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A TEST FOR WEAK STATIONARITY IN THE SPECTRAL DOMAIN

JAVIER HIDALGO AND PEDRO CL SOUZA

Abstract. We examine tests for stability of the dynamics of a time series against alternatives
that cover both local-stationarity and break points. One key feature of the tests is that the
asymptotic distribution are functionals of the standard Brownian Bridge sheet in [0, 1]2. The
tests have nontrivial power against local alternatives converging to the null hypothesis at a
T−1/2 rate, where T is the sample size. We examine an easy-to-implement bootstrap analogue
and present the finite-sample performance in Monte-Carlo experiment. Finally, we implement
the methodology to assess the stability of the inflation dynamics in the United States and on a
set of neuroscience tremor data.

1. INTRODUCTION

Weak stationarity – the property that the structure of the data in its first two moments is
independent of time – plays an important and key role when invoking asymptotic arguments,
making inferences on a time series sequence or accurate predictions of future values. However, the
assumption of weak stationarity could be difficult to justify a priori and it is possible that some
sequences show nonstationary behaviour. In economics, a well-known example is the Lucas’s
(1976) critique. The justification being the belief that the parameters of macroeconometric
models might depend implicitly on agents’ expectations and so are unlikely to remain stable as
policymakers change their behaviour. The possibility of data exhibiting nonstationary behaviour
is not constrained to economic data sets, see examples in Paparoditis (2009) or Dahlhaus (2009).
Thus the purpose of this paper is to present easy-to-implement tests for weak stationarity. We are
not concerned with the situation when the change on the dynamics is due to a random variable
as in SETAR, Threshold or Markov switching models, as the latter models are regarded as
nonlinear, and within this type of models one is often more concerned with testing for linearity.

Testing for weak stationarity is not a new endeavour. There are two main approaches or lines
of research. A first one, focused on change point alternatives, assumes that the practitioner
knows the family of parametric model that generates the data. See for example Picard (1985),
Davis et al. (1995) and the surveys by Perron (2006) or Aue and Horvath (2013). A second and
more recent approach describes testing procedures when the practitioner has not a parametric
model in mind or she is not confident in a particular one. See Paparoditis (2009) or Preuß
et al. (2013), under Gaussianity, in the context of the so-called local-stationary models or
evolutionary spectra introduced by Priestley (1965). The approaches pursued by Paparoditis
(2009) and Preuß et al. (2013) are quite different. The former employs a direct comparison of
two different nonparametric fits of the spectral density function, one fit being under the null
hypothesis and the other under the alternative. The methodology is similar to that in Härdle
and Mammen (1993) for model specification. On the other hand, the approach adopted in Preuß
et al. (2013) is based on the empirical function similar to Dahlhaus and Polonik (2009).

In this paper we are interested in testing procedures when the practitioner has not a paramet-
ric model in mind. Our tests parallels recent work by Dwivedi and Subba Rao (2011) or Jentsch
and Subba Rao (2015). More specifically we use, among other properties, that under weak sta-
tionarity the periodogram at two different Fourier frequencies are asymptotically independent,
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whereas Dwivedi and Subba Rao (2011) relies on a similar result but for the the discrete Fourier
transform. Although the implementation of their test differs quite substantially from ours (see
Section 2 for details) both approaches share the feature that their asymptotic distribution does
not depend on the second order dependence of the sequence, contrary to those mentioned in the
previous paragraph.

However a major difference between our approach and those described above is that our tests
are easier to implement requiring the choice of only one smoothing parameter, which is a minimal
requirement due to the non-specification of the model even under the null hypothesis. On the
other hand, tests proposed in Dwivedi and Subba Rao (2011) or Paparoditis (2009) require the
choice of 3 or even 4 different bandwidths for their implementation. So our methodology reduces
the sensitivity of the test and makes its implementation easier. Second, our tests detect local
alternatives of order T−1/2, being T the sample size and so comparable to the test of Preuß et al.
(2013), although we do not need to assume Gaussianity which rules out from the outset many
examples with real time series data. So our tests are more efficient than those which only detect
local alternatives of order T−α for some α < 1/2 as is the case using Härdle and Mammen’s
(1993) methodology.

Finally, as our Monte-Carlo experiment suggests that the asymptotic distribution does not
provide a good approximation for the finite-sample one, we present a valid bootstrap to the
tests which does not require the choice of any additional bandwidth parameter, in contrast to
the methodology suggested in the aforementioned work, as in Preuß et al. (2013) or Dwivedi
and Subba Rao (2011). Our bootstrap algorithm echoes the approach in Hidalgo (2007) and
Hidalgo and Seo (2015) for data collected in a lattice model and that exhibit long memory
dependence which is well-known not to be strong mixing, see Ibragimov and Rozanov (1978).
As a by-product, we present a very simple estimator of the fourth cumulant, although we do not
pursue its comparison to those in Grenander and Rosenblatt (1957) or its time domain analogue
in Fragkeskou and Paparoditis (2016). This is beyond the scope of this paper.

We now describe our null hypothesis. Let {xt,T }Tt=1, t ∈ N, denote a sequence of zero mean
random variables

(1.1) xt,T =
∞∑
j=0

βt,T (j) εt−j ; βt,T (0) = 1,

to be more specific in Condition C1 below. Model (1.1) allows for local stationarity as well as
breaks in some of the coefficients βt,T (j), say βt,T (j) = δ (j) I (t < t0) + β (j) with δ (j) 6= 0.
We define our null hypothesis as

H0 : βt,T (j) = β (j) for all j ∈ N and t = 1, ..., T , T ∈ N,

being the alternative hypothesis the negation of the null.
We alternatively formulate our hypothesis in the spectral domain as follows. If {εt}t∈Z is a

stationary sequence, there exists a Cràmer-representation

εt =
1

(2π)1/2

∫ π

−π
exp (iλt) dξ (λ) ,

where ξ (λ) has zero mean and orthogonal increments, see Brillinger (1981). So the (time-
varying) spectral representation of (1.1)

(1.2) xt,T =

∫ π

−π
Bt,T (λ) exp (iλt) dξ (λ) ,

see Dahlhaus (1997), where Bt,T (λ) denotes the transfer function

(1.3) Bt,T (λ) = Bt,T (−λ) =
∞∑
j=0

βt,T (j) e−ijλ.
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Under Condition C2 below, we can approximate (1.3) by

(1.4) B (u;λ) =
∞∑
j=0

β (u; j) e−itλ, u ∈ [0, 1] ; λ ∈ [0, π] ,

in the sense that

(1.5) sup
λ∈[0,π],1≤t≤T

∣∣∣∣Bt,T (λ)− B
(
t

T
;λ

)∣∣∣∣ = O

(
1

T

)
,

and hence we denote the “time varying” spectral density function of {xt,T }Tt=1, T ∈ N, by

(1.6) f (u;λ) =
σ2ε
2π
|B (u;λ)|2 u ∈ [0, 1] ; λ ∈ [0, π] .

As an example we have the general tvARMA model

xt,T −
P∑
p=1

αp

(
t

T

)
xt−p,T =

Q∑
q=0

βq

(
t

T

)
εt−q

which satisfies

B (u;λ) =
1

(2π)1/2

∑Q
q=0 βq (u) exp (−iλq)

1−
∑P

p=1 αj (u) exp (−iλp)
.

A second example is when there is an abrupt change on the values of the parameters at some
particular time t0 and xt,T = α (t)xt−1,T + εt, where

α (t) = α1I (t < t0) + α2I (t ≥ t0) ; α1 6= α2

and |α1| , |α2| < 1. Then B (u;λ) =: (2π)−1/2 (1− α1 exp (−iλ))−1 when u = t/T < u0 = t0/T

and =: (2π)−1/2 (1− α2 exp (−iλ))−1 when u ≥ u0.
Given (1.6) we can alternatively write H0 as

(1.7) H0 : f (u;λ) = f (λ) for all u ∈ [0, 1]

a.e. in [0, π], being the alternative hypothesis the negation of the null. That is, denoting by
µ (·) the Lebesgue measure,

(1.8) Ha : µ (U ,Λ) > 0,

where (U ,Λ) = {u ∈ [0, 1] ;λ ∈ [0, π] : f (u;λ) 6= f (λ)}. At the end of Section 2.3 we comment
that our tests are consistent against heteroscedastic alternatives, say xt,T = σtεt, with σt =
σ(t/T ).

The remainder of the paper is organized as follows. The next section describes and examines
a test for H0 in (1.7), as well as a modification such that the asymptotic behaviour does not
depend on any unknown quantity and in particular on the unknown f (λ) =: f (u, λ). We also
discuss regularity conditions and the type of local alternatives for which the test has no trivial
power. Section 3 presents a valid bootstrap algorithm for our hypothesis testing. Section 4
presents a Monte-Carlo experiment to shed light on the finite-sample performance of the test.
We show that our test has a more robust performance (both in terms of size and power) across
data-generating processes than other comparable test such as Preuß et al. (2013). We also
apply our test to two real data sets. Section 5 concludes, whereas the proofs are confined to the
Appendix.
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2. THE TEST AND REGULARITY CONDITIONS

We first describe and discuss the motivation of the tests for H0 in (1.7). Given a stretch

of data {xt,T }Tt=1, where T denotes the sample size, we split it into B blocks, each of them of
length n, assuming without loss of generality that B = T/n. Thus, the b− th block is based on
the observations

{
xt+(b−1)n,T

}n
t=1

, and we denote its periodogram by

(2.1) Ix,b (j) =
1

n

∣∣∣∣∣
n∑
t=1

xt+(b−1)n,T e
−itλj

∣∣∣∣∣
2

, b = 1, ...,B,

where λj = 2πj/n, j = 1, ..., [n/2] =: ñ, and where we abbreviate in what follows g (λj) by g (j)

for a generic function g (λ). Similarly, the periodogram of
{
εt+(b−1)n

}n
t=1

, b = 1, ...,B, is given

by Iε,b (j) = n−1
∣∣∑n

t=1 εt+(b−1)ne
−itλj

∣∣2.
Our definition of the periodogram in (2.1) is similar to that in Dahlhaus (1997), i.e.

(2.2) Ix,b (j) =
1

n

∣∣∣∣∣
ñ∑

t=−ñ+1

xt+(b−1)n,T e
−itλj

∣∣∣∣∣
2

,

which has the interpretation of being the periodogram over a segment of length n with midpoint
at t + (b− 1)n. There is no difference with ours from an asymptotic point of view, and we
prefer (2.1) for notational simplicity. Alternatively we might have employed the so-called “pre-
periodogram”, see (3.7) in Neumann and Von Sachs (1997), given by

It,T (λ) =
∑

s:1≤[t−s/2],[t+s/2]≤T

x[t−s/2],Tx[t+s/2],T e
−isλ

which is regarded as a closer counterpart of the evolutionary spectra function

fT (u, λ) =

∞∑
s=−∞

Cov
(
x[uT−s/2],T ;x[uT+s/2],T

)
e−isλ,

which, as noticed by Dahlhaus (1997), satisfies that limT→∞ fT (u, λ) = f (u, λ) defined in (1.6).
However it appears to have worst finite sample properties when compared to that in (2.1) or
(2.2), so that we have decided to use the latter.

We now describe the tests. Suppose that we were interested in the null hypothesis H0 given
in (1.7) but only at some frequency λj , j = 1, ..., ñ. Because Ix,b (j) /f (j) ' Iε,b (j) /E

(
ε2t
)

using Bartlett’s decomposition, see e.g. Brockwell and Davis (1991), and for all j = 1, .., ñ,{(
Iε,b (j) /E

(
ε2t
))
− 1
}B
b=1

behaves as a sequence of uncorrelated centered χ2
2 random variables,

we suggest the CUSUM-type of statistic

Tn,B
(
b∗

B
; j

)
=

1

B

b∗∑
b=1

{
Ix,b (j)

f̂ (j)
− 1

}
, b∗ = 2, ...,B

where

(2.3) f̂ (j) =
1

B

B∑
v=1

Ix,v (j)

is the estimator of the spectral density function f (j) proposed by Welch (1967), which appears
more natural in our context than the standard smooth periodogram estimator.

The previous arguments were given for a particular frequency λj . However since
Cov(Iε,b1 (j) ; Iε,b2 (k)) = 0 if j 6= k for all b1, b2 = 1, ...,B, then extending the argument to
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[0, π], our test for H0 is based on

(2.4) Tn,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

Tn,B
(
b∗

B
; j

)
, j∗ = 1, ..., ñ.

As we pointed out in the introduction, our statistic (2.4) draws some similarities to those given
in Dwivedi and Subba Rao (2011) see also Jentsch and Subba Rao (2015) and Bandyopadhy et al.

(2017). More specifically, denote ωk = 2πk/T and Jx (ωk) = T−1/2
∑T

t=1 xte
−itωk , k = 1, ...T ,

and compute

ĉT (r) =
1

T

T∑
k=1

Jx (ωk)Jx (ωk+r)

f̂1/2 (ωk) f̂1/2 (ωk+r)
, r = 1, ...,m,

for some finite chosen m with f̂ (λk) being the weighted average periodogram estimator. Then

using the fact that under the null hypothesis
{
T 1/2ĉT (r)

}[T/2]
r=1

behaves as a sequence of indepen-

dent random variables, they propose DSRT (m) = T
∑m

r=1

{
|ĉT (r)|2 / (1 + κ̂4 (ωr))

1/2
}

, where

1 + κ̂4 (ωr) is an estimator of the second moments of T |ĉT (r)|2. So, drawing similarities with
Box-Pierce statistic, we can regard DSRT (m) as a Portmanteau-type of test, see also the test
proposed in Lee et al. (2003). However our tests lie into the goodness-of-fit type of tests, and in
this sense we look at all frequencies in [0, π], i.e. letting m = T/2, instead of a fixed and finite
number of them as is the case with DSRT (m). The latter suggests that showing the validity of
our test is technically more challenging.

Theorem 1 indicates that the asymptotic distribution of Tn,B
(
b∗

B ; j∗

ñ

)
depends on the fourth

cumulant of the innovations {εt}t∈Z and hence it is not pivotal. So it might be of interest to

examine if we can provide a modification of Tn,B
(
b∗

B ; j∗

ñ

)
with pivotal asymptotic distribution.

To that end, we borrow ideas from Anderson and Walker (1964), who observed that the asymp-
totic distribution of the estimator of the correlation coefficient depends only on the first two
moments, compared with the dependence on the fourth cumulant when examining the estimator
of the covariance. Then we propose the following statistic

(2.5) T Pn,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

T Pn,B
(
b∗

B
; j

)
, j∗ = 1, ..., ñ

where

T Pn,B
(
b∗

B
; j

)
=

1

B

b∗∑
b=1

{
Ix,b (j) /σ̂2ε (b)

1
B

∑B
v=1

(
Ix,v (j) /σ̂2ε (v)

) − 1

}
, b∗ = 2, ...,B

and σ̂2ε (b), b = 1, ...,B, is given in (2.23) below. We now introduce regularity conditions.

Condition C1 : {xt,T }Tt=1, T ∈ N, is a sequence of random variables defined as

(2.6) xt,T =

∞∑
j=0

βt,T (j) εt−j , with βt,T (0) = 1,

such that supt |βt,T (j)| < υ (j),
∑∞

j=0 jυ (j) <∞, where {εt}t∈Z is an independent and

identically distributed sequence with E (εt) = 0, E
(
ε2t
)

= σ2ε and supt E
(
|εt|`

)
= µ` <∞

for some ` > 8. In addition, |Bt,T (λ)| is bounded away from zero for all λ ∈ [0, π]. Finally,
we denote the fourth cumulant of εt/σε as κ4.

Condition C1 is standard and very mild. It entails to weak dependence of the sequence,
although not necessarily stationary as βt,T (j) may depend on t. The condition allows for many
models such as when with jumps and smooth transitions as local-stationary sequences used to
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model nonlinearities with time series data. It appears that we can relax Condition C1 to allow
the conditions stated in Dalla, Giraitis and Hidalgo (2005) or the independence assumption of
the innovations {εt}t∈Z to be only martingale differences in its first and second moments at the
expense of complicating the technical apparatus. In this way, the condition would become very
similar to Assumption A1 in Dwivedi and Subba Rao’s (2011), which plays a central role in their
results. In addition, as we comment below, we can allow the fourth moments of the innovations
to depend on time, relaxing the condition of stationarity among the first four moments needed
in Dwivedi and Subba Rao (2011).

It is worth pointing out that C1 implies that the sequences {xt,T }Tt=1 have also an autore-
gression representation as Dahlhaus (1996) showed. Replacing (2.6) by

(2.7) xt,T =
∞∑
j=0

β

(
t

T
; j

)
εt−j ; b

(
t

T
; 0

)
= 1

then, as was first shown by Dahlhaus (1996), the tvAR model

xt,T =

P∑
p=1

α

(
t

T
; p

)
xt−p,T + εt

under standard regularity conditions on {α (u; j)}j≥0 for all u ∈ [0, 1], cannot be represented as

in (2.7). Under H0 the latter model collapses to the standard AR (P ).

Condition C2 : βt,T (j) satisfies that

(2.8) sup
1≤t≤T

∣∣∣∣βt,T (j)− β
(
t

T
; j

)∣∣∣∣ ≤ C

T
υ (j)

∞∑
j=0

jυ (j) <∞.

Condition C2 indicates that βt,T (j) can be well approximated (locally) by a smooth function
β (u; j) and that observations which are close in time are regarded as stationary. The bound
sequence υ (j) does not need to be the same as that in Condition C1. However we keep it
for notational simplicity as both satisfies the upper bound υ (j) = O

(
j−2−δ

)
for some δ > 0.

Another implication of Condition C2 is that Bt,T (λ) and B (u;λ) given in (1.3)− (1.4) satisfies
(1.5). Under H0, (2.8) holds trivially.

