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SUMMARY

Let « be a volume element on F n . Diffn(R n) is the

group of «-preserving diffeomorphisms of F n . Diffy(Fn) is the

subgroup of all elements whose set of non-fixed points has finite 

«-volume. Difff(Fn) is the subgroup of all elements whose support 

has finite «-volume. Diff“( F n) is the subgroup of all elements with 

compact suport. Diff“0( F n) is the subgroup of all elements compactly 

«-isotopic to the identity.

We prove, in case volfiF n < » and for n > , 3 
*«/„ n,

that a

subgroup of Diffn( F n) , N , is normal if and only if

Diffn ( F n) c N c  Diffn( F n) . If vol F n = <» and for n » 3 , there
CO C $7

is no normal subgroup neither between Diffy(Fn) and Diffn( F n) 

nor between Diff^(Fn) and Diff^(Fn) .

■ E U



INTRODUCTION

The final goal of this dissertation is the study of the normal 

subgroups of the group of all smooth volume presewing diffeomorphisms of 

]R n , Diffn( F n) , for n > 3  and for any volume element fl. .

We were looking for similar results to the one on the group of 

smooth diffeomorphisms of F n , Diff(Fn) , got by Ling in [10] and 

McDuff in [14] saying that any non-trivial normal subgroup N of 

Diff(F n) satisfies

Diffc0( F n) c N c Diffc( F n)

where Diffc( F n) is the subgroup of all diffeomorphisms with compact 

support and DiffCQ( F n) is the subgroup of all diffeomorphisms c o m p -*-tly 

isotopic to the identity.

Since the groups of diffeomorphisms of a manifold preserving 

equivalent volume elements are isomorphic we only have to study the 

group Diffn( F n) for non-equivalent volume elements on F n .

Using Moser [18] ,we were able to reduce it two essentialy different 

cases, the first one when q is a volume element on F n with 

finite total volume and another one when q has infinite total volume.

In both cases we have the following chain of normal subgroups 

of Diffn( F n)

{id} c Diff£Q( F n) c Diff“( F n) c DiffJ(Fn) c Diffjj(Fn) c Difffi( F n)

where Diff£0( R n) 1S the subgroup of all elements isotopic to the 

identity by an q-isotopy with compact support. Diff^(Fn) is the



subgroup of all elements with compact support. Diff^(Fn) is the

subgroup of all elements with support of finite p-volume . Diff^(Fn)

is the subgroup of all elements with set of non-fixed points of finite 

p-volume. Clearly, if p has finite total volume we have

Diffj?(Fn) =  Diffn( F n) .

Now we are going to describe the contents of this disertation 

Chapter by Chapter.

Chapter 1 gives some results on volume elements on a smooth 

manifold including the one mentioned above.

Chapter 2 contains some general facts on the group Diffs( F n) . 

In particular, we give a direct proof of the fact that two volume elements

on F n with the same total volume are equivalent (2.1) .This result

can also be proved using [6] .

We also get a sufficient condition for a subgroup of Diffi2(F n) 

to be normal, namely , any subgroup N of Difffi( F n) such that

Diffc0(F n) c N c Diff“( F n)

is normal.

We end this Chapter giving some examples that prove that all the 

inclusions of the above chain are strict.

The aim of Chapter 3 is to decompose an element of Diff“(F n) 

as a finite product of volume preserving diffeomorphisms each one with 

support in a strip. This method owes very much to Ling |"10] who worked 

out the decomposition of a diffeomorphism of F n in a finite product
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of diffeomorphisms each one with support in a locally finite union of 

disjoint cells. The modification has been necessary since two strips 

with the same ^-volume are diffeomorphic by an element of Difffi( F n) 

(3.4) while the same is not true for locally finite unions of disjoint 

cells.

Chapter 4 contains several technical results. W e prove that the 

subgroup of Diffn( F n) of all elements with support in a given strip 

is connected with respect to the compact-open C -topology (4.10). The 

proof uses an extension to a smooth family of volume elements on F n 

of a result of Greene and Shiohama [6] that is proved in the Appendix of 

this dissertation .

Following McDuff [15] we prove that the subgroup of Diffn( F n) 

of all elements with support in a strip is perfect (4.7)

Another result that proves to be crucial is that for any element 

h of Diffn( F n) such that there is a disjoint union of cellb

11 C. satisfying 
i >1 1

(_LL c. ) n h(_LLc.) =<j)
i»l 1 i>l 1

we find a strip ,V , and an element lying in the normal subgroup of 

Diffn( F n) generated by h , h' , such that h'(V) n V =<j> .

This enable^us to get in Chapter 5 some results on the classification 

of the normal subgroups of Diff^(Fn) when £1 has finite total 

volume.

We prove that for n >, 3 , there is no normal subgroup between 

Diff^(Fn) and Diffn( F n) (5.4) . Therefore, joining that theorem with 

a result of Chapter 2 and with Thurston [22] we get that a subgroup N
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is normal if and only if

Diffc0(R n) c N c Diffc(R n) •

Chapter 6 is a complement of Chapter 4 , proving some additional 

results needed when n has infinite total volume .

We construct, for any volume preserving diffeomorphism , h , 

not lying in Diffjj(Fn) a disjoint union of cells , C.. , such that

( 6 . 2 ) .

Also, we prove the last of the decomposition results, namely, we 

see that any element of Diff“( F n) with support in a strip of finite 

ii-volume can be written as a finite product of elements of D1ff^(Rn) 

each one having support in a strip of finite n-volume (6.4) and (6.6) .

As before, this enables us to get in Chapter 7 some results on 

the classification of the normal subgroups of Diff ( F n) when n 

has infinite total volume .

We prove that, for n » 3 , there is no normal subgroup neither 

between Diffy(Fn) and Diffn( F n) (7.2) nor between Diff“( F n) 

and Diff^(Fn) (7.5) . Thus, joining the above theorems with Thurston 

[22] we get that the non-trivial subgroups of Diffn( F n) , N , must be 

either between Diff“Q( F n) and Diff£(Fn) or between Diff^(Fn) 

and Diff“( F n) .

To study those normal subgroups we have tried two methods that

are explained in Chapter 8 .
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The first one is taking the closures of the normal subgroups in the 

above chain with respect to the compact-open C°°-topology and to the 

Whitney C“-topology .

We prove that Dif^0( R n) is dense in Diffn( F n) with 

respect to the first of the topologies (8.1) and Oiff^(Fn) and 

Diff^(Fn) are both closed with respect to the second one (8.3) (8.4) .

A second one is studying different subgroups of Diffn( F n) 

between Diff^(Fn) and Diff^(Fn) . We construct an example of a 

subgroup normal in Diff^(Fn) but not in the whole group.

Notice that pages 3 to 9 and 32 to 35 have been deleted by

indication of the examin?tors.



SI.- SOME PRELIMINARIES

This is an introductory chapter where we give the general definitions 

and some results on volume elements on a manifold needed in the following 

chapters.

If M is a connected n-dimensional smooth manifold we denote by 

A* T* M the set of all differential forms of order n on M. We will 

say that M is orientable if there is an element of \ *  T* M which does 

not vanish at any point of M. We denote by r* c A *  T* M the subset 

of all differential forms of order n which do not vanish at any point 

of M.

If m and e are two elements of r* we have e = f u where 

f is a real valued function on M which does not vanish at any point 

of M and f is either positive for all points of M or negative for 

all points of M. So, we define w and 0 to be equivalent if f > 0 

giving an equivalence relation in r* with two equivalence classes.

A such class of r *  is called an orientation of M. An oriented 

manifold is a manifold with a chosen orientation. If M is assumed to be 

oriented, a diffeomorphism ijj : M -*■ M is called orientation preserving 

if the induced map i|>*: A *  T* M -*• A * T* M sends any element of the 

chosen orientation of M,ui, to an element equivalent to «.

A volume element a  of an oriented manifold M is a differential 

form of order n belonging to the chosen orientation. Let A be a subset 

of M, we denote by vol^ A the integral of the n-form a along A 

(see [13] ). A diffeomorphism h: M -► M is o-preserving or volume 

preserving if h*( o ) = a . We will say that two volume elements a



and T on !•! are equivalent if there is an orientation preserving 

transformation, M » M, such that ^*(0) = t *

Now, we state a. result obtained by F'oser in [18] about the 

equivalence of volume elements on com; act manifolds.

1.3 THEOREM [18].- Let M be a compact connected n-oincnsionr.1 manifold

and let a and T be tv.o volume elements on (4 such that

vol K = vol FI . Then there is a diffeororphisr h : M * M such that



s
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The folowing result give us a special extension of the above theorem 

of Moser for volume elemtns on a particular type of non-compact manifolds.

1.4 THEOREM [16] .- Let M be a non-compact smooth manifold.

Let o and t be two volume elements on M« [-1, 1] . Then, 

there is a diffeomorphism,

* : M x [-1, 1 ] + M  x [-1, 1]

which equals the identity near 1} and on Mx { 0 } and

such that f*( t ) = o near M x { o }.

PROOF.- It suffices to prove the theorem when t is a product 

t ' a dt where t ' is some volume element on M, because if we have 

proved the theorem in the above case we have a diffeomorphism

4»1 : M * [-1, 1] + M * [-1, 13

which equals the identity near M x {-1, 1} and on Mx {0} and 

<|<1 (t 'a d t) » o near H x {0} . Also we have a diffeomorphism

*2 : M x [-1, 1] -► M x [-1, l]

which equals the identity near M x {-1, 1} and on M x {0} and 

i(»2 (t 'a d t) » t .
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Along this dissertation we will need many times to extend embedding 

to a volume preserving diffeomorphisms.

We will use the following result of Krygin proved in

I 9) . The proof is not included because it uses very different techniques 

to the ones used in this dissertation like extension of vector fields and 

Hodge's theory.

1.5.- THEOREM [9] Let M be a connected orientable closed n-manifold.

Let W be a n-dimensional submanifold with smooth boundary 3W. We denote by 

by Wj the connected components of W and by the connected components

of M-W. Let a be a volume element on M. And let ft: 9W -*> M be a 

family of embeddings such that fQ equals the identity on 3W,

vol W. = vol 7.(W.) and vol N. = vol f.(N.) where f. is some.
0 1  O i l  0 1  O i l  L

extension of ft . Then, there is a family of

diffeomorphisms F^ : M -*• M such that F* (o) = o, Fq is the 

identity and F̂  equals fj on W .

Moreover, if ft is defined on some components V of 

M - W  and if it preserves o on V and preserves the total 

volume of the other components of M - W  either for all t or when 

t = 1 , then, we may assume that Ft = f^ on V for those values 

of t .

T i-VOTEL.- ¿ome. e.At.e-nt>c0 1'' K  e*. ists to C i Oj .
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§2.- GENERAL FACTS ON THE GROUP Diff^ Fn).

Let 0 be any volume element on Fn . We denote by 

Diff^( F n) the group of smooth diffeomorphisms of IFn which preserve 

the given volume element fi.

To study the group Diff^( R n) one could expect to have a different 

group for any volume element considered on IRn. But it is obvious that 

if 0| and are two volume elements equivalent on IRn and if

V» : lRn -*■ Fn is the diffeomorphism such that ip * ( n  the map

n n
y: Diff c ( F n) -*■ Diff 1 (IRn)

given by y(h) = ip ° ho-y^is an isomorphism.

Thus, it is very interesting to know when two volume elements are 

equivalent anithe next theorem gives us a sufficient condition.

2.1. THEOREM.- Let ilQ and be two volume elements on IFn

such that vol n IFn = vol^ 1R0 . Then, there is a diffeomorphism,
o 1

* ('»I n
o ’

such that
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PROOF.- First of all we will reduce to prove this theorem for two 

volume elements and with the same total volume and such that

«01 6, = vol0, Bf

for any i £ IN, where is the closed ball of IRn of centre

the origin and radius i.

There is a positive number X̂  such that

Also, there is a positive number Xg such that X-| < X2 and

m \  ®2 ■ ,o1 n, B. . Thus, 
c

inductively, we get 0 < X-| < X2 <

satisfying v°l„
0 Bi =

CO

Now we will construct a diffeomorphism of IRn sending Bi into 

. There is a positive number XQ < X̂  such that XQ < 1 and

a diffeomorphism, f: IF+ -*• IR+ such that

f(x) = x for x ^ XQ and 

f(i) = Xi for any i e IN,

So, we can define a smooth function, : IRn -► ERn by
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<l'(xl....xn) =
n  II (xi....xn) II)

II (xi....xn)H

★
Therefore, the volume elements, and ip (n^) = nj satisfy

and

Thus, if we prove the theorem for and we will get a 

diffeomorphism y' : F n ->• IRn such that = i2Q and the

diffeomorphism y = \p - v ' satisf£e>the desired property.

Now, we will construct, inductively, the diffeomorphism y‘ .

Let = f-j fij . We choose a smooth function 7-| such that 

7-| equals f.| on B ^ 2 * ^1 ecluals 1 on a neighbourhood of

We can apply 1.3 to the volume elements and 7-j fij and we

get a diffeomorphism ĝ : B2 ->■ B2 suc^ t*1â  9] is the identity

on a neighbourhood of 3B2 and g*(i2j) = 7̂  il|. Therefore,

g*(il|) = i2Q on a neighbourhood of B^.

3B2 and

vol
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Now, we assume that we have a diffeomorphism g.: lRn -*■ ]Rn 

such that g*(fij) = on a neighbourhood of B̂  and

“HI ■ vo's0 “HI and

BH 2  ■ vo\  BH 2  '

We will find a new diffeomorphism g! : B^+i ■+ B..+i satisfying 

g-* o g*( ilj ) = i2Q on a neighbourhood of Bi+1 and ĝ  equals 

the identity on B. . Then we will define g. , =» g. o g! .J l =*1+1 3i 3i

We- call i2i+1 = g*( ) . Let be equal to f^fi.^ .

We can choose a smooth function, 7. , such that 7. equals f. onVl VI M

Bi +(3/2) • equals 1 on a neighbourhood of 9Bi+2 and

,0V  „ “l+2 ■ TO,a„ “i+2 •
T t,°Hl 0

We can apply 1.3. to the volume elements and

getting a diffeomorphism

q! : B. ■+ B. 
s i 1+2 1+2

such that g! is the identity on B̂  and on a neighbourhood of 

3Bi+i and gj*( fii+1 ) - 7 ^ ,  . Therefore, g!*(il1+l) =

= n0 on a neighbourhood of Bi+1



n
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Thus, inductively we have defined a diffeomorphism of ]Fn , 

y' : Fn Fn , satisfying t'*( ftj ) = ftQ .

