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SUMMARY.

A Lie group G is said to be uniformly finitely generated
by one parameter subgroups exp(tX?) , i =1,...,n , if there
exists a positive integer k such that every element of G may
be expressed as a product of at most k elements chosen alternatively

from these one-parameter subgroups.

In this text we construct sets of left invariant vector fields
on SO(n) , in particular pairs {A,B} , whose one-parameter
subgroups uniformly finitely generate SO0(n) . As a consequence,

we also partially solve the uniform controllability problem for a

3

class of systems x(t) = (
i

u.()X.)x(t) , x «So(n)
1 1

(X.,i =1,...,m)L A =so(n) by putting an upper bound on the
number of switches in the trajectories, in positive time, of

X.(...,X that are required to join any two points of SO(n)

This result is also extended to any connected and paracompact
Cy-manifold of dimension n using a result of N. Levitt and
H. Sussmann. An upper bound is put on the minimum number of
switches of trajectories, in positive time, required to join any
two states on M by two vector fields on M . This bound depends

only on the dimension of M .



INTRODUCTION.

Most interest in controllability on connected Lie groups
G , or homogeneous spaces of G has, so far, concentrated on

finding conditions under which a system

X(t) #XQ(x(t)) + r u.(O)X.(x(t)) , xE£ G, Jui(t)]iHs«

is controllable, where Xq , Xj Xn are left (or right)
invariant vector fields on G . That is, characterizing elements
Xq Xj,--- ,Xn of the Lie algebra L(G) of G , which generate
L(G) , in such a way that the expression for g € G, can be

assumed to involve only elements of the form

n
exp(t(Xn + | u.()X.) , 0<t <@ , where exp is the
u i=l 1 1
exponential map on G . |If Xg generates a compact one-parameter

subgroup or G is compact then the problem reduces to that of
characterizing generators of the Lie algebra; see Jurdjevic and

Sussmann f7] and Jurdjevic and Kupka [5].

Little attention has been devoted to the problem of expressing
particular elements of the group (or related homogeneous space) as
products of elements from the one-parameter subgroups generated

by generators X~,...,Xn of the Lie algebra.



It is well known that if the Lie algebra of a connected
Lie group G is generated by the elements X”,...,Xn , then every
element g belonging to G may be expressed as a finite product
of elements from the one-parameter subgroups generated by
X.j,...,Xn ; see Jurdjevic and Sussmann [73. However the number
of elements required in the expression for g may not be uniformly
bounded as g ranges through G . It follows from an argument in
Lowenthal [14] that if in addition G is compact and the one-
parameter subgroups generated by Xj,...,Xn are also compact,
then G is uniformly finitely generated by exp(tX?),...,exp(tXn)
That is, there exists a positive integer k such that every
element of G may be expressed as a product of at most k elements

from the one-parametcler subgroups generated by Xi""'xn .

The compactness of exp(tX”?),...,exp(tXn) is not a necessary

condition for the uniform finite generation of G even when G s

compact (an example of this will be given in Chapter 1).

Of particular interest due to its immediate consequences for
controllability on Lie groups is the problem of characterizing the
Lie groups G which are uniformly finitely generated and the

corresponding generators X,,...,Xn of L(G)

In [12], Levitt and Sussmann show that for any connected and

il
paracompact C (2 s k s ® manifold of dimension m , there exists



a pair {X,Y} of vector fields on M , such that any two points
of M can be joined by trajectories, in positive time, of the
vector fields X and Y , which involve a number of switches
that is uniformly bounded by an integer N(m) , depending only
on m . However, if M is a Lie Group, or homogeneous space of
G, X and Y are not elements of the Lie algebra L(G) , and
this result cannot be applied to the uniform finite generation

problem.

The complete solution of this problem has been found by
LowenthaT and by Koch and Lowenthal but only for two and three-
dimensional Lie groups; [8], [9], [10], [13], [14], [15], [16].

In particular, in [14] the complete answer is given for S0(3) ,

the real special orthogonal group of dimension three, with Lie
algebra so(3) . Lowenthal calculates the integer k of uniform
finite generation and shows that it is a function of the angle between
the axes of two generators. (Note that any two linearly independent
elements of so(3) generate so(3) as a Lie algebra and the
corresponding one-parameter subgroups are compact.) In particular

k = 3 if and only if the generators are orthogonal (identifying
elements of so(3) with vectors in 1R3 as usual). See also

Davenport [1].

In this case the decomposition of S0(3) by one-parameter



subgroups corresponds to the classical Euler decomposition.

The complete solution of the uniform finite generation problem
in general, does not appear to be easily answered. One of the main
difficulties being lack of a complete characterization of the
generators of a Lie algebra, although significant results have
already been obtained in this direction. For instance see Jurdjevic

and Kupka [51 and Jurdjevic and Sussmann [63.

This thesis takes the initial steps in the uniform finite
generation problem of SO(n) , the real, n(n-1)/2 - dimensional
special orthogonal group, with Lie algebra so(n) . The results

obtained here are original unless otherwise referred.

Chapter | is mainly introductory but includes an alternative
proof to a result by Lowenthal [14] on the uniform generation of
S0(3) and also pairs of generators of so(n) are constructed,

some of which do not generate compact one-parameter subgroups.

Chapters Il, IIl and IV are concerned with the main problem.
Unlike the methods of [14], the basic idea is to use a generalization
of the Euler decomposition as in Hermann [3], which is itself a
result of a general decomposition theory for semisimple Lie groups
G , based on the theory of symmetric spaces, and briefly discussed

in 81, Chapter Il. (Presumably other decompositions of Lie groups



could also be used successfully.) The resultant decomposition

of the group into a finite number of one-parameter subgroups
involves a certain set (Ar""Am} of elements of L(G) , the
corresponding generating set of L(G) . In 82 and 8§83, Chapter II,
some of the possible decompositions of S0(n) are considered
(using this theory). An upper bound is found for the uniform
finite generation of SO(n) by the one-parameter subgroups
generated by those elements of so(n) that belong to the

corresponding generating set.

Special attention is however given to pairs {A,B> of generators
of so(n) which are known to exist for every real semisimple Lie
algebra [Theorem 3.1, Chapter I]. Since not all elements of so(n) ,
generate compact subgroups, for n Z 4 , (a fact seemingly overlooked
in [12]), Chapters IIl and IV concentrate on the problem of finding
pairs of generators of so(n) , whose corresponding one-parameter

subgroups are compact and uniformly finitely generate SO(n)

In Chapter IIl, a class of pairs of generators of so(n) ,
orthogonal with respect to the killing form, is constructed. Each
of these pairs is such that every element belonging to exp(tA.) ,
i=1l....m ,tcR (where {A",..."} is the generating set

obtained in Chapter I1), may be expressed as a finite product



involving only elements from the one-parameter subgroups generated
by A and B, wuniformly in t cIR . In particular, this result
is combined with one obtained in Chapter Il to find an upper bound
for the uniform finite generation of SO(n) by exp(tA) and

exp(iB)

In general, this upper bound depends on the decomposition of
the group used, the generators of the Lie algebra used and their

relation to each other.

Chapter IV is concerned with the same problem for nonorthogonal
pairs of generators. The methods used to construct such pairs are
similar in both Chapters IIl and IV and permutation matrices play

a very important role.

Applications to Control Theory appear in Chapter V. The
uniform finite generation of SO0(n) by compact one-parameter sub-
groups generated by A and B is the same as uniform complete
controllability of (A.B) and consequent uniform controllability
of symmetric systems x(t) * (u~(t)A + u2(t)B)x(t) , x e SO(n) ,
Ju(t)] *M*e , 1-1,2 . (A.B) is said to be completely
controllable on SO(n) if any two points of S0(n) can be joined

by a trajectory, in positive time, of {A,B> . |If there also exists



a positive integer R(n) such that the number of switches that
the trajectory of {A,B} involves, is at most R(n),{A,B} is
said to be uniformly completely controllable. Since the integer
N(n) appearing in [12] depends only on R(n) , for some pair
{A,B} it is possible to put an upper bound on the minimum number
of switches required to join any two states on a connected and
paracompact n-dimensional manifold, by trajectories, in positive
time, of two vector fields on M . This bound depends only on the
dimension of M . Finally, the controllability properties of pairs
(A,B> of vector fields on SO0(n) constructed in Chapters 11l and
IV are used to obtain a set of left-invariant vector fields on

S0g(n,l) , which is wuniformly completely controllable.

Chapter VI contains a few concluding remarks and also points to
some directions for further research in the uniform finite

generations of Lie groups.



CHAPTER I

UNIFORM FINITE GENERATION OF LIE GROUPS.



Si. UNIFORM FINITE GENERATION OF LIE GROUPS AND ITS ORDER

OF GENERATION.

DEFINITION 1.1. - A connected Lie Group G

is said to be uniformly
finitely generated by one - parameter subgroups
exp(tX.]),...,exp(tXn) if there is a positive
integer k such that every element of G can
be written as a product of at most k elements
chosen from these subgroups. The least such k

is called the Order of generation or o .

Although the order of generation of G depends on the one-

parameter subgroups,

it must be greater than or equal to the

dimension of G . In fact, if f:F %G is defined to be the map

which to each element (t,,...,t. ) of Fk assigns h exp(t™X. )
1 * j=I J

ij e {1,...,n} and if it is assumed that the order of generation of

G is less than dim G i.e. k < dim G , all points of F are

critical. Since f is real analytic the set of its critical

values has measure zero (Sard's theorem [18]) so

The following theorem, proved by Lowenthal
generators,

generation of a connected and compact Lie group.

k L dimG .

[14] for a pair of

is a sufficient condition for the uniform finite



THEOREM 1.1. - Let G be a connected and compact Lie Group,
Xp...,X generators of the Lie algebra L(G)
and exp(tX?), i =1,...,n , compact. Then G

is uniformly finitely generated by exp(tX®) ,

i =1,...,n
Proof - Let G, be the set of all products of m elements
exp(tX.j) , | = 1,...,n . exp(tX..) is compact for every i so

Gm is also compact. Since G is connected and {Xj,...,X N = L(G),

for every g ¢ G there is an integer | s.t. g is a product of t
elements of the form exp(tX”) , i =1,...,n , t elR (Sussmann
®

and Jurdjevic [7]). Then VgeG, ge G.l and G= U G

1=t 1
G is complete since, being connected and compact, it is metrizable
(Riemannian metric) so by the Baire category theorem, G is of
second category and G , for some | , contains an open set U .
Hence G = UG gUu ; since ¥g € G, gUu is open this is an open
gc

cover for G and clearly it contains a finite subcover i.e. there
r

are ¢,,...,0 s.t. G= U gU . Buteach g. ,i =1,...,r s
1 r i=1 1 1
a finite product of elements of exp(tX.j) , i =1,...,n and

Uc GJ so the proof is complete.

§2. UNIFORM FINITE GENERATION OF SO0(3).

Corollary 2.1. - S0(3) is uniformly finitely generated by any

two one-parameter subgroups exp(tA) and



exp(sB) unless [A,B] =0 .

Proof - Since so(3) (the set of all 3x3 skew-synrnetric real
matrices) is isomorphic to 1R3 with the Lie bracket corresponding
to the vector product, it is clear that if A and B are any
two elements of so(3) that do not commute, then {A,B,[A,B]}
is a basis for so(3) and {A,B>L ~ = so(3) . Every rotation
of SO0(3) is a plane rotation and as a consequence exp(tA) and
exp(sB) are compact. Now theorem 1.1 applies since S0(3) is

connected and compact and the result follows.

The order of generation of SO0(3) by two one-parameter
subgroups was found by Lowenthal [14] and it is a function of the

angle between the axes of the two rotations as follows:

THEOREM 2.1. - Let , 0< sir/2 , be the angle between the
axes of two one-parameter rotation groups exp(tA)
and exp(sB) of S0(3) . If ip=n/2 , the order
of generation of S0(3) by those one-parameter
subgroups is 3 ; if n/(k+l) s *<n/k , then

the order of generation is k+2 (k*2)

The proof of this theorem is rather long. Instead of working

with SO0(3) Lowenthal works with the induced subgroup of the Mflbius



group and Tchebychev polynomials play an important role in the

proof.

When \i>c [ir/2k , n/(2k-1)) , k 2 2 , a much shorter proof
was found to determine the order of generation of S0(3)
Although when ¢>e [ir/(2k-1) , ir/(2k-2)) the result is not as
good as Lowenthal's, the complete proof, in both cases, is included

here.

THEOREM 2.2. - The order of generation of S0(3) by the two
one-parameter subgroups exp(tA®) and expfsAj)
is 3 if IS andif $£ Cirs2(kel)
w/2(k-2)) , k | 3 , the order of generation is
2k-1. (¥ is the angle between the axes of the

two rotations).

The term "order of generation” is not correctly used here
when <€ c Cir/(2k-1), ir/(2k-2)) ; instead "an upper bound on the
order of generation" should be used. However, for the sake of

simplicity, the former is preferred to the latter.

This theorem was proved without any prior knowledge of the
result that constitutes theorem 2.1. Several lemmas are needed to

prove theorem 2.2.



For every vector x = (x-],x2,x3) e IR3 a skewsymmetric

matrix X =/ 0 -x3 x2\ » formed with the components of x

3
is defined. It is easy to check that Vy cIR , Xy = x*y

lemma 2 . 1 ¥R ¢ SO(3) and ¥x,y cIR3 with [|IxIl = lIvll

Rx =y if and only if RXR1 =Y .

Proof - Let x and y be nonzero vectors. |If RXR =Y then
RXR"y = Yy = 0 and XR-ly = 0 since R e SO(3) preserves the
norm. Let R1ly =z ; then Xz =0 . Since [IxIl = lyll = llz

Rly =x or Rx=y .

Now Rx =y i.e. Rl1ly =x Then, RXR-ly ®» 0 since
XR-1ly = Xx =0 . Let RXR'1=2Z; then Zy =0 i.e. Z«Y and
the lemma is proved.

O
Lemma 2.2. - Every rotation R e SO0(3) is representable as

a product R = exp(t"X) exp(t2Y) exp(t3z) ,
tn cIR, inn 1,2,3, if and only if y s

perpendicular to x and z .



lhe proof can be found in Davenport [1]. ¥x eIR3 ,
exp(tX) is the one-parameter subgroup of SO0(3) that leaves
x fixed. It is assumed that x and 2z may be equal. If that
is the case then Lemma 2.2 states the same thing as the first
part of theorem 2.1. If not just x and z are equal but also
x and y are two orthogonal unit vectors in R , the
representation of R in Lemma 2.2 is the Euler representation

of a rotation by three angular parameters, the Euler angles.

Now, let aj and be two linearly independent vectors
of IR and if = Hai»a2) the an9le between them, a* and a2
generate a plane n . Without loss of generality, a* and a2
can be assumed to be unit vectors. Let {a”,a2.a”,...} be a
sequence of vectors on n where, ¥ i 23, a. = exp(irA®_"N).an_ 2°¢
(Aj is the skewsymmetric matrix corresponding to aJ. , ¥ )
) (ai,ai+i) =1 »* i * 1 and * (ai»aj) = t¥ij1l. Let ak
be the first element in the sequence satisfying $ (a]»a]) * »/2
i.e. (k-1) ip2 4/2 or i] 2 n/2(k-1) . (See fig. 1.) Clearly
there exists a vector x c n| (nj is the plane perpendicular
to aj) such that x = exp(tAk_7).ak 2 for some * c¢ (0,2»]
Since & and x are perpendicular, Lemma 2.2 can be applied

and ¥ R e SO(3) ,



Figure 1.

R = expftjA”r expftgX) expft”r) ER . (2.1)

At this stage the aim is to write exp”~X) as a product
of elements from the one-parameter subgroups exp(tA®) and

expisA”

Since aj = exp(irA.j_.j).a._2» i * 3 and x = exp(tAk_ ").ak 2 »

for some t , wusing lemma 2.1 it follows that

¥i * 3, Ai = exp(w ad Ai )eAi 2 and X = exP(t ad Ak-I""Ak-2 *

hence, by the Baker-Campbell-Hausdorff formula



exp(eA.) = exp(nAj_.j) exp(eAi2 ) exp(-irA._1), (2.2)
Vii3d3d,VO0cR and

exp(eX) = exp(tAk 1) exp(eAk 2) exp(-tA](1) , (2.3)
y 0 £ir .
lemma 2.3. - Let A. , 1 =1,2,... be defined as before.

Then ¥ 0 c IR,

CA. irAg *An At DA ©A« - itA |tA; -irA -ifAs
e ...erejleﬁe 1e'...e léAZ,
i-2 i-2

i =2n and

OA. tA«  bA.

e =e Ce e

i-2

i = 2ntl
Proof (by induction) - It will be proved first that the lemma is
true for i =2 and i = 3 . Then, assuming that it is true for
i =2m2 and i =2m-l it will be proved to be also true for
i =2m and i =2mH , meW .

The relation (2.4) is trivial when i =2 and when i = 3

both, (2.5) and (2.2) are the same relation so (2.5) is true when

i =3.

