\nu_{p}\left(m_{\lambda}\right)=0$, that is, that the label on
the empty set, $\nu_{p}\left(m_{\theta}^{(M)}\right)$, in the scoreable set lattice be 0 at any M. We now inaist only that $\nu_{p}\left(m_{e}^{(A)}\right)$ be at most 1 . Of course, the validity condition, Cl , atill applies. Therefore if M is an admissible lattice between X and V_{P} then $\nu_{p}\left(m_{\varnothing}^{(M)}\right)=1$ only if $\nu_{p}\left(m_{B}^{(S i t)}\right) \geq 1$ for every scoreable set B which contains \varnothing - that is, for every scoreable set. In summary, we shall say that M is an almost valid module if and only if
D1) (Validity) for every B and C in $\mathcal{L}(r, p)$ such that $B \subseteq C$ with $|B|+1=|C|$. we have

$$
\nu_{P}\left(m_{B}\right) \leq \nu_{P}\left(m_{C}\right) \leq 1+\nu_{P}\left(m_{B}\right)
$$

D2) (Normalisation) $\nu_{p}\left(m_{\varnothing}\right) \leq 1$
Then the structure diagram for $X / p V_{p}$ is formed from two copies of the structure diagram for K / V_{p} joined together; that is, each of its vertices is M or $p M$ for some valid module M. The labelling of the scoreable set lattice corresponding to $p M$ is obtained from that corresponding to M by adding 1 to every label:

$$
\nu_{p}\left(m_{B}^{(p M)}\right)=\nu_{p}\left(m_{B}^{(M)}\right)+1
$$

for every valid module M and scorenble set A.
Consider a composition series for $M / p . M$. Every label on the scoreable set lattice must be increased preciacly once; that is, each composition factor which orcurs between X and V_{p} occurs exactly once, as does the simple module with highest weight λ. Recall (Lemma 3.13) that we have described the highest weight (α_{1}, α_{2}) of the composition factor corresponding to scoreable set A by giving the coefficients in the p-adie expansion of a_{1} :

$$
\alpha_{1 i}= \begin{cases}p-1 & \text { if } i \in A \\ r_{i}-1 & \text { if } i \notin A \text { and } i-1 \in A \\ r_{i} & \text { if } i \notin A \text { and } i-1 \notin A\end{cases}
$$

from which we deduce that the corfficients of $\boldsymbol{\sigma}_{2}$ are:

$$
\boldsymbol{o}_{2}= \begin{cases}0 & \text { if }: \notin A \\ r_{i}+1 & \text { if } i \in A \text { and } t-1 \notin A \\ r_{i} & \text { if } i \in A \text { and } t-1 \in A\end{cases}
$$

In order to draw the structure dingram for $M / p M$, one must first find the labelling of the acoreable set lattice corresponding to M (or $p M$), and then find the orders in which the labels can each be increased (or decreaned) by 1 , in exactly the anme way as we have done.

Example 4.2.

Let $p=3$ and let $r=16=3^{3}+2 \times 3^{3}+1$. Then the scoreable sets are just $0,\{0\}$ and $\{0,1\}$, no the inclusion luttice of almoat valid modules is as shown. The sublattices showing the structures $X / p X$ and $V_{p} / p V$, are ringed. Of course the atructure of $M / p M$ can be read off the diagram for any valid module M.

We can make some general deductions about properties of the submodule structure diagram for $M / p M$; in particular, the results of Section 3.4 are all applicable, since their profs did not depend on the presence of the normalisation condition.

Lemma 4.3.

Let M be any valid module. Then $M / p M$ ia indecomposable.

Proof.

The existence of a non-trivial decomposition of $M / p M$ is equivalent to the existence of a partition of the set of all scoresble sets into two seta \mathcal{A} and B, neither of which in empty, auch that rither of
(i) increasing the label on every $A \in \mathcal{A}$; and
(ii) increasing the label on every $B \in B$
ia valid. Lemma 3.31 tells us that this implies that \mathcal{A} and \mathcal{B} are not adjacent. But this is impossible, since the scoreable set lattice is connected.

Suppose that the $S_{\mathbf{Z}}(n, r)$-module $P^{\prime} / p V_{p}$ is generated by

$$
P / V_{P}=\bigoplus_{a \in \mathrm{n}}\left(V_{p} / p V_{p}\right)^{\alpha}
$$

which is not itself necessarily an $S_{\mathbf{Z}}(n, r)$-module. That is, $P^{\prime} / p V_{p}$ is generated by the weight spaces $\left(V_{p} / p V_{p}\right)^{\infty}=V_{p}^{\prime \prime \prime} / p V_{\eta}^{\alpha}$ for some subset Π of the set $\Lambda(n, r)$ of all weights, not necessarily dominant. The application of the algorithm in Lemma 3.32 becomes particularly easy in this case.

