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Chapter 1

Background

Throughout this chapter, G is a finitely generated group with finite generat

ing set X . An element g of G can be written as a product x,\ ■ • -xn, where 

each Xi is either in X  or is the inverse of an element of X . Such a product 

is called a representative of g. The length of g (written |<?|) is the minimum 

number of elements in a representative of g. We equip G with the word 

metric, d(g, h) =  \g -  h\ =  \g~lh\.

Definition 1 .0.1 (Cayley G raph): The Cayley graph T(G, X ), or I when 

there is no ambiguity, is the graph with, for each g € G, a vertex labelled g 

and for each g 6 G, x  G X  an edge from g to gx  labelled by x. We give I' a 

metric by giving each edge length 1 and then taking the path metric. This 

metric coincides with the word metric on the vertices of I . We use d(x, y) or 

\x — y | to denote the distance between two points x, y 6 F.

Definition 1.0.2 (G eodesic): A geodesic in F is an isometric embedding 

of a closed interval into F. Suppose that 7 : [a, 6] —► F is a geodesic with 

7 (a) =  x  and 7 (b) =  y. We sometimes write [x, y] for 7 .

8
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1.1 Hyperbolic Groups

Hyperbolic groups are a class of groups introduced by Gromov in [Gro87] 

whose Cayley graph satisfies a single axiom (see Definition 1.1.2). Hyper- 

bolicity is independent of the choice of finite generating set. The definition 

applies to more general spaces than Cayley graphs and gives rise to the no

tion of a hyperbolic space. For simplicity, we stick to the case of a Cayley 

graph.

Good introductions to the theory of hyperbolic spaces and hyperbolic groups 

are [ABC+91], [CDP90] and [GdlH90], All the information in this section has 

been taken from these books.

1.1.1 Definitions of Hyperholicity

D efinition 1.1.1 (Inner product [Gro87]): Fix a basepoint x0 in T. For

any two points x, y € F, define the inner product

D efinition 1.1.2 (H yperbolic [G ro87]): The group G with generating set 

X  is ¿-hyperbolic if, for any three points x, y, z € F,

(X V) =  - (d (x 0, i )  + d(x„,y) -d (x ,y ) ) . ( 1. 1)

(x.z) ^ min((x.j/), (y.z)) -  6. ( 1.2)

A group is called hyperbolic if there is a finite generating set and a constant 

¿ such that G  is ¿-hyperbolic with respect to this generating set.
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x2

Figure 1.1. Thin triangles

T heorem  1.1.3 (G rom ov): If G is hyperbolic then G is hyperbolic with 

respect to any finite generating set.

In the following definitions, A is a geodesic triangle in T with sides [x i,x2], 

[x2,x 3] and [x3, Xi].

D efinition 1.1.4 (Thin triangles): Choose points c* G [x1+i,x i+2] (i =  

1,2,3, addition modulo 3) such that d(ci,xi+1) =  d (c i,x i+2) (see Figure 1.1). 

Each point y on one of the edges of the triangle is on one of the 6 geodesics 

[xi,Cj\ (i /  j )  and there is a corresponding point y' on [x,, c*] (k ^  j, i) 

such that d(xi,y) =  d(xi,y'). We say that A is S-thin if for every y G A, 

d(y,y') < <5. The Cayley graph T is S-thin if all geodesic triangles in T are 

¿-thin. That is, there is a global bound on the thinness of the triangles. If 

there is such a 6, T is said to have thin triangles.

Note that, if we take x t =  xq, x2 =  x  and X3 =  y in Figure 1.1, then 

{x.y) =  (x2.x3) =  d(xu c3) =  d(xi, c2).
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Figure 1.2. Slim triangles

D efinition 1.1.5 (Insize): Let c t, c2, c3 be as in Definition 1.1.4 (see Fig

ure 1.1). Then the insize of A  is diam {ci, c2, c3}.

D efinition 1.1.6 (Slim  triangles): (Attributed to Rips.) Let U'6 be the 

closed 6 neighbourhood of [xi_i,Xj] U [a;*,arf+x] (addition modulo 3), that is,

Uf =  {z  | 3a: 6 [xj_i,Xi] U [xi; X;+i] such that d(x, z) <  5} .

Then A is S-slim if [xj_i,Xi+i] C i/j (see Figure 1.2). T is said to be 6-slim 

if all geodesic triangles in T are ¿-slim. If there is such a 6, T is said to have 

slim triangles.

D efinition 1.1.7 (M insize): The minsize o f A  is (see Figure 1.3)

inf {diam {y x,y2, ys) \ Vi € [xi+i, xi+2]} .



CHAPTER 1. BACKGROUND 12

* 2

Figure 1.3. The minsize of a triangle

T heorem  1.1.8: Let G be a group with finite generating set X . The following 

are equivalent:

1. G is hyperbolic.

2. G has thin triangles.

3. G has slim triangles.

4- There is a global bound on the insize.

5. There is a global bound on the minsize.

For a proof, see [ABC+91],

Some examples of hyperbolic groups are free groups, finite groups, surface 

groups, most small cancellation groups, groups which act properly discontin- 

uously and cocompactly on hyperbolic space and free products of hyperbolic 

groups. The free Abelian group of rank 2 is not hyperbolic. Examples of 

Cayley graphs of hyperbolic groups are Graphs 1 and 2 (see also Graph 3 on
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page 54).

1.1.2 The Boundary of a Hyperbolic G roup

Hyperbolic groups have a boundary which is a quotient of the space of in

finite geodesics. The boundary is usually described in terms of sequences 

and the Gromov inner product (1.1). We give here a more geometric ap

proach using geodesics in the Cayley graph T. The resulting space defines a 

compactification of T.

D efin ition  1.1.9 (G eodesic ray): A geodesic ray, r, is an isometric em

bedding of the interval [0,oo) into T (compare with Definition 1.0.2). A 

geodesic ray from a: is a geodesic ray r such that r(0) =  x. A biinfinite 

geodesic ray is an isometric embedding of (—00, 00) in T.

Let r, s be geodesic rays. We define the equivalence relation, ~ , by r ~  s 

if there is a constant k such that, for all t, d(r(t), s(t)) SC k,. Suppose that 

r and s are geodesic rays from the identity. If T has ¿-thin triangles (see 

Definition 1.1.4) and, for some t, d (r(t),s(t)) > S, then, for all u ^ 0, 

d(r(t +  u), s(t +  u)) ^ 2u (see Figure 1.4). So, in this case, if such a constant 

k, exists, we can take it to be 6.

D efin ition  1.1.10 (B oundary): We define the boundary of T, denoted 

by ¿IT, to be the set of geodesics modulo ~ . A point on the boundary is 

an equivalence class of ‘parallel’ geodesic rays; geodesic rays which stay a 

bounded distance apart. If r is a geodesic ray in the equivalence class o, then
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Cayley Graph 1. The free group on 3 generators, {a,b,c |). The a edges all 
travel up, the b edges all travel north-east and the c edges all travel south-east. 
This picture was drawn using x f ig
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Cayley G raph 2. Z :t * Z 3 = (a, b | a3, 63), the edges of a triangle are either all 
labelled by a or all labelled by b. Alternate triangles have different labels. This 
picture was drawn using xf ig.
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we say that r tends to a, r —> a, r(t) —> a or r(oo) =  a. Similarly, if r is a 

biinfinite geodesic, then we write r (—oo) =  b if the reverse of r tends to 6.

Let a, b € d r  with a ^  b. Then there is a biinfinite geodesic r such that 

f ( —oo) =  a and r(oo) =  b. We say that r connects a and b and write 

r : (—oo, oo) —► (a, b).

D efinition 1.1.11 (Visual m etric): We give <?r the visual metric, de(-, •). 

Fix a base point x0 in T and a constant £ > 0. The first approximation to 

the visual metric is

I inf exp —(ed(xo,r)) if a ±  b, 
Pc (a, b) =  < r:(-oo,oo)-»(a,6)

I 0 if a =  6,
(1.3)

where d(x0, r) denotes the distance between x0 and the image of r (see Figure 

1.5). This is not a metric because it does not satisfy the triangle inequality. 

However, we can use it to define a topology by specifying open balls in the 

usual way. To make it a metric, we consider chains a — do, o i , . . . ,  an =  b.
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a

Figure 1.5. The visual metric on dV

Then

dr(u ,b )=  inf y  pc(at
chaiiiN £

(1.4)

1This defines a metric if e is sufficiently small (e < — log(\/2)). The visual
4o

metric defines a topology which is independent of the choice of z 0 and e. The 

topology from />,(•,) is the same as the topology from df (•, ■) (See [CDP90, 

Chapter 11]).

In the sequential construction, points on the boundary are equivalence classes 

of sequences which tend to infinity. The visual metric is constructed by 

extending the Gromov product to the boundary by

(a.b) =  inf lim (an.6„).
a „  *a  n -» o o
bn

Not<; that (a.b) = oo if and only if a =  b. Th<! construction is finished off in 

a similar way to above, with (•.■) replacing d(-,-) in (1.3). Given a,b 6 OV
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with a /  b, let r be a biinfinite geodesic ray connecting a and b. Then (a.b) 

satisfies d (x0,r) ^ (a.b) ^ d(x0,r )  — 46.

The topology is also independent of the choice of finite generating set. So 

the following definition is consistent:

D efin ition  1.1.12 (Boundary o f  G ): The boundary o f G  is OG =  dP.

Note that OG is compact and Hausdorff.

1.2 Automatic Groups

The information in this section is given in more detail in [ECH' 92].

1.2.1 Finite State Autom ata

An alphabet is a finite set of symbols. A word is a string o f symbols of the 

alphabet A. We use A' to denote the set of all words over A (including the 

empty word). A language is a subset of A '. If w 6 A ’ and n ^ |w|, the 

length of w, then w(n) denotes the word given by the the first n symbols of 

w.

A finite state automaton A  is the following data:

1. A finite set of states, S.

2. An alphabet, A.

3. A set of edges, E  C S x S  x A. Let e € E. The projection s onto
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the first coordinate is called the source of e. The projection t onto the 

second coordinate is called the target e. The projection l onto the third 

coordinate is called the label of e.

4. Two subsets I  and Y  of S called the initial and accept states.

The automaton A  can be drawn as a directed graph with each state being a 

vertex and each edge being a directed edge from its source to its target.

An edge path is a sequence of edges e j,e 2, . . . , e n such that t(ei) =  s(ei+1). 

The edge path ei,e2, . . . , e „  defines the word w =  l{e\)l{e2) ■ • • l(en) in A'. 

If s(ei) € /  and £(en) 6 Y, then we say that the word w is accepted by A- 

That is, there is a path in .4, labelled by w, starting at an initial state and 

ending at an accept state. The language accepted by A  is the set of words 

accepted by A.

1.2.2 Automatic Groups

Let G be a group with finite generating set X. We assume that X  is closed 

under taking inverses. There is a natural projection from words over X  onto 

G.

D efinition 1.2.1 (autom atic group): The group G  is automatic if there 

are the following finite state automata:

1. The word acceptor with alphabet X  which accepts at least one repre

sentative for each element of G.

2. For each generator x, the machine Mx over the padded alphabet X  U
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{$ } x X  U {$} which accepts all pairs of padded words (w\,w2) such 

that W\ and w2 are both accepted by the word acceptor and such that, 
in G, wtx  -  w2.

1.2.3 Hyperbolic Groups

Hyperbolic groups are automatic. There are two special automatic structures 

which are used in this thesis.

Firstly, there is the geodesic automatic structure. The word acceptor accepts 

the set of geodesics. For each g 6 G, any shortest representative of g is 

accepted. We call this word acceptor the geodesic acceptor. The property of 

having an automatic structure with a word acceptor which accepts the set 

of all geodesics is called strongly geodesically automatic. A group is strongly 

geodesically automatic if and only if it is hyperbolic.

Secondly, there is the ShortLex automatic structure. The generators are 

given an order. For each g € G  we take the lexicographically least geodesic; 

that is, among shortest representatives for g, we take the one which comes 

first in the lexicographical order. There is an automatic structure whose 

word acceptor accepts the set o f all ShortLex representatives.

Another important automaton is the word difference machine. This automa

ton accepts pairs of geodesics and keeps track of the word difference (in the 

group) at each stage. The word (wt, w2) is accepted if and only if, for every 

n ^ |u/j|, d(w i(n),w 2(n)) < N. If N > S, then this machine forms part of an
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automatic structure for a hyperbolic group.

1.3 Computability Problems in Groups

We say that we can determine whether a group has a given property if there 

is an algorithm (which can be implemented by a Turing machine) which 

outputs ‘yes’ if the property is true and ‘no’ if the property is false. Partial 

algorithms, which output ‘yes’ if the answer is true but may not terminate if 

the answer is false (or vice-versa), are often much easier to find.

The question of whether a particular problem or property can be solved 

algorithmically is a difficult one. The most famous negative answer is the 

unsolvability of the word problem [Nov55, Boo57]. That is, there are groups 

such that there is no algorithm which takes as input a word in the generators 

and outputs whether the word equals the identity. A related question is; can 

one can determine whether a given presentation defines the trivial group? 

Again the answer is that there is no algorithm which takes as input a finite 

presentation and outputs whether the group defined by the presentation is 

trivial. However, given the automatic structure of a group, one can solve 

these problems.

If we know that a group is automatic we can set about trying to find the 

automatic structure using algorithms described in [ECH+92] and, more prac

tically, in [EHR91], in the knowledge that they will eventually terminate. So 

if we know that a group is automatic, we can compute its automatic structure 

(for example, by using Derek Holt’s KBMAG computer package [Hol95]) and
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use this to compute other properties.

1.3.1 Com putability in Hyperbolic groups

We have already seen that hyperbolic groups are a special kind of automatic 

group. We ask what properties of a hyperbolic group we can compute.

Suppose we are given a presentation G  =  (X  | R) for a group which we know 

to be hyperbolic; then:

1: The word problem is solvable (see the discussion above).

2: The problem of deciding whether G is trivial is solvable (see the dis

cussion above).

3: We can solve the conjugacy problem in G. That is, given u,v  € G, we 

can algorithmically determine whether u is conjugate to v.

4: We can compute the constant of hyperbolicity, (5 (see [EH], also Theo

rem 2.1.4).

5: We can list the elements of finite order up to conjugation. That is, we 

can write a (finite) list such that for every finite order element g G G, the list 

contains a conjugate of g. (We can refine the list so that it contains exactly 

one conjugate of each finite order element.)

P roof: Each element of finite order, g, is conjugate to an element h of length 

^4(5 + 1 (by a corollary of Rips’ theorem (Theorem 2.1.2)). Further, each
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power of h also has length ^ 4 (5 + 1 . So for each element of length ^ 46 +  1 

we just need to compute powers and reduce until either we have the identity, 

or we have an element of length greater than 4(5 +  1. □

6: We can list finite subgroups up to conjugation. That is, we can write 

a (finite) list such that, for every finite subgroup H of G , the list contains a 

conjugate o f H .

P roof: Each finite subgroup is conjugate to a subgroup o f  diameter ^ 10(5+1 

([BG95]). There are a finite number of such sets. We can systematically write 

down all such sets and check whether they form a group. □

7: We can compute the integral homology and cohomology of G. That is, 

given n, we can compute Hn(G, Z) and Hn(G ,Z) (see Chapter 2, Theorem 

2 .2.12).

Recall that a group has 0, 1, 2 or infinitely many ends.

8: There is an algorithm to determine whether G has 0 ends and whether 

G has 2 ends. There is a partial algorithm to determine whether G has 

infinitely many ends.

P roof: Whether a group has 0 or 2 ends can be read from the structure of 

the ShortLex word acceptor. We can compute the ShortLex word acceptor 

(using [Hol95]). We can compute the strong components of the ShortLex 

word acceptor using an algorithm due to Tarjan (see, for example, [Bil96]). 

A group has 0 ends if and only if the ShortLex word acceptor has only trivial
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strong components. A group has 2 ends if and only if the group has ‘linear’ 

strong components with no path to another linear strong component. Both 

these conditions are detectable.

To detect if a group has infinitely many ends, make successive approximations 

to the boundary (see Chapter 3). If there is ever more than 1 component 

then there must be infinitely many ends (see Proposition 3.3.13). □

Rem ark: Andrew Clow has implemented an algorithm which detects if an 

automatic group has infinitely many ends (see [Clow]).

Question 1.3.1: Can we compute the number of ends of G'f

Rem ark: From the discussion above, we are left with the problem of finding 

an algorithm which detects if a group has 1 end.

Question 1.3.2: Can we compute the dimension of the boundary of G'f An 

upper bound can be computed (see Proposition 3.3.6).

Question 1.3.3: A theorem of Delzant’s [Del91] says that a torsion free 

hyperbolic group has only finitely many conjugacy classes of non-free, two- 

generator subgroups. Can we algorithmically list these?

Question 1.3.4: Before we can answer Question 1.3.3 we must answer the 

following question. Given a hyperbolic group and a set of words [w\
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can we tell whether the subgroup generated by {w b . . . ,  wn} is free on these 

generators?

1.3 .2  Unsolvable Problems in Hyperbolic Groups

Some problems in hyperbolic groups are known to be unsolvable. The results 

here are given in [BMS94] using a construction of Rips [Rip82]. Given an 

arbitrary finite presentation for a group H , the Rips construction gives a 

hyperbolic group G(H)  with a natural epimorphism onto H such that the 

kernel K  is generated by 2 elements. That is, the following sequence is exact;

where H has an arbitrary presentation, K  can be generated by 2 elements 

and G  is hyperbolic.

U nsolvable P roblem  1.3.5 (R ips [R ip82]): The generalised word prob

lem is unsolvable in hyperbolic groups. That is, there is no algorithm which 

takes as input a finite presentation o f a group G which we know to be a 

hyperbolic, a subgroup H of G  given by a finite set of elements of G which 

generate ii and an arbitrary word w in G and outputs whether w € H .

U nsolvable P roblem  1.3.6 (Baurnslag, M iller, S hort [BM S94]):

There is no algorithm which takes as input finite presentation of a hyperbolic 

group, a finitely generated normal subgroup N  given by a finite generating 

set and an element g 6 G and outputs whether any power of g lies in N .
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U nsolvable Problem  1.3.7 (Baum slag, M iller, Short [BM S94]): The

rank (minimum number of generators) o f a hyperbolic group is not com

putable. This follows from the unsolvability of the isomorphism problem 

for an arbitrary presentation. Let H be the group defined by an arbitrary 

presentation. Perform the Rips construction on H * H * H. The hyperbolic 

group G ( H  * H * H)  has rank 2 if and only if H is trivial, otherwise it has 

rank at least 3. If we can compute the rank of G, then we can compute 

whether H  is trivial.

U nsolvable P roblem  1.3.8 (Baum slag, M iller, Short [BM S94]):

There is no algorithm which takes as input a finite presentation o f a hyper

bolic group G and a subgroup H  of G given by a finite set of elements of G 

which generate it and outputs whether the subgroup H ;

1. is G,

2. has finite index,

3. is finitely presented,

4. has finitely generated second integral homology group,

5. is normal,

6. is a maximal proper normal subgroup,

7. is root-closed,

8. has only finitely many conjugates.



Chapter 2

Computing the Homology of a 
Hyperbolic Group

Chapter Sum m ary

We show that there is a Turing machine which has as input a finite 

presentation of a hyperbolic group G and as output the nth inte

gral homology and cohomology groups Hn(G, Z ) and H n(G, Z), 

for any given n. In Section 2.1 we recall the Rips construction of 

a simplicial complex on which G acts rigidly, with finite stabilis

ers and with finite quotient. In Section 2.2 we amend the space 

using the theory of complexes of groups, introduced by Haefliger 

in [Hae91], so that the action is free and the quotient is finite in 

each dimension. The quotient space is computable by a Turing 

machine and so its homology groups are computable.

27
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2.1 Constructing a Contractible Space with 
Rigid G-action, Finite Stabilisers and Fi
nite Quotient

Let G be a hyperbolic group.

Definition 2.1.1 (R ips C om plex): Fix a generating set for G and fix a

constant d. The Rips complex Pd is the simplicial complex with simplices 

(vo,. . . ,  vn) for every set {uo,. . .  ,vn € G \ Vi,j, |wj — Vj\ < d}. The group 

G acts on Pd by g(vo , . . . ,  vn) =  (gv0, . . . ,  gvn). This action is simplicial and 

the action on the vertices is free and transitive.

Theorem  2.1.2 (R ips): Let G be a 6-hyperbolic group. If d 2? 45 +  1 then 

the Rips complex Pd is contractible, finite dimensional and the stabiliser of 

each simplex is finite. If G is torsion free then the action is free. (See, for 

example, [GdlH90, Chapter f].)

Let P'd denote the first barycentric subdivision of Pd. We say that a group 

action on a simplicial complex is rigid if whenever a group element stabilises 

a simplex, it acts as the identity on that simplex. This is a natural generali

sation of acting without inversion on a graph.

Lem m a 2.1.3: The action of G on P['d is rigid.

P roof: Let a be a simplex of P'd. Any pair of vertices of a come from 

simplices in Pd of different dimensions. Therefore an element of G cannot
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permute the vertices of a non-trivially. □

Theorem  2.1.4 (Epstein, H o lt  [EH]): //u ;e  are given a presentation for 

a group G and we know that the group is hyperbolic then we can compute 6.