Thus, under H0, Condition C1 implies that the sequence has a spectral density function

(2.9) f (λ) = σ2ε |B (λ)|2 ,

where B (z) =
∑∞

j=0 β (j) e−ijz. Also, using the autoregressive representation we can write the

spectral density function as f (λ) = σ2ε |A (λ)|−2, where A (z) = 1−
∑∞

j=1 α (j) e−ijz.

Condition C3 : n is such that as T increases to infinity, T
n2 + n3

T 2 → 0 and B = T/n.

We finish this section with a couple of comments. First, it is worth noticing that in view of
the similarity of Tn,B

(
b∗

B ; j
)

with the CUSUM tests, we could have employed a recursive version
of the statistic,

1

B

b∗∑
b=2

{
Ix,b (j)

(b∗ − 1)−1
∑b∗−1

v=1 Ix,v (j)
− 1

}
b∗ = 2, ...,B.

The motivation of this modification, as given in Brown et al. (1975) when testing for constancy
of the parameters, is to avoid the dependence of the distribution of the test on the estimator of
the parameters of the model under the null hypothesis. This modification is most often known

as Khamaladze’s transformation (1981). Notice that we can regard Ix,b (j) /f̂ (j) as an estimator

of the standardized mean f (b/B;j) /B−1
∑B

b=1 f (b/B; j). To simplify the exposition we focus

on Tn,B
(
b∗

B ; j
)

to test for H0.
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Second, if we were interested in testing the null hypothesis that some specific parametric
model explains the dynamics of the sequence, say f (λ, θ0), then a test for this specification is
easily implemented as

T specn,B

(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

T specn,B

(
b∗

B
; j

)
; j∗ = 1, ..., ñ

T specn,B

(
b∗

B
; j

)
=

1

B

b∗∑
b=1

 Ix,b (j)

f
(
j, θ̂
) − 1

 , b∗ = 2, ...,B

for some estimator θ̂ of θ0, say the Whittle estimator.

2.1. Asymptotic properties of (2.4).
For reasons which will become clear, it is convenient and useful to examine first the behaviour

of

T̆n,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

 Ix,b (j) /
∣∣B (nbT ;j

)∣∣2
B−1

∑B
v=1

{
Ix,v (j) /

∣∣B (nvT ;j
)∣∣2} − 1


for b∗ = 2, ...,B and j∗ = 1, ..., ñ. Observe that under H0, T̆n,B

(
b∗

B ; j∗

ñ

)
=: Tn,B

(
b∗

B ; j∗

ñ

)
as∣∣B (nbT ;j

)∣∣2 = |B (j)|2. We have the following result.

Theorem 1. Assuming C1 to C3, we have that as T →∞,

[T/2]1/2 T̆n,B
(
b∗

B
;
j∗

ñ

)
weakly⇒ BS

(
[0, 1]2

)
,

where BS
(

[0, 1]2
)
is a Gaussian process in [0, 1]2 with covariance structure

(2.10) C (ω∗1,ω
∗
2;υ
∗
1,υ
∗
2) = ω∗1 (1− ω∗2)

[
υ∗1 +

1

2
υ∗1υ

∗
2κ4

]
, 0 ≤ ω∗1 ≤ ω∗2 ≤ 1, 0 ≤ υ∗1 ≤ υ∗2 ≤ 1.

Proof. The proof of this theorem, or any other result, is given in the appendix.

We have the following corollary.

Corollary 1. Let ϕ (·, ·) be a continuous functional in [0, 1]2 → R+. Then, under H0 and
assuming Conditions C1 and C3, we have that

(a) [T/2]1/2 Tn,B
(
b∗

B
;
j∗

ñ

)
weakly⇒ BS

(
[0, 1]2

)
(b) ϕ

(
[T/2]1/2 Tn,B

(
b∗

B
;
j∗

ñ

))
d⇒ ϕ

(
BS
(

[0, 1]2
))

.

Standard functionals ϕ (·, ·) are the Kolmogorov-Smirnov and the Cràmer von Mises given
respectively as

(2.11) KSn,B = max
j∗=1,...,ñ;b∗=1,...B

∣∣∣∣[T/2]1/2 Tn,B
(
b∗

B
;
j∗

ñ

)∣∣∣∣
(2.12) CvMn,B =

1

[T/2]

ñ∑
j∗=1

B∑
b∗=1

∣∣∣∣[T/2]1/2 Tn,B
(
b∗

B
;
j∗

ñ

)∣∣∣∣2 .
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The first conclusion that we draw from Corollary 1 is that when {εt}t∈Z are Gaussian, we
have that

[T/2]1/2 Tn,B
(
b∗

B
;
j∗

ñ

)
weakly⇒ BS

(
[0, 1]2

)
,

where (2.10) becomes C (ω∗1,ω
∗
2;υ
∗
1,υ
∗
2) = ω∗1 (1− ω∗2)υ∗1, where ω∗1 ≤ ω∗2 and υ∗1 ≤ υ∗2,

which can be regarded as the covariance structure of the “product” of a standard Brown-
ian Bridge and a Brownian motion. The implication is that the asymptotic distribution of

ϕ
(

[T/2]1/2 Tn,B
(
b∗

B ; j∗

ñ

))
is pivotal, and valid critical values can be easily computed regardless

of the true underlying dependence structure of the sequence {xt}t∈Z. This is a major difference
compared to the test proposed in Dette et al. (2011). In addition, as we show below, our tests

have nontrivial power when the alternative converges to the null at the rate T 1/2, which is faster
than the T 1/4 obtained elsewhere in Dette et al. (2011) or using nonparametric fits, although
the same rate as that in Preuß et al. (2013). However, the latter depends on the assumption
of the innovation sequence {εt}t∈Z being Gaussian and it needs bootstrap procedures for its
implementation.

2.2. Asymptotic properties of (2.5).
Theorem 1 shows that when the Gaussianity assumption is dropped, the asymptotic covari-

ance structure of [T/2]1/2 Tn,B
(
b∗

B ; j∗

ñ

)
depends, in a nontrivial way, on κ4. So, to implement

the test, one route is to provide a consistent estimator of κ4 and from here to compute the
(asymptotic) critical values. This could be achieved by simulating the critical values of the sta-
tistics given in (2.11) or (2.12) for a mesh, M, of possible values of κ4, denote that by cr (κ4).
Then, given a particular data set, we use as critical values cr (κ̂4), where κ̂4 is a consistent

estimator of κ4. A second route is to see if T Pn,B
(
b∗

B ; j∗

ñ

)
in expression (2.5) does not depend

on κ4. A third route is to compute valid asymptotic critical values via bootstrap algorithms. In

this section we show that indeed the asymptotic distribution of T Pn,B
(
b∗

B ; j∗

ñ

)
does not depend

on κ4, presenting and examining a valid bootstrap in Section 3.

Because the implementation of T Pn,B
(
b∗

B ; j∗

ñ

)
in expression (2.5) requires to obtain {εt}t∈Z,

which are also needed to compute our estimator of κ4 or the bootstrap, we first provide a simple
method to obtain the innovation sequence. For this purpose, given a generic sequence {zt}Tt=1,

denote the discrete Fourier transform (DFT ) of
{
zt+(b−1)n

}n
t=1

by

(2.13) Jz,b (j) =
1

n1/2

n∑
t=1

zt+(b−1)ne
−itλj , j = 1, . . . , ñ, b = 1, ...,B.

It is well known, see expression (10.3.12) of Brockwell and Davis’s (1991), that under the null
hypothesis H0 and Condition C1, the DFT s of

{
εt+(b−1)n

}n
t=1

and
{
xt+(b−1)n,T

}n
t=1

satisfy the
relation

(2.14) Jx,b (j) = B (−j)Jε,b (j) + Yn,b (j; 0) , b = 1, ...,B,

where B (−j) =: B
(
e−iλj

)
and

(2.15) Yn,b (j; a) =

∞∑
`=a

β (`) e−i`λj

(
1

n1/2

{
n−∑̀
t=1−`

−
n∑
t=1

}
εt+(b−1)ne

−itλj

)
.

Under C1, (2.14) and (2.15) become

(2.16) Jx,b (j) = B
(
n (b− 1)

T
;−j

)
Jε,b (j) + Y̌n,b (j; 0) + Ÿn,b (j) ,
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where B
(
n(b−1)
T ; j

)
=: B

(
n(b−1)
T ; eiλj

)
and

(2.17) Y̌n,b+1 (j; a) =

∞∑
`=a

β

(
nb

T
; `

)
e−i`λj

(
1

n1/2

{
n−∑̀
t=1−`

−
n∑
t=1

}
εt+bne

−itλj

)
,

Ÿn,b+1 (j) =
1

n1/2

n∑
t=1

( ∞∑
`=0

(
β

(
t+ nb

T
; `

)
− β

(
nb

T
; `

))
εt+bn−`

)
eitλj

+
1

n1/2

n∑
t=1

( ∞∑
`=0

(
βt+bn,T (`)− β

(
t+ nb

T
; `

))
εt+bn−`

)
eitλj .(2.18)

Using the inverse transformation of the DFT,

zt+(b−1)n =
1

n1/2

n∑
j=1

Jz,b (j) eitλj , t = 1, . . . , n,

and noting that Yn,b (j; a) is negligible compared to B (−j)Jε,b (j) in (2.14), we obtain {εt}Tt=1
as

εt+(b−1)n '
1

n1/2

n∑
j=1

eitλjA (−j)Jx,b (j) , t = 1, ..., n; b = 1, ...,B,

where “≈” should be read as “approximately” and by definition we have that A (j) =: A (λj) =:
B−1 (λj) = B−1 (j). Similarly we should expect that

εt+(b−1)n '
1

n1/2

n∑
j=1

eitλjB−1
(
n (b− 1)

T
;−j

)
Jx,b (j) .

Thus, under H0, the problem to obtain
{
ε̂t+(b−1)n

}n
t=1

becomes a problem of how to compute

an estimator of A (j). To that end, using (2.3) we compute
{
ε̂t+(b−1)n

}n
t=1

as

(2.19) ε̂t+(b−1)n =
1

n1/2

n−1∑
j=1

eitλj Â (−j)Jx,b (j) , b = 1, ...,B,

where

Â (j) = exp

−
[ñ/2]∑
r=1

ĉre
irλj

 , j = 1, ..., ñ(2.20)

Â (j) = Â (n− j) , j = ñ+ 1, ..., n− 1

ĉr =
1

ñ

ñ∑
`=1

log f̂ (`) cos rλ`, r = 0, ..., [ñ/2] .(2.21)

Note that σ̂2ε = exp (ĉ0) and Â (λ) = exp
{
−
∑[ñ/2]

r=1 ĉre
irλ
}

is an estimator of

A (λ) = exp
{
−
∑∞

r=1 cre
irλ
}

with

(2.22) cr =
1

π

∫ π

0
log f (λ) cos (rλ) dλ, r = 0, 1, ....

Observe that f (λ) = σ̂2ε |A (λ)|−2 and the motivation to estimate A (λ) by Â (j) comes from
the canonical spectral decomposition of f (λ), see Brillinger (1981, p. 78− 79) or Hannan (1970).
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Moreover, denoting

â` =
1

n

ñ−1∑
j=−ñ+1

Â (−j) ei`λj , ` = 1, ..., ñ,

we could have estimated A (j) as Â (j) = 1 + â1e
−iλj + ... + âñe

−iñλj . This is because f (λ) =∣∣exp
{
1
2c0 +

∑∞
r=1 cre

−irλ}∣∣2 and a` is the `th Fourier coefficient of exp
{∑∞

r=1 cre
−irλ}. In fact,

one implication of the canonical decomposition is that exp
{∑∞

r=1 cre
−irλ} = 1−

∑∞
j=1 aje

ijλ.

Given {ε̂t}Tt=1 in (2.19), we compute our estimator of κ4 as

κ̂4 =
1

T

T∑
t=1

(
ε̂4t
σ̂4ε
− 3

)
,

where either σ̂2ε = exp (ĉ0) or σ̂2ε = B−1
∑B

b=1 σ̂
2
ε (b), with

(2.23) σ̂2ε (b) =
1

n

n∑
t=1

ε̂2t+(b−1)n, b = 1, , ,B.

Notice that σ̂2ε = T−1
∑T

t=1 ε̂
2
t .

Corollary 2. Under H0 and assuming C1 and C3, we have that κ̂4 →P κ4.

Our estimator of κ4 is an alternative to that in Grenander and Rosenblatt (1957), or more
recently the estimator in Paparoditis (2009), or its time domain analogue in Fragkeskou and
Paparoditis (2016). One potential drawback of the latter estimators is that they need at least the
choice of two additional bandwidths parameters as their computation depends on the covariance

structure of the sequences
{
x2t+(b−1)n

}n
t=1

and
{
xt+(b−1)n

}n
t=1

. Another estimator might be

based on the sieve estimator. However, once again the methodology involves the choice of an
additional smoothing parameter, i.e. the degree pT of the AR polynomial approximation. On
the contrary, κ̂4 does not require the choice of any additional bandwidth.

Once we obtain κ̂4, the critical values of ϕ
(

[T/2]1/2 Tn,B
(
b∗

B ; j∗

ñ

))
are computed as suggested

above. This method might introduce substantial noise in small samples, so that it is desirable

to see if our statistic T Pn,B
(
b∗

B ; j∗

ñ

)
would no longer depend on κ4. This is confirmed in the

following result.

Theorem 2. Under H0 and assuming C1 and C3, we have that

[T/2]1/2 T Pn,B
(
b∗

B
;
j∗

ñ

)
weakly⇒ WB

(
[0, 1]2

)
,

where WB
(

[0, 1]2
)
is a Brownian Bridge sheet in [0, 1]2 with covariance structure

(2.24) C (ω∗1,ω
∗
2;υ
∗
1,υ
∗
2) = ω∗1 (1− ω∗2)υ∗1 (1− υ∗2) .

As before, we can apply the Kolmogorov-Smirnov and the Cràmer von Mises type of test

using (2.11) and (2.12) but replacing Tn,B
(
b∗

B ; j∗

ñ

)
by T Pn,B

(
b∗

B ; j∗

ñ

)
.

2.3. Local Alternatives and Consistency.
We finish describing the local alternatives for which our tests have no trivial power. For that

purpose, we show that Tn,B
(
b∗

B ; j∗

ñ

)
will have a mean different than zero under the alternative

hypothesis. Indeed, under suitable regularity conditions, say C1− C3,

f̂ (j) =:
1

B

B∑
b=1

Ix,b (j)
P→ lim

B(T )→∞

1

B (T )

B(T )∑
b=1

f

(
b

B (T )
; j

)
'
∫ 1

0
f (u;λ (j)) du,
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where λ (j) = limn(T )→∞ λj . So as the set (U ,Λ) given after (1.8) has positive Lebesgue measure,
the last displayed expression suggests that

Tn,B
(
b∗

B
;
j∗

ñ

)
' 1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
Íx,b (j)

1
B

∑B
v=1 Íx,v (j)

− 1

}

+
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
f
(
b
B ; j

)∫ 1
0 f (u;λ (j)) du

− 1

}
(1 + op (1)) ,

where Íx,b (j) = Ix,b (j) − f
(
b
B ; j

)
. The first term on the right of the last displayed expression

is op (1) proceeding similarly as with the proof of Theorem 1, whereas the second term on the

right develops a “mean” different than zero since f
(
b
B ; j

)
/
∫ 1
0 f (u;λ (j)) du 6= 1.

We now examine the behaviour of the tests under local alternatives, say

Hl : f (u;λ) = f (λ)

(
1 +

1

[T/2]1/2
g (u;λ)

)
,

where g
(
t
T ;λ

)
is different than zero in the set (U ,Λ). It is worth observing that when the

local alternative corresponds to an abrupt change at some point in time, t0, we have that
g
(
t
T ;λ

)
= g (λ) if t > t0 and we could allow C/T 1/2 < t0/T < 1−C/T 1/2 for some finite

positive constant C. Introduce the function d (·; ·) defined as

d (ω∗;πυ) =

∫ ω∗

0
g (v;υ) dv − ω∗

∫ 1

0
g (v;υ) dv, ω∗ ∈ [0, 1] ; υ ∈ [0, 1]

It is obvious that d (ω∗;πυ) is different than zero unless f (ω∗;υ) =: f (υ) a.e. in υ ∈ [0, π]
and ω∗ ∈ [0, 1]. That is, given υ, g (ω∗;πυ) = 0 for all ω∗ ∈ [0, 1] if f (ω∗;υ) =: f (υ), i.e. a
constant in the argument ω∗ ∈ [0, 1].

Proposition 1. Under Hl and assuming C1 to C3, we have that

(a) [T/2]1/2 Tn,B
(
b∗

B
;
j∗

ñ

)
weakly⇒ D (ω∗;υ∗) + BS

(
[0, 1]2

)
,

(a) [T/2]1/2 T Pn,B
(
b∗

B
;
j∗

ñ

)
weakly⇒ 1

σ2ε
D (ω∗;υ∗) +WB

(
[0, 1]2

)
,

where υ∗ = limn=n(T )→∞
j∗

ñ and ω∗ = limB=B(T )→∞
b∗

B , j∗ = 1, ..., ñ; b∗ = 1, ...,B and

D (ω∗;υ∗) =
∫ υ∗

0 d (ω∗;πυ) dυ.

The conclusion from the previous proposition is that the test has power comparable to para-
metric counterparts. The consistency of the tests is standard as the “drift” function D (ω∗;υ∗)
is non-zero everywhere.

