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Steel, David Rossell. Under revision for Journal of the Royal Statistical Society:

Series B (Statistical Methodology). https://arxiv.org/pdf/1604.00314.pdf.

x



Abstract

Choosing the number of mixture components remains a central but elusive

challenge. Traditional model selection criteria can be either overly liberal or conser-

vative when enforcing parsimony. They may also result in poorly separated compo-

nents of limited practical use. In this thesis, the term parsimony refers to selecting

a simpler model by enforcing a separation between the models under consideration,

and the term sparsity refers to the ability of penalizing overffited models leading

to well-separated components with non-negligible weight, interpretable as distinct

subpopulations. Non-local priors (NLPs) are a family of distributions that encour-

age parsimony by enforcing a separation between the models under consideration.

In this thesis we investigate the use of NLPs to choose the number of components

in mixture models. Our main contributions are proposing the use of non-local pri-

ors (NLPs) to select the number of components, characterizing the properties of

the associated inference (in particular, improved sparsity) and proposing tractable

expressions suitable for prior elicitation purposes, simpler and computationally effi-

cient algorithms and practical applications.

Chapter 2 develops the theoretical framework. We present NLPs in the

context of mixtures and show how they lead to well-separated components that have

non-negligible weight, hence interpretable as distinct subpopulations. Moreover we

formulate a general NLP class, propose a particular choice leading to tractable

expressions and give a theoretical characterization of the sparsity induced by NLPs

for choosing the number of mixture components. Although the framework is generic

we fully develop multivariate Normal, Binomial and product Binomial mixtures

xi



based on a family of exchangeable moment priors.

Chapter 3 presents the prior computation and elicitation. We suggest default

prior settings based on detecting multi-modal Normal and T mixtures, and minimal

informativeness for categorical outcomes where multi-modality is not a natural con-

sideration. The theory and underlying principles in this thesis hold more generally

as outlined in Chapter 2, however.

Chapter 4 presents the computational framework for model selection and

fitting. We propose simple algorithms based on Markov chain Monte Carlo methods

and Expectation Maximization algorithms to obtain the integrated likelihood and

parameter estimates.

Chapters 5-7 contain the simulation studies and applications. In Chapter 5

we compare the performance of our proposal to its local prior counterpart as well

as the Bayesian Information Criterion (BIC), the singular Bayesian Information

Criterion (sBIC) and the Akaike Information Criterion (AIC). Our results show a

serious lack of sensitivity of the Bayesian information criterion (BIC) and insufficient

parsimony of the AIC and the local prior counterpart to our formulation. The

singular BIC behaved like the BIC in some examples and the AIC in others.

In Chapter 6 we explore a computational fast non-local model selection cri-

teria and propose a new computational strategy that provides a direct connection

between cluster occupancies and Bayes factors with the advantage that Bayes factors

allow for more general model comparisons (for instance equal vs unequal covariances

in Normal mixtures). This new computational strategy is helpful to discard unoc-

cupied clusters in overfitted mixtures and we remark that the result has interest

beyond purely computational purposes, e.g. to set thresholds on empty cluster

probabilities in overfitted mixtures.

In Chapter 7 we present the applications of this thesis and also offer compar-

isons to overfitted and repulsive overfitted mixtures. In most examples their per-

formance was competitive but depended on setting the prior parameters adequately

to prevent the appearance of spurious components. The number of components

inferred under NLPs was closer to the true number (when this was known) and

xii



remained robust to prior parameter changes, provided these remain in the range of

recommended defaults.

In Chapter 8 we have the conclusions and some possible future directions

of this work. Finally, in Appendix A we present the proofs of Theorem 1 as well

as auxiliary lemmas and corollaries. Appendix B shows the MCMC diagnostics.

Appendix C presents the main probability density functions used throughout this

thesis.
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Chapter 1

Introduction

Mixture models have many applications, e.g. in human genetics (Schork et al.,

1996), false discovery rate control (Efron, 2008), signal deconvolution (West and

Turner, 1994), density estimation (Escobar and West, 1995) and cluster analysis

(e.g. Fraley and Raftery (2002); Baudry et al. (2012)). An extensive treatment is

provided in Frühwirth-Schnatter (2006) and Mengersen et al. (2011). In spite of

their fundamental role in statistics, due to their irregular nature (e.g. multi-modal

unbounded likelihood, non-identifiability) choosing the number of components re-

mains an elusive problem both in the Bayesian and frequentist paradigms.

As discussed below, despite the fact that formal criteria may achieve model

selection consistency as the sample size grows to infinity (Gassiat and Handel, 2013),

in practice they may lead to too many or too few components and require the data

analyst to perform some ad-hoc post-processing. In this chapter we present an

overview of finite mixture distributions. Section 1.1 presents the finite mixture dis-

tributions and their properties. Section 1.2 contains some alternatives for parameter

estimation. In Sections 1.3 and 1.4 we discuss model selection strategies for mixtures

and present NLPs in the context of mixture distributions, respectively.

1.1 Finite mixtures and properties

We consider a sample y = (y1, ...,yn) of independent observations from a finite

mixture where yi ∈ Rp arises from the density

p(yi | ϑk,Mk) =

k∑
j=1

ηjp(yi | θj). (1.1.1)
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The component densities p(yi | θj) are indexed by a parameter θj ∈ Θ, η =

(η1, ..., ηk) ∈ Ek denotes the weights, Ek the unit simplex and Mk the model with k

components.

In this work, our main goal is to infer k. For simplicity we assume that

there is an upper bound K such that k ∈ {1, . . . ,K}, e.g. given by subject-matter

or practical considerations, but our framework remains valid by setting a prior

distribution on k with support on the natural numbers.

We denote the whole parameter set as ϑk = (θ,η) ∈ Θk = Θk × Ek where

θ = (θ1, ...,θk). We assume that the sample y is truly generated by p(y | ϑ∗k∗ ,Mk∗)

for some k∗ ∈ {1, . . . ,K}, ϑ∗k∗ ∈ Θk∗ . Model (1.1.1) can be equivalently formulated

in terms of latent cluster allocations z given by

zij =

1 if i belongs to component j,

0 otherwise,
(1.1.2)

and the complete-data likelihood given by

p(yi | ϑk,Mk) =

n∏
i=1

k∏
j=1

(ηjp(yi | θj))zij . (1.1.3)

As a first example, we consider a mixture of Normal distributions where the

component densities (the main probability density functions used throughout this

thesis are presented in Appendix C) are

p(y | θj) = N(y;µj ,Σj) (1.1.4)

with θj = (µj ,Σj) where µj ∈ Rp is the mean and Σj the covariance matrix of

component j. As a second example, we consider mixtures of heavy-tailed alternatives

such as Student-t densities

p(y | θj) = T(y;µj ,Σj , υj), (1.1.5)

where θj = (µj ,Σj , υj) and υj are the degrees of freedom.

Another class of mixture distributions we use in this work is the product

Binomial mixtures with mass function

p(yi | θj) =

p∏
f=1

(
Lif
yif

)
θ
yif
jf (1− θjf )Lif−yif , (1.1.6)
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where yi = (yi1, . . . , yip) are the number of successes observed for individual i across

p outcomes, Lif the number of trials, θjf is the success probability for outcome f

under component j, and θj = (θj1, . . . , θjp). In particular the case p = 1 corresponds

to a Binomial mixture.

As Frühwirth-Schnatter (2006) pointed out, one potential cause for the lack

of identifiability is caused by the invariance of the likelihood (1.1.1) to relabeling

the components. In the case of a mixture distribution with k components we have

k! equivalent ways of arranging the components. Consider for example the following

subset J P (ϑ) ⊂ Θk:

J P (ϑ) =
⋃

ψ ∈ N(k)

{ϑ∗ ∈ Θk : ϑ∗ = ψ(ϑ)}, (1.1.7)

where N(k) denotes the set of the k! permutations of {1, .., k} and ψ is one of

those permutations. In (1.1.7), ϑ and any point ϑ∗ ∈ J P (ϑ) generates the same

distribution for yi. Relabeling (also known as label switching) is due to there being k!

equivalent ways of rearranging the components giving rise to the same p(y | ϑk,Mk).

Although it creates some technical difficulties, it does not seriously hamper inference.

For instance, if k = k∗ then the maximum likelihood estimator (MLE) is consistent

and asymptotically Normal as n→∞ in the quotient topology (Redner, 1981), and

from a Bayesian perspective the integrated likelihood behaves asymptotically as in

regular models (Crawford, 1994).

To illustrate an over-fitted mixture (Frühwirth-Schnatter, 2006), consider a

three-component mixture as follows

p(y|ϑ2,M3) = η1p(y|θ1) + η2p(y|θ2) + 0p(y|θ3) (1.1.8)

= η1p(y|θ1) + (η2 − η3)p(y|θ2) + η3p(y|θ2). (1.1.9)

The set S0 = {ϑ3 : θ1 = θ∗1,θ2 = θ∗2, η1 = η∗1, η2 = η∗2, η3 = 0} is a non-

identifiability set, the density p(y|ϑ2,M3) is the same for arbitrary values θ3 in S0.

The same situation is presented for the set S1 = {ϑ3 : θ1 = θ∗1,θ2 = θ∗2, ,θ3 =

θ∗2, η1 = η∗1}, as the density p(y|ϑ2,M3) is the same for arbitrary values η3 with

0 ≤ η3 ≤ η2. Non-identifiability due to overfitting has more serious consequences,

e.g. estimates for p(y | ϑk,Mk) are consistent under mild conditions (Ghosal and

der Vaart, 2001) but the MLE and posterior mode of ϑk can behave erratically

(Leroux, 1992; Rousseau and Mengersen, 2011; Ho and Nguyen, 2016). In addition,

as we now discuss, frequentist and Bayesian tests to assess the adequacy ofMk can

behave unsatisfactorily.
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1.2 Parameter estimation in finite mixtures

Parameter estimation in mixture distributions is challenging because of the lack of

identifiability. There is an extensive literature on computational methods to esti-

mate parameters in mixture distributions (see for example Neal (1996), Crawford

(1994), Frühwirth-Schnatter (2011), Frühwirth-Schnatter (2006) and Mengersen

et al. (2011)). Chapters 4 and 6 we present two algorithms to estimate the in-

tegrated likelihood from MCMC output. In Section 4.1 of Chapter 4 we show

the first one proposed by Marin and Robert (2008) and, while we found it to be

reasonably accurate, it is limited to conjugate models and requires an MCMC post-

processing step that may have non-negligible cost. In Section 6.2 of Chapter 6 the

second algorithm is novel (to our knowledge), applicable to non-conjugate models

and only requires cluster probabilities available as an MCMC by-product, avoiding

costly post-processing. The algorithm proposed by Marin and Robert (2008) uses

posterior samples obtained from a Gibbs Sampling algorithm referred to as data

augmentation (Frühwirth-Schnatter (2006)). This algorithm uses iterative steps for

sampling the parameters of the mixture from their full conditional distributions by

defining a missing data structure of the data. Although the Gibbs sampling algo-

rithm is feasible, practical, and applicable to many mixture distributions for poste-

rior inference purposes, EM algorithms (Dempster et al. (1977)) could also be a fast

alternative to obtain posterior modes. For a Gibbs sampling algorithm we iteratively

take samples of the parameters z(t), θ
(t)
j and η

(t)
j from the full conditional distri-

butions, p(z(t)|θ(t−1)
j , η

(t−1)
j ,Mk), p(θ

(t)
j |z(t), η

(t−1)
j ,Mk) and p(η

(t)
j |θ

(t)
j , z(t),Mk),

respectively. In the EM algorithm, for the E-step and the t-th iteration we compute

the conditional expectations of the missing data variables, z
(t)
ij for i = 1, ..., n, given

the data and the current parameters θ
(t−1)
j and η

(t−1)
j . In the M-step and the t-th

iteration we compute the maximizers θ
(t)
j and η

(t)
j of the logarithm of (1.1.3) given

the expectations of the missing data.

As an illustration, in Sections 1.2.1 and 1.2.2 we outline the Gibbs sampling

and EM algorithms (Dempster et al. (1977)) for Normal and product Binomial

mixtures given in (1.1.4).
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1.2.1 Maximum likelihood estimation

EM for Normal mixtures

For t ≥ 1 and j = 1, ..., k given ϑ
(0)
j = (µ

(0)
1 , ...µ

(0)
k ,Σ

(0)
1 , ...,Σ

(0)
k ,η(0)) in the E-step

we use

z̄
(t)
ij = p(zij = 1|yi,ϑ

(t−1)
j ) =

η
(t−1)
j p(yi|µ(t−1)

k ,Σ
(t−1)
j )∑k

j=1 η
(t−1)
j p(yi|µ(t−1)

j ,Σ
(t−1)
j )

.

In the M-step the estimators of the component means are

µ
(t)
j =

∑n
i=1 z̄

(t)
ij yi∑n

i=1 z̄
(t)
ij

,

and the component weights and variance-covariance matrix estimates are respec-

tively given by

η
(t)
j =

∑n
i=1 z̄

(t)
ij

n
; Σ

(t)
j =

∑n
i=1 z̄

(t)
ij (yi − µ(t)

j )(yi − µ(t)
j )
′∑n

i=1 z̄
(t)
ij

.

In the case of a common variance-covariance matrix Σj = Σ, the estimates

Σ(t) =

∑k
j=1

∑n
i=1 z

(t)
ij (yi − µ(t)

j )(yi − µ(t)
j )
′

n
.

EM for product Binomial mixtures

For t ≥ 1 and j = 1, ..., k given ϑ
(0)
j = (θ

(0)
1 , ...θ

(0)
k ,η(0)) in the E-step we use

z̄
(t)
ij =

η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )∑k

j=1 η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )

.

For the M-step the estimators of the component probabilities and the component

weights are respectively as follows

θjf =

∑n
i=1 z̄

(t)
ij yif∑n

i=1 z̄
(t)
ij (Lif − yif )

, η
(t)
j =

∑n
i=1 z̄

(t)
ij

n
.

1.2.2 Gibbs sampling

Gibbs sampling for Normal mixtures

We start with some initial values for the parameters ϑ
(0)
j = (µ

(0)
1 , ...,µ

(0)
k ,Σ

(0)
1 , ...,Σ

(0)
k ,η(0))

and repeat the following steps for t = 1, .., T . Consider a prior that factors across

5



parameter components pL(ϑk | Mk) =
∏k
j=1N (µj | 0, gΣj) IW(Σj | ν, S)Dir(η | q),

where g is a known scale, then iteratively

S1 Sample z
(t)
ij from its conditional posterior distribution as follows, for j = 1, ..., k

p(z
(t)
ij = 1|ϑ(t−1)

j ,yi) =
η

(t−1)
j p(yi|µ(t−1)

j ,Σ
(t−1)
j )∑k

j=1 η
(t−1)
j p(yi|µ(t−1)

j ,Σ
(t−1)
j )

,

S2 Conditional on the classification z(t),

a1 Sample η(t)|µ(t−1)
1 , ...,µ

(t−1)
k , z(t),Σ

(t−1)
1 , ...,Σ

(t−1)
k ,y1, ...,yn using a Dirich-

let distribution

η(t) ∼ Dir(q + n
(t)
1 , ..., q + n

(t)
k ),

where q+n
(t)
1 , ..., q+n

(t)
k are the hyperparameters of a Dirichlet distribution

and n
(t)
j =

∑n
i=1 I(z

(t)
ij = 1) is the number of observations assigned to the

j-th component.

a2 Sample the variance-covariance matrix, Σ
(t)
j |µ

(t−1)
1 , ...,µ

(t−1)
k , z(t),η(t),y1, ...,yn

from an Inverse Wishart distribution, for j = 1, ..., k, such that

Σ
(t)
j ∼ IW (ν + n, Sj) ,

with Sj = S−1 +
∑n

i=1(yi−µ(t−1)
j )(yi−µ(t−1)

j )
′
+

nj/g

nj + 1/g
ȳjȳ

′
j where ȳj =

1

nj

∑n
i=1 z

(t)
ij yi and g is a known scale. For a common variance-covariance

matrix Σj = Σ we use Sj = S−1 +
∑k

j=1

∑n
i=1(yi − µ(t−1)

j )(yi − µ(t−1)
j )

′
+∑k

j=1

nj/g

nj + 1/g
ȳjȳ

′
j .

a3 Sample µ
(t)
j |η(t), z(t),Σ

(t−1)
1 , ...,Σ

(t−1)
k ,y1, ...,yn from a multivariate Normal

distributions as follows, for j = 1, ..., k

µ
(t)
j ∼ N

(
g(
∑n

i=1 z
(t)
ij yi)

1 + gn
(t)
j

,
g

1 + gn
(t)
j

Σ
(t)
j

)
.

Finally, some draws are discarded using a burn-in period.

Gibbs sampling for product Binomial mixtures

We use initial values for the parameters ϑ
(0)
j = (θ

(0)
1 , ...,θ

(0)
k ,η(0)) and repeat the

following steps for t = 1, .., T . Consider a prior that factors across parameter com-
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ponents pL(ϑk | Mk) =
∏k
j=1

∏p
f=1 Beta(θjf ; ag, (1− a)g)Dir(η | q) then iteratively

S1 Sample z
(t)
ij from its conditional posterior distribution as follows

p(z
(t)
ij = 1|ϑ(t−1)

j ,yi) =
η

(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )∑k

j=1 η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )

.

S2 Conditional on the classification z(t),

a1 Sample η(t)|θ(t−1)
1 , ...,θ

(t−1)
k , z(t),y1, ...,yn using a Dirichlet distribution

η(t) ∼ Dir(q + n
(t)
1 , ..., q + n

(t)
k ).

where n
(t)
j =

∑n
i=1 I(z

(t)
i = j).

a2 Sample θ
(t)
jf |η

(t), z(t),y1, ...,yn using a Beta distribution

θ
(t)
jf ∼ Beta

ag +
∑
z
(t)
i =j

yif , (1− a)g +
∑
z
(t)
i =j

(Lif − yif )

 .

Finally, some draws are discarded using a burn-in period.

1.3 Model selection strategies in mixtures

The literature on criteria to choose k is extensive (see for example Richardson and

Green (1997), Fraley and Raftery (2002), Baudry et al. (2012) and Gassiat and

Handel (2013)). From a frequentist perspective the likelihood ratio test between

Mk and Mk+1 may diverge as n → ∞ when data truly arise from Mk unless

restrictions on the parameters or likelihood penalties are imposed (Ghosh and Sen

(1985); Liu and Shao (2004); Chen and Li (2009)).

As an alternative one may consider criteria such as the Bayesian informa-

tion criterion (BIC), Akaike’s information criterion (AIC), the integrated complete

likelihood (Biernacki et al., 2000) or the singular BIC (Drton and Plummer (2017),

sBIC). The formal BIC justification as an approximation to the Bayesian evidence

(Schwarz, 1978) is not valid for overfitted mixtures, however it is often adopted as a

useful criterion (Fraley and Raftery, 2002). Other alternatives employed in Bayesian

settings are the deviance information criterion (DIC) introduced by Spiegelhalter

et al. (2002) and implemented in finite mixtures by Celeux et al. (2006), and the
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BIC-MCMC (Mengersen et al. (2011), Chapter 10) obtained from the largest log-

likelihood mixture across the MCMC draws. However, we study the performance of

our approach with respect to BIC, AIC and sBIC, as these are more closely related

to our proposal.

One issue is that the BIC ignores that p(y | ϑk,Mk) has k! maxima, causing

a loss of sensitivity to detect truly present components. More importantly, the

dimensionality penalty pk = dim(Θk) used by the BIC is too large for overfitted

mixtures (Watanabe, 2013), again decreasing power. These theoretical observations

align with the empirical results we present here. The sBIC builds on Watanabe

(2009, 2013) to improve the asymptotic approximation of the integrated likelihood.

In our results the sBIC over-penalized model complexity in some examples (albeit

less so than the BIC) but under-penalized in others, where it gave similar results to

the AIC.

From a Bayesian perspective, model selection is usually based on the poste-

rior probability P (Mk | y) = p(y | Mk)P (Mk)/p(y), where P (Mk) is the prior

probability model,

p(y | Mk) =

∫
Θk

p(y | ϑk,Mk)p(ϑk | Mk)dϑk (1.3.1)

the integrated (or marginal) likelihood and p(ϑk | Mk) a prior distribution under

Mk. One may also use Bayes factors Bk′,k(y) = p(y | Mk′)/p(y | Mk) to compare

any pairMk′ ,Mk. A common argument for (1.3.1) is that it automatically penalizes

overly complex models, however this parsimony is not as strong as one would ideally

wish. To gain intuition, for regular models with fixed pk one obtains

log p(y | Mk) = log p(y | ϑ̂k,Mk)−
pk
2

log(Op(n)) +Op(1) (1.3.2)

as n→∞ (Dawid, 1999). This implies that Bk∗,k(y) grows exponentially as n→∞
when Mk∗ 6⊂ Mk but is only Op(n

−(pk−pk∗ )/2) when Mk∗ ⊂ Mk. That is, over-

fitted models are only penalized at a slow polynomial rate. Key to the current

manuscript, Johnson and Rossell (2010) showed that either faster polynomial or

quasi-exponential rates are obtained by letting p(ϑk | Mk) be a NLP (defined

below). Expression (1.3.2) remains valid for many mixtures with k ≤ k∗ (e.g. in-

cluding Normal mixtures, Crawford (1994)), however this is no longer the case for

k > k∗. Using algebraic statistics, Watanabe (2009, 2013) gave expressions anal-

ogous to (1.3.2) for overfitted k > k∗ where pk/2 is replaced by a rational num-

ber λ ∈ [pk∗/2, pk/2] called the real canonical threshold and the remainder term is
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Op(log log n) instead of Op(1). The exact value of λ is complicated but the implica-

tion is that pk in (1.3.2) imposes an overly stringent penalty that can decrease the

sensitivity of the BIC, and also that the Bayes factor to penalize overfitted k > k∗

mixtures is Bk,k∗(y) = Op(n
−(λ−pk∗/2)). That is, akin to regular models k > k∗ is

penalized only at a slow polynomial rate. These results align with those in Chambaz

and Rousseau (2008). Denoting the posterior mode by k̂ = arg maxk P (Mk | y),

these authors found that the frequentist probability Pϑ∗
k∗

(k̂ < k∗) = O(e−an) but in

contrast Pϑ∗
k∗

(k̂ > k∗) = O((logn)b/
√
n) for some constants a, b > 0, again implying

that overfitted mixtures are not sufficiently penalized.

We emphasize that these results apply to a wide class of priors but not to

the NLP class proposed in this paper, for which faster rates are attained. Note also

that the BIC and related likelihood penalties (where log(n) is replaced by a rate

strictly between log log(n) and n) attain consistency as n → ∞ for fairly general

mixtures (Gassiat and Handel, 2013), but as illustrated here for finite (potentially

quite large) n the BIC can lack sensitivity.

An interesting alternative to considering k ∈ {1, . . . ,K} is to set a single

large k and induce posterior shrinkage, a strategy often referred to as overfitted

mixtures. Rousseau and Mengersen (2011) showed that the prior on the weights

p(η | Mk) strongly influences posterior inference when k > k∗. Under p(η | Mk) =

Dir(η; q1, ..., qk) with maxjqj < d/2 where d = dim(Θ) the posterior of η collapses

to 0 for redundant components, but if minj qj > d/2 then it collapses on a solution

where at least two components i 6= j have identical parameters θi = θj and non-zero

weights ηi > 0, ηj > 0. That is, the posterior shrinkage induced by qj < d/2 helps

discard spurious components. Gelman et al. (2013) set q1 = ... = qk = 1/k, but

Havre et al. (2015) argued that this leads to insufficient shrinkage and proposed

smaller qj . One may then count the number of empty components at each Markov

Chain Monte Carlo (MCMC) iteration to estimate k∗.

Petralia et al. (2012) argued that faster shrinkage may be obtained via over-

fitted repulsive priors, i.e. assigning vanishing density to θi = θj for i 6= j. Affandi

et al. (2013) and Xu et al. (2016) gave related determinantal point process frame-

works, and Xie and Xu (2017) proposed extensions to non-parametric Gaussian

mixtures. A recent approach by Malsiner-Walli et al. (2017) resembling repulsive

mixtures is to encourage nearby components merging into groups at a first hierar-

chical level and to then enforce between-group separation at the second level.

In spite of their usefulness, overfitted mixtures (whether repulsive or not)

also bear limitations. Therefore, selecting the number of components in a mixture

using the NLP approach compared to the overfitted or repulsive overfitted mixture

9



approach has several advantages:

(i) On the practical side one can study the number of components but cannot

address more general model selection questions, say choosing equal versus

different component-specific covariances. Also, inference may be sensitive to

the chosen values of qj , k, or the threshold to discard unoccupied components

(see Chapter 7).