Corollary 2.1.5: We can compute the quotient G\Pd.

P roof: Theorem 2.1.4 tells us that we can compute 6. We can then fix 

d =  45 +  1. Every simplex in G\P(i is the quotient of a simplex in Pd 

containing the identity vertex (because the G-action on the vertices of P,t is 

transitive). The ball of radius d is finite; therefore we can list every simplex 

in G\Pd and the boundary maps hence all the simplices in G\P'd. □

Note that, in the case when G  is torsion free, the homology of G is the 

homology of G\P'd and Corollary 2.1.5 tells us that we can compute this 

space. The fact that G\P'd is finite enables us to compute the homology of

G.

Lemma 2.1.6: Given, a simplex of P'd, we can compute its stabiliser.

P roof: By Lemma 2.1.3, if g 6 G stabilises a simplex, it stabilises each 

vertex. Each vertex of P'd is a finite subset o f G. Each element of the 

stabiliser of the vertex {ffi,. . . ,  g „)  has the form g,gJ ', for some 1 ^  t, j  ^ n. 

We can check which of these elements stabilise the vertex and hence find the 

stabiliser of any vertex. The stabiliser of the simplex is just the intersection 

of the stabilisers of each of its vertices. LI
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C orollary  2.1.7: We can write a list o f stabilisers of simplices of P'd which 

contains one representative from each G-orbit.

P roof: There are finitely many G  orbits in Pd so we have finitely many 

conjugacy classes of stabilisers. We can compute a representative stabiliser 

for each conjugacy class. □

2.2 Constructing a Contractible Space with 
a Free G-action and Finite Quotient in 
Each Dimension

We now assume that we are given a contractible simplicial complex X  on 

which the hyperbolic group G acts rigidly, with finite stabilisers and finite 

quotient. In Section 2.1 we showed how to construct such a space. We 

amend this space so that the action becomes free while the space remains 

contractible. The amended space is no longer finite but it remains finite 

in each dimension. Our main tool will be complexes of groups which were 

introduced by Corson [Cor92] and Haefliger [Hae91].

Let X  — G \X . For every simplex a C X  choose a simplex a C X  lying above 

<7 in the quotient map. Let G„ < G  be the stabiliser of a. We use E (G a, 1) 

to denote a contractible space with free G „ action. The space we construct 

is the barycentric subdivision X ' of X  except that we glue in an E(Ga, 1) 

for each vertex a. The fact that each stabiliser group is finite enables us to 

easily construct E(G„, l ) ’s which are finite in each dimension. We take the
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classifying space of the category G „ defined by Segal in [Seg68, Section 3] 

and repeated below. The information for gluing in the E(G „, l ) ’s is obtained 

from the simplicial cell complex of groups description for G given by its action 

on X .

For a group G, the category G is defined as follows: The set of objects is G. 

There is a unique morphism between any pair of objects; for every g,h  € G, 

we have the morphism, g~'h, from g to h. The morphisms correspond to 

multiplication in the group and are composed in the obvious way. This cate

gory is equivalent to the trivial category with one object and one morphism, 

therefore its classifying space is contractible (see Section 2.2.4).

2.2.1 Simplicial Cell Complexes of Groups

A simplicial cell complex of groups is a simplicial cell complex Y with a group 

associated to each simplex. We use G„ to denote the group associated to the 

simplex a. Let r  be a simplex of Y  and let a be a simplex in the closure 

of r  (so that a is a simplex of lower dimension than r which is incident 

to r). Then there is an injection from C T to G„. We take the barycentric 

subdivision Y‘ of our simplicial cell complex Y  so that we have a group at 

every vertex and an injection, ipa, for every directed edge, a. We require that 

the following conditions hold:

1. For every pair of composable edges a, b (read lY ’ for 'X ' in Figure 2.1(a)
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on page 33),
6

t -------- ► a

P
there is an element ga,b £ Gp such that the following diagram commutes 

up to conjugation by gay,

That is, Conj(0o,fc) o ipab =  ipa o ipb (where Conj(/y): x gxg~x). 

2. For every triple of connected edges a ,b ,c  (a tetrahedron in Y'),

T

the ‘conjugators’ satisfy ipa(tlb,r)ga,bc =  9a,b9ab,c- 

See [Hae91] for a more detailed exposition.

These conditions will be naturally satisfied by the way we construct our 

groups and injections from the G-action on X .
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P

O p ,a

CT

(a) X ' (b) X

Figure 2.1. The conjugator ga<b =  g„'ag~'rgp,T

2.2.2 Returning to our Situation

In the barycentric subdivision X' of X , with edges directed towards the 

vertices of X , we have a group G„ at each vertex a. For each directed 

edge b in X ' (joining r to a ), choose g „r € G such that g„iT (n) C T in X  

(see Figure 2.1). Note that g „T is unique up to left multiplication by an 

element of GT. We define the injection ipb : Gr —> G„ by ipb(h) =  ga\hgaT. 

(Changing g„tT is the same as composing ip with an inner automorphism of 

Gr.) For every pair of composable edges a, b in X ' (a triangle b,a,ab in X ' 

corresponding to a triple of simplices r, a, p in X  with r D a D p, see Figure 

2.1(a)), we define the conjugator gnb =  gp '„g„'Tgp,T (««• Figure 2.1(b)).

Lem m a 2.2.1 (HaeHiger [Hae91]): Tlic above description defines a sim- 

plicial cell complex of groups presentation for G. □

We now have a complex o f groups presentation for G with simplicial cell 

complex X , simplex groups G„, injections ipb anti conjugators gai,.
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2.2.3 The Fundamental Group of a Com plex of Groups

We have a group Ga for each vertex er of X ' and an injection for each directed 

edge. We use s(a) and t(a) to denote the source and target vertices o f the 

directed edge a. We associate to each edge, a, the element ga =  gt{a),,(a) € G, 

so that ga(t(a)) is incident to s(a). Occasionally we want to use a to denote 

not moving, in which case s(a ) =  t(a) and ga =  1. Note that, by construction, 

the elements ga satisfy the relations gab =  gbgaga,b and that ipa (g) =  ga 1 gga.

A G-path in X ' is a path in X' with additional information to define an 

element of G. It is defined as follows: Trace a path in X'. Every time we 

traverse an edge, a, we multiply on the right by ga. When we reach a vertex 

(including the initial vertex), a, we multiply on the right by an element of 

G„. This path can be written as a sequence go(io9iOi92 ■ • -an- i gn, where a, 

is an edge, .<>(«,f ] ) =  t(cij), g} € G ,(n>) and g,t G G t(a„)- The set of closed 

G-paths can be multiplied in the obvious way to form a group. This group 

is the fundamental group o f the complex of groups and it is isomorphic to G.

2.2.4 Categories and Classifying Spaces

We reconstruct the space X ' using the language of category theory. We give 

two naturally isomorphic categories whose classifying spaces are respectively 

X ' and a space with a free G'-action. A result of Segal’s (Proposition 2.2.2) 

tells us that they are homotopic; hence we have our desired space.

The clasnifying space of a category has vertices the set of objects, edges the
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set of morphisms, 2-simplices the set of commutative triangles, and so on 

(see [Seg68, Section 2]). A group action on a category extends to an action 

on the classifying space.

Two categories are equivalent if there are functors between them such that 

each composition, T, is a natural isomorphism from the category to itself. 

That is, there is a natural transformation (morphism of functors) between 

the identity functor and T  such that each induced morphism is invertible. 

In other words; for every object, Ob, and for every morphism, /  from Ob 

to Ob', there are invertible morphisms, v and i / ,  such that the following 

diagram commutes:
Ob —v—+ T(Ob)

I' I”
Ob' —^  T {Ob').

(See [Mac71, Page 16]).

P rop osition  2.2.2 (Segal): The classifying spaces of two equivalent cate

gories are homotopic ([Seg68, Proposition 2.1]).

D efin ition  2.2.3 (C C ): Our first category has objects (gGa,cr) where a is 

a simplex in X and gG„ is a coset of the stabiliser group G„. The nontrivial 

morphisms from (gG „,a ) are labelled by edges a with s(a) =  a\

{gG,(a), s(a)) y (ggaGt(a),t{a)).

This is well defined because Gs(a) ^ gaGt(a)0 so it is independent of the 

choice of coset representative, g. We call this category C C (G (X ))  or CC  

(‘coset category of G (X )').
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Lem m a 2.2.4: The classifying space BCC of C C  is X '.

Proof: Let C (X )  be the category associated to X . Its objects are the 

simplices of X  and its non-trivial morphisms are the directed edges of X '. 

The classifying space of C (X )  is X'.

Define the map F  : (gGa,o ) go from the objects of C C  to the objects 

of C (X ). Recall that ga is such that ga(t(a)) is incident to s(a), so there 

is an edge g(a) in X ' connecting s(a) and ga(t(a )). Consequently, for each 

morphism a, we have the following commutative diagram:

(gGi(tt),s (a ) ) --------y (ggaGt(a), t(a))

F

g {s (a )) ------- —— * {gga(t(a ))).

So the map F  extends to a functor.

The inverse map F~l : go (gGa,o )  is also a functor. Hence F  and F ~ l 

are natural isomorphisms of categories. Lemma 2.2.4 follows from Proposi

tion 2.2.2 and from the fact that F  is a bijection. □

D efinition 2.2.5 (G C ): The objects of our second category, which we 

call G C (G (X )) or GC  ( ‘group category of G (X ) ’ ), are pairs (g ,o ) € G  x 

Simplices of X . The morphisms are

(g,s(a)) - ^ 4  (gka,t(a )),

where ka(t(a)) C s(a) and a is either a directed edge in X', or s(a) =  <(a). 

Note that, ka =  g„gt(a) for some gt^  6 so the morphisms can be thought

F
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of as (traverse an edge then) multiply by an element of the stabiliser group 

G ((a). The morphisms are composed in the obvious way; (a,ka) o (b,kb) =  

(ab,kakb) whenever it is defined (when s(a) =  t(b)). Observe that, since 

t(ab) =  t(b), s(ab) =  s(a) and t(a) =  s(b), we have

kakb(t(ab)) C ka(t(a)) C s(ab).

If s(a) =  t(a) we sometimes write the morphism as k, where k € Gs(„). These 

are the only invertible morphisms in G C. There is a G-action on the objects 

of GC  given by g(g',cr) =  (gg',o). Clearly, this action is free.

P roposition  2.2.6: The action of G  on the classifying space BG C is free.

P roof: Each simplex of BGC  comes from an ordered set of objects of GC. 

So if g fixes a simplex, it must fix each of the objects (permuting them will 

change the order). But the action on the objects is free. □

We will now define the functors P : GC —> GG (projection) and R : CC —► 

GC (inclusion given by a choice of coset representatives, {hgc „ } ,  one repre

sentative for every coset of each stabiliser group).

D efinition 2.2.7 (P ): The projection functor, P : G C  —> GG, is defined by 

P  : (g, a) •-> (gG„, o) on the objects and by P : (a, ka) H a o n  the morphisms. 

P  is a functor because, for any morphism (g,s(a)) ( ' "i (gka,t(a )) in GG,
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the following diagram commutes;

-> (gka, t(a))GC (g,s(a))

CC (gGs(a)i ®(®)) t (gkaGt(a),i(a)).

Note that, since ka =  gagt(a) for some gt{a) e  G ((a), gkaGt(a) =  ggaGt(a)-

D efinition 2.2.8 (R ) : Choose a set of coset representatives { } ,  one for 

each coset of each stabiliser group. If we write h\ =  hgo Mat and h2 =  hggao l(a), 

then hi =  ggs(a), h2 =  gka for some gs^  € G,(a), and for some ka such that 

ka(t(a)) C s(a). So h\lh2 =  </7(a)̂ “ and

h i'h 2(t(a)) =  g;{'a)ka(t(a)) C g^a)s(a) =  s(a).

We define R : CC  —> G C by /i  : (gG„, a) ►-» (hga„,cr) on the objects and 

by R : a >-> ( a , o n  the inorphisms. /? is a functor because, for any 

morphism (gGs(a), s(a)) —̂ 4 (ggaGt(a), t(a)) in GG, the following diagram 

commutes;

C C  (gGs(a), 8(a)) — —> (ggaGt(a), t(a))

RR R R

, w 'h 2) ;

Lem ma 2.2.9: Thu categories C C  and GC are equivalent.

P roof: The composition functor PR  =  P o l i :  C C  —> C C  is equal to the 

identity and is therefore a natural isomorphism.
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For the other composition functor R P  =  R o P  : GC  —> GC, (g,cr) > 

(hgG„ ,o ) ,  for every morphism, we have the following commutative diagram;

where x =  g 'hgGi(a), which is in G S(a) because g and hgG,(a) are in the 

same coset of Gs(0), and similarly z  =  (gka)~l hgkaGt(a) € Gt(a)- We need to 

check that y =  satisfies y{t(a)) C s(a). Now, hgG.(a) =  yys(a)

for some gs{a) e  Gj(o) and hgkaG,ia) =  gkagt(a) for some gtM e  Gt(a). So 

y(i(a)) =  g^ k eg tw itia ))  C s(a).

Clearly, both x  and z are invertible, so RP  and Id are equivalent. □

Theorem  2.2.10: The classifying space BGC of GC is contractible.

P roo f: By Lemma 2.2.9, the categories GC  and GG are equivalent. By 

Proposition 2.2.2, the classifying spaces BGC  and B C C  are homotopic. Thus 

B G C  ~  BCC =  X ' (by Lemma 2.2.4) which is contractible by Rips’ Theo

rem (Theorem 2.1.2). Therefore B G C  is contractible. □

P roposition  2.2.11: For each n, we can list the simplices of the n-sheleton 

of the quotient space G\BGC.

GC (g,s(a)) ■» (gka,t(a ))

RP x RP RP z RP

P roo f: An n-simplex comes from a sequence of n composable edges. We can 

list all of these. □
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Theorem  2.2.12:

Given an integer n and a finite presentation for a group G which we know to 

be hyperbolic, we can compute the nth (co)homology group ofG .

P roof: The nth (co)homology group of G is the nth (co)homology group of 

G\BGC, which is computable and finite in every dimension. Therefore we 

can explicitly write lists of the n + 1 , n and n — 1 cells and the boundary maps 

(G\flG'C)("+1> - A  (G\BGC)W  (G\BGCyn~ll  The problem reduces 

to the problem of finding the kernel and image of linear maps in free-Abelian 

groups, which is computable. □

The category C G (X ) in [Hae91] and [Hae92] is precisely G\GC. Haefliger 

shows in [Hae92] that this category is naturally isomorphic to the category 

G x C (X )  (which we describe below) and that the classifying space of this 

category is homotopy equivalent to BG  x 0 X  =  G\BG  x X , where BG  is an 

E(G, 1) and G  has the diagonal action on BG  x X . BG x c  X  is sometimes 

called the Borel construction or Bond homotopy quotient (see, for example, 

[Geo]). The category G tx C (X )  has objects the cells d of X  and, for every 

(/ 6 G and for every ff, it has a morphism d %  yd. When X  is contractible, 

BG x q X  is a K (G , 1). See Figure 2.2 for a map of the different proofs.

2.3 Examples

Exam ple 2.3.1: An easy first example is Z:t =  (x | x 3). The Rips complex 

Pi is a filled triangle. The action of the generator x is a rotation of 27r/3
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C (X )  =* C C  “  GC

B C (G (X ))~ B (G  x C (X ))~ B G  x G X

Figure 2.2. A diagram showing the relationships between the different cate
gories in this chapter and in [Hae92], The down arrows marked B are geometric 
realisations.

about the barycentre of the 2-simplex. The stabiliser of the 2-simplex is Z 3, 

all other stabilisers are trivial. Taking the barycentric subdivision makes the 

action rigid with one vertex stabiliser group Z 3 and all other stabilisers trivial 

(see Figure 2.3).

We choose representatives for each Z 3-orbit in P{ as shown in Figure 2.4. 

The stabiliser of u3 is Z 3, all other stabilisers are trivial.

The 1-skeleton of the space B G (Z 3) is shown in Figure 2.5. The black vertices 

lie above the chosen simplices of Figure 2.4 and so correspond to objects of 

the form (e ,a ). The grey vertices come from objects of the form (x, a) and 

the white vertices from objects of the form (x2, a). The 3 central vertices 

come from the stabiliser of the 2-simplex in the Rips complex.
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Figure 2.3. The Rips complex of Z 3 = (x \ x3) and the stabilisers of the 

simplices.

Figure 2.4. Choosing representatives in each orbit

Figure 2 .5 .  T h e  1 -sk eleton  o f
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Figure 2.6. Part of the tiling by (7r/2, 7t/3, 7r/7 )-triangles. The shaded area is 
a fundamental domain for the action of (2,3,7)-triangle group on this tiling.

Exam ple 2.3.2: A better example is the orientation preserving (2,3,7)- 

triangle group (x ,y ,z  \ x 7, y3, z2, zyx). We proceed from Section 2.2 using a 

tiling of the hyperbolic plane by (7r /2, 7t/ 3, 7t / 7)-triangles as our contractible 

space on which the group acts rigidly and with finite stabilisers. Call this 

simplicial complex X . The action is generated by clockwise rotations through 

7t/ 7, 7t/2 and n/3 about iq, C2 and 3̂ (the vertices in the shaded region of 

Figure 2.6) respectively.

A fundamental region for our action is a quadrilateral (for example, the 

shaded region in Figure 2.6). The quotient space is homeomorphic to a 

sphere (Figure 2.7).

For each simplex in the quotient X  =  G\X, select a simplex lying above it 

in X. The simplices we choose lie in the shaded fundamental region shown 

in Figure 2.6. The stabilisers of the vertices are Z 2, Z 3 and Z 7. The other 

stabilisers are trivial.
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Figure 2.7. The quotient space for the (7r/2, 7t/3, 7r/7 )-triangle tiling under the 
action of the (2,3,7)-triangle group

For a pair of incident simplices a, r  in X , we need to choose a g„iT € G such 

that g„tT(a) is incident to t . In most cases we can choose the identity. The 

only exceptions being between the pairs (cr2, e j), (a2,u2) and (<72,e3) (see 

Figures 2.7 and 2.6). We take g„2<V2 -  ga2,c3 =  x  and g„2,e, =  y~l and label 

edges in the barycentric subdivision of X  accordingly (see Figure 2.8(a)). 

The triangle in X ' with vertices at,ej,Vk has conjugator gai,ej9ej ,vt9a%\Vk and 

so most are trivial. The exceptions are shown in Figure 2.8(b).

Wo now construct the category GC. Recall that the objects are labelled by 

pairs (g, a), where g € G and a is a vertex in X '. The morphisms come 

from traversing an edge in X ' (or staying put) followed by multiplying by an 

element of the stabiliser group of the destination vertex.

We can label each simplex lying above a in the original complex by a coset of 

Ga. The labelling by a group element g then becomes hg„ where h is a coset
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Figure 2.8. Labelling edges and finding conjugators. Unmarked edges in the left 
picture and unmarked faces in the right picture are labelled by e.

Figure 2.9. L abellin g  th e fa ces
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Figure 2.10. The quotient space G\BGC  for the (2, 3, 7)-triangle group.

representative and g„ 6 G„. The faces of our tiling X  have been labelled in 

Figure 2.9.

The 1-skeleton of the quotient space G\BGC  is shown in Figure 2.10. The 

space G\BGC  looks spherical, but the 2-cells don’t ‘match up’ so there 

aren’t any embedded spheres. The third homology group is Z. The 2-cells 

have to be ‘wrapped around’ 42 times until they match up. This coincides 

with the second homology group being Z « -  The first homology group, the 

abelianisation of G, is trivial.

Figure 2.11 shows the 1-skeleton of BGC. An inclusion of BCC  in BGC  for 

a particular choice o f coset representatives is shown in Figure 2.12.
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Figure 2.11. T h e  1 -sk eleton  o f  BGC  fo r  th e  (2 ,3 ,7 ) -t r ia n g le  grou p
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Figure 2.12. T h e  1 -sk eleton  o f  BCC  fo r  th e  (2 ,3 .7 ) -t r ia n g le  grou p



Chapter 3

The Boundary of a Hyperbolic 
Group as an Inverse Limit of 
Finite Sets

Chapter Sum m ary

Given a hyperbolic group G, we show how to construct an inverse 

system o f finite topological spaces whose inverse limit is homeo- 

morphic to dG, the boundary of G. Each of the finite spaces are 

computable and can be used to estimate topological properties of 

the boundary.

49
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Let G be a hyperbolic group and fix a generating set. Let T be the corre

sponding Cayley graph. Recall (Section 1.2.3) that G has a ShortLex auto

matic structure and a geodesic automatic structure.

3.1 The Boundary as an Inverse Limit

3.1.1 Constructing Finite Topological Spaces

Let Wn denote the set of elements of length n in G. The set Wn can be 

thought of as the set of ShortLex geodesics of length n in I\

D efinition 3.1.1 (cluster): A set of ShortLex geodesic rays (geodesic rays 

such that every prefix is a ShortLex geodesic) to the same boundary point is 

called a cluster of geodesic rays or a cluster.

