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Abstract

To control cellular processes synthetic biologists and biotechnologists often use reg-
ulation of gene expression; by regulating transcription it is assumed protein levels
will follow. However the use of a common pool of gene expression resources results
in the emergence of hidden interactions, couplings, between genes which are not
immediately apparent from circuit topologies. This can result in a breakdown in
the relationship between transcriptional regulation (input) and protein levels (out-
put). Current evidence suggests that it is the number of free ribosomes which limits
protein synthesis capacity and therefore creates these non-regulatory linkages.

In this thesis, the feasibility of dividing the cell’s translational resources to reverse
the breakdown in input-output responses and decouple co-expressed genes is demon-
strated. A model of microbial growth which captures key aspects of host-circuit in-
teractions is developed and demonstrates the feasibility of using orthogonal (circuit-
specific) ribosomes for circuit gene expression; showing that by allocating circuit
genes to both host and orthogonal translational pools these genes can be decoupled
and the flux through a model biotechnological pathway can be improved.

The design of negative feedback controllers to allocate translational resources is in-
vestigated. These act to increase supply of orthogonal ribosomes as the demand
for translational resources by the circuit increases. The stability of a number of
controller architectures is investigated. An experimental prototype of the best per-
forming controller architecture is able to reduce gene coupling by 50%.

The best controller architecture is carried forward for further analysis, and a detailed
mechanistic model which can be used as a design tool is developed. A hard trade-
off between gene expression and decoupling activity is identified and designs which
manage this trade-off suggested. The controller is shown to ameliorate resource-
mediated failures of modularity in a range of synthetic biology circuits.

Finally, a discussion on ways to produce a second generation of translational resource
allocation controllers is provided.
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Chapter 1

Introduction to this thesis

Synthetic biology is a nascent discipline which aims to make ‘biology easier to en-

gineer’ [1]. By introducing synthetic gene circuits into microbial hosts, synthetic

biologists and biotechnologists are able to control cell function. However, often

these initial designs fail due to the effect of unforeseen interactions between the

circuit and host cell or the effect of host constraints. This thesis is concerned with

ways to mitigate the impact of host constraints on synthetic circuits.

Chapter 2 consists of an introduction to the field of synthetic biology and the key

concepts/background used in this thesis. We discuss how host-circuit interactions

can lead to the unpredictability, or outright failure, of synthetic circuit designs upon

their implementation in vivo. We review recent advances in the study of the ‘cellular

economy’ and how intrinsic limitations in the synthesis capacity of cells can impact

circuit function. We introduce the concept of ‘host-aware’ modelling in comparison

to other modelling frameworks used in biology and show, using a motivating exam-

ple, that the inclusion of host factors can dramatically alter the potential behaviour

of a synthetic circuit. We propose the use of so-called ‘orthogonal’ resources as a

means of reducing the intrinsic limitations of the host by allowing the partitioning

of synthesis capacity into ‘host’ and ‘circuit’ specific components.

In Chapter 3, we begin by developing a simple model of microbial growth and gene

expression which takes account of key mediating factors in host-circuit interactions.

We introduce the necessary changes to model the production and utilisation of or-

thogonal ribosomes. Using this model we demonstrate how this circuit-specific pool

of ribosomes can act as simple allocators of translational activity between host and

circuit genes and within circuits. We present experimental data from our collab-
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orators which validates our observations. We show how these simple observations

can be extended to a simple biotechnologically relevant pathway. We show how re-

source limitations can lead to counter intuitive decreases in metabolite output with

increased pathway expression and show how controlling the allocation of ribosomes

can be used to increase the yield.

In Chapter 4 we use this host model to design and investigate the ability of using

feedback control to dynamically manipulate the size of the orthogonal ribosome pool

so that it increases in size as demand from the synthetic circuit rises. We present the

design of a number of different feasible feedback mechanisms and show how they can

be realised in vivo in the form of simple gene networks. The design of a prototype

controller is demonstrated in vivo.

Chapter 5 presents a detailed mechanistic model of the best feedback controller

architecture. This model is then reduced to highlight key species and behaviours

required for the controller to function. A trade-off between gene expression and

resource-mediated gene-gene coupling is identified and parameter regimes which

manage this proposed. The action of the controller is evaluated for a range of

potential biological implementations. The controller is shown to successfully allocate

resources across a range of previously published gene circuits.

Chapter 6 summarises the main findings from the work conducted and suggests

further theoretical and experimental work required to produce a new generation of

ribosomal allocation controllers. We propose future work to investigate controllers to

manage transcriptional limitations and controllers which function at the ‘interface’

of host and circuit functions.
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1.1 Publications arising from this work

The motivating example in Chapter 2 was published in:

Darlington, A.P.S. and Bates, D.G. (2016) “Host-aware modelling of a syn-

thetic genetic oscillator”, Proceedings of 38th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, Orlando, USA.

The work in Chapter 3 and negative feedback controller from Chapter 4 has been

published as:

Darlington, A.P.S., Kim, J., Jiménez, J.I. and Bates, D.G. (2018) “Dynamic

allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes.”

Nature Communications, 9 , 695

The discussion of the integral feedback control architectures in Chapter 4 has been

accepted for presentation and subsequent publication in the conference Proceedings:

Darlington, A.P.S., and Bates, D.G. (2018) “On the design of integral transla-

tional resource allocation controllers for synthetic cellular circuitry” to appear

in the Proceedings of the 57th IEEE Conference on Decision and Control, Mi-

ami, USA.

The initial work on the mechanistic model in Chapter 5 was published in:

Darlington, A.P.S ., Kim, J., Jiménez, J.I. and Bates, D.G. (2017) “Design

of a translation resource allocation controller to manage cellular resource lim-

itations”, Proceedings of 20th IFAC World Congress on Automatic Control,

Toulouse, France.

The completed work on the mechanistic model in Chapter 5 has been submitted:

Darlington, A.P.S., Kim, J., Jiménez, J.I. and Bates, D.G. “Engineering trans-

lational resource allocation controllers: Mechanistic models, design rules and

biological implementations.” (under review)
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Chapter 2

Resource allocation in synthetic

gene circuits

2.1 A brief history of synthetic biology

The modern field of synthetic biology encompasses a range of modern biological and

biotechnological disciplines; all of which aim to apply engineering principles and

theory to the construction of useful novel biological components. These can range

from novel protein structures that have been designed de novo to the creation of

new microbial consortia capable of producing fine chemicals.

In this thesis, we focus on the design and implementation of information process-

ing gene- and protein-based ‘circuits’. These molecular intracellular control systems

have a range of applications in biomedicine, environmental science and bioprocess-

ing/biotechnology (for examples see [2]). Since 2000, there has been a range of

successes in production of a variety of modular functional motifs such as switches

[3], oscillators [4, 5], bandpass filters [6] and logic gates [7]. These subjects have been

reviewed extensively elsewhere (e.g. [2, 8]). These motifs can be assembled into de-

vices and systems to perform complex tasks, such as counters [9] and multi-input

logical processing units [10]. These systems can be implemented within individual

cells or distributed across multiple cells in synthetic microbial consortia [10–12].

Synthetic biology grew out of a desire to make biology ‘easier to engineer’ [1] and

so a number of concepts from engineering have been co-opted; especially those of

predictive modelling, standardisation, modularity, abstraction, and the separation

of design and manufacture (all implemented with different levels of success) [13].
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The aim of synthetic circuit designers is the creation of a large catalogue of well

characterised genetic sequences – ‘parts’ – encoding promoters, ribosome binding

sites and functional proteins [14]. These standardised parts can be assembled into

simple devices (such as gene expression cassettes), which in turn can be combined

into modules of defined function (such as logic gates). These modules can themselves

be connected into systems, in a manner reminiscent of electrical circuit board design.

These systems carry out complex functions, such as information processing in which

an input signal is taken, some form of computation takes place (e.g. comparison to

a threshold value) and an output produced (often this is a fluorescent protein, but

ideally this would be an enzyme or activator of some downstream cellular function).

At each stage the components should have known, defined and predictable function

(i.e. they are modular). This abstraction hierarchy would allow circuit designers

to assemble functional circuits in the conventional ‘plug-and-play’ approach used

by engineers without the need for the circuit designer to understand the assembly

methods or detailed sequence-level information. It would also allow part designers to

work without paying heed to desired circuit function or final dynamics. The Registry

of Standard Biological Parts (‘BioBricks’) [14, 15] and the Synthetic Biology Open

Language [16] aim to impose this hierarchical structure to create the required levels

of abstraction. There is increasing success at designing circuits in this manner

without the need for iterative (and expensive/time consuming) cycles of design and

testing (e.g. [10]) but all too often circuits require extensive ‘debugging’ by tweaking

and re-tweaking components (although these methods themselves are improving,

e.g. [17]).

2.2 Failure of synthetic gene circuits

Often synthetic biologists view the host organism as a static chassis or hardware

into which a plasmid-based software can be ‘loaded and executed’ [13]. However,

this analogy to computer science does not hold. Synthetic circuits rely on their

hosts to supply the necessary building blocks and gene expression machinery for the

plasmid-encoded program to be successfully ‘run’, i.e. expressed. A better analogy

is that synthetic circuit genes parasitise their host cell: the circuit genes compete

with the host genes for metabolic building blocks as well as the machinery needed

to interpret and implement the ‘encoded program’. This can result in circuit failure;

which we define as an un-desirable (un-designed) circuit behaviour.

Here we briefly review the commonly observed causes for synthetic circuit failure.

5



These are reviewed extensively elsewhere (e.g. [8, 18–20]) but we provide a brief

summary as a means to highlight where this thesis makes a contribution.

At present most gene circuits are implemented in bacteria using genetic elements

themselves derived from bacteria. These components can form an interface between

the host genome and synthetic circuit leading to unexpected interactions. For ex-

ample, the commonly used repressor LacI is an Escherichia coli gene and is itself

often used in E. coli circuits. In this case the natural LacI gene must be deleted

from the host to prevent interference. In more complex cases synthetic components

can have off target effects due to sequence or structural homologies. Careful design

of sequence and the use of components from distant relatives can increase orthogo-

nality; i.e. they do not interact with host sequences or processes [21]. Distribution

of circuit modules across different strains allows component reuse as compartmen-

talisation prevents off-target effects (e.g. [7, 22]). In Section 2.6 we develop this

concept further by considering the use of orthogonal gene expression machineries.

The DNA-sequence flanking a DNA part can have significant effects on its function.

This can affect the function of promoters, ribosome binding sites (RBSs) and tran-

scriptional terminators. Thermodynamic models based on DNA or RNA folding can

be used to assess potential sequence effects and aid design to remove them (e.g. the

RBS calculator developed in [23]). Post-translational RNA processing by the use of

internal self-cleaving RNA sequences have been used to remove the 5’-untranslated

region which can remove undesirable effects on the RBS [24].

The connection of separately characterised circuits can result in unexpected interac-

tions due to titration of upstream components by downstream DNA sequences. This

feedback between modules is referred to as retroactivity [25] and can have signifi-

cant effects on the function of the upstream module. The introduction of insulation

motifs (such as transcriptional feedback and kinase-phosphatase cycles) in between

the modules can be used to mitigate these effects [26, 27]. Negative transcriptional

feedback minimises the impact of retroactivity by simultaneously amplifying the

input signal and using negative feedback to remove the disturbance caused by the

retroactivity signal. Kinase-phosphatase cycles utilise an excess of protein which

is posphorylated by a kinase and dephosphorylated by a phosphatase to create the

amplification signal. In one state, e.g. the phosphorylated form, the protein acti-

vates the downstream module; the proteins’ activities are regulated by varying the

concentration of kinase or phosphatase. The input signal is passed to the insulation

device by increasing or decreasing the concentration of the kinase.
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Increasing awareness of host and environmental context dependencies has led to

systematic testing of simple circuits in a variety of host backgrounds (e.g. [28–

30]). It has been shown that circuit expression can vary up to 1,000 fold depending

on chassis selection [29]. Together these studies do not identify a trend between

circuit behaviour, strain genotype and/or growth conditions suggesting host-circuit

interactions are highly dependent upon the specific conditions. In [30], Moser et

al. express a previously characterised set of logic gates in an industrial strain of E

coli. under different medium conditions and volumes. They find that one of the

circuits fails when expressed in the lab strain under minimal media conditions but

that function is rescued upon transfer to an industrial strain. They also find that

whilst the qualitative circuit function can be maintained there are large differences

in quantitative behaviour across different conditions.

2.3 The effects of resource limitations in synthetic bi-

ology

2.3.1 Limited gene expression resources in bacteria

A key cause of the strain and environmental context dependency is that both host

genotype and growth conditions lead to differences in the gene expression resources

in bacteria. The model bacterium E. coli contains some 5,000 genes which encode

information needed for multiple core (‘essential’) and condition-specific life processes

[31]. Cells exhibit behaviours through changes in their intracellular make-up; often

by producing new proteins which confer new function in response to an external

cue. When a specific genetic program is activated, RNA polymerases first bind a

recognition sequence upstream of the main gene in what is known as the promoter.

They then transcribe the DNA-encoded information from the genome (or plasmid)

into an intermediate messenger RNA (mRNA). This mRNA is bound by ribosomes

at the ribosome binding site (RBS) and translated. The ribosome progresses along

the mRNA ‘reading’ the order of the bases and using this information to assemble a

chain of amino acids (a polypeptide). This complex multistep process utilises a num-

ber of protein-based and RNA-based accessory factors. Upon completion of reading

the mRNA, the polypeptide chain is released and undergoes further processing and

folding to form a functional protein.

During balanced exponential growth (when cells are growing maximally) the number

of RNA polymerases and ribosomes is constant [32, 33] – with the activity, and total
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number of complexes, increasing with increasing growth rate. This creates a set of

fixed limited resources for total gene expression which are distributed across all

host genes. Experimental evidence suggests that, whilst both RNA polymerase and

ribosomes represent limited resources, in most cases it is the level of free ribosomes

that sets a limit on gene expression [33–39]. The level of RNA polymerase becomes

limiting in certain circumstances (for example, where circuit RBS strength is low,

and hence ribosome sequestration by circuit mRNAs for translation is also low)

[38, 40].

There is also some evidence to suggest that in addition to ribosomal limitations,

other translational resources such as transfer RNAs (which are involved in interpret-

ing the mRNA sequence into an amino acid sequence) and amino acid metabolism

also form limited resources. For example, the expression of these cellular compo-

nents increases upon foreign gene expression, although individual changes appear

to be circuit-specific [41]. Note that interactions at this level of gene expression are

unavoidable if synthetic genes are to be expressed in microbial hosts as all foreign

protein production will necessarily use the host supplied amino acids.

Saturation of the cell’s protease activity, i.e. protein degradation machinery, can

impact circuit function showing this can also form a limited resource in specific cases

where circuits require high degradation rates (discussed further below) [42, 43].

2.3.2 Intra-circuit gene coupling

A key impact of limited gene expression resources is the emergence of ‘hidden’ inter-

actions between genes. Through the sharing of resources, changes in the expression

of one gene results in changes in the expression of other genes; creating effective

regulatory linkages although no direct regulation between the modules is present.

We term this phenomenon ‘gene coupling’ as the expression of one gene becomes

connected to the expression of others.

This gene coupling has been demonstrated both theoretically and experimentally

in a number of studies [38, 40, 44]. At present in most synthetic circuits protein

levels are varied by tuning mRNA levels through the use of small molecule inducers,

which via receptor proteins, act to increase or decrease transcription from genes.

By inducing one gene and observing the effect on a constitutively expressed gene,

coupling can be observed (Figure 2.1a). As the first gene (here RFP) is induced,

the concentration of its mRNA rises. This increases the co-option of ribosomes for

its own expression and so more protein is produced (as desired from the increasing
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induction). However, as during exponential growth, resources are constant, the

increase in translation of one gene necessitates the decrease in expression of others

(here GFP). This means that as ribosomes are co-opted to the induced gene, the

level of translational resources available for the constitutively expressed gene falls

and so its expression falls (depicted in Figure 2.1b). The final protein concentration

of neither gene follows from its respective mRNA (induction) profile creating a

disconnect between desired function (mRNA induction/input) and observed function

(protein/output) (Figure 2.1). This coupling effect can be quantified by calculating

the slope of the resulting protein-protein so-called ‘isocost line’ plot. The isocost line

represents the potential combinations in which the two proteins can be produced

given the fixed budget, pbudget [38]. For example, for two proteins (p1 and p2) which

equally demand cellular resources (e.g. same RBS strength, same mRNA length)

then:

p1 + p2 = pbudget (2.1)

Therefore, the value of p2 in terms of p1 is:

p2 = pbudget − p1 (2.2)

In the absence of p1, the concentration of p2 is equal to the protein budget. As p1

is induced, p2 levels fall. In the simplest case where both proteins equally sequester

gene expression resources, as p2 falls by one protein, p1 increases by one protein;

hence the gradient of the isocost line is -1. See [38] for greater discussion of the

implications on the slope of the isocost line if the genes do not equally compete for

resources.

In an example of a more complex circuit, Qian et al. show both theoretically and

experimentally that the action of an activation cascade can be inverted due to re-

source limitations [45]. They characterise two independent modules which both

show monotonically increasing responses to an activator. Upon connecting these

modules by making the output of the first the input of the second, they show that

some designs show decreasing output from the downstream module as the upstream

module is induced. The monotonically increasing response is inverted. Mathemat-

ical analysis shows that this is the result of increasing sequestration of ribosomes

by the first module. Hence as the first is induced, fewer resources are available

for expression of the downstream module. In a separate publication, the same au-

thors show theoretically that resource limitations can cause an inhibition cascade

to become bistable [46].
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a b

Figure 2.1: Resource mediated intra-circuit gene coupling. The protein and
mRNA levels in a simple two-gene circuit consisting of the fluorescent reporter
genes RFP and GFP are shown. The GFP is constitutively expressed (i.e. constant
mRNA induction) while the RFP is induced. (a) Protein levels of the reporters as
RFP is induced. Inset, mRNA levels. (b) Example of ribosome allocation across the
mRNAs. Roman numerals relate to the points highlighted in (a). As RFP is induced
there are more RFP mRNAs (red curved lines) and so ribosomes (black shapes) are
reallocated. Note that the number of GFP mRNAs (green lines) is constant.
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Cookson et al. show that coupling can be mediated by proteases [42]. They imple-

ment a simple two gene circuit oscillatory motif which shares a protease with a third

inducible gene. Upon induction, this third gene begins to oscillate. At high levels of

induction the clock’s behaviour fails. The third gene shares no regulatory linkages

with the clock motif but rather the interactions arise due to usage of the common,

saturated, protease pool. Coupling mediated by translational competition in dy-

namic circuits such as these has not yet been shown experimentally. This is largely

because most work in this circuit design area focuses on design and construction of

genetic oscillators themselves without attention paid to surrounding genes.

2.3.3 Global effects on gene expression

As described above in Section 2.3.1, the levels of cellular resources correlate with

cell exponential growth rate; with increasing growth rates coinciding with higher

resources. This results in global changes in gene expression with changes in host

growth rate (reviewed fully in [47]). For example, the output from a constitutive

promoter will decrease with increasing host growth rate as the ribosomal mass frac-

tion increases with growth rate; hence decreasing the available synthesis capacity for

non-ribosomal genes. Therefore, the expression from a constitutive gene is depen-

dent upon growth conditions; with expression increasing with increasing nutrient

quality (and hence growth rate). For example, Tan et al. expressed a bacteriophage

RNA polymerase in E. coli which transcribes itself and the reporter green fluores-

cent protein (GFP) expecting that the positive feedback loop would cause all cells

to express GFP [48]. However, in reality the system appears bistable; with cells ei-

ther expressing or not expressing GFP. This bistability in a non-cooperative system

appears because the expression of the foreign RNA polymerase is somewhat toxic

and results in growth retardation, which in turn results in decreased expression due

to a fall in cellular resources.

2.3.4 Burden

By definition, the use of host resources by synthetic circuit reduces the availability

of those resources for host gene expression. This results in a so-called ‘burden’, a

growth defect observed in host cells (quantified thoroughly in [37]). In addition to

the use of cellular resources creating a growth defect, burden can also be imposed

by the production of a toxic metabolite or protein (e.g. [48]). There is considerable

new found interest in managing these gross physiological effects (e.g. it was recently
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proposed that cell free assays could be used to discriminate between designs of

different burden [49]). The presence of this growth defect creates an evolutionary

pressure which results in circuit function loss over time [50, 51].

2.4 Ameliorating the effects of resource limitations

Here we review the recent advances which have been developed to reduce the im-

pact of resource limitations on synthetic circuits. These include new circuit design

rules and the development of modelling frameworks which take account of host con-

straints.

2.4.1 Circuit redesign in light of host constraints

In [37], Ceroni et al. develop and validate a mechanistic model of translation in

which they consider both the movement of a ribosome along an mRNA codon by

codon and also competition between mRNAs for ribosome binding. They use this

model to determine circuit designs to maximise gene expression at a minimum per-

turbation to a simulated host gene (a proxy for the host as a whole). Consistent

with the aim of minimising load on the ribosome pool they show that a design where

a gene is expressed from a high copy number plasmid with a weak RBS is better

tolerated than a gene expressed from a medium copy plasmid with a strong RBS,

even if the parameters are tuned to produce the same output protein. This model

allows the simulation of different codon usages, enabling the impact of different

codon selection to be included in designs. Their model suggests that the use of rare

codons only limits gene expression when a strong RBS is used. They do not consider

coupling between circuit genes (which could be incorporated with minor modifica-

tions) or circuit dynamics (which would require more extensive modifications). The

authors’ main conclusions are that RBSs should be weakened to minimise ribosome

sequestration by circuit genes.

In [38], Gyorgy et al. develop and validate mechanistic models of transcription and

translation which allow the design of two-gene circuits which show reduced levels

of coupling; i.e. the expression of one gene is maintained as a second is induced.

They show both theoretically and experimentally that if the constitutive gene has a

strong RBS it will be less sensitive to the effects of other genes in the circuit. (Note

the apparent contradiction with the work of Ceroni et al. who recommend using a
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weaker RBS. In their work, Ceroni et al. are concerned with mimising impact on

the host cell rather than removing coupling between circuit genes.)

Qian and del Vecchio develop mechanistic models of gene activation and repression

which take account of competition for RNA polymerase and ribosomes producing

new Hill function-type expressions which take account of resources and introducing

metrics which describe each gene’s propensity for resources [45, 46]. Using these

models, the authors design and experimentally implement an activation cascade by

using components which make best use of the resources available.

2.4.2 Internal circuit feedback

It is well known that the incorporation of negative feedback into a process increases

robustness. Whilst negative feedback loops have been used extensively in synthetic

biology to control cellular processes, here we review the three cases where they have

been implemented to remove or reduce the effects of resource limitations.

In a theoretical work, Hamadeh and del Vecchio consider a mechanistic model of

two genes which interact through both RNA polymerase and ribosome resource

pools [52]. They evaluate the impact of three feedback loops (i) mRNA inhibiting

transcription, (ii) proteins inhibiting translation, and (iii) proteins inhibiting tran-

scription. They show both algebraically and by simulation that (iii) is the most

efficient (note that this is the motif most present in the E. coli genomic network

[53]) and highlight that a combination of (i) and (ii) is equally effective.

In [44], Shopera et al. demonstrate that incorporating negative feedback loops into

the circuits results in decoupling of the two independent circuit modules. The

negative feedback that they employ mimics the type (iii) feedback of Hamadeh and

del Vecchio but with an intermediate activator protein, i.e. the module protein is

co-expressed with an activator protein which itself activates a third downstream

protein which inhibits the first module protein. However, due to this topology they

find that as the strength of the negative feedback increases, coupling increases due

to sequestration of resources by the complex feedback loop.

In [54], Qian and del Vecchio mathematically investigate a similar negative feedback

loop to that implemented by Shopera et al.; modelling a system whereby a circuit

protein activates expression of an inhibitory small RNA. They show that inclusion

of this feedback mechanism can remove the resource-mediated inversion of an acti-

vation cascade (as discussed in Section 2.3.2) allowing the monotonically increasing
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response to the inducer to be restored regardless of resource sequestration by each

gene of the network.

2.4.3 Balancing couplings

As discussed previously, limitations in the protein decay machinery in the form of

protease enzymes can cause couplings to occur. In [55], McBridge and del Vecchio

show both theoretically and numerically that as a common pool of proteases becomes

saturated protein levels increase. They show that this increase can compensate

for the decrease in protein concentration due to ribosome sharing at biologically

reasonable protease concentrations. However, they also observe ‘positive’ coupling,

where simulated expression of a constitutively expressed gene increase in response to

the increase in an induced gene (i.e. a positively sloped isocost line) due to protease

saturation.

2.4.4 Host-aware design frameworks

The models described above begin to include RNA polymerase and ribosomes as

limited resources which allows circuit (re-)design taking account of gene coupling

effects (Section 2.3.2), however, these models do not take into account the potential

effects of global changes in resource levels and burden (Sections 2.3.3 and 2.3.4).

By incorporating additional model species representing ‘host factors’ and metabolic

effects, we can take account of these effects. This has led to the development of

‘host-aware’ modelling frameworks. As with all design tools, the complexity of

these host-aware models must balance their ease of use with their accuracy.

Carrera et al. develop expressions relating resource levels to specific growth rate

which they parameterise based on a series of induction experiments in E. coli [36].

Their model is able to capture the effects of foreign gene expression and agrees with

the data in [33] that cells can tolerate foreign protein production up to ∼ 30% of

their proteome. However, the empirical expressions relating resource production to

growth rate precludes detailed insights into how host resources are regulated.

Weiße et al. develop a simplified chemical reaction network model of bacterial life

processes; including a simple metabolism, transcriptome and proteome [56]. Unlike

in the Carrera et al. model, the resources within that of Weiße et al. are produced

within the model allowing greater mechanistic insight. This model forms the basis

of the host-aware model used in this thesis and so is described fully in Chapter 3.
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Development of these models is an on-going area of research. Recently, Liao et al.

have published a more detailed model of host physiology which takes account of

multiple cellular resources, including explicit inclusion of RNA polymerase and a

simple amino acid metabolism [57]. This model is much more complex than that

derived by Weiße et al. potentially complicating its use as a design tool.

The ‘gold-standard’ of host-circuit interaction modelling is the creation of a large

scale dynamic model of a whole bacterial cell or cells. Purcell et al. used the

prototype whole-cell model of Mycoplasma genitalium to demonstrate the use of

whole cell modelling in synthetic biology design [58, 59]. A variety of simulations

of a negative feedback loop, including different codon usage regimes and plasmid

copy numbers, show good agreement with published experimental data, including

prediction of burden effects. However, whilst the M. genitalium model is the most

complete whole cell model to date this is not an industrially relevant microbe and

so is not used as a chassis for synthetic biology applications. An E. coli whole

cell model is currently being developed (see intermediate results in [60]) providing a

potential design tool. Whole cell modelling is a young field and a significant number

of challenges to their development remain [61]. These models are time consuming

to simulate and their high complexity complicates their use as design tools.

2.4.5 Other methods for ameliorating resource limitation effects

For completeness, here we briefly discuss other approaches which can be used to

allow for design in light of resource limitations.

Flux balance analysis (FBA) is a genome-wide constraint based numerical method

for predicting steady state fluxes through a microbe’s metabolic network during

exponential growth. In [62], Goelzer et al. develop an extension to FBA which

they term Resource Balance Analysis (RBA) which accounts for allocation of a

‘resource budget’ across various cellular systems. This allows the determination of

how raw metabolites are partitioned to enzymes (which catalyse the flux through the

network) and other cellular machinery (including ribosomes). However, like FBA

this method does not allow the simulation of dynamic circuit behaviour but has use

in the design of new biochemical pathways.