(ii) In terms of interpretation, cluster occupancy probabilities given by overfitted

mixtures are different from model probabilities p(Mk | y) under NLPs. We

compute posterior probabilities under a uniform model prior (i.e., equal prior

model probabilities) having into account the uncertainty under all considered

models. We remark that even though estimating p(Mk | y) requires one to

consider multiple k, relative to overfitted mixtures where one sets a single

large k, this can be handled as an embarrassingly parallel problem.

(iii) From a methodological view point, in Chapter 6 we show that Bayes fac-

tors, and hence p(Mk | y), are given by ratios of posterior to prior empty

cluster probabilities. The result motivates a novel empty-cluster probability

(ECP) estimator to obtain p(Mk | y) from standard MCMC output that

is computationally-convenient and applicable to very general mixtures, both

under LPs and NLPs.

The latter observation is conditional on adopting a careful prior elicitation,

which is an important contribution of this thesis (see Chapter 3). We show that

obtaining p(y | Mk) under NLP is no harder than for local priors and easy to

implement given MCMC output from standard local priors (see Chapter 4).

1.4 Non-local priors in the context of mixtures

To illustrate NLPs, let δ be the parameter of interest in a generic test for two

hypothesis,

H0 : δ ∈ ∆0; (1.4.1)

H1 : δ ∈ ∆1, (1.4.2)

where ∆0 ∪∆1 = ∆. From a Bayesian perspective, we need to specify prior distri-

butions p(δ|H0) and p(δ|H1) on δ under each hypothesis H0 and H1, respectively.

Usually, Bayesian hypothesis tests are defined with LPs and p(δ|H1) is a continu-

ous density and positive on ∆0. The main criticism in Johnson and Rossell (2010)
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is that LPs do not incorporate a minimal notion of separation between both null

and alternative hypothesis. They called a density a local prior if it is a continuous

density satisfying

p(δ|H1) > ε for all δ ∈ ∆0. (1.4.3)

On the other hand, if for every ε > 0 there is a ζ > 0 such that

p(δ|H1) < ε for all δ ∈ ∆ : infδ∈∆0 |δ − δ0| < ζ, (1.4.4)

then p(δ|H1) is called a NLP. Now we focus on a specific NLP class called moment

(MOM) priors proposed in Johnson and Rossell (2010). Let pb(δ) be a base prior

density with 2t finite integer moments (t ≥ 1) and where δ ∈ R. The t-th MOM

prior density, for a point null hypothesis H0 : δ = δ0, is defined as follows:

pM(δ|H1) =
(δ − δ0)2t

gτt
pb(δ), (1.4.5)

where

τt =

∫
∆

(δ − δ0)2t

g
pb(δ)dδ, (1.4.6)

with δ0 is a fixed value and g a known scale.

Figure 1.1 illustrates the MOM prior density with t = 1 and for g = {1, 2, 3}
with pb(δ)=Normal(δ; 0, g). For the test of a null hypothesis H0 : δ = δ0 against

the composite alternative H1 : δ 6= δ0, Johnson and Rossell (2010) showed that

under certain regularity conditions by using MOM priors the convergence rate of

Bayes factors in favor of the alternative hypothesis is Op(n−t−
1
2 ), for a true null

hypothesis. In contrast with the convergence Op(n−
1
2 ) obtained by using LPs. For a

true alternative hypothesis, the Bayes factor in favor of the null hypothesis decreases

exponentially fast. Therefore, MOM priors ameliorate the imbalance in convergence

rates for the case where δ ∈ R. Johnson and Rossell (2010) also studied multivariate

extensions of MOM priors. They defined the multivariate MOM prior given by

pM (δ) =
Q(δ)tpb(δ)

Epb [Q(δ)t]
, (1.4.7)

with

Q(δ) =
(δ − δ0)

′
Σ−1(δ − δ0)

ngQσ2
, (1.4.8)

where δ is a p × 1 dimensional real vector, Σ is a definite positive matrix, gQ > 0
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Figure 1.1: The MOM prior density with t = 1 and for g = {1, 2, 3}.

is a scalar, and pb(δ) > 0 is a proper prior density on δ with two bounded partial

derivatives in a neighborhood containing δ0 and Epb [Q(δ)t] is finite. Johnson and

Rossell (2010) showed that the multivariate MOM prior leads to a convergence of

Bayes factor in favor of the alternative hypotheses equal to Op(n−t−
d
2 ) when the null

hypothesis is true. In contrast with Op(n−
d
2 ) obtained by using LPs. In Johnson

and Rossell (2010) NLPs are used for pairwise comparison of nested linear models,

probit regression and test of variances.

Johnson and Rossell (2012) investigated the use of NLPs on the model re-

gression parameters for comparing 2p models, where p is the number of regressors.

The authors showed that by using NLPs for a number of covariates p = O(nα),

α < 1 and p < n, the resulting model selection procedures are consistent in linear

regression settings. Therefore, NLPs assign a posterior probability of 1 to the data

generating model as the sample size n → ∞ and under certain regularity condi-

tions pertaining the design matrix. Johnson and Rossell (2012) showed that under

the same conditions, Bayesian procedures with LPs lead to the asymptotic assign-

ment of a posterior probability of 0, when α > 1/2. They also found that their

Bayesian procedure works as well or better than penalized likelihood methods. Let

yn = (y1, ..., yn)
′

be a random vector, Xn a n×p design matrix of real numbers, and

β a p × 1 regression vector with components βi, i = 1, . . . , p. Johnson and Rossell

12



(2012) explored models of the form

yn ∼ N(Xnβ, σ
2In), (1.4.9)

with a MOM prior for β defined as follow

p(β;σ2, r, g) = dp(2π)−p/2(gσ2)−rp−p/2|Ap|1/2 (1.4.10)

×exp{− 1

2gσ2
β

′
Apβ}

p∏
i=1

β2r
i ,

for g > 0, Ap a p × p nonsingular scale matrix and r ≥ 1 with r an integer.

The normalizing constant dp is independent of σ2 and g. The NLP proposed in

Johnson and Rossell (2012) given by 1.4.10 are different to the prior in equation

(1.4.7) because they are product NLPs such as the priors we use in this thesis. As

pointed out in Johnson and Rossell (2012), the multivariate MOM density presented

in (1.4.7) is 0 only when all components of the parameter vector are 0. Therefore

no penalty is induced on models that contain only a subset of 0 parameters. That

is, (1.4.7) only separates the model with no variables from the full model. On the

other hand, (1.4.10) is 0 if any component of the parameter vector is 0. Therefore

the prior separates all 2p models inducing a much stronger penalty on the regression

parameters when any one of the vector components is 0.

Building upon Johnson and Rossell (2010, 2012), we formally define NLPs

in the context of mixtures.

Definition 1 Let Mk be the k-component mixture in (1.1.1). A continuous prior

density p(ϑk | Mk) is a NLP iff

lim
ϑk→t

p(ϑk | Mk) = 0

for any t ∈ Θk such that p(y | t,Mk) = p(y | ϑk′ ,Mk′) for some ϑk′ ∈ Θk′, k
′ < k.

A local prior (LP) is any p(ϑk | Mk) not satisfying Definition 1. Intuitively

for nestedMk′ ⊂Mk a NLP p(ϑk | Mk) penalizes any ϑk that would be consistent

with Mk′ , in our setting any k-mixture with redundant components. For instance

an NLP underM2 must assign p(ϑ2 | M2) = 0 whenever p(y | ϑ2,M2) reduces to a

one-component mixture, e.g. θ1 = θ2 or η1 ∈ {0, 1}. That is one must penalize situ-

ations where two components have the same parameters (as in a repulsive mixture)

and also when there are zero-weight components. This intuition is made precise in

13



Chapter 2 for the wide class of generically identifiable mixtures where p(ϑk | Mk)

defines a NLP if and only if lim p(ϑk | Mk) = 0 as either:

(i) ηj → 0 for any j = 1, ..., k.

(ii) θi → θj for any i 6= j.

. Beyond their philosophical appeal in establishing a probabilistic separation be-

tween the models under consideration, Johnson and Rossell (2010) showed that for

asymptotically Normal models NLPs penalize spurious parameters at a faster rate

than (1.3.2), specifically depending on the speed at which p(ϑk | Mk) converges

to 0. Johnson and Rossell (2012) found that NLPs are necessary and sufficient to

achieve the strong consistency P (Mk∗ | y)
P−→ 1 in certain high-dimensional linear

regression with o(n) predictors, whereas Shin et al. (2018) showed a similar result

with o(en) predictors. These authors also observed gains in model selection relative

to popular penalized likelihood methods.
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1.5 Contributions in this thesis

Our main contribution in this work is proposing the use of non-local priors (NLPs)

to select the number of mixture components. More specifically,

• We provide the theoretical characterization of the properties of the associated

inference to choose the number of components (Chapter 2).

• We develop a practical framework placing emphasis on important aspects re-

lated to prior elicitation, and illustrate the framework in popular mixture

families that include Normal, T, Binomial and product Binomial mixtures

(Chapter 3).

• We build computational schemes proposing tractable expressions to compute

the integrated likelihood and provide algorithms for posterior inference (Chap-

ter 4).

• We study the performance of our proposal with respect to their local prior

counterpart and BIC, sBIC, AIC, overfitted and repulsive overfitted mixtures

using simulated and real data sets in Chapters 5 and 7.

• We also address the computational challenge of obtaining posterior model

probabilities, both for LPs and NLPs. In Chapter 6 we propose an estimator

based on showing that Bayes factors are ratios of posterior to prior empty-

cluster probabilities. The estimator is applicable to a wide class of models

and only requires empty-cluster probabilities, a natural by-product of MCMC

algorithms. The result also helps set thresholds to drop unoccupied clusters

in overfitted mixtures, and it is hence of independent interest.
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1.6 Outline

This thesis is organized as follows. In Chapter 2 we present the theoretical aspects

of this thesis. We formulate a general NLP class with a particular specification that

leads to tractable expressions, and present applications to Normal, T and product

Binomial mixtures. We discuss the technical conditions required to prove our main

result given in Theorem 1 which states that the proposed NLP class leads to stronger

parsimony than LPs.

In Chapter 3 we investigate the NLP in some detail and therefore develop

methodology required for the proposed framework to be practical. We present how

to compute the normalization constant for MOM priors avoiding a doubly intractable

problem. Importantly, a natural elicitation for prior parameters is also proposed.

This is a key issue in our setting as it defines what separation between components

is deemed practically relevant for Normal and T mixtures, and addresses minimal

informativeness for Binomial and product of Binomial mixtures.

In Chapter 4 we outline the computational schemes for model selection and

parameter estimation. We present how to compute the integrated likelihood under

MOM priors using an MCMC run from the posterior under local priors. We review

some computational approximations of the integrated likelihood under LPs which

are the current state-of-the-art. We also discuss posterior mode parameter estimates

via an EM algorithm using a first order Taylor expansion of the penalty term. In

the last section of this chapter we show comparisons of the proposed computational

methods with existing approaches.

In Chapter 5 we illustrate the performance of our MOM-Inverse Wishart

(MOM-IW) and MOM-Beta priors. We present a simulation study for univariate and

bivariate Normal mixtures and compare the performance with respect to BIC and

AIC. To illustrate the sBIC performance, a Binomial mixture example considered

in Drton and Plummer (2017) is reproduced. We illustrate the use of MOM-IW

in the presence of model misspecification by considering simulated data from a T

mixture and a two-piece iskew-T mixture and illustrate computations under product

of Binomial mixtures.

In Chapter 6 we propose a new computational strategy that provides a direct

connection between cluster occupancies and Bayes factors with the advantage that

Bayes factors allow for more general model comparisons (for instance equal vs un-

equal covariances in Normal mixtures). Likewise this algorithm offers a connection

between posterior probabilities and empty cluster probabilities, hence we called it

the ECP (empty cluster probability) estimator. In this chapter we also explore a
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fast computational non-local model selection criteria.

In Chapter 7 we present the applications of this thesis. We consider the Old-

Faithful, flow cytometry, Fisher’s Iris and USA political blog data sets to illustrate

the performance of our MOM-IW and MOM-Beta priors with respect to Normal-

IW and Beta, BIC, AIC, sBIC. We also provide a comparison with overfitted and

repulsive overfitted mixtures.

Conclusions and some possible future directions of this work are presented

in Chapter 8.

In Appendix A we present the proofs. We illustrate in Appendix B the usage

of diagnostics for MCMC runs of the considered examples. Appendix C presents

the main probability density functions used throughout this thesis.

Our methodology is implemented in R packages mombf and NLPmix avail-

able at CRAN and https://warwick.ac.uk/fac/sci/statistics/staff/research_

students/patino_fuquene, respectively.
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Chapter 2

Theoretical framework

A NLP underMk assigns vanishing density to any ϑk such that (1.1.1) is equivalent

to a mixture with k′ < k components. A necessary condition is to avoid vanishing

(ηj = 0) and overlapping components (θi = θj) but for this to also be a sufficient

condition one needs to require generic identifiability. Definition 2 is adapted from

Leroux (1992).

Definition 2 Let p(y | ϑk,Mk) =
∑k

j=1 ηjp(y | θj) and p(y | ϑ̃k̃,Mk̃) =
∑k̃

j=1 η̃jp(y |
θ̃j) be two mixtures as in (1.1.1). Assume that ηj > 0, η̃j > 0 for all j and that

θj 6= θj′, θ̃j 6= θ̃j′ for all j 6= j′. The class p(y | θ) defines a generically identifiable

mixture if p(y | ϑk,Mk) = p(y | ϑ̃k̃,Mk̃) for almost every y implies that k = k̃ and

ϑk = ϑ̃Ψ(k̃) for some permutation Ψ(k̃) of the component labels in Mk̃.

That is, assuming that all components have non-zero weights and distinct

parameters the mixture is uniquely identified by its parameters up to label per-

mutations. Teicher (1963) showed that mixtures of univariate Normal, Exponential

and Gamma distributions are generically identifiable. Yakowitz and Spragins (1968)

extended the result to several multivariate distributions, including the Normal case.

See also Allman et al. (2009) for a study of strong identifiability for multivariate

Bernoulli mixtures, finite and infinite product Binomial mixtures, hidden Markov

Models and random graph mixture models. In particular product Binomial mix-

tures are generically identifiable when the number of Binomial trials is above a

small threshold (Allman et al. (2009), Theorem 4), e.g. when the number of trials

Lif = L for all (i, f) then it suffices that 3Lp/3 > 2(k + 1).

Throughout we assume p(y | ϑk,Mk) to be generically identifiable. Then

p(ϑk | Mk) defines a NLP under Definition 1. In this chapter we present the

theoretical framework of this research. In Section 2.1 we define a new general NLP
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class for mixture distributions. In Section 2.2 we present the theoretical conditions

that will be used in the proof of our main result (Theorem 1). In Section 2.3 we

offer in Theorem 1 a theoretical characterization of the sparsity induced by NLPs

to choose the number of components in a mixture.

2.1 A general NLP class for mixture distributions

Let dϑ(ϑk) be a continuous penalty function converging to 0 under (i) or (ii), then

a general NLP class is defined by

p(ϑk | Mk) = dϑ(ϑk)p
L(ϑk | Mk), (2.1.1)

where pL(ϑk | Mk) is an arbitrary LP with the restriction that p(ϑk | Mk) is proper.

We consider pL(ϑk | Mk) = pL(θ | Mk)p
L(η | Mk) and dϑ(ϑk) = dθ(θ)dη(η),

where

dθ(θ) =
1

Ck

 ∏
1≤i<j≤k

d(θi,θj)

 , (2.1.2)

is a repulsive force between components akin to Petralia et al. (2012), Ck =
∫
pL(θ |

Mk)
∏

1≤i<j≤k d(θi,θj)dθ a prior normalization constant and dη(η) ∝
∏k
i=1 η

r
j with

r > 0. Evaluating Ck may require numerical approximations (e.g. Monte Carlo)

but in the next section we give closed expressions for specific dθ(θ) and pL(θ | Mk).

Regarding the weights, we set the symmetric Dirichlet p(η | Mk) = Dir(η; q) ∝
dη(η)Dir(η; q − r), where importantly one must set q > 1 to satisfy (i) above and

r ∈ [q − 1, q). Summarizing, we set

p(ϑk | Mk) = dθ(θ)pL(θ | Mk)Dir(η; q), (2.1.3)

where q > 1 and dθ(θ) is as in (2.1.2).

The specific form of d(θi,θj) depends on the model under consideration.

For instance consider θi = (µi,Σi) for a location parameter µi and scale matrix

Σi. Then one may adapt earlier proposals for variable selection and define MOM

penalties (Johnson and Rossell, 2010) d(θi,θj) = (µi − µj)
′
A−1(µi − µj)/g where

A is a symmetric positive-definite matrix, or alternatively eMOM penalties (Rossell

et al., 2013) d(θi,θj) = exp{−g/(µi−µj)
′
A−1(µi−µj)} where g is a prior dispersion

parameter, also adopted by Petralia et al. (2012) for repulsive mixtures. Note that

Ck is guaranteed to be finite for eMOM penalties as d(θi,θj) ≤ 1. The main

difference between MOM and eMOM is that the latter induce a stronger model
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separation that give faster sparsity rates.

However, empirical results in Johnson and Rossell (2010, 2012) and Rossell

and Telesca (2017) suggest that by setting g adequately both MOM and eMOM are

often equally satisfactory.

Although our theory holds for fairly general d(θi,θj), we now propose simple

choices leading to convenient interpretation and closed-form Ck.

2.1.1 Application to Normal and T mixtures

We consider first the case where θi = (µi,Σi), µi is a location parameter and Σi a

positive-definite matrix, as in Normal or T mixtures. Then in (2.1.3) we may set

the MOM-Inverse Wishart (MOM-IW) prior

p(θ | Mk) = dθ(θ)pL(θ | Mk) =
1

Ck

∏
1≤i<j≤k

(µi − µj)
′
A−1

Σ (µi − µj)
g

×
k∏
j=1

N (µj | 0, gAΣ) IW(Σj | ν, S), (2.1.4)

where A−1
Σ is a symmetric positive-definite matrix and (g, ν, S) are fixed prior hy-

perparameters. A trivial choice is A−1
Σ = I but it has the inconvenience of not being

invariant to changes in scale of y. Instead we use A−1
Σ = 1

k

∑k
j=1 Σ−1

j , which is sym-

metric and positive-definite and is related to the L2 distance between Normal dis-

tributions. In the particular case where Σ1 = . . . = Σk = Σ, a parsimonious model

sometimes considered to borrow information across components, clearly AΣ = Σ.

In our model-fitting algorithms and examples we consider both the equal and un-

equal covariance cases. We remark that in the latter case (2.1.4) defines a NLP that

penalizes µi = µj even when Σi 6= Σj . We do not view this as problematic, given

that in most applications the interest is to identify components with well-separated

locations. We note however that if one is interested in detecting components that

differ only in Σi 6= Σj then d(θi,θj) should be adjusted. In general one may set

d(θi,θj) to any measure of distance or divergence between probability distributions.

As illustration, one could use the squared Hellinger distance between Normal dis-

tributions
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dθ(θ) =
1

Ck

∏
1≤i<j≤k

1− det(Σi)
1/4 det(Σj)

1/4

det ((Σi + Σj)/2)1/2

× exp

{
−1

8

(µi − µj)
′
2(Σi + Σj)

−1(µi − µj)
g

}
. (2.1.5)

For this choice dθ(θ) = 0 if and only if µi = µj and Σi = Σj . Alternatively we

may consider eMOM penalties (Rossell et al., 2013) given by dθ(θ) = exp{−g/(µi−
µj)

′
A−1

Σ (µi − µj)}, also adopted by Petralia et al. (2012) for repulsive mixtures.

In the univariate case (p=1) (2.1.4) can be written

p(θ | Mk) =
1

Ck

∏
1≤i<j≤k

(µi − µj)
′
A−1

Σ (µi − µj)
g

k∏
j=1

N (µj | 0, gAσ2) IG(σ2
j | ν, S),

(2.1.6)

where ν and S are the hyperparameters of the Inverse-Gamma distribution and

A−1
σ2 = 1

k

∑k
j=1(σ2

j )
−1. To illustrate consider a sample y1, ..., yn of size n for testing

one component versus a two-component univariate Normal mixture as follows

M1 : yi ∼ N(yi;µ, σ
2) vs M2 : yi ∼ ηN(yi;µ1, σ

2) + (1− η)N(yi;µ2, σ
2),

where σ2 and η are known and the prior probabilities of each model are P (M1) =

P (M2) = 1/2. Under M1 the prior for µ is a Normal distribution given by

p(µ|σ2,m, g = 1,M1) = N(µ;m,σ2).

The Normal and Moment priors for the component means underM2 are respectively

pL(µ1, µ2 | σ2,m, gL,M2) = N(µ1;m,σ2gL)N(µ2;m,σ2gL), (2.1.7)

p(µ1, µ2 | σ2,m, g,M2) =
(µ2 − µ1)2

2σ2g
N(µ1;m,σ2g)N(µ2;m,σ2g). (2.1.8)

The top panels in Figure 2.1 illustrate how the Normal prior (right) assigns high

prior density to µ1 = µ2, whereas the MOM prior incorporates a separation between

M1 and M2. Notice that g is important for prior elicitation as it drives this sepa-

ration (see Chapter 3). Consider the Normal and MOM priors using the separation

parameters
√
κ = (µ2 − µ1)/σ and µ∗1 = µ1/σ as follows:
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pL(µ∗1,
√
κ | σ2,m, gL,M2) = N(µ∗1;m, gL)N(

√
κ;m− µ∗1, gL);

p(µ∗1,
√
κ | σ2,m, g,M2) =

κ

2g
N(µ∗1;m, g)N(

√
κ;m− µ∗1, g).

Figure 2.1 (Bottom) displays the MOM prior which induces a penalization term of
κ = (µ2 − µ1)2/σ2 which is the natural unit of measure of separability between two
clusters proposed by Fisher (1936).
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Figure 2.1: Top: Default MOM p(µ1, µ2 | σ2 = 1,m = 0, g = 5.68,M2) (left) and
Normal pL(µ1, µ2 | σ2 = 1,m = 0, gL = 11.56,M2) (right). Bottom: Default MOM
p(µ∗1,

√
κ | σ2 = 1,m = 0, g = 5.68,M2) (left) and Normal pL(µ∗1,

√
κ | σ2 = 1,m =

0, gL = 11.56,M2) (right).
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2.1.2 Application to Binomial mixtures

We now consider binary data, specifically for a Binomial mixture the MOM-Beta
prior

p(θ | Mk) =
1

Ck

∏
1≤i<j≤k

(θi − θj)2
k∏
j=1

Beta(θj ; ag, (1− a)g), (2.1.9)

where θj > 0 is the success probability in component j and a > 0, g > 0 are known
prior parameters. In our parameterization a > 0 is the prior mean and g > 0 the
prior sample size for the underlying Beta prior. Figure 2.2 displays the implied prior
density and for comparison, that for a Beta prior setting gL = 1.98 to match the
prior variance of the Beta(1, 1) (see Chapter 3 for the prior elicitation of g).
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Figure 2.2: Default MOM-Beta p(θ | g = 7.05,M2) (left) and Beta pL(θ | gL =
1.98,M2) (right)

2.1.3 Application to product Binomial mixtures

For a product Binomial mixture (Binomial mixtures are the particular case p = 1)
we define the MOM-Beta prior

p(θ | Mk) =
1

Ck

∏
1≤i<j≤k

(θi − θj)′(θi − θj)
k∏
j=1

p∏
f=1

Beta(θjf ; ag, (1− a)g), (2.1.10)
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where θjf > 0 is the success probability for outcome f in component j and a > 0,

g > 0 are known prior parameters. In our parameterization a > 0 is the prior mean

and g > 0 the prior sample size for the underlying Beta prior.

We now turn our attention in Sections 2.2-2.3 to the theoretical results for

the sparsity induced by the NLP described in equation (2.1.1) in the context of

choosing the number components in a mixture.

2.2 Parsimony enforcement

We now offer some theoretical results for both MOM and eMOM penalties, but in

our implementations we focus on the MOM for the practical reasons that Ck has

closed form and leads to simple prior elicitation. Both MOM and eMOM remain

applicable when θi is a vector of probabilities, as we illustrate for Binomial and

product Binomial mixtures. More generally d(θi,θj) can be based on any distance

or divergence between probability measures. We defer discussion of prior elicitation

to Chapter 3.

We show that NLPs induce extra parsimony via the penalty term dϑ(ϑk),

which affects specifically overfitted mixtures. We first lay out technical conditions

for the result to hold. Recall that k∗ is the true number of components and ϑ∗k∗

the true parameter value. Let p∗k(y) be the density minimising Kullback-Leibler

(KL) divergence between the data-generating p(y | ϑ∗k∗ ,Mk∗) and the class {p(y |
ϑk,Mk),ϑk ∈ Θk}. When k ≤ k∗ for generically identifiable mixtures p∗k(y) is

defined by a unique parameter ϑ∗k ∈ Θk (up to label permutations). When k > k∗

there are multiple minimizers giving p∗k(y) = p(y | ϑ∗k∗ ,Mk∗). p
L(ϑk | Mk) denotes

a LP and p(ϑk | Mk) a NLP as in (2.1.1). PL(· | y,Mk) and EL(· | y,Mk) are the

posterior probability and expectation under pL(ϑk | y,Mk).

