
 

warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/111211  

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/111211
mailto:wrap@warwick.ac.uk


Three Essays in Transaction Cost Analysis

by

Shiyun Song

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Warwick Business School

June 2018



Contents

List of Tables iii

List of Figures iv

Acknowledgments v

Declarations vi

Abstract vii

Chapter 1 Introduction 1

Chapter 2 The Price Effects of Liquidity Shocks: A Study of SEC’s Tick-Size

Experiment 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Institutional Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Impact of Tick Size on Stock Prices . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Sources of Price Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Changes in Transactions Costs . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Changes in Liquidity Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Changes in Price Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Appendix: Data definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3 Multimarket High-Frequency Trading and Commonality in Liquid-

ity 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Institutional Background and Identification Strategy . . . . . . . . . . . . . . . . 49

3.2.1 Introduction of Chi-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Identification Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Data and Sample Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Sample Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Measuring Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

i



3.3.3 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 HFT Activity and Liquidity Co-variations . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Liquidity Co-variations in the Home Market: Pre- vs Post- Chi-X . . . . 54

3.4.2 European-wide Liquidity Co-variations: Pre- vs Post-Chi-X . . . . . . . . 57

3.4.3 Intensity of HFT Trading Activity and Liquidity Co-variations . . . . . . 60

3.5 Robustness checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Appendix A: Chi-X Inclusion Date . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Appendix B: Thomson Reuters Tick History (TRTH) Data Filtering . . . . . . . 65

3.9 Appendix C: Variable Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4 Institutional Trading Costs and Intraday Returns 82

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Data and Variable description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 5 Conclusion 108

ii



List of Tables

2.1 Summary Statistics for Key Variables . . . . . . . . . . . . . . . . . . . . . 27

2.2 Pre-implementation Characteristics of Treated and Control Firms . . . 31

2.3 Abnormal Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Market Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Investment Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Liquidity Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Price Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Trade Response Speed to Firm Specific News . . . . . . . . . . . . . . . . 41

2.9 Trade Response Speed to Macro News . . . . . . . . . . . . . . . . . . . . . 43

3.1 Chi-X Market Share by Country. . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Sample Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Summary Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Liquidity Co-movements with the Home Market: Univariate Analysis. 75

3.5 Liquidity Co-movements with the Home Market: Multivariate Analysis. 76

3.6 Composition of FTSE Eurofirst 100. . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Liquidity Co-movements with the European market: Multivariate Anal-

ysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 Multimarket Trading by Country. . . . . . . . . . . . . . . . . . . . . . . . 79

3.9 Intensity of HFT Trading Activity and Liquidity Co-movements with

the European market. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.10 Robustness checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Cross-sectional regressions of half-hour returns . . . . . . . . . . . . . . . 103

4.3 Cross-sectional regressions of half-hour returns: European data . . . . . 104

4.4 Cross-sectional regressions of half-hour returns: controlling for trade

imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Cross-sectional regressions of half-hour returns: controlling for lagged

and contemporaneous trade imbalance . . . . . . . . . . . . . . . . . . . . . 106

4.6 Economic value of execution costs . . . . . . . . . . . . . . . . . . . . . . . . 107

iii



List of Figures

2.1 Cumulative Abnormal Return . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Market Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Chi-X as a connection link for fragmented European markets . . . . . 68

3.2 Staggered entrance of Chi-X into European equity markets . . . . . . . 68

3.3 Chi-X Market Share by Country. . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Development of Aggregate Home Liquidity Betas over Time. . . . . . . 70

3.5 Development of Aggregate EU and Home Liquidity Betas over Time. 71

4.1 Sample Construction: international data . . . . . . . . . . . . . . . . . . . 91

4.2 Cross-sectional regressions of half-hour-interval returns. . . . . . . . . . 92

4.3 Cross-sectional regressions of half-hour-interval returns: Opening and

closing hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Institutional trading volume . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Contemporaneous price impacts . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Execution shortfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Execution shortfall: Splitting orders . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Institutional trading volume: Splitting orders . . . . . . . . . . . . . . . . 98

4.9 Distribution of trading volume of well and poorly performing brokers

across day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10 Distribution of execution shortfall of well and poorly performing bro-

kers across day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.11 Percentage of order slitting by well and poorly performing brokers

across day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

iv



Acknowledgments

I wish to take the limited space to express my gratitude to, Professor Roman Kozhan, Doctor

Olga Klein, Doctor Chen Yao, Professor Arie Gozluklu, Professor Ingmar Nolte and Professor

Richard Taffler, and everyone in the finance group with whom I have spent four meaningful

years with. The accomplishment of the thesis will not be made possible without the support

from them, my families, friends, and especially my beloved wife Qianqian Yu.

v



Declarations

I declare that any material contained in this thesis has not been submitted for a degree to any

other university. I further declare that Chapters 1 of this thesis is a product of joint work with

Prof. Rui Albuquerque and Dr. Chen Yao, Chapters 2 of this thesis is a product of joint work

with Dr. Olga Klein, and Chapters 3 of this thesis is a product of joint work with Prof. Roman

Kozhan and Prof. Wing Wah Tham.

vi



Abstract

This thesis studies the impact of transaction costs on stocks prices and examine the
impact of institutional investors and high frequency traders (HFTs) on market quality and
transaction costs. It is comprised of three chapters.

Chapter 2 uses a clean and novel field experiment to study how stock prices of publicly
listed companies respond to changes in transaction costs. Using the SEC’s pilot program that
increased the tick size for approximately 1,200 randomly chosen stocks, we find a decrease
in market capitalization of $7 billion for stocks affected by the larger tick size relative to a
control group. We find that the increase in the present value of transaction costs accounts for a
small percentage of the price decrease. We study channels of price variation due to changes in
expected returns: investor horizon, liquidity risk, and information risk. The evidence suggests
that trading frictions affect the cost of capital.

Chapter 3 examines the effects of multimarket high-frequency trading (HFT) activity
on liquidity co-movements across different markets. Multimarket trading by HFTs connects
individual markets in a single network, which should induce stronger network-wide liquidity
co-movements. We use the staggered introduction of an alternative trading platform, Chi-
X, in European equity markets as our instrument for an exogenous increase in multimarket
HFT activity. Consistent with our predictions, we find that liquidity co-movements within the
aggregate network of European markets significantly increase after the introduction of Chi-X
and even exceed liquidity co-movements within the home market. They are especially strong in
down markets and for stocks with a higher intensity of HFT trading in the post-Chi-X period.

Chapter 4 studies optimality of trade execution by institutional trading desks. We
document the presence of negative autocorrelation in intraday stock return and show that the
temporary price pressure is larger at the beginning and the end of the day. Institutional trading
volume exhibits similar intraday pattern. We relate the periodity of price pressure to trading
desks’ performance using a proprietary database of institutional investor trades. We find that
execution quality is the worst at the end of the day yet institutional trading volume is also
surprisingly high. Poorer performing brokers in terms of execution shortfall trade more in the
last hour of the day, have a higher execution cost at the end of the day, and carry out less order
splitting at the end of the day. Our findings suggest that intraday price pressure stems from end
of the day clustering of under-performing trading desks strategies results in higher trading costs
and poorer execution quality. A trading strategy exploiting this intraday predictability yields a
monthly return of 16.11%. Our results have implications on the impact of broker selection and
execution strategy on trading costs.
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Chapter 1

Introduction

An efficient and well-functioning market is fundamental for the economy growth. Transaction

cost is an important ingredient of efficient markets, as large transaction costs may erode or

eliminate the value added by portfolio managers and impede efficient information dissemina-

tion. Keim and Madhavan (1995) show that investors who try to follow a particular index are

concerned about execution and trading cost. This is also highlighted by Schwartz and Steil

(2002) in a survey of chief investment officers (CIOs) of 72 major asset management firms in

North America, Europe and Australia with an asset management of $2.1 trillion, show that

large institutions rank execution cost and speed as important determinants of how they choose

brokers. Further, the last decade has witnessed a dramatic increase in high frequency trading

on the market, which has significantly reduced the transaction cost and reshaped the market.

Given this, transaction cost analysis has attracted attentions from both academic researchers

and industry practitioners.

In this thesis, we are interested in answering several novel and important research ques-

tions that are not yet explored in the literature. First, we investigate the price effects of wider

tick size using a novel and clean field experiment and the direct and indirect mechanisms through

which this happens. Our analysis shows for the first time in the literature that transaction costs

have a significant impact on a firm’s cost of capital. Second, we examine the effect of multi-

market HFT activity on systematic liquidity co-movements of stocks across different markets.

While a number of papers have shown that high frequency traders (HFTs) generally reduce

transaction costs and improve market quality, our study generates an important implications

that significant risks induced by HFTs should not be overshadowed by the potential benefits.

Finally, we study whether and how sub-optimal execution strategies by trading desks may lead

to predictable patterns in trading volume and return predictability among common stocks.

In Chapter 2, we investigate the stock price effects of the Tick Size Pilot Program, a two-

year experiment launched on October 3, 2016 by the U.S. Securities and Exchange Commission

(SEC) as mandated by the U.S. Congress to increase the tick size from 1 cent to 5 cents for a

number of randomly chosen stocks. This field experiment provides a unique opportunity to study

the effect of exogenous shocks to liquidity on stock prices and to estimate the liquidity premium.

Stock prices may change as a result of changes in transactions costs directly through an effect

on the present value of future trading costs as in Amihud and Mendelson (1986), Constantinides

(1986), Vayanos (1998), Vayanos and Vila (1999) and others, as well as indirectly due to changes
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in expected returns caused by changes in liquidity risk as in Acharya and Pedersen (2005) or by

changes in information risk as in Easley and O’Hara (2004) and O’Hara (2003). In this paper,

we ask how large is the liquidity premium in response to the tick size change and what are its

sources of variation.

We provide empirical evidence of a causal negative impact of a larger tick size on stock

prices and calculate the liquidity premium implied by the change in tick size. The sources of

stock price variation appear different across the various treated stocks in the program. We show

that the decline in stock prices is associated with an increase in spreads and in price impact,

and with a reduction in volume for groups 1 and 2 stocks. For these stocks, we show that there

is an increase in investor horizon consistent with the view that transactions costs have a direct

effect over stock prices holding expected returns constant, as in Amihud and Mendelson (1986).

However, for group 3 stocks, we show that there is a change in quoted spreads but no change in

effective spreads or in trading volume. We also study the indirect effect on stock prices through

expected returns (net of transactions costs) of the change in tick size. We show that there is

no statistically significant change in liquidity risk across all test groups. However, we show

that all stocks experience a decline in price efficiency suggesting that information risk and thus

expected returns increased for the treated stocks. This evidence is consistent with firm’s cost

of capital being affected by market microstructure features.

In Chapter 3, we examine the effect of multimarket HFT activity on systematic liquidity

co-movements of stocks across different markets. Following Chordia, Roll, and Subrahmanyam

(2000), we analyze co-variations of the stock’s liquidity with the aggregate market liquidity and

refer to these co-variations as commonality in liquidity. High-frequency traders share similar

algorithms (Chaboud et al. 2014, Benos et al. 2015), which can lead to excess co-movements

in their demand and supply, and consequently, to commonality in liquidity across stocks even

within the same market. However, HFTs often engage in trading across multiple markets,

which essentially connects these markets in a single network and might facilitate cross-market

liquidity spillovers. Specifically, we hypothesize that multimarket HFT activity induces stronger

commonality in liquidity for stocks traded within the aggregate network of markets, even after

controlling for their liquidity co-movements within their home market.

We use the staggered entrance of Chi-X, an alternative platform for trading European

equities, as an instrument for an increase in multimarket high-frequency trading activity. Two

main competitive advantages of Chi-X at the time of its introduction, compared to national stock

exchanges, are its lower execution fees, and its 22 to 84 times faster speed of order processing.

Both of these features should arguably attract high-frequency traders.

In our study, we develop the main testable hypotheses as follows. First, if multimarket

HFT activity induces stronger commonality in liquidity within the network of European markets,

then we expect an increase in the stock’s liquidity co-movements with the aggregate liquidity

of the European market after the introduction of Chi-X. In the following, we refer to these

co-movements as EU liquidity betas. Our second prediction is that EU liquidity betas should

be higher for stocks with a more intense HFT trading in the post-Chi-X period. We test these

two empirical predictions on the sample of 445 major European index stocks from 11 countries

over the period from January 2004 to December 2014. Our results provide supporting evidence
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that commonality in liquidity within the aggregate network of European markets is significantly

stronger after Chi-X introduction. Importantly, European-wide liquidity co-variations become

more important than co-variations with the home market in the post-Chi-X period. Further,

EU liquidity betas are especially high in down markets and, consistent with our second predic-

tion, increase more for stocks with a more intense HFT market making activity. Overall, our

findings suggest that multimarket HFT activity induces stronger liquidity co-movements across

European markets by connecting them in a single network. Indeed, liquidity co-variations with

home markets seem to have lost their significance in recent years, as each market now represents

just a part of a greater system.

In Chapter 4, we postulate that sub-optimal execution by trading desks leads to pre-

dictable patterns in trading volume and return predictability among common stocks. We di-

vide the trading day into 13 half-hour trading intervals to study the nature of intraday return

predictability. Consistent with the previous literature and Heston et al. (2010), we find the

presence of negative autocorrelation in intraday stock return. Intraday negative autocorrelation

in returns is often associated with temporary price pressure due to risk-averse intermediaries

charging price impact for temporarily holding the position in the absence of a natural counter-

party. For example, Kraus and Stoll (1972) shows the existence of price pressures by studying

large institutional trades. These transitory price effects, intraday return reversal and their

relation to intraday pattern of how trading desks work their trades are the focus of this study.

We find that temporary price pressure is larger and more prevalent at the beginning and

the end of the trading day. This suggests the predictability of large uninformed institutional

trades within a trading day. While Guercio and Tkac (2002), Frazzini and Lamont (2008), and

Lou (2012) find evidence of persistent fund flows into and out of mutual funds that induces

return predictability across days, it is unlikely that fund flows explains the intraday pattern

of institutional trades. Often portfolio managers rely on buyside trading desks in order to

implement their investment ideas. A trading desk adds value to their clients by supplying

expertise in locating counterparties and formulating trading strategies. For example, a trading

desk formulates a set of choices to meet its best execution obligation through the trading

venues, order splitting strategies, broker choice and timing of the trades. We conjecture that

the execution strategy of trading desks is one of the determinants of the intraday predictability

of institutional trades and return reversals.

To study the economic reasoning behind this price pressures predictability, we investigate

if the periodity is indeed driven by suboptimal trading desk execution. We first show that trading

volume exhibits similar intraday pattern as price pressures. In addition, we relate the periodity

of price pressures to trading desks’ performance using a proprietary database of institutional

investor equity transactions compiled by ANcerno Ltd. (formerly the Abel/Noser Corporation).

We find that execution quality is the worst at the end of the day yet institutional trading

volume is surprisingly highest at the end of the day. Dividing brokers into good and bad

performing, we find that poorer performing brokers trade more in the last hour of the day.

Poorer performing brokers also have a higher execution cost at the end of the day and carry out

less order splitting at the end of the day. We observe persistence in the performance of buy-side

institutional desks and sell side brokers. Our findings suggest that intraday price pressure stems

3



from execution strategies of under-performing trading desks end of the day clustering results

in higher trading costs and poorer execution quality. To estimate the economic significance

of these suboptimal trade execution, we set up a trading strategy to exploit these intraday

predictability like a predatory anticipatory traders. Our trading strategy yields an economically

and statistically significant monthly return of 16.11% . Our results have implications on the

impact of broker selection and execution strategy on trading costs.
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Chapter 2

The Price Effects of Liquidity

Shocks: A Study of SEC’s Tick-Size

Experiment

2.1 Introduction

This paper investigates the stock price effects of the Tick Size Pilot Program, a two-year ex-

periment launched on October 3, 2016 by the U.S. Securities and Exchange Commission (SEC)

as mandated by the U.S. Congress to increase the tick size from 1 cent to 5 cents for a number

of randomly chosen stocks. This field experiment provides a unique opportunity to study the

effect of exogenous shocks to liquidity on stock prices and to estimate the liquidity premium.

Stock prices may change as a result of changes in transactions costs directly through an effect

on the present value of future trading costs as in Amihud and Mendelson (1986), Constantinides

(1986), Vayanos (1998), Vayanos and Vila (1999) and others, as well as indirectly due to changes

in expected returns caused by changes in liquidity risk as in Acharya and Pedersen (2005) or by

changes in information risk as in Easley and O’Hara (2004) and O’Hara (2003). In this paper,

we ask how large is the liquidity premium in response to the tick size change and what are its

sources of variation. To the best of our knowledge, we are the first paper to study the impact

of tick size on stock price. We also study several possible channels leading to the price change,

including direct effects on stock prices holding expected returns constant, and indirect effects

through expected returns.

The Tick Size Pilot Program consists of three pilot (treated) groups, each with about 400

stocks, and a control group with about 1,200 stocks. Stocks in groups 1 through 3 are all subject

to an increase in the minimum quote increment from $0.01 to $0.05. Group 1 stocks are allowed

to trade at their current price increment of $0.01, whereas stocks in group 2 are required to trade

in $0.05 minimum increments, although with some exceptions. Stocks in group 3 adhere to the

requirement of the second group, but are also subject to a “trade-at” requirement whereupon

non-displayed orders can only trade at the bid or offer prices after all displayed liquidity in

all lit venues has been filled at those prices. The trade-at requirement increases the cost of

trading outside lit venues with potential consequences for liquidity, acquisition of information,
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and prices. Stocks in the control group continue quoting and trading at their current tick size

increment of $0.01. The pilot program was implemented on a staggered basis over the month

of October 2016 starting with groups 1 and 2 and ending with group 3.

The main hypothesis of this paper is that the larger tick size leads to lower stock prices.

To test this hypothesis, we estimate daily abnormal returns from September 1, 2016 to November

30, 2016 using a variety of return models. We study stocks with smaller, pre-experiment spreads

separately from stocks with larger, pre-experiment spreads. Our results apply only to the former

because the increase in tick size is more likely to be an active constraint for them. We find that

stocks with small dollar quoted spread in groups 1 and 2 (group 3) experience a significant 1%

(4%) value reduction compared to stocks in the control group after the tick change. These price

changes imply a loss to investors of about $7 billion. The decrease in stock prices occurs in the

two weeks immediately after the pilot program implementation and appears to be permanent

rather than transitory as we do not observe a subsequent reversal in stock returns. We do

not find any significant price effect for stocks with a large quoted spread. These findings are

consistent with Amihud and Mendelson (1986). The findings are not consistent with Vayanos

(1998) who predicts that the price effect should be smaller for the more liquid stocks.

The experiment conducted by the SEC is unique because of the stratified random sam-

pling procedure applied to the construction of the groups, the large size of the program, which

involves about 1,200 test stocks and an equal amount of control stocks, and the limited dura-

tion of the program, which ends after two years. These characteristics create an ideal setting to

study the stock price response to exogenous shocks to liquidity. First, the SEC’s randomization

creates a laboratory-like experiment in an actual financial market, eliminates any selection issue,

and at the same time provides a control group of stocks built as part of the random assignment

of securities to the pilot program, thus removing any discretion from the econometrician in the

implementation of the difference-in-differences methodology. Second, the large size of the pro-

gram gives greater power to detect price effects: when the NYSE lowered the minimum tick size

from 1/16 of a dollar to 1 cent it also implemented a pilot program, but this program involved

only 79 common stocks (Chakravarty, Wood, Van Ness, 2004).1 Third, the limited duration

of the program means that the price is unlikely to change due to policies that firms might

undertake to reverse some of the unintended consequences from the tick size program such as

by engaging in reverse stock split programs (Angel, 1997, but also Weld, Michaely, Thaler, and

Benartzi, 2009).

The rest of the paper studies sources of variation, direct and indirect, that can explain

the observed stock price changes. In Amihud and Mendelson (1986) and others, transactions

costs have a direct effect on stock prices, holding expected returns (net of transactions costs)

constant. We therefore analyze the effect of the tick size change on stock spreads, and liquidity

more generally. We find that liquidity decreases for stocks in groups 1 and 2 as proxied by a

variety of measures: quoted spreads, effective spreads and price impact increase and trading

volume decreases as compared to stocks in the control group after the increase in tick size. For

example, the effective spread, arguably the most relevant of these measures regarding trade

1In addition, in this earlier experiment the control goup were all the other firms in the NYSE and these firms
were known to have to move also to the lower tick size.
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execution costs (Bessembinder, 2003) is higher by an average of 0.15 (0.17 and 0.09) for group

1 stocks (groups 2 and 3), representing an amount equal to roughly 28% (39% and 15%) of the

mean effective spread. The change in quoted spread is about twice as large. The qualitative

nature of the spread results was largely expected in the design of the program. We also find

that the response of group 2 stocks is very similar to that of group 1 stocks, suggesting that

the main binding constraint in group 2 stocks is the requirement to quote in 5 cent increments.

There is a marked difference in response of liquidity measures to the tick size change for group

3 stocks. These stocks experience a statistically significant increase in quoted spread, but not

on the effective spread and only significant at 5% on price impact, and they do not experience a

statistically significant decrease in trading volume. The evidence for group 3 stocks is consistent

with the trade-at rule having countervailing liquidity effects to the change in tick size. Finally,

market depth increases for all groups, particularly for group 3 stocks though we argue that this

is largely a mechanical effect.

Amihud and Mendelson (1986) argue that stocks with higher transactions costs attract

a clientele of investors with longer investor horizons, thus slowing the impact of trading costs

on stock prices. We test this additional prediction using 13F data on turnover of institutional

investors’ portfolios to construct a proxy for investment horizon (see Gaspar, Massa and Matos,

2005, and Cella, Ellul and Giannetti, 2013). We find some evidence in support of Amihud and

Mendelson’s model: the investment horizon of institutional investors increases by 3% (5%) for

the small quoted spread stocks in groups 1 and 2 (group 3) relative to the control group after

the tick size increased.

Using a back of the envelope calculation à la Amihud and Mendelson (1988) and Foucault

et al. (2013), the present value of the increase in transactions costs is responsible for about

22% of the observed change in prices for groups 1 and 2 stocks, and 3.25% for group 3 stocks,

holding the expected return (net of transactions cost) constant. While these are arguably very

rough estimates of the direct effect of transactions costs on prices, their small size suggests

that a significant portion of the observed change in prices should come from an indirect effect of

transactions costs on expected returns (net of transactions costs), either through priced liquidity

risk (Acharya and Pedersen, 2005) or through priced information risk (Easley and O’Hara, 2004,

and O’Hara, 2003).

Following Acharya and Pedersen (2005) we construct several firm betas that capture

liquidity risk including a beta describing how firm liquidity co-moves with aggregate liquidity.

We find a statistically insignificant decrease in liquidity risk for all test stocks. The sign of the

point estimate suggests that the price level change attributable to changes in spreads is larger

than the estimated price drop.

In Easley and O’Hara (2004) and O’Hara (2003), the presence of more uninformed

investors or lower precision of private information decrease information quality and increase

information risk and expected returns. We then ask if the increase in tick size caused changes

in proxies related to price efficiency and speed of market response to news as a way to capture

changes in the quality of information. We find that the treated stocks experience higher return

autocorrelation and higher pricing error relative to the control stocks, suggesting a relative

decrease in price efficiency. In addition, we trace the market response to news using RavenPack,
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a high-frequency news database, and find slower market response speeds to company-related

news in all treated groups. We repeat the exercise using only macro news, as the content and

frequency of company news itself may have changed after the program started, obtaining similar

results. Our evidence is consistent with Hou and Moskowitz (2005) that show that firms with

higher price delay in response to news have higher expected returns, and with Easley, Hvidkjaer,

and O’Hara (2002) and Albuquerque, de Francisco and Marques (2008) who show that proxies

for private information correlate with stock returns.

We conclude by calculating a point estimate for the liquidity premium. The liquidity

premium is equal to the ratio between the change in the expected return and the change in

spreads. For a stock with expected rate of return of 5%, the liquidity premium measured with

respect to the effective spread change is equal to 0.31 (2.2) for groups 1 and 2 (group 3) stocks.

As argued by Huang (2003), many asset pricing models with transactions costs (Constantinides,

1986, Aiyagari and Gertler, 1991, Heaton and Lucas, 1996, Vayanos, 1998, and ayanos and Vila,

1999) predict liquidity premia substantially lower than 0.2 under reasonable calibrations (see also

Buss, Uppal, and Vilkov, 2011). There are however models that generate large liquidity premia.

For example, in Garleanu and Pedersen (2004) bid-ask spreads do not impact prices when agents

are symmetric, but can have large effects otherwise, in Huang (2003) borrowing constraints can

lead to large liquidity premia, and in Lo, Mamaysky, and Wang (2004) transactions costs hinder

risk sharing and lead to lower prices. In a partial equilibrium setting, Balduzzi and Lynch (1999)

show that transactions costs can have large utility costs for investors that behave myopically.

The rest of the paper is organized as follows. Section 2.2 describes the institutional details

of the Tick Size Pilot Program. Section 2.3 describes the data, gives the variable definitions,

and presents some descriptive statistics. Section 4 presents the main result on price effects.

Section 5 investigates sources of changes in prices, including direct costs of trading, and indirect

costs through changes in expected returns. Section 6 discusses related literature, and Section 7

concludes.

2.2 Institutional Background

The Jumpstart Our Business Startups Act (“JOBS Act”) signed in April of 2012 directs the

SEC to conduct a study on how decimalization affects the number of IPOs and market quality

of small cap stocks.2 In July of 2012, the SEC reports back to Congress without reaching a firm

conclusion on the question. Following this study, Congress mandates the SEC to implement

a pilot program which would generate data to investigate the impact of increasing the tick

size. In June of 2014, the SEC directs the Financial Industry Regulatory Authority and the

National Securities Exchange to develop a tick size pilot program to widen the minimum tick

size increment for a selection of small cap stocks. On May 6, 2015, the SEC approves the

proposed plan.

The Tick Size Pilot Program consists of a control group and three pilot (test or treat-

2In the U.S., tick size (i.e., the minimum quoting and trading increment) is regulated under the Securities and
Exchange Commission (SEC) rule 612 of Regulation National Market System (Reg NMS). This rule prohibits
market participants from displaying, ranking, or accepting quotations, orders, or indications of interest in any
NMS stock priced in an increment smaller than $0.01, unless the stock is priced less than $1.00 per share.
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ment) groups. The control group contains approximately 1,200 stocks that continue quoting

and trading at the current tick size increment. Each of the test groups contains approximately

400 stocks. Stocks in test group 1 are required to quote in $0.05 minimum increments, but are

allowed to trade at their current price increment. For example, Retail Price Improving orders

are qualified stock orders that offer price improvement over the current best bid and offer. These

orders can still be entered and executed in $0.01 increments. Negotiated Trades, common in

OTC, may also trade in increments less than $0.05. Stocks in test group 2 are required to

both quote and trade in $0.05 minimum increments, but allow certain exemptions for midpoint

executions, retail investors executions and negotiated trades. Stocks in test group 3 adhere to

the requirement of the second test group, but are also subject to a “trade-at” requirement. The

trade-at rule grants execution priority to lit orders, unless a dark order can provide a meaning-

ful price improvement over the lit order and as such group 3 stocks are imposed an additional

cost on trading outside lit venues with potential consequences for liquidity, acquisition of in-

formation, and prices. Certain exemptions to the rule apply. For example, trading centers are

permitted to execute an order for a pilot security at a price equal to a protected bid or protected

offer using both displayed and non-displayed liquidity if the order is of Block Size, that is of at

least 5,000 shares and market capitalization of $100, 000.