To overcome the difficulties involved in implementing gene circuits in vivo, cell-

free transcription-translation (Tx-Tl) systems are being investigated as a potential

rapid prototyping platform. In these systems circuit genes are expressed in vitro

in a cytoplasm derived cocktail of metabolites, RNA polymerases, ribosomes and
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accessory factors. These systems are easier and less time consuming to work with

than bacteria and so multiple circuit designs can be implemented and tested be-

fore transformation into bacteria for final testing [63]. The lack of host factors and

growth removes the complexities of implementing circuits in hosts for rapid assess-

ment and the level of different gene expression resources can be well controlled.

Provisional results suggest that the results determined in in vitro systems translate

well to in vivo systems and can be used to separate the effects of metabolic load-

ing, resource limitations and genotypic interactions [49]. However, these systems

are expensive, require extensive further validation and still require large amounts

of wet laboratory time. Recent results suggest that they still experience resource

limitation problems. In [64], Gygory and Murray develop models of a simple gene

circuit expressed in a cell-free system and find that the experimental observations

can only be recapitulated in silico upon the addition of competition for the gene

expression machinery.

2.5 The need for host-aware approaches in synthetic bi-

ology: A motivating example

Here we investigate modelling the effects of resource limitations in the context of the

design of an oscillator circuit implemented in vivo by Stricker et al. [5] (topology

depicted in Figure 2.2a). This gene circuit consists of an activator and repressor,

both under mutual control of each other. The activator (A) triggers its own expres-

sion and that of the repressor (I), while the repressor inhibits the expression of both

A and I.

We model promoter regulation in the oscillator circuit using Hill functions. Given

that both transcription factors affect the same promoter, the regulatory effect is the

product of the two transcription factors, and thus we have that:

R(pA, pI) =
α

1 + α+ β + α · β
(2.3)

where α is the positive effect of the activator (pA/kA)hA and β is the inhibitory effect

of the inhibitor (pI/kI)
hI . The variables pA and pI are the number of activator and

repressor molecules respectively. The parameters kA and kI are the number of

molecules for half the binding sites to be occupied for the activator and repressor

respectively while hA and hI are the respective Hill coefficients. The transcription

rate of each gene is the product of the maximal rate and the regulation effect.
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Derivation of an isolated circuit model First we apply conventional tech-

niques to develop a simple model of the circuit which tracks only the circuit mRNAs

and proteins (e.g. [4, 5], discussed extensively in [65]). Here mRNAs are created

spontaneously and then converted into proteins by a process modelled as a first

order rate equation, with constant keff (equivalent to the proxy chemical reaction

mRNA → protein). This neglects transcription, translation and energy consump-

tion. All species are degraded and we account for dilution at cell division due to

growth λ. Applying the Law of Mass Action to these reactions allows us to develop

the following differential equations for the dynamics of mRNA (m) and protein (p)

for each gene:

ṁ = ω0 + ω · R(pA, pI)− (δm + λeff ) ·m (2.4)

ṗ = keff ·m− (δp + λeff ) · p (2.5)

Growth rate and translation rate are global parameters linked to the internal status

of the host cell. To represent the behaviour of the host we need to estimate fixed val-

ues for these parameters a priori. We assume a cell doubling time of approximately

30 minutes and we estimate an effective global protein production rate (keff ) at 4

molecules per minute (based on the general assumption that a protein is 300 amino

acids long and produced at 20 amino acids per second [31]).

Derivation of a host-aware circuit model Our starting point for the inclusion

of more complex host-circuit interactions in the oscillator circuit is the microbial

trade-off model developed by Weiße et al. [56]. This model is discussed extensively

in Chapter 3 and so will not be discussed here save to say that it consists of a

series of ordinary differential equations which track the time evolution of a sim-

ple metabolism, tanscriptome and proteome and includes the utilisation of both an

‘energy’ substrate and ribosomes. Here mRNAs are produced only when sufficient

energy is present. They are then bound by ribosomes (R). Proteins are produced

from translation complexes (c). Protein production liberates mRNA and free ri-

bosomes. All components are diluted at the cell’s growth rate (λ) which itself is

calculated within the model such that λ ∝ Σ(c). We also modify the host equations

as needed to model the effect on host metabolism and sequestration of free ribo-

somes by the circuit genes. We use the parameters determined by Weiße et al. for

the implementation of the host components.

To model the oscillator circuit in this framework, we introduce the following equa-
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Gene expression reactions Isolated circuit Host-aware circuit

∅ ω0−→ m a w0 w0

∅ ω·R−−→ m b ω · R(pA, pI) ω · R(pA, pI) · TX(e) c

m+R
b−→ c n/a b ·R ·m

c
u−→ R+m n/a u · c

c
k−→ R+m+ p n/a k · c = γ(e)

n · c
c

m
k−→ p keff ·m n/a

m
δm−−→ ∅ δm ·m δm ·m

p
δp−→ ∅ δp · p δp · p

X
g−→ ∅ d λeff ·X λ ·X ,λ ∝ Σc

Table 2.1: Comparison of isolated circuit and host-aware model reactions.
a Transcription due to promoter leakage.
b Transcription due to regulation by transcription factors.
c TX(e) and γ(e) are functions developed by Weiße et al. Both functions scale
reactions according to the cell’s internal energy status. TX(e) scales the rate at
which mRNAs are produced and γ(e) scales the protein production rate. Rates are
scaled by e/(o+ e) where o is the threshold value. As e −→ 0 both expressions tend
to 0 so that translation and transcription cease at zero energy and as e −→ ∞ both
tend to 1, so at maximal cellular energy transcription and translation are maximal.
See [56] for full derivation.
d The dilution reaction of the generic species X. For the host-aware model this is λ
and is determined by the model. For the isolated and ribosome models the growth
rate is estimated as λeff .

tions to the host model to describe the activator and repressor:

ṁ = ω0 + ω · R(pA, pI) · TX(e)− b ·R ·m+ u · c+ TL(c, e)− (δm + λ) ·m (2.6)

ċ = b ·R ·m− u · c− TL(c, e)− λc (2.7)

ṗ = TL(c, e)− (δp + λ) · p (2.8)

For the purposes of comparison, all reactions and their corresponding rate equations

are collected in Table 2.1.

Different modelling frameworks suggest different designs for implementa-

tion. As briefly discussed, the use of the isolated circuit model which neglects host

processes requires the estimation of effective protein synthesis and growth rates. To

investigate the effect of these estimations, we select a parameter set which produces

oscillations in the host-aware framework and vary keff and λeff in the isolated
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circuit, resourceless, model. The emergence or stabilization of oscillations is highly

dependent upon choice of the ‘lumped’ effective host parameter values (Figure 2.2b).

By simulating the same circuit in the host-aware model we find that the agreement

between the two models is highly dependent upon the chosen value of keff . Esti-

mating this value from the literature is highly complex as often a range of average

translation rates measured under a variety of growth conditions are reported. The

need for these ‘effective host’ parameters can introduce significant inaccuracies into

model predictions and hence extend the circuit design cycle.

We identified a number of parameter sets which lead to oscillations in both the

isolated circuit and host-aware model. However, we see large differences in the

period and amplitude of the oscillations predicted between the two models (Figure

2.2d). In only one parameter set do the two models produce approximately the

same period (∼120 minutes) (Figure 2.2d, left) whilst in the others we see the host-

aware model producing much longer periods. Comparing the phase planes of the

isolated circuit model and host-aware models (Figure 2.2c) we can see two main

effects of host-circuit interactions: in some instances the addition of host factors

acts to dampen the oscillations observed in the isolated model, while in others, the

host factors stabilize the decaying oscillations observed in the isolated model (Figure

2.2c).

A key aspect of synthetic biology is the identification of parameters which determine

circuit behaviour. By carrying out a simple local sensitivity analysis we assessed the

effect each parameter has on the period. Whilst both models produce similar profiles

there are large differences in the sensitivities of the decay parameters (Figure 2.2e).

We see generally smaller changes in the period of oscillations in the host-aware model

for most parameters, implying that host-circuit interactions may increase circuit

robustness. (This observation is consistent with the observations of Stricker et al.

who found that upon implementation of their proposed design in vivo, the circuit

oscillates in a larger parameter range, as determined by inducer concentration, than

predicted.)

This simple case study shows that guidance on appropriate choices of parameter

values determined by simple models which neglect host processes for in vivo im-

plementation may lead to non-functional designs. Explicit consideration of models

containing resource limitations during the design cycle of synthetic circuits has the

potential to significantly increase the efficiency and robustness with which such cir-

cuits can be implemented in vivo.
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Figure 2.2: Comparison of simulations in the isolated circuit and host-aware models. (a) Topology of the Stricker et al.
oscillator. (b) The period of oscillations in the isolated circuit model is highly dependent upon the approximated host parameters.
Circuit parameters are kept constant while keff and λeff are varied as shown. The period of the resulting oscillations is shown.
(c) Phase plane analysis of the classical (grey line) and host-aware (black line) models. left, the host-aware model is stable,
the classical model produces a stable limit cycle. middle, both models produce stable limit cycles. right, the host-aware model
produces a stable limit cycle whilst the classical model is stable. (d) Comparison of the oscillations produced by the classical
model (grey lines) and host-aware model (black lines). The oscillations vary significantly (although there is good agreement in
left panel.) (e) Comparison of sensitivity analysis. Parameters common to both models were perturbed in turn for all sets which
produce oscillations in both models. Results (y-axis) are the ratio of the new period to the original period. The y-axis is limited
to 2. Colour of bar corresponds to each parameter set. Upper panels, the parameter is increased from its nominal value. Lower
panels, the parameter is decreased from its nominal value.
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2.6 Current approaches to resource allocation manage-

ment

In addition to circuit redesign and new modelling frameworks to reduce the effects

of resource limitation, there is the potential to manage the division of the cell’s

gene expression machinery between host and circuit function through the use of ‘or-

thogonal’ components. As previously discussed circuits are composed of orthogonal

components – i.e. the circuit proteins do not (should not) interact with the host –

although they still make use of host resources for their expression. This concept of

orthogonality can be extended to the gene expression machinery. Here we review

the potential methods to create a circuit specific pool of gene expression resources.

As briefly discussed, protein-encoding genes are first transcribed into mRNA by

RNA polymerase. Transcription is initiated by an RNA polymerase complex, the

holoenzyme, which contains a promoter-targeting σ factor. This dissociates during

elongation. These σ factors are involved in large scale responses which require co-

regulation of multiple genes; most genes are transcribed by the σ70 ‘general house

keeping’ factor but some, such as those expressed in response to sudden heat stress

or nitrogen starvation, have specific condition-dependent σ factors. These promot-

ers have a different promoter architecture to those using the σ70 [66]. Using the

σ factors from sufficiently distinct species can create an orthogonal pool of RNA

polymerase holoenzymes which are circuit specific (see e.g. [67]). Note the core

RNA polymerase complex is not orthogonal and will still bind to host σ factors,

and therefore host genes, upon termination of transgene expression, making these

σ factor-based orthogonality schemes only quasi -orthogonal. Some bacterial viruses

(bacteriophage) contain within their small genomes a highly specific small RNA

polymerase, often only composed of one subunit, which have high affinity for the vi-

ral promoters of their genome. These truly orthogonal polymerases can be co-opted

for circuit gene expression (extensively reviewed in [68]).

Proteases are relatively small proteins and have diversified over the period of bacte-

rial evolution. Proteases, much like transcription factors, can be exchanged between

species to produce an orthogonal protein decay system [69]. By adding or changing

the C-terminal amino acids of the protein of interest it can be targeted to a specific

host or orthogonal protease.

As discussed throughout this chapter the key mediator of gene coupling is the lim-

ited number of ribosomes in most contexts. However, due to the universality and
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complexity of the cell’s translational machinery, there does not exist a sufficiently

distinct ribosome which can be co-opted into E. coli to create a truly orthogonal

ribosome pool. However, translational capacity can be divided into host and cir-

cuit specific functions by the use of synthetic ribosomal RNA (rRNA) components

to create a quasi -orthogonal ribosome (‘o-ribosome’) system [70–73]. The binding

interactions between an mRNA and the 16S rRNA of the small ribosomal subunit

are known to be a key regulator of translation initiation [23], and thus o-ribosomes

can be created by expressing a synthetic 16S rRNA. Evolving or designing the 5’

sequences at and around the ribosome binding site of circuit mRNAs to interact

with this synthetic sequence allows the creation of an orthogonal translation sys-

tem. (Note that during the rest of this thesis we refer to the synthetic 5’ sequence

as an ‘orthogonal RBS’ although some modifications required may be outside of the

true o-RBS). To date these o-ribosomes have mainly been used to probe various

aspects of ribosome structure-function relationships (see e.g. [74]).

2.6.1 Resource allocators and controllers

These orthogonal components can be used as parts of conventional synthetic gene

circuits as components in logic gates or for protein production. For example, in [75]

they divide the T7 RNA polymerase into two fragments which must be co-expressed

and assembled into a complex in order to function and so create a simple AND gate

with the polymerase used as a transcriptional activator. In [76], the authors combine

orthogonal transcription and translation to produce logic gates; for example both

the o-RNA polymerase and o-ribosome are required to produce an output protein.

In both these cases the orthogonal parts form components of the circuit itself much

the same way as transcription factors or receptors; they do not take the form of a

resource allocator (see below).

A recent work, published in [77], does utilise an o-ribosome pool as an expression

system for multiple pathway enzymes. However the authors focus on the use of

an orthogonal translation system as a biocontainment strategy for a biosynthetic

pathway. If the circuit plasmid is passed to non-transgenic ‘wild’ bacteria the path-

way cannot be expressed in the receiving organism as it lacks the corresponding

o-ribosome translation system.

However, we argue that orthogonal resources should not simply be used as modules

within a synthetic circuit (e.g. as a transcriptional activator in [75]) but rather

should be used as orthogonal gene expression machines for circuit gene expression
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as a whole. The constitutive expression of an orthogonal resource creates a subdivi-

sion of the cell’s labour. Circuit genes can be targeted to utilise this circuit-specific

orthogonal resource as in [77]. This forms a simple resource allocator. By in-

corporating demand-based feedback we propose the creation of resource allocation

controllers which act to match resource supply to circuit demand.

Here we review the little work that has been carried out in this area.

In [78], Segall-Shapiro et al. utilise an RNA polymerase from the bacteriophage T7

which they divide into subunits such that the polymerase is only active when all

subunits are expressed and assembled correctly. They use this system to create a

resource allocator whereby a key component (denoted α) of the polymerase is used

to modulate the transcriptional activity of a circuit as a whole. The authors propose

that copy number effects can be removed by expressing the α fragment on the same

plasmid as the circuit genes and modulating its expression by varying its promoter

and RBS strength. In this way all the circuit genes can be tuned by the modification

of only two components (rather than tuning each gene individually). In a work

with similar goals, Kushwaha and Salis develop the Universal Bacterial Expression

Resource (UBER) based on the T7 RNA polymerase [79]. This consists of a T7

RNA polymerase which activates its own expression and expression of a negative

feedback loop which can be used to tune the expression capacity of the system as

a whole. They demonstrate the function of this device across a range of bacterial

species. Note that neither Segall-Shapiro et al. nor Kushwaha and Salis assess the

ability of their resource allocators to dynamically respond to demand, rather these

systems are designed to create an orthogonal transcription budget which can be

used by circuit genes and offers a means of tuning the circuit expression as a whole

with minimal changes.

Recently, Lillacci et al. have proposed the use of σ factor inhibiting proteins (anti-σ

factors) as a means to control circuit gene expression [80]. The circuit genes are

expressed by an RNA polymerase using an orthogonal σ factor. An anti-σ factor is

co-produced with the circuit output. This acts to bind to and sequester the σ factor,

so inhibiting its action and hence reducing circuit output. If circuit activity increases

then the production of the anti-σ factor increases, inhibiting circuit expression. This

controller mechanism is discussed in more detail in Chapter 4.

In addition to these orthogonal RNA polymerase resource allocators, recently two

resource allocators have been proposed which are not based on orthogonal gene

expression machineries. We discuss these briefly for completeness.
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In [81], the authors express a ribonuclease MazF which degrades 96% of host mR-

NAs and so reduces competition for the gene expression machinery. In the presence

of MazF expression, the output from a reporter gene increases due to reduced com-

petition. By introducing the MazF recognition site into its own mRNA they ‘close’

the feedback loop such that MazF concentration is proportional to the need for

mRNA degradation.

In a recent work, Ceroni et al. propose the use of a burden-based feedback device

which acts to tune circuit function (here a simple metabolic pathway) in response

to the cell’s ‘global health’ [82]. They take advantage of the dCas9 protein which

can inhibit promoters by steric hindrance when targeted to them by a short RNA

sequence (the guide RNA, gRNA). The authors identify burden-sensitive promoters

whose expression is activated when a burdensome circuit is expressed and place these

upstream of a gRNA whose sequence is complementary to the circuit promoter. As

the circuit genes are expressed, the cells experience burden hence the gRNA’s are

produced, taken up by the dCas9 protein which binds to, thereby inhibiting, the

circuit promoter. Note that this is not a form of resource allocation management

but rather demand management. This method introduces the dCas9 as an addi-

tional cellular resource; the dCas9 inhibition complexes are shared across the circuit

promoters and so as circuits become larger additional regulatory interactions as the

dCas9 itself becomes a limiting resource.

2.7 Contributions of this thesis

Given the experimental observations that it is free ribosome number that limits

gene expression, in this work we consider the use of orthogonal ribosomes as a

means to partition host and circuit gene expression activities. We build on this

simple resource allocation scheme by considering the implementation of demand-

based feedback mechanisms which act to increase the production of o-ribosomes as

demand for translational capacity by the circuit increases. In this way we aim to

complement the currently proposed RNA polymerase resource allocators and provide

additional means of mediating host-circuit and circuit-circuit interactions.
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Chapter 3

Resource allocation by use of

orthogonal ribosomes

3.1 Introduction

In this chapter, we investigate the ability of orthogonal ribosomes to function as a

separate translational resource for synthetic circuit gene expression. We first de-

velop an ordinary differential equation model of microbial growth which includes

the production of o-ribosomes. We use this model to assess the feasibility of using

o-ribosomes for gene expression and consider how circuit genes can be allocated

between host and orthogonal ribosome pools to reduce the effects of resource limita-

tions. These findings are experimentally validated in E. coli. We extend the utility

of our results by considering how targeting different genes encoding enzymes in a

biochemical pathway to different translational pools can be used to increase flux

through the pathway.

The experimental data in this chapter were provided by our collaborators Dr Juhyun

Kim and Dr José I. Jiménez (University of Surrey). Analysis was carried out by the

author in conjunction with Dr Juhyun Kim. For completeness, an overview of their

experimental methods can be found in Section 3.10.
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3.2 Development of the host model including o-ribosome

production

Given that our work focuses on influencing the host ribosome pool, we take a host-

aware design approach by developing a simple model of microbial physiology. This

allows us to assess the effect of orthogonal ribosome production and usage on host

physiology. We based our model on the ordinary differential equation model of

microbial growth and gene expression trade-offs recently developed by Weiße et al.

[56].

This model captures the three fundamental trade-offs in bacterial gene expression:

1. internal anabolic capacity (‘energy’) is limited by substrate import and enzyme

activity

2. ribosomes are autocatalytic and compete with other genes for their own ex-

pression resulting in a finite translational capacity

3. finite proteome size creates competition for space (i.e. total number of proteins)

We refined this previously published model by extending the ribosome biosynthesis

reactions to include the separate production of ribosomal protein and ribosomal

RNA components. We introduced the necessary species to describe the production

of orthogonal rRNAs and partition the ribosome pool. This model allows us to

characterise the impact of dividing the cell’s translational capacity between host

and circuit genes.

The final model represents a simplified microbe with:

1. a minimal metabolism which converts an external substrate (se) into energy

(e), via an internal substrate (si)

2. a minimal transcriptome containing mRNAs (denoted mX , where X is the

gene being encoded) and ribosomal rRNAs (r)

3. a minimal proteome with proteins representing the four main classes of protein

function: metabolite transport/import (T ), metabolic enzymes (E), ribosomal

proteins (R) and ‘generic’ host proteins (H, the q-proteins of Scott et al. [33]).

We refer to these host genes as the set X ∈ {T,E,H,R}.

4. a simplified ribosome biosynthesis scheme which describes the formation of

ribosomes (R) from host rRNA (r) and ribosomal proteins (pR, called the

‘empty’ ribosome below)
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Figure 3.1: Model schematic. Main host processes captured by our model are
metabolism, gene expression and ribosome biosynthesis. NB: Not all reactions are
shown to simplify the schematic.

5. an orthogonal translation system made up of o-rRNA (ρ) and o-ribosomes (P ).

Inclusion of the additional orthogonal translation system results in an additional

trade-off due to competition for ribosomal proteins (pR).

A schematic of the model is shown in Figure 3.1. The model is parameterised

in terms of molecules per cell but note that, for simplicity, we do not consider

stochastic effects, rather choosing to focus on population-level behaviours as revealed

by ordinary differential equations regardless of molecule number.

Metabolism The metabolism is made up of an extracellular substrate (se) which

is imported by the transport enzyme (pT ) to become the intracellular species si. The

intracellular species is converted to the universal energy substrate (e) by enzyme

(pE). Both of these enzyme-mediated reactions are described by Michaelis-Menten

kinetics. In addition to these processes, the intracellular substrate is diluted by cell

growth (λ · si term in Equation 3.1).

dsi
dt

=
vT · pT · se
kT + se

− vE · pE · si
kE + si

− λ · si (3.1)
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Each molecule of intracellular substrate creates ϕe molecules of energy. This is a

measure of the nutrient efficiency, which we maintain as high throughout (see [56]

for a detailed discussion of energy implementation in the original model). Transla-

tion of each protein-encoding mRNA by the translation complexes consumes energy

(
∑

(. . . ) term). This energy consumption is proportional to both protein length

(nX) and number of translation complexes of that gene (cX in the TL function).

The energy species is also diluted due to cell growth (λ).

de

dt
= ϕe ·

vE · pE · si
kE + si

−
∑

X∈{T,E,H,R}

(
nX · TL(cX , e)

)
− λ · e (3.2)

Host protein production The minimal mRNA-transcriptome consists of trans-

porter genes (denoted by T ), enzymes (E), additional host proteins (H) and riboso-

mal proteins (R). These host proteins form the set X ∈ {T, E, H, R}. Transcrip-

tion of mRNAs is modelled as a spontaneous birth process scaled by the cell’s current

energy status - i.e. we do not account for RNA polymerase limitation or binding

kinetics but we account for the energy dependence of these processes by modifying

the rate by e levels. Messenger RNAs are born at the maximal rate ωX which is

scaled by (i) any regulatory interactions R and (ii) energy status (e/(oX+e)), where

o is an energy threshold. The regulatory interactions are described by Equation 3.3

for the respective species.

R = 1, X ∈ {T,E,R} R =
1

1 + (pH/kH)hH
, X = H (3.3)

Upon birth, host mRNAs can reversibly bind/unbind free host ribosomes (R) to

form translation complexes (cX). Upon the termination of translation, mRNAs are

released (TL(cX , e) term, see Equation 3.6). mRNAs are also subject to decay (δmX )

and dilution due to growth (λ).

dmX

dt
= ωX ·R·

( e

oX + e

)
+TL(cX , e)−bX ·R ·mX +uX ·cX +(δmX +λ) ·mX (3.4)

The dynamics of the translation complex (cX) follow from the description of the

ribosome-mRNA interactions above, with the added degradation and dilution terms:

dcX
dt

= bX ·R ·mX − uX · cX − TL(cX , e)− (δR + λ) · cX (3.5)

The TL function describes the rate of translation of gene X. This expression, derived
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in [56], relates the translation rate of individual genes to the cell’s global translation

rate (γmax term), the gene’s length (nX) and the number of complexes currently

translating that gene’s mRNA (cX).

TL(cX , e) =
1

nX
·
(γmax · e
kγ + e

)
· ci (3.6)

Host proteins are born from translation complexes and are subject to decay and

dilution:
dpX
dt

= TL(cX , e)− (δpX + λ) · pX (3.7)

Note that when X = R this expression only describes the production of the riboso-

mal protein component (pR) and not its refinement into functional host ribosomes,

which is outlined in Section 3.2.1.

Note also we have not explicitly included expressions describing the binding/unbinding

of proteins to promoters to exert their action but rather use Hill functions to scale

the mRNA production rate. For example, when we consider the auto-inhibitory

effect of host proteins (i.e. when X = H) the derivative dpH/dt follows the same

form as dpX/dt, and the interaction effect is only seen in dmH/dt, i.e. the effect of

the R term in Equation 3.4. There are no terms describing the interaction of the

transcription factor or RNA polymerase recruitment promoter as there would be in

a detailed mechanistic model (as discussed in Chapter 5) but rather a Hill-function

is used.

Determination of growth rate Rather than being estimated from empirical/

prototype data, the growth rate is calculated within the model. This also allows

effects on host physiology to be assessed by observing the change in this one value

(‘burden’). Growth rate (λ) is proportional to the product of the global translation

rate (γmax term) and number of translating complexes (
∑

(cX)). See [56] for a full

derivation in terms of protein production and dilution.

λ =
1

M
·
(γmax · e
kγ + e

)
·

∑
X∈{T,E,H,R}

(
cX

)
(3.8)

3.2.1 Modelling ribosome biosynthesis and o-ribosome formation

We refined the original ribosome synthesis reactions to include the separate pro-

duction of protein and rRNA based components. For the protein components, we
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considered the production of a single large protein which represents the small and

large ribosomal subunits and any accessory protein complexes.

We assume that host rRNAs are born spontaneously at a maximal rate scaled by

the cell’s internal energy, in a manner similar to the host mRNAs. This rRNA (r)

binds empty ribosomes (pR). The rRNA is subject to degradation and dilution. The

dynamics of the host rRNA are therefore:

dr

dt
= ωr ·

( e

or + e

)
− br · pR · r + ur ·R− (δr + λ) · r (3.9)

As described above, the protein component of the ribosome (pR) follows the same

dynamics as for other host proteins, as outlined in Equation 3.7 when X = R. In

addition to the production and decay dynamics described in Equation 3.7, pR under-

goes processing by binding with the host rRNA. (We account for ribosome complex

disassembly into different subunits by allowing this reaction to be reversible).

dpR
dt

= TL(cR, e)− (δpR + λ) · pR − br · pR · r + ur ·R (3.10)

Free host ribosomes (R) are produced by the binding of host rRNA and empty

ribosomes. They also take part in translation of each protein coding gene (
∑

(. . . )

term). Free ribosomes bind mRNAs to form translation complexes (the mX term)

and are produced when these complexes dissociate before or upon the termination of

protein synthesis; the uX · cX term and TL function term respectively. Concurrently

translation complexes are lost through dilution (λ) and degradation (δR, which

we set to zero throughout but its inclusion allows processes such as inhibition by

antibiotics to be included).

dR

dt
= br ·pR ·r−ur ·R−

∑
X∈{T,E,H,R}

(
TL(cX , e)−bX ·R ·mX +uX ·cX

)
−(δR+λ) ·R

(3.11)

By modelling ribosome biosynthesis in this way it incorporates the two important

feedback loops which determine ribosome number: (i) host ribosomes are auto-

catalytic (i.e. R translates pR) and (ii) ribosomal mRNA and rRNA transcription

rates fall as ‘energy’ is consumed by protein production. This also incorporates the

quasi -orthogonal nature of the o-ribosome pool by linking the two pools through

competition for the protein-based components pR (see below).