Definition 3.1.2 (frond): The set of truncations of length n of the 

geodesics in a cluster is called the nth frond of the cluster. A frond of length 

n or, frond , is a subset of Wn such that each element of the subset can be 

extended ShortLex geodesically to the same boundary point. We call a frond 

with k +  1 points a k-frond. Note that elements which cannot be extended 

ShortLex geodesically to the boundary are not fronds.

D efinition 3.1.3 (F n): We use Fn to denote the set of fronds of length n. 

We give Fn a topology by defining the closure of each point. The closure of 

the point x  is defined as x =  {y 6 F„ | y C x }. Each cluster defines a frond
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M  { * , » }  { y )

F

” ( {* } )  «({?/})

s
Figure 3.1. The relationship between F, W  and S

o f length n by truncating each element of the cluster at length n. Thus we 

have a map p„: {clusters} —> Fn.

It is instructive to construct a simplicial complex Sn which graphically rep

resents the topology of Fn. There is a /c-simplex of Sn for every A;-frond, so, 

for example, the set of vertices of Sn is the set of 0-fronds; that is, fronds of 

the form { w}. We use v{x) to denote the simplex associated to the frond x. 

We give Sn the ‘combinatorial topology’ , where a set is open if and only if 

it is a union of open simplices which is open in the CW-topology (the set of 

open stars of simplices forms a basis for this topology). The map S„ —> Fn, 

defined by y x if y is in the interior of v(x), is a ‘relational homeomor-

phism’; that is, it is continuous, surjective and the image o f an open set is 

open. Figure 3.1 shows the relationship between Fn, Wn and Sn. Closures of 

points in Fn are indicated by ringing points.
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3.1 .2  The Restriction M ap

We define the map pn : Wn —¥ Wn- 1 by

Pn • Û1 * * ' û n - l û n  * * * ® n —l,

where each a, is in the generating set and a\ ■ ■ ■ an traces a ShortLex geodesic 

in T. The map p restricts a geodesic of length n to itself truncated at length 

n — 1.

D efinition 3.1.4 (The restriction  m ap): The map pn extends to a map 

from Fn to by

fn- Fn ->• F„_ i ,  {w0, w i , {p(w0), p{wx) , . .., p(wk)}  .

The map / „  is called the restriction map. The image of a frond is clearly a 

frond. A /c-frond maps to a j-frond, for some j  ^ k. Recall the map pn from 

Definition 3.1.3. The restriction map satisfies pn°  fn =  Pn-1! that is, for each 

n, the following diagram commutes:

Now, if x ,y  G Fn and x  G y, then f„(x )  G f n(y)- Since S„ exhibits the 

topology of Fn, we can think of / „  as a map from Sn to Sn-i.

{clusters} > Fn

(3.1)

Exam ple 3.1.5: Let G be the fundamental group of a surface of genus 2 with 

the usual generating set (G =  (a ,b ,c,d  | aca~lc~ 'bdb ld x), see Graph 3).
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Figure 3.2. Ft, part of the Cayley graph and S\ of the fundamental group of a 
surface of genus 2

The fronds of length 1 are the generators and pairs {x ,y }  such that y~lx  

appears in the relator written cyclically (see Figure 3.2).

Part of the restriction rnap f 2 is shown, as a map S2 —► S\, in Figure 3.3.

3.1 .3  The Inverse Limit

The finite sets Fn and the maps / „  : F„ —> Fn | form an inverse system, 

which we call F:

(3.2)

We now look at the inverse limit of F, F.

A point in the inverse limit is a sequence x  — (xi)™0> s,1,l 1 that, for each i
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Figure 3.3. The restriction map f 2

1, fi(x i) =  xi - 1- Since, for each i, fiopi =  p,_i (3.1), a cluster corresponding 

to j is a cluster corresponding to xl. So we can extend the maps pn to 

a map p: {clusters} —► {imF. The map p is a bijection, so a point in lim F 

can be thought of as a cluster (that is, a set o f  geodesic rays to the same 

boundary point). The closure of a point x =  (a:*)“ , in {im F  is given by

x  =  {y  =  (y<)“ i |Vi, yi e x ; } .

Equivalently, y € x if and only if p~*(y) C p~*(x).

Definition 3.1.6 (T h e  map k): The point x  in (im F  naturally defines the 

cluster p~l (x), which is a set of geodesic rays to the same boundary point 

£. We define the map k : {imF —y dG by k(x) =  £. Every infinite ShortLex 

geodesic is a cluster, so the map k is a surjection.

Lem ma 3.1.7: For all Ç e  dG, |fc *(£)| ta finite.
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P roof: There are only a finite number of ShortLex geodesic rays to each 

boundary point, so there are a finite number of clusters to each boundary 

point. □

In fact, there is a universal bound on the size of '(01  (see Lemma 3.3.2 

on page 68).

3.1.4 Hausdorffifying the Inverse Limit

The space hm F  is not necessarily Hausdorff because the closure of a point 

is not necessarily itself.

To make Urn F  Hausdorff, we amalgamate certain points. We amalgamate 

the points x and y if there is a z  € Urn F  such that x € z and y  €  z. If x and 

y define the same boundary point, then p 1 (x) and p 1 (y) are clusters to the 

same boundary point. Therefore p 1 (x) U p 1 (y) is a cluster, so we can set 

z =  p\p '(x ) Up '(?/)]. Then x  and y are both in z. So we amalgamate x 

and y if and ordy if they define the same boundary point. Equivalently, we 

amalgamate x and y if and only if k(x) =  k.(y). Lemma 3.3.2 shows that this 

process is finite at each point.

Let II denote the space we obtain by performing the above operations and 

let y : Urn F  —> / /  be the quotient map.

Lem ma 3.1.8: The pan //,</ has the property that for all Hausdorff spaces, 

Y, and continuous maps, c : îrri F  —+ Y, there is a unique continuous map,
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l, such that the following diagram commutes:

(im F  — ^  H

Y.

P roof: Let Y  be a Hausdorff space and let c be a continuous map from (im F  

to Y. Let x, y €. JimF such that q(x) =  q(y). Then there is a z in (im F  

such that x ,y  € z. Then c(x) =  c(z) =  c(y) because c is continuous and 

x  € z ==> c(x) e  c(z) =  (c (z )}. So the map l must be 1(a) =  cq~1(a). 

(Although q~l is not a map, cq~l is a map.) The map c is continuous and q 

is a quotient map, so l is continuous. □

In particular, in the case when Y =  dG, we have the following commutative 

diagram;

We shall show that the map k is continuous and deduce that h is a homeo- 

morphism (Theorem 3.1.15).

3.1.5 The Topology of H

It is useful to first examine the topology of (ini F. Let x n € Fn. The set

(im F H

(3.3)

C (xn) =  | (?/i),“ i €  ( i m F  I yn =  * „ } (3 .4 )
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is called a cylinder (compare with Definition 4.1.2). Note that fixing the nth 

entry of a sequence in îm F  fixes all earlier entries. So a cylinder is fixed on 

a finite number o f symbols but can then vary arbitrarily. We also refer to 

finite unions o f cylinders sis cylinders. The complement of a cylinder is itself 

a cylinder.

Recall that a basic open set in Fn corresponds to the star of a simplex in Sn; 

open sets are unions of simplices in S„ which are open in the CW-topology. 

That is, given a frond x  6 Fn, there is a basic open set Bx in Fn given by 

Bx =  (Jjox?/- ^  U is an open subset of Fn, then fn+l (U) is open in Fn+1, 

because, given a frond x € Fn+i , y D x  if and only if f n+i(y) D /„ + i(x). So 

the inverse image of a star is a union of stars. So, if U is open in Fn, then 

its inverse image in Fn+m must always be open.

So a basic open set in ^m F  is a set of the form

C (B X) =  (J  C (y)
y e B x

where x  € Fn, for some n; that is, a basic open set in (im F  is the cylinder 

of a basic open set in Fn. An open set in |im F  can be written as a union of 

cylinders of stars.

Lem m a 3.1 .9 : Any closed set of Lim F  can be made by taking (finite unions 

and) arbitrary intersections of cylinder sets.

P roof: Let £  be a closed set. Then E — U' for some open U, where U' 

denotes the complement of U. Now, U =  (J C\, where C\ are cylinder sets.
AeA
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=  ( u c > ) ' - n «
A€A

But C'x is a cylinder and the result follows. □

Note that the converse is not true; if you take an arbitrary intersection of 

(finite unions of) cylinders, then you do not necessarily get a closed set.

Observation 3.1.10: An open set U is characterised by the property that if

C (x) C U (where x  €  Fn) and x  C y then C (y) C U .

Observation 3.1.11: A closed set, E, is characterised by the property that 

if C (x) C E and x  D y then C (y) C E.

Now, a closed set in H is a set, E, such that q~l (E )  is closed in (irri F. 

Similarly, an open set, U, in H  is a set such that q~'(U ) is open in ljin F.

We now examine the topology of OG.

Definition 3.1.12 (Shadow): Let g G G. The shadow of g, which we 

denote by S(g), is the subset of OG defined by the set o f  geodesic rays from 

the identity through g. Let uj =  {w\, . . .  ,u>*} G Fn, then the shadow of ui is 

S(u) =  f l, S(w,).

Lemma 3.1.13: Shadows are closed. That is, fo r  each g € G, S(g) is 

closed.

Proof: Let ( i ,)^ , be a convergent sequence in S(g). For each pick a



CHAPTER 3. THE BOUNDARY AS AN INVERSE LIMIT 60

Figure 3.4. A geodesic quadrilateral

geodesic r, from e to through g. By passing to subsequences, for each 

n >  |<?|, we can ensure that the r, agree on the first n symbols. This gives us 

a geodesic ray r from e to lim£j through g. So lim£j € S(g). □

Lemma 3.1.14: IfU  C dG is open and r is a geodesic ray from the identity 

such that r(oo) G U, then there is an n such that S(r(n)) C  U. Further, if 

B =  B(r(n),S ) denotes the ball of radius 6 about r(n) then (J S(g) C U.
geB

Proof: Let r\ =  r(oo) and let £ G U S(g). Then there is a geodesic ray
9€B(r(n))

s from e to £ which passes within <5 of r(n). So there is an m ^  n —6 such that 

d(s(m ),r(n)) <  <5. Consider the quadrilateral with edges [r(n),r]) =  f||ni00), 

[s(m),£) =  S|(moo)) [f(ti),s(m )] and ( 7 7 , £) (see Figure 3.4). The geodesic 

(77, £) lies in a 165-neighbourhood of the union of the other edges ([CP93, 

Chapter 1, Proposition 3.2]), so d(e, (77,^)) ^  n — 176. Therefore, by (1.4)
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Figure 3.5. The set Zv as in the proof of Theorem 3.1.15

and (1.3), de(r],£) ^  exp— (e(n — 16<5)), which we can make as small as we 

like by increasing n. Therefore, for sufficiently large n, (J S(g) C U. □
ffC B(r(n))

Theorem 3.1.15:

The map h : H —¥ dG is a homeomorphism. That is, the HausdorffiRcation 

o f  the inverse system (3.2) is homeomorphic to dG.

P ro o f: We show that the map k (see (3.3) and Definition 3.1.6) is continuous. 

Let U C dG be open and let r; G U. Let r be a ShortLex geodesic ray to i). 

By Lemma 3.1.14, there is an n such that U 9eB(r(n),<() ^ (s) C U.

Now, r(n) € Wn. Let Z  =  {z  € Fn | z(T B(r(n),&) =  0 } and let Zv = 

L U * s (  z) (see Figure 3.5). Then Zv corresponds to the geodesic rays from 

e which don’t go within 6 of r(n), so r) £ Zv.

C laim : The set k l(ZTI) is closed.
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Figure 3.6. The difference between Ym and Vm. Grey circles indicate elements 
of Vm which are not elements of Ym. Black circles indicate elements of Ym and 
Vm. White circles indicate elements which are in neither Ym nor Vm.

Proof: Let Yn =  {y 6 Wn \ \y — r(n)| > ¿ }  and, for each m > n, let Ym =  

{w  € Wrn | pm~n(w) € Yn} —the set of geodesic extensions of Yn o f length m. 

Then k(C(Ym)) =  ZTI. However, C(Ym) is not the inverse image of Zq. Let

Vm =  {v  € Wm | 3y e  Ym such that {u,y}  € Fm] .

The set Vm is the set of ShortLex geodesics o f length m which can be extended 

to the same boundary point as an element o f Ym. There could be elements of 

Vn which are within 6 of r(n) (see Figure 3.6). Let Tm be the set of subsets of 

Vm which are also fronds. Then C(Tm) is closed in ^rnF because, if w € Tm 

and v C w, then v 6 Tm (Observation 3.1.11).

We show that k~x(Zv) =  flm C(-^m)- Suppose that x =  ( x j ^ 0 € k~l(Zn). 

Each Xi is a frond {w'0, w\,. . . ,  w'q}, where each e Wt and q is a bounded 

non-decreasing function of i. Since k(x) €  Zv, there is a geodesic ray s from 

the identity such that s(oo) =  k(x) and Im(s) fl B(r(n), 6) =  0 . Therefore



y =  ({s (* )})°i0 G |m F and s(m) € Ym. So, for each i ^  n,

Xi U {« ( i) }  €  Fi = >  {u ^ ,s (i)}  €  Ft for each j  

= >  w ) €  v ; = ►  Xi G Ti = *  x  6  C (T t) ==> X 6  f| < ? (T m).
m

Therefore k~l(Zv) C n mC(Tm).

Conversely, suppose a; € f")m C(Tm). Then, for each m, xm G Tm. Let s be 

a geodesic in the cluster p_1(x). Then s(m) G so there is a ym G Ym 

such that ym and s(rri) can be extended to a common boundary point. Note 

that the truncations pm~'(ym) and s(i) can also be extended to the same 

common boundary point. By passing to subsequences, for each m we can 

choose a ym (in Ym if m > n) such that p(ym) =  ym-i-  Therefore, (ym)“ =0 

traces a geodesic to a boundary point £. Now, each ym € Ym, therefore 

£ G Z ,. Also, for each m, {ym,s(m )} 6 Fm, and thus £ =  k(x). Therefore 

D mC(Tm) C A;-1 {Zn). Hence f )mC(Tm) =  k~l(Z,,) and therefore k~l(Z, )  is 

closed. □

Now, (Z„y C U geB(r(n),i) S(g) c U. So \J^a(ZnY =  U and

k~'(U) =  * - ‘ ( U ( V ) =  U
net/ veu neu

which is a union of open sets and is therefore open.
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So k is continuous and hence so is h. Now, H  is compact and dG is Hausdorff, 

so h is a continuous bijection from a compact space to a Hausdorff space and 

therefore is a homeomorphisrn. □
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3.2 Similar Constructions

So far, we have talked about ShortLex geodesics which can be extended 

ShortLex geodesically to the same boundary point. We can produce a sim

ilar description for the set of ShortLex geodesics which can be extended 

geodesically to the same boundary point and for the set of geodesics which 

can be extended geodesically to the same boundary point.

Let denote the finite set obtained by considering ShortLex geodesics of 

length n which can be extended geodesically to the same boundary point. 

Let F G denote the finite set obtained by considering all geodesics o f length n 

which can be extended geodesically to the same boundary point. As above, 

we can define inverse systems F s and FG with Hausdorffifications (im F s/~  

and (im F G/ /~sy.

Lem m a 3.2.1: The spaces H and (im F s/~  are equal.

P roo f: We have, |im F  =  |irn F s because the points in both sets are in bijec- 

tion with the set of infinite ShortLex geodesic rays and so the cylinder sets 

will be identical. The closures of a point are also the same, both consisting 

of clusters to the same boundary point. So the quotient maps will be the 

same and thus the two spaces are equal. □

Note that the finite sets Fn and F,f  may be different but any differences 

disappear in the inverse limit (see Example 3.2.3).

P roposition  3.2.2: The spaces H and Lim F°/~  are homeomorphic.
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P roof: We show that |raFc/ ~  is homeomorphic to dG. Let qa : —>

(irn FG/~  be the quotient map and let ha be the induced map from îm F G/ ~  

to dG.

Let E  be a closed subset of îm F G/~ . Then q ^ (E )  is closed in (im F G and 

so, by the corresponding result to Lemma 3.1.9, can be expressed as a finite 

union and arbitrary intersection of cylinder sets.

Let C  be a cylinder in (im F a . The cylinder, C, corresponds to all possible 

infinite extensions of a frond, so k(C) is a shadow (o f a frond) and therefore 

closed by Lemma 3.1.13.

Hence, ho(E ) =  kq^/(E) can be made by finite unions and arbitrary inter

sections of closed sets, and therefore is closed. Thus h is continuous.

Now, dG is compact and îni F G/ ~  is Hausdorff, so h is a continuous bi- 

jection from a compact space to a Hausdorff space and therefore is a home- 

omorphism. By Theorem 3.1.15, H is homeomorphic to dG and the result 

follows. □

The advantage of using F  over F s is two-fold. Firstly, it is computationally 

easier. Secondly, given any nth frond x, f~+ t(x) is non-empty. This is not 

the case for F s (see Example 3.2.3).

F G is computationally much harder because we have exponentially many 

excessive points (points in F G corresponding to the same element of Wn). 

Further, the Hausdorffification process of Um F G may not be finite at each 

point as there may be infinitely many geodesic rays to the same boundary
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Figure 3.7. Si and S f  for Example 3.2.3

point.

Example 3.2.3: Consider the fundamental group of the surface of genus 2 

(Example 3.1.5). Add the new generators

e =  ac, f  =  ac_ l , g =  a _1c_1, h =  a~ld, 

i =  bd, j  =  bd~l, k =  b~ld~l, l - b~lc.

The new generators are those words of length 2 which appear in the relator or 

its inverse written cyclically. Graphically, they are two sides of an octagon.

The simplicial complexes, Si and S f ,  corresponding to F, and F f  respec

tively, are shown in Figure 3.7. The vertices are the same, but the higher di

mensional simplices differ. For example, there is an edge (e,k~l) in S f  which 

does not appear in S i. The reason for this is that there is a geodesic exten-
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Figure 3.8. Straightening out a stranded edge. Bars are used to indicate in
verses.

sion of both e and k~l to the same boundary point, because eg =  .

Of these, eg is the ShortLex geodesic. The pair (e, k 1} does not have a 

preimage in F f.

The complex S2 has a similar appearance to St. The ‘stranded’ edges (such 

as (d,k~*)) get ‘straightened out’ in the preimage (although new stranded 

edges appear). Figure 3.8 shows a good example of this.

3.3 Applications

D efin ition  3.3.1 (D im ension): Let T be a topological space. The dimen

sion o f T, dim T  < k, if, given any finite open covering, there is a refinement 

whose nerve has dimension k.

Given a hyperbolic group, G, and a finite generating set, we use the Haus-
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dorffification H of (irn F, described above, to produce a computable upper 

bound for the dimension of dG.

Lem m a 3.3.2: Given a hyperbolic group, G, and a finite generating set, 

there is a universal bound on the dimension of the simplicial complexes Sn.

P roof: A A>simplex a C Sn corresponds to a ¿-frond in Fn. Thus the 

dimension of Sn is bounded above by the size of the fronds. If x  and y are 

elements of a ¿-frond then they must be within 8 o f each other. So, given 

a k-frond u) and an element x  6 ai, we know that ui C B(x, S) and thus 

|w| ^  \B(x, <5)| which is a constant independent of x. The size of a frond is 

(excessively) bounded above by the volume of the ball of radius <5. □

Lem m a 3.3.3: Let k € N. Then we can construct an automaton which 

accepts all k-fronds.

P roof: We inductively construct the ¿-frond acceptor, which we call Ak, 

from the (k — l)-frond acceptor and the word difference machine.

The 0-frond acceptor, Ao, is the pruned ShortLex geodesic acceptor. The 

1-frond acceptor, A\, is the pruned word difference machine.

The states of Ak have the form (s*-i, w) where s*_i is a state in Ak~i and w 

is a state in Ai . The initial state i* is (i*-i, *i), where ij is the initial state of 

A]. The alphabet is the set o f (¿ +  l)-tuples of generators; a =  (a0, a j , . . .  a*), 

where each a* is a generator. The ¿-tuple (a0,a i , . . . ,  a*_i) is fed into the 

Ak-\ part of the automaton, while the pair (a0,ak) is fed into the Ai part.
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The automaton Ak is made by taking all edges from each state and then 

pruning.

The (A:+l)-tuple (w0, wt, . . . ,  Wk) is accepted if (uiq, w\, . . . ,  w ^-i) is accepted 

by Ak~i, (wo,Wk) is accepted by the word difference machine and for each 

i /  j ,  Wi /  Wj. That is, if {wo, W\,. . . ,  w*} is a set of k +  1 elements which 

can be extended to a common boundary point. There has to be an extension 

common to both (too, to j,. . . ,  Wk-i) and (too, w*) because Ak is pruned. The 

last condition is just a matter of removing some of the states from the list of 

accept states. □

Rem ark: The program o f constructing a fc-frond acceptor has been imple

mented (in a more direct way) in [BEH].

Lem m a 3.3.4: We can compute the size of the largest frond.

P roof: Construct the fc-frond acceptors, Ak, as in Lemma 3.3.3. Since there 

is a bound on the size of fronds (Lemma 3.3.2), we will eventually obtain an 

A n which accepts the empty language (it has no accept states). Let m be 

such that -4m+2 is the first A „ which accepts the empty language. Then, for 

each n ^ m + 2 ,  A n also accepts the empty language and thus the largest 

fronds will have m +  1 elements. That is, the largest fronds will be m-fronds.