A generalization of this result is included in the work of Greene 

and Shiohama in [ 6 J.

2.2 REMARK.- A consequence of the above theorem is that to study the group 

Diff n( ]Rn ) it is sufficient to consider two different cases only, namely 

v°lfl = 00 and vol^F0 < «> . Furthermore, if vol^IF11 = <*> 

we can assume

ft = d x, a . ..a  d x i n

the standard volume element on IRn and otherwise

n = p( ||X II2 ) d x1 A . . . A  d x n

for some non-vanishing smooth function p .

Recall that an isotopy on IRn is a smooth map

F : IRn x [0,1] - IRn

such that, for any te [0,1] . the map Ft : lRn -► Fn , defined by 

Ft(x) = F(x.'t) ,

is a diffeomorphism.
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Thus, inductively we have defined a diffeomorphism of lRn ,

Y* : Kn -*■ Rn , satisfying ¥'*( nl ) = .

A generalization of this result is included in the work of Greene 

and Shiohama in [ 6 J.

2.2 REMARK.- A consequence of the above theorem is that to study the group 

Diff lRn ) it is sufficient to consider two different cases only, namely

volfi IRn = “ and volfi F n < <*> . Furthermore, if vol^IRn = <» 

we can assume

fi = d x, a ...a d x i n

the standard volume element on IRn and otherwise

n = P( llx ||2 ) d x] a ...a d x n

for some non-vanishing smooth function p .

Recall that an isotopy on IRn is a smooth map

F : lRn x [0,1] IRn

such that, for any te [0,1] . the map Ft : lRn + Fn , defined by 

Ft(x) = F(x , t) ,

is a diffeomorphism.
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We call F-| isotopic to FQ and F an isotopy from FQ to F^.

We define an fi-isotopy as an isotopy F: ]Rn * [0,11 -*■ ® n 

such that F^ preserves the volume element ft for any t e [0,1] .

In [8] it is proved that if we consider Diff( IRn ) with 

the compact-open C^-topology, to have a smooth path

a : [0,1] - Diff ( ® n ) 

is equivalent to have an isotopy

F : F n x [0, 1] -*■ F n

where

F( x.t ) = a(t) (x)

and viceversa.

Now we will prove the fact that Diff^ (IRn ) is path connected 

with respect to the compact-open C°° - topology (see §8 for a description)

2.3. PROPOSITION.- [15 ].- Every element of Diff^ (IRn ) is n-isotopic 

to the identity.

PROOF.- a) Case vol^ IRn = ».'
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As we have seen we can assume that ft is the standard volume 

element on P n . Let h be any element of Diffn ( IRn) and let ^ be 

the translation that sends h(0) to 0 (where 0 is the origin of IRn). 

Obviously i/, is ft-preserving. Then, the composition map g = ji« h 

fixes the origin. The standard isotopy

9t(x) * ( i/t ) g( t x ) if 0 < t s 1

g (x) = lim ( 1/t ) g( tx)
0 t-0

is an ft-isotopy from g to the linear map gQ .

As SL( n, 1R ) is path-connected we can join g^ to the 

identity by a path in SL( n, IR ). So, we have an ft-isotopy from 

ij/oh to the identity.

As the translation ^ is ft-isotopic to the identity by the linear 

isotopy, h is ft-isotopic to the identity.

b) Case vol^ Rn < » .

In this case we can assume that ft is spherically symmetric,

that is

a  = p( ||x ||2 ) d xi a... a d x n .

(IRn, ft) is diffeomorphic to (D, ftg) where D is an open 

disc in IRn and
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fig = d xi acI X£ a* • • a d

is the restriction to D of the standard volume element on JRn

Let h be an element of Diff ii°(D). So, 0 and h(0) lie 

in D . Thus, by restricting the isotopy of a) to a suitable 

neighbourhood U of 0 we get a path, gt , of embeddings of U

into D such that gQ is the inclusion U<= D, g1 »hjy and

gt preserves ^  , for any t. By 1.5. we get an ijg isotopy, 

ht : 0 ->■ D such that hfc equals g t near 0 and hg is the

identity.

Thus, h^1 o h is an element of Diff^0 (D) such that it is 

the identity near 0 and it is QQ-isotopic to h .

There are two balls B , B of centre the origin and radius xA \1

and u respectively (assume x < u ) such that the subgroup of a - 

preserving diffeomorphisms of D which are the identity on a small 

disc of centre 0 can be identified with the subgroup of aQ-preserving 

diffeomorphisms of B^ - (0> such that they are the identity on B̂  - Bx 

Then any element f of the latter group is aQ-isotopic to the identity 

by the a -isotopy

ft(x) = tf (x/t) if || x || < t u

ft (x) = X if II X II > tx .

So, we have that h is oQ-isotopic to the identity.
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The aim of this dissertation is the study of the normal subgroups 

of the group Diffn ( ]Rn ). Now we will define obvious subgroups of 

Diffn (IFn ) that we will consider .

For any diffeomorphism h of lRn we denote by Wh the set 

of non-fixed points that is

Wh = { x e lRn : h(x)  ̂ x } .

Notice that the support of h is the closure of .

Then, we denote by

Diffy ( Fn) the subgroup of Diffn (IRn) whose elements h have the

set of finite ft-volume

Diffn (IRn) the subgroup of Diffn ( IRn) whose elements h have support
f

of finite ft-volume

Diff^ ( Fn) the subgroup of Diffn ( Fn) whose elements have compact 

support

and

Diff“ 0 ( ® n) the subgroup of Diff*2 ( ]Rn) whose elements are isotopic to the 

identity by an n-isotopy of compact support.

2.4. PROPOSITION.- Every one of the subgroups considered above are normal 

in Diff*2 ( Fn).



The aim of this dissertation is the study of the normal subgroups 

of the group Diff^ ( Fn ). Now we will define obvious subgroups of 

Difffi (IPn ) that we will consider .

For any diffeomorphism h of IRn we denote by the set

of non-fixed points that is

Wh = { x e lRn : h(x)  ̂ x } .

Notice that the support of h is the closure of .

Then, we denote by

Diffy ( Fn) the subgroup of Diff^ (IRn) whose elements h have the 

set of finite fl-volume

Diffn ( IRn) 
f

the subgroup of Difffi(IRn) whose elements h have support 

of finite ft-volume

Diff^ ( Fn) the subgroup of Diffn ( Fn) whose elements have compact 

support

and

Diffjjo (IRn) the subgroup of Diff0 ( F n) whose elements are isotopic to the 

identity by an ft-isotopy of compact support.

2.4. PROPOSITION.- Every one of the subgroups considered above are normal 

in Diff“ ( F n).
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The proof is an immediate consequence of the fact that for any 

g and h, diffeomorphisms of lRn, the support of the composition 

g o h » g-  ̂ is exactly the image by g of the support of h.

Thus, we have then the following chain of normal subgroups of 

Diffn ( F n ).

{id} c DiffJ0 (IRn ) c DiffJ(IRn ) c DiffJ( IRn) c DiffjJ(IRn) c Diffn(IRn)

where { id } is the trivial subgroup.

Notice that if il is a volume element on lRn such that 

volfi lRn < » we have

DiffJ ( IRn ) = Diffn ( IRn ) .

If Gj and G2 are groups, we denote by [G^, G2 j the group 

generated by the elements of the form g-| g2 g^1 g^1 where g1 lies 

in G-| and g2 lies in G2> We also denote

C9]» 92^ = 9] 9£ 9] 92

We have

2.5 PROPOSITION.-

[Diffji( F n). D1 ff°( IRn)] c D1ffJ0( !Rn)



PROOF.- Let g be an element of Diff^( Fn ) and let h be any 

element of Diff^ (IRn ). By 2.3 there exists an fl-isotopy h^ 

from h to the identity. Then, Ft= [g ,ht] is an iHsotopy 

from [g, h] to the identity. Furthermore, the support of that 

fl-isotopy is compact since, for any t, we have

supp [g, hfc] c supp 9 u ht (supp g) c 

c H((supp g ) x [0,1] )

where H: lRn x [ 0,1 ] -► lRn is given by H( x,t ) = ht(x) . Since

the support of the ft-isotopy F is included in the closure of

u supp [g, h.] 
t 1

we have

supp F c cl ( u supp [g, h.] ) c H((supp g )x [0,1] ). 
t 1

So, since supp g is compact, F has compact support.

Therefore, any generator of [ Diff^ ( lRn), Diff^ (IRn) ]

lies in Diff” ( )Rn). Then, we have the desired inclusion. cov '

As a corollary of this proposition we get a sufficient condition 

for a subgroup of Diff^( Fn) to be normal.
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PROOF.- Let t^, h2 be two elements of Di ff*|?( IRn). We have, by 2.5 , 

that

h-j ®h2 °(h2 o h!) [h^, h2 ]

lies in Diff^o( lRn). Thus the above group is abelian.

2.8. PROPOSITION.- The groups

Diff^m'1) Diffc(IRn)

------------ and -------------

Diff£0(lRn) DiffCo(1Rn)

are isomorphic.

PROOF.- Let

Diff^(Rn) Diffc(IRn;

<1* : ------------- -----+ --------------

Diff^0(IRn) Diffco(IRn)

be the natural map ip Ch] = ChD .

Clearly it is well-defined and a homomorphism.

It is 1-1 , since if g and h are elements of Diff^( IRn)

such that i|> [g] =  ^  [h] we have an isotopy, of compact support, Gt ,

from h-1 o g to the identity. Therefore, by [18] we get a compactly

supported fi-isotopy from h"  ̂ o g to the identity. Then, h"̂  ° 9

lies in Diff^ ( Rn) and [ g ] = [ h ] . 
cov '  3
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It is onto, since if g is any element of Diffc(IRn) we get 

by 1.3 a diffeomorphism, <(>: IRn -*■ IRn , witn compact support and
* ic

compactly isotopic to the identity such that g £2 = fi . Therefore, 

g o { is an element of Diff^(IRn) that satisfy

'l'[6o<(|] = [g * f] = [g] .

Notice that joining 2.7 and 2.8 we get, by a different way, the 

result proved by Cerf in [3] that the group

Diffc( IRn)

DifW  R ")

is abelian.

To finish this chapter we will remark that the inclusions of the 

ffhain of normal subgroups of Diffn(IRn) that we are considering are 

strict inclusions.

In the case that fi is the standard volume element on IRn ,

any translation in Fn is a volumen preserving diffeomorphisms lying 

in Diff^( lRn) but not in Diff^( lRn). Thus,

Diffjj( F°) ^ Diff°( lRn) .

Now, we will construct an element of Diffjj( lRn) not lying in 

D1ffJ( F n) .
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We denote by B( r ) the closed ball of IRn of centre the 

origin and radius r and by Sn_1( r ) its boundary, dropping r 

when r = 1 . Recall that

a)

b)

c)

d)

vol^ B( r ) = r vol^ B

vol^ Sn-1( r ) = rn_1 Volfi Sn_1

'">'¡1 B ■ 4 -  “ 'a s"''

voln Sn_1(r)
/n/2) n-1

((n-2) /2)!

(See [2] )

Thus, we have

volfi B(R) - vol^ B(r) = (Rn - rn) vol^ B = 

= (R-r)(Rn_1 + r Rn‘2+...+rn_1) vol^ B =

R-r

n

R-r

n
2" (Rn-1+---+ rn_1) volj

(R+r)

Therefore, roughly speaking, we will construct a sequence of 

disjoint annuli of finite total volume whose closure is IRn and then
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we will define a volume preserving diffeomorphism by rotating in a 

particular way each annulus, so, the set of non-fixed points will be 

the sequence of annuli.

Let {r.j}.j"j be any ordering of the positive rational 

numbers greater than 1 and let us define

We call I.j the open interval of K,

and A-j the closed annulus of IRn

2

l -
)  ) •

Let n„ be the smallest integer such that r t cl I, and let
Z "2

< i  be a positive number such that 
Z n«2

Then, we call



we will define a volume preserving diffeomorphism by rotating in a 

particular way each annulus, so, the set of non-fixed points will be 

the sequence of annuli.

Let be any ordering of the positive rational

numbers greater than 1 and let us define

- 27 -

i =

We call I-j the open interval of F,

£
il - ( rr —  . + - L  )I i 2 i 2

and A1 the closed annulus of F

£ H
A, = cl (B( r, + — — ) - B(r,----—  ) ) .

1 1 2 1 2

Let n2 be the smallest integer such that rR { cl 1̂  and let

l '  <  l  be a positive number such that 
2 n2

n  V t
( r„ ------ » rn + -------) n i l 3 (|>.2 2

Then, we call

£i £i
I, * ( rn --- i -  , rn + -i-
2 n 2 1*2
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We can define, for any r e IR the matrix

cos
'

♦( r ) - sin *( r  )
0 \

sin *( r  ) cos ♦( r )

and the diffeomorphism h : Rn -*• R n given by h(x)= x M(||x|| ).

Clearly h is smooth and volume preserving. Furthermore, W = u A
n i i 1

and supp h = IFn - B. Therefore, h lies in Difi^ (IRn> but not in 

Diff^(Rn). Then, DiffJ( Rn) c DiffJ( IRn) .

An example of a volume preserving diffeomorphism with support of 

finite volume which is not compact can be constructed following the same 

idea.

Let C.j be the open ball of IRn of centre (i,0,..., 0) and 

radius 1/i . Then we have

- v , ; ,  c<> V , , vo,‘> c' V > ,  ? - V0,« B -

So, if n > 2
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We can define, for any r e IR the matrix

cos \J»( r ) - sin r )
t

sin \j/( r ) cos ip( r )

M( r ) =

\
and the diffeomorphism h : Fn -*• IRn given by h(x)= x M(||x|| ).

Clearly h is smooth and volume preserving. Furthermore, W = u A.
n i a 1

and supp h = IRn - B. Therefore, h lies in Diff^ ( IRn) but not in 

Diff^( En). Then, DiffJ( Fn) c DiffJ( IRn) .

An example of a volume preserving diffeomorphism with support of 

finite volume which is not compact can be constructed following the same 

idea.