We conclude the section indicating that our tests are able to detect departures from weak
stationarity due to heteroscedasticity. Indeed, for illustration purposes we consider the example
given in Dwivedi and Subba Rao (2011), that is xt,T = σtεt, where σt = σ (t/T ). In this case,

standard algebra implies that EIx,b (j) = 1
n

∑n
t=1 σ

2 ((t+ bn) /T ) and

1

B

B∑
b=1

Ix,b (j)
P→ lim

T→∞

1

B

B∑
b=1

1

n

n∑
t=1

σ2 ((t+ bn) /T )

= lim
T→∞

1

B

B∑
b=1

σ2 (b/B)
(
1 +O

(
B−1

))
=

∫ 1

0
σ2 (v) dv
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because under continuous differentiability of σ2 (·),

(2.25) σ2 ((t+ bn) /T )− σ2 (b/B) = O
(
B−1

)
, b = 1, ...,B.

From here it is standard to conclude that Tn,B
(
b∗

B ; j
)

will have a mean given by

1

B

b∗∑
b=1

{
1
n

∑n
t=1 σ

2 ((t+ bn) /T )∫ 1
0 σ

2 (v) dv
− 1

}
' 1

B

b∗∑
b=1

σ2 (b/B)∫ 1
0 σ

2 (v) dv
− 1 b∗ = 2, ...,B

which is clearly different than zero unless σ2t = σ2, for all t = 1, ..., T . So our tests are consistent
against this type of alternatives. It is worth remarking that in view of (2.25), we can regard
Ix,b (j) as an unbiased estimator of σ2 (b/B) for all j = 1, ..., ñ.

3. BOOTSTRAP

We now focus on the bootstrap approach for our testing procedure based on either

[T/2]1/2 Tn,B
(
b∗

B ; j∗

ñ

)
or [T/2]1/2 T Pn,B

(
b∗

B ; j∗

ñ

)
. Although the asymptotic distribution of

[T/2]1/2 Tn,B
(
b∗

B ; j∗

ñ

)
is pivotal under Gaussianity or it only depends on the fourth cumulant

of εt, our Monte Carlo experiment suggests that the asymptotic critical values do not provide
a good approximation for the finite sample ones. In any case, as Gaussianity appears as a
rather restrictive assumption with many real data sets, bootstrap algorithms might be a useful
tool when making inferences. In those circumstances the practitioner hopes that bootstrap al-
gorithms provides better finite-sample approximations. So, the main aim of this section is to
present the bootstrap algorithm and examine its validity. As usual E∗ or Pr∗ {·} indicate the
expectation or the probability in bootstrap sense.

We now describe the bootstrap. To that end, the key is to recall that the asymptotic distri-

bution of [T/2]1/2 Tn,B
(
b∗

B ; j∗

ñ

)
is independent of the underlying dependence of xt. That is, the

statistical behaviour of [T/2]1/2 Tn,B
(
b∗

B ; j∗

ñ

)
and that of [T/2]1/2 T Pn,B

(
b∗

B ; j∗

ñ

)
, is exactly the

same (asymptotically) as if we were using εt instead of xt in its computation. So, our bootstrap
algorithm is based on 2 STEPS.

STEP 1 : We compute
{
ε̂t+(b−1)n

}n
t=1

, b = 1, ...,B, as in (2.19). We then obtain{
ε̃t =

(
ε̂t − ε̂

)
/σ̂ε

}T
t=1

, where

ε̂ =
1

T

T∑
t=1

ε̂t; σ̂2ε =
1

T

T∑
t=1

(
ε̂t − ε̂

)2
.

STEP 2 : Obtain a random sample of size T from the empirical distribution of {ε̃t}Tt=1.

Denote the sample as {ε∗t }
T
t=1 and compute the bootstrap statistics

(a) T ∗n,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

(
Iε∗,b (j)

B−1
∑B

v=1 Iε∗,v (j)
− 1

)
,

(b) T P∗n,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

(
Iε∗,b (j) /σ̂2ε∗ (b)

B−1
∑B

v=1

{
Iε∗,v (j) /σ̂2ε∗ (v)

} − 1

)
,

where j∗ = 1, . . . , ñ and

Iε∗,b (j) = |Jε∗,b (j)|2 , σ̂2ε∗ (b) =
1

n

n∑
t=1

ε∗2t+(b−1)n; b = 1, ...,B
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and Jε∗,b (j) as was defined in (2.13) with zt being replaced by ε∗t there. Then compute

the bootstrap analogues of (2.11) and (2.12), replacing Tn,B
(
b∗

B ; j∗

ñ

)
by T ∗n,B

(
b∗

B ; j∗

ñ

)
or

T P∗n,B
(
b∗

B ,
j∗

ñ

)
there.

Remark 1. (a) We can replace ε̃t by ε̂t in STEP 2. The reason being that
∑n

t=1 ε̂e
itλj = 0 and

Iε∗,b (j) /B−1
∑B

b=1 Iε∗,b (j) is invariant to multiplicative constants.

(b) We may also compute
{
ε̃t+(b−1)n =

(
ε̂t+(b−1)n − ε̂b

)
/σ̂ε,b

}n
t=1

with

ε̂b =
1

n

n∑
t=1

ε̂t+(b−1)n; σ̂2ε,b =
1

n

n∑
t=1

(
ε̂t+(b−1)n − ε̂b

)2
, b = 1, ...,B,

and obtain {ε∗t }
T
t=1=

{{
ε∗t+(b−1)n

}n
t=1

; b = 1, ...,B
}
, where

{
ε∗t+(b−1)n

}n
t=1

is a random sample

from the empirical distribution of
{
ε̃t+(b−1)n

}n
t=1

as in STEP 2, but random sampling in each
“block” b = 1, ..,B. Under stationarity in fourth moments, both procedures are valid. However,
in view of our comments at the end of the previous section, we should expect that this bootstrap
would be valid even when we do not assume that κ4 is constant, but it depends on time, i.e.
κ4 (u), u ∈ [0, 1].

We now have the following result on the validity of the bootstrap.

Theorem 3. Assuming C1 and C3, we have that

(a) [T/2]1/2 T ∗n,B
(
b∗

B
;
j∗

ñ

)
weakly⇒ BS

(
[0, 1]2

)
(in probability).

(b) [T/2]1/2 T P∗n,B
(
b∗

B
;
j∗

ñ

)
weakly⇒ WB

(
[0, 1]2

)
(in probability).

4. MONTE-CARLO EXPERIMENT: EMPIRICAL EXAMPLES

The purpose of this section is to present a Monte Carlo experiment to shed some light on
the finite-sample performance of the tests. We considered sample sizes of T = 256, 512 and
1024. For each combination of T , n and models considered in the experiment, we have con-
ducted 1,000 simulation runs. To save computational time, for each run we compute only one
bootstrap counterpart. The bootstrapped distribution is obtained by stacking those statistics
across iterations, which is then used to construct critical values and confidence regions at the
desired levels. This is the idea behind the WARP algorithm of Giacomini et al. (2013).

4.1. Level considerations and choice of block sizes.
We study the nominal level of the bootstrapped modified statistic, given in equation (b) of

Theorem 3, with the following ARMA(2, 1) model. We simulate

(4.1) xt,T = φ1xt−1,T + φ2xt−2,T + εt,T + θεt−1,T

for several combinations of the parameter vector (φ1, φ2, θ). In all specifications, εt ∼ NID(0, 1).
Model (4.1) nests the models (4.2)-(4.4) considered in Dette et al. (2011) and also implemented
as models (4.2)-(4.3) is Preuß et al. (2013). For the sake of comparison, their tests are also
replicated here.

The AR (1) model corresponds to φ2 = θ = 0. Results for various φ1 are reported in Table
1.1 Even at small sample sizes, such as T = 256, the rejection probabilities are, as expected,
close to the 5% and 10% values. As T grows, size distortion are very small especially when |φ1|
is close to zero. The behaviour of the Cràmer von Mises (CvM) and Komolgorov-Smirnov (KS)

1Table 4 in the appendix presents rejection probabilities as below for the non-bootstrapped statistics.
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functionals appear similar. While no statistic clearly dominates the other, the latter emerged
as slightly more robust at small parameter values.2

Since the choice of block size is an inherent aspect of the test,3 we experiment with the
performance of the statistic at different values of n. We choose combinations of T and n to
approximately minimize condition C3, with states that

T

n2
+
n3

T 2
(4.2)

converges to zero as T grows. We consider three block sizes for every sample size.4 In this sense,
the optimal block size for T = 256 is n = 32; for T = 512, n = 32; and, finally, for T = 1024,
n = 128. For the sake of clarity, in the tables that follow we mark those pairs with the “.” sign.
We note that size distortions of both statistics are relatively small and invariant to the choice of
block sizes. As expected, best performance was achieved at choices of n such that criteria (4.2)
is approximately satisfied at most parameter values. We thus suggest this choice as a practical
implementation rule.

Table 2 reports rejection probabilities at alternative parameter values of the data-generating
process (4.1). Assuming φ1 = φ2 = 0.3 and θ = 0, we obtain an autoregressive process with real
roots; the process at parameters φ1 = 0.4, φ2 = −0.3 and θ = 0 exhibits complex roots. The
remaining cases contemplate two ARMA(1, 1) and a ARMA(2, 1) process. Again, size is again
well-approximated at small sample size, block sizes and parameters values.

Overall, Monte-Carlo results show that size distortions for the CvM and KS are limited at
small sample sizes and have comparable performances. We observe, however, very significant size
distortions in Preuß et al. (2013) at the set of parameters (φ1, φ2, θ) = (0.4,−0.7, 0), (0.5, 0, 0.5)
and (0.3, 0.3, 0.5).

4.2. Power considerations.
We study the power performance of the test with recourse to the following five DGPs

xt,T =

{
0.2xt−1,T + et,T , t = 2, . . . , T2
0.7xt−1,T + et,T , t = T

2 + 1, . . . , T
(4.3)

xt,T =

{
0.4xt−1,T − 0.7xt−2,T + et,T , t = 2, . . . , T2
0.3xt−1,T + 0.3xt−2,T + et,T , t = T

2 + 1, . . . , T
(4.4)

xt,T =

{
0.3xt−1,T + 0.3xt−2,T + et,T , t = 2, . . . , T2
0.8xt−1,T + et,T , t = T

2 + 1, . . . , T
(4.5)

xt,T = 0.6 sin (4πt/T )xt−1,T + et,T(4.6)

xt,T = 1.1 cos (1.5− cos(4πt/T )) et−1,T + et,T(4.7)

The first DGP is a simple break of the AR(1) coefficient. The break in the second DGP is such
that roots switch from complex to real. The third model considers a change in the order of the
autoregressive model. Finally, the fourth and fifth models have changing coefficients with t and
originate from Dette et al. (2011), equations (4.6) and (4.7).

From Table 3 we observe that deviation from the null hypothesis is detected at a reasonable
frequency which increases quickly as T grows. For T = 2048 rejection probabilities are either
very close to one or rejection of the null was obtained at every simulation run. At smaller

2We also present the distribution of the non-bootstrapped statistics in Table 4. As previously mentioned, at
small sample sizes the asymptotic distribution does not provide a reasonable approximation.

3For example, Dette et al. (2011, p. 1118) ponder that “(...) any statistical inference in locally stationary
process depend on the choice of [the parameters] in the definition of the local periodogram.”

4In all cases, we limit ourselves to sample and block sizes with length of powers of 2. This allows more efficient
computation of Fast Fourier Transform algorithms.
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Figure 1. Rejection probabilities for CvM, KS, Dette et al. (2011) and Preuss
et al. (2013) statistics

2
5
6
/1

6

2
5
6
/3

2

2
5
6
/6

4

5
1
2
/3

2

5
1
2
/6

4

5
1
2
/1

2
8

1
0
2
4
/3

2

1
0
2
4
/6

4

1
0
2
4
/1

2
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CvM

2
5
6
/1

6

2
5
6
/3

2

2
5
6
/6

4

5
1
2
/3

2

5
1
2
/6

4

5
1
2
/1

2
8

1
0
2
4
/3

2

1
0
2
4
/6

4

1
0
2
4
/1

2
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KS

2
5
6
/1

6

2
5
6
/3

2

2
5
6
/6

4

5
1
2
/3

2

5
1
2
/6

4

5
1
2
/1

2
8

1
0
2
4
/3

2

1
0
2
4
/6

4

1
0
2
4
/1

2
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dette et al (2011)

2
5
6
/1

6

2
5
6
/3

2

2
5
6
/6

4

5
1
2
/3

2

5
1
2
/6

4

5
1
2
/1

2
8

1
0
2
4
/3

2

1
0
2
4
/6

4

1
0
2
4
/1

2
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Preuss et al (2013)

(4.3) (4.4) (4.5) (4.6) (4.7)

Note: Rejection probabilities for several combinations of T and n, represented by the notation T/n. DGPs

implemented for size assessments are grayed out and DGPs (4.3)-(4.7) are individually labelled.

sample sizes, power is naturally higher for those DGPs that imposed a large change in the
spectral density functions, particularly (4.4). KS functional showed slightly higher power than
CvM in small sample sizes, particularly DGPs (4.3) and (4.5).

For data generated according to DGP (4.3), Dette et al. (2011) achieved comparable power
relative to CvM, followed by KS functional; Preuß et al. (2013) obtained higher power at small
sample sizes. A similar pattern is observed in DGP (4.5). The ordering, however, appears
inverted for DGP (4.4) and approximately so for (4.6) and (4.7). We note that our test achieved
reasonable power for all data generating processes and more stable results compared to the tests
above.

We summarize the size and power simulation results in Figure 1. The complete set of results
is shown in appendix Tables 1-3.

4.3. Empirical examples. We employ the proposed tests to check the constancy of the dy-
namics for two real data sets.



16 JAVIER HIDALGO AND PEDRO CL SOUZA

Figure 2. Estimates of local spectral density for Consumer Price Index (left)
and tremor data (right)
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Note: Consumer Price Index, sourced from the Bureau of Labor Statistics (available at

https://www.bls.gov/cpi/). Tremor data from Dette et al. (2011). We present time-series plots

of both series in Figure 3 in Appendix I.

The choice of a model for the inflation dynamics is a necessity prior to empirical analysis. On
our first application, we present evidence that inflation dynamics is not constant over time in
the United States. We use data on the baseline Consumer Price Index (CPI), produced by the
U.S. Bureau of Labour Statistics, between September 1959 and August 2015, totalling 768 data
points.

Our second application replicates the neuroscience example of Dette et al. (2011), also used
in von Sachs and Neumann (2000) and Paparoditis (2009).5 The authors analyzed a data
set of tremor activity recorded in the Cognitive Neuroscience Laboratory of the University of
Quebec at Montreal of subjects with Parkinson’s Disease. The objective is to compare different
regions of brain activity of a patient with Parkinson’s disease. The data are composed of 3, 072
observations.

To ensure stationarity, for both series the first-difference ∆xt,T = xt,T − xt−1,T is analyzed.
Figure 2 presents the smoothed spectral density estimate

f̂(u;λ) =
2π

n

n∑
j=1

1

k
K

(
λ− λj
k

)
Ix,b(j)(4.8)

where K(·) represents the Bartlett-Priestley kernel. A similar approach was introduced in Dette
et al. (2011) and Paparoditis (2009). For the CPI application, n = 64 and k = 0.01 were chosen.
For the neuroscience application, block sizes n = 256 with bandwidth k = 0.18 were employed.6

From the figures, it is apparent that spectral densities tend to strong vary across time, especially
at lower frequencies.

In Table 5, we show the Cràmer-von-Mises (CvM) and Kolmogorov-Smirnov’s (KS) test
statistics for the CPI data, along with the bootstrapped 10%, 5% and 1% critical values.7 The
block sizes considered are in line with simulations presented in the previous subsection. In all
the cases the null hypothesis of model stability is rejected at the 1% level. We have that the
outcome of the test is not very sensitive to the choice of the bandwidth parameter and clearly
the p-value is smaller than 1%.

5We thank Efstathios Paparoditis for sharing data.
6Again, following Dette et al. (2011) and Paparoditis (2009).
7We use 500 iterations in each case.
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For the neuroscience application, in line with Dette et al. (2011) and others, we reject the
null hypothesis of model stability at 1% level, with the expectation of a singular block size of
the CvM test where significance is achieved at 5% level only. Bootstrapped critical values and
test statistics are presented in Table 6.