The pilot program was implemented on a staggered basis. On September 6, 2016, the

final list of 2,398 stocks to be included in the tick size pilot program is announced. Disclosure of

which group a stock would belong to happens in October coinciding with the stock’s activation

date. On October 3, 2016, 5 stocks were activated in each of the test groups 1 and 2. On

October 10, 2016, 100 stocks were activated in each of the test groups 1 and 2. On October 17,

2016, all remaining stocks in test groups 1 and 2 were activated. On October 17, 2016, 5 stocks

were activated in test group 3. On October 24, 2016, 100 stocks were activated in test group 3,

with the rest of the stocks in group 3 activated on October 31, 2016.

An important feature of the SEC’s pilot program is the use of a stratified random sam-

pling procedure in determining the stocks to be allocated to each group. The stratification

is over three variables: share price, market capitalization, and trading volume and yields 27

possible categories (e.g., low price, medium market capitalization and high volume). The pilot

securities were randomly selected from the 27 categories to form three test groups with the

remaining securities forming the control group.

Supporters of the Tick Size Pilot Program argue that increasing tick size motivates

market makers to provide more liquidity to small cap stocks and thus making these stocks more

attractive to investors (Grant Thornton, 2014). In fact, the pilot program was lobbied by some

investment banks and former stock exchange officials (Wall Street Journal, 2016). Opponents

argue that increasing tick size increases investors’ execution costs, and the complexity of this

pilot reduces the efficiency of order execution. Additionally, they argue that a wider tick size

leads to wealth transfer from liquidity takers to liquidity suppliers (e.g., Wall Street Journal,

2016). Surprisingly, neither supporters nor opponents of the tick size program commented on

the potential price and cost of capital effects of the program, which could hurt the very firms

that the program wished to help (one exception is Bessembinder et al., 2015). Below, we present

evidence on stock price changes following the implementation of the program, and on liquidity
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changes as well as changes on liquidity risk and information risk.

2.3 Data Description

Our sample consists of all stocks in the Tick Size Pilot Program in the period from January

2016 to May 2017. We drop from the sample stocks that are delisted or experience a merger

and acquisition during the sample period, stocks that are removed from the test group and

added to the control group by the SEC due to a price decline below $1, stocks that are not

common-ordinary stocks (i.e., keeping stocks with CRSP share codes of 10 or 11), and stocks

without daily TAQ data.3 The first two filters trigger the SEC to move stocks out of their

treatment groups. These filters are consistent with those used in Rindi and Werner (2017) and

Lin et al. (2017). We also drop firm-day observations when the average daily price for that firm

and day is below $2. Otherwise, we follow Holden and Jacobsen (2014) in cleaning the daily

TAQ data set.

We obtain the intraday quote and price data from the daily Trade and Quote (DTAQ),

stock market data from the Center for Research in Security Prices (CRSP), Fama-French and

momentum factors data from the Kenneth R. French data library, institutional investor holdings

from Factset, and high frequency news data from RavenPack News Analytics (RavenPack)

database. RavenPack covers all articles published on the Dow Jones Newswires providing a

millisecond time stamp of release of the article. According to Beschwitz, Keim and Massa (2015),

the latency between Dow Jones Newswires releasing an article and releasing it to RavenPack

is approximately 300 milliseconds. We collect news that is most related to our companies (i.e.,

RavenPack’s maximum “relevance score” of 100) and that are reported for the first time (i.e.,

RavenPack’s maximum “freshness score” of 100). The mean number of news per company is

32.5 and the median is 19. In addition, we collect from RavenPack U.S. macroeconomic news

published on DowJones Newswire. We keep news that are first reported and with a relevance

score of at least 90. There are 1,693 macro news in our sample. Table 2.1 reports the mean of

key variables for all three pilot groups for the whole sample.

[Table 2.1 about here.]

For each test group, we report results for two subsamples, stocks with small dollar

quoted spread (below median spread), and stocks with large dollar quoted spread (above median

spread). We also split the stocks in the control group between small versus large dollar quoted

spread. The reason for doing so is that the increased tick size requirement may not be binding

for all stocks, especially those that are less liquid and already have large bid-ask spreads. To

split each group into two samples, we use pre-experiment data, measuring the median spread

3Dropping firms that are delisted or that experience a merger and acquisition during our sample period yields
1,139 stocks in the control group, a drop from 398 to 383 stocks (396 to 384, and 395 to 382) in group 1 (2,
and 3, respectively). Dropping firms that are removed from the test group and added to the control group by
the SEC due to a price decline below $1, group 1 (2 and 3, respectively) stocks decrease to 377 stocks (375 and
374, respectively). Keeping only common equity stocks leaves 979, 330, 323, and 315 stocks in our sample in the
control, group 1, group 2 and 3, respectively. Finally, after dropping stocks without daily TAQ data, we obtain
our final sample of 954, 323, 316, and 310 stocks in the control, group 1, group 2 and 3, respectively.
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with daily data from January 1, 2016 to September 30, 2016.4 We first split all stocks, treated

plus control, into small and large dollar quoted spread. This procedure ensures similar pre-

experiment average dollar quoted spread in each of the subsamples across all three groups, but

may create unbalanced panels if the experiment is not well randomized. As it turns out, the

size of each sample is quite homogeneous across groups.5 Panel A of Table 2.2 shows that there

are 159 (164) small (large) spread stocks in group 1; 156 (160) small (large) spread stocks in

group 2; 152 (158) small (large) spread stocks in group 3; and, there are 484 (470) small (large)

spread stocks in the control group. Table 2.2 also shows that the average pre-experiment dollar

quoted spread for the small (large) quoted spread stocks in group 1 is $0.0374 ($0.2506); the

average dollar quoted spread for the small (large) quoted spread stocks in group 2 is $0.0392

($0.2413); the average dollar quoted spread for the small (large) quoted spread stocks in group

3 is $0.0380 ($0.2624); and, the average dollar quoted spread for the small (large) quoted spread

stocks in the control group is $0.0392 ($0.2734). We discuss in the paper but do not tabulate

results for each group as a whole. We note in advance that almost all of our results apply only

to the more liquid stocks in each group, those with small quoted spreads. Thus, the results that

use each group as a whole are generally economically and statistically weaker.

Panel A of Table 2.2 reports the mean of several key variables for all three pilot groups

in the pre-implementation period.6 The mean market capitalization in each of the groups for

small spread stocks is close to $800 million, indicating that the stocks in our sample are small

cap stocks (the maximum market capitalization to participate in the pilot program is $5 billion),

but that these stocks are larger than those in the sample of large pre-experiment quoted spreads.

In Panel B, we report the differences of key variables between each pilot group and the control

group, and test whether such differences are statistically different from zero. We find that

stocks in each of the pilot groups and in the control group exhibit similar total assets, market

capitalization, book-to-market ratio, and liquidity (measured by QuotedSprd and Volatility).

These results validate the randomization of the pilot program and ensure that stocks in the

pilot groups and in the control group are similar over many dimensions.

[Table 2.2 about here.]

2.4 Impact of Tick Size on Stock Prices

This section presents results of the impact of a larger tick size on stock prices using a difference-

in-differences technique. In this section, we group test stocks in groups 1 and 2 together. We

do this for three reasons. First, we will show below that the various effects we study are quite

4By using pre-experiment data to construct the subsamples we also do not induce any selection bias since
firms and investors did not know who would be in the program.

5Griffith and Roseman (2017) and Rindi and Werner (2017) separate the treated stocks into two groups based
on whether the quoted spread is larger than or equal to $0.05. Lin et al. (2017) also use the $0.05 cut-off to
identify the most constrained stocks (they use three subsamples). Our cutoff is equivalent to splitting firms at
$0.07 spread.

6We winsorize the quoted spread, effective spread, price impact and volatility at 1 and 99 percent. For these
variables, the difference between the 99th percentile and the mean in the unwinsorized sample is more than 5
times the standard deviation of the respective winsorized series.
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similar for both groups. Second, the stocks in the two groups are activated concurrently. Third,

to increase the power of the test by increasing the size of both the treated and control groups.

Following Amihud, Mendelson, and Lauterbach (1997), and a large event study litera-

ture, we use abnormal stock returns to measure the impact of widening the tick size on the

stock price. We calculate abnormal returns using three models: the CAPM, the Carhart (1997)

four factor model that extends the Fama-French three factors to include the momentum factor,

and the Fama-French 5-factor model. As an example, the Carhart model is

Rit −Rft = αi + βi (Rmt −Rft) + βisSMBt + βihHMLt + βioMOMt + εit, (2.1)

where Ri,t is the return on stock i on day t, Rft and Rmt represent the risk free rate and market

return on day t, SMBt is the difference between the return on portfolio of small stocks and the

return on a portfolio of large stocks, HMLt is the difference between the return on a portfolio

of high book-to-market stocks and the return on a portfolio of low book-to-market stocks, and

MOMt is the momentum factor. We estimate the model parameters using pre-sample data (i.e.,

using 2015 data). We then calculate the abnormal return from September 1, 2016 to November

30, 2016 as

ARit = Rit −Rft −
(
β̂i (Rmt −Rft) + β̂isSMBt + β̂ihHMLt + β̂ioMOMt

)
, (2.2)

where ARi,t is the abnormal return for stock i on day t, and β̂i, β̂is, β̂ih and β̂io are the

coefficients that we estimate for each firm using the pre-sample data.

Our main result is depicted in Figure 2.1. The figure plots the equally-weighted cumu-

lative abnormal return for the combined groups 1 and 2 versus control (top panel) and group

3 versus control (bottom panel) from one month before full implementation of the program for

each group to one month following full implementation (full implementation for groups 1 and 2

is October 17 and for group 3 is November 1). The cumulative abnormal return for each group

is set to zero at the full implementation date in each case. The average abnormal return on

each test group experienced a decline in price relative to the control group following the full

implementation of the tick size program that occurred on Monday, October 17, 2016 for groups

1 and 2 and on Monday, October 31 for group 3. This decline appears permanent. Note that

even though the list of firms was announced in early September, they were not assigned to the

test groups until they were activated and we do not expect any differential anticipatory effect

on treated versus control stocks.

[Figure 2.1 about here.]

To obtain point estimates and standard errors of the impact of the larger tick size on

stock returns controlling for firm characteristics, we estimate the following OLS regression that

accounts for the staggered implementation of the program,

ARi,t =α+ γ1Week1t + γ2Week2t + γ3Postt + γ4Piloti ×Week1t

+ γ5Piloti ×Week2t + γ6Piloti × Postt + δ′Xit + εi,t, (2.3)
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where we denote by Pilot i a dummy variable that equals 1 if a stock belongs to the test group

i = 1&2, 3 and 0 otherwise, and where for groups 1 and 2 Week1t is a dummy variable equal

to 1 for days between October 17 and October 21, and 0 otherwise, and Week2t is a dummy

variable equal to 1 for dates between October 24 to October 28, and 0 otherwise, and for group

3, Week1t is a dummy variable equal to 1 for days between October 31 and November 4, and

0 otherwise, and Week2t is a dummy variable equal to 1 for dates between November 7 and

November 11, and 0 otherwise. Postt is a dummy variable that equals 1 for dates following

Week2, and 0 otherwise, and thus depends on the treated group being considered. For example,

for groups 1 and 2, Postt equals 1 after October 31. We also include all interaction terms of

each date dummy and Pilot. We include in Xit a set of control variables: share turnover,

the inverse of the share price, the difference between the highest daily trading price and the

lowest daily trading price, as well as month fixed effects and stock fixed effects that control for

invariant differences in stocks such as the exchange where they trade. We use robust standard

errors clustered at the firm level. We winsorize the bottom 0.5% and top 99.5% abnormal return

observations (the winsorized value is larger than the winsorized mean by 3.4 times the standard

deviation of the winsorized return distribution).

[Table 2.3 about here.]

Table 2.3 reports the regression results. Panel A (B) contains the results for pilot groups

1 and 2 (3). In each panel, Columns (1) and (2) present the results for the CAPM model,

Columns (3) and (4) present the results for the Carhart model, and Columns (5) and (6)

present the results for the Fama-French 5 factor model. We are interested in the coefficient

associated with Piloti ×Week1t to detect the effect of the tick size program and perhaps also

with the coefficient associated with Piloti ×Week2t if there is some learning by the market.

We do not expect that the learning will continue past Week2t. The results are largely invariant

to the risk adjustment used. For groups 1 & 2, the coefficient associated with Piloti ×Week1t

is −0.002 significant at the 5% level or better, which translates into a drop in risk-adjusted

prices of 0.002 × 5 = 1%, compared to the control group (note that the dummy Week1t is

activated over 5 days). The effect on groups 1 and 2 appears permanent as the coefficients on

Piloti ×Week2t and Piloti × Postt are not significant.

As for test group 3, the sum of the coefficients associated with Piloti × Week1t and

Piloti×Week2t is −0.008 in the Carhart model and −0.007 in the Fama French 5 factor model,

with p-values below 1% (untabulated). These returns translates into a drop in risk-adjusted

prices of about 0.008× 5 = 4% if using the Carhart model, compared to the control group. The

effect on group 3 also appears permanent as the coefficient on Piloti × Postt is not significant.

There is no price effect for stocks with large dollar quoted spread, i.e., the more illiquid stocks,

in any of the test groups. The result of no effect for the more illiquid stocks is consistent with

Amihud and Mendelson (1986), but not with Vayanos (1998) who predicts that the price effect

should be smaller for the more liquid stocks. Bessembinder et al. (2015) predict that IPO

stock prices will be lower with the increased tick size in the pilot program, consistent with our

findings. In untabulated results we find no price drop when estimating the model above using

the whole sample of stocks (small and large spread stocks) in each test group.
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This drop in prices is a liquidity premium that we are able to identify given the con-

struction of the program. Using the Carhart model, this premium represents a $7 billion loss

to investors (using the average market capitalization values from Table 2.2, panel A, the loss

to groups 1 and 2 stocks is 0.01 × (788× 159 + 792× 156) and the loss to group 3 stocks is

0.04× 746× 152).

2.5 Sources of Price Variation

This section studies three potential sources of price variation that can explain the results above.

A direct channel through which transactions costs increase prices, and indirect channels through

changes in expected returns, liquidity risk changes, and information risk changes.

2.5.1 Changes in Transactions Costs

We consider several measures of transactions costs, and more generally of liquidity. We shall

consider groups 1, 2 and 3 separately. From now on we drop observations in October 2016 to

avoid potential contaminating factors associated with the staggered implementation of the pilot

study through the implementation month and use the full sample from January 2016 to May

2017. We denote by Post t a dummy variable that equals 1 for dates on or after November 1,

2016, and 0 otherwise.7 Pilot i is a dummy variable that equals 1 if a stock belongs to the test

group i = 1, 2, 3 and 0 otherwise. We estimate the model

Liquidityit = α+ γ1Postt + γ2Piloti + γ3Postt × Piloti + δ
′
Xit + εit, (2.4)

separately for each test group using ordinary least squares. Liquidity it is a measure of liquidity

for stock i on day t, and Xit is the same vector of control variables as before including among

other variables month fixed effects and stock fixed effects. We report robust standard errors,

clustered by firm. We are interested on the sign and size of the coefficient associated with Postt×
Piloti that captures the impact of widening the tick size on liquidity after the implementation

of the Tick Size Pilot Program.

[Table 2.4 about here.]

Table 2.4 presents the results with group 1 (2 and 3) stocks in Panel A (B and C,

respectively). Consider first the effect of the tick size change on spreads and price impact.

QuotedSprd increases by about 0.31 for group 1 small dollar quoted spread stocks, and by

0.27 for groups 2 and 3 stocks, compared to the respective control groups. The changes are

statistically significant at 1% level and represent 73% (62% and 66%) of the mean quoted spread

for group 1 (groups 2 and 3, respectively). Statistically significant changes in the EffectiveSprd

occur only for groups 1 and 2, but with smaller magnitude relative to the QuotedSprd change,

and in the PriceImpact for all groups, with groups 1 and 2 with a magnitude that is about one

7This is a conservative approach for groups 1 and 2 as some of the change in market quality variables may
have already occurred. Griffith and Roseman (2017) and Rindi and Werner (2017) also exclude the month of
October.
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fourth that of the QuotedSprd change. There are no statistically significant effects on spreads for

stocks with large dollar quoted spread. In untabulated results we find that the realized spread,

a proxy for liquidity suppliers’ market-making profit, changes by about the same magnitude as

the price impact. Also, we find that the results when using the full sample within each group

are qualitatively the same, but economically and statistically weaker.

The results so far suggest that the tick size program induced a wealth transfer from

liquidity takers to liquidity providers, especially for group 1 and 2 stocks.8 These results are

generally consistent with those expected by the proponents of the Pilot Program. The results are

also consistent with Harris (1996) and others that argue that an increase in tick size is followed

by reduced competition among market makers with a consequent increase in transactions costs

for small market order traders that usually get executed at the NBBO (Harris, 1997). It is also

possible that the tick size program causes some liquidity takers to switch to become liquidity

providers, in which case the increase in effective spread is an upper bound to the increase in

transactions costs of liquidity takers. The results are inconsistent with models where a larger

tick size improves liquidity by reducing negotiation costs (Harris, 1991), or where a larger tick

size encourages liquidity provision for illiquid stocks if investors switch from market to limit

orders (Werner et al., 2015).

Recall that stocks in pilot group 3 are required both to quote and to trade with a $0.05

price increment, just like stocks in group 2. In addition, stocks in test group 3 are subject to the

trade-at rule, which requires execution priority to be given to lit orders, unless dark orders can

provide a meaningful price improvement over the lit orders. This additional requirement is costly

for traders in dark exchanges. Theory (Zhu, 2014) and empirical evidence (Comerton-Forde and

Putnis, 2015) suggest that orders executed in the dark are predominantly uninformed. Hence,

increasing dark trading costs may force uninformed investors to the lit markets and decrease

market markers’ adverse selection costs. As a result, market makers reduce bid-ask spreads.

We now turn to market depth, which can be a more relevant measure for liquidity for

large traders when they build or liquidate their position and try to minimize their price impact.

We find that market depth increases for all test groups, particularly for group 3 stocks. For

smaller dollar quoted spread stocks the increase is of $25, 145 ($28, 882 and $36, 657) for group

1 stocks (2 and 3, respectively), compared to the control group, which represents an increase of

242% (281% and 365%) of the mean dollar-depth for test group 1 (2 and 3, respectively). These

results are consistent with the notion that a wider tick size makes it more expensive for liquidity

providers to obtain price priority by submitting more aggressive limit orders. A wider tick size

impedes price competition and forces the liquidity providers to queue at the same quoted price,

which results in an increase in dollar-depth (see Harris, 1994, 1997, and Bessembinder, 2003,

O’Hara, Saar, and Zhong 2015, and Yao and Ye 2017). A stronger effect for group 3 stocks

is consistent with an almost mechanical effect that increased costs in dark pools attract more

trades to lit pools and increase market depth. There is an effect also for the more illiquid

stocks, with larger dollar quoted spreads, but the effect is economically much smaller contrary

to predicted by Werner et al. (2015).

[Figure 2.2 about here.]

8We use the effective spread as a measure of liquidity providers’ profit.

15



Trading volume declines by a statistically significant 4, 865, 800 shares in group 1 and

5, 521, 000 shares in group 2, representing 14% and 15% of the respective group means. There

is no statistically significant change in volume for group 3 stocks and for the large dollar quoted

spread stocks. This evidence is consistent with Harris (1997) and Goettler, Parlour and Rajan

(2005) who argue that volume decreases in response to the increase in trading costs that investors

face with the larger tick size. Finally, we find almost no change in volatility across all test groups.

The results for depth, volume and volatility are qualitatively similar to those when we estimate

the models for the each of the test groups as a whole.

Figure 2.2 summarizes these results by plotting the time series of average effective

spreads, volume and market depth for each of the test groups and the control group, skip-

ping the month of October 2016. The changes in spreads are easy to detect as are the changes

in depth. There does not appear to be a spillover effect of the tick size change to the control

group in terms of spreads, volume or depth. Volatility of market depth appears to have in-

creased significantly for the treated stocks; there is also an increased volatility of market depth

towards the end of the sample period for the control stocks, but it appears significantly smaller.

Liquidity Premium

We now provide a point estimate to the liquidity premium, i.e., the ratio between the change

in the expected return and the change in spreads. Assume that the percent change in prices

equals the negative of the change in the expected rate of return divided by the expected rate of

return (as would be the case if the stock is a perpetuity with no growth). If the expected rate of

return is 5%, then the groups 1 and 2 (3) stocks experience an increase in expected returns equal

to 0.05% = 0.01 × 0.05 (0.20% = 0.04 × 0.05). The liquidity premium measured with respect

to the percent quoted spread change is thus equal to 0.16 = 0.05/0.31 (0.19 = 0.05/0.27, and

0.74 = 0.20/0.27) for group 1 (2 and 3, respectively) stocks. The liquidity premium measured

with respect to the percent effective spread change is about 0.31 = 0.05/0.16 (2.2 = 0.20/0.09)

for group 1 and 2 (3) stocks.

The significantly larger liquidity premium for group 3 stocks suggests a multiplicative

effect from the “trade-at” requirement given that the effect of the tick size change on quoted

spreads was close in magnitude for group 1 and 2 stocks versus group 3 stocks. However, recall

that for group 3 stocks there was no statistically significant difference in effective spreads before

and after the Tick Size Program started and only a modest increase in price impact–hence the

liquidity premium relative to the effective spread may not be well defined. This points to the

possibility that the driver of the price decline for group 3 stocks has less to do with a liquidity

premium and more to do with the costs associated with the “trade-at” requirement and its con-

sequences in terms of the distribution of informed versus uninformed investors across lit versus

dark venues. As discussed in the introduction, a liquidity premium of 0.16− 0.31 for groups 1

and 2 is large relative to calibrated values in many asset pricing models with transactions costs.

In these models investors reduce their trading of illiquid assets with high transactions costs and

require a low liquidity premium (see the papers cited above including Amihud and Mendelson,

1986, and Constantinides, 1986). Hence, the liquidity premium represents a second order effect

on prices even if transactions costs have a first order impact over spreads and trading volume.
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To convert the drop in prices into elasticities, note that the Tick Size Program entailed

a 400% change in tick size. Therefore, the stock price elasticity to tick size equals −0.25% for

the stocks in groups 1 and 2, and about −1% for the stocks in group 3, though recall group 3

stocks were additionally subject to a “trade-at” requirement. The stock price elasticity to the

QuotedSpread is −0.01/0.31 = −3.3% for the stocks in group 1, it is −0.01/0.27 = −3.7% for

the stocks in group 2, and −0.04/0.27 = −15% for the stocks in group 3.

Changes in Investor Horizon

Amihud and Mendelson (1986) predict that in the face of higher transactions costs a clientele

effect arises where only the investors with longer investment horizons choose to trade. Here, we

test this additional prediction.

[Table 2.5 about here.]

Table 2.5 presents the results for ChurnRatio, our proxy for (the inverse of) investor

horizon. Without loss, we estimate the specification in the regression model (2.4) for groups

1 & 2, and group 3, with respective control groups, using the same control variables but with

ChurnRatio as dependent variable. The models are estimated using ordinary least squares and

we report robust standard errors clustered by firm. Because we are using quarterly data, we do

not drop October 2016 data. We winsorize the dependent variable at 1% and 99%.

We find that small spread stocks experience a decrease in investor churn, or an increase

in investor horizon, after the implementation of the tick size program compared to the control

group. We find no effect for large spread stocks. To interpret the size of the coefficient estimates,

note that the average small spread stock’s churn ratio is 0.105, implying an average holding

period of 4.76 years (1/ (0.105× 2)). The churn ratio for stocks in groups 1 & 2 is reduced by

0.003 (see column (1)) to 0.102. So, the holding period becomes 4.9 years. This is equivalent

to a 3% increase. The churn ratio for small spread stocks from group 3 decreases by 0.005 (see

column (2)). So the average churn ratio becomes 0.104 and the holding period increases to 4.81

years (1/ (0.104× 2)). This change is equivalent to a 5% increase in holding period. Recalling

that effective spreads do not appear to have changed significantly for group 3 stocks, this change

in investor horizon is likely to have been induced by specific restrictions imposed on group 3

stocks.

Note that many asset pricing models with transactions costs predict that holding periods

increase with higher transactions costs, for a given investor (e.g., Constantinides, 1986, and

Vayanos, 1998). Our measure captures a different dimension that is more in spirit with Amihud

and Mendelson’s model. Our turnover ratio holds constant the investor’s horizon and asks

instead how much more of the holdings of each stock are now in the hands of short- versus

long-term institutional investors.

A Back of the Envelope Calculation

We use a back of the envelope present value calculation as in Amihud and Mendelson (1988)

and Foucault et al. (2013) to translate the change in spreads into a direct price effect. First
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note that the pilot program is active only for two years, so we look for a price effect from higher

spreads over a two year period. Second, we use the investor horizon of institutional investors

as a benchmark. The institutional investors holding the treated stocks have an average holding

period of about 5 years (in group 1 the average holding period is 4.7 years, and in groups 2

and 3 it is 4.6 years). Thus, assuming that investors churn their portfolio continuously over

time, after 2 years they will have churned 2/5 or 40% of their portfolio and they will have

paid 40% of the transactions costs involved in turning over their portfolio. Taking transactions

costs as measured by quoted spreads, a change in quoted spreads of 0.31 cents for a $1 stock,

has a present value (ignoring discounting) of about 0.31 + 0.4 × 0.31 = 0.43 cents for group 1

stocks. For a $1 stock, the observed change in returns for group 1 stocks of 1% equals 1 cent,

meaning that the change in transactions costs represents 43% of the change in returns. Taking

transactions costs as being measured by effective spreads, a change in effective spreads of 0.16

(0.09) for groups 1 and 2 (group 3) has a present value (ignoring discounting) of about 0.22

cents (0.13 cents) of $1. For groups 1&2 (group 3), whose stock price changes by 1% (4%)

or 1 (4) cent of a $1 stock, these present value changes represent 22% (3.25%) of the change

in returns. These rough calculations suggests that there may be a substantial portion of the

observed change in prices across all groups that is due to the indirect effect that transactions

costs have on prices via expected returns (net of transactions costs).

2.5.2 Changes in Liquidity Risk

In this subsection we ask whether the change in tick size may have induced a change in liquidity

risk that induced the observed price decline. Acharya and Pedersen (2005) build on work by

Chordia et al. (2000) and Huberman and Halka (2001) and others to construct a liquidity-

adjusted capital asset pricing model where the required return on a stock depends on the

covariances of its own return and liquidity with the market return and liquidity.