2.2.1 Technical conditions

B1 L1 consistency. For all fixed ε > 0 as n→∞

PL
(∫
|p(z | ϑk,Mk)− p∗k(z)| dz > ε | y,Mk

)
→ 0

in probability with respect to p(y | ϑ∗k∗ ,Mk∗).

B2 Continuity. p(y | ϑk,Mk) is a continuous function in ϑk.

B3 Penalty boundedness. There is a constant ck such that dϑ(ϑk) ≤ ck for all ϑk.

Alternatively, if p(ϑk | Mk) involves the MOM-IW prior (2.1.4) and k > k∗
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then there exist finite ε, U > 0 such that

lim
n→∞

P

EL
exp

 1

2g

k∑
j=1

µ′jA
−1
Σ µj

ε

1 + ε

 | y,Mk

 < U

 = 1.

2.2.2 Additional conditions from Rousseau and Mengersen (2011)

We reproduce Conditions A1-A4 in Rousseau and Mengersen (2011), adjusted to

the notation we used in this work. Their Condition A5 is trivially satisfied by our

η ∼ Dir(q) prior, hence is not reproduced here. Recall that we defined p∗k∗(y) =

p(y | ϑ∗k∗ ,Mk∗) to be the data-generating truth.

We denote Θ∗k = {ϑk ∈ Θk; p(y | ϑk,Mk) = p∗k∗(y)} and let log(p(y |
ϑk,Mk)) be the log-likelihood calculated at ϑk. Denote F0(g) =

∫
p(y | ϑ∗k∗ ,Mk∗)g(y)dy

where g(·) is a probability density function, denote by Leb(A) the Lebesgue measure

of a set A and let ∇p(y | θ) be the vector of derivatives of p(y | θ) with respect to

θ, and ∇2p(y | θ) be the second derivatives with respect to θ. Define for ε ≥ 0

p̄(y | θ) = sup
|θl−θ|≤ε

p(y | θl), p(y | θ) = inf
|θl−θ|≤ε

p(y | θl).

We now introduce some notation that is useful to characterize Θ∗k, following Rousseau

and Mengersen (2011). Let w = (wi)
k∗
i=0 with 0 = w0 < w1 < ... < wk∗ ≤ k be a

partition of {1, ..., k}. For all ϑk ∈ Θk such that p(y | ϑk,Mk) = p∗k(y) there exists

w as defined above such that, up to a permutation of the labels,

∀i = 1, ..., k∗, θwi−1+1 = ... = θwi = θ∗i , η(i) =

wi∑
j=wi−1+1

ηj = η∗i , ηwk∗+1
= ... = ηk = 0.

In other words, Ii = {wi−1 + 1, ..., wi} represents the cluster of components in

{1, ..., k} having the same parameter as θ∗i . Then define the following parameteri-

sation of ϑk ∈ Θk (up to permutation)

ιw =
(

(θj)
wk∗
j=1, (ri)

k∗−1
i=1 , (ηj)

k
j=wk∗+1

)
∈ Rpwk∗+k∗+k−wk∗−1, ri = η(i)− η∗i , i = 1, ..., k∗,

and

$w =
(

(fj)
wk∗
j=1,θwk∗+1, ...,θk

)
, fj =

ηj
η(i)

, when j ∈ Ii = {wi−1 + 1, ..., wi},
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note that for p(y | ϑ∗k∗ ,Mk∗)

ι∗w = (θ∗1, ...,θ
∗
1,θ
∗
2, ...,θ

∗
2, ...,θ

∗
k∗ , ...,θ

∗
k∗ , 0...0...0)

where θ∗i is repeated wi−wi−1 times in the above vector for any $w. Then we pa-

rameterize (ιw,$w), so that p(y | ϑk,Mk) = p(y | (ιw,$w),Mk) and we denote

∇p(y | (ι∗w,$w),Mk) and ∇2p(y | (ι∗w,$w),Mk) the first and second derivatives

of p(y | (ιw,$w),Mk) with respect to ιw and computed at ϑ∗k∗ = (ι∗w,$w). We

also denote by PL(· | y,Mk) the posterior distribution using a LP.

Conditions

A1 L1 consistency. For all ε = (log n)e/
√
n with e ≥ 0 as n→∞

PL
(∫
|p(z | ϑk,Mk)− p∗k(z)| dz > ε | y,Mk

)
→ 0

in probability with respect to p(y | ϑ∗k∗ ,Mk∗).

A2 Regularity. The component density p(y | θ) indexed by a parameter θ ∈ Θ is

three times differentiable and regular in the sense that for all θ ∈ Θ the Fisher

information matrix associated with p(y | θ) is positive definite at θ. Denote

∇3p(y | θ) the array whose components are

∂3p(y | θ)

∂θi1∂θi2∂θi3

For all i ≤ k∗, there exists ε > 0 such that

F0

(
p̄(y | θ∗i )3

p(y | θ∗i )3

)
<∞, F0

(
sup|θ−θ∗|≤ε |∇p(y|θ)|3

p(y | θ∗i )3

)
<∞, F0

(
|p(y|θ∗i )|4

(p(y | ϑ∗k∗ ,Mk∗))4

)
<∞,

F0

(
sup|θ−θ∗|≤ε |∇2p(y | θ)|2

p(y | θ∗i )2

)
<∞, F0

(
sup|θ−θ∗|≤ε |∇3p(y | θ)|2

p(y | θ∗i )

)
<∞.

Assume also that for all i = 1, ..., k∗, θ∗i ∈ int(Θk) the interior of Θk.
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A3 Integrability. There exists Θk∗ ⊂ Θk satisfying Leb(Θk∗) > 0 and for all i ≤ k∗

d(θ∗i ,Θ
k∗) = inf

θ∈Θk∗
|θ − θ∗i | > 0

and such that for all θ ∈ Θk∗ ,

F0

(
p(y | θ)4

(p(y | ϑ∗k∗ ,Mk∗))4

)
<∞, F0

(
p(y | θ)3

p(y | θ∗i )3

)
<∞, ∀i ≤ k∗.

A4 Stronger identifiability.

For all w partitions of {1, ..., k} as defined above, let ϑk ∈ Θk and write ϑk as

(ιw,$w); then

(ιw − ι∗w)
′∇p(y | (ι∗w,$w),Mk) +

1

2
(ιw − ι∗w)

′∇2p(y | (ι∗w,$w),Mk)(ιw − ι∗w) = 0⇔

∀i ≤ k∗, ri = 0 and ∀j ∈ Ii fj(θj − θ∗j ) = 0, ∀i ≥ wk∗ + 1, pi = 0.

Assuming also that if θ /∈ {θ1, ...,θk} then for all functions hθ which are

linear combinations of derivatives of p(y | θ) of order less than or equal to 2 with

respect to θ, and all functions h1 which are also linear combinations of derivatives

of the p(y | θj)’s j = 1, 2, .., k and its derivatives of order less or equal to 2, then

αhθ + βh1 = 0 if and only if αhθ = βh1 = 0.

Extension to non compact cases: If Θk is not compact then we also assume that

for all sequences θn converging to a point in ∂Θk the frontier of Θk, considered as

a subset of < ∪ {−∞,∞}p, p(y | θn) converges pointwise either to a degenerate

function or to a proper density p(·) such that p(·) is linearly independent of any null

combinations of p∗(y | θi), ∇p∗(y | θi) and ∇2p∗(y | θi), i = 1, ..., k∗.

2.2.3 Discussion of the technical conditions

Condition B1 amounts to posterior L1 consistency of p(y | ϑk,Mk) to the data-

generating truth when k ≥ k∗ and to the KL-optimal density when k < k∗. Note

that B1 is assumed under the underlying local pL and hence follows from stan-

dard theory. Specifically, B1 is a milder version of Condition A1 in Rousseau and

Mengersen (2011) where rather than fixed ε one has ε =
√

log n/
√
n. See the discus-
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sion therein and Ghosal and der Vaart (2001) for results on finite Normal mixtures,

Rousseau (2007) for Beta mixtures and Ghosal and Van Der Vaart (2007) for infinite

Normal mixtures. For strictly positive pL(ϑk | Mk) > 0 Condition B1 is intimately

connected to MLE consistency (Ghosal, 2002), proven for fairly general mixtures by

Redner (1981) for k ≤ k∗ and by Leroux (1992) for k > k∗.

The L1 consistency results above focus on the case where the data-generating

truth lies in the assumed family, but see Ramamoorthi et al. (2015) (Theorem 2)

for posterior concentration results under model misspecification for independent

and identically distributed data. Condition B2 holds when the kernel p(y | θ) is

continuous in θ, as in the vast majority of common models. B3 is trivially satisfied

when NLPs are defined using bounded penalties. For the MOM-IW we require

the technical condition that the posterior exponential moment in B3 is bounded

in probability when k > k∗ (Lemma A.1.1). To gain intuition, B3 requires that

under the posterior distribution pL(µ | Mk,y) none of the elements in µ diverges

to infinity, and in particular is satisfied if µ is restricted to a compact support.

2.3 Theoretical characterization of the sparsity

Theorem 1 below states that dϑ(ϑk) imposes a complexity penalty concentrating

on 0 when k > k∗ and a constant when k ≤ k∗. Part (i) applies to any model,

Part (ii) only requires B1-B3 and Part (iii) holds under the mild conditions A1-A4

in Rousseau and Mengersen (2011) (Section 2.2.2), hence the result applies to an

ample class of mixtures. The proof of Part(iii) only requires posterior contraction

of the sum of redundant weights at a n−1/2 rate, and can be trivially adjusted when

this rate is slower. Rousseau and Mengersen (2011) showed that the n−1/2 rate is

achieved under Conditions A1-A3 and a strong identifiability condition A4. Inter-

estingly, Ho and Nguyen (2016) showed that strong identifiability can be expressed

in terms of partial differential equations involving the kernel p(y | θ), its first and

second derivatives. In particular location-scale Gaussian and Gamma mixtures are

not strongly identifiable for certain problematic ϑk. When the data-generating ϑ∗k
is one of those problematic values then the MLE of the component parameters θ̂

is slower than n−1/2, however remarkably the MLE of the mixing weights η̂ does

contract at the n−1/2 rate required by Part(iii).

Theorem 1 Let p(y | ϑk,Mk) be a generically identifiable mixture, p(y | Mk) and

pL(y | Mk) the integrated likelihoods under p(ϑk | Mk) and pL(ϑk | Mk). Then
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(i) p(y | Mk) = pL(y | Mk)E
L (dϑ(ϑk) | y) , where

EL (dϑ(ϑk) | y) =

∫
dϑ(ϑk)p

L(ϑk | y,Mk)dϑk.

(ii) If B1-B2 are satisfied then as n→∞

PL (|dϑ(ϑk)− d∗k| > ε | y,Mk)→ 0

where d∗k = 0 for k > k∗ and d∗k = dϑ(ϑ∗k) for k ≤ k∗.

If B3 also holds then EL (dϑ(ϑk) | y)
P−→ d∗k.

(iii) Let k > k∗ and p(ϑk | Mk) ∝ dθ(θ)pL(θ | Mk)Dir(η; q), where q > 1. If B3

and A1-A4 in Rousseau and Mengersen (2011) hold for pL(θ | Mk) then for

all ε > 0 and all δ ∈ (0, dim(Θ)/2) there exists a finite c̃k > 0 such that

PL
(
dϑ(ϑk) > c̃kn

− k−k
∗

2
(q−δ)+ε | y,Mk

)
→ 0

in probability as n→∞.

Part (i) extends Theorem 1 in Rossell and Telesca (2017) to mixtures and

shows that p(y | Mk) differs from pL(y | Mk) by a term EL (dϑ(ϑk) | y) that

intuitively should converge to 0 for overfitted models. Part (i) also eases computation

as EL(dϑ(ϑk) | y) can be estimated from standard MCMC output from pL(ϑk |
y,Mk), as we exploit in Chapter 4. Part (ii) confirms that the posterior of dϑ(ϑk)

under pL(ϑk | y,Mk) concentrates around 0 for overfitted models and a finite

constant otherwise, and that its expectation also converges. Part (iii) states that

for overfitted models this concentration rate is essentially n−(k−k∗)q/2, leading to an

accelerated sparsity-inducing Bayes factor Bk,k∗(y) = EL(Op(n
−(k−k∗)q/2))BL

k,k∗(y)

(See the proofs in Appendix A, Sections A.1 and A.2). Recall that as discussed

earlier the LP-based BL
k,k∗(y) = Op(n

−(λ−pk∗/2)) for some λ ∈ [pk∗/2, pk/2] under the

conditions in Watanabe (2013). For instance, one might set q such that (k−k∗)q/2 =

λ − pk∗/2 so that Bk,k∗(y) converges to 0 at twice the rate for BL
k,k∗(y). As λ is

unknown in general one could conservatively take its upper bound λ = pk/2, then

q = (pk − pk∗)/(k − k∗) is the number of parameters per component. We further

discuss prior elicitation in Chapter 3.
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Chapter 3

Prior computation and

elicitation

In this chapter we develop methodology required for the proposed framework to be

practical. In Section 3.1 the challenging computation of the normalization constant

for MOM priors is addressed, and in Section 3.2 the proposal for the prior elicitation

is presented.

3.1 Prior normalization constant

We now discuss the computation of Ck in (2.1.4) and (2.1.10). This task requires a

non-trivial expectation of a product of quadratic forms. Lemma 1 gives a recursive

formula for Ck for any NLP with the generic form

p(ζ | Mk) =
1

Ck

∏
1≤i<j≤k

(ζi − ζj)′(ζi − ζj)
k∏
j=1

p∏
f=1

pL(ζjf ) (3.1.1)

where ζ = (ζ1, . . . , ζk) ∈ Rpk. Note that (2.1.4) is the particular case where ζi =

A
−1/2
Σ µi, and(2.1.10) is the case where ζi = θi.

Lemma 1 Let p(ζ | Mk) be as in (3.1.1). Then

Ck =
∑
s∈Sk

(
pk∏
l=1

κsl

)
1∑

v(1,2)=0

. . .
1∑

v(k−1,k)=0

(−1)
∑
i<j v(i,j)

(
pk∏
l=1

pk∏
m=1

b
sl,m
lm (v)

sl,m!

)

where κsl = EL(ζ
∑pk
m=1 slm+sml

jf ), Sk =
{

(s1,1, s1,2, . . . , spk,pk) :
∑pk

l=1

∑pk
m=1 sl,m = k(k − 1)/2

}
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with non-negative integers 0 ≤ sl,m ≤ k(k − 1)/2, and blm(v) is the (l,m) element

of the pk × pk matrix Bv given bybll = 1
2(k − 1)−

∑
i<j v(i, j), l = 1 + p(i− 1), . . . , pi

blm = bml = −1
2 +

∑
i<j v(i, j), (1 + p(i− 1), 1 + p(j − 1)), . . . , (pi, pj)

.

Proof. See Appendix A, Section A.3.

To illustrate Lemma 1 consider p = 1 and k = 2 and the normalization

constant given by

Ck =
∑
s∈Sk

(
2∏
l=1

κsl

)
1∑

v(1,2)=0

(−1)v(1,2)

(
2∏
l=1

2∏
m=1

b
sl,m
lm (v)

sl,m!

)

where Sk =
{

(s1,1, s1,2, s2,1, s2,2) :
∑2

l=1

∑2
m=1 sl,m = 1

}
with 0 ≤ sl,m ≤ 1 and

b11 = b22 = 1
2 − v(1, 2), b12 = b21 = −b11. We remark that Lemma 1 holds for

any pL(ζ) composed by independent and identically-distributed pL(ζjf ) and that κs

requires raw moments up to order k(k − 1)/2, which can be pre-computed. For the

MOM-Beta prior

κsl =

(
Γ(a+ b)

Γ(a)

)pk Γ
(
a+

∑pk
m=1 slm + sml

)
Γ
(
a+ b+

∑pk
m=1 slm + sml

) .
When pL is a Normal prior the expression in Lemma 1 can be simplified, see Corol-

lary 1. Further simplifications are possible when p = 1 or k = 2, these are given for

Normal and product Binomial mixtures in Corollaries 2 and 3 respectively.

Corollary 1 MOM-IW, general (p, k). The normalization constant in (2.1.4) is

Ck =
1

s!

1∑
υ(1,2)=0

...
1∑

υ(k−1,k)=0

(−1)

s∑
i,j
υ(i,j)
Qs(Bυ), (3.1.2)

where v(i,j) ∈ {0, 1}, s =
(
k
2

)
, Qs(Bυ) = s!2sds(Bυ), ds(Bυ) = 1

2s

∑s
i=1 tr(B

i
υ)ds−i(Bυ),

d0(Bυ) = 1 and Bυ is a pk × pk matrix with element (l,m) given by
bll =

1

2
(k − 1)−

∑
i<j υ(i,j), l = 1 + p(i− 1), . . . , pi

blm = bml = −1

2
+
∑

i<j υ(i,j), (l,m) = (1 + p(i− 1), 1 + p(j − 1)), . . . , (pi, pj)
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where i 6= j, i = 1, . . . , k, j = 1, . . . , k and blm = 0 otherwise.

Proof. See Appendix A, Section A.4.

Corollary 2 MOM-IW, univariate or two-component mixtures. Let Ck be as in

(2.1.4)

(i) If p = 1, then Ck =
∏k
j=1 Γ(j + 1).

(ii) If k = 2, then Ck = 2p.

Proof. See Appendix A, Section A.5.

Corollary 3 MOM-Beta, univariate or two-component mixtures. Let Ck be as in

(2.1.10)

(i) If p = 1, then Ck =

(
Γ(a+ b)

Γ(a)Γ(b)

)k∏k
j=1

Γ(a+ k − j)Γ(b+ k − j)Γ(j + 1)

Γ(a+ b+ 2k − j − 1)
.

(ii) If k = 2, then Ck = 2p
ab

(a+ b)2(a+ b+ 1)
.

Proof. See Appendix A, Section A.6.

Despite having closed-form Ck its evaluation for general (p, k) can be cum-

bersome, e.g. Sk in Lemma 1 is the set of partitions of k(k−1)/2 and has size expo-

nential in k (Andrews, 1998). The sum in (3.1.2) is simpler but contains k(k− 1)/2

terms, still prohibitive for large k. A practical option for large k is to evaluate Ck

via Monte Carlo as the prior mean of dk(θ) under pL and tabulate it upfront, prior

to data analysis. This is particularly convenient in Corollary 1 where Ck does not

depend on the prior parameter g. To facilitate the implementation of our method-

ology Tables 3.1-3.2 provide Ck for (2.1.4) and (2.1.10) (respectively) and various

(p, k). In Tables 3.1-3.2 we have exact values for Ck when p = 1 or k = 2 computed

using Corollaries 2 and 3.

3.2 Prior elicitation

A critical aspect in a NLP is its induced separation between components, driven by

g and q in (2.1.3). We propose defaults that can be used in the absence of a priori

knowledge, whenever the latter is available we naturally recommend to include it in

the prior.

We start by discussing g, first for Normal and T mixtures and subsequently

for Binomial and product Binomial mixtures. The main idea is that we wish to find
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Table 3.1: Estimation of log(Ck) and associated standard error (se) via Monte Carlo
for the MOM-IW prior where k = 2, ..., 10 and p = 1, ..., 10.

p

1 2 3 4 5

k log(Ck) se log(Ck) se log(Ck) se log(Ck) se log(Ck) se

2 0.69 0 1.39 0 1.79 0 2.08 0 2.30 0

3 2.49 0 4.57 <0.01 5.70 <0.01 6.51 <0.01 7.14 <0.01

4 5.66 0 9.83 <0.01 11.98 <0.01 13.51 <0.01 14.70 <0.01

5 10.45 0 17.36 <0.01 20.83 <0.01 23.25 <0.01 25.16 <0.01

6 17.03 0 27.27 0.04 32.26 0.02 35.99 0.03 38.58 <0.01

7 25.55 0 38.81 0.07 46.33 0.04 51.11 0.02 55.01 0.02

8 36.16 0 53.01 0.10 62.05 0.05 69.70 0.07 74.51 0.04

9 48.96 0 66.46 0.08 80.73 0.11 89.83 0.08 96.35 0.05

10 64.07 0 82.71 0.10 100.43 0.08 111.81 0.09 120.87 0.10

p

6 7 8 9 10

k log(Ck) se log(Ck) se log(Ck) se log(Ck) se log(Ck) se

2 2.48 0 2.64 0 2.77 0 2.89 0 3.00 0

3 7.66 <0.01 8.09 <0.01 8.48 <0.01 8.82 <0.01 9.12 <0.01

4 15.68 <0.01 16.51 <0.01 17.25 <0.01 17.90 <0.01 18.49 <0.01

5 26.72 <0.01 28.04 <0.01 29.23 <0.01 30.26 <0.01 31.22 <0.01

6 40.81 <0.01 42.78 0.01 44.47 <0.01 45.99 <0.01 47.35 <0.01

7 58.21 0.04 60.78 0.02 63.05 0.01 65.15 0.01 67.08 0.01

8 78.44 0.04 82.13 0.04 84.96 0.02 88.01 0.04 90.19 0.02

9 101.82 0.05 106.15 0.05 110.12 0.05 113.81 0.04 116.87 0.03

10 127.88 0.07 133.19 0.05 138.22 0.05 143.08 0.06 146.70 0.04

clearly-separated components, then one can interpret the data-generating process

in terms of distinct sub-populations. We thus set g such that there is small prior

probability that any two components are poorly-separated, that is giving rise to a

unimodal density. In Normal mixtures the number of modes depends on non-trivial

parameter combinations (Ray and Lindsay, 2005), but when η1 = η2 = 0.5 and

Σ1 = Σ2 the mixture is bimodal when κ = (µ1 − µ2)
′
Σ−1(µ1 − µ2) > 4. Thus we

set g such that P (κ < 4 | M2) = 0.1 or 0.05, say. This is trivial, the prior on κ

implied by (2.1.4) is p(κ | M2) = Gamma(κ; p/2 + 1, 1/(4g)). For instance, in a

univariate Normal mixture g = 5.68 gives P (κ < 4 | M2) = 0.05, Figure 2.1 (left)

portrays the associated prior. For comparison the right panel shows a Normal prior

with gL = 11.56, which also assigns PL(κ < 4 | M2) = 0.05. Based on simulation

and sensitivity analyses (Section 5.4.2) we found P (κ < 4 | M2) = 0.05 to be slightly
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Table 3.2: Estimation of log(Ck) with the standard error (se) via Monte Carlo for
the MOM-Beta prior where k = 2, ..., 10 and p = 1, ..., 10.

p

1 2 3 4 5

k log(Ck) se log(Ck) se log(Ck) se log(Ck) se log(Ck) se

2 -2.78 0 -1.69 0 -1.11 0 -0.73 0 -0.43 0

3 -8.29 0 -4.89 <0.01 -3.17 <0.01 -2.08 <0.01 -1.20 <0.01

4 -16.50 0 -9.48 <0.01 -6.09 <0.01 -3.94 <0.01 -2.22 <0.01

5 -27.43 0 -15.40 0.01 -9.76 <0.01 -6.23 <0.01 -3.41 <0.01

6 -41.06 0 -22.66 0.02 -14.10 0.02 -8.89 0.01 -4.71 0.01

7 -57.39 0 -31.23 0.05 -19.22 0.04 -11.82 0.03 -6.09 0.01

8 -76.44 0 -41.24 0.09 -24.98 0.07 -15.13 0.06 -7.51 0.04

9 -98.19 0 -52.57 0.16 -31.40 0.16 -18.84 0.10 -9.03 0.07

10 -122.66 0 -65.99 0.21 -39.17 0.17 -23.31 0.12 -10.92 0.12

p

6 7 8 9 10

k log(Ck) se log(Ck) se log(Ck) se log(Ck) se log(Ck) se

2 -0.22 0 -0.04 0 0.12 0 0.25 0 0.38 0

3 -0.57 <0.01 -0.05 <0.01 0.43 <0.01 0.82 <0.01 1.19 <0.01

4 -0.97 <0.01 0.05 <0.01 1.00 <0.01 1.76 <0.01 2.48 <0.01

5 -1.36 <0.01 0.31 <0.01 1.87 <0.01 3.13 <0.01 4.30 <0.01

6 -1.68 <0.01 0.79 <0.01 3.09 <0.01 4.95 <0.01 6.69 <0.01

7 -1.87 0.02 1.52 0.01 4.71 0.01 7.29 0.01 9.69 <0.01

8 -1.98 0.02 2.54 0.03 6.74 0.01 10.16 0.01 13.32 0.01

9 -2.03 0.05 4.03 0.06 9.28 0.04 13.63 0.05 17.65 0.03

10 -1.65 0.11 5.39 0.07 12.19 0.08 17.73 0.09 22.65 0.07

preferable to 0.1 for balancing parsimony vs. sensitivity.

