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Exponential-Affine Diffusion Term Structure Models: Dimension, Time-Homogeneity, and
Stochastic Volatility

by

Joâo Pedro Vidal Nunes

Abstract
The object o f study in this thesis is the most general affine term structure model characterized by 
Duffie and Kan (1996), which nests, as special cases, many o f the interest rate models previously 
formulated in the literature. The purpose o f the dissertation is two-fold: to derive fast and 
accurate pricing solutions for the general term structure framework under analysis, which enable 
the effective use o f model’ specifications yet unexplored due to their analytical intractability, and, 
to implement a simple and robust model’ estimation methodology that enhances the model' fit to 
the market interest rates covariance surface

Concerning the first (theoretical) goal, analytical exact pricing solutions, for several interest 
rate derivatives, are first derived under a (simpler and) nested Gaussian affine specification 
Then, and as the main contribution o f  the present dissertation, such Gaussian formulae are 
transformed into first order approximate closed-form pricing solutions for the most general 
stochastic volatility model’ formulation. These approximate solutions arc shown to be both 
extremely fast to implement and accurate, which make them an effective alternative to the 
existing numerical pricing methods available.

Related to second thesis’ (empirical) goal, and in order to enable the model’ estimation from a 
panel-data o f interest rate contingent claims’ prices, a general equilibrium model’ specification is 
derived under non-severc preferences’ assumptions and in the context o f a monetary economy. 
The corresponding state-space model’ specification is estimated through a non-linear Kalman 
filter and using a panel-data o f not only swap rates (as it is usual in the Finance literature) but 
also (for the first time) o f caps and European swaptions prices It is shown that although the 
model' fit to the level o f the yield curve is extremely good, short-term caps and swaptions are 
systematically mispriced. Finally, a time-inhomogeneous HJM formulation is proposed, and the 
model’ fit to the market interest rates covariance matrix is substantially improved
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Chapter 1

Introduction

1.1 Scope, background and motivation

The present research is devoted to the analysis of multifactor exponential-affine, diffusion 

(single-cuirency and default-free) models for the term structure o f interest rates, in terms of 

model’ specification, concerning the methodology for model’ estimation, and with the pur

pose of deriving better pricing solutions for several (heavily traded) interest rate contingent 

claims.

Stochastic term structure models are essential to price and hedge interest rate derivatives 

in a consistent (i.e. arbitrage-free) and aggregate manner. Although the required features 

for an "ideal” interest rate model are easy to define (and can be summarized as economic 

realism, i.e. foundation on theoretically sound assumptions, and analytical tractability, that 

is ability to price anil hedge derivatives in "real market” time), different term structure 

models have been proposed in the literature. The majority of these models belongs to the 

diffusion (parametric) class, where the stochastic behavior o f the model arises from a finite 

or infinite number of Brownian motion shocks.1 Moreover, the wide class of diffusion term 

structure models can be divided into four categories, attending to the number of model' 

state variables under use and considering the time-homogeneity o f the model’ parameters. 

In terms o f model’ dimension, there exist single-factor (usually short-term interest rate) 

models and multifactor models (i.e. specifications with more than one state variable). 

Concerning the time-dependency of the model' parameters, there coexist time-homogeneous 

(or “equilibrium” ) models and evolutionary (or “no-arbitrage” ) models.2 The first group

'The relative less significant use of jump processes for modelling the term structure of interest rates 
is, perhaps, just a consequence of the numerical elegance and simplicity provided by the standard use of 
continuous-time stochastic! calculus in the field of Finance. On the other hand, the assumption of parametric 
stochastic diffusion ecpiations for the model’ factors also simplifies the model’ estimation and provides, in 
some cases, analytical or quasi-analytical pricing solutions. Concerning the estimation of non-parametric 
diffusion models, see, for instance, Al't-Sahalia (1996a).

sThe use of both “equilibrium" and “no-arbitrage” denominations can be misleading, for two reasons:
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Table 1.1: Classifications for parametric diffusion term structure models
Dimension Time-homogeneous models Evolutionary models

Single-factor
models

Merton (1970)* 
Vasicek (1977)* 
Dothan (1978)

Brennan and Schwartz (1979)

Ho and Lee (1986)’
Hull and White (1990)* 

Black, Derman and Toy (1990) 
Black and Karasinski (1991)

Constantinides and Ingersoll (1984) 
Cox, Ingersoll and Ross (1985b)* 

Pearson and Sun (1993)*
Multifactor
models

2 factors Richard (1978)*
Schaefer and Schwartz (1984)* 

Fong and Vasicek (1991b)* 
Chen and Scott (1992)* 

Longstaff and Schwartz (1992a)*

Hull and White (1994)*

3 factors Balduzzi et al. (1996)*
Chen (1996)

n factors 
(n  e  N)

Langetieg (1980)* 
Chen and Scott (1995b)* 
Duffie and Kan (1996)*

Frachot and Ix'snc (1993)*

oo factors Heath, Jarrow and Morton (1992) 
Brace, Gatarek and Musiela (1997)

Kennedy (1991)
* Exponential-affine interest rate models

of models is intrinsically unable to reproduce exactly the term structure of interest rates 

observed in the market. The second group of models takes the observed yield curve as 

exogenous and provides an exact fit to some market observables (such as swap rates). Table 

1.1 summarizes some of the most well known diffusion (parametric) term structure models.

The single-factor models take the instantaneous default-free interest rate, r ( t ) ,  as the 

only state variable that explains the evolution of the whole yield curve. Such simplistic 

hypothesis offers analytical tractability, but often at the expense of unrealistic model’ fea

tures.4 Table 1.2 reproduces Duffie and Kan (1994, Table 1) and nests all one-factor models 

under a common framework: for the time-homogeneous models the parameters are time- 

independent, while for the evolutionary models the parameters are functions of time. In 

terms o f the drift specification, most models (with a j ( t )  , « 2  ( t )  ^  0 as well as both Black 

et al. (1990) and Black and Karasinski (1991) models, for some volatility specifications) 

incorporate a mean reversion phenomenon (based on economic business cycles): interest 

rates tend to revert, over time, towards some long-run mean level. Although some empirical

firstly, because not all time-homogeneous models were derived from a general equilibrium formulation, and, 
secondly, because all time-homogeneous models rely upon a no-arbitrage assumption. Therefore, such alter
native labels will be avoided hereafter.

3For instance, an intrinsic limitation of any one-factor model consists in assuming a perfect correlation 
amongst all interest rates (of different maturities).
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Table 1.2: Single-factor models
dr ( t )  -  [a i ( t )  +  a 2 ( t )  r  ( t )  +  a 3 ( t ) r  ( t )  lnr (f)j dt +  [0\ ( t )  +  0 2 ( t )  r (0 P « w w
Parameters’ restrictions: Ql (t ) «2  ( t ) 03 ( i ) A W A W 7
Merton (1970) 0 0 0 1.0
Vasicek (1977) 0 0 1.0
Dothan (1978) 0 0 0 0 1.0
Brennan and Schwartz (1979) 0 0 1.0
Constantinides and Ingersoll (1984) 0 0 0 0 1.5
Cox et al. (1985b) 0 0 0.5
Pearson and Sun (1993) 0 0.5
Ho and Lee (1986) 0 0 0 1.0
Hull and White (1990) 0 0 1.0
Black et al. (1990) 0 0 1.0
Black and Karasinski (1991) 0 0 1.0

a i (0  , f» 2  (0  i Q3 (0  i A  (0  i A  (Ô  G SR, 7 >  0.5, and W  (f  ) is a standard
one-dimensional Brownian motion.

studies -e g. Chan, Karolyi, Longstaff and Sanders (1992)- show weak evidence supporting 

the existence o f mean reversion on short rates (suggesting, perhaps, that short rates tend to 

a stochastic short-term mean, which would then revert towards a constant long-term level), 

Schlttgl and Sommer (1997) have established the relevance and appropriateness of the mean 

reversion assumption. Concerning the parameterization of the diffusion term, the interest 

rate models can be classified as Gaussian (02 (0 =  0) or stochastic volatility (02 ( t )  ^  0) 

models.4 The Gaussian term structure models imply a normal transition density function 

for the state variables (and hence, allow the interest rates to be negative with positive 

probability), while for the stochastic volatility case the factors' probability distribution can 

be known (for example, the non-central chi-square distribution in the Cox et al. (1985b) 

model) or unknown (as in the Pearson and Sun (1993) model).

Because a time-homogeneous single-factor model can not match (even just) the observed 

yield curve (simply through the dynamics of its shortest point), two modelling improvements 

are possible: to introduce time-dependencies on the model’ parameters (as done, for in

stance, by Ho and I^ee (1986) and Hull and White (1990) on the Merton (1970) and Vasicek 

(1977) models, respectively) in order to account for the unexplained yield curve features; 

or, to increase the number of state variables (moving towards multifactor specifications of 

increasingly computational complexity) in an attempt to explain a wider range of interest 

rate dynamics. The first approach (and the most popular one in the financial industry) 

allows the “calibrated” model to automatically reproduce a set o f market observables (like 

swap rates and cap prices), but, most frequently, at the expense of too unstable parameters

4 Hereafter, any interest rate model with a state-variable in the specification of the diffusion term will be 
classified as a stochastic volatility model (even if such state-variable can not be interpreted as the volatility 
of another model' factor).
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(for hedging purposes).

The second approach is justified by a Principal Component Analysis (P C A ) o f the 

term structure of interest rates, which commonly reveals -as in Litterman and Scheinkman 

(1991)- that two or three factors (the level, the slope and the curvature of the yield curve) 

are needed to model the dynamics of the interest rates. All two- and three-factor mod

els listed in Table 1.1 incorporate mean reversion, have time-independent parameters and 

are stochastic volatility models (except the Hull and W hite (1994) model, which is time- 

inhomogeneous and Gaussian): one of the most well known two-factor specifications is the 

Ixmgstaff and Schwartz (1992a) model, which, like the one-factor Cox et al. (1985b) model, 

was derived from a general equilibrium context. More general formulations are given by the 

n-factor models, that allow the use of any finite number of state variables: the Langetieg 

(1980) model is the most general multifactor and Gaussian time-homogeneous specifica

tion, and the Chen and Scott (1995b) model corresponds to a multifactor “square-root” 

(and independent) Cox et al. (1985b) process. The Duffie and Kan (1996) model is the 

most general time-homogeneous exponential-affine specification, including as special cases 

most o f the other interest rate models considered so far. An exponential-affine interest 

rate model is one that produces pure discount bond prices as exponential-affine functions 

of the state variables (or, equivalently, affine5 continuously compounded yields), which - 

as argued by Brown and Schaefer (1994a, Proposition 4) and Duffie and Kan (1996, page 

381)- is only consistent with an affine specification for both the drift and the instantaneous 

variance-covariance matrix of the state variables. Because interest rates are affine in the 

state variables, this class of exponential-affine models is amenable to econometric analysis 

and analytically tractable, which explains its wide dissemination. Frachot and Lesne (1993) 

extend these models to specifications with time-dependent parameters, that is models with 

the ability to fit the observed term structure of interest rates.

A ll the previous models can be recast into an even more general formulation: the Heath 

et al. (1992) class of models. The Heath et al. (1992) framework models, simultaneously, all 

instantaneous forward rates (and hence involves an infinite number of factors) through a fi

nite number of Brownian motions, requiring as inputs only the initial forward rate curve and 

the forward rate volatility structure. Therefore, the initial yield curve is naturally fitted by 

the model and, as all evolutionary models, it does not require the knowledge of market prices 

of interest rate risk (since all factors are directly modelled under an equivalent martingale 

measure). Unfortunately, most of the Heath et al. (1992) formulations are non-Markovian 

and, consequently, their analytical complexity inhibits its dissemination (for example, the

5An affine form corresponds to a constant plus a linear function.
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necessary usage o f non-recombining trees or o f Monte Carlo simulation seriously reduces the 

efficiency of American option pricing). One remarkable exception is the Brace et al. (1997) 

model where, by modelling discretely compounded (L IB O R ) rates as lognormal processes 

(in a Heath et al. (1992) setting but under different equivalent martingale measures), the 

Black (1976) pricing formulae is justified for both caps and European swaptions/' Kennedy 

(1991) extends further the Heath et al. (1992) approach to an infinite number of Brownian 

motion shocks, but in a Gaussian framework.

The interest rate models studied in this dissertation are all (multifactor) exponential- 

affine models as characterized by Duffie and Kan (1996), which correspond to the majority 

of the models listed in Table 1.1. All the new pricing and estimation methodologies pro

posed in this thesis will be derived in the context of the Duffie and Kan (1996) model and 

are, therefore, applicable to most of the interest rate models already present in the liter

ature. Although the exponential-affine class of interest rate models has been (the most) 

widely treated in the literature, it is the author’s deeply conviction that further research 

is still needed, in, at least, two directions. Firstly, besides few exponential-affine interest 

rate models with known transition probability distributions for the state variables (like 

all Gaussian models or the one-factor and multifactor “square-root” specifications), the 

majority o f the formulations nested into the Duffie and Kan (1996) model only provides 

exact numerical (and time-consuming) pricing solutions for interest rate contingent claims. 

Consequently, there exist innumerous stochastic volatility exponential-affine specifications 

yet “unexplored” , and for which this dissertation is intended to produce analytical pricing 

solutions that enable the effective use and empirical test o f such models. Secondly, the 

affine specification provided by the Duffie and Kan (1996) model for continuously com

pounded interest rates has been typically used to estimate the model’ parameters from 

interest rate derivatives measuring only the level of the yield curve (such as coupon-bearing 

bond prices or swap rates). By deriving analytically tractable pricing solutions for a wider 

range of interest rate derivative securities (like caps and swaptions), it will be possible to 

construct estimation methodologies that are able to incorporate into the model additional 

information (e.g. on the slope and curvature of the yield curve). These two directions 

will be pursued by considering different model dimensions and both time-homogeneous and 

time-inhomogeneous specifications.

6Moreover, forward rates remain bounded, positive and mean reverting.
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1.2 Purpose, contributions and methodology

In synthesis, this dissertation is intended to pursue four research goals:

1. Derivation of fast and accurate analytical (approximate) pricing formulae for the whole 

class of stochastic volatility exponential-affine multifactor term structure models, as 

an alternative to the existent exact numerical pricing methods.

Duffie and Kan (1996) offer a quasi-analytical pricing formula for riskless zero-coupon 

bonds, and price path-independent interest rate options, in a two-factor model, through 

an alternating directions implicit (A D I) finite-difference method. Unfortunately, such 

algorithm can not be easily extended to higher dimensions, for which, and according 

to Duffie and Kan (1994), Monte Carlo simulation appears to be the best pricing 

methodology available.

Recently, Duffie, Pan and Singleton (1998) proposed exact Fourier transform pric

ing solutions for an affine jump-diffusion model that nests, as a special case, the 

Duffie and Kan (1996) framework under analysis. If the functional form of the rel

evant characteristic function -Duffie et al. (1998, equation B.2)- is known, then the 

exact Fourier transform pricing formulae are closed-form solutions (in  the sense that 

only one-dimensional Fourier inverst; integrals are involved). However, in general the 

characteristic function does not possess an explicit solution and must be numerically 

obtained from a complex-valued system of Riccati differential equations. Moreover, 

when the characteristic function is not known in closed-form, the optimization of both 

the grid size and the upper bound of integration for the computation of the inverse 

Fourier transforms becomes also too time-demanding for empirical purposes, since it 

requires the numerical evaluation of the characteristic function at each integration 

point.

In summary, besides the few special cases for which the analytical solution of the 

characteristic function is known, for the large majority of the stochastic volatility 

diffusion models a simple and reliable pricing methodology is still to  be found.

2. Construction of a robust, simple and accurate estimation method for exponential-affine 

multifactor models.

The literature contains three different approaches concerning the estimation of time- 

homogeneous term structure models: the “time-series” , the “cross-section” , and the 

“panel-data” methodologies. The “ time-series” approach -as, for instance, in Chan et 

al. (1992)- estimates the model’ parameters (except the ones related to the investors’
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preferences) under objective probabilities and using only a time-series of state vari

ables’ values, that is only considering the dynamics of the yield curve. The “cross- 

section” methodology -as, for example, in Brown and Dybvig (1986)- fits, under an 

equivalent martingale measure, the current shape of the yield curve by estimating the 

model only through a cross-section of interest rate derivatives prices (such as today’s 

bond prices), and therefore is prone to generate unstable parameters’ estimates over 

time. More efficiently, the “panel-data” approach uses both time-series and cross- 

sectional interest rate data, by modelling the state variables dynamics under both 

objective and risk-neutral probability measures, yielding more stable parameters’ es

timates (including the ones related to the market price o f interest rate risk).

Under this last methodology, some authors -e.g. Pearson and Sun (1994), Chen and 

Scott (1993b), or Duffie and Singleton (1997)- assume that one or more spot inter

est rates are observed without error, which enables the model state variables to be 

exactly recovered from the data without the use of filtering techniques. More realis

tically, other authors -such as Jegadeesh and Pennacchi (1996), Babbs and Nowman 

(1999), Duan and Simonato (1995) or Geyer and Pichler (1996)- explicitly account 

for the existence o f measurement errors in the data by restating the interest rate 

mcxlel in a “state-space” form: the parameters are estimated and the unobservable 

state variables are inferred through the use of a Kalman filter. Such “panel-data” 

and “state-space” approach will be the one pursued in this dissertation, but with an 

important distinctive feature. While all the previous literature have simply applied 

Kalman filtering techniques to data only containing information about the level of 

the yield curve (like zero-coupon yields and swap rates), this thesis will propose (non

linear) filtering estimation methods based on a panel-data o f swap rates, cap prices 

and swaption prices. Hence, the fit of exponential-affine term structure models to 

both the volatility and the correlation surfaces will be enhanced and tested.

In summary, the proposed methodology for the estimation o f exponential-affine models 

is intended to possess three advantages'over the previous approaches: i )  robustness 

(because parameters’ stability is improved through the simultaneous model’ fit to 

both time-series dynamics and cross-sectional shapes of the yield curve); i i )  accuracy 

(since the enlargement of the set o f market observables used in the model’ estimation 

should enhance the model ability to reproduce the market prices o f basic interest rate 

derivatives, such as caps, floors and swaptions); and in )  simplicity (in the sense that 

the new analytical pricing solutions derived in this thesis will enable the "real time” 

use o f additional derivatives prices in the estimation process, by providing the required
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measurement equations for the Kalman filter recursions).

3. Testing the dimensional requirements for exponential-affine models

As already mentioned, the one-factor models’ unrealistic assumption of perfect interest 

rates correlation (amongst different maturities) as well as the P C A ’ empirical finding 

o f a two- or three-dimensional state space for the interest rates variance-covariance 

matrix make a strong argument in favor of multifactor model specifications. However, 

Rebonato (1998, page 70) suggests that only three state variables should not be enough 

to capture the fast decorrelation phenomena at the short-end o f the yield curve, i.e. 

that sucti low-dimensional formulation would imply too high correlations between 

interest rates of adjacent maturities.

In this dissertation, exponential-affine models with different (increasing) numbers o f 

factors will be estimated and it will be empirically tested which is the minimal di

mension required to reproduce the market interest rates correlation matrix (specially 

at the short-end o f the maturity spectrum).

4. Testing the time-homogeneity assumption

Although an evolutionary model offers the ability to account for the observed market 

prices o f some set of interest rate contingent claims, it is well known that the parame

ters’ stability is often too poor for hedging purposes. Thus, in a first stage, instead o f 

incorporating time-dependent parameters into the model specification, the improve

ment of the model fit to the term structure of interest rates values, volatilities and 

correlations will be tried by increasing successively the number of state variables. Sec

ondly, time-inhomogeneous HJM exponential-affine model’ generalizations will also be 

estimated, in two stages: the time-independent parameters are still obtained from the 

corresponding time-homogeneous specifications (using filtering techniques); and then, 

the time-dependent parameters will be estimated by improving the cross-sectional fit 

o f the model to the volatility and/or to the correlation market curves.

Both approaches will lie compared in terms of parameters’ stability and pricing accu

racy.

The remaining chapters o f this dissertation are organized as follows. C'hapter two sum

marizes the Duffle and Kan (1996) model under analysis (which was originally specifier! in 

terms o f risk-adjusted stochastic processes for its state variables) and provides an equiv

alent general equilibrium formulation, under the objective probability measure and using 

both log and power utility functions. The proposed general equilibrium setup represents
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a synthesis between the consumption-based CAFM  o f Breeden (1979), the pure exchange 

economy o f Lucas (1978), and the cash-in-advance one-country economy o f Lucas (1982). 

Thus, both the short-term interest rate and the factor risk premiums are expressed in terms 

o f the direct utility function, and as functions of the exogenous output and money supply 

processes. This avoids the need to solve the Hamilton-Jacobi-Bellman equation for the 

utility of wealth or for the endogenous consumption process, and, consequently, allows tin; 

use of a general equilibrium framework based on preference assumptions more realistic than 

those implied by the conventional log utility of consumption. Moreover, since a monetary 

economy is considered, the general equilibrium Duffie and Kan (1996) mcxiel specification 

that will emerge is a term structure model of nominal interest rates. Chapter two serves 

essentially one instrumental goal: it generates a (theoretically justified) functional form for 

the vector of market prices o f risk, which will be required to estimate, in Chapter four, 

exponential-affine term structure models using a panel-data and state-space approach.

Chapter three is devoted to  the derivation of closed-form pricing solutions, for several 

interest rate contingent claims, under a Gaussian (nested) version of the Duffie and Kan 

(1996) model. Starting from the pricing formula for default-free pure discount bonds already 

derived by Langetieg (1980), closed-form solutions will also be found for the prices of (short

term and long-term) interest rate futures and European (conventional and pure) futures 

options, European spot options on default-free (pure discount ami coupon-bearing) bonds, 

caps, floors and European swaptions. Futures will be priced as moment generating functions, 

and options will be valued using the well known probabilistic change-of-numeraire technique 

developed in El Karoui, Iepage, Myneni, Roseau and Viswanathan (1991) or Geman, Karoui 

and Rochet (1995). The purpose of Chapter three is twofold. On one hand, it provides the 

measurement equations needed for the Kalman filter estimation o f Gaussian exponential- 

affine term structure models, in Chapter four. On the other hand, the Gaussian exact 

closed-form pricing solutions produced in Chapter three are also essential to generate, in 

Chapter five, approximate analytical pricing formulae under a general stochastic volatility 

specification of the Duffie and Kan (1996) model.

In Chapter four, Gaussian time-homogeneous and exponential-affine term structure 

models are fitted to a panel-data of swap rates, cap prices and European swaption prices, 

using a non-linear Kalman filter and considering different numbers of state variables. Con

sistently with the previous literature, low-dimensional specifications will be able to fit ex

tremely well the term structure of interest rates. However, even by increasing the number of 

factors, such models will be shown to be incapable o f adequately fitting short-term cap and 

swaption prices. Nevertheless, it is argued that the use of such enlarged market data in the
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estimation process allows the model to incorporate additional information about the mar

ket interest rates (»variance matrix. Concerning the time-homogeneity issue, an equivalent 

Gauss-Markov time-inhomogeneous HJM model, estimated in two stages, is proposed. The 

term structure of volatilities is then easily recovered and the pricing errors for swaptions 

improve substantially, in the context of stable time-homogeneous coefficients, which are still 

estimated through a Kalman filter approach.

Chapter five contains the main theoretical contribution o f this dissertation: the deriva

tion o f approximate analytical pricing solutions under the general stochastic volatility spec

ification o f the Duffie and Kan (1996) model, which only involve one integral with respect to 

the maturity of the contingent claim under valuation (no matter the dimension of the inter

est rate model in use), and are therefore extremely easy to implement in practice. Starting 

by obtaining the functional form o f Arrow-Debreu prices under the nested Gaussian specifi

cation developed in Chapter three, the closed-form and exact Gaussian valuation formulae 

of Chapter three will be converted into approximate stochastic volatility ones that involve 

integrals with respect not only to the maturity o f the contingent claim under valuation 

but also to each one of the model’ factors. Finally, and taking advantage o f the analyti

cal tractability provided by the nested model specification adopted, all stochastic volatility 

pricing formulae will be easily simplified into first order approximate ones that do not in

volve any integration with respect to the model’ state variables. Such fast and accurate 

analytic approximations will be obtained for bonds, forward rate agreements, interest rate 

swaps, interest rate futures, European options on pure discount bonds, caps and floors, yield 

options, European futures options on zero-coupon bonds and on short-term interest rates, 

and even for European swaptions. As an accessory result, exact pricing solutions are also 

provided for long-term and short-term interest rate futures, under the stochastic volatility 

specification of the Duffie and Kan (1996) model.

Finally, Chapter six outlines possible areas o f further research arising from the findings 

of this thesis, while Chapter seven summarizes the dissertation’ conclusions.
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Chapter 2

General Equilibrium Framework

2.1 Duffie and Kan (1996) model: a summary

The Duffie and Kan (1996) model imposes an exponential-ailine form for the price of a 

riskless (unit face value) pure discount bond, that is

P  (t, T )  =  exp [A  ( r )  +  &  ( r )  • X  (0 ] , (2.1)

where P { t , T )  represents the time-i price o f a default-free pure discount bond expiring at 

time T , t  =  T  — t is the time-to-maturity o f the zero-coupon bond, • denotes the inner 

product in 5R", and X  ( t )  6 9i" is the time-i vector of state variables. In order to respect 

the boundary condition P ( T , T )  =  1, the time-homogeneous functions A ( r )  e  and 

B  ( r )  € 5Rn must be such that A  (0) =  0 and B ( 0) =  0. Moreover, the function P ( t , T )  is 

assumed to be continuously differentiable in the time-to-maturity and twice continuously 

differentiable in the state-vector.

As in the yield-factor model proposed by Duffie and Kan (1996, section 5), conditional 

on knowing the true model and ignoring the existence of measurement errors, it is always 

possible to “observe” the state variables from a selected basis of fixed maturity spot interest 

rates. However, in this dissertation the state variables will be assumed to be unobservable, 

because the existence of market imperfections (e.g. bid-ask spreads) does not allow, in 

practice, all the (factor) yields to be observed without error. Although such assumption of 

observation errors seems to be more realistic, it also induces additional difficulties in terms 

of model estimation: filtering methods must be used to estimate the model’ parameters and 

to recover the latent state variables.

Alternatively to zero-coupon bond prices, the model can be equivalently specified in 

terms of the riskless instantaneous spot interest rate. Because A (■) and B (  ) are contin
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uously differentiable (since it is assumed that P ( t , T )  =  P ( X ( t ) ; r )  G C 2,1 (D  x  [0 ,o o [), 

where D C S "  represents the admissible domain of the model’ state variables), it follows

where / =  — | , and the i th element o f vector G  G 5Rn is defined as gt =  — j ,

being Bi ( r )  the i th element o f vector B  (r ).

Concerning the dynamics of the model’ factors, Duffle and Kan (1996) start by consid

ering a probability space ^fl, ( T t ) t>0 , p ' j , and assume that under the objective probability 

measure V  the Markov process X_ ( t ) satisfies a stochastic differential equation of the generic 

form

where v [X  (f)] G 5fn and a [ X  (£)] G 9 f"x"  satisfy the Lipschitz and growth conditions 

required for a unique solution to exist for equation (2.3),1 while W v  ( t )  G 9tn is a standard 

Brownian motion under V  generating the augmented filtration F =  {J~t : i >  0 }. Then, they 

argue that it is always possible to derive a probability martingale measure Q equivalent to 

V  (that is mutually absolutely continuous) and a standard <2-measured Brownian motion 

( t )  G 9in (with the same standard filtration as W v  (t il, such that

and where /t [X  (0 ) G 5Rn is a compatible function o f y (X (0 ] i  an(l P ( t , T ) ,  in

also preserves an exponential-affine specification for pure discount bond prices. Finally, 

Duffle and Kan (1996) define what they call a (/J, fi,er) compatible term structure model

/ i[X (f ) ]  and < r[X (f)] • cr [XC ( i ) ]/-3 In other words, the Duffle and Kan (1996) model was

‘ And stated, for instance, in Lamberton and Lapcyre (1996, theorem 3.5.5)
3 Meaning that the relative prices of all assets with respect to the numeraire given by a “money market ac

count” are Q-martingalcs. The time-1 value of such “savings account” , 6 (t), corresponds to the compounded 
value of one monetary unit continuously reinvested, from time 0 to time i, at the short-term interest rate:

from equation (2.1) that the time-f short-term interest rate r ( t )  is an affine function of the 

n factors:

=  f  +  G ' X ( t ) , ( 2.2)

cLX ( i )  =  v [X  (01 dt +  <r [X  (01 • dW v  (t ) , (2.3)

d X  (0  =  fj. [X  (01 dt +  (7 [x (0 ) ■ d W Q (t) ( 2. - 1)

the sense that this change o f drift guarantees the absence of arbitrage opportunities2 and

by specifying the exponential-affine form (2.1) for P ( t , T )  and affine formulae for both

‘(j [X_ (£))' denotes the transpose of a [X_ (£)].
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originally defined not under objective probabilities but in terms of risk-adjusted stochastic 

processes for its state variables, i.e. with respect to a martingale measure Q. which can 

be understood as the probability measure obtained when a “money market account” is 

taken as the numeraire of the stochastic intertemporal economy underlying the model under 

analysis.4

Specifically, Duffie and Kan (1996) assume that the n state variables follow, under a 

martingale measure Q , a parametric Markov diffusion process, where the drift and the 

variance o f these risk-adjusted stochastic processes also have an affine form, in order to 

support5 the exponential-affine specification of equation (2.1):

d .X ( t ) =  [a • X  ( t )  +  6] dt +  E • y fV D (t) • d W Q ( i ) , X  (t ) e  D, (2.5)

where a, £  e  5Rnxn, b 6 5Rn,

\]vD{t) = ding { \AdW, ■ • • i >/v» (0 } ,

Vi ( t )  =  at +  &'■ X ( t ) , f o r  i =  1, ...,n,

a * * € 3?, 0i € s r \ i v c (t ) € 3?" is a vector of n independent Brownian motions under measure 

Q : and

D =  { l e r  :Q i +  Pi ■ X > 0 , i =  l , . . . , n }  (2.6)

is the admissible domain of the model’ state variables. Notice that this model specification 

incorporates mean reversion6, and accommodates both deterministic (if f i, — 0, V i) or sto

chastic volatility (if 3i : (3, ^  0) formulations. Hereafter, condition A o f Duffie and Kan 

(1996, page 387) will be always assumed in order to ensure that a unique (strong) solution 

X ( t )  G D  exists for the SDE (2.5).

Equations (2.1) -or (2.2)- and (2.5) summarize the most general stochastic volatility 

specification of the Duffie and Kan (1996) model (since &  is not constrained to be equal 

to 0, for all i ). Applying It6’s lemma, it follows that, under this general specification, the 

time-i price, Y  [X  (0 , i) € C 2'1 (D  x [0, oo[), of an interest rate contingent claim, with a 

continuous “dividend yield” i [ X ( t ) , i ] ,  must satisfy the following fundamental parabolic

4 See section 3.3 for details.
’ As Duflie and Kan (1996, page 381) say: “...the yields are afline if, and essentially only if, the drift 

and diffusion functions of the stochastic differentia) equation for the factors are also affine". This result is 
equivalent to proposition 4 of Brown and Schaefer (1994a), derived in the context of one- fait nr affine models

* X  (t )  mean reverts towards a 1 ■ ¿i, as long as matrix a is negative definite.
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partial differential equation, subject to the appropriate boundary conditions:

d Y  (t  t )
V Y  (x, t ) H------ ----------r  ( t )  Y  (x, t) =  - i  (x, t ) , x  G D, (2.7)

being ~D the second-order differential operator7

with V D ( t ) =  diag {iq  ( f ) , . . . ,  vn ( t ) } ,  and where the function tr  (■) returns the trace of a 

square matrix. However, and as Duffie and Kan (1994) point out, PDE (2.7) can only be

or, for large n, by Monte Carlo simulation. The only exception seems to be the valuation of

by Duffie and Kan (1996). Using equations (3.9) and (3.10) of Duffie and Kan (1996)8,

matrix E. Then, A  ( r )  is obtained through the solution of a first order ordinary differential 

equation (for instance, by using Romberg’s integration method),

subject to the initial condition A (0) =  0. Finally, P ( t , T )  is given by equation (2.1). 

However, under this general specification of the Duffie and Kan (1996) model, even the 

above ODEs must be solved numerically.

The main advantage of the Duflie and Kan (1996) framework is its generality: all time- 

homogeneous exponential-affine models presented in the literature can be easily nested 

into the specification given by equations (2.2) and (2.5), through self-evident parameters’

7 As defined in Arnold (1992, definition 2.6.1). Its relation with the infinitesimal generator of X  (i), A . is 
the following:

8That is substituting V [2 C (t),fi, *n P D b  (2.7), by equation (2.1), subject to the boundary condition 
P  (T , T )  1

solved, for path-independent interest rate contingent claims, by a finite-difference method

default-free pure discount bonds, for which an exact quasi-dosed form solution is provided

first the duration vector B ' ( r )  must be found through the solution of a system of n Riccati 

differential equations (for instance, by using a fifth order Runge-Kutta method),

( 2.8)

* = i  j - i

subject to the initial condition B  (0) =  0, and where is the j th-row /cth-column element of

(2.9)
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Table 2.1: Parameters’ restrictions needed to fit some term structure models into the Duffie 
and Kan (1996) general specification____________________________________

Vasicek
(1977)

Cox et al. 
(1985b)

Longstaff and 
Schwartz (1992a)

Langetieg
(1980)

Chen and 
Scott (1995b)

n 1 1 2
/ 0 0 0 0
G 1 1 i
a
b

diagonal diagonal

Ë h diagonal
Q 1 0 0 0
P 0 1 h On In
On and /„ denote n x n null and identity matrices, respectively. 
q € 5R" is a vector with a, as its ¿‘^-component.
P  € S t"*" is a matrix whose ¿‘^-column is given by vector 0,.

restrictions (Table 2.1 illustrates some examples). Therefore, the general equilibrium setup 

that will be constructed in this Chapter is also applicable to any of such models.

2.2 General equilibrium specification for the Duffie and Kan 

(1996) model

The goal of the present Chapter is to derive a Dufiie and Kan (1996) model’ specification 

under the original probability measure V  that is compatible with the formulation given by 

the authors under the equivalent martingale measure Q. This task can become useful for 

empirical purposes, namely for the econometric estimation of the Duffie and Kan (1996) 

model' parameters from a time-series of state variables’ values or from a panel-data o f market 

observables (e.g. bond prices), through Kalman filtering techniques. In fact, these parame

ters can also be estimated from a cross-section of bond prices, by using the risk-adjusted 

processes for the state variables9, since assuming that there are no arbitrage opportuni

ties in the bond market is equivalent to say that such interest rate contingent claims can 

be priced under an equivalent martingale measure Q  However, this latter methodology 

should be less adequate than the time-series or panel-data approaches, because tfie model’ 

parameters are assumed to be time-independent. In summary, if the Duffie and Kan (1996) 

model’ parameters are to be estimated through a time-series or a panel-data methodology, 

the knowledge o f the model’ specification under the objective probability measure V  is then 

required, and thus justifies the purpose of this Chapter. As Duffie and Kan (1994, page 578) 

notice: “For many applications, it will also be useful to model the distribution of processes

9That is through the best fit between market bond prices and those generated by the model.
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under the original probability measure V. Conversion from V  to Q  and back will not be 

dealt with here, but is an important issue, particularly from the point of view o f statistical 

fitting of the models as well as the measurement of risk.”

In order to derive the Duffie and Kan (1996) model’ specification under the probability 

measure V, it will be necessary to fit the model into a general equilibrium framework. This 

is so, because, from Girsanov’s theorem, the two model specifications (under probability 

measures V  and Q )  are only compatible if ¡j. [X  (i) ] and ( t )  are such that:

[2C(01 = «[2C(01 - [̂2C(0] A[2C(0]

and

d W Q ( t ) =  A [X  (i) ] dt +  dW v  (t )  ,

where A [X  (f)] € 9Î" satisfies the Novikov’s condition10, and the Radon-Nikodym derivative 

is equal to

6  =  exp | -  j f  A  [X  (a )]' • d W Z (s ) -  l- J ‘ A  [X  (a )]' • A  [X  (* )] ds | .

Hence, to go from the Duffie and Kan (1996) model specification under the original 

probability measure V  -hereafter labelled as the (P ,  v, A, a) model- to the (/-*, fi, a ) equivalent 

specification, or all the way around, it is necessary to define A [X  (0 ] explicitly. For that 

purpose, the Duffie and Kan (1996) model will have to be fitted into a general equilibrium 

framework, where both the short-term interest rate ami the vector of market prices of risk 

will be endogenously determined in the context of the underlying economy. And, unlike the 

majority of the general equilibrium term structure models found in the literature, the role 

of money is going to be explicitly consider«!, leading to a general equilibrium Duffie and 

Kan (1996) model o f the term structure of nominal interest rates.

Next subsections are organized as follows. Subsection 2.2.1 state all the assumptions that 

are required to fit the Duffie and Kan (1996) model into a general equilibrium framework. 

In subsections 2.2.2, 2.2.3 and 2.2.4, general formulae for the equilibrium short-term interest 

rate and for the equilibrium factor risk premiums are derived, always in nominal terms: first, 

within the context o f a production economy; then, under a consumption-based C A I’ M; and 

finally, assuming a pure exchange economy. In subsection 2.2.5, a general equilibrium Duffle 

and Kan (1996) model is derived under a constant relative risk aversion economy (both with 

power and log utility functions). Finally, section 2.3 summarizes the conclusions.

l°A  1A  (t)] can be interpreted as the tirnc-i vector of market prices of interest rate risk.
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2.2.1 G e n e ra l equ ilibrium  assum ptions

The following assumptions represent a synthesis between the consumption-based C A l’ M 

of Breeden (1979), the continuous-time pure exchange economy of Lucas (1978), and the 

cash-in-advance one-country economy of Lucas (1982), while the notation is intended to 

follow that used by Cox, Ingersoll and Ross (1985a):

A . l )  There is a single physical good, which may be allocated to consumption or investment.

A .2) The stochastic intertemporal one-country economy that is going to be considered has 

a finite time horizon T  =  [0, T\. Uncertainty is represented by a complete probability 

space (f2, T ,  V ) ,  where all the information accruing to all the agents in the economy is 

described by a filtration ( T t ) t^7 satisfying the usual conditions: namely, To =  {0. f 2} 

and Tr =  T  ■ The vector ( t )  € 52" will represent a standard Brownian motion on 

the probability space ( i I , T ,  V ) ,  and F =  {T t  : t >  0 } will denote the V — augmentation 

o f the natural filtration generated by W v  (t).

A .3) There are n  state variables that determine the general state o f the economy (both 

in real and monetary terms) through the following stochastic process, and under the 

probability measure P:

d X { t ) =  [d • X  (t )  +  6] dt +  E ■ y J v D ( i )  • dW v  ( i ) , (2.10)

where d e  52" xn, b e  52", and d W v  ( i )  G 52" is a vector of n independent Brownian 

increments under the objective probability measure. Hence, i i [ A ( f ) )  =  a • X  (0 +  b 

and rr [A  (£)] =  £  • >JVD (t). This stochastic differential equation (SDE) is intended 

to represent the non-risk-adjusted stochastic process followed by the state variables 

of the Duffie and Kan (1996) model. Thus, the diffusion is the same as in equation 

(2.5), and the drift was defined as another affine function of the n factors (in order 

to be consistent with the exponential-affine form for pure discount bond prices). The 

goal is precisely to determine a consistent relation between a and a as well as between 

b and b.

A .4) There exist m distinct production processes (or production firms) that define rn in

vestment opportunities in this economy, whose dynamics are modelled through the 

following SDE:

dS ( i )  =  Is  (t ) • fis (9, M , S, X, t) dt +  Is  (t) • E (,q, M , S, X , 0 • dW v  ( i ) . (2.11)
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The i lh element of S  ( i )  G 3?"*, denoted by S, (t), represents the nominal value of the 

i lh production firm at time t ,11 Is (f )  =  diag {S i ( t ) , . . . ,  Sm ( t ) }  and therefore the pro

duction processes have stochastically constant returns to scale, ( is  (q, M , S, X_, t) G 9im 

is the vector of expected rates o f return on the production activities, E  (q, M , S, X , t) 

G 3tmx'* is assumed to be such that E  (q, M , S, X , £) • E  (q, M, S, X ,  t) ' is positive cl«;f- 

inite, q ( t ) denotes the time-t aggregate output of the economy, and M  (t )  represents 

the time-t money supply level.

A . 5 ) The real aggregate production output is exogenously determined12 by the following 

diffusion process:

^ = F q (q , X , t ) d t  +  0 q ( q , X , t ) ' d W v ( t ) ,  (2.12)

where fiq ( q , X , t )  G 3i is the time-t expected rate of change in the aggregate output, 

and crq (q, X ,  t) € Jtn is the vector of volatilities for the rate of change in the aggregate 

output.

A .6 ) The money supply is exogenously determined by the following diffusion process:

= H M ( M , X , t ) d t  +  0 M ( M , X , t ) '  dW p ( t ) ,  (2.13)

where g u  (M , X , t) € 3? is the time-t expected growth rate o f money supply, and 

trm  (M , X ,  t) G 3i" is the vector of volatilities for the money supply growth rate.

A .7 ) There are (n  — m )  infinitely divisible financial contingent claims, whose net supply is 

zero, and whose nominal value evolves according to the following stochastic process:

d F  (t ) =  I F (t) • /££ ( q, M , S, x, t) dt +  I F (t) • I I  ( q , A/, S, X ,  t )  • dW v  ( t ) , (2.14)

where the i th element of F ( t )  G 3?" m, denoted by /■’, (t), represents the time-t price 

of the i lh contingent claim, I f  (t )  — diag [F\ ( t ) , . . . ,  Fn m ( t ) } ,  p/.- (q, M, S, X< l) 

G 3irl rn is the vector of expected rates of return (dividend-inclusive) on the (n  — m) 

financial contingent claims, and I I  (q, M , S, X ,  t) G 3i^" m)x".

A .8 ) There are no taxes or transaction exists, and all trades take place at equilibrium prices.

11 Kiirh firm’s value is represented by just one (perfectly divisible) share, i.e. St (t ) can be though of as 
being the value of the tlh production firm share.

12This is the main difference between the pure exchange economy considered here and the Cox et al. 
(1985a) type of production economy.
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A .9 ) There exists a market for instantaneous borrowing and lending at a nominal risk-free 

interest rate of r ( i ) .

A . 10) There exists a fixed number o f individuals, all identical in terms o f their endowments 

and preferences, and all having homogeneous probability beliefs about future states 

of the world. Thus, it can be automatically assumed that markets are dynamically 

complete, because as said in Cox, Ingersoll and Ross (1981a, page 779): “For an 

economy o f identical investors, prices will be set as if markets were complete, regardless 

of their actual scope” . Moreover, each individual seeks to maximize the expected value 

of a time-additive and state-independent von Neumann-Morgenstern utility function 

for lifetime consumption, that is wishes to maximize the quantity

u [C  (s) , s] ds V  (t)  =  v =  Si ( t ) and X_ (t ) =  Ï  j  >

where t denotes the current time, T  represents the terminal date, the expectation is 

conditional on T t  and computed under measure P , u [■] is a von Neumann-Morgenstern 

period utility function, C  (s) represents the amount of the single physical good con

sumed at time s, V  ( i )  is the time-i (i.e. current) pre-decision nominal wealth,1'* and 

x  denotes the current state of the economy.

A . 11) The unit-velocity version of the Quantity Theory of Money will be assumed here

after, that is
M ( t )

p ( t ) q ( t )
(2.15)

where p ( i )  is the time-i price level for the single physical good. This working hypoth

esis is just a consequence o f the following three underlying assumptions:

A . 11.1) In the economy under analysis all agents are subject to a cash-in-advance con

straint (also known as the Clower constraint), in the sense that all go<xls can he 

purchased only with currency accumulated in advance, i.e.

A ( i ) = p ( i ) C ( i ) ,  (2.16)

where N  ( t ) is the time-i demand for money. This constraint justifies the existence 

of money in the economy, because as argued by Lucas (1982, page 342): “ ...agents 

will hold non-interest-bearing units o f that currency in exactly the amount needed 3

l3It is being assumed that the initial endowment of the representative agent corresponds to one share of 
each production firm.
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to cover their perfectly predictable current-period goods purchases” . Instead, one 

could have considered, for instance, the existence o f real cash balances in the direct 

utility function, while assuming that q ( t ) and M  (t )  were the only state variables, as 

done by Bakshi ami Chen (1996). Although this procedure would be more realistic, 

it would also create two problems: first, the choice of state variables would not be 

consistent with the Duffie and Kan (1996) model specification under analysis; second, 

the derivation o f a closed-form expression for A  [X  (£)] would require the use of a log 

utility function, restricting the type of preferences under consideration.

A . 11.2) In equilibrium, the money supply equals the demand for money:

M ( t )  =  N ( t ) .  (2.17)

A . 1 1 .3 ) In this pure exchange economy, all output is consumed:

C ( t )  =  q ( t ) .  (2.18)

Combining equations (2.16), (2.17), and (2.18), equation (2.15) follows immediately.

Initially, assumption A .5 will be ignored, i.e. a Cox et al. (1985a) type of production 

economy will be considered, but the results obtained are going to depend on the indirect 

utility function. Then, we will move towards the consumption-based C A l’ M o f Breeden 

(1979), obtaining results that depend on the direct utility function but are still related 

to the endogenous consumption process. Finally, assumption A .5 will be imposed, a pure 

exchange economy will be completely identified, and all the relevant results will be stated

in terms of the utility o f consumption and as a function o f the exogenous output and

money supply processes (therefore avoiding the need to solve any Hamilton-Jacobi-Bellman 

equation).

2.2.2 P o rtfo lio  selection p rob lem  

The budget constraint

The representative agent in this economy can choose amongst three different types of in

vestment opportunities: t) To trade the equity shares issued by the rn production firms; t i ) 

To trade (rn — n) financial contingent claims; and i i i )  To buy or sell instantaneous nominal 

risk-free zero-coupon bonds.
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Hence, the representative agent must observe the following budget constraint: 14

d V (t )  =  V <J .)u s {t)' ■ I s X( t ) - d S ( t )  +  V { t ) u F { t ) '■ I F l { t ) - d F ( t )  (2.19) 

+ V  (t )  [l -  ws ( t ) '  1 -u jp  ( t ) ' • l] r  (t ) dt —p ( t ) C  ( t ) dt,

where uJs(i) € 9î'n, its i th element, u/s, ( t ) , is the proportion of the current wealth invested 

in the i th production firm, ujy (t )  6  5in m, its i lh element, w/.; ( t ) , is the proportion o f the

d V (t )  =  {w s ( i ) '-  [ ¿ x s ( t ) - r ( t ) l ]  V iO + W f i t ) ' -  |£>£ ( « )  — r  ( 0 1 ] V '(*) ( 2 .2 0 )

+ V { t ) r ( t ) - p ( t ) C ( t ) } d t

+ K  ( t )  [wg ( i ) ' E (t )+ u J F  (O ' • H  ( i ) ]  • dW v  ( 0  .

The H JB  equation

The individual’s portfolio selection problem consists in choosing a policy for investment 

and consumption, i.e. choosing the controls (u>g ( t ) , uiy ( t ) , C  ( t ) )  =  (uys, w/.-, C ), so as to 

maximize the expected utility from consumption, subject to the budget constraint ( 2 .2 0 ). 

In other words, the representative agent has to find (u>s, W f, C )  such that: 15

being dv given by equation ( 2 .2 0 ) and dx given by equation ( 2 . 1 0 ).

The Hamilton-Jacobi-Bellman equation for the above stochastic optimal control problem 

is:

current wealth invested in the i th financial contingent claim, and r  ( t )  is the instantaneous 

nominal risk-free time-t interest rate. Considering equations (2.11) and (2.14), the above 

stochastic differential equation can be restated as:

J  (v, x, t) =  max K “ s.<‘£E'c  (p, x, t ) ,
(wg.Wf-.C)

where

0 max <j> (u>s,up, C\ v, x, t)
(uig.üJf.C)

( 2.21)

(wg.Wp.C)
max {u  (C , t ) -I- J )  (v, x, i ) }  ,

14For clarity, all functional dependencies, except time-dependencies, will be suppressed.
15.7 (1;, , i ) represents the indirect utility function of the representative agent, expressed in terms of the 

nominal wealth. Although the direct utility function is assumed to be state-independent, we can not be sure 
in saying the same about the indirect utility function because r(t ) changes stochastically.
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where the Dynkin’s operator is equal to 16

!£,c-’ ./) (u ,x, t) =  Jt +  (u is ' ■ [/*$ (0  -  r  (Q  I] v +  ujp ■ \nF  ( t )  -  r  (t )  l ]  v 

+ r ( t ) v  - p ( t ) C ( t ) }  Jv +  Jst ■ (a  i  +  b)

H----^— ftTs' • E {t )+  u)f ' ■ // (f )] • [/? (t ) ' ■ ws +  // (£)' • u;f 1

+  l t r [ J I x . Z  V D (t )  -S ']

+t> [ws' • E ( t ) + u p '  H ( t )] • ^ D(i) •

with Ji  =  ',J , JIX ' =  , and 7VI =  8  subject to  the non-negativity

restrictions w,s4 >  0 (» =  and C  >  0, as well as to the boundary condition

J (v, x, T )  =  0.

Using the Kuhn-'l\icker theorem, the necessary and sufficient conditions for the maxi

mization o f 4> (û s, ujp, C\ v, x , l )  are:

<t>c =  uc ( t ) - p ( t )  Jv <  0, (2.22)

[uc ( t ) - p ( i ) 7 „ ] C  =  0, (2.23)

</W =  \ M ( t ) - r ( t ) \ ] v J v + [ E ( t )  E (.t ) ' ^  +  E { t )  H ( t ) '  U f ] v 2Jvv (2.24)

+ v E ( t ) -  JVI

<  0 ,

ws' • =  0, (2.25)

and

0u>£ =  ¡££ ( i )  -  r  (t ) l ]  -1- [// ( i )  • // (£)' u>£ +  I I  ( t )  ■ E  ( t ) ' • u>s] v2Jvv (2.26)

+ v l l  ( t ) ■ y / va (t )  Y! Jvx

=  Q.

2.2.3 E qu ilib riu m  instantaneous nom inal risk -free interest rate

As in Cox et al. (1985a), equilibrium is defined by a set of stochastic processes (r  ( t ) ,  ¿t/.- ( i ) ; 

uJS,uy,C ) satisfying conditions ( 2 .2 2 ) to (2.26), as well as the following market clearing 

conditions:

16In order to simplify the notation, subscripts will be used to represent derivatives.



1. In equilibrium, all wealth is invested in the physical production processes, that is 

ws' • 1  =  1 .

2. In equilibrium, no financial contingent claims are held, i.e. W f =  0. That is in 

equilibrium the net supply or aggregate demand for each financial contingent claim is 

zero. This is l>ecause for each individual who demands some security, there is always 

another individual that creates and sells it.

The aim of this subsection is to compute, explicitly, an equilibrium formula for r  (t ), 

in the context of the Duffle and Kan (1996) model. Initially, a production economy will 

be used, and the results obtained will be similar to those already generated by Cox et al. 

(1985a) and Breeden (1986). However, while these authors give equilibrium expressions 

for the instantaneous real risk-free interest rate, here their results will be adapted to the 

context o f a monetary economy. Finally, a one-country pure exchange economy with a cash- 

in-advance constraint will be used, and a new equilibrium specification for the instantaneous 

nominal riskless interest rate will be obtained.

The production side o f the economy: a la  Cox et al. (1985a)

Imposing the above two market clearing conditions to (2.21), a second version for the HJB 

equation is obtained:

with ujs >  Q, C  >  0, and subject to J (v , x ,T )  =  0. Similarly, conditions (2.22) to (2.26) 

can be rewritten as:

where

J ) (v , x, t) =  Jt +  [vu^s' ■ f i s ( l )  ~ P  (t ) C ] Jv +  Jx‘ ■ (a ■ x  +  6 )

+ \ t r  [JI t . • E V D (0  ■ S '] +  r2v2JvvuJs' ■ E ( t )  ■ E (<)' ■ ujs

+ W  • E ( t )  ■ s j v » { t )  ■ T! ■ Jv t ,

<t>c -  Uc (t ) -  p ( t )  Jv <  0 , (2.28)

[uc (0  - p ( t ) J v\C -  0, (2.29)

<t>*s =  vJ v m  (0  +  v2 JVVE  ( f ) • E  (t ) ' ■ ws +  v E  (t) • ■ Jvx <  Q, (2.30)

us  • <t>uts =  0 , (231)
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and

ws' l =  1 . (2.32)

Following Cox et al. (1985a) and considering the Kuhn-'I'ucker theorem, conditions 

(2.30), (2.31), and (2.32) can be rewritten as a quadratic programming problem:

max |u>g' • vJv(xs (i) +  ]^v2JvvE  ( t ) ■ E ( t ) '  ■ us  +  vE  (t) ■ \ J v l> ( t ) ■ £ ' ■ | , (2.33)

subject to u/g1 1  =  1 and ujg >  Q. Moreover, using l as a Lagrange multiplier, problem 

(2.33) is also equivalent to

max
(" f i - 0

U '  • vJvfls (i) + X-V2JvvE(t ) ■ E(t ) '  • Wg + vE (t) • yjvD(t)  S' JVi 

-Hus' 1-1)}, (2.34)

subject to ujg >  Q. The corresponding Kuhn-'l\icker conditions arc given by

v J tv s  ( t ) +  v2r m E  ( i )  • E  (t ) ' u g ' +  v E  ( ! )  • y/vD (t )  • ■ J'VI -  Ü  <  0, (2.35

and

o =  vj ;  (w g* )' • ns  ( 0  +  v2r vv (w g*)' • e  (<) • e  ( o '  • <ü£*

+u (w g*)' • E ( t )  ■ y J v D {t) • e ' ■ r vt - 1 (^ g * ) '  • 1,

(2.36)

where u g ’ denotes the optimal value o f ljs, and ./* represents the indirect utility function 

obtained at us  =  u>s*.

On the other hand, if it is assumed that ujj? = 0 without considering, for the moment, 

that u s ' 1 =  1, instead o f restrictions (2.30), (2.31), and (2.32), we would have to deal with 

the following two conditions:

and

0 ^  =  vJv [/rs (t ) -  r (t ) l] 4- y2JvvE  (Q ■ E  ( t )' ■ uis

+ v E ( t )  ■ y JvD { t ) 1 1 Jvt

<  0 ,

us ■ 0 ui£ =  0 .

(2.37)

(2.38)
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But, these last two restrictions are equivalent to another quadratic programming problem:

+ v E ( t )  ^ V D ( t )  V -  • / „ * ] } ,

subject tow s > 0 , with the associated Kuhn-Tucker conditions given by

o > vj^ f is  ( t )  +  V3J ; ;E ( t )  ■ E  (t)' • w g" + vE (t) ■ yjV*> (t) • V  ■ (2.40)

- v J ” r  ( i ) l ,

and

0 = + (2.41)

+u (u jg « ) '  • E ( t )  ■ y/v>>(t) ■ £ ' ■ J ”  -  v J ? r  (t ) (w g**)' • 1,

where ujs”  denotes the new optimal value of wg, and ,/** represents the indirect utility 

function obtained at uig — ws“ -

Comparing (2.35)-(2.36) with (2.40)-(2.41), it follows that if J ** =  J* and v J * 'r ( l )  =  l, 

then =  uJs '■ Therefore

liquation (2.44) expresses r ( t )  as a function o f the indirect utility. This solution is 

similar to equation (14) o f  Cox et al. (1985a) and to equation (15) o f Breeden (1980). 

However, it is not exactly equivalent since these last two equations give the equilibrium 

value of the short-term real (not nominal) interest rate, which is stated in terms of the nal 

wealth, because both models use the single physical good as the numeraire.

Next, r ( l ) will be derived as an explicit function o f the utility of consumption, and no 

longer as a function of the utility of wealth.

(2,12)

Solving (2.36) for l, and since (u s ) ' 1 = 1 ,

l  =  v Jvujs' ■ f£s (t)  +  v2Jvvujs ■ E ( t )  ■ E  (1)' ■ u>s (2.43)

+ t W  • e  ( 0  • y JvD (t )  ■ i : ' ■ j vs.

Finally, combining (2.42) and (2.43),

r (0  =  wg' (is  (t )  +  v ■ E  ( t )  ■ E  (ty  ujs +  Mg' • E  (t ) • y j v *  ( t ) • £ ' • ( ^ )  . (2.44)
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The consumption side o f the economy: a la  Breeden (1986)

To prove that the equilibrium instantaneous interest rate is equal to minus the expected 

rate o f change in the marginal utility of nominal wealth, the approach followed by Cox et 

al. (1985a) can be used.

Considering that in equilibrium all wealth is invested in the physical production processes, 

the budget constraint ( 2 .2 0 ) is given by

dv = [tW  • fis  ( t )  -  p ( t )  C  (t)] dt +  vu&' E  (0 • dW v  ( t ) , (2.45)

and

(L J ) ( y , x , t ) =  J t +  lutes' • f is (t) -  p (t) C ( t ) l  Jv +  JX' ■ (a - x  +  b)

+\v2Jvvu^ • E ( t )  ■ E  (O' • ujg + \tr [Jxx, • E • V D (t ) • E'] 

+ W  • E ( t )  ■ , J v D ( t )  ■ E ' • Jv t.

Applying ltd ’s lemma to Jv (v ,x , t),

dJv =  f i j v (t) dt + vJuvUJs' • £ ( « )  +  (Jvs) '  ■ E y / v ° ( t ) d W v  ( t ) , (2.46)

where

PA, (0 =  (LJv) ( v , x , t )  (2.47)

=  Jvt +  \vuis ' ■ V s ( t )  -  p (t ) C  (t ) ]  Jvv +  JVX' ■ (a -x  +  b)

+ ^ 2W  • E ( t )  • E { t ) '  u > s + X- t r  [JVXI, • E • V D (t )  ■ E']

+vui ' - E ( t ) - y / v ° ( t )  S' Jvvf

But, in equilibrium =  0, that is

0 =  Jtv + u s ' P s (0  Jv +  [™±is' • Ps (0  -  p ( t ) C ( t ) ]  Jvv (2.48)

+Jx'v • (a • x  +  b) +  vJm ijjs' ■ E  ( t ) ■ E  ( t ) ' ■ uis 

+  ̂ v2Jvvvujs' ■ E ( t )  ■ E (£)' u s + l^ t r  [Jxx.v E V °  (t ) • E ']

+u>s' ■ E ( t )  ■ ^ o ( i )  • E' • ./„* +  W  ■ E ( t )  • ^ V » ( t )  • E ' • Jvxv.

Hence, combining equations (2.47) and (2.48),

PA, (t ) =  -w s ' ■ Ps (0 -A, -  v JwtOL ■ E (t ) • E ( t ) ' • ws -  ■ E ( t )  ■ \{vn (t ) • E' •
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Consequently,

_^  / dJy \ 1  _ f̂ Jv
y J%) J dt J\j

=  y s ' ■ ps ( t )  +  V Us' ■ E ( t )  ■ E ( t ) '  • W£

Comparing the above equality with equation (2.44), it follows that

r ( i )  - /«■/. ( 0

Jv (y ,x , t ) '
(2-49)

as expected.