Following Acharya and Pedersen (2005), we calculate the liquidity beta for stock i at

day t as a combination of four different betas. We use thirty-minute stock and market returns,

ris and rMs, and liquidity, cis and cMs, to get

βi1t =
cov (ris, rMs − Es−1 (rMs))

var (rMs − Es−1 (rMs)− (cMs − Es−1 (cMs)))
,

βi2t =
cov (cis − Es−1 (cis) , cMs − Es−1 (cMs))

var (rMs − Es−1 (rMs)− (cMs − Es−1 (cMs)))
,

βi3t =
cov (ris, cMs − Es−1 (cMs))

var (rMs − Es−1 (rMs)− (cMs − Es−1 (cMs)))
,

βi4t =
cov (cis − Es−1 (cis) , rMs − Es−1 (rMs))

var (rMs − Es−1 (rMs)− (cMs − Es−1 (cMs)))
.

We use the proportional quoted spread as a measure of liquidity for stock i at the thirty-minute

interval s, cis. We use the equally-weighted average of cis for all stocks in the market as a

measure of market liquidity, cMs. Similarly, we compute the market return as the equally-

weighted average of all ris in the market.9 We use thirty-minute intervals because these stocks

9This market return series has correlation of 0.8 with the daily stock return of the S&P 500.
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may not trade often during the day (see Rindi and Werner, 2017). We model the conditional

expectations of all variables using the mean of five lagged values observed during the same

thirty-minute interval in previous days. Acharya and Pedersen’s net beta is defined as

βit = βi1t + βi2t − βi3t − βi4t.

β1 is similar to the CAPM beta, β2 prices co-movement in liquidity, and β3 captures the pos-

sibility that the stock can be a hedge against aggregate liquidity shocks, and β4 captures the

possibility that the stock is liquid when the market is doing poorly.

Table 2.6 presents the results of running the difference-in-differences specification in

model (2.4) for groups 1& 2, and group 3, with respective control groups, using the same

control variables but with net beta as the dependent variable. We also run the same regressions

for β1t and for the beta that captures liquidity components βi2t − βi3t − βi4t (panels B and C).

We find that for stocks with small quoted spread, net-beta falls by 0.072 (0.076) after the start

of the pilot program for the treated stocks in groups 1 and 2 (group 3) relative to the control

group (see columns (1) and (2) of panel A). Moreover, most of the decline in net-beta comes

from a decline in β1 (see panel B). Finally, panel C shows that there does not appear to be a

change in βi2t−βi3t−βi4t. While the point estimate of the change in βi2t−βi3t−βi4t is negative,

indicating a lower liquidity risk premium after the start of the Pilot program, this estimate is

not statistically significant.10

[Table 2.6 about here.]

2.5.3 Changes in Price Efficiency

Information risk can contribute to changes in stock prices through the quality of information in

the marketplace. To assess this possibility, in this subsection we use measures of price efficiency

and of the speed of market response to news as proxies for quality of information. We estimate

the specification in the regression model (2.4) for each group, with the respective control groups,

using the same control variables but with price efficiency variables as dependent variables. Our

price efficiency proxies are AR10, PrcError, and the speed of market response to news variables

PriceResponse, VolumeResponse, QuoteResponse1, and QuoteResponse2. We again are able to

separate groups 1 and 2 due to the larger number of observations.

[Table 2.7 about here.]

The results for the absolute value of return autocorrelation (AR10 ) and Hasbrouck’s

(1993) pricing error (PrcError) are displayed in Table 2.7. The models are estimated using

ordinary least squares and we report robust standard errors clustered by firm. Starting with

Panel A for small dollar quoted spread stocks, we note the robust evidence indicating a worsening

in price efficiency. For example, return autocorrelation increases by 0.101 as shown in column

(1) (0.090 and 0.082, as shown in columns (2) and (3)) for test group 1 stocks (2 and 3,

respectively), compared to the control group, representing an increase of 36% (32% and 30%)

10Results using Amihud’s measure as a proxy for cis are similar.
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for test group 1 stocks (2 and 3, respectively) relative to their mean. This evidence is consistent

with Chordia et al. (2008) that study price efficiency with decimalization. Measured using

PrcError, the changes in price efficiency are somewhat smaller percentage wise relative to those

for AR10. For large dollar quoted spread stocks, there is only an increase in PrcError for

group 1 and 2 stocks and a decrease in return autocorrelation for group 3 stocks, but the effects

are significantly smaller relative to the effect on the small dollar quoted spread stocks of the

respective groups. The online appendix shows that the results when we estimate the model for

both AR10 and PrcError for each group as a whole shows economic magnitudes smaller by

about 40%.

[Table 2.8 about here.]

[Table 2.9 about here.]

Table 2.8 presents the results for the market response speed to company-specific news

and Table 2.9 for macro news. We use the two-limit Tobit model to account for the fact that the

variables PriceResponse, VolumeResponse, QuoteResponse1, and QuoteResponse2 are bounded

between 0 and 1. We are not able to estimate these models using stock fixed effects and instead

use stock primary listed exchange fixed effects.

By and large our evidence regarding company-specific news is consistent with that of Ta-

ble 2.7, with small dollar quoted spread stocks in test groups 1 and 2 having a greater reduction

in response speed than those in test group 3, compared to the control group (coefficients −0.233

and −0.244 versus −0.207 for groups 1 through 3 reported in column (1) of panels A through

C). Volume and quote response speed change by less in test groups 1 and 2, whereas in group

3 their change loses significance. There is some evidence of slower speed of market response

also for the large dollar quoted spread stocks, but it is weaker both in economic magnitude

and statistical significance. The evidence for the changing speed of market response due to a

changing tick size is stronger for macro news as documented in Table 2.9 and shows up in both

small and large dollar quoted spreads. This stronger evidence could be caused by the greater

statistical power of the tests coming from the significantly larger number of observations.11

Overall, the results from both tables suggest a decrease in price efficiency following

the adoption of a larger tick size for all three test groups, though only for the small dollar

quoted spread stocks.12 Our empirical results for groups 1 and 2 stocks are consistent with

the prediction of Anshuman and Kalay (1998) that a wider tick size reduces informed investors’

likelihood of trading. Anshuman and Kalay’s (1998) model suggests that informed traders invest

more to acquire accurate signals under continuous pricing than under discrete tick size trading

and larger bid-ask spreads. Therefore, a larger tick size can lead to less price efficiency and

lower quality of information. Likewise, in Goettler, Parlour and Rajan (2005), a larger tick size

makes liquidity traders less aggressive and reduces price efficiency.13

11We have more observations than in the regressions with company specific news, because we can measure a
market response to a piece of macro news for every firm in our sample.

12The results are consistent with Kerr, Sadka and Sadka (2017) who study the effect of liquidity on the
predictability of earnings growth using prices where the shock to liquidity is the1997 reduction in tick size from
one eighth to one sixteenth.

13Our results are inconsistent with Zhao and Chung’s (2006) proposed alternative that a larger tick size may
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For group 3 stocks, recall that we do not find a significant change in effective spreads or

in price impact measures. So, it is unlikely that the price drop in group 3 is a consequence of

an increase in transactions costs and thus a consequence of less information acquisition as in

Anshuman and Kalay (1998). Instead, it is possible that the trade-at requirement that group

3 stocks are subject to caused a shift of uninformed investors from dark pools to lit exchanges

that kept spreads low (see Zhu, 2014, and Comerton-Forde and Putnis, 2015).

The decrease in price efficiency and the slower price discovery are consistent with an

increase in information risk. In the models of Easley and O’Hara (2004) and O’Hara (2003)

information risk, the risk that exists of trading in assets with privately informed investors,

increases with a decrease in information quality, either through an increase in uninformed

traders or a decrease in the precision of private information because prices end up revealing

less information to the uninformed traders in equilibrium. Thus we conjecture that information

risk may have increased for all groups, at least partly explaining the stock price response.

2.6 Related Literature

Several papers have tried to detect the effect of shocks to bid-ask spreads on stock prices.

Barclay, Kandel and Marx (1998) study this question within the context of stocks that move

from Nasdaq to the NYSE or Amex and stocks that move from Amex to the NYSE. While they

observe changes in spreads for stocks moving to and from Nasdaq consistent with our findings,

they find no significant relation between changes in bid-ask spreads and changes in stock prices.

Our field experiment has the advantage of eliminating the selection issue–arising because the

choice of exchange venue is not exogenous–that can impact causal inference of stock price effects.

Elyasiani, Hauser and Lauterbach (2000) also study stocks that move from Nasdaq to the NYSE

and attribute some of the listing excess return to liquidity changes in those stocks. The studies

that are closest to ours, in the sense of using a laboratory-like experiment in actual financial

markets, are Bessembinder (2003) and Chakravarty, Wood, Van Ness (2004) who investigate

the effects of decimalization on a sample of NYSE common stock initially trading in decimals.14

Because the NYSE changed the trading requirements via a phased pilot program, they are able

to form a sample of unaffected stocks that controls for other contemporaneous events. Both

papers find that quoted spreads declined after decimalization and Chakravarty et al. also finds

that stock return volatilities decline over the long term. Neither paper reports on stock price

effects. Muscarella and Piwowar (2001) find a price increase for frequently traded stocks in the

Paris Bourse that move from call trading to continuous trading, but theirs is not a randomized

sample like ours, nor do they study expected return effects. Relative to this literature we also

innovate by finding supportive evidence that microstructure shocks, such as a tick size change,

can have consequences for firms’ cost of capital.

We conjecture that the lack of clear causal evidence of changes in the tick size on stock

prices in the literature and the many theoretical arguments pointing to a second order effect of

improve price efficiency by making it more expensive to front-runners to step in front of existing orders and
to receive execution precedence. Reducing front-running risk increases the profit for informed traders, which
motivates them to gather more information.

14Fang, Noe and Tice (2009) study the effect of decimalization on the change in market to book value of assets
from one year prior to decimalization to one year after decimalization.
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transactions costs on stock prices may explain the absence of a discussion of price effects from

either proponents and opponents of the tick size program. However, our evidence suggests that

the program may have hurt the very firms that the study wished to help.

There is a long empirical literature starting with Amihud and Mendelson (1986, 1991)

and Brennan and Subrahmanyam (1996) that shows that risk-adjusted stock and bond returns

correlate positively with liquidity measures (see, in addition, Pastor and Stambaugh, 2003,

Amihud, 2002, Sadka, 2010, Beber, Driessen, and Tuijp, 2012, and Foucault, Pagano and Roell,

2013). The findings in this literature may be confounded by the fact that liquidity is affected

by and affects firm policies (e.g., Chen, Goldstein, and Jiang, 2006, Ellul and Pagano, 2006,

and Sadka, 2011) and that liquidity may also proxy for other risk factors. Moreover, the lack of

more direct evidence to date on the link between exogenous measures of transactions costs and

prices raises a concern that these confounding aspects may be of first order. Our paper suggests

otherwise as it is the first paper that shows that exogenous shocks to transactions costs have

price effects.

The JOBS Act envisioned the study conducted by the SEC in order to collect information

to better assess how tick size may impact liquidity and price efficiency. The scant literature

studying how stock prices are affected by bid-ask spreads contrasts with the large body of

literature studying the impact of tick size on liquidity.15 See for example Harris (1994, 1997),

Ahn, Charles and Choe (1996), Goldstein and Kavajecz (2000), Jones and Lipson (2001), and

Bessembinder (2003), among others. More recently, Griffith and Roseman (2017) and Hansen

et al. (2017), Lin et al. (2017), and Rindi and Werner (2017) also make use of the SEC’s Tick

Size Pilot Program to study the effect of bid-ask spreads on liquidity, including spreads, price

impact, volume and depth.16 These papers all conclude, like we do, that increasing tick size

increases spreads, price impact and depth especially for the more constrained stocks. The effect

of a larger tick size on trading volume is less clear. Though the literature generally documents

a negative relationship between trading volume and bid-ask spreads, Porter and Weaver (1997)

and Rindi and Werner (2017) find no effect of tick size on volume. We find that trading volume

experiences a significant decline for pilot groups 1 and 2 stocks and no change for group 3 stocks.

Griffith and Roseman (2017), Hansen et al. (2017) and Lin et al. (2017) also find a significant

drop in consolidated volume for treated firms after the tick size pilot program.

Our paper is the first to show price efficiency changes using the tick size pilot program,

which are consistent with changes in information risk. We provide empirical evidence on the

15Theoretical studies have been developed to examine the effect of tick size changes in different market struc-
tures. Foucault, Kadan and Kandel (2005) investigate a dynamic limit order book populated by strategic liquidity
traders of varying impatience, and predict that a reduction in tick size can result in higher spread by impairing
market resiliency and enabling traders to trade less aggressively. By modeling the competition between a spe-
cialist with market power and a competitive limit order book, Seppi (1997) shows that larger tick size is more
favorable for large traders than for small traders. Werner et al. (2015) model order submission strategies of ra-
tional trades and show that tick size reduction improves market quality for liquid stocks, but deteriorates market
quality for illiquid stocks. Kadan (2006) studies the welfare effects of a change in tick size in a dealer marker and
argues that an increase in tick size benefits dealers while hurting investors when the number of dealers is large,
and vice versa when the number of dealers is small. The JOBS Act specifically acknowledged the possibility
that increasing the tick size encourages market participants to provide more liquidity, and analysts to cover these
firms, thereby attracting more investors to invest in small cap stocks.

16Comerton-Forde, Gregoire and Zhong (2017) uses the tick size pilot program as an exogenous shock to the
market share of inverted exchanges to study market quality of inverted fee models, and Lin, Swan and Mollica
(2017) study the allocation of investors across exchanges.
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causal effect of a reduction in price efficiency due to an increase in tick size. Anshuman and

Kalay’s (1998) model suggests that a larger tick size reduces the value of private information,

thus decreasing price efficiency. In their model, informed traders invest more to acquire accurate

signals under continuous pricing, while a wider tick size would discourage investors from acquir-

ing accurate information about stock value. Zhao and Chung (2006) find evidence supporting

the Anshulan and Kalay (1998) model, though they consider an alternative hypothesis where a

larger tick size may improve price efficiency by reducing the likelihood of front-running, which

increases the profit for informed traders and motivates them to gather more information. Like-

wise, Cordella and Foucault (1999) argue that the larger tick size creates a bigger gap between

the competitive price and the expected asset value and prompts dealers to adjust prices more

quickly. We find that after widening the tick size, market reaction speed to news decreases,

suggesting that it takes longer for stock price to incorporate information, thus a decrease in

price efficiency.

2.7 Conclusion

We provide empirical evidence of a causal negative impact of a larger tick size on stock prices

and calculate the liquidity premium implied by the change in tick size. The sources of stock

price variation appear different across the various treated stocks in the program. We show that

the decline in stock prices is associated with an increase in spreads and in price impact, and

with a reduction in volume for groups 1 and 2 stocks. For these stocks, we show that there is

an increase in investor horizon consistent with the view that transactions costs have a direct

effect over stock prices holding expected returns constant, as in Amihud and Mendelson (1986).

However, for group 3 stocks, we show that there is a change in quoted spreads but no change

in effective spreads or in trading volume.

We also study the indirect effect on stock prices through expected returns (net of trans-

actions costs) of the change in tick size. We show that there is no statistically significant change

in liquidity risk across all test groups. However, we show that all stocks experience a decline

in price efficiency suggesting that information risk and thus expected returns increased for the

treated stocks. This evidence is consistent with firm’s cost of capital being affected by market

microstructure features.

The experiment conducted by the SEC was mandated by the 2012 JOBS Act. The

main motivation for the experiment was to study how different tick size trading requirements

affect the liquidity of emerging stocks to perhaps encourage more of these firms to go public.

Given the large theoretical literature arguing that liquidity has second order effects on prices,

and given an existing sizeable empirical literature arguing similarly as discussed above, it is

reasonable to assume that the regulator did not expect that the very companies the JOBS Act

meant to help would lose value through the experiment.
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2.8 Appendix: Data definitions

Stock Liquidity Variables Following Holden and Jacobsen (2014), we use daily TAQ

data to construct several liquidity measures. Percent quoted spread is the difference between

the national best ask and the national best bid (NBBO) at any time interval divided by the

midpoint of the two. The daily percent quoted spread (QuotedSprd) is the weighted average

percent quoted spread computed over all time intervals, where each weight is the length of the

time interval for which the percent quoted spread is available.

The quoted spread is calculated by taking the daily average of all quotes every time

the NBBO is updated. It does not require any trade to take place. Arguably, the information

contained in updates of the NBBO is more relevant in the study of the speed of market response

to news, than in describing execution costs since traders may choose to execute orders when bid-

ask spreads are narrower (Bessembinder, 2003). We therefore, consider an alternative measure

of spreads that is calculated “conditional on” trade executions. The daily percent effective

spread (EffectiveSprd) is the dollar-volume-weighted average of the percent effective spread

computed over all trades in the day. The percent effective spread for each trade is twice the

signed difference (‘+’ for buyer initiated and ‘-’ for seller initiated) between the price of the

trade and the midpoint between the national best ask and the national best bid at the time of

the trade, divided by the midpoint at the time of the trade. We use the Lee and Ready (1991)

algorithm to determine whether a trade is buyer- or seller-initiated. The daily price impact

(PriceImpact) is the dollar-volume-weighted average of percent price impact computed over all

trades during the day. For a given stock, the percent price impact on each trade is twice the

signed difference between the midpoint available five minutes after the trade and the midpoint

at the time of the trade, divided by the midpoint at the time of the trade.17 For ease of reading

the results, we measure QuotedSprd, EffectiveSprd, and PriceImpact in percent.

In addition, we study market depth (MarketDepth) defined as the average of displayed

dollar-depth at the NBBO and measures the number of shares (in hundreds) that must be

traded before the stock price moves, daily volume (Volume) (in hundreds of shares) (results

are similar if using the number of trades during the day), and realized variance (Volatility) is

the sum of squared intraday five-minute returns. We winsorize the bottom 1% and top 1% of

quoted spread, effective spread, price impact and volatility. For these variables, the difference

between the 99th percentile and the mean in the unwinsorized samples is more than 5 times

the standard deviation of the respective winsorized series.

Investor Horizon Our proxy for investor horizon is the (inverse of the) ChurnRatio

borrowed from Gaspar, Massa and Matos (2005) and Cella, Ellul and Giannetti (2013). We

use institutional investor data from Factset for the sample period Q1:2015–Q2:2017. Turnover

for each institution is pre-determined in the sense that we use 2015 turnover data (pre-pilot

program data) to calculate it. Therefore, our results are not tainted by changes in volume

during implementation. For each quarter, the ChurnRatio of any stock is measured as the

weighted average of the portfolio turnover ratios. The weight is the proportion of shares held

17We also study the realized spread that equals the effective spread minus price impact. The results are
consistent with both the effective spread and price impact variables.
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by an investor to total shares outstanding in the quarter. Cella et al. suggest that this weighting

gives a more precise estimate of the selling pressure experienced by each stock as compared to

the proportion of shares held by an investor to total institutional investor shares in the quarter.

An increase in this weighted average signals a relatively greater presence of short-term investors,

which churn their portfolios more frequently (see Cella et al., 2013, for details). Investor horizon

(in years) can be calculated as 1/(2× ChurnRatio).

Price Efficiency Variables AR10 is the absolute value of the ten-second midpoint

return autocorrelation for each stock on each day (Boehmer and Kelley, 2009). We retain only

the firm-day observations for which there are at least 100 trades. A high value of AR10 is

indicative of inefficiency under the assumption that with efficient prices, the high-frequency

return should follow a random walk. Both positive and negative autocorrelation indicates

predictability in returns.

Our second price efficiency measure is from Hasbrouck (1993) and Boehmer and Kelley

(2009). This measure assumes that the transaction price can be decomposed into an infor-

mational component that represents the expected value of the stock, or efficient price, and a

non-informational component that captures transitory deviations from the efficient price, such

as tick size or inventory effects. The variability (measured by the standard deviation) of the

non-informational component as a percentage of the variability of transaction prices is a mea-

sure of the information (in)efficiency in prices (see the appendix in Boehmer and Wu, 2013, for

details). We denote this measure by pricing error (PrcError).

Our other measures of price efficiency capture the speed with which stock prices respond

to news (see Beschwitz, Keim and Massa, 2015). We calculate stock price response to company-

specific news and to macroeconomic news. The reasons to look at macro news are that firms may

be heterogeneous in the volume and significance of company-specific news and this may affect

our inference, and that the flow and content of firm specific news may also have changed as a con-

sequence of the tick size program. None of these concerns affect our inference when we use macro

news. We define stock price response speed as PriceResponse =
|returnt−1,t+10|

|returnt−1,t+10|+|returnt+10,t+120| .

|returnt−1,t+10| is the absolute value of the stock return over an 11-second time horizon from

t−1 to t+10, t is the second that the news is released, |returnt+10,t+120| is the absolute value of

the stock return over an 110-second time horizon from t+10 to t+120. PriceResponse gives the

amount of two minute return adjustment that takes place in the first 10 seconds after the release

of the news. Volume response speed (VolumeResponse) is defined similarly to PriceResponse,

but uses volume instead of the absolute return, and captures the amount of two-minute volume

adjustments that take place in the first 10 seconds after the news announcement. The third and

fourth measures are based on quote adjustment. QuoteResponse1 is the proportion of quotes

adjusted in the first 10 seconds over a two-minute interval after the news announcement. The

variable is calculated as the number of NBBO price updates and NBBO depth updates in the

first 10 second over those that are updated in the first two-minutes. Finally, QuoteResponse2 is

defined analogously to QuoteResponse1, but it only counts the number of NBBO price updates.

For both company news and macroeconomic news, RavenPack provides two measures

of sentiment on each article: the Composite Sentiment Score (CSS) and the Event Sentiment

25



Score (ESS). Both measures range from 0 to 100, with 0 (100) representing the most negative

(positive) news and 50 representing neutral news. We define the absolute value of the sentiment

score as the absolute value of (ESS−50) if ESS is non-missing or if CSS is equal to 50, or the

absolute value of (CSS − 50) otherwise. Following Beschwitz, Keim, and Massa (2015), we use

the absolute value of the sentiment score in the news response speed regressions as a control.
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Figure 2.1: Cumulative Abnormal Return

The figure plots the daily cumulative abnormal return of treated groups and control group from Septem-
ber 01, 2016 to November 30, 2016. The top panel plots the cumulative abnormalreturn of test stocks
in groups 1 and 2 versus the control group (test stocks in groups 1 and 2 are activated fully into the
program on October 17, 2016). The bottom panel plots the cumulative abnormal return of test stocks in
group 3 versus the control group (test stocks in group 3 are activated fully into the program on November
1, 2016).
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Figure 2.2: Market Liquidity

The figure plots the daily percent effective spread (top panel), trading volume (mid panel), and dollar
market depth (bottom panel) for stocks in test groups 1 to 3 versus the control group. The month of
October 2016 is the implementation month and is dropped.
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Table 2.2: Pre-implementation Characteristics of Treated and Control Firms

The table presents descriptive statistics of treated stocks (‘G1’ - ‘G3’) and control stocks (‘C’) from
January 01, 2016 to September 30, 2016. Panel A reports average firm characteristics for each group.
Panel B reports the differences between the treatment and the control group. Total asset (Asset),
Market Capitalization (Size), and market-to-book ratio (MB) are measured on December 2015. Daily
trading volume (V olume), dollar quoted spread (QuotedSprd), and realized volatility (V olatility) are
based on data from January 1 to September 30, 2016. Asset and Size are measured in millions of
dollars. QuotedSprd is measured in cents. The first (second) row of each variable in Panel B reports
the difference (t-statistics for the difference) between Control and Treatment Group. We divide sample
stocks into two groups based on their average quoted dollar spread before October 2016. We report
summary statistics for small and large dollar quoted spread stocks separately. ***, **, and * indicate
significance at the 1%, 5%, and 10% levels using two-tailed tests.

Panel A: Sample Mean for Treatment and Control Groups

SMALL QUOTED SPREAD STOCKS LARGE QUOTED SPREAD STOCKS

C G1 G2 G3 C G1 G2 G3

Number of Stocks 484 159 156 152 470 164 160 158

Asset 1664 1390 1828 1366 1033 1188 912 1189

Size 770 788 792 746 574 640 532 560

MB 6.06 3.59 3.52 4.67 3.37 8.16 2.61 3.14

Volume 303023 338862 316710 334715 86479 88824 89491 86561

QuotedSprd ($c) 3.92 3.74 3.92 3.80 27.34 25.06 24.13 26.24

Volatility 0.15 0.07 0.01 0.13 0.19 0.03 0.15 0.33

inverse of the share price 0.12 0.13 0.12 0.12 0.09 0.08 0.09 0.08

High m Low 0.52 0.50 0.52 0.54 0.91 0.92 0.83 0.96

Share Turnover 8.25 7.66 7.85 8.27 4.46 4.84 5.32 4.41

Panel B: Difference between Treatment and Control Group

Difference (Control - Test)

Asset 275 -164 365 -154 121 -156

(0.78) (-0.43 ) (0.82) (-0.71) (0.56) (-0.71)

Size -18 -22 25 -66 42 15

(-0.25) (-0.31) ( 0.35) (-0.95) (0.61) (0.21)

MB 2 3 1 -5 1 0

(1.06) (1.07) (0.54) (-1.51) (1.22) (0.36)

Volume -35838 -13686 -31692 -2345 -3012 -82

(-1.59) (-0.63) (-1.45) (-0.20) (-0.24) (-0.01)

QuotedSprd ($c) 0.18 -0.01 0.12 2.28 3.20 1.10

(1.18) (-0.04) (0.77) (0.83) (1.20) (0.39)

Volatility 0.09 0.14* 0.02 0.16* 0.04 -0.14

(1.03) (1.73) (0.26) (1.82) (0.44) (-1.22)

inverse of the share price -0.01 -0.00 -0.00 0.01 0.00 0.01

(-0.70) (-0.32) (-0.04) (1.23) (-0.34) (1.06)

High m Low 0.02 0.00 -0.02 0.00 0.08 -0.05

(0.89) (-0.13) (-0.61) (-0.02) (0.98) (-0.49)

Share Turnover 0.59 0.40 -0.01 -0.38 -0.86 0.05

(0.70) (0.47) (-0.02) (-0.87) (-1.61) (0.11)
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Table 2.3: Abnormal Returns

The table reports OLS regression results of the following model: ARi,t = α + γ1Week1 + γ2Week2 +

γ3Postt + γ4Piloti ×Week1 + γ5Piloti ×Week2 + γ6Piloti × Postt + δ
′
Xi,t + εi,t, where ARi,t is the

abnormal return for stock i on day t. Panel A (B) contains the results for pilot groups 1&2 (3). Piloti
is a dummy variable equal to 1 if a stock belongs to test group (i = 1, 2, 3), and 0 otherwise. For groups
1 and 2, Week1 is a dummy variable equal to 1 for dates between October 17 and October 21, and 0
otherwise, and Week2 is a dummy variable equal to 1 for dates between October 24 to October 28, and
0 otherwise, and for group 3, Week1 is a dummy variable equal to 1 for dates between October 31 and
November 4, and 0 otherwise, and Week2 is a dummy variable equal to 1 for dates between November 7
and November 11, and 0 otherwise. Postt is a dummy variable that equals 1 for dates following Week2;
and 0 otherwise, and thus depends on the treated group being considered. We also include all interaction
terms of each date dummy and Piloti. X is a vector of control variables: share turnover, the inverse of
the share price, the difference between the highest daily trading price and lowest daily trading price, and
time and stock fixed effects. Columns (1) and (2) present the results using the CAPM model. Columns
(3) and (4) present the results using the Carhart model. Columns (5) and (6) present the results using
the Fama French 5 Factor model. We divide sample stocks into two groups based on their average quoted
dollar spread before October 2016. Odd (even) number columns report results for small (large) spread
stocks. We cluster the standard errors at the firm level. ***, **, and * indicate significance at the 1%,
5%, and 10% levels, respectively.
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Table 2.5: Investment Horizon

The table reports OLS regression results of the following model: ChurnRatioi,t = α+γ1Postt+γ2Post×
Pilot + δ

′
Xi,t + εi,t, where ChurnRatioi,t is measured as the weighted average of the total portfolio

turnover ratios of stock i’s investors in quarter t. Columns (1) and (2) report regression results for stocks
with smallest dollar quoted spread, and Columns (3) and (4) report regression results for stock with
largest dollar quoted spread. Piloti is a dummy variable equal to 1 if a stock belongs to test group (i
= 1, 2, 3), and 0 otherwise. Postt is a dummy variable equal to 1 for dates in or after Quarter 4, 2016,
and 0 otherwise. X is a vector of control variables: share turnover, the inverse of the share price, the
difference between the highest daily trading price and lowest daily trading price, and time and stock
fixed effects. We divide sample stocks into two groups based on their average quoted dollar spread before
October 2016. We cluster the standard errors at the firm level. ***, **, and * indicate significance at
the 1%, 5%, and 10% levels, respectively.