We may express this as follows. Suppose that we are given the tuple corresponding to P, say $\left\{\nu_{p}\left(m_{g}^{(P)}\right)\right\}$, so that, for each weight σ, we have

$$
\nu_{p}\left(m_{\alpha}^{\left(V_{p}\right)}\right) \leq \nu_{p}\left(m_{\alpha}^{(P)}\right) \leq \nu_{p}\left(m_{\alpha}^{\left(p V_{p}\right)}\right)
$$

that is, such that

$$
\gamma_{p}\left(r_{1} \alpha\right) \leq \nu_{p}\left(m_{a}^{(P)}\right) \leq \gamma_{p}\left(r_{1} \alpha\right)+1
$$

Then for a given α, we will have

$$
\nu_{p}\left(m_{\alpha}^{(P)}\right)= \begin{cases}\gamma_{p}(r, \alpha) & \text { if } \alpha \in \Pi \\ \gamma_{p}(r, \alpha)+1 & \text { otherwise }\end{cases}
$$

Then applying step 1 of the algorithm yields a labelling of the scoreable set lattice in which the label on A is either $|A|$ or $|A|+1$. The label will be $|A|$ if there is any weight $a \in \Pi$ such that $\Gamma_{p}(r, a)=A$, and $|A|+1$ otherwise. Therefore step 2 cannot be applicnble. Consider step 3. Let us denote by II' the set of vertices which are labelled with $|A|$; this art will change as we apply the algorithm. The first application of step 3 will cause us to decrease by one the label on any B auch that
(i) B in labelled with $|B|+1$; and
(ii) there is some $A \subset B$, adjacent to B, which is labelled with $|A|=|B|-1$.

That is, it will add into the act Π^{\prime} any D such that $B \notin \Pi^{\prime}$ and B has an inferior neighbour $A \in \Pi^{\prime}$. Repented application of 3) will see us adding to Π^{\prime} any aet B which contains any set from Π^{\prime}. The algorithm terminates when Π^{\prime} contains each set which contains $\Gamma_{p}(r, a)$ for some $a \in \Pi$. Translating from labelling terminology back into weight space terminology, we get

$$
P^{\prime} / V_{P}=\bigoplus_{J \in L}\left(V_{p} / p V_{p}\right)^{\beta}
$$

where $\beta \in \Sigma$ if and only if there is some $a \in \Pi$ wuch that

$$
\Gamma_{p}(r, n) \subseteq \Gamma_{p}(r, p) .
$$

Lemma 4.4.

$X / p X$ has both a unique maximal and a unique minimal submodule. The maximal nubmodule of $X / p X$ corresponds to the acoreable set $\Gamma_{p}(r)$, and an hat highent weight (α_{1}, a_{2}) where

$$
\left(\alpha_{1}\right)_{i}= \begin{cases}p-1 & 0 \leq i<n \\ r_{n}-1 & i=n\end{cases}
$$

The minimal submodule of $X / p X$ corresponds to the scoreable set Ω, and so has higheat weight ($r, 0$).

Moreover, there is n map d on the set of almost valid modules such that
(i) for any almost valid module $M, d^{2}(M)=M$;
(ii) $d(X)=p V_{p}$ i
(iii) if $X>M>p X$ then $V_{p}>d(M)>p V_{p}^{\prime}$ and $X / M \cong d(M) / p V_{p}$.

Therefore $V_{p} / p V_{p}$ also has a unigue maximal and minimal submodule, its minimal submodule heing isomorphic to the maximal submodule of $X / p X$ and vice veran.

Proof.

The reault is true because the scoreable set lattice has a top and a bottom, $\Gamma_{j}(r)$ and \varnothing respectively. The labelling of the seoreable set lattice corresponding to X is all zeros, so when looking for maximal submodule, that is, for a labelling of the scoreable set latice which conteins a unique label 1 among 0 as, the only valid posaibility is to increase $\nu_{p}\left(m_{r_{p}}(\sigma)\right.$ to 1 . The labelling at $p X$ is all 1a, and the last label to have been increased must have been $\nu_{p}(m e)$.

Of course the maximal submoflule of \mathbf{X} / pX is also the maximal submodule of X / V_{p}, described in Proposition 2.35 .

Define the map d by

$$
\nu_{p}\left(m_{B}^{(d(M))}\right)= \begin{cases}|B|-\nu_{p}\left(m_{B}^{(M)}\right)+1 & \text { if } V_{p} \leq M \\ |B|-\nu_{p}\left(m_{B}^{(M)}\right)-1 & \text { otherwise }\end{cases}
$$

That is, returning to the duality discussed in Clapter 1 , if $X \geq M \geq p X$ then define $d(M)$ to be $p \bar{M}$ if $V_{p} \leq M$ and $p^{-1} \bar{M}$ otherwise. This is clearly a duality under which $d(X)=p V_{p}$; the remark about $V / p V_{;}$follow.