To model the production of orthogonal ribosomes (P ) we consider the expression of a
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new orthogonal 16S rRNA (ρ) which interacts with the empty ribosome. We assume

that the orthogonal 16S rRNA follows the same dynamics as the host rRNA being

produced in an energy dependent manner and reacting with empty ribosomes. We

assume that this plasmid-carried gene will respond to energy changes in a manner

similar to host genes and its binding kinetics will be the same as the host’s and

hence we parameterised it as outlined in Table 3.2.

dρ

dt
= ωρ ·

( e

oρ + e

)
− bρ · pR · ρ+ uρ · P − (δρ + λ) · ρ (3.12)

We modify Equation 3.11 to take account of the o-rRNA – empty ribosome inter-

actions which mirror the host rRNA interactions (blue terms in Equation 3.13).

dpR
dt

= TL(cR, e)− (δpR + λ) · pR − br · pR · r + ur ·R−bρ · pR · ρ+ uρ · P (3.13)

In the same manner as host ribosomes, free orthogonal ribosomes are produced by

reversible binding of orthogonal rRNA and empty ribosomes. Functional orthogonal

ribosomes bind and translate mRNAs which are specified to them (i.e. circuit genes,

denoted by Y , see below) in the same manner as host ribosomes translate host

mRNAs. Free o-ribosomes are subject to degradation and dilution due to growth.

dP

dt
= bρ ·pR ·ρ−uρ ·P −

∑
Y

(
TL(cY , e)−bY ·P ·mY +uY ·cY

)
− (δR+λ) ·P (3.14)

3.2.2 Introduction of circuit genes

We introduce circuit genes by introducing new species and equations describing the

production of mRNA, translation complexes and proteins. We assign these genes

to the set Y . These take the same form as in Equations 3.4, 3.5 and 3.7 with the

ribosome pool specified as either host or orthogonal as appropriate. Orthogonal

ribosomes are specified by modifying R to P (see Section 3.2.1).

We modify Equation 3.2 to take account of the additional energy demand due to

the circuit protein production (
∑

(. . . ) term).

de

dt
= ϕe ·

vE · pE · si
kE + si

−
∑

X∈{T,E,H,R}

(
nX · TL(cX , e)

)
− λ · e−

∑
Y

(
nY · TL(cY , e)

)
(3.15)

We also modify Equation 3.11 to take into account the additional host ribosome
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utilisation by circuit genes, if any, (
∑

(. . . ) term). If circuit genes are translated by

the orthogonal ribosome pool then Equation 3.14 is modified instead.

dR

dt
= br · pR · r − ur ·R −

∑
X∈{T,E,H,R}

(
TL(cX , e)− bX ·R ·mX + uX · cX

)
...

−
∑
Y

(
TL(cY , e)− bY ·R ·mY + uY · cY

)
...

− (δR + λ) ·R
(3.16)

We modify the growth rate Equation 3.8 to include the effect of circuit gene trans-

lation complexes (
∑

(cY ) term):

λ =
1

M
·
(γmax · e
kγ + e

)
·

( ∑
X∈{T,E,H,R}

(
cX

)
+
∑
Y

(
cY

))
(3.17)

3.2.3 Parameterisation

We used the parameters derived by Weiße et al., using the original protein-only

ribosome production parameters for the new empty ribosome (pR) species. We

assumed that the transcription of the host ribosomal rRNA showed the same energy

dependence as the protein component (i.e. or = oR). See Table 3.2 for full details.

Using the growth rate data reported in [33], we optimised additional parameters as

described below.

Scott et al. grew E. coli in different carbon sources and across a range of different

anti-ribosomal antibiotic concentrations [33]. They report growth rate (λ) and ri-

bosomal mass fraction (Φ). To model this experimental set up, we incorporate the

presence of inhibited ribosomes (cεX) by modifying Equation 3.5 to include the new

interactions with an antibiotic ε to produce Equation 3.18.

dcX
dt

= bX ·R ·mX − uX · cX − TL(cX , e)− (δR + λ) · cX ...

−kε · ε · cX
(3.18)

dcεX
dt

= kε · ε · cX − (δR + λ) · cεX (3.19)

32



By simulating the model across a range of nutrient efficiencies and antibiotic con-

centration values we can estimate the values of λ and Φ. We take the nutrient

efficiencies (ϕe = [0.080, 0.115, 0.167, 0.240, 0.347, 0.500]) and kε from [56]. The an-

tibiotic concentrations ε = [0, 2, 4, 8, 12] nM are taken from [33].

We used MATLAB’s genetic algorithm to minimise the following cost function:

cost =
∑
ϕe, c0

(
(λsim − λexp)2 + (Φsim − Φexp)

2
)

(3.20)

This equally weights the contributions of both growth rate and ribosomal mass

faction estimates as the former is crucial for accurate prediction of circuit ‘burden’

and the latter is crucial for estimating the available cellular resources.

We optimised the host rRNA gene maximum transcription rate (ωr) using MAT-

LAB’s using 0 and 105 rRNAs per min as the lower and upper bounds respectively.

We chose our upper bound by assuming that maximal gene expression for a protein

encoding gene is on the order of 103 RNAs per min and as rRNAs are present in

multiple copy number and also driven from strong promoters we allowed ωr to vary

significantly above that ωX for a protein coding gene [53].

The full host model shows good quantitative agreement with the experimental data

published in [33] across most growth conditions (Table 3.1). The model shows best

quantitative agreement with the cellular growth rate data (Figure 3.2). The simu-

lations of the ribosomal mass fraction replicate the general trends observed in the

data with ribosomal fraction increasing with antibiotic concentration and nutrient

quality. Replication of this general trend is sufficient for initial testing of resource

allocation schemes. There is good quantitative agreement with the experimental

data at high levels of nutrient quality (φe ≥ 0.347) and low antibiotic concentration

(ε ≤ 2) which were used by our experimental collaborators (Section 3.10).

The parameters used for circuit genes and those describing the o-rRNA dynamics

are shown in Table 3.3.
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a b

c d

Figure 3.2: Comparison of host model with Scott et al. experimental data.
Data were produced by growing cells at different nutrient qualities (which are quan-
tified here as nutrient efficiency, φe) and ribosome-toxic antibiotic concentrations.
Proteins and RNA were harvested and used to calculate ribosomal mass fraction
(see [33] for details). (a) λexp Growth rate determined by Scott et al. (b) Φexp

Ribosomal mass fraction determined by Scott et al. (c) λsim Simulated growth rate.
(d) Φsim Simulated ribosomal mass fraction.
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Nutrient efficiency
0.080 0.115 0.167 0.240 0.347 0.500

A
n
ti

b
io

ti
c

c
o
n

c
.

0 0.0005 0.0000 0.0002 0.0003 0.0091 0.0129
2 0.0001 0.0000 0.0000 0.0000 0.0093 0.0096
4 0.0000 0.0002 0.0010 0.0005 0.0245 0.0140
8 0.0064 0.0085 0.0015 0.0020 0.0185 0.0122

12 0.0002 0.0138 0.0111 0.0036 0.0089 0.0059

Table 3.1: Quality of final model fit. The value of cost function (Equation 3.20)
for different concentrations of antibiotic and different nutrient qualities. Simulation
parameters are listed in Table 3.2. Experimental data were from Scott et al. [33] as
discussed in Section 3.2.3.

Parameter Value Units Notes Ref

sE 104 mc External substrate [56]
ϕe 0.5 – Nutrient efficiency [56]
vT 728 mc·min−1 Maximal nutrient import [56]
vE 5800 mc·min−1 Maximal substrate-to-energy conversion [56]
kT 1000 mc Transporter Michaelis-Menten constant [56]
kE 1000 mc Enzyme Michaelis-Menten constant [56]

ω{T,E} 4.14 mc·min−1 Maximal transport and enzyme transcription rate [56]

ωH 948.93 mc·min−1 Maximal general host protein transcription rate [56]
ωR 930 mc·min−1 Maximal ribosomal mRNA transcription rate [56]
ωr 3170 mc·min−1 Maximal rRNA transcription rate ∗

o{T,E,H} 4.38 mc Host genes transcription energy threshold [56]

o{R,r} 426.87 mc Ribosomal genes transcription energy threshold [56],∗
b{T,E,H,R} 1 mc−1·min−1 mRNA-ribosome binding rate [56]

u{T,E,H,R} 1 min−1 mRNA-ribosome unbinding rate [56]

br 1 mc−1·min−1 rRNA-empty ribosome binding rate ∗
ur 1 min−1 rRNA-empty ribosome unbinding rate ∗

δm{T,E,H,R} 0.1 min−1 Host mRNA degradation rate [56]

δr 0.1 min−1 rRNA degradation rate ∗
δp{T,E,H} 0 min−1 Protein degradation rate [56]

δpR 0 min−1 Ribosome degradation rate [56]
n{T,E,H} 300 aa Average E. coli protein-encoding gene length [56]

nR 7459 aa Ribosomal protein component length [56]
kH 152219 mc Host protein transcription threshold [56]
hH 4 – Host protein transcription Hill constant [56]
γmax 1260 aa·min−1·(e mc)−1 Maximal elongation rate [56]
kγ 7 (e mc) Elongation energy threshold [56]
M 108 aa Size of proteome [56]

Table 3.2: Host model parameters Most model rate constants were derived in
[56] by fitting to the data in [33]. We assume that the ribosomal protein complex
(denoted R) has the same parameters as the ribosome as a whole in [56]. We assume
that the transcriptional threshold or is the same as for the protein component. We
assume that the rRNA has the same stability as host mRNAs (i.e. δr = δmX ) and
that the binding/unbinding rates are diffusion limited (i.e. br = ur = 1). We fit ωr
to the data in [33].
∗, Fit in this study. Units: aa, amino acids, mc, number of molecules.
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X
Parameter Value Units Rational

ωY Varied mc·min−1 Varied between biologically feasible values. 0 and 103 [56]
oY 4.38 mc Assumed to be the same as the host genes
bY 1 mc−1·min−1 Assumed to strong ≈ 1 see Section 3.4.1
uY 1 min−1

nY 300 aa Average length of E. coli protein
δmY 0.1 min−1 Assumed to be the same as the host’s mRNAs
δpY 0 min−1 Assumed dilution only
ωρ Varied mc·min−1 Varied between biologically feasible values. 0 and 103 [56]
oρ 4.38 mc Assumed to be the same as the host genes
bρ 1 mc−1·min−1 Assumed to be the same as host rRNA
uρ 1 min−1 Assumed to be the same as host rRNA
δρ 0.1 min−1 Assume same as host rRNA

Table 3.3: Parameter values for circuit genes and orthogonal 16S rRNA
production Units: aa, amino acids, mc, number of molecules.

3.3 Simulating host responses to orthogonal ribosome

usage

To assess the impact of orthogonal ribosome production on host physiology and to

test the ability of our model to capture previously reported qualitative behaviour

of o-ribosome producing cells, we simulated the production of o-rRNAs and the

use of o-ribosomes for gene expression to a simulated environment of high nutrient

efficiency and no antibiotic (Figure 3.3).

We initially consider the production of o-ribosomes on the host cell in the absence

of circuit gene expression (Figure 3.3a). We simulated the production of o-rRNAs

over a number of orders of magnitude. Our results recreate previous experimental

results that o-ribosome production has little effect on growth rate (e.g. [70, 71],

and the results of our collaborators) (Figure 3.3a, right). Quantifying this result

we estimate that in these environmental conditions up to 20% of the ribosome pool

can be co-opted with only a ∼ 10% fall in growth rate. Analysis of the ribosomal

biosynthesis reactions (assessing rRNAs, free ribosomes etc.) shows that the ‘empty

ribosome’ (pR) fraction decreases significantly (Figure 3.3a, centre). Concurrently,

host 16S rRNAs and mRNAs needed for ribosome production and assembly increase

in response to ribosome sequestration by orthogonal rRNAs. The cell is able to

compensate for o-ribosome production by increasing the total number of ribosomes

by 20%. This allows the number of orthogonal ribosomes to rise by 40% of the

original ribosome number (i.e. number of host ribosomes when ωρ = 0 rRNAs per

min) whilst the number of host ribosomes falls by only 20%.
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We next simulated the expression of a simple one gene circuit which is induced at

ωA = 100 mRNAs per min and utilises the host ribosomes for its gene expression

(Figure 3.3b). At this level of expression, protein output pA is approximately 25%

of the total proteome and the growth rate is predicted to be 0.024 per hour (corre-

sponding to a slow doubling time of approximately 80 minutes) (Figure 3.3b, right).

This is comparable to the observations of Scott et al. [33]. We assess the impact of

orthogonal ribosome production on this host translated gene by increasing ωρ over

several orders of magnitude. Our model predicts a negligible fall in expression as

orthogonal ribosome production increases (e.g. < 5% at ωρ = 103 rRNAs per min)

(Figure 3.3b, left). We do not see an increase in orthogonal ribosome production at

low ωρ as induction of o-rRNA increases. Given the high level of predicted protein

expression, there is a concurrent decrease in transcription rate due to its energy

dependence (the (e/(oρ + e)) term in Equation 3.12). This energy usage by protein

synthesis moves the o-rRNA curve to the right and also raises the production of host

rRNA and empty ribosome mRNA (Figure 3.3b, centre). If the transcription rate

is increased beyond values which are biologically feasible then we observe similar

effects on o-rRNA production (Figure 3.3b, left inset).

We simulated the use of the orthogonal ribosome pool for circuit gene expression

(Figure 3.3c). For a constitutively expressed gene (induction held at ωA = 100

mRNAs per min) we show that protein levels, pA, increase as o-rRNA transcription

increases, demonstrating that the size of the orthogonal ribosome pool acts as an-

other ‘dial’ for controlling transgene expression (Figure 3.3c, left). The ribosomal

species, including host ribosome (R) and empty ribosomes (pR), are most sensitive

to orthogonal ribosome expression and use (Figure 3.3c, centre). Comparison of

the host proteome in response to o-ribosome production (Figure 3.3a, left) and use

(Figure 3.3c, left) demonstrates that use of the orthogonal ribosome pool causes

more perturbation than production alone. Analysis of the ribosome biosynthesis

shows that o-ribosome production rises until ωρ = 40 rRNAs per min before falling

as overall ribosome fraction falls as the transgene pA mass fraction significantly in-

creases (Figure 3.3c, centre). Additionally we observe that total ribosome number

falls as ωρ rises. This is due to the higher protein production (> 33% of the total

proteome) brought about by high o-ribosome number. Translation acts to stabilise

o-ribosomes, and therefore, prevents them from dissociating and releasing empty

ribosomes (pR). This means that empty ribosomes are not free to be converted into

host ribosomes which results in a decrease in the host’s translational capacity, and

in turn results in less translation of ribosomal mRNAs.
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In our simulations, we find that at an o-rRNA induction ωρ ≈ 32 rRNAs per min

and circuit expression of ωA = 100 mRNAs per min the protein production utilising

the o-ribosome is the same as when utilising the host ribosome pool (Figure 3.3c,

left). At these equivalent levels of gene expression there is negligible change (< 1%)

in host protein expression (pT + pE , pH) and growth rate (change < 1%) (Figure

3.3c, right). We find significant reallocation of translational capacity with up to

25% of the ribosome pool rendered orthogonal and only negligible changes in the

total number of ribosomes.

Note that these simulations have been carried out at a single antibiotic concentration

ε = 0 and high nutrient conditions φe = 0.5; these results vary with different growth

conditions.

3.4 In vivo validation of an orthogonal gene expression

system

Having shown in Section 3.3, that cells are likely to tolerate a significant use of the

orthogonal ribosome pool for circuit gene expression our collaborators implemented

a previously described o-16S rRNA system in vivo (see Section 3.10 for an overview

of their experimental methods). This contains an o-16S rRNA under the control of

Plac, thus allowing its levels to be controlled by IPTG [83]. Our circuit is carried

on a second plasmid and consists of RFP under the control of the Plux promoter.

Translation by either the host (h-RFP) or orthogonal (o-RFP) ribosome pools is

controlled by selection of the RBS (Figure 3.4a). RFP mRNA production is induced

with N-acyl homoserine lactone (AHL) via LuxR which is constitutively expressed

from the circuit plasmid and utilises host ribosomes for its expression.

To assess the impact of o-ribosome production on the host growth rate and gene

expression, gene induction was maintained using a constant concentration of AHL

in the presence of increasing IPTG concentration. The production of o-ribosomes

alone has no effect on growth rate demonstrating that their presence is non-toxic

with growth rate being proportional to protein production regardless of the method

of translation (Figure 3.4). This is constant with the phenomenological definition of

growth rate in our model (Equation 3.17): Briefly, our model growth rate is derived

by considering how the cell mass in amino acids (M) changes with time. This is
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Figure 3.3: Simulations of the impact of orthogonal ribosomes on host
physiology. The impact of orthogonal ribosome production was assessed by simu-
lating the response to increasing o-rRNA transcription rate (ωρ). Single markers at
0 rRNAs per min show the results when using the host ribosome pool in the absence
of orthogonal ribosome production. Host effects are assessed by observing changes
in the proteome, ribosome biosynthesis and macroscopic effects such as ribosome
distribution and growth rate. Legend explanation: pT + pE , metabolic enzymes;
pH , host proteins; pA, reporter protein; pR, ‘empty’ ribosome; ΣR, free and trans-
lating host ribosomes; ΣP , free and translating o-ribosomes; mR, mRNA of the
ribosomal protein; r, host 16S rRNA; ρ, o-16S rRNA; Total, sum of all ribosomes;
λ, growth rate. (a) Impact of orthogonal ribosomes production on host genes in the
absence of circuit genes (i.e. ωA = 0 mRNAs per min). (b) Impact of orthogonal
ribosome production on a circuit gene which utilises the host ribosome pool (i.e.
ωA = 100 mRNAs per min). Inset in host proteome: Simulations across an o-rRNA
induction of 100x ωρ. (c) Impact of using the orthogonal ribosome pool for circuit
gene expression (i.e. ωA = 100 mRNAs per min).
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simply the sum of protein production minus the effect of dilution due to growth:

dM

dt
=

(
γ ·
∑
X

(
cX

))
− λM (3.21)

where γ is the global translation rate and X is the set of translated genes (i.e.

X ∈ {T, E, H, R, Y }). The rate of protein production depends only upon the

translation rate and number of translation complexes; not on the nature of the

ribosomes in those translation complexes.

Experimentally increasing the size of the o-ribosome pool with IPTG acts to dra-

matically increase o-RFP expression, demonstrating the utility of o-ribosomes to set

a ‘circuit-specific protein budget’ (Figure 3.4c, inset). This is consistent with our

model prediction (Figure 3.3c, left). However, unlike we see in our model, we do

observe a 50% increase in h-RFP fluorescence (p < 0.05, t-test, 0 mM vs. 0.5 mM

IPTG) (Figure 3.4b).

3.4.1 Incomplete orthogonality leads to crosstalk

Experimentally, we observe increased expression of host-translated h-RFP when

the o-ribosome pool is induced. If this were due to a global increase in ribosome

biosynthesis in response to o-ribosome production we are confident that this would

have been captured by our model where we observe an increasing in ribosomal

synthesis which does not lead to increased host expression (as captured in Section

3.3).

Instead, we propose this increase in expression is likely due to incomplete orthog-

onality, i.e. translation of h-RFP by o-ribosomes, leading to ‘interference’. To ex-

plore this further, we introduced bi-directional crosstalk into our model, allowing

o-ribosomes to translate mRNAs with host RBSs and vice versa. To incorporate

crosstalk into our model we allow mRNAs to bind to their non-target ribosome at

rate β to produce the translation complex c′. The unbinding rate is µ, which we set

at 1 throughout. The translation complexes c′ follow the same dynamics described

in Equation 3.5.

The dynamics of host-translated mRNAs mX become (with the crosstalk modifica-
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Figure 3.4: Developing the o-ribosome pool as an expression system. RFP
expression using either the host or o-ribosome pool. o-ribosomes are produced by
inducing o-16S rRNA with increasing concentrations of IPTG. (o/h)-RFP is induced
with 20 nM AHL throughout. Bars represent means ± 1 S.D. N = 3. (a) Schematic
of the orthogonal translation system. (b) Expression of h-RFP by the host ribosome
pool. (c) Expression of o-RFP by the o-ribosome pool. Inset, o-RFP expression
relative to the value at 0 mM IPTG. x-axis, IPTG concentration (mM).
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tions shown in blue):

dmX

dt
= ωX · R ·

( e

oX + e

)
...

+ TL(cX , e)− bX ·R ·mX + uX · cX ...

+ TL(c′X , e)− β · P ·mX + µ · c′X ...

+ (δmX + λ) ·mX

(3.22)

The dynamics of the proteins pX becomes:

dpX
dt

= TL(cX , e)+TL(c′X , e)− (δpX + λ) · pX (3.23)

We also modified the energy (Equation 3.15) and growth rate (Equation 3.17) equa-

tions to include the energy consumption and translation rates of the new complexes,

c′. We included the additional mRNA-ribosome interactions by updating the equa-

tions describing the free ribosome dynamics (Equation 3.16, 3.14) with the modifi-

cations shown in Equation 3.22 with signs inverted.

Note that experimentally, we do not observe translation of o-RFP by host ribosomes

demonstrating that this appears to be a one-way interference (data not shown) and

so we set β to zero for host genes.

To assess the impact of circuit demand on crosstalk we simulated the production of a

single protein which utilises the host ribosome pool for its expression while varying β

to control the propensity of o-ribosomes to translate host and host-translated circuit

mRNAs. We varied the circuit demand by changing both the translation rate (ωA)

and RBS strength (bA). Our simulations show that in the presence of a low demand

circuit, crosstalk can have a significant effect (Figure 3.5a). When β = bA = 0.1,

i.e. there is no distinction between the two ribosome pools, the protein production

increases fourfold at maximum o-rRNA transcription (ωρ = 103 rRNAs per min).

As o-ribosome production is increased by increasing ωρ there is a net increase in

ribosome number (as seen in Figure 3.3b). These results suggest that in our hands

the h-RFP circuit represents a ‘low demand’ circuit and so crosstalk results in a clear

effect (i.e. the increased h-RFP expression as o-ribosomes are produced, Figure 3.4c).

Increasing the circuit demand by increasing both ωA and bA to their maximum

feasible values effectively removes the impact of crosstalk with protein levels falling

negligibly (Figure 3.5b). Comparing our high demand simulations to experimental

investigations of a high demand circuit where two genes are expressed from a high
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copy plasmid (the h-RFP, h-GFP circuit of Section 3.5) shows that our gene coupling

assessments are carried out in a context of high enough competition which allows

crosstalk to be considered negligible throughout (Figure 3.5d).

These simulations suggest that the rise in h-RFP expression in response to o-

ribosome induction is likely due to an ‘interference’ as o-ribosomes have a low

propensity to translate the h-RFP. As host ribosomes are co-opted for o-ribosome

production, the total ribosome pool increases (as discussed in Section 3.3) increas-

ing translation of the RFP. Increasing the ability of circuit genes to sequester h-

ribosomes, for example by increasing RBS strength and expression level, abolishes

the impact of this interference as ribosome recycling (and hence o-ribosome forma-

tion) decreases as host ribosomes are stabilised during translation of the h-RFP.

This is more similar to the experimental conditions in the following section.

3.4.2 Inefficient o-ribosome assembly explains poor o-RFP expres-

sion

Our simulations predicted that for a given gene induction, utilisation of the orthogo-

nal ribosome pool results in higher protein production due to the lack of competition

(if ωρ is tuned appropriately) (Figure 3.3c). However, experimentally we find signif-

icantly reduced expression with expression of o-RFP being on the order of ten-fold

smaller than that of the h-RFP even at the maximum IPTG induction (Figure 3.4b).

We propose that this may be due to inefficient o-rRNA production or inefficient

o-ribosome assembly resulting in a smaller number of available ribosomes or due to

the difference in strengths of the o-RBS.

To assess these effects we simulated the production of a single protein first using the

host ribosome (simulating an induction of ωA = 100 mRNAs per min and a maximal

RBS strength bA = 1) to set the host value. We then simulated the translation of the

gene by orthogonal ribosomes and normalised by this host value so that 1 represents

equal production. Values greater than 1 indicate higher production than the host

case and values less than 1 indicate poorer production in the orthogonal case.

We varied the two parameters governing o-ribosome production (ωρ and bρ) and

ribosome-mRNA binding (bA). We leave the unbinding rates as maximal, i.e. uA = 1

and uρ = 1.

As we have previously shown increasing, rRNA transcription rate (ωρ) increases

protein production. Even at middling production values of ωρ ≈ 100 mRNA per
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Figure 3.5: Crosstalk has little effect in circuits with high demand. Assess-
ment of the impact of crosstalk on circuits with low and high demand. β indicates
the level of crosstalk. (a) Simulations of a low demand circuit. A single gene is
expressed utilising the host ribosome pool with low transcription rate ωRFP = 10
mRNAs per min and weak RBS, bRFP = 0.1. (b) Simulations of a high demand cir-
cuit. A single gene is expressed using the host ribosome pool with high transcription
rate, ωRFP = 1000 mRNAs per min and strong RBS, bRFP = 1. (c) Experimental
low demand circuit. Steady state mean RFP expression ± 1 S.D. using the host
ribosome pool. N = 3. (d) Experimental high demand circuit. Steady state mean
± 1 S.D. h-RFP from the h-RFP-h-GFP circuit. N = 3.
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Figure 3.6: Orthogonal ribosome assembly may be inefficient. Simulations
of the steady state protein outputs for different RBS strengths (bA-to-uA ratio)
and assembly of the orthogonal ribosome (bρ-to-uρ ratio) for the given orthogonal
ribosome induction (ωρ, o-rRNAs per min). Circuit gene induction is constant at
ωA = 100 mRNAs per min throughout. Results are reported as a ratio of the
production utilising the host ribosome pool for the same circuit, with values greater
than 2 truncated to 2. (a) Medium o-rRNA induction of 100 rRNAs per min. (b)
High o-rRNA induction of 1000 rRNAs per min.

min we see increased production of the output protein (at bρ = 1 and bA = 1)

(Figure 3.6a). Varying each of the other parameters alone is sufficient to cause a

decrease in gene expression to less than 40% of the production achieved using the

host pool. If both bA and bρ are significantly weaker than those of the host (bA < 0.1

and bρ < 0.1) then the ratio of the protein production using the orthogonal to the

host pool falls to ranges we see experimentally. This is more stark at high rRNA

induction (Figure 3.6b). Therefore, we propose that our experimental observations

may be due to a combination of inefficient translation (i.e. the orthogonal RBS

is weak) or inefficient orthogonal ribosome assembly. See Chapter 6 for further

discussion of improving the experimental system.

3.5 Gene coupling in circuits with access to only one

ribosome pool

Here we consider a new circuit consisting of two genes; the original RFP cassette

and a new GFP cassette. GFP transcription was constitutively driven from the Ptet

promoter and the host or o-ribosome pool utilised for translation, controlled by se-
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lection of RBS as described above. We determined the level of coupling between the

two circuit genes by observing the slope of the isocost line of circuit gene expression

during exponential growth. As discussed in Section 2.3.2, the isocost line quantifies

the change in GFP as RFP is induced (Figure 3.7).

Gene coupling in the h-RFP, h-GFP circuit (utilising the host ribosome pool) results

in a slope of -3.3; for every unit of RFP gained, ∼3 units of GFP are lost (Figure

3.7c). In this case the isocost line is non-linear at maximum RFP expression; in the

following analysis we neglect this small non-linearity in favour of fitting a straight

line through all the points. This is consistent with the isocost line theory discussed

in Section 2.3.2 and with previous work in this area (such as [38, 44]). Tuning the

o-ribosome pool when utilising the host ribosomes as the translational resource has

no effect on the coupling observed, consistent with our model predictions (Figure

3.7b). Replacing the host RBS sequences with the o-RBS to produce the o-RFP,

o-GFP circuit and utilisation of the orthogonal translation system results in the

coupling being reduced to 30% of that observed when using the host pool (Figure

3.7f). As predicted by our model, increasing IPTG increases gene expression (due

to increasing the size of the o-ribosome pool) but has negligible effect on coupling

(as the circuit genes compete equally for o-ribosomes), (Figure 3.7e).

