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Abstract

I was trading professionally in the years 2006–2014 in the equity derivatives market.

This thesis deals with two of the ideas inspired by my experience as a professional

trader.

The first topic deals with the pricing of a derivatives product in the market

with a specific risk concentration. We call the product that causes the concentration

a market driver. When the market driver exists, not only the market driver itself,

but any derivatives product will not be priced fairly. We introduced a new model

based on the Heston model that accounts for the concentration. The model leads

to a pair of partial differential equations (PDEs): one semilinear parabolic PDE to

price the market driver and one linear parabolic PDE to price all the other products.

In solving the semilinear PDE, we use the policy improvement algorithm

(PIA) to approximate the solution with those of linear PDEs. We show that the

approximated solutions satisfy quadratic local convergence (QLC) which explains

the efficiency of the algorithm. This efficiency of the algorithm is proved in a more

general setup.

The other idea sparked by my experience that is explored in the last chapter

of the thesis concerns modeling technical analysis. Technical analysis is a family

of methods that traders use to make decisions to purchase/sell assets. There is no

mathematical proof that shows that they are correct as far as I am aware. We focus

on one of the methods, the method of support and resistance levels, and used the

optimal stopping argument to show the validity of the method. As far as I know,

this is one of the first results to mathematically prove the effectiveness of a method

in technical analysis.
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Chapter 1

Introduction

1.1 New Model

Japan is currently the third largest economy in terms of Gross Domestic Product

(GDP), and its derivatives market is one of the biggest in the world. Due to the

low interest rate in the country, investors seek high coupons that are paid for a long

period of time. Because of this, the product called autocallable is very popular and

indeed has become the most traded derivatives product in the country.

1.1.1 Autocallables

The product is an equity-linked structured product with a form of bond or swap.

There are several variations, but let us introduce the most popular one.

Let us define the following variables:

• S0: initial price of the underlying asset

• T : maturity

• ti = (i/N)T : observation dates; i = {0, ..., N}

• Si: price of the underlying asset at time ti

• K: periodical knock-out barrier (%)

• k: continuous knock-in barrier (%)

• c: periodical coupon barrier (%)

• h: high coupon (%)

1



• l: low coupon (%)

• q = N/T : frequency of the observation dates (i.e. how many observation

dates a year the structure has)

• P : invested amount (notional)

The payment of the product is made only on the observations dates, and is

as follows:

1. At t = t1,

• Coupons:

– if S1/S0 ≥ c, then it pays (h/q)× P ;

– otherwise, it pays (l/q)× P .

• Redemption:

– if S1/S0 ≥ K, then it pays P back and terminates;

– otherwise, it survives, and wait for the next observation date t2.

2. At t = ti (2 ≤ i < N), unless the structure was already terminated in the

previous observation dates,

• Coupons:

– if Si/S0 ≥ c, then it pays (h/q)× P ;

– otherwise, it pays (l/q)× P .

• Redemption:

– if Si/S0 ≥ K, then it pays P back and terminates;

– otherwise, it survives, and wait for the next observation date ti+1.

3. At t = tN , unless the structure was already terminated in the previous obser-

vation dates,

• Coupons:

– if SN/S0 ≥ c, then it pays (h/q)× P ;

– otherwise, it pays (l/q)× P .

• Redemption (Expiry):

– if min
t∈[0,T ]

S(t) > kS0 or SN ≥ S0, then it pays P back;

– otherwise, it pays (SN/S0)× P .

2



An important point to note is that the products tend to have long maturities.

This feature matches with the investors’ goal as they want to receive high coupons

for a long period of time. The high coupons are generated by shorting the knock-in

put with Bermudan (periodical) knock-outs. The high coupons are not possible with

shorter maturities since the premiums of corresponding knock-in puts are not high

enough. Therefore, the product is usually feasible with long maturities.

Remark 1. There are some varieties of type on this structure:

• K could be dependent on i, i.e. K could be different on every observation. On

the autocallables traded in South Korea, K tends to start high and gradually

comes down every time the structure survives an observation date. The barrier

level can even become sub par (100%) as the structure gets near its maturity

(the structure is sometimes called a ’step-down’ autocallable).

• The payout upon breaching the knock-out barrier could be more than 100% (for

example, 105%) of the initial investment P . In other words, there may be a

bonus coupon on top of regular coupons upon knock out. This bonus coupon

may accumulate as it survives the observation dates (the structure is sometimes

referred to as a ’snowball’ autocallable).

• It is possible not to have down-and-in put, hence a capital-guaranteed version.

This type is called an ’enman’, and used to be popular as it guarantees the

return of the capital (initial invested amount). However, with low interest

rates in Japan, in order for the structure to have attractive returns for the

investors, it needs to have the maturity longer than 10 years and some had 30

years in maturity.

• The coupon could be fixed, i.e. c could be 0%.

• The min
t∈[0,T ]

S(t) could be observed continuously or daily.

• In the knock-in forward type of the structure, the last redemption given that the

knock-in barrier had been breached is (SN/S0)×P instead of min(SN/S0, 100%)×
P . This means that it is possible to get a greater return at maturity with the

activation of the knock-in barrier than without.

3



1.1.2 Problem with Autocallable Trades

Wtih autocallables, investors earn high coupons with a ”relatively” low risk of losing

the initial capital∗ and banks earn some margin on the large notional, so the trade

is a win–win where both parties are satisfied with the trade.

However, there is a particular feature of this trade. Investors purchase au-

tocallables in the form of bonds, and they seek the (potentially) high coupons that

the equity linked bonds pay. Therefore, they do not want to hedge the position.

If they hedge their position, it would make their return lower which would conflict

with their initial motivation. In contrast, the banks who sold the autocallables seek

the margin they receive at the time of the trade and their goal is not to make, or

rather not to lose money on taking the risk. From this perspective, they want to

hedge out the risk as much as possible. From now on, we will focus on the vega

risk†.

In general, if two parties, a buyer and a seller, are in the same market, the

trade does not affect the market overall in the sense that the net risk after the trade

neither increases nor decreases. In other words, the risk as a whole in the market

is conserved. However, in the autocallable trade, only one of them, the seller, is

active in the over-the-counter (OTC) market and hedges the position. The sellers

of the autocallables are long the vega‡, hence they need to sell volatility in order

to hedge their portfolio. The vega profile at time t = 0 of an autocallable with

parameters shown in Table 1.1 with respect to the underlying asset and the implied

variance calculataed in the Heston model are shown in Figures 1.1 and 1.2. Here,

vanna refers to the risk that is equal to the derivative of vega with respect to the

underlying price and volga the risk that is equal to the derivative of vega with respect

to the underlying variance.

In an idealised Black-Scholes model, one can trade the underlying asset for

infinite size at the current price without affecting the market, but we all know that

this is not the case in the actual market. Only limited amounts may be traded at

the current bid and offer prices, so if one needs to instantly sell more than what

is on the current bid, for example, then she needs to trade some at the second

∗Of course, if the underlying price breaches the knock-in barrier and stays low until the maturity,
the investor will only receive low coupons and the low performance of the underlying asset, hence
ends with a loss. However, the underlying price has to cross the knock-in barrier first for that to
happen and usually the barrier is around 40% away from the initial level.
†Vega usually refers to the risk of the product with respect to the implied volatility, but in the

thesis, we rather define it to be the risk of the product with respect to the implied variance.
‡The buyer of autocallables is selling the put to boost the coupons that they potentially receive

in the future. On the other hand, the seller is purchasing the put from the buyer, therefore the
sellers of the autocallables are long the vega.

4



Parameter Value

K 105%

c 85%

k 70%

T 3 Years

h 3%

l 0.01%

q 3 months

Table 1.1: An example of the detail of the autocallable structure.
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-3
0

-2
5

-2
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0

Vanna of Autocallable

Underlying Price

Ve
ga

Figure 1.1: Graph showing how vega moves with respect to the underlying price.
Note that the minimum vega is obtained around the average of the barrier levels,
which is at 95.

best bid. This transaction will lower the current tradable price in the market. The

same argument goes for the autocallable trades. Since banks have bought the vega

from trading autocallables, they want to sell the risk in the market by selling plain

vanilla options. When the size of the traded autocallables increases, the banks will

need to sell options at lower prices than the current bids. The selling pressure on

plain vanilla options will lower the prices of the options and therefore will lower the

5
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Figure 1.2: Graph showing how vega moves with respect to the implied variance.

current (implied) volatility.

If the risk of the autocallable does not change over the life of the trade, then

the risk affects the volatility only when the product is traded. However, the risk of

the autocallable dynamically changes with the market due to the complex structure

of the product as seen in Figures 1.1 and 1.2.

Our explanation of why we should see the risk profile as shown in the Fig-

ures 1.1 and 1.2 is as follows: Roughly speaking, the vega increases with the expected

maturity (which is called the duration). If the implied volatility decreases, since it

will be more difficult for the underlying asset price process to breach the knock-out

and knock-in barriers, the duration increases and the vega increases. When the un-

derlying asset price process moves further away from both barriers, since it will now

have lower probability of hitting them, the duration becomes longer and the vega

of the autocallable increases. Therefore, the average of the knock-out and knock-in

barriers is roughly the level where the duration, hence the vega, becomes the largest

from the bank’s perspective.

Remark 2. Note that the traders are the ones who sold the autocallables, hence

their vanna profile is the opposite of what is shown in Figure 1.1. The same applies

6



to its volga profile as shown in Figure 1.2.

From this rough sketch of the dynamics of the vega with respect to the

implied variance and the underlying asset price, we can conclude that the vega

grows larger as the asset price gets closer to the average of the barriers and as the

implied variance decreases.

This is what happened in the Japanese equity market in the year 2012.

A lot of trades on autocallables had been made in the previous years on Nikkei

225 and they had not knocked out nor knocked in. The index decreased to the

level around 8,500, around the level where the vega of autocallables becomes the

largest with respect to the index level. To make things worse, the implied volatility

kept decreasing as the traders tried to sell the vega that they had gained from the

autocallables already in issue and as the realized volatility became low. Even when

the vega of the autocallables increased, they were not able to hedge what they gained

because:

• Banks all had the same vega profile and no one in the market was willing to

buy the vega.

• The vega which banks wanted to sell was that with long maturities where the

market was illiquid. The market was not liquid enough to absorb the huge

supply of vega introduced by the existing autocallables.

After banks suffered a huge loss from the index pinned around the average of

the barriers and with the low implied volatility, circumstances drastically changed

around the end of the year . With a new prime minister presenting his plan on

focusing on making the economy in Japan better with ”Abenomics”, the market

surged. The sudden spike in the market made the Nikkei 225 and its volatility go

up and knocked out most of the existing autocallables. With autocallables vanishing

from their portfolio, the sellers were now left with the hedges they sold against the

autocallables, hence they suddenly became short large quantities of vega. They now

wanted to buy the volatility back to rebalance their portfolios. The outcome was

that it sent the volatility even higher and made the traders lose their money again

from the increased volatility on their short position. The story is well described in

the articles [11; 12; 52; 55; 74; 75; 76; 77; 78; 80; 81; 82]§. The level of the Nikkei

§Sometimes, autocallables are called uridashi, which is a Japanese word for ”launching” or
”marketing” new trades/products. This term is used to specify a special type of autocallables
which are sold through public auctions and we call them public trades. The other type of traded
autocallables are called private trades and they are traded between the client and the bank, and
the information of the trade is not publicly announced. Sometimes the word uridashi is used to
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225 index and its implied volatility level in 2011-2013 are shown in Figure 1.3 ¶.
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Figure 1.3: Graph showing the Nikkei 225 index level (in solid line) and 3 year
implied volatility level (in dotted line) between the years 2011 and 2013. We see
that the sharp fall in the volatility around the end of the year 2012 with the Nikkei
225 level staying around the level 8,500. We also see a sharp increase in the index
and its volatility around the beginning of the year 2013.

1.1.3 A Solution

The huge losses of banks on autocallables in 2012 was largely caused by traders

ignoring the fact that all the banks had similar preferences in vega and volatility

from their huge position in autocallables, and this risk preference impacted the

volatlity to move against itself as traders wanted to hedge the risk. Our goal is

to construct a model that correctly captures the extra dynamics of the volatility

process caused by the existence of the market driver (e.g. autocallables).

specify both types of the autocallables as in [78]. Uridashi trades trade less but each trade tends
to be large in notional (can be as large as 300 million U.S. dollars). Private trades trade a lot but
each notional tends to be small (can be as little as 1 million U.S. dollars)
¶The graph is based on the dataset of Nikkei 225 end of the month evaluations on plain vanilla

options, kindly provided by Markit Totem.
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We first base our model on that of Heston [26]. The Heston SDEs that

determine the dynamics of the underlying asset price process and its variance process

are 
dS = µSdt+

√
vSdW 1

dv = κ(v̄ − v)dt+ η
√
vdW 2

〈dW 1, dW 2〉 = ρdt.

(1.1)

Here, S denotes the underlying stock price and v the variance of the under-

lying. W 1 and W 2 are Wiener processes with correlation ρ, µ is the drift of the

stock, κ > 0 is a constant which expresses the intensity of the mean reversion of the

variance, v̄ is the mean variance, and η is the volatility of the variance.

We focus on the variance dynamics‖. From the drift of the SDE (1.1) on

the variance process, we see that the process tries to revert to the level v̄. In this

sense, the level v̄ is the equilibrium point of the variance or the mean variance. The

variance process should move around the mean variance. If the demand and supply

curves of the vega cross at a unique point, then the variance coordinate of the point

should be equal to v̄.

We now think of the case when the traders are short the market driver whose

vega is negative. In this market, the supply of vega increases and results in a parallel

shift of the supply curve of vega. Therefore, assuming that the demand curve of

vega is unchanged, the variance coordinate of the equilibrium point (which is the

point where the demand and the supply curves meet) will be shifted by some amount

proportional to the vega of the market driver. This is shown in Figure 1.4.

Remark 3. In our model, we assume that we know the structure of the market

driver. This is true in our motivated example because:

• Traders see it in their portfolios.

• The public trades (the uridashis) are announced with the detail of the trades,

so we know which and in what quantity each structured product traded.

It would be an interesting research topic to ascertain or estimate how much

detail of the market driver we can obtain by only observing the market dynamics.

‖We can similarly think of taking into account the impact of the market driver on the underlying
asset price process. However, the impact of the market driver is large when the market is illiquid and
closed. Usually, the underlying asset is fairly liquid, especially when one needs to think of derivatives
products on it, and has more variety in types of the market participants. For example, derivatives
market is somewhat restricted since there are more regulations in order to trade derivatives in the
OTC market than to trade stocks. Therefore, the impact of the market driver is usually larger
in the derivatives market than in the underlying asset. We therefore focus on the impact of the
market driver on the variance process.
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Figure 1.4: With larger supply, the mean variance v̄ comes lower to v̄′.

Remark 4. Credit Suisse introduced a new way of hedging the product by trading

a corridor variance swap spread[60; 79]. In this trade, the banks sell Nikkei 225

corridor variance swap and buy the same structure on S&P500 both contingent on

the levels of Nikkei 225 index. The premium of the spread looked attractive to hedge

funds so the bank was able to trade the product in large size. The corridor variance

swap has similar vega profile to that of the autocallables, hence the bank was able

to hedge the vanna and volga effects from the autocallables with the product. The

trade works well in the Japanese market because the banks already have the long

vega position from autocallables and because the S&P 500 volatility market is liquid

enough. The trade helped relax the concentration of vega in the Japanese derivatives

market caused by the autocallables.

The new model we introduce in Chapter 2 is similar to the feedback models

proposed in the late 90’s as in, for example, [21; 61; 70]. The difference of our

model from the classical feedback models is that the effect of the feedback is known

in our case, hence we are able to directly formalize the effect of the concentration

using the risk of the concentrated position. The previous models generally have

more parameters and generates quasilinear PDEs which are more challenging to

solve. From our model, we get nonlinearity up to the first derivatives and not on

the second derivatives, which is beneficial in approximating the solution as discussed

in the next subsection.

The new model is also similar to the stock pinning models as in [4; 34]. The
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stock pinning effect occurs when traders hedge their deltas around specific strike.

The delta hedging makes the stock less volatile around the strike. As the delta

difference below and above the strike gets larger as it gets closer to the maturity,

the pinning effect becomes stronger. Similar to the feedback models, the main driver

for the pinning effect is the delta hedging. On the other hand, we incorporate the

vega concentration effect directly in the variance process of the underlying asset.

1.2 Approximating the Solution of Semilinear PDE with

PIA

The Heston model on which we based our market driver model requires one to solve

a linear PDE to calculate the price of a derivatives product. On the other hand,

our model requires us to solve two PDEs and one of them is nonlinear. From a

practitioner’s point of view, this is a little bit troublesome as they may not have

a solver for nonlinear PDEs and may have to create one from scratch. They may

not be able to allocate enough resource to do that even if the pricing under the

new model is beneficial for the banks. To help overcome the difficulty, we apply the

policy improvement algorithm (PIA) to approximate the solution to the semilinear

PDE with those of linear PDEs.

The policy improvement algorithm is an iterative alrorithm in a control prob-

lem where one solves for the optimal control in each step and is very efficient. It

is a well-established algorithm and the general theory is explained in, for example,

[30; 31; 32].

If the solution to the semilinear PDE can be approximated by those of linear

PDEs, it is a great improvement because it enables one to use our improved model

with the solver for linear PDEs (e.g. the one to solve the Heston PDEs), but only if

the convergence is fast. If it takes too long before it shows convergence, the approx-

imation is not useful from a practitioner’s point of view since the calculation using

the approximation will be too slow for the fast dynamics of the market. Thankfully,

in our experience it generally only takes a few iterations before the approximations

reach the convergence. To the best of my knowledge, there is no general proof that it

only takes a few iterations to obtain sufficiently close approximation to the original

solution. In this specific problem of the market driver model, we are able to show

quadratic local convergence (QLC) of the PIA approximated solution to the original

problem under a norm using Schauder’s boundary estimate. This partially explains

the fast convergence in the iteration under the PIA.

Remark 5. This result is very much like that of the Newton method in numerical
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analysis, where one can show that the approximated solutions show QLC, but nothing

stronger than this in general.

We are able to show the QLC in this specific model, but a natural question to

ask is whether this applies generally to any PIA-approximated solutions. To answer

this, we show that the PIA-approximated solutions indeed show QLC under a few

additional assumptions. We will see some examples in Chapter 3.