□

D efinition 3.3.5 (m (G )): Let m(G) denote the largest m for which there 

is an m-frond. Lemma 3.3.4 shows that m(G) can be explicitly computed. 

Note that m(G) depends on the choice of generating set as well as the group.
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We have that the simplicial complex Sn has dimension <  m(G). The bound 

is attained for large enough n because there are m(G)-fronds and all fronds 

survive under / “ *.

P roposition  3.3.6: The dimension of the boundary of a hyperbolic group is 

bounded above by m(G), which we can compute using the automatic structure.

P roo f: Let T  be an open covering of dG. Then if we take n large enough, 

the closed covering C =  {5 (x ) | x  € Wn) is a refinement of T. Now, the 

nerve of C is precisely the simplicial complex Sn. The closed covering can be 

‘thickened’ to make an open covering, with the same nerve as C, such that it 

remains a refinement of T. Thus dim dG ^  rn(G). □

Unfortunately, the bound is not exact.

E xam ple 3.3.7: Let G be a hyperbolic group with generating set A  and 

consider G x Z 2, where Z 2 is generated by z. Take as generating set { z }  U A 

with lexicographical ordering such that, for each a 6 A, z < a. Then 

G and G x Z 2 have the same boundary, but m(G x Z 2) =  2m (G) be

cause, given an m(G)-frond { x 0, . . .  ,x m(G)} in G, there is an m(G)-frond 

{ 2/0, ■ • ■, Vm(G)} in / - ‘ ({x 'o,. . . ,  xm{G)}) and therefore there is a 2m(G)-frond 

{(l/., e), (Xi, z) | 0 ^ i ^ m (G )} in G x Z 2.

E xam ple 3.3.8: Let G be a hyperbolic group with generating set A. Let 

II be a finite group. Consider G x H, with generating set II U A which 

has lexicographical order such that, for each h 6 / / ,  a € A, h < a. Then 

m(G x H) =  \H\ ■ m(G).
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4 h
a .

4 b
* r

4 h

Figure 3.9. 5i, 52 and S3 of F(a,b) x Z2

E xam ple 3.3.9 (A  case o f  Exam ple 3.3.7): Consider F(a,b) x Z 2 =  

(2, 0,6 | z2, [a, 2], [6, 2]). The complexes 5), 52 and 53 are shown in Figure 

3.9.

Exam ple 3.3.10: Let G be a Fuchsian group and let a be a generator of 

infinite order. If we add the generators a2 and a3 with the ordering a < a2 < 

a3 then {a, a2, a3} is a 2-frond and thus dirn5i ^ 2.

Exam ple 3.3.11: Let G  be a Fuchsian group with geometric generating set. 

Then there cannot be more than two geodesics to the same boundary point 

and so dim Sn ^ 1. In this case, rn(G) =  dim dG.

Note that dim dG is not uniform; there can be points at which the local 

dimension is less than the global dimension, even though the orbit of every 

boundary point is dense in dG.

Exam ple 3.3.12: Let G =  1Ii(T2) * Z where T2 is the torus of genus 2. So 

G =  (a ,b ,c ,d , z | aca~1c~lbdb~ld~l). Then there are 3 types of boundary
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Figure 3.10. Si and S2 of * Z

point:

1. A geodesic which eventually lies in Z. In this case, the boundary point 

will have dimension 0.

2. A geodesic which eventually lies in ni(T2). In this case, the boundary 

point will have dimension 1 .

3. A geodesic which switches infinitely often between Z and n i(T 2). Here 

we have dimension 0 again.

The complexes Si and S2 are shown in Figure 3.10. The inverse image of an 

isolated point is an octagon and a point, the inverse image o f an octagon is 

a 56-gon and 16 points. Points correspond to elements currently lying in Z, 

polygons correspond to elements currently lying in H] (T2). The boundary of 

T is a cantor set and a ‘cantor set of circles’ .
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P roposition  3.3.13: There is a partial algorithm which determines whether 

the boundary of a hyperbolic group has infinitely many connected components.

P roo f: The number of components in successive approximations is non

decreasing. If we ever get more than 2 components, we know that dG has 

more than 2 components, therefore infinitely many components. We can 

compute the number of components at each stage. □

Note that the converse can be detected in special cases. For example; if, 

for each n, the preimage under f n+l o f each vertex of Sn is connected, then 

the group has 1 end. This condition is detectable because the preimage of a 

vertex depends only on the state of the ShortLex geodesic acceptor to which 

it corresponds. This condition holds in Example 3.1.5 but doesn’t hold in 

Example 3.2.3.



Chapter 4

Symbolic Dynamics in 
Hyperbolic Groups

Chapter Sum m ary

We present here symbolic codings of the boundary of a hyperbolic 

group and the geodesic flow on a hyperbolic group, using its au

tomatic structure. Firstly, we give a finite presentation of the 

boundary as a dynamical system, with ‘ time’ being a hyperbolic 

group. Secondly, we give a uniformly finite-to-one presentation 

of the boundary as a semi-Markovian space. Thirdly, we give 

a uniformly finite-to-one presentation of the G-quotient of the 

geodesic flow as a subshift of finite type. Most of the results have 

been proved by Coornaert and Papadopoulos in [CP93], [CP98] 

and [CP99] using different coding systems. The main advantage 

of our method is that the symbol sets are much smaller. We are 

also able to give a semi-Markovian presentation of the boundary 

which works in the case of groups with torsion.

74
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4.1 Symbolic Dynamics

The definitions that we give here are those given in [CP93] and are more 

general than in most texts. Traditionally, symbolic dynamics is the study of 

sequence spaces, and dynamical systems is the study of powers of a homeo- 

morphism on a topological space. We generalise the definitions so that the 

sequences are indexed by an arbitrary (infinite) group (instead of Z ) and we 

have a family of homeomorphisms indexed by the same group. We think of 

this as a G-action by homeomorphisms. The definitions can also be applied 

to semigroups. Our main interest lies in the cases when the indexing set is a 

hyperbolic group or is Z or N.

4.1.1 Subshifts of Finite T yp e Over a Group

Definition 4.1.1 (Bernoulli shift, shift map): Let S be a finite set of 

symbols and G be a group. The set of maps G -> S, denoted £(G , S) or £ , 

is called the Bernoulli shift.

Let o  £ E, g, h 6 G. There is a natural action of G on E given by (g*a )(h ) =  

cr(hg) (in particular, g*cr(e) =  a(g) and g*cr(g~l) =  <r(e)). This is an action 

because (gt * (g2 * a ))(h ) =  (g2 * o)(hgi) =  o(hg\g2) =  ((g\g2) * a)(h). This 

action is called the shift action (see also Definition 4.1.9). When G =  Z  or 

N, and g =  1, this is called the right shift. A subshift is a subset of E which 

is invariant under this action.
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• . . .

• • • ■ - 
• . . .

0 1 2  3

Figure 4.1. A cylinder in E(Z, {a, 6, c}); F — {0 ,1 ,2 ,3 } and A is the set of 
maps such that (0,1 ,2 ,3) i—>• (b, a, c, b).

Definition 4.1.2 (Cylinder, subshift of finite type): Let F  be a finite 

subset of G and let A be a set of maps F  —> S. Let C  =  {<r 6 E | fr|r G A }. 

A map a is in C  if, when restricted to our finite set F, the map is one of the 

specified possibilities A\ elsewhere it can be anything (see Figure 4.1). Such 

a set C  is called a cylinder. We say that ♦ C E is a subshift o f finite type if 

there is a cylinder, C, such that 4> =  f ]geGg *C  =  flger;# -1 (Note that, 

if G  is a semigroup, then 4* is a subshift of finite type if 4< =  (~|J€C 3_1 * 

where g 1 is the preimage of the shift map.) If G is finitely generated then, 

without loss o f generality, we can take F  to be a ball o f finite radius n centred 

at the identity. Then 4» is a subshift of finite type if it is one of the specified 

possibilities, A, on every ball o f radius n. Now, 4< is shift invariant, and, 

since cylinders are closed, g 1 * C  is also closed, and therefore so is 4'.

4 .1 .2  Dynamical Systems

A dynamical system (il, G) is a topological space il with a (7-action by home- 

omorphisms. In the case when G  =  Z, the Z-action is generated by a single 

homeomorphism / .  In this case, we usually write the dynamical system
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(i2, Z) as (fl, / ) .

We are interested in the case when there is a shift space 'I' C E(G, S) and 

a continuous, surjective, G-equivariant map h : 4» —> fl such that, for every 

g 6 G, the following diagram commutes:

$

hi 4
n  n,

that is, for each g € G, ip € it, h(<7 * ^) =  g ■ h(ip). Such a map, h, is 

called a dynamical homomorphism. We say that the map h intertwines the 

G actions. If the map h is a homeomorphism then it is called a topological 

conjugacy. Every subshift is itself a dynamical system under the shift action, 

with h the identity map.

4.1 .3  Examples and non-examples o f subshifts of finite 
type over Z

If G =  Z, then E(Z,S') is the set of biinfinite sequences on the symbols 

5. The action of Z  on E (Z ,5 )  is generated by (1 +  a)(n) =  cr(l +  n); the 

(right) shift. A  subset 'I' C E (Z ,S ) is a subshift of finite type if there is an 

n such that xp € if and only if on every set o f n consecutive symbols, it 

is one of a specified sequence of n symbols in S (Definition 4.1.2, see also 

Figure 4.1). Let A be the set of allowable sequences of n symbols and let 

C =  |(T | <7|(1 n) 6 A j be the cylinder of A. Then = PlmcZ m +  C.

Let S =  {a, 6} .
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6 . . .  • . . . . . .  • . . .
a . . .  • • . . . . . .  • . . . . . .  • . . .

. . .  o 1 ••• . . .  o 1 . . .  o 1 •••

Figure 4.2. The cylinders for Example 4.1.3

Example 4.1.3: The set of sequences that never have two consecutive 6’s 

is a subshift of finite type. We can take F  =  {0 ,1 } and A  to be the set of 

maps (0, 1) H> (a, a), (a, 6), (b, a) (every pair of consecutive integers doesn’t 

map to the pair (6, 6), see Figure 4.2).

Example 4.1.4: Let an be the sequence • • ■ anbnanb’1 ■ ■ ■ (that is, n consec

utive a’s followed by n consecutive b’s repeated indefinitely). Let <Fn be the 

set of all shifts of an (there are 2n o f these). Let

*  =  U  *»•
nCN

Then is not a subshift of finite type.

Example 4.1.5: The set of sequences T over S with at most one occurrence 

of 6 (sequences of the form • • • aaabaaa • • • or • • • aaaa ■ ■ ■) is not a subshift 

of finite type, because a 6 is allowed if and only if no 6 has appeared earlier 

in the sequence, which we cannot tell by looking at a finite set of symbols. 

However, we can keep track o f whether or not we have had a 6 by adding a 

new symbol à. Now consider the set of sequences of the form • • • aaaa • • •,

■ • • àààà • • •, • • • aaabàaà • • • . As in Example 4.1.3, take F  =  {0 ,1 }. Let A 

be the set of maps (0,1) h-» (a, a), (a,b), (6, a), (a, a). Then 4>' is a subshift



CHAPTER 4. SYMBOLIC DYNAMICS 79

Figure 4.3. Neighbouring states in a finite state automaton

of finite type. The map h: ^ , ip' i-> ip, given by

, . . fa  if ip'(n) =  a or ii)'(n) =  a, win) =  <
K ’  \ b  if iP '(n) =  b,

is surjective and shift invariant. Therefore there is a dynamical homomor

phism from the subshift of finite type 'f'' to

Example 4.1.6 (State sequences): Let A  be a finite state automaton (see 

Section 1.2.1). Let S be the set of states of A  and let $  C E(Z, S) be the set 

of biinfinite sequences of states that can be traced in A . Then <1» is a subshift 

of finite type. Again, we let F  =  {0 ,1 }. We can take A to be the set of maps 

(0, 1 ) i-> (so ,s i) such that s0 and are adjacent states; that is, there is an 

edge in A  from the state s0 to the state Si (see Figure 4.3). Similarly, the 

set of infinite sequences of states of A  is a subshift of finite type over N.

Example 4.1.7 (Edge sequences): We can alter the automaton A  to 

A' without changing the set of infinite sequences of edge labels that can be 

traced, so that a sequence of states in A! uniquely determines a sequence o f 

edges in A. The map from state sequences in A! to edge sequences in A  is a 

dynamical homomorphism. Example 4.1.5 with the automaton in Figure 4.4 

is an example of such a construction. A general method is as follows: The set 

of states is the set of pairs (s, e), where s is a state in the original automaton
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a

& <D- ©
Figure 4.4. Automaton recognising the sequences in Example 4.1.5

and e is an edge label. For each edge /  from s to t in the original automaton 

and for each label e, we have an edge labelled /  from (s, e) to ( t , f ) .

4.1.4 Finitely Presented Dynamical Systems

Given a subshift C E(G, S), the Cartesian product $  x $  can be thought of 

as a subshift o f E(G, 5 x S), where (tpi, ip?): g i-> (ipi{g),ip2(g))- Suppose that 

(12, G) is a dynamical system and that there is a dynamical homomorphism 

h from the subshift ^ to 12. Consider the subshift E C E (G ,S  x S), given 

by E =  {(j/’i .tM  I h(V>i) =  /i(ti>2)}- If both »P and E are subshifts of finite 

type then we say that (12, G) is a finitely presented dynamical system.

An account o f the case when G =  Z  is given in [Fri87]. In particular, finitely 

presented dynamical systems over Z  have rational zeta-functions. This can be 

used to prove the rationality of a zeta-function related to hyperbolic groups 

[Aut].

Question 4.1.8: Can one sensibly generalise the notions of periodic point 

and zeta-function to dynamical systems over a hyperbolic group? Would
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such a zeta-function of a finitely presented dynamical system be rational?

Remark: Any such construction would have to depend on the choice of 

generating set. The situation when Z  is generated by {2 ,3 }  is already much 

more complicated than Z generated by {1}.

4.1.5 Sem i-M arkovian Spaces

A subshift, <]>, of the Bernoulli shift £(N, S) is called semi-Markovian if it 

can be written as $  =  i f l C ,  where <l> is a subshift o f finite type over 

N and C  is a cylinder. A topological space if is called semi-Markovian 

if there is a homeomorphism /  and a continuous surjective map it from a 

semi-Markovian subshift 'I' to  $1, such that the equivalence relation R — 

{(V,i>V’2) | tt(V'i) =  tt(V»2)} C 'k x »P is also a semi-Markovian subshift.

Any finitely presented dynamical system over N is semi-Markovian.

4.1.6 A n  Alternative G -A ction  on £ ( G , S )

Definition 4.1.9 (Inverse-shift, inverse-shift of finite type): There is 

a natural left action o f G on E given by (g o cr)(h) =  o (g~ lh) (in particular, 

g o o(e) =  <r(g~l) and g o o(g ) =  n(e)). This is an action because (<71 o (g2 o 

v ) )^ )  =  (52 o a )(g i l h) =  a(g2 lg i lh) =  ((gig2) o o )(h ). We call this action 
the inverse shift action.

We can generalise Definition 4.1.2 to the inverse shift action. With the same



CHAPTER 4. SYMBOLIC DYNAMICS 82

definition of cylinder, we say that the subshift $  of E is an inverse-shift of 

finite type, if there is a cylinder, C, such that $  =  Pljeo 9 °  C*

The advantage that the inverse shift action has over the shift action is that 

left multiplication by inverses is an isometry of the Cayley graph, whereas 

right multiplication is not, in general, an isometry. The inverse shift action 

is more intuitive than the shift action.

Proposition 4.1.10: Every inverse-shift of finite type is topologically con

jugate to a subshift of finite type.

Proof: Let $  C E(G, S) be an inverse-shift of finite type. Then, there is a 

finite set F  C G and a set of maps A C E(F, S) such that

=  P| g o C, where C  =  {a  \ o\F € A } .
gCG

Without loss of generality, we can take F  to be a ball about the identity so 

that F  is closed under taking inverses.

Define the map / :  —► E (G ,S) by (f<fr)(g) =  4>(g~1)- Let 4>' =  Im /. Then

/ :  4> —> $ ' is a homeomorphism. Further, for each 0 € 4>,

( / ( »  o 4>)){h) =  (g<> 0)(/»-1) =  <t>(9~lh~') =  {f<t>){hg) =  g * {}4>){h), 

so /  intertwines the shift and inverse-shift actions.

Let /  be the restriction of /  to A, so, since F  is closed under taking inverses, 

/  : A -y  E(F ,S ). Let A’ =  f A =  { f c r : F - > S \ o e A }  and let C ’ =
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{cr | <7|f e  ^4'}. Now,

<t> € <=> f~ X<t> € $  ■<=> ( / _ V ) g P | s o C,
9Sg

which is true if and only if, for every g 6 G,

9 o ( / ' l<t>)\F e A <=► f (g  o ( f~ l<t>))\F € / j4 =  A' <==> (p * <t>)\, € X',
(4.1)

because /  is bijective and is intertwining. Since (4.1) holds for every g € G, 

$ € <t>' <==>• 4> G |̂ | g * C'.
g ea

Thus 4>' =  C\gec9  * C  (that is, 4>' is a subshift of finite type) and / :  4> —► <£' 

is a topological conjugacy. □

Definition 4.1.11 (Finitely presented inverse-system): Let <t> C

£(G , S) be an inverse-shift of finite type, let SI be a topological space with a 

G-action by homeomorphisms and let a : 4> —> fi be a continuous, surjective 

and G-equi variant map (that is, g ■ a(cj>) =  a(g o <f>), compare with Sections 

4.1.2 and 4.1.4). Then i2 is called an inverse-system of finite type. If the 

equivalence relation

F! =  { (¿ i ,* a )  £ 4 > x $ |  a(<M =  a (02)} C E(G, S x S)

is also an inverse-shift of finite type, then f 2 is called a finitely presented 

inverse-system.

Proposition 4.1.12: Every finitely presented inverse-system is a finitely 

presented dynamical system.
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Proof: Lot il be a finitely presented inverse system. Then there is an inverse- 

shift of finite type <I> and a continuous, surjective, G-equivariant map a : <f> —> 

Q such that the equivalence relation

E =  G 4> x $  | =  a(<fo)} C E (G ,S x  S)

is also an inverse-shift of finite type.

Proposition 4.1.10 implies that there is a subshift of finite type C E(G, S) 

and a topological conjugacy The map 6 =  a o / _1 : « P —>f2is

continuous, surjective and G-equivariant. Let

E' =  { ( * , * )  6(V-,) =  6(V-2)} C E (G ,4  x A).

We show that E' is a subshift of finite type.

The map / x : E  -> E (G ,S  x S), given by / x(0i,<A2) =  ( f& u ffa ), is a 

topological conjugacy. It remains to show that E' =  I m ( /X).

Suppose that J*(<f>\,<t>2) =  (/<Ai,/02) G Irn(/X). Then

i)) =  a/_1/(0i) =  a(<M =  a(</>2) =  6(/(</>2)).

Therefore (/^ i ,/<A2) G so Im (/X) C £ '.

Conversely; if (i/'i, * )  G S ', then

KV'i) =  * ( * )
=► a ( / “ ‘ (0 i)) =
= >  e  E
= >  /X(/-’ (V’.),/-,(W) = (0i,*) e Im(/X).

Therefore E1 C Im (/X) and thus E' =  Im (/X). □
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Proposition 4.1.13: Every subshift of finite type is topologically conjugate 

to an inverse-shift of finite type. Every finitely presented dynamical system 

is a finitely presented inverse system.

Remark: A proof along similar lines to the one above works.

Propositions 4.1.10 and 4.1.12 show that inverse-shifts and subshifts are es

sentially the same, the only difference is that you need to be in a group to 

have an inverse-shift. In the following sections, we do not distinguish between 

inverse-shifts and subshifts, referring to them both as shifts. In Section 4.2, 

we use the inverse-shift.

4.2 The Boundary of a Hyperbolic Group as 
a Dynamical System

In this section we describe the action of an infinite hyperbolic group, G, on 

its boundary as a finitely presented dynamical system over G. We use the 

(inverse) shift map of Definition 4.1.9. A useful example to bear in mind 

throughout this section is the free group on 2 generators (see Section 4.2.4 

on page 103); although, since there are no relators, it is by no means a typical 

example.
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4.2.1 Geodesics

We use [g , h\ to denote a finite geodesic in F between the vertices g and /i; 

[<7>0 t° denote an infinite geodesic in T from g to the boundary point £; 

[g, fi]sL to denote a ShortLex geodesic in F and [g, fi] U [h, k] to denote the 

concatenation of two geodesics. Our notation will not distinguish geodesics 

from their images.

The motivation for the definitions in Section 4.2.2 and the key to proving 

that the subshift (which we define in Definition 4.2.8) is non-empty is the 

following construction:

Theorem 4.2.1: Let G be an infinite hyperbolic group and let £ be a point on 

the boundary. Then there is a family of geodesic rays, { a 9 | g 6 G } , where 

Oig starts at g, such that the following conditions hold:

1. Each geodesic ray, ag, tends to f .

2. If h G ag, then a* C ag (that is, [n g} is closed under removing pre

fixes).

(See Figure 4-5.)

