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Abstract

This work is motivated by an attempt to explain the origins of syringomyelia. This serious disease is 

characterized by the appearance of cavities, called syrinxes, in the central canal of the spinal cord resulting 

in partial or complete paralysis. The causes of syringomyelia are unknown but pressure propagation is 

probably implicated. Pressure pulses, caused by coughing, sneezing and similar activities, propagate up the 

cerebrospinal fluid (CSF) in the spinal subarachnoid space. Williams (1990) suggested a possible cause of 

syrinx formation is that when such pressure pulses encounter a partial or total blockage a large pressure rise 

would be generated in the spinal central canal. Our theoretical model modeling was undertaken to 

investigate Williams’ hypothesis.

Essentially, we model the spinal system as a channel separated into two parts by a flexible diaphragm 

representing the spinal cord. The upper part (A) represents the subarachnoid space while the lower part (B), 

which has a much smaller cross-sectional area, represents the central canal. A theory for pressure wave 

propagation in such a two-chamber system is described. It has been used to study the wave characteristics 

of the two-chamber system. In this way it has been found that the leading edge of a pressure pulse/wall 

bulge tends to steepen into a shock-like wave or elastic jump. When such a pressure pulse is incident on a 

blockage in the subarachnoid space, a large pressure rise is generated in its vicinity. We showed that this 

pressure rise could be momentary or permanent depending on whether the pressure pulse bulge is positive 

or negative. This provides a possible mechanism for the formation of the syrinxes.

An experimental rig has also been built in order to qualitatively confirm some theoretical results. The 

experimental wave speed agreed with the wave speed defined in the theoretical model. We were also able 

to confirm that the reflection of a pressure pulse from a blockage placed in the upper part A (subarachnoid 

space) leads to high pressure in the vicinity of the blockage.



Contents

1 Introduction .............................................................................................  1

1.1 Historical concept of biological flows ...............................................  1

12. About syringomyelia ........................................................................... 3

2 Cerebrospinal system ...............................................................................  7

2.1 Introduction ................................................................................  7

2 2  Structure and functions of the spinal c o r d ........................................... 7

2.2.1 Anatomy of the spinal co rd ...................................................  8

2.2.2 Principal elements and their functions (spinal c o rd ) ...........  9

23 Principal elements of the brain and their functions............................  11

2.4 Peculiar features of the nervous system ............................................  13

2.4.1 Main sites of secretion and absorption of C S F ....................  14

2.4.2 Spaces or cavities in the cerebrospinal system .................... 15

23 Cerebrospinal fluid (CSF) ...................................................................  19

23.1 Properties of CSF ................................................................  19

23.2 Cycle of C S F ......................................................................... 20

233.1  Secretion of C S F .................................................  20

23.2.1.1 Site of formation of C S F ........................  20

23.2.1.2 Mechanisms of formation of C SF ...........  22

23.2.2 Route of C S F .......................................................  24

23.2.3 Absorption of CSF 24



2.5.3 Mechanism for transmission of vascular pressure 26

253 .1  Effect of artery a lo n e ............................................ 26

2 5 3 2 . Effect of outflow through a valve..........................  26

2 5 3 3  Effect of veins ..................................................  27

2 5 3 .4  Effects of removing CSF on the C S F ................. 28

2 5 3 5  CSF pulsation..........................................................  28

2.6 Measurements of pressure....................................................................  31

2.6.1 Pressure measurement............................................................  31

2.6.2 Dynamics of intracranial pressure (IC P )................................ 31

2.63 Posture affects IC P ................................................................  33

2.6.4 Coughing ............................................................................ 34

3 About syringomyelia.................................................................................  37

3.1 Definition .............................................................................................. 37

3.2 Historical concept .................................................................................  39

33  Causes of syringomyelia ....................................................................... 40

3.4 Forms of syringomyelia......................................................................  41

35 Symptoms of syringomyelia ................................................................. 42

3.6 Diagnosis and treatments....................................................................... 45

3.6.1 Diagnosis ...............................................................................  45

3.6.2 Treatments .............................................................................  47

3.7 Pathogenis ............................................................................................ 49

3.7.1 The hydrodynamic forces ...................................................  49

ii



3.7.2 Suck mechanism 50

3.73 The communicating hypothesis ...........................................  51

3.7.4 The slosh mechanism ......................................................... 52

3.73 Transmural pressure gradient ......... ......................................  53

3.8 State of research ................................................................................... 54

3.9 Summary of research initiatives .......................................................... 57

4 Flows through collapsible tu b es ..............................................................  60

4.1 Definition and applications..................................................................  61

4.2 The Starling resistor...............................................................................  62

4 3  The mechanics of the tube wall: tube law .............................................  64

4.4 Wave speed ...........................................................................................  73

4 3  The elastic jump ...................................................................................  74

5 Pressure wave propagation in a coaxial tube m odel............................  79

5.1 Introduction............................................................................................ 79

5.2 Coaxial tubes m odel...............................................................................  80

5.2.1 Assumptions of the m odel......................................................  80

5.2.2 Governing equations..............................................................  81

53  Wave speed definition............................................................................  83

53.1 Linear case...............................................................................  83

53.1 Non-linear case......................................................................... 85

5.4 Tube law (Pressure-area relation)..........................................................  87

iii



\

5.5 Elastic jump phenomenon.....................................................................  88

55.1 Variations of the wave sp e e d ................................................  88

55.2 Nonlinear effects on the wave speed: constant total cross-

sectional area ..................................................................................  89

5 5 3  Nonlinear effects on the wave speed: gradual changes in the 

total cross-sectional a r e a .................................................................  91

553.1  Increase of the total cross-sectional a rea .................91

5 53 .2  Decrease of the total cross-sectional a r e a ...............92

5.6 Summary of the nonlinear effects on the wave sp eed .......................  93

6 Solving the equations................................................................................  94

6.1 Introduction........................................................................................... 94

6.2 Direct method (linear case).................................................................... 94

6.2.1 Type of solution...................................................................... 94

6.2.2 Examples................................................................................  95

6.2.2.1 Piston in harmonic motion ......................................95

6.2.2.1 Other cases: with compliance, resistance...............98

6.2.3 Analysis..................................................................................  100

6 3  Method of characteristics...................................................................... 102

63.1 Introduction............................................................................  102

63.2 Governing equations...............................................................  103

6.3.3 Characteristic lines and compatibility equations...................... 104

6.33.1 Linear case ...............................................................  104

IV



6 3 3 .2  Nonlinear case .........................................................  107

6 3 3 .2  Weakly nonlinear c a s e ............................................. 108

63.4 Numerical integration procedure............................................. 110

63.4.1 Numerical procedure for the linear c a s e ................. I l l

6 3 .4 3  Numerical procedure for the nonlinear c a s e ...........112

63.4.2.1 Finite difference equations....................... 112

6 3 .4 3 3  Numerical strategy....................................  112

6 3 3  Numerical analysis.................................................................. 114

6 33 .1  Linear case .............................................................  114

6 3 3 3  Full nonlinear c a s e ........................../ . ..................... 117

Propagation of pressure pulses in a two-coaxial tube m odel................. 120

t
7.1 Introduction............ v ........................................................................  120

7.2 Governing equations..............................................................................  121

7.2.1 Notation..................................................................................  121

73.2 Governing equations..........................................................  122

7 3  Tube law (pressure-area relation).........................................................  123

7.4 Small perturbation theory for elastic ju m p s ......................................... 124

7.4.1 Estimate of the shock-like wave speed ................................  124

7.4.2 Elastic jump reflection...........................................................  126

7.43.1 Effect of the incident w a v e ....................................  127

7.4.23 Effect of the reflected w a v e ....................................  127



V

7.4.23 Analysis of the transmitted w a v e ............................130

73  Numerical solution ................................................................................. 131

73.1 Incident wave analysis............................................................  132

73.2 Reflected wave analysis.......................................................... 133

7.6 Exam ples...............................................................................................  135

7.6.1 Relations before-after the elastic ju m p ..................................  136

7.62 Reflection of an elastic ju m p .................................................  137

7.63 Comparison between the small perturbation theory and the

numerical resu lts ...............................................................................  138

7.7 Propagation of a pressure pulse.................................................................. 139

7.7.1 Introduction...................................................................................139

7.7.2 Propagation and reflection of a pulse with pressure

difference drop.......................................................................................140

7.7.2 Propagation and reflection of a pulse with pressure

difference rise .....................................................................................  141

8 Physical model of the spinal CSF sy stem ...............................................  143

8.1 Experimental apparatus.......................................................................  143

8.1.1 Overview of the m easurements........................................... 143
i

8.1.2 Description of the apparatus...............................................  144

8.13 Measurement instruments.................................................... 145

8.2 Measurement of the wave speed ........................................................ 146

8.3 Reflection of a pressure w a v e ..............................................................  147

VI



V

9 Pressure pulse propagation in the spinal CSF system:

syrinx formation.........................................................................................  150

9.1 Introduction......................................................................................... 150

9 2  Analysis of the propagation and reflection of a pulse with pressure

difference d ro p .............................................................................................  151

93  Analysis of the propagation and reflection of a pulse with pressure

difference r i s e ................................................................................................ 153

9.4 Possible mechanism for syrinx formation in syringomyelia............  155

9.4.1 Porosity effects on syrinx formation....................................... 156

9.4.2 Syrinx expansion......................................................................  157

9.4.2 Conclusion...............................................................................  158

10 Conclusions and recommendations for further work............................. 160

References....................................................................................................  170

A T ab les........................................................................................................... 182

A.l Tables of chapter 2 .................................................................................  182

A.2 Tables of chapter 3 .................................................................................  183

A 3 Tables of chapter 6 ...............................................................................  185

A. 4 Tables of chapter 7 ...........................................................................  (188

A3 Tables of chapter 9 .............................................................................  192

B Figures..........................................................................................................  192

B. l Figures of chapter 2 ...........................................................................  192

B.2 Figures of chapter 3 ...............................................................................  213

vii



\

B 3  Figures of chapter 4 ..............................................................................  225

B.4 Figures of chapter 5 ..............................................................................  230

B 3  Figures of chapter 6 ..............................................................................  233

B.6 Figures of chapter 7 ..............................................................................  243

B.7 Figures of chapter 8 ..............................................................................  252

B.8 Figures of chapter 9 ..............................................................................  256

Appendix A: Method of characteristics.................................................  266

Appendix B: About the elastic jum p........................................................ 276

C Glossary........................................................................................................  284

D Diagram of the experimental apparatus (format A 3 ).............................  291

I

Vlii



Acknowledgments

This work is dedicated to the memory of Bernard Williams: when a personal passion 

serves the general interest.

1 also would like to thank Peter Carpenter for his guidance and Tony Lucey for adding an 

extra-academic aspect to this Ph. D.

Finally I would like to thank my family and friends for their continuous support.

Declaration

This thesis was prepared by myself.

i



CHAPTER 1 

INTRODUCTION

1.1 HISTORICAL CONCEPT OF BIOLOGICAL FLOWS

The field of biological flows is vast. The main topics are the cardiovascular system, the 

air-flow in lungs, and more recently, the cerebrospinal fluid (CSF) system, particularly in 

the head. It is believed to originate in ancient Egypt with observations concerning pulse 

wave propagation in arteries. The Edwin Smith Papyrus (about 3000 BC) records that 

pulsations originating in the heart were observed on trephining the skull. Later, in ancient 

Greece, Erasistrathos (280 BC) is said to have taught that the arterial pulse originates at 

the heart and arrives at peripheral locations a short time later. However, it is common to 

start with Gallen (130-200 AD) who recognised the structures of the heart and that the 

vessels contained blood.

We will now cite the most famous contributors to the field, with an extremely brief 

description of their contribution. Harvey (1578-1657) was the first to discover that the 

blood path was a circle. However, there is no evidence to the effect that Harvey, or any of 

his contemporaries, were aware of observations on the circulation made about 400 years 

earlier by Ibn an Nafis (979-1037). Nevertheless, it was Harvey who introduced the
i

modem scientific method into biology. Galileo (1564-1642) showed that mathematics 

was the essential key to science, without which nature could not be properly understood. 

This outlook inspired Descartes (1596-1650) to work on physiology. This proved to be a 

failure because of his lack of knowledge in physiology. This shows us that a specialist of
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one single field does not have a sufficient knowledge to properly understand the 

complexity of the phenomena involved in biological flows. Borelli (1608-1679, 

mathematics) and Malpighi (1628-1694, medicine) understood that a collaboration was 

necessary in order to understand physiology. Borelli would seem to be the first to apply 

the laws of mechanics to living matter and is thus often called the founder of medical 

physics. Malpighi discovered the passages in the lung substance predicted by Harvey (the 

lung capillary blood vessels), with a simple microscope. What would have happened if 

Descartes had had a Malpighi close to him?

However, collaboration between science and biology was not stillborn. Most of the 

following contributors to the field (like the earlier ones) had both a science and medical 

background. In the eighteen century, Hales (1677-1761) measured the hydrostatic 

pressure in the arteries and veins of living animals. Bernoulli (1700-1782) renowned for 

his equation on pressure changes with the inter-conversion of kinetic and potential 

energy, made his inaugural lecture on the mechanics of breathing. Euler (1707-1783) 

wrote the equations of motion which lead to description of wave propagation in arteries. 

Young (1773-1829) was the first to correctly estimate the arterial pulse wave velocity (5 

m/s). At the same time Poiseuille (1797-1867) was a physician interested in blood-flow. 

He invented the mercury manometer to measure the blood pressure in the aorta of a dog 

while he was a medical student, ai?d discovered Poiseuille’s law of viscous flow upon 

graduation. Von Helmoltz (1821-1894) is often seen as the “father of bioengineering”. He 

was the first to determine the velocity of the nerve pulse, giving rate of 30 m/s and made 

many other discoveries. E. H. Weber (1795-1878) and his brother W. E. Weber (1804- 

1891) established many of the properties of propagated and reflected waves in arteries.
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Fick (1829-1901) who is renowned for Fick’s law on diffusion, proposed a method for 

the measurement of cardiac output. In this century, McDonald (1917-1973) and 

Womersley (1907-1958) had a productive collaboration. They clarified the arterial fluid 

dynamics and catalysed a great expansion of interest in the field.

From an engineering point of view, research in biological flows has been mostly devoted 

to cardiovascular and respiratory problems. In contrast cerebrospinal fluid (CSF) 

movements in the cerebrospinal system have mainly been studied by physiologists. This 

is probably the reason why few theoretical models have been developed compared with 

the cardiovascular system. The existing models tend to use the compartmental model 

theory which in rough terms involves exchanges between compartments, ignoring what is 

happening within the compartment itself. This approach is not useful if one wants to 

understand the variations of certain quantities (CSF pressure and velocities for instance) 

within a compartment. For example, if one were interested in understanding what 

happens when a pressure wave propagating along the spinal CSF system encounters a 

blockage to its path.

12  ABOUT SYRINGOMYELIA

Syringomyelia is a serious disease of the spinal cord. It is a characterised by the 

appearance of longitudinal cavities (see figure 3.1) within the spinal cord (Williams
I

1990a, 1993, Gjerris and Bprgesen 1992). These cavities are termed syrinxes and in 

severe cases can be large and extensive, destroying the nervous tissue of the spinal cord 

and resulting in partial or complete paralysis. The causes of syringomyelia are unknown 

but pressure propagation is probably implicated (Williams, 1990b). Pressure pulses,
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caused by coughing, sneezing and similar activities, propagate up the CSF in the spinal 

subarachnoid space. Williams has proposed two possible mechanisms involving such 

pressure pulses for the formation of syrinxes which he has called suck and slosh (see 

chapter 3). The suck mechanism is relatively easy to understand. Many cases of 

syringomyelia involve a structural lesion at the foramen magnum, leading to the descent 

of a hindbrain tonsil into the spinal subarachnoid space (see figure 3.2). The tonsil is 

envisaged as acting as a one-way valve, lifting to allow a pressure pulse to drive CSF into 

the head, thereby raising the pressure there. This pressure rise would subsequently act to 

drive the CSF back into the spinal subarachnoid space but for the one-way action of the 

hindbrain tonsil. Accordingly a new return path is sought and the CSF is driven into the 

central canal of the spinal cord, thereby creating a syrinx. This hypothesised mechanism 

is plausible and can be roughly modelled theoretically, but it cannot explain the formation 

of non-communicating syrinxes. The alternative, more vague, slosh mechanism was 

proposed to explain these. For slosh, a high resistance in the form of a partial or complete 

blockage to the flow of CSF in the spinal subarachnoid is still required. In this case, 

though, the pressure pulses generated by coughing or sneezing, are thought to be 

communicated to the spinal central canal and intensified through interaction with the 

blockage thereby causing syrinxes to form. The aim of this PhD research project is to 

develop theoretical models to help us to understand how and why these cavities form. A 

particular attention will be paid to the slosh mechanism.

In order to understand the problem raised by syringomyelia well, we describe the 

cerebrospinal system in chapter 2. By the end of chapter two, enough anatomical 

knowledge of the cerebrospinal system will have been provided to understand what is

4
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syringomyelia, which is described in detail in chapter 3. In this chapter we will expose 

most of the concepts linked with syringomyelia; causes and forms of syringomyelia, 

symptoms, treatments available, and the state of research. Williams (1976) carries out 

pressure measurements of the CSF in the lumbar and cisternal (top of the neck) regions of 

human subjects during and following coughing. These results suggested that the pressure 

propagation process is similar to the propagation of longitudinal waves in elastic tubes 

and channels (see Lighthill, 1978). This is the reason why we started developing a 

theoretical model for wave propagation in the spinal system. Therefore, in chapter 4, we 

review flows through collapsible tubes, demonstrating some peculiar phenomena 

involved with collapsible tubes: for example, tube law, wave propagation, elastic jump, 

etc. We will then adapt the classical collapsible tube theory to our case of coaxial tubes 

system, where the inner tube is compliant. In chapter 5, after having derived the 

governing equations for this system, we will define the wave speed. A simple analysis of 

the wave speed will lead us to the possibility of an elastic jump (a phenomenon akin to 

the shock wave or hydraulic jump which usually involves a large pressure jump). In 

chapter 6 we will solve the linearized governing equations using a “direct method”. 

However, we will need another method to solve the full non-linear equations: the method 

of characteristics. This will concern the final part of chapter 6. As with collapsible tubes, 

, we will derive the characteristic lines (lines along which a perturbation propagates) and 

the compatible equations (which governs how the quantities change along these 

characteristic lines). In this chapter, we will confirm the possibility of the creation of an 

elastic jump through the convergence of the characteristic lines. In chapter 9, we will 

analyse what happens to the fluid properties across these lines when they join together to

5
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form an elastic jump or a shock-like wave. We will then use this analysis of elastic jumps 

combined with the results of the characteristics method to analyse the propagation and 

reflection of a pressure pulse, especially when it encounters a blockage. We also carried 

out experiments in an attempt to confirm some of the theoretical results. Chapter 8 will 

describe the experimental rig and results. In the final chapter (chapter 9), we will apply 

this theory to the spinal system. Indeed, we will propose a possible mechanism for the 

formation of syrinx in syringomyelia.

Note that a glossary is available at the end of the thesis (appendix E) which may be useful 

for the non-specialists of the cerebrospinal system, especially for chapters 2 and 3. It 

includes technical words like theca or anencephalus as well as more common words like 

hernia or capillary which are well-known words, but a brief definition was thought to be 

helpful.

6



CHAPTER 2

CEREBROSPINAL SYSTEM

2.1 INTRODUCTION

In order to well understand the problem raised by syringomyelia, it is essential to describe 

the surrounding of the spinal cord: the cerebrospinal system. This brief description will 

only show the important features of the system, necessary to understand the overall 

problem, especially to non-specialists of the cerebrospinal system. The anatomy of the 

spinal cord is the concern of section 2.2, including functions of the important elements. 

The spinal cord system being continuous with the cerebral system, section 23  is devoted 

to the description of the brain. Some particular attention is then paid to some peculiar 

features of the cerebrospinal system (section 2.4). We will then concentrate on the 

cerebrospinal fluid: its path, its secretion and absorption (section 23). In the same 

section, we will also review some mechanisms involved with the cerebrospinal fluid. 

Finally, we will focus our attention on the intracranial pressure (ICP), especially when 

sudden pressure changes due to cough or posture occur (sections 2.6).

Let us recall that a glossary is available at the end of the thesis (appendix C).

22  STRUCTURE AND FUNCTIONS OF THE SPINAL CORD

The aim of this section is to give a brief description of the spinal cord for the non­

specialists. A particular attention is given to the meninges, the grey and white matter and 

the central canal.

7



2.2.1 Anatomy of the spinal cord

The spinal cord can be divided into cervical, thoracic, sacral and coccygeal regions 

according to the parts of the body its nerves supply (figure 2.1). Each of these can be 

further subdivided into segments, each giving rise to a pair of spinal nerves i.e. eight 

cervicals (C1-C8), 12 thoracic (T1-T12), five lumbars (L1-L5), five sacral (S1-S5) and 

one coccygeal. The spinal cord lies in the vertebral canal and is continuous with the 

medulla oblongata (see figure 2.2). Distally it tapers into the conus medullaris which ends 

at a variable level between the twelve thoracic vertebrae (T12) and the disc between the 

first and second vertebrae (L1-L2). The cord is surrounded and protected by all three 

layers of the meninges and by the cerebrospinal fluid, all of these are continuous with 

those around the brain. A longitudinal groove, the anterior or (ventral) median fissure, 

runs the entire length of the cord. Although there is no fissure posteriorly, a posterior 

(dorsal) median septum is seen in cross-section.

In cross-section (figure 23), the spinal cord consists of an external layer of white matter 

and an inner core of grey matter, within which there is a minute central canal continuous 

with the fourth ventricle of the brain. The grey matter is shaped like a butterfly with the 

wings on each side being the anterior (ventral) and posterior (dorsal) horns. The anterior 

horn is motor in function, the posterior horn is sensory and the lateral horn is 

sympathetic.

As it can be seen in figure 2.1, the diameter varies along the spine. Even though it has the 

same structure throughout the spine, the arrangement of grey matter is modified locally as 

indicated in figure 2.3. This is the result of differences in the numbers and type of its

8



contained neurons. Thus the grey matter of cervical and lumbo-sacral regions is more 

abundant because these regions supply the limbs. That of thoracic and upper lumbar 

segments is relatively scanty because it supplies only the trunk. The white matter differs 

but little in its fundamental arrangement throughout the spinal cord, being contained 

within three funiculi on each side. A large part of white matter is composed of 

spinospinalor propiospinal fibres , i.e. the ones arising and terminating within the spinal 

cord, thereby linking various levels and providing for coordinated activity. They are of 

short and long types. The short ones interconnect levels within a given region, such as 

from one cervical segment to another. The long ones pass from one region to another, i.e. 

from cervical to lumbar.

22 2 . Principal elements and their functions (spinal cord)

In this section we will focus on some parts of the spinal cord (some of them are 

continuous with the cerebral part) which are particularly relevant to our research.

The meninges

The brain and spinal cord are protected by three layers of non-nervous tissue collectively 

called meninges. The outmost is the dura mater, the middle one is the arachnoid mater, 

and the inner one close to the nervous tissue is the pia mater (figure 2.4). These layers 

have a protective function; they enclose the central nervous system and anchor it against 

sudden movements. They also enclose the cerebrospinal fluid, which forms a fluid 

cushion to protect the brain from trauma and is an intermediary in the exchange of 

substances between the brain and rest of the body.

9



The cranial dura mater is a double layer of tough connective tissue (figure 2.5). Its outer

layer adheres to the bones of the skull. Its inner layer, the true dura mater, lines the skull 

and forms sheets of tissue which dip between the cerebral hemispheres (falx cerebri), 

between the cerebellar hemispheres (falx cerebelli), and between the cerebellum and the 

cerebrum (tentorium cerebelli). The dura mater forms a pathway for the cranial venous 

sinuses. In the spinal cord, only the true dura mater is present.

The arachnoid mater is an important component of the blood-brain barrier by means of 

which an optimal environment is created and maintained for the cells of the central 

nervous system. In the region of the superior sagittal sinus the arachnoid mater projects 

through small openings in the dura mater. These projections resemble granules (arachnoid 

granulations). Their function is to return cerebrospinal fluid to the blood in the superior 

sagittal sinus in the process of cerebrospinal fluid circulation. The arachnoid mater is 

composed of connective tissue with flat interdigitating cells on its surface.

The pia mater is very thin and rich in capillaries. It is attached to the brain, closely 

following the contours of its folds (gyri) and fissures (sulci). It is also closely bound to 

the spinal cord. It is thicker, stronger and less vascular along the spinal cord. Additionally 

the spinal pia mater forms an anchoring sheet, the denticulate ligament. Within the brain, 

the tela choroidea are thin areas in the roof of the third and fourth ventricles and the wall 

of the lateral ventricle. They consist of an adherent layer of pia mater and ependyma and 

give rise to the choroid plexus.

10



Grey matter (figure 2.6)

The grey matter (cortex) covering the surface of the hemispheres is composed of neural 

cell bodies, their proximal neurites, blood vessels and supporting neuroglial cells. The 

neurons are of various type and some areas contain a concentration of certain types of 

multipolar neurons.

White matter (figure 2.6)

The white matter consists of myelinated nerve fibres (axons) embedded in neuroglia. The 

nerve fibres in the white matter form nerve tracts which connect different areas of the 

same hemisphere (short and long association fibres) or connect one hemisphere with the 

other hemisphere (commissural fibres) or are afferent and efferent fibres (projection 

fibres) which pass from and to the brainstem or spinal cord, sometimes via masses of grey 

matter buried inside the cerebral hemisphere.

Central canal

It extends from lower extremity of fourth ventricle to within a few millimetres of the 

commencement of the filum terminale, being about 500 mm long. It is lined with a 

variable thickness of ependyma. The canal is scarcely visible to naked eye, about 0.1 mm 

of diameter. Frequently occluded, it may exhibit forking. Beyond the point where the 

coccygeal nerve leaves the cord, the central canal dilutes to form the terminal (fifth) 

ventricle: an expanded sac which ends bluntly just above the filum terminale.

II



23  PRINCIPAL ELEMENTS OF THE BRAIN AND THEIR

FUNCTIONS

In the same way as section 2.2, we give a brief description of the cerebral system. The 

elements described are: the cerebral hemispheres, the cerebellum, the brainstem and the 

falx cerebelli.

Cerebral hemispheres

The two cerebral hemispheres are the largest part of the brain and cover many other 

structures. The right and left cerebral hemispheres are connected to one another inferioriy 

by a band of transversely running white fibres called the corpus callosum (figure 2.7). 

Each hemisphere has four lobes named after their position in the skull, i.e. frontal, 

parietal, temporal and occipital. Inside, each cerebral hemisphere has a C-shaped lateral 

ventricle. In the floor and medial walls of the hemispheres are collections of grey matter, 

and nerve fibres.

The surface of each hemisphere is covered by broad folds of grey matter (gyri) and spaces 

or furrows (sulci) between the gyri.

Cerebellum

The cerebellum is the largest part of the hindbrain (see figure 2.8). It consists of two 

cerebellar hemispheres united by a central, median vermis. The surface of the cerebellum 

is deeply folded. Major folds, the fissures, subdivide the cerebellum into superior and 

inferior halves, and demarcate subdivisions, the anterior, posterior and flocculonodular 

lobes within each hemispheres. The cerebellum is similar in structure to the cerebral
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hemisphere: the cerebral cortex (grey matter) forms folds (folia) on the surface and 

surrounds the white matter, within which are embedded the intracerebellar or deep nuclei.

The brainstem

The brainstem consists of the midbrain, the pons and the medulla (see figure 2.9). All of 

these are midline structures which are overgrown by the cerebral hemispheres during 

development. Therefore, most parts of the brainstem can only be seen when the brain is 

viewed from below or in section. Rostrally the brainstem is continuous with the 

diencephalon. Caudally it blends with the first cervical segment of the spinal cord. 

Dorsally it is connected to the cerebellum by the superior, middle and inferior cerebellar 

peduncles. The white matter of the brainstem is arranged in bundles or tracts. These may 

be local connections within the brainstem itself or projection fibres linking brainstem 

structures to other parts of the central nervous system, often as part of functional systems.

The falx cerebri

A prominent longitudinal fissure partially divides the cerebrum into two hemispheres 

(figure 2.10). The fissure is occupied by a downward projection or fold of dura mater: the 

falx cerebri (figure 2.11). When the arachnoid and pia mater are removed, it is seen that 

the hemispheres are folded or convoluted. The convolutions are called gyri, the 

depressions or intervals between gyri, sulci.
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2.4 PECULIAR FEATURES OF THE NERVOUS SYSTEM

In this part we will focus our attention on some features of the system which are 

particularly essential in order to understand the formation, the path and the absorption of 

the cerebrospinal fluid. It is subdivided in two parts: the elements responsible for the 

secretion and absorption of cerebrospinal fluid (respectively choroid plexuses and 

arachnoid villi), and the spaces that the fluid uses to circulate (subarachnoid and subdural 

spaces, cistema, ventricles, interventricular foramen, median and lateral apertures and the 

perivascular spaces; see figure 2.12).

2.4.1 Main sites of secretion and absorption of CSF

Choroid plexuses

Choroid plexuses are peculiar structures which project into ventricular cavities (lateral, 

third and fourth ventricles). These ventricles are lined with a thin epithelial membrane: 

the ependyma. Epithelium is an animal tissue consisting of one or more layers of closely 

packed cells covering the external and internal surfaces of the body (figure 2.13). The 

cells vary in structure according to their function, which maybe protective, secretory or 

absorptive. In certain region of these ventricles , the ependymal cells, together with blood 

vessels and pia mater, form the choroid plexuses. The bulk of the evidence suggests that 

the cerebrospinal fluid source is primarily secreted in the choroid plexuses, although there 

may be some contribution by diffusion across the remaining ventricular ependyma. When 

a substance, such as glucose, is injected into blood, it escapes rapidly into surrounding 

tissue. However, it is much longer before it appears in the cerebrospinal fluid. This
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implies that there is a blood-cerebrospinal fluid barrier which is probably chiefly in the 

choroid plexuses.

Arachnoid villi and granulations

The villi are simple projections of tissue through dural wall of venous sinuses (figure 

2.14), and are covered by an endathelium continuous with that lining the sinus. It is 

generally accepted that their function relates with the absorption of cerebrospinal fluid 

from subarachnoid space into venous system. The distribution of the villi correspond to 

that of the granulations. Within the cranial cavity, they tend to be aggregated around the 

points where veins enter to venous sinuses. The commonest sites are the superior sagittal 

sinus (figure 2.15) and the transverse sinus. In the spinal canal arachnoid villi occur in 

relation to the menigeal cuffs around the emerging nerve roots, where they pierce the dura 

to lie within the lumen of the large venous sinuses surrounding the nerve roots.

However, it is possible that arachnoid villi form in the spinal veins. Welch and Pollay 

(1963) have described the spinal venous plexuses and associated arachnoid in monkeys. 

The villus shown as C appears sufficiently similar microscopically to those in cranial 

dura to justify the hypothesis that it constitutes a pathway from spinal subarachnoid space 

to blood. But it is not certain how important this route is since only in 5 out of 32 roots 

studied by Welch and Pollay (1963) were arachnoid tissue found in direct relation to a 

vein. Rexed and Wennstrom (1959) have described invasion of the spinal dura mater by 

arachnoid tissue in man.
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2.42  Spaces or cavities in the cerebrospinal system

The cerebrospinal system contains many spaces or cavities which play an important role, 

particularly for the circulation of the cerebrospinal fluid. The main ones are the 

subarachnoid and subdural spaces, cistema, the ventricles and some apertures (figures 

2.12 and 2.15).

The subdural space

A narrow potential space, the subdural space, lies between the arachnoid and the dura 

mater. It contains only a little serous lubricant fluid.

The subarachnoid space

A wider space, the subarachnoid space, separates the arachnoid from the pia mater. It is 

crossed by connections, the arachnoid trabelucations, which run between the arachnoid 

mater and the pia mater. It contains the arteries and veins of the brain and spinal cord and 

the cerebrospinal fluid. The subarachnoid space is sealed off by the interdigitations and 

tight junctions between the cells on the arachnoid surface known as mésothélial cells.

Cistema (figure 2.16)

Areas where the arachnoid and pia mater are widely separated are referred to as cisterns 

or cistemae. The major cisterns are the cerebellomedullaris (cistema magna); the 

interpeduncular; the pontine; and the chiasmatic. The cisterna magna is a region where 

the arachnoid is reflected from the inferior surface of the cerebellar hemispheres and the 

dorsum of the medulla. It is continuous with the subarachnoid space of the vertebral
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column through the foramen magnum. The cistema interpeduncularis is the space where 

the arachnoid crosses between the two temporal lobes, enclosing the cerebral peduncles 

and the interpeduncular fossa. It is continuous rostrally with the chiasmatic cistern and 

caudally with the pontine cistema.

Three others cisterns are also recognised: the bilateral cistema fossaecerebri lateralis, 

where the arachnoid bridges the lateral fissures; and the cistema venae magnae cerebri, a 

single space lying between the splenium of the corpus callosum and the superior surface 

of the cerebellum.

Ventricles

Deep inside the forebrain, midbrain and hindbrain, is a series of connecting chambers 

(ventricles) lined with epithelium called ependyma (figures 2.16 and 2.17). There are two 

large lateral ventricles inside the cerebral hemispheres (forebrain), each of which 

connects in the midline through the interventricular foramen (of Monro) which leads into 

the midline third ventricle. This connects through the narrow cerebral aqueduct (of 

Sylvius) in the midbrain to the midline fourth ventricle in the pons and medulla oblongata 

(hindbrain).

The fifth (terminal) ventricle lies at the bottom of the spinal cord and is only separated by 

ependyma and a thin layer of nervous tissue from the posterior surface of the conus 

medullaris. It is 8-10 mm long and 0.4 to 1 mm in diameter. After the age of 40, the 

terminal ventricle narrows but is still patent even in extreme old age.
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The foramen magnum

The junction between the medulla oblongata and the spinal cord lies in the foramen 

magnum. The vertebral arteries and the spinal portion of the accessory nerve also pass 

through the foramen magnum.

The interventricular foramen (of Monro)

Each side of the lateral ventricle communicates with the third ventricle through a short 

wide canal: the interventicular foramen (figure 2.12). The two foramina do not join 

together to make a transversal canal. The roof of the third ventricle projects between the 

points where the two foramina open into the lateral ventricular walls.

Median aperture (of Magendie)

The foramen of Magendie is often seen as an aperture of varying dimensions at, or some 

way forward from, the apex of the calamus scriptorius (figures 2.18a and 2.12). The 

cavity of the fourth ventricle is thus freely open to the subarachnoid space.

Lateral apertures (of Luschka)

The lateral recesses of the fourth ventricle pass laterally and ventrally round the medulla 

from the lateral extremities of the ventricle. Normally the end of the recess is open and 

the plexus floats out into the subarachnoid space through the lateral apertures (figures i

2.18b and 2.12)

18



According to Strong, Green and Oliverio’ (1926), the lateral recesses are narrow and 

somewhat tortuous, but in the normal brain, always open into the subarachnoid space.

The perivascular spaces

In the past the true perivascular space has been confused with the artifact space of Held 

which lies external to it (figure 2.19). This misunderstanding led to the concept of the 

neuron being bathed by a fluid continuous with the cerebrospinal fluid. Such a system 

would make the existence of separate blood-brain and blood-cerebrospinal fluid barriers 

difficult to understand since substances could pass directly from the neurons to the 

cerebrospinal fluid and vice versa (Woollam and Millen, 1955). The perivascular spaces 

appear to be in reality ‘backwaters in which there is a gentle eddy in both directions 

rather a constant flow in one’ (Woollam and Millen, 1954). As such they must obviously 

be excluded from any role either in the production or in the absorption of the 

cerebrospinal fluid and probably act as protective cushions between vessels and nerve 

cells (Schaltenbrand and Bailey*, 1928).

2£  CEREBROSPINAL FLUID SYSTEM (CSF)

2.5.1 Properties of the CSF

Composition
ft

The cerebrospinal fluid is a clear, colourless, slightly heavier than water. It is not a simple 

filtrate or dialysate of blood plasma. It has a higher concentration in Na, Cl and Mg ion

’ as cited in Woollam & Millen (1962) 
' as cited in Woollam & Millen (1962)
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concentrations, whereas concentration of K, Ca, urea and glucose are lower (see table

2.1). The main differences are that the cerebrospinal fluid contains only a very small 

amount of protein, that it contains less sugar, and that chloride is present in greater 

concentration than in plasma. Composition of cerebrospinal fluid varies somewhat 

according to the location (see table 2.2). More protein is present in fluid withdrawn from 

cistema magna and from the lumbar cistern than in that from the ventricles.

Quantity

The rate of formation of cerebrospinal fluid has been reported to be 0.4 ml/min in adults 

(Rubin et al, 1966) and measured in children to be 035 ml/min, or 500 ml/day (Cutler et 

al, 1968). Cerebrospinal fluid is therefore renewed four or five times a day. The rate of 

formation has also been shown to be virtually independent of short-term changes in 

lumbar cerebrospinal fluid pressure and hence, from previous studies to remain 

unaffected by age throughout most of adult life (Rubin et al, 1966).

In the adult the total amount of the cerebrospinal fluid is about 140 ml, with a range 

between 110 ml and 160 ml. According to Weston' (1921), the spinal subarachnoid space 

contains 30 ml and the ventricles plus the cranial subarachnoid space around 110 ml. 

Lups and Haan' (1954) split it up such as: each of lateral ventricle, 15 ml; the third, fourth 

and aqueduct, 5 ml; cerebral subarachnoid spaces and cisterns, 25 ml; spinal
I

subarachnoid space, 75 ml.

as cited in Woollam & Millen (1902)



\

2 S 2  Cycle ofCSF

252.1  Secretion of cerebrospinal fluid

252.1.1  Site of formation of cerebrospinal fluid

The weight of evidence is that cerebrospinal fluid is a secretion principally formed in the 

ventricular choroid plexuses as concluded by Davson (1956).