On the other hand, if we consider condition (2.23), while assuming that C  ^  0, then

Jv (u ,x, t ) “ c ( 0

P ( t )
(2.50)

Using Itô ’s lemma,

A ( t ) =
P (  0

Pur  ( 0
” 0 ( 0 »  /o , 1 2 U g ( t ) p ( t )  ,

ry ^ j» (*) '  2  /̂ \4 0 j> v*/
p ( 0 J p ( 0 4

,(<) (2.51)

p ( 0

;COU [d u c (t ) ,d P (t )],

where

due (0  =  Puc (0  di +  gUc (t )' • d W v ( t ) ,

u c  ( t )  is the time-f marginal utility of consumption, with fiUr ( t )  G 4? and rrU(. (1) G Si'1,

dp ( t ) =  pp ( t ) dt -t- etp ( t )' • d W p ( t ) ,

G 4Î represents the tiine-t expected rate of inflation, and crp (t )  G 3Î'1. Combining 

equations (2.49), (2.50), and (2.51):

r ( i ) Mac(0 , ÌM 0  _ a W ja i i l 4.r;ot/[due(0.dp(01 1
“ c ( i )  \ p (0  p ( 0 2 “ c ( i ) p ( 0  J

(2.52)

lYoin Breeden (1986, equation 19), it is known that the first term on the right-hand- 

side o f the previous equation represents the time-t real risk-free instantaneous interest rate, 

which will be denominated by k (t ). In order to compute J —  j  explicitly, the following
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stochastic differential equation for aggregate consumption will be considered: 

? ^ = » c ( t )d t  +  q c ( t ) ' d W v { t ) ,

where p c  ( f )  € and ^ c (< ) € 5Rn. Applying ltd ’s lemma to the marginal utility o f con

sumption, it is possible to derive the functional form o f its drift:

Huc =  uc c  (0  He (0  C  ( i )  +  u ct ( t )  +  - u c c c  ( f )  £ c  (,1 )'• ac  ( t )  C  ( t ) 2 . (2.53)

Substituting (2.53) into the first term in the right-hand-side o f (2.52), one obtains the 

consumption-based equilibrium equation (22) of Breeden (1986) for the real risk-free in

stantaneous interest rate:

* ( 0  =  (2-54)
« c  ( t )
V-Ct(t) C  ( t )  U cc  (0 /.x 1 C 2  (t) U ccc (0 r ,.w /,xl

= ------ 7 7r ----------- 777----- He ( t )  ~  7 -----------777------ ^ ( 9  ^ c ( t )  -
« c  ( 0  tic ( 0  2  tic ( i )

FVom now on, it will be considered, as an additional assumption, that the preferences 

are time-separable, i.e.

A .1 2 ) u (C , t )  =  e ptU  (C ), where p is the constant discount factor or time-preference pa

rameter, U c  >  0  (nonsatiation assumption), and U c c  <  0  (risk aversion assumption).

Therefore, — : =  P > an(l combining equations (2.52) and (2.54),

H p(t) _  g g (0 ' g p (0  C O V [d u c ( t ) , d p ( t ) ] \ 
p ( i )  p (t ) 2 tic ( t ) p ( t )  J ’

with

k ( t )  =  p
C  ( 0  t içç  (Q

tic ( 0
P c  ( 0  -  ;

1 C 2  (t ) t iç ç ç  (t) 

tic ( i )
[gç (O' ^c(0] • (2.56)

The above expression for r  ( t ) is distinct both from equation (45) o f Heston (1988) and from 

equation (69) o f Cox et al. (1985b). In opposition with Heston (1988), equation (2.55) does 

not correspond to the well known Fisher identity, because

C O V  [duc  ( t ) , dp (t)] 

t i c ( i ) p ( 0

(O ' • gp ( 0

tic (i)p (i)
C  (i) t ic c  (0 _
“M i l 7W
C o n c e i t )  CQV 
tic (0 p (0 

0 ,

d C (t )
C ( t )

1 dp (t )
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that is because we are not assuming money neutrality17. In fact, Sun (1992) found a 

significant correlation between the price level and the growth rate of consumption, which 

does not support the money neutrality assumption. On the other hand, equation (2.55) 

shows two important differences when compared to equation (60) o f Cox et al. (1985b). 

Firstly, because equation (2.55) is expressed in terms of the direct utility function, and not 

in terms o f the utility o f wealth. Secondly, because in equation (2.55) both the price level, 

p ( i ) ,  and the expected rate of inflation, are endogenously determined, and thus one

can be sure that they will be consistent with our general equilibrium framework.

A  one-country pure exchange economy

Assuming A .5, and since in equilibrium ujs1 • I  =  1 as well as wy =  0 , we move from a 

production economy to a Lucas (1978) type of pure exchange economy where all output is 

consumed, that is C  ( t ) =  q ( t ) . ln Hence, equations (2.55) and (2.56) can be stated in terms 

o f the exogenous aggregate output, which means that it is not necessary to solve the I f i l l  

equation ( 2 .2 1 ) for the endogenous consumption process:

Equation (2.58) corresponds to equation (11) of Bakshi and Chen (1997a). The next theorem 

rewrites the above equilibrium solution for the nom inal short-term interest rate only in 

terms of the exogenous output and money supply processes.

Theorem  1 In  equilibrium , the instantaneous nom inal in terest rate is

E  (q, M ,S ,X , t ) in such a way that the production economy generates an endogenous consumption process 
identical to the exogenously specified output process. Sec 1 lest on (1988, footnote 9) or Bakalii and Chen 
(1997a, footnote 5).

r ( t )  =  k ( t )  +

with

r ( t ) =  [p  +  h m  ( t )  -M q ( t )  ~  ( t ) ' ■ ZM  (t )  + °q ,M  (0] (2.59)

where o qM  ( t )  =  C O V

17I.e. it is not assumed that the price level has no effect on the real side of the economy.
18Both types of economy can be made compatible through the definition of /xg (fl, M ,&  X « 0 and
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P ro o f. Applying It6 ’s lemma to p (t )  =  ^ ^ , all terms in equation (2.57) can be expressed 

as functions o f only q ( t )  and M  (£):

_  HM (t )  M  ( t )  _  M  ( t )  fi,, ( t )  M  ( t )a g ( t ) '  Q g (t) ^  Q q (t)' ■ rr\i ( t )  M  (t) 

q ( t )  q ( t )  +  q ( t )  q ( t )

^ 7 7 7  =  MM ( t )  -  Hq ( t ) +  Oq (£)' • Og ( i )  -  ffg (£)' • Pm  (0  .
V vW

*P ( 0  =  - 7 7 T iM  ( 0  A/ ( 0  -  ^ ¡ < T q  ( t )  q ( t )  , 
q\y) q ( t )

and

Hence,

_ p ( ) _ P ^  =  jtrM (f )  -  g g (f ) j  ■ [gM (£) -  (£)] ,

p(i) =£»(0'• [z m (0 ~ f j(0 ]  •

P (0 2

£? (O ' • ^p ( 0

r  ( i ) p +  \p m  (0  -  m« (0  +  £ 2  (O ' • £ 2  (0  -  £ 2  (O ' • £ m  ( o ]

- [<7m (O' • £M (0 - 2£i (O' • £m (0 + £2 (O' • £2 (o]

-  [^ « (o  -  £ 2  (o ' • £ m  ( o + £ 2  (o ' ■ £« (o ]

^ 9 (0  uqqq(l) 
2 «, (0 [£2 (0 ' £ 2 ( 0 ] .

which yields equation (2.59) after collecting alike terms. Following Hakshi and Chen (1997b, 

pages 818-819), an alternative derivation of equation (2.59) is presented in appendix 2.4.1. ■

According to (2.59), the short-term nominal equilibrium interest rate is increasing in: 

the time-preference parameter; the expected growth rate o f money supply; the expected 

rate of change in the aggregate output (if the coefficient of relative risk aversion is greater 

than one); and in the volatility o f the aggregate output growth rate. On the other hand, 

r  (£) is decreasing in: the volatility o f the money supply growth rate; and in the covariance 

between the growth rates of aggregate output and money supply (again, if — >  1 ).

Equations (2.44) and (2.59) generate the same term structure o f interest rates, because 

they must hold simultaneously in equilibrium. However, the use of equation (2.44) requires 

the existence of a closed-form solution for the indirect utility function, which has to be 

obtained by solving the HJB equation (2.21), or requires the assumption o f restrictive 

preferences: namely, the use of a log utility function, as is the case in Cox et al (1985a) 

and Longstaff and Schwartz (1992a). Consequently, we will try to fit the Dullie and Kan

(1996) model into a general equilibrium framework with more realistic assumptions about
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preferences than those implied by a Bernoulli logarithmic utility function, through the use 

of equation (2.59) instead of equation (2.44). In fact, it turns out to be easy to work with 

equation (2.59) since the stochastic processes for the aggregate output and for the money 

supply can be exogenously specified in a suitable fashion.

2.2.4 E qu ilib rium  Factor R isk  P rem ium s

In order to fit the DufEe and Kan (1996) model into a general equilibrium framework, it 

is necessary to prove that our general equilibrium assumptions imply an afline form for 

r ( t )  -as in equation ( 2 .2 )- and a risk-adjusted process for X_ ( i )  equivalent to the stochastic 

differential equation (2.5). But, to derive the equilibrium risk-neutral process for the model’ 

factors (that is consistent with our general equilibrium setup), we first have to compute 

the risk premiums associated with each one of the non-traded state variables. Only after 

having derived such factor risk premiums, it is then possible to specify the equilibrium risk- 

adjusted drift for dX_(t), by applying Girsanov’s theorem or by obtaining the l ’ l)K that 

must be satisfied, in equilibrium, by any interest rate contingent claim.

In equilibrium, since ujy =  0 , equation (2.26) becomes:

vJv [/if- (i ) -  r  ( i )  l ]  +  v'l JvvH  ( t ) ■ E  ( t )1 u±s +  vH  (t )  ■ \ Jv l> ( t ) ■ S ' • Jvx =  0,

that is

[/££ (0  -  r ( t )  1] =  -u  // ( t )  ■ E ( t ) '  • y g  -  W ( i )  ■ \/vD (0  ■ Z  ■

Both sides o f the above equation are n x 1 matrices. Taking just their i th-row,

W i (0  - r ( t )  =  - V  ■ E ( t ) '  -ag  -  hi ( t ) ' ■ , J v ‘> ( t )  ■ T! , (2.60)

where /if4 ( i )  is the exj>ec:ted nominal time.-t rate of return on the' i th financial contingent 

claim, [/i/.-t ( f )  — r (/)] represents the equilibrium expected excess nominal rate of return 

(over the risk-free interest rate) generated by the i th financial contingent claim, and li, ( I ) ' 

is the i th-row of matrix // (t).

In order to obtain h , ( t )  explicitly, ltd ’s lemma will be applied to the value of the i " ‘ 

financial contingent claim, F, (x, l ) : 19

dFi (t) =  Ft («) fiFi (t) dt + • S ■ \Jv,} (i) dWZ (0  • (2.61)

iglt is assumed that the contractual terms of the financial contingent claim do not depend explicitly on 
wealth. And, again, only time-dependencies will be retained.
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Comparing equations (2.14) and (2.61), it follows that

= aFi (O' •

Thus, equation (2.60) is equivalent to:

\PFi ( 0  — r  (t)] Fi ( t )  =  -u  ( • £  • J v °  m  • E { t ) '  ■ ws (2.62)

On the other hand, equation (2.61) and the stochastic process (2.46) followed by the 

marginal utility o f wealth, imply that

C O V  [dFi (x, t ) , dJv (u, x, 0]

Comparing equations (2.62) and (2.611), a similar result to Cox et al. (1985a, equation 

27) is obtained, the only difference being the fact that we are now considering expected 

excess equilibrium nom inal returns instead of real ones:

However, since a solution for the indirect utility function is not available, the above expres

sion is of little practical use. In order to compute the equilibrium risk premiums required for 

the i th financial contingent claim, as a function of estimable parameters, it is necessary to 

convert the right-hand-side o f equation (2.64) in terms of the exogenously specified output 

and money supply processes. This is accomplished by the following theorem

Theorem  2 In  equilibrium , the fa c to r  risk prem iums on any financia l contingent claim  

F  ( t )  satisfy

■ £  ■ y J v D {t ) ■ Vjvvus' ■ E ( t )  + (Jvt)' ■ £ • y]vO(t)

vJvv^ l h i L ■ E ■ \ IV ° M  ' E  w '  • a s  +  • £  V D (<) • E ' • JVI. (2.63)

(2-65)
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Proof. As a first step, condition Jv (y , x , t )  = implies that equation (2.64) can be 
rewritten as

\̂ FA t ) - r ( t ) ) F i ( t )  =  - ^ C O V
u c  (t) (*)

FFom ltd’s lemma, the diffusion of the stochastic process d  ̂ ( t )  is given by ^<rU(. (O' —
~ ^ < tp ( t ) ' , and therefore

(PR (t) -r(t)] F , ( t )  = zOFi (O' • g«o (0 + - tt̂ r (O' '^p(0- 
“c ( 0 —  ------- P (0 —  —

Applying again ltd’s lemma while considering equations (2.10) and (2.45), it follows that

aUc (O' = ucc (0 vCv (0 u,s' ■ E  (0 + d~ ^  ■ 2  • y j v ° ( I )

and
vCv ( t ) ^ ' E ( t )  +  ^ Z y / v W )

^ (i) = ------------------------C ( t ) ------------------------ •

Hence <rU(, (0 = C  (t) U c c  (0 g? (0> and because C  (t) = q (£), then

[PR (0 -  r (01 ¿’i (0 = - q ^ U( f S t ^ Fi ( t ) '  ■ aq (0 + (O' • <*p (0 •
uq\l ) V\l )

Moreover, since ap ( t )  = p ( t )  ( t )  — p (t) aq (t) ,

Q (0 Uqq (0
[p r  (0  -  f  (01 (0  =  - -

“ « ( 0
^Fi (O' ■ Oq (0 + gR (O' • (0 -  gR (O' • g? (0 •

Finally, applying the above equation to a general financial contingent claim with a value of 
F  ( t )  and an expected rate of return of f iy ( t ) ,  the equilibrium solution (2.65) follows. An 
alternative derivation is provided in appendix 2.4.2. ■

Thus, in order to find the equilibrium factor risk premiums (as well as the instantaneous 
nominal  spot equilibrium interest rate) for the Duffie and Kan (1996) model, it is just nec
essary to specify an utility function as well as suitable output and money supply stochastic 
processes.

Before proceeding, three remarks should be made. First, equation (2.65) implies that 
the factor risk premiums are increasing in the conditional covariance of the contingent claim 
value with: i )  the rate of change in the aggregate output (if the coefficient of relative risk 
aversion is greater than one); and, with i i )  the growth rate of money supply. In other 
words, equation (2.65) shows that both “production risk” (i.e. technological shocks) and
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“monetary risk” (that is, inflationary shocks) matter. Second, from Cox et al. (1985a, 

equation 30) or from equation (9) o f Bakshi and Chen (1997a), it is well known that the 

equilibrium expected excess real rate o f return is equal to C O V  ^dF ( t ) ,  j
Subtracting this “real risk" compensation from equation (2.65), we can now conclude that 

the equilibrium compensation for “nominal risk” must be given by C O V  \dF ( t ) , j  — 

C O V  [d F (0  Thirdly, equation (2.65) also shows that even in a risk-neutral econ

omy -where — =  0 , i.e. w ith a linear utility function- the equilibrium expected

excess nominal rate of return on a financial contingent claim would still be non-zero (unless 

C O V  |ri/<’ (£ ), J =  C O V  |d/*’ (£) , ^ ^ J ) .  This means that in order to derive a Duffle 

and Kan (1996) model specification under the original probability measure V  that is com

patible with the specification given by the authors under the equivalent martingale measure 

Q, it would be unrealistic to assume a zero or constant vector of market prices o f risk, since 

such assumption would most probably be inconsistent with our general equilibrium setup.

2.2.5 T h e  D uffie  and  K a il (1 9 9 6 ) m odel in a  constant re lative  risk aversion  

econom y

A n  econom y w ith  a pow er u t il ity  function

In order to obtain the Duffle and Kan (1996) model from our general equilibrium framework, 

assumptions A .5, A.6 , and A. 12 must be further specialized.

Now an economy with decreasing absolute risk aversion will be considered, and more 

specifically, a power utility function will be used to characterize the preferences o f the 

representative investor. Hence, assumption A. 12 is specialized into:

A . 12’ )

u (C, t) =  e=  o P*CP -  1
( 2.66)

where 7  <  1 (and thus u c c  ( t )  <  0), 7  ^  0, and (1 — 7 ) is the Pratt’s measure of 

relative risk aversion.20

Since C  ( i )  =  </(£) , and using (2.66), then u (q , t )  =  e ptg- ^ ,

g ( t ) u qq(t )
uq (t )  - 1 7 ’

and

5 ^ B o W  =  ( 7 - 1 ) ( 7 - 2 )
Uq

20 — 1 —7  , i.e. constant relative risk aversion is being assumed.

(2.67)

( 2.68)
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The choice o f the utility function under use was not intended to be the most general 

one possible but rather as general as necessary to nest, as special cases, all the affine 

general equilibrium interest rate frameworks presented so far in the literature (which are 

invariably based on the more restrictive log utility function). Nevertheless, it can be easily 

shown that the power utility function considered hereafter is the most general specification, 

under the hyperbolic absolute risk aversion class,2 1 that generates constant (i.e. output 

independent) values for both quantities — and appearing in expressions

(2.59) and (2.65), and therefore that supports the Duffle and Kan (1996) model under an 

affine specification for both the drifts and the instantaneous variances o f the aggregate; 

output and money supply processes.

In order to derive a Duffie and Kan (1996) model from our general equilibrium setup, the 

stochastic processes for the aggregate output and for the money supply (i.e. the functional 

form of nq (t), <rq ( i ) ,  fiM  ( 0 ) and <rm  ( t ) )  must be defined in such a way that two conditions 

are met: i )  r ( t )  must be an affine function of the state variables; and i i )  ¡j. [X  (t)] must also 

be affine.

FYorn theorem 1, condition i ) implies that h m  (0> M1 (0> \ffM (0* • Z a/ (£)] >

and crq M ( t )  must all be affine functions o f X ( f ) .  S°i the drifts of the stochastic processes 

(2.12) and (2.13) can be defined as:

where r/, n € J?, and 0, <t> G 9in.

Considering condition i i ) ,  since fi [X  (i) ] =  v[X_ (()] — rr[X_ (£)) ■ A [X  (<)] and because 

v [X  (0 ] >s defined by equation ( 2 . 1 0 ) as an affine function o f the state vector, then ¿t [X  ( f )] 

can only be affine if <7 [X  (<)] • A [X  (0 ] is a's(> affine. But, because [/¿/.- ( t ) — r (£)) /•'( t )  =

Z£ (l )' ’ A [X (i)]> will> ZJE (O' = 17 [K (0)> an<1

fiq ( í )  =  T] + 0 ' ■ X ( t ) (2.69)

and

Mm  ( t )  =  7r +  0 ' • X ( f ) , (2.70)

[MF (i) -  r (i)] F  (i) =  • [-«yE- y]vO{i)  •£,(£) +  £• ^ « ( i )  • (t)] , (2.71)

21Which, accordingly to Ingersoll (1987, equation 51), can be summarized as
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then
*  [X  ( i ) ]  • A [X  (t)] =  - 7E ■ y J v D (t ) ■ a ,  (t ) +  E • , J v D ( t )  • <7 *, ( t ) ,

and thus ¿r [X  (<)] 's affine if and only if [e  ■ >JVD (<) ■ rrq (i)J and [e  ■ \JVD (t )  ■ o_m  (t)] 

are both affine functions o f X  (<)■ Hnt, this is only possible if aq ( t ) and rrM ( i )  are both 

equal to:

1 . \/VD ( t )  multiplied by some n x 1 vector o f parameters, since V l> ( i )  is affine; or

2 . (£ )) multiplied by some n x 1  vector of parameters, since a constant is also 

an affine function; or even

3. A null n x 1 vector, since zero can also be considered as an affine function.

Although all these three alternatives are possible, we will choose the first one since it 

represents the most general case. Thus,

o_q{t) = j v D { t ) &  (2.72)

and

£m (0  =  ^ d  W  x , (2.73)

where <£ G SR" has <pt as its i th element, and \  £ Sin contains Xi as >ls l 'h element. Hquations 

(2.72) and (2.73) allow us to respect not only condition i i )  but also condition i ) ,  since 

{o m W  [I m (0 ]  = X , ^ D ( 0 x > [£ , (< ) '-£j (<)] =  ‘¿ ■ V 0 (t)<£ , and <r,iM (t ) =  x ' V n (t )  -g 

are all affine functions of X  (i).

Combining equations (2.69) with (2.72), and (2.70) with (2.73), assumptions A .5 and 

A . 6  are specialized into:

A .5 ’ )

=  [ri +  S' • X  (<)] dt +  ̂ '  y/vo (t) ■ dŴ _ ( t ) . (2.74)

A . 6 ’ )

=  [n +  # X  (f)] dt +  X' -  y J v D ( t )  ■ d W l  (i). (2.75)

To prove that our general equilibrium framework generates a Duffie and Kan (1996) 

model, it is only necessary to show that the assumptions A .5’ , A .6 ’ , and A. 12’ allow us to:

i )  Specialize equation (2.59) into equation (2.2); and i i )  Define a risk-adjusted process for 

X  (0 equivalent to equation (2.5). Next theorem verifies requirement i).
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T h eo rem  3 In a Duffie and Kan (1996) general equilibrium model with a power utility 

function, and with output and money supply processes described by assumptions A. 5 ’ and 

A. 6 ’, respectively, the equilibrium specification fo r  the instantaneous nominal spot interest 

rate is given by:

r (t )  =  f  +  G  K ( t ) ,  (2.76)

with

and

f  =  p +  n - ‘yTj + 2  , 7(1 ~  7) 2  
7 l  -  X_ + -----^-----f - a,

G  =  0 -  yff + 0  •

where p 1, \ l , f  £ 9fn possess (p , )2, (x » ) > and (X ip i) as their i th element, respectively. 

P ro o f.  Substituting (2.67), (2.68), (2.69), (2.70), (2.72), and (2.73) into equation (2.59),

r (0  =  p +  n +  4 f - 2 L ( t ) - [i? +  fi'-2C (0]- ¿ ■ V D(t) x + x'  VD(t) <e (2.7 

+ ( i - 7 )
( l  -  1) (7 -  2)

---------- 2 -------- i
P w ( 0

But, because *£' V D ( t ) -£  =  53 ‘f i vi (0> and since v, ( t ) =  a i+ 0 j - X  (t), then ■Vl> (t ) -£  =
i=  1

E p,2«. + E • 2C(0. > e-

¿ ■ V D (t )  +  (2.78)

where ^2 € 9tn lias (y?, ) 2 as its i th component, a , is the i th element o f q , and 0  is a n x n 

matrix whose ¿^-column is 0,. Similarly, it is easy to show that

X! V u (t )  K =  ( £ ) '  • a  +  (x 2) '  P ' X ( t ) ,  (2.79)

and

x ' • V D (t ) ■ £  =  r  • a  +  r  • 0  K  ( t ) , (2.80)

where x 2 € 3irl has (x i ) 2  as *ls *th component, and (Xt<Pt) >s the i th element of T € 9tn. 

Equations (2.78), (2.79), and (2.80) prove that assumptions A .5’ and A.6 ’ guarantee affine 

specifications for |tr, ( i ) ' • a , ( i ) j , ( i ) ' • <j_m  ( 0 ]» a n < 1 "q.M  ( 0 -

Combining the last four equations,

r ( t )  =  {p  +  rr -  T) +  (1 -  7 ) 7 +  [-> £  +  C -  (1 -  7 ) F +  (1 -  7 ) ^
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( 7 — l ) ( 7 - 2 ) 2

---------5---------

+  ¡0 ' - & -  ( x ! ) '  • 0 + r  - 0  +  a  - i ) &  -  ( i  -  - r ) r  - 0

+  ( l ~ 7 ) ( g ? ) ' / ? - ( 7  J ) 2 ( 7  2) (g ? ) ' /? 2 L (t ),+  ( 1 - 7 )  ( ¿ ) '  ■& - ( ¿ )  /*' X ( t ) ,

and simplifying terms, equation (2.76) is obtained. ■

Equation (2.76) shows that our general equilibrium framework provides an affine form for

the instantaneous spot risk-free nominal interest rate. Moreover, the derivation of equation 

(2.76) also showed that it was only possible to obtain an affine form for r ( i )  because the 

drift, the variance, and the covariance of the output and money supply processes were also 

specified as affine functions o f X  (i).

Theorem 4 proves that it is possible to derive a risk-neutral process for X  ( t )  equivalent 

to equation (2.5), and therefore shows that the Duffie and Kan (1996) model is in fact 

consistent with our type of economy.

T h eo rem  4 In  a Duffie and Kan (1996) general equilibrium model with a power utility 

function, and with output and money supply processes described by assumptions A .5 ’ and 

A . 6 ’, respectively:

1. The risk-neutral process followed by the state variables under the equivalent martingale 

measure Q is equal to

i f  and only if  the stochastic process followed by the state variables under the original 

probability measure V  is assumed to be given by:

(2.81)

where

a = a + £ 0° • /?',

and

b =  b +  l : n D • q ,

with

i l D =  d ia g {\ l -  7 V>1 . • • • .Xn -  7*>n} •
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2. d W Q (t) =  A [X  (i)l dt +  d W v  ( t ), with

A [X ( i ) ]  =  V ^ ° ( t )  ( x - ^ ) . (2.82)

Proof. In order to obtain a relation between the risk-neutral and the non-risk adjusted 

drifts o f the model’ state variables, it is necessary to compute the Duffle and Kan (1996) 

model’ factor risk premiums (under a C R R A  economy). For that purpose, equations (2.71), 

(2.72), and (2.73) can be combined into

W  (0  -  r  ( i ) ]  F ( t )  =  ■ [ - 7E • V D ( t )  ■ £  +  E • V D ( t )  • x ] , (2.83)

where [E  • V l> (t )  • (x  — 7 <^)] is the vector of factor risk premiums, or the vector <1>y in the 

terminology o f Cox et al. (1985a). Because

W  (0 -  r (01 F ( t )  =  ^  ■ E • y jv > ( t )  • A [X  ( t ) ) ,

equation (2.82) follows for the vector o f market prices of risk.“”  Equation (2.83) identifies 

the analytical formula o f the equilibrium risk premium, which makes it possible to derive 

the fundamental DDE for the Duffle and Kan (1996) model, under a power utility function. 

Since F  ( t )  is considered to be wealth-independent,

H r ( t ) F ( t )  =  ( L F ) ( x , i )

d F ( t )  d F ( t )  . v  E. 1
- a r  + -fl* (*^  + *) + 2ir

d * F (t )

(2.84)

i)x i)x ’
E ■ V D (t )  • E'

Combining (2.83) and (2.84), the fundamental valuation equation that must be satisfied by 

the equilibrium value of any financial contingent claim is obtained:

d F ( t )  . v  . d F ( t ) 1
W  >  *  +  6 )+  a  +  j< r

d2F ( t )
dxdx'

E • V n (t )  ■ E' - r  (t)F (0(2.86)

The right-hand-side of equation (2.85) can be simplified, providing a simple expression 22

22 An Alternative derivation is provided in appendix 2.4.3.
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for the risk-neutral process followed by the model’ state variables:

(Xi -  (0

S V D ( t ) ( x - ^ )  =  E

_ (X n - 7 ^ n)l»n (0

e  • n °  q  +  e  • n D ■ p  ■ x  ( t ) .

Thus, «illa tion  (2.85) can be rewritten as

0 ^ 0 }  • [(a  -  E ■ n D ■ (? ) ■ X  (t ) +  ( 6  -  E • f i D • q ) ]  +  ^ 0 ^  (2.86)

which, when compared with (2.7), yields equation (2.81). ■

Equations (2.76) and (2.81) completely specify our (/■', u, A, a ) compatible term structure 

model (under a power utility function), and prove that the Duffie and Kan (1996) model 

can in fact be fitted into our general equilibrium framework. Equation (2.81) can now be 

us«l to estimate the model parameters from a time-series of values for the state variables.

A  special case: an econom y w ith  a log  u tility  function

Because the log utility function is just a special case of the power utility function (as "y tends 

to zero), the Duffle and Kan (1996) model can still be fittwl into a general equilibrium setup 

if assumption A. 12 is further specialized, maintaining all the other assumptions unchanged:

A .12” )

Next corollary presents the equilibrium instantan«nis nominal risk-free interest rate 

consistent with the above utility function.

C o ro lla ry  1  In  a Dujjir. and Kan (1996) gcnc.ral equilibrium model with a log utility fu n c 

tion, and with output and money supply processes described by assumptions A .5 ' and A .6 ’, 

respectively, the equilibrium specification fo r  the instantaneous nominal spot interest trite- is 

given by:

u (C , t ) =  e pt In (C ). (2.87)

r(t) = / + G'-2C(0, ( 2.88 )

with

f  — p +  tr — Q,
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and

G  =  0  — (3 •

Proof. Kquation (2.88) is simply the limit o f expression (2.76) as 7  —» 0. ■

Similarly, the risk-neutral process for X _(t) that is consistent with assumption A. 12” 

follows from theorem 4.

Corollary 2 In a Duffic and Kan (1996) general equilibrium model with a log utility Junc

tion, and with output and money supply processes described by assumptions A. 5 ' and A .6 ’, 

respectively:

(a ) The risk-neutral process followed by the state variables under the equivalent mar

tingale measure Q is equal to

dX_ (t) =  [a • X ( t )  +  6 ] dt +  E • y J v D ( t )  ■ d W a ( t ) ,

i f  and only i f  the stochastic process followed by the. state variables under the 

original probability measure V  is assumed to be given by:

d X  (0  =  [a • X  (t )  +  6 ] dt +  E • \ Jv l ) ( t )  ■ dW v  ( t ) , (2.89)

where

à =  a +  E • 4>° • /?',

and

6  =  6 + £  <t>° a.

with

<J>,J =  diag {x i>  • • • ,X n }  •

(b ) d W Q (t )  =  A [X  (0 ) dt +  dW v  ( i ),  with

A[A;(i)] =  i j v ‘> ( t )x -  (2.90)

Proof. Corollary 2 is obtained from theorem 4 by taking the limit o f expressions (2.81) 

and (2.82), as 7  tends to  zero. ■

Now, equations (2.88) and (2.89) completely specify a simpler but more restrictive 

( t/, A, <t) compatible term structure model, under a log utility function. This specifi

cation embodies as special cases several existing equilibrium term structure models, such 

as Cox et al. (1985b) and Longstaff and Schwartz (1992a), which were also derived under
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the restrictive type of preferences implied by the log utility function. Moreover, equation 

(2.90) is equivalent to the market prices of risk’ specification estimated by Dai and Single- 

ton (1998, equation 5), using the simulated method of moments, and considered by Lund 

(1997a, equation 25), through a linear Kalman filter implemented by QM L estimation.

2.3 Conclusions

This Chapter was intended to bring two main contributions to the existing literature. 

Firstly, in theorems 1 and 2 new equilibrium specifications are given both for the nom

inal short-term interest rate ami for the expected excess nominal return on a financial 

contingent claim, in the general context of a one-country monetary economy Secondly, 

theorems 3 and 4 propose a general equilibrium Duffie and Kan (1996) model specification, 

under the original probability measure V , that is compatible with the original model’ for

mulation under the equivalent martingale measure Q, and that is based on more realistic 

assumptions about preferences than those implied by the usual Bernoulli logarithmic utility 

function (since a power utility function was used). In other words, our model

is a very general term structure model, not only because it is the most general in the class 

o f the multifactor affine time-homogeneous interest rate models, but also because it relies 

on general assumptions about preferences. For empirical purposes, this (P , v ,  A, it) speci

fication is useful since it enables the econometric estimation of the Duflie and Kan (1996) 

model’ parameters from a time-series of values for the state variables or from a panel-data 

o f market observables.

In Chapter four, the analytical specification derived in the present Chapter for the vector 

o f market prices o f risk -equation (2.82)- will be used in order to rewrite the Duflie and Kan 

(1996) model into a state-space form.

2.4 Appendices

2.4.1 A n  a lte rn ative  p ro o f o f  T heorem  1

Following Dakshi and Chen (1997b, pages 818-819), formula (2.59) will be derived by as

suming from the beginning a pure exchange economy. Moreover, instead o f working in 

continuous time, we will start by considering time intervals o f length At, and later we will 

take A t  —* 0. Although the same closed-form solution for r ( i )  will be obtained in a much 

simpler fashion, this derivation does not provide any intuition towards the qualitative re

sults obtained in subsection 2.2.3; and, it is also subject to a discretization error of small 

magnitude.
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As usual, the time-t price of a default-free (unit face value) pure discount bond with 

maturity at time (t +  A t ) will be denominated by P (t ,  t +  A t). When A t  —* 0, r (t )  is the 

yield-to-maturity of such zero coupon bond, and therefore

P ( t , t  +  A t ) =  e - r(t)At.

On the other hand, it is well known that, in equilibrium, the loss o f marginal utility 

o f current consumption implied by the purchase o f a pure discount bond at time t must 

be equal to the gain o f expected marginal utility of future consumption implied by the 

obtention of a monetary unit at time ( t  +  A t). And, since P  (t, t A t )  monetary units at 

time t correspond to 1 ^p‘(t)A^ un>ts o f real consumption, one monetary unit received at 

time ( t +  A t )  is equivalent to units of real consumption, and it is assumed that

C ( t )  =  q (t ) ,  then

P ( t , t  +  A t ) 

p ( 0
««MO.*] =  Et +At),t  + A i] |  .

Combining the last two equations, and considering that u (q , t ) =  e ptU  (q )?

1 +  [p -  r  (t)] A t  ss E t
(U g [q ( t  +  A t)] p (t )

U q {q (t) ] p (t  +  A t ) 

Taking the Taylor series expansion of at p (t ),

1

} (291)

p (t  -I- A t)

where O   ̂A t  2 ̂  is a linear function o f A t 5 and higher-order terms, which are negligible. 

Multiplying both sides of the above equation by p (t),

P ( 0

p (t  +  A t )
_  . _  A p ( t )

p ( 0

A  p (t )

P (  0
+ 0 (At1)' (2.92)

Taking the Taylor series expansion o f p (t  +  A t )  =  ( M ( t ) , q ( t ) ) ,

..V A M  ( t )  M ( t ) A M  ( t )  , .  . . .0
p (t  +  A t ) — p(t)-| —J-T---------y -^ A q ( t )^ --- —- 3  ̂ [Af/ ( t )]

Q W  q (t ) q (t )

---- ^ A 9 ( t )A A / (t )  +  o ( A i - 2 ) ,
q(t)  V 7 23

23The above mentioned discretization error arises from the fact that exp{[/> — r  (t)] A f }  is only equal to 
{1 +  [p — r ( f ) ]  A f } ,  or equivalently, terms of order higher than A f  can only be ignored, when A f —» 0. In 
other words, such approximation ignores the difference between continuous and discrete compounding.
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that is

A p (t )

p ( 0

AA4 (t)  
Af ( t )

A<? (Q [ Ag(t)
9(0 9(0 .

A<? (t) A M  (t) 
9 ( 0  A / (i)

Substituting (2.93) into (2.92), and taking At —► 0,

(2.93)

p( 0
p(t + At)

d M  (t) dq(t)  . . . . .
1  ~  ~ M (i) +  7 ( 0  "  ^  (t ) ' ^  ( i )  dt +  CT« 'M (i )  di

+<tm (O' ■ (0  (O' • ^  (0  dt — 2<t, iM (t) dt + O (dt% )  ,

?<ZT5o  -  1 + b i  <<>' ■ a  (0 -  (>)] ■ " -  ^ ¡ f  + + o  (*>) • M

Again, taking the Taylor series of Uq [<j(t +  At)) at q (t),

Uq [q (t +  At)] =  Uq [q (t)] + Uqq [q (t)] A q (t) +  ±t/,„ [q (t)) [Aq (t)]2 +  O ( At i )  , 

and making At —► 0,

Uq [9 (t 4- dt)] =  t | t/wMQ)^
^  [9(0] i/,[9(0]

1 Uqqq [<? ( t ))

2 t/,[9(0)

(2.95)

<7, (t)' • trq (t) q (t)2 dt + O (d t^  .

Substituting (2.95) and (2.94) into (2.91), making At —* 0, and considering only time- 

dependencies,

1 +  [p — r (f)] dt =  E t M  +

r ,,,/ /.v /.\i , dM  (t) dq(t)
+ 7 m (0  ' 'LM (0  ~ °q,M (0] d t ----, +

9 (0 Uqq (t)
Uq{t) Vq.M  ( 0  d t +

A/(t) <7(0
9 (Qt/W(Q tr, (t)' • (t) dt -1- O

f/,(t) ^ H)}
Taking expectations,

[ p - r ( t ) ) d t  =  ( t )9 (t)dt + ^^^|| -ff,(t ) ' f f , (t )v (t )2di

+ 7 m (O' ■ q_M (0  -  <7,,M (0 ] dt -  PM (t) dt +  p q (t) dt 
9 (0 Uqq (0  . QW Uqq(t) . , ( ¡ \ m

------u r f t j ~  9' (  ) V q (t )  % ( l )  - a W d i .

Dividing both sides by dt, and because as well as , we get
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exactly the same result as in equation (2.59). ■

2.4.2 A n  a lternative  p ro o f o f  T h eorem  2

Once again, a pure exchange economy is assumed, and time intervals of length A t are 

initially considered.

In equilibrium, the factor risk premiums on any contingent claim F  (t )  must obey to the 

following Euler equation:

[ U g [q (t  +  A t ) , t +  A t] p (t )

‘ 1 U q [ Q ( t ) , t ]  p (i +  A i)
A F ( t )
F ( t )

=  0 .

Making A t —» 0, and substituting by equation (2.95) as well as by

equation (2.94), yields:

0  =  £’
{ [ 1 + v ^ M t )  + 2 ^ M ^ t)' ^ t),lW2dt

+ [£M (O' • (0 - (0] dt -  dMh\ + ~ <rq,M (0 dt

Multiplying both members inside the expectation operator, and taking expectations,

0  =

- c o v d F (t ) d M  (t) 
F ( t )  ’ M  (t )

IJq (t)

dt +  C O V
d F  (t ) dq (t )

~ F ( t ) '  W )
dt.

Finally, dividing both sides of the above equation by dt and rearranging terms, equation 

(2.65) follows. ■

2.4.3 A n  a lte rn ative  derivation  o f  A [X  ( i )] under a  pow er utility  function

Since p [A  (f)] =  v [X  (t)) — a [A  (t)] ■ A [X  ( i )], because a [X  (t ) )  is assumed to be invertible, 

and using equations (2.5) and (2.10), then

A [X(0] = £ • yJvD{t) ■ {[a X(0+fe] - [a X(t) + i>]}.

Attending to equation (2.81),

A [X (01 = \JV °  ( 0 • E ' 1 [£  • U °  ■ /? ■ X  ( 0  +  E • $1 °  • a ] .
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Finally, since £  • Q.D ■ 0  ■ K. (t) +  £  • $2W ■ a  =  £  • ( t ) ■ — 7 <£), then

A [ 2 C( 0 1  =  y/vD ( t ) ( x - i £ ) ,

as expected.
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Chapter 3

The Gaussian Special Case

This Chapter is based on the article Nunes (1998), which supersedes a working paper with 

the same title and presented at the 14th A F F I Conference (Grenoble, 1997).

3.1 Introduction

In this Chapter, simple analytical pricing solutions will be derived, for several interest rate 

contingent claims, under a Gaussian (nested) version o f the Duffie ami Kan (1996) model, 

which still preserves the 'mean reversion and ajjine yields features o f the original model.

Starting from the pricing formula for default-free pure discount bonds already derived 

by Langetieg (1980), closed-form solutions will be found for the prices of (short-term and 

long-term) interest rate futures, European (conventional and pure) interest rate futures 

options, European spot options on default-free (pure discount and coupon-bearing) bonds, 

caps, floors and European swaptions. Valuation formulae for European options will be 

derived through the probabilistic change-of-numcraire technique developed in El Karoui 

and Rochet (1989), El Karoui et al. (1991), El Karoui, Myneni and Viswanathan (1992a), 

and El Karoui, Myneni and Viswanathan (1992b). Hence, the pricing solutions that are 

going to be obtained for European options on-the-spot can be considered as just special 

cases o f the more general ones contained in the above; mentioned papers, and in this case, 

the only contribution that will be made is to adapt the previous results to the context of 

the Gaussian Duffie and Kan (1996) model specification, that is to specify and to compute 

the appropriate volatility parameters needed as an input for the option pricing formulae. 

Interest rate futures will be priced as moment generating functions -following Chen (1995)- 

by exploring the Gaussian specification of the state variables, and European futures option 

prices will be found not only for short-term interest rate futures and pure discount bond 

futures but also for futures on coupon-bearing bonds. A put-call parity relation for European
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options on coupon-bearing bond futures will be deduced.

The main contribution o f the present Chapter consists in providing simple pricing for

mulae that do not involve a single univariate integral, under the most general Gaussian 

multifactor mean-reverting and affine term structure model. These analytical pricing so

lutions can be efficiently applied, for instance, to construct martingale control variates -as 

in Clewlow and Carverhill (1994)- in Monte Carlo implementations of the more generic 

stochastic volatility specification, or just in the context of any Gaussian time-homogeneous 

affine model previously derived in the literature. 1 More specifically, in the context o f this 

dissertation, these Gaussian pricing formulae will serve two concrete purposes: they will pro

vide the non-linear measurement equations for the Gaussian state-space models estimated 

in Chapter four; and, they will be used, in Chapter five, to derive analytical approximate 

pricing solutions under the most general stochastic volatility specification o f the Duffie and 

Kan (1996) model.

Next sections are organized as follows. Section 3.2 presents the Gaussian version of 

the Duffie and Kan (1996) model, and fits it into the Langetieg (1980) model. Section 3.3 

introduces another martingale probability measure, which is equivalent to Q  and will be 

relevant for the pricing o f bond options. In section 3.4 closed-form solutions are derived for 

the prices o f European options on default-free (pure discount and coupon-bearing) bonds, 

being then generalized for the valuation o f interest rate caps, floors and European swaptions. 

Section 3.5 provides pricing formulae for futures on short-term and long-term interest rates, 

which will be then used as an input to obtain, in section 3.6, closed-form solutions for the 

prices of the corresponding European options. Finally, some accessory proofs are presented 

in the appendix.

3.2 Nested Gaussian specification

The deterministic volatility specification of the Duffle and Kan (1996) model is obtained by 

imposing fli =  0 (for i =  1 , . . .  ,n ) in equation (2.5). This nested Gaussian specification is 

then given by equations (2.1) and (3.1),

d X { l ) =  [a X ( t )  +  b}dt +  S  d W Q ( t ) , X ( t )  € 9?", (3.1)

1 Although such Gaussian models possess the drawback of not precluding the existence of negative interest 
rates, Schlögl and Sommer (1998) have found that the mean reversion feature and the dimension of a term 
structure model are much more important than the distributional characteristics of its state variables. 
Therefore, the tractable and general Gaussian framework under analysis in the present Chapter is relevant 
on its own and it is not merely instrumental.
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where S  =  £  • V U D, with V U D =  drag {  , ,/nf,} ,  and includes, as special cases,

all Gaussian affine and time-homogeneous models previously derived in the literature. 2 In 

essence, this formulation corresponds to the Langetieg (1980) multivariate elastic random 

walk model, and thus an analytic formula exists for default-free pure discount bonds.

P rop os it ion  1 Under the deterministic volatility specification o f the Duffie and Kan (1906) 

model and assuming that matrix a is non-singular, the price o f a riskless zero-coupon bond 

is given by equation (2.1), where

B ' ( t ) =  G ' a 1 •(/» -  eOT) , (3.2)

t (G ' a 1 b - f )  +  B ' ( r ) ■a 1 ■b + — G 1 ■ a 1 ■ 0  ■ (a  1 ) ' Q  (3.3)

+ G ' a ~ ' • (In — eOT) • a ” 1 ■©■ ( « - * ) ' a

1 • A ( r )  ■ (a -1) '  •G,

and

/
T

e“<T v) e . e° ( T - v)dv (3.4)

with 0  =  S ■ S ', and I n € 9fn * n denoting an identity matrix.

P ro o f. When we move towards a Gaussian specification, in which (it =  0 (for i =  , n ),

equation ( 2 .8 ) is replaced by the following first order nonhomogeneous linear system of 

differential equations (with constant coefficients, since the matrix a is time-independent):

^ ; S ' ( r )  =  +  a. (3.5)
O T

In appendix 3.8.1 it is proved that the solution for this simple initial value problem is 

given by equation (3.2), where eOT =  Although derived in a different way, this

closed-form solution corresponds exactly to the risk vector V  (i, T ) ' -  •/■) !>xJ{t) (L  / )

of Langetieg (1980, equation 25). Bach one of its components measures the sensitivity of 

the bond rate o f return (over a small time interval) to an instantaneous change of each one 

o f the state variables, and can therefore be interpreted as a duration measure.

Concerning equation (3.3), because it can be shown that, under the Gaussian specifica

tion, Ylk i [ n "  i ( T) £i * ] '  Q* =  l i '  ( r ) s  S ' a  ( r ) , and since A (0) =  0, integrating

2 Moreover, because matrix a is not assumed to be diagonal, even a richer family of interest rate dynamics 
can be obtained from equation (3.1).
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equation (2.9) between 0 and r  yields:

(3.6)

Finally, using solution (3.2) and straightforward integral calculus, formulae (3.3) and (3.4) 

are obtained. * ■

R em ark  1 As noticed in Langetieg (1980, footnote 20), matrix a will be. singular only if  

one o f the state, variables follows a mndom walk. Even in such case, equations (3.2) to (3.4) 

can always be. replaced by the. more, general solutions described in Lund (1994, appendix A ).

Matrix A  (r )  can be interpreted as the covariance of the state-vector X  ('/’), computed 

under measure Q  and conditional on (Ft- Next proposition offers an analytical solution, 

involving no single integral, under the assumption of linearly independent eigenvectors for 

matrix a.

Propos ition  2 Under the deterministic volatility specification o f the. Duffie. and Kan (1996) 

model and assuming also that m atrix a is diagonalizable,4 the. function A  ( r )  possesses the 

following explicit solution:

A, ( i =  1 ,.... n) is the i th eigenvalue of matrix a, and Q  is a n x n matrix whose, columns 

correspond to the eigenvectors o f  matrix a.

Proo f. See Langetieg (1980, footnote 23) or appendix 3.8.2. ■

Rem ark 2 As argued by Duan and Simonato (1995, page. 26), thus “assumption o f diag- 

onability does not involve an appreciable loss o f generality” because the eigenvalues o f a 

matrix are continuons functions o f  its elements (and thus multiple roots o f the character

istic equation can be avoided by a small adjustment in the original matrix). Nevertheless, 

fo r the numerical experiments presented in this thesis, all matrix exponentials are computed 

using Uadi approximations with scaling and squaring. For details, see Van Loan (1978).

1 Alternatively, the analytical solution for A ( r )  also follows by combining equations (30), (32), anil (30b) 
of l.angctieg (1080), remembering that bis vector V  (t. 7 ) corresponds to U (r ) ,  and considering the following 
additional notationa) conversions from Langetieg (1080) to our framework: w G, 11 a, a b. tr /, 
51 S  • S ', and 0 0, since we are already working under a risk-neutral probability measure.

4 Meaning that matrix a possess n linearly independent eigenvectors (while the corresponding eigenvalues 
do not need to be distinct). Nevertheless, if  the eigenvalues of matrix a are distinct (and different from zero, 
since a is assumed to be non-singular), then matrix a will be diagonalizable.

A  ( r )  =  eo(T ■'> • Y  ■ e°'( r  *> -  Y, (3.7)

where. 0 *  =  Q  1 0  (Q  * )' =  {t r * , }
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3.3 Probabilistic change-of-numeraire technique: from mea

sure Q  to measure Qo

Option prices will be obtained by decomposing the option value in terms of two or more 

particular numeraires, and in terms o f their related martingale measures. One of the nu

meraires will always be the pure discount bond expiring at the option's maturity5, P  (£, 7o), 

to which is associated the forward measure that will be denominated by £2o- The other nu

meraires and their associated probability measures will be defined according to the option's 

underlying asset.

Since options will be priced under the reference martingale measure Qo, and the sto

chastic process (3.1) was previously defined under measure Q, the purpose o f this section 

is to establish the change o f probability measure from Q  to Qq. In what follows, we will 

consider a stochastic intertemporal economy with a finite time horizon T  =  [0 ,7 / , ] , 6 * where 

uncertainty is represent«! by a complete filtered probability space ( i l ,  T ,  ( ^ i ) teT , "P) and 

where all the information accruing to all the agents in the economy is described by a (right-) 

continuous filtration (T t ) t e 7  with To containing all the V —null sets of T ?  Following Har

rison and Pliska (1981) and assuming that the market is arbitrage-free,8 once the change 

to the martingale measure <2 o has been established, then it will be possible to consider the 

time-i forward price (for date To) of any attainable contingent claim V  which settles at time 

To, r f To), as a Qo-martingale, and thus the following fundamental pricing formula will be 

us« ! : 9

P (i ,7 b )
=  E £o

V,To
Et , Vi <  7o, (3.8)

P  (To, 7b)

assuming that the terminal payoff Vj-0 is TVo — measurable and that the integrability condi

tion E q 0 [ | pfiTb) |] <  oo is valid for all t.

3.3.1 P ro b a b ility  m easure Q  a n d  the num eraire  6 ( t )

First o f all, it will be proved that the numeraire associated with the initial martingale 

measure Q  can be thought o f as being the value o f a “money market account” . For this 

purpose, 6 (t )  will represent the time-i value of a monetary unit invested at time 0  on the 

money market and continuously reinvested at the riskless instantaneous spot interest rate,

5The option's expiry date will be denominated by 7’o, and P (t,T o ) is usually called the “reference bond".
67’;, can be thought as the largest maturity to be used in the subsequent analysis.
' ( T )u  l will be understood as the V —augmentation of the natural filtration generated by a standard 

n-dimensional Brownian motion defined on the probability space (I I .T , P )
’ And therefore considering that there exists, at least, one equivalent martingale probability measure
9 E q ' (Y \Jrt )  denotes the time-i expected value of the random variable V , computed under the probability 

measure Qi
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that is

6 (t )  =  exp
[ A <

s) ds

Let P  (t, T i), or simply Pi, be the time-i price o f a risk-free pure discount bond maturing 

at time Ti (and with a face value equal to one monetary unit). Using equations (2.1) and 

(3.1), and applying ltd’s lemma to P (t ,T i ) ,

d P ( t ,T j )
=  r ( t )  dt -I- B ' (T i) ■ S  ■ d W Q ( t ) , (3.9)

where t, =  T, — t represents the time-to-maturity o f the zero coupon bond under analysis. 10 

Applying again ltd ’s lemma to In [P (t ,  7))],

din [/>(*, 7;)] = [S'(n) S] • [£'(T<)-S ] 'jd i  + £ , (T<)-S -dVi:«(i),

and solving this stochastic differential equation for P ( t ,T i ) ,  yields

P ( t , T i )  =  P  (0 ,7 ;) exp [ l T (u )d u -  \  f  B '(T t - u )  S  S ' B ( T i - u ) d u  
Jo 2 Jo

+  J  b ' ( T i - u )  S d W a  (u)l .

Dividing both sides of the last equation by [5 ( t )  S (0)], and since <5 (0) =  1 ,

P(t,'I\) P(0,Ti) \ 1
— 5------  — — 5------■ e r "  1

6 ( t )  6 (0 )

+ f  B ' (T i -  u ) ■ S  ■ d W Q (u 
Jo

XP V 'i -  « )  • S  ■ S ' ■ a  ( T i -  U) dii

(3.10)

Finally, the exponential martingale formula allows us to write the following SDK for the 

relative price o f security P (t ,7 \ ) with respect to the numeraire 6 (t):

P ( t , T j )
6 (t )

(3.11)

Equation (3.11) shows that 1 ^  is a local martingale under the equivalent probability 

measure Q. Hence, if the following Novikov’s condition is further assumed,

* c { e x P [ i /  B 1 (T i -  u) - 0  B (T i  -  u )du  JF0| <  oo, (3.12 )

then is a martingale and therefore, it can be concluded that the numeraire associated

10The functional form of the drift is a consequence of Q  being a risk-neutral probability measure: by 
definition, the instantaneous return on all securities equals the riskless instantaneous interest rate.
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with the equivalent probability measure Q  can be thought of as being the value of the 

“savings account” , 6 (t). In fact, rewriting equation (3.10) for the time interval [s, t] (instead 

o f [0, f]) and because the random variable f  ' B ' (7 ) — u) • S ■ d W Q (u), conditional on is 

normally distributed with mean zero and variance J* B ' (T< — u) • 0  • B  (7', — u) du, then

E q
P (t ,T \ )

6 (t ) •J s p ^ i )  « p  j f  B U T i - u )  S  B  (7 ; -  it) du

+ 0 + ^ [ b !  ( T i - u )  e  B  ( Ti -  u) du

6 (s )
Vs <  t.

Concerning the integrability condition E q [|^4^^|] <  °o,V i, using assumption (3.12) and 

the fact that both P ( t , 7 ) )  and 6 ( t )  are positive price processes, it is only required that the 

relative price '  is finite.

3.3.2 P ro b a b ility  m easure Qo an d  the num eraire  P  (t ,T o )

As we shall confirm in subsection 3.5.1, the relative price process P (t ,7b ,T i) =  , for

t <  To <  Ti, is the time-f forward price, for delivery at time 7o, o f a riskless pure discount 

bond expiring at time 7). Using It6 ’s lemma and equation (3.9) , 11

d P ( t ,T 0,T i)
Pi dPp I\ d l\  I\ i d P o V  P ,d P 0 d/\ 

Po Po +  Pa P, +  Pa \ P o  )  ~  Pa Pa P i  ’

that is

dp l w r t r i  =  - M 0 d i  +  £ > o )  s  <w :c (t )]

+  [ r ( t ) d t  +  B ' ( T , ) S d W Q (t ) ]

+ B ' ( t o )  S  S ' B  (r0) dt -  B ' (r t) • S  S ' B  (r0) dt,

where r0 =  To — t is the time-to-maturity o f the option. And, since the last two terms on 

the right-hand-side o f the above equation are both scalars,

=  W  f a )  -  £  (ro )] • S  • [ - S '  ■ B  ( to ) dt +  d W °  (0 ]  •

Hence, if another probability measure Qq defined on the measurable space (12,/*), and

11 For easy o f exposition, let P ( t ,T { )  =  P*, Vi.



equivalent to Q and V, exists, such that

dWQo ( t) =  -S '  ■ B ( r 0) dt +  dWQ (t) (3.13)

is also a vector o f standard Brownian motion increments in 0in (with the same standard 

filtration as dW ® (t )  and d W p ( t )), then it will be possible to write:

dp ^ T o 'j\ )  =  & {Ti) -  &  M ' 5  ' d^ C° ( 0  • (3 -M )

In order for equation (3.14) to be valid, it is necessary to prove that the Radon-Nikodyrn 

derivative of Qo with respect to Q  (at any terminal time t <  7 o )12, which (from Girsanov’s 

Theorem) is given by

( ^ )  ~ e x p j - j i  [ -S '  ö (T o -u ) ] '  dJVc (u)

( To -  u ) • S ■ S ' • R  (7 b  -  u ) d u | ,

(3.15)

is a martingale. And, for that purpose, it is sufficient to assume -see, for instance, Lamberton 

and Lapeyre (1996, remark 4.2.3)- that the Novikov’s condition (3.12) is satisfied with i =  0, 

i.e.

Eq u) ■ Ö ■ B  (7b — u) du <  oo. (3.16)

In fact, combining equations (2.1) and (3.6), it follows that the growth condition (3.16) is 

a natural requirement for the boundedness of pure discount bond’ prices.

The sufficient condition (3.16) can be illustrated if a change o f numeraire is associated 

to the above change of probability measure (from Q to Qo)- lieplacing 7, by 7o in equation 

(3.10), and dividing both sides by - ,  gives

P ( t , T 0) 6 (0 ) 
P  (0,7b) 6 ( i )

exp [ -  \ f *  B ' (To -  u) ■ S S ' ■ B  (To -  u) du

+  f  B '(T o  -  u ) S  d W a (u ) ]  ,
Jo

which when compared with (3.15) yields the usual result:

fdQo\ P(t,Tp) 6 (0 )

\ d Q j t P  (0 ,To) 6 ( 0

I'liat is, if P ( t ,7 o ,7 }) is a martingale with respect to the probability measure Qo, and

12That is restricted to Ti.

64



because P ( t ,T o ,T i )  can be interpreted as the relative price o f security P ( t , T i )  with respect 

to the numeraire P  (£, Yo), then it is easy to conclude that the numeraire with respect to 

which Qo is a martingale measure must be the price of a pure discount bond maturing at 

the option expiry date (i.e. the price o f the “reference bond” ). In fact,

* » [ ( w ) . K
= P (i ,7 b ) ¿ ( 0 ) 

P (0 ,T o ) 6 (t )  ’

5(0 ) E
\ P ( t ,T 0)

T .
P (0 ,T o ) ® 6 (t )

and because, under assumption (3.16), 1 is a Q-martingale, then

V 3
6 (0 ) P (a ,T 0) 

P (0 ,T o) 6 (a )
fd Q o \ , V.s <  t,

S\ d Q j

which together with the integrability condition13  E q [J | j  <  oo, Vi, ensures that the

Radon-Nikodym derivative (3.15) is indeed a martingale.

In order to simplify the notation, we shall define from now on

H i ' ( t ) =  [ f l ' i r O - B ' i r o ) ]  • S, (3.17)

where //,(£) G Si" can lie interpreted as a vector of forward price volatilities, and thus 

equation (3.14) becomes

T w )  - f l ' W  <118>

file vector //, (<) is time-dependent but not state-dependent and, as it will be shown later, 

this state independence feature of equation (3.18) will greatly simplify the valuation of 

interest rate contingent claims. Notice that, from equation (3.2), a simple closed-form 

solution is available for Hi (t ) .

Applying the same reasoning, it is a simple matter to show that, in general, 

d W Qi (<) =  - S '  ¡3 (r .) (it +  d W a ( t )

is a Q i-measured vector o f standard Brownian motion increments in 9in, where t2i is the 

martingale measure associated with the numeraire P  (i, 7’,), as long as condition (3.12) is

_______________________________________________ t
13That also follows from assumption (3.16).
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met. Equivalently, combining the last equality with equation (3.13), it follows that

d W Qi (t) =  - H, (t) dt +  d W Qo ( t ) . (3-19)

3.4 Pricing of European bond options

3.4.1 O ption s on  pu re  discount bonds

Since in subsection 3.3.2 it was shown that Qo is a martingale measure with respect to the 

numeraire /* (i, 7’o), it is now possible to use result (3.8):

the asset P  ( t , T\), with a strike price of K , and expiry date at time 7’o <  T\. P  ( t , T \) is the 

time-i price o f a (unit face value) riskless zero coupon bond, maturing at time T \, and will

where e =  {u> € i l  : P (To, T )) (uj) >  K )  is the set o f states of the world in which the option 

ends in-the-money and is exercised. 16  Combining the last two results,

Now, it is necessary to compute the two expected values embodied in the previous

paying security is, in general, equal to the value of the correspondent European call. However, when we are 
dealing with interest rate contingent claims this property is only true if the spot interest rate is positive. Since 
in any Gaussian term structure model the price process of the “money market account” is not necessarily 
increasing, then the Q-probability of attaining negative spot interest rates is not zero, and therefore the 
results obtained in this subsection could only be extended to the pricing of American options if one assumes 
that such Q-probability is small for reasonable parameters’ estimated values.