(2.4)



Now, from (2.2) with i = 2m

8eA2m: ev\AZml geAZmZ g 1A2m-| and

since (2.4) and (2.5) are assumed to be satisfied when i = 2m-2

and i = 2m-l respectively, it follows,

i« nNA, e A -Tp  —, kP ik WA,

-itA, -*A~ -nAE irA, itA, A~ -itA,
. .. .6 e e

e e e Ne
2m-4 2m-3 2m-3
itA, -tho eA2 irA® -nA,  -irAp -irA, - AN
e e e Ne e e ...e e
2m-3 2m-3
-irA, - tA- -irA. -irAp
e e ...e e
2m-2 2m-2
Similarly, from (2.2) with i = 2m+l ,
eA2ntH _  nA2m _eA2m-l _"wA2«
e = e e e

and since (2.4) and (2.5) are assumed to be satisfied when



- 10 -

and i = 2m-1 respectively it follows
B/L . L uA, nA, A, uA A, -itA, -itA, -ItAD
e = e 2e ...e e e 2e e ...e e 2
m-2 2m-2
itA« itA, uAﬁ 6A, —udp -UAI -irAp  itA- A, irAc "A,
e ...e e e ...e e Ce e ...e fe
2m-3 2m-3 2m-2
-TA, -1AI “TA -uAN - A
e e e .. .e e
2m-2
nA, TIA- ItA,  HA- “T 0A. T “IAN "ItA* “HAI
e e ...e e e S e e e.e ....€
2m-2 2m-2
WAj nA. irA_ eA, -nA_ -nA, -*A_
e '...e e e ...e e C
2m-l 2mH

and the lemma is proved.

lemma 2.4. - If thé angle 4 =$ (a™.ag) £ [ir/2(k-1),ir/2(k-2))

il 3, then



ex tA. eA_ -tA. -UAp -, -ith~

e e e e .e e , if k even (2.6)
k-3 k-3
and
(0),4 nA~ irA, A, tA- OA. -tA- -irA, -itA, -irA-
e =ele "...e le G ‘e ev'...e 'e \  if kodd (2.7)
k-3 k-3

for some t e (0,2ir] , eclR .

proof - e ' and eta\_2

tA. tA-
elements from e and e (t t IR) by using (2.4) and (2.5)

can be written as a product of

respectively if k is even or (2.5) and (2.4) respectively if Kk
is odd. Now, using (2.3) and taking into account the composition

of terms with the same generator the relations (2.6) and (2.7)

follow.
Proof of Theorem 2.2 - When ~ = ir/2 , the result is an immediate
consequence of Lenina 2.2 with x =z =& and y = ;  the order

of generation is then equal to 3 . When t Cir/2(k-1) ,ir/2(k-2))
3
it was seen that 3 x «IR , x perpendicular to a] , such that

R = exp(t"A") expft*X) exp(t3A®) , for every R « SO(3) and



- 12 -

cIR . But exp”~X) can be written as a product of 2(k-3)+3
elements from the one-parameter subgroups exp(T-jA") and
exp™A») (Lemma 2.4) and so, the order of generation of
S0(3) is in this case 2(k-3)+3+2 =2k-1 , V k L 3 which
completes the proof.

O

Remark - Since there exists an automorphism of S0(3) that
interchanges the two one-parameter subgroups exp(tA”) and
exp(TA2) , every element of S0(3) can also be written as a
product of 2k-1 elements from those subgroups whose first and

last elements belong to expitA”

§83. LIE ALGEBRAS GENERATED BY TWO ELEMENTS. so(n) AS A

PARTICULAR CASE.
The following theorem, which gives a sufficient condition for Lie

algebras to be generated by two elements, is due to Kuranishi [11].

THEOREM 3.1. - Every finite dimensional and semisimple Lie
algebra over a field of characteristic zero

has a pair of generators.

As an immediate consequence of this theorem, the semisimple



- 13 -

Lie algebra so(nJR) , nl 3 , is generated by a pair of vector
fields. It is not clear, however, as it is in the 3-dimensional
case, whether or not the corresponding one-parameter subgroups

are compact and so theorem 1.1 can not be applied. An interesting
guestion to be answered then is: Do sets of generators of so(nJR)
(in particular a pair) generate compact one parameter subgroups?

The answer will be given at the end of this paragraph.

In the next theorempairs of generators of so(nJR) will be
constructed. Before starting several definitions and concepts
are recalled. For details concerning these ideas see Helgason [2]

and Humphreys [4].

Let g£ be a finite-dimensional semisimple Lie algebra over
C, h a Cartan subalgebra of g~ and * the set of nonzero

roots of g~ (with respect to h).

For each ¢ c * , there exists a unique Hg £ h such that
<H,Hg> = a(H) , VHc h (<*,*> is the bilinear form on g¢gf£ x g\
defined by <X,Y> = trace(adXadY) and called the killing form of

gn). Define ~ = I RH ; the killing form is strictly

positive definite on 1~ x h~ and h =~ (Helgason
[2, p.1703)- It is convenient to identify * with 2~ and then

define an ordering of « induced by some vector space ordering of
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(the dual space of . A positive root is called simple
or fundamental if it cannot be written as a sum of two positive
roots. $+ and a will denote the set of positive roots and
the set of simple roots respectively. The following properties

of A will be used later.
| *o
1. If a,6e A then a-B

2. ais a basis for $ .In fact, wmma ed,a=E
with ej € A and n. integers that are either all

positive or all negative.

For each a € $ therealso exists anelement Xq e g* such

that <Xa,X“°( >=1 ,and V a,B€+

[Xa,X_a] = Ha [H'Xa] = a(H)XO , ¥Heh
(3.1)
Pé’\/ if atB 1 ¢
\ AasBratB if atB « *
where N(X*p are real constants satisfying NOI»P _N‘O»“p
(X~.a € is called the Weyl basis of g* (with respect to h).
Now let g~ = so(n,t) . The compact real form so(nJR) of

g- is spanned by the elements |Ha , Xa—X_a and |(Xa+X..a);
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H_X_ and X defined as above) and
a’a -a

so(n,F) = E F(iHa)x E IR(Xa-X.a)e E iK(Xa+X a)
at$ ae$ ae$

A®E1REa«EIR|é1
ats$ acH

A = ih is the Cartan subalgebra of so(nJR)

Using (3.1) it follows that, ¥a € *

CIH.Ea] = a(H)Fa , ¥Hch
[|H,Fa] = —a(H)Ea1 , VHch
[Ea’Fa] = 2|Ha

Hence, using (3.1) and property 1. of A it follows that

¥a,6£A,

[E»-E6] m -[Fa'V 0 if atB te
Aa.0"a+6” if atB €
’ -
IE(F] O if atB 1 ¢
]
if atB £ ¢

~a,0"a+B’

G-2
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THEOREM 3.2. - Let g =so(nJR) , n >3 and
B= E eaEa eg. There are real
aek

numbers ea and A C g such that

(A-B)L.A'3 -«

Proof - Let AeA . Then A=1iH for some Hc h (h - the

Cartan subalgebra of gc) . B | eaEa and using (3.2) it

follows

ad A(B) = E ea a(H)Fa
aeA

ad2A (B) = - E e (a(H))2 E (3.3)
acA a “

ad3A (B) - E ea (a(H))3 Fq

aeA

ad2i' 2A(B) = (-1)*'1 E ea (a(H))2l' 2EQ
aeA

ad2*_1A(B) = (-1)1"1 E ea (a(H))2i"1Fa
aeA

Now, {a(H) ,a eA) = (“im2eee= a[n/2]* * N ax* N

denote E and F respectively, i =1,...,Cn/2] (similarly

e. and f. stand for e and f  respectively). From B =Ee "

i 1 ai i aeA

and the first 2t-1 equations in (3.3) with | = [n/2] it follows
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Since the first determinant has the same absolute value as a
Vandermonde determinant, M is invertible iff

2
n (a'.—62 %1 a, 1n e2. to

Isi<jst. 1 J i=I i=1

So, if Va(A, N /0 and A is an element of the Cartan
subalgebra of g satisfying Ja(A)] are nonzero and distinct,
VaeA, then {B,A}¥» A contains {Ea,FQ,a c A}» A . It can
easily be proved that (Ea’Fa’a c A)Loh = so(nJR) . In fact, let
g' = {Ea,Fa,0 £ A>L A . {Ha,a £ A} c gj. since CE~.F*] = 2i Hq
{Ha,a £ A} is a basis of h (the Cartan subalgebra of so(n,C))
so h is a Cartan subalgebra of gj. . Hence, Ye £+ ,

6 = Z n-a.. (property 2. of A) so, « is the set of roots of
a-fA

gi- . Since a semisimple Lie algebra over C is determined (up to
isomorphism) by means of a Cartan subalgebra and the corresponding
set of roots (Helgason [2, p.173]), gi = so(n,C) and

{Ea,Fa,a £ A)L A = so(nJR)

To summarize, if Y a £ A, e, / 0 and A £ A satisfies
la(A)] are nonzero and distinct Y a £ A , then

{B - | eaEa, A)L A = so(nJR)
acA
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Remark - In a similar way it can be proved that if

B,= £ faFa ,fa¢0 (Vac A and A as above, then

{B1,A}1.a e s°(nJR) =

A canonical basis of so(nJR) can be defined, namely the

skewsymmetric matrices A” ; 1s i <j s n where

6., 6. if 1skusn

*‘a 4jk if 1sl1lsks"

([ADk”™ stands for the Kki-th component of a matrix A.)

{AN i , i =1,...,[n/2]> is a basis of a Cartan subalgebra

A of so(nJR)

[n/2]
Given A= L BiA "~ 2icA A= iH
(a(H),acA} = {BA"B~"i = - 1} u (Bn + Bn>, if n
71 7
and
(a(H),acA} = iBM-Bj+j, 1,...,— )u{Bn_i) *if n is odd.

~T

even
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Example 3.1. - g=so(4JR). A =A™ + /7 A4 €A

and a(A) = {i(1-),i(1+/M}. So, A satisfies the conditions
+
aeh

of theorem 3.2 and there exists Bt g s.t. {A,B>L A =so(4W)
This example answers the question formulated earlier. In
fact, although (A,B) generates so(4JR), exp(tA) , t cR is not
compact since it is the noncompact line on the torus T generated
by exp(A~t) and exp(sA34) . Theorem 1.1. cannot be applied

here.

Although there are Lie Groups that can be uniformly finitely
generated by one-parameter subgroups that are not compact (for
instance T = S0(2)xS0(2) is generated by exp(tA") and
exp(s(A™ + & A7) and the order of generation is 2), only
compact one-parameter subgroups will be considered in order to be

able to use Theorem 1.1.
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CHAPTER I

DECOMPOSITION OF LIE GROUPS BASED ON SYMMETRIC SPACES AND

CORRESPONDING GENERATING SETS OF SO(n)
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§1. DECOMPOSITION OF LIE GROUPS BASED ON RIEMANNIAN SYMMETRIC SPACES.

This paragraph contains general ideas concerning Riemannian
symmetric manifolds (R.S. Manifolds) and it is explained how
Lie groups that can be regarded as Lie transformation groups on
R.S. manifolds may be decomposed as a product of abelian subgroups.

For full details see Helgason [2] and Wolf [20].

A Riemannian manifold M is called symmetric if each point
pcM is an isolated fixed point of any involutive isometry Sp
of M(Spt identity and sg: identity). Connected R.S. manifolds
are complete and any two points p and q in M can be joined by
a geodesic Y of minimal length. If m is the midpoint of Y ,
sm sends p to q therefore, the group I(M) of isometries of
M acts transitively on M . This action gives M the structure
of a homogeneous space G/K where G = Iq(M) is the identity
component of (M) and K is theisotropy subgroup of G at a

point X - The mapping a:G G defined by a(x) = s%q X syq

is an involutive automorphism of G and K = {x ¢ G:o(x) = x}
The study of homogeneous spaces can then be reduced to the study
of coset spaces G/K where G is a connected Lie group and K a
compact subgroup of G . If g and T denote the Lie algebras

of G and K respectively, (do)g is an involutive automorphism
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of g and g admits a direct sum decomposition g =T 9 P
with T = {Xcg:(da)eX = X) and P = {Xcg:(do)gX * -X}

Since (do)e is an automorphism, it follows

[T, Pl cP ,[P,Pl cT and [T, T] cT . (1.1)

T is a subalgebra of g and P is a vector space.

If n denotes the natural mapping of G into M defined

QM (the

tangent'space of M at Xq) with kernel T that maps P

by x x.xEt , (dn)e is a linear mapping of g onto TX

isomorphically onto T M . Now, if P =exp P , n maps one-
x0

parameter subgroups contained in P into the geodesics emanating

from Xg , exp(tX) *®s exptX.Xg

A Lie algebra g which admits a direct sum decomposition
g=T»P, into the %1 eigenspaces of an involutive auto-
morphism s satisfying (1.1) and such that the group of inner
automorphisms of g generated by T is compact, is said to be
an orthogonal symmetric Lie algebra (g,s) . A pair (G,K) ,
where G is a connected Lie group with Lie algebra g and K

is a Lie subgroup of G with Lie algebra T is said to be the
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pair associated with the orthogonal symmetric Lie algebra (g,s)

and K is called the symmetric subgroup.

A Cartan subalgebra of an orthogonal symmetric Lie algebra
(g,s) is a maximal abelian subalgebra of P . All Cartan sub-
algebras of (g,s) are conjugate under AdgK , the adjoint

representation of K , and for a Cartan subalgebra A ,
P = U AdrkA .
keK R
Lenina 1.1. - If M is a R.S. manifold G/K then G = KAK
where A =exp A for any Cartan subalgebra A
of the orthogonal symmetric Lie algebra associated

with  (G,K)
Proof - G acts transitively on M with action

HG*M M

(9,x) - g.x

Any two points in M can be joined by a geodesic since M s
complete. Therefore, ¥ g€ G and V x ¢ M there exists a

geodesic y joining x and g.x. Identifying, as usual, the
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tangent space T with the subspace P , there exists p e P
such that g¢g.x = p.x . Since (p-1g).x = (p_1p).x = x , p_lge K
and g = pk for some ke K i.e. G=PK . But P =exp P =

=exp U Ad-kA = U kexp Ak * U kAk ~c kak and so
keK b keK keK

G = KAKK or G = KAK

Given a Lie group G , an involutive automorphism o and
corresponding synmetric subgroup K define a decomposition
G=KJAIK . If M is a R.S. manifold of the form G/Kj each
involutive isometry of M gives rise to an involutive automorphism
of G . It is clear that R.S. manifolds play an important part in

decompositions of Lie groups.

After having decomposed G = A ~ ¢ a n be decomposed
similarly, Kj = °era’n G =~ 2~1*272%2 ~ if this
procedure is continued until an abelian group K. is encountered,
G becomes a product of abelian subgroups K.,A..,AM ~,... A

namely

G=K (1-2)
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At each stage, different choices of involutive automorphisms
may exist, each of which gives a different decomposition of the

symmetric subgroup Kj and consequently of G .

After decomposing G as a product cf abelian subgroups, the
decomposition of G as a product of one-parameter subgroups is

a trivial matter.

liivolutive automorphisms d for the classical matrix groups

always exist. Full details can be found in Helgason T2].

§2. DECOMPOSITION OF SO0(n)

Referring to Chapter | of Helgason [2], when n * 3 , the
only choices of R.S. manifolds M = SO(n)/K , and associated
orthogonal symmetric Lie algebras (so(n),0) are given up to

conjugacy by

I - g 1 so(p+q) x1xp X1 £ so(p),X3 £ so(q)

pnul -X2X3 X2 arbitrary ,

01
«<*> 1 X»M < >p., -p
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X] € so(p) 0 x2

X3 « SC(q) r*2 0
K= 80(p) x SO(®)

A Cartan subalgebra of (g,0) s A= ? F A

irl 1P+

dimension q .
Il - g =so(2n) ,
n21
'<*> 1 ], xV - J, 0 I
“In 0

X~ arbitrary

with

T =so(2n) n sp(n) « u(n) = < X3 X4 X3 ¢ so(n)

\'X4 X3 V X

< xg » X1» X2 ~ sc(n)

Ix2 xi

K« U(n) , where U(n) is embedded into

A+ iBh. (5 5) o A+ B «u("> *

S0(2n) via
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A Cartan subalgebra of (g,0) is [£] - dimensional and

generated by

{A12 * An+l,n+2 * A34 ' An+2,n+3" ,,,} *

Since every Cartan subalgebra of so(p+q) is [-279.]- dimensional,
a Cartan subalgebra of the orthogonal symmetric Lie algebra
(so(p*+q),0) is a Cartan subalgebra of so(p+q) iff in |,

P =49 (ptq even) or p =g+l (p+q odd).

For S0(4) , there are more choices for the orthogonal

symmetric Lie algebras (so(4),a) since so(4) is isomorphic to

so(3) x so(3) . However these do not yield any further R.S. manifolds
S0(4)/K
When n = 3 , the decomposition S0(3) = based on |
with p =2, g=1 is just the Euler decomposition. and
are one-parameter subgroups generated by A~ and respectively.

Different choices of involutive automorphisms o give a
different direct sum decomposition so(p+q) =T fi P and hence
different decomposition of SO(p+qg) . The diagrams below illustrate
a choice of canonical basis elements that generate T and A for

each choice of o in | when g =so(5) and g = so(6) . The
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diagrams for so(2n+l) and so(2n) are constructed similarly.

1. g = so(5)

b) p=3,q9-=2

{Ajjjld = 3,4,5;i <j} u {A12} is a basis of T .

g = so(6)

a) p=5,q=1

{Aij,i,j=2,...,6,i<j}i

A * IRAN
K] = S0(5)
Al = exp(tAlft),tdR



by p=4,q9=2

{AJJ;ig =3,...,6;i <jJ) u {A"} is abasis of T .