1.3 Technical Analysis

Traders’ decisions depend on various elements, for example, financial information

of companies, expectations of some events in the future, information from financial

analysts, and rumors. Further information that they could rely on is that of the

technical analysis.

Technical analysis refers to a family of methods that derive the expected

future dynamics of the underlying asset price from the graph of the historical prices.

In this field, the graph is called a chart. This is why sometimes technical analysis

is called ’charting’. There is still a big debate on the effectiveness of the analysis,

but many traders continue to believe in the information it provides. Reasons why

the analysis may be effective include:

• The dynamics of the underlying asset price depend on many factors and it

is impossible to follow all of them. Many traders who believe in technical

analysis also believe in the efficient market hypothesis (EMH). Even if investors

try to follow all the information available to them, they cannot get all of the

information that determines the future dynamics of the underlying asset price.

For example, if there is some insider information on a company’s earning,

since it is not publicly available, there is no way one can get the information

before it is published. If the information is so critical that it may push the

company into bankrupcy, it definitely will impact the future stock price of

the company. Traders who follow technical analysis believe that even this

kind of information is taken into account in the current asset price. In the

case of insider information that will potentially make the stock price decline,

some people might already be aware of the information before it is published

in public. In order to take advantage of knowing the information ahead of

others, the only way they can profit from this is to sell the stock. The selling

of the stocks will push the stock price lower and the movement will be reflected

in the chart of the stock price. This way, the technical analysts believe they
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can still capture the dynamics without the actual information that causes the

decline in price.

• When people make decisions, it is not always easy to sap the right ones. For

example, given the same information, one makes different decisions depending

on whether one is ahead or behind his budget target. Decisions by humans are

not always consistent, and this inconsistency makes the trading very difficult.

On the other hand, the technical analysis is consistent. One comes up with

the rule by observing the charts, and whether it’s a buy or a sell is determined

only by the rule (of course, whether the trader decides to follow the outcomes

of the technical analysis is something else). The analysis is free from human

inconsistency.

Technical analysis is somewhat easier for amateur traders as it does not

require many sophisticated financial and economic ideas, but only the techniques to

discover the chart patterns. It is also easy in the sense that one needs to look at

only the chart and nothing else to decide on trading.

One of the reasons why technical analysis is not popular in academia is

because it lacks mathematical support. There may be some explanation rooted in

the field of behavioral finance, but as far as we know, there is no mathematical proof

on the validity of any of the methods. A concern in introducing technical analysis in

the field of mathematical finance is the existence of arbitrage opportunities. If the

methods of technical analysis were true, then there will be an arbitrage oppotunity

by following what they indicate. The idea of our research is to try to prove and justify

the methods of the technical analysis mathematically in an incomplete market.

The most basic method in the field is that of support/resistance levels. The

support level is a level which the underlying asset price process is reluctant to cross

from above. The resistance level is defined similarly as a level which the price

process is reluctant to cross from below. We refer to the horizontal line drawn at

the support level as the support line and the horizontal line at the resistance level

as the resistance line. These levels may be defined separately, i.e., the support level

could be the support level but not the resistance level and vice versa. However,

the levels are regarded as separating the two regimes; the positive regime where the

expected return of the asset is better and the negative regime where the expected

return is worse than in the other regime. Therefore, we consider the levels to be the

same and always think of the resistance level as the support level and vice versa. In

other words, we can consider the level to be the support level when the asset price is

in the positive regime and consider it to be the resistance level when the asset price
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is in the negative regime. The level switches between the support and the resistance

levels. This is in line with what the practitioners consider the levels.

In investigating the method of support/resistance levels, the difficulty is that

they are not exactly the levels where the regime transitions occur. For example,

when the asset price is in the positive regime and touches the support level, the

regime will not switch right away. In other words, the price process can fluctuate

around the level within the current regime without switching the regimes. With this

observation in mind, we define the region in space where the price process takes the

positive regime as the positive region and the space in which the process takes the

negative regime as the negative region. We assume that there is some non-empty

region that is the intersection of the positive and negative regions where the process

can be in either regime (cf. Figure 1.5). Let us call the support/resistance level SR.

We define the rule of the regime transition as follows:

• From the positive regime to the negative regime, the transition occurs when

the price process hits the level SR− δ1, where δ1 > 0 is some fixed value.

• From the negative regime to the positive regime, the transition occurs when

the price process hits the level SR+ δ2, where δ2 > 0 is some fixed value.

When δ1 +δ2 are sufficiently big, the rule prevents the regime transition from

happening with high frequency.

Under this setup, we first consider the problem of optimally stopping to

optimize the discounted stock price E[e−rtSt] to solve for the optimal stopping time

to sell the stock. With this solution in the optimal selling problem, we then solve

for the optimal stopping time to purchase the stock that maximizes our expected

profit.
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SR + δ2

Negative Regime

Positive Regime

SR - δ1

Figure 1.5: The positive region is the region [SR − δ1,∞) where the price process
takes the positive regime. Similarly, the negative region is the region (0, SR + δ2]
where the price process takes the negative regime. [SR − δ1, SR + δ2] is where the
underlying price process can be in either regimes.
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Chapter 2

Modeling via Market Driver

2.1 Introduction

Japan has one of the largest equity derivatives markets in the world. According

to the Bank for International Settlements, Japan had $378 billion in face value of

equity-linked contracts out of the worldwide total of $5,445 billion as of September

13, 2015 [6]. A common underlying for equity-linked derivatives products in the

country is the price-weighted Nikkei Stock Average Index (Nikkei 225) published

by Nikkei Inc. Since the country is the world’s third largest economy by GDP,

people generally assume that the market is liquid enough to trade freely any desired

position. However, from my own experience, this is not quite true. Long-dated

volatility (especially between 2 and 5 years) is generally priced low due to the fact

that most of the traders in the market already own vega (sensitivity to volatility)

from selling (usually in significant sizes) a structured product called autocallable

to their clients. Therefore it is generally difficult to sell vega in the market. We

will give some numerical examples for this exotic case in Appendix C, and for now,

we will focus on explaining our model in a simpler context in this chapter. The

important fact to note is that there is a position that affects the pricings and risks

of all the existing and potential derivatives products in the market.

In order to understand the background of our model, we first formulate a toy

example.

Assume that there are only 2 traders, A and B, in the over-the-counter (OTC)

market. If A wants to buy volatility, A needs to buy it from B and vice versa. If

A buys $10 million of vega from B, the vega that B holds is decreased by the same

amount. Generally, traders do not want to own so much risk on one side, so they

might want to hedge the risk a little. Since the only market participants are A and

16



B, they need to reverse what they previously traded in order to hedge themselves.

This does not make much sense in this case, as there are only 2 market participants,

but even if we assumed more participants in the market, this is still essentially what

is happening: overall, the market vega is maintained and does not change whatever

A and B do. Whatever A gains, B loses and vice versa.

Now introduce a new market participant C. Let us assume that C is not a

participant in the OTC market but only buys vega from A and B as their client

to hedge against market risk, and does not otherwise hedge the position (we could

think of C as an insurance company, for example). If C buys $10 million of vega

from A, then A is now short the risk, so may want to buy some back in the market

to hedge himself. A needs to buy it from B, of course, as C does not sell any vega.

The important point is that the OTC market whose only participants are A and B

is now short $10 million of vega overall. The market now would like to buy some

vega back. This generally drives the volatility of the underlying security or index

higher.

We elaborate this point in more detail. The demand and supply of vega

could be, in general, directly converted to the supply and demand of volatility. It

is easier to think of this in the Black-Scholes framework. If there is more demand

for vega than supply, more people want to buy vega. The way they accomplish this

is to buy plain vanilla calls and puts, which are positive vega products. If more

people buy these products, the prices of the products move higher. Given other

parameters are fixed, this price increase could only be explained by the increase in

the underlying volatility. This is why the actual market participants refer to ’buying

(selling) volatility’ when they are actually buying (selling) vega. These phrases will

be used with the same meanings hereafter.

Remark 6. The corresponding volatility level is implied volatility as opposed to

realized (or historical) volatility.

Up to this point, volatility movement is just a matter of demand and sup-

ply. Now suppose that the derivative product that C bought has big second order

risks, like vanna (the derivative of vega with respect to stock price) and volga (the

derivative of vega with respect to volatility). For example, if the product is long

vanna, vega increases when the underlying stock moves higher. In this case, A gets

shorter vega just from the market movement and he needs to buy it in the market

to rehedge himself. However, if B has the same position, B gets shorter vega as

well, so neither of them are interested in selling any more vega. This will make the

volatility even higher. Note that in this situation, what is moving the volatility is
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just the change in the risk of the product that was already traded, not a new trade.

We call the special product (of which the risks affect the dynamics of supply and

demand of the volatility) the market driver.

In order to model the example above, we posit a simple and easy-to-use

model which is an extension of the Heston model, one of the most popular stochastic

volatility models. The core of our model is a semilinear parabolic partial differential

equation (PDE) that we retrieve to price the market driver. Once we obtain the

valuation of the market driver, we use a linear parabolic PDE, which is very similar

to those of Black-Scholes and Heston, to price other derivatives products.

As mentioned earlier, we are more interested in the case where the market

driver is of a specific exotic type because we think its risk feedback effect is more

prominent in practice. We will handle this problem numerically in Appendix C and

concentrate now on the case when it is of plain vanilla type.

The problem statement so far may remind some readers of the ’feedback

effect’ of options which is now a somewhat mature field. The Black-Scholes model

with a feedback effect models the prices of derivative products affected by delta

hedging executed by program traders [21; 61; 70]. It was a field which attracted

a lot of interests in the 1990s. We have also seen more recently the stock pinning

models [4; 34] which we can consider as one type of feedback models, but not much

work has been done since then. Although the research in this paper was done

separately from the studies done in the field, our ideas are very similar in the sense

that some trade affects other option pricing. We are (in a way) incorporating the

feedback effect in a stochastic volatility framework. The key difference, however,

is that we are not applying the feedback effect of the underlying asset (stock), but

instead, that of the underlying volatility. In the earlier models, the effect impacts the

volatility passively via program traders trading the underlying asset. On the other

hand, our model incorporates the effect directly in the dynamics of the volatility.

It may not look natural to incorporate a feedback effect in the volatility as it

is not a tradable asset. However, from my experience, supply and demand effects of

the volatility do exist in the actual market and we think our model reflects, at least

qualitatively, the actual market dynamics with the market driver. We believe that

our model is more in line with market practitioners’ perspectives than the classical

feedback model.

One of the difficulties in the earlier feedback models is that they model the

realized (historical) volatility rather than the implied volatility. Hedging delta of

derivative products by dynamically trading the underlying asset does affect the

implied volatility, but only that of short maturity. Behaviour of the current stock
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price has little impact over the long-dated implied volatility. Depending on the

sign of the vanna of the market driver, it is possible, for example, that even when

the realized volatility increases with a large drop in the stock price, the long-dated

implied volatility goes lower. This cannot be modelled in the classic feedback model.

One of the benefits of our model is that the nonlinear PDEs that we derive can

be approximated by a series of linear ones. The PDEs derived in the classic feedback

model are generally of quasilinear type, where the nonlinearity occurs in the highest

order of the equations. On the other hand, although we need a pair of PDEs, one

for the market driver and the other for a general derivative product, our PDEs are

at most of semilinear parabolic type, where the nonlinearity occurs in lower order

terms of the equations. This enables us to apply a linear approximation algorithm

called the Policy Improvement Algorithm (PIA) in which the approximated solution

converges quickly to the actual solution of the semilinear PDE.

The reason why we introduce the PIA is that it enables us to reuse the setup

for the Heston model. The Heston model has already been implemented in practice

and is widely used. It is convenient to use the existing setup, whenever possible,

to calculate the solutions of the new model. We also note that in the course of our

research, we encountered some cases where we had a convergence of the numerical

solution using the PIA, but not using the finite difference method (FDM): the PIA

seems to have better convergence properties than the FDM.

The rest of the chapter is organized as follows: Section 2.2 explains the new

model in detail. We will establish the existence and uniqueness of the solution to

our PDEs in Section 2.3. In Section 2.4, we transform the nonlinear PDE to an

HJB equation. The PIA is then described in Section 2.5. In Section 2.6, we give

a numerical example to see how valuations and risks, which are very important for

day-to-day hedging for traders, change in our model from those in Heston’s model.

We also see in this section how PIA-approximated solutions converge to that of the

nonlinear PDE. We give our conclusions in Section 2.7.

2.2 The Market Driver Model

We start by briefly reviewing Heston’s stochastic volatility model [26]. Let (Ω,F , (Ft)t≥0,P)

be a filtered probability space satisfying the usual conditions. The stochastic differ-

ential equations for the stock price and the variance are:
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dS = µSdt+

√
vSdW 1

dv = κ(v̄ − v)dt+ η
√
vdW 2

〈dW 1, dW 2〉 = ρdt.

(2.1)

Here, S denotes the underlying stock price and v the variance of the under-

lying. W 1 and W 2 are Wiener processes with correlation ρ, µ is the drift of the

stock, κ > 0 is a constant which expresses the intensity of the mean reversion of the

variance, v̄ is the mean variance, and η is the volatility of the variance.

Since v only takes positive values, it is usual to require the model to satisfy

Feller’s condition for avoiding the origin [37]:

2κv̄ > η2. (2.2)

With this setup, the value V of a derivative product satisfies Heston’s PDE:

∂V

∂t
+ rS

∂V

∂S
+ κ
(
v̄ − ωv

)∂V
∂v

+
1

2
vS2∂

2V

∂S2
+

1

2
vη2∂

2V

∂v2
+ vSηρ

∂2V

∂S∂v
− rV = 0

(2.3)

with appropriate initial (or terminal, if we are calculating backwards in time) and

boundary conditions. Here, ω is some constant for volatility risk premium and r

is the interest rate. Equation (2.3) is a second order linear parabolic PDE. The

derivation of (2.3) is in AppendixA.

Let us now assume that there is some distinguished product (called the mar-

ket driver) with value denoted by F .

Using this F , our revised model is written as
dS = µSdt+

√
vSdW 1

dv = κ(v̄ − v +Q∂F
∂v )dt+ η

√
vdW 2

d〈W 1,W 2〉t = ρdt

(2.4)

with some coefficient Q.

Note that the only change made to the Heston SDE (2.1) is the term κQ∂F
∂v

in the second equation. A simple justification for this is that the vega (in this thesis,

we use the term ’vega’ for the derivative of the valuation with respect to variance,

whereas it usually means the derivative of the valuation with respect to volatility) of

the market driver impacts supply and demand of the variance and causes the shift

in its mean. We are only adding this adjustment to the variance SDE. If we want
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to, we could, of course, similarly add ’delta’ (derivatives of valuation with respect

to the underlying stock price) adjustment in the SDE for the stock price S in (2.4).

However, we do not do this since i) deltas of derivatives products are generally low,

so in order to have a large impact on the stock price, the face value traded on the

position needs to be massive, which is not realistic and ii) the stock market is more

liquid than the OTC derivatives market, in the sense that there are more people

with different incentives in trading and many more people have access to the market

(for example, personal investors can easily trade stocks, whereas they might need to

satisfy additional requirements in order to trade derivatives. It is even more difficult

for them to be able to trade in the OTC market due to size requirements, credit

issues, and other restrictions).

A sufficient condition for the variance not to go negative is derived by com-

paring the two processes v and v′ starting at the same value:{
dv = κ(v̄ − v +Q∂F

∂v )dt+ η
√
vdW 2

dv′ = κ{v̄ − v′ + min(Q∂F
∂v )}dt+ η

√
v′dW 2.

(2.5)

Since we will be working in a bounded domain, Proposition 5.2.18 in [35]

shows that v′ ≤ v almost surely. Applying Feller’s condition (2.2) on v′, if

2κ
{
v̄ + min

(
Q
∂F

∂v

)}
> η2, (2.6)

then v′ > 0 almost surely, hence v > 0 almost surely. We call condition (2.6) the

positive variance condition.

If we follow the usual argument, we obtain the following PDE for the value

V of a derivative:

∂V

∂t
+ rS

∂V

∂S
+ κ
(
v̄ − ωv +Q

∂F

∂v

)∂V
∂v

+
1

2
vS2∂

2V

∂S2
+

1

2
vη2∂

2V

∂v2
+ vSηρ

∂2V

∂S∂v
− rV = 0.

(2.7)

Since F is also the value of a specific derivative, we can substitute V = F in

(2.7) and obtain a nonlinear PDE for F :

∂F

∂t
+ rS

∂F

∂S
+ κ
(
v̄ − ωv +Q

∂F

∂v

)∂F
∂v

+
1

2
vS2∂

2F

∂S2
+

1

2
vη2∂

2F

∂v2
+ vSηρ

∂2F

∂S∂v
− rF = 0.

(2.8)
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Note that given F , the differential equation (2.7) is a second order parabolic

PDE that is linear in V as in the Heston model. On the other hand, the differential

equation (2.8), is semilinear.

Remark 7. We have the following proposition:

Proposition 2.2.1. The new model (2.4) is arbitrage-free.

We defer the proof of Proposition 2.2.1 in Section E.2 in Appendix E.

2.3 Partial Differential Equations

We recall some theorems from the theory of PDEs. For more detail, we refer to [40].

We take a bounded, open, and connected domain E in IR2
+ which is bounded

away from the axes. We further assume that ∂E is C2+α′ for some α′ > 0. Let

QT = E × (0, T ), D = ∂E , DT = {(x, y, t)|(x, y) ∈ D, t ∈ [0, T ]}, Dτ = DT ∩ {t :

t ≤ τ}, and ΓT = DT ∪ {(x, y, t)|(x, y) ∈ E , t = 0}. We impose ψ as our initial

and boundary conditions and assume it satisfies the compatibility condition, i.e.

ψ(x, y, t) ∈ C(QT ).

We define the differential operator L by

−Lu : = rxux + κ(v0 − αy)uy +
1

2
x2yuxx +

1

2
η2yuyy + ηρxyuxy

= aijuij + biui

(2.9)

under the Einstein summation convention.

We reparameterize time-to-go t backwards by replacing t→ T−t and rewrite

(2.8) in general form:

ut + Lu+ ru− κQuy2 = 0. (2.10)

The PDE (2.10) is uniformly parabolic as it satisfies

ν1|ξ|2 ≤ aijξiξj ≤ ν2|ξ|2 ∀(x, y) ∈ E , ∀ξ ∈ IR2 (2.11)

for some ν1, ν2 > 0.