15 As usual, (a:) f =  max (x, 0 ), Vx € 3?.
16The dependency on the path (u>) will be omitted hereafter.

ci [P  ( t , T i ) ; K\Tp\ C7h [/•* ('/;,f'o ,T i) \K\Tq 
(To, 7b)

where ct [P  (t, 7 ) ) ;  K ; 7’o] represents the time-t Gaussian fair price of an European14  call on

hereafter be referred as the “underlying bond” . Because the option’s value at the expiry 

date equals its intrinsic vcdue, then15

cTo [P {T 0,T x)-,K -,T0] =  [P (T o ,T i )  — K\^

= [P (T0,T ,)-A ']1 „

c,[P(i,T,);/C;Tol = (3.20)

14 Prom Merton (1973a, theorems 1 and 2) we know that the value of an American call on a non-dividend
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equation. Beginning with the second one, and since P  (To, 7o) =  1,

In order to compute the first expected value, it is convenient to make another change of 

probability measure (and thus another change of numeraire). Because P ( t , T i )  is a non-

represents the time-i price of any attainable contingent claim Y  which settles at time 7q, 

the following conditional expectations formula can be applied:

assuming that the terminal payoff Yj-0 is F t0 —measurable and that the integrability con

dition E Qi 11 7»~(tVi ) [] <  0 0 ls va*'^ f ° r t- Or, expressing the Radon-Nikodym derivative

(1989, equation (2.4) with N  — 1 ). Next proposition computes explicitly the two expec

tations involved in the last pricing formula, and also presents the corresponding result for 

European puts.

P ropos ition  3 Under the Gaussian specification o f the Duffie and Kan (1996) model, tin 

time-t piice o f an European call on the riskless pure discount bond P  (t, T \), with a strike

>7Sincc it is a zero coupon bond.

dividend paying numeraire17, and condition (3.16) ensures that is a Go-martingale, it

is possible to define an equivalent martingale measure G i with a Radon-Nikodym derivative 

with respect to Qo equal to

(3.21)

in terms o f the numeraires, and since j is a Go-martingale, then

(3.22)

Applying relation (3.22) to the first expected value in equation (3.20),

c, [ P ( t , T i )  ; AT; To] =  T ( t , T , )  E Q, ( l e| T t) -  K P ( t , T 0) ( 1*1 F t) ■ (3.23)

Equation (3.23) is a standard result: it corresponds, for instance, to El Karoui and Rochet
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price equal to K , and with maturity at time To (such that t <  To <  T\) is equal to

ct [P  (t, T i )  \K\7b] =  P (t ,T \ )  4> [d, (t)l -  K P (t, T0) 4> [do (0). (3 24)

with

d, (t ) =

in r p m )  ] . viiioj 
111 [KP(t,r0)J ^  2

do ( t )  =  d, (t ) -  v/Vl (to),

V i (to) =  f i ' (T, - T o )  A ( T o - t )  B ( T ,  - 7 b ) , (3.25)

r0 — I'o — t, and where 4> represents the cumulative density function o f the univariate 

standard normal distribution. The corresponding put price is

Pt [ P ( t ,T i ) ;  K\ To] =  —P(t,T\)& [—d, (£)] +  KP( t ,To )  [—do ( i ) ] . (3.26)

P roo f. 1'Yom the definition o f the exercise set e, and since the expectation o f an indicator 

function results in a probability, then

E q0 ( 1«I F t) =  Pr [ P  (To, T, ) >  K\ P t ] ,Co

where l’ rg 0 [•] represents a probability computed under the martingale measure Qo This is 

simply the probability, under the martingale measure Qo, that the option will be exercised 

at time To- Moreover, because P  (To, To) =  1 and P  (7o,To,7’i ) =  , then

Eao(\c\Ft) =  P r [P (T0,To,Ti ) > K\Ft].
Qo

In order to compute the last probability it is necessary to know the probability distribu

tion of the forward price P ( t ,  To,T\) under Qo. This information can be obtained by using 

equation (3.18)18, and applying Itô ’s lemma to In P (t ,T o ,  T j):

d ln [P ( i ,T 0 ,T i)] =  H i ( t ) d W a° ( t )  -  X- H J  ( t ) H i ( t ) d t .

lient»,

P  (f,T p ,T \ ) =  P  ( 0 , 7'o, T\ ) exp - \ v U t) + f  H i  ( • ) - (W .Qo W (3.27)

"With 1 1.
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where19

(3.28)
Jo

Applying equation (3.27) to the time interval [t, 7o] corresponding to the option’s life,

E<2o ( l«l Ft)

Using, for instant*, corollary (4.5.6) o f Arnold (1992), and assuming that V\ (r0) <  oo, it 

follows that the stochastic integral contained in the last equality is normally distributed 

with mean zero and variance equal to l/j ( to). That is20

where Pr^, [•] represents a probability evaluated under the martingale measure Q\. This is 

just the Qi-probability that the option will be exercised at time To, and Q\ is the equivalent 

martingale measure obtained from Qo by changing the numeraire from the “reference bond” 

to the “underlying bond” . Now, it is necessary to find the probability distribution of 

/■’ (7b, 7’o, 7 j ) not under Qo but under the measure Q\.

Therefore,

*  [do ( 0 1 - (3.29)

Concerning the second expectation involved in the pricing solution (3.24),

EQ t(l'\F t)  =  Pr[P(To,7’,) > K\Jrt\
Q1

=  Pr[P(7b,7b,7’,) > K \F t\,
Ql

Using (3.21)
**(70,70,7 j)
P  (0,7b, 7’, )  ’

19Vi (t) is time-homogeneous because only depends on the durations vectors II (•), which arc also
time-homogeneous.
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while considering equations (3.27) and (3.28),

( s l O r  = «p [-5  j f  H i! (-) • Ux M  -  + /o/0 W  ■ ^ Co W  ■

Thus, Girsanov’s Theorem implies that

d W Ql ( t )  =  - H i  ( i )  dt +  d W Qo ( t ) ,

as long as condition

exp Jo — # ^  ^ ds
<  oo

is verified, which agrees with the more general formula (3.19). Combining the last equality 

with equations (3.27) and (3.28),

P  ( t , T0, T i)  =  P  (0, T0, T i ) exp 

Consequently,

rTo

\ V i ( t )  +  j ‘ H ± (s )  d W a ' (s', (3.30)

£<2 , ( 1 ,| F t )  =  Pr {  J °  H i  ( - )  ■ d^ Cl (• ) <  In
P  (f, To, T \)

K +  2 Vi ( To )p rt}
Finally, since j H± (s) • d W Q' (s)J ^  Arl (0, Vi ( to)), then

f fin TiL^2U + ^ l  _ o ’

EaA '- w  * { J— v m i

Combining the last equality with equations (3.29) and (3.23), the pricing solution (3.24) 

follows immediately.

In order to obtain the European put valuation formula (3.26), it is only necessary to 

substitute equation (3.24) into the well known put-call parity for European options on zero 

coupon bonds,

ct [ P (t, T , ) ;  K-, To) -  pt [ P ( t ,T j ) ;  K \T0] =  P (t, 7’, ) - K P ( t , T0) ,

yielding

Pt [ P ( t , T i ) ; i f ;To] =  - P ( t , T , )  [1 - * ( d ,  (0)1 +  K P ( t , T 0) [1 — 4» (rfo (0)1 •
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Since the normal distribution is symmetric21, equation (3.26) is obtained.

Finally, the explicit solution for the volatility term V\ ( tq) follows when combining ex

pressions (3.28), (3.17) and (3.2):

Because the first integral on the right-hand-side o f the last equation corresponds to matrix 

A  (7b — i), and converting all the other integrals as functions also of A  (7o — £), yields:

F, (r„) = G ' ■ a 1 • [a  (7b -  t ) -  A  (T„ -  t )  ■ e°'<T>"T°>

_ ea(T, -To) . A  (To -  t ) +  e°<ri - T°) ■ A  (7 ’o -  t ) ■ ea'<r ' T°>] • (a  *)' ■ G.

Rearranging terms, the analytical solution (3.25) follows easily. ■

Equation (10.2) o f Duffie and Kan (1996) is a special case of formula (3.24), when n =  2

analysis, equation (3.24) is just a generalization o f a standard result for Gaussian term 

structure models in the one-dimensional case -see, for instance, Jamshidian (1991, corollary 

1). It is also similar to the Black and Scholes (1973) stock option pricing formula, because 

both formulae assume a log-normal distribution for the underlying asset, but it has three 

main differences: formula (3.24) does not assume deterministic interest rates; the volatility 

used to price the option is time-dependent, and thus not constant; and finally, the “pull-to- 

par” phenomena is taken into account, since B  (0 ) - 0  and A  (0 ) - 0 . However, and as it is 

usual in any Gaussian framework, the existence o f negative interest rates is not precluded.

3.4.2 In terest rate  caps, floors, collars and  y ie ld  options

The results obtained so far for European options on default-free pure discount bonds can 

be easily generalized for European options on nominal2 2  “ money-market” forward interest

21 That i» <t> (—x) =i 1 — 4> (x).
22That is rates involving simple (as opposed to continuous) compounding.

Since 0  =  5 - 5 '

t
_ eo(T, u) . «  . e o'(T0 u) +  e<.(T, « ) . 0 . c o'(T, v ) j r fuJ . ( a  > ) ' . £ .

and a, =  1 ( f o r  i  =  1,2). Besides the functional form o f the volatility term V\ ( to ),  which 

is related to the particular specification of the Duffie and Kan (1996) Gaussian model under
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rates, under the Duffie and Singleton (1997) assumption o f symmetric counterparty credit 

risk. In fact, Duffle and Singleton (1997) have shown that, as long as the counterparties 

have symmetric probabilities o f default, any term structure model previously formulated 

for government yield curves can also be used to price defaultable interest rate contingent 

claims, after the short-term interest rate process is adjusted for default and liquidity factors. 

Therefore, the symmetric credit risk assumption as well as the other four implicit hypothesis 

described in Duffie and Singleton (1997, section 1) will be adopted hereafter whenever the 

pricing o f LIBOR-rate derivatives is dealt with. Note however that, since the risk-free short

term interest rate must be replaced by a risk- and liquidity-adjusted instantaneous interest 

rate process when the term structure model is applied to LIBOR-rate derivatives, it is not 

possible to price simultaneously riskless and defaultable interest rate contingent claims.

The value of an interest rate cap can be decomposed into a portfolio of caplets. The 

terminal payoff of a standard caplet for the compounding period (L *  l ~  £«), with i , , ] >  i t, 

occurs at time L+l, and is equal to:

[ f l ( t i , t i+ l )  - f c ]+ ( i < + 1  - t i ) ,

where R (t{ ,  i , 1 1 ) is the time-i, spot interest rate (with a compounding period of ( i , , i — i,) 

years) for the period ( L f  i — t,), k is the cap rate, and the cap is assumed to have a unit 

contract size. Therefore, the time-i value of the caplet, with t <  i*, is equal to the price of an 

European call on the time-i forward rate for the period (iit  i — tt ), with a strike equal to k, 

with maturity at time L n , and with a contract size of ( i t + 1 — ti). However, it is well known 

-see, for instance, Baxter and Rennie (1996, page 171)- that the same caplet can be valued 

as an European put with maturity at time t,, with a contract size o f [ 1 +  (i, ( i — tt ) Ac], with 

a strike price o f *, t̂ k, and on a pure discount bond with maturity at time i , , i . That 

is the time-i value of the caplet corresponds to

[ 1 +  ( i < + 1  -  t i )k ]p t P ( t , t i+ ,)
_______ 1_______

1  +  (¿i+ 1 — U) k '
(3.31)

which can be computed, for the deterministic volatility specification o f the Duffie and Kan 

(1996) model, using equation (3.26).

Similarly, the time-i value o f a floorlet for the compounding period (i, n  — it), with 

i, ( i >  i,, can be shown to be equal to the price of an European call with maturity at time 

it, with a contract size o f [ 1  +  ( i i + 1 — i,) fc], with a strike price of —¿-jj, and on a pure
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discount bond with maturity at time £j+j:

[1 +  (<t+l -  t i )k ]c t P  (£, ij+ t) ;
1

(3.32)
1  +  (£i+i — i«) k

where k is now a floor rate. Consequently, an interest rate floor (i.e. a portfolio of floorlets) 

can also be valued, under the Gaussian version of the Duffle and Kan (1996) model, using 

proposition 3. The same can be said about the valuation of interest rate borrowing/lending 

collars, since their value is decomposable into a long/short cap and a short/long floor, 

respectively.

In order to value European yield call and put options, with settlement in arrears (i.e. 

with payoff generated at time ¿,4 1 ), on the time-i nominal forward rate for the period 

( £ ¿ 4 1  — ¿¿), with a strike equal to k, witfi maturity at time l it and with a unit contract 

size, it is simply necessary to divide the valuation formulae previously given for caplets and 

floorlets by the compounding period ( £ ¿ 4 1  — £,).

3.4.3 O p tio n s  on co u p o n -bea rin g  bonds  

Rank 1 approxim ation

Representing by ct [5 (£); X ;  To] the time-£ fair price o f an European call with a strike price 

of X , expiry date at time 7o, and on a coupon bond with present value S  (£), and because 

Qo is a martingale measure with respect to the numeraire /■’ (£, 7o),

Since at time 7’o the option's time-value is zero, and thus its price corresponds to its 

intrinsic value, then:

where To <  T\ <  . . .  <  Tn o, and No represents the number of cash flows k, generated by 

the underlying coupon bond from time 7’o and until the bond’s expiry date (T/v0). Defining

C [S (£ );* ; To] = />(£, To) ECo
>’ (7b);.Y;7b] 
P  (To, Tq)

(3.33)

cTo [S (T o);A - ;T o1 =  [S (T 0 ) - J Y ]  +
fNo
5 ^  k iP  (To, T i) — X
l

by 0 =  {w  € f i  : S (To) (u>) >  X }  the set o f states of the work! in which the option ends 

in-the-money, the option’s terminal value may be rewritten as:

No
cTo [S (To) ; -Y; To] =  £ > ,P (T 0,T,) -  X 1».

.1 1
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Using this result,

No
ct [S ( i ) ; * ;  7b] =  £ > , T ( i , T 0) E Qo

i= 1

—X P ( t , T o )  E q0

Because P  (To, 7b) =  1, then

1 »

P { r 0J \ )  1,

P (T b , To) 

1 «

(3.34)

P  (To, To)
T t

EQo P  (To, To)
F t =  P r [ S ( T „ ) > X | * i ] ,Co (3.35)

which corresponds to the Qo-probability that the option will be in-the-money at time To. On 

the other hand, because P ( t , T i )  is a non-dividend paying numeraire, and condition (3.16) 

ensures that is »  Qo-martingale, we can define an equivalent martingale measure Q,

with a Radon-Nikodym derivative with respect to Qo equal to2'*

fd Q ,\  P  (7'q, 7',) P (0 ,T q)

{ ‘IQo J to P (0 ,T i )  P  (To, 7q) ’

such that

P  (t, To) pQo
P (T o ,T o )

=  P ( t , T i ) E Qi Yto

P ( T 0,T i )

where V, represents the time-i price of any attainable contingent claim Y  which settles 

at time 7b, and subject to the appropriate integrability and measurability conditions (the 

proof is identical to the one already given for equation (3.22)). Hence,

P ( t , T 0) Eqo
P (T o ,T j )  la 

P (T o ,T 0)
P ( t , T i )E Qi(\e\rt)

P  (t, T i ) Pr (S  (To ) >  X I T t ] , (3.37)c.

where the second term on the right-hand-side is the (2 ,-probability that the option will he 

in-the-money at time To.

Substituting (3.35) and (3.37) into (3.34), a probability valuation formula is obtained 

for the Kuropean call option:

No
ct [S (t )  ; AT; 7b] =  V  k ,P  (t, T<) Pr [S  (T0) >  X \ F t\ - X P  (t, T0) Pr [S  (7b) >  X \ P t] ■

Qi Co
(3.38)

Next proposition computes explicitly all probabilities involved in the previous expression, 

and offers an equivalent pricing formula for the Kuropean put option.

1 , as required, because >« assumed to be a Qo-martingale
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P rop os ition  4 Under the. Gaussian specification o f  the Duffie and Kan (1996) model, the 

time-t price o f an European call with a strike, price equal to X , with maturity at time To 

(>  t ), and on a riskless coupon-bearing bond with present value. S  ( t )  and generating No 

cash flows o f value k, at times Ti (such that Ti >  To, i =  1 , . . . ,  N o), is approximately equal 

to
No

Ct [S  (t )  ; X-, To] a  £  * ,P ( t ,  7 i) 4» td' (01 -  X P ( t .To) 4> [4. (01.
i=l

where.

No
d0 (t )  ■ . '¿ k i P ( t , T i )e x p - \ V i (T 0) -  y / V ^ o )d o (t )

d i ( t )  =  d o (t ) +  y / V ifo ),

=  X P ( t , T 0) ,

and

Vi ( to) =  B! (T i - T o )  N  (To -  t ) R  (71 -  7 b ). 

The corresponding put price, is approximated by

No

(3-39)

(3.40)

(3.41)

Pt [S ( t ) - ,X - , T0] 3 i - '5 2 k i P ( t , T i ) * [ - d i ( t ) ]  +  X P ( t , T o ) * [ - d o ( t ) ) .  (3.42)

P roo f. From the definitions of 0 and S (To ), and since P  (To, To) =  1,

Pr[S (T0) > X | * ]  =  PrCo Co
No

Y t k .P (T 0,T o ,T ,) >  X

In order to proceed it is necessary to know the probability distribution of the forward price 

P (t ,T o , T i) under <2o, which is precisely given by equations (3.27) and (3.28) when T\ is 

substituted by T ,:

P ( t , T 0,T ,) =  P  (0 ,To ,T i) exp -\v x(l) + fQUi(»)dW.Qa (»

where

Vi ( t )  =  r  H i' (s ) ■ H i (s )  ds. 
Jo

(3.43)

(3.44)

Thus, P  (T'o, To, T {) is given by equation (3.43) when the time interval under consideration 

is [f, Y'o] instead of [0 , t], and therefore

Pr[S(T0)>  X\Ft] = Pr{y2kiP (t ,T0,T,)Co o« • ‘ ^Co
No

75



exp [ - i  V, (r0) -  ( - H i 1 (a )) ■ dW°<> (a ) > * | * i } .

Because | f / °  ( - H , 1 (a ))  ■ d W ° °  (a l j  ^  N l  (0, V i ( t o ) ) ,  and since equations (3.2) and 

(3.17) show that the volatility vectors H f (t ) possess an exponential form, then -as argued 

by El Karoui and Rochet (1989, page 22)- the random variables j/ ^ 0 ( —H i  (a )) ■ d\V^° (a )j 

can be thought of as being proportional, that is

f °  ( -H i1 (a)) d W Q° (s) “  yJV, ( t 0 ) Z ,  f o r  i  =  1........ N 0 ,

and where Z  ^  N l (0, l ) . 24 Combining the last two results,

P r [.9 (T 0) >  X \ F t]Co

Ï* Pr. 
Co

r " 0 , ______
j ^ T k i P ( t , T , )  exp - - V ,  (r0) -  x/P, {t0)Z 
l t=l

Ft
}

> xp(t,T0)

And, since the left-hand-side o f the above inequality is a decreasing function of Z,

P r [S (7 b )> X | .F t ]  “  P r [Z < d b ( t )| * i ]Co Co
^  (3.45)

where <k>(l) is implicitly defined by (3.40).

Concerning the other No  probabilities contained in the valuation formula (3.39), from 

the definitions o f 0 and S  (7o ), and since P (T o ,T o )  =  1,

P r [S (7 b ) > X | / i ]  =  Pr
’ No
^ k i P ( T 0,T o ,T i) >  X F,

In order to derive the probability distribution of the forward price P  (t, To, T ,) under the 

martingale measure (2,, relation (3.19) can be substituted into expiation (3.43):

P  (t, T0, T i )  =  P (0 ,  T0,T i )  exp ■\Vi (t) +  Vi (t) -  j *  ( - H i '  (a )) • d W *' (a) (3.46)

24This assumption is exactly equivalent to the rank 1 approximation suggested by Brace and Musiela 
(1994a, equation 6.1 ), with y/Vi ( to) =  7 *, accordingly to their notation. The scalar 7 i can be obtained as 
7. V ^  (v i ), .  where 61 is the first eigenvalue and (iq ) . is the tih-element of the first eigenvector of the 
(No x No) matrix

{COV\lnP(To,Ti)MP(To,Tj)\rt\}iJ=x....No .
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Hence.

{ No
T ,k iP { t ,T o ,T i )

7~Ì

exp - ^ V i  (r0) +  P* (r0) -  J  ° { - H i '  (a) )  ■ d W c‘ (t
>  X

Moreover, since j J^° {—Hi (s ) )  • d W a' (s)j ^  N l (0, Vi ( to ) ) ,  because the volatility vectors 

//,' ( i )  possess an exponential form, and assuming proportionality, that is

(~ M l  ( « ) )  • d W Qi {a) £* y/Vi {tq)Z ,

with Z  ^  TV1 (0, 1), then

P r [S (7 o ) >  X \ F t\ £* P r i J 2 k' P ( t ' T>
C,

No

e,

exp -^ V i(r o )  -  s/Vi(ro)  ( Z -  s/V ì {to) )  >  X P (i ,7 b )| ^ tJ .

Since the left-hand-side of the inequality contained in the above probability is a decreasing 

function of (^Z — ^/P, ( tq) j , then

P r [S (T 0) >  X \ f t) *  P r [ z - x/V,(T0 ) < d o ( i ) | ^ ]  

®  4» [rf* (4)]. (3.47)

Combining equations (3.38), (3.45), and (3.47) yields the valuation formula (3.39).

The European put valuation equation follows from the put-call parity for European 

options on coupon bonds, which can be stated as:

ct [ 5 ( i ) ; X ; T o ] - P ( [ S ( i ) ; X ; T 0] = s { t ) ~  y  ki p ( ^ T i)
t< T i< T 0

X P { t ,T o ) .  (3.48)

Combining the above equality with equation (3.39), considering that the present value of 

the underlying coupon bond is equal to S  (t )  — ^2t<Ti<TN k' P  7',), and solving for the 

price of the European put,

No

Pi [S ( t )  ; X \To! Si -  Y  k*p (^  r *) ■ [1 -  * (4 (0)1 + X P  (t , To) [1 -  * (do (0)1 •
i l

Sint« the normal distribution is symmetric, the pricing formula (3.42) is obtained.

Concerning the analytical solution of P, {to), formula (3.41) follows from equation (3.25)
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simply by replacing T\ with 7’,. ■

R em ark  3 Equation (3.39) is exactly equivalent to formula (4 7) o f El Karoui and Rochet 

(1989) when n  =  1, although the volatility structure has been adapted to the Gaussian 

specification o f  the Duffie and Kan (1996) model.

R em ark  4 Alternatively, ct [S’ ( t ) ;  X ;  To] and pt [5 (£); X ;  7o] can also be written as a sum 

of No European call and put options, respectively, on pure discount bonds P ( t ,  7J), with 

maturity at time To, with a contract size o f ki monetary units, and with an adjusted strike 

price. From the definition o f rfo(t),

Lognormal approximation

As an alternative to the rank 1 approximation presented before, Pang (1996) suggests ap

proximating the distribution of the underlying coupon-bearing bond price to a lognormal 

distribution, by matching its first two moments. Although it is well known that the sum 

of lognormal random variables is not lognormally distributed, the price of a coupon bond 

weights mostly its last pure discount bond price component (i.e. the one associated with the 

redemption o f the bond’s face value and with the payment o f the last coupon). Therefore,

P(t,7j)exp [-£V< (t»>) -  y/Vi (ro)do(i)]
/ . kX r■»/. m \

Stibstituting X  fo r  the above expression into equation (3.39),

ct [S ( t ) ;X ;T 0] ~  £  k, { P ( t ,  T ,) <t> [dt (£)] -  X , l> (t ,T 0) <t> [do (< )]}

No
(3.49)

i l

where the adjusted strikes are given by

Similarly,

P i [S (t ) ;X ;T o ]  ~  ^  k, {~P{t,Ti) 4» [-d , (£)] -I- X ,E (t, To) & [-d o  (01}

No
(3.50)
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the intuition behind the lognormal approximation proposed by Pang (1996) is that the dis

tribution of the coupon-bearing bond price should essentially depend upon the probabilistic 

behavior o f its last component, which is lognormally distributed for the Gaussian framework 

under analysis.

Specifically, equation (3.33) is approximated by

(3.51) and computes explicitly both the mean and the variant* of the time-'/o underlying 

coupon-bearing bond price.

P ropos ition  5 Under the Gaussian specification o f the Duffie and Kan (1996) model, the 

time-t price o f an European call with a strike price equal to X , with maturity at time 7b

cash flows o f value ki at times Ti (such that Ti >  To, i — No), can be approximated by

Proof. Under the assumption Y  ^  N l (a,b2), equation (3.51) can be rewritten under an

(>  t) ,  and on a riskless coupon-bearing bond with present value S  ( t ) and generating No

i 1

where

and

exp [ M Xj  (i)] — m ,

with

M ,j ( t ) =  B ' (7 ) -  To) • A  ( T o - f ) £ ( T t -  7b ).

The corresponding put price, is approximately equal to
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equivalent integral form:

roo 1

cf [S  ( i )  ; X-, 7o] Si P  (i, 7’o) / (eY -  X )  — =  exp 
Jintx) by/ l x

( Y - a )
ib l

AY.

Solving this integral explicitly, a pricing solution, similar to the one contained in Pang 

(1996, proposition 5), is obtained:

C( [S(i);X;To]SiP(i,ro) j e ° + T<l>
a — ln (X )

+  b -  X<t>
a - l n ( X )

] } ■  O «

In order to compute m  ami v2, it is convenient to rewrite the price o f the underlying 

coupon bond at the option’s expiry date using equation (3.43):

S O i p i t  t \  i r T°
s (To) =  £  kt /)(Y ’ 7^  exp -  Vi (r0) +  j f  Hi (a ) ■ d W a° (a) (3.58)

Taking expectations, 

No
m =  S T k ^

r ( t , T i )  r i

To)
exP - ^ ^ ( t-o) E qo {  exp j ‘ ° Hi! (a ) ■ d W *°  (a )] | T , J ,

because //,' (a) ■ d W go (a )j N l (0, V, ( to)), and since the expectation on the right-

hand-side o f the last equality corresponds to the moment generating function o f the normal 

random variable inside the exponential, formula (3.53) follows immediately. Using again 

equation (3.58),

No Noro /rr V" i I E(t,T j) P(t,T{)
1 < ” )1 *  S S  ' ■ [e i i .T o ) ! 1  “ p

-72 V A to) - 7 2 V ,(t0)

exp { J ' °  [H /  (a) +  H i' (a )] • (a ) J ,

and taking expectations,

No No

E Qo { [S (7 b ) ]* | * }-£ £ k A  /J(̂ y ;) oxP [M u (01■ (3.59)

with

Mii (0  =  Y> (Tb) -  \ Vi (to) + ° || [Hj_ (a) +  Hi (a)] f  ds

=  a ' W ’ f i W * .
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where || || denotes the Euclidean norm in 3in. Finally, using definitions (3.2) and (3.17), 

while expressing all the resulting integrals in terms of the matrix A  (7o — t), equation (3.55) 

follows.
6s

Because e°+ s =  m, combining equations (3.57) and (3.53) yields the pricing solution 

(3.52). Similarly, substituting formula (3.52) into the put-call parity (3.48), equation (3.56) 

arises. ■

Com parison

In order to compare the performance of both rank 1 and lognormal approximations, the 

three-factor affine and Gaussian model estimated by Babbs and Nowman (1999, Table 2) 

will be used. For this purpose, such model was converted into the specification offered by 

equations (2.2) and (3.1), i.e.

/ =  0.0701, G  =  -

1

1

1

, a =  diag { -0.6553, -0.0705, -0.0525} ,

-0.003385 0.0214 0 0 l

b = 0.002186 ,£  = -0.017755 0.006479 0 ,a  = l

-0.001947 0.014267 -0.004647 0.007882 l

and the state variables’ values

X ( t ) =  [ -0.005475 0.006897 -0.001374 ]

were defined in order to produce continuously compounded spot interest rates around 7V<, 

for maturities up to 21 years (the maximum deviation from the flat yield curve level of 7% 

is less than one basis point).

Table 3.1 values, for different strikes, European options with a maturity o f 0.5 years, 

on a coupon bond with a maturity o f 2.5 years, a face value of one monetary unit, semi

annually coupons, and a coupon rate of 7% per year. The rank 1 approximate option 

prices are computed from proposition 4, and the lognormal approximation is implemented 

using proposition 5, but only the corresponding percentage pricing errors are presented 

1 he exact price of each option was estimated through standard Monte Carlo simulation, 

using the usual Euler discretization of equation (3.1), dividing the option's maturity into 

100 time steps, generating independent normal variates through the Box-Muller algorithm, 

running 1 , 0 0 0 , 0 0 0  simulations, and computing analytically the option’s terminal payoff
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Table 3.1: Valuation of European options with a maturity of 0.5 years, on a unit face value
coupon-bearing bond paying 4 semi-annually coupons of 0.035 each after the option ’s expiry
date, using the Babbs and Nowman (1999, Table 2) model

Standard Monte Carlo Percentage Absolute Pricing Errors
(exact option prices) Hank 1 Appr. Lognormal Appr.

Strikes Call Put Std. errors Call Put Call Put
0.858164 0.134811 0 0.000014 0.013% NA 0.013% NA
0.875589 0.117986 0 0.000014 0.015% NA 0.015% NA
0.884433 0.109446 0 0.000014 0.016% NA 0.016% NA
0.902390 0.092107 0 0.000014 0.018% NA 0.018% NA
0.911506 0.083305 0 0.000014 0 .0 2 2 % NA 0 .0 2 2 % NA
0.930013 0.065435 0 0.000014 0.026% NA 0.026% NA
0.939407 0.056364 0 0.000014 0.032% NA 0.032% NA
0.958481 0.037956 0 0.000014 0.047% NA 0.047% NA
0.968162 0.028683 0.000083 0.000014 0.059% 2.410% 0.059% 1.205%
0.987820 0.011569 0.001935 0 . 0 0 0 0 1 1 0.069% 0.362% 0043% 0.258%
0.997798 0.005489 0.005489 0.000008 0.018% 0.018% 0.091% 0.091%
1.017854 0.000518 0.019884 0 . 0 0 0 0 0 2 0.193% 0 .0 1 0 % 0.579% 0.015%
1.028032 0.000003 0.029287 0 . 0 0 0 0 0 1 0 .0 0 0 % 0.000% 1.075% 0.003%
1.048696 0 . 0 0 0 0 0 1 0.049147 0 0 .0 0 0 % 0.000% 0 .0 0 0 % 0 .0 0 0 %
1.059183 0 0.059272 0 NA 0.000% NA 0 .0 0 0 %
1.080472 0 0.079829 0 NA 0.000% NA 0 .0 0 0 %
1.091277 0 0.090262 0 NA 0.000% NA 0.000%
1.113211 0 0.111442 0 NA 0 .0 0 0 % NA 0 .0 0 0 %
1.124344 0 0.122191 0 NA 0.000% NA 0 .0 0 0 %
1.146943 0 0.144012 0 NA 0.000% NA 0 .0 0 0 %

Monte Carlo: 1,000,000 simulations with 1 0 0  time steps per option maturity.
The strike in bold is the forward price o f the underlying coupon bond for the 
option’s expiry date (i.e. the ATM  strike).
“NA" stands for not available.
Percentage absolute pricing errors are equal to the approximate price -as given by 
propositions 4 or 5- over the Monte Carlo estimate, minus one.

from proposition 1. Besides the Monte Carlo price estimates, the standard errors for the 

call prices’ estimates are also shown.

The results show that, for short maturity European options on short-term coupon bonds, 

the pricing differences between the two approximations are négligeable, irrespective of the 

option’s moneyness. Similarly, table 3.2 prices, for different strikes, European calls and 

puts expiring in 5 years, on a coupon bond with the same features as before, except that its 

maturity is now equal to 6  years. Again, the same conclusions prevail. That is, for (short

term or long-term) European options on coupon-bearing bonds expiring close to  the option's 

maturity, both rank I and lognormal approximations produce similar pricing errors.

However, when the maturity of the underlying coupon-bearing bond is significantly 

longer than the life o f the option, the performance of both approximations seems to depend 

on the option’s moneyness. Table 3.3 values, for different strikes, European options with
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Tabic 3.2: Valuation of European options with a maturity of 5 years, on a unit face value
coupon-bearing bond paying 2 semi-annually coupons of 0.035 each after the option’s expiry
date, using the Babbs and Nowman (1999, Table 2) model

Strikes

Standard Monte Carlo 
(exact option prices)

Call Put Std. errors

Percentage Absolute Pricing Errors 
Rank 1 Appr. Ixignormal Appr. 
Call Put Call Put

0.859012 0.098487 0 0.000017 0.019% NA 0.019% NA
0.876453 0.086196 0 0.000016 0 .0 2 1 % NA 0 .0 2 1 % NA
0.885307 0.079957 0 0.000016 0.023% NA 0.023% NA
0.903282 0.067289 0 0.000016 0.025% NA 0.025% NA
0.912406 0.060859 0 0.000015 0.028% NA 0.028% NA
0.930931 0.047804 0 0.000015 0.033% NA 0.033% NA
0.940335 0.041178 0 0.000014 0.039% NA 0.039% NA
0.959427 0.027776 0.000051 0.000014 0.043% 1.961% 0.043% 1.961%
0.969119 0.021132 0.000235 0.000013 0.033% 1.277% 0.033% 1.277%
0.988796 0.009289 0.00225 0 . 0 0 0 0 1 0 0.140% 0.578% 0.140% 0.578%

0.998783 0.005029 0.005029 0.000008 0.358% 0.358% 0.358% 0.358%
1.018859 0.000854 0.015003 0.000003 1.054% 0.067% 1.171% 0.067%
1.029048 0.000253 0.021582 0 . 0 0 0 0 0 2 1.581% 0.019% 1.581% 0.019%
1.049731 0 . 0 0 0 0 1 0 0.035917 0 0.990% 0 .0 0 0 % 0.990% 0 .0 0 0 %
1.060229 0 0.043306 0 NA 0 .0 0 0 % NA 0 .0 0 0 %
1.081539 0 0.058324 0 NA 0 .0 0 0 % NA 0 .0 0 0 %
1.092355 0 0.065946 0 NA 0 .0 0 0 % NA 0 .0 0 0 %
1.114311 0 0.08142 0 NA 0 .0 0 0 % NA 0 .0 0 0 %
1.125454 0 0.089273 0 NA 0 .0 0 0 % NA 0 .0 0 0 %
1.148076 0 0.105216 0 NA 0 .0 0 0 % NA 0 .0 0 0 %

Monte Carlo: 1,000,000 simulations with 100 time steps per option maturity.
The strike in bold is the forward price o f the underlying coupon bond for the 
option’s expiry date (i.e. the ATM  strike).
“N A ” stands for not available.
Percentage absolute pricing errors are equal to the approximate price -as given by 
propositions 4 or 5- over the Monte Carlo estimate, minus one.

a maturity of 5 years on a coupon bond with a maturity of 15 years, a unit face value 

and a coupon rate o f 7% per year (with coupons paid semi-annually). It shows that, for 

both calls and puts on long-term coupon bonds, both approximations perform equally well 

for in-the-money contracts. However, for (near and) at-the-money options, the lognormal 

approximation produces lower pricing errors, while for deep out-of-the-money options, the 

rank 1 approximation performs clearly better.

This pattern is confirmed in table 3.4, where European calls and puts with a maturity 

of just 1 year are priced on the same (»upon bond as in table 3.3, but now with a life of 21 

years.

In summary, both approximations produce similar results when the maturity of the 

underlying coupon-bearing bond is near the option’s expiry date, and also for in-the-money 

options on long-term bonds. The lognormal approximation seems to perform better for
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Table 3.3: Valuation o f European options with a maturity of 5 years, on a unit face value
coupon-bearing bond paying 20 semi-annually coupons of 0.035 each after the option’s
expiry date, using the Babbs and Nowman (1999, Table 2) model

Strikes

Standard Monte Carlo 
(exact option prices)

Call Put Std. errors

Percentage Absolute Pricing Errors 
Rank 1 Appr. Ixjgnortnal Appr. 
Call Put Call Put

0.852268 0.098920 0.001187 0.000067 0.098% 8.256% 0.163% 13.564%
0.869572 0.087593 0.002056 0.000066 0.114% 4.864% 0.198% 8.414%
0.878356 0.081998 0.002651 0.000065 0.123% 3.810% 0.216% 6.677%
0.896190 0.071033 0.004255 0.000062 0.148% 2.468% 0.253% 4.254%
0.905243 0.065703 0.005305 0.000061 0.163% 2.017% 0.272% 3.374%
0.923623 0.055453 0.008009 0.000058 0.204% 1.411% 0.303% 2.098%
0.932952 0.050575 0.009706 0.000056 0.229% 1 195% 0.314% 1.638%
0.951895 0.041413 0.013894 0.000052 0.297% 0.885% 0.319% 0.950%
0.961510 0.037166 0.016424 0.000050 0.334% 0.749% 0.307% 0 .6 8 8 %
0.981032 0.029412 0.022428 0.000045 0.415% 0.548% 0.235% 0.308%
0.990942 0.025925 0.025925 0.000042 0.463% 0.463% 0.170% 0.174%
1.010860 0.019808 0.033846 0.000037 0.576% 0.337% 0 .0 1 0 % 0.006%
1.020968 0.017143 0.038305 0.000035 0.647% 0.287% 0.134% 0.060%
1.041490 0.012579 0.048204 0.000030 0.795% 0.207% 0.477% 0.124%
1.051905 0.010661 0.053625 0.000028 0.882% 0.177% 0.694% 0.136%
1.073048 0.007491 0.065357 0.000023 1.095% 0.124% 1.241% 0.144%
1.083779 0.006212 0.071640 0 . 0 0 0 0 2 1 1.159% 0 . 1 0 1 % 1.642% 0.141%
1.105563 0.004175 0.084956 0.000017 1.293% 0.064% 2.587% 0.127%
1.116618 0.003383 0.091956 0.000015 1.360% 0.050%, 3.133% 0.116%
1.139062 0.002168 0.106558 0 . 0 0 0 0 1 2 1.568% 0.032% 4.382% 0.089%

Monte Carlo: 1,000,000 simulations with 100 time steps per option maturity.
The strike in bold is the forward price of the underlying coupon bond for the 
option’s expiry date (i.e. the ATM  strike).
Percentage absolute pricing errors are equal to the approximate price -as given by 
propositions 1 or 5- over the Monte Carlo estimate, minus one.

at-the-money options on coupon bonds with a long remaining life after the contract expiry 

date, while the rank 1 approximation is better suited for pricing such options on long-term 

bonds at deep out-of-the-money strikes.

3.4.4 E u ro p e a n  sw a p tion s

1‘nder the Duffie and Singleton (1997) assumption of symmetric counterparty credit risk, the 

approximate Gaussian solutions previously derived for European options on coupon-bearing 

bonds can be generalized for the pricing of European swaptions.

I/Ct the time-t price of an European payer swaption maturing at time =  t +  u6, with 

a strike equal to x, and on a forward swap with a unitary principal ami settled in arrears at 

times 7’u ( , =  '/’u +  if>, i — 1 ,..., m, be denoted by I ’ayerswpnt (x, <5, u, m ). Since this option 

gives the right to enter, at time 7’u, into the underlying swap paying the pre-established
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Tabic 3.4: Valuation of European options with a maturity o f 1 year, on a unit face value

Standard Monte Carlo Percentage Absolute Pricing Errors
(exact option prices) Rank 1 Appr. Lognormal Appr.

coupon-bearing bond paying 40 semi-annually coupons of 0.035 each after the option’s
expiry date, using the Babbs and Nowman (1999, Table 2) model_____________________

Strikes Call Put Std. errors Call Put Call Put
0.874994 0.104892 0.000322 0.000055 0.092% 30.124% 0.109% 35.404%
0.892760 0.088901 0.000895 0.000054 0.134% 13.296% 0.154% 15.419%
0.901777 0.080987 0.001389 0.000053 0.163% 9.503% 0.182% 10.583%
0.910886 0.073186 0.002082 0.000052 0 .2 0 1 % 7.061% 0.213% 7.445%
0.920087 0.065554 0.003028 0.000051 0.250% 5.416% 0.246% 5.317%
0.929381 0.058152 0.004291 0.000049 0.313% 4.241% 0.277% 3.752%
0.938769 0.051044 0.005936 0.000047 0.392% 3.369% 0.304% 2.628%
0.948251 0.044296 0.008029 0.000045 0.492% 2.715% 0.325% 1.806%
0.957829 0.037970 0.010634 0.000043 0.616% 2 .2 0 0 % 0.337% 1.204%
0.977277 0.026801 0.017597 0.000037 0.944% 1.438% 0.287%, 0.443%

0.987149 0.022034 0.022035 0.000034 1.153% 1.153% 0.213% 0.213%
1.006990 0.014277 0.032778 0.000028 1.660% 0.720% 0.105% 0.046%
1.017060 0.011215 0.039104 0.000025 1.979% 0.568% 0.348% 0 .1 0 0 %
1.037503 0.006573 0.053523 0.000019 2.723% 0.334% 1.126% 0.138%
1.047878 0.004902 0.061525 0.000016 3.101% 0.249% 1.714% 0.137%
1.068941 0.002579 0.078840 0 . 0 0 0 0 1 1 3.994% 0.131% 3.296% 0.108%
1.079630 0.001818 0.088046 0 . 0 0 0 0 1 0 4.510% 0.093% 4.345% 0.090%
1.101331 0.000854 0.107315 0.000006 5.386% 0.043% 7.026% 0.056%
1.112344 0.000570 0.117299 0.000005 5.614% 0.027% 8.947% 0.043%
1.134702 0.000240 0.137816 0.000003 5.833% 0.009% 13.750% 0.024%

Monte Carlo: 1,000,000 simulations w ith 100 time steps per option maturity.
The strike in bold is the forward price of the underlying coupon bond for the 
option's expiry date (i.e. the ATM  strike).
Percentage absolute pricing errors are equal to the approximate price -as given by 
propositions 4 or 5- over the Monte Carlo estimate, minus one.

fixed rate x  against the receivement o f a floating rate, its terminal payoff corresponds to25

rn
PayerawpnTu (x , 6, u, m ) =  [tc (Tu, Tu fm ) -  z ] 1 <5 ^  /’ (T u,T u+i) ,

* = 1

where w (Tu, Tu±m) is the timc-7’u spot swap rate for a m i-year swap with a compounding 

period of 6 years. Because, by definition, a spot swap rate equals the fixed rate of the interest 

rate swap for which the value of the contract is zero, then w (7 ’u, Tu, m) =  y

and therefore (as shown, for instance, by Brace and Musiela (1994a, page 266)):

J,ayer.iurpn-ru ( i ,  i, u, m ) P (7 ’u,T u+m) + x6 J 2  P (T u,T u+i)

25 In the London market, the discounting is made using not spot yields but rather the 
spot swap rate. That is, the European payer swaptions’ terminal payoff is equal to 
[te (7’u, Tu+m) — x) f ^ $37  ̂i |1 +  (7’u, Tu+m) <5] *• Nevertheless, Pang (1996, 'Fable 6) has shown that, in
this case, a good approximation can be obtained by replacing the spot swap rate by spot rates.
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That is, ail European payer swaption can be valued as an European put with the same 

expiry date, with a strike price equal to 1 , and on a coupon-bearing bond corresponding to 

the fixed leg of the underlying interest rate swap. Hence,

Payerswpnt (x, 6, u, m) =  pt [S ( i ) ; 1; Tu] , (3.60)

where the put price is computed from equations (3.42) or (3.56), but with No =  m and 

kt =  l { i  m} T

Similarly, it can also be shown that the time-i price o f an European receiver swaption 

maturing at time 7„ =  t +  u6, with a strike equal to x, and on a forward swap with a unitary 

principal and settled in arrears at times 7U+, =  7’u +  tS, i =  1 ,.. . ,  m, can be computed as

Receiverswpnt (x ,6 ,u ,m ) =  ct [S ( t ) ; 1;TU] , (3.61)

where the call price is given by (3.39) or (3.52), but with No = rn and k, =  lj, mj +  x6.

3.5 Pricing of interest rate futures

3.5.1 Futures on  d e fau lt-free  bon ds

The hypothesis of continuous marking to market will be assumed hereafter and whenever 

futures contracts are involved.

Starting with the valuation o f futures on riskless pure discount bonds (e.g. futures on 

Treasury Hills), let the time-i price of a futures contract for delivery at time T j  and on a 

default-free zero-coupon bond with maturity at time T\ (such that t <  T j  <  T \) be denoted 

by F P ( t , T f/ I\ ). It is well known -see for instance Cox, Ingersoll and Ross (1981b, equation 

46)- that a futures price is just the expectation of the spot price on the delivery date, under 

the martingale measure Q, and therefore:

F P ( i , T j,T \ ) =  E q \ P (T f ,T \ )|T t\ . (3.62)

Or using the exponential-affine formula (2.1),

F P  (t ,T / ,T \ ) =  exp[/l (7 ) -  7 » ]  F 0 {ex p  [&  (T , -  7 »  • *  ( 7 » ]  | -Ft} .

Moreover, the last expectation is just the moment generating function of the random variable 

[W  (7 ) — T f )  ■ X  (7/)], with a coefficient o f + 1 .

On the other hand, since matrix a is time-homogeneous and assuming that matrix a is
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also nonsingular, Arnold (1992, corollary 8.2.4) provides the following strong solution for 

equation (3.1), with t >  to:

X  ( t ) =  eo<‘ - t0> • X  (to ) +  [ e ^ - ^  -  /„] • a 1 ■ b +  j f  e0<‘ - ü> • S ■ d W Q ( v ) . 

Consequently,26 X  (t )  ^  N n (u  (t  — to) , A  (t -  i0)), where

U ( t  -  to) =  e“' 1" 1“) • X  (to) +  [eo(t- ‘o) -  /„] ■ a 1 6 , (3.63)

and thus

F P ( t ,  T f ,T\) =  exp [A  (7 ) — T j )  +  B ' (7 ) — T f )  ■ u (T j  -  t ) (3.64)

+\b! (T i - T f )  A (T f  —t ) B ( T i  — Tf) .

Proposition 6  expresses the futures price (3.64) in terms of the corresponding forward price.

P ropos ition  6  Under the deterministic volatility specification o f  the Duffie and Kan (1990) 

model, the time-t price, F P  (t ,T f ,T \ ),  o f a futures contract fo r  delivery at time Tf and on 

a pure discount bond with maturity at time T\ (t  <  Tf <  7’i )  is equal to

F P ( t ,  Tj, T i) =  ^ l ^ | e x p [ - J ( t ) ) ,  (3.65)

where

J ( t )  =  Q ' a ' • { ©  (a  ' ) '  [B (T x - t ) - B ( T - T , ) - B ( T , - t ) \

- A ( T , - t )  B ( T X - 7 » } .

Proof. Combining equations (3.63) and (3.64), as well as considering equations (3.3), (3.4) 

and (3.6),

F P ( t ,T , ,T \ )  =  e x p { ( T , - 7 » ( S '  o 1 ■ 6  — / ) +  S '(T ,  -  7 »  a 1 - 6  

+ 5  i T' B ! (T x - v ) 0  B ( T t - v ) d v
*  J T f

+G' ■ a~1 • [/„- e ° ( r>-7>)] e0(T/ - ‘) ■ X ( t )

+ £ ' (T j - T f ) -  [e°(T/-‘ ) - I n ]  a l b + ^ j \ ( v )  d r }  ,

26The notation Y  ^  N d (¿x,C) will be used to state that the random variable Y  € 9?d has a d-dimensional 
normal distribution, with mean [i € 9?d, and covariance matrix C  € 9?dxd.
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where

*>(r) = G ' ■ a- 1  • \ea( Tt - v) -  e°<T' - v)] • © • [e°'(7/-*’) -  e°'<Tl u>] • (a-1 )' ■ G  

=  [S ' (T , -  1») -  S ' (Tf -  i»)] ©  [B  (T , -  v ) -  B  (Tj -  »)].

Hence,

F P ( t , T f ,T i )

=  exp { (T i  -  T/) (G 1 a 1 • b -  f )

+ G ' • a 1 • [e0(T'  0 -  e°<T| ~*>] ■ [2C(0 +  «  1 • fc]

i rT> i tT>
+ -  /  & (Ti - v )  ©  S ( T ,  - v ) d v  +  -  /  g ( T i - v ) - e - B ( T 1 - v ) d v

* JTt * Jt

+  i  J1' B ' ( T , - v )  S B  (T f  - v ) d v -  J1' B ! ( T f - v )  e  B  (T, -  !>) dr | ,

FP(t,Tf,T\)

=  e x p { [ ( T , - i ) - r ( 7 > - t ) ] ( f i '  a " 1 b - f )

+  [B!(T1- t ) - g ( T f - t ) ]  ■ [ X  (t) + a 1 - 6]

+  l- £  ‘ S ' (T i -  r ) ©  B (T i -  v ) dv -  ^ J 1'  S ' (T/ -  r )  ©  B (7> -  r )  dr 

+  £  ’  S ' ('/> - v ) G  B (T f - v ) d v -  J 1'  S ' (7/ -  r )  ©  • B  (T , -  r ) dr j  .

Using again equations (3.3) and (3.6), then

F T  (t, T / ,T j) =  exp [ - J ( t ) ] , (3.66)

where

J ( t )  =  J '  B ' (T f  -  v ) e  [B (T i  -  v ) -  B  (T f  -  r )] dr. (3.67)

In order to find an explicit solution for J ( t ) ,  equation (3.2) yields

J ( t )  =  G ' ■ a ‘ { I ' '  [/ “  e° (7/ u)] ©  [e“ '^7> u) “  e“ '(Tl u)j dr 

=  f i '  a 1 ©  | ^ T / [e° '(T/ - ' ) - e “W - ’'> ]d r|  (a 

ea(T/-v) . 0  . eo'(T, -)d r

88



+G ' a ’ 1 • ( O ' e -

Solving the first integral in the right-hand-side of the last equation, and expressing the other 

two as functions of A  (7/ — t),

J { t )  =  -G ?  ■ a - 1  • ©  (a ' ) - 1  ■ {/  -  ea'(Ti-7>) -  e ° '(7>~‘ ) +  • (a  * )' • G

- G ' a 1 • A  (T f  — t ) ■ ( a ' 1) '  G 

+G ' a - 1 A  {Tf  -  i )  • ea' ( T ,- Tr ) ■ (a "  >)' • G.

Finally, applying, once more, equation (3.2), expression (3.65) follows. ■

Rem ark  5 The pricing formula (3.65) is similar to (and nests), f o r  instance, the one 

derived by Chen (1995, equation 14) using a two-factor Omstein-Uhlenbeck process, being 

the only difference the specification o f J  ( t ). In both cases, and as shown by El Karoui et 

al. (1991, equation 49) o r Jamshidian (1993, equation 1.6) , 27

J  (0  =  (In P  (t, T f ) , In P  ( t , T, )>T/ -  (In P  {t, 7 »  , In P  (t, 7 » ) T/ ,

which is confirmed by identity (3.67).

Rem ark 6  The first term in the right-hand-side o f (3.65) is just the time-t forward price 

fo r time T f  o f  a pure discount bond with expiry date T\, that is P  { t , T f  ,'1\). In fact, since 

this forward contract will only be settled at time T f, it is equivalent to a portfolio composed 

by a long European call and a short European put, both on the pure discount bond P (t ,T \ ),  

with expiry date T f , and with strike prices equal to the forward price P  ( t , T j,T \ ). Moreover, 

the value o f  such portfolio must be zero, because the initial investment in a forward contract 

is also null. Therefore,

ct [P ( t ,T \ )  ; P  (t, T f ,T\ ) \ T¡\ — pt [P  {t,T\ ) \ P  { t ,T f  ,T\) \ Tj\ =  0,

and using the put-call parity fo r  European options on zero coupon bonds,

P ( t ,  T\) — P { t ,  Tf , 7’i) P { t ,T f ) =  0,

it follows that P { t ,T f  , T i )  =  ^¿y.1 j  > as expected.

Concerning the valuation of coupon-bearing bond futures, the time-i price, F S ( t ,T f ) ,

27 The process { X ,X )T denotes the quadratic variation of the process (X , ) l< t< T .

'  ea( Tr - v)  ■ © • ea (T‘ ~v^dvI
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of a futures contract, for delivery at date T j  (>  (), on the default-free coupon bond S (t )  is 

the expectation under measure Q  o f the underlying bond value at the future time Tj\

F S ( t ,T f ) =  E a [S (T , ) \ r t] (3.68)
N,

=  5 3 fc-£;c [ 'P ('r/ 'T‘ ) 1 ^ 1 -
t=l

where T j  <  T, (for i =  1 ,.. . ,  N /), and N j  represents the number o f cash flows kt (t =  

paid by the underlying coupon bond from the futures’ expiry date and until 

the maturity date o f the underlying bond. In practice, however, the underlying of all 

Treasury bond futures is not a traded but rather a theoretical bond , 2 8  and the party with 

the short position has the (quality) option of choosing, amongst all the deliverable bonds,29 30 

the one (cheapest-to-deliver) to be delivered on the delivery day. Moreover, for some futures 

contracts, the seller can also choose the delivery day during the delivery month, that is the 

party with the short position possess also a timing option . 10 Valuation formula (3.68) 

ignores the existent* o f both delivery options (i.e. quality and tim ing options), and takes 

as the underlying o f the futures contract the cheapest-to-deliver bond, which is assumed 

to be known .3 1  32 On the delivery day, the invoice price paid by the party with the long 

position corresponds to the futures settlement price times a conversion factor12 plus the 

accrued interest on the delivered bond. Assuming that the futures settlement price times 

the conversion factor o f the cheapest-to-deliver bond converges to the quoted price of such 

bond at the futures’ expiry date, equation (3.68) follows.

Combining equations (3.68) and (3.62), we can conclude that the relation between fu

tures on coupon bonds and futures on pure discount bonds is the same as the well known 

relation between the corresponding underlying instruments in the spot market: the price 

of a futures contract on a coupon-bearing bond is equal to the summation o f the prices of 

futures on zero-coupon bonds with delivery elates corresponding to the moments where cash

28F’or instance, in the case of the US T-Bond Futures, trailed at the Chicago Board of Trade, the theoretical 
underlying bond is an issue with a face value of US$ 100,000 and a coupon rate of 8% (6%, after and including 
the March 2000 contracts).

28For the T-Bond Futures contracts, deliverable bonds are all Treasury bonds that, on the first day of the 
delivery month, possess a maturity of at least 15 years and are not callable for at least 15 years.

30 Again, for the T-Bond futures contracts, delivery can occur at any business day during the delivery 
month However, in the case, for instance, of the Bund FVtures (traded at LIF'FE), delivery must take place 
on the tenth calendar day of the delivery month, and thus there exists no tuning option.

31 In practice and before the maturity of the futures contract, the cheapest-to-deliver can be predicted 
as the deliverable bond with the highest implied-repo-rate. On delivery, it is the one that maximizes the 
difference between the futures’ invoice amount and the gross price of the bond.

32The conversion factor of each deliverable bond is the cash price, per unit of face value, of such bond, at 
the futures’ expiry date, that would produce an yield-to-maturity equal to the coupon rate of the underlying 
theoretical bond. Bence, each conversion factor corrects the futures price in order to adjust the invoice 
amount received by the seller as a function of the deliverable bond used for delivery.
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flows aro paid by the coupon bond, and with contract sizes equal to the value of such cash 

flows, that is

ignoring all delivery options, the time-t price, F S ( t , T j ) ,  o f a futures contract, fo r  delivery

with 1 replaced by i. ■

3.5.2 S h o rt -te rm  interest rate  futures

This subsection considers the valuation o f futures on short-term nominal money-market 

forward interest rates. This is the case, for instance, o f the widely traded Eurodollar futures 

contract, where the underlying nominal interest rate is the LIBOR of the USD for a three 

months period. In what follows, all interest rates and all bond prices are assumed to be 

risk-adjusted along the lines o f Duffle and Singleton (1997).

Ix>t F R ( t ,T j ,T \ )  denote the time-t price of a futures contract with maturity at time 

7/ (>  t ) and on the nominal interest rate for the period (7 j — T j ) ,  with 7) >  T j. By 

convention, the futures price is quoted on an annualized basis, and therefore the terminal 

futures price corresponds to

(3.69)
i= l

Next proposition simply generalizes proposition 6 .

P rop os it ion  7 Under the Gaussian specification o f the Duffle and Kan (1996) model and

at date. T j  (>  t), on a default-free coupon-bearing bond generating N j  cash flows o f value 

k, at times T\ (such that T i >  T f , i  =  1 ,. . . ,  N /), is equal to

where.

Ji («) =  Q' a~' • {©  • (a -1)' • [B (7* - t ) - B ( T i -  7 »  -  B (7/ -  t)] 

- A ( 7 > - 0 £ ( r , - 7 » } .

P roo f. The pricing formula (3.70) is obtained by combining equations (3.69) and (3.65),

F R  (Tf,T/,Ti) =  100 [1 -  R  (7/, 7’, )],
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Using again Cox et al. (1981b, equation 46) as well as the exponential-affine formula

(2. 1) ,

F R (t ,T ; ,T \ )  =  iOO +  1^ f - - f ^ e x p [ - A ( T l - T i )\ (3.71)

Ea {  exp [ - £ '  (T i -  Tf ) & (T, )] | T t }  .

The expectation appearing in the right-hand-side o f the last equation is the moment gener

ating function of the random variable [B1 (7\ — Tf) ■ X(Tf)\, with a coefficient of - 1 . And 

because X_ (Tf) v* N n (u (Tf — t ) , A (Tf — t ) ) } then

Eq {  exp [ - £ '  (Ti -  Tf) ■ X (Tf)] \ T t} (3.72)

exp -B '  (T) — Tf)  ■ u (Tf - t )  +  - B '  (Ti - T f ) A  (Tf -  t )  B ( T  -  T , )

Combining equations (3.2), (3.6), (3.63), (3.71), and (3.72), proposition 8  follows.

P roposition  8  Under the deterministic volatility specification o f  the DuJJic and Kan (1996) 

model, the time-t price, F R ( t ,T j ,T \ ) ,  o f a futures contract with maturity at time Tf and 

on the nominal interest rate, fo r  the period (T\ — Tf), with T\ > Tf > t, is equal to

F R ( t ,T , ,T \ ) 100
{ ‘ - 5 7 ^ 7 P (t ,T \ )

(3.73)

when:

L ( t ) =  G ' a 1 {©  (a >)' • [fi(T, -  t) -  £ (T ,  -  7 »  -  B  (T ,  -  <)] 

_ ea(Tl - T /) & ( T f - t )  B  (T i -  T/) J .

Proof, 'file  derivation of equation (3.73) is similar to the proof presented before for propo

sition 6 . Using equations (3.72), (3.63), (3.2), anil (3.6), it can be shown that

exp [ -A (T \  -  T j)\  E q { exp [ - B 1 (T , -  7 »  ■ X  ( 7 » ]  | T t }

=  exp { [ (T f  -  i )  -  (T\ - t ) ] ( G '  a 1 6  -  / )

-  [B ! (T i -  t ) -  Bl (T j -  0 ] • [X  ( t )  +  a 1 6 ]

/ B '(T i - v )  0  B  (T i  - v ) d v  +  \  f  '  B ' (T f  -  v ) 0  B  (T f  -  v) dv
* Jt * Jt

+  J  '  B ' (7, -  v ) • 0 B  (T i -  v) dv -  J  '  B ' (T t -  v) ©  B  (T f  -  v ) dr j  . 