3.6 Utilising both host and orthogonal ribosome pools

reduces coupling of co-expressed genes

Having successfully partitioned the ribosome pool both theoretically and experimen-

tally, we tested the ability of these pools to act as a simple distribution mechanism

for translational capacity. Maintaining the original circuit topology and function,

we altered the RBS of each gene to create two new circuit variants; o-RFP, h-GFP

and h-RFP, o-GFP. Our model predicts that placing the constitutively expressed

GFP under control of the o-ribosome pool (h-RFP, o-GFP arrangement) acts to

insulate the gene from competition with RFP and so significantly reduces gene cou-

pling, over a range of o-ribosome pool sizes (Figure 3.8b). Experimental validation

of these predictions showed near complete abolition of the isocost line slope with

coupling falling by over 95% (Figure 3.8c). Varying IPTG levels shows this decou-

pling is highly robust, with IPTG acting only to tune expression consistent with our

model prediction (Figure 3.8b, c).

The inverse arrangement, where the constitutively expressed GFP utilises the host
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Figure 3.7: Gene coupling in gene circuits utilising either the host or or-
thogonal ribosome pool. Simulations of the steady state concentrations of RFP
and GFP normalised by the maximum protein production achieved across the o-
rRNA transcription rates tested. ωGFP = 100 and ωRFP = 1 to 103 mRNAs per
min. o-rRNA production (ωρ) was simulated at the RNAs per min as shown. Exper-
imental data were produced by inducing RFP using AHL from 0 to 20 nM. Points
are the mean steady state fluorescence ± 1 S.D normalised by maximum GFP ex-
pression obtained across different levels of IPTG treatment. N = 3. The isocost
line is fit to the mean fluorescence as determined by FACS from cultures during
mid-exponential growth (between 3-5 hours post-induction dependent on the strain
and circuit). o-ribosome production was induced using three different IPTG con-
centrations 0.1, 0.2 and 0.5 mM as shown. (a) Allocation of ribosomes in panels
(b) and (c) where both circuit genes share the host ribosome pool. (b) Simulations
of circuit using the host ribosome pool. (c) In vivo protein productions of circuit
proteins using the host ribosome pool. (d) Allocation of ribosomes in panels (e)
and (f) where both circuit genes share the o-ribosome pool. (e) Simulations of the
circuit using the o-ribosome pool for translation. (f) In vivo coupling observed in
the circuit using the o-ribosome pool.
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ribosome pool and the induced RFP utilises the o-ribosome pool (the o-RFP, h-

GFP circuit) is predicted by our model to show increased gene coupling (Figure

3.8e). In the experimental system the isocost line gradient increases by over six

times in comparison to coupling in circuits using the host ribosomes (Figure 3.8f).

Given the increase in coupling observed in the o-RFP, h-GFP arrangement, we

assessed the change in protein components theoretically (Figure 3.9). As the in-

duction of o-RFP is increased (simulated by increasing ωRFP ), it forms translation

complexes with the o-ribosomes. This stabilises their formation, preventing release

of ‘empty’ ribosomes, pR. We observe marked declines in empty ribosomes, i.e. there

is high competition for the protein core which is not specified until bound by an

rRNA. This results in a concurrent fall in host ribosome number (both free, R and

translation complexes h-cX). This results in significant perturbation of host protein

levels when the production of o-ribosomes is high (Figure 3.9c). This in turn results

in a concurrent fall in expression of the host ribosome-utilising GFP by over 80% at

medium levels of RFP induction (ωRFP = 100, ωρ = 500 RNAs per min). Therefore

we propose the increased coupling we observe experimentally is due to competition

for ribosomal proteins or other accessory translation factors. In the h-RFP, o-GFP

arrangement this is not seen as the o-GFP is constitutively expressed and so the

demand for o-ribosomes does not increase as RFP is increased.

We extended the approach of using multiple ribosome pools in silico by simulating

the use of one o-ribosome pool for each circuit gene (Figure 3.10). Biologically these

could be created by expressing multiple different synthetic 16S rRNAs [70]. We

implement a second orthogonal ribosome pool by replicating the changes outlined

in Section 3.2. At high levels of o-rRNA expression, competition for empty ribosomes

(pR) results in high levels of gene coupling. We optimised the production of the two

orthogonal 16S rRNAs to minimise gene coupling (resulting in o-rRNA production

rate of ωρ1 = ωρ2 = 10 molecules per min) which yields near complete decoupling

with pB falling less than 10% as pA is induced. However, the induced pA still shows

a saturating response to increasing induction due to the finite o-ribosome pool size

(Figure 3.10a).

However this assumes that there is no crosstalk between the two orthogonal ribosome

pools - i.e. that each pool translates its, and only its, target mRNAs. In reality,

to date, orthogonal rRNA sequences are often not sufficiently distinct to achieve

this and each orthogonal pool will translate mRNAs targeted for the other pool

due to crosstalk - i.e. erroneous interactions between one 16S rRNA and its non-

target mRNA [70]. To test the impact of crosstalk we introduce interactions between
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Figure 3.8: Gene coupling in circuits utilising different ribosome pools.
Simulations of the steady state concentrations of RFP and GFP normalised by the
maximum protein production achieved across the o-rRNA transcription rates tested.
ωGFP = 100 and ωRFP = 1 to 103 mRNAs per min. o-rRNA production (ωρ)
was simulated at the rates shown. Experimental data were produced by inducing
RFP using AHL from 0 to 20 nM. Points are mean steady state fluorescence ±
1 S.D. normalised by maximum GFP expression obtained across different levels
of IPTG treatment. N = 3. The isocost line is fit to the mean fluorescence as
determined by FACS from cultures during mid-exponential growth (between 3-5
hours post-induction dependent on the strain and circuit). o-ribosome production
was induced using three different IPTG concentrations 0.1, 0.2 and 0.5 mM as shown.
(a) Allocation of ribosomes in panels (b) and (c). (b) Simulations of the circuit
using host ribosomes for RFP expression and o-ribosome for GFP expression. (c)
In vivo coupling of the h-RFP-o-GFP circuit. (d) Allocation of ribosomes in panels
e and f. (e) Simulations of the circuit using the o-ribosome for RFP expression
and host pool for GFP. (f) In vivo coupling of the o-RFP-h-GFP circuit. The inset
shows the data on an expanded x-axis.
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Figure 3.9: Competition for ‘empty’ ribosomes explains the increased cou-
pling in o-RFP, h-GFP circuits. Simulations of the changing distribution of
proteome components as ωRFP is increased. The o-rRNA transcription rate is var-
ied as shown. Note the y-axis is a log scale causing changes in GFP and RFP
to not be as apparent. Legend explanation: h-proteins, host proteins; pR, empty
non-specific ribosome; R, host ribosomes; P , orthogonal ribosomes; h-cX , translat-
ing host ribosomes; o-cX , translating o-ribosomes; pRFP , RFP protein; pGFP , GFP
protein. (a) Low o-rRNA induction. (b) Medium o-rRNA induction. (c) High
o-rRNA induction.
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Figure 3.10: Gene coupling in gene circuits utilising multiple orthogonal
ribosome pools. Simulations of the steady state protein outputs of a simple two-
gene circuit where each gene utilises its own orthogonal ribosome pool. (a) Isocost
lines at different orthogonal ribosome production rates (ωρ). (b) Simulations of the
optimal o-rRNA production rates (ωρ = 10 molecules per min) with the introduction
of cross talk (β).

each mRNA and its non-target o-ribosome, as in Section 3.4.1 (but we neglect host

ribosome, circuit mRNA crosstalk as this is a high expression condition). Messenger

RNAs bind to their non-target o-ribosome at rate β to produce the translation

complex c′1. The unbinding rate is µ. The dynamics of an mRNA m1 which is

designed to be translated by P1 and erroneously translated by P2 (the effect of

crosstalk is highlighted in blue) are:

dm1

dt
= ω1 ·

( e

o1 + e

)
+ TL(c1, e)− b1 · P1 ·m1 + u1 · c1...

+ TL(c′1, e)− β1 · P2 ·m1 + µ1 · c′1 − (δm1 + λ) ·m1

(3.24)

We vary the level of crosstalk between none (β = 0) and high (β = 0.1, approxi-

mately 10% of the interaction between the cognate pair). Coupling increases seven

fold as crosstalk increases from 0 to 0.1. As crosstalk increases, gene coupling (as

measured by the slope of the isocost line) also increases (Figure 3.10b). Whilst

our simulations suggest that some level of crosstalk can be tolerated, this must be

relatively small (β ≤ 0.01), and may not be achievable with currently available

o-ribosomes.
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3.7 Simulations of coupling in circuits using tethered

ribosomes

As highlighted previously, ribosomes dissociate upon termination of translation into

their small and large subunits. This creates competition for the large subunit be-

tween the host and orthogonal small subunits and is modelled in our system as

competition for the protein component pR. These two subunits can be permanently

linked in vivo by either (i) expressing a synthetic RNA containing both the (or-

thogonal) 16S and 23S rRNA or (ii) by expression of an additional synthetic RNA

which binds to both ribosomal subunits and acts as a ‘molecular tether’ [72, 73]. In

these semi-synthetic ribosomes the two subunits are permanently linked and so are

not able to dissociate. We extend our study by considering the use of such tethered

ribosomes in silico

Ribosome tethering can be modelled by assuming that the o-rRNA and protein

components could not dissociate upon creation of the functional o-ribosome, i.e. we

set uρ to 0. We set bρ = 0.45 to take into account the experimental observation

that tethered ribosomes show reduced expression in comparison to host ribosomes

[72]. We model the same circuits as before; simulating the constitutive expression

of a protein (pB) while inducing a second pA. The expression of tethered ribosomes

results in a significant decrease in expression of circuits using the host ribosome pool

due to the lack of recycling of the ribosomal proteins pR (Figure 3.11a). Utilising the

tethered o-ribosome pool for gene expression significantly increases gene expression

from the circuit (Figure 3.11b). Simulating a circuit when the two circuit genes

are distributed across both host and tethered o-ribosome pools replicates results

observed with orthogonal ribosomes. When the constitutively expressed gene is

translated by the tethered o-ribosome pool and the induced gene by the host pool

we observe complete decoupling and increased gene expression at all levels of the

o-ribosome pool (Figure 3.11c). The opposite arrangement significantly increases

coupling (Figure 3.11d).

3.8 Distribution of translational resources increases pro-

duction of violacein

We have shown that by targeting the distribution of translational resources we can

successfully reduce gene-gene couplings in simple circuits composed of fluorescent
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Figure 3.11: Tethered o-ribosomes may increase yields and increase decou-
pling in some contexts. Simulations of the steady state concentrations of pA and
pB normalised by the maximum protein production achieved across the o-rRNA
transcription rates tested where translation is carried out by tethered orthogonal
ribosomes (solid line, bρ = 0.45 and uρ = 0). For comparison simulations of non-
tethered orthogonal ribosomes are also shown (dashed lines, bρ = uρ = 1). ωA = 1
to 103 mRNAs per min while ωB = 100 mRNAs per min. o-rRNA production (ωρ)
was simulated at the RNAs per min as shown. (a) Both genes translated by the
host ribosome pool. (b) Both genes translated by the tethered o-ribosome pool. (c)
pB translated by the tethered o-ribosome pool while pA is translated by the host
ribosome pool. (d) pA is translated by the tethered o-ribosome pool while pB is
translated by the host ribosome pool.
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reporter genes. These genes do not have useful biological function beyond allowing

visualisation. To demonstrate the utility of manipulating resource allocation in a

broader biotechnological context, we consider the production of a metabolite from

a multienzyme pathway.

As an example pathway we selected the well characterised vio pathway from Chro-

mobacterium violaceum [84]. This five enzyme pathway produces violacein from

L-tryptophan. Violacein has been shown to have anticancer and antibacterial prop-

erties, and has previously proved difficult to produce [84]. Additionally, the second

enzyme in the pathway has previously been shown to induce a high cellular burden

due to its large size and consequently large ribosome sequestration ability [37]. Due

to violacein’s purple colour its production can be easily tracked experimentally.

To demonstrate how resource-mediated competition can impact pathway function,

we incorporated the violacein pathway into our model. This highlights one of the

advantages of this ‘abstraction level’ of modelling: that we are able to concurrently

(and easily) consider gene expression and metabolism.

We consider a simple five-part linear biochemical pathway which converts the in-

tracellular ‘energy’ metabolite, e, to an output substrate, s5, via four intermediates

(Equation 3.25).

e
v1, k1−−−−−→ s1

v2, k2−−−−−−−→ s2
v3, k3−−−−−−−→ s3

v4, k4−−−−−−−→ s4
v5, k5−−−−−−−→ s5 (3.25)

We model the conversion of each metabolite, si, into the next as an enzyme catalysed

reaction by protein pi+1 with the reaction dynamics described by Michaelis-Menten

kinetics.

The dynamics of the first metabolite are:

ds1
dt

=
v1 · e · p1
k1 + e

− v2 · s1 · p2
k2 + s1

− λ · s1 (3.26)

The dynamics of the intermediate metabolites are (where i = {2...4}):

dsi
dt

=
vi · si−1 · pi
ki + si−1

− vi+1 · si · pi+1

ki+1 + si
− λ · si (3.27)

The dynamics of the final metabolite, the output, are defined by:

ds5
dt

=
v5 · s4 · p5
k5 + se

− λ · s5 (3.28)
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We also modify Equation 3.15 to account for the conversion of e into s1 (highlighted

in blue). This represents the drain on the host metabolic flux of the new pathway.

ϕs represents the number of molecules of e required to make one molecule of s1.

de

dt
= ϕe ·

vE · pE · si
kE + si

−
∑

X∈{T,E,H,R,Y }

(
nX · TL(cX , e)

)
−λ ·e −ϕs ·

v1 · e · p1
k1 + p1

(3.29)

We assumed that pathway enzymes have the same kinetics as the host’s lumped

enzyme function (vi = 5800 molecules per min and ki = 1000 molecules). We set

ϕs to be 0.01 to model the impact of the additional flux through the pathway on

the central metabolism. We also increase the nutrient efficiency ϕe to 1 to model

the additional media supplementation as the amino acid tryptophan is added to

the medium in the experiments. We take the enzyme sizes, in amino acids, for

the components of the violacein producing pathway from UniProt: n1 = 418, n2 =

998, n3 = 429, n4 = 373, n5 = 196. Other parameters were set as found in Table 3.3.

Note that for simplicity of language and to allow the same nomenclature with the

experimental implementation of the violacein pathway, the enzymes are referred to

by their corresponding letter below, such that i = 1 becomes A, 2 becomes B etc.

We model the production of the enzymes as we modelled the reporter genes before.

Whilst, experimentally, vioBCDE is expressed as an operon from one promoter, for

simplicity we model these genes as four separate mRNAs (i.e. one mRNA for vioB,

one for vioC etc) to maintain the number of RBSs and hence competition. We

ensure the parameters representing the mRNA birth-death processes are equal (i.e.

ωi, oi and δmi for i = {B, C, D, E}) to model the fact these genes are co-regulated.

Experimentally, expression of the pathway enzymes was divided between two oper-

ons with the first enzyme of the pathway vioA placed under the control of Ptet and

the other genes vioB, C, D and E in one polycistonic operon under the control of

Plux, making expression inducible with AHL. For simplicity, we refer to this as the

downstream cassette. In this arrangement, the flow of mass through the metabolic

pathway mimics the information flow in an activation cascade which has previously

been shown to be highly sensitive to the effects of resource competition (as discussed

in Chapter 2 and observed in [45]).

In the absence of resource competition, it would be expected that increasing AHL

would increase the pathway flux due to increased expression of the downstream

pathway enzymes. However, simulation of our model shows that when a single

pool of ribosomes is used for the expression of both cassettes competition emerges
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(illustrated in Figure 3.12a). As the downstream cassette is induced, the first consti-

tutively expressed enzyme falls (Figure 3.12c). This results in a concurrent decrease

in metabolite production. We have shown above that the expression of a consti-

tutive gene can be maintained if this gene is targeted to the orthogonal ribosome

pool. We apply this observation to the pathway by allocating the first enzyme to

the o-ribosome pool (illustrated in Figure 3.12b). The decrease of the first enzyme

in response to the induction of the downstream cassette is significantly reduced in

comparison to using only one ribosome pool (3.12d). This change in enzyme distri-

bution results in a concurrent increase in metabolite production across the ranges

of induction simulated. It should be noted that metabolite production does begin

to plateau at high induction. Our simulations predict that the use of this resource

allocation scheme can improve final metabolite production significantly.

To validate these predictions, our collaborators implemented the vioABCDE path-

way in E. coli. as described in Section 3.10. Cell growth and violacein production

were monitored for the cases where (i) vioA is produced from the h-ribosome pool

and (ii) vioA is produced form the o-ribosome pool. When using the host ribosome

pool for expression of all of the pathway components, we see a peak of production of

violacein at intermediate concentrations of AHL (Figure 3.12e). Both low and high

concentrations of AHL yielding poor production, as expected from the predicted

couplings derived from ribosomal competition (Figure 3.12e). Insulating vioA by

using the orthogonal ribosome system allows for higher production yields per cell

that increase monotonically with AHL concentration (Figure 3.12e). Despite these

higher yields no significant decrease in growth rate was observed. Moreover, there

was no emergence of mutants which do not produce violacein in either of the strains

tested, suggesting the decrease in production yields is due to the competition for

translational resources between different segments of the pathway rather than evo-

lution to reduce ‘burden’.

3.9 Conclusions

In this chapter, we have developed and validated a simple model of microbial growth

which takes account of multiple host factors, ribosome biosynthesis and the forma-

tion of orthogonal ribosomes. We demonstrated with our model that translation by

o-ribosomes is tolerable by cells but upon validation found significantly reduced ex-

pression. Using our model we proposed that this is likely due to inefficient formation

of orthogonal translation complexes. We show that despite this, our simple model
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Figure 3.12: Resource allocation control increases production of violacein.
The pathway is divided into two cassettes. vioA is constitutively expressed. The
vioBCDE cassette is inducible with AHL. Simulations show the steady state concen-
trations of the pathway enzymes. Note that the enzymes are grouped by induction
mechanism so that the downstream enzymes are depicted in the same colour. Varia-
tion in their levels is determined by protein size only. Scaled metabolite production
represents the steady state amount of the final metabolite in the pathway, scaled
by the highest amount achieved across the induction. Throughout ωA = 25 and
ωρ = 500 RNAs per min. The downstream cassette is induced as shown by varying
ωBCDE . (a) Single resource pool. (b) Simple resource allocation scheme. (c) Sim-
ulation results of the circuit depicted in (a). (d) Simulation results of the circuit
depicted in (b). (e) Violacein production per cell at 24 h post induction. Violacein
concentration was determined as outlined in Section 3.10. Normalised by the largest
production per cell achieved across all conditions. Bars represent means ±1 S.D.
N = 3.
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is able to predict allocation schemes between the host and orthogonal ribosome

pool which reduced coupling; namely that constitutively expressed genes should be

targeted for translation by the orthogonal pool. We theoretically explored the pos-

sibility of using tethered o-ribosomes and predicted that their use would result in

similar coupling profiles for each expression scheme (albeit with increased expression

due to reduced recycling). We extended these simple observations to the design of a

prototype biochemical pathway. We showed both theoretically and experimentally

that by controlling the distribution of pathway genes across the two translational

pools, total flux through the pathway could be increased.
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3.10 Appendix: An overview of the experimental meth-

ods

The experimental data in this Chapter were provided by our collaborators Dr Juhyun

Kim and Dr José I. Jiménez (University of Surrey). Analysis was carried out by the

author in conjunction with Dr Juhyun Kim. Here we provide a brief overview of the

experimental methods.

Plasmids were constructed using standard protocols [85]. The two gene circuit from

[38] was excised by restriction enzymes and ligated into a standard vector from

the SEVA collection [86]. Where appropriate the host ribosome binding sites were

replaced by PCR using primers containing the orthogonal RBS sequence prior to

ligation into the vector.

For experiments to test the impact of resource allocation on coupling between

the two genes, the circuit and o-rRNA carrying plasmids were transformed into

E.coli MG1655 [87]. In line with standard practise, E. coli strains were grown in

Luria-Bertani (LB) medium at 37◦C supplemented with the appropriate antibiotics

overnight before being diluted into the same medium and grown to mid-exponential

phase as determined by optical density at 600 nm (OD600). These rapidly grow-

ing cells were then subcultured into fresh medium, supplemented with antibiotics

and the inducers IPTG or AHL as appropriate (the function of these inducers is

discussed earlier in this Chapter).

Growth (as OD600) and population-level fluorescence of these cultures was monitored

over 7 hours using a microplate reader. Periodically, samples were collected for

single cell fluorescence measurements. Medium volume was maintained by addition

of fresh medium with appropriate supplements. These samples were diluted and

their fluorescence assessed by flow cytometry which separates individual cells and

assesses their individual fluorescences. GFP and RFP expression, was determined

by emission fluorescence, after excitation with the appropriate lasers. For each

sample, 20,000 cells were measured and population means and standard deviations

estimated by Juhyun Kim using the default instrument software and provided to

the author.

To test our initial conclusions in a potential biotechnological application, the vi-

olacein production pathway from Chromobacterium violaceum ATCC 12472 was

reconstituted in E. coli [84]. The vio-cassette used was designed de novo by Juhyun

Kim and chemically synthesised commercially before being ligated into the SEVA
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backbone and transformed in E. coli MG1655. Strains were cultured overnight and

then subcultured in the manner described above with the addition of the amino

acid tryptophan to the medium. Samples were taken periodically and the amount

of violacein present was determined by spectrophotometry at 570 nm after lysis

and removal of cell debris by centrifugation. Cell growth was determined by re-

suspending the cell debris in water and measuring its optical density determined at

600 nm.
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Chapter 4

Control of orthogonal ribosome

allocation

4.1 Introduction

In Chapter 3, we developed a model of a simple microbe, which included the pro-

duction and utilisation of a pool of orthogonal ribosomes, and demonstrated both

theoretically (and experimentally) that using separate host and o-ribosome pools

can significantly reduce coupling between co-expressed genes. However, we still

observe a saturated input-output response profile; as RFP induction increases the

output levels begin to plateau (both experimentally and in simulations). To assess

the potential reasons for this saturation effect, we assessed the changing internal

components for the circuit confirmations in Chapter 3 in silico. We find that the in-

ternal metabolite, e, does not fall below 85% across all inductions (Figure 4.1). This

metabolite represents the outputs of metabolism; such as ‘energy’ (approximating

the function ATP/GTP) but also the precursors needed for protein synthesis (such

as amino acids). As this metabolite is maintained well across the induction levels,

we propose that this is not the cause of the saturation effect. The transcription

rates in our model are not limiting with the constitutive gene being maintained

while the induced gene increases linearly with induction. Whilst our model does

not explicitly include RNA polymerase sharing across genes, the propensity for gene

expression to fall (mediated by falling RNA polymerase number) with decreasing in-

ternal energy is included via the transcriptional thresholds (oX terms). Therefore we

propose that the saturation effects observed in our experimental system remain due

to competition for finite (host or orthogonal) ribosomes rather than other factors.
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Figure 4.1: Gene expression plateauing is mediated by saturation of the
ribosome pool. Simulations of the steady state concentrations of mRNA and
protein levels from simple two-gene circuits. pA is induced from ωA = 1 to 103

mRNAs per min while pB is constitutively expressed ωB = 100 mRNAs per min.
o-rRNA transcription is held at ωρ = 100 rRNAs per min throughout. Normalised
levels of the intermediate ‘energy’ metabolite (e) are also shown. (a) Both genes
using the host ribosome pool. (b) Both genes using the o-ribosome pool. (c) pA is
translated by the host ribosome pool while pB is translated by the o-ribosome pool.
(d) pA is translated by the o-ribosome pool while pB is translated by the host pool.
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Parameters Reaction description Lower bound Upper bound Rounding

ω Maximal transcription rate 0 1,000 -2
k Hill function threshold 103 106 -3
h Hill constant 1 4 0
o Transcription energy threshold 4.38 2
b mRNA-ribosome binding rate 1 1
u mRNA-ribosome unbinding rate 1 1
δm,r mRNA (m) or sRNA (r) degradation rate 0.1 2
δp Protein degradation rate 0 2
n Protein length (amino acids) 300 0

Table 4.1: Controller parameter ranges Rounding is to the nearest N digits
using the MATLAB inbuilt round function. 0 rounds to the nearest integer, < 0
rounds to the left of decimal place and > 0 rounds to the right of the decimal place.

Given that these so-called ‘open’ loop confirmations do not remove resource medi-

ated saturation effects, in this chapter we propose to use principles from feedback

control to ‘close’ the loop. By introducing a demand-sensing mechanism and using

this error signal to control o-ribosome production, we can develop controllers which

act to match o-ribosome supply to circuit demand. Note that increasing ribosome

biosynthesis is difficult to achieve experimentally and so the proposed controllers act

to change the ratio of orthogonal to host ribosomes. By implementing additional

chemical reactions into our host-aware model we are able to assess the function of

simple genetic feedback mechanisms.

4.2 Controller design process

To develop the models of our proposed translational controllers, the ordinary dif-

ferential equations describing the controller species were implemented in the host-

aware model of o-ribosome production developed in Chapter 3. As described in that

chapter, we also modified the expressions for the energy species de/dt, orthogonal

ribosomes dP/dt and growth rate λ to take account of the additional energy usage

and translation complexes of the new protein(s) required by the controller species.

This fixes the controller topology.

Key controller parameters were allowed to vary within biologically feasible ranges

(see Table 4.1). To achieve specific behaviours, we utilised the genetic algorithm

function from MATLAB’s Global Optimisation Toolbox (version 3.4), utilising the

Parallel Computing Toolbox (version 6.8) where appropriate. Parameters were op-

timised to minimise the value of the cost function (Equation 4.2). We discretised

the parameter space by rounding values as described in Table 4.1.
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Resource-mediated coupling acts to perturb input (mRNA)–output (protein) re-

lationships. Resource limitation results in saturation of the response and coupling

between genes means that all inputs affect all outputs. We wish to design controllers

which restore the modularity of the input–output response by removing resource-

mediated saturation and coupling. We therefore desired the behaviour of the protein

outputs to mirror that of the mRNA inputs. During the design process we scored

coupling between two genes by simulating the increasing production of one gene

(by increasing ω1 from 1 to 104 mRNAs per min) while maintaining the production

of a second (ω2 is constant). We initially simulate the controller to steady state

before inducing the two circuit genes. We then simulate the action of the circuit

over a relatively long period (0...104 minutes). Upon termination of the simulation

we assess the maximum absolute value of the derivative. If this value is greater than

1 (negligible on the scale of protein production in this model, as total protein at

steady state is 108 amino acids) then the simulation is deemed not at steady state

and the value is not returned to the scoring function. This acts to prevent design of

controllers which do not reach steady state within 104 simulated minutes and so re-

moves parameter sets which produce oscillation but also biases the selection scheme

against controllers which reach steady state very slowly (although our interests here

are in steady state behaviour not response time arguably slow controllers are also

undesirable).

We quantified coupling by taking logs (base 10) of the induction of the first gene (ω1)

and the protein levels (p1 and p2) to produce the transformed data w, x and y. Using

the in-built polyfit function we fit straight lines through the points w v x and w v y.

We assessed the effect of increased w (i.e. increasing x) on y by observing the change

in the gradient of the line w v y (ygradient). We assessed the effect of the resource

competition imposed by the constitutive gene on the induced gene by observing

the deviation of the simulated values x (xsim) from those expected by fitting a line

through the points w v x (xfit). We fit straight lines as this reimposes the desired

input-output response; where protein levels mimic the behaviour of mRNA levels

(the latter of which are approximately linear, see for example insets in Figure 4.3)

Individual simulations were scored as follows:

score(ω1, ω2) =
∑(

(xfit − xsim)2
)

+
∑(

(ygradient)
2
)

(4.1)

We give each component of the score equal weights as we do not wish to bias the

optimisation towards selection of designs which factor the first component (which

acts to reduce resource mediated saturation as measured by the linearity of x) over
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or below the second (which acts to reduced coupling as measured by ygradient).

