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F. Summary

Work in this thesis examines the structural properties of various catalytic chain 

transfer agents (CCTA’s) and their effect and implications on catalytic chain transfer 

polymerisation (CCTP). CCTP is an effective polymerisation technique for producing 

low molecular weight methacrylate and styrene polymers that contain terminal vinyl 

functionalities. CCTP has also been shown to be effective in both emulsion and bulk 

polymerisation techniques using catalytic quantities of the CCTA. The products of 

CCTP (macromonomers) can also be used to produce copolymers.

The work contained here has examined the effect of increasing equatorial 

carbons in low spin cobalt (II) complexes, whilst both the effects of equatorial and 

axial ligands has been examined for cobalt (III) analogues in both MMA and Styrene 

bulk polymerisations. Results have shown that the activity (Cs values) for cobalt (II) 

complexes is affected by varying the equatorial carbons, increasing the number of 

carbons leads to a decrease in C5. Cobalt (III) complexes have shown that a strong 

axial base ligand (pyridine) combined with increased equatorial carbons leads to a 

further decrease in catalytic activity whilst the introduction of a weak base (water), 

combined with increased equatorial carbons increases activity when compared to the 

pyridine analogues. It has been shown that it is possible to control the partitioning 

properties of these complexes by varying the equatorial and/or axial ligands. Results 

indicate that the complexes would depending on their partitioning results be effective 

to a lesser or greater degree in emulsion polymerisation.
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CLD Chain Length Distribution

F transfer Activation Energy o f  Transfer

E prop Activation Energy o f  Propagation
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1.0. Introduction

1.1. Addition Polymerisation 1 23 4-5.

Two general types of chemical processes are responsible for the incorporation of 

monomers into a polymeric chain, referred to as step growth and addition mechanisms.

In free radical addition or chain growth polymerisation each polymer molecule is formed 

in a short period of time and then is usually excluded from further participation in the 

reaction.

The most often applied addition polymerisations are those of vinyl monomers, see fig 1.1. 

Figure 1.1 Polymerisation of vinyl monomers.

Important polymers from this class of monomers are poly(ethylene) (X=H), 

poly(propylene) (X=CH3), poly(styrene) (X=phenyl) and poly(vinylchloride) (X=C1).

In addition, some vinyl monomers are polymerised on a large scale; an example of this is 

methyl methacrylate 1, see figure 1.2.

Figure 1.2. Structure of Methyl Methacrylate (MMA)
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Depending on the nature of the substituent X, the addition polymerisation can be carried 

out by different techniques and mechanisms, one of these being radical polymerisation.

1,2. Free radical polymerisation.

This can be described by a sequence of three steps:

1. initiation

2. Propagation

3. Termination

1.2.1 Initiation.

The initiation step consists of two separate reactions. The first is the production of free 

radicals by any one of a number of reactions. The usual case is the homolytic dissociation 

of an initiator (1) to yield a pair of radicals R •.

I >2 R

Where kj is the rate constant for the initiator dissociation.

R ‘ + M  *—i> M,*

Where kj is the rate constant for the initiation.

( 1.1)

( 1.2)

The second part of the initiation involves the addition of this radical to the first monomer 

molecule to produce the chain initiating species M| •. Where M represents a monomer 

molecule and kj is the rate constant for the initiation step.
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1.2.1.1 Modes of generating primary radicals.

There are several ways of generating radicals from the dissociation of initiator 

these include thermal decomposition, photo-dissociation and redox reactions, the former 

method will be discussed.

1.2.1.1.1 Thermal decomposition.

The most common initiators in this class usually contain weak bonds, which 

decompose at significant rates at moderate temperatures to yield free radicals. The usual 

kinetic requirement of such a thermal initiator is that it should decompose with a first- 

order rate constant. The thermally unstable bonds concerned are peroxide (-0-0-) or azo 

(-N=N-).

a.a'-Azobisisobutyronitrile (AIBN) is often used as a thermal initiator in radical addition 

polymerisation systems. Its effective decomposition process is shown below, see fig 1.3. 

Figure 1.3. Decomposition of AIBN.

(1.3)

During the decomposition nitrogen gas is evolved and cyanopropyl radicals are 

generated, which subsequently add onto a monomer molecule to commence the growth of 

the chain, i.e. propagation.
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AIBN is usually employed as a thermal initiator at temperatures in the range of 315-335 

K. Not every act of decomposition of an AIBN molecule leads to a pair of free radicals, 

which are able to react with the monomer concerned. Some of the radicals fail to escape 

from the surrounding solvent cage before they undergo other deactivating processes, thus 

an efficiency factor ( /)  is defined. This is a measure of the fraction of initiator fragments, 

which actually initiate chain growth. The actual initiation rate (Ri) of polymerisation can 

be expressed by the rate of decomposition of the initiator molecules modified by /  and 

the number of radicals generated per molecule decomposed.

The rate of initiation Ri will be given by

Ri = 2 /kd[I]

( 14 )

Where [I] = concentration of initiator.

Figure 1.4. Initiation of methylmethacrylate.
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1.2.2 Propagation

Propagation consists of the growth of M| • by successive additions of monomer 

molecules. Each addition creates a new radical, which has a similar identity to the one 

previously, except that it is larger by one monomer unit. The successive additions may be 

presented in general terms by:
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Mn •+ M •> Mn +

(1.5)

Where kp is the rate constant for propagation. Propagation with growth of the chain to 

high polymer proportions takes place very rapidly.

Figure 1.5. Propagation of MM A.

1.2.3 Termination

At some point in the reaction the propagating polymer chain stops propagating 

and terminates. Termination with the annihilation o f the radical center occurs by 

bimolecular reaction between two radicals. This occurs by one of two competing ways, 

combination and disproportionation.

1.2.3.1. Combination

Two radicals react with each other by combination (coupling) to form ‘head to 

head' linkage within the polymer chain, simplified as:

CH'3 CH'3 CH C H , CH , C H ,
, , 3 I 3'3 k,

H ,C -------- C H r-C  .
3 2 I

CN C 0 2CH3 c o 2c h 3
HjC f"CĤ  pj-^CHj-Ç ■

CN  C 0 2C H 3 C 0 2C H 3

Growing Polymer Chain

Mn •+ Mm > Mn + m

( 1.6 )
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Figure 1.6. Combination of PMMA.
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Where ktc is the rate constant for termination by combination. The formation of a head to 

head linkage will cause an irregularity or ‘weak link' in the polymer chain. This in turn 

will lead to a reduction in the thermal stability of the corresponding polymer product, 

especially in the case of PMMA 6.

1.2.3.2 Disproportionation.

This is where a hydrogen radical that is /? to one radical center is transferred to a 

second radical center. This results in the formation of two polymer molecules, one 

saturated and one unsaturated, simplified as:

Mn • + Mm • — > Mn + Mm

(1.7)
Where k,d is the rate constant for termination via disproportionation.

Figure 1.7. Termination of PMMA by disproportionation.
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It has previously been shown 5 that for oligomeric alkyl methacrylate radicals, 

disproportionation will favour the abstraction of a hydrogen atom from the a-methyl 

group to give terminal unsaturation rather than from a methylene unit which would form 

an internal double bond. It is easier to abstract the hydrogen at the a-methyl group. Both 

combination and disproportionation can. and do occur simultaneously for a given 

polymer system. The relative proportion of each will depend on the reactants used and 

the polymerisation conditions being employed. The ratio of disproportionation to 

combination for MMA (the ratio of kuj/klc) varies widely from 0.6 to greater than 1.8 5. 

Styrene and acrylates terminate predominantly via combination with less than 10% of 

termination arising from disproportionation 1.

1.2.3.3 Chain transfer

The overall process involves a propagating chain Mn reacting with a transfer agent (T) to 

terminate one polymer chain and produce a radical (T-), which initiates a new chain (M). 

The transfer agent may be a deliberate additive or it may be the initiator, monomer, 

polymer, solvent or any other species present in the reaction medium.

Chain transfer:

M n• + T — > Mn + T-

Where k„ is the rate constant for transfer 
Reinitiation:

(18)

T • + M — ► Mn •

Where ks is the rate constant for reinitiation.
(1.9)
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In kinetic analysis an assumption is made which postulates that the total 

concentration of radicals in the system will reach a constant (steady state) value. At this 

'steady state' it follows that the rate of termination will be equal to the rate of initiation, 

this is not always a valid assumption. In free radical polymerisations such as bulk 

systems it is sometimes found that as higher conversions are reached there is a sudden 

increase in the overall rate of polymerisation. This arises since the increased viscosity of 

the system at higher polymer concentration will lead to a decrease in the rate of 

termination compared to the rate of propagation. This is known as the Gel or 

Trommsdorff effectP

The kinetic chain length vof a radical polymerisation is defined as the average number of 

monomer molecules consumed per radical.1 This is given by the ratio of the overall rate 

of polymerisation, Rp. to the rate of initiation, Rj or to the rate of termination, Rt, i.e.

Substitution of individual rates into the above expression leads to the kinetic chain length 

being inversely proportional to the square root of the initiator concentration. This means 

that any increase in the initiator concentration in an attempt to increase the 

polymerisation rate will lead to shorter polymer molecules being formed.

1.3.Methods of controlling molecular weight in free radical polymerisations

system.1-*

Usually, in most free radical systems, the molecular weight of the polymer produced is 

very high and can often be too high for some practical purposes, indeed in certain
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instances very- low molecular weight polymers (oligomers) are required which thus 

necessitates the need for molecular weight control to be employed. In the past. one. or 

both, of the following methods have achieved this control:

1.3.1. Use of high initiator concentrations.

By altering the ratio of initiator to monomer in the polymerisation system some 

control over the molecular weight of the polymer can be achieved. With more initiator 

being present there will be a higher radical concentration for a given amount of 

monomer, thus producing lower molecular weight polymer.

1.3.2. Addition of chain transfer agents.

Chain transfer agents are added to the polymerisation system where a reduction in 

molecular weight is required. The transfer reaction competes with the propagation step: 

the radical formed by the transfer agent can then go on to reinitiate monomer, w hich may 

then proceed to propagate. Common chain transfer agents used are alkyl mercaptans. 

carbon tetrahalides and tertiary amines, all of w hich provide a decrease in the molecular 

weight of selected polymers without significantly altering the rate of polymerisation.

1.4. Polymerisation systems.41)111

When starting the production of a polymer, one has to consider which 

polymerisation system and which polymerisation reactor is most appropriate.

This choice is determined by a number of factors, which are specific for polymer 

systems:
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• The chemical composition of all chains should be the same.

• Successive product charges should possess the same desired molar mass distribution.

• The viscosity of the reaction medium may increase enormously during 

polymerisation.

• Purification of the polymer after its production is unattractive.

1.4.1. Bulk polymerisation.

This system is essentially composed of only monomer/polymer. This technique is 

most commonly used for polymerisations which proceed through functional groups in a 

stepwise manner and then the method merely involves heating the straight monomer or 

monomer mixture (sometimes with addition of a small amount of a catalyst to increase 

the reaction rate). The system is maintained in a fluid state by keeping the temperature 

sufficiently high. In this type of reaction there is a progressive increase in molecular 

weight and the high viscosity of the resultant polymer melt can lead to handling 

difficulties. When the technique of bulk polymerisation is applied to polymerisations, 

which involve chain reactions, the monomer is heated with a small amount of appropriate 

initiator. Again there is a substantial rise in viscosity as the concentration of polymer 

(which is soluble in the monomer) increases and this can lead to difficulty in dissipating 

the high exothermic heat of reaction which is usually a feature of such polymerisations. 

As there is a possibility of localised overheating leading to degradation and discoloration 

of the polymer, bulk polymerisation is seldom practiced with large batches. Bulk 

polymerisation results in a relatively pure polymer.
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1.4.2 Solution polymerisation

Here the monomer is dissolved in a solvent prior to polymerisation. This 

technique is commonly employed for the ionic polymerisation of gaseous vinyl 

monomers. The solvent facilitates contact of monomer and initiator (which may or may 

not be soluble in the solvent) and assists dissipation of exothermic heat of reaction. A 

limitation of this technique is the possibility of chain transfer to the solvent with 

consequent formation of low molecular weight polymer. An added disadvantage is the 

need to remove the solvent in order to isolate the solid polymer. In this respect it is 

common practice to use a solvent in which the monomer the resulting polymer are 

soluble.

1.4.3 Suspension polymerisation

The monomer is dispersed in water in small droplets maintained by vigorous 

stirring. This technique is extensively used for free radical polymerisation of vinyl 

monomers. An initiator soluble in monomer is added and polymerisation occurs within 

each droplet. Besides facilitating the removal of exothermic heat of reaction, suspension 

polymerisation has the advantage that the polymer is obtained in the form of small beads, 

which are easily collected and dried. The polymer is relatively free from contaminants 

and there are no solvent recovery considerations.

1.4.4 limulsion polymerisation.

Mere the monomer is dispersed in water containing a soap to form an emulsion, 

such dispersion is stable and its existence is not dependant on continued agitation. This 

technique is extensively used for the free radical polymerisation of diene monomers in 

the preparation of synthetic rubbers. In this case a water-soluble initiator is used and the
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course of the polymerisation is considerably different from that followed in the systems 

described previously. At the start of an emulsion polymerisation three components are 

present:

1. Relatively large droplets of monomer, stabilised by soap molecules around the 

periphery.

2. Aggregates (micelles) of 50-100 soap molecules swollen with monomer.

3. The aqueous phase containing a few monomer molecules and the initiator which 

gives rise to free radicals.

The monomer droplets and the micelles swollen with monomer compete for the free 

radicals generated in the aqueous phase, but since there are many more micelles than 

droplets in the system most of the free radicals enter micelles resulting in polymerisation 

within individual micelles. The monomer consumed during the resulting polymerisation 

is replenished by diffusion of new monomer molecules from the aqueous phase, which in 

turn, is kept saturated with monomer from the droplets of monomer. Polymerisation 

continues within a given micelle until a second free radical enters the micelle in which 

case termination quickly occurs because of the small volume of the reaction locus. The 

particle then remains inactive until a subsequent free radical enters the particle resulting 

in larger particles of polymer swollen with monomer which are stabilised by soap 

molecules around the periphery. Monomer continues to diffuse into these particles and 

polymerisation is maintained therein until the monomer supply is exhausted.

The final product is a stable dispersion (latex) of polymer particles. The polymer 

is isolated by ‘breaking’ the latex, usually by the addition of acid which converts the soap 

to fatty acid. In some instances, the latex is used directly without coagulation, such is the
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case in, for example, the preparation of poly(vinylacetate) latex paints. An attractive 

feature of emulsion polymerisation is that it is possible to prepare very high molecular 

weight material at high rates of conversion.

1.5. Polymer molecular weight averages.

Polymers are generally polydisperse, meaning that in a sample the individual 

molecules are not all the same size and there is a range of molecular masses accordingly. 

Thus only average values of relative molecular masses can be specified usually for a bulk 

polymer. Immediately there is complexity because there are several types of average 

which of these averages is measured depends on which method is used to determine it.

1.5.1 Number average molecular weiuht ( Mn).

This is the simplest average and is denoted as M» . It is defined by the following 

expression :

( 111)

Where Ni is the number of molecules in each separate fraction, M| number of molecules 

of just one relative molecular mass within the fraction, ENj, the total number of 

molecules in the original sample. The relative mass of Ni molecules of relative molecular 

mass Mi is the product NiMi, so that ENjMi is the mass of the original sample. M> is the 

total mass divided by the toal number of molecules. M> is given by molecular weight
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methods that depend upon end-group analysis or colligative properties (e.g. by osmotic 

pressure etc.) i.e. where the number of molecules are analysed.

1.5.2 Weight average molecular weight.

The weight average molecular weight ( M .) of a polymer arises from analysis of 

the weight fraction of each species present (as opposed to number fraction for M„ ). The 

weight average molecular weight is calculated as follows:

—  £W,Mi ZN.M,2
Alw  — -----------------------— --------------------------

I W i  IN ,M i

( 1. 12)

Methods of measurement include light scattering and ultracentrifugation methods that 

depend on the mass of the species present.

1.5.3 Polvdispersitv Index.

The value of M. of any polymer is always greater than that of M» since a distribution 

of molecular weight is invariably observed. The width of this distribution is quantified in 

terms of the polydispersity index (PDi) where:

(1.13)
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1.6. GPC analysis.

GPC analysis has been utilised throughout this work for the characterisation of products. 

Gel permeation chromatography, more correctly termed size exclusion chromatography, 

is a separation method for polymers, similar to but advanced in practice over gel 

filtration. The separation takes place in a chromatographic column filled with beads of a 

rigid porous gel. highly crosslinked porous polystyrene and porous glass are preferred 

column packing materials. The pores in these gels are of the same size as the dimensions 

of polymer molecules. A sample of a dilute polymer solution is introduced into a solvent 

stream flowing through the column. As the dissolved polymer molecules flow past the 

porous beads they can diffuse into the thermal pore structure of the gel to an extent 

depending on their size and the pore size distribution of the gel. Larger molecules can 

enter only a small fraction of the internal portion of the gel. or are completely excluded, 

smaller polymer molecules penetrate a larger fraction of the interior of the gel. The larger 

the molecule, therefore, the less time it spends inside the gel, and the sooner it flows 

through the column. The different molecular species are eluted from the column in order 

of their molecular size as distinguished from the molecular weight, the largest emerging 

first. Subsequent to elution the polymer solution passes through a detector. There are 

various types of detectors, the one utilised in this work is the refractive index detector 

(DRI).
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1.7. Catalytic chain transfer polymerisation (CCTP1.

1,7,1 Introduction

In 1975 the phenomenon known as ‘catalytic chain transfer' emerged ". Catalytic chain 

transfer differs from conventional chain transfer as the catalyst is regenerated and as such 

small quantities of the transfer agent are required to effectively reduce molecular weight. 

A combination of both points leads to the advantage that little colour, toxicity or odour 

properties are incorporated in the product. In comparison, conventional chain transfer 

where for example, when thiol containing agents were used then odour is a problem. 

CCTP also offers a further advantage in that it introduces an end functionality in the form 

of a double bond which can subsequently be modified l2.

CCTP utilises cobalt containing complexes as chain transfer agents.

Initial CCT research/polymerisations were carried out in bulk.1 I However, the 

development of the process in emulsion polymerisation has allowed its use and 

applications to be extended to the paints, adhesives and coatings industries. This has 

enabled the industries to become more environmentally friendly, which today is a much 

sought after commodity with respect to the environment legislation requiring the use of 

low levels of organic solvents.

Free radical polymerisation has been widely adopted in the synthesis of plastics 

and coatings for over fifty years owing to its versatility of the reaction with high 

tolerance to impurities, water, functional groups and additives. However, a disadvantage 

with this method of polymerisation is that free radicals tend to be highly reactive non- 

selective intermediates and it is difficult to isolate ‘clean’ products. This leads to broad
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molecular weight distributions and random stereochemical configuration of units along 

the macromolecular chain.

Conversely CCTP on the other hand produces low molecular weight 

polymers/oligomers. which would otherwise require the use of high concentrations of 

initiator and/or mercaptan chain transfer agents. In addition cobalt complexes have been 

utilscd to produce narrow polydispersity polymers via the pseudo-living free radical 

polymerisations of acrylates l7'20.

1.7.2 Mechanism of CCTP.

CCTP has its origins in biochemistry where coenzyme B12 is utilised in many 

'free radical' reactions. Coenzyme B12 catalyses three different reactions in biochemistry- 

i). intramolecular rearrangements, ii). methylations, iii). reduction of ribonucleotides to 

deoxyribonucleotides. Intramolecular rearrangements are exchanges of two groups on 

adjacent carbon atoms. The first step involves cleavage of the cobalt carbon bond to form 

cobalt (II) d’ with an unpaired electron and a homolytic cleavage reaction. The key to the 

effectiveness of coenzyme B12 is the facile nature of the homolytic bond cleavage.

The first work on polymerisations utilizing analogues of B12 was carried out by 

Smirnov and coworkers 1 ll5'16, they discovered that it was possible to catalytically 

regulate the molecular weight of a polymer. Catalytic restriction of the molecular weight 

was discovered in the case of the polymerisation of methylmethacrylate initiated by 

AIBN in the presence of the cobalt complex of tetramethylester of hematoporphyrin. 

Results showed that less than ten percent of the catalyst was consumed, therefore the 

potential number of times each catalyst molecule could be used reached a value in the
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order of 10 6. It was also assumed on the basis of spectrophotometric data that during the 

polymerisation the bulk of the catalyst existed in the reaction medium in the form of the 

original porphyrin. The catalytic nature of the reaction derived from the regeneration of 

the cobalt porphyrin complex was proved by isolation at the end of the polymerisation 11. 

This paper also reported that the kinetic laws observed for methacrylic monomers were 

similar to those for methylmethacry late but that a more complicated law was observed for 

the polymerisation of styrene and acrylic monomers 11.

In a proceeding paper the authors 16 discussed the possibility that chain transfer 

catalysts affected the transport of a hydrogen atom by some route or other as it was 

concluded that although the catalyst reduced the molecular weight of the polymer it had 

no influence on the rates of other elementary stages, it was not consumed during the 

process and did not appear in the composition of the product. The catalytic nature of CCT 

is shown in the following reaction sequences l3:

MMA + Co -  Por <=> [MMACo — Por]

[MMACo -  Por] + Rn • —► Pn • + HCo -  Por + R. •

(1)

R* • + Co -  Por —> Pn + HCo -  Por 

HCo -  Por + MMA —► R, • + Co -  Por

( 2)
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The first sequence suggests the activation of monomer by Michaelis-Menton catalyst 

with subsequent chain transfer to the activated monomer. Whilst in the second sequence 

the growing radical disproportionates the catalyst with formation of cobalt hydride which 

then reinitiates a new chain. The second sequence was also suggested by O'Driscoll 21.

Chain transfer constants given for the porphyrin complexes are three to four 

orders of magnitude above those quoted for mercaptan derivatives. The importance of the 

cobalt (III) hydride as an intermediate has been verified by the trapping and synthesis of 

the unstable compounds which have been shown to act as initiators l9-22. O’Driscoll found 

that temperature and chain length affected CCTP and that some retardation on the rate of 

polymerisation was seen when a CCT agent was added 21-23. The author stated that this 

retardation was not associated with chemical control but was solely determined by the 

chain length of the growing macroradicals. Smirnov 23 used a variety of cobalt based 

CCT agents and argued that if the explanation given by O’Driscoll was correct then the 

retardation should be independent of catalyst and solely determined by chain length.

Their results appeared to show that there was both a catalyst effect and a chain length 

effect. A point of interest with CCTP is whether the polymerisation progresses entirely 

via a free radical route or whether the cobalt complex coordinates to the chain end and is 

thus central to the propagation itself. Davis et al after studying the results from other 

workers suggested that experimental evidence pointed to the involvement of monomer in 

the catalytic transfer process 24. They believe that the straightforward mechanism of 

hydrogen abstraction and initiation of a new monomer with a hydrogen atom could be 

discounted. In support of their claim they suggested that the addition of a hydrogen atom 

to monomer is not likely to be 100% regiospecific and some measurable amount of head
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to head addition would occur. They claim that the regiospecific addition of the hydrogen 

is unlikely in a free transfer event and therefore coordination of the monomer with the 

cobalt complex allowing insertion of hydrogen to start a new growing chain is more 

likely. They proposed an alternative mechanism for the production of oligomers by cobalt 

coordination compounds, a catalytic cycle. Figure 1.8. The cycle conforms to the 

generated reaction model presented by Scheffold for cobalt carbon bond formation and 

cleavage 25. Davis et a l26 then attempted to build a mechanism for CCTP using a 

simulation based on the Daikh + Finke model as a starting point 27. Daikh and Finke 

modeled a rearrangement of a cobalt complex via free radical intermediates and show ed 

that in certain cases the radical reaction can be controlled very specifically. The aim 

behind the work of Davis was to show that significant changes in the mechanistic route 

can occur through very subtle variations in the processes. Most of the cobalt species 

exists in complexed forms, less as free radicals and even less as caged radicals. Radical 

termination is suppressed although not entirely stopped by a build up of the cobalt (II) 

free radical species relative to alkyl radical. For the propagation step when monomer is 

included there are two possible sites where propagation can occur: (i) The alkyl free 

radical can act as an initiator resulting in chain growth with time. This growing radical 

can also exist in equilibrium with the cobalt complex in the same way that the initial alkyl 

radical does.(ii) Insertion of monomer into the caged radical species - it is not known 

whether this can occur- if propagation occurred like this then the transition state for 

radical addition would be unchanged unless coordination occurred, there is no data to 

prove this. Davis 26 shows by a simulation that the majority of chain growth originates 

from the free radical species as opposed to the caged radical because the concentration of
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free radicals are higher than the concentration of caged radicals. This also suggests that 

the drawing of the cobalt species as central to the propagating centre is misleading 2i 2<> 

suggesting a cobalt group transfer polymerisation mechanism. Also if coordination 

polymerisation was occurring simultaneously with the free radical process then its 

contribution is likely to be negligible. CCTP is a radical - radical process and is therefore 

very fast and diffusion controlled, therefore it is unlikely to be rate determining. The 

reinitiation of chains occurs v ia an insertion reaction, this step may be partially 

responsible for the retardation of the rate observed. As the transfer process is extremely 

efficient this reaction step will become important relative to the propagation event, i.e.: if 

kj<kp a difference in overall rate of polymerisation will become observable. This would 

explain Smirnovs' observation that the nature of the cobalt complex determines to some 

extent the change in the rate of retardation 23. The influence of an external source of 

radicals was also discussed. Davis refined Hawthornes'30-31 observation that the rate of 

reaction in the absence of an external initiator is very slow. Hawthorne implied that an 

external source was required to replace radicals that were lost from the system. Although 

Davis stated that this is true, he further demonstrated that the loss of radicals w ith time 

was not substantial, and therefore the effect of increasing the concentration of radicals 

was to increase the rate simply because there are more grow ing chains hence increase the 

rate of termination. In the specific case where a cobalt (II) compound w as used in 

conjunction with a free radical initiator (as described by O'Driscoll et a l 2I) then the 

initiator fragment can either initiate polymerisation directly or it can react with cobalt (II) 

to form a cobalt (III) complex which in turn will initiate the polymerisation. The relative 

importance of these initiation routes will depend on the specific ratios o f the rate
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constants and the concentrations of the components in the system. Haddleton et al have 

shown that the majority of the oligomers formed by CCT do not have initiator ends 32 33. 

1.7.3 Proposed catalytic cycle for CCTP.

In catalytic chain transfer polymerisation, initiation, propagation, and termination are 

thought to occur by a free-radical process. The chain transfer reaction is thought to 

involve a growing polymer chain, encountering a cobalt (II) complex, resulting in 

hydrogen abstraction, producing a dead polymer chain, with an unsaturated end group 

and a cobalt (III) hydride species. Monomer can then react with Co(IIl) hydride to 

produce a monomeric radical -  reinitiation, (which then propagates to form another 

chain) and the original cobalt(II) catalyst. A mechanism is illustrated in figure 1.8. 

Figure 1.8. Proposed catalytic cycle for CCTP by Davis and co-workers.
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The aim of the following sections is to discuss some of the points and products in the 

cycle.

1.7.3.1 The use of cobalt (III and cobalt (1111 complexes in CCTP.

As stated previously CCTP has its origins in biochemistry where coenzyme Bi2 is used. 

Coenzyme B i2 consists of a corrin ring (not completely delocalised) with a central cobalt 

atom that can have a +1, +2 or +3 oxidation state. The development of chain transfer 

agents over the years has led to the use of certain low spin cobalt (II) and cobalt (III) 

complexes which are today regarded as highly efficient chain transfer agents.

The application of cobalt mediated free radical reactions to polymerisations was 

first reported by Takahashi34 who noted that vinyl monomers could be polymerised by a 

cobalt cyanide complex in the presence of hydrogen. Pentacyano cobalt (II) and (III) 

derivatives were later found to be active as free radical initiators 35.

This work was followed by Smirnov and Enikolopyan 1113 who discovered that 

cobalt reagents catalysed chain transfer in free radical polymerisations. Cobalt porphyrins 

(Co-Por) of the type in Figure 1.9, (tetramethyl ether of cobalt hematoporphyrin) were 

found to induce catalytic chain transfer in methylmethacrylate polymerisations, they also 

noted that porphyrin complexes of other metals such as Rh, Pd, Fe, Cu and Zn and the 

unmetallated porphyrins were also catalytically inactive in addition to cobalt compounds 

such as the acetate, stearate, and acetylacetonate. A range of other cobalt porphyrin 

complexes have also been investigated with varying degrees of success n,uJW?<
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Figure 1.9. Structure of the porphyrin complex first used in CCTP by Smirnov.

BASI-

Gridnev et a l36 investigated the structural aspects necessary for a complex to be a good 

CCTA. The following general features were outlined:

(i) The complex should have cobalt in its low spin state,

(ii) There should be not less than three donor N-atoms

(iii) There should be a ‘semi-ring’ system of 71 - conjugation i.e. not fully conjugated

(iv) The ligand should carry one or two delocalised negative charges.

In 1984 O’Driscoll used cobaloximes for the first time 21-22. This involved replacement of 

the porphyrin with a cobalt (II) dimethyl glyoxime (Co-DMG) , Figure 1.10. It was found 

that this complex was extremely oxygen sensitive and that in the presence of oxygen it 

underwent oxidative addition of O2 to its metal center and formed a stable complex of 

cobalt (III) which was no longer active. In order to improve the oxygen stability of the 

cobaloxime O’Driscoll used triphenylphosphinc as a base ligand which stablised the 

cobaloximc and enabled them to handle the complex.

Trans to the base ligand is the sixth coordination position in the cobaloximc, 

which can be considered as a phantom ligand. This lobe of electron density is the site of 

the cobalt (II) complexes catalytic activity.
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Figure 1.10. Structure of cobaloxime first used by O ’Driscoll.

0
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Where B = Base ligand

Two patents were filed utilising the cobaloxime 38-39. Carlson patented the cobaloxime 

with pyridine and phosphines as base ligands. The claimed advantages were that the 

pyridine dioxime complex of cobalt (II) provided an excellent chain transfer mechanism 

for controlling molecular weight of the polymers. The polymers had improved colour 

over the porphyrin based complexes and were extremely easy to synthesise.

Sanayei et a l22 40 reported the use of BF2 bridged derivative of cobaloxime 

(CoBF) as a CCTA whilst the Du Pont group patented its use 41, see Figure 1.11. It is 

reported to be more tolerant to oxidation and hydrolysis.

Figure 1.11. Structure of bis(dimethylglyoximate) Cobalt Boron Fluoride (CoBF).
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Several publications describe the use of CoBF 22,26,30,40.42-48 f o r  emulsion and bulk 

polymerisations. The DuPont series of patents covers its use in solution terpolymerisation 

49, suspension 50 and emulsion polymerisation 51. The results demonstrate the versatility 

of the structure and its tolerance to solvents and reaction conditions. The synthesis of this 

compound has been described by Bakac and Espenson 52.

All of the original catalysts were based on cobalt (II). Hawthorne 30JI has 

developed a series of cobalt (III) catalysts which are directly analogues to the cobalt (II) 

structures, see Figure 1.12, porphyrins, cobaloximc. pentacyano and CoBF except for the 

presence of an alkyl ligand. The cobalt (III) catalysts are reported to be superior to the 

cobalt (II) catalysts in emulsion polymerisation 53.

Figure 1.12. Structure of the cobalt (III) complex used by Hawthorne and Moad.