4.2 Connections with other work

Most of the work done in this area has dealt with polynomial representations of $S L(2, Q)$, so we first explain how to translate into this language.

The maximal torus T of $\operatorname{SL}(2, Q)$ has dimension one, since it consists of the elements

$$
\left(\begin{array}{cc}
s & 0 \\
0 & s^{-1}
\end{array}\right)
$$

for $s \in Q \backslash\{0\}$; therefore a weight, that is, the character of a representation of T is determined by the image of any one element of T. Since we are considering polynomial (that is, rational) representations, any weight has the form

$$
\alpha:\left(\begin{array}{cc}
s & 0 \\
0 & s^{-1}
\end{array}\right) \longmapsto s^{a}
$$

for some integer α. The weight is dominant if $\alpha \geq 0$. We shall identify the weight α with the integer α, when no confusion can result.

In contrast, we may give another definition of the weighte of GL_{2} by describing them as weights of the two-dimensional maximal torus of GL2,

$$
\alpha:\left(\begin{array}{ll}
s & 0 \\
0 & t
\end{array}\right) \longmapsto s^{\alpha_{1}} t^{\alpha_{2}}
$$

where $\alpha_{i}=\left(a_{1}, a_{2}\right)$ for positive integers α_{1} and a_{2} as before, and s and t are non-zero elements of Q.

Weights of $G L_{2}$ can be mapped to weights of ${S L_{2}}^{2}$ by mapping (a_{1}, a_{2}) to $a_{1}-\alpha_{2}$. If we fix r, the G_{2} weight (α_{1}, a_{2}) is determined by its $S L_{2}$ image $\sigma_{1}-\alpha_{2}$, since $\sigma_{2}=\left(r-\alpha_{1}\right) / 2$. Notice that this map preserves the ordering on weights, in the sense that $\left(\alpha_{1}, \alpha_{2}\right)>\left(\beta_{1}, \beta_{2}\right)$ if and only if $\alpha_{1}>\beta_{1}$, if and only if $\alpha_{1}-\alpha_{2}>\beta_{1}-\beta_{2}$. In particular, the GL_{2} weight $\left(\alpha_{1}, \alpha_{2}\right)$ is dominant if and only if its SL_{2} image $\alpha_{1}-\alpha_{2}$ is dominant.

Remark 4.5.

For a given fixed r, the dominant SL_{2} weights which occur an images of dominant GL_{2} weights are $0, \ldots$. Of course, any dominant SL_{2} weight occurs as the image of some GL_{2} weight in some (infinite number of) dimensions r.

The major work in this ares is by R. Carter, E. Cline and D. Deriziotis, in [CarterCline] and [Deriziotis]. They consider the Weyl module $V_{p} / p V_{p}$. We give a brief aummary, which is copied from [CarterCline] Section 1 except for minor changes of notation. We remark in passing that [CarterCline] usen the symbol m to denote the dimension of the Weyl module having higheat weight
$m-1$, whercas [Deriziotis] uses m for the highest weight of the Weyl module, which therefore has dimension $m+1$. Since we have been concerned with Weyl modules with highest weight r, corresponding to ($r, 0$), which have dimension $r+1$, we continue to use this notation. That is, our r is Deriziotis' m and Carter and Cline's $m-1$.

Definition 4.6.

A reflection is a map

$$
\rho_{j}: \mathbf{Z} \backslash\{0\} \longrightarrow \mathbf{Z}
$$

defined by setting $\rho_{j}(r)=r-2 x$ where $r+1=k p^{\prime}+x, k \geq 0$ and $0 \leq x<p^{\prime}$

Deffnition 4.7.

ρ, is an r-admissible reflection if p does not divide k.

Deflnition 4.8.

A atrictly decreasing sequence of integers

$$
r, \rho_{y_{0}}(r), \ldots, \rho_{y_{0}} \rho_{y,-1} \ldots \rho_{y_{0}}(r)
$$

is an r-admassble sequence if
(i) $0<y_{4}<y_{-1} \ldots<y_{n}$;
(ii) for each j, ρ_{y}, it $\rho_{y_{1}-1} \rho_{y,-1} \ldots \rho_{y_{0}}(r)$-admissible.

Let $\mathcal{V}(r ; p)$ denote the set of integers z which appear in some r-admissible sequence.

The first main theorem of [CarterCline] is

Theorem 4.9.

The weights which occur as highest weights of composition factors of $V_{p} / p V_{p}$ are the elements of $V(r ; p)$.

We give the connection between this language and ours without the proof, which is by calculation and induction.

Lemma 4.10.