P roof: Let £ € dG and fix a geodesic ray r from r(0) to f .  Let [r (i) ,f)  be 

the geodesic from r(t) to (  along r.

For every g € G consider the function bTg(t) =  d (g,r(t)) — t, defined on N 

so that r(t) is a vertex of r (compare with the Busemann function hr : T —¥ 

R, 7  t-> l im ^ o o ^  — r(i)| — <)). The function br g is a non-increasing function
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Figure 4.5. A family of geodesics which is closed under removing prefixes. All 
geodesics point towards £.

from N to Z  which is bounded below by — d(g,r(0)), so it must eventually 

be constant. Let tg be the first place at which brg attains its bound. So; 

if t > tg, then &r,9(t) =  brtg(tg) and if t < tg, then brg(t) > brt9(tg). Note 

that, if t >  tg, then [<y,r(<9)] U [r(<9), r(t)] is a geodesic, because d(g,r(t)) =  

d(g,r (tg)) +  t — tg\ hence so is [g,r(tg)] U [r(f9),£). Also, tg is the smallest s 

such that \g, r(s)] U [r(s),r(t)] is a geodesic for all t >  s.

Now choose ag =  [g, r(t9)]Si, U [r(£9),£). We shall show that {a g | g € G] is 

closed under removing prefixes. That is, if h € o 9, then a/, C a9.

Suppose h e  \g, r(<9)]SL (see Figure 4.0(a)). Then [h, r(£9)]SL U [r(<9) ,0  is a 

geodesic so £/, ^ tg. But [fl, r(i/,)] U [r(i/,), r(f9)] (see Figure 4.6(b)) is also a
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( a )  T h e  c a s e  w hen  h is in ( b )  T h e  p ath  fro m  g t o  r ( t s ) ( c )  T h e  ca se  w h e n  h  is in

[9>r(fj)]sL via r(th) [r(f„),£)

Figure 4.6. If h is in ag, then is a suffix of ag

geodesic because its length is

d(g, r (*h)) +  tg - t h ^  d(g, h) +  d(h, r(th)) + tg -  th 

=  d(g,h) +  d(h,r(tg))

=  d(g, r(tg)).

So tg ^ th and thus th =  tg. Therefore [<;,r(f9)]SL =  [g,h] SL U [/i,r(fh)] SL 

Hence 07, C ag.

Now suppose that h € [r(f9),£) (see Figure 4.6(c)). Then r(t/,) =  h and 

hence ah =  [/«,£) C [r(<9) ,0  C ag. So {a 9 | g £ G) is a family of geodesics 

which is closed under removing prefixes. □
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4.2.2 The Subshift <f>

Recall (see Section 1.2.3) that hyperbolic groups are strongly geodesically 

automatic. This means that there are the following automata;

the geodesic acceptor, which accepts all words in the generating set which 

are geodesic paths in the Cayley graph;

the ShortLex geodesic acceptor, which accepts all lexicographically minimal 

geodesics;

the geodesic pairs machine, which accepts all pairs of geodesics which start 

at the same point and stay within a uniformly bounded distance of 

each other;

the ShortLex geodesic pairs acceptor, which accepts all pairs of ShortLex 

geodesics which start at the same point and stay within a uniformly 

bounded distance of each other.

All of these automata can be made to be partially deterministic and with 

all states accept states. The first two are closed under removing prefixes or 

suffixes.

Let G be a hyperbolic group with generating set X , and let T be the corre

sponding Cayley graph. Let S be the set o f states in the geodesic acceptor. 

We shall confuse elements of G with vertices of I and elements of X  with 

labelled edges (of F and the geodesic acceptor). When there is an outgoing 

edge labelled x from the state s, we use sx to denote its destination.
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The states of the geodesic pairs machine can be characterised as a triple 

(s ,t ,w ), where s and t are states in the geodesic word acceptor and w is a 

(short) word in the generators. An edge is a pair (x, y) € X  x X .  There 

is an edge from the state (s ,t ,w ) to the state (sx, ty, x ~ lwy) whenever there 

are suitable edges in the geodesic acceptor and x~1wy is also a ‘short’ word.

The set of symbols which we use is <S =  P(S') \ { 0 }; the set of non-empty 

subsets of the set of states in the geodesic acceptor.

We shall construct a subshift of finite type of the Bernoulli shift E(G, <S) 

which maps surjectively and equivariantly onto dG. We show further that 

the equivalence relation given by mapping to the same boundary point is also 

a subshift o f finite type.

Let

<t>: G  —> <S, 5 h  <)>(g).

Our goal is to put satisfiable and sufficient conditions on <t> to define a sur

jective, equivariant map to dG. We will define a map by tracing a geodesic 

from any point g € G  using rules determined by <j>. The conditions will force 

any pair of geodesics defined in this way to go to the same boundary point. 

The conditions are local conditions so that the resulting construction is a 

subshift of finite type.

Definition 4.2.2 (R^): The relation R$ on G  is defined by gR^h if h =  gx 

for some x  6 X  and, for each s 6 <p(g), there is an edge labelled x  in the
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geodesic acceptor from s to a state in 4>{h) (that is, sx € <t>(h)).

In T; g h =  gx.
In the geodesic acceptor; s € <j>(g) sx € 4>{h).

Definition 4.2.3 ((/»-gradient): Let </> : G -*  S and let g0 € G. A <f>- 

gradient from the vertex g0 in F is an edge path x\x2x 3 ■ ■ ■ such that for each 

gi^-<t>gi^i+i ~  9 i+ i '

We define a subshift of finite type of £ (G , S) such that there are always (/>- 

gradients and, for a fixed <f>, all (/»-gradients converge to the same boundary 

point. We use two explicit geodesic pairs machine which are built from:

Definition 4.2.4 (W V ) :  The automaton YVD' is built as follows: Take 

a ball of sufficiently large radius N. (‘Sufficiently large’ means large enough 

for all word differences of pairs of geodesics that start distance ^  1 apart 

and go to the same boundary point to be included, compare with standard 

automata in [ECH+92].) The set of states of WT>' is the set of triples of 

the form (s, t, w) where s,t £ S  and w is in the ball of radius N  about the 

identity. The edges from the state (s, t, w) are the pairs (x, y) £ X  x X  such 

that \x~xwy\ <  N  and such that there are edges in the geodesic acceptor 

from s and t labelled x  and y respectively. The initial and accept states are 

not important because this machine is only used as the starting point for 

building YVV(X) and YVD.

Definition 4.2.5 (W 2?(X)): The automaton YYD(X) is obtained from YVD' 

as follows: Take the states of the form (s, t, x), where s , i € S  and x  6 .Y u {e},
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Figure 4.7. Words accepted by W V (X )

as initial states. We take the maximal subautomaton of W V  that contains 

all states which can be reached from an initial state as part of an infinite 

word. All states are accept states. The automaton W V (X )  accepts all 

prefixes of pairs of geodesic rays which start at a distance < 1 away and go 

to the same boundary point (see Figure 4.7). A geodesic which cannot be 

extended infinitely cannot be part of such a pair.

Definition 4.2.6 (W V ):  Let I f c G b e  the set of third coordinates of the 

states in W V (X ).  The automaton W V  is constructed from W V' as follows: 

Firstly, we restrict to states of the form (s, f, w) where w € W . We then 

prune so that the remaining states are precisely those states which are part 

of an infinite path in the automaton. All states are initial and accept states. 

The automaton W V  accepts all pairs o f geodesics which differ by a word in 

W  all the time. That is, geodesics r, s such that, for each n, r(n)~ls(n) G W . 

Every state in W V (X )  is a state in W V .

Remark: If r and s are geodesic rays to the same boundary point which start 

at distance ^  1 away, then, for each n, (̂ ||0 S||0 n|) is accepted by W V (X ),
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and, for each m, n, (r)(m n), S|(m n]) is accepted by WZ>. The language accepted 

by W D (X )  is not closed under removing prefixes. However, if w is accepted 

by W D (X )  and v is a suffix of w then v is accepted by WZ>. The language 

accepted by W V  is closed under removing prefixes.

The following definition is technical but important:

Definition 4.2.7 (G^,): The subset G^ of G x G is defined by (g ,h ) G G$ 

if and only if the following conditions hold:

1. For each s G <l>(g), t G <t>(h), the state (s, t, g~lh) is a state of W2>.

2. For some s G <t>(g), t G </>(/i), the state (s ,t ,g ~ lh) is a state in WX>(X).

The second condition says that there are elements g' G G and x  G X  U {e} 

such that there are geodesics [«/', g\ and [g'x, h\ of the same length which 

finish in states s and t respectively in the geodesic acceptor (see Figure 4.8) 

and that these geodesics can be extended infinitely to the same boundary 

point.

Definition 4.2.8 (<1>): Recall that W  is the set of third coordinates of 

W V ( X )  (see Definition 4.2.5) and recall the relation Rj, (Definition 4.2.2). 

Let <I> denote the set of all maps <j>: G —» S  for which:

1. For each g G G, there is a gt G G such that gR^g|.

2. If g  G G, x  G X , then (g,gx)  G G#.

3. If (g,h)  G G^, gli^gi and hR^hu then (g\,h\) G G^ (Figure 4.8).
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The second condition isn’t trivial because some of the states (s, t, x) in WX>' 

may not be part o f an infinite word and would therefore have been pruned 

from WD( X) .

Lem m a 4.2.9: For each g € G and for  each (f> 6 there is a <t>-gradient 

from g. Every <p-gradient is a geodesic.

P roof: Fix <j> € 4> and drop the subscript on the relation.

Since </> satisfies Definition 4.2.8 condition 1, we can define an infinite <f>- 

gradient in F inductively from any point g0 by, at each vertex g,, choosing 

a neighbouring vertex ry,+i =  g,xl+l, for some xt+i € X , such that gtRgt+\. 

This gives us the ^-gradient go — gi g2 ■ ■ ■ ■ The ^-gradient is a geodesic

because, for each st 6 <t>(gi), there is an edge in the geodesic acceptor, labelled 

xi+i, such that s ,̂+1 C <p(gxi+1). So, for each n, X]X2 .. ,xn is accepted by 

the geodesic acceptor, so is a geodesic.

Any such path can be extended infinitely, so the sequence (x„)£°= l defines a 

geodesic ray from g0. □
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Lem m a 4.2 .10 : There is a well-defined map a : <1* —> dG given by tracing a 

(¡¡-gradient from any vertex in F.

Proof: Fix </> G 4». Any «/»-gradient is a geodesic ray. Following a geodesic ray 

from a vertex defines a point on the boundary. To see that a is well-defined, 

we must check that all such geodesic rays define the same boundary point.

Let (x „)~  , and (yn)™=i be «/»-gradients from </0 and h0 respectively, where 

ha =  goVa for some y0 € X . Let gi+i =  giXi+t and let hl+i =  hiyi+i. Then, 

since </> satisfies conditions 3 and 2 of Definition 4.2.8 and by the definition of 

G$ (Definition 4.2.7), we inductively see that for each n, gn 'hrl € W . Thus 

the geodesics stay a bounded distance apart. So (y« ) i from h0 and (xn)̂ °=1 

from go define the same point on the boundary.

Now, let (x„)^=1 and (yn)%Li be «/»-gradients from g and h respectively. We 

can construct a finite sequence g =  Zq, Z\, z2, . . . ,  zm =  h such that zt 1 z,+1 € 

X . By our previous argument, any «/»-gradients from z, and zt f i define the 

same point on the boundary; hence so do (x,,)^ , anti (yn)ff=i from g and h 

respectively. □

Proposition 4.2.11: The map a : <l> —> DC (defined in Lemma 4.2.10) is 

surjective.

Proof: To show that a is surjective (and that <1> is non-empty), we fix a 

point £ € OG and show that there is a <j) 6 such that a(<t>) =  £.
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By Theorem 4.2.1, there is a family of geodesic rays, {a g | g € G }, all tending 

to £, which is closed under removing prefixes.

Fix g € G. Then, ag traces a path in the geodesic acceptor from the initial 

state. This defines a map f '  from the vertices of the geodesic a g to the 

set of states, S, of the geodesic acceptor. We can extend this to  a map 

f g \ G —> S' U { 0 } ,  where S' =  { { s }  | s € 5 }  is the set of singletons in P(S),

by
'g(h)} if h e a g, 

otherwise.

Now we define

f 9{h) -  {i/;<
<t>- G —> <S, h I—> fg{Il).

g€G

Note that f g(g) is the initial state in the geodesic acceptor. Therefore, for 

each g, <p(g) ^  0 . It remains to show that (j> satisfies the conditions of 

Definition 4.2.8.

Claim  1: For each h € G, there is an x e X  such that hR^hx.

Proof: Let h 6 G. There is an x  G X  such that hx =  a /,(l) (see Figure 4.9). 

Let s 6 <t>(h), then s =  f'g(h) for some g 6 G. So ag traces a geodesic which 

passes through h in T at state s in the geodesic acceptor (see Figure 4.9);

in T; g —> a 9(l)  —► ••• —> h —► hx —> •••
in geodesic acceptor; so —t Si —> • • • —► s —► sx —> • • ■ ,

where s0 is the initial state in the geodesic acceptor. Further, sx e  <j>(hx) 

and therefore hR^hx. □

Claim  2: If g e G and x  € X  then (g,gx) e G
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Figure 4.9. There is a <f>- gradient from each vertex of I\ Bold lines indicate ng 
and ah-

Proof: Given s G <t>(g), t G <t>(gx), the geodesics a g and a gx are a pair 

of geodesics which start at distance 1 from each other and go to the same 

boundary point. The geodesic ag traces a path in the geodesic acceptor from 

the state s  and the geodesic agx traces a path in the geodesic acceptor from t. 

Therefore the pair (ag,a gx) traces an infinite path in YVD(X) from (s , t , x ). 

Hence ( s , t , x )  G 'W D(X) and thus ( g , g x )  G G^. □

Claim  3: I f  g ,  h  G G, x ,y  € X  are s uc h  t h a t  (g , h) G G^, gR<t>gx a n d  hR^hy, 

t h e n  (gx, hy) € G*.

Proof: Since ( g , h )  6 G ,̂, there are ,s G <t>(g), t G 4>(h) such that (s , t , g ~ ' h ) 

is a state in W V (X ). That is, there are g0 G G, x0 G X  U {e } and so, to G S 

such that there is a path in W D (X )  from (.so,fo,£o) to ( s , t , g ~ xh )  in W V (X )  

which traces the geodesics [go.ff] and \goXQ,h\ in f  (see Figure 4.10).
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Figure 4.10. Geodesics in W V ( X )  through g and h

Since gR^gx and h.R^hy, sx € 4>{gx) and tv 6 (j>(hy). Now, agx and a hy trace 

geodesics in the geodesic acceptor from sx and t,v respectively. Therefore 

[.9o> 9] U [5 , gx\ U a gx and [gox0, h) U [h, hy\ U (thy are a pair of geodesics which 

start distance ^  1 apart and go to the same boundary point. Since [go,g\ 

and [goX0, h] have the same length, the state (sx, t v, x~ xg~1hy) is a state in

W D (X ).

Now suppose that s and t are any states in <f>(gx) and (¡>{hy) respectively. 

The geodesics agx and ahy trace paths in the geodesic acceptor from s 

and t respectively. The word differences are the same as for the geodesics 

[.9o, 9] U [9, gx\ U a gx and [<y()x0, h\ U [h, hy] U «/,„ above, and are therefore in 

W .  Hence, there is an infinite path in W V  from the state (s ,t ,x ~ lg~lhy). 

Thus (gx, hy) e  G^. □

The three claims above show that <t> e 4>. Hence, for each £ e dG, there is 

a <t> € 4> such that a(4>) =  This concludes the proof of Proposition 4.2.11.

□

Lem m a 4.2.12: The map a: <I> —> dG is G-equivariant.
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Proof: The shift action of G on 4> is given by (g * <p)(h) =  <j)(g~lh). Under 

this action, the map a o f Lemma 4.2.10 is clearly G-equivariant. □

4.2.3 The Dynamical System (0 G ,G ) is Finitely Pre
sented

Let F  be a finite subset of G and let a : F  —> <S. We make the following local 

definitions (compare with Definitions 4.2.2 and 4.2.7):

Definition 4.2.13 (R„): The relation R „  on F  is defined by gR„h  if h =  gx 

for some and, for each s G o(g), sx G <r(/i).

Definition 4.2.14 (F„): The subset Fa of F  x F  is defined by (g, h) G Fa 

if and only if the following conditions hold:

1. For each s G a(g ), t G o (h ) ,  the state (s, t, g 1 h) is a state of WP.

2. For some n G a(g), t G <r(/i), the state (s, (!, g 1 /t) is a state in WT>(X).

Note that, if (e ,h) G Fa, then h G W.

Lemma 4.2.15: The subshift <1> (see Definition f . 2.8)  is a subshift of finite 

type.

Proof: Let F =  {e }  U W  U W X , where W X  =  {nix |t«G W, x  G X }.  Let 

A be the set of maps a : F  S satisfying (compare with Definition 4.2.8);

1. eRax, for some x  G X\

2. if x G X , then (e, x) G Fa\
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3. if (e, h) £ F„, eRax  and hR„hy then (x ,h y ) € Fa.

Then F  is finite and A is a subset o f the set of maps F  —> S, so C  =  

{a  € E(G, S) | o\F 6 A }  is a cylinder. Now, $  is precisely the set o f maps 

from G to S  satisfying this local condition everywhere (Definition 4.2.8) so 

=  n seG 9~l * C. Hence $  is a subshift of finite type. □

We now consider the subshift

4> x 4> =  {((/»I, 02) (0i(<?), 02 (g)) I 0i, 02 € 4>}

o f the Bernoulli shift £(G , S x <S). In particular, we are interested in the 

equivalence relation

E =  { (0 i ,0 2) € 4> x 4> | a(0i) =  a(02)}  .

We shall show that E  is a subshift of finite type.

Definition 4.2.16 (G^, ^ ) : (Compare with Definitions 4.2.7 and 4.2.14.) 

Let 0i,02 6 <5. The subset G ^,^  of G  x G is defined by (g,h) e  G ^ ,^  if 

and only if the following conditions hold:

1. For each s G 4>i(g), t £ 02(h), the state (s ,t ,g ~ lh) is a state of WZ>.

2. For some s € <t>\(g), t 6 02(h), the state (s ,t ,g ~ lh) is a state in 

W D (X ).

Lemma 4.2.17: Let 0 i ,0 2 € 4* and let a be the map defined in Lemma 

4-2.10. Then o (01) =  a(02) if and only if the following conditions hold 

(compare with Definition 4-2.8):
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1. If •) € G, x  € X , then (g ,gx) € <7*,,*,.

2 If (g ,h ) € C ^ j , ,  gR^gi and hli+Ji, then [gt, h t ) e  G*,,*,.

Proof: Suppose that a(0 ,) =  «(02).

First, wf; prove that condition 1 holds (compare with Claim 2 in Proposition

4.2.11) : Let g € G, x  € X , s € <h\(g) and t 6 <f>2(gx). Let ri be any 

«^■-gradient from g and let r2 be any 0 2-gradient from gx. Then r, and r2 

trace infinite paths in the geodesic acceptor from states x and t respectively. 

Further, ( r , , r2) is a pair of geodesic rays which start at distance ^  1 away 

and go to  the same boundary point. Therefore (s , t ,x ) is a state in W'D(X) 

and a state in W'P. Hence (g, gx) 6 C^,A .

Next, we prove that condition 2 holds (compare with Claim 3 in Proposition

4.2.11) : Let g,h  € G, x ,y  6 X , such that (g,h) € 6 '*,^ , gR ^ gx  and 

h R fo h y .  Then there are g1 e G  and x! e  X  such that the 0 ,-gradient 

\g\g\ U \g,gxJ and the 02-gradient [g'x\h\ U [h,hy\ have the same length, 

start at distance Si 1 apart and can be extended infinitely by a <f>\- and a 

«^•¿-gradient respectively to the same boundary point (see Figure 4.11). By 

tracing these paths in the geodesic acceptor from any states s„ 6 <t>\(g') and 

to E 02(<7,:̂ ,), we find states s € (¡>\(gx) and /, ( <t>i(hy) such that condition 2 

of Definition 4.2.16 holds.

Let « i  be any 0j-gradient from gx and let o 2 be any 02-gradient from hy. We 

can express 0 | as a word, x tx2 •••, in the generators. Now, \g', gJU(7, (/xju«i 

is a 0|-gradient, because gxR ^gxxi means that, for every state, a € 0i (gx), 

the state aXi € <!>\(gxx\). Inductively, we see that 0 1 is a suffix of a 0|-
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Figure 4.11. The condition on <1> x <1>

gradient from g'. Similarly, o 2 is a suffix of a 02-gradient from y'x. Therefore, 

the pair o f geodesic rays ( o , , a 2) differ by a word in W  at each step. Given 

states s G <f>\(yx), t G <f>?(hy), the geodesic rays r*i and o 2 can be traced 

from s and t respectively. Thus, ( a , t , x ' g ' h y )  is a state in W D . Therefore 

condition 1 of Definition 4.2.16 holds. Hence condition 2 in the statement of 

Lemma 4.2.17 holds.

To prove the converse; let y G G, x  G X . Any 0i-gradient from y and 02- 

gradient from gx go to the same boundary point. Therefore a(0i) =  a(02).