Combining this result with equation (3.71), and using again equation (3.6), the pricing
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solution (3.73) is obtained but with

L  ( t )  =  J 1'  S ' (T j -  v ) • 0  [S  (T, — v ) — B  (T f  — v )] dv.

Finally, using equation (3.2), all the resulting integrals can be either computed analytically 

or express«! as functions o f matrix A  (7/ — t). ■

3.6 Pricing of European interest rate futures options

3.6.1 Fu tu res  options on  p a re  discount bonds

This subsection only considers options with stock-style margining, also known as conven

tional futures options (using the terminology o f Duffie (1989)): that is contracts with pre

mium paid at the beginning o f the options’ life.

Applying result (3.8) to the time-t price, ct [F P ( t ,  T f , T \ ); 7’o], o f an European call

on the asset F P ( t ,T f ,T \ ) ,  with a strike price of K  ¡ ,  and expiry date at time 7’o, and 

representing by yc — {u> G $1 : F  P  (T o ,T f ,T\ ) (u>) >  K / } the set of states o f the world in 

which the option ends in-the-money, then

ct [ F P ( t , T , , T i ) - , K r ,T 0] =  P  (t, 7’o) F q0 [ F P  ('/'o, T { , 7’,) \„\Ft\

—P  (i, 7o) KjEq0 ( lx| Ft) ■

Furthermore, using the law o f iterative expectations, and because /v’q0 ( 1*| F t )  corresponds 

to the Go-probability that the option will be exercised at time 7o,

ct [F P (t ,T / ,T \ )  ; Kj\To\ P  (t, 7b) E Qo [ F P  (To, T f , 7i)| F t] E Qo ( 7,1*1 F t)

- P ( t ,  To) K ,  Pr [ F P  (To, 7>, T X) > K , \  F t\,
Co

where

»7 =
F P  (Tp, Tf, 1\ )

(3.74)
F Qo[F P (T o ,T ,J \ )\ T t\ 

is a Radon-Nikodym derivative such that F q̂  ( rj\ Ft) = 1.

In order to identify the change of numeraire associated with the above Radon-Nikodym 

derivative, it is useful to notice that r; can also be written as

h (7p, Tf, 7| ) P ( t ,  Tp) 
h (t ,T j ,T \ )  P (T o , To) ’
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where

h (t ,T f ,T \ ) =  P (t, 7b) E Qo [ F P (To, Tf ,T,)| F f] (3.75)

represents the time-i Qo-expected discounted futures price. Comparing this result with 

equations (3.21) or (3.36), it is obvious that the Radon-Nikodym derivative r\ can be though 

of as representing the change from the numeraire P ( f ,  To) to a new numeraire h (f, Tf, T\): 

as Chen (1992, page 100) points out, h ( i,  T/, T i ) is the time-i price of an asset that pays 

the futures price F P  (To,Tf, Ti) at time To- Hence, it can be said that r/ =  , where

Qh is the equivalent martingale measure associated with the numeraire h(t,T/,T\), and 

therefore

EQ0{r)\„\Ft) = E Qh( 1*|F|)

=  P r [ F P  (To, T /,T l ) > K i  \ F t] ,

which corresponds to the Q/,-probability that the option will be cxerc:ised at time Tq.

Finally, all the above results can be combined in the following probabilistic valuation 

formula:

ct [F P ( t ,T f ,T \ )\  K/,To] =  / i ( i ,T / ,T i )P r [F P (7 ’o,T/,7 ’i )  >  K f\ F t\ (3.76)
Qh

—P(t,To) Kj Pr [ F P  (To, T / . T , )  > K, \Ft).Co

Proposition 9 offers explicit solutions for the price h (t, T f ,  T\ ) as well as for both probabil

ities contained in the right-hand-side of equation (3.76). It follows the structure of Chen 

(1992, equation 9), Chen (1995, equation 15) or Schttbel (1990, equation 4.14), which nests 

as special cases.

Proposition  9 Under the. deterministic volatility specification o f the. Duffle and Kan (1996) 

model, the. time.-t premium o f an European conventional call on the. asset F P ( t , T f , T i ) ,  with 

a strike price, o f  K j ,  and expiry date, at tim e To (such that t < 7’o <  T/ <  T\), is equal to

c t [ F P (t,Tf,Ti) ; F /;T o ] =  fc ( t ,7 > ,T i)*  [d{ (t)] -  P ( U 'o )  K j *  [ 4  (0] - (3-77)

where

d{ (t )  =
In P (t .T o )K , + ° l ( t )

2
°h {  0

4  (0 =  4  (0 -  °h (0 .

h ( t ,T f ,T t )  =  P  (t, 7b) F P  (i, T f,T \ ) exp [/ (f ) ] , (3.78)
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7 (0  =  O ' a 1 &  (a1) 1 [B (T \  -  t ) +  B  (7> - T 0) - B  (T , - T 0) - B  (T ,  -  t)] 

+ G ' a 1 A  (To - t )  [B  (T f  -  T0) -  B  (T , -  T „ ) ] ,

and

*1 ( t ) =  [S' (7\ -  To) -  S ' (7> -  To)] A (T0 -  i )  • [S (T , -  T„) -  S  (T f  -  T0)].  (3.79)

The corresponding put price, is

Pt [F P { t ,  T/,T\)\ K/;To] =  - h ( t , T f ,T t ) * [ - d {  (« ) ]  +  P ( t , T 0) K f <t> [ - « t f  (*)] . (3.80)

P roo f. The derivation of an explicit formula for h (t ,T j ,T \ )  involves three steps: first, 

F P ( T o ,T / ,T i)  will be stated as a function of F P  (t, Tf, T\)\ second, its time-i Qo-expected 

value will be found; and finally, identity (3.75) will be used. FYom equation (3.66),

F P C r  T  T \  P (T° ’ T l ) F P (T o ,T f , T l ) -  p (T o  T f ) exp | y 'h  S '  (Tf  -  v) 0  [S  (T f -  v) -  B  (T, -  v)

On the other hand, because ;^ 7° 7^  =  / ,((7° 7° r ^  using results (3.43)-(3.44),

P (T 0,T i) 
P  (To, Tf )

P ( t ,T 0,T i)ex p -  2 S l°  H i  (v ) ■ H i  (v ) dv +  i t °  7i x ( v )  d W Q° (V)
P  (t, 76, Tf)  exp - i  f tT° H i W  H i (»>dv +  /<To H i  (u ) rf̂ Co (” )

, (3.81)

with I l f '  (v ) =  [S ' {T j — v ) — S ' (To — u)] • S. Combining the last two formulae with ex

pression (3.17), then

F P  (To,T,,T\) =  ^ p j e x p | ^ 7i [S '(T , - t ; ) - S ' (T / -t;)]SdW :«<>(t;)|  

exp | S ' (T f  -  v ) • 0  [B (T f  -  v ) -  B  (T , -  v)] rfo j  

exp{ - ^ /  [ i l l  ( v ) ' H l ( v ) ~  H i  ( v ) ' [ h ( v ) ]  dv| •

For F P  (To, T f ,T \ ) to be expressed as a function of F P ( t ,T j ,T \ ) ,  it is just necessary to 

take the first term and to adjust the third term in the right-hand-side of the above equality, 

according to equation (3.66):

F P (T 0 ,T f ,T \ ) =  F P ( t ,T /,T 1 ) e x p | ^ ,° [ S ' ( T 1 - u ) - S ' ( 7 > —r ) ]  • S • dU^ 0 ( v ) }
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exp | j f  ° B' (T f - v )  G  [B  (T , -  v) -  B  ('T , -  v)] dt; j  

exp { - ^  j l0  [H i 1 ( v ) H ± (v ) -  H/  (v ) //, (*,)] d t }  .

Concerning the second step, it is worth noticing that 

/•To

with*

° [B!(Ti - v ) - B ' ( T / - v ) ]  S - d W « » ^ ) }  -  N l (0 ,^ (0 ).

"2 (0  =  J 10 [B' (Tl - v ) - B ' ( T f - v ) ]  © [B(T, - v ) - B ( T , - v ) ] d v

=  j T° [ i h '  ( * )  -  IJ l  ( « ) ]  • [H i (v ) -  (w)] dv. (3.82)

Therefore, the expectation o f the second term in the right-hand-side of the last expression 

obtained for F P  (To, T f , T\) corresponds to a moment generating function (with a coefficient 

of 1 ), and thus

Ea#[FP(T0,T/,7i)|*]
rTo

=  F P (t ,T f ,T \ )e x p  ° H / (v ) -  [ « ¿ ( v ) - / £ ( « ) ]  d t,} 

exp | jT  ° B ' (T f  -  w) • 0  [B  (T i - v ) - B  ( T f  -  u)j d i- j .

Finally, using identity (3.75), and combining the last two terms in the right-hand-side 

of the last expression, a general solution is derived for h ( t ,T f ,T \ ):

h ( t ,Tf ,T , ) =  P ( t , T0) F P ( t,Tj,T\) 
rfo

(3.83)

exp j  j f  ° (7’o -  v ) • 0  • \B (T , - v ) - B  (T f  -  « ) ]  dr j

In appendix 3.8.4 it is shown how to convert equation (3.83) into the explicit solution (3.78).

In order to obtain an explicit formula for the Qo-exercisc probability, it will be useful 

to express F P (T o ,T j ,T \ )  in terms of h (t,T/ ,T\ ). Multiplying and dividing F P  ( 'I q, T f ,T \) 

by the factor exp mid following the same steps used in deriving formula (3.83),

F P (T 0 ,T f ,T x) =  F P (t ,T f ,T \ )e x p  ° [ g  (T , -  v) -  B ' ( T ,  -  r ) ]  S  ■ d W Q° ( r ) }  

exp | jT  B ' (To — v ) ■ G  ■ [B (T\  — v ) — B  ('P f — r )] dv| exp |-  —--(01

Mn appendix 3.8.3 it is shown that equation (3.82) is equivalent to the analytical solution (3.79).
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Using equation (3.83),

F P  (T o ,T , ,T\ )
h ( t ,T f l T t )

P ( t , T 0)
exp » 2 (0

2

— v) — B ' (T ,  -  « ) ]  • S  ■ d W Qo

(3.84)

ami thus

Pr [F P  (7b, 7> ,7 i) >  7f/| Ft]Co =  Pr (  /  ° [B 1 (T\ - v ) - B !  (Tf  -  t>)l • S  ■ d W Qo (v ) 
L Jt

<  In
[ f c ( f ,7 > ,r ,) i _  g; ( 0 |  1
[ P ( t , T 0 )K ,\  2 K '/ •

Because | j/ °  [B1 (T i  — v) — B' (7/ — n)J • 5  • d\VQo (v) J /V1 ( 0 , ( i ) ) ,  the standard nor

mal probability distribution function can be applied to the standardized right-hand-side of 

the last inequality:

P r [F P (T 0,T f ,T i )>  Kf\Ft] =  4».Co

In
h (t,T f,T \ ) 
P (t ,T 0)K , 2

=  * [ do (0 ]  ■

Concerning the evaluation of the Qa-exercise probability, and in order to find the prol>- 

ability distribution o f F P (T o ,T f ,T \ )  under Qh, the Radon-Nikodym derivative r/ will be 

computed explicitly. Combining equations (3.74), (3.75), and (3.83),

Tl =  FF p [ t  r 1f  Tx) exp { “  /  -  ( T°  -  0  (7| ( T f  -  *>)) rf,'|  •

using equation (3.66),

P (T o ,T ,  1 
p (T q, T , )

r> =  PI
p

iT ^ y -  exp | f  B ' (Tf -  v) ■ 0 • [B. (P i -  v ) -  B  (7> -  r)] dv\
u p T) l ‘  J

e x p j - ^  ° B ' ( T 0 - v )  e  [f l(P , - v ) - B ( T f - v ) ] d v \ ,

and considering equation (3.81), 

rT0
V =  exp [B ' (T f  -  v) -  B ' (To -  « ) ]  ©  [B (P i -  v) -  B (Tf -  v)] dt> j

exp |- ^ J  [Pi' (v) Hi (n) -  H /  (v) • /// (f)] dv j
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exp ° [B ' (T , -  v ) — B ' (T ;  -  v )] • S ■ d W Q° (u) j

{ ( j 2 rTo \

—  2  +  J (Tl _  v ) ~  &  (Tf ~  " ) ]  ' 5  ' d^ Q° ( v ) }  (3.85)

Applying Girsanov’s Theorem to the above equality, it is possible to define by M/Ql> (t ) a 

standard Brownian motion in 5R" under the probability measure Qh, provided that:

exp 5*2 (*) <  oo,

and

d W Qk (t )  =  - S '  ■ [B  (T\ -  t ) -  B (T f  -  <)] dt +  d W Qo ( f ) .

Moreover, combining this last relation with equation (3.84), the probability distribution of 

i 'P (T a ,T f ,T \ )  under Qh is obtained,

F P  (To, Tf, T\) = " 2 ( 0

exp | ^ 7° [B 1 (T\ — v ) -  B ' (Tf  -  t>)] • S ■ d W Qk (v )  j ,

and therefore,

P r [F P (T 0 , T ; , T l ) >  K f \Ft] =  Pr (  f ' ° [ B ' ( T l - v ) - B ' ( T , - v ) ] S d W ^ ( v  Ch Qh ( J t

<  In
h ( t ,T f ,T x)
P { t J b ) K ,

+ T I 4

Finally, because |/f7b [B ' (T , -  v ) -  B ' (T f -  u)] • S ■ d W ( v ) }  ~  N l (0 ,a\ ( t ) ) ,

P r [F P (T 0 ,T /,T l ) >  K f\ F t] =  4»« 
Qh

In h (t ,T , , l\ ) , '2 ( 0
P (t,T a)K , 2

< M 0

=  * [ « * i ( o ] .

Combining the previous results, equation (3.77) is derived. And, substituting equation 

(3.77) into the put-call parity for European options on pure discount bond futures, which, 

according to Chen (1995, page 364), can be stated as

c, [F P (t ,7 > ,T , ) ;  K ,\ 7b] -  Pt [ F P ( t ,7 ), T , ) ; K ,\ 7b] =  h (t, />, T , ) - K f P ( t ,  7 b ),

the analytical solution -(3.80)- for European put options follows immediately. ■
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3.6.2 Futures op tions on cou p on -bea rin g  bon ds

Denoting by ct [F S  ( t , T j ) ;  Xj\ To] the time-i fair price o f an European call on the coupon

hearing bond future F S ( t , T f ), with a strike price of X  f , and expiry date at time 7b, and 

using result (3.8),

ct [F S  (t, T f )  \Xj\To] — P ( t , T 0) E q0 { [F S  (T„, 7 »  -  X , ]  1«| F t )  ,

where 6 =  {u> G $7 : F S  (To, T f )  (uj) >  X  ¡ )  represents the set o f states of the world in which 

the option ends in-the-money. Applying relation (3.69), that is ignoring the existence of 

delivery options,

Nf
ct [FS (t ,T f )-,Xf,T0] =  Y  k' P  <*• T°) EOo IF P  (T0,7>, 7’,) 141 F(]

t=l
- P ( t , T 0) X , E Qo(U \ F t ) .

Using the law o f iterative expectations, and because E q0 (ls\ F t ) corresponds to the 

Qo-probability that the option will be exercised at time 7b, then

N,
ct {FS (t, Tf) ; Xf, To] = Y  k' P  (*•7« )  p q0 [ F P  (T 0 ,7>, T,)| Ft\ EQo (,hU \Ft)

i=\
—P(t,To) X f Pr [ FS (To, Tf) > X,\Ft\,

where

m =
F P (T o ,T f ,T ,)

;, f o r  i  =  1 ,...,Nf, (3.86)
Eq0 [F P  (T0, T f , 7))| Ft] 

is again a Radon-Nikodym derivative such that Eq0 ( r/,| F t ) =  l,V i. If the time-/ Qo- 

expected discounted zero-coupon bond futures prices are represented by

h (t, Tf,Tt) =  P  (t, To) E q0 ( F P  (7b, Tf ,Ti)\ F t] , 

then it can be shown that
=  h (T o ,T , ,T i )  P ( t , T 0)

Th h (t ,T f ,T i )  P  (T0, To) ’

which means that the Radon-Nikodym derivative r/t represents the change from the nu

meraire P ( t , T 0) to a new numeraire h ( t ,T f ,T i ) .  That is r/t =   ̂̂  , where Q ht is the

equivalent martingale measure associated with the numeraire h ( t ,T f ,T t ), and therefore

E q0 ( rn\s \Ft )  =  FjQk i ( \ f \Ft )
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Pr[FS(7b,7>)>X/|JF(],

which corresponds to the Q/ti-probability that the option will be exercised at time To- 

In summary,

N,
ct [F S ( t , T f )  ; X f -,To] =  V kth (i,7 > ,T\) Pr [F S (T 0, T , )  >  X f \ T t\ (3.87)

r T
- P  (t, To) X ,  Pr [ FS {T0, 7 »  >  X,\Ft\.

The following proposition transforms the last probabilistic valuation formula into an explicit 

solution, using the rank l  approximation described in subsection 3.4.3.34

Propos ition  10 Under the Gaussian specification o f the Duffie and Kan (1996) model, 

the time-t price o f an European conventional call with a strike, price of X/, expiry date at 

time To (>  t ), and on a futures contract, fo r  delivery at date I f  (>  To), on a default -free, 

coupon-bearing bond generating N/ cash flows o f value k, at times T, (>  T j , i  — 1 ,..., N j ), 

is approximately equal to

Nf
et [F S  (t, T f ) ; X r , To] “  £  k,h (t, Tf ,T,)<i> \d{ ( i ) ]  -  P  (t, 7b) X,<t> [d'0 (t )] , (3.88)

t=l

where

«¿0 (0 : X ! k,h ( l< Tf<T') exP 
* = 1

4  (o  = 4  ( o + <rh< (t) ,

h (t ,T / ,T i)  =  P  (t, 7’0) F P ( t , T f , T )  exp [/, ( t ) ) , (3.90)

. ( 0
-  ah, (0  4  ( i ) =  P{t,To)Xf , (3.89)

I i ( t )  =  C ' a 1 ©  (a ') '  ■\B(Ti - t )  +  B {T i - T o ) - B . { T i - T o ) - B { T , - t ) ]  

+ G ' • a “ 1 • A (7 b  -  t ) ■ [B {Tf — T0) — B{Ti -  7 b )],

and

<  (0 =  [B! (Ti -  T0) -  B1 {Tf  -  To)] • A (T0 -  i) • [ £  (T< -  7b) -  B {T , -  7 ’0)] ■ (3 91)

34 I he lognormal approximation of Pang (1996) could have also been easily adapted to the present context.
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The corresponding approximate put price is

P t [F S  (t ,7 > ); X f ;T0] S  - ' ¿ k ih ( t ,T , ,T i) *  [ - d {  ( t ) ]  +  P ( t ,T 0) X f <t> [-d ^  (* )] • (392)
i -  1

P roo f. Following exactly the same steps as in the derivation o f proposition 9, 35 equation 

(3.90) is obtained.

Similarly, the probability distribution of F P ( T o , T / , T i )  under <2o is given by equations 

(3.84) and (3.82), when 1 is replaced by i:

, rj, rr) \ h ( t ,T f ,T i )F P ( T 0, T f , T i )  =  p{ tTo )  exp <  (O'
(3.93)

exp | -  J F° [B 1 (Tf  - v ) - B '  (T, -  t/)] • S ■ d W a° (v) j  ,

where'1

<  (0 = J  ° [B ' (T f  — v ) -  B ' (T i -  « ) ]  0  \B (T f  -  v ) -  B  (T , -  » ) ]  dv. (3.94) 

Hence, combining equations (3.69) and (3.93),

P r [ F S ( T 0 ,T / ) > X / |JFt]
Co

=  p r i  Y 'k  h ( t ' TP T i) exp <  ( 0

-  ¡ °  ( B ' ( T , - v ) - B ' ( T i - v ) ) S d W a°(v )^

Moreover, since (  J [ B 1 (Tf — v) — B ' (T , — ti)] • S  ■ d W a° (v ) J ^  N l (0, ( t ) ) ,  and using

a rank 1 approximation, i.e. assuming that

j ‘ ° [B! (T f  - v ) - B !  (T i -  « ) ]  • s  ■ d W a° (v) Si ahi ( t )Z ,  f o r  i  =  l .......N f ,

where Z  ^  JV1 (0, 1 ), then

P r  [ F S  ( T o , T f )  >  X f \  f t ]
Co

i ^
Pr < k,h (t, T f ,  Ti) exp
Co [ i i

IT ? (t )
>  P ( t ,  To) X f F , y

Or, simply by substituting 1 by i in equation (3.78).
It can be easily shown that the integral equation (3.94) yields the explicit expression (3.91).
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Finally, because the left-hand-side of the above inequality is a decreasing function of the 

standard normal random variable Z ,

P r [ F S  (To, Tf ) >  X,\ Ft] *  Pr [ z  <  4  (t)| Ft]

In order to compute

J*r [F S (T o ,T / ) > Xf\Ft] — Pr 
c \ Cs *

' ¿ k i F P (T o ,T f ,T i ) >  X , (3.95)

it is necessary to obtain the probability distribution of F P  (To, 7’/, 7’,) under the equivalent 

martingale measure Qh,. For this purpose, the Radon-Nikodym derivative r;,, defined in 

equation (3.86), must be computed explicitly following the same methodology as in the 

derivation o f proposition 9, that is by making 1 =  i in equation (3.85):

■S d W Qo (n )|  .

Applying Girsanov’s Theorem to the above equality, and as long as

Vi =  exp -  l ' °  [ B  (Tf -  v) — B' (Ti -  v)]

exp <  oo,

it follows that

d W Qk< ( t )  =  S' [B (Tf -  t ) -  B  (Ti -  <)) dt +  d W Qo ( t ) ,

where t V ( t )  is a standard Brownian motion in 3fn under the probability measure Qh, 

Then, combining this last relation with equation (3.93), the probability distribution of 

FP (T0,T f,T i) under Qh, is obtained:

r, / rr, rj, rt, , ^ (^ l^/ l^ l)
h P ( l 0, T f , l i )  =  —p j y j r y -exp +  °h, ( 0

exp I t  ° T̂/ ~ v ^ ~ -  ( Ti ~ ■s ' d— ^  ( ” ) }  •

Substituting the above equality into expression (3.95), while assuming that

f ' °  [B ' (T ,  - v ) - B '  (T i -  t»)] • S  ■ d W Q^ (v ) ahi ( t )  Z , f o r  i =  1 ....... N j,
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where 7, ^  N l (0, 1), gives:

P r [F S (7 b ,7 > )> * /l* i]  ^
Qk,

f N,
Pr \
Qki [ i= i

>  p ( t , T 0) x , \ r t } .

<  (0
-O h i ( t ) { Z  -  <>h, (0 )

And, because the left-hand-side of the last inequality is a decreasing function of ( Z  — n>h (() ),  

P r [F S (T 0 ,T /) > X /lF t] Si Pr [ z  -  ^  (t ) <  4  (t)| * i ]

which proves equation (3.88).

Concerning the derivation o f the put price solution (3.92), result (3.8) and the law of 

iterative expectations imply that

P l [ F S ( t , T , )  -,Xr ,T 0} = -  7’,) F qq (r/, 11<-1 T t )
i= 1

+ P { t ,T o )X JE Qo{\6'\ F t ) ,

where 6C =  { uj e  i i  : F S  (To, 7/) (ui) <  X ¡ }  represents the set of states of the world in 

which the European put ends in-the-money. Using the definition of the new exercise set, 

and the symmetry o f the normal distribution,

E qo ( f/tUH -^t) E Qk, ( M -^ t )

=  Pr [ F S  ( T o , T f ) < X f \ F t \
W/it

^  l - 4 > [ d ' ( t ) ]

*  *  [~d{ ( < ) j  •
Similarly for the second expectation,

=  P r [F S (T 0,T f )  <  X ,\ r t\Go
£* 1 — <1> [do ( f ) ]

»  *  [-d5  ( 0 ] .

which proves the analytical approximate solution (3.92). ■

Rem ark 7 The put-call parity fo r  European options on coupon-bearing bond futures can be
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obtained by subtracting equation (3 .9 2 ) from  form ula (3 .88):

3.6.3 Futures options on sh ort-te rm  interest rates

This subsection is devoted to the valuation of European futures options on short-term 

nominal “money-market” forward interest rates, and makes use of the symmetric credit 

risk assumption of Duffle and Singleton (1997). Next proposition considers the case of 

futures options with stock-style margining.

P ropos ition  11 Under the deterministic, volatility specification o f the Dujjii and Kan 

(1996) model, the time-t premium of an European conventional call on the futures con

tract F R  (t, T f, T\), unth a strike price equal to K a n d  expiring at time To (such that 

t <  To i  T f  <  T\) ,  is equal to

The time-t premium o f the corresponding European conventional put option is given by

ct [F R ( t ,  T f ,T \ )  ; K h ',To] =
100P (t, 7b)

T i - T f

where

V R (t )

d i ( t )  =  d [f ( t )  +  trk ( t ) ,

(t ) =  [B! (T, -  To) -  B ' (T f -  7 ’o)] A  (r0) • [B  (7) -  7b) -  l ì  (7> -  7b)],

and

P (0  =  [« ' (7Ì -  7 ’o) -  B' (Tf -  To)] A  (r0) ■ B  (T, -  7 b ) .

pt [F R ( t , T f ,T i ) - , K R,To\ = 100P  (t, T0) 
T i - T f

f P ( t , T f ) 
X P ( t , T i )

eL(Tb)+p(t)<p [rf« (£)] (3.97)

Proof. Using equation (3.73), the (intrinsic) terminal value o f the call option is
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where P  (To, T j,  T\) =  is the time-To forward price, for delivery at date T j, o f a

zero-coupon bond expiring at time T\. And, applying result (3.8),

ct [ F « ( t , T / , T i ) ; K r \T0] t \\T\
----------- -------------------- "  — £'Co ' Cr° //, /1 ) , K r , /o|| f t )  ■ (3.99)

In order to compute the last expectation, it is necessary to use the stochastic process 

followed by the forward price P (T o ,T j ,T \ )  under the risk-neutral measure <2o, which, from 

equation (3.81), can be written as

where

P (7b,T j,T \ )  =  exp { » ( t )  -  z ) ,

v ( t )  =  G ' a 1 |e°<ri 7i> • A ( r 0) • /„ -  r°>

+ e “ (T'  T° ) A  (r0) ^ e ° '(7> " To) - / „  | (a ' ) '  G,

(3.100)

and
r'l'o

z =  J  [B 1 (T r - u ) - B '  (T , -  u)] • S ■ d W Q° (u ) .

Because z N l (0, (T2H (t ) ) ,  and combining equations (3.98) (3.99) ami (3.100), yields

ctlF R frT /M iK m T o ]

100P (t, T0)
T x - T f / d z ----------■ =

oo (Tr (/) V27T
exp

2<Tr (0 {*<*•>

{[i +  on  - 7 »
100 -  K r 

100
-  exp [L  (To) -  !/(/)]

P ( t . T x ) '

with

z* =  In
1 +  (7\ -  7 »

P (t,Tx )

100 K h 
100 - L ( T 0) +  u ( t ) .

Solving the last integral explicitly and defining p (t )  =  — o ( t ) ,  equation (3.96) is easily

obtained. The put option solution (3.97) can be also derived along the same lines. ■

Remark 8  I f  the maturity date o f  the futures option is the same as the delivery datt o f 

the underlying futures contract (as is the case, fo r  instance, o f the Quarterly Eurodollar 

futures options tended at the International Money Market Division o f the Chicago Mercantile 

Exchange), equations (3.96) and (3 .97 ) are still applicable, but with 7o replaced by T j,  i.e. 

wth E('I'o) +  p ( t )  =  (T2„ ( t ) .
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R e m a rk  9  I f  To =  T j, then equation (3 .9 8 ) can be rew ritten as

[F R (T / ,T / ,T i )  ; K r \Tj ] =  1001 100 ~  K r  1 r />(7>,7>)
1 0 0  r ,  - T ,  [ p ( T , , T ) ]}

and

period (T\ — T/). Therefore, equations (3.96) and (3.97), when To =  T j ,  are also the pricing 

solutions f o r  European puts and calls, respectively, on the nominal forward interest rate

at the op tion ’s expiry date (instead o f settlement in arrears, as was the case in subsection

All the valuation formulae derived so far in this subsection are only valid for futures 

options with stock-style margining. However, the short-term interest rate futures options 

traded at the London International Financial Futures Exchange (L IF F E ) have futures-style 

margining requirements, that is are pure futtires options according to Duffie (1989). This 

means that the option premium is not paid at the time o f purchase, but only when the 

contract is exercised. Moreover, option positions are marked-to-market daily, in exactly the 

same way as the underlying futures contract. Next proposition takes these features into 

account.

P rop os ition  12 Under the deterministic volatility specification o f the Du/Jie and Kan 

(1996) model, the. time-t premium o f a pure European futures call on the. futures con- 

tract F R ( t ,T j ,T \ ) ,  with a strike price equal to K R, and maturity at date To (such that 

t <  To <  T f  <  T\), is equal to

R ( t ,T j ,T \ ) , with a strike equal to . with a contract size: o f 1 0 0 , and with settlement

3.4.2).

F c t [ F R { t , T j , T ) - , K R-,To\ (3.101)

{ [
100 -  K n 

100 ♦ h t * <‘» - Ç$rfLm* H ”  wi}.

where

<*«( 0

and

d f «  (t ) =  do™ ( i ) +  * « ( * ) •
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The time-t premium o f the corresponding pure European futures put is given by

F p t  [ F R ( t , T f , T i ) ; K r \ T q\

=  T ^ T ,  {  T $ { )exp [ L 'V 11 *  W *  ( i ) l -
1 +  ( 7 j - 7 > )

100- Kn  
100

(3.102)

* [ 4 "  ( < ) ] } •

P roo f. A pure futures option behaves just like a futures contract on the corresponding 

conventional futures option, and thus its price must be equal to the expectation, under 

measure Q , o f the terminal underlying spot price. In the case of a pure. European futures 

call,

Fct [FR (t, Tf , 7 j ) ; KR\T„] =  EQ{clh{FR (7 ’0, Tf, 7 ) ) ; KR\ 7b] I Ft) ,

or, using equation (3.98),

Fct [FR  (t, Tf ,T i ) ;  K r \ To]

IO O -A 'h X eL(T°)
1 0 0  ) ~ P ( T 0, 7> ,7 j)

(3.103)

In order to proceed, it is necessary to know the stochastic process followed by the forward 

price P  (Ta. I f ,  T j ) under the martingale measure Q. Using equation (3.13), formula (3.100) 

can be rewritten as

P (7 b ,7 > ,7 j) =  p ^ t ' ^ e x p [r i ( t ) -u > \ ,  (3.103)

where

r/(t) =  Gf a 1 | ^ 0(r/ -T°) -  eo (r,“ ro) -  e°(T' '* )  +  ea(T' '>] a 1 0

- ^ T' To) ■ A  ( to) • e“ '<r ' r°> +  i e< T’  T° ) A  (r0) • e“ '(7> r°) J (a >)' • Q

and

/
• o

[ « '  (7 )  - u ) -  B ‘ (T i -  u )] • 5  ■ (u ) .

Combining equations (3.103) and (3.104), and because w ^  N ] ( 0 ,crj{ ( t ) ) ,  then

Fct [F R  (i, T f, T\) ;  Kn\ To] 
1ioo n  

T t - T f j - J

{ [ l + ( T ,  - 5

tTH(t)y/2n
1 0 0  -  k r

1 0 0

exp
2 ( 0

— exp [L (To) — »7 (01
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where

w* = In 1 +  (T i -  7 »
- L  (To)+ 7,(t).

Finally, computing explicitly the above integral, and because L (To) — rj ( t )  +  =  L ( t ) ,

the closed-form solution (3.101) is easily obtained. The put option solution (3.102) can be 

easily derived by combining formula (3.101) with the following well known put-call parity:

F ct [F R ( t , T j , T \ ); K R',Tq] — Fp t [F R ( t , T j , T \ ); K r \Tq\ =  F l l ( t , T , , l \ )  -  K R.

R em ark  10 Equations (3.101) and (3.102) can also be applied to value pure American 

futures options, because, and as shown by Chen and Scott (1993a), the price o f a pure 

American futures option before expiration will always exceed its intrinsic value, and therefore 

early exercise should not occur.

3.7 Conclusions

This Chapter considered a deterministic volatility version o f the Duffie and Kan (1996) 

model, which constitutes the most general Gaussian multifactor time-homogeneous and 

affine term structure model. Under such tractable framework, exact pricing solutions were 

derived for several European-stylc interest rate contingent claims, such as: interest rate 

futures, European options on zero-coupon bonds, caps and floors, European yield options, 

and European interest rate futures options. For European options on coupon-bearing bonds 

(and thus, for European swaptions), two types o f approximations were described and com

pared: if the maturity of the underlying bond is close to the expiry date o f the option, both 

approximations produce excellent results; if not, the lognormal approximation is best suited 

for pricing at-the-money contracts, while the rank 1 approximation produces lower pricing 

errors for deep out-of-the-money strikes.

The Gaussian analytical pricing solutions obtained in the present chapter will be nec

essary to produce, in Chapter five, expedite approximate explicit pricing formulae for the 

same contracts, but under the more general stochastic volatility specification o f the Duffie 

and Kan (1996) model. Before that, and in the next Chapter, propositions 1, 2, 3, and 1 

will be used to fit a Gaussian affine state-space model to a panel-data o f swap rates, cap 

prices, and swaption quotes. These propositions will generate the measurement equations 

required for the implementation of the Kalman filter recursions.
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3.8 Appendices

3.8.1 A  c lo sed -fo rm  solution fo r  f l ' ( r )

Following Edwards and Penney (1993, section 5.7, equation 43’ ), the unique solution of the 

initial value problem

— g (0  =  A - j ( 0  +  c ( 0 .  |/ ( ° )  =  y0’

with y (t )  e  3Î", A  € R " xn, and ç ( t )  € 9Î", is given by

y ( t )  =  eAt y0 +  eM - f  e~A‘  ç(») da,
JO

where eAI is the fundamental matrix o f the associated homogeneous system37. That is y( t )  

is obtained by adding the solution of the correspondent homogenous system (known as the 

complementary function) to a particular solution of the nonhomogeneous system.

Applying the above result to the initial value problem given by equation (2.8) subject 

to the initial condition f l  (0 ) =  0 , it follows that

A  (r )  =  e° T ■ 0  +  e° T • / e °  J ■ ( - £ )  d.s.
Jo

Since (eAt) =  A eAt, because e ° n =  /„, and assuming that matrix a is o f full rank, then

B ( t ) =  ea'T ■ { a 'Y 1 ■ (e ~ a'T -  In)  ■ G .

Finally, because Ap ■ eAt =  eAt ■ Ap for any integer p, equation (3.2) follows.

3.8.2 A  c lo sed -fo rm  solution fo r A  ( T  — t )

Because the eigenvectors of matrix n are assumed to be linearly independent, then a =  

Q A Q  1 and e“ ^7  ** =  Q  exp [A ( T  — t)] ■ Q  ’ , where Q  is a n  x n matrix with columns 

corresponding to the eigenvectors of matrix a, and A =  ding (A | ,. . . ,  An}. Therefore, equa

tion (3.4) becomes

A  ( T  -  t) =  j '  Q  ■ e ^ T ~v) ■ 0 *  • eA<r  Q'dv,

where 0 * =  Q  1 • 0  • (Q  * )' =  Irr* 1 . Moreover, because eA ^7  ~v  ̂ is a diagonal

matrix with the i th element of the main diagonal equal to eA,</ v\ and following Langetieg

A ■ y (t).
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(1980, footnote 23),

eA(T-u) . 0 . . eA(7--«) _  f  e (At+Aj)(7' 1
l *  J itj =  1...n

Using this last result, the integral A  ( T  — t ) can now be computed analytically:

A ( T - t )  =  Iq . / - e<A«+Ad(7’- “> e7' ]  \ Q ’
L *• A* +  )  ij=i ....n J(

-  - * ■ { * & } „ .......
+ Q . / e(A4+Ai ) ( T - 0 _ ^ L _ \  Q '

L A* + Xi J i , j  =
=  - Q  0 ** Q ‘ +  Q  • eA (r- ‘> ■ 0 ** • eA<T - ‘> Q 1, 

where 0 ** — | \ ^  | ■ Finally, using the change o f notation Y  =  Q  0 ”  Q1,

A ( T  — t) =  Q e A(T 0  Q  1 Q  ©•* Q 1 (Q 1) 1 • eA(T 0  • Q ' -  Y, 

and expiation (3.7) follows.

3.8.3 A  c lo sed -fo rm  solution for ( t )

Starting from expiation (3.82), using result (3.2),

o\{ t )  =  -  “  1 ' [ /  " eQ(T'- * ')  ©  . ea‘( T/ ' ’) d v -  J ^ °  e^ T'  u) ■0 e°'(T ," v)dv

-  ea(T' v) G  ea'(Tr - v)d v  +  J T° ea(T' v) ■ 0  • e° '(Tl v)dv (a * )' ■ G,

and expressing all the four previous integrals in terms of A  (71b — t),

crl ( t )  =  G  a 1 [ea(7> "T°) • A  (r0) ■ ea' ( r '  r °) -  e ° (7> r°) A  (r0) • e°'( r ‘ r°>

- e a<Tl 7b) . A  (Tq) . eo'(T/- To) +  ea(r, -To) A  (T()) . ea'(T, T0)j . (a 1)' Q

f  inally, combining the last result with expiation (3.2), formula (3.79) is derivexl.

3.8.4 A  close<i-form  so lution  for h  (t ,7 / ,T ’i)

Using expiation (3.2) anel simplifying,

rTo
j  V (T o - u )  0 [£ (r , - v ) - Z ( T , - v ) \ dv
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=  G' a“1 0 j j f  ° ^e°'(7> -tf) -  du j  (a ’ ) '  ■ G

- C  ■ a - 1  • | JT° ea(T° - v) ■ ©  • [e - 't1/“ " )  -  e°'<Tl -">] dt; j  • (a * ) ' ■ G.

Solving the first integral on the right-hand-side, and expressing the second one as a function 

of A  (T o -  t),

j  ° B ' (T 0 -  v) ©  [B  (T , - v )  — B  (T/ -  t;)] dv

=  - C  a © (a ') 1 ■ { e “ ' ( r/ T°) -  e“ '(T‘ r “) -  e“ '( r / 0  +  e°'<T' '>} (a ’) ' G  
- G  a 1 A  (T0  -  i) • [e0'(7>_7b) -  e0 '*7 "1 To)] (a 1 ) '  • G

Combining the above expression with (3.83), and using again equation (3.2), yields 

solution (3.78).
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Chapter 4

A Gaussian State-Space 

Formulation

This Chapter is based on the paper Nunes and Clewlow (1999), presented at the 9th Animal 

Derivatives Securities Conference (Boston, 1999) and at the 26th Annual Meeting o f the 

European Finance Association (Helsinki, 1999).

4.1 Introduction

Based on the dimensionality o f the data under consideration, it is possible to distinguish 

three different approaches towards the estimation of time-homogeneous term structure mod

els: the “time-series” , the “cross-section” , anil the “panel-data” approaches. In the first case 

-as, for instance, in Q ian et al. (1992) or Andersen and Lund (1997)- the model' parameters 

are estimated using a time-series of state variables (or of their observable proxies) values, 

and therefore only the dynamics of the yield curve are captured. In the second case -for 

example, in Brown and Dybvig (1986) or Brown and Schaefer (1991b)- the model is fitted 

to a cross-section o f market observables (e.g. prices of coupon-bearing bonds for several 

maturities), and thus only the current shape of the yield curve is incorporated. Obviously, 

these two more traditional methodologies can be said to be inefficient in the sense that they 

do not make use o f the full set of market (spatial) information available. 1

The “panel-data” approach has the advantage of using simultaneously time-series and 

cross-sectional data (enhancing, therefore, the efficiency o f the parameters’ estimates). It 

uses, in a consistent way, both objective and risk-neutral model dynamics (yielding estimates 

for the parameters related to the market price of risk) and can be further divided into two

'Furthermore, while the first approach is “incomplete” since it does not provide estimates for the parame
ters defining the investor’s preferences, the second ( “implied” ) method is not theoretically justified because 
it ran yield a different set of (supposedly fixed) parameter’s values for each time period
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categories, depending on the assumptions made about measurement errors. In the first 

category, one or more points of the yield curve are assumed to be observable without error 

-see, for instance, Pearson and Sun (1994), Chen and Scott (1993b), or Duffie and Singleton

(1997)- and consequently the model’ factors can be identified exactly without the use of 

filtering techniques. Although the zero measurement errors assumption allows the model 

to be inverted in such a way that the state variables can be expressed as deterministic 

functions o f the observed data, in practice, such hypothesis is contradicted by the existence 

of several market imperfections (such as transaction costs, liquidity premiums, taxation 

effects, or simply the non-synchronous arrival of market information). More realistically, 

the second category explicitly considers the existence o f measurement errors in the data by 

representing the term structure model in a state-space form, and treats the state variables 

as truly unobservable by estimating the model’ parameters through the use o f a Kalman 

filter. The present Chapter will hereafter focus on this latter “panel-data” , “state-space” 

approach.

During the current decade, several authors have used Kalman filtering techniques to 

estimate, mainly, time-homogeneous term structure models belonging to the exponential- 

affine class characterized by Duffie and Kan (1996). Traditionally, the model specification 

fitted to the panel-data o f market observables under analysis has been either a restricted2 

version of the Langetieg (1980) model, or the multi-factor version o f the Cox et al. (1985b) 

model: see, for example, Jegadeesh and Pennacchi (1996), Berardi (1997), or Babbs and 

Nowman (1999) for the Gaussian case; and Duan and Simonato (1995), Chen and Scott 

(1995a), or Geyer and Piehler (1996) for the "square-root” specification. In any case, the 

time-homogeneous assumption is required because, in order to fit the model both through 

time and eross-sectionally, it is necessary to know the stochastic differential equation fol

lowed by the state variables under the objective probabilities as well as with respect to an 

equivalent martingale measure. 3 On the other hand, the intensive use of the exponential- 

affine class of models in the empirical literature is mainly a consequence o f its analytical 

tractability: it offers exact closed-form solutions for bond prices (or spot yields), which have 

traditionally been used to estimate the model’ parameters.4

2For instance, the double-decay model proposed by Beaglehole and Tenney (1991). As it will become 
clear latter, restrictions are needed in order to transform the over-parameterized Langetieg (1980) model 
into an identifiable specification that ensures the non-singularity of the model’ information matrix

*As a possible exception, Bhar and Chiarella (1996) estimate a one-factor Markovian Heath-Jarrow- 
Morton (H JM ) model using a non-linear Kalman filter, although their model is fitted not to a panel-data 
but only to one time-series of bond prices.

4Honoré (1998) stays outside this simple affine class, since it estimates, using a “panel-data” approach, 
non-linear term structure models with no closed-form solution for bond prices. However, by imposing 
aPpropriate linear restrictions on the measurement errors, no Kalman filtering technique is required to 
estimate the parameters.



In a first stage, the term structure model that will be employed in this C'hapter is 

the Dai and Singleton (1998) general Gaussian canonical formulation (with unobservable 

state variables), which in essence can be made equivalent to the Langetieg (1980) model 

through an affine invariant transformation that ensures model identifiability. Although the 

framework is not new, this Gaussian time-homogeneous exponential-affine model will be 

estimated using a panel-data consisting simultaneously o f swap rates, at-the-money (ATM ) 

cap prices, anti ATM  European swaption prices. That is, the distinctive feature and main 

contribution of the empirical work presented in this Chapter consists in applying Kalman 

filtering techniques (for the first time, to the author’s knowledge) to market data containing 

not only information about the level o f the yield surface but also information about the 

volatility and the correlation surfaces. As Rebonato (1998, page 372) clearly summarizes: 

“...swaps and FRAs price the level o f (different portions o f) the yield curve; caps and 

floors price the volatility o f (i.e. the diagonal elements of the «»variance matrix among) the 

different forward rates; swaptions assign a price both to the diagonal and to the tiff-diagonal 

elements o f the same covariance matrix...” . Consequently, the purposed enlargement of 

the set o f market observables, from which the factors are filtere«! and the parameters are 

estimated, is intended to capture a wider range o f market sources of uncertainty, enabling 

the estimated model to price (accurately) also a broader class of interest rate contingent 

claims.

The motivation to use a Gaussian framework (besides its well known analytical appealing 

features) and an enlarge! data set is twofold. On one hand, liabbs and Nowman (1999) 

have shown that a simple two-factor affine Gaussian model is able to fit remarkably well 

the term structure o f (USD) interest rates. It would be surely interesting to test whether 

such a simple model is also able to explain the behavior of the term structures o f interest 

rate volatilities and correlations. On the other hand, the suggestion put forward by Rogers 

and Stummer (1994, page 28) concerning the use of other liquid derivatives prices in the 

estimation stage, besides the traditional ones related to the level of the yield curve, is also 

considered.

As in Babbs and Nowman (1999), the empirical results obtained in this Chapter also 

suggest that a simple affine and time-homogeneous Gaussian model, with two or three fac 

tors, can fit the yield curve under a one basis point precision level. However, when the same 

model is also fitted to both cap and Kurc>i>ean swaption prices, it is never possible to repro

duce the hump observed at the short-end o f the volatility curve and swaptions are heavily 

mispriced. To test whether such inability to explain the market cap and swaption prices 

is simply the result o f modelling the volatility term structure as being time-homogeneous,

114



an equivalent Gauss-Markov Heath et al. (1992) model is proposed, where the diffusion 

term (of the instantaneous forward rate stochastic differential equation) is augmented by a 

time-dependent parameter. In order to retain the most explanatory power within the time- 

homogeneous framework, such arbitrage-free model is then estimated in two stages: first, the 

time-independent parameter’s values are taken directly from the Kalman filter estimation 

of the corresponding “equilibrium” model specification; secondly, the time-inhomogeneous 

parameter is only used to improve the cross-sectional fit of the term structures o f volatilities 

and/or of interest rate correlations. It will be shown that the exact pricing o f swaps and 

caps can now be achieved, while European swaptions have much lower pricing errors, in the 

context of stable time-homogeneous diffusion coefficients.

In summary, the purpose o f this Chapter is to address the following four empirical 

questions:

1. The ability o f simple (Gaussian) time-homogenous affine models to fit not only the 

term structure o f interest rates, but also the market volatility and correlation func

tions.

It is well known that the selected term structure model suffers from strong theoretical 

limitations: besides the extensively reported possibility of attaining negative interest 

rates,5 also the term stmcture of interest rate volatilities is not time but rather matu

rity dependent. And, although, for most currencies, the shape of the volatility curve 

seems to be similar over time, it can never be considered as constant. Nevertheless, 

it will be tested whether increasing successively the number of model state variable's 

(instead of incorporating time-dependent parameters into the model) will allow a 

better description of the structural behavior o f the market volatility and correlation 

functions, while avoiding the fitting of data noise.

2. The dimensionality requirements for “non-PC based” factor-models.

Rebonato (1998, page 70) suggests that the 3-factor usual “prescription” {level, slop , 

and curvature) offered by a Principal Component Analysis (P C A ) underestimates 

the number o f state variables needed to fit the market correlation structure, even for 

models where the factors are not taken to be the first three principal components, 

because the observed fast decorrelation ■phenomena between adjacent forward rate's 

in the short end of the yield curve is not conveniently reproduced. In this Chapter, 

by increasing successively the number of model’ factors, it will be tested empirically 

which is the dimension required for the model correlation function to move from

5Rogers (1996) identifies the potential pricing implications of this model “deficiency” .
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the traditional sigmoid shape to the more realistic exponential-decaying behavior. 

Moreover, it will be shown analytically that the result obtained previously by Cooper 

and Rebonato (1995) in the context o f a “simple” two-factor model can indeed be 

extended to an arbitrary large number o f state variables.

3. The efficiency of linear versus non-linear filtering methods.

Since the model state variables are not affine functions o f the swap rates, the cap 

prices, or the swaption prices, the model parameters will have to lie estimated through 

the use o f a non-linear Kalman filter. Furthermore, because exact non-linear filtering 

techniques would be numerically over-intensive for the multi-factor model specifica

tions implemented in this Chapter, an approximate non-linear filtering method will 

be employed, which, o f course, is sub-optimal in the sense that it does not provide 

exact asymptotic properties for the parameter’s estimates. But, linearizing the data 

(for instance, obtaining spot rates from swap rates) in order to be able to apply exact 

filtering techniques, can also be argued to imply not only a loss o f market informa

tion (swap rates contain more information than spot rates o f equal maturity) but also 

an additional bias in the final parameter’s estimates (depending on the accuracy of 

the linearization method employed). In this Chapter, and wherever possible, the two 

approaches will be compared.

4. The relevance o f the time-homogeneous assumption.

In the final part of this Chapter, the Dai and Singleton (1998) Gaussian model will 

be converted into an equivalent Gauss-Markov HJM formulation, but with a time- 

inhomogeneous diffusion component, which will be fitted (cross-sectionally) to the 

same data set. Both “equilibrium” (i.e. state-space) and “ HJM” specifications will 

be compared in terms o f parameter’s stability and pricing accuracy.

The remainder c>f this Chapter is organized as follows. Section 4.2 presents the interest 

rate “equilibrium” model specification under analysis, anil reviews the analytical pricing 

formulae provided by such Gaussian framework for swaps, caps, and European swaptions 

In section 4.3, the interest rate model is specified in a state-space form, the Kalman fil

tering estimation technique is described, ami a Monte Carlo study is presented. Section

4.4 describes the US LIBOR-rate derivatives data set under analysis, while section 4.5 is 

devoted to the estimation of the state-spar* model, for different numbers of state variables, 

and through both linear and non-linear Kalman filtering algorithms. Then, section 4.6 pur

poses a similar time-inhomogeneous Gauss-Markov HJM model, which is also calibrated to 

the same data set. Section 4.7 summarizes the main conclusions of the Chapter. In the
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appendix, the empirical analysis described in sections 4.5 and 4.6 is replicated for another 

data set containing UK swap rates, cap prices, and European swaption prices.

4.2 Model description

4.2.1 D a i an d  S ingleton (1 9 9 8 ) G aussian  form ulation

As in Duffie and Kan (1996), Dai and Singleton (1998) also formulate a general (stochastic 

volatility) time-homogeneous exponential-affine model, but starting from objective proba

bilities, i.e. from measure V. The time-t short-term interest rate, r ( t ) ,  is still given by 

equation ( 2 .2 ), i.e. it is still described by an affine function of the model’ factors, and, 

under the original probability measure V, the state variables evolve through time according 

to the following Markov diffusion process:

dX  (t ) =  K  [0 -  X  (01 dl +  T.- J v D  ( t ) • dW v  ( t ) ,  (4.1)

where K, £  G 3fnx", 0 G 3?", and with matrix \JVD ( f ) defined as in equation (2.5), that is 

\ ]v D ( 0  =  diag^y/vi \Jvn (t)J  ,

Vi (t) =  a , i+ ft '  X ( l ) ,  f o r i= l , . . . ,n ,

n, G 3f, and /V, G slf,l The vector d W v  (t ) G 3fn contains n independent and ^-measurable 

Brownian motion increments.

By assuming a particular analytical specification for the vector o f market prices o f risk,

A (0  =  \JvD (t ) A, (4 .2 )

where A G 3f", Dai and Singleton (1998) are able to define an equivalent martingale proba

bility measure Q  on the same measurable space (i2, T ) ,  such that

d W Q (t ) =  A (t ) dt +  dW v  ( t )  (4.3)

is, under measure Q, also a vector o f standard Brownian motion increments in 9fn (with the 

same standard filtration as d\Vp ( t ) ) .  Combining equations (4.1), (4.2), and (4.3), a risk- 

adjusted stochastic process can be obtained for the vector o f state variables, and interest 

rate contingent claims can be priced.

The functional form adopted for A (t) is analytically convenient, because it supports an
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affine risk-neutral drift for the state variables. Moreover, equation (4.2) is also theoretically 

justified because the Dai and Singleton (1998) specification under analysis can lx- nested 

into the general equilibrium Duffie and Kan (1996) formulation derived in Chapter two. 

In fact, using Theorem 4, that is working under preferences described by a power utility 

function, it follows that d =  — K,  b =  K  ■ 0, and A =  \  — 7 £, i.e. A is defined in terms 

of the Pratt’s measure o f relative risk aversion as well as in terms of the diffusions for 

the exogenously specified output and money supply stochastic processes. Therefore, the 

framework that will be used for the empirical analysis presented in this Chapter can be 

viewed as a particular case of the general equilibrium formulation derived in Chapter two.

Under this general affine formulation, and attending to the total number of model factors 

(n) as well as to the number of state variables (m ) that are included in the diffusion term 

of equation (4.1), Dai and Singleton (1998) define the restrictions that must be imposed to 

the model parameters in order for the model to be both admissible6 and just-identified. For 

each pair (n ,m ), such restrictions define what Dai and Singleton (1998) denominate as the 

A m (n)  canonical models.

Since this Chapter restricts its attention to the (simpler) Gaussian case, it will adopt 

from now on the Dai and Singleton (1998) Ao (n) canonical model, which is obtainable from 

(4.1), (4.2), and (4.3) by imposing two types of restrictions. First, and in order for the 

instantaneous volatility o f (4.1) to be deterministic, it is necessary that

P i = Q ,  (4.4)

for i =  1 ... . ,  n. Secondly, following Dai and Singleton (1998, definition I I I . l ) ,  and in order 

for the model to be just-identified, the minimal number o f restrictions that must be imposed 

to the parameters is:

K ij =  0, f o r  i <  j ,  (4.5)

where K tJ is the i th-row j ih-column element of matrix K  J

0 =  Q, (4.6)

E =  /„, (4.7)

f'That is, for a strong solution to exist for (4.1).
Matrix K  can be either upper or lower triangular. In this Chapter, the second hypothesis will be 

assumed.
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where /„ G 9înxn is an identity matrix, and

3  =  1, (4.8)

where a  G 5Rn is a vector with a, as its ¿‘^-component.

In synthesis, the Gaussian term structure model adopted hereafter is completed defined 

by the short-term interest rate equation ( 2 .2 ), by the stochastic process

d X { t )  =  - K A X ( t ) d t  +  d W v ( t ) ,  (4.9)

where K A equals matrix K  subject to restriction (4.5), and by the relation

d W Q ( t )  =  Adi +  d W v  ( t ) . (4.10)

I bis is clearly a parsimonious version of the I.angetieg (1980) model considered in Chapter 

three, with only 1 +  2n +  parameters. Nevertheless, it involves the maximal number

of parameters that ensures identifiability, and it nests several other Gaussian formulations 

previously used in the “panel-data” literature: for instance, in appendix 4.8.1 it is shown 

how to convert the Babbs and Nowman (1999) model into the Ao (n ) canonical formulation.

4.2.2 P ric in g  o f  L IB O R -r a t c  derivatives

Next propositions simply summarize the already known Gaussian pricing formulae for the 

contingent claims that will constitute the panel-data sample used in the empirical analysis of 

this Chapter, and follow from the analytical solutions derived in Chapter three for the more 

general deterministic volatility Duffle and Kan (1996) model. Since the Ao (n ) formulation 

is going to be applied to the valuation of LIBOR-rate derivatives (and not to the pricing of 

default-free interest rate contingent claims), the Duffle and Singleton (1997) assumption of 

symmetric counterparty credit risk will be implicitly used hereafter.8

Proposition  13 Under the Ao (n ) canonical formulation and assuming that matrix K A is 

non-singular, the. time-t price, o f a (unit face, value.) pun: discount bond with expiry dati 

T  (>  ( )  is given by

P ( X ( t )  ; r )  =  e x p [A (r )  +  B ' ( r )  • £ ( i ) ]  , (4.11)

where

Ë  ( r )  =  G ' ■ ( K A ) ' (e  K* T -  /„) , (4.12)

8Meaning that the model’ short-term interest rate will be regarded not as a riskless rate but rather as a 
default- and liquidity-adjusted rate.
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A ( r )  =  - r ,'/ + £?' ( * * ) " '  ■ l I n  + ( e * * T -  /„) • (KA) ' + ^A (r)] • ((/CA)') 

A (r ) = [tf* + ( * * ) ' ]  ■' {/„ -  e [KA+( ^ ) ' ] t } ,

- 1
• G,

(4.13)

(4.14)

and r  =  T  — t represents the time-to-maturity o f the zero-coupon bond.

Proof. Proposition 13 follows from proposition 1 by imposing the parameter’s restrictions 

(4.5) to (4.8), and adopting a straightforward change o f notation. ■

strictly positive (and, therefore, non-zero).

Rem ark 12 Although A  ( r )  involves integrals o f  matrix exponentials under the general 

Langetieg (1980) model (see expression (3 .4 )), equation (4-14) provides a simple, integral- 

free analytical solution as a consequence o f  restrictions ( 4 -7) and ( 4 -8).

The tiine-i spot swap rate for an interest rate swap (hereafter labeled by IRS) settled in 

arrears at times T< =  t +  iS, i  =  1 ,. . . ,  m  will be denoted by9

It is simply the fixed-rate for which the present value o f the swap is equal to zero.

Proposition  14 Under the. Ao (n) canonical formulation, the. tim e-t price o f a forward cap 

on a unitary principal, with a cap rate, o f k, and settled in arre ars at times T, =  t +  id. i =  

2 , . . . ,  rn is

Rem ark 11 Matrix K A is hereafter assumed to be non-singular. This assumption is intu

itive and not very severe, because the principal diagonal elements o f K A are expected to be

m
Cap (X  ( t ) ; k, 6, m) =  £  { P ( 2 t ( 0  ; iS) 4> [<x* , ( i + 1 ) 4  -  <£(*)] (4.16)

- ( l  +  6k ) P ( X ( t ) ; ( i + l ) 6 ) * l - d ( i ) ) } ,

with

<T>i,(t+ i)i

and

< (j+1)< = £ ' ( « )  a  ( i 6 ) B ( 6 ) .

9 Without loss of generality, and in order to simplify the notation, it will be assumed that 1\ — \ b,Vi.

120



Proo f. Equation (4.16) results from proposition 3 and formula (3.31), that is follows from 

valuing the cap as a portfolio of (m  — 1 ) European put options (caplets) on zero-coupon 

bonds. In particular, rr^ (l+ ,u represents the time-t variance of the time-7’, log-price o f a 

time-7) 4 1 maturity pure discount bond, and is obtained from (3.25). ■

Rem ark  13 The time-t price o f the corresponding at-the-money forward cap will be desig

nated by A 'l'M C a p  ( X  ( t ) ; 6, rn) , and is obtained from (4- lb ) by defining k as being equal 

to the market time-t forward swap rate with settlement in arrears at time.s T, =  t -t- i6, i  =  

2 ,. . .  i m.

Propos ition  15 Under the Ao (n ) canonical formulation, the time-t price of an European 

payer swaption maturing at time Tu =  t 4 - u6 , with a strike equal to x , and on a forward 

swap with a unitary principal and settled in arrears at times 7„ ( , =  7 ’u +  16 ,1 =  1 , rn, is

P a y e r s w p n ( X ( t ) \ x , 6 , u , m)  ^  P ( X  (0  ; u6 ) 4*( — h) (417)
rn

-  k' P  ( *  (0 ; («  + 0 *) *  { - h  -  Oustu+w) ,
i= l

where h is the solution o f

m ( o '1 \
XJ (0 ; («  +  *•) *) exp f — ' -  0 ut,iu+i)f h j  =  p  ( X  (0 ;u *),

ki =  Ift-m } +  x î

and

" Is tu + i i t  =  B  (i6 ) ■ A  (u6) ■ B  ( i i ) .