5. CONCLUSION

In this paper, we described and examined a simple test for the hypothesis of stability of the
dynamics without assuming any parametric family under the null hypothesis. One interesting
aspect of the test is that, even without knowledge of the spectral density function under the
null hypothesis, there is no need to choose any bandwidth or smoothing parameter for its
implementation, besides the choice of the length of the block size n. A second interesting
aspect of the test is that its asymptotic distribution only depends on the fourth cumulant κ4
of the innovation sequence. We suggest a very simple estimator of κ4 based on the canonical
decomposition of the spectral density function as given in Whittle (1963), see also Hannan
(1970) or Brillinger (1981). We also present and investigate a modification of the test such that
its asymptotic distribution becomes pivotal. For the implementation, we do not need any type
of “bias” adjustments, and we are able to detect local alternatives converging to the null at the
parametric rate T−1/2.
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APPENDIX I: TABLES AND FIGURES

Table 1. Rejection probabilities, model (4.1) with φ2 = θ = 0

φ1 = −0.5 φ1 = −0.25 φ1 = 0 φ1 = 0.25 φ1 = 0.5
T n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

CvM
256 16 0.064 0.117 0.050 0.124 0.053 0.136 0.054 0.133 0.073 0.130

. 256 32 0.071 0.123 0.068 0.114 0.064 0.124 0.051 0.104 0.046 0.078
256 64 0.068 0.112 0.042 0.095 0.050 0.109 0.048 0.109 0.046 0.095

. 512 32 0.088 0.140 0.052 0.095 0.055 0.094 0.060 0.116 0.038 0.077
512 64 0.052 0.098 0.066 0.115 0.036 0.071 0.068 0.109 0.053 0.091
512 128 0.033 0.080 0.057 0.095 0.046 0.105 0.042 0.091 0.054 0.099

1024 32 0.108 0.176 0.071 0.125 0.045 0.081 0.069 0.134 0.031 0.081
. 1024 64 0.053 0.103 0.050 0.108 0.044 0.103 0.056 0.104 0.047 0.076

1024 128 0.042 0.091 0.046 0.083 0.053 0.094 0.064 0.107 0.041 0.081

KS
256 16 0.040 0.106 0.054 0.096 0.061 0.101 0.051 0.107 0.063 0.111

. 256 32 0.047 0.098 0.058 0.112 0.050 0.106 0.048 0.108 0.043 0.102
256 64 0.050 0.128 0.052 0.115 0.057 0.114 0.048 0.091 0.036 0.077

. 512 32 0.047 0.092 0.042 0.079 0.047 0.109 0.055 0.091 0.042 0.088
512 64 0.086 0.137 0.045 0.109 0.082 0.145 0.039 0.072 0.052 0.099
512 128 0.038 0.079 0.050 0.093 0.060 0.119 0.040 0.092 0.040 0.090

1024 32 0.054 0.108 0.032 0.086 0.047 0.086 0.075 0.104 0.033 0.073
. 1024 64 0.050 0.105 0.046 0.098 0.060 0.101 0.060 0.104 0.048 0.080

1024 128 0.063 0.114 0.047 0.087 0.060 0.091 0.058 0.121 0.044 0.084

Dette et al. (2011)

256 16 0.040 0.143 0.043 0.147 0.052 0.105 0.044 0.086 0.066 0.108
256 32 0.042 0.102 0.041 0.110 0.045 0.088 0.047 0.091 0.063 0.103
256 64 0.044 0.111 0.039 0.086 0.051 0.090 0.039 0.079 0.069 0.123

512 32 0.043 0.132 0.050 0.126 0.043 0.107 0.056 0.098 0.057 0.105
512 64 0.038 0.092 0.047 0.085 0.049 0.102 0.060 0.109 0.077 0.126
512 128 0.051 0.109 0.049 0.088 0.048 0.092 0.043 0.093 0.049 0.108

1024 32 0.136 0.276 0.105 0.223 0.065 0.144 0.046 0.102 0.055 0.092
1024 64 0.051 0.129 0.047 0.099 0.070 0.116 0.041 0.083 0.054 0.093
1024 128 0.031 0.084 0.054 0.096 0.044 0.094 0.045 0.084 0.051 0.089

Preuß et al. (2013)

256 16 0.007 0.049 0.045 0.077 0.042 0.092 0.025 0.081 0.029 0.055
256 32 0.026 0.050 0.034 0.074 0.035 0.077 0.036 0.079 0.010 0.057
256 64 0.021 0.064 0.043 0.078 0.046 0.094 0.023 0.062 0.019 0.050

512 32 0.032 0.096 0.043 0.079 0.038 0.089 0.054 0.094 0.024 0.057
512 64 0.040 0.071 0.027 0.085 0.039 0.088 0.045 0.092 0.019 0.063
512 128 0.023 0.068 0.056 0.108 0.037 0.082 0.046 0.109 0.029 0.088

1024 32 0.055 0.097 0.038 0.104 0.046 0.075 0.044 0.081 0.025 0.075
1024 64 0.045 0.098 0.036 0.106 0.037 0.086 0.035 0.081 0.028 0.064
1024 128 0.047 0.095 0.063 0.109 0.060 0.107 0.035 0.078 0.039 0.086



20 JAVIER HIDALGO AND PEDRO CL SOUZA

Table 2. Rejection probabilities, model (4.1), various parameters

φ1 = 0.3 φ1 = 0.4 φ1 = 0.5 φ1 = −0.5 φ1 = 0.3
φ2 = 0.3 φ2 = −0.7 φ2 = 0 φ2 = 0 φ2 = 0.3
θ = 0 θ = 0 θ = 0.5 θ = 0.5 θ = 0.5

T n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

CvM
256 16 0.094 0.152 0.187 0.325 0.061 0.112 0.057 0.113 0.087 0.140

. 256 32 0.027 0.081 0.076 0.140 0.036 0.095 0.065 0.114 0.032 0.078
256 64 0.042 0.089 0.055 0.108 0.068 0.126 0.035 0.082 0.033 0.092

. 512 32 0.028 0.070 0.111 0.162 0.030 0.063 0.086 0.143 0.040 0.088
512 64 0.037 0.082 0.113 0.171 0.026 0.093 0.049 0.106 0.035 0.077
512 128 0.040 0.083 0.088 0.155 0.039 0.080 0.036 0.094 0.038 0.092

1024 32 0.047 0.096 0.145 0.232 0.032 0.069 0.056 0.102 0.098 0.133
. 1024 64 0.033 0.067 0.086 0.164 0.047 0.096 0.053 0.095 0.071 0.133

1024 128 0.040 0.087 0.077 0.129 0.054 0.094 0.053 0.105 0.051 0.092

KS
256 16 0.099 0.167 0.131 0.211 0.041 0.084 0.047 0.091 0.094 0.147

. 256 32 0.041 0.086 0.057 0.122 0.049 0.097 0.050 0.099 0.034 0.086
256 64 0.047 0.107 0.065 0.109 0.039 0.088 0.040 0.097 0.036 0.069

. 512 32 0.041 0.084 0.098 0.166 0.030 0.071 0.029 0.069 0.044 0.078
512 64 0.040 0.085 0.079 0.124 0.035 0.072 0.048 0.097 0.053 0.109
512 128 0.047 0.104 0.051 0.118 0.049 0.103 0.056 0.106 0.063 0.121

1024 32 0.055 0.095 0.076 0.117 0.057 0.087 0.036 0.066 0.071 0.112
. 1024 64 0.043 0.092 0.058 0.115 0.026 0.071 0.065 0.121 0.082 0.092

1024 128 0.043 0.091 0.046 0.096 0.036 0.080 0.049 0.088 0.020 0.112

Dette et al. (2011)

256 16 0.043 0.076 0.078 0.116 0.072 0.130 0.044 0.102 0.066 0.110
256 32 0.068 0.099 0.076 0.126 0.073 0.122 0.061 0.113 0.086 0.131
256 64 0.051 0.097 0.070 0.107 0.075 0.125 0.055 0.095 0.070 0.121

512 32 0.070 0.101 0.066 0.115 0.076 0.133 0.045 0.101 0.078 0.127
512 64 0.063 0.106 0.075 0.110 0.070 0.117 0.044 0.107 0.065 0.112
512 128 0.062 0.109 0.061 0.116 0.055 0.103 0.045 0.104 0.061 0.098

1024 32 0.058 0.093 0.058 0.099 0.063 0.112 0.062 0.134 0.057 0.099
1024 64 0.063 0.096 0.079 0.129 0.060 0.100 0.044 0.100 0.059 0.104
1024 128 0.076 0.124 0.069 0.131 0.066 0.099 0.054 0.111 0.064 0.111

Preuß et al. (2013)

256 16 0.026 0.067 0.218 0.384 1.000 1.000 0.021 0.066 0.155 0.317
256 32 0.024 0.064 0.203 0.443 1.000 1.000 0.040 0.073 0.088 0.216
256 64 0.015 0.061 0.182 0.367 1.000 1.000 0.051 0.097 0.039 0.104

512 32 0.049 0.081 0.588 0.082 1.000 1.000 0.038 0.084 0.179 0.293
512 64 0.053 0.098 0.654 0.868 1.000 1.000 0.043 0.088 0.111 0.244
512 128 0.046 0.091 0.586 0.764 1.000 1.000 0.039 0.080 0.094 0.238

1024 32 0.054 0.124 0.979 1.000 1.000 1.000 0.060 0.114 0.281 0.453
1024 64 0.048 0.095 0.921 0.996 1.000 1.000 0.041 0.070 0.229 0.352
1024 128 0.071 0.131 0.980 1.000 1.000 1.000 0.057 0.102 0.155 0.247
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Table 3. Rejection probabilities, models (4.3)- (4.7)

(4.3) (4.4) (4.5) (4.6) (4.7)
T n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

CvM
256 16 0.075 0.164 0.425 0.571 0.213 0.297 0.129 0.192 0.196 0.303

. 256 32 0.018 0.053 0.212 0.311 0.043 0.127 0.097 0.167 0.204 0.359
256 64 0.053 0.112 0.082 0.149 0.085 0.188 0.051 0.121 0.068 0.125

. 512 32 0.003 0.050 0.499 0.683 0.056 0.150 0.089 0.193 0.448 0.628
512 64 0.093 0.227 0.335 0.539 0.167 0.297 0.112 0.216 0.350 0.563
512 128 0.321 0.488 0.331 0.573 0.226 0.421 0.096 0.223 0.160 0.361

1024 32 0.012 0.136 0.981 0.991 0.084 0.326 0.508 0.700 0.960 0.987
. 1024 64 0.211 0.396 0.945 0.996 0.385 0.591 0.664 0.770 0.973 0.997

1024 128 0.581 0.827 0.957 0.998 0.565 0.762 0.579 0.775 0.967 0.992

. 2048 64 0.691 0.937 1.000 1.000 0.642 0.844 0.995 0.998 1.000 1.000
2048 128 0.972 0.997 1.000 1.000 0.772 0.964 0.986 1.000 1.000 1.000
2048 256 0.997 1.000 1.000 1.000 0.974 0.996 0.987 0.998 1.000 1.000

KS
256 16 0.169 0.252 0.398 0.585 0.288 0.415 0.071 0.204 0.220 0.424

. 256 32 0.064 0.118 0.232 0.378 0.154 0.252 0.102 0.206 0.223 0.441
256 64 0.153 0.241 0.082 0.156 0.164 0.266 0.114 0.246 0.182 0.350

. 512 32 0.117 0.232 0.542 0.736 0.248 0.374 0.128 0.288 0.464 0.665
512 64 0.167 0.349 0.263 0.551 0.372 0.530 0.262 0.394 0.579 0.714
512 128 0.360 0.551 0.316 0.549 0.403 0.584 0.103 0.254 0.259 0.496

1024 32 0.162 0.441 0.985 1.000 0.416 0.651 0.712 0.881 0.986 0.997
. 1024 64 0.498 0.718 0.959 0.998 0.638 0.800 0.711 0.903 0.998 1.000

1024 128 0.750 0.907 0.989 1.000 0.679 0.831 0.651 0.797 0.984 0.998

. 2048 64 0.799 0.948 1.000 1.000 0.978 0.994 0.995 1.000 1.000 1.000
2048 128 0.978 1.000 1.000 1.000 0.982 1.000 1.000 1.000 1.000 1.000
2048 256 0.998 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000 1.000

Dette et al. (2011)

256 16 0.022 0.107 0.452 0.710 0.026 0.085 0.631 0.817 0.837 0.919
256 32 0.029 0.125 0.466 0.736 0.021 0.066 0.508 0.714 0.752 0.862
256 64 0.051 0.172 0.535 0.759 0.020 0.071 0.294 0.489 0.487 0.675

512 32 0.144 0.354 0.907 0.976 0.038 0.142 0.941 0.973 0.990 0.998
512 64 0.186 0.388 0.916 0.997 0.035 0.119 0.851 0.932 0.970 0.986
512 128 0.244 0.460 0.911 0.978 0.047 0.147 0.328 0.514 0.440 0.600

1024 32 0.485 0.705 0.990 1.000 0.086 0.227 0.999 1.000 1.000 1.000
1024 64 0.562 0.772 1.000 1.000 0.115 0.285 1.000 1.000 1.000 1.000
1024 128 0.611 0.796 0.996 1.000 0.129 0.294 0.990 1.000 1.000 1.000

Preuß et al. (2013)

256 16 0.049 0.160 0.000 0.020 0.020 0.028 0.095 0.187 0.155 0.210
256 32 0.238 0.433 0.000 0.000 0.021 0.154 0.072 0.134 0.094 0.177
256 64 0.420 0.590 0.000 0.000 0.060 0.190 0.075 0.126 0.063 0.138

512 32 0.781 0.890 0.000 0.060 0.279 0.583 0.113 0.234 0.172 0.307
512 64 0.907 0.949 0.000 0.000 0.603 0.754 0.125 0.203 0.197 0.310
512 128 0.959 0.984 0.000 0.012 0.671 0.853 0.131 0.225 0.123 0.219

1024 32 0.995 0.999 0.012 0.243 0.940 0.972 0.357 0.539 0.807 0.884
1024 64 0.999 0.999 0.005 0.178 0.984 0.995 0.474 0.626 0.811 0.931
1024 128 1.000 1.000 0.032 0.224 0.990 0.994 0.483 0.739 0.800 0.900
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Table 4. Rejection probabilities, non-bootstrapped CvM and KS statistics,
model (4.1) with φ2 = θ = 0

φ1 = −0.5 φ1 = −0.25 φ1 = 0 φ1 = 0.25 φ1 = 0.5
T n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

CvM
256 32 0.029 0.045 0.030 0.040 0.039 0.049 0.029 0.045 0.035 0.047
256 64 0.030 0.040 0.017 0.022 0.021 0.026 0.018 0.023 0.020 0.026
256 128 0.008 0.017 0.014 0.021 0.012 0.016 0.014 0.021 0.016 0.020

512 64 0.069 0.098 0.099 0.119 0.077 0.104 0.092 0.122 0.092 0.125
512 128 0.056 0.081 0.053 0.069 0.071 0.087 0.054 0.069 0.053 0.070
512 256 0.034 0.047 0.037 0.043 0.030 0.043 0.038 0.043 0.039 0.046

1024 128 0.167 0.213 0.184 0.232 0.167 0.197 0.183 0.234 0.186 0.236
1024 256 0.132 0.163 0.135 0.162 0.133 0.162 0.138 0.159 0.136 0.167
1024 512 0.079 0.097 0.083 0.099 0.094 0.111 0.086 0.103 0.086 0.101

KS
256 16 0.057 0.118 0.046 0.098 0.046 0.092 0.048 0.098 0.060 0.114
256 32 0.023 0.049 0.021 0.043 0.027 0.061 0.020 0.039 0.020 0.047
256 64 0.012 0.035 0.014 0.031 0.013 0.024 0.015 0.031 0.018 0.033

512 32 0.066 0.117 0.057 0.107 0.045 0.090 0.063 0.112 0.064 0.123
512 64 0.025 0.065 0.025 0.062 0.026 0.061 0.023 0.058 0.026 0.058
512 128 0.008 0.028 0.008 0.029 0.007 0.026 0.011 0.032 0.013 0.033

1024 64 0.070 0.159 0.059 0.141 0.062 0.128 0.063 0.136 0.074 0.143
1024 128 0.051 0.105 0.048 0.095 0.054 0.107 0.044 0.106 0.052 0.110
1024 256 0.033 0.073 0.035 0.071 0.031 0.067 0.037 0.070 0.031 0.069

Figure 3. CPI (left) and tremor data (right)
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Table 5. U.S. Inflation Rate

n TS p-value 10% 5% 1%

CvM 32 2.958 < 0.002 1.043 1.147 1.340
CvM 64 3.363 < 0.002 1.137 1.246 1.501
CvM 128 3.264 < 0.002 1.057 1.144 1.315
KS 32 29.055 < 0.002 2.510 2.958 5.281
KS 64 39.683 < 0.002 3.227 4.361 6.802
KS 128 35.676 < 0.002 3.023 3.904 6.067

Table 6. Neuroscience Data

n TS p-value 10% 5% 1%

CvM 64 2.059 < 0.002 1.279 1.345 1.597
CvM 128 1.980 0.012 1.556 1.712 1.985
CvM 256 1.830 < 0.002 1.224 1.329 1.550
CvM 512 1.368 0.008 0.986 1.145 1.332
KS 64 23.547 < 0.002 7.505 8.966 12.824
KS 128 20.775 < 0.002 11.276 14.389 18.939
KS 256 19.390 < 0.002 6.390 7.482 10.234
KS 512 14.781 < 0.002 6.651 8.557 10.397
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APPENDIX II: PROOF OF MAIN RESULTS

We shall introduce some notation. In what follows we denote

I̊x,b (j) =
Ix,b (j)∣∣∣B (n(b−1)T ; j

)∣∣∣2 ; I̊x (j) =
1

B

B∑
b=1

I̊x,b (j)

Rn,b (j) = I̊x,b (j)− Iε,b (j) ; Rn (j) =
1

B

B∑
b=1

Rn,b (j)

I̊ε,b (j) = Iε,b (j)− 1; I̊ε (j) =
1

B

B∑
b=1

I̊ε,b (j)(5.1)

R̆n,b (j) = Rn,b (j)− E (Rn,b (j)) ; R̆n (j) =
1

B

B∑
b=1

R̆n,b (j) .

Observe that under H0 we have that I̊x,b (j) = f−1 (j) Ix,b (j). In addition for notational sim-
plicity we assume that σ2ε = 1 without loss of generality.

We also introduce the following definition: We say that a process Xn,B

(
b∗

B ; j∗

ñ

)
satisfies

Condition BW if

sup
j∗=1,...,ñ;b∗=1,...,B

∣∣∣∣Xn,B

(
b∗

B
;
j∗

ñ

)∣∣∣∣ = op

(
T−1/2

)
.

Recall that by Bickel and Wichura (1972), a sufficient condition for BW is that for some α ≥ 1
and δ > 0,

E
∣∣∣∣Xn,B

(
b∗2
B

;
j∗2
ñ

)
−Xn,B

(
b∗1
B

;
j∗2
ñ

)
−Xn,B

(
b∗2
B

;
j∗1
ñ

)
+ Xn,B

(
b∗1
B

;
j∗1
ñ

)∣∣∣∣α

(5.2) = o

(
1

Tα/2

(
j∗2 − j∗1
ñ

)1+δ (b∗2 − b∗1
B

)1+δ
)

.

Finally recall that T̆n,B
(
b∗

B ; j∗

ñ

)
≡ Tn,B

(
b∗

B ; j∗

ñ

)
under H0.