However, many investigators have performed experiments trying to prove that the 

cerebrospinal fluid could be secreted elsewhere than in the choroid plexuses. Some of 

those believed that some cerebrospinal fluid is secreted by the brain: Cserr and Jang 

(1975), Pollay and Curl (1967). Others believed that some cerebrospinal fluid is secreted 

in the spinal system. Here we report the main investigators and a brief description of their 

experiments.

Extra secretion of cerebrospinal fluid in the brain

Weed' believed that cerebrospinal fluid was produced in the perivascular spaces, but the 

perineuronal spaces are artifacts and the perivascular spaces do not communicate with 

extracellular spaces in the nervous system. Cserr and Jang (1975) made some experiment 

study of spread of radio-ionated human serum albumen and blue dextran injected into 

caudate nucleus of rats, and found that /  disappeared from brain simultaneously about
i

0.4 to 05%  of it appeared in cisternal cerebrospinal fluid. This suggests that some small 

fraction of cerebrospinal fluid is produced by the brain. This is consistent with 

measurements of cerebrospinal fluid production in isolated region of the fluid cavities,

‘ as cited in Davson (1962)
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devoid of choroid plexuses tissue, and in animal experiments as reviewed by Cserr 

(1971). Pollay and Curl (1967 and 1968) postulated for an extrachoroidal source of 

ventricular cerebrospinal fluid across ventricular ependyma. Best evidence comes from 

aqueduct perfusions carried out in rabbits by Pollay and Curl (1967). Against a 

significant contribution from the brain is the observed distribution of extracellular 

markers in brain after perfusions through ventricles. According to Rail (1968), an 

observable distortion of diffusion profiles ought to be detected if a quarter of 

cerebrospinal fluid formed come from the brain. That distortion of the diffusion profile 

has not been found.

Extra secretion of cerebrospinal fluid in the spinal system

Experiments on injected 24 Na suggest that the lumbar region of the subarachnoid space 

comes into equilibrium with plasma more rapidly than cervical region. But this does not 

prove that cerebrospinal fluid is secreted in the lumbar region. It seems likely that the 

cerebrospinal fluid comes into equilibrium with plasma chiefly by diffusion through the 

spinal nervous system. Experiments by Riser' (1929) in which spinal subarachnoid space 

was separated from the cranial by the application of a ligature to a dog, suggest that there 

is no cerebrospinal fluid formation in the spinal system. He found that the spinal 

subarachnoid space of the dog contained about 5 ml. of cerebrospinal fluid when this was
I

separated from cranial subarachnoid, in 9 hours only 5 ml. could be withdrawn by lumbar 

puncture. Definitive study was made by Coben and Smith (1969). They perfused the 

spinal subarachnoid space in isolation from the rest of the system and found no
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acceleration of fluid in their perfusate. Davson (1956) showed that if cerebrospinal fluid 

is generated in subarachnoid space, capillaries should exist there, but no capillaries have 

ever been found there, only arteries and veins. In order for cerebrospinal fluid to be 

formed from the vessels they would need to possess permeability characteristics not 

found in vessels of similar character elsewhere in the body.

We will end this discussion by saying that cerebrospinal fluid is chiefly secreted in the 

choroid plexuses and that if other sites of cerebrospinal fluid secretions exist (as it has not 

been clearly proved up to now), their production must be very little compared with the 

choroid plexuses contribution.

2.5.2.1.2 Mechanisms of formation of cerebrospinal fluid

The cerebrospinal fluid may be formed in different ways: (i) Under hydrostatic pressure 

in the thin-walled, highly convoluted wall of the choroid plexuses (figures 2.20). (ii) By 

secretory mechanism inherent in the epithelial cells overlying the vessels of the plexuses. 

(Hi) A combination of both. There is also some evidence that a small amount of 

cerebrospinal fluid is derived from the nervous tissue of the brain itself, passing outward 

into the subarachnoid space through the perivascular channels which occur along the 

penetrating blood vessels or by ependymal secretion in the central canal of the spinal 

cord.

'a s cited in Woollam & Millen (1962)
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Evidence against mechanism being filtration

They are two main pieces of evidence that tend to prove that filtration is not the 

mechanism of secretion of CSF. The first evidence is that the chemical composition of 

cerebrospinal fluid is markedly different from plasma (see table 2.1) with most the 

protein filtered out. The second one is the fact that the pressure difference across the 

capillary wall would need to be around 84 mmHg (3630 Pa) to exceed the osmotic 

pressure by a comfortable margin: this is well in excess of the capillary pressure.

Active transport as mechanism of secretion

How could the marked differences in chemical composition between cerebrospinal fluid 

and plasma arise? Suppose that cerebrospinal fluid and plasma were separated by a 

membrane which promoted active transport of Na* ions for instance, so that the number 

of N a* ions crossing the membrane at first exceeds the number of Cl~ ions, therefore 

establishing a potential difference across the membrane. As a result of this potential 

difference, the Cl~ ions are accelerated and Na* decelerated and given time, equal 

numbers of Na* and Cl~ ions will cross the membrane. It seems quite likely that a 

system operates across the choroidal epithelium, in which the Na* and C l' ions, and 

possibly other ions, are actively transported to the ventricles, thereby giving rise to a 

localised di/ference in osmotic pressure that forces in water in order to maintain 

approximate osmotic equality between plasma and secreted fluid.
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25t22  Route of cerebrospinal fluid

The typical route of the cerebrospinal fluid is now described (figure 2.21). The 

cerebrospinal fluid forms in the choroid plexuses of the lateral ventricles and passes to the 

third ventricle through the interventricular forimina (of Monro). There, additional 

cerebrospinal fluid is generated from the choroid plexuses. Using the cerebral aqueduct, it 

goes to the fourth ventricle where further augmented by cerebrospinal fluid produced by 

choroid plexuses and by some cerebrospinal fluid ascending from the central canal of the 

spinal cord. Through the foramina of Magendie and of Luschka, it leaves the ventricular 

system to enter the subarachnoid space. Then it flows down and around the spinal cord 

and up its ventral side to basal part of the brain. Then dorsally over the hemispheres 

where it enters the arachnoid villi and is discharged through them into the venous system 

of the superior sagittus sinus or its lacunae. During the whole process, a small amount of 

cerebrospinal fluid returns to blood circulation as seen in figure 2.22.

2£ 2 3  Absorption of cerebrospinal fluid

It is generally accepted that major escape route of the cerebrospinal fluid is through the 

arachnoid villi, which are essentially evaginations of the subarachnoid space into the 

lumen of the large dural sinuses. Other drainage sites have been suggested, e. g. from 

( spinal subarachnoid space into large spinal veins associated with emerging nerve routes, 

but these are, at most, subsidiary pathways.

According to Davson et al (1970), two mechanisms for absorption had been proposed:

(1) Flow due to difference in pressure between subarachnoid space and dural sinus (AP):
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Q = ---- where R is the resistance, and Q the flow rate.
R

(2) Flow due to difference of colloid osmotic pressure between virtually protein free 

cerebrospinal fluid and plasma (Mortensen and Weed" , 1934; Weed" , 1935).

Davson et al (1970) found that resistance to flow was not affected by the colloid osmotic 

pressure of an artificial cerebrospinal fluid infused into the ventriculo-subarachnoid 

system. Thus, they concluded that drainage channels allow an unrestricted passage of 

protein through their pores, thereby eliminating the second mechanism.

Absorption from the spinal subarachnoid space and the central canal

Chronic adhesive arachnoiditis caused by introduction of irritant into cistema magna 

leads, not only to hydrocephalus, but also to dilatation of central canal as found by 

Becker et al (1972). In experiments on cats, they also found, in three out of six cases, 

communication between the fourth ventricle and the spinal subarachnoid space via the 

central canal. It was known from Coben and Smith (1969) that there is capacity for 

absorption from spinal subarachnoid space. Absorption of fluid from the spinal 

subarachnoid space may also play an important role in compensation during human 

hydrocephalus, as suggested by study of Paraicz et al (1972). They found that during 

cisternography in presence of tentorial block the radiopharmaceutical material was 

absorbed into the blood while scintigrams showed radioactivity confined to the spinal and 

basal regions.

' as cited in Davson (1967)
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2.5.3 Mechanism for transmission of vascular pressure

Davson (1967) cleared up many misconception with the following exposition.

2.5.3.1 Effect of artery' alone

Suppose walls of artery are rigid and inextensible (figure 2.23a). Then the cerebrospinal 

fluid pressure cannot be influenced by the arterial pressure, whatever its value is. Suppose 

now that the arterial walls are somewhat extensible, so that as the pressure is raised from 

0 to 80 mmHg (0 to 3.5 kPa), the arterial wall will tend to expand. But this will reduce 

the volume of cerebrospinal fluid. If the cerebrospinal fluid is incompressible and the 

chamber (dura) is inextensible, then the expansion of the arterial walls must be held in 

check by the cerebrospinal fluid pressure and PF = PA . The artery has transmitted its own 

pressure completely to the cerebrospinal fluid.

2.5-3.2 Effect of outflow through a valve

If we now consider figure 2.23b, a valve is inserted in our control volume. When the fluid 

pressure rises beyond a certain value, some of the fluid can leak away through the valve, 

at A, which opens, say, when the pressure is 20 mmHg (850 Pa). As the arterial pressure 

is raised, the walls will tend to expand, thus transmitting a pressure to the surrounding 

fluid; but this expansion is prevented by the incompressibility and the inexpansibility of 

the system until the fluid pressure has been raised to 20 mmHg (850 Pa). At this point, 

expansion becomes possible because fluid can escape, and the walls will continue to 

expand until the elastic tension in the arterial wall, together with the opposing fluid 

pressure, just balance the arterial pressure. Once again, then, the fluid pressure is created
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by the arterial pressure, but this time its value is determined by the valve, i.e. by the 

critical pressure above which fluid is allowed to escape. If the arterial pressure is raised 

very quickly, and the fluid can only escape through the valve slowly, there will be certain 

transitory changes that will not be observed if the arterial pressure is raised only very 

slowly; the system will tend to behave like the incompressible and inexpansible system 

considered earlier, that is, the sudden rise in arterial pressure will be reflected in a sudden 

rise in fluid pressure, which will only subside when sufficient fluid has leaked away to 

provide a state of balance, with the fluid pressure equal to the critical pressure at which 

the valve opens. Rapid fluctuations in arterial pressure, such as those caused by the 

cardiac pulse, will thus be reflected in transitory changes in the fluid pressure, if the valve 

offers some resistance to outflow of fluid. The rise and fall in arterial pressure during 

transmission of the fluid will be considerably damped by the presence of an outflow 

mechanism, but it will be clear that, other things being equal, the greater the resistance to 

outflow, the greater will be the pressure pulse within the fluid.

2£ 3 3  Effect of veins

Let us consider figure 2.23c where Ph is only slightly greater than Pv , which is a lot 

smaller than PA . The walls of the veins being highly distensible compared with arteries, 

the veins are capable of considerable expansion when Pv exceeds PF . Under these 

circumstances Pf  is largely determined by Pv (analogous to outflow pressure). Rapid 

fluctuation in PA will be transmitted to Pf  (as described above), but only during the time 

required for the venous system to adjust itself by partial collapse of its walls, associated
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with expulsion of blood out of the system. So the system will show arterial pulse, but 

highly damped. The level of damping depends on the outflow resistance to venous blood.

233 .4  Effects of removing cerebrospinal fluid on the cerebrospinal fluid

Ignoring contribution due to arteries: PF = Pv - (elastic component). If cerebrospinal 

fluid is withdrawn, the magnitude of the elastic component rises because vein dilates: PF 

falls.

2 3 3 3  Cerebrospinal fluid pulsation

Bering’s’ (1955) experiments showed that the choroid plexuses of the cerebral ventricles 

are the chief sites for the transfer of the arterial pulsation to the cerebrospinal fluid. The 

venous pressure variation has a secondary effect. Each pulse sets up a pressure gradient 

through the cerebrospinal fluid system which tends to force cerebrospinal fluid out of the 

cerebral ventricles. This acts as an unvalved pulse pump, imparting to-and-fro motion to 

the cerebrospinal fluid, the net flow depending on the amount removed from the 

subarachnoid pathways. The cerebrospinal fluid pulsation contributes a small increment 

to the intracranial pressure. Under certain pathological conditions, such as hypertrophy or 

tumours of the choroid plexus, it may become the major source of the increased 

intracranial pressure.

Effect of damping

The normal cerebrospinal fluid pulse can be damped by volume increase. The effect of 

damping was illustrated by Bering by measuring the pulse pressure in one ventricle and

29



V

an open-bare manometer attached to a needle in the opposite ventricle. The cerebrospinal 

fluid pulse was recorded with the manometer open and closed. The patient (a 

hydrocephalic child) had a pulse pressure of 50 mmH20  (160 Pa) with manometer 

closed which dropped to 28 mm H 20  (90 Pa) with manometer open.

Mechanism of circulation

According to Bering (1955) the pumping action of the choroid plexuses is not vital for 

cerebrospinal fluid circulation since there are many adults who have had choroid 

plexectomy without apparent ill effect.

In contradiction to Bering, Hamit et al (1965) describe a series of experiment on dogs that 

show that: (1) arterial blood pressure is an important factor in maintaining the static (i.e. 

the average) pressure of the cerebrospinal fluid; (2) the pulsations of cerebrospinal fluid 

correspond both temporally and conform to the venous pulse, whether it is normal or 

abnormal. Furthermore, the cerebrospinal fluid pulsations continue in characteristic form 

and amplitude when arterial pulsations to the brain are obliterated.

Sepp' (1929) regarded vascular contractions as a major factor in circulation of 

cerebrospinal fluid. He also made the clinical observation on the formation of pouches 

along the course of the major cerebral arteries in case of localised obstructions of the 

subarachnoid space.

■ as ciled in Davson (1967)
' as cited in Wooliam & Millen (1962)

30



O’Connelf (1943) has drawn the attention to significance of the cardiac and respiratory 

pulses in the cerebrospinal fluid pressure in relation to the movements of the cranial and 

spinal fluids.

Riser’ (1929) pointed out that the movement of the cerebrospinal fluid is considerably 

affected by changes in posture and by coughing.

Sachs et al’ (1930) state that it seems probable that the flow is a slow wave-like 

progression rather than an actual streaming. That was confirmed by Mortensen and 

Weed” (1934).

The Cushing response

Cushing" (1902) postulated that the increase in systemic blood pressure which often 

coincides with marked cranial hypertension was a compensatory mechanism designed to 

keep blood pressure above intracranial pressure, thereby maintaining perfusion of the 

vital centres of the brain. Cushing’s experiments were carried out on animals in which the 

intracranial pressure was increased either by an expanding intracranial balloon or by 

perfusion of the subarachnoid space with saline.

' as cited in Woolam & Millen (1962) 
" as cited in Davson (1967)
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2.6 MEASUREMENTS OF PRESSURE

2.6.1 Pressure measurement

The unit used to measure the cerebrospinal fluid is the mm of saline (almost water) or 

sometimes, mm of mercury: 1 mmHg = 13.5 mm saline (or csf) = 43.2 Pa or N  / m 1.

In figure 2.24, a frequency distribution amongst 1033 apparently normal human beings is 

plotted. Persons are considered normal when the intracranial pressure is less than 180 mm 

saline (580 Pa). Between the pressures of 180 and 200 mm saline (respectively 580 and 

640 Pa), the persons are critical. Above 200 mm saline (640 Pa), they are definitely 

hypertensive.

2.62  Dynamics of intracranial pressure (ICP)

The adult cranium contains approximately 1500 ml of brain substance, and 120 ml of 

both blood and cerebrospinal fluid. Normal intracranial gauge pressure is considered to 

be in the range 7-10 mmHg (300-430 Pa). The reason why the intracranial pressure is 

above the atmospheric pressure lies in the relationship between formation and 

reabsorption of cerebrospinal fluid. Cerebrospinal fluid is derived from blood mainly in 

the networks of small blood vessels, called choroid plexuses, in the ventricles and the 

brain. It is formed largely in the lateral ventricles from where it progresses to the 

subarachnoid space. During its journey it is added to by choroid plexus in the third and 

fourth ventricles. It is then reabsorbed into the venous circulation through a series of 

small, pressure sensitive, one-way valves: the arachnoid villi. Cutler et al (1968) showed 

that there is a linear relationship between the rate of absorption of cerebrospinal fluid and
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the intraventricular pressure over a range of at least 5 to 18 mmHg (220 to 780 Pa; see 

figure 2.25). Reabsorption ceased at 5 mmHg (220 Pa) and it was suggested that this 

value may approximate the pressure in the superior sagittal sinus. Studies have been made 

of relationship between the pressure of the cerebrospinal fluid and the sagittal sinus in 

both normal and pathological conditions (Shulman et al, 1964). Several workers have 

developed techniques for clinically assessing rates of cerebrospinal fluid formation and 

absorption as a function of pressure.

Normal cerebrospinal fluid pressure is not a steady pressure, but contains dynamic 

components which result primarily from the arterial blood pressure wave and from the 

respiration: the cerebrospinal fluid pressure falling during inspiration and rising during 

expiration (McDowall, 1975; Dunbar et al, 1966; Dardenne et al, 1969).The dynamic 

components are shown clearly in figure 2.24, but the respiratory pulsations are inverted 

because the recording was taken from a patient who was artificially ventilated using 

intermittent positive pressure ventilation. The mean level of the pressure in this example 

is also slightly above normal. The pulsations increase in amplitude when the mean 

cerebrospinal fluid pressure increases (Bradley, 1970). If, however, intracranial pressure 

is raised by increasing the venous pressure through, for example, anaesthesia or heart 

failure, venous components can become apparent on the cerebrospinal fluid pulsations 

(Dardenne et al, 1969).

The arterial pressure wave is believed to be transmitted to the cerebrospinal fluid partly 

through pulsation of the intracranial arteries, in particular those at the base of the brain, 

and partly by the pulsatile volume changes in the choroid plexuses (Bering, 1955 and 

1965). The arterial pulsations increase in amplitude when the mean cerebrospinal fluid
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pressure is elevated. In their study of the cerebrospinal fluid pulse waves, Dunbar et al 

(1966) demonstrated that in the lumbar subarachnoid space the arterial cerebrospinal fluid 

pulsations are derived from the local arterial supply to the spinal cord. These pulsations 

lag slightly behind the intracranial pulsations (by 1/25 to 2/25 sec) which reflects the 

delay between the arterial supply reaching the brain and reaching the lumbar spinal cord. 

The dynamic components due to respiration appear to follow changes in intrathoracic 

venous pressure, hence the fall during the inspiration and rise during expiration. 

Transmission of the intrathoracic pressure changes to the cerebrospinal fluid is likely to 

be via the jugular and intracranial veins through the changes in intracranial blood volume, 

and probably to a lesser extent via changes in systemic arterial pressure which occur 

during respiration. Since large increases in intrathoracic venous pressure result from 

coughing and straining, therefore, large increases in intracranial pressure are possible 

with a corresponding reduction in cerebral blood flow. Fortunately such changes are 

usually of short duration.

2.63 Posture affects ICP

The posture of a patient changes the intracranial pressure (Bradley, 1970), although the 

mechanisms by which the effects occur have been subject to debate and some confusion 

(McDowall, 1974). Indeed, it has been noticed that the fluid pressure in the lumbar sac is 

greater in the sitting than in the recumbent posture. If a subject is placed in a recumbent 

position, the pressure measured in the lumbar sac is about 150 mm saline (480 Pa) on 

average. The subject is now tilted into the vertical position. The pressure rises but the 

increase will not be equal to the increase in hydrostatic pressure due to the height.

34



Masserman’ in 1935 evaluated that the pressure increase actually read was 40 % of the 

theoretically possible increase. This consideration led Weed (series of papers) to postulate 

the existence of an elastic component within the system. This elastic component would 

operate to damp down the large fluctuations in pressure that would otherwise occur 

during postural changes.

For patient management it is generally accepted that a slight elevation of the patient’s 

head above the horizontal plane will reduce cerebral venous and intracranial pressures. 

Equally important, however, are the effects of changes in the position of the head and 

neck which can alter thereby the intracranial pressure (Shapiro, 1975; Hulme and Cooper, 

1976).

2.6.4 Coughing

Coughing produces a short sharp pressure rise within the major body cavities of the 

thorax and abdomen. The diaphragm is relaxed and the glottis closed, the intra-abdominal 

pressure is then raised by contraction of the trunk muscles and pressure is raised until the 

glottis relaxes, releasing air from the lungs whereafter the pressure drops to atmospheric 

and the cough is over (figure 2.26). Coughs studied by Lockey et al (1975) were those of 

the order of 0.9 second duration, pressure in the abdomen rises to around 75-100 mmHg 

(3240-4320 Pa; see figures 2.27,2.28).

As seen in part 2.2, the spine is made up of vertebrae, a series of bones and tough 

ligaments which are enveloped by muscles. It forms part of the body wall which 

surrounds the abdominal and thoracic cavities. The spinal canal runs through the bone

' as cited in Davson (1967)
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and is protected from the direct action of muscles. It is within the protection of this spinal 

canal that the spinal cord lies, surrounded by cerebrospinal fluid, arachnoid and dural 

membranes giving off a pair of nerves for each vertebra. Outside the dura there is a little 

fat and a plexus of epidural veins which lie chiefly on the front of the cord as two vertical 

channels which are crosslinked and supplies with anastomoses (connecting channels 

which allow flow in either direction) to the veins from bones of the spines, the veins 

within the surrounding muscles and to the veins of the abdominal cavities. The anastomic 

veins occur at each segment level. There are thirty vertebrae, each of them corresponding 

to a segment throughout the spine. All but the topmost seven (cervical) vertebrae are 

intimately connected to the thoracic or abdominal cavities by veins (figure 2.26).

As the pressure in the thorax and abdomen rise during coughing, or any similar 

manoeuvre, the veins within the major body cavities are subject to a high pressure and 

blood moves into the epidural veins transmitting most of that rise in pressure (figure 

2.29). The increase in pressure is normally transmissible across the membrane forming 

the wall of the veins and across the dura and arachnoid to the cerebrospinal fluid. 

Queckenstedt has shown in 1830 that slow pressure changes are normally transmitted 

along the spinal canal with little attenuation. His test produces a movement of 

cerebrospinal fluid downwards initially followed by an upward rebound, but coughing 

produces a pulse in the opposite direction, that is it travels frpm the lumbar region to the 

cisternal. The cough impulse provides a much sharper rise in pressure of higher amplitude 

and also provides a quick fall instead of a plateau.
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CHAPTER 3

ABOUT SYRINGOMYELIA

For a better understanding of the origins of syringomyelia, we have first described the 

cerebrospinal system in the previous section. In this section, we will give an overview of 

the main features linked with syringomyelia and the state of research in the field. We will 

first answer some basic questions like:

What is syringomyelia?

What are the different causes and forms of syringomyelia?

What are the symptoms?

How can it be diagnosed?

What are the treatments available?

What is the pathology?

This will be followed by a summary of the knowledge about the origins of the disease, 

including an interesting aspect of the CSF dynamics in the spinal cord.

3.1 DEFINITION

The name syringomyelia comes from the Greek syrigx: pipe or flute and myelo: marrow. 

Thus, it means syrinxes or cavities in the spine, it is a condition of longitudinal cavities 

within the spinal cord extending over several segments (Greenfield 1963). This abnormal 

fluid-filled cyst (syrinx) in the spinal cord causes progressive neurologic symptoms as it 

expands (figure 3.1). Syringomyelia may be congenital or acquired. It most commonly
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occurs in the cervical segments of the spinal cord but can involve the entire length of the 

spinal cord and occasionally extends to the brainstem (syringobulbia: dysfunction of the 

lower cranial nerves). There are three types of syringomyelia: (1) hindbrain herniation of 

Chiari Type 1 (associated with syrinx formation); (2) hindbrain herniation of Chiari Type 

2 (associated with syrinx formation); (3) post-traumatic syringomyelia. The hindbrain 

herniation of Chiari Type 1 (or Amold-Chiari Deformity) is characterized by the descent 

of the tonsil through the foramen magnum (figures 3.2 & 33). The term Amold-Chiari 

deformity is sometimes used to describe the severe deformities of the hindbrain and upper 

cord found in association with spina bifida and hydrocephalus. This is sometimes called 

Chiari type 2. It is not possible to delineate the two conditions precisely and many 

intermediate forms may be found. The aetiology of both types is likely to be pressure 

differences (Williams 1975). The first two cases involving hindbrain herniation are 

characterized primarily by crowding and compression of craniospinal spaces. Post- 

traumatic syringomyelia is characterized primarily by scarring of the arachnoid 

membrane surrounding the spinal cord and tethering or extensive attachment of the cord 

itself to the spinal canal (figure 3.4). Studies have found that a syrinx that forms after a 

spinal cord injury almost always appears at the site of the original injury. The syrinx may 

also extend several spinal segments above or below the level of injury.

The shape of cavities is variable. Jhere may be one oblong cavity, or a large cavity may 

have several oblong compartments that are connected, or several separate cavities that 

have nerve tissue between them (figure 33). The ends of the cavities may have a round, 

bulb-like shape or may stretch down to a thin strand.
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32  HISTORICAL CONCEPTS

Ollivier" (1827), who named syringomyelia in 1827, understood that cavitation followed 

the weaknesses along which fluid tracked through the grey matter of the spinal cord. He 

carried out air injection to support this notion. The idea later became prevalent that the 

disease was due to degenerative changes in glia. The cavities become surrounded by 

gliosis, but Greenfield (1963), pointed out that the cavities appeared to be due to tearing 

of tissues by the spread of fluid. Studies on human cadaver, subsequent to that of Ollivier, 

and also by injections of saline or CSF into the grey matter of living animals produced 

cavities mimicking syringomyelia. Kaolin (an irritant) induced hydrocephalus is a reliable 

animal model but the relevance to the human condition is limited (Williams 1986a).

The relationship between abnormalities of the base of the brain which cause pressure 

differences between the head and the spinal subarachnoid space was noted by Gardner 

(1973). He suggested that the majority of cases have a communication from the fourth 

ventricle to the syrinx in the initial stages of syringomyelia.

Gardner showed that operative craniovertebral decompression was often accompanied by 

improvement in the patient’s clinical state. He produced a theory which attempted to 

explain spina bifida, anencephalus, iniencephalus, Dandy-Walker cysts and 

syringomyelia on the basis of failure of the fourth ventricle roof to perforate during 

embryogenesis. This concept seems unsound, but has been of value in stimulating 

subsequent workers.

'a s  cited in Williams (1993)
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33  CAUSES OF SYRINGOMYELIA

As we have discussed earlier, CSF normally flows around the spinal cord and brain for 

two main reasons: to transport nutrients and waste products and to serve to cushion the 

brain and the spinal cord. A number of medical conditions can cause an obstruction in the 

normal flow of CSF, redirecting it into the spinal cord itself. For reasons that are not 

totally clear, this results in syrinx formation. To understand the underlying causes of 

syringomyelia, it is necessary to understand the structure and physiology of the normal 

spinal cord and CSF, as well as the structure and mechanisms of expansion of the syrinx. 

The early theories of Gardner and Williams assume that the CSF is being driven or 

sucked down from the fourth ventricle into the central canal. The central canal is now 

understood to act like a sink draining CSF. Experimental studies in animals have 

indicated that horseradish peroxidase molecules or red blood cells injected into the spinal 

interstitial spaces can pass into the lumen of the central canal through the open gap 

junctions of its ependymal cell lining. The central canal accumulates such products (as 

well as normal abnormalities or products of disease) and carries them rostrally towards 

the fourth ventricle. Drainage is probably assisted by vascular pulsations transmitted to 

this fluid-filled tube.

An experimental model of acquired syringomyelia has been created in animals by 

injecting an irritating substance (Kaolin) into the CSF or into the spinal cord. An 

inflammatory response with ependymitis and occlusion of the subarachnoid space or 

partial occlusion of the central canal outflow pathway resulted, depending on where the
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Kaolin was injected. Subsequently, cavitation and dilatation of the central canal occurred 

with the histopathologic features characteristic of syringomyelia.

3.4 FORMS OF SYRINGOMYELIA

Generally, there are three forms of syringomyelia: the Chiari 1 malformation, the Chiari 2 

malformation and the complication of trauma, meningitis, hemorrhage, a tumour or 

arachnoiditis. In the first form, the malformation occurs during the development of the 

foetus and causes the lower part of the cerebellum to protrude from its normal location in 

the back of the head into the cervical or neck portion of the spinal canal (figure 3.2). A 

syrinx may then develop in the cervical region of the spinal canal. Because of the 

relationship that was once thought to exist between the brain and the spinal cord in this 

type of syringomyelia, physicians sometimes refer to it as “communicating 

syringomyelia”. Here, symptoms usually begin between the ages of 25 and 40 and may 

worsen with straining or any activity that causes CSF pressure to fluctuate. Some 

patients, however, may have long periods of stability. Some patients with this form of the 

disorder also have hydrocephalus, in which CSF accumulates in the skull, or a condition 

called arachnoiditis, in which the arachnoid membrane (the covering membrane of the 

spinal cord) is inflamed. The second form of syringomyelia is similar to the Chiari 1 

malformation but an additional displacement of the brainstem outside the foramen
I
magnum occurs (instead of a displacement of only the cerebellar tonsils, which occurs in 

the Chiari 1 malformation). The third major form of syringomyelia occurs as a 

complication of trauma, meningitis, hemorrhage, a tumour or arachnoiditis. Here the 

syrinx develops in a segment of the spinal cord damaged by one of these conditions. The
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syrinx then starts to expand. This is sometimes referred to as “noncommunicating 

syringomyelia”. Symptoms may appear months or even years after the initial injury, at 

the location of the injury.

Some rare cases of syringomyelia are familial. Zakeri et al (1995) made a review of the 

world literature on familial syringomyelia. They identified 16 reported families with 

syringomyelia since the beginning of the century. Chatel et al (1979) suggested the 

incidence of inherited syringomyelia is approximately 2%. In these rare cases, a genetic 

predisposition is the primary factor in the development of familial syringomyelia.

In addition, one form of the disorder involves a part of brain called the brainstem (which 

controls many of our vital functions, such as respiration and heartbeat). When syrinxes 

affect the brainstem, the condition is called syringobulbia.

3.5 SY M PT O M S O F SY R IN G O M Y E L IA

Destruction of nervous tissues of the spinal cord and elevation of pressures in the skull 

are the primary consequences of syringomyelia. Consequently, the main symptoms of 

syringomyelia are: strong headaches; stiffness, weakness or pain in the back, shoulders, 

arms or legs; loss of the ability to feel extremes hot or cold, especially in the hands. Here 

we give some details of these symptoms, separating the hindbrain herniation from the 

spinal cord case.

Hindbrain-related syringomyelia symptoms (see table 3.1)

The symptoms of hindbrain herniation related syringomyelia include intracranial

symptoms, pain, medullary symptoms such as vertigo, oscillopsia, or any complaint of
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lower cranial nerve involvement. The symptoms related to the medulla are often thought 

of as “syringobulbia”.

Strain-related headache is a characteristic presentation. The pain is usually nuchal and 

bilateral, radiating into the occiput or vertex. It may be strictly unilateral. It is commonly 

brought on by suddenly rising from the lying or sitting position, by coughing, straining, 

lifting, shouting and only rarely by emotional tension (Nightingale & Williams, 1987). It 

is characteristically pounding and patients may be able to draw a graph of the pain which 

they experience after blowing in a sphygmomanometer to raise the mercury to a height of 

40 mm (1700 Pa) for 5 seconds, or of the similar pain produced after an individual event 

such as a sneeze. This type of headache is the same as that found when patients have a 

hindbrain hernia due to brain tumour, always the first consideration in cases presenting 

this way.

Cord symptoms

Any manifestation of spinal cord disorder may be the first symptom, including scoliosis, 

trophic, sensory or motor features (Barnet et al, 1973; Gurr et al, 1988; Williams, 1979). 

Sensory changes present in the majority in the upper limbs, but stiffness in the legs was 

the commonest symptom reported by Bamet et al (1973), and presentation with leg 

symptoms alone is not uncommon. Pain occurs in the majority of patients and many 

present to an orthopaedic surgeon before seeing a neurologist or neurosurgeon (Williams, 

1979). Pain may be associated with slosh (see CSF dynamics section), for instance 

sudden pain in the trunk or limbs after coughing or sneezing.

43



\

Scoliosis is present in more than half the patient with hindbrain-related syringomyelia 

(Gurr et al, 1988; Williams, 1979). It is correlated with early onset, and usually precedes 

other neurological features. The side and level of the cord cavity are not related to the 

curve (Gurr et al, 1988). Paraplegia during correction of scoliosis may be the first 

declaration of syringomyelia. The history is paramount. To take the birth history in adult 

life is not common, since most birth-related injuries are diagnosed in paediatric practice. 

Syringomyelia (like hydrocephalus and epilepsy) are causes of late neurological 

presentation. Difficult birth is related to over half the cases of adult syringomyelia and of 

those who have no other cause detectable, and it is probable that the majority are birth- 

related (Williams 1977a).

Similarly, complaints like giddiness, syncope, drop attacks sweating changes, transient 

double vision, swallowing difficulties, hypersalivation, stiffness of the legs may not be 

linked by the patient to their presenting complaint if that is a different type of symptom, 

such as pain or scoliosis. The characteristic dissociated sensory loss is often not present in 

the early stages, but inquiry may include asking if the an underarm deodorant feels the 

same on the two sides, and asking women if their hair rollers bum the backs of their 

necks.

On examination, scoliosis, hemiatrophy, asymmetries of the face and upper limbs, 

wasting, Charcot’s joints, trophic changes often with severe finger involvement, are all 

late manifestations. Slight trophic changes, such as bums and ulceration from brassiere 

straps, may precede the patients’ noticing that they have dissociated loss. Tendon jerks 

are commonly lost early in the arms and brisk in the legs, abdominal reflexes tend to be 

lost. Wasting and fasciculation may be present in the arms.
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3.6 DIAGNOSIS AND TREATMENT

3.6.1 Diagnosis

There are no world-wide ways of syringomyelia investigation. However, there are some 

techniques that should be applied depending on the condition of the patient. Williams 

(1990b) suggested a pattern of investigation which is summarised in figure 3.6. This 

pattern of investigation consists in radiological assessment. There are four types of 

radiology that can be used to diagnosed syringomyelia: plain radiographs, computerized 

tomography, myelography with water-soluble contrast, magnetic resonance imaging 

(MRI).

Plain radiographs

In hindbrain-related cases the radiographs may be interesting and variable. Plain 

radiographs of the lateral skull may show effects hydrocephalus, platybasia, or basilar 

invagination (Williams 1979). They are only associated anomalies, however, and 

probably have a common cause. They may be segmentation abnormalities of the skull 

base with fusion of the occiput and atlas or fusion of cervical vertebrae.

The concept of primary osseous dysplasia as suggested by Shady at al (1987) is not 

necessarily supported by the frequent finding of a small posterior fossa (Williams 1975 & 

1977b). In spinal post-arachnoid adhesion cases, plain radiographs show only the changes 

of the paraplegia or associated disease. Some tumour patients may have had 

syringomyelia for sufficiently long, or at an early enough age, for it to have affected the 

growth of the bones. The certain diagnosis of syringomyelia from enlargement of the
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vertebral canal is not possible because intraspinal tumours and neurofibromatosis also 

cause it. If the anteroposterior diameter of the canal and body at C5 (cervical 5) are 

measured, there is a 25% chance of pathology if the canal is more than 4 mm bigger than 

the body, and a 98% chance of pathology if it is more than 6 mm bigger than the body 

(Williams 1979)

Computerized tomography

The ventricles should be scanned in most cases. In around one third of cases of 

syringomyelia, there is some ventricle enlargement (West & Williams 1980). Posterior 

fossa, midbrain, and even supratentorial tumours are uncommon causes of syringomyelia, 

but tumours at the foramen magnum are more common and are sometimes missed on 

computerized tomography. The tumour may form the hindbrain hernia. Head pouches are 

related to hindbrain arachnoiditis and, therefore, also to birth injury (Williams 1986b).

Myelography with water soluble contrast

Water-soluble myelography is a valuable technique. The flexibility of the cord and its 

susceptibility to slosh (see CSF dynamics) are demonstrable on screening. In mysterious 

neurologic cases the contrast material should be run up to the cistema magna and the 

position of the tonsils and the fourth ventricle checked.

Post-myelography computerized tomography scanning is of value in showing hindbrain 

compression and tonsillar descent. It may show typical deformities such as are associated 

with syringobulbia (figure 3.7). Convenient times for computerized tomography scanning
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are 1, 6 and 24 hours after the myelogram (figure 3.8). The syrinx cavity may opacify, 

commonly at 6 hours or at 24 hours.

These investigations have largely been supplanted by magnetic resonance imaging 

(MRI). One area in which myelogram is more useful than MRI is in establishing the 

readiness of communication between compartments. Moreover, MRI is not good at 

showing arachnoditis.

Magnetic resonance imaging (MRI)

Magnetic resonance imaging shows the ventricles, including the third and fourth, 

hindbrain descent, and the spinal cord (Barkovich et al, 1986; Duddy and Williams, 1991; 

Grant et al, 1987 for instance). Scanning scoliotic patients may be difficult, and skill is 

required in interpretation. Myelography and computerized tomography scanning may be 

dispensed with provided that the whole brain is imaged, but plain radiographs remain 

useful because the bones do not show well (figures 3.7,3.9,3.10,3.11).

The investigation is especially useful during outpatient surveillance. It is possible, with 

the T2-weighted image, to see flow void in the CSF pathways (figure 3.12), and to 

confirm patency of the pathways to arterial pulsation.

3.62  Treatment

The treatment of syringomyelia falls into two parts. The first is the correction, so far as it 

is possible, of the filling mechanism which causes the fluid to be forced into the syrinx 

and to lead to progression along site of grey matter. The second is the prevention of the 

persistence of the cavity by drainage. When the cavity is empty it can be expected to
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negate the continuation of mechanism of slosh. It may be expedient, or even necessary, to 

treat using both principles in some cases. In cases where there is proteinous fluid and an 

obvious structural lesion, such as an intrinsic or extrinsic tumour of the spine, then 

removal or attempted removal of the lesion is the obvious first line of treatment.