Al = exp(tAl4)exp(eA25)exp(TA3

t,e,xdR .

1. - The decomposition of G = Su”™nj oumnea in si,
into r one-parameter subgroups yields r = dimG
if and only if one decomposes SO(n) and subsequent
symmetric subgroups SO(m) , 2 < m< n according
= to the symmetric space structure in | above, with
symnetric subgroup Kj * SO(i) * SO(i.) if m=2t

and 10 = S0(I+1) * SO(i) if m* 21+

Proof - Since the order of generation of a group G is greater
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than or equal to the dimension of G , it follows that if
SO(n) = KiAK™ as in lemma 1.1, with any symmetric sub-
group as given in | or Il, dim SO(n) s 2 dim K* + dim

Therefore, for such decompositions, the conditions under which
dim SO(n) = 2 dim + dim AN (2.1)

have to be found.

For the decomposition based on Il where m= 2i , = U()

with dimension | and dim A~ = U/2] it follows

2 dim KL + dim AL = 2t2 + U/2] and
dim S0(2t) = 2t (2t-1y/2 = 212-1 . Clearly
Zi2-i <21? « [t/2] for all | >0 sono

decomposition based on Il yields (2.1).

For decompositions based on | where n=p+tq , pZq,

k] = SO(p) x SO(q) with dimension

p(p-1)/2 + q(q-1)/2 = (p2-p)/2 + (g2-q)/2 and

Al is g-dimensional it follows

2 dim +dimA—j=p2+q2-p and

dim SO(p+q) = (p+q)(p+q-1)/2 = (p+q)2/2 - (p+q)/2
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Now,
. . i 2
2 dim + dim - dim SO(p+q) = ((p-9) -(p-q))/2 =
= i(P~q)(P-Q-1) « Thus (2.1) holds if and only
if p=q or p=qtl
g
Here, only decompositions of S0(n) based on | will be
considered.

Lemmma 2J|. - The number of one-parameter subgroups that
decompositions of SO0(n) vyield when one decomposes
SO(m) , 2 < ms n according to the syimetric
space structure in | increases with p , being

maximal when p=ml , q=1 and minimal when

p=9g (or p=qgtl).

Proof - Since the number of one-parameter subgroups yielded by
decompositions of SO(n) is greater than or equal to dim SO(n) ,
as a simple consequence of lemma 2.1 this number is minimal when
p*q or p«gtl . To prove that it increases with p it is
enough to show that, if for some me (2,n],50(m) is decomposed

as SO(m) » KAK with K = SO(p) x SO(m-p) , p e [[m/2],m-I] nTL



and A (m-p)-dimensional, 2 dim K + dim A increases with p .
2 dim K + dim A = p2 + (m-p)2-p = 2p2 + p(-2m-1) + m2

Now, ¥ m let fJR *IR be defined by f(x) = 2x2 + x(-2m-I)+m~ |,
f'(x) =4x-2m-l = 0 iff x = (2m+l)/4 and f(x) is an increasing
function in the interval [(@2m+l)/4,«>) . Since p « [[m/2],m-I] nZ
and m/2 < 2m+l)/4 < (m+)/2 , it follows that 2 dim K+ dim A
increases when p e [(ithl)/2,m-1] n2 . Hence f(m/2) = m(m-1)/2 <
< m(nHN/2 = f((m+1)/2) so, dim K + dim A increases with p

for p € [[m/2].m-1] nZ and the proof is complete.

83. GENERATING SETS AND THE NUMBER OF GENERATION OF SO(n).

Let 8 denote the canonical basis of so(n) defined in
chapter I i.e. 8 = (A.. ; i,j =1...... n;i <j} , with
*J

commutation relations ([A,B] 1 AB-BA)

CAij’Akt] = 6jkAit + 6it Ajk " 6ik Ajt ” 6jt Alk

and Bj ¢ 8 the canonical basis of any subspace S of so(n)

that has a canonical basis.

DEFINITION 3.1. - A generating set of the Lie
algebra so(n) is called a minimal generating

set if no subset of {X~,...,Xt} generates so(n)
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Since SO(n) is compact and connected, ( X ~ ,i= 12~ = so(n)
iff {exp(t™);i = ; t. E1R) is a generating set of S0(n)
As a consequence, some of the results concerning the Lie algebra

so(n) in this paragraph, have a dual form for the Lie group SO(n)

In this chapter only generating sets whose elements belong to
8 will be considered and from now onwards, whenever generating
sets of so(n) are mentioned, it will be understood that its

elements have the form , 1 <]

Remark - Every one-parameter subgroup exp(tA.jj),t c IR of S0(n)
is compact since it can be viewed as rotations in the (e.].em-
plane. So, any generating set (expft~,t. €IR} , uniformly

finitely generates SO(n). (Theorem 1.1. chapter 1).

Llemma 3.1. - Any minimal generating set of so(n)(S0(n))

contains n-1 elements.

Proof (by induction) - If n =3 , any element belonging to the
canonical basis of so(3) generates a one-dimensional abelian
subalgebra of so(3) and on the other hand any two distinct
elements generate so(3) as was made clear in chapter |I. So,

the generating set of so(3) contains 2 elements.
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Now, assuming that any minimal generating set of so(n-I)
contains n-2 elements it will be shown that any minimal
generating set of so(n) contains n-1 elements. Assume the
contrary i.e. there exists a minimal generating set of so(n)
with ms n-2 elements. Then, since S0(n) = SO(n-1)A SO(n-1)
with A one-dimensional there must exist a minimal generating
set for so(n-l) with at most n-3 elements which is false by

assumption and the lemma is proved.

0
Now, let P denote the (n-1)-dimensional subspace of
so(n) defined as the (-1) -eigenspace of the involutive
automorphism of so(n) (as in I, 8) when p =n-1, g=1.

If Bp denotes the canonical basis of P (since so(n) =T8 P,

P has a canonical basis) it follows

lemma 3.2. - 8p = (AN.€8s.t. j is fixed, i=1,...,j-1}U

U{A., e8s.t. j is fixed, i=j+I,...,n}

I
Proof - Since any Cartan subalgebra of (so(n).o”) is 1-
dimensional let AK)i (k<i) be its generatori.e. A «1IR A"
A is the maximal abelian subalgebra contained in P so noother
elements of 8p commute with A~ . That is, all the elements of

BpNiA”~} have either k or as an index. The proof will be
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complete when it is shown that the elements of 8p\{Aki}
all have index k or index | . Assume the contrary
i,e. 3 c Bp for some r / | and 3 M €Bp for some st k

Since k / « it follows that

CArk,Asi] -*u if 5-r

k 0 otherwise.

But the relation [P,P] ¢ T implies that Ark and A$" commute
and the maximal abelian subalgebra contained in P would not be

l-dimensional. So, the lemma is proved.

Llemma 3.3. - Bp is a minimal generating set of so(n)

Proof - The proof is an immediate consequence of lemma 3.2 and

the commutation relations. In fact ¥ Aik £ B\8p ,
4ik = -CW I k*J #ik < [Aij-AJk] . f k>.: .
Since ~j,Akj £ P the lemma follows.

O

As a consequence of decompositions of S0(n) outlined in
$l and in I, 8 into r one-parameter subgroups of the form

exp(tA”j) , one can associate with each such decomposition a
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generating set of SO(n) , "the corresponding generating set",
and a number, the number of one-parameter subgroups that such a
decomposition yields. Although it is true in some cases that
this number coincides with the order of generation of SO(n) by
the one-parameter subgroups of the corresponding generating set,
in general this number is just an upper bound on the order of

generation.

DEFINITION 3.2. - The number of generation of SO0(n) is the
upper bound on its order of generation
resulting from a decomposition of S0(n)
into r one-parameter subgroups when SO(n)
and subsequent symmetric subgroups are
decomposed according to the symmetric space

structure in 8§2.

Whereas the order of generation only depends on the generating
set, the number of generation is also a function of the decomposition

chosen.

Now, lemma 2.2, §2. can be restated as follows

Lemma 3.4. - The number of generation of SO(n) corresponding

to a decomposition of S0(n) by one-parameter

subgroups of the form exp(tA”) increases with p
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being minimal (equal to the dim of SO(n))

when SO(m) , Y mc (3,...,n) is decomposed
as in I, 52. with p=q or p=gtl (ptq = m
and being maximal when SO(m), Y mc {3,...,n} is

decomposed with p=m-1, gq=1.

3.5. - The cardinality of the generating set of so(n)

(or SO(n)) corresponding to a decomposition of

SO0(n) decreases when p increases, being minimal

when SO(m) , 2 <ms n is decomposed according

to the symmetric space structure in |, with p=ml ,
g=1.

Proof - If Y i =0,l,...,n-3 SO(n-i) is decomposed according

to the symmetric space structure in |, 8. with p=n-i-1 ,q=1,

the result is the decomposition

where

so(n) = Kn-2An-2Kn-2An-1Kn-2An-2Kn-2 ----- Kn-2An-2Kn-2Al

Kn-2An-2Kn-2 ,M Kn-2An-2Kn-2An -1Kn-2An-2Kn-2 *

Kn 2»An_2»eee»*2»Ai are distinct one-parameter subgroups

of the form expftA”) . So, the generating set of so(n) contains

n-1

elements and it

is clearly a minimal generating set (lemma 3.1.).
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To prove that (generating set) increases when p decreases,
it is sufficient to show that if for a certain i , SO(n-i) is
decomposed as in | 52. with p <n-i-1 then -f. (generating set)
is greater than n-1 . Without loss of generality i can be

taken equal to zero. Now SO(n) = KAK with K = SO(p) * SO(nh-p) ,
p<nl and A is n-p dimensional. Then, (generating set)
i (p-1) + (n-p-1) + n-p =2n - 2 - p>n-l . (p-1 and n-p-1 being
the cardinal number of minimal generating sets of SO(p) and
SO(n-p-1) respectively.) Clearly 2n-2-p increases when p
decreases and the result of the lemma follows.

O

It is clear from lenma 3.4 that, although the number of
generation of SO0(n) by one-parameter subgroups of the form
exp(tA.jj) is minimal when ¥ ms.t. 3s ms n , SO(m) is
decomposed as in I, §2. with p=q or p» g+l (ptq = m), the
generating set of S0(n) corresponding to this decomposition
contains more elements than the generating set corresponding to

any other decomposition based in I, 52. (lemma 3.5).

In the next chapter only generating set of S0(n) with either
n or n-1 elements will be considered. The reason for that choice
will become clear later. Now, two decompositions of SO0(n) are

found to give generating sets of SO(n) with n-1 and n elements.



-4 -

Lemma 3.6. - 1) The generating set corresponding to a
decomposition of SO0(n) by one-parameter
subgroups of the form exp(tA.IJ.) resulting
from decompositions of S0(n) and subsequent
symmetric subgroups as in |, 82. contains
n -1 elements iff p=m-1,q=1 for

every m, 3smsn .

2) The generating set corresponding to a
decomposition of S0(n) by one-parameter sub-
groups resulting from decompositions of S0(n)
and subsequent symmetric subgroups as in |, §2.
contains n elements iff for some m e [4,n] nTL
SO(m-]) is decomposed with p = m.j-2, q = 2
and SO(m) , me [3,n] nZ ,mj-m\ is

decomposed as in 1) above.

Proof - 1) is obvious from lemma 3.5. Without loss of generality,
2) can be proved when mt = n . Then SO(n) = KAK with

K =80(n-2) x SO(2) and A 2-dimensional. Now S0(n-2) and
subsequent symmetric subgroups are decomposed as in 1) above, and
the corresponding generating set contains (n-3) + 1 + 2 = n ele-

ments. Now the lemma follows as a consequence of lemma 3.5.
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lhc next lemma, included here just for the sake of completeness,
is given without proof. However, it follows easily by using arguments

similar to those used to prove the last 2 lemmas.

lemma 3.7. - If SO(m”) , for some nf* c C3,n] n-". is decomposed
as in |, section 2, with p = (m~-D-i , (1*0,1,...,
m~-3) and g =i+l and SO(m) Ym ~ ,
mt [3,n] nZ is decomposed with p=m-1, g =1 ,
then the corresponding generating set of SO(n)

contains (M - 1+i) elements.

Next theorem contains the main results, in this paragraph,

which will be used later in chapters Il and IV.

THEOREM 3.1. - 1) SO(n) is uniformly finitely generated by
(n-1) one-parameter subgroups (picked as in
lemma 3.6-1)) and the number of generation

is 2n1- 1.

2) SO(n) is uniformly finitely generated by
n one-parameter subgroups (picked as in
lemma 3.6-2)) and the number of generation

is 2n"2 + 2 .

Proof - The first part of 1) and 2) is a consequence of lemma

3.6-1) and lemma 3.6-2) respectively.
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Now, if the decomposition mentioned in lemma 3.6-1) is

applied to S0(n) and subsequent symmetric subgroups, the result

is the equation (1.2) with G =S0(n) , i = n-2 . One has Kn_~ = 50(2)
occurring 2n"2 times and A. ,1s i n-2 , occurring 2* “times.
NA? N2 =, n-2 e
Thus SO(n) is  a product of 206 1" 271= r 21= 2n_| -1
i=1 i=0

subgroups.

On the other hand, if the decomposition is as in lemma 3.6-2)
(with m§ = n) , SO(n) = SO(n-2) SO(2) A SO(2) SO(n-2) , with A a
2-dimensional abelian subgroups and hence S0(n-2) = KMNAMNKAAN
Al .... AjiKjA.jK.j with i = n-4 . This decomposition of
S0(n-2). is as in 1) above and so S0(n-2) is a product of
2n"3 - 1 one-parameter subgroups. Then S0(n) is a product

of 2(2n'3 -1+1) + 2 = 2n’2 + 2 subgroups.

D
Remark - It is easy to conclude that in particular
{exp(tiAin), i =1,...,n-1;t, elR> is a generating set satisfying
Theorem 3.1-1) and {expft*"A™ ~+.]); i =1,...,n-1;t» «F)Uiexp(tA™n)}

is a generating set satisfying theorem 3.1-2).
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CHAPTER 111

UNIFORM FINITE GENERATION OF SO(n) BY ONE-PARAMETER
SUBGROUPS GENERATED BY ORTHOGONAL PAIRS OF LEFT-INVARIANT

VECTOR FIELDS.



§1. PRELIMINARIES.

Let x = (Xj.x™,...,xm) , m=n(n+l)/2 be a vector in
the m-dimensional real space IRm . With such a vector, an

element X of so(n+l,F) defined by

X2 | x4 xm-n+l
-Xi 0 X3 1 x5
"x2 ~Xx3 o X6
~x4 X5 *X6 I o
"m
" . 0
xm-n+l ! _Xm

is associated. A simple calculation shows that ¥ X,Y e so(n+l) ,
trace (XY) = -2(x,y) . ((x,y) is the inner product of x and Yy.)
Since V X,Y « so(n+l),n * 2,<X,Y> = trace (ad X ad Y) = (n-1) trace

(XY) (Helgason [2, p.189D) it follows

VXY ¢ so(n+l),<X,Y> «-2(n-1)(x,y)

i.e. X and Y are orthogonal with respect to the killing form iff

the corresponding vectors x and y are orthogonal.

A canonical representation of so(n+l) as ~en
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defined with canonical basis elements e j~,...”~ representing

A12*A13...... An,n+l respectively.

VA t so(n+l) , the induced representation of ad A is

the num skewsymmetic matrix E a..A.. , where A., are
Hicjsm 1

the canonical basis elements of so(m) and exp(t ad A) acts

on the (m-1)-dimensional unit sphere imbedded in IRm

Now, if SO(n+l1l) is decomposed as in |, chapter Il with
p=n,q=1 and the corresponding direct sum decomposition of
so(n+l) is considered i.e. so(n+l) =T 9P , T =so(n) ,

P =spaniAj n+i,i«l,n} and if in particular

E a.. A.. £T , since both T and P are invariant

A ..
Isi<jsn 1J 1]

subspaces of ad A , the induced representation of ad A s

the nxm matrix

dA| o

where adj-A and adpA are the induced representations of ad A
restricted to T and P respectively. Hence, since P is a

n-dimensional vectorspace with canonical basis elements
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3585 A ner 7 Biphj e
¥p-= it follows that the induced representation of

adpA is the n*n matrix | a.. Al. where A!, are the
K Isicjsn 1J 1J -

canonical basis elements of so(n) and so exp(t adpA) acts

P is isomorphic to r" (Si, chapter Il); its canonical

. . . n-1
basis elements viewed as vectors in S

52. THE USE OF PERMUTATION MATRICES IN CONSTRUCTING ORTHOGONAL
PAIRS {A,B} OF VECTOR FIELDS THAT GENERATE so(n) AND

THE UNIFORM GENERATION OF SO(n) BY exp(tA) AND exp(TB)

Since SO(n+l) is semisimple, there are pairs {A,B} of
vector fields that generate so(n+l) (T.3.1, chapter 1). |If
exp(tA) and exp(sB) are compact theorem 1.1. (chapter 1) can
be applied and SO0(n+1) is uniformly finitely generated by these

one-parameter subgroups.

In this section, pairs {A,B} of generators of so(n+l) ,

orthogonal with respect to <e,*>, that generate compact one-
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parameter subgroups are constructed and the number of generation

of SO(n+l1) by exp(tA) and exp(sB) is found.

Permutation matrices play a very important role in this

chapter.