Let C.j be the open ball of ]Rn of centre (i,0....0) and

radius 1/i . Then we have

So, if n > 2
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v o U  u C ) < “.
“ i H  . 1

Repeating the construction above we get a volume preserving diffeomorphism 

whose support is

u cl C. . 
i H  1

Therefore, DiffJ ( Fn) ÿ DiffJ( IRn ) .

Ling in [10] proved that DiffcQ( lRn)  ̂ Diffc( IRn). Thus, 

by 2.8 we have that by any volume element on IRn ,

Diff?0 < (K "> •

Obviously,

(id) c Diff^0 ( IRn) •

Thus, throughout this dissertation we will consider the following 

chain of normal subgroups of Diff^i F n)

(id) c Diff^0( lRn) c Diff^(IRn) ^DiffJ(IRn) c Diffjj( IRn) e Diff” (IRn) 

and the two last inclusions are also strict when o has'^finite total

volume.
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v o U  u C ) <
1 i * 1 . 1

Repeating the construction above we get a volume preserving diffeomorphism 

whose support is

u cl C. . 
i * 1 1

Therefore, Diff^ ( Rn) ^ DiffJ( IRn) .

Ling in [10] proved that DiffcQ( IRn) / Diffc(IRn). Thus, 

by 2.8 we have that by any volume element il on IRn ,

MffJo ( ( K ") •

Obviously,

(id> c Diff“0 ( IRn) .

Thus, throughout this dissertation we will consider the following 

chain of normal subgroups of Di ff ^R11)

{id} c Diff^0( F n) c 0iff^(IRn) ^Diff^(IRn) c DiffJ(IRn) c Diff” (IRn) 

and the two last inclusions are also strict when fl has'Vinite total

volume.
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§3.- DECOMPOSITION THEOREMS

The aim of this chapter is to prove that if n * 3 we can factor 

each element of Diff^ lRn) as the product of five elements of the same 

group each one with support in a strip (Theorem 3.8 ). To do that we 

need several definitions

3.1. DEFINITION.- A straight strand in IRn is the line IR+ x { x } 

where x is a point in Fn  ̂ and ]R+= [0, »). A strand is the image 

under an element of Diff^( Fn) of a straight strand. A tangle is a 

finite union of disjoint strands. A tangle, L, is said to be unknotted 

or trivial if there is an element of Diffn(IRn) which straightens all the 

strands in L simultaneously.

3.2. DEFINITION.- A strip in Fn is the image under some element of 

Diff( lRnj of the standard tube

_ n ,
T * {xeBT : I xf s 1, x, a 0 } 

i*2 1 1

Notice that a strip may have finite -volume since the diffeo- 

morphism used may not be volume preserving.

Now we state a result on trivial tangles proved by McDuff in 

Lemma 1.4 of [17].

3.3 PROPOSITION [17j.- Let ŝ  and Sg be two disjoint strands in lRn. 

Then, there is a strand, Sg , disjoint with both, such that the tangles 

s1 \ j  Sg and ŝ  v'Sg are both trivial.
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The aim of this chapter is to prove that if n * 3 we can factor 

each element of Diff^( lRn) as the product of five elements of the same 

group each one with support in a strip (Theorem 3.8 ). To do that we 

need several definitions

3.1. DEFINITION.- A straight strand in IRn is the line IR+ x { x } 

where x is a point in Rn-  ̂ and lR+= [0, ®). A strand is the image 

under an element of Diff^( Fn) of a straight strand. A tangle is a 

finite union of disjoint strands. A tangle, L, is said to be unknotted 

or trivial if there is an element of Diffn( IRn) which straightens all the 

strands in L simultaneously.

3.2. DEFINITION.- A strip in Fn is the image under some element of 

Diff( ]Rnj cf the standard tube

n n ,
T = {x eIRn : l  xf s 1, x, 2 0 } 

i*2 1 1

Notice that a strip may have finite fi-volume since the diffeo- 

morphism used may not be volume preserving.

Now we state a result on trivial tangles proved by McDuff in 

Lemma 1.4 of [17] .

3.3 PROPOSITION [17j.- Let s-j and S£ be two disjoint strands in lRn. 

Then, there is a strand, Sq , disjoint with both, such that the tangles 

s1 \ j  sQ and Sg v  Sq are both trivial.
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Next proposition gives a condition in two strips, V1 and V2,

to have a volume preserving diffeomorphism of IRn sending

v2 .
onto

3.4. PROPOSITION.- Let and V2 be two strips with the same

il-volume satisfying volQ( Rn - \ l } ) = volQ( )Rn - V2) if vol^. vol^, °°-
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Then, there is an element , h , of Diff^( ]Rn) such that h(V1)= V2.

PROOF.- Let be V1 = g](T) and V?= g2(T). Then, g = g2 0 g"1 is a 

diffeomorphism of IRn such that g(V^)= V2> Now, we will modify g 

to be volume preserving.

First of all we modify g near 3V2 in such a way that the 

volume elements ft and ft'= g* ft are equivalent near 3V2> Let be 

M= 3V2 and we identify M x [-1,1] with a small bicollar of M.

Then, by 1.4 we find a diffeomorphism <j>: M x [-1,1 ] -*• M x [-1,1] 

that is the identity near Mx {-1,1} and such that <p*g*ft = ft near

M x {0} . We denote also by <j> its extension to IRn by the identity.

Now, we can apply Theorem 1 of the Appendix to the volume elements 

ft and <j)*g* ft on V2 and also on IRn - with the Same volume

elements. So,we get a diffeomorphism, t|/ : IRn ■+ IRn that is the

identity near 3V2 and such that ij>*<j>*g* ft = ft . Therefore,

h= g ■» <p o jp is the desired volume preserving diffeomorphism.

The following two propositions says us that we can modify a 

diffeomorphism of ]Rn to be volume preserving but leaving it fixed 

on a given strand.

3.5 PROPOSITION.- Let g be an element of Diff(IRn) with support 

in a strip, V , containing a strand, s, in its interior. Then, 

there is a volume preserving diffeomorphism, h, with support in V 

which equals g on s.
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PROOF.- Without loss of generality we can assume that V is a tubular 

neighbourhood of s .Then, there is an (n-1)-dimensional submanifold 

M, of V containing s . We can assume that M is a closed subspace of 

]Rn without boundary. Thus, applying 1.4 to M with the restriction 

of the volume elements a and g*n on ]Rn and identifying M x £-1,1] 

with a small bicollar neighbourhood of M we get a diffeomorphism

<p I M x [-1 ,!]-*• M X  [-1,1] ,

that is the identity near M x {-1,1} and on M x {0} and is such that 

<t>* g* ft= ft near M x {0} . The extension to IRn of this map by the 

identity will also be denoted by $ .

Let Z  be a small neighbourhood of s such that <j>* g* fl 

on it. Since,

voln (V-Z) = v o l ^  (V-Z)

we can apply theorem 1 of the Appendix to ft and ij>*g*ft to get a

diffeomorphism, ^ : V-Z -►V-Z , such that g*ft = ft and it is

the identity near 3(V-Z). Therefore, h= g ° $ » ip is a volume 

preserving diffeomorphism that equals g on s.

3.6. PROPOSITION.- Let g be as in 3.5 and such that g is volume 

preserving on a strip V' c V containing s in its interior. Then, 

there is an element h of Diffn( IRn) with support in V which equals 

g on a strip V" c V' .
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PROOF.- We have, g*ft = ft on V' , therefore, as in the proof of

3.5 we can apply theorem 1 of the Appendix to get a diffeomorphism

* : V -V ' V - V'

such that ijj*g*ft = ft and it is the identity near 3(V-V*). Then, 

h= g o <|> satisfy this proposition.

Notice that if in 3.6 , vol^ V' = °° we can get the strip V" 

also of infinite ft-volume.

Now, we want to prove that if we have a volume preserving 

diffeomorphism of !Rn that it is the identity on a strand, it can be 

modified to be the identity on a neighbourhood of the strand. Thus, 

we have

3.7. PROPOSITION.- Let s be a strand and let h be any element of 

Diff^( ]Rn) that is the identity on s. Then, there is an element 

h' e Diff^i Fn) with support in a strip V  of finite ft-volume and 

equal to h on a strip V" c v1 containing s in its interior.

PROOF.- Let V-j and V2 be strips of finite ft-volume containing s 

in its interior and such that V 2u h(V2) c V^. Both V., and V| are 

tubular neighbourhoods of s.

Let T=(E,d> ) be a tubular neighbourhood of s where E is 

a normed vector bundle on s, * : E IRn is an embedding that is the
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identity on s and <t>(E)- Vg. We apply the Uniqueness of Tubular 

Neighbourhood Theorem of Mather (see [12] ) to the tubular neighbourhoods 

T and h*T, where h*T = (h*E, h"'of), and we get an isotopy,

H Rn x I -*• ]Rn, with support in V1 such that T and h*T

are equivalent that is the vector bundles (H^)*E and h*E are 

isomorphic and if we denote by T : (H^ )* E -*• h* E the bijection between 

the total spaces of the corresponding vector bundles the following diagram

r_ __
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is commutative. Therefore, f: E -*• E is an automorphism of vector

bundles such that <p o f  = h <. H, 0 $ .

Since s is contractible the vector bundle E is trivial.

So, the automorphism 7  is isotopic to the identity. Let be 

such isotopy with f 1 = f  and ? is the identity.

Now, we will define a diffeomorphism $: IRn ■+ ]Rn that equals 

f on a neighbourhood of s as follows. Let D' c £ be the disc bundle

of radius 2 and let D" be the disc bundle of radius 1. We define

*(x) = d, c f  0 f \ x )  f o r  x * 0 .(D")

$(x) = <f> o f t  o $'](x) for x € <p (D‘) - d> (D")

with t = 2 -|| $ "1(x)||

$(x) = identity otherwise.

It is diffeomorphism of IRn with support in V2 and we have $« H^1 

equals h on <p (D") c V2 .

Since h is volume preserving we can apply 3.6 to $ o

and we get an element h' of Diff^( IRn) with support in V1 and

equal to h on a strip V" c V2 containing s in its interior.
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3.8. PROPOSITION.- Let s and h be as in 3.7 and let vol^ IRn= °°. 

Then, there is an element h' e Diff^ IRn) with support in a strip V' 

of infinite n-volume such that vol^( IRn- V ' )  =  00 and h' equal to 

h on a strip V“ c V' also of infinite n-volume and containing s in 

its interior.

PROOF.- The proof goes as in 3.7 once we have constructed two strips 

of infinite fl-volume, and V2 , containing*in its interior and 

such that h(V2) u V2 = V-j and voln( Rn_ V-|) 3 «.

Now we will construct and V̂ . Let be a point of s 

and let be a cell containing x-j in its interior and vol^ C^= 1,

Let B, be the ball of centre the origin, radius A-j and such that

C.| u h(C^)c int . Let x2 be a point of s not lying in .

Since voln( Rn-B^ )= «°, thera is a cell, C2 c IRn-B^ , containing

x2 in its interior and vol^ C2= 1. Let be the ball of centre

the origin, radius X2 with A-j < A2 and such that C2 u h(C2)c int B^.

Thus, inductively, we get a locally finite sequence of disjoint cells

_|_[ C., such that 
i a 1 1

voln( _LL C.) = » 
“ i il 1

and s n int t  $ for any i. If

vol ( Fn-( 1  C. , ii h(C -))) < - 
n i 2 l 1 i n  1
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we consider the sequence _|_J_ C. .
j= 2i J

Therefore, if V2 is the strip obtained by joining C. to Ci
J J

by a small bridge around 

to h(C.) and h(C.) to
J J

the desired properties.

s and V, the strip obtained by joining C.
' J

Cj+i by small bridges around s, they satisfy

Now, we are able to prove the main factorization theorem

3.9. THEOREM.- Let h be any element of Diff^IR11). If n s 3 we can

decompose h as the product of five elements of Diff^ IRn), h-j, h2, h3> 

h^, hg, where h.. has support in some strip for any i.

PROOF.- Let s be a straight strand. By transversality [8] , there is 

a diffeomorphism, hj, with support in an arbitrarily small strip, Vjf 

containing h(s) in its interior and such that hj « h(s)n s = 4>.

Then, applying 3.5 to hj we get a volume preserving diffeomorphism, 

h^ , with support in V-| and such that h^o h(s)n s = <t>.

By 3.3 there is a strand, t, disjoint from both s and h^»h(s)

and such that both tangles, t u h^ » h(s) and t u s are unknotted.

Let M be a surface in IRn diffeomorphic to IR+ x [0,1] and

bounded by t and s. Let be a neighbourhood of M that is a strip

of finite n*volume. There is a diffeomorphism of Rn, h3 ,with support

in V3 and sending s onto t. As above, we can assume, by 3.5 ,

that h3 is volume preserving.
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Repeating the same process with the trivial tangle tuh^»h(s) 

we get an element, h2, of Diffn( IRn) with support in a strip, V2 , 

sending t onto h^» h(s). Furthermore, we can get h^  such that 

h ^ o  h^ equal to hj'i h on s.

Let be g= h^« 1^° h^» h, we have that g equals the identity 

on s. So, by 3.7 there is an element, h^e Diff^(lRn) with support 

in a strip, V^, such that h4 equals g near s.

Let hg= h^o h^ » h^1 <• h^o h. Since it is the identity on a 

strip near s and the closure of the complement of a strip is contained- >-r> a. 

strip, hg has support in a strip Vg.

Therefore, h= hg o h^ « hj » h^ • ĥ  is the product of five 

volume preserving diffeomorphisms of the appropriate type. •

3.10. REMARK.- Notice that in the proof of the Theorem above we can get 

the strips , V2 and Vg of n-volume as small as we like and we 

can get also that the n-volume of is finite or vol^( IRn-V^)= ® 

and volQ( Rn- Vg)-

Also, as an immediate consequence of the proof of 3.9 and since

the set W of non-fixed points of the composition of the
9] 092

diffeomorphisms g-| « g2 is included in the union of Wg and Wg , 

we have the two following corollaries.



3.11. COROLLARY.- If n ;» 3, any element, h e Difff(IRn; can be 

decomposed as the product of five elements of Diff^( ]Rn), 

h= h5 o o h3 o h2 o h1 , with support in strips , for 

i= 1,2,3,4,5 and such that volfi v.. < °° for i z  4.

3.12. COROLLARY.- If n > 3, any element, heDiffJ(IRn) 

decomposed as the product of five elements of Diff^( ]Rn), 

h= hj o h^ « hj o h^ • h| , with support in strips ,

can be 

for i =1,2,

3,4,5 .