In practice, the progression of syringomyelia being often slow, many of the patients have 

become accustomed to their disabilities and fear operation. It is obviously necessary to 

advise them carefully and not to minimize the difficulties. The younger the patients are, 

the better they do. The smaller the tumour, the better it does. As with the hindbrain- 

related cases, the sooner after development of post-traumatic paraplegia an operation is 

carried out the more likely it is that the resultant cavities will be limited. Early operation 

is, thus, ideal.

There are three main operations to consider: syrinx drainage, ventricular drainage, and 

attempted correction of the likely filling mechanism by operation on the site of presumed 

or proved pressure dissociation. Williams (1990b) suggested a sort of guide. He attempts 

to demonstrate decisions that may be necessary (figure 3.13). The peculiar “may be” in a 

decision tree proves the difficulty to decide in some cases. The decision to operate on a 

syrinx that may be drainable often cannot be made until the surgeon tries to insert a tube, 

and the decision is greatly influenced by things such as leg function. If the patient is 

already wheelchair-bound, there is much less to lose in attempts to save hand or bulbar 

function.

We have just outlined treatments for syringomyelia. For a more detailed review of the 

techniques of operation, refer to Williams (1990b).

48



3.7 PATHOGENESIS

The pathogenesis of syringomyelia is not understood. Theoretical concepts abound but 

surgery is currently practised based upon an empirical or pragmatic background rather 

than a certain knowledge of causation.

The observation of its occurrence in association with the disorders shown in table 3.2 

almost certainly indicates a causative connection between the syringomyelia and the other 

structural abnormalities; or that both are due to a common cause. Most patients who have 

syringomyelia secondary to post-traumatic paraplegia for instance, had a normal central 

nervous system in all respects prior to the injury. In the pathology associated with 

hindbrain-related cases, the factor which links them seems not so much something 

protruding through the foramen magnum or even forming a valvular configuration there, 

but more the absence of cistema magna.

We now consider the forces which are brought to play on the tissues of the neuraxis 

through the CSF.

3.7.1 The hydrodynamic forces

The CSF within the neuraxis is in continual movement. Cardiac pulsation in the capillary 

bed of the brain is constant throughout the nervous system. Of greater significance and 

power are the effects of venous plexuses (see section 2 5 3 3 ) . These have free connection 

through valveless veins present at each vertebra of the neuraxis and up to the head. Any 

increase in pressure in the abdominal and thoracic cavities is transmitted into the spine. 

Compression of the dura by venous distension of the epidural plexuses produces rapid
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movements of CSF with associated pressure changes. Williams (1976) found that the 

pressures produced by a cough may exceed the pressures produced by cardiac pulsation 

by a hundred times. The energy imposed upon the tissues of the neuraxis affects the 

formation and the maintenance of syringomyelia (Williams 1981).

3.72  Suck mechanism

The first mechanism is the creation of pressure differences between CSF compartments 

by venous pulsation. If the patient has a spinal tumour, for example, energetic coughing 

will force fluid upwards past the tumour more efficiently than it can run back down again 

(figure 3.14). This leads to a collapsed theca below the tumour with a high protein 

content and a low pressure -Froin’s syndrome. If fluid can find its way into the cord at the 

site of the obstruction, then, this may be the mechanism which gives rise to a syrinx. 

Tumours outside the cord, fracture, Pott’s disease or other partial blockage of the 

subarachnoid spaces caused by the formation of pathological arachnoid adhesions are the 

common causes.

When measurements are made at rest in the majority of adults with hindbrain-related 

syringomyelia, or even patients with well-developed herniation due to tumour, pressures 

are substantially equal in the head and the spine.

When coughing and sneezing, the pressure in the lumbar sac rises higher and more
i

quickly than it does in the head. In the majority of patients with hindbrain hernia, 

however, the CSF is delayed in its return downwards past the foramen magnum 

(Williams 1975, 1976, 1980 & 1981). In normal cases, the half-life of the return of 

pressure differences to normal, i.e. equal in the spine and the head, is less than l/10th of a
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second. With hindbrain herniation, the equalisation of pressure may be delayed, 

sometimes with a half-life of over 30 seconds. During a post-Valsalva rebound after 

straining, the pressure differences may be high across the foramen magnum and may 

remain high for a significant period. Pressure differences across the foramen may be 

called craniospinal pressure dissociation, but with pressure differences across the site of 

any obstruction lower in the neuraxis, may be conveniently described as “suck” (figure 

3.15). This exerts a force which continues to mould the hindbrain hernia as well as 

sometimes being concerned with the pathogenesis of syringomyelia. Correction of the 

hindbrain hernia will commonly produce radiological and clinical improvement in 

hindbrain problems and also in syringomyelia (many investigators).

3.73 The communicating hypothesis

Gardner’s idea, that the embryological communication between the fourth ventricle and 

the central canal was usually the means by which the syrinx filled, had immediate appeal 

once the nature and severity of the suck mechanism between the head and the spine was 

measurable. Widespread acceptance of this idea led to a following for the operative step 

of blockage of the site of presumed communication, as advocated by Gardner (1973). The 

search for such communication in life was, however, often fruitless. West and Williams 

(1980) reported seventy ventriculograms with either water-soluble or oily contrast media. 

They found the communication in only seven cases. This figure of about 10% of cases of 

detectable communications in “communicating syringomyelia” accords well with other 

estimates. The objection that there was no communication demonstrable might be met, 

for some cases, by proposing that there had been a communication in the past which had
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been closed, perhaps partially by the compression of tissues in the foramen magnum in 

the hindbrain-related cases. There seems however to be a proportion of cases in which the 

communication could never have been present. These include hindbrain tumour cases and 

also cases where the top of the syrinx is well away from the hindbrain (figures 3.3, 3.7, 

3.11 & 3.16).

The communicating hypothesis may not be dead, but it is not adequate as a universal 

explanation for the association between hindbrain abnormalities and the syrinx.

3.7.4 The slosh mechanism

Energy imposition upon the spine by manoeuvres which raise the intra-thoracic and the 

intra-abdominal pressure is probably a usual mechanism in syringomyelia. If the cord 

contains fluid, it is likely that the fluid within will move more readily than that outside, 

because of the greater impediments to movement outside the cord from the dura, the pia, 

dentate ligaments, arachnoid strands, blood vessels and nerve roots as well as the 

narrowing of the subarachnoid space. Fluid surging on the inside can stress the walls of 

the cord and lead to tearing of the tissues in the same way as injection of fluid. 

Pathological preparations showing the collapsed cord are misleading. Most syrinx 

cavities in life are at least partially filled. It was stressed by Williams (1974), after 

creation of an analogue model, that cord fluctuation could be violent and the fluid inside
I

is free to surge upwards and downwards in an indulating manner imposing ballistic 

distending stresses. The phenomenon of surging, impulsive intracord fluid movements is 

tersely called “slosh”. If a cavity is being maintained by slosh, then it is likely that the 

natural shape of the cavity will be kept in existence by the diffusion of fluid through the
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walls of the cord. Septations within the syrinx cavity, sometimes called haustrae, are of 

interest (figure 3.17). They probably represent nodes or no flow areas in the cord. The 

slosh occurs in limited zones and the walls may tend to heal or else not break down at the 

site of septation. Their existence naturally leads to the contemplation of wave phenomena 

and the existence of standing waves as part of pathology, as illustrated in figures 3.17 to 

3.19. These septae may be surgically important because they make it difficult for the 

surgeon to pass a drainage catheter and sometimes lead to persistence of short section of 

syrinx after other parts of the cavity have been drained.

3.7.5 Transmural pressure gradients

It may be simplistic to think of “filling mechanisms” as applicable to this class of 

problem. Syrinxes are not necessarily in a state of active rilling at all times. It may be 

more reasonable to seek an analogy with the Starling equations describing the behaviour 

of tissue fluid as being a state of balance representing the equilibrium point of several 

interacting forces. The cord is a porous structure. There are no tight junctions in the 

gliotic lining of the syrinx cavity and fluid can enter readily, as may be observed by 

looking at the behaviour of water-soluble contrast material in post-myelography 

computerized tomography scans.

Ball and Dayan (1972) in a critique of “communicating “ hypothesis, drew attention to
i

the porous state of the cord, particularly to the sizeable spaces alongside the vessels 

which are sometimes called the Virchow-Robin spaces. They suggested that the fluid was 

driven into the syrinx by the nature of the blockage at the foramen magnum. This seems 

at first an unlikely suggestion. Why should it be that the obstruction of the subarachnoid
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pathways should force the fluid into the solid structure? Imagining the cord as being 

completely porous and passive suggests only that the cord would flap slightly if the fluid 

outside it should slosh up and down the spine. The Ball and Dayan hypothesis deserves 

close consideration, however, although the reasons that they gave themselves do not seem 

to be the best. They remarked that the pressure differences between the head and the 

spine were insufficient to cause filling along a tiny communication. The pressure 

differences are enormous however, as Williams (1981) recorded pressures of over 100 

mm Hg (4300 Pa) between the head and the spine.

Fluid is unlikely to track along the proposed communication in a majority of cases, 

however, for the reason that there is no communication. The behaviour of water-soluble 

contrast which enters the cord cavities easily as shown in post-myelography 

computerized tomography, illustrates the likelihood that the cord is acting in a porous 

way, perhaps as suggested as Williams (1993) in figure 3.19.

3.8 STATE OF RESEARCH

In 1994, a workshop on syringomyelia was organized. Small and Sheridan (1994) 

reported the event. Here are the main elements that came out, in terms of physical 

understanding of syringomyelia pathogenesis.

Gordon McComb’ spoke about the physiology of bulk CSF flow. He described two types 

of syrinxes: communicating and noncommunicating, which are differentiated by the 

composition of the cavity fluid. The majority of CSF is produced by the choroid plexus, 

with the remaining portion originating from the parenchyma (check on formation of csf).
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A threefold turnover of CSF occurs daily, a very active process. The hydrostatic pressure 

differential between the newly formed CSF and the site of drainage in the ventricles and 

the parenchyma causes CSF to circulate. Other factors contributing to CSF circulation 

include pulsations of the brain, arterial tree respiration variations, changes in body 

position, and ciliary action. There is normally an ongoing process of communication 

between CSF in the subarachnoid space and fluid in the spinal cord parenchyma. In 

syringomyelia associated with hindbrain malformation, there is also a process of 

communication between the syrinx and the subarachnoid space. The therapeutic goal 

should be to alter this dynamic process to either prevent or collapse the syrinx.

Bernard Williams' talked about his research concerning pressures in CSF and their 

relationship to syringomyelia. The presence of syringomyelia suggests a balance of forces 

such that at some time during the patient’s activity in some part of the spinal cord, the 

pressure on the outside is lower than the pressure on the inside. Otherwise the syrinx 

would collapse spontaneously. He then described the slosh mechanism to support this 

supposition.

The human neuraxis has a large rostral capacitance (the compressibility of the veins and 

the compressibility of the vascular bed), but only a small caudal capacitance. The caudal 

capacitance is affected by the external veins and by the elasticity of the dura. Valsava’s 

maneuver begins a fluid wave at the caudal end, which moves rostrally until it encounters 

a blockage. It may rebound to produce an area of consternation, diffuse chaotic flow, 

which may be responsible for syrinx filling. Considering the pressure-volume fluid curve,

as cited in Small & Sheridan (1996)
as cited in Small & Sheridan (1996)

55



\

reducing the volume of CSF will reduce the efficiency with which Valsava’s manoeuvre 

will expand the syrinx. This has been the rationale for the surgical placement of a valve to 

lower the CSF pressure.

Edward Oldfield' spoke of the pathophysiology of syringomyelia and the implications for 

diagnosis and treatment. There is no consensus on the pathophysiology of syringomyelia, 

particularly in Chiari 1 malformations. There is a great diversity in the surgical 

approaches that are currently being used. Detection of the pathophysiology preoperatively 

or during surgery may provide the basis for choosing the least invasive therapy. The use 

of MRI scans, pre- and postoperatively, allows for observation of the syrinx and dynamic 

changes that occur in the CSF and syrinx fluid during the cardiac cycle. Use of 

intraoperative ultrasound allows monitoring of the anatomy of the spinal cord, the syrinx 

and the cerebellar tonsils during surgery. In patients with Chiari 1 malformation, there is 

an occlusion of the subarachnoid space at the foramen magnum. In one operative study, 

images were obtained before and after the dura was opened. Before the dura was opened, 

the tonsils moved abruptly downward and the cervical portion of the syrinx constricted 

with each systole. After the dura was opened, but with the arachnoid still intact, there was 

no longer pulsatile motion of the spinal cord, and downward movement of the tonsils 

ceased. Patients were treated only by decompression of the foramen magnum and dural 

grafting, without opening the arachnoid. All patients had resolution of syringomyelia 

within 3 to 6 months of surgery. The results of this study imply that the mechanism of 

syringomyelia is external to the cord and that the transmission of a pulsatile systolic

as cited in Small & Sheridan (1996)
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pressure wave in the subarachnoid space underlies the development and progression of 

syringomyelia.

3.9 SUMMARY OF RESEARCH INITIATIVES

A number of areas of research need to be addressed for a better understanding of, and to 

provide optimal treatment for, syringomyelia. The first need is a consensus on the 

terminology. More specific descriptions of the various types of syringomyelia are needed 

in the literature, so that the treatments can be described in the context of the physical 

defect. The outcome of research is often listed as “the symptoms improved or did not 

progress” or “the syrinx was reduced”. Consistent modifiers are needed to quantify the 

changes, so that the results of various studies can be used in an integrated manner. 

Common terminology is of vital importance if there is to be pooling of information and 

collaborative efforts aimed at determining the most appropriate treatments for various 

types of syringomyelia.

Basic studies need to be done to learn more about spinal cord structure and function. 

Anatomic features and chemical composition could be compared between normal spinal 

cord and syringomyelia spinal cord. Metabolic, pharmacological, and physiological 

studies would also be informative.

A laboratory model of syringomyelia that stimulates the pathophysiology occurring in 

humans is needed. New animal models could be developed, or they could be expansion of 

research on existing models. This would allow for accumulation of data on syrinx 

formation and the identification of factors that aggravate the syrinx. Studies could also 

determine the effectiveness of various treatments. Although the laboratory model would
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not be a replacement for studies of human subjects, a wealth of information would be 

obtained that would provide additional insights.

Improvement in imaging techniques may facilitate the understanding of how syrinxes 

form and what mechanisms are involved in expansion. Studies need to be aimed at 

determining the normal physiology of the cord, normal bulk flow in the cord, and normal 

physiology of CSF motion in the cord. Another emphasis would be on real-time imaging 

to obtain pulse pressure information noninvasively. Armed with such information, it 

would be possible to intervene early in the disease process by identifying those persons at 

risk of developing syringomyelia.

Because the pathophysiology of syringomyelia is controversial, a variety of surgical 

techniques are used for treatment. Research is needed to establish the pathophysiology of 

the ongoing progression of the various forms of syringomyelia. Currently, there is a 

disagreement about the use of shunts, shunt materials, and shunt locations. Clinical 

studies should include outcome data over a number of years, so that the various treatment 

options can be evaluated effectively. The goals of all treatments are reduction in the size 

of the syrinx and neurologic improvements. Syrinxes can be detected by MRI before the 

development of neurologic symptoms. Should the surgery be performed at an early stage 

to prevent any damage from developing, or should the patient be closely monitored, since 

in many cases the syrinx may never expand or problems may never arise? The ultimate 

goal should be for the most minimally invasive surgery for each patient to eliminate the 

mechanism(s) of maintenance and progression of syringomyelia.
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Even when surgery successfully reduces the syrinx and improves neurologic functions, 

there is often no relief from chronic pain. Finding more effective treatments for chronic 

pain will require further studies.

There should be a wider educational outreach to medical professionals to expedite 

diagnosis and treatment of syringomyelia. The primary care physician is often the first 

consulted, and many months may pass before the patient is either diagnosed or referred to 

a neurologist. This allows the condition to worsen when earlier treatment may have 

prevented progression. In addition, there must be evaluations as to the psychological, 

social, and vocational adjustments necessary for these patients.

We will conclude this chapter by stressing the importance of understanding the dynamics 

of CSF in order to elucidate syringomyelia. This thesis is devoted to this aspect. An 

important point is to model pressure wave propagation in coaxial tubes where the main 

unknown is the pressure difference between the subarachnoid space and the central canal. 

This will allow us to understand the formation of syrinxes.
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CHAPTER 4

FLOWS THROUGH COLLAPSIBLE TUBES

We have described the cerebrospinal system and the anomalies due to syringomyelia. We 

now assess the theories and techniques available for a better understanding of the 

movement of cerebrospinal fluid in the spinal cord.

A number of theoretical models of the intracranial cerebrospinal fluid (CSF) system have 

been developed. Most of them are based on compartmental models which ignore the 

spinal part of the system (Agarwal et al 1969, Kami et al 1987, Sorek et al 1988a,b and 

1989, and Hoffmann 1987). Elements of continuum modeling have been developed by 

Hakim et al (1976). A continuum mathematical model of the cerebrospinal fluid system 

in the vertebral canal has been developed by Lockey et al (1975). Williams (1974) 

constructed an analogue model of the ventricular and intraspinal cerebrospinal fluid 

system which incorporated selected features of the real system.

However, we came to realize that compaitmental models suffered fundamental deficiency 

for modeling many features (e.g. slosh, continuous wave propagation). Indeed, 

compartmental modeling is incapable of dealing with pressure propagation (for instance 

to understand what happens in terms of pressure propagation along the spinal 

subarachnoid space and along the central canal when a patient coughs) because it is based 

on the assumption that the pressure is uniform instantaneously over a given compartment. 

One way to tackle this problem would be to divide the spinal compartment in many sub-
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compartments in order to achieve the pressure changes in this compartment. However this 

would constitute another daunting task.

A better approach to reach this aim is to follow the analysis of flows through collapsible 

tubes, and adapt it to the spinal cord system. That is the reason why we first describe 

some interesting features linked with collapsible vessels.

4.1 DEFINITION AND APPLICATIONS

Collapsible tubes have received great attention in the last forty years because of the wide 

range of applications, especially in physiological flows. By collapsible tubes (or vessels), 

one means the ability of a tube to change its cross-sectional area and shape according to 

the transmural pressure applied to the compliant wall of the tube. In the body, all fluid- 

carrying conduits are elastic and hence prone to collapse. Sometimes, the collapse of a 

vessel occurs as a normal and useful course of events. The best known example is the 

return flow of blood to the right side of the heart. In this case the feature of collapsible 

tube exhibited is the flow limitation (Guyton, 1963).

An extensive variety of physiological phenomena and medical diagnostic or therapeutic 

applications are described as examples of flow in collapsible tubes. Here is a list of these 

applications, but for a more accurate documentation on these applications, see Shapiro 

(1977a). We can distinguish three categories: (1) Physiological examples: veins, arteries, 

the pulmonary circulation, autoregulation, the pulmonary airways, the urethra, the 

eustachian tube, the vocal cords; (2) Diagnostic and therapeutic devices: Korotkoff 

sounds, vascular diagnosis by pressurising cuffs, intermittent external compression of the 

legs as prophylaxis against the occurrence of deep vein thrombosis, intra-aortic balloon
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counterpulsation as an aid to the failing heart, external counterpulsation of the legs as an 

aid to the failing heart, prosthetic heart devices, vein cannulation for withdrawal of blood, 

prosthetic vocal cords; and (3) Engineering devices: amplifiers, switches, logic units. 

These collapsible tube flows exhibit all the phenomena associated with flows in distended 

tubes, but, in addition, they offer a wealth of other interesting characteristics. These 

include autoregulation, flow limitation, and flow-induced flutter for instance.

In this section, the literature will be presented (which follows the survey made by Kamm, 

1987), as well as some features of collapsible tubes that are particularly interesting for 

our model (which is described in the following chapters). We will start with the analysis 

of the Starling resistor, followed by some mechanics of the tube wall. We will then make 

some comments on the wave speed. We will finish this section by discussing the elastic 

jump phenomenon.

42  THE STARLING RESISTOR

In order to well understand the behavior of flows through collapsible tubes, so important 

for physiological flows, an analysis of the Starling resistor is crucial. The earliest 

literature by Knowlton and Starling (1912), Holt (1944,1953,1959), Rodbard and Saiki 

(1953), Rodbard (1952,1955,1966), Rodbard and Takacs (1966), and Bradley (1963) (as 

cited in Kamm, 1987) describes experimental results of hydraulic tests on the so-called 

“Starling resistor”, used for purported simulation of certain physiological phenomena.

The device consists of a compliant tube segment mounted between two rigid tubes and 

surrounded by a rigid enclosure that can be pressurised (see figure 4.1). One rigid tube is 

connected to an open supply reservoir filled with water to an adjustable level, which
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determines the inlet pressure, l\  . The exit tube is connected to a discharge reservoir at an 

adjustable lower level, which determines the outlet pressure, P2 ■ The enclosing chamber 

contains air or water at an adjustable external pressure Pe . The various experimental 

results reported by Holt (1944,1953,1959), Conrad (1969), Katz et al (1969) and Brower 

and Noordergraaf (1973) (as cited in Kamm, 1987) suffer from a variety of deficiencies 

that make interpretation of results difficult, for instance:

(a) A “black box” view of the device, which is considered to be a resistor (often treated as 

though linear) characterized by a driving pressure drop from inlet to exit, Pl - P 2, that 

produces the flow rate, Q.

(b) The confusing presence of additional flow-resisting valves in the rigid tubes.

(c) A misconception that there are three controlling pressure variables (Pt ,P2 ,Pe), rather 

than two controlling pressure differences ( P, -  P2 , and P2—Pt , for instance) with the 

consequence that the variable are not controlled in an appropriately systematic manner.

(d) Failure to perceive that the end effects exhibited in figure 4.2 are dominant when 

P2 -  Pt becomes substantially negative.

Clarification of the foregoing item (c) was provided by Brower and Noordergraaf (1973), 

but with no further elucidation from a fluid mechanical point of view.

We finish this brief description of the Starling resistor with three remarks:

(a) Since the flow limitation behaviour appears to occur at both very low and very high 

Reynolds numbers, it seems reasonable to suppose that it applies over the entire range of 

Reynolds numbers.
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(b) The flow limitation behaviour appears here independently of any consideration of a 

wave-speed type of limitation. Can there be wholly different and physically independent 

sources of flow limitation? Probably not. The analysis here ignores the question of 

whether the sequence of states through which the flow must pass is possible.

(c) Oscillations of a Starling resistor have been studied by various investigators (Conrad, 

1969; Brower and Scholten, 1975; Griffiths, 1977). It has been shown, however, that the 

character of these oscillations is governed largely by the properties of the system 

downstream of the device (Conrad, 1978; Bertram and Pedley, 1982) and is also likely to 

be influenced by the non-physiological attachment between the compliant and rigid tubes 

at the downstream end.

Note that Kamm (1987) made a more detailed description of the Starling resistor.

43  THE MECHANICS OF THE TUBE WALL: TUBE LAW

Virtually all the literature on flow in collapsible tubes contains the assumption that there 

exists a ‘local tube law’, namely a unique relationship between the local cross-sectional 

area and the local transmural pressure: A =A(P-Pe) ,  where P  and Pt are the internal 

and external pressures, respectively. This is valid when stiffness against area change 

resides solely in circumferential bending or tension; or, equivalently, when the structural 

stiffness due to longitudinal tension and bending are both negligible. But such is the case 

only if longitudinal area variations are of sufficiently long wavelength. Thus the 

hypothesis of a local tube law is equivalent to the assumption of infinite wavelength in 

area variation.
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Although all vessels found in physiological systems are imbedded in other tissues, we 

will at first neglect the influence of external tethering. Furthermore we will assume, for 

now, that the vessel is being subjected to a uniform transmural pressure, which does not 

vary in either the circumferential or axial direction, and that the tube circumference 

remains of constant length despite changes in cross-sectional area. The tube wall will be 

treated as a homogenous, isotropic structure, the walls of which are subject to both tensile 

and bending stresses. The response of the tube to changes in transmural pressure has been 

treated by several investigators as Kresh and Noordergraaf (1972), Kresh (1979), Flaherty 

et al (1972), each using different analytical and numerical techniques. Here we follow 

Flaherty et al (1972) to write the structural equations for a small element of the tube wall 

at a circumferential position s (figure 43):

where N(s) and T(s) are dimensionless components of force in the outward normal and 

tangential directions, respectively, and M(s) is the local dimensionless bending moment, s 

is the circumferential position and P is the dimensionless transmural pressure:

where h is the wall thickness, £  is the Young’s modulus, and a  is the Poisson ratio.

Y£„ = —— -  TK + P = 0 
^  ds

(4.1)

P  = with
K„

K ..-------------— =-
r l 2 R \ l - c r 2)
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If we assume that the bending moment is proportional to the difference between the 

curvature of a circular tube and the actual curvature, and we call k  the local curvature, we

can reduce equations 4.1 to the following differential equation:

k" + 1 / 2k* —(T + l / 2 k 2)ki + P = 0 (4.2)

The numerical solution of equation 4.2 was obtained in three different regimes:

(1) Before the two opposing walls come into contact

(2) When contact occurs at a single point (or line in a uniformly pressurised tube)

(3) When a line of contact exists between the two opposing surfaces.

The resulting relationship between transmural pressure and cross-sectional area are given 

in figure 4.4 from Shapiro (1977b). Four different cross-sectional tube shapes can be seen 

from this figure:

(a) In positive transmural pressure difference (inflated tube), the shape of the cross- 

section is circular, and the pressure difference is supported by hoop tension.

(b) In the range of negative transmural pressure (027 < ar< l where a  = A /A a), the tube 

is partially collapsed, and the pressure difference is supported by the bending stiffness of 

the tube wall.

(c) When 021 < a  < 027 , a contact point occurs.

(d) When a  < 021, a line contact occurs. The tube is in the form of two parallel conduits. 

No reasonably simple analytic relation P(a  ) can fit the experimental data over the entire 

range a  < 1. Nevertheless, Flaherty et al (1972) proposed:

P  «= - a "  (4.3)

where n = 3/2 for the thin-walled latex tube used in figure 4.4.
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In order to match better the point a  = 1, Shapiro (1977b) proposed the following tube

law:

P = 1 -  a "  where n = 3/2 (4.4)

Physiological vessels (e.g. veins, arteries, the urethra, the trachea) are usually surrounded 

by or connected to large tissue masses, and they may not even be axisymmetric. The 

results presented above are valid for thin-walled elastic tubes, but can be expected to be 

only broadly indicative of the behaviour of physiological vessels. Nevertheless, simple 

mechanical considerations suggest that the tube law for physiological vessels conforms 

generally to the experimental curve of figure 4.4. Because of the difficulty in obtaining 

similar experimental measurements on physiological vessels, only qualitative and rough 

quantitative comparisons can be made. However, it seems highly likely that the 

phenomena later described may or do occur physiologically.

Thus far it has been assumed that both the tube law and the transmural pressure difference 

are uniform along the length of the tube. Physiologically and in laboratory model 

experiments as well, this is not always true. When longitudinal nonuniformities exist, the 

combination of a longitudinal tension, T per unit perimeter, in the tube wall, together with 

a curvature, 1 / R L, in the longitudinal plane, produces a strong loading roughly 

equivalent to a transmural pressure difference with an order of magnitude of —T / RL. If 

T / Rl is negligibly small compare to p  -  p t , then the local tube law described above is 

essentially applicable at each longitudinal section x. But if T / R, is not comparatively 

negligible, the local area and cross-section shape depend not only on the local transmural 

pressure difference and local tube properties (e.g. rest radius, wall thickness and modulus
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of elasticity), but also on the shape of the tube and the longitudinal tethering along its 

entire length. McClurken et al (1981) go further by including the bending forces. Indeed, 

a more accurate pressure-area relation was developed. Focusing on the range where 

03< a  < 08 (the shape of the tube is elliptic see figure 4.4), they postulate that the three 

stiffnesses (longitudinal tension and bending, and the circumferential bending) are 

separable and act additively to support the transmural pressure. The modified tube law is 

written as:

p - p e = KFP(a) + AP, + APb (45)

Here AP, and APb represent the stiffness of the tube against collapse due to the effects of 

axial tension and bending, respectively.

Circumferential bending. In the geometry of figure 4 5 , the circumferential bending 

stiffness would be physically due to the forces required to bend the semicircular end 

regions to a new radius of curvature. However in applying the local tube law defined by 

Flaherty (equation 43), we make the assumption that the circumferential stiffness P (a)  

is the same as that determined for the actual tube under longitudinally uniform 

conditions.

Axial tension. An estimate of the tension stiffness AP, considered as the transverse 

displacements of the straight segments of the wall is (McClurken et al, 1981):

T __ T /D u 1 c^a 1 M lR ~ 4 (1 - a ) m ^ 2(1 - a ) m Id S )
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where D„ is the diameter of the circle in figure 4.5, and T = s xEli is the axial force per 

unit perimeter resulting from the axial strain ex , R is the longitudinal radius of curvature

1 Ĉ"defined as: — = — — , h is the wall thickness, E is the modulus of elasticity, £ = jc /D  is
R d x 1

the normalised longitudinal co-ordinate and y  is expressed in terms of a  .

Note:

(a) It has been assumed for the above equation that dy  / d x  is small.

(b) The ratio of the second to the first term within the square brackets is very small in 

general. However, in elastic jumps (analogous to shock waves), the ratio is about unity, 

hence, except for when considering elastic jumps, we will neglect the second term within 

the square brackets to give:

AP = -
T /D a c^a

( i- a yu ¿ r
(4.7)

(c) It can be seen from equation (4.7) that the estimate of the tension stiffness blows up 

when a  —*■ 1. This is not surprising since the geometry considered here is elliptical and 

the estimate of the tension stiffness is not valid anymore when it becomes circular, i.e. 

when a  is close to unity.

(d) Even though T is a function of axial distance because of skin friction forces, 

experimental results show that it can be taken as a constant.

Longitudinal bending. The stiffness against bending of the two parallel surfaces of 

figure 4.5 is given by:
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(4.8)AP„ rr, &<*
d x 4 " 3 2 ( l - a ) ,/J d ?

where /  is the second moment of area equal to h* / [ l2 ( l -  v'2)] and v is the Poisson

ratio.

As for the estimate of the axial tension, only the linear term is retained when y  is 

expressed in terms of a  . The four non-linear terms neglected are in fact small compared 

with the surviving linear term of equation 4.8, except in elastic jumps. And, as with the 

tension term, the model leading to equation 4.8 loses validity as a  -> 1.

From the above considerations and considering equation 45 , we can write the modified 

tube law as:

P - P .  P, ^  i 1 T IK fDq r f a
Kr W  32(1 - a ) m d ?  4(1 - a ) m d ?

(4.9)

Evaluation of the modified tube law.

(a) The assumption that circumferential bending and longitudinal tension and bending act 

independently, and are thus additively superposable, is clearly incorrect for large 

deformations with compound curvature (e.g. a corrugated sheet is stiffer in bending than 

flat sheet). Because of the tube collapse, the circumferential curvature is normally very 

much larger than the longitudinal curvature. The effect of compound curvature is to
i

increase the effective bending stiffness constant, K ,. . This may be quite pronounced with 

respect to stiffness in longitudinal bending. Considering the two correction terms of the 

local tube law, the formulation for A/Jfc is therefore of much weaker validity than the 

formulation of AP,.
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(b) One aspect of the coupling between the different stiffnesses is that, owing to 

longitudinal tension, the effective transmural loading on the wall is variable around the 

perimeter, whereas the experimental function P (a ) is necessarily measured with uniform 

transmural loading. The non-uniform loading produced by longitudinal tension in fact 

changes the shape of the cross-section and thus indirectly affects the function P ( a ) .

(c) Perhaps the most difficult assumption to justify is that longitudinal bending and 

tension stresses, as modeled on the straight upper and lower surfaces, are representative 

of those acting on the entire perimeter. If we neglect axial bending forces over the axial 

tension forces (as the experiment of McClurken et al (1981) has confirmed) and we 

consider a local area minimum ¿Pa /  d£? positive, we can see from equation 4.9 that 

tension acts like a decrease in external pressure and tends to pull the upper and lower 

walls of figure 45  further apart, thereby increasing the area. Over much of the side walls, 

however, tension pulls the surfaces inward, seeming to counteract the anticipated 

increase. There is no contradiction, however, since both displacements are consistent with 

an increase of area for a tube of fixed perimeter, i.e. both forces tend to produce a more 

rounded shape. Thus the net effect of tension on the entire perimeter is, with regard to 

cross-sectional area, at least consistent with the direction of change given by the model. 

Let us recall that the model is no longer valid when a  -* 1.

(d) Further complications arise when modeling unsteady flows. To account for 

unsteadiness in the tube law would require, in addition to those already included, wall 

inertia and viscoelasticity terms.
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Although the modified tube law seems crude, it suffices for a qualitative correct 

determination of those physical events that are due to longitudinal tension and bending, 

particularly for small-amplitude, long-wavelength phenomena. Moreover, the numerical 

results of the modified tube law are in a good agreement with the experimental results 

performed by McClurken et al (1981).

Cowley (1982) developed a “tube law” for the case of a circular elastic tube, following 

the static balance equations derived by Flugge (1973). He separated two cases: a tethered 

and an untethered tube. In the case of a longitudinal tethered tube, he found that the tube 

law recovered in the form of a pressure-area relation independent of time, confirming the 

results of McClurken et al (1981) for a collapsed tube. However, in the case of untethered 

tube, a time-dependent tube law was recovered, even though the physical properties of the 

tube did not vary in time. He emphasised that there was no reason why the tube law 

should take the form of a pressure-area relation for unsteady deformations, such as those 

observed in the experiment of Conrad (1969). He suggested the use of the tube law 

directly from experiment rather than the predicted one, even for steady flow (for spatially 

slowly varying untethered collapsed tubes).

Several attempts to model a realistic tube law by including viscoelasticity, head loss, wall 

inertia and viscous effects were made by many investigators (Cancelli & Pedley, 1985; 

Bertram & ,Pedley, 1983 for instance). Even though the tube law model was not 

completely satisfactory, it elucidated other problems concerning collapsible flow such as 

flow separation, oscillations.

The author’s point of view is that it is appropriate to use an analytic tube law to obtain 

crucial information about some flow phenomena.
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For instance, for non-linear elastic behaviour, one should always separate the inflated 

tube (positive transmural pressure) from the collapsed tube (negative transmural pressure)

as:

p - p ,  - l )

p - p ,  = * , , ( ! - a - )

for inflated tube

for collapsed tube

To avoid discontinuity in derivatives and difficulties in numerical calculations, Shapiro et 

al (1987) proposed:

Equation 4.10 should be used as a qualitative tool, and if some more accurate information 

are needed, it should always be compared with experimental results.

4.4 WAVE SPEED

The importance of the tube law comes from the fact that the velocity of long area waves 

are directly derived from it (Lightill 1975, chapter 12):

Because of the non-linear behaviour of the tube law, the wave speed, as derived from 

exj>erimental data using equation 4.11 can be seen to vary considerably as the tube 

collapses from a circular state (figure 4.6). The abrupt jump in C at a value of a  of about 

0.27 corresponds to walls of the tube coming into contact, with a consequent increase of 

the tube stiffness.

r
(4.10)

(4.11)
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In the partially collapsed state, and assuming that the effects of circumferential bending 

and longitudinal tension could be superimposed for waves of small amplitudes, 

McClurken et al (1981) obtained the following dispersion relationship:

C2 = c i
tr2TD0a  rt*KrD*0a (4.12)

/0>l2( l - a ) ,/2 2/ j A2( 1 - cF)i/2

where C„ is given by equation 4.11, T is the axial tension, Da = (Aa I ji)m , X is the 

wavelength and a  is the mean area ratio. Good agreement was obtained between the 

theory (when the third term on the right in equation 4.12 was neglected) and the 

experimental measurement (obtained from the precursor waves preceding stationary 

jumps, see section 45), as indicated in figure 4.7.

4.5 THE ELASTIC JUMP

Studies on the wave speed show that a compression wave can steepen and eventually 

create an elastic jump or a shock wave. We define an elastic jump as a big discontinuity 

propagating into a fluid through which the properties (pressure, velocity, cross-sectional 

area) change suddenly.

If a sub- to supercritical flow transition is possible, is it also possible to decelerate the 

flow from a super- to subcriticai state? The theory draws no distinction between sub- to 

supercritical transitions and super- to subcriticai transitions. Therefore we have no reason 

to believe that either is possible. Unlike transitions of the former type, however, 

experiments have not yet been able to demonstrate the existence of a smooth super- to 

subcriticai transition. Instead, the flow tends to decelerate to subcriticai speed by means 

of an elastic jump, across which the fluid properties undergo an abrupt change (over a
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distance of several tube diameters) while the speed index goes from greater than one to 

less than one. The close analogy between an elastic jump and either a shock wave in gas- 

dynamic duct flow or a hydraulic jump in free surface flow can readily be seen.

Figure 4.8 depicts an elastic jump as it occurs in a collapsible latex tube suspended in 

water. We generally refer to the region of rapid area expansion (b to c) as the jump, 

although the train of waves seen standing upstream (a to b ) originate at the jump and are 

closely associated with it.

The jump (b to c) has a length of from one to five tube diameters depending on its 

strength and the imposed longitudinal tension. As in the gas-dynamic shock, energy is 

dissipated by the elastic jump. This occurs by several mechanisms, including viscous 

dissipation and the release of energy in the form of a stationary wave train propagating 

upstream from the jump. These “precursor waves” appear to be stationary because their 

phase speed equals the local fluid velocity. They are able to propagate upstream because 

their group velocity exceeds the local flow speed.

Several analyses have appeared in the literature to predict the nature of the transition 

across the elastic jump (Shapiro, 1977b; Oates, 1975; Beam, 1968; Cowley, 1982). To 

model the jump realistically, however, proves to be an extremely difficult task owing to 

several complicating factors, including: (1) the essential coupling between the pressure 

distribution created by the flow and the geometry of the tube wall, (2) the importance of 

the three-dimensional aspects of the jump, and (3) the flow separation that occurs in the 

region of rapid area expansion. For all these reasons, an analysis must rely on various 

simplifying assumptions and can therefore be thought of as only approximate models of 

the true elastic jump. One of the most rigorous analysis is that of Cowley (1982), who has
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This is the same result obtained by Beam (1968) and Oates (1975), but Cowley’s analysis 

is less restrictive in that it does not need to assume that the tube law is valid throughout 

the shock. Cowley does assume, however, that the tube wall has no curvature at points b 

and c (upstream and downstream the jump), and that wall shear stress is negligible within 

the control volume. These assumptions prove to be difficult to satisfy under typical 

experimental conditions and probably account for some differences between the 

theoretical predictions and the experimental results reported next.