This scoring function can be used to optimise the controller parameters for one level

of expression for the constitutive protein p2. To ensure the controller can function

across a range of these values we develop a cost function which designs controllers

over a range of protein p2 inductions (vectors of induction, ω2):

cost(ω1, ω2) =

N∑
1

score(ω1, ω2) (4.2)

4.3 Development of a negative feedback controller

Negative feedback utilises the output of a system to modify the input such that

disturbances or fluctuations can be rejected to some extent. Here we consider the

simplest implementation of such a loop, which converts a disturbance in the o-

ribosome pool brought about by translation of a circuit (in effect the error signal)

into a change in o-ribosome production, such that demand is approximately matched

by supply.

We exploit the constitutive production of a repressor protein which utilises the o-

ribosome pool for its own translation and inhibits the expression of the o-16S rRNA.

Constitutive production of the repressor mRNA means that repressor protein levels

act as a sensor for translational demand. We call this simple architecture the F -

controller.

4.3.1 Development of the model

To implement the feedback controller in the model, we introduce the new equations

and species required to describe the production of the controller protein’s mRNA,

its translation and the action of the protein. We denote these new components with

F . To implement (i.e. ‘close’) the feedback loop, we modify Equation 3.12 to include

the inhibitory action of the controller protein pF . As before we use a simple Hill

function to describe the inhibition (blue term).

dρ

dt
= ωρ ·

(
1

1 + (pF /kF )hF

)
·
( e

oρ + e

)
− bρ · pR · ρ+ uρ · P − (δρ + λ) · ρ (4.3)
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4.3.2 Negative feedback successfully decouples two genes

We optimised the key controller parameters (ωρ, ωF , kF , hF and bF ) using the cost

function as described in Section 4.2.

To demonstrate the ability of the controller to increase o-ribosome production in

response to demand, we consider the induction point when approximately equal

amounts of protein are produced (ωA = ωB = 100 mRNAs per min) (Figure 4.2).

We consider the constitutive expression of one circuit gene and simulate the response

of the system to the stepped induction of a second gene (Figure 4.2b, c, d). When

circuit demand is low (depicted in Figure 4.2a, left), before the induction of the

second gene, competition between the circuit and the controller is low. This results

in high expression of the controller protein and therefore high repression of the o-

rRNA, meaning that few ribosomes are co-opted from the host. Upon induction

of the second gene (depicted in Figure 4.2a, right), the demand for o-ribosomes

increases (Figure 4.2b). The repressor mRNAs will remain largely unaffected, but

their translation falls due to increased competition (Figure 4.2c). The decrease in

repressor production results in relief of the inhibition of the o-16S rRNA gene and

so increased o-rRNA production and increased co-option of host ribosomes (Figure

4.2b). This results in the maintenance of circuit protein production as other circuit

genes are induced (Figure 4.2d), although it should be noted that a small steady

state error of ∼ 2% remains. Note that whilst the free o-ribosome is not maintained

in the presence of the controller there is only a 5% fall (Figure 4.2b) but in the

absence of the controller this fall is 50%.

We simulate the increasing induction of one protein pA and assess the fall in a

constitutive protein pB. The negative feedback controller successfully slows the

fall in pB while removing the resource-mediated saturation effect on pA (Figure

4.3). Note that the mRNA levels in both open and closed loop confirmations are

equivalent. To determine the effect of the controller, we simulate the performance of

the same circuit in the presence of the o-ribosome system but in the absence of the

controller. As we found that protein levels were a large determinant of host response

in Chapter 3 (specifically Figure 3.3), we vary the value of ωρ so that both the open

loop (i.e. without the feedback mechanism) and closed loop (i.e. with the feedback

mechanism) circuits produce the same protein outputs when the induction of the

two genes is matched (i.e. when ωA = ωB = 100 mRNAs per minute) (Figure 4.3).

Comparison of the protein levels with their respective mRNAs shows the controller

successfully restores the input–output mapping. In the open loop confirmation pB
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Figure 4.2: Operation of the F -controller. Simulations of a two-gene circuit
were carried out as described in the main text. pA is induced at t = 0. The
changing distribution of controller and circuit components is shown in (b), (c) and
(d). (a) Structure and function of the F -controller. Left, Low demand circuit.
When competition is low pF expression is high and so o-rRNA production is low
and hence co-option of host ribosomes is low. Right, High demand circuit. As
circuit demand increases (as pA is induced), the o-ribosome pool redistributes across
circuit and controller genes (width of purple ribosome flux lines) due to competition
between mRNAs. This reduces translation the constitutively expressed pF . This
reduces the repression of o-rRNA production, allowing more co-option of ribosomes
to the orthogonal pool. This maintains ribosome flux for mB translation despite the
increase in mA. (b) Changing distribution of the controller components. ρ, o-16S
rRNA; P , free o-ribosome; pF , controller protein. Normalised by their maximum
value. (c) Changing distribution of the translation complexes over time in response
to pA induction. cY , translation complex of gene Y , Σ P , sum of all o-ribosomes.
Normalised by maximum Σ P . (d) Protein output over time normalised by sum of
the final circuit protein concentration.
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Figure 4.3: The simple F -controller decouples co-expressed genes. Simula-
tion of the action of the negative feedback controller. ωA is varied between 1 and
104 mRNAs per minute. wB is held constant at 100 mRNAs per minute through-
out. The simulation time span is increased until it reaches steady state. Controller
parameters: ωρ = 350 rRNAs per min; ωF = 103 mRNAs per min; Hill function
parameters kF = 104 and hF = 4. Open loop ωρ = 1.6 rRNAs per min. Insets, left,
mRNA concentration in the open loop; right, mRNA concentration in the closed
loop.

falls 50% over the first two orders of magnitude of ωA induction, whilst in the

presence of the controller the equivalent fall is negligible at less than 2%. pB is

maintained within 10% of its initial value over three orders of magnitude of ωA

induction. Over the whole range of ωA, pB only falls 40% (compared to 99% in

the open loop). In the presence of the controller pA increases linearly and is not

subjected to the saturation effects of the open loop controller.

4.3.3 Robustness analysis and extension to different circuits

To test the robustness of the F -controller design to uncertainty or variability arising

from potential experimental implementations, we carried out a simple robustness

analysis around the optimal solution identified. We took a simple Monte Carlo
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approach by drawing 10,000 random parameter sets where all parameters of the

o-ribosome production system and controller protein could be varied between ±50%

from the optimal value. All parameter sets were simulated to steady state. This

analysis indicates that the feedback topology is highly robust, with all designs tested

showing a better mRNA-protein mapping than the circuit using the o-ribosome

pool without control, including those parameters which are difficult to design such

as the ‘transcriptional energy threshold’ oρ (Figure 4.4a). Approximately 60% of

controllers produce results which fall within 50% of the original controller function

across all ωA inductions.

To identify if oscillatory behaviour of the controlled system occurs, we simulated

106 random controllers, drawing parameters from a uniform distribution between

the bounds shown in Table 4.1. We simulate the controller alone without a circuit

protein (to determine the controller’s apparent stability) and then in the presence of

a circuit protein (ωA = 100 mRNAs per min) (to determine if the disturbance caused

by the circuit reveals a hidden instability in the system). Whilst these controllers,

as expected, show significantly different behaviours, all converge to a fixed point,

supporting the argument that the stability of this controller is highly robust.

We designed our controller to decouple circuit genes over a range of ωB values. We

simulated the circuit as before by holding ωB constant and increasing ωA but con-

sidered different ωB values for each set of simulations (Figure 4.4b). The controller

acts to decouple genes across all ωB values tested. In all cases the controller func-

tion begins to break down at ωA > 103 mRNAs per min. As ωB increases, the

efficiency of the controller also increases. Simulations of the open loop confirmation

at these levels of induction also demonstrate decoupling. At very large values of ωB,

the ribosome sequestration ability of mRNA B increases due to their large number

and so this gene becomes more insensitive to resource limitations. Concurrently,

there are fewer ribosomes for mRNA A expression resulting in linearisation of the

pA response. These results are consistent with those reported in [38].

4.3.4 Design principles

Having demonstrated that the controller functions as expected and is largely robust,

we carried out a sensitivity analysis around the optimal controller parameter set to

determine how key parameters contributed to its behaviour. For consistency with

Chapter 3 and to inform the construction of the prototype by our experimental

collaborators we formulate our design in the form of isocost lines.
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Figure 4.4: Robustness of the simple negative feedback controller (a) Func-
tion and robustness of the controller decoupling two genes. The optimal controller
parameters were perturbed by drawing random values between ±50% of the origi-
nal value (N = 10, 000). All parameters controlling o-rRNA and controller protein
were allowed to vary. For ease of analysis the steady state values within 50% of the
optimal set are shown as dotted lines. (b) Function of the controller over a range
of pA (ωA) and pB (ωB) inductions.
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As found in Chapter 3, the coupling is largely independent of the size of the o-

ribosome pool (i.e. varying ωρ has negligible effect, Figure 4.5a). However, in this

case the small o-ribosome pool (ωρ = 10 rRNAs per min) shows increased coupling

due to the presence of the additional load on the o-ribosome pool brought about by

the controller protein expression. Our sensitivity analysis shows that the controller

protein needs to have a high ability to sequester o-ribosomes; i.e. decoupling is

achieved when controller transcription (ωF ) or RBS strengths (bF ) are high (Figure

4.5b, c). At low ωF or bF , representing a weak closing of the feedback loop, there

is no effect of the feedback. Regarding the characteristics of the controller protein

itself, the sensitivity analysis shows that the protein should be multimeric (with

increasing hF increasing decoupling) and tightly binding (low kF ) (Figure 4.5d, e).

4.4 Development of an integral controller

Increasingly there is interest in realising integral control in synthetic circuits. In

addition to ‘acting against the perturbation’ to reduce the steady state error, the

advantage of integral action causes the system to undergo perfect adaptation (i.e. no

steady state error). This would produce advantages over the F -controller imple-

mented in Section 4.3 where a small steady state error remains. A genetic integral

controller topology composed of multiple activatory and inhibitory transcription

factor-based feedback loops was proposed by Ang et al. [88]. A further topology

based on a smaller number of proteins was proposed by Briat et al. in [89]. Recently,

the experimental realisation of this prototype has been reported [80]. These designs

take the form of a process which produces an activator which itself activates an

inhibitor which inhibits the process. If the process output is increased by a distur-

bance then the process is subjected to greater inhibition. If the process output falls,

the level of inhibitor production falls and so the process input increases allowing

adaptation.

These proposed controllers are implemented through the use of multiple proteins.

Given that additional protein production would impose greater competition for o-

ribosomes (and, of course, greater burden), we leverage the advantage of small RNAs

in our proposed controller. The expression of small RNAs requires only transcrip-

tion by RNA polymerase and not translation by ribosomes. As discussed in Chapter

2, the current experimental evidence is that in most cases RNA polymerase is not

limiting. Production of RNAs is also less energy intensive than the production of

proteins so further reducing the whole cell burden of their expression [90]. Taking
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Figure 4.5: Design of the simple negative feedback controller. The impact
of each varying parameter on the optimal controller. Isocost lines were plotted by
keeping ωB = 100 and varying ωA between 1 and 103 mRNAs per minutes. The
resulting steady state protein concentrations are plotted. The impact of varying the
following parameters is shown: (a) The maximal o-rRNA transcription rate. (b)
The maximal transcription rate of the controller protein mRNA. (c) The strength
of the controller protein RBS. (d) The dissociation constant of the repressor. (e)
The Hill function coefficient of the repressor.
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inspiration from [54, 89], we propose the inhibitory action takes the form of seques-

tration of the o-rRNA by a synthetic small RNA. Briat et al. propose the following

reaction network:

Some output X is produced in response to the input reference species Z1 by some

function f (Equations 4.4 and 4.5). This activates the production of Z2 by some

function g and therefore the output is measured via the concentration of Z2, the

sensor species (Equation 4.6). The action of the controller is through a ‘comparison’

reaction in which both Z1 and Z2 are eliminated (Equation 4.7). (This elimination

reaction is the proposed source of the integral action [89]:

∅ µ−−−−→ Z1 (4.4)

∅ f(Z1)−−−−−−−→ X (4.5)

∅ g(X)−−−−−−→ Z2 (4.6)

Z1 + Z2
η−−−−→ ∅ (4.7)

This chemical reaction network acts to reject disturbances to the species X.

We propose the following topology for our putative controller:

The o-rRNA takes the place of the reference species Z1 but can only act through

the o-ribosome pool; hence the transcription of the o-rRNA, the co-option of host

ribosomes and translation of the species X by the o-ribosome pool form the chemical

reactions which enact the f(·) function. The function of species X (i.e. the function

g(·)) is carried out by an activatory transcription factor pG. The level of pG is a

measure of circuit induced disturbance. pG activates the production of a small RNA

(ri) which takes the place the sensor species (Z2). The elimination/comparison

reaction (equivalent to Equation 4.7) takes the form of a biomolecular reaction

between ρ and ri to form the RNA duplex rd which is degraded:

ρ+ rd
bi−−−−−⇀↽−−−−−
ui

rd
δrd−−−−−→ ∅ (4.8)

4.4.1 Development of the model

To implement the proposed controller in the model we introduce the new equations

and species required to produce the constitutively expressed activator’s mRNA,

translation complex and protein (denoted G).

We model the sequestration reaction by applying the Law of Mass Action to Equa-
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tion 4.8 and modify the o-rRNA production ordinary differential equation (Equation

3.12) accordingly:

dρ

dt
= ωρ ·

( e

oρ + e

)
− bρ · pR · ρ+ uρ · P...

− (δρ + λ) · ρ−bi · ρ · ri + ui · rd (4.9)

The small RNAs are born spontaneously as previously described for mRNAs. The

rate of production is also scaled by the activatory Hill function (pG term). The

interaction with the o-rRNA is described by the Law of Mass Action:

dri
dt

= ωi ·

(
(pG/kG)hG

1 + (pG/kG)hG

)
·
( e

oi + e

)
− bi · ρ · ri + ui · rd − (δri + λ) · ri (4.10)

The production dynamics of RNA duplex and its degradation/dilution are given by:

drd
dt

= bi · ρ · ri − ui · rd − (δrd + λ) · rd (4.11)

4.4.2 Function of the controller

We optimise the design of the G-controller as outlined in Section 4.2, allowing the

following parameters to vary ωρ, ωi, ωG, bG, kG and hG. We assume the interaction

between the o-rRNA and the small RNA is diffusion limited and reversible (such

that bi = ui = 1, Equation 4.8). We account for the rapid degradation of double

stranded RNA by setting the decay constant (δrd) to 0.5 molecules per minute (∼ 5

times greater than single stranded RNAs). During initial controller design it was

noted that a small but significant number of parameter sets resulted in oscillations

(discussed further below).

As above, we first consider the action of the controller by comparing it to an open

loop confirmation with equivalent protein production where pA and pB intersect

(Figure 4.6). Over the first two orders of magnitude of ωA the controlled ωB falls

only 7%, while in the absence of the controller this fall is 45%. At inductions of pA

over around 500, pB suffers significant perturbation with pB falling over 35%. The

controller restores the input–output mapping of pA between ωA = 1 to 103 mRNAs

per min.

To demonstrate the changing distribution of controller components, as before, we

consider the induction point when approximately equal amounts of protein are made
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Figure 4.6: The proposed integral controller decouples co-expressed genes.
Simulation of the action of new controller architecture. ωA is varied between 1 and
104 mRNAs per minute. ωB is held constant at 100 mRNAs per minute throughout.
The simulation time span is increased until it reaches steady state. Controller
parameters: ωρ = 220 rRNAs per min; ωi = 930 sRNAs per min; ωG = 990 mRNAs
per min; Hill function parameters kF = 8×104 and hF = 4. Open loop ωρ = 15.825
rRNAs per min. Insets, left, mRNA concentration in the open loop; right, mRNA
concentration in the closed loop.
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(ωA = ωB = 100 mRNAs per min) (Figure 4.7). As before, we consider the response

of a constitutively expressed gene (pB) to the induction of second (pA) (Figure 4.7).

When circuit demand is low (depicted in Figure 4.7a, left), the expression of pG is

high. This results in high expression of the sRNA (ri) and so high sequestration of

the o-rRNA (Figure 4.7c). Upon induction of the second gene (and so increase in

demand, depicted in Figure 4.7, right) the expression of pG falls due to a decrease in

translation because of resource competition. This results in a large decrease in sRNA

production and so liberates o-rRNA, whose levels rise by nearly 40%. This results in

greater co-option of host ribosomes to the o-ribosome pool and therefore decouples

the co-expressed genes, although note that a negligible error (0.2%) persists at steady

state (Figure 4.7d). The o-ribosome pool is not maintained in the presence of the

disturbance but the perturbation is reduced from 50% (in the absence of control) to

only 6% (in the presence of the controller).

4.4.3 Robustness analysis and extension to different circuits

As before, we investigated the controller robustness by taking a Monte Carlo ap-

proach. We draw 10,000 random parameter sets where we allowed all controller

parameters to vary by up to 50%. Taking into account the putative instability

we observed during initial model design, we ensured that we started with 10,000

controllers which initially appeared stable (i.e. in the absence of the circuit) by

rejecting those that did not reach a steady state during their initial simulation. Of

these 10,000 sets, when we simulated the circuit in Figure 4.6, only 5,789 controllers

produced stable results for all ωA values tested - a failure rate of ∼ 40%. Controllers

which result in greater protein production (i.e. where pB(ωA = 1) is much greater

than the value produced by the optimal controller) seem to be more likely to be

unstable. Of the controllers which function as desired nearly all fall below 50% of

the original controller (Figure 4.8a). Only 246 combined controller and circuit ωA

values simulated fall within 50% of the original function. Note that this number

rises to nearly 800 (still < 0.1%) if only results less than ωA = 103 are analysed.

To investigate this instability further we simulated 106 random controllers, drawing

parameters from a uniform distribution and simulated as described in Section 4.3.3.

We find a number of unstable controllers which we discuss further in Section 4.4.4.

We designed the G-controller to function over a range of ωB values. We assessed

the function of the controller over a number of ωA and ωB values (Figure 4.8b).

It successfully decouples genes across a large proportion of the circuit design space
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Figure 4.7: Operation of the G-controller. Simulations of a two-gene circuit
were carried out as described in the main text. pA is induced at t = 0. The
changing distribution of controller and circuit components is shown in (b), (c) and
(d). The system reaches steady state at t = 103 min. (a) Structure and function of
the G-controller. Left, Low demand circuit. When competition is low, pG expression
is high and so sRNA transcription is activated resulting in high sequestration of,
and hence degradation of, the o-rRNA. Therefore co-option of ribosomes to the o-
ribosome pool is low. Right, High demand circuit. As circuit demand increases (as
pA is induced), the o-ribosome pool redistributes across circuit and controller genes
(width of purple ribosome flux lines) due to competition between mRNAs. This
reduces translation of pG and hence reduced activation of ri transcription. This
results in less sequestration of the o-rRNA and so increased co-option of ribosomes
to the orthogonal pool. This maintains ribosome flux for mB translation despite
the increase in mA. (b) Changing distribution of the controller components. ρ, o-
16S rRNA; ri, sRNA; rd, RNA duplex (dsRNA); P , free o-ribosome; pG, controller
protein. Normalised by their maximum value. (c) Changing distribution of the
translation complexes over time in response to pA induction. cY , translation complex
of gene Y , Σ P , sum of all o-ribosomes. Normalised by maximum Σ P . (d) Protein
output over time normalised by sum of the final circuit protein concentration.
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tested. However, at high ωA the response begins to saturate and we see greater

perturbation to pB. As before as ωB increases, pB becomes less sensitive to resource

competition due to its superior ribosome sequestration ability. Instability emerges

in these resource intensive circuits (u/s points in Figure 4.8b).

4.4.4 Design principles

Having demonstrated that the optimal G-controller functions as expected (although

with poor performance) we next considered how each parameter contributed to the

behaviour. Again, we consider how each contributes to the slope of the isocost line

before we consider the issue of the instability uncovered by our robustness analysis.

By beginning with our optimal controller we vary each of the experimentally tunable

parameters individually (Figure 4.9). We find that in addition to setting the size of

the protein budget in this controller, the maximal o-rRNA transcription rate (ωρ)

also determines the slope of the isocost line, with intermediate values showing the

best decoupling. If ωρ > ωi then decoupling fails and the slope of the isocost line

increases. Consistent with this observation ωi must be large and its activator (i.e.

pG) must be highly expressed (large ωG and bG, Figure 4.9c, d). The slope of the

isocost line is largely insensitive to the properties of the activator itself; with the

slope being largely consistent for kG ≤ 105 and hG > 2 (Figure 4.9d, e). Here, as

opposed to the F -controller, increasing co-operativity increases protein expression.

Having found that a number of G-controllers are unstable in Section 4.4.3, we further

investigated the parameter regimes where the controller is unstable. We simulated

the controllers in the absence and presence of circuit genes as the instability of some

controllers is only revealed upon the addition of the input. For example, in Figure

4.10b a controller which initially appears stable is revealed to be unstable forming

sustained oscillations upon the induction of a circuit gene. A pairwise comparison of

parameters for these unstable controllers reveals distinct regions of parameter space

where controllers are likely to be unstable. Simulating 106 random controllers from

within this region reveals that whilst the majority are stable, 6% are unstable in the

absence of the circuit, with this value rising to 10% upon inclusion of the circuit gene.

This provides more evidence to show that controllers which initially appear stable

can in fact be unstable when subjected to circuit inputs. Analysis of the parameters

which give rise to oscillations does not allow further refinement. As the region is

poorly defined at present it complicates the design process. Implementation in vivo

relies on the identification of biological components which have the desired dynamics.
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Figure 4.8: Robustness of the integral controller. (a) Function and robustness
of the controller decoupling two genes. The optimal controller parameters were
perturbed by drawing random values between±50% of the original value (N = 5, 934
reach a steady state with the time span across all ωA tested). All parameters
controlling o-rRNA and controller protein were allowed to vary. For ease of analysis
the steady state values within 50% of the optimal set are shown as dotted lines. (b)
Function of the controller over a range of pA and pB inductions. u/s, simulations do
not reach steady state so protein level at time t = tmax is taken as an approximation
for long term behaviour.

79



a b

c d

e f

Figure 4.9: Design of the integral G-controller The impact of each varying
parameter on the optimal controller. Isocost lines were plotted by keeping ωB = 100
and varying ωA between 1 and 103 mRNAs per minutes. The resulting steady state
protein concentrations are plotted. Where simulations failed to reach steady the
point is highlighted in grey and the long term behaviour is plotted instead. The
impact of varying the following parameters is shown: (a) The maximal o-rRNA
transcription rate. (b) The maximal transcription rate of the o-rRNA sequestering
small RNA. (c) The maximal transcription rate of the sRNA activator protein. (d)
The activator protein RBS strength. (e) The dissociation constant of the activator.
(f) The Hill function coefficient of the activator.
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Parameter Lower bound Upper bound

ωρ 100 800
ωi 500 1000
ωG 0 1000
kG 104 105

hG 3 4
bG 0.01 1

Table 4.2: Unstable region of parameter space for the proposed integral
controller. The approximate bounds which define the region of reduced stability
for the integral controller. Values were taken from the analysis in Figure 4.10a.

Often only second choice components with similar, but not optimal dynamics, are

available, but as this analysis shows, controllers may have similar values but one

may be stable and the other form oscillations.

4.4.5 Investigating the loss of perfect adaptation via model reduc-

tion

From Figure 4.7, we can see that after the induction of the second gene, the first does

not fully recover – a small steady state error remains, indicating the G-controller

is not functioning as a perfect integral controller in this instance. We propose that

this loss of integral control may be due to the inclusion of additional host factors

in our model. To test this hypothesis we gradually remove host factors to derive a

simple model which does show perfect integral action.

We initially removed the host enzymes and other proteins to reduce competition and

metabolism-based feedback (the latter through holding the internal energy levels

(e) constant). We removed the mRNA and translation complexes (mR and cR) by

introducing the spontaneous resource-free production of pR (born at rate γR in the

reduced model).

We parameterised the new model using the same values as before and we scaled the

transcription rates (ω terms) by the (ẽ/(ẽ+ o)) where ẽ is the value of the internal

energy molecule in the host model. Similarly, we calculated γR as (γ(ẽ)/nR)c̃R,

where c̃R is the steady state concentration of the translation complex of the ‘empty’

ribosomes in the host model. We also removed competition for the pR species by

setting the host rRNA transcription rate ωr to zero throughout. These modifications

do not restore perfect integral action.

Concurrently, a series of design rules for creating quasi-integral action have been
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Figure 4.10: Unstable regions of the proposed integral controller. (a) The
parameters describing the unstable controllers were identified and plotted pairwise
against one another. (b) An unstable controller. The controller is simulated before
a circuit gene is induced at t = 103 minutes with ωA = 100 mRNAs per min. Before
induction the controller is stable but after the combined system of the controller and
circuit shows sustained oscillations. Left, free o-ribosome number. Right, circuit
protein expression. Controller parameters: ωρ = 500 rRNAs per min; ωi = 103

RNAs per min; ωG = 250 mRNAs per min; Hill function constants kG = 104 and
hG = 4.
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published [91]. The authors show that the dilution of the sequestration components

(here the o-rRNA and sRNA) results in a ‘leak’ effect which destroys the integral

action of our proposed topology; as it results in decreases in o-rRNA and sRNA

concentration that are not as a result of the sequestration/elimination reaction and

so the ‘comparison’ function does not perfectly track the concentrations of the two

species as they are not solely removed in the elimination reaction. They show that

this controller topology functions as an integral controller in the absence of this dilu-

tion effect. As cell growth, and hence dilution are unavoidable, they develop a series

of design rules to create what they term quasi -integral action. They demonstrate

that increasing the transcription rates of the controller components and increasing

the affinity of the RNA sensor for the reference species both act to increase seques-

tration of the target species and hence can partially restore the integral action.

To apply these observations in our context we first remove λ and set the protein

decay rates δpR = δR = δpG = δpA = δpB = 0.022 per min (this modification

maintains the removal of the protein species). We then set the decay rates of the

o-rRNA and sRNA to zero (δρ = δri = 0). To prevent ‘leak’ of the controller species

due to the reversibility of the reactions they are involved in we also set uρ = ui = 0.

In this context simply removing the loss of components due to dilution did not fully

restore integral action and we still need to increase the transcription rate of the

sequestering sRNA. (Figure 4.11b). (Note that if we re-consider competition for pR

by relaxing the ωr = 0 condition, sustained oscillations are observed (Figure 4.11b,

inset))

If the assumption that the sRNA–o-rRNA and o-rRNA–‘empty’ ribosome binding

reactions are reversible is restored (i.e. uρ = ui = 1) then integral action at the

higher transcription rate is not lost (Figure 4.11c). (Again, simulations containing

competition for ‘empty’ ribosome by including the host rRNA results in sustained

oscillations (Figure 4.11c, inset)).

Reinstating the RNA decay rates (δρ = δri = 0.1 per min) results in loss of perfect

integral action (Figure 4.11d)

83



a

b

c

d

Figure 4.11: Integral action is lost due to host-circuit interactions. Simu-
lations showing the change in pA in response to the induction of a second gene pB.
Both genes induced at ωA = ωB = 100 mRNAs per min. pB is induced at 2500
minutes. (a) Simulation of the full model with all host reactions. (b) Simulations
of the reduced model. Host processes are reduced as described in the main text. λ
approximated for protein species. Reversible reactions removed (i.e. ui = uρ = 0).
Inset, ωr = 3, 1750 h-rRNAs per min. (c) Same simulation in (b) but with reversible
reactions reinstated (uρ = ui = 1). Inset, ωr = 3, 1750 h-rRNAs per min. (d) Same
simulations as in (b) but this ‘leak’ reactions reintroduced (δρ = δri = 0.1 per min.)
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The final reduced model which recreates integral action is given by:

dp̃R
dt

= γR − δpR · p̃R − br · p̃R · r̃ + ur · R̃− bρ · p̃R · ρ̃+ uρ · P̃ (4.12)

dr̃

dt
= ω̃r − δpR · r̃ − br · p̃R · r̃ + ur · R̃ (4.13)

dR̃

dt
= br · p̃R · r̃ − ur · R̃− δpR · R̃ (4.14)

dρ̃

dt
= ωρ − δρ · ρ̃− bρ · p̃R · ρ̃+ uρ · P̃ − bi · ρ̃ · r̃i + ui · r̃d (4.15)

dP̃

dt
= bρ · p̃R · ρ̃− uρ · P̃ − δpR · P̃ ...