Regarding T mixtures, Došlá (2009) showed that a univariate mixture with

two components and equal degrees of freedom υ is bimodal if κ > 4υ/(υ + 2).

More generally for multivariate T mixtures with equal Σ (Ray and Lindsay (2005),

Theorem 1 and Remark 4) showed that all its modes lie in y(a) = aµ1 + (1− a)µ2

where a ∈ [0, 1]. It is easy to show that when η1 = η2 = 0.5 there is a unique

minimum at a = 1/2 if and only if κ > 4υ/(υ + p + 1), and then the mixture

density is bimodal. This matches the result from Došlá (2009) for p = 1 and

for Normal mixtures in Ray and Lindsay (2005) as υ → ∞. Summarising, by

default we set g such that P (κ < 4υ/(υ + p+ 1) | υ,Mk) = 0.05, where recall that

p(κ | υ,M2) = Gamma(κ; p/2 + 1, 1/(4g)). Note that to complete the prior one

must also consider a prior the degrees of freedom υ, since this is a standard problem

34



we refer the reader to Rossell and Steel (2017), for a review of possible strategies.

Note also that other strategies to set g arise from using other measures of separation,

e.g. within/between sums of squares instead of unimodality (Malsiner-Walli et al.,

2017), but we do not pursue this here.

Consider now the MOM-Beta prior (2.1.10). In contrast to continuous mix-

tures, here one cannot use multi-modality to set the prior parameters (a,g). In-

stead we specify (a,g) such that the amount of prior information is comparable to

θjl ∼ Beta(1, 1), a prior commonly viewed as minimally informative. Specifically,

under independent θjl ∼ Beta(1, 1) the variance of
∑p

j=1 θ2j − θ1j is p/6, hence in

the MOM-Beta prior we set (a,g) such that Var(
∑p

j=1 θ2j−θ1j) = p/6. For Binomial

mixtures this results in (a, g) = (1/2, 7.05), and to assess sensitivity we also consid-

ered g = 16.09 and g = 29.99, which imply Var(
∑p

j=1 θ2j − θ1j) = p/12 and p/24,

respectively. In our experiments these g values yield a competitive performance but

g = 7.05 was preferable (Chapter 5, Section 5.4.3).

To illustrate the choice of q, we consider under M2 three different possible

values of q for the prior on η given by Dir(η;1/2,1/2), Dir(η;1,1) and Dir(η;3,3). Fig-

ure 3.1 illustrates how the Dir(η;1/2,1/2) prior does not place mass in the boundaries

of M2, and places substantial mass in neighborhoods around 0 or 1 in contrast to

the Dir(η; 3, 3) prior. As a result, the Dir(η; 3, 3) prior may produce more shrinkage

toward 0 or 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

η

Dir(3,3)
Dir(1/2,1/2)
Dir(1,1)

Figure 3.1: Illustration of prior densities for η.
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Figure 3.1 shows how the uniform prior is equal to 1 for any value of η

therefore this prior not only does not penalize the boundaries of M2, but also it

does not produce any shrinkage around 0 or 1. Regarding q, as discussed earlier,

q > 1 is required for (2.1.3) to define a NLP. One option is to set q = 3 so that

p(η | Mk) ∝
∏k
j=1 η

2
j induces a quadratic penalty comparable to the MOM prior

on µ given in (2.1.4). Alternatively from the discussion after Proposition 1 setting

q = (pk−pk∗)/(k−k∗), the number of parameters per component, seeks to (at least)

double the Bayes factor sparsity rate of the underlying LP. For instance, for Normal

mixtures with common covariances this leads to q = p + 1, and under unequal

covariances to q = p+ 0.5p(p+ 1) + 1. These are the values we used in our examples

with p = 1 or p = 2 (see Chapter 5), but we remark that for larger p such q may

lead to an overly informative prior on η (see Figure 3.2). In our experience q ∈ [2, 4]

gives fairly robust results and satisfactory sparsity, thus larger values do not seem

warranted.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

η

Dir(15,15), p=4
Dir(10,10), p=3
Dir(6,6), p=2
Dir(3,3), p=1

Figure 3.2: Illustration of prior densities for η with p = {1, 2, 3, 4} for Normal
mixtures with unequal covariances.

The prior distribution on the remaining parameters, which may be thought

of as nuisance parameters, will typically reduce to a standard form for which de-

faults are already available. We assume that variables in the observed data are

standardized to have mean 0 and variance 1 and set a default S = (p + 4)−1I and
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ν = p+ 4, so that E(Σ−1
j ) = I. As an illustration for multivariate Normal mixtures

we set p(Σ1, . . . ,Σk | Mk) =
∏k
j=1 IW(Σj ; ν, S). We follow the recommendation in

Hathaway (1985) that eigenvalues of ΣiΣ
−1
j for any i 6= j should be bounded away

from 0 to prevent the posterior from becoming unbounded, which is achieved if

ν ≥ p+ 4 (Frühwirth-Schnatter (2006), Chapter 6). We remark that our framework

can be sensitive to prior specification but, as we illustrated in this Chapter, default

parameters based on multi-modality and minimal informativeness may represent a

natural alternative for NLPs that result in a fairly competitive behaviour as we will

explore in the next Chapters.
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Chapter 4

Computational framework

Computation for mixtures is challenging, and potentially more so when embarking

upon non-standard formulations such as ours. Fortunately, capitalising on Theorem

1(i) (Chapter 2) it is possible to estimate the integrated likelihood p(y | Mk) for

arbitrary mixtures with direct extensions of existing algorithms. Intuitively, one can

use any algorithm to estimate the local prior integrated likelihood pL(y | Mk) and

the posterior mean EL(dϑ(ϑk) | y,Mk).

In this chapter we present the computational framework of this thesis. In

Section 4.1 we outline an MCMC algorithm to compute the integrated likelihood

under MOM priors that only requires an MCMC run from the local posterior

pL(ϑk | y,Mk) and is hence straightforward to implement using current software.

We remark however that obtaining pL(y | Mk) can be costly and is the subject of

current research (see Lee and Robert (2016) for a recent discussion). To estimate

pL(y | Mk) we use the estimator proposed by Marin and Robert (2008). We found

this estimator to be reasonably accurate, but it is limited to conjugate models and

requires an MCMC post-processing step that may have non-negligible cost. There-

fore in Chapter 6, Section 6.2 we propose a new estimator that only requires cluster

probabilities available as an MCMC by-product, avoiding costly post-processing.

Although our main interest is to infer k, in Section 4.2 we discuss posterior mode

parameter estimates via an Expectation-Maximimation (EM) algorithm (Dempster

et al. (1977)). Relative to pL(y | Mk), our p(y | Mk) only requires a trivial

MCMC post-processing step and the EM algorithm an extra gradient evaluation;

both operations add a negligible cost relative to the corresponding LP calculations.

In Section 4.3 we show comparisons of the proposed computational methods with

existing approaches.
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4.1 Integrated likelihood

Theorem 1(i) suggests the estimator

p̂(y | Mk) = p̃(y | Mk)
1

T

T∑
t=1

ω(ϑ
(t)
k ), (4.1.1)

where ω(ϑk) = p(ϑk | Mk)/p̃(ϑk | Mk) and p̃(ϑk | Mk) is an arbitrary LP conve-

niently chosen so that MCMC algorithms to sample ϑ
(t)
k ∼ p̃(ϑk | y,Mk) ∝ p(y |

ϑk,Mk)p̃(ϑk | Mk) are readily available. We remark that ω(ϑk) is not a reweight-

ing to convert samples from p̃(ϑk | y,Mk) into samples from p(ϑk | y,Mk), but a

direct approximation to the posterior mean of d(ϑk) under p̃(ϑ | y,Mk). However,

if interested in posterior samples from p(ϑk | y,Mk) one could clearlyuse such a

reweighting. For the MOM-IW in (2.1.4) we used

p̃(ϑk | Mk) = Dir(η; q)
k∏
j=1

N (µj ; 0, gΣj) IW(Σj ; ν, S),

with q > 1, which gives

ω(ϑk) =
1

Ck

∏
1≤i<j≤k

(µi − µj)
′
A−1

Σ (µi − µj)
g

k∏
j=1

N(µj ; 0, gAΣ)

N(µj ; 0, gΣj)
.

For the MOM-Beta in (2.1.10) p̃(ϑk | Mk) = Dir(η; q)
∏k
j=1

∏p
f=1 Beta(θjf ; ag, (1−

a)g), hence

ω(ϑk) =
1

Ck

∏
1≤i<j≤k

(θi − θj)′(θi − θj).

Our strategy is admittedly simple but has convenient advantages. After

obtaining p̃(y | Mk) one need only compute a posterior average, which relative to

the cost of p̃(y | Mk) is negligible. Furthermore, only posterior sampling under

p̃(ϑk | y,Mk) is required. As a potential caveat the posterior variance of ω(ϑk) has

an effect on p̂(y | Mk), specifically when the local and non-local posteriors differ

substantially this variance may be large.

However from Theorem 1 these posteriors differ mainly in overfitted mixtures

(k > k∗), and only the numerator but not the denominator in w(ϑk) may vanish

(provided p̃ is positive over its domain, as is the case), hence in practice we found

(4.1.1) to be quite stable as we discuss in Section 4.3).

In our examples estimates of p(Mk | y) were more precise than those of

p̃(Mk | y), due to the former being closer to 0 or 1 (as expected from the posterior
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concentration result in Theorem 1). Alternatively one can devise a sampler directly

for the non-local p(ϑk | y,Mk), e.g. using slice sampling (Petralia et al., 2012),

latent truncations (Rossell and Telesca, 2017) or collapsed Gibbs (Xie and Xu, 2017),

but we do not pursue this as our main interest is model selection (see Section 4.2

for point estimates).

We now review computational approximations to estimate p̃(y | Mk). One

option is to use trans-dimensional Markov chain Monte Carlo as in Richardson and

Green (1997). Marin and Robert (2008) argue that this approach can require non-

trivial calibration and that when k is small it may be preferable to explore each

model separately. Related strategies are the dual importance sampling of (Lee and

Robert, 2016) and the trans-dimensional collapsed Gibbs sampler by Xie and Xu

(2017). Here we build on a refinement of an algorithm by Chib (1995) based on

MCMC output. Neal (1999) showed that the algorithm fails when the sampler does

not explore the k! modes, hence the need for a correction (Berkhof et al., 2003;

Marin and Robert, 2008). Specifically we use

p̃(y | Mk) =
p(y | ϑ̂k,Mk)p̃(ϑ̂k | Mk)

p̃(ϑ̂k | y,Mk)

=
p(y | ϑ̂k,Mk)p̃(ϑ̂k | Mk)∑
ψ ∈ N(k) p̃(ψ(ϑ̂k) | y,Mk)/(k!)

. (4.1.2)

For ϑ̂k we use the posterior mode as recommended in Marin and Robert (2008). The

numerator in (4.1.2) simply requires evaluating the likelihood and prior at ϑ̂k. To

evaluate the denominator we note that under exchangeable p̃(ϑk | Mk) the posterior

is invariant to label-switching, thus

p̃(ϑk | y,Mk) =
1

k!

∑
ψ ∈ N(k)

p̃(ψ(ϑk) | y,Mk), (4.1.3)

where N(k) is the set of k! possible permutations of the set {1, ..., k}. Using a

standard Rao-Blackwell argument as in Marin and Robert (2008) and defining the

latent indicator zi where zi = j if observation i is assigned to component j, we

estimate (4.1.3) by

1

Tk!

∑
ψ ∈ N(k)

T∑
t=1

p̃(ψ(ϑ̂k) | y, z(t),Mk), (4.1.4)

where z(t) = (z
(t)
1 , . . . , z

(t)
n ) are posterior samples from p̃(z,ϑk | y,Mk). The algo-

rithm can be applied to any model subject to p̃(ψ(ϑ̂k) | y, z(t),Mk) having closed-
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form. p̃(ψ(ϑ̂k) | y, z(t),Mk) is the complete posterior distribution under the cluster

allocations, specifically

p̃(ψ(ϑ̂k) | y, z(t),Mk) =
k∏
j=1

N

(
ψ(µ̂j);

gn
(t)
j ȳ

(t)
j

1 + gn
(t)
j

,
g

1 + gn
(t)
j

Σ
(t)
j

)
IW
(
ψ(Σ̂j); ν + n

(t)
j , S

(t)
j

)
×Dir(ψ(η̂); q + n

(t)
1 , ..., q + n

(t)
k ),

p̃(ψ(ϑ̂k) | y, z(t),Mk) =

k∏
j=1

p∏
f=1

Beta

ψ(θ̂jf ); ag +
∑
z
(t)
i =j

yif , (1− a)g +
∑
z
(t)
i =j

(Lif − yif )


×Dir(ψ(η̂); q + n

(t)
1 , ..., q + n

(t)
k ).

for the Normal and product Binomial mixtures, respectively. Algorithms 1-2 show

in detail how to obtain p̂ for Normal and product Binomial mixtures.

Algorithm 1: p(y | Mk) for Normal mixtures under the MOM-IW prior.

Initialize ϑ
(0)
k = (θ

(0)
1 , ...,θ

(0)
k ,η(0)) with θ

(0)
j = (µ

(0)
j ,Σ

(0)
j ). for t = 1, ..., T do

Draw z
(t)
i = j with probability:

η
(t−1)
k N(yi;µ

(t−1)
j ,Σ

(t−1)
j )∑k

j=1 η
(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )

.

Let n
(t)
j =

∑n
i=1 I(z

(t)
i = j) and ȳ

(t)
j =

1

nj

∑
z
(t)
i =j

yi if n
(t)
j > 0, else

ȳ
(t)
j = 0. Draw

η(t) ∼ Dir(q + n
(t)
1 , ..., q + n

(t)
k ).

Let Sj = S−1 +
∑

zi=j(yi − ȳ
(t−1)
j )(yi − ȳ

(t−1)
j )

′
+
∑k

j=1

nj/g

nj + 1/g
ȳ

(t)
j ȳ

′(t)
j .

Draw

Σ
(t)
j ∼ IW (ν + nj , Sj) ,

Draw

µ
(t)
j ∼ N

(
gn

(t)
j ȳ

(t)
j

1 + gn
(t)
j

,
g

1 + gn
(t)
j

Σ
(t)
j

)
,

end

Compute (4.1.1) and (4.1.2) where ϑ̂k is the posterior mode under LPs.
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Algorithm 2: p(y | Mk) for product Binomial mixtures under the

MOM-Beta prior.

Initialize ϑ
(0)
k = (θ

(0)
1 , ...,θ

(0)
k ,η(0)) where θ

(0)
j = (θ

(0)
j1 , . . . , θ

(0)
jp ). for t = 1, ..., T

do

Draw z
(t)
i = j with probability:

η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )∑k

j=1 η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )

.

Draw

η(t) ∼ Dir(q + n
(t)
1 , ..., q + n

(t)
k ).

where n
(t)
j =

∑n
i=1 I(z

(t)
i = j). Draw

θ
(t)
jf ∼ Beta

ag +
∑

z
(t)
i =j

yif , (1− a)g +
∑

z
(t)
i =j

(Lif − yif )

 ,

end

Compute (4.1.1) and (4.1.2) where ϑ̂k is the posterior mode under LPs.

4.2 Posterior mode estimation

The EM algorithm provides a fast way to obtain posterior modes ϑ̂k = arg maxϑk p(ϑk |
y,Mk) or cluster assigments ẑi = arg maxj∈{1,...,K} p(zi = j | y, ϑ̂k,Mk). We now

briefly describe the algorithm. At iteration t the E-step computes

z̄
(t)
ij = P (zi = j | yi,ϑ(t−1)

j ) = η
(t−1)
j p(yi | θ(t−1)

j )/
k∑
j=1

η
(t−1)
j p(yi | θ(t−1)

j )

and is trivial to implement. The M-step requires updating ϑ
(t)
k in a manner that

increases the expected complete log-posterior, which we denote by ξ(ϑk), but under

our prior p(ϑk | Mk) = dϑ(ϑk)p
L(ϑk | Mk) in general this cannot be done in

closed-form. A key observation is that if pL(ϑk | Mk) leads to closed-form updates,

the corresponding target ξL(ϑk) only differs from ξ(ϑk) by a term dϑ(ϑk), thus one

may approximate ξ(ϑk) via a first order Taylor expansion of dϑ(ϑk).
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These approximate updates need not lead to an increase in ξ(ϑk) (although

they typically do since dϑ(ϑk) has a mild influence for moderately large n), whenever

this happens we use gradient algorithm updates. We now describe the derivation of

the Algorithm 3 for Normal mixtures under MOM-IW priors and Algorithm 4 for

product Binomial mixtures under MOM-Beta priors.

Algorithm 3: EM under MOM-IW-Dir priors.

Set t = 1. while ζ > ε∗ and t < T do

for t ≥ 1 and j = 1, ..., k do

E-step. Let z̄
(t)
ij =

η
(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )∑k

j=1 η
(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )

and

n
(t)
j =

∑n
i=1 z̄

(t)
ij .

M-step. Let ȳ
(t)
j =

∑n
i=1 z̄

(t)
ij yi/n

(t)
j .

Update

µ
(t)
j =

(Σ−1
j

)(t−1)
n

(t)
j +A−1

Σ(t−1)

1

g
+
∑
i6=j

2

dij

−1

×

Σ−1(t−1)n
(t)
j ȳ

(t)
j +A−1

Σ(t−1)

∑
i 6=j

µ
(t−1)
j − (µ

(t−1)
i − µ(t−1)

j )

dij

 ,

Update

(ν − p+ n
(t)
j )Σ

(t)
j = S−1 +

µ
(t)
j (µ

(t)
j )′

kg
+

n∑
i=1

z̄
(t)
ij (yi − µ(t)

j )(yi − µ(t)
j )

′

− 1

k

∑
i6=j

2(µ
(t)
j − µ

(t)
k )(µ

(t)
j − µ

(t)
k )

′

dij
.

Update η
(t)
j =

n
(t)
j + q − 1

n+ k(q − 1)
.

end

Compute ζ = |ξ(ϑ(t)
k )− ξ(ϑ(t−1)

k )| and set t = t+ 1.

end
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Algorithm 4: EM under MOM-Beta priors.

Set t = 1. while ζ > ε∗ and t < T do

for t ≥ 1 and j = 1, ..., k do

E-step. Let z̄
(t)
ij =

η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )∑k

j=1 η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )

.

M-step. Update

θ
(t)
j =

ag +
∑n

i=1 z̄
(t)
ij yi + `1(θ

(t)
j )

(1− a)g +
∑n

i=1 z̄
(t)
ij (Lif − yi) + 2`2(θ

(t)
j )

,

`1(θ
(t)
j ) =

θ
(t−1)
j − (θ

(t−1)
i − θ(t−1)

j )

(θ
(t−1)
i − θ(t−1)

j )′(θ
(t−1)
i − θ(t−1)

j )
,

`2(θ
(t)
j ) =

[
(θ

(t−1)
i − θ(t−1)

j )′(θ
(t−1)
i − θ(t−1)

j )
]−1

. Update

η
(t)
j =

n
(t)
j + q − 1

n+ k(q − 1)
.

end

Compute ζ = |ξ(ϑ(t)
k )− ξ(ϑ(t−1)

k )| and set t = t+ 1.

end

Algorithm 5: Gradient Ascend algorithm.

1 Initialization ζ = ζ∗, k̄ =

√
‖ζ∗ − ζ(t−1)‖
∇ξ(ζ(t−1))

and h = 0;

2 while (ξ(ζ(t−1)) > ξ(ζ∗)) do

3 ζ∗ = ζ(t−1) +
k̄

2h
∇ξ(ζ(t−1));

4 h = h+ 1

5 end

6 ζ(t) = ζ∗
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4.2.1 Derivation of the EM algorithm for Normal mixtures under

MOM-IW-Dir priors

The complete-data posterior can be written as follows

p(ϑk | y, z,Mk) =
1

Ck

∏
1≤i<j≤k

(µi − µj)
′
A−1

Σ (µi − µj)
g

(4.2.1)

×
k∏
j=1

n∏
i=1

(ηjN(y;µj ,Σj))
zijN (µj ; 0, gAΣ) Wishart(Σ−1

j ; ν, S)Dir(η; q).

The E-step at iteration t requires the expectation of log p(ϑk | y, z,Mk) with respect

to p(z | y,ϑ
(t−1)
k ,Mk), where ϑ

(t−1)
k = (η(t−1),µ

(t−1)
1 , ...,µ

(t−1)
k ,Σ

(t−1)
1 , ...,Σ

(t−1)
k )

are the parameter values at iteration t− 1. Let

z̄
(t)
ij = p(zi = j | yi,ϑ(t−1)

k ) =
η

(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )∑k

j=1 η
(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )

, (4.2.2)

then the M-step seeks ϑ
(t)
k maximising

log(p(ϑk | y, z̄ij ,Mk)) =

k∑
j=1

nj log(ηj) +

k∑
j=1

n∑
i=1

z̄ij log(N(yi;µj ,Σj)) (4.2.3)

+

k∑
j=1

log(N (µj ; 0, gAΣ)) +

k∑
j=1

log(Wishart(Σ−1
j ; ν, S))

+
∑

1≤i<j≤k
log((µi − µj)

′
A−1

Σ (µi − µj)) + log(Dir(η; q))

where n
(t)
j =

∑n
i=1 z̄

(t)
ij . We successively update η(t), µ

(t)
1 ,...,µ

(t)
k and Σ

(t)
1 , ...,Σ

(t)
k in

a fashion that guarantees that (4.2.3) increases at each step. The update η
(t)
j is

η
(t)
j =

n
(t)
j + q − 1

n+ k(q − 1)
, (4.2.4)
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which maximizes (4.2.3) with respect to η conditional on the current µ
(t−1)
1 ,...,µ

(t−1)
k

and Σ
(t−1)
1 , ...,Σ

(t−1)
k . To update µ

(t)
j we seek to maximize

ξ(µ
(t)
j ) =

∑
i 6=j

log(C
(t)′

ij (Σ
(t−1)
j )−1C

(t)
ij )

− 1

2g
µ
′(t)
j A−1

Σ(t−1)µ
(t)
j −

1

2

n∑
i=1

z̄
(t)
ij (yi − µ(t)

j )
′
(Σ−1)(t−1)(yi − µ(t)

j ),

where Cij = (µi − µj). The first derivative of ξ(µ
(t)
j ) is

∇ξ(µ(t)
j ) = −2

∑
i 6=j

A−1
Σ(t−1)C

(t)
ij

C
(t)′

ij A−1
Σ(t−1)C

(t)
ij

− 1

g
(A−1

Σ(t−1)µ
(t)
j )−

n∑
i=1

z̄
(t)
ij (A−1

Σ
(t−1)
j

(yi − µ(t)
j )).

Because an analytic solution of ∇ξ(µ(t)
j ) = 0 in terms of µ

(t)
j is not feasible we resort

to a first order Taylor approximation for −2
∑

i 6=j(A
−1
Σ(t−1)C

(t)
ij )/(C

(t)′

ij A−1
Σ(t−1)C

(t)
ij )

around µ
(t−1)
j . Finding the maximum of this Taylor approximation gives the candi-

date update

µ∗j =

Σ
−1(t−1)
j n

(t)
j +A−1

Σ(t−1)

1

g
+
∑
j 6=k

2

d
(t−1)
ij

−1

(4.2.5)

×

Σ−1(t−1)n
(t)
j ȳ

(t)
j +A−1

Σ(t−1)

∑
i 6=j

µ
(t−1)
j − (µ

(t−1)
i − µ(t−1)

j )

d
(t−1)
ij

 ,

where d
(t−1)
ij = (µ

(t−1)
i − µ(t−1)

j )′A−1
Σ(t−1)(µ

(t−1)
i − µ(t−1)

j ). If ξ(µ∗j ) > ξ(µ
(t−1)
j ) we

set µ
(t)
j = µ∗j , else take the gradient step in Algorithm 5.

Finally we describe updating Σj for j = 1, . . . , k. Redefine ξ(Σj) to now be

(4.2.3) viewed as a function Σj . Due to the terms
∑

i 6=j log(µ
(t)
i −µ

(t)
j )
′
A−1

Σ(t)(µ
(t)
i −

µ
(t)
j ) and −1

2 log(|A−1
Σ(t) |) an analytic solution of ∇ξ(Σj) = 0 is not available, hence

we use the Taylor expansion around Σ
(t−1)
j

∑
i 6=j

log(µ
(t)
i − µ

(t)
j )
′
A−1

Σ(t)(µ
(t)
i − µ

(t)
j )− 1

2
log(|A−1

Σ(t) |) ≈

∑
i 6=j

(µ
(t)
i − µ

(t)
j )
′
A−1

Σ(t)(µ
(t)
i − µ

(t)
j )

(µ
(t−1)
i − µ(t−1)

j )′A−1
Σ(t−1)(µ

(t−1)
i − µ(t−1)

j )
− 1

2
log(|Σ(t)

j |).