'3' '3

/ \
F F

Where R = Alkyl, Halogen

B= Base ligand
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1.7.3.1.1. The use of axial lieands in cobalt (III and cobalt (III) complexes.

The nature of the axial ligands have been shown to be vital in controlling the efficiency 

of chain transfer.

1.7.3.1.1.1. The use of axial ligands in cobalt (111 complexes in CCTP.

Square planar cobalt (II) complexes feature ligands in the axial positions coordinated to 

the central metal. The nature of these ligands will depend on the synthetic route taken to 

the cobalt (II) complex. For example, if the product is obtained by recrystallisation from 

methanol then the axial ligands will be methanol. Similarly, if synthesis is carried out in 

the presence of coordination bases such as pyridine, then the axial positions will be 

occupied by the pyridine molecules.

1.7.3.1.1.2. The use of axial liuands in cobalt (111) complexes in CCTP:

These compounds are slightly more complex as it is normal to have one base ligand and 

one alkyl ligand as shown previously in Figure 1.12. For cobalt (III) complexes to 

become effective chain transfer agents they must be reduced to cobalt (II). The tendency 

towards reduction depends on the nature of the ligands which determines the degree of 

oxidation of the cobalt atom. Clearly the nature of the axial ligands has an effect on the 

bond dissociation energy. Several workers have observed that the chain transfer 

coefficient (C5) and rate of polymerisation can be affected by using different ligands. 

Gridnev et al investigated this effect on cobaloximes 54 stating that if the ligand R is NO2 

,CN . or a primary alkyl then the reduction of Co(III) to Co(II) is blocked. If however R 

is an acid group such as a halogen or CNS group then the reduction proceeds. Gridnev
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termed ligands of type R as unique switches for catalysis of chain transfer. It is reported 

that the effect of ligands B of the Lewis base type increase the catalytic activity of the 

cobaloxime in proportion to an increase in their own trans effect.

Halpem postulated that the dissociation of the cobalt carbon bond involves 

reduction of the cobalt, i.e., a decrease in the formal oxidation state of cobalt. Thus more 

basic ligands are expected to stabilise the parent cobalt(I!I)-alkyl relative to the cobalt (II) 

dissociation product and hence increase the bond dissociation energy. Moad states that 

the effectiveness of cobalt (III) complexes of the CoBF type is reduced when strong basic 

ligands are used 53.

1.7.3.2 The use of monomers in CCTP.

CCT is known to be an effective method for regulating molecular weight in methyl 

methacrylate. However, its application and effectiveness in styrene polymerisations is 

greatly reduced although still effective, whilst CCTP for acrylates is complicated.

As stated the mechanism for CCTP involves a transfer step. This involves 

abstraction of a hydrogen atom from the end of a growing polymer chain to yield a cobalt 

(III) hydride and an unsaturated chain end. This process will occur readily for monomers 

which possess an a-methyl group such as in methacrylates, leading to the formation of a 

double bond. Monomers without such a group such as acrylates and styrene will not 

undergo the chain transfer step as readily as the formation of an internal double bond 

would occur. The reduction in chain transfer activity for styrene when compared to MMA 

was noted by Smirnov M-55 when a bulk polymerisation with cobalt porphyrins was 

carried out. When they investigated the bulk polymerisation of the afore mentioned

2 9



monomers and also acrylates it was seen by UV spectroscopy that the spectrum, and 

hence coordination of the cobalt porphyrins with MMA and styrene did not change 

throughout the reaction whilst, that of the acrylate monomer did, indicating that the 

cobalt complex was coordinating with the acrylate forming the stable cobalt (III) alkyl 

complex and that the dissociation of the complex was irreversible. This observation was 

also seen by Gridnev under the same conditions 54. It was also noted by this author in 

another publication 37 that when MMA undergoes CCTP a tertiary radical is produced 

resulting in the formation a tertiary C-Co bond which is labile 56. Styrene forms 

secondary radicals and possesses an easily polarizable 7t electron system 57, it can 

therefore participate in complex formation as an additional axial ligand of the catalyst, 

thus completing the conjugation system of the porphyrin macrocycle. In this case no 

activation of the monomer takes place but in the polymerisation mixture the catalyst 

appears in two forms: (i) in the free state and (ii) as the complex with the monomer.

These forms differ in reactivity with a radical. This in turn can be the reason for the 

appearance of two modes in the weight molecular mass distribution. The rate of 

polymerisation for styrene in the presence of the cobalt porphyrin is reduced more 

markedly than for MMA 55. Bimodal peaks for styrene were also observed here. 

Haddleton and Davis 24-47 have stated that the CCT of MMA is diffusion controlled whilst 

that for styrene is not, they too think that the monomer complexes with the catalyst. 

Acrylate monomers although they do not participate in CCTP can be used in pseudo­

living polymerisations l7. The mechanism of polymerisation involves photolytic cleavage 

of the cobalt carbon bond, insertion of the monomer units and rapid cage recombination 

in a repetitive process.
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1.7.3.3 Products of CCTP- proof of structure, reactivity and use of.

The predominant mode of termination for methacrylates in CCTP is chain transfer to give 

a methacrylate polymer with an unsaturated end group, termed a macromonomer, Figure 

1.15. Interestingly this structure is identical to the chain end structure generated when a 

PMMA radical terminates by self disproportionation.

Figure 1.13. Structure of macromer product from CCTP

H

Work 58 utilising 'H and l3C NMR to quantify the number of vinylidene groups per chain 

has concluded that in CCTP >82% of polymer chains are vinyl terminated by abstraction 

indicating that radical-radical disproportionation events are suppressed and that the 

primary mode of chain termination is via CCTP transfer process. Matrix Assisted Laser 

Desorption Ionisation Time of Flight Mass Spectrometry (MALDI TOF MS) has also 

been used as a method of characterising the polymer chain ends 33.59,60 Results 33 have 

shown that the vast majority of polymer molecules are initiated by a hydrogen atom.

Suddaby et al 61 reported a continuous process for the production of kilogram 

quantities of PMMA macromers. These macromers were synthesised in a tubular reactor 

and isolated from unreacted monomer using a twin screw extruder. For polymerisations 

at high CCTA concentrations these end groups will be almost exclusive and the
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molecular weight of the polymer formed will be low. These short chain terminally 

unsaturated species are found under certain circumstances to be reactive at the double 

bond. Abbey et al 62 isolated the dimeric product of MMA by distillation following a 

CCT polymerisation and carried out a number of copolymerisation experiments to assess 

the reactivity of the terminal unsaturation. Similar studies conducted by Caciolli 63 who 

copolymerised PMMA macromer with ethyl acrylate, styrene, MMA, acrylonitrile and 

vinyl acetate. Some limited copolymerisation was observed but the reaction was retarded. 

This retardation originates from facile p-scission of the macromer chain end. resulting in 

termination. In this way the macromer is acting as a conventional chain transfer agent­

terminating one growing chain and reinitiating another.

In fact MMA macromers are themselves found to be effective chain transfer 

agents in the polymerisation of MMA 40 44. Haddleton et al 44 have used macromer chain 

transfer agents in CCTP to produce a-co-telechelic PMMA and found the dimer to be an 

effective CCTA. Moad et a l56 have investigated the transfer activity of MMA 

macromers. It was found that the dimer was substantially less effective as a CCTA than 

the trimer or the higher macromers. Davis et al 46 64 have copolymerised styrene with 

MMA and styrene with a-methylstyrcne. The aim of the latter was to investigate whether 

the Cs of a-methylstyrene was as high as that of MMA.

Davis et al 65 have devised a novel route for the preparation of aldehyde end 

functionalised macromers via CCTP. The aim being to introduce a different end 

functionality without the need for a post polymerisation modification.
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1.7.3.4 Cobalt (HI) hvdride-proof of existence.

Smirnov 15 examined the structure of the macromers formed by CCT using NMR. It was 

concluded that from all the possible structures the one which was in strong agreement 

with the data was that of a hydrogen transfer mechanism. He confirmed this in a later 

publication by using deuterated MMA 16.

The kinetic studies also showed that the interaction between the cobalt porphyrin and 

polymer radicals was the limiting step and that the catalyst regeneration stage was so 

short that the transient intermediate eluded detection. It was postulated that the hydride 

cobalt complex was the active intermediate in the catalysis of chain transfer to monomer.

In 1981 Smirnov et a l55 studied the radical polymerisation of styrene w ith 

hematoporphyrin tetramethyl ester at 60 °C. It was found that CCT of the monomer 

occurred but was weaker than that of MMA and was complicated by secondary 

processes. Based on infra red analysis concerning the structure of oligomer end groups it 

was concluded that styrene in the same way as MMA underwent hydrogen atom transfer 

from the radical to the monomer molecule.

Sanayei22 polymerised MMA in bulk without using a conventional initiator but 

in the presence of a CTA under a hydrogen atmosphere. The cobalt (III) hydride complex 

was formed.

Later Gridnev and his group of workers investigated the concept of hydrogen 

transfer in CCT l819. Before this set of work the intermediacy of the cobalt (III) hydride 

had not been directly observed in cobalt (II) chain transfer in radical polymerisation but 

kinetic and mechanistic studies were fully compatible with a cycle involving hydrogen 

transfer. Theory behind the research was that cobalt (II) porphyrins in the presence of
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dialkyl cyanomethyl radicals function as a convenient source for cobalt (III) hydrides that 

react with alkenes and alkynes to form alkyl and P-hydroxyalkyl complexes. They found 

that this was the case and concluded that the results proved the evidence for the 

intermediacy of the cobalt (III) hydride species. Gridnev et al 66 then carried out an 

isotopic investigation which involved carrying out two identical bulk polymerisations, 

one with protio-MMA-H« monomer whilst the other used deuterio MMA. It was found 

that the molecular weight of the deuterated polymer oligomers (macromers) was 

significantly higher than that for the corresponding undeuterated monomer. This, they 

reported indicated a clear kinetic isotopic effect which indicated that hydrogen atom 

transfer was involved in the rate determining step of the chain transfer process and the 

existence of cobalt (III) hydride.

1.7.3.5. Measurement of chain transfer constants (Cd.

The efficiency of a chain transfer agent is determined by comparing the molecular weight 

of a polymer produced with and without the presence of a chain transfer agent under 

identical polymerisation conditions. The value obtained is termed the chain transfer 

coefficient-C5.

There are several methods for determining this coefficient although they all rely on 

molecular weight data obtained from GPC. The three commonly used methods are the 

Mayo method h7, 2/Dpw and the chain length distribution method 68. The advantages of 

eaeh and examples of results obtained from all three methods can be found in chapter 3. 

The higher the Cs value the more effective the chain transfer agent is at reducing 

molecular weight.

3 4



CoBF typically exhibits a value of around 35000 in bulk polymerisations of 

MMA 33-45 whilst mercaptans exhibit a value of approximately 1. The efficiency of these 

catalysts based on cobalt porphyrins "•l5-16, cobaloximes 21 and the BF2 bridged set2240 

are affected by the nature of axial ligand 53 54, equatorial ligands45, monomer47, 

temperature 45-47, solvents 45 and polymerisation system 42. Each property will be 

discussed in more detail in the subsequent chapters.

1.7.3.6 Summary of CCTP.

1. CCTP, is a free radical mechanism involving a catalytic reduction oxidation cycle 

between cobalt (II) and cobalt (III).

2. The system is catalytic with respect to the cobalt complex - regeneration following 

the transfer step.

3. Owing to this regeneration no catalyst is incorporated in the polymer chain.

4. The transfer step involves abstraction of a hydrogen atom from the end of a growing 

polymer chain to yield a cobalt (III) hydride and an unsaturated chain end produet- 

macromer. This step occurs readily for monomers possessing an a-methyl group, 

such as methylmethacrylate, but does not occur as readily for monomers such as 

styrene or acrylates.

5. A continual supply of radicals is required for effective CCTP -  constant radical feed, 

otherwise the rate of polymerisation would decrease and cessation of the cycle could 

occur.
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6. Effective CCTA’s are those based on low spin cobalt (II) complexes. Cobalt (III) 

complexes can be used as a source of cobalt (II) generation. Cobalt (III) must reduce 

to cobalt (II) to allow effective chain transfer.

7. The nature of the equatorial and axial ligands has been shown to have an effect on the 

rate of polymerisation.

1.7.4 Applications of CCTP.

CCT polymerisation finds its use in applications requiring products of high solid 

content together with a low concentration of volatile organic compounds. The use of a 

range of cobalt complexes has been the subject of several patents 3MM9. It has been 

shown that CCTP is not just limited to solution systems but has been successfully 

extended to suspension and emulsion systems 4I-69. The products of CCTP show 

reactivity due to their terminal unsaturation. This has been used by companies and several 

patents have been filed utilizing macromers in cross linkable products 70-71. star polymers 

72 and graft copolymers 73. The macromers themselves can also be used as CCTA "s.
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Chapter 2

Characterisation of cobalt (II) and 

cobalt (III) boron fluoride bridged 

complexes.
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2.0 The characterisation of cobalt Til) and cobalt (III) complexes.

2.1. Aim.

The aim of this work was to synthesise a range of cobalt (II) and cobalt (III) 

complexes with a range of hydrophobicity. This was achieved by altering the axial 

and equatorial ligands. The effects of which will be discussed in this and other 

chapters.

2.2. Introduction

Effective catalytic chain transfer agents have been shown to be based on low spin 

cobalt (II) complexes M although cobalt (III) can also be used as a source of cobalt 

(II). The most effective being the BF2 bridged se t5-6. It has been shown by various 

workers that altering catalyst structure can have a profound effect on molecular 

weight reduction 7. It has also been shown that cobalt (III) must reduce to cobalt (II) 

to become an effective CCTA *-9. The rate o f this reduction and hence effectiveness as 

a cobalt (II) species can be controlled by using different axial base ligands. 

Characterisation of these CCTA’s is dependable on whether the species are low spin 

cobalt (II) or cobalt (III). Cobalt (II) CCTA’s are paramagnetic therefore analysis by 

NMR spectroscopy is not possible. An excellent technique to assure low spin 

confirmation for cobalt (II) is by calculation of its magnetic moment 10. Cobalt (III) 

species are diamagnetic and it is therefore possible to acquire useful interpretational 

NMR spectra IM3. Methods of characterisation which are useful for both cobalt (II) 

and (III) CCTA’s are infrared spectroscopy l214' 17, FAB MS, and CHN analysis, 

however the latter is not always interpretably useful owing to the boron and fluorine 

groups present. It is therefore the purpose of this chapter to introduce the CCTA’s
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which have been used in investigations throughout this thesis and discuss 

characterisation where necessary.

2.3. The structure of cobalt tilt complexes utilised in this work.

Table 2.1 shows which catalysts have been synthesised corresponding to the general 

structure outlined in Figure 2.1. Table 2.1 indicates the nature of the axial and 

equatorial ligands, as stated previously the ligands in cobalt (II) complexes are 

generally occupied by solvents which are used in the purification of the complex.

Figure 2.1. Structure of cobalt (II) complexes.

Fw F

Where L= CH3OH (I-IV), Ethyl acetate (V-VI), H20  (VII).

The aim of this work was to ascertain what role the equatorial groups (Ri + R2) played 

on the chain transfer activity of the complexes in bulk polymerisations using MMA 

and styrene. It was also interesting to see how the structure of the complex affected its 

partitioning properties when used with MMA and water. It would also be interesting 

to compare the cobalt (II) complexes with both the cobalt (III) analogues utilising 

pyridine and water as the axial ligands (L). It was also interesting to see what effect 

isomerisation had on complex III activity.
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Table 2.1. Nature o f catalysts synthesised for cobalt (II) complexes.

Complex number Abbreviated name R, r 2

I C0 H4BF H H

II CoBF c h 3 c h 3

III CoEt2Me2BF CH3 c h 2c h 3

IV CoEt*BF CH2CH 3 c h 2c h 3

V Co(Me2Prop2)BF c h 3 c h 2c h 2c h 3

VI Co(Me2But2)BF c h 3 c h 2c h 2c h 2c h 3

VII Co(C5H5-CH3)BF (CsH5)CH3 (C5H5)CH3

2.4. The use of cobalt (111) complexes utilising pyridine as one of the axial 

ligands.

The following catalysts were synthesised corresponding to the general structure 

outlined in Figure 2.2, containing ethyl (R) and pyridine (B) axial ligands, table 2.2. 

Figure 2.2. Structure of cobalt (III) complexes with pyridine as axial ligands.

The aim here was to see what effect using a strong base as one of the axial ligands had 

on the chain transfer activity of the complex. The results from these complexes in 

both MM A and styrene bulk polymerisations would be compared with both its cobalt
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(II) and cobalt (III) - water analogues. The effect of the ligand would also be 

investigated in the partitioning experiments again using MMA and water.

Again the effect of isomerisation on catalytic activity could also be important for 

complex IX.

Table 2.2. Nature of cobalt (III) complexes with pyridine as an axial ligand.

Complex number Abbreviated name R, r 2

VIII Co(III)BF/PyEt CH3 CH3

IX Co(III)Et2Me2BF/PyEt CH3 CH2CH3

X Co(III)EuBF/PyEt CH2CH3 c h 2c h 3

2.5. The use of cobalt (HD complexes utilising water as an axial base ligand.

The following catalysts were synthesised corresponding to the general structure 

outlined in Figure 2.3, containing ethyl (R) and water (B) axial ligands, table 2.3. 

Figure 2.3. Structure of cobalt (III) complexes with water as axial ligands.

Fw F

The aim here was to compare the results obtained for the chain transfer activity of the 

complex in both MMA and styrene bulk polymerisations with those of the cobalt (II) 

and cobalt (III) pyridine analogues. The effect of the weak base ligand was also 

investigated in the partitioning experiments using MMA and water and again
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compared with its cobalt (II) and cobalt (III) pyridine analogues. The effect of 

cis/trans isomers for complex XII could also play a role in catalytic activity.

Table 2.3. Nature of cobalt (III) complexes with water as one of the axial ligands.

Complex number Abbreviated name Ri r 2

XI Co(III)BF/H2OEt c h 3 c h 3

XII Co(III)Et2Me2BF/H2OEt c h 3 c h 2c h 3

XIII Co(III)Et4 BF/H2OEt c h 2c h 3 c h 2c h 3

2.6. The characterisation of the cobalt HI) and cobalt (HI) complexes.

2.6.1. Magnetic moment measurements.

Cobalt (II) complexes are d7 which exist in one of two electronic states either high or 

low spin (Figure 2.4).

d x 2.y2 d Z2 Î
* eB

Co(II) d7 
low spin
I unpaired electron

Co(II) d7 
high spin
3 unpaired electrons

Figure 2.4. The possible electronic states of cobalt (II).

Electrons in an incompletely filled shell will give rise to a magnetic moment which is 

dependent on the number of unpaired electrons. It is therefore possible to relate the
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number of unpaired electrons (n) to the effective magnetic moment (e), in an 

expression known as the “Spin Only Formula”.

P* = (n(n + 2 )

The magnetic moments of the synthesised cobalt complexes have been measured and 

are presented in table 2.4.

2.6.1.1. Magnetic moment values for cobalt till complexes.

Illustrated below, table 2.4. are the magnetic moment values for the cobalt (11) 

complexes II -  VII.

Table 2.4. Magnetic moment data for cobalt (II) complexes.

Complex

number

Catalyst Stereo­
chemistry

Hybrid
Orbitals

n MB.M) 
Spin only

Expt

II CoBF oct spd~ i 1.73 1.71

III Co(Me2Et2)BF oct spd2 i 1.73 2.33

IV Co(Et4 )BF oct spd2 i 1.73 1.44

V Co(Me2Prop2)
BF

oct spd2 i 1.73 1.85

VI Co(Me2Bu2)BF oct spd2 i 1.73 2.07

VII Co(Pent2)BF oct spd2 i 1.73 1.80

The values in table 2.4 show that all the cobalt complexes synthesised using the Co(ll) 

pathway are low spin which according to previous workers observations 10 would 

suggest that all seven complexes in theory should be effective as CCTA’s.

4 8



2.6.2. Infra red analysis of cobalt (II) and cobalt (HI) complexes.

2.6.2.1. Infra red analysis of cobalt (ID complexes.

The infrared analysis of complexes I-VI1 are shown in table 2.5 along with C-H and 

axial ligand stretching frequencies in table 2 .6 .

Table 2.5. Infrared stretching frequencies (cm'1) for cobalt (II) complexes.

Complex C=N B-O N-O N-O B-F B-O Co-N C=N-0

I 1633 1150 1 0 0 0 900 840 510 755

II 1618 1 2 1 0 1161 1088 950 803 504 730

III 1610 1253 1195 1097 992 901 506 714

IV 1607 1235 1167 1045 1 0 1 0 832 508 762

V 1613 1247 1227 1047 993 813 509 764

VI 1614 1245 1213 1045 1 0 0 0 821 507 734

VII 1634 506 718

An increase in C-H stretching band (typically 2960 cm '1), increases when the number 

of skeletal carbons increases, see table 2.6. The infrared results not only show that the 

complexes have been successfully synthesised but that the catalyst structure seems to 

affect certain band stretching frequencies l4. For instance with the cobalt (II) species I 

- IV the C=N stretching frequency decreases whilst the first set of N-O bands 

increases and the second decreases. This is thought to be attributable to an increase in 

the number of carbons on the skeleton as the axial ligands in this case are cither the 

same or very similar. In complexes V-VI the carbon chain length of the equatorial 

group increases and the axial ligands arc also different to those of I-IV. The C=N 

stretching frequency increases here whilst for the N-O stretching frequency there is no 

effect seen. The effects are most likely due to the electron withdrawing nature of the
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C=0 group on the ethyl acetate, and its interaction with the cobalt atom and 

respective back donation and interaction with C=N and N-O groups.

The data in table 2.6 shows that the axial ligands have successfully complexed to the 

central cobalt. The strength of the C-H intensity increases with an increase in carbons 

although the frequency values do not appear to be affected. It should be noted that 

there were peaks observed for the C-H stretching for complexes I and VII. It should 

also be noted that some of the stretching frequencies were not observed for complex 

VII in table 2.5

Table 2.6. Infrared stretching frequencies for C-H bands and axial ligand frequencies 

(cm'1) for cobalt (II) complexes.

Complex C-H L

I 3244 O-H. bonded (w)

II 2927Asym CH3 (w) 3593 + 3525 O-H, non- 

bonded (wm)

III 2983 Asym CH3 (m) 

2943 Asym CH2 (m)

3198.1 O-H, bonded (b.m)

IV 2985 Asym CH3 (m) 3591 + 3513 O-H, non-

2947 Asym CH2 (m) bonded, (m)
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Table 2.6. Continued.

Complex C-H L

V 2969 Asym CH3 (m) 1714 C=0 (s)

2937 Asym CH2 (m) 1278 + 1188

2877 Sym CH3 (ms) C-O (m)

VI 2959 Asym CH3 (s) 1732 C=0 (s)

2932 Asym CH2 (s) 1282 + 1185 C-O (m)

2871 Sym CH3 (s)

VII 3198 O-H bonded

2.6.2.2. Infrared analysis of cobalt till) complexes utilising pyridine as an axial 

ligand.

The infrared analysis of complexes VIII-X are shown in table 2.7 along with C-H and 

axial ligand stretching frequencies in table 2 .8 .

Table 2.7. Infra red stretching frequencies (cm'1) for cobalt (III) complexes 

containing pyridine axial ligands.

Complex C=N B-O N-O N-O B-F B-O Co-N C=N-0

VIII 1622 1226 1199 1092 950 827 508 744

IX 1609 1254 1207 1067 982 900 509 743

X 1609 1254 1174 1067 1024 833 510 743

The axial ligands for cobalt (III) species have a profound effect on the stretching 

frequencies. For instance if we consider C=N, the pyridine group decreases the 

stretching frequency. This is due to pyridine being a strong base, owing to its strength
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the electron density around the cobalt center increases, this facilitates in back donation 

from cobalt to the nitrogen resulting in an increased electron density in the C=N bond 

and a lower frequency shift. The B-F and Co-N stretching frequencies also increase, 

again this is attributable to the strong base.

Table 2.8. C-H strength and axial ligand stretching frequencies (cm 1).

Complex Axial R= Ethyl Axial B = Pyridine

VIII 2943 Asym CH3 

1149 C - H stretch

3200 + 1489 C - H stretch 

1539 C=N stretch 

1290+ 1252C-N stretch

IX 2358 Asym CH3 

1173 C-H stretch

3147 + 3118, 1489 

C -H  stretch 

1538 C=N stretch 

1290 C-N stretch

X 2360 Asym CH3 

1174 C - H stretch

3147 + 3118, 1488 

C -H  stretch 

1538 C=N stretch 

1290 C -N  stretch

Again the results in table 2.8 show the presence of the axial ligands. The CH3 and 

C-H stretching frequencies increase with an increase in carbons.
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2.6.2.3. Infra red analysis of cobalt HID complexes utilising water as an axial

ligand.

The infrared analysis of complexes XI - XIII are shown in table 2.9 along with C-H 

and axial ligand stretching frequencies in table 2 .1 0 .

Table 2.9. Infra red stretching frequencies (cm'1) for cobalt (III) complexes 

containing water as an axial ligand.

Complex C=N B-O N-O N-O B-F B-O Co-N C=N-0

XI 1622 1226 1 2 0 0 1093 1030 827 504 736

XII 1615 1250 1232 1104 1006 910 514 760

XIII 1606 1 2 2 0 1164 1050 1 0 2 0 835 509 720

From table 2.9 it can be seen that water increases the C=N stretching frequency which 

is the reverse effect of the pyridine group. Water is a weak base as opposed to a strong 

base. The trans effect from water is not as profound as that of pyridine and gives little 

cis effect to the equatorial ligand therefore increasing the C=N stretching frequency. 

Table 2.10. C-H strength and axial ligand stretching frequencies (cm 1).

Complex Axial R = Ethyl Axial R = Water

XI 2942 Asym CH, 3565 + 3484 O - H non

1150 C - H stretch bonded

XII 2358 Asym CH3 3524+ 3 1 7 6 0 -H  bonded

1191 C - H stretch

XIII 2358 Asym CHj 3551 + 3463 O - H non

1205 C -H  stretch bonded
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Table 2.10 shows the presence of the axial ligands and shows that the C-H stretching 

frequency increases with an increase in carbons, the CH3 stretching frequency does 

not appear to be affected.

2.6.3. *H and l3C NMR analysis of cobalt fill! complexes.

2.6.3.1 'H NMR.

2.6.3.1.1 'll NMR analysis of cobalt f ill)  complexes containing pyridine as an 

axial ligand.

By using NMR spectroscopy it was possible to further consolidate the proof of the 

cobalt (III) complexes containing pyridine as an axial ligand therefore confirming 

successful synthesis of these complexes. Table 2.11. gives NMR data for complexes 

VIII-X. It is not possible to analyse cobalt (II) complexes by this method owing to 

their paramagnetic properties.

Table 2.11. 'll NMR (300 MHz) frequencies for cobalt (III) complexes containing 

pyridine as axial ligand.

Complex R, (ppm) R: (ppm) B (ppm) R (ppm)

V I I I 2.40(s, I2H) 2.40(s, 1211) 9 .12(m, 2H) 

8.89(m, IH) 

8.34(m, 2H)

2.09(m. 2H) 

O.IO(m, 3H)

IX 2.42(s, 6H) 2.87(m,4H) 

l.l5(m, 6H)

9 .14(m, 2H) 

8.9l(m, IH) 

8.35(m, 2H)

1 23(q, 79.2 Hz,2H) 

0.02(t, 79.3 Hz, 3H)

X 2.94(q. 77.6Hz.4H) 

1.27(1,7 7.3 II/.6H)

2.94(q, 7 7.6 Hz,4H) 

1.27(1,7 7.3 Hz,6H)

9 .14(m, 2H) 

8.9l(m. IH) 

8.36(m, 2H)

1 97(q, 7 7.3 Hz,2H) 

0 .14(t,77.5 Hz,311)
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Table 2.11 shows the characteristic signals for the axial and equatorial ligands of the 

cobalt (III) complexes containing pyridine. Where the nature of the groups are 

identical, i.e. CH3 the signal from complex to complex does not change.

2.6.3.I.2. The characterisation of cobalt (Hit complexes containing HjO as an 

axial ligand.

Table 2.12 below gives information for complexes XI-XIII containing water as an 

axial ligand.

Table 2.12. 'H NMR (300 MHz) frequencies for cobalt (III) complexes containing 

water as the axial ligand.

Complex R, (ppm) R 2 (ppm) B (ppm) R (ppm)

XI 2.36(s, 12H) 2.36(s, 12H) 2.70(s, 2H) 1 89(q, 76.3 Hz, 2H)

0.02(t, 76.1 Hz, 3H)

XII 2.45(s, I2H) 2.94(m, 4H) 3.66(s, 2H) 1 99(m, 2H)

l.20(m, 6H) 0.07(m, 3H)

XIII 2.90(m. I0H) 2.90(m, 10H) 1 97(m, 2H)

l.25(m, 12H) 1.25(m, I2H) - O.I2(m, 3H)

From table 2.12 the presence of all the relevant signals for each group in each 

complex is shown proving that the abstraction of the pyridine molecule and 

replacement with water has been successful. However complex XIII fails to show the 

presence of the water ligand, although it should be noted that the presence of a 

pyridine molecule was not observed after abstraction in the NMR spectrum.
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2.6.3.2 The characterisation of cobalt (IIP complexes using l3C NMR 

spectroscopy.

2.6.3.2.1 The characterisation of cobalt (IIP complexes containing pyridine as an 

axial ligand.

Table 2.13 gives 13C NMR frequencies for complexes VIII-X containing pyridine as 

one of the axial ligands.

Table 2.13. I3C NMR (75.0 MHz) frequencies for cobalt (III) complexes containing 

pyridine as the axial ligand.

Complex Ri (ppm ) R2 (ppm) B (ppm) R (ppm) C=N

VIII 13.56 13.56 160.00 (C2) 16.93 -

148.00 (C4) 9.0

129.00 (C3)

IX 2 0 . 8 6 14.00 172.00 - -

1 1 . 0 0 164.00

X 20.90 20.90 - 17.00 -

1 1 . 0 0 1 1 .0 0

Table 2.13 shows the presence of both equatorial ligands although the C=N frequency 

from the complex is not observed owing to the small size of the peaks on the NMR 

spectra.

2.6.3.2.2. IJC NMR characterisation of cobalt (111) complexes containing IHO as 

an axial ligand.

Table 2.14 gives NMR frequencies for cobalt (III) complexes XI-XIII containing 

water as an axial ligand.
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Ta b le  2.14. I3C NMR (75.0 MHz) frequencies for cobalt ( I I I )  complexes containing

water as the axial ligand.

Complex Ri r 2 R C=N

XI 14.00 14.00 164.28

XII 20.84 14.00 21.95

1 1 .0 0 16.00

XIII 20.89 20.89 17.00 164.43

1 1 .0 0 1 1 .0 0

Table 2.14 shows the characteristic frequencies for the axial and equatorial ligands. It 

also confirms the absence of pyridine as an axial ligand and therefore the successful 

exchange of a pyridine molecule for a water molecule. It should be noted here that 

some peak information is not present (R complex XI and C=N complex XII), this is 

due to the size of the peaks on the NMR spectra making it impossible to correctly 

assign.
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2.6.4. X -r a v  crystallography l018'24

2.6.4.1. X-rav crystal structure of CoEtjBF (complex III). 

Figure 2.5. X-ray crystal structure of CoEtjBF.