A real matrix P*“ satisfying P“e. = ai e®.j,1s1sn,

2
a. =1, n a permutation on n letters, is a permutation matrix.
n
The following results are standard. P“ e SO(n) iff na &1 (*1) ,
n i*l 1

n is odd (even) and n cannot be written as a product of disjoint

cycles i-ff P“ has no invariant subspaces.

Since SO(n) is connected and compact, the exponential map
exp:so(n) SO(n) is onto (Helgason [2, p.1353). So, if P“ s
a permutation matrix in SO0(n) , viewed as an endomorphism of
the canonical representation of P (P defined as in Si.), there
exists A“ e so(n) such that the induced representation of
exp(adpA“) coincides with P® . Assume that P° has no
invariant subspaces. Hence, (P®n =i In and

On « {exp(t ad A“), k 1 ; tcR, i c (1,— ,n}} is a compact

subset of P which contains the elements Al n+i»***»An n+] =«
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THEOREM 2.1. - For n Z 3, let A“ e so(n+l) satisfy
exp(ad A“) = P* , P“ a permutation matrix
of P' span{Ai ~ ,i=1,...,n} viewed in its
canonical representation, such that J is not
a product of disjoint cycles and B « c so(n+l),
then SO(n+1) is uniformly generated by

exp(tA“) and exp(sB) with nunber of

generation 2n+l1-1 and A“ and B generate

so(n+l) . If B = An n+i the number of generation

may be reduced to 27-3 . The elements A*“ and
» B are orthogonal with respect to the killing

form <e,e> on so(n+l)

Proof - Clearly if SO(n+l1l) is generated by exp(tA“) and

exp(sB) ; t,s clR , then {A*,B)I A = so(n+l)

If SO(n+1l) is decomposed as in Lemma 3.6-1) (chapter I1)
and so(n+l) decomposed according to the corresponding canonical
decomposition i.e. so(n+l) =T 9 with * span{A~,2sjsn+I}

and T. =so(n-i+l) «Ti+l 0 P.+1 , P.+1 = span{A.+1",i+2sjsn+l) ,

Isisn-2 , since A = exp(A..) and A is a one-dimensional
subalgebra contained in P. it follows that the set {A. n+",i»l,...,n)
contains a generator for a candidate A for |Isisn-1 . Hence, the

Lie algebra T j » so(2) in this decomposition is generated by
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An n+i . Then, $0(n+l) is uniformly generated by the n one-
parameter subgroups generated by { p+*,i=1..,n), with number
of generation 2n-1 (Theorem 3.1-1), Chapter IlI). By construction
of A*“ and B there exist reals t],...,tn such that

exp(t.j ad AP 'B * Ai,n+l e Isisn . Using the Baker-Campbell -

Hausdorff formula it follows

exp(siAi nt+i) = exP(t1*5)exp(siB)exp(-t1NJ) , si tF

Hence the 2n-1 subgroups generated by (Ai n+",i»l,...,n)
appearing in the expression for SO(n+l) can each be expressed

as a product of three one-parameter subgroups generated by A®

and B . Taking into account the composition of terms with the
same generator, a total number of subgroups 3(2n-1)-(2n-2) = 2n+/-l

is obtained.

If B = An n+] , then each subgroup generated by
Al n+1I’* " JAn-1 n+l a Product three one-parameter sub-
groups generated by A“ and B , whereas each subgroup
is generated by B already. However, in this case there are no
composition of terms in the resulting expression and SO0(n+1) s

written as a product of
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2n N h 3(2n ~-1) = 2n+” - 3 one-parameter subgroups
generated by A“ and B .

By construction A* = | A..; B= | 6-A. ,
n lIsi<jsn 13 13 Isisn 1 1,n+l

and clearly <A*“,B> =0 .

lhe description that preceded Theorem 2.1 about permutation
matrices and the way they act as elements of SO(n+1) on canonical
basis elements of so(n+l) when so(n+l) is viewed as the real
vector space JRn(n+l1)/2 , can be explained in a different and

very simple way, using basically the following result.

Lemma 2.1. - If P“ is a real permutation matrix defined

by "!' ei =“i en(i) «1=1...... n**ls1le
n a permutation on n letters, then

ifi,j « {1.....n)

r WOV et an@)nG)
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Proof - Let E-. be the nxn matrix defined by
*J

[E~]” =626~ i.e. E~ is the matrix whose rth-column

is the zero vector if r | J and is the vector e if r 1 j e

Clearly E(j-Ej1 « A(J . Since Pj e, - a, en(() and

P,.e. =a- e ,« then
LIRS I I 1 ()

. L . . . . (2.1)
p; Aij = pn(Eij-Eji) =i En(i),j < “j En(j).i
An(i),n(j)pn = ((fv An(i),n(j))
"M {PP o 2En(i),n(j) *En(j),n ()"
/l r - f
1 (ai Ei,n(j) Bj tj,n(i)Jd
é p o _1 E
tn(i),] ai n(J),i *
(2.2)

Hence, aiajAn(i),n(j)Pn = aiEn(i),j"ajEn(j) ,i

and (2.1) and (2.2) give
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F‘r‘1 Ai'j' = ai. aj An(i),n(j‘)x Ph T.e.

1 <e?>” “ 1 “j ati(l),n(d)

Now, if P*“ is assumed to have no invariant subspaces and

belong to SO(n) , Pn=/P“ iQ\c SO((n+1)
1
<" T1)

and -3 An e so(n+l) s.t. exp(An) = Pn . Since

" pnei © »Ll en(i) =1,

(2.3)

\ Pn en+l " en+l

\a 1 1
Anentl © 0 and An m | 0 so(n)
0 ,0

(exp A* = P*) . Lemma 2.1 applied to (2.3) gives

and since
Pn Ai,n+l Pnl “ “1 An(i),n+l



(Pn)n = £ 1 it follows that ¥ i,j = 1...... n 3 tMckR
such that exp”adA”~.A. ~ « Aj ntl . Hence
On = (exp(t ad \)-Ai>n+l , t cF , i e (1.— ,n)> is a

compact subset of P (as previsouly defined) which contains

the elements A. n+j , i =1,...,n and if B e On the pair

{Ajj.B} satisfy the conditions of theorem 2.1.

Given a permutation matrix P e SO(n) , the existence of
A c so(n) s.t. exp(A) =P is, as already pointed, a mere
consequence of the exponential map being surjective. Conditions
on the entries of A may be found using the fact that if P
has eigenvector x corresponding to the eigenvalue X then
A has the same eigenvector corresponding to the eigenvalue

€, =log.x , for some e .

The following results are standard. |If and are
any two permutations on n letters that cannot be written as a
product of disjoint cycles, the corresponding permutation matrices

P and P,, are conjugate l.e. there exists a permutation
nl n2

matrix U s.t. UP, Ul = Pn If x is an eigenvector of
“1 n2 e

Pn corresponding to an eigenvalue X then Ux is an eigenvector



- 55 -

of P corresponding to x . Hence, if P C So(n) and
"2 nl

exp(A ) =P for some A, Cso(n) , it follows that
nl nl nl

Uexp(An]) IT" * «yu-1- 7h

or exp(UA U'l) =P
nl h
Since U is a permutation matrix (the matrix of a

permutation n) and A = E a.. A., it follows from
nl Isi<jsn

lemma 2.1. that

UA U1 Z
d o isijen @ An@nG)
Clearly, conditions on the entries of a skew-symmetric matrix
A s.t. exp(A) = P for some permutation matrix P without
invariant subspaces are sufficient to derive conditions on the
entries of any other matrix An satisfying exp(An) = ?n

(P~ and P conjugate).

Next, P is the permutation matrix defined by Pe* = e™1 ,

i =1,...,n-1 , Pen = (-1)n+lel and conditions on the entries of
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A s.t. exp(A) = P are found. Both cases, n odd (even)

will be considered independently although in a similar way.

I - n odd

P has eigenvalues {x:x = n/T = e”"KT ~n;k=0,l,... ,n-1>

with corresponding eigenvectors {X

xn"1,...,x",x.Dt)

A= a.. A.. satisfies Ax * e.x where = log X ,
Isi<jsn 13 1] X X <]
for some' e . In matrix form the equation Ax = ?xx can be
written as,
"o _ So,
0 a2 a3 amn X1 s s 1x
*al2 0 a23 "e a2n X2 xn'2
*al3 *a23 0 : °
. . * Vi/i X X
1 1
\ *aln _a2n ” "an-1,n 0 i
n-1
x"-Za,2 ¢ xn~3a «l.n-1 * al.n " 1 1)
n-2
St 2 % »"'3»23 yeeey *a2,n-l * a2n  5X X 2)

(2.4)

,n-1 - Xn'2a L
A% aln X "a2n * n-LA
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Multiplying the equations 1), 2),..., n) in (2.4) by
/An 1, I/xn 2,...,1/x, 1 respectively and since xn * 1

implies xn p =1/xp , ¥ p, it follows

A -2 . n-3 2
¥ X ais F AT, e A

n-| n-2 A 3
2 * AR A A *+ X a2,n-l
" » 'S, »Vi.n
1 .e.
t t
a''l "
5A al2 a23 a3 - aln
5A a2 al3 a2 a3 "a2n
- al4d a5 a3x6 *a3n
° ° % : e -
X al,n-la2,n-2 _al3*” *an-2,n
1° \ aln _al2 7a23’“'"an-l,n ,

This implies that the entries of A satisfy the following

set of linearly independent equations.
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( al2 = a23 = a34 = = an-l,n = "aln = “I
al3 = a24 = a35 = ” e=an-2,n = _al ,n-l = ’a2n = a2
V14 =a25 =a36 = "* =an-3,n = 'al,n-2 = "a2,n-1 ~ *a3n " °3
where al , a2 ..... A(n_i)/2 are rea” numbers satisfying the
equation
n-1 n-2 _. .»(n-1)/2 w-(n-1)/2
A DA T den-1Y2% * " «(n-1)/2°

-(n-2)  -(n-1)

a2‘ X

|<*l(x-x-1 )-a2(x2-x'2)-

i (arg x + 2k™n) ,

¥

al

X =

_r

Then, the matrix A has the following form

X

nA

-a(n-1y72 (X(N*N72-x" (0" 1) /2] .

and some kx c2
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(2.5)
(n-1)/2 . .
with - 1. a”A-A ) =i(e+2kxn) , VX= /T, kxezZ . (2.6)
(e =arg A .
Now, let xk =e2wlk/n , k =0,...,n-1 denote the n
eigenvalues of P . If, in equation (2.6), A s replaced by

Ak , k=0,...,n-1 one obtains a system of n equations the
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first of which is verified v-ar ...,a(n_i)/2 . kX) 0 since

Aqg * 1 . The remaining (n-1) equations can still be reduced

to a system of (n-1)/2 equations. In fact, ¥ j =1 . ,(n-1)/2 ,
X .= le , e . =2n-e, and if one chooses k, . =-1-k. . ,

n-j n-j i Vo Xi

the first (n-1)/2 equations are nothing else but the last

(n-1)/2 . Hence ¥ j =1....,(n-)/2 , = jel ,

Xj - x:]l'l = 2i Im(AJ.) = 2i sin OJ. thus the equation (2.6) gives

rise to the following system of (n-1)/2 equations in the (n-1)/2

unknowns “J]eeee »a(n_-|)/2 wsien * runs over N = Neseex(n_1)/2)
/ (n-1)/2
e -2 sin(te®) = e] + 2nkl
i=1
(n-1)/72
E -2 sin(2t01) = 201 + 2nk2 (2.7)
(n-1)/2
E -2 s™( ) = (n-1) /2 + 2nk™n_~j"2
t=I

for some *leses* )k (n-1)/2 4Z »el = 2n/n *
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To summarize, if n is odd and P is the matrix of the
cyclic permutation on n letters,the matrix A € so(n) satisfying
exp(A) = P has the form (2.5) and its entries satisfy the system

(2.7).

Remark - Since the elements belonging to each row of A are

permutations of ,a2’***a(n-1)/2,-a(n_1)/2"*
-a2,-al) its sum is zero. Thus, as expected, A

annihilates the vector (1,1,...,1)* that is

fixed by P .

Il - n even

In this case, P is the nxn matrix

1 Qe 0 O

0 1 =0 O

Its eigenvalues (x:x =

have corresponding eigenvectors {x =
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From the equation Ax = £ x with A = e a..A.. »
A Isi<jsn

A S Ioggx , for some e one obtains, as in I, the system
(2.4). Multiplying the equations 1 n) in (2.4) by

I/7x"'1 , I/xn'2,...,1 respectively and since xn = -1 implies

XnP* -X P, ¥p it follows

( —xn-l aj2 - N2 q13- ... % al>n 1" xaln e,
"X al2 A’ az23 " _a3 a2,n-l ' A a2n = 5X
a,,,-»"'2»z, tx

Therefore, the entries of A satisfy in this case the following

set of equations

al2 = a23 an-l1,n =aln = °1

al3 = az24*“« = an-2,n =al,n-I

a2,n " °2

ald = a25a eeel an-3,n =al,n-2 “ a2,n-1 = a3n= °3
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,a2>..*an/2 satisfying the equation

2 .
Coagoex ) - el ) - "afp_3)/lx
n/2
"an/2X
-21allm(X)-2ia2lm(X2)- ... -2ia(n_2)/21"'(X(n'2)/2)-
-i an/2Im(Xn/2) = i(argx+2nkx) ,V X = , kxc2

the matrix A has, in this case, the form

(n-2)/2 -(n-2)/2

)

(2.8)
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' . c n/2
with "2 E1 dl imx ) * an/2im( * ) * argX + 2nkx ’

¥ X = , kxe2
Let x* = e”2k )n/n I Kk« denote the n
eigenvalues of P . Since ¥ j =1,...,n/2, Xn XN o»

V((J-1) * 2n - »J if one chooses kn-(J-1) *

¥j=1,...,n/2 , the system of n equations obtained from
(2.9) by replacing x by x* , k =1,...,n becomes reduced to
a system of n/2 equations on n/2 unknowns a.j,...,an"2 e
Hence, ¥ j =1,...,n/2 , 6 = (2j-He] , (Xj)n/2«i (-1) if

j is odd (even) and the system has the form

( (n-2)/2
N -2o0t sinite”™ - on/2 - el + 2©

(n-2)/2
£ -2a]l sin(3e.el) + an/2 * 3el + 2nk2

(n-2)/2 . 1+n/2
E ~2a sin((n-l)ie,) + (-1) a2 (n-I)el + 2nkn/2
\ t*l £ 1

(2.9)

2.10,



- 65 -

for some Kj >)1A,.--.kn/2 £2 , el =n/n .

It is clear from (2.10) and also from the condition

(A,B>1 ~ * so(n+l) when B = An n+" (for instance) that

an/2 «0 and Bi »0 , 1

1,...,(n-2)/2 cannot happen. In
fact, if that was the case, equations 1) and 2) in (2.10) would

imply k1 + k2 = -2/n  which is impossible.

The next lemma gives conditions on the entries of A which,

although implicit in (2.10) are not immediately detectable.

lemma 2.2. - If the entries of A given by (2.8) satisfy2
=0, ¥keven (@ =0, ¥ k odd) then

exp(A) ~P . (P as defined earlier.)

To prove the lemma certain properties of the n-th roots
of (-1) are used. Although standard, they are recalled before

the proof is given.

Let Rj = UeC : Xn =1} , R~ - {X«C : XN = -1}

1-¥nkez , e(Zk"l),n/n « R~™

2- X«Ri and n even => xk e R (xk e r")

if k is odd (if k is even).
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3-xXxCR"i and n even =0-x e , X*\ < RN
4 - xcRM and n even => a) Imx* =] Im(-x)k , k even
1im(-x) , k odd
b) Im x Im(-x’)k , k odd

Vim(-x"Mk , k even.

Proof of lemma 2.2 = f xc r"] , n even

Vecel'c 0 n
-2i I Im(X*) - i an/2 Im(xn/<f)

Assume that ¥ | odd |, aj_= 0 . Then,

=21 B azk Im(K) - 1ang, Im(x"/%)
k=l

for some integer k» , (the last term only if n/2 is even).
A mere consequence of property 4-a) above is that, in this case,
which is impossible since the condition exp(A) * P

implies that the eigenvalues of A are distinct.

On the other hand, if ¥ | even, ot - 0 ,

-2 “2K-1 >" I»214") ' °n/2
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for some integer (the last term only if n/2 is odd).

Now property 4-b) above, implies 5, =5 i which is

impossible. The proof is complete.

Example 2.1. - G = S0(4)
A= z a..A.. * p= 0 0 I’
Isl<js3 1 1
* 1° 1 0

Eigenvalues of P : g1, €% 1/3 , e4"i/3}

Eigenvectors of P = (X « (A"2,X-',1)* : x

Ax = e can be written in matricial form

-2 X-2
12 X = *y
5 -1 x-l
.3, 0 23 X
1 1
al3 “a23 \ 1
1 -2 or
Hence X o5 4 a13 * X 2 xal2 +  al3
- -1
-X 2 al2 + @23 “ X C "XZal2 + xa23 =
-2 -1 N
- X aJ3 - x a23
X" 413 . X @28 %k ]



If in particular B = since Pe3=¢e|] , Pej me2 it
follows from lemma 2.1 that PA~P_1 - * pla,.p‘2 = Ajd

_ *9 N
e2AeI2A3482A_eZ 4

¥t,,t2clR.