Let t be the length of the $(p-1)$-tuil of r. If $\left(\alpha_{1}, \alpha_{2}\right) \in \Lambda^{+}(2, r)$ and

$$
\alpha_{1}-\alpha_{2}=\rho_{\mathrm{y}}, \rho_{y_{1}-1} \ldots \rho_{y_{0}}(r)
$$

is an element of an admissible sequence, then α is the highest weight such that $\Gamma_{p}(r, a)$ is the set of points shown as ticks below:
that is, where $: \in \Gamma_{p}(r, \alpha)$ if and only if

$$
y_{2 k+1} \leq i-t \leq y_{2 k}
$$

for some natural number $k \leq s / 2$, where for convenience we define y_{a+1} to be 0 .

We give some other correspondences between the notions in [CarterCline] and |Deriziotis] with ours. They follow, with some easy calculation, from the definitions.

Remark 4.11.

(i) x dominates y if and only if y scores no point in x.
(ii) If $k=\alpha_{1}-\alpha_{2}$ and $m=r$ then $(m-k) / 2=\beta_{2}$.
(iii) Let $k \in \mathcal{V}\left(m_{;} p\right)$, so that (a_{1}, α_{2}) is the higheat weight of some composition factor of $V_{p} / p V_{p}$, that corresponding to scoreable set $\Gamma_{p}(r, a)$. The $i^{\text {th }}$ coefficient of k is generically zero if and only if (α_{1}, α_{2}) does not acore the $2^{\text {th }}$ point in r; that is, if and only if $: \notin \Gamma_{P}(r, a)$.
(iv) The partial order \preceq on highest weights of composition factors is connected to our partinl order by inclusion on scoreable sets, as follows. Suppose that k and I are highest weights of composition factors, that ia, elements of $\mathcal{V}(r, p)$, such that $k \leq t$. That is, every generic zero of $k=\alpha_{1}-\alpha_{2}$ corresponds to a generic zero of $t=\beta_{1}-\beta_{2}$. This is true if and only if every point not scored by α in r is also not scored by β in r; that is, if and only if $\Gamma_{\mu}\left(r_{1} \beta\right) \subseteq \Gamma_{p}(r, \alpha)$.
Translated according to these correspondences, Deriziotis' Theorem in aection 2, the second main theorem of [CarterCline] becomes

Theorem 4.12.

Every aubmodule $P^{\prime} / p V_{p}$ of $V_{p} / p V_{p}$ has the form

$$
\sum_{\Gamma,(r, \alpha) \in A} V_{p}^{a} / p V_{p}^{0}
$$

for some subset \mathcal{A} of $\mathcal{L}(r, p)$. Morcover β orcurs an the highest weight of a composition factor of $L / p V_{P}$ if and only if $\Gamma_{P}(r, \beta) \supseteq \Gamma_{p}(r, a)$ for some $\Gamma_{p}(r, a) \in$ A.

The first part is implied by our proof that valid modules correspond to labellings of the acoreable set lattice. We proved the second part on page 100 , using the general result Lemma 3.32 .

Other intereating work in this area has been done by P. W. Winter in [Winter], by S. Doty [Doty] and, more recently, by 2. Lin. Doty and Lin both work in the context of Lie algebras of the groups concerned. Lin gives a description of the submodule structure of the modular Weyl modules, our M/pM, in the case of SL_{2}, and he shows that they are indecomposable. Doty deals with part of the general problem of fiuding the structure of these modules in the case of $\mathrm{SL}_{\mathbf{m}}$. Both have concepts which turn out to correspond with our scoreable seta.

In aection 2.3 of [Doty], Doty describes what he calls the carry pattern of the $S L_{n}$-weight β with respect to a fixed integer m, corresponding to our r. This can be seen to be the set $\Gamma_{p}(r, \beta)$, in the SL_{2} case. He defines the set of all such sets, and a partial order on them, which correspond to our lattice of scoreable sete.

In section 3 of [Lin] there is a description of sets $S(\lambda)$ which can he seen to be our scoreable seta. Lin deduces sonne of the properties that we have described, alwaya in the modular SL_{2} context. His Lemma 3.6 is the easy part of our Theorem 2.11, that is, our Lemma 2.13 (i).

In conclusion, our work has connections with other work which has been done, which is the more interesting as our approach has been quite different from that of ather authors. In particular, the scoreable set lattice has been central to our work, and we have been able to demonatrate and exploit ita properties in the more general context. We have showed that it can be used to determine completely the inclusion structure of all admissible lattices in Weyl modulea for $\mathrm{GL}_{2}(\mathbf{Q})$, which was previously unknown. It would be interesting to see to what extent these ideas could be generalised in the context of $\mathrm{GL}_{\boldsymbol{n}}(\mathbf{Q})$ for $\boldsymbol{n}>\mathbf{2}$.