Note that when a common Σ1 = . . . = Σk is assumed then AΣ(t) = Σ(t) we
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only need a Taylor expansion of first term. Summarising, the candidate update is

(ν − p+ n
(t)
j )Σ∗j = S−1 +

µ
(t)
j (µ

(t)
j )′

kg
+

n∑
i=1

z̄
(t)
ij (yi − µ(t)

j )(yi − µ(t)
j )
′

−1

k

∑
i 6=j

2(µ
(t)
j − µ

(t)
k )(µ

(t)
j − µ

(t)
k )
′

d
(t−1)
ij

.

If ξ(Σ∗j ) > ξ(Σ
(t−1)
j ) we set Σ

(t)
j = Σ∗j , else take a gradient step (Algorithm

5) with a small enough step size to ensure that Σ
(t)
j remains positive-definite.

4.2.2 Derivation of the EM algorithm for product Binomial mix-

tures under MOM-Beta-Dir priors

The complete-data posterior can be written as follows

p(ϑk | y, z,Mk) =
k∏
j=1

n∏
i=1

(ηj

p∏
f=1

Bin(yif ;Lif , θjf ))zij
1

Ck

∏
1≤i<j≤k

(θi − θj)′(θi − θj)

×
p∏

f=1

Beta(θjf ; ag, (1− a)g)Dir(η; q). (4.2.6)

For the t-th iteration of the E-step, we compute the expectation of the latent cluster

allocations z̄
(t)
ij = p(zi = j | yi,ϑ(t−1)

j ) given η(t−1) and θ
(t−1)
1 ,...,θ

(t−1)
k using

z̄
(t)
ij =

η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )∑k

j=1 η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )

. (4.2.7)

For the t-th iteration of the M-step, we find the maximizers η(t) and θ
(t)
1 ,...,θ

(t)
k

given z̄
(t)
ij of the following function

log(p(ϑk | y, z̄ij ,Mk)) =
k∑
j=1

nj log(ηj) +
k∑
j=1

n∑
i=1

p∑
f=1

z̄ij log(Bin(yif ;Lif , θ
(t−1)
jf ))

(4.2.8)

+

k∑
j=1

p∑
f=1

log(Beta(θjf ; ag, (1− a)g))

+
∑

1≤i<j≤k
log(θi − θj)′(θi − θj) + log(Dir(η; q)) + Constant,
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with n
(t)
j =

∑n
i=1 z̄

(t)
ij . We update η(t) and θ

(t)
1 ,...,θ

(t)
k in a fashion that guarantees

that (4.2.8) increases at each step. The M-step for η
(t)
j is computed by using

η
(t)
j =

n
(t)
j + q − 1

n+ k(q − 1)
, (4.2.9)

which maximizes (4.2.8) with respect to η conditional on the current θ
(t−1)
1 ,...,θ

(t−1)
k .

For θ
(t)
j let

ξ(θ
(t)
j ) =

∑
i 6=j

log(C
(t)′

ij C
(t)
ij ) +

p∑
f=1

n∑
i=1

z̄
(t)
ij yif log(θ

(t)
jf )

+
n∑
i=1

p∑
f=1

z̄
(t)
ij (Lif − yif ) log(1− θ(t)

jf ) + ((1− a)g − 1)

p∑
f=1

log(1− θ(t)
jf )

+ (ag − 1)

p∑
f=1

log(θ
(t)
jf ),

be the corresponding target where Cij = (θi − θj). The first derivative of ξ(θ
(t)
j ) is

∇ξ(θ(t)
j ) = −2

∑
i 6=j

C
(t)
ij

C
(t)′

ij C
(t)
ij

+
n∑
i=1

p∑
f=1

z̄
(t)
ij yif/θ

(t)
jf

−
n∑
i=1

p∑
f=1

z̄
(t)
ij (Lif − yif ))/(1− θ(t)

jf )−
p∑

f=1

((1− a)g − 1)/(1− θ(t)
jf )

+

p∑
f=1

(ag − 1)/θ
(t)
jf .

An analytic solution of ∇ξ(θ(t)
j ) = 0 in terms of θ

(t)
j is not feasible. Hence we resort

to a first order Taylor approximation for −2
∑

i 6=j(C
(t)
ij )/(C

(t)′

ij C
(t)
ij ) around θ

(t)
j and

we now compute the M-step for θ∗j given by

θ∗j =
ag +

∑n
i=1 z̄

(t)
ij yi + `1(θ

(t)
j )

(1− a)g +
∑n

i=1 z̄
(t)
ij (Lif − yi) + 2`2(θ

(t)
j )

,

where

`1(θ
(t)
j ) =

θ
(t−1)
j − (θ

(t−1)
i − θ(t−1)

j )

(θ
(t−1)
i − θ(t−1)

j )′(θ
(t−1)
i − θ(t−1)

j )
,
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and

`2(θ
(t)
j ) =

[
(θ

(t−1)
i − θ(t−1)

j )′(θ
(t−1)
i − θ(t−1)

j )
]−1

.

If ξ(θ∗j ) > ξ(θ
(t−1)
j ) set θ

(t)
j = θ∗j , else take the gradient step in Algorithm 5.

Algorithms 3 and 4 detail the steps for Normal and product Binomial mix-

tures (extensions to other models follow similar lines), for simplicity outlining the

approximate updates given by the gradient Algorithm 5.

The proposed algorithm in this chapter for finding maximizers uses iteratively

EM steps with gradient algorithm updates. The algorithm has some connections

with MM algorithms (Lange et al., 2000; Hunter and Lange, 2004) which use convex-

ity assumptions for finding maximizers and where the missing data structure is not

necessary as in the EM algorithm. The algorithms in Lange et al. (2000) are based

on a majorizing or minorizing function that serves as a surrogate for the objective

function. A combination of the EM and MM algorithms is given in (Gormley and

Murphy, 2008) where an Expectation Minorization Maximization (EMM) algorithm

is proposed for model fitting in a mixture of experts model for rank data.

4.3 Precision of MCMC-based estimates relative to lo-

cal priors

We compared empirically the precision of p̂(y | Mk) vs. the local prior-based

p̃(y | Mk) for univariate and bivariate Normal mixtures with k = 2, 3 components

(if k = 1 then p(y | Mk) = pL(y | Mk) has closed form). To inspect whether

the precision of p̂(y | Mk) suffers under overfitted mixtures we simulated a single

data set of n = 500 observations from a k∗ = 1 component mixture and computed

100 times both p̂(y | Mk) and p̃(y | Mk). Figures 4.1 and 4.2 show the results

for a univariate and bivariate outcome respectively. The precision of p̂(y | Mk)

was comparable to that of p̃(y | Mk), in fact in some situations the former was

more precise (this is due to Var(log p̂) = Var(log p̃) + Var(log ω̂) + 2cov(log p̃, log ω̂)

where the latter covariance may be negative). More importantly, posterior model

probabilities p̂(Mk | y) (middle panels) were more precise than p̃(Mk | y), as in

our experience tends to be the case due to p(Mk | y) having a higher concentration

around 0 or 1 (Theorem 1). The lower panels show that as k grows larger than k∗

the precision in ŵ tends to degrade, however as mentioned this is compensated by

the fact that p(Mk | y) is small for large k (middle panels), thus it does not appear

to be a practical concern.
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Figure 4.1: Precision of p̂(y | Mk) in 100 univariate simulations, k∗ = 1. Top:
log p̂(y | Mk). Middle: p̂(Mk | y). Bottom: log p̂L(y | Mk) vs. log Ê(dϑ(ϑk) | y)
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Figure 4.2: Precision of p̂(y | Mk) in 100 bivariate simulations, k∗ = 1. Top:
log p̂(y | Mk). Middle: p̂(Mk | y). Bottom: log p̂L(y | Mk) vs. log Ê(dϑ(ϑk) | y)

We now illustrate the performance of the EM algorithm for Normal mixture models
under MOM-IW priors. Figures 4.3 and 4.4 show EM estimates for 300 data sets
using Algorithm 3 from univariate and bivariate Normal mixtures. In Figure 4.3
for k = 2 the penalty and data variability seem to be negatively correlated (bottom
panel) as we would expect considering the definition (2.1.4) for MOM-IW priors. A
similar situation is illustrated in Figure 4.4 for k = 2 where we also see that the
posterior modes recover the true parameter values (top panels).
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Figure 4.3: EM estimates for 300 data sets of n = 500 from a univariate Normal
where µ = 0 and σ2 = 1.
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Figure 4.4: EM estimates for 300 data sets of n = 500 from a bivariate three
component Normal mixture where µ1 = (−1,−1)

′
, µ2 = −µ1, µ3 = (3, 3)

′
,

η=(0.25,0.25,0.5), σ2
11 = σ2

22 = 1 and σ2
12 = σ2

21 = −0.5.
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Chapter 5

Simulation studies

In this chapter, we compare our MOM-IW and MOM-Beta priors with default pa-

rameters to their local counterparts Normal-IW and Beta (respectively) with param-

eter gL set to match the 95% percentile for the separation parameter κ (Chapter 3

). Throughout, we set uniform prior model probabilities P (M1) = . . . = P (Mk) =

1/k. We estimate the integrated likelihoods using Algorithm 1 based on 5,000

MCMC draws after a 2,500 burn-in period. We also consider the BIC, AIC, sBIC as

it is currently implemented by Drton and Plummer (2017) where Σi 6= Σj . Section

5.1 presents a simulation study for univariate and bivariate Normal mixtures. In

Section 5.2 we explore model misspecification by simulating data from a T mixture

and the two-piece iskew-T mixture proposed in Rossell and Steel (2017). Section 5.3

reproduces a Binomial mixture example by Drton and Plummer (2017) to illustrate

the sBIC. In Section 5.4, we perform a sensitivity analysis for the hyperparameters

of MOM-IW and MOM-Beta priors. Finally, Section 5.5 shows a simulation exper-

iment for product Binomial mixtures which illustrates the usage of diagnostics for

multiple EM and MCMC runs.

5.1 Normal mixture

Here, we consider a simulation study where the goal is to choose one amongst the

three competing models

M1 : N(yi;µ,Σ),

M2 : η1N(yi;µ1,Σ) + (1− η1)N(yi;µ2,Σ)

M3 : η1N(yi;µ1,Σ) + η2N(yi;µ2,Σ) + (1− η1 − η2)N(yi;µ3,Σ),
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Table 5.1: Cases for the simulation study data-generating truth. Σ = 1 in Cases
1-4, σ2

11 = σ2
22 = 1 and σ2

12 = σ2
21 = −0.5 in Cases 5-8.

Case 1 k∗=1 µ1=0

Case 2 k∗=2 µ1=-1, µ2=1 η = (0.5, 0.5)

Case 3 k∗=2 µ1 = −2,µ2 = 2 η = (0.5, 0.5)

Case 4 k∗=3 µ1 = −1,µ2 = 1,µ3 = 4 η =(0.45,0.45,0.1)

Case 5 k∗=1 µ = (0, 0)′

Case 6 k∗=2 µ1 = (−0.4,−0.6)′, µ2 = −µ1 η = (0.5, 0.5)

Case 7 k∗=2 µ1 = (−0.65,−0.85)′, µ2 = −µ1 η=(0.35,0.35,0.3)

Case 8 k∗=3 µ1 = (−0.65,−0.85)′, µ2 = −µ1, µ3 = (3, 3)′ η=(0.35,0.35,0.3)

We simulated 100 datasets under each of the 8 data-generating truths with

Normal components depicted in Figure 5.1 and Table 5.1 for univariate (Cases 1-

4) and bivariate outcomes (Cases 5-8). Case 1 corresponds to k∗ = 1 components,

Cases 2-3 to k∗ = 2 moderately and strongly-separated components respectively, and

Case 4 to k∗ = 3 with two strongly overlapping components and a third component

with smaller weight. Cases 5-8 are analogous for the bivariate outcome.

Figures 5.2-5.3 show the average posterior probability assigned to the data-

generating model P (Mk∗ | y). To compare BIC, AIC model selection criteria and

LPs, NLPs, Figures 5.4-5.5 report the proportion of correct model selections, i.e. the

proportion of simulated datasets in which k̂ = k∗, where k̂ is the selected number of

components by any given method (for Bayesian methods k̂ = arg maxk p(Mk | y)).

Overall a similar behavior is observed in the univariate and bivariate cases.

The BIC adequately favoured sparse solutions (Cases 1,3,5,7) but showed an im-

portant lack of sensitivity to detect some truly present components (Cases 2,4,6,8).

AIC was suboptimal in almost all scenarios.

As seen in Figures 5.2-5.3, the Normal-IW led to substantially less posterior

concentration of P (Mk∗ | y) than our MOM-IW in all cases except the non-sparse

Cases 4 and 8, where results were practically indistinguishable. As predicted by

theory, the Normal-IW put too much posterior mass on overfitted models. Interest-

ingly, Cases 2 and 6 illustrate that additionally to enforcing parsimony MOM-IW

can sometimes also increase sensitivity to detect moderately-separated components.

This is due to assigning larger prior p(ϑk | Mk) consistent with that degree of sep-

aration. Figures 5.13-5.18 show similar results, there P (κ < 4 | Mk) = 0.05 led to

slightly better parsimony than P (κ < 4 | Mk) = 0.10.
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where independence is assumed across i = 1, . . . , n.
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Figure 5.1: Simulation study data-generating truth.

56



P
(M

1
∗
|y

)

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

P
(M

2
∗
|y

)
500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

n n

(a) Case 1 (b) Case 2

P
(M

2
∗
|y

)

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

P
(M

3
∗
|y

)

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

n n

(c) Case 3 (d) Case 4

Figure 5.2: Simulation study. Univariate mixtures. P (Mk∗ | y) versus n for the
MOM-IW (solid line) and Normal-IW (dashed line).
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Figure 5.3: Simulation study. Bivariate mixtures. P (Mk∗ | y) versus n for the
MOM-IW (solid line) and Normal-IW (dashed line).
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Figure 5.4: Simulation study. Univariate mixtures. Proportion of correct k̂ = k vs.
n for MOM-IW (solid black), Normal-IW (dashed black), AIC (dashed gray) and
BIC (solid gray).
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Figure 5.5: Simulation study. Bivariate mixtures. Proportion of correct k̂ = k vs.
n for MOM-IW (solid black), Normal-IW (dashed black), AIC (dashed gray) and
BIC (solid gray).
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5.2 Misspecified mixtures

In practice, the data-generating density may present non-negligible departures from
the assumed class. An important case we investigate here is the presence of heavy
tails and asymmetries for three misspecified mixtures, which under an assumed Nor-
mal mixture likelihood may affect both the chosen k and the parameter estimates.
The continuous flexible mixtures proposed by Rossell and Steel (2017) based in mul-
tivariate two piece iskew-t or dskew-t distributions capture asymmetry and heavy
tails.
The iskew-t distribution considers independent observations from univariate two-
piece skew-Normal distributions. The misspecified mixtures here have bivariate
Student-t or iskew-t components (see Appendix C). For the three considered mix-
tures we generated n = 600 observations from k∗ = 3, means µ1 = (−1, 1)′,
µ2 = −µ1, µ3 = (6, 6)′, a common scale matrix with elements σ11 = σ22 = 2
and σ12 = σ21 = −1 and η1 = η2 = η3 = 1/3. For the bivariate Student-t compo-
nents the degrees of freedom are υj = 4 and for the bivariate iskew-t components
are υj = 4 or υj = 100 (in each mixture). For the bivariate iskew-t component the
j skewness parameter for variable y is equal to αsjf = −0.5 which corresponds to
a positive skewness. We considered up to K = 6 components for each of the three
misspecified mixtures with either homogeneous Σ1 = . . . = Σk or heterogeneous
covariances, giving a total of 11 models.
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Figure 5.6: Simulated data and contour in logarithm scale for the data-generating
student-T mixture with υj = 4.

Table 5.2 summarizes the results. For the student-T mixture illustrated in Figure
5.6, BIC and sBIC strongly favored k̂ = 4 components with unequal covariances,
AIC chose k̂ = 6 components with unequal covariances, and the Normal-IW prior
placed most posterior probability on k ∈ {5, 6} with common covariances.
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Figure 5.7: Simulated data and contour in logarithm scale for the data-generating
iskew-T mixture with υj = 100.

For the iskew-T mixture with υj = 100 illustrated in Figure 5.7, AIC and

sBIC supported k̂ = 6 components with unequal covariances, the Normal-IW prior

and BIC chose k̂ = 4 and k̂ = 5 components with a common covariance, respectively.

For the iskew-T mixture with υj = 4 displayed in Figure 5.8, BIC and sBIC indicate

k̂ = 5 components with unequal covariances. The Normal-IW prior and AIC chose

k̂ = 6 components with common and unequal covariances, respectively. In contrast,

our MOM-IW assigned posterior probability 1 (up to rounding) to k = 3 with equal

covariances for the student-T mixture.

For the iskew-T mixtures with υj = 100 and υj = 4, the proposed MOM-IW

chose k = 3 and k = 5 components with equal covariances and induced posterior

probabilities of 0.863 and 0.651, respectively. To provide further insight Figures

5.9-5.11 show the component contours for k̂ under each method, estimating ϑ̂k̂ via

maximum likelihood (AIC, BIC, sBIC) or posterior modes (Normal-IW, MOM-IW).

In Figure 5.9 the means of the three MOM-IW components matched those of

the true Student-T components. The BIC and sBIC approximated the two mildly-

separated components with two normals centered roughly at (0,0), whereas the AIC

split the components even further. The two extra components in the Normal-IW

solution essentially account for heavy tails.
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In Figure 5.10 for the iskew-T mixture with υj = 100 the means of the three MOM-
IW components are closer to those of the true components. Additional components
are suggested by AIC, BIC, sBIC and Normal-IW due to the presence of skewness in
the mixture. Figure 5.11 displays how AIC, BIC, sBIC, Normal-IW and MOM-IW
suggest more components than k∗ = 3 due to the presence of both asymmetry and
thick tails in the mixture and how MOM-IW induces some parsimony regardless.
This example illustrates how by penalizing poorly-separated or low-weight compo-
nents NLPs may induce a form of robustness to model misspecification for mixtures
with heavy tails or asymmetries, although we remark that this is a finite-sample
effect and would eventually vanish as n → ∞. Even though this is computation-
ally convenient we remark that in general the criterion to discard components is
case-dependent and, unless carefully calibrated, the quality of the inference may
suffer.
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Figure 5.8: Simulated data and contour in logarithm scale for the data-generating
iskew-T mixture with υj = 4.

For instance, Figure 5.9 illustrates how in the student-T mixture for K =

6 the BIC, sBIC, AIC and the Normal-IW support 4 components by setting an

estimated weight η̂j >0.15 that would not be discarded in practice.
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Table 5.2: Misspecified student-T mixture, iskew-T mixture with υj = 100 and
iskew-T mixture with υj = 4. P (Mk | y) for 11 models with k ∈ {1, . . . , 6} and
either homogeneous (Σj = Σ) or heterogeneous (Σi 6= Σj) under Normal-IW-Dir,
MOM-IW-Dir, BIC and sBIC under Σi 6= Σj .

Student-T with υj = 4

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC

k P (Mk | y) P (Mk | y)

1 0.000 0.000 -2992.820 -2981.828

Σj = Σ 2 0.000 0.000 -2549.767 -2532.179

3 0.003 1.000 -2548.774 -2524.591

4 0.062 0.000 -2556.581 -2525.803

5 0.469 0.000 -2566.122 -2528.748

6 0.465 0.000 -2574.371 -2530.402

Σi 6= Σj 2 0.000 0.000 -2545.129 -2520.946 -2548.942

3 0.000 0.000 -2529.037 -2491.663 -2534.729

4 0.000 0.000 -2522.954 -2472.389 -2527.448

5 0.000 0.000 -2535.703 -2471.948 -2528.207

6 0.000 0.000 -2546.878 -2469.931 -2529.068

iskew-T with υj = 100

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC

k P (Mk | y) P (Mk | y)

1 0.000 0.000 -2887.208 -2876.216

Σj = Σ 2 0.000 0.000 -2269.108 -2251.520

3 0.148 0.863 -2248.125 -2223.942

4 0.852 0.137 -2250.330 -2219.551

5 0.000 0.000 -2244.224 -2206.850

6 0.000 0.000 -2248.776 -2204.807

Σi 6= Σj 2 0.000 0.000 -2256.182 -2231.999 -2259.994

3 0.000 0.000 -2250.169 -2212.795 -2252.693

4 0.000 0.000 -2253.893 -2203.329 -2250.255

5 0.000 0.000 -2251.225 -2191.983 -2244.667

6 0.000 0.000 -2268.929 -2187.470 -2244.587

iskew-T with υj = 4

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC

k P (Mk | y) P (Mk | y)

1 0.000 0.000 -3035.295 -3024.302

Σj = Σ 2 0.000 0.000 -2574.563 -2556.975

3 0.000 0.000 -2559.473 -2535.290

4 0.162 0.308 -2568.440 -2537.662

5 0.263 0.651 -2553.298 -2515.924

6 0.576 0.041 -2533.806 -2489.836

Σi 6= Σj 2 0.000 0.000 -2572.904 -2548.721 -2576.716

3 0.000 0.000 -2539.473 -2502.099 -2534.317

4 0.000 0.000 -2531.996 -2481.431 -2526.147

5 0.000 0.000 -2531.954 -2468.199 -2520.697

6 0.000 0.000 -2543.217 -2466.271 -2523.186

64



−5 0 5 10

−
4

−
2

0
2

4
6

8
10

y1

y2

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

η̂1 = 0.29
η̂2 = 0.37
η̂3 = 0.16
η̂4 = 0.18

−5 0 5 10

−
4

−
2

0
2

4
6

8
10

y1

y2

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

η̂1 = 0.21
η̂2 = 0.13
η̂3 = 0.21
η̂4 = 0.12
η̂5 = 0.17
η̂6 = 0.17

(a) BIC/sBIC (b) AIC

−5 0 5 10

−
4

−
2

0
2

4
6

8
10

y1

y2

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

η̂1 = 0.2
η̂2 = 0.3
η̂3 = 0.17
η̂4 = 0.04
η̂5 = 0.29

−5 0 5 10

−
4

−
2

0
2

4
6

8
10

y1

y2

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

η̂1 = 0.28
η̂2 = 0.39
η̂3 = 0.33

(c) Normal-IW (d) MOM-IW

Figure 5.9: Misspecified Student-T mixture. Estimated contours for (a) BIC/sBIC
(top left), (b) AIC (top right), (c) Normal-IW (bottom left) and (d) MOM-IW
(bottom right). Points indicate the simulated data.
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Figure 5.10: Misspecified iskew-T mixture with υj = 100. Estimated contours for
(a) BIC (top left), (b) AIC/sBIC (top right), (c) Normal-IW (bottom left) and (d)
MOM-IW (bottom right). Points indicate the simulated data.
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Figure 5.11: Misspecified iskew-T mixture with υj = 4. Estimated contours for
(a) BIC/sBIC (top left), (b) AIC (top right), (c) Normal-IW (bottom left) and (d)
MOM-IW (bottom right). Points indicate the simulated data.
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5.3 Binomial mixture

To assess the performance of MOM-Beta (default a = 1/2, g = 6.93) and Beta(1,1)

priors, the BIC and sBIC we reproduced the Binomial mixture example used by

Drton and Plummer (2017) to illustrate the sBIC. We generated 200 data sets of

sample sizes n = 50, 200 and 500 from a k∗ = 4 component Binomial mixture

with Lif = 30 trials for all i = 1, . . . , n, equal component weights ηj = 1/4 and

component-specific success probabilities θj = j/5 for j = 1, . . . , 4. To compute the

sBIC we considered the two different bounds for the real canonical threshold namely

λ ≤ 1
2(k + j − 1) and λ ≤ 1

4(j + 3k) − 1
2 proposed by Drton and Plummer (2017).

These two sBIC versions are denoted as sBIC and sBIC05, respectively.

Figure 5.12 shows the results. The two sBIC versions ameliorated the BIC’s

overpenalization as reported in Drton and Plummer (2017), whereas the Beta prior

often returned too many components.

The proportion of correct model selections was generally highest for the

MOM-Beta, particularly for smaller n (roughly 50% of the simulations when n = 50,

relative to the 25% for sBIC05).