SMALL QUOTED SPREAD STOCKS LARGE QUOTED SPREAD STOCKS

(1) (2) (3) (4)

Post -0.105*** -0.106*** -0.079*** -0.077***

(0.002) (0.002) (0.002) (0.002)

Pilot1&2 x Post -0.003* 0.000

(0.002) (0.001)

Pilot3 x Post -0.005** 0.001

(0.002) (0.002)

Observations 4,566 3,630 4,493 3,575

Adjusted R-squared 0.873 0.876 0.861 0.854

Controls Yes Yes Yes Yes
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Table 2.6: Liquidity Risk

The table reports OLS regression results of the following model: βi,t = α+ γ1Postt + γ2Postt ×Pilot+

δ
′
Xi,t + εi,t, where βi,t is a measure of liquidity risk for stock i on day t. Panel A (B and C) reports

results using βi (β1i and βliq,i) as measures of liquidity risk. These are defined as:

β1i = cov(ris,rMs−Es−1(rMs))
var(rMs−Es−1(rMs)−[cMs−Es−1(cMs)])

β2i = cov(cis−Es−1(cis),cMs−Es−1(cMs))
var(rMs−Es−1(rMs)−[cMs−Es−1(cMs)])

β3i = cov(ris,cMs−Es−1(cMs))
var(rMs−Es−1(rMs)−[cMs−Es−1(cMs)])

β4i = cov(cis−Et−1(cis),rMs−Es−1(rMs))
var(rMs−Es−1(rMs)−[cMs−Es−1(cMs)])

βi = β1i + β2i − β3i − β4i
βliq,i = β2i − β3i − β4i
We use the proportional quoted spread (cis) as a measure of liquidity for stock i at thirty-minute s. cMs

is the equally-weighted average of cis for all common stocks traded in the US. ris is stock i’s thirty-minute
return in interval s, and rMs is the equally-weighted average of ris for all common stocks traded in the
US. Piloti is a dummy variable equal to 1 if a stock belongs to test group (i = 1, 2, 3), and 0 otherwise.
Postt is a dummy variable equal to 1 for dates on or after November 1, 2016, and 0 otherwise. X is
a vector of control variables: share turnover, the inverse of the share price, the difference between the
highest daily trading price and lowest daily trading price, and time and stock fixed effects. Columns (1)
and (2) report regression results for stocks with smallest dollar quoted spread, and Columns (3) and (4)
report regression results for stock with largest dollar quoted spread. We cluster the standard errors at
the firm level. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Impact of Widening Tick Size on βi

SMALL QUOTED SPREAD STOCKS LARGE QUOTED SPREAD STOCKS

(1) (2) (3) (4)

Post -0.498*** -0.494*** -0.053 -0.040

(0.024) (0.027) (0.036) (0.039)

Pilot1&2 x Post -0.072*** -0.058**

(0.021) (0.029)

Pilot3 x Post -0.076*** -0.086

(0.026) (0.055)

Observations 252,680 200,558 241,905 190,884

Adjusted R-squared 0.044 0.042 0.044 0.051

Controls Yes Yes Yes Yes
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Panel B: Impact of Widening Tick Size on β1i

SMALL QUOTED SPREAD STOCKS LARGE QUOTED SPREAD STOCKS

Post -0.569*** -0.567*** -0.381*** -0.378***

(0.023) (0.026) (0.028) (0.031)

Pilot1&2 x Post -0.052** -0.004

(0.021) (0.022)

Pilot3 x Post -0.074*** 0.001

(0.024) (0.039)

Observations 252,680 200,558 241,905 190,884

Adjusted R-squared 0.048 0.046 0.053 0.059

Controls Yes Yes Yes Yes

Panel C: Impact of Widening Tick Size on βliq,i

SMALL QUOTED SPREAD STOCKS LARGE QUOTED SPREAD STOCKS

Post 0.071*** 0.073*** 0.329*** 0.338***

(0.013) (0.016) (0.026) (0.029)

Pilot1&2 x Post -0.020 -0.054***

(0.013) (0.019)

Pilot3 x Post -0.002 -0.088***

(0.019) (0.031)

Observations 252,680 200,558 241,905 190,884

Adjusted R-squared 0.028 0.031 0.020 0.022

Controls Yes Yes Yes Yes
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Table 2.7: Price Efficiency

The table reports OLS regression results of the following model: PriceEfficiencyi,t = α + γ1Postt +

γ2Postt × Piloti + δ
′
Xi,t + εi,t, where PriceEfficiencyi,t is a measure of price efficiency, AR10 and

PrcError, for stock i on day t. Panel A (B) reports regression results for stocks with smallest (largest)
dollar quoted spread. Columns (1) to (3) use return autocorrelation as a measure of price efficiency.
Columns (4) to (6) use pricing error as measure of price efficiency. Piloti is a dummy variable equal to
1 if a stock belongs to the test group (i = 1, 2, 3), and 0 otherwise. Post is a dummy variable equal to
1 for dates on or after November 1, 2016, and 0 otherwise. We drop observations in October 2016. X
is a vector of control variables: share turnover, the inverse of the share price, the difference between the
highest daily trading price and lowest daily trading price, and time and stock fixed effects. We divide
sample stocks into two groups based on their average quoted dollar spread before October 2016. We
cluster standard errors at the firm level. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels, respectively.

Panel A: Small Dollar Quoted Spread Stocks

AR10 PrcError

(1) (2) (3) (4) (5) (6)

Post 0.047*** 0.047*** 0.046*** 0.003 0.004 0.005

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

Pilot1 x Post 0.101*** 0.021***

(0.005) (0.005)

Pilot2 x Post 0.090*** 0.024***

(0.005) (0.004)

Pilot3 x Post 0.082*** 0.027***

(0.005) (0.005)

Observations 191,619 190,920 190,622 170,981 170,922 171,187

Adjusted R-squared 0.184 0.170 0.174 0.744 0.754 0.755

Controls Yes Yes Yes Yes Yes Yes

Panel B: Large Dollar Quoted Spread Stocks

AR10 PrcError

(1) (2) (3) (4) (5) (6)

Post 0.035*** 0.037*** 0.036*** -0.007** -0.004 0.000

(0.003) (0.003) (0.003) (0.003) (0.004) (0.004)

Pilot1 x Post 0.003 0.012*

(0.004) (0.006)

Pilot2 x Post 0.005 0.016***

(0.004) (0.005)

Pilot3 x Post -0.015*** -0.004

(0.004) (0.009)

Observations 117,985 115,368 115,526 82,044 79,434 79,408

Adjusted R-squared 0.093 0.096 0.095 0.686 0.718 0.725

Controls Yes Yes Yes Yes Yes Yes
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Chapter 3

Multimarket High-Frequency

Trading and Commonality in

Liquidity

3.1 Introduction

There are numerous benefits to high-frequency trading. Substantial academic literature con-

firms that, by acting competitively and processing information more efficiently, high-frequency

traders (HFTs) generally improve market quality. They increase market liquidity (Brogaard

2010, Jovanovic and Menkveld 2016), reduce short-term volatility, at least during normal mar-

ket conditions (Hasbrouck and Saar 2013, Hagstromer and Norden 2013), and contribute posi-

tively to price discovery (Brogaard, Hendershott, and Riordan 2014). They reduce the trading

costs of retail traders (Malinova, Park, and Riordan 2016), keep fragmented markets virtually

consolidated (Menkveld 2013) and might even increase social welfare (Jovanovic and Menkveld

2016).

The various benefits generated by HFTs should not however overshadow potential risks,

created by these market participants. In addition to an increase in adverse selection costs for

other traders (Biais, Foucault, and Moinas 2015; Foucault, Kozhan, and Tham 2017), and

the likely contribution of HFTs to high volatility during the Flash Crash (Kirilenko et al.

2017; Easley, Lopez de Prado, and O’Hara 2011), the July 2011 International Organization

of Securities Commissions (IOSCO) Technical Committee report emphasizes the effect HFT

activity might potentially have on the transmission of extreme shocks across different markets

and asset classes.1. In their theoretical paper, Cespa and Foucault (2014) show that cross-asset

learning leads to liquidity spillovers across asset classes, and a small drop in liquidity of one

asset can even cause a marketwide liquidity crash. Bongaerts and Van Achter (2016) model

implications of HFT for market stability to show that the combination of their superior speed

and information processing skills leads to oligopolistic rents and occasional market freezes.

Surprisingly, empirical evidence on transmission of liquidity shocks by HFTs is rather scarce.

1See Section 3 of the July 2011 IOSCO Technical Committee report “Regulatory Issues Raised by the Impact
of Technological Changes on Market Integrity and Efficiency”
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To the best of our knowledge, there are currently only two empirical papers that examine

systemic risks, potentially generated by HFTs. Jain, Jain, and McInish (2016) analyze changes

in systemic risk measures, caused by HFTs, on a single market, Tokyo Stock Exchange, as

opposed to transmission of shocks across several markets. Ben-David, Franzoni, and Moussawi

(2012) show that arbitrage activity between ETFs and their underlying securities, which can

be potentially attributed to HFTs, can propagate shocks across these two asset classes.

In this paper, we examine the effect of multimarket HFT activity on systematic liquidity

co-movements of stocks across different markets. Following Chordia, Roll, and Subrahmanyam

(2000), we analyze co-variations of the stock’s liquidity with the aggregate market liquidity and

refer to these co-variations as commonality in liquidity. High-frequency traders share similar

algorithms (Chaboud et al. 2014, Benos et al. 2015), which can lead to excess co-movements

in their demand and supply, and consequently, to commonality in liquidity across stocks even

within the same market. For example, Huh (2011) and Boehmer and Shankar (2014) analyze

the impact of algorithmic traders on the co-movement of liquidity and order flow within US

and Indian equity markets, respectively. However, HFTs often engage in trading across multiple

markets, which essentially connects these markets in a single network and might facilitate cross-

market liquidity spillovers.2 Specifically, we hypothesize that multimarket HFT activity induces

stronger commonality in liquidity for stocks traded within the aggregate network of markets,

even after controlling for their liquidity co-movements within their home market.

Findings from prior studies suggest that stock liquidity co-movements can arise both

through demand (Koch, Ruenzi, and Starks 2016, Kamara, Lou, and Sadka 2008) and supply

channels (Coughenour and Saad 2004). As liquidity demanders, HFTs engage either in cross-

market arbitrage strategies to exploit temporary mispricings between two markets, or directional

trading strategies, to quickly trade on new information (Baron et al. 2016 In either case,

excess co-movements in their demand can cause stronger commonality in liquidity across stocks,

simultaneously traded by their algorithms. As liquidity suppliers, HFTs act as market makers,

posting and monitoring quotes across multiple venues (Menkveld 2013). Since HFTs usually

make markets in several assets, correlated fluctuations in their inventory levels can also induce

stronger liquidity co-movements across stocks in their inventory portfolios.

We use the staggered entrance of Chi-X, an alternative platform for trading European

equities, as an instrument for an increase in multimarket high-frequency trading activity. Two

main competitive advantages of Chi-X at the time of its introduction, compared to national stock

exchanges, are its lower execution fees, and its 22 to 84 times faster speed of order processing.

Both of these features should arguably attract high-frequency traders. Jovanovic and Menkveld

(2016) and Menkveld (2013) indeed find that one large HFT takes part in 70-80% of Chi-X

trades for Dutch and Belgian index stocks, and almost 10% of all trades for these stocks on

their home market, Euronext. Essentially, it is acting as a multimarket liquidity provider, with

4 in 5 of its trades being passive in both markets. Importantly, Menkveld (2013) also shows

that Chi-X market shares jump above 10% with the entry of this HFT, and drop almost to zero

on days when it is absent from the market.

2In their model, Lescourret and Moinas (2015) formally show that multimarket liquidity provision makes
the liquidity of two markets interconnected. Tomio (2016) shows theoretically and empirically how multimarket
arbitrage activity can contribute to the convergence of individual stock’s liquidity between the two markets.
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Since trading of European major index stocks on Chi-X was introduced in several phases,

it allows us to clearly identify the causal effect of multimarket HFT activity on the systematic

liquidity co-variations of stocks across European equity markets. Variation in Chi-X entry times

into 11 different markets in our sample should alleviate valid concerns about general time trends

in commonality in liquidity, or any potential effects of the financial crisis. Further, for the stag-

gered introduction of Chi-X to be a valid instrument, it must satisfy the exclusion restriction,

i.e. its entry dates must not be related to contemporaneous changes in systematic stock liq-

uidity co-movements other than through the effect of HFT activity. However, such a relation

is rather unlikely, since it would mean that Chi-X was able to accurately predict changes in

systematic liquidity co-movements of stocks traded across 11 European markets. Importantly,

the introduction of Chi-X makes it easier to simultaneously engage in fast trading of all major

European equities on a single trading platform, hitherto not possible at a comparable speed.

Even though Chi-X might be a primary trading platform for HFTs, multimarket HFT trading

activity between Chi-X and home markets makes the liquidity of multiple European markets

interconnected, potentially inducing stronger liquidity co-movements within the aggregate net-

work of European markets.3

To test our hypothesis, we derive two empirical predictions. First, if multimarket HFT

activity induces stronger commonality in liquidity within the network of European markets,

then we expect an increase in the stock’s liquidity co-movements with the aggregate liquidity

of the European market after the introduction of Chi-X. In the following, we refer to these

co-movements as EU liquidity betas. Our second prediction is that EU liquidity betas should

be higher for stocks with a more intense HFT trading in the post-Chi-X period.

We test the two empirical predictions on the sample of 445 major European index stocks

from 11 countries over the period from January 2004 to December 2014. Our results provide

supporting evidence that commonality in liquidity within the aggregate network of European

markets is significantly stronger after Chi-X introduction. Importantly, European-wide liquidity

co-variations become more important than co-variations with the home market in the post-Chi-

X period. Further, EU liquidity betas are especially high in down markets and, consistent with

our second prediction, increase more for stocks with a more intense HFT market making ac-

tivity. Overall, our findings suggest that multimarket HFT activity induces stronger liquidity

co-movements across European markets by connecting them in a single network. Indeed, liq-

uidity co-variations with home markets seem to have lost their significance in recent years, as

each market now represents just a part of a greater system.

Understanding liquidity risks arising from multimarket HFT trading activity is important

for policymakers, institutional investors, firms and virtually all market participants. Stronger

co-variations in aggregate European liquidity make propagation of liquidity shocks easier across

markets, increasing the risk of contagion and threatening the stability of global financial markets.

Negative liquidity shocks are of special concern during crisis periods, because they imply higher

3Note that correlated trading strategies of other traders, e.g., institutional investors, could also potentially
induce stronger commonality in liquidity across different markets. However, these traders are less likely to
engage in multimarket trading, which requires quick and simultaneous monitoring of several limit order books.
By contrast, HFTs heavily invest in multimarket monitoring technology: e.g., Van Kervel (2015) empirically
shows that executed trades of fast traders on one venue are followed by sizable cancellations on competing
venues.
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transaction costs and the inability to trade assets quickly without large impact on their prices.

The details of our research design and main findings are as follows. We start with

the analysis of home liquidity betas, estimated as the sensitivity of the stock’s liquidity to the

aggregate liquidity of the corresponding home market index (e.g., FTSE 100 for UK stocks) from

Chordia et al.’s (2000) model. We use 5-minute relative spreads as our benchmark measure of

liquidity. Consistent with prior studies of Huh (2011) and Boehmer and Shankar (2014), we

find that home liquidity betas significantly increase in the post-Chi-X period, suggesting that

correlated strategies of HFTs, trading between Chi-X and the home market, induce stronger

liquidity co-movements of stocks in the same country.

In the next step, we examine EU liquidity betas, by adding fluctuations in liquidity of the

FTSE Eurofirst 100, a pan-European index, to the model.4 Consistent with our first prediction,

EU liquidity betas significantly increase by almost 40%, relative to their mean level in the pre-

Chi-X period. We use Scandinavian stocks that are not part of Eurofirst 100 as our control

group, and in line with expectations, we do not find any evidence of significantly higher EU

liquidity betas for these stocks. After we control for liquidity co-movements with the aggregate

European market, an increase in home liquidity betas drops by almost half and is overall lower,

as compared to an increase in EU liquidity betas. For a group of major European countries,

including the UK, Germany and France, home liquidity betas actually drop in the post-Chi-X

period. Overall, our findings suggest that European-wide liquidity co-variations have become

stronger than co-variations within the home market following an increase in multimarket high-

frequency trading activity. Additionally, subperiod splits show that liquidity co-variations with

the aggregate European market are especially high in down markets, implying that multimarket

HFT activity makes European equity markets more susceptible to the transmission of liquidity

shocks during crisis periods.

We then test for cross-sectional differences in EU liquidity betas, which might arise due

to differences in the intensity of multimarket high-frequency trading in the post-Chi-X period.

We use two proxies to measure the intensity of HFT activity, the Chi-X market share and the

Multimarket Trading measure of Halling, Moulton, and Panayides (2013). We use the Chi-X

market share as our proxy for liquidity supplying HFT activity, based on empirical evidence

from Menkveld (2013). By contrast, the Multimarket Trading measure rather captures liquidity

demanding HFT activity. We observe a larger increase in EU liquidity betas for stocks with

larger Chi-X market shares, but not for stocks with higher measures of Multimarket Trading,

indicating that stronger liquidity co-movements within the network of European markets in

the post-Chi-X period are mostly driven by HFTs engaging in market making activity across

multiple venues.

We further conduct robustness checks of our main analyses with two daily liquidity

measures, the daily relative spread and the Amihud measure, because co-movements on the

daily basis might be of higher importance to institutional and retail investors. We find that

all our main results hold and are even stronger for the daily relative spread. We can therefore

conclude that stronger intraday liquidity co-movements in the post-Chi-X period also aggregate

4Note that we exclude all stocks that are traded in the corresponding home market from the pan-European
index to ensure that EU liquidity betas are not anyhow affected by the liquidity co-variations with the home
market.
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to the daily level.

Our paper contributes to the ongoing debate on potential systemic risks, generated by

high-frequency traders. Jain, Jain, and McInish (2016) use the introduction of a low-latency

platform Arrowhead on the Tokyo Stock Exchange as an instrument for an increase in high-

frequency trading, and find that correlated trading by HFTs may increase auto- and cross-

correlation in limit orders as well as Adrian and Brunnermeier’s (2011) measure of systemic risk

(CoVaR). In related papers, Huh (2011) and Boehmer and Shankar (2014) examine the impact

of algorithmic traders on the co-movement of liquidity and order flow separately for the US

and the Indian equity market. Our study differs in two respects. First, we provide empirical

evidence that HFT activity is likely to propagate liquidity shocks not only within stocks traded

on the same market, but also within the aggregate network of markets. Further, we conduct a

long-term study over a 10-year period, as opposed to the sample periods of less than one year

in previous studies.

Our paper further adds to the literature on commonality in liquidity (Chordia, Roll,

and Subrahmanyam 2000, Huberman and Halka 2001) and its sources (Coughenour and Saad

2004, Kamara, Lou, and Sadka 2008, Koch, Ruenzi, and Starks 2016). Karolyi, Lee, and van

Dijk (2012) is a pioneering cross-country study that analyzes commonality in returns, liquidity

and turnover in a sample of 40 developed and emerging countries. Importantly, their analysis

documents the existence of strong liquidity co-movements of stocks within their home markets

for all countries in their sample. Extending their results, we show that, following a rise in

multimarket HFT trading activity, liquidity of a stock also systematically co-varies with the

liquidity of the aggregate market network, and that these co-variations can even exceed its

co-variations with the home market.

Lastly, we extend the literature on multimarket trading by analyzing the implications

of multimarket high-frequency trading activity on potential liquidity risks. In contrast, the

main focus of previous studies is either examining determinants of multimarket trading activ-

ity (Pulatkonak and Sofianos 1999, Halling et al. 2008, Baruch, Karolyi, and Lemmon 2007,

Menkveld 2008) or studying its effects on liquidity levels through demand (Halling, Moulton,

and Panayides 2013)) and supply (Menkveld 2013, Van Kervel 2015, Lescourret and Moinas

2015)) channels.

3.2 Institutional Background and Identification Strategy

3.2.1 Introduction of Chi-X

Prior to the introduction of the Markets in Financial Instruments Directive (MiFID) in Novem-

ber 2007, trading of European equities was virtually consolidated on national stock exchanges,

with the majority of trades for British stocks executed on the London Stock Exchange (LSE),

German stocks on Deutsche Boerse and French stocks on Euronext Paris. The European Union

designed the MiFID to promote competition between exchanges by allowing entry of alternative

platforms, so-called multilateral trading facilities (MTFs). Whereas equities can only be listed

on national exchanges, MTFs provide a platform for trading these securities, bringing together

third-party buyers and sellers.
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The first and the largest of the European MTFs is Chi-X, introduced by Instinet six

months ahead of MiFID in April 2007. Similar to many national stock exchanges, it is orga-

nized as an electronic limit order book with a price-time priority rule. Two main competitive

advantages of Chi-X are its lower execution fees and faster speed of order processing, or low

latency.5 Chi-X operates a so-called “maker-taker” fee structure, charging liquidity demanders

0.30 bps and rebating liquidity providers with 0.20 bps. In contrast, national stock exchanges

charged trading fees over 0.50 bps for each side of a trade at the time Chi-X was introduced.6

Further, the Chi-X latency of 0.89 milliseconds was substantially lower than the latency of its

main competitors. At the time, LSE needed around 20 milliseconds and Euronext Paris around

75 milliseconds to process a round-trip transaction, which is 22 to 84 times longer than the

Chi-X processing time.7

Chi-X is also the first pan-European trading platform, enabling simultaneous trading

of all major European equities on a single venue. Figure 3.1 demonstrates how Chi-X serves

as a connection link for individual European markets on an example of LSE and Euronext

Paris. Importantly, the entry of Chi-X into European equity markets was staggered in several

phases. German (DAX30) and Dutch (AEX) large-cap index stocks first started trading on

its platform in April 2007. UK (FTSE100) and French (CAC40) stocks followed in July 2007

and October 2007, respectively. By the end of 2008, Chi-X expanded further into Belgian

(BEL20), Scandinavian (OMXS30, OMXH25, OMXC20 and OBX), Spanish (IBEX35) and

Italian (FTMIB) stocks. Figure 3.2 shows the timeline of Chi-X entrance into European equity

markets and Appendix A lists Chi-X introduction dates for each country in our sample.

[Insert Figures 3.1 and 3.2 approximately here]

Chi-X market shares were initially low, but had increased to levels above 10% for the UK,

France, Germany and the Netherlands by the end of 2008. By the beginning of 2010, they were

already above 20% for these countries and started crossing the 10%-threshold for later entrants,

such as Belgium, Sweden and Finland. Figure 3.3 and Table 3.1 present quarterly averages of

Chi-X market shares by country. In 2011, Chi-X was taken over by BATS, a competitor MTF,

resulting in its name change to BATS Chi-X Europe. However, the company still operates two

separate limit order books: BATS CXE (Chi-X) and BATS BXE (BATS), which mainly differ

in their fee structures.

[Insert Figure 3.3 and Table 3.1 approximately here]

By the end of 2014, Chi-X (BATS CXE) captured around 25% of trades for British,

French, German, Dutch, Belgian, Finnish and Swedish stocks, and more than 15% of trades

for remaining countries. Its market shares by far dominate the market shares of BATS and

Turquoise, another MTF who entered the European market in fall 2008. In 2014, the Turquoise

share was below 10% and the BATS BXE share below 5% for all major European stock indices.8

5There are many definitions for “latency”. In this paper latency is defined as the time needed by the exchange
trading engine to process a round-trip transaction.

6Even though their trading fees reduced over time, they remain substantially higher than 0.30 bps, charged
by Chi-X. For example, LSE currently charges 0.45 bps for the first 2.5 bn of orders executed.

7He, Jarnecic, and Liu (2015) provide a detailed overview of fee structures and latencies of European national
stock exchanges at the time of the introduction of Chi-X.

8Data on market fragmentation for all major European indices are provided by Fidessa on
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3.2.2 Identification Strategy

In our analysis, we use Chi-X entry as an instrument for an increase in multimarket high-

frequency trading activity. For our instrument to be valid, it should be positively correlated with

an increase in high-frequency trading. Indeed, several prior studies show that its reduced latency

and rebates on liquidity provision attract high-frequency traders, especially those pursuing

market making strategies. Jovanovic and Menkveld (2016) and Menkveld (2013) empirically

analyze the entry of one large HFT trading Dutch and Belgian index stocks both in Chi-X

and NYSE Euronext, the incumbent market. Specifically, Menkveld (2013) finds that around

80% of HFT trades are passive in both markets, i.e., it is essentially acting as a multimarket

liquidity provider. Importantly, he shows that the HFT takes part in 70-80% of all Chi-X trades

and almost 10% of all Euronext trades, which further supports the validity of our instrument.

Chi-X market shares jump above 10% only with the entry of this large HFT, several months

after the initial launch of Chi-X, and drop almost to zero on days when the HFT is absent from

the market. Based on this evidence, we use the quarter when the average Chi-X market share

for stocks in a country reaches the 10% threshold as the treatment quarter in our analysis.