Proof. Equation (4.17) follows from proposition 4 and equation (3.60), i.e. values an 

European payer swaption as an European put with the same expiry «late, with a strike price 

equal to 1 , and on a coupon-bearing bond corresponding to the fixe«i leg of the underlying 

interest rate swap, using a rank 1 approximation. ■

Rem ark 14 Instead o f proposition 4, one could have, priced European swaptions using thi 

lognormal approximation o f proposition 5. Bearing in mind the. cmpir-ical results obtained 

in subsection 3.4-3, and because the. swaption contracts contained in  the. data sets to bt 

used in the following sections are mainly on short-maturity swaps, it seems, a prion, to bt 

indifferent the. type, o f  approximation to consider. Nevertheless, because the price o f each 

swaption will be linearized with respect to the. model state-vector ( in order to implement the 

Extended Kalman Filter, in section 4 ‘0< und since, the rank I approximation involves less 

severe non-linearities, proposition 4 uias the one to be. selected.
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R e m a rk  15 The tim e-t price o f  the corresponding at-the-m oney European swaption will

be denominated by ATM suipn ( X  ( t ) ; <5, u, rn) , and follows from  (4 17) by defining x  as 

being equal to the market time-t forward swap rate with settlement in arrears at times 

Tu+i =  T u +  i6, i — 1 ,. . . ,  m.

4.3 State-space formulation and Kalman filter recursions

The term structure model described in section 4.2 must be rewritten in a state-space form, 

to allow the explicit treatment of measurement errors. Moreover, in order for the model pa

rameters to  be estimated by maximizing the log-likelihood function of the observed market 

data, the (unobservable) state-variables must be recovered using Kalman filtering tech

niques. Th is section presents the model state-space formulation as well as both linear and 

non-linear Kalman filter algorithms, and is based on Harvey (1989, chapter 3).

4.3.1 T ran s it ion  equation

Ijet the panel-data of market observables be composed by the observation of M  inter

est rate contingent claim’s market values at N  discrete and equally spaced time-periods 

tk (k  =  1, . . ., N ),  such that t* — £*_ j =  h,Vk . i0 To evolve the vector o f state-variables 

through tim e (say, from tk i to £*), equation (4.9) can be solved explicitly yielding a simple 

Gaussian V A R (l )  process (see, for instance, Lund (1997a, equation 4)):

4.3.2 M easu rem en t equation

Equations (4.15), (4.16), and (4.17) show that there exists a non-linear relationship between 

the model’ state-variables and the observed swap rates, cap prices, or swaption prices.

X - k  — F  ■ X _ k  , +  v k (4.18)

where

(4.19)

„ 1

and X_k =  K ( t k ) -  Using Fubini’s theorem and ItA’s isometry, it follows that

e K'A(t‘  s) d W v (s ) ,

o* -  AT" (0, A  (/»)). (4.20)

10The analysis could be easily generalized for unequally spaced time-periods, but at the expense of addi
tional notation.
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Therefore, the measurement equations (and, consequently, the Kalman filter algorithms)

(just) to the level of the yield curve (using swap rates), it is possible to transform the 

observed data (using, for instance, linear interpolation and bootstrap methods) into spot 

interest rates, with the advantage of providing a linear measurement equation. Both cases 

are now formalized.

Linear Kalm an filter

According to equation (4.11), there exists a linear relationship between spot interest rates 

and model’ factors:

R ( t , t  +  t ) =
T T

where / {(f, t +  t ) represents the time-t spot interest rate, with continuous compounding, 

prevailing during r-years.

Assuming that the observed data is composed by M  continuously compounded spot 

interest rates (for different constant maturities r,, i =  1 , . . . ,  M ) ,  at each one o f the N  

time-periods, and that the measurement errors are additive and normally distributed, the 

usual linear measurement equation is obtained:

ment error for the i th maturity. Concerning the specification of the measurement errors’ 

covariance matrix, the elements of ek will be assumed to be cross-seetionally and serially 

uncorrelated as well as homoskedastic:

where I M € i)?Af x M is an identity matrix, and € 5R+ is the common variance o f all 

measurement errors. Although it can be argued, as in Geyer and Pichler (1996, page 6 ), 

that the variance o f the measurement errors should depend on the maturity of the- spot

the constant variance- assumption will be used for computational reasons: it allows the

considered in this Chapter will generally be non-linear. However, when fitting the model

R k = A + H ' X k +  ek, (4.21)

with

(0,Ud ) (4.22)

where the i th row o f Rk € , A € SJ?M, I V  G 3iMxn, and ek 6  ')fM is given, respectively,

by the market spot rate R ( t k, tk +  t,), by — A ild , _  H (tl) ̂  alKj |,y the tirne-i* measure

(4.23)

rate (and hence that matrix U D should involve M  new parameters, instead of just one),



fitting o f higher-dimensional models (larger n) to larger data-sets (larger M ), hy reducing 

the number o f parameters to  be estimated. Similarly, the presence of first order serial 

correlation amongst the measurement errors is also commonly found in the literature -see, 

for instance, Brown and Schaefer (1994b, table 5)- and it would require the state-space 

formulation to be augmented as suggested by Berardi (1997, equations 17 and 18). But, 

again, such modification would require the additional estimation o f a diagonal matrix of 

autocorrelation coefficients, which would, in turn, increase the computational complexity of 

the estimation procedure proposed. Therefore, although assumption (4.23) might prove to 

be unrealistic, it will be used in order to allow the model fit to an enlarged data set (that 

is, for values o f M  higher than it is usual in the literature).

In summary, the transition equation (4.18) and the measurement equation (4.21) define 

a linear Gaussian state-space model, where the state-variables can be inferred using the 

standard linear Kalman filter, and the 2 +  2n +  n n̂2> model’ parameters can be estimated 

through (exact) Maximum Likelihood (M L).

Non-linear Kalm an filter

When fitting the model to swap rates, cap prices and/or swaption prices, it is still possible 

to obtain a measurement equation relating the vector o f market observables with the con

temporaneous (unobservable) vector of model’ state-variables, although such relation is no 

longer linear.

In general terms, let the observed data be composed, at each one o f the N  time-periods, 

by Mi swap rates, M 2  cap prices, and M 3 European swaption prices, such that

M — Mj -f- M2 -f- M3 .

The vector Rk € 9fAi now represents the time-i* market values of all interest rate contingent 

claims, i.e.

' «1 *  '

B k = 1 1lk

L fkk J
where the j th element of R ±k G is the observed time-i* spot swap rate with m jH‘s

resetting periods of <5/H‘s-years each, the j th element o f /¿2 t € sJi'v,a is the observed tinie-t* 

price of an ATM  forward-start cap with m c*v resetting periods o f 6 cap-years each, and the 

j lh element of Rsf € is the observed time-i* price o f an ATM  European swaption with 

uawpn p{T j0 (js lo  maturit,y (0 f  ésu’Pn-years each) and on a forward swap with m 'Uipn resetting
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periods (also of ¿',u’pn-years each).11 Similarly, let X k ( X k) £ denote the corresponding 

niCKiel values for the same set of interest rate derivatives, that is

Z x ( K m )

Z±k ( X k)

Z ik ( K k) - 

2a* ( * * )  .

where the j th element of Z±k ( X k) £ 9iM| is given by 1RS  ( x * ;  6 ,KS, , the j th element

of Z ïk {X_k) £ 3îM2 is equal to A T M C a p  (^Xk ; 6rap, m“ p) , and the j th element of Z$k ( X k) G 

jjM:i corresponds to A TM sw pn  (X k; 6su,pn, u*"jpn, . The (non-linear) measurement

equation is therefore

R k =  Z k {,X k) +  ek, (4.24)

where the vector e* G 9 o f additive 

covariance matrix is now bl 

each market segment:

U u  =

n i V / d o u i  t int.iit

diagonal in order to accommodate specific variances for

®e, I mi O m , x Ma O m , xM3

O m 2 x Mi
2  T

0 C2 l M - i 0*/i X Ms (4.25)

O mj x M] O M2 X M2 °ts ¡Ms

with O  an<l I  representing, respectively, null and identity matrices, with dimensions given 

by the corresponding subscripts, and tr^ , <r* , <r*3 G 9?+ .

The state-space model defined by equations (4.18) and (4.24) is non-linear (in the mea

surement equation), and involves 4 -1- 2n -f "ii'TU parameters. Since the use o f an exact 

non-linear filter -along the lines of Kitagawa (1987)- would be numerically infeasible (for 

the multi-factor model specifications to be considered in this thesis), an approximate non

linear Kalman filter will be used instead and the model’ parameters will be estimated by 

Quasi-Maximum Likelihood (Q M L ).12 The next question concerns the choice of the “opti

mal” non-linear approximate filtering method to employ, which, as Jazwinski (1970, page 

361) points out, depends on the nature o f the specific problem under consideration. For 

example,13 Claessens and Pennacchi (1996), in the context of defaultable bond pricing,

11 For simplicity, the contract specifications b1 Hs and lis { j  1 .......M i ), brap and m )op ( j  1 , . . . ,  A72),
and ¿au>Pn  ̂u au,pn and rrijU>pn {J =  1, . . . ,  M 3) are assumed to be constant for all the N  time-periods.

12Of course, there is a price to be paid by such simplification: as argued by Lund (1997b), the state- 
variables’ filtered estimates can be biased (as well as inefficient) and the parameters’ estimators may be 
inconsistent. Nevertheless, for empirical purposes, the small sample properties of the model parameters’ 
estimators are, perhaps, more relevant, and for this reason a Monte Carlo study is presented at the end of 
the present section.

13See Tanizaki (1996) for alternative non-linear filters.
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have used the Extended Kalman Filter (E K F ) described in Harvey (1989, section 3.7.2), 

and Lund (1997b) implemented, for multi-factor Gaussian term structure models, the Iter

ated Extender! Kalman Filter (IE K F ) as given in Jazwinski (1970, theorem 8.2). Empirical 

evidence reported in Jazwinski (1970, chapter 9) suggests that the IE K F  should be more 

effective than the EKF in dealing with significant measurement non-linearities. Moreover, 

the EKF technique can be thought as being nested into the more general IEKF because, for 

each time-period (and for each candidate set o f model’ parameters), the IEKF method "u[>- 

dates” the filtered vector of state-variables through the numerical solution of a generalized 

least squares (GLS) problem, as in Lund (19971), equation 16), while the EKF simply in

volves one iteration o f such optimization algorithm. However, this greater generality of the 

IEKF also makes it more numerically involved, particularly for the high-dimensional models 

implemented in this dissertation: as the number o f model’ factors is increased, not only the 

number o f optimizing variables in each one o f the N  GLS problems is higher, but also, in 

the author’s experience, the number of (Gauss-Newton) iterations required becomes larger. 

Consequently, and only based on computational-time reasons, the simpler EKF technique 

will be used, with its finite sample properties tested through a Monte Carlo study, at the 

end of this section.

The E K F  is based oil the linearization o f the state-space model, and subsequent use of 

the standard Kalman filter recursions. In the present case, it is only necessary to linearize 

the measurement equation around X k  k i > be. around the forecast o f Xk  based on the 

information available at time Ik i . Using a first-order Taylor series expansion for the vector 

of model contingent claims values,

Z k ( X k) ^ Z k + Z ' k - (,X k - xXk\k- i)  >

where

(4.26)

equation (4.24) can be approximated by:

Note that matrix Z k is easily analytically computed, by differentiating equations (4.15), 

(4.16), and (4.17).14

14 Formulae summarized in appendix 4.8.2.
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4.3.3 L og -lik e lih ood  function

Following, for instance, Lund (1997a, section 3) and Claessens and Pennacchi (1996, appen

dix B), the (exact/quasi) log-likelihood function o f the observed market data ( l t \, . . . ,  ),

conditional on the vector of all model parameters 'F e  5fp , 16 can be obtained, for both 

(linear/non-linear) Kalman filters, by the following prediction error decomposition:

I M * f | N

I n L ( « 1 ........B s \ m  = --------2~  In (2n)  -  -  g  [in \ i l k \ +  ^  ii* 1 g j  , (4.27)

where the vectors of prediction errors, fik, and their covariance matrices, , are iteratively 

computed through standard Kalman filter “prediction” and “update” recursions.

In the “prediction” step, the mean of the unobservable state-vector X k, conditional on 

the information available at time tk ¡,

=  F  ‘ Z-k - i*  (4.28)

is obtained, as well as its mean square error (MSE) matrix

i =  F  Pk- } Fv +  A (h ) .  (4.29)

Then, in the “update” stage, X k is estimated based on the information available at time

tk,

X-k — ¿ * ¡ *  - 1  +  ‘ Z k • ' ‘ /f*' (4.30)

and the corresponding MSE matrix is computed:

n = [ r $ t- l +  z k - { jJ D) - l - 2 k] ' .  (4 .3 i)

In all the formulae, Z k is given by equation (4.26), for the EKE, or simply by //, for the 

linear case. Similarly, the prediction error vector is

Hk — B k — ( 2 ! + H '  ■ Xk\k 1 ) 1  (4-32)

for the standard Kalman filter, or

(±k =  B k -  Z k ( K k\k 1 )  1 (4.33) 15

15The vector includes not only the “structural” model parameters /, Q, and A, hut also the
variance(s) of the measurement errors. Its dimension, p, corresponds to the total number of parameters to 
be estimated.
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for the EKF. Finally, the inverse and determinant of $2* can be efficiently obtained through 

the formulae contained in Harvey (1989, page 108):

n*” 1 =  ( ^ T 1 -  ( u D V '  z i  Pk - z k - ( u Dy l , (4.34)

Assuming that the stochastic process (4.9) is stationary, the above mentioned Kalman 

filter recursions are initialized at the first two unconditional moments o f the state-variables

vector:

4.3.4 O p tim ization  a lgorithm

The model parameters 4? are estimated by maximizing the log-likelihood function (4.27), 

through a quasi-Newton method involving backtracking line searches (following Dennis and 

Schnabel (1996, section 6.3)). The iteration rule o f the optimization process can be repre

sented as

is the estimator o f the parameters’ asymptotic covariance matrix evaluated at $*, and 

Ip € 9?p*p is an identity matrix. The step length p„ is obtained, at each iteration, by a 

backtracking line search procedure that ensures global convergence, while 7 „ is chosen, at 

each iteration, in order to guarantee that [Q ( 4 ’ ) 4 - 7 , /p] is positive definite.

Following Harvey (1989, equation 3.4.70), the i th element o f the gradient vector has the 

following analytical form : 1 7

K.o — Qi (4.36)

and

vec (Po ) =  ( I ni — F ®  F )  1 • vec (A  (/i))

where Ini 6  3?’ denotes an identity matrix.

s a+I =  r + M Q o n + 7 . / P] 1 - » o n (4.38)

where represents the vector of parameters’ estimates at the sth iteration, g ( $ a) (= 

is the gradient of the log-likelihood function evaluated at the sth iteration, € W>xp

N

16Since U D is a diagonal matrix, (i/D) * and \UD \ can be further simplified.
17 For simplicity, the obvious dependence of ilk and on has been suppressed.
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with

and where is the i th element o f 4?. As suggested by Berndt, Hall, Hall and Hausman 

(1974, page 655), matrix Q  is taken to be not the Hessian (with opposite sign) of the log- 

likelihood function (as in the Newton-Haphson method), but the covariance matrix of 4c 

Under the exact linear case, the M L estimator of 4' is asymptotically normal, with

mean 4?, and its asymptotic covariance matrix is given by the Fisher’s information matrix 

I  A{^_M L). Harvey (1989, equation 3.4.69) provides the following explicit approximation 

for the t,h-row _/th-column element of I A  ('k):

fo r the EKF, the Q M L estimator t ° f  4  >s still asymptotically normal, approximately 

consistent, and its asymptotic covariance matrix can be approximated by:ls

In summary, for the standard Kalman filter, Q ( V ’ ) =  I A  (♦ * ) ,  yielding a modified method 

of scoring, while for the non-linear case, Q (V ' )  =  / A  1 ($ * )  • J  ($ * )  • I A  1 (4?a).

As in Duan and Simonato (1995, page 1 1 ), the stopping criteria is based on a maximum

analytically using the recursions derived in Harvey (1989, section 3.4.6). In appendix 4.8.3 

these formulae are simply adapted to the FKF.

4.3.5 M o n te  C a r lo  study

In order to test the performance o f the EKF in finite samples of swap rates, cap prices, and 

swaption prices, a Monte Carlo study was conducted on the two-factor model estimated, 

using only spot interest rates, by Babbs and Nowrnan (1999, Table 2). The true parameter

' “Ignoring the possible autocorrelation amongst the scores 81 j jp ' , as observer! by Lund (1997b, page 14).

1A 1 ' J {V-QMl ) ' I A  1 (4?qat/,) , (4.41)

where the i th-row j 4*-column element of the “outer-product-of-the-gradient” matrix ./ (4») 

is given by

absolute difference smaller than 1 0  4 in both the log-likelihood function value and in the 

parameters’ vector. Finally, note that the system derivatives anti can be computed
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Parameter True value Mean Std. Error
/ 0.072800 0.072815 0.000054

G 1 -0.003950 -0.003821 0.000135
g 2 -0.010206 -0.010195 0.000014
K 1 1 0.552900 0.551486 0.005910
K 2i 0.743020 0.742189 0.005919
K 2-i 0.065200 0.065534 0.000894

^ 1 -0.084900 -0.087222 0.002841
^ 2 0.096300 0.094165 0.003140

0.001285 0.001286 0.000025
<7£2 0.000072 0.000072 0 . 0 0 0 0 0 2

3 0.000183 0.000186 0.000003

Each simulated data set contains 200 daily cross-sections of:
6  swap rates (for 0.5, 2, 3, 5, 7, and 10 years),
7 ATM  forward-start cap prices (for 1, 2, 3, 4, 5, 7, and 10 years),
8  ATM  European swaption prices (for 0.5 x 2, 0.5 x 3, 0.5 x 4,
0.5 x 5, 0.5 x 7, 0.5 x 10, 1 x 4 ,  and 2 x 8  years).

True values are obtained from Babbs and Nowman (1999, Table 2). 
Means and standard errors are for 500 Monte Carlo simulations.

values (second column of table 4.1) were obtained, through appendix 4.8.1, by transforming 

the two-factor Babbs and Nowman (1999) model into an equivalent Ao (2) one. In addition, 

the true standard deviation of swap rates’ measurement errors is set equal to the average one 

estimated by Babbs and Nowman (1999) for continuously compounded spot yields (i.e. 12.85 

basis points), fo r  cap and swaption prices, the true standard deviations of measurements 

errors are arbitrarily set equal to an equivalent spread of 1 b.p. in terms o f a one-year 

forward-start cap (with quarterly compounding) or in terms of a Ü.5 x 2  swaption (with 

semi-annually compounding), respectively (and assuming a flat continuously compounded 

yield curve o f 5% ) . 19

Using such “true” model parameters, the data was simulated and the Q M L  estimator 

was applied 500 times. For each replication, first the vector of state variables was evolved 

through time using the Euler discretization o f equation (4.9), with 1,000 subdivision per 

day. Then, for N  =  200 days, 20 a panel-data of M\ =  6  swap rates (with maturities of 

0.5,21 2, 3, 5, 7, and 10 years), of M 2 =  7 A TM  forward-start cap prices (w ith maturities

"That is,
a .,  =  0.01% x 0.25 x +  e +

and
<7., 0.01% x 0.5 x (e  5%’“  +  e s + e 5*«J + e 5%,2.sN

20The configuration of the simulated data sets, in terms of the number of cross-sections and con- 
tracts/maturities considered, is intended to reproduce the features of the US real data set that will be 
used in the following sections.

21 This is simply a 6-month LIBO R  spot rate.
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of 1, 2, 3, 4, 5, 7, and 10 years), and of M 3 =  8  ATM  European swaptions (with swaption 

maturity x underlying IRS length equal to 0.5 x 2, 0.5 x 3, 0.5 x 4, 0.5 x 5, 0.5 x 7, 

0.5 x 10, 1 x 4, and 2 x 8  years) was simulated assuming additive, independent, and normally 

distributed measurement errors with zero mean and common standard deviations for each 

one of the three blocks of derivatives .2 2  Semi-annually compounding was assumed for both 

IRSs and swaptions (6IRS =  S’wpn =  0.5), while quarterly compounding was used for 

caps (6cap =  0.25). Finally, for each simulated panel-data set, the model’ parameters were 

estimated through QML, using the RKF algorithm.

The last two columns o f table 4.1 show the sample mean and the standard error of 

the parameter’s Q M L estimates obtained from the 500 Monte Carlo simulations. The 

overall conclusions are that the mean estimates are very close to the corresponding “true” 

parameters’ values, and that the more significant standard errors are, as is commonly found, 

related to the market price of risk parameters.

4.4 Data description and PCA

The raw data set used for the empirical analysis presented in the following sections consists 

of Eurodollar rates (for .3, 6 , and 12 months), US swap rates (for 2, 3, 5, 7, 10, and 15 

years), US ATM  forward-start cap flat yield volatilities (for 1, 2, 3, 4, 5, 7, and 1 0  years), 

and US ATM  Ruropean swaption flat yield volatilities (for 0.5 x 2, 0.5 x 3, 0.5 x 4, 0.5 x 5, 

0.5 x 7, 0.5 x 10, 1 x 4, 2 x 4 years) . 2 3  These are daily average (between bid and ask) quotes, 

from 21/06/95 to 30/05/96, which yield only N  =  189 cross-sections of complete market 

observations, after clearing the data from all the missing data points. Although the data 

set spans a smaller time-horizon than it is usual in the Kalman filter literature, it should be 

noticed that the spatial dimension o f the sample under consideration is similar as a result 

of the use of additional derivatives quotes (per cross-section) in the model estimation . 24

The Eurodollar rates and the swap rates were transformed into discount factors for all 

the quarterly maturities comprised between 0.25 and 15 years, using linear interpolation 

of swap rates and bootstrapping o f pure discount bond prices. These discount factors are 

used to compute cap and swaption prices from their quoted flat yield volatilities, and also 

allow the application of linear Kalman filtering techniques on continuously compounded 

spot rates. Figure 4-1 shows the daily evolution, between 21/06/95 and 30/05/96, of the

22Each independent and univariate normal variate was generated from uniform variates (between 0 and 
1) transformed through the Box-Mullcr algorithm

2,1 Data kindly provided by Martin Cooper, Tokai Bank Europe.
21 Moreover, the use, in appendix 4.8.5, of a larger data set (containing 784 cross-sections) of l k I.IBOH- 

rate derivatives' quotes docs not change the empirical findings to be obtained from the smaller US data
set.
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Figure 4-1: Term structures o f continuously compounded US spot interest rates (from 
21/06/95 to 30/05/96, and for quarterly maturities from 0.25 to 15 years)

Datas

continuously compounded spot interest rate for several maturities. During the period under 

analysis, the yield curve is predominantly upward sloping, although, for much of the sample, 

it also presents a negative slope in the money-market maturities.

Figure 4-2 presents the flat yield volatility surface during the same time-period, and for 

all the cap maturities. Although such flat yield volatilities can be understood as cumulative 

averages of caplet yield (i.e. “ forward forward” ) volatilities, the usual hump between the 

one- and the two-years maturities is still evident. Because the measurement equation (4.24) 

is stated in terms of cap prices (instead of volatilities quotes), all the flat yield volatilities 

were converted into forward-start cap prices, applying the usual Black formula for each 

caplet (as in Clewlow and Strickland (1998a, equation 6.15)), and using as strike price 

the corresponding forward swap rate with quarterly compounding. Similarly, the ATM 

European swaption flat yield volatility quotes were also converted into option prices, using 

the “market” assumption of log-normally distributed forward swap rates (as in Rebonato 

(1998, page 17)).

In order to introduce the empirical work presented in the next sections, a Principal 

Component Analysis (PC A ) was applied to the full time-series (from 21/06/95 to 30/05/96) 

of continuously compounded spot interest rates for the following maturities: 1, 2, 3, 4, 5, 6 , 

7, 10, 12, and 15 years. The goal is to identify the state-space dimension of the interest rate
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Figure 4-2: US caps’ flat yield volatility quotes (from 21/06/95 to 30/05/96, and for all 
sample cap maturities)

data under consideration, that is to find the minimum number of non-trivial factors needed 

to reproduce almost all the data variance structure. Then, section 4.5 will test whether the 

interest rate model under consideration with such pre-specified number o f state-variables 

is able to capture the dynamics o f the yield curve, while also pricing accurately caps and 

swaptions.

The PC  A  was performed not on the interest rate levels but rather on the daily interest 

rate changes, since the latter were checked to be stationary. Therefore, the data matrix 

under use can be represented by

A f l = { ( A f t ) y  =

where A Rj (t )  denotes the tth observation of the daily change in the spot rate for the 

j th maturity considered. Then, the eigenvalues and eigenvectors associated to the sample 

covariance matrix of A tt were computed, being the eigenvectors sea l«! to unit length: that 

is, the eigenvectors (or “loadings” ) matrix P  6  9tIOx 10  is an orthogonal matrix. Finally, each 

factor (or “principal component” ) is obtained as a vector o f linear combinations between
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Table 4.2: Principal Component Analysis of daily US spot rate changes (from 21/06/95 to 
30/05/96)_______________________________________________________________

Eigenvalues 
Explained variance 
Cum. Expl. var.

A Z \ A Z i a z 3 A  Z A a z 5 a z 6 A Z j
4.68E-6
75.9%
75.9%

1.09E-6
17.7%
93.6%

2.94E-7
4.8%
98.4%

6.81E-8
1 .1 %

99.5%

1.60E-8
0.3%
99.8%

1.03E-8
0 .2 %
99.9%

5.03E-9
0 .1 %

1 0 0 .0 %
Original variables: Eigenvectors

1 year ( A R i ) -0.156 0.985 0.070 -0.023 0.014 -0.004 -0.008
2  years (A R 2 ) -0.344 -0.019 -0.154 0.847 -0.186 0.265 0.185
3 years ( A R 3 ) -0.356 -0.032 -0.489 -0.051 0.645 -0.188 0.073
4 years ( A R 4 ) -0.353 -0.035 -0.360 -0 . 2 2 2 0.055 0.046 0.056
5 years (A R $ ) -0.350 -0.040 -0.230 -0.402 -0.543 0.282 0.038
6  years (A R g ) -0.337 -0.053 -0 . 0 2 2 -0.111 -0.317 -0.150 -0.246
7 years ( A R j ) -0.324 -0.067 0.193 0.187 -0.089 -0.594 -0.540
10 years (A/ig) -0.298 -0.075 0.418 -0.096 -0.014 -0.290 0.626
12 years (A/ig) -0.297 -0.078 0.411 -0.085 0.125 0.048 0.230
15 years (A/iio) -0.297 -0.083 0.411 -0.069 0.355 0.593 -0.398

Each column corresponds to one of the first seven principal components.
Eigenvalues and (orthogonal) eigenvectors computed from sample covariance matrix.

the loadings and the original data:

A Z  =  A R  P ,

where A Z  =  | (A / f)tJ =  A Z j  (0 }<  ■2 ,...,18 9  is usually called the “scores” matrix, and A Z j  ( t ) 

represents the tirne-i value of the j th principal component. 25

Table 4.2 presents the first 7 eigenvalues (in a strictly decreasing order) and the corre

sponding eigenvectors (matrix P )  of the sample covariance matrix. In addition, the third 

line represents the proportion of all the original variables variability that is explained by each 

principal component ( A Z j ) ,  and the fourth line shows the cumulative explanatory power of 

retaining successive factors.26 As usual, the first principal component (A Z i  ) explains about 

three quarters of all the variant* in the data (75.9%), and the first three factors, taken to

gether, account for almost all the variation in A R  (98.4%). Moreover, the analysis of the 

loading coefficients yields the usual interpretation for the first three principal components: 

the first one is related to the level of the interest rates; the second one represents a slope 

factor; and, the third one accounts for the curvature of the yield curve. In summary, this 

PCA study seems to suggest that two or three factors should be enough to model (almost)

25 Since P ' - P  =  ho, then
A f l '  =  f > A Z ' ,

which possesses a clear analogy with the IIJM modelling approach.
26 These percentages were computed using two well known facts: the variance of each principal component 

is equal to the associated eigenvalue; and, the trace of the sample covariance matrix equals the sum of all 
eigenvalues.
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Table 4.3: Estimation of the Dai and Singleton (1998) Gaussian model through EKF and
using US swap rates__________________________________________________________________

Parameter
O n e - f a c t o r  m o d e l  

E e t im n te  Std .  E rro r

T w o - f a c t o r  model  

E e t i m a t e  Std .  E rro r

T h r e e - f a c t o r  m o d e l  

E e t i m a t e  S td .  E r r o r

P o u r - f a c t o r  m o d e l  

E e t i m a t e  S td .  E rr o r

f 0.052S1 0 .10572 0.05345 0.01859 0.03701 0 .02669 0.04256 0.03762

G  i 0.01471 0 .00060 0.01431 0.00295 0.02731 0 .00383 0.04299 0.00581

c 2 0.01102 0.00081 0.01147 0.00154 0.01088 0.00197

^3 0.00651 0.00064 0.00661 0.00904

G 4 0.00093 0.04881

K n 0.00038  0 .00025 1.59903 0.12614 1.52706 0 .16018 3.24036 0.25591

1.79234 0.19440 3.78846 0.62220 5.80152 0.97495

K 3 1 0.06564 0.78805 0.96620 33.72856

*41 4.34072 6.71122

K 22 0.06975 0.00813 0.47193 0.03826 0.19189 0.00324

k 32 0.04460 0 .10355 0.11524 2.25478

K*2 0.31037 0.91186

K 33 0.02231 0 .00317 -0.13354 3.28023

K 43 0.42981 0.24934

K u 0.13612 3.25229

Al -0 .19969 0.00256 0.03771 0.48669 0.07049 0 .43438 0.05570 0.59323

A2 -0 .35163 0.54710 0.22626 0 .81372 0.30898 1.07913

A3 0.10271 0 .00630 0.52387 17.56387

A4 2.23828 2.48789

0.00145 0.00005 0.00042 0.00002 0.00022 0 .00002 0.00014 0.00002

In L 7872 9183 9675 9968

BIC 7862 9162 9641 9965

Data: I'S  swap rates for 0.5, 2, 3, 5, 7, 10 and 15 years 
(from 21/06/95 to 30/05/96).

all the uncertainty in the data.

4.5 State-space model estimation

4.5.1 F itt in g  the y ie ld  curve

In the first instance, the non-linear model defined by equations (4.18) and (4.24) was esti

mated through the EKF presented in subsection 4.3.2, using only swap interest rates (for 

maturities o f 0.5, 2, 3, 5, 7, 10 and 15 years27). Table 4.3 presents the QMI. parameters esti

mates, their standard errors (computed from (4.41)), the optimal value of the log-likelihood 

function, and the HIC information criterion for one-, two-, three- and four-factor model 

specifications. As usual, the less accurately estimated parameters are those related to the 

market price o f risk. Moreover, and as found by Geyer and Fichier (1996, page 9), for mod

els with more than three factors, the standard errors of some Q M L estimates become too

a7I.e. M  «  M, =  7 and M, =  M 3 =  0.
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Table 4.4: Goodness o f fit to market US swap rates o f the models estimated in table 4.3
IR S

m a tu r it ie s :

O n e - fa c to r  

M ea n  E r ro r

m o d e l

M A E

T w o - fa c to r  

M ean  E rro r

m o d e l

M A E

T h r e e - fa c t o r  m o d e l 

M ean  E r r o r  M A E

Four fa c to r  

M ean  E rro r

m o d e l

M A E

6 m on th s 0 .0224% 0.2622% -0.0020% 0.0231% -0 .0006% 0.0042% 0.0002% 0.0019%

2 years 0 .0104% 0.0393% 0.0125% 0.0326% 0.0044% 0.0117% 0.0025% 0.0091%

3 years 0 .0161% 0.0489% 0.0039% 0.0249% 0 .0011% 0.0102% 0.0012% 0.0070%

5 years 0 .0341% 0.0576% -0.0165% 0.0217% 0.0086% 0.0120% 0.0057% 0.0101%

7 years 0 .0072% 0.0702% 0.0040% 0.0172% 0.0052% 0.0151% 0.0076% 0.0088%

10 years 0 .0138% 0.0876% 0.0096% 0.0274% 0 .0029% 0.0166% 0.0034% 0.0072%

15 years 0 .0060% 0.0768% -0.0045% 0.0420% 0 .0026% 0.0191% 0.0002% 0.0041%

Errors are differences between model and market swap rates, 
(from 21/06/95 to 30/05/96).
M AK are mean absolute errors.

large. Nevertheless, the BIC criterion (as well as the likelihood ratio tests28, not presented 

in table 4.3) always rejects the nested models in favor of the higher-dimensional ones.

Table 4.4 shows the mean and mean absolute differences, for each maturity and over 

the whole sample, between the swap rates generated by the model parameters’ estimates 

presented in table 4.3 and the market quotes. The results clearly show that with only two 

or three state variables it is already possible to obtain average pricing errors of less than 

one basis point. Therefore, and as in Babbs and Nowman (1999), it can be said that a 

low-dimensional (with two or three factors) affine and time-homogeneous Gaussian model 

can fit extremely well the term structure o f interest rates (as predicted by the principal 

component analysis conducted in section 4.4). In addition, table 4.3 also indicates that 

higher dimensional specifications yield too unstable parameter estimates, although the fit 

to the market observables can be marginally improved. Bearing in mind that the I’ C'A 

conducted before identified two/three non-trivial factors, such parameters’ instability can 

be even understood as a symptom of model over-fitting, since only seven long term rates 

are being used to estimate the model.

In order to compare the efficiency of the proposed “sub-optimal” non-linear Kalman filter 

with the standard linear one, the linear Gaussian state-space model defined by equations 

(4.18) and (4.21) was also estimated using continuously compounded spot yields with the 

same maturities as the swap rates considered in tables 4.3 and 4.4. Because one-factor 

models prtxluce too high pricing errors while mtxlels with more than three factors seem 

difficult to identify from the data, table 4.5 only presents two- and three-factor model 

parameters’ estimates and standard errors, obtained using a standard linear Kalman filter

2,Since all the four Gaussian models are nested into each other, they can also be compared through a 
likelihood ratio test equal to twice the difference between the log-likelihood function value of the general and 
restricted model specifications. Such test is asymptotically chi-squared distributed, with degrees of freedom 
equal to the number of parameter restrictions (under the null hypothesis of valid parameter restrictions).
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Table 4.5: Estimation o f the Dai and Singleton (1998) Gaussian model using a linear Kalman
filter and US spot yields_______________________________________________________

Parameter
Two-factor model 

Estimate Std. Error
Three-factor model 

Estimate Std. Error
/ 0.06180 0.04970 0 . 0 2 2 2 1 0.03543

G i 0.01260 0.00179 0.02143 0.00182
c 2 0 . 0 1 1 2 0 0.00076 0.01232 0.00081
g3 -0.00395 0.00034
K u 1.70000 0.09220 1.45261 0.08750
K2i 2 . 0 1 0 0 0 0.25000 3.50533 0.32327
K 31 0.04009 0.43263
K 22 0.05670 0.00266 0.27238 0.01549
K 32 0.03654 0.04125
K 33 -0.07565 0.00163
Al 0.04330 0.59100 -0.62949 0.49081
A2 -0.22800 0.69100 0.04174 0.94216
A3 -1.74463 0.06364
<*£ 0.00053 0.00001 0.00030 0.00001

In L 8970 9434
BIC 8949 9400

Data: US spot rates for 0.5, 2, 3, 5, 7, 10 and 15 years 
(from 21/06/95 to 30/05/96).

and ML estimation. Table 4.6 contains the average differences between the model and the 

market values for the spot interest rates used in the estimation process, as well as for swap 

rates of identical maturities. It can be observed that, although the model fit to the market 

yields is very good (average absolute errors lower then 3 b.p. can be obtained using three 

state variables), the linear Kalman filter consistently overestimates the market swap rates: 

the average errors for swap rates are much higher than those presented in table 4.4, and 

positive for all maturities. In other words, the proposed EKF generates a better fit to the 

observed term structure of interest rates, at least for the finite sample under consideration.

In summary, the empirical analysis developed so far produced three conclusions:

i) Only two or three state variables are required to fit the yield curve, while preserving 

parameters’ stability;

ii) Model specifications with more than three factors generate unstable parameters’ esti

mates;

iii) Although only the standard linear Kalman filter can produce exact asymptotic pa

rameter estimates properties, a non-linear filter seems to perform better in a finite 

sample o f swap rates.
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Table 4.6: Goodness o f fit to US market yields and swap rates of the models estimated in
tame 4 . 0  _

Tw ofactor model Three-factor model
= = = = =

Spot rates Swap rates Spot rates Swap rates
Maturities: M AE MAE Mean Error MAE Mean Error MAE
6 months 0.0307% 0.1362% -0.0023% 0.0104% 0.1379% 0.1379%
2 years 0.0383% 0.0707% 0.0127% 0.0188% 0.0588% 0.0591%
3 years 0.0303% 0.0457% -0.0062% 0.0170% 0.0420% 0.0428%
5 years 0.0299% 0.0327% -0.0150% 0.0174% 0.0371% 0.0375%
7 years 0.0204% 0.0534% 0.0063% 0.0187% 0.0577% 0.0578%
10 years 0.0353% 0.0720% 0.0069% 0.0284% 0.0623% 0.0625%
15 years 0.0566% 0.0651% -0.0013% 0.0210% 0.0628% 0.0628%

Krrors are differences between model and market rates (from 21/06/95 to 30/05/96). 
MAE are mean absolute errors.

4.5.2 F it t in g  cap  an d  sw aption  prices

Having established that a low-dimensional Gaussian affine and time-homogeneous model is 

able to reproduce remarkably well the term structure of interest rates, the question is now 

to test whether such model can also fit the market covariance matrix amongst interest rates.

Firstly, the non-linear state-space model o f equations (4.18) and (4.24) was estimated 

using the same swap rates as in the previous subsection plus cap prices for 1, 2, 3, 4, 5, 7, and 

10 years. That is, M\ =  M 2  =  7 and M 3 =  0. Table 4.7 summarizes the QMI, parameters’ 

estimates and corresponding standard errors for two- and three-factor model specifications. 

Comparing with the results previously given in table 4.3, it is possible to verify that the 

enlargement o f the «lata set produce«! some significant changes in the parameters' values: 

the most evident ones are relatfxl to the v«x;tor A. Table 4.8 contains the average differernes, 

computed over the all sample an«l for all the contracts u s«i in the estimation stage, between 

the market swap rates or cap prices and the corresponding values generated by the model 

specifications of table 4.7: for swap rates, the pricing errors are given in absolute differences; 

for cap prices, both percentage pricing errors and absolute percentage differences are shown. 

The obvious conclusion is that, although it is still possible to fit well the market swap rates, 

unfortunately the Gaussian affine and time-homogenrous models under consideration are 

simply unable to reprodu«* the market ¡¡rices o f caps, mainly for the one-year maturity. 

In other wor«ls, these type o f term structure models can not completely accommodate the 

hump observed in the short-end of the volatility curve (see figure 4-2), although the I’C'A 

conducted in s«x:tion 4.4 ha«l suggested that a two- or a three-factor model would be enough 

to capture the market interest rate variances.

Figure 4-3 presents the term structure o f instantaneous forward rate volatilities gener

ated with the twofactor sp<!cification of table 4.7, anti compares it with the one that would



Table 4.7: Estimation of the Dai Singleton (1998) Gaussian model through EKF and using
US swap rates and cap prices_________________________________________________

Parameter
Two-factor model 

Estimate Std. Error
Three-factor model 

Estimate Std. Error

/ 0.05307 0.00154 0.05461 0.00976
G i 0.00693 0 . 0 0 2 2 2 0.02086 0.00332
g 2 0.01186 0.00041 0.00763 0.00114
g 3 -0.00732 0.00050
K n 1.44448 0.08162 1.38958 0.13229

^21 1.63235 0.13632 3.60433 0.82152

^31 -1.27773 0.62075

I < 2 2 0.07538 0.00494 0.43464 0.04509

J<32 -0.07915 0.08683
K 3 3 -0.02597 0.00802
Ai -0.00089 0.14208 0.16467 0.44022
A2 -0.31355 0.17238 0.03396 1.20631
A3 0.11307 0.40702

<**i 0.00053 0 . 0 0 0 0 2 0.00024 0.00001

0.00215 0 . 0 0 0 1 0 0.00257 0.00014
In L 16403 16833
BIC 16382 16799

Data: US swap rates for 6.5, 2, 3, 5, 7, 10 and 15 years 
and cap prices for 1, 2, 3, 4, 5, 7, and 10 years 
(from 21/06/95 to 30/05/96).

have been obtained if the model had been estimated using just swap rates (i.e. under the 

two-factor model parameters of table 4.3). In both cases, the time-i instantaneous variance 

of the continuously compounded forward rate for maturity at time T ( >  t) is given by

^ ( t , T ) = G ' e - [ /fA+(,fA) '] (7 ’- ‘) G, (4.42)

as can be easily derived by applying Itfi’s lemma to the forward rate / (i, T )  -- — — 1 1 ^

while using expressions (4.9), (4.11) and (4.12). Notice that although the model volatility 

curve is still different from the one implied by the market price of caps, figure 4-3 shows 

that the use of cap prices in the estimation process improved substantially its shape. Hence, 

even though the market prices o f caps can not be correctly reproduced by the model, its 

use for estimation purposes incorporates additional and valuable information: it can, for 

instance, help to distinguish the expectations of future rates from the expectations of future 

volatility, implicit in the same yield curve.

The inability to fit exactly the market prices of caps could simply derive from the fact 

that the interest rate model under consideration produces time-homogeneous (instantaneous 

or average) term structures of interest rate or of pure discount bond price volatilities.J:' 88

88 As shown by equation (4.42) or by the last equation under proposition 14, for the term structure of
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Table 4.8: Goodness o f fit to market US swap and cap values o f the models estimated in
table 4.7

Two-factor model Three-factor model
Swap rates Cap prices Swap rates Cap prices

Maturities: M AE MPE M APE MAE MPE M APE
6  months 0.0379% 0.0067%
1 year 37.3521% 44.9284% 35.0458% 43.8762%
2  years 0.0404% 3.0542% 9.0578% 0.0140% 2.4747% 9.4391%
3 years 0.0364% 0.1584% 6.3533% 0.0098% 1.9781% 7.6934%
4 years 0.2068% 4.9100% 2.3089% 6.7546%
5 years 0.0376% -0.9797% 3.8795% 0.0148% 0.5456% 5.3433%
7 years 0.0357% 0.5612% 3.1039% 0.0169% 0.7624% 4.2350%
1 0  years 0.0399% 0.2418% 3.1891% 0 .0 2 0 0 % -0.2353% 3.4227%
15 years 0.0361% 0.0155%

Errors are differences between model and market values.
MAE, are mean absolute errors.
M PE are mean percentage errors, i.e. average of errors divided by market values. 
M APE  are mean absolute percentage errors.

In fact, figure 4-2 clearly shows that the shape of the volatility curve, although similar 

over time, is not exactly constant. Therefore, in section 4.6 it will be tested whether 

such modelling insufficiency can be suppressed in the context o f a time-inhomogeneous 

framework.

Since it is not possible to reproduce accurately the principal diagonal elements of the 

market interest rate covariance matrix (specially for short maturities) using the Gaussian 

state-space model under analysis, it seems unrealistic to expect a reasonable model fit to the 

market prices o f European swaptions. Nevertheless, two- and three-factor non-linear state- 

space models were estimated using the same panel-data as in table 4.7 plus ATM  European 

swaption prices for the following (short) option maturities and swap lengths: 0.5 x 2, 0.5 x 3, 

0.5 x 4, 0.5 x 5, 0.5 x 7, 0.5 x 10, 1 x4, 2x4  years. 30 Table 4.9 summarizes the estimated QMI, 

parameter values and standard errors, and table 4.10 presents the average pricing errors 

with respect to all the contracts used in the estimation of the models, for all the maturities, 

and over the all sample. Comparing the models’ estimates and standard errors with the 

corresponding ones of table 4.7, two comments can be made: again, the use o f additional 

derivatives prices produced important changes in the parameters’ estimates; and, this new 

enlargement o f the data set improved the standard errors of the estimates.

In terms of pricing accuracy, and as predicted before, table 4.10 shows that the Gaussian 

time-homogeneous model under analysis can not lie successfully fitted to the market swaj>- 

tion prices (even using three state variables, i.e. the specification with highest MIC). One

instantaneous forward rate volatilities or of pure discount bond price average volatilities, respectively 
30 Hence M\ — M i — 7 and Ms =  8.
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Figure 4-3: Term structures of instantaneous forward rate volatilities (for two-factor models 
fitted only to US swap rates or also to US cap prices)

possible explanation for this model inability, as put forward by Cooper and Rebonato (1995), 

is the intrinsic limitation of low-dimensional models to capture the empirically observed bust 

decorrelation phenomena among interest rates of adjacent maturities: because the model 

interest rate correlations are higher than the ones implicit in the (positive) difference be

tween cap and swaption volatility quotes, swaptions tend to be overpriced Cooper and 

Rebonato (1995, appendix 1 ) justified the last statement by showing that, for a “simple 

PC-based two-factor model” , the slope o f the correlation function between changes in in

stantaneous forward rates tends to zero as the difference in their maturities goes to zero: 

i.e., the correlation function tends to be flat at the origin, and thus possesses the wrong 

sigmoid shape, instead of an exponential-decaying one. However, it is shown in appendix

1.8.4 that for the general n-dimensional model specification

df (t, T )  =  a  (t, T )  dt +  ( t , T )  • d W a ( t ) , (4.43)

where n ( t , T )  is the drift of the forward rate process'*1, and "y (t, T )  € ?in is a possibly

,l Its functional form is irrelevant for the present discussion, but can always be obtained through the usual 
HJM no-arbitrage condition.
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Table 4.9: Estimation of the Dai and Singleton (1998) Gaussian model through EKF and
using US swap rates, cap prices and European swaption prices______________

Parameter
Two-factor model 

Estimate Std. Error
Three-factor model 

Estimate Std. Error

/ 0.05186 0.00019 0.05589 0.00024
G 1 0.00215 0.00157 0.00580 0.00138
g 2 0.01294 0.00039 0.00383 0.00091
g 3 -0.00458 0.00081
K n 0.76810 0.07229 1.46678 0.10521
«21 0.98134 0.06380 2.63609 0.27048
K 3\ -6.40563 1.34490
K 22 0.11809 0.01103 0.30821 0.02604
K 32 -0.82420 0.17999
K 3 3 0.00606 0 . 0 0 2 0 2

Ai 0.01522 0.02918 0.01438 0.02375
^ 2 -0.33874 0.02860 0.10440 0.03286
A3 0.12661 0.10153

0.00099 0.00004 0.00109 0.00005
Gei 0.00116 0.00004 0.00056 0.00003
Gei 0.00898 0.00055 0.00878 0.00054
In L 22779 23398
BIC 22758 23364

Data: US swap rates for 0.5, 2, 3, 5, 7, 10 and 15 years, cap 
prices for 1, 2, 3, 4, 5, 7, and 10 years, and swaption 
prices for 0.5 x 2, 0.5 x 3, 0.5 x 4, 0.5 x 5, 0.5 x 7,
0.5 x 10, 1 x 4, 2 x 4 years (from 21/06/95 to 30/05/96).

time-inhomogeneous but state-independent diffusion term, it is always the case that:

dp(7'i,7 '2) = 0,
T i T\

(4.44)

being p (T\, 7 j )  the correlation between the changes o f the instantaneous forward rates 

with maturities T\ and T2{> T \ ) .  Consequently, the flat slope at the short-end of the 

correlation function (and thus, its sigmoid shape) is not an exclusive of low-dimensional 

models, but rather a common feature of all the interest rate models represented by equation 

(4.43), no matter their number of state variables. This fact, anti the already observed 

instability o f some parameters’ estimates for high-dimensional model specifications, suggest 

that the accuracy of European swaption pricing shall not be significantly improved by simply 

increasing the number of model’ factors.

Figure 4-4 presents the correlation function between the short rate and instantaneous 

forward rates of different maturities for all the model specifications shown in table 4.3 (and 

computed from equation (4.70) - appendix 4.8.4). It can be observed that by increasing 

the number of model’ factors, not only the short-end sigmoid shape did not disappeared, 

but also the long-term behavior of the correlation function became implausible. Similarly,
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Table 4.10: Goodness of fit to market US swap, cap and swaption values of the models
estimated in table 4.9

Maturity
Swap rates 

Mean Error M AE

Two-factor model 
Cap prices 

M PE M APE
Swaption prices 

Maturity MPE M APE
0.5 years 0.005% 0.093% 0.5x2 13.096% 39.399%

1  year 40.259% 45.563% 0.5x3 15.165% 41.747%
2  years -0.008% 0.056% 3.761% 8.068% 0.5x4 16.905% 43.625%
3 years -0.024% 0.071% -0.027% 4.344% 0.5x5 18.501% 45.284%
4 years 0.036% 2.349% 0.5x7 21.602% 48.137%
5 years -0.029% 0.091% -0.968% 1.922% 0.5x10 10.417% 45.704%
7 years -0.003% 0.089% 0.691% 0.913% 1x4 14.462% 35.709%

1 0  years 0 .0 0 1 % 0.081% -0.085% 1.542% 2x4 19.932% 32.565%
15 years -0.025% 0.066%

Three-factor model
Swap rates Cap prices Swaption prices

Maturity Mean Error M AE M PE M APE Maturity MPE M APE
0.5 years 0.008% 0.067% 0.5x2 26.104% 50.802%

1 year 12.834% 28.571% 0.5x3 22.574% 48.314%
2  years 0.003% 0.066% -1.087% 3.613% 0.5x4 17.070% 44.830%
3 years -0.019% 0.079% 0.581% 1.427% 0.5x5 12.989% 42.886%
4 years 1.185% 1 .2 2 2 % 0.5x7 10.968% 44.225%
5 years -0.039% 0 .1 0 1 % -0.487% 0.750% 0.5x10 9.468% 46.013%
7 years -0 .0 2 1 % 0.104% 0.119% 0.465% 1x4 13.121% 35.327%

1 0  years -0.009% 0.099% 0.092% 0.352% 2x4 13.652% 28.034%
15 years -0 .0 1 2 % 0.085%

Errors are differences between model and market values. 
MAE are mean absolute errors.
MPE (M A P E ) are mean (absolute) percentage errors.

figure 4-5 describes the same correlation function but for the two-factor model specifications 

estimated in tables 4.3, 4.7, and 4.9. It can be noticed how the enlargement o f the data set 

used in the parameters’ estimation process effectively changes tfie level (but not the shape) 

of the correlation function, which, for maturities larger than one year, already possesses the 

right exponential-decaying form.

In summary, the empirical evidence presented in this subsection suggests that:

i) The Gaussian time-homogeneous and affine framework under consideration is inca

pable o f fitting cap prices for short maturities;

ii) Swaptions can not also be correctly priced, even by increasing the dimension o f the 

model;

hi) Although it is not possible to exactly recover both cap and swaption prices, it is still 

important to consider these derivatives during the estimation stage, because valuable 

additional information, concerning the interest rates (»variance structure, is incorpo

rated into the model (as indicated by figures 4-3 and 4-5).
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Figure 4-4: Correlation between the short rate and instantaneous forward rates of different 
maturities (for one-, two-, three-, and four-factor models fitted only to US swap rates)

It is well known that swaption prices depend both on the diagonal and off-diagonal 

elements o f the interest rates covariance matrix. On the other hand, the analytical and 

empirical results present«! in this subsection suggest that there is little room to improve 

the fit to the off-diagonal elements, in the context of the Gaussian time-homogeneous models 

under analysis. Bearing also in mind that the rank / approximation of proposition 15 only 

involves forward rates variances, and that imperfect terminal forward rates correlation can 

be enhanced simply by using time-inhomogeneous forward rates instantaneous volatilities 

(see Rebonato (1998, page 81)), next section will test whether the model fit to swaption 

prices can be improved only by forcing an (almost) exact fit to  cap prices (i.e., by recovering 

just the principal diagonal elements of the interest rates (/¡variance matrix).

4.6 The time-homogeneity assumption

Section 4.5 has shown that multifactor Gaussian exponential-affine and time-homogeneous 
models can fit remarkably well (with just two or three factors) the yield curve but can not 
reproduce accurately both cap and swaption prices. Three possible explanations can be put 
forward for these results. Firstly, it can be the case that the tractable exponential-affine 
class under analysis is simply not rich enough to fit the complex interest rates covariance
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Figure 4-5: Correlation between the short rate and instantaneous forward rates of different 
maturities (for two-factor models fitted only to US swap rates or also to US cap prices or 
also to US swaption prices)

-04

Forward rata maturities (years)

matrix observed in the market. Secondly, it is also possible that an affine stochastic volatility 

model could do a better job than the simple Gaussian one under consideration. Finally, 

perhaps a better fit (at least) to the principal diagonal elements of the market covariance 

matrix can be achieved, even staying inside the Gaussian exponential-affine class, if the 

model could simply generate a time-inhomogeneous term structure o f volatilities.

The last and simpler hypothesis will be tester! in the present section, while the other two 

will await further research. For this purpose, this section considers a Gauss-Markov HJM 

model that is equivalent to the “equilibrium” specification defined by equations (2.2), (4.9) 

and (4.10) , 3 2  except that now the diffusion term 7  ( t , T )  possesses both a time-homogeneous 

and a time-dependent term. The cast of the “equilibrium” model into an 1IJM framework 

(foes not represent, by itself, a major improvement because the state-space model was shown 

(in section 4.5) to already fit well the term structure o f interest rates. However, the time- 

inhomogeneous diffusion component is now intended to allow the shape of the term structure 

of volatilities to change (slightly) over time. Nevertheless, because the time-homogeneous 

component is still expect«! to retain the most explanatory power, such time-inhomogeneous 

Gaussian HJM model will be estim at«! in two stages: first, the time-independent parameters

3JO f course, if and only if the initial forward rate curve can be reproduced by the “equilibrium” model
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are estimated under the state-space formulation by applying a non-linear Kalman filter to an 

historical panel-data o f swap rates, cap prices and swaption prices; then, the time-dependent 

diffusion term is used to better fit the HJM model to the current cross-section of cap and 

swaption prices, i.e. to account for the covariance structure that can not be fully explained 

by the time-homogeneous part. This estimation methodology is in the spirit of the one 

employed by Scott (1995) in the context o f a multifactor Cox et al. (1985b) model fitted 

only to the term structure of interest rates.

4.6.1 E qu ivalen t tim e-inhom ogeneous G au ss -M ark o v  H J M  form ulation

In terms o f pure discount bond prices, the HJM model that will be used hereafter is the same 

as given in equation (4.67), but with an additional time-dependent function h : 3t' —* 3? in 

the diffusion term:

The duration vector B ( t ) is still given by expression (4.12), but the time-t price of the 

'/’-maturity zero coupon bond, P ( t , T ) ,  is no longer time-homogeneous (although still log- 

normally distributed). Notice that for a well behaved function h ( t ) ,  13(0) =  0 implies that 

v ( t , t )  =  0, which is consistent with the “pull-to-par” phenomena. Moreover, the diffusion 

term of equation (4.45) possesses the separable form that, according to Carverhill (1994), 

ensures the Markovian nature o f the model.,i!

In order to define the HJM model in terms of instantaneous forward interest rates, It6 ’s 

lemma can be applied to In P ( t , T ) ,  yielding

with »  Markovian model specification given by equation (2.2), and by the following modification of equations 
(4.9) and (4.10):

^ 2 1 = r ( t ) d t  + v ' ( t , T ) d W a (t), (4.45)

where

v ( t , T )  — h ( t )  B ( t ) .

In P  (t, T )
Jo L

~ ^ - B ' ( T - u )  B ( T - u )  du

33 In fact, it would be a simple exercise to show that the pure discount bond price process (4.45) is consistent

d £  ( i )  =  -  [, •2C(t)] dt + h ( t )d W a (t ) .
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That is, the time-inhomogeneous Gaussian HJM model is defined by equation (4.43), with

(4.46)

and

a ( t , T )  =  h2 ( t ) ~ M ' ( r ) B ( r ) . (4.47)

Of course, for the model to be arbitrage-free it is still necessary to show that the no-arbitrage 

condition (4.69) is satisfied. But this is clearly the case because

then the HJM model under analysis is exactly equivalent to the “equilibrium” one 

defined by equations (2.2), (4.9) and (4.10).

4.6.2 C a lib ra t io n  to cap  and E u rop ean  sw aption  prices

Concerning the pricing of caps, equation (4.16) is still valid but with two differences: the 

pure discount bond prices art* taken as given from the market (as a result o f the HJM nature 

of the model); and, the volatility of the terminal log-price of each underlying zero coupon 

bond is now time-inhomogeneous (because y ( t , T )  is also time-inhomogeneous).

Proposition  16 Under the HJM Jorrmdation of equation (4-46), the time.-O price o f  a 

forward cap on a unitary principal, with a cap rate, of k, and settled in arrears at firms 

f i r°P, 1 =  2 , . . . ,  m cap is

Comparing equations (4.68) and (4.46), it follows that if

i) h ( t )  =  1, Vi; and if

ii) the initial forward rate curve corresponds to

/ ( ° . T )  =  - 4 r M T ) ~  (T )  K ( 0 ) ,

{ I> (0 , i6 'ap)<t> [<r^.p,(u -  d ( i ) ]  (4.48)
l 1

- ( 1  + « " * * )  P (0 , ( * +  l ) « ea' ) * [ - < f ( t ) ] } ,
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where

i.) =  --- ------------ -------------- J----d ( i )  =

i 6 eaP , l i + \ ) 6 caP
2

<Ttfcal\(»+l )*«•»»

p ( 0 , ¿6 rap) , i =  1 , . . . ,  mcap, are obtained from market data, and

riO'-'“*'
=  J  h2 (” ) IIS ((«  +  1) 6cop —v ) — B  (¿5“ »  -  v)

with || || denoting the Euclidean norm in 5i".

' du, (4.49)

P roo f. Kquation (4.48) follows immediately from (4.16). The functional form of the 

volatility term

= VAR[\nP(i6™v, ( i  +  1 ) i “ »)| JF„]

is easily derived from (4.45) by applying It6 ’s lemma to the log-forward price In 1 ■

Similarly, the price o f an European payer swaption can still be obtained from a modified 

version of equation (4.17), which is consistent with the observed yield curve and produces 

time-dependent volatilities.