The ligands around the metal centre are arranged in a pseudo octahedral geometry. 

The cobalt atom is attached to two 3,4-hexanedioxime ligands with nitrogen bond 

distance given as 1.879(2) A, with methanol ligands taking the trans positions, bond 

distance 2.279(2) A.

5 8



2.6.T.2. X -ra v  crystal structure of C o E t jH i O /P vEt.

Figure 2.6. X-ray crystal structure of CoEul^O/PyEt.

The ligands around the metal centre are arranged in a pseudo octahedral geometry. 

The cobalt atom is attached to two 3,4-hexanedioxime ligands with nitrogen bond 

distance given as 1 .8 8 6 ( 1 0 )A, with one pyridine and one ethyl ligand taking the trans 

positions, bond distance 2.076(9)A and 2.032(11 )A respectively.
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2.6.4.3. X-rav crystal structure  of CoMe^Et^BF/HTOEt (complex XII). 

Figure 2.7. X-ray crystal structure of CoMejEtiBF/FhOEt.

The ligands around the metal centre are arranged in a pseudo octahedral geometry. 

The cobalt atom is attached to two 3,4-hexanedioxime ligands giving nitrogen bond 

distance as 1.873(4)A, with one water and ethyl ligand taking respectively the trans 

positions, bond distances 2.123(4)A and 2.072(5)A respectively.

2.7. Conclusions.

The magnetic moments of complexes I - VII prove that they are low spin cobalt (II) 

species ,0.

The Infra-red results not only show that the complexes have been successfully 

synthesised but that the catalyst structure seems to affect certain band stretching 

frequencies l4. For instance with the cobalt (II) species I - IV the C N stretching
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frequency decreases whilst the first set of N-O bands increases and the second 

decreases. This is thought to be attributable to an increase in the number of carbons on 

the skeleton as the axial ligands in this case are either the same or very similar. In 

complexes V-Vl the carbon chain length of the equatorial group increases and the 

axial ligands are also different to those of I-1V. The C=N stretching frequency 

increases here whilst for the N-O stretching frequency there is no effect seen. The 

effects are most likely due to the electron withdrawing nature of the C=0 group on 

the ethyl acetate, and its interaction with the cobalt atom and respective back donation 

and interaction with C=N and N-O groups.

The axial ligands for cobalt (111) species have a profound effect on the 

stretching frequencies. For instance if we consider C=N, the pyridine group decreases 

the stretching frequency whilst a water group increases it. Pyridine is a strong base 

and therefore increases electron density around the cobalt centre by donation of 

electrons. This facilitates in back donation from cobalt to the nitrogen resulting in an 

increased electron density in C=N which results in and a lower frequency shift. Water 

on the other hand gives an increase in electron density, its trans effect is not as 

profound and gives little cis effect to the equatorial ligand therefore C=N stretching 

frequency increases as is the situation for cobalt (11) species.

The NMR results also prove that the cobalt (111) catalysts have been 

successfully synthesised and that pyridine can be successfully replaced by water if 

necessary. The l3C NMR spectra also show C=N frequencies which are present in the 

complex directly and also in pyridine where necessary.

The X-ray crystal structures show that there is little difference with regard to 

bond distances between the central metal atom and the hexanedione ligands when 

there is water or methanol attached as one of the central axial ligands but there is a
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decrease in this value when pyridine is used as an axial ligand. The bond lengths of 

the cobalt (III) ligands are shorter than those of the cobalt (II) complexes. It should be 

noted that there are two analogues, one being cobalt (II) and the other a cobalt (III) 

both containing 3,4-hexanedioxime ligands as the equatorial ligands. The axial and 

equatorial ligand bond lengths are shorter for the cobalt (III) analogues.

It should also be noted that there are two possible isomers for complexes 

111,IX and XII, namely the cis and trans isomers. It was however not possible to 

separate the isomers for the potential identification of catalytic effectiveness and 

partitioning properties. It is possible that each isomer could demonstrate different 

catalytic activity.
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Chapter 3

Investigation into the effect of catalyst 

structure and initiator concentration 

on chain transfer constants in MMA 

polymerisation.

Comparison of the different methods 

used to obtain their value.
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3.0 An investigation into the effect of catalyst structure and initiator concentration 

on chain transfer constants in MMA polymerisations and a comparison of the 

different methods used to obtain their value.

3.1 Aim.

The aim of this chapter was to investigate what effect if any, the structure of the catalysts 

synthesised in chapter 2 had on the chain transfer constant value (Cs) in MMA bulk 

polymerisations and to compare the values obtained by using different methods for 

obtaining Cs. It was also interesting to see what effect initiator concentration had on the 

chain transfer constant value.

3.2. Introduction.

As stated previously it is known that the structure of a catalyst plays an important role on 

its effectiveness at reducing molecular weight. Both Davis 1 and Haddleton2 have noted 

this independently for the BF2 bridged derivatives. Gridnev in the 1980’s stated that small 

changes in catalyst structure could affect Cs 3.

Davis et al 4-5 have stated that CCT is reliant on a constant radical feed, it will therefore 

be interesting to see what effect if any is seen with a variation in initiator concentration 

under identical reaction conditions. The methods for determining Cs all rely on GPC 

information, however it is which set of data used which distinguishes each method from 

the other 6-8. It should be noted that the larger the value for Cs the more efficient the 

catalyst is at reducing molecular weight.
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It should also be noted that isomerisation could play an important role on catalytic 

activity. However it was not possible to isolate the cis and trans isomers for complexes 

ll,IX and XII therefore their effects can only be speculated.

3.2.1. The Mavo method.

In 1943 the Mayo equation was devised 7, which allowed Cs to be calculated, equation 1.

1

OP n
------o + Cs
DP n

( 1 )

Where DP„ is the number average degree of polymerisation (M„ /Mw ), DPn" is the 

number average degree of polymerisation for polymer produced under the same 

conditions in the absence of added chain transfer agent, [S] and [M] arc the 

concentrations of added chain transfer agent and monomer respectively and Cs is the 

chain transfer constant. The experimental procedure for obtaining Cs can be found in 

Chapter 6 , but to summarise a total of five solutions are made up with differing quantities 

of chain transfer agent one with none added (the control), with constant initiator 

concentration, which, are polymerised under identical conditions and from GPC data a 

plot of 1/DP vs. [S]/[M| is drawn, Cs is equivalent to the slope of the graph, whilst 

intercept equals l/DPn° . The Mayo method, as it is known, is an established method for 

determining C5.

3.2.2. Half weight average degree of polymerisation- the 2/DP.  method.

This is a modified method of the Mayo procedure and relies on M* information y |° rather 

than M„ which can be subject to a large uncertainty due to baseline subtraction errors, A/w
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on the other hand is not. Here the weight average degree of polymerisation (DPW) is used 

instead of DPn. In a chain transfer dominated system DPW/DP„ = 2 and hence l/DPn =

2/DPw.

Again the same general experimental procedure is followed, however from the GPC 

information A/w information is used. A plot of 2/DPw vs [S]/[M] gives slope (Cs) and 

intercept 2/DP»°.

3.2.3.The Chain Length Distribution method (CLP) 6.

This is also known as the Gilbert method 8 1 which has recently emerged as an effective 

method for calculation of Cs. It involves manipulation of the data obtained from GPC.

The number distribution (N(M)) i.e. number of chains of molecular weight M is 

calculated, the natural logarithm of these values are then plotted against DP to give a 

slope (A). The chain transfer constant (Cs) is determined by plotting A for a series of 

experiments (as stated previously, with different catalyst concentrations), against [S]/[M], 

yielding a slope equal to Cs.

Recently a discussion has started in the literature with regard to which molecular weight 

region A should be determined 6 I 2 ' 13 i.e., whether the slope should be determined in the 

high molecular weight region (Awoii), which is the correct theoretical limit8 or in the 

region of the peak molecular weight (Apkak). which suffers from less experimental 

uncertainties 6. Davis 12 found that Aprak results compared most favorably with the 

2/DPw results, the 2/DPw seems to be the preferred method of determination followed by 

the CLD procedure. The values are taken from numerous sets of data/rcpeat runs for each 

complex.
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3.3. Chain transfer constants for cobalt fill and cobalt (HI1 complexes in bulk MMA

polymerisations at 60 °C.

The chain transfer constants for complexes I-XI11 were evaluated for polymerisations of 

bulk MMA using AIBN as the thermal initiator at 60°C. Polymerisations were terminated 

after a period of 15 minutes in order to achieve low conversions of approximately 5%. 

Experimental conditions and molecular weight/conversion data are summarised in tables 

3.1-3.6 . The values are taken from numerous sets of data/repeat runs for each complex. 

Conversion data were obtained by drying a known mass of reaction mixture to constant 

weight in a vacuum oven.

3.3.1 The use of cobalt till complexes in bulk polymerisations with MM A at 60 °C.

The primary aim of this work was to investigate what effect the equatorial groups on the 

cobalt (II) complexes had on the chain transfer activity of the complexes 2. It was also the 

intention to compare these values with the cobalt (III) analogues containing either 

pyridine or water as one axial ligand. Figure 3.1 gives the structure of the complexes used 

indicating the position of the axial ligands and their nature.

Figure 3.1. Structure of Cobalt (II) complexes.

Fw F

/ \
F F

Where L = CHjOH (I -  IV), Ethyl acetate (V -  VI), H20  (VII)
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Tables 3.1 and 3.2 give GPC and chain transfer values for complexes II-VII, the 

procedure used can be found in chapter 6, no data was obtained for complex 1 as it would 

not dissolve in monomer, water or any other solvent tried. Two different concentrations 

of CCTA/Monomer were used for complex III and two different purities of complex IV 

were used (crude and pure).

Table 3.1. Experimental and GPC information, for complexes II -  VII.

Complex |CCTA|/ 

(MMA| x 

1 0 '7 molar 

ratio

AIBN 
(moles) 

x ltT4

Mn Mw Pdi % Conv

II 0 . 0 1.52 194900 394400 2 . 0 2 5.94

1.32 1.52 20360 42340 2.08 4.53

2.65 1.52 11300 42020 3.71 4.62

3.97 1.52 7700 37040 4.83 4.55

III 0 . 0 1.52 104400 255450 2.44 5.65

Cone" set 0.654 1.52 99550 196830 1.97 5.65

1 1.31 1.52 61840 132600 2.14 5.63

2.62 1.52 22530 63500 2 . 0 2 5.11

5.23 1.52 16090 43620 2.71 4.87

III 0 . 0 1.52 178420 347100 1.94 5.66

Cone" set 1.39 1.52 29340 68370 2.33 4.83

2 2.77 1.52 22970 56540 2.46 5.13

4.16 1.52 17170 38370 2.23 4.86

5.55 1.52 127410 25350 1.99 4.78

IV 0 . 0 1.53 115200 212360 1.84 5.09

Pure 0.558 1.53 27330 58650 2.14 4.21

1.17 1.53 20920 44860 2.13 4.51

2.35 1.53 11380 27210 2.39 3.63

4.70 1.53 6400 22280 3.48 4.06
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Table 3.1. Continued.

Complex [CCTA]/ 

|MMA) x 

10‘7 molar 

ratio

AIBN 

(moles) x 

10"4

Mn Mw Pdi % Conv

IV 0 . 0 0 1.55 135570 250050 1.84 7.17

Crude 0.748 1.55 55160 78600 1.42 6.36

1.5 1.55 23700 56200 2.37 6.51

2.99 1.55 21480 54300 2.52 5.76

5.98 1.55 10950 27780 2.53 5.21

V 0 .0 1.61 160900 292250 1.81 5.25

0.891 1.61 109340 215650 1.97 4.98

1.78 1.61 91960 178160 1.93 4.95

2.67 1.61 85130 169160 1.97 4.94

3.57 1.61 70300 146190 2.08 5.02

VI 0 . 0 1.62 204440 401550 1.96 5.54

0.937 1.62 176390 342400 1.94 4.53

1.87 1.62 114410 220820 1.93 5.02

2.81 1.62 82580 155720 1 .8 8 5.20

3.75 1.62 60570 117140 1.93 4.98

VII 0 . 0 1.61 171750 361200 2 . 1 0 4.92
0.69 1.61 143470 316080 2 . 2 0 4.83
1.38 1.61 155160 292030 1 .8 8 4.74
2.76 1.61 137940 246560 1.78 5.56

5.52 1.61 143980 383510 2 . 6 6 5.21

Table 3.1 shows that as the concentration of the chosen complex increases the molecular 

weight decreases, this is profound when comparing the control which contains no
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complex with the second solution which in comparison to the other proceeding three 

contains the least.

Table 3.2 shows that the nature of the equatorial groups play an important role in the 

activity of the complexes at reducing molecular weight and hence the value of Cs for 

each. It is apparent from the data in table 3.2 and graphically in figure 3.2 that the Cs 

values for all complexes have decreased with an increase in carbons on the main skeletal 

carbon backbone when compared with the value obtained for CoBF, complex II. It is of 

course possible that catalyst purity plays an important role as the purity of the other 

complexes when compared to that of CoBF could differ considerably and that this could 

be a reason for the decrease in activity. It is also important to consider the role of 

isomerisation on the activity of the complex. This is important when one considers 

complex III as it is quite possible that there are two isomers present. The cis and trans 

conformations. It is quite possible that one isomer is an effective CCTA whilst the other 

is not. It was however not possible in this work to isolate the isomers. When one 

considers complexes V and VI independently of the other complexes it appears that this 

trend is not followed, it is in fact the opposite, i.e. an increase in Cs with an increase in 

skeletal backbone is observed. This could possibly be due to catalyst purity or the effect 

of the axial ligands which in this case are ethyl acetate for both, this is known from FAB- 

MS information. It is plausible that the nature of the withdrawing groups on the C=0 

group of the ligand destabilises the normally stabilised complex, and allows the cobalt 

carbon bond to break, subsequently the forming and breaking of the cobalt (III) alkyl 

allowing the CCT cycle to continue. It should also be noted that other factors such as
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purity, isomerisation and presence of axial ligands could also affect chain transfer 

activity.

It is thought that the effect of methanol and water as axial ligands is minimal when 

comparing the Cs values for complexes II -  IV and VII. Complex IV was used in two 

forms, crystalline (pure) and powder (crude). From table 3.2 it can be seen that there is a 

definite increase in Cs when the crystals are used indicating that purity affects catalytic 

activity and hence supporting the explanation for differences in Cs for the other 

complexes.

The general overall decrease in Cs when compared to complex II is considered to be due 

to either an increase in cross sectional area or the strength of the cobalt -  polymer bond.

It is possible that the latter being largely responsible for the catalytic activity as this bond 

must break to allow continuation of the cycle, its mobility (diffusion effect) will decrease 

with an increase in steric bulk. Haddleton et al 2 observed a decrease in Cs by increasing 

the bulkiness on the equatorial ligand. They also favour a reduction in mobility as an 

explanation for decreased activity.

The results in table 3.2 gives the Cs values for complexes II-VII. It should be noted that 

for complex III two different concentrations of complex were used. For complex IV two 

different purities were used, the crude and pure forms. The Cs values for complex VII 

involves data from two different plots, one using four out of five points and the other all 

five points, the purpose of the latter was to see what difference removal of a rogue point 

had on the overall chain transfer activity.
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Table 3.2. Chain transfer constants for complexes II-V1I

Complex Cs Error Cs Error Cs Error

Mayo +/- 2/DPw +/- CLD +/-

II 31390 460 11125 4980 41210 23260

III

Cone" 1 1 1 1 0 0 1600 7720 750 11500 400

Conc"2 12370 1 2 0 0 1 2 2 0 0 1370

IV

Pure 30800 1 2 0 0 16260 3220 30960 1340

Crude 13490 1580 9590 1450 - -

V 2090 2 1 2 1830 190 “ “

VI 3170 400 3330 400 “ “

VII

4 pts 420 240 920 40 - -

5 pts 150 1 2 0 70 300 - -

The results in table 3.2 also show that each method of determining Cs give slightly 

different values for each complex although they are reasonably close.
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Figure 3.2. Mayo plot overlay for complexes II -  VII.
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Figure 3.3. 2/DPw overlay plot for complexes II -  VII.
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Figure 3.4. Plot of DP vs Ln(N(M)) for complex II.
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Figure 3.5. CLD plot for complex IV
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The plots in figures 3.2 -  3.4 shows linear behavior although some plots show more of a 

curve than linearity. They also highlight the differences of each method, although all 

three procedures utilise the concentration of complex/monomer as the x axis.

3.3.2. The use of cobalt (Hit complexes in bulk polymerisations with MM A at 60 °C,

The aim here was to investigate what effect the axial base ligands had on the chain 

transfer constants obtained when two different axial base ligands are used, namely 

pyridine and water, see figure 3.6. This was of interest as it has been previously reported 

that different bases affect Cs u . The results obtained for these complexes would be 

compared to each other and also with the cobalt (II) analogues from 3.3.1.

Figure 3.6. Structure of cobalt (III) complexes.

O .
/ \

F F

Where B= Pyridine or water
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3.3.2.1. The use of cobalt f i l l)  complexes utilising pyridine as one axial ligand in

bulk polymerisations of MMA at 60 °C.

The aim here was to investigate what effect using a strong base, in this case pyridine, 

would have on the Cs activity of the cobalt complexes. The results obtained here would 

then be compared with those of both the cobalt (III) analogues containing water and also 

cobalt (II). For effective CCTP to occur the cobalt (III) complex must reduce to its cobalt 

(II) analogue. It is thought that a strong base hinders this. Table 3.3 gives GPC and 

experimental information for complexes VIII -  X containing pyridine as the axial base 

ligand. The table shows that the complexes seem to be effective at reducing the molecular 

weights of the polymers formed if we again compare the control value with those of the 

solutions containing the complexes at increased concentrations.

Table 3.3. Experimental and GPC information for complexes VIII -  X containing

pyridine as an axial base ligand

Complex (CCTA|/ 
[MMA| x 

10 -7 Molar 

ratio

AIBN 

(moles) x 

10 4

Mn Mw Pdi % Conv

VIII 0 . 0 1.52 175630 283860 1.61 7.03

1.08 1.52 32580 59530 1.83 6.07

2.16 1.52 22630 40620 1.80 5.94

3.24 1.52 20300 36960 1.82 4.01

4.32 1.52 11360 20910 1.84 5.26
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Table 3.3 continued.

Complex [CCTA|/ 

|MMA] x 

10 7 
Molar 

ratio

AIBN 

(moles) x 
10"*

Mn Mh> Pdi % Conv

IX 0 . 0 1.52 191440 366460 1.91 5.27

1.14 1.52 93210 177550 1.90 5.15

2.28 1.52 69980 134710 1.92 5.02

3.42 1.52 50700 99360 1.96 5.06

4.57 1.52 41540 75410 1.81 5.03

X 0 . 0 1.52 262500 440160 1.67 5.33

1 .0 0 1.52 91170 177750 1.95 5.21

2 .0 1 1.52 47390 81890 1.72 4.79

3.01 1.52 39890 68300 1.71 5.11

4.01 1.52 26850 47900 1.78 4.75

From the results outlined in table 3.4 it can be seen that these values are considerably 

lower than those of the complexes cobalt (II) analogues. For cobalt (III) catalysts to be 

effective CCTA’s they must be reduced to cobalt (II) at the beginning of the 

polymerisation process. This step involves cleavage of the cobalt-carbon bond from the 

ethyl group. It is thought that an increase in base strength leads to an increase in electron 

density around the cobalt center. This donation imparts a strengthening between the 

cobalt and the carbon on the ethyl group making this bond difficult to break, thus 

requiring more energy to break the bond 4'5. This leads to a decrease in activity and 

therefore fewer re-initiation, propagation and termination steps are observed together 

with a reduction in Cs ,4.
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Table 3.4. Chain transfer constants for cobalt (III) complexes containing pyridine as one

axial base ligand

Complex Cs Error Cs Error Cs Error

Mayo +/- 2/DPw +/- CLD +/-

VIII 16970 2690 18310 2950 17360 2760

IX 4100 140 4470 230 4460 2 2 0

X 8090 620 9230 690 7490 740

Again the complex giving the highest Cs value in this section is the one containing the 

least number of carbons on the skeletal backbone (VIII), followed by the complex 

containing most carbons (X). All three methods of determination give similar values to 

each other for each complex and all give the highest value of Cs for complex VIII.

The plots in figures 3.7 -  3.8 illustrate graphically the values given in table 3.5, showing 

minimal error and linearity.

Isomerisation could be a possible explanation for the decrease in Cs for complex IX as 

there are 2  possible isomers cis and trans. It is plausible that one isomer is an effective 

CCTA whilst the other is not and that other factors such as purity could be influencing 

the Cs values obtained. During the CCTP process the substitution of the axial ligand by a 

new monomer molecule could also be limiting the complexes ability in performing CCT. 

Deviation from linearity was noted for some Mayo plots and this is indicative of some 

assumptions being broken which arc made with respect to the way in which the Cs values 

are obtained. The deviations were also noted in other runs which utilised these 

complexes.
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Figure 3.7. Overlay o f complexes V III  — X, Mayo method.
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Figure 3.8. 2/DPw overlay plot for complexes VIII -  X.
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3.3.2.2. The use of cobalt (IIH complexes containing water as an axial ligand in the

bulk polymerisations with MMA at 60 °C.

The aim of this work was to evaluate what effect a weak base as an axial ligand had on 

the C5 values of the cobalt complexes. Again these were direct analogues of the pyridine 

containing systems with the exception that water was used instead of pyridine as one 

axial ligand. It was hoped that this ligand would give higher chain transfer activity than 

the cobalt-pyridine analogues and hence confirm that the nature of the axial ligand 

affects chain transfer activity and can therefore be used as a ‘switch’ to control CCTP. 

Table 3.5. gives GPC and experimental information for complexes XI -  XIII containing 

water as the axial base ligand. The results in this table show that again reductions in 

molecular weight are observed when the cobalt complexes are used and that these 

reductions increase with an increase in cobalt concentration.

Table 3.5. Experimental and GPC information for complexes XI -  XIII containing water

as an axial ligand.

Complex |CCTA|/ 

|MMA| x 

10 7 

Molar 
ratio

AIBN 

(moles) x 

10 4

M n M w Pdi % Conv

XI 0.0 1.52 219030 490050 2.23 5.78

1.38 1.52 23380 35740 1.52 5.10

2.75 1.52 9520 16300 1.71 4.71

4.13 1.52 8070 13100 1.62 4.63

5.50 1.52 5520 9570 1.73 4.55
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Table 3.5. Continued.

Complex |CCTA|/ 

|MMA| x 

10 7 
Molar 

ratio

AIBN 
(moles) x 

104

Mn Mw Pdi % Conv

XII 0 . 0 1.52 252030 384490 1.52 7.03

1.29 1.52 52530 92130 1.75 6.19

2.59 1.52 33880 57200 1 .6 8 6 .2 1

3.88 1.52 19920 33220 1 .6 6 5.44

5.17 1.52 16290 26950 1.65 5.73

XIII 0 .0 1.52 99170 208160 2.09 4.83

1 .2 2 1.52 23300 39490 1.69 4.59

2.44 1.52 10390 18940 1.82 2.96

3.66 1.52 6950 13250 1.90 4.27

4.88 1.52 5270 10350 1.96 3.84

Table 3.6 gives the chain transfer constants for complexes XI -  XIII. Again the complex 

containing the least number of equatorial carbons (XI) gives the highest Cs value 

followed by the one containing the most carbons (XIII). It is also interesting to note that 

the values obtained for all the cobalt (III) complexes containing water as the axial ligands 

give higher Cs values than those of the pyridine analogues. The water analogues also give 

very similar values to those obtained from the cobalt (II) complexes. This would 

therefore support the suggestion that the nature of the axial ligand can have a profound 

effect on its chain transfer activity. Water is a weak base and therefore imparts little if 

any effect on the cobalt-carbon bond. Again other factors to consider here for evalution
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and conclusion of results for this set of CCTA’s are purity isomerisation and the binding 

of monomer to the cobalt center.

Effective and non-effective isomers are a possible explanation for the lower values 

obtained for complex XII, one isomer (cis or trans) could be an effective CCTA whilst 

the other is not. Purity of the complex could be an important factor for the reason that any 

impurities which are present could hinder CCTA activity.

It should also be noted that the deviation from linearity for the Mayo plots arc indicative 

of some assumptions being broken and hence the use of the line of best fit has been 

utilised where necessary. This deviation was also noted in the other repeat experiments 

for the complexes.

Table 3.6. Chain transfer constants for cobalt (III) complexes containing water as an 

axial base ligand.

Complex Cs Error Cs Error Cs Error

Mayo +/- 2/DPw +/- CLD +/-

XI 31610 2450 36870 2130 38950 1350

XII 11300 630 13670 790 15600 380

XIII 37830 1440 38400 1000 45020 2070

The plots in figures 3.9 -  3.10 illustrate graphically the observations made from the table, 

figure 3.11 illustrates an overlay of all the CLD values obtained for both the pyridine and 

water analogues and illustrates the differences in values between the pyridine and water 

analogues.
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Figure 3.12 illustrates an example between the pyridine and water analogues for 

complexes IX and XII, again the water analogue gives the highest value and both behave 

linearly.

Figure 3.9. Mayo plot overlay for complexes XI -  XIII.
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Figure 3.10. 2/DPw overlay for complexes XI -  XIII.

Figure 3.11. CLD plot overlay for complexes VIII - XIII.
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Figure 3.12. Mayo plot overlay for complexes IX (pyridine) and XII (water).

3.4. Fffect of initiator concentration on chain transfer constants.

As stated earlier in this section it has been reported that CCT relies on a constant radical 

feed 4 ii. It was therefore interesting to observe the effect upon polymerisation when the 

initiator concentration was lowered from 5.2x1 O’4 to lO.lxlO' 6 moles.

Table 3.7 gives GPC and experimental data for complexes II -  IV. The experimental 

procedure followed was that shown in Chapter 6 . From table 3.7 it would appear that 

again a reduction in molecular weight is observed when the cobalt complexes arc used, 

again an increase in molecular weight reduction is observed with an increase in cobalt 

concentration.
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Table 3.7. GPC and experimental data for complexes Il-IV with lower initiator

concentrations.

Complex |CCTA)/ 

[MMA| x 

10 •’ 
Molar 
ratio

AIBN 

(moles) x 

104

Mn Mw Pdi % Conv

II 0.0 1 .0 1 810790 1034600 1.27 1.77

1.25 1 .0 1 18040 34150 1.89 1.30

2.50 1 .0 1 14850 23110 1.55 1.19

3.75 1 .0 1 1 0 2 1 0 15970 1.56 1 .2 0

5.0 1 .0 1 8500 12160 1.43 1.32

III 0.0 1 .0 2 1215570 805850 1.65 1.55

1 .6 6 1 .0 2 20800 33920 1.63 1.19

3.31 1 .0 2 24220 41720 1.72 1 . 1 0

4.97 1 .0 2 20240 35980 1.77 1 . 2 0

6.63 1 .0 2 17520 30430 1.74 1 .1 1

IV 0.0 0.97 717700 1332710 1.85 2 .0 1

1 .0 2 0.97 87960 152680 1.73 1.73

2.03 0.97 47250 78970 1.67 1.55

3.05 0.97 38250 67600 1.76 1.57
4.07 0.97 36760 54510 1.48 1.51

Table 3.8 gives the chain transfer values for complexes II -  IV at reduced initiator 

concentration. It has previously been found that the rate of polymerisation in CCT is not 

dependant on the concentration of the CTA, but is dependant on initiator concentration, 

although an initial decrease in rate is observed on introduction of the CTA l516.
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Hawthorne 1718 reported that the rate of reaction in CCT in the absence of an external 

initiator source is very slow. This implies that an external source of free radicals is 

required to replenish the radicals lost from the CCT system. Davis et al 19 have also 

demonstrated Hawthorne's findings but have however found that this dependence is not 

substantial. When free radical initiators are introduced into a CCT system, they can 

directly initiate the polymer or they can react with the CTA to form a cobalt (111) alkyl, 

which then initiates the monomer.

The results shown here indicate that the value for Cs is decreased with a reduction 

in concentration of initiator and that the rate of reaction is also lowered. The latter is 

highlighted by comparison of the percentage conversions obtained for bulk 

polymerisations with low and high initiator concentrations, tables 3.7 and 3.1 

respectively.

Table 3.8. Chain transfer constants for complexes II -  IV at reduced initiator 

concentration.

Complex Cs Error Cs Error

Mayo +/- 2/DPw +/-

II 22070 2910 31390 1860

III 6880 2880 7440 3540

IV 6530 1120 8560 920
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Figure 3.13. Mayo plot overlay for low initiator concentration experiments 11 -  IV.

Figure 3.14. 2/DPw overlay for complexes II -  IV with low initiator concentration.
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3.5. Conclusions.

From the results in this chapter it can be concluded that the structure of the complex plays 

an important role in its chain transfer activity. In particular from the results outlined in 

table 3.2 it is noted that the nature of the equatorial groups play an important role in the 

activity of the complexes at reducing molecular weight and hence the value of Cs for 

each. It is apparent from the data in table 3.2 that the Cs values for all complexes have 

decreased with an increase in carbons on the main skeletal carbon backbone when 

compared with the value obtained for CoBF, complex II. However, when one considers 

complexes V and VI independently of the others it appears that this trend is not followed. 

The general overall decrease in Cs when compared to complex II is considered to be due 

to either an increase in cross sectional area or the strength of the cobalt-polymer bond.

The latter being largely responsible for the catalytic activity as this bond must break to 

allow continuation of the cycle, its mobility (diffusion effect) will decrease with an 

increase in steric bulk. Haddleton et a l2 observed a decrease in Cs by increasing the 

bulkiness on the equatorial ligand. They also favour a reduction in mobility as an 

explanation for decreased activity. It is also possible that the purity of the complexes are 

playing an important role in the activity. If there are impurities present then these could 

be reducing catalytic activity and hence catalytic activity decreases could be due to this.

It should be noted that for complex III isomerisation could be detrimental to the catalytic 

activity of that complex. The two isomers being cis and trans in nature. It is plausible that 

one isomer might be an effective CTA whilst the other is not. It was however not possible 

to determine which isomer if both were present was the active one.
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From the results outlined in tables 3.5 and 3.6 it can be seen that the complexes 

containing pyridine, see table 3.5, as the values obtained for the pyridine complexes (VIII 

-  X) are roughly half to three quarters less than those for the corresponding water 

analogues (XI -  XIII). Water, although a base is a weak base and therefore imparts little 

if any effect on the cobalt-carbon bond. This would explain the high Cs values obtained 

when compared to the pyridine analogues. It should also be noted that the Cs values 

obtained for the water analogues are very close to those obtained for the cobalt (II) 

analogues, see table 3.2. The effect of decreasing initiator concentration leads to a 

reduction in chain transfer activity. Other relevant factors which could play an important 

role for the Cs values obtained for complexes II-XIII are the presence of isomers, purity 

and the substitution of the axial ligands with monomer. It is also possible that these 

factors could be responsible for the Cs values obtained to a greater or lesser extent as 

previously discussed within the relevant sections of this chapter.