Griffiths (1971,1975) was probably the first to demonstrate experimentally the existence 

of a stationary elastic jump, although the lack of precise measurement capabilities 

prevented him from proving that the transition was indeed from a super- to subcritical 

flow state. Later experiments (Kececioglu et al, 1981; McClurken et al, 1981; Elliott and 

Dawson, 1979) were able to demonstrate clearly the existence of the jump and to 

characterize it in terms of upstream and downstream conditions. McClurken et al (1981) 

were able to determine the flow velocity, cross-sectional area and pressure upstream and 

downstream of the shock and compared their measurements with several theoretical 

predictions. They found that the dimensionless pressure recovery coefficient generally 

fell between the two limiting curves of a jump free of viscous dissipation and of one with 

total loss of dynamic head in the jump (figure 4.9). In those jumps for which the pressure 

recovery fell below the lower curve (generally for very long jumps), it was thought that 

wall shear stress played a dominant role. The analysis of Oates (and also of Cowley) 

represented an improvement over either of these extreme cases, but still failed to yield a 

good prediction.
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The lack of close agreement between theory and experiment can probably be attributed to 

the two assumptions identified above. For very long shocks, wall shear stress clearly 

plays an important role, causing the pressure recovery to fall below the prediction based 

on a total loss of kinetic energy. For shorter shocks, it is not possible to identify a point 

just upstream of the shock where the wall curvature is zero or insignificant as required by 

Cowley. Therefore the neglect of the effects of tension at point b and c is often not 

justified.

McClurken et al (1981) also predicted the length of the jump by using the simple notion 

that the jump was merely the first wave in the train of waves propagating upstream. A 

predication of wavelength including the effects of longitudinal tension is in reasonably 

good agreement with the measured lengths of the jump.

We have discussed some features of collapsible tubes. In the following chapters, we will 

adapt this collapsible tube theory to the spinal system. We will also discuss a few 

interesting features developed in this chapter.
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CHAPTER 5

PRESSURE WAVE PROPAGATION IN A COAXIAL 

TUBES MODEL

5.1 INTRODUCTION

Many years ago, Williams (1976; see also section 2.6.4) carried out pressure 

measurements of the CSF in the lumbar and cisternal (top of the neck) regions of human 

subjects during and following coughing. Both normal subjects and those suffering from 

syringomyelia were studied. The most striking outcome of the study is the fact that for 

normal subjects the shape of the pressure signals obtained at the two locations did not 

differ greatly, whereas with syringomyelia the cisternal pressure is extremely weak and 

attenuated compared with the lumbar one (see figures 2.27 and 2.28). This suggests that 

the pressure propagation process is almost nondispersive (in the sense that the pressure 

amplitude is roughly conserved at both locations). In other words, it is similar to sound 

propagation or, more particular, to the propagation of longitudinal waves in elastic tubes 

and channels (see Lighthill, 1978). That is the reason why we developed a wave 

propagation model for the spinal CSF system.

The research done in the ,domain of wave propagation typically either concerns a single 

stiff tube (e.g. metal pipe) or a single elastic tube (collapsible tube). The definition of the 

wave speed is the same in both cases, but an additional tube law equation (pressure-area 

relation) is needed in the case of an elastic tube in order to fully describe the behaviour of
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the elastic wall. However, our case is a mix of these two theories, since it consists of 

coaxial tubes where the outer tube is stiff and the inner is elastic (figure 5.1).

52  COAXIAL TUBES MODEL

5.2.1 Assumptions of the model

The spinal CSF is modeled crudely as rigid-walled channel of constant cross-section 

which is divided into two unequal parts by a longitudinal flexible diaphragm (see figure 

5.1a). The diaphragm represents the spinal cord. The upper (A) and lower (B) parts of the 

channel represent respectively the subarachnoid space and the central canal. The cross- 

sectional area of B is very much smaller than A . It should be noted that in healthy adult 

humans the spinal central canal is barely 100 f.an wide. Mathematically this arrangement 

is equivalent to concentric annular channels separated by an annular diaphragm (see 

figure 5.1b).

The assumptions of the model are the following:

(1) The CSF is inviscid and we ignore other possible sources of resistance to flow in the 

spinal subarachnoid space. In fact, the viscosity of CSF is similar to that of water and the 

subarachnoid space contains structures, such as trabeculae, which create a certain amount 

of resistance to flow.

(2) The flow is'stationary (i.e. there is no mean flow). Indeed, the CSF is fully replaced 

about 7 times every 24 hours. This corresponds to a maximum undisturbed flow speed in 

the spinal system no more than 0.1 mm/s which is minute compared with the wave speed
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(about 5 m/s, from Williams’ pressure records, 1976). However, the analysis will be 

modified into the next chapters to take into account a steady flow speed.

(3) That the tube law (pressure-area relation) is linear.

(4) The effects of wall inertia are negligible.

(5) The diaphragm is non porous.

(6) The problem is one-dimensional.

5 2 2  Governing equations

The theory of longitudinal waves is based on the concept that variation of excess pressure 

P' is negligible over a cross section: P ,= P -P 0, where Po is the undisturbed pressure 

including the hydrostatic component, so it is the excess pressure which produces fluid 

acceleration (Lighthill, 1978). The motions produced by longitudinal gradients of Pt can 

be large compared with those forced by transverse gradients only if Pt varies negligibly 

over each cross-section. Considering the flow as one-dimensional, incompressible and 

inviscid, Lighthill (1978) showed that the wave speed in a single elastic tube was defined 

as (when the convective terms are neglected):

where C is the wave speed, A is the cross-sectional area and p  is the density. A0 is the 

cross-sectional area in the undisturbed conditions.

(5.1)

K = (~^-E\ is called the compressibility, and n  =1 is the distensibility.

The sum (K+D) is the effective compressibility of the fluid.
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However, since we treat the problem of water in a thin-walled flexible tube, we can 

neglect the effects of compressibility, and the variations of the wave speeds will only be 

due to distensibility D. We can thus write the definition of the wave speed in a elastic 

tube as:

p  dA (5.2)

Equation (5.2) is the speed at which waves propagate along a single flexible tube filled 

with water, provided that the compressibility of water is neglected.

Coaxial tubes

Adapting the theory to the coaxial tube model defined in section 5.2.1, we can write:

Continuity equation in chamber A : ^Aa. + = o (53)
dt dx

Continuity equation in chamber B : ?Aa  + d(ABU,) _ q (5  4 )
dt dx

where Aaj and UAB are respectively the cross-sectional areas and the fluid velocities in 

chamber A or/? and p  is the fluid density.

Momentum equation in chamber A:

.  dPA cXAaUa) ff(AAU\ ) n 
dx  H H d‘

Momentum equation in chamber B: a „ + p A A jA e l + pA A A Lal = 0
dx dt dt

where PAJ) is the fluid pressure in channel A and B.

We neglect the convective terms (the third term in the left hand side) in the momentum 

equations:

„ dPA d (A AUA)
dx  dt

(5.5)
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(5.6)

\

* A 'U .) =0
* dx r  dt

Equations 5 3  to 5.6 are the governing equations of our system.

If we linearize around A^ the above equations (A ^  is the outer cross-sectional area at 

equilibrium), the driving equations become:

Continuity in the outer channeM: it -A 3U* 
dx

(5.7)

Continuity in the inner channel B : <?(Ar -
dt

At) (A ^(A  Au) (5.8)

Momentum in the outer channeM: dU.P----— dPA (5.9)
dt dx

Momentum in the outer channel B: dU. 
P---- -■ . dPB (5.10)

dt dx

where the subscripts A , B respectively denote quantities in the outer and inner chamber. 

At = Aa + A„ is the total cross-sectional area and is taken constant in the first place.

Equations 5 3  to 5.6 are the governing equations for the general case whereas equations

5.7 to 5.10 are the governing equations for the linear case.

53 WAVE SPEED DEFINITION

53.1 Linear case

We differentiate with respect to t the continuity equations 5.7 and 5.8, respectively:

d 'U A * 1 '  1 dAA\  1
dx dt dt l3 *, dt J AM d t 2

d 2U ,  d |(  1 d ( A r_ A j ) | 1 d 2( A T - A A)

d x  dt  d t 'U * r - A u )  dt J1 ( * r - A * , )  ¿ I *
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We differentiate with respect to* the momentum equations 5.9 and 5.10, respectively:

d 2UA 1 d l 1 1 d 2PA
d td x p dx  1< dx J ' p  dx 2

d 2U„ _ 1 ¿ 1 'dP„) 1 d 2P„
dt dx p d x 'v dx ) p  d x 2

Assuming that UA and UB are continuously differentiable, we can write:

dt dx dx dt

and thus we can deduce that: ^  ** = P ^
dx 2 Aa„ d t 2

Noting that Ar is not a function of time, we similarly obtain:

d 2P„ p  d 2AA
d x 2 ~ (Ar - A ^ )  d t 2

We take A A as a function of AP ( AP = PA -  PB) only, we can therefore write:

d t 2

d 2AP 
d t2

We can finally write that:

d 2AP ( 1 | 1 dAA \ d 2AP
d x2 V ^ A ^  + At -  A^ dAP d t2

(5.11)

Equation 5.11 expresses the fact that small amplitude disturbances can propagate along 

the channel in either direction at speed C0 defined as follow:

1 Pa t
AAo(AT- A A,)d A P A/*-0

The general solution of equation (5.11) is well known:

(5.12)
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AP = f ( x -  Cat)  + g(x + C„f) (5 .13)

where /  and g are arbitrary functions.

Note that from the two continuity equations 5.7 and 5.8, we can link fluid velocities in 

both tubes with the relation:

where a c = AAo /A t .

We have now determined the wave speed in our coaxial tubes model for the linear case.

5 3 2  Non-linear case

We differentiate equation 5 3  with respect to x  and equation 5 5  with respect to t. 

Assuming that the product function (AaUa) is continuously differentiable, we readily 

obtain:

We manipulate in the same way the continuity and momentum equations for chamber B, 

recalling that A, = AT -  Aa :

(5.14)

<?PA _ P <?Aa 1
d x 1 Aa d t2 Aa

From the last two equations, we can write (recalling that AP = PA - P„):

¿Aap
d x1
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We take the cross-sectional area Aa as a function of the pressure difference AP only, we

therefore have:

d A A = dAA d2AP 
d t2 ~ dAP d t2

and d A A _ dAA dAP
d x 2 dAP d x2

With this consideration we can write that:

d  AP d(PA-P t ) ( P . P dAA dAP r *  ] dAA dAP dPA

II

&

1

U „ A 

1

r

\ dA *[

dAP

' dAP']

d t1

1 d A

VAA{AT- A A)) 

r  dAj dP„

dAP dx dx

At - A a dAP\ dx  J dt dx d x  t

We consider propagation of small perturbations in AP. With AP= PA-P„, we can 

consider that AP,PA,P„ are of the same order so that we can neglect the product of two of 

these quantities. Therefore we obtain:

dA P  |f P . P 1 dA. dA P  | 1 |( d A r dAr dP„]
d x2 ' XX1tx

hk

1 dAP d t2 ' At - A a 'l  d t1 dx  dx )

We assume that the total cross-sectional area is constant so that we can write:

dAP
d x 2

P , p  )dA A dA P  
Aa AT- A A)dAP d t2

Therefore, we can deduce the square of the wave speed in our model:

1
C 2 = _________________  A M t ~Aa)

{ 1 1 dAA . dAA
\ aa * A T- A A)dAP T dAP

(5.15)

(5.16)

Lighthill (1978) has defined the distensibility in the theory for wave propagation in 

(single) elastic tubes in the linear case as (see section 5.2.2):

1 dA D = — —  
A„ dP, /;- o
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By analogy we define the distensibility in our model as:

(5.17)

If we insert the above distensibility definition into equation 5.16, we can write that the 

wave speed in the coaxial tube model is:

where a  = Aa /  AT .

5.4 TUBE LAW (PRESSURE-AREA RELATION)

We have shown in the previous section and in chapter 4 (section 43), the importance of a 

tube law (pressure-area relation). It will provide us with the extra equation required in 

order to solve the problem. We will use a simple linear relation in order to develop a 

simple analysis for the small perturbation theory. We also cite two other tube laws (from 

the literature) for improvement of the theoretical model. These tube laws take the 

following forms:

(a) a = a 0+DAP (5.19)

1 dAwhere D = —— is the distensibility defined in section 5.3 (taken as constant) and

where AP = PA - P B is the pressure difference. Let us recall that ac = AAo / Ar .

where K ,, * E (h  / R )}, and E  represents the elastic modulus, h is the wall thickness, R  is

the curvature radius of the elastic tube.

(5.18)

(b) P .-P *  = * r
a (from Shapiro, 1977b) (5.20)
a.o
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(C) Pa ~ P b = K (from Oates, 1975) (5.21)
a

where K* E(fi / R ).

In the next sections, we will only consider the tube law defined by equation (5.19).

5.5 ELASTIC JUMP PHENOMENON

5.5.1 Variations of the wave speed

The wave speed defined in equation 5.18 can be written as:

- L  = - (5.22)
C 2 a ( l - a )

where D is the distensibility defined in equation 5.17. It can be regarded as a known 

property of the system. In general it would be a function of AP . Another way to look at it 

is to consider equation 5.19:

Here, we will assume that D is constant. The assumption that changes in cross-sectional 

area depend purely on local pressure difference implicitly ignores the effects of the 

diaphragm’s inertia. This is acceptable for blood vessels since they are relatively thin. 

The spinal cord is plainly not a thin-walled tube so inertia effects could be more 

important in the present case. However, in order to depict the main parameters of our 

system, we need to make it simple. One can choose a more suitable distensibility by 

considering a more complex tube law (pressure-area relation).

T
(5.23)
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For computational purposes, we need to estimate the value of the distensibility D. This 

can be done by recalling that we have evaluated the wave speed from Williams’ data 

(1976). We found a value of 5 m/s. If we take a  = 08 and p  = 1000 (density of water), we 

can obtain an estimate of the distensibility from equation 5.22:

D = « 6.4 * 10-* (Pa)-'
pC

Since we take D and p  as constant, we consider that the variations of the wave speed are 

only due to the changes of the cross-sectional area Aa (or A„ ).

In the next three sections, we consider a change in the outer cross-sectional area aa , in 

different configurations: A T is constant, gradually increasing or decreasing.

5.5.2 Non-linear effects on the wave speed: constant total cross-sectional 

area

Let us now discuss the variation of the wave speed with the cross-sectional area (since all 

the other quantities in equation 5.22 are taken as constant) for the case of a constant total 

cross-sectional area Ar .

It can be seen from equation 5.22 and figure 5.2 that small changes in a  can lead to 

substantial change in wave speed, especially when a  -* 1 .

We can thus determine the qualitative non-linear effects on the wave speed. Figure 5.2 

depicts the variation of the wave speed with respect to the cross-sectional area. It shows 

that depending on whether a  is superior or inferior to 0 3 , an increase in the inner cross- 

sectional area will either increase or decrease the wave speed. That implies that either the 

wave is expansive in character (i.e. the leading edge of the wave is faster than the tailing
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edge) or an elastic jump is created (the tailing edge of the wave is faster than the leading 

edge and tends to catch up the front wave).

Let us take an example to illustrate the above statement. Figure 53a depicts the 

propagation to the right of a pressure wave through which an increase of the outer tube 

cross-sectional area occurs. Figure 53b shows the variation of the outer tube cross- 

sectional area in that case.

At x = x0, we have a  = a0 > 05, and C = C„.

At x = x ,, we have a = a t >a0 which implies that C0 > C, from figure 53d. Thus, in the 

(x,t) diagram of figure 53c (plain lines), the slope of the corresponding wave is such that

_L < — . This implies that the wave at x = x 0 is propagating faster than the one at x = x , ,
Co c,

so that an expansion wave develops.

If we use the same reasoning for the case a0 <05, we can see in figure 5 3 c  (dashed 

lines) that the waves converge. They will ultimately join together to form an elastic jump 

or shock-like wave through which a discontinuity in the fluid properties occurs. So, 

depending on whether or not a0 is superior to 0 3 , we either have an expansion or an 

elastic jump.

If we now consider a decrease in the outer channel cross-sectional area A a , we can 

develop the same kind of theory and reach the conclusion that an expansion wave 

develops when a 0 < 05 , whereas an elastic jump is created when aa > 05.

Since we will focus our attention on the case where a„ is greater than 0 3 , let us 

emphasize that an expansion wave develops if the outer channel cross-sectional area
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increases (i.e. AP, = PAI-  PBl > 0 with APo = 0), whereas an elastic jump is created if the 

outer channel cross-sectional area decreases (AP, < 0).

In these cases, we have considered the total cross-sectional area Ar as constant. In the 

next section, we focus on the case where Ar can vary along the length of the tube.

5.53  Non-linear effects on the wave speed: gradual changes in the total 

cross-sectional area

In the next two cases, we will analyse the effects of the variation of the total cross- 

sectional area Ar . Following the same method, and only considering small variations of 

At with x, we will analyse the possibility of formation of elastic jump.

5.53.1 Increase of the total cross-sectional area

We assume that the variations in AT are so small that it does not affect the shape of the 

graph plotted in figure 5.2. We can proceed in the same way as we did in the case of a 

constant total cross-sectional area. The main change is that an increase in A g (see figure 

5.4) does not necessarily imply a decrease in A a as in the previous case. Indeed an 

increase or decrease in A a will depend on whether or not the increase of the total cross- 

sectional area Ar compensates the increase in A B . That is the reason why we will 

consider both situations (i.e. an increase and a decrease in A a ).

Let us consider an increase in A B as it is shown in figure 5.4. We call Aai , the case 

where Aa decreases (similar to the previous case where Ar is constant), and Aa„ the 

case where A a increases (see figure 5.5).
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If we take the case ac >05 and consider figure 5.6, we can deduce that depending on 

whether we deal with case Am or AAn , we respectively have an elastic jump or an 

expansion.

If we now consider the case where a 0 < 05 and we keep the same notation, we obtain 

opposite results. Indeed we have an expansion wave for the Aa, case, and an elastic jump 

for the a au case.

We now consider a decrease in A B . In this case, the effect of an increase in Ar is an 

intensification of the phenomenon seen in the section 55.2. Indeed, as AT increases and 

A B decreases, A a will be even bigger than the case where Ar is constant, and so the 

elastic jump will be created more readily, and the expansion will also expand more 

rapidly. In fact an increase in AT just emphasises the phenomenon.

5 5 3 2  Decrease of the total cross-sectional area

We could apply exactly the same reasoning and we would find similar results.

Instead, we will summarize all the results, including those found for a decrease of the 

total cross-sectional area in the next section.
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5.6 SUMMARY OF THE NON-LINEAR EFFECTS ON THE WAVE

SPEED

* Case where AT is constant

At is constant a„ <05 a„ >05 Model sketch

A g decreases Shock Expansion

A b increases Expansion Shock
— ------------

Note that the “model sketch” column in the above table represents one half of the 
longitudinal cross-section.

* Case where AT increases.

At increases a0 <05 a . >05 Model sketch

AB decreases Shock (intensified) Expansion (intensified)

AB increases
A a increases: shock 

A a decreases: expansion
Aa increases: expansion 

A a decreases: shock ------ ^

* Case where AT decreases.

At decreases a„ <05 a„ >05 Model sketch

Ag decreases
A a increases: shock 

A a decreases: expansion
A a increases: expansion 

A a decreases: shock

A g increases Expansion (intensified) Shock (intensified)
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CHAPTER 6

SOLVING THE EQUATIONS

6.1 INTRODUCTION

The governing equations of the coaxial tube model have been derived in chapter 5. In this 

chapter, we will solve these equations. A direct method is developed in the first part of 

this chapter in order to understand the type of solution we are dealing with. Some 

examples will be given to explain some possible phenomena occurring in the model, 

especially when a blockage is placed in the outer channel. However, the disadvantage of 

this method is that we impose certain wave properties, such as the velocity or the 

pressure. Moreover, we will not be able to solve the full non-linear problem using the 

direct method. We will then opt for another technique to solve these non-linear equations 

namely, the method of characteristics. Therefore we will derive the characteristic lines 

and compatibility equations for the linear and non-linear cases. We will end this chapter 

by applying the method of characteristics to some particular examples.

62 DIRECT METHOD (LINEAR CASE)

62.1 Type of solution
I

We take a combination of the continuity and momentum equations (equations 5.7 and 

5.9) to obtain the following relation:

¿ x 2 Cl d t2
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We do the same for the inner channel B (using equations 5.8 and 5.10) to obtain:

<?P, -a .  Af*
d x1 Cl à t1

We integrate these two equations twice with respect to a: to obtain:

PA = (1 -  a,)AP + <D,(f )x + 0>2(f) (6-1)

P„ = -a„AP + <D,(f )x + 0 2(i ) (6 .2)

where <D, 2 are some functions of integration which satisfy boundary conditions.

From the momentum equations in each tube, we can deduce the velocities of the fluid in 

both tubes:

where »F, 2 are some functions of integration which satisfy boundary conditions.

We have just shown that if the form of AP is known, one can deduce PA,PB,UA,UB.

In the next section, we give some examples of the use of the direct method.

6 2 2  Examples

63.2.1 Piston in simple harmonic motion (see figure 6.1)

We consider a piston driving the fluid in the outer channel only, and we analyse the 

propagation of disturbances in both channels, especially when they encounter a blockage 

in the upper chamber (A). We pay particular attention to the variations of the pressure 

difference AP .

UA = -  C„t) -  f ( x  + C j)) + %(x) -  -  \<*>,«)dt
f*-o P

u ,  = ~^r{g(x - C j ) -  f{x + c„0) + %(*) -  -  Jo,(Odr 
P~o P

(63)

(6.4)
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Boundary conditions: at x = 0 , UA = u0elu and UB = 0 (65)

with eu = A. Ca where <u is the period and A is the wave length of the disturbance, 

at x = L , U A = 0 and PB = 0

The boundary condition for PB at x = L is arguable. However if we consider that the 

cross-sectional area does not change at the blockage, the pressure should not vary there. 

Let us consider that the function solution takes the following form:

AP = f ( x -  C„t) + g(x +CJ) = C,e~U(M~c'>> + C2e‘i(x*cj> (6 .6 )

From the boundary conditions and the above equation, we can determine <D,, C,,C2 for 

AP  ,and <t>2 if PA,PB are required.

At x = 0:

We consider the momentum equation (5.9) and the boundary condition noted as equation

6.5:

& P A A / *  \ — iOA

- J 7  — P - j f —

From equation 6.1 and the boundary condition 6 5 , we can deduce:

+ <D,(i) = -pieouQe““dPA .. ,<?AP

In the same way, from equation 6.2 and the boundary condition UB = 0  at x = 0:

+<r»t(/) = odPB JAP— ~ = ------dx  ” dx

We subtract these 2 equations in order to eliminate <t>,: 

JAP
Jx

= -p(i(o)u0eu
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So that we can write that:

We insert d>, in equation 6 3 , considering equation 6 .6 , the boundary condition 63 

becomes:

UA = + C2e '" ) + «„ u0e‘~ = u0e‘“
P*-o

Note that we have set ¥,(0) = 0 .

We now multiply this equation by pC° e~'** (considering that a 0 * 1 i.e. * Ar ) to
« .-1

obtain:

(—C,+C2) = -pC.u„ (6.7)

At x = L: Boundary conditions are UA = 0 and PB = 0 

Let us consider the first boundary condition:

UA = + CJeliLe“‘ ) + a„ u0eM =0

that we can simplify into:

Considering equations 6.7 and the above equation, we have two equations and two 

unknowns C,and C2. We can thus readily obtain:

<]>, = - p a 0 (ia)u0e

C, = -pC aut - 1 (6 .8)

c 2 = -P coK — / " - -L:------ P CA
1 -  e
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We have now found the expression of AP , but in order to find the other unknowns, we 

need to obtain <J>2. Evidently <D2 takes the following form: <D2(r) = C y "  where C, 

satisfies the boundary condition at x = L:

P« = -a„(cte,-UHL-ei) + c y -1"'”") -  ico a0 pLu0e‘“ + C y "  = 0

whence we can deduce

In our case, we are interested in the pressure difference:

+eUXx*Cj) tiA (x+ C j) (6.9)

Notes:

(1) The expression between brackets represents a standing wave.

(2) If 2i'AL = 2ntr, i.e. A = n n !L  (n = 0, 1, 2 ...), the standing wave is greatly amplified: 

this can be thought of as resonance.

(3) Note that when a0 -> 1 (where a a = AAo IA t ), the standing wave is greatly amplified 

at any wave length X .

6 2 2 2  Other case: with compliance, resistance (see figure 6.2)

In this case, we have the same boundary conditions at x = 0, and we add a new 

compartment C in order to model the compliance. Compliance is a quantity which relates 

pressure and volume.
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and £- = i<uu B
dt B

Replacing these quantities in equation (6.12), we find the expression of C3:

e the capacitance/resistance end condition affects only C, rather than C, & C2, AP takes 

the same form as the previous case although the general pressure level may be raised 

through c 3.

6 2 3  Analysis

We consider that the imposed velocity at x =0 is:

UA = u0 cos (ax)

We apply equation 6.7 and 6 .8  we respectively obtain:

Cj -  C, = -p C auo

-cos(fflf) + COs(M +a*) 
<*o " I ____________C, = pC0a 0u0 cos(Al +  ojt)-cos(-M  + cat)

(6.13)

And we can deduce the pressure difference from equation 6 .6  as:

AP = C, cos(-2 jc + cat) + C2 cos(2* + cut)

We can therefore write:

- cos(cjt) + cos(2/ + or)
= pC0a 0u0pC  a  u ------------— *---------------------------------------------------------------° cos(/il + cut)~ cos(-AJ + cut)

-  pCJJm cos (Ax + cat)

(cos(-Ax + <j/ )  + cos(Ajc + cat)) (6.14)
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We can also determine pressures and velocities once we know that:

_ C, cos(-AI + ox) + C2 cos(A1 + cut) -  puomsm(axl) /g
C j - a ” cos(ar)

Figure 63 depicts what we called “resonance” in section 6.2.2. We have taken L - l  m, 

and n = 1. We have plotted the variations of the inner tube radius with the time. Note that 

the inner tube radius is related to the pressure difference through the relation 

a = ac + DAP, where D  is the distensibility and is taken as a constant (see section 53.1). 

As A -> nn I I , we can see that the denominator of the first term of the right hand side of 

equation 6.14 (representing the standing wave) tends to zero, making the pressure 

difference tending to infinity. In figure 63 , the maximum value we gave for the wave 

length A is 3.12 (not n ). The picture 6 3  exhibits the resonance effect, which is the 

amplification of the standing wave for particular values of A. In other word the natural 

frequency of the system is the same as the frequency of the impulse.

Another possibility to obtain an amplification of the standing wave from equation 6.14, is 

to have a 0 close to 1. In this case, the numerator of the first term of equation 6.14 tends 

to infinity, amplifying the pressure difference at any A (or frequency). Figure 6.4 depicts 

this phenomenon. We can see the variation of the inner tube radius for three different a c , 

when A is kept constant.

Figure 63 shows the variations of the inner tube radius with time at different locations 

along the tube. The pressure difference rise for x = 0 m (peak denoted 1 in figure 63) can 

be seen at a later time at x = 0.8,0.9, 0.99 m., in peak denoted 2. Note that the pressure 

difference (or the inner tube radius) attenuates till it reaches the blockage. There, it grows
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again. This implies that close to a blockage the pressure difference is higher (in 

amplitude) than anywhere else.

Figure 6 .6  depicts the same feature as figure 65  with a longer time scale to show the 

attenuation of the peaks with time. This attenuation is due to the fact that the natural 

frequency of the system is no longer the same as the frequency of the system: no more

resonance.

To conclude this chapter, we can say that this model is not suitable to analyse the 

propagation of a pressure pulse because the impulse is varying with time. However, it 

would be a reasonable model to represent the effects of heartbeats on the pressure in the 

spinal system. If for some reason the frequency of the heartbeat is the same or close to the 

natural frequency of the spinal system, we would obtain high increases in terms of 

pressure difference.

63 METHOD OF CHARACTERISTICS

63.1 Introduction

In chapter 5, we derived the governing equations and defined the wave speed for a model 

system. These governing equations are hyperbolic. The most suitable numerical technique 

for solving hyperbolic partial differential equations is the Method of Characteristics. 

Generally, the Method of Characteristics is a procedure for replacing a set of quasi-linear 

non-homogeneous partial differential equations by a set of compatibility equations 

(interior operator) that is valid only on surfaces called characteristic surfaces. For a 

problem in two independent dimensions (here one space dimension and time), the
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characteristic surfaces are characteristic lines, called characteristics, and the compatibility 

equations are total differential relationships that are valid along the characteristics. 

Consequently, finite difference methods for solving the characteristic and compatibility 

equations are considerably simpler than methods for solving the original set of partial 

differential equations.

In this section we will first recall the governing equations using some new notation. Then 

we will derive the characteristics and compatibility equations for the linear case, after 

having linearized the equations by neglecting the second-order terms which appear as the 

product of two-first order terms. Afterwards, we will use the same general approach for 

the non-linear case. In the same section we will develop a weakly non-linear theory in 

order to discuss the possibility of the creation of elastic jumps, and compare it to the 

analysis made in the previous chapter (section 5.5). Finally, we will describe the 

numerical procedure used to solve the characteristics and compatibility equations, 

showing the unit process for both the linear and non-linear cases.

632  Governing equations (see figure 6.7)

If we insert equation 5.19 in the continuity equations 5 3  and 5.4, we obtain:

dbP dUA nD----- + D U .------ + a ---- - = 0
dt A dx dx

(6.16)

dt ‘ dx dx
(6.17)

The momentum equations in both channels defined in equations 5 3  and 5.6 can be 

written as:
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dUA + uAd u A f 1 *Pa
dt dx p  dx

dUB+ U, dU„ h l
dt dx p  dx

(6.19)

We now subtract equation (6.19) from (6.18) (momentum equations) considering that

AP = PA~PB-

dt
dU. dUA 

- +  U .
dt dx

dUB
dx

1 dAP+--------
p  dx

=  0 (6.20)

Equations 6.16,6.17,6.20 are the governing equations.

633  Characteristic lines and compatibility equations

6 3.3.1 Linear case

Linearization

From equation 5.12, the wave speed in the linear case can be defined as:

pD
(6 .21)

We now linearize equations (6.16,6.17, 6.20) by neglecting products of small quantities:

dUA dU,  l^ A / ' Q 
dt dt p  dx

(6 .2 2 )

n dAP dUA nD ------+ an---- - = 0
dt ’ dx

(6.23)

(6.24)

Equations (6.22,6.23,6.24) become the governing equations for the linear case.
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It is shown in appendix A.7 (equations A .6  and A.7) that the characteristic lines are 

defined as:

Characteristic lines and compatibility equations

Equations (6.25 , 6.26) are the characteristic lines. The upper sign stands for a 

discontinuity propagating in the positive direction of x, whereas the lower sign 

corresponds to a discontinuity propagating in the negative direction of* .

The compatibility equations have been found as (see appendix A .l,  equations A .l l  and

Considering the inner tube, we similarly find (equations A.13 and A .14 in appendix A.7)

Equations (6.27 to 630) are the compatibility equations for the linear case. They only 

hold along the characteristic lines defined above. The upper and lower sign respectively 

denotes the characteristic lines as the positive (Ct ) and negative (C .).

From a physical point of view, the characteristic lines are the path of propagation of 

physical,disturbances (see figure 6 .8 ). They can also be used to interpret the wave fronts. 

From a purely heuristic point of view, they are curves along which the governing partial 

differential equations can be manipulated into total differential equations. They are also 

curves across which the derivatives of a physical property may be discontinuous, while 

the property itself remains continuous. From a rigorous mathematical point of view, a

(6.25,6.26)

A.12):

(6.27,6.28)

-dU„ ± \dAP = 0 (6.29,630)

105



characteristic is defined as a curve along which the governing partial differential 

equations reduce to an interior operator, that is, a total differential equation.

Equations 6.27 to 630 link AP and UA or U„ along the characteristic lines defined in 

equations 6.25 and 6.26. In order to have a complete solution of our problem, we need 

other relations to determine PA or PB , that are valid only along the characteristics.

When a perturbation is propagating along the characteristic lines defined in equations 

6.25 and 6.26, we can find some fluid properties conservated across these lines. Indeed let 

us make a change of variables:

where gRL are new variables which depend on x  and t. The subscripts R  and L 

respectively denote a right and left running wave.

From the above relation, we readily obtain the following expressions:

Transforming the variables in the momentum equation (equation 6.18) for the linear case, 

we can write:

Doing the same with the momentum equation in the inner tube (equation 6.19), we

obtain:

~ x c at

Sl =x + C„t

and
dx dt

àUA d$R., | 1 d PA âÇKJ. n
â ‘ + p ó 4 r .i. â*

By integration of this relation, we can deduce:

-dPA±pC cdUA= 0 (6 31 ,632)
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-dPt ±pC„dUB = 0 ( 6 3 3 , 6 3 4 )

Equations 631 to 632 are valid only along the characteristics defined by equations 6.25 

and 6.26.

To obtain a complete solution of our problem we will need to consider equations 6.27 to 

634 which are true only along the characteristic lines (equations 6.25 and 6.26). Note that 

equations 633 and 634 are not both necessary if we use an equation which relates the 

velocities in both tubes (equation A.10 in appendix A. 1).

6 3 3 3  Non-linear case

Characteristic lines and compatibility equations

It is shown in appendix A.2 (equations A.19 and A.20) that the characteristic equations 

for the nonlinear case are:

Equations (635, 636) are the characteristic lines. The upper sign stands for a wave 

propagating in the positive direction of x, whereas the lower sign corresponds to a wave 

propagating in the negative direction of x. Note that these lines are no longer straight 

lines, unlike the linear case.

The compatibility equations become (equations A.24 and A.25 in appendix A.2):

(635,6.36)

(6 37 ,638)
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Equations (637, 638) are the compatibility equations in the non-linear case. They only 

hold along the characteristic lines defined above. The upper and lower sign respectively 

denotes the characteristic lines in the positive (C+) and negative (C .) direction.

Note that if we neglect the product of two small quantities in the characteristic and 

compatibility equations, we go back to the linear case.

6 3 3 3  Weakly non-linear case

Here we develop a weakly non-linear theory in order to be able to discuss the possibility 

of the creation of an elastic jump (or a shock-like wave). Indeed, since the characteristic 

lines are all of the same slope in the linear case these lines can never join together to form 

a discontinuity in the fluid properties. In the fully non-linear case, it is possible to see the 

lines coming together, but one has to obtain numerical results to do so. That is why we 

develop a weakly non-linear theory. We will be able to discuss qualitatively the creation 

of an elastic jump or the formation of an expansion wave. Indeed we will compare with 

the discussion already made in the previous chapter, in the case where the total cross- 

sectional area AT is constant (see section 53.2).

By weakly non-linear we mean that we neglect terms which are the product of two small 

quantities like: UA x AP , U \, U„ x AP ,...

Characteristic lines

In this case, the characteristic lines are (equations A.28 and A.29 in appendix A.3):

X± = iC„ ± —^—(i_ 2a„)AP (639,6.40)
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639:

If  w e  c o n s id e r a  rig h t-ru n n in g  c h a ra c te r is tic  ( u p p e r  s ig n ) , w e  c a n  w rite  f ro m  e q u a tio n

l .= C 0 -C c X2a°_ l ) AP
2pCc

Let us recall that a„ is always smaller than 1, so that (2a 0 - l ) > 0 .  Thus we can write 

that:

Xt =C0-  MAP where M  is positive.

In the undisturbed conditions (at equilibrium), we have AP = 0 f and hence Xa -  Ca . If we 

consider an increase AP, > 0 in pressure difference (which means an increase in a  ), the

new slope of the characteristic line will then be — = 1

A, Ca -  MAfJ
in the (x,t) diagram. Thus

we can deduce that — > —  = — . Indeed, we have an expansion wave.
C

Using the same reasoning, we can show that a decrease in AP (which means a decrease in 

a ) can create an elastic jump.

This analysis is consistent with the one obtained in the previous chapter in section 53.2. 

Let us recall that this is a qualitative analysis and that the numerical results of the weakly 

non-linear theory will be taken with the characteristic lines defined in equations (639, 

6.40). To do so, we need to define the compatibility equations, which is the focus of the 

next section.

Compatibility equations

The compatibility equations for the weakly non-linear theory take the following form 

(from appendix A.3, equations A.30, A31):
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(6.41,6.42)

\

dUA + — ~ ^ - u A± c ( i  — a g° -1 = o
l - a a A \  2 a J l - a J

Interest of the weakly non-linear theory

The weakly non-linear equations are not of great use for obtaining numerical results 

because they require the same effort as the full non-linear case in terms of computing. 

Indeed, the characteristic lines and the compatibility equations are of the same form for 

both the weakly non-linear and the full non-linear theory. Its interest resides in the 

qualitative information that it provides. In fact, it shows that if the fluid is at equilibrium, 

an increase in pressure difference or in the outer tube cross-sectional area, will develop 

into an expansion wave, whereas a decrease in pressure difference or in the outer tube 

cross-sectional area will create an elastic jump. This is a very interesting point because 

the possibility of the occurrence of an elastic jump brings the possibility of large abrupt 

pressure rise. This will be the subject of chapter 7. In the next section, we will show the 

numerical procedure to solve our equations using the method of characteristics.