P ropos ition  17 Under the I IJ M  formulation o f  equation (4-46), the time-0 price of an 

European payer swaption maturing at time uswpn r̂wpn ̂  a equal to x, and on a

forward swap with a unitary principal and settled in arrears at times (u ,wpn +  i )6 3wpn, i  =  

1 , . . . ,  m 3wpn, is

Payersurpno (x , u3Wpn, rn,w'm ) (4.50)

Si P(0, uswpn6‘wpn)< P (-h )
m " ’ ’"

-  ^2 * * S ( 0 , (u™»m +  0  h,wfm)<l> { - h  -  o u.„pn/).„pn(u.„pnit)t. ^ n) ,
t=l

where h is the solution of

P (0 ,u *WTmfi9Wpn)

m »wpn

¿ T  k *P (0 , (u ,,wpn +  «)<5‘™pn)
t-1

exp -
U-- '— 1

0 ‘u B nrpn f) au>pn ^U au>pn  j

ki — 1 {t = m*u'Pn J +  x69Wjmt

P ( 0 , (uawpTX -I- i )  69Wpn) , i =  0 , . . . ,  m 9Wprx} are obtained from market data, and

a2
U »w p n f ia u ip n  ^u a w p n  j  ^ ¿ a x u p n (4.51)
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h2 (u) ||B ((ii“ "”* +  i) S3"”™ -  v) -  B  (iitwpn6awpn -  v)||2 dv.
'o

P roo f, Equation (4.50) follows from (4.17), while attending to the HJM nature o f the 

model under analysis. Equation (4.51), that is the functional form of

is obtained from (4.45). ■

For computational purposes, h ( t )  will hereafter be assumed to be a piecewise constant 

function:

where are breakpoints defined in terms of an integer number of cap compounding periods 

(6cap), with Iq -  0, and 8 is the number of possible values (h¡) for function h ( t ) .  Under 

this simple specification of h ( t ) ,  equations (4.49) and (4.51) can now be solved explicitly:

P ropos ition  18 Under assumption (4-52), with a,f3 G Si, and as long as l\6cap <  a ,34

and straightforward algebra. ■

Taken as given the time-homogeneous model’ parameters (which are obtained from the 

estimation o f the equilibrium model specification), the HJM time-inhomogeneous model can 

now be fitted eross-sectionally to only cap prices or to both cap and European swaption 

prices, by minimizing the sum of squared percentage differences between model and market 

prices, with respect to hj (j  =  1,. .. ,0). For this purpose, it was used the same quasi- 

Newton optimization method, with backtracking line search, as in subsection 4.3.4 (but 

now, both gradient and Hessian are computed numerically through finite differences).

34 Hecause, m the sample, the first caplet maturity is hcap 0.25 years, this restriction can be rewritten as
h < 1.

=  V A R [\ n P (u M* n6’m*n, (u*wpn +  i )  6*wpn)\P0\,

h ( f ) =  hj <= l j _ i<5cop <  t <  lj6cap, fa r  j  =  1 ,. . . ,  0, (4.52)

Y ^ h 2,B'(f3) . e -K 'H a - i .F ” ) A ((l. - l . ^ , ) 6 cap) e (K*y (a ‘‘6C‘P) ■ B(0)
S 1
+ h 2+ iB' (/J) • A  (a  -  lj6cap) ■ B  (/?),

where

j  : sup { l j  : lj6cap <  a }  .

P roo f. This result follows from (4.49) or (4.51) by using the relation
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Table 4.11: Calibration of a two-factor time-inhomogeneous H.JM model to US cap prices,

j h

Estimated /i(i) 
M ean(fij) Stdev(/ij)

Fit to cap prices 
Maturities M PE M A PE

1 1 0.903201 0.162100 1 year -0.0002% 0.0006%
2 2 0.379732 0.360098 2 years 0.0005% 0.0056%
3 4 1.282043 0.127453 3 years 0.0022% 0.0155%
4 6 0.748490 0.242804 4 years -0.0100% 0.0229%,
5 8 1.176523 0.087393 5 years 0.0111% 0.0247%
6 10 0.265532 0.262661 7 years -0.0040%, 0.0155%
7 12 1.105435 0.109279 10 years 0.0003% 0.0051%
8 16 1.042507 0.139551
9 20 1.134969 0.123257
10 28 0.437323 0.208148
11 36 1.573459 0.111231
12 44 1.222173 0.125760

Data: cap prices for 1, 2, 3, 4, 5, 7, and 10 years (from 21/06/95 to 30/05/96).
Ij is the j th breakpoint of function h(t).
hj is the value of h (t )  for the time-interval [lj i<5rop, lj6cap[.
M PE (M A P E ) are mean (absolute) percentage errors.

Initially, the two-factor equilibrium specification estimated in table 4.7 was converted 

into the HJM time-inhomogeneous model given by equations (4.43), (4.46) and (4.47), and 

fitted cross-sectionally jilst to same set of cap prices as used in table 4.7. The breakpoints 

of function h { t )  were defined exactly in the same way as in Brace et al. (1997, table 4.3): 

that is 0 =  12, /] =  1, Z2  =  2, l3 =  4, / 4 =  6 , i5 =  8 , l6 =  10, l7 =  12, fg =  16, l9 =  20, 

l io =  28, / 1 1 =  36, and l\7 — 44. Table 4.11 shows the mean and standard errors of the 189 

cross-sectionally estimates o f hj ( j  =  1 , . . . ,  1 2 ), as well as the quality of the model fit to the 

market cap prices: an almost exact fit to the cap prices (with absolute average percentage 

pricing errors lower then 3 b.p.) can be achieved. Note that this result could even be further 

improved if function /i(t) was defined to be piecewise constant on each 6cap interval: i.e., 

Ij -  j6 rap (for j  =  1 ,...,4 0 ). In fact, assuming that caplet prices, or equivalently caplet 

price volatilities, are observable in 6cap time-intervals, then equation (4.53) implies that h, 

can be found by exactly fitting the volatility rrifcaP ^  1 )4^  (after having obtained h, by 

matching era¿cap a =  1 , . . . ,  t — 1 ):

° l \ ) 6 c a P ¿  h]l3 ' (<5cop) • e K^ ' icap ■ A  (<5'-“p) ■ e ( .  B  (6cap)
9 = 1
+ h *B '  (6cap) ■ A  (6cap) ■ B  (6cap) .

In order to test whether caps and swaptions can be priced simultaneous and consistently 

just by introducing time-dependencies into the forward interest rate variances, the two-
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Table 4.12: Calibration of a two-factor time-inhomogeneous HJM model to US cap and
swaption prices, using the time-homogeneous coefficients of table 4.9

j h

Estimated h(t) 
M ean(Aj) Std ev(h j)

Fit to cap prices 
Maturity M A P E

Fit to swaption prices 
Maturity MPE M APE

1 1 0.661332 0.479054 1 year 17.532% 0.5x2 4.234% 12.342%
2 2 0.776754 0.778324 2 years 15.200% 0.5x3 7.488% 11.094%
3 4 0.655437 0.300730 3 years 7.143% 0.5x4 9.380% 11.229%
4 6 0.758925 0.560693 4 years 2.169% 0.5x5 9.817% 11.488%
5 8 0.315750 0.593199 5 years 1.367% 0.5x7 9.473% 11.972%
6 10 1.840157 1.089353 7 years 0.995% 0.5x10 3.875% 16.688%
7 12 0.015941 0.111595 10 years 0.079% 1x4 0.184% 17.159%
8 16 0.036696 0.153154 2x4 1.180% 8.279%
9 20 0.708231 0.687708
10 28 0.754327 0.684637
11 36 0.738773 0.511101
12 44 2.045992 1.701756

Data: cap prices for 1, 2, 3, 4, 5, 7, and 10 years, and swaption prices for 0.5 x 2, 0.5 x 3, 
0.5 x 4, 0.5 x 5, 0.5 x 7, 0.5 x 10, 1 x 4, 2 x 4 years (from 21/06/95 to 30/05/96). 
lj is the j th breakpoint of function h(t).
hj is the value o f h(t) for the time-interval [l} \6cap, lj6cap[.
MPE (M A P E ) are mean (absolute) percentage errors.

factor equilibrium specification estimated in table 4.9 was transformed into the arbitrage- 

free model of equations (4.43), (4.46) and (4.47). Th is new HJM model was fitted cross- 

sectionally to the same cap and swaption prices as considered in table 4.9, and using the same 

time-discretization of function h (t ) as before. The results are shown in table 4.12, and three 

conclusions can be made. First, although the pricing errors for European swaptions have 

improved significantly (compare columns M PE and MAPE, for swaption prices, of tables 

4.10 and 4.12), they are still too large to be “tolerable” . Second, the fit to the market prices 

of caps is reasonable and much better than the one provided by the equivalent equilibrium 

model, but nonetheless worse than the one obtained in table 4.11 (i.e. without calibrating 

the HJM model also to swaption prices). Finally, the standard errors of the h} estimates are 

much higher than the ones reported previously in table 4.11, which probably means that the 

simultaneous fitting of cap and swaption prices is a too  heavy burden for the function h ( t )  

alone. In fact, the calibration to the market swaption prices depends entirely on function 

h(t): substituting equation (4.46) into formula (4.66), the time-homogeneous interest rate 

correlation function (4.70) is again obtained.
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4.7 Conclusions

Recent literature on panel-data estimation of state-space term structure models (e.g. Babbs 

and Nowman (1999)) has shown that a low-dimensional Gaussian affine and time-homogeneous 

interest rate model can fit remarkably well the yield curve. The main purpose of this Chapter 

was to test whether such a simple framework could also reproduce well enough the market 

interest rates covariance matrix; and if not, to suggest alternative modelling solutions.

In a first stage, the Dai and Singleton (1998) general Gaussian canonical specification, 

with unobservable state variables, was represented in a state-space form and estimated using 

a panel-data not only of swap rates but also of ATM  cap prices, and of ATM  European 

swaption prices. For this purpose, a non-linear Kalman filter (the EKF) was used, its 

finite sample properties being successfully diagnosed through a Monte Carlo study. Hence, 

one of the contributions of this Chapter is the application o f Kalman filtering estimation 

techniques to an enlarged panel-data set containing information not only about the level of 

the yield curve but also about its volatility and correlation surfaces.

As in Babbs and Nowman (1999), the empirical results presented in this dissertation also 

show that a simple affine and time-homogeneous Gaussian model, with only two or three 

state variables, can successfully reproduce the term structure of interest rates. Additionally, 

it also seems that the model fit o f the yield curve is better achiever! by a non-linear Kalman 

filter that possesses no exact asymptotic properties, than by the usual linear one that makes 

no efficient use of all market data.

However, even by increasing the number o f model’ factors, it is not possible to price 

accurately short-maturity caps and European swaptions. Moreover, for high-dimensional 

model specifications some parameters’ estimates became too unstable, while the fit to the 

market interest rates covariance matrix did not improve significantly. But, even though 

the “equilibrium” model specification under consideration can not reproduce adequately 

market cap and swaption prices, it is still important to consider such market data in the 

estimation of the model’ parameters, because additional information about the market 

covariance matrix seems to be incorporated into the model: in particular, it was shown that 

the model term structure o f volatilities and correlation function are affected by the set of 

market observables to which the model is fitted.

The model inability to fit the observed hump at the short-end o f the volatility curve 

can be attributed to the time-homogeneous nature of the model, while the mispricing of 

swaptions has been associated (e.g. Cooper and Rebonato (1995)) with the fact that low

dimensional models are not able to produce interest rate correlation functions of exponential- 

decaying shape. However, it was shown, both analytically and empirically, that the sigmoid
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shape at the short-end of the correlation function is independent o f  the model’ dimen

sion. Therefore, a better fit to both cap and swaption prices was tried in the context of 

a time-inhomogeneous framework, and not by using higher-dimensional time-homogeneous 

specifications.

In a second stage, a Gaussian HJM model, equivalent to the previous “equilibrium" 

specification but with a time-inhomogeneous diffusion term, was proposed and estimated 

in two stages. First, the time-independent diffusion parameters were estimated from the 

previous “equilibrium” specification, i.e. by using a Kalman filter approach (which ensures 

their stability over time). Then, the time-dependent component was used to better fit, cross- 

sectionally, the principal diagonal elements of the interest rates covariance matrix. Exact 

pricing of swaps and caps can be easily achieved, while European swaption pricing errors 

are significantly (but not satisfactorily) reduced, in the context of stable time-homogeneous 

diffusion coefficients.

The inability o f affine Gaussian models to fit the market interest rates covariance matrix 

opens the question of whether better results could be obtained, still under the affine class of 

term structure models, but using more general stochastic volatility formulations. However, 

such stochastic volatility models are, in general, unable to produce analytic solutions for 

swaps, caps, and European swaptions, which makes it virtually impossible to fit the model to 

a panel-data o f such interest rate contingent claims’ quotes, using the methodology described 

in this Chapter. Next Chapter proposes fast and accurate approximate closed-form solutions 

for these derivatives, and therefore opens the possibility of fitting affine stochastic volatility 

models to the term structures of interest rates, volatilities, and correlations.

4.8 Appendices

4.8.1 A  a (n ) form ulation  o f  th e  B a b b s  and  N ow in an  (1 9 9 9 ) m odel

The Babbs and Nowman (1999) model can be rewritten, with self-evident notational changes, 

as:

dY  ( t ) =  ■ Y ( t )  dt +  k ■ dW v  ( t ) ,

and

d W Q (t) =  &dt +  d W v  ( t ) ,

where T  ( i )  € SRn denotes the state variables vector, and \i G 9Ï, 0  €  9in, k G 9inxn and 

=  ding {£ 1 ,. in } are all model parameters.
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Applying the invariant affine transformation

X { t )  =  K~' Y ( t ) ,  

equations (2.2), (4.9), and (4.10) follow but subject to:

/ = /*. (4.54)

'a1II01 (4.55)

/fA = K ~ l ZD ■ K, (4.56)

and

A =  ©. (4.57)

If matrix k  is further assumed to be (lower) triangular -as it i:s the case in the empirical

analysis conducted by Babbs and Nownian (1999)- then, equations (4.55) and (4.56) yield 

a unique solution, and all the initial parameters are exactly recovered under the A<) (n ) 

formulation.

4.8.2 A n a ly t ic a l fo rm u lae  for Z k

The availability of a closed-form solution for

Z k = QZiMLk)

X-k x „

will greatly enhance the numerical efficiency of the Kalman filter recursions described in 

subsection 4.3.3. This appendix simply states such analytical solution.

Differentiating equation (4.15) with respect to X *, it is possible to write the j ,h column 

of matrix as

9 X *  l i
(4.58)

6 i r s  £  P  ^ ■ i 6 ,RS)
t=l

B  P  (£ * ;  6,HS £  P  { X k\i6,RS)
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m'"s
+  (1 — P  { X k\m,j RS6,RS) )  6, rs  Y  B  ( iS,RS) P  (X k; i6,RS)

i=l

Similarly, differentiating equation (4.16) with respect to X k, it can be shown that the 

j th column of matrix is equal to

mjap-  1

{ S% X k )  =  ^  { £  (¿¿c“p) P (X * ;  iScan  <t> [a *  cm. « « » “ - -  d,J ( i ) ]  (4.59)

-  ( l  +  t , ^ w cka>) B  ( ( i  +  1) 6™n P ( X k; (i +  1) 6™") 4> [-d*,, ( f ) ]  }  ,

with

In

dk,j (*) —

P (£ t ;0+0*c°p)(i+ *c°puy,'’ )
+ ‘'«ic“p,(t+i)ico>>

2

<7jic“P,(t+ 1)4C“P

anil where ui£op denotes the market time-i* forward swap rate with settlement in arrears at 

times tk +  i6cap, i =  2 , ,  m c] av.

Finally, differentiating equation (4.17) with respect to X k, it follows that the j lh column 

of matrix corresponds to

=  B  (u ’ wpn63wpn>)  P  ( x k;u 3Wfmt swpn)  <f>( —dk j ) (4.60)

fu/pn

-  Y  B  ( (u * wpn +  i )  6*wpn>)  P  ( X k; (u*u,pn +  t'j 63wpn')
t=l

*  ( _d*J "  <7u*^"i*«V»,(u""P" t«)i*"I>") ’

where dk } is the solution of

P ( X ( t ) - u S )  =

m»w>pn

Y  P  ( x k, ( t i3wpn +  i \ 6 ^ )
i=i

exp
mxvpn

__^ r«)<*

*< =  l { j +  w\ 'i âwpn

and u>kwpn represents the market time-i* forward swap rate with settlement in arrears at 

times tk +  ( u 3Wpn +  i )  6awpn, i =  1 , . . . ,  m 3wpn.
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4.8.3 D erivatives ’ recursions

As shown by Harvey (1989, section 3.4.6) for the standard linear Kalman filter, the system

each fc, 6 x p recursions in parallel with the Kalman filter iterations presented in subsection 

4.3.3. Using straightforward change o f notation, those formulae can be used for the linear 

state-space model represented by equations (4.18) and (4.21). The purpose o f this appendix 

is to adapt such derivatives’ recursions for the EKF.

Differentiating (4.33) w ith respect to the i th model parameter,

(as given by equation (4.26)), when moving from the linear ease -Harvey (1989, equation 

3.4.72)- to the EKF,

same as for the standard Kalman filter (because the transition equation is still linear), and

Finally, differentiating equations (4.36) and (4.37), it is possible to initialize the deriva

tive recursions:

derivatives and (fo r  i =  l , . . . , p )  can be evaluated analytically by running, for

^  9 Z k ( X k)
Dili Dilla « ,

(4.61)

can be computed using finite differences. Substituting I I  by Z k
' — 2f *|n-1

(4.62)

where

azk _ a*zk (xk) n

pricing formulae (4.15), (4.16), and (4.17),35 while j  can be computedcan be computed

using finite differences.

the recursions for the “update” step, and , are easily obtained by replacing I I  by 

Zk in Harvey (1989, equations 3.4.74a and 3.4.74b).

d 'l',
(4.64)

35,Or, simply by differentiation of the formulile presented in appendix 4.8.2.

156



and

vec (In* — F  ®  F ) -1
ra ( F » F )
l  d * i

■ ( I n7 — F ®  F )  l v e c (A (h ) )

+vec
m -

(4.65)

4.8.4 C o rre la t io n  function

Using equation (4.43), the time-i correlation coefficient between changes in instantaneous 

forward rates o f maturities T\ ( >  t )  and T2 (>  T j),

„ , ,v  C O V [ d f ( t , T i ) , d f ( t , T 2)\Ft}

PK *’ 2 y/VAR [df ( t ,7’, )| Ft]y/ V A R [d f  (t, T2)| Ft] '

can be written as:

p ( T u T t ) =
^ ( * . ï i ) - 2 ( i , T a)

y j v  (t, T, ) • 2 (t, T\ ) (Î, Ta) ■ 2 (t, Ta) '
(4.66)

Using straightforward, but tedious, differential calculus, the slope of the correlation 

function can be found to be

ToY-Jk-iU To)
d p ( T i , T j )  _  v  ( t . r ,  ) ■ ^ 7  (t, T ,) -  V  (t, r ,  ) • 3 (*, T2) • -

a r 2 y/y  (t, T , ) • 1 (l, T , ) y / l  (t, T2) ■ 2 (t, n )

Hence, expression (4.44) is verified, no matter the dimension o f -y(i, T ) .

The last general result is also valid for the Gaussian interest rate model under analysis, 

because this model is nested into the general specification (4.43). In fact, applying ltd's 

lemma to (4.11), while using equations (4.9) and (4.10), yields

d P ( X ( t ) - , r )

P ( K ( t ) ; r )
r  ( t )  dt +  I ) '  ( t ) ■ d W Q ( t ) . (4.67)

And since / (t, T )  — — then 7 ( 1 ,'/’ ) =  — -§j- I1 (t ). Or using equation (4.12),

T ( U ’) a  e •), (4.68)

which is a time-homogeneous but state-independent function. From the no-arbitrage con

dition

Q (t, T )  =  y  (l, T )  ■ 2 (t,s)<fc, (4.69)

it is obvious that the drift term is also time-homogeneous but state-independent, and there-
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fore it can be concluded that the specification (4.43) nests the model defined by equations 

(2.2), (4.9) and (4.10). Moreover, for this latter particular model, the function (4.66) is 

specialized into

p (Tu T2)
____________ g ' . e - ^ ( T i - t ) . e - ( ftA) ,(Ta t ) , Q ____________

y ja  . e - [ * A+(* A)']( r > -‘ > G y/a ' . e - [ * * +(* A>1<r ’  e> G

and thus it possesses a completely time-homogeneous nature.

(4.70)

4.8.5 U K  d a ta  set

This appendix simply replicates the empirical analysis presented liefore for US data. The 

purpose it to show the robustness of the conclusions obtained so far, by testing them using 

a different currency (G B P ) and a much larger data set (containing 784 cross-sections of 

LIBOR-rate derivatives’ quotes, instead o f just 189 periods as before).

Table 4.13 presents the summary statistics of the new data set, which was obtained from 

Datastream. It contains daily middle quotes, from 01/01/96 to 31/12/98, of UK swap rates 

(for 2, 3, 4, 5, 7, and 10 years), UK A TM  forward-start cap flat yield volatilities (for 1, 2, 3, 

4, 5, 7, and 10 years), and UK ATM  European swaption flat yield volatilities (for 0.5 x 2, 

0.5 x 3, 0.5 x 4, 0.5 x 5, 0.5 x 7, 1 x 2, 1 x 3, and 2 x 4  years).36 Using also money-market 

GBP LIBO R rates, discount factors were computed for all quarterly maturities from 0.25 

years to 10 years (through linear interpolation of swap rates and bootstrapping of discount 

factors), and all cap and swaption flat yield volatility quotes wen* converted into option 

prices. Attending to the large standard deviations of the caps and swaptions quotes, it can 

be inferred that, within the sample, the prices of these derivatives presented large variations.

In table 4.14, one-, two-, and three-factor models are estimated from a panel-data con

taining only UK swap rates, and using the Extended Kalman Filter described in subsection 

4.3.2. The one-factor model is poorly fitted to the data: not only the standard errors of 

the parameters estimates are significantly high, but also the single state-variable exhibits 

a mean-fleeting behavior (K\\ <  0). On the other hand, the two- and three-factor models 

possess realistic parameters’ estimates, with much lower standard errors, as well as an ex

tremely small estimate for the standard deviation of the swaps measurement errors. Table 

4.15 summarizes the average and absolute average pricing errors between model’ and mar

ket’ swap rates, for all the sample and w ith respect to each specification estimated in table 

4.14. As for the US data set, with only three state variables it is possible to obtain mean 

absolute pricing errors consistently lower than 1 basis point, i.e. it is possible to obtain an

:tfi Hence, M i -  6, Ma =  7, and M 3 — 8.
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extremely good fit to the level o f the UK yield curve through a low-dimensional and affine 

Gaussian model. Figure 4-6 exemplifies such remarkable fit, by comparing the market UK 

10-year swap rate with the one generated by the three-factor model.

Table 4.16 estimates two- and three-factor Gaussian and non-linear state-space models, 

using not only UK swap rates but also UK ATM  cap prices. In table 4.17 average pricing 

errors are computed for all the contracts used in the estimation stage, and for both models 

estimated in table 4.16. As was the case for the US data set, it is not possible to obtain a 

good model’ fit to short-term UK cap prices (mainly for the one-year maturity).

Table 4.18 contains the two- and three-factor parameters’ estimates (and standard er

rors) obtained when fitting the non-linear state-space model -defined by equations (4.18) 

and (4.24)- to the all UK data set: that is, to swap rates, A TM  cap prices, and ATM  Euro

pean swaption prices. The corresponding pricing errors are given in table 4.19. As for the 

US «fata set, the Gaussian time-homogeneous and affine model under analysis can not be 

successfully fitted to swaption market prices (the average absolute percentage errors vary 

from 27.5% to 59% for the three-factor model). However, and in opposition to the results 

previously shown in table 4.10, UK swaptions are underpriced by the Gaussian model for a 

significant part of the sample. Figure 4-7 compares the short-term interest rate estimated 

from two-factor models fitted just to swap rates, also to cap prices, or even also to swap- 

tion prices: the three time-series only differ slightly in terms of levels, but the pattern is 

essentially the same.

Table 4.20 converts the three-factor time-homogeneous model previously estimated in 

table 4.16 into the equivalent HJM time-inhomogeneous specification of equations (4.43), 

(4.46) and (4.47). The time-independent parameters are taken directly from table 4.16, 

and then the time-dependent step-function h ( i )  is calibrated, cross-sectionally, to ATM  cap 

prices, using the same breakpoints as in table 4.11. Similarly to the results obtained from 

the US data set, table 4.20 shows that an affine and time-inhomogeneous Gaussian model 

can fit remarkably well UK ATM  cap prices. In table 4.21, the same three-factor model 

is calibrated cross-sectionally to both cap and swaption prices (using the time-independent 

parameters estimated in table 4.18). Although the fit to swaption prices lias improved 

significantly (when compared with table 4.19), it is still far from being acceptable; moreover, 

the calibration to swaption prices deteriorates the model’ fit to cap prices (that is, both 

types of derivatives can not be simultaneously and consistently priced through the HJM 

Gaussian affine and time-inhomogeneous model under consideration).
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Table 4.13: Descriptive statistics of UK daily data (m iddle quotes from 01/01/96 to 
31/12/98)_________________________________________________________________________________

Mean Std. Deviation Maximum Minimum
IRSs:

2 years 6.931% 0.436% 7.700% 5.445%
3 years 6.989% 0.415% 7.520% 5.450%
4 years 7.033% 0.471% 7.735% 5.440%
5 years 7.063% 0.546% 7.905% 5.430%
7 years 7.117% 0.696% 8.225% 5.370%
10 years 7.187% 0.844% 8.505% 5.340%

ATM  Caps:
1 year 13.298% 3.537% 23.500% 8.000%

2 years 16.416% 3.818% 25.500% 10.200%
3 years 17.363% 3.535% 27.250% 11 700%
4 years 17.614% 3.217% 27.000% 12.700%,
5 years 17.584% 3.201% 27.000% 12.700%
7 years 16.792% 2.832% 25.000% 12.700%
10 years 15.792% 2.499% 24.000% 12.700%

ATM  European Swaptions:
0.5 x 2 years 15.380% 3.085% 23.050% 10.050%
0.5 x 3 years 15.184% 2.775% 22.700% 10.300%
0.5 x 4 years 15.005% 2.559% 22.650% 10.500%
0.5 x 5 years 14.746% 2.477% 22.550% 10.450%
0.5 x 7 years 14.126% 2.165% 22.350% 10.600%
1 x 2  years 16.076% 2.911% 24.900%. 11.100%
1 x 3  years 15.677% 2.568% 24.100% 11.060%
2 x 4  years 14.813% 1.934% 22.500% 12.000%

Table 4.14: Estimation o f the Dai and Singleton (1998) Gaussian model through EKF and 
using UK swap rates__________________________________________________________________

Parameter
One-factor model 

Estimate Std. Error
Two-factor model 

[¿stimate Std. Error
Three-factor model 

Estimate Std. Error

/ 0.04800 0.14908 -0.00727 0.02997 0.10287 0.00897
G, 0.00265 0.00153 0.00796 0.00067 0.01882 0.00464
G i 0.00647 0.00030 -0.00246 0.00053
( h -0.00760 0.00038

K n -0.21905 0.00822 0.52187 0.01367 2.15277 0.35992
K i , 0.29348 0.05428 0.08451 0.19125

K:n -3.22786 0.61846
K-n -0.03310 0.00195 0.02770 0.01007
K n 0.35266 0.02624
Kx\ 0.15665 0.01979
Al 1.53493 11.38829 -0.80272 0.28222 -0.28683 0.27208
A 2 -0.22068 0.19807 0.03405 0.08330
A3 1.47093 0.41244

»«1 0.00245 0.00005 0.00025 0.00001 0.00011 0.00000
In L 25791 34997 37363
BIC 25778 34970 37320

Data: UK swap rates for 2, 3, 4, 5, 7, and 10 years 
(from 01/01/96 to 31/12/98)
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Table 4.15: Goodness o f fit to market values o f UK swap rates o f the models estimated in
table 4.11

IRS One-factor model Two-factor model Three-factor model
maturities: Mean Error M AE Mean Error M AE Mean Error MAE

2 years 0.0438% 0.3776% 0.0029% 0.0216% -0.0002% 0.0044%
3 years 0.0098% 0.1972% -0.0040% 0.0142% 0.0016% 0.0087%
4 years -0.0075% 0.1006% -0.0048% 0.0177% -0.0021% 0.0058%
5 years -0.0084% 0.0796% 0.0021% 0.0164% 0.0003% 0.0083%
7 years 0.0018% 0.1391% 0.0067% 0.0105% 0.0007% 0.0089%
10 years 0.0364% 0.2109% -0.0020% 0.0181% 0.0003% 0.0055%

Errors are differences between model and market rates. 
MAE are mean absolute errors.

Table 4.16: Estimation of the Dai and Singleton (1998) Gaussian model through EKE and 
using U K  swap rates and cap prices___________________________________________

Parameter
Two-factor model 

Estimate Std. Error
Three-factor model 

Estimate Std. Error

! 0.03653 0.00333 0.07211 0.00433
G , 0.01336 0.00034 0.01864 0.00158
C i 0.00767 0.00012 -0.00384 0.08579
c 3 -0.00761 0.04331

K n 0.55027 0.01304 2.43093 0.05359
Ki\ 0.23624 0.04407 0.14758 31.97113
k 3 , -2.82987 1.69573
K22 -0.05886 0.00207 0.07487 4.59832
K 32 0.40735 0.02957
k 33 0.07500 4.60007
X\ -1.46033 0.21866 -2.94644 0.40787
A2 -0.62398 0.10398 -0.11406 40.57106
A3 3.59065 1.38954

<7*1 0.00274 0.00004 0.00221 0.00003

G Z2 0.00068 0.00001 0.00045 0.00001
In L 60982 63612
BIC 60955 63568

Data: UK swap rates for 2, 3, 4, 5, 7, and 10 years 
and cap prices for 1, 2, 3, 4, 5, 7, and 10 years 
(from 01/01/96 to 31/12/98)
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Table 4.17: Goodness o f fit to UK market swap and cap values o f the models estimated in
table 4.16

Two-factor model Three-factor model
Swap rates Cap prices Swap rates Cap prices

Maturities: Mean Error MPE M A PE Mean Error MPE M APE
1 year 30.2137% 38.2200% 11.5536% 20.5462%
2 years -0.1423% -2.3440% 5.8254% -0.1712% -2.9056% 4.9609%
3 years -0.0348% 0.0626% 3.3545% -0.0227% 0.5547% 2.1808%
4 years 0.0386% 0.1906% 1.5472% 0.0468% 0.3918% 1.4210%
5 years 0.0920% 0.0993% 1.8006% 0.0880% -0.0115% 0.9323%
7 years 0.1363% 0.5024% 1.1618% 0.1102% 0.2406% 0.9632%
10 years 0.1097% 0.0951% 0.6719% 0.0650% 0.0902% 0.3407%

Errors are differences between model and market values.
M AE are mean absolute errors.
M PE are mean percentage errors, i.e. average of errors divided by market values. 
M APE  are mean absolute percentage errors.

Table 4.18: Estimation o f the Dai and Singleton (1998) Gaussian model through EKF and
using UK swap rates, caip prices and European swaption prices______________

Two-factor model Three-factor model
Parameter Estimate Std. Error Estimate Std. Error

/ 0.04020 0.00101 0.07454 0.00361
C, 0.01220 0.00033 0.01738 0.00185
Gi 0.00830 0.00012 -0.00518 0.03516
^3 -0.00759 0.02409

Kn 0.51300 0.01208 2.42198 0.05445
K21 0.12100 0.04393 -0.10983 15.62059
K31 -3.36222 0.58377

K22 -0.05490 0.00207 0.07678 1.88410
K32 0.40612 0.02902
K33 0.07739 1.88838

^1 -1.42000 0.10149 -2.79182 0.30653
A2 -0.35500 0.08815 0.14080 17.98735

A.1 3.87048 0.77834
0.00280 0.00004 0.00225 0.00003

f7£2 0.00069 0.00001 0.00046 0.00001
3 0.00576 0.00013 0.00595 0.00014

In L 90100 92472
BIC 90073 92429

Data: UK swap rates for 2, 3, 4, 5, 7, and 10 years, cap 
prices for 1, 2, 3, 4, 5, 7, and 10 years, and swaption 
prices for 0.5 x 2, 0.5 x 3, 0.5 x 4, 0.5 x 5, 0.5 x 7, 1 x 2, 
1 x 3, and 2 x 4 (from 01/01/96 to 31/12/98).
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Two-factor model

Table 4.19: Goodness of fit to UK market swap, cap, and swaption values of the models
estimated in table 4.18

Swap rates Cap prices Swaption prices
Maturity Mean Error M A E M PE M APE Maturity MPE M APE

1 year 31.59% 38.98% 0.5x2 -21.36% 32.39%
2 years -0.145% 0.172% -2.27% 5.71% 0.5x3 -20.01% 37.40%
3 years -0.057% 0.139% 0.12% 3.56% 0.5x4 -15.89% 43.45%
4 years 0.005% 0.178% 0.31% 1.43% 0.5x5 -12.25% 48.59%»
5 years 0.050% 0.231% 0.28% 1.83% 0.5x7 -5.47% 57.25%
7 years 0.084% 0.293% 0.67% 1.30% 1x2 -28.79% 34.1 1%
10 years 0.047% 0.370% 0.10% 0.69% 1x3 -22.61% 33.67%

2x4 -19.11% 35.56%
Three-factor model

Swap rates Cap prices Swaption prices
Maturities Mean Error M AE M PE M APE Maturities MPE M A PE

1 year 13.1434% 20.8738% 0.5x2 -7.15% 34.82%
2 years -0.1686% 0.1723% -3.2629% 5.1096% 0.5x3 -5.89% 40.23%
3 years -0.0496% 0.0822% 0.5032% 2.1446% 0.5x4 -5.21% 45.94%
4 years 0.0060% 0.1028% 0.5415% 1.2687% 0.5x5 -5.04% 50.40%
5 years 0.0406% 0.1522% 0.1647% 0.9994% 0.5x7 -3.00% 58.97%
7 years 0.0619% 0.2273% 0.2772% 1.0675% 1x2 -15.82% 27.46%
10 years 0.0342% 0.3185% 0.0894% 0.3430% 1x3 -10.94% 32.30%

2x4 -10.42% 35.45%

Errors are differences between model and market values.
MAE are mean absolute errors.
MPE (M A P E ) are mean (absolute) percentage errors.

fable 4.20: Calibration of a three-factor time-inhomogeneous HJM model to UK cap prices,
ising the time-homogeneous coefficients of table 4.16

Estimated h (t) Fit to cap prices

J h Mean(hj) Stdev(h j) Maturities M PE M APE
1 1 0.843219 0.210747 1 year -0.0005% 0.0023%
2 2 0.215131 0.190007 2 years 0.0044% 0.0216%
3 4 1.653994 0.261137 3 years -0.0119% 0.0689%»
4 6 0.866117 0.659903 4 years 0.0278% 0.0768%
5 8 1.668803 0.386090 5 years 0.0224% 0.1325%
6 10 0.432386 0.364093 7 years -0.1353% 0.1942%
7 12 0.967360 0.487924 10 years; 0.0905% 0 1414%
8 16 1.277202 0.746938
9 20 0.388136 0.441380
10 28 0.198016 0.241229
11 36 0.281669 0.335690
12 44 0.305548 0.384403

Data: cap prices for 1, 2, 3, 4, 5, 7, and 10 years (from 01/01/96 to 31/12/98).
lj is the j th breakpoint o f function /i(t). 
hj is the value of h (t ) for the time-interval [l j ]6cap, l } 6rap[. 
MPE (M A P E ) are mean (absolute) percentage errors.
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Table 4.21: Calibration of a three-factor time-inhomogeneous HJM model to UK cap and 
swaption prices, using the time-homogeneous (»efficients o f table 4.18______________

j J l .

Estimated h (t) 
Mean(/ij) Stdev(hy)

Fit to cap prices 
Maturity M APE

Fit to swaption 
Maturity M PE

prices
MAPE

1 i 0.291149 0.379624 1 year 22.365% 0.5x2 2.914% 12.958%
2 2 1.687360 0.834543 2 years 10.760% 0.5x3 -0.613% 5.514%
3 4 0.943314 0.419254 3 years 5.815% 0.5x4 -2.960% 6.416%
4 6 0.937911 0.882382 4 years 1.990% 0.5x5 -4.410% 9.400%
5 8 0.410927 0.493058 5 years 0.563% 0.5x7 -4.365% 15.047%
6 10 0.967105 0.883354 7 years 0.174% 1x2 -7.398% 8.641%
7 12 0.498955 0.604351 10 years 0.064% 1x3 -7.005% 8.339%
8 16 1.052603 0.725080 2x4 -7.454% 11.087%
9 20 1.103483 0.568870
10 28 0.426619 0.359125
11 36 0.584936 0.441412
12 44 1.292506 1.413902

Data: cap prices for 1, 2, 3, 4, 5, 7, and 10 years, and swaption prices for 0.5 x 2, 0.5 x 3, 
0.5 x 4, 0.5 x 5, 0.5 x 7, 1 x 2, 1 x 3, and 2 x 4 (from 01/01/96 to 31/12/98).
Ij is the j th breakpoint of function h(t).
hj is the value of h (t) for the time-interval [/, i<5cop, lj6 cap[.
MPE (M A P E ) are mean (absolute) percentage errors.

Figure 4-6: Market versus three-factor model 10-year UK swap rate

Dates
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Figure 4-7: UK short-term interest rate estimated by two-factor models fitted to only swap 
rates, also to cap prices, or even also to swaption prices
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Chapter 5

The Stochastic Volatility General 

Case

This Chapter is based on the article Nunes, Clewlow and Hodges (1999), which supersedes a 

working paper entitled “ Interest Rate Derivatives in a Duffie and Kan Model w ith Stochastic 

Volatility: Application o f Green’s Functions” and presented at the following 1998 meetings: 

FORC Summer Seminars (University o f Warwick), EFM A-FM A Conference (Lisbon), AFFI 

Meeting (L ille), EFA Conference (Paris), SFA Conference (Florida), and Q M F  Meeting 

(Sydney).

5.1 Introduction

Under its most general stochastic volatility specification, Duffie and Kan (199(i) derived 

a quasi-closed form pricing formula for default-free pure discount bonds (involving the 

numerical solution of the Riccati differential equation (2.8)), and priced path-independent 

interest rate options, in a two-factor model, through an alternating directions implicit (A D I) 

finite-difference method. However, such algorithm can not be easily extended to higher 

dimensions, for which, and according to Duffie and Kan (1994), Monte Carlo simulation 

appears to be the best pricing methodology available. Consequently, the expedite and 

accurate analytic approximate pricing solutions that will be proposed in this Chapter are 

intended to provide more efficient pricing anti calibration alternative tools for this general 

affine class o f term structure models, specially for high dimensional formulations (e.g. three- 

factor models).

Recently, Duffie et al. (1998) proposed exact Fourier transform pricing solutions for an 

affine jump-diffusion model that nests, as a special case, the Duffie and Kan (1996) frame-
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T
I work under analysis.1 Although such exact formulae are also applicable to the Duffle and

I Kan (1996) model, the advantage of the approximate pricing solutions derived in this disser-

I tation is the fact that they are, in general, much faster to implement than the corresponding

exact ones obtainable from Duffle et al. (1998). In fact, if the functional form o f the relevant 

characteristic function -Duffle et al. (1998, equation B.2)- is known, then the exact Fourier 

transform pricing formulae are “explicit” or closed-form solutions (in the sense that only 

one-dimensional Fourier inverse integrals are involved). However, in general the character

istic function does not possess an explicit solution and must be numerically obtained from 

a complex-valued system consisting of one unidimensional ODE and another n-dimensional 

Riccati differential equation, where n denotes the number o f state variables. Because the 

computation, for instance, of the exact price o f an European option on a pure discount 

bond requires two inverse Fourier transforms (and thus two one-dimensional integrals; one 

for each exercise probability), and since the characteristic function must be evaluated nu

merically at each integration point, then, for n state variables, the Fourier transform exact 

solution involves a 2m (n 4-1) integration problem,2 where m  is the chosen number of steps 

in the numerical integration, whereas the corresponding first order approximate formulae 

proposed in this Chapter will only include one time-integral (no matter the order of n). For 

the valuation o f a cap (or a floor), the difference between the two (exact and approximate) 

solutions, in terms o f computational effort, is even multiplied by the number of component 

caplets (or floorlets). Consequently, in the general case where no closed-form solution exists 

for the characteristic function, the proposed approximate pricing formulae will be shown 

to be much faster to implement than the exact Fourier transform ones. Moreover, when 

the characteristic function is not known in closed-form, the optimization o f both the grid 

size and the upper bound of integration for the computation o f the inverse Fourier trans

forms becomes also very time-demanding, since it requires the numerical evaluation of the 

characteristic function.

By imposing a deterministic volatility specification to the Duffie and Kan (1996) for

mulation, the Langetieg (1980) multivariate elastic random walk model was obtained in 

Chapter three. This type o f Gaussian multifactor affine models has received an extensive 

treatment in the literature, and exact closed-form pricing formulae have been derived for 

several interest rate contingent claims, among others, by El Karoui et al. (1991), Jamshid- 

ian (1993), Brace and Musiela (1994a), and Nunes (1998). The purpose of this Chapter 

is to use the Gaussian valuation solutions derived in Chapter three in order to obtain air- 

proximate closed-form pricing formulae, under the stochastic volatility specification of the

'A s  already suggested in Chen and Scott (1995b, page 58).
2 In other words, the computational burden grows linearly with the number of model’ factors.
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Duffle and Kan (1996) model, for several European-style interest rate contingent claims3, 

namely for: default-free bonds, FRAs, IRSs, short-term and long-term interest rate futures, 

European spot and futures options on zero-coupon bonds, interest rate caps and floors, 

European ( conventional and pure) futures options on short-term interest rates, and even 

for European swaptions.4

In order to derive the above mentioned stochastic volatility approximate pricing solu

tions, first, the functional form o f an Arrow-Debreu price, for the Gaussian specification 

of the Duffle and Kan (1996) model, will be obtained in a slightly more general form than 

the one given by Beaglehole and Tenney (1991, page 73). Then, each stochastic volatility 

approximate analytic solution will be expressed in terms of the previously derived Gaussian 

Arrow-Debreu state price, in terms o f the corresponding Gaussian exact pricing formula de

rived in Chapter three, and in terms of the model’ parameters imposing stochastic volatility. 

The resulting first order approximate pricing formula will include one integral with respect 

to each one o f the model’ state variables, and another integral with respect to the time- 

to-maturity of the contingent claim under valuation. Hence, the methodology employed in 

this Chapter follows, up to this point, the work of Chen (1996), although his “general” and 

"special” three-factor model specifications are different from the ones used here.

However, this type of multidimensional integral solutions would have to be computed 

numerically through repeated one-dimensional integration or by using Monte Carlo inte

gration, which does not necessarily represent any improvement in terms o f efficiency when 

compared with the existing exact numerical solutions. Consequently, because the practical 

usefulness of these multidimensional integral approximations may be questionable, a differ

ent approach is pursued: to reduce the dimensionality o f the problem analytically. Unlike 

in (-hen (1996) and as the main contribution of the present work, all the stochastic volatil

ity first order approximate closed-form solutions will be simplified into equivalent pricing 

formulae that do not involve any integration with respect to the model’ factors. Such sim

plification will be allowed by the tractability of the chosen nested Gaussian specification, 

and will increase enormously the numerical efficiency o f the stochastic volatility pricing 

approximations: only one time-integral is involved, irrespective o f the model’ dimension. 

Therefore, such first order analytic approximations will be shown to be extremely fast, as 

well as accurate.

To the author’s knowledge, although the use of approximations involving Arrow-Debreu 

securities is conunon in Finance, the derivation of factor-integral independent pricing solu-

3That is derivatives with only one future admissible payoff.
‘ The valuation of LIBOR-rate derivatives will be based on the Duffie and Singleton (1997) assumption 

of symmetric counterparty credit risk.
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tions (in the context o f the most general multifactor affine term structure model) represents 

an original result. In addition, exact pricing formulae (involving the numerical solution 

of Iliccati differential equations) are also found for long-term and short-term interest rate 

futures, under the stochastic volatility specification of the Duffie and Kan (1996) model.

Next sections are organized as follows. Section 5.2 derives an analytical solution for 

Arrow-Debreu state prices under the deterministic volatility specification of the Duffie and 

Kan (1996) model. Then, section 5.3 provides a series expansion pricing equation for a 

generic interest rate derivative, under the stochastic volatility specification, and based on 

the previously derived Gaussian Arrow-Debreu state-prices. Section 5.4 simplifies the previ

ous pricing solution for any “exponential-affine” interest rate contingent claim, and yields a 

general first order explicit approximation only involving one time-integral. Such explicit aj>- 

proximate stochastic volatility pricing formula is then applied to different contracts: bonds, 

FKAs, IKSs, bond futures, and short-term interest rate futures. Similarly, in section 5.5 

the global series expansion pricing equation is converted into an explicit first order approx

imation (only involving one time-integral) for a generic European and path-independent 

interest rate option. This explicit generic solution is then specialized to options on pure 

discount bonds, caps and floors, swaptions, yield options, futures options on zero-coupon 

bonds, and options on short-term interest rate futures. Finally, section 5.6 summarizes 

the main conclusions. All accessory proofs are relegated to the appendix, while the more 

illustrative ones are kept in the text.

5.2 Arrow-Debreu Prices under the Gaussian Specification

In this section a closed form solution will be derived for an Arrow-Debreu state price, under 

the Gaussian specification corresponding to equations (2.2) and (3.1). The formula that 

will lie obtained is equivalent to the one given by Beaglehole and Tenney (1991, page 73), 

with just two differences: the short-term interest rate is not constrained to be one of the 

model' factors; and, proposition 2 ensures that no single integral is involved when all the 

eigenvectors of matrix a are assumed to be linearly independent.

P rop os it ion  19 Let G  [X  ( T ) , T ; X  ( t ) , i] represent the value, at time t (and in state 

A  ( t ) ) ,  o f a unit payoff occurring at time T  (>  t ) and in state X_ ('!')■ Under the determin

istic volatility specification o f the Duffie and Kan (1996) model,’’ the Arrow-Debreu price 

G [ K ( T ) , T ’, X ( t ) , t \  =  ip [X _ ( t ) , t ]  € C 2,1 (3in x [0 ,T ]) possesses the following analytical 6

6 That is conditional on X  (t) €  3?" being a strong solution o f SDK (3.1).
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fo rm :

G [ X ( T ) , T - , X ( t ) , t ]  (5.1)

„  ^ e x p { - i [ 2 C ( T ) - M ( T ) ) '  A-i ( r )  . (X (T ) -M ( r ) ] }
= Pc(i,T) 7 m m  ’

where

M ( r )  =  a 1 ■ (eOT -  /„) • [ft +  0 -  (a “ 1) '  ■ g ]  +  eaT X ( t )  -  A ( r )  • (a * )' • G,

and Pa  ( £ ,T ) denotes a pure discount bond price computed under proposition 1, i.e. under 

the deterministic volatility specification o f  the Duffie and Kan (1996) model,6

P roo f. The Arrow-Debreu security G  [X  ('/’) ,  T; X  ( t ) , ¿], as any other contingent claim, 

is, under the deterministic volatility specification of the Duffie and Kan (1996) model and 

subject to existence conditions (as stated, for instance, in Friedman (1975, theorem 4.5)), 

the solution of the following Kolmogorov's backward equation

0 =  V a G [ X ( T ) , T ; x , t \  +  

~ r  { t ) G  [ X  ( T ) , T ; x, t ] ,

d G [ X ( T ) , T - , x , t ]
dt

(5.2)

x  e  » n, subject to a specific boundary condition

g \x (,t ) , t -,x , t ] =  6 [ x - x ( T ) ) , x ( T )  e  a r , (5.3)

where T>c. is a second-order differential operator under the nested deterministic volatility 

specification of the Duffie and Kan (1996) model,7 i.e.

V a G [ X ( T ) , T ; x , t }  =  a r ; [- (r j J,'/ ’ - ’- 1 ( a x  +  b)

+

djd
l .  f d 2G [ X ( T ) , T ; x , t ] 

dxdx'

(5.4)

6 Hereafter, the subscripts G and S  will be used to distinguish between contingent claims' prices computed 
under the Gaussian or stochastic volatility specifications of the Duffie and Kan (1996) model, respectively.

7Its relation with the Gaussian infinitesimal generator of X_ (t ),  A c , is the following:

Aa = i t + V a -
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tr (A ) represents the trace o f A, and S [•] is the Dirac delta function. Similarly, the Fourier 

transform o f G  [X  ('/’ ) ,  T ; X_ ( i ) , i],

G & T ; X ( t ) , t ]  =  [  d& ( T )  e* P [ ' f„(7 )] G [X  ( T ) , T ; X  (0 , t ] ,
V i(T)€R" V ( 2,r)

with 0 € 9t" and i2 =  —1, is the solution of the following PDF

0 C [ 0 ,T ; x , i ]

(5.5)

V c G [ $ , T - , x } t\ +
dt

— r  (t ) G  [0, T ; x, t] =  0, (5.6)

x £ 3?", subject to the boundary condition

G  [0 ,T ;x ,T ] =  -^=L==exp  [¿0' x] . (5.7)
v ( ^ )

Substituting the trial solution

G  [0, T ; X  ( t ) , i] =  - / = =  exp [ c i  (r ; 0 ) +  G2' (r ; 0 ) • X  (t )] , (5.8)

with G 1 (O ;0) =  0 and C2 (O;0) =  ¿0, into equations (5.6) and (5.7), the last PDE can be 

split into one n-dimensional ODE for 0 2  ( r ;0 )  6 3i",

J ;G 2 ' (r ; 0) =  - G  +  M  (r ;  0 ) • a,

and into another one-dimensional ODE for G l ( r ;0 )  € 31,

| -G 1  (r ;  0 ) =  - /  +  ¿2 ' (r ;  0 ) • b +  l-G3> (r ; 0 ) • 0  G2 (r ; 0 ) .

The first n-dimensional ODE, subject to the terminal condition G 2 (0; 0) =  ¿0, has the 

solution

G 2 '(r ;0 )  =  ¿0'• eQT +  H ' ( r ) , (5.9)

where the Gaussian duration vector B ' ( r )  is given by proposition 1. To solve the last 

one-dimensional ODE, subject to G l (0; 0 ) =  0, result (5.9) can be used, yielding, after 

simplifications:

G l ( r ; 0 )  =  A  ( r )  +  ¿0' • a ” 1 • (eQT — /„) - 6 — ^0' ■ A  ( r )  • 0 (5.10)

+¿0' • [a“ 1 • (eaT - / „ )  •©  -  A ( r ) ]  • (a ' ) '  • G,

where ¿4 ( r )  is computed under proposition 1, and A  ( r )  is given by equations (3.4) or (3.7).
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Substituting solutions (5.9) and (5.10) into equation (5.8), and inverting equation (5.5), 

yields

time-t price o f a pure discount bond urith maturity at time T , and the probability density

corollary 2 o f Jamshidian (1991), which was obtained in the context o f a one-factor Gaussian 

term structure model.

R em ark  17 The. fundamental solution (5.1) corresponds to an Arrow-Debre.u state price 

and not precisely to a Green’s function, in the mathematical sense o f  the term. Nevertheless, 

both terms are often used interchangeably in the Finance literature.

5.3 Series Expansion Solution for the Stochastic Volatility

5.3.1 A  general resu lt

This section provides the theoretical background needed to produce approximate pricing

derived earlier, and using the corresponding exact solutions already found (in Chapter 

three) for the deterministic volatility version of the Duffie and Kan (1996) model. The 

result obtained is a very general one in the sense that it can l>c applied to any interest rate 

contingent claim.

Th eorem  5 Let VG [X  ( i ) , t] 6 C 2'1 (3in x [0, oo[) and Vs [X  ( t ) ,  i] € C 21 (D  x [0, oo[) be 

the time-t prices, fo r  the same contingent claim with maturity at time '/’ (>  t ), computed

model, respectively. Assuming that the terminal payoff function and the dividend yield

exp ¿0' • M  (r )  — ^0' ■ A  ( r )  ■ 0 .

Since the second exponential inside the integral is just the characteristic function of a 

normal n-dimensional random variable with mean M  (r )  and variance A  (r ),  equation (6) 

of Shephard (1991a) implies the closed form solution (5.1). ■

R em ark  16 The fundamental solution (5.1) corresponds simply to the product between the

function o f X  (T ) ,  conditional on X  ( t ) , under the. equivalent martingale probability measure 

obtained when such zero-coupon bond is taken as the numeraire. This result is in line with

Specification

formulae under the stochastic volatility specification, from the Gaussian “Green’s function”

under the Gaussian and the stochastic volatility specifications o f the Duffie and Kan (1996)
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process are o f the same form  fo r  both Vs [2C (t ) , i] and VG [X  ( t )  , i ] , when X  6 D, but 

identically zero i f  X  ^ D , then:

[£(o, *1 = 5 3 ^ 1 *  <*>•*]’p> 0
(5.11)

where Vo [X  ( i )  ,t] =  VG [X  ( t ) ,  t], ancP

Vp+j [ i ( 0 . t ]  =  i  dl I  dX{l )G\X( l ) , l\K(t ) , t ]
Jt J2L(l) eD

fo r p >  0, with W D (t ) =  diag {/ V  • X  ( l ) , • • •, Pn ■ X  ( t ) } .

(5.12)

P roo f. Under the most general specification o f the Duffie and Kan (1996) model, the time-t 

value Vs [X  ( t ) . f] of any contingent claim with terminal payoff // [X  ('/’)] and continuous 

“dividend yield” i [X  ( t ) , t\ is the solution of the following initial value problem:

- i  (x, o  =  V s  Vs (x, t ) +  aVs£ ' l )  ~  r  ( t ) Vs (x , t ) , (5.13)

x G D, subject to

Vs \X ( T ) ,T\ =  H  [X  ( T ) ] , X  (T )  € D , (5.14)

where is a second-order differential operator under the “stochastic volatility” specifica

tion, i.e.

V s Vs (x, t)
9VS (x, t) 

dx'
(a - x  +  b)

+  l2tV
d2Vs (x, t) 

dxdx'
■ £ ■ v D (t) • £ ' .

(5.15)

In what follows it will be always assumed that both (a • x  +  6) and \ Y, • \/VD ( t ) j  satisfy 

condition A of Duffie and Kan (1996, page 387),8 9 and that the functions // : D  —» 3{ and 

i : D x  [0,T ] —♦ 3t verify enough technical regularity conditions -namely, growth conditions 

in x; see, for instance, equations (7.3) and (7.4) of Friedman (1964, theorems 12 and 16)- 

for a unique solution to exist for (5.13)-(5.14). Because

£  • V D (t) • £ ' =  ©  +  £  • W D (t )  ■ £ ', (5.16)

8 The author wishes to thank Qiang Dai fo r deriving the elegant recursive relation (5.12).
9In order to ensure that a strong solution exists for the SDE (2.5).
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it is possible to rewrite equation (5.13) as:

w ° w' * }

= T>gVs [x, t] -I- 8Vs^ ' tl _  r (t) vs [x, t] , x e D.
at

(5.17)

On the other hand, since the Gaussian Arrow-Debreu state price, G  [X  ( T ) , T\ x,t\, solves 

the initial value problem (5.2)-(5.3), it follows that the exact solution of the initial value 

problem (5.17)-(5.14) can be written as:

V s [£ (tM  = f  d X ( T ) G [ X ( T ) , T - , X ( t ) , t ] l l [ X ( T ) \  (5.18)
JK.(t )<ed

+  [ T d l [  d K ( l ) G [ X ( l ) , l - , X ( t ) , t ]
Jt Jx ( l )eD

tr
82C(I)8J£'(0 }■

In fact, substituting solution (5.18) into the right-hand side of equation (5.17) and using 

standard differential calculus, yields

- g c M - H S a r w  s g }

- L X ( T ) s D
d X ( T ) H \ X ( T ) \

iD gG [ X  (T ), T\ X  (t) , t] + aG[~ (/ )^r ; ~ (t-1- -  r (<) G [ X  ( T ) , T; X  (t) , t) }

+  [ T d l [  d X ( l ) i i [ X ( l ) , l ]  +  \ tr  
Jt Jx.(l)c D  l  *

dWs[X(l) l) „
[dX(l )dX' ( l )  v 1

| V a G [ X ( l ) , l ; K ( t ) , t }  +

-  f  d X ( t ) G [ X ( t ) , t - , X ( t ) , t \
J x ( t ) e  D

| i [X ( 0 , t ]  +  ^

d G [ X  ( l ) , l ; X ( t ) , t \
dt - r ( t ) G [ X ( l ) , i , X ( t )

]}
, i ] }

» ’ V s U m A  e . w d { 1 ) . s
J ) X ( t ) d X ' ( t ) ]}

Using identity (5.3), the last term on the right-hand side of the last equation cancels with 

the corresponding left-hand side, and therefore

0 =  [  d X ( T ) H [ X ( T )  ]
Jk (t )cd

+ [• L,odxw+ ̂  [Swd'£' “"’H  }
- r ( t ) G [ X ( T ) , T - , X ( t )

174



i v aG [ X ( l ) , l ; Z ( t ) , t ]
d G [ £ ( l ) , l ; Z ( t ) , t ]

dt - r ( t )G [ 2 C ( i ) , * ; £ ( « ) , * ] } ,

which is a true proposition, as implied by equation (5.2). Concerning the boundary condi

tion, the evaluation of solution (5.18) at t =  T ,

Vs \X ( T ) , T ] =  [  dX  (T )  G  [ X  ( T ) , T ; X  ( T ) , T ]  H  [ X  ( T ) ] ,
Jx(T)eD

combined with definition (5.3), generates exactly the terminal payoff function (5.14).

Assuming that, when the same contingent claim is valued under the nested Gaussian 

specification of the Duffle and Kan (1996) model, the terminal payoff and the continuous 

dividend processes are still equal to zero, for X  £ D, and given by // [ X  (T ) ]  and i [A  ( t ) , f], 

respectively, for X  G D ,10 then the corresponding time-f Gaussian price VG [A  ( t )  , f] o f the 

contingent claim can be obtained as the solution of

- i  ( 2 , 0  =  v GvG ( 1 , t) -1- 9Vgq * '  ^  -  r  (0  Vo (,£, 0 - (5.19)

2 6 D, subject to

Vo [X  ( T ) ,T\ =  H [  X  (7 ’)1, X  (T )  G D. (5.20)

And, using again results (5.2)-(5.3), such solution can be represented by an integral equation 

(see, for instance, Jamshidian (1991, equation 37)):

VG [2£ (< ), i] =  [  d X  (T )  G  [ X ( T )  , T \ X ( t ) , t ] H  [A  (T ) ]  (5.21)
J x (T ) t  d

+  [ '  dl f d X  (/) G  [ X  (0 ,  /; X  ( i ) , t] i \X ( 0 . 1} ■
Jt Jx(l)t D

Combining equations (5.18) and (5.21),* 1

Vs[2C(*M  =  vG[X(t) ,t)  + \ [ 7 dl f  dX
* Jt J&(‘)i d

(0 (5.22)

f 02 *Vs [ X  (0-/] w ° ( / ) i : ' j .

0Because this dissertation only deals with European-style interest rate contingent claims -that is 
t [X  (¿) 11] 0, Vt- the only relevant assumption is the one concerning the terminal payoff function.

11 As pointed out by Qiang Dai, the integral equation (5.22) can also be stated as

Vs \£( t ) , t\  =  Vb (2C (t),t )
rT
i  dl f  d K ( l ) G [ K ( l ) J \ X ( t ) , t ) [ V s - V c A V s [ X ( l ) J ] ,

Jt JX.(.1)*D

where \T>s — P « ]  Vs [K  (/) ,l\ can be understood as a perturbation term.
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Finally, replacing repeatedly Vs [ X  ( l ) , l] by the right-hand side of (5.22) evaluated at t =  l 

yields the series expansion (5.11 )-(5 .12). ■

R em ark  18 The. series expansion pricing formula (5.11) is similar to equation (1.21) of 

Chen (1996). ¿4s Chen (1996, page 19) notices, all the terms  ̂V t, £ Vi, ■ ■ ■ are strictly 

decreasing in magnitude, and therefore a good approximation should be obtained by only 

retaining the first few terms in the expansion.