We introduce the distance between points P = (x, y, t) and Q = (x̄, ȳ, t̄) as

d(P,Q) = [|x− x̄|2 + |y − ȳ|2 + |t− t̄|]1/2. (2.12)
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For any point P = (x, y, t) ∈ QT , we define the distance from P to Γτ :=

ΓT ∪ {t : t ≤ τ} as

dP = sup
Q∈Γτ

d(P,Q) (2.13)

and set

dPQ = min{dP , dQ}. (2.14)

We define a norm

‖u‖2+α = 〈u〉α + 〈dDxu〉α + 〈dDyu〉α + 2 〈d2DxDyu〉α + 〈d2Dtu〉α , (2.15)

where

〈dmu〉0 = sup
P∈QT

dmP |u(P )|,

Hα(u) = sup
P,Q∈QT

dm+α
PQ

|u(P )− u(Q)|
d(P,Q)α

,

〈dmu〉α = 〈dmu〉0 +Hα(dmu).

(2.16)

We let Hα,α/2(QT ) denote the Banach space of functions u(x, y, t) that are

continuous in QT with ‖u‖2+α finite (Theorem 4, Section 3.2 [22]).

Theorem 6.2 of Chapter V of [40] shows the existence and uniqueness of the

solution to (2.10) with continuous initial and boundary conditions. By the theorem,

the solution belongs to the space Hβ,β/2(QT ) for some 0 < β < 1, it also has bounded

first spatial derivatives in QT , and its second order spatial derivatives and first order

time derivative belong to Hγ,γ/2(QT ) for some nonnegative and nonintegral number

γ.

By substituting this solution in the coefficients of the PDE (2.7), Corollary 1

in Section 3.5 on page 74 of [22] affirms the existence and uniqueness of the solution

to the linear PDE for suitable initial and boundary conditions.

Remark 8. We require the positive variance condition (2.6) to be satisfied in order

to ensure that v is nonnegative. Theorem 6.2 of Chapter V from [40] affirms that

Fy is bounded, but as far as the statement of the theorem goes, we do not have an

explicit expression of it. For that reason, it is not easy to show that (2.6) is satisfied

in general. In the case where the market driver with value F is of plain vanilla type
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with Q > 0, enforcing Feller’s condition (2.2) is sufficient for the positive variance

condition (2.6) to be satisfied since ∂F/∂y ≥ 0, and therefore Q(∂F/∂y) ≥ 0.

2.4 Control Problem

From now on, we focus on solving (2.10). We can apply various numerical methods,

for example, the FDM, to calculate the solution numerically. If we were to do this,

we would need additional resources to implement it in actual trading and in some

cases, it may not be easy to do so∗. One of the difficulties may originate from the

fact that even though it’s semilinear, it’s still a nonlinear PDE that we are dealing

with. Applying the model to actual trading becomes more straightforward with the

help of the Policy Improvement Algorithm (PIA).

It is easy to see that (2.10) can be rewritten as

inf
π∈IR

(
ut + Lu+ ru− πuy +

π2

4κQ

)
= 0. (2.17)

Note that this is the HJB equation to minimize

V π(x, y, t) = E

[ ∫ τ∧t

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(τ∧t)g(Zz,πτ∧t, t ∧ τ)

]
(2.18)

under the controlled process Zz,πt := (X,Y π)T with dynamics given by the SDEs


dX = µXdt+

√
Y XdW 1

dY π = κ(v̄ − Y π + π/κ)dt+ ηρ
√
Y πdW 1 + η

√
Y π
√

1− ρ2dW 2

d〈W 1,W 2〉t = 0

(2.19)

with Zz,π0 = z = (x, y)T . Here, fπ = π2/4κQ, g = ψ is the initial and boundary

conditions introduced in Section 2.3, and τ is the first hitting time of the boundary

of the domain.

Our problem is now converted into the HJB equation for the following con-

trolled initial/boundary problem:

∗For example, banks usually have their own quants create special functions implemented in their
platform to be used by the employees globally. In order to add a new function, they first need to
seek approval from their managers. Once they get the approval, they have to write codes for the
function and test it on top of their daily tasks. Chased up by many urgent issues that come up
every day, the release of the new function may be delayed or eventually be forgotten.
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 inf
π∈IR

(
ut + Lu+ ru− πuy +

π2

4κQ

)
= 0, (x, y, t) ∈ E × (0, T )

u(x, y, t) = inf
π
V π(x, y, t).

(2.20)

From the positive variance condition (2.6),

π >
η2

2
− κv̄ (2.21)

is sufficient for Y not to go below zero.

2.5 Policy Improvement Algorithm

We now give a detailed formulation of the PIA and the proof of convergence. For

more detail, we refer to [31], [32], and [69].

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual con-

ditions that supports a 2-dimensional (Ft)t≥0 - Wiener process W = (Wt)t≥0.

For any process Y = (Yt)t≥0, define

τE(Y) := inf{t ≥ 0;Yt ∈ ∂E}. (2.22)

Let

A(z, T ) := {Π = (Πt)t<T ; Π is adapted to (Ft)t<T ,Πt(ω) ∈ IR

for every t < T and ω ∈ Ω,and there exists a process Zz,Π

that satisfies (2.24) and is unique in law},

(2.23)

where

Zz,Πt = z+

∫ t

0
σ(Zz,Πs , s,Πs)dWs +

∫ t

0
µ(Zz,Πs , s,Πs)ds, t ≤ T ∧ τE(Zz,Π). (2.24)

A measurable function π : Ω × (0, T ) → IR is a Markov policy if for every

z ∈ E and T > 0 there exists a process Zz,πt that is unique in law and satisfies the

following:
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Zz,πt = z +

∫ t

0
σ(Zz,πs , s, π(Zz,πs , s))dWs +

∫ t

0
µ(Zz,πs , s, π(Zz,πs , s))ds

= z +

∫ t

0
σπ(Zz,Πs , s)dWs +

∫ t

0
µπ(Zz,Πs , s)ds, t ≤ T ∧ τE(Zz,π).

(2.25)

For any domain QT = E × (0, T ) and bounded measurable function g defined

on ΓT , define V g,E,π by

V g,E,π(z, t) = Ez

(∫ t∧τ

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τ)g(Zz,πt∧τ , t ∧ τ)

)
, (2.26)

where fπ is the running cost and τ is the first exit time from QT .

Now define

V g,E := inf
π∈A

V g,E,π. (2.27)

Finally, we define the differential operator Lπ:

Lπu := −ut +
1

2
Tr{σTπ (Hu)σπ}+ µTπ∇u for u ∈ C2,1, (2.28)

where Hu denotes the Hessian of the function u.

Proposition 2.5.1. For any Markov policy π that is Lipschitz on compact sets in

IR2
+, the following holds: V g,E,π ∈ C2,1(QT ) and it satisfies

LπV g,E,π − rV g,E,π + fπ = 0. (2.29)

Proof. It suffices to prove that V g,E,π satisfies (2.29) in every domain UT = U×(0, T )

with UT ⊂ QT , where U ⊂ IR2
+ is an open ball with centre ζ and radius `. Let z ∈ UT

and define τ as the first time the process Zz,π hits the boundary of UT . For every

n ∈ IN, define Un as the closed ball with centre ζ and radius ` − 1
n . Define UnT as

Un × (0, T ), and let τn be the first time the process Zz,π hits the boundary of UnT .

Let v ∈ C2,1(UT ) ∩ C(UT ) be the unique solution of the initial boundary

value problem {
Lπv − rv + fπ = 0

v|UT = V g,E,π|UT .
(2.30)

The existence and uniqueness is guaranteed by Corollary 1 on page 71 in [22] and

Lemma B.5 in Appendix B. The partial derivatives of v are Hölder continuous by
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the same corollary. Let n0 be large enough such that z ∈ UnT , and for every n ≥ n0,

define the process (Jn)n≥n0 by

Jnt :=

∫ t∧τn

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τn)v(Zz,πt∧τn , t− t ∧ τn) (2.31)

and

Jt :=

∫ t∧τ

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τ)v(Zz,πt∧τ , t− t ∧ τ). (2.32)

Ito’s formula on [0, τn] and the differential equation for v yield

Jnt = v(z, t) +

∫ t∧τn

0
e−rs(fπ − rv + Lπv)(Zz,πs , t− s)ds+

∫ t∧τn

0
e−rs(∇v)TσπdWs

= v(z, t) +

∫ t∧τn

0
e−rs(∇v)TσπdWs.

(2.33)

Hence Jn is a local martingale, and since it is clearly a bounded process, it is a

uniformly integrable martingale. Thus the Dominated Convergence Theorem yields

v(z, t) = lim
n→∞

E(Jn0 ) = lim
n→∞

E(Jnt ) = E(Jt). (2.34)

From the initial and boundary conditions for v, we obtain

Jt =

∫ t∧τ

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τ)v(Zz,πt∧τ , t− t ∧ τ)

=

∫ t∧τ

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τ)V g,E,π(Zz,πt∧τ , t− t ∧ τ)

= E

(∫ t∧τ

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τ)g(Zz,πt∧τ , t ∧ τ)

∣∣∣∣FS).

(2.35)

The last equality in (2.35) follows from Lemma B.1. We conclude:

v(z, t) = E

(∫ t∧τ

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τ)g(Zz,πt∧τ , t ∧ τ)

)
= V g,E,π(z, t).

(2.36)
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We now describe the algorithm. Let π0 be a Markov policy that is Lipschitz

on compacts in IR2
+. The algorithm is defined as follows: Lui − πi(ui)y + fπi = 0

πi+1(z, t) = arg min
p∈A

(Lpui(z, t)− rui(z, t) + fp(z, t)), (2.37)

where the differential operator L is defined as

L := − ∂

∂t
− L (2.38)

using L in (2.9). It is important to note that L is independent of πi. In our problem,

(2.37) can be further calculated as{
Lui − πi(ui)y + π2

i /4κQ = 0

πi+1(z, t) = 2κQ(Dyui),
(2.39)

where Dy denotes the partial differential operator with respect to y.

We already know from Section 2.3 that the solution of the semilinear PDE

(2.10) exists uniquely with bounded spatial derivatives, so instead of A in (2.23),

we can take a subset of A on which the controls are uniformly bounded. Also, note

that Dyui expresses the vega of the (approximated) market driver which we assumed

to be a plain vanilla. As mentioned in Section 2.1, since plain vanilla options are

positive vega products and if Q > 0, we know that πi is nonnegative from the

definition in (2.39). If we assume that (2.2) is satisfied, then we see that condition

(2.21) is also satisfied. This precludes Y π from becoming negative.

In order to apply the PIA, we need to check if the algorithm (2.39) satisfies

the criteria of the PIA. The only criterion needed to be verified is the uniform

Lipschitz condition on πi. The following lemma proves this.

Lemma 2.5.2. {πi}i defined in (2.39) is uniformly Lipschitz continuous.

Proof. From the Schauder estimate, we have

‖ui+1‖2+α ≤ C(‖g‖2+α + ‖fπn‖α), (2.40)

where C only depends on the Hölder norms of the coefficients of Lπ, the domain

QT , and ν1 in (2.11). If g is continuous, we can approximate it uniformly in 2 + α

norm by the Weierstrass approximation theorem as mentioned on page 71 in [22].

In our specific problem, fπn = πn
2/4κQ, so ‖fπn‖α is uniformly bounded thanks to

28



the uniform boundedness of πi ∈ A. As the right hand side of (2.40) is uniformly

bounded, (ui)i is uniformly bounded in 2 +α norm, hence πi is uniformly Lipschitz

continuous from the second equation in (2.39).

The PIA tells us that the ui in (2.39) converges and the limit function is V g,E

which is C2,1 and satisfies the HJB equation (2.20) in QT .

We will see later in the actual numerical example that the convergence to

the solution happens fast. In the case of a plain call option as the market driver,

we get a numerical solution very close to that of the semilinear PDE with only 1

iteration.

Proposition 2.5.3. ‖ui+2 − ui+1‖2+α ≤ CκQ‖ui+1 − ui‖22+α

Proof. By definition and Proposition 2.5.1{
Lui+2 − πi+2(ui+2)y + π2

i+2/4κQ = 0

Lui+1 − πi+1(ui+1)y + π2
i+1/4κQ = 0.

(2.41)

Subtracting these 2 equations and setting vi+2 := ui+2 − ui+1,

Lvi+2 − πi+2(vi+2)y − (πi+2 − πi+1)2/4κQ = 0. (2.42)

Since vi is 0 on the parabolic boundary, from the Schauder estimate:

‖vi+2‖2+α ≤ C‖
πi+2 − πi+1

4κQ
‖2α = CκQ‖(vi+1)y‖2α ≤ CκQ‖vi+1‖22+α (2.43)

Proposition 2.5.3 shows that if the approximation of the solution is close

enough to the classical solution of the semilinear PDE, {ui}i converges quadrati-

cally to the solution. In other words, Proposition 2.5.3 shows the quadratic local

convergence of the solutions of the PIA to the classical solution.

Corollary 2.5.4.

‖ui+1 − ui‖2+α ≤ (CκQ‖u1 − u0‖2+α)2i−1‖u1 − u0‖2+α (2.44)

Proof. Use Proposition 2.5.3 and induction.
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2.6 Numerical Simulation

2.6.1 First Example

We now numerically investigate how the pricing and risks change with our model.

We assume that a large amount of 2 year, 120 strike call is owned by investors outside

the OTC market. We first price this structure using (2.8). Then, substituting this

solution in (2.7), we price a different derivatives product, a 2 year, 100 strike call.

We compare the results with the ones obtained from the Heston model. We used the

explicit FDM method. We note that with sufficiently fine mesh in the discretization,

the numerical solutions converge to the analytic ones. Hereafter, we refer to the 2

year, 120 strike call as 120 call and 2 year, 100 strike call as 100 call or at-the-money

(ATM) call.

We use the parameters in Table 2.1.

Parameter Value

Q 0.0003

r 3.0%

ρ -0.7571

η 0.3

ω 1.0

v̄ 0.04

κ 0.55

Table 2.1: Parameters for numerical simulation.

Note that Feller’s condition (2.2) is met and Q > 0. From Remark 8, the

positive variance condition (2.6) is therefore satisfied.

We take our domain E to be a round rectangle so that the boundary is C2+α

and denote by Smin, Smax, vmin, and vmax the minimum and maximum values

of the variables in the domain. In this example, we took Smin = 0.5, Smax =

200, vmin = 0.00005, and vmax = 1.0 and took the increments in S direction as

(Smax − Smin)/50 = (200− 0.5)/50 and in v direction as (vmax − vmin)/50 = (1.0−
0.00005)/50. For the time interval [0, 2], we discretized it similarly by 30,000 so

that the time increment is 2/30000 = 1/15000 years. We denote by FH the value F

calculated in the Heston model and by FN the value calculated in the new model.

Similarly, we denote by VH and VN the corresponding values for an arbitrary V .

As in [26], for the calculation in the Heston model, we use the initial and

boundary conditions:
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FH(S, v, 0) = max(0, S −K)+ (S, v) ∈ E
FH(Smin, v, t) = 0 (S = Smin)
∂FH
∂S (Smax, v, t) = 1 (S = Smax)
∂FH
∂t − rS

∂FH
∂S + rFH − κv̄ ∂FH∂v = 0 (v = vmin)

FH(S, vmax, t) = S (v = vmax).

(2.45)

The solution to the initial-boundary problem for Heston’s PDE with condi-

tions (2.45) is continuous up to the boundary, so we can use the value of FH as

the boundary condition for FN . This way, the values of FH and FN match on the

parabolic boundary.

We use the same conditions as in (2.45) for V .

With the parameters in Table 2.1, the drift in the second SDE of (2.4) is

shifted by κQ∂FN
∂v , which in this case is calculated as 0.55×0.0003×77.188 = 0.0127.

This is about 58% of the value of κv.

The result for the 120 call (which in our case is the market driver) is shown

in Table 2.2.

Risks Value Delta Vega Vanna Volga

Heston 2.6058 35.378% 70.940 3.8766 119.001

New Model 3.5121 42.457% 77.188 2.4132 -535.557

Table 2.2: Summary for 120 call at S = 98.255 and v = 0.030049.

The result for the other derivative product (in our case, an at-the-money

call) is shown in Table 2.3.

Risks Value Delta Vega Vanna Volga

Heston 11.299 74.117% 79.238 -0.5666 -543.263

New Model 12.116 76.942% 78.824 -1.6201 -961.800

Table 2.3: Summary for at-the-money (ATM) call at S = 98.255 and v = 0.030049.

The results are for S = 98.255 and v = 0.030049 at time t = T = 2. In

volatility convention (i.e. standard deviation, as traders usually prefer this over

variance), this value of v is equivalent to σ =
√
v = 17.335%.

The obvious result is that the options are priced higher under the new model

and we see it from Table 2.2 and Table 2.3. This is due to the current set-up that

the 120 call (which is a positive vega product) is held outside of the OTC market.

Since the OTC market is then overall short vega, or in other words, short volatility,
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the model correctly adjusts the level of the volatility which is now in demand. If we

calculate the equivalent volatilities in the Heston model based on the prices we get

from the new model, we get the correspondance shown in Table 2.4.

120 Call ATM Call

Heston 17.335% 17.335%

New Model 20.694% 20.090%

Difference 3.359% 2.755%

Table 2.4: Implied volatility calculated based on the risk calculated in the Heston
model.

From Table 2.4, we see that the volatility is higher, and the increments against

the Heston volatilities are different for different structures. The result of Table 2.4

shows a skewness of the impact the market driver has on the volatility.

To understand how large this difference in the implied volatility is, we can

assume that the vega traders maintain ranges between ±$10 million. With 3%

difference in volatility as shown in Table 2.4, if they are short $10 million of vega,

their mark-to-market loss would be -$30 million. If their goal is to raise $100 million

of profit in a year, then this loss already corresponds to 30% of the annual target.

Figure 2.1 and Figure 2.2 show a simulation of the processes of the stock

price and the volatility.

As mentioned in Section 2.1, this model prices-in not only the initial im-

pact when some big position is traded with clients, but also the adjusted impact

afterwards due to the change in the risk of the market driver. The risks change as

the market moves, therefore the way traders hedge options changes under the new

model. This is reflected in the graphs of the delta, vanna, and volga risks calculated

in the new model compared to the ones calculated in the Heston model in Figure 2.3.

The difference in each risk is plotted in Figure 2.4.