63.4 Numerical integration procedure

In section 6 3 3 , we derived the characteristic and compatibility equations. We now 

develop a numerical procedure to solve these equations. In the linear case, equations 

(6.25, 6.26) define one C. and one C. characteristic in the (x,t) plane, while the 

compatibility equations (equations 6.27, 6.28) provide a differential relationship between 

the pressure difference component A P and the velocity in the outer tube UA that is valid 

only along each characteristic line. Since the set of equations (6.25, 6.26, 6.27, 6.28) and
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(635, 636, 637, 638) are non-linear total differential equations, their solutions are 

usually obtained by applying finite difference techniques.

To obtain two independent relationships between AP and UA at a point of the flow field, 

a network must be developed wherein two characteristics intersect at a common point. At 

the intersection point, there is one relationship between AP and UA on each of the 

intersecting characteristics so that two relationships between A P and UA are obtained at 

that point. The network used to integrate equations (6.25, 6.26, 6.27, 6.28) and (635, 

636, 637, 638) is based on the direct marching method. In this method, continuous 

families of left and right running characteristics are followed throughout the flow field. 

By applying the unit processes directly from any two solution points (where all the flow 

properties are known) previously determined, the next point in the network may be 

determined (see figure 6.9).

63.4.1 Numerical procedure for the linear case

In fact, since the coefficients of the differential equations are constant (especially the 

wave speed which depends only on conditions at equilibrium) for the linear case, the 

numerical integration of the compatibility equations is very straightforward. Indeed, the 

integration of equations (6.27, 6.28) between an initial point (where the flow properties 

are known) and a final point (where the flow properties are unknown) along the 

characteristic lines gives:

UA,  ± ^ A / >  = UA, ± — AfJ (6.43,6.44)
PCo PCo
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Where the right hand side of these two equations is a known quantity. If we apply these 

equations from two different initial points (where the fluid properties are known) to a 

unique solution point, we will obtain a system of two equations with two unknowns 

(UAf ,APr), that we can solve easily (see figure 6.9). Similar numerical equations can be 

found for equations 6.29 to 6.34.

-UBf ± -^ -A P ,  = -UBI ± -^-A />  (6.45,6.46)
'  pC„ '  pCa '

-Pa,  ± PCCU„ = -PAi ± pCJUM (6.47,6.48)

-PBI ± pCJJBf = ± pC0UBi (6.49,650)

Note that the characteristic lines are straight lines (— = ±Cc where Ca is a constant).
dt

We will give some results of this method in section 635 .1 .

63.42 Numerical procedure for the non-linear case

In the non-linear case, the characteristic lines are no longer straight and the wave speed 

varies according to the cross-sectional area. That implies that the coefficients of the 

differential equations are not constant. In fact we will use the modified Euler predictor- 

corrector method to integrate our equations, which is a second-order method of 

integrating total differential equations. The corrector algorithm used is based on the 

average coefficient method, wherein the numerical values of the coefficients of the 

differential equations are determined as the average of the values of the coefficients at the 

initial points and the solution point.
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The unit process used in our computing program is well described by Zucrow and 

Hoffman (1977), and our approach will be similar. In the main program, we give the fluid 

properties at the initial points (two initial points for an interior point, and one initial point 

for a solid boundary point), we call the appropriate subroutine (interior point or solid 

boundary point) and we can obtain the fluid properties at any location of the flow field.

Numerical analysis

63 .5.1 Linear case

In section 63 3 .1 , we have defined the equations of our problem for the linear case in 

terms of characteristic lines and compatibility equations. Section 63.4.1 was devoted to 

the numerical procedure to solve these equations. We now apply these theories to a 

particular example, and we discuss the results.

Pressure pulse propagation

Let us consider coaxial tubes with a blockage in the outer tube as seen in chapter 5. Both 

tubes are filled with water and are separated by a diaphragm (compliant wall). We 

consider the fluid at equilibrium, i.e. the pressure in the outer tube (part A in figure 6.7) is 

equal to the pressure in the inner tube (part B). We consider the flow to be in the 

conditions defined in section 5.2.1. In these conditions, we consider a sudden rise in 

pressure in the outer tube leading to a rise in AP . Immediately after the rise, the pressure 

drops back to the undisturbed pressure. Let us analyse the propagation of this pressure 

pulse, especially when it encounters a blockage in the outer tube.
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Figure 6.11 represents the (x-t) diagram in the outer tube. Region 0 represents the 

undisturbed conditions, i.e. the state of the fluid before the pressure pulse propagates. In 

region 1, the pressure in the outer tube has risen, whereas in region 3 the fluid properties 

go back to the same undisturbed conditions as region 0. In each region, the fluid 

properties are constant. The straight lines are the characteristics with a slope of ±1  /Ca (as 

found in equations 6.25 and 6.26), and separate two regions where the fluid properties 

change.

The blockage is placed at x = L (in the outer tube only) so that the boundary conditions in 

the region adjoining it is UA = 0 .

To obtain the fluid properties in region 1, we use a C. (i.e. a characteristic line with a 

negative slope: -1/C „) from region 0. We impose the pressure rise (PM is known). The 

fluid properties in region 2  are found by using a C, from region 1 and by recalling the 

boundary condition determined by the blockage. Conditions in region 3 are found with a

C. from region 1, considering that the pressure of the outer tube goes back to its initial 

value. By using a combination of a C_ from region 2 and a C, from region 3, we can 

deduce the fluid properties in region 4. The fluid properties of region 5 are found in the 

same way as region 2, using a C, from region 4.

Table 6.1 shows the analytical results of the linear case (applying equations 6.43 to 6.48), 

whereas table 6.2 shows the numerical results. The subscripts denote the region and the ' 

pressure in the undisturbed flow is set to be: PAo= P^,= pC0 e„ (where e0 is a known 

value). The pressure impulse takes the form PM = pC„e where e <ea for a pressure drop. 

Analysis o f the results

11S



\

We can see from these results that if the pressure rise in the outer tube (PM > PAo ), a large 

pressure difference is created in the vicinity of the blockage when the pressure wave

reflects: aP2= -  (g - e ) ,  which is negative. Moreover if the pressure decreases

(PM < pAa), we obtain a pressure difference at the blockage (in region 2 ) which can be 

extremely large depending on the expression of a0. Indeed, as a 0 tends to one, the 

pressure difference can reach very high values even if the pressure impulse is not very 

large.

If the pressure impulse is positive (PAi>PAo)> we obtain the same magnitude for the 

pressure difference at the blockage, but with the opposite sign, i.e. positive. This means 

that the inner tube reduces at the blockage.

In the (x-t) diagram of figure 6.11, if we draw horizontal straight lines (time is constant), 

we can plot the pressure difference along the abscise at different times (figure 6.12). At 

time T l, the pressure pulse is propagating to the right. Time T2 represents the time when 

the leading edge of the wave has reflected and is traveling to the left, whereas the trailing 

edge of the wave is still propagating to the right. This is when the pressure difference 

doubles compared with the pressure difference before reflection (this high pressure 

difference is highlighted in figure 6.11). At time T3, both the leading and trailing edges 

have reflected, and the pressure pulse is propagating to the left. (

If we plot the pressure difference variation at the blockage, which means that we set x 

near 1, and we follow the variations with the time (figure 6.13), we can see that there is a 

large pressure difference jump, larger than anywhere else (double). In this case we have 

the pressure at equilibrium which is 800 Pa, the cross-sectional area ratio a„ is 8/9 and
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the outer tube pressure in region (1) is set as: PM = 500 Pa . The pressure difference at the 

blockage is: AP2 = -5400 Pa , which represents an increase of the inner tube radius of 

almost 1 mm.

Let us plot the equivalent of figure 6.12 in terms of radius of the inner tube in order to 

have a physical representation of the consequences of a pressure pulse propagation upon 

the inner tube (figure 6.14). This figure can be considered as a picture of the model at 

various times, when a pressure pulse propagates and reflects from a blockage. Indeed, if 

the outer tube radius is 3 cm whereas the inner tube radius is 1 cm, a pressure impulse of 

a magnitude double compared to the one existing in the undisturbed conditions (i.e. 

PM = 2PAo), creates a decrease or an increase (depending on whether the pressure impulse 

is a drop or a rise, respectively) of the inner tube radius of 3.1 mm, at the blockage.

Let us mention that the values of the radii are not important but their ratio is. Indeed a„ is 

a fundamental parameter. Figure 6.15 represents the variation of the pressure difference at 

the blockage for different cross-sectional area ratios in the undisturbed conditions (a„). 

The pressure difference tends to be extremely large when a0 tends to 1.

The interest of the linear theory does not reside on the values of the fluid properties, but 

in their tendency. Indeed, the fact that the reflection of a pressure impulse can lead to 

very large pressure difference at the blockage is the main result of the linear theory. 

However the characteristic lines are straight in the linear case, w l^h  is obviously not the 

case in reality. That is the reason why we investigate the non-linear case in the next 

section and especially analyse the effect of the reflection of an expansion wave.
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6 3 5 2  Full non-linear case

In section 6 3 3 3 , we have shown that the characteristic lines could either coalesce or 

diverge, depending on whether the pressure difference across the wave was negative or 

positive (respectively). In the first part of the analysis we will consider both a 

compression wave and an expansion wave (a compression wave was defined as the 

characteristic lines coalescing and an expansion wave as the characteristic lines 

diverging). Since compression waves lead to the generation of an elastic jump, we will 

focus our attention in this section on the expansion wave.

Pressure increase analysis

By using equations 631 to 636 (section 63.4.2.1), we can define the fluid properties 

when the pressure suddenly increases. If we consider figure 6.16, we can distinguish 

certain regions. In this figure we have drawn 3 characteristic lines (in reality there will be 

an infinite number). Region 0 corresponds to the undisturbed conditions for the fluid. We 

consider a pressure increase in terms of AP . Moreover we know AP in region 6 . Owing 

to approximating with a finite number (3) of characteristics, we have a step rise in AP in 

regions 1 and 3. Evidently the step rise depends on the number of characteristics that you 

have. The more characteristics the smoother the rise is. In our case (3 characteristics), if 

we set the pressure rise to be AP6 = e , we have APt =¿73 and AP, = 2 s/3 . Therefore, if 

we use a subroutine (called chanlm) that determines all the fluid properties through a C. 

when the pressure difference is predetermined in the unknown region, regions 1, 3 and 6 

can be found. Regions adjacent to the blockage (regions 2, 5, 9) are determined using a
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c + (from 1, 4, 8 , respectively) and imposing the boundary condition in the unknown 

region: UA = 0 . A subroutine called solid does this task. The remaining regions (4 , 8  for 3 

characteristics) are determined through a combination of two characteristics: a Ct (from 

3 and 7 respectively) and a C_ (from 2 and 5). The subroutine inter will determine all the 

fluid properties in these regions. Note that regions 2 ,4 ,5  are non-simple regions because 

they are an intersection of both families of characteristics. Therefore in these regions, the 

fluid properties will no longer be constant.

Figure 6.17 shows the reflection of expansion waves from a blockage (5 characteristics). 

The coordinates of each point are recorded in table 6.3, whereas the fluid properties at 

these points are included in table 6.4.

With more characteristics, the (x,t) diagram looks like figure 6.18.

The pressure at the blockage (x = L) is plotted in figure 6.19, when 10 characteristics are 

used. If we compare the pressure difference after the expansion wave has reflected with 

the linear case, we notice that it has been attenuated but still is of the same order (about 

double the imposed pressure difference rise).

In figure 6.20, we plot the reflection of a compression wave. Although a compression 

wave will form an elastic jump, it can still be reflected from the blockage, if it is created 

close enough to the blockage.

Note that the reflection of an expansion wave? is an expansion wave, and that of a 

compression wave is a compression wave.
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CHAPTER 7

PROPAGATION OF PRESSURE PULSES IN A TWO- 

COAXIAL TUBE MODEL

7.1 INTRODUCTION

We have discussed in chapters 5 and 6  the possibility of the creation of a shock-like wave 

or elastic jump, analogous to a hydraulic jump. It is the shock-like behaviour that is most 

interesting for our purposes. It leads to the possibility of the reflection of an elastic jump 

at a blockage in the outer chamber A, leading to an intensification of pressure difference 

in the vicinity of the blockage.

In this section, we assume that an elastic jump exists, and we analyse the effects of such a 

phenomenon. We derive the governing equations. We will solve these equations using a 

small perturbation theory based on small pressure-difference jumps through the elastic 

jump, especially when a reflection occurs. This simple analysis will give us some 

valuable information about the system behaviour. We will then solve the equations using 

a numerical method based on a Laguerre polynomial without imposing any restriction on 

the size of the perturbation, and will compare the results to the small perturbation theory. 

In the meantime, we need to consider <) pressure-area relationship: we will use a simple 

linear tube law.

We will finally analyze the propagation and reflection of a pressure pulse by using a

combination of the method of characteristics and the elastic jump model.
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12 GOVERNING EQUATIONS

We consider an elastic jump occurring in coaxial tubes, both filled with fluid (see figure

7.1). The outer tube is rigid, whereas the inner one is compliant. A previous study 

(Dardel, 1988) of elastic jumps in soft tubes shows that a one-dimensional analysis is 

satisfactory. The fluid is incompressible, and we neglect friction forces compared with 

the pressure forces. We consider the undisturbed flow to be quasi-stationary. The effects 

of wall inertia are neglected.

Conditions before the elastic jump (right side of the jump) are denoted by subscript (1), 

and those after the wave passes are denoted by (2). For the purposes of analysis, we will 

assume that the elastic jump is stationary. The true conditions can be recovered by 

carrying out a Galilean transformation using a reference frame attached to the elastic 

jump. Accordingly, in front of the elastic jump the fluid velocities in chambers (A) and 

(B) are the local velocities minus the wave speed for a right-running wave and plus the 

wave speed for a left-running wave. We are at equilibrium in region (1), so the pressure 

in the inner and in the outer tube is the same and equal to Pt .

7.2.1 Notation

In region 1: UM,PM,AM and Um ,Pm,Am are respectively the velocity, pressure,
I

cross-sectional area in chambers (A) and (B).

In region 2: Ua1,Paj,AA2 and U B2,PB2,AB2 are respectively the velocity, pressure, 

cross-sectional area in chambers (A) and (B).

APt = PM -  Pm is the pressure difference between the outer and the inner tubes (i=l,2,..).
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At = Am + A„, = Aa2 + AB2, is the total cross-sectional area, and is taken as a constant.

Vj is the shock-like wave speed.

In the undisturbed flow, we have: Pt = PAX = PBl, which is the pressure at equilibrium.

A Aa, = —— is a cross-sectional area ratio, and a„ = —— is the cross-sectional area ratio at 
1 At At

equilibrium.

72 2  Governing equations

Under the conditions noted above, the relations linking conditions downstream and 

upstream of the elastic jump become:

Conservation of mass applied to the control volume defined in figure (7.1):

where the upper and lower signs respectively refer to a right- and left-running elastic 

jump.

Momentum equations applied to the control volume defined in figure (7.1):

Rearranging equations 7.1 to 7.4, and inserting the notations defined in section 7.2.1, we 

can write that the fluid properties after the elastic jump are:

Am (±Vs - U m) = Aa1(±Vs - U a2) (7.1)

ABl(±Vs - U m) = AB2(±Vs - U B2) (7.2)

Pa \A M P a 2-AA2 — P A M ( ± V S )(±Vç U A2 ( i X s  U A, ) ) (73)

P„Ab i-P M A ,, = p A m(±Vs - U Bi)(±Vs - U B2 ~(±VS - UBi)) (7.4)

(7.1) (73)
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(7.2) (7.6)

(7.3) => P' a o -  Pa =  P<*A ±V s - U M X U M - U A2) (7.7)

(7.4)

Equations 75  to 7.8 relate the fluid properties before and after an elastic jump running to 

the right (upper sign) or the left direction (lower sign). Let us recall that these relations do 

not consider any processes inside the elastic jump itself.

Considering that all the fluid properties are known before the elastic jump passes (zone 1 

in figure 7.1), we have a set of 5 real unknowns ( PA2 , PB2, UA2, UB2, a 2) with only 4 

equations (equations 7.5 to 7.8). The extra equation will be provided by the tube law, 

which is the subject of the next section.

We have shown in the previous section and in chapter 4 (section 4.3), the importance of a 

tube law (pressure-area relation). It will provide us with the extra equation required in 

order to solve the problem. We will use a simple linear relation in order to develop a 

simple analysis for the small perturbation theory. Other tube law relations are available in 

the literature (see section 5.4) to improve the theoretical model. Here we use:

73 TUBE LAW (PRESSURE-AREA RELATION)

a  = a o + DAP (7.9)

where D = —------ — is the distensibility defined in section 5 3  (and is taken as constant),
At dAP

and where A P  =  PA -  Pn is the pressure difference.
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7.4 SMALL PERTURBATION THEORY FOR ELASTIC JUMP

We now consider small pressure difference changes through the elastic jump, i.e. 

AP2 = PA2 -  PB2 is considered to be small and negative.

Since the undisturbed flow is considered to be stationary, we can write: UM = UBi = 0 . 

Moreover, we consider that Pe = 0 (for simplification, but we can easily go back to the 

integral form).

Let us now consider a right-running elastic jump (upper sign in equations 15  to 7.8) 

propagating into an undisturbed flow (figure 7.2). Applying equations 1 5  to 7.8 to this

case, we can readily write:

UA2- ~ ^ - ^ V s
« 2

(7.10)

u B2= a > - a ° v s
B2 1 - a 2 s

(7.11)

Pa2 = P ^ V sUa2
a 2

(7.12)

1 - a ,
(7.13)

7.4.1 Estimate of the shock-like wave speed

We divide equation 7.9 applied to our case by a a, and we obtain the relation:

a 2 D a  1
—  = 1 + —  AP ,. Taking the inverse of this relation, we obtain: —-  = --------------------.
«„ «„ a 2 l + ( D / a J A l \

expand this ratio:

Since we consider small pressure difference changes through the elastic jump, we can
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a
a,o _ (AP2) 2 (AP2) 5 + 0((AP2)4) (7.14)

providing that AP2 «  a 0 / D .

In the same way, we can write:

1

l-Z>AP2 / ( l - a J

i ^ y + O U A P j )

providing that |A/ |̂ «  (1 -  a a) / D .

Second order of approximation

In equations 7.14 and 7.15, we neglect the terms superior or equal to the order of (AP)3. 

Therefore equations (7.10) and (7.11) can be approximated by:

where we used a first order aproximation for the elastic jump speed (see below).

We note that A2\ and \Ufl2\ are increased and reduced respectively compared with the 

constant wave-speed theory (equations 6.27 and 6.29).

In terms of pressure difference, we can substitute these approximations into equation

(7.12) minus (7.13) in order to obtain the propagation speed:

125



-  2DM\
{

We can rewrite this equation in terms of the wave speed:

(7.16)

Equation (7.16) represents an approximation for the propagation speed. If we consider the 

case where the pressure difference after the elastic jump (AP2) is negative, then as 

a„ >05 , we can deduce that Vs2 > C„ , and thus that the elastic jum p propagates faster 

than the “normal” pressure wave.

Note: If we consider a first order approximation, we can readily obtain:

Thus, for a small pressure difference jump across the wave, the propagation speed 

reduces to the wave speed, as expected. Indeed, the normal pressure wave speed is the 

limit of the shock-like wave speed.

7.42 Elastic jump reflection

We have seen in the chapter 6  that the reflection of a pressure wave from a solid 

boundary can create a region where the pressure difference AP  in the vicinity of the 

blockage is approximately doubled. We now analyse the reflection of an elastic jump 

from a solid boundary. We still consider small pressure difference jumps across the 

elastic jump (second order of approximation).

a 0( l -  a 0) 
p D
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Let us consider a right-running elastic jump running in an undisturbed flow, with a 

blockage in the outer tube only (figure 73). We denote by the subscript (1), all the flow 

properties before the incident elastic jump passes. After the passage of the incident elastic 

jump, and before it reflects, the fluid properties are denoted by subscript (2). When the 

reflection occurs, in general, transmitted and reflected waves propagate in the right and 

left directions, respectively. After the passage of the reflected wave running in the left 

direction, the flow properties are denoted by (R), whereas we will use the fsubscript (T) 

for the flow properties after the passage of the transmitted wave (see table 7.1).

7.43.1 Effects of the incident wave

The analysis of the effects of the incident elastic jump is the same as section 7.4.1, except 

that the shock-like wave speed and the pressure difference after the incident wave passes 

are denoted by Vsl and AP, instead of Vs and AP , respectively. Indeed, all the fluid 

properties in zone (2) can be found by means of equations 7.10 to 7.13, knowing the 

incident shock-like wave speed, as shown in table 7.2.

7.423 Effects of the reflected wave (figure 73)

After the passage of the reflected elastic jump, the boundary condition at the blockage in 

the outer chamber imposes the condition that: UAK = 0 .
i

If we carry out the same analysis as for the elastic jump, but considering a left-running 

wave propagation, we obtain:

Conservation of mass:
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A m (Ua i +Vsb)  = A m {Ua r +Vsk)

Ari (Ubi + VSK ) = Abr (UttR + VSR )

With UAR = 0 , and equations (7.5) and (7.10), we can deduce:

V s * = -
a ,

a ,  - a .
-U — a ° a ' yU  M ~  r SIa .  - a .

(7.17)

(7.18)

(7.19)

We do the same for equation (7.6) to obtain

\ - a .
a „ - a ,  a B- a ,

Un

We note that if we use equation (7.11) to express UB, into the above equation, we obtain:

y » = ^ - ^ - v SI +^ - u BR
a , - a .  a . - a ,

We have two different relations (equation 7.19 and the above one) linking and Vs l. 

This can be possible only if UBR = 0 . We can thus write:

v «  —-  1~ a >
a , - a ,

UB, =
a „ - a —VY SIa , - a .

Momentum equations:

P.'\!a i ~ f>ARa R = ~P a l(UM + VSRWfj

Pm ( l - a 2, ) - P B« ( l - a * )  = - p (  1 -  a ,  Wm  .+ VSR )UB,

Let us write the outer tube cross-sectional area in another way:
i

a , = a o + £ (7.23) where e = DAI*

We can then deduce that the cross-sectional area after the reflected elastic jump is:

a„ = a ..+ e-
AP,

(7.20)

(7.21)

(7.22)

(7.24)

(7.25)
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We have now a set of 4 independent equations (7.19, 7.21, 7.22, 7.25) with 4 unknowns 

(V/  ̂t pM , PflR and a„  ). We can thus manipulate these equations in order to obtain the 

values of the unknowns.

Using equation (7.19) to express UM, and inserting it in equation (7.21), we can obtain 

the pressure in the outer tube after the reflection of the elastic jump:

+ ^ i l - ^ k k +i l - ^ k l  (7.26)
ocK CCK \  i t / J  V \  t ly /  J

We do the same to equation (7.22) using equation (7.20), and we obtain the pressure in

the inner tube after reflection:

Let us now consider the form of the pressure differences ratio (reflected/incident):

APj,
AP,

— 2 +  A  s (7.28)

where e = DAP, (7.24), and A is to be determined. 

It is shown in appendix B.l (equation B.2) that:

L)
2 U -a „  a j

(7.29)

And thus, with equation (7.28), we can evaluate the ratio of pressure difference of the
i

reflected wave over the incident one:

AP,
JLa, 2 - - ( — ------- - I d AP,

2 l l - « „  a j
(730)
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Equation (730) predicts that the pressure difference after the passage of the reflected 

elastic jump can become extremely large for a 0 near 1 , which means that the inner tube 

can swell significantly as the cross-sectional area of the outer tube tends to the total cross- 

sectional.

Equation (730) is an approximation of the real pressure difference involved in the 

reflection of such a wave. However, after solving the same problem numerically (without 

assuming small perturbations), we will find that they are very good approximations, and 

that they can tell us important information about the behaviour of the system.

From equation 7.20, we can deduce the reflected wave speed:

V « - _J__y
AR

1
AP,

With equation 730, we can conclude that VSR < VSI.

7.433 Analysis of the transmitted wave (figure 73)

The transmitted wave propagates in the right direction, in an undisturbed flow. After the 

passage of the transmitted wave, we have UAT = 0 due to the boundary condition. 

Applying equations 7.1 and 7.2 to the transmitted wave, we obtain:

a o { ^ M  ~  Ksr) =  a r ( P a t  ~  ^ sr )

(1  -  a .  iU Bl - V ST) = (1 -  a T 7{U„ -  Vgr)

Recalling that UM = Um = UAT -  0 , we obtain from the first of these two equations that:

a T = a a.

Inserting this in the second relation, we obtain: t / HJ. = 0 .
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Applying equations 7.7 and 7.8 to the transmitted wave, we can write:

a T ^ A T  =  P a o ^ S T ^ A T

( l - a T)PBT= p { l - a 0)VSTUBT

Including the above results into these two equations we find that 

Af* = Par = ^ ba ~  ®

These results mean that there is no transmitted wave. Since we have UBi = 0 and no 

transmitted wave, it proves again that the velocity in the inner tube after reflection is zero 

(UB„ = 0 ), as it was shown in the reflected wave part.

Thus we will now consider in the following sections that there is no transmitted wave.

We have seen that the reflection of an elastic jump could more than double the pressure 

difference. Moreover A t in equation (7.29), could become very large and make the 

reflected pressure difference extremely large, regardless of the value of the incident 

pressure difference jump AP; .

7.5 N U M ER IC A L  SO L U T IO N

We have seen, in section 7.4, that we could solve equations 75  to 7.9 for the case of 

small pressure difference jumps across an elastic jump. We now consider pressure 

differences that are not so small, and we give a numerical solution to the problem set by 

equations 7.5 to 7.9 for the case of a reflection from a blockage placed in the outer 

chamber.

Note that we consider that there is no transmitted wave as it was shown in section 7.4.
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7.5.1 Incident wave analysis
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(735)
+ 3pV la„  + (1 + a , )Pt J a 2, + { - p (2a* + a„) -  a ,P t } a , + p  V ^a  *= 0

For each equation we have 5 possible roots. When one has chosen a physically possible 

a, (i.e. 0 < a ,  <1), then one can find the rest of the unknowns. Following this pattern 

(all the quantities before the jump are known):

Au = ATa ,

ABi — At — Am

U = - —z__S j-y  +—S.JJ
' - ' A l  r S I  T  ' - ’ Aa , a ,

_ a , - a
VB 1 ~  i  _  YSI U  B\

1 -  a ,  ■” 1 -a r ,

P  _ p  a > ~ g °
' /U *  B ! ~  J J

which is taken from equation (7.9).

752  Reflected wave analysis

The equations governing the reflected elastic jump are the same as the ones defined in 

section 7.4 for a reflected wave:

UA i= ci l _ a J_VsK + aJLUA
a , a ,

With the velocity going back to its undisturbed state after the reflected elastic jump 

passes, we have, UM = 0 . Thus the above equation yields
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(7.36)IJ -  g * a ! V
U  A I  ~  _  V SR

a,

i f  _ Hi + i —^ - u/|7 — '  CB T  .  U  ,- S/? ' ^  ZW
1 - a ,  l - « /

In order to have a unique reflected propagation speed definition, 

7.4.2.2 that the velocity in the inner tube has to be zero (Um 

equation can be written as

we have seen in section 

R = 0 ). Thus the above

rr yu  m ~ l - a ,
(737)

Note: If we insert equations (731) and (732) into equations (736) and (737) 

respectively, we obtain the same relation between the incident and reflected propagation 

speeds, as it should be.

The momentum equations give us:

P>Kia i ^ARa R ~ Pa l(fjfj + VSR)(fJM Ufj )

PBI< X -a ,)-P n ( l - a R) = p  ( 1 - a rX i /*  + V„XU „ - UH)

With Um  = Um = 0 , we can rearrange these two equations to give:

P ^ R = Pu a ,  + p a ,U M (UM + V„ ) (738)

PBR( l - a K) = PBia - a l ) + p  (1 - a , ) U BI(UBI +VSK) (739)

Applying equation (7.9) after the passage of the reflected wave, we obtain

AP. = a * ~ a ° (7.40)
" D
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We combine equations (738) and (739) and equate it to equation (7.40), after having 

inserted the values of , UAI, U from equations (736), (737) and (731) 

respectively, to obtain:

+ a oUAi)2
a , ( a R - a , )

(1 - a , Y a „ - a , )

Rearranging this equation by multiplying by a R(l -  a R)(a R - a , ) ,  we have an equation 

of the 4th degree in a  „ :

We have defined the governing equations for an elastic jump propagation in the previous 

sections. We now analyze the results by giving some examples. In the first part of this 

section, we analyze the properties of the fluid after the elastic jump has propagated, 

knowing the fluid properties before the elastic jump passes (undisturbed conditions). We 

then analyze the reflection o f such a wave upon a blockage in the part A (see figure 7.2).

(7.41)

Solving this equation for a K , we can find the rest of the unknowns.

7.6 EXAMPLES
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In the second part of the section, we compare the numerical results to the small 

perturbation theory developed in section 7.4 (and appendix B .l). This will enable us to 

confirm whether or not the approximations made are valid.

7.6.1 Relations before-after the elastic jump

Let us consider figure 7.1, where an elastic jump travels in the right direction. Before the 

elastic jump passes the fluid is in its undisturbed state. In order to create an elastic jump, 

we have shown in chapter 5 that the pressure difference disturbance between the outer 

and inner tube has to be negative (i.e. AP = PA -  PB < 0). Therefore, according to 

equation 7.16, the shock-like wave speed is greater than the pressure wave speed 

(Vj > C„). Thus we will solve equation 735 for different shock-like wave speeds, always 

greater than the pressure wave speed. Table 7 3  shows the fluid properties before and 

after the elastic jump for various shock-like wave speeds. From this table, we can plot the 

velocities in part A  and B (figure 7.4). The velocity in the outer tube is negative because 

the pressure in the outer tube after the shock is greater than the pressure before the shock 

(see table 73). This also confirms the estimate of the velocity that we made for the 

velocity in the outer tube (see section 7.4.1).

The undisturbed velocity in the outer tube has little effect on the pressure difference after 

the elastic jump. However the undisturbed pressure in each tube has a quite significant 

effect since the larger the undisturbed pressure is, the larger the pressure difference 

becomes.
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7.6.2 Reflection of an elastic jump

We consider the same case as above, an elastic jump propagating to the right. We place a 

blockage in the outer tube, and we analyze the reflection of the elastic jum p upon it. 

Solving equations 7.41, we can obtain all the fluid properties after the elastic jump 

reflects. Table 7.4 shows these fluid properties for different incident propagation speeds. 

It also includes the reflected propagation speed.

Figure 73 depicts schematically important practical outcomes of the theory. Figure 73a 

gives a plot of the wave-front positions in terms of time and space. The original (or 

incident) elastic jump corresponds to ab and the reflected wave to be in figure 73a. At 

times before the incident wave reaches the blockage, the behavior is as depicted in figure 

73b. Here we have the wave propagating at a speed Vs, >Ca into the undisturbed 

conditions, denoted as O in figures 73a and 73b. As the elastic jump passes the pressure 

difference drops abruptly to AP, and the radius of the inner chamber B undergoes a rapid 

jump in value. Since across the elastic jump we have a , < a u, we can deduce that the 

wave speed rises from C„ to C, . Figure 73c depicts the state of affairs shortly after the 

elastic jump has reached the blockage. Now the reflected elastic jump is propagating back 

with a speed VSR > C, into conditions /  corresponding to those after the passage of the 

incident wave. Accordingly, as shown in figure 73c, there is a further drop in pressure 

difference from AP, to AP„ and a jump in the radius of the inner chamber as the reflected 

shock passes. This is accompanied by a further rise in wave speed from C, to CR .
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Figure 7.6 shows the pressure difference after the elastic jump has reflected for different 

incident propagation speeds. It is equivalent to imposing the incident pressure difference 

jump AP, , and analyzing its effects on the incident propagation speeds Vsl and reflected 

pressure difference AP„ . If we compare both pressure differences after the incident and 

reflected elastic jumps pass, we can see that the pressure difference after reflection is 

much larger. Indeed, recalling equation 730 for the estimate of the pressure difference 

after reflection, the results plotted in figure 7.6 strengthen the estimate (reflected pressure 

difference is about double the incident pressure difference). If we plot both pressure 

differences against various undisturbed cross-sectional area ratios (figure 7.7), we note 

that as a 0 tends to 1 , there is a substantial intensification of the elastic jump upon 

reflection and thus, the reflected pressure difference becomes larger and larger. Indeed, 

the inner chamber (part B) enlarges in diameter in the vicinity of the blockage.

7.63  Comparison between small perturbation theory and numerical 

results

In section 7.4, we made an estimate of the reflected pressure difference for the small 

perturbation theory. We now plot the numerical results and the estimate of the small 

perturbation theory for two different cases: for different pressure jumps across the 

incident elastic jump (figure 7.8) and for different a a (figure 7.9). In both graphs, the 

curves have very similar shape. However, we recall the assumptions made for the small 

perturbation theory (see appendix B .l):
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|AP,| « a „  / D , \ A P , \ « ( l - a 0) /D

and |A P , |« 2 / ( D ( l / ( l - a J - l / a „ ) )

We respectively call these assumptionsap l,ap2  and ap3.

In table 15, we include these estimates for the case of figure 7.9. Indeed we observe that 

when the above assumptions are valid (we take AP; as the tenth of the right hand 

expression), the estimate and the actual numerical results are very close. This shows us 

that the small perturbation theory can be trusted as long as the assumptions are justified.

This section concentrated on the effects of the reflection of an elastic jump alone. We 

have shown that the reflection of an elastic jump upon a blockage can lead to very high 

pressure differences in the vicinity of the blockage, especially when a a tends to 1. To 

model a pressure pulse propagation, we have to combine the elastic jump with an 

expansion wave in order to obtain a rise followed by a drop in pressure difference, or vice 

versa. This will be the concern of the next sections.

7.7 PROPAGATION OF A PRESSURE PULSE

7.7.1 Introduction

In chapter 6 , we have shown that a decrease in the inner tube created an expansion wave, 

and we analyzed the reflection of such a wave using the method of characteristics. In 

sections 7.1 to 7.6, we have shown that an increase in the inner tube could create an 

elastic jump, and we analyzed its reflection from an obstruction. Thus, using a
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combination of both theories, we are able to analyze the effects of sudden pressure 

variations.

1.12 Propagation and reflection of a pulse with pressure difference drop

Let us consider figure 7.10, where a pressure pulse propagates so that the inner tube 

radius increases and decreases back to its undisturbed value. At the leading edge of the 

perturbation (right part of the bump), an elastic jump is created, whereas an expansion 

wave develops at the trailing edge, as predicted in chapter 6  (see figure 7.11). We now 

analyze the propagation of both waves in the rightward direction, especially when they 

reflect from a blockage placed in the outer tube.

Figure 7.12 represents the reflection of both waves in the outer tube in the space-time 

diagram. The bold lines represent the elastic jump, whereas the plain lines represent the 

characteristic lines of two families (right- and left-running families). In each region, 

denoted by a number, the flow properties are assumed constant. We now show how to 

obtain the flow properties in each of these regions.

Region (0) represents the fluid in undisturbed conditions, before any waves passes 

through it.

In region (10) (note that we have taken 3 characteristic lines for the expansion waves, but 

we can consider more lines if needed), we consider the flow after both waves passed but 

before any of them have reflected, so that we have again undisturbed conditions.

The fluid properties in region (1) are found through the analysis of a right-running elastic 

jump in an undisturbed flow (like in section 7.4).
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Regions (3), (6 ), (10) are analyzed in the same way as in chapter 8 , i.e. there is a drop in 

pressure difference of AP, /3  (since we consider 3 characteristics only) in each region 

going from region (1) to region (10), where AP, is the pressure difference in region (1) 

and 3 is the number of characteristics chosen.

The fluid properties in region (2) are found in the same way as in section 7.4, i.e. the 

analysis of a reflected wave.

In order to obtain the fluid properties in regions (4), (7), (11), we need to develop a 

method using a combination of both the theory for the elastic jump and the method of 

characteristics. Indeed, these regions are different from region (2) because the fluid 

velocity after the reflected elastic jump is no longer zero. Thus, we have one more 

unknown with the same number of equations. However regions (4), (7) and (11) are 

separated by right-running characteristics (C *), so that knowing the fluid properties in 

the previous region, we can use a left-running characteristic ( C ')  to get the extra 

equation needed. We use a subroutine called Mix to obtain the fluid properties in these 

regions. The method to obtain the fluid properties is well detailed in appendix B.2.

The fluid properties in the remaining regions 5, 8 , 9 ,12 , 13 and 14 can be found in the 

same way as the reflection of an expansion wave, in section 6.35.2. Regions 5, 9 and 14 

are found with the subroutine Solid, i.e. that the fluid velocity in the outer tube is zero in 

these regions.

For regions 8 , 12 and 13, we use the subroutine Inter, which gives the intersection 

between characteristic lines of both families (a C, and a C_).
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7.73  Propagation and reflection of a pulse with pressure difference rise

We now consider the opposite case, i.e. the propagation and the reflection of a negative 

bump as described in figure 7.14. The pressure difference first rises and then falls to its 

undisturbed value. An expansion wave forms at the leading-edge of the pulse, whereas an 

elastic jump creates at the trailing edge. The analysis of such a case proceeds in a similar 

way as the case discussed in section 7.7.2. Figure 7.15 depicts schematically the state of 

affairs in this case.

In order to find the fluid properties in regions 0 to 9 (see figure 7.15), we apply the theory 

developed in the method of characteristics section (chapter 6 ) for the reflection of an 

expansion wave. In region 10, the fluid properties go back to its undisturbed conditions. 

To find the fluid properties in regions 11 to 13, we use a similar procedure developed in 

section 7.7.2 (subroutine Mix), the difference being that the shock-like wave (elastic 

jump) is a right-running wave and we use a C+ from the previous region. The main 

equation to solve remains equation B.15 (in appendix B.2). The rest of the fluid properties 

can be found in a similar way.

The remaining region 14 is found as a reflected region from the incident region 13, as if 

the shock-like wave (elastic jump) was isolated.

We have shown how to analyse the propagation and reflection of a pressure pulse with 

pressure difference drop or increase. In chapter 9, we will apply this theory to a special 

case, and we will draw some conclusions for syrinx formation in syringomyelia.
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CHAPTER 8

PHYSICAL MODEL OF THE SPINAL CSF SYSTEM

The idea of an experiment arose naturally in order to compare the theoretical predictions 

with reality. The design of the experimental rig was made to analyze the propagation of a 

pressure wave along a compliant wall which models the propagation of a sudden pressure 

rise in the spinal subarachnoid space. Particular attention is paid when the pressure pulse 

encounters a blockage in the outer channel (the subarachnoid space).