R em ark  19 The series expansion pricing formula (5 .11) only depends on the Gaussian 

Arrow-Debreu state-price G , on the corresponding exact pricing formula under the determin

istic volatility specification Vg , and on the “stochastic volatility parameters” Pi ( i  =  1, . . . ,  n), 

through matrix W D .

R em ark  20 Intuitively, equation (5.11) arises essentially because the Gaussian specifica

tion is nested into the more general stochastic volatility one. More formally, because the. 

stochastic volatility and Gaussian instantaneous variances o f the. model’ factors are related 

through the identity (5.16).

R em ark  21 The recursive relation (5.12) shows that the. pth order approximating term, 

Vp [X  (t) , f ] , involves p time-integrals and p factor-integrals (on D ) ,  and therefore, its nu

merical computation would require the use o f repeated one-dimensional or Monte Carlo 

integration. Next sections will simplify such general result by extending the integration with 

respect to the state variables to the all n-dimcnsional Euclidean space.

5.3.2 A sym p to tic  p roperties

Next two propositions describe the limiting behavior of the general pricing solution (5.11) 

as the stochastic volatility model tends to its nested Gaussian specification, and when the 

series expansion (5.11) is truncated, while the domain of integration, in (5.12), is expanded 

from D  to 8in.

P ropos ition  20 The lim it of the. series expansion (5.11), as the. perturbed parameters tend 

to zero, exists and is well defined:

lim ¿ 2 ^ V P [X  ( i ) , t) =  VG [X  ( t ) , t ] , (5.23)
” p>0 ^

where O n £ 9inx"  is a null matrix, and 0  € 9tnxn is a m atrix whose i th-column is given by 

vector 0i.

P roo f. Because W D ( l )  —» On as P  —* O n, then Vp [X  ( t ) , t] —<> 0 as 0 —» O n, for p >  1 ■
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R em ark  22 The lim it (5.23) is well behaved in the sense that Vq  [X  ( t ) , t) is the solution 

of the initia l value problem (5.13)-(5. I f )  when 0 — O n .

In practice, it is usually impossible to obtain analytically series terms o f order higher 

than the first, and the series expansion (5.11) must be truncated, which induces a “trun

cation” error. Moreover, even for the first order term to be computed explicitly (that is 

without involving any factor-integral) it is almost always necessary to extend the integration 

bounds from D  to 3in, introducing an “ integration” error. The following proposition shows 

that the "integration” and "truncation” errors involved in the first order explicit solutions 

(with extended integration bounds) proposed hereafter are o f order strictly smaller than 

the perturbed parameters.12

P rop os ition  21 Under the A m (n ) canonical formulation o f Dai and Singleton (1998, de

finition III. 1), let 0  — \0, where A € 9? f is a common scale fo r  the perturbed parameters,

U  \Up [X. (0  . t] I <  oo fo r  p >  1, them fo r  every cq G 9i+ there exists a Aq € 'If * such that

0  =

and 0 DI> is a m atrix o f positive constants.13 Let also the series |f/p [X  ( t ) , t ] , p >  o |  be 

defined by Uq [X  ( i )  , f] =  Vo [2C (t ) , f] and, fo r  p >  1,

with W D ( l )  -  diag ' 2C(0 > • • • < 0n '2C (f)j>  and where 0t denotes the i th-c.olumn of 

matrix 0.

Vs [2C ( t ) , t] -  Vb [2C (0  , t] -  | V i  [2C («), t] <co|A| fa r  |A|<A„, (5.24)

where.

12The author wishes to thank Qiang Dai for showing how to generalize proposition 21 from the more
restrictive A n (n ) specification to the more general A m (n ) canonical form 

13 Dai and Singleton (1998, dejimtion III. I )  normalize A to unity.
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P roo f. See appendix 5.7.1. ■

R em ark  23 The cast o f proposition 21 under the Dai and Singleton (1998) canonical form  

does not represent any loss o f generality because any exponential-affine model already pro

posed in the literature can always be nested under the A m (n) specification, through an ap

propriate invariant transformation.

R em ark  24 Along the same lines, it can also be shown that, without approximating the 

integration domain, the asymptotic “truncation” error fo r a fixed partial sum of the series 

(5.11) would be. o f the order o f the first omitted term, that is:

Vs [X  Vp [X  ( t ) , i] =  O ( Afc+1)  .
p=0

However, i f  one is to go beyond the first order approximation term, attention should also be 

paid fo r  the corresponding “integration” error.

5.3.3 Invarian t affine transform ations and  nested m odels

Before actually applying Theorem 5, it is usually necessary to perform an aftine invariant 

transformation (along the lines of Dai and Singleton (1998)), in order to ensure: i ) the 

existence o f a strong solution for the stochastic differential equation (3.1), which is satisfied 

by the state vector when zeroing off the parameters Hi ( l =  l , . . . , n ) ; 14 5 16 and i i ) that the 

nested Gaussian specification is close enough to the general stochastic volatility one.1'’

In order to illustrate the analysis, let us consider the stochastic volatility specifica

tion defined by equations (2.2) and (2.5). The problem is that if one tries to apply 

directly Theorem 5 to such stochastic volatility specification, by simply imposing that 

Hi =  0 ( f o r  i =  1 ,... ,n) ,  in some cases, the resulting Gaussian nested formulation that is 

obtained is too far apart from the original general stochastic volatility model. Moreover, if 

cti <  0 for some i, then Theorem 5 can not even be used.

However, by redefining the vector o f state variables through an invariant affine trans

formation

X ( t )  =  X ( t ) - u ,  (5.25)

where X ( i ) , u £  5ftn, and applying ltd ’s lemma, an exactly equivalent111 stochastic volatility

14For instance, it is impossible, a priori, to nest a Gaussian specification into a multifactor CIR model, 
and thus it would seem impossible to apply Theorem 5 to such stochastic volatility formulation. It will be 
shown shortly that this is not the case.

l5The closer is Vq  [2£{t),t\ to Vs [2£ (0 »*l» t l̂e *e8S important should be the neglected approximating 
terms ^  Vp [2t (t ) , i\, p >  fc, where k is the order of a truncated series (5.11). In this Chapter k 1.

16In the sense that all interest rate contingent claims’ prices and price probability distributions remain 
unchanged.
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formulation follows:

r(* ) = / +  * ? • £ (* ) . (5.26)

with

and

where

and

/  =  / +  Q'  ■ u, (5.27)

d X _ ( t ) =  [a • X  (t )  -(- &] dt +  E • y JvD ( i )  • d W a ( t ) , (5.28)

b =  a ■ u +  6, (5.29)

\ J v D ( t )  =  d i a g ^ v  1 ( t ) , . . . ,  \/vn (t )J  , (5.30)

x>i(t) =  ài +  &  ■ X ( t ) , (5.31)

Q* =  Qj + /V ■ u, t = l , . . . , n . (5.32)

The advantage of this transformed stochastic volatility specification is that u can be defined 

in such a way that Theorem 5 is applicable (i.e. 0 * >  0 for all i), and that the Gaussian 

nested specification, obtained with Pi =  0 (for i =  1 ,... ,n ), is close enough to the more 

general stochastic volatility one.

Alternative transformations, distinguished by different definitions of u € 9in, will be 

used for the numerical examples presented in this Chapter.17 The preferred transforma

tion consists in matching the first two time-t conditional moments of the new state vector 

(evaluated at the maturity date o f the derivative under valuation, which is denominated by 

T ( >  £), where t is the current pricing date), between the nested and the general specifica

tions of the Duffie and Kan (1996) model. In appendix 5.7.2 it is shown that, no matter 

how u is defined, the conditional mean o f X_ ('/’ ) is always the same for both Gaussian and 

stochastic volatility specifications. Furthermore, it is also shown that the transformation

u =  K ( t ) (5.33)

approximates the conditional Gaussian and stochastic volatility covariance matrices of 

X ( T ) ,  at least for short maturity derivatives. This is precisely the same type of trans

formation as taken by Leblanc and Scaillet (1998, page 360) in order to ensure that the

17 Although all pricing formulae are stated under the stochastic volatility specification (2.2)-(2.5), if an 
affine invariant transformation is used, it is understood that 2£ (t), /, b. and n, are implicitly replaced by 

A  ( 0 > / ' * »d  till respectively.
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stationary distributions (under Q)  o f the state variables, for both general and nested models, 

have the same first two moments. Additional transformations o f the form

u =  r ] X { t ) , (5-34)

where ij G 3i but rj ^  1, and

u =  —a -1 • 6, (5.35)

will be also considered. In the last case (equation (5.35)), the unconditional mean of the 

state vector is used to minimize the stochastic volatility effects that can arise from the drift 

of the state process. On average, the numerical experiments presented in this Chapter will 

suggest that transformation (5.33) yields the lowest pricing errors for the proposed first 

order approximations.

Although other candidates for nested specifications exist (such as the multifactor CIR 

model or the three-factor Chen (1996) benchmark model), the Gaussian Langetieg (1980) 

specification was selected as the bare model from which each pricing solution for the fu ll 

Duffie and Kan (1996) model is expanded, for two reasons:

i )  Firstly, because the chosen nested specification must possess analytically tractable closed-

form pricing solutions in order to yield explicit first order approximating terms. In 

other words, the chosen nested Gaussian specification provides an analytical solution 

for Arrow-Debreu state prices, which will allow all factor-integrals to be transformed 

into expectations with respect to a Gaussian kernel. It is exactly this feature that 

enables the first order approximating term Vi [X  ( i ) , t] just to involve one time-integral 

(no matter the dimension of the interest rate model under consideration).18

i i )  Secondly, and as shown in appendix 5.7.2, the selected nested model possesses the

advantage that its first conditional moment for the state vector is automatically equal 

to the one given by the general stochastic volatility model.

5.4 Pricing of Exponential-Affine Derivatives

5.4.1 Exp lic it stochastic vo latility  approxim ation

When the Gaussian price o f the interest rate contingent claim under valuation can be 

expressed as an exponential-affine function of the vector of state variables, the general

18'I’he price to pay for such simplicity is that perhaps another bare model could provide a better zeroth 
order approximation. However, the computation of the corresponding first order approximating term would 
be too time-consuming for practical purposes.
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stochastic volatility valuation equation (5.11) can be easily converted into a first order 

approximation that is “explicit” in the sense that it does not involve any factor-integral. 

Corollary 3 proposes a first order approximate and analytical pricing solution (only involving 

one time-integral) for exponential-affine derivatives, by extending the bounds of integration, 

in equation (5.12) and for p =  0, to the n-dimensional Euclidean space. It also provides 

bounds for the approximation error involved in extending the domain of integration, and 

contains the exact analytical solution of the first order approximating term for the univariate 

case (n =  1).

C oro lla ry  3 Under the assumptions of Theorem 5, let

VG [X  ( t )  , t] =  exp [p  (í, T )  +  (t, T )  ■ X  (t )] , (5.36)

with (t, T )  e  3? and ip  (t, T )  € 3?", denote the time-t price o f a contingent claim computed 

under the Gaussian version o f  the Duffie and Kan (1996) model.

1. Approximating D  by 3tn, a first order analytical stochastic volatility approximate, so

lution is obtained from (5.11), with18 19

V ÍU C W .* ] «  I  d lPG ( t , l ) exp

V;(i,r)-|- £ ( l , T ) - M ( l - t ) \

p ( l , T )  +  ^ ( l , T ) X ( l - t )  (5.37)

L*=l

and where e* is the klh column of matrix E.

[A  (l  — t ) ■ ip (/, T )  +  M  (I -  f )]

2. For the unidimensional case (n  — 1) ,  the integration over D  can be solved analytically, 

and the following solution becomes exact:

p ( l , T )  +  ^ ( l , T ) A ( l - t )  (5.38)Vi [£(*).*] = j  d lP c (t , l )e x p

n

■tp (/, T )  +  (I, T )  ■ M  (/ -  t)] ( '• T ) ■

f e ' A ( f - t )  .pu

2tt

18 It can be easily checked that the p th order (p >  l )  approximating term is still exponential-affine, modulo
a pth-degree polynomial pre-factor. F o r higher accuracy, it can be computed analytically (up to a numerical 
p-dimensional integration over tim e). However, the examples presented in this Chapter suggest that a first 
order “explicitn approximation should be enough for the valuation o f simple “exponential-affine " derivatives.
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+  & ' - A ( l - « ) ■ £ ( ! ) ] *
o tk + P j l  A ( / - t ) Ë (<)

with

p ( l )  =  £ ( l , T )  + A  ' (/ -  t) M  (I -  t ) , (5.39)

and where <J> represents the cumulative density function o f the univariate standard 

normal distribution.

3. The exact value o f the first order approximation term can be bounded from above and 

from  bellow, using the following inequalities:20

+  A ( l - t )  (5.40)Vj [X  (t ) , t] <  j f  dlPa (i, l )  exp

n

■± (/, T )  +  £ ' (/, T )  ■ M  (I -  t)] Y  W  T ) • £*] *
*=1

\J@k ' [ A ( l  — t )  +  A ( l  -  t)  ■ f i ( l )  • (0  A  (/ -  i)] 0k

[  y / ^ A i l - t ) - ^  J J

r r

s i *

V, [X (i), i] > j: d lPc (t, l ) exp * ( l , T )  +  - £ ' ( l , T ) - A ( l - t )

■£ (l, T )  +  £ '  (l, T ) M ( l -  0 ] Y  (*•7’) • £*] * a *
A;= 1

(5.41)

n * y/fr '  A i l - t )  ^

P roo f. In order to eliminate the factor-integral from equation (5.12) for p =  0, the first 

order approximating term will be represented as an expectation with respect to a Gaussian 

kernel, and then such expectation will be computed explicitly. Because equation (5.36) 

implies that

{ » 2V c { X  ( f ) , f ]  

1 0 X ( l ) d X ' ( l )
•£  W D

=  Va [ X ( l ) J )
.k= 1

X ( l ) ,

20 These loose bounds are used in the examples presented in this section simply to emphasize that the 
approximation error involved in assuming D  =  9Rn is négligeable. In proposition 21, such error has already 
been shown to be o f smaller (asymptotic) order than the perturbed parameters.
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equation (5.12) yields, for p =  0, the following functional form for the first order approxi

mating term:

n
£ ( t A ' ( / , r ) - £ * ) 2 & / • £ (/ ) .
jt=i

Approximating D  by 91", using the analytical solution (5.1) for the Gaussian Arrow - 

Debreu prices, and rearranging terms:

The factor-integral contained in the last expression for the first order approximating term

X ( l ) ,  conditional on X  ( i ), under some equivalent probability measure with respect to 

which X  (/) is normally distributed with mean A  (/ — t)  ■ p  (/) and covariance A  (/ — t), i.e. 

m  N n (A  (/ — t) ■ (i (/), A  (/ — t ) ) .  Computing the expectation explicitly,

L*=i

and simplifying terms, the factor-integral independent solution (5.117) arises.

Items 2 and 3 o f Corollary 3 are derived in appendix 5.7.3. ■

R em ark  25 Because the exact analytical solution (5.38) is only valid, fo r  one-factor models 

and the focus o f  this dissertation is on multifactor frameworks, the approximate solution 

(5.37) will be used hereafter. In  fact, the numerical experiments implemented in this section 

show that the pricing errors resulting from extending D  to Si" in computing V\ [A  ( i ) , f] are 

small enough to be neglected.

t

•M(/-0 + ^f f ' (OA(/- t ) i f (0

W * -  v W I A a - O I

[53=i (£ (* .7 ) •& )*& '] -2C(0
* x  ( o 1----------, » ,  A „

- [ A ( / ) - A ( f - t ) / f  (O il

can be interpreted as the expectation of the random variables [53  ■&)*&•]

t

M ( i - t )  + ^ f f ' ( 0 A ( / - t ) i f ( 0
n

J 2  ( l , T )  ■ e * )3 fa '  • A  (f — t) • p ( f ) ,
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T
 R em ark  26 The “explicit” approximation (5.37) is very fast to implement since it only 

involves one time-integral, and can be easily computed using, fo r  example, Romberg’s inte

gration method (on  a closed interval).

For the remaining of this section Corollary 3 will be specialized for different types of 

“exponential-affine” interest rate contingent claims, by nesting each Gaussian price into 

formula (5.36).

5.4.2 B on d s , F R A s  and  IR S s  

A  first o rd e r e x p lic it  approx im ation

The following proposition offers a first order approximate explicit solution for the price o f 

a zero-coupon bond.

P rop os ition  22 Under the stochastic volatility specification o f  the Duffie and Kan (1996) 

model, the time-t price P s ( t , T )  o f  a default-free pure discount bond with maturity at time 

T  ( T  >  t ) can be approximated by the following first order solution:

Ps (it , T )  ~  PG (t, T )  +  \ V, [X  ( t ) , t } ,  (5.43)

where PG ( t , T )  is the corresponding exact Gaussian bond price computed under proposition 

1, and V\ [X  ( t )  , i] is given by equation (5.37) with tp ( l ,T )  =  A ( T  — l) ,  and i p ( l , T )  =  

B ( T - l ) .

P roo f. This result simply follows from Corollary 3, by comparing equations (2.1) and 

(5.36). ■

The analytical results obtained so far in this section can be further user! to value all 

interest rate contingent claims whose price can be decomposed into a portfolio o f pure 

discount bonds (as it is the case, for instance, of a coupon-bearing bond).

Moreover, under the Duffle and Singleton (1997) assumption o f symmetric counterparty 

credit risk, proposition 22 can also be used to value forward rate agreements and interest 

rate swaps. Following, for instant*, Baxter and Rennie (1996, section 5.6), the time-f fixed 

rate corresponding to a zero FRA  value, under the stochastic volatility Duffie and Kan 

(1996) model, is equal to the forward interest rate

1

h  —
P s (M i )
P s ( t , t 2)

where t\ and 12 are the maturity dates of the F R A  contract and of its underlying bor- 

rowing/lending operation, respectively ( f  <  ti <  ¿2 )- Similarly, the time-f fixed rate corre-
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Table 5.1: Pricing of pure discount bonds and swaps using the same parameter values as 
in the three-factor C IR  model o f Schlttgl and Sommer (1998, Figure 5), for different affine 
invariant transformations ..............

PDB ’s Exact Percentage Pricing Errors
Expiry

(years)

price

( Ps )

u — —

ParPs
Ps

■a 1 ■ b 
Pa+Q -Ps

Ps_________
Pg Ps

_________Ps_____

u =  X ( t )
Pa+Q Ps 
__ Ps M A PE 6

0.5 0.970442 0.0000% 0.0000% 0.0000% 0.0000% 0.0001%
1 0.941755 0.0000% 0.0000% 0.0000% 0.0000% 0.0007%

1.5 0.913916 -0.0001% 0.0000% 0.0000% 0.0000% 0.0023%
2 0.886900 0.0000% 0.0000% 0.0001% 0.0000% 0.0049%

2.5 0.860686 0.0000% 0.0000% 0.0001% 0.0000% 0.0090%

18 0.338659 0.1220% -0.0035% 0.0502% -0.0027% 0.8489%
18.5 0.328568 0.1303% -0.0037% 0.0530% -0.0027% 0.8963%
19 0.318776 0.1380% -0.0044% 0.0552% -0.0031% 0.9442%

19.5 0.309272 0.1461% -0.0049% 0.0579% -0.0032% 0.9929%
20 0.300049 0.1543% -0.0053% 0.0600% -0.0033% 1.0417%

IRS° 6.1045% -0.0972% 0.0029% -0.0398% 0.0020%
Time 44.71s 1.05s 1.16s

Ps is the exact stochastic volatility price, computed from equations (2.8) and (2.9).
Pc, is the exact Gaussian price, computed from proposition 1.
PG +  0.5Vi is the first order approximate stochastic vol. price, given by proposition 22. 
X_ (t ) is the current state-vector, a and b arc model’ parameters, and u defines the affine 
transformation under use.
“ 20-years swap rate with semiannually compounding.
bM A P E  =  k V,|, Ma :r ,m u m V, jv f t .m a trd V , |j maximum absolutc

l  r*s
percentage error for the V\ estimate. Maximum/Minimum V\ are computed from 
Corollary 3.

spending to a zero present value for a forward-start “plain-vanilla” IRS, under the stochastic 

volatility Duffie and Kan (1996) model, is equal to the forward swap rate

P s (M o ) ~ M M m )
( l k -  l k-\) Ps

where the swap starts at time to, and generates m cash flows at times i* (k =  1 ,.. . ,  m), 

with tk >  ¿o >  t. All the risky zero-coupon bond prices involved in the last two formulae 

can be quickly computed using proposition 22.

Now, the relevant (empirical) question is to verify the accuracy of the proposed first 

order approximation. That is to test whether the approximating terms of order higher than 

the first are small enough to be neglected, as predicted before.

Examples

Table 5.1 prices (unit face value) pure discount bonds and a 20-year swap rate (with semi

annually compounding), for different affine invariant transformations, using the three-factor
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CIR model of Schltigl and Sommer (1998, Figure 5) where:

/ =  0,G =  [ 1 1 1 ] \ x ( t )  =  0 .02 [ l 1 1 ] ' ,  a =  dia<? {-0 .1 ,-0 .1 5 ,-0 .2 } 

b =  [ 0.002607 0.003 0.003426 ] ,  £  =  diag {0.03,0.04,0.05} , a  =  0 ,0  =  /3,

being o  € S n a vector with a, as its i th element. Exact stochastic volatility zero-coupon 

bond prices are computed using the exact numerical solution of equations (2.8) and (2.9), 

through an adaptive stepsize fifth-order Runge-Kutta method (for B  ( r ) ) ,  and Romberg’s 

integration (for A  ( r ) ) . 21 Approximate stochastic volatility prices are given by the “explicit” 

first order formula (5.43), where its second term is implemented vising Romberg’s integra

tion method on a closed interval, and the associated Gaussian pure discount bond prices 

are computed from proposition 1. For each affine transformation, instead o f the zero and 

first order approximate prices, the corresponding percentage pricing errors are presented. 

Throughout this Chapter, the CPU  time is always shown in seconds (except if stated other

wise), and all computations are made running Pascal programs on a Pentium 233MHz with 

32MB o f  RAM  memory.

For the transformation (5.33), the lower and upper bounds o f the first order approxi

mating term are computed according to equations (5.41) and (5.40), respectively. Based 

on these, the maximum absolute percentage error arising from assuming that D  =  5i" in 

computing V\ [A  ( t ) , f] is presented.

The overall conclusion is that the proposed approximation is very accurate: all invariant 

transformations produce pricing errors for the IRS smaller than a tenth o f a basis point. 

In other words, the neglected approximating terms (o f order higher than the first) seem to 

constitute an irrelevant part o f the (stochastic volatility) pure discount bond pri je. More

over, the use of the approximate formula is also faster since it avoids the solution of the 

Riccati equations (2.8) through Runge-Kutta methods: the swap rate was forty times faster 

to compute using the explicit first order approximation! Notice also that the first order 

approximation is always more accurate than the zeroth order one.

Table 5.2 presents the same empirical analysis as before, but using the following A 2 (3)

21 Although the exact analytical solution of Chen and Scott (1995b, page 54) is also available, in general, 
the stochastic volatility Duffie and Kan (1996) model does not produce exact closed-form solutions. There
fore, the efficiency of the explicit first order approximations shall be compared against the exact numerical 
solutions.
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Table 5.2: Pricing of pure discount bonds and swaps using the parameters corresponding
to an A 2 (3) model, for different affine invariant transformations

PDB’s
Expiry

(years)

Exact
price

(Ps)

Percentage Pricing Errors
u =  0 .5X ( t )

Pc Ps Pa+Q -Ps Pa-Ps
u =  X { t )  
Pc+Q  Ps M A PE fcPs Ps_________ Ps______ _ Ps____

0.5 0.975063 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
1 0.947129 -0.0004% 0.0000% 0.0002% 0.0000% 0.0005%

1.5 0.919966 -0.0018% 0.0000% 0.0005% 0.0000% 0.0019%
2 0.893223 -0.0046% 0.0000% 0.0013% 0.0000% 0.0050%

2.5 0.866454 -0.0092% 0.0000% 0.0022% 0.0000% 0.0097%

18 0.172002 -10.7382% 0.9599% -5.4174% 0.4076% 6.3996%
18.5 0.159963 -11.8327% 1.0796% -6.0239% 0.4639% 7.1025%
19 0.148605 -12.9962% 1.2052% -6.6727% 0.5235% 7.8528%

19.5 0.137907 -14.2292% 1.3364% -7.3651% 0.5866% 8.6517%
20 0.127847 -15.5326% 1.4697% -8.1011% 0.6516% 9.4977%

1RS“ 8.8908% 3.9567% -0.3314% 1.9450% -0.1424%
Time 474.06s 1.53s 2.92s

Ps is the exact stochastic volatility price, computed from equations (2.8) and (2.9).
Pc  is the exact Gaussian price, computed from proposition 1.
PG +  0.51/, is the first order approximate stochastic vol. price, given by proposition 22. 
X  (t )  is the current state-vector and u defines the affine transformation under use. 
“ 20-years swap rate with semiannually compounding.
bM A P E  =  k -EstimatedVtUMaximumV, -  KatimatedV\[) ¡s maximum absohlle

percentage error of the V, estimate. Maximum/Minimum V', are computed from 
Corollary 3.

model:22

-2.78 -0.41238 1386.106

5 =  —0.00394,G =  [ 1 1 o ] ,a  = 0 0.02138 39.9

0 0.000741 -2.2328

—6. le -  18 1 -1 -252 0 0 0

b = 0.002445 ,E  = 0 1 0 ,P  = 0 0.00237 0

9.49e -  05 0 0 1 1 0 6.45e -  05

where the state variables’ values, X  ( i )  =   ̂ 0.01 0.03 0.0001 j  , were defined in order to

have an upward slopping yield curve (the spot rates with continuous compounding vary from 

4.564%, for three months, to 10.285%, for 20 years). The first order explicit approximation 

is still fast to implement and accurate (although the pricing errors are higher for longer 

maturities). As before, the pricing errors resulting from extending D  to Si" in computing 

V\ [X  (0  , t] arc small (at least for short maturities).

22 This model specification was borrowed from a previous version (Table IV ) of the Dai and Singleton 
(1998) paper.
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5.4.3 B o n d  fu tu res

A n  exact p ric in g  so lu tion

Under the stochastic volatility specification, and as Duffie and Kan (1996) did for pure 

discount bonds, it is also possible to find an exponential-affine exact pricing formula for 

futures on zero-coupon bonds that involves maturity-dependent functions satisfying Riccati 

differential equations. Once again, the hypothesis of continuous marking to market will be 

assumed, whenever futures contracts are involved.

P ropos ition  23 Under the stochastic volatility specification o f the Duffie and Kan (1996) 

model, the tim e-t price, F P s  ( t ,T/,T\) ,  o f a futures contract fo r  delivery at time T/ and on 

a pure discount bond with maturity at time T\ (t  < T f  < T \ )  is equal to

subject to C  (T/,77,7 ’i )  =  0.

P roo f. See appendix 5.7.4. ■

R em ark  27 Equation (5 -45 ) can be solved numerically through Itunge-Kutta methods, while 

equation (5-46) seems to only require univariate integration algorithms. However, both

where D ( t , T j , T \ )  G 9în is the solution of

- Ü  ( t , T j , T \ )  • a (5.45)
dt

n

<7> -  0  i f l  <7> -  0  -  -fi ( 7’i -  o i §k

■ m  (7Ì - t ) - 2 B  (7 ) - t )  +  D  ( t , 7/, T, )] 0k

subject to D ( T f , T j , T \ )  =  0, and C ( t , T / ,T \ )  € 5Ì is obtained from

8C  (t, 7/, 7) )
- D ' ( t , T f / l \ ) b (5.46)

dt
TX

( T f  -  0 •£*•£*'• [£ (7/ - t ) - B  (T, -  0] a*

■ [2B  (T, - t ) - 2 B  (77 - t )  +  D  (t, 77,77)] a*
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(5-45) and (5.46) involve the solution o f  Riccati equations similar to (2.8) at eac.h evalua

tion point, since they are both functions o f the duration vectors B ( T j  — t) and B(T\ — t). 

Therefore, the following explicit approximation should provide significant efficiency gains.

A  first ord er exp lic it  approxim ation

Next proposition proposes an approximate stochastic volatility pricing solution that is easier 

to implement than the exact numerical one offered by proposition 23.

P ropos ition  24 Under the stochastic volatility specification o f the Duffie and Kan (1996) 

model, the time-t price, F P s  ( t ,T f ,T\ ) ,  o f a futures contract fo r  delivery at time T j  and on 

a purr, discount bond with maturity at time T\ (t <  T f <  T\) can be approximated by

F P S ( t , T f ,T\)  Si F P g  (t, Tf , T , ) +  iV ,  [ *  ( t ) , t] ,  (5.47)

where F P a ( t , T j , T \ )  is computed from  proposition 6, and V\ [X  ( f ) ,  t\ has the “explicit" 

solution given by equation (5.37) but with T  =  T f, ¡p (l, T )  =  A (7 j — l)  — A (T f — l )  — J (l ) ,  

and rp (/, T ) =  B  (T i -  /) -  B  ( T f  -  l).

P roo f. This result follows from Corollary 3, by comparing equations (3.65) and (5.36). ■  

To value futures on coupon-bearing bonds, anti following expression (3.69), it is just 

necessary to consider the summation o f the prices of futures on zero-coupon bonds with 

maturity dates corresponding to the moments where cash flows are paid by the underlying 

coupon bond, and with contract sizes equal to the value o f such cash flows. That is2'*

N ,

F S s (it, Tf ) =  £  k ,F P s (t, T f , T i ) ,
« i

where T f  <  T, (V i), FSs  (f, T f )  represents the stochastic volatility time-i price of a futures 

contract for delivery at time Tf,  on a coupon-bearing bond paying N/ cash flows k, (i =  

l , . . . , N f )  from the futures’ expiry date and until the bond’s maturity date (7/v,), and 

F Ps  (t, I f ,  7’,) is computed under proposition 24.

E xam ple

Table 5.3 values futures with a maturity of 6 months on (unit face value) zero-coupon 

bonds with maturities ranging from 1 year to 20.5 years, using the three-factor CIK model 

of SchlOgl and Sommer (1998, Figure 5), as well as a futures contract with a maturity of 6

^Ignoring the existence of qunlity and/or timing options.
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Table 5.3: Pricing o f bond futures with a maturity of 6  months using the same parameter 
values as in the three-factor C IR  model of Schlttgl and Sommer (1998, Figure 5), for different 
affine invariant transformations _______  _ _

PDB ’s Exact Percentage Pricing E:rrors
Expiry price u : VAR match u =  X ( t )

(years) (F P s ) F P n -  F P s  
F Ps

F P g  + Q - F P s 
F P s

F P n -F P s  
F Ps

F P g  t Xt F P S
F Ps M A PE 6

1 0.970434 0 .0 0 0 0 % 0 .0 0 0 0 % 0 .0 0 0 0 % 0 .0 0 0 0 %, 0.0003%
1.5 0.941742 0 .0 0 0 0 % 0 .0 0 0 0 % 0 .0 0 0 0 % 0 .0 0 0 0 % 0.0009%

2 0.913899 0 .0 0 0 1 % 0 .0 0 0 1 % 0 .0 0 0 1 % 0 .0 0 0 1 % 0.0019%
2.5 0.886883 0 .0 0 0 1 % 0 .0 0 0 1 % 0 .0 0 0 1 % 0 .0 0 0 1 % 0.0030%
3 0.860667 0 .0 0 0 2 % 0 .0 0 0 2 % 0 .0 0 0 2 % 0 .0 0 0 2 % 0.0043%

18.5 0.338553 0.0520% 0.0520% 0.0526% 0.0526% 0.0264%
19 0.328463 0.0545% 0.0542% 0.0551% 0.0548% 0.0262%

19.5 0.318670 0.0571% 0.0568% 0.0577% 0.0574% 0.0264%
2 0 0.309167 0.0595% 0.0592% 0.0598% 0.0598% 0.0268%

20.5 0.299944 0.0620% 0.0617% 0.0623% 0.0623% 0.0269%
FCBB“ 121.7132 0.0265% 0.0263% 0.0268% 0.0268%
Time 1499.02s 1.76s 1.76s

FPg is the exact Gaussian price, computed from proposition 6 .
F P s  is the exact stochastic volatility price, computed from proposition 23.
FPa  +  0.5V) is the first order approximate stochastic vol. price, given by proposition 24. 
X_ (t )  is the current state-vector and u defines the affine transformation under use. 
“6 -month future on a benchmark bond with a maturity of 20.5 years, a semi-annual 
coupon of 8 % per annum, and a face value of 100. Delivery options are ignored. 
bM A P E  =  ± - » » ( lM m ,m u m V , -  E st.m v ted V ^M a x im u m V , -  KsUmat.dV, j)  j f j  r n a x im u m  absolute

percentage error for the V\ estimate. Maximum/Minimum V\ are given by Corollary 3.

months, on a theoretical coupon-bearing bond with a maturity o f 2 0  years at the futures 

expiry date, with a semi-annual coupon rate of 8 % per annum, and with a face value of 

100. No provision is made for the existence of delivery options. Exact stochastic volatility 

futures prices were obtained from proposition 23, by using an adaptive stepsize fifth-order 

Runge-Kutta method for equation (5.45), and Romberg’s integration method for equation 

(5.46). Approximate stochastic volatility futures prices were computed through the first 

order “explicit” solution obtained in proposition 24, and the corresponding Gaussian futures 

price resulted from proposition 6 .

A new transformation (denominated by “VAR match” ) is also tested where u is defined 

in order for the variance of the state variables, at the futures’ expiry date and conditional on 

the current value of the state vector, to be equal between the nested Gaussian and the mul

tifactor C IR  models. 24 As before, different affine invariant transformations produce similar

2< Writing the multifactor CIR model, under measure C, as r  (t) £ )"  , X 3 ( f )  with

dX i ( t )  =  \k,0j - { k i  + X ^ X i M d t + O j T / x J J t j d W f M J  l , . . . ,n ,  

and applying the invariant transformation (5.25), it can be shown that the matching of the factor Gaussian
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results: the proposed first order explicit stochastic volatility approximation is still accurate 

and extremely fast to implement. Moreover, the pricing errors arising from approximating 

the integration domain in computing V\ [X_ ( t ) , t] are again negligeable.

5.4.4 S h o rt-te rm  interest ra te  futures

A n  exact p ric in g solu tion

As in proposition 23, for futures on zero-coupon bonds, it is also possible to obtain an 

equivalent exact numerical solution for futures on short-term nominal “money-market” 

forward interest rates.

P rop os it ion  25 Under the stochastic volatility specification o f  the IhiJJie and Kan (1996) 

model, the time-t price, F R s  (t ,T f ,T \ ),  o f a futures contract with maturity at time T j and 

on the nominal interest rate fo r  the period (T\ — T/), with T\ >  T j >  t, is equal to

(5.48)

exp (E ( i ,7 > ,T 1) +  F ' ( i , T /, 7’, )  A  ( < ) ) - ! ] } ,

where E_(t,T/ ,T\ ) € 9in is the solution o f

O F '( t ,T f , l\ )
dt

—E ! (t ,7 / ,7 i) • a (5.49)

n

(7 i — 0  • £t £ i' • \B(Ti -  t ) -  « ( 7 >  -  0 ] S t

k 1

• [2EL (T , - 1) -  2B. (T, -  t)  +  E  (t, T , , T , )| fh '

stibject to E (T f ,T / ,T i )  =  0, and E ( t ,T j , 'I \ )  € 9i is obtained from

U K  (t ,T f ,T \ )
- E { t , T , , T { ) b (5.50)

at
n

-  Y ,  &  ( T , - 0 •£* £*'■ \M (T i -  t) -  B  (7> -  OK

and multifactor CIR variances for maturity T ( >  t) is obtained if

where Uj is the j th element of vector u.
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• [2 B  (T ,  - t ) - 2 B  (T i - t ) + E ( t , T f ,T i )  \ c k

T
I subject to E (T j ,T f ,T \ )  =  0.

P roo f. The derivation of the above exact numerical result is identical to the proof of 

proposition 23. ■

A  first o rd er e x p lic it  approxim ation

Proposition 8  allows the next result to be extracted from Corollary 3.

P ropos ition  26 Under the stochastic volatility specification o f the Duffie and Kan (1996) 

model, the time-t price, F R s  (t ,T f ,T \ ),  o f a futures contract with maturity at time T j and 

on the nominal interest rate fo r  the period (T j — T j ) ,  with T\ >  T j  >  t, can be. approximated 

by
50

F R S (t ,T f ,T i )  Si F R g  ( t ,T f ,T i )  -   -----—  V, [X ( t ) , t \, (5.51)
-  l j

where F R g  (t ,T / ,T \ ) is computed from  proposition 8, and Pi [X ( t ) , f] has the “explicit” 

solution given by equation (5.37) but with T  =  T f, ¡p (l, T )  =  A (T j  — Z) — A (7 ) — l )  +  1,(1), 

and if (l,  T )  =  B (T j  — l )  — B (T\ -  l ).

P roo f. This result follows from Corollary 3, by comparing equation (5.36) with [1 +  (T\ 

—Tf) 100 '  i where FRg (t ,T j,T \ ) is given by equation (3.73). ■

E xam ple

Table 5.4 prices three-month Eurodollar futures contracts, with maturities varying from one 

month to 9 years, and based on the A ] (3 )ws model of Dai and Singleton (1998, Table II), 

where

-0.33458 0 0

0.878876 -0.226 0

-9.190106 17.4 -17.4

0.005475 0.088431 0 0 1 0 1

0.012350 ,£  = 0 1 -0.0943 ,(3 = 0 0 0

0.021683 0.377599 -3.42 1 0 0 0

and the factor’ values, X ( 0  — [ 0 . 0 1  0 . 1 2  0 . 1 1  J , were defined in order to have a down

ward slopping yield curve (the spot rates with continuous compounding vary from 11.396%,
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Table 5.4: Pricing o f 3-month Eurodollar futures using the parameters corresponding to the 
A i (3 )DS Dai and Singleton (1998, Table II ) model, for different affine invariant transfor- 
mations ___________________________

Futures’
Maturity

(years)

Exact
price

(F R S)

Percentage Pricing Errors
u =

EBa _  iFRe 1

—a 1 • b
!FRs 1

EBa _  i
F Re 1

u =  X ( t )
PU 52Ü• Kg-sat i

F Re 1 M APE°
1 / 1 2 88.3744 0.0008% 0.0008% 0 .0 0 0 0 % 0 .0 0 0 0 % 0 .0 0 0 1 %
2 / 1 2 88.4027 0.0007% 0.0008% -0 .0 0 0 1 % -0 .0 0 0 1 % 0 .0 0 0 1 %
3/12 88.4491 0.0007% 0.0008% -0 .0 0 0 1 % -0 .0 0 0 1 % 0 .0 0 0 2 %
4/12 88.4981 0.0006% 0.0008% -0 .0 0 0 1 % -0 .0 0 0 1 % 0.0003%
5/12 88.5459 0.0005% 0.0007% -0 .0 0 0 1 % -0 .0 0 0 1 % 0.0004%

8 89.1890 -0 .0 0 2 2 % -0.0008% 0.0024% 0 .0 0 0 2 % 0.0035%
8.25 89.1738 -0 .0 0 2 2 % -0.0008% 0.0026% 0.0003% 0.0035%
8.5 89.1586 -0 .0 0 2 2 % -0.0008% 0.0027% 0.0004% 0.0035%
8.75 89.1436 -0 .0 0 2 1 % -0.0008% 0.0028% 0.0004% 0.0035%

9 89.1288 -0 .0 0 2 1 % -0.0008% 0.0029% 0.0005% 0.0035%
Time 43393s 29s 40.97s

F R g  is the exact Gaussian price, computed from proposition 8 .
F R s  is the exact stochastic volatility price, computed from proposition 25.
F R g  — is the first order approximate stochastic vol. price, given by proposition 26. 
X  (t) is the current state-vector, a and b are model’ parameters, and u defines the affine 
transformation under use.

is maximum abso-aM A P E    inax(!MinimumV\  - EstimatedV\\} MaximumV\ EstimatedV\\)
0.25 /•/{<,■

lute percentage error for V\ estimate. Maximum/Minimum V) are given by Corollary 3.

for 6  months, to 10.392%, for 20 years). The Gaussian prices are computed under propo

sition 8 , while the approximate stochastic volatility ones are obtained from proposition 26. 

Exact numerical stochastic volatility futures prices result from proposition 25 (using a fifth- 

order Runge-Kutta method for equation (5.49), and Romberg’s integration for expression 

(5.50)).

For all the invariant transformations tested, the pricing errors are almost inexistent. 

Again, the error induced by the extension o f the integration domain from D  to 5R" is very 

small, and the proposed first order approximation is much faster than the exact numerical 

solution as well as always more accurate than the zeroth order one.

5.5 Pricing of European Interest Rate Options

5.5.1 E xp lic it stochastic vo latility  app rox im ation

Besides the already considered exponential-affine derivatives, it is also possible to obtain 

explicit first order pricing solutions for several European interest rate options, such as: 

options on pure discount bonds, caps and floors, yield options, and ( conventional or pure) 

futures options on zero-coupon bonds and on short-term interest rates. Next Corollary
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establish the general first order explicit solution which can be applied (specialized) to any 

of the specific option contracts described before.

i in, and T  (t, To) € 3in satisfies T (7 b ,7 ’o) =  0.2’’

Under the assumptions o f Theorem 5, and approximating D  by 5?", the corresponding 

price o f the same option contract but fo r  the stochastic volatility version o f  the Duffle and 

Kan (1996) model can be approximated by the first order analytical solution obtained from  

(5.11) with:

35 The functions U  (t, •) and Q ( i .  ■ ) may involve other maturities than just the cur.ent time, depending on 
the contract specifications.

C oro lla ry  4 Let the time-t price o f an European option, with maturity at date T o ('>  t), 

and computed under the Gaussian specification o f  the Duffle and Kan (1996) model, be 

represented by:

Va [X  ( t )  , t } =  Oq {exp  [U  (t, •) +  q  (t, •) • X  (*)] *  [M , (0 )

- K  exp [S  (t , To) +  r  (t, To) ■ X  (* )] *  [Odo (0 1 } .

(5.52)

with

dt ( t ) =
In K  exp|S (t,'To) + r'(t.7b)

V) + g '(t .y,2C(t)] {
ro)-£(0l J

o ( t )

d o (t) =  d\ (t )  — it ( t ) ,

it2  ( i )  =  Q ' (To, •) A  (To -  t ) ■ Q  (To, ■), (5.55)

■To
(5.56)

For i =  1,2:

/
(5.57)

exp Ft (l) -  X-M !  (/ -  t) • A “1 (/ -  i) • M(/ -  t) + (l)

•il 1 (l ) p c j_ ( l ) -  1- M C J  (T0 -  i) A 1 (To -  l) M C iC Io  -  l)

i l  ' (1 )  ^ ( 1 ) *  0
\ l i  (To) *  ■(/) N j ( l ) - K ' ' 

i /U ' (To ) ^ l (l) R (T 0)

0
y n ' i n ) ' ( l )  l i ( T o )
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exp
1 ( K ’ -  H ' (Tg) ■ ty -1 ( l )  ■ N j (Z) ) 2

2 H '(T o ) V l V ) K ( T o )

n H '(T 0) *  1 ( l )  ■ N j (Z) — A~* 

\/iZ' (To) • *  l ( l )  H (T o )

where

Ft (Z) =  (2 — i )  U  (l,  ■) +  ( i  — 1) S  (Z, Tq) ,

D i (Z) =  (2 -  i )  Q  (Z, ■) +  ( i  -  1) T  (Z, To),
t f(Z ) =  Q (Z , ) - T (Z , T 0),

K *  =  ln (/ f) — Í/ (To, •),

M C i (T 0 - l ) =  a '1 ■ [e°<To '> - / „ ]  • [z> +  © - (a - 1 ) ' - f i ]

-A (To-Z )  - [ (a-1) ' - G - ( 2 - » )Q ( T 0, )] ,

Í2 (/) =  A 1 (Z -  Z) 4- ea'(7i ') • A  1 (T 0  -  Z) • eo(7° '>,

/xcj (Z) =  A - 1( Z - t ) M ( Z - 0  +  A(Z )

-e°'<To“ ') • A ' 1 (T 0  -  Z) M C i(T 0 -  Z ),

1»(Z) =  A 1 (T0 - Z )  [/„ - e Q(r° - ')  Í2' 1 (Z) • e0'<7 i ') • A  1 (T 0  -  Z)] , 

2Vj(Z) =  A - ^ T o - Z ) -  [MCi(T0- l ) + e a<-T° '> f i  1 (Z) • ^c, (Z)] ,

A, (Z) çy (z) • i
H ' (To) - I ’

and

Ç i ' ( i )  =
U=i

• f i  1 (Z) • e“ ’*7“ °  A  1 (To — Z ).

For i =  3:

Vis (Z) = / l ^ - ' W I  p ) s ( l | T o ) _ W W l !
l  2<t* (Z)

(Z -  t) ■ A - 1 (Z -  Í) • M (Z  -  Z) +  ^m '(Z) ■ ip~l ( l )  ■ m ( l )  

| ¿ [ i £ ' ( Z )  £ *]2^ ' J  ^ ‘ (O ra W -

(5.58)

}
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where

<$>(l) =  U  (1, ) - S  ( l , To) -  In (AT) -  ,

m(Z) =  A  1 (/ -  t) M ( l  -  t) +  T ( f , T 0) -  -
(*)

and

^ ( i )  =  A  > ( ¿ _ i )  +  ^ //(/) //'(/) •

Proof. See appendix 5.7.5. ■

5.5.2 O p t io n s  on  p u re  d iscou n t b on d s  

A  first order explicit approximation

Proposition 3 allows Corollary 4 to be specialized for the valuation of European options 

on pure discount bonds under the stochastic volatility specification of the Duffie and Kan 

(1996) model.

Proposition 27 Under the stochastic volatility specification o f the Duffie and Kan (1996) 

model, the tim e-t price o f an European call on the riskless pure discount bond Ps (t, T \), 

with a strike price equal to K , and with maturity at time 'I'o (such that t <  To <  T\) can be. 

approximated by

c f  [P s (t, T\)\K\ To] “  cp [Pc  (t, T,) \ K\ T0] +  \ v x [X  ( t ) , t ] , (5.59)

where cp [P c  (t, T\) ; K ; To] is computed from  equation (9.24), an(l  V| [A  (0  , f] has the “ex

p licit" solution given by equation (5.56) but with q =  1 , U (t ,  ) =  A (T\ — t), Q (t ,  ) - 

l l  (7 ) — t ), S  (t, To) =  A (T q — t), T ( f , 7 ’o) =  l l  (To  — t), and 0 -- 1 . The corresponding 

stochastic volatility put price can be approximated by

p f  [Ps ( t , T\)\K \To] Si pp [Pc  ( i , T\) \K\7b] +  ^Pi [X  ( i ) , t], (5.60)

where pp [Pc  (t, 7 j ) ;  K\ To] is obtained from  equation (3.26), and V\ [X  ( i ) , t\ is similarly 

computed but with 0 =  — 1 .

Proof. Comparing equations (3.24) and (3.26) with the general Gaussian option pricx; 

(5.52), proposition 27 follows immediately. ■

Caps, floors, yield options, and swaptions

The result obtained in proposition 27, for European options on default-free pure discount 

bonds, can be easily generalized for the valuation o f caps, floors, collars ami European yield
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options, under the Duffie and Singleton (1997) assumption of symmetric counterparty credit 

risk. In order to value caps, floors and collars, equations (3.31) and (3.32) can be used: 

the difference to Chapter three is that the corresponding European call and put options 

on zero-coupon bonds are now valued under proposition 27 (instead of proposition 3). The 

valuation of European yield options with settlement in arrears can be made using the 

stochastic volatility approximate pricing formulae for caplets and floorlets, after adjusting 

them for the compounding period of the underlying interest rate (as described at the end 

of subsection 3.4.2).

Unfortunately, although an approximate stochastic volatility solution can also be de

rived for European options on coupon-bearing bonds (and thus for European swaptions 

as well), based on the Gaussian rank 1 (proposition 4) or lognormal (proposition 5) af>- 

proximations, such first order stochastic volatility approximation can not be made explicit 

(i.e. the integration with respect to the model’ state variables can not be eliminated from 

the final solution). However, because an analytical stochastic volatility first order solution 

exists for European options on pure discount bonds, it is always possible to price European 

swaptions using the stochastic duration approximation suggested by Wei (1997) and Munk

(1998).26

In summary, the first order stochastic volatility explicit approximation derived for Eu

ropean options on pure discount bonds can be applied to a wide variety of effectively traded 

interest rate options.

Examples

'lables 5.5 to 5.7 price a five-year interest rate floor (with quarterly compounding), for 

different strikes and different invariant transformations, using the three-factor C IR  model 

of Sehldgl and Sommer (1998, Figure 5). The floor value is divided into 19 European calls:

19
Flooro  =  (1 +  0.25Jfc) ^  q, [p (0 ,0 .25(j +  1 ) ) ;  ( 1  +  0.25ffc) 1 ;0.25i] ,

* = 1

where k is the floor rate and co[S; X ;T ]  denotes the time-0 price of an European call 

on the asset S, with a strike X , and with maturity at time T . The exact multifactor 

CIR call prices are computed using the analytical Fourier transforms’ approach of Chen 

and Scott (1995b). The Duffie et al. (1998) pricing methodology is also implemented by

26In essence, an European call on a coupon-bearing bond, with strike X  and maturity 7\ is approximated 
by £ times an European call, with strike ^  and maturity T,  on a pure discount bond with expiry equal to 
the stochastic duration of the coupon bond. The constant £ is the forward price of the coupon-bearing bond 
for its stochastic duration.
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Table 5.5: Pricing o f a five-year ATM  floor with quarterly compounding using the three- 
factor C IR  model o f Schlögl and Sommer (1998, Figure 5), for different affine invariant 
transformations ...........

Call Exact Percentage Pricing Errors
Expiry Money- M CIR Duffie et u =  —a 1 • b u =  X ( t )

(years) ness“ price(cf) al. (1998)
ra- r s CQ . CQ rscn_____

cS+% eg 
____ Ed_____

c ° - r sEfl__Ea
cH

cZ+% eg 
_______C1 ______

0.25 -0 .0 0 0 1 % 0.046329 -0.0005% -0.677% 0.0408% 0.107% 0.0443%
0.5 -0 .0 0 0 2 % 0.063169 0 .0 0 0 1 % -0.535% 0.0768% 0.213% 0.0839%
0.75 -0.0003% 0.074636 0.0003% -0.391% 0.1115% 0.322% 0.1228%

1 -0.0003% 0.083181 -0 .0 0 2 1 % -0.247% 0.1454% 0.434% 0.1634%
1.25 -0 .0 0 0 2 % 0.089795 -0.0060% -0 .1 0 1 % 0.1784% 0.549% 0.2044%
1.5 -0 .0 0 0 2 % 0.095013 -0.0061% 0.045% 0.2103% 0.661% 0.2405%

3.5 0 .0 0 0 2 % 0 . 1 1 1 2 2 2 0.0831% 1.205% 0.4277% 1.453% 0.3930%
3.75 0.0003% 0.111500 0.0861% 1.347% 0.4499% 1.554% 0.4142%

4 0.0003% O i l  1559 0.0866% 1.486% 0.4709% 1.657% 0.4367%
4.25 0.0003% 0.111429 0.0849% 1.624% 0.4908% 1.760% 0.4599%
4.5 0 .0 0 0 2 % 0.111134 0.0815% 1.761% 0.5096% 1.862% 0.4836%
4.75 0 .0 0 0 2 % 0.110696 0.0767% 1.896% 0.5273% 1.964% 0.5074%
Floor 1.890898 0.0456% 1.130% 0.3363% 1.186% 0.3742%
Time 43625.8s 71.35s 56.9s

The floor rate is set equal to the 5-year forward swap rate (with quarterly compound
ing): k =  6.0456%. Floor prices are for $100 of Notional Value.
“ Different« between forward price of underlying PDB and strike (1 -I- 0.25/c) , over the
strike.
Exact MCIR prices, c§, are computed from Chen and Scott (1995b) formulae.
Duffie et al. (1998) approach implemented by evaluating numerically the characteristic 
function and inverting each Fourier transform through a 10-point Gaussian quadrature. 
Cq is the exact Gaussian price, computed from proposition 3.
c§ +  0.5Vi is the first order approximate stochastic vol. price, given by proposition 27. 
X  ( t ) is the current state-vector, a and 6  are model’ parameters, and u defines the affine 
transformation under use.

computing the characteristic function not analytically but rather numerically,2" using a 

10-point Gaussian quadrature to invert each Fourier transform. Gaussian call prices are 

obtained from proposition 3, and first order approximate stochastic volatility prices are 

computed using proposition 27 (where equation (5.56) was implemented using Romberg’s 

integration on an open interval).

Table 5.8 values an at-the-money five-year interest rate floor (with quarterly compound

ing), using the same A j  (3 ) specification as in table 5.2. Because, in this case, no closed-form 

solution exists for European options on pure discount bonds, the exact price of each call was 

estimated through standard Monte Carlo simulation, using the usual Euler discretization 

of equation ( 2 .5 ) with 1 , 0 0 0  time steps per year, independent normal variates generated 27

27Because, in general, the analytical form of the relevant characteristic function is unknown, this procedure 
enables the assessment of the computational time involved in this pricing methodology
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Table 5.6: Pricing of a five-year O TM  floor with quarterly compounding using the three-
factor C IR  model of SchlOgl and Sommer (1998, Figure 5), for different affine invariant 
t ransformations

Call
Expiry

(years)

Money

ness“

Exact
MCIR

price(cQ)

Percentage Pricing Errors
Duffle et 

al. (1998)

u : VAR match
eg-eg

u =
r G  - r s  C0 C0

K ( t )
e g + %  e g

c n eg CS

0.25 -0.258% 0.000436 -0.0899% 49.699% -3.9281% 50.258% -4.0793%
0.5 -0.258% 0.003148 0.1813% 30.826% -0.1865% 31.369% -0.3581%

0.75 -0.258% 0.006929 -0.1872% 24.868% 0.5117% 25.540% 0.3875%
1 -0.258% 0.010796 -0.4358% 22.015% 0.8221% 22.776% 0.7036%

1.25 -0.258% 0.014413 -0.0053% 20.377% 1.0055% 21.223% 0.8916%
1.5 -0.258% 0.017674 -0.0031% 19.350% 1.1382% 20.276% 1.0261%

3.5 -0.257% 0.032466 -0.0028% 17.566% 1.7256% 18.936% 1.6001%
3.75 -0.257% 0.033306 -0.0054% 17.616% 1.7737% 19.020% 1.6454%

4 -0.257% 0.033997 -0.0081% 17.688% 1.8181% 19.121% 1.6869%
4.25 -0.257% 0.034556 -0.0107% 17.779% 1.8590% 19.236% 1.7247%
4.5 -0.257% 0.034998 -0.0132% 17.884% 1.8966% 19.361% 1.7591%

4.75 -0.257% 0.035336 -0.0155% 18.002% 1.9311% 19.493% 1.7902%
Floor 0.450374 -0.0158% 18.282% 1.5733% 19.542% 1.4487%
Time 42486.2s 56.25s 53.77s

The floor rate is set equal to k =  5% (<  6.0456%).
Floor prices are for $100 of Notional Value.
“ Difference between forward price of underlying PDB and strike ( 1  +  0.25fc) 1, over the 
strike.
Kxact M C IR  prices, Cq , are computed from Chen and Scott (1005b) formulae.
Duffle et al. (1008) approach implemented by evaluating numerically the characteristic 
function and inverting each I-'ourier transform through a 10-point Gaussian quadrature. 
Cq is the exact Gaussian price, computed from proposition 3.
Cq -)- 0.5Vi is the first order approximate stochastic vol. price, given by proposition 27. 
X_ ( t ) is the current state-vector and u defines the affine transformation under use.

through the Box-Muller algorithm, 200,000 simulations, and the numerical solution of equa

tions (2.8) and (2.9) in order to compute the option’ terminal payoff. Besides the Monte 

Carlo price estimate, the percentage o f its standard error on the mean price is also shown.

In general terms, all the previous examples show that: i )  the first order stochastic 

volatility approximation is still accurate and fast to implement for interest rate options; 

i i )  the pricing errors increase with the maturity o f the contingent claim and are higher for 

out-of-the-money options; i i i )  the first order approximating term improves significantly the 

zeroth order approximation; and iv ) the proposed transformation (5.33) yields, on average, 

the best results.

F'inally, using again the same A 2  (3) specification, table 5.9 prices a 6 -month European 

call on a 5-year coupon-bearing bond (with a 6 % annual (»upon  and a face value of 100), for 

different strikes, through the approximation o f Wei (1997) and Mtmk (1998). Once more, 

the proposed first order stochastic volatility explicit approximation is fast and accurate.
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Table 5.7: Pricing o f a five-year ITM  floor with quarterly compounding using the three- 
factor C IR  model of Schlögl and Sommer (1998, Figure 5), for different affine invariant
transformations

Call Exact Percentage Pricing Errors
Expiry Money- M CIR Duffie et u =  - ■a 1 • b u = X ( t )

(years) ness“ price(cQ ) al. (1998)
r a - r sCfl .fo

r sc n

-0 , 1 1  rs co co
_____ £o______

rG  CS
CQ ~ c0

r scn_________

+ £  eg
c n

0.25 0.235% 0.228866 -0 .0 0 0 1 % -0.696% -0.6960% -0.142% -0.0053%
0.5 0.235% 0.230697 -0.0005% -3.096% -3.0955% -0.454% 0.0052%
0.75 0.235% 0.233313 0.0027% -5.776% -5.7762% -0.700% 0.0243%

1 0.235% 0.235610 0.0094% -8.271% -8.2710% -0.877% 0.0454%
1.25 0.235% 0.237351 0.0126% -10.504% -10.5022% -1.007% 0.0670%
1.5 0.235% 0.238519 0 .0 0 0 1 % -12.489% -12.4785% - 1 .1 0 1 % 0.0884%

3.5 0.235% 0.233367 0 .0 0 0 1 % -22.749% -21.8815% -1.280% 0.2410%
3.75 0.235% 0.231575 0 .0 0 0 1 % -23.611% -22.5237% -1.268% 0.2571%

4 0.235% 0.229631 -0.0066% -24.417% -23.0907% -1.253% 0.2725%
4.25 0.235% 0.227557 0 .0 0 0 0 % -25.173% -23.5915% -1.236% 0.2871%
4.5 0.235% 0.225372 0 .0 0 0 0 % -25.885% -24.0341% -1.216% 0.3010%
4.75 0.235% 0.223092 0 .0 0 0 0 % -26.558% -24.4251% -1.194% 0.3142%
Floor 4.517682 0 .0 0 1 0 % -16.669% -16.1096% -1.080% 0.1610%
Time 41782s 56.63s 56.79s

The floor rate is set equal to k =  7% (>  6.0456%).
E-'loor prices are for $100 o f Notional Value.
“ Difference between forward price of underlying PDB and strike (1 +  0.25fc) , over the
strike.
Exact M C IR  prices, c£, are computet! from Chen anti Scott (1995b) formulae.
Duffie et al. (1998) approach implemented by evaluating numerically the characteristic 
function and inverting each Fourier transform through a 10-point Gaussian quadrature.
Cq is the exact Gaussian price, computed from proposition 3.
Cq +  0.5Vi is the first order approximate stochastic vol. price, given by proposition 27.
X  ( t ) is the current state-vector, a and b are model’ parameters, and u defines the affine 
transformation under use.