For example, when we check the delta on Table 2.2 and Table 2.3, the values

are higher in the new model. This is because traders lose money when the stock

price goes higher. To explain this in more detail, when the stock price goes higher,

the vega of the 120 call gets larger since the stock price gets closer to the strike 120.

This makes the traders in the OTC market get shorter in vega, hence they will even

be more eager to buy the volatility in the market. This shifts the volatility higher.

The consequence of this is that the traders will lose in mark-to-market because the

value of the call they are short is greater now due to the spike in volatility. The new

model anticipates this and asks the traders to buy more stocks beforehand so that

they are hedged from this event.
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Figure 2.1: Simulation of the SDEs (2.4) for the first 6 months starting from S = 100
and v = 0.04 with F being the value of the 2Y 120 call in (a) Heston model and (b)
the new model. The difference in the values of the two prices is shown in (c) where
the largest difference in absolute value is 1.3248, which corresponds to 132.48 basis
points to the initial stock price. We used the drift µ = 0.05. (d) shows how the vega
of the call in the new model changes over time.
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Figure 2.2: The volatility processes on the same simulation as in Figure 2.1 in (a)
Heston model and (b) the new model. The difference in values shown in (c).

34



0 50 100 150 200

0
20

40
60

80
10

0

Delta (%)

Stock Price

De
lta

 (%
)

0 50 100 150 200

0
20

40
60

80
10

0

Vanna

Stock Price
Ve

ga

0.0 0.2 0.4 0.6 0.8 1.0

20
0

40
0

60
0

80
0

Volga

Variance

Ve
ga

0 50 100 150 200

0
20

40
60

80
10

0

Delta (%)

Stock Price

De
lta

 (%
)

0 50 100 150 200

0
20

40
60

80
Vanna

Stock Price

Ve
ga

0.0 0.2 0.4 0.6 0.8 1.0
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Volga

Variance

Ve
ga

Figure 2.3: Risks of the calls; Top 3 charts are for the 120 call and the bottom 3
are for the ATM call. The solid lines indicate the risks calculated in the new model
and the dotted lines the corresponding risks calculated in the Heston model.

2.6.2 Second Example

In the previous subsection, we assumed that the 120 call was the market driver

and traders were short of the position such that the volatility was in demand. We

saw that it indeed made the prices of plain vanilla options more expensive, hence

the implied volatility higher. In this subsection, we keep the same structure as the

market driver, but assume now that this is held by the traders, hence the volatility

should now be offered. We set Q = −0.0003 and keep all the parameters the same

as in Table 2.1.

Risks Value Delta Vega Vanna Volga

Heston 2.6058 35.378% 70.940 3.8766 119.001

New Model 2.1438 30.905% 60.440 3.8553 382.287

Table 2.5: Summary for 120 call at S = 98.255 and v = 0.030049.
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Figure 2.4: The differences plotted between the values in the new model and the
Heston model from Figure 2.3.

Risks Value Delta Vega Vanna Volga

Heston 11.299 74.117% 79.238 -0.5666 -543.263

New Model 10.841 71.868% 73.393 -0.4005 -281.226

Table 2.6: Summary for at-the-money (ATM) call at S = 98.255 and v = 0.030049.

120 Call ATM Call

Heston 17.335% 17.335%

New Model 15.342% 15.578%

Difference -1.993% -1.757%

Table 2.7: Implied volatility calculated based on the risk calculated in the Heston
model.

The premium and risks of the market driver is shown in Table 2.5 and those

of the ATM call in Table 2.6. The results show that the prices of the plain vanilla

calls are now lower than those in the Heston model. We also see in Table 2.7 that
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the implied volatility is lower under the new model.

2.6.3 PIA on the Example in Subsection 2.6.1

We now see what happens when we apply the PIA to the semilinear case in Sub-

section 2.6.1 in calculating the value of the 120 call. We take π0 ≡ 0 so that the

solution of 0th iteration matches with the one from the Heston model. The result

is shown in Figure 2.5. We tried up to 4th iteration as it implies convergence in

numerical solution at this point as shown in Table 2.8.

Iteration 0th 1st 2nd 3rd 4th

Difference 2.3177 0.0322 7.72 ×10−6 0.000 0.000

Table 2.8: Largest differences in absolute value between the numerical solutions of
the approximated linear PDE and the original semilinear PDE. The figures could
be regarded as the differences in percentage against the initial price of the stock as
it is set to 100.
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Figure 2.5: PIA results for the 120 call. Dotted line is the solution using Finite Dif-
ference Method (FDM) directly on the semilinear PDE. v is taken as v = 0.040048.
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In Figure 2.6, we show a magnification of Figure 2.5 centered around the stock

price where we saw the largest difference, which happened to be at-the-money.
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Figure 2.6: Magnification around at-the-money of Figure 2.5. We see that the first
iteration already approximates well the numerical solution to the semilinear PDE.

We see in Figure 2.6 that the numerical solution of the semilinear PDE is

different from that of the Heston model (0th iteration), but the 1st iteration in the

PIA already brings the solution very close to that of the semilinear PDE. This is also

implied by the result in Table 2.8. This means that the numerical solution of the

semilinear PDE is well approximated by a series of linear PDEs. This is good news

as we do not have to create a separate program to calculate the solution to the new

model, but can just reuse the same program for the Heston model with modified

coefficients. The PIA also appears to have better convergence compared to the

explicit FDM on a Dirichlet boundary value problem of a second order semilinear

elliptic PDE as will be explored in the next chapter.
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2.7 Conclusions

We introduced a new model which reflects the impact of a large position that is

skewing the volatility market. We also introduced the Policy Improvement Algo-

rithm. The algorithm lets us handle a semilinear PDE as a series of linear PDEs

and at the same time keep the calculation load similar to that when we run the

FDM on the original semilinear problem, thanks to the fast convergence of the it-

erations. This enables us to easily implement the new model in practice by reusing

the resources used for the Heston model which has already been widely used in the

industry.

We only used a single product as a market driver, but we might try to extend

this to the case when it is of a portfolio of several products. We only used a plain

vanilla option as the market driver, but we should also be able to extend the model

to be used for more exotic options. The difficulty then is to show the existence and

uniqueness of the solution to the semilinear PDE (2.8) and to check if the solution

satisfies the positive variance condition (2.6). If so, by substituting this solution in

the coefficient of the linear PDE (2.7), we can solve for the values of other derivatives

products as in the case of the Heston model. It only takes relatively small effort to

allow for the market asymmetry and to get the correct risks driven by the market

driver. The numerical calculations when the market driver is an autocallable are

shown in Appendix C.

The other difficulty in applying the model to actual trading appears in the

calibration process. We assumed that we knew all the parameters including the

detail of the market driver, but it may be challenging to recover these in the actual

market, especially with more freedom in the model than in the Heston model and

with limited market information.
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Chapter 3

Quadratic Local Convergence of

the PIA

3.1 Introduction

In Chapter 2, we introduced a new model for pricing derivatives products when we

have a position concentration in the over-the-counter market. The model requires us

to solve a nonlinear partial differential equation (PDE) and this may prevent traders

from using it in practice due to possible difficulties in implementing a solution in

their pricing models. To overcome this difficulty, we used the policy improvement

algorithm (PIA) to enable us to approximate the nonlinear PDE by a series of linear

ones parameterized by a control. The solutions of the linear PDEs converge to that

of the original semilinear PDE as we iteratively solve the linear PDEs under the al-

gorithm. Since their stochastic volatility pricing models can solve linear PDEs (as in

Heston’s model), the traders can now implement the new model. We further showed

that the PIA approximated solutions show quadratic local convergence (QLC) to the

analytic solution. This provides an explanation of why the convergence happens so

fast.

The natural question to ask is how general this QLC is in the PIA framework.

In this chapter, we consider a general infinite time horizon problem and calculate the

rate of convergence of the PIA-derived approximations to that of the corresponding

semilinear elliptic PDE. We give three conditions which enable us to show the QLC.

These assumptions are indeed satisfied by the problem considered in Chapter 2. We

describe in Remark 10 how some of these assumptions can be relaxed.

The rest of the paper is organized as follows: Section 3.2 briefly explains the

setup. In Section 3.3, we state the main theorem about QLC of the approximated
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solutions to the semilinear PDE. We give a numerical example in Section 3.4 and

give some concluding questions in Section 3.5.

3.2 Setup

We briefly explain our setup. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space.

We assume that E is a simply connected, convex, and bounded subset of IRn that

has C2,β boundary. We define

τE(Y) := inf{t ≥ 0;Yt /∈ E} (3.1)

for any continuous process Y = (Yt)t≥0.

For a control Π and starting point z, we wish to define the controlled process

Zz,Π by

Zz,Πt = z +

∫ t

0
σ(Zz,Πs ,Πs)dBs +

∫ t

0
µ(Zz,Πs ,Πs)ds, 0 ≤ t ≤ τE(Zz,Π), (3.2)

where σ : IRn × IRd → IRn×n and µ : IRn × IRd → IRn are measurable

mappings, B is an n-dimensional Wiener process and Π takes values in A = IRd.

For any z ∈ IRn define A(z), the set of admissible control at z, as

A(z) := {Π = (Πt)t≥0; Π is adapted to (Ft)t≥0,Πt(ω) ∈ IRd

for every t ≥ 0 and ω ∈ Ω,and there exists a process

Zz,Π = (Zz,Πt )t≥0 that satisfies (3.2) and is unique in law}.

(3.3)

A measurable function π : Ω × (0,∞] → IRd is a Markov policy if for every

z ∈ Ω and ∀T > 0 there exists a process Zz,πt that is unique in law and satisfies the

following:

Zz,πt = z +

∫ t

0
σ(Zz,πs , π(Zz,πs , s))dBs +

∫ t

0
µ(Zz,πs , π(Zz,πs , s))ds

= z +

∫ t

0
σπ(Zz,πs )dBs +

∫ t

0
µπ(Zz,πs )ds, 0 ≤ t ≤ T ∧ τE .

(3.4)

We define the payoff function V Π for any admissible Π as
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V Π(z) : = E

(∫ τE

0
e−αtf(Zz,Πt ,Πt)dt+ e−α(τE)g(Zz,ΠτE )

)
= E

(∫ τE

0
e−αtfΠt(Zz,Πt )dt+ e−α(τE)g(Zz,ΠτE )

)
,

(3.5)

where α is some positive constant and f : IRn × IRd → IR and g : IRn → IR. We

assume that fπ is C2 with respect to π and g is continuous. The problem is to find

the value function V defined as

V := sup
Π∈A

V Π. (3.6)

For any Markov policy π that is Lipschitz continuous on Ē , define Lπ : C2 →
C by

Lπφ :=
1

2
Tr{σTπ (Hφ)σπ}+ µTπ∇φ =

∑
i,j

aπij
∂2φ

∂xi∂xj
+
∑
i

bi
∂φ

∂xi
, (3.7)

where Hφ is the Hessian of φ.

From [32], V π satisfies the PDE

LπV π − αV π + fπ = 0. (3.8)

Starting from a Markov policy π0, the PIA defines successive controls by the

recursion

πi+1 = arg max
a∈A

(
LaV πi − αV πi + fa

)
. (3.9)

Note that we assume that ∃ν > 0 such that the differential operator Lπ is uniformly

elliptic, i.e.,

1

ν
|ξ|2 ≤ aπijξiξj ≤ ν|ξ|2 ∀ξi, ξj ∈ E ,∀π ∈ IRd. (3.10)

We define the distance at a point x from ∂E as

dx = min
ξ∈E
|x− ξ|, (3.11)

and the distance between points x and y as

dxy = min(dx, dy). (3.12)

We define the norm ‖u‖2,β as
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‖u‖2,β = 〈u〉β +
∑
〈dDxu〉β +

∑
〈d2Dx

2u〉β , (3.13)

where

〈dmu〉0 = sup
x∈E

dmx |u(x)|,

Hβ(u) = sup
x,y∈E

dm+α
xy

|u(x)− u(y)|
dβxy

,

〈dmu〉β = 〈dmu〉0 +Hβ(dmu).

(3.14)

C2,β(E) is the Banach space of functions u(x) that are continuous in E with

‖u‖2,β finite (Section 3.8, [22]).

3.3 Main Results

We make the following assumptions in this section.

Assumption 1. µπ is in the form of Mπ + b for some constant n × d matrix M

and n dimensional vector b.

Assumption 2. σπ is independent of π.

Assumption 3. fπ is strictly and uniformly concave in π, i.e. ∃λ > 0 such that

xT (Hπf
π)x ≤ −λ||x||2 < 0 for all x ∈ Ē, where Hπf

π represents the Hessian of fπ

with respect to π.

With these assumptions, we show the following:

Theorem 3.3.1. Under Assumptions 1, 2, and 3, there exists a C > 0 such that

‖V πi+1 − V πi‖2,β ≤ C‖V πi − V πi−1‖22,β, (3.15)

where C only depends on the domain E, the ellipticity constant ν from (3.10), and

the bounds on the coefficients of the differential operator Lπ.

Remark 9. Applying (3.15) iteratively, we obtain

‖V πi+1 − V πi‖2,β ≤
{C‖V π1 − V π0‖2,β}2

i

C
. (3.16)

Therefore, once ‖V πi+1 − V πi‖2,β < 1/C, convergence is extremely fast.
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Remark 10. Suppose that A, the action space (the value space for π) is not IRd.

We may replace it by its image under µ(x, ·), provided we simultaneously replace f

by f̃ given by

f̃(x,m) = sup
π∈(x,·)−1(m)

f(x, π),

since we wish to maximise V π. Suppose that this image is M. By allowing relaxed

controls (see for example [1]) we can replace this by N := c̄o(M), the closure of the

convex hull of M. This will have the effect of simultaneously replacing f̃(x, ·) by f̄ ,

the smallest concave majorant of f̃ . If f̃ is strictly uniformly concave and N is an

affine set in IRn then we recover Assumptions 1 and 3.

As we shall see, the proof of Theorem 3.3.1 relies heavily on Taylor’s theorem

and the disappearance of ∇a(LaV πi−αV πi +fa) at its maximum, where ∇a denotes

the gradient with respect to a. So, if N is a compact subset of IRd then we hit a

problem when the maximizer µ lies on the boundary of N .

We should still be able to obtain good approximations to V with QLC by ex-

tending the action space to Ñ and extending f̄µ to f∗,µ in such a way that f̄µ = f∗,µ

in N , f∗,µ always takes its maximum, f̂ in the interior of Ñ and f̂−supµ∈N f̄
µ ≤ ε.

Remark 11. We considered the elliptic case, but the parabolic case follows in exactly

the same fashion. We have the following theorem:

Theorem 3.3.2. Under the same assumptions as in Theorem 3.3.1 with a given

initial condition, (3.16) holds in the parabolic case.

This is a generalization of Proposition 2.5.3 in Chapter 2. The proof of Theo-

rem 3.3.1 is deferred to Appendix D.

3.4 Numerical Example

We apply the PIA in solving numerically a semilinear elliptic PDE. We take E ⊂ IR2

to be [0.5, 2.0]× [0.5, 2.0] with its corners smoothed in a C2,β fashion (this is needed

to apply the boundary estimate in Theorem 3.3.1).

3.4.1 First Example

The SDEs we consider are 
dx = πx dt+ σx dW 1,

dy = πy dt+ ηy dW 2,

< dW 1, dW 2 >= 0,

(3.17)
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where W 1 and W 2 are 1-dimensional Wiener processes and π ∈ IR. Thus

µπ =

(
πx

πy

)
and σπ =

(
σx 0

0 ηy

)
. (3.18)

We take fπ to be

fπ = 1− 1

2
π2. (3.19)

We define V π as in (3.5) with g ≡ 0 on ∂E . Then, V πi satisfies the elliptic PDE:

1

2
σ2x2∂

2V πi

∂x2
+

1

2
η2y2∂

2V πi

∂y2
+ πix

∂V πi

∂x
+ πiy

∂V πi

∂y
− αV πi + 1− 1

2
π2
i = 0, (3.20)

where πi is determined by

πi = x
∂V πi−1

∂x
+ y

∂V πi−1

∂y
. (3.21)

Note that if V πi converges, the limit function V satisfies a semilinear elliptic

PDE

1

2
σ2x2∂

2V

∂x2
+

1

2
η2y2∂

2V

∂y2
− αV + 1− 1

2

(
x
∂V

∂x
+ y

∂V

∂y

)2

= 0. (3.22)

The variables we use are in Table 3.1.

Table 3.1: Parameters we use for the numerical calculation.

parameter value

α 0.03
σ 2.0
η 0.2

xmax 2.0
xmin 0.50
ymax 2.0
ymin 0.50

ToleranceLevel1 0.00001
ToleranceLevel2 0.001

discretization nodes 100

We use the explicit finite difference method (FDM) to see the convergence
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starting at π0 ≡ 0 with the boundary condition V πi |∂E ≡ 0. We discretize (3.20)

and obtain

1

2

(
σ2x2

j

∆x2
+
πi(j, k)xj

∆x

)
V (j + 1, k) +

1

2

(
σ2x2

j

∆x2
− πi(j, k)xj

∆x

)
V (j − 1, k)

+
1

2

(
η2y2

k

∆y2
+
πi(j, k)yk

∆y

)
V (j, k + 1) +

1

2

(
η2y2

k

∆y2
− πi(j, k)yk

∆y

)
V (j, k − 1)

−
(
σ2x2

j

∆x2
+
η2y2

k

∆y2
+ α

)
V (j, k) + 1− 1

2
π2
i (j, k)

= pj+1,kV (j + 1, k) + pj−1,kV (j − 1, k) + pj,k+1V (j, k + 1)

+ pj,k−1V (j, k − 1) + pj,kV (j, k) + qi(j, k) = 0,

(3.23)

where xj and yj represent coordinates of the mesh points, V (j, k) and πi(j, k) are

corresponding values at the mesh points, and ∆x and ∆y are corresponding mesh

sizes. We therefore can write (3.23) in the form

V (j, k) = − 1

pj,k

{
pj+1,kV (j + 1, k) + pj−1,kV (j − 1, k)

+ pj,k+1V (j, k + 1) + pj,k−1V (j, k − 1) + qi(j, k)
}

.

(3.24)

We use the Gauss-Seidel method [58] together with the PIA to solve (3.22).