5.1. Proof of Theorem 1.
Using Taylor’s expansion around 1 of I̊x (j)−1, we obtain the following decomposition for

T̆n,B
(
b∗

B ; j∗

ñ

)
,

1

ñ

j∗∑
j=1

{
1

B

b∗∑
b=1

{
I̊x,b (j)− I̊x (j)

} 2∑
k=0

(−1)k

k!

(
I̊x (j)− 1

)k}

+
1

ñ

j∗∑
j=1

 1

B

b∗∑
b=1

{
I̊x,b (j)− I̊x (j)

} (
I̊x (j)− 1

)3
(1− α) + αI̊x (j)

 ,(5.3)

where α =: α (j) ∈ (0, 1). Notice that Lemma 4 and well known inequalities supj

∣∣∣I̊ε (j)
∣∣∣ =

Op
(
n1/4B−1/2

)
and so by C3, it implies that

(
infj

∣∣∣I̊x (j)
∣∣∣)−1 < C for some finite positive

constant C and hence

(5.4) sup
j

(
(1− α) + αI̊x (j)

)−1
= Op (1) .
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We first examine the second term of (5.3), and in particular

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
I̊x,b (j)− 1

} (
I̊x (j)− 1

)3
(1− α) + αI̊x (j)

(5.5)

=
1

ñ

j∗∑
j=1

1

B

(
b∗∑
b=1

Rn,b (j) +
b∗∑
b=1

I̊ε,b (j)

) (
I̊x (j)− 1

)3
(1− α) + αI̊x (j)

.

Now because (5.4) we have that the contribution due to
∑b∗

b=1Rn,b (j) in the right of (5.5) is∣∣∣∣∣∣ 1ñ
j∗∑
j=1

(
1

B

b∗∑
b=1

Rn,b (j)

) (
Rn (j)

)3
(1− α) + αI̊x (j)

∣∣∣∣∣∣
= Op (1)

 1

ñ

j∗∑
j=1

∣∣∣∣∣ 1

B

b∗∑
b=1

Rn,b (j)

∣∣∣∣∣ ∣∣Rn (j)
∣∣3

and hence Lemma 4 and Condition C3 imply that the second factor of the right side of last
displayed equality satisfies (5.2) with α = 1 there and hence Condition BW . Similarly the

contribution due to
∑b∗

b=1 I̊ε,b (j) in the right of (5.5) is

Op (1)

 1

ñ

j∗∑
j=1

∣∣∣∣∣ 1

B

b∗∑
b=1

I̊ε,b (j)

∣∣∣∣∣ ∣∣∣I̊ε,b (j)
∣∣∣3


which satisfies (5.2) and hence Condition BW because

1

ñ

j∗2∑
j=j∗1+1

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j)

∣∣∣∣∣∣
∣∣∣I̊ε,b (j)

∣∣∣3

≤ 4
1

ñ

j∗2∑
j=j∗1+1

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j)

∣∣∣∣∣∣
4

+ 4
1

ñ

j∗2∑
j=j∗1+1

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j)

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

B

b∗
2∑

b6=b∗
1+1

I̊ε,b (j)

∣∣∣∣∣∣
3

.

From here the proof is standard after observing that I̊ε,b (j) and I̊ε,v (j) are independent if b 6= v

and C3 implies that B−2 = o
(
B−1/2T−1/2

)
.

Next, the first term of (5.3), which is

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
R̆n,b (j)− R̆n (j)

} 2∑
k=0

(−1)k

k!

(
I̊x (j)− 1

)k
(5.6)

+
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
I̊ε,b (j)− I̊ε (j)

} 2∑
k=1

(−1)k

k!

(
I̊x (j)− 1

)k
+

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
I̊ε,b (j)− I̊ε (j)

}
since E

(
I̊x (j)

)
= E

(
I̊x,b (j)

)
and I̊x,b (j)− E

(
I̊x,b (j)

)
= R̆n,b (j) + I̊ε,b (j).

We first show the first term of (5.6) satisfies Condition BW . Indeed, by Lemmas 4 and 5,

we have that the contribution due to
∑2

k=1 R̆
k

n (j) into the term satisfies Condition BW . So,
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noticing that I̊x (j)− 1 = R̆n (j) + E (Rn,b (j)) + I̊ε (j), it suffices to show that

(5.7)
1

ñ

j∗2∑
j=j∗1+1

 1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

 2∑
k=0

(−1)k

k!
I̊
k

ε (j) ,

satisfies (5.2). When k = 0 it is a direct consequence of Lemma 5. Next because C1 implies

that E
(
I̊ε (j)2k

)
= O

(
B−k

)
, Cauchy-Schwarz inequality, and then Lemma 5, yields that the

contribution of the first absolute moment of the terms due to k = 2 in (5.7) is bounded by

1

Bñ

j∗2∑
j=j∗1+1

E
 1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

21/2

=
C

T 1/2B

(
j∗2 − j∗1
ñ

)(
b∗2 − b∗1

B

)1/2

.

So, it satisfies (5.2) because C2 implies that for some δ > 0, B−1/2 ≤ T−δñ−δ.
To finish that the first term of (5.6) satisfies Condition BW , it remains to do so for (5.7)

when k = 1, that is

1

ñ

j∗2∑
j=j∗1+1

 1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

 I̊ε (j) .

To that end, using (5.29) but with (2.16), (2.17) and (2.18) instead of (2.14) and (2.15) there,
it suffices to examine that

1

ñ

j∗2∑
j=j∗1+1

I̊ε (j)
1

B

b∗
2∑

b=b∗
1+1

(∣∣∣Ẏn,b (j; 0)
∣∣∣2 − E ∣∣∣Ẏn,b (j; 0)

∣∣∣2)(5.8)

1

ñ

j∗2∑
j=j∗1+1

I̊ε (j) Ĩε

(
j, n1/2

)
+

1

ñ

j∗2∑
j=j∗1+1

I̊ε (j)
(
Ĩε (j, 0)− Ĩε

(
j, n1/2

))
,(5.9)

satisfy Condition BW , where Ẏn,b (j; 0) = Y̌n,b (j; 0) + Ÿn,b (j) and

Ĩε (j; q) =
1

B

b∗
2∑

b=b∗
1+1

(
Jε,b (j) Ẏn,b (−j; q)− E

(
Jε,b (j) Ẏn,b (−j; q)

))
.

Because ∣∣∣β̇t+bn,T (`)
∣∣∣ =

∣∣∣∣βt+bn,T (`)− β
(
nb

T
; `

)∣∣∣∣ = O
(
T−1 |υ (`)|

)
(5.10) ∣∣∣∣β̈( t+ nb

T
; `

)∣∣∣∣ =

∣∣∣∣β( t+ nb

T
; `

)
− β

(
nb

T
; `

)∣∣∣∣ ≤ Cυ (`) /n−1/2

it standard to conclude that the contribution into (5.8) or (5.9) of Ÿn,b (j) satisfy the sufficient

condition (5.2). So, it suffices to examine the behaviour of (5.8) or (5.9) with Ẏn,b (j; 0) replaced

by Y̌n,b (j; 0). Now, standard inequalities yield that the first absolute moment of (5.8) is bounded
by

1

ñ

j∗2∑
j=j∗1+1

E (I̊2ε (j)

)
E

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

∣∣Y̌n,b (j; 0)
∣∣2 − E ∣∣Y̌n,b (j; 0)

∣∣2∣∣∣∣∣∣
21/2

= O

(
1

B1/2ñ

(
j∗2 − j∗1
ñ

)(
b∗2 − b∗1

B

))
,
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see (5.34) and (5.35) in Lemma 4. So Conditions C2 and C3 imply that (5.8) satisfies Condition
BW .

Next (5.9), with Ẏn,b (j; 0) replaced by Y̌n,b (j; 0). The second moment of the first term is

1

ñ2

j∗2∑
j,k=j∗1+1

E
(
I̊ε (j) I̊ε (k) Ĩε

(
j, n1/2

)
Ĩε

(
k, n1/2

))
= o

(
1

T

(
j∗2 − j∗1
ñ

)2(b∗2 − b∗1
B

)2
)

using that
∑∞

`=n1/2 |β (u; `)| = o
(
n−1/2

)
by C1 and independence of the sequence {εt}t∈Z. So

the first term of (5.9) satisfies Condition BW . Finally the second term of (5.9). Using the
definition of Y̌n,b (j; a) in (2.17), it suffices to consider

1

ñ

j∗∑
j=1

I̊ε (j)B
(
u; e−iλj

) 1

B

b∗
2∑

b=b∗
1+1

(
Jε,b (j) Ýn,b

(
−j;n1/2

)
− EJ ε,b (j) Ýn,b

(
−j;n1/2

))
,

where Ýn,b

(
−j;n1/2

)
= n−1/2

∑n1/2

`=1 `
1/2β (u; `) e−i`λj

(
`−1/2

∑n
t=n−` εt+(b−1)ne

−itλj
)
. But

E
∣∣∣Ýn,b

(
−j;n1/2

)∣∣∣2 = o
(
n−1

)
, so the second moment of the last displayed expression is

O

((
j∗2−j∗1
n

)2 (b∗
2−b∗

1
B

)
/B2n

)
and hence it satisfies Condition BW by Condition C3. This com-

pletes the proof that the first term of (5.6) satisfies Condition BW .
Next the second term of (5.6), i.e.

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
I̊ε,b (j)− I̊ε (j)

} 2∑
k=1

(−1)k

k!

(
R̆n (j) + E (Rn,b (j)) + I̊ε (j)

)k
.

Proceeding as with the first term of (5.6), the contribution due to R̆n (j) + E (Rn,b (j)) satisfies
Condition BW . So, we only need to examine

(5.11)
1

ñ

j∗∑
j=1

(
1

B

b∗∑
b=1

I̊ε,b (j)− b∗

B
I̊ε (j)

)
2∑

k=1

(−1)k

k!
I̊
k

ε (j) .

The contribution due to k = 2 is op
(
T−1/2

)
uniformly in j∗ and b∗, because supj∗

∣∣∣∑j∗

j=1 aj

∣∣∣ ≤∑ñ
j=1 |aj |, E

(∑b∗
2
b=b∗

1+1 I̊ε,b (j)
)2k

= O
(

(b∗2 − b∗1)
k
)

and then Condition C3 implies that

E

sup
j∗

1

ñ

∣∣∣∣∣∣
j∗∑
j=1

1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j) I̊
2

ε (j)

∣∣∣∣∣∣


≤ 1

ñ

ñ∑
j=1

E

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j) I̊
2

ε (j)

∣∣∣∣∣∣
 = o

(
1

T 1/2

(
b∗2 − b∗1

B

)1+δ
)

.

Next, the contribution due to k = 1 in (5.11), which is

1

ñ

j∗∑
j=1

1

B

(
b∗∑
b=1

I̊ε,b (j) I̊ε (j)− b∗

B

(
1 +

κ4
n

))

−b∗

B

1

ñ

j∗∑
j=1

{
I̊
2

ε (j)− 1

B

(
1 +

κ4
n

)}
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after we realize that E
(∑b∗

b=1 I̊ε,b (j) I̊ε (j)
)

= b∗E
(
I̊
2

ε (j)

)
=
(
1 + κ4

n

)
b∗/B. So, it suffices to

examine the behaviour of

E

 1

ñ

j∗2∑
j=j∗1+1

 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j) I̊ε (j)− (b∗2 − b∗1)

B2

(
1 +

κ4
n

)
2

which is

1

ñ2


j∗2∑

j,k=j∗1+1

E

 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j) I̊ε (k)

 E
 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (k) I̊ε (j)


+

j∗2∑
j,k=j∗1+1

E

 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j)
1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (k)

 E (I̊ε (j) I̊ε (k)
)

+

j∗2∑
j,k=j∗1+1

1

B2

b∗
2∑

b,v=b∗
1+1

Cum
(
I̊ε,b (j) ; I̊ε,v (k) ; I̊ε (j) ; I̊ε (k)

)
= O

(
(j∗2 − j∗1) (b∗2 − b∗1) /B

3n2
)

using Brillinger’s (1980) Theorems 2.3.2 and 4.3.1., and in particular expressions in (2.3.7) and
(4.3.15)), because (5.55) and that

j∗2∑
j,k=j∗1+1

b∗
2∑

b=b∗
1+1

Cum (Iε,b (j) ; Iε,b (j) ; Iε,b (k) ; Iε,b (k)) = O ((b∗2 − b∗1) (j∗2 − j∗1)) .

Recall that C1 implies that I̊ε,b1 (j) and I̊ε,b2 (k) are independent for all j, k if b1 6= b2.
So, we conclude that uniformly in j∗ and b∗, the first and second terms of (5.6) satisfy

Condition BW and hence (5.3) is

1

ñ

j∗∑
j=1

1

B

b∗∑
p=1

{
I̊ε,b (j)− I̊ε (j)

}
+ op

(
1

T 1/2

)
,

as we showed above that the second term of (5.3) satisfied (5.2). So the proof is completed if
we show that the first term of the last displayed expression

(5.12)
1

(ñB)1/2


j∗∑
j=1

b∗∑
b=1

I̊ε,b (j)−
(
b∗

B

) j∗∑
j=1

B∑
b=1

I̊ε,b (j)

⇒ BS ([0, 1]2
)

.

To that end, it is standard to show that

1

ñB
E

 j∗1∑
j=1

b∗
1∑

b=1

I̊ε,b (j)

j∗2∑
k=1

b∗
2∑

v=1

I̊ε,v (k)

 =
b∗1
B

[(
j∗1
ñ

)
+

(
j∗1
ñ

)(
j∗2
ñ

)
κ4

]
,

where we have assumed without loss of generality that j∗1 ≤ j∗2 and b∗1 ≤ b∗2 and independence

of I̊ε,b (j) and I̊ε,v (j) for b 6= v by Condition C1. So, the covariance structure of (5.12) is, after
standard algebra, given by (2.10).

From here the proof concludes by standard arguments if we show that

1

(ñB)1/2

j∗∑
j=1

b∗∑
b=1

I̊ε,b (j) =
1

(ñB)1/2

b∗∑
b=1

j∗∑
j=1

I̊ε,b (j)
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converges in distribution to a normal random variable. But this is the case as ñ−1/2
∑j∗

j=1 I̊ε,b (j)
is a triangular array of independent identically distributed random variables with finite second
moments. This completes the proof of the theorem. �

5.2. Proof of Corollary 1.

Part (a) follows from Theorem 1 because underH0, Condition C2 holds trivially and
∣∣B (nbT ;j

)∣∣2 =

|B (j)|2 ≡ f (j) /σ2ε , so that for all j∗ = 1, ..., ñ and b∗ = 2, ...,B, T̆n,B
(
b∗

B ; j∗

ñ

)
≡ Tn,B

(
b∗

B ; j∗

ñ

)
.

The proof of part (b) is omitted as it follows by standard arguments. �

5.3. Proof of Corollary 2.
We begin showing the statistical properties of σ̂2ε. Recall that is σ̂2ε = B−1

∑B
b=1 σ̂

2
ε (b), where

σ̂2ε (b) is given in (2.23). Now we have that

(5.13) σ̂2ε (b)− 1 =:
1

n

n∑
t=1

(
ε2t+(b−1)n − 1

)
+
(
σ̂2ε (b)− σ̃2ε (b)

)
,

recall that we assumed σ2ε = 1 for notational simplicity, where

(5.14) σ̃2ε (b) =
1

n

n∑
t=1

ε2t+(b−1)n; b = 1, ...,B.

From here and Lemma 7 is obvious that σ̂2ε − σ2ε = op (1). Also

1

T

T∑
t=1

ε̂4t =
1

B

B∑
b=1

1

n

n∑
t=1

(
ε̂4t+(b−1)n − ε

4
t+(b−1)n

)
+

1

B

B∑
b=1

1

n

n∑
t=1

ε4t+(b−1)n.

Now the first term on the right of the last displayed expression converges to zero in probability by
Lemma 8, whereas by Condition C1 and weak law of large numbers, the second term converges
to 3σ4ε + κ4 in probability. Now standard arguments conclude that κ̂4 − κ4 = op (1). �

5.4. Proof of Theorem 2.
It suffices to examine the difference

(5.15)
1

ñ

j∗∑
j=1

{
T Pn,B

(
b∗

B
; j

)
− Tn,B

(
b∗

B
; j

)}
.

To that end, we first examine

(5.16)
1

ñB

j∗∑
j=1

b∗∑
b=1

Ix,b (j)

f (j)

{
1

σ̂2ε (b)
− 1

}
=

3∑
`=1

Φn,` (j∗,b∗) + op

(
T−1/2

)
,

where the right side is due to Taylor’s expansion because Theorem 2 and C3 imply that

E
{
σ̂2ε (b)− 1

}4
= O

(
B−2

)
= o

(
T−1/2

)
and supb=1,...,B

∣∣σ̂2ε (b)− 1
∣∣2 = op (B/n) then yields

that op
(
T−1/2

)
is uniformly in j∗ and b∗, and where

Φn,1 (j∗,b∗) =
j∗

ñB

b∗∑
b=1

3∑
k=1

(−1)k

k!

{
σ̂2ε (b)− 1

}k
(5.17)

Φn,2 (j∗,b∗) =
1

ñB

j∗∑
j=1

b∗∑
b=1

Rn,b (j)
3∑

k=1

(−1)k

k!

{
σ̂2ε (b)− 1

}k
(5.18)

Φn,3 (j∗,b∗) =
1

ñB

j∗∑
j=1

b∗∑
b=1

I̊ε,b (j)
3∑

k=1

(−1)k

k!