+
∑

X∈{G, A, B}

(
TL(c̃X , ẽ)− bX · P̃ · m̃X + uX · c̃X

)
(4.16)

dr̃i
dt

= ωi · F (p̃G)− δri · r̃i − bi · r̃i · ρ̃+ ui · r̃d (4.17)

dr̃d
dt

= −δrd · r̃d + bi · r̃i · ρ̃+ ui · r̃d (4.18)

where F (pG) symbolises an activatory Hill function. Note that dr̃/dt and dR̃/dt can

be neglected if ωr is set to zero.

The equations describing the protein-encoding genes (X ∈ {G, A, B}) are:

dm̃X

dt
= ω̃X − δmX · m̃X + TL(c̃X , ẽ)− bX · P̃ · m̃X + uX · c̃X (4.19)

dc̃X
dt

= −δpR · c̃X − TL(c̃X , ẽ) + bX · P̃ · m̃X − uX · c̃X (4.20)

dp̃X
dt

= TL(c̃X , ẽ)− δpX · p̃X (4.21)

4.5 Development of an integral controller with improved

robustness

Given the instability observed in the G-controller design, we revised our proposed

integral controller design. In Section 4.4, our o-rRNA sequestration scheme requires

the activation of gene expression. This can result in a threshold and then amplifi-

cation effect due to the action of the Hill function used to model pG transcription

factor action. The amplification effect can potentially lead to instabilities. We re-

considered the integral architecture to develop a controller design which does not

include this effect by not using gene activation.
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RNAs can be bound by small RNA binding proteins. Biologically these proteins have

a range of functions in post-transcriptional processing such as modulating mRNA

stability or occluding the RBS to modulate translation (reviewed in [92, 93]). We

developed a new controller architecture (which we called K) by considering the

use of RNA binding proteins as a means of o-rRNA sequestration (Equation 4.22).

Again the design relies on the constitutive expression of this protein, making its

levels indicative of the circuit demand due to resource-mediated coupling.

ρ+ pK
bi−−−−−⇀↽−−−−−
ui

dK (4.22)

4.5.1 Development of the model

As before we introduced the necessary equations to describe the interaction between

the o-rRNA and RNA binding proteins (the latter denoted K). We model the

binding reaction by applying the Law of Mass Action. We assume this reaction

can be reversible and is diffusion-limited (i.e. the maximal binding/unbinding rate

is 1). We modify the o-rRNA equation to include the new sequestration reaction

(highlighted in blue):

dρ

dt
= ωρ ·

( e

oρ + e

)
− bρ · pR · ρ+ uρ · P...

− (δρ + λ) · ρ−bi · ρ · pK + ui · dK (4.23)

The mRNA and translation complex associated with the new RNA binding protein

follow the same dynamics as for other protein-coding genes (Equations 3.7). The

dynamics of the RNA binding protein follow those of other proteins but are modified

to include the association with the sRNA:

dpK
dt

= TL(cK , e)− (δpK + λ) · pK − bi · ρ · pK + ui · dK (4.24)

The dynamics of the rRNA-RNA binding protein complex, dK , is given by:

ddK
dt

= bi · ρ · pK − ui · dK − (δdK + λ) · dK (4.25)

Note that we assume this complex is stable (hence δdK = 0 as for all other proteins)

and so is removed only by dilution due to growth (λ term).
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4.5.2 The K-controller successfully decouples two genes

We optimised the o-rRNA and RNA binding protein transcription rates (ωρ and

ωK) using the cost function as outlined in Section 4.2.

To demonstrate the function of the controller we assessed its ability to maintain the

expression level of one gene in response to the induction of a second considering the

point where approximately equal amounts of protein are produced (ωA = ωB = 100

mRNAs per min). Before induction of the second gene, competition between the

circuit and controller is low so controller expression is high (depicted in Figure

4.12a, left). This results in high sequestration of o-rRNA in low demand circuits

(Figure 4.12b). Upon induction of the second gene (depicted in Figure 4.12a, right),

competition for o-ribosomes increases which reduces expression of the RNA binding

protein (pK) despite it being a constitutively expressed gene (Figure 4.12b). This

results in decreased sequestration of the o-rRNA. The levels of o-rRNA increase,

increasing co-option of ribosomes from the host to the orthogonal pool. Therefore

as circuit mRNAs increase due to additional gene induction the demand is matched

by the supply of o-ribosomes and so the levels of the original protein are maintained

(Figure 4.12c). Note that this does not function as a perfect integral controller as

an error of 1% remains. The free o-ribosome falls less than 5% upon induction of

pA.

To assess the function of the controller, we simulate its ability to decouple co-

expressed genes in a simple two gene circuit as before (where pA is induced and pB

induction is held constant). As before we tune ωρ in the absence of the controller

to create an open loop comparison. The controller successfully restores the mRNA–

protein relationship for the majority of ωA values. In the absence of the controller,

pB falls by nearly 50% across the first two orders of magnitude of ωA whilst in

the controlled system this fall is less than 2%. From ωA = 10 mRNAs per min to

ωA = 103 mRNAs per min the constitutive gene falls only 2% while the induced

gene increases linearly with increasing induction (Figure 4.13a). However, at high

pA induction (ωA > 103 mRNAs per min) the controller fails with both protein levels

rising dramatically. Closer inspection of the simulations reveals that at these levels

of induction the growth rate falls to zero (Figure 4.13b, right). In this case pK is

saturated by the o-rRNAs and so the high value of ωρ means that the number of o-

ribosomes increases. Orthogonal ribosomes get sequestered into circuit translation

complexes (i.e. cA and cB) (Figure 4.13b, left). Therefore the number of free

ribosomes falls to zero, as ‘empty’ ribosomes are not recycled (Figure 4.13b, left).
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This increases competition between host and orthogonal rRNAs which is likely to

account for the strong coupling observed at ωA > 103 mRNAs per min (Figure

4.13b, right).

4.5.3 Robustness analysis and extension to different circuits

We carried out a simple robustness analysis as before by drawing 10,000 random

numbers from a uniform distribution with ±50% of the value produced by the op-

timisation routine. All parameter sets were successfully simulated to steady state.

The topology is highly stable for ωA < 103 with most parameter sets showing sig-

nificant decoupling ability. However, across all levels of pA induction only 35% of

the controllers tested fall within 50% of the original function (although note this

increases to 50% for ωA ≤ 103 mRNAs per min).

We supplemented this analysis by simulating 106 random controllers (created by

drawing parameter designs from between the minimum and maximum permissible

values). As before we simulated these controllers in the presence and absence of

a simple circuit consisting of one gene induced at 100 mRNAs per min. In all

cases these controllers produce stable, although as expected highly variable, results.

This suggests that the topology is highly stable and designs are unlikely to be

unstable or form sustained oscillations. We can, however, expect poor levels of

robust performance from this design.

Our controller design process aims to find the optimum controller over a range of ωA

and ωB values (see Section 4.2). As before we simulated a range of ωB levels, holding

ωB constant at each level while varying ωA. The controller successfully decouples

genes across the range of values tested (Figure 4.14b). However, as observed in both

Figures 4.13 and 4.14a, there are significant growth rate effects at high pA induction

(ωA > 103 mRNAs per min) and high pB induction (ωB > 103 mRNAs per min). At

high demand the growth rate falls to near zero resulting in accumulation of protein

and increased coupling due to the falling levels of free ribosomes (Figure 4.13b).

Varying the design parameters of the controller acts to move the region of zero-

growth to the left (i.e. making poor growth occur at lower inductions). Lowering

growth rate significantly in vivo is highly problematic (for example, small popula-

tions are undesirable in a biotechnological setting due to the associated poor product

yield). In light of these initial observations, and as we do not yet have a complete

solution, we did not carry this controller forward for further sensitivity analysis.
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Figure 4.12: Operation of the K-controller. Simulations of a two-gene circuit
were carried out as described in the main text. pA is induced at t = 0. The chang-
ing distribution of controller and circuit components is shown in (b), (c) and (d).
(a) Structure and function of the K-controller. Left, Low demand circuit. When
competition is low, pK expression is high and so o-rRNA sequestration by the RNA
binding protein is high. Therefore co-option of ribosomes to the o-ribosome pool is
low. Right, High demand circuit. As circuit demand increases (as pA is induced),
the o-ribosome pool redistributes across circuit and controller genes (width of purple
ribosome flux lines) due to competition between mRNAs. This reduces translation
of pK and hence sequestration of the o-rRNA. This increased co-option of ribosomes
to the orthogonal pool and maintains ribosome flux for mB translation despite the
increase in mA. (b) Changing distribution of the controller components. ρ, o-16S
rRNA; P , free o-ribosome; pk, controller RNA binding protein; dK , o-rRNA se-
questered by controller protein. Normalised by their maximum value. (c) Changing
distribution of the translation complexes over time in response to pA induction. cY ,
translation complex of gene Y , Σ P , sum of all o-ribosomes. Normalised by max-
imum Σ P . (d) Protein output over time normalised by sum of the final circuit
protein concentration.
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b

Figure 4.13: The K-controller decouples co-expressed genes below ωA = 103

mRNAs per min. Simulation of the action of new controller architecture. ωA is
varied between 1 and 104 mRNAs per minute. ωB is held constant at 100 mR-
NAs per minute throughout. The simulation time span is increased until it reaches
steady state. Controller parameters: ωρ = 500 rRNAs per min; ωK = 103 mRNAs
per min. Open loop ωρ = 1.245 rRNAs per min. (a) The controller successfully
decouples co-expressed genes. Insets, left, mRNA concentration in the open loop;
right, mRNA concentration in the closed loop. (b) Left, Changing distribution of
ribosomes, normalised by their initial level at ωA = 10 mRNAs per min. Legend ex-
planation: pR, ‘empty’ protein component of the ribosomes; R, free host ribosomes;
Σ R, translating host ribosomes; P , free o-ribosomes; Σ P , translating o-ribosomes.
Right, growth rate.
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Figure 4.14: Robustness of the new integral controller. (a) Function and
robustness of the controller decoupling two genes. The optimal controller parameters
were perturbed by drawing random values between ±50% of the original value N =
10, 000. All parameters controlling o-rRNA and controller protein were allowed to
vary. For ease of analysis the steady state values within 50% of the optimal set are
shown as dotted lines. (b) Function of the controller over a range of pA and pB
inductions.
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4.6 In vivo implementation of a prototype controller

Comparison of the three controllers shows that the F -controller (from Section 4.3)

is more stable than the integral controller (the G-controller from Section) 4.4) and

has higher performance than the modified integral controller (the K-controller from

Section 4.5). Therefore, our experimental collaborators implemented a prototype of

the F -controller in vivo. In addition to having the best predicted performance, this

controller is the easiest to implement biologically as it consists simply of a protein

regulating the o-rRNA promoter and its behaviour can be tuned with commonly

available parts (e.g. by varying promoter strengths). Implementation of the first

integral G-controller is complicated by the need to design de novo the sequence of

the sRNA as well as the potential instabilities identified by our analysis. There

are also more parameters which require tuning; whilst advantageous for detailed

design this complicates production of a prototype. Simulations of the RNA binding

protein K-controller highlight its poor performance and the production of an RNA

binding protein specific to the o-rRNA of interest is likely to require significant

protein design, further complicating the prototyping phase.

Using our sensitivity analysis as a guide, the design was based on the strongly

binding LacI repressor (kD ≈ 0.02 nM, [94]), which also shows a highly non-linear

mode of action due to the dimerisation steps required to produce the functional

tetramer (Figure 4.5c, d). As described in Chapter 3, in the experimental system

the production of the o-16S rRNA is inducible with IPTG via the host bacterium’s

endogenous LacI protein. To implement the negative feedback loop in E. coli the

endogenous lacI gene was deleted using conventional techniques and an exogenous

copy of the lacI gene was inserted into the o-16S rRNA carrying plasmid. From

our results in Figure 4.5b, the strong PLacIq promoter was selected to drive LacI

transcription [95]. Whilst the use of a stronger RBS is desirable, experimental

limitations mean the same orthogonal RBS was used. Isocost lines for different

IPTG concentrations were produced as described in Section 3.10.

To evaluate the function of the prototype controller we compared the open and closed

loop experimental designs which produce equivalent initial GFP number (i.e. they

have the same initial demand for ribosomes). The 0.2 mM IPTG treatment of the

o-RFP, o-GFP circuit (i.e. the open loop system) has an isocost line gradient of

-1.0, so one GFP unit is lost for each RFP gained. Upon addition of the controller

(i.e. the 0.5 mM IPTG treatment of the close loop system) this slope increases to

-0.5 (Figure 4.15). This represents a halving in the amount of coupling. Tuning

92



Figure 4.15: In vivo implementation of the prototype F -controller. Re-
sponse of constitutively expressed o-GFP as o-RFP is induced. o-RFP was induced
using AHL from 0 to 20 nM. Points are the mean steady state fluorescence ± 1 S.D.
as determined by FACS from cultures during mid-exponential growth (between 3-5
hours post-induction dependent on the strain and circuit). N = 3. The level of gene
expression from the controller can be tuned with IPTG as shown (CL, closed loop).
For comparison the o-RFP, o-GFP results which produce comparable initial GFP
levels are also shown (OL, open loop). Isocost lines are fit to mean values using the
polyfit function in MATLAB.

the controller threshold with IPTG allows the tuning of protein levels at no cost to

decoupling (consistent with the model prediction in Figure 4.5a).
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4.7 Conclusions

In this chapter, we have used our model developed in Chapter 3 to test the feasi-

bility of different controller systems, which act to dynamically distribute ribosomes

between host and orthogonal pools depending upon circuit demand for o-ribosomes.

We first considered the simplest method of implementing a feedback controller,

called the F -controller, by modelling a protein which both uses o-ribosomes for its

translation and inhibits o-rRNA production. Our analysis suggests this controller is

highly stable, shows reasonable performance and is able to function across a range

of two-gene circuits. However, the circuit does not fully decouple co-expressed genes

meaning that a small steady state error persists.

Addition of integral action to a controller provides a means of removing steady

state errors and so increasing circuit performance. We therefore implemented two

proposed integral controllers (G and K) based on a recently published controller

topology. However, we find niether controller demonstrates perfect integral action

and analysis of the G-controller suggests this may be due to decay of the o-rRNA

due to RNA turnover. Our robustness analysis demonstrates that the G-controller is

unstable, especially in the presence of high demand circuits. Analysis of the second

integral K-controller shows that whilst it is stable it shows poor performance as at

high circuit induction, the growth rate becomes negligible suggesting the action of

this controller may lead to over co-option of ribosomes from the host and therefore

toxic growth effects.

Working with our experimental colleagues we designed a prototype negative feedback

F -controller using the results of our sensitivity analysis. When implemented in vivo

this prototype is able to decouple co-expressed genes by approximately 50% (in

comparison to the open loop confirmation of equivalent initial protein level). This

decoupling ability is robust with the slope of the isocost line remaining constant

even as protein output is tuned with IPTG.
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Chapter 5

Mechanistic modelling and

design of an optimal negative

feedback controller

5.1 Introduction

In this chapter, we re-consider the mechanism of the F -type negative feedback con-

troller and develop a detailed model of its function. Having demonstrated the fea-

sibility of a translational controller using a host-aware model at a high level of

abstraction and shown that a prototype controller functions as expected, we desire

a model which can be used for component selection and detailed design. Given the

biological insights we have gleaned from the prototype in vivo implementation (such

as the host growth rate, cell size, that controller action does not cause significant

changes in growth rate etc.), we can now better estimate the effect of the circuit on

the host and are able to parameterise a more detailed mechanistic model. We can

now estimate the values of previously unknown parameters; for example, we find

across the circuits tested experimentally that all have an approximate growth rate

of 1 h−1. This allows us to determine, for example, ribosome concentration, from

previously published works.

This new model is of an intermediate level of abstraction between an isolated cir-

cuit model (presented in Section 2.5), which neglects all host resources, and the

host-aware framework, which is a high-dimensional and highly non-linear model (as

depicted in Chapter 3). This new model also re-expresses concentrations in the more
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conventional units of nanomolar rather than molecules per cell. The advantage of

using this modelling approach is that all the parameters relate directly to biologi-

cal ‘parts’ or components, such as promoter strengths and copy number (which are

lumped into the ω terms in Chapter 3). Additionally, on/off rates are reformulated

as dissociation constants (see discussion in Section 5.3). This allows specific com-

ponents to be identified by conducting an extensive literature search. Additionally,

smaller models of this type are more amenable to analysis using conventional tech-

niques from control and systems theory. These models of intermediate complexity

are increasingly used in this field as resource limitations become apparent [1, 38, 96].

We first re-derive a model of the F -controller and then apply techniques from sys-

tems biology to reduce the complexity of the model and demonstrate its utility as

a design tool. We identify hard trade-offs between gene coupling, gene expression

and dynamics and find simple design rules which can be used to manage them.

We demonstrate how our negative feedback controller functions when allocating

resources in a range of dynamic circuits.

We reformulate our circuit and controller as a block diagram to allow the identifi-

cation of key components of the controller (Figure 5.1). This is referred to below.

5.2 Derivation of a mechanistic model

We first derive the mechanistic gene expression model of the circuit and controller

system. Note the renaming of certain components from the nomenclature in Chap-

ters 3 and 4. See Table 5.1 for new notation.

We assume that each circuit promoter (gi) can be bound by a multimeric tran-

scription factor (ui) to form a promoter complex (κi) capable of recruiting a free

RNA polymerase (σ) to form a transcription complex. When transcription occurs,

an mRNA (mi) is produced, and the original RNA polymerase and promoter com-

plex are released. The above interactions are described by the following chemical

reactions:

gi + ηi · ui
αfi−−−⇀↽−−−
αri

κi κi + σ
ξfi−−−⇀↽−−−
ξri

xi xi
τi−−→ mi + σ + κi (5.1)

The mRNA is bound by a free (orthogonal) ribosome, R, to form a translation

complex (ci). Upon translation, a protein (pi) is produced and the mRNA and R
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Figure 1 Block diagram

𝒖𝟏(𝒕) 𝑻𝑳𝟏 𝒑𝟏(𝒕)

𝒓𝟎

𝒖𝟐(𝒕)

𝒇𝟎 𝑻𝑳𝒇 𝒑𝒇(𝒕)

+
+
-

+
+

𝑹
-

+

-

+
+

𝑭(𝒑𝒇)

Controller

Process

o-ribo.

Disturbance

Figure 5.1: Block diagram of the controller. The process, highlighted in green,
converts the input u1 into protein output p1 utilising the o-ribosome pool R. The
input into a second process (output not shown) u2 acts as a disturbance to the first
process which is ameliorated by the effect of the controller. The controller protein
is constitutively expressed (f0 signal) so the output pf is dependent upon R. As
inputs ui disturb R the level of pf changes (i.e. as ui increases, pf decreases). As
pf is a repressor the disturbance signal is inverted in the F (pf ) block.
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Species Symbol

RNA polymerase σ
Orthogonal ribosome R
Host ribosome Rh
Orthogonal 16S rRNA r
Circuit input transcription factor ui
Promoter conc. of gene i gi
Gene i promoter - transcription factor complex κi
Gene i transcription complex xi
mRNA of gene i mi

mRNA of gene i translation complex ci
Protein i pi

Table 5.1: Notation for molecular species in Chapter 5

are released:

mi +R
βfi−−−⇀↽−−−
βri

ci ci
γi−−→ mi +R+ pi (5.2)

Additionally, both mRNAs and proteins degrade at rates δmi and δpi , respectively:

mi
δmi−−−→ ∅ pi

δpi−−−→ ∅ (5.3)

Applying the Law of Mass Action we derive the following ODEs describing the time

evolution of the circuit components:

ġi = −αfi · gi · ui
ηi + αri · κi (5.4)

κ̇i = αfi · gi · ui
ηi − αri · κi − ξfi · κi · σ + ξri · xi + τi · xi (5.5)

ẋi = ξfi · κi · σ − ξri · xi − τi · xi (5.6)

ṁi = τi · xi − βfi ·mi ·R+ βri · ci + γi · ci − δmi ·mi (5.7)

ċi = βfi ·mi ·R− βri · ci − γi · ci (5.8)

ṗi = γi · ci − δpi · pi (5.9)

This represents a simple single-input-single-output (SISO) motif and forms the basis

of our model. Complex circuits can be constructed by letting the output from one

module form the input to another, as discussed in Section 5.8.

To implement our controller we first consider the conversion of host ribosomes

(Rhost) into circuit-specific orthogonal ribosomes (R). The orthogonal 16S rRNA
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gene promoter (gr) recruits σ to form a translation complex (xr) which produces

the orthogonal rRNA (r):

gr + σ
ξfr−−−⇀↽−−−
ξrr

xr xr
τr−−→ r + σ + gr (5.10)

The orthogonal 16S rRNA binds host ribosomes, Rh, and so recruits ribosomes to

the circuit-only orthogonal pool, R:

Rh + r
%f−−⇀↽−−
%r

R (5.11)

In the presence of the controller the orthogonal rRNA gene is regulated by the

repressor pf . The ηf repressor monomers bind the free gr promoter and prevents

the binding of RNA polymerase and associated factors (σ in our model). (Note that

in reality repressor monomers will assemble into a functional multimeric complex

before binding but this does not significantly affect the structure of the ODE model

and so we ignore it.)

gr + ηf · pf
αff−−−⇀↽−−−
αfr

κf (5.12)

We model expression of the regulator protein by considering the constitutive expres-

sion of its mRNA from an unregulated promoter, gf :

gf + σ
ξff−−−⇀↽−−−
ξfr

xf (5.13)

We model the transcription and translation of the repressor’s mRNA and protein in

the same manner as the circuit genes, as described above.

Applying the Law of Mass Action results in the following ordinary differential equa-

tions describing the production of the repressor and intermediate complexes:

ġf = −ξff · gf · σ + ξrf · xf + τf · xf (5.14)

ẋf = ξff · κf · σ − ξrf · xf − τf · xf (5.15)

ṁf = τf · xf − βff ·mf ·R+ βrf · cf + γf · cf − δmf
·mf (5.16)

ċf = βff ·mfR− βrf · cf − γf · cf (5.17)

ṗf = γf · cf − δpf · pf − ηf · αfr · gr · pf
ηf + ηf · αrrκr (5.18)
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Applying the Law of Mass Action to the o-rRNA promoters and ribosome species

yields:

ġr = −ξfr · gr · σ + ξrr · xr + τr · xr − αfr · gr · pf ηf + αrr · κr (5.19)

ẋr = ξfr · gr · σ − ξrr · xr − τr · xr (5.20)

κ̇r = αfr · gr · pf ηf + αrr · κr (5.21)

ṙ = τr · xr − δr · r − %f · r ·RH + %r ·R (5.22)

Ṙhost = −%f · r ·Rhost + %r ·R (5.23)

5.3 Model reduction

This full model is highly complex containing many species and many forward and

reverse reaction rates.

On inspection of the model we can see that whilst the promoters change state they

are not created or destroyed and so their total number for each gene remains constant

(i.e. total promoter concentration is conserved) such that:

gi,T = gi + κi + xi (5.24)

gr,T = gr + xr + κr (5.25)

gf,T = gf + xf (5.26)

The total number of ribosomes is also conserved as, again, ribosomes only change

state such as by binding mRNA or being converted into an orthogonal ribosome:

RTotal = Rh +R+ cf +

N∑
i=1

(
ci

)
(5.27)

By applying these conservation laws we are able to reduce the number of species

which must be tracked in the model. For example, from Equation 5.26, we need

only simulate the behaviour of gf because xf = gf,T − gf as the total promoter

concentration is conserved.

Individual binding and unbinding rates for genetic components and proteins are

rarely reported in the literature, due to the difficulty in determining their values

experimentally because of the effects of confounding factors (such as additional fluxes

along the reaction pathway). However, by considering the time-scale separation of
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the reactions involved, we are able to reduce our model and formulate the forward

and reverse reactions in terms of ‘lumped’ dissociation constants. By defining the

model in terms of effective dissociation constants, we are then able to determine

suitable genetic components with the desired dynamics from a search of previously

published data. The effective dissociation constants of the RNA polymerase for the

promoter (kX), of the ribosome for the RBS (kL) and of the protein for its binding

site (µ) are defined as follows:

kX =
ξr + τ

ξf
kL =

βr + γ

βf
µ =

αr
αf

(5.28)

This time-scale separation results from the fact that different biological processes

occur over a range of different time spans with binding/unbinding reactions occur-

ring on the order of milliseconds, transcription and translation taking minutes and

protein degradation/dilution occurring over tens of minutes or hours [31]. This ef-

fectively ‘separates’ reactions in time and allows us to assume that ‘fast’ species,

such as mRNAs, reach a (quasi)-steady state (QSS) instantaneously. By calculating

the QSS concentrations of intermediate species and substituting as appropriate, we

are able to remove the majority of intermediate gene expression species from our

model. Below, we denote the QSS complex of species y as ȳ.

Since current experimental evidence suggests that competition for RNA polymerases

does not significantly limit gene expression, we remove RNA polymerase mediated

competition by considering each gene to have access to its own small local pool

of RNA polymerase (e.g. [33, 38]). Additionally, we assume that the dissociation

constant for RNA polymerase is much higher than the concentration of free poly-

merase, consistent with experimental observations [97]. This allows us to reduce the

complexity of the expressions by assuming that:

σ + kX ≈ kX (5.29)

This follows a similar approach used in [38] to reduce complexity of the transcrip-

tional expressions.

By applying these assumptions we can simplify Equations 5.4 to 5.9 as follows:

The QSS of the activated circuit gene (x̄i) which gives rise to mRNAs is solely a

function of the input (ui):

x̄i =
σTotal

1 + (1/x̂i)
(5.30)
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where x̂i can be considered as a measure of demand for RNA polymerase by gene i

and is defined as follows:

x̂i =
gi,T
kXi

ui
ηi

µ+ uiηi
(5.31)

The ODE describing the time-evolution of the protein species is:

ṗi = γi

(
τi
δmi

R

kLi

x̄i

)
− δpi · pi (5.32)

We can also define the constant ĉi:

ĉi =
1

kLi

τi
δmi

x̄i (5.33)

This functions as a measure of demand for ribosomes by gene i as it incorporates

both a proxy RBS strength (1/kLi) and mRNA QSS concentration. The latter is

the steady state promoter concentration x̄i multiplied by the net mRNA production

rate (τi/δmi).

If a single unregulated pool of ribosomes is used for circuit expression then the

number of free (host/orthogonal) ribosomes, R, available for circuit translation is

given by:

R =
RTotal

1 +
∑N

i=1

(
ĉi
) (5.34)

Therefore the response of p1 depends not only on the input u1 but also the demand

for ribosomes by other genes ĉi, i 6=1. This forms the basis of our circuit SISO ‘process’

model (the green process block in Figure 5.1).

Applying the same assumptions to the equations describing the production of the

regulator pf we have that:

ṗf = γf

(
τf
δmf

R

kLf

x̄f

)
− ηf · ḡr · pf ηf + ηf · µf · κ̄r − δpf · pf (5.35)

where x̄f follows the same form as Eq. 5.30 and x̂f = gf,T /kXf
(f0 block of Figure

5.1). Additionally, for further simplicity, we assume the transcription factor binding

rate (αff ) is 1 h−1 allowing the unbinding rate αrr to be equal to the dissociation

constant µf . Equation 5.35 forms the basis of the ‘controller module’ shown in

Figure 5.1.