□

To prove that E is a subshift of finite type, we need the following definition 

(compare with Definition 4.2.14):

Definition 4.2.18 (F „liff, ) :  Let au a2 G E (C ,S ) and let F  =  {c .}u W u W X  

as in Lemma 4.2.15. The subset F„ lt„2 of F x /•’ is defined by (y, h) G F„ ,t„2 

if and only if the following conditions hold:

1. For each a G o t (g), t G 02(h) , tin- state (.s, t, y 1 h) is a state of WX>.

2. For some a G o, (g), t G 02(h), the state (a, t, y 'll) is a state in W D (X ).
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Proposition 4.2.19: The equivalence relation E =  {(<Ai, (¡>2) | a(<f>1) =  a(<j>2)} 

is a subshift o f finite type.

Proof: Let F  and A be as in the proof of Lemma 4.2.15. Let A! be the set of 

maps o  1 x 02 : F  —> S  x S such that 0\, cr2 € A and the following conditions 

hold:

1. If x  e  X , then (e ,x ) € F^li<h.

2. If (e ,h ) € F i,,^ , eR ^ x  and hR^hy  then (x,hy) e  F ^ t<h.

Then C' =  {(<Ai ,02) I (<t>\,<t>2)\F € 4 '}  is a cylinder. By Lemma 4.2.17, E  =  

H jeg 9~1C'- Thus E  is a subshift of finite type. □

The dynamical homomorphism a : <1> —► dG, defined in Lemma 4.2.10, gives 

us the following:

Theorem 4.2.20:

The subshift of finite type <l> in Definition 4.2.8 is a finite presentation of the 

dynamical system (dG, G) with dynamical homomorphism a. □

Remark: Coornaert and Papadopoulos give a different finite presentation 

for the dynamical system (dG,G) in [CP93].

4.2 .4  An Instructive Example

Consider F2, the free group on two generators x  and y. The geodesic ac

cepting automaton is shown in Figure 4.12. The acceptable word differences
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Figure 4.12. The geodesic acceptor for the free group with 2 generators. The 
label for each edge is the same as the label of its destination (where X  is assumed 
to mean x~ l and Y means y~l).

are W  =  {e, x, y, x~l , j/-1 }. We show how to construct a map from F2 to 

non-empty subsets of the set of states {e, x, X , y, Y }. In fact we will only 

use the sets x  =  {e, X , y, T } ,  X  =  {e, x, y, Y ], ÿ =  {e, x, X , Y }  and 

Ÿ  =  {e, x, X , y}.

We pick the the geodesic xxx  ■ ■ ■ starting from the identity and going to 

the boundary point Following the proof (and notation) of Proposi

tion 4.2.11, we get the following: Write g 6 F2 as g =  x mw, where w is 

a reduced word which starts with y±l. If m ^ 0, then tg =  m, otherwise 

tg =  0. The geodesic atg =  w~lx°° (the geodesics a  can be seen by following 

the arrows in Figure 4.13). From this, we obtain a map as follows: Let v be 

a reduced word in the generators {x , y, x ~ l, y 1} and let ?;|Ml be the final
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letter of v. Then define <p: F2 —> E by

* („ )  =  / *  'l{v = Xn ( n ^ 0)- 
I 5|a*t otherwise.

We trace a geodesic in the Cayley graph by going in the direction z~l when

ever we reach a vertex labelled z (see Figure 4.13). For each state in z, there 

is an outgoing edge labelled z~l.

Figure 4.13. Tracing a geodesic in F2

4.3 The Boundary as a Semi-Markovian Space

The boundary of a hyperbolic group can be given a uniformly finite-to-one 

serni-Markovian presentation using the ShortLex geodesic acceptor and the 

word difference machine.
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Theorem 4.3.1: The boundary of a hyperbolic group is a semi-Markovian 

space. Further, it has a uniformly finite-to-one semi-Markovian presentation.

The case when the group has a torsion free subgroup of finite index was 

proved in [CP93, Chapter 7].

Proof: We take as our set of symbols the set S of states in the ShortLex 

geodesic acceptor and the set of infinite paths from the initial state in this 

automaton as our subshift. Without loss of generality, we assume that all 

incoming edges to a state have the same label (otherwise we can modify the 

automaton), so that a sequence of states uniquely determines a geodesic.

The set of infinite paths in the automaton is a subshift of finite type (see Ex

ample 4.1.6). The set of infinite ShortLex geodesics is the set of infinite paths 

which start at the initial state and is therefore a semi-Markovian subshift. 

The set of infinite ShortLex geodesics maps continuously to the boundary. 

Also, there are uniformly finitely many ShortLex geodesics which map to each 

boundary point. This follows from the fact that there is a unique ShortLex 

geodesic to each group element and from the uniform bound on the distance 

between geodesics to the same boundary point.

The equivalence relation given by pairs of sequences which define the same 

boundary point is also semi-Markovian being the set of pairs of words ac

cepted by the word difference machine. □
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4.4 The Geodesic Flow

This section is essentially a summary of coding results concerning biinfinite 

geodesics on the Cayley graph of a hyperbolic group. All the results are stated 

in [CP99], the proof o f Theorem 4.4.5 is original. The results in [CP99] are 

an attempt to understand Gromov’s generalisation [Gro87, Section 8.3] of 

coding results of geodesics on a surface of constant negative curvature (for 

example [Mor21], [Koe29] and [Art65]). The symbols o f such a coding set can 

be taken to be a generating set for the fundamental group of the surface. The 

symbolic structure o f  finite type is very similar to the automatic structure 

of such a group (see, for example, [Ser86] for a more detailed history). This 

naturally leads one to ask about geodesic flows on a Gromov hyperbolic 

space, in particular, the Cayley graph of a hyperbolic group.

Let G be an infinite hyperbolic group with (finite) generating set X . Let V 

be the corresponding Cayley graph.

Definition 4.4.1 (Geo(T)): Let Geo(T) be the set of all biinfinite geodesics 

in T; that is, G eo(r) is the set of all isometric embeddings of R into T. Note 

that two geodesics with the same image do not in general define the same 

element of Geo(T). The space of geodesics can be given a metric by
OO

(4.2)

The map G eo(r) —► T, r t-> r(0) is a quasi-isometry. Let d =  |r(0) — s(0)|. 

Then d s; d(r,s) s? -«,(<*+ 2|n|)2"l"l =  3d +  2 £ ~ =1 2n2~n =  3d+ 8. So 

r r(0) is a (3 ,8)-quasi-isometry.
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Definition 4.4.2 (Geodesic flow): Let r : (—oo,oo) —)• T be in Geo(r). 

There are R-, G- and Z 2-actions by isometries on Geo(T). The R-action, 

called the flow action, is denoted by T  and is defined as follows: Let t € R. 

Then Ttr(u) =  r(t +  u). The geodesic flow is the space Geo(T) with the 

metric (4.2), together with the flow action T  of R. The G-action on T 

extends to a G-action on Geo(T). The Z 2 =  (r)-action is given by reversing 

time; (ir)(t) =  r (—<). The G-action commutes with the flow, and Z 2-actions. 

The flow and Z 2 actions satisfy iT t(r) =  (r).

This construction is not ideal because between two boundary points there 

may be many geodesics. Gromov constructed, in [Gro87, Section 8.3], a space 

G which is homeomorphic to d2T x R (where d2Y denotes the set of pairs 

(a, 6) e d r  x dY such that a b). (See [Cha94] for the proof.) The space G 

is unique up to (G x Z 2)-equivariant hoineomorphism which takes R-orbits 

to R-orbits. The main drawback to this construction is the apparent non

existence o f a canonical map Geo(T) —> G (that is, a map such that each 

geodesic r € Geo(I’) is isometrically embedded into G, with the endpoints of 

r going to the appropriate end points in t?2r). However, each geodesic can 

be quasi-isometrically embedded into G.

Definition 4.4.3 (Integral geodesics Geoz(T)): Let Geoz(T) denote the 

subset of geodesics in Geo(T) such that Z maps onto the vertices of T. We 

call G eoz(r) the set of integral geodesics. The space Geoz(T) has the metric

(4.2) and natural G-, Z- and Z 2-actions given by restricting the actions of 

Definition 4.4.2. The Z-action is generated by T\, the time 1 return map.
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Conjecture 4.4.4: It is not, in general, possible to code the dynamical sys

tem (Geoz(r), !Fi) as a subshift of finite type. That is, there is an infinite 

hyperbolic group G such that there is no subshift o f finite type, with a 

dynamical homomorphism rp -> Geoz(r) (that is, a map, h : 9  —> Geoz (r ), 

which intertwines the shift and flow actions).

Remark: Using the geodesic automatic structure of G, one can easily obtain 

a symbolic coding of a geodesic in terms o f the labelling of edges, but this 

does not tell us any points through which the geodesic passes.

However, since the G- and Z-actions commute, T\ defines a Z-action, T ( ,  on 

the quotient G \G eoz(r). We can code this in the same way.

Theorem 4.4.5 (Coornaert, Papadopoulos [CP99]): The quotient space 

G\Geoz(T) together with the flow action, T\, is a finitely presented dynam

ical system over Z.

Remark: Following [CP98] and [CP99], we can prove this result by reinter

preting the symbol space 4> of Section 4.2 firstly as a subshift over N and 

then as a subshift over Z. Loosely speaking, the set of symbols used is the 

set of maps A in the proof of Lemma 4.2.15. Let <1> be as in Lemma 4.2.15 

and let <p 6 4>. Let x be the lexicographically least generator x  such that 

(¡>{e)z C <t>(x). Then the shift map is defined by l +  <j> =  x * <f>. This process 

can be applied forwards and backwards, so that each element of the subshift 

defines a ShortLex geodesic (which passes through the identity at time 0).
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We present a different proof using the automatic structure directly.

P roo f: Take our set of symbols, S, to be the set of states in the geodesic 

acceptor (we assume that the geodesic acceptor is partially deterministic with 

no failure states and such that all incoming edges to the same state have the 

same label). The set of biinfinite sequences o f states read by the geodesic 

acceptor, ^  C ’E ,(Z,S), is a subshift of finite type (see Example 4.1.6). Each 

sequence ip =  (s,)'*(_00 naturally defines an integral geodesic r =  r(ip) by 

r(0) =  e, r(n) =  XiX2 • • • xn, r (—n) =  Xq‘x l } ••- x l * +1 (where n e  N and 

Xi is the label of the edge connecting Sj_i and s, in the geodesic acceptor). 

Let b : »k —> G \G eoz(r) denote the map (s j)“ ^  G (r), where r is as

above and G (r) denotes the G-orbit of r. We show that b is a dynamical 

homomorphism.

Every G-orbit contains a unique geodesic which passes through the identity 

at time 0 (given by r(0 )~ '(r) € G (r)). Given an integral geodesic r such that 

r(0) -  e, there is a sequence of states in the geodesic acceptor which traces 

r. Hence the map b is surjective.

We now show that, if ip e ty, then ¿»(1 +  ip) =  Tib(ip). In the following 

argument, the dot is used to keep track of time 0. We write geodesics as 

• • • (r (—l))(r (0 )) • (r (l))(r (2 )) • • • and sequences as • • • s_i«o • Si«2 • • • . Let 

ip =  * • ■ 8—i .s0 • s i s'2 • • • be a sequence of states in the geodesic acceptor. 

Again we use x, to denote the label of the edge between the states .s,_i and
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Sj. Then

r(V>) =  • • • (x0 ‘ ar-Dixo ‘ Me) • (xi)(xxx2) • • • 

=*> r(rp) =  ■■■ (xò'MeMxi) ■ (x ix2)(x ix2x3) • • • .

Whereas

1 -1-ip =  . . .  s0Si ■ s2s3 ■ ■ ■

==> r( 1 + ip ) =  ■■■ ( z r V X x r 'K e )  • (x2)(x2x3) • • • ,

= >  S i(r (l +  ip)) =  ■■■ (x0 ‘ )(e)(x!) ■ (x ix2)(x !x2x3) • • • .

So r ( l  +  ip) is in the same G-orbit as Eir(ip). So 6(1 +  ip) =  Jr1*6(V’); hence 

the map 6 is a dynamical homomorphism.

Two sequences ip\,xp2 : Z  -»  S define the same element of G\Geoz(T) if, 

for all n, the edge from Sj(n) to Si(n +  1) has the same label as the edge 

from s2(n) to s2(n +  1). The set of pairs of sequences (rpi,ip2) which satisfy 

this condition is a subshift of finite type. Therefore the dynamical system 

(G \G eoz(r),E f)  is finitely presented. □

Definition 4.4.6 (Mapping torus): The mapping torus of the dynamical 

system (E , f ) over Z  is the space T (E ,f )  =  (E  x I)/ {(x , 1) =  ( / ( x ) ,0)}, 

where I denotes the unit interval. When the space £  is a shift space and 

the homeomorphism /  is the shift map, we use T(E ) to denote the mapping 

torus. Equivalently, T (E )  =  (E  x R )/Z  where the Z-action is generated by 

the homeomorphism (e, t) t-4 ( /(e ) , t — 1). We can define a flow on E  x R by 

Tt(e, u) =  (e, u +  t), which gives a flow on T(E).
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Theorem 4.4.7 (Coornaert, Papadopoulos [CP99]): There is a dynam

ical homomorphism from the flow on the mapping torus of a subshift of finite 

type to the flow on G\G.

The proof of this theorem follows exactly the same steps as the proof in 

[CP99], The only difference is that we substitute the subshift o f finite type 

4* from the proof of Theorem 4.4.5 for the subshift of finite type used in 

[CP99].

Proof: The dynamical homomorphism b:  »l» —► G\ Geoz(T) from the proof of 

Theorem 4.4.5 induces the dynamical homomorphisms 6r : (i/j, t )  •—> (b(ijj) , t)  

and b-r  : T (tf) - »  T(G\ Geoz(r), (see (4.3)).

The Z-actions on 4» x R and G\ Geoz(T) x R are generated by (ip ,t) >—> 
(1 +  ip,t — 1) and (r, t) i-> (lF {(r),t — 1) respectively (see Definition 4.4.6).

4» x R
/Z

>T(4»)

b (4.3)

Given r G Geoz(F), let r() =  r(0)_1r. Then r0 depends only on the G-orbit, of 

r, so there is a well-defined map i : G\ Geoz(T) xR Geo(T), (r, t.) t-> Tt(r0). 

Let c/r =  p o i, where p is the canonical projection G eo(f) —► G\ Geo(r) (see
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(4.4)). Then qr is surjective and Z-invariant.

G\ Geoz(r) x R --------> G eo(r)

T(G\  Geoz (i —» u  \ Geo(T).

/ Z P G\ (4.4)

The map qR induces the map qT : T(G\Geoz (r ) ,^ r1*) -+  G \G eo(r) (see

(4.5)). This map is a topological conjugacy.

Since G  acts properly discontinuously and cocompactly on T, there is a con

tinuous, surjective, G-equivariant map Q : Geo(T) -> G ([Gro87, Theorem 

8.3.C., Condition 5], see (4.6)). The map Q is surjective because the map 

Geo(T) —> c?2r, r (r (—oo), r(+ oo)) is surjective and the flow orbit of a

point is a quasi-isometric embedding of R in G. This induces the continuous 

map Q g : G \Geo(r) -> G\G.

Combining the above, we get that QG°qT°br is a dynamical homomorphism

G\ Geoz(r) x R

(4.5)

G\ Geoz(r) x R

Geo(T) Q ■y G

P G\ G\ (4.6)

G\ Geo(r) Qlì—ì g \G.

from the flow on T('I') to the flow on G\G. □



Chapter 5

Cayley Graphs which are 
Regular Tilings

Chapter Summary

We investigate the following problem: Given a regular tiling, is 

its 1-skeleton the Cayley graph of a group? In Section 5.2, we 

determine the complete picture for regular tilings of the sphere 

(platonic solids). In Section 5.3 we find an elegant condition for 

the tiling of s-gons meeting v to a vertex to be a Cayley graph. 

The answer is yes if and only if there is a non-trivial divisor of 

s which is smaller than v (Theorem 5.3.8). We then investigate 

some semi-regular tilings.

114
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5.1 Introduction

By a regular tiling, we mean the tiling of 2-dimensional space (spherical, 

Euclidean or hyperbolic) by regular polygons, where each polygon has the 

same number of sides and the same angle at each vertex. We take the 1- 

skeleton o f such a tiling and ask whether it can be the Cayley graph of 

a group. We use G(s;v) to denote the 1-skeleton of the tiling by s-gons 

meeting v at each vertex.

The problem as to which platonic solids (regular tilings of the sphere) could 

be Cayley graphs was posed by David Epstein in an M.Sc. course on Geo

metric Group Theory. We start by classifying which of these sphere-tilings 

can be Cayley graphs and give a comprehensive list of all groups and gen

erating sets (up to automorphism and replacement of generators by their 

inverses) with platonic solids as Cayley graphs. We then classify precisely 

which regular tilings can be Cayley graphs.

Let G be a group with generating set X . Recall (Definition 1.0.1) that the 

Cayley graph F(G, X ), or F, is the graph with, for each g e  G, a vertex 

labelled g and, for each g £ G, x  € X , an edge from g to gx labelled by x, 

written g - 1 > gx .

We adopt the convention that if a generator x  has order 2, we have a single, 

undirected edge labelled x

x  u
g * gx becomes g ---- gx.

x
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The group G acts on its Cayley graph on the left by left multiplication on 

the vertices. This action gives many strong symmetry results.

Observation 5.1.1: The valency of each vertex of a Cayley graph is m +  2n, 

where m is the number of generators of order 2 and n is the number of 

generators which do not have order 2.

Proof: At each vertex, for each generator x  o f order 2, there is a single edge 

labelled x. For every other generator y there is one incoming edge and one 

outgoing edge labelled y. □

Most of the Cayley graphs which we draw have less than or equal to 3 gen

erators. To save excessive labelling of graphs, we suppress the labels on the 

vertices. We label our generators from the start of the alphabet and adopt 

the following conventions for labelling edges in our graphs;

•---------- as •------------• as • •.

5.2 Platonic Solids

There are 5 regular tilings of the sphere. The 1-skeletons are isomorphic to 

the 1-skeletons of the platonic solids.
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5.2 .1  The Tetrahedron

We start with the simplest regular polyhedron— the tetrahedron. In this case 

it is easy to see that there are 2 possible pictures, one for each group of order 

4 (Graphs 4, 5).

Cayley Graph 4. Z 4 =  (a, 6 | a4, 6 =  a2)

Cayley Graph 5. Z 2 x Z 2 =  (a, b, c \ a2, b2, ab =  ba,c =  ab)

5.2 .2  The Cube

The cube has 8 vertices and valency 3. Therefore, there are either 3 genera

tors of order 2 or there is 1 generator o f order 2 and 1 generator not of order 

2.
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An easy first example is Z 4 x Z 2 (Graph 6). Reversing the arrows on the 

inner square gives us the Cayley graph of the dihedral group Dg generated 

by a rotation and reflection of a square (Graph 7). The dihedral group Dg 

has another generating set which has the cube as Cayley graph. The second 

(Graph 8) is obtained from the presentation of Dg as the Coxeter group 

/ 2(4) =  (a, b | a2, b2, (ab)4), with an extra generator c =  bab.

Cayley Graph 6. Z 4 x Z 2 =  (a, b \ a4, b2, ab =  ba)

Cayley Graph 7. Dg =  (a, 6 | a4,b2, {ab)2)

The group Z 2 x Z 2 x Z2 with the standard generating set a =  (1 ,0 ,0 ), 

b =  (0,1, 0), c =  (0,0,1) also has the cube as its Cayley graph (Graph 9).
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Cayley Graph 8. D s = (a, ft, c | a2, ft2, (aft)4, c = ftaft)

Cayley Graph 9. Z 2 x Z 2 x Z  ̂ = (a, ft, r: | a2, ft2, c2, aft = fta, be = eft, r:a = ar)
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Lem m a 5.2.1: The cyclic group of order 8 (Z6)  does not have a Cayley 

graph which is the 1-skeleton of the cube.

P roof: If the Cayley graph is a cube, then it must have a generator of order 

2 (because the valency at each vertex is odd). Three generators o f order 2 is 

impossible, so Z 8 is generated by elements a and b, where b2 =  e and a is not 

of order 2. Clearly, a has order 8 and a4 =  b. Graph 10 shows the Cayley 

graph of Z 8, generated by a and b, drawn on the Mobius band. □

Lem m a 5.2.2: The quaternion group Qg — (a, b | a4, a2 =  b2,ab =  b 'a)

P roof: The group Qg has only 1 element of order 2 (and 6 of order 4). If 

the Cayley graph is the 1-skeleton of a cube, it must have one generator, x, 

of order 2 and one generator, y, of order 4. But x  =  y2, so x  and y do not

Lem m a 5.2.3: Graphs 6 9 are the only cuboid Cayley graphs (up to label 

preserving isometry).

Cayley Graph 10. Z 8 =  (a, 6 | a8, b =  a4)

e---- ►-----a----►— a',2

a,4 i5— ►----a6— ►— a7— ►-----è

does not have a Cayley graph which is the 1-skeleton of the cube.

generate Qg (they generate a cyclic subgroup o f order 4). □

P roof: Lemma 5.2.1 tells us that we cannot have a generator of order 8.
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i —x —•

•-----------------------------•

Figure 5.1. The choice of x  determines the Cayley graph.