The range of Cs values obtained for each complex by each method of 

determination in particular with reference to the 2/DPw and CLD methods offer a wide 

range of molecular weights. The differing values could be attributable to wide PDi values 

indicating a wide range of molecular weight in particular with respect to low molecular 

weight. The presence of low molecular weight polymer on the GPC trace would cause 

some non-linearity for the CLD values and hence provide differing Cs values. The 2/DPw 

method is the most reliable when this is the case. It should also be noted that the linearity 

of some of the plots obtained for complexes II-XIII do not directly follow the Mayo 

assumption of a straight line. The curvature and hence lines of best fit arc indicative of 

some of these assumptions being broken and this was evident in repeat experiments for
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these complexes. From the data obtained it appears that the majority of methods for the 

determination of Cs agree well with each other, with the odd exception. The CLD values 

are larger than those of 2/DPw which lies in between those of the former and the Mayo 

method. This observation agrees well with previous workers observations 1.6-8.12.13.20
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Chapter 4

Bulk polymerisation of Styrene using 

CCTP with no external initiator and 

different temperatures.
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4.0. Bulk polymerisation of styrene using CCTP with no external initiator and 

different temperatures.

4.1. Aim.

The aim of this work was to see how the chain transfer constants for complexes II-IV, 

VIII-XII1 as described in chapter 3 varied for styrene. Styrene undergoes thermal 

initiation hence no external initiator is required. Different temperatures were investigated 

to see the temperature dependence of the chain transfer constants.

It was also interesting to directly compare the cobalt (II) and cobalt (III) water and 

pyridine analogues with each other. For example, it was interesting to see if the same 

trends observed in chapter three were observed for styrene, i.e. would cobalt (III) 

pyridine analogues give the lowest Cs values when directly compared to its cobalt (III) 

water and cobalt (II) analogues. It would also be interesting to see what relationship there 

was between Cs and the activation energy for transfer.

4.2. Introduction.

It is known from previous work that CCTP is reliant on a constant radical feed to 

replenish radicals consumed by radical-radical termination in order for an acceptable rate 

of polymerisation to be maintained. It has been reported that CCTP will still occur but at 

a slower rate when no external initiating source is used, the work reporting this 

observation used MMA and various other monomers1-5. No comparisons have been made 

between thermal radical initiator containing and initiator free systems and the elTect 

temperature has on this. The work reported in this chapter has used styrene in the
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presence of complexes reported in chapter 2, with no external radical source. Styrene 

undergoes thermal initiation by a Diels-Alder mechanism at elevated temperatures 

producing primary radicals which propagate and follow normal CCTP by chain transfer 

to cobalt. The mechanism of thermal self-initiation of styrene follows a Diels - Alder 

mechanism, which was proposed by Mayo 6-7 and has been confirmed by other 

investigations 8-9, see figure 4.1.

Figure 4.1. Mechanism of thermal self-initiation of styrene.
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The temperature's used in the study were 80, 90, 100, 120 and 140 °C. Previous workers 

investigating temperature effects in order to determine thermodynamic parameters have 

reported two very different trends. O'Driscoll et al used MM A and found that C5 was 

temperature dependant, however Haddleton and Davis have both found independently 

using a wider range of temperatures (50,60, and 70 °C Haddleton and 40, 50, 60 and 70 

°C Davis) and also reanalysis of O'Driscolls’ data using various monomers including 

MM A that Cs is not dependant on temperature. Although none of the previous studies 

have used styrene it would be expected that the Cs values will also be temperature 

independent. However if one ignores these observations and studies the thermodynamics 

and kinetics of the reaction one would assume that as temperature is increased the 

thermal initiation of styrene would increase leading to an increase in Cs 

This study will enable the calculation of the activation energies for transfer for each 

complex. This is of special interest with respect to the cobalt (III) systems as it is 

presumed that the pyridine cobalt (111) analogues will give the highest value for the 

activation energy of transfer owing to the strength of the pyridine ligand. This strength 

will impart a decrease in activity and mobility to undergo effective CCTP and produce 

low molecular weight polymers. Work reported in chapter 3. showed that for MMA bulk 

polymerisations, the chain transfer constants for the pyridine complexed cobalt (III) 

complexes exhibit a lower value for Cs than those containing water or for the cobalt (II) 

analogues. It was assumed that this is attributable to the pyridine imparting a 

strengthening to the Co-C bond making the dissociation of this bond harder than that of 

water.
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4.3. Results.

The chain transfer constants for complexes II -  IV and Vili -  XIII were evaluated for 

polymerisations of styrene in bulk in the absence of thermal initiator. Polymerisations 

were terminated at appropriate times depending on the temperature used, table 4.1. 

Experimental conditions and molecular weight/conversion data is reported in appendix 3, 

together with chain transfer constants. Conversions were obtained by gravimetry. The 

values contained in this chapter are samples of the repeat runs obtained for each complex 

at each temperature.

Table 4.1. Time and temperature information for bulk polymerisation in styrene, using 

complexes II-1V and VIII -  XIII.

Temperature,

°C

80/90 100 120 140

Time (mins) 60 45 30 15

4.3.1. Temperature dependence of catalytic chain transfer of stvrene by cobalt 111) 

complexes -  an investigation into complex structure and the effect of temperature.

This work was carried out to investigate the effect of the equatorial alkyl groups on the 

chain transfer constant, figure 4.2, and to determine the effect of temperature had on C s 

for these compounds. It was also interesting to see whether the trend reported in chapter 

three, was reproduced, i.c., whether an increase in skeletal carbons causes a decrease in 

chain transfer activity. The molecular weight and conversion data for these complexes 

can be found in appendix 3, tables 1-3 respectively.
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Figure 4.2. Structure of cobalt (II) complexes.

Fw F

Where R, +R2 = CH3 (Complex II) L = CH3OH 

Ri = CH3 and R2 = CH2CH3 (Complex III) L = CH3OH 

R, + R2 = CH2CH3 (Complex IV) L = CH3OH.

Table 4.2 gives Cs values for complexes II-IV using the Mayo, 2/DPw and CLD methods 

of determination so as to compare methods, effect of temperature and complex structure 

on the chain transfer constant values. Values are also illustrated graphically in figures 4.3 

-4 .11.

From the results obtained for complexes II -  IV it would appear that there is no change in 

Cs with an increase in temperature. It is also apparent that the trend observed in chapter .3 

is also observed here, increasing the skeletal carbon's decreases the value of Cs. The 

observation that Cs is not temperature dependant agrees with the observations of both 

Iladdleton 10 and Davis 11. The values here are considerably lower with styrene than those 

obtained with MMA, also agreeing with previous workers. Another possible factor for 

complex III is the effect of isomerisation since there are two possible isomers cis and 

trans. It is quite possible for both isomers to have been synthesised and that both would 

therefore participate in the reaction with this in mind it is therefore plausible that the one
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isomer is an effective CCTA whilst the other is not. It was however not possible during 

this work to isolate either and determine this. Another factor which could affect Cs values 

are the purity of the CCTA. Results in Chapter 3 for complex IV would suggest that 

purity affects Cs. With this in mind it is important to consider that likewise for other 

complexes and monomers the Cs values obtained could be reduced or increased owing to 

CTA purity. From the plots obtained for complexes II-1V some non-linearity is observed 

indicative of some assumptions being broken with regard to Mayo assumptions.

Styrene gives a lower Cs value than MMA in CCTP under identical conditions owing to 

the unlikely formation of an internal double bond on the styrene polymer and also the 

formation of secondary radicals in styrene are more stable than the tertiary radicals 

formed in MMA l2. The cobalt -styrene bond is a lot stronger than the Co-MMA bond 

and therefore transfer in styrene is limited owing to the bond strength. Styrene also 

complexes directly to the cobalt center where one of the ligands has broken off at the 

beginning of CCTP. With regard to an increase in skeletal carbons leading to a decrease 

in C5, the decrease in activity is probably attributable to an increase in electron density 

around the cobalt. The crowding must strengthen the Co-C bond and make the 

dissociation of this bond harder, this results in more energy being required to break the 

bond and therefore a slowing in the CCTP process and a decrease in the chain transfer 

constant is observed. It is interesting to note that the trend is complex II > IV > III, which 

is identical to the trend in chapter three. The methods used to obtain the Cs values also 

give slightly different values. Haddleton 10 postulated that that the bulkiness of the 

equatorial groups can affect the mobility owing to the strength of the cobalt polymer 

bond and hence affect the chain transfer constant value obtained as this bond must break
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to allow continuation of the CCTP cycle. The CLD values obtained throughout this 

chapter are significantly lower than the other two procedure values. This could be due to 

the pattern of the GPC trace as linearity was a problem in calculating Cs via this 

procedure, ow ing to the presence of low molecular weight polymer present in the trace. 

Also the C1.D values could be lower owing to the possibility that the polymerisations are 

not dominated by chain transfer.

The Mayo, CLD and 2/DPw values vary considerably when compared to each 

other. As stated previously some non linearity is observed in the plots indicating some 

deviation from the Mayo ideal. The PDi values are varied and sometimes wide indicating 

a variation in molecular weight. Reliable C5 values are obtained with narrow PDi and this 

may be a contributing factor to explain the wide range of Cs values.
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Table 4.2. Chain transfer constants for complexes II-IV.

Complex 
+ Temp

°C

Mayo Error

+/-

2/DPw Error

+/-
CLD Error

+/-

II

90 2080 719 2370 408 35 10

120 2810 444 1560 207 850 113

140 3140 390 2570 476 755 1382

III
80 230 12.0 220 8.0 200 39.0

100 270 36 230 12 210 19

120 140 7.00 76 5 34 4

140 220 45 157 35 96 70

IV

90 65 69 77 45 65 35

100 450 130 190 60 110 30

120 320 65 270 55 130 20

140 270 40 150 40 70 10
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4.3.1.1.Temperature dependence of CCT with complex II in the bulk polymerisation 

of styrene.

Figures 4.3 -  4.5 shows no temperature dependence on Cs.

The results obtained by a Mayo plot give higher chain transfer constant values than those 

determined by the methods of 2/DPw and CLD procedures, the latter giving much lower 

values. The Mayo plots in figure 4.3 however show that there is a temperature 

dependence which is not noted by the other two procedures. The discrimination between 

values in for each procedure combined with the observation by the Mayo procedure of 

temperature dependence for Cs highlights the importance of using more than one 

procedure to obtain data to evaluate trends and values.

Figure 4.3. Mayo plot overlay for the CCTP of styrene with complex II in the absence of 

solvent and initiator at 90, 120 and 140°C.

The Mayo plots in figure 4.3 behave linearly and fit well with the linear regressions with 

minimal errors, giving a maximum C5 value of 3139 at 140°C.
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Figure 4.4. 2/DPw overlay for the CCTP of styrene with complex II in the absence of

solvent and initiator at 90, 120 and 140°C.

Figure 4.5. CLD overlay for the CCTP of styrene using complex II in the absence of 

solvent and initiator at 90, 120 and 140°C.
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The CLD values are significantly lower than those of both 2/DPw, figure 4.4, and the 

Mayo procedure, figure 4.3. Again the plots for the 2/DPw and CLD procedures behave 

linearly and minimal error is observed. The highest Cs value given from the 2/DPw plot is 

2570 at 140 °C whilst the highest value from the CLD plot is 850 at 120 °C.

4.3.I.2. Temperature dependence of CCT with complex 111 in the bulk 

nolvmerisation of styrene.

The values given in table 4.2 and illustrated in figures 4.6 -  4.8, for complex III again 

illustrate temperature independence at chain transfer. Again the Mayo plots give higher 

values than the other two procedures, followed by 2/DPw and then CLD.

Figure 4.6. Mayo plot for the CCTP of styrene with complex III in the absence of solvent 

and initiator at 80, 100, 120 and 140°C.

|Co]/|Slyrene)
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Figure 4.7. 2/DPw plot for the CCTP of styrene with complex III in the absence of 

solvent and initiator at 80, 100, 120 and 140°C.

The Mayo plots in figure 4.6 follow linearity with minimal error giving a maximum Cs

value o f  268 at 100°C.
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Figure 4.8. CLD overlay for the CCTP with styrene with complex III in the absence of 

solvent and initiator at 80, 100, 120 and 140°C.
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The 2/DPw plots in figure 4.7 behave linearly with minimal error however, the CLD plots 

in figure 4.8 do not although, values from both give some similar values. The highest Cs 

value given from the 2/DPw plots is 229 at 100°C, whilst the maximum value obtained 

from the CLD plots is 211 at 100°C.

4.3.1.3. CCT of stvrene by complex IV in the absence of solvent and initiator.

The values of chain transfer reported in table 4.2 for complex IV show that the chain 

transfer values are not temperature dependant. The Mayo procedure appears to give the 

highest Cs values at all temperatures with good plots obtained. The maximum Cs value of 

449 was found at 100°C.

Figure 4.9. Mayo plot overlay for the CCTP of styrene with complex IV in the absence 

of external initiator and solvent at 80, 100, 120 and 140°C.
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Figure 4.10. 2/DPw overlay for the CCTP of styrene with complex IV in the absence of

solvent and external initiator at 80, 100, 120 and 140°C.

0
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From the overlays in figure 4.10 the highest Cs value of 270 coincides with 120°C,

although it should be noted that there is scatter on all plots.

Figure 4.11. CLD overlay for the CCTP of styrene with complex IV in the absence of 

solvent and initiator at 80, 100, 120 and 140°C.
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The CLD plots in figure 4.11 show linearity with minimal error, giving a maximum Cs of

131 at 120°C.

4.3.2. CCT of stvrene in the absence of solvent bv cobalt (Hit complexes with 

pyridine as the equatorial ligand - an investigation into complex structure including 

the nature of the axial ligand and the effect of temperature.

The purpose of this work was to investigate the effect of the pyridine axial ligand on the 

chain transfer constant as compared to cobalt (II) and cobalt (III) (water) analogues. This 

was to investigate any temperature dependence effects. It was also interesting to see 

whether the combined effect of increased skeletal carbons and pyridine would strengthen 

or weaken the cobalt carbon bond and compare both with cobalt (II) and cobalt (III) 

water axial analogues, see figure 4.12.

Tables 4 - 6 in appendix 3 give molecular weight and conversion data for complexes VIII 

-  X containing pyridine as one of the axial ligands.
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Figure 4.12. Structure of cobalt (III) complexes containing pyridine as the axial base 

ligand.

Fw F

Where B= pyridine and 

R,+R2 = CH3 (Complex VIII)

R, = CH3, R2 = CH2CH3 (Complex IX)

R, + R2 = CH2CH3 (Complex X).

Table 4.3 gives Cs values for complexes VIII - X using the Mayo, 2/DPw and CLD 

methods of determination, effect of temperature and complex structure on the chain 

transfer constant values.

Both figures 4.23 and 4.24 show that complex VIII, which contains the least number of 

carbons gives the highest Cs value, followed by complex X and then complex IX in 

agreement with earlier work. This is also the overall trend observed for this series of 

catalysts, i.e. the less sterically hindered - complex VIII gives the highest value followed 

by complex X,- symmetrical equatorial ligands and then the unsymmetrical complex IX. 

T his trend was also observed in Chapter three for cobalt (II) complexes II-IV. A factor to 

consider when commenting on Cs values is the purity of the complex. Results for 

complex IV in chapter 3 would indicate that complex purity plays an important role. It is
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therefore important to remember this factor when comparing Cs values as the relative 

purities of the other complexes is varied. When complex IX is considered it is important 

to take into account the possible presence of both cis and trans isomers as only one of the 

isomers may be effective as a CCTA. Once again the CLD procedure gives the lowest 

values for Cs, again this could be attributable to the fact that the system is not dominated 

by chain transfer. PDi values obtained vary greatly and the linearity of some plots is 

varied. The non linear behavior suggests deviation from the assumptions of Mayo. The 

combination of PDi and deviation from linearity could therefore pose an explanation for 

the variation in Cs values. When considering complexes VIU-X one must take into 

account the presence of different axial ligands. X-ray crystal data and NMR data suggest 

the presence of pyridine and ethyl axial ligands prior to the insertion of the complexes 

into the CCTP system. However, one must consider the possibility that during 

polymerisation axial ligands could be replaced by monomer in both axial positions this 

could lead to a decrease in activity.
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Table 4.3. Chain transfer constants for complexes VIII -  X in the polymerisation of 

styrene.

Complex 

+ Temp
°C

Mayo Error 2/DPw Error CLD Error

V I I I  80 3080 443 2990 339 2210 377

100 4990 1190 1370 235 771 290

120 2450 235 1400 267 164 310

140 3530 470 2680 290 460 50

I X

80 50 15 40 14 30 20

100 100 20 90 14 60 8

120 180 30 190 30 160 30

140 160 9 160 10 135 20

X

80 710 80 610 80 450 100

100 450 130 550 55 360 60

120 870 120 600 50 570 25

140 700 50 630 25 485 43



4.3.2.l.CCTP of stvrene with complex VIII in the absence of solvent and initiator.

Figure 4.13-4.15 show Mayo, 2/DPw and CLD plots respectively, for the 

polymerisation of styrene with complex VIII as the chain transfer agent.

Figure 4.13. Mayo overlay for the CCTP of styrene complex VIII in the absence of 

initiator and solvent at 80, 100, 120 and 140°C.

0.0 20x10* 4.0x10* 6.0x10* 8.0x10* 1.0x10s
|Co)/[Styrene)

Temperatures shown in figure 4.13 give linear plots with a maximum Cs value of 4990 at 

100°C.
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Figure 4.14. 2/DPw overlay for the CCTP of styrene with complex Vlll in the absence of

initiator and solvent at 80, 100, 120 and 140°C.

0.0 2.0x10* 4.0x10* 6.0x10* 8.0x10* l.OxIff5
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Figure 4.15. CLD overlay for the CCTP of styrene with complex Vlll in the absence of 

solvent and initiator at 80, 100, 120 and 140°C.
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The 2/DPw plots in figure 4.14 giving a maximum Cs value of 2990 at 80° C. The CLD 

plots in figure 4.15 gives a Cs of 2210 at 80°C.

4.3.2.2. CCTP of stvrene with complex IX in the absence of initiator and solvent.

The results reported in table 4.3 and in figures 4.16-4.18 show no temperature 

dependence on Cs. Again the Mayo method gives higher values than those of the 2/DPw 

and CLD procedures. As can be seen in figure 4.16 the Mayo plots are all relatively 

linear, with a maximum Cs value of 180 at 120°C.

Figure 4.16. Mayo plot overlay for the CCTP of styrene with complex IX in the absence 

of solvent and initiator at 80, 100, 120 and 140°C.
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Figure 4.17. 2/DPw overlay for the CCTP o f  styrene with complex IX in the absence of

initiator and solvent at 80, 100, 120 and 140°C.
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Figure 4.18. CLD overlay for the CCTP of styrene with complex IX in the absence of 

solvent and initiator at 80, 100, 120 and 140°C.
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Again the 2/DPw and CLD plots, figure 4.17 and 4.18 respectively exhibit linearity with 

the 2/DPw method giving a maximum C5 value of 187 at 120 °C and the CLD method 

giving a maximum C5 value of 163 at 120°C.

4.3.2.3. Catalytic chain transfer of styrene with complex X in the absence of solvent 

and initiator.

The results in table 4.3 and in figures 4.19-4.21 indicate that there is no temperature 

dependence on Cs. Again the Mayo method generally gives higher values than those of 

the 2/DPw and CLD procedures.

Figure 4.19. Mayo overlay for the CCTP of styrene with complex X in the absence of 

initiator and solvent at 80, 100, 120 and 140°C.
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The Mayo plots in figure 4.19 are relatively linear with a Cs value of 866 at 120°C.
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Figure 4.20. 2/DPw overlay for the CCTP of styrene with complex X in the absence of

initiator and solvent at 80, 100, 120 and 140°C.

0.0 2.0x10* 4.0x10* 6.0x10* 8.0x10*
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The 2/DPw plots in figure 4.20 giving a maximum Cs of 627 at 140°C the CLD plots in 

figure 4.21 over-page also give linear plots with a maximum Cs of 569 at 120 °C.

The Mayo and 2/DPw values for C5 at most temperatures are relatively close indicating 

little error and that both groups of results can be considered reliable when compared to 

each other.
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Figure 4.21. CLD overlay for the CCTP of styrene with complex X in the absence of

initiator and solvent.
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4.3.3. The CCTP of stvrene using cobalt (III) complexes containing water as an 

equatorial ligand in the absence of solvent and initiator -  an investigation into 

complex structure, in particular the effect of the axial ligand and the effect of 

temperature.

The purpose of this work was to investigate what effect water as the axial ligand had on 

the chain transfer constant and to see whether an increase in temperature would increase 

the complexes activity. The other purpose was to see whether the combined effect of 

increased skeletal carbons and water would strengthen or weaken the cobalt carbon bond 

and compare these results with both the cobalt (II) cobalt (111) pyridine axial analogues, 

sec figure 4.2.2.

1 1 9



Figure 4.22. Structure of cobalt (III) complexes containing water as a base ligand.

Fw F

Where B= water and 

R,+R2 = CH3 (Complex VIII)

Ri = CH3, R2 = CH2CH3 (Complex IX)

R, + R2 = CH2CH3 (Complex X).

Tables 7 - 9 in appendix 3 give molecular weight and conversion data for the CCTP of 

styrene using complexes XI -  XIII containing water as one of the axial ligands. Again the 

same temperatures and times were used as for the previous complexes. Table 4.4 gives Cs 

values for complexes XI - XIII using the Mayo, 2/DPw and CLD methods of 

determination in order to compare methods, effect of temperature and complex structure 

on the chain transfer constant values. Again the trend of least sterically hindered complex 

giving the highest Cs value is once again observed. This is the same trend as has been 

observed for chapter three and in the previous sections of this chapter. It is also important 

to consider other factors which could be affecting the Cs values obtained. CCTA purity as 

mentioned in earlier sections could be playing an important role than previously 

considered. Isomerisation is also a potential source of reduced catalytic activity in
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complex XII where both cis and trans isomers are possible and potentially only one of the 

isomers is effective as the CCTA. Axial ligand exchange with monomer during the 

polymerisation process is also a possible factor leading to reduced Cs activity and this 

factor should also be taken into consideration. There is also no temperature dependence 

and the Mayo method of determination for Cs gives consistently the highest values when 

compared to the other methods of determination. From the Cs data obtained it is evident 

that the 3 different methods for obtaining Cs show some variation. This could be due in 

part to large PDi values and non-linearity in the Mayo plots. The combination of these 

factors could possibly account for variation in obtained Cs values.
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Table 4.4. Chain transfer constants for complexes XI -  XIII.

Complex
+

Temp°C

Mayo Error 2/DPw Error CLD Error

XI 80 3490 260 3370 210 2875 630

100 2460 410 1530 540 690 310

120 2880 270 2420 190 720 210

140 2180 420 1540 590 380 400

XII
80 1180 110 900 80 530 140

100 1480 300 500 150 330 120

120 1390 300 1230 170 1130 90

140 1690 260 1180 290 730 720

XIII
80 1300 90 920 50 470 70

100 1130 270 440 120 280 110

120 650 300 440 280 480 240

140 1090 180 480 90 180 80
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4.3.3.1 The catalytic chain transfer polymerisation of styrene using complex XI in

the absence of initiator and solvent.

It would appear that from the results in table 4.4 and illustrated in figures 4.23 - 4.25, 

there is no connection between temperature increase and an increase in Cs. Cs is 

independent of temperature. Again the Mayo method gives higher values than those of 

the 2/DPw and CLD procedures. Figure 4.23 gives results obtained from the Mayo 

procedure at all temperatures.

Figure 4.23. Mayo plot overlay for the CCTP of styrene with complex XI in the absence 

of initiator and solvent at 80, 100, 120 and 140°C.

The Mayo plots in figure 4.23 behave linearly with minimal error, giving a maximum 

value for Cs of 3490 at 80°C.
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Figure 4.24. 2/DPw overlay for the CCTP of styrene using complex XI in the absence of

both initiator and solvent at 80, 100, 120 and 140°C.

0.0 20x10* 4.0x10'* 6.0x10* 8.0x10* l.OxlO5
[Co]/l Styrene]

Figure 4.25. CLD overlay for the CCTP of styrene using complex XI in the absence of 

initiator and solvent at 80, 100, 120 and 140°C.

I -0.02

100 °c

\ m

a  80 °C, Cs 2875 +/- 626
•  100 °C, Cs 689 +/- 311 
a 120 °C, Cs 719 +/- 212
* 140 °C, Cs 379 +/- 405

80 °C 
o

0.0 2.0x10* 4.0x10* 6.0x10* 8.0x10* I.OxIff5
[Co)/[ Styrene)
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From the 2/DPw overlays in figure 4.24 A maximum value for Cs of 3370 is given 

corresponding to 80 °C. The CLD overlays in figure 4.25 give a maximum Cs value of 

2875 at 80°C.

4.3.3.2 Catalytic chain transfer of styrene using of complex XII as the chain transfer 

agent in the absence of solvent and initiator.

It would appear that from the results in table 4.4 and illustrated graphically in figures 

4.26 - 4.28 that values for Cs are independent of temperature. Again the Mayo method 

gives higher values than those of the 2/DPw and CLD procedures. Figure 4.26 gives 

results from the Mayo procedure at all temperatures.

Figure 4.26. Mayo overlay for the CCTP of styrene using complex XII in the absence of 

solvent and initiator at 80, 100, 120 and 140°C.

140 °C

120 °C
100 °C

80 °C

00  20x10* 4.0x10* 6.0x10* 8.0x10* I.OxlO5
[Co]/[Styrene]
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From the overlay in figure 4.26 it would appear that there is some scatter, however a 

maximum value for Cs of 1690 was found at 140°C.

Figure 4.27. 2/DPw overlay for the CCTP of styrene using complex XII in the absence of 

solvent and initiator at 80, 100, 120 and 140°C.

140 °C
120 “C

80 °C 

100 °C

From figure 4.27 a maximum Cs of 1230 at 120°C was found.
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Figure 4.28. CLD overlay for the CCTP of styrene using complex XII in the absence of

solvent and initiator at 80, 100, 120 and 140°C.

t 140°C,Cs 726+/- 717 120°C
-0.015 ■ , i — -i

0.0 20x10* 4.0x10* 6.0x10* 8.0x10* I.OxlO5
[Co]/[Styrene]

From the CLD overlays in figure 4.28 linear plots are observed giving a maximum Cs 

value of 1130 at 120°C.

4.3.3.3 The catalytic chain transfer polymerisation of styrene using of complex XIII 

in the absence of solvent and initiator.

It would appear that from the results in table 4.4 there is no connection between 

temperature increase and an increase in C5. Cs is independent of temperature. Again the 

Mayo method gives higher values than those of the 2/DPw and CLD procedures. Figure 

4.29 gives results from the Mayo procedure at all temperatures.
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Figure 4.29. Mayo plot overlay for the CCT polymerisation of styrene using complex

XIII at 80, 100, 120 and 140°C.

,80°C

Figure 4.30. 2/DPw overlay for CCT polymerisation of styrene using complex XIII in 

the absence of solvent and initiator at 80, 100, 120 and 140°C.
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Figure 4. 31. CLD overlay for the CCT polymerisation of styrene using complex XIII in

the absence of solvent and initiator at 80, 100, 120 and 140°C.

From figure 4.29 a maximum Cs of 1310 at 80°C was found. The 2/DPw overlay in figure 

4.30 gives a maximum Cs value of 920 at 80°C whilst the CLD overlay in figure 4.31 

gives a maximum Cs value of 467 at 80°C.

It is also important to compare each set of complex analogues with each other at all 

temperatures to see what effect different axial ligands have on the Cs value. Would the 

water ligand analogue give similar results to its cobalt (II) analogue and will the pyridine 

ligand analogue in each set give the lowest Cs value. The most suitable method to achieve 

this comparison is by overlaying the 2/DPw plots for each analogue taken from tables

4.2, 4.3 and 4.4 at 120°C. The plots show that the same trend is observed here as 

previously, i.e., the water analogue gives the highest chain transfer value and is therefore 

assumed to be the most effective, followed by the cobalt (II) analogues and finally the 

pyridine analogues. The fact that the pyridine analogues give consistently the lowest C,
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values when compared to the other analogues agrees well with the postulation that the 

pyridine ligand itself hinders the abstraction of the ethyl group possibly by strengthening 

the cobalt carbon between the ethyl and cobalt. The observed reduction in activity could 

however be due to a reduction in mobility of the CCTA containing pyridine as the 

pyridine ligand is considered to be bulky when compared to its water analogues. It is 

however equally likely that the strength of the cobalt alkyl bond is very strong and can 

therefore not reduce to cobalt (II). Possibly the strength of the pyridine ligand causes the 

cobalt (III)- alkyl polymer intermediate bond strengths to become stronger and therefore 

its dissociation and continuation of the cycle is greatly affected.

Figure 4.32. 2/DPw overlay for the CCTP of styrene at 120°C using complexes II. VIII 

and XI.

0 .0  2 0 x 1 0 *  4 . 0 x 1 0 *  6 .0 x 1 0 *  8 .0 x 1 0 *  I .O x lf f5

|Co]/[Styrene)
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Figure 4.33. 2/DPw overlay for the CCTP of styrene atl20°C using complexes III, IX

and XII

Figure 4.34. 2/DPw overlays for the CCTP of styrene at 120°C using complexes IV, X 

and XIII.

0.008

0 0  2 .0 x 1 0 *  4 . 0 x 1 0 *  6 .0 x 1 0 *  8 .0 x 1 0 *  I.O x lO 5

[Co]/]Styrene]
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4.3.4. Calculation of activation energies for complexes II-IV. XIII-XIII in the 

catalytic chain transfer polymerisation of stvrene.

In free radical polymerisation propagation is the ‘growth stage’ for polymer molecules. In 

CCTP this growth stage is modified by the use of a CCTA. The higher the value for the 

chain transfer constant the more effective the complex is at reducing the molecular 

weight of the product. It should be noted that for chain transfer to be effective it must 

dominate over the propagation step. If the value for chain transfer is low then either the 

CCTA is ineffective at reducing molecular weight or the energy required to undergo 

transfer is larger than that for propagation, transfer will still occur but propagation will 

dominate. In both cases where Cs is low or the activation energy is high for transfer, high 

molecular weight polymer is formed. A value for the activation energy for propagation 

for styrene is given in appendix 5 along with E transfer and A ,ransfcr values for all the 

complexes used in this investigation, see table 1.

By measuring chain transfer coefficients at the minimum of three different temperatures 

it was possible to plot In Cs versus 1/T (Arrhenius plot). An example calculation for the 

determination of the Ea transfer and Atransfcr values can be found in appendix 5. Values for 

slopes and intercepts for each complex can also be found in appendix 5, table 1.

It was of interest to investigate whether a similar observation is noted with regard to a 

strong base decreasing activity and requiring more energy to break the bond and therefore 

Etransfer is higher than E propigaiion- This is the postulated explanation for reduced activity o f 

cobalt (III) complexes containing pyridine as the axial ligands for both MMA and styrene 

bulk polymerisation.
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Results in chapter 3 with MMA show that the pyridine complex chain transfer 

values are significantly lower than the cobalt (II) and cobalt (III) water analogues. The 

water analogue values give slightly higher values than cobalt (II). This would suggest that 

Etransfcr would be higher for pyridine. The results in this chapter also show that again the 

water analogue values for chain transfer are higher than cobalt (II) followed by pyridine. 

Values from all methods for the determination of C, were used to calculate both Etr and 

Atr and compared. Figure 4.40 shows a plot of In Cs versus 1/T for complex II using all 

methods of determination for C5. Table 4.5 shows E„,„sfc, and A , values for all 

complexes using all methods of determination. If the value for Etransrer is larger than 

Epropagation then the complex will give a low value for chain transfer activity and produce 

high molecular weight polymer and will be considered ineffective at reducing molecular 

weight. Propagation and termination via free radical mechanisms will dominate in this 

situation. However if the Etra„Sfcr is lower than Epropagation then transfer will dominate and 

control of molecular weight will be established.