Now, if SO(m) , m= 3,4 are decomposed as in |, Chapter II

with p=ml , g =1 one obtains

S0(4) = K2A2K2A] K2A2K2 where the

one-parameter subgroups and A™ can be chosen to be
generated by AJ4 , A~ and Al4 respectively. Clearly, the

final result is
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eB 2A eB -2A eB A eB -A 0rB

S0(4) = e e e e el ee e e
2A e6B -2A e?’B e e r
e e e e 1 7

Thus, S0(4) is uniformly generated by exp(tA) and exp(sB)

and the number of generation is 13.

Remark - As a consequence of the definition of P it is clear
that {exp(tA) .A~.t cIR} is also compact and contains the
elements A.~ , A3 and Aj3 . However, none of these vector
fields is a candidate for an element B that satisfies

{A,B>L A = so(4) since A c T =span{Al2.A*"-j} . This

argument is also valid in general.

Theorem 2.1. establishes an upper bound for the uniform
finite generation of SO0(n+1) by one-parameter subgroups
generated by A“ and B . In particular, for n = 3 the number
of generation is 13. However, even for S0(4) a pair of
generators {A,B} of so(4) can be found such that every element
of SO0(4) may be written as a product of 11 elements from exp(tA)
and exp(sB) . Let A= A2 + A™ |, B « AN . Then
exp(t ad A).B = AM(J-J cos™t) + AN(J+J cos™t) + A2 (sin»Et)/*2

Now set SO0(4) - KjAKj with T = L(K") c span{A"3,A",A3"},
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AL = L(AL) = spanfAA+AA} ¢ PL = span{A12.AA.AA}
KL = with 12 = = sPan{A34} =
a2 = L(I") = spana14> ¢ 7 = span{a13,A14}

Thus SO(4) = K2A2K2A]K2A2K2 with

*2

{exp(tA34),t €IR} , A2 = {exp(tAl4),t c IR} ,

Al

(exp(tA34) ,t c IR

Now if xos Sl tQ=-1 , exp(tQad A).B = Al4 so that
exp(tAl4) = exp(tOA)exp(tB)exp(-tQA) . Hence for each

g c SO(4) there exist reals t],...,t7 « R s.t.

g = exp(t.|B)exp(t0A)exp(t2B)exp(-tOA)exp(t3B)exp(t4A)

exp(t5B)exp(tOA)exp(t6B)exp(-tQA)exp(t7B) .

Theorem 2.1 gives a criterion for constructing pairs of
generators of so(n+l) that satisfy some requirements. The

following statement is a consequence of Theorem 2.1.

"Given B =A"n+tl , i «{l,...,n} , there exists a class

of vector fields of so(n+l) orthogonal (with respect to the

killing form) to B , such that V-A cU*|] , {A,B}» ~ * so(n+l)

(2.11)



exp(IA) and exp(sB) , t,s ER are compact and uniformly

generate SO(n+1) with number of generation 2n+"-3".

This statement deserves some comnents. At first glance,
when i f n the result concerning the number of generation
seems to be more general here than in Theorem 2.1. However,
given i € {I,...,n-1}, SO(n+1) and subsequent symmetric sub-
groups SO(m) , 2<msn+l can be decomposed as in |, Chapter Il
with p=ml , q=1 in such a way that Kn » SO(2) = exp(tA.. n+")

and {Aj n+iij =1,...,n;j / i) contains the generators of

An_i,An_2*’ee»"i « Such a decomposition only differs from the
one made to prove Theorem 2.1 by conjugacy. For example, take
B =An_i nt] . There exists an automorphism of so(n+l) defined

by X+e X e , where A has the form (2.5) ((2.8)) if n

is odd (even) that maps Ar n+j into An_i n+j . Under this ~»

automorphism, the direct sum decomposition so(n+l) =T , 8 ( ® P.)
n_l 1-n-1 1

where P] = span(A.U. ) =i+l e.on+l) S0 = 0,...,n-1

and Tn ~ =1R Ap n+j , resulting of decompositions of the

orthogonal synmetric Lie algebra (so(m),om) corresponding to
the decompositions of the symmetric subgroups SO(m) , 2 < ms n-1

(as in 1, Chapter IlI) gives rise to a direct sum decomposition



1 .

so(n+l) = T;‘_j 0 (5 I]—"\) where

p] « span{e’AA.j eA , j = i+l peeepn+l} , i =
and

Obviously

Thus, taking A] = exP(tAn,n+1) » Aj = exp(tAi-l ,n+Ir *
i =2,...,n-1 and <n = exp(tAn_] n+j) it follows that
the number of generation 2n+~-3 does not depend on B = A. n+j

when 1 c¢ {l,...,n}

The statement (2.11) is a weaker form of Theorem 2.1 since
many candidates for B are ignored due to difficulties in
characterizing elements that belong to the orbit On (defined

in Theorem 2.1) and are not canonical basis elements.

The class JI® of vector fields is clearly defined by

- {A|CSpan{A.jjii,j>I,...,n;i<j) : expAl * UPAU 1 for
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some permutation matrix U}

Pniei ie nl(i)IY U 1 ... ")
Il 2 3 ...n ne1n

Von * and

‘1 1 \2 3 4 ... 1 ntl1/

The following lemma is given without proof. It states an

even more general result than (2.11).

lemma 2.3. - Give B=Ai nmtl ,i £ {l,...,n} there exist
two classes tA* and of vector fields
orthogonal (with respect to <e,*>) to B
such that ¥ £t~ (k = 1,2) , {Ak,B} A = so(n+l),
exp(tAk) and exp(sB) are compact and
uniformly generate SO(n+1) with number of

generation 2n+" - 3 .

is defined as in (2.11) and

J = {A%span” r:s,r«{l,...,n+I}\{i);s <r} s.t.

exp”) =uPnU1l for some Permutation matr*x u) »

pn2 ej “en2(j)' ¥j =  pn2en+l * (_1) en2(n+l)
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c/1 2 ... i-1 i i1 ... n ntl

\2 3 ... i+1 i i+2 ... m1l 1,
Note that B = ntl also belongs to the minimal generating
set {A", j =1...... i-1) u{Aij ,J =i+l,— ,n+tl} and
when the pair {B.A™ , is considered, this minimal
generating set plays the role in the proof of Lenma 2.3.

After all the comments made throughout this section, the

next theorem is clearly a summary of previous results.

THEOREM 2.2. - Given B = A, . « so(n+l) there exist*
*J
two classes and of vector fields
orthogonal (with respect to <e,> to B
such that ¥ A" ek (k = 1,2)
{B,Ak}L.A = s°(n+l) = exP(tB) and

exp(sAk) are compact and uniformly generate

SO0(n+1) with number of generation 2n+® - 3 .

= {Al £ span{Ar s,r,s £ {I»... ,n+I}\{i) , r < s} s.t.

exp(Aj) = UP, U for some permutation matrix U}



- 75 -
. n+l
»here Pnjer . e, J(r) , r . 1...... n,P,~, 1 (1) Te,)(,t1)

and nl= 12 ... i1 1 11 ... n ntl1l

2 3 .. 141 i 42 ... 0 17

= {Ag e span{Ar s»r,s € (1,...,n+I}\{j), r < s> s.t.

exp”) =UP, Ul for some permutation matrix U)
where P ep=e (p) , r =1...... n .

and

1 2 ...j1 j j# n n+l
ntl 1

n2
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CHAPTER IV

UNIFORM FINITE GENERATION OF SO(n) BY ONE-PARAMETER SUBGROUPS

GENERATED BY NON-ORTHOGONAL PAIRS OF LEFT-INVARIANT VECTOR FIELDS.
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Si. THE USE OF PERMUTATION MATRICES IN CONSTRUCTING NONORTHOGONAL
PAIRS {A,B} OF VECTOR FIELDS THAT GENERATE so(n) AND

THE UNIFORM GENERATION OF SO(n) BY exp(tA) AND exp(xB).

The order of generation of SO(3) by two one-parameter
subgroups exp(tA) and exp(sB) is a function of the angle
between the axes of rotation of both rotation subgroups being
minimal when this angle is n/2 , that is when <AB> =0 .

(Chapter |, theorem 2.1 and theorem 2.2).

The order of generation problem for SO(n) is certainly more
complicated when n > 3 , the main difficulty being a consequence
of lack of a complete characterization of pairs of generators of
so(n) . Even when a pair {A,B} is known to generate so(n) ,
the number of generation depends on the decomposition of S0(n)

used and also on the relation between the pair (A,B) and the

generating set of so(n) corresponding to that decomposition.

In Chapter Ill, pairs {A,B} of generators of so(n) ,
orthogonal with respect to the killing form, were constructed
and an upper bound on the order of generation of SO(n) by the

subgroups generated by A and B was determined.
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In this chapter, pairs of generators of so(n), nonorthogonal
with respect to the killing form, will be constructed and the
uniform generation problem of SO(n) partially solved for these

pairs. Again, permutation matrices play an important role in here.

The diagram below, already used in Chapter |I, showing the
canonical basis elements of so(n) will be often referred to through-
out this paragraph. Its use comes from the fact that it provides

a good visualization of some of the results obtained here.

Al3 Al4 AlS Al,n-1 Aln
A23 ~5 O ~n
A34  A35 7 A3,n-1 A3n

A45 A ,n-1 Adn

An-2,n-1 An-2,n

Diagram 1.1.

Let A « so(n) be defined as in (2.5) ((2.8)), Chapter IIlI

if n is odd (even) its entries satisfying (2.7) ((2.10)), Chapter IIlI.
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As a consequence of the condition exp(A) = , where

Prei =en(i) *1=1___0-1 «Pren * (-Dn+tlen(@)*" =(2 3..J3)*
together with lemma 2.1 (Chapter I11), the canonical basis 8 of
so(n) can be divided into [n/2] equivalence classes. The
equivalence class of a certain element A” being the set of
canonical basis elements that belong to the orbit of exp(t ad A),

t e R that passes through A~

Let [a,j] , i =1,...,[n/2] denote the equivalence classes.

(The choice of this notation to agree with the structure of A.)

Note that for a certain i , [a-] is the set of canonical basis
elements with coefficients =+ in the expression of A
Clearly,

[ai] = {Ak* e 8 : =i} u{Aki ¢ 6 : I‘k s n_i}
¥ 1=1,...,[n/2] . If Bi and b,, denote {Aki « 8 : t-k * 1}
and {Ak c¢ 8 : I-k = n-1> respectively, [a”™ * Bi u 8n.1

i =1,...,[n/2] . Hence ¥ j =

%Bj «n-j and 6J— can be seen as the set of elements along

the j-th diagonal (counted from left to right) in diagram 1.1.
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If SO(n) is decomposed as in lermia 3.6-1) (Chapter II)
and so(n) decomposed according to the corresponding canonical

decomposition i.e.

n-2
s°(n) 1 Tn. 2 ® ( ®i A o ospan{Aij, j =i+l...... n} ,

Tn-2 * K An-l,n since CPLex 1% L "2
A. i<¥ can be chosen to generate A = exp(A") and it follows
that (Ai i+1 , 1 =1,...,n-2) u {Af) 1 p) * Bj is a generating

set of so(n) and it is minimal (see letmia 3.1.-Chapter I1).
Clearly [c”~] is a generating set since it contains Bl and 6" .

i A1l is not a generating set.

For n>3, let Ac so(n) satisfy

exp(A) * P, Pn the permutation matrix
defined by P~ =en™j - 1

Vn 1t H)""1,,.,, = »
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If B also belongs to 8 then the
number of generation is 2n1 + 3 and

<A,B> is not zero in general.

Proof - If SO(n) is decomposed as in lemma 3.6-2) (Chapter Il)

with m] «n and so(n) decomposed according to the corresponding

canonical decomposition i.e. so(n) 9 = so(n-2) 9 so(2) *

= so(n-2) 9R Al12 , P1 = spanfiA™.j

3,...,n) u(A™.j =3,...,n})

n-2
and T2 = so(n-2) =Tn2 © (9 P.), P. <span{A.j,j = i+l,...,n)
since is a 2-dimensional abelian subalgebra contained in

Pj and A, is a one-dimensional abelian subalgebra of P

Vi=3,...,n-2 , take Aj =RAIn + RA23 , A" =IRA.M"+l ,
1=3...... n and Tﬁ"C'IRA’h-i n then SO(n) is uniformly

generated by the n one-parameter subgroups generated by [c/]

with number of generation 2n ~ + 2 (Theorem 3.1-2), Chapter Il).

That is

SO(n) * /\/\Kn-ZAn-ZKn-ZAn -3'*'Kn-2An-2Kn-2Ah-3Kn-2An-2Kn-2* **
_____y e

eee V 3Itn-2>n-2Kn-2/ ,p(tAl2> Al =*P(*A1Z>y ? An-2Kr-2

An-3’7 lin-2An-2Kn-2A3Kn-2An-2I(n-2 *“  An-3Kn-2An-2Kn-3, '

*
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t,s £EF , Kn2 =exp tAnl n , Ai * L(A.)) , 1* 3,...,n-2

By construction of A and B there exist reals t,,...,tn
s.t. EXP(L. ad A).B = Aii+1 , i *1,...,n-1 , exp(tnadA).B » Aln

The use of the Baker-Campbell-Hausdorff formula allows every one

of the 2n 0+ 2 one-parameter subgroups thatappear in (1.1) to
be expressed as a product of 3 one-parameter subgroups generated
by A and B . Hence taking in account the composition of terms

with the same generator a total number of 3(2n 2+2)-(2n 2+1) * 2n ™5

subgroups generated by A and B is obtained.

If B=An 1n , then the product * in(1.1) contains

2n"2-3  elements, the first andthe last of which is exp(tB)and
after reducing the terms with the same generator in exp(tAl2)Aj
exp(sAl2) a total number of 2(2n’~-3) + 9 = 2n ~+3 one-parameter
subgroups is obtained. The result when B is any element in

[oj] n B is a consequence of taking any decomposition of S0(n)
that is conjugate to the one considered above. Hence if

Bt [dj]nB , <AB>=-2(n-2) (a.b) , (a.b) «a] where a

and b are defined as in 8 (Chapter IIl). Apart from the case

n =4, where cannot be zero (see Lemma 2.2, Chapter 111)
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it is not easy to see from conditions (2.7) and (2.10), (Chapter III)

on the entries of A , whether or not can be zero. If however
aj can be zero, <A,B> =0 . Otherwise <A,B> ~ 0 . Hence, if
* ) (asb)
U ST S SR S
lall 1ibll lall  /n
O

Clearly, A and B can be replaced by UAU ~ and UBU ~

for some permutation matrix U without changing the result.

If lenma 3.6-1) (Chapter I1) is used instead of lemma 3.6-2)
in the proof above to decompose SO(n) as a product of one-parameter
subgroups, only (n-1) generators contained in [a”] need to be
considered. The result after applying Theorem 3.1-1) (Chapter II)
is an upper bound on the order of generation of S0(n) equal to
2n-1  (2n-3) instead of 2n-1+5 (2n_1+3) . Hence, this decom-
position gives the same number of generation when pairs {A,B} ,
orthogonal with respect to <e ,»> | are considered as in Theorem
2.1 (Chapter 1Il). These facts emphasize what has already been pointed
out about the dependence of the number of generation not just
on the pair of generators but also on the decomposition chosen and

on the relation to each other.



In the orthogonal case (Chapter I11),

A c span(A..;i,j =1,...,n-I;i <j) and the candidates for
*J
an element B cannot belong to span{A..;i,j * 1 .. ,n-1,1<j}
*J
since B has to satisfy (A.B)» A =so(n) . However, in this

case, other canonical basis elements than those already considered
(which belong to Ca*D) may satisfy our requirements. It is not
obvious which elements to exclude and which to consider as possible
candidates. The following lemmas clarify the situation and a
complete classification of canonical basis elements whose one-
parameter subgroups generated by them together with exp(tA), t cF
uniformly generate SO(n) , is made. From earlier results it is
known that if B belongs to the orbit of exp(t ad A) that passes

through ta”~] for some k then ¥ A~ e [ak], 3 t*. «F

s.t.
exp(t. . ad A).B A~ . Thus, if [c"] s
"J
a generating set of so(n) , exp(tA) and exp(sB) uniformly
generate SO(n) . It will be proved that tt»k] generates so(n)

if and only if n and k are coprime numbers.

Let Bj , j =1,..,,n-1 be defined as before. The following

notations will be used.