{
σ̂2ε (b)− 1

}k
.(5.19)
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First we examine (5.19). The contribution due to the terms when k = 2, 3 is easily shown
that they satisfy (5.2) and hence Condition BW , so we will only handle k = 1, which is

(5.20)
1

ñB

b∗∑
b=1

{
σ̃2ε (b)− σ̂2ε (b)

} j∗∑
j=1

I̊ε,b (j)− 1

ñB

b∗∑
b=1

{
σ̃2ε (b)− 1

} j∗∑
j=1

I̊ε,b (j)

using the notation in (5.13).

Next because E
(
σ̃2ε (b)− 1

)4
= O

(
n−2

)
, the second term of (5.20) satisfies Condition BW

because

E

∣∣∣∣∣∣ 1

ñB

b∗
2∑

b=b∗
1+1

{
σ̃2ε (b)− 1

} j∗2∑
j=j∗1+1

I̊ε,b (j)

∣∣∣∣∣∣
2

≤ b∗2 − b∗1
B2n2

b∗
2∑

b=b∗
1+1

E

∣∣∣∣∣∣{σ̃2ε (b)− 1
} j∗2∑
j=j∗1+1

I̊ε,b (j)

∣∣∣∣∣∣
2

= op

(
1

T

(
j∗2 − j∗1
ñ

)1+δ (b∗2 − b∗1
B

)2
)

,

by Cauchy-Schwarz’s inequality and then Condition C3.
Now due to Lemma 7, the first term of (5.20) is

(5.21)
dn
ñB

b∗∑
b=1

 1

n

n∑
p=1

ψ̆b,n (p) +
1

B

 j∗∑
j=1

I̊ε,b (j) +
Ψn,1

ñB

b∗∑
b=1

Ψn,2 (b)

∣∣∣∣∣∣
j∗∑
j=1

I̊ε,b (j)

∣∣∣∣∣∣ ,
where using notation before Lemma 6,

(5.22) ψ̆b,n (p) = A−1 (p)ψ1,n (p) I̊ε,b (p) .

Because EΨ2
n,2 (b) = O

(
B−3 + n−2

)
,

(5.23) sup
j∗,b∗

∣∣∣∣∣∣ 1

(ñB)1/2

b∗∑
b=1

j∗∑
j=1

I̊ε,b (j)

∣∣∣∣∣∣ = Op (1) ; sup
j∗

∣∣∣∣∣∣ 1

ñ1/2

j∗∑
j=1

I̊ε,b (j)

∣∣∣∣∣∣ = Op (1)

we can conclude then by C3, that the first term of (5.20) satisfies condition BW if the first term
of (5.21) does. So, we need to examine the behaviour of

(5.24)
1

n

ñ∑
p=1

A−1 (p) ξ(1) (p, j) +
1

n

ñ∑
p=1

A−1 (p) ξ(2) (p, j) ,

where

ξ(1) (p, j) =
n∑
`=1

ς`p

 1

B

b∗
2∑

v=b∗
1+1

I̊ε,v (`)

 1

ñB

b∗
2∑

b=b∗
1+1

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)


ξ(2) (p, j) =

n∑
`=1

ς`p

 1

B

b∗
2∑

v 6=b∗
1+1

I̊ε,v (`)

 1

ñB

b∗
2∑

b=b∗
1+1

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)

 .
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The second moment of ξ(2) (p, j) is

n∑
`1,`2=1

ς`1pς`2p

 1

B2

b∗
2∑

v 6=b∗
1+1

E
(
I̊ε,v (`1) I̊ε,v (`2)

)
× 1

(ñB)2
E


b∗
2∑

b=b∗
1+1

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)

b∗
2∑

b=b∗
1+1

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)


= O

(
log2 n

nB2

(
b∗2 − b∗1

B

)2( j∗2 − j∗1
ñ

))

by C1 and using (5.55) in Lemma 7. On the other hand, ξ(1) (p, j) is

1

ñB2

b∗
2∑

v=b∗
1+1

(
n∑
`=1

ς`pI̊ε,v (`) I̊ε,v (p)

)
j∗2∑

j=j∗1+1

I̊ε,v (j)


+

1

ñB2

b∗
2∑

v 6=b=b∗
1+1

(
n∑
`=1

ς`pI̊ε,v (`) I̊ε,b (p)

)
j∗2∑

j=j∗1+1

I̊ε,b (j)

 .

The first term of the last displayed expression satisfies Condition BW by a routine used of
the Cauchy-Schwarz’s inequality, whereas Condition C1 implies that the second moment of the
second term is

1

ñ2B4

n∑
`1,`2=1

ς`1pς`2p


b∗
2∑

v=b∗
1+1

E
(
I̊ε,v (`1) I̊ε,v (`2)

)

×

 b∗
2∑

b1,b2=b∗
1+1

b1,b2 6=v

E

I̊ε,b1 (p) I̊ε,b2 (p)


j∗2∑

j=j∗1+1

I̊ε,b1 (j)




j∗2∑
j=j∗1+1

I̊ε,b2 (j)






=
b∗2 − b∗1
ñ2B4


n∑

`1,`2=1

ς`1pς`2p

(
I (`1 = `2) +

κ4
n

)
×


 b∗

2∑
b=b∗

1+1

E

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)

2

+

b∗
2∑

b=b∗
1+1

E
(
I̊2ε,b (p)

)
E

 j∗2∑
j=j∗1+1

I̊ε,b (j)

2

+

b∗
2∑

b=b∗
1+1

j∗2∑
j,k=j∗1+1

cum
(
I̊ε,b (p) ; I̊ε,b (p) ; I̊ε,b (j) ; I̊ε,b (k)

) .

From here and a standard used of (5.55) of Lemma 7 it follows that it satisfies Condition BW .
So, this concludes that (5.24) and hence the first term of (5.20) satisfies (5.2), i.e. Condition
BW .

Next (5.18). As with (5.19) the contribution due to the terms when k = 2, 3 satisfies (5.2)
with α = 1 there and hence Condition BW . So we will examine

1

ñB

j∗∑
j=1

b∗∑
b=1

Rn,b (j)
(
σ̂2ε (b)− 1

)
.
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Using (5.29) and definition in (5.31), we have that it suffices to show (5.2) for

1

ñB

j∗∑
j=1

b∗∑
b=1

Z
(1)
n,b (−j)

(
σ̂2ε (b)− 1

)
.

because E |Yn,b (j; 0)|4 +E
∣∣∣Z(2)
n,b (−j)

∣∣∣2 = O
(
n−2

)
and then Theorem 2 and Condition C3. Now

because EZ
(1)
n,b (−j) = O

(
n−1

)
, it implies that it suffices to show that

1

ñB

j∗∑
j=1

b∗∑
b=1

(
Z
(1)
n,b (−j)− EZ

(1)
n,b (−j)

) (
σ̂2ε (b)− σ̃2ε (b)

)
+

1

ñB

j∗∑
j=1

b∗∑
b=1

(
Z
(1)
n,b (−j)− EZ

(1)
n,b (−j)

) (
σ̃2ε (b)− 1

)
satisfies (5.2) and hence Condition BW . Clearly the second term of the last displayed expression

satisfies (5.2) using Lemma 1 part (a) and that E
(
σ̃2ε (b)− 1

)2
= O

(
n−1

)
, whereas the first term

proceeding as with (5.21) is

1

ñB

j∗∑
j=1

b∗∑
b=1

(
Z
(1)
n,b (−j)− EZ

(1)
n,b (−j)

) 1

n

n∑
p=1

ψ̆b,n (p) + op

(
T−1/2

)

uniformly in j∗ and b∗. Then proceed step by step as with (5.24) but with I̊ε,b (j) replaced by

Z
(1)
n,b (−j)− EZ

(1)
n,b (−j).

So, it remains to examine the behaviour of (5.17), which is

(5.25)
j∗

ñB

b∗∑
b=1

{
σ̂2ε (b)− 1

}
+

j∗

ñB

b∗∑
b=1

3∑
k=2

(−1)k

k!

{
σ̂2ε (b)− 1

}k
We first examine the second term of (5.25). The contribution due to σ̃2ε (b) − 1 is op

(
T−1/2

)
,

uniformly in j∗ and b∗ because

E sup
j∗;b∗

∣∣∣∣∣ j∗ñB
b∗∑
b=1

3∑
k=2

{
σ̃2ε (b)− 1

}k∣∣∣∣∣ ≤ 1

B

B∑
b=1

3∑
k=2

E
∣∣σ̃2ε (b)− 1

∣∣k
= O

(
n−1

)
= o

(
T−1/2

)
,

so it is the contribution due to
d2,n
B + Ψn,1Ψn,2 (b) because by Lemma 7, E

∣∣∣d2,nB + Ψn,2 (b)
∣∣∣k =

op
(
T−1/2

)
and Ψn,1 = Op (1). Next the contribution due 1

n

∑n
p=1 ψ̆b,n (p), that is

j∗

ñB

b∗∑
b=1

3∑
k=2

(−1)k

k!

 1

n

n∑
p=1

A−1 (p)ψ1,n (p) I̊ε,b (p)

k

.
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Now,

E sup
j∗;b∗

∣∣∣∣∣∣∣
j∗

ñB

b∗∑
b=1

3∑
k=2

 1

n

n∑
p=1

A−1 (p)ψ1,n (p) I̊ε,b (p)


k
∣∣∣∣∣∣∣

=
C

B

B∑
b=1

E
 1

n

n∑
p=1

A−1 (p)ψ1,n (p) I̊ε,b (p)

2

+
1

n

n∑
p=1

E
(
|ψ1,n (p)|3

∣∣∣I̊ε,b (p)
∣∣∣3)


≤ C

B

B∑
b=1

E
 1

nB

n∑
p=1

A−1 (p) I̊ε,b (p)
n∑
`=1

ς`p
∑
v 6=b

I̊ε,v (`)

2
+
C

B

B∑
b=1

E
 1

nB

n∑
p=1

A−1 (p) I̊ε,b (p)
n∑
`=1

ς`pI̊ε,b (`)

2+O

(
1

B3/2

)
= op

(
T−1/2

)
because B−3/2 = o

(
T−1/2

)
by C3 and using (5.55). So, we have that the second term of (5.25)

satisfies Condition BW .
Next the first term of (5.25), which is using (5.22)

j∗

ñB

b∗∑
b=1

{
σ̃2ε (b)− 1

}
+

j∗

ñB

b∗∑
b=1

1

n

n∑
j=1

ψ̆b,n (j) +
j∗b∗

ñB

(
d2,n
B

)
+ op

(
1

T 1/2

)
.

by Lemma 7. The second term is

j∗

ñB

b∗∑
b=1

1

n

n∑
j=1

n∑
p=1

ςjp

 1

B

∑
v 6=b

I̊ε,v (p)

 I̊ε,b (j)

+
j∗

ñB

n∑
p=1

ςjp
1

nB

n∑
j=1

b∗∑
b=1

I̊ε,b (j) I̊ε,b (p) .

Again, because  1

nB

n∑
j=1

b∗∑
b=1

I̊ε,b (j) I̊ε,b (p)

2

= O
(
T−1/2

)
,

it suffices to examine

1

B

b∗∑
b=1

1

n

n∑
j=1

n∑
p=1

ςjp

 1

B

∑
v 6=b

I̊ε,v (p)

 I̊ε,b (j)

from our comments made after (5.19). The second moments are

1

B4

1

n2

n∑
j1,j2=1

n∑
p1,p2=1

ςj1p1ςj2p2

b∗∑
b=1

E (I̊ε,b (j1) I̊ε,b (j2)
)∑
v 6=b
E
(
I̊ε,v (p1) I̊ε,v (p2)

) .

Now use (5.55) to conclude that it is o
(
T−1/2

)
.

So, we have obtained that, uniformly in b∗ and j∗, (5.16) is

(5.26)
j∗

ñ

1

B

b∗∑
b=1

(
σ̃2ε (b)− 1

)
+

j∗b∗

ñB

(
d2,n
B

)
+ op

(
1

T 1/2

)
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and hence (5.15) becomes

j∗

ñ

{
1

B

b∗∑
b=1

(
σ̃2ε (b)− 1

)
− b∗

B

1

B

B∑
b=1

(
σ̃2ε (b)− 1

)}
+ op

(
1

T 1/2

)
proceeding as in the proof of Theorem 1 and because the second term of (5.26) is independent
of b. From here we then conclude that

[T/2] T Pn,B
(
j∗

ñ
,
b∗

B

)
=

1

(ñB)1/2

j∗∑
j=1

b∗∑
b=1

{
I̊ε,b (j)− 1

n

n∑
t=1

(
ε2t+(b−1)n − 1

)

−

(
I̊ε (j)− 1

T

T∑
t=1

(
ε2t − 1

))}
+ op (1)

using the proof of Theorem 1.
But, standard algebra gives that

E

(
I̊ε,b (j)− 1

n

n∑
t=1

(
ε2t+(b−1)n − 1

)
; I̊ε,b (−k)− 1

n

n∑
t=1

(
ε2t+(b−1)n − 1

))

=
1

n2

∑
t1 6=s1;t2 6=s2

E (εt1εs1εt2εs2) ei(t1−s1)λj−i(t2−s2)λk

= I (j = k)− 2

n
.

The proof now follows by routine arguments, and so they are omitted. �

5.5. Proof of Proposition 1.
We shall look at part (a), part (b) follows identically using Theorem 2 instead of Theorem 1

when needed and that σ2ε (b) = σ2ε . The proof is similar to that of Theorem 1 but we employ

Lemmas 4 and 5 instead of Lemmas 2 and 3 when needed. Abbreviating f́
(
bn
T ; j

)
/fB (j) as

f̈
(
bn
T ; j

)
, where f́

(
bn
T ; j

)
=
(

1 + g (bn/T ; j) / [T/2]1/2
)

and fB (j) = B−1
∑B

b=1 f́
(
bn
T ; j

)
, we

easily see, proceeding as in Theorem 1, that Tn,B
(
b∗

B ; j∗

ñ

)
is

1

ñ

j∗∑
j=1

{
1

B

b∗∑
b=1

(
f̈
(
bn
T ; j

)
I̊ε,b (j) + f̈

(
bn
T ; j

)
B−1

∑B
b=1 f̈

(
bn
T ; j

)
I̊ε,b (j) + 1

− 1

)}
1 + op

(
T−1/2

)
.

Now, using Taylor’s expansion of x−1 around 1 and the arguments in the proof of Theorem 1,
we have that

1

B−1
∑B

b=1 f̈
(
bn
T ; j

)
I̊ε,b (j) + 1

asym
' 1− υn (j) + υ2n (j) ,

where υn (j) = B−1
∑B

b=1 f̈
(
bn
T ; j

)
I̊ε,b (j) and “

asym
' ” denotes that the left- and right hand sides

are asymptotically equivalent.

So, the asymptotic behaviour of [T/2]1/2 Tn,B
(
b∗

B ; j∗

ñ

)
is governed by

[T/2]1/2
1

ñ

j∗∑
j=1

{
1

B

b∗∑
b=1

{(
f̈

(
bn

T
; j

)
I̊ε,b (j)− υn (j)

)
+

(
f̈

(
bn

T
; j

)
− 1

)}
×
(
1− υn (j) + υ2n (j)

)}
.
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Now, except terms of smaller order of magnitude, the expectation of the last displayed ex-
pression is

[T/2]1/2
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

(
f̈

(
bn

T
; j

)
− 1

)

=
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
g

(
bn

T
; j

)
− 1

B

B∑
b=1

g

(
bn

T
; j

)}
→

T ,n↗∞
d (ω∗;υ∗)

using the definition of f̈
(
bn
T ; j

)
under Hl. Now the proof of the proposition proceeds as that of

Theorem 1 and so it is omitted. �
Let’s introduce some notation. In what follows, we denote

I̊ε∗,b (j) = Iε∗,b (j)− 1; Iε∗ (j) =
1

B

B∑
b=1

Iε∗,b (j)

I̊ε∗ (j) =
1

B

B∑
b=1

I̊ε∗,b (j) .

Notice that E∗
(
I̊ε∗,b (j)

)
= 0. Also {Hn}n≥1 is a sequence of strictly positive Op (1) random

variables.

5.6. Proof of Theorem 3.
We shall handled only part (a), part (b) follows similarly. We need to show that

[T/2]1/2 T ∗n,B
(
b∗

B
;
j∗

ñ

)
weakly⇒ BS

(
[0, 1]2

)
(in probability),

Now, using Taylor’s expansion of I
−1
ε∗ (j) around 1, we obtain the following decomposition of

T ∗n,B
(
j∗

ñ ,
b∗

B

)
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

(
I̊ε∗,b (j)− I̊ε∗ (j)

)
I̊
3

ε∗ (j)Op∗ (1)

+
1

ñ

j∗∑
j=1

(
1

B

b∗∑
b=1

{
I̊ε∗,b (j)− I̊ε∗ (j)

}) 2∑
k=0

(−1)k

k!
I̊
k

ε∗ (j) .

Notice that Lemma 9 yields that
(

supj I̊ε∗ (j)
)4
≤
∑ñ

j=1 I̊
4

ε∗ (j) = op∗ (1) by C1, so that

I
−1
ε∗ (j) < Hn. So, proceeding as in the proof of Theorem 1 but using now Lemma 9, we

easily conclude that T ∗n,B
(
j∗

ñ ,
b∗

B

)
is governed by

(5.27)
1

ñB

j∗∑
j=1

b∗∑
b=1

{
I̊ε∗,b (j)− I̊ε∗ (j)

} 2∑
k=0

(−1)k

k!
I̊
k

ε∗ (j) .

Next, we examine the contribution due to k = 1, 2 in (5.27), and in particular

(5.28)
1

ñ

j∗∑
j=1

(
1

B

b∗∑
b=1

I̊ε∗,b (j)

)
2∑

k=1

I̊
k

ε∗ (j) .
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To that end, we write

1

B

B∑
b=1

I̊ε∗,b (j) =
1

B


b∗
1∑

b=1

+

B∑
b=b∗

2+1

 I̊ε∗,b (j) +
1

B

b∗
2∑

b=b∗
1+1

I̊ε∗,b (j)

= : İε∗ (j) + Ïε∗ (j) .