Figure 4.35. Arrhenius plot for the CCTP of styrene using complex II.

7

6 ■ mayo-1256, 11.11
•  dpw 6.00, 7.64 

5

4

3
0.0024 0.0025 0.0026 0.0027 0.0028

l/T
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All plots behave linearly with minimal scatter. From the values given for slope and 

intercept it was possible to calculate Elr„!te, and A„,nsl„ for each method and compare.

Table 4.5 gives E,r.„,fcr and Att„,fer values for all complexes. The results in table 4.5 show 

that for each complex most methods of determination give different values, however 

sometimes these values are close. Complex 11 has three very different values for Eiransier, 

complex III has a very low value when the CLD procedure is used although the other two 

methods give similar but not brilliant values in agreeance with each other. Complex IV 

has Eiransicr values which are very close to each other regardless of method, it was not 

possible to obtain a value for complex VIII using the CLD values as there was too much 

error in the data. Complex IX values are very different when compared to each other and 

therefore determination of an absolute average value is difficult. For complexes X and XI 

all methods give similar values and therefore an estimation using an average value would 

be possible for Elramfer■ The scatter and high values of Elransfi;r can be explained by the fact 

that during CCTP the time taken to establish an equilibrium between cobalt (II) and 

cobalt (III) formation is long. The result of this is manifested in low monomer conversion 

and it would have been more suitable to have run the experiments for a longer period of 

time. This would have resulted in higher monomer conversion and thus a more accurate 

measure of Etransrcr would have been obtained. Both complexes XII and XIII give similar 

values using all three methods although the Mayo and 2/DPw methods give the most 

comparable results.
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Ta b le  4.5. Table o f  EB11,lf„ and A„„sf„ values for complexes I I -IV  and V III -  X III.

Complex Mayo Mayo 2/DPw 2/DPw CLD CLD

Elr A,r E ,r A,, E lr A„

II 42600 2.85E 32100 8.87E 114000 1.21E

+12 +10 +21

III 27200 1.85E 18900 1 OIE 6650 1.49E

+09 +08 +06

IV 59400 4.59E 47100 7.17E 32500 4.24E

+12 +11 +09

V III 30400 8.26E 29400 3.53E 1.07E

+10 +10 + 15

IX 56400 9.64E 3830 3.37E 82900 2.39E

+12 + 13 + 16

X 36000 8.33E 33500 3.43E 36400 6.77E

+10 +10 +10

XI 24900 1.03E 20800 2.23E 3.14E

+10 +09 +05

X II 38650 4.17E 42450 8.76E 45520 1.58E

+11 +11 +12

X III 25550 4.78E 35200 4.36E 20710 3.62E

+09 +11 f08

135



If we consider the results in table 4.5 for the complexes in order of grouping i.e. cobalt 

(II), cobalt (III) -  pyridine and then cobalt (III)- water and consider only the 2/DPw 

values we can see that although the least sterically hindered complex (II) gives the 

highest Cs value it does not correspondingly give the lowest Elransfer value. This is 

interesting because it is the second most sterically hindered complex III that does give the 

lowest Etransfer value. Therefore for this group there is no connection between a high Cs 

value and a low Elransfcr value. For the cobalt (Ill)-pyridine sets complex VIII again the 

least sterically hindered equatorially gave the highest Cs value but did not have the lowest 

Etransfer value, however it had the intermediate value of the three complexes.

With regard to the cobalt (III) group containing water as the axial ligand there is some 

connection between Cs and Et,ansfcr as highlighted by complex XI, this gave the highest Cs 

value and has the lowest Etransfcr value. If we now consider the results in terms of 

analogue comparisons we see that when R = CH3 only there is a connection between 

Eiransicr and Cs. A low value for Etransfer corresponds to a high value for Cs. It should also 

be noted that the Et,ansfer values for complex XI are lower than those for Epr0pagiiiion> this is 

also the case for complex VIII. It should also be noted that the Et,ansfcr value for the water 

analogue is lower than that for its corresponding pyridine analogue, this therefore agrees 

with the postulation that the energy involved for a pyridine analogue to undergo CCTP is 

higher than that for water. When R| = CH2CH3 and R2 = CH3 there seems to be no direct 

connection between Cs and Eiransfcr- Although the cobalt (III) - water analogue gives a 

lower Eiransfer value than the cobalt (III) - pyridine analogue. When R| and R2 = 

CFhCHithere again appears to be no connection between Cs and Etr„ SfCr. However the 

value of Eiransicr for the water analogue is smaller than that of the pyridine analogue.
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The overall Cs values for styrene are lower than those for MMA, this is however expected 

and both monomers cannot directly be compared in this thesis owing to the obvious fact 

that the MMA polymerisations in chapter 3 used an external initiating source whilst in 

this work no external initiating source was used. It was however hoped that here the 

reaction at elevated temperatures would give an increase in activity although it was 

assumed that the chain transfer values would not increase with an increase in 

temperature. The decrease in chain transfer activity for styrene bulk polymerisations 

could be due to propagation dominating and also there being no external source of 

radicals present, this will limit the number of radicals being able to replenish the 

exhausted stocks, CCTP is reliant on a continuous supply of radicals. If kp is fast and ki is 

slow then there will be an insufficient number of radicals present. MMA bulk 

polymerisation values are higher for two reasons, the structure of the radicals formed are 

less stable than styrene radicals and the presence of an external initiator. The styrene 

values are lower owing to structure and no external initiator being present. E transrcr is 

larger than Epr0pagation*

4.4. Conclusions.

The chain transfer constants obtained for bulk polymerisation of styrene are lower than 

those with MMA using identical complexes owing to the absence of a terminal methyl 

group. C5 is independent of temperature. An increase in skeletal carbons decreases chain 

transfer activity and the presence of a strong base as an axial ligand further reduces its 

effectiveness. Both cobalt (II) and cobalt (III) water analogues give similar chain transfer 

values. Complex purity is one explanation for decreased activity along with the 

possibility of cis/trans isomerisation for complexes III,IX and XII. It is quite possible that
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although both isomers are probably formed only one isomer may be an effective CCTA. 

The lability and presence of axial ligands offers another explanation for the results 

obtained. From NMR and X-ray crystal data (where applicable) indicate/confirm the 

presence of the desired axial ligands. It is unconfirmed whether both ligands remain 

attached during polymerisation or whether both are replaced by monomer ligands. The 

energy of transfer (E,ransicr) does not seem to be reliant on the structure of the catalyst 

when all three analogues are compared, but when only the cobalt (III) systems are 

compared there is a connection between a strong base giving a higher value for E,ransn;r 

when compared to the identical water analogue. It appears from these results that an 

effective CCTP does not rely on E,ransfcr being smaller then Epropagatu,n neither does a high 

Cs correspond to a low Eiransfcr value. The wide scatter of values obtained for Elransfcr could 

be attributed to the time required for equilibrium to be established between co(ll) and 

co(III). It would have therefore been better to take these polymerisations to higher 

conversion as a significant amount of formed polymer is wasted during this equilibrium 

stage. The lower values for Cs given by the CLD procedure could be attributable to a 

number of factors such as chain transfer is not dominating in the systems l3, this is 

plausible owing to the fact that the energy of transfer values for all complexes are on the 

whole larger that the energy for propagation suggesting that although transfer does occur 

propagation and hence termination via another process dominates. Davis 13 has reported 

that the CLD procedure is only reliable if transfer dominates. It is also possible to state 

that the non-linearity observed in some plots implies that some assumptions may be 

broken with respect to the Mayo equation. Some large PDi values are also observed 

which could possibly explain why the 2/DPw+ CLD values differ. The presence of low
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molecular weight polymer in the GPC trace could cause curvature in the CLD plot 

resulting in differing values. They also suggest that the linearity of the In N(M) plots also 

play an important role in obtaining accurate Cs values. They suggest that the 2/DPw 

method of determination for Cs is the most accurate.
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Chapter 5

Partitioning of cobalt (II) and cobalt 

(III) complexes.
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5.0. Partitioning of cobalt (ID and cobalt f ill)  complexes.

5.1. Aim.

The aim of this work was to evaluate the solubility of a series of CCT complexes in water 

and monomer, MMA. It was interesting to see how the structure of the catalyst affected 

its solubility in both phases.

5.2. Introduction.

A major potential end use application for the catalysts synthesised in the previous 

chapters is in emulsion polymerisation l_6. It has been shown that when CCTA’s are used 

in emulsion polymerisation they are effective in controlling the molecular weight of the 

polymer formed 7. Monomer and water are immiscible with water acting as a dispersion 

medium and initiation occurs within the water layer, as the monomer is slightly water 

soluble allowing initiation to occur. It is important for the catalyst to be slightly soluble in 

the water phase as the emulsion is a diffusion controlled process and monomer 

propagation and termination is controlled by both the monomer and CCTA’s ability to 

diffuse from one droplet to a particle and then into another. If however, monomer 

depletion occurs before the CCTA has had time to control the molecular weight then the 

CCTA will be termed ineffective at reducing the molecular weight of the polymer. Before 

emulsions are carried out it is important to ascertain the catalysts solubility properties. A 

typical emulsion consists of monomer (MMA) and water phase, it is therefore important 

to investigate the solubility of the catalysts in each phase. A CCTA is deemed to be 

effective if it leads to the production of a low molecular weight polymer by the fast
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termination via transfer mainly to monomer. The formed chains will be shorter and 

therefore their mobility is increased, large chains are formed when a less effective or 

smaller amount of CCTA is used leading to a lower rate of transfer resulting in higher 

molecular weight products.

The partitioning properties of a CCTA are reliant on both its structure and the monomer 

used. The effect of catalyst structure upon partitioning is investigated in this chapter.

Little work has been carried out on the partitioning properties of CCTA’s however the 

results from other workers will be discussed and compared with the findings of this work. 

A known quantity of catalyst was added to either a 50/50, 90/10 or 10/90 solution o f both 

monomer and water. The purpose behind the 90/10 and 10/90 percentage composition 

mixtures was to ascertain if the complexes had a saturation point. This is an important 

aspect as it could be possible that the catalyst could become saturated in one phase and 

therefore diffuse into the other layer and give inaccurate values and conclusions about the 

catalysts activity.

5.3 Results.

Stock solutions of each catalyst in both MMA and water were made and UV/V1S spectra 

recorded. The values detailed in this thesis are samples of repeat measurements. Plots of 

absorbance versus concentration for each catalyst in each phase were plotted. A known 

quantity of catalyst was then added to a stirred solution of either 50/50, 90/10 and 10/90 

compositions of monomer/water. Each layer was then separated and a UV/vis spectrum 

of each phase was recorded independently of each other. By obtaining the absorbance 

value for each layer it was then possible to calculate the concentration of catalyst present
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in each layer. The exact quantities and procedure can be found in the experimental 

section of Chapter 6 .

5.3.1. The use of Cobalt fill complexes for partitioning between MM A and water.

The aim of this section was to investigate what effect increasing skeletal carbons had on 

the solubility of the catalysts in monomer and water. The complexes used for this 

investigation were II, III and IV, see figure 5.1.

Figure 5.1. Structure of cobalt (II) complexes to be used in partitioning experiments.

Fw F

fables 5.1 and 5.2 give absorbance and concentration information for the stock solutions 

of complex II in both water and monomer respectively. Tabular information for 

complexes III and IV can be found in appendix 5, tables 1 and 2 respectively.

O O
/ \

F F

Where Complex II, R, +R2 = CH3 L = CH3OH

Complex III, R, = CH3 and R2 = CH2CH3 L = CH3OH

Complex IV, R, + R2 = CH2CH3 L = CH3OH.
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Ta b le  5.1. Absorbance and wavelength information for complex II water stock solutions.

Solution Concentration 

(M) x KF4

Absorbance at 

X max

X max c

(L mm'1 mol'1)

SI A 5.14 1.73 455.5 336.5

SIB 3.84 1.26 455.6 328.1

SI 3.46 1.19 455.6 343.9

S2 1 .6 6 0.49 455.6 295.1

S3 0.97 0.30 456.0 309.2

S4 0.83 0.28 456.0 337.4

Table 5.2 Absorbance and wavelength information for complex II MMA stock solutions.

Solution Concentration 

(M) x lCT4

Absorbance at 

X max

X max 6

(L mm 'm ol1)

SI A 4.99 1.91 446.2 382.7

SIB 3.64 1.41 446.2 387.3

SI 3.24 0.90 446.8 277.7

S2 1.60 0.42 447.2 262.5

S3 0.65 ^  0 . 2 0 446.4 308.6

Figures 5.2 -  5.4 illustrate graphically the Beer-Lambert plots for complexes II-1V for 

both monomer and water stock solutions.
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Figure 5.2. Plot of absorbance at X max versus concentration for complex II, for MMA

and water stock solutions.

Figure 5.2 shows that both the plots behave linearly with minimal scatter and therefore 

the results obtained for complex II should give accurate values for the percentage of 

complex in each phase at various compositions.

The plots in figure 5.3 show that results derived from these plots involving complex III 

show some scatter with respect to the MMA and it is therefore tentatively assumed that 

these results are reliable.
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Figure 5.3. Plot o f absorbance at X max versus concentration for complex III for both

MMA and water stock solutions.

1.2 I

Figure 5.4. Absorbance at X max vs concentration plot for complex IV both MMA and 

water stock solutions.

20 a M W  
•  WiltT
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Again figure 5.4 shows that the MMA plot exhibits minimal error whilst the water plot 

does give some scatter, therefore the error in this phase will be larger.

From the absorbance values obtained for each complex in each phase it was then possible 

to calculate the percentage catalyst in each phase for all compositions using the formulae 

y = rax + c. Where y = Absorbance, x = concentration, m = slope and c = error 

Table 5.3 gives percentage composition of complex in each phase for complexes II -  IV 

at all composition mixtures.

Table 5.3. Percentage values for complexes II -  IV in both MMA and water phases at 

each composition.(p = partition coefficient)

Complex 90/10 (%) 50/50 (%) 10/90 (%)

MMA Water MMA Water MMA Water

II 45 55
p = 0.79

45 55
p = 0.82

51 49
p = 1.04

III 14* 8 6 *
p = 0.16

89 1 1 .0  

p = 0.81
69 31

p = 2.23
IV 74 26

p = 0.06
99 1.0

p = 0.04
93 7.0

p = 0.19

*The absorbance readings for this catalyst were only possible for the MMA phase, it was 

not possible to obtain a value for the water phase, therefore this is only a theoretical value 

after calculating the number of grams of complex present in the MMA phase.

From the results in table 5.3 it would appear that for complex II the percentage of catalyst 

in each phase does vary with composition. Both 90/10 and 50/50 compositions give 

similar values indicating that the catalyst is not saturated in one layer and that the catalyst 

was equally soluble in both layers at both of these compositions, however just more
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hydrophilic than hydrophobic. However, with the 10/90 composition of MMA/water it 

would appear that although there is significantly more water than MMA the catalyst does 

appear to prefer the monomer layer. It is possible that at 90% water, the catalyst has 

become saturated and has diffused into the monomer layer, this is not the case for the 

90% monomer layer. The results for this complex agree well with those of Suddaby 7 and 

Kukulj 8, who independently found that complex II was approximately equally soluble in 

a 50/50 composition of monomer/water. Neither author however investigated what effect 

varying the composition of monomer/water had on the partitioning properties of complex

II.

For complex III it would appear from the results for the 50/50 and 10/90 

compositions that the catalyst concentration in each layer varies with composition. 

However, both compositions tell us that the complex prefers monomer to water and that 

even in a 1 0 % monomer phase the complex would prefer to stay in that phase and 

become saturated before diffusing into the larger water phase, however it is significantly 

soluble in water. It should also be noted that the irregularity of values for complex III in 

90/10 MMA/water phase could be due to the absence of the water absorbance peak in the 

spectra.

Again with complex IV the concentration of catalyst present in each phase 

changes with fluctuations in composition. However, again the complex prefers monomer 

i.e. it is hydrophobic in nature although again quite soluble in water.

From table 5.3 it can be concluded that an increase in skeletal carbons leads to an 

increase in hydrophobicity. These results indicate that complexes II -  IV should be 

effective in emulsion polymerisations owing to their solubility in both monomer and
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water. It should also be noted that the presence of any impurities could affect complex 

partitioning and possibly lead to inaccurate results. The results for complex II agree well 

with previous workers findings 7. Work by a coworker 4 has in fact shown that complex 

IV is more than three times more effective at reducing molecular weight in emulsion 

polymerisations when compared to complex II and is one and a half times more effective 

than complex III.

5.3.2. The use of cobalt (1111 complexes containing pyridine as an axial ligand in the 

partitioning investigation with MMA and water.

The purpose of this section of work was to investigate what effect having a strong base as 

an axial ligand, see figure 5.5, had on the partitioning properties of the complexes and 

compare these results with both cobalt (II) and cobalt (III) water containing analogues. 

Again information regarding absorbance and concentration values for complexes VIII -  

X for stock solutions and phase compositions can be found in appendix 5, tables 4-6.

Figure 5.5. Structure of cobalt (III) complexes containing pyridine as the axial ligand 

used in the partitioning experiments with MMA and water.

Fs , F

/ \
F F

Where B= pyridine and complex VIII, R1+R2 = CH3,complex IX, R| = CH3, R2 = 

CH2CH3,complex X, R| + R2 = CH2CH3.
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Figure 5.6 shows the Beer-Lambert plots for complex VIII for both water and monomer 

stock solutions.

Figure 5.6. Plot of absorbance at X. max versus concentration for complex VIII for both 

MMA and water stock solutions.

irma
vwier

Concentration (M)

From figure 5.6 it can be seen that both plots exhibit linearity with minimal error and 

therefore the results obtained by using both plots give reliable results. From figure 5.7 it 

can be seen that linearity is also observed here for both sets of solutions and that therefore 

the results obtained for complex IX are reliable.
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Figure 5.7. Plot of absorbance at X max versus concentration for complex IX for both

MMA and water stock solutions.

The plots in figure 5.7 show minimal error for both stock solutions and therefore results 

for complex IX are reliable.

Again excellent linearity is observed for both plots in figure 5.8. fable 5.4 gives 

percentage composition of complex in each phase for complexes VIII -  X at all 

composition mixtures.
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Figure 5.8. Plot of absorbance at X max versus concentration for complex X, for both

MMA and water stock solutions.

Table 5.4. Percentage values for complexes VIII -  X in both the MMA and water phases

for each composition, (p = partition coefficient)

Complex 90/10 (% ) 50/50 (%) 10/90 (%)

MMA Water MMA Water MMA Water

VIII 78 2 2

p = 0.28
93 7.0

p = 0.07
92 8 . 0

p = 0.08
IX 58 42

p -  0.70
98 2 . 0

p = 0 . 0 2

75 25
p = 0.32

X 41 59
p =  1.47

8 8 1 2 .0  

p = 0.13
98 2 . 0

p = 0 . 2 0

From the results in table 5.4 for complex VIII it is clear that percentage complex in each 

phase changes with composition. However, results at all composition tell us that the 

complex is hydrophobic in nature, i.e. more catalyst is present in the monomer phase than
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water phase at each composition. It is however interesting to note that the complex at 

both 50/50 and 10/90 compositions of monomer and water gives similar values indicating 

that the catalyst is not saturated in either the 50/50 or 90/10 compositions. It is however 

interesting to note that at 90/10 monomer/water composition, less of the complex is 

present in the monomer phase, why this is so is unexplainable.

With regard to complex IX it would appear that again the percentage of the 

complex in each phase varies with composition. Again the complex is most definitely 

more hydrophobic in nature at all compositions, however again the percentage complex 

present in 90/10 mixture is less than that of 50/50 and 10/90. Complex X also exhibits 

hydrophobicity but not at all compositions. Again the value given in the 90/10 mixture is 

less than that of 50/50 and 10/90. The lability of the axial ligands could affect the 

partitioning values of complexes as it is possible that monomer or indeed water can 

replace one or both of the identified axial ligands when the complex is added to the 

monomer/water mixture. The presence of impurities could also influence the partitioning 

properties of the complex thus resulting in inaccurate values. It can be concluded that all 

three complexes should be effective in emulsion polymerisation.

5.3.3. The use of cobalt Mill complexes containing water as an axial ligand in 

partitioning investigations.

The purpose of this section of work was to investigate what effect having a weak base as 

an axial ligand, sec figure 5.9, had on the partitioning properties of the complexes and 

compare these results with both cobalt (II) and cobalt (III) pyridine containing analogues. 

Again information regarding absorbance and concentration values for complexes XI-XIII 

for stock solutions and phase compositions can be found in tables 8-10 in appendix 5.
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Figure 5.9. Structure of cobalt (III) complexes containing water as the axial ligand.

Fw F

/ N
F F

Where B= water and 

Complex VIH, Ri + R2 — CH3 

Complex IX, R, = CH3, R2 = CH2CH3 

Complex X, Ri + R2 = CH2CH3.

The following figures show Beer - Lambert plots for complexes XI - XIII using both 

water and monomer stock solutions.

Figure 5.10. Plot of absorbance at X max versus concentration for complex XI.
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From both plots in figure 5.10 it appears that both exhibit linearity. Figure 5.11 also 

shows linearity for both MMA and water plots and therefore the results obtained for this 

complex from these plots will be reliable.

Figure 5.11. Plot of absorbance at A. max versus concentration for complex XII for both 

MMA and water stock solutions.

Cbnocntrdtion (M)

Again linearity is observed for both plots in figure 5.12. Table 5.5 gives partitioning 

values in percent for complexes XI -  XIII at each composition.
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Figure 5.12. Plot o f absorbance at A. max versus concentration for complex XIII from

both MM A and water stock solutions.

Table 5.5. Percentage values for complexes XI -XIII in both the MMA and water phases

at all compositions.(p = partition coefficient)

Complex 90/10 (%) 50/50 (%) 10/90 (%)

MIMA Water MMA Water MMA Water

XI 64.0 36.0
p=0.55

58.0 42.0
p=0.73

92.0 8.0
p=0.09

XII 79.0 21.0
p=3.74

92.0 8.0
p=0.08

98.0 2.0
p=0.02

XIII 74.0 26.0
p=0.34

95.0 5.0
p=0.06

98.0 2.0
p=0.03

From the results in table 5.5 for complex XI it can once again be seen that the complex is 

hydrophobic in nature and its percentage values in each phase vary with composition. 

Complex XII is hydrophobic in nature for both 50/50 and 10/90 percentage compositions.
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Complex XIII is hydrophobic at each composition and its values change for each 

composition. From the results obtained for the three complexes it should be noted that 

complex purity could influence the complexes hydrophobic properties. The identity of the 

axial ligands was proven before experimentation but once the complex was added to the 

monomer/water mixtures these axial ligands could have been exchanged by monomer or 

water as the ligand. It can be concluded that this set of complexes should be effective in 

emulsion polymerisations owing to their solubility in both phases allowing diffusion from 

one phase to the other.

In order to compare each analogue directly with each other it is necessary for ease of 

explanation and observation to illustrate values in a tabular form, table 5.6 and figure 

5.13. Only 50/50 compositions will be compared.

Figure 5.13. Structure of complexes.

O O
/ V

F F

Where Cobalt (II) L= CH3OH

Cobalt (III) Py L = Pyridine and Ethyl

Cobalt (III) Water L = Water and Ethyl
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Table 5.6. Comparison of percentage complex per layer for 50/50 percentage 

composition of monomer to water, for complexes II -  IV, VIII -  X and XI - XIII.

Ri +R2 Cobalt (II) (%) Cobalt(III)Py (% ) Cobalt(IIl)H20  (%)

MMA W ater MMA W ater MMA Water

II, VIII + XI

R, +R2 =CH j

45 55 93 7 58 42

III, IX +XII 

R, = CHj 

R2 = CH2CH3

95 5 98 2 92 8

IV, X + XIII

r ,+  r 2 = 

c h 2c h 2

99 1 88 12 95 5

In general the results in table 5.6 show that the pyridine ligand in each analogue set 

increases the hydrophobicity of the complex whilst the water and cobalt (II) analogues 

decreases hydrophobicity. However for the pyridine and water analogues for when R| 1 R2 

are equal to ethyl it can be seen that this is not the case. It would appear that in this 

instance the pyridine analogue increases hydrophobicity whilst the water decreases 

hydrophobicity. Possible explanations for this include experimental error and possibly 

complex purity. The cobalt (II) and cobalt (III) water analogues give similar results when 

compared to each other.

5.4 Conclusions.

h'rom the results in this chapter it is possible to conclude that from these preliminary 

results each complex would be effective as a CCTA in emulsion polymerisation. It is also 

possible to conclude that the structure of the catalyst plays an important role in its 

partitioning properties. The presence of increased alkyl groups on the equatorial arms of



the complexes increases hydrophobicity. When this is coupled with the interaction of a 

strong base present as one axial ligand the complexes hydrophobic property is further 

increased. The replacement of this ligand with water allows the catalyst to become 

increasingly hydrophilic. It is also possible to conclude that both cobalt (II) and cobalt 

(III) water analogues are in general more hydrophilic in nature than the pyridine 

containing cobalt (III) analogues, although it should be noted that all complexes are 

hydrophobic in nature. The change in monomer and water compositions allow the 

properties of the complexes to be further changed with regard to their hydrophilic and 

hydrophobic nature. The results found for complex II at a 50/50 composition of 

monomer/water agree well with previous workers findings. It should be remembered that 

as stated earlier in various sections of this chapter that purity and lability of axial ligands 

could also be influencing the results obtained.
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6.0. Experimental section.

6.1. General experimental procedures.

Polymer molecular weight data was obtained by gel permeation chromatography 

using a Polymer Laboratories modular GPC system. THF was used as the elutent at 

1 mL min'1 equipped with a differential refractive index and UV detectors.

Calibration was performed using narrow PMMA standards (Mp = 1040 — 1577000) 

and narrow PS standards (Mp = 580 -  3150000) which were obtained from Polymer 

Laboratories.

Yields of polymerisation were calculated by drying a known mass of reaction mixture 

to constant weight in a vacuum oven at 80 °C for MM A and 110 °C for styrene. 1H 

and l3C NMR spectra were obtained using either a Bruker ACF 250 or DPX 300 MHz 

spectrometer. Infrared spectra of compounds were obtained on a Bruker Vector 22 

FTIR equipped with a Graseby Specac golden gate single reflectron diamond ATR 

cell. Ultraviolet -  visible spectra were obtained using a Phillips PU 8720 UV/VIS 

scanning spectrophotometer. Magnetic susceptability of complexes were measured 

using a Johnson Mathey Chemicals (JMC) magnetic susceptibility balance.

6.2. Prenaration of cobalt (II) and cobalt fill) complexes.

The synthetic routes to cobalt (II) and cobalt (III) complexes are shown in figures 6.1 

and 6.2 respectively. Both procedures require the use of a suitable dioxime as the 

starting material which can be synthesised from the corresponding diketonc.
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Figure 6.1. Synthesis o f cobalt (II) complexes.
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Figure 6.2. Synthesis cobalt (III) complexes. 
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The first stage in the synthesis of the diketone involved the preparation of the grignard 

reagent :-3-Pentyl magnesium bromide..

6.3.1. Synthesis of 3.6-diethvlocta-4.S-magnesium bromide. (3-Pentvl magnesium 

bromide!.

6.3.1.1. Reagents and suppliers.

THF - HiDry, Aldrich.

Magnesium turnings, Aldrich.

3-Bromopentane, Aldrich.

6.3.1.2. Procedure.

A three neck round bottomed flask, equipped with a magnetic follower, condenser and 

dropping funnel, was pre flushed with nitrogen for twenty minutes. Magnesium 

turnings and THF (10 mL) were added to the round bottomed flask maintained under 

a nitrogen atmosphere. 3-Bromopentane (7.55 g, 0.05 mol) and THF (40 mL) were 

placed in the dropping funnel and approximately 5 mL of the halide solution was 

added to the magnesium turnings. The reaction vessel was then heated to reflux 

temperature, once reflux was attained the remaining halide solution was added 

dropwise at a rate which maintained a constant reflux until no halide solution 

remained. Stirring was continued for a further fifteen minutes, by which time the 

magnesium turning had been consumed.

6.3. Synthesis of diketones.
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6.3.2.1. Reagents and sources.

Lithium bromide, anhydrous, Aldrich.

Copper Bromide, Aldrich.

3,6-diethylocta-4,5-magnesium bromide, as synthesised above,

Oxalyl chloride, Aldrich.

6.3.2.2. Procedure '.

A THF solution of anhydrous LiBr (30 mL, 16.52 mmol) was added at room 

temperature under nitrogen to a stirred suspension of CuBr (30 mL, 8.26 mmol) in 

THF. The resulting mixture was stirred until it became homogeneous, it was then 

cooled to -78 °C. A freshly prepared solution of 3,6-diethylocta-4,5-magnesium 

bromide (10.32 mL, 8.26 mmol) was added followed shortly by the addition of oxalyl 

chloride (0.29 mL, 3.44 mmol) in THF (15 mL, 3.44 mmol) to the stirred solution of 

the salts. The mixture was stirred at -78 °C, for 15 mins, quenched with saturated 

ammonium chloride solution and extracted with ethyl acetate. The organic extracts 

were dried over NajSCL and concentrated under vacuum. The resulting yellow 

diketonc was purified by vacuum distillation on a Kugel Rohr, Bpt 69-71°C Lit Value 

68-70°C 2.

Anal calculated for C12H22O2 : C 72.73, H 11.11, Found, C 71.43, H 10.91. FAB MS + 

(m/z) = 198, FTIR (ATR, liquid ), 2966, 2936, 1706 (C=0), 1460, 1384, 1363, 1043, 

1023, 951,907, 849, 797, 667. NMR, 13C {'H)(CDC13, 100.6 MHz, 298K,). 203.0 

(C=0), 47.0, 23.0, 11.0, 'H(CDC13, 250.13 MHz, 298K). 3.56 (m,7 5.8 Hz, 2H), 1.90 

(m,./ 8.3 Hz, 8H), 1.18 (t, J  7.6 Hz, 12H). Yield (average) 1.89 g, (40%).

6.3.2. Synthesis of 3.6-diethvlocta-4.5-diketone.
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6.4. Synthesis of dioximes .

6.4.1. Reagents and sources.

Hydroxylamine hydrochloride, Aldrich,

Potassium carbonate, Aldrich,

Methanol, Fisons,

2,3-Pentanedione, 2,3-Hexanedione, 3,4-Hexanedione, 2,3-Heptanedione, 3-Methyl- 

1,2-cyclopentanedione, 3,6-diethylocya-4,5-dione, as prepared previously.

6.4.2.1. General procedure3.

The diketone (20 mmol), hydroxylamine hydrochloride (8.34 g, 120 mmol), 

potassium carbonate (8.29 g, 60 mmol) and methanol (340 cm3) were placed in a three 

necked round bottomed flask fitted with magnetic follower and reflux condenser and 

heated at reflux for 30 hours. At the end of that time, the boiling solution was filtered 

through Celite and the methanol was removed under reduced pressure. The white 

residue was stirred with 100 cm3 of water for 30 minutes, filtered, washed several 

times with 10 cm3 portions of water and dried under vacuum. The white product was 

recrystallised from aqueous methanol and dried in vacuo.

6.4.2.2. 2.3-Pentanedione dioxime.