-6 = {Afk < B : Akt e 6J>; » {Asr€B:A~c (Bi 13
Lenina 1.1.- CB1,0.3 = -B~AU B2i U (0) , ¥ i s (n-1)/2
Proof— Bi :{Akt e8: Ak =1] ¥ Akt ° A e ei

(*«m if k=n 1)
[AKi’Amn] = ° Akn T A=M 2)
0 .
otherwise.
Sinee n-m = A-k * i it follows that in 1)

mA = n-i-k-i * -2i + n-k = -2i and in 2)
n-k = m+i+i-i = 2i that is Atm £ (e2i)
and Akn « B2i = Thus Cb~.BAT ¢ -B2iU B2iU {0} . On

the other hand ¥ AKP B€1 there exist two elements Aﬂ;ﬁ and

. . .
Ars in B1 s.t. [/f\m' Ar; A.kl, . In fact taking mun k ,
s*A, ner* k+i , since A-k * 2i if follows nm« 1 and
s-r m i-k-i * i i.e. Amn,Ars c B~ . Clearly ¥ Alk « (7©21" "
e2i a'd \k n» [W wilth V. \r> *“ 61 «" ibO0«>-

So the result follows.
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lemma 1.2. - Vi /1, ~ B j belongs to a proper

subalgebra of so(n)

- * - - = °S- = i
Proof Let S M BmuGH‘UU{O}. Gm. (Ars « B:s-r = mi}

[emi*6my =i[AF]§1*AF ¢ .y | § M1~ s2%r2 > nel}p x

Si nee if r, er2 1)
f'v 2
. If r, n s2 2)
V *
[A AN ] .
risl r2s2 i if s, s2 3
IIAIIIIr2
If s, 1 r2 4)
V z
0 otherwise

it follows that in 1) s2~s] * s2'si"r2+rl 1 (s2*r2 ~sl"rIn *

*om2-ml)i ., in 2) r A % r2%Sl+V S2 * "(s2*'V'(Sr r1) “

= -(ml+m)i , and similarly in 3) r~r™ * -(-r2+s2)+(sl-rl)

= (ml-m2)i and in 4) s2*rl * s2'r2+sr rl * (nm2+n,i)* e Thus
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The previous lemma applies whether or not n is even.
However when n is even and i = 2 a more elegant proof can
be given using the Weyl basis of so(n,C) . This proof will be

given later.

lemma 1.3. - 1) ¥i<j ,i+jsn, B_j=- ,BJjD
2) ¥i,j
Proof - 1) VA « BIII , s-r =j-i . Since ¥ 1 cIN,

s-r = (s-i) - (r-i) take t to satisfy s-1 nj , r-i n 1

(Such an t always exists since s-j = r-1 .) Clearly "LIre g

and AS €B. unless r =i and s =j respectively. Hence
4 J
Ars “ 'CA«r,A«s] ’ * Ars ' For *1J e
Mj *-Ch.i*] o 5" 1 ALHj
and A. .+j t Bj . If however i+j > n , the element A~ < Bj,"

cannot be obtained from brackets of two elements one of 8 and

another of Bj
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2) Similarly if Aps £ Bj+i , s-r = j+i
Since Vi tK , s-r = (s-t) + (t-r) take t * i+r * s-j
It follows that Arl c , Ais « Bj and Ar$ * tAri»Aisl

The proof is complete.

O
lemma 1.4 - If both n and k have a common divisor
m , Can] is not a generating set of
so(n)
Proof This is an immediate consequence of lemma 1.2 since,

if both n and k have a common divisor m, also both n and
n-k have the same divisor m and B and B ~ both belong to
a proper subalgebra of so(n) . 6m is a generating set of this

subalgebra (clearly a consequence of lemmas 1.1 and 1.3).

In particular, when n is even and k * n/2 ,
[a~] = Bk » 8n/2 and since 6 ~ is the canonical basis of
a Cartan subalgebra of so(n) , [a”l is not a generating set of

so(n)

The following lemma whose result is included in lemmas 1.2
and 1.4 is presented here for its proof. As already mentioned

before, an alternative proof using the Weyl basis is given.



Leema 1.5 - If g =so(2n, F) , n>1,C ’

k«[l,n/2] n U is not a generating

set of ¢
Proof - h %101 is a Cartan subalgebra of
! 0
x|
“i
0 i
1° -Xn
gt = s0(2n,C).* = iclhi+e2)q 15 = 1peess” o Eie2 g 1P

is the set of roots of g" . ¥ Xe 4 , - X X
({Xx,X ¢ *} is the Weyl basis) is defined by

. i o Consider the following set
EX = E1 A2i-1,2j-1+ e2 A2i,2j

('(E, X »» H (E ¢ £ )b
*1 1 j 1 J i J

CiA2i-1,25-1 " A2i,2j + A2i-1.2j-1 + A2i,2j)} U

0 i-i(A2i If2j i - A2i,2j - A21 if2j-1 * A%ii.2j)} =
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= {A2i-1,2j-1 " A2i,2f ; 1< ;1,j = 1...... n}
iA21-1,2j-1 * A2i,2j ; 1= = 141} U
U {A2i-1,2j-1 * A2i,2j " 1= ] = 142} U U

U{A2i-1,2j-1 * A2i,2j <1 =1"%j =n} * Asimple

calculation shows that this set is equal to

B2 u B4 U...U BEH?&! Y B%rﬁ?g , that is Ca?] U Ca”~l U...U Ca%H_ZZ]

Now using the fact that ¥ a,B € $

, {o+B.a-Bl | *

atB « ¢ >a-6 | ‘

~a,8 Ea+B
Ea *V :l
[Ea a-B«o-a+8|¢
'Na,-B Ea-B
NOE . -N E ia+B.a-B) c
N ag a+g a,-B  a-B ’ ) «

the result follows.

The next lemma contains a result that will be used later.
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lemma 1.6. - If A and B are any two noncommutative
canonical basis elements of so(n) then
{A,B,LA,B]> is the canonical basis of
a subalgebra of so(n) isomorphic

to so(3)

Proof - Since A and B belong to B and do not comnute they
must be of the form A=A~ , B =Akj with {1,j} n {k,t}  $
Without loss of generality assune j =k . That is A =A™ |

B=A~* [A,B] =A™ . Clearly the Lie algebra g generated
(as a vector space) by {A,B,[A,B]} is isomorphic to so(3) ,

the isomorphism defined by

gl ¢ so(n) Yo so(3) c so(n)

X h- eXe'l

where 6 is the matrix of the permutation

1 2 ... 01 10+ ... j-1 jj+l ... t1 tt+l ... n

4 5 ... 142 1i+3 ... j+1 2j+2 ... i 3tl ... n
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The- next step is to prove that if n and k are coprime

numbers, then [a”] is a generating set of so(n)

If every element of 6] can be obtained by Lie brackets

of elements of Bk and 8n_k , obviously [ak]L A “ so(n) *

Assume that n and k are coprime numbers. Then n = k™ mod k
i.e. n =jgk + k1 for some k* e (1,...,k-1} , jQ eM . Consider

the class Cj# = (6,.k . B,.2K...... 6-jgd * ka}  whose

elements satisfy the following jg-1 relations.

en-2k c¢ "t6k,Bn-k] 1

1.2
en-3k ¢ "Cek’en-2k] 2) 1-2)

Bkl = Bn-jOk ¢ ‘[Bk,Bn-(jO-1)k] vV o1)

(See lemma 1.3-1).) From 1) ¥ Z2 e Bn_2k there exist
X2 t Bk and X1 e 8n_k such that 2Zz? = -CX2,X1]. From 2),

¥ 73 ¢ Bn.3k there exist X3 « 6k and Yj c Bn.2k s.t.
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Z3* -[Xj.Yj] . But Y1t Bn 2k thus Y1 = -[XA.XA for

some X2 £ 6k * X1 e 6n-k * So Z3 * tX3»tX2>xi e for some

X~MX~ and XM belonging to [<k] . The same argument used

throughout the relations 3),...,jg-1) clearly leads to the
following. ¥ Z. cB_41 = > there exists
Jo JO K1

X|tX2». »=.Xj € [akl such that

jn+l
Z, = (-1)°U [X. .IX. [X-.CX-.X.1]...1 .  (1.3)
jo jo jo’

Note that n-jQk * k1 <k and n-(jQ1l)k * kj + ik >k ,
Y i 21 . Therefore, if Bj is viewed as the j-th diagonal
in diagram 1.1 (rigorously the set of elements along the j-th

diagonal), C. is a set of diagonals, 8k being the only
JO 1

diagonal in this set situated below 8k .

If kv = 1, then every element of B can be obtained by
Lie brackets of elements of [akl and [a”] is a generating set

of so(n) . If k!l 1, then k 5 k2 mod i,e. k » J™M+kg

for some k? c {1...... k~ny cW . « (17,6,M...... ek-J1k] “ Bk2}

and its elements satisfy the following relations.



Bk-k1 ¢ * [OK1,BK]

ek-2k1 ¢ ' [Bkl*ek-k1] (1.4)

\ v 6k-jikL c ¢ CBKL*BK-(jl-1)k1]

It is easy to conclude,just using the same arguments as above,
that V-Zj £ Bk _j k =Bk there exist Xj £ Bk and

Ji
<2%3.....Xj1+1 « %  such that Zj, " H) tXjl+l ‘[XV C-

[X~,[XE,Xj]__1 . Hence, (1.3) can be applied to every

element of BL and the result is that every element of BI
*1
can be obtained by Lie brackets of elements of [akl

k- j.kj * k2 <kl , k- (j-,-1)kl = kg+ikj >~ ,¥1*1
so, Bk is the only diagonal of Cj situated below Bk~ (in

diagram 1.1) and also no elements of Cj are situated above 8k <

If k1 =1, the process ends here and [akl is a generating

set of so(n) . If ~ M then k] = k3 mod k? i.e. k1 - j2k2+13
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for some k3 c {1....»kg-1} , j3 cW . Once again one proceeds

as previously. The system of equations

nt jQk + K] (0 < k1l <Kk)
K= ji kI+ ke O < K2 < k)
K = ~2k2 + k3 (0 < k3 < k2)

kN-2 = AN-IKN-1+kN (° < kN kN-I »

KN-1 " jNKN

known as Euclid's algorithm is used in elementary arithmetic to
determine the greatest common divisor kN of n and k . Since
it has been assumed that n and k are coprime,this process

will end up with the equation kN 2 = Jj|_jkN_j + kN . with

k. =1, and some integer N . C - {Bt 6. e
N IN-A| kN-2  *N-2 *N-1

6 * with elements satisfying the following
kN -2'JN-I1kN-I

jN1  relations.



& = &k S R N TEVE AL

Clearly every element of 61 may be written as brackets of

elements, from [0"]

Therefore, one can formulate the lemma that has just been

proved.

lemma 1.7. - If n and k are coprime numbers,

[ak]L.A = S°(n> *

Lemmas 1.4 and 1.7 can be put together in the following

THEOREM 1.2. - Let g = so(nJR) , tokl as defined
in the beginning of this paragraph.
Then, [aklL A =g if and only 1f

n and k are coprime numbers.

(1.5)
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The procedure used above to show that [ak]k a = s°(n) when

n and k are coprime numbers also shows that ¥ X belonging

to any of the following sets: 6n.ik, i = 2..... jQ , Bk_ik ,
i = I""’j’i , Bkn_2 ikn 1 i * I""’jL\li satisfying
the relations (1.2), (1.4) ... and (1.5) respectively,

exp(tX) , t €IR may be written as a product of one parameter
subgroups exp(eA) and exp(iB) where A is defined as in the
beginning of the paragraph and B belongs to the orbit of

exp(t ad A) that passes through [akl . |In fact, from (1.2)-1),
VZ2 « Bn_2F there exist X2 ¢ Bk and X* « Bn_k such that
22=-IW . Lewm 1.6 plus the fact that z~X2 and X

are orthogonal with respect to the killing form imply

CX2,Z22D = X1 , CX1,Z22D= -X2 . Thus, ¥ t «F
exp(tz2) = exp(("/2)X2) exp(t X]) exp(fc/2]X2) . (1.6)

with X1 and X? « [okD . By construction of A and B ,
¥ Xi ¢ [akl , 3 c R such that Xi = expi®AJB exp(-tjA)
Hence exp(tX”) = exp(t”A) exp(tB) exp(-t*A) . ¥ t eF . Thus

¥ 72 € Bn 2k * exP (") be written as a Product of at most 7

one-parameter subgroups generated by A and B . Similarly, from
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(1.2)-2), YZj ( en_3k there exist X3 ¢ 6k and Y1 e 8n.2k
s.t. exp(tZ3) = exp(-n/2X3) expftY" exp(*/2X3) ¥ t £ R
Hence, using (1.6) with 2722 = Y1 it follows that,

¥ Z3 £ Bn-3k ’

exp(tz3) = exp(-(X/2)X3)exp(-(")X2)exp(tX1)exp(Ix2)exp((TT/2)X3), (1.7)

¥t €R and some X"MX2 and X3 in [okl

It is clear by construction of A and B that again
exp(tz3) , Z3 ¢ M_3k may be written as a product of one-parameter
subgroups generated by A and B and also that this procedure
applied to every relation in (1.2), (1.4),...,(1.5) leads to the
following. Every one-parameter subgroup generated by any element
belonging to the sets in the left-hand side of relations (1.2),
(1.4),...,(1.5) may be written as a product of one-parameter

subgroups generated by A and B .

As it will become clear later, of special interest are the

one-parameter subgroups generated by elements of Bk~ 1 e,el

lemma 1.8. - For n >3, let Ac so(n) satisfy

exp(A) = Pn , PR the permutation matrix
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defined by Pne. =e”.j , i = 1...... n-1 ,
Vn ' (->n,)en(n) < " '"cyclic
permutation on n letters and

B € (exp(t ad A).X , t<F ,Xt [ak3) c so(n) »

(n and k are coprime). Then ¥ Z. < B, 1
Ji-1 *j

i =0,1,....N (kN=1 and Bk™ » Bk) ,

exp(tZ. ) , tclIR may be written as a product
Ji-1

of Rj one-parameter subgroups generated by A

and B . Rqy =3, Rj =4jQl , R$ = 2R$ 2 +

+ (2Js-T 1)Rs-r2js-1 * 5 = 27" * ‘N *

Proof - By construction of A and B, V X « [ak3 ,3 9 £IR

such that

exp(tX) = exp(eA)exp(tB)exp(-eA) , t £IR . (1.8)

In particular for X ¢ Bk < Cak3, Rqg = 3 .

If the process previously started for the relations 1) and
2) in (1.2), leading to the equations (1.6) and (1.7) respectively,
is continued throughout the relations 3),...,Jq), clearly the

result is that every one-parameter subgroup generated by elements
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of e can be written as a product of 2Jg-1 one-parameter

subgroups generated by elements in [ak] . Hence, since every
X ¢ [a”] satisfies (1.8) it follows after taking into account

the composition of terms with the same generator that ¥ z. €
JO *1

t ER, exp(tz. ) may be written as a product of R, *
JO

3(2/0-1) - @lg-l) = 4fq-l  subgroups generated by A and B .

From V) in (1.4) it follows that ¥ zj € 6k_k there
exist XL £ Bk @md XE e Bk s.t. exp(tZ.j) =

exp((-W2)<j)exp(tXE)exp((W2)Xj) , ¥ t t R . It is also true

that
exp(tZj) = exp(i/ZIXNJexpitXj )exp((-i/2)X2), t eK

and since subgroups generated by elements in Bk involve less
products (of subgroups generated by A and B) than subgroups
generated by elements in Bk do, the latter equation is preferred
to the former. Hence, using a previous result for exp(tXj) ,

Xj £ 8k one obtains exp(tZj) , ¥ Zj €Bkk* . t ER

written as a product of 2jQ+l subgroups generated by elements

of Cok] . The same argument used throughout the relations 1%),
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i = give for every Z! e ek_1k™ . (t-1)Rj + 2

jn-(i-2) products. Therefore, v Z\ C6 , tcrR
1k

exp(tZ'. ) may be written as a product of
J1

R, " 3(~-17~ +2j0-(jr 2)) - ((j1-DR1 + 2jo-(jr 2)-1) *
=6 + (2J1-1)R-]-2J1 = 2Rq + (2j1-1)R1-2J§j  one-parameter

subgroups generated by A and B .

The result for s = 3..... N is clearly a consequence of
the form how every set of relations can be obtained from the
previous one. For instance, to obtain one simply replaces
k , k] and jl1 in (1.4) by k~ k? and respectively and
then proceeds as for relations (1.4) making use of previous

results for s = 1,2.

At this stage it is important to recall what the main problem
is. Given an A « so(n) satisfying exp(A) s Pn » pn the
permutation matrix defined by P~ * en(i) * * * |..... n-1 ,

Pnen = \I\//I Y n+le n the cyclic permutation on n letters,

n(nj °
find B e so(n) such that exp(tA) and exp(eB) uniformly
generate SO(n) and determine the corresponding number of

generation.
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The previous lemma answers the first part of the problem
but the number of generation has still to be found. This will

be the next task.

Of great help for a better understanding of the next procedure
is the use of the diagram 1.1, each of its i-th diagonals,

i =1,...,n-1 is viewed as e The following set

(1.9)

,o.,)23 ) ... 1~ . whose elements are clearly

identified with those diagonals obtained by successive use of

Lie brackets of the elements in [ak3 , is totally ordered by
means of a relation 4 defined as follows: b. 4 By iff = Bj
or if 6i is situated below Bj in the diagram 1.1. From

comments made during the proof of Lemma 1.7 it is easily seen that

Bk, K Bk-ik. < Bk ¥i«lojrl (1.10y
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Hence, to each element in (1.9) a number (the number of
generation of exp(tB”) by exp(eA) and exp(rB)) is

associated, Nk>Nk ,Nkt .... being Rg.Rj.R”™,... associated

with Bk,Bk ,Bk .... respectively. (Lemma 1.8.) Clearly,

"k Vtk “ "k, * Nk-jk, * "k2 * "k,-sk2 '\ 3* -

Vi*r 1,2,...0g~1 » J = , S Y 1,...,J2'1 * eee o

Any row in the diagram 1.1 intersects at least a member of the

set of diagonals (1.9). Consider the set 1" of elements of 8
(canonical basis of so(n)) resulting of the intersection of

(1.9) with the i-th row. (i * I,...,n-1.) Each of the elements

of 1M belongs to a certain Bj associated with a number fT

An element A c | is said to be "the best" among all the
T»11J 1

elements of I.. if the number associated with ej(A* ~  « Bj)

is the least of the numbers associated with the diagonals

B. that intersect the i-th row.

If SO(n) and subsequent symmetric subgroups SO(m) are
decomposed as in |, Chapter Ilwith p *m-1, q* 1, 3<m<n ,
the result is a decomposition of SO0(n) by one-parameter sub-
groups as in (1.2), Chapter [Ilwhere the subgroups A<, 1*1,2,...,n-2

and K, 9 can be chosen to begenerated by (n-1) canonical basis
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elements A.. , i »1,2,...,n-1 respectively. Clearly,if
1Ji

Yi =1,...,n-1 , A . is chosen to be "the best" element of the
1Ji

i-th row, one obtains far better results than if it belongs to any
other diagonal of the set (1.9). It is also easy to see, as a

consequence of (1.10) and (1.11) that these elements are the following.

i irt-"-" . "-k>c 6k mn-k*'
(*1,i.k2 <10 "'V ... n-k2> “ 6k2

el "'KN-I*"...... n"2> c Bk, * e (An-l.n> ' e)

Figure 1.1 shows their positions in diagram 1.1.
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Lenina 1.9. - Let A and B be defined as in the
previous lemma. Then exp(tA) and
exp(eB) uniformly generate  SO0(n)

and every element of SO0(n) may be
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written as a product of at most

N n-Kki i ki-r
R=r@ I R@11
i=0 1

k!-l) - (2ki1' ki -2))-N

(k ] =n, kg = k) elements from the one

parameter subgroups generated by A and B.