As a consequence of the following lemma we can prove the factorization 

theorem for volume preserving diffeomorphisms with support in a strip of 

finite n-volume.

3.13. LEMMA [15] .- If n £ 3, any diffeomorphism he Diff^ IRn) with

support in the interior of a cell C is the product, h= ĥ  o h2 <> h^ 

of three elements ĥ  e Diff^( Fn) which are supported in the interiors 

of cells where Ê  c int C.. and

PROOF.- Let M be a region M C C bounded by a hyperplane intersected
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voln M ” 3 yo1n c *

There is an open neighbourhood N of M in C such that

2+• VOl^ N < — vol^ C .

Let pt be an isotopy with support in N which shrinks M so 

close to 9C that h is the identity on p-|(M). Then, the isotopy

gt= h o p'1 o h'1 o p^ has support in N u h(N) and satisfies that

gQ is the identity and ĝ  equals h on M.

Applying 1.5 we can assume that the isotopy gt is an ft-isotopy 

Thus, g^o h is a volume preserving diffeomorphism with support in 

a cell (C-M) of volume less than (2/3)volfi C.

We will finish the proof by decomposing g1 as the product of two 

factors of the appropriate type.

We apply Vitali Covering Lemma [21] to the covering of (int C)- 

-(N u h(N)) by all open balls and we get a finite number of disjoint 

balls, B-|,..., Bm, in (int C)-(N u h(N)) such that

m ,

B1 ■ T  vol(i c •

We can join 3C to B̂  by a path a-| and 3B.j_j to 3B̂
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by a path a.., for 1 < i s m. Also we can construct such paths satisfying 

0-j n Oj = ̂> if i/j , a. n 3Bj = f  if j/i-1, i , a. n S B . ^  <^(0),

“i n 3B. = ot^l)

m m
u a. n (M u u int B.) = ̂  . 

i=l 1 i=l 1

Therefore, the complement in C of a suitable neighbourhood of

m m
u B. u u a.

i=l 1 i=l 1

is a cell. Then we will modify g-j to be the identity near u ,

( already we have that ĝ  equals the identity near u B^).

Let kt be an isotopy with support in N which pushes the paths 

g-j(ot̂ ) outside M for any i=l,...,m . By 1.5 we can assume that kt 

is volume preserving. Then, k-j ° ĝ  ° kĵ  is a volume preserving
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diffeomorphism with support in N u h(N) such that the paths

k, o g o ) lie outside M, for any i.
1 1 1 i

Let f be a diffeomorphism of IRn which is the identity near

-1u (B.j u u k-| o g-j o k̂  (a^))u 8 C

and pushes the support of ^  • g t • kj' outside M. Thus 

f o k| ° gt o k^°f"ll*an isotopy with support in int(C-M) such that

f  o ^  • 9j o kj' o f~  ̂ = k̂  ° g-j » k^ near

u (B. u a.) . 
i=l 1 1

Therefore, by 1.5 we find a volume preserving diffeomorphism 

of IRn, q , with support in int(C-M) equals k-j ° g1 0 k-j1

near

Then,

u (B. u a.) 
i=l ' 1

* I m ni
supp q ° k, ° g, ° k, cint(C-( u B.u u a.))

1 1 1  i=l 1 i=l 1

and we have k-j <> ĝ  « k^1 = q ° (q 1 » kj ° <> k^). So,
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of two factors of the appropriate type.

3.14. THEOREM.- Let V be a strip of finite o-volume and let h be 

any element of Diffn( K n) n -isotopic to the identity by an O-isotopy 

h^, with support in V . Then, if n 2 3  for any t  > 0 we can

factor h as a finite product of volume preserving diffeomorphisms each 

one having support in strips of O-volume less than e.

PROOF.- Let B be a closed ball in IRn such that

There is a cell C, in IRn such that hj.(B) c C for anY t 6 [0,1] 

and C c B u V .

with support in C and equal to h on B. Thus, by 3.13 we can

voln(V-(supp h n B)) < e/2 .

6
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write f| as a finite product of volume preserving diffeomorphisms 

each one having support in a cell of il-volume less than e. Therefore, 

since every cell is contained in a strip of fl-volume as near to the 

fi-volume of the cell as we like, we can decompose f̂  as a finite product 

of elements of the appropriate type.

Let us define fg = f^ 0 h . It is a volume preserving diffeomor- 

phism with support included in V-B that is a strip of fi-volume less than 

e .

Thus, h = f̂  o fg satisfy the theorem.
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§4.- TECHNICAL RESULTS

In this chapter we prove the main technical results needed in 

this dissertation. In particular we prove:

(4.7.) If n 2. 2 , the subgroup of Diff^(IRn) of all elements 

with support in a fixed strip V is perfect.

and

(4.9.) If n 2 3 , for any element h e Diff^( IRn) such that

there is a disjoint union of cells ; JJ_ C. , satisfying
i > 1 1

there is a strip V and a volume preserving diffeomorphism of IRn, h‘, 

lying in the normal subgroup of Diff^( ]Rn) generated by h and 

satisfying h' (V) n V = <t> .

Let X be any subset of Fn. We denote by Gx the subgroup of 

Diff^(JRn) of all elements with support in X.

Notice that in general, Gx is not a normal subgroup.

First of all let us prove

4.1. PROPOSITION.- Let V be a strip in IRn . Then Gy is p<jtk - conne.c te<L 

with respect to the compact-open c”-topology.
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PROOF.- Let V be the image by g e Diff ( K n) of the standard tube 

of ]Rn . Let h be any element of Gy .

We will construct an ft-isotopy from h to the identity with 

support in V.

Let Ht be the standard isotopy given by

Ht(x) = (1/t) g”1 o h « g(t for t > 0

HQ(x) = x

= (.a,, . . . }  k „ )

So, Ft= g o Ht « g"1 is an isotopy from h to the identity with 

support in V, but Ft is not an fi-isotopy. Thus, F* Q = ot is 

a smooth family of volume elements on IRn such that oQ= 0= o-j 

and

vol V = vol V , for any t e [0,1] .
Ox

Therefore, by Theorem 2 proved in the Appendix of this dissertation 

we get a smooth isotopy, Rn IRn , with support in V such that

4>g = $>.| equal to the identity and 4^ ot = il, for any t e [0,1] .

Then, Ft . is an n-isotopy from h to the identity with 

support in V. So, Gy is patK - canntc t « iL •

4.2. REMARK.- The above Proposition proves that any element h eDiffn( IRn) 

with support in a strip V is n-isotopic to the identity by an ij-isotopy
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PROOF.- Let V be the image by g e Diff ( IRn) of the standard tube 

of ]Rn . Let h be any element of Gy .

We will construct an fi-isotopy from h to the identity with 

support in V.

Let Ht be the standard isotopy given by

Ht(x) ■ (1/t) g-1 o h c g(t for t > 0

Hq (x ) = x

* = [*,,.. )

So, Ft= g « Ht • g’  ̂ is an isotopy from h to the identity with 

support in V, but Ft is not an £2-isotopy. Thus, F* £2= ot is 

a smooth family of volume elements on IRn such that aQ= £2= 

and

vol V = vol0 V , for any t e [0,1] .
Ox ««

Therefore, by Theorem 2 proved in the Appendix of this dissertation 

we get a smooth isotopy, 4>t: lRn -*■ IRn , with support in V such that 

4>q = 4>i equal to the identity and ot = £1, for any t e [0,1] .

Then, Ft o is an n-isotopy from h to the identity with 

support in V. So, Gy is p a t h - « n n u  te<L .

4.2. REMARK.- The above Proposition proves that any element h «Diffn( IRn) 

with support in a strip V is il-isotopic to the identity by an n-isotopy
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with support in V. Thus, in 3.14 the hypothesis that h must be 

n-isotopic to the identity by an n-isotopy with support in V is not 

necessary. We only need h having support in V.

4.3. REMARK.- As an immediate consequence of 3.9 , 3.14 and 4.2 

we get that if vol^ lRn < °° and n s 3, any element of Diff^( TRn) 

can be decomposed, for any e > 0, as a finite product of volume 

preserving diffeomorphisms each of them having support in a strip of 

^-volume less than e .

Now, we want to prove that if V is a strip in IRn , Gy is 

perfect. The proof is based on a modification of the proof that 

Diff^( Rn) is perfect given by McDuff in [15] .

We say that an element h e Diffn( IRn) has a Ling factorization 

with p-factors if it can be decomposed as a product h= ĥ  » (^»...ohp, 

where, for any i, ĥ  is a volume preserving diffeomorphism with 

support in a locally finite union of disjoint cells. Usually we will 

call these unions a disjoint union of cells.

In the proof that Gy is perfect, the special factoriza

tion given in the next Lemma Lb crucial .

4.4. LEMMA.- If n * 2, any element he Diffn( Fn) with support in 

a strip V has a Ling factorization with two factors, ĥ  » \ n ^ = h, 

and such that supp h.. c V, for any i.





By continuity of the n-isotopy and using the fact that

n 2
g({x e F : z x. < 1 , x. = X2i+1) ) 

i>l

is a compact set for any i, there is a small neighbourhood, 

of the above set such that, for any t and any i

n 2
ht(N2i+l) c 9({X 6 R : 1 xi * x2i < xi < x2i+2.} ) '

Applying 1.5 to each compact 

n 2
g({x e F : z x: ,< 1 , < x. v< x~. } )

i >1 1 1

we get a volume preserving diffeomorphism, fj , such that is the identity 

for any i , near

9( {XeF x? <1, Xj= x2i })u g( {X€ IRn: £
i>l

xi^1 ,x1eX2i+2\)

and it is equal to h on N2i-+  ̂ , for any i. Therefore, f̂  has 

support in a disjoint union of cells.

Thus, h has support also in a disjoint union of cells.

Also to prove that Gy is perfect we need the following two lemmas 

that are a relative version of Lemmas 3 and 4 of [ 15 ].
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4.5. LEMMA.- Let n * 2 and let X be a closed subset of IRn such

that F n-X is connected and X has only a locally finite set of

connected components. Assume that JJ_ C. is a disjoint union of cells
i* 1 1

in F n-X and that {oi-} is a sequence of positive numbers such
1 i 2 1

that oj. s volfi Ci , for any i. Assume also that

£ ( co. - vol„ C . )  s v o U (  IRn-X)- jj_ C.) 
i 2  1 Ì 2 1

where strict inequality holds if both sides are finite.

Then, there is a disjoint union of cells , _[]_ D- , in
i s 1

Rn-X satisfying

a) voi n Di . for any i

b) C. c Di for any i

c) vol (( Fn-X)- II 0.) = =o , if 
i * 1

v o U (  F n-X)- ii CJ = co 
“ i i  1

PROOF.- There is a locally finite union of balls, JJ_ C! , in IRn-X
i i  1

such that each ball Ci has centre on the positive Xj -axis and 

a diffeomorphism, g of Fn such that sends each cell onto the 

ball C! and it is the identity on X. Therefore, the problem reduces
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to find a locally finite union of cells, HD! , in IRn - X such that
•iTi 1

Dj ^  C! and whose g*n-volume satisfy the desired conditions.

We can choose a locally finite union of cells J_J_B. , each one
M  1

being a solid of revolution about the x^axis and having the shape of 

an annulus with a hole along the negative x^-axis so that they are cells 

and they are distorted along the positive x-j-axis so that <^intBi , 

for any i .In this way we can choose Bi to fill up as much or as

Now, we will modify the cells B. in order to get the desired

Di •

cl ( B^-x ) has a finite number of connected components. There is a 

cell in each one of such components with n-volume very close to the

little of ]Rn as necessary.

si-volume of the corresponding connected component. Then, since IFn-X
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is connected we can join, by a small bridge in IFn-X, the connected

components of cl(B-j'X) getting a • cell D.! . Making inductively the

above construction, we get a disjoint union of cells, _[]_ O' , with
i * 1 i

the desired properties.

I ITT,

4.6. LEMMA.- Let n s 2 and let X be closed subset of IRn such that

F n-X is connected. If J]_ C. and JL D., are disjoint unions
i * 1 1 i > 1 1

of cells in Fn-X such that vol^ Ĉ = vol^ , for any i, and

vol„(( IRn-X)- II Cj= vol. (( JRn-X)- II DJ, there is an element
il i-t 1 1 “ i 2 1 1

h eDiff^ Fn) such that it is the identity on a neighbourhood of X

and h(C^) = , for any i.
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There is an isotopy , gj. , of lRn with support in IRn-X such 

that gj (Cj)= Dj. We can assume that gj. is an n-isotopy by 1.5.

Again by 1.5 we can extend gll to an n-isotopy of ]Rn , g^ ,11 p | L
L1

with support in IRn-X such that g^ (0^)= . Thus, inductively we

get an n-isotopy, gt , of IRn with support in IRn-X such that 

g](C!)= D! for any i.

Now, applying again 1.5 to each set (D^+1- Dl) we get an 

n-isotopy, g' , of IRn with support in || int(D'-.,-D!)-X and
t 1 i i 1+1 1

such that g] o g1 (Ci)= for any i. Therefore, h= gj <> g1 satisfies 

the required conditions.

Now,we are able to prove

4.7. THEOREM.- If n 2 2 and V is a strip in IRn , Gy is perfect, 

i.e. Gy= [Gv, Gy ] where by [Gy, Gy] we denote the commutator 

subgroup of Gy .

PROOF.- a) case volfiV = °°.

Let h be any element of Gy , by 4.4 we can assume that h

has support in a disjoint union of cells j]_ C. c V. Also, without
i £ 1

loss of generality we can assume that volfi(V- _jj_ C-)= °°, (if necessary,
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we consider separately the restrictions of h to jj_ C. and jj_ C.
i e J 1 i 4 J 1

for., some subset J such that vol (V- Il C.)= » and vol (V- Il C-)=<»),
n ieJ 1 n iT j 1

We apply 4.5 with o.̂ = vol̂ C-i and w^=sup(a)^_^, volfiC^). So,

we get a disjoint union of cells , JJ_ D. c V, such that
i * 1 1

voln D. s v0ln Di+] ,

Ci c , for any i, and voln(V- .J|. 1 D̂ ) = °°. By 4.6 there is 

a volume preserving diffeomorphism, f, with support in V and such 

that f(Di; c Di+1 for any i.