The procedure is as follows:

1. Set V 0(j, k) = 0 and π0(j, k) = 0 ∀(j, k).

2. Assume that we have πi and V ` for all the mesh points. Use (3.24) to calculate

the values V `+1(j, k). That is, use

V `+1(j, k) = − 1

pj,k

{
pj+1,kV

`(j + 1, k) + pj−1,kV
`(j − 1, k)

+ pj,k+1V
`(j, k + 1) + pj,k−1V

`(j, k − 1) + qi(j, k)
} (3.25)

to calculate V `+1(j, k).

3. Iteratively solve for V `+1 from V ` and stop when max
j,k
|V `+1(j, k)−V `(j, k)| <
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ToleranceLevel1. Calculate πi+1(j, k) by

πi+1(j, k) =
V `+1(j + 1, k)− V `+1(j − 1, k)

2∆x
xj

+
V `+1(j, k + 1)− V `+1(j, k − 1)

2∆y
yk.

(3.26)

4. Repeat Procedure 3 and end the program when max
j,k
|πi(j, k) − πi(j, k)| <

ToleranceLevel2. The numerical solution to (3.22) is V `+1(j, k).

The method converges if the diagonal terms of the matrix are greater than

the sum of the absolute values of the off-diagonal terms (Theorem 4.4.5, [9]). That

is, on (3.24), the method converges if

|pj,k| > |pj+1,k|+ |pj−1,k|+ |pj,k+1|+ |pj,k−1|. (3.27)

With πi small enough, the condition of the cited theorem is satisfied with

the parameters we have chosen.

To compare the calculation load, we also numerically solved the correspond-

ing linear PDE

1

2
yx2∂

2V

∂x2
+

1

2
yη2∂

2V

∂y2
− αV − 1 = 0. (3.28)

The only difference between (3.22) and (3.28) is the existence of the term−(1/2){x(∂V /∂x)+

y(∂V /∂y)}2.

Table 3.2 shows the numerical results in both linear and semilinear cases. For

the linear case (3.28), we used Gauss-Seidel method with the tolerance level equal

to ToleranceLevel1 in Table 3.1. We see that the linear and semilinear cases have

similar order in terms of the number of calculations to approximate to the specified

tolerance level.

Table 3.2: Calculation load comparison for successful convergence. One calculation
here means solving the difference equation (3.25) once at one point.

Problem Type Method # of calculations

Linear FDM (Gauss-Seidel) 24,541,704
Semilinear PIA & Gauss-Seidel 34,372,107

Table 3.3 shows the result in more detail.
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Table 3.3: Detail of the calculations in the PIA.

PIA Max Difference in Max Difference in # of Calculation
steps |πi − πi−1| |V πi − V πi−1 | calculations time in hours

0 2.15455038 24,541,704 0:16
1 1.55932909 0.02563695 8,017,218 0:05
2 0.16986263 0.00372773 1,744,578 0:01
3 0.00400477 0.00006031 58,806 0:00
4 0.00066038 0.00000995 9,801 0:00

Table 3.3 shows that the first step in the PIA already decreases the number of

calculation to get the convergence in the Gauss-Seidel method. The data is plotted

in Figure 3.1.
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Figure 3.1: Graphs of the data in Table 3.3. (a) the maximum of |πi − πi−1| in
each step, (b) the maximum of |V πi − V πi−1 | in each step, and (c) the number of
calculations in each step.

Remark 12. We did try applying the FDM directly to the differential equation

(3.22), but could not get the convergence in the Gauss-Seidel method as fast as

applying the PIA. Time taken for the calculation was 1:08 and number of calculations

performed was 54,434,754 compared to 0:22 and 34,372,107 respectively with the PIA

as shown in Table 3.2 and Table 3.3.
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3.4.2 Second Example

We provide another example.

The SDEs we consider are
dx = σx dW 1,

dy = π dt+ ηy dW 2,

< dW 1, dW 2 >= 0,

(3.29)

where W 1 and W 2 are 1-dimensional Wiener processes and π ∈ IR. Thus

µπ =

(
0

π

)
and σπ =

(
σx 0

0 ηy

)
. (3.30)

We take fπ to be

fπ = − cosh(π). (3.31)

We define V π as in (3.5) with g ≡ 0 on ∂E . Then, V πi satisfies the elliptic PDE:

1

2
σ2x2∂

2V πi

∂x2
+

1

2
η2y2∂

2V πi

∂y2
+ πi

∂V πi

∂y
− αV πi − cosh(πi) = 0, (3.32)

where πi is determined by

πi = arc sinh

(
∂V πi−1

∂y

)
. (3.33)

Note that if V πi converges, the limit function V satisfies a semilinear elliptic

PDE

1

2
σ2x2∂

2V

∂x2
+

1

2
η2y2∂

2V

∂y2
+
∂V

∂y
arc sinh

(
∂V

∂y

)
−

√
1 +

(
∂V

∂y

)2

− αV = 0. (3.34)

The variables we use are in Table 3.4.

As in Section 3.4.1, we use the explicit FDM to see the convergence starting

at π0 ≡ 0 with the boundary condition V πi |∂E ≡ 0. We discretize (3.32) and obtain
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Table 3.4: Parameters we use for the numerical calculation.

parameter value

α 0.03
σ 2.0
η 0.2

xmax 2.0
xmin 0.50
ymax 2.0
ymin 0.50

ToleranceLevel1 0.00001
ToleranceLevel2 0.001

discretization nodes 100

1

2

(
σ2x2

j

∆x2

)
V (j + 1, k) +

1

2

(
σ2x2

j

∆x2

)
V (j − 1, k)

+
1

2

(
η2y2

k

∆y2
+
πi(j, k)

∆y

)
V (j, k + 1) +

1

2

(
η2y2

k

∆y2
− πi(j, k)

∆y

)
V (j, k − 1)

−
(
σ2x2

j

∆x2
+
η2y2

k

∆y2
+ α

)
V (j, k)− cosh(πi(j, k))

= pj+1,kV (j + 1, k) + pj−1,kV (j − 1, k) + pj,k+1V (j, k + 1)

+ pj,k−1V (j, k − 1) + pj,kV (j, k) + q′i(j, k) = 0,

(3.35)

where xj , yj , V (j, k), πi(j, k), ∆x, and ∆y are as defined in the previous subsection

at (3.23). We write (3.35) in the form

V (j, k) = − 1

pj,k

{
pj+1,kV (j + 1, k) + pj−1,kV (j − 1, k)

+ pj,k+1V (j, k + 1) + pj,k−1V (j, k − 1) + q′i(j, k)
}

.

(3.36)

We use the Gauss-Seidel method together with the PIA to solve (3.34). The

procedure of the algorithm is as follows:

1. Set V 0(j, k) = 0 and π0(j, k) = 0 ∀(j, k).

2. Assume that we have πi and V ` for all the mesh points. Use (3.36) to calculate

50



the values V `+1(j, k). That is, use

V `+1(j, k) =− 1

pj,k

{
pj+1,kV

`(j + 1, k) + pj−1,kV
`(j − 1, k)

+ pj,k+1V
`(j, k + 1) + pj,k−1V

`(j, k − 1) + q′i(j, k)
} (3.37)

to calculate V `+1(j, k).

3. Iteratively solve for V `+1 from V ` and stop when max
j,k
|V `+1(j, k)−V `(j, k)| <

ToleranceLevel1. Calculate πi+1(j, k) by

πi+1(j, k) = arc sinh

(
V `+1(j, k + 1)− V `+1(j, k − 1)

2∆y

)
. (3.38)

4. Repeat Procedure 3 and end the program when max
j,k
|πi(j, k) − πi(j, k)| <

ToleranceLevel2. The numerical solution to (3.34) is V `+1(j, k).

The method converges if (3.27) is satisfied.

To compare the calculation load, we also numerically solved the correspond-

ing linear PDE (3.28), where the only difference from (3.34) is the existence of the

terms (∂V /∂y) arc sinh(∂V /∂y)−
√

1 + (∂V /∂y)2 + 1.

Table 3.5 shows the numerical results in both linear and semilinear cases. For

the linear case (3.28), we used Gauss-Seidel method with the tolerance level equal

to ToleranceLevel1 in Table 3.4. We see that the linear and semilinear cases have

similar order in terms of the number of calculations to approximate to the specified

tolerance level.

Table 3.5: Calculation load comparison for successful convergence. One calculation
here means solving the difference equation (3.37) once at one point.

Problem Type Method # of calculations

Linear FDM (Gauss-Seidel) 24,541,704
Semilinear PIA & Gauss-Seidel 37,537,830

Table 3.6 shows the result in more detail.

Table 3.6 shows that the first step in the PIA already decreases the number of

calculation to get the convergence in the Gauss-Seidel method. The data is plotted

in Figure 3.2.

51



Table 3.6: Detail of the calculations in the PIA.

PIA Max Difference in Max Difference in # of Calculation
steps |πi − πi−1| |V πi − V πi−1 | calculations time

0 1.707439 24,541,704 0:14
1 0.609614 0.0343466 8,703,288 0:05
2 0.156637 0.00676332 4,087,017 0:02
3 0.00503 0.00020391 196,020 0:00
4 0.000246 0.00000997 9,801 0:00
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Figure 3.2: Graphs of the data in Table 3.6. (a) the maximum of |πi − πi−1| in
each step, (b) the maximum of |V πi − V πi−1 | in each step, and (c) the number of
calculations in each step.

3.5 Conclusion and Open Questions

We have shown that the PIA has the QLC property in a fairly general framework.

The natural questions to ask are

1. Can we show QLC under weaker conditions?

and

2. Can we show some convergence rate outside the “local quadratic region” (see

Remark 9)? We know that the QLC holds, so when the norm of the difference

of the type ‖V πi+1−V πi‖2,β becomes small enough, we know that it converges

with order 2 to the original solution from (3.15). However, this does not tell us
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with what order the difference ‖V πi+1−V πi‖2,β becomes small enough starting

from arbitrary V π0 .
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Chapter 4

Modeling Technical Analysis

4.1 Introduction

Many traders base their trading strategies on technical analysis (TA). The analysis

uses heavily the visual shape of historical price graphs (which traders call ’charts’)

to determine whether the asset is a good buy or not. One of the basic analyses in

the field is that of a support and resistance line. In this method, the traders obtain a

horizontal line called a support (resistance) line that they believe is a local support

(roof) of the asset price. The analysis is that if the stock price crosses a support line

from above and goes lower than the level by ‘a lot’, then it is considered that the

stock has moved into a recession regime in which case traders should sell, or at least,

not be long of the stock. On the other hand, if the asset price spikes up crossing a

resistance line from below, the asset is considered to have shifted to a boom regime

and the method asks the traders to buy the asset or to cover the short.

Remark 13. The method of support/resistance level can be applied to any assets

as long as their historical prices are available. In the thesis, we focus on the case

when the asset is a stock.

We note here that the support/resistance level is not a hard limit. Therefore,

the stock can go lower (higher) than the support (resistance) level, but it is expected

to correct in a short period of time if the regime has not changed. We also note that

there may be several support/resistance levels in one chart.

A level could, in theory, be a support level but not a resistance level and vice

versa. However, the level is where the stock-price regime changes and it is natural

to consider it to be both a support and resistance level in the following way. From

one regime, the other regime is relatively ‘better’ or ‘worse’. Hence, if we are in the

‘better’ regime, the level which lies around the lower end of the regime is considered
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(a) (b)

Figure 4.1: Example of (a) the support and (b) the resistance levels. Note that the
levels are not hard limits, and the price can fluctuate around the levels.

to be a support line; if we are in the ‘worse’ regime, the same level which now lies

around the upper end of the regime is considered to be a resistance line. When a

support level becomes a resistance level or vice versa, we say that the stock has a

regime transition. This is in line with how traders think of the level.

Methods in TA are based on historical behaviour of stocks. They are not

currently supported by any theory, though they may be partially explained using

behavioural science. Nevertheless, many traders believe they are useful and power-

ful. One reason is that the methods in TA are free from human emotions. Traders

are consistently affected by the present performance of their portfolios and psycho-

logical stresses. Even if their trading instinct is sharp, the performance of their

portfolios may deteriorate due to other non-trading factors. The decisions that TA

makes are believed not to be affected by these factors.

Another reason why many traders support TA is that they believe in the

strong form of the efficient market hypothesis (EMH). They believe that the stock

price reflects not only the information publicly available, but even the information

that is not disclosed in public. For example, if an investor has some insider informa-

tion that potentially pushes the stock price lower, he might want to sell the stock

before other people do to take advantage of possessing the information. He can

only extract benefit for himself by selling the stock in the market, which pushes the
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Figure 4.2: An example of a line being both the support and resistance level.

stock price lower. Even though the information is not publicly available, it is thus

reflected in the price chart of the stock.

Remark 14. Instead of selling the stock directly in the market, the investor with

insider information can seek other methods of benefiting himself from the expected

stock performance. For example, he can buy naked puts on the stock. Then, the

counterparty who sold the option to the investor has to sell the stock to hedge the

position (unless the counterparty is happy holding it without any hedges). In either

case, the investor with insider information will make the market sell the stock.

Some studies on TA have been performed, but they mainly focus on how

to detect the sign of the regime transition as quickly as possible and checking by

comparing what the performance would have been if a trader adopted TA in his

trading strategies. Some examples of research that focus on these points are [8]

and [48]. We know of no literature attempting to model and justify TA methods

mathematically.

In order to model the method of support/resistance level, we initially con-

sidered several approaches. One is to use stochastic delay differential equations
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(SDDEs; [7], [49], [53], [83]). This makes sense as TA is the method we use to

forecast dynamics of the future stock price from analysing historical prices, and SD-

DEs are stochastic differential equations (SDEs) with coefficients that depend on

the historical levels. However, this method requires many parameters and does not

imply the optimal trading strategy traders should adopt under the setup.

The other method we considered was using a skew Brownian motion to model

the price process. This has different probabilities of positive and negative excursions

from the support/resistance level. Skew Brownian motion is the process in which

the negative excursions from the origin of the standard Brownian motion are flipped

with the probability 1−α. It is described in [29]. Using this process to describe the

underlying stock price process under our setup requires a lot less parameters than

using SDDEs. However, as [57] and [67] show, the model with skew Brownian motion

has arbitrage opportunities. It is discussed in [57] that we can get an arbitrage-free

and complete market within the class of simple strategies, but not in a more general

setup.

Remark 15. We think it is still possible to approach using skew Brownian motion in

modeling the method of supply/resistance level by using approximated skew Brownian

motion. From [25], skew Brownian motion satisfies the SDE

dXt = dWt + (2α− 1)dLX0 (t), (4.1)

where LX0 (·) is the local time at zero defined by

LX0 (t) = lim
ε↓0

1

2ε

∫ t

0
1[−ε,ε](Xs)ds. (4.2)

We can approximate the process X by Yε defined as

dYε(t) = dWt + (2α− 1)d`Yε0 (t), (4.3)

with some ε > 0 with

`Yε0 (t) =
1

2ε

∫ t

0
1[−ε,ε](Yε)ds. (4.4)

From now on we adopt a different model: we assume that there are only two

regimes in the stock price which correspond to different log normal diffusion pro-

cesses. We then define criteria for deciding on buying/selling the stock via optimal

control theory.

One of the things that makes our setup special is that these two regimes are

not distinguishable based on the current stock price, i.e. there is a region where
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the stock price can have dynamics corresponding to either of the two SDEs. This

feature provides some “room” for the process in each regime to move around the

support/resistence level without switching to the other regime.

The rest of the chapter is organized as follows: Section 4.2 presents the

setup we use for the model with a support/resistance level. We first solve for the

optimal selling problem given that we already hold the stock at time t = 0 in

Section 4.3. Using the results from the optimal selling problem, we then solve the

optimal purchasing problem in Section 4.4. We derive our conclusions and refer to

possible future research topics in Section 4.5.

4.2 Setup

We assume that there are levels L and H (0 < L < H) at which the regimes change.

We define the positive region as the domain [L,∞) and the negative region as the

domain (0, H]. Note that the two regions have non-empty intersection [L,H].

We assume that there are only two regimes in the price process; the positive

regime and the negative regime.

Under the positive regime, the process lies in the positive region and has

dynamics

dSt = µ+Stdt+ σ+StdWt, (4.5)

where µ+ and σ+ > 0 are constants and Wt is a one dimensional Brownian motion.

The transition from the positive to the negative regime occurs when the positive

regime is in place and S exits the positive region.

On the other hand, under the negative regime, the process lies in the negative

region and has dynamics

dSt = µ−Stdt+ σ−StdWt. (4.6)

where µ− and σ− > 0 are constants. The transition from the negative to the positive

regime occurs when the negative regime is in place and S exits the negative region.

Let r > 0 denote the interest rate and we assume

µ− < r < µ+. (4.7)

The condition (4.7) implies the discounted price process is a supermartingale under

the negative regime and a submartingale in the positive regime up to the time of

the first regime transition.
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To keep track of which regime currently holds, we define the flag process Ft

which takes values in {−1,+1} as

Ft =

+1 if the dynamics correspond to the positive regime

−1 if the dynamics correspond to the negative regime
. (4.8)

The flag process Ft indicates under which regime the price process St is at time t.

From the definition of the regime transition, Ft jumps from one value to the other

only in the following cases:Ft− = +1 and St = L, then Ft = −1

Ft− = −1 and St = H, then Ft = +1
. (4.9)

Remark 16. We have the following proposition:

Proposition 4.2.1. The model we introduced in Section 4.2 is arbitrage-free.

The proof of Proposition 4.2.1 is deferred to Section E.3.2 in Appendix E.

We set M as the level of the asset price at which the trader is happy to take

profit. In other words, the asset that the trader held at the price below M will be

sold upon breaching the level M . We therefore assume that the initial price is below

M . For each a ≤M , we define the time Ta as

Ta := inf{t|St = a}. (4.10)

We set TM as the set of all stopping times that are not greater than TM . We

set Xt as St stopped at TM .

4.3 Selling Problem

First, we assume that we already hold the asset and think of the optimal selling

strategy. We find the selling strategy that enables us to sell at the best value

among the expectations of all the future prices discounted to today. The problem

is mathematically equivalent to solving the following optimal stopping problem:

V (x, f) = sup
τ∈TM

Ex,f [e−rτXτ ]. (4.11)

We want to characterize the optimal stopping time τ∗ that leads to
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V (x, f) = Ex,f [e−rτ
∗
Xτ∗ ]. (4.12)

In order to find the candidates for τ∗, we define the continuation region C and the

stopping region D as

C = {V (x, f) > x}, D = {V (x, f) = x}, (4.13)

and set τm as

τm = inf{t|Xt = m; t ≤ TM}. (4.14)

We hypothesise that the optimal policy is to sell when X reaches m or M for

a suitable value of m to be determined. We think of the set of τm as the candidate for

the solution to the optimal stopping problem (4.11). If we define Vm = E[e−rτmXτm ],

then Vm is the solution to the following ODEs:

1
2σ

2
+x

2V ′′m(x,+1) + µ+xV
′
m(x,+1)− rVm(x,+1) = 0, x ∈ [L,M ]

1
2σ

2
−x

2V ′′m(x,−1) + µ−xV
′
m(x,−1)− rVm(x,−1) = 0, x ∈ [m,H]

. (4.15)

In order to solve the optimal selling problem (4.11), we use the following

theorem.