He, Jarnecic, and Liu (2015) analyze determinants of Chi-X market shares for major

European, Japanese and Australian stock indices. Their results confirm that Chi-X market

shares are larger for stocks in countries in which the advantages to high-frequency traders are

greater when compared to corresponding national stock exchanges: relatively lower latency and

lower trading fees for liquidity providers result in higher Chi-X market shares for stocks in these

countries. Consistent with prior studies on HFT (Hendershott and Moulton 2011, Hasbrouck

and Saar 2013, Jovanovic and Menkveld (2016), Hagstromer and Norden 2013), they further

show that the introduction of Chi-X leads to a significant reduction in bid-ask spreads, thus

improving overall market liquidity.

Importantly, the staggered introduction of Chi-X allows us to clearly identify the causal

effect of multimarket HFT activity on systematic stock liquidity co-movements. Two valid

concerns could be that our results are driven by general time trends in liquidity commonality,

or are induced by an ongoing financial crisis. Arguably, the variation in Chi-X entry times

across 11 countries in our sample reduces the influence of these concurrent effects and alleviates

the above concerns. Our setup is similar to Hendershott, Jones, and Menkveld (2011), who use

the staggered introduction of NYSE Autoquote as an instrument for an exogenous increase in

algorithmic trading. Specifically, they use variation in the Autoquote phase-in schedule across

NYSE stocks to identify the causal effect of algorithmic trading by comparing the liquidity of

autoquoted stocks to the not yet autoquoted stocks in their sample. In our setup, we compare

systematic liquidity co-movements for stocks already traded on Chi-X to those that have not

started their trading yet, which essentially corresponds to difference-in-differences methodology.

Lastly, for the staggered introduction of Chi-X to be a valid instrument, it must satisfy

the exclusion restriction, i.e., it should not be correlated with the error term in the explanatory

equation. In other words, Chi-X entry dates must not be related to contemporaneous changes

in systematic stock liquidity co-movements other than through the effect of HFT activity. We

argue that such correlation with the error term is rather unlikely, since it would mean that Chi-

http://fragmentation.fidessa.com/europe.
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X chooses its entry dates strategically and is able to accurately predict an increase in systematic

liquidity co-movements across different countries. Further, we do not find any significant devia-

tions of systematic stock liquidity co-movements from their unconditional means in the quarter

preceding the introduction of Chi-X, which provides additional support for the exogeneity of

our instrument.

3.3 Data and Sample Construction

3.3.1 Sample Construction

We download the composition of main European stock indices over the period January 2004 -

December 2014 from the Thomson Reuters Tick History (TRTH) database. Countries covered in

this paper are Belgium, Denmark, Finland, France, Germany, Italy, the Netherlands, Norway,

Spain, Sweden, and the United Kingdom. Table 3.2 lists the corresponding index for each

country. Our initial sample consists of all stocks that constitute these indices during our sample

period. If the composition of an index changes, we keep both old and new index constituents

for the entire sample period to keep the number of firms in our sample constant.

We concentrate our analysis on the main European stock indices for two reasons. First, at

the time of the introduction of Chi-X to each country, it is possible to trade only this country’s

main index constituents, with mid-cap and other stocks starting their trading only later on

the Chi-X platform. Second, constituents of main indices represent the largest and the most

liquid stocks in each country, which should encourage the active participation of high-frequency

traders. Panel A of Table 3.2 reports the number of distinct firms and Panel B the number of

firm-month observations for each country.

[Insert Table 3.2 approximately here]

The initial sample consists of 539 firms. In the first step, we filter out Reuters Instrument

Codes (RICs) that appear to be erroneously reported as an index constituent by TRTH (Filter

1).9 Appendix B provides details of our data cleaning procedure. We further require the stock

price to be greater than 2 at the end of the previous trading day for UK stocks, and greater

than 2 for other European stocks (Filter 2).10 Lastly, we require the stock to be traded for

at least 1,000 different 5-minute intervals in a given month. Excluding the stocks that do not

satisfy the criteria above leaves 445 firms and 50,278 firm-months in our final sample.

3.3.2 Measuring Liquidity

Given that high frequency traders have relatively short trading horizons, we opt for the 5-minute

quoted relative spread as the benchmark measure in our analysis.11 Formally, we calculate the

quoted relative spread, qspread, as

9RIC is the main stock identifier in TRTH, similar to the ticker in the NYSE TAQ database.
10This requirement is standard in previous studies with US data, for example, Amihud (2002), Acharya and

Pedersen (2005), Kamara, Lou, and Sadka (2008) and Ben-Raphael, Kadan, and Wohl (2015).
11Prior studies on algorithmic trading also sample data on intervals of comparable length: Huh (2011) uses

5-minute intervals and Boehmer and Shankar (2014) 15-minute intervals. Spreads with higher frequency would
include too much microstructure noise and is thus not appropriate for the purposes of our analysis. We also
repeat our analysis with spreads, calculated over 10-minute intervals, but all results remain qualitatively similar.
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qspreadi,t =
Ai,t−Bi,t

(Ai,t+Bi,t)/2
,

where Ai,t is the ask price and Bi,t the bid price prevalent for stock i on its primary

exchange at the end of the 5-minute interval t. We delete observations with negative spreads

or spreads exceeding 20%, and winsorize the upper and lower 1% of the qspread distribution to

avoid outliers.

Following Chordia, Roll, and Subrahmanyam (2000), we calculate first differences of the

relative quoted spread, 4qspread, to capture fluctuations in intraday liquidity.12 We further

standardize 4qspread by the time-of-the-day mean and standard deviation to account for well-

documented intraday patterns of bid-ask spreads.13 Specifically, for stock i and interval t,

4qspreadi,t is standardized by the monthly mean and standard deviation of4qspread estimated

for stock i in the corresponding hour h across all days.

Arguably, liquidity co-variations on a daily basis might be more important for lower-

frequency traders, such as institutional and retail investors. With short trading horizons of

high frequency traders, it is ex ante not clear whether stronger intraday liquidity co-variations

also aggregate to the daily level. Therefore, we also present results for daily closing bid-ask

spreads and the Amihud measure of liquidity in our section with robustness checks.14 We

calculate the Amihud (2002) measure, illiq, for stock i on day d as the ratio of the absolute

daily stock return, |Ri,d|, to the daily euro (pound) volume traded (in millions), DV oli,d, on

the stock’s primary exchange:

illiqi,d =
|Ri,d|
DV oli,d

.

Following Amihud (2002), we winsorize the upper and lower 1% of the illiq distribution

to avoid outliers.15 Importantly, we find even stronger liquidity co-variations on the daily level

in the post-Chi-X period, which suggests that intraday liquidity co-variations indeed aggregate

to the daily level.

3.3.3 Summary statistics

Table 3.3 presents summary statistics of market capitalization (Panel A) and the relative quoted

spread (Panel B) across all sample stocks separately for each country. Our main data source

for prices, volume traded and bid-ask spreads is TRTH. Data on market capitalization, firm

size (in millions of euros), are from Datastream. Appendix C provides a detailed description of

variable definitions.

[Insert Table 3.3 approximately here]

12Taking first differences also helps us to overcome a potential econometric problem of nonstationarity of
liquidity levels.

13McInish and Wood (1992) are the first to document a reverse J-shaped pattern in intraday spreads, which
might falsely lead to excess co-movements in spreads at the beginning and at the end of the trading day. To
avoid this bias, Huh (2011) and Boehmer and Shankar (2014) also standardize intraday spreads with their time-
of-the-day mean and standard deviation.

14Results with equally-weighted average spreads, calculated over all 5-minute intervals during the day, are
qualitatively similar.

15As in other studies, e.g., Koch, Ruenzi, and Starks (2016), we scale illiq by the factor 106 to obtain meaningful
numbers (our daily euro/pound volume traded is in millions).
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As expected, all our sample stocks are generally large, with the average market capital-

ization of 15.8 billion. Market capitalization varies across different countries, with our smallest

stocks located in Belgium and Norway (4.7 and 5.8 billion, respectively) and our largest stocks

in Germany and France (25.4 and 28.8 billion, correspondingly).

The average relative spread constitutes 0.22% in the total sample. German and French

stocks are the most liquid, with a spread value of 0.10-0.11%, around half as large as the sample

average. They are followed by Dutch, UK and Scandinavian stocks, with their spread values in

the range of 0.14% to 0.24%. Our least liquid stocks are located in Italy, Spain and Norway,

with their spread values varying between 0.29% and 0.42%. Despite variation in liquidity levels

across different countries, all our sample stocks are the largest and the most liquid stocks in

their country and all of them represent constituents of main European equity indices.

3.4 HFT Activity and Liquidity Co-variations

Chaboud et al. (2014) and Benos et al. (2015) document that trading strategies of algo-

and high-frequency traders are correlated across stocks, which can lead to correlated buy or

sell pressure, and, therefore, to excess co-movements in stocks’ liquidity. In this section, we

empirically test whether HFTs induce stronger liquidity commonality across stocks traded in

different markets, using the staggered entrance of Chi-X in Europe as our instrument for an

exogenous increase in HFT activity. Based on the predictions of Lescourret and Moinas (2015),

multimarket trading of HFTs between Chi-X and their home market should make the liquidity of

the two markets interconnected, and thus facilitate cross-market liquidity spillovers. To start, we

examine liquidity co-movements with the aggregate liquidity of the home market (Section 4.1).

If HFTs induce stronger commonality in liquidity, we expect these co-movements to increase

after the introduction of Chi-X trading in each country. We next turn to the analysis of liquidity

co-movements with the aggregate liquidity of the European market, additionally controlling for

fluctuations in home market liquidity (Section 4.2). Since Chi-X enables simultaneous trading of

all major European equities on a single trading platform, previously not possible at a comparable

speed, we expect the liquidity of stocks to co-vary more strongly with the aggregate European

liquidity after the introduction of Chi-X. We further test whether European-wide commonality

in liquidity is stronger in down markets and for stocks with higher intensity of HFT trading in

the post-Chi-X period (Section 4.3).

3.4.1 Liquidity Co-variations in the Home Market: Pre- vs Post- Chi-X

Similar to Koch, Ruenzi, and Starks (2016), we conduct our analyses of liquidity co-variations

in two steps. In the first step, we estimate the stock’s liquidity co-variations with the aggregate

liquidity of its home market. In the second step, we test whether these liquidity co-variations

are stronger after the introduction of Chi-X trading in each country.

Estimating liquidity co-variations. For each stock and each month, we estimate

the stock’s liquidity co-variations with the aggregate liquidity of its home market from the

market model of liquidity, employed by Chordia, Roll, and Subrahmanyam (2000). Specifically,

we run time series regressions of ∆qspreadi,t,d on the change in the home market illiquidity,
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∆qspreadHome,t,d, for all 5-minute intervals t and all trading days d in a given month:

∆qspreadi,t,d = α+ βi,Home∆qspreadHome,t,d + εi,t,d. (3.1)

As in Kamara, Lou, and Sadka (2008) and Koch, Ruenzi, and Starks (2016), we calculate

∆qspreadHome,t,d as the cross-sectional value-weighted average of ∆qspreadj,t,d for all stocks

in the home country index (e.g., FTSE100 for UK stocks) with j 6= i.16 Our main coefficient

of interest is βi,Home, which captures the sensitivity of the stock’s liquidity to the aggregate

home market liquidity, or its systematic liquidity co-movement with the home market. In the

following, we refer to βi,Home as home liquidity beta.

[Insert Figure 3.4 approximately here]

Figure 3.4 displays three-month moving averages of home liquidity betas, aggregated

across all stocks in our sample. It depicts a significant overall increase in systematic liquidity

co-movements of stocks over time, starting with the average liquidity beta of around 0.13 at the

beginning of 2005, rising up first to 0.28 by 2009 and further to 0.47 by the end of 2014. These

general time trends in liquidity betas can potentially be explained by the financial crisis of 2008-

2009, turmoil on European financial markets in 2010-2011 due to the debt crisis in Greece, and

subsequent market stabilization in 2012. Even though all these factors undoubtedly contribute

to variation in liquidity betas, our aim is to separate the effect of multimarket HFT activity

from other concurrent events. To this end, we use the staggered entry of Chi-X into European

financial markets as our instrument for an exogenous increase in HFT activity, and compare

home liquidity betas in the pre- and post-Chi-X periods in the next step.

Home liquidity co-variations: Pre- vs Post-Chi-X. We first start with the uni-

variate analysis of the pre- and post-Chi-X home liquidity betas. For each country, Table 3.4

reports the averages of liquidity betas across all stocks and months in our sample, separately

in the pre- and post-Chi-X periods. We further report the difference in liquidity betas between

the two periods, Diff , and test whether it is significantly different from zero.

[Insert Table 3.4 approximately here]

Our benchmark definition of the post-Chi-X period is based on the month, when the

average Chi-X market share for a given country index reaches 10%. Our reasons for choosing

the 10% cutoff as our benchmark are twofold. First, we would like to ensure that there is a

substantial amount of trading in the index constituents on the Chi-X platform. Indeed, Table

3.1 shows that when Chi-X is initially introduced in a country, its market share is usually

at most 1%. It takes around one year for most of the countries to reach a market share of

10%, with Norway, Denmark and Spain taking exceptionally long - around three years after the

initial introduction of the Chi-X platform. Our second reason for choosing the 10% cutoff point

is based on empirical evidence from Menkveld (2013), who finds that the Chi-X market share

for Dutch stocks jumps above 10% only with the entry of a multimarket high-frequency trader.

We provide further robustness checks of our definition of the post-Chi-X period in Section 5.

16We require at least 70% of all stocks in the corresponding index to be traded in a given interval t, which
ensures that the composition of the home market index does not fluctuate too much.

55



From Table 3.4, we observe that the average post-Chi-X home liquidity beta increases by

0.27, from 0.19 to 0.46, and this increase is statistically significant at the 1% level. This finding

provides the first empirical evidence consistent with our hypothesis that HFT activity induces

stronger liquidity co-movements in the home market. Importantly, we observe a significant

increase in home liquidity betas for all countries in our sample. Home liquidity betas in the

UK, Germany and France increase by 0.28-0.30. The highest increase of 0.38 is observed for

Swedish stocks and the lowest increase of 0.07-0.08 for Norwegian and Danish stocks, which can

potentially be explained by the prolonged time period that Norway and Denmark take before

their Chi-X market shares reach a significant level of 10%.

In the next step, we test our prediction in the multivariate setup, controlling for stock

characteristics, time- and country-fixed effects. Specifically, we run a panel OLS regression of

βHome, estimated for each stock i in month m, on the dummy variable, Post, which equals

1 for all months after the country’s Chi-X market share reaches 10%, and is zero otherwise.

The vector of standardized control variables includes the log of market capitalization at the

end of the previous month, ln(firmsize)i,m−1; the average 5-minute quoted spread, calculated

over the previous month, qspreadi,m−1; the year-fixed, Y FE, and country-fixed effects, CFE.17

We allow standard errors to cluster at the firm level in order to account for cross-sectional

dependence. Our specification is as follows:

βHome,i,m = α+γ1Posti,m+γ2ln(firmsize)i,m−1+γ3qspreadi,m−1+Y FE+CFE+εi,m. (3.2)

The inclusion of year-fixed effects eliminates shocks to the systematic liquidity co-

movements that are common to all countries, whereas country-fixed effects control for general

levels of home liquidity betas within each country. Therefore, given the year- and country-fixed

effects, our identification stems from cross-country variation in the Post dummy: we compare

systematic liquidity co-movements for index stocks that have already started their trading on

the Chi-X platform (and have reached a 10% market share) to those that are not traded yet,

and thus represent the control group in the current month. For unrelated shocks to affect our

results, they would have to be correlated with Chi-X entry dates across all countries in our

sample, which, in our view, is rather unlikely.18

[Insert Table 3.5 approximately here]

Model (1) of Table 3.5 reports results for the total sample. Consistent with our expec-

tations, home liquidity betas significantly increase on average by 0.07 after the introduction of

Chi-X, which represents a 37% increase relative to their mean of 0.19 in the pre-Chi-X period.

This 37% increase is both statistically and economically significant. Our control variables also

17These control variables are standard in previous studies on commonality in liquidity (see, e.g., Koch, Ruenzi,
and Starks 2016).

18Our specification is similar to that used by Christensen, Hail, and Leuz (2011) to identify the causal effects of
the staggered introduction of Market Abuse and Transparency Directives on liquidity levels in European countries.
Our setup is also close to Hendershott, Jones, and Menkveld (2011), who use the staggered introduction of NYSE
Autoquote as an instrument for an exogenous increase in algorithmic trading.
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display expected signs: larger stocks and stocks that are more liquid exhibit in general stronger

systematic co-movements with aggregate home market liquidity, consistent with prior findings

of Kamara, Lou, and Sadka (2008) and Koch, Ruenzi, and Starks (2016).

Models (2) to (4) present results for subsample splits across different countries. To

conserve space, we pool 11 individual countries into three country groups, based on their Chi-X

entry times. Model (2) reports our findings for the first group of major European countries,

the indices of which started trading on Chi-X soon after its entry in 2007: the UK, France,

Germany, the Netherlands and Belgium.19 Surprisingly, we do not observe any significant

increases in home liquidity betas for this country group, after we control for size, liquidity, year-

and country-fixed effects. In contrast, we find a significant increase of 0.05 in home liquidity

betas of four Scandinavian countries, which started trading on Chi-X in the first two quarters

of 2008 (our second country group). Given their average pre-Chi-X home liquidity betas of

0.04-0.06, an increase of 0.05 suggests that liquidity co-movements with the home market have

doubled for Scandinavian stocks. Model (4) shows an even more significant increase of 0.14 in

home liquidity betas for our third group, consisting of Italy and Spain, which start trading on

Chi-X in the last two quarters of 2008.

We further test whether liquidity co-movements with the home market are stronger in

up or down markets in the post-Chi-X period. To this end, we split the time series of each

country’s index return into terciles, and classify months in the top tercile of index return as up

markets and those in the bottom tercile as down markets. Models (5) and (6) show significant

increases in post-Chi-X home liquidity betas, both for down and up markets, correspondingly.

Interestingly, increases in liquidity co-movements in the up markets of 0.11 are stronger, when

compared to the increases in the down markets of 0.03. Overall, these findings suggest that

HFTs can transmit both negative and positive liquidity shocks in home markets. However, they

seem to be more active in the up markets, as liquidity levels generally improve with many noise

traders entering the rising market.

3.4.2 European-wide Liquidity Co-variations: Pre- vs Post-Chi-X

Estimating liquidity co-variations in the European market. To examine liquidity co-

movements with the aggregate European market, we add fluctuations in the European market

illiquidity, ∆qspreadEU,t,d, to equation (1). We calculate ∆qspreadEU,t,d as the cross-sectional

value-weighted average of ∆qspreadk,t,d for all FTSE Eurofirst 100 index constituents, excluding

stock i and all stocks j that belong to the home market index, k 6= i and k 6= j:

∆qspreadi,t,d,= α+ βi,HomeExclEU∆qspreadHome,t,d + βi,EU∆qspreadEU,t,d + εi,t,d. (3.3)

βi,EU now captures the sensitivity of the stock’s liquidity to the aggregate European

liquidity, after controlling for its liquidity co-movements with the home market, βi,HomeExclEU .

19Note that Belgian stocks started trading on Chi-X only later, in mid-2008. However, we still choose to
include them in the first group, since its national exchange, Euronext Brussels, is a part of the Euronext trading
platform, also used in France (Euronext Paris) and the Netherlands (Euronext Amsterdam). All results remain
robust if we exclude Belgium from the first country group.
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We refer to βi,EU as EU liquidity beta.

We choose FTSE Eurofirst 100 as our proxy for the aggregate European market, because

it is a pan-European index, which consists of the 60 largest European companies ranked by

market capitalization, and 40 additional companies chosen on the basis of their size and sector

representation by the FTSE Group. Table 3.6 presents the composition of FTSE Eurofirst 100

during our sample period.

[Insert Table 3.6 approximately here]

We aggregate all statistics on the country level and report country codes in the first

column. The second column shows the number of distinct companies in each country that

represent a part of the index. As with home country indices, if the composition of Eurofirst 100

changes, we keep both old and new index constituents for the entire sample period to avoid any

biases, such that the total number of companies in the index increases to 127 over 2004-2014.

We report the average daily number of shares (in thousands) and euro volume (in millions) of

index constituents traded in each country in the third and fourth columns, respectively. The last

column displays the daily euro volume of index constituents for each country as a percentage

of the total daily Eurofirst volume.20

Around one third of total Eurofirst volume can be attributed to UK stocks, another 20%

to French stocks and around 15% to German stocks. Italy and Spain also have quite consid-

erable shares, with around 10% each. The shares of the remaining countries, the Netherlands,

Belgium and Finland, are either close to or below 5%. Note that, apart from 3 Finnish stocks,

Scandinavian countries are not a part of Eurofirst 100. We exploit this feature in our future

tests, using Scandinavian countries as our control group. Indeed, we would not expect the

liquidity of Scandinavian stocks to co-vary with Eurofirst 100, if these stocks are not a part of

the index. Further, we repeat all our analyses with STOXX ALL EUROPE 100, an alternative

pan-European index, and find that our results remain robust (not tabulated).

[Insert Figure 3.5 approximately here]

Figure 3.5 displays the development of EU and home liquidity betas, estimated from

equation (3), over our sample period. The solid line shows the three-month moving average

EU liquidity betas, βEU , and the dashed line the corresponding values for home liquidity betas,

βHomeExclEU , over 2005-2014. Importantly, both EU and home liquidity betas increase signifi-

cantly over the decade. However, EU liquidity betas start dominating home liquidity betas in

early 2008 and reach their peak level of 0.38 in 2011. By contrast, the level of home liquidity

betas practically never exceeds 0.30. These findings suggest that liquidity co-variations with

the aggregate European market have become more important in recent years, as compared to

the co-variations with the home market.

European-wide liquidity co-variations: Pre- vs Post-Chi-X. To examine the

effect of multimarket HFT activity on European-wide liquidity co-variations, we first compute

the difference between average pre- and post-Chi-X EU liquidity betas. Our univariate tests

20In this table, we convert the pound volume for UK stocks into the equivalent euro volume, using daily
EUR/GBP exchange rate.
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show that the average post-Chi-X EU liquidity betas increase by 0.18, from 0.15 to 0.33, and

this increase is statistically significant at the 1% level. We do not report these results, but they

are available upon request.

In the next step, we re-estimate our specification from equation (2) with βi,EU as the

dependent variable, again controlling for firm size, average relative spread, year- and country-

fixed effects. Panel A of Table 3.7 reports the results. It has the same layout as Table 3.5,

presenting results first for the total sample, followed by subsample splits for three country

groups and for subperiods of down and up markets.

[Insert Table 3.7 approximately here]

Consistent with univariate results, post-Chi-X EU liquidity betas significantly increase

by 0.056 for our total sample, which represents a 37% increase relative to their mean level of 0.15

in the pre-Chi-X period. Importantly, this increase is driven mainly by stocks in our first (GB,

FR, DE, NL, BE) and third (IT, ES) country groups. By contrast, Scandinavian countries do

not display any significant increase in their liquidity co-variations with the aggregate European

market in the post Chi-X period. These findings are consistent with our expectations, because

stocks from the first and third groups contribute to a considerable amount of the total Eurofirst

volume traded, whereas Scandinavian countries are not a part of this index and represent a

control group in our setup.

Panel B shows the corresponding results for home liquidity betas, estimated after ad-

ditionally controlling for EU liquidity betas from equation (3), βi,HomeExclEU . For brevity, we

report coefficients only on our main variable of interest, Post, but all regressions also include

controls, year- and country-fixed effects. The coefficient on Post for home liquidity betas drops

by more than half, from 0.07 to 0.033, after controlling for EU liquidity betas. This result

suggests that liquidity co-variations with the home market become actually less important in

the post-Chi-X period, after we control for liquidity co-movements with the aggregate European

market. For our first country group (GB, FR, DE, NL, BE), liquidity co-variations with the

home market even drop significantly in the post-Chi-X period (Model 2). The insignificant

coefficient on Post from Table 3.5 for these countries can thus be decomposed into significant

increase in EU liquidity betas and a simultaneous decrease in home liquidity betas. For Scan-

dinavian countries, representing our control group, home liquidity betas are still significantly

higher in the post-Chi-X period, consistent with our previous results from Table 3.5. Interest-

ingly, for Italy and Spain, home liquidity betas also increase in the post-Chi-X period, which

suggests that both EU and home liquidity co-variations become stronger for these countries in

recent years.

The last two columns of both panels present results for subperiods of down and up

markets, correspondingly. EU liquidity betas are significantly higher both in down and up

markets in the post-Chi-X period, with a higher coefficient of 0.071 for down markets. In

contrast, home liquidity betas increase significantly only in up markets. These findings suggest

that with a rise in multimarket HFT activity European-wide liquidity co-variations dominate

co-variations with the home market during crisis periods. We observe similar results in Figure

3.5. Consistent with our multivariate analysis, EU liquidity betas increase during the financial

crisis of 2008-2009, whereas home liquidity betas simultaneously drop over this period.
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Overall, our findings suggest that European-wide liquidity co-variations have become

more important with an increase of multimarket high-frequency trading, which essentially con-

nects different markets in a single network system. Importantly, they are significantly higher

than co-variations with home market liquidity during downturn periods. Stronger European-

wide liquidity co-variations in down markets should be of great concern for investors and regula-

tors, since they imply that equity markets are now more susceptible to transmissions of negative

liquidity shocks in periods when such shocks are more likely to occur.

3.4.3 Intensity of HFT Trading Activity and Liquidity Co-variations

Our analyses so far suggest that an exogenous increase in multimarket HFT activity leads to

stronger liquidity co-movements across European markets. In this section, we conduct tests to

examine heterogeneity in the treatment effects that arises due to differences in the intensity

of HFT activity for stocks traded on the Chi-X platform. Specifically, we expect sensitivity

to the aggregate European liquidity to be higher for stocks that are traded more intensely

by multimarket high-frequency traders. To test for cross-sectional differences in liquidity co-

movements, we split our sample by the median measure of HFT activity and introduce two

dummy variables: High HFT Activity, equal to 1 for stocks with above median intensity of HFT

activity, and Low HFT Activity, equal to 1 for those with below median intensity level. We then

interact both of these dummies with our Post dummy and estimate the following specification:

βEU,i,m = α+ γ1HighHFT Activityi,m · Posti,m + γ2LowHFT Activityi,m · Posti,m +

+ γ3ln(firmsize)i,m−1 + γ4qspreadi,m−1 + Y FE + CFE + εi,m. (3.4)

If our hypothesis holds, we expect γ1 to be higher than γ2, which would suggest that

EU liquidity betas exhibit larger increases for stocks that are traded more intensely by HFTs

after Chi-X introduction. We use the same set of control variables as in our specification (2),

and continue to allow for clustering of standard errors at the firm level.

We employ two proxies to measure the intensity of HFT activity: Chi-X market share

and the Multimarket Trading measure, proposed by Halling, Moulton, and Panayides (2013).

We use the average monthly Chi-X market share as our proxy for liquidity supplying HFT

activity, based on empirical evidence from Menkveld (2013): in his sample, around 70-80% of

all Chi-X trades can be attributed to one large HFT that engages in market making both in

the home market and on Chi-X. Moreover, Chi-X market shares jump to double-digit numbers

with the HFT entry and drop almost to zero when it is absent from the market. Therefore,

larger Chi-X market shares should correspond to a more intense market-making HFT activity

in a stock.