We define the following sequence of volume preserving diffeomor-

phisms

g1(x) = h .(f » h o f_1)(x)

g1 (x) = x . otherwise

g1 (x) « h . (,f • h . f'1) o...o (f1 » h » f_1 )(x) if x e Di

g1 (x) = x otherwise

They define a volume preserving diffeomorphism, g, with support in

. 11 D.i-Fi ui *
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We have [g, f] = g • f • g’1» f _1 . So, supp [g.f] c supp g u

0 supp f o g”  ̂ o f" 1 , but supp f o g o f c j]_ D. . Thus,
i 2 1 1

supp [g, f ] c
i * 1
± L  Di « V.

Furthermore, [g, f] (x) = h(x) for any x e . Therefore, 

[g»f] = h and h e [Gy, Gy] .

b) Case vol^ V < <*>

First of all we will prove that any element h of Gy can be 

decomposed as a finite product of volume preserving diffeomorphisms

each one having support in a disjoint union of cells , ][ C. c V,
i > 1

whose n-volumef, v..= vol^ satisfy (1/2) v̂  < v.j+js v̂  for 

any i, and Z v_. < (1/2) voln V .
4 _ 1 I it

We can assume, by 4.4 that h e Gy has support in a disjoint 

union of cells , _[J_ Cj c V. Applying 3.13 tip each

cell Cl we can represent h as a finite product of volume preserving 

diffeomorphism*each one with support in a disjoint union of cells

II CV such that C? c Cl voi0 q  < (2/3)4 volaci <(i/4)voific;.

After renumbering we can assume

Now, we define inductively
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Vi = voln C-. if vol o q  ^(l/2)vi_1

vi = voljj CV+(l/2)v._1 otherwise.

Me have

. I ,  * .  E , voin c; +0/2) I •
i 2 1 1 S 1 i s '

So,

Z v. s 2 £ vol0 CV < 2 E (l/4)vol0C]^(l/2)volnV,
i *  1 1 i 2 1 "  1 i *1 “

and

for any i.

Thus, applying 4.5 with w..= vi we get a disjoint union of cells,

II C- = V, which satisfy the desired properties.
1T 1 1

Now, we will prove that if he Gy has support in a disjoint

union of cells , II C,, which satisfy the above properties, then 
i a 1 1

h e [Gy , Gy J •

Since E vol^C- < (1/2) vol n V we can apply 4.5 with
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gi+1(x) = ho( i ] kj o (¿j)-1) . . . . .  ( 4 . 4  ® (4 ,-1)

In fact we have defined g, ....kg, C g  elements

of Diffn( F n) such that supp g c || C. , supp k. c jj_ E 1
i T l  1 J i H  J

supp t.c V , l .  equals f outside _[J_ C. and such that 
J J i > 1

g = kg o kg»...» k] = h »(^ k1 » 4 1)0...» (tg ° kg® i . g )  .

Thus,we have

h = kg» kg ®...® k ^  (tg® kg® l  g ) ' 1 ®... ° ( ® k, ® tj1) ' 1

= (kg » kg®...ok1® lg ®kg] ® k^® k ^  ®...® ®...®

®...« (ki®t-|°k^

So, we have written h as the product of 9 elements of [Gv, Gy]
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The next three Lemmas are the main tool in the proof of the 

results included in Chapters 5 and 7. We use the following notation.

If h is an element of Diffn( IRn) we denote by N(h) the normal 

subgroup generated by h in Diff^(lRn).

The idea of the next Lemma has been obtained from Epstein [5] •

4.8. LEMMA.- Let X be a subset of IRn and let h be an element of 

Diffn( !Rn) satisfying

a) h(X) n X - »

b) There is an element, fe Diff^( lRn) such that f(X)n X =ij>

and h(X) n f(X) =

Then, we have [G^, G^] c N(h) .

PROOF.- For any two elements, g1 and g2 of Gx we have 

supp [glt h] c supp gju h (supp g , ) c X u  h(X) ,

also,

supp [g2 ,f] c X u f(X).

Since on X u h(X), tg2, fJ equals g2 , we have 

supp t t g1 h] , [g2, f]] c X u h(X). Moreover,

CCg1, h] , [g2, f]] is the identity on h(X). Thus,
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CL9-|» h] » [92» f 33 = [9]» 92] •

Since, [g-j, h] lies obviously in N(h), we have 

[g-j, g2] e N(h] . Therefore, [Gx, Gx ] c N(h).

4.9. LEMMA.- Let n 2 3 and let h be any element of Diff^(IRn) 

such that there is a disjoint union of cells, JJ_ C., satisfying:
i V 1 1

in its interior and an element h' e N(h) such that h'(V) n V= 4>.

PROOF. Let s be a strand such that s- n int Ci ^ <}>, s n Ci is

connected, for any i, and s n ( _jj_ h(C.))= 4» . Applying transversality
i > 1

[8] and 1.5 we get a volume preserving diffeomorphism, m, with 

support in a disjoint union of cells , J[ D! , and such that

m o h(s) n s = <j) . Furthermore, we can choose the above disjoint union

h( JL C.) n ( jj_ C.) = 4,
i > 1 1 i * 1 1

if vol F n=
n

and vol ( H_ C-)<(1/4)vol IRn
“ i  ̂i 1 »i > 1

if vol^ Fn < 00 . Then, there is a strip V, containing jj_ C.
i i l  1

of cells satisfying
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CC9-|» h] , [g2, f ]] ■ [9^ 02] •

Since, [g^ h] lies obviously in N(h), we have 

[g-|, g2] e N(h] . Therefore, [Gx> Gx ] c N(h).

4.9. LEMMA.- Let n z  3 and let h be any element of Diff^iIRn)

such that there is a disjoint union of cells, jt C., satisfying:
i a 1 1

h( JL C J  n ( j]_ C.) =
i * 1 1 i ^ l  1

vol ( Fn- || C.)==o if vol Fn= »
n i . i  1

and vol ( ij_ C.)<(l/4)vol IRn 
“ i > 1 1 “

if vol Fn < co . Then, there is a strip, V, containing it C. 
n i i l  1

in its interior and an element h' e N(h) such that h'(V) n V= <t>.

PROOF. Let s be a strand such that S' n int ^ <f>, sn C. is

connected, for any i, and s n ( jj_  h ( C . ) ) =  <j> . Applying transversality
i > 1

[8] and 1.5 we get a volume preserving diffeomorphism, m, with

support in a disjoint union of cells , M D! , and such that
i 2 1 1

m o h(s) n s = <t> . Furthermore, we can choose the above disjoint union

of cells satisfying
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a) vol D! < (1/2) vol C.. , for any i

b) ( II DJ) n ( || C.) = *
i T l  1 i T l  1

c) (1 1  D!) n ( 11 h(C.)) = *
i H  1 i i l  1

In general, m is not an element of N(h). So, we will construct 

now an element, m' eN(h) such that it equals m on h(s).

Let us call X = ( Ji C J  u ( il h(C-)) 
i a 1 1 i a 1 1

If we apply 4.5
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to 1L D! with w, = volD C. , for any i, we get a disjoint 
i * 1 1

union of cells, II C! , satisfying: 
i T 1 1

Di c int
ci •

for any

( II q) n ( II O II

i 2: l 1 i~Fl i

( II q) n ( II h(C.)) = <!>
i £ l 1 m 1

voln c; ■ volfi Ci , for any

Also, if we apply 4.6 to II q  and jj_ q  , with
i H  1 i * 1 1

X= || h(C-) , we get a volume preserving diffeomorphism, f, such
i H  1

that it is the identity near X and f(C-)= q  , for any i. Let

D. j= f_1(Dj). Since D. c int q  and volfi D. = vol^ D! < (1/2)vol^ q,

we can construct, for any i, a new cell, E.. c int C. , such that

E. n D- = 4 ’ and voln E. = voln D_.. Thus, we have constructed a disjoint1 1  it 1 li I

union of cells, II E. . Now, applying again 4.6 to J! E. and jj; D 
i T 1 1 i * 1 1 i>l

with X = IRn- iL int q  , we get a volume preserving diffeomorphism, 
i 2 1 1

g, with support in Jl C, and such that g(D.) = E. for any i. 
i 2 1 1
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Let X = 11 C. and let m = f"̂  o m » f . By construction
i * 1 1

we have ge Gv and supp m = f Vsupp m) c f j j_  D-')c | |  .
x i > 1 1 i T l

So, m = [m,g] is an element of [G^, G^] . Furthermore, since

supp m c JL D! and ( JL E.) n ( il_ D.) = $ we have that in
i ^ l  1 i * 1 i a 1

equals in on j|_ D. . We have h(X) n X = 4> by hypothesis,
i * 1 1

f(X) n X = 4) by construction of f and b'), and h(X) n f(X)= <t> 

by construction of f and c1). Thus, we can apply 4.8 to get

C^X* c

Therefore, in lies in N(h). So, m' = f o in o f is also

an element of N(h) and since supp m'= f(supp m)c _LL D) u 1L f(Ei)
i 2 1 i 2 1

we have, m' equals m on h(s).

To finish the proof of this lemma we call V the strip obtained

from || C.j by joining each cell C.. to C^j by a small bridge 
i T 1
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around s and we call h* = m'» h .

If G is any subgroup of Diff^( IRn) we denote by N(G) the 

normal subgroup of Diff^( JRn) generated by G. And we have

4.10. LEMMA.- Let V be a strip and let h be any element of 

Diff^( Rn) with support in a strip V' such that vol^ V' ^ volfi V 

and vol^ ( Fn- V) = vol^ ( IRn- V) = 00 if vol^V's vol^V = °°. Then 

h is an element of N(Gy).

PROOF.- By 3.4 there is an element, fc Diff ( IRn), such that

f(V') c V. Thus, f » h of"1 lies in Gy. Therefore, h is an element

of N(GV).

4.11. COROLLARY.- For any strip V in IRn we have Diff^( IRn)c N(Gy)

PROOF.- Let h be any element of Diff^( IRn). Since supp h is compact 

there is a cell C such that supp h c C. Therefore, by 3.13 we can 

assume that h is the product of a finite number of volume preserving 

diffeomorphisms with support in cells of fi-volume less or equal than 

vol^V. Thus, we can apply 4 .10 to each factor. So, h lies in 

N(Gy).
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§5.- CASE OF FINITE TOTAL VOLUME.

Throughout this chapter 0 will denote a volume element of lRn 

with finite total ft-volume

We have the following chain of normal subgroups of Diff^(IRn).

{id} c Diffj?0 ( Rn) c  DiffJ( lRn} c Diff^( IRn).

where by {id} we denote the trivial subgroup. Thurston in [22] proved 

that if n > 3 there is no normal subgroup of Diff^( IRn) between {id} 

and Diff^0(IRn), We will prove here that if n > 3 there is no normal 

subgroup between Diff^(IFn) and Di ff^( IRn) (5.4).

First of all we will prove a preliminary lemma.

5.1. LEMMA.- Let h be any element of Diff^i IRn] with non-compact

support. Then, there is a disjoint union of cells JJ_ Cj , such that
i >  1

( 11 C.) n ( jj h(C.)) = * .
1 > 1 1 i >1 1

PROOF.- We denote by, fix h, the set of points of F n fixed by h, i.e. 

fix h= Fn- Wh .

Let x-j be any point of W^. There is an open set, A^, with 

compact closure such that x̂  u h(x^) c A^. Also there is a cell, Ĉ , 

in A.| satisfying: x-j e int C-|, h(C^)c Â  and n h(C^) = 4.
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We define V] = u h"1(A1). Since cl V] is compact we can find 

x2 £ supp h-(V1 u fix h); an open set, A2, with compact closure such 

that

x2 u h(x2) u Vj c A2

and a cell, C2, in A2-cl A1 such that x2 e int C2 , h(C2) c Ag-clAj

and C2 n h(C2) = <j>. Thus, inductively, we may construct a sequence of

point$of IRn, {Xj} ,a disjoint union of cells, J_|_ C., and
1 i i 1 i z \

a sequence of open sets with compact closure {A.} satisfying:
i i 1

a) x̂  £ int Cj c A^- cl Ai_1

b) h(Ci7 c A.- clA._1

c) C. n h(C-) = <j>

, for any i.

Clearly, by construction we have ( JJ. C.) n ( jj. h(C..)) = <1>.
i i 1 i 2 1

5.2. REMARK.- In the above lemma we can get H  C. such that
i i 1

vol ( J1 c.) < (1/4) vol lRn
n i * 1 "

(If necessary we consider J_L C., for a suitable subset J c fl
i c  J

instead of _LL C.). Thus, by 4.9. we know that for any element, 
i i l  '
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h e Diffn( IRn), with non-compact support there is a strip V and an 

element, h' € N(h), such that h' (V) n V= $ and vol^V < (1/4) voyRn.

5.3. THEOREM.- Let n * 3 and let h be any element of Diff ( !Rn) 

with non-compact support. Then N(h)= Diff^( ]Rn).

PROOF.- Let V be the strip that we have by 5.2 . Then, we can decompose 

any element f of Diff^ ( lRn) as a finite product, f= f-| ? i2°"'°fm

f Q/ iDn \where, for any i, f.. « Diff“( 1R ) and supp f. c with a strip 

such that vol^V. < vol^V.

Therefore, by 4.10 f̂  e N(Gy), for i=l....m. So, f e N(Gy).

The proof will be finished if we see that N(Gy) c N(h).

Since vol V < (1/4) vol IRn we have room enough.to construct
db db

a new strip, V', such that V' n V= $ , V' n h 1 (V) = <j> and
ao> V =

V0lo v'
1. Thus

such that g( v) = V'.

So, [Gy, Gy] c N(h').

V ^Gy. Gy Then,

5.4. COROLLARY. If n

>.• c t S l l idH \

Diffc v R  ) and Diff (JR )-

5.5. REMARK.- If n i 3, we have the following chain of normal subgroups
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of Diffn( K n)

{id} -------Diffn„( lRn) c Diff^( IRn) --------Diff^( IRn)CO Q

where -------- means that there is no normal subgroup in between.

Furthermore, the above result and 2.6 prove that for n £ 3 

a non-trivial subgroup, N, of Diff^( IRn) is normal if and only if

DiffCg( ]Rn) c N c DiffJ( IRn).
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§6. EXTRA RESULTS FOR THE CASE OF INFINITE TOTAL VOLUME.

In chapter 4 we have proved some technical resultsas 4.7 and 

4.9 valid for any volume element ft on IRn. In this one we will 

prove the extra results needed when the ft-total volume of IRn is infinite. 