Theorem 4.3.1. ([59])

Consider the optimal stopping problem

V T
t = sup

t≤τ≤T
EGτ (4.16)

under the assumption that the condition E(sup0≤t≤T |Gt|) <∞ holds. Furthermore,

consider the process

St = ess sup
τ≥t

E(Gτ |Ft) (4.17)

and the stopping time

τt = inf{s ≥ t|Ss = Gs}. (4.18)

Then for all t ≥ 0 we have:

60



St ≥ E(Gτ |Ft) for each τ ∈Mt,

St = E(Gτt |Ft)
(4.19)

where Mt denotes the family of all stopping times τ satisfying τ ≥ t. Moreover, if

t ≥ 0 is given and fixed, then we have:

• The stopping time τt is optimal in (4.16).

• If τ∗ is optimal stopping time in (4.16), then τt ≤ τ∗ P-a.s.

• The process (St)s≥t is the smallest right-continuous supermartingale which

dominates (Gs)s≥t.

• The stopped process (Ss∧τt)s≥t is a right-continuous martingale.

The process St is called the Snell envelope of the process Gt. The plan of

solving the optimal selling problem is as follows:

1. Find the maximizer m̂ of Vm(x, f).

2. Show that the process e−rtVm̂(Xt, Ft) is a supermartingale that dominates the

gains process e−rtXt.

The fact that e−rtVm̂(Xt, Ft) is minimal comes from the Optional Sampling

Theorem. Then Theorem 4.3.1 proves that the optimal stopping time of the problem

(4.11) is the first time when e−rtVm̂(Xt, Ft) = e−rtXt, hence when Vm̂(Xt, Ft) = Xt.

In other words, the optimal stopping time is the first time the process Xt enters

the domain D. Finally, this stopping time is equivalent to the first time Xt hits the

level m̂ when Ft− = −1 and when the process hits M when Ft− = +1.

We let α1 < α2 be the two solutions to the characteristic equation

1

2
σ2

+α
2 + µ+α− r = 0, (4.20)

and β1 < β2 the solutions to

1

2
σ2
−β

2 + µ−β − r = 0. (4.21)

What we know right away from the equations (4.7), (4.20), and (4.21) is that

α1 ,β1 < 0 (4.22)
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and

α2 < 1 < β2. (4.23)

With some constants A, B, C, and D which are determined from boundary

conditions, Vm(x,+1) and Vm(x,−1) can be written asVm(x,+1) = Axα1 +Bxα2

Vm(x,−1) = Cxβ1 +Dxβ2
. (4.24)

We now solve for A, B, C, and D in (4.24) in the following two cases: the

case when m ≤ L and when m > L.

4.3.1 The Case Where m ≤ L

In the case when m ≤ L, Vm(x, f) satisfies (4.15) with the boundary conditions

Vm(m,−1) = m ≤ L

Vm(L,−1) = Vm(L,+1)

Vm(H,+1) = Vm(H,−1)

Vm(M,+1) = M

, (4.25)

and set Vm(x,−1) = x for x ∈ (0,m). Define P (x) = xα2 −Mα2−α1xα1 , Q(x) =

xβ2 −mβ2−β1xβ1 , and R(x) = m1−β1xβ1 −M1−α1xα1 . We solve (4.25) for A, B, C,

and D in (4.24) and obtain:

A = M1−α1 −BMα2−α1

B = R(L)Q(H)−R(H)Q(L)
P (L)Q(H)−P (H)Q(L)

C = m1−β1 −Dmβ2−β1

D = R(L)P (H)−R(H)P (L)
Q(H)P (L)−Q(L)P (H)

. (4.26)

4.3.2 m ≥ L Case

In the case when m ≥ L, Vm(x, f) solves (4.15) with the boundary conditions

Vm(m,−1) = m ≥ L

Vm(H,−1) = Vm(H,+1)

Vm(L,+1) = L

Vm(M,+1) = M

. (4.27)
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We do not consider m > H here as then the problem will be an optimal

stopping problem under one regime (i.e. the positive regime).

The condition Vm(L,−1) = Vm(L,+1) is replaced with Vm(L,+1) = L since

the process is stopped when it goes below the level m. We solve for the coefficients

in (4.24) and obtain 

A = L1−α1M1−α1 (Mα2−1−Lα2−1)
Mα2−α1−Lα2−α1

B = M1−α2−L1−α2
Mα2−α1−Lα2−α1

C = m1−β1H−β1 (Hβ2−mβ2−1Vm(H,+1))

Hβ2−β1−mβ2−β1

D = H−β1Vm(H,+1)−m1−β1

Hβ2−β1−mβ2−β1

. (4.28)

Note that Vm(x,+1) does not depend on m.

4.3.3 Solving the Optimal Stopping Problem

In Subsection 4.3.1 and Subsection 4.3.2, we solved for Vm(x, f). We now have the

candidates for the solution of the optimal stopping problem (4.11) with the stopping

rule ”stop the asset price process Xt when it first hits the level m or M if this is

earlier (since we are required to sell at level M)”. In other words, we have candidates

of m that satisfy

τ∗ = τm. (4.29)

What we want to do next is to verify which choice of m actually works and

enables us to solve the optimal stopping problem (4.11) with (4.29). If we guessed

the right form of the optimal policy, the optimal m should be the one that maximizes

Vm(x, f). We now solve for the maximizer of Vm(x, f).

4.3.4 Maximizer in the Case of m ≤ L

We calculate the maximizer in the case when m ≤ L. For that, it is sufficient to

maximize Vm(L,−1).

Defining
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G1 = (Lβ1Hα2 − Lα2Hβ1) +Mα2−α1(Lα1Hβ1 − Lβ1Hα1)

G2 = M1−α1(Lα2Hα1 − Lα1Hα2) < 0

G3 = (Hβ2Lα2 − Lβ2Hα2) +Mα2−α1(Hα1Lβ2 − Lα1Hβ2)

G4 = (Lα2 −Mα2−α1Lα1)(Lβ1Hβ2 − Lβ2Hβ1) < 0

G5 = M1−α1Lβ1(Lα1Hα2 − Lα2Hα1) > 0

G6 = M1−α1Lβ2(Lα2Hα1 − Lα1Hα2) = Lβ2G2 < 0

, (4.30)

Vm(L,−1) is expressed as

Vm(L,−1) =
G4m

1−β1 +G5m
β2−β1 +G6

G1mβ2−β1 +G3
. (4.31)

We further define

fM (m) = (1− β2)G1m
β2−β1 − (β2 − β1)G2m

β2−1 + (1− β1)G3. (4.32)

We calculate the derivative of Vm(L,−1) with respect to m and obtain

(G1m
β2−β1 +G3)2dVm(L,−1)

dm

= G4

[
(1− β2)

{
G1m

β2−2β1 +G2m
β2−β1−1

}
+ (1− β1)

{
G3m

−β1 −G2m
β2−β1−1

}]
= G4m

−β1fM (m).

(4.33)

Let us define m̂ as m such that fM (m) = 0 and M̂ as M such that fM (L) = 0.

In order to find the maximizer of Vm(L,−1) with respect to m ∈ (0, L], we show

that Vm(L,−1) is strictly concave in m ∈ (0, L] and show that there is a unique

maximizer m̂ that is characterized by dVm(L,−1)/dm = 0. Then we can find the

maximizer of Vm(L,−1) when m ∈ (0, L] by checking whether m̂ ∈ (0, L].

Thanks to (4.33), this is equivalent in showing the following lemma on

fM (m):

Lemma 4.3.2. fM (m) satisfies the following 3 conditions:

1. fM (0) < 0.
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2. f ′M (m) > 0.

3.

fM (L) ≥ 0 when M ≥ M̂

fM (L) < 0 when M < M̂ .
(4.34)

Proof. First, we check fM (0) = (1 − β1)G3 < 0. Since β1 < 1 from (4.22), we only

need to check if G3 < 0. Indeed,

G3 = (Hβ2Lα2 − Lβ2Hα2) +Mα2−α1(Hα1Lβ2 − Lα1Hβ2)

< (Hβ2Lα2 − Lβ2Hα2) +Hα2−α1(Hα1Lβ2 − Lα1Hβ2)

= Lα1Hβ2(Lα2−α1 −Hα2−α1) < 0.

(4.35)

Second, we check if f ′M (m) > 0 in m ∈ [0, L].

f ′M (m) = −(β2 − β1)(β2 − 1)mβ2−2

{
G1m

1−β1 +G2

}
. (4.36)

We define P (m,M) := G1m
1−β1 + G2. Since P (0,M) < 0 and P (m,M)

is monotone in m, if we show that P (L,M) < 0, then we obtain the conclusion

f ′M (m) > 0.

P (L,M) = (Lβ1Hα2 −Hβ1Lα2)L1−β1

+ L1−β1Mα2−α1(Lα1Hβ1 − Lβ1Hα1) +M1−α1(Lα2Hα1 − Lα1Hα2).
(4.37)

Denoting the derivative with respect to M by dM , we calculate dMP (L,M):

dMP (L,M) = (α2 − α1)L1−β1Mα2−α1−1(Lα1Hβ1 − Lβ1Hα1)

+ (1− α1)M−α1(Lα2Hα1 − Lα1Hα2)

= Mα2−α1−1

{
(α2 − α1)L1−β1(Lα1Hβ1 − Lβ1Hα1)

+ (1− α1)M1−α2(Lα2Hα1 − Lα1Hα2)

}
.

(4.38)

If β1 ≤ α1, then it is obvious from (4.38) that

dMP (L,M) < 0. (4.39)

65



We now assume β1 > α1. Define

Q(M) = (α2 − α1)L1−β1(Lα1Hβ1 − Lβ1Hα1)

+ (1− α1)M1−α2(Lα2Hα1 − Lα1Hα2).
(4.40)

We see from (4.40) that Q(M) is monotonically decreasing with respect to M .

Therefore, we calculate dMP (L,M) at M = H and obtain

dMP (L,M) = Mα2−α1−1Q(M)

< Mα2−α1−1Q(H)

= Mα2−α1−1

{
(α2 − α1)L1−β1(Lα1Hβ1 − Lβ1Hα1)

+ (1− α1)H1−α2(Lα2Hα1 − Lα1Hα2)

}
= Mα2−α1−1

[
(α2 − α1)LHα1

{(
H

L

)β1−α1

− 1

}
− (1− α1)Lα2H1+α1−α2

{(
H

L

)α2−α1

− 1

}]
< 0.

(4.41)

We again proved

dMP (L,M) < 0. (4.42)

As a consequence of (4.39) and (4.42),

P (L,M) ≤ P (L,M)|M=H

= −Lα1H(Hα2−α1 − Lα2−α1)

{
1−

(
L

H

)1−β1}
< 0,

(4.43)

hence we have

f ′M (m) > 0 , m ∈ [0, L]. (4.44)

Finally, we check fM (L). Let us define
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qα(x) = (1− β1)xβ2−β1 − (β2 − β1)xα−β1 + (β2 − 1) (α < 1). (4.45)

Then, we can calculate fM (L) as

fM (L) = (1− β2)(G1L
β2−β1 +G3) + (β2 − β1)(G3 −G6L

−1)

= (β2 − β1)Lβ2−1
(
Lα1Hα2 − Lα2Hα1

)
M1−α1

− Lα1+β2−β1Hβ1qα1

(
H

L

)
Mα2−α1 + Lβ2−β1+α2Hβ1qα2

(
H

L

)
.

(4.46)

We have

q′α(x) = (1− β1)(β2 − β1)xα−β1−1

(
xβ2−α − α− β1

1− β1

)
> 0 (x ≥ 1), (4.47)

hence

qα(x) ≥ qα(1) = 0. (4.48)

The derivative of fM (L) with respect to M is calculated as

dMfM (L) = (β2 − β1)(1− α1)Lβ2−1(Lα1Hα2 − Lα2Hα1)M−α1

− (α2 − α1)Lα1−β1+β2Hβ1qα1

(
H

L

)
Mα2−α1−1.

(4.49)

We note here that the coefficient of M−α1 in (4.49), which is the higher order

term in M , is positive.

Calculating the value fM (L) when M = H,

fM (L)|M=H = Lα1(Hα2−α1 − Lα2−α1)

× {(β2 − β1)Lβ2−1H + (β1 − 1)Hβ2 + (1− β2)Lβ2−β1Hβ1}.
(4.50)

However, we have

(β2 − β1)Lβ2−1H + (β1 − 1)Hβ2 + (1− β2)Lβ2−β1Hβ1 < 0, (4.51)

hence
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fM (L)|M=H < 0. (4.52)

Therefore, fM (L) ≥ 0 when M ≥ M̂ and fM (L) < 0 when M < M̂ .

We obtain the following proposition directly from Lemma 4.3.2:

Proposition 4.3.3. When m ≤ L, the value of m that maximizes Vm(x, f) ism̂ when M ≥ M̂

L when M < M̂
. (4.53)

Remark 17. Proposition 4.3.3 says that if M is not as large as M̂ , the point where

Vm(x, f) takes its maximum is when m = L, which is the largest m possible in the

range of m considered. However, if M is large enough, Vm(x, f) takes its maximum

at m̂ ∈ (0, L). This is in line with the intuition that if M is too low, we cannot expect

much profit by holding on to the stock in the negative regime, hence it is optimal to

sell the position right away. However, if M is large enough, even if the stock price

is currently in the negative regime, there is a hope that the stock enters the positive

regime in the near future and generates a large profit. Therefore, it is optimal to

hold on to the position in this case until the process breaches the level m̂.

4.3.5 Maximizer in the Case where m ≥ L

In the case when m ≥ L, the solution Vm(x, f) is calculated (4.24) with A, B, C,

and D in (4.28). We solve for the maximizer of Vm(x, f) over m ≥ L.

Defining

E = m−β1Hβ2−β1
{

(1− β1)Hβ2−β1 + (β2 − 1)mβ2−β1

− (β2 − β1)mβ2−1H−β1Vm(H,+1)

}
,

(4.54)

we can calculate the derivative of Vm(x,−1) with respect to m as

(Hβ2−β1−mβ2−β1)2dVm(x,−1)

dm
= Exβ1 − E

Hβ2−β1 x
β2

= Exβ1
{

1−
(
x

H

)β2−β1}
x ∈ [m,H].

(4.55)
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The sign of the derivative dVm/dm matches with that of E, so we focus on

the sign of E. The sign is the same as that of g defined by

g(m) := (1− β1)Hβ2−β1 + (β2 − 1)mβ2−β1

− (β2 − β1)mβ2−1H−β1Vm(H,+1).
(4.56)

Remark 18. From (4.55), we see that the m that maximizes Vm(x,−1) maximizes

Vm(H,−1) and vice versa. For that, it is sufficient to maximize Vm(H,−1) over m.

We show a few lemmas we need for later use.

Lemma 4.3.4. Vm(H,+1) ≥ H.

Proof. e−rt(Vm(Xt,+1)−Xt) is a supermartingale. This is because before we stop

Xt upon reaching L or M , e−rtVm(Xt,+1) is a martingale (as it satisfies the ODE

(4.15)) and e−rtXt is a submartingale in the positive regime, hence −e−rtXt is a

supermartingale. Upon reaching the level L or M , e−rt(Vm(Xt,+1)−Xt) = 0 due to

the boundary conditions (4.27) and it will be zero thereafter as we stop the process

Xt upon reaching the level L or M . Then, it follows from the Optional Sampling

Theorem,

Vm(X0,+1)−X0 ≥ 0. (4.57)

Hence, considering the price process starting at H, we have the desired result.

Lemma 4.3.5. Vm(H,+1) is continuous in M . Furthermore, it is strictly and

monotonically increasing in M .

Proof. The continuity of Vm(H,+1) with respect toM is obvious from the expression

in (4.24) and (4.28). The second half of the lemma can also be verified from the

expression in (4.24) and (4.28), but we can also verify it as follows. Let τLM be the

first exit time of the process from the domain [L,M ]. Vm(H,+1) is the expected

value of e−rtXt at the first exit time τLM . If we make M larger, τLM gets larger.

In the positive regime, since e−rtXt is a submartingale, this shows that Vm(H,+1)

is monotonically increasing in M .

If we take the derivative of g with respect to m, we obtain

g′(m) = (β2 − β1)(β2 − 1)mβ2−β1−1

{
1−

(
m

H

)β1 Vm(H,+1)

m

}
< 0, (4.58)

where we used Lemma 4.3.4 in the last inequality. Therefore,
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g(L) > g(m) > g(H). (4.59)

Again from Lemma 4.3.4, we have

g(H) = (β2 − β1)Hβ2−β1
(

1− Vm(H,+1)

H

)
< 0. (4.60)

We now calculate g(L).

g(L) = (1− β1)Hβ2−β1
{

1−
(
L

H

)β2 Vm(H,+1)

L

}
+ (β2 − 1)Lβ2−β1

{
1−

(
L

H

)β1 Vm(H,+1)

L

}
.

(4.61)

From (4.61), g(L) is a decreasing function of Vm(H,+1). In case Vm(H,+1) = H,

we have

g(L)|Vm(H,+1)=H = (1− β1)Hβ2−β1
{

1−
(
L

H

)β2−1}
+ (β2 − 1)Lβ2−β1

{
1−

(
L

H

)β1−1}
.

(4.62)

We define

p(x) := 2− xβ2−1 − xβ1−1, x ≤ 1. (4.63)

We first note that p(1) = 0. We take the derivative of p with respect to x and get

p′(x) = −(β2 − 1)xβ2−2 − (β1 − 1)xβ1−2

= (β2 − 1)xβ1−2

(
1− β1

β2 − 1
− xβ2−β1

)
> 0.