Appendix A

```
/*program to find normalised S(Z) modules between X(lambda,Q) and V(lambda,Q)
by giving their localised m_alphas for each relevant prime*/
/*PS. This was my first ever C program, so judge it not too harshly!*/
#include <stdio.h>
#define NO 0
#define YES 1
#define PMAX 50
#define RMAX 100
int r,primes[PMAX],*p;
int fact[RMAX][PMAX],m[RMAX/2][PMAX];
int y[RMAX/2][PMAX],wt[RMAX/2][PMAX],vmax[RMAX/2][RMAX/2][PMAX];
int rprimes();
void factors();
int weights();
int ffact();
void conditions();
void tuples();
void test();
                                    20
main()
                                    main
1
int i,j,noprimes,wts,"q;
printf("When you give this program a positive integer r. it vill, for\n");
printf("each relevant prime p, that is, for each prime p less than or\n");
printf("equal to r, calculate all valid modules and list them, by\n");
printf("giving the tuples {nu_p(m_alpha'{(M)})}, \n");
printf("where alpha runs over the set of dominant\n");
printf("weighta, for aach valid module M in turn. \n\n");
printf("Please enter the value of I:\n");
gcanf("%d", &rr);
printf("r-Yd\n",r);
```

```
    p=primen;/*et pointer p to start of array primes*/
    /*initialise fact,wi,y & m to 0.*/
for (i=0;i<PMAX; i++){
    for (j=0;j<RMAXX j++)
            fact[j][i]=0;
    for ( }\textrm{j}=0;\textrm{j}<\textrm{RMAXX}/2;j++)
    wt[j][1]=0;
    y[j][i]=0;
    m[j][i]=0:
    )
    }
/"initiclise primes to 100s -- can't remember why!*/
for ( }\textrm{i}=0;\textrm{i}<\mathbf{PMAX;i++)
    primes[i]=100;
noprimes=rprimes();/*here array p of primes gets set up*/
printf("The number of prime* no bigger than %d ia %d\n", r, noprimes);
printf("They are:\n");
for(i=0;i<noprimes; }\mathbf{i}++\mathrm{ )
    printf("%d ",p(i]);
printf("\n");
factors();/*here erray fact of exps of primes in integers 2,..5 set up*/
wts=weights(noprimea):/*no. dom weightn not lambda. Arrays wi and y act up"/
printf("The prime exponenta of aizes of dominant weights not lambda are:\a"):
for(i=1;i<=wta;i+ +)(
    printf("\n(%2d,%2d): ",r-i, i);
    for(q=p;q<p+noprimes;q++)
        printf("%d ",wt[i][q-p|); 60
    ]
printf("\n");
printf("giving the exponent of 2 firat.\n");
conditions(wta,noprimes);/*array vmax of max (over admisasble A) exponent of
each prime in denom expression for pairs of weights set up*/
printf("In that follows, each rou raprasenta a valid module localiaed\n");
printf("at the current prime p. The integera in the rou are the erponenta\n"
print("of p in the values of m_alpha, vhare alpha runa over doninant\n");
printf("veighta, bighest first, as liated above.\n\n");
```

```
    tuples(wts,noprimes);
    }
    int rprimes()
                                    rprimes
    /*ind all primes leq r, put them in array p, return how many"/
    I
int e, i, ,
j=0;
for (i=2;i<=r;i++){
            c=NO;
            for (q=p;* q * *q<=i;q++)
            if (i%*q==0){
                c=YES;
                    break:
                    I
    if (c==NO)
                p[j++]=1;
    J
return j;
)
void factors()
void factors() factors
/*fact/i//n/ gets set to the exponent of the nth prime in i for i=2,\ldots.r*/
1
int i,*q,j;
for (i=2;i<=r;i++){
    j=i;
        for (q=p;j!=1;q++)
            while(j%*q==0){
                    j=j/(*q);
                fact[i][q-p]++
                )
    }
}
int weights(noprimes)
```

/*USES ffact*/
/*Returns no of dom weights not lambdu. Also here arrays wt and y are set up.*/
|
int wts,j,*q;
wts=(r%2==0)?r/2:(r-1)/2;/*no of domsmant weights not lambda*/ 110
for(q=p;q<p+noprimes;q++)(
y[0][q-p]=ffact(r,q-p);
for(j=1;j<=wts;j++){
y[j][q-p]=y[j-1][q-p]+fact[j][q-p]-fact[r-j+1][q-p];
/*v/j)/q-p/is exp of (q-p)th prime in (r-j)! ! !*/
wt[j]{q-p)=y[0]{q-p]-y[j][q-p];
/*vt/j//q-p/is exp of (g-p)th prime in size of dominant weight (r-j,j)*/
}
}
return wts;
1 2 0
}
int ffact(integ,reqprime)
/*CALLED BY weights and conditions*/
/"retums exponent of reqprime in integ-factarial*/
{
int j,s;
s=0;
for(j=1;j<=integ; j++)
s+=fact[j][reqprime];
return :;
}
void conditions(wts,noprimes)
/*USES ffact*/
/*array vmax gets set: vmax/i//j//q-p/ is max over admissible A of the
exponent of the q-pth prime in denom for weights (r-i,1),(r-j,j)*/
{
int ij,a,b,c,d,v,maxv,*q,fa,fb,fc,ga,gb,gc,gd;
for(i=1;i<=wts;i++)/*alpha_2, so alpha_l=r-i*/
1 4 0
for(j=1;j<i;j++)/*beta_2, leq alpha_2 wlog by symmetry*/

```
```