5.5.3 F'utures options on pure  discount bonds  

A  first order explicit approximation

Next proposition applies Corollary 4 to the valuation of European options on pure discount 

bond futures with stock-style margining.

Proposition 28 Under the. stochastic vola tility  specification o f  the DuJJie and Kan (I9 9 (i) 

model, the. t im e -t prem ium  o f  an European conventional call on the. asset F P s  (t ,T / ,T \ ),  

with a strike, price o f  K j ,  and expiry date at tim e To (such that t <  To <  T j  <  T\ ), can be 

approximated by

cf [F P s  ( t , T / ,T\ ) ; K f , T 0] *  c f  [F P a  (t, T , , T X) ; K f , T 0) +  \ v , [ £  ( t ) , t ] , (5.61)
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Table 5.8: Pricing of a five-year ATM  floor with quarterly compounding using an (3)
model

Call Standard Percentage Pricing Errors
Expiry Money- Monte Carlo Duffie et u =  X ( t )

(years) ness“ price (c § ) % std. error cd. (1998) cg -'E <£ + £  'E
cE cscn

0.25 0.2016% 0.197400 0.1104% 0.2258% 0.0246% 0.1986%
0.5 0.1363% 0.157100 0.1925% -0.1155% 0.4464% 0.0483%
0.75 0.1286% 0.166500 0.2131% -0.2253% 2.2049% 0.1358%

1 0.1317% 0.177100 0 .2 2 0 1 % -0.2563% 3.5054% 0.2368%
1.25 0.1299% 0.182500 0.2271% -0.5878% 4.0310% -0.0240%
1.5 0.1196% 0.180800 0.2363% -0.5354% 4.5817% 0.0256%

3.5 -0.1128% 0.112500 0.3523% -0.0485% 1.8958% 0.4934%
3.75 -0.1473% 0.104700 0.3690% 0.4500% 1.6021% 1.1187%

4 -0.1821% 0.097700 0.3850% 0.7523% 1.0691% 1.5610%
4.25 -0.2169% 0.091600 0.3998% 0.6557% 0.1064% 1.6086%
4.5 -0.2519% 0.086000 0.4150% 0.4969% -0.9362% 1.5973%
4.75 -0.2869% 0.080700 0.4306% 0.4609% -1.8656% 1.7165%
Floor 2.710338 -0.1013% 2.7013% 0.3778%
Time 60 hours 45543.21s 67.29s

The floor rate is set equal to  the 5-year forward swap rate (w ith quarterly compound
ing): k =  6.3933%. Floor prices are for $100 of Notional Value.
“ Difference between forward price of underlying PDB and strike, divided by strike price. 
Monte Carlo: 200,000 simulations with 1,000 time steps per year; % std. error is 
standard error divided by option price estimate.
Duffle et al. (1998) approach implemented by evaluating numerically the characteristic 
function and inverting each Fourier transform through a 10-point Gaussian quadrature. 
Cq is the exact Gaussian price, computed from proposition 3.
Cq +  0.5Vi is the first order approximate stochastic vol. price, given by proposition 27. 
X  ( t )  is the current state-vector and u defines the affine transformation under use.

where cp [F P c  (t ,T j,T \ )\  K j\ To] is computed from equation (3.77), and V\ [X  ( t ) , t\ has the 

“exp licit” solution given by equation (5.56) but with q =  1 , U (t ,  •) =  A (To — t ) +  A (T\ — t) — 

A (T /  — t ) -  J  ( t )  + 1 ( t ) , Q ( t ,  ■) =  B (T 0 — t) +  B (T\ - t ) - B ( T j  - t ) ,  S ( t ,T „ ) =  A (T 0 -  t ), 

T  (t, To) =  B  (To — t ), K  =  K f ,  and 0 = 1 .  The corresponding stochastic volatility pul price, 

can be. approximated by

p f  [F P S ( t , 7 ), T ,) ; K  j  ; 7 ’o] ^  p?  [F P G (t, 7 ), T ,) ; K j\To] +  ¿F . [X  (0  , t] , (5.62)

where pp [F P c  (t, T j ,T\)\Kf, 7o] is obtained from equation (3.80), and V\ [X  ( t ) , t] is sim 

ilarly computed but with 0 =  — 1 .

P ro o f.  Comparing equations (3.77) and (3.80) with the general Gaussian option price 

(5.52), proposition 28 is obtained. ■
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Table 5.9: Pricing of a 6 -month European call on a 5-year coupon-bearing bond (CBB), 
using an A 2  (3) model

call
Strike
(X )

on CBB (6 % annual coupon) 
Money- Standard Monte Carlo 
ness“ price %std.error

lst-order approximation (with u =  X  ( t ) )  
call on PDB call on CBB

7  <=0 +  ^  C ( cq +  ^ )  % error
99 1 .6 6 8 % 2.064355 0.2162% 0.7662 0.016007 2.068404 0.1962%

99.5 1.157% 1.720938 0.2410% 0.7700 0.013353 1.725422 0.2605%
1 0 0 0.652% 1.409296 0.2698% 0.7739 0.010941 1.413725 0.3143%

100.6515 0 .0 0 0 % 1.054243 0.3151% 0.7790 0.008192 1.058508 0.4045%
1 0 1 -0.345% 0.888957 0.3439% 0.7816 0.006912 0.893177 0.4747%

101.5 -0.836% 0.682297 0.3920% 0.7855 0.005311 0.686210 0.5734%
1 0 2 -1.322% 0.510303 0.4505% 0.7894 0.003978 0.514039 0.7320%

102.5 -1.803% 0.371407 0.5220% 0.7933 0.002899 0.374629 0.8676%
Time 63148s 14.83s

“ Difference between 6 -month forward price of CBB (100.6515) and strike, divided by the 
strike.
Monte Carlo: 200,000 simulations with 1,000 time steps per year; % std. error is 
standard error divided by option price estimate.
£ is the forward price of the CBB for its stochastic duration: 129.2149.
The stochastic duration o f the CBB is the maturity of a PDB with the same 
instantaneous variance of relative price changes: 4.460377 years.
Cq' and Pi are computed from propositions 3 and 27, respectively.
The European call on the CBB, with strike X , is approximated by £ times an European 
call, with strike | ,o n a  PDB with maturity equal to the stochastic duration of the un
derlying CBB.

Exam ple

Table 5.10 prices European futures calls on pure discount bonds, for different strikes, with 

(7o — t, T f — t, rI\ — i) =  (0.25,0.5,2.5), and using the three-factor C IR  model o f Schlttgl and 

Sommer (1998, Figure 5). Exact stochastic volatility prices are obtained through standard 

Monte Carlo simulation, as described in table 5.8 (although now the terminal option payoff 

is computed from proposition 23). The Gaussian or zeroth order price is given by equation 

(3.77), and the first order approximation is obtained from proposition 28.

Again, the accuracy o f the first order explicit stochastic volatility solution is accept

able (pricing errors of about one standard error o f the Monte Carlo estimate), while its 

computational time is significantly lower than the one taken by the exact numerical result.

5.5.4 O p tio n s  on sh o rt-te rm  interest ra te  futures  

A  first order explicit approximation

Next result generalizes propositions 11 and 12 to the stochastic volatility specification of 

the Dufiie and Kan (1996) model.
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Table 5.10: Pricing of 3-month European calls on 6-month pure discount bond futures with
a maturity o f 2.5 years for the underlying bond, using the three-factor C IR model of Schlogl
and Sommer (1998, Figure 5)

Strike Money

ness“

Standard Monte Carlo 

price (cq) %std.error

Gaussia

rG
° 0

U  =
n model

*  «ff

X ( t )
SV nnodel

rc  . Yx rs c0 + 2 co
Cn ---- Îcn

0 . 8 8 -0.776% 0.007449 0.1788% 0.007398 -0.6789% 0.007436 -0.1798%
0.8825 -0.494% 0.005510 0.2177% 0.005467 -0.7860% 0.005497 -0.2270%
0.885 -0 .2 1 2 % 0.003846 0.2691% 0.003820 -0.6663% 0.003835 -0.2916%

0 . 8 8 6 8 8 0 .0 0 0 % 0.002806 0.3194% 0.002798 -0.2828% 0.002796 -0.3511%
0.8875 0.070% 0.002507 0.3387% 0.002505 -0.0742% 0.002498 -0.3696%
0.89 0.352% 0.001510 0.4358% 0.001530 1.3483% 0.001503 -0.4456%

0.8925 0.633% 0.000830 0.5778% 0.000865 4.2088% 0.000827 -0.4024%
0.895 0.915% 0.000412 0.7962% 0.000450 9.2744% 0.000411 -0.2209%
Time 64236s 17.63s

“ Difference between underlying futures price and strike price, divided by strike prie». 
Monte Carlo: 200,000 simulations with 1,000 time steps per year; % std. error is 
standard error divided by option price estimate. 
c§ is the exact Gaussian price, computed from proposition 9.
eft -(- 0.5Vi is the first order approximate stochastic vol. price, given by proposition 28.
X  (t )  is the current state-vector and u defines the affine transformation under use.

P rop os it ion  29 Under the stochastic volatility specification o f the Duffie and Kan (1996) 

model, the tim e-t premium of an European option on the futures contract F R s  (t ,T f ,T \ ), 

with a strike price equal to K a , and expiring at time Tq (such that t <  To <  7/ <  T\), 

can be approximated by a first order solution where Vq [A[ ( i ) , i] is computed under proposi

tions 11 or 12, and V\ [X  (t ) , i] has the “exp licit” solution given by equation (5 .56 ) but with 

q = ^  , U ( t , )  =  A (T f  — t )  — A(T\  — t ) +  4>[A (To -  t ) +  L (7b) + p (t)] + (1 — <t>)L(t), 

Q  (it, ) =  B  (T f  -  t ) - B  (T\ -  t)+<t>B (To -  t ), S  (t, 7b) =  <t>A (7b - t ) , T  (t, T0) =  <t>B (7b -  t). 

and K  =  1 +  (T\ — T f )  . For conventional futures options 0=1,  while fo r  pure fu 

tures options 0 =  0. For puts 0 = 1 ,  and fo r  calls 0 =  — 1.

P ro o f. Comparing equations (3.96), (3.97), (3.101) and (3.102) with the general Gaussian 

option price (5.52), proposition 29 follows. ■

R em ark  28 Following remarks 9 and 10, proposition 29 can also be used to value European 

yield options with settlement at the option’s expiry date o r pure American short-term  interest 

rate futures options, under the stochastic volatility specification of the. Duffie and Kan (1996) 

model.

E xam ple

Table 5.11 prices 6 -month pure puts on 3-month Eurodollar futures (with Tf  =  To), for 

different strikes, and using the A j (3 )os  model o f Dai and Singleton (1998, Table II). Exact
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Table 5.11: Pricing o f  6-month pure put options on 3-month Eurodollar futures (also with 
a maturity of 6 months) using the A ! (3 )DS Dai and Singleton (1998, Table II) model

Percentage Pricing Errors
Strike Money- Standard Monte Carlo (affine transformation: u =  X  ( t ) )

ness“ price (Fp$  ) % std. error rp g -F P Ï
Fpg

F r f  + % Fpg 
FPn

88.00 -0.668% 0.186360 0.4908% -1.3784% 0.2939%
88.25 -0.386% 0.268631 0.4101% -1.2087% -0.1089%
88.50 -0.104% 0.373441 0.3465% -1.0245% -0.3221%
88.592 0.000% 0.417997 0.3265% -0.9686% -0.3780%
88.75 0.178% 0.502075 0.2955% -0.8788% -0.4452%
89.00 0.461% 0.654135 0.2541% -0.7286% -0.4710%
89.25 0.743% 0.827910 0.2202% -0.5620% -0.4158%
89.50 1.025% 1.021050 0.1920% -0.4181% -0.3395%
Time 34306s 23.34s

“ Difference between underlying futures price and strike price, divided by strike price. 
Monte Carlo: 200,000 simulations with 1,000 time steps per year; % std. error is 
standard error divided by option price estimate.
Fpfj is the exact Gaussian price, computed from proposition 12
Fpg +  0.5Pi is the first order approximate stochastic volatility price, given by
proposition 29.
X_ ( t ) is the current state-vector and u defines the affine transformation under use.

stochastic volatility option prices are obtained through standard Monte Carlo simulation 

(with terminal option payoff computed from proposition 25), Gaussian prices are given by 

1x1 1 1 8 1 1 0 1 1 (3.102), and the first order approximation follows from proposition 29. As before, 

the proposed approximation is fast anil accurate.

5.6 Conclusions

The main purpose and contribution o f this Chapter consisted in providing (approximate) 

pricing formulae, under the most general multifactor, mean-reverting, time-homogeneous, 

and affine term structure model, that only involve one integral with respect to the maturity 

of the contingent claim  under valuation, and are therefore extremely easy to implement in 

practice.

Firstly, the functional form for Arrow-Debreu prices under the Gaussian nested version 

of the Duflie and Kan (1996) model was derived. Then, the exact Gaussian valuation 

formulae derived in Chapter three were converted into approximate stochastic volatility 

ones that involved integrals with respect not only to the maturity of the contingent claim 

under valuation but also to each one o f the model’ factors. Finally, and taking advantage 

of the analytical tractability provided by the “special” model specification adopted, all 

stochastic volatility pricing formulae were simplified into first order approximate ones that 

do not involve any integration with respect to the model’ state variables.
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Such factor-integral independent stochastic volatility valuation formulae were derived for 

a wide range of interest rate contingent claims: bonds, FRAs, IRSs, interest rate futures, 

European options on pure discount bonds, caps and floors, yield options, and European fu

tures options on zero-coupon bonds and on short-term interest rates. The empirical results 

presented in this Chapter, for different parameter’ configurations, have shown that the pro

posed approximations are extremely fast to implement as well as accurate. In fact, because 

there is no need to integrate numerically with respect to each state variable, the numerical 

efficiency o f these pricing formulae is still good for high dimensional model specifications. 

An additional advantage of the first order explicit approximate stochastic volatility pricing 

formulae proposed in this dissertation is that they can be easily differentiated with respect 

to each state variable, and thus enable the implementation of dynamic hedging strategies. 

As an accessory result, exact pricing solutions were obtained for long-term and short-term 

interest rate futures, under the “general” specification o f the Duffie and Kan (1996) model.

In terms o f practical applicability, the proposed explicit approximate stochastic volatility 

pricing formulae constitute efficient tools to estimate (using, for instance, the non-linear 

Kalman filter approach described in Chapter four) exponential-affine term structure models, 

based on market information about LIBOR rates, FRAs, short-term interest rate futures 

and futures options, swaps, caps, floors, and even European swaptions.

5.7 Appendices

5.7.1 P r o o f  o f  P roposition  21

To prove proposition 21 is equivalent to verify that

Vs [X  (0  , t ) - V a  [X  (t ) ( 0  . «] =  o (A).

In order to highlight the dependencies on the perturbation parameter A, the previous error 

term can be further rewritten as:

Vs [X  (i) , t ) - V G [X  ( i ) , t] -  X-  V, \X  ( t ) , 11 
=  \ {  Vi [ X  ( t ) ,  t) -  V, [X  ( f ) ,  i ] }  +  Y ,  i  yp t *  (0  - *]

p>2

=  \  {i/ i \X ( i ) , t) -  t>, [ X  ( Î ) , t ]}  +  Q ) P UP [ *  W  ■ *].

205



where U q [X  ( t ) , t] =  Va  [X  (£), f] and, for p >  1,

Up [X ( t ) , t ]  =  f T dl [  d X ( l ) G [ X ( l ) , i , X ( t ) , t ]
Jt J i ( l ) £ D

¿r < I1  a x ( i ) a x ' ( i )

Because the A m (n ) canonical specification allows definition (2.6) to be restated as

D  =  {X  € 9T : ai + XXi >  0 ,i =  1 ,... ,m } ,

it follows that:

lirn 
A—»0

Vs [ £ ( * ) , * ] -  Vg [X (0 , t] -  {V i [X  ( t ) , t] 
A

(5.63)

lim 
a .0 [ T d i [  d x ( o ( n i { A x i (o>Jt J&(, 1)eR" \J=,

G [ X ( l ) , l ; X ( t ) , t )

! . .  { d2VG [X ( l ) , l\
2 \ 8X (l) ax' (l) ■Z \VD (l) Z ' \  +  Y , i , XP~l u p \ X ( t ) , t \  .

' p >  2 ^

Since lim * _ 0  fl™  l l{AXj(/)>~Qi> =  1  and l«n»A-.o up [X  (0 , i] =  Up [2C (0 , f] as long as n3 >  

0, for j  =  1 ,. . . ,  m ,28 then the limit (5.63) is zero if |f/p [X  (£ ), £]| <  oo for p >  2. ■

5.7.2 C ond itiona l M ean  a n d  Covariance o f  X  ( T )

For T  >  t, and assuming that a 1 exists, equation (5.28) can be rewritten under the 

following integral form:

X ( T ) c « (T - t )  . X ( t )  +  [eo (r- t) - I n ]  - a 1 • b

+  f T eâ T v )  ■ £  ■ \JvD (v ) ■ d W Q (v ) .

Clearly, under the boundedness conditions 

rT
J  ea(T u> • £  • f/D ■ £ ' • e°'(T“ V)dv <  oo,

(5.64)

28Although Dai and Singleton (1998, definition 111. 1) normalize Qj to zero for the first m factors, an 
invariant transformation, along the lines o f Dai and Singleton (1998, definition A .l), can always yield the 
desired condition.
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where U D =  diag {cq , . . .  , q „ } ,  and

E q [ ( /  e° (T W) • E («>) ■ E' • ea'(T - v)dv^ K ( t ) <  oo.

the It6 ’s integral contained in the right-hand side of equation (5.64) is a martingale, and 

therefore the conditional mean of the state vector is the same for the Gaussian and for the 

stochastic volatility specifications o f the Duffle and Kan (1996) model:

f i § [ i ( r ) | i ( i ) ]  =  E | [ i ( r ) | i ; ( o ]  (5.65)

=  e°<T - ‘> K ( t )  +  [e°<T ') -  /„] ■ o 1 • 6 ,

where E q j^ |X (i)j and E q ^•|X(f)J denote a conditional expectation ( o n X ( i ) ) ,  computed 

under the martingale measure Q, for the Gaussian or stochastic volatility versions of the 

Duffle and Kan (1996) model, respectively.

Using again equation (5.64), the second conditional moment of the state vector under 

the nested deterministic volatility specification is

C O V G [ X ( T ) | X (0 ]  =  J * ea(T v) ■'& Û D Y! ea'(T  v)dv. (5.66)

For the general stochastic volatility formulation, the conditional covariance matrix corre

sponds to:

C O V s [ ¿ ( r ) | x ( t ) ]  =  JT e * T ~v> -E  - E % [ v °  (v )\ 2 L (t )] • E' • ea'<T v)dv, (5.67)

with

f ? | [K D (u )| l ( t ) ]

=  diag { à ,  +  f t '  • Eg [ ¿ ( v ) | l ( 0 ] .......â „  +  • Eg [ l  («/)| X  ( i ) ]  }  .

If the following crude approximation is made,

V D ( v ) *  V D (t ) ,V v Ç  [ t ,T ], (5.68)

then

U =  X  ( t )  => C O V °  [ x  (T)| X  w ]  =  C O V s  [ ¿ ( T ) | l  (o ]  ■
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5.7.3 P ro o f  o f  C o ro lla ry  3

Combining equation (5.42) with the Gaussian Arrow-Debreu state price (5.1), and with 

the definition (2.6) o f the state variables’ domain under the general Duffie and Kan (1996) 

model, yields:

V M * ( * M ]  =  J  d lP c  (t, l ) exp

■rj) (l,T) +  ij/ (l,T) ■ M.(l — 0]

» , ( i , r )  +  ^ ( / , r ) A ( / - i ) (5.69)

¿ ( V > ' ( / , T ) e * ) 5

* i
U ,

with

U
- L X (/)€»"

d X ( l )
s/ (2n )n \A ( i - t ) |

exp [ X  (/) -  A  (1 -  0  • ff (0 ] ' ’ A ' 1  (1 -  t )  ■ [X  ( ! )  -  A  (/ -  t ) ■ (x (/)] }  .

If n =  1, then

U
- r

dy
y j2 n ^  A  ( Z - O - A

exp
1  ( v - A ' A ( i - ( ) . g ( l ) ) 2

2  A ' - A  ( / - « ) ■ &

and the exact solution (5.38) follows.

In order to set an upper bound for V) [X  ( f ) , t], Schwarz inequality can be applied:

U 2 <  fa ' E [ X ( l )  X '( l )\ F t ]  Pk
n n i2 
11,-1

(5.70)

L

exp { - ^  [X  (,I) -  A (/ -  0  • if (1)]' • A -1 (f -  t) • [X (I) -  A (/ -  i) • /f (I)] }  ■

d X ( l ) -  ,---- K-----------
K d)t R» \ / ( 27r) |A  (l  — £)l

Because the factor-integral on the right-hand side o f  (5.70) is surely positive, another ap

plication o f Schwarz inequality can be made and square roots can be taken:

u 2 <  0k ■ E  [2C (0  X ! (1)1 f t )  • A v/ P r  \Pi x ( l ) >  - a , ]

^,=2
y/(2*)n \ A ( l - t )\

exp { [ X  ( ! )  -  A  (I -  i )  • if (0 ] ' • A ’ :1 (/ -  t )  ■ [X  (I) -  A  (t -  0  • g  (/)] 2 .
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Repeating successively the same reasoning, it can be shown that

U 2 <  A '  • E  [ K ( l )  ■ X 1 (/)|7i] • n { Pr [ f t f  • K  (0  >  -Oj] }  *  . (5.71)
i= i

Finally, imposing a zero lower bound to U, computing explicitly the previous expectation 

and all the probabilities, and taking square roots from both sides of inequality (5.71), 

inequality (5.40) arises.

The lower bound (5.41) follows from (5.69), imposing

\§k x  (o ]  n 1
2C(0 > «> } -<*k

> = 1  1 ’

and assuming the independence amongst the events > - « > } ,  for all j .  m

5.7.4 P ro o f  o f  P ropos ition  23

Using «illations (5.13) and (5.14), considering the zero-endowment nature of futures con

tracts, and the well known convergence o f the terminal futures price to its underlying spot 

price, it follows that the futures price F P s  ( t ,T / ,T i )  is the solution o f the following initial 

value problem:

0 =  V s F P s  (£, T f, T\) +
9 FPs ( t , '//, 7’i ) 

91
(5.72)

subject to

F P s  (T f , T f , T i )  =  Ps (T f ,T \ ) . (5.73)

Clearly, solution (5.44) satisfies the boundary condition (5.73). Moreover, substituting 

(5.44) into the PD E  (5.72), rearranging terms as well as adding and subtracting the time-t 

instantaneous interest rate, r (t ) ,

0  = {„ ' m [ 5 ^ 1 + * « >dt di

K ( t )

+ \ t r  [ f l (T , -  0  g  (T , -  0  E  • V n (t ) • Ef] -  r  (£) |

- { * ( 7 > - 0 > - * ( 0  +  « + [ ^  +  ^

+  \ t r  [B (T ,  -  t)  ■ B' (7> -  t)  • E  • V D (t) ■ £'] -  r  (<) J
. f „ , ________ , „ _____ _ . [ 9 C ( i , 7 / , T , )  9 D '( t ,T / ,T i)

+  (t, I f ,  h )  ■ [a X ( t )  +  £] +  -------—------- +  -  — g j—

X  ( i ) ]  -  \ b!  (T , -  t ) ■ E  • V D ( f )  ■ S' B  (T , -  t ) +  l- B '  ('T, -  t)

■E ■ V D ( i )  • E ' ■ B  (7> -  t ) +  X-  [B  (T , - t ) - B ( T f - t )  +  D  (t, 7>, T , ))'
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£ • V D (t ) • E' • [B. (T , -  0  -  B. (T, - 1) + n  (t, Tf,T\)\} .

The first two terms on the right-hand-side of the previous equation are equal to zero, 

since they are just the PDEs satisfied by the pure discount bond prices P§ (t, 7 j ) and 

I ’s respectively. Therefore, simplifying some terms, and since £  ■ V n (t )  ■ £ ' =

H/t i £* £*/ [ « *  +  Pk • X  (0 ] i then the right-hand-side of the last equation can be rewritten 

as an affine function o f X  (t):

0 ( o ' ( t , Tf ,r , )  a +  +  £ H (7> -  t ) ■ £* • £*'
l A: 1

- 0 1  +  5  E #  (* .*> ,T , ) •£* •£*'
 ̂* = 1

• [2 B  (T , - t ) - 2 B  (7> - t )  +  D (f, Tf, 7 j ) ]/ V }  X  ( t )

+  ( t ,T f ,T i )  b +  +  ¿ g  (T/ - 1) • gfc ■ a *

■ [ f l (7> -0 - f l (T i  -t) ]o* + J E ( « , 7 > , T i )  •£* •£*'
Z k \

■ 12B (T\ - t )  — 2B {T f  -  i) +  D (t , 7>, T , )] q* }  .

The previous PDE can now be split into the n-dimensional Riccati differential equation 

(5.45) and into the first order ODE (5.46). ■

5.7.5 P ro o f  o f  C o ro lla ry  4

Using equations (5.52) to (5.55), the functional form of the "gamma m atrix” can

be computed, and it can be shown that equations (5.11) and (5.12) yield the following first 

order approximation:

Vs (0 ,  i] -  Vc [2C (0  , t) +
! f To

■ l  '
d l[V u {l) +  Vu {l) +  V l3 (/)], (5.74)

where“

Vn {l) =  0 exp[t/ (i, •)] [  d X ( l ) G [ X { l ) , i , X { t ) , t ]
J&O)

(5.75)

exp [g'(/,-)-2c(o]*[Mi (01 E l s ' ( * • • ) • & )* & '
Lfc-1

Mi ) ,

29In this appendix, all factor-integrals refer to integration over 9?n.
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V1 2 ( l )  =  -O K e x p [S (l ,T o )}  [  d X ( l ) G [ X ( l ) , l - , X ( t ) , t ]
W)

(5.76)

exp [T 7 (l, To) ■ X  (0 ] [Odo (/)] £ ( r o , T 0) £ * ) 2& '
L*=i

2L(l),

and

Vl3 ( l ) [  d X ( l ) G [ X ( l )  , t } e * 'V ™ * < 1) (5.77)
a  (/) V2n Jxp )

exp | - ^  [do (0 1 * } | E  [ (S ' (*, ) -  H  (M o ) )  • £ * ] * & 'J • * ( Z ) .

The next step consists in eliminating all factor-integrals from the above equations. Be

ginning w ith V13 (Z), using the definition (5.1) of Gaussian Arrow-Debreu prices, and because 

do (l) can be written as an explicit function of X ( l ) ,

do (0  =  { [ s '  (i- •) -  r  (i. 7b)] • *  (0  +  ¿S (I)} , (5.78)

then

Vl 3 ( l )  =  e x p | s ( f , T o) - ^ | ^ - i M ' ( / - 0  A - 1 ( / - i ) M ( i - 0

(0L
0 1

+  l m ' ( f ) . ^ - ( f ) . m ( / ) I ^ ^ ,2_ V ;  ̂ w - v ;J ,r(/) V |A(*
/  d *  (Z) J £  [(S ' (/, ) -  T ' (Z, To)) ■ e*]'2 1  • X  (Z)■'*«) Int J
exp { - i  [X  (Z) -  1 (<) • m (Z)]' ■ v»(Z) • [2 C (Z )-* >  1 (Z) • m (Z)] }

\ / W V l

But, the last integral is just the expectation o f the random variable i [ (Q ' (Z, ■)

—T ' {l, T o ))  ■ £*]2 /V| • X  (Z), with X (Z) ~  ZV" (^_1 (Z) m (Z ),^  1 (Z)). Computing such 

expect«! value explicitly, the factor-integral independent analytical formula (5.58) is finally 

obtain«!.

In order to simplify V\\(l), it is convenient to express 4> [Odi (Z)) as a n-dimensional 

integral w ith respect to X  (To). Evaluating (5.52) at Z =  To,

VG [X  (T o ) , 7b] =  <7 {<?exp [Z7 (To, ■) +  Q ' (7’0, •) • X  (7b)] - 0 K } \
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and using result (5.21),

Vb (2C ( t ) , i] =  6q d X (T o )G [X (T o ) , T o - ,X ( t ) , t ] l e
J2L(T0)

{exp  [U  (To, •) +  q  (To, ■) • X  (To)] -  K )  ,

where e =  { X  (To) : OQ' (To, •) • X  (To) >  OK ’ }. Solving the above integral equation, and 

comparing each term with (5.52), it can be shown that:

<H0d,(O] =  f  d X  (To) - _ = ! = = = =  1 ,  (5.79)
JMTo) v ( 2,r) |A (T 0 -O |

exp | [X  (To) -  M  (To -  I) -  A  (To -  /) • §  (T0, •)]'

• A " :1 (To — I) • [X  (To) -  M  (To -  /) -  A  (7 ’0  - 1) Q  (T0, • ) ] } .

Combining this last result with (5.75),

V'. 1 (0 =  OPa (0 0 exp [ U  (i ’ ) -  j A f  ( l  -  t )  A - 1 (I - 1)

■Aftf-O + kiiO-n-^o-awl [  dxiTo)-^==L==
2 J 7jc(To) v ( 2,r) | A ( / o - 0 1

exp [X  (To) -  MCi (T0 -  0]' • A 1 (T0 -  /) • [X  (7’0)

[l2=i (S'(*.■>■&)*&'] K ( i )

v/(27r)n |n-1(/)|

exp { - ^  [X (0 -  n - 1 (0 • i£i(0]' i i  (I) [ X (0 -  n 1 (0 a (0]},

-M C, (To — 0] } /  <
J M ‘)

d x (/ )

where

a ( 0  =  A - ‘ ( i - i ) . M ( i - t ) + 3 ( i , )

+ e «'(To 0 . A -J (To _  Z) . ^ (To ) _ M C | ( To _  /)] .

Because the integral with respect to X  (0 is just the expectation of , ( Q '( l , •) £ * )2 /7*,j

■X (f), with X ( 0  N n ( i l  1 ( 0  Pi ( 0  1 ( I ) ) .  then, and after some linear algebra ma

nipulations,

v h ( i )  =  w *c (t
|n-1 (0 - » - 1 (0 l

exp
IA (/ — t) ■ A (7o — 01 

A  1 (/ -  f) • M  ( l  -  t) +  ^pci' (1) n  1 (Z) pc, (/) -  1 A/C,' (To -  0

A -1 (To -  /) • MCi (To -  0 + (0 • *  1 (0 ■ Wl(0
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L ) dK{ro) y w F i £  (S'0. -) -£*)’&'
Lfc=i

•n 1 (Z) • [gci (Z) +  • A - 1 (To -  Z) K  (To)]
exp [X  (To) -  * - >  (Z) ■ ZV, (Z)]' • *  (Z) • [X  (7b) -  »  1 (Z) • ZV, (Z)] }  .

Noticing that the expectation of an indicator function results in a probability,

Vu (Z) =  0PG (t, Z) exp U  (Z, •) -  i  M ' (Z -  t )  • A  1 (Z -  t ) ■ M i l  -  Z) 

+ W  (/) • n 1 (0  • ¿f£i (Z) -  \ M C ^  (To -  Z) A ’ 1 (To -  Z)

(5.80)

•MCj (To -  Z) + -ZV,' (Z) vK-1 (Z) jV, (Z) |Q-1( Z ) * - 1(Z)I 
|A(Z — i) • A  (To — Z)|

0  + ¿ ( Q ' ( Z , ) £ * ) 2^ '
.* = 1

« - ‘ (ZJ /ic, (Z)

Pr[0Q'(To, ) X(7o) > 0 /C ] } ,

where

V
f j  y. [g i (0 X (T 0)] l{9g'(7b, ) X(T0)>ok-}

4(7-0) ■ ° J V ' ( * r ) " | * - , (0 l

exp [X (T 0) -  (Z) • ZV, (Z)]' *  (Z) • [X  (T0) -  ¥  1 (Z) • ZV, (Z)] J ,

and Pr(/1) denotes the probability of occurrence o f the event A

Because X  (To) >-'* ZV71 ('I ' 1 (Z) • ZV, (Z ), ^  1 (Z)) implies that the random variable [(/  (7b, 

) • A  (7b)] possesses a univariate normal distribution with mean Q ' (To, ■) 1 (Z) ZVi (/)

and variance Q ' (To, ) 'l' 1 (Z) • Q (7’o, ■), the probability contained in equation (5.80) cor

responds to

Pr [ 0Q' (To, ■) ■ X  (To ) >  OK“} =  <t>
r Q ' ( T o , ) ^  ‘ (Z) Z V ,(Z )-/ C  

\Jq ‘ (To, •) ■ W 1 (Z) • Q (T q, ■)
(5.81)

Concerning the term 77, and for reasons of analytical tractability, C ,(Z ) is going to 

be approximated by the vector [A, (Z) Q  (7 ’q, ■)], where Ai (Z) is chosen as to minimize the 

Euclidean distance between the two vectors:

[  j v / m  \  Al ^  [ 2 , ( / 0’ ) ' ^ ( /o )] 1 {8g'(7b.)-2C(7o)>«/f•}
4 (7 -0 , - (/o) v ' ( a * ) " l * - 1 (i)l

exp I i  [X (To) -  » - 1  (Z) ■ ZVi (Z)]' • ¥  (Z) • [X (7b) — ¥  1 (Z) • ZV, (Z)] J ,
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with30

A, (0 :m in ||C ,( /) -A , (/)Q(T0, ) | | .
(*)

The last integral is equal to the expectation of the random variable Ai ( l )  [O ' (7’o, ■) ■ X  (To)]

) £ ( 7b )> 0A - * } ’ sub-ject to ^ (^ o )  N "  (<I< 1 (7) - TVi (/), 1 (0 )-  To evaluate such

expectation, it is simpler to use the density o f the random variable 0 \Q' (To, •) • X  (To)] =  y, 

because the integral under consideration becomes one-dimensional:

Combining this last result with equations (5.80) and (5.81) yields the “explicit” solution

(5.57) for i =  1.

Following exactly the same steps as for Vjj (/), equation (5.57) can also be derived for i =

forms o f Vn (/) and V12 (/) under equations (5.75) and (5.76), as well as the definitions 

of rfi (/) and d o (l). 1° fact, V1 2  (/) can be obtained from — KV\\ (/) when U  (Z, -), Q ( l ,-), 

and M  (7o -  0  are replaced by S  (/, T0), T  (/, 7’0), and [M  (To -  /) -  A  (7o -  l )  Q  (7b, ■)], 

respectively. Performing these substitutions in equation (5.57) with i =  1 yields equation

(5.57) for t =  2. ■

„ ^ • » - ' ( O - g c r o , - )

f 1 [ y - f i g  (To, •)•<»■ ' ( n- Nxi l ) } 2 ] 
{  2 pgr  (Tor) ■*-* (O g  (To, ) )P & (T o r )  - « -*  (0 5  (To

- g g ' ( T 0, ) r l ( i ) - i v l

2. Alternatively, such “explicit” formula for Vfo (/) also arises by comparing the analytical

30Note that in the univariate case (n  =  1), this is not an approximation but an exact result. However, the 
focus of this dissertation is on the multivariate case.
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Chapter 6

A Stochastic Volatility State-Space 

Formulation For Further Research

6.1 Introduction

Chapter four proposes a Gaussian HJM affine and time-inhomogeneous multifactor model, 

estimated in two stages: first, the time-independent parameters are obtained from an "equiv

alent” state-space formulation by applying a non-linear Kalman filter to a panel-data of swap 

rates, caps’ prices and European swaptions’ prices (hence, ensuring the stability of the time- 

homogeneous parameters); then, the time-dependent model’ volatility components (that is, 

function h ( i ) ,  as defined in equation (4.45)) are calibrated cross-sectionally to caps' prices 

and/or to European swaptions’ prices. This estimation methodology enables the model to 

recover both the market term structures of interest rates and of volatilities, but it does not 

provide a satisfactory fit to the observed prices of European swaptions.

As shown in Chapter four, the main reason for the above mentioned model’ inability 

to reproduce swaption prices is the completely time-homogeneous nature of the correlation 

function amongst interest rates, that arises from the Gaussian feature of the model. Ana

lytically, the argument can be stated as follows: because equation (4.70) does not depend 

on h ( t ), then the function /i(f) can never improve the model’ fit to the market correlation 

function. In fact, tables 4.12 and 4.21 show that the calibration of h (t )  to both caps’ and 

swaptions' prices can only improve the model’ fit to the latter by deteriorating the lit to 

the former.

One possible solution towards the simultaneous and consistent pricing of caps and swaj>- 

tions could be to estimate the Gaussian HJM model only cross-sectionally, that is not to 

back-up the model’ time-homogeneous parameters from an "equivalent” equilibrium speci

fication. Instead, not only h (t) but also the parameters G  and would be calibrated to a
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cross-section o f caps’ and swaptions’ prices: the burden of recovering the market correlation

structure of interest rate volatilities. The main problem with this line of attack is that

pricing exotics consistently with the market prices of liquid plain-vanilla options, it is not 

so much appropriate for hedging purposes.

Alternatively, the research already conducted in the present dissertation opens the possi

bility o f implementing a new approach towards the simultaneous fitting o f market caps' and 

swaptions’ prices, while still preserving model’ parameters stability over time. Specifically, 

the state-space formulation described in Chapter four can be adapted, using the approx

imate analytical pricing solutions derived in Chapter five, in order to define a stochastic 

volatility (instead o f Gaussian) HJM affine multifactor model, with time-inhomogeneous 

diffusion components and still estimated in two stages. The reason why such new stochastic 

volatility HJM model could, at least theoretically, improve the fit to the market interest 

rate correlation function (and therefore, to swaptions’ prices) relies on the fact that the 

model’ correlation function would now be state-dependent. Using the stochastic volatility 

specification of equations (2.2) and (2.5), it can be easily shown that the tirne-i correla

tion coefficient between changes in instantaneous forward rates of maturities T\ (>  t) and 

Tt ( >  T i )  is equal to

used to clearly distinguish the stochastic volatility duration vector from the corresponding 

Gaussian one (which is given by equation (3.2)). Because the correlation function depends 

on the state-vector, through matrix V l> (£), it seems realistic to expect a better fit to 

swaptions’ prices, at least by increasing the number o f model' factors.

Next sections outline the theoretical implementation o f such new stochastic volatility 

HJM affine and time-inhomogeneous model (estimated in two stages). For reasons to be 

explained in subsection 6 .2 . 1 , the empirical testing of such modelling approach will await 

for further research.

function would be given to both G  and K A , while function h (t )  would mainly fit the term

the stability o f the time-homogeneous parameters would be lost, as G  and would most 

certainly differ from day to day. In other words, although such approach makes sense for

1
2

1
2

(6 . 1)

where Bs  ( T  — t ) satisfies the Iliccati differential equation (2.8), and the subscript “S’" is
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6.2 State-space specification

Instead of adopting the Duffie and Kan (1996) general stochastic volatility formulation, 

corresponding to equations (2.2) and (2.5), it is necessary to specify the state-space model 

in terms of the more restrictive and nested Dai and Singleton (1998) A m (n ) canonical form 

(0  <  m <  n ), which embodies the minimal number of parameters’ restrictions needed to 

ensure that the term structure model is both admissible and just-identified. Following Dai 

and Singleton (1998, definition III. 1 ), the stochastic volatility model under consideration is 

given by equations (2.2), (4.1), (4.2), and (4.3), subject to the following restrictions:

G j >  0 , j  =  m  +  1 , . . . ,n, 

where G j  is the j th element o f vector G  € 3?",

K tj  =  0 , t =  1 , . . . ,  m, j  =  m +  1 , . . .  ,n,

K ij  <  0 , j  =  l , . . . ,m ,  j  ±  i, 

where K XJ is the ¿ih-row j ih-column element of matrix K ,

in

KijOj > 0 , i =  1 , . . . ,  m, 
i =l

0j =  0 , j  =  m +  l , . . . ,n ,

0j >  0 , j  =  1 , . . . ,  m, 

where 0j is the j th element o f vector 0 € 3?n,

S=/n,

where /„ G xn is an identity matrix,

ctj =  0 , j  =  1 , . . . ,  m, 

ctj =  1 , j  =  m +

where c t j  is the j th element o f vector q € 3Î", and

0  =
fmxm 

^(n m)xm

f lD Bx (n m)
^(n m)x(n m)

(6 .2)

(6.3)

(6.4)

(6.5)

( 6 .6 )

(6.7)

( 6.8)

(6.9)

(6 . 10)

(6 . 11)

217



being 3 d11 a matrix of non-negative constants (the subscripts denote the dimension of each 

matrix).

The above A m (n ) canonical specification can be easily nested into the more general 

Duffie and Kan (1996) stochastic volatility formulation of equations (2.2) and (2.5), through 

the following identities:

a =  —K, (6 . 1 2 )

and

b =  K  0. (6.13)

For the remaining o f this section, the non-linear state-space model described in section

4.3 is simply adapted from the Gaussian Ao (n ) canonical specification to the more general 

stochastic volatility A m (n ) form.

6.2.1 TVansition equation

Solving equation (4.1) explicitly, using restriction (6 .8 ), considering equally spaced time- 

periods (that is tk — tk i =  h ,Vk), and assuming that matrix K  is non-singular, the following 

non-G&ussian transition equation is obtained:

Kk — J  +  F  ■ X_k i + (6.14)

where

J =  ( / „ - e - * * )  g, (6.15)

F  = e~Kh, (6.16)

vk =  f "  e~K(tk' a) ■ \JvD (s) dWv (s), (6.17)
** - 1

with X_k =  K (tk ) -  Notice that the error vector vk is no longer Gaussian (as was the case 

in section 4.3), and its covariance matrix is now different from A  (h ).

In order construct the mean square prediction error matrix, at each Kalman filter re

cursion (see «quation (4.29)), it is still necessary to sp«»ify the covariance matrix of the 

error vector v k, for which two approaches are possible. The first and usual approach -see, 

for instance, Duan and Simonato (1995) or Chen and Scott (1995a)- is bas«xl on the condi

tional «»variance matrix o f the model’ state-vector. Considering such approach and using
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definition (6.17), it follows that:

Qk =  C O V s ( v k |2C*_,)

=  / *  [V D (u )| X * - i]  e K'(*‘  u)du,
•/«* i

where

£ ! [ V D (a)| 2 C*-,]

= d.09{o,+A'-fip[2CWI2Ct., ]..... «„ + £,' • Eg [X(*)|X* ,]}•

Adopting approximation1 (5.68) and considering equally spaced time-periods, a proxy is 

then obtained for the error vector’ covariance matrix:

Q k ~  [  e~l<V '-u) v £ 1 - e~K'(h~u)du, (6.18)
Jo

where

H - l  =  d iag {Q i +  ■ X k i , . . . ,q„ + /V  X *  i } .  (6.19)

Moreover, because X *  , is unobservable, Q k is evaluated at X *  ,. In summary, the first 

approach consists in replacing A  (h ) by Q k, as given by equations (6.18) and (6.19), for all 

the Kalman filter recursions of subsection 4.3.3.

There exist, however, two essential problems with this approach, which justify the post

ponement of the corresponding empirical analysis for further research:

1. The inconsistency and inefficiency of the QM L model’ parameters estimator.

It is well known -see Lund (1997a, subsection 4.3)- that the QML estimator generated 

by a standard Kalman filter for a non-Gaussian state-space model is both inconsistent 

and inefficient. This is so because although Q k depends on the lagged unobservable 

state-vector, X k ,, the standard Kalman filter can only provide, for stochastic volatil

ity state-space models, not X_k , but rather the linear projection of X k , on tin1 linear 

subspace generated by the observed market panel data.

As Lund (1997a) suggests, two possible solutions for this problem can be either the use 

o f more computationally involved estimation methodologies (such as Markov-Ohain 

Monte Carlo methods and the Simulated Method of Moments) or the adoption of 

the unrealistic, but simpler, zero measurement errors assumption (which would not

1 Notice that such approximation ensures that V D (s ) is a non anticipating function. O f course, the smaller 
is the time-step h, the more acceptable should be such approximation, which constitutes an additional reason 
for using daily observations in the empirical analysis.
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require the filtering o f the model’ factors). Bearing in mind the additional computation 

burden involved by the measurement equations o f stochastic volatility state-space 

models, further research is needed in order to optimize the trade-off between the 

numerical complexity and the model’ realism associated with the alx>ve mentioned 

potential solutions.

2. The positive definiteness o f matrix Q k.

An additional difficulty associated to this first approach is to ensure that the co

variance matrix Q k is positive definite, for all k. Because the standard Kalman filter 

recurrence relations do not incorporate the admissibility restrictions contained in equa

tions (6 .2 ) to ( 6 . 1 1 ), it is usually necessary to constrain all elements o f X_k , to be 

non-negative. However, such constraints will most probably introduce an additional 

bias in the Q M L  parameters’ estimates.

The second approach was proposed by Lund (1997a), and is based on the uncondi

tional covariance matrix of the state-vector. That is, in order to obtain consistency for the 

QML parameters’ estimator, Lund (1997a) proposes that Q k is replaced, for all k. by tin- 

unconditional covariance matrix o f the error term v k:

Q  =  C O V s (u *) (6.20)

e ~ K (h  u ) . y D  . e ~ K '(h  u )d u

where

V D =  diag { a j  +  /V • 0 ,.. .  , a „  +  • 9 )  • ( 6  21)

Again, the standard Kalman filter recursions described in subsection 4.3.3 are still valid, but 

now with A  (h ) replaced by Q  Notice that such procedure implicitly ignores the conditional 

heteroskcdasticity properties o f the stochastic differential equation (4.1).

'File main advantage o f this second approach is that, because matrix Q  is state-independent 

(and, therefore, positive definite), the standard Kalman filter possess the MMSLE (mini

mum mean square linear estimator) property and, hence, the resulting QM L parameters’ 

estimator is surely consistent. However, and as Lund (1997a, page 16) notices, “ ...we should 

expect that the cost o f.. .ensuring consistency is further loss of efficiency” . In fact, the Monte 

Carlo experiments conducted by Lund (1997a) did not find any improvement of his QM L 

estimator’ finite sample properties over the usual “conditionally heteroskedastic” one.

In summary, the empirical analysis of the stochastic volatility state-space model de

scribed in the present section is postponed until further research is conducted towards the
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implementation o f a more consistent and efficient estimation methodology.

6.2.2 N on -lin ear m easurem ent equation

Considering a panel data o f swap rates, cap and swaption prices, the measurement equation 

of the stochastic volatility state-space model is still given by formulae (4.24) and (4.25), 

being the former linearized using expression (4.26). Each element of vector Z k is defined as 

in subsection 4.3.2, but now computed from the approximate stochastic volatility solutions 

proposed in Chapter five.

Swap rates are still obtained from equation (4.15), but the corresponding stochastic 

volatility pure discount bond prices are given by proposition 2 2 .

Similarly, cap prices are now computed under proposition 27. That is, under the Am (n) 

canonical formulation, the time-f (stochastic volatility) price o f a forward cap on a unitary 

principal, with a cap rate o f k, and settled in arrears at times T< =  t +  i6, i  =  2 , . . . ,  v is

and where Vj* [X (£ ) , i ]  is given (for * =  1 ,. . . ,  v  — 1) by equation (5.56) with q =  1, K  =

Ba_(i6), and 0 =  — 1. In all the previous and the following formulae, the subscript “G" 

refers to the Gaussian specification of the Duffie and Kan (1996) model (or equivalently, to 

the nested A q (n ) canonical formulation). Hence, functions Pq  (■), l i (; (■) and A c  (■) are all 

computed under proposition 1 .

Finally, European swaptions are valued as European options on coupon-bearing bonds, 

but using a stochastic duration approximation and proposition 27. That is, under the 

A m (n ) canonical formulation, it can be easily shown that the time-f (stochastic volatility) 

price o f an European payer swaption maturing at time Tu =  t +  uS, with a strike equal to 

x, and on a forward swap with a unitary principal and settled in arrears at times Tu+i =  

Tu +  i6 ,i =  1 , . . . ,v, is

V -

Caps (X (t )\ k ,8 ,v )  “ ( 1  +  6k) £  { ( 1  S k y 1 PG (X  ( f )  ; i6 ) <i> [<x,M ,+ I)4  -  d (i)]
t=l

- P a  (X  (t )  ; (» +  1) 6) *  [ - d  (t)] +  \  V} IX  (*) , t]}  , (6.22)

with

=  Bg ( 6)' ■ A ( i6 )  ■ B a (6 ) (6.24)

( 1  +  6k)~\  U  (t, •) =  Ag  ( ( i +  l ) 6 ) , Q ( t ,  ) =  B c ( ( i  +  l ) 6 ) , S  ( t , T0) =  Aa  (¿5), T  (f, T„) =

Payerswpn (X  (£) ¡x , 6, u, v ) $ { - P a  (X  (0  ; D s ) <t> ( - d ) (6.25)
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+ t - 1 Pa (X  (t) ; uS) 4> (auS,Ds ~  «0 + \ VÎ \X (0 , t]}  ,

with
.  ^ . f t ( 2 C ( 0 ; ( u  +  i)g)
5 ¿ - *  P s ( K ( t ) ; D s )

(6.26)

fct =  1{«=«> + (6.27)

(6.28)
&u6,Ds

ats,Ds =  B ç ( D s -  US)' ■ A  (u<5) • S ç  (O s -  u i ) , (6.29)

and where V) [X  ( t ) , f] is given by equation (5.56) with q =  1, K  =  £ *, U  (t, ■) =  Ap (O s ), 

Q (t,- )  =  Bg (D s ),  S (t ,T o )  =  Ap(u6), T.(t,To) =  Bp (u6), and 0 =  —1. The constant 

D s  corresponds to the stochastic duration of the price-process , k,Ps ( X  ( t ) ; (u  +  i )  6), 

i.e. it is equal to the time-to-maturity o f a zero-coupon bond with the same instantaneous 

variance of relative price changes, and it is implicitly defined as the solution o f the following 

equation:

The stochastic volatility duration vector Bs ( ) and the discount factors Ps ( X  ( t )  ; ) can be 

numerically computed from equations (2.8) and (2.9), or, alternatively, can be approximated 

through proposition 22.

6.2.3 F ilte rin g  and  estim ation  m ethods

by maximizing the log-likelihood function (4.27), through the optimization algorithm de

scribed in subsection 4.3.4.

For that purpose, the Kalman filter recursions (required for constructing the prediction- 

error decomposition formula (4.27)) are still given by equations (4.28) to (4.35), but with 

three modifications: the Gaussian covariance matrix A  (h ) must be replaced by matrices Q k 

or Q , as given by formulae (6.18) or (6.20), respectively; at each iteration, and before com

puting the vector Z_k, the affine invariant transformation (5.33) must be applied to X k k l 

(in order to enhance the accuracy o f the pricing approximations described in subsection 

6.2.2); and, the “prediction” equation (4.28) must be augmented by the vector J, that is

'V 7r( t j  • E?=i ë s  ((«* +  i )  6) k ,Ps (X  ( t ) ; ( n  +  i )  6) ||2
. (6.30)

The parameters of the non-Gaussian state-space model under analysis can still be estimated

X kik- x =J .  +  F X k V (6.31)
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Again, the Kalman filter recursions can be initialized at the first two unconditional moments 

o f the model’ state variables, and, therefore, equations (4.36) and (4.37) must be replaced 

by

K o  =  0, (6.32)

and

vec (Po ) =  (/„a -  F<8> F )~ l ■ v e c (Q ) , (6.33)

respectively.

6.3 HJM specification

The “equilibrium” stochastic volatility model described in the previous sections can be 

restated in an HJM framework, ensuring automatically a perfect fit to the observed term 

structure of interest rates. Considering the SDE (2.5), applying Itft’s lemma to the pure 

discount bond price process P ( t , T ) ,  and using the identity / ( t , T )  =  — flln r ^ M ^T) , it is 

possible to obtain the following “equivalent” HJM model’ specification:

dt -  ^ B s  (T ) ' • E  • yJvD(t) • dw °  (0  ,

(6.34)

where

V D (t ) =  diag {a ,  +  • X  (< )....... < * „+ £ , ' £  (0  }  ,

and X  (0  satisfies (2.5). Clearly, the model is arbitrage-free since the drift o f the process 

(6.34) respects the HJM no-arbitrage condition:

d f ( t , T )  =
9T

B s (r ) '  E - V D (t )  Z  - Bs ( t )

— B s ( r y E V D( t ) E ' B a (r)
§ j ,B s { r ) '  E  f  [ £ b s (u - î )' E . du.

Moreover, because formulations (6.34) and (2.5) are “equivalent” , all the stochastic volatility 

pricing formulae derived in (Chapter five (as well as the ones described in subsection 6.2.2) 

are still valid and applicable, subject to the following restriction: the state-vector X  (0) 

must be such that

/ ( 0,T ) =  ~ § f A a ( T )  -  Z (0 ) ,V T .  (6 35)

As for the Gaussian HJM model of equation (4.45), and in order to ensure the mcxlel' 

fit to the term structure of interest rate volatilities, the diffusion o f the SDE (6.34) can
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be augmented by a time-dependent function h : 9i+ —► 3?, yielding the following stochastic 

volatility HJM affine and time-inhomogeneous multifactor model:

- h  ( t )  § ^ B s  ( r ) '  • E • y J v O {t ) • d W a ( t ) .

F

Again, it can be shown that the pricing solutions described in subsection 6.2.2 are still 

applicable, subject to condition (6.35), as long as equation (5.55) is replaced by

The estimation o f the stochastic volatility HJM model (6.36) can be done, as described 

in Chapter four for the nested Gaussian HJM specification, in two stages: first, the time- 

homogeneous parameters (G , K  and /3) are estimated from the (underlying) state-space 

model of section 6.2; and, then function h (t )  is calibrated, cross-sectionally, to the market 

prices of caps and/or European swaptions. It is precisely the first step of this joint estimation 

method that will await for further research.

(6.37)
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Chapter 7

Conclusions

This dissertation was devoted to the study of the class of multifactor affine term structure 

models characterized by Duffle and Kan (1996), and produced two main contributions: 

the derivation o f new analytical pricing solutions that are faster to implement than the 

existing numerical methods; and, the formulation of a state-space and panel-data estimation 

methodology, based on a non-linear Kalman filter, that enables the model’ fit not only to 

the level of the yield curve (as was always the case in the previous literature) but also to 

the interest rates market covariance matrix.

Firstly, a general equilibrium specification (under objective probabilities) was proposed 

for the Duffie and Kan (1996) model. Such equivalent specification provided a theoretically 

founded functional form for the vector of market prices of risk, which enables the estimation 

of tfie Duffie and Kan (1996) model’ parameters through a time-series or a panel-data 

approach. This was the first theoretical result of the present thesis.

Secondly, exact closed-form pricing solutions were derived under a Gaussian (nested) 

specification of the Duffie and Kan (1996) model and for several European-style interest 

rate contingent claims, namely for: futures on bonds and on short-term interest rates, 

European options on pure discount bonds, caps and floors, European yield options, and 

European futures options on bonds and on short-term interest rates. For European options 

on coupon-bearing bonds and for European swaptions, two approximations were proposed 

and compared (both in terms of options’ moneyness as well as in terms o f the maturity’ 

length o f the underlying asset). The derivation of these Gaussian exact analytical formu

lae (second theoretical contribution of the present dissertation) is useful and relevant for, 

at least, four reasons: i )  all the pricing solutions can be directly applied to several well- 

known term structure models previously proposed in the literature, which can be re-stated 

as nested cases o f the more general Gatissian affine specification considered in this thesis; 

i i )  the Gaussian exact pricing formulae can also be used as control variates in Monte Carlo

225



implementations o f the more general stochastic volatility Duffie and Kan (1996) model’ for

mulation; in )  these Gaussian exact analytical solutions provide the measurement equations 

needed to fit Gaussian affine state-space models not only to the term structure of inter

est rates but also to  the corresponding term structure o f volatilities as well as of interest 

rate correlations; and iv ) finally, such Gaussian exact solutions can constitute the zeroth 

order terms from which first order approximate and analytical stochastic volatility pricing 

formulae are constructed.

Thirdly, using the general equilibrium specification derived in this thesis for the vector 

of market prices o f risk and the Gaussian pricing formulae also ob ta in «! in this dissertation, 

a Gaussian time-homogen«)us and affine state-space model was fitted to a panel-data of 

(US and U K ) swap rates, cap prices, and European swaption quotes, through a non-linear 

Kalman filter algorithm. Therefore, the third theoretical contribution o f the present disser

tation consisted in implementing a state-space and panel-data estimation methodology that 

allows the model’ fit not only to the level of the yield curve but also to the market interest 

rates covariance surface (which is implicit in the market prices of non-linear derivatives, such 

as caps and swaptions). Consistently with the previous literature, and for both data-sets 

used, an extremely good model’ fit to market swap rates was obta in «! using law-dimensional 

specifications. However, it was also demonstrated that such state-space affine models are 

unable to fit short-maturity caps and European swaptions. Moreover, the model’ inability 

to reproduce the market (exponentially-<l«:aying) interest rates correlation function was 

shown, both empirically and analytically, not to depend on the model’ dimensionality. Nev

ertheless, it was argued that it is still important to consider such cap and swaption market 

data in the model’ estimation, because additional information is incorporated into the model 

in terms o f the term structures o f interest rates volatilities and correlations. In order to 

improve the model’ fit to caps and swaptions prices, while preserving the stability o f the 

parameters’ estimates, this thesis proposes an HJM and time-inhomogen«>us formulation of 

the affine Gaussian Duffie and Kan (1996) model, which is then estimated in two stages: in 

a first stage, the model’ time-homogeneous parameters’ estimates are obtained directly from 

the corresponding ( “equilibrium” ) non-linear state-space model; then, tin; time-dependent 

model’ parameters are simply calibrated to the current cross-s«:tion o f cap and/or swaption 

prices. This two-step procedure still allows the structural behavior of the interest rate data 

to be captured by the model’ time-homogeneous component, yields an almost exact fit to 

cap prices, and reduces substantially the mispricing of swaptions.

Finally, the main theoretical contribution of this dissertation consist«! in deriving ap

proximate analytical pricing solutions, under the most general stochastic volatility specifica
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tion of the Duffie and Kan (1996) model, for several European-style interest rate contingent 

claims, namely for: bonds, long-term and short-term interest rate futures, European options 

on zero-coupon bonds, caps and floors, European yield options, European futures options 

on pure discount bonds and on short-term interest rates, and even European swaptions. All 

these stochastic volatility approximate closed-form solutions were constructed from the ex

act corresponding Gaussian formulae also derived in this thesis, and are extremely fast and 

easy to implement since they only involve (no matter the model’ dimension) one integral 

with respect to the time-to-maturity of the interest rate contingent claim under analy

sis. Moreover, asymptotic error bounds were derived for the approximations suggested in 

this thesis, and the numerical examples presented in this dissertation also confirm the ac

curacy o f  the proposed first order stochastic volatility approximate solutions. Therefore, 

such approximate pricing formulae constitute an effective and valuable pricing alternative 

methodology to the existing numerical methods: for high-dimensional models (where Monte 

Carlo simulation or finite-difference schemes become too time-consuming) and/or when the 

relevant characteristic function for the pricing problem in hands does not possess a known 

analytical solution (which makes it difficult to use Fourier transform methods), the Arrow - 

Debreu approximate pricing methodology proposed in this thesis seems to be, until now, 

the only and the best approach available.
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