(4.64)

Therefore,

p(x) ≤ p(1) = 0. (4.65)

From (4.65), we have

1− xβ2−1 ≤ xβ1−1 − 1 (x ≤ 1). (4.66)
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Substituting x = L/H in (4.66), we have

1−
(
L

H

)β2−1

≤
(
L

H

)β1−1

− 1. (4.67)

Let us define

q(y) = (1− β1)yβ2−β1 − (β2 − β1)y1−β1 + (β2 − 1). (4.68)

Coming back to (4.62), reordering the terms, we equivalently haveg(L)|Vm(H,+1)=H > Lβ2−β1q(y)

K := H/L > 1
. (4.69)

We note that q(1) = 0 and

q′(y) = y−β1(β2 − β1)(1− β1)(yβ2−1 − 1) ≥ 0 y ≥ 1, (4.70)

so we have

q(K) ≥ q(1) = 0, y ≥ 1. (4.71)

From (4.69) and (4.71), we have

g(L)|Vm(H,+1)=H > 0. (4.72)

As a conclusion, from (4.59), (4.60), and (4.72), there exists some value of

Vm(H,+1) which makes g(L) = 0. Since g(L) is monotonically decreasing with re-

spect to Vm(H,+1) and (from Lemma 4.3.5) Vm(H,+1) is monotonically increasing

with respect to M , there exists a unique M that satisfies g(L) = 0.

We define m̃ as m that satisfies g(m) = 0 and M̃ as M that satisfies g(L) = 0.

Then, we have the following proposition:

Proposition 4.3.6. When m ≥ L, the value of m that maximizes Vm(x, f) ism̃ when M ≤ M̃

L when M > M̃
. (4.73)

Remark 19. We have M̂ in Proposition 4.3.3 and M̃ in Proposition 4.3.6. We

note that although we introduced it in different ways, M̂ = M̃ . We can verify this

easily by checking the boundary conditions when we have M = M̂ and M = M̃ in

each case. Therefore, we use M̄ = M̂ = M̃ .
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4.3.6 Optimal Stopping Problem

We define m̄ as

m̄ =

m̂, M ≥ M̄

m̃, M ≤ M̄
. (4.74)

We show the following theorem:

Theorem 4.3.7. The solution to the optimal stopping problem (4.11) τ∗ is equal to

τm̄.

Proof. We first show the theorem in the case when M ≥ M̄ . We start by showing

the following:

1. e−rtVm̂(Xt,−1) is a supermartingale;

2. e−rtVm̂(Xt,−1) dominates the gains process e−rtXt.

For the first point, Vm̂(·,−1) satisfies the ODE which enables us to show that

its discounted process e−rtVm̂(t,−1) is a martingale up to the time when the price

process breaches the level m̂. After it breaches the level, the process e−rtVm̂(Xt,−1)

will just be e−rtXt thereafter, which is a supermartingale in the regime.

We now focus on the second part, to show that e−rtVm̂(Xt,−1) ≥ e−rtXt,

hence to show Vm̂(x,−1) ≥ x. We define ζ as

ζ(x) = Vm̂(x,−1)− x = Cxβ1 +Dxβ2 − x. (4.75)

We investigate this function in the domain [m̂, L]. First, note that ζ(m̂) = 0. We

calculate first and second derivatives of ζ(x) with respect to x:

ζ ′(x) = β1Cx
β1−1 + β2Dx

β2−1 − 1 (4.76)

and

ζ ′′(x) = β1(β1 − 1)Cxβ1−2 + β2(β2 − 1)Dxβ2−2. (4.77)

Substituting C and D, and using fM (m̂) = 0, we can further calculate

ζ ′′(x) =
(β2 − 1)(1− β1)(β2x

β2−β1 − β1m̂
β2−β1)xβ1−2

(β2 − β1)m̂β2−1
> 0. (4.78)

We calculate ζ ′(m̂).
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ζ ′(m̂) = β1Cm̂
β1−1 + β2Dm̂

β2−1 − 1

= β1Cm̂
β1−1 + β2Dm̂

β2−1 − (Cm̂β1−1 +Dm̂β2−1)

= Cm̂β1−1(β1 − 1) + (β2 − 1)Dm̂β2−1,

(4.79)

where the second equality comes from the boundary condition at x = m̂. We

substitute the values of C and D in (4.79) and obtain

{(1− β1)G1m̂
β2−β1 + (1− β1)G3}ζ ′(m̂)

= [(β2 − 1)G2m̂
β2−β1 − (1− β2)G1m̂

β2−2β1+1](β1 − 1)m̂β1−1

+ [(1− β1)G1m̂
1−β1 + (1− β1)G2](β2 − 1)m̂β1−1

= 0.

(4.80)

From ζ(m̂) = 0, (4.78), and (4.80), we have ζ(x) = Vm̂(x,−1) − x ≥ 0 in

x ∈ [m̂, L].

In order to solve the optimal stopping problem (4.11), we want to show that

e−rtVm̂(Xt, Ft) is the Snell envelope of e−rtXt.

The fact that e−rtVm̂(Xt, Ft) is a supermartingale is shown similarly as we

showed that e−rtVm̂(Xt,−1) is a supermartingale.

We further have to show that e−rtVm̂(Xt,+1) − e−rtXt ≥ 0 in x ∈ [L,M ].

For this, we use the fact that since e−rtVm̂(Xt,+1) − e−rtXt is a supermartingale,

we can use the Optional Sampling Theorem to deduce that

e−rt{Vm̂(Xt,+1)−Xt} ≥e−rτ+ min{Vm̂(L,+1)− L, 0}

= e−rτ+ min{Vm̂(L,−1)− L, 0} ≥ 0,
(4.81)

where τ+ is the first stopping time the process goes out of the region [L,M ]. Note

that we’ve replaced Vm̂(L,+1) with Vm̂(L,−1) thanks to the boundary condition

(4.25). Therefore, in the case M ≥ M̂ , the Snell envelope of e−rtXt is e−rtVm̂(Xt, Ft)

and the optimal stopping time is the first time when the process Xt hits the level

M or m̂.

The argument in the case when M ≤ M̄ will be similar, and we show that

e−rtVm̃(Xt,−1) ≥ e−rtXt, hence to show Vm̃(x,−1) ≥ x. We define the function

ζ(x) as (4.75). We evaluate this function in the domain [m̃,H].

First, note that ζ(m̃) = 0. We calculate first and second derivatives of ζ(x)
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with respect to x and they are the same as in (4.76) and (4.77) respectively.

Since g(m̃) = 0, we have

(1− β1)H−β1{Hβ2−m̃β2−1V+(H,M)}

= (β2 − 1)H−β1{m̃β2−1V+(H,M)−Hβ1m̃β2−β1}.
(4.82)

Substituting C and D, and using (4.82), we can further calculate

ζ ′′(x) = (β2 − 1)H−β1
(V+(H,M)− m̃1−β1Hβ1)

Hβ2−β1 − m̃β2−β1 (β2x
β2−1 − β1m̃

β2−β1xβ1−2)

> 0.

(4.83)

We calculate ζ ′(m̃).

ζ ′(m̃) = β1Cm̃
β1−1 + β2Dm̃

β2−1 − 1

= β1Cm̃
β1−1 + β2Dm̃

β2−1 − (Cm̃β1−1 +Dm̃β2−1)

= Cm̃β1−1(β1 − 1) + (β2 − 1)Dm̃β2−1,

(4.84)

where the second equality comes from the boundary condition at x = m̃. We

substitute the values of C and D in (4.84) and obtain

(Hβ2−β1 − m̃β2−β1)ζ ′(m̃)

= (β1 − 1)H−β1(Hβ
2 − m̃

β2−1Vm̃(H,+1))

+ (β2 − 1)m̃β2−1(H−β1Vm̃(H,+1)− m̃1−β1)

= 0,

(4.85)

where we used (4.82) in the last equality. From ζ(m̃) = 0, (4.83), and (4.85), we

have ζ(x) = Vm̃(x,−1)− x ≥ 0 in x ∈ [m̃,H].

4.4 Optimal Timing of Buying

Up to the previous section, we were dealing with the optimal selling problem. We

now think of the optimal timing to purchase the shares. We assume that we in-

troduce the capital to purchase the asset only at the time of purchase, and seek to

maximise our discounted profit.
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We solve the following optimal stopping problem:

U(x, f) = sup
τ∈TM

Ex,f [e−rτ{V (Xτ , Fτ )−Xτ}]. (4.86)

We show the following theorem:

Theorem 4.4.1. It is optimal to purchase the shares when and only when the un-

derlying process is in the positive regime.

Proof. We define the gains process

G(Xt, Ft) = e−rt{V (Xt, Ft)−Xt}. (4.87)

We further define U(Xt, Ft) as

U(Xt, Ft) =

e−r(min{t,τH}){V (Xmin{t,τH},+1)−Xmin{t,τH}}, Ft = +1

Ex[e−rτH{V (H,+1)−H}] , Ft = −1.
(4.88)

In the positive regime, e−rtV (Xt,+1) is a martingale while e−rtXt is a sub-

martingale. Hence, G(Xt,+1) is a local∗ supermartingale. Therefore, G(Xt,+1) is

itself the Snell envelope that dominates G(Xt,+1) and so it is optimal to stop the

process right away.

In the negative regime, e−rtV (Xt,−1) is a martingale and e−rtXt is a super-

martingale. Hence, G(Xt,−1) is a local submartingale. Since the process Xt will

hit the level H almost surely, from the Optional Sampling Theorem, it is therefore

optimal to run the process as long as possible, which corresponds to running the

process until it leaves the negative regime.

We also see that

U(Xt,−1) = Ex[e−rτH{V (H,+1)−H}] = Ex[e−rτH{V (H,−1)−H}]

≥ e−rt(V (Xt,−1)−Xt) = G(Xt,−1).
(4.89)

The first line in (4.89) uses the boundary condition and the second line

uses the fact that G(Xt,−1) is a submartingale and the Optional Sampling The-

orem. Therefore, U(Xt, Ft) is a supermartingale that dominates the gains process

G(Xt, Ft). We then use Theorem 4.3.1 and the solution to the optimal stopping

problem (4.86) is the first time the process (Xt, Ft) enters the stopping region, i.e.

∗Here, the terminology ”local” means ’locally in space’.
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the region where U(x,±1) = G(x,±1). This corresponds to the first time when

Ft = +1 or when Ft− = −1 and (Xt, Ft) = (H,+1).

4.5 Conclusions

We started with a simple setup where we only have one support/resistance level and

fully showed the optimal level to sell the shares. We also considered the optimal

timing to purchase the shares and found out that it is only optimal to do so in the

positive regime given that the investors borrow money upon buying the shares.

A possible extension of the problem considered in this section is to have the

price process follow more general SDEs where µ’s and σ’s are functions of the price.

We believe we can follow the same calculation as we did in this thesis using a general

theory of ODEs.

Another possible problem to consider is to use different cost functions for

the gains processes. For example, in considering the optimal purchasing problem,

we assumed that the investors borrow money at the time they decided to purchase

the shares. Instead, we can consider the case where the investors already have cash

in hand at time t = 0 and for this, we need to consider different gains process.
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Appendix A

Derivation of Heston’s PDE (2.3)

We derive Heston’s PDE (2.3). For price of an arbitrary derivative sturcture V ,

using Ito’s Lemma and substituting (2.1),

dV =

{
∂V

∂t
+ µS

∂V

∂S
+ κ(v̄ − v)

∂V

∂v
+

1

2
vS2∂

2V

∂S2
+

1

2
vη2∂

2V

∂v2

+ vSηρ
∂2V

∂S∂v

}
dt+

√
vS
∂V

∂S
dW 1 + η

√
v
∂V

∂v
dW 2

= Φ(V )dt+
√
vS
∂V

∂S
dW 1 + η

√
v
∂V

∂v
dW 2.

(A.1)

Let us think of a portfolio U = V1 + δS+ γV2, where V1 and V2 are arbitrary

derivatives structures. Then, from the variation principle, since the portfolio U

should make rUdt in infinitesimal time dt, the following should hold:

dU = dV1 + δdS + γdV2 = r(V1 + δS + γV2)dt. (A.2)

We substitute (A.1) in (A.2) and obtain

(
Φ(V1)dt+

√
vS
∂V1

∂S
dW 1 + η

√
v
∂V1

∂v
dW 2

)
+ δ(µSdt+

√
vSdW 1)

+ γ

(
Φ(V2)dt+

√
vS
∂V2

∂S
dW 1 + η

√
v
∂V2

∂v
dW 2

)
= r(V1 + δS + γV2)dt

(A.3)

Comparing the coefficients of dW 1 and dW 2 terms on both sides of (A.3), we obtain
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δ =
(∂V1/∂v)(∂V2/∂S)− (∂V1/∂S)(∂V2/∂v)

∂V2/∂v

γ = −∂V1/∂v

∂V2/∂v

. (A.4)

Finally, we compare the coefficients of the dt term in (A.3) and derive

Φ(V1)− rV1 + δ(µ− r)S = −γ(Φ(V2)− rV2). (A.5)

Substituting δ and γ from (A.4) to (A.3),

∂V2

∂v

(
Φ(V1)− rV1 −

∂V1

∂S
(µ− r)S

)
=
∂V1

∂v

(
Φ(V2)− rV2 −

∂V2

∂S
(µ− r)S

)
. (A.6)

Since V1 and V2 were arbitrary, with the introduction of a function Λ(S, v, t) that

depends only on S, v, and t (and independent of the derivatives structure), for the

value of any derivative structure V , we have

Φ(V )− rV − ∂V

∂S
(µ− r)S = Λ(S, v, t)

∂V

∂v
. (A.7)

We substitute back the function Φ(·) introduced in (A.1) and obtain

∂V

∂t
+ rS

∂V

∂S
+

{
κ(v̄ − v)− Λ(S, v, t)

}
∂V

∂v

+
1

2
vS2∂

2V

∂S2
+

1

2
vη2∂

2V

∂v2
+ vSηρ

∂2V

∂S∂v
− rV = 0.

(A.8)

If we take Λ(S, v, t) = λv with a constant λ as in [26], we derive (2.3).
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Appendix B

Lemmas for Chapter 2

The lemmas stated here are more or less those in [31], [32], and [69]. We only

modify them to fit our problem. We show them here, however, so that this paper is

self-contained.

A property that forms the basis of the following lemmas is that processes

controlled by Markov policies are strong Markov processes (Theorem 4.20 in [35]).

Lemma B.1. For every Markov policy π, z ∈ E, 0 < t < T , and any stopping time

S that is almost surely less than t ∧ τΩ,

E

(∫ t∧τ

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τ)g(Zz,πt∧τ , t ∧ τ)

∣∣∣∣FS)
=

∫ S
0
e−rsfπ(Zz,πs , t− s)ds+ e−rSV g,E,π(Zz,πS , t− S).

(B.1)

In particular, the process (
∫ T ′

0 e−rsfπ(Zz,πs , t − s)ds + e−rT
′
V g,E,π(Zz,πT ′ , T

′))T ′≤T is

a uniformly integrable martingale.

Proof. Let τ = τE(Z
z,π) and τS := τ ◦ θS = τE(Z

z,π
·+S), where θ is the shift operator.

Then τS = τ − S holds almost surely, and we obtain

E

(∫ t∧τ

0
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τ)g(Zz,πt∧τ , t ∧ τ)

∣∣∣∣FS)
=

∫ S
0
e−rsfπ(Zz,πs , t− s)ds

+ E

(∫ t∧τ

S
e−rsfπ(Zz,πs , t− s)ds+ e−r(t∧τ)g(Zz,πt∧τ , t ∧ τ)

∣∣∣∣FS)
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=

∫ S
0
e−rsfπ(Zz,πs , t− s)ds+ E

(∫ t∧τ−S

0
e−r(s+S)fπ(Zz,πs+S , t− (s+ S))ds

+ e−r((t−S)∧(τ−S)+S)g
(
Zz,π(t−S)∧(τ−S)+S , (t− S) ∧ (τ − S) + S

)∣∣∣∣FS)
=

∫ S
0
e−rsfπ(Zz,πs , t− s)ds+ e−rSE

(∫ (t−S)∧τS

0
e−rsfπ(Zz,πs+S , t− (s+ S))ds

+ e−r((t−S)∧τS)g
(
Zz,π(t−S)∧τS+S , (t− S) ∧ τS + S

)∣∣∣∣FS)
=

∫ S
0
e−rsfπ(Zz,πs , t− s)ds+ e−rSEx

({∫ (t−S)∧τ

0
e−rsfπ(Zz,πs , t− (s+ S))ds

+ e−r(t−S)∧τg
(
Zz,π(t−S)∧τ , (t− S) ∧ τ

)}
◦ θS

∣∣∣∣FS)
=

∫ S
0
e−rsfπ(Zz,πs , t− s)ds+ e−rSEZz,πS

(∫ (t−S)∧τ

0
e−rsfπ(Zz,πs , t− (s+ S))ds

+ e−r(t−S)∧τg
(
Zz,π(t−S)∧τ , (t− S) ∧ τ

))
=

∫ S
0
e−rsfπ(Zz,πs , t− s)ds+ e−rSV g,E,π(Zz,πS , t− S)

By taking expectation on both sides of (B.1), we retrieve a corollary which

is so-called Bellman’s principle.

Corollary B.2. For every Markov policy π, z ∈ E, 0 < t < T , and stopping time

S which is almost surely less than or equal to t ∧ τΩ,

V g,E,π(z, t) =E

(∫ S
0
e−rsfπ(Zz,πs , t− s)ds

)
+ e−rSE(V g,E,π(Zz,πS , t− S)). (B.2)

We now use the method of mirror coupling [47].

Lemma B.3. For every Lipschitz Markov control and small enough ε > 0, there

exists δ > 0 such that the following holds for every z1, z2 ∈ E: if ‖z1 − z2‖ < δ then

there exist processes Z̃z1,π and Z̃z2,π that have the same laws as Zz1,π and Zz2,π

respectively such that

‖Z̃z1,πt − Z̃z2,πt ‖ ≤ Gτt on t < ρδ
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and

Z̃z1,πt = Z̃z2,πt on t ≥ ρ0

for every t ≥ 0, where

ρc := inf
{
t ≥ 0;‖Z̃z1,π − Z̃z2,π‖ = c

}
, (inf φ =∞)

for any c ≥ 0, G is the squared Bessel process of dimension 1+ε started at ‖z1−z2‖,
and (τt)t≥0 is a stochastic time change with the property

τt ≤
t

ν1
, t ≥ 0.

For the proof of Lemma B.3, we refer to [31] and [69].