for(q=p;q<p+noprimes;q++){
n=r-i-j:/*A is initially alphal - beta\& */
b=i;/*alpha1-A in initially beta2*/
c=j;/*betal-A is initially alphag*/
d=0;/*beta2 - alpha1 + A is initially 0*/
v=ffact(a,q-p)+ffact(b,q-p)+ffact(c,q-p);
maxv=v;
while(c>0){
a++;/*Increase A by 1...*
150
d++i/*...so beta2-alpha1+A incteases by 1...*/
ga=fact[a][q-p];/*need to add in exps of NEW values of a,d*/
gb=fact[b][q-p];/*and subtract out exps of OLD values of b,c*/
gc=fact[c|[{-p];
gd=fact|d|[q-p];
b--i/*so only now does alpha1-A decrease by 1*/
c--i/*and same for betal-A*/
v+=(ga-gb-gr+gd);/*giving new value of denom's p-part*/
maxv=(v>maxv)?v:maxv;/*and keeping the most strangent*/
)
160
vmax[i][j][q-p]=maxv;/*most stringent denom*/
vmax[j][i][q-p]=maxv;/*by symmetry in alpha, beta*/
)
}
void tuples(wts,noprimes)

```

\section*{tuples}
```

/*USES test*/
/*we look at possible tuples in rev.lex.order, testing each*/
{
int level, i, " q ;
for $(q=p ; q<p+$ noprimes; $q++)\{$
printf("Here are possible tuples localised at current prime Xd\n", "q
for $(\mathrm{i}=1 ; \mathrm{i}<=\boldsymbol{w t s} ; \mathrm{i}++$)
$\mathrm{m}[\mathrm{i}][\mathrm{q}-\mathrm{p}]=0 ;$
for(;i) \{level = wts;
while (mallevel] $[\mathbf{q}-\mathrm{p} \mid==\mathbf{w t}[$ level $] \mid q-p]$ ©: \&level!=0)
level--;

```
```

 If (leve)==0)
 break:
 for(i=level+1;i<=wts;i++)
 m[i][q-p]=0;
 m[level][q-p]++;
 test(q-p,wts);
 }
 }
 }
void teat(pr,wta)
test
/*CALLED BY tuples*/
/*tests present tuple (array m) until/unless finds pair of malphas not ok*q
I
int ok,ij;
ol=YES;
for(i=1;i<=wts \&e\& ok==YES;i++)
for(j=1;j<=wtsij++)
if (y[j][pr]-vmax[i][j][pr]+m[j][pr]<m[i][pr]){
ok=NO;
break:
}
if (ok==YES)\
200
printf("(");
for(i=1;i<=wts;i++)
printf("%d ", m[i][pr]);
printf(")\n");
J
]

```

\section*{Appendix B}

Here ia aome output from the program in Appendix A, slightly doctored to get the symbols \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) ed.

When you give this program a positive integer \(r\), it will, for each relevant prime \(p\), that is, for each prime \(p\) lebs than or equal to \(r\), calculate all valid modules and list them, by
giving the tuples \(\nu_{p}\left(m_{p}^{(A /)}\right)\),
where a runs over the set of dominant wrights,
for each valid module \(M\) in turn.
Please enter the value of r :
10
\(r=10\)
The number of primes no bigget than 10 is 4
They are:
2357
The prime exponents of sizes of dominant weights not lambde are:
(9,1): 1010
(8, 2): 0210
(7,3): 3110
( 6,4 ): 1111
( 5,5 ): 2201
giving the exponent of 2 first.
In what follows, ench row represents a valid module localised at the current prime' \(p\). The integers in the row are the exponents of \(p\) in the values of \(m_{a}\), where o runs over dominant weights,
highest first, as listed above.
Here are possible tuples localised at current prime 2
(00100)
(00101)
(001111)
(00201)
(00211)
\(\left(\begin{array}{llll}1 & 0 & 1 & 01\end{array}\right)\)
(10111)
(10201)
(10211)
(10212)
(10312)

Here are poasible tuples localised at current prime 3
(01001)
(0 \(\left.1 \begin{array}{llll}0 & 1 & 1 & 1\end{array}\right)\)
(02112)

Here are possible tuples localised at current prime 5
(1 111110 )
Here are possible tuples localised at current prime 7 (00011)

When you give this program a positive integer \(r\), it will, for each relevant prime \(p\), that is, for each prime \(p\) leas than or equal to \(r\), calculate all valid modules and list them, by
giving the tuples \(v_{p}\left(m_{m}^{(M)}\right)\),
where a runs over the set of dominant weights,
for each valid module \(M\) in turn.
Please enter the value of \(r\) :
30
\(r=30\)
The number of primes no bigger than 30 is 10
They are:
2357111317192329
The prime exponents of sizes of dominant weightes not lambda are:
(29.1): 1110000000
\((28,2): 011000000\) !
(27, 3): 2011000001
(26, 4): 0311000001
(25, 5): 1301010001
(24, 6): 0221010001
(23, 7): 3320010001
(22, 8): 0320010011
(21, 9): 1120110011
(20,10): 0211110011
(19,11): 2221010011
(18,12): 0121010111
(17,13): 1321000111
(16,14): 0320001111
( 15,15 ): 4210001111
giving the exponent of 2 first.
In what follows, each row represents a valid module localised
at the current prime \(p\). The integers in the row are the exponents
of \(p\) in the values of \(m_{a}\), where \(a\) runs over dominant weights,
highest first, as listed above.
Here are possible tuples loctlised at current prime 2
(000000000000001)
(000000100000001)
(000000100000002)
```