If we have a generator of order 4, then the vertices are partitioned into 2 

cosets given by 2 faces of the cube. The other generator (of order 2) must 

connect these faces. The only choice is the relative orientation o f these 4- 

cycles. These 2 choices correspond to Graphs 6 and 7.

If all the generators have order 2, then we must have 1 edge of each label from 

each vertex. Without loss of generality we can put in all the generators from 

one of the vertices (see Figure 5.1). Once we have chosen the edge labelled 

x  in Figure 5.1, the rest of the edges are determined. There are 2 choices for 

x, corresponding to Graphs 8 and 9. □

5.2 .3  The Octahedron

The octahedron has 6 vertices and both groups of order 6 can have the 1- 

skeleton of the octahedron as a Cayley graph. In each case, the generating 

set has a redundant generator of order 3. Both groups have generating sets 

which have the hexagon as a Cayley graph (namely Z 6 =  (a | a6) and D6 =
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(a, b | a2, b2, (ab)3)). The generator of order 3 (c =  a2 and c =  ab respectively) 

turns the picture of a hexagon into the picture of an octahedron.

In the case of Z 6, we cannot have a generator of order 2 because there is only 

one element of order 2 and we must have valency 4. The elements of order 3 

are mutually inverse; the same goes for elements of order 6. So we must have 

a generator a of order 6 and a generator b o f  order 3. We can have either 

b =  o2 or b =  a~2. So we can reverse the arrows on the generator of order 3 

to get a slightly different picture, but this is the only other picture we can 

have.

The group D6 is not generated by elements of order 3, so must have one 

generator, c, o f order 3 and 2 generators, o, b, of order 2. We have either 

c =  ab or c =  ba, which give the same picture up to swapping the labels a 

and b.

Lem m a 5.2.4: The only octahedral Cayley graphs are Graphs 11 and 12 or 

Graphs 11 and 12 with the order 3 generator arrows reversed. □

Cayley Graph 11. Z 6 =  (a, b \ a6, b =  a2)



CHAPTER 5. REGULAR CAYLEY GRAPHS 123

Cayley Graph 12. D6 =  (a, b, c \ a2, b2, (ab)3, c =  ab)
►

► ► A.
►

5.2.4 R elator types

The two remaining platonic solids are harder. To cope with them we need to 

introduce some machinery. We assume that no generator is trivial. We work 

in the free group on the generators, but keep the involution conditions.

D efinition 5 .2 .5  (S im ply reduced): A word in the generators is simply 

reduced if no proper, non-empty subword equals the identity. Note that a 

simply reduced word is freely reduced.

D efinition 5 .2 .6  (R ela tor): A relator is a cyclically simply reduced word 

in the generators which equals the identity in the group. Two relators are 

equal if they are identical as simply reduced words.

D efinition 5 .2 .7  (Inverse): The inverse o f a relator is the free inverse of 

the relator.
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D efin ition  5.2.8 (R elator class): The relator class R(r) of a relator r is 

the set of cycles and inverses of cycles of r. A relator class has length |R| if 

each of its relators has length |R|. Given r =  x i • • ■ x n, we use r, to denote 

the cyclic conjugate r* =  x* • • • x„xi • • ■ x*_i.

D efin ition  5.2.9 (R elator type): The relator type k(R) (or k(r)) of the 

relator class R(r) is half the cardinality of R. If a relator is in a relator class, 

then so is its inverse. A relator cannot equal its own inverse because that 

contradicts it being simply reduced (xi • • ■ xn =  x “ 1 • • - x f 1 = >  X\ =  x~*). 

Therefore the cardinality of each relator class is even, so the relator type is 

an integer. The relator type is the number of distinct cycles of the relator r, 

unless one of the cycles is the inverse of r, in which case it’s half this number.

Exam ples: Some examples of relators and their relator types:

1. The relator x" has relator class {x", (x-1 )"} and has type 1.

2. The relator xyz  has relator class

{xyz, yzx, zxy, z ly ,y 'x 1z ’ }

and has type 3.

3. The relator xyzxyz  has relator class

{xyzxyz, yzxyzx, zxyzxy, z~ly~lx~ lz~'y~lx ~ l , 
x~lz~ly~lx~lz_1y~l, y~1x~lz~ly~1x~lz~ l }

and has type 3.
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4. If x and y are not both involutions then the relator xyxy  has relator 

class

{xyxy , yxyx, x~ ly~lx~ 'y~ l, y~1x~1y~1x -1 } 

and has type 2.

5. If x  and y are both involutions, then the relator xyxy  has relator class 

{xyxy , y x y x }  and has type 1.

6. The relator x y x -1y, where y is an involution, has relator class

{xyx~ ly, yx~ly x ,x ~ 1yxy, yxyx -1 }

and has type 2.

Lem m a 5.2.10: The relator type k(R) divides the length of R.

P roo f: The number of distinct cycles c of a relator r divides the length of r 

and the relator type is either c or c/2. In either case, k(R) = A:(r)||r| = |/2|.
□

D efin ition  5.2.11 (Sim ple lo o p ): A simple loop in T is a closed path in 

T from a fixed base point such that no vertex is repeated (apart from the 

initial vertex, which is visited at the beginning and at the end, but is not 

visited in between). We count going backwards round the loop as being the 

same as going forwards round the loop.

P roposition  5 .2.12: Consider relator classes of the same length l. Then 

k(R) =  The number of simple loops of length l in T.
I «1=1
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P r o o f: A relator, r, is a closed loop in the Cayley graph from the identity. 

Taking its inverse reverses the direction of the loop so each (relator,inverse) 

pair coincides with a simple loop. Taking a cycle distinct from r and r~l 

gives a different loop based at the identity. The relator type just counts the 

number of different simple loops obtained by taking cycles.

Conversely, a simple loop in the Cayley graph traces a word, w, in the gener

ators which equals the identity. The ‘visit no vertex twice’ condition means 

that w is simply reduced, therefore, w is a relator. □

L em m a 5.2.13: The relator classes of length l and type 1 are either x l, 

where x is not an involution, or (xy)1̂2, where x  and y are both involutions.

C orolla ry  5.2.14: The only relators o f type 1 of odd length l are x l where 

x  is not an involution.

C orolla ry  5.2.15: If the generator x is in a relator of even length, l, and 

type 1, then x  has order l or 2.

5 .2 .5  The Dodecahedron

L em m a 5.2.16: The 1-skeleton of the dodecahedron (Figure 5.2) cannot be 

the Cayley graph of a group.

P r o o f: Consider relator classes R o f length 5. By Lemma 5.2.10, R has 

type 1 or 5. There are 3 simple loops o f length 5 in the dodecahedron, so by
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Figure 5.2. The 1-skeleton of the dodecahedron. This picture (along with Figure 
5.3 and all the Cayley Graphs in this chapter) were drawn using Paul Taylor's 
commutative diagrams package, diagrams.

Proposition 5.2.12, X)|r|=5^(^) =  3- Therefore, each relator class o f length 

5 has type 1 (because 5 > 3). So there must be 3 distinct relator classes of 

type 1 and hence at least 3 non-involution generators (by Corollary 5.2.14). 

Therefore, the Cayley graph has valency at least 6. But the dodecahedron 

has valency 3. □

5.2.6 The Icosahedron

We now apply the methods of the proof of Lemma 5.2.16 to the icosahedron 

(Figure 5.3).

Consider relator classes of length 3—they have type 1 or 3. There are 5 

loops of length 3. There cannot be 5 relator classes of type 1, because then
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Figure 5.3. The 1-skeleton of the icosahedron.

we would have 5 non-involution generators giving a valency of 10. We cannot 

have 2 relator classes of type 3 because 2 x 3 > 5, contradicting Proposition 

5.2.12. So we must have 1 relator class of type 3 and 2 relator classes of type 

1.
We have 2 non-involution generators, a, b, o f order 3; 1 for each relator class 

o f type 1. The valency of the icosahedron is 5, so we must have 1 generator, 

c, o f order 2. The remaining relator must involve c. Each generator cannot 

appear more than once, otherwise one of the generators would be trivial. We 

choose the final relator to be abc. The relators of length 3 are a3,b3,abc. 

Trying the presentation (a,b,c \ a3,b3,c2,abc), we find that we get a group 

(the group of even permutations of 4 symbols) which has the icosahedron as 

a Cayley graph (see Graph 13).

The only choice we had was for the generator c =  ab. We had to choose
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c =  a£16e2 for £\,£2 =  ±1  (we can put a before b because c_1 =  c). The 

different choices correspond to replacing a generator with its inverse.

Lemma 5.2.17: The alternating group A\ is the only group with the icosa

hedron as a Cayley graph. There is a unique choice of generators (up to 

automorphism, and replacement by inverses) which gives this Cayley graph.

□

Cayley Graph 13. A4 =  (a,b,c | a3,b3, (ab)2,c  =  ab)
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5.3 Regular Tilings

5.3 .1  Regular Tilings W hich are not Cayley Graphs

The method of proof for the dodecahedron can be generalised to 1-skeletons 

o f some regular tilings of other surfaces. The tilings we consider are tilings of 

the Euclidean or hyperbolic planes by s-goris meeting v to a vertex (v ^ .3).

O bservation  5.3.1: Generators must be non-trivial and distinct, otherwise 

we would get subgraphs which are a single loop or are a loop of length 2;

x
9 = $ 9 X -

V

Both would contradict the Cayley graph being a regular tiling.

O bservation  5.3.2: Every loop of length s must be the boundary of an s-gon. 

Therefore, each relator of length s must be the boundary o f an s-gon.

P rop osition  5.3.3: If all divisors o f s are larger than v (that is, r/|.s, d /  

1 = >  d >  v), then the graph Q(s\ v) cannot be the Cayley graph of a group.

P ro o f: First, note that if s is even, then 2 j.s, so s has a divisor which is 

smaller than v. So we may assume that s is odd.

By Lemma 5.2.10, the relators of length s must have type d, where d|s. 

There are v simple loops of length s, so d ^ v (by Proposition 5.2.12); hence 

d =  1. So there are v relators of length s each of which has type 1. By
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Corollary 5.2.14, there are at least v generators of order greater than 2. But 

the valency of G(s; v) is v. □

In fact, these are the only regular tilings which cannot be the Cayley graph 

of a group. For the positive proofs we use:

T heorem  5.3.4 (Poincare, [Poi82]): Let A  be a compact convex polygon 

with side pairings which satisfies the cycle conditions. Then the group gener

ated by the side pairings is a discrete group with A as fundamental domain. 

A complete set o f relations for the group consists of the reflection relations 

and the cycle relations. The Cayley graph fo r  the group generated by the side 

transformations is the dual to the tiling by A . (See, for example, [EP9f].)

5.3.2 The Case W hen s is Even

P roposition  5 .3 .5 : If s is even, then G(s\ v) is the Cayley graph of the group 

E (s , v) =  (au . . . ,  av | Vi, a2, (a{ai+1)(5/2)), 

where the index i in a,ai+i is interpreted cyclically.

P roof: Suppose we have s-gons meeting v to a vertex. Consider the regular 

tiling of u-gons meeting s to a vertex (the angle at each vertex is =  j^ ) .  

A group of symmetries of this tiling is generated by reflections in each side. 

The Cayley graph of this group is G(s;v) (see, for example, Figure 5.4). □

The group £ '(4 ,3) is Z 2 x Z 2 x Z 2 (Graph 9).
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Figure 5.4. 4-gons meeting 6 to a vertex with side reflection generates (a, b, c, d \
a?,b2,(?,cP , (ab)3, (be)3, (cd)3, (da)3), whose Cayley graph is £(6; 4).

5.3.3 The Block Construction

We now present a method of constructing Cayley graphs which are regular 

tilings.

Definition 5.3.6: Given a set of relator classes (R j), we define its block to 

he the set o f loops from a vertex traced by relators in U R3. A (d\,. . . ,  d e 

block is a block such that, when the initial vertex is removed, there are n 

connected components, C „ containing the remains of d, of the loops in the 

block. A connected component C, with the initial vertex restored is called 

a .dab, or a di-slab. Note that d, =  k(Rj) (see Definition 5.2.9). If we 

have a set of relators {rj \ j  6 . /}  which are in distinct relator classes, we 

talk of the block of { rj | j  € ./}  which is precisely the same as the block of

{ R ( r j ) \ j e  J } .



CHAPTER 5. REGULAR CAYLEY GRAPHS 133

Figure 5.5. The d-block

Fix s and let d ^  3 be a divisor of s.

The d -b lock  Let a i , . . . ,  be generators with a j , . . . ,  a</_ i being involu

tions. The standard d-block is the block of (the relator class of) the relator 

r =  (aia2 ■ ■ • adYâ dK It consists of d s-gons joined together at a vertex with 

neighbouring pairs joined along an edge; the end s-gons have only 1 neigh

bour (see Figure 5.5). We say that this block is flanked by ad.

The s-gons are glued together along the generators of order 2. We have an 

s-gon starting with each generator and an s-gon ending with each generator 

(so that the reverse of the s-gon starts with the inverse o f a generator). Since 

generators of order 2 are their own inverse, the end of one s-gon is the start 

of the next one, so they stick along generators of order 2.

Splitting the d -b lock— th e  (d — 1 , l )-b lo ck  Given generators a i , . . . ,  ad 

with o i , . . . ,  ad_i being involutions, and the relator r =  (oi • • • ad)*/d, we get 

the d-block as above. If we remove the condition that oi has order 2, so that
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Figure 5.6. The (d -  1, l)-block

it has (apparent) infinite order, then the relators no longer stick together 

along a\ and the block splits into 2 parts, one containing a single relator, the 

other being a (d — l)-slab (Figure 5.6).

Note that, if we make dj (1 < j  < d) not have order 2, instead of then 

the d-block splits into a (d — j, y)-block.

T h e  (d +  k )-b lo ck  We can reconnect the (d — 1, l)-block given above by 

adding in the relator a,. The relator af joins the 2 components of the (d — 

1, l)-block giving a (d +  l)-block (Figure 5.7).

We can repeat this procedure by changing the condition a| =  1 to a| =  1. 

Inductively, we build a (d +  /c)-block with generators d1 , , dj  and relators 

(di • ■ ■ dj)’ /d, a\,. . . ,  a’k, ajt+1, . . . ,  a.2i_ l (da has infinite order). The {d +  k)- 

block is flanked by dj (Figure 5.8).
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Figure 5.7. The (d +  l)-block

Figure 5.8. The (d +  /c)-block
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Gluing blocks— the (Id +  k)-block ( 1 ^ 1 )  Given 1 ^ 1  and 0 ^  k < d, 

we can construct an (Id +  fc)-block using a (d +  A;)-block and / — 1 (d — 1,1)- 

blocks.

We start with a (d +  fc)-block given by the generators a i , . . . ,  ad and the 

relators (ai • • • ad) ,/d, a ] , . . . ,a 3k, a2k+l, . . . ,

Take a (d — 1, l)-block given by the generators 6iilt. . . ,  bld and the relators 

(&U *1,2. • • • . 6?,rf-i-

Glue them together by adding the relation ad = b\t\. This gives a (‘2d +  k)- 

block (Figure 5.9).

We continue inductively: Add the (d — l,l)-blocks given by generators 

bit 1, . . . ,  b,id and relators (6,tl • • • b,,d)3/d, 6jf 2, . . . ,  b2d by gluing with the re

lation bi-itd =  btfi. We stop when we have an (Id + fc)-block.

Having constructed an (Id +  A:)-block flanked by 6j_ ttd, we add the relator
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Figure 5.10. The block diagram (the ‘unflanked’ (Id +  k)-block)

This ‘zips’ the (Zd +  A:)-block to give an ‘unflanked’ (M+fc)-block; that 

is, (ld+  k) s-gons meeting at a vertex (Figure 5.10). We call Figure 5.10 the 

block diagram.

T h e dual p o ly g o n  Given the local picture in Figure 5.10, we must show 

that this extends to the correct global picture.

Draw the polygon dual to this local picture. We have a vertex for each relator 

and an edge for each generator from the central vertex (Figure 5.11). Make 

each angle 2n/s. Call this polygon P.
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Figure 5.11. The dual polygon

Each generator (or inverse) x  is naturally associated to the edge which crosses 

it. We give this edge the label e(x). Each vertex, v =  v(r), is labelled by 

reading the relator, r, o f length s in which it is contained. We read the 

relator clockwise from the central vertex. Note that if we read anticlockwise, 

we would get the free inverse of r.

Define the side-pairings by a : e(a~l ) e(a) (see Figures 5.12, 5.13 and 

5.14). We will choose the side pairings to be orientation preserving. In the 

case when a has order 2, the side pairing transformation is to rotate through 

7r about the centre of the edge e(a). If e(a) and e(a ')  have a vertex in 

common, we take the side-pairing transformation to be a rotation through 

27r/s about the common vertex. (This happens if and only if a has order



CHAPTER 5. REGULAR CAYLEY GRAPHS 139

Figure 5.12. The side pairing for a generator :r, of order 2 (rotate through the 
centre of the edge e(z,))

a.) Otherwise, we take the side-pairing transformation to be a translation. 

The three different types o f side-pairing are illustrated in Figures 5.12, 5.13 

and 5.14. The pictures could be mirror images of the ones shown, in which 

case each relator (and therefore vertex label) gets replaced by its free inverse. 

Each relator has a vertex labelled either by itself or by its free inverse. In 

Figure 5.14, when j  =  1, b j-tiX =  ax.

Clearly, tin; reflection relations give the relations a’2 =  e, (k + 1 ^  i ^  d — 1) 

and bjj =  e ( l ^ j ^ f  — 1, 2 ^  ^ d — 1 or j  =  i — 1 , i =  d).

We now examine the cycle relations.

Consider a vertex of the form v(a’ ) or v((a  *)•). Observe that a , : v(a‘ ) 

v(a') and a ' 1 : v f fa ,1)“) >-» v((at ')*). Working clockwise around such a 

vertex, we get the cycle relation a' =  e or (a, 1)* =  c.

For 0 K j  < It hit r =  (¿>o,* =  ax), Recall (Definition 5.2.8)
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Figure 5.13. The side pairing of a generator a,j of order s (rotate through the 
vertex v (a*))

Figure 5.14. The side pairing of an infinite order generator bjti (translate)
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That denotes a cyclic conjugate of r .  Observe that bJt, : v(rt) i-+ n ( r t+ i) .  

Working clockwise around the vertex v(r), we get the relation bh\bh2 ■ ■ ■ b]d. 

Similarly, working about r~\ we get the relation b~dbjd_ l ■ • ■ b~}.

These are the only types of vertex which appear. Combining the reflection 

and cycle relations, Poincare’s polygon theorem (Theorem 5.3.4) tells us that 

the group

< a u . • i a di a *  » • • • a k ’ a k + l<  ■  <a d - l ,  (<*ia2 • • • a d y ^ d \

b \ ti ,  ■ • 5 ^1 ,di 6j 2 , . . . ’ b ^ d - v  ( b i . i b i p  • • • b i td ) a / d , a d =  fei.i

b ? ,\ , ■ ■ ! I>2 ,d, 2̂,2> • • • ^2,d-l> (^2,1^2,2 • • b 2 , d Y ^ d , b i id =  62,1

\  b i - 1, ! , . • ) & /-l.d b f— i (2 »• • • » b f _ i ' di  ( 6 / - i , i b i ~  1,2 • • ‘ b i - \ id) s l i /

has as its Cayley graph the dual to the tiling of the dual polygon. Thus 

we have a presentation of a group whose Cayley graph is s-gons meeting 

v =  Id +  k to a vertex.

We use B (s ,v ,d )  to denote the group made by this construction.

In the case when d =  s and l > 1, the subgroup generated by the (d+fc)-block 

is Z s * • • • * Z s * Z 2 * • • • * ^ 2; the free product of k copies of Z s and d — k — 1 

copies of Z 2. The subgroup generated by a (d — 1, l)-block is Z 2 * • • • * Z 2 * Z; 

the free product of d—2 copies of Z 2 and 1 copy of Z. The subgroup generated 

by an end d-block is Z 2 * • • • * Z 2; the free product of d — 1 copies of Z 2. The 

relators =  6j+i,i and ad =  show that we amalgamate these subgroups 

over Z. The copy of Z  which we amalgamate over is, in each case, either the 

product of the other generators in order, using each generator exactly once, 

or the generator of the Z part of the free product.
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5.3.4 The Case W h en s is Odd

P roposition  5.3.7: Let s be odd and d be the smallest divisor of s which is 

strictly greater than 1. If v >  d, then Ç(s; v) is the Cayley graph of a group.

P roo f: Use the above construction with d as the smallest factor of s. □

Note that we have several choices as to how to perform such a construction. 

We could replace any (d— 1, l)-block with a (d—j, j)-block (for any 1 SC j  < d) 

as long as we glue adjacent blocks along the torsion free generators. The k 

generators of order s could, in fact, be any o f the order 2 generators— as long 

as there were precisely k of them. Also, we have the choice of any divisor d 

o f  s such that 3 ^ d ^  v.

Combining Propositions 5.3.5, 5.3.7 and 5.3.3 we get:

T heorem  5.3.8:

Let s,v  € N with v ^  3. Let d be the smallest divisor o f s which is strictly 

greater than 1. Then Ç(s; v) is the Cayley graph o f a group if and only if 

v ^ d .  □

R em ark: This result was proved independently in [CK96].