The above procedure (6.4.2.1) was followed, 2,3-pentane dione (2.00 g) was added to 

the reaction vessel as described above.

Anal calculated C5HioN2C>2 C 46.15, H 7.69, N 21.53, Found C 46.21, H 7.71, N 

21.64.

FTIR (ATR, Solid) 3198, 2982, 2942,1634 (C=N), 1445, 1430, 1368, 1248, 1145, 

1073, 1049, 1007, 984, 965, 895, 810, 732, 697, 656, 620. NMR, 13C {'H}
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(CD3COCD3, 100.6 MHz, 298 K,). 159.00 (C=N), 153.00 (C=N), 17.56, 11.57, 9.53., 

'H (CD3COCD3, 250.13 MHz, 298 K), 10.87 (s, 1H), 10.82 (s, 1H), 3.00 (q, J1.6  Hz, 

2H), 2.39 (s, 3H), 1.40 (t, J  7.5 Hz, 3H). +EI MS (m/z) = 130.07, Yield (average) = 

3.39 g (65%). Mpt found 170 -  179 °C, literature 170 -  174 °C 4

6.4.2.3. 2.3-Hexanedione dioxime.

The above procedure (6.4.2.1) was followed, 2,3-hexane dione (2.00g) was added to 

the reaction vessel as described above.

Anal calculated C6HI2N2 0 2 , C 50.00, H 8.33, N 19.44, Found C 50.06, H 8.33, N 

19.56. FTIR (ATR, Solid) 3201, 2966, 2933, 2873, 1635 (C=N), 1465, 1444, 1427, 

1374, 1355, 1300, 1146, 1110, 1067, 1007, 979, 920, 894, 879, 733, 702, 645, 620. 

NMR 13C {1H} (CD3COCD3, 100.6 MHz, 298 K,).158.41 (C=N), 154.25 (C=N), 

26.18, 20.83, 14.84, 9.53. 'H (CD3COCD3, 250.13 MHz, 298K) 10.47 (s, 1H), 10.43 

(s, 1H), 2.60 ( t ,J  3.1 Hz, 3H), 1.98 (s, 3H), 1.50 (m ,J 7.2 Hz, 2H), 0.87 (t, J7 .2H z, 

2H). +EI MS (m/z) = 144. Yield (Average) 3.52 g, (61%). Mpt found 1 7 5 - 177 °C, 

literature 174- 175 °C 5.

6.4.2.4. 3.4-Hexanedione dioxime.

The above procedure (6.4.2.1) was followed, 2,3-hexane dione (2.00 g) was added to 

the reaction vessel as described above.

Anal calculated for C6H|2N2 0 2 C 50.0, H 8.33, N 19.44, Found C 49.99, H 8.33, N 

19.24. FTIR (ATR, Solid) 3191,2990, 1628 (O N ), 1475, 1350, 1267, 1146, 1068, 

1027, 950, 890, 820, 780, 750, 689, 600.

NMR l3C {1H} (CD3COCD3, 100.6 MHz, 298 K) 160.0 (O N ), 17.5, 11.5. 1H 

(CD3COCD3, 250.13 MHz, 298 K) 10.74 (s, 2H), 3.00 (q, J7.3Hz, 4H), 1.39 (t, ̂
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6.4.2.5. 2.3-Heptanediwne dioxime.

The above procedure (6.4.2.1) was followed, 2,3-heptane dione (2.56 g) was added to 

the reaction vessel as described above.

Anal calculated forC 7Hi4N2 0 2  C 53.16, H 8 .8 6 , N 17.72, Found C 52.95, H 8.84, N 

17.82. FT1R (ATR, Solid). 3203,2959, 2931,2874, 1620 (C=N), 1445, 1427, 1374, 

1354, 1204, 1146, 1100, 1074, 1011,979,931,910, 831,783, 731, 704, 648. NMR, 

l3C {'H> (CD3COCD3, 100.6MHz, 298 K), 158.62 (C=N), 154.24 (C=N), 29.18,

24.02, 23.90, 14.43, 9.53. 'H (CD3COCD3, 250.13MHz, 298 K) 10.46 (s, 1H), 10.41 

(s, 1H), 2.60 (t,./ 7.0Hz, 2H), 1.96 (s, 3H), 1.35 (m, J  6.0 Hz, 4H), 0.86 (t,./ 7.3Hz, 

3H). +E1 MS (m/z) = 158. Yield (Average) 4.78 g (75%). Mpt 177.2 -  177.6, 

literature 173 °C 6.

6.4.2.6. 3-Methvl-1.2-cvclooentanedione dioxime.

The above procedure (6.4.2.1) was followed, 3-methyl-1,2-cyclopentanedione (2.56 

g) was added to the reaction vessel as described above. However it was necessary to 

rccrystallise with a solution of water and acetone in place of methanol.

Anal calculated for C5H<,N20 2  C 50.66, H 7.04, N 19.70, Found C 43.75, H 6.13, N 

16.29 ; FTIR (KBrdisk) 3450, 3200, 3000, 2900, 2850, 1637 (O N ), 1616 (O N ), 

1462, 1425, 1401, 1318, 1274, 1256, 1197, 1173, 1116, 1078, 1062, 1014, 989, 952, 

920, 814, 778, 711,668, 631. NMR, l3C {'H} (CD3COCD3, 100.6 MHz, 298 K) 

161.38 (O N ), 157.54 (O N ), 34.77, 25.61, 18.09, 17.16.; 'H (CD3COCD3, 

250.13MHz, 298 K) 10.99 (s, 2H), 3.70 (s, 1H), 3.10 (t, 9.0 Hz, 2H), 2.90 (m, 9.0 Hz,

6.5Hz, 6H). +FAB MS (m/z) = 145. Yield (Average) 1.24 g, (43%). Mpt found 146 -

147 °C, literature 147 -  149 °C 6.
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2H), 1.50 (d, 2.0Hz, 3H). +FAB MS (m/z) = 143, Yield (Average) 3.66 g, 65 %. Mpt

145-146°C Lit. Value 145-146°C 7.

6.4.2.7. 3.6-l)iethvlocta-4.5-dioxime.

1 'he procedure outlined previously was followed but smaller quantities of each 

reactant were used owing to the low yields of diketone synthesised. After analysis of 

product and literature it was apparent that this procedure did not work, this procedure 

was repeated a further two times, using other solvents such as dry methanol and 

ethanol. Other synthetic routes were attempted it l° but with no success, also other 

diketones were used as controls for each route to ensure that it was the dionc and not 

the route which was the obstacle. From analysis it emerged that the monoxime had 

been made, see figure 6.3 2.

Figure 6.3. Structure of monoximc.

OH
I

------ N O ------

Anal calculated for C,2H2:10 2N C 67.60, H 10.79, N 6.57, found C 67.09,11 10.85, N 

6.69. NMR ,3C {'ll} (CDCb, 100.6 MHz, 298 K) 203.57 (C=0), 161.23 (C=N), 

48.18, 39.64, 24.60, 24.34, 12.35, 11.62. 'll (CDClj, 250.13MHz, 298 K), 3.85 (m,./ 

5.41 Iz, 111), 3.57 (m,. / 5.0Hz, III), 2.43 (m,. / 2.51 Iz, 211), 2 .15 (m,. / 7.6Hz, 211), 2.00 

(m,. / 7.0Hz, 2H), 1.92 (m ,./5.1 Hz, 2H), 1.29 (t,./2.0Hz, 6 H), 1.18 (t,./2.7Hz, 6 H). 

FTIR 3395 (OH), 1672v (C=0).+KI MS (m/z) = 213, Mpt 59.0°C, Lit Value 60.5°C 2.
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6.5.1. Reagents and sources.

Cobalt acetate tetrahydrate, Aldrich, boron trifluoride etherate, Aldrich, ethyl acetate, 

Fisons, sodium hydrogen carbonate, Aldrich., methanol, Fisons. 2,3-Pentanedione 

dioxime, 2,3-Hexanedione dioxime, 3,4-Hexanedione dioxime, 2,3-Heptanedione 

dioxime, 3-Methyl-1,2-cyclopentanedione dioxime, as prepared previously. 

Glyoxime, Aldrich.

A nitrogen atmosphere was maintained throughout the preparation and isolation. The 

purification stage was not carried out under nitrogen. However, the time that the 

catalyst spends wet with either ethyl acetate or methanol was kept to a minimum. The 

source of cobalt used was cobalt (II) acetate tetrahydrate. In order to keep the amount 

of water in the preparation to a minimum, this is first dried by heating under vacuum 

,100 °C, 5-6 hours, the pink powder eventually changes to a purple colour when dry. 

The ethyl acetate was deoxygenated by purging thoroughly with nitrogen prior to use.

6.5.2.1 Preparation ofCoEt^Me B̂F n.

To a Schlenk equipped with a magnetic follower under a nitrogen atmosphere, 2,3- 

pentanedionedioxime (4.47 g, 0.0344 mol) and anhydrous cobalt acetate (3.14 g, 

0.0126 mol) were added. The boron trifluoride etherate (13.03 mL, 0.09 mol) was 

added via syringe over a period of 1 0  minutes immediately following the addition of 

ethyl acetate (77.12 mL, 0.87 mol), with vigorous stirring. A slight exotherm was 

noted and the reaction solution became a deep orange/yellow colour prior to the 

complete addition of the BF3 . The resulting solution was warmed to 50 °C and held at 

this temperature for 15 minutes to complete the reaction prior to cooling back to room 

temperature. Sodium bicarbonate (3.57 g, 0.042 mol) was then added in portions so as

6.5 Synthesis of cobalt (III complexes.
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to avoid excessive frothing. When the bicarbonate addition was complete, the reaction 

mixture was cooled to around 10 °C, and stirred for 1 hour to allow the product to 

crystallise. In situ filtration was then attempted followed by washing with water and 

methanol. However due to the excessive solubility of the product in these solvents 

minimal washing was carried out. Once washing was complete the filtrate was placed 

in the refrigerator to allow the powder to crystallise, this was then filtered to separate 

the powder from the solvent. Anal calculated for C12H18N4O6F4B2C0  C 30.19, H 3.77, 

N 11.74, Found C 27.79, H 4.47, N 12.69. + FAB MS (m/z) = 460. Yield 1.89 g,

35%.

6.5.2.2. Preparation of CoEtjBF.

The procedure outlined above was followed with the exception that 3,4-hexanedione 

dioxime (3.20 g, 0.02 mol) was used with cobalt acetate (2.25 g, 9 mmol), boron 

trifluoride etherate (10 mL, 0.07 mol), ethyl acetate (55 mL, 0.62 mol), sodium 

hydrogen carbonate (2.56 g, 0.03 mol) and methanol (36 mL). A portion o f the 

product was recrystallised from a 75/25 solution of methanol / water. The X-ray 

diffraction structure in chapter 2  shows the presence of two methanol groups bonded 

to the cobalt atom. Anal calculated for C 14H22N4O6B2F4C0  C33.27, II 4.36, N 11.09, 

Found C 24.63, H 4.09, N 9.39. From FAB MS the presence of two methanol groups 

was not observed.

6.5.2.3. Preparation of C0H4BF.

The procedure outlined previously was followed but with the exception that glyoxime 

was used (4.35 g, 0.049 mol) with cobalt acetate (3.05 g, 0.012 mol), boron trifluoride 

ctheratc (13 mL, 0.09 mol), ethyl acetate (75 mL), sodium hydrogen carbonate (3.48
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g, 0.041 mol). The product was washed with methanol at the purification stage. The 

complex proved to be only sparingly soluble in methanol therefore repetitive washes 

were carried out. Anal calculated for C6H6N4O6F4B2C0 , C 18.32, H 1.52, N 14.25, 

Found C 9.42, H 1.31, N 10.47. +FAB MS (m/z) = 392. Yield 3.97 g, (84%).

6.5.2.4. Preparation of CoMe P̂romBF.

The procedure outlined above was followed with the exception that 2,3-hexanedione 

dioxime (3.20 g, 0.02 mol) was used with cobalt acetate (2.25 g, 9 mmol), boron 

trifluoride etherate (10 mL, 0.07 mol), ethyl acetate (55 mL, 0.62 mol), sodium 

hydrogen carbonate (2.56 g, 0.03 mol) and methanol (36 mL).

The first attempt at synthesising this complex resulted in a low yield being obtained. 

This was mainly due to the high solubility of the complex in methanol, therefore 

during the repeat synthesis no in-situ filtration was carried out. Water was added to 

the ethyl acetate solution to remove impurities. The whole solution was placed in a 

separating funnel and the water layer removed. MgSC>4 was then added to the ethyl 

acetate solution to remove any residual water, the solution was then filtered to remove 

the MgSC>4 and the solvent was removed by rotary evaporation. The resulting product 

was then dried in a vacuum dessicator over P2O5 for a few days to give brown 

powder. Yield 3.00 g, (38%).

6.5.2.5. Preparation of CoMe-fBu B̂F.

The procedure outlined above was followed with the exception that 2,3-heptanedione 

dioxime (3.16 g, 0.02 mol) was used, and new quantities used were cobalt acetate 

(2.25 g, 9 mmol), boron trifluoride etherate (10 mL, 0.07 mol), ethyl acetate (55 mL, 

0.62 mol), sodium hydrogen carbonate (2.56 g, 0.03 mol) and methanol (36 mL).
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The first time this product was synthesised it was washed with both water and 

methanol but this proved unsatisfactory owing to the fact that no product remained on 

the filter, therefore during the repeat synthesis no insitu filtration occurred. Water was 

added to the ethyl acetate solution to remove impurities. The whole solution was 

placed in a separating funnel and the water layer removed. MgSCL was then added to 

the ethyl acetate solution to remove any residual water, the solution was then filtered 

to remove the MgSO,», and the solvent was removed by rotary evaporation. The 

remaining product was then dried in a vacuum dessicator over P2Os for a few days to 

give brown powder. Yield 3.50 g, (43%).

6.5.2.6, Preparation of Co(3-Methvl-l,2-Cvclonent)BF.

3-Methyl-1,2-Cyclopentanedione dioxime 1.84 g, 0.013 mol, cobalt acetate 1.05 g, 

0.0042 mol, boron trifluoride etherate 4.38 mL, ethyl acetate 25.91 ml-, sodium 

hydrogen carbonate 1.20 g, methanol 17.28 mL.

The procedure outlined previously was followed however, to give a water soluble 

product which was purified by transferring to a round bottomed flask and the water 

was subsequently removed by rotary evaporation yielding a brown powder. +FAB 

MS (m/z) = 468. Yield 0.8339 g, (46%).

6.6. The synthesis of cobalt ( I I I )  complexes l2.

As shown in figure 6.2 it can be seen that this synthesis involves three key stages and 

that isolation and characterisation at each stage is possible. This section will therefore 

he split into the three stages and dealt with individually. The dioximes used were 

identical to the ones detailed above for the cobalt (II) complexes.
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6.6.1.1 Reagents and sources.

Methanol, Hi dry, Fisons, C0 CI2 .6 H2O, Aldrich, sodium hydroxide, Aldrich, water, 

pyridine, Aldrich, sodium borohydride, Aldrich, ethyl bromide, Aldrich, dimethyl 

glyoxime, Aldrich, 2,3-pentanedione dioxime, 3,4-Hexanedione dioxime, as prepared 

previously.

6.6.1.2. Preparation of CoMe^H2Q/PvEt.

Methanol (50 mL) was degassed by purging with nitrogen for 20 minutes at room 

temperature. To this C0 CI2.6 H2O (2.0171 g, 0.008 mol) and dimethyl glyoxime (3.00 

g, 0.025 mol) were added. After ten minutes the solution SI (sodium hydroxide: 0.819 

g, 0 . 0 2  mol; water 0.819 g) was added followed by the slow addition of pyridine 

(0.670 mL, 0.008 mol). The reaction mixture was cooled to -20 °C, and stirring under 

nitrogen was continued for 20 minutes. The second sodium hydroxide solution, S2 

(sodium hydroxide: 0.532 g, 0.013 mol; water 0.532 g) and the sodium borohydride 

(0.365 g, 0.096 mol) were added slowly. Ethyl bromide (0.590 mL, 0.008 mol) was 

added dropwise over 2 0  minutes and the reaction mixture was allowed to reach room 

temperature. 1 lalf of the solvent was removed by rotary evaporation and 40 mL of 

cold water was added. The orange compound was filtered and washed with a 

pyridine/water (5/95) solution, and dried over P2O5. Anal calculated for 

C11H26O4N5C0 , C 39.18, H 7.77, N 20.76, Found C 43.26, H 5.99, N 18.61.

NMR, l3C {'H} (CD3COCD3, 100.6 MHz, 298 K), 150.95, 149.87 (C=N), 139.10, 

126.37, 16.19, 12.06, 9.48. 'H (CD3COCD3, 300 MHz, 298 K) 8.53 (d, 74.9Hz, 2H), 

7.90 (t,./ 1,5Hz, 1H), 7.48 (t, J  1.5Hz, 2H), 2.09 (s, 12H), 1.57 (q, J  7.6Hz, 2H),

6.6.1. The synthesis of ethvl nvridinato-cobaloximes.

173



0.33 (t, J7.6Hz, 3H). FTIR (ATR, solid),3201,2969, 2914, 1601 (C=N), 1557 (C=N), 

1491, 1446, 1377, 1362, 1226, 1165 (N-O), 1084, 1070, 1026, 972, 908, 731,708, 

693, 649, 631, 580. +FAB MS (m/z)= Yield 3.16 g, (99%).

6.6.1.3. Preparation of CoMeiEtiHjO/PvEt.

The above procedure was followed with the exception that 2,3-pentanedione dioxime 

(2.47 g, 0.020 mol) was used.

Anal calculated for C 17H28N5O4C0 , C47.95, H 6.58, N 16.45, Found C 45.45, H 6.17, 

N 15.68. NMR, 13C {‘H} (CD3COCD3, 100.6 MHz, 298 K). 150.82, 149.50, 139.13, 

126.36, 19.65, 16.08, 11.97, 10.91. 'H(CD 3COCD3, 300 MHz, 298 K) 8.54 (d ,J  

4.5Hz, 2H), 7.90 (t, J  1.9Hz, 1H), 7.48 (t, J 1,5Hz, 2H), 2.59 (q, J 3.8Hz, 4H),

2.07 (s, 6 H), 1.57 (q, J  7.6Hz, 2H), 0.94 (t, J  2.7Hz, 6 H), 0.34 (t, J 7.6Hz, 6 H). FTIR 

(ATR, solid), 3108, 3075, 3045, 2962, 2930, 2911, 2867, 1600 (C=N), 1548 (C=N), 

1505, 1489, 1442, 1367, 1318, 1269, 1225, 1166 (N-O), 1138, 1106, 1059, 1023,947, 

863, 805, 768, 703, 634, 586. Yield 2.56 g, (75%).

6.6.1.4. Preparation of CoEtjH^O/PvEt.

Again the procedure outlined previously was adhered to with the exception that 3,4- 

hexanedione dioxime (3.00 g, 0.02 mol) was used in place of the dimethyl glyoxime. 

Anal calculated for C 19H32N5O4C0 , C 50.34, H 7.06, N 15.46, Found 48.83, H 6 .8 6 , N 

15.52. NMR 13C {'H} (CD3COCD3, 100.6 MHz, 298 K), 154.99, 150.71, 139.16, 

126.34, 19.76, 16.00, 11.11. 'HiCDsCOCDs, 300 MHz, 298 K), 13.10 (s, 1H), 13.02 

(s, 1H), 8.54 (d, J  5.1 Hz, 2H), 7.90 (t, J  7.6Hz, 1H), 7.50 (d, J  6 .8 Hz, 2H),

2.60 (q, J  7.6Hz, 8 H), 1.52 (q, J  4.8Hz, 2H), 0.97 (t, J  7.5 Hz, 12H), 0.38 (t,./ 7.6 Hz, 

3H). FTIR (ATR, solid), 3212 (O-H), 2972, 2939, 2912, 2871, 1601 (C=N), 1548 

(C=N), 1445, 1366, 1323, 1265, 1219, 1161 (N-O), 1109, 1066, 1036, 1013, 964,913,
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883, 855, 827, 767, 699, 632. +FAB MS (m/z) = 453. Yield 2.74 g, (75%).

6.6.2. Bridging of cobaloximes using boron trifluoride etherate.

6.6.2.1. Reagents and sources.

Boron trifluoride etherate, Aldrich, ether, Hi dry, CoMe4H20/PyEt, 

CoMe2Et2H20 /PyEt, and CoEt^O /PyEt as prepared previously.

6.6.2.2. Preparation of CoMejBF/PvEt. (CoBF/PvEt).

Boron trifluoride etherate (7.20 g, 0.05 mol) and ether (3.90 mL) were cooled under a 

nitrogen atmosphere at -20 °C for 40 minutes. The cobaloxime (CoMe4H20 /PyEt, 

2.77 g, 0.0069 mol) was added over twenty minutes. The reaction was allowed to 

reach room temperature, then the compound was isolated by Filtration and washed 

with ether.

Anal calculated for C,5H22Ns0 4B2F4Co, C 36.51, H 4.46, N 14.19, Found C 33.00, H 

4.32, N 12.89.+FAB MS (m/z) = 493.03. Yield 1.75g, (52%).

6.6.2.3. Preparation of CoEt M̂e B̂F/PvEt.

The procedure outlined above was followed with the exception that 

CoEt2Me2H20/PyEt (2.00 g (4.71 mmol) was used in place of CoMc4H20 /PyEt. New 

quantities for ether (2.92 mL) and BFj.EtjO (5.39 g, 0.03 mol) were also used. Anal 

calculated for C15H21N5O4 B2F4C0 , C 39.19, H 4.80, N 11.52, Found C 33.82, H 3.63. 

N 8.25. +FAB MS (m/z) = 521. Yield 0.72 g, (30%).

6.6.2.4. Preparation of CoEtjBF/PvEt.

Again the procedure outlined previously was adhered to with the exception of a 

different complex and new quantities being used. CoEt4 H20 /PyEt 2.35 g, 0.005 mol;
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BF3-Et2 0  6.14 g, 0.04 mol, ether 3.33 mL. Anal, calculated for C 19H30N5O4B2F4C0 , C 

41.64, H 5.48, N 12.78, Found C 34.91, H 4.51, N 9.85. +FAB MS (m/z) = 524.57 

Yield 1.33 g, (49%).

6.6.3.Replacement of pyridine ligands for water in cobalt III complexes.

6.6.3.1. Reagents and sources.

CoMe4BF/PyEt, CoEt2Me2BF/PyEt and CoEt4BF/PyEt, as prepared previously,

Water.

6.6.3.2. Preparation of CoMejBF/lLOF.t.

Water (10.16 mL) was degassed by purging with nitrogen at 30°C for 10 minutes. The 

CoMe4BF/PyEt complex (0.50 g, 0.0010 mol) was added and the solution heated to 

30 °C for 40 minutes. The solution was allowed to cool to room temperature and the 

compound was isolated by filtration, and washed with water. Anal calculated for 

C 10H19N4O5B2F4C0 , C 27.78, H 4.40, N 13.38, Found C 27.93, H 4.43, N 12.89. 

+FAB MS (m/z) = 433. Yield 0.28 g, (65%).

6.6.3.3. Preparation of CoMe Êt B̂F/lLOEt.

The procedure outlined above was followed and repeated a number of times it was 

however apparent that this synthetic method did not work for this complex. It 

however emerged from an X-ray crystal structure that the solution at the end of 

procedure 6 .6 .2 .3., after leaving for a couple of weeks yielded the above desired 

compound.

Anal calculated for Cl2H23N4 0 5B2 F4Co, C 31.33, H 5.00, N 12.19, found C 28.79, H 

4.85, N 10.92. +FAB MS (m/z)= 533 (Se 28). Yield. = 1.20 g
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Again the procedure outlined previously was attempted but again it did not work. 

However, the discovery of keeping the solution from section 6 .5.2.4., led to the 

formation of the desired product. Anal calculated for C14H27N4O5B2F4C0 , C 34.46, H 

5.54, N 11.49, found C 34.01, H 5.52, N 11.12. +FAB MS (m/z) = 488. Yield = 0.50 g

6.7, Bulk polymerisations of cobalt (II) and cobalt (lilt complexes at 60 °C with 

MM A.

The following experimental procedure describes the commonly used method of 

obtaining the catalytic chain transfer constant (Cs) of catalytic chain transfer agents.

Cs is a measure of molecular weight reduction obtained during a polymerisation using 

a chain transfer agent with that of an identical polymerisation with the chain transfer 

agent being absent.

The monomer was passed down a basic alumina column to remove inhibitor and 

degassed prior to use. All solutions were prepared under an atmosphere of nitrogen.

6.7.1. Reagents and sources.

Methyl methacrylate, Aldrich, CoBF, CoEt2Me2BF, CoEt4 BF, CoMe2Prop2BF, 

CoMe2Bu2BF, CoBF/PyEt, CoEt2Me2BF/PyEt, CoEt4BF/PyEt, CoBF/H2OEt, 

CoEt2Me2BF/H2OEt, CoEt4 BF/H2OEt.

6.6.3.4. Preparation of CoEUBF/HiOEt.
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6.7.2. Procedure:

Firstly 3 stock solutions were made up:

S i

Contained 2.5mg of the catalyst under investigation and 10ml of methyl methacrylate 

(MMA).

§2
This contained 1ml o f SI and 9ml of MMA.

£l

This stock solution contained 150mg of AIBN and 24ml of MMA.

From stock solutions S2 and S3 five other solutions were made.

Table 6.1 below, indicates the quantities of each stock solution required and the 

amount of MMA added for each sample.

Table 6.1. Quantities of stock solutions used for bulk polymerisations of MMA at 60 

°C, using cobalt II and cobalt III complexes.

Solution Volume S2/mL Volume S3/mL Volume MMA/mL

A 0.00 4.00 1.00

B 0.10 4.00 0.90

C 0.20 4.00 0.80

D 0.30 4.00 0.70

E 0.40 4.00 0.60

Solutions A-E were then freeze pumped thawed three times before heating to 60°C in 

a water bath for 15 minutes, afier which time the reactions were quenched by placing
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in ice to allow the samples to return to room temperature. GPC’s of each sample were 

then run and the Mn and PDi noted. From the information obtained it was then 

possible to calculate the chain transfer constant of the desired complex by one of the 

three methods outlined in this work.

6.8 Bulk polymerisations of Styrene at 80. 90. 100. 120 and 140 °C using cobalt 

til) and cobalt (III) complexes.

From this procedure it was possible to evaluate the chain transfer constant for each 

complex. The monomer was passed down a basic alumina column to remove inhibitor 

and degassed prior to use. Again all solutions were prepared under an atmosphere of 

nitrogen.

6.8.1. Reagents and sources.

Styrene, Aldrich, CoBF, CoEt2Me2BF, CoEuBF, CoBF/PyEt, CoEt2Me2BF/PyEt, 

CoEt,BF/PyEt, CoBF/H2OEt, CoEt2Me2BF/H2OEt, CoEttBF/H2OEt.

6.8.2. Procedure.

S I

This contained 48 mg of the desired complex and 10 mL of ethyl acetate.

S2
This contained 1 mL of SI and 9 ml, of Styrene

Five solutions containing varying quantities of S2 and styrene were then prepared, 

table 6 . 2  gives relevant quantities of each.
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Table 6.2. Quantities of stock solution and monomer required for bulk polymerisation

of styrene.

Sol" S2 (mL) Sty (mL)

A 0.0 5.0

B 0.10 4.90

C 0.20 4.80

D 0.30 4.70

E 0.40 4.60

All live solutions were then freeze pump thawed three times and heated in an oil bath 

at the relevant temperature and time. Once complete the solutions were quenched in 

liquid nitrogen and allowed to reach room temperature. GPC and conversion analysis 

was undertaken. Table 6.3, gives time and temperature information for the bulk 

polymerisations of styrene.

Table 6.3. Time and temperature information for the bulk polymerisations of styrene 

using cobalt II and cobalt III complexes.

Time (mins) Temperature (°C)

60 80

60 90

45 100

30 120

15 140
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6.9. Partitioning experiments for cobalt II and cobalt III complexes in MMA and

Water.

Partition values play an important role in the evaluation of the chain transfer agent 

because if the complex is to be used for emulsion polymerisations it must be soluble 

in both the water and monomer phase. The monomer under investigation here is 

methylmethacrylate (MMA). Both monomer and water were degassed prior to use and 

inhibitor removed from the MMA.

6.9.1. Procedure.

Before any solutions were made up, the volumetric flasks were vacuum/degassed, an 

air sensitive cell was used to record the UV spectra.

6.9.1.1. Water stock solutions for the partitioning experiments.

In total 4 solutions were made. Stock solution (SI) was made up to a known 

concentration of catalyst, this was then filled up to the line with de-ionised water and 

weighed. From this solution various quantities were taken and placed in other 

volumetric flasks which were then filled up to the line with de-ionised water (S2 

onwards). A UV spectrum of each solution was then recorded and a graph of 

concentration versus absorbance was plotted, which would then be used in the final 

stage of evaluation of the catalyst.

Catalysts investigated in this way were CoBF, CoMe2Et2BF, CoEttBF, CoBF/PyEt, 

CoEt2Me2BF/PyEt, CoEuBF/PyEt, CoBF/H2OEt, CoEt2Me2BF/H2OEt, 

CoEt,BF/H2OF.t.

Appendix 5 gives concentrations and absorbance values for the stock solutions of 

each complex.
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6.9.1.2. MM A stock solutions for the partitioning experiments.

Stock solution (SI) containing a known concentration of catalyst was made, this time 

being filled up to the line with MMA and again weighed empty, plus complex plus 

monomer. From this solution known quantities were taken and placed in other 

volumetric flasks and filled up to the line with MMA (S2 onwards). A UV spectrum 

of each solution was then recorded and a graph of concentration versus absorbance 

was plotted, for use in the final stage of evaluation of the complex. Complexes 

evaluated were CoBF, CoMe2Et2BF, CoEttBF, CoBF/PyEt, CoEt2Me2BF/PyEt, 

CoEt4BF/PyEt, CoBF/H2OEt, CoEt2Me2BF/H2OEt, CoEuBF/FhOEt.

Appendix 5 gives concentrations and absorbance values for each complex and its 

respective stock solutions.

In total three different compositions of monomer water were used to evaluate the 

complexes partitioning properties, 50/50, 90/10 and 10/90 monomer/water 

respectively. The combinations consisted of a total volume of 6  mL, therefore for a 

50/50 composition 3 mL of each component was used. To achieve this 20 mg of the 

desired complex was added to a stirred solution of monomer/water of chosen 

composition. This solution was then allowed to settle and the two layers were then 

analysed individually on the UV-VIS spectrometer and their respective absorbances 

recorded. The concentration o f catalyst in each phase was determined and interpreted 

as a percentage of catalyst in each layer from the plots of concentration versus 

absorbance for each phase.
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7.0. Conclusions.

The infra red results in chapter 2 show that catalyst structure affects certain stretching 

frequencies, NMR data shows the presence of characteristic peaks which are 

indicative of a successful synthesis. X-ray crystallography confirms the structure of 

three of the complexes.