Our second measure, Multimarket Trading, captures the correlation of unexpected trad-

ing volume between Chi-X and the home market, which can be attributed to liquidity demand-

ing HFTs that engage in cross-market arbitrage strategies. Following Halling, Moulton, and

Panayides (2013), we estimate it for each stock and month from the following VAR model:
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4V olHomei,t = αHomei + γHomei 4V olHomei,t−1 + βChi−Xi 4V olChi−Xi,t−1 + δireti,t + εHomei,t (3.5)

4V olChi−Xi,t = αChi−Xi + γChi−Xi 4V olChi−Xi,t−1 + βHomei 4V olHomei,t−1 + δireti,t + εChi−Xi,t ,

where 4V oli,t is the change in the trading volume, calculated as the logarithm of the

ratio of interval t to interval t − 1 euro (pound) trading volume.21 We also control for the

firm’s stock return in the home market, ret, to account for unexpected volume that might

be related to trading on an information signal. Multimarket Trading for stock i in month m

is calculated as the contemporaneous correlation between the unexpected trading volume in

the home market, εHomei,t , and on the Chi-X platform, εChi−Xi,t . The higher the correlation in

trading volume shocks between the two markets, the more intensive is the multimarket trading

of this stock. Since trading across multiple markets requires costly technological investment

and continuous monitoring, it is plausible to assume that multimarket trading between Chi-X

and the home market is to a large extent driven by liquidity demanding high-frequency traders.

[Insert Table 3.8 approximately here]

Table 3.8 reports annual averages of the Multimarket Trading measure for each country

since the introduction of Chi-X in 2007. On average, the correlation in unexpected trading

volumes between Chi-X and the home market increases from 0.34 in 2007 to 0.68 in 2010,

and continues to stay at this relatively high level until the end of our sample period. This

considerable increase in the intensity of multimarket trading is also consistent with the rise in

high-frequency trading over recent years.

We report our findings on the cross-sectional differences in liquidity co-movements in

Table 3.9. The first three models use Chi-X market share and the last three models Multimarket

Trading as our measure of HFT activity. For each of the two measures, we first present results

for the total sample, followed by sample splits for down and up markets.

[Insert Table 3.9 approximately here]

Interestingly, the coefficients on the interactions of bothHighHFT Activity and LowHFT Activity

with Post, γ1 and γ2, are positive and significant for both measures of HFT activity, suggesting

that liquidity co-movements with the European market significantly increase for all our sample

stocks in the post-Chi-X period. Consistent with our expectations, we observe a larger increase

for stocks with a more intense HFT market making activity, captured by a higher γ1 coefficient

for Chi-X market share (Model 1). In contrast, we do not observe any differences between

stocks with high and low level of Multimarket Trading (Model 4). These results indicate that

stronger liquidity co-movements with the aggregate European market after the introduction of

Chi-X are mostly driven by market making activity of high-frequency traders across multiple

venues.

Next, we split our total sample into subperiods of down and up markets, using the same

definition as in the previous section. For Chi-X market share, we observe that γ1 continues

21Similar to Halling, Moulton, and Panayides (2013), we use log-changes in trading volume to ensure station-
arity of this variable.

61



to be higher than γ2 in down markets, whereas they have the same value in up markets. For

Multimarket Trading, we do not find any differences for down markets, and γ2 is even higher

than γ1 for up markets. These results are consistent with our findings for the total sample

and imply that stronger European-wide liquidity co-variations in down markets arise due to

correlated fluctuations in inventory portfolios of market making HFTs.

3.5 Robustness checks

Daily liquidity measures. As our first robustness check, we repeat our analyses from Tables

3.5 and 3.7 with two daily liquidity measures: the daily relative spread and the Amihud measure,

illiq.22 Ex ante, it is not clear whether intraday liquidity co-variations also aggregate to the daily

level.23 However, daily liquidity co-variations might be of higher importance for institutional

and retail investors, because they have longer trading horizons than high-frequency traders.

Since there is now only one observation per day for each liquidity measure, we can no

longer estimate liquidity betas on the monthly basis and therefore re-estimate equations (1) and

(3) to obtain βHome, βEU and βHomeExclEU for each stock and each quarter. Afterwards, we

re-estimate our specification from equation (2) with each of the three betas as the dependent

variable. Post now takes value of 1 starting in the quarter when the country’s Chi-X market

share reaches 10%, and is zero otherwise. We also include firm size and average liquidity over

the previous quarter as control variables. Panel A of Table 3.10 presents results. To conserve

space, we only report the coefficient on Post for each specification. The first three columns

present results for the daily relative spread and the last three columns for the Amihud measure.

[Insert Table 3.10 approximately here]

For daily relative spreads, we observe an even stronger increase of 0.18 in EU liquidity

betas after the introduction of Chi-X (Model 1). Consistent with previous findings, home

liquidity betas are either insignificant (βHome) or even become negative, after controlling for

European-wide liquidity co-variations (βHomeExclEU ). Models 2 and 3 present the corresponding

results for subperiods of down and up markets. As before, we observe the highest increases in

EU liquidity betas in down markets, whereas they drop insignificantly in the periods of market

booms. The findings for the Amihud measure are similar, with the economic significance being

comparable to the intraday spreads. Overall, we find stronger European-wide liquidity co-

movements for daily liquidity measures in the post-Chi-X period and thus conclude that stronger

intraday co-movements also aggregate to the daily level.

Assessing benchmark treatment dates. In the next step, we conduct placebo tests

to assess whether our treatment dates, based on the month when the average Chi-X market share

for a given country index reaches 10%, provide reasonably sharp identification with respect to

changes in systematic liquidity co-movements. In particular, we randomly assign our treatment

dates between the first month of 2004 and the last month of 2014. Using 5,000 replications,

22Please refer to Section 3.3.2 for detailed definitions of both measures.
23For example, on a day with a situation similar to the Flash Crash, with large price declines across multiple

stocks, followed by subsequent price reversals, their daily stock returns, and thus the Amihud (2002) measures,
would still be close to zero, leading to potential underestimation of their liquidity co-variations during that day.
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we repeat our analyses from Tables 3.5 and 3.7 with 5-minute spreads and summarize the

distributions of the coefficients and t-statistics on Post in Panel B of Table 3.10. We report the

average, 5th and 95th percentiles across the 5,000 replications. We also report the percentiles

of our actual estimates and t-statistics in the last row.

As expected, our average coefficients from the placebo regressions are close to zero for

all specifications, with the 95th percentile not exceeding 0.01. Our actual estimates in the

range of 0.03-0.07 fall within the 99th percentile of the distribution for all three liquidity betas,

suggesting that they are significantly different from the placebo average. These results are also

confirmed by comparing the actual t-statistics to its distribution from the placebo regressions

in the lower part of the panel.

3.6 Conclusions

This paper examines the effects of multimarket HFT activity on systematic liquidity co-movements

within a network of European markets. We use the staggered introduction of an alternative

trading platform, Chi-X, in 11 European equity markets as our instrument for an exogenous

increase in multimarket HFT activity. Our empirical identification strategy relies on the cross-

country variation in Chi-X entry dates, which should alleviate potential concerns about general

trends in liquidity commonality or concurrent, but unrelated, economic shocks. Importantly,

Chi-X enables trading of all major European equities on a single trading platform, which was

not previously possible at a comparable speed. Further, multimarket trading by HFTs between

Chi-X and national stock exchanges connects individual markets in a single network, which

should facilitate cross-market liquidity spillovers and induce stronger European-wide liquidity

co-movements.

Consistent with our predictions, we find that liquidity co-movements within the aggregate

European market significantly increase after the introduction of Chi-X in a given country and

are even higher than liquidity co-movements within the corresponding home market. We further

show that European-wide liquidity co-movements are stronger in down markets and for stocks

with a higher intensity of HFT market making activity in the post-Chi-X period. Overall,

our findings are consistent with the notion that multimarket HFT activity induces stronger

network-wide liquidity co-movements, thus making propagation of liquidity shocks easier across

different markets.

Empirical evidence in our paper suggests that market participants and policymakers

currently underestimate potential liquidity risks, generated by HFTs. Stronger network-wide

liquidity co-movements, especially during crisis periods, imply that equity markets are now

more susceptible to negative liquidity shocks, exactly when such shocks are more likely to

occur. Raising awareness of these risks should help institutional investors to manage their

liquidity risks better and regulators to develop better policies aimed at the reduction of such

risks on financial markets.
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3.7 Appendix A: Chi-X Inclusion Date

This table reports the date of Chi-X market entry for each country in our sample. We use the

two letter country code to represent each country.

Country Name Country Code Chi-X Inclusion Date

Germany DE 30/03/2007

Netherlands NL 30/03/2007

United Kingdom GB 29/06/2007

France FR 28/09/2007

Sweden SE 14/03/2008

Finland FI 04/04/2008

Norway NO 27/06/2008

Denmark DK 27/06/2008

Belgium BE 04/07/2008

Italy IT 13/10/2008

Spain ES 19/12/2008
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3.8 Appendix B: Thomson Reuters Tick History (TRTH) Data

Filtering

In the TRTH database, RIC is the main company identifier, similar to the ticker in the NYSE

TAQ database. In this appendix, we provide details of our initial TRTH data cleaning procedure

for filtering out RICs. First, we drop duplicate RICs, with the first character equal to 0. Second,

we retain only RICs with Type code equal to 113 or 256 to discard any non-equity assets. Type

113 means that the asset is equity, and the corresponding RIC is the company’s current RIC

in use. Type 256 means the asset is equity, but the company is using a different RIC now.

Third, we drop RICs that do not end with “.L” (“.DE”, “.PA”, “.AS”, “ .BR”, “.HE”, “.ST”,

“.OL”, “.CO”, “.MI” and “.MC”) for UK (German, French, Dutch, Belgian, Finnish, Swedish,

Norwegian, Danish, Italian and Spanish) stocks.

For stocks that change RICs during our sample period, we use the following procedure

to merge new RICs with old RICs. If the stock’s NewRICSymbol is empty, this means that

the corresponding RIC is the company’s most recent identifier (new RIC). In this case, we use

the corresponding RIC as the final RIC. If the stock’s NewRICSymbol is not empty, we then

use this reported NewRICSymbol as the final RIC. If a stock has more than one observation

on a particular trading day, we keep the most recent RIC with Type 113 that has the highest

trading volume.
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3.9 Appendix C: Variable Definitions

Variable Description Source

Chi-X Market

Share

Chi-X market share, defined as the ratio of the daily volume

traded on Chi-X relative to the total daily volume traded on

both Chi-X and the home exchange.

TRTH

firmsize Market capitalization (in / million) at the end of each quar-

ter t

Datastream

High HFT

Activity

A dummy variable, which equals 1 for stocks with above

median intensity of HFT activity in our sample, and is zero

otherwise. We use either Chi-X market share or Multimarket

Trading to measure intensity of HFT activity.

TRTH

illiq The Amihud (2002) measure, calculated as the ratio of the

absolute daily price change, |Ri,d|, to the daily euro

(pound) volume traded (in millions) on the stock’s primary

exchange, DV oli,d: illiqi,d =
|Ri,d|
DV oli,d

.

We calculate illiq(avg) as the quarterly average of the daily

Amihud (2002) measure.

TRTH

Low HFT

Activity

A dummy variable, which equals 1 for stocks with below

median intensity of HFT activity in our sample, and is zero

otherwise. We use either Chi-X market share or Multimarket

Trading to measure intensity of HFT activity.

TRTH

Multimarket

Trading

The Multimarket Trading measure of Halling, Moulton, and

Panayides (2013)., estimated from the following VAR model:

4V olHome
i,t = αHome

i +γHome
i 4V olHome

i,t−1 +βChiX
i 4V olChiX

i,t−1 +reti,t+ε
Home
i,t

4V olChiX
i,t = αChiX

i +γChiX
i 4V olChiX

i,t−1 +βHome
i 4V olHome

i,t−1 +reti,t+εChiX
i,t

where 4V oli,t is the change in the trading volume, calcu-

lated as the logarithm of the ratio of interval t to interval

t − 1 euro (pound) trading volume; and reti,t is the firm’s

stock return in the home market. Multimarket Trading for

stock i in month m is calculated as the contemporaneous

correlation between εHomei,t and εChiXi,t .

TRTH

POST A dummy variable, which equals 1 for all months after the

country’s Chi-X market share reaches 10%, and is zero oth-

erwise.

TRTH
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Variable Description Source

qspread The quoted relative spread, calculated as

qspreadi,t =
Ai,t−Bi,t

(Ai,t+Bi,t)/2
,

where Ai,t is the ask price and Bi,t the bid price prevalent for

stock i on its primary exchange at the end of the 5-minute

interval t. We delete observations with negative spreads or

spreads exceeding 20%, and winsorize the upper and lower

1% of the qspread distribution to avoid outliers.

TRTH

ret The firm’s stock return in the home market TRTH
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Figure 3.1: Chi-X as a connection link for fragmented European markets

Figure 3.2: Staggered entrance of Chi-X into European equity markets
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Figure 3.3: Chi-X Market Share by Country.

This figure plots the time series of the average Chi-X market share for each country in our sample. The

Chi-X market share for stock i on day d is calculated as ChiXMrktShri,t =
V olumei,d,c

V olumei,d,c+V olumei,d,h
,

where V olumei,d,c is the volume executed on Chi-X for stock i on day d and V olumei,d,h is the volume

executed on its home stock exchange. It is then averaged quarterly for all stocks in the corresponding

country. The vertical line shows the time when each country’s Chi-X market share reaches 10%. Please

refer to Appendix A for country code abbreviations.
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Figure 3.4: Development of Aggregate Home Liquidity Betas over Time.

This figure displays three-month moving averages of home liquidity betas, aggregated across all stocks in

our sample. For each stock and each month, we first estimate the following regression: ∆qspreadi,t,d =

α+ βi,Home∆qspreadHome,t,d + εi,t,d, where ∆qspreadi,t,d is the change in the 5-minute relative quoted

spread of firm i from interval t − 1 to interval t on day d, and ∆qspreadHome,t,d is the cross-sectional

value-weighted average of ∆qspreadj,t,d for all stocks in the home country index with j 6= i. We then

calculate the average home liquidity beta (βi,Home) for all stocks in each month over 2005-2014, and plot

the three-month moving average liquidity beta to smooth out its variations across different months.
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Figure 3.5: Development of Aggregate EU and Home Liquidity Betas over Time.

This figure displays three-month moving averages of EU and home liquidity betas, aggregated across

all stocks in our sample. For each stock and each month, we first estimate the following regression:

∆qspreadi,t,d = α+βi,HomeExclEU∆qspreadHome,t,d +βi,EU∆qspreadEU,t,d + εi,t,d, where ∆qspreadi,t,d

is the change in the 5-minute relative quoted spread of firm i from interval t − 1 to interval t on day

d, ∆qspreadHome,t,d is the cross-sectional value-weighted average of ∆qspreadj,t,d for all stocks in the

home country index with j 6= i, and ∆qspreadEU,t,d is the cross-sectional value-weighted average of

∆qspreadk,t,d for all FTSE Eurofirst100 index constituents, with k 6= i and k 6= j. We then calculate the

average EU (βi,EU ) and home (βi,HomeExclEU ) liquidity betas for all stocks in each month. The solid

line shows the three-month moving average EU liquidity betas and the dashed line the corresponding

values for home liquidity betas over 2005-2014.
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Table 3.1: Chi-X Market Share by Country.

This table reports the quarterly averages of Chi-X market shares for each country in our sample. Chi-

X market share for stock i on day d is calculated as ChiXMrktShri,t =
V olumei,d,c

V olumei,d,c+V olumei,d,h
, where

V olumei,d,c is the volume executed on Chi-X for stock i on day d and V olumei,d,h is the volume executed

on its home stock exchange. It is then averaged quarterly for all stocks in the corresponding country.

Please refer to Appendix A for country code abbreviations.

GB FR DE NL BE FI SE NO DK IT ES

2007Q4 1.3% 0.9% 1.9% 2.4%

2008Q1 4.3% 2.4% 3.0% 4.5%

2008Q2 10.3% 5.4% 6.8% 7.4% 0.5% 1.0% 1.2%

2008Q3 14.4% 10.8% 10.8% 12.2% 3.0% 5.1% 3.8% 1.4% 1.6%

2008Q4 14.6% 11.8% 10.2% 11.6% 3.4% 4.0% 2.3% 0.8% 1.2% 1.0%

2009Q1 13.0% 12.4% 12.5% 12.4% 3.0% 5.0% 4.7% 1.1% 1.9% 4.0%

2009Q2 17.8% 17.2% 16.6% 16.8% 6.7% 6.5% 10.4% 3.0% 5.4% 6.8% 0.3%

2009Q3 20.5% 17.0% 18.1% 17.6% 11.8% 9.9% 14.9% 4.6% 9.0% 9.6% 0.7%

2009Q4 23.8% 19.3% 21.7% 18.0% 12.7% 9.2% 11.0% 3.6% 7.7% 9.4% 0.6%

2010Q1 26.2% 23.4% 24.9% 21.7% 15.3% 10.1% 13.3% 3.4% 6.0% 10.8% 0.7%

2010Q2 28.2% 22.6% 24.8% 23.0% 19.7% 15.7% 16.8% 5.6% 8.6% 11.3% 2.2%

2010Q3 27.5% 22.1% 25.9% 22.8% 19.7% 17.5% 17.9% 6.0% 9.8% 11.9% 2.1%

2010Q4 27.1% 23.8% 24.0% 22.9% 20.7% 14.0% 17.3% 6.1% 9.3% 12.7% 2.1%

...

2011Q4 31.9% 27.2% 27.7% 25.5% 17.6% 17.3% 23.0% 13.2% 12.7% 14.4% 2.0%

...

2012Q4 27.3% 25.3% 25.9% 22.6% 18.7% 20.5% 26.3% 16.7% 16.1% 14.8% 4.0%

...

2013Q4 25.9% 25.3% 24.7% 20.9% 19.9% 22.2% 25.6% 20.1% 18.1% 12.4% 12.3%

...

2014Q4 23.0% 27.5% 28.1% 23.1% 25.2% 22.6% 24.2% 19.1% 19.9% 15.1% 16.1%
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Table 3.3: Summary Statistics.

Panel A of this table reports cross-sectional summary statistics of market capitalization, firm size (in

million), across all sample stocks separately for each country. Panel B reports corresponding summary

statistics for the 5-minute relative quoted spread measure, qspread. Our main data source for prices,

volume traded and bid-ask spreads is Thomson Reuters Tick History (TRTH). Data on market capital-

ization are from Datastream. We censor the upper and lower 1% of the firm size and qspread to avoid

outliers. We also delete observations with qspread < 0 or qspread > 0.2. Appendix C provides a detailed

description of variable definitions.

Panel A: Summary Statistics for firm size

Country N Mean Median StDev Min Max

GB 144 15,886 6,000 21,605 1,401 86,968

FR 43 28,843 15,923 26,590 4,547 102,791

DE 37 25,494 15,979 21,540 3,975 75,077

NL 35 18,001 7,854 23,652 1,373 91,188

BE 9 4,771 2,591 4,047 1,221 13,148

FI 25 8,000 3,678 9,760 1,501 33,115

SE 34 13,097 6,409 13,434 1,188 52,408

NO 26 5,859 2,362 7,959 611 33,580

DK 20 7,551 3,992 9,363 1,298 34,037

IT 40 11,199 6,549 13,213 1,512 52,022

ES 32 16,196 7,984 20,568 2,252 77,742

Total 445 15,863 7,299 20,264 611 102,791

Panel B: Summary Statistics for qspread

Country N Mean Median StDev Min Max

GB 144 0.0021 0.0011 0.0053 0.0001 0.2000

FR 43 0.0010 0.0007 0.0015 ¡0.0001 0.1633

DE 37 0.0011 0.0007 0.0014 ¡0.0001 0.1331

NL 35 0.0014 0.0008 0.0024 0.0001 0.1848

BE 9 0.0024 0.0015 0.0026 ¡0.0001 0.0735

FI 25 0.0019 0.0013 0.0020 0.0001 0.1672

SE 34 0.0022 0.0018 0.0018 0.0002 0.1639

NO 26 0.0033 0.0022 0.0047 ¡0.0001 0.1961

DK 20 0.0024 0.0017 0.0024 0.0002 0.1524

IT 40 0.0042 0.0013 0.0089 0.0001 0.1967

ES 32 0.0029 0.0012 0.0062 0.0001 0.1524

Total 445 0.0022 0.0011 0.0046 ¡0.0001 0.2000
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Table 3.4: Liquidity Co-movements with the Home Market: Univariate Analysis.

For each stock and each month, we first estimate the following regression: ∆qspreadi,t,d = α +

βi,Home∆qspreadHome,t,d + εi,t,d, where ∆qspreadi,t,d is the change in the 5-minute relative quoted

spread of firm i from interval t− 1 to interval t on day d, and ∆illiqHome,t,d is the cross-sectional value-

weighted average of ∆qspreadj,t,d for all stocks in the home country index with j 6= i. For each country,

we then calculate the average home liquidity beta (βi,Home) across all stocks and months in our sample,

separately for the pre- and post-Chi-X periods. We further report the difference between the pre- and

post-Chi-X average liquidity betas, Diff , and the statistics of the t-test for the null-hypothesis that this

difference equals zero. Please refer to Appendix A for country code abbreviations.

Total GB FR DE NL BE DK FI NO SE IT ES

Pre Chi-X 0.19 0.24 0.31 0.21 0.16 0.10 0.06 0.04 0.06 0.04 0.20 0.26

Post Chi-X 0.46 0.54 0.59 0.50 0.36 0.19 0.14 0.24 0.13 0.42 0.54 0.54

Diff 0.27 0.30 0.28 0.29 0.20 0.09 0.08 0.20 0.07 0.38 0.34 0.28

t-stat 39.70 27.19 14.02 8.97 10.05 6.46 14.64 24.33 8.46 29.09 27.35 27.80
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Table 3.5: Liquidity Co-movements with the Home Market: Multivariate Analysis.

This table reports results of the following panel OLS regressions: βHome,i,m = α + γ1Posti,m +

γ2ln(firmsize)i,m−1 + γ3qspreadi,m−1 + Y FE + CFE + εi,m, where βHome,i,m is the home liquid-

ity beta, estimated for stock i in month m, and Post is a dummy variable that equals 1 for all months

after the country’s Chi-X market share reaches 10%, and zero otherwise. We include the year- and

country-fixed effects and allow standard errors to cluster at the firm level. Model (1) reports results for

the total sample, Models (2)-(4) present results for sample splits by three country groups and Models (5)

and (6) the corresponding results for subperiods of down and up markets. We classify months in the top

tercile of the country’s index return as up markets and in the bottom tercile as down markets. Please

refer to Appendix C for a detailed description of variable definitions. *, ** and *** denote significance

at the 1%, 5% and 10% levels, respectively.

GB FR

Total DE NL BE FI SE NO DK IT SE down mkt up mkt

(1) (2) (3) (4) (5) (6)

POST 0.074 *** -0.003 0.050 *** 0.144 *** 0.028 *** 0.109 ***

ln(firm size) 0.048 *** 0.061 *** 0.003 0.046 *** 0.049 *** 0.046 ***

qspread -0.009 *** -0.023 *** -0.037 *** 0.002 -0.011 *** -0.007 *

Constant -0.041 *** -0.052 *** -0.015 0.121 *** -0.044 *** -0.022

N 50728 30136 12320 8272 17765 16356

R-Squared 0.64 0.58 0.58 0.71 0.63 0.65

Year FE YES YES YES YES YES YES

Country FE YES YES YES YES YES YES
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Table 3.6: Composition of FTSE Eurofirst 100.

This table presents details of the composition of the FTSE Eurofirst 100 index over 2004-2014, aggregated

on the country level. Column (1) reports the corresponding country code abbreviation from Appendix

A. Column (2) shows the number of distinct index constituents from each country. Column (3) displays

the average daily number of shares (in thousands) and column (4) the average daily euro volume (in

millions) traded in each country. The last column shows the percentage of total Eurofirst euro volume

traded in each country.

Country N Share Volume Euro Volume Weight

GB 48 636,712.1 5,000.4 33.4%

FR 28 88,429.3 2,949.0 19.7%

DE 16 60,356.1 2,328.7 15.6%

NL 12 73,904.5 877.5 5.9%

BE 5 27,595.2 495.8 3.3%

FI 3 33,642.4 352.8 2.4%

IT 6 240,160.2 1,360.5 9.0%

ES 9 192,605.6 1,598.9 10.7%

Total 127 1,353,405.4 14,963.6 100%
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Table 3.7: Liquidity Co-movements with the European market: Multivariate Anal-
ysis.

Panel A of this table reports results of the following panel OLS regressions: βEU,i,m = α+ γ1Posti,m +

γ2ln(firmsize)i,m−1 + γ3qspreadi,m−1) + Y FE +CFE + εi,m, where βEU,i,m is the EU liquidity beta,

estimated for stock i in month m, and Post is a dummy variable that equals 1 for all months after the

country’s Chi-X market share reaches 10%, and zero otherwise. We include the year- and country-fixed

effects and allow standard errors to cluster at the firm level. Model (1) reports results for the total

sample, Models (2)-(4) present results for sample splits by three country groups, and Models (5) and

(6) the corresponding results for subperiods of down and up markets. We classify months in the top

tercile of the country’s index return as up markets and in the bottom tercile as down markets. Panel B

presents the corresponding results with βHomeExclEu,i,m, estimated after additionally controlling for EU

liquidity betas from equation (3), as the dependent variable. Please refer to Appendix A for country code

abbreviations and Appendix C for a detailed description of variable definitions. *, ** and *** denote

significance at the 1%, 5% and 10% levels, respectively.

Panel A: EU Beta

GB FR

Total DE NL BE FI SE NO DK IT ES down mkt up mkt

(1) (2) (3) (4) (5) (6)

POST 0.056 *** 0.019 ** 0.008 0.049 *** 0.071 *** 0.066 ***

ln(firm size) 0.027 *** 0.035 *** 0.014 ** 0.020 ** 0.028 *** 0.022 ***

qspread -0.030 *** -0.017 ** -0.043 *** -0.049 *** -0.031 *** -0.042 ***

Constant 0.252 *** 0.238 *** 0.142 *** 0.208 *** 0.284 *** 0.226 ***

N 51097 30281 12383 8433 17827 16443

R-Squared 0.49 0.52 0.47 0.43 0.46 0.49

Year FE YES YES YES YES YES YES

Country FE YES YES YES YES YES YES

Panel B: Home Beta, after Controlling for EU Beta

(1) (2) (3) (4) (5) (6)

POST 0.033 *** -0.012 ** 0.022 *** 0.150 *** 0.007 0.066 ***

Constant -0.019 ** -0.022 * 0.011 0.078 *** -0.027 *** 0.226 ***

N 51097 30281 12383 8433 17827 16443

R-Squared 0.50 0.44 0.40 0.41 0.51 0.49

Controls YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

Country FE YES YES YES YES YES YES
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Table 3.8: Multimarket Trading by Country.