The QSS of the three o-16S rRNA promoter states are: (i) the open free promoter
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(ḡr), (ii) the promoter when bound by σ being actively transcribed (x̄r, calculated

using x̂r), or (iii) the promoter bound by the regulator and therefore inhibited (κ̄r):

ḡr = gr,T − x̄r − κ̄r (5.36)

x̂r =
gr,T
kXr

( µf
µf + pf

ηf

)
(5.37)

κ̄r = (gr,T − x̄r)
( pf

ηf

µf + pf
ηf

)
(5.38)

x̄r determines the rate of host ribosome co-option, via the o-16S rRNA (r, see

Equation 5.22) with gr,T /kXr determining the maximal rate (r0 block, Figure 5.1)

and µf/(µf + pf
ηf ) representing the inhibitory action of the controller pf (F block,

Figure 5.1).

The rate of change of the orthogonal 16S rRNA is as described in Equation 5.22

and co-option of the host ribosomes is described in Equation 5.34.

Finally, the number of free orthogonal ribosomes is given by:

R =
RTotal −Rh

1 + ĉf +
∑N

i=1

(
ĉi

) (5.39)

Note that this follows the same form as Equation 5.34, with the total number of

o-ribosomes available to the circuit being the total number of all ribosomes (RTotal)

minus the number of host ribosomes (Rhost).

5.3.1 Numerical testing of the model reduction

Using the specific binding and unbinding rates of cellular components reported in

[52], and calculating their respective dissociation constants as needed, we can com-

pare the behaviour of the full mechanistic model and reduced model. Simulations

demonstrate that the reduced model accurately captures the transient and steady-

state behaviour of the full model, for both simple circuits based on activation of

multiple genes and more complex circuits including oscillatory inputs (Figure 5.2).

Crucially, the model reduction process preserves the rapidly changing closed-loop

dynamics produced by the non-linear controller (Figure 5.2c).

Initially, we simplified the model to track only protein dynamics - whose control is

the main subject of this thesis. This can be achieved by assuming the equations

describing the dynamics of the o-16S rRNA (Equation 5.22) and host ribosomes
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(Equation 5.23) are also at steady state. However, this model no longer captures

the transient dynamics of the system, although it does still successfully recapitulate

the steady state behaviour of the full model to static inputs (Figure 5.2d, left). In

the presence of oscillatory inputs this additional reduction acts to hide the induction

of oscillations in other genes due to the sharing of cellular resources (Figure 5.2d,

right). This may imply a given controller design may lead to complete decoupling

when it will not. Analysis of the parameters shows that o-ribosome assembly is

slow (%f = 0.9 (nM·h)−1) which violates the assumption that these species are at

quasi-steady state (see Section 5.4 for the discussion of parameters).

5.4 Review of model parametrisation

To parameterise our model we conducted an extensive literature search to identify

potential biological components.

σT , RTotal, Cellular resources Numerous studies into translational capacity

show that as growth rate falls, translational capacity, in the form of ribosome num-

ber, also falls. Tadmor and Tlusty utilise a simple model of microbial growth,

ribosome biosynthesis and previously published data to produce a model of how

cellular resources vary with growth rate [98]. We utilise their results to approximate

the level of free ribosomes in the cells (at slow growth rate as demonstrated by our

prototype, ∼ 1 doubling per hour). This yields a free ribosome concentration of

around 5000 nM. We account for competition between host and circuit genes by

assuming that only half of this pool is available to the synthetic circuit; this is con-

sistent with the observation that up to 50% of the cell’s translational capacity can

be used for heterologous gene expression [78]. This yield results in a similar range in

the number of ribosomes per cell as in [37]. Applying similar assumptions to RNA

polymerase and the data in [32] we set σT for each gene to be 250 nM.

gT , promoter concentration (i.e. plasmid copy number) Assuming a slow

growth rate (∼ 0.6 doublings per hour) and therefore a small cellular volume (∼
0.34 µm3, [32]), we can calculate the approximate concentrations for a range of

plasmids. High copy number plasmids (e.g. > 100 copies per cell) correspond to

around 500 nM. Commonly used medium copy number plasmids (∼ 30 copies per

cell) correspond to around 100 nM. Very low copy plasmids (< 5 copies per cell)

correspond to a concentration of around 10 nM. Concentrations of less than 10 nM
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Figure 2 Model reduction

a

b

c

d

Figure 5.2: Comparison of the full and reduced models. The reduced model
(dashed line) successfully captures the behaviour of the full model (solid line).
Parameters used are derived from [52], modified to account for multiple resource
use (see Section 5.4). In the stepped input examples: u1 = u2 = 0 nM ex-
cept u1(t > 100) = 500 nM and u2(t > 200) = 500 nM. In the oscillator in-
put examples: u1 = u2 = 0 except u1(t > 100) = 500(cos(0.8t) + 1) nM and
u2(t > 200) = 500(cos(0.8t)+1) nM. A range of controller prototypes are shown: (a)
open loop with no controller gf,T = 0 nM. (b) a linear controller ηf = 1, gf,T = 500
nM. (c) a non-linear controller ηf = 2, gf,T = 500 nM. (d) The same simulation as
in part (c) but using the highly reduced, protein-only model.
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would indicate around one copy per cell, which could be achieved by chromosomal

integration.

Accounting for multiple RNA polymerases and ribosomes per gene Our

model assumes that each gene is bound by one RNA polymerase (σ) and each mRNA

bound by one ribosome (R). However, in vivo, an RNA polymerase can initiate a

new transcription event at the promoter before the previous polymerase has cleared

the downstream gene. This leads to multiple RNA polymerases translating the same

gene at once, each at a different stage. Similarly, multiple ribosomes can translate

each mRNA leading to polysome complexes. We account for this in our model by

increasing the copy number of each gene by nσ (i.e. the number of RNA polymerase

per gene) and increasing the mRNA transcription rate τ by nR (i.e. the number

of ribosomes per mRNA). By increasing these parameters we maintain the levels of

competition whilst allowing the simple one-to-one relationship used to derive our

model. Therefore we weight the literature values of gi,r,f and τi,f by these scaling

constants for the simulations such that:

g
simulation

i,r,f = nσ · g
estimated

i,r,f τ
simulation

i,f = nR · τ
estimated

i,f (5.40)

This approach is also used in [38, 45].

In [97], nσ is between 1 and ∼ 50 dependent upon the specific gene and ∼ 13 for

a constitutively expressed gene. In [99], the authors report values of nσ up to 38

and nR up to 40, with a median value of 28. We used a conservative estimate of

nσ = 10 and nR = 20 throughout. (Note that τr is not increased as the o-rRNA is

not a protein encoding gene and so does not compete for ribosomes. Each ribosome

contains only one 16S rRNA).

kX , RNA polymerase–promoter dissociation constant Brewster et al. pro-

vide a model which allows the calculation of binding energies from DNA sequences

[100]. They experimentally validate their model against a series of degenerate pro-

moters. They calculate the binding energies of an RNA polymerase binding across

these sequences to range from -7 to -1 kB · T . In [101], Bintu et al. relate binding

energy (∆ε) to dissociation constant kD using the simple expression:

∆ε = kB · T · ln
(KD

K ′D

)
(5.41)
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where kB is the Boltzmann constant, T is the temperature, KD is the dissociation

constant of the RNA polymerase from its promoter, and K ′D is the non-specific

binding of the polymerase to DNA. The authors estimate K ′D to be 104 nM. Using

these results we estimate the dissociation constants of RNA polymerase for pro-

moters to be between 3 nM (for strong promoters) and 1000 nM (for the weakest

promoters). Additionally, experimental measurements of the Plac promoter show it

has a dissociation constant of 560 nM [102] and PPR bound by cI has a dissociation

constant of 100 nM [103]. This demonstrates that the results of the model developed

by Brewster et al. produce results in a realistic range.

Where promoter dissociation constants could not be identified in the literature, the

-41 to -1 sequence of the promoter was retrieved and used to calculate the binding

energy using the model described by Brewster et al. [100]. This was converted to a

dissociation constant as outlined above using the formula provided by Bintu et al.

A visual inspection of the reduced model shows that promoter concentration (plas-

mid copy number) and promoter dissociation constant are found exclusively as a

ratio gT /kX . This means that the same transcription dynamics can be created by

different combinations of copy number and dissociation constant (Figure 5.3).

kL, Ribosome-RBS dissociation constant The ribosome binds the mRNA at

the ribosome binding site in a multistep process which we model here as a single

step. In [104], Na et al. use a thermodynamic model to estimate the dissociation

constant for the ribosome-RBS dissocation constant. Using this data, we estimate

the wild-type RBS for the host ribosome to be in the order of kL ≈ 104 nM. This is

the same order of magnitude as that determined in [98]. In Chapter 3, we proposed

that the association between the orthogonal ribosome and orthogonal RBS is much

weaker than the association between host ribosome and host RBS. We assume the

orthogonal RBS dissociation is on the order of kL ≈ 105 nM. To extend our analysis

to include weaker or stronger RBSs which could be produced experimentally, we

allow kL to vary between 103 and 106 nM.

µi,f , ηi,f , Transcription factor parameters µi,f represents the dissociation

constant of the transcription factor from the DNA. Where both the on-rate, αf ,

and off-rate, αr, are present in the equation we set αf = 1 h−1 to allow the off-rate

to be equal to the dissociation constant (as µ = αr/αf ). ηi,f represents the co-

operativity due to multimerisation and binding to the promoter. A literature search

shows the range of dissociation constants falls between 10−2 nM (e.g. LacI) and 103
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Figure 3 gT-kX ratio

Figure 5.3: Transcriptional gT /kX ratio. Transcription rates are determined by
the copy number-to-promoter strength ratio. Each ratio is obtainable by a different
combination of plasmid copy number and RNA polymerase dissociation constant.
The polymerase–promoter dissociation constants (kX) are those calculated from the
energetics reported in [100]. Plasmid copy numbers are calculated as described in
the promoter concentration section.

nM (e.g. Cro.). The transcription factors investigated in this chapter are shown in

Table 5.5.

µr, 16S rRNA-ribosome dissociation constant In [105], the authors report

the in vitro %f and %r values for wild type E. coli ribosomes as 0.9 (nM.h)−1 and 25

h−1. At present, due to technical limitations, we have not determined the efficiency

of o-ribosome assembly in our collaborators’ experimental system so we take these

values as a proxy for ribosome assembly and disassembly of orthogonal ribosomes.

Our key assumption is that assembly cannot be faster than that of the wild type

host ribosome.

Reaction rates Utilising common values for E. coli collated in [31], we calculate

the production and decay rates of the RNA and protein species. Assuming a 300
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amino acid protein, such as a fluorescent reporter, and an amino acid incorporation

rate ∼ 20 aa s−1 yields γi,f = 240 h−1. A 300 amino acid protein is encoded by

an mRNA of approximately 900 nucleotides. Assuming a nucleotide incorporation

rate of ∼ 80 nt s−1 yields an mRNA elongation rate of τi,f = 320 h−1. We calculate

τr = 190 h−1, assuming the orthogonal 16S rRNA is around 1500 nucleotides in

length. We estimate the decay constant for RNA species (δmi,f
and δr) to be around

20 h−1 assuming an RNA lifetime of around 3 minutes. We estimate the protein

decay rate to be around 1 h−1 for dilution due to cell growth. Protein decay rates

can be increased by utilising amino acid sequences which target the protein to the

degradation machinery, in which case 1 < δpi,f < 40 h−1 (half life between 60

minutes and 1 minute).

Biologically reasonable protein outputs From [31], the E. coli proteome has

a concentration of approximately ∼ 4.7 × 106 nM. In their study of translational

capacity, Scott et al. find that cells can tolerate transgenes making up to 30% of

their proteome. We assume that the maximal expression of circuit proteins can be

up to ∼ 1.4× 106 nM.

5.5 Model analysis reveals a trade-off between gene ex-

pression and level of decoupling

We initially considered a simple two-gene circuit; where one gene is induced and a

second induced some time later. As discussed previously, due to resource competi-

tion, the first falls upon induction of the latter (e.g. Figure 5.2). To investigate the

action of the controller we simulated a range of controllers by sampling parameter

values from a biologically feasible range. This crude analysis suggested there was a

trade-off between gene expression and the decoupling ability of the controller; with

decoupling coming at a loss of gene expression.

To assess the function of the controller we extended this rudimentary analysis more

formally as described below.

5.5.1 Assessing coupling dynamically in a simple two-gene circuit

We simulate the induction of p1 by u1 = 500 nM. At t = 12 h (called θind below),

we simulate the increase of u2 from 0 to 500 nM. The difference in expression of

109



p1 due to the u2 disturbance is what we term ‘coupling’. The final output level of

p2 at the end of the simulation, θss, is compared to the output ptarget which is the

protein level using the host ribosome pool. We call this ‘expression’ below. (Note

that at θss, p1 = p2 by definition as there are only two circuit genes with identical

parameters as the two circuit genes will co-opt equal numbers of ribosomes if they

are identical as we assume).

The values are normalised for ease of analysis:

coupling =
(
p1(t = θss)− p1(t = θind

)
/p1(t = θind) (5.42)

expression =
(
p2(t = θss)− ptarget

)
/ptarget (5.43)

The ideal controller would have minimal coupling (0) and maximal expression (0)

as defined by Equations 5.42 and 5.43. Controllers which are poor at decoupling

would have a ‘coupling’ score of less than zero, indicating p1(t = θind) > p1(t =

θss. Controllers which also act to decrease the final protein output will achieve a

negative ‘expression’ score as p2(t = θss) < ptarget. We carried out a multiobjective

optimisation to identify the trade-off between these two characteristics.

5.5.2 Multiobjective optimisation

The multiobjective optimisation was carried out using the in-built MATLAB func-

tion gamultiobj from the Optimisation Toolbox (Version 7.4, with computational

speed increased using the Parallel Computing Toolbox Version 6.8 or 6.10). This

function is initialised with a random set of parameter values (the ‘population’). The

cost function is evaluated at each parameter set in the population and the best

‘individuals’ carried forward for reassessment (i.e. the next ‘generation’). Diversity

is introduced into the population by random ‘mutation’ or by ‘crossing over’ be-

tween different parameter sets. This function continues with this selection scheme,

selecting the best parameter sets which minimise the two elements of the given cost

function. This produces sets of parameters which lie on the Pareto front, the opti-

mal trade off between the two parts of the cost function where improvement in one

dimension results in the detriment of the other.

The population size was set to 200 individuals to allow good searching of the pa-

rameter space. We set the Pareto fraction to 0.25 (i.e. 50 individuals), this option

ensures that the Pareto front will be well defined as the routine aims to keep ap-

proximately 50 individuals on or near the front at each selection step whilst also
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Parameter Scale Lower bound Upper bound Block

gr,T /kXr log10 10−2 102 r0
kLf

log10 103 108 TLf

ηf linear [integer] 1 4 F (·)
µf log10 10−2 103 F (·)

gf,T /kXf
log10 10−2 102 f0

Table 5.2: Multiobjective parameters. Parameters varied in the optimisation
routine. Parameters were varied on the scale shown between the lower and upper
bounds. The block refers to the block diagram in Figure 5.1.

ensuring diversity by rejecting the 150 individuals with the lowest fitness. kX values

were set to 1 allowing the x̂ ratios to be investigated by varying gr,T and gf,T only.

All parameters and bounds varied are shown in Table 5.2.

The optimisation routine aims to concurrently minimise both elements of the cost

function:

χ1 =
(
p1(t = θind)− p1(t = θss)

)2
χ2 =

(
p2(t = θss)− ptarget

)2
(5.44)

where θind is the time of the induction of p2 and θss is the last time point, tmax.

If the simulation is not at steady state at tmax then the result is given the poorest

fitness (specified as ‘not a number’ data type which is interpreted poorly by the

optimisation function). ptarget is calculated by simulating the action of the circuit

in a model utilising the host ribosome pool for gene expression (i.e. this is the

maximal gene expression.). Note that the cost function takes a different form to the

definitions of coupling and expression above (Equations 5.42 and 5.43). The results

of this optimisation are shown in Table 5.3.

5.5.3 Shape of the Pareto front

We assess the impact on protein levels by comparing final protein outputs to those

of the same circuit where translation is uncontrolled and mediated by the host

ribosome pool. This identified a hard trade-off between these two objectives, with

the range of equally optimal solutions (the Pareto-optimal front) showing an inverted

concave shape, i.e. decreases in gene coupling are achieved at the expense of gene

expression. Note that the Pareto front, as found by our optimisation routine, is not

smooth. Our optimisation routine has found the approximate front; our robustness
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Point gr,T /kXr(10x) kLf
(10x) nM ηf µf (10x) nM gf,T /kXf

(10x) Exp. Coup.

1 -0.97 4.30 4 -1.801 0.31 -1.0000 0.0000
2 0.87 6.30 1 0.975 -1.70 -0.0165 -0.2985
3 0.11 7.32 2 1.024 -0.61 -0.6345 -0.0476
4 -1.91 7.60 2 1.513 -1.10 -0.7495 -0.0302
5 0.22 7.70 2 1.246 -1.60 -0.0714 -0.2374
6 0.80 7.46 2 1.325 -1.70 -0.0383 -0.2667
7 0.59 7.69 2 1.516 -1.70 -0.0177 -0.2894
8 -0.03 7.74 2 1.644 -1.35 -0.0922 -0.2221
9 0.04 7.64 3 1.454 -1.60 -0.5097 -0.0557

10 -0.64 7.31 2 1.220 -1.45 -0.5610 -0.0607
11 -0.05 7.82 3 1.092 -1.40 -0.5885 -0.0434
12 0.99 7.54 1 1.777 -1.68 -0.0047 -0.3061
13 0.11 7.92 3 1.534 -1.67 -0.2239 -0.1274
14 0.11 7.48 2 1.124 -1.57 -0.2156 -0.1559
15 0.95 7.75 2 1.449 -1.01 -0.0454 -0.2599
16 0.67 7.68 2 1.348 -1.65 -0.0244 -0.2815
17 0.08 7.42 2 1.223 -1.13 -0.4104 -0.0933
18 0.13 6.60 2 0.981 -0.44 -0.8759 -0.0137
19 0.70 7.81 3 1.305 -1.58 -0.2694 -0.1116
20 0.88 7.69 2 1.270 -1.41 -0.0361 -0.2689
21 -0.96 7.87 3 1.263 -1.54 -0.6413 -0.0360
22 0.76 7.62 2 1.530 -1.69 -0.0169 -0.2903
23 0.17 7.80 3 1.245 -1.70 -0.3523 -0.0880
24 -1.54 7.54 2 1.548 -1.16 -0.6811 -0.0403
25 0.66 7.65 2 1.405 -1.69 -0.0222 -0.2839
26 0.12 7.49 2 1.265 -1.61 -0.1571 -0.1830
27 0.62 5.92 2 1.030 -1.02 -0.9083 -0.0099
28 0.08 7.40 2 1.668 -1.56 -0.1347 -0.1952
29 0.35 7.74 2 1.055 -1.39 -0.1183 -0.2049
30 0.53 6.77 1 1.302 -1.08 -0.0159 -0.2988
31 0.47 6.80 1 1.314 -1.68 -0.0091 -0.3032
32 0.14 7.06 2 1.203 -0.65 -0.6973 -0.0376
33 0.10 5.67 2 1.214 -1.22 -0.9418 -0.0064
34 -0.20 6.72 2 0.891 -1.24 -0.8238 -0.0201
35 0.99 7.54 1 1.777 -1.68 -0.0047 -0.3061
36 0.04 7.64 3 1.454 -1.60 -0.5097 -0.0557
37 0.18 7.22 2 1.266 -1.21 -0.4591 -0.0817
38 -0.83 7.73 3 0.962 -1.48 -0.7543 -0.0225
39 -0.45 7.73 3 0.859 -1.48 -0.7156 -0.0268
40 0.15 7.77 2 1.286 -1.60 -0.0587 -0.2479
41 0.05 7.82 2 1.233 -1.49 -0.0872 -0.2256
42 -0.39 6.73 2 1.164 -1.21 -0.8154 -0.0212
43 0.28 7.14 2 1.318 -1.52 -0.3300 -0.1154
44 0.34 7.33 2 1.351 -1.47 -0.2146 -0.1563
45 0.50 7.65 2 1.312 -0.95 -0.1833 -0.1701
46 0.16 6.77 2 0.906 -1.08 -0.7842 -0.0253
47 -0.97 4.30 4 -1.801 0.31 -1.0000 0.0000
48 0.15 7.77 2 1.284 -1.60 -0.0589 -0.2478
49 0.48 7.82 2 1.211 -1.08 -0.1083 -0.2112
50 0.25 7.66 2 1.175 -1.69 -0.0682 -0.2400

Table 5.3: Controllers determined by the optimisation routine. The 50
controllers returned from the multiobjective optimisation which lie on the putative
Pareto front. Exp., expression as defined in Equation 5.43. Coup., coupling as
defined in Equation 5.42.
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analysis (described below) finds the true front which coincides with ηf values of 4

(see Section 5.5.4). Our simulations suggest that coupling can be halved for only a

20% reduction in gene expression, while coupling can be reduced to between 5-10%

for a 50% reduction in gene expression (Figure 5.4a).

To determine the robustness of the approximated Pareto front to parameter se-

lection, we varied the optimised parameters by up to 50% for each point on the

front. None of these designs result in controller failure where expression is lost but

coupling is not abolished - i.e. no designs fall into the lower left quadrant. This

suggests that potential parameter variations, when selecting biological components

to implement the controller, can act to move the controller along the front, but

should not result in failure. We did find that a small number of these perturbed

designs show slower responses and we discounted these from further analysis. We

carried out an additional robustness analysis allowing all parameters governing the

controller behaviour to vary. This includes parameters which are either difficult to

design (e.g. controller translation rate γf ) or intrinsic properties which cannot be

designed (e.g. o-rRNA association rate, µr). We find that all of these controllers

also fall upon the same front demonstrating that uncertainty in these values does

not preclude controller design (Figure 5.4b).

5.5.4 Parameter variation across the Pareto front

To determine how each parameter contributes to the gene expression and coupling

trade-off, we analysed how each changes across the front. This highlighted the need

for high ηf values. This parameter represents the level of co-operativity in the system

brought about, for example, by transcription factor dimerisation or the presence of

multiple operator sites at the target promoter. The true Pareto front coincides

with a value of ηf = 4 (Figure 5.5a). For this reason we discount controllers where

ηf = 1 from further analysis in this section as these controllers perform most poorly.

We also find that small µf values are most often associated with controllers which

act to nearly completely decouple genes but at a significant cost to gene expression

(Figure 5.5e). Similarly, small kLf
values, corresponding to strong ribosome binding

sites (low ribosome-mRNA dissociation constant), are associated with large levels

of decoupling at a high cost to gene expression (Figure 5.5d). Simulations suggest

kLf
> 105 nM and µf > 0.1 nM in all cases, for the simple two-gene circuit example

used here. (Note that for many natural transcription factors co-opted into synthetic

gene networks µf < 0.1 nM and ηf may be limited. We demonstrate how this

can be compensated for in controller design in Section 5.7). A high gf,T /kXf
ratio
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Figure 5.4: Trade-off between gene expression and decoupling. The Pareto
front demonstrating the trade off between gene expression and coupling. Expression
is measured as change in steady state gene expression in comparison to simulations
of the circuit using the saturated host ribosome pool. Coupling is measured as the
steady-state change in p1 in response to u2 as defined in Section 5.5.1. 100, 000 sim-
ulations were run and simulations reaching steady state at θind = 72 h and θss = 192
h are shown. (a) Robustness was determined by allowing optimised parameters of
the controller to vary by up to ±50%. The points shown are those which reached
steady state within a reasonable time frame (89, 890 of 100, 000 simulated). (Param-
eters corresponding to the controllers which fall on the approximate Pareto front
are listed in Table 5.2). (b) Robustness was determined by allowing all parameters
describing the o-rRNA and controller to vary by up to ±50%. The points shown are
those which reached steady state within a reasonable time frame (88, 273 of 100, 000
simulated).
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(gf,T /kXf
> 1, produced by expressing the regulator from a strong promoter carried

on a high copy number plasmid) results in complete decoupling and abolition of gene

expression (Figure 5.5c). We therefore suggest keeping gf,T /kXf
< 1 in all instances

to ensure adequate gene expression. We find that the gr,T /kXr ratio governing

maximal o-rRNA transcription rate varies significantly across all behaviours making

general guidelines difficult to establish (Figure 5.5b).

5.5.5 Selection of controller parameters for design guidelines

Coupling and expression scores were calculated for each controller as outlined above

for all the results of robustness analysis (Equations 5.42 and 5.43). These results

were then scaled by their maximum absolute values to ensure both axis were between

0 and 1 (note that for calculating the distance metric we can ignore signs). We

calculate the Euclidean distance between each point (xscaled, yscaled) and the point

of interest from our numerical optimisation (x0, y0):

d =

√(
(xscaled − x0)2 + (yscaled − y0)2

)
(5.45)

We then define any points within a circle of radius 0.025 centred on (x0, y0) as

within the local region. Qualitatively these points have the same behaviour and so

we group them for further analysis.

To provide specific quantitative design rules, we selected five points across the front

and assess the parameter space around these points which give rise to these controller

behaviours (Table 5.4). Assessing how parameters correlate in these local clusters

shows that kLF
is a key regulator of behaviour. kLf

is inversely correlated with

gr,T /kXr indicating that as the o-ribosome production rate increases a stronger RBS

is needed for controller function (i.e. a smaller value of kLf
). We also identify an

inverse correlation between kLf
and µf in the cluster around (-0.01, -0.9), i.e. the

most decoupled parameter set, such that decreases in repression by the transcription

factor (µf ) can be compensated for by increasing the RBS strength (decreasing kLf
).

We also find that changes in kLf
and gf,T /kXf

have some compensatory effects

such that increases in kLF
(i.e. weakening the RBS) can be mitigated by increasing

gf,T /kXf
(e.g. by increasing copy number).

In Figure 5.6, we show the internal dynamics of two controllers which demonstrate

the trade-off across the Pareto front. Controller design 47 (Table 5.3) results in com-

plete decoupling while nearly abolishing gene expression. Analysis of the controller
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Figure 5 front parameters design

a

b c

d e

Figure 5.5: Variation in parameters across the Pareto front. The values of the
parameters for each point shown in Figure 5.5a. As described in the text, controllers
where ηf = 1 are removed for clarity. Also note that the third axis and subsequent
separation serves only to aid visualisation and does not represent parameter value
which is indicated by the colour and outlined in the figure legend. (a) Controller co-
operativity as shown by ηf . (b) o-rRNA transcription as determined by the gr,T /kXr

ratio. (c) Transcription of the controller protein as determined by the gf,T /kXf

ratio. (d) Controller mRNA-ribosome binding site strength as measured by the
mRNA-ribosome dissociation constant kLf

. (e) Controller protein gr dissociation
constant µf .
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gr,T /kXr kLf
ηf µf gr,T /kXr

(co. %, ex. %) N LB UB LB UB LB UB LB UB LB UB

(-13, -22) 125 10−1.91 101.16 107.25 109.25 3 3 100.497 102.34 10−2.38 10−0.28

(-11, -27) 110 10−1.89 100.87 107.01 109.08 3 3 100.471 102.46 10−2.47 10−0.33

(- 9, -35) 100 10−2.28 100.94 107.11 108.80 3 3 100.593 102.27 10−2.39 10−0.3

(- 5.5, - 51) 126 10−2.49 100.8 106.86 108.82 3 3 100.492 102.49 10−2.23 10−0.32

(- 1, -90) 2514 10−2.86 101.42 104.12 108.26 2 4 100.43 102.47 10−2.54 10−0.23

Table 5.4: Controller designs to manage the coupling expression trade-
off. Regions of parameter space were identified as described in Section 5.5.5 using a
distance score of 0.25. The coupling (co. %) and expression cost (ex. %) are reported
for each controller from the Pareto front chosen. The number of controllers in the
local region is reported as N .

dynamics shows that expression of the controller protein dominates the ribosome

pool (Figure 5.6a, upper left). This controller shows a slow response taking over 12

h to respond to the disturbance. Controller design 9 shows intermediate behaviour,

with incomplete coupling (coupling changes from > 30% in the open loop confirma-

tion to ∼ 5% in the closed loop confirmation) but a loss of only 50% gene expression

(Figure 5.6b, right). Analysis of the controller dynamics shows the controller re-

sponds significantly faster reaching steady state within 12 h of the disturbance being

applied, although there is a brief (and here negligible) overshoot. The circuit dom-

inates the translational resources with only a small number of o-ribosomes needed

for controller function.