Proof - For the decomposition of SO(n) mentioned before
stating this lemma and the convenient choice of the generators
of Ai ,i=1,...,n-2 , kn_2 as shown in figure 1.1 one has,
A. , i »1 . ,n-2 appearing 21'1 times, kn_2 appearing
2n’2 times in that decomposition. Hence, using the lemma 1.8

the result follows with

, . kk. k-k, n-k. k.-k*
R = RO(2n k-1)-(2n* -2)+2n kRL(2  -1)-(2  *2)+2 (2
k,-k.
-(2KI’K2-2)+ ... +2nkN*1RN(2kN*1 ]-1) - 1.2) - N«
N  nk. . k. ,-k. k< -1"ki
* E (2 1'\(2 il ’-1) - 211 -2)) - N
i=0

after composition of terms with same generator.



- 107 -

Similar problems treated before give, for different pairs
{A,B} of generators, better results when B is a canonical
basis element that belongs to the orbit of exp(t ad A) ; (see
Theorem 2.1 (Chapter |11) and Theorem 1.1). However in this
case every B e {exp(t ad A).X, X« [c*], ttIR , n and Kk
coprime, give the same result for the decomposition chosen. But
a better result would be obtained if SO(n) was decomposed in
such a way that the greater the wordlength in terms of A and B
a subgroup of {A~ i * 1,...,n-2,kn_2) is, fewer times it appears
in the decomposition of SO0(n) . Many things would then have to
be taken in consideration and the final result does not appear
to be very easy to obtain. However all the difficulties in trying
to solve this problem are overcome as a consequence of the next

result.

It will be proved that if [a”] generates so(n) there
exist two decompositions of SO0(n) such that the corresponding
generating sets of so(n) only contain elements of [a*D . This
has been seen to be true when k = 1 ; the generating sets
corresponding to the decompositions of SO0(n) were in this case
either [c”] or just BldI~] (the first giving a lower

number of generation).
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THEOREM 1.3. - For n >3, let A eso(n) satisfy

exp(A) = Pn , Pn the permutation matrix

defined by =e™.j i=1,...,n-1 ,
- H)"*’en(n) . | cyclic

permutation on n letters and

B « {exp(t ad A).X, x t [a*"] , t ¢ 1R) ¢ so(n) ,

n and Kk coprime numbers. Then SO(n) is

uniformly generated by exp(tA) and exp(sB)

with number of generation 2n ~+5 and

{A,B)I =so(n) . If B also belongs to

[a~] then the number of generation is 2n "+3

Proof - Let = 1 2 ... nknk+tl ... n be
kt1 k+2 ... n 1 ...k
L
a permutation on n letters. I = n where n is defined above.

A standard result is that since n and k are coprime, nk
conjugate to n that is, there exists a permutation nc s.t.
-.CM-1 =nk . nc is defined by nc(i) * (i-)k + 1 if

(i-Dk+lIsn, nc(i) =j if (i-1)k+1ij modn . Clearly if

Pn is a permutation matrix satisfying P”e” = ai*nc(1)

"a =1(-1) , n is odd (even), the automorphism of so(n)

defined by U P X P_I also defines a one-to-one map from
nC nC
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[*1] into a subset S of =+[0°] where S is such that,
if A" c S then | S . Now instead of the decomposition

of SO(n) as in the proof of Theorem 1.1, one takes

i * K(I>»cA23P"i |

*t eR<,nc\ w 'S"c) 1 S' 3

r,-2 "IRtPnc#n-1,nP'4

T2 .so0(2)=F(PnlA.2p;")

ri
and so SO(n) becomes written as a product of 2 +2 one
parameter subgroups generated by the elements of [a"3 . The

result follows in a similar way to the proof of Theorem 1.1.
O

EXAMPLE 1.3. - g 1 so(5) , k = 2 .

generates so(5)
[a23 - {A13*A24,A35}U tA14,A25}

/1 2 3 4 5\
11 3 5 2 4)
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so(5) =so(3) « so(2) « P. Al_
T.
M * span{A)2*"14  5e/23 34 *N35N 'v
Ad5
Ai :JRAI4 + IR A3§
N = span{Al3,A24,A25,A45) , so(2) =IR Al3 ,
s0(3) = span{A24 ,A25,A45} = 9 , P3 =spaniA®.AN} ,

T3 =RAgg , A3 =RA24

S0(5) = K3AjK3SO(2)A1SO(2)K3A3K3 , K3 = exp(T3) ,
A3 = exp(A3) , Al = exp(A.j) , SO(2) = exp(tAl3) I.e.

SO(5) = expit*expit®Jexpit®expi®ANJexpitgA”n)

exp(t6A35)exp(t7A13)exp (tgA25)exp(tgA24)exp (t10A25) .

If A,B is defined as in the theorem 3.3, SO(5) becomes
generated by exp(tA) and exp(sB) with order of generation

21 (19 if Be [ok])
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so(5) =so0(3) « so(2) « P. Al
T
P1 = span{A12,A14,A15,A23’A34,A35} \
A45
Al =IR Al4 + IR A3
Tj = span{Ai3,A2",A29,A"3) , so(2) =R Aj3 ,

so(3) = span{A24,A25,A45} = T3 ® p3 » P3 = spaniA™,A45) ,
T3 =K *25 > A3 =K *24

S0(5) = K3A3K3S0(2)A1S0(2)K3A3K3 , K3 = exp(T3) ,
A3 = exp(A3) , A] = exp(A?) , SO(2) = exp(tA]3) i.e.

SO(5) = expitrexpittIexpitrrexpifAnrJexpitgAn)

exp(t6A35)exp (t7A13)exp(tgA25)exp(tgA24)exp (t10A25) .

If A,B is defined as in the theorem 3.3, SO(5) becomes
generated by exp(tA) and exp(sB) with order of generation

21 (19 if B c [ak3) .



CHAPTER V.

APPLICATIONS TO CONTROL THEORY.
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Si. PRELIMINARIES.

This chapter is concerned with the application of the previous
results to the study of the controllability properties of systems
which are described by an equation in a n-dimensional connected

manifold M , of the form

k
i(t) * Eu.(t) X.(x(t)) (1.1)
i=l 1 1
where u”(t),...,uk(t) are admissible (say, piecewise continuous)
real-valued control functions and X.,..., X" are vector fields
on M.
DEFINITION 1.1. - For every Xx « M, the Reachable set

at time t from x is given by

R(x,t) = (yiM:ycYY (tj)*...»Yy (tp)*x, r t 27+,

t. eR+, | t, =t)

1 i=l 1

and the Reachable set from x is
given by

R(x) » U R(x,t) ,
™0

where , i «1,...,r are associated vector

fields for system (1.1) and (x,t) I*yv (t)*x
Ti

is the flow of the vector field on M

yy (0)-x =x .
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- the system (1.1) is said to be
controllable ir re) * m, for

every xt M .

Especial interest is given to systems of the form (1.1)
that are evolved on a Lie Group G and where X~,...,Xk are
left or right invariant vector fields on G satisfying
(X~,...,Xk)L A * L(G) . This condition is equivalent to
controllability C6D and C73. If in addition G is a semisimple
group of matrices (SO(n) for instance), the corresponding He
algebra is generated by two elements A and B (Theorem 3.1,
Chapter 1). For this reason, our study is restricted to a class

of systems evolved on G , of the form
x(t) = (u(t)A + v(t)B)x(t) (1.2)

where u(t) and v(t) are piecewise continuous control

functions.

Although it is known that (1.2) is controllable and even
controllable in an arbitrarily short time [7] (this would not
be the case if (1.2) was not homogeneous), more can be said
about Its controllability properties namely, the number of switches
involved when any two points of G are joined by trajectories of

the form u(t)A ¢+ v(t)B
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82. UNIFORMLY COMPLETELY CONTROLLABLE SETS OF VECTOR FIELDS.

An autonomous control system such as (1.1) on a manifold M
is defined by a set of vector fields on M. A set F of vector
fields on M is said to be Completely controllable if for every
pair (x,y) of points in M, there exists a trajectory of F
from x to y . By a trajectory or positive orbit it is meant
a continuous curve which is a concatenation of integral curves
of elements of F . Stronger than controllability, is the concept
of uniform controllability. A set F of vector fields on M s
said to be UNiformly completely controllable if there exists a
positive integer N such that every two points in M can be

joined by a trajectory of F which involves at most N switches.

The next lemma may be seen as a generalization of a lemma
by N. Levitt and H. Sussmann [lemma 3, 12] although extra con-
ditions that seem to have been overlooked by the authors, have

been included. Its proof is rather similar to the one presented

in [12].

Lenina 2.1. - Let G be a n-dimensional, compact and
connected Lie group whose Lie algebra is

generated by a pair (A,B) of vector fields
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and exp(tA), exp(xB) ,t,x « R
are compact. Then, M T' >0 , there
exist a positive integer and two
vector fields A' and B* such that

every element of G can be expressed as a

finite product

t

It exp(t.A")exp(r.B") with «..v_ i 0 and
i=l 1 1 11

1*
ro(t.+x.) < T*
i=1 11

2»
Proof - Let f:R G (tienote the map defined by

(tj...... H exp(t.A)exp(T.B) . If G2t s the

set of all products of 2| elements of exp(tA) and exp(iB) ,
G? is compact and it was proved in Theorem 1.1. (Chapter 1)

that G = U G,. and for some f fixed, G> contains an open
I»l 1

set U . By Sard's theorem [18] the set of points where the
differential of f has rank < n must be of measure zero.
Therefore for some t c R2t the differential df(t) is of rank
n . By analiticity of f , rank df(t) « n for every t in

an open and dense subset of F2t . This shows that in particular
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for all teS={(".... tt,T1,...T1) CF t.," 20,1 (t"T™ <t
1*1

for some t >0} , rank df(t) = n , which implies, by

the implicit function theorem that f(t), t € S contains a non-

empty open subset V of G . Since G is connected and compact

it follows that G is a finite product of r elements of V .

Taking t' * [l and T =rr the conclusion holds for some

T =T and A' = A, B' =B . To complete the proof when T'

is an arbitrary positive number just replace A,B,T by xA.xB.X W

for an arbitrary x > 0 .

THEOREM 2.1. - The pair {A'.B’} in lemma 2.1 is uniformly
completely controllable. Any pair (M.m")
of points of G can be joined by a trajectory
of {A'.B'l which involves at most N * 2t'-I

switches.

Proof - The proof is an immediate consequence of lemna 2.1 and
the fact that G is a group. |In fact, for every pair (M.m")
of points of G there exists me G such that mml * n2 (mm2ml ) .

But lemma 2.1 guarantees that 3 t' <2+ , t*.xj 2 0 such that
|

m* n exp(t.A’) exptr.B') and the conclusion holds,
i*l
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Remark - Lemma 2.1 can be reformulated as follows. The reachable
set from e (the identity of 6) by trajectories of {A*,B™>
involving at most N switches is G . Then, since A' and B’
are left invariant vector fields on G, R(m) = R(e)m , m« G

and theorem 2.1 follows.

Pairs {A,B} of vector fields on SO(n) , which satisfy
(A,B>1 ~ =so(n) , exp(tA) and exp(tB) , «.T «F are compact,
were constructed in chapters 11l and IV. Since SO0(n) is connected
and compact, lemma 2.1 implies that these pairs are uniformly
completely controllable. Since SO(n) acts transitively on
Snl (the unit sphere imbedded in Fn) and the vector fields
defined by X(x) = Ax , Y(x) = Bx are obviously vector fields on
s"*1 , (note that A* » -A , B* * -B imply <Ax,x> * <Bx,x> * 0 ;
<e,e> js the inner product in Fn) which are uniformly completely
controllable. Hence, an upper bound N on the number of switches
in trajectories of {A,B) is also an upper bound on the number of
switches in trajectories of (X,Y) . Now, the stereographic

projection of Sn \{p) onto Fn ~ defined by
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is a diffeomorphism and the restrictions X' and Y' of X

and Y respectively to Sn \{p) , are vector fields on

Fn ~ . Hence {X',Y'} is completely controllable [191. We
conjecture that {X*,Y'} is uniformly completely controllable
and the number of switches that a trajectory of {X',Y*) involves
to join any two points in Fn is at most N . This case and
more, will be considered later although for different pairs of

vector fields.

To finalize this paragraph an important result is stated.
It is the bridge between the uniform finite generation of a Lie
group G and the uniform controllability of left-invariant control

systems evolving on G .

THEOREM 2.2. - Let , 1> be left-invariant vector
fields on a connected Lie group G satisfying
{Xr i * 1,...5Kj_ a EL(G) » exP(txi) » * <R
is compact, ¥ i * I,...,k . Then, {X*, 1«l,...,k)
is uniformly completely controllable if and only
if G is uniformly finitely generated by
{exp(tX”~) ; 1 * 1...... k ; t cF) . Hence, 1f
the order of generation of G by these one-

parameter subgroups is , any two points
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of G can be joined by a trajectory of
Xi , i =1,...,k) which involves not

more than N = fA-1 switches.

The proof follows directly from the definition of a
uniformly completely controllable set of vector fields, the
concept of uniform finite generation of a group and the assumption
made that the one-parameter subgroups generated by , 1o, .k

are compact.

S3.  UNIFORM CONTROLLABILITY ON SO(n)

As already pointed out in Chapter |, the compactness of the
one-parameter subgroups that generate a Lie group is not a necessary
condition for uniform finite generation. However, if exp(tA) and
exp(xB) are compact, where {A,B} is any pair of generators of
so(n) constructed in previous chapters, the last theorem can be

applied and {A,B> is uniformly completely controllable.

THEOREM 3.1. - Let <, 0 <*sw/2 be the angle between the axes
of any two one-parameter subgroups exp(tA) and
exp(rB) of $0(3) . {A,8} is uniformly completely
controllable and any two points of SO(3) can be

joined by a trajectory of (A,B) which involves
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at most 2 switches if t=n/2 or

k+1 (k | 2) switches if n/(k+l) s * < n/k

Proof - This result is an immediate consequence of the Theorem
2.1 (Chapter 1), the fact that every element of so(3) generates

compact one-parameter subgroups and Theorem 2.2 (82).

The easy way of calculating the order of generation of
S0(3) by any two one-parameter subgroups and the complete
characterization of generators (A,B) of so(3) have as a
consequence that not just symmetric systems on S0(3) (as (1.2))

but also systems of the form
Je(t) - (A + v(t)B)x(t) , x < S0(3) (3.1)

(V(t) a piecewise continuous control function) are uniformly

controllable.

levma 3.1. - If CAB] [ 0, the systems (1.2) and (3.1)
are uniformly controllable and there exist

controls such that every pair of points in



- 121 -

SO(3) can be joined by a trajectory of

the system only with two switches.

Proof - a and b denote the axes of the rotations exp(tA)
and exp(TB) respectively. Let * = 9 (a,b) e U/(k+l),w/k) |,
k 22 . For every pair of vectors (a,b) in 1R3 there exist
constants W and W such that a+vbia. So

¥ g £ S0(3) ,3 tr t2,t3 eF such that g » expi®A)
exp((u-]A+viB)t2) exp(At3) (lemma 2.2, Chapter I). Clearly the

t's can be taken nonnegative. Now choose

, T £ ("3»7h2+730
u(t) =<
, T £ [0.tj] u (2+t3" "2+~

»t £ (/\3*/\2+A3/\
v(t)

otherwise

so every pair of points of S0(3) can be joined by a trajectory
of the system (1.2) (trajectory of A and ul A+ vl B) involving

two switches. For the system (3.1) just make u, « 1 and the

result follows.
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For n>3, let {A,B} be any pair of generators of
so(n) constructed in Chapters 11l and IV. When, in particular,
B e {exp(t ad A).X , Xe [c"] , t cIR ([c™M as ’n Chapter IV
with n and k coprime) and it is not a canonical basis
element it is difficult to characterize these vector fields.
However, it can be proved that they all generate compact one-
parameter subgroups. For the sake of completeness it is also
proved here, although assumed to be true before, that exp(tA)
and exp(xB) are compact for every pair (A,B) constructed in

the previous two chapters.

lemma 3.2. - 1) Every canonical basis element of so(n)
generates a periodic one-parameter sub-

group of  SO(n) with period 2».