Now, because I̊ε∗,b1 (j) and I̊ε∗,b2 (k) are independent for all j, k when b1 6= b2, we have that

E∗
(
I̊ε∗,b1 (j) I̊ε∗,b2 (k)

)
= 0 if b1 6= b2

E∗
(
I̊ε∗,b (j) I̊ε∗,b (k)

)
= σ̂2ε (b) I (j = k) +

1

n
Cum∗ (ε∗t ; ε

∗
t ; ε
∗
t ; ε
∗
t ) ,

by standard arguments. So, the latter two displayed expressions imply that İε∗ (j) and Ïε∗ (k)
are independent and hence

E∗
 1

ñ

j∗2∑
j=j∗1+1

Ïε∗ (j)

2∑
k=1

İ
k

ε∗ (j)

2

=
1

ñ2

j∗2∑
j,k=j∗1+1

 1

B2

b∗
2∑

b=b∗
1+1

E∗
(
I̊ε∗,b (j) I̊ε∗,b (k)

) E∗( 2∑
k=1

İ
k

ε∗ (j)

)(
2∑

k=1

İ
k

ε∗ (k)

)

= o

(
T−1

(
b∗2 − b∗1

B

)2( j∗2 − j∗1
ñ

)2
)
Hn.

Also we have that E∗
(∑j∗2

j=j∗1+1 Ï
2

ε∗ (j) İε∗ (j)

)2

= 0.

Next, to finish that the contribution due to k = 1, 2 in (5.27), we need to examine

E∗
 1

ñ

j∗2∑
j=j∗1+1

Ïε∗ (j)
2∑

k=1

Ï
k

ε∗ (j)

2

= E∗
 2∑
k=1

1

ñ

j∗2∑
j=j∗1+1

Ï
k+1

ε∗ (j)

2

= E∗
 1

ñ

j∗2∑
j=j∗1+1

Ï
2

ε∗ (j)

2

+ o

(
T−1

(
b∗2 − b∗1

B

)2( j∗2 − j∗1
ñ

)2
)
Hn

because by Condition C3, B−3 = o
(
T−1

)
and Lemma 9. But by Lemma 9 and standard

arguments the right side of the last displayed expression is

1

B2

(
b∗2 − b∗1

B

)2( j∗2 − j∗1
ñ

)2

E∗I2ε∗ (j) + o

(
T−1

(
b∗2 − b∗1

B

)2( j∗2 − j∗1
ñ

)2
)
Hn.

Now, proceeding similarly with

1

ñ

j∗∑
j=1

(
b∗

B
I̊ε∗,b (j)

) 2∑
k=1

I̊
k

ε∗ (j)
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we have that its second moments are

1

B2

(
b∗2 − b∗1

B

)2( j∗2 − j∗1
ñ

)2

E∗I2ε∗ (j) + o

(
T−1

(
b∗2 − b∗1

B

)2( j∗2 − j∗1
ñ

)2
)
Hn

and hence (5.27) is

1

ñB

j∗∑
j=1

b∗∑
b=1

{
I̊ε∗,b (j)− I̊ε∗ (j)

}
+ o

(
T−1

(
b∗2 − b∗1

B

)2( j∗2 − j∗1
ñ

)2
)
Hn,

which implies that

[T/2]1/2 T ∗n,B
(
b∗

B
;
j∗

ñ

)
=

1

[T/2]1/2

j∗∑
j=1

b∗∑
b=1

{
I̊ε∗,b (j)− I̊ε∗ (j)

}
+ op∗ (1) .

The proof is then completed if

T̆ ∗n,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

I̊ε∗,b (j)
weakly
=⇒ BW

(
[0, 1]2

)
(in probability).

Now E∗T̆ ∗n,B
(
b∗

B ; j∗

ñ

)
= 0, whereas by independence of the sequence

{
I̊ε∗,b (j)

}B

b=1
,

[T/2] E∗
(
T̆ ∗n,B

(
b∗1
B

;
j∗1
ñ

)
T̆ ∗n,B

(
b∗2
B

;
j∗2
ñ

))

=
(b∗1 ∧ b∗2)

[T/2]

j∗1∑
j=1

j∗2∑
k=1

(
E∗
(
ε∗2t
)
I (j = k) +

1

n
Cum∗ (ε∗t ; ε

∗
t ; ε
∗
t ; ε
∗
t )

)
P→ (ω∗1 ∧ ω∗2)

(
υ∗1 +

1

2
υ∗1υ

∗
2κ4

)
.

Finally the tightness of [T/2]1/2 T̆ ∗n,B
(
b∗

B ; j∗

ñ

)
, for which a sufficient condition is that

[T/2]2 E∗
(
T̆ ∗4n,B

(
(j∗2 − j∗1)

ñ
,
(b∗2 − b∗1)

B

))
= (ω∗1 − ω∗2)

1+δ (υ∗1 − υ∗2)
1+δHn.

But this proceeds by Lemma 7 in a standard way. �

APPENDIX III: AUXILIARY LEMMAS

Before we present our lemmas, it is useful to introduce some notation. First from (2.14) and
(2.15) we have that

(5.29) Rn,b (j) =
B (−j)
|B (−j)|2

Jε,b (j) Yn,b (−j; 0) +
B (j)

|B (j)|2
Jε,b (−j) Yn,b (j; 0) + |Yn,b (j; 0)|2 ,

where

(5.30) Yn,b (j; 0) = Y
(1)
n,b (j) + Y

(2)
n,b (j)

with Un`,b (j) =
{∑n−`

t=1−`−
∑n

t=1

}
εt+(b−1)ne

itλj ,

Y
(1)
n,b (j) =

1

n1/2

n∑
`=0

β (`) e−i`λjUn`,b (j) ; Y
(2)
n,b (j) =

1

n1/2

∞∑
`=n+1

β (`) e−i`λjUn`,b (j) .

Also, we shall denote

(5.31) Z
(k)
n,b (−j) = Jε,b (j) Y

(k)
n,b (−j) , k = 1, 2.
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Lemma 1. Assuming C1 and C3 , under the null hypothesis we have that

(a)

∣∣∣∣∣∣E
 4∏
q=1

Z
(1)
n,b (jq)

∣∣∣∣∣∣ =
d

n2

{
1

n2
+ I (j1 = j2) I (j3 = j4)

}
; d <∞

(b)
∣∣∣E (Z

(1)
n,b (j1) Z

(1)
n,b (j2)

)∣∣∣ =
d

n

{
1

n
+ I (j1 = j2)

}

(c)

∣∣∣∣∣∣E
 2p∏
q=1

Z
(2)
n,b (jq)

∣∣∣∣∣∣ = o
(
n−2p

)
, p = 1, 2.

Proof. We begin with part (c). We shall look at p = 2 being the case for p = 1 similarly handled.

Because
∑∞

`=n+1 |β (`)| = o
(
n−1

)
by C1, and definition of Z

(2)
n,b (−j), we have that the left side

of the expression is bounded by

∞∑
`1,...,`4=n+1

∣∣∣∣∣∣
4∏
q=1

β (`q)

∣∣∣∣∣∣
∣∣∣∣∣∣E
 4∏
q=1

Jε,b (jq)
1

n1/2
Un`1,b (jq)

∣∣∣∣∣∣
= o

(
n−4

)
E

∣∣∣∣∣∣
4∏
q=1

Jε,b (jq)
1

n1/2

{
n−∑̀
t=1−`

−
n∑
t=1

}
εt+(b−1)ne

itλjq

∣∣∣∣∣∣
= o

(
n−4

)
,

because
∑n

`=0 ` |β (`)| <∞ by Condition 1. Next part (a), which by definition is

1

n2

n∑
`1,...,`4=0

∣∣∣∣∣∣
4∏
q=1

β (`q)

∣∣∣∣∣∣
∣∣∣∣∣∣E
 4∏
q=1

Un`1,b (jq)Jε,b (jq)

∣∣∣∣∣∣
=

d

n2

n∑
`1,...,`4=0

∣∣∣∣∣∣
4∏
q=1

β (`q) `q

∣∣∣∣∣∣
 1

n2
+

∣∣∣∣∣∣E
 4∏
q=1

Jε,b (jq)

∣∣∣∣∣∣
 ,

since Un`,b (j) =
{∑0

t=1−`−
∑n

t=n−`+1

}
εt+(b−1)ne

itλj when ` ≤ n, so that E (Un`,b (jq)Jε,b (jq)) =

O
(
`/n1/2

)
. Now conclude because

∑n
`=0 ` |β (`)| < ∞. Finally the proof of part (b) proceeds

similarly.

Lemma 2. Assuming C1 and C3 , under the null hypothesis we have that, q = 1, 2,

E

 1

B

b∗
2∑

b=b∗
1+1

Rn,b (j)

2q

= O

((
b∗2 − b∗1
B2n

)q
+

(
b∗2 − b∗1
Bn

)2q
)

(5.32)

E sup
j

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

Rn,b (j)

∣∣∣∣∣∣ = O

(
(b∗2 − b∗1)

1
2

B
+

b∗2 − b∗1
Bn

)
(5.33)

Proof. Because Brockwell and Davis’s (1991) Theorem 10.3.1 and then C1 and H0 imply that

E (Rn,b (j)) = O
(
n−1

)
and E |Yn,b (j; 0)|4q = O

(
n−2q

)
, (5.32) and (5.33) hold true if

(5.34) E

 1

B

b∗
2∑

b=b∗
1+1

(
Z
(k)
n,b (−j)− EZ

(k)
n,b (−j)

)2q

= O

(
b∗2 − b∗1
B2n

)q
k = 1, 2; q = 1, 2
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(5.35) sup
1≤j≤ñ

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

(
Z
(k)
n,b (−j)− EZ

(k)
n,b (−j)

)∣∣∣∣∣∣ = Op

((
b∗2 − b∗1

B2

)1/2
)

, k = 1, 2.

Recall that C−1 < |B (λ)|2 < C for some positive finite constant C. But (5.34) follows by

Lemma 1 and that Z
(1)
n,b1

(j) and Z
(1)
n,b2

(−k) are independent if b1 6= b2 by Condition C1.

Next we examine (5.35) which follows easily because its second moment is bounded by

ñ∑
j=1

E

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

(
Z
(k)
n,b (−j; 0)− EZ

(k)
n,b (−j; 0)

)∣∣∣∣∣∣
2

k = 1, 2.

This completes the proof of the lemma.

Lemma 3. Assuming C1 and C3 , under the null hypothesis we have that for q = 1, 2,

(5.36) E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

2q

= O

(
1

n2q

(
j∗2 − j∗1
ñ

)1+δ (b∗2 − b∗1
B

)1+δ
)
.

Proof. We examine q = 1, the proof for q = 2 is similarly handled. By (5.29), (5.36) holds true
if it is so for the second moments of

1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

(
|Yn,b (j; 0)|2 − E |Yn,b (j; 0)|2

)
(5.37)

1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

(
Z
(k)
n,b (−j; 0)− EZ

(k)
n,b (−j; 0)

)
(5.38)

for k = 1, 2. Following Brockwell and Davis’s (1991) Theorem 10.3.2., the second moment of
(5.37) satisfies the right side of (5.36) with δ = 1 there. Next (5.38) when k = 2. Because∑∞

`=n |β (`)| = o
(
n−1

)
by Condition C1 and that, say

1

(ñB)1/2

j∗2∑
j=j∗1+1

b∗
2∑

b=b∗
1+1

(
Jε,b (j)

1

n1/2

n∑
t=1

εt+(b−1)ne
−itλj − E (·)

)
converge to a Gaussian process, we have that (5.38) satisfies the right side of (5.36). Observe
that the sequence is uniform integrable, by Serfling (1980), we have that the second moment of
the sequence converges to that of the limiting distribution.

Finally (5.37) when k = 1. Because
∑∞

`=1 ` |β (`)| < C it suffices to show

E

 1

ñ3/2B

j∗2∑
j=j∗1+1

b∗
2∑

b=b∗
1+1

(
Jε,b (j) J̃ε,b (j, `)− E

(
Jε,b (j) J̃ε,b (j, `)

))2

,

where J̃ε,b (j, `) = `−1
∑n

t=n−` εt+(b−1)ne
−itλj satisfies the right side of (5.36). But using Lemma

1 part (b), we have that it is

O

(
j∗2 − j∗1
ñ3

b∗2 − b∗1
B2`

)
+O

(
(j∗2 − j∗1)

2

ñ4
b∗2 − b∗1

B2

)

= O

(
1

n2

(
j∗2 − j∗1
ñ

)1+δ (b∗2 − b∗1
B

)1+δ
)

,

for some δ > 0.
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Lemma 4. Assuming C1 − C3, we have that,q = 1, 2,

E

 1

B

b∗
2∑

b=b∗
1+1

Rn,b (j)

2q

= O

((
b∗2 − b∗1
B2n

)q
+

(
b∗2 − b∗1
Bn

)2q
)

(5.39)

sup
1≤j≤ñ

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

Rn,b (j)

∣∣∣∣∣∣ = O

((
b∗2 − b∗1

B2

)1/2

+
b∗2 − b∗1
Bn

)
(5.40)

Proof. We examine q = 1, the proof for q = 2 is similarly handled. First recall our decomposition
in (2.16), that is

(5.41) Jx,b (j) = B
(
n (b− 1)

T
;−j

)
Jε,b (j) + Y̌n,b (j; 0) + Ÿn,b (j) .

Now by definition, i.e. (2.18), and using (5.10) we have that

Ÿn,b+1 (j) =
1

n1/2

n∑
t=1

∞∑
`=0

(
β̇t+bn,T (`) + β̈

(
t+ nb

T
; `

))
εt+bn−`e

itλj ,

and so its contribution into (5.39) and (5.40) satisfies their right sides.

Proceeding as in the proof of Lemma 2 but with f (j) replaced by
∣∣∣B (n(b−1)T ; j

)∣∣∣2 and B (u; j)

given in (1.4), we have that the contribution due to the second term on the right of (5.41) satisfies
the statement of the lemma. Notice that there is no difference whether we have that the MA
representation of the process has weights β (u; `) or β (`) as both sequences satisfy the same
qualitative condition

∑∞
`=0 ` |β (u; `)| <∞.

Lemma 5. Assuming C1 − C3, we have that for q = 1, 2,

E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

2q

= O

(
1

n2q

(
j∗2 − j∗1
ñ

)1+δ (b∗2 − b∗1
B

)1+δ
)
.

Proof. We examine q = 1, the proof for q = 2 is similarly handled. In view of (5.41) and
comments in Lemma 4, it suffices to show

(5.42) E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j; 0,∞)

2

= O

(
1

n2

(
j∗2 − j∗1
ñ

)1+δ (b∗2 − b∗1
B

)1+δ
)

,

where

R̈n,b (j; q1, q2) =

∣∣∣∣∣∣ 1

n1/2

n∑
t=1

 q2∑
`=q1

β̇t,T (`) εt+(b−1)n−`

 eitλj

∣∣∣∣∣∣
2

−E

∣∣∣∣∣∣ 1

n1/2

n∑
t=1

 q2∑
`=q1

β̇t,T (`) εt+(b−1)n−`

 eitλj

∣∣∣∣∣∣
2

.

By standard inequalities, the left side of (5.42) is bounded by

E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j; 0, n)

2

+ E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j;n,∞)

2

.

≤ j∗2 − j∗1
ñ2

j∗2∑
j=j∗1+1

E
 1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j; 0, n)

2

+ E

 1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j;n,∞)

2 .
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Now the proof proceeds straightforwardly after noticing that if b1 6= b2 we have that

E
(
R̈n,b1 (j; 0, n) R̈n,b2 (j; 0, n)

)
= 0,

∑
`>n υ (`) < Cn−1 and

∣∣∣β̇t,T (`)
∣∣∣ ≤ Cυ (`) /n−1/2 by (5.10).

Details are omitted.

Let |p|+ = max {1, |p|} and denote

ψk,n (j) = :

ñ∑
p=1

ςpj I̊
k

ε (p) , ϕk,n (j) =:

ñ∑
p=1

ςpjR
k
n (p) k = 1, 2, 3

Ξn (j) =

3∑
k=1

(−1)k

k!
(ψk,n (j) + ϕk,n (j)) + Φn,1Φn,2 (j) ,

where ςpj =
(
|p− j|−1+ + |p+ j|−1

)
, Φn,1 is a sequence of Op (1) r.v. independent of j∗ and b∗

and EΦ2
n,2 (j) = O

(
B−2

)
. Also,

An (j) =: exp

{
ñ∑
`=1

c`,ne
−i`λj

}
; c`,n =

1

ñ

ñ∑
p=1

log f (p) cos (`λp) .

Lemma 6. Assuming C1 and C3 , under H0 we have that

(a) Â (j)−An (j) = A (j) Ξn (j) +
1

2
|A (j)|2 (Ξn (j))2(5.43)

(b) An (j)−A (j) = A (j)
log f (0)

ñ

ñ∑
`=1

e−i`λj +O
(
n−2

)
.(5.44)

Proof. First because Taylor’s expansion of log z yields that

ĉ` − c`,n =
1

ñ

ñ∑
p=1

3∑
k=1

(−1)k

k!

(
f̂ (p)− f (p)

f (p)

)k
cos (`λp)

+
1

4!ñ

ñ∑
p=1

(
f̂ (p)− f (p)

κf (p) + (1− κ) f̂ (p)

)4

cos (`λp) ,(5.45)

where κ =: κ (p) ∈ (0, 1), so that

log
(
Â (j) /An (j)

)
=

3∑
k=1

(−1)k

k!

ñ∑
p=1

ςpj

(
f̂ (p)− f (p)

f (p)

)k

+
1

4!