Thus, throughout this section ft will be a volume element on IRn of 

infinite total volume. In particular we prove :

(6.3 ) If n ^ 3, for any volume preserving diffeomorphism of 

IRn, h, such that vol^ = « , there is a strip V of infinite

ft-volume and an element h1 of the normal subgroup generated by h such 

that h * (V) n V = .

(6.4), (6,6 ) If n  ̂3, we can decompose any element 

h e Diff^( IRn) with support in a strip of infinite ft-volume as a finite 

product of elements of Diff^( ]Rn) each one having support in a strip of 

finite ft-volume.

6.1. LEMMA.- Let h be an element of Diffn( IRn) and let X be any 

open subset of Wh with compact closure. Then, there is a finite number 

of disjoint cells, C,.... included in X satisfying:

m m
a) ( 1L Ci) n ( 1 L h(C.)) = <j, 

i ;> 1 1 i 2 1 1

m
b) E vol C. > (1/1 6) vol X .

i * 1 n 1 n
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PROOF.- We define, for any e > 0 the set Xe(h) = { xeX: 11x-n(x) || >e} 

It is open because it can be written as p"^(e ,°° ) where p: IRn -► IRn 

is the continuous map defined by p(x) = ||x- h(x) || . Also, we have

X= u X (h). Therefore, there is some t  > 0 such that
e>0 e

vol^ X^h) > (1/2) vol^X.

Applying Vitali Covering Lemma [19] to the Vitali Covering of 

X£l(h) given by the set of all open balls of radius r < (e72), we

get a finite number of such balls, .... Bp pairwise disjoint and

such that

voV j  >(1/2) volfiXe,(h).

Notice that since each ball Bj has radius r < (e'/2) and any point 

lying in X£,ih) satisfies ||x - h(x) || > e' we have

h(B.) n B: = 4) , for any j . 
J J

Now, we will construct the set of disjoint cells,
m

by induction on j as follows.

Let C1 be a closed ball included in B1 with 

voln C1 > (1/2) volfi B1 .
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We define h ^ )  u h ' ^ C ^  and we have vol^ Y] * 2 v o l ^  .

Applying Vitali Covering Lemma L19] to the covering of the open set 

Y-j given by the set of all open balls, we get, C2,..., ,

disjoint open balls in B2-Y-j such that

n2
Z vol^ C! > (2/3) vol^ (Bg-Y,) .

Let Ci be a closed ball in Cl such that vol^ C. > 13/4) vol^ Cl .

So, we have C2.... C , disjoint closed balls in B2* Y]

satisfying

2̂ n
2 vol Ci > (3/4) z2 vol C!> (1/2) vol^(B2- Y ^  .
•j =2 “ 1 i =2 “

Now, we define

n 2 n2 ,
Y2 = Yl ii (J^ H ^ ) )  U (j^ h '(C,))

n2
and Y2 = Y £ - Y r  So, we have v o y 2 s 2 Ẑ  volfi Ci .

Thus, applying inductively Vitali Covering Lemma to (Bj'Yj-i) 

for any j=2,...,p, we get, Cj, C2, . C » Cn^+1,...,Cn„ ..,C ■

- c . disjoint closed balls in X,(h) satisfying

(IT C.) n (JL h(C.)) = 4>
T=l i=l

and
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E voljj^ > (1/2) voV l + (l/2)voln(B2- Y,) +

+(1/2) voln(B3- Yg) +...+ (l/2)voln(Bp- Y ^ )  =

=(1/2) ? voln Bj -(l/2)V0ln(Y1 n B2) - 
J

”(1/2)j=3 V°lfi(Yj- 1 "’V  *

(1/2).E volfiB. -(l/2)( Z vol^Yj nB.)+ I volfi(Y2n3j )+.. .+volfi(Yp.1 nBp)) 
j =1 j =2 J=3

P-1
2 (1/2) Z vol- B. - (1/2) i J j i  >  

j=l ” J j=l

> (1/2) Z vol B. - Z vol C. 
j-1 a 3 i=l n 1

So,

mi y

^  v o l C i > (1/4) L^vol^Bj > (l/8)volQXE,(h) > (1/16) voln X.

6.2. LEMMA.- Let h be any element of Diff^ JRn) with vol^ W^= ».

Then, there is a disjoint union of balls JJ_ D., such that
i H  1

. E . vol°ii i  1
and ( II DJ 

i F H
( _U_ h(D.)) = 4. 
i a 1 1

= 00 n
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PROOF.- Since vol^ W^ = « we can make the following construction 

of disjoint open sets in W^. Let X-j c W^ be any open set with compact 

closure and vol^ X-j = 1. We define now C-j = X-j u h(X-|) u h’^Xj).

There is a closed ball, B, where B is the unit closed ball in

IRn and p-j > 0, satisfying cl c int B-j. Let X2 <= Wh- B1 be

an open set with compact closure and vol^ X2 = 2 . We define C2

C2 = X2 u h(X2) u h"1(X2).

There is a closed ball B2= p2 B such that cl C2 c int B2 and

P2 > p-j . Thus, inductively, we get a locally finite sequence of

disjoint open sets, {X.} , in W. each one having compact
J j * 1 h

closure and such that £ voln X. = °° ,
j > 1 “ J

X. n h(Xj ) = (J) , X. n h_1 (XjJ = <f>, for any i / j .

Applying 6.1 to X̂  , for any j, we get a disjoint union

of cells, II D. , satisfying 
i * 1 1

£ voln Dj > (1/16) £ voln X. = “ .
i * 1 “ 1 j H  “ J

Furthermore, by construction of {X.} we have
J j * 1

(II D.) n ( JL h(D.)) = d» . 
i T l  1 i a 1 1
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6.3. REMARK.- From the lemma above and 4.9 we get that if n * 3 , 

for any element h of Diff^( F n) with volfiWh= 00 there is a strip,

V, of infinite n-volume and an element h1 e N(h) such that h1 (V) n V=<j>.

Now we will prove the last decomposition result. We will see 

separately the cases n z  4 and n=3.

6.4. THEOREM.- Let h be any element of Diff^( IRn) with support in a 

strip, V, of infinite fi-volume. Let n i 4. Then, we can decompose 

h as h= h1 o h2 o h3 o h^ where ĥ  lies in Diff^(IRn) and has 

support in a strip, , of finite n-volume, for any i=l,...,4 .

PROOF.- Let us assume that V = g(T) where T is the standard tube of 

F n and g a diffeomorphism of IRn . Let A^= {xeT: i< x^< i+1} and 

X.j= g(int Aj)-supp h. Applying Vi tali Covering Lemma to the Vi tali Covering 

of X.j given by all open balls included in X.., we get, in each X.. , a 

finite number of disjoint open balls , c],..., c’ , such that
i "i

"1 i i
vo!n (Xi - ^  Cj ) = 1/21 .

Let Bj be a closed ball include " in cj such that volfi B %  vol^ cj - e.,

where e- < — • So, doing that construction in each X. we get 

1

a disjoint union of closed balls, jj_ B, , in int V-supp h such
i ;> 1

that
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vol (V - || B )
“ l'T 1

= voljjV

= E vol
j*l

= l vol 
j*l

= l vol 
jül

= E vol
j*l

(1

0

n

=  z  - L  +
jal 2'

E »ol^i -
Z 1

( \ f T  Bk) + voln supp h = 

nj j
X.- E E voln BT + voln supp h = 
j j2l k=1 n k n

n .

X.- E E (vol -e.)+vol supp h =
J j*l k=l “ k J n

X.- E EJ vol C|j+ En.ei+vol supp h= 
J j*l k=l n  k J7/1 J J Q

j*lnjej + VOlil SUPph <0°-

We can join each ball Bi to aV by a smooth path, a.j . 

in V satisfying

a) The set {a.-}
1 i 2 1

is locally finite

b) ai n cxj = * if i t  j

c) ai n B j « * if i / j and

By transversality [8] and 1.5 we get a volume preserving 

diffeomorphism, h 1̂ , with support in a disjoint union of cells,

|| C. c V - _|J_ B. , each one having 0-volume as small as we
m  1 i * 1 1

like and such that hj1 * h(a.) n aj = <f> for any i t  j and

h"^ 0 h ( c i j )  only meets ai on a connected neighbourhood of its end points.
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Clearly, joining each cell C.. to C^+-| by a small bridge in

int V - JJ_ B. we can assume that h, has support in a strip V, 
i 2 1 1

of finite ft-volume.

Since V - IL B. - _LL <*• is connected we can join, in that 
i i l  1 i s ! 1

set, each ball Bi to 3V by a new path, Yi satisfying

a') The set {Yi}
is locally finite.

1 i ;> 1

b') Yi n Y j
= <f> if i / j •

c') Yi „"j
= <p if i / j and Y( n B, = Y^O)
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We have to construct a volume preserving diffeomorphism h^  ,

such that it is the identity on a neighbourhood of ( _LL B.) u ( _LL y.)
i  ̂1 1 ia 1 1

and equals hJ« h on _LL a- . So, h9 will have support in a 
1 i * 1 1 ¿

strip V, c V - || B. .
c i T l  '

To do that, let V1 be some neighbourhood of ( || B.)u( || y.)
i i l 1 i a 1 1

such that V-V' is a strip. Since n a 4, h^ o h(a.)u is

unknotted, for any i. So, there is a smooth family of smooth embeddings, 

0^: a.j -*■ V-V , such that, 0  ̂ is the inclusion, 9  ̂ is the identity 

near a^(o) and near a.j(l) and 0^ equals hj*o h on a. . Let

S, be minus some neighbourhood of a^(o) and of 0̂ (1) on which

e is the identity. Then we have a smooth family of embeddings,

9 t : U. a, - V-V' .
1 i a 1

By transversality [8] , we can assume that if n > 4

e . H a• * [0,1] - V-V' 

i a 1

is a smooth embedding and if n=4, 0 is a smooth immersion with

transverse interior double points corresponding to different values of

the parameter in II ^  . Thus, each path, 0 (x k [0,1] ), with 
i a 1 1

x £ || o- meets at most one double point.
i"a 1 1

Let E i = cl 8 ( ^  * [0,1] ) and let 0 ̂ be a very small
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neighbourhood of E. sue!» that U. n II. = <j> whenever E.n E. = <J>,
I * J * J

all triple intersections U.. n n are empty and each point of

( JL O  u ( iL K ]° h(a.))
i * 1 1 i M  1 1

lies in at most one U . . By 1.5 we extend each e J. to an ft-isotopy,

s’ , with support in IK. Doing the construction of the i U j  ^

inductively we can assume that if xeU. n U. , e'J(x) does not meet any 

Uk for k > j and any t. Therefore, the volume preserving diffeomorphism

hm = e m „  o m-1---- 5 ]

is well defined when m tends to 00. So, it defines a volume preserving

diffeomorphism, h,, with support in u U By construction we have 
i  i ^ l  1

that h, equals h"  ̂ ° h on _LL <*• and joining U to U by 
c . I i > 1 1 1 1  + 1

a small bridge we can assume that h^  has support in a strip c V-V

of finite fi-volume.

Since h^ ° h is the identity on II a. and on a neighbourhood 
1 i T l  1

of II B. we have, by 3.7 , a volume preserving diffeomorphism, h, , 
i"Tl 1 J

with support in a strip, Vj of finite ft-volume and such that it 

equals h^1 0 h^1« h near J_|_ . ihus, h4= h^° h ^ 0 h^1» h

( JL « J  M  1  B -) 
i 2 1 1 i * 1 1

is the identity near
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Therefore, has support in a strip h4 of finite il-volume. Then, 

h = hj » h2° h3 ° h^ .

6.5. REMARK.- By 3.11 and 6.4 we have that if n *4 any element

ii nof Diff^ ( ]Rn) can be decomposed as a product of eight elements of 

Diff^( IRn) with supports in strips of finite ft-volume.

Notice that the proof of 6.4 does not work for n=3 because 

h^1 • h(a^) u a.. could be knotted. For n=3 we have

O *3
6.6. THEOREM.- Let h be any element of Diff-( F ) with support in

a strip V of infinite il-volume. Then, h= h-j o h2 <>...ohg where
n 3 .

ĥ  lies in Diff^( IR ) and it has support in a strip, , of finite 

^-volume, for any i =1,..., 6 .

To prove it we need some definitions and Lemmas about infinite

links.

6.7. DEFINITION.- Let JJ_ a- , JJ_ 8.- be two locally finite
i * 1 1 i 2: 1 1

3
sets of disjoint smooth paths in R such that n 8j = if

i t  j and Oj n 8i = (a^o) = (o)) u (a.(1) = 8.(1)).

Let p: 1R3 -*■ » {0} given by p(x, y, z) = (x, y, o) be the

parallel projection.

We call a crossing of the link L = ( JJ_ a.) u ( jj_ 8-)
i > 1 i 2 1
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the set of points p_1(c) where c is a multiple point of P| L .

When no confu sion is possible we also call a crossing the point c.

Since every differentiable knot is equivalent to one in regular 

position and since in L we have a locally finite sequence of differen

tiable paths, we can assume that all crossings are double. Let c be 

a double point of P|L, we call c' the point of p’^(c) with larger 

z-coordinate and c" the other one.

We have two different types of crossings

a) p_1(c) c a-u a. or P_1(c)c ^ u Bj

-1 **
b) one point of p (c) lies in ĉ. and the other one 8j.

6.8. DEFINITION.- A crossing, p_1(c), of type a) is an overcrossing 

if c' lies in c*. when i <j or if we find c' first when a. 

is traversed from ô .(o) to (1) if i=j. Similarly if 

p"\c) c 6. u Bj .

Also, a crossing, p_1(c), of type b) is an overcrossing if 

c' lies in «j when i s j or in Bj when j <i.

In both case we denote the crossing by "0".

Otherwise, we call a crossing an undercrossing and we denote it 

"U" .by
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6.9. LEMMA.- Let L be as above. Then , there are smooth paths,

, 4 ,
a! , 1L Bi 
1 i * 1 1

, such that “i is very close to a. , 8

very close to B.j » °i n 6j = ♦
if i/ j,

a! n 8! = (a-(o)= 8!(o)) u (a!(l)= 3^(1)) and all crossings of

( JL a!) u ( Ji 3•) are overcrossings, 
i 2 1 1 i * 1

PROOF.- We define o! , 8- . inductively on i. a! , 8J are
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different from a.j , 8i only in a chosen neighbour hood of each under

crossing U = p~\c) where ctj and 8j are defined as follows:

i) U is of type a). On a neghbour hood of c" , a! 