The chain transfer constants in bulk polymerisations with MMA (Chapter 3) 

are affected by the equatorial and axial ligands. An increased number of carbons on 

the skeletal backbone tends to decrease Cs. The presence of strong axial base ligands 

such as pyridine in cobalt (III) complexes lower Cs due to an increase in electron 

density around the cobalt center which imparts a strengthening of the cobalt carbon 

bond, allowing ease of abstraction to be decreased. Cobalt (III) complexes with water 

as the axial ligands behave similarly to the cobalt (II) analogues giving very similar Cs 

values and conversions. Axial pyridine ligands in cobalt (III) complexes however give 

approximately half the value for Cs. Decreasing initiator concentration leads to a 

decrease in Cs and rate of polymerisation. The Cs values of which are approximately 

half their value when compared to the increased initiator concentration Cs values. A 

decrease in percentage conversion is observed with a lowering of initiator 

concentration. The decrease in Cs is attributable to the fact that CCTP is reliant on a 

constant radical feed, the source of radicals in a reduced initiator system is therefore 

decreased and generation of these radicals is more reliant on the CCTP process 

generating these. Fewer radicals results in fewer propagating species and therefore 

fewer transfer steps.

The bulk polymerisation of styrene in the presence of CCTA’s resulted in 

lower values for C5 being obtained. There seems to be no correlation between an 

increase in temperature and an increase in Cs. The E,ranjfcr values are not directly
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connected with catalyst structure although if one only considers the cobalt (III) 

analogues containing water and pyridine as axial ligands it would appear that a lower 

value ofE.rans.cr is found for the water analogues. The cobalt (Ul)-water analogues 

behave similarly to their cobalt (II) analogues and sometimes exhibit higher chain 

transfer constants. It can therefore be concluded that the pyridine axial ligand does 

hinder chain transfer activity. For accurate Etramrer values it would have been better to 

run the polymerisations to higher conversion owing to the fact that an equilibrium 

between Co(II) and Co(III) complexes must be established before effective CCTP is 

observed and accurate E.ranS|Cr values would be obtained.

Preliminary results conclude that the complexes would be effective as chain 

transfer agents in emulsion polymerisations. The structure of the complex plays an 

important role in its partitioning properties. The presence of increased alkyl groups on 

the equatorial arms of the complexes increases the hydrophobic properties of the 

complex. When this is combined with the interaction of a strong base, pyridine in this 

work, the hydrophobic properties of the complex is further increased. The 

replacement of the pyridine axial ligand with water reduces the hydrophobic nature of 

the complex. Cobalt (II) and cobalt (III)- water analogues when compared with cobalt 

(III) -  pyridine analogues are more hydrophilic in nature, although all complexes are 

hydrophobic in nature. The change of monomer and water compositions allows the 

properties of the complexes to be further changed with regard to their hydrophilic 

nature. When analysing the Cs values for all complexes in both monomers it is 

important to consider the possibility that both impurity and axial ligand labilty and 

hence insertion of monomer molecules on to the complex could all influence the Cs 

values obtained.
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Appendix 1
Example of a magnetic moment 

calculation.
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M ethod for magnetic mom ent calculation for complex I I  (C o B F )

A. Weight of tube and sample (g) 0.9518

B. Weight of empty tube (g) 0.8045

C. Weight of sample (g) 0.1473

D. Length of sample (cm) 2.20

E. Room Temperature (K) 291.55

F. Reading of empty tube -30

G. Reading of packed tube 132

131

134

H. Average reading of packed tube 132.333

I. Tube constant 1.151

J. Magnetic susceptibility (c.g.s. units) 2.791E-06

K. Magnetic susceptibility 3.507E-08

L Relative molar mass (kg m of1) 4.468E-01

M. Molar magnetic susceptibility 1.576E-08

(m3 mol"1)

Magnetic Moment (BM) 1.705

Calculation of magnetic moment using the labels from the table above:

J I x D x ((H - F)/(C x 10 9) {c.g.s. units}

K. = 4 x 7t x 10'3 x J {S.I. units}

M = K x L
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Table 1. Crystal data and
CoEtiBF Crystal data

structure refinement for 1( jenem).

Identification code jenem

Empirical formula C 14H26B2COF4N4°6
Formula weight 502.94

Temperature 200(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P21/n

Unit cell dimensions a = 11.5701(3) A alpha = 90° 
b  m 7.83080(10) A beta = 90.7830(10)° 
c = 11.9889(3) A gamma = 90°

Volume , Z 1086.13(4) A3, 2

Density (calculated) 1.538 Mg/m3

Absorption coefficient 0.862 mm 1

F(000) 518

Crystal size 0.50 x 0.20 x 0.10 mm
O0 range for data collection 2.43 to 28.55

Limiting indices -12 s h  s 15, -10 s k  s 9, -16 s 1 s 13

Reflections collected 6263

Independent reflections 2510 (R. _ * 0.0251) int
Absorption correction SADABS

Max. and min. transmission 1.0000 and 0.8553

Refinement method Full-matrix least-squares on F

Data / restraints / parameters 2510 / 0 / 142
2Goodness-of-fit on F 1.015

Final R indices [I>2o(I)] R1 • 0.0338, wR2 = 0.0768(for 1968reflections)

R indices (all data) R1 . 0.0514, wR2 . 0.0834

Largest diff. peak and hole 0.552 and -0.288 eA
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Table 2. Atomic coordinates [ x 10 ] and equivalent isotropic
. 2 3displacement parameters [A x 10 ] for 1. U(eq) is defined as 

one third of the trace of the orthogonalized U.  . tensor.

X y z U (eq)

C o d ) 0 0 0 20(1)
B (1) 348(2) 2758(3) -1865.9(19) 25(1)
0(1) -658.0(11) 1602.3(19) -2080.8(11) 25(1)
0(2) 1438.3(12) 1908.1(19) -1491.2(11) 25(1)
0(3) -484.3(12) 2339(2) 1024.4(12) 29(1)
N (1) -997.0(14) 685(2) -1167.0(13) 21(1)
N (2) 1346.6(13) 1090(2) -482.4(13) 20(1)
F (1) 34.5(11) 3979.8(16) -1069.4(10) 32(1)
F<2) 585.0(10) 3486.8(17) -2879.1(10) 33 (1)
C(l) -2059.0(16) 174(3) -1120.4(16) 20 (1)
C (2) -2993.9(18) 676(3) -1933.7(17) 27 (1)
C (3) -3632(2) 2254(3) -1523(2) 41(1)
C(4) 2279.8(16) 858(3) 105.5(16) 20(1)
C (5) 3440.3(17) 1544(3) -211.2(18) 25 (1)
C(6) 3523(2) 3472(3) -70(2) 38 (1)
C (7) -1572 (2) 2564(3) 1560(2) 42 (1)

192



T a b l e  3 .  B o n d  l e n g t h s  [ À ]  a n d  a n g l e s  [  1 f o r 1 .

Cod) -N(2)#l 1.875(2)
Cod) -N(l) 1.879(2)
Co(l) -0(3) 2.279(2)
B(l) -F (2) 1.373(3)
B d )  -0(2) 1.490(3)
0(1) -Nd) 1.372(2)
0(3) -C<7) 1.432(3)
N (2 ) -C (4 ) 1.294(2)
C d )  -C (2) 1.499(3)
C (4 ) -C ( 1 ) #1 1.486(3)
C (5)- C (6) 1.522(3)

C o d )  -N ( 2 ) 1.875 (2)
Co(l) - N d )  #1 1.879 (2)
C o d )  -O ( 3 ) #1 2.279(2)
B(l)-F(1) 1.403 (3)
B d )  -0(1) 1.494 (3)
0(2)-N(2) 1.374 (2)
N(l) -Cd) 1.294 (2)
C(l)-C(4)#1 1.486 (3)
C (2 ) -C ( 3 ) 1.524 (3)
C (4 ) -C ( 5 ) 1.500 (3)

N (2 ) #1 - Co ( 1 ) -N(2) 
N(2) -Co(l) -N ( 1 )
N (2 ) -Co (1) -N ( 1 ) #1 
N (2 ) #1 -Co ( 1) -0(3) 
N(l) -Co(l) -0(3)
N (2)#1-C o (1)-O(3)#1 
Nil) -Cod) -0(3) #1 
0(3) -Co ( 1) -0 ( 3 ) #1 
F(2)-B(l)-0(2)
F (2 ) -B(l) -0(1)
0(2) -B(l) -0(1)
N(2) -0(2) -Bd)
C d )  - Nd) -0(1)
0(1) - Nd) -Cod)
C (4) -N(2) -Co(l)
N(l) - Cd) -C (4 ) #1 
C (4 ) #1 -C (1) -C ( 2 )
N (2) -C(4) -C(l)#l 
C ( 1) #1 -C (4 ) -C ( 5 )

180.0 N(2) #l-Co (1) -Nd) 81
98.32 (7) N (2)#1-C o (1)-N(1)#1 98
81.68(7) N(l) -Cod) -N (1 ) #1 180
89.31(6) N(2) -Cod) -0(3) 90
91.08(6) N(l)#l-Co(l) -0(3) 88
90.69(6) N(2) -Cod) -0(3) #1 89
88.92(6) N (1)#1-Co(1)-0(3)#1 91

180.0 F(2) -B(l) -Fd) 112
105.9(2) F d )  - B d )  -0(2) 109
105.3(2) F d )  - B d )  -0(1) 108
115.8(2) N(l) -0(1) -Bd) 114
113.47(14) C(7) -0(3) -Cod) 124
118.6(2) C d )  - N d )  -Cod) 116
124.38(11) C (4) -N ( 2 ) -0(2) 118
117.31(13) 0(2) -N ( 2 ) -Co(l) 123
112.2(2) N d )  - Cd) -C (2 ) 124
123.0(2) C d )  -C(2) -C (3 ) 110
111.8(2) N (2)-C(4)-C(5) 123
124.5(2) C (4 ) -C (5) -C (6) 112

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y, - 2

68(7) 
32 (7)
0
69(6) 
92(6) 
31(6) 
08 (6) 
0 ( 2 ) 
0 ( 2 ) 
8 ( 2 ) 

21(14) 
38(14) 
94(14) 
1 ( 2 ) 
94(11) 
6 ( 2 )

5 (2)
7 (2) 
5(2)
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„. 2 3Table 4. Anisotropic displacement parameters [A x 10 ] for 1. 
The anisotropic displacement factor exponent takes the form: 
- 2 i r 2 [ < h a * ) 2 Ul ; l  + . . .  + 2 h k a * b * U 1 2  ]

Ull U22 U33 U23 U13 U12

C o d ) 13 (1) 23(1) 23 (1) 5(1) -2 (1) -2(1)
B(l) 23 (1) 27(1) 26(1) 7 (1) 0(1) -1(1)
O d ) 22 (1) 31(1) 21(1) 9 (1) -2 (1) -4(1)
0(2) 18(1) 31(1) 24(1) 10 (1) 1(1) -1(1)
0(3) 29(1) 26(1) 32(1) -2 (1) 4(1) 0(1)
N (1) 19(1) 22(1) 21(1) 3 (1) 0(1) -1(1)
N<2) 18(1) 22(1) 21(1) 4(1) 1(1) 0(1)
F (1) 33(1) 25(1) 36(1) 2(1) 2 (1) 0(1)
F(2) 28(1) 40(1) 31(1) 16 (1) 0(1) -3 (1)
C(l) 15(1) 22(1) 23 (1) -1(1) -2(1) 0(1)
C (2) 19(1) 37(1) 26(1) 3 (1) -6(1) -3(1)
C (3) 33(1) 42(2) 48(1) 13 (1) -3(1) 13(1)
C (4) 17 (1) 19(1) 25(1) -2 (1) 0(1) -1(1)
C(S) 16(1) 29(1) 32(1) 2 (1) -1(1) -3(1)
C<6) 33(1) 30(1) 52(2) -5(1) 7 (1) -12(1)
C(7) 42 (2) 41(2) 45 (1) -10 (1) 16(1) -3(1)
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. 2  3displacement parameters (A x 10 ) for 1.
Table 5. Hydrogen coordinates ( x 10 ) and isotropic

X y z U(eq)

H (2A) -3547 -280 -2027 33
H(2B) -2651 917 -2669 33
H(3A) -4240 2563 -2063 62
H O B ) -3086 3204 -1443 62
H O C ) -3979 2008 -800 62
H(5A) 3591 1248 -999 30
H O B ) 4044 992 257 30
H O B ) 3387 3771 711 58
H (60 2940 4027 -547 58
H O A ) 4295 3858 -282 58
H(7A) -1578 3664 1949 63
H O B ) -1687 1640 2099 63
H O C ) -2196 2540 999 63
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coxm.Table 1. Crystal data and structure refinement for
CoEuH?Q/PvEt crystal data

Identification code 
Empirical formula 
Formula weight 
Temperature 
Wavelength

coxm
C19 H32 Co N5 04 
453.43 
183(2) K 
0.71073 A

Crystal system, space group •? •? • / •
Unit cell dimensions a = 7.9811(10) A alpha = 83.613 (2) d

b = 9.1812 (11) A beta = 77.304 (2) d
c = 15.1302(18) A gamma = 87.836(2)

Volume 1074.8(2) Aa3
Z, Calculated density 2, 1.401 Mg/m^3
Absorption coefficient 0.833 mm'v-l
F(000) 480
Crystal size 0.2 x 0.06 x 0.04 mm
Theta range for data collection 1.39 to 24.00 deg.
Limiting indices -8<=h<=9, -9<=k<=10, -11<=1<=17
Reflections collected / unique 4935 / 3324 [R(int ) = 0.1137]
Completeness to theta = 24.00 98.3 %
Refinement method Full-matrix least- squares on F^2
Data / restraints / parameters 3324 / 0 / 262
Goodness-of-fit on FA2 1.055
Final R indices [I>2sigma(I)] R1 = 0.1280, wR2 = 0.2968
R indices (all data) R1 = 0.1824, wR2 = 0.3539
Largest diff. peak and hole 1.200 and -1.458 e ,A*-3
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Table 2. Atomic coordinates ( x 10*4) and equivalent isotropic 
displacement parameters (A*2 x 10*3) for coxm.
U(eq) is defined as one third of the trace of the orthogonalized 
Uij tensor.

X y z U (eq)

Co (1) 8661(2) 7489 (2) 7487 (1) 34 (1)
N (1 ) 7311(12) 6852 (10) 6747 (6) 32 (2)
N (2) 10066 (12) 8159(9) 6352(7) 35 (2)
N (3) 7248 (12) 6864(10) 8610(7) 35 (2)
N(4) 9998 (12) 8155(10) 8218(7) 34 (2)
N (5) 9979 (12) 5496 (10) 7467(6) 33 (2)
0 (1) 5803 (10) 6166(9) 7083(6) 43 (2)
0 (2 ) 11538 (10) 8834(8) 6271(6) 41 (2)
0 (3) 5744 (10) 6221 (9) 8710 (6) 46 (2)
0(4) 11512 (10) 8851(9) 7889(6) 43 (2)
C(l) 7897 (16) 7125 (12) 5884(8) 38 (3)
C (2) 6920 (16) 6760 (13) 5191(9) 41 (3)
C (3) 5885(19) 8109 (16) 4886(11) 59 (4)
C (4) 9509(16) 7859 (11) 5630(8) 36 (3)
C (5 ) 10563(16) 8193 (13) 4694 (8) 41 (3)
C (6) 11690 (16) 6859 (14) 4393(9) 48 (3)
C (7) 7812 (16) 7129 (12) 9346(8) 37(3)
C (8) 6803 (15) 6797 (12) 10279(8) 35(3)
C (9) 5730 (20) 8126 (16) 10630 (12) 73 (5)
C(10) 9438 (15) 7874 (11) 9068(8) 32 (3)
C(ll) 10474 (16) 8143(13) 9761(10) 46 (3)
C (12) 11647(18) 6839 (16) 9909(12) 61 (4)
C (13) 11703 (17) 5404 (13) 7262(9) 47(3)
C (14) 12607(19) 4098 (14) 7244(9) 48 (3)
C (15) 11723 (19) 2821 (14) 7464(9) 51 (4)
C (16) 9932 (18) 2871 (13) 7707(9) 49 (4)
C (17) 9184(17) 4235(14) 7674(9) 43 (3)
C (18) 7440(15) 9471 (11) 7539(9) 36 (3)
C (19) 5810 (20) 9663(16) 7263(13) 74 (5)

197



Table 3. Selected bond lengths [A] and angles [deg] for coxm.

Co(l)-N(l) 
Co(1)-N(2 ) 
Co(1)-C(18) 
Co (1) -N ( 5 )
N ( 1)-C(l)
N ( 1)-0(1)
N (2)-C(4)
N( 2 ) - 0 ( 2 )
N( 5 ) - C (17)
N ( 5)-C(13)
C (1)-C(4) 
C ( l ) - C ( 2 )
C ( 2 ) - C (3)
C (4 ) -C ( 5 )
C (5)-C(6)
C (13)-C(14 ) 
C (14)-C(15) 
C (15) -C ( 16 ) 
C ( 16)-C(17) 
C ( 18)-C(19)

1 . 8 6 6 ( 1 0 )  
1 . 8 8 6 ( 1 0 )  
2 . 0 3 2 ( 1 1 )  
2 . 0 7 6 ( 9 )  
1 . 2 8 7 ( 1 5 )  
1 . 3 4 9 ( 1 2 )
1 . 3 2 5  ( 1 6 )
1 . 3 2 5  ( 1 2 )  
1 . 3 1 5 ( 1 5 )  
1 . 3 4 4  ( 1 6 )  
1 . 4 3 1 ( 1 7 )  
1 . 5 0 9  ( 1 8 )  
1 . 5 4 7 ( 1 8 )  
1 . 4 8 6 ( 1 7 )  
1 . 5 4 2 ( 1 5 )  
1 . 3 7 6 ( 1 8 )  
1 . 3 6 2 ( 1 9 )  
1 . 3 9 7 ( 1 9 )  
1 . 3 6 8 ( 1 7 )  
1 . 4 5 1 ( 1 9 )

N (4)  - C o ( l )  -N ( 1)
N (3)- C o ( l )  - N (1 )
N ( 1 )- C o ( l )  - N (2)
N ( 1 ) - C o ( l )  - C ( 18 )
N ( 2 ) - C o ( l )  - C ( 18 )
N ( 1 ) - C o ( l )  - N ( 5)
N ( 2 ) - C o ( l )  - N ( 5)
C ( 1 8 ) - C o ( l ) - N (5)  
C ( l ) - N (1 ) - 0 ( 1 )  
C ( l ) - N (1 ) - C o ( l )  
0 ( 1 ) - N (1 ) - C o ( l )
C ( 4 ) -N ( 2 ) - 0 ( 2 )
C (4 ) -N (2 ) - C o ( l )  
0 ( 2 ) - N (2 ) - C o ( l )
C ( 1 7 ) - N ( 5 )  - C ( 13 )
C ( 1 7 ) - N ( 5 )  - C o ( l )
C ( 1 3 ) - N ( 5 )  - C o ( l )
N ( 1 ) - C ( l )  - C  (4 )
N (1)-C(l) - C (2) 
C(4)-C(l) - C (2) 
C(l)-C( 2 ) - C (3)
N (2 ) - C (4 ) - C ( l )
N ( 2 ) - C ( 4 )  - C ( 5)
C (1 ) -C (4 ) -C (5) 
C ( 4 ) - C ( S ) - C (6)
N ( 5)-C(13) -C(14)
C ( 15)-C(14 ) -C(13) 
C (14)-C(15)-C(16) 
C ( 1 7 ) - C ( 1 6 ) - C ( 1 5 )  
N ( 5 ) - C ( 1 7 )  - C ( 1 6 )
C ( 1 9 ) - C ( 1 8 ) - C o ( l )

1 7 9 . 1 ( 4 )  
9 7 . 7 ( 4 )  
8 2 . 3 ( 4 )  
9 2 . 5 ( 5 )  
9 0 . 1  (4 ) 
9 0 . 0 ( 4 )  
9 0 . 0 ( 4 )  

1 7 7 . 5 ( 5 )  
1 2 1 . 4 ( 1 0 )  
1 1 5 . 7  ( 8)  
1 2 3 . 0 ( 7 )  
1 2 1 . 8 ( 1 0 )  
1 1 5 . 2 ( 8 )  
1 2 3 . 0 ( 8 )  
1 1 5 . 3 ( 1 0 )  
1 2 2 . 2 ( 8 )  
1 2 2 . 4 ( 8 )  
1 1 5 . 0 ( 1 1 )  
1 2 2 . 5 ( 1 2 )  
1 2 2 . 4 ( 1 1 )  
1 1 0 . 8 ( 1 1 )  
1 1 1 . 8 ( 1 1 )  
1 2 1 . 1 ( 1 1 )  
1 2 6 . 9 ( 1 1 )  
1 1 0 . 7 ( 1 0 )  
1 2 3 . 6 ( 1 2 )  
1 1 8 . 8 ( 1 3 )  
1 1 9 . 4 ( 1 2 )  
1 1 6 . 1 ( 1 2 )  
1 2 6 . 7 ( 1 2 )  
1 1 9 . 3 ( 9 )

Symmetry transformations used to generate equivalent atoms:
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Table 4. Bond lengths [A] and angles [deg] for coxm.

Co (1) -N (4 )
Co(1)-N (3)
Co(1)-N (1)
Co(1)-N (2)
Co(1)-C(18)
Co(1)-N (5)
N (1)-C(l)
N (1)-0(1)
N ( 2 ) - C (4)
N (2)-0(2)
N (3)-0(3)
N (3)-C(7)
N (4) -C(10)
N(4) -0(4)
N (5)-C(17)
N(5)-C(13)
C(l) -C (4 )
C(l) -C (2 )
C (2)-C(3)
C (4 ) -C ( 5 )
C ( 5)-C(6)
C (7)-C(10)
C ( 7) -C(8)
C ( 8 ) - C ( 9 )
C(10)-C(ll)
C(ll)-C(12)
C ( 13)-C(14)
C (14)-C(15)
C (15)-C(16)
C (16)-C(17)
C (18)-C(19)
N (4)-Co(l)-N(3)
N (4)-Co(l)-N(1)
N ( 3)-Co(l) -N(1)
N (4)-Co(l)-N(2)
N (3)-Co(1)-N(2)
N (1)-Co(l)-N(2)
N (4)-Co(l)-C(18) 
N (3)-Co(l)-C(18) 
N (1)-Co(l)-C (18) 
N (2)-Co(l)-C (18) 
N (4)-Co(l)-N(5)
N ( 3)-Co(l) -N(5)
N ( 1)-Co(l) -N(5)
N ( 2)-Co(l) -N(5)
C ( 18) -Co(l) -N(5) 
C ( 1 ) -N ( 1 ) -0(1)
C ( 1) -N(1) -Co(l) 
0(1)-N(1)-Co(l)
C (4 ) -N ( 2 ) -0(2)
C (4)-N(2)-Co(l) 
0(2)-N(2)-Co(l) 
0(3)-N(3)-C(7) 
0(3)-N(3)-Co(l)
C ( 7)-N(3)-Co(l) 
C(10)-N(4)-0(4) 
C(10)-N(4)-Co(l) 
0(4) -N (4 ) -Co(l)
C (17)-N(5)-C(13)

1.859(10) 
1.864(10) 
1.866(10) 
1.886(10) 
2.032(11) 
2.076(9) 
1.287(15) 
1.349(12) 
1.325(16) 
1.325(12) 
1.329(12) 
1.338(16) 
1.265 (15) 
1.357(12) 
1.315(15) 
1.344(16) 
1.431(17) 
1.509(18) 
1.547(18) 
1.486(17) 
1.542(15) 
1.447(17) 
1.469(16) 
1.538(17) 
1.516(18) 
1.519(18) 
1.376(18) 
1.362(19) 
1.397(19) 
1.368(17) 
1.451(19)

82.6(4)
179.1(4) 
97.7(4)
97.4 (4)

178.8(4) 
82.3 (4) 
86.7(4) 
88.7(4) 
92.5(5) 
90.1(4) 
90.9(4) 
91.1(4)
90.0 (4)
90.0 (4) 

177.5(5) 
121.4(10) 
115.7(8)
123.0(7)
121.8(10) 
115.2(8)
123.0(8)
119.8(10) 
124.2(8) 
115.9(8)
120.5(10) 
115.6(8)

199 1 23.9 ( 7) 
115.3(10)



C (17)-N(5)-Co(1) 122.2(8)
C (13)-N(5)-Co(l) 122.4(8)
N (1)-C(l)-C(4) 115.0(11)
N (1)-C(l)-C(2) 122.5(12)
C (4)-C(l)-C(2) 122.4(11)
C (1)-C(2)-C(3) 110.8(11)
N ( 2)-C(4) -C(l) 111.8(11)
N (2)-C(4)-C(5) 121.1(11)
C(l)-C(4)-C(5) 126.9(11)
C (4)-C(5)-C(6) 110.7(10)
N (3)-C(7)-C(10) 109.8(10)
N (3)-C(7)-C(8) 122.9(11)
C(10)-C(7)-C(8) 127.1(11)
C (7)-C(8)-C(9) 112.2(11)
N (4)-C(10)-C(7) 116.0(10)
N (4)-C(10)-C(ll) 122.8(11)
C (7) -C(10)-C(ll) 120.9(11)
C(10) -C(ll)-C(12) 110.5(10)
N (5)-C(13)-C(14) 123.6(12)
C (15) -C(14)-C(13) 118.8(13)
C (14)-C(15)-C(16) 119.4(12)
C (17) -C(16)-C(15) 116.1(12)
N (5)-C(17)-C(16) 126.7 (12)
C (19) -C(18)-Co(l) 119.3(9)

Symmetry transformations used to generate equivalent atoms:

2()0



Table 5. Anisotropic displacement parameters (A*2 x 10*3) for coxm. The anisotropic displacement factor exponent takes the form:
-2 pi*2 t h*2 a**2 Ull + ... + 2 h k a* b* U12 ]

Ull U22 U33 U23 U13 U12

Co (1) 35(1) 26 (1) 37(1) 2(1) -1(1) -4 (1)
N (1) 40 (5) 27 (5) 27(6) -3 (4) 0 (4) -8 (4)
N (2) 37 (5) 20 (5) 43 (6) 3 (4) 0(5) 2 (4)
N (3) 31 (5) 28 (5) 43 (6) -1(5) -5(5) -5 (4)
N (4) 41 (5) 24 (5) 33 (6) -9 (4) 5 (4) 2 (4)
N (5) 35 (5) 32 (5) 30 (6) 0 (4) -4 (4) 5 (4)
0(1) 40 (5) 42 (5) 42 (5) -5 (4) -1 (4) -4 (4)
0(2) 34 (4) 23 (4) 56 (6) 6 (4) 10 (4) -8 (3)
0(3) 39 (5) 35(5) 56 (6) 3 (4) 0 (4) -12 (4)
0(4) 41(5) 33 (5) 55 (6) -8 (4) -5(4) -13(4)
C (1) 57(8) 24 (6) 36 (8) -13(5) -13 (6) 13 (5)
C (2) 49 (7) 33 (7) 38 (7) -1(6) -5(6) 4 (5)
C (3) 55(9) 50(9) 71(11) 1(8) -16 (8) 12 (7)
C (4) 52 (7) 16 (5) 41 (8) 3 (5) -14 (6) 0(5)
C (5) 54 (8) 29 (6) 32 (7) -1(5) 4 (6) 1(5)
C (6) 43 (7) 43 (8) 50 (8) -13(7) 8 (6) 10 (6)
C (7) 50 (7) 22 (6) 36 (7) 0(5) -1(6) 7(5)
C (8) 44 (7) 25 (6) 35 (7) -6(5) -5(6) -3(5)
C (9) 84(11) 48 (9) 79(12) -17(8) 4 (9) 7 (8)
C (10) 47 (7) 22(6) 32 (7) -16(5) -15 (6) 6 (5)
C (11) 47 (7) 28(6) 58(9) -12 (6) 3 (6) -5(5)
C (12) 49(8) 51(9) 84(12) -5(8) -16 (8) 13 (7)
C (13) 53 (8) 30 (7) 56 (9) 4 (6) -9(7) -7(6)
C (14) 59 (8) 40(8) 45(8) -1(6) -10 (7) 4 (6)
C (15) 78(10) 32 (7) 46 (8) -8 (6) -21 (8) 22 (7)
C (16) 63 (9) 22(6) 54 (9) 1 (6) 3 (7) -8(6)
C (17) 44 (7) 42 (7) 44 (8) -3 (6) -14(6) -6 (6)
C (18) 41 (7) 17(5) 42 (7) 2 (5) 3(6) -3 (5)
C (19) 73(11) 43 (9) 113(15) -25(9) -31(10) 22(8)
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Table 6. Hydrogen coordinates ( x 10A4) and isotropic 
displacement parameters (Aa2 x 10^3) for coxm.

X y z U (eq)

H(2A) 6126 5946 5459 49
H(2B) 7736 6434 4654 49
H(3A) 5273 7853 4431 89
H(3B) 6671 8915 4620 89
H (3 C) 5054 8415 5415 89
H(5A) 11305 9040 4678 49
H(5B) 9799 8462 4265 49
H(6A) 12364 7097 3773 72
H (6B) 10954 6022 4408 72
H(6C) 12467 6610 4809 72
H (8A) 7591 6479 10688 42
H (8B) 6024 5976 10295 42
H(9A) 5079 7856 11251 109
H(9B) 4941 8436 10232 109
H(9C) 6503 8934 10631 109
H (11A) 9686 8310 10346 55
H(11B) 11172 9033 9544 55
H (12A) 12315 7035 10353 92
H (12B) 12429 6677 9330 92
H (12C) 10952 5964 10139 92
H (13A) 12331 6289 7123 57
H (14A) 13827 4087 7082 58
H (15A) 12320 1906 7451 62
H (16A) 9270 2007 7886 59
H (17A) 7964 4276 7816 51
H (18A) 7253 9720 8174 43
H (18B) 8238 10206 7155 43
H (19A) 5383 10668 7332 111
H(19B) 4976 8972 7646 111
H(19C) 5966 9478 6624 111
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CoMe?Et?BF/H?OEt crystal datacobrd

Table 8. Crystal data and structure refinement for cobrd.

Identification code 
Empirical formula 
Formula weight 
Temperature 
Wavelength
Crystal system, space group

C12 H23 B2 Co F4 N4 05
459.89
183(2) K
0.71073 A
Monoclinic, P2(l)/c

Unit cell dimensions a = 12 .1953(4) A alpha = 90 deg.
b = 13 .0986 (4) A beta = 113 . 5920(10
c = 12 .7761 (2) A gamma = 90 deg.

Volume 1870.2 9(9) A^3
Z, Calculated density 4, 1.633 Mg/m* 3
Absorption coefficient 0 .989 mm* -1
F (000) 944
Crystal size 0 .16 x 0.09 X 0.08 mm
Theta range for data collection 1 .82 to 24.00 deg.
Limiting indices -8< =h< =13, -14<=k< =¡14, -14 < = 1<= 10
Reflections collected / unique 84 70 / 2928 [R (int) = 0 .0702]
Completeness to theta = 24.00 99 . 9 %
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on FA2
Final R indices (I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

Semi-empirical from equivalents 
0.928 and 0.746
Full-matrix least-squares on FA2 
2928 / 0 / 263 
1.033
R1 = 0.0544, wR2 = 0.1067 
R1 = 0.1116, wR2 = 0.1313 
0.706 and -0.624 e.A*-3
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Table 9. Atomic coordinates ( x 10^4) and equivalent isotropic 
displacement parameters {Aa2 x 10^3) for cobrd.
U(eq) is defined as one third of the trace of the orthogonalized 
Uij tensor.