(001000100010001)
(001000100010002)
(001000200010002)
(001000200010003)
(101010101010101)
(101010101010102)
(101010201010102)
(101010201010103)
(102010201020102)
(102010201020103)
(102010301020103)
(102010301020104)
Here are possible tuples localined at curremt prime 3
(000110110000110)
(000110110110110)
(0001111100001111)
(000111111101101111)
(000111111111111111)
(000221220110221)
(000221221111221)
(000222221111222)
(110110110110110)
(110111110110111)
(110111111111111111)
(110221220110221)
(110221221111221)
(110221221221221)
(110222221111222)
(110222221221222)
(110332331221332)

```

Here are possible tuples localised at current prime 5
(000001111011110)
(000001111111111)
(111101111011110)
(111101111111111)
(111102222122221)

Here are possible tuples localised at current prime 7
(001111000111100)

Here are possible tuples localised at current prime 11
( 000000001100000 )
Here are possible tuples localised at currant prime 13 (000011111111000)

Here are possible tuples localised at current prime 17 ( 000000000000011 )
Here are possible tuples localised at current prime 19 (000000000001111)

Here are possible tuples localised at current prime 23 (000000011111111)

Here are possible tuples localised at current prime 20 \(\left(\begin{array}{lllllllllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)\)

\section*{References}
[CarterCline]
R. Carter, E. Cline, The submodule structure of Weyl modules for groups of type \(A_{1}\), Proc. Conf. Finite Groupl (Univ. Utah, Park City, Utah, 1975) pp 303-311.
[CarterLusztig]
R. W. Carter, G. Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), pp 193-242.
[Deriziotis]
D. I. Deriziotis, The submodule structure of Weyl modules for groups of type A \(_{1}\), Communications in Algehra, 9(3) (1081) pp 247-265.
[Doty]
S. R. Doty, The Submodule Structure of Certain Weyl Modules for Groups of type \(A_{n}\), Communications in Algebra, 9(3) (1981) pp 247-265.
[Green1]
J. A. Green, Polynomial Representations of GL( \(n\) ), Lecture Notes in Mathematics no. 830, Springer-Verlag Berlin Heidelberg New York 1980
[Green2]
J. A. Green, Schur algebrha and general linear groups, Groups St Andrewa 1989.
[ Lin ]
Z. Lin, Filtrations of the modules for Chevalley groups arising from admissible lattices, to appear.
[Schur]
I. Schur, Uber eine Klasge von Matrizen. die sich ciner gegebenen Matrix zuordnen lassen, (1901) I. Schur, Gesammelte Ablinndlungen I, pp 1 - 70, Springer-Verlag BerlinHeidelberg Nrw Yorls 1973.
[Winter]
P. W. Winter, On the modular representation theory of the two-dimensional special linear group over an algebraically closed field, J. London Math. Soc. (2), 16(1977), pp \(237-252\).

\section*{List of Notation}
\begin{tabular}{|c|c|c|}
\hline \(\cup\) & disjoint union of seta & \\
\hline n & set \(\{1, \ldots, n\}\) & 2 \\
\hline \(I(n, r)\) & set of r-tuplea with entries from \(n\) & 2 \\
\hline \(P\) & symmetric group of degree \(r\) & 2 \\
\hline \(P_{i}\) & atabiliser of \(i\) in \(P\) & 20 \\
\hline \(\square\) & transveraal of the \(P\)-orbits on \(I(n, r)\) & 2 \\
\hline \(\Omega\) & tranaveranl of the \(P\)-orbits on \(I(n, r) \times I(n, r)\) & 4 \\
\hline W & symmetric group of degroce \(n\), the Weyl group of GL( \(n\) ) & 3 \\
\hline \(\boldsymbol{N ( n , r )}\) & set of weights \(\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)\) & 3 \\