(resp. 8j) goes vertically (in the z-direction) over a.

(resp. 8-) instead of under . On a neighbour hood of c' , al
’ J

(resp 8'-) is the same as a. (resp. 8J
J J J

11) U is cf type b). aj is . On a neighbour hood of c',

8j goes vertically (in the z-direction) under instead of over it 

if i s j and if i > j on a neighbour hood of c", 8} goes vertically 

(also in the z-direction) over a., instead of under.
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different from , 8̂  only in a chosen neighbour hood of each under

crossing U = p"^(c) where a! and 8.! are defined as follows:

i) U is of type a). On a neghbour hood of c" , a!

(resp. 8.j) goes vertically (in the z-direction) over

(resp. 6-) instead of under . On a neighbour hood of c' , a'.
* J

(resp 8}) is the same as a. (resp. 8.-)

ii) U is cf type b). a! is ou . On a neighbour hood of c',

8j goes vertically (in the z-direction) under or instead of over it 

if 1 s j and if i > j on a neighbour hood of c", 8- goes vertically
J

(also in the z-direction) over instead of under.
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Clearly, all crossings of ( 11 o!) u ( JL B-) are overcrossings,
i 2 1 1 i 2 1

6.10. REMARK.- Let L be a link as above, then, there are paths,

11 a! , and J1 . such that ( IL a'.) u ( LI 8-)
i ;> 1 1 i 2 1 1 i 2 1 i 2 1

is untangled.
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Furthermore, we know by McDuff [15] that u aj and 

^  u B.! are both unknotted, for any i.

Now, we are able to prove 6.6

PROOF.- As in 6.4 we get a disjoint union of closed balls,

II B. c int V - supp h , such that voln (V- | | B.) < 00 .
i T i  1 “ r r  i 1

Also, we join each ball to 3V by an unknotted smooth path,

ou , in V satisfying a), b) and c) of 6.4 And we get a volume

preserving diffeomorphism , h-j , with support in a strip, V-j , of

finite fi-volume such that 1̂  ° h(a^)n = <t> , for any i f  j and

h^ ° h(a^) and only meet on a connected neighbourhood of its end

points.

We consider the infinite link L = ( II a.) u ( 1L B-) where
i T l  1 i H  1

B1- = h^1 ® h(a.j) and we apply 6.9 to it. So, we get a.! = ai ,

for any i, because ô. never cross each other and we get also

II 8! , where B! is different from h ^  « h(a.) only in a small 
i T l 1 1 1 1
neighbourhood of each undercrossing, we have

( JLL a- ) U ( 1L 3i)
i 2 1 1 i  ̂1 1

untangled and a! u 8̂  . 8,- u Bj unknotted, for any i.
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Now, we want a volume preserving diffeomorphisms with support in 

a strip of finite fi-volume and such that sends 3i on 6! , for any 

1 .

Since the change from an undercrossing to an overcrossing can

happen inside a cell and we can choose these cells pairwise disjoint

and as small as we like. We get, for the crossings of type a) a

diffeomorphism of R3 , hg , with support in the cells containing a

crossing of type a) (so, with support in a strip of finite Q-volume),

such that hg (ĉ -) = h"1 0 hj( 8!), for any i, we can assume, by

1.5 that h, is volume preserving. For the crossings of type b)
0

3 -1we get a volume preserving diffeomorphism of 1R , h2 , with support 

in a strip of finite il-volume such that 8! = h^1 ° h^° h « hg ^) . 

for any i.
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Now, we can construct, inductively, pairwise disjoint embedded 

2-dimensional open discs such that the boundary of cl is 

»j u P| , for any i. Also there are smooth unknotted paths, Ŷ  , 

in

V - II B. - 
i T  1 1

_IL cl E. 
i * 1 1

joining <*..(0) and a..(l) , near and such that each crossing

of || y. u II B! is an overcrossing.
i T l  1 i T l  1

Thus, there are pairwise disjoint small neighbourhoods, , 

of cl E. in V - II B, - II y. . So, there is an isotopy
1 r r  i 1 i T i 1
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e : _LL o. » [0,1] -*■ 1L U. with en the identity and
i * 1 1 i 1. 1

e 1 equal to h^° h^ » h ® hg . By 1.5. we get an n-isotopy ,

e t , with support in and 6 -| equal to hlloh °h6

on JL <*• . Let h, = 0 , . We have h with support in a strip 
i 2 1 1 J i 3

of finite fl-volume and suth that h^ ° h^ » hj' » h « ĥ

is the identity on Jj. <*. and on a neighbourhood of it B. .
i* 1 1 i * 1 1

Now the proof follows as in 6.4

6.11. REMARK.- By 3.11 and 6.6 we have that any element of 

DiffJ ( R 3) can be decomposed as a product of ten elements of Diff^(IRn) 

with supports in strips of finite fl-volume.
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57.- CASE OF INFINITE TOTAL VOLUME.

Throughout this chapter ft will denote a volume element of 

]Rn of infinite total 0-volume.

Then, we have the following chain of normal subgroups of Diff^( IRn)

(id} cDiff^0( lRn) c DiffJ( Rn) c Diffy(IRn) c DiffJ( IRn) c Diff^( IRn)

where {id} denotes the trivial subgroup. Thurston in [22J proved 

that if n i  3 there is no normal subgroups of Diff^IR11) between {id} 

and Diff^0( IRn). We will prove here, also for n s 3 , that there is 

no normal subgroup between Diff^(IRn) and Diff^( ]Rn) (7.5 ). And, 

there is no normal subgroup between Diff^(IRn) and Diff^i IRn) (7.2 ).

7.1. THEOREM.- Let h be any element of Diffn(IRn) with volfi W^= °°.

If n z  3 the normal subgroup of Diffn(IRn) generated by h, N(h), 

is the whole group.

PROOF.- By 6.3 there is a strip V withtrfinite n-volume and an element 

h' £ N(h) such that h'(V) n V= <j>. Clearly, without loss of generality 

we can assume vol^ ( Fn -(V u h'(V))) = ~.

We will prove Diffn( Fn) c  N(h). Let f be any element of 

Difffi(IRn). We have, by 3.9 and 3.10 that f = » f? «...« fg

with f̂  £ Diff^ ( IRn) and f̂  has support in a strip such that
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§7.- CASE OF INFINITE TOTAL VOLUME.

Throughout this chapter 0 will denote a volume element of 

]Rn of infinite total n-volume.

Then, we have the following chain of normal subgroups of Diffn(IRn)

(id) cDiff^o( R n) c Diff^( Rn) c Diff^( IRn) c DiffJ( lRn) c Diff”( IRn)

where {id} denotes the trivial subgroup. Thurston in [22J proved 

that if n i 3 there is no normal subgroups of Diff^flR") between {id} 

and Diff^0( lRn). We will prove here, also for n s 3 , that there is 

no normal subgroup between Diff^(IRn) and Diff^( IRn) (7.5 ). And, 

there is no normal subgroup between Diffy(IRn) and Diff^( IRn) (7.2 1.

7.1. THEOREM.- Let h be any element of Diff^(IRn) with vol^ Wh= °°.

If n i  3 the normal subgroup of Diffn(IRn) generated by h, N(h), 

is the whole group.

PROOF.- By 6.3 there is a strip V with «finite il-volume and an element 

h1 e N(h) such that h ' (V) n V= 4>. Clearly, without loss of generality 

we can assume vol^ ( Rn -(V u h*(V))) = ».

We will prove Diffn( Rn) c N(h). Let f be any element of 

Diffn( IRn). We have, by 3.9 and 3.10 that f = f̂  ° fg »...» fg 

with f. e Diffn (IRn) and fi has support in a strip V.. such that
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volfi ( !Rn- V..) = “ , for any i. Therefore, by 4.10 , f.. is an 

element of N(Gy), for any i. So, f lies in N(Gy).

We will prove that N(Gy) c N(h) using a very similar method 

to the one used in 5.3 Since vol^ ( )Rn-(V u h'(V)))= ® we have 

enough room to construct a new strip, V', in IRn-(V u h'(V)) of in

finite fi-volume. Since V and V' are both of infinite il-volume

we have, by 3.4 , a volume preserving diffeomorphism, g, such that 

g(v) =V' . We have, g(V) n V = <J> and g(V) n h'[V)= <f> . So, by 

4.8 we know that

[Gy , GyJ c N(h') .

As Gy is perfect (proved in 4.7 ) we have

Gy = [Gy, GyJ C N(h ')  C N(h) .

Therefore, N(Gy) c N(h).

7.2. COROLLARY.- If n £ 3 there is no normal subgroup between 

Diffy ( ]Rn) and Diff*2 ( lRn).

Similarly as in 5.1 we have

7.3. LEMMA.- Let h be an element of Diff° ( IRn) with non-compact
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support. Then, there is a disjoint union of cells, 

that

11 C., such 
i 2 I ’

( 1 1  CJ n ( JJL h(C.)) = * 
i 2 1 1 i > 1 1

PROOF.- Let be any point of Ŵ . There is an open set A-j c IRn 

with compact closure such that x-| u h(x-j) c . Also, there is a cell, 

c A.j , satisfying x-j e int , h(C-|) c Â  and Cj n h(C-|) = <J>. 

Let be V-j = Â  u h_1(A^). Since supp h is non-compact there is an 

element x2 € \  " 1̂ '

Thus, inductively we get a locally finite sequence of disjoint

cells II C, satisfying the desired property. 
i H  1

7.4. THEOREM.- Let h be an element of Diff^( ]Rn) with non-compact 

support. If n i 3 the normal subgroup generated by h is Diff^( IRn).

PROOF.- By 7.3 and 4.9 we know that there is a strip, V, and an 

element h1 e N(h) such that h*(V) n V = <t>.

We will prove Dif1y( Rn) c N(h). Let f be any element of 

Diff^( F n). By 6.5 and 6.11 we have f = fj °...° f^g where

f. c Diff^( R n) and has support in a strip of finite fi-volume, for 

i-1....  10. We can assume, by 3.14 , that f is a finite product
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support.

that

Then, there is a disjoint union of cells, _LL C ., such
i > I

(11 CJ  n ( 1L h(C.)) = d> 
i 2 l  1 i > 1 1

PROOF.- Let x-j be any point of W^. There is an open set A-j c IRn 

with compact closure such that x1 u h(x^) c A1. Also, there is a cell, 

C-j c Â  , satisfying x-j e int , h(C^) <= A1 and C1 n h(C-|) = <J>.

Let be = Â  u h~1(A^). Since supp h is non-compact there is an 

element x2 £ ^  " 1̂ '

Thus, inductively we get a locally finite sequence of disjoint

cells II C,. satisfying the desired property,
i 2 1 1

7.4. THEOREM.- Let h be an element of Diff^( Kn) with non-compact 

support. If n * 3 the normal subgroup generated by h is Diff^(IRn).

PROOF.- By 7.3 and 4.9 we know that there is a strip, V, and an 

element h1 e N(h) such that h*(V) n V = d>.

We will prove Diffy( R n) c N(h). Let f be any element of 

Diff^(Fn). By 6.5 and 6.11 we have f = f̂  «...<> f^g where

f.j € Difff( lRn) and has support in a strip of finite ft-volume, for 

i=l....10. We can assume, by 3.14 , that f is a finite product
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of elements of Diff^( ]Rn) each of which has support in a strip of 

n-volume less than vol^ V. Therefore each factor lies in N(GV) 

by 4.10 So, f is an element of N(Gy).

As in proof of 7.1 we can see that

Gy c [Gy, Gy] c N(h') c N(h).

Therefore, f e N(Gy) c N(h).

7.5. COROLLARY.- If n 2 3 there is no normal subgroup between

Diffty]Rn) and Diff^(IRn). c' ' P

7.6. REMARK.- If n > 3 we have the following chain of normal sub

groups of Diffn ( IRn).

{id} --- Diffc0(IR0) c ) --- DiffJ(IRn) c DiffjJ( ]Rn)---Diffn( Fn)

where ----- means that there is no normal subgroup in between.

Also, we know by 2.6 that any subgroup N of Diffn( Pn) 

such that Diff^0(IRn) c N c DiffJ( lRn) is normal.

To obtain the same result for the normal subgroups of Diff^(IRn) 

in the case of vol^ Fn = <*> as in the case volfi ]Rn < «
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it remains to study the subgroups between Diff^(IRn) and Diff^( Fn)

The arguments used in this chapter do not work in this case 

because we know, by 3.12 , that .any element h of Diff̂ j ( IRn) can 

be decomposed as li= hj • h^ «„.o h| where ĥ  e Diff^ ( lRn) ,

supp h. c V. , for any i=l,..., 5 . So, we can have one of the 

strips V.j of infinite fl-volume. And on the other hand, given 

any element f of Diff^ (IRn) we do not know if there is a

strip , V, of infinite ft-volume and an element f* e N(f) 

that f'(V) n V = <J> .

such
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§8.- SOME ADDITIONAL FACTS

With the idea of studying the normal subgroups between Diff^(Fn) 

and Diff^(Rn) in the case that volQIR n = » , we can consider 

Di ff°( F n) as a topological group with diffeients topologies and since 

the closure of any normal subgroup is itself a normal subgroup we can 

try to identify the closure of the normal subgroups in the chain

iid 1 c Diff^0( F n) c  Diff^(Fn) = Diff^(Fn) e Diff“ ( F n) c Di ff (Fn)

It is known that Diff^ (F n) is a topological group both with 

respect to the weak or compact-open C -topology and with respect to the 

strong or Whitney (T - topology but not with respect to the uniform 

topology. We prove in (8.1) that DiffC0( F n) is dense in Di ff ^Fn) 

with respect to the weak (T-topology. With respect to the Whitney 

C  -topology we prove that Dif1^.(Fn) and DiffJ\Fn) are both 

closed (8.3) (8.4) .

Now we recall a description of the weak or compact-open C00- 

topology on D i f f ^ F 0). Let f be an element of Di ff ^Fn) , let 

K be a compact subset of F n and let U be an open subset of F n 

such that f(K) c u . For any e > 0 we define

Nr(f; K,U,e ) = {he Difffi( F n) : h(K) = U ,

|| Dk(f)(x) - Dk(h)(x) \ U  t  , for all x e K 

and k = 0,...,r )

The seti Nr(f; K,U, e) for all possible K, U, e form a
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subbase of neighbourhoods of f for the weak Cr-topology. We define the
oo p
C -topology the union of the C -topologies for r > 0 .