5.6 Tuning controller parameters to design response times

Analysis of the controllers tested so far has focused on how they are able to correct

steady state errors brought about by gene coupling and so has largely ignored the

system dynamics bar excluding excessively slow controllers (e.g. penalising those

which only reach steady state after > 24 h). However, a controller which decouples

genes well but has a slow response time will not be suitable for many applications

in synthetic biology. Therefore, we took the five previous candidate controllers and

conducted a local sensitivity analysis around each design point to assess the impact

of each parameter on the system’s speed of response. In addition to the controller

parameters varied so far we also varied δρ, δmf
and δpf , which represent the decay of

the o-rRNA, controller mRNA and controller protein respectively. These parameters

were kept constant in the previous design evaluations to minimise the number of

parameters in the optimisation and due to difficulties in engineering them [106],

but since decay parameters often have significant affects on speed of response we
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a

b

Figure 5.6: Controller dynamics at different coupling-expression trade-
offs. The first gene p1 is constitutively expressed, u1 = 500 nM throughout. At
12 h, u2 rises from 0 to 500 nM. Upper left, Translational complexes: Changing
the distribution of the orthogonal ribosomes across circuit and controller mRNAs,
c1, c2 and cf represent the translation complexes of the mRNAs of gene 1, 2 and
regulator f respectively. R represents the free orthogonal ribosomes. cf acts as the
sensor for the disturbance at t = 12 h. Levels are normalised by the total number
of orthogonal ribosomes at t = 12 h. Lower left, Controller action: Changes in
controller components over time. Levels are normalised by value at t = 12 such
that 0 indicates no change. xr, o-16S rRNA gene in the transcribing state; Σ(R),
number of orthogonal ribosomes; pf , controller protein. Right, Normalised protein
output. Protein levels are normalised by p1(t = 12) and shown in the absence of
the controller (OL, gf,T = 0 nM) and the presence of the controller (CL). Insets,
non-normalised steady state protein levels. (a) Controller design 47. (b) Controller
design 9.
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explicitly assess their impact here. We allow the decay parameters δr and δpf to

vary between half and one and half times their nominal value.

Beginning with the four controllers which show intermediate behaviours (i.e. do

not show complete decoupling), changing the parameters has significant impact on

coupling and expression levels as discussed before. For controllers which have strong

decoupling ability we find that there are individual parameters which when varied

do not significantly affect the decoupling ability (e.g. gr,T /kXr , µf ) although these

do still affect the expression levels (i.e. the controller gain).

In all five cases, the o-rRNA decay constant (δr) and protein controller decay con-

stant (δpf ) are key to determining the speed of the system response. Figure 5.7 shows

typical results for controller designs that result in complete decoupling (Controller

47, Figure 5.7a) or have intermediate behaviour (Controller 9, 5.7b). Increasing

both parameters acts to increase the speed of response, at an expense of decoupling

ability (Figure 5.7). In the regions tested, varying δr is less likely to introduce sig-

nificant overshoots into the system (as seen at low δpf values). However, a greater

range of speed-up is achievable by varying the protein decay constant. The latter

is also a more experimentally tractable parameter. Increasing both parameters acts

antagonistically, with increases in δr decreasing gene coupling and increases in δpf
increasing it, meaning tuning both parameters may be advantageous. We see very

little impact from varying the mRNA decay rate (δmf
).

As previously discussed the value of the controller co-operativity (ηf ) is a key de-

terminant of controller decoupling ability (Figure 5.7). This analysis replicates this

result and also highlights that, at least in this parameter regime, increasing co-

operativity can also act to significantly increase the speed of response.

5.7 Potential biological implementations of the controller

designs

We carried out a detailed literature review to identify potentially suitable repressors

with which to implement our system, focusing our analysis on (i) the ability of

the repressor to be expressed in bacterial hosts (i.e. repressors from bacteria or

bacteriophage), (ii) orthogonality (i.e. repressors which are not used in fundamental

host processes), (iii) the presence of a known promoter architecture (which could

be used to infer the dissociation constant of the RNA polymerase, see Section 5.4)

and (iv) detailed characterisation of binding kinetics (ideally dissociation constants
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Figure 6 design dynamics

a

b

Figure 5.7: Tuning decay parameters allows design of system dynamics.
The effect of varying the decay parameters δr and δpf between 0.5 and 1.5 times
their nominal value on the response of p1 to the additional input u2. The effect
of varying the co-operativity ηf is also shown. (a) Sensitivity analysis around the
parameter set from the high decoupling regime (Point 47). (b) Sensitivity analysis
around a parameter set from the intermediate decoupling regime (Point 9).
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measured in a biochemical assay, rather than a constant inferred from device function

such as by fitting a Hill function to induction-fluorescence curves, as is often the

case).

We identified six repressors from this literature search, including the commonly used

LacI [94], TetR [107] and cI [108] repressors. We also identified putative controller

candidates Cro and RstR from bacteriophages PY54 [109] and CTXϕ [110], and

LmrR, a global regulator of antibiotic resistance from Gram positive Lactococcus

lactis [111]. See Table 5.5 for calculated dissociation constants and Table 5.6 for

promoter sequences used in the analysis below.

Using the results of our sensitivity analysis and additional biological constraints

we simulated a number of feasible biological implementations; (i) the o-rRNA and

regulator having the same medium copy number (mimicking placement in the same

plasmid, such as ColE1), (ii) a high copy number regulator, carried on for example

a pUC vector, and a chromosomally integrated regulator and (iii) the effect of a

protein degradation motif on designs of type (ii). Note that we did not assess the

potential designs requiring the o-rRNA and regulator to be carried on different copy

number plasmids, as these would result in high burden on the cells and significantly

decreased growth rate as these cells would need to carry at least three plasmids,

one containing circuit genes and one each for the o-rRNA gene and regulator. All

of these prototype controllers fall along the Pareto front (Figure 5.8). We did not

consider candidate designs which require destabilisation of the o-rRNA (i.e. increase

δr) due to the difficulty in experimentally implementing these designs [106].

We carried forward designs representing a range of trade-offs between gene expres-

sion and decoupling for further analysis (Table 5.7). The putative controllers based

on tetramers (LacI and RstR) show the fastest dynamics and best decoupling with

minimal p1 settling times and p2 rise time upon induction of the second gene (Figure

5.9). Designs based on the phage repressor Cro with degradation motifs show the

highest gene expression with an acceptable p2 rise time of < 3 hours but coupling

is far from fully abolished (Figure 5.9).

5.8 A dynamic resource allocation controller restores

modularity in a range of more complex gene circuits

Having successfully demonstrated the ability of the proposed approach to decouple

two independent modules, we analyse the ability of the controller to remove resource
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Figure 7 Biological implementations

Figure 5.8: Comparison of biological implementations based on orthogo-
nal repressors. Simulations of implementations based on the repressors in different
plasmid confirmations and with degradation motifs. The positions of the prototype
controllers in the coupling-expression space. Inset, expansion of the main figure
around point (0,-1). Point colours represent the regulator protein and point style
denotes copy number as follows: Same plasmid, gr,T = gf,T = 100 nM; Chromoso-
mal, gr,T = 500 nM and gf,T = 10 nM. Decay tag, gr,T = 500 nM, gf,T = 10 nM,
δpf = 15 h−1.

Transcription factor kX (nM) Ref. µ (nM) η Ref.

LacI 550 [102] 0.02 ∼ 4 [94]
cI 100 [103] 20 ∼ 2 [108]
Cro 300 Table 5.6 1000 ∼ 2 [109]
RstR 410 Table 5.6 3.9 ∼ 4 [110]
TetR 350 Table 5.6 5.6 ∼ 2 [107]
LmrR 150 Table 5.6 64 ∼ 2 [112]

Table 5.5: Transcription factor parameters.
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a

b

Figure 5.9: Assessing the dynamics of chosen biological implementations.
(a) Circuit dynamics showing the normalised levels of protein 1. Inset, steady state
output at t = 48 h. (b) Characterisation of the response of p1 to the disturbance
caused by u2. Settling time, number of hours from the induction until p1 returns
to steady state; Overshoot, transient increase in p1. Steady state error, difference
between p1(t = 48) and p1(t = 12). Rise time, time it takes for p2 to increase from
10% of its steady state to 90% of its steady state. See Table 5.7 for implementations
in this figure.
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Repressor Promoter sequence (Position -41 to -1) Ref.

TetR TAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCAC ∗
Cro GATCTGTTTATAGCTGGCTATATAAAATTTATAAATTATAC [109]
RstR TTAGTCTTGAAAGTGCGCATTGGTTGCTGTATTTTAGCTCT [110]
LmrR GTACCTTGACTTACATAGTAATGTGAAGTATAATATACTTT [111]

Table 5.6: Promoter sequences used to determine kX Where promoter
dissociation constants were not available from the literature a thermodynamic
calculator was used to estimate RNA polymerase dissociation constant as de-
scribed. ∗, The sequence of the TetR-responsive promoter was retrieved from
iGEM Registry of Standard Biological Parts (Part no. BBa R0040, URL
http://parts.igem.org/Part:BBa R0040, Retrieved 28/06/2017)

Repressor rRNA copy number TF copy number Decay tag

LacI Medium Medium Yes
cI Medium Medium No
Cro High Chromosome Yes
RstR High Chromosome No
TetR High Chromosome Yes
LmrR High Chromosome No

Table 5.7: Biological designs simulated in Figure 5.9. Potential biological
implementations based on the repressors found in our literature survey. Different
genetic arrangements for the rRNA and repressor are as specified. Medium copy
number ≈ 100 nM, High copy number ≈ 500 nM, Chromosomal integrated genes are
assumed to have low copy number 10 nM. In the presence of a protein degradation
tag we assume δpf ≈ 15 h−1.
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Fig. i η µ (nM) gT (nM) kX (nM) τ (h−1) δm (h−1) kL (nM) γ (h−1) δp (h−1)

5.10 1...N 1 100 500 500 320 20 105 240 1
5.11 1...3 4 0.02 500 500 320 20 105 240 1
5.11 4 1 1 500 500 320 20 104 240 1
5.12 1 2 200 10...500 275 320 20 103...107 240 1
5.12 2 2 200 10...500 275 320 20 105 240 1

Table 5.8: Parameters for simulations of more complex circuits in Section
5.8.

dependent failure in a variety of more complex gene circuits.

5.8.1 Independence of multiple single-input-single-output motifs

We initially simulate multiple SISO modules with new modules being activated

at different intervals (Figure 5.10). In the absence of the controller, activation of

each additional module has an impact on the previously activated modules. For

example, the expression of the first module p1 falls by over 50% as three additional

genes are induced. As shown in Figure 5.10, the controller successfully eliminates

this coupling, making p1 relatively insensitive to the induction of over 10 additional

genes. Note, however, that the rise time and settling time increase slightly with the

induction of each additional gene due to the dynamics of o-ribosome assembly.

5.8.2 Imposing modularity on an oscillator

A key principle of synthetic biology is that previously characterised components or

devices can be introduced into the same cell to form a complex circuit. Here we

assess the effect of introducing two separately characterised devices into one complex

circuit, i.e. we want to investigate the effect of introducing an additional resource

consumer on a previously characterised device. As the production of robust genetic

oscillators to create clocks for temporal functions is of fundamental importance

in synthetic circuit design, we consider designs for the repressilator clock and an

additional SISO module.

The repressilator is composed of a three gene network where each gene (i) inhibits

the next (i + 1) in turn [4]. The repressilator genes i = {1...3} have the following
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Figure 8 MIMO motifs

Figure 5.10: Multiple single-input-single-output motifs. The controller suc-
cessfully renders a gene invulnerable to the induction of many additional genes at
100 h intervals. All y-axes are normalised output. The other genes are not shown.
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dynamics:

ṗi = γi

(
τi
δmi

R

kLi

x̄i

)
︸ ︷︷ ︸
pi production

− δpipi︸︷︷︸
decay

− ηi(gi+1,T − x̄i+1 − κ̄i+1)(pi
ηi)︸ ︷︷ ︸

binding

+ ηiµiκ̄i+1︸ ︷︷ ︸
unbinding

(5.46)

where the demand for RNA polymerase by each gene i is given by:

x̂i =
gi,T
kXi

µi
µi + pi−1ηi−1

(5.47)

x̄i is given by substituting x̂i into Equation 5.30.

The quasi-steady state concentration of the inhibited promoter of gene i is:

κ̄i = (gi,T − x̄i)
( pi−1

ηi−1

µi1 + pi−1ηi−1

)
(5.48)

Note that both x̂i and κ̄i are functions of the previous protein in the repressilator

sequence pi−1, not external inputs u.

The binding and unbinding portions of Equation 5.46 represent the titrating effect

as pi proteins bind to gi+1 and inhibit the promoter.

The dynamics of the additional inducible protein (p4) are given by:

ṗ4 = γ4

(
τ4
δm4

R

kL4

x̄4

)
− δp4p4 (5.49)

where the RNA polymerase demand is given by:

x̂4 =
g4,T
kX4

uη4

µ+ uη4
(5.50)

Note the presence of the external input u which acts to induce p4 via its effects on

x̂4.

These modules are first simulated separately, as shown in (Figure 5.11a, upper pan-

els). Upon linking these separate devices through a common pool of resources, i.e.

coupled through their competition for ribosomes, we see that p4 induction destroys

the oscillations of the repressilator (Figure 5.11a, lower panels).

If, however, we consider the design of these two devices in the presence of the

controller and then introduce them into the same resource pool as before, we see
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that circuit function is now maintained (Figure 5.11b, lower panels). Note that

while there is still a small loss in repressilator amplitude upon induction of p4 this

is significantly reduced, thus staying closer to the original device behaviour.

5.8.3 Restoring the input-output response of an activation cascade

It has previously been shown that resource limitations can change the input-output

response of a simple genetic activation cascade [45]. Qian et al. show that if the

upstream module has a stronger ability to sequester ribosomes than the downstream

module (a small kL1-to-kL2 ratio) then the expected response determined from sim-

ple Hill-function type modelling (i.e. an increasing output to increasing input in a

step-like fashion) can become biphasic or even invert (Figure 5.12, dotted lines).

We modelled the activation cascade as follows. The protein dynamics of the up-

stream gene (i = 1) are:

ṗ1 = γ1

(
τ1
δm1

R

kL1

x̄1

)
− δp1p1 − η2(g2,T − x̄2 − κ̄2)(p1η2) + η2µ2κ̄2 (5.51)

where x̄1 and x̄2 are calculated by substituting x̂1 and x̂2 into Equation 5.30.

x̂1 and x̂2 are given by:

x̂1 =
g1,T
kX1

( uη1

µ1 + uη1

)
x̂2 =

g2,T
kX2

( p1
η2

µ2 + p1η2

)
(5.52)

The quasi-steady state concentration of the activated second promoter (i = 2) is

given by:

κ̄2 = (g2,T − x̄2)
( p1

η2

µ2 + p1η2

)
(5.53)

The dynamics of the downstream gene i = 2 are given by:

ṗ2 = γ2

(
τ2
δm2

R

kL2

x̄2

)
− δp2p2 (5.54)

We simulated a range of prototype activation cascades in the absence and presence of

our controller. In the absence of the controller, no additional resources are available

as demand increases and so we see the activation cascade failing in the same manner

as found in [45]. In the presence of the controller, the desired behaviour of the

activation cascade is restored, as translational capacity is directed to the circuit
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Figure 9 oscillator

a

b

Figure 5.11: Imposing modularity on an oscillator. The controller acts to
maintain the behaviour of the repressilator in the presence of an induced gene. The
repressilator (protein p1 to p3, note that only p1 is shown) is simulated before an
additional gene p4 with a stronger RBS is induced just after 200 h at u = 500
nM. Upper panels, show the function of the individual modules (repressilator and
additional gene respectively) alone. Lower panel shows the function of the two
modules in one circuit. (a) Open loop conformation (no controller). (b) Closed
loop conformation (with controller).
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as demand increases. The controller acts to remove the resource limitation, thus

allowing simpler models, which often do not account for limited cellular resources,

to be used to produce circuit designs which then function as expected in vivo (Figure

5.12).
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Figure 5.12: Restoring the behaviour of an activation-cascade. The controller removes resource limitation induced failure
in the design of an activation cascade (u1 −→ p1 −→ p2). In the absence of the controller (dotted line) some prototype designs
do not show the monotonically increasing output of p2 to u1 as desired in an activation cascade. The controller removes these
resource limitations allowing the circuit to function as expected across all prototype designs.
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5.9 Conclusions

In this chapter, we developed a detailed mechanistic model of gene expression and

resource allocation, which when simplified to a tractable level of complexity, allows

the rational design of optimal translational controllers. We demonstrated that this

new model allows the design of controllers which can dynamically allocate orthogo-

nal ribosomes to synthetic circuits within reasonable timeframes (< 12 hours). Using

our model, we identified a fundamental trade-off in controller design; that reducing

coupling acts to decrease gene expression. We determined how each controller design

parameter affects the overall closed-loop behaviour of the system, leading to a de-

tailed set of design guidelines for optimally managing this trade-off. We found that

both controller co-operativity and RBS strength are key parameters in determining

the level of decoupling that can be achieved. Based on our designs, we identified

and evaluated a number of alternative potential experimental implementations of

the proposed system using commonly available biological components. Finally, we

showed that our controller is capable of dynamically allocating ribosomes as needed

to restore modularity in a number of more complex synthetic circuits composed of

multiple interacting modules, such as the repressilator and activation cascades.
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Chapter 6

Conclusions and future works

Recently, a number of opinion pieces have highlighted the potential of orthogonal

ribosomes for the expression of circuit genes [74, 113–117]. During the course of

this work, we have gone some way towards validating the proposals outlined in

these articles. Using a host-aware modelling approach we explored the ability of

orthogonal ribosomes to function as resource allocators for synthetic circuit gene

expression and showed that this can be used as a means of reducing gene coupling

mediated by the sharing of cellular resources. Furthermore, we went on to show that

this pool of orthogonal ribosomes can be dynamically controlled by simple genetic

motifs which act to control the supply of translational capacity to synthetic circuit

genes. In this way our controllers go some way to forming the ‘virtual machine’

proposed by Liu et al. as they manage the level of resources that host and circuit

processes can utilise [117].

In Chapter 2, we discussed how host constraints can impact circuit function. Specifi-

cally, our literature review highlights how limitations in levels of the gene expression

machinery, particularly ribosomes, can result in the emergence of unwanted and ini-

tially unpredictable non-regulatory interactions between genes. We highlighted (and

demonstrated via a motivating example) the need for more focused modelling efforts

in synthetic biology to ‘design around’ host-circuit interactions – which we term a

‘host-aware’ approach which includes basic host factors, energetic limitations and

gene expression resources. We proposed that so-called orthogonal ribosomes could

be used to reduce these effects by creating a circuit-specific translational capacity.

In Chapter 3, we developed a model of bacterial growth by extending previously

published work. Crucially, this host-aware model captures the key trade-offs which
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govern host-circuit interactions; namely, competition for space, ribosomes and en-

ergy. This model allows the prediction of effects which modulate circuit function

such as growth rates and resource levels. Using this model we demonstrated that

the use of orthogonal ribosomes for circuit gene expression is tolerated by cells (from

a cellular economy point of view, neglecting toxicity etc.). We went on to show that

the use of host and orthogonal ribosomes can be employed as a crude resource allo-

cation scheme when circuit or pathway genes are subdivided between the two pools.

Comparison with experimental data shows that this model qualitatively recapitu-

lates the observations in vivo and can be used to predict the optimal distribution of

genes in a simple two-gene circuit and across a metabolic pathway; namely consti-

tutively expressed genes should be translated by the o-ribosome pool and dynamic

(induced) genes by the host pool. Crucially, the use of a model at the level of ab-

straction chosen allows for the incorporation of the effects of metabolic pathways on

gene expression (which is lacking from frameworks such as flux balance analysis).

These resource allocators do not respond dynamically to changes in circuit compo-

sition (i.e. will not change based on additional gene induction) and so in Chapter 4,

we developed three feedback controllers. The first, which we term the F -controller,

is composed of a simple negative feedback loop and successfully decouples genes

showing a decreased isocost line slope in most parameter ranges. We demonstrated

the action of the controller over a number of two-gene circuits with significantly

different demands and showed that in all cases the controller successfully decouples

co-expressed genes. Our Monte Carlo simulations find that the F -controller always

produces a stable output. However, because this controller lacks integral action it

will always result in a constant steady state error and so we investigated the possibil-

ity of implementing two putative integral controllers based on a recently published

chemical reaction network scheme. We showed that the first integral controller, G,

does not result in zero steady state error (i.e. it does not function as a perfect in-

tegral controller) but ‘quasi-integral’ action can be achieved by tuning parameters.

We reduced the complexity of the model in an attempt to regain integral action and

confirmed the results presented in [91] that the decay and dilution of intermediate

species causes the loss of the integral action. Analysing the dynamics we observed

that in many cases the G-controller shows high levels of overshoot and long term

damped oscillations. We made some recommendations for designs which should be

avoided. We developed another integral controller, which we called K, which is

based on an RNA binding protein that acts to sequester the o-rRNA if it is not

needed for o-ribosome formation. Whilst this controller’s stability is more robust to

parametric uncertainty than the G-controller, our model predicts significant growth
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defects which would preclude in vivo implementation.

In light of these observations, we liaised with our experimental colleagues to design

and produce a prototype of the F -controller. This prototype is able to reduce

coupling by 50% in a simple two-gene circuit.

Having successfully implemented the prototype, in Chapter 5 we developed a de-

tailed mechanistic model of the controller to allow for quantitative design. Using

the observation that the strains carrying the prototype grew at an intermediate

rate, we were able to parameterise our model based on literature values for cell

composition and reaction rates at these growth rates. We identified a hard trade-off

between decoupling and expression levels; with decoupling coming at the expense

of expression. We demonstrated how each design parameter relates to this trade-off

and provide potential biological implementations. We showed how the controller re-

duces resource-mediated failures in modularity without the need for circuit redesign

across a range of complex synthetic gene circuits.

6.1 Future work

This thesis has shown that the use of o-ribosomes for circuit gene expression can re-

duce resource-mediated gene coupling and that orthogonal ribosomes can be dynam-

ically allocated by genetic feedback controllers. The main conclusions in Chapter 3

and the F -controller from Chapter 4 were successfully validated in vivo. Significant

experimental investment is still required to fully validate the dynamic observations

and conclusions presented in Chapter 5.

At present the experimental system leads to poor expression levels. In Chapter 3, we

demonstrated using our model that this is likely due to both relatively low assembly

of o-ribosomes and poor RBS strength. The experimental system requires further

refinement; for example, by further directed evolution or using a thermodynamic

model to design complementary 16S rRNA and RBS, which would also minimise

crosstalk with the host system. We also showed that the use of tethered ribosomes

can increase gene expression while maintaining coupling profiles, which is yet to be

validated in vivo. In both the trade-off and mechanistic models we have assumed a

simple single step co-option of host to orthogonal ribosomes. In Chapter 5, we used

the host 16S rRNA:small subunit assembly rates from an in vitro reconstitution

assay as proxy for those of the orthogonal system. During future characterisation

of the o-ribosomal system, the number of orthogonal ribosomes yielded per o-rRNA
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transcribed should be experimentally determined to allow (i) the number tolerated

with negligible impact on growth to be assessed, and (ii) the approximate rate of

the assembly reaction to be determined.

This thesis has focused on three potential implementations of negative feedback

controllers. However, by definition, negative feedback is reactive; taking an output

error and using this to modify the input. To calculate the error signal in our systems

requires the production of a protein by the o-ribosome pool. The expression level

of this constitutively expressed protein then becomes a proxy for the error signal

which is created when other circuit proteins utilise the o-ribosome pool. This error-

calculation necessitates that a fraction of the orthogonal ribosome pool be dedicated

to its own controller; although as shown in Chapter 5, if some coupling can be

tolerated this may only be small. Given the current poor protein production in the

prototype o-ribosome system this represents a waste of protein synthesis capacity.

Feedforward control provides a means to remove this constraint. In feedforward

control systems the disturbance is measured and corrective action taken before the

input signal is fed into the system [118]. To implement feedforward control we are

designing novel RNA-based networks which act to sense mRNA levels, rather than

translation complex levels, to control o-rRNA production. These networks have the

potential to function faster and have reduced impacts on host growth by utilising

RNA for their computation [119, 120].

In Chapter 3, we found that competition for the ribosomal protein component was

sufficient to cause circuit failure when the induced gene is expressed from the o-

ribosome pool. To remove this competition we could develop controllers which

function at the ‘interface’ of the host and orthogonal system. For example, the

F -controller architecture from Chapter 4 can be extended to include inhibition of

the host rRNA genes. Upon sensing the disturbance caused by the induction of a

circuit gene, the controller acts to not only increase the o-rRNA but also decreases

host rRNA production. This would reduce competition for ‘empty’ ribosomes. Pre-

liminary results suggest that this could also allow for increased gene expression.

Additionally, we propose the integration of the burden-based feedback mechanism

proposed by Ceroni et al. [82] into our o-ribosome system as a means to modulate

circuit function with minimal components.

At present in the experimental implementation of the controller, we observe a sig-

nificant remaining level of coupling. This can be improved by controller redesign

using the concepts within Chapters 4 and 5. Our mechanistic model neglects the

coupling at the RNA polymerase level due to the assumptions outlined in Sections
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5.2 and 5.3; rather it uses the RNA polymerase concentration to set the maximum

expression for each gene. If we restore RNA polymerase competition by relaxing

these assumptions, then a small amount of gene coupling returns. In the future this

assumption should be removed to allow for the design of translational controllers

which manage any emerging trade-offs at transcription. Transcription is known to

be a noisier process than translation and therefore different transcription kinetics

(and hence different noise profiles) can lead to vast variation in protein levels across a

population of cells [121]. In light of this any ordinary differential equation modelling

(which is favoured for design and analysis) of transcription should be supplemented

with stochastic approaches (such as simulations using Gillespie’s algorithm or the

addition of noise by the use of the Chemical Langevin Equation [65]) to allow the

assessment of noise.

By incorporating species representing an orthogonal RNA polymerase we can de-

velop controllers which manage transcriptional coupling. By combining these tran-

scriptional controllers with our translational controller we can create a new gener-

ation of ‘dual’ controllers. Preliminary modelling suggests that combining our neg-

ative feedback F -type translational controller with currently published (and novel)

RNA polymerase controllers can yield further decoupling than implementing con-

trol at translation alone. These dual controllers, and the implications of any noise

arising from the transcriptional component, will be fully investigated in future work.

From an industrial biotechnology point of view, the initial results in Chapter 3

suggest that by controlling resource distribution using o-ribosomes we can increase

flux through a prototype pathway. The production of complex molecules, such as

macrolide antibiotics, requires biosynthetic operons composed of numerous large en-

zymes (reviewed in [122]). The expression of these pathways in heterologous hosts

is often difficult in part due to resource limitations and subsequent competition be-

tween genes. Our results show that allocating resources by the use of o-ribosomes

may relieve these problems and increase yield. In the future a more thorough inves-

tigation of how pathway genes are allocated to each ribosome pool will be carried

out by considering all possibilities in turn. By combining translational resources,

both host and orthogonal, with genome scale metabolic pathway reconstructions

in a Resource Balance Analysis (see e.g. [62]) we can better manage the cellular

economy and design novel metabolic pathways.
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