8.1 EXPERIMENTAL APPARATUS

8.1.1 Overview of the measurements

We have defined the wave speed in coaxial tubes in chapter 5 (equation 5.18). In the 

linear case, we obtained:

c = r ° (1~aJ (8.D
• V P*>

where a0 = AAo / a t is the undisturbed cross-sectional area ratio, p  is the fluid density 

and D is the distensibility defined in equation 5.17 as:

(8 .2)

The first part of the experimental analysis consists of physically confirming equation 8.1. 

In chapters 5 to 7, we have seen that the pressure difference after reflection from a 

blockage in the upper channel was doubled compared with the pressure difference after 

the incident pressure wave passes. This means that the compliant tube enlarges more in
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the vicinity of the blockage than anywhere else (when the pressure difference impulse is 

negative). The second part of the experiment is devoted to visualizing this phenomenon. 

Note that in both aspects o f the experiment, we expect qualitative results, rather than 

quantitative ones.

8.12  Description of the apparatus

The apparatus consists of four parts (see figures 8.1 and 8.2 and appendix C): (1) an 

annular piston which creates the pressure impulses; (2) the coaxial tubes; (3) a water tank; 

and (4) the blockage.

(1) The piston is located between the two channels (see figure 8.2). It is driven by an 

exciter (see figures 8.2 and 83). The maximum displacement of the piston is 30 mm. 

However, the pressures driven by the exciter were absorbed by the rig through vibrations. 

We thus opt for a simpler way to create the pressure wave impulse which would not 

involve any energy dissipation. In fact, we blow inside the inner tube through one of the 

filling tubes on the top of the apparatus (see figure 8.4). This procedure enables us to 

visualize the wave propagation along the diaphragm, through deformations of the 

compliant tube.

(2) The two coaxial tubes are of the same length (80 cm). A rigid outer tube, made out of 

perspex, represents the vertebral column, and the diaphragm (compliant tube), made out 

of latex (translucent), corresponds to the spinal cord (channel B). The space between the 

two tubes corresponds to the subarachnoid space (channel A). The outer tube radius (/?r ) 

is 10 cm, whereas the inner tube radius (K,)  is 5 cm. Both tubes are filled with water, 

which is a reasonable approximate of the CSF. The thickness of the compliant tube was
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measured to be 0.1 mm and is taken as a constant along the tubes. At both ends of the 

tube the diaphragm is clamped around a perspex tube (see figures 8.2 and 8.4) of the 

same radius as the diaphragm. Some adhesive was used to fix the compliant tube and 

thereby preventing the water in both tubes from mixing.

(3) A water tank is placed above the two tubes for filling both tubes with water (see 

figure 8.4).

(4) A blockage was made to model the hindbrain related syringomyelia in particular. As 

we have seen in chapter 3, the hindbrain is driven down into the subarachnoid space 

(under some pressure gradients) thereby creating a blockage to the CSF circulation. In our 

physical model, the blockage is a circular ring (see figure 83). It is made of wood but a 

metal part is fixed on one side of the blockage to offer a better reflection and to allow the 

blockage to sink. The inner radius is 5.2 cm whereas the outer radius is 9 cm. The height 

of the blockage is 6 cm, which makes the first pressure tap to be exactly at the location of 

the blockage (see figure 83). It is located at the bottom of the apparatus, on the piston. 

Note that in appendix D and figure 8.2, the blockage represented by element 15 has been 

replaced in the actual experimental set-up by the circular ring shown in figure 8.3.

8.1.3 Measurement instruments

Some holes along the outer tubes were made in order to measure the pressure at different 

locations (see figures 8.1 and 8.2 and 83). There are five of them and the space 

separating two of them is 183 cm. They are connected to a U tube that had already been 

calibrated as: 1 cm of water column corresponds to a pressure of 100 Pa (1 cm = 1 mbar). 

The whole set up is recorded with a video camera. This allows us to use the slow motion
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on the video in order to determine the exact pressure or to scale the time with a resolution 

of 0 .0 2  s.

82 MEASUREMENT OF THE WAVE SPEED

The undisturbed cross-sectional ratio is:

Let us determine the theoretical wave speed for our experiment. 

From Lighthill (1978), we have (see figure 8 .6 ):

where h is the thickness of the elastic tube, E  is the Young’s modulus, and AP is the 

pressure difference applied to the compliant wall.

In our case we can write, with A„ = AT -  Aa , that:

In our experiment, we have p = 1000kg /m ^, E = 106 Pa for latex rubber, a 0 = 0.75, 

AT = 0031416m2, and h = 01mm .

(8.3)

2(AT- A AJ A P
HE

From where we can deduce the distensibility D  (equation 5.17):

1 dAA 2Ar ( l - q j 2 

At dAP hE

We can now deduce the wave speed from equation 5.18:

pD /
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Thus we obtain an theoretical value of the wave speed for our experiment:

C„= 2185 m Is  (8.4)

We now estimate the experimental value of the wave speed.

In the undisturbed conditions, the level of water in the U tube is 246 cm (of water). When 

the pressure drops (until 243 cm of water), we start the stop watch. When the pressure 

wave reaches the bottom pressure tap (with a maximum of 249 cm of water), we stop the 

time. The time reading on the stop watch was 0.34 seconds. That means that it took 034 

seconds for the pressure wave to travel 74 cm (the distance between the two pressure 

taps). This gives us a wave speed of 2.17 m/s.

We reran the experiment in the opposite case, i. e. when the pressure first rises and then 

drops. With a larger pressure amplitude, we obtain a wave speeds varying between 2.05 

and 2.17 m/s. These variations on the experimental wave speed are due to the fact that we 

did not carefully control the stretching of the diaphragm. Therefore, the diaphragm being 

stretched stiffer in some cases than others, the wave speed will be bigger in these cases. 

These experimental results confirm that the wave speed depends on the cross-sectional 

area ratio, and that the wave speed in coaxial tubes defined in equation 5.18 is in a good 

agreement with experiment.

83 REFLECTION OF A PRESSURE WAVE
i

We have seen that a pressure wave reflection from a blockage in the upper channel could 

raise the pressure pulse amplitude in the vicinity of the blockage. We now consider the 

experimental set-up in order to visualize this phenomenon. To achieve the reflection, we 

place a blockage (see figure 8.5) at the bottom of the outer channel. We drive a pressure
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impulse and follow the propagation along the diaphragm, until it reaches the blockage. 

There a probe measures the pressure that we can compare with the pressure impulse at the 

initial part of the tubes.

We have been able to actually see that the pressure pulse reflection generates a larger 

pressure in the vicinity of the blockage. A video recorder shows the reflection of the pulse 

at the blockage. However, owing to the very elementary pressure sensors, we could not 

quantitatively confirm the theoretical predictions, i.e. the doubling of the pressure 

impulse at the blockage. We can however confirm that the pressure significantly rises at 

the blockage.

Note that it was easier to see the swallowing of the diaphragm at the blockage when the 

diaphragm remained clamped and stretched for a certain time. This tends to show that the 

weakening of the compliant wall could be the first step of the swallowing phenomenon. 

That would confirm the results of the end of chapter 9 where we will mention that the 

reflection of a pressure pulse could first act as a weakening of the spinal cord. Physically, 

it is linked with the fact that the distensibility D is not constant at the beginning of the 

experiment. It still varies after letting the diaphragm stretch for a certain period of time, 

but the range of variation is smaller. Note that after running the experiment the compliant 

tube has found to be about 7 cm longer than at the start of the experiment. This implies 

that the compliant tube properties have considerably changed during the running of the 

experiment, as its behavior does also.

Bearing in mind the above remarks, it would be best to be able to assess the distensibility 

during the experiment. To do so, one has to control the stretching of the compliant wall. 

Moreover a smaller apparatus would be better in order to keep the properties of the
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compliant wall unchanged. Indeed, the force of gravity has a clear effect in our set-up. 

With a smaller scale apparatus gravitational effects would be reduced and thus a 

quantitative comparison with the theory would be feasible.

To conclude this chapter we will stress that more experimental work needs to be done in 

order to validate the theoretical model. However, the first results are encouraging and 

merely with better pressure transducers, we could confirm more theoretical results. In the 

conclusion (chapter 10 ), we will consider different ways to improve the experimental 

model.
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CHAPTER 9

PRESSURE PULSE PROPAGATION IN THE SPINAL 

CSF SYSTEM: SYRINX FORMATION

9.1 IN T R O D U C T IO N

In chapters 2 and 3, we briefly described the spinal system and syringomyelia. We 

then developed a coaxial tube model (see figure 5.1) based on the collapsible tube 

theory in order to analyze the propagation of a pressure wave in the spinal system. We 

placed a blockage in the outer channel (see figure 6.7) and investigated the 

propagation and reflection of a pressure pulse. In the human spinal system, the 

pressure pulse represents any variation of pressure due to coughing, sneezing, changes 

in posture, etc. Therefore, the mechanical model we have developed, even though 

very crude, can be used to analyse the propagation and reflection of a pressure pulse 

(due to a cough for instance) in the spinal system. It will give us crucial information 

about the syrinx formation in syringomyelia.

In the first part of this chapter, we will analyse the effects of a pressure pulse 

reflection from a blockage placed in the subarachnoid space. Even though this 

analysis will give us valuable information like how high pressures are generated in the 

central canal (channel B in figure 5.1), it will not provide, at this stage, a full 

understanding of the syrinx formation. This is the reason why we will end this chapter 

by speculating on the effects of spinal cord porosity (that have been neglected in the 

model) on the syrinx formation. We will then suggest how a syrinx could expand, 

even though more investigation is also needed to understand this mechanism deeply.



9 2  ANALYSIS OF THE PROPAGATION AND REFLECTION OF

A PULSE WITH PRESSURE DIFFERENCE DROP

We will now apply the procedure described in section 7.7.2. Let us consider the 

propagation of a pressure pulse (a simulated cough) down the two-chamber system, as 

depicted in figures 9.1a-d. Let us recall that the central canal cross-sectional area is 

much smaller than the subarachnoid one, i.e. A„ «  Aa (or a a -»  1). Table 9.1 shows 

the fluid properties in each region, defined in section 7.7.2. As in figure 7.5a of 

section 7.6.2, figure 9.1a plots the movement of the wave fronts. In this case it is 

assumed that there is a drop in pressure difference tsP for a short period of time. This 

leads to a bump propagating down the system. Its leading edge generates a shock-like 

wave (elastic jump) ab and the trailing edge generates weaker ‘expansion’ waves ef, 

eg and eh (as illustrated in figure 9.1a), across which the pressure difference gradually 

increases.

Figure 9.1b depicts the situation before the pressure pulse reaches the blockage. The 

pressure pulse propagates into undisturbed conditions 0. The pressure difference drops 

to APt across the shock-like wave (elastic jump) ab. Conditions after the passage of 

the wave ab being denoted by 1. As the trailing edge of the pulse is approached a 

gradual elevation in pressure difference back to undisturbed conditions occurs across 

waves e f to eh. When the shock-like wave (elastic jump) ab reaches the blockage, it 

reflects as wave bci.

Figure 9.1c corresponds to a time just after the leading-edge elastic jump has reflected 

from the blockage but before the leading expansion wave e f has reached the blockage. 

The conditions 2 in the region bcf of space-time in figure 9.1a correspond precisely to



those after the reflection of the elastic jump in figure 7.6. Region 2 is highlighted in 

figure 9.1a because the magnitude of the pressure difference is at its greatest, which 

means that the inner tube radius is at its highest value.

Shortly after reflection, the elastic jump interferes with the incident expansion-like 

waves (between d  and c in figure 9.1a). This weakens the elastic jump and reduces its 

propagation speed. Shortly after this time the expansion-like waves also reflect.

Figure 9.Id corresponds to the time T3, shortly after the trailing expansion-like wave 

has reflected from the blockage. Note that conditions after both waves have reflected 

are very close to the undisturbed conditions.

Figure 9.2 depicts the variations of the inner tube radius with time at the blockage for 

the same case as above. The inner tube enlarges considerably but for a short period of 

time only. It almost goes back to the undisturbed conditions after all the waves have 

reflected. We can deduce that when a pressure pulse (drop) propagates and encounters 

a blockage in the subarachnoid space, a sort of focusing effect occurs whereby the 

pressure difference is greatly intensified momentarily in the vicinity of the blockage.

In terms of velocity see table (9.1), the inner tube fluid speed is much larger than the 

outer one, as in the case of the reflection of an expansion wave (section 6 ).

In chapter 2 about syringomyelia, we described Williams’ suck mechanism. At first 

sight, the large relative magnitude of UB in the positive direction would appear to 

contradict William’s theory. In fact, we have shown that there was no transmitted 

wave and therefore that there was no transmission to the ‘spinal system’ beyond the 

blockage.



9 3  ANALYSIS OF THE PROPAGATION AND REFLECTION OF

A PULSE W IT H  PR E SSU R E  D IFFE R E N C E  R IS E

Applying the procedure described in section 7.7.3, we can plot similar graphs as in 

section 9.2 (figure 9.1). This is depicted by figures 9 3  and 9.4. We distinguish two 

different cases:

(1) UAo = 1 mm I s (which is depicted in figure 93)

(2) U Ao = -5  mm / s (figure 9.4)

Indeed we demarcate these two cases because in region 14 of figure 7.15, the pressure 

differences are of opposite signs, which means that the inner tube either enlarges or 

reduces. This comes from the fact that in region 11 of figure 7.15, the pressure 

difference is negative when the undisturbed inner chamber velocity is sufficiently 

negative. In regions 12,13,14 the pressure difference will increase since we cross the 

characteristic lines. However, if the absolute value of the pressure difference in region 

11 is big enough, the following increases in AP until region 13 will not be enough in 

order to have a positive pressure difference in region 13. Then, the pressure difference 

in region 14 is approximately doubled compared with region 13.

However, the interesting feature of both cases is that the last region (region 14) has 

new fluid properties, which remain permanently. New equilibrium conditions are 

reached, unlike the previous case where we had an expansion wave following the 

shock-like wave (elastic jump) to go back to the undisturbed conditions.

Let us analyze the first case.

The analysis of this case is mainly the same as section 9.2 for figure 9.1. The main 

difference apart from having a positive pressure difference and thus a reduction of the



inner tube radius, is the fact that after both the expansion and elastic jumps have 

reflected, we do not have the undisturbed conditions anymore, or conditions very 

close to them. In fact, we obtain new equilibrium conditions. This implies that the 

inner tube is permanently reduced in cross-sectional area (figures 9.3d and 9.3e). This 

can be seen as an overshooting effect. Even if we do not actually get the increase of 

the inner tube cross-sectional area one would expect to be required to generate a 

syrinx, this phenomenon could lead to a weakening of the spinal cord thereby 

facilitating the formation of a syrinx.

In the second case, the pressure pulse propagates against the flow. If we impose a 

pressure difference rise, the pressure differences in regions 11 to 14 of figure 7.15 are 

all negative, which can be seen in figure 9.4c with the inner tube radius being larger 

than the undisturbed inner tube radius (1 mm). In this case we obtain an overshooting 

which stretches out the inner tube radius. This could be the beginning of the syrinx 

formation since the inner tube enlarges. Moreover, a combination of both cases could 

weaken the spinal cord.

Let us consider figure 9.5, which is the propagation and reflection of a small pressure 

difference pulse with a negative undisturbed upper chamber fluid velocity. It is 

qualitatively very similar to figure 9.4. We actually obtain a bigger enlargement of the 

spine with smaller amplitude of pressure difference impulses. This is due to the fact 

that along the characteristics, AP counter balances the effects of pC U  Ao, in 

magnitude. If AP is smaller, the effect of pC U  ̂  will be more important and we 

obtain a negative pressure difference bigger in absolute value in region 1 1 , and thus in 

region 14. With figures 9.4 and 9.5, we can conclude that pressure difference (rise) 

pulses (even of small amplitude) which propagate against the upper channel flow can
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create an enlargement of the central canal of the spinal cord. This enlargement, which 

is due to the blockage in the upper channel, remains permanently.

Note that in figures 93  to 9 3 , there is only one elastic jump propagating. The steep 

cross sectional area rise is a numerical artifact, which is due to the fact that we used 3 

characteristics only, instead of an infinite number.

In figure 9.6, we plot the pressure difference in region 14 with respect to the 

undisturbed cross-sectional area ratios. The graph includes different cases of 

undisturbed upper channel velocities ( UAa). We can see that the sign of the pressure 

difference depends on both a 0 and U^ . As a a tends to one (as is the case in the 

human spinal system), the pressure difference either increases or decreases. This is

due to the fact that along the characteristics (equations 6.45 and 6.46), a 0 intensifies 

the weight of term pC U ^ . Let us consider the physical meaning of the effects of a „ . 

The smaller the inner tube radius is, there will be more fluid in the outer tube. That 

implies that for the same pressure difference pulse propagation, the effects in terms of 

pressure difference will be more important if one of the two tubes is much larger (in 

cross-sectional area) than the other. In our case the smaller the inner tube radius is, the 

bigger the pressure difference.

9.4 POSSIBLE MECHANISM FOR SYRINX FORMATION IN 

SYRINGOMYELIA.

We have seen that the reflection of a pressure pulse can either lead to a temporary 

enlargement of the spine close to the blockage (section 9.2) or to a permanent 

enlargement/reduction depending on whether the pressure bulge is positive or 

negative and on whether or not it travels with or against the main flow (section 9.3).



Table 9.1 summarizes these effects. Note that a recirculation phenomenon (flow 

separation) may occur as the pressure pulse propagates. Since flow separation is often 

associated with low pressure, a closer attention to this phenomenon should be paid.

In terms of syrinx formation, these results can be analysed in two ways that might be 

complementary. The first conclusion that can be drawn is the fact that repetitive 

applied large pressure differences AP at the blockage (i.e. enlargement and reduction 

of the spine at the blockage) can lead to a weakening of the spinal cord. This 

weakening could have tremendous effects on the wall properties (spinal cord) i.e. 

either on the tube law (circumferential and longitudinal bending, axial tension) or the 

wall porosity (that has been neglected in our model).

The second is the fact that we have neglected the porosity effect in our model.

9.4.1 Porosity effects on syrinx formation

At first sight the porosity effects did not seem important since pressure pulse 

propagation and reflection are transient phenomena. However, we have shown that 

some pressure pulse reflections could lead to more permanent states (overshooting for 

instance). Even though they are not fully permanent because of the restoring forces 

that we have neglected, they cannot be considered as transient. These quasi-permanent 

large pressure differences AP generated at the blockage could well lead to CSF flow 

across the spinal cord.

If we include porosity effects, a flow-resistance between part A and part B will appear. 

If we call the flow resistance from A to B and RnA the flow resistance from B to 

A, some simple conclusions can be drawn. If RAII = RIIA , then the flow direction (from 

part A to part B or the other way around) will only depend on whether the pressure
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difference AP  is positive or negative. However, this assumption is not realistic as we 

could either have RAB < RnA or RA„ > RIIA . The most interesting case for the syrinx 

formation is RAB < RIIA . In this case, CSF would enter the central canal more easily 

than it would exit it. In other words, the CSF would enter the central canal and would 

be trapped within it. This would ultimately lead to the syrinx formation of 

syringomyelia. Note that the weakening of the spinal cord could have some effects on 

or Rba and especially to reduce their strength.

9.42  Syrinx expansion

We have shown that pressure pulse reflection can be responsible for the syrinx 

formation. We can develop the theory to analyse the syrinx expansion. Indeed, 

patients who have syringomyelia have syrinxes of various lengths. However, most of 

them have a length of several segments (see figure 35). Let us consider that a syrinx 

has been created as explained in the previous section. We now consider a new 

pressure pulse propagating towards a syrinx (see figure 9.7). As the incident pressure 

pulse reaches the syrinx, a reflected wave and a transmitted wave will propagate in 

opposite directions (see figure 9.8). The transmitted wave will be weaker than the 

incident wave. The transmitted wave will then reflect from the blockage in the same 

way as in the theory developed in sections 9.2 and 93  (figure 9.9). However, the 

pressure difference, after the transmitted wave reflection (region BR in figure 9.9), 

will be much less than in the previous cases (i.e. without the syrinx). This is due to the 

fact that the transmitted wave is weaker than the incident wave and that the cross- 

sectional area a  is smaller in this region (i.e. A„ is larger), due to the enlarged syrinx 

cross-sectional area. That means that the larger the syrinx is in cross-sectional area,



the smaller the reflected pressure difference will be. In other words, the size of the 

syrinx will regulate the expansion of the syrinx in the radial direction. At the same 

time, the larger the syrinx is, the larger the pressure difference at the beginning of the 

syrinx will be (region ST  in figure 9.8). This implies that the syrinx will expand 

axially. In summary, once the syrinx is created, it expands radially until a certain limit 

and then expands only along the axis. This limit depends on the cross-sectional area of 

the syrinx which determines the reflected pressure difference. When the pressure 

difference at the blockage (region BR in figure 9.9) is a certain ratio of the pressure 

difference at the beginning of the syrinx (region ST  in figure 9.8), then the syrinx 

expands.

We gave an explanation for the syrinx expansion. This reasoning is not rigorous since 

it is based on qualitative discussion rather than precise calculation. It was only 

mentioned to show that the theory developed in previous chapters has the potential to 

provide a fuller understanding of the syrinx formation and expansion.

Note that a partial blockage of the subarachnoid space could be treated by using a 

reasoning similar to the syrinx expansion one.

9.4 3  Conclusion

We have speculated on the effects of porosity in the syrinx formation. However, 

porosity should be included in a new model since it certainly plays a key role in the 

syrinx formation. In particular, attention should be paid to the microstructure of the 

spinal cord in order to analyse the connected pipes network which results in porosity. 

Only then, we will be able to draw more definite conclusions about syrinx formation.



We have shown a possible mechanism of syrinx formation with our simple model. We 

have also shown that with further investigation, we might be able to understand the 

syrinx expansion mechanisms. An implementation of this model (especially insertion 

of porosity) could lead to a fuller understanding of mechanisms of syrinx formation 

and expansion in syringomyelia.
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER WORK

We have developed a new model for pressure pulse propagation in coaxial tubes system 

where the inner tube is compliant. In chapter 5, we have derived the governing equations 

from where we have extracted the definition of the wave speed. We solved these 

equations for the linear case in what we called the “direct method” (end of chapter 6 ). 

Results showed that a phenomenon of resonance happens if the wavelength of the 

impulse reaches a particular value (A = n  / /  in our particular case). In this case, the 

pressure difference AP = PA -  PB is greatly amplified when there is a blockage in the 

upper channel (see figure 6 3 ). Moreover this phenomenon is intensified if the 

undisturbed cross-sectional area ratio a 0 tends to unity (see figure 6.4). However, this 

approach was unsatisfactory for modeling a pressure pulse propagation and reflection 

from a blockage because the driving impulse is oscillatory. Nevertheless, this model 

could constitute a basis for modeling the effects of the heartbeats on the spinal CSF fluid. 

The heartbeats are oscillatory and therefore this model has the potential to model it. To 

achieve it, one has to estimate the fluctuations of pressure or velocity at the entrance of 

the spinal system. Then, inserting this impulse function in our model, we could predict 

the effects of heartbeats in the vicinity of the blockage.

In the nonlinear case, the wave speed is no longer constant (chapter 5). It was assumed to 

vary mainly with the cross-sectional area ratio a  = Aa /  At . Indeed the wave speed
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increases when a  decreases (when a„ > 0 5 , see figure 5.2). This implies the possibility 

of either having an elastic jump (or a shock-like wave) when a  decreases or a fan of 

expansion waves when a  increases. Because of the variation of the wave speed and the 

complexity of the governing equations in the nonlinear case, we could no longer use the 

direct method. Therefore, we developed a new model based on the method of 

characteristics. We derived the characteristic lines and compatibility equations in both the 

linear and nonlinear cases. The linear case showed that if a pressure disturbance 

propagates in the upper channel and encounters a blockage, the magnitude of the 

disturbance is doubled in the vicinity of the blockage. This was confirmed in the 

nonlinear case, even if it was slightly attenuated. It was shown in both cases that when 

a Q tends to unity the pressure difference AP at the blockage could become very large in 

magnitude. Moreover, in the nonlinear case, we confirmed that when a  increases the 

characteristic lines diverge, and when a  decreases, the characteristic lines converge and 

ultimately coalesce to form a discontinuity in the fluid flow: an elastic jump.

We analyzed the changes in the fluid properties through an elastic jump (chapter 7). We 

found that the pressure difference after an elastic jump could become large depending on 

its propagation speed. We then examined the reflection of an elastic jump from a 

blockage. We concluded that the pressure difference after reflection more than doubled 

compared to the pressure difference jump through the incident elastic jump. The reflected 

pressure difference becomes increasingly greater when a„ tends to unity. Using a 

combination of the method of characteristics and the reflection of an elastic jump, we 

were able to analyze the propagation and reflection from a blockage of a pressure pulse.
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One could find various applications for this mechanical model. Indeed, the ability of 

generating very high pressures close to the blockage by simply reducing the inner tube 

cross-sectional area could have many engineering applications. However, in a final 

chapter, we applied this mechanical model to the human spinal system. We have shown 

that the propagation and reflection of a negative pulse (i. e. one with a drop in pressure 

difference) created a large negative pressure difference at the vicinity of the blockage. 

This means that the inner tube enlarges momentarily at the blockage. More interesting is 

the case of the propagation and reflection of a positive pulse with a pressure difference 

rise. It leads to new conditions remaining permanently (ignoring the restoring forces). We 

have seen that if the pressure pulse propagates in the same direction as the undisturbed 

fluid flow in the upper channel {U /u>), a reduction of the inner tube happens. We called it 

the overshooting effect. Let us point out that, in reality, the overshooting effect should not 

be as important as in the theoretical model because o f the restoring forces of the spinal 

cord which would push back the spinal cord to its undisturbed conditions. If the pressure 

pulse propagates against the undisturbed fluid flow in the upper channel, an enlargement 

of the inner tube occurs, remaining permanently. We also called it overshooting, but in 

order to distinguish the two cases, it would better to call it positive overshooting (and thus 

the former case would be called negative overshooting). This positive overshooting could 

be a possible explanation for the formation o f syrinxes in syringomyelia. The 

combination of the positive and negative overshooting could weaken the spinal cord and 

help the formation of syrinxes. In that respect it would be interesting to compare the
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compliance or distensibilty of the spinal cord in both a normal patient and a patient with 

syringomyelia.

We then discussed a possible mechanism for the syrinx formation, especially by 

speculating on the porosity effects. We then develop the theory in an attempt to explain 

the syrinx expansion. Let us point out that the model has only demonstrated the 

generation of high pressure in the central canal when a pressure pulse reflects from a 

blockage. The discussion on the syrinx formation and expansion is purely speculative. 

Nevertheless, it constitutes a good basis for further investigation on the causes of 

syringomyelia.

As far as the experiment is concerned, we have been able to confirm the wave speed for 

one undisturbed cross-sectional area. It would be worthwhile to rerun the experiment with 

other undisturbed cross-sectional areas. However, we only required a rough estimate to 

confirm the theory. We have seen that the reflection of a pressure pulse from a blockage 

increased at the vicinity of the blockage, thereby confirming the theory. However, the rig 

is not entirely satisfactory. It was probably too complicated for an initial study. The 

design of the compliance of the cranial part was of no use. Because of its large 

dimensions, it was hard to find an exciter powerful enough to drive the piston, and 

therefore obtain pressures large enough to visualize the wave propagation. The tension of 

the compliant tube was not Carefully controlled, and thus it makes it harder to 

quantitatively compare the experimental and theoretical results. However, the aim of the 

experiment was to produce qualitative results and this was achieved.
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R e c o m m e n d a t i o n s  f o r  f u r t h e r  w o r k

As for a future physical model, it would be preferable to make it simpler and focus on 

some particular points only. The main points to keep in mind while designing it are the 

following ones.

(1) Be able to stretch the membrane and control the tension.

(2) Have an impulse driver powerful enough to readily visualize the wave propagation, 

and which will be able to deliver one pressure rise impulse as well as an oscillatory 

impulse. To achieve that, computer control of the piston driver might be a more suitable 

system. Note that it would be better to drive the impulse pressures from the inner tube.

(3) A system which will allow us to locally measure the cross-sectional area of the 

compliant tube would be of much help. Some suitable instrumentation has been used for 

similar measurements (McClurken, 1978). If this system seems too complicated, one 

could go around the problem by first determining the tube law correctly. Then with 

pressure taps inside and outside the compliant tube (at the same level), one could obtain 

the pressure difference, and thus, through the tube law, obtain the cross-section area.

(4) Adapt the rig for testing different undisturbed cross-sectional areas (i.e. different 

compliant tube diameters) because the theory shows that most of the predicted 

phenomena are amplified with smaller compliant tube diameters. If this is not possible, 

make the rig with a very small compliant tube diameter.

As far as the theoretical model is concerned, one could rightly argue that it is too simple 

for modeling the complex spinal system. However, the purpose of this work was to make 

it simple so that we would understand better which are the most influent parameters of
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the system. In a certain extent, we applied Descartes’ third rule of “Discours de la 

méthode” (1637). That rule mentions that we should start by understanding the easiest 

things, and then when we cannot doubt them, we should rise step by step to a more 

complicated degree and so on until we understand the most complex system. It seems that 

we may now be ready to progress to a more complex model. To see where more 

complexity may be required, we return to the main assumptions we have made, namely:

(1) We assumed inviscid flow but viscosity should play an important role in the spinal 

system owing to the low speed of the CSF flow. In terms of pressure pulse propagation, 

its effect should be less important. In order to include the viscous effect, we could use the 

following equations (based on Shapiro, 1977b):

d A . „ d(U A „A. „)
Conservation of mass (unchanged): ----- — H-------- ------— = 0

where the last term in the momentum equations represents the viscous forces. R is 

positive and increases rapidly as Aaji decreases. From Luo and Pedley (1995), we can 

suggest that:

dt d x

Conservation of momentum: ---- -
dt

dU A _ 1 dPA Ra (Aa ,Ua )UaAa (part A)
d x  p  dx p

dt
dU„ _ 1 dPB Rb{Ab ,Ub)UbA„
d x  p  dx p

(part B)

where p  is the viscosity of the fluid.
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Note that there might be a way to link these two expressions of R.

Another source of flow resistance are the trabeculae, arteries, veins, nerves. Their effects 

may be taken into account via a resistance to flow similar to R. At this point, their 

contribution to the flow resistance is not clear, but it would seem that a decrease in Aa 

would increase the flow resistance. Note that the flow resistance due to the trabacullae 

has to be taken into account only in channel A, since there is no trabecullae within the 

central canal.

(2) In our model, we have taken a very crude tube law which was defined as (equation

5.19): a  = a  „ + DAP

This linear variation of the cross-sectional area with the pressure difference does not 

properly describe the reality. We suggest to use a more appropriate tube law:

AP = K P(a" -  a '311) where a  = A/A„

Pedley made his calculations with K,, = (£  /12(1 -  cr2))(/i / r ) 3 = 5 Pa . The exponent n 

needs to be evaluated (it is equal to 10 for modeling veins and 20 for drain tubing). The 

interesting point concerning this tube law is that it is continuous and yet combines the 

properties of being very stiff when ( a  = A / A a > 1 ) the tube is distended, compliant at 

intermediate a , and stiff again at very small a  . It is particularly interesting for modeling 

the spinal cord where tube properties change along the spine due to different 

arrangements of the grey and white matter depending on the location (cervical, 

thoracic...).

Such a tube law is still not satisfactory if one wants to consider the circumferential and 

longitudinal bending, and axial tension. Then it should be better to use equation 5.9,
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combined with the above tube law. However, this should be done for comparisons with

experimental results only. For comparison with reality, a calibration of the tube law with 

empirical data should be satisfactory.

(3) One important aspect of the tube law that should be included is the wall inertia. It 

should play a more important role in our system than in blood-flow through veins and 

arteries because of the thickness of the spinal cord. This can be done by adapting the 

following term (which is for blood flow) to our case and add it to the tube law:

c f a
~m ~ d F

where m = p ww / pha

and p„,w  are the density and thickness of the membrane, p  is the fluid density and ha 

is the undisturbed tube radius. In brief Luo and Pedley (1995) used m=0.01 when the 

flowing fluid is water and 0.1 (or greater) when it is air. Note that in some cases 

(especially air), Pedley has shown that the effect of the wall inertia could be very large.

(4) Porosity should be investigated (as suggested in chapter 9). It could be a path used by 

the CSF to enter the central canal under certain high negative pressure differences AP . 

Perhaps the easiest way to incorporate it is through the tube law.

(5) A partial blockage instead of a total blockage of the upper channel would also be an 

interesting point to investigate, especially for the cases of syringomyelia due to a trauma.

(6) Maybe a 3-chamber model should be developed in the future. The inner (central 

canal) and outer (subarachnoid space) tubes being of low viscosity, whereas the middle 

one (the spinal cord wall) would be of high viscosity. This would also be a way to 

incorporate wall inertia.
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(7) Note that the one-dimensional analysis should be extended to a two-dimensional one. 

In blood-flow theory, the one-dimensional analysis fails to represent flow separation and 

the processes of energy loss/pressure recovery downstream of a constriction. The former 

case should not occur in our case since the fluid velocities are very small. However the 

second point should be investigated.

(8) Changes in the total cross-sectional area. We have shown in chapter 5 that a change in 

the total cross-sectional area AT, could either intensify the effects of the wave speed (in 

terms of forming an elastic jump or developing a fan of expansion waves) or reverse its 

effects. Indeed, we have shown that if A„ decreases we do not have necessarily a fan of 

expansion waves, the creation of an elastic jump is still possible if AT decreases and 

a a > 0 (see section 5.5). This point needs more investigation, in particular when rapid 

changes in total cross-sectional area occur.

We have enumerated the weaknesses of the theoretical model. A lot of work has still to 

be done in this field. Comparing definitions of syringomyelia in the Black’s dictionary of 

medicine in 1946 and 1995, we realized that they were almost the same, in terms of 

understanding the causes. This is due to a lack of collaboration between the medical and 

engineering sides. We should have the tools to dramatically improve conditions of 

patients who have syringomyelia and other brain or spinal problems. Biotechnology and 

biomechanics are interacting fruitfully on a wide front. This interaction has proved to be 

fruitful in certain aspects of bio-fluid mechanics (blood-flows, air flows), but is still too 

little for cerebrospinal-fluid problems. Perhaps with the increased interest in the brain
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being shown by physiologists, psychiatrists, and surgeons, specialists in fluid mechanics 

will devote more of their efforts to this interesting and challenging area.
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A .l TABLES OF CHAPTER 2

CSF
mg. per 100 ml.

Blood Plasma 
mg. per 100 ml.

Protein 16 to 38 6300 to 8500
Sugar 45 to 80 80 to 120
Amino acids 15 to 3 45 to 9
Creatinine 0 5  to 2.2 0.7 to 2
Uric acid 0.4 to 2.8 2.9 to 6.9
Urea 5 to 39 22 to 42
Cholesterol trace 100 to 150
Chloride (NaCl) 700 to 750 560 to 630
Phosphate (inorganic) 1.2 to 2.1 2 to 5
Sodium 325 326
Potassium 12 to 17 12 to 20
Calcium 4 5  to 7 9 to 11
Magnesium 3 to 3.6 1 to 3
Lactic acid 8 to 25 10 to 32
Specific gravity 1.0075 1.025
Hydrogen ions (pH) 7.4 73  to 75
TABLE 2.1; Comparison of normal CSF and blood plasma (after Merritt and 
Fremont-Smith, 1937)

Fluid Total Proteins 
mg. per 100 

ml.

Globulin 
mg. per 100 

ml.

Albumin 
mg. per 100 

ml.

Glucose 
mg. per 100 

ml.

Cells

Ventricles 10 to 16 1 to 4 8 to 14 50 to 90 0/3 to 2/3
Cisterna
Magna

16 to 20 1 to 6 14 to 16 59 to 68 0/3 to 4/3

Lumbar
Cistern

20 to 24 2 to 6 14 to 18 55 to 65 0/3 to 8/3

TABLE 2 2 : Variations in composition of CSF withdrawn from different sites, (from 
Lups and Haan, 1954).
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A2  TABLES OF CHAPTER 3

Symptom grouping Symptom Number
Pain headache 52

(82%) nuchal pain 49
limb pain 16
trunk pain 8
impulse related 44

Motor symptoms weakness 52
(70%) wasting 16

spasticity 12
clumsiness 22
drop attacks 2

Sensory symptoms numbness 42
(65%) paraesthesiae 27

dissociated loss 38
posterior column 6
other sensory 15

Stem symptoms diplopia 5
(39%) oscillopsia 4

other visual 2
trigeminal loss 4
deafness 3
tinnitus 9
giddiness 19
voice 9
swallowing 9

Other symptoms gait disturbance 30
(39%) hyperhidrosis 4

bladder symptoms 5
syncope 4
sexual problems 1

TABLE 3.1; Presenting symptoms in 100 cases of symptomatic hindbrain hernia (63 
syrinxes) (from Williams, 1993).
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Hindbrain related syringomyelia 71%
Hindbrain herniation

Idiopathic herniation (Chiari type 1) 32%
Secondary to birth injury 39%
Secondary to tumours 1-2%

Bony or meningeal tumours of the posterior fossa 
Turnouts forming the hindbrain hernia 
Intrinsic brain tumours 

Secondary to bony abnormality
Basilar invagination (idiopathic or birth injury) 10%
Sclerosteosis
Rickets
Acro-osteolysis 
Osteogenesis imperfecta 

Associated with hydrocephalus 10%
Intracranial arachnoid pouches 2%
Dandy-Walker cysts
Early onset hydrocephalus (aqueduct stenosis)

Secondary to spina bifida (Ciari type 2) 4%
Meningeal fibrosis

Birth injury related 9%
Post-inflammatory

Post-traumatic (post-natal) 1%
Infections

_____ Unknown causes____________________________________________________
Non-hindbrain related cases 19%

Spinal tumours 5%
Intramedullary 3%

Cysts wholly or partly within the tumour 
Cysts outside the tumour 

Extramedullary tumours, including disc disease 
Meningeal fibrosis 15%

Post-inflammatory 
Pyogenic meningitis 
Epidural abscess 
Post-traumatic 12%

Tuberculous meningitis
Myodil (pantopaque) 1%

Secondary to spinal body deformities 
Post-traumatic 11%
Tuberculous bone disease

__________ Idiopathic scoliosis______________________________________________________
TABLE 3.2: Classification of syringomyelia according to presumed cause. 
Percentages given in parentheses are from a database of syringomyelia and related 
disease. Diagnoses with no percentage given have an incidence of less than 1%. They 
do not add up to 100% because of intersections. Some factors much as peri-natal or 
post-natal head injury are difficult to interpret. Others such a hydrocephalus or 
basilar impression are matters of degree, (from Williams, 1993).
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A 3 TABLES OF CHAPTER 6

R E G IO N AP p. P. v Á u. a = At IAr
0 0 pC.e. pC.s. 0 0

1 f ^ - ( f . - i ) pC.s P~- (e. - aac) -(« . -  «■) a„ + DAP,
l - o . l - o . l - o .