5.3 .5  Some Other Examples

Exam ple 5.3.9: Suppose that so that s =  pv for some p. Then Q(pv;v)
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Figure 5.15. The side pairing for D(pv,v).

is the Cayley graph of the group

D(jJV, v) =  (a , , . . . , a „  \af,(a l(ii - - a v)p).

P ro o f: Consider the u-gon with angles ^  and side pairing given by rotations 

by it about the centre of each edge (Figure 5.15). Then the group generated 

by these side pairing transformations is D (pv , v) and the Cayley graph is 

pv-gons meeting v to a vertex. LI

O bservation  5.3.10: Note, that tins is the. block construction (Section 5.3.3) 

with (l =  v, l =  1 and k =  0.

The group D (3,3) is (a,b,c \ ail , 62, c2, abc) =  Z 2 x Z 2 (see Graph 5).

E xam ple 5.3.11: If .s is odd then Q(s\2s) is the Cayley graph of the group 

F (s ,2s) =  (a , , . . .  ,a, \ a,a2 • • a „a ,a . i ■ • a,).

P ro o f: Consider the 2.s-gon with angles ‘2n/s with the ‘opposite’ side pairing. 

If we label the vertices v\,. . . ,  w2<) working clockwise from a vertex, then the
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Figure 5.16. The side pairing for F (s ,2 s )  where s is odd.

edges are (vit vi+t) (cyclically) and the side pairings are (see Figure 5.16)

«¿: (w.,«i+i) (uj+«+i,w»+i) if i is odd
a.: (wj+i.n.+.+i) (vi+i,Vi) if i is even.

We obtain the cycle relation a,a? ■ ■ ■ a, =  1 about the odd numbered ver

tices and the r cycle relation a , a .¡•••ai =  1 about the even numbered 

vertices (Figure 5.17). Thus, we have that the group F(s, 2s) =  (a, , . . . ,  a, | 

a ia2 • • • a,, asa,_i • ■ • a () has Q(s\ 2s) as its Cayley graph. □

The group F (3, 6) is (a, b, c | abc, cba) =  (a, b \ ab =  bu) =  Z  x Z.

The block o f a, ■ ■ ■ a3 and the block of a„ ■ ■ • at are both (1 ,1 , . . . , 1 )  — blocks 

(where there are s l ’s). The blocks an; interwoven.
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Figure 5.17. The relators for F (s, 2s) where s is odd.

5.4 Orbifolds

A surface can be thought of as a the quotient of a properly-discontinuous, 

free action of a group on 2-dimensional (spherical, Euclidean or hyperbolic) 

space. We can reconstruct the group action from the quotient. When the 

group action is properly discontinuous but not free, we need some additional 

structure (on the fixed points) to recover the group action. The quotient 

space together with this additional structure is called an orbifold.

We describe the orbifolds associated to the group actions given in Section 5.3. 

In particular, we give their genus and describe the singular points. Recall 

([Thu90, Proposition 5.4.2]) that there are 3 types of singular locus:

M irror lines; the orbifold is locally R2/ Z 2 where Z 2 acts by reflection.

Cone poin t o f  order n; the orbifold is locally cone shaped, R2/Z „  where 

Z n acts by rotation through 2ir/n.
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C orner reflections o f  ord er n; the orbifold is locally R2/D2n- The action 

is generated by reflections in two lines which meet at an angle of n/n.

We use E (s ,v ), B (s,v ,d ), D (pv ,v ) and F (s,2 s)  to denote the groups con

structed in Section 5.3 together with their actions generated by the side trans

formations on the Poincare tilings of the appropriate 2-dimensional space. 

We use Q (G ) to denote the orbifold of the group G with its associated ac

tion.

5.4.1 T h e Orbifold Associated to E(s, v)

Recall that the group E(s, v) acts on the tiling by n-gons with interior angles 

2n/s. The action is generated by reflections in the edges of this polygon. 

The orbifold Q (E(s, v)) is a u-gon. All edges are mirror lines. Each vertex is 

a corner reflection of order s/2. Topologically, the orbifold is a closed disk.

5.4.2 T h e Orbifold Associated to B (s ,v ,d )

The group B (s,v ,d ) acts on the tiling by u-gons with interior angles 2n/s. 

Recall the block diagram (Figure 5.10). The block diagram separates natu

rally into slabs of size d -F k, d — 1, d or  1. Each vertex of the tiling lies in 

one of these slabs. An edge either lies within a slab or joins two slabs. Recall 

the labelling of vertices and edges:

O bservation 5.4.1: An edge lies entirely within a slab if and only if it is 

labelled by a torsion generator (that is, a generator of order s or 2).
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O bservation  5.4.2: The edges labelled by non-torsion generators join two 

slabs. The non-torsion generators are labelled by bjt\ (1 <  j  l — 1) (if l =  1, 

then there arc no non-torsion generators). If we read the edges corresponding 

to non-torsion generators clockwise from the (d+k)-block, we get the sequence 

e(&rj). e(62, i ) , . . . , e ( 6jl111), e(bf\  e (6j } ) ,  e(6u ) (see Figure 5.18).

Consider a vertex of a relator of the form a*. In the quotient orbifold, this 

vertex becomes a cone point of order s (the action of the stabiliser o f this 

vertex (Zs =  (a()) on a neighbourhood o f this vertex is rotation through 

27t/ s ). The edges e(ai) and e(a,_1) become identified (Figure 5.19).



CHAPTER 5. REGULAR CAYLEY GRAPHS 1 4 8

cone point 
of order s

Figure 5.19. A cone point of order s

Consider e (x t) where x, is a generator of order 2. There is a fixed point at 

the centre c* of the edge e(x,). The action o f the stabiliser of (Z 2 =  (Xi)) 

is a rotation through 7r. So, in the quotient orbifold, we get a cone [Joint of 

order 2. The 2 half edges of e(xj) are identified (Figure 5.20).

Fix the integer j ,  0 ^  j  ^  l — 1. Consider the vertices v(bjtibjt2 • • • bjj), 

v(bjt2 ■ ■ ■ . . . ,  v(bjtJbjt\ ■ ■ ■ (again, 60,i =  a.,). These form a single

orbit. There are d ‘slices’ , each with an angle of 2n/n. Therefore, in Q, it 

becomes a cone point of order s/d.

O bservation 5.4.3: In the quotient orbifold Q (B (s ,v ,d )); the (d +  k)-slab 

becomes a vertex with k cone points of order s and d — k — 1 cone points of 

order 2 attached, each (d — 1 )-slab becomes a vertex with d — 2 cone points of 

order 2 attached, the d-slab becomes a vertex with d — 1 cone points o f order 

2 attached. Each of these vertices is a cone point of order s/d. The edges 

joining these vertices (labelled by the non-torsion generators) are identified 

cyclically so that Q (B (s,v ,d )) is topologically a sphere. (See Figure 5.21.)
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cone point 
of order 2 

O

P Q
Figure 5.20. A cone point of order 2

cone point o f  order s/d v(ai .. .ad)

Figure 5.21. The orbifold Q(B(s,v,d) )
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P roposition  5.4.4: The orbifold associated to the action o f  B (s,v ,d ) (s =  

Id 4- k, (l ^  1, 0 ^  k <  d )) on the tiling by v-gons with interior angles 2ir/s 

is a topological sphere with k cone points of order s, l cone points of order 

s/d and (d — k — 1 +  (l — 1) x (d — 2) +  1) =  l(d — 2) — k 4- 2 cone points of 

order 2. □

5.4.3 The Orbifold Associated to D(pv, v)

The group D(pv, v) acts on the tiling by v-gons with interior angles 2n/pv 

(Figure 5.15). The action is generated by rotations through w about the 

centre of each edge. The centre of each edge is a cone point of order 2. The 

vertices form a single orbit, which is a cone point of order p  in the quotient 

orbifold. The orbifold Q (D (pv,v)) is a topological sphere with v cone points 

of order 2 and 1 cone point of order p. This also follows from Observation 

5.3.10 and Proposition 5.4.4.

5.4.4 The Orbifold Associated to F(s, 2s)

The group F (s,2s)  acts on the tiling by 2s-gons with interior angles 2ir/s 

(see Figure 3.16 on page 144). There are no fixed points and so the quotient 

orbifold is a surface.

P roposition  5.4.5: The quotient surface Q (F (s,2s)) is a torus of genus 
s — 1 

2 ‘

P roof: The side identifications needed to obtain Q (F (s , 2s)) are shown in
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Figure 5.22. Identifications to obtain Q (F(s, 2s))

<-------- 1

Figure 5.23. The first piece of Q (F(s, 2s))

Figure 5.22. We proceed inductively.

The surface Q (F (3, 6)) is the torus. This follows from the fact that F (3 ,6) ^  

Z  x Z. It is also easy to check directly from the identifications.

For the inductive step, cut out the first two side identifications (------>-

and -----» ----- ) along the dashed line as shown in Figure 5.22. The surface

splits into two pieces. The first piece is a torus with a disk removed (see
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Figure 5.24. The second piece of Q (F (s, 2s))

Figure 5.23). The second piece is Q (F (s  — 2,2(s — 2))) with a disk removed
s — 3(see Figure 5.24). By the inductive hypothesis, this is a torus of genus —-— 

with a disk removed. The space Q (F (s, 2s)) is obtained by gluing these two

spaces along the boundary of the removed disk. Thus Q (F(s, 2s)) is a torus
,  , a -  3 s - 1  . , „of genus 1 H----- -— =  —- — as required. LI

5.5 Semi-Regular Tilings

A semi-regular tiling of 2-dimensional space is a tiling by regular polygons 

which are not all of the same type. We concentrate on 2 particular classes of 

semi-regular tilings; Archimedean solids and quasi-regular tilings.
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5.5.1 Archimedean Solids

An Archimedean solid, or semi-regular polyhedron, is a body inscribed in 

a sphere, bounded by regular polygons which are not all o f the same type, 

and such that its symmetry group acts transitively on the vertices. A tiling 

o f the sphere can be obtained from an Archimedean solid by projecting the 

edges from the centre of the solid onto the sphere which contains its vertices. 

Combinatorially, the tiling and the Archimedean solid are identical. It is well 

known that there are 13 Archimedean solids. We classify which of these 13 

polyhedra (shown in Figure 5.25) have the Cayley graph o f a group as their 

1-skeleton.

The arguments use the machinery introduced in Sections 5.2.4 5.2.6. In 

particular, we list; relator types to restrict the orders of the generators.

C u boctah edron  (Figure 5 .25 (a )): The cuboctahedron has 2 triangles 

and 2 squares at each vertex and has valency 4. These are the ordy simple 

loops of lengths 3 and 4. Therefore, there must be 2 generators, a,b, each 

having order 3. There are not any generators o f order 2 or 4, therefore, 

by Corollary 5.2.15, there cannot be a relator class of length 4 and type 1. 

Therefore, there must be one relator class of length 4 and it must have type 2. 

The group

A4 =  (a, I) | a3, b'\ (ah)*)

is the only group with the cuboctahedron as its Cayley graph (compare with 

Graph 13).

Snub cu b e  (F igure 5 .2 5 (b )): The snub cube has 4 triangles at each vertex
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( a )  cuboctahedron

( d )  rh o m b ic u b o c ta -  

h e d ro n

( g )  rh o m b itru n c a te d  

c u b o c ta h e d ro n

( h )  tru n c a te d  

te tra h ed ro n

ic o s id o d e c a h e d ro n

( f )  rh o m b ico s i-  

d o d e c a h e d ro n

( i )  rh o m b itru n c a te d  

ic o s id o d e c a h e d ro n

Figure 5.25. The Archimedean solids. These pictures are screen snapshots from 
geomview [LMP96].
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Figure 5.26. An unflanked 4-block

and has valency 5. The triangles are the only simple loops of length 3 (there 

are 7 simple loops of length 4; 1 of them is a square, the other 6 are boundaries 

of adjacent triangles). Therefore we must have exactly one generator, a, of 

order 3. The generator a must be part of another relator of length 3, abc 

say. We cannot have b =  c or b2 =  c2 =  1 because then we would have an 

octahedron subgraph (compare with Graphs 11 and 12). The snub cube has 

valency 5, so, without loss of generality, c is an involution. The block o f the 

set of relators R(a3) U R(c2) U R(abc) (where R(r) denotes the relator class 

of r) is an unflanked 4-block (see Figure 5.26). The relator class of abab has 

type 2 and the relator class of aacb~l has type 4. Therefore, the remaining 

relator class of length 4 (the one which goes round the square) must have 

type 1; it must be b4. Thus we have that the group

S4 =  (a, b, c | a3, b4,c2, abc)

is the only group which has the snub cube as its Cayley graph (compare with 

Graph 14). A similar argument can be used for the snub dodecahedron.

Icosidodecahedron (Figure 5 .25(c)): The icosidodecahedron is not the 

Cayley graph of a group. Suppose otherwise. There are 2 triangles at each 

vertex; thus 2 generators of order 3. There are 5 pentagons at each vertex;
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Cayley Graph 14. S4 =  (a, b \ a3,b4, (ab)2)

thus 2 generators of order 5. This contradicts the fact that the icosidodeca- 

hedron has valency 4. (Compare with Proposition 5.5.3.)

Rhombicuboctahedron (Figure 5 .25(d )): The rhombicuboetahedron 

has 3 squares and 1 triangle at each vertex. These are the only simple loops 

of lengths 3 and 4. Thus we have a generator of order 3. The generator of 

order 3 must appear in a relator class o f  length 4, which, by Corollary 5.2.15, 

must have type 2. Therefore, the only possibility is

54 =  (a, b | a3, b4, (ab)2),

(see Graph 14). A similar argument applies to the rhombicosidodecahedron.

We list the remaining cases (Isom(X) denotes the group of isometries of X
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and Isom f (JV) denotes the group of orientation preserving isometries of X):

Snub dodecahedron (Figure 5.25(e)):

A$ =  (a, ft, c | a3, b5, c2, abc).

Rhom bicosidodecahedron (Figure 5 .25 (f)):

As =  (a, b | a3, ft5, (ab)2).

Rhombitruncated cuboctahedron (Figure 5.25(g)):
(a, b, c | a2, b2, c2, (ab)2, (ac)3, (5c)4) =  Isom(cube)

=  Isom(octahedron) =  Isom(cuboctahedron).

Truncated tetrahedron (Figure 5.25(h)):
A4 =  (a, b | a3,b2, (ab)3) =  Isom+(tetrahedron).

Rhombitruncated icosidodecahedron (Figure 5.25(i)):
(a, b, c | a2, b2, c2, (ab)2, (ac)3, (be)5) =  Isom(ieosahedron)

=  Isom (dodecahedron) =  Isom (icosidodecahedron).

Truncated cube (Figure 5.25(j)):

1S4 =  (a,b  | a2,b3, (aft)4) =  Isorn+(cube).

Truncated octahedron (Figure 5.25(k)):
S4 =  (a,b  | a2, ft4, (ab)3) =  Isom+(octahedron)

=? (a ,b ,c  | a2, b2, c2, (ab)2, (ac)3, (be)3) =  Isom(tetrahedron).

Truncated dodecahedron (Figure 5.25(1)):

As =  (a, b | a2, ft3, (aft)5) =  Isom+(dodecahedron).
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Truncated icosahedron (Figure 5.25(m )):

A5 =  (a, b | a2,6s, (ab)3) =  Isom+(icosahedron).

In each case, the group given is the unique group which has a Cayley graph 

which is the 1-skeleton of the desired polyhedron. Further, with the excep

tion of the truncated octahedron, the choice of generators is unique up to 

automorphism and replacement by inverses.

The generating set which has the rhombitruncated cuboctahedron as Cayley 

graph is unique because there have to be relator classes of type 1 of lengths 

4, 6 and 8 with edges in common. There cannot be a generator of order 4 

because it would have to be part of a relator class of length 6 and type 1, 

which would contradict Corollary 5.2.15. Similarly, there cannot be gener

ators of order 6 or 8. The same reasoning applies to the rhombitruncated 

icosidodecahedron.

The truncated tetrahedron, cube, dodecahedron and icosahedron all must 

have one generator of order 3 (order 5 in the case of the truncated icosahe

dron) and one generator of order 2. The rest is decided from there. For the 

truncated octahedron, there are 2 ways of making the single square. The 

remaining generator has order 2 and the rest is decided.

Theorem 5.5.1: With the exception of the icosidodecahedron, the 1-skeleton 

of an Archimedean solid is the Cayley graph of a group. There is a unique 

group which has the 1-skeleton of a given Archimedean solid as a Cayley 

graph. □
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Figure 5.27. A quasi-regular tiling by squares and pentagons 

5.5.2 Quasiregular Tilings

A quasiregular tiling is a tiling by 2 types of regular polygon, .s-gons and t- 

gons, with v of each at each vertex, and such that each s-gon is adjacent only 

to f-gons and each i-gon is adjacent only to s-gons (see, for example, Figures 

5.27 and 5.28) . We refer to the 1-skeleton of such a tiling as Q(s, t; u). Note 

that Q(s, t\ v) =  Q(t, s; v). The 1-skeleton of the cuboctahedron is Q(3, 4; 2), 

the 1-skeleton of the icosidodecahedron is Q(3, 5; 2).

O bservation 5.5.2: The only simple loops of Q(s, t; v) of length s are s- 

gons.

Throughout this section, n, =  min {u  mod d | d|s}, d, is a divisor of s such
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that ns =  v mod ds, nt =  min {u mod d | d\t,} and dt is a divisor o f t such 

that nt =  v mod dt.

The first result is the analogue of Proposition 5.3.3:

P roposition  5 .5.3: / /  n, +  nt > v then Q(s,t\v) is not the Cayley graph of 

a group.

P roof: First note that if s and t are both even, then n + nt ^  2 ^  v. So 

we may assume that s is odd. Suppose that Q(s, t; v) is the Cayley graph of 

a group.

Claim : There are no generators o f order 2.
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P roo f: Suppose that a is a generator of order 2. Then a is part of a relator, 

r =  a&2&3 • • • 6S, of length s. Now, ar_1a =  abj1 ■ ■ ■ b f1. So, if ar~la =  r, then 

b2 =  b~l, 63 =  & 7 J 1 ,. . . ,  bk =  67+1! where k =  (s —  l ) / 2, which contradicts 

the fact that r is freely reduced. Therefore ar~la and r are distinct relators 

o f length s which have an edge in common. Thus the Cayley graph has a 

pair of adjacent s-gons. This cannot happen. □

By Lemmas 5.2.10, 5.2.13, Proposition 5.2.12, Observation 5.5.2 and the 

above Claim, there must be at least ns generators of order s and at least nt 

generators o f order t. Therefore Q(s, t; v) has valency at least 2(ns+ n () > 2v, 

which is a contradiction. □

P rop osition  5.5.4: Suppose that n, =  v and that v \ t, then Q(s, t; v) is not 

the Cayley graph of a group

P roo f: Suppose that Q(s, i; v) is the Cayley graph of a group and that 

n, =  v. Then s is odd and there must be n, =  v generators, each having 

order s. Since v \ t, Lemma 5.2.10 implies that there cannot be relators of 

length t and type v. Therefore, there is a relator of length t which involves m 

generators, where m < v. This gives us a flanked 2fc-block, for some k < m 

(/c|m). This cannot happen if the Cayley graph is Q (s,t-v ). □

P rop osition  5.5.5: If s and t are both even then Q(s, t ; v) is the Cayley 

graph of the group

E ( s ,  t\ v )  =  (0 1 , . . .  ,a„, | a f , b ? , ( a i b i ) ‘ / 2 , (6iai+,) t/2>.
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If v | .s then Q(s,t-,v) is the Cayley graph o f the group

D (s, v) — , av | Gj, (a, • • • gv)  ̂ .

If v — 2 and s is even, then Q(s, t\ v) is the Cayley graph of the group 

T (s ,t ; 2) =  (a, 6 | a‘ , (aft)s/2).

The group T (4 ,3; 2) =  A4 has the 1-skeleton of the cuboctahedron as its 

Cayley graph.

Conjecture 5.5.6: If Q(s,t',v) satisfies neither the conditions for Propo

sition 5.5.3 nor the conditions for Proposition 5.5.4 then Q (s ,t;v ) is the 

Cayley graph of a group.

Remark: One method of construction is to take ns generators of order s, 

nt generators of order t and v — n, — nt generators o f infinite order. We 

make relators of length s (a string of ds distinct symbols raised to the power 

s/da) out o f the generators which do not have order s and relators of length 

t out of the generators which do not have order t. We try to choose these 

relators so that they fit together nicely to form Q(s, t; v ) as the Cayley graph. 

This method has worked for every example that I have tried, but there does 

not seem to be a general method for choosing the relators. For example, 

Q (5 ,7; 8) is the Cayley graph of the group

a, b, c 
d

f \ !L ti

a5, 6s, c5
d7

defgh, abcghfe
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and Q (5, 7; 12) is the Cayley graph of the group

a, b
c, d, e, / ,  g 
h ,i , j ,k ,l

c7,d7,e 7, f 7,g 7 
cdefh, gijkl~l,ablkjih

(The appearance of l *, as opposed to l, in one of the relators in the second 

presentation is necessary.)
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