\hline \(\Lambda^{+}(n, r)\) & set of dominant weights & 3 \\
\hline \(|\lambda|\) & size of weight ( \(P\)-orhit on \(I\) ) \(\lambda\) & 3 \\
\hline \(\alpha \geq \beta\) & partial order on weighta & 4 \\
\hline \(S_{\mathbf{q}}(n, r)\) & Schur aigebra & 4 \\
\hline \(T\) & \(\operatorname{map} \mathbf{Q G L} \mathrm{L}_{\boldsymbol{m}}(\mathbf{Q}) \longrightarrow S_{\mathbf{Q}}(n, r)\) & 6 \\
\hline \(M^{*}\) & o weight space of \(M f\) & 6 \\
\hline \(M_{p}\) & \(p\)-envelope of \(M\) & 25 \\
\hline \(V_{\text {人, } K}\) & Weyl module over \(\boldsymbol{K}^{\prime}\) with highest weight \(\lambda\) & 8 \\
\hline [ \(\lambda\) ] & shape of \(\lambda \in \Lambda(n, r)\) & 9 \\
\hline \(T^{\boldsymbol{A}}\) & \(\lambda\)-tablean for \(: \in I(n, r)\) & 9 \\
\hline \(C(T)\) & column stabiliser & 10 \\
\hline \(\boldsymbol{R}(T)\) & row stabiliser & 10 \\
\hline (Q) & signed sum of elemente of \(Q\) & 11 \\
\hline \(b_{1}\) & basis element of Weyl module & 11 \\
\hline \(V_{A, 2}\) & Z-apan of basis elenents of \(V_{\lambda, Q}\) & 12 \\
\hline \(X_{\lambda, 2}\) & dual to \(V_{\lambda, 2}\) & 13 \\
\hline <,> & bilinear form on \(E^{\otimes \prime}\) & 13 \\
\hline (1.) & bilinear form on \(E^{\text {cr }}\{C(T)\}\) & 13 \\
\hline Sym(A) & symmetric group on \(A\) & 16 \\
\hline \(m_{a}\) & element of tuple defining valid module & 18 \\
\hline M & dual to \(M\) & 27 \\
\hline x & p-part of \(x\) & 25 \\
\hline \(\nu_{p}(x)\) & exponent of \(p\) in \(x\) & 25 \\
\hline \(x_{P}(i)\) & \(x_{1} p^{\prime}+\cdots x_{0}\) & 28 \\
\hline
\end{tabular}
\(7_{p}(x, y) \quad\) paints scored by \(y\) in \(x\) ..... 29
\(\Gamma_{p}(x, y)\) set of points acored by \(y\) in \(x\) ..... 30
\(\Gamma_{p}(r, \alpha)\) set of pointa acored by \(n_{1}\) or equivalently \(\alpha_{2}\) in \(r\) ..... 30
\(\gamma_{p}(r)\) size of set of all scoreable points ..... 30
\(\Gamma_{p}(r)\) set of all scoreable points ..... 31
\(p(A) \quad p\)-exponent of the factorial expression ..... 32
\(K_{p}(\alpha, \beta) \quad \Gamma_{p}(r, \beta) \backslash \Gamma_{p}(r, \alpha)\) ..... 31
\(I(\alpha, \beta) \quad\) set of points imitially scored ..... 34
\(R L(\alpha, \beta)\) set of points which are required losses ..... 35
\(B \quad\) block of points in \(r\) ..... 39
\(P(B) \quad\) subset of block of points such that \(A_{i}\) is set to 0 ..... 44
\(Q(B) \quad B \backslash P(B)\) ..... 44
\(J(M / N)\) set of weights with non-zero weight spaces in \(M / N\) ..... 66
\(\mathcal{L}(r, p) \quad\) lattice of scoreable seta ..... 75
\(k \preceq l\) partial ordering on weights ..... 104

\section*{Index}

This index gives the occurrences of all but minor definitions (in bold) and of major references to other topics.
admissible lattice 12
block 39
duality 23, 27, 79, 101
examples 3, 10, 14, 23, 36, 39, 43, 71, 77, 81, 92,99
module
almost valid 98
indecomposable 99
valid 18
p-envelope of 25
Weyl 8, 97
Carter-Lusztig basis of 11
normalisation condition 12, 22, 63,
79, 80, 82, 97, 98
point 28
reflection 103
representation 1
determinant 15, 97
polynomial 1, 102
homogeneous 1, 7
required loss 35, 38
Schur 1
algebra 2, 4
acoreable set 74
scoreable net lattice 75
tableau
basic 9
atandard 10
validity condition \(22,63,79,80,98\)
weight 3, 102
dominant 3
highest, of a simple module 61, 73, 101, 103
occura in a composition factor 64, 70
shape of 9
Weyl group 4```