5.4 Sensitivity to the prior

We perform a sensitivity analysis for the choice of q of the Dir(η;q) prior in Normal

mixtures. Using the posterior expected number of components given by E(k | y) =

P (M1 | y) + 2P (M2 | y) + 3P (M3 | y) we set q = p + 1 as the default prior

specification of q (Section 3.2) and compare with the specification of q = 4 and

q = 16.5 for univariate and bivariate Normal mixtures as suggested in Frühwirth-

Schnatter (2006). We also assess the sensitivity of choosing g for some alternative

prior parameter settings for MOM-IW and MOM-Beta priors.
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Figure 5.12: Binomial mixture. Frequencies of k̂ for BIC, sBIC, sBIC05, Beta and
MOM-Beta. Results from 200 data sets with n = 50, 200 and 500, Lif = 30 and
k∗ = 4.
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5.4.1 Sensitivity to choosing q

Regarding the univariate Normal mixtures in Cases 1-4, the four panels in Figure

5.13 show E(k | y) for the alternative prior specification q = 2 and P (κ < 4) = 0.05.

The four panels in Figure 5.14 show analogous results for q = 4 and P (κ < 4) = 0.05,

showing that the findings are fairly robust to mild deviations from our default value

of q.

Regarding the bivariate Normal mixtures in Cases 5-8, the four panels in Fig-

ure 5.15 show E(k | y) for q = 3 and P (κ < 4) = 0.05. The four panels in Figure 5.16

show the same results for q = 16.5 (a value recommended in Frühwirth-Schnatter

(2006) and Mengersen et al. (2011), Chapter 10) and P (κ < 4) = 0.05, showing

again that the findings are fairly robust to mild deviations from our recommended

prior setting.

5.4.2 Sensitivity to choosing g for MOM-IW priors

To study the sensitivity to the prior elicitation of g, Figures 5.17-5.18 show the

average posterior probability P (Mk∗ | y) for Cases 1-8 with P (κ < 4) = 0.1 and

q set as in Figures 5.2-5.3. Although the results are largely similar to those in

Figures 5.2-5.3, the benefits in parsimony enforcement are somewhat reduced in

some situations (e.g. Case 5), indicating that P (κ < 4 | g,MK) = 0.05 may

be slightly preferable to 0.1 to achieve a better balance between parsimony and

detection power.

5.4.3 Sensitivity to choosing g for MOM-Beta priors

To assess sensitivity Figure 5.19 shows the results for alternative prior parameter

settings g = 7.05, g = 16.09 and g = 29.99 discussed in Section 3.2. While the

performance remains competitive, these larger g result in more informative priors

that adversely affect inference, reinforcing our default recommendation g = 7.05.
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Figure 5.13: Simulation study. Univariate mixtures. Posterior expected model size
E(k | y) versus n with q = p+ 1 for the MOM-IW-Dir (solid line) and Normal-IW-
Dir (dashed line).
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(a) Case 1 (k∗ = 1, q=4) (b) Case 2 (k∗ = 2, p=1, q=4)
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(c) Case 3 (k∗ = 2, p=1, q=4) (d) Case 4 (k∗ = 3, p=1, q=4)

Figure 5.14: Simulation study. Univariate mixtures. Posterior expected model size
E(k | y) versus n with q = 4 as recommended by Frühwirth-Schnatter (2006) for
the MOM-IW-Dir (solid line) and Normal-IW-Dir (dashed line).
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(c) Case 7 (k∗ = 2, p=2, q=3) (d) Case 8 (k∗ = 3, p=2, q=3)

Figure 5.15: Simulation study. Bivariate mixtures. Posterior expected model size
E(k | y) versus n with q = p+ 1 for the MOM-IW-Dir (solid line) and Normal-IW-
Dir (dashed line).
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(a) Case 5 (k∗ = 1, p=2, q=16.5) (b) Case 6 (k∗ = 2, p=2, q=16.5)
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(c) Case 7 (k∗ = 2, p=2, q=16.5) (d) Case 8 (k∗ = 3, p=2, q=16.5)

Figure 5.16: Simulation study. Bivariate mixtures. Posterior expected model size
E(k | y) versus n with q = 16.5 as recommended by Frühwirth-Schnatter (2006) for
the MOM-IW-Dir (solid line) and Normal-IW-Dir (dashed line).
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(c) Case 3 (k∗ = 2, p=1, q=2) (d) Case 4 (k∗ = 3, p=1, q=2)

Figure 5.17: Simulation study. Univariate mixtures. P (Mk∗ | y) versus n under
P (κ < 4 | Mk) = 0.1 for the MOM-IW-Dir (solid line) and Normal-IW-Dir (dashed
line).
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(c) Case 7 (k∗ = 2, p=2, q=3) (d) Case 8 (k∗ = 3, p=2, q=3)

Figure 5.18: Simulation study. Bivariate mixtures. P (Mk∗ | y) versus n under
P (κ < 4 | Mk) = 0.1 for the MOM-IW-Dir (solid line) and Normal-IW-Dir (dashed
line).
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Figure 5.19: Binomial mixture. Frequencies of k̂ for MOM-Beta for g = 7.05,
g = 16.09 and g = 29.99 with q = 2. Results from 200 data sets with n = 50,
n = 200 and n = 500, Lif = 30 and k∗ = 4.
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5.5 An illustration of computations under product of

Binomial mixtures

We illustrate some computational issues and diagnostics related to posterior multi-

modality, the EM and MCMC algorithms in product Binomial mixtures. We con-

sidered a simulation with k∗ = 4 components, n = 500, p = 8 variables and equal

component weights η∗1 = η∗2 = η∗3 = η∗4 = 1/4. Each component had two large suc-

cess probabilities θ∗jf = 0.32 whereas the remaining probabilities were small (0.04

and 0.08), specifically

η = (0.25, 0.25, 0.25, 0.25); θ =



0.32 0.04 0.04 0.04

0.32 0.08 0.08 0.08

0.04 0.32 0.04 0.04

0.08 0.32 0.08 0.08

0.04 0.04 0.32 0.04

0.08 0.08 0.32 0.08

0.04 0.04 0.04 0.32

0.08 0.08 0.08 0.32


. (5.5.1)

The default MOM-Beta prior parameters are g = 2.6 and q = 2 (Section 3.2).

Although our EM algorithm is guaranteed to increase the log-posterior at each

iteration, in practice there are potential issues with slow convergence or reaching

local maxima/saddlepoints. To address this in our implementation we run the EM

algorithm (Algorithm 4) from 30 different random starting values and keep the

estimate achieving the highest log-posterior value. We found that for 29 of the 30

starting values the algorithm converges to a global maximum with a log-posterior

value of -9906.67. The obtained estimates were fairly close to the simulation truth,

specifically

η̂ = (0.28, 0.26, 0.24, 0.22); θ̂ =



0.34 0.05 0.04 0.04

0.28 0.07 0.08 0.07

0.04 0.31 0.04 0.05

0.08 0.31 0.08 0.08

0.05 0.05 0.35 0.06

0.09 0.08 0.31 0.08

0.03 0.04 0.04 0.33

0.09 0.09 0.07 0.30


(5.5.2)
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Figure 5.20: Product Binomial simulation. MCMC trace plots for θjf corresponding
to components j = 1, ..., 4 and variables f = 1, . . . , 8. The colours in the trace plots
indicate the different components.

We also studied the ability of the BIC, AIC, and Beta and MOM-Beta priors to
recover k∗ = 4, finding that all except for the AIC returned the correct value (Ta-
ble 5.3). Recall that the posterior probabilities require estimating the integrated
likelihood, for which in turn we run an MCMC algorithm.
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Because the proposed algorithm to estimate the integrate likelihood requires

the MCMC to converge we assess practical MCMC convergence Figure 5.20 provides

trace plots for 2,000 iterations targetting p(ϑ4 | y,M4) after a burn period of 1,000.

The plots do not reveal issues with the mixing.

Table 5.3: Product Binomial simulation. P (Mk | y) for k ∈ {1, . . . , 6} and k∗ = 4
under Beta and MOM-Beta priors, BIC and AIC.

Beta MOM-Beta BIC AIC

k P (Mk | y) P (Mk | y)

1 0.000 0.000 -22702.00 -22668.29

2 0.000 0.000 -21569.65 -21498.00

3 0.000 0.000 -20782.58 -20673.00

4 1.000 1.000 -20051.63 -19904.11

5 0.000 0.000 -20074.65 -19889.21

6 0.000 0.000 -20099.17 -19875.80

In this chapter we developed different simulation studies showing that the

NLP prior has a better performance than the LP prior for continuos and categorical

data. For the misspecified example, the MOM-IW prior selected the true number of

components even in the presence of heavy tails or skewness thus motivating in future

work the use of NLPs in flexible mixtures to select the number of components. For

the product of Binomial mixtures we illustrated the maximization of parameters

a posteriori and the sampling of parameters via their full conditionals. Therefore,

for future extensions we could consider performing collapsed Gibbs Sampling which

has been recently implemented to latent block modeling (Wyse and Friel (2012)) to

improve the computational time.
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Chapter 6

Computationally-fast

alternatives

In this chapter we study two computationally-fast alternatives to ameliorate the

computational cost of computing the integrated likelihood. In Section 6.1 we ex-

plore a computationally-fast criterion to select the number of components motivated

by our MOM prior and the latent cluster indicators. According to the simulation

study, the criterion performed well in univariate Normal and Binomial mixtures but

showed a poor behavior for bivariate Normal mixtures. This may be because the

penalty in the criterion needs to be calibrated for bivariate or higher dimensions.

Therefore, further study is required before one could recommend this criterion for

general use. In Section 6.2 we introduce a new computational strategy that gives a

direct connection between cluster occupancies and Bayes factors with the advantage

that Bayes factors allow for more general model comparisons (for instance equal vs

unequal covariances in Normal mixtures). This new strategy seems to be promising

and may have advantages with respect to overfitted mixtures avoiding the specifi-

cation of case-specific cutoff values for selecting the number of components.

6.1 Exploration of non-local model selection criteria

The goal is to find an alternative to computing the integrated likelihood p(y|Mk).

Let z be the latent cluster indicators. For any given value of z, from Bayes theorem

we have

pL(y|Mk) =
pL(y, z|Mk)

pL(z|y,Mk)
=
pL(y|z,Mk)p

L(z|Mk)

pL(z|y,Mk)
, (6.1.1)
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in (6.1.1) pL(y|z,Mk) has a closed-form for many common mixtures and can be

extended to mixtures of latent Gaussian distributions, specifically pL(y|z,Mk) =∫
p(y|ζk, z,Mk)p

L(ζk|z,Mk)dζk, where ζk = (ωk,υk,αk) are latent variables such

that p(y|ζk, z,Mk) is a Normal mixture. To approximate pL(y|z,Mk), we can take

samples m = 1, ...,M from the posterior of ζ
(m)
k given the cluster indicators z and

then average pL(y|ζ(m)
k , z,Mk). The prior probability of the cluster configuration z

has closed-form under a η ∼ Dir(q) prior

pL(z|Mk) =
Γ(kq)

∏k
j=1 Γ((

∑
i zi = j) + q)

Γ(q)kΓ(n+ kq)
, (6.1.2)

The denominator in (6.1.1) requires evaluating a sum over the kn elements in Z,

which is computationally prohibitive. Alternatively, noting that pL(z|y,Mk) mea-

sures the posterior certainty on cluster configuration z, we could set z to the most

probable cluster and replace the denominator in (6.1.1) by another measure of pos-

terior concentration, such as the entropy estimated

EN(ϑ̂|y,Mk) = −
n∑
i=1

k∑
j=1

(
η̂jp(yi|θ̂j)∑k
j=1 η̂jp(yi|θ̂j

)
log

(
η̂jp(yi|θ̂j)∑k
j=1 η̂jp(yi|θ̂j

)
, (6.1.3)

where ϑ̂ is either the MLE or MAP. If the mixture components are well separated

EN(ϑ̂|y,Mk) will be close to zero, otherwise EN(ϑ̂|y,Mk) will have a large value.

The entropy estimated is considered as a penalty term in the classification

likelihood information criterion proposed in Biernacki and Govaert (1997) and re-

visited in Biernacki et al. (2000) to define the integrated classification likelihood

criterion. We explore the following criterion to choose the number of mixture com-

ponents

Dk = max(log(p(y|ẑ,Mk)) + log(p(ẑ|y,Mk)) + EN(ϑ̂|y) + log(
∏

1≤i<j≤k
d(θ̂i, θ̂j)),

(6.1.4)

where ẑ and θ̂j are estimated using either MCMC samples or EM algorithms. Al-

though Dk in general does not correspond asymptotically to log(p(y|z,Mk)), we

conducted an exploratory analysis to assess whether it may provide a practical and

scalable strategy. We explored the performance of (6.1.4) using the univariate mix-

tures in Cases 1 to 4 of Section 5.1. We simulated 100 data sets with samples sizes

of n = 250, n = 500 and n = 1000 and computed the relative frequency for the

selected model using (6.1.4) and MOM-IW priors.
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Case 1, k∗ = 1 Case 2, k∗ = 2

Case 3, k∗ = 2 Case 4, k∗ = 3

Figure 6.1: Normal mixture. Frequencies of k̂ for Cases 1 to 4 (Section 5.1) for
100 data sets, sample sizes of n = 250, n = 500 and n = 1000 using (6.1.4) and
MOM-IW priors.

Figure 6.1 illustrates how when n grows Dk was able to select the true number
of Normal mixture components even for Cases 2 and 4 where the components are
poorly separated.
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Figure 6.2: Binomial mixture. Frequencies of k̂ for 100 data sets. Left: the data
considered in Section 5.3 with k∗ = 4. Right: simulated data from n = 50, 200 and
500, Lif = 30, ηj = 1/4, θj = {0.05, 0.35, 0.65, 0.95} and k∗ = 4.

Figure 6.1 also shows that although Dk performed well by using the proposed method
in Chapter 4 we selected more frequently the true generating model. Figure 6.2
shows the Binomial examples. For the example considered in Section 5.3, Dk chose
3 components thus underfitting the number of components. However, for more
separated components Dk was able to select the true generating model when the
sample sizes increase.

6.2 Bayes factors for mixtures from cluster occupancies

Consider z = {z1, ..., zn} the latent clusters, nj =
∑n

i=1 I(zi = j) be the number of

individuals in cluster j, and m =
∑k

j=1 I(nj > 0) the number of non-empty clusters.
We now outline our Empty Cluster Probability (ECP) algorithm, which relies on
Proposition 2 below expressing Bayes factors as a ratio of posterior to prior empty
cluster probabilities. The result applies to any mixture and prior satisfying the
minimal conditions C1-C4 below. In the remainder of this section p(ϑk | Mk) de-
notes an arbitrary prior for which one wants to obtain posterior model probabilities,
e.g. in our examples this is the local prior p̃(ϑk | Mk) and then non-local posterior
probabilities are obtained from (4.1.1).
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C1 Conditional independence. p(y | z,ϑk,Mk) =
∏k
j=1

∏
zi=j

p(yi | θj ,Mk)

C2 Invariance to label permutations. p(y | ϑk) = p(y | ψ(ϑk)) and p(z | Mk) =

p(%(z) | Mk) for any permutation of component parameters ψ and component

indexes %.

C3 Coherence of prior on cluster allocations. p(z | nk = 0,Mk) = p(z | Mk−1)

C4 Coherence of prior on parameters. For any θ1, . . . ,θk−1, η1, . . . , ηk−1, it holds

that

p(θ1, . . . ,θk−1, η1, . . . , ηk−1 | z,Mk−1) =

∫
p(θ1, . . . ,θk, η1, . . . , ηk | z,Mk)dθkdηk

Conditions C1-C2 hold for the vast majority of mixtures, including mixtures

of regressions and most hidden Markov models. Conditions C3-C4 hold for most

common priors. For instance C3 holds when p(η | Mk) and p(η | Mk−1) are

both symmetric Dir(q) distributions and C4 is satisfied by priors that factor across

components, e.g. p(ϑk | Mk) = Dir(η; q)
∏k
j=1 p(θj | Mk).

Proposition 2 Suppose that C1-C4 hold. Then the Bayes factor

Bk−1,k(y) =

∑k
j=1 P (nj = 0 | y,Mk)/k

P (nk = 0 | Mk)
. (6.2.1)

Proof. See Appendix A, Section A.7.

Once Bk−1,k(y) for k ∈ {2, . . . ,K} are available then P (Mk | y) are obtained

as usual. Proposition 2 is easy to implement, e.g. if p(η | Mj) = Dir(η; q) for all j

then

ak = P (nk = 0 | Mk) =
Γ(kq)Γ(n+ (k − 1)q)

Γ((k − 1)q)Γ(n+ kq)
.

Further, given draws ϑ
(t)
k ∼ p(ϑk | y,Mk) one can obtain Rao-Blackwellised esti-

mates

P̂ (nj = 0 | y,Mk) =
1

T

T∑
t=1

P (nj = 0 | y,ϑ(t)
k ,Mk) =

1

T

T∑
t=1

n∏
i=1

P (zi 6= j | y,ϑ(t)
k ,Mk).

and therefore, the estimator of (6.2.1) is given by

B̃k−1,k =
1

kT

k∑
j=1

T∑
t=1

1

ak

n∏
i=1

P (zi 6= j|y,ϑ(t)
k ,Mk). (6.2.2)
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Note also that ECP only requires cluster probabilities, hence it remains valid for

non-conjugate models. We used the estimator in (4.1.2)-(4.1.4) for many of our

examples, as it was used in an earlier version of this manuscript, but we found that

the ECP estimator was highly efficient (Section 6.2.2). To compute the Bayes factor

comparing k − 1 versus k components under NLPs we use the estimator suggested

in 4.1.1 and 6.2.2 under LPs as follows

B̂k−1,k = B̃k−1,k

∑T
t=1 ω(ϑ

(t)
k−1)∑T

t=1 ω(ϑ
(t)
k )

. (6.2.3)

Proposition 2 is of independent interest to help discard unoccupied clusters in overfit-

ted mixtures. It suggests that the threshold on posterior empty cluster probabilities

should depend on the corresponding prior empty cluster probabilities. The latter

are a function of n, k and q, hence using fixed thresholds may be suboptimal. Note

also that Proposition 2 can be used to compare structurally different models. For

instance let Bk1 be the Bayes factor between a k-component unequal-covariance

Normal mixture vs. a one-component Normal, and Bc
k1 that for a k-component

common-covariance Normal mixture vs. a one-component Normal. Then Bk1/B
c
k1

is the Bayes factor comparing k components with unequal vs. equal covariances.

Similarly one could combine the Bayes factor between a one-component Normal

vs. a one-component T (which is easy to compute) with Proposition 2 to obtain

Bayes factors between any k-component Normal vs. T mixture. That is, the ECP

estimator is connected to empty cluster probabilities but really is a tool to obtain

P (Mk | y) and hence remains applicable in more general settings.

6.2.1 Comparison with other alternatives

We simulated a single data set of n = 200 observations from Cases 1 and 3 in

Section 5.1 and computed 50 times P̂ (Mk | y) under Normal-IW-Dir priors using

the ECP estimator and the Marin and Robert (2008) estimator given by (4.1.4)

in Section 4.1. Figures 6.3-6.4 shows how the medians of the ECP estimator and

the Marin and Robert (2008) estimator with k = {1, ..., 4} are similar however the

ECP estimator instead of the Marin and Robert (2008) estimator produces higher

precision estimates. To compute P̂ (Mk | y) using the ECP estimator we implement

the bfnormmix function given in the R package mombf (Rossell et al., 2018).
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Figure 6.3: Boxplots display 50 independent estimates based on separate MCMC
runs (T = 10, 000 iterations after a T/10 burn-in each). Precision of P̂ (Mk | y)
under Normal-IW-Dir using the Marin and Robert (2008) (MR) estimator (gray)
and ECP estimator (white) for n = 200 observations in simulation Case 1, k∗ =
1. Dashed line indicate P̂ (Mk | y) under Normal-IW-Dir obtained by simulating
1, 000, 000 values from the prior and averaging the likelihood.
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Figure 6.4: Boxplots display 50 independent estimates based on separate MCMC
runs (T = 10, 000 iterations after a T/10 burn-in each). Precision of P̂ (Mk | y)
under Normal-IW-Dir using the Marin and Robert (2008) estimator (gray) and ECP
estimator (white) for n = 200 observations in simulation Case 3, k∗ = 2. Dashed
line indicate P̂ (Mk | y) under Normal-IW-Dir obtained by simulating 1, 000, 000
values from the prior and averaging the likelihood.
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6.2.2 Computational cost and precision across MCMC runs for the
ECP estimator

We run 50 simulations under Cases 1, 3, 5 and 7 for n ∈ {200, 1000}, for each dataset
we obtained P̂ (Mk | y) for k ∈ {1, 2, 3} using the ECP estimator (9,000 iterations
after a 1,000 burn-in) both for MOM-IW-Dir and Normal-IW-Dir with unequal
covariances. Table 6.1 reports the average posterior probabilities and median run
time on a laptop running OS X 10.11.6 with 1.6 GHz processor and 8Gb 1600MHz
DDR3. The runtime in Table 6.1 corresponds to the total time of obtaining P̂ (Mk |
y) for all k and both priors, using function bfnormmix in R package mombf (Rossell
et al., 2018).

MOM-IW-Dir Normal-IW-Dir

n k=1 k=2 k=3 k=1 k=2 k=3 CPU time

Case 1, k∗ = 1 200 0.860 0.061 0.079 0.701 0.190 0.109 1.8 sec.

1000 0.989 0.010 0.001 0.893 0.089 0.018 8.3 sec.

Case 3, k∗ = 2 200 0.000 0.727 0.273 0.000 0.592 0.408 1.8 sec.

1000 0.000 0.933 0.067 0.000 0.776 0.224 8.4 sec.

Case 5, k∗ = 1 200 0.937 0.060 0.003 0.871 0.110 0.019 2.7 sec.

1000 0.994 0.006 0.000 0.925 0.070 0.006 12.9 sec.

Case 7, k∗ = 2 200 0.611 0.343 0.046 0.675 0.277 0.048 2.7 sec.

1000 0.000 0.955 0.045 0.000 0.879 0.121 13.3 sec.

Table 6.1: Simulation study. Mean P (Mk | y) for k ∈ {1, 2, 3} and Cases 1, 3, 5
and 7 under MOM-IW-Dir and Normal-IW-Dir priors. Median CPU time (seconds)
to compute P (Mk | y) for both priors and all k with bfnormmix in R package mombf
(Rossell et al., 2018).

To assess the numerical precision of our estimates we simulated a single dataset
under each scenario and obtained 20 estimates P̂ (Mk∗ | y) and P̂ (Mk | y) from
independent MCMC runs. In Figures 6.5-6.6 we consider T ∈ {5000, 10000, 20000}
after a T/10 burn-in each. The Figures 6.5-6.6 illustrate how T = 10, 000 are enough
to obtain P̂ (Mk∗ | y) with high precision (except in Case 7 with n = 200 where
even T = 20, 000 seems to be in adequate). In Figures 6.7-6.8 and 6.9-6.10 we
consider T = 10, 000 and T = 20, 000 after a T/10 burn-in each where k ∈ {1, 2, 3}.
Figures 6.7-6.10 show how the precision for P̂ (Mk | y) was very high in all settings,
particularly for n = 1000.
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Figure 6.5: Precision of P̂ (Mk∗ | y) using ECP estimator in simulation Cases 1
and 3. Boxplots display 20 independent estimates based on separate MCMC runs
(T ∈ {5000, 10000, 20000} iterations after a T/10 burn-in each).
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Figure 6.6: Precision of P̂ (M∗k | y) using ECP estimator in simulation Cases 5
and 7. Boxplots display 20 independent estimates based on separate MCMC runs
(T ∈ {5000, 10000, 20000} iterations after a T/10 burn-in each).
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Figure 6.7: Precision of P̂ (Mk | y) using ECP estimator in simulation Cases 1
and 3. Boxplots display 20 independent estimates based on separate MCMC runs
(T = 10, 000 iterations after a T/10 burn-in each).