8.1.PROPOSITION.- Diff“0( F n) is dense in Difffi( F n) with 

respect to the compact-open C°°-topology.

PROOF. We will prove that the closure of Diff^0( F n) is 

Diff^(F n) by constructing an element h lying in cl Diff^Q( F n) 

but not in Diffy(Fn). Then, by 7.2 we will have that

cl Diff£0( F n) = Diffn( F n)

Let {C.}< , be the family of closed balls of F n of centre

(1,0....0) and radius 1/4 . Let <|i. ; F ■+• [0,1] be a bump

function such that i|̂ (r) = 0 if either -» < r < 1 - (i/4) or

1 + (1/4) < r < +oo . For any r e F , we can define the matrix M^(r)

as follows

cos î (r) -sin ^(r)

sin i|̂(r) cos î (r)

0

Thus, the map h.. : F n -*■ F n given by h^(x) = x.M^ (||̂ |) is a 

volume preserving diffeomorphism with support in . Furthermore,
t oo

there exists t  ̂  : F ■* [0,1] , a C -family of bump functions such that 

for any t , ^(r) = 0 if either -« < r $ 1 - (1/4) or
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• o l
1 + (1/4) $ r < +<» , i|;.j(r) = 0 for any r e F and ^  equals

i|/.j ; the map : R n x I + F n given by H^(x,t) = x.M̂ (||x||) 

is an ii -isotopy from to the identity with support in .

Therefore, h.. is an element of Diff^0( F n) .

Since , h.j has support in for any i , we can define

a new volume preserving diffeomorphism of F n , h = ...Oh2ohj . 

Clearly we have

Wh = J_j_( int C. - (i ,0....0)) .

So,

vol„W. = voi ■ £ ,0,»ci ■

Therefore, h does not lie in Diffy(Fn) .

On the other hand, h is the limit of the sequence

{h.0h. «o••* oh,} • , with respect to the weak C"-topology. Since each 
J J“* A J^I

element of the sequence lies in Diff^0( F n) , h lies in the closure

of Diff^ (F n) with respect to the weak C°°-topology 
CO

As an immediate consequence we have

8.2. COROLLARY.- The closure of any normal subgroup of Diffn( F n) 

with respect to the compact-open C°°-topology is the whole group Diffi!( F n)

Now recall a description of the strong or Whitney C”-topology 

Let f be an element of Diff0(F n ) , let { } -6 A  be a locally

finite set of open subsets of F n and let ^̂ -ĵ iea a ôca^ y
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finite family of compact subsets of F n such that f(K.)c for 

any ie a . For any family of positive numbers we define

Nr ( f  ; <K,)teA'<VfeA-<e1>1e« > '  {heD iff0 (B ") : for All 1

h(Kf)= U, J|Dk(f)(x| - Dk{h)(x) || <e,

for all xe K. and li * 0,...,r } .

The sets Nr(f ; ,{IL}. ,{E1}. ) for all possible families

{K.}. , , { U . } , {e.-} j„. , form a base of neigbourhoods of f for 
1 16A  • lt»A 1 l^ A

r oo * *
the strong C-topology. We define the Whitney C°°-topology the union of the

Cr-topologies for r ^ 0 .

8.3. PROPOSITION.- Diff”( F n) is closed in Diffn ( F n) with 

respect to the Whitney C°°-topology.

PROOF. Let h be any element of Diffn( F n) with non-compact 

support. We will construct a neighbourhood of h not intersecting 

DiffJ(Fn) .

By 7.3 there is a disjoint union of cells, » such ttiat

( J_| ci ) n ( J_| M C i) ) = * .

Without loss of generality we can assume that each cell is a closed

ball of centre and radius r̂  . Let C.j be the closed ball of

centre and radius r . / 2  .

We define
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N(h ; {int h(Ci)},{C1}.{ri/2} ) = {ge Diffn( F n) : for all i 

g(C!) c int h(C1) ,|| Dk(h)(x) - Dk(g)(x)|| < r./2 

for all x e Cl and any k >, 0]

Obviously, it is a neigbourhood of h in Difffi( F n) with the Whitney 

C“-toplogy.

It does not meet Diff^(Fn) since if f is an element of 

Diff^(Fn) there is some index je N such that (supp f) n C. = .

Therefore, for any point x e Cj we have h(x) f  x and f(x) = x ,

thus, || x - h(x)|| > r./2 . So, f is not an element of

N( h ; {int h(C.)}, {Cl}, {r./2} ) .

8.4. PROPOSITION.- Diff[j(Fn) is closed in Diffn( F n) with 

respect to the Whitney C"-topology.

PROOF. We will use a similar argument to the one u^ed- before .

Let h be any element of Diffß( F n) such that volfiW^ =0° • 

By 6.2 thereis a disjoint union of closed balls J_|_ Ĉ  such that

v o l ^  C. =» , ( J_|. C. ) n ( J_|_ h(Ci) ) = *

and Ĉ  is the ball of centre x. and radius r̂  .As above, let 

{Cl} be the family of closed balls of centre x̂  and radius r^/2 . 

Therefore, the subset

N( h ; {int h(C.)}, {Cj} , {r./2} )

defined as above, is a neighbourhood of h with respect to the Whitney
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C“-topology. It does not meet Diffy(Fn) since if f is an 

element of Diff^(Fn) we have v o l ^  *  °° * so» there is some

j e F and x e C'. such that f(x) = x .Thus,|| h(x) - x|| > r./2 .
J J

Another way to study if there is any normal subgroup between 

Diff^(Fn) and Diffy(Fn) is to define a subset in between 

identifying the normal subgroup generated by it.In this sense we have 

been able to define a subgroup of Difffi( F n) that is normal in 

Diff“( F n) as follows.

8.5. PROPOSITION.- Let Bi be the closed ball of F n of

centre the origin and radius i . Then, the subset N of Difffi( F n)

of all elements h Diffw(Fn) such that the sequence

Then,

cl Diffjj(Fn) = Diffg(F n) .

tends to 0 as i grows to <° , is a normal subgroup of Diff^(F n)

and

DiffJ(F n) c N c Di ff“(F n) .

PROOF, a) N is a group.

and f be two elements of N . We haveLet h
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supp (f0h_1) c supp f u supp h"1 = supp f u supp h .

So,

vol ((supp (f0h_1) n B. )
11m ----2-------------------- i
i-**, vo1nBi

lim w 1q» >uPP f) n B j) , lim v o y U u p p  h)n Bi) _ q 

vol0Bi ^  w l 0Bi

Therefore, f0h_1 lies in N .

b) N is normal in Diffy(Fn) .

Let h be any element of N and let g be any element of 

Diff^(Fn) • We have supp (gohog'1) = g(supp h) . Also, we have,

g(supp h) n B̂  c (supp h n B .) u .

Then, since v o l ^  < » we have

1 im
volß(supp (gohog*1) n B.)

i-w»
volilBi

lim voln((supp h) n Bi '  , '1» " V s  , o

volnB1
1-M* vol B. 

n 1

Therefore, g0h0g-1 lies in N . So, N is normal in Diff|j(R n

Clearly we have

Diff^(R n) c N c D1ffJj(R n)
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8.6. PROPOSITION.- Let N be as above. Then N is not 

normal in Diffn( F n) .

PROOF. We will construct an element h of N and we will

Let T be the standard tube of F n . We will construct an

element h of Diff“( F n) with support in T . The construction

is similar to the one made in §2 .
00

Let {rjj.j.j be any ordering of the positive rational 

numbers and let be

. . 1 
*1 .2

we define Ij the open interval of F

find an element f e Difffi( F n) such that f0h0f_1 does not lie

in N .

and Aĵ the closed subset of T

n 2A, = (x c T : E x. î 1
1 -î 9 1

Let n2

i '  <  i  be a positive number such that 
2 n2

and we call
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A2 = {x fe T : t  x? < 1 , r 
i*2

Inductively we get a family (Ai} of closed subsets of T satisfying

a) 1L  ’ s dense T •
i * l  1

b) vol0( J1 A,) ■ ^  »01 ^  ‘¡» o l / ' 1 -< '< '

= vol Bn  ̂ r. — ^ - r f < 00 
n i*l l

Also, as in the example that we get in §2 there is a smooth 

function iji: F -*• [0 ,°° ) such that

Then we define h : R n - F n the diffeomorphism given by h(x) = 

= x.K(x) .It is clearly volume preserving and we have

Let <j>: F ■+ [0 , 1] be a bump function such that <t>(r) = 0 for

.„ < r s< 0 or 1 * r < +» . We define, for any x = (x^....xn) in

F n the matrix

M(x) =
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Wh = LL a .
i>i

and supp h = T . Therefore, h lies in Diff£(Fn) .

Furthermore, h is an element of N since

1 im
voln((supp h) n Bi) lim ™ V T n V  llm Cvol^-^l _

i-w
voldBi

i-x»
vo1nBi V°1 fiB 1

lim . lim vol/ _1 . 0
^  in(volnBn) 1n-‘(vol/)

where Bn is the ball of centre the origin and radius 1 in F

and Bn_1 is the ball of centre the origin and radius 1 in F

Let V be the subset of F

V ={ x e F : x, % 0 } .

There is, by 3.4 an element f  of Diff^iF11) such that f(T) = V 

Then, we have supp fohof'1 = f(supp h) = V . Therefore,

voln((supp fohof"1) n B.l _ 1im vo1n(V n B.)
lim n  
1-*»

" V i
volaB,

11m
1-KO . „ 2

,0V l

and fohof"1 is not an element of N .
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APPENDIX

In this appendix we prove an extension of the following theorem 

of Greene and Shiohama ([6]) .

A.l. THEOREM ([6]).- If M is a non-compact oriented manifold

and if o and t are volume elements on M such that vol M =a

= vol M and if each end of the manifold M has finite o-volume if
T

it has finite x-volume and infinite o-volume if it has infinite x-volume, 

then there is a diffeomorphism iji : M ■+ M such that <¡1*0 = x •

The extension involves smooth families of volume elements on 

F n as follows.

A.2.THEOREM.- Let V be a strip in F n and let ot be

a smooth family of volume elements on F n such that, for any t ,

a . = a n  on R n - int V , a n  = 0, and vol V = vol V . Then, 
t O  0 1 °t °0

there is an isotopy H't : R n F n .with support in V such that

Yq and Yj are the identity and = oq for any t .

The proof is based in the three following lemmas. The first one 

is an easy consequence of Moser [16] .

A.3.LEMMA.- Let ot be a smooth family of volume elements on
^ gpltk Int K connected^,

R n. Let K be a compact subset of F n ■''Tuch that all are

eaual on R n- int K and vol K = vol K , for any t .Then, there
°t °0

is a smooth isotopy : F n F n such that is the identity
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outside K and î ô . = Og , for any t e [0 , 1] . Furthermore, if 

oj = Og we can get ij/g and ^  equal to the identity .

A.4.LEMMA.- Let ot be a smooth family of volume elements on

F . Let M be a connected compact submanifold of codimension one 

in F n and let U be a tubular neighbourhood of M . Then, there 

is an isotopy i|/t ; F n F n such that is the identity on

F n - U, 1̂*01 = Og on some neighbourhood of M in U ,

voi,* U, = voi U.I|)?0t + On + and voi,* U 
*t°t '

vol U where U. and U
t t o n ut uo

t*'« connected components of U -M . Furthermore, if o^ = Og we 

can get <pg and ^  equal to the identity .

PROOF. Let U1 be a tubular neighbourhood of M with

compact closure and cl U‘ = U . There is a smooth function 

G : F n F and a smooth family of functions Ft : F n -► F with 

supports in U' satisfying :

a) G takes the value one on a neighbourhood of M and 

also Ft takes the value one on a neighbourhood of M .

b) Ft(x) $ 1 for any t e [0 , 1] and any x e F n . 

Also, G(x) $ 1 any x e F n .

C> V°' (l-G)o0*Ft„t V  -
Utn U = vol U^n u 

0

and

vol U nu' = voi U nU'Or(1-G)0g+Ft0t - UQ

So, since supp (og - ((1 - G)og + Ftot )) c U' we can 

apply A.3 to the smooth family of volume elements (1 - G)aQ + Ft<jt
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and we get an isotopy : R n F n such that ipt is the

identity on M - cl U' and iI ôq = (1 - G)og + Ftot . Therefore,

*ta0 = °t near M *

Clearly, if we have Oj = oQ , we get and ^

equal to the identity.

A.5.LEMMA.- Let {K^} be a sequence of compact connected

submanifolds of V with boundary such that V = u K. and
i»l 1

K. n K. is either empty or a codimension one submanifold of V 
 ̂ J

included in both boundaries. Let be a smooth family of volume

elements on F n such that all are equal on R n - int V

and vol K. = vol K. , for any i and t e [0 , l]. Then, there 
a0 1 °t 1 n

is an isotopy : F -*• F with support in V such that 

^*ot = cjq for any t e [0 , l] .Furthermore, if oQ = Oj we 

get jig ! *j ! id •

PROOF. By A.4 there is a smooth isotopy <(>t : R n + F n 

satisfying:

a) ^  is the identity outside the union of disjoint 

tubular neighbourhoods of the connected components of the boundary of 

each Ki . So, the isotopy <j>t has support in V .

b) = oq on the union of some neighbourhoods of the 

boundary components.

c) vol * K. = vol K. for any t e [0 , 1] and any i .
♦t°t 1 °0 1

Applying A.3 to K. we get an isotopy '• - * Ki such

that ej. is the identity on a neighbourhood of the boundary.





withThus, inductively we get an isotopy <j>£ : F n -*• R n
oo

support in u K. such that, for any t 
i=k 1

Therefore we can define an isotopy with support in V 

$ : F n ->• F n as follows

*tl Ki = ♦t0 —  0<|,t °*t ‘

We have that ^  and (j>0 are the identity and 4>t satisfy

vol.* K. = vol *t(K.) = vol <(>io• • 
♦t°t 1 °t 1 °t Z

= vol . 1 Ki = vo1o Ki *. * S  °o’

So, by A.5 we have an isotopy <l»t: F n -*• F n with support

in V such that for any t e [0 , l] 

♦t*t°t = °0

and and ijig are 

Then, vt =

the identity.

gives the isotopy we where looking for .
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