2) Every A e S0(n) that satisfies, exp(A) « P ,
P a permutation matrix and Pn = In(-In) *
generates a periodic one-parameter subgroup

of SO(n) with period n (2n) if Pn « In(-In)

3) If ¥« {exp(t ad A).B, Bc B, tcF> where
A is defined as in 2), then exp(tF) is

periodic with period 2w .
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Proof - ¥ B=A..e B, exp(tB) , t cIR is the subgroup
"3
of rotationsin the (e”~.e”)-plane so it is periodic with

period 2n .

Clearly, ¥ teR

exp (t+n)A

exp(tA) =«
P(tA) exp (t+2n)A

Hence, ¥ F C {exp(t ad A).)B , Bt8 , teF} ,
3 e cF+*such that F = exp(eA) B exp(-eA) . That is
exp(xF) = exp(eA) exp(xB) exp(-eA) , ¥x eF . But 1) implies

that exp((x+2nk)F) = exp(xF) , ¥ Kk «2

Hence, ¥ t] c , 3 positive integers k1 and k?
such that exp(-1,B) = exp((2k1n-t])B) , expf-~F) = exp((2kln-tl1)F)
and exp(-t.]A) = exp((-t*+k2n)A) with 2k*n-t*nc F e« kjn-t™ tF

and A,B and F as in the lemma above.

THEOREM 3.2. - 1) For n > 3 , let (A.B) be any pair of
left-invariant vector fields on SO0(n)
that satisfy the conditions of the Theorem

2.2, Chapter IlIl and F < (exp(tadA).B, t eF)cso(n)



Then, {A,F} is uniformly completely
controllable and for every pair (p,q)
of points of SO(n) , there exists a
trajectory of {A,E} from p to q ,
which involves not more than N * 2n-2

(N=2n-4 , if F £8) switches.

2) For n>3 , let {A,B} be any pair of
left-invariant vector fields on S0(n)
that satisfy the conditions of the theorem
1.3, Chapter IV. Then, (A,B) is uniformly
completely controllable and any pair (p.q)
of points of SO(n) can be joined by a
trajectory of {A,B> which involves not more

than N =2n-1+4 (N = 2n_1+2 if B £ B)

switches.
Proof - The result follows directly from the theorems 2.1 and
2.2, Chapter IIl (if 1)) or from the theorem 1.3, Chapter IV

(if 2)) plus the result of lemma 3.2 and theorem 2.2 in this

chapter.



- 125 -

84. SOME CONSEQUENCES OF THE UNIFORM CONTROLLABILITY ON SO(n) .

In [12, Theorem 2], N. Levitt and H. Sussmann constructed a
completely controllable pair (X.Y) of vector fields on M ,
M is any connected and paracompact C (2 s k s «) manifold of
dimension n , so that any two points of M can be joined by a
trajectory of {X,Y} involving not more than N + 6 switches,
where N is the corresponding number of switches required for
some pair (A,B> of left-invariant vector fields on SO(n) . By

Theorem 3.2 we may choose {A,B> with N * 2n ~+2 to give

THEOREM 4.1. - On any connected, paracompact n-dimensional
Ck (2 s k' s -) manifold, there exist two vector
fields X and Y , so that any two points of
M may be joined by a trajectory of (X.Y)
involving not more than 2n ™48 switches if
ni 4 , and 8 or 6 switches if n- 3 or

n =2 respectively.

When n =3 , {A,B} may be chosen to be orthogonal, giving
N=2 . Forn=2, S0(2) is one-dimensional and there are no
switches i.e. N=0 . So 2+6 (0+6) is the number of switches

required by the pair {X.Y} on a 3-dimensional (2-dimensional)

manifold.



- 126 -

Note that the conjecture formulated earlier may bring the

number of switches dowmn to 2 when M=]R

Theorem 4.1 applies to every connected Lie group since a
Lie group is a paracompact C°°- manifold. However, if {X,Y>
are restricted to belong to the set of left-invariant vector

fields of G they may not necessarily satisfy the theorem above.

if {X,Y}t A=1L(G) , then {X,Y,-X,-Y} are completely
controllable [7]. Hence if X and Y generate compact one-
parameter subgroups, {X,Y> is completely controllable. However,
if G is non-compact (X.Y) will not be uniformly completely

controllable. The following example illustrates this fact.

EXAMPLE 4.1. - G = S0Q(2.1) is the Lie group of real quadratic
matrices of determinant 1 , leaving invariant the quadratic

form x* - %\ - X3 with (xr x2,x3) c1R3 . Its Lie algebra

: Xj ¢ so(2), X2 is arbitrary < is of non-

compact type and admits a direct sum decomposition, the Cartan
decomposition, *o0(2.1) » T, « P, where T, is the maximal

compact subalgebra of so(2,l1) and P a vector subspace.
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The corresponding symmetric space decomposition of S0q(2,1)
[2, p.453] as S0Q(2,1) =K ] t h e maximal compact
subgroup of S0Q(2,1) whose Lie algebra is ~ and - exp(AN)

Al a maximal abelian subalgebra of so(2,l) contained in P1

give a decomposition of S0q(2,1) as a product of 3 one-

parameter subgroups. If and A are chosen to be generated
by the elements and BI13 = EN3 + respectively, it
follows

SO0a(2,1) = exp(tAl2) exp(TB13) exp(eAl2) ; t,x,e «F

Since [A12,B13] = -B23 , TA12,B23] « B13 , tB13,B231 “ A12

and {A12,B13,B23) is a basis of so(2,l) , <Ai2*BI3>L.A “ so(2’1) *

Take A = A2, B* B*3 . exp(xB13) S cosh x O sinh x is
0 1 0

ksinh x 0 cosh x

clearly noncompact and if Xi < 0 , there is no x2>0 s.t.
exP(xiB13) = exp(-r2B13) . Although S0o(2,1) is uniformly finitely
generated by exp(tA) and exp(xB) , controllability in a finite
number of switches cannot be achieved with just these two vector

fields. However, every pair of points in S0Q(2.1) can be joined
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by a trajectory of {A,B,-B} involving at most 2 switches.

Next, a set of four left-invariant vector fields on S0Q(n,l),

n | 3 is constructed, which is uniformly completely controllable.

SOo(n,l) is the connected Lie group of quadratic matrices
with determinant 1, which leave invariant the quadratic form
<@-x2 - X N+ Let B be the

oAl v (XT X2...... xn+l ~ £R ij

symmetric matrix defined by Bij " Eij + Eji
{Aij;i,j-1...... n,1<j} U {Bln+Il;1-I...... > is a basis of so(n,l),

the canonical basis. The structure formulas of so(n,l) with

respect to this basis are as follows,

[Bij’Bkt] = 5jkAu + 61tAjk + 6ikAjt + BjtAik *
[Aij*BKE] a 6jkBu + 6jtBik - stiBk j - fikiBtj *

CAij*\t] = 6jKAU + BkiAjk = BikAjt * 4jtAik '

THEOREM 4.2. - There exists a completely controllable set D
of four left-invariant vector fields on S0o(n,l)
such that every pair (m~.n?) of points of S0Q(n,I)
can be linked by a trajectory of 0 involving at

most 2N+2 switches (N as in Theorem 3.2).
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Proof - so(n,l) admits a Cartan decomposition,
so(n,1) =~ ®P1 , Tj n so(n) , P] =span{Bi +1;i =1,...,n)
Let C = % n+" , a, elR be any element of Pi . C generates

a maximal abelian subalgebra of so(n,l) contained in P . The
symmetric space decomposition of S0Q(n,l) corresponding to the
Cartan decomposition of so(n,l) is S0Q(n,l) = ,

Kji = SO(n) , A1 = exp(IRC) . If (A,B) is any pair of left-
invariant vector fields on Kj , that satisfy the conditions of
the theorem 1.3, Chapter IV and B ¢ 8 , by applying Theorem 3.2-2)
in this chapter it follows that D = {A,B,C,-C} is uniformly
completely controllable and any pair (m-i.mj) of points of
S$°0(n,1) may be joined by a trajectory of D involving at most
2N+2 switches, where N = 2n_1+2 is the corresponding number of

switches for the pair {A,B} in SO(n)

Although S0Q(n,l) is uniformly finitely generated by
exp(tA) , exp(xB) and exp(eC) , this last one-parameter subgroup

is not compact and the results of the theorem can not be achieved

with just 3 vector fields.
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Clearly, any other pair {A.B} as constructed in Chapters
Il and IV may be considered but the final number of switches

will be bigger than when {A,B} is chosen as above.

Remark - For n =2 , three vector fields {A,C,-C} are
enough to satisfy the requirements of the last theorem since,

in this case, is a one-dimensional subgroup.
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In this chapter, a few concluding remarks are made together

with suggestion for further research.

The framework considered here seems to be the natural
departure point for constructing a theory on the uniform controll-
ability for a class of bilinear systems defined on connected Lie
groups G . In fact, if G is uniformly finitely generated by
R subgroups of the form exp(t(E u”)) , the system
x(t) = (Z urX.)x(t) , x c G is uniformly controllable. When
all the generators of G are compact, the number of switches in
trajectories of the system required to join any two state points
can be reduced to N-I , where N is the order of generation of
G corresponding to those generators (Theorem 2.2, Chapter V) and
R (the number of vector fields needed) must be greater than or
equal to two [12]. Clearly, only if G is compact may all its
generators be compact. In the noncompact case, at least one of
the R generators of G must be noncompact. However, uniform
controllability can still be achieved in N-I switches although
the number of directions needed has to increase from R to R+Rc
where Rc is equal to the number of noncompact vector fields.

Rj. comes from considering *X whenever X generates a noncompact

subgroup.
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In a series of papers [8], [9], [10], [13], [14], [15],
[16], F. Lowenthal and R. Koch found the orders of generation
for all real and complex Lie groups of dimension two and three.
Therefore the uniform controllability problem is completely

solved in these cases.

The present work also gives a complete solution for a particular
set of vector fields on SO(n) namely,the generating set of so(n)
corresponding to a particular decomposition of SO(n) based on
symmetric spaces. In fact, the number of one-parameter subgroups
that decompositions of SO0(n) yield when one decomposes SO(m) ,
2 <ms n according to the symmetric structure in | (Chapter II),
increases with p , being minimal, equal to the dimension of
SO(n) , when p=q (p =qg+l) if ptg=m is even (if ptgq ¥ m
is odd) (lemmas 2.1 and 2.2, Chapter IlI). Since the order of
generation must be greater than or equal to the dimension of G ,
the generating set corresponding to this decomposition is uniformly
completely controllable and hence, controllability cannot be
achieved in less than ml switches (m « dim SO(n)) that is,
there exists at least a pair of points in S0(n) that cannot be
joined by a trajectory of this generating set, which involves less
than ml switches. Note that, the generating set corresponding
to a given decomposition is a subset of the canonical basis and

consequently generates a set of compact one-parameter subgroups.
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Any other decomposition of S0(n) (as considered in
Chapter 1) has a corresponding generating set (not unique)
which is uniformly completely controllable. However only an
upper bound (L-1) can be put on the number of switches. (L
is the corresponding number of generation.) The same applied
for the pairs {A,B} of generators of so(n) constructed in

Chapters 111 and IV.

The present work has been devoted to reducing this upper
bound to its min'mum. The following example shows that for
G = SO(n). , the upper bound given in this work is not the

minimum achievable.

EXAMPLE - Let G = SO(7) , {A,B} a pair of generators of so(7)
defined by, exp(A) =P , P a permutation matrix satisfying

pei =eitl i «1_....,6 ; Pe? =el and B = AJ4 _ Since

B £ , Xc (exp(tA).B , t cF) «¥ X « [a,] . It has been
proved that only two decompositions of SO0(7) as in |, Chapter II,
having corresponding generating sets contained in [a”] and giving
different numbers of generation exist (lemma 3.6 and theorem 3.1,
Chapter 11). By choosing the decomposition that gives the least
number of generation and taking into account that ¥ X < [a”] and

¥t cF , exp(tX) = exp(eA) exp(tB) exp(-eA) , for some e
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depending on X , it follows from Theorem 1.1 (Chapter IV) and
Theorem 2.2 (Chapter V) that {A,B} is uniformly completely
controllable in at most 26+2 = 66 switches. However if S0(7)

is decomposed as a product of one-parameter subgroups as in lemma
2.1, Chapter II, although the corresponding generating set is not
contained in [a”] , its elements can be obtained by brackets

of elements in [a-j] . Using leninas 1.1, 1.3 and 1.6 in Chapter IV
one can reduce the number of switches found previously. The diagram
below illustrates the decomposition of so(7) corresponding to the
chosen symmetric space decomposition of SO0(7) and also shows

which canonical basis elements have been selected as a generating

set.

O .

AS6  Q

For the Lie group, one has S0(7) * Ki *

K = S0(4) x SO(3) is the Lie group of

u i,
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fi - spai'KAMtANANY U span{A”*jii<j ,j = 4,5,6f7} »

Aj = exp(Aj) f Al = span{A24,A35,A17>

k] = S0(4) = K2A2K2 , <2 =S0(2) x SO(2) is the
Lie group of = spanfA~.A"} , A= exp(A2) ,

A2 = span{A46,A57) . = S0(3) = K3A3K3 ,

K3 = S0(2) = exp(iAl2) , A3 = expftA”) . So in the

decomposition

SO(7) = K2A2K2K3A3K3Ai K3A3K3K2A2K2

since K2,K3,A1>A2 and A3 are all abelian subgroups, SO0(7)

may be decomposed as a product of one-parameter subgroups generated
by the elements selected from the diagram above. Hence, exp(tX)
appears once, twice or four times in the decomposition depending

on whether X belongs to i724»"\35*Ni7~ « "A46,A57"  or
{A12,A23,A45,A67} respectively. Now, CA~.AN] = -AN

[A34°A45] " A35 SO ¥telR* exP(tA24> and exP(tA3$> n**
be written as a product of 5 elements from exp(xA) and exp(eB)

({A.B} as above) and CA45»A563 = A6 , fA56,A67] = A57 so,seven
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elements from exp(rA) and exp(eB) are required for exp(tA™)
and exp(tA”) . All the other one-parameter subgroups in the
decomposition may be written as exp(tA) exp(oB) exp(-tA) and

the final result after composition of terms with the same generator
is that SO0(7) is uniformly finitely generated by exp(tA) and
exp(TB) with number of generations 65. So {A,B} is uniformly

controllable with at most 64 switches.

To determine the order of generation of S0(n) with respect
to a set of one-parameter subgroups that generate SO(n) , one has

to find dut how generators and decompositions relate to each other.

This work is not by any means a fait accompli and opens up

various directions for further research.

The first task is to characterize all the generators of the
Lie algebra L(G) a given Lie Group G . Although several
important results have already been obtained (see Jurdjevic and
Kupka [5], Jurdjevic and Sussmann [6], Kuranishi [11] and also
Theorem 3.2, Chapter | in the present work) a complete characterization
is far from being accomplished even when G is a semisimple Lie
group of matrices and the generators are restricted to pairs (A.B),

which are known to exist. When G is noncompact and its Lie algebra
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is generated by a set of compact elements (X e L(G) is said

compact if the one-parameter subgroup it generates, exp(tX),t e 1R,
is compact), the order of generation of G corresponding to these
generators is infinite. Therefore, such cases are without interest

in studying the uniform controllability problem.

Decompositions of G based on symmetric spaces may be used
to determine the order of generation of G by one-parameter sub-
groups generated by elements of L(G) . For the classical matrix
Lie groups, involutive automorphisms always exist and such decom-
positions are always possible [2]. When G is connected and
compact, the exponential map is onto and a prior knowledge of a
set of generators of the Lie algebra L(G) is not necessary since
the decomposition itself provides a corresponding generating set
{exp(tX.j) , i «1...... k , tcR) of G and consequently a set
{X.., i =1,...,k) of generators of L(G) . For the noncompact
case, there may exist X € G which does not lie on a one-parameter
subgroup of G . A result by L. Markus [17] says that V X « G ,
G any classical Lie group of matrices 3 a positive integer
p = p(X) such that Xp lies on a one-parameter subgroup of G .
This result can presumably be used in finding a set of generators
of L(G) whose one-parameter subgroups uniformly finitely generate

G . When G is noncompact, other decompositions than the Cartan
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decomposition may be used with success. For instance, the

Iwasawa and the Bruhat decompositions can both be considered in

the noncompact case.

The SO(n) case, appears to be the easiest one among all the
classical groups of matrices due to the compactness of SO(n) ,
the very simple structure of the canonical basis of so(n) and
the existence of permutation matrices in S0(n) , which have been
an important tool in the present work. As a consequence, a
complete solution for SO(n) may yield solutions to the same
problem for other groups such as S0Q(p,q) or SL(nJR) (note
that SO(p) x SO(g) and SO(n) are the maximal compact subgroups
of SO0Q(p,q) and SL(nJR) respectively). This and the important
role that generators of so(n) play in constructing uniformly
completely controllable vector fields on any paracompact and
connected Ck- manifold, are, in the author's opinion, good reasons
for having started with SO(n) and to direct future research,

primarily to the order of generation problem of the special orthogonal

group.

However, since Lowenthal's methods are completely different,
the solution may lie in a deep understanding of the representation

theory for these groups.
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