This table reports annual averages of the Multimarket Trading measure, proposed by Halling, Moulton,

and Panayides (2013),, for each country over the period of 2007, when Chi-X started trading first stocks

on its platform, until the end of our sample period in 2014. Please refer to Appendix A for country code

abbreviations and Appendix C for a detailed description of the estimation procedure for the Multimarket

Trading measure.

GB FR DE NL BE FI SE NO DK IT ES Total

2007 0.33 0.32 0.30 0.41 0.34

2008 0.52 0.57 0.51 0.60 0.30 0.31 0.37 0.22 0.17 0.20 0.38

2009 0.68 0.75 0.67 0.75 0.58 0.52 0.59 0.37 0.38 0.51 0.16 0.54

2010 0.72 0.82 0.75 0.82 0.70 0.66 0.74 0.57 0.60 0.66 0.43 0.68

2011 0.72 0.76 0.74 0.75 0.67 0.69 0.70 0.63 0.57 0.66 0.35 0.66

2012 0.71 0.77 0.73 0.77 0.71 0.67 0.74 0.68 0.61 0.63 0.43 0.68

2013 0.67 0.78 0.75 0.76 0.65 0.66 0.69 0.66 0.62 0.65 0.51 0.67

2014 0.67 0.79 0.74 0.76 0.65 0.64 0.70 0.69 0.61 0.66 0.59 0.68
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Table 3.9: Intensity of HFT Trading Activity and Liquidity Co-movements with the
European market.

This table reports results of the following panel OLS regressions: βEU,i,m = α+γ1HighHFT Activityi,m·
Posti,m + γ2LowHFT Activityi,m ·Posti,m +Controls+ Y FE +CFE + εi,m, where βEU,i,m is the EU

liquidity beta, estimated for stock i in month m; Post is a dummy variable that equals 1 for all months

after the country’s Chi-X market share reaches 10%; and High (Low) HFT Activity is a dummy variable

that equals 1 for stocks with the above (below) median intensity of HFT activity in our sample. Models

(1)-(3) use Chi-X market share and Models (4)-(6) use Multimarket Trading to measure intensity of

HFT activity. The vector of standardized control variables includes ln(firmsize), the log of market

capitalization at the end of the previous month; qspread, the average relative quoted spread, calculated

over the previous month, the year- and country-fixed effects. Standard errors are clustered at the firm

level. Models (1) and (4) report results for the total sample, and Models (2), (3), (5) and (6) for

subperiods of down and up markets. We classify months in the top tercile of the country’s index return

as up markets and in the bottom tercile as down markets. Please refer to Appendix C for a detailed

description of variable definitions. *, ** and *** denote significance at the 1%, 5% and 10% levels,

respectively.

Total down mkt up mkt Total down mkt up mkt

(1) (2) (3) (4) (5) (6)

High Chi-X Shr*POST 0.044 *** 0.047 *** 0.041 ***

Low Chi-X Shr*POST 0.038 *** 0.038 *** 0.041 ***

High MltiMrkt*POST 0.041 *** 0.042 *** 0.038 ***

Low MltMrkt*POST 0.041 *** 0.043 *** 0.044 ***

ln(firm size) 0.025 *** 0.025 *** 0.019 *** 0.025 *** 0.026 *** 0.019 ***

qspread -0.030 *** -0.030 *** -0.042 *** -0.030 *** -0.030 *** -0.042 ***

Constant 0.249 *** 0.272 *** 0.223 *** 0.250 *** 0.273 *** 0.223 ***

N 51130 17842 16452 51130 17842 16452

R-Squared 0.49 0.46 0.49 0.49 0.46 0.49

Year FE YES YES YES YES YES YES

Country FE YES YES YES YES YES YES
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Table 3.10: Robustness checks.

Panel A of this table reports results of the following panel OLS regressions, based on daily liquidity

measures: βX,i,q = α+ γ1Posti,q + γ2ln(firmsize)i,q−1 + γ3qspreadi,q−1) + Y FE + CFE + εi,q, with

each of the three betas, βHome, βEU and βHomeExclEU , as the dependent variable. βHome is estimated

for stock i and quarter q from equation (1). βEU and βHomeExclEU are estimated for stock i and

quarter q from equation (3). Post is a dummy variable that equals 1 for all quarters after the country’s

Chi-X market share reaches 10%, and zero otherwise. We include the year- and country-fixed effects

and allow standard errors to cluster at the firm level. To conserve space, we only report the coefficient

on Post for each specification. The first three columns show the results for the daily relative spread

and the remaining three columns for the Amihud illiquidity measure. Models (1) and (4) report results

for the total sample, and Models (2), (3), (5) and (6) the corresponding results for subperiods of down

and up markets. We classify quarters in the top tercile of the country’s index return as up markets and

in the bottom tercile as down markets. Please refer to Appendix C for a detailed description of variable

definitions. *, ** and *** denote significance at the 1%, 5% and 10% levels, respectively. Panel B

summarizes the distributions of the coefficients and t-statistics from placebo regressions, based on

5-minute spreads, in which we randomly assign Post 5,000 times between the first month of 2004 and

the last month of 2014. We report the average, 5th and 95th percentiles across the 5,000 replications.

We report the percentiles of our actual coefficient estimates and t-statistics in the last row.

Panel A: Daily Liquidity Measures

qspread illiq

total down mkt up mkt total down mkt up mkt

(1) (2) (3) (4) (5) (6)

βHome 0.019 0.132 *** -0.236 *** 0.021 * 0.035 *** 0.033

βEU 0.182 ** 0.302 *** -0.134 0.050 *** 0.091 *** 0.033

βHomeExclEU -0.116 *** -0.099 * -0.133 -0.045 *** -0.077 *** -0.020

Controls YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

Country FE YES YES YES YES YES YES

Panel B: Placebo regressions

βHome βEU βHomeExclEU

Coefficient on Post

Mean 0.00 0.00 0.00

5th percentile -0.01 -0.01 -0.01

95th percentile 0.01 0.01 0.01

percentile of actual estimate ¿99% ¿99% ¿99%

t-statistic on Post

Mean 0.09 0.06 0.07

5th percentile -1.58 -1.64 -1.63

95th percentile 1.72 1.74 1.75

percentile of actual estimate ¿99% ¿99% ¿99%
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Chapter 4

Institutional Trading Costs and

Intraday Returns

4.1 Introduction

Trading cost is an important determinant of institutional investors’ performance as large trad-

ing cost can erode or eliminate the value added by portfolio managers. Keim and Madhavan

(1995) provide evidence that arbitrageurs and investors, who try to follow a particular index

are concerned about delay cost. This is also highlighted by Schwartz and Steil (2002) in a sur-

vey of chief investment officers (CIOs) of 72 major asset management firms in North America,

Europe and Australia with an asset management of $2.1 trillion, show that large institutions

rank execution cost and speed as important determinants of how they choose brokers. It is not

surprising that fund managers devote significant efforts to developing their execution strategies

and transaction cost analysis (TCA).

In this paper, we postulate that sub-optimal execution by trading desks leads to pre-

dictable patterns in trading volume and return predictability among common stocks. We di-

vide the trading day into 13 half-hour trading intervals to study the nature of intraday return

predictability. Consistent with the previous literature and Heston et al. (2010), we find the

presence of negative autocorrelation in intraday stock return. Intraday negative autocorrelation

in returns is often associated with temporary price pressure due to risk-averse intermediaries

charging price impact for temporarily holding the position in the absence of a natural counter-

party. For example, Kraus and Stoll (1972) shows the existence of price pressures by studying

large institutional trades. These transitory price effects, intraday return reversal and their

relation to intraday pattern of how trading desks work their trades are the focus of this study.

We find that temporary price pressure is larger and more prevalent at the beginning and

the end of the trading day. This suggests the predictability of large uninformed institutional

trades within a trading day. While Guercio and Tkac (2002), Frazzini and Lamont (2008), and

Lou (2012) find evidence of persistent fund flows into and out of mutual funds that induces

return predictability across days, it is unlikely that fund flows explains the intraday pattern

of institutional trades. Often portfolio managers rely on buyside trading desks in order to

implement their investment ideas. A trading desk adds value to their clients by supplying
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expertise in locating counterparties and formulating trading strategies. For example, a trading

desk formulates a set of choices to meet its best execution obligation through the trading

venues, order splitting strategies, broker choice and timing of the trades. We conjecture that

the execution strategy of trading desks is one of the determinants of the intraday predictability

of institutional trades and return reversals.

To study the economic reasoning behind this price pressures predictability, we investigate

if the periodity is indeed driven by suboptimal trading desk execution. We first show that trading

volume exhibits similar intraday pattern as price pressures. In addition, we relate the periodity

of price pressures to trading desks’ performance using a proprietary database of institutional

investor equity transactions compiled by ANcerno Ltd. (formerly the Abel/Noser Corporation).

The data contain approximately around 20 million tickets involving $2 trillion dollars

that are initiated by 136 institutional investors over the period from 2006-2010. The ANcerno

database is distinctive in that it contains a detailed history of trading activity by each institution.

Furthermore, the dataset provides information on tickets sent by an institution to a broker;

each ticket typically results in more than one execution. The data for each ticket include stock

identifiers that help in obtaining relevant data from other sources and, more importantly for

this study, codes that identify the institution and the broker. The detailed transaction-level

ANcerno dataset seems particularly well suited for studying the performance of trading desks

and their relation to intraday return predictability.

We find that execution quality is the worst at the end of the day yet institutional trading

volume is surprisingly highest at the end of the day. Dividing brokers into good and bad

performing, we find that poorer performing brokers trade more in the last hour of the day.

Poorer performing brokers also have a higher execution cost at the end of the day and carry out

less order splitting at the end of the day. We observe persistence in the performance of buy-side

institutional desks and sell side brokers. Our findings suggest that intraday price pressure stems

from execution strategies of under-performing trading desks end of the day clustering results

in higher trading costs and poorer execution quality. To estimate the economic significance

of these suboptimal trade execution, we set up a trading strategy to exploit these intraday

predictability like a predatory anticipatory traders. Our trading strategy yields an economically

and statistically significant monthly return of 16.11%. Our results have implications on the

impact of broker selection and execution strategy on trading costs.

Our paper is related to the literature on intraday asset prices and on heterogeneity in

transaction costs across intermediaries. Existing studies, such as Chordia et al. (2011); Cprwin

and Schultz (2012), focus on intraday trading activity and volatility. Heston et al.(2010) find a

striking intraday pattern that returns on certain individual stocks tend to persist at the same

half-hour intervals across trading days, and that this pattern can last for up to 40 trading

days. Keim and Madhavan (1997) and Linnainmaa (2007) show dispersion in trading costs of

institutions and mutual funds across retail and institutional broker types. Anand et al. (2012)

examine persistence in trading performance of buy-side institutional desks and sell-side brokers.

We complement these literature by focusing on short-term return reversal and intraday price

pressure and relating these patterns to specific intermediaries.
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4.2 Data and Variable description

Our analysis comprises two different samples: the U.S. sample and the European sample of

stocks. Our U.S. sample of firms consists of all New York Stock Exchange (NYSE) listed firms

from January 2006 through December 2010 that we are able to match with the NYSE Trade and

Quotation (TAQ) database. We retain only assets whose CRSP share codes are 10 or 11, that

is, we discard certificates, American Depositary Receipts, shares of beneficial interest, units,

companies incorporated outside the United States, Trusts, closed-end funds, preferred stocks,

and REITs. As a result our sample consisted of 1,715 firms. We use the TAQ database to

calculate intraday stock returns.

The European dataset covers stocks traded in Austria, Belgium, Finland, France, Ger-

many, Italy, Netherlands, Norway, Spain, Sweden, Switzerland, and United Kingdom, between

January 2002 and December 2012. We obtain the intraday trade and quote price for each com-

pany from Thomson Reuters Tick History (TRTH) dataset. Figure 4.1 provide summary on the

number of stocks per country in our sample. About 51% of our sample comes from Germany,

following by the UK, France, Sweden and Switzerland. The stocks from the remaining countries

constitute less than 5% each. Every country has at least 149 firms.

Insert Figure 4.1 about here

Institutional investor trading data comes from ANcerno database. Summary statistics

for ANcerno’s trade data are presented in Table 4.1. This database covers a total of 136 different

mutual funds during our sample period. Institutions in the ANcerno database are responsible

for approximately 20 million tickets involving more than $2 trillion in trading volume. The

data contains a detailed history of trading activity by each institution, such as the CUSIP of

the traded stock, direction and volume of trade, prices and time of the trade. It also contains

information on tickets sent by an institution to a broker. The data for each ticket include stock

identifiers, codes that identify the type of the institution and the broker.

Insert Table 4.1 about here

For each stock i we calculate log returns reti,t over half-hour interval t. That is, for each

trading day, we compute 13 intraday intervals from 9:30 a.m. to 4:00 p.m. excluding after-hour

trading and overnight open-close price movements.

In addition to returns, we also measure trade imbalance tibi,t for stock i at time interval

t as the overall dollar volume difference between buying initiated and seller intimated trades

during time interval t. As the TAQ data does not contain trade direction, we sign trades using

Lee and Ready (2011) signing algorithm.

In addition to market-wide trade imbalance we also compute institutional trade im-

balance itibi,t for stock i as the dollar volume difference between buying initiated and seller

intimated institutional trades during time interval t. Variable itrvoli,t denotes institutional

trading volume in stock i at time t.

Finally, we consider execution shortfall as a measure of execution costs. Execution

shortfall shortfallb,t is defined as the difference between the execution price of a ticket τ and

the stock price when the trading desk sends the ticket to the broker:
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shortfallb,τ =
P1(b, τ)− P0(b, τ)

P0(b, τ)
×D(b, τ), (4.1)

where P1(b, τ) is the value weighted execution price of ticket τ , P0(b, τ) is the price at the time

when the broker b receives the tickets, and D(b, τ) is a variable that equals to 1 for buy tickets

and -1 for sell tickets. ANcerno database provides the execution prices for each trade across

funds and stocks. It also reports time of the ticket reception which can be used along with a

high-frequency database, like TAQ or Tick History Thomson Reuters to infer P0(b, τ).

4.3 Empirical Results

We begin this study by measuring the intraday price pressure in the cross-section of U.S. stock

returns for each half-hour interval. It is well known that short-term stock returns are negatively

autocorrelated (e.g. Lehmann, 1990; Lo and MacKinlay, 1990). Although this phenomenon

does not occur in the model of Glosten and Milgrom (1985), in which the spreads are due solely

to adverse selection caused by informed traders, it appears in other models with bid-ask spreads

(Glosten and Harris, 1988; Roll, 1984) or specialist inventory effects (Stoll, 1978). Here we study

temporary price pressure or reversal of stock prices based on the pattern of autocorrelation over

various horizons.

We analyze intraday stock returns using the cross-sectional methodology of Heston et

al. (2010). We run cross-sectional regressions of half-hour stock returns on returns lagged by

j ∈ {1, ..., 13} half-hour intervals,

ri,t = αt + β1,tri,t−1 + ...+ β13,tri,t−13 + ui,t, (4.2)

where ri,t is the return on stock i in the half-hour interval t. The slope βk,t represent the

response of returns at half-hour t to returns over interval lagged by k half-hour periods. We use

all firms with returns available in intervals from t to t − 13. We present unconditional return

responses, averaging over different times of the day. We calculate the pattern of return effects

by averaging return responses over time for half-hour lags k. Note that using cross-regression

in this way is different from measuring the autocorrelation returns. In particular, the cross-

sectional regression subtracts an overall market effect, which reduces variance and focuses on

returns relative stocks.

Table 4.2 presents the average return responses across different lags for lags up to 13

half-hour intervals (see column All. Consistent with the previous literature, the first six lags of

return responses are negative and statistically significant.

The largest impact is at the first half-hour lag. An increase in the previous half-hour

return is associated with 0.14% decline of the following half-hour return. This means that stock

returns experience a reversal period lasting on average three hours.

Insert Table 4.2 about here

To see further when the price reversals are the strongest, we compute the average past

return responses for opening (see column Open of Table 4.2), closing (column Close) and the
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remaining middle of the day half-hour intervals (column Middle). The pattern is similar across

all three categories. The strongest reversal effect is during the opening half-hour. Figures 4.2

and 4.3 illustrate these findings.

Insert Figures 4.2 and 4.3 about here

The effect indicates that there is a substantial and statistically significant price pressure

occurring during the day with a pronounced U-shaped intraday pattern. This suggest a sub-

stantial amount of uninformed trading that happens systematically at the same time intervals.

To see if the intraday price pressure is purely the U.S. phenomenon or is it also present

in international markets we perform similar analysis using the data from European market1

We perform similar cross-sectional regression in the cross section of all European stocks. This

allows us to identify return predictability that are common across countries.

Given that European markets open in total for 8.5 hours, we divide every trading day

into 17 half-hour trading intervals. Similar to Heston et al. (2010), we analyze intraday stock

returns using the cross sectional regression similar to Equation (4.2). That is, for each half-hour

interval t, we run the cross sectional regression of half-hour stock return on returns lagged by

17 half-hour period and country fixed effects:

ri,t = αt + β1,tri,t−1 + ...+ β13,tri,t−17 +

12∑
j=1

ωi,j,tIi,j + ui,t, (4.3)

where ri,t is the return on stock i in the half-hour interval t, Ii,j is a dummy variable that equals

to one if firm i belongs to country j, and zero otherwise. The slope βk,t represent the response

of returns at half-hour t to returns over interval lagged by k half-hour periods.

Insert Table 4.3 about here

The estimation results are present in Table 4.3. There is again an intraday return

predictability pattern that is similar to the one we found in the U.S. market. The largest

impact is also at the first half-hour lag. The magnitude of the price reversals in the European

markets is larger than in the U.S. An increase in the previous half-hour return is associated

with 0.26% decline of the following half-hour return. When conditioning only on the opening

half-hour interval (that is, the price pressures caused by trading during the closing half-hour of

the previous day), this coefficient increases to 0.42%.

Our next step is to find out what is the role institutional trading plays in generating this

pattern. To do so, we repeat our cross-sectional regressions by controlling for past institutional

trade imbalance as well as total market trade imbalance. Specifically, we estimate

ri,t = αt + β1
t ri,t−1 + ...+ β13

t ri,t−13 + γ1
t itibi,t−1 + ...+ γ13

t itibi,t−13

+ δ1
t tibi,t−1 + ...+ δ13

t tibi,t−13 + ui,t, (4.4)

where tibi,t denotes total trade imbalance in stock i and time t and itibi,t corresponds to in-

stitutional trade imbalance. Given that the U.S. sample of ANcerno database has the largest

1We focus on European markets in order to avoid biased results due to asynchronous trading hours. This
allows us to run the cross sectional regression without clock synchronization problem.
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coverage of institutional investors, we concentrate in the remainder of the paper on the U.S.

data. Table 4.4 presents the estimation results.

Insert Table 4.4 about here

The price reversal pattern remains strong and statistically significant after inclusion of

both trade imbalance variables. The magnitude of the reversals however decreases. The first

lag of the institutional trade imbalance variable is negative and statistically significant. This

indicates that institutional investors create significant price pressures and distort stock prices.

Specifically, one million institutional trade order is associated with 65.2 bp return reversal within

next half-hour interval.

Insert Table 4.5 about here

While the previous result demonstrates that institutional investors contribute to price

pressures, there is a concern that itib variable is persistent and hence the result is spurious

due to omission of the contemporaneous trade imbalance. To mitigate this concern, we also

control for the contemporaneous variables. Table 4.5 presents the estimation results. The

conclusion remain as before. Both itib and tib are highly statistically significant and have

positive signs. This suggests that institutional investors indeed exploit price reversals and

profit from it. However, despite this, the lagged itib variable is still negative and statistically

significant. Moreover, the price reversal pattern remain in the data after controlling for the

institutional trading. This means that large portion of existing price pressures is created by

other market participants.

Having established pronounced pattern of intraday price reversals, we now turn to the

question on optimality of institutional investors trading pattern.Figure 4.4 plots average trading

volume by institutional investors broken down for different half-hour intervals. It shows that

large of institutional orders, about 31% of overall institutional investors’ dollar trading volume,

has been executed during the last half-hour interval.

Insert Figure 4.4 about here

In order to shed light on optimality of such behaviour, we first compute price sensitivity

to institutional trade imbalance. We regress half-hour returns on contemporaneous institutional

trade imbalance and control for market trade imbalance in the cross-section for each half-hour

interval:

ri,t = αt + λtitibi,t + δttibi,t + ui,t. (4.5)

We average λt over different half-hour intervals to estimate the extent by which institutional

trades move prices and hence suffer from price impact. Figure 4.5 plots intraday pattern of the

estimated λ coefficient.

Insert Figure 4.5 about here

Price impacts are negative for most of the half-hour intervals. The only two exceptions

are opening and closing intervals. During first half-hour interval institutional investors expe-

rience by far the largest sensitivity to their trades. A one billion trade just after the market
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opening tend to move price by about 75.5 basis point. Price sensitivity to institutional order

just before market closure is also positive but substantially smaller. Specifically, a one billion

trade tend to move price by about 5.4 basis point. The result suggest that institutional or-

ders that are executed during non-opening and non-closing intervals are on average subject to

smaller transaction costs. This could be due to the fact that there orders are executed against

uninformed individual investor trades. However, the market typically adversely react to institu-

tional orders executed during the first and the last half-hour of trading. By trading aggressively

during those intervals institutional brokers inflict substantial costs on institutional investors.

This trading behaviour creates substantial price pressures and short-term reversals that

can be exploited by other market participants. To gauge economic value of these costs we form

a trading strategy designed to exploit intraday price reversals. Given our results in Table 4.2

that the largest price reversals occurs at lag 1 returns, our strategy will trade on the shortest

half-hour horizon. Specifically, each half-hour interval we sort stocks by their previous half-hour

return and form ten equally weighted portfolios for each past return decile. We buy portfolio

with the lowest past return (P1) and short sell portfolio with the highest past return (P10). The

results of the strategy performance is given in Table 4.6.

Insert Table 4.6 about here

Portfolio returns are monotonically decreasing form portfolio P1 to P10. The average

half-hour return from P1−P10 portfolio is 31.93 bp and it statistically significant. As expected

given our previous finding, the highest performance of this strategy is during the opening hours

(that is, exploiting price pressures created by trading in the previous day closing hour). If we

condition the trading only on this interval, P1 − P10 portfolio generates returns of 73.22 bp

(statistically significant at 1% level). This amounts on average 16.11% per month.

The previous results sow evidence that brokers executing institutional investors’ orders

occur substantial costs due to suboptimal execution strategies. In the remainder of this section

we will study heterogeneity of trading desks execution quality. To do so, we compute execution

shortfall for order submitted during each half-hour interval.

Insert Figure 4.6 about here

Figure 4.6 presents the average volume weighted shortfall figures broken down by interval.

On average, execution shortfall does have a pronounced increasing pattern. To shed more light

on factors determining execution shortfall, we classify orders that are subsequently split and

not split by the corresponding broker.

An institutional desk typically breaks up a large order into smaller tickets and works

the order over time. The timing and sequence of release of tickets to multiple brokers that span

multiple periods is an important dynamic decision made by the trading desk. We implement

an algorithm to ‘link’ seemingly related tickets in the database into a single multiperiod order.

Specifically, we group all tickets from the same institution across brokers on the same side of

the trade (buy or sell) in a given stock over adjacent periods into a linked ticket order. Tickets

that are canceled with a broker, but replaced with another broker, are captured in the analysis;

however, canceled tickets that are never replaced are lost. Through this procedure, we determine

whether an order is split or not split by a broker.
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Insert Figure 4.7 about here

As expected, the orders that have been split by the broker on average exhibit smaller

execution shortfall. The only exception constitute orders that have been submitted by the

investors within half-hour of market closure.

Insert Figure 4.8 about here

Figure 4.8 shows dollar volume of split and non-split orders. As we can see, the percent-

age of non-split orders increases towards the end of the day. During the last half-hour interval

brokers do not split about 41.7% of orders while during the first part of the day this percentage

is 29.4%.

Insert Figure 4.9 about here

Figure 4.9 shows the distribution of trading volume across day by well performing and

poorly performing brokers. To identify well performing broker we focus on trading desks with

total trading volume over 5 million dollars over the entire sample. We splits those brokers into

two groups based on whether their execution shortfall is above or below the sample median.

While both group of brokers exhibit pronounced intraday pattern with executing larger fraction

of orders towards the end of the day, poorly performing trading desks leave larger fraction of

their trading volume for the last closing half-hour interval.

Insert Figure 4.10 about here

We also check if the execution shortfall of well and poorly performing desks is dis-

tributed in a similar fashion as the aggregate execution shortfall. Figure 4.10 shows that while

both groups suffer from large execution shortfall towards the end of the day, losses of poorly

performing desks are considerable during the last interval.

Insert Figure 4.11 about here

Finally, we check if there is a substantial difference in the way brokers manage their

orders. Figure 4.11 shows declining pattern of percentage of split orders throughout the day.

4.4 Conclusion

Execution costs represent a necessary expense that is associated with the implementation of

portfolio managers’ trading strategies. As a result, it is important that investment firms examine

the execution quality given that it can affect the returns to any investment strategy. For

example, Wermers (2000) estimates that execution costs reduce the average mutual fund’s

gross return by eighty basis points per year. We find that the execution of orders by brokers

are predictable within a trading day and executions are clustered at the end of the day where

trading costs is the highest.

We show that the execution strategy of high performing institutions outperform their

peer brokers, who have a tendency to trade at the end of the day. Executions of trades by
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poor performing brokers coincides with periodic and predictably intraday price pressure. An

important contribution our study makes to the literature is the empirical link between an

broker’s execution performance and intraday return predictability. The economically significant

magnitude of the trading-alpha exploiting this intraday return predictability suggests that the

current execution algorithm and strategy of most brokers are sub-optimal.
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Figure 4.1: Sample Construction: international data

The figure plots number of stocks in the European sample. Sample goes from January 2002 to December
2012.
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Figure 4.2: Cross-sectional regressions of half-hour-interval returns.

The figure presents the estimation results of the intraday return predictability pattern. We divide the
9:30 to 16:00 trading day into 13 disjoint half-hour return intervals. For every half-hour interval t we
run the multivariate cross-sectional regression ri,t = αt + β1,tri,t−1 + ... + β13,tri,t−13 + ui,t, where ri,t
is the return on stock i in the half-hour interval t. The cross-sectional regressions are estimated for
each half-hour interval t, from January 2000 through December 2015. The upper panel plots time-series
averages of βk,t in percentages across all half-hour intervals, where the lag variable k ranges from 1 to
13 (horizontal axis). The lower panel presents the corresponding t-statistics that are computed based on
standard errors adjusted for autocorrelation.
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Figure 4.3: Cross-sectional regressions of half-hour-interval returns: Opening and
closing hours.