92



●

k=1 k=2 k=3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P̂
(M

k|
y)

●

● ●

k=1 k=2 k=3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P̂
(M

k|
y)

T T

(a) Case 5, k∗ = 1, n = 200 (b) Case 5, k∗ = 1, n = 1000

●

k=1 k=2 k=3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P̂
(M

k|
y)

k=1 k=2 k=3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P̂
(M

k|
y)

T T

(c) Case 7, k∗ = 2, n = 200 (d) Case 7, k∗ = 2, n = 1000

Figure 6.8: Precision of P̂ (Mk | y) using ECP estimator in simulation Cases 5
and 7. Boxplots display 20 independent estimates based on separate MCMC runs
(T = 10, 000 iterations after a T/10 burn-in each).
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Figure 6.9: Precision of P̂ (Mk | y) using ECP estimator in simulation Cases 1
and 3. Boxplots display 20 independent estimates based on separate MCMC runs
(T = 20, 000 iterations after a T/10 burn-in each).
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Figure 6.10: Precision of P̂ (Mk | y) using ECP estimator in simulation Cases 5
and 7. Boxplots display 20 independent estimates based on separate MCMC runs
(T = 20, 000 iterations after a T/10 burn-in each).
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Chapter 7

Applications

In this chapter we compare the performance of our MOM-IW-Dir and MOM-Beta-
Dir priors with respect to Normal-IW-Dir and Beta-Dir, BIC, AIC, sBIC and overfit-
ted mixtures and repulsive overfitted mixtures using textbook and real applications.
Section 7.1 presents the Old-Faithful dataset. In Sections 7.2-7.3 we analyze a flow
cytometry experiment and Fisher’s Iris data for which there is a known ground
truth. In Section 7.4 we offer a comparison with overfitted and repulsive overfitted
mixtures. Finally, in Section 7.5 we analyze a USA political blog dataset via prod-
uct Binomial mixtures. We assessed MCMC convergence for all parameters after a
burn-in period via MCMC iteration plots (see Appendix B).

7.1 Old Faithful

We briefly describe this classical example to illustrate potential issues with poorly-
separated components. The results are in Table 7.1 and Figures 7.2-7.3.

Figure 7.1: Old Faithful: the biggest cone-type geyser located in the Yellowstone
National Park, Wyoming, United States.
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The Old Faithful is a cone-type geyser in the Yellowstone National Park (Figure
7.1). We seek clusters in a dataset with n = 272 eruptions recording their duration
and the time to the next eruption (dataset faithful in R). We considered up to K = 6
Normal components either with equal or unequal covariance matrices.
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Figure 7.2: Classification and contours for the model chosen by MOM-IW-Dir for
Faithful data set.
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(top right), (c) Normal-IW (bottom left) and (d) MOM-IW (bottom right). Points
indicate the data.

Table 7.1 shows how the Our MOM-IW-Dir selected k = 3 equal-covariance

components with 0.967 posterior probability (Figure 7.2). The Normal-IW-Dir chose

k = 4 with 0.473 posterior probability, this resulted from splitting an MOM-IW-

Dir component in the lower-left corner into two. The sBIC and BIC chose k̂ = 3

components with roughly the similar location as the MOM-IW-Dir, though their

shapes were slightly different, whereas AIC returned k̂ = 4 (Figure 7.3).
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Table 7.1: Faithful dataset. P (Mk | y) for 11 models with k ∈ {1, . . . , 6} and
either homogeneous (Σj = Σ) or heterogeneous (Σi 6= Σj) under Normal-IW-Dir,
MOM-IW-Dir, BIC, AIC and sBIC under Σi 6= Σj .

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC

k P (Mk | y) P (Mk | y)

1 0.000 0.000 -558.006 -548.992

Σj = Σ 2 0.000 0.000 -416.805 -402.382

3 0.132 0.967 -411.356 -391.524

4 0.473 0.000 -419.748 -394.507

5 0.353 0.000 -418.019 -387.369

6 0.042 0.000 -427.821 -391.763

Σi 6= Σj 2 0.000 0.000 -415.291 -395.459 -419.103

3 0.000 0.000 -422.609 -391.960 -415.938

4 0.000 0.000 -425.370 -383.903 -417.278

5 0.000 0.000 -439.754 -387.470 -420.569

6 0.000 0.000 -448.896 -385.795 -422.231

7.2 Cytometry data

We analysed the Graf-versus-Host flow cytometry data in Brinkman et al. (2007), an

experiment used for cell counting, e.g. to diagnose diseases. The data contain p = 4

variables called CD3, CD4, CD8b and CD8 (Figure 7.4). The study goal was to find

cell subpopulations with positive CD3, CD4 and CD8b (CD3+/CD4+/CD8b+), i.e.

high values in the first three variables. Interestingly, the authors created a control

sample designed not to contain any CD4+/CD8b+ cells.

Following the analysis in Baudry et al. (2012), we selected the n = 1, 126

cells in the control sample for which CD3 > 280.

Figure 7.5 plots (CD4,CD8b) values and the solution chosen by BIC, AIC

and Normal-IW-Dir, MOM-IW-Dir. The first three methods identified a CD4+

and CD8b+ subpopulation that as discussed is not there by design, whereas it

was not present in the MOM-IW-Dir solution. In contrast, sBIC supported six

components with unequal covariances. Intuitively, the spurious CD4+ and CD8b+

cluster contains a few outlying observations, and our MOM-IW-Dir penalises such a

low-weight component. This is an interesting contrast to our other examples where

the issue was having poorly-separated, rather than low-weight, components. These

results illustrate the benefits of jointly penalising small weights and overlapping

components. See Table 7.2 for further details, e.g. the Normal-IW-Dir and MOM-

IW-Dir chose k = 3 with 0.928 and 0.995 posterior probability, respectively.
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Figure 7.4: Cytometry data-set with the variables CD4 and CD8b.

Table 7.2: Cytometry dataset. P (Mk | y) for 11 models with k ∈ {1, . . . , 6} and
either homogeneous (Σj = Σ) or heterogeneous (Σi 6= Σj) under Normal-IW-Dir,
MOM-IW-Dir, BIC and BIC and sBIC under Σi 6= Σj .

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC

k P (Mk | y) P (Mk | y)

1 0.000 0.000 -28337.23 -28295.02

Σj = Σ 2 0.000 0.000 -27720.64 -27665.86

3 0.000 0.000 -27541.73 -27474.39

4 0.000 0.000 -27443.22 -27363.31

5 0.000 0.000 -27271.67 -27179.19

6 0.000 0.000 -27226.41 -27121.36

Σi 6= Σj 2 0.072 0.005 -27357.56 -27277.65 -37869.06

3 0.928 0.995 -27015.35 -26897.74 -36478.20

4 0.000 0.000 -27048.60 -26893.29 -35247.11

5 0.000 0.000 -27041.50 -26848.50 -34415.96

6 0.000 0.000 -27075.18 -26844.48 -33888.20
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Figure 7.5: Projection of the variables CD4 and CD8b for the Cytometry data-set,
classification of observations and contours using EM algorithm for BIC and AIC
(top), and under Normal-IW-Dir and MOM-IW-Dir (bottom)
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7.3 Fisher’s Iris data

We present another classical dataset by Fisher (1936) for the practical reason that

there is a ground truth for the underlying number of subpopulations. The data

contain four variables (p = 4) measuring the dimensions of n = 150 iris flowers. The

plants are known to belong to k∗ = 3 species, setosa, versicolor and virginica, each

with 50 observations (Figure 7.6). We compare the ability of the various methods to

recover these three species in an unsupervised fashion. We considered up to K = 6

Normal components with either equal or unequal covariances.

Table 7.3 provides posterior model probabilities. The BIC and sBIC sup-

ported k̂ = 2 and k̂ = 4 components with unequal covariances, respectively. Upon

inspection the BIC solution merged the versicolor and virginica species into a single

component, akin to its lack of sensitivity observed in Section 5.1, whereas the sBIC

split the versicolor specie into two components. The AIC supported k̂ = 6 with

unequal covariances.

Table 7.3: Iris dataset. P (Mk | y) for 11 models with k ∈ {1, . . . , 6} and either
homogeneous (Σj = Σ) or heterogeneous (Σi 6= Σj) under Normal-IW-Dir, MOM-
IW-Dir, BIC and BIC and sBIC under Σi 6= Σj .

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC

k P (Mk | y) P (Mk | y)

1 0.000 0.000 -414.989 -393.915

Σj = Σ 2 0.000 0.000 -344.049 -315.448

3 0.809 1.000 -316.483 -280.355

4 0.029 0.000 -295.705 -252.051

5 0.132 0.000 -302.465 -251.284

6 0.030 0.000 -310.909 -252.201

Σi 6= Σj 2 0.000 0.000 -287.009 -243.355 -415.449

3 0.000 0.000 -290.420 -224.186 -410.122

4 0.000 0.000 -314.483 -225.669 -408.839

5 0.000 0.000 -341.910 -230.517 -414.190

6 0.000 0.000 -355.786 -221.813 -422.209
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Figure 7.6: Top: The species, setosa, versicolor and virginica in the Fisher’s Iris
data set. Bottom: Classification for the model chosen by MOM-IW-Dir for Iris data
set.
The AIC supported k̂ = 6 with unequal covariances. Both the Normal-IW-Dir and
our MOM-IW-Dir chose k̂ = 3 (see Figure 7.6), albeit the evidence under the former
was weaker (PL(M3 | y) = 0.81 and P (M3 | y) = 1 respectively).
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7.4 Comparison with overfitted and repulsive overfitted
mixtures

Table 7.4 and Table 7.5 summarise the results from analysing the misspecified
student-T mixture in Section 5.2 and the datasets from Sections 7.1-7.3 with over-
fitted mixtures and repulsive overfitted mixtures (respectively) with Σj = Σ as in
Petralia et al. (2012). Here repulsion was induced by a pMOM penalty where g is
set to its default in Section 3.2. We set k = 6 and report the posterior distribution of
the number of empty components (with no assigned observations) from the MCMC
output. Note that k = 6 favors overfitted mixtures as our analyses in Sections 5.2
and 7.1-7.3 suggested less than 6 components. To assess sensitivity we tested prior
parameter values q = 1 (no shrinkage), q = 0.01 (satisfying Rousseau and Mengersen
(2011) and Gelman et al. (2013)) and 3 × 10−8 (proposed by Havre et al. (2015)).
We observed little differences between overfitted and repulsive overfitted mixtures.
As expected in general smaller q led to less occupied components in the posterior,
except in the cytometry data where the posterior focused on 6 components for all
q. Note that q = 3 × 10−8 recovered the true k∗ = 3 in the misspecified example
from Section 5.2, whereas this was not the case in the Iris and Cytometry data that
truly contain 3 subpopulations.

Table 7.4: Posterior for the distribution on non-empty components m in overfitted
mixtures under Σj = Σ, the misspecified student-T mixture, Faithful, Iris and
Cytometry data.

P̂ (m | y,M6)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

q = 1

Misspecified 0.00 0.00 0.00 0.00 0.07 0.93

Faithful 0.00 0.00 0.00 0.01 0.15 0.85

Fisher’s Iris 0.00 0.99 0.01 0.00 0.00 0.00

Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

q = 0.01

Misspecified 0.00 0.00 0.03 0.35 0.56 0.06

Faithful 0.00 0.00 0.63 0.31 0.04 0.02

Fisher’s Iris 0.00 1.00 0.00 0.00 0.00 0.00

Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

q = 3.10−8

Misspecified 0.00 0.00 0.95 0.00 0.00 0.05

Faithful 0.00 0.00 0.96 0.00 0.01 0.03

Fisher’s Iris 0.00 1.00 0.00 0.00 0.00 0.00

Cytometry 0.00 0.00 0.00 0.00 0.00 1.00
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Table 7.5: Posterior distribution on non-empty components m in repulsive overfitted
mixtures under Σj = Σ. The misspecified student-T mixture, Faithful, Iris and
Cytometry.

P̂ (m | y,M6)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

q = 1

Misspecified 0.00 0.00 0.00 0.00 0.02 0.98

Faithful 0.00 0.00 0.00 0.00 0.26 0.74

Iris 0.00 0.99 0.00 0.01 0.00 0.00

Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

q = 0.01

Misspecified 0.00 0.00 0.00 0.35 0.63 0.02

Faithful 0.00 0.00 0.76 0.23 0.01 0.00

Iris 0.00 1.00 0.00 0.00 0.00 0.00

Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

q = 3.10−8

Misspecified 0.00 0.00 0.83 0.00 0.00 0.17

Faithful 0.00 0.00 0.99 0.01 0.00 0.00

Iris 0.00 1.00 0.00 0.00 0.00 0.00

Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

The results for the faithful data matched those of our MOM-IW, but in these

data there is not ground truth and it is hence hard to judge the quality of any given

answer.

7.5 Political blog data

We illustrate product Binomial mixtures using a dataset on n = 773 USA political

blogs from 2008 (Chang, 2015). Each blog provides word counts (how many times a

given word was used). To facilitate interpretation we combined similar words (e.g.

america, american and americans, see Table 7.6 and Figure 7.7) and selected the

p = 234 words with overall frequency above 100. We fitted the product Binomial

mixture yif | zi = j, θjf ∼ Bin(θjf , Li), where Li =
∑p

f=1 yif is the total number of

words in blog i = 1, ..., 773. We considered MOM-Beta-Dir and Beta-Dir priors and

the BIC and AIC model choice criteria. The MOM-Beta-Dir parameters were set

to the default in Section 3.2, obtaining a = 1/2, g = 2.02 whereas as a local prior

we chose the Beta(1, 1) to match the prior variance of the MOM-Beta.
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Figure 7.7: Word cloud for the political blog data set where sizes are increasing with
frequency of use.

The MOM-Beta-Dir and Beta-Dir chose k̂ = 2 and k̂ = 4 both with posterior

probability one (up to rounding), whereas BIC and AIC chose k̂ = 3 and k̂ = 6

respectively (Table 7.8). To assess the inferred components, these data contain an

independent labeling that classifies blogs either as liberal or conservative. Figure

7.8 displays posterior cluster probabilities (Algorithm 4) for liberal and conservative

blogs. Interestingly under the MOM-Beta prior conservative blogs fell mostly in

Component 1. Figure 7.9 shows the most characteristic words for each MOM-Beta-

Dir component (chi-square residual> 2 when cross-tabulating word count versus

assigned component). For instance, “war, iraq, tax, government” are representative

of Component 1 whereas “polls, votes, percent, delegates” are representative of

Component 2. In contrast, under the Beta prior Components 2 and 4 showed a

similar distribution for liberal and conservative blogs and similarly for Components

1 and 3 obtained under the BIC. The clusters returned by the AIC did not show

appreciable differences between conservative or liberal blogs. We emphasize that

there is no ground truth for these data, hence our discussion is simply meant as a

qualitative assessment.

106



Table 7.6: The similar words combined into a single word to facilitate interpretation
for USA political blogs dataset.

clinton clintons
obama obamas barack

america american americans
candidate candidates

democratic democrats
new news

president presidential
senate senator

year years
vote voters

thing things

Table 7.7: 20 most representative words for each component with largest chi-square
residual values.

Component 1 Component 2

people obama
war clinton
just vote
said election

president democratic
mccain race

like percent
iraq hillary

house win
new campaign

government votes
day polls
tax indiana

bush mccain
know state
make primary

america carolina
time delegates

get said
media results
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Figure 7.8: Posterior cluster probabilities p(zi = j|y,Mj) under BIC, AIC and
Beta-Dir, MOM-Beta-Dir for documents labelled as conservative or liberal
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Table 7.8: USA political blogs dataset. P (Mk | y) for 6 models with k ∈ {1, . . . , 6}
under Beta-Dir, MOM-Beta-Dir, BIC and BIC.

MOM-Beta-Dir Beta-Dir BIC AIC

k P (Mk | y) P (Mk | y)

1 0.000 0.000 -257405.2 -256317.0

2 1.000 0.000 -255488.8 -253307.8

3 0.000 0.000 -255329.7 -252055.9

4 0.000 1.000 -255358.8 -250992.2

5 0.000 0.000 -255712.2 -250252.7

6 0.000 0.000 -256366.0 -249813.7

Component 1 Component 2

war
iraq

tax

government

pe
op

le

oil
free

military

he
al

th

church

policy
trade

law

administration

ec
on

om
ic

co
ng

re
ss

care
house

book

world

home

united
issuescommittee

polls
votes

percent

delegates

election
indiana

poll

carolina
results

pe
nn

sy
lv

an
iarace

democratic

primary

district

north

win

numbers
nomination

victory

likely nominee

won

points

close
republican

state

lead

states

hillary

sen party
gop

no
ve

m
be

r

milliongoing

support

republicans

show

campaign

fox

superdelegates

two

last

lost

general

weeks

point

run

second

Figure 7.9: Political blog data. Each blog was assigned to its most probable com-
ponent under a MOM-Beta prior. Word sizes based on chi-square residuals from
cross-tabulating word frequency versus assigned component
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Chapter 8

Conclusions and future work

According to this thesis, we have the following conclusions:

(i) The primary reasons for using NLPs to select mixture components are en-

couraging solutions that balance parsimony and sensitivity, and also facilitate

interpretation in terms of well-separated subpopulations. From a theoreti-

cal standpoint, our formulation asymptotically enforces parsimony under the

wide class of generically identifiable mixtures, which we confirmed in finite n

examples.

(ii) We also showed that the required computations are no harder than for stan-

dard local priors and, although not exploited here, they are embarrassingly

parallel for multiple k. We illustrated how one may simply use the output from

existing MCMC algorithms for local priors, rendering the approach practical.

(iii) In particular the ECP estimator provides a convenient strategy to estimate

posterior model probabilities for non-local and local priors, by utilizing readily

available MCMC output and avoiding costly post-processing.

(iv) As defining prior parameters is often regarded as another practical inconve-

nience, here we showed how it can be advantageously calibrated to detect

well-separated components resulting in multimodality.

(v) Our results showed that BIC may pathologically miss components, in some

instances even with large n. The AIC and local priors tended to add spurious
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components in simulations and in datasets with known subgroup structure.

(vi) In our examples the sBIC showed a mixed behavior that was similar to the

BIC in some instances and to local priors or the AIC in others.

(vii) Interestingly, as an alternative to our model selection framework we attempted

using overfitted and repulsive overfitted mixtures with fixed large number of

components k. While these proved useful in several examples their perfor-

mance can depend on tuning the Dirichlet prior parameters and potentially

the choice of k. Naturally our framework can also be sensitive to prior spec-

ification, but as we illustrated there are natural default parameters based on

multi-modality and minimal informativeness that result in a fairly competitive

behaviour.

According to this thesis, we have the following suggestions for future work:

(i) Parsimony enforcement. We remark that in our examples we used a uniform

prior on the model space, in future work we may achieve further parsimony

by reinforcing sparse models a priori.

(ii) Computational extensions. An interesting venue for future research is to de-

velop fast approximations to the two terms required to obtain the NLP inte-

grated likelihood. For instance we could extend the approach given by (Bier-

nacki et al., 2000) to approximate the local pL(y | Mk), and use deterministic

expansions around the posterior mode ϑ̂k to approximate the posterior ex-

pected penalty E(dϑ(ϑk) | y,Mk)).

(iii) Extensions to robust and infinite/nonparametric mixture models. Another in-

triguing observation was that, by penalizing poorly-separated and low-weight

components, NLPs showed robustness to model misspecification in an ex-

ample. It would be interesting to study the combined effect of NLPs and

robust likelihoods. Other related interesting venues are non-parametric mix-

tures (Murphy et al., 2017) and determinantal point processes (Xie and Xu,

2017; Bianchini et al., 2017), here we emphasize that NLPs require not only

a repulsive force but also penalizing low-weight components which was found

to improve inference in our examples. Particularly, as an extension of this

111



work, the MOM prior may be considered for the parameters of the centering

distribution in the Dirichlet Process Mixture of Normal densities introducing

repulsion among components through their centers, and the computations for

the expected number of components may be obtained using for example a

Polya urn scheme (MacEachern, 1994).

(iv) Extensions to high dimensional settings. In this work we consider n � p

however according to Rossell and Telesca (2017) NLPs perform well in high

dimensional estimation for regular models. Therefore, an interesting avenue

is the use of the MOM-IW and MOM-Beta for clustering purposes when the

number of variables increase such as n� p.
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Appendix A

Proofs

A.1 Auxiliary lemmas to prove Theorem 1

We state Lemma A.1.1 and Lemma A.1.2 and proof two auxiliary lemmas that will

be used in the proof of Theorem 1.

Lemma A.1.1 Let p(ϑk | Mk) = dθ(θ)pL(θ | Mk)p(η | Mk) be the MOM prior in

(2.1.4). Then p(ϑk | Mk) = d̃θ(θ)p̃L(θ | Mk)p(η | Mk), where d̃θ(θ) ≤ ck for some

finite ck,

p̃L(ϑk | Mk) =

k∏
j=1

N (µj ; 0, (1 + ε)gAΣ) ,

and ε ∈ (0, 1) is an arbitrary constant.

Proof. The MOM prior has an unbounded penalty

dθ(θ) =
1

Ck

∏
1≤i<j≤k

(
(µi − µj)

′
A−1

Σ (µi − µj)/g
)t
,

however we may rewrite dθ(θ)pL(θ | Mk)

=dθ(θ)

k∏
j=1

N (µj ; 0, gAΣ)
N (µj ; 0, (1 + ε)gAΣ)

N (µj ; 0, (1 + ε)gAΣ)
,

=d̃θ(θ)

k∏
j=1

N (µj ; 0, (1 + ε)gAΣ) , (A.1.1)
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where ε ∈ (0, 1) is an arbitrary constant and d̃θ(θ) =

dθ(θ)

k∏
j=1

N (µj ; 0, gAΣ)

N (µj ; 0, (1 + ε)gAΣ)
= dθ(θ)

k∏
j=1

(1 + ε)1/2 exp

{
−1

2

εµ
′
jA
−1
Σ µj

(1 + ε)g

}
.

The fact that d̃θ(θ) is bounded follows from the fact that the product term is

a Normal kernel and hence bounded, whereas dθ(θ) can only become unbounded

when µjA
−1
Σ µj → ∞ for some j, but this polynomial increase is countered by the

exponential decrease in exp

{
−1

2

εµ
′
jA
−1
Σ µj

(1 + ε)g

}
. �

Lemma A.1.2 Let dϑ(ϑk) ∈ [0, ck] be a bounded continuous function in ϑk, where

ck is a finite constant. Let

gk(y) = EL(dϑ(ϑk) | y,Mk) =

∫
dϑ(ϑk)p

L(ϑk | y,Mk)dϑk.

If for any ε > 0 we have that PL(dϑ(ϑ) > ε | y,Mk)
P−→ 0 then gk(y)

P−→ 0.

Alternatively, if there exists some d∗k > 0 such that for any ε > 0 PL(|dϑ(ϑk)−d∗k| >
ε | y,Mk)

P−→ 1, then gk(y)
P−→ d∗k.

Proof. Consider the case PL(dϑ(ϑ) > ε | y,Mk)
P−→ 0, then gk(y) =

∫
dϑ(ϑk)<ε

dϑ(ϑk)p
L(ϑk | y,Mk)dϑk +

∫
dϑ(ϑk)>ε

dϑ(ϑk)p
L(ϑk | y,Mk)dϑk

≤ εPL(dϑ(ϑk) < ε | y,Mk) + ckP
L(dϑ(ϑk) > ε | y,Mk)

≤ ε+ ckP
L(dϑ(ϑk) > ε | y,Mk)

P−→ ε,

where ε > 0 is arbitrarily small. Hence gk(y)
P−→ 0.

Next consider the case PL(|dϑ(ϑk)− d∗k| > ε | y,Mk)
P−→ 1. Then

gk(y) >

∫
dϑ(ϑk)>d∗k−ε

dϑ(ϑk)p
L(ϑk | y)dϑk

≥ (d∗k − ε)PL (dϑ(ϑk) > d∗k − ε | y,Mk)
P−→ d∗k − ε,
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and analogously gk(y) =∫
dϑ(ϑk)<d∗k+ε

dϑ(ϑk)p
L(ϑk | y,Mk)dϑk +

∫
dϑ(ϑk)>d∗k+ε

dϑ(ϑk)p
L(ϑk | y,Mk)dϑk

≤ (d∗k + ε) + ckP
L(dϑ(ϑk) > d∗k + ε | y,Mk)

P−→ d∗k + ε,

for any ε > 0 and hence gk(y)
P−→ d∗k. �

A.2 Proof of Theorem 1

Part (i). The result is straightforward. Briefly, p(y | Mk) =∫
dϑ(ϑk)p(y | ϑk,Mk)p

L(ϑk | Mk)dϑk

=

∫
dϑ(ϑk)

p(y | ϑk,Mk)p
L(ϑk | Mk)

pL(y | Mk)
pL(y | Mk)dϑk

= pL(y | Mk)E
L(dϑ(ϑk) | y),

as desired.

Part (ii). Posterior concentration. We need to prove that

PL (|dϑ(ϑk)− d∗k| > ε | y,Mk)→ 0

where d∗k = 0 for k > k∗ and d∗k = dϑ(ϑ∗k) for k ≤ k∗. Intuitively, the result

follows from the fact that by the L1 posterior concentration assumption B1 the pos-

terior concentrates on the KL-optimal model p∗k(y), but for generically identifiable

mixtures this corresponds to parameter values satisfying d(ϑk) = 0 if k > k∗ and

d(ϑk) > 0 if k ≤ k∗.
More formally, let Ak be the set of ϑk ∈ Θk defining p∗k(y), i.e. minimizing

KL divergence between the data-generating p(y | ϑ∗k∗ ,Mk∗) and p(y | ϑk,Mk).