Lemma B.4. For every Lipschitz Markov policy π, the function V g,E,π(·, t) is con-

tinuous with bounded initial condition.

Proof. Let ε > 0 and δ̂ ≤ δ. For ‖z1 − z2‖ ≤ δ̂, we calculate |V g,E,π(z1, t) −
V g,E,π(z2, t)|.

|V g,E,π(z1, t)− V g,E,π(z2, t)|

=

∣∣∣∣E(∫ t∧τz1

0
e−rsfπ(Z̃z1,πs , t− s)ds+ e−r(t∧τz1 )g(Z̃z1,πt∧τz1

, t ∧ τz1)

)
−E

(∫ t∧τz2

0
e−rsfπ(Z̃z2,πs , t− s)ds+ e−r(t∧τz2 )g(Z̃z2,πt∧τz2

, t ∧ τz2)

)∣∣∣∣
<

∣∣∣∣E(∫ ρ0

0
e−rs

{
fπ(Z̃z1,πs , t− s)− fπ(Z̃z2,πs , t− s)

}
ds

∣∣∣∣Iρ0≤ρδ)∣∣∣∣
+

∣∣∣∣E(∫ t

ρ0

e−rs
{
fπ(Z̃z1,πs , t− s)− fπ(Z̃z2,πs , t− s)

}
ds

+ e−rt
{
g(Z̃z1,πt , t)− g(Z̃z2,πt , t)

}∣∣∣∣Iρ0≤ρδ)∣∣∣∣
+

∣∣∣∣E(∫ t

0
e−rs

{
fπ(Z̃z1,πs , t− s)− fπ(Z̃z2,πs , t− s)

}
ds

+ e−rt
{
g(Z̃z1,πt , t)− g(Z̃z2,πt , t)

}∣∣∣∣Iρ0>ρδ)∣∣∣∣
= B1 +B2 +B3.

(B.3)

For B1, since fπ is Lipschitz continuous, we can take δ1 ∈ (0, δ) small enough

such that
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B1 < C‖Z̃z1,πs − Z̃z2,πs ‖ < ε/2. (B.4)

For B2, due to the definition of Z̃, the processes Z̃z1,πt and Z̃z2,πt take the

same values in this time frame in consideration, so B2 = 0.

Due to the boundedness of fπ and g, the last term B3 could be bounded

by some constant multiplied by P(ρ0 > ρδ). If we denote by ρδ(Y) and ρ0(Y) the

first hitting times of the levels δ and 0 respectively for any process Y, we have from

Lemma B.3

P(ρδ < ρ0) ≤ P

(
ρδ(Gτ ) < ρ0(Gτ )

)
≤ P

(
ρδ

(
G 1
ν1

)
< ρ0

(
G 1
ν1

))
. (B.5)

Using the scale property of the squared Bessel process we get

P

(
ρδ

(
G 1
ν1

)
< ρ0

(
G 1
ν1

))
= P

(
ρδ

(
1

ν1
G

)
< ρ0

(
1

ν1
G

))
= P(ρν1δ(G) < ρ0(G)).

(B.6)

Recall that the scale function of the Bessel process with dimension 1 + ε is given by

s(z) := z
1−ε
2 , and that the process G starts at ‖z1 − z2‖ < δ̂. Hence we obtain

P(ρν1δ(G) < ρ0(G)) =
s(‖z1 − z2‖)− s(0)

s(ν1δ)
≤
(

δ̂

ν1δ

) 1−ε
2

. (B.7)

We set δ = δ1 and take δ̂ ∈ (0, δ) small enough so that

2C

(
δ̂

ν1δ

) 1−ε
2

<
ε

2
. (B.8)

Collecting what we calculated, we have proved that ‖z1−z2‖ < δ̂ implies |V g,E,π(z1, t)−
V g,E,π(z2, t)| < ε, so we have uniform continuity of V g,E,π(·, t).

Lemma B.5. For every Lipschitz Markov policy π, the function V g,E,π is continu-

ous.

Proof. If we proved the continuity of V g,E,π with respect to t for fixed z, the state-

ment is proved using the triangle inequality and Lemma B.4. Therefore, we prove

the continuity in t with fixed z. Due to Corollary B.2, we have
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V g,E,π(z, t+ δ)− V g,E,π(z, t) = E

(∫ δ

0
e−rsfπ(Zz,πs , t− s)ds

)
+ e−rδE

(
V g,E,π(Zz,πδ , t)− erδV g,E,π(z, t)

)
.

(B.9)

Applying Lemma B.4, we obtain

|V g,E,π(z, t+ δ)− V g,E,π(z, t)| ≤ Cδ + C ′E(‖Zz,πδ − z‖). (B.10)

The SDE for Zz,πδ yields

Zz,πδ − z =

∫ δ

0
µπ(Zz,πs , s)ds+

∫ δ

0
σπ(Zz,πs , s)dWs. (B.11)

Therefore, we have

|V g,E,π(z, t+ δ)− V g,E,π(z, t)| ≤ Cδ

+ C ′E

(∣∣∣∣ ∫ δ

0
µπ(Zz,πs , s)ds

∣∣∣∣)+ C ′′E

(∣∣∣∣ ∫ δ

0
σπ(Zz,πs , s)dWs

∣∣∣∣).
(B.12)

The second term on RHS can be bounded by some multiple of δ as µπ is bounded.

For the last term, using Jensen’s inequality and Burkholder-Davis-Gundy inequality,

E

(∣∣∣∣ ∫ δ

0
σπ(Zz,πs , s)dWs

∣∣∣∣) ≤ (E(∫ δ

0
σπ(Zz,πs , s)dWs

)2) 1
2

.

(
E

(∫ δ

0
σ2
π(Zz,πδ , s)ds

)) 1
2

.

(B.13)

This proves the continuity of V g,E,π with respect to t with fixed z. Therefore, the

continuity of V g,E,π is proved.
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Appendix C

Numerical Calculations on

Autocallables under Market

Driver Model

C.1 Pricing Autocallable as the Market Driver

Since our motivation of constructing the new model with concentration effect in

Chapter 2 was to price autocallables in such an environment, we numerically calcu-

late the price of an autocallable in the market driver model. We also price a straddle

under the concentration by the autocallable and see how the concentration affects

other products.

The detail of the autocallable we price in concentration is listed in Table C.1.

Parameter Value

K 105%

c 85%

k 70%

T 3 Years

h 3%

l 0.01%

q 3 months

Q 0.00005

Table C.1: Detail of the autocallable structure in concentration.

We price the autocallable under the PDE of the Heston model (2.3) and that of the

new model (2.8). The premiums and the risks of the product under the models are
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shown in Table C.2 and in Figure C.1.

Risks Value Delta Vega Vanna Volga

Heston 93.561 55.247% -29.240 0.4676 -130.155

New Model 93.772 53.730% -30.002 0.5431 -195.48

Table C.2: Summary for the autocallable that is the market driver at S = 98.255
and v = 0.030001.
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Figure C.1: Premiums and risks of the concentrated autocallable at time t = 0.
Solid lines indicate those in the new model and dotted lines those in the Heston
model.

Note that the price of the autocallable is higher in the new model as the

option that the structure is short of is priced cheaper now with the volatility offered

in the market.
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C.2 Pricing Straddle under the Concentration in Auto-

callable

We first price a straddle described in Table C.3 given the concentration in the

autocallable given in Table C.1. The premiums and risks of the straddle in the

Heston model and our model are shown in Table C.4 and in Figure C.2

Structure Stradle

Tenor 3 years

Strike 100%

Table C.3: Detail of the straddle we price.

Risks Value Delta Vega Vanna Volga

Heston 24.936 32.519% 51.703 0.5346 1710.885

New Model 24.515 36.231% 52.050 -0.2208 1101.994

Table C.4: Summary for the straddle given the existance of the autocallable de-
scribed in Section C.1 as the market driver at S = 98.255 and v = 0.030001.

Since the volatility is offered from the concentration in the autocallable, the straddle

is priced cheaper under the new model.

C.3 Pricing Another Autocallable under the Concen-

tration in Autocallable

Finally, we price another autocallable structure with detail given in Table C.5 given

the existence of the autocallable in Table C.1 as the market driver.

Parameter Value

K 95%

c 75%

k 60%

T 3 Years

h 4%

l 0.01%

q 3 months

Table C.5: Detail of a different autocallable to be priced given the concentration of
the structure given in Table C.1.
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Figure C.2: Premiums and risks of the straddle under the risk concentration in the
autocallable. Solid lines indicate those in the new model and dotted lines those in
the Heston model without any assuptions on risk concentration.

The premiums and risks of the autocallable are shown in Table C.6 and in Figure C.3.

Risks Value Delta Vega Vanna Volga

Heston 98.486 26.176% -21.175 1.3033 -244.708

New Model 98.574 24.881% -21.194 1.3607 -273.463

Table C.6: Summary for the autocallable in Table C.5 given another autocallable
described in SectionC.1 as the market driver at S = 98.255 and v = 0.030001.

As in the case of the market driver in Section C.1, the different autocallable structure

considered in this section is also priced higher under the new model.

C.4 Summary

Calculating the corresponding volatility level in the new model for each product, we

obtain the result shown in Table C.7.

From this table, we see that the model indeed takes into account the concentration
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Figure C.3: Premiums and risks of the autocallable described in Table C.6 under
the concentration of another autocallable specified in Table C.1. Solid lines indicate
those in the new model and dotted lines those in the Heston model without any
concentrations.

Autocallable Straddle Autocallable
(Market Driver) (Not the Market

Driver)

Heston 17.321% 17.321% 17.321%

New Model 15.102% 14.780% 16.069%

Difference -2.219% -2.541% -1.252%

Table C.7: Implied volatilities calculated based on the risk figures from the Heston
model.

effect of the autocallable and shifts the volatility lower. Even if the market driver

is of exotic type like an autocallable, we see that the new model reflects the impact

of the market driver in price and risks.
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Appendix D

Proof of Theorem 3.3.1

In this Appendix, we give a proof of Theorem 3.3.1.

Proof : V πi satisfies

1

2
Tr{σT (HV πi)σ}+ µTπi · ∇V

πi − αV πi + fπi = 0, (D.1)

and since Assumption 2 is that σ does not depend on π, πi is determined by the

iteration:

πi+1 = arg max
π∈A

(
1

2
Tr{σT (HV πi)σ}+ µTπ · ∇V πi + fπ

)
= arg max

π∈A

(
µTπ · ∇V πi + fπ

)
.

(D.2)

From Assumption 1, we can write

µπ = Mπ + b. (D.3)

It then follows from (D.2) that

MT∇V πn +∇πfπ|π=πn+1 = 0. (D.4)

Subtracting (D.4) with n = i − 1 from the same equation with n = i, and setting

Wi := V πi+1 − V πi , we obtain

MT∇Wi−1 +∇πfπ|π=πi+1 −∇πfπ|π=πi = 0. (D.5)

Using the Mean Value Theorem, we can then write (D.5) as
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MT∇Wi−1 + (Hπf
π)|Tπ′ · (πi+1 − πi) = 0 (D.6)

for some π′ ∈ IRd.

It follows from Assumption 3 that Hπf
π is negative definite, hence invertible, so we

can rewrite (D.6) as

πi+1 − πi = −{(Hπf
π)|Tπ′}−1MT∇Wi−1. (D.7)

Comparing (D.1) for i and i+ 1,

{
1
2Tr{σ

T (HV πi+1)σ}+ (Mπi+1 + b)T · ∇V πi+1 − αV πi+1 + fπi+1 = 0,
1
2Tr{σ

T (HV πi)σ}+ (Mπi + b)T · ∇V πi − αV πi + fπi = 0,
(D.8)

and subtracting, we get

1

2
Tr{σT (HWi)σ}+ (Mπi+1 + b)T · ∇Wi − αWi

+ {M(πi+1 − πi)}T · ∇V πi + (fπi+1 − fπi) = 0.
(D.9)

We define Ri as

Ri = (πi+1 − πi)TM∇V πi + (fπi+1 − fπi), (D.10)

then we obtain, from Taylor’s theorem,

Ri = (πi+1 − πi)T ·
{
M∇V πi +∇πfπ|π=πi+1 −

1

2
Hπf

π|π′ · (πi+1 − πi)
}

= −1

2
(πi+1 − πi)T (Hπf

π)|Tπ′ · (πi+1 − πi) from (D.4).

(D.11)

Using (D.7), we can write (D.11) as

Ri = −1

2
(MT∇Wi−1)T (Hπf

π|π′)−1(MT∇Wi−1), (D.12)

and then we can rewrite (D.9) as

1

2
Tr{σT (HWi)σ}+ (Mπi+1 + b)T∇Wi − αWi +Ri = 0. (D.13)

We have the same Dirichlet condition on the boundary of the domain for each V π,
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therefore Wi ≡ 0 on ∂E . From Schauder’s estimate on second order linear elliptic

partial differential equations [23, pg. 108], we conclude that

‖Wi‖2,β ≤ C‖Ri‖0,β = C‖∇Wi−1‖20,β ≤ C‖Wi−1‖22,β, (D.14)

where the constant C depends only on the domain E , the ellipticity constant ν, and

the bounds on the coefficients of the elliptic differential operator.
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Appendix E

Arbitrage-free Markets

E.1 Introduction

We recall that the existence of a risk neutral measure implies that there is no ar-

bitrage opportunity in the market [33]. Hence, we show the existence of such a

measure in the new model proposed in Chapter 2 and in the setup in Chapter 4.

E.2 No Arbitrage for the New Model

We show that the new model (2.4) in Chapter 2 has a risk neutral measure, hence

that the market is arbitrage-free. We refer to [33] (pg. 393) for further reference.

We recall the new model:
dS = µSdt+

√
vSdW 1

dv = κ(v̄ − v +Q∂F
∂v )dt+ η

√
vdW 2

d〈W 1,W 2〉t = ρdt

, (E.1)

with some coefficient Q and some function F . Note that from the theory of partial

differential equations, the term ∂F/∂v is continuous and bounded with continuous

initial and boundary conditions.

Let W̃ 2 be a Brownian motion that is independent of W 2 such that W 2 =

ρW1 +
√

1− ρ2W̃ 2. Any σ(W 1
s ,W

2
s , s ≤ t) = σ(W 1

s , W̃
2
s, s ≤ t)-martingale can be

written as stochastic integrals with respect to the pair (W 1, W̃ 2). Therefore, any

Radon-Nykodým density satisfies

dZt = Zt(φtdW
1
t + γtdW̃ 2

t), (E.2)

for some predictable processes φ and γ.
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Since we need to find a risk neutral measure, we focus on the case when

γ = 0, when dZt = φtZtdW
1. We want to look for a measure which makes e−rtSt

a martingale under the measure Q = ZP, hence Ze−rtSt a local martingale under

the measure P. Ze−rtSt satisfies the SDE:

d(Ze−rtSt) = (e−rtS)dZ + Zd(e−rtS) + dZ · d(e−rtS)

= Ze−rtS
{

(−r + µt +
√
vφt)dt+ (φt +

√
v)dW 1

}
,

(E.3)

where the first equality is derived from integration by parts. From (E.3), Ze−rtSt

is a local martingale under the measure P if and only if −r + µt +
√
vφt = 0. With

this φ, we found a risk neutral measure and therefore the market is arbitrage-free.

This proves Proposition 2.2.1.

Remark 20. The positive variance condition (2.6) guarantees v > 0 a.s..

E.3 No Arbitrage in the Technical Analysis Setup

E.3.1 Technical Analysis Setup

We first review the setup for the technical analysis model. We assume that there are

levels L and H (0 < L < H) at which the regimes change. We define the positive

region as the domain [L,∞) and the negative region as the domain (0, H]. Note that

the two regions have non-empty intersection [L,H].

We assume that there are only two regimes in the price process; the positive

regime and the negative regime.

Under the positive regime, the process lies in the positive region and has

dynamics

dSt = µ+Stdt+ σ+StdWt, (E.4)

where µ+ and σ+ > 0 are constants and Wt is a one dimensional Brownian motion.

The transition from the positive to the negative regime occurs when the positive

regime is in place and S exits the positive region.

On the other hand, under the negative regime, the process lies in the negative

region and has dynamics

dSt = µ−Stdt+ σ−StdWt. (E.5)
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where µ− and σ− > 0 are constants. The transition from the negative to the positive

regime occurs when the negative regime is in place and S exits the negative region.

Let r > 0 denote the interest rate and we assume

µ− < r < µ+. (E.6)

The condition (E.6) implies the discounted price process is a supermartingale under

the negative regime and a submartingale in the positive regime up to the time of

the first regime transition.

To keep track of which regime currently holds, we define the flag process Ft

which takes values in {−1,+1} as

Ft =

+1 if the dynamics correspond to the positive regime

−1 if the dynamics correspond to the negative regime
. (E.7)

The flag process Ft indicates under which regime the price process St is at time t.

From the definition of the regime transition, Ft jumps from one value to the other

only in the following cases:Ft− = +1 and St = L, then Ft = −1

Ft− = −1 and St = H, then Ft = +1
. (E.8)

E.3.2 No Arbitrage

Let S be the process determined by the SDE dS = µSdt + σSdW with a Wiener

process W under the measure P. We introduce θ as

θ =
µ− r
σ

. (E.9)

Then we have the following proposition:

Proposition E.1. ([33]) If Z is the process defined by

Z(t) = exp

(
−
∫ t

0
θ(s)dW (s)− 1

2

∫ t

0
θ(s)2ds

)
, (E.10)

then the measure P̃ = P̃T defined by dP̃ = Z(T )dP is a risk neutral measure.

We define θ+ and θ− to be
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θ+ =
µ+ − r
σ+

, θ− =
µ− − r
σ−

. (E.11)

From Proposition E.1, we construct the risk neutral measure as

Z ′(t) = exp

(
−
∑
i

∫ τi+1

τi

θ′(s)dW (s)− 1

2

∑
i

∫ τi+1

τi

θ′(s)2ds

)
, (E.12)

where τi’s are stopping times when regime switching happens and θ′ is defined as

θ′ =

θ+, when St is in the positive regime between τi and τi+1

θ−, when St is in the negative regime between τi and τi+1

, (E.13)

or equivalently,

θ′ =

θ+, when Ft = +1 between τi and τi+1

θ−, when Ft = −1 between τi and τi+1

. (E.14)

θ′ is a predictable process and it is bounded, so from Novikov’s condition, Z ′ is a

martingale. Therefore, this is a risk neutral measure and the market is arbitrage-

free. This proves Proposition 4.2.1.
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