X y z U(eq)

Co (1) 2322(1) 401(1) 7521(1) 26(1)
N (1) 3240 (4) 623 (3) 6666(4) 26(1)
N (2) 3032 (4) 1637 (3) 8183 (4) 25(1)
N (3) 1629 (4) -840 (3) 6878(4) 25(1)
N (4) 1464(4) 175 (3) 8414 (4) 21(1)
0(1) 3328(3) -74 (3) 5896 (3) 33 (1)
0(2) 2710 (3) 2185 (3) 8929(3) 31(1)
0(3) 1921 (3) -1377(3) 6099 (3) 36 (1)
0(4) 1363 (3) 849(3) 9183(3) 27(1)
0(5) 891 (4) 1285 (3) 6365 (4) 33(1)
F (1) 2534 (3) -1370 (3) 4635 (3) 50(1)
F (2) 1266 (3) -100 (3) 4698 (3) 42(1)
F (3) 2007 (3) 2238 (2) 10333(3) 37(1)
F (4) 3379 (3) 1010(2) 10442 (3) 39(1)
B (1) 2254 (6) -711 (6) 5328(6) 36 (2)
B (2) 2391(6) 1555 (5) 9738 (6) 29(2)
C(l) 3941 (5) 1406 (4) 6934(5) 28(1)
C (2) 4853(5) 1628(5) 6456(5) 35 (2)
C (3) 3758(5) 2052 (4) 7802(5) 25(1)
C (4) 4339(5) 3075(4) 8152(5) 38 (2)
C (5) 975(5) -1274(4) 7320(5) 28 (1)
C (6) 458 (6) -2348 (5) 7001 (6) 51 (2)
C (7) 812(5) -654 (4) 8193(5) 32 (2)
C (8) -55(5) -912(5) 8715(5) 36 (2)
C(10) 3770(5) -455 (5) 8582(5) 38 (2)
C(ll) 3587(5) -1190(5) 9410(5) 41(2)
C (81) -1258 (6) -460 (7) 8014(7) 77(3)
C (21) 6097(6) 1270(7) 7262(7) 75(3)
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Table 10. Selected bond lengths [A] and angles [deg] for cobrd.

Co (1) -N (2 ) 1.870 (4)
Co (1) -N (1) 1.873 (4)
Co(1)-C(10) 2.072(5)
Co(1)-0(5) 2.123 (4)
N ( 1)-C(l) 1.291(7)
N ( 1)-0(1) 1.377(5)
N (2)-C(3) 1.289(7)
N (2)-0(2) 1.371(5)
0(1)-B(1) 1.476(8)
0(2)-B (2) 1.490(8)
F ( 1)-B(1) 1.375(7)
F (2)-B(1) 1.401(8)
C(l)-C(3) 1.481(8)
C(l)-C(2) 1.496(8)
C (2)-C(21) 1.527 (8)
C (3)-C(4) 1.498 (8)
N(4)-Co(l)-N(l)
N (3)-Co(l)-N(1)
N (2)-Co(l)-N(l)
N (4)-Co(l)-C(10) 
N (3)-Co(l)-C(10) 
N (4)-Co(l)-0(5) 
N(3)-Co(l)-0(5) 
C(10)-Co(1)-0(5) 
C(l)-N(l)-0(1) 
C(l)-N(1)-Co(l) 
0(1)-N(1)-Co(l)
C ( 7 ) -N (4 ) -0(4)
C (7) -N(4) -Co(l) 
0(4)-N(4)-Co(l)
N ( 1)-0(1) -B(1)
N (4) -0(4) -B(2) 
F(l)-B(1)-F(2)
F ( 1)-B(1)-0(1)
F (2) -B(1) -0(1) 
0(1)-B(1)-0(3) 
N(l)-C(1)-C(3)
N (1)-C(l)-C(2)
C (3)-C(1)-C(2)
C ( 1)-C (2) -C(21)
N (2) -C(3) -C(1)
N (2)-C(3)-C(4) 
C(l)-C(3)-C(4) 
C(ll)-C(10)-Co(1)

177.9(2) 
98.6(2) 
81.5(2) 
93.1(2) 
86.2 ( 2 )

90.34(17) 
93.85(18) 

176.5(2) 
118.9(5)
117.1 (4)
123.3 (3) 
118.1(4)
116.3 (4)
125.2 (3) 
114.7(4) 
116.3(4) 
111.6(5) 
105.7(5) 
110.4(5)
115.4 (5) 
111.8(5) 
124.6(6) 
123.6(5) 
111.5(5) 
111.9(5) 
125.4(5) 
122.7(5)
118.4 (4)

Symmetry transformations used to generate equivalent atoms:
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Table 11. Bond lengths [A] and angles [deg] for cobrd.

C o (1)-N(4)
Co (1)-N ( 3)
Co (1)-N(2)
Co (1)-N(l)
C o (1)-C(10)
C o (1)-0(5)
N ( 1)-C(l)
N (1)-0(1)
N (2)-C(3)
N(2)-0(2)
N ( 3 ) - C (5)
N (3)-0(3)
N ( 4 ) - C (7)
N (4)-0(4)
0(1)-B(1)
0 ( 2 ) - B (2)
0(3)-B(1)
O (4)-B (2)
F (1)-B(1)
F (2)-B (1)
F (3)-B(2)
F (4)-B (2)
C(l)-C(3)C(l)-C(2)
C ( 2 ) - C (21)
C ( 3 ) -C (4 )
C ( 5)-C(7)
C ( 5)-C(6)
C (7)-C(8)
C (8)-C(81)
C(10)-C(ll)
N (4)-Co(l)-N(3) 
N(4)-Co(l)-N(2)
N (3)-Co(l)-N(2)
N (4)-Co(l)-N(1)
N (3)-Co(l)-N(1)
N (2)-Co(l)-N(1)
N (4)-Co(l)-C(10) 
N(3)-Co(l)-C(10) 
N (2)-Co(1)-C(10) 
N (1) -Co(1)-C(10) 
N (4)-Co(l)-0(5)
N (3)-Co(l)-0(5) 
N(2)-Co(l)-0(5)
N (1)-Co(1)-0(5)
C (10)-Co(1)-0(5) 
C(l)-N(1)-0(1) 
C(l)-N(1)-Co(l) 
0(1)-N(1)-Co(l)
C (3)-N(2)-0(2)
C (3)-N(2)-Co(1) 
0(2)-N(2)-Co(1)
C (5)-N(3)-0(3)
C (5)-N(3)-Co(1) 
0(3)-N(3)-Co(l)
C (7)-N(4)-0(4)
C (7)-N(4)-Co(l) 
0(4)-N(4)-Co(l)
N (1)-0(1)- B (1)

1.855(4) 
1.865(4) 
1.870 (4) 
1.873 (4) 
2.072 (5) 
2.123 (4) 
1.291(7) 
1.377(5) 
1.289(7) 
1.371(5) 
1.280(7) 
1.376(5) 
1.309 (6) 
1.362(5) 
1.476(8) 
1.490(8) 
1.489(8) 
1.490(7) 
1.375(7) 
1.401 (8) 
1.372(7) 
1.380(7) 
1.481(8) 
1.496 (8) 
1.527(8) 
1.498 (8) 
1.456(8) 
1.529(8) 
1.496(8) 
1.501(9) 
1.513(8)

82.20(19) 
97.7(2)

179.3 (2) 
177.9 (2)
98.6(2) 
81.5 (2) 
93.1(2)
86.2(2)
93.1(2) 
85.0(2)
90.34(17) 
93.85(18) 
86.88 (18) 
91.52(17) 

176.5(2) 
118.9(5) 
117.1 (4) 
123.3(3) 
118.2(4)
117.3 (4) 
123.9(3) 
118.7(4) 
116.4(4) 
124.2(3) 
118.1(4)
116.3 (4) 
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N (2) -0(2)-B(2) 114.8(4)
N (3 ) -0(3) -B ( 1 ) 113.4(4)
N (4 ) -0(4) -B ( 2 ) 116.3(4)
F ( 1)-B(1)-F(2) 111.6(5)
F ( 1) -B(1)-0(1) 105.7(5)
F (2)-B(1)-0(1) 110.4(5)
F (1)-B(1)-0(3) 105.2(5)
F (2) -B (1) -0(3) 108.4(5)
0(1) -B (1) -0(3) 115.4(5)
F (3 ) -B(2)-F(4) 112.3(5)
F (3)-B(2)-0(4) 105.1(5)
F (4 ) -B ( 2 ) -0(4) 109.7(5)
F ( 3) -B (2)-0(2) 105.4(5)
F (4)-B(2)-0(2) 109.7(5)
0(4) -B (2) -0(2) 114.7(5)
N (1)-C(l)-C(3) 111.8(5)
N (1)-C(l)-C(2) 124.6(6)
C (3)-C(l)-C(2) 123.6(5)
C(l)-C(2)-C(21) 111.5(5)
N(2)-C(3)-C(l) 111. 9 (5)
N (2 ) -C ( 3 ) -C (4 ) 125.4(5)
C(l)-C(3)-C(4) 122.7(5)
N (3) -C(5)-C(7) 113.0(5)
N (3) -C(5) -C(6 ) 123.6(5)
C (7) -C(5)-C(6) 123.3(5)
N (4)-C(7)-C(5) 111.8(5)
N(4) -C<7) -C ( 8 ) 124.6(5)
C ( 5 ) - C ( 7 ) - C ( 8 ) 123.6(5)
C (7)-C(8)-C(81) 110.0(5)
C(ll)-C(10)-Co(1) 118.4(4)

Symmetry transformations used to generate equivalent atoms:

207



Table 12. Anisotropic displacement parameters (Aa2 x 10^3) for cobrd. 
The anisotropic displacement factor exponent takes the form:
-2 pi<'2 [ h^2 a*A2 Ull + ... + 2 h k a* b* U12 ]

Ull U22 U33 U23 U13 U12

Co (1) 31(1) 27(1) 22 (1) -4 (1) 13 (1) -9(1)
Nil) 24 (3) 33 (3) 19 (3) 2 (2) 8 (2) 2 (2)
N (2) 28 (3) 25 (3) 22 (3) 1 (2) 9 (2) -1(2)
N (3) 25 (3) 27 (3) 23 (3) -3 (2) 9(2) 0 (2)
N (4) 20 (3) 26 (3) 18 (3) -1(2) 8 (2) -2 (2)
0(1) 36 (2) 40 (2) 29(2) -6 (2) 20(2) 1 (2)
0(2) 37 (2) 30 (2) 29 (2) -8(2) 16 (2) -10(2)
0(3) 53 (3) 29 (2) 37 (3) -9(2) 29(2) -9(2)
0(4) 32 (2) 27 (2) 26 (2) -9(2) 16 (2) -1(2)
0(5) 28 (3) 39 (3) 29 (3) -4 (2) 11 (2) -2 (2)
F (1) 66 (3) 53 (2) 44 (2) -19 (2) 36 (2) -8(2)
F (2) 36 (2) 54 (2) 30 (2) -4 (2) 8 (2) -1 (2)
F (3) 43 (2) 39(2) 31 (2) -13 (2) 17 (2) -4 (2)
F (4) 35 (2) 46 (2) 25 (2) -2 (2) 2 (2) 3 (2)
B (1) 35(5) 44 (5) 32 (4) -6 (4) 16 (4) -2 (4)
B (2) 27 (4) 36 (4) 25 (4) -5(3) 10 (3) -6 (3)
C(l) 22 (3) 32 (4) 22 (3) 9 (3) 2 (3) 0(3)
C (2) 33 (4) 42 (4) 36 (4) 12 (3) 21 (3) -1(3)
C (3) 17 (3) 31 (3) 20 (3) 8 (3) -1 (2) 0(3)
C (4) 43 (4) 36 (4) 34 (4) 2 (3) 16 (3) -14(3)
C (5) 30 (3) 27 (3) 30 (4) -5(3) 17 (3) -7(3)
C (6) 60 (5) 47 (4) 60(5) -25(4) 39 (4) -31 (4)
C (7) 34 (4) 32 (4) 36 (4) -8(3) 20 (3) -9(3)
C (8) 40 (4) 38 (4) 34 (4) -7(3) 20(3) -11(3)
C(10) 34 (4) 39 (4) 36 (4) 4 (3) 11 (3) 12(3)
C (11) 45 (4) 41 (4) 30 (4) 10(3) 6 (3) 9(3)
C (81) 58 (5) 109(7) 63 (6) 5(5) 23 (4) -5(5)
C (21) 48 (5) 98 (7) 88(7) 28 (5) 36 (5) 15(5)
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Table 13. Hydrogen coordinates ( x 10^4) and isotropic 
displacement parameters (A^2 x 10^3) for cobrd.

X y z U (eq)

H (051) 1100 (50) 1510 (50) 5900(50) 39
H (052) 260 (50) 1020 (40) 5910(50) 39
H (2A) 4872 2371 6327 42
H(2B) 4621 1280 5711 42
H (4A) 3898 3474 8505 57
H (4B) 4332 3437 7478 57
H (4C) 5167 2984 8703 57
H (6A) 477 -2546 6269 77
H(6B) -370 -2356 6937 77
H(6C) 937 -2830 7594 77
H (8A) 242 -640 9503 43
H (8B) -126 -1662 8752 43
H(10A) 4070 -851 8091 45
H(10B) 4413 26 9031 45
H (11A) 4340 -1545 9847 62
H(11B) 2972 -1691 8985 62
H (11C) 3330 -812 9934 62
H (81A) -1839 -687 8319 116H (8IB) -1519 -686 7220 116
H (81C) -1203 286 8047 116
H(21A) 6674 1431 6928 113
H(21B) 6085 531 7376 113
H(21C) 6332 1619 7998 113
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T a b le  1. Molecular weight and conversion data for the CCTP bulk polymerisation of

complex II with Styrene.

Temp °C |Co]/[Sty] x 

10-6

Molar ratio

Mn Mw PDi % Conv

90 0.0 583388 897802 1.54 1.30

2.45 5660 17022 3.00 0.99

4.90 7221 17805 2.46 0.99

7.35 5373 11593 2.16 0.87

9.80 4137 7869 1.90 0.78

120 0.0 74054 173248 2.34 6.61

2.45 15955 37651 2.36 10.55

4.90 5756 21178 3.68 10.19

7.35 3986 13382 3.36 9.53

9.80 4000 13305 3.33 10.55

140 0.0 103697 227004 2.19 4.40

2.45 7493 22464 2.99 8.11

4.90 4994 13138 2.63 7.62

7.35 3597 7939 2.20 7.93

9.80 3260 8712 2.67 7.74
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Table 2. Molecular weight and conversion data for the CCTP bulk polymerisation of

complex III with Styrene.

Temp °C [Co]/[Sty]x 

10'6 Molar 

ratio

Mn Mw PDi % Conv

80 0.0 102767 232872 2.27 0.36

2.30 73412 160861 2.20 1.63

4.61 53939 118973 2.21 1.93

6.91 39325 81875 2.08 1.85

9.22 34077 73798 2.17 1.62

100 0.0 255283 496606 1.94 0.90

2.30 66868 180196 2.70 2.63

4.61 48861 131850 2.70 3.92

6.91 43309 102426 2.37 4.16

9.22 33766 79175 2.35 4.12

120 0.0 106331 239933 2.26 4.61

2.30 81445 196427 2.41 6.79

4.61 64792 169132 2.61 8.90

6.91 51644 141983 2.75 9.65

9.22 47020 134804 2.87 10.63

140 0.0 82044 183631 2.24 1.13

2.30 62768 141413 2.25 3.46

4.61 47700 110694 2.32 4.32

6.91 31975 79456 2.49 4.59

9.22 34617 87672 2.53 6.50
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Table 3. Molecular weight and conversion data for the CCTP bulk polymerisation of

complex IV with Styrene.

Temp °C [Co]/[Sty]x 
1 O'6 Molar 

ratio

Mn Mw PDi % Conv

90 0.0 577948 914227 1.58

2.17 93949 194574 2.07

4.36 88605 228055 2.57

6.53 75576 170463 2.26

8.71 138588 208160 1.50

100 0.0 156192 367925 2.36 1.52

2.17 51569 123702 2.40 3.11

4.36 42562 106110 2.50 3.50

6.53 41098 120154 2.92 3.73

8.71 28767 78627 2.73 4.39

120 0.0 70090 157223 2.24 7.73

2.17 33782 78872 2.33 12.19

4.36 28066 65074 2.32 12.62

6.53 21 M l 65139 2.39 14.10

8.71 22454 52167 2.32 14.17

140 0.0 104554 230897 2.20 4.99

2.17 50022 121196 2.42 8.98

4.36 38649 99918 2.59 9.11

6.53 33062 90296 2.73 10.87

8.71 30178 91799 3.04 12.24
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Table 4. Molecular weight and conversion data for the CCTP bulk polymerisation of

complex IV with Styrene.

Temp °C [Co]/[Sty]x 

1 O'6 Molar 

ratio

Mn Mw PDi % Conv

80 0.0 132728 299396 2.26 0.39

2.23 7672 27712 3.61 0.60

4.46 7444 19994 2.69 0.57

6.69 4150 11469 2.76 0.53

8.92 3539 7243 2.05 0.41

100 0.0 129139 277721 2.15 2.34

2.23 11183 28515 2.55 2.84

4.46 11264 29308 2.60 3.09

6.69 6551 20062 3.06 2.94

8.92 4884 14382 2.94 2.62

120 0.0 84357 208553 2.47 6.47

2.45 12493 26648 2.13 2.51

4.90 10475 20653 1.97 3.09

7.35 5661 20136 3.55 9.48

9.80 4432 12254 2.78 4.37

140 0.0 102680 211969 2.06 5.10

2.23 6304 19026 3.01 8.00

4.46 5098 16062 3.15 11.85

6.69 3594 9741 2.71 8.28

8.92 3047 8121 2.66 10.36
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Table 5. Molecular weight and conversion data for the CCTP bulk polymerisation of

complex IX with Styrene.

Temp °C [Co]/[Sty]x 

1 O'6 Molar 

ratio

Mn Mw PDi % Conv

80 0.0 88929 214142 2.40 0.24
2.11 94507 224703 2.38 0.55
4.22 78783 183717 2.33 0.72
6.33 67469 156103 2.31 0.75
8.45 69465 167517 2.41 0.79

100 0.0 108506 242652 2.24 0.89
2.11 85146 195997 2.30 1.75
4.22 84788 188005 2.22 1.71
6.33 60829 136555 2.25 2.58
8.45 59151 129320 2.19 2.84

120 0.0 75671 173526 2.29 3.11
2.11 57065 126485 2.21 4.66
4.22 42993 114267 2.66 4.97
6.33 45051 98060 2.18 5.98
8.45 34157 70864 2.08 4.61

140 0.0 80650 182751 2.27 1.69
2.11 59577 126225 2.11 3.00
4.22 51147 111350 2.17 3.45
6.33 42776 91433 2.14 3.45
8.45 40352 82176 2.04 3.76
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Table 6. Molecular weight and conversion data for the CCTP bulk polymerisation of

complex X with Styrene.

Temp °C [Co]/[StyJx 

1 O'6 Molar 

ratio

Mn Mw PDi % Conv

80 0.0 64678 234634 3.62 0.30
2.00 29866 66665 2.23 0.63
4.01 27468 59201 2.15 0.67
6.01 17288 46124 2.65 0.58
8.02 13922 32907 2.36 0.63

100 0.0 62066 237087 3.82 1.34
2.00 28582 87873 3.07 2.06
4.01 29602 61319 2.07 2.04
6.01 21905 49667 2.27 2.49

120 0.0 90911 202359 2.22 3.18
2.00 32931 68357 2.07 4.68
4.01 25591 55041 2.15 5.54
6.01 19555 41369 2.11 5.02
8.02 11903 34012 2.85 5.92

140 0.0 68924 166439 2.41 4.20
2.00 36949 75626 2.04 6.95
4.01 25490 57237 2.24 7.14
6.01 20284 41177 2.03 6.91
8.02 14111 32580 2.30 6.51
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Table 7. Molecular weight and conversion data for the CCTP bulk polymerisation of

complex XI with Styrene.

Temp °C [Co]/[Sty]x 

1 O'6 Molar 

ratio

Mn Mw PDi % Conv

80 0.0 140034 312701 2.23 0.37

2.54 7609 24644 3.24 0.53

5.09 4758 11678 2.45 0.58

7.64 3780 8864 2.35 0.52

10.1 2726 5777 2.12 0.53

100 0.0 86751 203706 2.35 1.99

2.54 23804 65151 2.74 2.71

5.09 5888 15508 2.63 2.85

7.64 4843 11768 2.43

10.1 4357 15658 3.59 2.86

120 0.0 77698 178893 2.30 6.12

2.54 7848 19160 2.44 9.02

5.09 5759 14337 2.49 9.88

7.64 3917 10307 2.63 9.66

10.1 3327 7637 2.30 10.09

140 0.0 86976 203720 2.34 5.59

2.54 23052 65062 2.82 7.96

5.09 6401 15428 2.41 9.27

7.64 5049 11162 2.21 11.10

10.1 4995 16116 3.23 12.50
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Table 8. Molecular weight and conversion data for the CCTP bulk polymerisation of

complex XII with Styrene.

Temp °C [Co]/[Sty]x 

1 O'6 Molar 

ratio

Mn Mw PDi % Conv

80 0.0 108035 249996 2.31 0.33
2.39 38734 99033 2.56 0.69

4.79 20127 42761 2.13 0.41
7.19 10686 26929 2.52 0.29

9.57 8998 23548 2.61 0.30

100 0.0 114047 260089 2.28 1.25
2.39 23101 53916 2.33 1.79
4.79 14250 37469 2.63 1.63
7.18 13033 41310 3.17 1.83
9.57 6167 34268 5.55 1.89

120 0.0 88018 207796 2.36 2.59

2.39 15411 30590 1.99 3.55
4.79 8293 23441 2.83 3.65
7.19 9308 18263 1.96 3.84

9.57 6684 15512 2.32 3.67

140 0.0 71017 163305 2.29 4.69
2.39 11162 22410 1.99 7.49
4.79 8514 21898 2.57 6.38
7.18 6238 18476 2.96 5.27
9.57 5776 14507 2.51 4.62

2 1 8



T a b le  8. Molecular weight and conversion data for the CCTP bulk polymerisation of

complex XIII with Styrene.

Temp °C [Co]/[Sty]x 

1 O'6 Molar 

ratio

Mn Mw PDi % Conv

80 0.0 100387 266120 2.65 0.29

2.26 24348 67527 2.77 0.68

4.51 17918 48192 2.69 0.69

6.80 10557 29720 2.82 0.62

9.02 8023 22669 2.83 0.69

100 0.0 105074 243247 2.31 0.89

2.25 25613 53997 2.10 3.04

4.51 24159 59473 2.46 2.96

6.76 17072 48620 2.84 3.37

9.02 8211 37297 4.51 2.84

120 0.0 94791 214064 2.25 2.86

2.25 23805 60102 2.52 7.64

4.51 18271 48677 2.66 7.635

6.76 11108 27892 2.51 5.38

9.02 17426 52483 3.01 12.07

140 0.0 74082 167087 2.25 4.10

2.25 25755 61353 2.38 7.04

4.51 .26270 68157 2.59 10.52

6.77 11851 47801 4.03 11.16

9.02 9181 33861 3.68 9.97

2 1 9





Table 1. Slope and intercept values for complexes 1I-IV and VI1I-XIII, DRI detector

Complex Mayo

Slope

Mayo

Intercept

2/DPw

Slope

2/I)Pw

Intercept

CLD

Slope

CLD

Intercept

11 -1256 11.11 6.0 7.64 -9848 30.98

III 595 3.77 1598 0.86 3067 -3.34

IV -3274 13.89 -1798 9.73 -41 4.6

VIII 212 7.57 329 6.72 4719 -5.97

IX -2920 12.33 -3407 13.58 -5105 20.15

X -412 7.58 -117 6.69 -473 7.37

XI 920 5.49 1405 3.96 4455 -4.91

XII -739 9.19 -1196 9.93 -1565 10.52

XIII 837 4.72 -323 6.93 1419 2.14

Example Calculation for Elr and Alr

Ln Cs = Ln(Atr/Ap) + ((Ep-Etr)/RT)

Plot Ln Cs vs 1/T (K)

Slope = Ep-Etr/R 

and

Intercept =Ln(A,r/Ap)

Eu

Know Slope, R and Ep, therefore 

Slope x R-Ep=-Elr

If LHS is negative then the resulting value is positive
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Table 1. Concentration and Absorbance values for complex III, for both MMA and

water stock solutions.

Solution Concentration Absorbance at X max E

(M) x llT4 X max (L m m 'm ol1)

MMA

SI 3.24 0.86 450.4 265

S2 1.63 1.146 449.6 703

S3 0.63 0.206 454.4 327

Water

SI 3.46 0.559 458.4 162

S2 1.46 0.365 458.7 250

S3 1.07 0.271 459 253

S4 0.81 0.19 460 234

2 2 4



Table 2. Concentration and Absorbance values for complex IV, for both MMA and

water stock solutions.

Solution Concentration Absorbance at X max £

(M) x  i r* X max (L mm ' mol'1)

MMA

SIA 6.34 1.93 457.2 304

SIB 4.78 1.51 457.1 315

SI 3.24 1.19 457.3 367

S2 1.26 0.45 458.4 357

S3 0.61 0.24 457.6 393

W ater

SIA 3.41 0.74 463.2 217

SIC 2.55 0.52 463.2 203

SID 1.91 0.40 463.2 209

SI 1.73 0.74 463.7 427

SIB 1.70 0.39 463.2 229

S2 0.76 0.32 463.2 421

S3 0.54 0.25 463.2 463

S4 0.39 0.19 461.9 487

2 2 5



Table 3. Wavelength and Absorbance values for complexes II-IV, for both MMA at

all partition compositions

Concentratio

n

(M) x 10"*

Absorbance at 

X max

X max 6

(L mm 'm o l1)

Complex II 

MonAVater

M on W ater Mon W ater Mon W ater Mon W ater

50/50 4.1 5.0 1.467 1.814 456.8 455.7 356 362

90/10 3.5 4.4 1.251 0.228 455.2 456 357 51

10/90 4.3 4.2 0.19 1.406 452 455.5 44 333

Complex III 

M on/W ater

50/50 3.9 0.5 1.14 0.144 460.6 459.2 292 288

90/10 0.2 0.090 450 450

10/90 4.74 1.5 0.095 0.30 450 450 2.02

Complex IV 

Mon/W ater

50/50 13 0.13 2.074 0.12 465.7 434.9 159 923

90/10 6.7 0.83 2.11 0.041 465.5 455.1 31.5 49

10/90 48.3 3.172 2.511 0.668 459.2 463.2 51 222

2 2 6



Table 4. Concentration and Absorbance values for complex VIII, for both MMA and

water stock solutions.

Solution Concentration Absorbance at X max e

(M) x 10 4 X max (L mm 'mol ')

MMA

SI 8.11 1.279 450.9 157

S2 4.09 0.658 448.5 160

S3 2.33 0.344 448.8 147

Water

SI 10.3 0.517 448 51

S2 4.94 0.25 448.8 51

S3 3.09 0.17 448.8 55

S4 2.47 0.15 448.8 60

Table 5. Concentration and Absorbance values for complex IX, for both MMA and

water stock solutions.

Solution Concentration Absorbance at X max e

(M) x 10 4 X max (L mm 'm o l1)

MIMA

SI 28.5 1.358 450 48

S2 14.1 1.0 450 71

S3 1.38 0.50 450 362

Water

SI 39.1 0.50 450 13

S2 27.7 0.48 450 17

S3 13.8 0.20 450 15

2 2 7



Table 6. Concentration and Absorbance values for complex X, for both MMA and

water stock solutions.

Solution Concentration Absorbance at X max 8

(M) x HT4 X max (L mm ' m o l1)

MMA

SI 16.0 2.01 452.6 125

S2 8.75 1.17 452 133

S3 8.02 0.93 452 116

S4 4.37 0.51 451.2 117

Water

SI 15.4 0.50 455.2 32

S2 7.51 0.23 452.2 31

2 2 8



Ta b le  7. Wavelength and Absorbance values for complexes VII1-X, for both MMA at

all partition compositions

Concentration 

(M) x 10 4

Absorbance at 

X max

X max £

(L mm 'm ol1)

Complex VIII 

Mon/Water

Mon Water Mon Water Mon Water Mon Water

50/50 15.58 1.178 2.461 0.07 449.1 448.8 164 41

90/10 10 2.8 1.582"1 0.035 448.8 450 158 17

10/90 29.6 2.6 0.779 0.14 448.8 448.8 26 54

Complex IX 

MonAVater

50/50 22 0.36 1.10 0.015 450 450 50 42

90/10 20 14 1.358 0.042 450 450 68 3.0

10/90 6.16 2.0 0.089 0.04 450 450 15 20

Complex XI 

Mon/Water

50/50 15.59 0.909 1.739 0.057 453.3 454 112 63

90/10 9.38 13.8 1.171 0.07 449.9 450.2 125 5.38

10/90 51 1.0 1.077 0.03 452.3 450.2 21 30

2 2 9



Table 8. Concentration and Absorbance values for complex XI, for both MMA and

water stock solutions.

Solution Concentration Absorbance at X max 6

(M) x 10 4 X max (L mm 'm o l1)

MMA

SI 8.33 1.67 451.8 200

S2 4.28 0.98 450.2 228

S3 2.37 0.40 448.8 168

Water

SI 10.0 1.05 449.9 105

S2 5.09 0.49 447.2 96

S3 3.04 0.22 450.0 72

S4 2.02 0.09 449.9 45

Table 9. Concentration and Absorbance values for complex XII, for both MMA and

water stock solutions.

Solution Concentration Absorbance at X max c

(M) x 10"* X max (L mm 'mol ')

MMA

SI 15.7 2.48 429.6 157

S2 10.4 1.75 429.6 168

S3 5.22 1.0 429.6 191

Water

SI 17.5 1.37 450.2 78

S2 11.7 0.85 450.2 73

S3 8.62 0.75 452.9 87

S4 5.83 0.58 452.9 99

2 3 0



Table 10. Concentration and Absorbance values for complex XIII, for both MMA and

water stock solutions.

Solution Concentration Absorbance at X max e

( M ) x 10 4 X max (L mm"1 mol’1)

M M A

SI 12.1 2.62 454.1 216

S2 8.12 1.81 453.6 222

S3 6.09 1.13 452.0 186

S4 3.04 0.52 449.6 171

W ater

SI 17.7 0.75 452.0 42

S2 11.7 0.47 452.2 40

S3 8.28 0.37 452.2 45
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Table 11. Wavelength and Absorbance values for complexes VIII-X, for both MMA

at all partition compositions

Concentration 

(M) x iir4

Absorbance at 

X max

X. max 8

(L mm'1 mol'1)

Complex XI 

MonAVater

Mon Water Mon Water Mon Water Mon Water

50/50 5.04 3.7 0.511 0.335 448.2 448.2 102 90

90/10 9.6 5.3 1.96 0.025 444.2 444.2 204 4.71

10/90 67.2 6.16 2.28 0.605 451.2 453.7 34 11

Complex XII 

Mon/Water

50/50 15 1.3 1.286 0.15 436 436 85 115

90/10 14.9 55.7 2.43 0.75 439.2 432.8 163 13

10/90 55 1.3 1.537 0.15 435.2 435.2 28 115

Complex XIII 

Mon/Water

50/50 15 0.9 1.643 0.04 453.2 453.2 109 44

90/10 11 4 2.46 0.03 453.3 453.2 223 7.5

10/90 75 2.1 2.69 0.09 454.7 460 35 45

2 3 2
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