The figure presents the estimation results of the intraday return predictability pattern. We divide the
9:30 to 16:00 trading day into 13 disjoint half-hour return intervals. For every half-hour interval t we
run the multivariate cross-sectional regression ri,t = αt + β1,tri,t−1 + ... + β13,tri,t−13 + ui,t, where ri,t
is the return on stock i in the half-hour interval t. The cross-sectional regressions are estimated for
each half-hour interval t, from January 2006 through December 2010. The upper panel plots time-series
averages of βk,t in percentages across opening half-hour intervals (bar OPEN), closing half-hour intervals
(bar CLOSE) and all half-hour intervals except opening and closing ones (bar MIDDLE). The lower
panel presents the corresponding t-statistics that are computed based on standard errors adjusted for
autocorrelation.
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Figure 4.4: Institutional trading volume

The figure plots average institutional trading volume for each of 13 half-hour interval within trading
days. Trading volume is in billions of dollars. Sample goes from January 2006 through December 2010.
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Figure 4.5: Contemporaneous price impacts

The figure presents the estimation results of the sensitivity of stock returns to the contemporaneous
institutional trade imbalance in the cross-section. We divide the 9:30 to 16:00 trading day into 13 disjoint
half-hour return intervals. For every half-hour interval t we run the multivariate cross-sectional regression
ri,t = αt + λtitibi,t + δttibi,t + ui,t, where ri,t is the return on stock i in the half-hour interval t, itibi,t
is institutional trade imbalance defined as buyer initiated minus sellers initiated institutional trading
volume expressed in millions of trade, tibi,t is total market trade imbalance defined as buyer initiated
minus sellers initiated total market trading volume expressed in millions of trade. The cross-sectional
regressions are estimated for each half-hour interval t, from January 2006 through December 2010. The
upper panel plots time-series averages of λt in percentages across all half-hour intervals, where the lag
variable k ranges from 1 to 13 (horizontal axis). The lower panel presents the corresponding t-statistics
that are computed based on standard errors adjusted for autocorrelation.
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Figure 4.6: Execution shortfall

The figure presents average institutional execution shortfall for each of 13 half-hour interval within
trading days. Execution short (in basis points) is defined as the difference between the execution price
of a ticket τ and the stock price when the trading desk sends the ticket to the broker. Horizontal line
indicates the half-hour interval. Sample goes from January 2006 through December 2010.
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Figure 4.7: Execution shortfall: Splitting orders

The figure presents average institutional execution shortfall for each of 13 half-hour interval within trading
days. Execution short (in basis points) is defined as the difference between the execution price of a ticket
τ and the stock price when the trading desk sends the ticket to the broker. Horizontal line indicates
the half-hour interval. We classify each broker into two categories: brokers that split the original order
and brokers that do not split the orders. We compute average execution shortfall for all institutional
investors for each broker category. Sample goes from January 2006 through December 2010.
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Figure 4.8: Institutional trading volume: Splitting orders

The figure plots percentage of institutional trading volume for split, randomly split and non-randomly
split orders for each of 13 half-hour interval within trading days. Horizontal line indicates the half-hour
interval. We classify each broker into two categories: brokers that split the original order and brokers
that do not split the orders. Furthermore, we classify brokers that split their orders into those who split
them randomly and those who does not randomize the orders. We do this by calculating the Herfindahl
index of each broker’s trades and assign brokers that have their Herfindahl index above median as non-
random, while those below median as random. We compute trading volume as average for each half-hour
interval across all trading days for all institutional investors for each broker category. Sample goes from
January 2006 through December 2010.
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Figure 4.9: Distribution of trading volume of well and poorly performing brokers
across day

The figure plots distribution of total trading volume of well and poorly performing brokers for each of 13
half-hour interval within trading days. Horizontal line indicates the half-hour interval. We classify each
broker into two categories: well performing and poorly performing brokers depending on whether their
total trading volume across sample is above or below the sample median. We consider only brokers with
total trading volume over 5 million dollars. Sample goes from January 2006 through December 2010.
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Figure 4.10: Distribution of execution shortfall of well and poorly performing brokers
across day

The figure plots distribution of execution shortfall of well and poorly performing brokers for each of 13
half-hour interval within trading days. Horizontal line indicates the half-hour interval. We classify each
broker into two categories: well performing and poorly performing brokers depending on whether their
total trading volume across sample is above or below the sample median. We consider only brokers with
total trading volume over 5 million dollars. Sample goes from January 2006 through December 2010.
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Figure 4.11: Percentage of order slitting by well and poorly performing brokers across
day

The figure plots percentage of order splitting by well and poorly performing brokers for each of 13 half-
hour interval within trading days. Horizontal line indicates the half-hour interval. We classify each
broker into two categories: well performing and poorly performing brokers depending on whether their
total trading volume across sample is above or below the sample median. For each broker type and
each half-hour interval we compute fraction of split orders. We consider only brokers with total trading
volume over 5 million dollars. Sample goes from January 2006 through December 2010.
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Table 4.2: Cross-sectional regressions of half-hour returns

This table presents the estimation results of the intraday return predictability pattern. We divide the 9:30 to 16:00
trading day into 13 disjoint half-hour return intervals. For every half-hour interval t we run the multivariate cross-sectional
regression ri,t = αt + β1,tri,t−1 + ... + β13,tri,t−13 + ui,t, where ri,t is the return on stock i in the half-hour interval t.
The cross-sectional regressions are estimated for each half-hour interval t, from January 2006 through December 2010. The
data reports time-series averages of βk,t in percentages across all half-hour intervals (Column All hours), opening half-hour
intervals (column Open), closing half-hour intervals (column Close) and all half-hour intervals except opening and closing
ones (column Middle). t-statistics in parentheses are computed based on standard errors adjusted for autocorrelation.

Variable All hours Open Middle Close

rett−1 -14.37 (-66.0) -23.44 (-45.2) -13.36 (-81.4) -16.35 (-30.9)

rett−2 -3.35 (-32.7) -7.89 (-17.3) -2.86 (-35.6) -4.24 (-11.8)

rett−3 -1.13 (-16.2) -2.56 (-4.99) -0.96 (-15.0) -1.66 (-7.11)

rett−4 -0.51 (-7.99) -1.50 (-3.23) -0.39 (-6.80) -0.81 (-4.26)

rett−5 -0.20 (-2.83) -0.27 (-0.51) -0.15 (-2.64) -0.66 (-2.29)

rett−6 -0.15 (-2.36) -0.46 (-1.00) -0.06 (-1.04) -0.87 (-3.47)

rett−7 0.19 (2.97) 1.29 (2.88) 0.14 (2.44) -0.30 (-1.41)

rett−8 0.23 (3.45) 1.93 (4.02) 0.13 (2.41) -0.31 (-1.43)

rett−9 0.24 (3.64) 1.62 (3.80) 0.17 (3.19) -0.38 (-1.88)

rett−10 0.50 (8.13) 2.15 (6.24) 0.40 (7.28) -0.07 (-0.43)

rett−11 0.46 (7.53) 2.28 (6.14) 0.40 (7.13) -0.64 (-4.70)

rett−12 0.70 (11.4) 3.11 (10.2) 0.60 (10.4) -0.55 (-5.55)

rett−13 1.14 (14.4) 4.66 (21.0) 0.55 (10.3) 4.14 (17.1)
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Table 4.3: Cross-sectional regressions of half-hour returns: European data

This table presents the estimation results of the intraday return predictability pattern for European data. We divide the
8:00 to 17:30 trading day into 17 disjoint half-hour return intervals. For every half-hour interval t we run the multivariate
cross-sectional regression ri,t = αt +β1,tri,t−1 + ...+β17,tri,t−17 +ui,t, where ri,t is the return on stock i in the half-hour
interval t. The cross-sectional regressions are estimated for each half-hour interval t, from January 2002 through December
2012. The data reports time-series averages of βk,t in percentages across all half-hour intervals (Column All hours),
opening half-hour intervals (column Open), closing half-hour intervals (column Close) and all half-hour intervals except
opening and closing ones (column Middle). t-statistics in parentheses are computed based on standard errors adjusted for
autocorrelation.

Variable All hours Open Middle Close

rett−1 -26.51 (-179.4) -42.37 (-61.6) -24.85 (-117.0) -35.63 (-60.5)

rett−2 -13.00 (-125.6) -14.49 (-23.8) -12.47 (-78.9) -19.48 (-38.8)

rett−3 -8.10 (-52.2) -5.86 (-9.53) -7.96 (-39.7) -12.37 (-30.8)

rett−4 -5.17 (-63.8) -1.62 (-2.38) -5.12 (-43.0) -9.51 (-19.6)

rett−5 -3.53 (-43.4) 0.47 (0.68) -3.49 (-31.4) -8.07 (-15.4)

rett−6 -2.34 (-27.4) 1.89 (3.05) -2.34 (-22.9) -6.63 (-13.2)

rett−7 -1.68 (-21.3) 2.84 (3.64) -1.72 (-17.5) -5.52 (-12.2)

rett−8 -0.89 (-12.3) 5.03 (6.74) -1.08 (-13.4) -3.97 (-8.99)

rett−9 -0.49 (-6.64) 4.93 (6.51) -0.65 (-8.46) -3.43 (-6.68)

rett−10 -0.22 (-2.87) 4.59 (7.02) -0.36 (-5.05) -2.96 (-4.67)

rett−11 -0.02 (-0.30) 5.14 (7.83) -0.17 (-2.46) -2.99 (-5.93)

rett−12 0.21 (3.08) 6.33 (9.40) -0.01 (-0.10) -2.74 (-7.28)

rett−13 0.28 (4.15) 6.38 (9.62) 0.06 (0.89) -2.65 (-5.43)

rett−14 0.41 (6.12) 5.69 (9.19) 0.23 (3.41) -2.09 (-3.90)

rett−15 0.67 (10.9) 6.91 (15.9) 0.41 (6.72) -1.65 (-3.33)

rett−16 0.78 (13.4) 6.58 (14.0) 0.56 (9.26) -1.62 (-4.44)

rett−17 1.06 (16.0) 5.31 (20.5) 0.60 (9.14) 3.58 (5.75)
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Table 4.4: Cross-sectional regressions of half-hour returns: controlling for trade
imbalance

This table presents the estimation results of the intraday return predictability pattern. We divide the 9:30 to 16:00
trading day into 13 disjoint half-hour return intervals. For every half-hour interval t we run the multivariate cross-sectional
regression ri,t = αt +β1

t ri,t−1 + ...+β13
t ri,t−13 +γ1t itibi,t−1 + ...+γ13t itibi,t−13 +δ1t tibi,t−1 + ...+δ13t tibi,t−13 +ui,t, where

ri,t is the return on stock i in the half-hour interval t, tibi,t denotes total trade imbalance in stock i and time t and itibi,t
corresponds to institutional trade imbalance. The cross-sectional regressions are estimated for each half-hour interval t,
from January 2006 through December 2010. The data reports time-series averages of βk,t in percentages across all half-hour
intervals (Column All hours), opening half-hour intervals (column Open), closing half-hour intervals (column Close) and
all half-hour intervals except opening and closing ones (column Middle). t-statistics in parentheses are computed based on
standard errors adjusted for autocorrelation.

Variable All hours Open Middle Close

rett−1 -9.80 (-72.4) -19.63 (-29.7) -8.76 (-61.6) -11.48 (-20.2)

rett−2 -1.98 (-29.3) -5.89 (-13.6) -1.55 (-24.3) -2.86 (-8.82)

rett−3 -0.67 (-11.0) -1.99 (-3.62) -0.50 (-9.51) -1.23 (-4.67)

rett−4 -0.32 (-5.39) -1.05 (-2.16) -0.20 (-3.71) -0.96 (-3.99)

rett−5 -0.23 (-4.01) -0.51 (-0.97) -0.14 (-2.98) -0.90 (-3.76)

rett−6 -0.10 (-1.70) -0.60 (-1.43) -0.02 (-0.32) -0.52 (-1.86)

rett−7 0.14 (2.51) 1.09 (2.34) 0.11 (2.15) -0.43 (-2.16)

rett−8 0.27 (5.11) 1.88 (3.75) 0.19 (4.16) -0.43 (-2.16)

rett−9 0.25 (4.83) 1.66 (3.62) 0.17 (3.72) -0.32 (-1.65)

rett−10 0.41 (7.92) 1.75 (4.45) 0.36 (7.55) -0.39 (-2.91)

rett−11 0.43 (8.54) 2.03 (4.90) 0.37 (7.56) -0.47 (-3.15)

rett−12 0.69 (14.4) 3.18 (8.67) 0.56 (11.4) -0.38 (-4.56)

rett−13 1.01 (23.0) 4.27 (21.3) 0.49 (10.6) 3.46 (14.6)

itibt−1 -6.52 (-4.34) -4.87 (-2.78) -6.60 (-3.96) -7.23 (-2.51)

itibt−2 -1.69 (-1.39) -7.8 (-1.61) -1.19 (-0.74) -1.04 (-0.67)

itibt−3 0.48 (0.25) -3.52 (-0.89) 1.13 (0.47) -2.56 (-1.13)

itibt−4 -3.21 (-2.36) -7.12 (-0.49) -2.73 (-1.56) -4.54 (-2.25)

itibt−5 -0.64 (-0.29) 23.56 (1.24) -2.29 (-1.15) -6.70 (-1.53)

itibt−6 2.30 (0.90) 6.93 (0.29) 2.35 (1.28) -2.88 (-0.98)

itibt−7 -5.11 (-0.83) -0.44 (-0.03) -5.46 (-0.74) -5.96 (-0.86)

itibt−8 -0.38 (-0.11) -45.59 (-1.43) 4.14 (1.12) -4.71 (-1.91)

itibt−9 -0.84 (-0.25) -0.33 (-0.06) -0.73 (-0.19) -2.61 (-1.15)

itibt−10 -25.05 (-0.83) -391.8 (-1.00) 5.19 (1.44) 10.19 (1.31)

itibt−11 -10.94 (-0.78) -6.05 (-0.76) -12.98 (-0.78) 6.77 (1.41)

itibt−12 8.95 (0.78) 2.12 (0.30) 10.14 (0.75) 2.75 (0.69)

itibt−13 -1.06 (-0.40) -1.64 (-0.13) -1.29 (-0.47) 2.08 (1.22)

tibt−1 1.60 (16.3) 0.07 (0.20) 1.79 (16.1) 1.06 (4.25)

tibt−2 0.16 (2.33) 0.27 (0.55) 0.19 (3.79) -0.35 (-1.54)

tibt−3 -0.01 (-0.17) 0.03 (0.04) 0.00 (0.07) -0.22 (-1.12)

tibt−4 -0.03 (-0.48) -0.33 (-0.50) -0.03 (-0.59) 0.28 (0.84)

tibt−5 -0.14 (-1.23) -0.76 (-0.83) -0.06 (-1.14) -0.34 (-1.66)

tibt−6 -0.02 (-0.15) 1.19 (0.89) -0.06 (-1.07) -0.69 (-1.53)

tibt−7 -0.03 (-0.44) 0.18 (0.35) -0.06 (-1.17) 0.15 (0.45)

tibt−8 -0.05 (-0.72) 0.47 (1.03) -0.07 (-1.33) -0.30 (-2.02)

tibt−9 -0.18 (-2.77) -0.49 (-1.00) -0.15 (-2.29) -0.20 (-0.70)

tibt−10 0.02 (0.21) 1.37 (2.28) -0.11 (-1.55) 0.13 (0.44)

tibt−11 -0.02 (-0.30) 0.56 (1.61) -0.06 (-1.03) -0.18 (-1.01)

tibt−12 -0.24 (-2.52) -0.94 (-1.00) -0.17 (-3.39) -0.26 (-1.56)

tibt−13 -0.10 (-1.47) 0.07 (0.10) -0.12 (-2.12) -0.10 (-0.39)105



Table 4.5: Cross-sectional regressions of half-hour returns: controlling for lagged
and contemporaneous trade imbalance

This table presents the estimation results of the intraday return predictability pattern. We divide the 9:30 to 16:00
trading day into 13 disjoint half-hour return intervals. For every half-hour interval t we run the multivariate cross-sectional
regression ri,t = αt + β1

t ri,t−1 + ... + β13
t ri,t−13 + γtitibi,t + γ1t itibi,t−1 + ... + γ13t itibi,t−13 + δttibi,t + δ1t tibi,t−1 + ... +

δ13t tibi,t−13 + ui,t, where ri,t is the return on stock i in the half-hour interval t, tibi,t denotes total trade imbalance in
stock i and time t and itibi,t corresponds to institutional trade imbalance. The cross-sectional regressions are estimated
for each half-hour interval t, from January 2006 through December 2010. The data reports time-series averages of βk,t
in percentages across all half-hour intervals (Column All hours), opening half-hour intervals (column Open), closing half-
hour intervals (column Close) and all half-hour intervals except opening and closing ones (column Middle). t-statistics in
parentheses are computed based on standard errors adjusted for autocorrelation.

Variable All hours Open Middle Close

rett−1 -10.01 (-72.4) -19.85 (-30.7) -8.95 (-61.3) -11.78 (-19.9)

rett−2 -2.06 (-30.7) -6.08 (-14.2) -1.61 (-25.2) -3.00 (-8.95)

rett−3 -0.73 (-12.0) -2.25 (-4.13) -0.53 (-10.3) -1.35 (-5.20)

rett−4 -0.35 (-5.96) -1.18 (-2.45) -0.21 (-4.07) -1.04 (-4.40)

rett−5 -0.25 (-4.48) -0.62 (-1.21) -0.16 (-3.29) -0.94 (-4.00)

rett−6 -0.12 (-2.04) -0.71 (-1.66) -0.02 (-0.40) -0.60 (-2.19)

rett−7 0.13 (2.37) 1.06 (2.25) 0.11 (2.21) -0.53 (-2.71)

rett−8 0.27 (5.19) 1.76 (3.54) 0.21 (4.64) -0.51 (-2.60)

rett−9 0.25 (4.85) 1.51 (3.35) 0.19 (4.06) -0.35 (-1.88)

rett−10 0.41 (7.87) 1.63 (4.16) 0.38 (7.82) -0.45 (-3.38)

rett−11 0.44 (8.77) 1.93 (4.57) 0.39 (8.13) -0.50 (-3.53)

rett−12 0.72 (14.9) 3.14 (8.52) 0.59 (12.0) -0.39 (-4.79)

rett−13 1.04 (23.6) 4.23 (20.6) 0.53 (11.4) 3.45 (14.5)

itibt 6.24 (2.08) 103.2 (2.87) -2.79 (-1.64) 8.24 (9.55)

itibt−1 -6.37 (-4.16) -5.03 (-2.91) -6.40 (-3.78) -7.36 (-2.54)

itibt−2 -1.81 (-1.46) -6.03 (-1.67) -1.46 (-0.92) -1.38 (-0.97)

itibt−3 0.77 (0.40) -3.84 (-1.04) 1.43 (0.62) -1.85 (-0.81)

itibt−4 -4.27 (-2.18) -12.07 (-0.98) -3.54 (-1.43) -4.43 (-2.13)

itibt−5 1.42 (0.37) 32.65 (1.23) -0.71 (-0.27) -6.54 (-1.85)

itibt−6 -0.46 (-0.19) -1.71 (-0.07) -0.13 (-0.10) -2.83 (-1.04)

itibt−7 -3.33 (-0.63) 7.98 (0.78) -3.97 (-0.68) -7.68 (-0.92)

itibt−8 1.78 (0.58) -26.79 (-1.53) 4.98 (1.28) -4.82 (-1.55)

itibt−9 -3.01 (-0.80) -5.68 (-1.07) -2.76 (-0.63) -3.12 (-1.29)

itibt−10 -23.43 (-0.85) -344.0 (-1.01) 2.60 (0.87) 12.17 (1.48)

itibt−11 -9.23 (-0.84) -6.16 (-0.68) -10.72 (-0.82) 4.18 (1.05)

itibt−12 3.25 (0.41) -7.20 (-0.96) 4.22 (0.45) 3.10 (0.85)

itibt−13 -3.58 (-1.26) -11.23 (-0.93) -3.28 (-1.11) 0.79 (0.45)

tibt 19.65 (35.9) 30.88 (12.4) 19.13 (33.4) 14.16 (10.2)

tibt−1 -0.81 (-12.8) -1.46 (-3.71) -0.67 (-9.42) -1.75 (-9.21)

tibt−2 -1.07 (-16.1) -1.26 (-2.87) -0.97 (-20.4) -1.91 (-6.96)

tibt−3 -0.90 (-12.5) -1.38 (-2.66) -0.82 (-13.1) -1.31 (-5.33)

tibt−4 -0.78 (-12.0) -1.43 (-2.40) -0.71 (-12.0) -0.82 (-2.29)

tibt−5 -0.72 (-8.06) -1.52 (-2.77) -0.61 (-10.2) -1.14 (-5.88)

tibt−6 -0.61 (-8.91) -0.36 (-0.38) -0.55 (-10.2) -1.52 (-3.31)

tibt−7 -0.55 (-9.12) -1.19 (-2.24) -0.49 (-9.13) -0.60 (-1.80)

tibt−8 -0.54 (-7.34) -0.67 (-1.16) -0.48 (-9.30) -1.03 (-5.47)

tibt−9 -0.61 (-8.71) -1.56 (-3.14) -0.50 (-7.35) -0.87 (-2.85)

tibt−10 -0.44 (-5.07) 0.12 (0.20) -0.49 (-7.53) -0.52 (-1.88)

tibt−11 -0.49 (-9.38) -0.88 (-2.53) -0.42 (-8.61) -0.85 (-4.45)

tibt−12 -0.68 (-6.78) -2.27 (-2.54) -0.52 (-9.48) -0.79 (-4.23)

tibt−13 -0.66 (-11.2) -1.99 (-3.69) -0.52 (-7.97) -0.78 (-2.88)
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Table 4.6: Economic value of execution costs

This table presents average returns from trading against existing intraday price reversals. We divide the 9:30 to 16:00
trading day into 13 half-hour intervals. We analyze equal-weighted portfolio trading strategies with holding periods of
one half-hour. Every half-hour interval, stocks are grouped into 10 portfolios according to past half-hour performance.
The portfolio are formed every half-hour (row Average) or only at the specific half-hour interval each trading day. P1

corresponds to the portfolio of stocks with the worst past half-hour performance while P10 denotes portfolio with the
highest past half-hour performance. T-statistics for P1 − P10 portfolio are given in parentheses. All returns are in basis
points. Sample goes from January 2006 to December 2010.

Half-hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 − P10

9:30 42.15 8.16 2.85 0.48 -1.21 -2.73 -3.24 -5.30 -8.63 -31.17 73.32 (56.1)

10:00 20.30 1.84 0.11 -0.78 -1.49 -2.43 -3.22 -4.62 -7.11 -28.70 49.00 (52.2)

10:30 13.75 -1.77 -2.46 -1.75 -1.77 -1.21 -0.53 0.34 -0.07 -15.40 29.15 (44.9)

11:00 12.42 -1.94 -2.10 -1.89 -1.79 -1.20 -1.01 -0.73 -0.83 -13.70 26.12 (43.5)

11:30 12.73 -0.77 -1.06 -1.14 -0.59 -0.57 0.22 0.65 0.54 -10.81 23.54 (41.8)

12:00 13.44 0.66 -0.18 -0.47 -0.30 -0.39 0.12 -0.44 -0.59 -12.05 25.49 (44.7)

12:30 14.46 1.23 0.40 -0.01 0.01 0.18 0.23 0.17 -0.14 -10.44 24.90 (50.0)

13:00 14.16 2.16 1.10 0.49 0.22 0.34 0.17 0.18 -0.46 -11.84 26.00 (49.4)

13:30 12.45 0.65 -0.13 -0.24 -0.38 -0.38 -0.40 -0.70 -1.14 -11.41 23.86 (47.2)

14:00 13.58 1.26 0.29 -0.45 -0.82 -0.84 -1.07 -1.61 -2.37 -13.79 27.37 (52.9)

14:30 15.01 2.59 1.68 1.35 1.10 0.90 0.87 0.64 0.30 -10.40 25.41 (44.4)

15:00 15.31 2.61 1.21 0.85 0.53 0.38 0.35 -0.14 -1.05 -12.55 27.86 (47.2)

15:30 27.10 5.05 3.04 2.16 1.97 1.37 1.26 0.99 0.75 -5.94 33.04 (50.2)

Average 17.45 1.67 0.37 -0.11 -0.35 -0.51 -0.48 -0.81 -1.60 -14.48 31.93 (94.2)
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Chapter 5

Conclusion

In this thesis, we studied the impact of transaction costs on stocks prices and examined the

impact of institutional investors and high frequency traders (HFTs) on market quality and

transaction costs.

We documented a causal negative impact of a larger tick size on stock prices and calculate

the liquidity premium implied by the change in tick size. The sources of stock price variation

appear different across various treated stocks in the program. We showed that the decline in

stock prices is associated with an increase in spreads and in price impact, and with a reduction

in volume for groups 1 and 2 stocks. For these stocks, we showed that there is an increase in

investor horizon consistent with the view that transactions costs have a direct effect over stock

prices holding expected returns constant, as in Amihud and Mendelson (1986). However, for

group 3 stocks, we showed that there is a change in quoted spreads but no change in effective

spreads or in trading volume. We also studied the indirect effect on stock prices through

expected returns (net of transactions costs) of the change in tick size. We show that there is

no statistically significant change in liquidity risk across all test groups. However, we show

that all stocks experience a decline in price efficiency suggesting that information risk and thus

expected returns increased for the treated stocks. This evidence is consistent with firm’s cost

of capital being affected by market microstructure features.

In the analysis of the effects of multimarket HFT activity on systematic liquidity co-

movements within a network of European markets, we use the staggered introduction of an

alternative trading platform, Chi-X, in 11 European equity markets as our instrument for an

exogenous increase in multimarket HFT activity. We found that liquidity co-movements within

the aggregate European market significantly increase after the introduction of Chi-X in a given

country and are even higher than liquidity co-movements within the corresponding home market.

We further showed that European-wide liquidity co-movements are stronger in down markets

and for stocks with a higher intensity of HFT market making activity in the post-Chi-X period.

Overall, our findings are consistent with the notion that multimarket HFT activity induces

stronger network-wide liquidity co-movements, thus making propagation of liquidity shocks

easier across different markets.

Our results suggest that market participants and policymakers currently underestimate

potential liquidity risks, generated by HFTs. Stronger network-wide liquidity co-movements,

especially during crisis periods, imply that equity markets are now more susceptible to negative
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liquidity shocks, exactly when such shocks are more likely to occur. Raising awareness of these

risks should help institutional investors to manage their liquidity risks better and regulators to

develop better policies aimed at the reduction of such risks on financial markets.

In our analysis of the effect of the sub-optimal execution by trading desks on predictable

patterns in trading volume and return predictability, we found that the execution of orders

by brokers are predictable within a trading day and executions are clustered at the end of

the day where trading costs is the highest. We also showed that the execution strategy of high

performing institutions outperform their peer brokers, who have a tendency to trade at the end of

the day. Executions of trades by poor performing brokers coincides with periodic and predictably

intraday price pressure. An important contribution our study makes to the literature is the

empirical link between an broker’s execution performance and intraday return predictability.

The economically significant magnitude of the trading-alpha exploiting this intraday return

predictability suggests that the current execution algorithm and strategy of most brokers are

sub-optimal.
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