ñ∑
p=1

(
f̂ (p)− f (p)

κf (p) + (1− κ) f̂ (p)

)4

(5.46)

because
∑ñ

`=1 cos (`λp) e
−i`λj = ñςpj . The second term on the left of (5.46) is Φn,1Φn,2 (j),

where Φn,1 = Op (1) and E |Φn,2 (j)|2 = O
(
B−3

)
uniformly in j. Indeed Lemma 2 and

supp=1,...,ñ |ap| ≤
(∑ñ

p=1 |ap|
q
)1/q

imply that

E sup
p=1,...,ñ

∣∣∣∣∣ f̂ (p)− f (p)

f (p)

∣∣∣∣∣ ≤
 ñ∑
p=1

E
∣∣Rn (p)

∣∣41/4

+

 ñ∑
p=1

E
(
I̊ε,b (p)

)41/4

= O
(
B−1/2n1/4

)
= o (1)(5.47)
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by Condition C3 and E
(
f−1 (p) f̂ (p)− 1

)4
= O

(
B−2

)
by standard arguments. Next regarding

the first term of (??), we have that because, say, E
∣∣∣I̊ε (p)Rn (p)

∣∣∣2 = O
(
B−2T−1/2

)
= o

(
B−3

)
by Lemma 2 and C3 and that supp

{∣∣∣I̊ε (p)
∣∣∣+
∣∣Rn (p)

∣∣} = op (1), we obtain that it is Ξn (j).

Now we conclude the proof of part (a) by Taylor’s expansion of exp z.
Next part (b). To that end, because log f (λ) is three times continuously differentiable,

exercise 1.7.14 part (b) in Brillinger (1981) implies that c`,n − c` = log f(0)
ñ +O

(
n−3

)
, and then

we conclude that, uniformly in j,

log (An (j) /A (j)) =
ñ∑
`=1

(c`,n − c`) e−i`λj −
ñ∑

`=ñ+1

c`e
−i`λj

=
log f (0)

ñ

ñ∑
`=1

e−i`λj +O
(
n−2

)
.(5.48)

Now using (5.48) instead of (??), we obtain part (b). This concludes the proof.

Lemma 7. Assuming C1 and C2 , we have that under H0 for all b = 1, ...,B,

(5.49) σ̂2ε (b)− σ̃2ε (b) =
d1,n
n

n∑
j=1

A−1 (j)ψ1,n (j) I̊ε,b (j) +
d2,n
B

+ Ψn,1Ψn,2 (b) ,

where Ψn,1 d1,n and d2,n are independent of b such that Ψn,1 = Op(1), E
(
d22,n

)
< C and

E |Ψn,2 (b)|2 = O
(
B−3 + n−2

)
with σ̃2ε (b) given in (5.14).

Proof. First by standard algebra, we have that

(5.50) σ̂2ε (b)− σ̃2ε (b) =
1

n

n∑
t=1

υ2t,b +
2

n

n∑
t=1

εt+(b−1)nυt,b,

where υt,b =: ε̂t+(b−1)n − εt+(b−1)n, and it is

υt,b =
1

n1/2

n∑
j=1

eitλj
(
Â (j)A−1 (j)− 1

)
A (j) Yn,b (j; 0)

+
1

n1/2

n∑
j=1

eitλj
(
Â (j)A−1 (j)− 1

)
Jε,b (j)(5.51)

+
1

n

n∑
j=1

eitλjA (j)

n∑
s=1

xs+(b−1)ne
−isλj − εt+(b−1)n.

Using (2.14) and because A (j) =
∑∞

q=0 α (q) e−iqλj and
∑n

j=1 e
−i`λj = nI (` = 0, n, ...), we get

that the third term of (5.51), with b = 1 for notational simplicity, is

∞∑
q=0

α (q)
n∑
s=1

xs
1

n

n∑
j=1

ei(t−q−s)λj − εt

=
∞∑
`=1

t−1∑
q=1

α (q + `n)xt−q +


t−1∑
q=1

α (q)xt−q − εt

 ,(5.52)

whose second moment is o
(

(t log (t+ 1))−2
)

. So the contribution due to the third term of (5.51)

into (5.50) is such that its second moment is O
(
n−2

)
.
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Now the contribution due to the first two terms on the right of (5.51) into σ̂2ε (b)− σ̃2ε (b) is

1

n

n∑
j=1

(
Â (j)−A (j)

)2
|Yn,b (j; 0)|2

+
2

n

n∑
j=1

(
Â (j)−A (j)

)(
A−1 (j) +

1

2

)
Jε,b (−j) Yn,b (j; 0)(5.53)

+
1

n

n∑
j=1


(
Â (j)−A (j)

)2
|A (j)|2

+
(
Â (j)−A (j)

)
A−1 (j)

 Iε,b (j) .

The contribution due Φn,1Φn,2 (j) into the first term of (5.53) is

Φ2
n,1

1

n

n∑
j=1

Φ2
n,2 (j) |Yn,b (j; 0)|2 .

Now we identify Φ2
n,1 supj Φn,2 (j) with to Ψn,1 and

Ψn,2 (b) =:
1

n

n∑
j=1

|Φn,2 (j)| |Yn,b (j; 0)|2

noticing that EΨ2
n,2 (b) = O

(
T−2

)
= o

(
n−2 + B−3

)
because E |Yn,b (j; 0)|2p = O (n−p) and

Cauchy-Schwarz’s inequality. Next the contribution due to ψk,n (j) + ϕk,n (j), for k = 1, 2, 3.

Now since (a+ b)4 ≤ 8
(
a4 + b4

)
and E |ψk,n (j)|2 + E |ϕk,n (j)|2 = O

(
B−k

)
, we have that this

contribution is also Ψn,1Ψn,2 (b). Recall again that supj |ψk,n (j)| = op (1) and supj |ϕk,n (j)| =
op (1).

Next we examine the behaviour of the second term of (5.53). To that end and using (5.31),

we first notice that Condition C1 implies that E
∣∣∣Z(k)
n,b (−j)

∣∣∣2 = O
(
n−1

)
, for k = 1, 2, and hence

that

E

∣∣∣∣∣∣ log f (0)

ñ

1

n

n∑
j=1

Z
(k)
n,b (−j)

ñ∑
`=1

e−i`λj

∣∣∣∣∣∣
2

= O

(
log2 n

n3

)
by standard arguments. Next because supj |ψk,n (j)| = op (1) and supj |ϕk,n (j)| = op (1), we

have that ψ4
k,n (j) = ξn,1ξn,2, where ξn,1 = Op (1) and E (ξn,2)

2 = O
(
B−3

)
, we have then that

the second term of (5.53), except multiplicative constants, is

1

n

n∑
j=1

ψ1,n (j)
(

Z
(1)
n,b (−j) + Z

(2)
n,b (−j)

)
+ Ψn,1Ψn,2 (b)

=
1

n

n∑
j=1

ψ1,n (j) Z
(1)
n,b (−j) + Ψn,1Ψn,2 (b) ,(5.54)

as E
(
ϕ2
k,n (j)

)
= O

(
T−k

)
. Now proceeding as with the proof of Lemma 2 and using the

definition of ψ1,n (j), it suffices to examine the behaviour of

1

n1/2B

1

n

n∑
j=1

I̊ε,b (j)Jε,b (−j) 1

`1/2

n∑
t=n−`+1

εt+(b−1)ne
itλj

+
1

n1/2
1

n

n∑
j=1

 1

B

B∑
b1 6=b

I̊ε,b1 (j)

(Jε,b (−j) 1

`1/2

n∑
t=n−`+1

εt+(b−1)ne
itλj

)
.
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The second moment of the first term of the last displayed expression is clearly O
(
n−1B−2

)
,

whereas the second term is O
(
n−2B−1

)
because the first factor in parenthesis is independent

of the second one and

(5.55) E
(
I̊ε,b1 (j) I̊ε,b2 (k)

)
= I (b1 = b2)

(
I (j = k) + n−1κ4

)
.

To finish the proof of the lemma, we shall now examine the third term of (5.53). First using

(5.43) and that E |ψk,n (j)|2p + E |ϕk,n (j)|2p = O
(
B−3

)
when p+ k ≥ 3, the third term of (5.53)

is

(5.56)
1

n

n∑
j=1

{
2∑

k=1

dk,n
A (j)

(ψk,n (j) + ϕk,n (j)) + d
(
ψ2
1,n (j) + ϕ2

1,n (j)
)}

Iε,b (j) + Ψn,

d1,n and d2,n independent of b and finite second moments and d ≥ |A (j)|−2 finite. Now, because
E |Bψ2,n (j)| = O (1), we have that

1

n

n∑
j=1

1

A (j)
ψ2,n (j) Iε,b (j) =

d2,n
B

+
1

n

n∑
j=1

A−1 (j)ψ2,n (j) I̊ε,b (j)

=
d2,n
B

+ Ψn,(5.57)

as we now show. Indeed, the second term on the right of (5.57) is

1

B2n

n∑
j=1

A−1 (j)
ñ∑
p=1

ςpj I̊
2
ε,b (p) I̊ε,b (j)

+
1

n

n∑
j=1

A−1 (j)
ñ∑
p=1

ςpj

 1

B

B∑
b1 6=b

I̊ε,b1 (p)

2

I̊ε,b (j)(5.58)

+
2

Bn

n∑
j=1

A−1 (j)
ñ∑
p=1

ςpj

 1

B

B∑
b1 6=b

I̊ε,b1 (p)

 I̊ε,b (p) I̊ε,b (j) .

The second moments of first term of (5.58) is O
(
B−4

)
, whereas the second moment of the third

term is O
(
B−3

)
, because E

(
I̊ε,b1 (p) I̊ε,b (j)

)
= 0 for all b1 6= b. So, we are left to examine

the second term of (5.58). But its second moment is clearly O
(
B−3

)
, since by independence of

I̊ε,b (j) and
(

1
B

∑B
b1 6=b I̊ε,b1 (p)

)2
and (5.55), we have that the second moment is

d

B2n2

n∑
j=1

ñ∑
p=1

ς2pj |A (j)|−2 = o
(
B−3

)
by Condition C3.

Next we examine the contribution into (5.56), i.e. the third term of (5.53), due to

1

n

n∑
j=1

A−1 (j)ϕ2,n (j) Iε,b (j) =
d2,n
B

+
1

n

n∑
j=1

A−1 (j)ϕ2,n (j) I̊ε,b (j)

=
d2,n
B

+ Ψn,(5.59)



A TEST FOR WEAK STATIONARITY IN THE SPECTRAL DOMAIN 45

because Eϕ2
2,n (j) = O

(
T−1

)
= o

(
B−2

)
by Condition C3. Regarding Ψn, by definition of

ϕ2,n (j), we need to examine

2∑
`=1

1

n

n∑
j=1

A−1 (j) I̊ε,b (j)

ñ∑
p=1

ςpj

(
1

B

B∑
b=1

Z
(`)
n,b (−p)

)2

+
1

n

n∑
j=1

A−1 (j) I̊ε,b (j)
ñ∑
p=1

ςpj

(
1

B

B∑
b=1

|Yn,b (p; 0)|2
)2

.

But it is clear that the second moment is O
(
B−3 + n−2

)
because E |Yn,b (j; 0)|4 = O

(
n−2

)
,

E

(
1

B

B∑
b=1

Z
(2)
n,b (−j)

)4

= O
(
n−4

)
; E

(
1

B

B∑
b=1

Z
(1)
n,b (−j)

)4

= O
(
n−2

)
by simple inspection of the definition of Yn,b (j; 0), Z

(1)
n,b (j) and Z

(2)
n,b (j) respectively.

Next, we examine the contribution into (5.56), i.e. the third term of (5.53), due to

1

n

n∑
j=1

ψ2
1,n (j) + ϕ2

1,n (j)

|A (j)|2
I̊ε,b (j) =

1

n

n∑
j=1

I̊ε,b (j)

|A (j)|2

 ñ∑
p=1

ςpj I̊ε (p)

2

+
1

n

n∑
j=1

I̊ε,b (j)

|A (j)|2

 ñ∑
p=1

ςpjRn (p)

2

.(5.60)

The first term on the right of (5.60) is

1

n

n∑
j=1

I̊ε,b (j)

|A (j)|2

 ñ∑
p=1

ςpj
1

B

B∑
b1 6=b

I̊ε,b1 (p)

2

+
1

B2n

n∑
j=1

I̊ε,b (j)

|A (j)|2

 ñ∑
p=1

ςpj I̊ε,b (p)

2

+
2

Bn

n∑
j=1

I̊ε,b (j)

|A (j)|2
ñ∑

p1,p2=1

ςp1jςp2j I̊ε,b (p2)

 1

B

B∑
b1 6=b

I̊ε,b1 (p1)

 .

Clearly the second moment of the second and third terms are O
(
B−4 + B−3

)
, whereas the

second moment of the first term is, by independence of I̊ε,b1 (p) and I̊ε,b (p) if b1 6= b, and (5.55)
is easy to observe that is O

(
B−2n−1

)
. Next the second term on the right of (5.60) also satisfies

that its second moment is O
(
B−3 + n−2

)
using Lemma 3. To complete the proof it remains to

examine the behaviour of

1

n

n∑
j=1

ϕ1,n (j)
I̊ε,b (j)

A (j)
(5.61)

1

n

n∑
j=1

A−1 (j) (ψ1,n (j) + ϕ1,n (j)) .(5.62)
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Now (5.61) is

1

n

ñ∑
p=1

(
1

B

B∑
b=1

Z
(1)
n,b (−j)

)
n∑
j=1

A−1 (j) ςpj I̊ε,b (j)

+
1

n

ñ∑
p=1

(
1

B

B∑
b=1

Z
(2)
n,b (−j)

)
n∑
j=1

A−1 (j) ςpj I̊ε,b (j)

+
1

n

ñ∑
p=1

(
1

B

B∑
b=1

|Yn,b (j; 0)|2
)

n∑
j=1

A−1 (j) ςpj I̊ε,b (j) .

The second and third terms of the last displayed expression has second moments O
(
n−2

)
,

whereas the first term proceeding similarly as with (5.54) has a second moment O
(
B−3 + n−2

)
.

Finally (5.62) which is

1

n

ñ∑
p=1

(
1

B

B∑
b=1

I̊ε,b (p)

)
+

(
1

B

B∑
b=1

Rn,b (p)

)
n∑
j=1

ςpjA−1 (j) .

By (5.55), the first term has second moment proportional to

1

Bn2

ñ∑
p=1

n∑
j1,j2=1

|ςpj1ςpj2 |= O
(

log2 n

T

)
= O

(
B−2

)
,

whereas by Lemma 2 and Condition C3, the second term is also O
(
B−2

)
. This concludes the

proof of the lemma.

Lemma 8. Assuming C1 − C3, we have that for all b = 1, ...,B and uniformly in t, υt,b =

Op

(
(t log (t+ 1))−1 + n1/2B−1

)
.

Proof. By (5.51) and (5.52), it suffices to examine

1

n1/2

n∑
j=1

eitλj
(
Â (j)A−1 (j)− 1

)
A (j) Yn,b (j; 0)

+
1

n1/2

n∑
j=1

eitλj
(
Â (j)A−1 (j)− 1

)
Jε,b (j) .

(5.43) and (5.44) imply that the first term of the last displayed expression is Op
(
B−1/2

)
uni-

formly in t as E
(
f−1 (`) f̂ (`)− 1

)2
= O

(
B−1

)
and Cauchy-Schwarz’s inequality, whereas the

second term is

1

n1/2

n∑
j=1

eitλjψ1,n (j)Jε,b (j) +Op

(
n1/2B−1

)
=

1

n1/2

n∑
j=1

eitλj I̊ε (j)Jε,b (j) +Op

(
n1/2B−1 + B−1/2

)
again uniformly in t, proceeding with arguments in Lemma 7 and Lemma 2. Now, the first term
on the right is

1

n1/2

n∑
j=1

eitλj

 1

B

B∑
b1 6=b

I̊ε,b1 (j)

Jε,b (j) +
1

B

1

n1/2

n∑
j=1

eitλj I̊ε,b (j)Jε,b (j) .
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But it is easy to see that the fourth moment of the first term is O
(
B−2

)
, whereas the second

term has a second moment of order O
(
B−2

)
. So, using that sup`=1,...,ñ |a`|

q ≤
∑

` |a`|
q, for

q ≥ 1, we conclude that the last displayed expression is O
(
nB−2

)
uniformly in t.

Lemma 9. Assuming C1 − C3, we have that

(5.63) E∗
 b∗

2∑
b=b∗

1+1

I̊ε∗,b (j)

2`

= (b∗2 − b∗1)
`Hn, ` ≥ 1,

{Hn}n≥1 being a sequence of strictly positive Op (1) random variables

Proof. Because I̊ε∗,b1 (j) and I̊ε∗,b2 (j) are independent for b1 6= b2, we have that the left side of
(5.63) is bounded by

b∗
2∑

b=b∗
1+1

E∗
(
I̊ε∗,b (j)

)2`
+

(
2`
2

) b∗
2∑

b1 6=b2=b∗
1+1

E∗
(
I̊ε∗,b1 (j)

)2
E∗
(
I̊ε∗,b2 (j)

)2`−2

+...+

(
2`
`

) b∗
2∑

b1 6=... 6=b`=b∗
1+1

∏̀
p=1

E∗
(
I̊ε∗,bp (j)

)2 .

But E∗
(
I̊ε∗,b (j)

)2χ
= Hn because for all integers χ ≥ 1,

E∗
(

1

n

n∑
t=1

ε∗χt+(n−1)b

)
=

1

T

n∑
t=1

ε̂χt

and by Theorem 2 and then C1, we have that

1

T

n∑
t=1

(ε̂χt − ε
χ
t ) = op (1) ;

1

T

n∑
t=1

(εχt − Eε
χ
t ) = Op

(
1

T 1/2

)
.

This completes the proof of the lemma.
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