2 pC.(2e-s.) Pco 0 0 a 0 + 2Z)APj

o
2“ o*)

3 0 pC.e, PC.e. 0 0 O.
4 ‘ 

1 p » i pC.e P * (*. « .«) * . - * a„ + DAP,
1 - 0 . l - o . 1 - a ,

5 0 pC.t. pC.t. 0 0 O.
TABLE 6.1: Analytical results for a pressure pulse reflection (note that ea > e).

REGION AP (Pa) (Pa) P. (Pa) UA (m/s) l/, (m/s) « “ A Mr
0 0 8.00E+02 8.00E+02 0 0 8.89E-01
1 -2.70E+03 5.00E+02 3.20E+03 -6.00E-02 4.80E-01 8.78E-01
2 -5.40E+03 2.00E+02 5.60E+03 0 0 8.68E-01
3 0 8.00E+02 8.00E+02 0 0 8.89E-01
4 -2.70E+03 5.00E+02 3.20E+03 6.00E-02 -4.80E-01 8.78E-01
5 0 8.00E+02 8.00E+02 0 0 8.89E-01

TABLE 6.2: Numerical results for a pressure pulse reflection.
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x(m) t(s)
0.00E+0O O.OOE+00
9.00E-01 1.77E-01
1.00E+00 1.97E-01
8.98E-01 1.78E-01
9.93E-01 1.98E-01
1.00E+00 2.00E-01
8.96E-01 1.78E-01
9.85E-01 2.00E-01
9.92E-01 2.02E-01
1.00E+00 2.03E-01
8.94E-01 1.78E-01
9.76E-01 2.01E-01
9.83E-01 2.03E-01
9.91E-01 2.05E-01
1.00E+00 2.08E-01
8.92E-01 1.79E-01
9.66E-01 2.03E-01
9.73E-01 2.05E-01
9.80E-01 2.08E-01
9.89E-01 2.10E-01
1.00E+00 2.14E-01
8.92E-01 1.97E-01
930E-01 2.10E-01
938E-01 2.12E-01
9.47E-01 2.15E-01
937E-01 2.18E-01

TABLE 6-3: Coordinates of the points in the (x,t) diagram (5 characteristics).



POINT AP (m) r* <Pa> P, (Pa) l/„ (m/s) U, (m/s) ft II *4 C (m/s)
0 O.OOE+OO 4.00E+02 4.00E+02 O.OOE+OO O.OOE+OO 9.72E-01 5.00E+00
1 1.60E+03 4.43E+02 -1.16E+03 -8.46E-03 3.16E-01 9.74E-01 4.85E+00
2 255E+00 4.00E+02 3.98E+02 O.OOE+OO O.OOE+OO 9.72E-01 5.00E+00
3 3.20E+03 4.83E+02 -2.72E+03 239E-04 -1.04E-02 9.76E-01 4.69E+00
4 1.65E+03 4.44E+02 -131 E+03 8.73E-03 -337E-01 9.74E-01 4.84E+00
5 3.25E+03 4.85E+02 -2.77E+03 O.OOE+OO O.OOE+OO 9.76E-01 4.68E+00
6 4.80E+03 531E+02 -4.28E+03 8.09E-03 -350E-01 9.77E-01 432E+00
7 331 E+03 4.86E+02 -2.82E+03 1.65E-02 -6.67E-01 9.76E-01 4.68E+00
8 4.85 E+03 532E+02 -433E+03 7.84E-03 -3.40E-01 9.78E-01 432E+00
9 639E+03 535E+02 -5.83 E+03 O.OOE+OO O.OOE+OO 9.79E-01 435E+00
10 6.40E+03 535E+02 -5.85 E+03 130E-02 -7.03E-01 9.79E-01 435E+00
11 4.96E+03 5.25E+02 -4.43E+03 234E-02 -1.02E+00 9.78E-01 430E+00
12 6.44E+03 536E+02 -5.89E+03 1.48E-02 -6.94E-01 9.79E-01 434E+00
13 7.92E+03 5.85E+02 -734E+03 6.94E-03 -334E-01 9.81E-01 4.18E+00
14 9.40E+03 6.12E+02 -8.78E+03 O.OOE+OO O.OOE+OO 9.82E-01 4.00E+00
15 8.00E+03 5.86E+02 -7.41E+03 2.09E-02 -1.07E+00 9.81 E-01 4.17E+00
16 6.62E+03 5.60E+02 -6.06E+03 2.93E-02 -139E+00 9.79E-01 433E+00
17 8.04E+03 5.86E+02 -7.45 E+03 2.07E-02 -1.06E+00 9.81 E-01 4.16E+00
18 9.45 E+03 6.11E+02 -8.84E+03 1.29E-02 -734E-01 9.82E-01 4.00E+00
19 1.09E+04 634E+02 -1.02E+04 6.03E-03 -3.70E-01 9.84E-01 332E+00
20 1.23E+04 635E+02 -1.16E+04 O.OOE+OO -1.07E+00 9.86E-01 3.64E+00
21 8.00E+03 536E+02 -7.41E+03 2.09E-02 O.OOE+OO 9.81E-01 4.17E+00
22 6.62E+03 5.60E+02 -6.06E+03 2.93E-02 -139E+00 9.79E-01 433E+00
23 8.04 E+03 536E+02 -7.45 E+03 2.07E-02 -1.06E+00 9.81E-01 4.16E+00
24 9.45 E+03 6.11E+02 -8.84E+03 1.29E-02 -734E-01 9.82E-01 4.00E+00
25 1.09E+04 634E+02 -1.02E+04 6.03E-03 -3.70E-01 9.84E-01 332E+00

TABLE 6.4: Fluid properties at points defined in (x,t) diagram.
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A.4 TABLES OF CHAPTER 7

ZONE: Flow 
State

1 : Before 
incident wave

2: After 
incident and 
before reflected

R: After 
reflected wave

T: Transmitted 
wave

VELOCITY

OIIII>5 u M -  o
Um - 1

e** 
Il 

II
K. 

K

PRESSURE II g® II O P. 2 = ?

Il 
II Il 

II
•>3

 -
>a

PRESSURE
DIFFERENCE

OII3F AP, = ? AP*=? APr = ?

SHOCK-LIKE 
WAVE SPEED

Vs, : given V  = *>V ST

TABLE 7.1; Shock-like wave unknowns of the problem.

ZONE: Flow 
State

1: Before 
incident wave

2: After 
incident and 
before reflected

R: After 
reflected wave

T: Transmitted 
wave

VELOCITY oilil UA1 : eq. 9.12 
UB2: t  q.9.13 f

i
il 

il 
o

 o

f
f

» 
h

Il 
II 

o
 o

PRESSURE oIIafha? PA2 : eq. 9.14 
Pfl2:eq.9.15

/V e q .9 .2 3  
PBK : eq. 9.24 Il 

II
S«

£»
Il 

II 
o

 o
PRESSURE
DIFFERENCE

A/> = 0 AP, : eq. 9.9 ¿±PK : eq. 9.9 APr = AP, = 0

SHOCK-LIKE 
WAVE SPEED

Vs, : given V̂ , : eq. 9.21

oII

TABLE 12: Shock-like wave relations.

188



Vs (rn/s) AP 
(Pa)

P.
(Pa)

P.
(Pa)

v A
(m/s)

u .
(m/s)

a

Before
shock

0 400 400 0.001 0 0.88888

After shock
5.10E+00 -731E+01 3.92E+02 4.66E+02 -638E-04 132E-02 8.89E-01
5.15E+00 -236E+02 3.73E+02 6.15E+02 -439E-03 438E-02 8.88E-01
5.20E+00 -3.99E+02 333E+02 7.67E+02 -833E-03 737E-02 8.87E-01
525E+00 -5.62E+02 332E+02 9.22E+02 -132E-02 1.03E-01 8.87E-01
530E+00 -7.27E+02 3.10E+02 1.08E+03 -1.62E-02 134E-01 8.86E-01
535E+00 -8.92E+02 2.87E+02 124E+03 -2.03E-02 1.65E-01 8.85 E-01
5.40E+00 -1.06E+03 2.63E+02 1.41E+03 -2.45E-02 1.96E-01 8.85 E-01
5.45E+00 -1.23E+03 239E+02 137E+03 -2.89E-02 2.28E-01 8.84E-01
5.50E+00 -1.40E+03 2.13E+02 1.74E+03 -333E-02 2.60E-01 833E-01
555E+00 -137E+03 1.86E+02 1.92E+03 -3.79E-02 2.93 E-01 8.83E-01
5.60E+00 -1.73E+03 138E+02 2.09E+03 -4.25E-02 3.25E-01 8.82E-01
5.65E+00 -1.91E+03 1.28E+02 2.27E+03 -4.73E-02 339E-01 8.81E-01
5.70E+00 -2.08E+03 9.81E+01 2.45E+03 -5.21E-02 3.92E-01 8.81E-01
5.75E+00 -2.25E+03 6.65E+01 2.64E+03 -5.71E-02 436E-01 8.80E-01
5.80E+00 -2.43E+03 337E+01 2.83E+03 -6.22E-02 4.61E-01 8.79E-01
5.85E+00 -2.60E+03 -3.27E-01 3.02E+03 -6.74E-02 4.96E-01 8.79E-01
5.90E+00 -2.78E+03 -337E+01 3.21E+03 -738E-02 531E-01 8.78E-01
5.95E+00 -2.96E+03 -7.24E+01 3.41E+03 -7.83E-02 5.66E-01 8.77E-01
6.00E+00 -3.14E+03 -X.11E+02 3.61E+03 -838E-02 6.02E-01 8.77E-01
6.05E+00 -332E+03 -130E+02 3.81E+03 -8.95E-02 638E-01 8.76E-01
6.10E+00 -330E+03 -1.91E+02 4.02E+03 -934E-02 6.75E-01 8.75E-01
6.15E+00 -4.84E+03 -4.40E+02 5.08E+03 -134E-01 9.03 E-01 8.70E-01
6.20E+00 -532E+03 -5.80E+02 5.60E+03 -135E-01 1.02E+00 8.67E-01
6.25E+00 -6.10E+03 -7.07E+02 6.05E+03 -1.73E-01 1.11E+00 8.65 E-01
630E+00 -6.65E+03 -833E+02 6.46E+03 -1.91E-01 1.20E+00 8.63E-01
635E+00 -7.16E+03 -934E+02 6.84E+03 -2.08E-01 1.29E+00 8.61E-01
6.40E+00 -7.65E+03 -1.08E+03 7.20E+03 -224E-01 137E+00 839E-01
6.45E+00 -8.13E+03 -1.20E+03 735E+03 -2.41E-01 1.45E+00 837E-01

TABLE 7 3 : Fluid properties after an elastic jump.
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Va
(m/s)

v*
(m/s)

4P, 
(Pa)

AP,
(Pa)

P.\
(Pa)

P.
(Pa)

5.05E+00 2.05E+00 -2.74E+02 -6.34E+02 3.89E+02 4.83E+02 8.88E-01
5.10E+00 3.50E+00 -3.22E+02 -7.82E+02 3.93E+02 4.51 E+02 8.88E-01
5.15E+00 4.64E+00 -7.66E+02 -1.57E+03 3.99E+02 3.91 E+02 8.86E-01
5.20E+00 4.70E+00 -1.07E+03 -2.16E+03 3.96E+02 3.92E+02 8.85E-01
5.25E+00 4.91 E+00 -1.41E+03 -2.84E+03 3.98E+02 3.47E+02 8.83E-01
5.30E+00 5.02E+00 -1.71E+03 -3.47E+03 3.99E+02 3.13E+02 8.82E-01
5.35E+00 5.05E+00 -2.03E+03 -4.11 E+03 3.96E+02 2.93E+02 8.81 E-01
5.40E+00 5.06E+00 -2.37E+03 -4.86E+03 3.91 E+02 2.75E+02 8.80E-01
5.45E+00 5.15E+00 -2.69E+03 -5.51 E+03 3.91 E+02 2.22E+02 8.78E-01
5.50E+00 5.17E+00 -3.04E+03 -6.22E+03 3.86E+02 1.94E+02 8.77E-01
5.55E+00 5.17E+00 -3.37E+03 -6.95E+03 3.79E+02 1.73E+02 8.76E-01
5.60E+00 5.19E+00 -3.73E+03 -7.69E+03 3.71 E+02 1.40E+02 8.74E-01
5.65E+00 5.20E+00 -4.06E+03 -8.42E+03 3.63E+02 1.11 E+02 8.73E-01
5.70E+00 5.22E+00 -4.40E+03 -9.15E+03 3.54E+02 7.45E+01 8.72E-01
5.75E+00 5.23E+00 -4.75E+03 -9.93E+03 3.43E+02 3.97E+01 8.70E-01
5.80E+00 5.25E+00 -5.09E+03 -1.07E+04 3.31 E+02 1.32E+00 8.69E-01
5.85E+00 5.27E+00 -5.45E+03 -1.15E+04 3.19E+02 -4.24E+01 8.67E-01
5.90E+00 5.27E+00 -5.81 E+03 -1.23E+04 3.02E+02 -7.14E+01 8.66E-01
5.95E+00 5.29E+00 -6.16E+03 -1.31E+04 2.87E+02 -1.20E+02 8.65E-01
6.00E+00 5.29E+00 -6.52E+03 -1.39E+04 2.68E+02 -1.55E+02 8.63E-01
6.05E+00 5.30E+00 -6.88E+03 -1.47E+04 2.48E+02 -1.92E+02 8.62E-01
6.10E+00 5.31 E+00 -7.25E+03 -1.55E+04 2.26E+02 -2.33E+02 8.60E-01
6.15E+00 5.32E+00 -7.61 E+03 -1.64E+04 2.03E+02 -2.77E+02 8.59E-01
6.20E+00 5.33E+00 -7.99E+03 -1.72E+04 1.77E+02 -3.19E+02 8.57E-01
6.25E+00 5.33E+00 -8.37E+03 -1.81 E+04 1.49E+02 -3.62E+02 8.56E-01
6.30E+00 5.34E+00 -8.73E+03 -1.90E+04 1.18E+02 -4.02E+02 8.54E-01
6.35E+00 5.34E+00 -9.11 E+03 -1.99E+04 8.56E+01 -4.50E+02 8.53E-01
6.40E+00 5.35E+00 -9.50E+03 -2.08E+04 4.97E+01 -4.90E+02 8.51 E-01
6.45E+00 5.35E+00 -9.88E+03 -2.18E+04 1.24E+01 -5.39E+02 8.50E-01
6.50E+00 5.36E+00 -1.03E+04 -2.27E+04 -2.85E+01 -5.83E+02 8.48E-01

TABLE 7.4: Fluid properties after the reflected elastic jump ( a a = 033).



ap1 ap2 ap3
5.40E-01 -1.85E-02 -2.17E-02 -1.61E-03
5.50E-01 -1.82E-02 -2.22E-02 -2.02E-03
5.60E-01 -1.79E-02 -2.27E-02 -2.43E-03
5.70E-01 -1.75E-02 -2.33E-02 -2.86E-03
5.80E-01 -1.72E-02 -2.38E-02 -3.28E-03
5.90E-01 -1.69E-02 -2.44E-02 -3.72E-03
6.00E-01 -1.67E-02 -2.50E-02 -4.17E-03
6.10E-01 -1.64E-02 -2.56E-02 -4.62E-03
6.20E-01 -1.61E-02 -2.63E-02 -5.09E-03
6.30E-01 -1.59E-02 -2.70E-02 -5.58E-03
6.40E-01 -1.56E-02 -2.78E-02 -6.07E-03
6.50E-01 -1.54E-02 -2.86E-02 -6.59E-03
6.60E-01 -1.52E-02 -2.94E-02 -7.13E-03
6.70E-01 -1.49E-02 -3.03E-02 -7.69E-03
6.80E-01 -1.47E-02 -3.12E-02 -8.27E-03
6.90E-01 -1.45E-02 -3.23E-02 -8.88E-03
7.00E-01 -1.43E-02 -3.33E-02 -9.52E-03
7.10E-01 -1.41E-02 -3.45E-02 -1.02E-02
7.20E-01 -1.39E-02 -3.57E-02 -1.09E-02
7.30E-01 -1.37E-02 -3.70E-02 -1.17E-02
7.40E-01 -1.35E-02 -3.85E-02 -1.25E-02
7.50E-01 -1.33E-02 -4.00E-02 -1.33E-02
7.60E-01 -1.32E-02 -4.17E-02 -1.43E-02
7.70E-01 -1.30E-02 -4.35E-02 -1.52E-02
7.80E-01 -1.28E-02 -4.54E-02 -1.63E-02
7.90E-01 -1.27E-02 -4.76E-02 -1.75E-02
8.00E-01 -1.25E-02 -5.00E-02 -1.87E-02
8.10E-01 -1.23E-02 -5.26E-02 -2.01 E-02
8.20E-01 -1.22E-02 -5.55E-02 -2.17E-02
8.30E-01 -1.20E-02 -5.88E-02 -2.34E-02
8.40E-01 -1.19E-02 -6.25E-02 -2.53E-02
8.50E-01 -1.18E-02 -6.66E-02 -2.74E-02
8.60E-01 -1.16E-02 -7.14E-02 -2.99E-02
8.70E-01 -1.15E-02 -7.69E-02 -3.27E-02
8.80E-01 -1.14E-02 -8.33E-02 -3.60E-02
8.90E-01 -1.12E-02 -9.09E-02 -3.98E-02
9.00E-01 -1.11E-02 -1.00E-01 -4.44E-02
9.10E-01 -1.10E-02 -1.11E-01 -5.00E-02
9.20E-01 -1.09E-02 -1.25E-01 -5.70E-02
9.30E-01 -1.08E-02 -1.43E-01 -6.60E-02
9.40E-01 -1.06E-02 -1.67E-01 -7.80E-02
9.50E-01 -1.05E-02 -2.00E-01 -9.47E-02
9.60E-01 -1.04E-02 -2.50E-01 -1.20E-01
9.70E-01 -1.03E-02 -3.33E-01 -1.61E-01
9.80E-01 -1.02E-02 -5.00E-01 -2.45E-01
9.90E-01 -1.01E-02 -1.00E+00 -4.95E-01

TABLE 7.5: Validity of the small perturbation theory.
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A .5 TABLE OF CHAPTER 9

Region AP P., P. u* u. a C V,
(Pa) (Pa) (Pa) (m/s) (m/s) (m/s) (m/s)

0 0 500 500 0 0 0.9100 5.0000 0
1 -1862 308.8 2171 -0.0361 0.3397 0.9039 5.1490 5.3520
2 -3781 501.1 4282 0 0 0.8976 5.2970 -5.1930
3 -1241 367.6 1609 -0.0240 0.2308 0.9059 5.1000 0
4 -3112 171.4 3284 0.0127 -0.1141 0.8998 5.2460 -5.4070
5 -2450 237 2687 0 0 0.9020 5.1950 0
6 -620.7 425.3 1046 -0.0122 0.1203 0.9080 5.0510 0
7 -2485 231 2716 0.0242 -0.2227 0.9019 5.1980 -5.3890
8 -1829 294.6 2124 0.0115 -0.1086 0.9040 5.1470 0
9 -1214 353 1567 0 0 0.9060 5.0980 0
10 0 481.8 481.8 -0.0008 0.0081 0.9100 5.0000 0
11 -1859 289.4 2148 0.0354 -0.3327 0.9039 5.1490 -5.3710
12 -1209 351 1560 0.0227 -0.2186 0.9060 5.0980 0
13 -599.6 407.5 1007 0.0111 -0.1100 0.9080 5.0490 0
14 9.14 462.9 453 0 0 0.9100 4.9990 0

TABLE 9.1: Fluid properties in each region for a pressure pulse reflection.

positive bulge propagating with flow

flow
✓ — I..>

=> Temporary high positive bulge at 
blockage

/ -

negative bulge propagating with flow 

flow...... ......>

=> Permanent negative overshooting

L /  > , s --------------

negative bulge propagating against flow 

flow

=> Permanent positive overshooting

L /^T

TABLE 9 2 : Summary o f the main results
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B.l FIGURES OF CHAPTER 2

Facial nerve (VII).

Cervical
nerves

Thoracic
nerves

Lumbar
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Sacral 
nerves

Coccygeal nerve'

Acoustic nerve (VIII)
Glossopharyngeal nerve (IX) 
Vagus nerve (X)
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Hum terminate 
Coccygeal vertebrae

FIGURE 2.1: Gross aspect of the spinal cord and lower brain stem viewed from the 
dorsal side with bone and meninges removed (from House and Pansky, 1967, p. 57).
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F

FIGURE 2 2 : Dissecation of the adult spinal cord. x28 (from England and Wakely, 
1991, p. 173). (1-Arachnoid mater; 5-Caudal equina; 6- Cervical enlargement; 9- 
Dura mater; 13-Filum terminale; 16-Fourth ventricle; 18-Lumbar enlargement; 19- 
Medulla oblongata; 20-Pla mater; 22-Sacrum).
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Subarachnoid space 
Subdural space 
Denticulate 

ligament

Dura mater

Arachnoid 
P ia  mater

Posterior nerve root

Vertebral artery 

Vertebral vein
Cervical

CROSS SECTIONS Lateral view

FIGURE 2 3 : Gross aspect of the spinal cord and nerves as related to vertebral 
levels seen In the sagittal plane. The relations of the cord and nerves to the meninges 
together with variations in size and shape of the cord at different levels is shown in a 
series of three cross-sections, (from House and Pansky, 1967, p. 58).
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FIGURE 2.4: The spinal cord and meninges within the vertebral canal, (from 
Gardner, 1968, p. 32).

FIGURE 2.5: Layered dissecation of the scalp, showing the meninges and the 
cranial vault. x54 (from England and Wakely, 1991, p. 42). (1 to 5: Five layers of 
scalp; 7-Cranial vault bone; 9-Dura mater; 10-I’ia-arachnoid mater).
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FIGURE 2.6: Transverse section of the spinal cord at different levels to show the 
variations in amount and configuration of the white and grc'y matter, (from House 
and Pansky, 1967, p. 60).
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FIGURE 2.7: The brain viewed from the right (A) x42 (cerebral hemisphere: 1 ,2 ,3 , 
4), from the base (B) x5 (cerebral hemisphere: '1, 2, 3), from the back (Q  x42 
(occipital lobe of cerebral hemisphere: 2) and from above (D) x5 (cerebral 
hemisphere: 1, 2, 5, 6), to show the cerebral hemispheres, (from England and 
Wakely, 1991, p. 39).
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FIGURE 2.8: The cerebellum viewed in midsagittal section (A) x59 (3-Hemisphere 
of cerebellum, 7- Vermis of cerebellum), and coronal section (II) x7 (2-cerebellar 
hemisphere) (from England and Wakely, 1991, p. 162).
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FIGURE 2.10: A coronal section o f the falx cerebri, x l3 5  (from England and 
Wakely, 1991, p.42) (7-Falx cerebri).

FIGURE 2.11: Diagram of a coronal section of skull and brain to show the falx 
cerebri, (from Gardner, 1968, p. 11).
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FIGURE 2.12; Diagram to illustrate the essential points relating to the production, 
course, and absorption of CSF. Meningeal layers are also shown, (from House and 
Pansky, 1967, p. 72).

M ain d io r a U i l

FIGURE 2.13: Diagram to illustrate the choroid plexus (from Woollam and Millen, 
1962)
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FIGURE 2.17: A cast of the ventricles to illustrate their position internally. x65 
(from England and Wakely, 1991, p. 71) (1 to 5-Lateral ventricle; 6-Third ventricle; 
7-Fourth ventricle).

• . . T ~  ______ J
FIGURE 2.18: Dissection to illustrate the median foramen (of Magendie) in figure 
18a; and the lateral foramen (of Lushka) in figure 18b. (from Woollam and Millen, 
1962)
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FIGURE 2.19; Diagram illustrating the perivascular space, a rtsp , artifact space; 
b s ., brain substance; b.v., blood vessel; d m .,  dura mater; episp ., epispinal space of 
His; p jis p ,  perineuronal space; p rsp , perivascular space; p m a t., pia mater; r p s . ,  
reticular perivascular sheath; subarachsp, subarachnoid space (from Woollam and 
Millen, 1962)

FIGURE 2.20; Diagram illustrating the general appearance of choroidal villus, 
(from Woollam and Millen, 1962)
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FIGURE 2 2 2 : Sagittal section of the head to illustrate the circulation of CSF 
through the ventricles and subarachnoid space and its return to blood circulation. 
x64. Black arrows: circulation of CSF; Shaded arrows: return of CSF to blood 
circulation, (from England and Wakely, 1991, p. 76).
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lb)
FIGURE 2.23: Effect of artery on Csf pressure (2.23a). Valve action and its effect 
(2.23b). Effect of veins on CSF pressure (2.23c). (from Davson, 1967)

FIGURE 224: Recording of CSF pressure from the lateral ventricle, (from Allen, 
1986, adapted from McDowall, 1969)

FIGURE 225: Relationship between pressure and rate of formation and absorption 
of CSF. (from Allen, 1986 adapted from Cutler et al, 1968)
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FIGURE 2.26: Vertical section through the midline body. During coughing the 
areas shaded in dots, up to the larynx, is subjected to sudden high pressure. This 
pressure is transmitted to the central canal whence it travels upwards, (from Lockey 
et al, 1975).

FIGURE 227: Two normal coughs in the erect position. The top trace is lumbar 
from the bottom of the spine. The middle trace is cisternal, from the base of the 
skull, the bottom trace is differential, lumbar minus cisternal. The mean attenuation 
factor is 91.5%. The pressure given is the pressure above the manubrium stemi, 
which is the top of the breast bone, (from Lockey et al, 1975).
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FIGURE 228: Eight coughs in presence of spinal block. The impulses are greatly 
attenuated by the time they reach the cistern. The mean attenuation factor is 23.5%. 
Note the change in time scale from figure 2.27. (from Lockey et al, 1975).

FIGURE 2.29: Transverse section through the spine. The abdominal pressure 
(black arrows) is transmitted along the veins (white arrows) and is reflected in the 
CSF which is represented as a clear, unshaded area around the cord (from Lockey 
et al, 1975).
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B 2  FIGURES OF CHAPTER 3

FIGURE 3.1: Diagram to demonstrate syrinxes in syringomyelia.

FIGURE 3.2: Midline section through an unaffected case on the left. Hindbrain 
hernia (A) and syringomyelia on the right, (from Williams, 1986, p!32)
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FIGURE 3 3 : Magnetic resonance image to show syrinxes in hindbrain-related 
syringomyelia, (from Williams, 1993, p. 120)

FIGURE 3.4: Magnetic resonance image to show syrinxes (severe case), (from 
Williams, 1990b, p. 667)
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brain herniation

FIGURE 3.5: Magnetic resonance image demonstrating the appearance of a syrinx 
after craniovertebral decompression. (Sgouros & Williams, 1995, p. 4)
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FIGURE 3.8: (A) A myelography in post-traumatic syringomyelia. (JB) Computed 
tomography scan about 1 hour after myelography. (Williams, 1990b, p. 673)
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FIGURE 3.9: Magnetic resonance image 
of a sagittal midline cut through the 
hindbrain and upper cord in the most 
common case of syringomyelia: 
hindbrain related. (Williams, 1990b,p 658)

FIGURE 3.10: Same case as figure 3.9 
after decompression, the patient 
experienced motor and sensory clinical 
improvement. Note the bottom of the 
tonsils now assume a more rounded 
shape, the midline outlet of the fourth 
ventricle has opened up, there is a large 
artificial cisterna magna, and the syrinx 
has almost entirely disappeared. 
(Williams, 1990b, p. 658)
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FIGURE 3.13: Decision tree for syringomyelia surgery. Y: Yes; N: No; M: May be. 
(from Williams, 1990b, p. 674)

FIGURE 3.14: Diagram of Hindbrain hernia. F  fourth ventricle; P  pouch; T tonsils; 
M medullary deformity, (from Williams, 1993, p.115)
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FIGURE 3.15: (A), Upward movement o f the CSF lifts the hindbrain out of the 
foramen magnum, separates the close approximation of the tonsils to each other and 
to the back of the medulla, and allows the CSF to enter the head freely. (B), During 
the rebound, the intracranial pressure carries the hindbrain tightly into position 
and moulds it firmly, (from Williams, 1990b, p. 660)
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FIGURE 3.16: Magnetic resonance in a patient with a spinal lipopia 
hindbrain hernia in this patient, (from Williams, 1990b, p. 663)



FIGURE 3.17: If the fluid is forced up and down the cord it probably almost always 
displays wave phenomena, (from Williams, 1993, p. 122)

i c *>

FIGURE 3.18: Wave motion above a flat surface produces horizontal movement (L) 
close to the bottom, sinusoidal movement (H) close to the surface and ellipsoidal 
movement (/) between, (from Williams, 1993, p. 122)

FIGURE 3.19: The easy passage of fluid up the centre of the cord compared with 
the difficulty in movement within the subarachnoid space, (from Williams, 1993, p. 
123)
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B3  FIGURES OF CHAPTER 4

FIGURE 4.1: Diagram of the Starling resistor.

FIGURE 4 2 : Adjustment zone of a highly pollapsed compliant tube mounted on a 
circular rigid tube (from Shapiro, 1977b).
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FIGURE 4 3 : Free-body diagram for a small segment of tube wall (from Kamra, 
1987).

FIGURE 4.4: Comparison of the tube law model (Eq. 4.10) with experimental
measurements. Taken from Shapiro (1977b).
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FIGURE 4.5: Geometric model used to estimate stiffness due to longitudinal tension 
and bending (from McClurken et al, 1981).

FIGURE 4.6: Local tube law with the tube mounted as in figure 4.8. Lower curve: 
experimental data l \ a ) . Upper curve: C„(a) from smoothed curve of P(a) (from 
Kececioglu et al, 1981).
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• 0 0 .

FIGURE 4.7: Comparison of measured and theoretical wavelengths in a compliant 
tube mounted as in figure 4.8. Dash-dot line: based on equation 4.12, neglecting the 
longitudinal bending. Dashed line: reduced by 30 percent. Open symbols: steady- 
flow experiments as in figure 4.8; closed symbols: unsteady-flow experiments from 
Jan, 1980 (from McClurken et al, 1981).

FIGURE 4.8: Photograph of an elastic jump in a compliant tube suspended in 
water. Flow fj-om left to right, (a-b) Supercritical region with precursor waves 
emanating from jump. (b-c) Elastic jump, (c-end) Subcritical region, (from 
Kececioglu et al, 1981).
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FIGURE 4.9: Experimental values for the jump pressure recovery coefficient 
(CP = 2(PC - P b) / p u l ) compared to various calculated values: CPm,x based on the 
assumption of no loss of kinetic head; CPt c based on the Borda-Carnot solution; 
Cro based on the prediction of equation 4.16. •  = long shocks, o = intermediate 
shocks, others = short shocks, (from Kececioglu et al, 1981).
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B .4 FIG U R E S O F  C H A P T E R  5

Stiff tube

Diaphragm

Stiff tube space 

cord (compliant

canal

(b)

FIGURE 5.1: Schematic sketch of theoretical model.

FIGURE 5 i : Shape of the wave speed against the outer cross-section area ratio.
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FIGURE 5 3a: Increase of the outer cross-sectional area.

FIGURE 53b : Outer cross-sectional area against the length.

FIGURE 5 3 c: Pressure waves propagation, 
lines: -------  case a 0 > 05 ; ------- case a„ < 05

C
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FIGURE 53d: Wave speed against the outer cross-sectional area. 
FIGURE 53: Non linear effect on the wave speed.

FIGURE 5.4: Total cross-sectional area increase.

C

FIGURE 5.6: Wave speed against the outer cross-sectional area.
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B.5 FIG U R E S O F  C H A P T E R  6

Rc

FIGURE 62 : Piston in simple harmonic motion with compliance and resistance.
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FIGURE 6 3 : Effects of the period impulse on inner tube radius: resonance 
(la=/l).
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FIGURE 6 A : Variation of the pressure-difference with respect to the inner tube 
radius.
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FIGURE 6.5: Variation of the inner tube radius with time.

FIGURE 6.6; Attenuation of the peaks with time.
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rigid wall lockage

FIGURE 6.7: Coaxial tubes model with blockage.

FIGURE 6.8: Characteristic lines.

FIGURE 6.9: Interior point.



V

FIGURE 6.10: Solid boundary point.

FIGURE 6.11: (x-t) diagram for a pressure pulse propagation. 
(Impulse: = 800Pa and PAI = 500 Pa )
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FIGURE 6.12: Pressure pulse propagation (different times). 
(Impulse: P ^  = 800 Pa and PÁl = 5 0 0 P a )

FIGURE 6.13: Pressure difference at blockage.
(Impulse: PAo = 800Pa and PAt = 5 0 0 P a )
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FIGURE 6.14: Inner tube radius variation with a pressure pulse reflection. 
(Impulse: PAo = 800 Pa and PM = 500 Pa )

UNDISTURBED CROSS-SECTION AREA RATIOS

FIGURE 6.15: Variation of the pressure difference at blockage for different 
undisturbed cross-section areas. (Impulse: PAa = 80 0 Pa and PAI = 500P a )
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FIGURE 6.16; Sketch for the reflection of an expansion wave.

FIGURE 6.17: Numerical results for an expansion wave reflection. 
(e is the pressure difference impulse)
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FIGURE 6.18: Expansion wave reflection for 10 characteristics. 
(e is the pressure difference impulse)

FIGURE 6.19: Pressure difference at blockage for an expansion wave reflection, 
(e is the pressure difference impulse)
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FIGURE 6.20: Reflection of a compression wave.
(e is the pressure difference impulse)
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B.6 FIGURES OF CHAPTER 7

Right-running shock-like wave

FIGURE 7.1: Propagation of an elastic jump in a two-chamber channel.

Right-running shock-like wave
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\ L
ZONE 2 T ZONE 1

FIGURE 72 : Incident elastic jump approaching a blockage in the upper chamber.
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FIGURE 7 3 : Reflected and transmitted elastic jumps.

FIGURE 74: Velocity in both chambers after the passage of an elastic jump.
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FIGURE 7.5: Reflection of an elastic jump from a blockage in the upper channel

FIGURE 7.5a: Variation of wave fronts with time and distance.
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FIGURE 7.5b: Elastic jump approaching the blockage.
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FIGURE 7.5c: After elastic jump reflects from blockage.

FIGURE 7.6: Comparison between the incident and reflected pressure-differences
for different propagation speeds ( a „ =  0.93).
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FIGURE 7.7: Effects o f  the undisturbed cross-sectional area ratio on the reflected 
p ressu re-d i fference.

FIGURE 7.8: Comparison between the numerical procedure and the small 
perturbation theories for different incident pressure-difference jumps.
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FIGURE 7 3 : Comparison between the numerical procedure and the small 
perturbation theory for different undisturbed cross-sectional area ratios.

Chamber A Chamber B

FIGURE 7.10: Pressure pulse propagating to the right.
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Shock-like wave

i----------------------
Part A

Part B

Development of an expansion wave 

FIGURE 7.11: Creation of an elastic jump and expansion wave.
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FIGURE 7.12: Intersection between an elastic jump and an expansion.

FIGURE 7.13: Determination of fluid properties in region 6.

FIGURE 7.14: Creation of an elastic jum p and expansion wave.
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FIGURE 7.15: Intersection between an expansion and an elastic jum p.
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B.7 FIGURES OF CHAPTER 8

Water tank

Rigid tube 

Diaphragm

Pressure sensors

FIGURE 8.1: Picture of the physical model of the spinal system.

Piston

Blockage



FIGURE 8.2: Diagram of the experimental rig (appendix D shows the same figure in 
format A3).
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Piston

FIGURE 8.3; Picture showing the piston, blockage and pressure sensor.

Pressure sensor

Water tank

Filling tube

Clamp

FIGURE 8.4; Picture of the top of the apparatus showing the water tank and the 
clamp of the diaphragm.
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FIGURE 8.5: Picture of the middle part of the apparatus showing the pressure

Figure 8.6: Diagram to determine the theoretical wave speed.
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B .8  FIG URES O F C H A P T E R  9

FIGURE 9.1a: Variation o f wave fronts with time and distance.
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FIGURE 9.1b: Pulse of pressure difference drop approaching the blockage.
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DISTANCE ALONG THE SPINE (m )

FIGURE 9.1c: Immediately after leading-edge elastic jump reflects from 
blockage.
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DISTANCE ALONG THE SPINE (M)

FIGURE 9.1d; Shortly after whole pressure pulse has reflected from blockage.

FIGURE 9.1: Propagation of a pulse of finite pressure difference drop along the 
two-chamber channel and reflection from a blockage in the upper channel.
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FIGURE 9 2 : Inner tube radius variations with time at the blockage.