Consider first the overfitted model case k > k∗, then generic identifiability gives

that

Ak = {ϑk ∈ Θk : ηj = 0 for some j = 1, . . . , k or θi = θj for some i 6= j} .

This implies that for all ϑk ∈ Ak we have that dϑ(ϑk) = 0 and also that the L1

distance

l(ϑk) =

∫
|p∗k(y)− p(y | ϑk,Mk)| dy = 0.
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Thus dϑ(ϑk) > 0⇒ ϑk 6∈ Ak ⇒ l(ϑk) > 0. Given that by assumption p(y | ϑk,Mk)

and dϑ(ϑk) are continuous in ϑk, for all ε′ > 0 there is an ε > 0 such that dϑ(ϑk) > ε′

implies l(ϑk) > ε and hence that the probability of the former event must be smaller.

That is,

PL
(
dϑ(ϑk) > ε′ | y,Mk

)
≤ PL(l(ϑk) > ε | y,Mk)

and the right hand side converges to 0 in probability for an arbitrary ε by Condition

B1, proving the result for the case k > k∗.

The proof for the k ≤ k∗ case proceeds analogously. Briefly, when k ≤ k∗

generic identifiability gives that Ak = {ϑ∗k} is a singleton with positive weights

η∗j > 0 for all j = 1, . . . , k and θ∗i 6= θ∗j for i 6= j. Thus d∗k = dϑ(ϑ∗k) > 0. By

continuity of p(y | ϑk,Mk) and dϑ(ϑk) with respect to ϑk this implies that for all

ε′ > 0 there exists an ε > 0 such that l(ϑk) < ε⇒ |dϑ(ϑk)− d∗k| > ε′, and thus that

PL
(
|dϑ(ϑk)− d∗k| > ε′ | y,Mk

)
≤ PL (l(ϑk) < ε | y,Mk) ,

where the right hand side converges to 1 in probability by Condition B1, proving

the result.

Part (ii). Convergence of EL(dϑ(ϑk) | y)

Consider first the case where dϑ(ϑk) ∈ [0, ck] is bounded below some finite

constant ck. Then Part (ii) above and Lemma A.1.2 below give that

EL (dϑ(ϑ) | y,Mk)
P−→ 0, for k > k∗

EL (dϑ(ϑ) | y,Mk)
P−→ d∗k > 0, for k ≤ k∗ (A.2.1)

as we wished to prove. Next, consider the MOM prior case (as an illustration)

dϑ(ϑ) =

dη(η)
1

Ck

∏
1≤i<j≤k

(
(µi − µj)′A−1

Σ (µi − µj)
)
,

where dη(η) is bounded by assumption. From Lemma A.1.1

EL (dϑ(ϑ) | y,Mk) =

∫
d̃θ(θ)dη(η)

p(y | ϑk,Mk)p̃(ϑk | Mk)

pL(y | Mk)

p̃L(y | Mk)

p̃L(y | Mk)
dϑk

=
p̃L(y | Mk)

pL(y | Mk)

∫
d̃θ(θ)dη(η)p̃L(ϑk | y,Mk)dϑk,

(A.2.2)
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where d̃θ(θ)dη(η) is bounded and hence by Part (ii) and Lemma A.1.2 the integral in

(A.2.2) converges to 0 in probability when k > k∗ and to a non-zero finite constant

when k ≤ k∗. Therefore it suffices to show that p̃L(y | Mk)/p
L(y | Mk) is bounded

in probability, as this would then immediately imply the desired result (A.2.1). From

Lemma A.1.1 p̃L(y | Mk) =∫
p(y | ϑk,Mk)p̃

L(ϑk | Mk)dϑk =∫
p(y | ϑk,Mk)p

L(ϑk | Mk)
p̃L(ϑk | Mk)

pL(ϑk | Mk)
dϑk =∫

p(y | ϑk,Mk)p
L(ϑk | Mk)

k∏
j=1

N(µj ; 0, (1 + ε)gΣj)

N(µj ; 0, gΣj)
dϑk

∫
p(y | ϑk,Mk)p

L(ϑk | Mk)
1

(1 + ε)kp/2
exp

 1

2g

k∑
j=1

µ′jA
−1
Σ µj

ε

1 + ε

 dϑk

=
pL(y | Mk)

(1 + ε)kp/2
EL

exp

 1

2g

k∑
j=1

µ′jA
−1
Σ µj

ε

1 + ε

 | y,Mk


≥ pL(y | Mk)

(1 + ε)kp/2
, (A.2.3)

thus p̃L(y | Mk)/p
L(y | Mk) ≥ 1

(1+ε)kp/2
. From (A.2.2) this implies that when

k ≤ k∗ we obtain EL (dϑ(ϑ) | y,Mk)
P−→ d∗k > 0. Further, by Condition B3 the

EL() term in (A.2.3) is bounded above in probability when k > k∗, implying that

EL (dϑ(ϑ) | y,Mk)
P−→ 0. �

Part (iii).

By assumption p(η | Mk) = Dir(η; q) ∝ dη(η)Dir(η; q − r), where dη(η) =∏k
j=1 η

r
j and q > 1, q− r < 1. Consider the particular choice q− r < dim(Θ)/2 and

without loss of generality let k∗+1, . . . , k be the labels for the spurious components.

Theorem 1 in Rousseau and Mengersen (2011) showed that under the assumed A1-

A4 and a further condition A5 trivially satisfied by pL(η | Mk) = Dir(η; q − r) the

corresponding posterior distribution of the spurious weights concentrates around 0,

specifically

PL

 k∑
j=k∗+1

ηj > n−
1
2

+ε̃ | y,Mk

→ 0 (A.2.4)

in probability for all ε̃ > 0 as n → ∞. Now, the fact that the geometric mean is
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smaller than the arithmetic mean gives that

(k − k∗)

 k∏
j=k∗+1

ηj

 1
k−k∗

≤
k∑

j=k∗+1

ηj ,

and thus

PL

 k∑
j=k∗+1

ηj > n−
1
2

+ε̃ | y,Mk

 ≥
PL

(k − k∗)

 k∏
j=k∗+1

ηj

 1
k−k∗

> n−
1
2

+ε̃ | y,Mk

 =

PL

 k∏
j=k∗+1

ηrj >
1

(k − k∗)r
n−

r(k−k∗)
2

+ε | y,Mk

 , (A.2.5)

where ε = r(k − k∗)ε̃ is a constant. Thus (A.2.4) implies that (A.2.5) also con-

verges to 0 in probability. Finally, given that by assumption dϑ(ϑ) = dθ(θ)dη(η) ≤
ck
∏k
j=k∗+1 η

r
j we obtain

PL
(
dϑ(ϑ) > n−

r(k−k∗)
2

+ε | y,Mk

)
≤ PL

 k∏
j=k∗+1

ηrj >
1

ck
n−

r(k−k∗)
2

+ε | y,Mk

 ,

(A.2.6)

where the right hand side converges in probability to 0 given that (A.2.5) converges

to 0 in probability and ck, k, k
∗, r are finite constants. As mentioned earlier this

result holds for any r > 0 satisfying q − r < dim(Θ)/2, in particular we may set

q − r = δ < dim(Θ)/2 (where δ > 0 can be arbitrarily small) so that plugging

r = q − δ into the left hand side of (A.2.6) gives the desired result. �

A.3 Proof of Lemma 1

Let Dij be a pk × pk matrix where the ith and jth diagonal blocks are equal to the

p× p identity matrix, and the (i, j) off-diagonal block is minus the identity matrix,

so that (ζi − ζj)′(ζi − ζj) = ζ′Dijζ. Then a direct application of Lemma 1 in Kan
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(2006) gives that

dk(ζ) =
∏
i<j

(ζi − ζj)′(ζi − ζj) =
∏
i<j

θ′Dijζ =

=
1

[k(k − 1)/2]!

1∑
v(1,2)=0

1∑
v(k−1,k)=0

(−1)
∑
i<j v(i,j)

ζ′
∑
i<j

(
1

2
− v(i, j)

)
Dij

 ζ

k(k−1)

2

=
1

[k(k − 1)/2]!

1∑
v(1,2)=0

1∑
v(k−1,k)=0

(−1)
∑
i<j v(i,j)

[
ζ′Bvζ

] k(k−1)
2 (A.3.1)

where Bv =
(∑

i<j

(
1
2 − v(i, j)

)
Dij

)
is a matrix with element (l,m) given by

bll = 1
2(k − 1)−

∑
i<j v(i, j), l = 1 + p(i− 1), . . . , pi

blm = bml = −1
2 +

∑
i<j v(i, j), (1 + p(i− 1), 1 + p(j − 1)), . . . , (pi, pj)

.

Let ζl be the lth element in ζ, then following Expression (6.1) in (Mohsenipour,

2012)

[
ζ′Bvζ

] k(k−1)
2 =

∑
s∈Sk

[k(k − 1)/2]!

(
pk∏
l=1

pk∏
m=1

bslmlm
slm!

)
pk∏
l=1

ζ
∑pk
m=1 slm+sml

l (A.3.2)

where s = (s1,1, s1,2, . . . , spk,pk) is a (pk)2 integer vector, Sk denotes the set of

partitions of k(k − 1)/2 such that
∑pk

l=1

∑pk
m=1 sl,m = k(k − 1)/2 with 0 ≤ sl,m ≤

k(k−1)/2. Plugging (A.3.2) into (A.3.1) gives that the prior normalization constant

is

EL(dk(ζ)) =
1∑

v(1,2)=0

1∑
v(k−1,k)=0

(−1)
∑
i<j v(i,j)

∑
s∈Sk

(
pk∏
l=1

pk∏
m=1

bslmlm
slm!

)
pk∏
l=1

κsl (A.3.3)

where κsl = EL(ζ
∑pk
m=1 slm+sml

jf ). �

A.4 Proof of Corollary 1

In order to compute the normalization, Ck we need to find the expectation:
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Ck = E

 ∏
1≤i<j≤k

(
(µi − µj)

′
A−1

Σ (µi − µj)
g

) .

with respect to (µ1, ...,µk ∼ N(0, AΣ). Moreover consider the Cholesky decompo-

sition AΣ = LL
′

where A−1
Σ = (L

′
)−1L−1, by setting

√
gLµ∗j = µj the jacobian of

the transformation is the determinant of the block diagonal matrix:

|J(µ∗1, ...,µ
∗
k)| =

∣∣∣∣∣∣∣∣

√
gL · · · 0
...

. . .
...

0 · · · √gL


∣∣∣∣∣∣∣∣ = gk/2(det(L))k,

where (det(L))k = (det(AΣ))k/2. The normalization constant Ck can be found by

using the following expectation

Ck = E

 ∏
1≤i<j≤k

((µ∗i − µ∗j )
′
(µ∗i − µ∗j ))

 , (A.4.1)

where µ∗k ∼ Np (µ∗k; 0, Ip).

To obtain the result we apply the adapted Proposition 4 in Kan (2006) to the

p × k vector µ∗ = (µ∗1, ...,µ
∗
k), where k is the number of components and µ∗j ∈ Rp

for j = 1, . . . , k, which for convenience we reproduce below as Proposition 1.

Proposition 1 Suppose µ∗ = (µ∗1, ..., µ
∗
k)
′ ∼ Nk(0, Ik), for symmetric matrices

A(1,2), ..., A(k−1,k), we have

E

 ∏
1≤i<j≤k

(µ∗
′
A(i,j)µ

∗)

 =
1

s!

1∑
υ(1,2)=0

...

1∑
υ(k−1,k)=0

(−1)

(k2)∑
i,j

υ(i,j)
Qs(Bυ), (A.4.2)

where s =
(
k
2

)
, Bυ = (1

2 − υ(1,2))A(1,2)+, ...,+(1
2 − υ(k−1,k))A(k−1,k) and Qs(Bυ) is

given by the recursive equation: Qs(Bυ) = s!2sds(Bυ) where ds(Bυ) = 1
2s

∑s
i=1 tr(B

i
υ)ds−i(Bυ)

and d0(Bυ) = 1 and A(i,j) is a pk × pk matrix (l,m) element


all = 1, l = 1 + p(i− 1)...pi and l = 1 + p(j − 1)...pj .

alm = aml = −1, (l,m) = (1 + p(i− 1), 1 + p(j − 1))...(pi, pj).

alm = 0 otherwise.
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We define now the A(1,2), ..., A(k−1,k) matrices with dimensions pk×pk. These

matrices can be found using p ∗ p identity matrices in the diagonal blocks corre-

sponding to the i and j components minus the identity matrix in the “cross-blocks”

corresponding to (i, j). Finally using the A(i,j) matrices, Bυ can be expressed as a

pk × pk matrix with element (l,m) as follows
bll =

1

2
(k − 1)−

∑
i<j υ(i,j), l = 1 + p(i− 1)...pi and l = 1 + p(j − 1)...pj .

blm = bml = −1

2
+
∑

i<j υ(i,j), (l,m) = (1 + p(i− 1), 1 + p(j − 1))...(pi, pj).

�

A.5 Proof of Corollary 2

Using the Corollary 2.2 in Lu and Richards (1993), if z > −1/n, then

(2π)−n/2
∫ ∞
−∞

...

∫ ∞
−∞

∏
1≤i<j≤n

(xi − xj)2z
n∏
j=1

exp{−x2
j/2}dxj =

n∏
j=1

Γ(jz + 1)

Γ(z + 1)
,

(A.5.1)

and using xi = (µi −m)/(
√
aσ2g) with i = 1, ..., k, we have that the normalization

constant for a Normal mixture (p = 1) is

Ck = Eµ1,...,µk | aσ2

 ∏
1≤i<j≤k

(
µi − µj√
aσ2g

)2t
 =

k∏
j=1

Γ(jt+ 1)

Γ(t+ 1)
, (A.5.2)

and for k = 2 is straightforward to show that Ck = E(µi −µj)′(µi −µj) = 2tr(Ip).

This Corollary can be generalizable to MOM-Gamma priors with p = 1 using Lemma

3.3 in Lu and Richards (1993).

�

A.6 Proof of Corollary 3

For p = 1 Ck is computed using (3.10) in Lu and Richards (1993) and for k = 2 is

straightforward to show that Ck = E(θi − θj)′(θi − θj) = 2
∑p

f=1 V (θjf ). �
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A.7 Proof of Proposition 2

We start by noting that

p(y | Mk) =
∑

z:nk=0

p(y | z,Mk)p(z | Mk) +
∑

z:nk>1

p(y | z,Mk)p(z | Mk) (A.7.1)

From C1, for any z such that nk = 0 we have that p(y | z,Mk) =

∫
p(y | ϑk, z,Mk)p(ϑk | z,Mk)dϑk =

∫ k−1∏
j=1

∏
zi=j

p(yi | θj)

 p(ϑk | z,Mk)dϑk =

∫ k−1∏
j=1

∏
zi=j

p(yi | θj)

 p(ϑk−1 | z,Mk−1)dϑk−1 = p(y | z,Mk−1)

(A.7.2)

where the second line in (A.7.2) follows from C4. Further, from Condition C3, for

any z such that nk = 0 we have

p(z | Mk−1) = p(z | nk = 0,Mk) =
p(z | Mk)

P (nk = 0 | Mk)
⇒ p(z | Mk) = p(z | Mk−1)P (nk = 0 | Mk).

(A.7.3)

Plugging (A.7.2) and (A.7.3) into (A.7.1) gives that p(y | Mk) =

P (nk = 0 | Mk)
∑

z:nk=0

p(y | z,Mk−1)p(z | Mk−1) +
∑

z:nk>1

p(y | z,Mk)p(z | Mk) =

P (nk = 0 | Mk)p(y | Mk−1) +
∑

z:nk>1

p(y | z,Mk)p(z | Mk)

(A.7.4)

That is, p(y | Mk) is a linear combination of p(y | Mk−1) and a sum of p(y, z | Mk)

over cluster configurations such that the last cluster k is occupied. This recursive

relation is an extension of Theorem 3.1 in Nobile (2004), who proved a similar result

under more restrictive conditions than our C1-C4. Dividing both sides of (A.7.4)

by p(y | Mk) and rearranging terms gives

Bk−1,k(y) =
1

P (nk = 0 | Mk)

1−
∑

z:nk>1

p(y, z | Mk)

p(y | Mk)

 =
P (nk = 0 | y,Mk)

P (nk = 0 | Mk)
.

Finally, from Condition C2 both the likelihood and prior are invariant to label
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permutations and thus P (nj = 0 | y,Mk) = P (nk = 0 | y,Mk) for any j 6= k,

hence

Bk−1,k(y) =
1

kP (nk = 0 | Mk)

k∑
j=1

P (nj = 0 | y,Mk),

as we wished to prove. �

For completeness we derive P (nk = 0 | Mk) when η ∼ Dir(q). From (A.7.3),

P (nk = 0 | Mk) =

p(z | Mk)

p(z | Mk−1)
=

Γ(kq)
∏k
j=1 Γ(nj + q)

Γ(q)kΓ(n+ kq)

Γ(q)k−1Γ(n+ (k − 1)q)

Γ((k − 1)q)
∏k−1
j=1 Γ(nj + q)

=
Γ(kq)Γ(n+ (k − 1)q)

Γ(n+ kq)Γ((k − 1)q)
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Appendix B

MCMC results

In this section we assessed MCMC convergence for the considered data sets after a

burn-in period via MCMC iteration plots. In Figures B.1-B.4 we consider the Old

Faithful, misspecified example, Fisher’s Iris and Graf-versus-Host flow cytometry

data sets of Sections 5.2 and 7.1-7.3. The top panels illustrate the means µjf

where the colours in the trace plots indicate the different dimensions f = 1, ..., p.

The middle and bottom panels in Figures B.1-B.7 show the variance and weight

parameters. Figure B.8 show the weight parameters for the example considered in

Section 5.5. Finally, Figures B.9-B.13 illustrate the mean and weight parameters

for the political blog data (see Section 7.5) where the colours in the trace plots

indicate the two components. The plots do not reveal issues with the mixing and

the obtained estimates were fairly close to the simulation truth in the misspecified

example and the illustration of computations under product of Binomial mixtures

in Section 5.5.
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Figure B.1: MCMC results for the faithful data set with 20000 iterations and a
10000 burning period. Top: Trace plots for the mean parameters. Middle: MCMC
output for variance parameters. Bottom: MCMC output for weight parameters.
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Figure B.2: MCMC results for the misspecified data set with 5000 iterations and a
2500 burning period. Top: Trace plots for the mean parameters. Middle: MCMC
output for variance parameters. Bottom: MCMC output for weight parameters.
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Figure B.3: MCMC results for the Iris data set with 5000 iterations and a 2500
burning period. Top: Trace plots for the mean parameters. Middle: MCMC output
for variance parameters. Bottom: MCMC output for weight parameters.
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Figure B.4: MCMC results for the Cytometry data set with 5000 iterations and a
2500 burning period. Top: Trace plots for the mean parameters. Bottom: MCMC
output for weight parameters.
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Figure B.5: MCMC results for the Cytometry data set with 5000 iterations and a
2500 burning period. MCMC output for variance parameters of the first component.
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Figure B.6: MCMC results for the Cytometry data set with 5000 iterations and a
2500 burning period. MCMC output for variance parameters of the second compo-
nent.

130



σ11
2

0.2 0.4 0.6 0.8

0
10

00
20

00

σ22
2

0.2 0.3 0.4 0.5

0
50

0
15

00

σ33
2

0.8 1.2 1.6

0
30

0
60

0

σ44
2

0.2 0.4 0.6 0.8 1.0

0
40

0
10

00

σ12
2

F
re

qu
en

cy

0.00 0.15 0.30

0
60

0
12

00

σ13
2

F
re

qu
en

cy

−0.1 0.1 0.3 0.5

0
10

00
20

00

σ14
2

F
re

qu
en

cy

0.05 0.10 0.15

0
30

0
60

0

σ23
2

F
re

qu
en

cy

−0.05 0.05 0.15

0
20

0
50

0

σ24
2

F
re

qu
en

cy

0.05 0.15

0
20

0
50

0

σ34
2

F
re

qu
en

cy

−0.3 −0.2 −0.1 0.0 0.1 0.2

0
20

0
40

0

Figure B.7: MCMC results for the Cytometry data set with 5000 iterations and a
2500 burning period. MCMC output for variance parameters of the third compo-
nent.

131



η1

F
re

qu
en

cy

0.20 0.24 0.28 0.32

0
50

10
0

15
0

20
0

η2

F
re

qu
en

cy

0.24 0.28 0.32 0.36

0
50

10
0

15
0

20
0

η3

F
re

qu
en

cy

0.16 0.20 0.24 0.28

0
50

10
0

15
0

20
0

η4

F
re

qu
en

cy

0.16 0.20 0.24 0.28

0
50

10
0

15
0

20
0

Figure B.8: Additional MCMC results for the computations for the product of
Binomial mixture under MOM-Beta priors. MCMC output for weight parameters.
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Figure B.9: MCMC results for the Political blog data with 10000 iterations, a 5000
burning period and a thinning of 10 iterations. MCMC output for the words, θ̂jf ,
presented in Table 7.7.
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Figure B.10: MCMC results for the Political blog data with 10000 iterations, a 5000
burning period and a thinning of 10 iterations. MCMC output for the words, θ̂jf ,
presented in Table 7.7.
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Figure B.11: MCMC results for the Political blog data with 10000 iterations, a 5000
burning period and a thinning of 10 iterations. MCMC output for the words, θ̂jf ,
presented in Table 7.7.
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Figure B.12: MCMC results for the Political blog data with 10000 iterations, a 5000
burning period and a thinning of 10 iterations. MCMC output for the words, θ̂jf ,
presented in Table 7.7.
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Figure B.13: MCMC results for the Political blog data with 10000 iterations, a 5000
burning period and a thinning of 10 iterations. MCMC output for the words, θ̂jf ,
presented in Table 7.7 and output for weight parameters.
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Appendix C

Probability density functions

• Multivariate Normal. p(y | θj) = N(y;µj ,Σj) and θj = (µj ,Σj) where

p(y | µj ,Σj) = (2π)−p/2|Σj |−1/2 exp(−1

2
(y − µj)

′
Σ−1
j (y − µj)),

with y ∈ Rp, µj ∈ Rp and Σj a p× p symmetric positive definite matrix.

• Inverse-Wishart. p(Σj | ν, S) = IW(Σj ; ν, S) where

p(Σj | ν, S) =
1

CΣj

|S|−ν/2|Σj |−(ν+p+1)/2 exp(−1

2
tr(SΣ−1

j )),

with CΣj = (2νp/2πp(p−1)/4
∏p
f=1 Γ((ν + 1 − f)/2)), ν > p + 1 and S a p × p

symmetric positive definite matrix.

• Gamma: p(κ | aκ, bκ) = Gamma(κ; aκ, bκ) where

κ | aκ, bκ) =
baκκ

Γ(aκ)
κaκ−1 exp(−κbκ),

with aκ > 0 and bκ > 0.

• Student-t: p(y | θj) = T(y;µj ,Σj , υj) where

p(y | µj ,Σj , υj) =
1

Ct
|Σj |−1/2

(
1 +

1

υj
(y − µj)

′
Σ−1
j (y − µj))

)−(υj+p)/2

,
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with C−1
t =

Γ((υj + p)/2)

Γ((υj)/2)υ
p/2
j πp/2

and υj > 0.

• Dirichlet: p(η | q) = Dir(η; q) where

p(η | q) =
Γ(pq)

(Γ(q))p

p∏
f=1

ηq−1
f ,

with ηf > 0 and q > 0.

• iskew-t: Consider the eigenvalue decomposition of the covariance matrix Σj =

A
′
jDjAj , where Dj = diag(dj1, ..., djp), djf > 0 is the jth eigenvalue and

Aj ∈ Rp×p the non-singular eigenvector matrix. The jth iskew-t component

density is given by

piskew−t(yi|θj) = |Σj |−
1
2

p∏
f=1

2∑
t=1

Γ(
υj+1

2 )

Γ(
υj
2 )
√
υjπ

ft(yi,µj , υj , α
s
jf , ajf ) (C.0.1)

where

f1(yi,µj , υj , α
s
jf , ajf ) =

1 +
1

υj

(d
−1/2
jf a

′
jf (yi − µj))2

(1− αsjf )

−1

I(d
−1/2
jf a

′
jf (yi−µj) ≥ 0),

and

f2(yi,µj , υj , α
s
jf , ajf ) =

1 +
1

υj

(d
−1/2
jf a

′
jf (yi − µj))2

(1 + αsjf )

−1

I(d
−1/2
jf a

′
jf (yi−µj) < 0).

The specific component parameters in (C.0.1) are θj = (µj ,Σj , α
s
jf , υj) where

αsjf and υj induce the asymmetry and tail thickness.
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Frühwirth-Schnatter, S. (2006). Finite Mixtures and Markov Switching Models.

Springer, New York.
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