FIGURE 93a: Variation of wave fronts with time and distance.
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FIGURE 93b : Pulse o f pressure difference rise approaching the blockage.
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FIGURE 93c: Immediately 
blockage.

after the first characteristic wave reflects from
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FIGURE 9-3d: Shortly after the whole pressure pulse has reflected: the 
overshooting effect.
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FIGURE 9 3 e: Some time after the whole pressure pulse has reflected: the 
overshooting effect.
FIGURE 9 3 : Propagation of a finite pulse of a pressure difference rise along the 
two-chamber channel and reflection in the upper (UAa = 1 m m /s).
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FIGURE 9.4a: Pulse of pressure difference rise approaching the blockage.
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FIGURE 9.4b; Immediately after the first characteristic wave reflects from
blockage.
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FIGURE 9.4c: Shortly after the whole pressure pulse has reflected: the 
overshooting effect.
FIGURE 9.4: Propagation of a finite pulse having a pressure difference rise 
along the two-chamber channel and reflection in the upper channel when the 
undisturbed velocity in the upper chamber is negative. (Pressure difference 
impulse: 1000 Pa and UAo -  -5  mm Is) .  i
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FIGURE 9 i a : Pulse of pressure difference rise approaching the blockage.

FIGURE 9.5b: Immediately after the first characteristic wave reflects from
blockage.
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DISTANCE ALONG THE SPINE (m)

FIGURE 9.5c: Shortly after the whole pressure pulse has reflected: the 
overshooting effect.
FIGURE 9.5: Propagation of a finite pulse having a small pressure difference 
rise along the two-chamber channel and reflection in the upper channel when the 
undisturbed velocity in the upper chamber is negative. (Pressure difference 
impulse: 100 Pa and U^  = -5  mm / s )

1

FIGURE 9.6: Effect of the undisturbed inner chamber velocity on the pressure 
difference after the whole pulse has reflected (region 14) for various undisturbed 
cross-sectional area ratios (Pressure impulse: 1000 Pa).
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Incident pressure pulse propagating to the right

blockage

B (blockage)

FIGURE 9.7: Diagram for an incident pressure pulse reaching a syrinx.

Reflected wave from syrinx Transmitted wave 

blockage

FIGURE 9.8: Diagram for the reflected and transmitted pressure waves from the 
beginning of the syrinx.

Reflected wave from syrinx Reflected wave from blockage 

blockage

FIGURE 9.9: Diagram after the transmitted wave has reflected from the
blockage.
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APPENDIX A

METHOD OF CHARACTERISTICS

INTRODUCTION

In this section, we will derive the characteristic lines and compatibility equations for the 

linear, fully non-linear and weakly non-linear cases. A standard way of obtaining the 

characteristic lines and the compatibility equations is described in many books (Zucrow 

& Hoffman, 1977, for instance). We follow the technique step by step.

Let us recall the governing equations of our model (equations 616, 6.17 and 6.20 in 

section 6.3.2):

+ D U a
dAP
d x

(6.16)
d x

(6.17)

dUA dU„
dt dt

(6.20)

Note: Relation between the fluid velocity in parts A and B.

If we add equations (53) and (5.4) we can write:

d ( a u ‘ + q - a )Uu) 0
d x

We integrate this equation with respect to x:
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Where Eft) is a function of integration depending on the time only. We will show later 

that Eft) has to be zero and we obtain the following relation:

U„ = - ^ - u A 
B l - a  A

A .l LINEAR CASE

If we linearize the above equations (see section 6.3.3.1), we obtain:

dU A dU„ , 1 W . 0  

d t d t p  d x

n dAP d U .D ------ + a„    = 0
d t ° d x

-D£ £ Hl- a^ . o

A.1.1 Characteristic lines

We take a linear combination of our governing equations (6.22,6.23,6.24): 

£7,(622) + £7,(623) + CTj(624) = 0 

We develop this equation and rearrange it to obtain:

ó Ua , àU A
dt £7, d x  '

-  £7, 0U b , < ?il\-a0)dU„  
d t  -£7. d x

D fc  2 — )
dAPdAP

dt p D fa 1 -  £73)  d x
=  0

If we set X = —  (i.e. the slope of a characteristic line), then we can write: 
dt

l = «„q~2 ^ 0 - « . , ) ^  ^ <7,
£7, -£7, p D (c r 2 - £ 7 j )

(A.l)

(6.22)

(6.23)

(6.24)

(A .2) 

(A3)
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We can then write dUA = àUA
ât â x

. Doing the same for dU„ and dAP , equation

(A.2) becomes:

a xdUA -  crxdUB + D(cr2 -  a,)dAP  = 0 (A.4)

We can write the set of equations (A3) in their matrix form:

'A - a .  0 O'
A 0  l - a „ = 0

- 1 pD A  -p D A 0

For equation (A3) to have a solution for a l ,a 2,a 3 other than the trivial one

cr, = cr2 = <T} = 0 ,  the determinant of the coefficients of cr, must be zero. Developing

this determinant, and setting it equal to zero, we obtain:

a2  a 0( l - a 0) 
p D

Note: we can show here that the type of partial differential equation is hyperbolic since 

the expression of A2 is strictly positive.

Comparing this equation of A to equation (6.21), we have:

<A-6- A-7>

Equations (A.6 , A.7) are the characteristic lines. The upper sign stands for a wave 

propagating in the positive direction of x, whereas the lower sign corresponds to a wave 

propagating in the negative direction of x.
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A.1.2 Compatibility equations

Equation (A.4) corresponds to the compatibility equations. In order to use it we need to 

find the values of the a  , along the characteristic lines (A.6 , A.7).

From the equation (A.5) (matrix form), we can easily obtain the following relations:

°2 (A .8 )

<*S
-A

O’! (A .9)

We insert equations (A.8 , A.9) into the remaining equation of (A S )  to get:

r , i A 2------ ^ ----------1) = 0'l a 0( l - a 0 ) J

If we take into account the expression of A 2 along the characteristic lines, the expression 

between parentheses is zero, whatever the value of crl . This implies that <r, is arbitrary. 

Expression o f dU B for equation (A.4).

We derive equation (A.l) applied to the linear case and we obtain:

dU„ = ^ ¡ - d U A (A.10)
1

We insert equations (A.8 , A.9, A.10) into equation (A.4), and we rearrange to find that:

cr{dU A +^dAp) =0

We showed that <r, is arbitrary, so that the expression between parentheses is zero. We 

also consider the expressions of A t from the characteristic lines (equations A.6 , A.7) to 

finally obtain:
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(A .ll ,  A.12)dU . ± f ^-jrfA P = 0
I p c J

If we insert equation (A.10) into equations (A .ll) and (A.12), we can get similar 

compatibility equations linking U„ and AP :

A 2  FULLY NON-LINEAR CASE

We follow exactly the same general approach as in the linear case in determining the 

characteristic and compatibility equations.

A.2.1 Characteristic lines

We take a linear combination of our governing equations (6.16,6.17,6.20):

(A.13, A.14)

£7,(620) + <t2(616) + cr3(617) = 0

We develop this equation and we rearrange to obtain:

, UA+ 3 UA _ a S lJB |
<7. d x  1 d t

-<ri UB + cr3( l - a )  dU B |
- a .  d x

Z -+ D U Aa 2 -D U B* 3 (A.15)
P

D(ct2 - ct3) d x

If we set X = —  then we can write: 
dt

-< 7 ,t/ „  + (1 -  «  )<7j p
^ -  + DUAa 2 - D U Bcri

D(CT2 -  <73)
(A.16)

o’, -<7,
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V

We can then write dUA =
dU . . dUA 
d t dx

. Doing the same for dU„ and dA P , so

equation (A.15) becomes:

o-.rfi/, -  <ridUB + D(cr2 -  <r3)dAP = 0 

so that we can write equation (A.16) in its matrix form:

(A.17)

A -U a - a  0
r  1 <J\ o'

X - U B 0  1 - a 0-2 = 0

1

. p
D {A -U a) - d {a - u b) 0

(A.18)

The above determinant of the (3 x 3 )  matrix has to be zero. Developing this determinant, 

and setting it equal to zero, we obtain the following quadratic equation (substituting the 

expressions of UB and C2 defined before):

A2 - 217, 1 ~ 2  -  A +  U\  1 ~ 3a  +T3,g — C 2 = 0
1 -or ( l - a ) J

We solve this quadratic equation to find:

^ | ( 1  - 2 ayUA ± C j ( X - a ? - p D U l )

We have seen that (l -  a ) is always positive. This implies that the expression within the 

absolute value is always positive. We can therefore write the characteristic lines as:

X ±= ^ - ( d  -  2a)U A ± C ^ (1 - a ) 2 -  p D U \ ) (A.19, A.20)

Equations (A.19, A.20) are the characteristic lines. The upper sign stands for a 

discontinuity propagating in the positive direction of x, whereas the lower sign
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corresponds to a discontinuity propagating in the negative direction of x. Note that these 

lines are no longer straight lines unlike in the linear case.

A 2 2  Compatibility equations

Equation (A.17) corresponds to the compatibility equations. In order to use it we need to 

find the values of the cr, along the characteristic lines (A.19, A.20).

From the equation (A .18) (matrix form), we can easily obtain:

<Xj = ——  <x, (A .22)
1 - a

We insert equations (A.21, A.22) into the remaining equation of (A.18) to get:

The expression in parentheses is equivalent to zero (this follows from setting the 

determinant of the set of equations A.18 to zero). This implies that <t, is arbitrary.

We differentiate equation (A.l) to obtain:

We insert equations (A.21, A.22, A.23) into equation (A.17), and we rearrange to get:

(A.21)
a

a { ~  ~~pD ~  + ft ~ g ~ t/J 2 + ~ ¿O2) = 0

(A.23)
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We showed that cr , is arbitrary, so that the expression between parenthesis is zero. We 

also use the expression for X from the characteristic lines (equations A .19, A.20) and the 

wave speed equation (5.18) to finally obtain:

Equations (A.24, A.25) are the compatibility equations in the non-linear case. They only 

hold along the characteristic lines defined above. The upper and lower sign respectively 

denotes the characteristic lines in the positive (C +) and negative (C_) direction.

Here we develop a weakly non-linear theory in order to be able to discuss the possibility 

of the creation of an elastic jump (or a shock-like wave). Indeed, since the characteristic 

lines are all of the same slope in the linear case these lines can never join together to form 

a discontinuity in the fluid properties. In the fully non-linear case, it is possible to see the 

lines coming together, but one has to obtain numerical results to do so. That is why we 

develop a weakly non-linear theory. We will be able to discuss qualitatively the creation 

of an elastic jump or the formation of an expansion wave. Indeed we will compare with 

the discussion already made in the previous chapter, in the case where the total cross- 

sectional area AT is constant (see section 5.5.2).

By weakly non-linear we mean that we neglect terms which are the product of two small 

quantities like: UA x AP , U\ , U„ x A P ,...

A 3  WEAKLY NON-LINEAR CASE
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A3.1 Characteristic lines

Let us recall the quadratic equation in A that we found in section A.2.1 by expanding the 

determinant of the matrix (A.18):

Neglecting the third term on the left hand side of this equation and solving the equation 

for A we can obtain (recalling equation 5.23):

Note that if we set UA = AP = 0 in these characteristic lines, we go back to the linear 

case.

Across the characteristic lines, we have seen in the linear case that we have the following 

relation (equations A.11, A.12):

Note that we have considered that the undisturbed conditions were: U ^  = APa = 0 .

We can now insert this relation in the weakly non-linear characteristic lines to write that:

(A.26.A.27)

Expanding the square roots yields:
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where the upper and lower signs respectively stand for a right and left running 

characteristics.

The second term on the left hand side of the above equation is purely due to cross- 

sectional area change. The third term is due to induced fluid velocity.

Using equation 6.21, we can write the distensibility D as:

Using the above expression for the distensibility, the characteristic lines become:

A3 2  Compatibility equations

Applying the same reasoning as in section A.2.2, and recalling the simplifications for the 

weakly non-linear theory (section A3.1), the compatibility equations for the weakly non­

linear theory take the following form:

= ±C„ ± —- — (l -  2a0)&P
* ° 2pC a V

(A.28, A .29)

(A.30, A 31)
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APPENDIX B

ABOUT THE ELASTIC JUMP

B .l ESTIMATE OF THE REFLECTED PRESSURE DIFFERENCE 

(SECTION 7.4.22)

Let us consider the form of the pressure differences ratio (reflected/incident):

AP,
= 2 + As (7.28)

where e = DAP, (7.24), and A is to be determined.

With equations (7.23), (7.25) and (7.28), we can write the following relations: 

^  = 1 -  —  e + -ij- e1 + Q(e3)
a , a  a

= 1 -  —  e + [■4 -  -  — ) e2 + 0 (  e3 ) 
a R a„ \ a a a j

a ,  1 (  2 A'] 2 3.
a R <*o Va„ a j

1z £Ll = 1 + _ ! _  + — i — 5- + 0 ( s 3 )
1 - a ,  1 - a „  (1  - a 0Y

i ---^2- = l  + --- -̂--£ + ( ----- —--- -  + -- - ---l g2 + 0 ( f 3) I
\ - a R 1 - a „  l ( l - a „ ) 2 1 - a J

1 - a ,  , 1  f  2 A  ̂ 2
1 - a ,  l - a „  1(1 - a „ ) 2 1 - a J
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“h— SLl  = l  -  A e  + A V  + 0 (e 3)
a .  - a , .

In these relations we have assumed that |A P , |« ^ . ,  |Af*; | «   ̂ , and that
D D

|AP,| «  . These assumptions are validated in section 7.63.

First order approximations

In the above relations, we only keep the terms in e . Moreover, we do not keep the term 

in A in equation (7.28). We also make the approximation that the shock-like wave 

speeds before and after the reflection are the same and equal to the wave speed in the 

undisturbed conditions: Vs, = = C0.

In these conditions, using the appropriate approximations in equation (7.26) and recalling 

equations (7.10) and (7.12) for PA2 and UM, we can deduce the pressure in the outer tube 

after the reflection of the elastic jump:

P a r  *
2 PCI

We do the same with equations (7.27), (7.11) and (7.13) to obtain the pressure in the 

inner tube after the reflection of the elastic jump:

P»r * -
2  pCl
1-oc.i

Thus, we can readily write:

A** = Par ~ Par *
2 pCpg

a 0( l - a „ )

If we recall the wave speed definition, we notice that the above equation is equivalent to:
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AP„ = 2AP,

which is equivalent to equation 7.28.

Second order approximations

We now keep the terms of order e 2, and we consider the whole of equation (7.28). 

From equation (7.20), we can write:

Proceeding exactly in the same way for Pbr by the mean of equations (7.11), (7.13), 

(7.27) and (7.29), we find that:

(B.l)

Using equations (7.12) and (7.10), we can deduce that:

We insert the above relations for VSK and —t-P^  in equation (7.26), and we use the

appropriate approximations to obtain:

We can then deduce the relation for the pressure difference after reflection:
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Recalling equations (7.24), (7.28) and considering the propagation speed of the elastic 

jump as the wave speed, we can find A :

And thus, with equation (7.28), we can evaluate the ratio of pressure difference of the 

reflected wave over the incident one:

B 2  OBTAINTION OF THE FLUID PROPERTIES IN REGION 4 

FOR THE COMBINED METHOD (section 1.12)

Let us obtain the fluid properties for the case of region (4), as depicted in figure 7.13 (see 

section 7.7.2). We can see that a left-running elastic jump (reflected jump) separates 

regions (3) and (4), whereas a C* separates (2) from (4). At this stage of the calculations, 

all the properties in regions (2) and (3) are known.

Applying equations (7.1 to 7.4) to a left-running elastic jump (line cd in figure 7.13), 

yields:

where the subscript numbers denote the region and VS1 is the reflected shock-like wave 

speed from c to d  in figure 7.13.

(B.2)

(B 3 )

(B.4)

(B 5)
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\

P .4
=  £ 3

P . > - P
« 4 « 4

P _  1 - « 3  p  .
-W i4 P .

I “ « 4 \

1 - a ,

(B.6)

(B.7)

The tube-law, in this case, can be written as: 

a 4 = a O + D(PAA — Pg 4)

(B.8)
So far, we have 5 equations and 6  unknowns, namely PA4, PB4, UA4, U Bi,Vs l , a t .

However, using a characteristic line (C " ), we can write the compatibility equation which 

is valid only on this line (see section 6.3):

UA4+Q_*PA= U A2 +q _ap2 = k . (B.9)

where p II 1 J -p D U l  + ( l - a ) 2J (B .10)

and K_ is constant along the characteristic line.

Note that Q_ is first determined in region (2) in a predictor step and is then evaluated in 

an average manner between region (2) and (4) for the corrector step.

We now have a set of 6  equations with 6  unknowns, and thus we can find all the fluid 

properties in region (4).

We isolate VS2 from equations B.4 and B.5 in order to obtain the inner tube fluid velocity
i

in region (4):

a .
l - a t

a ,
1 — « 4

- u A l - « 3
l - « 4

£/» (B .ll)
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From equation B.4, we can also express the shock-like wave speed V* in terms of UM 

to obtain:

Vs2=-
a

a , - a .—  U* 4 “
a .

a , - a .
-U A (B.12)

We insert equation B.12 in equation B .6  in order to obtain the outer tube fluid pressure in 

region (4):

Pa4 = ^ - P M ~ U» )a a , - a .
(B.13)

We insert equations B .ll and B.12 in equation B.7 to obtain the inner tube fluid pressure 

in region (4):

p*  = r % - p ~ + p n _ „ \ ~ a >u » + <«3- « « x /« )2 (B.i4)
1  ( 1  # 4 )  ( ^ 3  ^ 4 /

If we now express a A and UM in terms of pressure difference AP4 in the expression 

between brackets (using equations B .8  and B.9 respectively), we can write for equations 

B.13 and B.14:

Pa4 = %-PM -  P — ~ ~ (G -A ^ 3  - K . +  UMy

P„ 4 = 7 ^ ^ 3  + P - -----^ -------- -(-O/C.AP/ + (DK_ -  ar„(2- -  D U B3)APa
I -  « 4  ( l - « 4> (a , ~ a 4 ) '

+a„K_ -  a 3UA3 + (ar3 -  a oyUB3)2

In order to obtain an expression only in terms of AP4, we expand the ratios where a 4 

appears in the denominator:

SLl = £ l i i_  j2-ap + (—  AP4 )2 + 0(&Pj )1
« 4  «o V a„ a„ )

a

1 - a

a , - a
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D1

l - a t 1-aA l-a„ ap4 + ( 1-a.-AP4)2+0(AP43)

We now form the expression AP4 by subtracting / 44 and PB4: PA4 -  PB4 = AP4.

In this equation, we replace the expressions of Paa and PB4 developed above using the 

expansions for the ratios in a 4. We multiply both sides by (a 3 -  a 4) and we obtain, after 

some simple manipulations, an equation of the fifth degree in AP4:

- 2 p A 2^ ^ -
(1  - a 0Y

ap; + \ - p
1 - a .

D(AC

A +4 ABD
1 -a .

AP* +

( ■ * + < r ^ ( M C t S ' - ^ ) ) H

AP n p  A n p  AP I g 3 P ,
a„ a a (1 -a„) l-a„

-lW*2Kt2 ^ )]U  +
« ’ ■»AP I " «A3AP3-P a-,APx - ^ - ^ - P B3AP, + a 3(K . -  U A3) 2 +  — ^  ^ 2

1 - a » ( l - a „ ) 2
C A  = 0

(B.15)

where A = -Q_D

B = D K _ - a oQ _ -D U 03 

and C = a 0K .+ ( a 3- a 0)UB3- U A3

Equation B.15 has 5 roots. After keeping the most suitable one (i.e. physically 

meaningful), we can find the rest of the fluid properties, following the procedure given 

immediately below.
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From equation B .8 we can write that the cross-sectional areas ratio is:

«< = a a + d &p4.

From equation B.9 we can obtain the fluid velocity in the outer tube:

UA4 = -Q_AP< + K . .

We can then find the velocity in the inner tube and the propagation speed of the elastic 

jump respectively through equations B .ll  and B.12:

Finally we obtain the pressure in the inner and outer tube, using equations B.13 and B.14:

( « 4 ^ 4  a 3 ^ 4 3 + ( a 3

Note that only a simple verification is needed to check if the difference of the two above

equations is equal to AP4, the root of equation B.1S.

These calculations are made by a subroutine named Mix.
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C- GLOSSARY

Definitions were taken from:
(1) International dictionary o f medicine and biology (three volumes) 1986. By Wiley 
Medical, S. I. Landau.
(2) The Oxford Companion to Medicine (two volumes)1986. By Walton, Beeson and 
Bodley Scott, Oxford University press, New York.
(3) England M. A. and Wakely, J. 1991A Color Atlas o f the Brain & Spinal Cord. 
Wolfe Publishing Ltd, London.

Acro-osteolysis: The loss of terminal digits, with bone resorption.
Aetiology: The cause or causes of a particular disease.
Afferent: Towards (sensory if towards the central nervous system).
Albumen: is a soluble protein of high molecular weight which is the most abundant 
protein constituent of blood serum in vertebrates.
Anastomose: To create a communication between two separate structures. 
Anencephalus: A fetus or newborn infant with anencephaly.
Anencephaly: is a congenital abnormality in which the osseous vault of the cranium 
is defective and the underlying cerebral hemispheres are either undeveloped or absent 
altogether.
Anterior: Pertaining to the foreparts of a body or part. In human anatomy, it 
corresponds roughly to ‘ventral’.
Anteroposterior: Pertaining to both front and back, usually when referring to a 
direction or distance from front to back of the body or part.
Arachnoid mater: Middle layer of meninges.
Arachnoid villi: Main site of CSF reabsorption to the venous blood, (see also section
2.4.1)
Arachnoiditis: Inflammation of the arachnoid .
Arnold-Chiari Malformation: is a developmental anomaly which results in 
congenital downwards displacement of the cerebellum and medulla oblongata through 
the foramen magnum . There is usually obstruction to the circulation of cerebrospinal 
fluid with consequent hydrocephalus, and other congenital defects may be present. 
Arthropathy: Any pathological condition affecting one or more joints.
Atlas: In human, a unique vertebra that lacks a body and spinous process.
Basilar invagination: See platybasia.
Bifid(a): split into two parts.
Bilateral: Having, affecting or pertaining the two sides of an organ or the body.
Blue dextran: is a polysaccharide of high molecular weight which takes several 
weeks to undergo metabolic degradation. It has the capacity to expand blood volume. 
Brainstem: Medulla, pons and midbrain. Some authors include the diencephalon, (see 
also section 23)
Bulbar: Pertaining to a bulb or denoting the medulla oblongata.
Calamus scriptorius: The tapering inferior extremity of the fourth ventricle. 
Capillary: The smallest subdivision of the vessels forming the blood circulatory 
system (a hair or minute tube).
Caudal: Toward the tail or posterior end (in man, inferior).
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Central canal (of spinal cord): A tenuous canal extending throughout the length of 
the spinal cord and continuing above into the medulla oblongata, where it enlarges to 
merge with the fourth ventricle. It is located centrally within the grey matter, is lined 
by ependyma, and contains a minute amount of CSF. (see also section 2.2.2) 
Cerebellar hemisphere: One of two lateral component of the cerebellum, (see also 
section 2.3)
Cerebellum: “little brain”, a dorsal outgrowth from the embryonic hindbrain, (see 
also section 23)
Cerebral cortex: The grey matter which forms the outmost layer of the two cerebral 
hemispheres .
Cerebral aqueduct (of Sylvius): Passage through midbrain, part of ventricular 
system, (see also section 2.4.2)
Cerebral hemisphere: One half of cerebrum, (see also section 2 3 )
Cerebrospinal fluid (CSF): A clear, colorless fluid that circulates within the four 
ventricles of the brain and the subarachnoid spaces surrounding the brain and the cord. 
An ultrafiltrate of the blood secreted by the choroid plexus in the lateral, third and 
fourth ventricles, it is largely resorbed into the venous system via the arachnoid villi, 
(see also section 23)
Cerebrum: Largest part of the brain, consists of two hemispheres, (see also section 
23)
Cervical: refering to the neck region.
Charcot’s.joint: Neuropathic arthropathy.
Chiasmatic (cistern): is an anatomical term denoting an intersection or decussation 
(crossing in the form of the letter x).
Choroidal: pertaining to the choroid .
Choroid plexus: Vascular structure secreting CSF into ventricles, (see also section
2.4.1)
Ciliary: Pertaining to or resembling the eyelashes or any cilia or hairlike processes. 
Cistema: expanded portion of subarachnoid space 
Cisterna magna (cerebellomedularis):
Cisterna venae magnae cerebri:
Cisternography: the demonstration of the anatomical spaces occupied by the CSF 
and of the circulation of kinetics of CSF by means of intrathecally administred 
radioactive tracers or contrast agents.
Coccygeal: Relating to the os coceygis.
Colloid (osmotic): A substance which disperses into particles much larger than atoms 
or molecules.
Conus medullaris: The tapering caudal extremity of the spinal cord proper.
Coronal: Pertaining to the crown of the head or any corona ( a partially or completely 
encircling structure). Directed or located in the side-to-side plane of the coronal suture 
or in a vertical plane parallel to it.
Corpus callosum: The great longitudinal arched commissure which connects the 
cortices of the cerebral hemispheres .
Cortex: Superficial layer of grey matter covering the cerebrum, midbrain, and 
cerebellum.
Cuff: A wide encircling band containing a balloon which can be inflated to control the 
flow of a fluid passing through it by constricting or sealing the conveying vessel.
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Dandy W alker cyst: injection of air into the cerebral ventricles or into the spinal 
subarachnoid space for localising tumours.
Denticulate: Having small, toothlike projections.
Diencephalon: The between-brain.
Diploplia: The seeing of a single object as double.
Dorsal: Pertaining to the back of the body or to the dorsum of any part. In human 
anatomy, it is commonly equivalent to ‘posterior’.
Dorsum: The back. Any locus, surface or part corresponding in position to the back; 
the posterior.
Dura m ater: Outermost layer of meninges, (see also section 2.2.2)
Dysplasia (osseous): is disordered development or growth.
Efferent: Away from (motor if away from the central nervous system).
Embry ogenesis:
Endothelium: the layer of cells lining the interior of the blood vascular system, the 
lymphatic system, and the serous membranes.
Ependyma: The membrane lining the ventricles of the brain and the central canal of 
the spinal cord.
Epilepsy: is a periodic disorder characterised by outbursts of excessive activity in part 
of the brain.
Epithelial: Of or relating to epithelium.
Epithelium: is the general name given to the firmly adherent sheet of cells of 
epidermal origin which covers the body surface, both external and internal, 
comprising the skin and the mucous membrane lining tubes and cavities.
Erect position: Upright position.
Eustachian (tube): An osseocartilaginous tube through which air passes.
Falx cerebelli: Fold of dura mater between cerebellar hemispheres.
Falx cerebri: Fold of dura mater between cerebral hemispheres, (see also section 23) 
Fasciculation: Spontaneous twitching of small groups of muscle fibres (each group 
representing a fasciculus, or bundle, of muscle fibres).
Filum terminale: The slender, threadlike prolongation of the conus medullaris of the 
spinal cord.
Flocculonodular: Denoting the flocculonodular lobe of the cerebellum .
Foramen: An anatomical feature consisting of a passage or opening.
Foramen of Magendie: median aperture of fourth ventricle, (see also section 2.4.2) 
Foramen magnum: The largest cranial foramen, the middle opening of the occipital 
bones through which emerges the medulla oblongata extending caudally into the 
vertebral canal, (see also section 2.4.2)
Forebrain: Cerebrum and diencephalon of adult.
Fossa: An anatomical term for a depression or hollow in a bone or in other tissues. 
Fossaecerebri lateralis: A slight depression that appears at the begining of the fourth 
fetal month in the lateral surface of the cerebrum anterior and superior to the temporal 
lobe.
Froin’s syndrome: The changes in the spinal fluid which result from a complete 
block in the spinal subarachnoid space. The CSFobtained by lumbar puncture below 
the block is xanthochromic (yellow in colour), has a very high protein content, and 
often coagulates on standing.
Frontal: Pertaining to the front of the body (to the frontal bone or to the forehead). 
Funiculus (plural: funiculi): A large aggregation of white mater in the spinal cord.
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Gait:The way in which an individual walks.
Giddiness: is synonymous with dizziness.
Glia: is a synonymous with neuroglia.
Glosis: is a scar inside the spinal cord.
Glottis: The opening of the larynx, comprising the vocal cords and the space between 
them.
Grey matter: Nervous tissue, mainly nerve cell bodies, (see also section 2.2.2)
Gyrus (Plural: gyri): One of the convoluted ridges of the cerebral cortex.
Haustrae: Any one of the pouches in the wall of the colon.
Hemiatrophy: is unilateral atrophy (of the whole body or of a part).
Hemorrhage: The escape of blood from blood vessels. Such bleeding continues until 
external pressure exceeds that within the blood vessel.
Hernia: Protrusion of any organ or part of an organ, into or through the wall of the 
cavity which contains it.
Hindbrain: Pons, medulla oblongata and cerebelum of adult.
Hydrocephalus: It is the condition in which there is abnormal accumulation of 
cerebrospinal fluid within the skull.
Hyperhidrosis: Characterized by increased sweating.
Idiopathic: Having no known cause.
Iniencephalus: An embryo, fetus or newborn infant with iniencephaly.
Iniencephaly: A developmental defect in which the occipital part of the cranium and 
upper spinal regions fail to close about the neural tube, thus permitting exposure of 
brain and cord tissue.
Interpeduncular fossa: Situated between paired peduncles, like the fossa separating 
the cerebral peduncles from the nucleus interpeduncularis.
Interventricular foramen (of Monro): Opening from the lateral to 3rd ventricle, (see 
also section 2.4.2)
Intracerebellar: Within the cerebellum.
Jerk: A momentary, involuntary movement, (tendon jerk= tendon reflex).
Jugular (veins): are the veins responsible for drainage of the head and neck. 
Korotkoff (sound):
Lacunae: Irregularly-shaped venous “lakes” or channels draining into the superior 
sagital sinus.
Lateral: Of, at or toward the side (right or left).
Ligature: A sututure that is tied around a tissue or vessel in order to obliterate the 
lumen.
Lipoma: A benign growth of mature adipose tissue cells showing no evidence of 
cellular atypia.
Lobe: A rounded projection or subdivision of an organ or structure demarcated by 
fissures, sulci, constrictions, or connective tissue septa.
Lumbar: refering to the lower back region.
Lumen (plural: lumina): The cavity within a tubular structure, either natural or 
artificial.
Median vermis: The central portion of the cerebellum.
Medulla: The innermost or middle part of an organ or structure. Also called marrow. 
Medulla oblongata: The lowermost part of the brain, connecting the spinal cord with 
the pons.
Menigeal: Related to meninges.
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Meninges: The three membranes enveloping the brain and spinal cord known as the 
pia mater, the arachnoid mater and the dura mater, (see also section 2 .2 .2 ) 
Meningitis: is inflammation of the meninges.
Mesothelium: The epithelium of the serous membranes, i.e. pleura, peritoneum, 
pericardium.
M idbrain: the middle division of the embryonic brain, also part of the adult 
brainstem.
Myelin: An insulating, multilaminar sheath around axons.
Myelinated: Having a myelin sheath.
Myeliography: is radiographic visualisation of the spinal cord after injection of a 
contrast medium into the subarachnoid space.
Neuraxis: The straight longitudinal axis of the embryonic or primitive neural tube, 
bent in later evolution and development.
Neurites: A long process of a neuron.
Neurofibromatosis: is a genetically determined disorder, inherited as an autosomal 
dominant characteristic, of which the major manifestations are multiple tumours 
attached to peripheral nerves (neurofibromas) and pigmented skin patches.
Neuroglia: is the supportive tissue of the central nervous system, analogous to 
connective tissue elsewhere.
Neuron: A nerve cell, comprising a cell body with several short processes (dendrites) 
and one long one (the axon) which together its sheaths forms a nerve fibre. They are 
responsible for receiving and transmitting nervous impulses.
Nuchal: Pertaining to nucha (back of the neck).
Nuclei (plural: nucleus): The cell nucleus is a membrane-bounded body found within 
the cytoplasma of most biological cells. It contains the chromosomes.
Occipital:Of or relating to the occiput.
Occiput: the posterior projection of the head (or skull).
Oscillopsia: A condition in which the visual image is seen to move rapidly from side 
to side or vertically.
Osmosis: is the flow of water (or other solvent) through e semipermeable membrane, 
that is one which will permit passage of the solvent but not of the substance dissolved. 
Osmotic: Of or relating to osmosis.
Osteogenesis imperfecta: Any of the several heritable disorders of connective tissue 
that are marked by bone fragility.
Paraesthesiae: Any sensation, such as pins and needles, burning, prickling, etc., 
which occurs spontaneously without external cause in certain diseases of the central or 
peripheral nervous system.
Paraplegia: Paralysis of the lower half of the body.
Parenchyma: is the distinctive tissue characteristic of an organ and responsible for its 
functioning.
Parietal: Pertaining to the wall or of any cavity or organ.
Pathogenesis: The mode of production or development of a disease; the developing 
pathological process.
Peduncle: A stalk or stem; any stem-like structure serving as attachment, for example 
of a tumour.
Peri-natal: Pertaining to the period extending from the 28th week of gestation to the 
28th day afterbirth.
Perineuronal: Surrounding a neuron.
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Perivascular space: The space around a blood or lymph vessel, (see also section
2.4.2)
Pia m ater: Innermost layer of meninges, (see also section 2.2.2)
Platybasia: A development defect of the skull in which the floor of the posterior fossa 
is elevated in the region around the foramen magnum so that the entire cranial base 
appears somewhat flatter than usual. Also called basilar invagination.
Plexoctomy: An operation to remove the plexus.
Plexus: Any network of vessels or nerves.
Pons: That part of the brainstem which connects the mid-brain above with the 
medulla oblongata below and lies in front of the cerebellum.
Pontine cistem a: Pertaining to the pons cistema.
Posterior: Pertaining to the hind parts of a body or to the back surface of a body o r 
part. In human anatomy, it refers to ‘dorsal’.
Posterior fossa: Pertaining to the hind part (dorsal) of the fossa.
Pott’s disease: tuberculosis of spine.
Prophylaxis: The prevention of disease.
Prosthetic: Substituting for or replacing a missing part of the body.
Pyogenic: Able to cause formation of purulent lesions in tissue.
Recess: A small hollow or space.
Ricket; A disease, primarily of infants or children, that is brought on by a deficiency 
of vitamines D. It results in a softening of the bones with deformities, fractures and 
tenderness.
Rostral: Towards the nose, or the most anterior of the neuraxis.
Sacral: Refering to the pelvic region.
Sagittal: Of or pertaining to the sagittal or midline suture of the skull and any plane 
parallel to this suture.
Scintigram: A representation on paper or film of the distribution in a patient or in an 
organ of a radioactive substance.
Sclerosteosis: It is a condition associated with digital abnormalities and, frequently, 
with sensorineural deafness and facial paralysis.
Scoliosis: a spinal deformity due to curvature in a lateral direction.
Septum (plural: septa): A partition or a dividing wall.
Serous: Of, pertaining to, or containing serum.
Serum: It’s the clear slightly yellow fluid which separates from blood when it clots. 
Sheath: A tubular structure enveloping a muscle, tendon, nerve, blood vessel, o r other 
organ.
Sinus: In the anatomical sense, it’s a term which is applied to a variety of channels or 
cavities; in the pathological sense, it denotes a blind channel opening on to the surface 
of the body.
Spasticity: That type of hypertonia with hyperreflexia which results from a lesion of 
the corticospinal tract.
Sphygomanomater: is the measurement of arterial blood pressure.
Spinospinal: Shaped like a spine.
Splenium: a thickened, bandlike structure.
Sulcus (plural sulci): a groove or furrow.
Subarachnoid space: Space between arachnoid and pia mater, (see also section 2.4.2) 
Subdural space: Space between the dura and arachnoid mater, (see also section 2.4.2) 
Supratentorial: Situated or occurring superior to the tentorium cerebelli.
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Sympathetic: Indicating, expressing, or characterized by sympathy.
Sympathy: A state of mutual relation or coordination existing between two body 
parts or structures such that a change in one is likely to produce a change in the other. 
Syncope: is a sudden temporary loss o f consciousness due to transient cerebral 
anoxia; it is synonymous with faint.
Syringobulbia: A cogenital cavitation in the medulla oblongata almost invariably the 
result of an upward extension of syringomyelia.
Systole: The contraction phase of the atria or ventricles in the cardiac cycle.
Systolic: Relating to or occuring during systole.
Tela choroidea: A duplicated fold of pia mater that forms in the choroid .
Tem poral: Of or relating to the region of the temple.
Tentorial: Relating or pertaining to a tentorium, especially the tentorium cerebelli. 
Tentorium cerebelli: fold of dura mater overlying cerebellum.
Theca: An enclosing sheath, particularly the dura mater of the spinal cord.
Thoracic: Refering to the chest region.
Thrombosis: The formation of clot or thrombus ( a semisolid aggregate of blood cell) 
within a blood vessel.
Tinnitus: Any form of adventitious noise arising within the ears or head and audible 
to the subject.
Tomography: is a radiographic technique which, by altering the geometrical 
relationship between the X-ray tube and the film during exposure, allows the 
visualisation of structures in a single plane (or ‘cut’) and blurs images in other planes. 
Trabelucation: The process of developing trabeculae (small beam or rib) in a organ 
or structure.
Transverse: to turn or direct across.
Trophic: Having to do with nutrition.
Ulceration: is the formation of an ulcer (a breach or discontinuity in skin or mucous 
membrane, usually one that is persistent), or the ulcer itself.
Unilateral: On or affecting one side only.
Valsalva manoeuvre (rebound): Forced expiration against a closed glottis, a simple 
bedside test of circulatory function.
Ventricle: Cerebrospinal fluid-filled cavities: lateral, third, fourth and fifth (terminal) 
ventricles, (see also section 2.4.2)
Ventriculogram: A technique to show the ventricles of the brain or the heart with the 
use of contrast medium (air in the brain, radiopaque in the heart).
Vermis: Unpaired midline portion of cerebellum between hemispheres .
Vertex: An apex, especially a highest point in a vertical axis of a body or structure. 
Villi(us): A projection from a membrane, usually with a rich blood supply.
White m atter: Nervous tissue made up mainly of nerve fibres, (see also section
2.2.2).
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